diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 00000000..32348e28 --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: a32c74d729e09851220b7a8d74ef8210 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.doctrees/ChangeLog.doctree b/.doctrees/ChangeLog.doctree new file mode 100644 index 00000000..04b9e5ce Binary files /dev/null and b/.doctrees/ChangeLog.doctree differ diff --git a/.doctrees/_ref/csc_flow.doctree b/.doctrees/_ref/csc_flow.doctree new file mode 100644 index 00000000..b5e5c638 Binary files /dev/null and b/.doctrees/_ref/csc_flow.doctree differ diff --git a/.doctrees/_ref/dft_managers.doctree b/.doctrees/_ref/dft_managers.doctree new file mode 100644 index 00000000..60fc3801 Binary files /dev/null and b/.doctrees/_ref/dft_managers.doctree differ diff --git a/.doctrees/_ref/dft_managers.mpi_helpers.doctree b/.doctrees/_ref/dft_managers.mpi_helpers.doctree new file mode 100644 index 00000000..55da3754 Binary files /dev/null and b/.doctrees/_ref/dft_managers.mpi_helpers.doctree differ diff --git a/.doctrees/_ref/dft_managers.qe_manager.doctree b/.doctrees/_ref/dft_managers.qe_manager.doctree new file mode 100644 index 00000000..f8b17f0a Binary files /dev/null and b/.doctrees/_ref/dft_managers.qe_manager.doctree differ diff --git a/.doctrees/_ref/dft_managers.vasp_manager.doctree b/.doctrees/_ref/dft_managers.vasp_manager.doctree new file mode 100644 index 00000000..2c740dfc Binary files /dev/null and b/.doctrees/_ref/dft_managers.vasp_manager.doctree differ diff --git a/.doctrees/_ref/dmft_cycle.doctree b/.doctrees/_ref/dmft_cycle.doctree new file mode 100644 index 00000000..5b300031 Binary files /dev/null and b/.doctrees/_ref/dmft_cycle.doctree differ diff --git a/.doctrees/_ref/dmft_tools.afm_mapping.doctree b/.doctrees/_ref/dmft_tools.afm_mapping.doctree new file mode 100644 index 00000000..eb8906ab Binary files /dev/null and b/.doctrees/_ref/dmft_tools.afm_mapping.doctree differ diff --git a/.doctrees/_ref/dmft_tools.convergence.doctree b/.doctrees/_ref/dmft_tools.convergence.doctree new file mode 100644 index 00000000..969f37da Binary files /dev/null and b/.doctrees/_ref/dmft_tools.convergence.doctree differ diff --git a/.doctrees/_ref/dmft_tools.doctree b/.doctrees/_ref/dmft_tools.doctree new file mode 100644 index 00000000..99041d2e Binary files /dev/null and b/.doctrees/_ref/dmft_tools.doctree differ diff --git a/.doctrees/_ref/dmft_tools.formatter.doctree b/.doctrees/_ref/dmft_tools.formatter.doctree new file mode 100644 index 00000000..ba23bae5 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.formatter.doctree differ diff --git a/.doctrees/_ref/dmft_tools.greens_functions_mixer.doctree b/.doctrees/_ref/dmft_tools.greens_functions_mixer.doctree new file mode 100644 index 00000000..bcc4e1d8 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.greens_functions_mixer.doctree differ diff --git a/.doctrees/_ref/dmft_tools.initial_self_energies.doctree b/.doctrees/_ref/dmft_tools.initial_self_energies.doctree new file mode 100644 index 00000000..81fa2c74 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.initial_self_energies.doctree differ diff --git a/.doctrees/_ref/dmft_tools.interaction_hamiltonian.doctree b/.doctrees/_ref/dmft_tools.interaction_hamiltonian.doctree new file mode 100644 index 00000000..59927115 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.interaction_hamiltonian.doctree differ diff --git a/.doctrees/_ref/dmft_tools.legendre_filter.doctree b/.doctrees/_ref/dmft_tools.legendre_filter.doctree new file mode 100644 index 00000000..421536f8 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.legendre_filter.doctree differ diff --git a/.doctrees/_ref/dmft_tools.manipulate_chemical_potential.doctree b/.doctrees/_ref/dmft_tools.manipulate_chemical_potential.doctree new file mode 100644 index 00000000..dffa6ba5 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.manipulate_chemical_potential.doctree differ diff --git a/.doctrees/_ref/dmft_tools.matheval.MathExpr.__init__.doctree b/.doctrees/_ref/dmft_tools.matheval.MathExpr.__init__.doctree new file mode 100644 index 00000000..785d1d17 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.matheval.MathExpr.__init__.doctree differ diff --git a/.doctrees/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.doctree b/.doctrees/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.doctree new file mode 100644 index 00000000..cf96c0fd Binary files /dev/null and b/.doctrees/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.doctree differ diff --git a/.doctrees/_ref/dmft_tools.matheval.MathExpr.doctree b/.doctrees/_ref/dmft_tools.matheval.MathExpr.doctree new file mode 100644 index 00000000..2666be5e Binary files /dev/null and b/.doctrees/_ref/dmft_tools.matheval.MathExpr.doctree differ diff --git a/.doctrees/_ref/dmft_tools.matheval.MathExpr.functions.doctree b/.doctrees/_ref/dmft_tools.matheval.MathExpr.functions.doctree new file mode 100644 index 00000000..b6595331 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.matheval.MathExpr.functions.doctree differ diff --git a/.doctrees/_ref/dmft_tools.matheval.doctree b/.doctrees/_ref/dmft_tools.matheval.doctree new file mode 100644 index 00000000..9c82771e Binary files /dev/null and b/.doctrees/_ref/dmft_tools.matheval.doctree differ diff --git a/.doctrees/_ref/dmft_tools.observables.doctree b/.doctrees/_ref/dmft_tools.observables.doctree new file mode 100644 index 00000000..d9d7b8d2 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.observables.doctree differ diff --git a/.doctrees/_ref/dmft_tools.results_to_archive.doctree b/.doctrees/_ref/dmft_tools.results_to_archive.doctree new file mode 100644 index 00000000..7bfb043c Binary files /dev/null and b/.doctrees/_ref/dmft_tools.results_to_archive.doctree differ diff --git a/.doctrees/_ref/dmft_tools.solver.SolverStructure.__init__.doctree b/.doctrees/_ref/dmft_tools.solver.SolverStructure.__init__.doctree new file mode 100644 index 00000000..e18066a9 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.solver.SolverStructure.__init__.doctree differ diff --git a/.doctrees/_ref/dmft_tools.solver.SolverStructure.doctree b/.doctrees/_ref/dmft_tools.solver.SolverStructure.doctree new file mode 100644 index 00000000..824e6cef Binary files /dev/null and b/.doctrees/_ref/dmft_tools.solver.SolverStructure.doctree differ diff --git a/.doctrees/_ref/dmft_tools.solver.SolverStructure.solve.doctree b/.doctrees/_ref/dmft_tools.solver.SolverStructure.solve.doctree new file mode 100644 index 00000000..2c4ffba7 Binary files /dev/null and b/.doctrees/_ref/dmft_tools.solver.SolverStructure.solve.doctree differ diff --git a/.doctrees/_ref/dmft_tools.solver.doctree b/.doctrees/_ref/dmft_tools.solver.doctree new file mode 100644 index 00000000..b553e43f Binary files /dev/null and b/.doctrees/_ref/dmft_tools.solver.doctree differ diff --git a/.doctrees/_ref/gw_embedding.bdft_converter.doctree b/.doctrees/_ref/gw_embedding.bdft_converter.doctree new file mode 100644 index 00000000..28d7ba23 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.bdft_converter.doctree differ diff --git a/.doctrees/_ref/gw_embedding.doctree b/.doctrees/_ref/gw_embedding.doctree new file mode 100644 index 00000000..736e12ca Binary files /dev/null and b/.doctrees/_ref/gw_embedding.doctree differ diff --git a/.doctrees/_ref/gw_embedding.gw_flow.doctree b/.doctrees/_ref/gw_embedding.gw_flow.doctree new file mode 100644 index 00000000..6fef34e9 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.gw_flow.doctree differ diff --git a/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.doctree b/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.doctree new file mode 100644 index 00000000..6c4307bb Binary files /dev/null and b/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.doctree differ diff --git a/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.doctree b/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.doctree new file mode 100644 index 00000000..0e682967 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.doctree differ diff --git a/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.doctree b/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.doctree new file mode 100644 index 00000000..94dfc155 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.__init__.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.__init__.doctree new file mode 100644 index 00000000..074de2a1 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.__init__.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.check_leakage.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.check_leakage.doctree new file mode 100644 index 00000000..ac5a6a10 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.check_leakage.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.doctree new file mode 100644 index 00000000..36fa4a64 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.tau_interpolate.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.tau_interpolate.doctree new file mode 100644 index 00000000..e7723c69 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.tau_interpolate.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.tau_to_w.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.tau_to_w.doctree new file mode 100644 index 00000000..cf282763 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.tau_to_w.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.w_interpolate.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.w_interpolate.doctree new file mode 100644 index 00000000..aec1a9c1 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.w_interpolate.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.w_to_tau.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.w_to_tau.doctree new file mode 100644 index 00000000..05954e21 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.w_to_tau.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.IAFT.wn_mesh.doctree b/.doctrees/_ref/gw_embedding.iaft.IAFT.wn_mesh.doctree new file mode 100644 index 00000000..30de43a9 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.IAFT.wn_mesh.doctree differ diff --git a/.doctrees/_ref/gw_embedding.iaft.doctree b/.doctrees/_ref/gw_embedding.iaft.doctree new file mode 100644 index 00000000..e0a63e73 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.iaft.doctree differ diff --git a/.doctrees/_ref/gw_embedding.qp_evs_to_eig.doctree b/.doctrees/_ref/gw_embedding.qp_evs_to_eig.doctree new file mode 100644 index 00000000..dfcd8064 Binary files /dev/null and b/.doctrees/_ref/gw_embedding.qp_evs_to_eig.doctree differ diff --git a/.doctrees/_ref/io_tools.dict_to_h5.doctree b/.doctrees/_ref/io_tools.dict_to_h5.doctree new file mode 100644 index 00000000..f82495f1 Binary files /dev/null and b/.doctrees/_ref/io_tools.dict_to_h5.doctree differ diff --git a/.doctrees/_ref/io_tools.doctree b/.doctrees/_ref/io_tools.doctree new file mode 100644 index 00000000..2ea18a6b Binary files /dev/null and b/.doctrees/_ref/io_tools.doctree differ diff --git a/.doctrees/_ref/io_tools.postproc_toml_dict.doctree b/.doctrees/_ref/io_tools.postproc_toml_dict.doctree new file mode 100644 index 00000000..df8dc5c7 Binary files /dev/null and b/.doctrees/_ref/io_tools.postproc_toml_dict.doctree differ diff --git a/.doctrees/_ref/io_tools.verify_input_params.doctree b/.doctrees/_ref/io_tools.verify_input_params.doctree new file mode 100644 index 00000000..62a653ae Binary files /dev/null and b/.doctrees/_ref/io_tools.verify_input_params.doctree differ diff --git a/.doctrees/_ref/postprocessing.doctree b/.doctrees/_ref/postprocessing.doctree new file mode 100644 index 00000000..d17f7eec Binary files /dev/null and b/.doctrees/_ref/postprocessing.doctree differ diff --git a/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.doctree b/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.doctree new file mode 100644 index 00000000..6b740e80 Binary files /dev/null and b/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.doctree differ diff --git a/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.doctree b/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.doctree new file mode 100644 index 00000000..31c69116 Binary files /dev/null and b/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.doctree differ diff --git a/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.doctree b/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.doctree new file mode 100644 index 00000000..1d7a73b4 Binary files /dev/null and b/.doctrees/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.doctree differ diff --git a/.doctrees/_ref/postprocessing.eval_U_cRPA_Vasp.doctree b/.doctrees/_ref/postprocessing.eval_U_cRPA_Vasp.doctree new file mode 100644 index 00000000..25315ead Binary files /dev/null and b/.doctrees/_ref/postprocessing.eval_U_cRPA_Vasp.doctree differ diff --git a/.doctrees/_ref/postprocessing.maxent_gf_imp.doctree b/.doctrees/_ref/postprocessing.maxent_gf_imp.doctree new file mode 100644 index 00000000..3862fe1d Binary files /dev/null and b/.doctrees/_ref/postprocessing.maxent_gf_imp.doctree differ diff --git a/.doctrees/_ref/postprocessing.maxent_gf_latt.doctree b/.doctrees/_ref/postprocessing.maxent_gf_latt.doctree new file mode 100644 index 00000000..dd3d4dee Binary files /dev/null and b/.doctrees/_ref/postprocessing.maxent_gf_latt.doctree differ diff --git a/.doctrees/_ref/postprocessing.maxent_sigma.doctree b/.doctrees/_ref/postprocessing.maxent_sigma.doctree new file mode 100644 index 00000000..80c55277 Binary files /dev/null and b/.doctrees/_ref/postprocessing.maxent_sigma.doctree differ diff --git a/.doctrees/_ref/postprocessing.pade_sigma.doctree b/.doctrees/_ref/postprocessing.pade_sigma.doctree new file mode 100644 index 00000000..1a4b3e58 Binary files /dev/null and b/.doctrees/_ref/postprocessing.pade_sigma.doctree differ diff --git a/.doctrees/_ref/postprocessing.plot_correlated_bands.doctree b/.doctrees/_ref/postprocessing.plot_correlated_bands.doctree new file mode 100644 index 00000000..32590bfa Binary files /dev/null and b/.doctrees/_ref/postprocessing.plot_correlated_bands.doctree differ diff --git a/.doctrees/_ref/util.doctree b/.doctrees/_ref/util.doctree new file mode 100644 index 00000000..91ff7f54 Binary files /dev/null and b/.doctrees/_ref/util.doctree differ diff --git a/.doctrees/_ref/util.symmetrize_gamma_file.doctree b/.doctrees/_ref/util.symmetrize_gamma_file.doctree new file mode 100644 index 00000000..d7b8b394 Binary files /dev/null and b/.doctrees/_ref/util.symmetrize_gamma_file.doctree differ diff --git a/.doctrees/_ref/util.write_kslice_to_h5.doctree b/.doctrees/_ref/util.write_kslice_to_h5.doctree new file mode 100644 index 00000000..db59a313 Binary files /dev/null and b/.doctrees/_ref/util.write_kslice_to_h5.doctree differ diff --git a/.doctrees/cRPA_VASP/README.doctree b/.doctrees/cRPA_VASP/README.doctree new file mode 100644 index 00000000..a8203f81 Binary files /dev/null and b/.doctrees/cRPA_VASP/README.doctree differ diff --git a/.doctrees/documentation.doctree b/.doctrees/documentation.doctree new file mode 100644 index 00000000..749e5d98 Binary files /dev/null and b/.doctrees/documentation.