-
Notifications
You must be signed in to change notification settings - Fork 0
/
gsw_cabbeling.m
executable file
·127 lines (108 loc) · 4.5 KB
/
gsw_cabbeling.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
function cabbeling = gsw_cabbeling(SA,CT,p)
% gsw_cabbeling cabbeling coefficient
% (75-term equation)
%==========================================================================
%
% USAGE:
% cabbeling = gsw_cabbeling(SA,CT,p)
%
% DESCRIPTION:
% Calculates the cabbeling coefficient of seawater with respect to
% Conservative Temperature. This function uses the computationally-
% efficient expression for specific volume in terms of SA, CT and p
% (Roquet et al., 2015).
%
% Note that the 75-term equation has been fitted in a restricted range of
% parameter space, and is most accurate inside the "oceanographic funnel"
% described in McDougall et al. (2003). The GSW library function
% "gsw_infunnel(SA,CT,p)" is avaialble to be used if one wants to test if
% some of one's data lies outside this "funnel".
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% SA & CT need to have the same dimensions.
% p may have dimensions 1x1 or Mx1 or 1xN or MxN, where SA & CT are MxN.
%
% OUTPUT:
% cabbeling = cabbeling coefficient with respect to [ 1/K^2 ]
% Conservative Temperature.
%
% AUTHOR:
% Trevor McDougall and Paul Barker [ [email protected] ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See Eqns. (3.9.2) and (P.4) of this TEOS-10 manual.
%
% McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003:
% Accurate and computationally efficient algorithms for potential
% temperature and density of seawater. J. Atmosph. Ocean. Tech., 20,
% pp. 730-741.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 3)
error('gsw_cabbeling: Requires three inputs')
end
[ms,ns] = size(SA);
[mt,nt] = size(CT);
[mp,np] = size(p);
if (mt ~= ms | nt ~= ns)
error('gsw_cabbeling: SA and CT must have same dimensions')
end
if (mp == 1) & (np == 1) % p is a scalar - fill to size of SA
p = p*ones(size(SA));
elseif (ns == np) & (mp == 1) % p is row vector,
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,ns)); % copy across each row.
elseif (ns == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (ns == np)
% ok
else
error('gsw_cabbeling: Inputs array dimensions arguments do not agree')
end
if ms == 1
SA = SA.';
CT = CT.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
% This line ensures that SA is non-negative.
SA(SA < 0) = 0;
[v_SA, v_CT, dummy] = gsw_specvol_first_derivatives(SA,CT,p);
[v_SA_SA, v_SA_CT, v_CT_CT, dummy, dummy] = gsw_specvol_second_derivatives(SA,CT,p);
rho = gsw_rho(SA,CT,p);
alpha_CT = rho.*(v_CT_CT - rho.*v_CT.^2);
alpha_SA = rho.*(v_SA_CT - rho.*v_SA.*v_CT);
beta_SA = -rho.*(v_SA_SA - rho.*v_SA.^2);
alpha_on_beta = gsw_alpha_on_beta(SA,CT,p);
cabbeling = alpha_CT + alpha_on_beta.*(2.*alpha_SA - alpha_on_beta.*beta_SA);
if transposed
cabbeling = cabbeling.';
end
end