Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gradient returns error when using ComplexF64 ODE and a custom struct for parameters #1146

Open
albertomercurio opened this issue Nov 9, 2024 · 5 comments
Assignees
Labels

Comments

@albertomercurio
Copy link

albertomercurio commented Nov 9, 2024

Describe the bug 🐞

The calculation of the gradient on a ODE of Float64 type works when using params as both Vector or a custom struct (using SciMLStructures.jl). However, it fails when I simply change the type of the ODE to ComplexF64.

It seems that, in the CompleF64 case, it converts the parameters to a Vector. But they are a custom struct, so p.p1 doesn't work.

It works when using a Vector instead of a custom struct.

Expected behavior

Returning the correct gradient as in the Float64 or as in the ComplexF64 case with Vector parameters.

Minimal Reproducible Example 👇

using OrdinaryDiffEq
using Zygote
using SciMLSensitivity

Definition of the custom struct

struct MyParameters{T}
  params::T
end

Base.length(p::MyParameters) = length(p.params)

function Base.getproperty(obj::MyParameters, field::Symbol)
  if field  fieldnames(typeof(obj))
      getfield(obj, field)
  elseif field  fieldnames(typeof(obj.params))
      getfield(obj.params, field)
  else
      throw(KeyError("Field $field not found in MyParameters or params."))
  end
end

import SciMLStructures: isscimlstructure, ismutablescimlstructure, hasportion, canonicalize, replace, Tunable

isscimlstructure(::MyParameters) = true

ismutablescimlstructure(::MyParameters) = false

hasportion(::Tunable, ::MyParameters) = true

function canonicalize(::Tunable, p::MyParameters)
  buffer = isempty(p.params) ? Float64[] : collect(values(p.params)) 

  repack = let p = p
    function repack(newbuffer)
      replace(Tunable(), p, newbuffer)
    end
  end
  
  return buffer, repack, false
end

function replace(::Tunable, p::MyParameters, newbuffer)
  @assert length(newbuffer) == length(p.params)
  new_params = NamedTuple{keys(p.params)}(Tuple(newbuffer))
  return MyParameters(new_params)
end

ODE Problem

const T = ComplexF64

function lotka_volterra(u, p, t)
  dx = p.p1 * u[1] - p.p2 * u[1] * u[2]
  dy = -p.p3 * u[2] + p.p4 * u[1] * u[2]

  return [dx, dy]
end

function my_f(p)
  u0 = T[1.0, 1.0]
  param = MyParameters((p1 = p[1], p2 = p[2], p3 = p[3], p4 = p[4],))
  prob = ODEProblem{false}(lotka_volterra, u0, (0.0, 10.0), param)
  sol = solve(prob, Tsit5(), reltol = 1e-6, abstol = 1e-6)
  return sum(real, sol.u[end])
end

p = rand(4)
my_f(p) # OK

Gradient Calculation (fails)

Zygote.gradient(my_f, p)

