-
Notifications
You must be signed in to change notification settings - Fork 109
/
main.py
536 lines (452 loc) · 23.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
from __future__ import print_function
import argparse
from math import log10, ceil
import random, shutil, json
from os.path import join, exists, isfile, realpath, dirname
from os import makedirs, remove, chdir, environ
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader, SubsetRandomSampler
from torch.utils.data.dataset import Subset
import torchvision.transforms as transforms
from PIL import Image
from datetime import datetime
import torchvision.datasets as datasets
import torchvision.models as models
import h5py
import faiss
from tensorboardX import SummaryWriter
import numpy as np
import netvlad
parser = argparse.ArgumentParser(description='pytorch-NetVlad')
parser.add_argument('--mode', type=str, default='train', help='Mode', choices=['train', 'test', 'cluster'])
parser.add_argument('--batchSize', type=int, default=4,
help='Number of triplets (query, pos, negs). Each triplet consists of 12 images.')
parser.add_argument('--cacheBatchSize', type=int, default=24, help='Batch size for caching and testing')
parser.add_argument('--cacheRefreshRate', type=int, default=1000,
help='How often to refresh cache, in number of queries. 0 for off')
parser.add_argument('--nEpochs', type=int, default=30, help='number of epochs to train for')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--nGPU', type=int, default=1, help='number of GPU to use.')
parser.add_argument('--optim', type=str, default='SGD', help='optimizer to use', choices=['SGD', 'ADAM'])
parser.add_argument('--lr', type=float, default=0.0001, help='Learning Rate.')
parser.add_argument('--lrStep', type=float, default=5, help='Decay LR ever N steps.')
parser.add_argument('--lrGamma', type=float, default=0.5, help='Multiply LR by Gamma for decaying.')
parser.add_argument('--weightDecay', type=float, default=0.001, help='Weight decay for SGD.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for SGD.')
parser.add_argument('--nocuda', action='store_true', help='Dont use cuda')
parser.add_argument('--threads', type=int, default=8, help='Number of threads for each data loader to use')
parser.add_argument('--seed', type=int, default=123, help='Random seed to use.')
parser.add_argument('--dataPath', type=str, default='/nfs/ibrahimi/data/', help='Path for centroid data.')
parser.add_argument('--runsPath', type=str, default='/nfs/ibrahimi/runs/', help='Path to save runs to.')
parser.add_argument('--savePath', type=str, default='checkpoints',
help='Path to save checkpoints to in logdir. Default=checkpoints/')
parser.add_argument('--cachePath', type=str, default=environ['TMPDIR'], help='Path to save cache to.')
parser.add_argument('--resume', type=str, default='', help='Path to load checkpoint from, for resuming training or testing.')
parser.add_argument('--ckpt', type=str, default='latest',
help='Resume from latest or best checkpoint.', choices=['latest', 'best'])
parser.add_argument('--evalEvery', type=int, default=1,
help='Do a validation set run, and save, every N epochs.')
parser.add_argument('--patience', type=int, default=10, help='Patience for early stopping. 0 is off.')
parser.add_argument('--dataset', type=str, default='pittsburgh',
help='Dataset to use', choices=['pittsburgh'])
parser.add_argument('--arch', type=str, default='vgg16',
help='basenetwork to use', choices=['vgg16', 'alexnet'])
parser.add_argument('--vladv2', action='store_true', help='Use VLAD v2')
parser.add_argument('--pooling', type=str, default='netvlad', help='type of pooling to use',
choices=['netvlad', 'max', 'avg'])
parser.add_argument('--num_clusters', type=int, default=64, help='Number of NetVlad clusters. Default=64')
parser.add_argument('--margin', type=float, default=0.1, help='Margin for triplet loss. Default=0.1')
parser.add_argument('--split', type=str, default='val', help='Data split to use for testing. Default is val',
choices=['test', 'test250k', 'train', 'val'])
parser.add_argument('--fromscratch', action='store_true', help='Train from scratch rather than using pretrained models')
def train(epoch):
epoch_loss = 0
startIter = 1 # keep track of batch iter across subsets for logging
if opt.cacheRefreshRate > 0:
subsetN = ceil(len(train_set) / opt.cacheRefreshRate)
#TODO randomise the arange before splitting?
