forked from FAIR-Chem/fairchem
-
Notifications
You must be signed in to change notification settings - Fork 3
/
sample_adslab.py
393 lines (317 loc) · 12.5 KB
/
sample_adslab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""
Procedure to sample and construct an adslab graph.
Nota Benes:
- The atoms in the slab will have tags set to the layer number: First layer atoms will have tag=1, second layer atoms will have tag=2, and so on. Adsorbates get tag=0:
https://wiki.fysik.dtu.dk/ase/ase/build/surface.html
- GFN miller indices action space should be constrained by get_symmetrically_distinct_miller_indices
(cf bulk_obj.enumerate_surfaces())
"""
from ocdata.loader import Loader
with Loader("Imports"):
import pickle
from collections import defaultdict
from pathlib import Path
import numpy as np
from minydra import resolved_args
from ocdata.adsorbates import Adsorbate
from ocdata.bulk_obj import Bulk
from ocdata.combined import Combined
from ocdata.surfaces import Surface
from ocpmodels.preprocessing.atoms_to_graphs import AtomsToGraphs
# ----------------------------
# ----- UTILS (ignore) -----
# ----------------------------
def print_header(i, nruns):
"""
Prints
-------------------
---- Run i ----
-------------------
"""
box_char = "#"
border_width = 4
border = box_char * border_width
box_width = 40
runs_len = len(str(nruns))
title_str = f"Run {str(i + 1).zfill(runs_len)}/{nruns}"
n_space = box_width - 2 * len(border) - len(title_str)
n_left = n_space // 2
n_right = n_space // 2 + (n_space % 2)
print("\n" + box_char * box_width)
print(border + " " * n_left + title_str + " " * n_right + border)
print(box_char * box_width)
def print_out_times(out_times, fpath=None, prec=3):
"""
Prints a summary of the out_time dictionnary
Args:
out_times (dict[list]): dictionnary of times
fpath (Union[str, pathlib.Path], optional): path to write the
string summary to. Defaults to None (= no writing)
prec (int, optional): print decimals. Defaults to 3.
Returns:
str: stringsummary
"""
max_k_len = max([len(k) for k in out_times])
strs = [f"{'Operation':{max_k_len}} -> Time (s)"]
all_keys = sorted(out_times.keys())
single_keys = []
if not all([len(k) == 1 for k in out_times]):
single_keys = [k for k, v in out_times.items() if len(v) == 1]
all_keys = single_keys + [k for k in out_times if k not in set(single_keys)]
single_key_sep = None
for i, k in enumerate(all_keys):
if single_keys and k not in single_keys and single_key_sep is None:
single_key_sep = i + 1
times = out_times[k]
s = f"{k:{max_k_len}} -> "
if len(times) > 1:
q1, med, q3 = np.percentile(times, [25, 50, 75])
mean, std = np.mean(times), np.std(times)
s += f"[{q1:.{prec}f} | {med:.{prec}f} | {q3:.{prec}f}]"
s += f" ~ {mean:.{prec}f} +/- {std:.{prec}f}"
else:
s += f"{times[0]:.{prec}f}"
strs.append(s)
max_s_len = max(len(s) for s in strs)
border = "-" * max_s_len
strs.append(border)
if single_key_sep is not None:
strs = (
strs[:single_key_sep]
+ [
border,
f"{'Operation':{max_k_len}} -> [q1 | med | q3] ~ mean +/- std",
border,
]
+ strs[single_key_sep:]
)
out_str = "\n".join([border] + strs[:1] + [border] + strs[1:])
if fpath is not None:
with open(fpath, "w") as f:
f.write(out_str)
print(out_str)
def get_ads_db(args):
"""
Util to load the adsorbates pre-computed dict from the args
Args:
args (Union[dict, minydra.MinyDict]): Command-line args
Returns:
dict: adsorbates dictionnary
"""
with open(args.paths.adsorbate_db, "rb") as f:
return pickle.load(f)
# ------------------------------------
# ----- Action Space Functions -----
# ------------------------------------
def select_adsorbate(ads_dict, smiles):
"""
Function to parameterize the choice of an adsorbate.
Curent parameterization relies on its chemical formula.