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle new file mode 100644 index 00000000..c171a49e Binary files /dev/null and b/.doctrees/environment.pickle differ diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree new file mode 100644 index 00000000..cf5d14d0 Binary files /dev/null and b/.doctrees/index.doctree differ diff --git a/.doctrees/input_output/DMFT_input/advanced.doctree b/.doctrees/input_output/DMFT_input/advanced.doctree new file mode 100644 index 00000000..129f2361 Binary files /dev/null and b/.doctrees/input_output/DMFT_input/advanced.doctree differ diff --git a/.doctrees/input_output/DMFT_input/dft.doctree b/.doctrees/input_output/DMFT_input/dft.doctree new file mode 100644 index 00000000..1582fc89 Binary files /dev/null and b/.doctrees/input_output/DMFT_input/dft.doctree differ diff --git a/.doctrees/input_output/DMFT_input/general.doctree b/.doctrees/input_output/DMFT_input/general.doctree new file mode 100644 index 00000000..8b74b1e2 Binary files /dev/null and b/.doctrees/input_output/DMFT_input/general.doctree differ diff --git a/.doctrees/input_output/DMFT_input/gw.doctree b/.doctrees/input_output/DMFT_input/gw.doctree new file mode 100644 index 00000000..a431ce04 Binary files /dev/null and b/.doctrees/input_output/DMFT_input/gw.doctree differ diff --git a/.doctrees/input_output/DMFT_input/input.doctree b/.doctrees/input_output/DMFT_input/input.doctree new file mode 100644 index 00000000..02d6703d Binary files /dev/null and b/.doctrees/input_output/DMFT_input/input.doctree differ diff --git a/.doctrees/input_output/DMFT_input/solver.doctree b/.doctrees/input_output/DMFT_input/solver.doctree new file mode 100644 index 00000000..eb0bfcfe Binary files /dev/null and b/.doctrees/input_output/DMFT_input/solver.doctree differ diff --git a/.doctrees/input_output/DMFT_output/iterations.doctree b/.doctrees/input_output/DMFT_output/iterations.doctree new file mode 100644 index 00000000..bd22ddb5 Binary files /dev/null and b/.doctrees/input_output/DMFT_output/iterations.doctree differ diff --git a/.doctrees/input_output/DMFT_output/observables.doctree b/.doctrees/input_output/DMFT_output/observables.doctree new file mode 100644 index 00000000..f717c8e0 Binary files /dev/null and b/.doctrees/input_output/DMFT_output/observables.doctree differ diff --git a/.doctrees/input_output/DMFT_output/results.doctree b/.doctrees/input_output/DMFT_output/results.doctree new file mode 100644 index 00000000..1e71565e Binary files /dev/null and b/.doctrees/input_output/DMFT_output/results.doctree differ diff --git a/.doctrees/install.doctree b/.doctrees/install.doctree new file mode 100644 index 00000000..ad2942e2 Binary files /dev/null and b/.doctrees/install.doctree differ diff --git a/.doctrees/issues.doctree b/.doctrees/issues.doctree new file mode 100644 index 00000000..20c3b8a0 Binary files /dev/null and b/.doctrees/issues.doctree differ diff --git a/.doctrees/md_notes/docker.doctree b/.doctrees/md_notes/docker.doctree new file mode 100644 index 00000000..819a4e4c Binary files /dev/null and b/.doctrees/md_notes/docker.doctree differ diff --git a/.doctrees/md_notes/run_cluster.doctree b/.doctrees/md_notes/run_cluster.doctree new file mode 100644 index 00000000..2f16970b Binary files /dev/null and b/.doctrees/md_notes/run_cluster.doctree differ diff --git a/.doctrees/md_notes/run_locally.doctree b/.doctrees/md_notes/run_locally.doctree new file mode 100644 index 00000000..7d0e5b48 Binary files /dev/null and b/.doctrees/md_notes/run_locally.doctree differ diff --git a/.doctrees/md_notes/vasp_csc.doctree b/.doctrees/md_notes/vasp_csc.doctree new file mode 100644 index 00000000..7f8c9eb4 Binary files /dev/null and b/.doctrees/md_notes/vasp_csc.doctree differ diff --git a/.doctrees/md_notes/w90_interface.doctree b/.doctrees/md_notes/w90_interface.doctree new file mode 100644 index 00000000..d5e419e8 Binary files /dev/null and b/.doctrees/md_notes/w90_interface.doctree differ diff --git a/.doctrees/nbsphinx/tutorials/Ce2O3_csc_w90/tutorial.ipynb b/.doctrees/nbsphinx/tutorials/Ce2O3_csc_w90/tutorial.ipynb new file mode 100644 index 00000000..6e154533 --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/Ce2O3_csc_w90/tutorial.ipynb @@ -0,0 +1,530 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "1cc005bd", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as ticker\n", + "\n", + "from triqs.gf import *\n", + "from h5 import HDFArchive" + ] + }, + { + "cell_type": "markdown", + "id": "f93f161b", + "metadata": {}, + "source": [ + "# 3. CSC with QE/W90 and HubbardI: total energy in Ce2O3" + ] + }, + { + "cell_type": "markdown", + "id": "c1dbd052", + "metadata": {}, + "source": [ + "Disclaimer:\n", + "\n", + "* These can be heavy calculations. Current parameters won't give converged solutions, but are simplified to deliver results on 10 cores in 10 minutes.\n", + "* The interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!\n", + "\n", + "The goal of this tutorial is to demonstrate how to perform fully charge self-consistent DFT+DMFT calculations in solid_dmft using [Quantum Espresso](https://www.quantum-espresso.org/) (QE) and [Wannier90](http://www.wannier.org/) (W90) for the DFT electronic structure using the [HubbardI solver](https://triqs.github.io/hubbardI/latest/index.html).\n", + "\n", + "We will use Ce$_2$O$_3$ as an example and compute the total energy for the $s=0\\%$ experimental ground state structure. To find the equilibrium structure in DFT+DMFT one then repeats these calculations variing the strain in DFT as was done in Fig. 7 of [arxiv:2111.10289 (2021)](https://arxiv.org/abs/2111.10289.pdf):\n", + "\n", + "\"drawing\"\n", + "\n", + "In the case of Ce$_2$O$_3$ it turns out that in fact DFT+DMFT predicts the same ground state as is found experimentally, while DFT underestimates, and DFT+DMFT in the one-shot approximation overestimates the lattice parameter, respectively.\n", + "\n", + "The tutorial will guide you through the following steps: \n", + "\n", + "* perpare the input for the DFT and DMFT calculations using Quantum Espresso and Wannier90 and TRIQS\n", + "* run a charge self-consistent calculation for Ce$_2$O$_3$\n", + "* analyse the change in the non-interacting part of the charge density using TRIQS\n", + "* analyse the convergence of the total energy and the DMFT self-consistency\n", + "\n", + "We set `path` variables to the reference files:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8681be23", + "metadata": {}, + "outputs": [], + "source": [ + "path = './ref/'" + ] + }, + { + "cell_type": "markdown", + "id": "10d286f9", + "metadata": {}, + "source": [ + "## 1. Input file preparation\n", + "\n", + "The primitive cell of Ce$_2$O$_3$ contains 2 Ce atoms with 7 $f$-electrons each, so 14 in total. They are relatively flat, so there is no entanglement with any other band.\n", + "We start from relaxed structure as usual. All files corresponding to this structure should be prepared and stored in a separate directory (`save/` in this case). For details please look at Section III in [arxiv:2111.10289 (2021)](https://arxiv.org/abs/2111.10289.pdf).\n", + "\n", + "### DFT files\n", + "\n", + "All input files are of the same kind as usual, unless stated otherwise:\n", + "\n", + "Quantum Espresso:\n", + "\n", + "1. [ce2o3.scf.in](./dft_input/ce2o3.scf.in)\n", + "2. [ce2o3.nscf.in](./dft_input/ce2o3.nscf.in)\n", + "\n", + " - explicit k-mesh\n", + " ```\n", + " &system\n", + " nosym = .true.\n", + " dmft = .true.\n", + " ```\n", + "3. [ce2o3.mod_scf.in](./dft_input/ce2o3.mod_scf.in): new!\n", + "\n", + " - explicit k-mesh\n", + " ```\n", + " &system\n", + " nosym = .true.\n", + " dmft = .true.\n", + " dmft_prefix = seedname\n", + " &electrons\n", + " electron_maxstep = 1\n", + " mixing_beta = 0.3\n", + " ```\n", + "\n", + "Optionally:\n", + "\n", + "- `seedname.bnd.in`\n", + "- `seedname.bands.in`\n", + "- `seedname.proj.in`\n", + "\n", + "Wannier90:\n", + "\n", + "1. [ce2o3.win](./dft_input/ce2o3.win)\n", + "\n", + " ```\n", + " write_u_matrices = .true.\n", + " ```\n", + "2. [ce2o3.pw2wan.in](./dft_input/ce2o3.pw2wan.in)\n", + "\n", + "### DMFT\n", + "\n", + "1. Wannier90Converter: [ce2o3.inp](./dft_input/ce2o3.inp)\n", + "2. solid_dmft: [dmft_config.toml](./dmft_config.toml)\n", + "\n", + "Here we'll discuss the most important input flags for solid_dmft:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "165c087b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[general]\n", + "seedname = \"ce2o3\"\n", + "jobname = \"b10-U6.46-J0.46\"\n", + "csc = true\n", + "\n", + "eta = 0.5\n", + "n_iw = 100\n", + "n_tau = 5001\n", + "\n", + "n_iter_dmft_first = 2\n", + "n_iter_dmft_per = 1\n", + "n_iter_dmft = 5\n", + "\n", + "block_threshold = 1e-03\n", + "\n", + "h_int_type = \"density_density\"\n", + "U = 6.46\n", + "J = 0.46\n", + "beta = 10\n", + "prec_mu = 0.1\n", + "\n", + "sigma_mix = 1.0\n", + "g0_mix = 1.0\n", + "dc_type = 0\n", + "dc = true\n", + "dc_dmft = true\n", + "calc_energies = true\n", + "\n", + "h5_save_freq = 1\n", + "\n", + "[solver]\n", + "type = \"hubbardI\"\n", + "n_l = 15\n", + "store_solver = false\n", + "measure_G_l = false\n", + "measure_density_matrix = true\n", + "\n", + "[dft]\n", + "dft_code = \"qe\"\n", + "n_cores = 10\n", + "mpi_env = \"default\"\n", + "projector_type = \"w90\"\n", + "dft_exec = \"pw.x\"\n", + "w90_tolerance = 1.e-1\n" + ] + } + ], + "source": [ + "!cat ./dmft_config.toml" + ] + }, + { + "cell_type": "markdown", + "id": "7f970c47", + "metadata": {}, + "source": [ + "Of course you'll have to switch `csc` on to perform the charge self-consistent calculations. Then we choose the HubbardI Solver, set the number of Legendre polynomials, Matsubara frequencies $i\\omega_n$ and imaginary time grid points $\\tau$. In this calculation we perform five iterations in total, of which the two first ones are one-shot DMFT iterations, followed by three DFT and three DMFT steps.\n", + "For the interaction Hamiltonian we use `density_density`. Note that you unlike the Kanamori Hamiltonian, this one is not rotationally invariant, so the correct order of the orbitals must be set (inspect the projections card in `ce2o3.win`). We must also use `dc_dmft` and `calc_energies`, since we are interested in total energies.\n", + "Finally, we will specify some details for the DFT manager, i.e. to use QE, W90 and the tolerance for the mapping of shells. Note that this value should in general be $1e-6$, but for demonstration purposes we reduce it here. If `dft_exec` is empty, it will assume that `pw.x` and other QE executables are available." + ] + }, + { + "cell_type": "markdown", + "id": "47bb27d5", + "metadata": {}, + "source": [ + "## 2. Running DFT+DMFT\n", + "\n", + "Now that everything is set up, copy all files from `./dft_input` and start the calculation:\n", + "```\n", + "cp dft_input/* .\n", + "mpirun solid_dmft > dmft.out &\n", + "```\n", + "\n", + "You will note that for each DFT step solid_dmft will append the filenames of the DFT Ouput with a unique identifier `_itXY`, where `XY` is the total iteration number. This allows the user to keep track of the changes within DFT. For the W90 `seedname.wout` and `seedname_hr.dat` files the seedname will be renamed to `seedname_itXY`. If the QE `seedname_bands.dat`, and `seedname_bands.proj` are present, they will be saved, too.\n", + "\n", + "You can check the output of the calculations while they are running, but since this might take a few minutes, we'll analyse the results of the reference data in `/ref/ce2o3.h5`. You should check if the current calculation reproduces these results." + ] + }, + { + "cell_type": "markdown", + "id": "c74f73cb", + "metadata": {}, + "source": [ + "## 3. Non-interacting Hamiltonian and convergence analysis\n", + "### Tight-binding Hamiltonian" + ] + }, + { + "cell_type": "markdown", + "id": "f7f6d9a1", + "metadata": {}, + "source": [ + "Disclaimer: the bands shown here are only the non-interacting part of the charge density. Only the first iteration corresponds to a physical charge density, namely the Kohn-Sham ground state charge density.\n", + "\n", + "The first thing to check is whether the DFT Hamiltonian obtained from Wannier90 is correct. For this we use the tools available in `triqs.lattice.utils`.\n", + "Let us first get the number of iterations and Fermi levels from DFT:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1f204686", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fermi levels: [14.3557, 14.42, 14.4619, 14.495]\n", + "iteration counts: [1, 3, 4, 5]\n" + ] + } + ], + "source": [ + "e_fermi_run = !grep \"DFT Fermi energy\" triqs.out\n", + "e_fermi_run = [float(x.split('DFT Fermi energy')[1].split('eV')[0]) for x in e_fermi_run]\n", + "n_iter_run = !ls ce2o3_it*_hr.dat\n", + "n_iter_run = sorted([int(x.split('_it')[-1].split('_')[0]) for x in n_iter_run])\n", + "print(f'Fermi levels: {e_fermi_run}')\n", + "print(f'iteration counts: {n_iter_run}')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7fa4150b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2022-03-25 12:42:36.663824\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAGQCAYAAAB1UpekAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wcd5n48c/MbO9a9d4l95pip/eQhBKSQAJHh4MDfsBRjjuuQTj6cdzR4aihd3IJIT1ximvcuy1LVu+r7X1n5vfHSrJlrWTJlmwp+b5fr/XuamdnZte7s/N8y/NIuq4jCIIgCIIgCIIgCIuZfLF3QBAEQRAEQRAEQRDOlwhuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8GtIAiCIAiCIAiCsOiJ4FYQBEEQBEEQBEFY9ERwKwiCIAiCIAiCICx6IrgVBEEQBEEQBEEQFj0R3AqCIAiCIAiCIAiLnghuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8GtIAiCIAiCIAiCsOiJ4FYQBEEQBEEQBEFY9ERwKwiCIAiCIAiCICx6IrgVBEEQBEEQBEEQFj0R3AqCIAiCIAiCIAiLnghuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8HtBSBJUpUkSV+VJOmIJElRSZJGJEnaIUnSJyRJss3RNpZJkvRNSZIOSJIUkiQpJUnSkCRJz0qS9FFJkpxzsR1BEARBEARBEISFSNJ1/WLvw8uaJEl3AL8E3FMscgy4Xdf1tvPYxseBLwGGaRbrAF6r6/r+c92OIAiCIAiCIAjCQiWC23kkSdJqYAtgAyLAF4FnAStwH/C3o4seBS7VdT1yDtt4I/Db0bsp4NvAU8AwUA98ALhq9PE+YKmu68FzeT2CIAiCIAiCIAgLlQhu55EkSc8C1wEZ4Bpd17ee8fg/AF8ZvftpXdc/ew7bOACsGL37al3XH8mxzB+Bu0bvflzX9a/NdjuCIAiCIAiCIAgLmQhu54kkSZcCO0bvfl/X9b/LsYwMHASWAn6gWNf19Cy24QLGemF367q+forlVgH7Ru/+Udf1e2a6DUEQBEEQBEEQhMVAJJSaP3eedvsnuRbQdV0DfjZ6N49sL+9smE67Pd2c3dbTbptnuQ1BEARBEARBEIQFTwS38+fq0esosGua5Z477fZVUy6Vg67rw8DI6N26aRatP+328dlsQxAEQRAEQRAEYTEQwe38WTp6fULX9cw0yx3N8ZzZ+N/R63WSJN02xTL/NnqtAj88h20IgiAIgiAIgiAsaNOVjhHOkSRJFqBg9G73dMvquu6XJCkK2IHKc9jc54FLgJuAP0uS9C3gabLZkuuA9wPXkg1sP6zr+pHZbkCSpIqzLGIClgCDwNDotgRBEARBEARBeOVRgMLR2wd0XU9eqA2L4HZ+OE+7PZPyPmPBrWO2G9J1PTLaY/sO4J+Aj49eTvcn4Cu6rm+f7fpHdZ3j8wRBEARBEARBeOW6FNh5oTYmgtv5YTntdmoGy4+1ZljPcXuXAG9i6nm3NwEDkiQd0XU9dI7bEARBEARBEARBWLBEcDs/EqfdNk251CljGYzjs92QJEn3AL8YXcd+4NPA80CY7DDne8nOuX0/cI0kSTfput4/y82cbbh0ObAN4Mknn6S6unqWqxcWu2Qyyfbt2YEBl19+OWazSMqdi3ifhLkkPk/TE++PAOJzMFPifRLmUkdHBzfffPPY3aELuW0R3M6P8Gm3ZzLU2D56PZMhzOMkSSoGfko2sD0EXKHrevS0RdqAL0qStAN4ElgOfBN4w2y2o+v6tPOGJUkav11dXU1jY+NsVi+8DMTjcVpbsxWn6uvrsVrPdRDCy5t4n4S5JD5P0xPvjwDiczBT4n0S5tEFzcUjsiXPA13XE2QTOgFMm4xJkqQ8TgW3s53bet9pz/3CGYHt6fvzNNkkUwB3jW5TEARBEARBEAThZUMEt/NnLCtxgyRJ0/WQL8nxnJk6vXTQ7rMsO1ZrVwaaZrkdQRAEQRAEQRCEBU0Et/PnxdFrO7B+muWuPe325llu4/T6uWcbYm6c4nmCIAiCIAiCIAiLnghu58+Dp91+Z64FJEmSgbeN3g0Az85yGydPu331WZa9ZvRaB9pnuR1BEARBEARBEIQFTQS380TX9R3AC6N33y1J0sYci32cU0OLv67revr0ByVJeockSfro5TM5nv8I2WAV4F8kSSrPtS+SJL2XbLkggG26rvtm8VIEQRAEQRAEQRAWPJEteX59hOxQYyvwhCRJXyDbO2slmwzqvaPLHQf+a7Yr13X9qCRJPwHeRbYczx5Jkv6HbFA9VgroPuDNo09RgX8+1xcjCIIgCIIgCIKwUIngdh7pur5HkqR7ydahdQFfyLHYceAOXdfDOR6biQ+Qndd7L1AIfH6K5aLAe3Vd33SO2xEEQRAEQRAEQViwRHA7z3Rdf1iSpFVke3HvIFsaKAWcAH4PfEvX9dh5rD8J3CdJ0veBdwAbyPbimoEQcAx4Cvjfs9WrFQRBEARBEIT5ous60WiUUChEIpFAVS9oCVThHBgMBpxOJx6PB4Nh4YeOC38PXwZ0Xe8APjZ6mc3zfgr8dIbLPsvsE1IJgiAIgiAIwrzTNI3Ozk7i8fjF3hVhFjKZDIlEguHhYWpqarBYLBd7l6YlgltBEARBEARBEOaNruuTAltJklAU5SLulXA2uq6P967ruk53dze1tbUL+v9NBLeCIAiCIAiCIMybaDQ6HtgqikJJSQkOhwNZFoVbFrp0Ok1PTw/xeJx0Ok04HMbj8Vzs3ZqS+EQJgiAIgiAIgjBvQqHQ+O2SkhJcLpcIbBcJo9FIUVHR+P1oNHoR9+bsxKdKEARBEARBEIR5k0gkgOxQZIfDcZH3Rpgtq9WKJEnAqf/LhUoEt4IgCIIgCIIgzJuxeZuKooge20Xo9PnRmqZd5L2Znvh0CYIgCIIgCIIgCIueCG4FQRAEQRAEQRCERU8Et4IgCIIgCIIgCMKiJ4JbQRAEQRAEQRAEYdETwa0gCIIgCIIgCMICUlNTgyRJbNq06WLvyqJiuNg7IAiCIAiCIAiCIExv06ZNbNq0iTVr1nDnnXfmXEbTNB5//HF27tzJSy+9xM6dO+nr6wNgz549rFmz5sLt8EUggltBEARBEARBEIQFpL6+HovFgs1mG//bpk2buP/++3n7298+ZXAbCoW4/fbbL9BeLjwiuBUEQRAEQRAEQVhAnn766XN6nizLrFmzhksuuWTC5ZVCBLeCIAiCIAiCIAgvAy6Xiz179lzs3bhoREIpQRAEQRAEQRCEBeTMhFKSJHH//fcD8MADDyBJ0vilpqbm4u3oAiN6bgVBEARBEARBuCh0TSPpC1zs3ZgT5nwPkjw/fYdXXnklnZ2ddHV1UVRURGNj4/hjpaWl87LNxUgEt4IgCIIgCIIgXBRJX4A/FW282LsxJ+4a3Iql0Dsv637xxRf5zGc+w/33389tt93GT3/603nZzmInhiULgiAIgiAIgiAIi54IbgVBEARBEARBEIRFTwS3giAIgiAIgiAIwqIn5twKgiAIgiAIgnBRmPM93DW4dc7Wp6oasViKaDRNNJZCzWhztu7pGI0KAdWAO57GYjEgSdIF2a4wkQhuBUEQBEEQBEG4KCRZPq8kTLquk0hkiERSRKIp4nENMIDBgOSyXrBgRwdG/AlG/AkMBhmn04zTYcJmMyHLItC9UERwKwiCIAiCIAjCopJMZQgGEgRDCdLpc+udlWUJg1HBYJx+pqaa0UinVTRVn9F6MxkNvz+O3x9HliVcTjNerxWLxXhO+zlG9AafnQhuBUEQBEEQBEFY8FRVIxRKEgwmiMXTM36eYpAxmQ0YjDIGo4LRpGAwKsjK7IJFTdVJp1QyaXX8OpVU0dSpg2tN0wkEEwSCCex2E16vFYfddE6BqtVqBSAej8/6ua8UIrgVBEEQBEEQBGFB0nWdaDRFIJgkHE6i62fvPZUkCbPVgMVqxGIzYjAqMBZL6iCTQdZTyJkMsp5BQs2OK865MtCR0SQjmmzAYDGgWc2n7SCkkhni0RTxaJpMWp1yv6LRFNFoCpNJId9rw+22zGrIcn19PQA7duwgGo1it9tn/NxXChHcCoIgCIIgLHIjIzGOHh/m+PFhWttGSCQy6Dro6KCDroOm68iSRGmJg/r6fBrqvdTXebHbTRd79wVhkkxGIxBM4PfHSU8TMI4xGBUstmwwa7YYkEaDRkVLo6hxFD2dDWT1DLPqMx0PeuOgjv1JQpMMoxcjstmCyWLDnQ+ZlEo8miYeTZFKZnKuMpVS6esPMzgUJS/PijfPgsGgnHVXbrnlFgoKCmhvb6eyspLm5mbMZjMlJSX85je/GV/uda97HZs3b570/Ouvvx5FObWd4eHhGb8Ni4UIbgVBEARBEBaReCLNtu1dHDo8yPHjwxw9PszwcOyc11da6qSh3ktDfT6XX1bBujVlGAyiWqRw4em6TjyewR+IEwqdvZdWViRsDjN2pxmjORu0SbqGQUugpJMYtCQS0wwZzuioSRUtrTF11y3IBhnFrCCPzs2V0FH0NIqeBuKY1RCqZCQjW5ANFgx5Fpx5FtSMRjSUJBJK5Jyvq6oaw8NRRkZieL028r1WFGXq757T6eSpp57i05/+NFu3buWll15CVVWqq6snLBcMBvH5fJOeHwgEplz3y4UIbgVBEARBEBa4TEbjpZ3dPPp4C89saiMWm/l8w7Pp6wvT1xfmhRc7+MkDu3G7zFx7TS03XF/H5ZdWYDaL00VhfmmaRjCUxO+Pk0jk7u08ndVuwuY0YbEZkSQJWc9gyESyQa0++buhpXUyiQxqUkVNaWip7PUMRjhPIEmgmLKBrmKSkc0KBosB2SBlg101jVkNo0kGMrKZjGxF8VpxeizEIinCwQSZ1OReaE3TGR6O4vfHKSyw4fFYaW9vz7kPq1ev5sEHH5x2Pzdt2jS7F/YyIo5WgiAIgiAIC5Cu6xw5OsSjj7fw+BMtDPvOvXd2NoKhJA/95SgP/eUoNpuRq66o5obr67jmqhosFnHqKMydRCKNP5AgGEygadNHmkaTgt1pxuY0ISsykq5j0OIY1TiKnpqwrK5DJpYhHUmTjmZQzzGb8pl0HTJJjUxy4voMFgWT04jJYUQ2ych6BpOawaRGUSUjacWO5LRid5pJxNNEggkSORqoVFWjfyCCbyROUaEdl8ssMiTPkjhCCYIgCIIgLCDpjMpfHz3Oz3+5l7aT/hk/z2hWKKv2UFaTh9NjAUlCItvbNHY7k9EY6A7S3xVkuDd81oAiFkvzxFMneOKpE7hdZl77mqXcc9dyKivc5/UahVeusYzH/sAMemklsNnNONxmTGYDSKBoSYzpOAYtgXTaUGItrZOKpEhHM2RimVn3yp6PTEIlk1CJDSUwmGWMo4GuYlayPbqZACbC2SDXasNic5JOqYQDCWLh5KT1pdMqPb0hfCMGioocOMS8+BkTwa0gCIIgCMICkEqpPPSXI/zkZ3vo6wtPu6wkS9QtLaSyIZ/y2jzKa/MoKHEgTzNf70zplMpQb4i+zgB9HUFOHBigu21kyuWDoSQ//+Vefv7LvVyxsYo33rOCKzdWTTtHUBDGpFIqqgotJ3xnbVRRDDIOlwW7a6yXVsWoRjCqMWRODevVNZ1UKEUymCaTOHvSKQDZoKBYzSgWM4rFgmI1I5tNo61AWdLEf9DSadR4EjWRRI0nsreTqVyrH+3ZTRIfTqKYZMweE2a3CVlWMashTGqYtGJDMtrxFtlxeiwEfXESscnrSyQydHYGcDhMFBc5xBSBGRDvkCAIgiAIwkWUSGT48/8d5oGf72FwKDrtshV1XtZdU82aK6tx5VnH/65oSRzJLpzJPhzJAUxqONurpeujvVs6kq6jSQoxUwFRUxFRUxGWyiLKavLG1zMyFOXg9i4ObO+m/ejQlL1fW7Z2smVrJ6WlTu55/XJef+cyPG7LXLwdwsuEpukcODTA88+fpKgwRWGBlbw8O7IydWBrsRlxuCxYbMbRXtoUpnQUg5aYsFwmliEZTJEKp8/aQ2t02DC6nRgcNhSLGdk4+/BHNhow2KwT/qZrGmoiSSYaJ+UPkQ5FJj1PTWnEBhPEfUksHhOWPDOSAiY1ikmNkpatSEYnBaUOkvEMQV8sZ4blSCRFNDqC12ujIN8mGpSmIYJbQRAEQRCEiyCZzPC7PxzkZ7/Yg28kPuVy3iI7666uYd01NRSVuwAwZcIUBnbgSnbjTPZhTY/MuLxJXqJj/LYOJBUXUXMRfmstZs8SvK9ewjWvXkI4EOfQSz3s29JJy4GBnOvq6wvzze9s4wc/2slrXt3Mm+9bTXWVZ4Z7IrzcxBNpduzo5rkX2nn+hXZG/NnP9Yc/0DzlcxRFxu4yY3OaMRjH5tLGMKlRZP1UoKdldJKBJMlQCi09dUQrKTJGlxOTx4nR5TinYHYmJFnGYLNisFmxFHrRMhlS/lDOQFdXdeK+JImRJGa3CYvXjGyUMWpxDKlEdriyxYG53EU8liLoi0+ql6vr4PPFCAYTFBXZcbssYj5uDiK4FQRBEOZEOJIkFEoSi6WJxdPEY2niiTSxWJp4PE08nkFRJCwWIxaLAbNZGb9ttRiwmA3k59tEAg3hZU/XdZ56ppWvf3MrvdMMP65uKuCme5azZG1pNiOslqYgfJDi8H7y4m3IOUqXhHvi+A75iA0l0FUdTdXRNX38tmyQcFXacdc6cdU4MZgVLGoISyxEfuwE9b4nCZtLGbIvZdi+BOfNDWy4uYGhvjBbn2jhpWfaiEcnJ8JJJDP8/o+H+MOfDnH1VTW85U2rWb+uTHyXX8Y0TaevP0xb2witJ/3s29fH9h3dJKao7Xomi92Ew2ke76WVtQzGTBijGp8wlzYdzZD0J0lFp16vbFAweT2YPNkeWkm+8D2bssGApdCbDXTTGVKByYGurkMikCIRSGF2GbF4zShmBdPokOukwQk2G1abiWg4SXAkjqZOTF6VyWj09obx+xOUFDuwWo0X+qUuaCK4FQRBEGZE13VGRuJ0dQfp7gnS1RXKXncH6e4OEQgmzr6SGbBYDBQXOSgudlBcZKe4yEFRkYPSEge1tV5KSxzihFlYtA4fGeSr/72Zvfv6plymfnkRN92znIYVxUiShDveQUl4P4XRIxi0U8lnkmGVoX0+fIdHGDkWYORYkPQ0AcCZJBnsJTbctU48dU6K1xVQuMqLK9mHK9lH3cgzRE1FDDqWYyxcw2vfvo5X3beKvS92sPnxFnraJie70nV4frTXbklzAW++bzW33NSAyaTM7o0SLihN00kkNNIZnb6+MJKcIJ1SSaVVkimVdEolFk/T2Rmg7aSf1rYRTrb7Z1S253SSDG6vFZvTjGKQQdcxanGMamxCxmNdg2QwSTKQQk1NnenY6HJgLsjD5HFelIB2KrLxVKCbiSdI9A2RHAlOWCYZSpMMpTG7jVgLLMgGsGSCmKQoScWJ3WXB5jAR8scJBxOTyvDG42lOtvvxeCwUFdoxGMR3DERwKwiCIEwhkchw+Mgg+/b3s+9AP/v3989ZAHu27XZ0BujoDOR83GE3UV/vpbEhn4b6fBpGbzud5nnfN0E4V4ODEb713e385a/HplymaXUJN9+zgtqlhQDkR49RM/I8zlT/+DJaRqf7hT7aHu1iYNcw+nlUONE1iPTGiPTG6Nk8wKGfn8CcZ6LiqhIqry6haF0+jtQgjpFBakaeZ8ixlB73pVx2Yz2X3lBHZ4uPzY8eZ++WTjR1ci/y0WPD/Pv9T/O1r2/mda9Zyt2vX0ZFuciyfDpd1wmHkwz7Yvh8cUb8MaLRiaNfVDU7d3osB5PBIGMyKhhN2WuTScFgGLuW0TQdXddRVZ10WiUSSRGJJIlEU0QiKcLhZPZvo/cjkRTRWGp87urXvvGHOX2NxRUu8kscOPMsmC1GnHnWKXtp1bROwpcgFUpNOZdWNhowF+RhLshDMS/8LMIGqwVHXSXWsiLi/cMkff4JgWoymCYVTmP1mjF7zchksGb8qKqJpMGFO9+G3Wkm4IvlLB8UCCQIhZIUFtjJ81qRX+GNvyK4FQRBEADwB+Ls3tPL/v397N3fz5GjQ2Qyc1MbcC5FoqlswL2/f8LfS0ocrF1dyto1ZaxfV0ZNtUf08AoXXTyR5ue/2MtPf75nyl6u2iWFvPpta6huKgByB7Whrjgn/q+N9id7SIUmn+DmIptNKGZTNomOxYxiNqHrOtH2HvRM7n1J+lO0PtxJ68OdmFxGyq8opuqGMkovLaQ4cpDiyEFC5lJ6XZcgN6yg+iNXcMdb1rD5seNsfeJEziHLgUCCB36+h5/9Yg8bN1TxhruWc9WV1a+opDihUIKW1hFaW0fo7ArQ3ROiuztIT2+IZHJmWX4XC0mWqF1SyPJLy1l+STkFpU5sgT4MaMio2FLDKPppnxMdUpEMSX+CdHzq98LkdmAu9GJ0OxflsV2xmHHUlGMtLSQxMExyyI8+GsHrGsSGkySDKayFVkxOI4qewpYeJi3bSBqdFJQ6SUTTBHxRMmfU7dU0nYHBCP5AnJJiJw7Hwg/654sIbgVBEF6hdF3n5Ek/z7+YHUK4/+DAWcszzIQkgclswGQxYLaMXRsxmpVs2YakSjqVyV4nM6RS2eszf6xnq78/wqP9LTz6eAsAeXlW1q0pZd3aMtavLaO+3vuKOpkWLi5N03nsiRa++e2tDAzmzoDsLbJzx1vXsGpDJZIkkR89Ts3IcxOC2s7n+jnyqxP4jwdzrmOMe1kDBVeuo/Cq9RReuQ5HbcWUwzTVVIrIiU6Ch0+MXloJHjpB8FALp3eXpUJpTj7WzcnHunGU22i8s4a62ypw0Ydr6GHqfE/R51pPt/tSbv+bNdx413J2bjrJ848cw9c/OXOsrp/KslxS7OA1r17CzTfWU1/nXZTBylT8/jiHDg9y8PAAhw8PcrzFd9Ys2IuZ1W6kuNJNcYWb2iWFLF1fhn10JI0xE6EgtBstCZJiRTY4xwNbLQOJkTjJYGrKEQiSLGEuyMNSlI9ieXmMzlHMJuxVZVhLCon3D5EYPFV+S03rRHpjGK0KtiIrikXBqMUwpBLZ+bh2G8U2N5FAkpA/Ph4cj0mlVDq7AjidZoqL7JhMr7xQ75X3ii8CSZKqgA8DdwBVQBI4AfwO+I6u67E53NZNwFuAq4BSIAMMAPuBp4Gf67o++RdHEBYZXdfHAzFdzwZUInA5u3RaZfeeXp5/oZ0XNnfQ3ROa9ToUg0x+sYP8YgcFpQ7yi53klzgoKHHg8towmZVzOlHNpFWCI3GCvhgBX+y06ziB4RjD/eGcQ7Km4vfHefrZNp5+tg0At8vMNVfXcP21dWy4vBKLRfwECvNj34F+/uu/N3PwUO4Mw2argZvuXs5VtzdjNCm44p00+J7AlTw1D7d32xD7f3iUQGvu76jJ66H2ba+j5MaNFFyxFrPXM+P9U0wm3MsacC9rmPD3eP8Q3X9+ks4/PsHgph3o6qletEhPjD3fPsyBHx+j5tYKGu+swV0N1YEXqQhuZcCxkm7PRq68rYmNtzRweFcvL/z1GK0HB3PuQ/9AhB/8aCc/+NFOqqs83HB9HTdeX8fSJYWLKtCNxdIcOTbEoUMDHDo8yKHDg9MmCVtsZEVCUWQMRhmDUSGv0E5ZTR7FFS6KK92UVLpxeiZm7bWlhsn376QgegxXsgcJaLVeR1rJlopKRVQSvvi0dWllkxFLkRdzQR6y4eV5rJZNRuxVZZgLvcQ6eklHToUD6bhKsCOC2W3EVmhFUjQsmSBGNUbC4MaZZ8HmNBH0xYlFkpPWPTb0PN9rpaDAhryA5iPPt5fnp2UBkSTpDuCXwOmTTGzApaOX90iSdLuu623nuZ084CfA63I87AIagbuBrcDe89mWIFwI8Xiajs4A7e0BTnb46eoKMjwcxR9IMOKPEwjEJ83HsdmM5Hms5OVZyMuzUlXpob7OS32dl7raPOz2V+YwnUQiw+atHTz9TBsvbu4gEs1deD4XSZYorXJTs6SQmuYCqpsKyCuwIY82JEh6Bks6iDXjx5LuxRSLIEczyFoaRc8g6xlkPY2sZW/rkkJGNqPKptHr0duSmYxiJc/tJlHgIa0UTdoXXdcJDMfo6wzQ3xmkryNAf2eAgZ5Qzvl+ZwqGkjz8yDEefuQYFouBKzdWcf11dVx9ZbWYryvMid6+MN/89lYef/JEzsclWeLyG+u49d6VOD1WTJkQ9QNPUxQ5OF7GZ+hgkL3fO4Tv0ORkTQDeS1bQ9MG/oere2zFY57aurLWkkMb3v5nG97+ZxPAIPQ89Q+cfHmfgqa1o6WzDUiaucuLBDk482EHx+gKa76mlbEMRZeG9lIb34rM10uXZyIrLqllxWQWDPSG2PtHCzk0ncw5ZBujoDPCTB3bzkwd2U1bq5Ibrsw1QK5YV4XItnNq5qZRKy4lhDh0e4tDhQQ4fGeRku39ORrxAtgfU4bZgc5gxWRTMFiMms5I93kqMf0bUjEYmo6GmNTIZlUxaI51SiYQSxCMpkonMjI6JM6GpOpqaTSgFaSLBBJIEngIbDpeZfEcKR7wXW2oYe2oIT6ITW9o3YR06CumEnK3fqmWIRKfuYzE6bJiL8jHluRZVI8f5MFgtOJtrSY0EiXX3o6VPTRlIBtOkIxlsRRZMLhOKnsaeHial2EgpTrzFdhxuM/7hKOnkmaWDdIZ9MQLBBIWFdjzuV0bpIBHcziNJklaT7Z21ARHgi8CzgBW4D/hboBl4RJKkS8+1R1WSJDfwJLB+9E+PAL8h2zusANVkA+l7zvnFCMI8SmdU2tr8HDg4wKHD2dbvtpOzP2GIxbJlZ3p6x3o6OiY83lDvzQ5RXVfGujVl5Ofb5ugVLDzxRJrNmzt58pkTvLi5g3h8ZhktjWaF2uZCapYUULOkkKqGfCw2I4qWxJXowZnci83nw5L2Y0kHMKvhGdfWnI2MZCRh9JAweMavo6YCTN5S8grLWba+/NSyaZXBnhAdx320HR6k9fAgoWlqhkI24B/r1TUYZC5ZX87NN9Zzy00Nr9hGEOHchUIJHvjFXn71m31Tzp9sXFnMa96+lrKaPCQ9Q6V/M1X+FzCMDtEMtMfZ8639DOwanvRc2Wyi+r47aPzAmym4bNW8vpYxlgIv9e+6h/p33UNieITWH/6Blm//klj3qSHTA7uGGdg1jLvOyZJ766i+oYyCWAsFsRZC5jK63ZcjlS3lde9cz21vXs3eFzvY8sQJultHptxub1+YX/xqH7/41T4Aaqo9rFhezMoVxaxYXkxDgxfjBcgKG44ksyVu2vwcOz7M4SODHG8ZJn0e0ycUg0xRuYviChcFJdkRL/nFDjyFdpxuC8ZzyCg9Mhhh25Mn2P50G9HQ5B68uabr0HHcR8dxH4/9ej/F7jRXL41x1dIol9THsRizv9saVnwnNU784SBdT56g9KtLsDdZMOX42ZUkCVO+G0thPga7dd5fw0IkSRLmfA9Gj5N47yCJgVMNBJqqE+mLYwylsRdbkY0yJjWGUU2QNLjAYqW43D1aOig2qWEjk9Ho6wvj88UoLLC/7MvtSWeO1RbmjiRJzwLXkR0afI2u61vPePwfgK+M3v20ruufPcft/Ax46+h23qLr+m+nWE4CFF3XZ5e3/ezbrwC6AI4fP05jY+Ncrl5YBOLxOE888QQAt9xyC1br1D9Ouq7T2xfm4MEBDh4e5NChAY4eG55xXby5tKS5kOuuqeG6a2ppbMyf94P9bN6ncxGJpNiyrZOnn2nlhc0dMy7R4M63seySMpatL6dhRTFGk4I15cOV7Mad6MaV6MaeGpqQ0XKMmtaID8aJDmQvyWAKLaOjZzS0jIaW0cevdVXDYDVgchoxuUyYnEbMTiMmlxGT04Qlz4TBOn2bqw6kFCdhcwkRc+nodQlJw6nBMbquMzIYpe3wYPZyZCjn/L9crFYDt97cyJ2vXcrK0TIsC9V8f54Wuwvx/sTjaX792/088Iu9hMO5A4uCUieveftalq0vG59XW+97Els6G+ClYxp7vn2Qtke7JpX6kE1Gmj/yNpZ+8j1YCrxzvv+zpaXTdP35SY59/WcMb9kz6XFbkYWme2qpf3UVxtHvclJx0OdaS69rHSmDC4CuEz52v9DO/m3dBH2zm5llMimUljgpKXFQUuygpMQ5fl2QbxutoT1aR9tsIJ1O8uSTTwLZz4HJZCaVVgkFk/gDcfz+OCP+OH19YXp6Q/T0hOjqDk45T3qmjGaFilovlY1eKuu9lFbnUVjqzJa/OZOuYVIjmDOR8XqnipZC0VMoWgpZVwEtewwenYfT3qPxq4fivLR/6qzCF5rZqLOhMs4lXTuQtuyb8Hku//onsTdVYyvIp5hsXVbFbMRcmI+5wPOyHXp8rjLxBLHOXtLhid8PSQJrvhmL1zLela9KJhIGN5psQFN1Qv44kWkqG5jNBooK7Tgcpln9xrW0tJDJZDAYDGc9129paaGpqWnsbqWu690z3tB5EsHtPJEk6VJgx+jd7+u6/nc5lpGBg8BSwA8U67o+8wll2XVcBbwwevczuq7ff+57fW5eTsGtruvEYml8vlg2Lf9IjFAoicViwGE3YT/9YjPidJpF7T5yn0Tquk4gmKCzK0jnaFmX48eHOXh4kEBg/svJzFZZqZObbqzn1psbWdJcMC9BzVyfbOu6TkdngBc3d/DC5g727O2bcXbjygYvy9aXs+yScspqPBi1OPmxE+RHW/DE2zFpE39Q474EvsPZOpqR3ijRgTixwTiJkeR5lSI5kyXfjKvCjqPCjrPCjrPSjrPCgbPchpzrpHBUSrERsFTjt9YSsNYQN+VPeHxkMMKhl3o4sL2bk0eH0GcwKqC+zsudr13KHbc343EvnKGRY0RwO735fH9SKZU/PXiIH/54FyP+3KMErHYjN79hBVfc2ojBmG0wavA9QX7s1JDlk0/0sufbB3NmP66851bWfOkTOOur5my/55Jv5wGOfePndP7mr+NDlscYHQYaX1dD4+urseZnvzsaMsP2ZnrclxK0VgPZY1jXiRH2b+vkwLZufANznxJEliWU0Z9pTSNbVmcetlFS5aaqMZ/K+nwqG7wUV7on5YEwZiI4UgPYU0NY0yNY0yPY0iOYM6GcjYe59I4Y+N6TXh7d40TXp/+dcuVZqVtaiLfYgctrxZ2XrS8ryxKSlB0mL8kSsnTqfjyaJuSPj1/C/jhBf5ywP4F/KDo6PPns6v2tbOh9idJodt756cFtpTsPc1E+RpeoWT4dXddJ+vzEuvrR1Yk/tIpZxl5iw2A5dQ6aUuykFCe6JJFOqQSGYyTjU4cVVquRwkI7jhmOVhLB7SucJEmfB/559O4GXde3T7HcP5Edrgxwi67rT85yO78B7iU77Ln0YiSLWqzB7cBAhL37+9i3v5+jx4YZHo4y7IvNqiC5JEFVpYempnyaGgtobiyguamAggLby/KA7ffHOX7CRyAQJxRKEgxla6uNjERpbe0mHteQDTYi4RTBUOK8hm9B9v31FNopKnNRVO4kr8COw23B4TZjd5oxmE4lLtJ1nVg4RSSUIBJMEvTFGOgO0t8VxNcfmdUQ56pKN7fe3MitNzdQVzd3vSVzcbKdSqns2t2TDWi3dNDdPbOEUJIsUbeskFUbqlhxWTlurw1baoj86HHyYy24E93jJ1dqSmXkeBDf4QC+IwF8h/3EBi9ug4QkS7iq7OQvyyN/qYf85V7c1XYkOff3LGFw4bfWELDW4rfWjPcYAUSCCQ7vzAa6x/f3o56lQcBolLnhujruuWs569aWLZjvtghupzcf7086o/LXR4/z/R++RP8UowFkWWLjrQ3c8saV2J1mFC1Jtf8FKgLbkcl+1sJ9KbZ/YSfDByfPq/VesoJ1//0piq665Lz390KI9Qxw9L9/yonv/YZMdGKjmGyQqLy2lMbX11CwPG/87xFTEQPOlQzal5E0eoDRUT3tAQ5s66LlwAA9J0fOO4P6fCksc1JZ76WyIZ/Kei9ltXmYzBN7Hg1qDFeiB1eyB2eiF0eqH7M6fW+wpkqkEzLpBGQSGpm4SjqmoqkQS8n8+mABfz3hJaNNfQyqX17E6iuqaFhRTGFZ7pI5kq4i6RqgI+nZHmEJDXQdVTajycac686kVVoPDXJkVy+HdvXgn0HvdnWwkw29O7jqf/4Wx9I6rF4PTc3NZ32eADU1NXR0dPDUE09waXUj6dDkY47ZbcJWZEUabUfRkUkaXKQVK+iQiKcJjsRJTzM6zmYzkpdnxenINnxMRQS3r3CSJD0PXA1EAc9UQ4ElSdoIbBm9+1ld1z89i22YgCBgAX6v6/obR/9uAMrJDgjp13V95tljzsFiCG51XaflhI+9+/rZt7+Pvfv76ZvHbIZ5eVaWNBdw+aUVXLGxalGWOUhnVFpafOw/OMCBg/0cODgw40DqXBWUOKhsyM+2fjfkU1bjmXTCMEbWUih6+rQfaVDlbFKiSa8lpdJz0p+dj3lokPajQyRn2IjRUO/llpsbuOWmRqoq3Wd/wjRmO3y7rz9Ca6uP1rYRTrSO0No2wsl2P6kZtpxLskTD8iJWbqhk5eUVON0W3IlOCqNHyY8ex5oJjC8baAvRu22Qvm2D+I4E0DJn/20welzYK0uwVZZiG7025bmQFCVbgkSSRnsGsrcBUiNBEgPDxPuHSfQPkRjwZYvaD/rQtdmdyBosCnnNbvKXeihcVUjR2nyMlsnfMx2ImooYsi9lyLGUmKlw/LFEPM3RPX3seaGdI7t6z9oIsnRJIW/7mzXceEM9hml6ki8EEdxOby7fn6HhKH9+8DB/fPAwQ9OUdFlzRRW33LuSovJsY0pxeD91vqcxq9mTUlWVOPijoxz9XSv6GT2ItooSVn/xY9S8+TVTlvBZyJIjAY5/+5cc//rPSPoCkx73NrtpvKuGquvLUIzZ16cDYXMZQ46lEwJdyAZSfR0BOlp8dLb46Dw+zPAMpxfMFVmRKCx1UlzppqIuO7y4ot6L9YyeLklXsScHcCV7xgNaa3okZz6CTEoi0p8m2BbAf3SIUGeESF+M+FCCdDT371Kru4anam4gbHbmfNxiM3LJtbVsuKWBktHfKaMaxRPvwB3vwJoJYM6EMGfCGLT4tHkSdLLDXFMGJynFTnL0OqU4iRu9+K01qIoFXdcZ6A5xZFcPh3f10n5seNoRMf/6T6uoq3Vjt1sW5HniQjQW3D777LNce+21JIf9PPHnh3hx5w5WNjVz+3U3AtnPqa3EhsmRPV/q6e3nR7/4A9v3HOLY0WP4fMPEolHc7jyWLl3JnXfey6tum5x/1qDIeDwWPHlWTMbJoxJFcPsKJ0nSEFAA7NN1fc00y+UBY5kVxgPUGW7j9KHPHwN+TbYX+A2AffTvCbJJrD6n6/qWSSuZAws1uNV1nSNHh3jy6VaefOrERU3NX1RoZ8PllVyxsYrLL63AvQCHOOq6zvEWHy+82M6WbV0cOTo4r4Xl7S4zVQ35VDbmU9WQbQG3n5Gx1pQJY08NYk8NYUsNYU37MasRTJkwip7K+QOtI5GRLSQNDuLGfGLGAqKmAiLmkvGgRs1onDw6xKGXujm4owf/DOsPLltayK03N3LzTfWUFOc+yRijqhojI3H6ByIMDkboH4jQ2xtg/4E2ojEVr9eLwWBAlgBJQpal8dvBYIK2thGisyh7M0YxyNQvK2LVxkpWXFaBw2XOBrSRwxRGj546yU6pDOz20bttkN5tg8QGpk7AZMpzk79hNQWXr8Z7yQoctRXYKkswOh2z3r+paKpKvHeQwIHjBA8cw7//GIH9xwkdbUPPzKwhQpIlvEs9lF1eROUN1TjLjORqU4oaCxl0LGXIsWxCoBscibFz00l2PN121uGRJSUO3nzfal7/2qUXLQGVCG6nd77vj67r7N7bx+/+cIBnnz1JRp268WXpujJe9aZVlNdmeycdiV4ahx/HnTx1Pte/L8KOz28nNnTGKAhJovnDb2XV5/4eo8POYpeJxmj98R858tUfE+vsnfS42WOi/tVV1L6qAmf5qdd7eqDrt9YRMRUx3h01KhpKMtgTIuCL4h+KERiO4R+OEhiOERiOTpmNeSqSLGFzmHC4zHgKbHiLHHiL7HiLHBRVuCgsdWLIcZJvTgcmBLKOZD9Kjj6MTAr8JyIM7OzDfzyI/0Ro2mPtmaIGG89WX8PR/Nw9nWaLgWtft5RrXt2MxWrElAlTGtpLYfQw9tTgvCT705AJWirx2RsZsTWMH0OjoSSbH2/hxUeOEYtM7lP58Aeaqap0UlDgoKmpSZRim4Ebb7yRnp4efvazn3HZZZcB8O//+m/8x+c/x313vJZvfebzE5Y32g04Su088sRTvPbedwGQ7/VSXFqKLMt0dXYSDAZH130b//W1H2A05u6ldzrM5OVZsNtPzcsVwe0rmCRJFmDs6PWIruuvPsvyEbLB6DZd1zfOYjtvB346evefyQa4BVMsrgEf13X9f2a6/tO2U3GWRUqAlwAOHDhAfX39bDcxZ7I9tCM8s6mdZ549SU/vuQe0ZqsBp8eKzWEinVJJxtMk4mkSsfR5pdiXZYmlSwq4cmMlV15RSX1d3kXr1U0mM+za3cfmrV1s2drF4NCclVweN1YTtaDUOWEol7fIPuF1S7qKI9mPK3EqiZFFnb6nWE1raCmNTFJFS6koFgNGq4Jizj0POiVbCVkqCVirGLHVEzMVjQ+F27elk72bOxiZYRKRuloPJcUOiorsFBTYiEbTDA1FGRyMMjAUZXg4Ni9zu3Jx5VlZsq6UpevKaFxVgsViyBnQpsJpul/sp/vFfgZ2+1Bz1RiUZTyrmsm7bCXeS1eSd9kqHA1VF+0zqiZTRI63EzxwnJHt+xh+YRfhozOrnGZyGSm5pJDq25soXuXCYJz8escC3QHnKhLGbGCiaTqthwbY/lQrB7Z3Tzts2W438rrXNPOGu5ZRVHRhA5NEIsHzzz8PwDXXXIPFsvAazS6mc31/+vsjbN7axYMPHaXtZGDaZeuWFXLbm1dTuyR7gm/KhKgd2URJeP/4MP9kTGbb53bQt3VyzVtHUw3rvvcZ8jesmfkLWyS0dJqePz9F67d+iX/nwZzL5DW5qLq+jKrryrCXTGx8yEhGwpZyQuYKgpZyQpYKMsr0Ge41TSeTVkknVdKpDOmUOn4BMBhkFKOCwShjtZmwOkzTDsOEU42szmTfeDBrmmJ4cXQ4w9CeQYYO+Bg+6CfUET7nnAStnloeq72JuHHya1YMMlfc2siNdy3D4bbgibVRHtpFfvT4+ND38fdE1YgPJ4kPJ4gNJbJJ/9Iauqqjqdnr7G0dXdMxWA1YPCbMoxeLx4zZY8LkyB0ExQ0efLYGfPYm/NY6EokM2544wXMPHyV8Wn6NseA2L8+O2VKI12ulIN921vdfmOj+++/ns5/9LG954718/R//bVJvuSRBR6CH3UcPcPMNV1NZUYaORFqxE9Mt/OLnP+Oj/++DqKrKP3zyM7zjHe+fdntGo4LTmc0z09fXSSaTQVEUqqqmzwXQ2trKypUrx+6K4HaxkySpEBirWv5bXdfvO8vyA0ARcFDX9ZXTLXvG8z4KfG30bhIwA38BPkM2UZWbbG3bL5GtdasDd+i6/uiMX0x2OzP+kPzwhz+koGCq+Hr+RCIqew/E2Lsvhm9k5nNmLTYj1U0F1C4poKgiW4g8e7FinqJVUdd1MmmNRDyNfyhKX3uAnnY/ve1++toDMx7uOsbtUmhqtNDUYKGm2ozBML8H+pGRDCfaErS2JWlrT5KZwfDT0xnNCnkFdmxOEzaHGZvDNH6xnnHf5sy2hp+ZVAOy85GyQWwX7kQ3zmRvzpZvgMDJMEP7RwicCGaz8vZnkxmpydxnDZIiYXaZcJTbcJTZcJbbcdc5yV/qGU9uAqf/KDfjt9agI9F1YoS9mzvYu6XzrOVkLhZJgqrGfJasLWPp+jLKa/NQ9Ax58ZPjc2jHAtpkMEXP5gE6N/UxuGc493BjqxllbTOGy5ahrGtGci3s3iPNH0Y72Ip6sBX1QCt67+TSKWeSZInidflU391MxXoPZzZW64DfWkeP+xJ8tsbxHqNoOMmuTSd58dHj0zZ8yDKsWGblyg1OiopynwQKC1M8rtHekT0etp1MMOI/+4iV6qYCbnnjCppWlyBJEoqaoCqwmYrgjvHjmKbBkb/0cfg7eycfq2QZ413XYXzjjUiml//nRT3WQfrhF1G3HMi+MTnkL/VQdX0pldeXYSuY3BChA3FjPlFTAUmDm8Rpl6TRTVo59+OWQY1jzoSwpv1YMn6saT+21DCO1CBGLffvQCap4Tsewrd/mOFDfnyHAySD5zgLzGZB8rqQPA5Ut5tNchO7kiU5F21YUcw977uUglIn7ngHtSPP4kl0jT+uZTSGD/oZ3OdjcO8IvsN+1NT5z12WjTL2EivF6wsovaSQonX54xmxx0SNBXR6rmDAuZJ0WmfHM208++BhAsOxScEtgKJIuF0KFsviG4Z/sXzpS1/iy1/+Mm9605v49te/gT7oR49PztSumGXsZQ4MplPnlNn5uA4+9Pf/yI/+9/tcctllPPzXZ4mEEqRmcO6aTAwRDkcJBuN0dg1SVmqcsnFieHiY97znPWN3RXC72EmSVAl0jt79ua7rbzvL8p1AJdCq63rDLLbzr8B/nPanh4E7dX1iO+FoRuXngLHszKv0WfzHL9TgVtN02k4m2b03yrGWxFS/lxPkFdqpXVpITXMBtUsKKa50T9tqqKgJTGoUTVJQZROqZEKXpx5Ko2k6IwMRuk/6OXGgn6N7+ggMz7w31GiUqKk2UVluprLCRFmpEZPp/A76yaTGyfYkJ9qyJ27+wOyGGheWOaluKqCqMZ/qpgJKqiZngDwboxrFlhrGlhrGlezBnejGmvblHDKlZnRGjgUZ2jvM0EE/vkN+UuHZD8+diq3YSv4yD8Vr8ym9rAh7cba3ICVbGbY3M+RYht9ai6ZLnDw6xN7NHezf2nVB6gfmYrEZKa3yUFLlpqTSTUmVh9IqNzanGVMmRH60hYLYcTzx9vGT6mQwRfcL/XQ918fAHt+kuX0AUoEH5bJlKJcuQ1lRh2RcvEPENF8Qdf8J1B2HUXcfheT0nxfFJFN6XQW1dzdT0mBGkSe+PwnFSZ9rLX2uteOJqDRV48CObp576CidLb5cqx3X1Gjhyg0OqirN0y4nzD9d18lkIBpTiUQ0olGVSFQjEs3e7+tP0duXnlEpFaNJYd3VNWy8tYGK0URzkp6hPPgS1f7NE4KgwR6Nl/7lRcIdk0cPybVlmD70BpS68kmPvdxpQwEyj20l/fg2iEzReCiBq9pBwfK87GVVPq7ys9ckVyUjadmCJhvRJCOqZECTjaiSEU3KHt9kPTN6UTFoCYxqDKMam9TbmUt4IMHwPh++QyMMHwoQPBmeUdb1cbKEVFaIXFOKXFWCXJaPVFKAXJqPNFrbdXg4zR8e9DMwOPkYZnWYeM3b1nLp9bU4UoPUjTyNN9Y6/jsa7IjQ9tcu2p/oJhmY11Qr2ZdjkChYnkfJpYWUXFqIt+lUToq4wU2XZyN9zrVkNJndL7RTYQpTWmSbENyOsVhk3C4FRRG9uKdbtWoVXV1dPPzww1x11VXk5eVNuWxlaRl7Hnp80t/NeWasBRZOn8b/je89wN9/8t9Ytnw5W3fvBbK5SaLBJNFIcsrPdTIxhN8fpbMrzDe+cwyzWaKywoTLqWC3Kzjs8vh1Munnk/8wXihGBLeL3QXsuf0E8J+n/WmJruvHplj298A9o3dX6bp+YBbbWVDDkgcHozzyWAsPP3KcgYGzDyHNL3aw+opKVm+soqx28hBgcyaIO96JPTWIORPGrIYxZ8KYMiEMOSozaUjZH07ZRNLgImoqImIqImouJmIqmjBsStd1hnrDHNvbx9E9fbQdHpxxGn0ARZZoaPCyYnkRK5YXUlRox2434XSYsNuN2GxGFEVG13WCwSTdPaHRS5junhBdXSFaTvhmNTw2v9jBskvKaFpdSnVjPjbn5BN0RU1g1OIY1DhGLY5RjWPQ4hjVBAYtNnodx6jGsKVHpmz5BkgndHyHAvTv7Gf4oJ+RY0G0C5gh01XloPTyQiquKaFwRfaENSXbGLY3M+hYRsBag6rBiQMD7NvSyf5tXSRmMRdWMci4vVbc+TY8+TY8BTZceVYkWULXdHRdR9fJ3iZ7bTDKFFdkg1mX1zr+mbWkR3AkB3Am+/HGTuBI9Y+f2IwlhOrdOojvcCDnj5OtuoyKN7yK8rtuwb26edElOZuJTCzO4JNb6X3oafr/+hzp4PRzZ412A81vXU/da6qx2SYeTzQkfLYmet3r8duyxzVd12k/NsxzDx3l0Evd0wZFq1YU8ZY3r2Ljhop5GXp3MYYl67pOOJyibyBCX2+YYChJNJoiFksTH235l0dLiygGCZfTjMtlxu0y4/Vayc+3YbebsFoMZDIakUiKcCRFOJwkEkmduh9JEYlk/xYOZ9efTKmkprhkVA1N09E1UDUNXWdWGdKnU1Di4IpbG7nk+jpsDtPYG0Fx5AA1I5uwZoLjy6qSnQM/aeXoA7smrUcyGljyqffR9PF3IE8xz+2VIhOL0//Ic3T//jEGntiMlpr+mGp2m8hf5qFgRR7uOjfOcifWQhPGeejxS0U0In0x/MdGCLSGCLSFCbSGpkz2NBV7fSXey1Zlp3dcsgLX8gYU69Tf0U3Pt/O5L75APD55Oysuq+Du916C26VQO7KJ8uAO5NFh773bBznyyxMMHZiceXuMuSgf96pm3KuacDRUo9gsyCYjssmUzTiv6ySTSQ4dOIgeilBl85DqGyLeM0Csq4949wBaYvoGXovXTMNrqmh8fQ1md/Z7klQcdLsvp9e9HlPAhx5PYbWYMJsLJz1fliUKCmzkeSwvy9+mc1FXV0dHRwdPP/001113Hddccw2dnZ10dXVRVFQ0Yd5rcVERP/7CV8lEJneoSBLYK9yYbBKgc987PsDv/vQX3v6W+/ju//4vadkynvRR105VnjjzfPXM4HY6qZSfQ3v/deyuCG4Xuws45/Z9wPdG757Udb1ummXfA/xg9O67dV3/8Uy3M4P9mPeEUpmMxuYtHfzp/w6zeUvnWU9a8grtrL6ikjVXVFN+xpxWS3oET7wDT6ITd7wTSyYwZ0kXdCClOIiYSwhYqxmx1hM1F48/nk6ptB0e5PCuHg7v7J1xIqPp2G1GJEkiEj23llpJlqhpLmDZ+jKWXVJOUblrwvulqInTEmd040r0Thusnk0yIjF0YIS+rd0MHRgh1BFhhuX9cDRU42ysxtlQjaO+EktxAUaXA5PbgcFhR0unUeNJ1HiCdDBMtLOPaEcv0fZugodbibR2Trt+a4GZiqtLqby2hMKVXiRZIqXYGLYvYdC+jAGpnD2bO9n5zElGhiJEw6kJ8zFlWcLhtpBXaKO40kN1Uz61zQUUlDqRz+zt1nXGXvjp9Q11XUPR0tjT2SFxjtQA9uQA9tTghMYWNa0xsHs4m+F46yDRKZKUWIoLqHrjbVS/6Q4KNqx5RZ00qKkUA89so+tPT9L9pydyZnA9XcGaYtZ9/GryKlNI+sQf9bCphM68KxiyLxs/CRjqC/PCX47x0rNt0zZaNdR7edtb1nLLTQ1zWhd7PhJKBYNxDhwc5NCRQVrbfPT1RfCNxAiHkyQSmQs2j/xiszlNNK0q4dLr62hcVTLeOCFrKUrC+ykP7sCePtWDr8tGhk46eeGDvyMdnRwE5K1ZyoYHvkTeqiUX7DUsFqlAiK4/P0nHb/7KwNNb0dWZNwAb7QZsxVbsJVbsxTZMTiMGi4JillHMCgarEYPNiGyWQQc9raEmMmSSGVLhNEl/ioQ/STKYItofJ9IbJROffSJFo8tB/uWrKdiwmvwNa8i/bCWWgpmVkdM0ne/+7w5+9JPJDSIGk8Jr376Wjbc0kB9roWn4MSyjjSn9O4c48NMWfIdyB7UFV6yl8u5bqbzzJhx1lWfdj+mOJ7qukxz2EzzUQs/Dz9L15yeJnswdqxgsCnV3VLLkjXXYirLrSMsWjjruQDO6MRuNmM2FE6dw6TqKnv0Ns1oMlJQ4MeZI5LUoGG1I0tw0upyeLfm6664D4DOf+Qz3338/b3/72/npT386YXld10kO+oj1DExq4I4nEnQP9/OLv/6Jb//gJ5SWFLHlqQeprqpARyal2EkrNvRTNYVIJTPEo2mS8TSpZEYEt690Fyhb8u3AI6N3X9B1/Zpplr0VeGz07qd0Xf/STLczg/2Yt+C2tzfEgw8d4f/+cnTa8guQHTK2+soqLr+xnprmggkn8c5EL0WRgxRGjpw1SZGOjCbZSMcVYiMZ4kPx7F8VkBSQRy+SDCa7hM0LimHqnsak4sBvrcNvq2XEWkfakM0wq+s6/V1BDu/s4ciuXjqOD89oaNxccHosNK0qoXltKUvWlE7onVXUBN54G3mxVtyJbmzp4VkH/5pmQM0opKIaoc4Iw3v78B0cINAWJjEy8+G9zsYaim+4nJIbN1J03eVYCs+v5mxyJMDIzoP4duxn4NntDL24a8oeA0uemYqri6m4ppSh/DIe2uXm8X1OYsnZ/2iZjFCUB4VulSJnCq8tSSIlEY7LhBMK4bhMJJG9hOMKaVXCYtSwmTWsJh2rScMsqRhSSZRkElMkgrOnh4LgAIWxYUzaxNdgdDupvPsWat70aoquuwzZsHiHHM8VNZmi+/+eovUHv6f/qekTx1sKbKz/55spX29B1ib2/MaMXro8G+l3rkaXsidf0VCSFx89zuZHj+fMEjrG47Zw26uauPO1S2lsyD/v1zTb4FbXdXy+GEePD9PS4qO9I0Bvb5D+gSj+QJx4fGbDc1+ODCaFuiWFNK4qpmlVCaU1eRN6283pAOXBlygN78WoTcx2nKCGzZ96iqFtk0/2JEVh+b/8Hcv/5e9QTBcnq/Zikhj00fmHx+h7/EWGt+whOTx1b+TFIikKnpVN4xnk8y9fjau59pzKN4XDSf7l35/kxS2TG15Lqtz8zd9fQUWFlcahRymOHEACgu1hdn/zEAO7J0+PsFWU0PiBN1P79juxlRVPenw6sy1VFzx4nK4Hn6L7wafx7z40aRnZIFF9YzlL3lSPu9pBq/U6UuYiFKuHspoGouFsPXpN01G0GI1D35jV/i5U0hWfRTLNTSWB2Qa3Y9REkmh7D+lIjJV33Ejf4OD4Y4qi8O43v5l/+7ePUV4y+XcoLVtJK3bUM2oda6pOz8lWAsE4HZ0hvvq1yf/npxPB7cvQBapzWw20j97douv6ldMse3og/A+6rn91ptuZwX6MB7e/+NUmLlm/DKfDjMNhwm43zWp+pq7rdHYF2be/n8eeaGH7jq6znmyV1XjYcHMDa6+qnlB7zpryURw5SFHkILb0SM7n6rKZeMzF8JEww3v7GdrdTuBwz6yzG1q8Ztw1Dty1TvKa8slrzsNVYUY+o+FRByKmEnz2Rny2RsKWU3OuIsEELQf66Tjmo/3YML3t/jkbVqcYZGqXFNK8poTmNaWUVnsmBP/WlI/82HHyoy24E11Tzj9KJYyEetJE+xPEfTHigxFivQFigxFSoRTJYIp0JDO7eUinsVWUUHzjRopv2EDx9Zdjryw9p/XMVCYaY2DTDnoffZ7uPz9JvHdwwuM9jlJeqLiCbtfZRuZfXJ5EgKLkCA3VbtbetJKr33IdRaWei71bC1bkZBetP/4jbT/+46T/89NJisyqv7+JhtdWYtT6JzyWVJx0eS6n17UeTR4dghdPs+OZNp57+OhZ59ovW1rIna9dyq03N+LMMfR/Kum0SjicJBxJ0dcX4LHHNhMMa1RU1KBpEqlUhmgsTTCYGB/qGwwliEbTM66P/HKlGOQJSQOdbgsur5XapYXUNhdgzFFT2x3voCK4g/zosfFhoGM0WwVH/jDIgf/8c87tuZc3svGBL+Fdv2JeXs/Lna7rhI+fZGjLHoY372Zo825CM8yUPlckRcHVXIt7ZRP5l6wg//LVeNcvx2A7/1ES3T1BPvzRR2jvCEx67JLra7n7PZeQr/ezdODPWDMBMgmVQz9r4djv2yYlBiy8aj3NH3kbFXfedM6NmeczEiTa2UvXn5/k+Ld+SeREx8QHJSi/opjCz/495BVjtLioriolaXChahJBX4xE0C+C2xzONbiF7PcnMeDjDW++j+GREcLRCB29PURjMcqKivn4u9/HB//+7zDZJdAmN/KrkpG0Yicjm8d7c3tOtpFIpUki0ae5aT00yHBfmHAwQSSQmHAdDg6J4PblRpKkLwCfGr27Qdf17VMs909ka9MC3Krr+hOz3E4HUAUM6LqeO7VedrkPAWNHjjfruv7r2WznLPswHtwuX/M5TKaJE94NBhm320J1lZvGhgIqK1xUVLipKHfh9do43jLM/gP97D8wwMGDAwSCiVybmcBsMbD26mouv7GeinrveKBmUOMUh/dTEt4/YT7iqZ01kDGW4D+Zpv2vRzn5+x1o6dnNo5kpxaJQuNJL8bp8Si8vwVM7OZNjUrEzYmvAZ2tixFY3fpIMkExk6Drho+PYMO3Hh+nvDBKPpkhO07uiGGS8RXbyS5wUlDgoKMmW36lZUjgh+7OspfDEO8iLt5EfO5Ez+Nc0hcgQDO330ft8K8OHRkj65zZJhbkgLxvIjl6cDdUXbdisrmkMbdlN5+8fY8eD23naspSTnpqLsi/nS5Jg7Zoybrqxnhuvr6OwYGFnP75YtEyGvsde4MQPfkfvXzahT5OVruHNV7DiXcuwKH0T/p6WrXS7L6XHfRkZJXsymEmr7NncwaYHjzDQPf1IEbNZ4cbr61mzuoRIND0akCYJh7PzUIPBBCP+OKFwkng8gzpNrVVhapKcHd1jsWYzudvdZlx5VvIKbBRXuimt8lBU7sKkqHji7XhjbXjjrbkbRl01DLTa2fKBH+TsWZRkmaWffA8rP/MhFLPorZ1LSZ+f4OFWoh09o1NORq9H72vJ2f9GGRw2zIVe7FVlOOorcdRV4qivwr20HteSunn5P9x/oJ+P/sOj+P0Tp5PIisRr37GOK2+tpyawmWr/88jo9O0YZOfXDk6afpJ/+WpWf/6jlNw44xltU5qLaQ5aJkPn7x/j0Oe/R/BQy4THKr7+SVyr67EX5dNQ4RnN3OskrdhIhQJ4D37hvF/DQrBQgtsxajJFrLOPVDCMqqr89pGH+JevfYVwNMLnPvpJPviud+OoKkQxZEDNff6tSkYysoX2rgHiqQxJJEL2InpO+hkZjBDyJ/D1h/ENRAmOxIiGkgRHBti385/HViGC25cDSZIuA8YC2u/ruv53OZYZy168FAgARbqeI4PR9Nv5GvDR0btX6rqec7ydJEnPAteN3p3TD9nZgtu5VNmQz4ab61lzRRVm66khE85EN2WhXRRFDucoJyORNpTSsyPM0R9vJ3Do5Lzt33TMbhNFa/MpWV9A2cZirPkTe2s0FIKWCoKWSkLWSoLmClRlcvIJTdNJJTIkYinisWzdXTWjkVdon7LsDrqOI9k3Oty4DXeiG5nJvTixgEzPi310PtHK8KHcSYnOh9HtpOiaS8aDWc+KpnMayjVfAsEE//ONLTz0l6NTLiPJEs2rS1i5oZL8Ygd5hXbcXivRUJKhvjDDfWEGe0L0dQbo7wxOqPN3MUgSrFldys031nPj9fUUFopAN5fwiQ6OfPVHtP30z9OeINfcdRlrPrQeC12cPlk8Ixnpc62jy7PhVIZlTefIrh6ee/gYbYen7iFeqCT5VIKR818ZuDwWTBYjikFGlrJ1thOxNMlEBvUCJpGbiqJARaFOU0mcppI4zWVJ1tbGsZr07AvIX47fV8Lez/6GgWdztlfjXb+cy77/WdFbexHomoYaT5CJJUav46jxJDF/gB0vZk+NLr3yCmwuB7LZhMnjwlzoxTBNkqf58OTTJ/j3+58mmZz4G2x3mXnbJ66iudnBsoE/4Y2fJJNQ2fu9I5z4v4m9oe4VTaz+wkcpf/X1c9YgPJdz+HVNo/uhZzj0+e8yMlrjuPzrn8TeVI2tMJ/6EhcmV7bRQJVMJHQF2y4R3J5pLoJbyPbipgNhop29aOkMf3z8r7zvX/8Rh93O0cefw2I2Y3TYsJZ6MZhUyEweeaSq0NITIBSM0tkb4yv/fQx1mlKSF3NYspiINU90Xd8hSdILZIcmv1uSpAd0Xd96xmIfJxvYAnz9zMBWkqR3AD8ZvXu/ruufybGp/wHeD1iAb0iSdK2u6xMmp0qS9BZOBbaPXMgP2Fyw2o2su6aGy2+sp6zmVOCsaEmKwwcoDe3GmRqY9DzdUoC/187B722l98m/zGqbkixjr63AtaQOZ0MViiX3sMF0KEK4tYvIiQ6i7T3T9vwkgym6NvXRtakPOICnwUXZhiLKNhSRv9SDLKvkJTrIS3RAIHvaHDUVErJUErRUZjMxy1YyigXZZsZiM+KZ9KI1LGk/lrQfayaAJe3Hlh7BHe/AlCMJlKZJ+NtStD92gp4X+4hNkZRoxiQJY54LS34e5oI8LEVe3CsayVuzlLy1y3DUViyoYHaMrus8+ngL//U/mye1pI9x59vYeHM9l1xfhyffhi01lH2vM12YQ2HSioV4rZdEYx5xYzXa6HyVcCDOYE+YkD9GcCROaCROLJLCbDVgsZmw2oxY7SYs9uy11WbEYFRIJTOkEhmSiex1NplDhmQ8zXBfmN6OAIPdobMOXdd12LO3jz17+/jPr73I6lWl3HFbE6++vRlzjmGYr1TOhmou+95nWfmZD3HsGz+n5Tu/Ih2cXMal/U87aP/TDqrvvoK1H74Ui34SdBWDnqYyuJ3y4E76nSvp8lxB3JTP8ksrWH5pBcN9YV56to2XNp1cMPWTFYOM0aRgMMrIskQmrU2YM3wuQa3ZYqCw3EXRGZeCEgeGaRLE6LpOOJCgs8VHd9sIA11BfAMRQv448Wh6QuK2+aKq0NEv0dFv40myWe8NBlhVb6BZCuF5/s/Y2o/nzEFgcNhY/fmP0vjBv0FWFmkinEVOkmUMdhsG+8SyQdZ4HCU8BGSTLM1F4rVz9bNf7OF/vnnmqSCUVrl516eupdIVYnn3D7FmgviOBtj2hb2Eu06d0hmcdlZ99sM0/b+3LOhcCpIsU3nnTVS87kb6n9zMoc9/79SDOkT64hiDKWxFVhRzCpuuk1r7cVKKnXg0RdAXJ1fnm81mpLTEgbKQv2PGs5etutAkScKU58LgshPvHeTWq68DIBKN0trZzvLGZtKRGOmWGAabBWtpPooZIuE4kYRMLCWTzkAyJRNNyESj+rSB7cW2cL8ZLw8fATYDVuCJ0aHKz47evw947+hyx4H/OpcN6LreKUnSvwNfAdYDOyRJ+grZHmE3cBcw1msc4lQv76KQV2hj2SXlNK4swZOfPWA4kv3ZXtrwQQz6GT0sspGUqYG2R3s49PU/5Tw5PZNsNlF8wwaKrlqfDWaba3E2VM96KJKaShHt6CVyooPQ8XZ82/cz+NyOKef0BU6ECJwIcfgXJzC7TZReVkjJJQUUrsrHXmJFAhypIRypIcpCuyc8V0Mmo1jIyNZsXT/JgCUTxJwJTVuvT9ch5oPebf10P9vO8MGZF3eXFAXPqmbyL1+Fo64Sc74Hc0Ee5nwPusPGlv17wG7l1ttedVFPHmaruyfIF778PNu2d+V83OmxcMPrl7HxlgbsRCiO7Kakcz+29NS1TnUkEgYPUVMhUVMRsap8UrV2UoqXlMFBRragaEkMWhKDlshe1BgGbQSDlkDWVVTJgCqbxstOqbIRVbKiyiYShiVospF0SmWgO0jvST+9HQF62wP0tI1MzEJ5+n7psHdfH3v39fG9/93Bm+5dxRvuXjGrOZ8vd9aSQtZ84WMs/6f3cuJ/f8vR//5pzu9wxx+30PHHLVS/4VrWfuRyLGoLaClkVMrCeykN72PIvpSOvCsJG4tJp1Xc+TbqlhbScmBgTusmS1K2l1WSJGRZQpIljEYFk0XBaDZgNhswW40YzQqyrhMNJxjsDROLZs4raDRbDVTUeals8FJZn09FvRdvkX3mPUmaijERwqyGsBChXI6xojGJoT6BrKVIKw4ShjJSBgcx7HR0q7S2hultDzLcH8kOfwtnp2po85TFOZOB3ccy7MYGRbfhKr6RmpFW6oZOUBPswKCrVN51C+u//i/YKqacGSS8wmmazte/uYWf/2rfpMea15Ty1o9dSbV6mKaev6LoGY78ppX9Pzw2oUZ59X13sPa//nHWiaIuJkmSKL3lKkpvuYqDW3eQjJ7qEUzHVEIdESx5Ziz5ZsyyhoEkkseD0eFmZCBKKjnxtyycgHh3mopyKzbbK3PI//n01MuKgr2ylPhpbQPqGZ0ysYTKSG+EhGxGX6Rh4uLc60VC1/U9kiTdC/wCcAG5xlwcB+7Qdf3sUdjU2/lPSZK8wD8Cy4Cf5lhsELhT1/WWHI/NmeJyJ5m0mXg0TWYOhpn5h2JsfrSFzY+2IElQWwaX1gRYXxfHWKVSmB39h27Ow9/n4cB3t9H31INnXa+lpJDyV19H+auvo/jGjRgd5z9UUzGZcDXW4Gqsoey2a7P7petET3Yz+PxL2csLuyYnWyDbq9v+ZA/tT/Zk9y/fTOGKPApWeilc4cXT4EI+rbi5jIZJjWFSp09ao+sSiRAM7h2me1MHA7uHSYVmNvLdWlpIwca14xkhveuXT2oRHxOPx5Haj89ovQtFOqPyy1/t4/s/3EkyOTkYNFsN3HjXcq68rYl8BqkZ/gP5sYm9NmpKJT6UIOFPYbApWAssmF0mJHSsGT/WjJ+C2Ny/LxoScWM+EXMx0bxiIsVFRK5tJGVwkU6pHN/Xx76tXRx6qZtkjpqJAL6RON/67nZ+8sBu7r5rOX9z32oxZPk0RpeDpZ94N00ffivtP/8/Dn7uu0TbeyYt1/H75+j4/XPU3HcTy9+5AoelE0lLEk3A/v0dPHfEx4vHnITPv+rXBJIEDo+FvDwLeV4juqqRyahkUirJpEo4lCbsT5Geo9Z1g0mhvMZDZX1+NphtyM+WuDpL/V6DlsKeHsaW6MOW9mHOhDBnQlgyIYxqZFKSpulsVIAm0JsgbvAQMZUQNRURN3pJKVYiaTP+kI7PrxKLqaRTGsmkRiyWYXgghn8oRtAXJRxIEoskzykzdEg3sT9vKfvzlmJVNK5dk8/y91+PtXzxBBzChZXOqHz2c8/yyKOTfws23NzA69+9jsbAM1QGt5GOpNny5X30vHhqNJq1tJDLf/T58fOKxcpckIfsdiBrOlKS8Rrv8ZEkqXAae4kVgw3sqWESBjdF5S6CI3HCgYkjXTIZjfaOACXFDvLyrBctT8fFMtZ5EI+f+wigB/+azS9rs9poamgkIykkTFYSBivqeRTHVAwydqcZl9eC2Wrl0N5zXtV5EcHtPNN1/WFJklaR7cW9A6gAUsAJ4PfAt3Rdnz5Cmdl2PiVJ0kNkhyhfDZQCCbLB80PAN3VdD06zijkx0BPGZJqfj5WuQ1sPtPV4+O1mDwAFbokaaxz7gf0U+bopiQ4wVR+UtbyYunfeReWdN5G3dtkFGR4rSVI2OUVdJXXvuAuAWHc/fY+/QO9jL9D/5JacvcsJX5Ku5/rpei6bodVgUXDVOjG7TZjdRswu0+htM9ZiBwabkWhfhHB7gOhAnGh/9pIYScw487OkKBRetZ6yO66l7PZrcS9reNn+aBw8NMB/fGETLSdy976uuKyCO9+9ngp7gBr/H8iPtSABmXiG3u1DdD/fR/+uUw0Fis2CmkyDqqJYFGyFFpyVdpwVDlyVdhxlNixeM5Y883hxe4BMUiUdSZOOZkhF0qQjaVKRDFpKRTbKyEYFxSSPXhRkk4zBomTrOjKMPT0MnErHn5KthCwVVDQvZdW6tSTUy84a6EZjaX72i738+rf7efXtzbztLWuprvLM5du9qCkmE/XvfgM1b30dbT/+Iwc/913iPZOnQbT/5in2/mkH7cUN9C1bw7GQk8w8JifWdQj7E4T9CTrnOIGsLEuUVLmpbMinsj4byJZUulEMUx8zZT2Trcuc6MGeGsKWyn4+jWp0zuqIj5EAWyaALROAWI758Y7Ry2n0ldka5Amjh6ghn6ihiM6gixf2Smx9ph1ff2Tyes4irso8tsvPY+/5E2XlLl5zezN33NZERbn7XF6W8DIUj6f5x39+PGepnzvespobXlPPssE/Uhg7hr81xOZP7yLSc+qUsPpNr+aSb/0bZq/nAu71/JEkCcVsxN1QRbSzj3Qo+71T0xqhrihWrxlrgRlrxk9atiF5XVhsBkYGopOS6fUPRIjHM5SWOpAX4HSn+VJfXw/Ajh07iEaj2O2TG6U/8YlPcP3113PTTTdhNp86K04kEvz85z/nIx/5CADveOd7SBRW5WzgnwlvsYOrX1VPY52JivwUxaYAjvQgjlQXvp52/vDjc1rteRMJpYTzdiETSs1EnhbFE/XhiY3gSQapW17B+jfdyJo33YjFtrCGX2qZDL7t++h97AX6Hn2ekV3T1w2ba5biAspuu4ay26+h5OYrMXlc57SeuUxEMZ8ikRTf/t52fveHAzl7bdxeK69/zyWsXeeh3vfUeF3BkeNBjv2+je4X+lGT2R9YR0M1Fa+7kfI7rqXwqvXoqoZ/7xF8O/aPXg4QbmmftA3ZIGGwGcjEVbRzHN0gyeAos+Ouc+KuceKpc+KudeIot4/38GvI+G11DNmXMmxvJq6aOLa3jy2PtXB8f//U65bglpsa+NAHN1JW6jyn/Xs5UxNJWr7/Gw5/4ftEh/z0OMpod1fTVtTEsOHcvj8Xk8VmpLTKQ2mNh7JqD6XV2etcZXHG6Tr2jB9nvBNXohtXshdbanBWvbDTkhQw2MBoHb22gWIBxQSyAWQjyEYk2UgmrRHvHSbhC5EaCZIOREgFI6ipNGoyTXAkAKk0ZklCTybQ06lsvXJDttGo+PJS9A1X8GxPPU8/H+Hgju7znt+7enUpb3rjSq6/rhajYQHPDXyFuFi/T5FIig9/7BH27puYYV2WJd74gcu54qp8Vvb9Fmeqn45netnxlX3jvy9Gj4vLvnc/1ffefkH2Feb/fWppaSGTyWAwGGhsbETXdVL+ELGuvglVKwwWBXupDcUko0kG4gYPGV3BNxAlGZ888sxsNlBR4cI8Tx0rF1OuhFLhcJi6ujqGh4fJy8ujubkZs9lMSUkJv/nNbwBYs2YN+/btw2g0Ul9fj8fjIRaL0dLSMt7je/sdr+fzn/8GplnU304mhvD7o/iCKQKagZtqTmLa/hzxDh+ZeIZMXCUTz6BmJAbiGe54aLwAjMiWLCwuMwlujWYFi9WIyWLAbMnO/zJbjQx0BfEPTT1er7wuD7PFQOeJETLnWaNRksDtseJ2mXG7LXhGL263BbfLjMNhxmYzYrcbsdlMOEav7bbstc1mPOsQvPOV9PkZ2ryboRd2MvjCLkZ2HULPzF2pInO+h6LrLqf4+uzFtbR+TnpnF0Nw++xzbXz5P19gMMfnTZLgilc1ctt9q6jL7KN25FmMWpK+l4Y4+ptWBnZne3hls4mqe26l4b33Unj1JWd971L+IL6dBwnsO0q0s4/wyS4GDregh6I4CryY89wYPU5MHhcmjxOj24nJ40QyGkn5g6T82RP21EiAlD9EciRIcthPOpC7vIxikvE2uym/uoTKa0qxF2f/H7KBbi1D9mUMOpbTeTLMMw8e5sD27imTBpnNCm998xre8bZ12GzGnMu8EnV1B9m6rYsXX2zjpZ09JNMz/w1VDPKUgZMkS5jMCiazAZPZgNGsYDQZMJmzCZ+ioRTBkRiRYOKchtM6PRa8RQ68RXYKy5yU1eRRWu2Z0RxZsxrFlejOBrPJXhzJPgyzS+x/iskJ5jyw5IHZg2T2jN/G5MwGs4ppTo9Lekbl6hWrUYf8RDt6CR8/SfBQK5GTXYRbu7DYVepur6Tk9Ws46b6UR3Y52fTo1Im/XHlWQlMknjtdfoGNN9y1gntevwyvd+ElmXmluBi/T8Fggg9+5GEOHxma8HejSeFtn7iK9SuMrOr9FRY1xIEfH+PQz0+ML5N/2Squ/O1/46i5sPXVL3RwO0bLqMR7B0gMniq7JUlgK7Ji9ozWEFdcpBR7zmHKkG0wKC9zvezyR+QKbgH27dvHpz/9abZu3YrP50NVVaqrq2lvbwfgiSee4JFHHmHLli10d3fj8/kwGo2UlpazfMUaXvfaN7Jh4zWz2hdJkkinh8lkEphSPuRffIcTD3UQ92mYC/NwVJfjbKrGs2oJzoYqBvQU626/eezpIrgVFpfTg9tP/ufDlNVUYXOasTvN2J0mbA7zlMPZMmmV7U+38dQfDk5ZMqW4QOFd764mZi3h2LEIrYcG6DoxQiJ2jidX58FiMWCzjwW8RpxOM0WFdooL7RQWOSguslNUaKeoyIE3z5q7LM8sZKIxhrfvY+iFXfj3HCbWO0i8d5BE/zC6OnWwLxuNWEoKsJYWYqsqpfCq9RRff/m8ld5ZyMHtwECEr/zXCzz7XO4SUKVVbu75u8tYUZWkaeivOFP9DO7zse9/j+I7HACyc56a//7t1L/7Hsz55z4yYa7ep1jPAL6XDuDbsZ+Rlw7ge+lAzuHt3iVuKq8tpfKaUhxl2ZPrlGylx30pPe5L6R9U2fTQUXZuaptyjnxBgY0PfWADd9zWPO+NOwuRzxdj7/4+duzsYcvWTnp6pq9bezrFIFPdlE8ykaGnbXI91LFlrr6jmZvuWobFfvYWdDWjEQ4mCPpihPxxgiNxoqEkikHGYJQxGBVMJgW724LDZcbhtuBwWybUuZ6OQU/hTA7girXjTPbgSvZiUmc7YVgCaz7YSsBegmQvBnsJWIuQlMkNJZqqkhgYJjnsH23MCZIca9QZCZL0BUgHw6iJJGo8iRpPjN/OxBNoiSRaOoOu6eiqiq5p6KqGrmlomQwzHR8uKRJlG4uofU0d0Stv5btPeNn8eGvOxgSn28TSdeWcPDbMUO/0KTMMRpmbbmzgb+5dyfJlYm7uhXahf59GRmK8/0MPT5r2YnWYePenrmV1VZQV/b9DikXZ9sW9dD9/aiTNko+9k9Vf/BjKLHrT5srFCm7HpMMRIid70FKnzu1MDgP2EhuSIpGRLSQMHmLRNCND0ZwNswUFdgoLbC/bKVXnIpNR8Y3E8fvjZ62ukIskSbjyLHjsGt2dncSHfIQOtNH9oS9P+zwfaT7M+HmXCG6FxeX04PY32w9QWFp+1ueY0mEc6QEMagKfvZF4WmHzo8d55sEjxE8rRTFGluFdN4zw5lshYq8mYCqj1e/hWIdO5wk/XSd89LYHLki5iJkyGhWqqj001ntprM+nvt5LfZ2X0pKzJ2E5G01VSQ6NEB8NdtOhCOZCL9bSQqylhZi8ngt6cF+Iwa2qavz+T4f41ne2EcvREGIwKdzyhhXceHs1jaFNlIb2EGwNsu8HR+nbnm1tdy2pY+k/vJuav3ntrLNn5zJf75OuaYRPdODbsZ/BTTvo+tOTpPwTp9h7GlxUXVdK3W2VWLxmVMlIn3MNXZ4NDEXMvPjXY2x5/MSUjUbLlhbyiY9exZrVpXOyzwuRpumcbPezd18fe/b1sXd/P72zCGYhW6ty6boylq0rBn8ff/htF7FY7uPS8kvKufvNdWwwbSc/dpyoqYiwuZSwuYywuZSoqTA7Bn2eWLQojuQAjngnjmQ/juQAZjU0yzmyUjZwdVUjuarBUQ62IiTl1PdF1zQiJ7uJtHYS7ewj2tFDtKOX2OjtWPfAnI5QmQveZjer/+Vqtubdzo8e6Kevc3LKClmGd9xto2h5I89vi7F3cwex8NQ1kgGWLy/mXW9fy7VX174iG4suhgv5+zQ4GOHvPvQQ7e2BCX93eiy899+vZ6W3n6WDfyY1HOH5T72EvyV7fDG6HGx44MtU3nnTvO3b2Vzs4BayU7WiHb2k/KeOu7JBwl5iw2g3jA5TziOVkRjuj5BJT264cjhMlJe5zrtzYbFTVY2h4Rh+f+6ySmMURZ40n3mM2WKgsMCAOeYnORKnOxonNuwjeryDno98Zdrti+BWWNRyBre6jpE0Ri2JSY1iSQ5iT/bhSA5gTw1OqLmqSkaG7Evpd62iTyvnuYeP8vxfjpHKUc6kxhLkgzX7aGpSyGtyYypyEjGXEjKXMaKUcmzAQc8gDPeH8fVHGO6P4BsIEwnOXdmN82WxGGhoyGfd6lLWrill9epSPO4LW0R+ri204PZ4yzCf++ImDh7KXYapaVUJd733ElbYWqnzPY024mf/D49x8tEudA1cS+tZdf+HqLz71jnt6b5Q75OaStH/xGbaf/0Xev7vGTKnlV+QjTI1t5Sz5I11uKocaMgMOZbR6dnIYCqPJ353gK2Pn5iyhfeWmxr4yIc2Ulqy+OfjBoIJDh0e5NDhAfYdHODAgX4iZwlOcqmo89K8poSVq92sL/ehDLTw7V8m2Hw49xC5ogoXr3/bCm6tbqE8uANFz92zqEoGIqZiIuZiksY8kqZ8kkYPScVBUrKinSXwldAx6ilMWhxr2o8lOYg1OYQt7cOeGsConcNx0eQ8Fcg6q8FZiWTIvk5d10n0DxE42ELgwHGCB48TONhC8NAJ1NjCqO07JUnC2ViNZ1UzeauXYK8p59jXH6CgNkbR/3stP9q9hEf/2JJzeswVhT7+4d4o8WUbefxoEc893kX7seFpN1dZ6eYdb13LHbc1YzKJebnz6UIdd3v7wrzvg/83aXSHO9/G3336elbZW2gafpRQe4jn/uml8bryruZarn7w27iX1M/Lfs3UQghuIXscSfkCRDv70E8rU2MtMGPNt4yX2ktLZvxD0Qm1uceYTAqVFe5XZC13Xdfx++MMDUdRpymRZrYYyKTVnMtIkoTbayHfEifV5ycVzjZ6D5AWwa3wynB6cHvkT/9Abb4RgxY/pwyZcYObAecqDsSbeeC7B2k/OvkEwYjKDW3PsGL4MNY8M3lNLrxNbvKa3OQ1urGUOEgY8ogbs5eEMY+RtItuv5lARCIUhVg4RSySIhZJEh29nYylSSbSJOMZEvE0yfjclDOaieoaD+tWl7F2TSnr15UtusBhoQS3kUiK7//wJX7zu/05D9h2l5nXvWMdV11mocn3GK5oBy1/7uDgA8dJRzI4G2tY8ekPUn3fHcjzUCT+YrxPmVicnr88S8evH6H3r8+dGvIlQfkVxSy5r47CFV50wGdrpC3/RtoGTDz8wG6O7c2deMpqNfD+917GfW9chWGaDLoLSSyW5sixIQ4dGmD/4UEOHx6kv+/cKrA53GaaV5fSvLqIS5szVBu7yIu1kTrcwkNPG/lJ5zJimcmfH6vdyK33ruCuy0M0hF7ApGUbHTTJgiypoM18qoUOZGQrCYOLtGJD1lUkXUXWMyh6GqMaw6Alzi9TsWQAZ8WpYNZVnZ0nOzoqJBUIMbx9H8Nb9zK8dS8jOw+SGgmczxbnlWK1YKsswV5Vhq2yBFtlKfbqMtwrmvCsaMRgm/h91DIZWr7zK1q+8T1Wvn8Z7Wtfz3d+laDlwORs2VX2NPd1/oHVry7Gdc9NbI+t5LFnQux9sWPa35H8fBt/86ZV3P365TgdL6/5ggvFhTjudnYGeN//e4iBgYlZt71Fdt736RtYY9pH3cgzDO7x8eK/7yQdyTbel91xHVf88quY3Bf/N3+hBLdj1GSKSFsXmeiphjGj3YCjNDtMOaXYSSpOIsEkAd/koiOyLFFR7sLxCvle6bpOJJpiYCBCapocNVaHCasJ/P5UzikXJouBogID5sgI8eEE1opSjC4HaDon2lpJJ5NIaZXCpI4aS5D0BYh29hLr6ifW2Ut09Lp3eFAEt8LidXpw2/G791BROIuDtMkNihHUJKip7DWQkYwc99zEr56