subsetIdx = np.array_split(np.arange(len(train_set)), subsetN)
else:
subsetN = 1
subsetIdx = [np.arange(len(train_set))]
nBatches = (len(train_set) + opt.batchSize - 1) // opt.batchSize
for subIter in range(subsetN):
print('====> Building Cache')
model.eval()
train_set.cache = join(opt.cachePath, train_set.whichSet + '_feat_cache.hdf5')
with h5py.File(train_set.cache, mode='w') as h5:
pool_size = encoder_dim
if opt.pooling.lower() == 'netvlad': pool_size *= opt.num_clusters
h5feat = h5.create_dataset("features",
[len(whole_train_set), pool_size],
dtype=np.float32)
with torch.no_grad():
for iteration, (input, indices) in enumerate(whole_training_data_loader, 1):
input = input.to(device)
image_encoding = model.encoder(input)
vlad_encoding = model.pool(image_encoding)
h5feat[indices.detach().numpy(), :] = vlad_encoding.detach().cpu().numpy()
del input, image_encoding, vlad_encoding
sub_train_set = Subset(dataset=train_set, indices=subsetIdx[subIter])
training_data_loader = DataLoader(dataset=sub_train_set, num_workers=opt.threads,
batch_size=opt.batchSize, shuffle=True,
collate_fn=dataset.collate_fn, pin_memory=cuda)
print('Allocated:', torch.cuda.memory_allocated())
print('Cached:', torch.cuda.memory_cached())
model.train()
for iteration, (query, positives, negatives,
negCounts, indices) in enumerate(training_data_loader, startIter):
# some reshaping to put query, pos, negs in a single (N, 3, H, W) tensor
# where N = batchSize * (nQuery + nPos + nNeg)
if query is None: continue # in case we get an empty batch
B, C, H, W = query.shape
nNeg = torch.sum(negCounts)
input = torch.cat([query, positives, negatives])
input = input.to(device)
image_encoding = model.encoder(input)
vlad_encoding = model.pool(image_encoding)
vladQ, vladP, vladN = torch.split(vlad_encoding, [B, B, nNeg])
optimizer.zero_grad()
# calculate loss for each Query, Positive, Negative triplet
# due to potential difference in number of negatives have to
# do it per query, per negative
loss = 0
for i, negCount in enumerate(negCounts):
for n in range(negCount):
negIx = (torch.sum(negCounts[:i]) + n).item()
loss += criterion(vladQ[i:i+1], vladP[i:i+1], vladN[negIx:negIx+1])
loss /= nNeg.float().to(device) # normalise by actual number of negatives
loss.backward()
optimizer.step()
del input, image_encoding, vlad_encoding, vladQ, vladP, vladN
del query, positives, negatives
batch_loss = loss.item()
epoch_loss += batch_loss
if iteration % 50 == 0 or nBatches <= 10:
print("==> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration,
nBatches, batch_loss), flush=True)
writer.add_scalar('Train/Loss', batch_loss,
((epoch-1) * nBatches) + iteration)
writer.add_scalar('Train/nNeg', nNeg,
((epoch-1) * nBatches) + iteration)
print('Allocated:', torch.cuda.memory_allocated())
print('Cached:', torch.cuda.memory_cached())
startIter += len(training_data_loader)
del training_data_loader, loss
optimizer.zero_grad()
torch.cuda.empty_cache()
remove(train_set.cache) # delete HDF5 cache
avg_loss = epoch_loss / nBatches
print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, avg_loss),
flush=True)
writer.add_scalar('Train/AvgLoss', avg_loss, epoch)
def test(eval_set, epoch=0, write_tboard=False):