Error & Stacktrace ⚠️

ERROR: type Array has no field p1
Stacktrace:
  [1] adjoint
    @ ~/.julia/packages/Zygote/NRp5C/src/lib/lib.jl:229 [inlined]
  [2] _pullback
    @ ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:67 [inlined]
  [3] lotka_volterra
    @ ~/GitHub/Research/Undef/Autodiff QuantumToolbox/autodiff.jl:140 [inlined]
  [4] _pullback(::Zygote.Context{false}, ::typeof(lotka_volterra), ::Vector{ComplexF64}, ::Vector{Float64}, ::Float64)
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface2.jl:0
  [5] _apply(::Function, ::Vararg{Any})
    @ Core ./boot.jl:946
  [6] adjoint
    @ ~/.julia/packages/Zygote/NRp5C/src/lib/lib.jl:203 [inlined]
  [7] _pullback
    @ ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:67 [inlined]
  [8] ODEFunction
    @ ~/.julia/packages/SciMLBase/t7Xn0/src/scimlfunctions.jl:2362 [inlined]
  [9] _pullback(::Zygote.Context{…}, ::ODEFunction{…}, ::Vector{…}, ::Vector{…}, ::Float64)
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface2.jl:0
 [10] #262
    @ ~/.julia/packages/SciMLSensitivity/ME3jV/src/gauss_adjoint.jl:486 [inlined]
 [11] _pullback(ctx::Zygote.Context{…}, f::SciMLSensitivity.var"#262#263"{}, args::Vector{…})
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface2.jl:0
 [12] pullback
    @ ~/.julia/packages/Zygote/NRp5C/src/compiler/interface.jl:90 [inlined]
 [13] pullback
    @ ~/.julia/packages/Zygote/NRp5C/src/compiler/interface.jl:88 [inlined]
 [14] vec_pjac!(out::Vector{…}, λ::Vector{…}, y::Vector{…}, t::Float64, S::SciMLSensitivity.GaussIntegrand{…})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/ME3jV/src/gauss_adjoint.jl:485
 [15] GaussIntegrand
    @ ~/.julia/packages/SciMLSensitivity/ME3jV/src/gauss_adjoint.jl:517 [inlined]
 [16] (::SciMLSensitivity.var"#265#266"{})(out::Vector{…}, u::Vector{…}, t::Float64, integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/ME3jV/src/gauss_adjoint.jl:558
 [17] (::DiffEqCallbacks.SavingIntegrandSumAffect{…})(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ DiffEqCallbacks ~/.julia/packages/DiffEqCallbacks/00gNi/src/integrating_sum.jl:50
 [18] apply_discrete_callback!
    @ ~/.julia/packages/DiffEqBase/frOsk/src/callbacks.jl:615 [inlined]
 [19] apply_discrete_callback!
    @ ~/.julia/packages/DiffEqBase/frOsk/src/callbacks.jl:631 [inlined]
 [20] handle_callbacks!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/integrators/integrator_utils.jl:355
 [21] _loopfooter!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/integrators/integrator_utils.jl:243
 [22] loopfooter!
    @ ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/integrators/integrator_utils.jl:207 [inlined]
 [23] solve!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/solve.jl:579
 [24] #__solve#75
    @ ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/solve.jl:7 [inlined]
 [25] __solve
    @ ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/solve.jl:1 [inlined]
 [26] solve_call(_prob::ODEProblem{…}, args::Tsit5{…}; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{})
    @ DiffEqBase ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:612
 [27] solve_call
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:569 [inlined]
 [28] #solve_up#53
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1092 [inlined]
 [29] solve_up
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1078 [inlined]
 [30] #solve#51
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1015 [inlined]
 [31] _adjoint_sensitivities(sol::ODESolution{…}, sensealg::GaussAdjoint{…}, alg::Tsit5{…}; t::Vector{…}, dgdu_discrete::Function, dgdp_discrete::Nothing, dgdu_continuous::Nothing, dgdp_continuous::Nothing, g::Nothing, abstol::Float64, reltol::Float64, checkpoints::Vector{…}, corfunc_analytical::Bool, callback::Nothing, kwargs::@Kwargs{})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/ME3jV/src/gauss_adjoint.jl:578
 [32] _adjoint_sensitivities
    @ ~/.julia/packages/SciMLSensitivity/ME3jV/src/gauss_adjoint.jl:531 [inlined]
 [33] #adjoint_sensitivities#63
    @ ~/.julia/packages/SciMLSensitivity/ME3jV/src/sensitivity_interface.jl:401 [inlined]
 [34] (::SciMLSensitivity.var"#adjoint_sensitivity_backpass#315"{})(Δ::ODESolution{…})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/ME3jV/src/concrete_solve.jl:627
 [35] ZBack
    @ ~/.julia/packages/Zygote/NRp5C/src/compiler/chainrules.jl:212 [inlined]
 [36] (::Zygote.var"#kw_zpullback#56"{})(dy::ODESolution{…})
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/chainrules.jl:238
 [37] #294
    @ ~/.julia/packages/Zygote/NRp5C/src/lib/lib.jl:206 [inlined]
 [38] (::Zygote.var"#2169#back#296"{})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:72
 [39] #solve#51
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1015 [inlined]
 [40] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface2.jl:0
 [41] #294
    @ ~/.julia/packages/Zygote/NRp5C/src/lib/lib.jl:206 [inlined]
 [42] (::Zygote.var"#2169#back#296"{})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:72
 [43] solve
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1005 [inlined]
 [44] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface2.jl:0
 [45] my_f
    @ ~/GitHub/Research/Undef/Autodiff QuantumToolbox/autodiff.jl:158 [inlined]
 [46] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface2.jl:0
 [47] (::Zygote.var"#78#79"{Zygote.Pullback{Tuple{}, Tuple{}}})(Δ::Float64)
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface.jl:91
 [48] gradient(f::Function, args::Vector{Float64})
    @ Zygote ~/.julia/packages/Zygote/NRp5C/src/compiler/interface.jl:148
 [49] top-level scope
    @ ~/GitHub/Research/Undef/Autodiff QuantumToolbox/autodiff.jl:167
Some type information was truncated. Use `show(err)` to see complete types.

