-
Notifications
You must be signed in to change notification settings - Fork 0
/
gsw_SA_from_rho_CT_exact.m
executable file
·134 lines (118 loc) · 5.09 KB
/
gsw_SA_from_rho_CT_exact.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
function SA = gsw_SA_from_rho_CT_exact(rho,CT,p)
% gsw_SA_from_rho_CT_exact Absolute Salinity from density
% =========================================================================
%
% USAGE:
% SA = gsw_SA_from_rho_CT_exact(rho,CT,p)
%
% DESCRIPTION:
% Calculates the Absolute Salinity of a seawater sample, for given values
% of its density, Conservative Temperature and sea pressure (in dbar).
%
% Note that this function uses the full Gibbs function. There is an
% alternative to calling this function, namely
% gsw_SA_from_rho(rho,CT,p), which uses the computationally
% efficient 75-term expression for density in terms of SA, CT and p
% (Roquet et al., 2015).
%
% INPUT:
% rho = density of a seawater sample (e.g. 1026 kg/m^3). [ kg/m^3 ]
% Note. This input has not had 1000 kg/m^3 subtracted from it.
% That is, it is 'density', NOT 'density anomaly'.
% CT = Conservative Temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% rho & CT need to have the same dimensions.
% p may have dimensions 1x1 or Mx1 or 1xN or MxN, where rho & CT are MxN.
%
% OUTPUT:
% SA = Absolute Salinity. [ g/kg ]
% Note. This is expressed on the Reference-Composition Salinity
% Scale of Millero et al. (2008).
%
% AUTHOR:
% Trevor McDougall & Paul Barker [ [email protected] ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See section 2.5 of this TEOS-10 Manual.
%
% Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008:
% The composition of Standard Seawater and the definition of the
% Reference-Composition Salinity Scale, Deep-Sea Res. I, 55, 50-72.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin==3)
error('gsw_SA_from_rho_CT_exact: Requires three inputs')
end %if
[md,nd] = size(rho);
[mt,nt] = size(CT);
[mp,np] = size(p);
if (mt ~= md | nt ~= nd)
error('gsw_SA_from_rho_CT_exact: rho and CT must have same dimensions')
end
if (mp == 1) & (np == 1) % p scalar - fill to size of rho
p = p*ones(size(rho));
elseif (nd == np) & (mp == 1) % p is row vector,
p = p(ones(1,md), :); % copy down each column.
elseif (md == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,nd)); % copy across each row.
elseif (nd == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,md), :); % copy down each column.
elseif (md == mp) & (nd == np)
% ok
else
error('gsw_SA_from_rho_CT_exact: Inputs array dimensions arguments do not agree')
end %if
if md == 1
rho = rho.';
CT = CT.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
v_lab = ones(size(rho))./rho;
v_0 = gsw_specvol_CT_exact(zeros(size(rho)),CT,p);
v_120 = gsw_specvol_CT_exact(120*ones(size(rho)),CT,p);
SA = 120*(v_lab - v_0)./(v_120 - v_0); % initial estimate of SA.
SA(SA < 0 | SA > 120) = NaN;
v_SA = (v_120 - v_0)./120; %initial estimate of v_SA, the SA derivative of v
%--------------------------------------------------------------------------
% Begin the modified Newton-Raphson iterative procedure
%--------------------------------------------------------------------------
for Number_of_iterations = 1:2
SA_old = SA;
delta_v = gsw_specvol_CT_exact(SA_old,CT,p) - v_lab;
SA = SA_old - delta_v./v_SA ; % this is half way through the modified N-R method (McDougall and Wotherspoon, 2013)
SA_mean = 0.5*(SA + SA_old);
[v_SA, dummy, dummy] = gsw_specvol_first_derivatives_CT_exact(SA_mean,CT,p);
SA = SA_old - delta_v./v_SA;
SA(SA < 0 | SA > 120) = NaN;
end
% After two iterations of this modified Newton-Raphson iteration,
% the error in SA is no larger than 8x10^-13 g kg^-1, which
% is machine precision for this calculation.
if transposed
SA = SA.';
end
end