forked from Lhx94As/E2E-language-diarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer.py
149 lines (127 loc) · 5.72 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, max_seq_len, features_dim):
super(PositionalEncoding, self).__init__()
pos_enc = np.array(
[[pos/np.power(10000, 2.0*(i//2)/features_dim) for i in range(features_dim)]
for pos in range(max_seq_len)])
pos_enc[:,0::2] = np.sin(pos_enc[:,0::2])
pos_enc[:,1::2] = np.cos(pos_enc[:,1::2])
self.pos_enc = torch.from_numpy(pos_enc).cuda()
def forward(self, x, seq_len):
# x: [B, T, feat_dim]
for i in range(x.size(0)):
len_ = seq_len[i]
x[i,:len_,:] += self.pos_enc[:len_, :]
return x
class LayerNorm(nn.Module):
def __init__(self, d_hid, eps=1e-6):
super(LayerNorm, self).__init__()
# d_hid = feat_dim
self.gamma = nn.Parameter(torch.ones(d_hid))
self.beta = nn.Parameter(torch.zeros(d_hid))
self.eps = eps
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True,)
std = x.std(dim=-1, keepdim=True,)
ln_out = (x - mean) / (std + self.eps)
ln_out = self.gamma * ln_out + self.beta
return ln_out
class ScaledDotProductAttention(nn.Module):
def __init__(self,d_k, dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.scale_factor = np.sqrt(d_k)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, atten_mask=None):
# queries: [B, n_head, len_queries, d_k]
# keys: [B, n_head, len_keys, d_k]
# values: [B, n_head, len_values, d_v] note: len_keys = len_values
scores = torch.matmul(q, k.transpose(-1, -2))/ self.scale_factor
if atten_mask is not None:
assert atten_mask.size() == scores.size()
scores.masked_fill_(atten_mask, -1e9)
atten = self.dropout(self.softmax(scores))
context = torch.matmul(atten, v)
return context, atten
class Linear(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
init.xavier_normal_(self.linear.weight) #For Sigmoid
# init.kaiming_normal_(self.linear.weight) #for ReLU
init.zeros_(self.linear.bias)
def forward(self, inputs):
return self.linear(inputs)
class MultiHeadAttention(nn.Module):
def __init__(self, feat_dim, d_k, d_v, n_heads, dropout):
super(MultiHeadAttention, self).__init__()
self.d_k = d_k
self.d_v = d_v
self.feat_dim = feat_dim
self.n_heads = n_heads
self.w_q = Linear(feat_dim, d_k*n_heads)
self.w_k = Linear(feat_dim, d_k*n_heads)
self.w_v = Linear(feat_dim, d_v*n_heads)
self.attenion = ScaledDotProductAttention(d_k=d_k, dropout=dropout)
def forward(self, x, atten_mask):
batch_size = x.size(0)
q_ = self.w_q(x).view(batch_size, -1,self.n_heads, self.d_k).transpose(1,2)
k_ = self.w_k(x).view(batch_size, -1,self.n_heads, self.d_k).transpose(1,2)
v_ = self.w_v(x).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2)
# q_: [Batch, n_heads, len, d_k]
# k_: [Batch, n_heads, len, d_k]
# v_: [Batch, n_heads, len, d_v]
if atten_mask is not None:
# [Batch, len, len] -> [Batch, n_heads, len, len]
atten_mask = atten_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1)
context, atten = self.attenion(q_, k_, v_, atten_mask)
context = context.transpose(1,2).contiguous().view(batch_size, -1, self.n_heads*self.d_v)
return context, atten
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, feat_dim, d_k, d_v, n_heads, dropout):
super(MultiHeadAttentionLayer, self).__init__()
self.n_heads = n_heads
self.multihead_attention = MultiHeadAttention(feat_dim, d_k, d_v, n_heads, dropout)
self.linear = Linear(n_heads*d_v, feat_dim)
self.dropout = nn.Dropout(dropout)
self.layernorm = LayerNorm(feat_dim)
def forward(self, x, atten_mask):
# x_: [Batch, n_heads, len, feat_dim]
residual = x
# x = self.layernorm(x) # pre-LN
context, atten = self.multihead_attention(x, atten_mask)
output = self.dropout(self.linear(context))
output = self.layernorm(output + residual) # post-LN
# output = output+residual # pre-LN
# output: [Batch, len, feat_dim]
return output, atten
class PositionWiseFeedForward(nn.Module):
def __init__(self, feat_dim, d_ff=2048, dropout=0.1):
super(PositionWiseFeedForward, self).__init__()
self.relu = nn.ReLU()
self.fc1 = Linear(feat_dim, d_ff)
self.fc2 = Linear(d_ff, feat_dim)
self.dropout = nn.Dropout(dropout)
self.layernorm = LayerNorm(feat_dim)
def forward(self, x):
residual = x
# x = self.layernorm(x) #pre-LN
output = self.relu(self.fc1(x))
output = self.dropout(self.fc2(output))
output = self.layernorm(output+residual) #post-LN
# output = output+residual #pre-LN
return output
class EncoderBlock(nn.Module):
def __init__(self, feat_dim, d_k, d_v, d_ff, n_heads, dropout=0.1):
super(EncoderBlock, self).__init__()
self.self_attention = MultiHeadAttentionLayer(feat_dim, d_k, d_v, n_heads, dropout)
self.position_wise_ff = PositionWiseFeedForward(feat_dim, d_ff, dropout)
def forward(self, x, atten_mask):
enc_output, atten = self.self_attention(x, atten_mask)
enc_output = self.position_wise_ff(enc_output)
return enc_output, atten