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
Status `~/GitHub/Research/Undef/Autodiff QuantumToolbox/Project.toml`
  [6e4b80f9] BenchmarkTools v1.5.0
  [b0b7db55] ComponentArrays v0.15.17
  [7da242da] Enzyme v0.13.14
  [1dea7af3] OrdinaryDiffEq v6.89.0
  [6c2fb7c5] QuantumToolbox v0.21.1 `~/.julia/dev/QuantumToolbox`
  [1ed8b502] SciMLSensitivity v7.71.1
  [53ae85a6] SciMLStructures v1.5.0
  [e88e6eb3] Zygote v0.6.72
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
Status `~/GitHub/Research/Undef/Autodiff QuantumToolbox/Manifest.toml`
  [47edcb42] ADTypes v1.9.0
  [621f4979] AbstractFFTs v1.5.0
  [1520ce14] AbstractTrees v0.4.5
  [7d9f7c33] Accessors v0.1.38
  [79e6a3ab] Adapt v4.1.1
  [66dad0bd] AliasTables v1.1.3
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.17.0
  [4c555306] ArrayLayouts v1.10.4
  [a9b6321e] Atomix v0.1.0
  [6e4b80f9] BenchmarkTools v1.5.0
  [e2ed5e7c] Bijections v0.1.9
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.6
  [7057c7e9] Cassette v0.3.14
  [082447d4] ChainRules v1.71.0
  [d360d2e6] ChainRulesCore v1.25.0
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [861a8166] Combinatorics v1.0.2
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.1
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.16.0
  [b0b7db55] ComponentArrays v0.15.17
  [b152e2b5] CompositeTypes v0.1.4
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [187b0558] ConstructionBase v1.5.8
  [adafc99b] CpuId v0.3.1
  [9a962f9c] DataAPI v1.16.0
  [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [2b5f629d] DiffEqBase v6.158.3
  [459566f4] DiffEqCallbacks v4.1.0
  [77a26b50] DiffEqNoiseProcess v5.23.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [a0c0ee7d] DifferentiationInterface v0.6.22
  [b4f34e82] Distances v0.10.12
  [31c24e10] Distributions v0.25.113
  [ffbed154] DocStringExtensions v0.9.3
  [5b8099bc] DomainSets v0.7.14
  [7c1d4256] DynamicPolynomials v0.6.0
  [4e289a0a] EnumX v1.0.4
  [7da242da] Enzyme v0.13.14
  [f151be2c] EnzymeCore v0.8.5
  [d4d017d3] ExponentialUtilities v1.26.1
  [e2ba6199] ExprTools v0.1.10
⌅ [6b7a57c9] Expronicon v0.8.5
  [7a1cc6ca] FFTW v1.8.0
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.4
  [a4df4552] FastPower v1.1.1
  [1a297f60] FillArrays v1.13.0
  [6a86dc24] FiniteDiff v2.26.0
  [1fa38f19] Format v1.3.7
  [f6369f11] ForwardDiff v0.10.38
  [f62d2435] FunctionProperties v0.1.2
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
⌅ [d9f16b24] Functors v0.4.12
⌅ [0c68f7d7] GPUArrays v10.3.1
⌅ [46192b85] GPUArraysCore v0.1.6
  [61eb1bfa] GPUCompiler v1.0.1
  [14197337] GenericLinearAlgebra v0.3.14
  [c145ed77] GenericSchur v0.5.4
  [86223c79] Graphs v1.12.0
  [3e5b6fbb] HostCPUFeatures v0.1.17
  [34004b35] HypergeometricFunctions v0.3.24
  [7869d1d1] IRTools v0.4.14
  [615f187c] IfElse v0.1.1
  [40713840] IncompleteLU v0.2.1
  [d25df0c9] Inflate v0.1.5
  [18e54dd8] IntegerMathUtils v0.1.2
  [8197267c] IntervalSets v0.7.10
  [3587e190] InverseFunctions v0.1.17
  [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.6.1
  [682c06a0] JSON v0.21.4
  [ccbc3e58] JumpProcesses v9.14.0
  [ef3ab10e] KLU v0.6.0
  [63c18a36] KernelAbstractions v0.9.29
  [ba0b0d4f] Krylov v0.9.8
  [929cbde3] LLVM v9.1.3
  [b964fa9f] LaTeXStrings v1.4.0
  [23fbe1c1] Latexify v0.16.5
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.2.1