# TODO what if features dont fit in memory?
test_data_loader = DataLoader(dataset=eval_set,
num_workers=opt.threads, batch_size=opt.cacheBatchSize, shuffle=False,
pin_memory=cuda)
model.eval()
with torch.no_grad():
print('====> Extracting Features')
pool_size = encoder_dim
if opt.pooling.lower() == 'netvlad': pool_size *= opt.num_clusters
dbFeat = np.empty((len(eval_set), pool_size))
for iteration, (input, indices) in enumerate(test_data_loader, 1):
input = input.to(device)
image_encoding = model.encoder(input)
vlad_encoding = model.pool(image_encoding)
dbFeat[indices.detach().numpy(), :] = vlad_encoding.detach().cpu().numpy()
if iteration % 50 == 0 or len(test_data_loader) <= 10:
print("==> Batch ({}/{})".format(iteration,
len(test_data_loader)), flush=True)
del input, image_encoding, vlad_encoding
del test_data_loader
# extracted for both db and query, now split in own sets
qFeat = dbFeat[eval_set.dbStruct.numDb:].astype('float32')
dbFeat = dbFeat[:eval_set.dbStruct.numDb].astype('float32')
print('====> Building faiss index')
faiss_index = faiss.IndexFlatL2(pool_size)
faiss_index.add(dbFeat)
print('====> Calculating recall @ N')
n_values = [1,5,10,20]
_, predictions = faiss_index.search(qFeat, max(n_values))
# for each query get those within threshold distance
gt = eval_set.getPositives()
correct_at_n = np.zeros(len(n_values))
#TODO can we do this on the matrix in one go?
for qIx, pred in enumerate(predictions):
for i,n in enumerate(n_values):
# if in top N then also in top NN, where NN > N
if np.any(np.in1d(pred[:n], gt[qIx])):
correct_at_n[i:] += 1
break
recall_at_n = correct_at_n / eval_set.dbStruct.numQ
recalls = {} #make dict for output
for i,n in enumerate(n_values):
recalls[n] = recall_at_n[i]
print("====> Recall@{}: {:.4f}".format(n, recall_at_n[i]))
if write_tboard: writer.add_scalar('Val/Recall@' + str(n), recall_at_n[i], epoch)
return recalls
def get_clusters(cluster_set):
nDescriptors = 50000
nPerImage = 100
nIm = ceil(nDescriptors/nPerImage)
sampler = SubsetRandomSampler(np.random.choice(len(cluster_set), nIm, replace=False))
data_loader = DataLoader(dataset=cluster_set,
num_workers=opt.threads, batch_size=opt.cacheBatchSize, shuffle=False,
pin_memory=cuda,
sampler=sampler)
if not exists(join(opt.dataPath, 'centroids')):
makedirs(join(opt.dataPath, 'centroids'))
initcache = join(opt.dataPath, 'centroids', opt.arch + '_' + cluster_set.dataset + '_' + str(opt.num_clusters) + '_desc_cen.hdf5')
with h5py.File(initcache, mode='w') as h5:
with torch.no_grad():
model.eval()
print('====> Extracting Descriptors')
dbFeat = h5.create_dataset("descriptors",
[nDescriptors, encoder_dim],
dtype=np.float32)
for iteration, (input, indices) in enumerate(data_loader, 1):
input = input.to(device)
image_descriptors = model.encoder(input).view(input.size(0), encoder_dim, -1).permute(0, 2, 1)
batchix = (iteration-1)*opt.cacheBatchSize*nPerImage
for ix in range(image_descriptors.size(0)):
# sample different location for each image in batch
sample = np.random.choice(image_descriptors.size(1), nPerImage, replace=False)
startix = batchix + ix*nPerImage
dbFeat[startix:startix+nPerImage, :] = image_descriptors[ix, sample, :].detach().cpu().numpy()
if iteration % 50 == 0 or len(data_loader) <= 10:
print("==> Batch ({}/{})".format(iteration,
ceil(nIm/opt.cacheBatchSize)), flush=True)
del input, image_descriptors
print('====> Clustering..')
niter = 100
kmeans = faiss.Kmeans(encoder_dim, opt.num_clusters, niter=niter, verbose=False)
kmeans.train(dbFeat[...])
print('====> Storing centroids', kmeans.centroids.shape)
h5.create_dataset('centroids', data=kmeans.centroids)
print('====> Done!')