x8MTvDubsRVrjinFndA9qZxfx3kHGvqWyUcZeYsVeYsNRasVeasNeYsNeYsXsMmFwGJGcDlSjjYxiJS1byShWVNlERjKhymZU2YQqm0iqRiIphVhKIZqUiSVkYkmIJSXiCYiFkwRH4gR9sez1SHYenDZNa9lMVNd4uGpjNVddUcXaNWULvmX/Yge3uq7z2BMtfO3rW/Dl+JEDuPT6Wl73lmUsT2+jPPgSg7sG2f2tQ4TaI1hKCll1/4eoe9fdyIb5a+m92O9TKhDixP/+lqP//QCJ/lOJTgpW5LHk3joqripBQ6bPtY6T3ms5sC/Aww/sYXCKoblLmgv4109dx7KlRRfqJcyYzxdj774+Xtrdy+59vbSe8M24LNaZzBYD1U0F1K8oYu1yMysKBylInEQ6dojh3QMM7PFx8kCMv5ZcT4uzJuc61l5VzTvu87Am9Rz29DDR4TSxaD5y6Rrcl12P0WkF/3H04YMwfAgyc1wY96xksBeBowLJWQmuGnCUIsnZ74OuaYSOtjG8dc94MBs80so5ZbeaiiRhynNj8roxe7PX2dsejG4HBpsVxWpBsZpRLOYJt2WTEUmWkRQZZBlJUUilUmx7aQeSLHP93a/DXV5yTtM1Yj0D7Pr7z8PQPur/8Ta+uX89j/9pcsn4vDwLH6jxoTz8Z8ousVP+1ivoKr+Sv2y3sPmJNoJTHJsAbDYjb7xnBW998xry8i7+tI6Xk/k+7ra1jfC+//fQpN+ewjIn7/v0DaxlG9WBzXQ83cP2L+8fz5K//J//jlX/8ZELUpZwJhZacAvZ3/Z431D2HG+UYpSwl9kxWBRUyZTtxEho+AbCOc+9iooc5Htf3vVwE4kM/QMRYrGpRx7ZnGa8LoiH4vjCkz9zZ/bWSkYbtspSZOOpc6LZ/B8ePXCApatWjd0Vwa2wuMwquLUVg7sOyVOXvbbkEW7tpPP3j9H5u0fx7z2MYlYwu02sfGcTztdfzxPBK/nZt/cxnKOXpbLSzX99+VXUVjqJdw8Q7ewl2tE7Pqdr7BLr7J2QpAAJDFYDJocBo8OIyWHEYFFQLAqG0YtiVjBYR68thlOPj/5dNhtQ8lxIRfloTi8pg5OkwUlccjAUs9I5bKKjV6O/O0R/Z5D+zgDx6OyTYJktBtavK+PqK6q56spqyssWXrmRixm0HTg4wNe/tYXde/pyPl5Y5uTu917KxpphGoafJN09wN7vHqH7hX4MDhtLP/keln7snRjs85/N9GIHt2PURJKTP3uQw1/5IZHWU/UX3TUOVr9vKWUbikjLZjryrqbTfgmbn2jjid8fnGI+vMS996zg/e+7HIfjwidBGdPdE2Tn7l5e2t3Dvn299PbMvm7pGE+BjZrmAmqb81leD0sLA+SlelDajuDf0c7gHh+De0dQdTP5l66ktWo1v2i1EI5Nbi23u8y88T2reEPdPgx7ttLzYj/dL/QTbD9t/ySJvLXLqHnTHVS/+dVYSwog1D4a6B6ERO56zOdMMoCjdDSQLQdHRTbx02nzZNOhyGiv7Ggwu23flFm6Z8roceGoKcdeXYatugx7VRn26uzFVlWGuSBvTkdMzPX3reevz7Hvk59j+fuaeMx7Nz/+fgvp5MT/c4NR5lMfv5LVoRMc//YvMaR6qLtvOZkbb+GRoxU89XA7fR2BKbdhNhu4567lvP2taynIFxmW58J8HnePHhviAx9+mMAZCTFLq9y899+vZ236OSpCL3H8TyfZ/a3DoINsMnL5jz5P7VteN2f7MRcWYnA7Jh2JEmnrQktle7yz2ZQtmD1mdGTixjySqgFff5h0jl5Lt8tCaen55ztZaDIZjcGhyKTP3+msdhP5HglzMkT/iExUm5zUz2g2UFxgwBQdIeFLYqsozVkacjb/hy0tLTQ1NY3dFcGtsLicHty2//HDVFZWZOdlGR1gciKZnGArAlcNksmBrmn49xym99Hn6X7wqWlru5ZuKGLNJy+npeZOfvKHKNufap20jNli4F//8VruuL15yvXomkZi0EfKHyIdjpIJRUifcRnLvKnGE9mMnInkqdunZedUx5ZJpEiHIuiqimKWsXiz80EsXjPWAguOMhvOujyMTTWoxZVEjQX0xDwc7zNzojXOyaNDdB735TwQT6emNo/rr6nhmqtrWbGsaEEkTbgYQVt7h59vfWcbz2zKnQXZYJS5/s5l3HFHMctCT+Lyt3DkVyc4+ts2NE2m4X33svLfP4ilKH/e93XMQglux2iqStcfH+fwl36Af8/h8b8Xry9g7fuX4ql3ETPk0ZZ/Ix16HY/+ah/bnpz8HQQoKrTzyU9czQ3X1V2Qfc9kNPbu6+OZ59t44YU2enrOrafTYFKoqM2jssFLXZ2NVTUp6uyDGHtOkNx3hOARHyPHQ4Q641hrG8i/bCX5l64k/7JVZPKL+OJXX+DpZ9pyrnv1FVW8601ulvc+zL4vbRlPVDYtSaLkxo3UvPV1VL7+JgwOOyQDkPBD0g8JP/robS0+ghbzYZDGjiFytg6sYho//mJygMmFZC3IZjC2FoA5D0k+FUSqyRTBQy2M7D6Mb8f+bK/soZZz7pU12G24lzfgXtGIZ0UTnpVNuFc0YikuWPSJ7tKRKNve+Sm8xb103vEuvvqdIfyDkz977373ej7wt5cxsvMALd/9NYNPPkXda6twvvkOnhxYyuOP9NB6MHdOAMjOGbzzzqW8663rKCpynPd+v5LN13H3wMEB/t/fP0z4jHn6FXVe/vZfr2Fd4glKw/s58JNjHPpZttSPOd/D1X/+NkVXXzIn+zCXFnJwC6ClM0ROdpMOnWoYNLuM2IqtSLJEwuAmJVkZGYwSj05uiLVYDFRWuDEaF/ZIuJnQdZ1AMMHAQGTK/BhGs4LXa8SphYkNRBhWPKTUycdfm8NEiTtNus+HZHJgqyyZcgSbCG6FV4zTg9vjx4/n/MAnfX76nthM76PP0//4iyQGZ94TYbQbWPOBZdjuvYM/t63i19/bnbMH6e67lvMPH73qgg7h1TWNlD9IvH+YxMAwiQHf+HXkZDeho22Ej51EVlScVQ7c1Q7ctU5ca6uQVyzHb6ni4ICHw606J48O03Z4MGdyhKm4PRauuqKa666pYcNlldhnUEpkPlzIoK21bYSf/WIPjzx6fMqD+pJ1Zbz+HStZb95HVWArXc90se/7R4gNJqi851ZWf+FjuBpr5m0fp7LQgtsxuq7T/+RmDv7Hdxh6cReQTdJb+6pKVr6rCWu+hYClipaCV3HopMzvv/8SA12Ts8cCXHdNLZ/8xFWUFM/9HLJgMMGLWzp4+tlj7Hipj1iOntLpyLJESZWbyoZ8amttLK3M0JTvx9R7kszBo0QO9hDqTaMpBVhranEvrce1tB730nps1WUTehWffqaVz335OYI5WsztLjNveNcq7mk8SOyPj7LnW4fI33DZeMbgmVKsFipefxO1b3ktxTdunFQeJPt5ehwZjZtuvgWr7exBUCaeILD/GP7dhxjZfZiR3YcJHjiOlj630mqyyYh3/QoKNq6hYOMavOuWY68pXxBDLectO7muc/iL38f/7O9wfeqd/McvrLTmSF53zxtW8E8fuxpZlkj6/LR87ze0/fDXlG90UPSu29iWWc9fHvVxcHvXlO0IBqPMa1+9hHe9fT1lpRd/XuZiNB+fg117evnIxx6ZlIm/prmA93zqKtZFHqEwfJhd3zzEiQc7AHA21XDdI/+Ls6H6vLc/HxZ6cAtjw5QHifeeaihUzDKOMhuKSSEt20gYXIQDCYI56lQbFJmKChc228UbZXS+kskMvX1h4vHcx2xFkfF4zXiMMdIDAZJY8Uk2Mjmqibi9FgpMERK9YazlZZg80x9jRHArvGKcHtxu//WfKZZNxHsGifUMEO8dJHyig5GdB2fcC2ApyqfynltxLanj5M8ezD4XKLm0gFX/fA07i+7iO99spbttZNJzlywt5KtffNWCOgnQNY1YVx/B0UA3ePgEvpcOEjp8DE+tg4IVeXhXl2C+bCWRwgb29hWx61CaY3v76Drhm3HniaJIrFhZwtVXVHHFhiqaGgsu2BCc+f5R1HWdnbt6+dkv97B5y9TBQV6RnTvfuY7rmv3UjzxN/HgPu795iKF9IxRddxlrvvhxCjasmdN9m42FGtyO0XWd7v97mr2f/E/CLe0AGCwKS+6rY8m99cgWAz3uy2lxXc2mR7JDlXNlj7VaDXzgfZdz7xtWnnfCKX8gzmOPH+WRvxzk6Ikw2izmzZotBqqbC6hv9rCyTmOZ24ep8wSpgy2ovhSqIR9DfiWOhlqcjdW4mmvP2rsYCCb40n8+zxNPnsj5+MoNlbz7b7ys7H+YfV/eTKBT5rIffo6yW68GID4wnB3mu3kXQ1v2MLLz4MQpE1OQZBlbVSmOusrxi6mymAMD3cgFHq695lqMkoSWzI4oSQyOjDe0Rdt7CJ/oINLaRbSz97zmydoqSkYD2bUUbFxD3tplc1Imaz7M9/et56/PcfjfPk3T/XfwtZdW8MJjk0eR3PqqJv7j324Y/x6oiSQnf/EQx/7nx+RVpKj8uxs45LmaPz0aZffz7VM22CmKxO23N/Oed6ynssI9p6/j5W6uPwfbtnfx0X94lGRyYkWH+hVFvOeTV7Au+GfyQi1s++I+Op/pBaBg41quffi751Unfb4thuB2TCoYJnqyG220hrUkg6PUhtFhRJWMxI15xGIaI4ORSfVwJQlKSpzkeRbW7+/ZaJrOsC+GzxfNeQiXJAmnx0y+PYU+7CedlNG8BfSPpCaVApIkiYJCC86Mn5Q/jb2uCsU0ebjymURwK7xinB7cfoNa8jn7F+RM5kIvlXffQvUbb6Pwmksn9JCM7D7Eie//lvZfPgx6inUfXUXirrfwnT8Z2ZbjBNPpNPO5z9zI1VfVnPNruhAysTgjuw4xvG0vvm3ZuW2KHKXkkkIKrqrBuPFSegx1bGuxc2jfCEf39hENzbx0hyfPyobLK7lqYxWrVhZTXuaatyGB8/WjeLLdz2NPtPDYEy10TdFTCNlhNTfdvZybr3OwNPQUpq4WDvz4GO1PdONZs5w1X/wYJTdfedETSiz04HaMmkrR8t1fc/D+b4/Xy7UWmFn9t0uouaWChMFFS8GrOBYu408/2MnxfbmzKp9rwqlwJMljD+/lkceOcvB4dMYBrd1lpn5ZEU2NNlZWxqlOdKK0dyKFNYylS3AuXYqrqRZrWdE59Sw++1wbn/vic/j9k3sEbA4Td797NW9oOkTywUfZ881DVL7hdaz9r3+aNhOqmkwx9OIu2n/5EJ1/eJxM+EInkpqabDKSt245BRvXUDga0NoqSi72bs3Yhfi+hVra2f6WD9P8nnp+k7mD3z5wfNKJ55VXVfPVL9w6oSyJrmn0PLKJo//1YwzJDmr/33W0VNzIHx9PsvO5k1PWbJdliVtvbeRv37memuqFGygtJHP5OXju+ZN88p8fJ31GBuzmNaW86xOXsd73exyBk2z+9C76dmR7F8tfewNX/vprk7JxLzSLKbiF3NmUrfmj5YIkmbjRSyIj4+sP58xY7s2zUlTsQF4Eiaai0RS9U8wnhuy82sI8HSXoJxXKYCkpJoqR/oHJuScUg0xxkQlTYAhNNc1qpI0IboVXjHMNbp2NNZTedjUVr7mBousuO2uW2nQ4Qvuv/sKRr/6YgroMNf92D79qXc/vf7g35xf+Dfes4KMfugKLZXHUOdN1nWh7N/1Pb6P/qS0MPrsVRxEUX1ZE3o2rSS5Zw66+EnYeSHFoZ++Uw0Kn4nSZWbasiFXLi1ixrJjly4rweucmYclc/SgODUfZt6+ffQf62bGzm5aW6YevG00K17y6mdtvL2JpYjOewQMc/XUrx/7Qhq26itWf+/s5r1V7PhZLcDsm5Q9y8HPf5fg3fzE+bLVwtZf1H1mBp9b5/9l77/g47jr//zlle19Jq14syZIsS+41jh3bcXonCRAIEGqA4+B+x3EHXIHjuAPyPe6Ao/cQAqQ30qvtxN2WuyzJ6nXVtvfdmd8fK7lEki3bsi07ej4e45ndHe3Mjqd8Xp/P+/16M2isoDHjOrbv8PLM7/aMW09aFAU++P5aPveZZacMm/d4I7z+xBZe3tzBvqYoyeTknk35sxzULsxgaXGY8ngHOk8YfWYJlpr5WOeUjQnlPRt8vijf+/5mXnp5rEMuwNyl+XzqI1nMG/gr+7/3Np42gWW/+g/yrl9zRttJhiN0P/cmrQ89Q+9Lm1FTZxZ2fa6Yy4txLqomY/n8dIjxwmok/aVbRuNCXW+JQJDtn/gaWRVeXq/4GL/9RdMY19b5C3P58fdvGvcaGNy+j0P/+TOS3fsp+5s1tFVcx+OvJNj+esuEIlcQYMPV5Xzmk0soK3Wel991uTBV58FLLzfxr//+2pgyczXLCrjviwtYNPgI+sEONn19J4MHPQCUf+YDLPnJv51XF/6p4lITtzASGdfVR7T/eCTfaLkgJIGYbEuH5bqDxMYJ4zUZteTnW6dtSbtkUsHdH8TnG98wSpJFMjK0WFI+ogNhdBmZ6LIc9A+Gx60codXJ5GYJKL39yFbnGfsgzIjbGd4zTFbcSgY92etXkHfDGnKvX42lrOistpcMR9j3z/9Lz5NPsPi/rmZ77l387EcN47opl8xy8L1vX8vs8gtnGjRVqIqCZ98R+l7bQt+rW/Dt34er1oZrXRnaq1bSlCxly2GZQ7vdtNQPTNgIOhUOp4HMTBNZmUZcWSZcmSayskxkZpowGjSIIoiiiCgJSKKAODKpalqMpyeIRKJs374dVYWlS5eh0WpBVVEUUEmvoyoqyaRCJJogHE4QiSQYGo7Q2xugu9dPd0+AwYHJjVoZzVquuH42V29wUatsx9lXR9NTrTQ81oJkcVL7zb+l9L47pl2D4lITt6MEmjvY+0//TecTLwMgSAIVd86i5r7ZCEYDbc6raJQW8vzD+8c1fQNwuUx89R/WsGZ1CV1dPhqaBjm4p5ND+9to7Yvj8U9OyMlaidm12Syaq2dxxhB5cT+2/EoyrrgC2aCfst8M6YbFU88c5me/3DGuG6XBrOXO+2r5wJzDRJ98kbqfHJ7UaO1kiA4M0/7IC7Q99AxDO/af03eNQRCwVpXiXFSNY9Hc9Hxh9bSotTmVXMjrTVVVDnzzRwj9m9mz9n5+8uOWMSH7FVWZ/PxHt2K3jX+eevbWc+i/fk6kYQdln1tFV+0NPPGawtbXxn7XiVy9vozPfXoppTMid1ym4jx48unD/Od33xozKr/wymI+8tkaFg38Cam3k7f+cQe+lnRbpPbf/5aaf/2bix4xNFkuRXE7SmzYS6it+1gIsqQZycPVH8/D9Q1FCIwjEjUaicIC27QaCFFVFZ8/htsdGNOZMorFpiPTFCfZN4xktKIfiUjq6Q2MK4aNZi051jjxbg/6/Lyzut/PiNsZ3jOcKG5/oq+isLAIQ54LQ74LY54LQ3429poKsq5cPKWjAP2bdrL9U1+j/CYHkXs+yQ//GOfA9rHXjkYj8sUvrORDH5h3yTxkxiMZjtC/cQc9L26m9+VN6HV+clblY7l+Bb68uexos7PvYIiGvb0M9Z19GZTpTGaOmdU3VbJ+hYay2G5s7oM0PdFM4xNtSGY7Vf/wSWZ/7p4pFzlTxaUqbkdxv7WdXV/4j7STLmDI1LPw83MoWpdHUJtNY+b17Gsz8PgvduDuGr9sjFYWiE9yVHYUjVZi7uIcVlYLLHX4cFmdZK1cjcZ6fspiqarKW5ta+cH/bZ0wHH7O4jw+c6+TWvdf2fe9Lfj7tCz9+TfPeLR2MsS9foItnQSbO9Lzli4CzR0EmjsId/Ty7rhtUaNB50r3yutdTgx5LizlxVjKizCXFWGpKEFjNk35fk43Lsb11viTh/Fv+TOtd32B//1RJ9F3GQ4VFtv59U9vIytz4uPvq2/m0Hd+QWD3ZsruX07/kpt5/E2RLa8cJR5Njvs3ggDXXjObz356KcVF9qn8SZc853oe/PFPe/mfH24Z8/6y9aV8+JMVLHT/CaWtkze/sp1QbwRBFFn6i29R/qm7p2T/LxSXsriFtFle8GgHqVjalFMQwJRjQGvVHquHGwom8AyMzVkVRYG8XAtW68VvO8TjacOod5uVjaLVyWRlSGgDwyTDYCjMRTboURSFrm4/wXFMSa0OPVmaANH+MKaSwrNuI82I2xneM0zGLfl8kQiG2PtP/0143+vM+q8P8ceGeTzzhwPjhikvW17Af35jAxmXSe3AwNF2el7aTO+Lm/Dt34trroXMtbORr1zO0WQJOxq01O8fpL1x8IxydacbFrueBauKWHxFHoty3RT4d5E63MDRZ9ppf60bfX4B1f/4KWZ99PZpa2wzyqUubgGURILGHz/M/m/86Fh+aPbiTBZ/cS6WIjP95hoabOt59fkuXn384Li5TpNBkkXmLMhmxVyJKwsSzKqdh2XW+b+37D/Qx/d/tIUD+8fPI9YbNdx5Xw0fmnMQ359e5MBvmij91D3M+48vXXDBGIlEePmFF1H9IdZtuBqTw4ak1027iIWLxcW63tofeYGeP/4Qz/1f4Ds/7B9z/80rsPKbn95G9mkcxQPNHRz+7i8Z3vwa5Z9awvCqW3h8o5a3X2oiFplA5IoCN15fwf2fWkJB/ozxFJz9eaCqKr/8zS5+8audYz5bfVMF77+nmIV9DxNt7OKtf9xBdDiGZNCz6pH/peCW9VP6Gy4El7q4BVCSKUJtXcS9xyP59A4txiw9iiAT1TiIxAWG+oKkUmOfTaORbBdjIERRVYaGwgwOTmwYZXfqcMgh4v0BdK5stI60l0oyqdDR5SU6zn3BmanHnvKSCCiYZhWc0/NhRtzO8J7hYorbUfpe28Ler3yTyk9UcmjuB/n5L9rpafOOWc9q0/E39y/n9tvmoJEv/VpnoyQjUfo37aT3xU30vLQJWRkme1k2tg2LYE4V7dEcDnfpaG6N0XF0iK6WYRKxC5vPN1n0Rg1FszMoqcpi9hw7SwuHyQnXY+5voHdLN83PdTB40INr7TIqPv8hCt537UkGZNOZy0HcjhLp7afuH/8fbX98FgBRI1K8Po/Smwqx1eTwRugKXqkzsvPNViKhyZWZkTUiZXMyWVmrYe0cPVXLl6G1XhjTnI5OHz/48Vbeemv8mrUA1Uvy+cyHzFR3Pkfdd7aTIIvlv/42GUvnXZB9fDeX0/l0PriYx6f31Xc4+sA3Sf39/Xzrx0G8gyfnv+XkWfjNz24nN+f0oYGhjh7q/99vcL/0POUfX0Bg/W08/o6BTX9tGjMyPIokCdx8YyWf/uTSaVU94GJwNueBqqr84EdbeOhP+8Z8tuGuudx5eybz+/6Mb28Xm76+k0QwidZpZ+3zv7iojvznwuUgbiH9fxftGyDcfbw8l8YgYcozIsgSMdlGVNUx1BckHhsrBs1mLfl5ViTpwuXhhsNxenoDxCc0jNKQZVNhcAhRZ0af6zrW7oknUnR0eMf8rSBAZpYBc2QQJaXFWJR3zqJ9RtzO8J5hOohbgIQ/yMH//CmRQ6+T8Y8f5ucbc9n41/ENYFxZej732ZXcfEPlBb2BTQWqqpIKR0iGIiRDYZKhCEo8gWwyIJtNaCwmIu5B+l55h56XNjOwZTdGq4Kzyo5tQQH6JXNJFJVx1JdBr0dmyC/i8aUIeCL4hyP4vRH8nijJRApVUVEUNT1X1WOvBUFAEICRufCuOYKAQHoUAThWkkiURHR6Ga1eRqeXMZi0OLJMOLKMODMN5GepVGT6sMd7sMS6obWV3q29dL/jZmD/MLLZTOl9d1B+/wexzSm7aP8HZ8ulLkbiXj+++mb8I5OvvoVox1G01hTh+fNot5dzYMjGoaNxQoHJCVqtTmJ2lY0NSw2sW55HbvV8NPKFGYFXFJW6vT08+Ww9r7zSNGFuU0GpkzvvKeYG1276f/sK9Y90UP21zzPnyx9H1Jy5O/xUcamfT+ebi318hnbu5+A//AP6r32Mf/1ZisF3pYu4csz89me3k5c3ufD6SG8/9d//HT1PPU3ZR2oIX38Hj242sun5xglHcmVZ5LZbq/jUfUvIzj59HeTLkTM9D1Iphe88sIknnz485rObPrKA2681Udv3F/q3dPLON3eTiimYivNZ+9KvsFVdes+lUS4XcTtK3Bcg2NqFOlIuSJQFzHlGZINMXDIRFS14B8OEAmMj2y5UHm4qlTaMGs/TAdI1a50ZWsxxL8lgCkNB7kkhxdFogvZO3xjPFVEUcGXr0Hv7EXRW9DlZUzIaPSNuZ3jPMF3E7Sih9m4Offt/sVXG2VZ6F7/9xVECE9w4cjM1fHidi7s+ew1a8/kJV07F4ySDYZKBEInReSBEMhhOzwMhksGx77173WNTOHKsTqUgCkg6EUEUSEaSqCfc3ySjAY3FhNZpw1iQg6TXkgiECLZ2Ee3pwzbLjCnbiCFDhz7bgqbIhZyXhejKAocTNBpUUUQQRVRBQhUEVMR0d6AKAiqgIKhqellVEFARUGDkvZOWVQUYXVYBFTEVQ/QOow4OkuofJjIQxnvUj+eoH2+zn7g/gS7DTv5tV1P4vmvJuXrljHvreUZVVaLuwbR4Pdx8TMwGj7ag1Uexl9tIzZ1Nu7OKo2EnjV0ira3hCUeQzoQ5VVncdEMFV68rO68N8Z4eP888f4Rnn2/APY4R3SgOl4lb31/OnVWNKK+/zoFfHUFfXM3SX3wL6+yS87Z/k+VSOJ8uJtPh+PiONLPn/r/F+k938/VfyQz0nHy+ZbpM/Pbnt59RCHF0cJiGHzxI518eo+wjNfivvZPHN2rY/OLEObmyRuR9t8/lk/ctOmW+7+XImZwHiWSKb37rDV58lzO6IMAdn1rCzVfCXPfjdLzYyo7/PoCaUrHPr2LtC7/EmJd9Xn/H+eZyE7cwUi6ouYNkON0GFAQwuvTo7DqSgpaoxkHAF8c7jrOwIKTzcG0TGMCdC6qq4g/E6JsgPBrAbNORaYyRcnvRZh0PQR4lGIzT1e0bUxtbkkRysjVI/W40jix0mVMX/TQjbmd4zzDdxO0ow3sO0f6rH5K8Yz0/elbPoZ09E65bmC2zTttOua8Xm92MLsOOLsOBNsOO1m5BTaZIRWOkYnGUWJxUNIYSi5OMxI4L1wkEqxKfuNEvG2V0Vg1aqwadVYvGbkDKzyTszMFnzMQjWfEoJoajWrxhgUgcojE1PUUVotEU0UiSVErFaJIxm2TMJhGTXsWsVTDLCSxqGNdgO5a63aSa+lEVFUGrwZifjS7DjmQ0oCYSRHoHCHf0oo5XVFRIC2lBFBCkE3r/Ru8f6ti3JnrjxJeqop70twD6nCwyl88jY9k8MlctImvVossmh3A6NLZPJBWN4Tt8FM/eejx7j+DZW4/vYBMCERxlVmyzbcg1ZXQ6ZtPgz6ChU6S5NYpncGyd19MhySJ5JQ56O7yndH4dpaYmmw3rSrl6fRn5kxzZOhWRSIJX32jmqefq2VfXe8p1DWYt194xmw8v68W4/VUO/vIQkYCR2m99kVkfuW3aGNNNt/NpujFdjk+4q48dH/sstv/vZr72Wz393SebrWVkGfnNT2+n6AyNoGJDHur/32/oevRxyj+1kOG17+OxN0S2vHx0wnqYWq3EXXfW8ImPLpyyUnDTncmeB6FQnK987WW2be886X1RFPjAF5Zzw8IQVf3PcOThRvb/ugGA7PUrWP3kjy8Lp/HLUdxCuvJEqKOH2KD32Hs6mwajy4AqykQ0DiIxGHIHx5TwAnA6jWS7TFN234/HU/T2BQiFxho/QdpAMStDQuMdonr1Wjq6unjzzTdZu3btsXU83nSliXcjayTyXCJqTz+63LNzRD4Vl4q4vTxajDPMMA7ORXNx/PQX9L74Ov9ctZG6dWt49Olh2hvH1k7tdCf5A/kIQj4FNgNzdApV0T4Kt7xD8kgXqWgqXfZGUVFTaUGmKioIoDHKaIwysknGZNKgccnIBh0akxnZpEFyWBEdNgSrhajeil8wM5wyMRjV0+2TGfDCkEdh2JPAOxwj0BB5V09cbGQ6NQFfnIBvvJulFpgNttk4r9NRlCtRYAiT5+/EePgQyR0taKMRjC4n+beuxzqnFEOuC12GnVR0RLyHIiPzcLoHdFShCsKImUGSru70fauosAhZIx/7/MS5kI5dHnkPZIMefW5W2lU7z4WppABDnmvaiIfLiWQkyvDugwxt339MzPqPtKC3yzgrbTgq7RR/oIKez6/h8JCDTR0izS1Rep8LjJRXOLO6ygBZuWbmzTWwvCLGquJeMoVWWsRqnq0vZMvmgXGvxVEOHnRz8KCbH/zfVioqMrn26jLWrS0lP8+KVnvqHGuvL8rRo0M0Hh3iSOMgTc1DtLYMEz9Nnrkki6y+oYyPXh0it/5RDn1hH74ekZp/+RKln7hzSmrmzvDew1iQw4o//4bt997Pd794DV//vY2+E1y4hwbCfPz+p/jNz2+npHjyoyy6DAcLvvsPVP7dx9LGU/f+M5/97Aru/N5tPPaqytZXj44xdIvHU/zpz/t44slD3PPBWj724YXnZWTqUmNwKMwX/7+/cqRh8KT3JVnk3v/vCq6rcjO7/yXqfnyQxifaACj+4E2s+P13p72R4XsdQRQxlxQgm02E23tQVZWYL0EqpmDOM2JkCElrQy6wjZuHOzwcJhpNUJBvRT4HrxZVVRkajjAwEGK8gUVBELA5dDjEAMnBOLr8fIR3+YmoqspTT7/E66+9QVXVXK7ecOOxz7R6mTynQrJ7AGNREbLp5M4JRVG44oor2L59OwC/+93vuO+++87690xnZsTtDJc1giCQd+MGclLrcL61kaXXuXn72lIef85PT7t3zPqqCp2dETo74RUciOLVFMyzkuHUYDSIGA0CRoOIyQAmPei0EE2IxJIi0bhALAGxkXkwlCIQSBFqiBH0Rwn5YyO96SoQHJkuLMNDMYaHYC8AhSAVwryRUB29iCmQQvd2BF3wKKIAWK2oJhOKTo8imUgoAvF4asyNWQUSlCII4AybsdsM2O16Mp1GqioyqJ7jonSWc9oWSj/fxAIhBlr76GropuWtRuIxheyEk/nXLMRgOz/ht+FuN4Nb9jCwpY7BLXV46urRmAQyqu04Ku3kfLoUb+ENHPRmsr1DS3NrnI5HPCNGY4On/f7xsDr0zJ5tZV4BVHjr0bz1CImmKMlIih2RJFqLhtl3tPClDfnct2A224PzeXN7gt0b2/B7Jh4NbmwcpLFxkB//LP1Q1molTGYtZrMWs1mH2azFYtERCMRoaRlmaHBsiNmpyC6wsnxtITcsDFDa9RJHvraLloYk1V/9DFfd/8FLOhR+humB3pXBir/8mu33fo7v3L+arz9so7f9uMD1DEf4+P1P8euf3kZZ6ZnVZTfkZLH4B/9M6Muf4NB//gzfL77G57+wivc9cBuPvZRg++vNY3LyYrEkv3+wjkcfO8hH713Ahz4wH7P5vSnS2ju8/M2XnqPnXSHjGp3EfV9ZzTXFzRT1vs7W7+6j4410BFj1P32a+f/19wjie/OZdimiz3QgG/UEmztJxeIkoyn87UFMeUb0Ri+iaETKs+IZCo9xOA+HE7S0eijIt2I0nvl1Eokk6On1E5ugg1Vv1JBlUxAG+xGdWZjL0iHIZWVl6PV6jEYjiqLS0+vn9dfe4Kc//W9uu/0Dx8StwaQl1xoj3uvHVFoybofLD37wg2PC9nJnRtzO8J5AlCRcV6/HxXpKU0lurH2bZ3daeOwF75gcqBNRFJWOZh8dzRdwZy8CqgqhiEIIATCCZiRcLQyElZGFyeEdHh73fa1GpDBbx2ybQrngo0QZRhsJHQvzTkVjCIKAqNchjUxahxVDbla6bnJuFoa8bAy56RyS6dqoaN/Xwtt/3UNju4cun0K3HwY8qRPCsdP5bo8cOID4/QNk2iRyrCr5FolZ+TaqF5VQvXoO9ozJhxOpqkqgsRX3m9vp37iTgS11hDt6sBSYyKxxMGt9NqVf+TD1qRI2txtoaldof947kot+dkJWp5eZVW6nak4WtTV5LF2QS0HOyeHDce+X6P7rm3Q+8Qq9L20m1OdnxwP7OfDbBirubGXDzUdYfVUB7Tcv5+2WDOre6eTwru7TuivH4yniwxE8w2ceHj2KwaRh4ZVFbFgusSKjidS239P+rXY27w1R9ZVPs/KFDyMbZ8J8Z5g6dE47K//yK7bd+zm++4nlfP0vTrpbvcc+93mifOL+p/nZ/91CdZXrjL/fVJjLsp9/i2DLpznwrZ8Q+slX+OLfraXrgVt4/MUIO95oGRN2GQ4n+Pkvd/Knv+zn4x9dyPvvrsWgv3gmaReaXbu7+crXXsbnO9mXw2TV8cmvXcVaZx25XZvZ/G+7ce8eRBBFlvz4X5n9uQ9dpD2e4VyQjQas1WWE2rqJe/woKZVAZwhDpg6DEyQ1gZjpQKuT8QyGTkqbSiYV2tq9ZDiNZGWZjhllnopkUqF/IITXO/6zSpREMpwaTFEvBHXoZ806qfrD66+/fux72ju8RCJjn40Wuw6XNkTMHcFcNgtRM1baNTc386//+q8sWbKEvr4+urouWITwRWFG3M7wnkOUZFwL1vKpBfCBu3p55OkDvP6Ol5YGz4R5ShcDWRaxZ+jJcOrIyNSTmWHAYtFgNGgwGTWYjNr06JVJhyyJeLwhPN4wHm8Unz+Gz5/A70/Q2xehuyMwpuf+QhNPKDR3RWjuAtAjCHlkZ2rItItkZKtkmJLYtXEsYhQTUSyEMMV7kTsPEt0foD+QIOqNExmMEvUmEQ1WDPk5GPOzMRZkYyzIwVCQc3w5z3VBwkjbD3XwyiNb2dfio3FAZdA7+XNIUaDfk6LfA/tR4OAgvDwI39lFYabAHFOExXk6llw5m4x5szGXFSFKEqqqEmzpxP3mdtxvbqP/rR1E+/qxl1nJmp/BvM+VEam+g73DubzdpqGhKUrXRg9KygN4zvg3iqJAQYmNiqosaubmsHheDpWlztOGaGntVmbdexuz7r2NRDBEx2Mv0fjjh/HsOcS+Xxzh0ENHKbu5iMq72pidk8XNH6zC/bF57DpqZP/2Hg7s6CQcGD8v6WwQRIHK+TmsXmXj2ooezPV/pesPR9n6RjdaVyGzPnYPS5+4B43lvekqO8P5R2M1s/Ivv2T7R77Adz5Uyz8/kU1n8/FrMuCP8ZnPP8NPfngL82tzzmob5tJCVv7+u/iONHPgmz8m+sMv83dfvpq2793E488H2b2xbSTV4Dh+f4wf/ngbD/1pH5/42CLed/vc8+4Ue7F5/MmDfO+/N49xSc/INvPpf17NldJb2Ft38cZXd+Bp9CMZDVz5yP+Sf/O6i7PDM0wJoiRhLi0k1j9EqKsPVIgMxkiGU5hyDRjVQUSzHY3WypA7OKbtNDQcJhCMkZ9nxWAYvyNIUVSGh8MMDoXHGD6NYrZqydDHUL1BtHk5J7kgn0g8nqS9w0ciMbZtcayGrRcs5bMQxqn+oaoqn/rUp4jH4/zqV7/i9ttvP/UBugyYMZSa4ZyZroZSZ4ovGGT37la27+5l34Fhmhu9500QarQizgwjGZlGXC4zrmwL2S4zuTlm8rPN5GWbcTrPrZB4JJrgjTdbeGtzG1u3dRCeZK3R6YYgCpitOmx2HQ6nBpdTJNuhkGtP4NIEyFKHMHvcJLvdRN1BIkNRIoMxIkNRknEZQWdJG4Rlpg3CRpd1GXa0Ths6Z3o+uixbTm0cERr2s/mZXWx6p5X9vUl6Bs9/h4heJ1BuDFLUcoC5phiGITf+3gGE8lykpXNIzCohYMliMGLA7ZNpaQ6eMiLhdGRlm5hdlUXN3GwW1eZQMycLo2FqOgpUVWVo+z4af/IwHY++iBJPIMoCRevyKLgqB9f8DESLEa9hFv36cna0O9m9c5CD27smdD0fD0kWyS6wkltkp7BQT2luirm5fvKH9tL/1320v9ZNQrFScs9NFH/oZuy1lZdcrvd0MUyarkzn45OKxtj+ib/Ddkc5//JswZj8c51e5offv4llS/LPeVue/Uc48G8/IlS/i/J/vI6m8ht44lkPe99pH2sAOILDYeBj9y7g7jtrJmzAXyq8+zyQNVr++3/e4bEnDo5Zt6DUyWf+aTkro88iNx9m4z/tINgdRu/K4Kq//vyi1bS+EFyuhlKnIhEME2zpPGb8KUoCplwDGpOGmGQhKhgZ6gsSm8CFPCPDSFbm8VHcURdktztIcoL2o6yVyHJIaH3DyLaMMS7IJ1JcXExHRwe/+/2TLFu2irnVEztyFxcX09bWNub9X/ziF3z2s5/lK1/5Cg888AAlJSW0t7efVc7tpWIoNSNuZzhnLhdx+27CkTg76no40jREIBgnFIwTDMYIheKEQnHCoTjxWAqdXkanS096/fHJaNCQ4TDgdBjJdBrIyDDisBtwOPSYTdrz1pBuaBzkiacO8cJLjYSnoDzLpYBGK+HIMuHM1JHllMjOEMhxJMmzxcgzB3EmhhD6+0l0DxAdiqTF73CUmC9B3Bcn5o8T88VJhJIIopQWuw4rWqcdrcOGx5zBgYCORslJs1dDPHH29029UYOsEQn6Tm8SNhE6rUAsPjX3bpNZS3llJrU12SysyWF+TfYFc1GN9g/R/JvHafrZnwl3ph2MBRHs5VayF2biWpBB5jwnMXsBg8Zy3FEHgahIICIQikAwIhAKK4TCKqFwCkmE4lyYnROl3OHFEu0j2dRKsMGNt9nP0BEfQbdK0d03UPyhm8m6YtG0DW+fDNNZvE0HpvvxURIJdn76H7Fe7+LfXimn+dDASZ9rtBL//b3rWX1F8ZRsb3DHfvb/6w9J9hyi9Gu3cDBnA08+5ebgjonbnDabno98eD4fuKsWk+nSzMk98TzIy1/AD3+yk8OH+8esV70kn49/vppl3scJ7jjCO9/cTdyfwFJRwroXf425tPBC7/oF5WKKW1VVSUwwwnm+UZJJwp19JHzHfVD0Di16p46kpCMq2Qj64wS8kTHVHSB9nebmWFBVlf6BEPFokvFad4IgYLNrsRFASMnoc7JOCkE+kdH6t0uX1NDT03lM3N577y309XbT29tNVkYG5WXlx8KQc3Nzeeyxx076nq6uLubOnUtmZiYHDhzAaDS+J8Tt5R1zMsMM54DRoGXtFSWsvaLkYu/KaQmHE7z8ahOPPXWII/UDp/8DQGeQyS22gwqplIqSUkamFIlYEs9QdMJe/elGIp6iv9tPfzccGedzSc7AnlGII9NIRqYG17z06K/TnMJpTpJvTmDRRBFiUZL+AAlvkMM9Jt7qdrC/TWSo/cRe29MfFL1RQ2GZg8J8HcU5AuX5GvJyjTgcero7OlBUyMzMpbk9QGtfiq4B6OlL4O4OMNgXGLccwYmcrbAVRYGSMic1NdksqM1hYU02RUX2izZiqXdlMPdr9zPnK5+k5/m36H5+I549h/AeaMTT2MKRR1oQJAFnpY3shRm48k3kSAKCLCLK6bJUojSyrBdJxVL4tgTwNvs5fNSPvzOEIS8H56JqHIuuYt5nFpC9bjmi5tIeiZrh8kDUaFj6m/9mzxf/jW9fdZh/19RwZK/72OeJeIovf+VF/uvb17BhXdk5by9z2TzWv/wb3G9uY+9Xv49VeYFvfP197L5lDU890UXD3rElsny+KD/+6XZ+/1Ad994zn7vvrMFhn16dBJPB60vy+pt+Dh5+ftzP199Rzd13OJnX/xBdzxxm9w8PoiRVslYtYs0zP0WXMXW1QmcYS0JRebvnzB35pwydBVzv8rk4Fvw04jlimvi50T0cSi/IAi4YI26NZi0ZpiSiz4suJ3vCEGRIl6Tq7vWPcToHeOTRF/jdrx/gO999gOuvvY4//OnhU/6s+++/H7/fz+OPP47R+N4o/QUz4naGGS5p2ju8/PFPe3nhpUYikfHDZk4kt8hG1cJcFs+VWZLTi1R/kEjbAOG2IUJdgyQjMoaSSpwr5yOVzaY1IdHgjtPUHqK5JUh/b+iSEbwnkkoqDLmDDLmDHD3lmgJgHZkAlJHp1BhMGsqrM6kuFamU3eQNtqGNdeGoXobrqmUYcrKAdM943aG02+aiKxZSOd+Aqqr4DjXR9/Ir+LTtpJaY6MidS12PmUP7PfS0ec/6d+v0MpXVLhbMz2XZwjwW1OZgNE4/YSfKMgW3baDgtg0ApOJx/IebGd5ziOE9h/HsOUzDk/WkIieHJQuiiKjTImo1iFoNGpsFx4IqnOvnMusfqnEumos+y3kxftIMM0wKUZJY/ONvs/+fH+Abi3fzHc1S9u88LjKTSYWvfv0VvvFv67nlhsop2Wb2uhVcu+1Rup56lX1f+x9cruf49lfvZutty3j+mU4a9vaN+ZtgIM7Pf7mTX/92N2tWl3DbzVWsXFF03h3wFUVl2BOhvz9If38Id3+Q4eEIwVCcYDAdRZVejhEMxYlGkySTCqmUOjJXSCaViUNENSLv//xybpo3RFn3H9j/0wPHSv2UfPgWlv/6P2fc0mc4a7R6mQybiDbgRRYcaEuKJuxMVhQFd38IzwSVA/RGDbn2JKo/LbZF7amf5X/84x954YUXuPfee7nmmmvO7YdcYsyI2xlmuATZd6CP3z9Ux6ZNracUm4IAFfNzWbAsh5WVEYqTTURef5C+B1qoqxvGsaCWrCsXkXvrHWQsn48x/+R8jkrg+hNe+wIxDjf1MdjvZ9iTbmR4vFG8vhgeT4xINIUkiSOTMGZSFJVYXCGWgGhUxd3lI3oGodM6vYTFqkeSBKLRJAF/7LSjnOcLo1lLXrGN6hory6sV5jq6cSbdiIN9BIQAvrYA/Y9so+k7flKSA/viRThWLkBRQggOCwObduDduJnwkT3oTTEc5VZyF1nRFukp1ngwZ+gwGrM4YNTQ3jhIKnnq36nVSZhNEg6DSmWBhffds4R5S0svyfJLklaLY8EcHAvmUPaJ9HtKMknc40fUyMcF7QQhXTPMcCkhCALz/+ufqH/g53y14m2+r13N7nd6jn2uKCrf+ObrdPcGuP/ji6ck0kIQBArfdy35t66n5fdPsf/+/6Ok+km+/fd3s+N9y/nrM53U7+4Z83fJpMIbb7bwxpstZGQYufmGCm69ZQ6zSs5+ZDOVUuju9tPa5jk2dXb6cPeHGBgMTShMz5XMXAsf/ttlXG3fgb1+Kxu/XcfA/mEEUWTBA1+h6u8/fsnl4c8wPRAlAadThynqQ0oY0BUWnTIFJhyO090TGNc0CsBi1ZJviRDrDaNx2k+7/f7+fv7u7/6OjIwM/vd///dsf8Yly4y4nWGGSwRFUdn8dhu/e6iO/fvH9qyfiM1pYNn6Uq5dCeW+XfiefpCe/+7hnQYfmSsWUvSBT7Hs0evHiNnTYbPoWLlobP7XmebqqEqKSEc9XQfrOBpxcmDITv2RMA17e4mdYgQ6Fk0Ri4ZOes9q0WCz6TBZ9Chqun5jJJIkHEoQDsUndCo8V8LBOEcPDXD00ADPkh4ByCkqo3DWQkoLRKrWxJhz1zCVqhtjfBAlFiA6/Bp2TwylS8VWbCbvWgOBW1bRlczl7W479R0yLZtDtDUMEg2fWXpKPJZiOJZiGGjuHmbTgdeY60qyJE/DNe9fReGKuRe9oaYkkyRDEVLhCKlIjGQ4QioSPbasxBNobBZ0mQ70WU60ThuinH5MibI8Mwo7w2XNnH/8LEd/9Rf+3vUaP153LVvfPPke8Mtf7KC1zcO3/3U9Gs3UdOyIskz5p+6m5MO30Ph/D1H3oV9SuORxvvXlO9n1vhU8/0zXhDm5Q0NhHvzjXh78414qKzIpL3OSn2+lIN9GYUF67nQaUFXweCK4+4P0uYO43el5X1+AljYPHR1eEuOEYJ4v9EYN195dw9VXZ1Az/ByhV+t4+bv7iPniaB02Vj3yv+Res+qC7c8Mlx9KSmV4MIpqt6fNQU8QtqqqkkopxGKpdHslmhxTimqU0Ue2OeElPhTHPHvWpDp1v/CFLzA0NMSDDz5IZmbmlPymS4kZcTvDDNOcRDLFCy828rs/1NHR4Z1wPUEUmLMoj9XrclhX0oX4+p9o+9sDvLN3COeSGoo/eT+r774eU/G5u2+eK4IoYSypoaKkhgpgTcNBhqxv4r3Wzp5QMTv2Rji0s2tSpkv+QAJ/IAEET7vu+SSZUOhqHqareZitI++JooCroJD8klpyXDIuu4orM4FOo9DQqaNxU5KOo8MM9XkB75TuTzCssL1NZHtbip9u3USpaxPzHAnWrp7NktuWo890TrnYTfiDhNq7CbX3pKeOnuPLQ4OEVQVBKyHoNYg6GUGrQdBKI2HFEkgS+uEB5KFh4p44UW8MZGPa3TrTgT47E2vlLGw1s7HPnY21qnQmZHCGy4ryT3+Q9kctfO7Qs+iuu4W3Xu446fNXX26it9fP//33TdhsE+ftnSmyQU/1P36a8k+/n8Pf+xW77/g5BVc+wTf//n3UvW8FLz7fy/7tXSQnKJfX0DhIQ+PYmtkGg0wyqVxQ8Xo6UskUUtcByg820vrYIY482gIqOBZWc+VjP8RSVnSxd/E9h0YUuDLPdrF3YwyqohDtGyA86COsMxERTv+8GX2qKioMeSIMeSJYrTokSSQWSxKLJceUnxrzHYKAzalDEkfWk02Yy4sn9cx+7rnneOyxx9iwYQMf/ehHT7v+5ciMuJ1hhmlKLJbkmefq+e0f6uh3Tyzc9EYNV1xbzo1XyZQHdjP4x19x8PkOElGBWR+9jSUP3Yu9pmLCv58OmCtrMFfWUKSqFO/byxr/bsIrnRxWytm2P8HBHT0MneIYTCU2pwFXlhazMe3I6/cn8XljRM7CeVpRVPo6fPR1TI1RRnGpgyWL8jGZtdQ3DNBydIihgfBp/05VodkNzW4NTx1pQ/dgO9lWlWxdnDxdkgK7jorqPMoXl+EoLwRRQE0pqKnUmHnc4yfc0UOgrZv+5j7cHQP4/EECspaw2UrEbCckmwiqOvxxB/6wA79cSdzxrsZtCoiMTO9CNovYCnQ4HDIOq0iGRcGhS+CUQ+QEuwg+9gaN/zWIvz2EPj8fe00Ftrnl2Gsr0uH1hbkXfZR6hhnOluL330TPyxbue/V3ZH7o/Tzx55PTTw7ud3PPfY/x0x/cTEnx1BodaR02Fnz3H6j4249w4N9/zI5bfkLhuif55y/dQu+HlvHGHomdb7bSeXTo9F8Gk/KCuNAk4gpPva7w3GtFLO3pZ5nQwfx//Di13/riBamNPsNYBEFAK02ve7aqqoRjCj5VR1CfjhqaKLBYZ9Ck87sn6Pzx+ydfHUGrk3FlSmiDQ6gjIljnnLzx4+7duwHYsWMHOTlja2UPDKRNR7/0pS/x1a9+lZqaGl577bVJ79+lwIy4nWGGaUYkkuCJpw7x+z/uZXhoYuFiyzBy1U2zuXV5GMfuv9L299t5Z+cAxqJ85vzz31H2iTvROqZfT+ipEAQB+4KF2BcsBKCksZErQq8TmSfQoZ/FgU4Djc0x2hoHcXeem2DUGzXkldgpLjZSnpei0pWkujKbrMJyRJNrzIMkEIzR2xugp8dPR7eflnYvra0eOjs8eD2Tr796JuRlG1iyrJgrVhaxdFE+DsfYcO9hb5Q9Bzo4sL+dhtYQrc2B09a4jcVVOgahAy0w0pjb40b8k5sMi4AspsOhBEFNz0m/FgVIKCKBaHpkWFGcwEiocIK0UD1m1p0amc6cZEJhaCDC0BjjbwkoRtbMIq/WxKwbNZRmRCjGjaZnL96fPsWev/GgyhYyViwgc8V8MpbPJ2NJDbLpveMUOcOlT951a9BYLVz70/8k/wsf56e/7CIRO3499fUE+MgnnuD737thSmrhvhtjfjbLf/kfzPnyx9n3Lz9g600/xbXwET74wfnc8w/XUue/knfeHmT3xtZzKmt2MUkKMlvzV9Bcs4aCa9fNuKjPAKSNnTzDITzeGPHTRBwYTFpsdi1GOY4iaAnGZIK+6Bl5iRxDAJtDT6YhSry3n6TOfKzMz0mrTVLk+v1+/H7/aT8fTwBf6syI2xlmmCYEg3EeefwAf/zTvgnzLwByimysv6WcG+f2o33tDzR9eA9HGv1kr1/B6qf+nbyb1l42RjuWigosI3XSylMJVtTXEXS1EF6ZxG/IpC9motevo2dIYGBYIR5XSMRSxOMpUkkFrU7CYJQx6AVMBoEcR4o8a4JCu0K2Q0dGXgE6ZzGCznqaPQGLWYe5XEuO4qew+SgVR/cw8PZuAo1tRCQdA8YsPGWzGcqbRY9qxz2cOiNnaVkjUJItUpzsxdXRgL2+AVMshPyGEeNNV+G/81rMN16Fxmw66e+cdj0bVlewYXX6OEVCwxw8dJSN24epOxSm6dDAhL3J70ZRYMB3up2++OGFyYRCR2uAjlbYCIAVQViKK3cdVffpmJcfJjvSSHD7E7T96pf420PY5laQuXIBWauX4Fq9BGPB5fdAn+HyImvlQox5PyTxD1/mW1+6g+/8Oox/+HioQygY52++9Cyf+cwy7vvQginLwz0Ra2Upqx/7EZ699Rx+4Nfs/PqL6L77DqU3FrL8w+sZvHUZO9od9HUFGeoLMtAbwN3pw+eJoJ4HvwOtXsaRacRs12O26jFZdZitOkwjywajBlkrIcsisiwiadLL0UiCzc83ULe5fYwPQ78nzle+9jJLl+Tzt59fQc3cM/OimO4oqRTxYR+xgWFigx4SgRBKPAaJCKTCkIpBKkEyHiGzsx1Fhb7BHjQWB6LejGi0IhnNyGYjsimdJqKxmi+76JhYNMHgoJ9ASDmtV4fRosNhFTFKEaRUACWcQtKK6CQZa5aRsGIh4IsTDsRRJ2gICIKArBHRaGU0WhGLUUUX9hBpC2MoyEPnHH9wYtTTJBIZ31X5m9/8Jt/85jcn3PdzqXN7qTAjbmeY4SLj80X58yP7+dMj+wkG4xOuV1KZyXW3z2JDYQvxx/+Ppq8dItgTJv+WdSx96PNkLpt3Aff6wiNKGsw1yzDXLDvpfTUZJeVzkxjoQkklUZUUiqqgqio6qw2tPQNBawKNCTSTfyCrqkrUPYh3fwOevfUMbqljYEsdsYFhACStiKPCRt49ZVhXziExp5b93mz2t8j4jvgQ/YOkziDPLJVUiWitxGpKsLzvCpYV9GPYvYWBV+rpeeFVOh59EVGnJfe6Kyl837XkXnflsRJDJ2IwOVm6bBlLl0EiHqGvp41N23vYcTDGwb0DePpD42z90kdVwd0TxN0THBG8hWTmVDHnDiPzS2KUKK1o6nbT9J2X2PZRL4bCfFxrluJavZis1UuwzC657BprM1z6mIrzWfK737D3i1/lgY/P4T+etNPd6j32eSqp8rOfbufZ5+r5+leuYuXywvOyH44Fc1j1p+8z/z//jiP/+yBNv36MI3/6JdlLnqJqzRxUbTk9fVbaj0I0dm6i1mzTkZVnJSvXgtNlwpltJiPbjDPbjNmqS1+nqoJGiaBJRZBTYTRKFE1qGEmJIaopBFKIqoKgphDVFCmtzOz759F5dw1vPHWYnW+2jhHfO3d189FPPMHqVcV89jPLmFM19v46XUn4g/jqm/EdPkrwaBvJ4W6IDCERRGtMoc/Qoct1kMjIIqS1ExQM+BUd/rhMJK4lntITS1qJO3ORRJXmVApzJIFV7cec6sEciWLsD2NIBGDIQ9ztIxkVSCV1KKIJdFZEcyayMwdjQR6mknxMRXnIxulbE1lVVaLhKH5/mFBEJRo79fNaEARMFg0Os4I25iM1FCMSSZGMJlGVtEOy1qJBa4tj18uY7XqiDhOBgEI8lkQQQKOVkLUSOllFJ6WQ1ASiEkYJx4j3xogpGiyVZUi6icPjy8rSNa937NhBKBTCZDJNuO57FWGiHoUZZpgsgiAUAJ0AjY2NzJ49+yLv0aXB8HCYh/60j0cfP0gkMnEIy+zabG64vZirnAcJ/uE5Gh9tJOaJU3jnddT8y+dwLJhzAfd6fM7ULXm6kYrG8NU3493fkBaz+47g3d9wTMgC6DN0ZM51kDE/C+PKWvx5VdR12znYItDc4KGzeXhKyxKJosCs6iwWLbRyVZWf3M49DL24h54tboLd6XB1e20FOdesIufaVbhWLzllQ0JRUvg93TS3uWlqC9Dem6SrL0lfb5j+Lj8B79mHVhvMWsxWHRabHqtVg80m47BpcNi1ZDr1ZGSYyMqy43I5MRm1CIAogoB4LNxZFASSSQX3YIje/iC97gD9/X4GB4IMDoYZGorQ1xPCMzR+b/VkyMwxM6/GxPLyMHOjh4ls3sfAnkE8TT50WZlkrV48IniXYKutmPYREJf6dXe+uZyOj6ooHPqvH0GWhwf2zePgbve4662+qoSv/v1qcnMs521fvL4o77xxhFcffoe9rWH88tk1rh1ZJnIKbbgKrLjyrWTnW8nKt2Ky6BCVOIaEB33Siz7hHZn7MCS96JI+ZCXKmXZFqYDHUEq3bSkHBrJ4+rd7aDncP+H6q68s5p73z2PZ0gJEcXp0fKmqSqTbzfDug3jqDhHtOIIYdaOzpjDOziGUV0qvkEWnx0DXsEzvgMrgcAq/P0HAGz1lNYLJYjBrsTn02GwanHYJhxWyrCkyrQmyzTEyRS+OkBulq4+EN05SMaDKVuLrrkfKyERnMVNWXIKo1SLKF+4eq6oqqVgUvy9MKKYSiakkT1NiD0CWRSwWGYucQIolUBQhfe6lc3dGv5yEL0Aykg7Rl7QiOpsWrUWDqtWRErUIqoqoJhCScZLhJMlIkmQkRSqWQtRq0WU50WdnnNTJOjrK+uabb7J27VoAAoEApaWlDA4O4nA4qKysRKfTkZOTw1/+8pfT/p5zGbltamoimUwiy/Jp2/pNTU1UVBzzeylUVfXMSkCcAzPidoZzZkbcnhn9/UEe/GMdTzx9mHhs4nDRqkV53HhbIavN+/D85mmaHmsmEU5R/IEbmfvPn51WJlHTvRGpqiqxIQ/B5k6CLZ0EmzuOLQeaO4h0n9xQNGUbsJdbcZRbMdcWINfMoUsuZk+7icPNKVqODNLfNXEuy/kgr8TO/MWZXFUToSpxhNBbu3Dv6GNg3zCJUBJRqyHrysXkXLOK7HXLsc+rRDac2k1VVVXisQDhoIf+IS9H2wP0DcRRlHRDcHSuKul1FVVAlgScdplMp4GsDCNZmVZMZis6nRGtJJ330c9BT4T99f0cqnfT2NBPa4uH3q7AGYWAQ7p0U1mVk8VzZa4oHiK7dQ/D77TQu6OfYHcYjc1C1qpFuNYsIWv1EpxLaqad2cx0v+4uNpfj8el47Hl8B57jIflmXnu+Y9x1tDqJ++5bzCfuXYhWe+7iweeLcqRhgF17eti2vZPD9f1ndL1Jskh2gZW8WQ7ySxzklTjILbZjNGvRJIMYE4OY4oMYE4MY40MY44PoUv6TxGsqoRDpjxAeiBIejBIPJEgEEyRCSRKhBPFgep6MpFBS6ogBnoqSVFFTKoIkkLMkk6K1eWTWOPDrcjnq3MCmvSLPPViH7xT+FkWFNt5/Vw0331iJ1Tp1DtWTIRWL46k7zODW3USO7oNgF9o8E8NFc2gnl6MDBjr6wN2fZLA/dFJe9sVEFAWsTgPOTD0ZThmXU+CqlVk4bAaMJiMl2U7EVAI1kQRVQEUCUUKQNAiyjCDJCLKMqJERZAlBFCf1bFFVBTURR43HSMYTxJIKsZRAIgXRuHDa0dkT0RtlrAYwyyAbjCgqIAioCCNzAAFVVVFVFUEUIJkk5Q+Q9PpJhdMdxhqjjKQTURU1LWbjCoIooLGY0djMaKzmCV3/xxO3APv27eMb3/gGW7duZWhoiFQqRXFxMW1tbaf9XTPi9nxtVBAygXwgC8jguA3JANCiqurFT+qaYdLMiNvJ0dHh5fd/rOOvLzSQPEW4au3yAm66NY8V2j0M/vJZjj7VSiqmUvLhW5j79fuxVpZewL2eHBerEZmKx4l7/Ol8okEPkZ5+wt1uIj39REbmo69TkbEjkzq7FkuBCUuhCdssC+baYqTqCnrUXA71mmnqFGlvC9HVPIzfc+YjhoIAJbMcLFyQR+XsDDKdOpqb96GRBTKy5nDg8CB79/fRcnTotKUBTsSeaaRynouFVSLLSzzY2w/i3XiA/l0DDB32oCRVBEnCVl2Gc3ENjsVzcS6qxrFgzrQOEztbIpEEBxsH2LG7m7q6buoPDpyxu7Ujy0TtfDtrauMs1jUQ2VRH3/Z++uuGSEZTSHodWWuWknfjGvJvWoulfGy95wvN5SjeppLL9fgM1x2m7SffpveG9/GLxxN0tXjGXc/uNFBd7WJuVRbVVS4qKzLIdk2cmqEoKoODIY40DnLkyAANjYPUNwzQ13fmTvUFpU4q5udQMT+HkspMZI2EIT6EOe7GHOvDEuvFHO9DmzouKmP+OP6OIP72IP6OEKG+MGF3hHB/NF0WbIqaq8YsPWW3FFF+RwkB11zqzWt5/c1h3ny6ntApXG0lSWDpkgI2rC9j7ZoSnM6pN6kLd7sZ3rGLSMMe4kPteE0W+uwltEedNPfJdHQn6esJkUpees3kL36+kqJCCw6HCZ0+CwSQJBFJEpBlAVkCSVSRxLSZoSiAiIKoqogoCCN6RSEtMBUEFDUtMhU1vZxICcQTKomEelY17kfzYCUxfT0oyuj8bL4rXaJRFAREETSSil5NoImGkQURUacdKYOnQdJpkYz6Y3Xdpysz4vbEjQiCBbgNWAusBspPsXoI2AZsBp5XVXXPed/BGc6JGXF7ag7X9/PbB/fw5lstE/Z2C6LAgiuKuOlmF0vUHfT/4q80P9uOkhQo/djtVH/t/mlRey8VixMb8pAMhkmFoyRDYZKhCGGPj73bd6DGk8ytrkYz6jo58oOP3WfeNT/+fnpZTSZJRWKkojFSkSipaPz4ciRG3JsWsvFh37H9OBWCCDqHDqPLgCnHgLXAhLnAhGF2PuKsIsImF60eG60DOpq7BTpag3S1DJ91iK4oCpRXZLB4YR7LFuezcH7uST39EzW2I9EEhw/3s2dfL7vqetlb10NikiZQkB7VrarNYHFFiiXZfWgO7ye4txVvkw/PUT+BrhCoIIgi1qpSLJWzMBXnpaei9NxYlIcu03FZ5J2mUgqHGwZ5Z2cne/Z0c/igm3Bw8mJXb9Qwd6GLK+bBmuIetPv30L+li56tbgKd6Zxly+wS8m5cQ96NV+Fas/Si1Nu9XMXbVHE5H5/owDCHvvkAhpIIL5uv54nHuwmfwrNhFItVR1lZBrIkEArFCYUThENxwuEE4bNxeB3B5jSMiNlcZtdmY7HKWKNdOCJt2CIdWOJ9yEpaOCpJBW9LgOEGL96jfvztQXwdQWKe0+8/gCDLaB1WNDYLWrsFrf34smQyIGo0iLKEIEuIGg0pVaGpsQmlvg31cCtKPP07NSaZ2bcXU3F3Ob78BTQYlvPa617eeqb+tMdSFAVKy5wsmJfDwvm51NZkk5drPaPw5bjXi2/3DgINB+ga8NKlWuhSnXT59HT0KfT1RE4Z3XWpMUbcvofRakX0WjAQRxMOkQrHUVIqkkGHxmxENpuQLcZpFy00I24BQRAWA18C7gRGW3iTufJP3KkG4CfA71VVvTydUC5xZsTtWFRVZfuOLn77hz3s2tU94XqiJLB4TQm33JjB/NhWen/6PK0vdKIiUfbJu6j+p09jKj51mQdVVUlFoqiKAoqKqijHJlRG3ldQRz7j2OcqqXCEuC9Awhck4QuQ8AWIjyzHBj1E+4eIDYzOh0n4L0yt2dMhGyR0Vi1amwatRYvOqkFn12HM0mN06dHnWJEKciAri5jWxlDMQrvHSHu/hg439PeEcHf5GHIHzylPVquTqJrjYvGCPJYszGX+vFyMxonLSUy2sR2JJNi6vZNX32phyzvtBM6gRp4kixSWOykotlJaIFCRG6XCMoCmvYVwXRPehmECXSEiA1EiQ1GUE3KOJKMBY0E2WrsV2WJCYzEdm2sspnT4lFGPIEkIkjgyl9INyRNeH18WR0LMRMSR1xq7FX12BnpXxgXrpVYUlfqGAd54u42tW9tprB+cdE+8JItU1LpYukDP1VWDZHfvwf16M52b+/AeTYemS0YDOVevoPB911JwxzVobecv3/FELmfxNhW8F47P4I79HP2fB9DfsYzf7C9ly+sdZxyifzZotBJlc13HBG12vgVrvA97pBVHpBVbtBNJTed3+juCDB3xMnzEx/ARL56jfpRTRC9JBj2WihLMpYWYinIxFuVhKso91gmnz3IiiBNVHB3LiefB+iuuxPtOHe1/eo7OJ19FTaWQ9BIl1+RTflsJydolNOqX89b2OFteasR9BuknsiyQlWUgL8dAVqYeo15ErxPQyipqLEIoECUSTRJNqPgiIsNBAY83hc8bP6uRwUuNGXE7PoIgoNNLmHQKxlQE1R8kGUlXW5C0mrRLtcWEbDIg6XVndO5PNe9pcTsiar8NXDv61si8F9gJ7Ab6gWHAAxhIF0t0ABXAUmAeMNpKVEfW/X/AD1VVvaSKqgmCUAR8EbgJKAJiwFHgUeCnqqqeevjp7LaZC9QDo17iG1VVXTvV2xnZ1kURt6qqEu7sxVN3mOG6ejx1h/HubyAZCCEZ9COT7thcNhowlxWRd8NqstetOC8jLYlEildfb+YPD++lsXFwwvUkWWTZ+lJuvd5Gtf9tun7yIofe8OAxZmG7YT2W9asJC1o8vghDfT6G3V6CoRgaQUEnKmiFJDoSaJU4WiWGXo1jiXixBAYx9fci+72koilS0VT6Jnm2D04hnS+iMWvQmGS0Zs2x/BFJJyFp03NRIyJp06/T6SjCsb+Hd70WTujhGimimv5YQJSF49+rlZB0IqJOQjToEPQ6RLsVrFYUvZmEaCSKHm9Mz3BYy1BIQ79Xon8YhoYTeAZCeAbDeAfDxKPnbqIBYLHpmFebw+KFeSxekEdVVSaaMzDEOJvGdjKpsHdfL6+91cJbm1rpP4sQQUEUcOVZyCuxU1Igk5+RItOcwGWK4BS9aIaHSPYOkGjvI9rnP2ZykYyl56loOk8oGU2hJhUEWUSUBURZRJSE9GtJQJAFBK0MRgNRo4OQ1kxYYyYkGwkJesLoiSUFYkmBeFIgrkokVCk9V0SSqoDJoMXpspGZ58BpN+CwG7BZddhsepwOA7NmOc655EkgGGPz1g42bWln5/bOSZtUiaLA7HnZXLncyDWVbjK799L3Ziudm/sYOuwBFUSdlrwbr6LknpvIu3ndafOez4X3gng7F94rx0dVFFr/+AzeTY/Sd8Od/OqpFO1NQ1O6DVkjkltsp7wmm4r5OcyqysKqDuOItGIPt2GPtqNR0hEvge4Q/XVDuPcM4t47NOGIrGw2Yp9XiW1OGdaRyTanFFNx/pQ24Cc6D8Ldbpp+/meO/uKRY+aBWbUOym4vwb5hIW7HQrZ05LD5lXYO7+4+ZTrRxcBk0aIzyETDyUmN2k+EVitiNGkwmWR0OkgmVQKBFD5ffEpNEi9ncSsIwoQlf84UnUHGYgATEVR/iEQocawTWhAEJKMe2WRIi13jiOC9QBFX71lxKwjC74CPAKN3pj3Aw8ATqqqO734w/vdogTXAh4A7SIs0FegAPqKq6ttTud/nC0EQbiL9+8cvWJUemb5RVdWWKd7u46RHzEe55MWtqigM7TxA93NvMLhtH566euLD3mOfG116Muc6MGTq0Zg1yCYZOcOOmpGFX5+BO2VFjcaQ+9wIbT3YTDZcq1aTd9M6DNmZ57RvHm+EJ548xCOPH2ToFMYUOoPMsvWlLKxQSTXs5+Dr3bT6LQwaMggrUzeKpdVJ2J06HA4tTruIzSxgNylY9SlsugR2KYpNjGCUY8iSgEYrIGvSuSajIkXU61B0OmKKlpiiIZqSiac0xFJSOq8lJZBIMJLjAokUJJPC8XwYdcR0YSQnRlVJjyQDcPJ7o02GZEognoRYnJG8mZF5PEUiniISjBMKxAgHYoSCcSLn8EA/HXqDTPnsTKqrsqid46K62kVJsf2cHiLn2thWVZXmlmG2bOvgne1d7N/XS2wKhLvBpMHiMGC1G7DaNMiygCSO5D9JIIkgiyqSqKKq6VIf0ZhKNKoQjaWIRRVi0RSxWIpwKEE0FD9vo0darURVVRYL5+Uwb14O82pyyMg4+9w3VVVpah7itY2tbNzUStORiTulTkTWSsxdnMeaZVrWl/Zg791P92uttL3chbc5kF7HbKTg9g0U33MzuddcgaiZeFT/bLjY4i0VjZHwB0kEQiSDYZKhcNrIR1GOpR5IRgOyUY9sNKQbZUYDkkE35cdiPC728TlblFSKqHuQcJebSLeb2KCHuNdPwhtIp2acsCzptBgKcjAV5qLLcuDZtQfL7BTuxes53GfmaLdAd5uPnjYv0UmGHeuNGvJK7OTPcpA/y0n+LAeuPDNm1Yct2oEj0oY90oYule5oC3aHGDzkwV03hLtuiLB7bGeRZNDjXFSNc0nNsclaMeuCjEKd7jxIxeL0PP8WbQ8/R/df30SJJ5ANEnkrXOSvL0K+ei3d+kq2HtGxf0cf9Xt6pqzDdDLo9DK5Li3ZmRKiXsuQX6Cz1UckdGZh5BmZesrL7VRVuSgtyaKk0EZhoR3bSHmldx8nnU6PPxBjaCiMeyBE/2CQvj4/XV3DdPcE6O0NMTgYnbQAns7iVpJFZElAGnn2yZKAJI3OBWQpnYc70j8PaVupNKqanoTRPGBOmlIKJJIq4UiKaCR1RiJYZ5CxGAXMUgwhFCIZPm6aNoogishGPaJeh6TXIul0iHotkk475dfXe1ncKkAceBD4vqqqjVPwnTrgbuDrQBXwTVVVv3Wu33u+EQRhPrAFMAJB4DvAm6RHqj8IfHpk1SPAUlVVpyTmUxCEW4BnSY+Ou0beviTFbSoao++NbXQ/8zrdz71BpHfg2GeWQhNZ85y45jmxLplFML+KPT3ZtLkl+gYU3ANxBvtCDLmDEz6INFoRo0HCoBfIdsjMrcln0dIyqiqzyM05fU3U5pZhHv7LPl54sZH4KXIkdXqZjBwzqUiY/v7z1/CfCkRJQJRElJQypb220xm700BxsZ3qqixq5riYU5VFUaF9yss/THVjO5FIceCgm3e2d7BtRxcN9QPvifC2d5Ofb2XBvBzmz8tlzZXFuFzms/6ugYEQr77VwmtvtnBgb8+kjL4MJg3zVhSwfpnEVblHEQ/U0fZSB+2v9xDzpjtgdBl2ij54E7M+ejsZS2unpKf9fIs3JZkk2NKJv74Z/5EW/A2thDv70kZtPf0kvGfvGC7IcjrU/VjOpBmt3ZpetltOzqe0W9HazOn5yHuy1XzaUk3TUdwmgiEi3e600V23m3B3/7teu4n2DaKmxn+eiLKAzq5D79Sit+tQVYj54sR9caK+OKlo+u9EjUjG3Aycc2xYV85BnFdNp5JHfa+J7gEBWSOhM0joDRr0Bhm9QcIwMuVYIphTw2nn4sQghsQQatBDIAjxuIqnJchQo5/howGGWoJE/Un0yRj2mPdYg1/rsJG9bjnZ61fgWrME65yyi2aWcybnQdzrp/PJV+h+9g3cG3eS8PqR9BJZNQ4yF7gwrFtKuHw+B9126lsU2hqHaWsYIBw4945Wk1VHdqaWLG2cjMgwxbYgjopMWoRcdtcrNNcPTfqZLAhQWmZj4aI8Vi4tYUFtDg7Hqc//s40s6nMH6Oj009oxTHvHIF1dPnp7Q/T1hYlFj5/HF1PcimK6A18ji2hkAY1GRKsR0WkltNoRd2bh/He0KIpCKBQjGIoTCifPKKdaq5Mx6EWMegUDMdRwhFQ4QSKcPCm96EQkrQZRP2JcJY86UEvpuSwjaKT0dSkIk3omvZfF7U+A75yPHyGkj/zdgKSq6p+n+vunGkEQ3iRtopUE1qiquvVdn38FeGDk5TemQrALgmAGDgOFwEeBP4x8dMmI24Q/SPdf36TzqVfpfWnzMdMgSS+RtzyLgjW5ZCzJJ5JbSUMwn22NRg4c8HP0gHtKRrFGMZs1zK7IorI8A0VRCYXjhEKJY/NgMEZHh2/KtjfD+UUQBXJzLRQX2ymd5aR8loNZJQ5Kiu0XrLzD+W5sB4Nx9u7r4XDDIPWNAzQ1DdHb7Z/WnSlTjSDAvNocrrm6jKvXlZGdffZCNxCIsemddl55o5nt2zqJx05/f8nKs3DFunxuWhSgIrUP39sNtL7cRc+2/mN5htbKWcz66O2U3HsrpqK8s96/qT6fIu5BBjbvYmj7Pga37WN496FxXcYhLZ4MTl06ZcEoIZs0yAYJURQQRiaAVDwd0p6KnTAfWU5EkiSCyVPmX54K2WI6ZiYkG/XpsiEaOW0opJFRBIGB4SGQRXLz8pBHG3GieLwxJ47Mj73Psc9Pek8QYLQciTDy+8b5LoBkMDx2lNUXID7kPbVvgQB6pw5zrhFzvhFzrhFjoQ25KI+UM5MhMYP+uJkerwa3R2LAo5JKqei1oNepGLQqellBJyTRESczOoB94xsMbGpD43Bir8jElJHEnKtBa5SR9RKyQR6ZJASthDusp6VHoq1PpmNIR3fYQm/MiC92emGq10Bpto75tTksWzeH2tqc8+IofKac7XWipFJ499bT9/pWhnYcwF/fTKCpHdQklgITpiIbxkUVyHMr8Vtz6Y8bcAc19PsE/EGFeFwhHlOIx9KpQToNaDWgk8AgpjDHA2h6ejC4+zB3tZKZ6sd1bRU981ezczCLun1h3N2T70Cy2XUsW57PhrWzWbGsAIv5zFKvpvp+oqoqXm+Uji4vrR1eTPoAJqOM2azHZM4mlVRJKerZp02NIAgCogSSmHZd1sjiMfGq1crodJq058M0NEtMJhUCoRgBf4xQKDH5UV0BdDoZvV7EpFMwSHGIxVGicZS4kr7vxs5sgEIQxfR9bWQuiOLI/XFkyBqB7rCfqM9PrGeA6MMvHbsXnnwPTb/XG/Tz/hd/P/r1l7a4nSGNIAhLgR0jL3+hqupnx1lHBA4Cc0jnHmerqnr2doXp7/wR8LfAm6qqrhcEYfQ/eFqL27gvQPdzb9Dx2Ev0vvw2SizdCzoqaAvX5pKxqox+Ry1vt+ex+0CMhn19DPQEpvS3XGw0Wgl7phGjWYvBpMVo1mI0yViMKmadQjyhpENBowqRqEIsqhCNpggFE3g9MYK+SyodfUoxGDVkZprIyTGTm2MhL9dCfq6FnBwLuTkWsrKMZ5Qfez64GCNJ4XCCpuYhjjQMcKhhgJYWD0NDYTzD4QvixKnVSRjNWsyWdE6XwSCh1YrodCJarZDuPdcJaLXpsPhgVMIfFgiGUkQCcULBGOFAnHDw7M7v2tpsrrm6nA3rS8nJPnujp0gkwZsbW3nupQZ27eg67YiuKAlUL85n7WoLG0o6cLr30fVaG20vdzHcMNIpJghkr1vOrI/eTuH7rkFjOTMhfq7nk5JKMbzrID3Pv0XPCxsZ3n3opM81JhlriQVbsRlLsQVNZREBez79goP+qIk+r4w/JBCMQDCsEg4rJJMKyaRKMpVutB4r8yELaEbKfcgyaCTQacGgUzFoFAxSCp2YwCDE0aVi6FJRtLEQ2mgITciPxu9D8vtRgzGS4XRN00QoLY4ToQSp+PTKhxwPSS+lTe+y9BizDBhdegwuA7o8B3JRLtGMPNqDNjqGDXQOyPQMKPT3xRgeCOH3RM5KBGh1MrPLjcxx+Cls3IXmjR045s7BuayGiMVJkzvBka4ILREtXQkDCXVqR69c2SYWLczng3fVUFuTfVEExlTed5VEIl0rvbUrXYbO4yPu8ZMMRdLGepr0iJhk1GPIyUKfk4lsMuA7fBT369voeWEjscF06SZBEsiqdWK+eQX12YvY0WrgwD7PGY0CF8+ycuWqWVyztoyaudnnFG10vp9PE436KYpKMqWQSiqklHSI77G0JdI1ZNMpTSqiIIyEEEtIkoAoilMeYXWxSCkKgWAcvy96ZkJ3BFkjIWtEtBoBjayik1W0YhIpGUeNJ1CTKdRUuu7zaC1oZeS1qowc49Ns0k2C8OAQocZ2ur/0wCnXHSLBF2kdfTkjbi8HBEH4T9Jh1AArVFXdPsF6XyUdrgxwraqqr57DNpcBW0mPFM9TVbVhOovb2JCHnhc2Hhe0I/b8JwrazCtmMeScy5beIt7eEWX/ts5T1qE7FbKc7o06kxIr5wtBFMjMMZNbZCen2E5BgYHynCilliE0w30I/hBSCvRGG8aS2RiKKxEMGQjixL3nqqoSjiXp6QvQ6/bT5/bT1xdkaDiM1xvF543i88Xwe2ME/HGS51gnT9aIaEZuphpZQiWFJAnodLpjD5u0X5TAiSZTIx186ffh2GfCSM07nU5Cp5PTk1ZCr5PR62X0OhmrWYvDYcBu02O367HZ9NhHDIfO1WToQjCdwiRVVSUYijM4GGZwMIx7IEhff4hhb4RUalSgKOnlkdeplIIggMGgwWDQYDRqMBpkjEYtRoMGk0mDxaTDYdenJ5seg37yuZWqqqBGPcTaGwgcPUw06CGlEcBpBUcm7qST/Z0Wjh4N0t4wSEfT0BlFa8yrzebG6yu57ppybLazH633+qK88tpR/vpSIwf39512favTwLK1xdywLMl8w2E4coi2l7toe7Wb6FD6fibpdWRvuIKCW9eTf/NaDLmu03zr2Z1PsSEPva+8Q88LG+l9afOxhjakUz1c8504azIRF1RzRC2lvtdASzd0dsVwd/kvuqmOKArpcFqdhE4vYtAJ6HUCBn16rtMK6LUgSyAKChIqIioCKqKQXhZHqmSmP1PQiim0wshEEg0JNGoCrZo27dMoMbSpOHIyjpyMoUTj6SqbooAgnTDCIaZN8WSrCdFmQrCYSRpMxHVGYpKBsKLHHdTT79cy6BcZ8gkMe1P4vTE8A+GzqqV9puj0EoVZMOxTGPZf2PZfRWUGH7lnAdduKL+g9+uLcd8NHG2n+7k36f7rm/Rv2oWaTN+nNGaZnFX5JK+5ijpms7MejtYPT7purSyL1M7PYu1V5Vy9ZhZ5udYp2+eLJW5nGIsyInR9vhihUPyczKoEUUCS0p0AosgJc5AEFXF0YBY1be450qlwjBO23T/YTygYxu8LcnhPK+pobrFC2l9FhdSISPb6PDzwwy+P/umlL25HRg//oKrqrin/8ksEQRA2ka7pGwLsqqqO2wITBGEl6bxcgG+pqvqNs9yeDOwC5gP/oarqv428P23EbTIUpv/t3bhf30rf69vw1B0+bjpygqDNuqIYj7OaXUOz2Lgzwb6tnXgHJ28oXVzioLDIRmGBjaJCGyWFNooK7biyTEiSSCyWxOOPMTTsZajPjbu9lwFPlFavlvaOON2tw2ds1HAqREkgp9BGQamT/FInRaVWZmeHyVTdGAOdpA42kHSHkF2VWJetx75g3nnv3R4VNtFIckS4jIiYpEIqpZJMppAkEa1GQqOV0GoktFoJzbG5eNI+TifRNp2ZOU5nRzISZXjnXnzbXkP1NGBeUERq9hyGtcXUDzo4ejRMa/0A9Xt6JmWaI8sia64s5uYbq1h1RdE5NbR7+wK88HIjTz93hO7O06cplNdkc+XabK6rclMQ3od3ewutL3XR/Y77pNFH59LatNC9ZT32eZXj3hMmcz6pqopnbz09L2yk54WNDG3blzZ8Ih1a7FrgJHdlNqa1i6iLz2bnUT31jVE6jnom3eB+LyGKArJWQpLFkY464Vgo9minXjKRIhFLEY+fg1P9JcDobxYEzqjTw+7QcecdNXzwrtpzMoObLBfivquqKr6DjbQ/+iKdj7+M/8hxj1BrsRnXNRX0LljNzqFs9uyP0Nc5+XBjq03L0uUFbFg7m9Uri05Zbu5cmBG30xNFUQiHkyN5uvEpTb87U2LRATyeEB2dAX7004ZTrhuPezi0919GX14W4lYhLfsbSOd8PqyqaueUb2gaIwjCAJAJ7FNVdcEp1nOQLnME8Jiqqu8/y+2NjgA3AzWqqkZH3j9ncTsiXk9FDukST+zfv5+iTBfR3oFjU6i1i4FNuxjevg81cfyilA0SucvSgta1shBvRjX7AqVs3K1S907npEOOrTYdS5bks2p5PsuX5p/WNGEiokMeXn/wOV4+lGJPK6hn0K6TZBGb04A904jNacSeacSRZaJwlo3y3DhOxY011oPc00poVwNBt4qQUY558RVkrlmObLq0RU40GmXTpk0ArFmzBr3+wuSwXmrMHKdzR1VVfHuP0P/iS6Q663CUyNhXVRLMmE2PtpKdTTr2b+vi4I6uSQldq1XHNVeXcsN15VRVZpx1x5Kqquw/0M/Tzzew8a02YqcJ+TaYtSxeXcyGVVqW2ZuwDR7Gvb2Xnq1uerb1E/cf33dDYS4ZK+ZjKMrFWJiLsTgPY1EuosvJlt07gfT5pNPpSPqD+OubGd62j+Ht+xnaupdY//GyMIZMPXkrXWSvyiexeDkbO/LZdlDlcF3/pN10Z7h46PQSmVkmMl1msrNN6PUaotEE4XCcaCRBJBxnaCiC1xMjGjm7RrDJqiMrz0JWroWsPCvZ2TqKshLk2aLopCSSoCALqfQouJpCQKHbb+RQl57G1iQdTcN0tQyf1lFYlgXWrS3m059YQn7e+asNfb7uu6qq4j/YRPeTr9L91KsEG9uAkU6jhZmYblzKkaxFbG8xcGCf94yizgqKLKxcWcS61cXUVrsuSOjt+X4+dXR0kEql0Gg0lJWVTel3v5dIpRTCkSShcPq6vxDpRaPMiNs06gnzjaQdlJ9QVTU05RudRgiCoAdG44ueV1X15tOsHwRMwDZVVVeexfZKSefuGoDrVFV95YTPpkLcTvok+ZGmgowJ2keiRiSz2k72okyyF2Viq87EY6mgPjabN+tk6rZ00t3iGf+P30V+oYGKUg3lpTpyczTnNNLp8SSp2xdm38EIfv/pGwOCAAVlGVQuyKFiXjb5WQIZpigGJYgu6R+ZAmjjwyQPH2X4wACD3Uk8Qgbx4hLEmlJE50SVoWaYYYbJoqoqSlsvytYD2AZaKKw1krOhnED+fHr1Vexs1LFvWyeHdnRNKhojM1Nmfo2ReTVGrNazH82NxRQOHo5QdyBGd9fpQ00LSp0sX1vImpoY5bpWHIEmfAf66N7qpvsdN4HOUzwyrSYEuwVCEVRfEJInN3QEETKqHeStcOFaVUi4YhGvH81l084E9XW9ZxVmLGtEHE49Nkc6l1qvFzHoRfS6tCOpJIIkCQiCSkoRUJT0bqUUlVQKUikVJQWJZNpwJxFXiMUVYrH061g0NTIlL+ooxcXC5tCRkanD6ZBx2kXsFhW7TcRmlTAYxDHPu1RKpbk1xqHDYY40xoifQ/6xKAmUVGZSVWVmYXmSpZkdWPsOE2jxMnjQQ9gdIRFJkoykSIZH5tEkOpsWW4kFS7kT3cIqKCunJZHD9iMaNr5y6ugrSRJYssjMlStNmM3TP71E6XST3LSX5Dv7UHvSpcP0GTpy1xQSX7eGPclSdh6GpsNDk45+kGSR8goL5aV6yovBbrs4ztLnk4yMDAwGA0ajkdzc3Iu9O5cNiqKOpBGl77PJpEoqqZJMKlNuJvleF7frgXtJ11kd7Y4b3VAYeAp4CHhNvQyTfgVByCJdhgfgEVVVP3ia9d2kS/YcVFW19iy29yqwYbxtXXBxyyyyDXoMGXoMGTr0GXrMuUZcC5w4a7MI2woZ0pVwaCibvQ0qB3b20Fo/cPovBlzZOuZW6aipNuB0nNuNP5FQOdIYYc++CG1t47uBnojVYaBiQQ6V83NYWCVSKHVh9Tej7DtAuNtHdChGZChKJKQSS2mIoiOqtSBUzEKsnRGzM8xwvlFVFaW5i9TGPWT42yle4SRrbTk+Vy09+ip2NmjYvamdQzu7TivoBAFmFeuYV2tkTqUerfbsTXbc/Qnq9kfYfzBMJHz6HvbCcic1S/JYMU+k1tFJVriJZFs3g4c9hPsihNzpKTwyf7fTsMYsYy+1klnjIKvWiX1eLsOZ1WxszWfTrgQHd3YTm+SIniBAboGZ3Dw92VkyWU6VTLuAyTRWYJ0vVCCREoknRRIpgURSIJZI19iOJ1WScYVEQiU+Io5jsRTxeNooZbTcrqKox+aKCqqippcVUFIqiYRyfIorx+pqT6YM1JliNGuwWjVYrBosFgmzScBsFLAYVZx2CYdDRqM5/bFVVZXWthgHD0c40hglEjk/IeSyVqJktpO5lToWl4ap0beT3LWf4b39DBzw4GsLnJSehyhAhg3BakZj1eLM05Bx+0p26Jfy8uteWg73T7gtrVZkxRIjK1dY0OvPf1mWM0FNJEltOUDipa0o9W0AGLMN5N9YiXvFerb3u9i9N3RG4cZmi4bKOVbKZmkoLRDQ6abXb55qZsTthUVVT+hMHMmNVVUhff9TR++N6fvhmDudetJs1CyZUMCNzx+mzx3isWe70/m6I54pgiggjnqoiBAODfPEHz8/+o2Xvrg99uXpEczbgY8A1wCjimR0o73Aw8BDqqoePG87coERBKEQ6Bh5+ZCqqh89zfodpEv3NKuqWn6G2/oo6RFxP1Clqmrvuz6/oGHJRx/8OMVFGcRkM3HJTFy2ENE4OBrMYVeThsYDgzQdcE86PMeVbebaq2dx7YZSykqdZ7P7J9HYNMRzzzfy8msthIKndiTUaCXmrSjkirW5rCgawOptJrmrjuFdXQzsHyapcZF7y9VkXLkYY0EO+pxMJP2ZWe9fLsyE206OmeN0YVASCfrf2E7XY88juA9ScGUWGavLGcyYT6tYzbZdIXZtbKXtyOBpv0uvl1m7ppgbry9n4YLcsw4PjMWSbHq7nWeeb6JuT+/p/wDIyDYzd2k+ixaYWFAYwEwAfdJ3bNIm/cSHo0Q8MXQWDVq7FlVvIqDLpU8oZnubjT37o+zf3jXpe+6scieLF+exdGEOC2uzMZm0Z/V7pwPner2lUmmxHI0licZTRKPH56mUMiKQ1RHxnC7Lo6qg00ppozW9jEE/Ukd2xBhPls9NwHi8UZ5/oZGnn2ugt/cUZYVOQKOVKChzUjLbQXVxknKHh7qjGrbuTXD0iPeM8oK1epny6izmzdWxojxMhbaD+O4DDNW56ds1gOeo/ySxq7FbcCyuQWfXYplrprN2Nc/v0rHn7Y4JO5mMRokP3jGbD39kKXr9uY9gnst5EGzppO03j9P+0LPEBz0YMnXkX19O/6preLsvmx07/WfkCZJfZGHFikLWry6htjoLSZo+gnYmLHmG09Hc3EwikUCSJIqKik67bm3tsfG6y0fcnrQhQXABHyI9orvohI9Gd2AfaZH2Z1VVJ+7auwS4UCO3giBkAvWkc3v/VlXVH4+zzgU1lPr3Hz+HKmXi90TwD0fweyIMuYMM908+Et3hMHDNhnJuvG72lJQOaO/w8ubGVl56pYnGxtM3ZgvKnCxbP4urF6Uo8OzG++gbdL3VjfeoH11WBrM+ciulH78TW/UZ9UNc1swYJU2OmeN04UkEgnQ+9Rqdjz2HNtlOwdoczKtq6bct4GCohB1vu9m9sXVS96jsbDM3Xl/BzTdWMqvEcdb71N3j5+ln63n6uXqGJtkwFgSw2A04sow4Mk3Ys0w4s4y4nOAwK3iDIgNe8A5FaW8cpKV+YFIhkZIssmBRHuuvmsXVa2bhcp19XeDpxuVyvamqyt59fTz2xEFef7OZxCQiD0rnuqhZWkBVmZaaTDfZ8WYsgVYG6/rp2dpP3B9HNkiEnLnsM9VS53VS354glTyzNqE900hFbTYLqjVcWe4l21ePf/MB+nYO0rdrgJj35E5kQ56LnPXlJK9bzdMteWx+pW1CkWuzSHzinrl88GMrz6mM25meB0oySfdf36LpZ3+m75W30dm1FFxXyuDqDbwzkMf2XQE8A5O7biVJYG5tFqvXlHHt2lIK86dvFNeModTUo6oqkUiScDiOysioJsdHN0crR4iigMGgOefOr/PNmfwfNjU1UVFRMfry8hS3J21UEOYAHyUtdgtH3h7dkRTwCmkjqmdUVb3kCndeqJxbQRD+QHpUfBewXFXHWiBdaHE7d8G30WrPvNFnMmlZv66UG6+bzeJF+ed0gSuKyuH6fl5/q4U3N7bS0e497d8IQtrgJSNTj8uewhwahC43Stsg+miQ+YsLWf2ZG8m/YQ2i5vw4FV7KXC6NyPPNzHG6uEQHh+l68lV6nnsRvdRL4fp8pBXL6DXXsqvTya6NHezb2jEpY6Wqqkxuu3kO1107G/tZlhVKpRS2buvkuRcb2LKlg1Bo8vUtzwVBgNr5udx03WyuvfrcyiJNZy716y0STfDX5xt49PGDNLcMn3b9kspMFqwqZvliE7PlRlyhw0iDffRsddO9tZ++nQMkIyeHxjsWzSX/pqvIu/EqtNWV7Nrbx5YdndTt6aatxXNGOXuiJFA6x0XtogxWV0eYY+6A/fsY2NZF784BBg96UE8I9TaXOTH9y6d54kg22zd2TDiC7HLKfPqeudxx7xVnFTkx2fMg3O2m+dePcfRXjxLtdZO9JAvh7ut4K1zFOztCDE9S0JqtWpYsy+fqq8q56opizOZLI/phRtxOHcmkgs8XxeONED+D8pMmkxarVYfFrJuWQndG3E52BwRhLWmBdicwWrBrdKf8wKOkQ3vfvuA7dw6cb7dkQRDygO6Rlw8AdROs+ueReT3wrZHl1onq7p4NZytuc3ItrFhWwJpVJVyxsgit9sx7ZlPRGP6OXhr2tLP/yAD1nSH2tkfxBabePS4zy8TqK4u5em0pSxbln9X+Xq5c6o3IC8XMcZo+RNyDdD7xMu6XXsZkGiDv2nIS81fQqZvL1v2we2MrDfv6ThuyKYkwr1Di6morV15TTd6iSmTDmYvFRCLFnroe3tjYylubWhk4g2iXyVJRlcWN183mhmtmk5VlmvLvn25cqtdbIBjjsccP8sc/78PrPbUnRG6xnUVrSli2zEGVvgVX8CCagU463+ql4/VuBg95TnL+F2SZnGuuoOjOa8m9YQ3GvOyJ9yMQY8fubrbu6mLPnh7amk8vsE/EVWBl7uJcltVILM3vw+E5gn9bI+6dA/TuGCDUlx4DsNbkIHz5MzxeZ2bftu4Jv6/QJXH/B+dyw4dWnVFE16nOA1VR6HttC00//wvdz76BxiSS/4H5HKy+llfrtBw9MjmTy9x8M1eunsU1a0tZOC93WoUbT5YZcXtuqKpKOJzA440QCMTO2czJPCp0Lbppcz7NiNsz5BT5uQCKqqqXlHXc+a5zKwhCCdB6lrv3oKqq953l3463L5MSt1arjqVLC1i5rJBlS/MpmER4jqqqxAaG8Te0EmhsxdvQxtG2YdpFM12Cla6Inq6BJMkzDKU6V/QGmWXLClm/poSr15Vd0nlpU8Gl2oi80Mwcp+lJuMdN97Nv4Nu5Bb2mh8yrKwlWruBAoJTXXu7h4PYuAqcRGaNkOUSKTFEKkkPkJ/1UlrgouKKG7KuWYSyYnImKqqo0NA6ycVMrb2xspalp6PR/NA6SJDC3JpsrVxZz7YZyigqnb0jk+eBSu96Gh8M8/Jf9PPr4wVOO4ssakfkri1h17SyW5vaQGzyA2d9G71Y3ba9207u9H+WEZ6IgirjWLaf4gzdReMcGdBlnF1I/PBxmy45O3tnWyc6dXQyfQa6p0aJlzsI85i+0sarcT4HagnT0EAO73PTvG2Jg7zD68lyin/8kj26RaNznnvC7ZucKvH+BmSvXVWKrLkefdWo/jvHOg+jgMC2/e5Kjv3iEYHMHthIz5o+s5zVhCW9sDhCZRBRFTp6ZdevLuPW6Sipmn30ZsenCjLg9O5JJBa83gscbJZGY2oGVazYsoaenk7888hw33HANFrP2op5nl4q4nTaCcaQu61+AvwiCMHdkuZq0SdeleMd4m7S4NQGLgYlGSq86Yfmd871T5xtXtpniohyyskxkZ5rIyjKRmWmirNTJ7PKMU4YUxb1+PPuO4Nlbj3ffEbwHm4gEPQxX19CVWU5z2EJLl41w6MQRh4tTlzEaSbJpYyubNrby//73He75wDzu/eA8rNbLM7xvhhkuZ9REkghxWvMraAnNpfEFHS2/7sfnPfNn8YBHYcCjZTe5QC4MQkZLP2UvP0VZoJX85noyTCaci6rJXrecnGtXobWeXONTEASqKrOoqszi/k8vIxCM0dsToLcvPfX0pqeuHh/dXV7C4RR2hwGXy0y2y0R+npUli/JYurjgkgmJfC/T2xfgoYf38uTTh08ZwpiRY2blNeWsXmWnggPkBB7Ct7GXppc66Xirl0Tw5D70rCsXU3zPTRTeeR2G7EwgHerc3uHFatFht+vPqKHsdBq5+fpKbr6+Mu3W3Ophy/ZONm/tYO+e7lPmAocDcXZvamP3JnhQFimtzmHuogWsuD3F7I/2URttR206yuD+Ryk2Wqj/3O08/lqUjnE6dpp6Vf6zN0D+th0savof5vraccyZhbWqFHNpIbLZiGzUIxkNyEY9KUkkdagVpW+IfS/uxrf3CJ49h1ESCbLmOxG/93Ge7ihhz6seVOXUHUnZuSbWri/j1uurqLoMBO0MZ080lmR4OIzPFz3tKK2sEdFoZVQ1bTrHyFwlvZxMKJxqsDESSdDV5UOWRQ4f3sme3VtZtGgRt99++7jrt7W1MWvWrFPu0/Lly9m2bdupd/wSZdqIW0EQdMCtpEdur2Ma7dtZ8jTwtZHljzOOuBUEQSSdewzgBd6c7JerqtrGJET/hci5PZFf/N+Np+3NURIJAkc78B1qYnjPYYa278N7sAk16se6pIj+RavYZ6vicEEl7t4ISqc6Mi48+V7i8bDY9bgKrJjMOoxmDSaThMUkYDGCyQDRuEAwDMEIhMIK4VCCSChBX4f3lGYzoWCcX/9mFw//aR933VXDxz40H6fTeE77OsMMM5xflGSSlr++yqu7u3irTc/RphCqKgEKxy0Tpoah4QRDw7CDWWCYhdWiZV4K5r26Gee/f4dkqwet04GlvBjHomqy163AtXYZGlP6PmIx67BU6KioyDzpey+1kckZTmZwKMxvfrebJ546RPIU5l+VC3JYc3MlK8oCFAZ2YR04Sucb3bzxVBuexpNLz+gy7My6733k3Xs7Q1o7Da0eXnysiZbW7bS2euju8R9riOt0EtkuM9nZZnKyLeRkm8nNtbBsaQF5uZZx9uQ4giBQWuqktNTJvffMJxJJsHV7J29uauXtd9rxnSLSIZVUaNrvpmm/m6cBR5aJ2fNqqZx7FYvvjlGs7ebWyBGuy47z3MASHntmCHfX2BI73R6R7sw1bCoRWB46yOzfPYshdWqblhYAAXKWufDddTu/OZhD4xM+jmeHjcVk0XL1NWXcfetcqquyZgTtexhVVQmF4gwNR07vkSCA0aTFZNFi1iYRSaGOjNepwsh8pBmfRCYcUYgE40TDiWNCt7CwGJ1Oh16fvrcnkwqvvvIGP/3pf3PX3fdw7bU3YjBoTnlOrlq1atz3586de8a//1LhogtIQRDWkBa0d3E853b0f8kLPEbaRfmSQlXVHYIgbCY9evtJQRAeVFV167tW+zIwZ2T5h6qqnjQMKQjCfcDvRl7+u6qq3zyPuzxlxANBIl19hDr7iPb2E+5y4z3QgL+hjXBnL/FhH6IEtlkWMpbmEb3hCnYsvob9jSn63WHUTSrpaO5zRxAFXLlmaucaWJXXz+zAHmSfDyUcR0joEWMWpLgNWbGjJiKokQAkQiDHIVtEtJoQ7yrjcKKMtw/rOLB7kI6mwXF76SKRBA89VMcjj+7n9lur+fhHFpKdffk4j84ww+VAoL2LVx97lTfbNezcFyIeS3GhI0D8vjhv18Hb5IPxAziv0jOvQuYKWxv6A2+z8+G/EO6LIOq06F0ZmMuLMc/Kx5CbhbEgB2NRHuZZBUg5GRd0v2eYGvz+KA/+cS9/fmQ/0ej4NYcFAWpXFLLhtgqWZrZS4HsC9VAvR5/poPn5jjEuxNnrlpP1kbtoMBXz87fa2PO5N1BOky8ei6Xo6PTR0ekbs+2li/O59ZY5rFs7C4P+9CaKBoOG9WtLWb+2FEVROXS4n7c2t/LWpjZaT2OG5RkIseP1Fna83sJDQG6RjfLaJZRW2qksS/Jf3zSzcZfCc0+24Rmno9kXVHmFuby1soZl5l7K+o+Q6+1B9vqJ+eLHTKysRWbyNhTQMPdqfrzLQdtjAcA35vtGqV3g4o7ba7lhfRk63UVvLs9wEVEUFZ8vytBQiPhp3coFRElAEiEVj+Pvj+JTVERVQSMqaEUFjaSikxVkTdqITa+TMGq1JDP1xAUL4bBCOBjnt79/grFFaNMkEgpt7V50Ohmnw4DNph83OvLtty8py6Ip4aJcrYIgVJIWtB8GRgsljf6PJEm7JT8IPHspuiWfwJdIhxobgFcEQfgv0qOzBuCDwGdG1msEvn9R9nCKeaniOjI4+UEoakQcs60ULHdh+uQy6g1zeavJwaGGKAOtYZSjKmnvsKlHVVTc3QHc3QFeA/T6WtZdmcV9f3Mls8tdp/37ZCTK0PY6Cre8xIcCTZjvrMadWcumBhs7d3k5sqdnzN/EYykefewATz51iFtvncP9n1xCVublb94ywwzTFSWVYtcTL/Pi7iHePpxkqD/C2YzOCqMNh5HeLfXYP+fG8GCUtwbhLTIRxJvIucLIsnkaVud0U9Czj4EtHbhf2EfMGycZHSdsVRR5Rv5nEAUEUUSQJSS9HtlkQGM1oct0YikrxDZ3NvaFc8hYWos8U2P5ghMOJ/jzo/t58KE6ghPUWRclgcVrSthwWzkLTQ0U+B4i8E4Pex5poWtz30luw7LZSO5976dn/pU8ecDLjl91kUqde1qbqsKOXd3s2NWNyaTl2g3l3HpLFfMmWZpPFAVqa7Kprcnmbz+3gp7eAJs2t/Lmpjbq6npOOUoN0Nvho7fDx+bn06+NZi0FZU4WrCwkHErQtL9v3GiqeFzl7eEc3pZzIBNyqiXmFqeY5xpmttXDtkA5//OOBu/BOBAYd9s6vcz6a0r5+IcXUT7r1Lm8M1yeqKpKbKSedSQUIxqJE0uoTLYctKqqpJIqx+/Uo2ZQElGFdHBQEoiBoKpIagpZSWGUI9gsYcwWGaNOS9KgJ46VUDhFyB8jHhu/IywWS9LbF6B/IITTacDpmInguZB1bjOBe0iL2sWjb5+wymid2z9d6nVuT0QQhFuAP3J8VPrdNAI3qap6dJy/vY9zHLm90KWAdv/7XRSV55Ky2BhW7PTHzHQEbGyrl2k4EsQzGD5nB7mporrKzD1313Dd9QsmZbmuKgoDW/bgfvF5GDyI/coyDrnW8ejLCfZt7ZzQVVWrk7j7rho++bHFZ10yZLozEx45OWaO04VFVVXefuRlfv/mEHV7Jx6hGQ+NTiK/xEHV/EwWlidZlDOAXk6gCBpSggZFHJkLGpKChu1tNl57voOGvb2MLcp29siySGGplZpKHcWuJPmWAHnGIC7Bg+gZJDEYIDIYJRlJkkoopGIKyWiSyGCUuD9BPJAg6okR7o+inDDiIBn1GPJc2GsqyLvxKko+fDOy8fJKp5gu11sikeKJpw/zq9/swuMZv1NF1ogs31DGhptnUas5QL5vJ979PRz6w1H6dg6ctK4uJ4vUPfeyRclj666e09a9nSqKi+18+IPzue2WKjSas6sWEArF2ba9k7c2t/LO1g68nskZtb0bUUyPjk1UI/dMsTn13Hl3DR+9ex5Wy+X5nD4d70VDKVVVicdThMMJIpH0FE+kLlo7VVBVDKkoVk0ck0WkcuVa2ju7eOmlv7J45XqybBPfo/PyCnn1tV2IokDA38+yZTUAp8zlPVNmDKU4lkd7G2lBe+0J2xsVtb3An0i79x48n/tysVBV9TlBEOaRHsW9CSgA4sBR0iHXP1ZV9dySSacRX962mvhbBiKh0TC/FKfKZTkXNDoJm9OI1WHA5jTgtAtkmuIMDCscaYzQ2+E75Q3q8JEg//of2/ifH+/hxtUZfPQzG8jKmjjPSBBFXFcuwXXlElRFoX/zLlwP/5Z/W2ig+abrePRVhd2b2lFSJ280Hkvx8MP7ePLJw3z4Q/P46IcWzpi8zDDDeWbni+/w62fa2LX31PeBUQRRoGZZPpXzXNTOSlJt78Pc30Bg0xO4Xxpg/95BQEDv0KKz69A7tejtOnR2LYYMPR9Y6uKmT9RwKLWAV7ak2PbqUfzD5567m0wqtDZ6aW088V0tgpCN2VaM02UkM1OPTicgmQQ0MmhlsCxUsBlS2IxJMk1xym1BXOIw4qCbSMcw/fuGGTrspf/1jXQ9/Ro7PvOvaDPsOJfUUPbJuyi88zpEcXqUn7hUUVWVV147yk9+tp2u7vGjk0RRYOm6Uq5/Xxnz5TryfL9maE8vm//QRP/ek82NzFWlBO/8ME92aql/ZxA4dVtREAUyss1kF1jJLrCRXWglO99GRo6ZaDiBdyiMdzCMdzCUXh4I01Lff8Lz+2Ta27381/c28psHd/OZTyzh5psq0chnJnJNJi1Xry/j6vVlqKrK0eZhduzsYtvOLvbU9RCZRI1pSIeJni7sejJkZOpZoXYw78Bb2Pw51G8pw1pVinVOGY4FczDmT1wqaYapYzTs90JsJxpLEIkkCYcTRKPJKTmPTsRs1p5VPWYAVRAIywbCqgGNJ0FqxPVcDPlxCsOsXLmczs5uurq6yMjIoqj4uGlUVmb6XFUUFa/v+LPnb/7mCzQ1NSIIAiUlJVx33XXcfvvtl/X9/byM3AqCcBXH82hH1cLo/3QEeAb4A/CKqk5lH/cMF4OzrXP7bnQGGY1GJOifOEl/NGTr+htymOPowxwfQGluwf/2Ifq39TBwYBgloWCd7US7YSkdefNoCNk50pKgu/XUBek1WpFrl5v52//vBlz5k89lG959kLZf/RxbFfQsuJFH3pDY/norqQlCr8wWLfd9dBH33F2LwXD6XKZLgekyQjLdmTlO55/97+zjF386yLbd/kn1WGt1Eiuvm83NVxupTu0muX0P/du66ds1iK91/NDF8RA1Ivmrsim7uQjrigo6jIt4vTGLTa+003xw4mAknV4ilVKnbATqlPsoCdgzjGTnmykp1FCZG6U6x88stZ1gXTOdb/XSv2eIqCeGoJFxLJxD+Wc+SOnH33dJNoQu5vW2a3c3P/jxVg4fnvj/fsEVRVz//jksMh2iyLuVge1dHPpDE4MHT66tal1cw+BtH+aZ/VHaO7yn3K5GK1G9JJ8Fq4qoXJDL/8/eWcfJUZ9//D2zsy63d7fn7pJLcnEXCEGCBoproUJ/bam7F+qlQoG2FEqhWIt7gsTdLnLu7rLuu/P7Y5OQkL3kLrmEQPN+vfa1crMzs3O7M9/P93mez6NSSwhyEL1/AIOvF4OvD72/H1kQCYpaAgotAYWOgBi5HxKT2VXhZufaZhr29x73mpmcYuRzd87g0hXjF7nRCARDVFf3s2NnFxX7eqiu6cduPz2VaQaTmpUXKPmUei2OuhGG6qxYG+24etxHtVHSpiYSP2sy8bOnkLBwBvFzpqJQfzInpz/KyO3IiIdlFz8+yjs/Xjz99HXExGj5cAZ/MBgm6A8RDIRO6I58iEOtgJ599FmWzy5Hb5b41UMP8fPf/Imbb7mJP/zlUZw2L94PTQp1dbVz4fJZo663vLycl1566YSOyh/mfz1yu5ZIJdKhf60MbCQiaP8ry/LYRwzn+MSiN6rIK4xj+rQ02putrFvXjM8TvaZApZGYe0EelyyPoVzYiWf1U3Ss6aSyYgi/PfKjFpVKUi5eQuLSOcjBICGPjwS7lameXmSLH+vUONY609i4zY7LcewFM+AP8+ZGO+9uf54LZ2n54pcvIikn+YSfI25GGXEzHoyYZv3t73w100XfL6/g6dUKdqxtOWZW0Onw8+BD23jyqQpuvamcG66d/D/fJ/cc5zhV6iubefCRbWzZaRvTTLzOqGLJZcWsWKygwLqJnofXsemlVgKuyDlIVCqxzJtGwqIZJC6eRfysyQTsTlytXThbu3C1duJq6448b+7A091Px7oeOtb1YEg9QO6lO7hjRS5X/980Ng/N4sXn22nYf2zvTt/BGtrSSYmkZ5mprx+gvcV6TAbIRBAOyQz3uxjud1FTAW8ffF2rz6Rg0nSmXCEw9ysjFAZq6F1VS8uqZnZ85gfs/MJPSFm+gPLffAtz2dmRTni20tA4xAMPbWXzlvZRlymensolN5QxK76FrJEncGzsYP0/ahnYd3SWk6Ywl56r7+DflV763ugddX