-
Notifications
You must be signed in to change notification settings - Fork 2
/
verify_vote.py
72 lines (61 loc) · 3.37 KB
/
verify_vote.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import torch
from torch.utils.data import DataLoader
from tqdm import trange
from config import cfg, cfg_from_yaml_file, cfg_from_list
from e2plabel.e2plabelconvert import VIEW_NAME
from perspective_dataset import PerspectiveDataset
from visualization import getMaskByType, visualize
from postprocess.postprocess2 import get_vote_mask_c_up_down
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--cfg_file', type=str, required=True, help='specify the config for training')
parser.add_argument('--visu_count', default=2, type=int, help='visualize how many batches')
parser.add_argument('--batch_size', default=1, type=int, help='mini-batch size')
parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
help='set extra config keys if needed')
args = parser.parse_args()
cfg_from_yaml_file(args.cfg_file, cfg)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs, cfg)
device = torch.device('cuda')
dataset_valid = PerspectiveDataset(cfg, "test")
loader_valid = DataLoader(dataset_valid,
args.batch_size,
collate_fn=dataset_valid.collate,
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=True)
# 生成nearest_only类型的hough label的数据集
dataset_nearest_only = PerspectiveDataset(cfg, "test")
dataset_nearest_only.hough_label_gradual_type = "nearest_only"
iterator_valid = iter(loader_valid)
for valid_idx in trange(args.visu_count, desc='Verify CLine Vote', position=2):
input = next(iterator_valid)
def _core(input):
with torch.no_grad():
for k in input:
if isinstance(input[k], torch.Tensor):
input[k] = input[k].to(device)
matss = []
for img_idx in range(input["p_imgs"].shape[0]):
mats = []
for view_idx, view_name in enumerate(VIEW_NAME):
mat, _ = getMaskByType("gtc", cfg, input, None, img_idx, view_idx)
mats.append(mat)
matss.append(mats)
gtc_map = torch.stack([torch.stack(mats, dim=0) for mats in matss], dim=0)
vmask = get_vote_mask_c_up_down(cfg, input["p_imgs"])
vmu, vmd = vmask[:, :, 0:vmask.shape[-1] // 2], vmask[:, :, vmask.shape[-1] // 2:]
hough_c_up_vote = torch.matmul(gtc_map.reshape(*gtc_map.shape[0:2], -1), vmu.reshape(-1, vmu.shape[-1]))
hough_c_down_vote = torch.matmul(gtc_map.reshape(*gtc_map.shape[0:2], -1),
vmd.reshape(-1, vmd.shape[-1]))
hough_vote_res = torch.stack([hough_c_up_vote, hough_c_down_vote], dim=3)
hough_vote_res = hough_vote_res / hough_vote_res.max()
gtc_output = {
"raw_cud": hough_vote_res
}
visualize(cfg, input, gtc_output, drawtypes=[["c gt"], ["c raw"]], show=True, dpi=600)
_core(input)
_core(loader_valid.collate_fn([dataset_nearest_only.getItem(f) for f in input["filename"]]))