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
model_out_path = join(opt.savePath, filename)
torch.save(state, model_out_path)
if is_best:
shutil.copyfile(model_out_path, join(opt.savePath, 'model_best.pth.tar'))
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class L2Norm(nn.Module):
def __init__(self, dim=1):
super().__init__()
self.dim = dim
def forward(self, input):
return F.normalize(input, p=2, dim=self.dim)
if __name__ == "__main__":
opt = parser.parse_args()
restore_var = ['lr', 'lrStep', 'lrGamma', 'weightDecay', 'momentum',
'runsPath', 'savePath', 'arch', 'num_clusters', 'pooling', 'optim',
'margin', 'seed', 'patience']
if opt.resume:
flag_file = join(opt.resume, 'checkpoints', 'flags.json')
if exists(flag_file):
with open(flag_file, 'r') as f:
stored_flags = {'--'+k : str(v) for k,v in json.load(f).items() if k in restore_var}
to_del = []
for flag, val in stored_flags.items():
for act in parser._actions:
if act.dest == flag[2:]:
# store_true / store_false args don't accept arguments, filter these
if type(act.const) == type(True):
if val == str(act.default):
to_del.append(flag)
else:
stored_flags[flag] = ''
for flag in to_del: del stored_flags[flag]
train_flags = [x for x in list(sum(stored_flags.items(), tuple())) if len(x) > 0]
print('Restored flags:', train_flags)
opt = parser.parse_args(train_flags, namespace=opt)
print(opt)
if opt.dataset.lower() == 'pittsburgh':
import pittsburgh as dataset
else:
raise Exception('Unknown dataset')
cuda = not opt.nocuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run with --nocuda")
device = torch.device("cuda" if cuda else "cpu")
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading dataset(s)')
if opt.mode.lower() == 'train':
whole_train_set = dataset.get_whole_training_set()
whole_training_data_loader = DataLoader(dataset=whole_train_set,
num_workers=opt.threads, batch_size=opt.cacheBatchSize, shuffle=False,
pin_memory=cuda)
train_set = dataset.get_training_query_set(opt.margin)
print('====> Training query set:', len(train_set))
whole_test_set = dataset.get_whole_val_set()
print('===> Evaluating on val set, query count:', whole_test_set.dbStruct.numQ)
elif opt.mode.lower() == 'test':
if opt.split.lower() == 'test':
whole_test_set = dataset.get_whole_test_set()
print('===> Evaluating on test set')
elif opt.split.lower() == 'test250k':
whole_test_set = dataset.get_250k_test_set()
print('===> Evaluating on test250k set')
elif opt.split.lower() == 'train':
whole_test_set = dataset.get_whole_training_set()
print('===> Evaluating on train set')
elif opt.split.lower() == 'val':
whole_test_set = dataset.get_whole_val_set()
print('===> Evaluating on val set')
else:
raise ValueError('Unknown dataset split: ' + opt.split)
print('====> Query count:', whole_test_set.dbStruct.numQ)
elif opt.mode.lower() == 'cluster':
whole_train_set = dataset.get_whole_training_set(onlyDB=True)
print('===> Building model')
pretrained = not opt.fromscratch
if opt.arch.lower() == 'alexnet':
encoder_dim = 256
encoder = models.alexnet(pretrained=pretrained)
# capture only features and remove last relu and maxpool
layers = list(encoder.features.children())[:-2]
if pretrained:
# if using pretrained only train conv5
for l in layers[:-1]:
for p in l.parameters():
p.requires_grad = False
elif opt.arch.lower() == 'vgg16':
encoder_dim = 512
encoder = models.vgg16(pretrained=pretrained)
# capture only feature part and remove last relu and maxpool
layers = list(encoder.features.children())[:-2]
if pretrained:
# if using pretrained then only train conv5_1, conv5_2, and conv5_3
for l in layers[:-5]:
for p in l.parameters():
p.requires_grad = False
if opt.mode.lower() == 'cluster' and not opt.vladv2:
layers.append(L2Norm())
encoder = nn.Sequential(*layers)
model = nn.Module()
model.add_module('encoder', encoder)
if opt.mode.lower() != 'cluster':
if opt.pooling.lower() == 'netvlad':
net_vlad = netvlad.NetVLAD(num_clusters=opt.num_clusters, dim=encoder_dim, vladv2=opt.vladv2)
if not opt.resume:
if opt.mode.lower() == 'train':
initcache = join(opt.dataPath, 'centroids', opt.arch + '_' + train_set.dataset + '_' + str(opt.num_clusters) +'_desc_cen.hdf5')
else:
initcache = join(opt.dataPath, 'centroids', opt.arch + '_' + whole_test_set.dataset + '_' + str(opt.num_clusters) +'_desc_cen.hdf5')
if not exists(initcache):
raise FileNotFoundError('Could not find clusters, please run with --mode=cluster before proceeding')
with h5py.File(initcache, mode='r') as h5:
clsts = h5.get("centroids")[...]
