forked from ML4ITS/mtad-gat-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotting.py
493 lines (419 loc) · 19.7 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
from utils import get_data_dim, get_series_color, get_y_height
import pandas as pd
import numpy as np
import os
import json
from datetime import datetime
import plotly as py
import matplotlib.pyplot as plt
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import cufflinks as cf
cf.go_offline()
class Plotter:
"""
Class for visualizing results of anomaly detection.
Includes visualization of forecasts, reconstructions, anomaly scores, predicted and actual anomalies
Plotter-class inspired by TelemAnom (https://github.com/khundman/telemanom)
"""
def __init__(self, result_path, model_id='-1'):
self.result_path = result_path
self.model_id = model_id
self.train_output = None
self.test_output = None
self.labels_available = True
self.pred_cols = None
self._load_results()
self.train_output["timestamp"] = self.train_output.index
self.test_output["timestamp"] = self.test_output.index
config_path = f"{self.result_path}/config.txt"
with open(config_path) as f:
self.lookback = json.load(f)["lookback"]
if "SMD" in self.result_path:
self.pred_cols = [f"feat_{i}" for i in range(get_data_dim("machine"))]
elif "SMAP" in self.result_path or "MSL" in self.result_path:
self.pred_cols = ["feat_1"]
def _load_results(self):
if self.model_id.startswith('-'):
dir_content = os.listdir(self.result_path)
datetimes = [datetime.strptime(subf, '%d%m%Y_%H%M%S') for subf in dir_content if os.path.isdir(f"{self.result_path}/{subf}")
and subf not in ['logs']]
datetimes.sort()
model_id = datetimes[int(self.model_id)].strftime('%d%m%Y_%H%M%S')
self.result_path = f'{self.result_path}/{model_id}'
print(f"Loading results of {self.result_path}")
train_output = pd.read_pickle(f"{self.result_path}/train_output.pkl")
train_output.to_pickle(f"{self.result_path}/train_output.pkl")
train_output["A_True_Global"] = 0
test_output = pd.read_pickle(f"{self.result_path}/test_output.pkl")
# Because for SMAP and MSL only one feature is predicted
if 'SMAP' in self.result_path or 'MSL' in self.result_path:
train_output[f'A_Pred_0'] = train_output['A_Pred_Global']
train_output[f'A_Score_0'] = train_output['A_Score_Global']
train_output[f'Thresh_0'] = train_output['Thresh_Global']
test_output[f'A_Pred_0'] = test_output['A_Pred_Global']
test_output[f'A_Score_0'] = test_output['A_Score_Global']
test_output[f'Thresh_0'] = test_output['Thresh_Global']
self.train_output = train_output
self.test_output = test_output
def result_summary(self):
path = f"{self.result_path}/summary.txt"
if not os.path.exists(path):
print(f"Folder {self.result_path} do not have a summary.txt file")
return
try:
print("Result summary:")
with open(path) as f:
result_dict = json.load(f)
epsilon_result = result_dict["epsilon_result"]
pot_result = result_dict["pot_result"]
bf_results = result_dict["bf_result"]
print(f'Epsilon:')
print(f'\t\tprecision: {epsilon_result["precision"]:.2f}, recall: {epsilon_result["recall"]:.2f}, F1: {epsilon_result["f1"]:.2f}')
print(f'POT:')
print(f'\t\tprecision: {pot_result["precision"]:.2f}, recall: {pot_result["recall"]:.2f}, F1: {pot_result["f1"]:.2f}')
print(f'Brute-Force:')
print(f'\t\tprecision: {bf_results["precision"]:.2f}, recall: {bf_results["recall"]:.2f}, F1: {bf_results["f1"]:.2f}')
except FileNotFoundError as e:
print(e)
def create_shapes(self, ranges, sequence_type, _min, _max, plot_values, is_test=True, xref=None, yref=None):
"""
Create shapes for regions to highlight in plotly (true and predicted anomaly sequences).
:param ranges: tuple of start and end indices for anomaly sequences for a feature
:param sequence_type: "predict" if predicted values else "true" if actual values. Determines colors.
