Skip to content

Latest commit

 

History

History
367 lines (288 loc) · 10 KB

0459.重复的子字符串.md

File metadata and controls

367 lines (288 loc) · 10 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

KMP算法还能干这个

459.重复的子字符串

力扣题目链接

给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母,并且长度不超过10000。

示例 1:
输入: "abab"
输出: True
解释: 可由子字符串 "ab" 重复两次构成。

示例 2:
输入: "aba"
输出: False

示例 3:
输入: "abcabcabcabc"
输出: True
解释: 可由子字符串 "abc" 重复四次构成。 (或者子字符串 "abcabc" 重复两次构成。)

思路

这又是一道标准的KMP的题目。

如果KMP还不够了解,可以看我的B站:

我们在字符串:KMP算法精讲里提到了,在一个串中查找是否出现过另一个串,这是KMP的看家本领。

那么寻找重复子串怎么也涉及到KMP算法了呢?

这里就要说一说next数组了,next 数组记录的就是最长相同前后缀( 字符串:KMP算法精讲 这里介绍了什么是前缀,什么是后缀,什么又是最长相同前后缀), 如果 next[len - 1] != -1,则说明字符串有最长相同的前后缀(就是字符串里的前缀子串和后缀子串相同的最长长度)。

最长相等前后缀的长度为:next[len - 1] + 1。(这里的next数组是以统一减一的方式计算的,因此需要+1)

数组长度为:len。

如果len % (len - (next[len - 1] + 1)) == 0 ,则说明 (数组长度-最长相等前后缀的长度) 正好可以被 数组的长度整除,说明有该字符串有重复的子字符串。

数组长度减去最长相同前后缀的长度相当于是第一个周期的长度,也就是一个周期的长度,如果这个周期可以被整除,就说明整个数组就是这个周期的循环。

强烈建议大家把next数组打印出来,看看next数组里的规律,有助于理解KMP算法

如图:

459.重复的子字符串_1

next[len - 1] = 7,next[len - 1] + 1 = 8,8就是此时字符串asdfasdfasdf的最长相同前后缀的长度。

(len - (next[len - 1] + 1)) 也就是: 12(字符串的长度) - 8(最长公共前后缀的长度) = 4, 4正好可以被 12(字符串的长度) 整除,所以说明有重复的子字符串(asdf)。

C++代码如下:(这里使用了前缀表统一减一的实现方式)

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = -1;
        int j = -1;
        for(int i = 1;i < s.size(); i++){
            while(j >= 0 && s[i] != s[j+1]) {
                j = next[j];
            }
            if(s[i] == s[j+1]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != -1 && len % (len - (next[len - 1] + 1)) == 0) {
            return true;
        }
        return false;
    }
};

前缀表(不减一)的C++代码实现

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = 0;
        int j = 0;
        for(int i = 1;i < s.size(); i++){
            while(j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if(s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != 0 && len % (len - (next[len - 1] )) == 0) {
            return true;
        }
        return false;
    }
};

拓展

字符串:KMP算法精讲中讲解KMP算法的基础理论,给出next数组究竟是如何来了,前缀表又是怎么回事,为什么要选择前缀表。

讲解一道KMP的经典题目,力扣:28. 实现 strStr(),判断文本串里是否出现过模式串,这里涉及到构造next数组的代码实现,以及使用next数组完成模式串与文本串的匹配过程。

后来很多同学反馈说:搞不懂前后缀,什么又是最长相同前后缀(最长公共前后缀我认为这个用词不准确),以及为什么前缀表要统一减一(右移)呢,不减一行不行?针对这些问题,我在字符串:KMP算法精讲给出了详细的讲解。

其他语言版本

Java:

class Solution {
    public boolean repeatedSubstringPattern(String s) {
        if (s.equals("")) return false;

        int len = s.length();
        // 原串加个空格(哨兵),使下标从1开始,这样j从0开始,也不用初始化了
        s = " " + s;
        char[] chars = s.toCharArray();
        int[] next = new int[len + 1];