traindescs = h5.get("descriptors")[...]
net_vlad.init_params(clsts, traindescs)
del clsts, traindescs
model.add_module('pool', net_vlad)
elif opt.pooling.lower() == 'max':
global_pool = nn.AdaptiveMaxPool2d((1,1))
model.add_module('pool', nn.Sequential(*[global_pool, Flatten(), L2Norm()]))
elif opt.pooling.lower() == 'avg':
global_pool = nn.AdaptiveAvgPool2d((1,1))
model.add_module('pool', nn.Sequential(*[global_pool, Flatten(), L2Norm()]))
else:
raise ValueError('Unknown pooling type: ' + opt.pooling)
isParallel = False
if opt.nGPU > 1 and torch.cuda.device_count() > 1:
model.encoder = nn.DataParallel(model.encoder)
if opt.mode.lower() != 'cluster':
model.pool = nn.DataParallel(model.pool)
isParallel = True
if not opt.resume:
model = model.to(device)
if opt.mode.lower() == 'train':
if opt.optim.upper() == 'ADAM':
optimizer = optim.Adam(filter(lambda p: p.requires_grad,
model.parameters()), lr=opt.lr)#, betas=(0,0.9))
elif opt.optim.upper() == 'SGD':
optimizer = optim.SGD(filter(lambda p: p.requires_grad,
model.parameters()), lr=opt.lr,
momentum=opt.momentum,
weight_decay=opt.weightDecay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=opt.lrStep, gamma=opt.lrGamma)
else:
raise ValueError('Unknown optimizer: ' + opt.optim)
# original paper/code doesn't sqrt() the distances, we do, so sqrt() the margin, I think :D
criterion = nn.TripletMarginLoss(margin=opt.margin**0.5,
p=2, reduction='sum').to(device)
if opt.resume:
if opt.ckpt.lower() == 'latest':
resume_ckpt = join(opt.resume, 'checkpoints', 'checkpoint.pth.tar')
elif opt.ckpt.lower() == 'best':
resume_ckpt = join(opt.resume, 'checkpoints', 'model_best.pth.tar')
if isfile(resume_ckpt):
print("=> loading checkpoint '{}'".format(resume_ckpt))
checkpoint = torch.load(resume_ckpt, map_location=lambda storage, loc: storage)
opt.start_epoch = checkpoint['epoch']
best_metric = checkpoint['best_score']
model.load_state_dict(checkpoint['state_dict'])
model = model.to(device)
if opt.mode == 'train':
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(resume_ckpt, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(resume_ckpt))
if opt.mode.lower() == 'test':
print('===> Running evaluation step')
epoch = 1
recalls = test(whole_test_set, epoch, write_tboard=False)
elif opt.mode.lower() == 'cluster':
print('===> Calculating descriptors and clusters')
get_clusters(whole_train_set)
elif opt.mode.lower() == 'train':
print('===> Training model')
writer = SummaryWriter(log_dir=join(opt.runsPath, datetime.now().strftime('%b%d_%H-%M-%S')+'_'+opt.arch+'_'+opt.pooling))
# write checkpoints in logdir
logdir = writer.file_writer.get_logdir()
opt.savePath = join(logdir, opt.savePath)
if not opt.resume:
makedirs(opt.savePath)
with open(join(opt.savePath, 'flags.json'), 'w') as f:
f.write(json.dumps(
{k:v for k,v in vars(opt).items()}
))
print('===> Saving state to:', logdir)
not_improved = 0
best_score = 0
for epoch in range(opt.start_epoch+1, opt.nEpochs + 1):
if opt.optim.upper() == 'SGD':
scheduler.step(epoch)
train(epoch)
if (epoch % opt.evalEvery) == 0:
recalls = test(whole_test_set, epoch, write_tboard=True)
is_best = recalls[5] > best_score
if is_best:
not_improved = 0
best_score = recalls[5]
else:
not_improved += 1
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'recalls': recalls,
'best_score': best_score,
'optimizer' : optimizer.state_dict(),
'parallel' : isParallel,
}, is_best)
if opt.patience > 0 and not_improved > (opt.patience / opt.evalEvery):
print('Performance did not improve for', opt.patience, 'epochs. Stopping.')
break
print("=> Best Recall@5: {:.4f}".format(best_score), flush=True)
writer.close()