:param _min: min y value of series
:param _max: max y value of series
:param plot_values: dictionary of different series to be plotted
:return: list of shapes specifications for plotly
"""
if _max is None:
_max = max(plot_values["errors"])
if sequence_type is None:
color = "blue"
else:
color = "red" if sequence_type == "true" else "blue"
shapes = []
for r in ranges:
w = 5
x0 = r[0] - w
x1 = r[1] + w
shape = {
"type": "rect",
"x0": x0,
"y0": _min,
"x1": x1,
"y1": _max,
"fillcolor": color,
"opacity": 0.08,
"line": {
"width": 0,
},
}
if xref is not None:
shape["xref"] = xref
shape["yref"] = yref
shapes.append(shape)
return shapes
@staticmethod
def get_anomaly_sequences(values):
splits = np.where(values[1:] != values[:-1])[0] + 1
if values[0] == 1:
splits = np.insert(splits, 0, 0)
a_seqs = []
for i in range(0, len(splits) - 1, 2):
a_seqs.append([splits[i], splits[i + 1] - 1])
if len(splits) % 2 == 1:
a_seqs.append([splits[-1], len(values) - 1])
return a_seqs
def plot_feature(self, feature, plot_train=False, plot_errors=True, plot_feature_anom=False, start=None, end=None):
"""
Plot forecasting, reconstruction, true value of a specific feature (feature),
along with the anomaly score for that feature
"""
test_copy = self.test_output.copy()
if start is not None and end is not None:
assert start < end
if start is not None:
test_copy = test_copy.iloc[start:, :]
if end is not None:
start = 0 if start is None else start
test_copy = test_copy.iloc[: end - start, :]
plot_data = [test_copy]
if plot_train:
train_copy = self.train_output.copy()
plot_data.append(train_copy)
for nr, data_copy in enumerate(plot_data):
is_test = nr == 0
if feature < 0 or f"Forecast_{feature}" not in data_copy.columns:
raise Exception(f"Channel {feature} not present in data.")
i = feature
plot_values = {
"timestamp": data_copy["timestamp"].values,
"y_forecast": data_copy[f"Forecast_{i}"].values,
"y_recon": data_copy[f"Recon_{i}"].values,
"y_true": data_copy[f"True_{i}"].values,
"errors": data_copy[f"A_Score_{i}"].values,
"threshold": data_copy[f"Thresh_{i}"]
}
anomaly_sequences = {
"pred": self.get_anomaly_sequences(data_copy[f"A_Pred_{i}"].values),
"true": self.get_anomaly_sequences(data_copy["A_True_Global"].values),
}
if is_test and start is not None:
anomaly_sequences['pred'] = [[s+start, e+start] for [s, e] in anomaly_sequences['pred']]
anomaly_sequences['true'] = [[s+start, e+start] for [s, e] in anomaly_sequences['true']]
y_min = 1.1 * plot_values["y_true"].min()
y_max = 1.1 * plot_values["y_true"].max()
e_max = 1.5 * plot_values["errors"].max()
y_shapes = self.create_shapes(anomaly_sequences["pred"], "predicted", y_min, y_max, plot_values, is_test=is_test)
e_shapes = self.create_shapes(anomaly_sequences["pred"], "predicted", 0, e_max, plot_values, is_test=is_test)
if self.labels_available and ('SMAP' in self.result_path or 'MSL' in self.result_path):
y_shapes += self.create_shapes(anomaly_sequences["true"], "true", y_min, y_max, plot_values, is_test=is_test)
e_shapes += self.create_shapes(anomaly_sequences["true"], "true", 0, e_max, plot_values, is_test=is_test)
y_df = pd.DataFrame(
{
"timestamp": plot_values["timestamp"].reshape(-1,),
"y_forecast": plot_values["y_forecast"].reshape(-1,),
"y_recon": plot_values["y_recon"].reshape(-1,),
"y_true": plot_values["y_true"].reshape(-1,)
}
)
e_df = pd.DataFrame(
{
"timestamp": plot_values["timestamp"],
"e_s": plot_values["errors"].reshape(-1,),
"threshold": plot_values["threshold"],
}
)
data_type = "Test data" if is_test else "Train data"
y_layout = {
"title": f"{data_type} | Forecast & reconstruction vs true value for {self.pred_cols[i] if self.pred_cols is not None else ''} ",
