本目录下提供infer.cc
快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
PaddleClas支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署图像分类模型.
在部署前,需确认软硬件环境,同时下载预编译部署库,参考FastDeploy安装文档安装FastDeploy预编译库.
在部署前, 请准备好您所需要运行的推理模型, 您可以在FastDeploy支持的PaddleClas模型列表中下载所需模型.
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.0以上(x.x.x>=1.0.0)
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/cpu-gpu/cpp
# 如果您希望从PaddleClas下载示例代码,请运行
git clone https://github.com/PaddlePaddle/PaddleClas.git
# 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支
git checkout develop
cd PaddleClas/deploy/fastdeploy/cpu-gpu/cpp
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# 在CPU上使用Paddle Inference推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
# 在CPU上使用OenVINO推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
# 在CPU上使用ONNX Runtime推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
# 在CPU上使用Paddle Lite推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 3
# 在GPU上使用Paddle Inference推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 4
# 在GPU上使用Paddle TensorRT推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 5
# 在GPU上使用ONNX Runtime推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 6
# 在GPU上使用Nvidia TensorRT推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 7
运行完成后返回结果如下所示
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
在我们使用infer_demo
时, 输入了3个参数, 分别为分类模型, 预测图片, 与最后一位的数字选项.
现在下表将解释最后一位数字选项的含义.
数字选项 | 含义 |
---|---|
0 | 在CPU上使用Paddle Inference推理 |
1 | 在CPU上使用OenVINO推理 |
2 | 在CPU上使用ONNX Runtime推理 |
3 | 在CPU上使用Paddle Lite推理 |
4 | 在GPU上使用Paddle Inference推理 |
5 | 在GPU上使用Paddle TensorRT推理 |
6 | 在GPU上使用ONNX Runtime推理 |
7 | 在GPU上使用Nvidia TensorRT推理 |
- 关于如何通过FastDeploy使用更多不同的推理后端,以及如何使用不同的硬件,请参考文档:如何切换模型推理后端引擎
- PaddleClas能在FastDeploy支持的多种后端上推理,支持情况如下表所示, 如何切换后端, 详见文档如何切换模型推理后端引擎
硬件类型 | 支持的后端 |
---|---|
X86 CPU | Paddle Inference, ONNX Runtime, OpenVINO |
ARM CPU | Paddle Lite |
飞腾 CPU | ONNX Runtime |
NVIDIA GPU | Paddle Inference, ONNX Runtime, TensorRT |