- Yoon, Yeo Hun, Shujaat Khan, Jaeyoung Huh, and Jong Chul Ye. "Efficient B-mode Ultrasound Image Reconstruction from Sub-sampled RF Data using Deep Learning." IEEE transactions on medical imaging (2018).
- MatConvNet (matconvnet-1.0-beta24)
- Please run the matconvnet-1.0-beta24/matlab/vl_compilenn.m file to compile matconvnet.
- There is instruction on "http://www.vlfeat.org/matconvnet/mfiles/vl_compilenn/"
- Please run the installation setup (install.m) and run some training examples.
- Trained network for 'SC2xRX4 (down-sampling) CNN' is uploaded.
- Test data file is placed in 'data\cnn_sparse_view_init_multi_normal_dsr2_input64' folder.
- The dimension of data are as follows -- Test_data = 64x384x1x2304 (channel x scanline x frame x depth)
To perform a test using proposed algorithm
-> Use 'DNN4x1_TestVal' as input data
-> Run 'MAIN_RECONSTRUCTION.m
-> You will get the reconstructed RF data in the 'data\cnn_sparse_view_init_multi_normal_dsr2_input64' directory.
-> Using standard delay-and-sum (DAS) beam-forming code construct a B-mode image. For our experiments we used a DAS beam-forming code provided by (Alpinion Co., Korea). A similar code can be downloaded from ('http://www.ultrasoundtoolbox.com/').