Args:
db_path (Union[str, pathlib.Path]): path to the pickle file holding adsorbates
smiles (str): The smiles string description for the adsorbate
Returns:
Optional[ase.Atom]: The selected adsorbate. None if the formula does not exist
"""
if smiles is None:
smiles = np.random.choice([a[1] for a in ads_dict.values()])
print(
"No adsorbate smiles has been provided. Selecting {} at random.".format(
smiles
)
)
adsorbates = [(str(k), *a) for k, a in ads_dict.items() if a[1] == smiles]
if len(adsorbates) == 0:
raise ValueError(f"No adsorbate exists with smiles {smiles}")
if len(adsorbates) > 1:
raise ValueError(
f"More than 1 adsorbate exists with smiles {smiles}:\n"
+ ", ".join([a[2] for a in adsorbates])
)
return adsorbates[0]
if __name__ == "__main__":
with Loader("Full procedure", animate=False):
# -------------------
# ----- Setup -----
# -------------------
# path to directory's root
root = Path(__file__).resolve().parent
# load default args then overwrite from command-line
args = resolved_args(defaults=root / "configs" / "sample" / "defaults.yaml")
if isinstance(
args.actions.binding_site_index, str
) and args.actions.binding_site_index.lower() in {"null", "none"}:
args.actions.binding_site_index = None
# print parsed arguments
if args.verbose > 0:
args.pretty_print()
out_times = defaultdict(list)
# set seed
seed = args.seed or 0
with Loader(
"Reading bulk_db_flat",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
# load flat bulk db
with open(args.paths.bulk_db_flat, "rb") as f:
bulk_db_list = pickle.load(f)
with Loader(
"Reading adsorbates dict",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
ads_dict = get_ads_db(args)
print(
"Surface sampling string:",
"surface_idx / total_possible_surfaces_for_bulk",
)
# for sampling purposes and debugging we can run multiple sampling procedure
# by specifying nruns=N in the command-line
# ------------------
# ----- Runs -----
# ------------------
for i in range(args.nruns):
np.random.seed(seed + i)
print_header(i, args.nruns)
with Loader(
f"Actions to Data {i+1}/{args.nruns}", animate=False, out=out_times
):
# -----------------------
# ----- Adsorbate -----
# -----------------------
print("\n1. Adsorbate\n")
with Loader(
"Make Adsorbate object",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
adsorbate_atoms = select_adsorbate(
ads_dict, args.actions.adsorbate_formula
)
# make Adsorbate object
# (adsorbate selection is done in the class if adsorbate_id is None)
adsorbate_obj = Adsorbate( # <<<< IMPORTANT
adsorbate_atoms=adsorbate_atoms
)
print(
"# Selected adsorbate:",
adsorbate_obj.atoms.get_chemical_formula(),
)
# ------------------
# ----- Bulk -----
# ------------------
print("\n2. Bulk\n")
with Loader(
"Make Bulk object",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
# select bulk_id if None
if args.actions.bulk_id is None:
bulk_id = np.random.choice(len(bulk_db_list))
print(f"args.actions.bulk_id is None, choosing {bulk_id}")
else:
bulk_id = args.actions.bulk_id
# make Bulk object
bulk = Bulk( # <<<< IMPORTANT
bulk_db_list,
bulk_index=bulk_id,
precomputed_structures=args.paths.precomputed_structures
if args.use_precomputed_surfaces
else None,
)
print(
"# Selected bulk:",
bulk.bulk_atoms.get_chemical_formula(),
f"({bulk.mpid})",
)
# ---------------------
# ----- Surface -----
# ---------------------
print("\n3. Surface\n")
with Loader(
"bulk.get_possible_surfaces()",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
possible_surfaces = bulk.get_possible_surfaces()
if len(possible_surfaces) == 0:
print("No surface found. ABORTING")
continue
with Loader(
"Make Surface object",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
# select surface_id if it is None
if args.actions.surface_id is None:
surface_id = np.random.choice(len(possible_surfaces))
print(f"args.actions.surface_id is None, choosing {surface_id}")
else:
assert args.actions.surface_id < len(possible_surfaces)
surface_id = args.actions.surface_id
# make Surface object
surface_obj = Surface( # <<<< IMPORTANT
bulk,
possible_surfaces[surface_id],
surface_id,
len(possible_surfaces),
no_loader=args.no_loader,
)
print(
"# Selected surface:",
surface_obj.surface_atoms.get_chemical_formula(),
f"({surface_obj.surface_sampling_str})",
)
# ----------------------
# ----- Combined -----
# ----------------------
print("\n4. Combined\n")
with Loader(
"Make Combined object",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
# combine adsorbate + bulk
try:
adslab = Combined( # <<<< IMPORTANT
adsorbate_obj,
surface_obj,
enumerate_all_configs=False,
no_loader=args.no_loader,
index=args.actions.binding_site_index,
)
except Exception as e:
import traceback
traceback.print_exc()
print("\n\nABORTING")
continue
atoms_object = adslab.constrained_adsorbed_surfaces[0]
# ------------------
# ----- Data -----
# ------------------
print("\n5. Data\n")
with Loader(
"Make torch_geometric data",
animate=args.animate,
ignore=args.no_loader,
out=out_times,
):
converter = AtomsToGraphs(
r_energy=False,
r_forces=False,
r_distances=True,
r_edges=True,
r_fixed=True,
)
# Convert ase.Atoms into torch_geometric.Data
data = converter.convert(atoms_object)
print_out_times(out_times)