  [2d8b4e74] LevyArea v1.0.0
  [87fe0de2] LineSearch v0.1.4
  [d3d80556] LineSearches v7.3.0
  [7ed4a6bd] LinearSolve v2.36.2
  [2ab3a3ac] LogExpFunctions v0.3.28
  [bdcacae8] LoopVectorization v0.12.171
  [d8e11817] MLStyle v0.4.17
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [bb5d69b7] MaybeInplace v0.1.4
  [e1d29d7a] Missings v1.2.0
  [46d2c3a1] MuladdMacro v0.2.4
  [102ac46a] MultivariatePolynomials v0.5.7
  [d8a4904e] MutableArithmetics v1.5.2
  [d41bc354] NLSolversBase v7.8.3
  [2774e3e8] NLsolve v4.5.1
  [872c559c] NNlib v0.9.24
  [77ba4419] NaNMath v1.0.2
⌅ [8913a72c] NonlinearSolve v3.15.1
  [d8793406] ObjectFile v0.4.2
  [6fe1bfb0] OffsetArrays v1.14.1
  [429524aa] Optim v1.9.4
⌃ [3bd65402] Optimisers v0.3.4
  [bac558e1] OrderedCollections v1.6.3
  [1dea7af3] OrdinaryDiffEq v6.89.0
  [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
  [6ad6398a] OrdinaryDiffEqBDF v1.1.2
  [bbf590c4] OrdinaryDiffEqCore v1.10.0
  [50262376] OrdinaryDiffEqDefault v1.1.0
  [4302a76b] OrdinaryDiffEqDifferentiation v1.1.0
  [9286f039] OrdinaryDiffEqExplicitRK v1.1.0
  [e0540318] OrdinaryDiffEqExponentialRK v1.1.0
  [becaefa8] OrdinaryDiffEqExtrapolation v1.2.1
  [5960d6e9] OrdinaryDiffEqFIRK v1.2.0
  [101fe9f7] OrdinaryDiffEqFeagin v1.1.0
  [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
  [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
  [9f002381] OrdinaryDiffEqIMEXMultistep v1.1.0
  [521117fe] OrdinaryDiffEqLinear v1.1.0
  [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
  [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
  [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.2.2
  [c9986a66] OrdinaryDiffEqNordsieck v1.1.0
  [5dd0a6cf] OrdinaryDiffEqPDIRK v1.1.0
  [5b33eab2] OrdinaryDiffEqPRK v1.1.0
  [04162be5] OrdinaryDiffEqQPRK v1.1.0
  [af6ede74] OrdinaryDiffEqRKN v1.1.0
  [43230ef6] OrdinaryDiffEqRosenbrock v1.2.0
  [2d112036] OrdinaryDiffEqSDIRK v1.1.0
  [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
  [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.1.0
  [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
  [fa646aed] OrdinaryDiffEqSymplecticRK v1.1.0
  [b1df2697] OrdinaryDiffEqTsit5 v1.1.0
  [79d7bb75] OrdinaryDiffEqVerner v1.1.1
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.16
  [1d0040c9] PolyesterWeave v0.2.2
  [f27b6e38] Polynomials v4.0.11
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.24
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [27ebfcd6] Primes v0.5.6
  [43287f4e] PtrArrays v1.2.1
  [1fd47b50] QuadGK v2.11.1
  [6c2fb7c5] QuantumToolbox v0.21.1 `~/.julia/dev/QuantumToolbox`
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.6.0
  [c1ae055f] RealDot v0.1.0
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.27.3
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [37e2e3b7] ReverseDiff v1.15.3
  [79098fc4] Rmath v0.8.0
  [47965b36] RootedTrees v2.23.1
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
  [0bca4576] SciMLBase v2.59.1
  [19f34311] SciMLJacobianOperators v0.1.1
  [c0aeaf25] SciMLOperators v0.3.12
  [1ed8b502] SciMLSensitivity v7.71.1
  [53ae85a6] SciMLStructures v1.5.0
  [6c6a2e73] Scratch v1.2.1
  [efcf1570] Setfield v1.1.1
⌅ [727e6d20] SimpleNonlinearSolve v1.12.3
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [9f842d2f] SparseConnectivityTracer v0.6.8
  [47a9eef4] SparseDiffTools v2.23.0
