Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

cannot use Python API to infer after converting the segmentation model to tensorrt #303

Open
chenzhutian opened this issue Jul 3, 2024 · 0 comments

Comments

@chenzhutian
Copy link

After converting to tensorrt format, I try to do inference using the mmdeploy's python API.
However, it shows


[2024-07-03 01:07:52.341] [mmdeploy] [info] [model.cpp:35] [DirectoryModel] Load model: "./work_dirs/mmseg/upernet_internimage_t_512_160k_ade20k"
[2024-07-03 01:07:52.639] [mmdeploy] [error] [compose.cpp:37] Unable to find Transform creator: ResizeToMultiple. Available transforms: [("CenterCrop", 0), ("Collect", 0), ("Compose", 0), ("DefaultFormatBundle", 0), ("FormatShape", 0), ("ImageToTensor", 0), ("Lift", 0), ("LoadImageFromFile", 0), ("Normalize", 0), ("Pad", 0), ("Resize", 0), ("ResizeOCR", 0), ("TenCrop", 0), ("ThreeCrop", 0), ("TopDownAffine", 0), ("TopDownGetBboxCenterScale", 0)]
[2024-07-03 01:07:52.640] [mmdeploy] [error] [task.cpp:99] error parsing config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "img"
  ],
  "module": "Transform",
  "name": "Preprocess",
  "output": [
    "prep_output"
  ],
  "transforms": [
    {
      "type": "LoadImageFromFile"
    },
    {
      "keep_ratio": false,
      "size": [
        512,
        512
      ],
      "type": "Resize"
    },
    {
      "size_divisor": 32,
      "type": "ResizeToMultiple"
    },
    {
      "mean": [
        123.675,
        116.28,
        103.53
      ],
      "std": [
        58.395,
        57.12,
        57.375
      ],
      "to_rgb": true,
      "type": "Normalize"
    },
    {
      "keys": [
        "img"
      ],
      "type": "ImageToTensor"
    },
    {
      "keys": [
        "img"
      ],
      "meta_keys": [
        "filename",
        "ori_filename",
        "flip_direction",
        "valid_ratio",
        "scale_factor",
        "flip",
        "img_norm_cfg",
        "ori_shape",
        "img_shape",
        "pad_shape"
      ],
      "type": "Collect"
    }
  ],
  "type": "Task"
}
[2024-07-03 01:07:52.640] [mmdeploy] [error] [net_module.cpp:47] Net backend not found: tensorrt, available backends: []
[2024-07-03 01:07:52.640] [mmdeploy] [error] [task.cpp:99] error parsing config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "prep_output"
  ],
  "input_map": {
    "img": "input"
  },
  "is_batched": false,
  "module": "Net",
  "name": "uper",
  "output": [
    "infer_output"
  ],
  "output_map": {},
  "type": "Task"
}
Traceback (most recent call last):
  File "run_deploy.py", line 54, in <module>
    main()
  File "run_deploy.py", line 37, in main
    seg = segmentor(img)
TypeError: __call__(): incompatible function arguments. The following argument types are supported:
    1. (self: mmdeploy_runtime.mmdeploy_runtime.Segmentor, arg0: numpy.ndarray[numpy.uint8]) -> numpy.ndarray

Invoked with: <mmdeploy_runtime.mmdeploy_runtime.Segmentor object at 0x7f5c199330b0>, None

It looks like it is because mmdeploy's runtime doesn't support ResizeToMultiple.
Can you please share the inference code with the public?
Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant