forked from ultralytics/yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
executable file
·480 lines (405 loc) · 21.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
from utils.google_utils import *
from utils.layers import *
from utils.parse_config import *
ONNX_EXPORT = False
def create_modules(module_defs, img_size, cfg):
# Constructs module list of layer blocks from module configuration in module_defs
img_size = [img_size] * 2 if isinstance(img_size, int) else img_size # expand if necessary
_ = module_defs.pop(0) # cfg training hyperparams (unused)
output_filters = [3] # input channels
module_list = nn.ModuleList()
routs = [] # list of layers which rout to deeper layers
yolo_index = -1
for i, mdef in enumerate(module_defs):
modules = nn.Sequential()
if mdef['type'] == 'convolutional':
bn = mdef['batch_normalize']
filters = mdef['filters']
k = mdef['size'] # kernel size
stride = mdef['stride'] if 'stride' in mdef else (mdef['stride_y'], mdef['stride_x'])
if isinstance(k, int): # single-size conv
modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1],
out_channels=filters,
kernel_size=k,
stride=stride,
padding=k // 2 if mdef['pad'] else 0,
groups=mdef['groups'] if 'groups' in mdef else 1,
bias=not bn))
else: # multiple-size conv
modules.add_module('MixConv2d', MixConv2d(in_ch=output_filters[-1],
out_ch=filters,
k=k,
stride=stride,
bias=not bn))
if bn:
modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4))
else:
routs.append(i) # detection output (goes into yolo layer)
if mdef['activation'] == 'leaky': # activation study https://github.com/ultralytics/yolov3/issues/441
modules.add_module('activation', nn.LeakyReLU(0.1, inplace=True))
elif mdef['activation'] == 'swish':
modules.add_module('activation', Swish())
elif mdef['activation'] == 'mish':
modules.add_module('activation', Mish())
elif mdef['type'] == 'BatchNorm2d':
filters = output_filters[-1]
modules = nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4)
if i == 0 and filters == 3: # normalize RGB image
# imagenet mean and var https://pytorch.org/docs/stable/torchvision/models.html#classification
modules.running_mean = torch.tensor([0.485, 0.456, 0.406])
modules.running_var = torch.tensor([0.0524, 0.0502, 0.0506])
elif mdef['type'] == 'maxpool':
k = mdef['size'] # kernel size
stride = mdef['stride']
maxpool = nn.MaxPool2d(kernel_size=k, stride=stride, padding=(k - 1) // 2)
if k == 2 and stride == 1: # yolov3-tiny
modules.add_module('ZeroPad2d', nn.ZeroPad2d((0, 1, 0, 1)))
modules.add_module('MaxPool2d', maxpool)
else:
modules = maxpool
elif mdef['type'] == 'upsample':
if ONNX_EXPORT: # explicitly state size, avoid scale_factor
g = (yolo_index + 1) * 2 / 32 # gain
modules = nn.Upsample(size=tuple(int(x * g) for x in img_size)) # img_size = (320, 192)
else:
modules = nn.Upsample(scale_factor=mdef['stride'])
elif mdef['type'] == 'route': # nn.Sequential() placeholder for 'route' layer
layers = mdef['layers']
filters = sum([output_filters[l + 1 if l > 0 else l] for l in layers])
routs.extend([i + l if l < 0 else l for l in layers])
modules = FeatureConcat(layers=layers)
elif mdef['type'] == 'shortcut': # nn.Sequential() placeholder for 'shortcut' layer
layers = mdef['from']
filters = output_filters[-1]
routs.extend([i + l if l < 0 else l for l in layers])
modules = WeightedFeatureFusion(layers=layers, weight='weights_type' in mdef)
elif mdef['type'] == 'reorg3d': # yolov3-spp-pan-scale
pass
elif mdef['type'] == 'yolo':
yolo_index += 1
stride = [32, 16, 8] # P5, P4, P3 strides
if any(x in cfg for x in ['panet', 'yolov4', 'cd53']): # stride order reversed
stride = list(reversed(stride))
layers = mdef['from'] if 'from' in mdef else []
modules = YOLOLayer(anchors=mdef['anchors'][mdef['mask']], # anchor list
nc=mdef['classes'], # number of classes
img_size=img_size, # (416, 416)
yolo_index=yolo_index, # 0, 1, 2...
layers=layers, # output layers
stride=stride[yolo_index])
# Initialize preceding Conv2d() bias (https://arxiv.org/pdf/1708.02002.pdf section 3.3)
try:
j = layers[yolo_index] if 'from' in mdef else -1
# If previous layer is a dropout layer, get the one before
if module_list[j].__class__.__name__ == 'Dropout':
j -= 1
bias_ = module_list[j][0].bias # shape(255,)
bias = bias_[:modules.no * modules.na].view(modules.na, -1) # shape(3,85)
bias[:, 4] += -4.5 # obj
bias[:, 5:] += math.log(0.6 / (modules.nc - 0.99)) # cls (sigmoid(p) = 1/nc)
module_list[j][0].bias = torch.nn.Parameter(bias_, requires_grad=bias_.requires_grad)
except:
print('WARNING: smart bias initialization failure.')
elif mdef['type'] == 'dropout':
perc = float(mdef['probability'])
modules = nn.Dropout(p=perc)
else:
print('Warning: Unrecognized Layer Type: ' + mdef['type'])
# Register module list and number of output filters
module_list.append(modules)
output_filters.append(filters)
routs_binary = [False] * (i + 1)
for i in routs:
routs_binary[i] = True
return module_list, routs_binary
class YOLOLayer(nn.Module):
def __init__(self, anchors, nc, img_size, yolo_index, layers, stride):
super(YOLOLayer, self).__init__()
self.anchors = torch.Tensor(anchors)
self.index = yolo_index # index of this layer in layers
self.layers = layers # model output layer indices
self.stride = stride # layer stride
self.nl = len(layers) # number of output layers (3)
self.na = len(anchors) # number of anchors (3)
self.nc = nc # number of classes (80)
self.no = nc + 5 # number of outputs (85)
self.nx, self.ny, self.ng = 0, 0, 0 # initialize number of x, y gridpoints
self.anchor_vec = self.anchors / self.stride
self.anchor_wh = self.anchor_vec.view(1, self.na, 1, 1, 2)
if ONNX_EXPORT:
self.training = False
self.create_grids((img_size[1] // stride, img_size[0] // stride)) # number x, y grid points
def create_grids(self, ng=(13, 13), device='cpu'):
self.nx, self.ny = ng # x and y grid size
self.ng = torch.tensor(ng, dtype=torch.float)
# build xy offsets
if not self.training:
yv, xv = torch.meshgrid([torch.arange(self.ny, device=device), torch.arange(self.nx, device=device)])
self.grid = torch.stack((xv, yv), 2).view((1, 1, self.ny, self.nx, 2)).float()
if self.anchor_vec.device != device:
self.anchor_vec = self.anchor_vec.to(device)
self.anchor_wh = self.anchor_wh.to(device)
def forward(self, p, out):
ASFF = False # https://arxiv.org/abs/1911.09516
if ASFF:
i, n = self.index, self.nl # index in layers, number of layers
p = out[self.layers[i]]
bs, _, ny, nx = p.shape # bs, 255, 13, 13
if (self.nx, self.ny) != (nx, ny):
self.create_grids((nx, ny), p.device)
# outputs and weights
# w = F.softmax(p[:, -n:], 1) # normalized weights
w = torch.sigmoid(p[:, -n:]) * (2 / n) # sigmoid weights (faster)
# w = w / w.sum(1).unsqueeze(1) # normalize across layer dimension
# weighted ASFF sum
p = out[self.layers[i]][:, :-n] * w[:, i:i + 1]
for j in range(n):
if j != i:
p += w[:, j:j + 1] * \
F.interpolate(out[self.layers[j]][:, :-n], size=[ny, nx], mode='bilinear', align_corners=False)
elif ONNX_EXPORT:
bs = 1 # batch size
else:
bs, _, ny, nx = p.shape # bs, 255, 13, 13
if (self.nx, self.ny) != (nx, ny):
self.create_grids((nx, ny), p.device)
# p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85) # (bs, anchors, grid, grid, classes + xywh)
p = p.view(bs, self.na, self.no, self.ny, self.nx).permute(0, 1, 3, 4, 2).contiguous() # prediction
if self.training:
return p
elif ONNX_EXPORT:
# Avoid broadcasting for ANE operations
m = self.na * self.nx * self.ny
ng = 1. / self.ng.repeat(m, 1)
grid = self.grid.repeat(1, self.na, 1, 1, 1).view(m, 2)
anchor_wh = self.anchor_wh.repeat(1, 1, self.nx, self.ny, 1).view(m, 2) * ng
p = p.view(m, self.no)
xy = torch.sigmoid(p[:, 0:2]) + grid # x, y
wh = torch.exp(p[:, 2:4]) * anchor_wh # width, height
p_cls = torch.sigmoid(p[:, 4:5]) if self.nc == 1 else \
torch.sigmoid(p[:, 5:self.no]) * torch.sigmoid(p[:, 4:5]) # conf
return p_cls, xy * ng, wh
else: # inference
io = p.clone() # inference output
io[..., :2] = torch.sigmoid(io[..., :2]) + self.grid # xy
io[..., 2:4] = torch.exp(io[..., 2:4]) * self.anchor_wh # wh yolo method
io[..., :4] *= self.stride
torch.sigmoid_(io[..., 4:])
return io.view(bs, -1, self.no), p # view [1, 3, 13, 13, 85] as [1, 507, 85]
class Darknet(nn.Module):
# YOLOv3 object detection model
def __init__(self, cfg, img_size=(416, 416), verbose=False):
super(Darknet, self).__init__()
self.module_defs = parse_model_cfg(cfg)
self.module_list, self.routs = create_modules(self.module_defs, img_size, cfg)
self.yolo_layers = get_yolo_layers(self)
# torch_utils.initialize_weights(self)
# Darknet Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version = np.array([0, 2, 5], dtype=np.int32) # (int32) version info: major, minor, revision
self.seen = np.array([0], dtype=np.int64) # (int64) number of images seen during training
self.info(verbose) if not ONNX_EXPORT else None # print model description
def forward(self, x, augment=False, verbose=False):
if not augment:
return self.forward_once(x)
else: # Augment images (inference and test only) https://github.com/ultralytics/yolov3/issues/931
img_size = x.shape[-2:] # height, width
s = [0.83, 0.67] # scales
y = []
for i, xi in enumerate((x,
torch_utils.scale_img(x.flip(3), s[0], same_shape=False), # flip-lr and scale
torch_utils.scale_img(x, s[1], same_shape=False), # scale
)):
# cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
y.append(self.forward_once(xi)[0])
y[1][..., :4] /= s[0] # scale
y[1][..., 0] = img_size[1] - y[1][..., 0] # flip lr
y[2][..., :4] /= s[1] # scale
# for i, yi in enumerate(y): # coco small, medium, large = < 32**2 < 96**2 <
# area = yi[..., 2:4].prod(2)[:, :, None]
# if i == 1:
# yi *= (area < 96. ** 2).float()
# elif i == 2:
# yi *= (area > 32. ** 2).float()
# y[i] = yi
y = torch.cat(y, 1)
return y, None
def forward_once(self, x, augment=False, verbose=False):
img_size = x.shape[-2:] # height, width
yolo_out, out = [], []
if verbose:
print('0', x.shape)
str = ''
# Augment images (inference and test only)
if augment: # https://github.com/ultralytics/yolov3/issues/931
nb = x.shape[0] # batch size
s = [0.83, 0.67] # scales
x = torch.cat((x,
torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
torch_utils.scale_img(x, s[1]), # scale
), 0)
for i, module in enumerate(self.module_list):
name = module.__class__.__name__
if name in ['WeightedFeatureFusion', 'FeatureConcat']: # sum, concat
if verbose:
l = [i - 1] + module.layers # layers
sh = [list(x.shape)] + [list(out[i].shape) for i in module.layers] # shapes
str = ' >> ' + ' + '.join(['layer %g %s' % x for x in zip(l, sh)])
x = module(x, out) # WeightedFeatureFusion(), FeatureConcat()
elif name == 'YOLOLayer':
yolo_out.append(module(x, out))
else: # run module directly, i.e. mtype = 'convolutional', 'upsample', 'maxpool', 'batchnorm2d' etc.