  [dc90abb0] SparseInverseSubset v0.1.2
  [0a514795] SparseMatrixColorings v0.4.9
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.4.0
  [aedffcd0] Static v1.1.1
  [0d7ed370] StaticArrayInterface v1.8.0
  [90137ffa] StaticArrays v1.9.8
  [1e83bf80] StaticArraysCore v1.4.3
  [10745b16] Statistics v1.11.1
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.3
  [4c63d2b9] StatsFuns v1.3.2
  [789caeaf] StochasticDiffEq v6.70.0
  [7792a7ef] StrideArraysCore v0.5.7
  [09ab397b] StructArrays v0.6.18
  [53d494c1] StructIO v0.3.1
  [2efcf032] SymbolicIndexingInterface v0.3.34
  [19f23fe9] SymbolicLimits v0.2.2
  [d1185830] SymbolicUtils v3.7.2
  [0c5d862f] Symbolics v6.18.3
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.12.0
  [8ea1fca8] TermInterface v2.0.0
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.25
  [9f7883ad] Tracker v0.2.37
  [d5829a12] TriangularSolve v0.2.1
  [781d530d] TruncatedStacktraces v1.4.0
  [3a884ed6] UnPack v1.0.2
  [a7c27f48] Unityper v0.1.6
  [013be700] UnsafeAtomics v0.2.1
  [d80eeb9a] UnsafeAtomicsLLVM v0.2.1
  [3d5dd08c] VectorizationBase v0.21.71
  [19fa3120] VertexSafeGraphs v0.2.0
  [e88e6eb3] Zygote v0.6.72
  [700de1a5] ZygoteRules v0.2.5
  [7cc45869] Enzyme_jll v0.0.163+0
  [f5851436] FFTW_jll v3.3.10+1
  [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0
  [dad2f222] LLVMExtra_jll v0.0.34+0
  [856f044c] MKL_jll v2024.2.0+0
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [f50d1b31] Rmath_jll v0.5.1+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
  [0dad84c5] ArgTools v1.1.2
  [56f22d72] Artifacts v1.11.0
  [2a0f44e3] Base64 v1.11.0
  [ade2ca70] Dates v1.11.0
  [8ba89e20] Distributed v1.11.0
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching v1.11.0
  [9fa8497b] Future v1.11.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [4af54fe1] LazyArtifacts v1.11.0
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2 v1.11.0
  [8f399da3] Libdl v1.11.0
  [37e2e46d] LinearAlgebra v1.11.0
  [56ddb016] Logging v1.11.0
  [d6f4376e] Markdown v1.11.0
  [a63ad114] Mmap v1.11.0
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.11.0
  [de0858da] Printf v1.11.0
  [9abbd945] Profile v1.11.0
  [9a3f8284] Random v1.11.0
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization v1.11.0
  [1a1011a3] SharedArrays v1.11.0
  [6462fe0b] Sockets v1.11.0
  [2f01184e] SparseArrays v1.11.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test v1.11.0
  [cf7118a7] UUIDs v1.11.0
  [4ec0a83e] Unicode v1.11.0
  [e66e0078] CompilerSupportLibraries_jll v1.1.1+0
  [deac9b47] LibCURL_jll v8.6.0+0
  [e37daf67] LibGit2_jll v1.7.2+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.6+0
  [14a3606d] MozillaCACerts_jll v2023.12.12
  [4536629a] OpenBLAS_jll v0.3.27+1
  [05823500] OpenLibm_jll v0.8.1+2
  [bea87d4a] SuiteSparse_jll v7.7.0+0
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.11.0+0
  [8e850ede] nghttp2_jll v1.59.0+0
  [3f19e933] p7zip_jll v17.4.0+2
  • Output of versioninfo()
Julia Version 1.11.1
Commit 8f5b7ca12ad (2024-10-16 10:53 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 32 × 13th Gen Intel(R) Core(TM) i9-13900KF
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, alderlake)
Threads: 16 default, 0 interactive, 8 GC (on 32 virtual cores)
Environment:
  JULIA_EDITOR = code
  JULIA_NUM_THREADS = 16
@DhairyaLGandhi
Copy link
Member