        // 构造 next 数组过程,j从0开始(空格),i从2开始
        for (int i = 2, j = 0; i <= len; i++) {
            // 匹配不成功,j回到前一位置 next 数组所对应的值
            while (j > 0 && chars[i] != chars[j + 1]) j = next[j];
            // 匹配成功,j往后移
            if (chars[i] == chars[j + 1]) j++;
            // 更新 next 数组的值
            next[i] = j;
        }

        // 最后判断是否是重复的子字符串,这里 next[len] 即代表next数组末尾的值
        if (next[len] > 0 && len % (len - next[len]) == 0) {
            return true;
        }
        return false;
    }
}

Python:

这里使用了前缀表统一减一的实现方式

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:  
        if len(s) == 0:
            return False
        nxt = [0] * len(s)
        self.getNext(nxt, s)
        if nxt[-1] != -1 and len(s) % (len(s) - (nxt[-1] + 1)) == 0:
            return True
        return False
    
    def getNext(self, nxt, s):
        nxt[0] = -1
        j = -1
        for i in range(1, len(s)):
            while j >= 0 and s[i] != s[j+1]:
                j = nxt[j]
            if s[i] == s[j+1]:
                j += 1
            nxt[i] = j
        return nxt

前缀表(不减一)的代码实现

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:  
        if len(s) == 0:
            return False
        nxt = [0] * len(s)
        self.getNext(nxt, s)
        if nxt[-1] != 0 and len(s) % (len(s) - nxt[-1]) == 0:
            return True
        return False
    
    def getNext(self, nxt, s):
        nxt[0] = 0
        j = 0
        for i in range(1, len(s)):
            while j > 0 and s[i] != s[j]:
                j = nxt[j - 1]
            if s[i] == s[j]:
                j += 1
            nxt[i] = j
        return nxt

Go:

这里使用了前缀表统一减一的实现方式

func repeatedSubstringPattern(s string) bool {
	n := len(s)
	if n == 0 {
		return false
	}
	next := make([]int, n)
	j := -1
	next[0] = j
	for i := 1; i < n; i++ {
		for j >= 0 && s[i] != s[j+1] {
			j = next[j]
		}
		if s[i] == s[j+1] {
			j++
		}
		next[i] = j
	}
	// next[n-1]+1 最长相同前后缀的长度
	if next[n-1] != -1 && n%(n-(next[n-1]+1)) == 0 {
		return true
	}
	return false
}

前缀表(不减一)的代码实现

func repeatedSubstringPattern(s string) bool {
	n := len(s)
	if n == 0 {
		return false
	}
	j := 0
	next := make([]int, n)
	next[0] = j
	for i := 1; i < n; i++ {
		for j > 0 && s[i] != s[j] {
			j = next[j-1]
		}
		if s[i] == s[j] {
			j++
		}
		next[i] = j
	}
	// next[n-1]  最长相同前后缀的长度
	if next[n-1] != 0 && n%(n-next[n-1]) == 0 {
		return true
	}
	return false
}

JavaScript版本

前缀表统一减一

/**
 * @param {string} s
 * @return {boolean}
 */
var repeatedSubstringPattern = function (s) {
    if (s.length === 0)
        return false;

    const getNext = (s) => {
        let next = [];
        let j = -1;

        next.push(j);

        for (let i = 1; i < s.length; ++i) {
            while (j >= 0 && s[i] !== s[j + 1])
                j = next[j];
            if (s[i] === s[j + 1])
                j++;
            next.push(j);
        }

        return next;
    }

    let next = getNext(s);

    if (next[next.length - 1] !== -1 && s.length % (s.length - (next[next.length - 1] + 1)) === 0)
        return true;
    return false;
};

前缀表统一不减一

/**
 * @param {string} s
 * @return {boolean}
 */
var repeatedSubstringPattern = function (s) {
    if (s.length === 0)
        return false;

    const getNext = (s) => {
        let next = [];
        let j = 0;

        next.push(j);

        for (let i = 1; i < s.length; ++i) {
            while (j > 0 && s[i] !== s[j])
                j = next[j - 1];
            if (s[i] === s[j])
                j++;
            next.push(j);
        }

        return next;
    }

    let next = getNext(s);

    if (next[next.length - 1] !== 0 && s.length % (s.length - next[next.length - 1]) === 0)
        return true;
    return false;
};