-
Notifications
You must be signed in to change notification settings - Fork 6
/
image_wrapper.py
45 lines (36 loc) · 1.73 KB
/
image_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import datetime
import cv2
import gym as gym
import numpy as np
import torch
from skimage.color import rgb2gray
from tensorboardX import SummaryWriter
class ImageWrapper(gym.ObservationWrapper):
def __init__(self, image_size, *args):
super(ImageWrapper, self).__init__(*args)
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
assert isinstance(self.observation_space, gym.spaces.Box)
self.old_space = self.observation_space
self.image_size = image_size
self.observation_space = gym.spaces.Box(low=0, high=1, shape=(3, self.image_size, self.image_size),
dtype=np.float32)
def observation(self, observation):
# Returned screen requested by gym is HWC. Transpose it into torch order (CHW).\
screen = self.env.render(mode='rgb_array')
screen = rgb2gray(screen)
# screen = observation
screen_height, screen_width = screen.shape
screen = np.ascontiguousarray(screen, dtype=np.float32) # /255
screen = cv2.resize(screen, (self.image_size, self.image_size))
return screen
if __name__ == '__main__':
folder = '{}_ImageWrapper_{}/'.format(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), "Pendulum-v0", )
writer = SummaryWriter(log_dir='runs/' + folder)
env = ImageWrapper(64, gym.make("Pendulum-v0"))
state = env.reset()
writer.add_image('state', torch.tensor(state), dataformats="HW")
for i in range(199):
next_state, reward, done, _ = env.step(env.action_space.sample())
# Transform from Tensor-compatible to image format to show
writer.add_image('state', torch.tensor(next_state), dataformats="HW")
env.close()