-
Notifications
You must be signed in to change notification settings - Fork 0
/
gsw_enthalpy_diff_CT_exact.m
executable file
·129 lines (117 loc) · 5.21 KB
/
gsw_enthalpy_diff_CT_exact.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function enthalpy_diff_CT_exact = gsw_enthalpy_diff_CT_exact(SA,CT,p_shallow,p_deep)
% gsw_enthalpy_diff_CT_exact difference of enthalpy at two pressures
%==========================================================================
%
% USAGE:
% enthalpy_diff_CT_exact = gsw_enthalpy_diff_CT_exact(SA,CT,p_shallow,p_deep)
%
% DESCRIPTION:
% Calculates the difference of the specific enthalpy of seawater between
% two different pressures, p_deep (the deeper pressure) and p_shallow
% (the shallower pressure), at the same values of SA and CT. The output
% (enthalpy_diff_CT_exact) is the specific enthalpy evaluated at
% (SA,CT,p_deep) minus the specific enthalpy at (SA,CT,p_shallow).
%
% Note that this function uses the full Gibbs function. There is an
% alternative to calling this function, namely gsw_enthalpy_diff(SA,CT,p),
% which uses the computationally efficient 75-term expression for specific
% volume in terms of SA, CT and p (Roquet et al., 2015).
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
% p_shallow = upper sea pressure [ dbar ]
% ( i.e. shallower absolute pressure - 10.1325 dbar )
% p_deep = lower sea pressure [ dbar ]
% ( i.e. deeper absolute pressure - 10.1325 dbar )
%
% p_shallow and p_deep may have dimensions Mx1 or 1xN or MxN,
% where SA and CT are MxN.
%
% OUTPUT:
% enthalpy_diff_CT_exact = difference of specific enthalpy [ J/kg ]
% (deep minus shallow)
%
% AUTHOR:
% Trevor McDougall and Paul Barker [ [email protected] ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See Eqns. (3.32.2) of this TEOS-10 Manual.
%
% McDougall, T.J., 2003: Potential enthalpy: A conservative oceanic
% variable for evaluating heat content and heat fluxes. Journal of
% Physical Oceanography, 33, 945-963.
% See Eqns. (18) and (22)
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 4)
error('gsw_enthalpy_diff_CT_exact: requires four inputs')
end
[ms,ns] = size(SA);
[mt,nt] = size(CT);
[mpu,npu] = size(p_shallow);
[mpl,npl] = size(p_deep);
if (ms~=mt) | (ns~=nt)
error('gsw_enthalpy_diff_CT_exact: SA & CT need to have the same dimensions')
end
if (mpu == 1) & (npu == 1) % p_shallow is a scalar
p_shallow = p_shallow*ones(size(SA));
elseif (ns == npu) & (mpu == 1) % p_shallow is row vector,
p_shallow = p_shallow(ones(1,ms), :); % copy down each column.
elseif (ms == mpu) & (npu == 1) % p_shallow is column vector,
p_shallow = p_shallow(:,ones(1,ns)); % copy across each row.
elseif (ns == mpu) & (npu == 1) % p_shallow is a transposed row vector,
p_shallow = p_shallow.'; % transposed then
p_shallow = p_shallow(ones(1,ms), :); % copy down each column.
elseif (ms == mpu) & (ns == npu)
% ok
end
if (mpl == 1) & (npl == 1) % p_deep is a scalar
p_deep = p_deep*ones(size(SA));
elseif (ns == npl) & (mpl == 1) % p_deep is row vector,
p_deep = p_deep(ones(1,ms), :); % copy down each column.
elseif (ms == mpl) & (npl == 1) % p_deep is column vector,
p_deep = p_deep(:,ones(1,ns)); % copy across each row.
elseif (ns == mpl) & (npl == 1) % p_deep is a transposed row vector,
p_deep = p_deep.'; % transposed then
p_deep = p_deep(ones(1,ms), :); % copy down each column.
elseif (ms == mpl) & (ns == npl)
% ok
else
error('gsw_enthalpy_diff_CT_exact: Inputs array dimensions arguments do not agree')
end %if
if ms == 1
SA = SA.';
CT = CT.';
p_shallow = p_shallow.';
p_deep = p_deep.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
t_shallow = gsw_t_from_CT(SA,CT,p_shallow);
t_deep = gsw_t_from_CT(SA,CT,p_deep);
enthalpy_diff_CT_exact = gsw_enthalpy_t_exact(SA,t_deep,p_deep) - ...
gsw_enthalpy_t_exact(SA,t_shallow,p_shallow);
if transposed
enthalpy_diff_CT_exact = enthalpy_diff_CT_exact.';
end
end