-
Notifications
You must be signed in to change notification settings - Fork 5
/
Gemini_Flash_Node.py
181 lines (153 loc) · 7.39 KB
/
Gemini_Flash_Node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import json
import google.generativeai as genai
from io import BytesIO
from PIL import Image
import torch
import torchaudio
from contextlib import contextmanager
p = os.path.dirname(os.path.realpath(__file__))
def get_config():
try:
config_path = os.path.join(p, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
return config
except:
return {}
def save_config(config):
config_path = os.path.join(p, 'config.json')
with open(config_path, 'w') as f:
json.dump(config, f, indent=4)
@contextmanager
def temporary_env_var(key: str, new_value):
old_value = os.environ.get(key)
if new_value is not None:
os.environ[key] = new_value
elif key in os.environ:
del os.environ[key]
try:
yield
finally:
if old_value is not None:
os.environ[key] = old_value
elif key in os.environ:
del os.environ[key]
class Gemini_Flash_002:
def __init__(self, api_key=None, proxy=None):
config = get_config()
self.api_key = api_key or config.get("GEMINI_API_KEY")
self.proxy = proxy or config.get("PROXY")
if self.api_key is not None:
self.configure_genai()
def configure_genai(self):
genai.configure(api_key=self.api_key, transport='rest')
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": ("STRING", {"default": "Analyze the situation in details.", "multiline": True}),
"input_type": (["text", "image", "video", "audio"], {"default": "text"}),
"api_key": ("STRING", {"default": ""}),
"proxy": ("STRING", {"default": ""})
},
"optional": {
"text_input": ("STRING", {"default": "", "multiline": True}),
"image": ("IMAGE",),
"video": ("IMAGE",),
"audio": ("AUDIO",),
"max_output_tokens": ("INT", {"default": 1000, "min": 1, "max": 2048}),
"temperature": ("FLOAT", {"default": 0.4, "min": 0.0, "max": 1.0, "step": 0.1}),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("generated_content",)
FUNCTION = "generate_content"
CATEGORY = "Gemini Flash 002"
def tensor_to_image(self, tensor):
tensor = tensor.cpu()
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def resize_image(self, image, max_size):
width, height = image.size
if width > height:
if width > max_size:
height = int(max_size * height / width)
width = max_size
else:
if height > max_size:
width = int(max_size * width / height)
height = max_size
return image.resize((width, height), Image.LANCZOS)
def generate_content(self, prompt, input_type, api_key, proxy, text_input=None, image=None, video=None, audio=None, max_output_tokens=1000, temperature=0.4):
config_updated = False
if api_key and api_key != self.api_key:
self.api_key = api_key
config_updated = True
if proxy != self.proxy:
self.proxy = proxy
config_updated = True
if config_updated:
save_config({"GEMINI_API_KEY": self.api_key, "PROXY": self.proxy})
self.configure_genai()
if not self.api_key:
raise ValueError("API key is required")
model_name = 'gemini-1.5-flash'
model = genai.GenerativeModel(model_name)
with temporary_env_var('HTTP_PROXY', self.proxy), temporary_env_var('HTTPS_PROXY', self.proxy):
try:
content = []
if input_type == "text":
content = [prompt, text_input] if text_input else [prompt]
elif input_type == "image" and image is not None:
pil_image = self.tensor_to_image(image)
pil_image = self.resize_image(pil_image, 1024) # Resize single image to max 1024 pixels on longest side
content = [prompt, pil_image]
elif input_type == "video" and video is not None:
if len(video.shape) == 4 and video.shape[0] > 1: # Multiple frames
frame_count = video.shape[0]
step = max(1, frame_count // 10) # Sample at most 10 frames
frames = [self.tensor_to_image(video[i]) for i in range(0, frame_count, step)]
frames = [self.resize_image(frame, 256) for frame in frames] # Resize frames to 256x256
content = [f"This is a video with {frame_count} frames. Analyze the video content, paying attention to any changes or movements across frames:"] + frames + [prompt]
else: # Single frame
pil_image = self.tensor_to_image(video.squeeze(0) if len(video.shape) == 4 else video)
pil_image = self.resize_image(pil_image, 1024) # Treat single frame as image, resize to max 1024 pixels
content = ["This is a single frame from a video. Analyze the image content:", pil_image, prompt]
elif input_type == "audio" and audio is not None:
waveform = audio["waveform"]
sample_rate = audio["sample_rate"]
# Ensure the audio is 2D (channels, samples)
if waveform.dim() == 3:
waveform = waveform.squeeze(0) # Remove batch dimension if present
elif waveform.dim() == 1:
waveform = waveform.unsqueeze(0) # Add channel dimension if not present
# Ensure the audio is mono
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Convert to 16kHz if necessary
if sample_rate != 16000:
waveform = torchaudio.functional.resample(waveform, sample_rate, 16000)
# Convert to bytes
buffer = BytesIO()
torchaudio.save(buffer, waveform, 16000, format="WAV")
audio_bytes = buffer.getvalue()
content = [prompt, {"mime_type": "audio/wav", "data": audio_bytes}]
else:
raise ValueError(f"Invalid or missing input for {input_type}")
generation_config = genai.types.GenerationConfig(
max_output_tokens=max_output_tokens,
temperature=temperature
)
response = model.generate_content(content, generation_config=generation_config)
generated_content = response.text
except Exception as e:
generated_content = f"Error: {str(e)}"
return (generated_content,)
NODE_CLASS_MAPPINGS = {
"Gemini_Flash_002": Gemini_Flash_002,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"Gemini_Flash_002": "Gemini Flash 002",
}