There are a couple compounding factors at play here. First its inconsistently defined. f is written expecting parameters of type MyParameters whereas what is passed is a vector. There's no conversion happening either because a vector is treated as a SciMLStructure by itself.

Second is that when we were working on #1135 we were missing JuliaArrays/ArrayInterface.jl#456.

Third is that the way MyParameters stores its parameters vs the adjoint we get is inconsistent. MyParameters stores it as a Tuple whereas we get a vector back when calculating the parameter jacobian.

should also be solved by #1147

@albertomercurio
Copy link
Author

Hi @DhairyaLGandhi,

I tried with the branch of #1147, and I get a different error instead

p = rand(T, 4)

Zygote.gradient(my_f, p)
ERROR: MethodError: no method matching recursive_copyto!(::Vector{ComplexF64}, ::NTuple{4, ComplexF64})
The function `recursive_copyto!` exists, but no method is defined for this combination of argument types.

Closest candidates are:
  recursive_copyto!(::Tuple, ::Tuple)
   @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/parameters_handling.jl:11
  recursive_copyto!(::AbstractArray, ::AbstractArray)
   @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/parameters_handling.jl:9
  recursive_copyto!(::Any, ::Nothing)
   @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/parameters_handling.jl:16
  ...

Stacktrace:
  [1] vec_pjac!(out::Vector{…}, λ::Vector{…}, y::Vector{…}, t::Float64, S::SciMLSensitivity.GaussIntegrand{…})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/gauss_adjoint.jl:492
  [2] GaussIntegrand
    @ ~/.julia/packages/SciMLSensitivity/qX1o7/src/gauss_adjoint.jl:517 [inlined]
  [3] (::SciMLSensitivity.var"#265#266"{})(out::Vector{…}, u::Vector{…}, t::Float64, integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/gauss_adjoint.jl:558
  [4] (::DiffEqCallbacks.SavingIntegrandSumAffect{…})(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ DiffEqCallbacks ~/.julia/packages/DiffEqCallbacks/00gNi/src/integrating_sum.jl:50
  [5] apply_discrete_callback!
    @ ~/.julia/packages/DiffEqBase/frOsk/src/callbacks.jl:615 [inlined]
  [6] apply_discrete_callback!
    @ ~/.julia/packages/DiffEqBase/frOsk/src/callbacks.jl:631 [inlined]
  [7] handle_callbacks!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/integrators/integrator_utils.jl:355
  [8] _loopfooter!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/integrators/integrator_utils.jl:243
  [9] loopfooter!
    @ ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/integrators/integrator_utils.jl:207 [inlined]
 [10] solve!(integrator::OrdinaryDiffEqCore.ODEIntegrator{…})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/solve.jl:579
 [11] #__solve#75
    @ ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/solve.jl:7 [inlined]
 [12] __solve
    @ ~/.julia/packages/OrdinaryDiffEqCore/2K6jv/src/solve.jl:1 [inlined]
 [13] solve_call(_prob::ODEProblem{…}, args::Tsit5{…}; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{})
    @ DiffEqBase ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:612
 [14] solve_call
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:569 [inlined]
 [15] #solve_up#53
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1092 [inlined]
 [16] solve_up
