Skip to content

Latest commit

 

History

History
37 lines (36 loc) · 5.61 KB

Sementic_SLAM.md

File metadata and controls

37 lines (36 loc) · 5.61 KB

Follow the conventional pipeline of SLAM, here are some paper utilizing semantic info.

Creat info (Prediction)

This kind of methods predict (rather than extract directly) extra information from sensor data.

Process info (Data Association)

Given info, the next problem is to determine the correspondence. Robust and efficient data association is the core issue in SLAM.

Use info (Mapping)

This type of method focus on providing high-level map for advanced robotics applications.

Type Paper Detial
Prediciton Depth CNN-SVO 单双目深度估计
Scale Recovering stable scale in monocular SLAM using object-supplemented bundle adjustment 尺度不确定性恢复
Occlusion EmptyCities 对被遮挡的场景恢复后再做SLAM
MBO 去模糊网络
Data Association Learned Feature CNN-SLAM 用CNN网络进行特征匹配
AVP-SLAM 识别环境中的车道线等特征
CarFusion/OrcVIO 用到的结构化特征点LIFT/SuperPoint
LodoNet 激光投影到2D平面提特侦匹配
Filter Noisy Info DynaSLAM 用MaskRCNN来做动态物体删除
Suma++ 动态滤除
SalientDSO 显著性应用
Lego_LOAM 滤除植物点
Add Constrain PSF-LO 几何配准加语义约束
Probabilistic Data Association for Semantic SLAM 语义为隐含优化变量
Semantic-ICP 语义为隐含优化变量
Integrating Deep Semantic Segmentation Into 3-D Point Cloud Registration 语义filter
SIVO 基于SVO,cubeslam物体级别
Deep Matching SuperGlue DL解决匹配问题
Loop Closure/Long Term X-View 长期回环检测
PointNetVLAD 激光回环
Semantically Assisted Loop Closure in SLAM Using NDT Histograms 含语义的直方图回环
GOSMatch 图匹配的回环
Solving BA-Net DL方式做优化
Mapping With Tag Kimera 针对导航任务的SLAM算法结合,主要操作在Mesh上了
Object-level
Metric
End-to-End Odometry DeepVO 端到端的VO/SLAM