x = module(x)
out.append(x if self.routs[i] else [])
if verbose:
print('%g/%g %s -' % (i, len(self.module_list), name), list(x.shape), str)
str = ''
if self.training: # train
return yolo_out
elif ONNX_EXPORT: # export
x = [torch.cat(x, 0) for x in zip(*yolo_out)]
return x[0], torch.cat(x[1:3], 1) # scores, boxes: 3780x80, 3780x4
else: # inference or test
x, p = zip(*yolo_out) # inference output, training output
x = torch.cat(x, 1) # cat yolo outputs
if augment: # de-augment results
x = torch.split(x, nb, dim=0)
x[1][..., :4] /= s[0] # scale
x[1][..., 0] = img_size[1] - x[1][..., 0] # flip lr
x[2][..., :4] /= s[1] # scale
x = torch.cat(x, 1)
return x, p
def fuse(self):
# Fuse Conv2d + BatchNorm2d layers throughout model
print('Fusing layers...')
fused_list = nn.ModuleList()
for a in list(self.children())[0]:
if isinstance(a, nn.Sequential):
for i, b in enumerate(a):
if isinstance(b, nn.modules.batchnorm.BatchNorm2d):
# fuse this bn layer with the previous conv2d layer
conv = a[i - 1]
fused = torch_utils.fuse_conv_and_bn(conv, b)
a = nn.Sequential(fused, *list(a.children())[i + 1:])
break
fused_list.append(a)
self.module_list = fused_list
self.info() if not ONNX_EXPORT else None # yolov3-spp reduced from 225 to 152 layers
def info(self, verbose=False):
torch_utils.model_info(self, verbose)
def get_yolo_layers(model):
return [i for i, m in enumerate(model.module_list) if m.__class__.__name__ == 'YOLOLayer'] # [89, 101, 113]
def load_darknet_weights(self, weights, cutoff=-1):
# Parses and loads the weights stored in 'weights'
# Establish cutoffs (load layers between 0 and cutoff. if cutoff = -1 all are loaded)
file = Path(weights).name
if file == 'darknet53.conv.74':
cutoff = 75
elif file == 'yolov3-tiny.conv.15':
cutoff = 15
# Read weights file
with open(weights, 'rb') as f:
# Read Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version = np.fromfile(f, dtype=np.int32, count=3) # (int32) version info: major, minor, revision
self.seen = np.fromfile(f, dtype=np.int64, count=1) # (int64) number of images seen during training
weights = np.fromfile(f, dtype=np.float32) # the rest are weights
ptr = 0
for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
if mdef['type'] == 'convolutional':
conv = module[0]
if mdef['batch_normalize']:
# Load BN bias, weights, running mean and running variance
bn = module[1]
nb = bn.bias.numel() # number of biases
# Bias
bn.bias.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.bias))
ptr += nb
# Weight
bn.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.weight))
ptr += nb
# Running Mean
bn.running_mean.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_mean))
ptr += nb
# Running Var
bn.running_var.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_var))
ptr += nb
else:
# Load conv. bias
nb = conv.bias.numel()
conv_b = torch.from_numpy(weights[ptr:ptr + nb]).view_as(conv.bias)
conv.bias.data.copy_(conv_b)
ptr += nb
# Load conv. weights
nw = conv.weight.numel() # number of weights
conv.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nw]).view_as(conv.weight))
ptr += nw
def save_weights(self, path='model.weights', cutoff=-1):
# Converts a PyTorch model to Darket format (*.pt to *.weights)
# Note: Does not work if model.fuse() is applied
with open(path, 'wb') as f:
# Write Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version.tofile(f) # (int32) version info: major, minor, revision
self.seen.tofile(f) # (int64) number of images seen during training
# Iterate through layers
for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
if mdef['type'] == 'convolutional':
conv_layer = module[0]
# If batch norm, load bn first
if mdef['batch_normalize']:
bn_layer = module[1]
bn_layer.bias.data.cpu().numpy().tofile(f)
bn_layer.weight.data.cpu().numpy().tofile(f)
bn_layer.running_mean.data.cpu().numpy().tofile(f)
bn_layer.running_var.data.cpu().numpy().tofile(f)
# Load conv bias
else:
conv_layer.bias.data.cpu().numpy().tofile(f)
# Load conv weights
conv_layer.weight.data.cpu().numpy().tofile(f)
def convert(cfg='cfg/yolov3-spp.cfg', weights='weights/yolov3-spp.weights'):
# Converts between PyTorch and Darknet format per extension (i.e. *.weights convert to *.pt and vice versa)
# from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')
# Initialize model
model = Darknet(cfg)
# Load weights and save
if weights.endswith('.pt'): # if PyTorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
target = weights.rsplit('.', 1)[0] + '.weights'
save_weights(model, path=target, cutoff=-1)
print("Success: converted '%s' to '%s'" % (weights, target))
elif weights.endswith('.weights'): # darknet format
_ = load_darknet_weights(model, weights)
chkpt = {'epoch': -1,
'best_fitness': None,
'training_results': None,
'model': model.state_dict(),
'optimizer': None}
target = weights.rsplit('.', 1)[0] + '.pt'
torch.save(chkpt, target)
print("Success: converted '%s' to '%s'" % (weights, target))
else:
print('Error: extension not supported.')
def attempt_download(weights):
# Attempt to download pretrained weights if not found locally
weights = weights.strip().replace("'", '')
msg = weights + ' missing, try downloading from https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0'
if len(weights) > 0 and not os.path.isfile(weights):
d = {'yolov3-spp.weights': '16lYS4bcIdM2HdmyJBVDOvt3Trx6N3W2R',
'yolov3.weights': '1uTlyDWlnaqXcsKOktP5aH_zRDbfcDp-y',
'yolov3-tiny.weights': '1CCF-iNIIkYesIDzaPvdwlcf7H9zSsKZQ',
'yolov3-spp.pt': '1f6Ovy3BSq2wYq4UfvFUpxJFNDFfrIDcR',
'yolov3.pt': '1SHNFyoe5Ni8DajDNEqgB2oVKBb_NoEad',
'yolov3-tiny.pt': '10m_3MlpQwRtZetQxtksm9jqHrPTHZ6vo',
'darknet53.conv.74': '1WUVBid-XuoUBmvzBVUCBl_ELrzqwA8dJ',
'yolov3-tiny.conv.15': '1Bw0kCpplxUqyRYAJr9RY9SGnOJbo9nEj',
'yolov3-spp-ultralytics.pt': '1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4'}
file = Path(weights).name
if file in d:
r = gdrive_download(id=d[file], name=weights)
else: # download from pjreddie.com
url = 'https://pjreddie.com/media/files/' + file
print('Downloading ' + url)
r = os.system('curl -f ' + url + ' -o ' + weights)
# Error check
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
os.system('rm ' + weights) # remove partial downloads
raise Exception(msg)