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1078 [inlined]
 [17] #solve#51
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1015 [inlined]
 [18] _adjoint_sensitivities(sol::ODESolution{…}, sensealg::GaussAdjoint{…}, alg::Tsit5{…}; t::Vector{…}, dgdu_discrete::Function, dgdp_discrete::Nothing, dgdu_continuous::Nothing, dgdp_continuous::Nothing, g::Nothing, abstol::Float64, reltol::Float64, checkpoints::Vector{…}, corfunc_analytical::Bool, callback::Nothing, kwargs::@Kwargs{})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/gauss_adjoint.jl:578
 [19] _adjoint_sensitivities
    @ ~/.julia/packages/SciMLSensitivity/qX1o7/src/gauss_adjoint.jl:531 [inlined]
 [20] #adjoint_sensitivities#63
    @ ~/.julia/packages/SciMLSensitivity/qX1o7/src/sensitivity_interface.jl:401 [inlined]
 [21] (::SciMLSensitivity.var"#adjoint_sensitivity_backpass#315"{})(Δ::ODESolution{…})
    @ SciMLSensitivity ~/.julia/packages/SciMLSensitivity/qX1o7/src/concrete_solve.jl:627
 [22] ZBack
    @ ~/.julia/packages/Zygote/nyzjS/src/compiler/chainrules.jl:212 [inlined]
 [23] (::Zygote.var"#kw_zpullback#56"{})(dy::ODESolution{…})
    @ Zygote ~/.julia/packages/Zygote/nyzjS/src/compiler/chainrules.jl:238
 [24] #294
    @ ~/.julia/packages/Zygote/nyzjS/src/lib/lib.jl:206 [inlined]
 [25] (::Zygote.var"#2169#back#296"{})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:72
 [26] #solve#51
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1015 [inlined]
 [27] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/Zygote/nyzjS/src/compiler/interface2.jl:0
 [28] #294
    @ ~/.julia/packages/Zygote/nyzjS/src/lib/lib.jl:206 [inlined]
 [29] (::Zygote.var"#2169#back#296"{})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:72
 [30] solve
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1005 [inlined]
 [31] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote ~/.julia/packages/Zygote/nyzjS/src/compiler/interface2.jl:0
 [32] my_f
    @ ~/GitHub/Research/Undef/Autodiff QuantumToolbox/autodiff.jl:158 [inlined]
 [33] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote ~/.julia/packages/Zygote/nyzjS/src/compiler/interface2.jl:0
 [34] (::Zygote.var"#78#79"{Zygote.Pullback{Tuple{}, Tuple{}}})(Δ::Float64)
    @ Zygote ~/.julia/packages/Zygote/nyzjS/src/compiler/interface.jl:91
 [35] gradient(f::Function, args::Vector{ComplexF64})
    @ Zygote ~/.julia/packages/Zygote/nyzjS/src/compiler/interface.jl:148
 [36] top-level scope
    @ ~/GitHub/Research/Undef/Autodiff QuantumToolbox/autodiff.jl:167
Some type information was truncated. Use `show(err)` to see complete types.

It's very strange because canonicalize returns a Vector for the buffer.

@DhairyaLGandhi
Copy link
Member

Yes, that's the third point from my comment. The adjoint is a Tuple since that's how the struct is stored in memory. We can add a dispatch to recursive_copyto but I worry that it's slightly ambiguous. I'll check out if there are any corner cases worth worrying about.

@albertomercurio
Copy link
Author

Ok. But still I don't understand why the Float64 case works.

@albertomercurio
Copy link
Author

I don't know if #1149 is also related to this, where I get a null-gradient when using complex ComponentArray rather than float .

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants