Skip to content

Latest commit

 

History

History
43 lines (35 loc) · 2.62 KB

TRAIN.md

File metadata and controls

43 lines (35 loc) · 2.62 KB

Train Your Model

Script For Training

Our training pipeline is based on mmcv and mmdet3d. To train a ThinkTwice model, you could use:

#In ThinkTwice/open_loop_training/ directory
#We train on 16 A100 for 4 days
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7, python -m torch.distributed.launch --nproc_per_node=8 --master_port=22023 train.py configs/thinktwice.py --work-dir=work_dirs/thinktwice --launcher="pytorch"

For single GPU debug, you could simply use:

#In ThinkTwice/open_loop_training/ directory
CUDA_VISIBLE_DEVICES=0 python train.py configs/thinktwice.py --work-dir=work_dirs/debug

Code Structure

We give the structure of the training code. Note that We only introduce those folders/files are commonly used and modified.

ThinkTwice/open_loop_training
├── ckpt                    # Checkpoints
├── configs                 # Hyper-Parameter
├── work_dirs               # Training Log
├── code                    # Preprocessing, DataLoader, Model
│   ├── apis                    # Training pipeline for mmdet3D
│   ├── core                    # The hooks for mmdet3D
│   ├── datasets                # Preprocessing and DataLoader
|   |   ├── pipelines                # Functions of Preprocessing and DataLoader
│   |   ├── samplers                 # For DDP
│   |   └── carla_dataset.py         # Framework of Preprocessing and DataLoading
│   ├── model_code                   # Neural Network
|   |   ├── backbones                # Module of Encoder
|   |   └── dense_heads              # Module of Decoder and Loss Functions
│   └── encoder_decoder_framework.py # Entrance of Neural Network
└── train.py                # Entrance of Training

Tips