"showlegend": True,
"height": 400,
"width": 1100,
}
e_layout = {
"title": f"{data_type} | Error for {self.pred_cols[i] if self.pred_cols is not None else ''}",
#"yaxis": dict(range=[0, e_max]),
"height": 400,
"width": 1100,
}
if plot_feature_anom:
y_layout["shapes"] = y_shapes
e_layout["shapes"] = e_shapes
lines = [
go.Scatter(
x=y_df["timestamp"],
y=y_df["y_true"],
line_color="rgb(0, 204, 150, 0.5)",
name="y_true",
line=dict(width=2)),
go.Scatter(
x=y_df["timestamp"],
y=y_df["y_forecast"],
line_color="rgb(255, 127, 14, 1)",
name="y_forecast",
line=dict(width=2)),
go.Scatter(
x=y_df["timestamp"],
y=y_df["y_recon"],
line_color="rgb(31, 119, 180, 1)",
name="y_recon",
line=dict(width=2)),
]
fig = go.Figure(data=lines, layout=y_layout)
py.offline.iplot(fig)
e_lines = [
go.Scatter(
x=e_df["timestamp"],
y=e_df["e_s"],
name="Error",
line=dict(color="red", width=1))]
if plot_feature_anom:
e_lines.append(
go.Scatter(
x=e_df["timestamp"],
y=e_df["threshold"],
name="Threshold",
line=dict(color="black", width=1, dash="dash")))
if plot_errors:
e_fig = go.Figure(data=e_lines, layout=e_layout)
py.offline.iplot(e_fig)
def plot_all_features(self, start=None, end=None, type="test"):
"""
Plotting all features, using the following order:
- forecasting for feature i
- reconstruction for feature i
- true value for feature i
- anomaly score (error) for feature i
"""
if type == "train":
data_copy = self.train_output.copy()
elif type == "test":
data_copy = self.test_output.copy()
data_copy = data_copy.drop(columns=['timestamp', 'A_Score_Global', 'Thresh_Global'])
cols = [c for c in data_copy.columns if not (c.startswith('Thresh_') or c.startswith('A_Pred_'))]
data_copy = data_copy[cols]
if start is not None and end is not None:
assert start < end
if start is not None:
data_copy = data_copy.iloc[start:, :]
if end is not None:
start = 0 if start is None else start
data_copy = data_copy.iloc[: end - start, :]
num_cols = data_copy.shape[1]
plt.tight_layout()
colors = ["gray", "gray", "gray", "r"] * (num_cols // 4) + ["b", "g"]
data_copy.plot(subplots=True, figsize=(20, num_cols), ylim=(0, 1.5), style=colors)
plt.show()
def plot_anomaly_segments(self, type="test", num_aligned_segments=None, show_boring_series=False):
"""
Finds collective anomalies, i.e. feature-wise anomalies that occur at the same time, and visualize them
"""
is_test = True
if type == "train":
data_copy = self.train_output.copy()
is_test = False
elif type == "test":
data_copy = self.test_output.copy()
def get_pred_cols(df):
pred_cols_to_remove = []
col_names_to_remove = []
for i, col in enumerate(self.pred_cols):
y = df[f"True_{i}"].values
if np.average(y) >= 0.95 or np.average(y) == 0.0:
pred_cols_to_remove.append(col)
cols = list(df.columns[4 * i : 4 * i + 4])
col_names_to_remove.extend(cols)
df.drop(col_names_to_remove, axis=1, inplace=True)
return [x for x in self.pred_cols if x not in pred_cols_to_remove]
non_constant_pred_cols = self.pred_cols if show_boring_series else get_pred_cols(data_copy)
fig = make_subplots(
rows=len(non_constant_pred_cols),
cols=1,
vertical_spacing=0.4 / len(non_constant_pred_cols),
shared_xaxes=True,
)
timestamps = None
shapes = []
annotations = []
for i in range(len(non_constant_pred_cols)):
new_idx = int(data_copy.columns[4 * i].split("_")[-1])
values = data_copy[f"True_{new_idx}"].values
anomaly_sequences = self.get_anomaly_sequences(data_copy[f"A_Pred_{new_idx}"].values)
y_min = -0.1
y_max = 2 # 0.5 * y_max
j = i + 1
xref = f"x{j}" if i > 0 else "x"
yref = f"y{j}" if i > 0 else "y"
anomaly_shape = self.create_shapes(
anomaly_sequences, None, y_min, y_max, None, xref=xref, yref=yref, is_test=is_test
)
shapes.extend(anomaly_shape)
fig.append_trace(
go.Scatter(x=timestamps, y=values, line=dict(color=get_series_color(values), width=1)), row=i + 1, col=1
)
fig.update_yaxes(range=[-0.1, get_y_height(values)], row=i + 1, col=1)
annotations.append(
dict(
# xref="paper",
xanchor="left",
yref=yref,
text=f"<b>{non_constant_pred_cols[i].upper()}</b>",
font=dict(size=10),
showarrow=False,
yshift=35,
xshift=(-523),
)
)
colors = ["blue", "green", "red", "black", "orange", "brown", "aqua", "hotpink"]
taken_shapes_i = []
keep_segments_i = []
corr_segments_count = 0
for nr, i in enumerate(range(len(shapes))):
corr_shapes = [i]
shape = shapes[i]
shape["opacity"] = 0.3
shape_x = shape["x0"]
for j in range(i + 1, len(shapes)):
if j not in taken_shapes_i and shapes[j]["x0"] == shape_x:
corr_shapes.append(j)
if num_aligned_segments is not None:
if num_aligned_segments[0] == ">":
num = int(num_aligned_segments[1:])
keep_segment = len(corr_shapes) >= num
else:
num = int(num_aligned_segments)
keep_segment = len(corr_shapes) == num
if keep_segment:
keep_segments_i.extend(corr_shapes)
taken_shapes_i.extend(corr_shapes)
if len(corr_shapes) != 1:
for shape_i in corr_shapes:
shapes[shape_i]["fillcolor"] = colors[corr_segments_count % len(colors)]
corr_segments_count += 1
if num_aligned_segments is not None:
shapes = np.array(shapes)
shapes = shapes[keep_segments_i].tolist()
fig.update_layout(
height=1800,
width=1200,
shapes=shapes,
template="simple_white",
annotations=annotations,
showlegend=False)
fig.update_yaxes(ticks="", showticklabels=False, showline=True, mirror=True)
fig.update_xaxes(ticks="", showticklabels=False, showline=True, mirror=True)
py.offline.iplot(fig)
def plot_global_predictions(self, type="test"):
if type == "test":
data_copy = self.test_output.copy()
else:
data_copy = self.train_output.copy()
fig, axs = plt.subplots(
3,
figsize=(30, 10),
sharex=True,
)
axs[0].plot(data_copy[f"A_Score_Global"], c="r", label="anomaly scores")
axs[0].plot(data_copy["Thresh_Global"], linestyle="dashed", c="black", label="threshold")
axs[1].plot(data_copy["A_Pred_Global"], label="predicted anomalies", c="orange")
if self.labels_available and type == "test":
axs[2].plot(
data_copy["A_True_Global"],
label="actual anomalies",
)
axs[0].set_ylim([0, 5 * np.mean(data_copy["Thresh_Global"].values)])
fig.legend(prop={"size": 20})
plt.show()
def plotly_global_predictions(self, type="test"):
is_test = True
if type == "train":
data_copy = self.train_output.copy()
is_test = False
elif type == "test":
data_copy = self.test_output.copy()
tot_anomaly_scores = data_copy["A_Score_Global"].values
pred_anomaly_sequences = self.get_anomaly_sequences(data_copy[f"A_Pred_Global"].values)
threshold = data_copy['Thresh_Global'].values
y_min = -0.1
y_max = 5 * np.mean(threshold) # np.max(tot_anomaly_scores)
shapes = self.create_shapes(pred_anomaly_sequences, "pred", y_min, y_max, None, is_test=is_test)
if self.labels_available and is_test:
true_anomaly_sequences = self.get_anomaly_sequences(data_copy[f"A_True_Global"].values)
shapes2 = self.create_shapes(true_anomaly_sequences, "true", y_min, y_max, None, is_test=is_test)
shapes.extend(shapes2)
layout = {
"title": f"{type} set | Total error, predicted anomalies in blue, true anomalies in red if available "
f"(making correctly predicted in purple)",
"shapes": shapes,
"yaxis": dict(range=[0, y_max]),
"height": 400,
"width": 1500
}
fig = go.Figure(
data=[go.Scatter(x=data_copy["timestamp"], y=tot_anomaly_scores, name='Error', line=dict(width=1, color="red")),
go.Scatter(x=data_copy["timestamp"], y=threshold, name='Threshold', line=dict(color="black", width=1, dash="dash"))],
layout=layout,
)
py.offline.iplot(fig)