0KSaR4WgrlC7IonZGKRiMS527EYnsLo68HnX8QkcjkiWfYy3CtjaA3hEIlolCJ6FQKxIOP81P1TM3O4PIvT6LOez5bNw+yc20zQ73OY7bb2+Pg579Yx6OP7+Fzd81gxcVFYyrxGQ2lpGDqlBSmTon0g5ZlmZ4eB9U1A1TX9lNV3U917QCuUeqVx4PT7uPfL/nYWnIRF8yTuOSmPhLlLsSAG1e3G0enC0eHC0eHE0drBXUbN7HvBz4UGjWWeeUkLp1NysWLiZ9ZhvAxnPg5x+kjQeMkVhs47IR8yB05LEgHy1o0hIVDk5ohgv4wHrf/GIF6JF5JTb8iFtOQHe9IZPyqCPqIV4xgStDjCplwWL24D/42FAqJC5ZfypVXXEtR8SQSEpKxWofZsX0d99//C/bu3cuFF17I7t27MZlGq5r8+HK6IreHpqCbiAjafx9sXXOOTyBjjdxqdEqKShNYviyfC5fk4veHeOKpCl5+pXpUgwmdUcXCFUVculiiyLON4Zc2Uf98M86uSCa3oFCQvHw+WdevIP2qC1CZj/8j9VvtNL6xijVdId7bJ9PeZB11WbVGwUXTldz9ufNJLsk+8YE4iL2+heaH/4Y+3UnH9Mt55q0QFZvaRp0BNxhU3HTjVG6+fgpGo3rM2zmbOBeRHBvnjtPEMzzs4Pe/eYt3Nw4TGoMgjEvUs+SKEi6eEyRnYD1dT26m/sUWAq4gCYtmknzBPBIXzSR+zlQk3dj+P7IsM1JRTfPjL9H6zBv4h60AiJJA6vwkCq/JJTx/Mau6JvHKc810Hsc9trDQwq03TiU+Uc87a5vZurWN/m7HGa0BM8VpmTE7nvMnOZilraH/tf3Uv9SKd9iHNjWR0u9/noIv3HTWR3PP5O+tq9vOI4/u5I236kb9X2UVxnPpLeXMyRwkZ3gtgYY29j9aR9fmoyc9tGlJBO78HE9VMmo6M0B8koElVxQzbWEWWp0Ss7eNREclCa4alGEvIX+I4XobQzXWyK3airvv+KnyoiSQMDWetPlJpM5PIphdRJ++lE0tCax6sZGW2oFR35uRGcM9X5jL+eflnrZ2ObIsMzTsobvbTk+Pg7a6HlorW+npHWHALeAMSgTCAoEgBINj/9GoNRLZxRaMJjUmo0CsQcZsCBGnC2DR+7DoPFjCA8iNbdirurE22BmqGSEU0pF66RLSLjuP5OXzURo/vh0SzkVuJ4YXfjOX2Bg1gggIAsLB+nCFVoFSK6HQKEAUD4pdiZCojGRRBMFl9+Fy+AiHImPiQ5Hbx//1ErNnR1r6/P2BX/HA3/7EDZdewSO/+w2aODUKnQq/Qo8nrMFui6xjNLPDtrYWrr/uQhwOO/feey8//OEPx/zZPi6R29Mlbv8GPCnL8pYJX/k5zjo+LG4NRgtJyUayss0U5MeTnx3LpOJE0tNNNDWPsG59C2vWN1NXNzjqOrV6JUuvLOGqxWFyBjbS/exWGl5pO9z+IG5mGfmfvY70q5ejsZyco6GtqYkNa3bxZrXErm39o0Z7NFoFF08VuOv2haRNLx3z+p2tnbT87W9oU100lqzg2dc9HNg++m9bq1Ny4/VTuPXGqcR8zIynzom2sXHuOE0cwWCIx//2Dv9+teu4pQyH0OqVXHLjFC6b6yejbz1dT22j7oWIqE25aCGTf/plLHPLT3m/Qj4/Xa+voflfL9Pz9gbkcGSQkjTDwqS7SvDNWsprDfm8/p8GBntGT2JKSNRzyw1TWXllKWqNgvZ2K3VNw9Q1DFJbN0hLywhD/c7TLnp1BhVzFiRy1fRBCgZ2Uv/vKro296HQasn/3PVM+eXXzlrn5TPxexsYcPHo47t4+dWaUSdpE1KNrLhpKgunBMgbXoPU0cyBf9XTurrrKCNCVWwMlns+x0vWJDZt7Rh1m6nZZs67qpQp8zIwhoZItu8l0VmNJmQnHAzTs32Alnc66d7af5SJmCEvk6Tz5pC4dDb6zFQUGhUKjRpRo0Zx8OYfsTGwcRf9G3bRv34nksJO2rwk0s7LwD1tMe92FPLmC8201Y9+/S4uSeCrX5rH7JnpJ3FER8c7OIytshZ3bQX+kQ4GtEY6NWm0Ok209Ah0dXoY6nOOmgE2ERhi1JjjtMTHS6TGy6SbvCR4e4lpqSO8oxZVajGply4l7bLzMORmnLb9OB2cE7cTw6oXrsdsVCGHQgdvYcL+AAG7k5DPjyCAQq1A0iqQtBKSVoEgRcoE/Ao9IUHC6wrgtPtYvGDqMeL2oQd/x8MP/57rLruKh39yLwCSVoE2To1kUBFQ6PDIOhx2P067L6rZ6R/+cC+PPfogZWVT2L17DyrV2MoK/qfF7Tn+tzhS3N5y+6MUFuYSH6cjLl5HXKwWrUZi5+4u1q5roav7+C1/VBqJRZcWcfUyBXm979P26Gaa3+4g5ItcoFMvXUrJt+4icfGsCZsZDoVCbH/jHZ5a72b71v5RXY+1OolLyoLcevUMss6bM+b1u7v6aH3076hT3BzIWM7zrzuo2X1sC6FDqDUSl19WzG03TSU9LWbcn+ej4JxoGxvnjtPEsP79ffzhb3vpaB9bP+wZS7K57vo0pjlW0f3kJuqebybgDJJ8wXwm/+zLJMyfflr209PTT8tTr9H4t+dwNkfESsrcRCbdNQn7tGW8UJHGqhfqsI/ioAug0yu5+spSJpUkYrP7sDu82O0+bDYfw8Mumpp78HpldDotoihGogQCkWalQsRcxOcL4nIFTjmdMyUzhgsW6bg6t4aR/0Qi3qEA5Ny+kpkP/uisE7mn8/c2YvXwryf28J8XKvH7o7RnAoxmDcuvLWPZQj0FtrXo+mqpebqJxldaCfmPdK7WknPP7WxPnsHTL9SMur6ckgTOX1lK8bQUYnxdZI5sJt5djwAM1VppfaeL9jXd+GyR/7MuPZmkZfNIOn8uSefNQZ+RMu7P6Wrron/jLnrf24Kndjv512QjnL+M1e1FvPFiC+0NQ6O+d8asNL7+pfmUFCeMeXuyLOPt7cPVUIu7tYYhq50en5LekJ7+gJ4+p4qu3hBdnS48E5CePJHojUoy0zVkxnhJdnSR1ttB8YKZZF2/AmN+1ke9eyfkoxS3JzKUirTnCeJwBnA6vfh94/MoUKpE1FolGpWARgqhkEMoRAVBhZrefveo69MblMRrvQQH7ISDApLJgKTXIum1iEpl1HHoaP1mAUJeHwG7k4DNQcDhOjzeVBkkNPEaJI2CkBCJwgZFDWWFeXS0t0cVt1dedT1//tmv0fudhxOgJY2IJk6D0qgkKOrwCnrs9gAOm/eose2aNav48pduR6fTs2t3M+YYLfHxWlSq41ernhO35/ifYSIMpSSlyLwLC7j6Ej3Fg2tof2QdTW92EA6EEZVKsm+5nOJv3Il50umr9wqHw2xbvZ4nVg+za1vfqBERvUHikmIv111QTN5Vy8cssr39Q7Q9/ghSvJOqtPN54S0XlTtG/60LIixalM2nb5l2uAbpbOWcaBsb547TqdHaPsSvf/0OO3aPnHhhICndxDWfKWd5chXiO2+y+4/7cfd5SDpvcGTKcgABAABJREFUDpN/dg+Ji2ae5j2OEA4EaHnyFQ78/GHc7ZGJrbSFSZR8ZgoDpct5ZY+FdW82MdR3bF3j6UIUBdRqBYFAaFzpmxAx4Vq0LIVbZnah37SW/Y/U4nOEyP/89cz44/cRpdPaiGHMnI7fm9Xm5dnn9vPUs/vweKLXyKk0EkuvKOaiS5Ipdm8kbvAADS82U/Ns0+GabgBBksj73PUMLrucB584QG+UulaArEILl91aTk5JAnGuBjKtW4jxthP0BGl+o52mNzuwt0Xeq9Bpybz2YnI/fTWJi2ZOaD2ob9hK06PP0/vaS2QtjUF1xUWsai/mtRda6WoZ/TdZXp5AUoIWo0HEpJYxKIMYFH50og+ny8uwG6xeBXa/ArtXxO4WsNpDDPZ78Z7GKOyZwGRSkpskkyNYmZFpZuGnL8J0lgrds7EVkN8fwmbzYrV5xtXySiGJaLRKtFoRnTKEFA4iSUoUOgOCqCAclhkYdDI0FH1iUSGJJMSJqO3DBJwhNMkJqOPNE/p7ksNhAk43Aasd36AVORxGqZPQxKlR6iXCKMgtm0t7ewcvvvI2pcUzCIflo8TtL3/5AEpCmDxWpPAHk2IKlYg2Xo3SqCKo0OIV9NhsQZw2L7Iss3HjGu7+/I2o1Rr2VLQdfp/JpMYSr0OjiW52+nERtx/JFUgQBBFYCswDkgEd8ENZlnuOWEZ1cP9CsiyfHru8c3zkaA0qyhdkcuWKWCY71tP1m3dZ93o7IX8YSa+j6Gs3UfSV29Clnn47flEUmX/Jecy9KMy2tdt4/NVu9uzoP0bkupxBXtglsaqujUve+SOXlSVQdNMVqGKPH2XVJMZT9J3v4R+xEf7no/yoZID6y5bxwtte9m/rOGY7chg2rG9lw/pWSkoTuP3maZy/NPeUDDvOcY6PI26Pnz/9YTWvruomMEpU60iUagXLP1XGyvNFctufpeqbW2hf003stFLmPfddkpaOPfNiIhCVSvLuupbsW6+k+bEXqLzvr3Rt6qNr87tkLKnks58u4/qfLmVVQzHvv9F63JTPiSIclvGcpHDw+0K8/1Yna96GybNu5OZ/OCmvfpf9f3mRpn88T9E9tzL1198862tyx4osy+zb38sLL1Xx3pqmUSOrklJk/kUFXHhFNmWh7ST3vELrm21sfbIB79DRw5ismy4j59tf4IH/NvPOb7ZGXZ/RrOHSW8qZviiLZHc1mR0vY/D34bX6OPBiK42vtuF3RAS2Zf408u68hszrLjltdZ/qODOl3/4sxV//NI3Pv8uen71EcuJ6br9gMZvbs9i9tRdnFHfjvXtHr9M9ncTGaUlMMpCQoCPkH0GlhPSMLMKyyEBrF3trrQyOjP4bUKkVaHUqXA7fqCnnJ8JuD7DXDnsx8HJ9EOO2VRQnBJmWquKy288jfWr+yX68TyzBYBi7w4fV6sHrHeM5SuCgmJXQqcOoCSASRNIZEZVHG3a63QG6e+yjZ1yYVMSJDoI9bhSJFnRZsafFNEwQRVQmAyqTAW1KIt7eAbwDwzg6XUgaBZo4NcLBwlmtFpIyYhjudx4TUAmgYFgbjwkvGlckOzLkD+Ps8aAY9KGJ92MwedCYtJhiDNhtARobawFISjo6cGK3+7DbfRj0KuItOnTa6NHps50zLm4FQbgUeADI/tCf7ifS9/YQdwEPAk5BEFJlWR5b/tk5znrMFh1ls9OZMjOJWZkjJAzuoedPq9nwahshbwhRpaTwnpuZ9P270SZZzvj+iaLI/GXzmXe+zNaNu3jsv21U7Dy2nYPTEeD5PRper3Ezd++zLFF3M/OS80i5aNFxIxeq2BgKvvENAg4nwuP/4ntZrbSsWM5/VwfYt6Ujau1vTfUA3/3BOyQmG7j5+imsvKL0XK/cc3zikWWZ51/Yyd//WcnI8Nh6IE6amca1txcyR9iA45n3ef+haoI+gfJff4Pib9z5kUYVFSoVBV+4iZw7rqbx789R/atHIg7L63tInbuPT91SzOX3LOKd9mm8v7qH+v29o5qCnA3IMuzf0cP+HZCafRE3/PpS5g++R+WfnqX+wacp+fZnKPvxFz+2Itfp9PPWqnpeeKmSxqbRTcBEhcDs8/O4eGUekxV7SbM+QvfaNlY/Vo+j8+ihS+qKJUz9xdeoDxi58wfv0z9w7NBGFAUWrihk+bVlJIu95Hc/htHfi7PHza7/NtNysFRH0uso+upN5H/+emKK8ybkM4dCYYaG3PT0OenucdDZNUJ31zA9vQ4Gh7zY7H4c9gB+fxiYBoNAtRdoO8GaTw9qjYLMrBhy8y0UFVgoyY8nLdVEYoLhcB3h0RHJmYcjkuFQiC1/fZbNbQ7e2qfCYTtamPt9IUQxwNe/NptLlpfS1++ks9dBZ4+Dji47He3DdHfZ6etxjWnSDcDhDLHTKbCzJcA/trxDftoa5mSrueLmReRPz53AI/PxIhyWcTp9jFg9uEbps/xhRFFAo1Oh04nopUAkOqtRIWoMUQVZOBymr9/JyEj0a4mkVJAQI6MY6keMjcNUmnbGnLBFpYQuIwVNsgVPzyC+gWGc3W7CBydVNEE7OpwoUozExEU6rPq8H0SdZcCGhkCcDpPPgeyKnFdCgTCuXg/eoYjINZo8hMQwzz//BAALFiyNuj9Olx+ny49Wq8QSr8NgUH2sRO4ZTUsWBOEzwN/5oEXQIGAh8n+ZLMty9RHLqoiIXTNwuyzLT52xHT3HuDgyLfkLP3geQTThtHqxDXsY7HHgdQcQRAFJKSIqBAiFCIdkgsEwsgyWoIPM/gZy7B0svHIG03/+JfRZaR/xp/oAWZbZvHkvjz7TxP7do/csBMjK0LDI0s/8mDBFN1+NeXLRCU8IQbeHtieeIuCoon/mcl7erGLb+y3HNcXQ6pSsvLKUm2+YQkqycdTlzhTn0m3HxrnjNHb27Ovk179dS2Pj2DrHafVKVt41g8sm95Nc9zZ7freL3p2DJCyayZxH78NUOL5+fqcbvz9Exc5WVj3yLhXVgzhFLW5BiU9WHNFC4mg0WomEVBOJ6Sb0RjVavQqdQYVGpyQsy4SDMqFQmIA/hM8TwOsJ4HUHcNl9OG1e7FYvDquX4BgH4ieDSq2grFTLbHUDyjc2oxqwM+0nX6D0G3edtm2Oxnh+b06nn84uG52ddjq7bDQ1D7NmXfNxo9uCANMXZXPxpwop11STbttK/8Z2Kp+sZ6T+aH8Jy/xplP/qG8TMmcaDf93O08/ui7rOvLJEVt41k6xkyBt6jwRXNc5OF5VP1NO+pgc5LKNOiKPonlsp+L+bUMeZx39gAI83QGurleaWYeqbhmhqHqS1dYS+XveYXMfPJKIoEBuvITFRS0qaifT0OIoLLEwqSiAtxTRqfeMhTvQ98I/Y2PXr+3nOX8qmLdEnMebOT+EXP7mYWPOx36FQKExzp40DlZ3U1PbQ0GSnudGG0za+pMOMZCWzcrVccf1cJs/JO+Ni4kynJcuyjNsdwGr14HD6x9TCTSGJaPUq9FrQiX4UMpHorOr4nSacLh/dPY5R+4mbYpSYAzYUKj2axDgExan3bT4VQv4A3p4BSubNoqOnm7eefIKLLl+KLCl57vV13HLTTaSlZ/LKK+vQ6fRHvVehEPjlvd9i+aw5nD9zDmrVB4GQps5WvvrLn7J1524MBj2bt+8m1pwSMZ46jh4UhEgZi9vVh9frRxAUFBYVYDSMftz/J2puBUHIB6qIRIvXAl+SZbn2YNugY8Ttwfc8AnwGeEqW5dvOyI6eY9wcKW63v/Vn7P5EXl/rY+tO97hrudRqBTOmp7FgXibz5maQlWk+a2aLZFlm45YDPPrvOiorjp9mpVIrmFUsMincQak6QMbc2SQtm3/c9OqQz0/7cy/hqV9H4IKlvFqVzLq3W7EOukd9jygKnHdeLp++dRqlJYkn/dlOlXOibWycO04npm/AyW9/9w7rNvSO2Qm4cGoyt36uhLmB1fQ/tY4D/6wHSc20336L/M/fcFb0oQyHZerqB9m+o4OtOzvZt68Hv+/kRGZyooIrz1eyfI6AThlCkEMgCIQFBTLiwfYSaoIHbwGFjoBCj1+hx6fQM+xQMNTnZKjXefDeEbnvc457QD4WVATRBr3EJcVgSLGgUikiN2XkXnnwXhAi0WBZlg/eA8iEwwefI4P8oWWQkcNHPz+0TDAUpL9/AGSwWCyIonhwmQ+WPyRqrdaxZQZAZIA9ZW4Gy68uYrqpnsyRLQxsaqHyiQZG6m1HLRtTVsjUX36NtMvOo6FhiB/89D2aokSBtQYVK++awYz5qWTZtpJh3ULQ5qbqyQYaX20jHJQx5GZQ8s07ybnjaiTt2My7HA4fza0jNDcP09gyQmPzEG2tw/T3jX5dOZMolSKx8Ros8WpMRgmzSUVcvAFLspmMjHhyMsykpxhQKU8+42Ks593WZ19hc30r/9plZqj/2ONjjlXzkx+dx5IFJ46wBoJBamqb2bG7nf3VDqqr7Qz3jz0BMSFOYm6RnqtvnMuU2aevtdKRnClxK4oKzOYUbDYvwTFMpIiigM6gwqAT0Ak+FIKIZIhBUJz4OxEKhenptWMfxVFfqVKQYAii9AbQpiQhqqLXmn5UZGdl09bexit/+yeL58xGn6zFG/aRN3URg4NDxJjNZGfloVKpsVgS+P39jwBw9crzqaurQqlUkpuZhUGrY9g6QktnxNjQbDLx9N/+wsWXnne4JtfuiNTkHq/Hus87wMiIi/YOBw88XEdaqpHMTDMKUYjM9nHQy1AQsFn7+Ndjdx566ydW3D4I/B9QCcyUZdl/8PXjidtbgSeASlmWp5yRHT3HuDlS3F5z+b00951ca55oJCUbmD83k/lzM5g9K/24s0RnClmWWbe5msefqqZq78CYBuBpaRpKk7wUhnqYFCOROnsW5inFGPKzED80QyjLMj2r1jK85nmkpVNYM1LK6rd76Wgc3ZUSYPKUZG67aSpLF+egUJzZwfw50TY2zh2n0fH7gzzyzy08/WwtvjHWWSnVCi6/bRpXzXORXvsqu+7bQf/eIVIuWczsv/0MfWbqad7r4zMw6GLzlnY2bW1j584uHI6JFY4mrcxFM9xcMd9HUXYMIiEIByAcPHgfgFAAwkcP7IKCEq8yFo8yFq8UuY88NjPk1dHT6aC3zUpPu5WeNhu9HdbT2l7l40J8soG5y/OZtziFfKGWDOs2hjY3Ufmveobrjha1+uw0ptz7FbJuvIzePhevvlHLv57cE9UUp3BKMtd/cQ756lbyht5F6bHS8HIrVf9uIOAMElOaT9mPv0jGNRdGTauXZZnhYQ8trSM0t4zQ1DJMY/Mwra0jjAwfv6/tqaKQRPQmNTqDCrVaQqURUatENBoRjUogEIZ9Owfwuo+fajplSjKfvXMm8+dmTLiQG89519XRw57f/J7/auayeWP0SeyrVhbyna8tRa0eu+D2eaxUVjawcccAFTU+avf1jzmVOSFOybxSA1ffNI/J07NOm9A9ndengUEXVZU1iKKM0ahDrTm+g7YggEanwqAXMSj8SIKIZIxBEMceUbXZPPT2OaNnIghgNkmY/A7UFgtKg/7YZc4CsrOzaWtrY/WrrzMrM49wMIQ6RkVDXzM//fWf2LqzguGhIUKhEKmpGbz73i4A3n77FTZtXEtNzX6GhgawWkfQabTkZGRwwbyF3HntjSRZLCiUIiqzGqVJRUihxifocLhkXHYfodCx56oPi9vj4fePULX3cA/dT6y4rQEKgc/KsvzPI14/nridD2wC7LIsm8/Ijp5j3EyEW/JYEEWBsrIkFsyNRHVLihPOuIg7ElmWqWvp5fkX97F2bQ/WUVz3PowgQGqqhpTYMMlKF8miizRVgOyMRBInl2EszEGXnowoSQzvrqTrP/9EVRbPvth5vPmuk8odnccV1MkpBm66YSorLy9Brz8zdbnnRNvYOHecjiUclnn5zUoeeWQXA/1jH4hnF1m4+f+mslCxHs8ba9j5hwOg0DLzLz8k+5YrP5KMj2AwTGVVHxs3t7FxSxuNx2mTMhbUGgmdUY3fF8QVxajnEKIcJlW2kyS6SVF4yVD7MBjUSAYdkkGP0mxAk2BAHadFHaNGZRARRR/4bMg+O7LPDiEfsgxhRDxSDB4pInY9UgxuRQyDDiXD/S6G+pwM9zkZ7ncyMnB2RP9OJ4IoUDwthbnL85ldEiLDVUG8rZK+Ld1UP9PEcI31qOV1mamUfuczmFdeyppNHax+p4F9+3ujrltSilx6SzlLL0yjeOhtEly1dKzvYd8jtTi73egyUpj8sy+Tc9tViAoFXm+Qzi4b7R2RW1u7laaWYdparRM+cSIpRcwWPbEWHbHxaiwxEK/xY8SDPuBE6xzB4HOhDcuolVokpRaCAQiHIRSK9HcOhwiM9KCcmcom9RzWbLDTVn/830R+QTx33T6dC87Pm7Dr+3jPu+FgkMr7/sROfRyPrwrjjtJyKD3TyG9/cQnFheP3BQkFffR2NLBmQxtbKgMc2DMYdRvRSIhXMr/MxDU3zWPS1ImdCJjo65PbHeDdd2p56cUKKhucfPkLRWRmGImN1Y8qbtVaCYNewqAKokRGOcYI7ZEEAiG6e2y4XNEn5FRqBRaNH41ShdoSd9ZkB56IcCCIq70b/4gdhVJAn6xDoVPiVxjxClpGBtx4XNG/RyajGhkI+YMEfAHCYZmwICAL4/uNnRO3H96QIDgBLTBLluU9R7x+PHE7FagAgrIsn3PPOUsZi7iVJJHkDCNpWSayck2kZejRqAWcXoGaagd1e3vpbBoacxoigClGzZxZGcyfm8H8uZkkJHx0M28ef4DV71fy6pvNHNjdP6bakWgYTRIWs4IYXRizKoRZFSBWHcasCGKwdhGfo8IxZRGrdirZua4V/3EiXFqdxFVXlnLz9VNJTTm9dbnnRNvYOHecPkCWZdZuauaBv2ymvW3sLXAUksjFN0xm5TKJgo5XOHD/dlrf7SJh0Uzm//u3Z7xef8TqYfOWNtZvamPb9o5x9ZIVBEjLiSN/chLZOXpi9DIxhjBmbRCN6KOx1srevQ6qm4JYHeDzBMZ1jjzH+JFUCuSwTGgUd1ylEEYRCqAOeNEF3AdvHmJjVOQtm0ni7Mms39zOjp2dx70OpGabuekr85kc20nBwCqcjX2s+1Mjbc0hfLGJGC+7ELGsjMERL53dDto7rAyMI611LAgCxCUaSEwzkZKmJSNBJk3jIN43gKa3G19tG57qLhSaWEwlhcRMysdYmI0xPwt9TvqYU6MHd+yn6c9/IaZcR0vZRby5VcGeje3HjeampZu45YapXHxhATExp9Y/+WTPu52vv0/N+tU8bp1B7YFjRbkkiXzuczO489aZJ6z7HY1w0I+1p571m5vZVA0Vu4ePW4p0JIkWFXMLNVxx+VSmnVd2yiJtIq5PwWCYzesbeOG5XeysseMPfPAbuOf/ootbSaXAYFBiVIdQC2EkvQlRGn96sCzLDA25GBzyRP3tCYKA2SQSI/vQJCWeNS3LxoMsy3iGbDi6BgjKgE4NKiVhQSQsqgiGwOcNnDYjwnPi9sMbEgQHkZY/s2VZ3n3E68cTtxcA7wDDsiyfedvcc4yJk4ncalVhyrM9zMjzMLVEhaUgk/ZQFrsa1NTsH6B+by/2kfGlU+XmxrFgbgbz52VSPjVlXClDE4Usy7R2DfPS6/up2DtIY+3IcQXoySIIoNNLIIh43cGo6SNHEmtWkpasIyPdSE5uPDnZCWRlx5OYoEejUaJUiqd0YTwn2sbGueMUYdfeLv745w3UVI+tX+0hEtNN3HrPLJYYdyJtfo/tv9yLe8DP5J99mdLvfu6YFP/TRVu7lXUbWlizvoXKyj7kcUxmWZINFExJpmSSiZm5TjIVnZg9rWiCdnpGJDbW6NlQrWN3s5ZA6KOvFT4TqLUSMXFazPF6dEYVWr0KpVqBgACHS7kEIqXTQuS5IHDwZQTh6Nei/T0YDOF2+HE5fLgdPlx2Hy6HH4fVM6rJzOnCaNZEzt9eF35fCI9HxhsSYRQjsVNFVAhYUowkpZlITtOTmQyZJhfJvh6E+iac22qw7ekgJBiInz2Z2PISzJMLMU8ujFo6c7L0b9xFwx/+gmWKgsDFl/FyRQJr3mjCNjS6mJMkkQXzs7jysmIWzM9EqRz/vpzKedfZ0sHub/+InXMu57+vDET9rkyemsBv7r2Y5KRTm0SWw0Hs3bVs2d7M+mqBXTuGx1yna4lTMi1D5Pw5GSy9cTFq3fgnBE72OAUCITa+tY/Vq6rYXufG7oqebn2kuNXpk9AZlBi1MloxhFJnQFSefNmZ1xugq9uObxQfA41WIl7pRW82I+l1J72dM0U4LOP3B/H5Qnh9Qfz+EH5/iEAgdNLBk4ngROJWZ1BhtuiIidchKV08+cAth/70iRW3dUA+cIssy88e8frxxO29wA+APbIszzwjO3qOcTMRaclxah+LStwsnuqjsCwed0wulUPJVFQHqNvXQ0tN9IvKaBwyppo/N4N5czPJzvpojKmc3gA79rSwbUc7+w8M01w/clqdSk8WQQCVSkSpFFCrRFRKIXJTiagPvvbBTYFSKaKQRCSFgKRUIAoyDocNhSSQkpqMVqdFqZTQajUkp1lITjKRlKj/SCYczib+18VtffMQ9/9xHTt39I37vXOX53PTDclMGX6F5n9sp+aZJvQ5Gcx/5n4ss0+vJUMoFGb/gT7Wbmhh3YYWOjtsJ37TQTQ6JQVTkpk0NY5ZBT4K9N0RMesbwtbsYNd2P2trTOzzJNMnTZxfwccdUXHw/KNWoNNLaNSRjo9yGMLyIROpDx6HZZlwODIoDIdBDsuHHweDYXzes++8O9FIKgWJqUaS0mNISjOQmQw5Fi+p4X5obsFTUYdtZzPWJjsyKuJnTSZ+9pTDN21a0mm/TsqyTN/7W6m7/0ESJ4Pi6it4tTqd915vYaD7+M7oJpOai5YXcNmKIiaVJo45Wnqq592Q18eeb97HQG48D29LoLvt2N+/Tq/ke99ZwqUXFUZZw/iRwyEcXdVs2nZQ6O4aYWSMQlenFSlNhqnJSpYuL6V4+QwUqhMnP47nOPU1dvHW01vYUjtCVVcIr+/EWuKrXy4mN9dMnFlLbloSKq0WUXVq18BQKEx/v50Rmz9qtFIUBeJMAjEqEVVc7FmXghyWZfy+ED5f8OAtImYDgbPzfHUucvvhDQnCP4j0rn1TluXLj3g9qrgVBMECVAPxwP2yLH/7jOzoOcbNRNfcKoUQUxKsnD/Dx/wZElJqDj2KXHa1GKg5METd3l76u+wnXtERJCYZWDA3g3lzMpkxPZXY2DMvKmRZxurysauilcamQdrabXR1e+jrdTPc5/pIZ+POFDEmJXl5JkpLkplSlkZpadJpT5k+m/hfFbfV9QM88ug2Nm7oGDWtVqlSRDVY0RpUXHf3bFYUd5BQ+Rbb7t3FcI2V3DuvYcafvo/SaDgt+xwIhNixs5N31zSxfmMrtnG46aZkxlA8LZXpZRKz0gZI9Dehc3YxUmdlYP8wlfuDbOlPpNqQz7D2oxe0ggCiQkShECI9aYUPop/AURHQI98DEAyE8XuD/xPnr7MFU6wWS4oBS4qRhBQDGckiuYk+0tVDCG1t+CobcOxuxFZvxd7mREZB7NSio4SssSjnjGU6REOWZXpWb6T+j38lsSSI5obLebsln1WvtdHVfOKMDqNJzeSyJKZPTWHqlGRKSxPRaqKnsk7Uebfl36/Q9t4rvJ17Ne+9Hd374vxlOfzke+djNE6c+aUsh3F0VLNpSwPrawR27baOq949KU5BbkyAfF2QqYUJlC0uxVSYhTr+aLEX7TiFQyHcHT30V7VQtbuVyjYbe4cUNPVFJo5OhCgKFE5NZuFsHfNKdKgMJlQaHQUFBeM+Dh/GZnPR1+8hOEoJgV4vEa8KoLNYEKWPtrUPRIS41xfE5w3i9QYjj33BM15qIogCJrMWlUZCFAUEEQ7NEx36Ohxx+iccBp8/cp4f6u9geNhJW9s5cRvZkCDMArYTEbKfkWX58YOvHyNuD4qll4CZQBAolWW58Yzs6DnGzek2lMrU2FhY4OSCRTLpBQlYDQXUu9LYWxOkbl8vDft7T+jE+GFycmKZNSONWTPSmD7toxG7hwjJMja3n+bmPppb++nvdTA45GHEGsBqD2KzBQ73pxytDuzjTFqankULc1m6OIdpU1NOKu3s48L/kriVZZnNOzp47PHt7DtO6yy9UUXA68cf5SecW5rIbf83hfnhd3C8uYldfziAoNIz+5Gfk/mpiyd8nz3eAFu2tvPemmY2bmrFPcbzilKloHBKMmXTLcwv8pCvaSPO3YyndYCenQP07hygvjpAtSGf2rhCBvTHdwr9KFGpFeQUxTFrYQplUy0YTEqEI8YJsiAQFqQjbsqIUUkwjM8TxOWI9NR12X3YRjyM9LsYHnAx0G1noNtOaJzt4T4qJEkgPcdEbkEMmXlxJGbFERKUBAIyAV8It9OHw+rFPuKhq2WEvk4btiHPKZ+jFZKI0azBFKuN3OK0xMRpSUzSkGEJkRnnJlYYQeztIlDfint/E9baIayNdtz9kQkYY0E2cbPKIpHZOVOJLS8Zc33smUaWZXrf3Uzd/Q9jyfMSc8slvNdfxob1Q1Tt7BxzxpZCIVBQaKGsJJH4eB3mGE3kZtag0Qjs27cdtUpk+fJlGI16JOnkSnGsB+rY/aXvMHTb9fz1RV/UlOo4i5Z7f3wB8+ZkjHv9J0KWwzg6a9m8tZ51lTI7d9vGXKN7CI1GJNkskKTykiS4SJS9mIQwZqMKm2MApyOIXxtPj2SkO6Sn26VkcGR8kcSM/Djmz4vl/EIvxQWZGLKm0NjUfFSf25PF5w/Q02PH7Y6+TwpJxGKQiYkxIOk+mmtsKBTG4w3i9QQi994JjsYKIEkKJKWIpFQgiAJyWI60ODvcGk1GDsv4owhoQYBEc4hYfQhhDAW6gbCIw6ukq2+AwSEX7e3nxO0HGxOEh4G7iYjZl4DngecOPr/54P2FwA3AoTPxb2VZ/t4Z28lzjJsz5ZYMYBR9zEwY4oI5AWbO0uCPz6Vfnc/ezpjDUd3xGlMB5OTGMnt6GjNnpDF9emrURu0fFbIsE5RlvIEQDqeboSErQz0jDA3Ysdm82JxB7M4gDk8Yp0fG5ZFxOYO4nX7sVg9e1/iE/0eJTi9x8YWFXHd1GYUn4UJ5tvO/IG6DwTBvvlvPE0/uprV59PRdnUFFcjw0tx1rwCSKAhdeV8anLlJR2PUqlX/aQfNbHSQsmM78Z+6f0BY/Hk+ADRtbWfVeI1u3tY+596wpVkvpzFSmT9UzP2eI1EAD6qF2+vdExGzPzkG6R5Q0xOVTH1dAjyF5wvb5w8ycY2HBNAGnX4Pdp6ShJUBjVf+E9KyNj1exoMzPFWXdTE5382EDWxmO6K2rjPTUFSN9dX2S8XCbIY8yDrcYw3C/m/bGIap2ddHZMMTIoGtMEaCPGkmCkmyYnWtnWq6fLpuWDTV6dtcIY0rJ1OiUTJ2fSUqWOdLjVyOhVEuoVArUKhmtMkSCMUCcxoM27EATtKPyWwn3DeBv6cZV04m9xYG12YG9zUn4oOjTJCdgmTOFuEMpxjPLUMXGnOajMfHIskzfmm3U/u4h4lJtJF6/gM646by338DODV201B6/t/zJoNZI6PUqjAYVRqOauFgtiQl6EhP0WCx6UlONZKTHkJRoOCoF2m9zsP3O7yDOiOPxgZns2dIddf3XXDOJb9yzAI3m9JTjyLKMd6SNLZuqWV8ZYM8+F92t1tOyrRMhCJBZEE95eQyLioPMKE3GlDkVQfFBNP1Qn9uTFbfhcJiBfjvD1gCjaReTUcKiE1DHnrlStFAojNcbPErMTpSQVUgiSpUCpUqBpFQgSSKSJKCSwohypMe5KAeJdPgWI+7Hgnj4sYyIxy8w1OeMOvFmlALEKdxwsD84RMo9QrKAX1bglyW8ohpfMHIsz6UlR9uYICiAfwK3cnwvr0PfyH8Bd8lncifPMW6OFLd33P139u0Z3X49GAhPWPqaiEyW1sHsLBuL5gnkliXiNOXREUyjok6gbl8vdft6sZ9En7/cvDhmTU9j5ozUSGT3LBK7xyMcCmGvaWJ49x5c7U143CM0Fc7h7d1Kqnb3HNf4JjVZzaJyLYkWFd4gBMIC/tCHbkEBf1AmFIJQSP7gFj7icYiDtzA+TwDbsGfckXWA4pIErrt6EisuLkKl+mREcz/J4tbp9PP8a1U89+ze47b0UWkk5s40Urd3gD7nsYO+2EQ9t9wzh/MtezFUvM/Wn+/B3u5i0vc+z+SffXlCHC59viBbtrXz9uoGNm5uG3Nf3ZTMGCbNSmXOZJEZiV0keBoJNHfStaWP7q39DFaOMKSKoSE2n/r4Qvp0px6hVUgiokDU/qh6o5r/u0HJp7L3EPaHUeoix8anMNISt4Qabz6r/lPJ7vWtp7wfEGkPk5chsSyjh4UpXSSYgkgaBUqdhFIvoTjB7zSMiE+K+UDsKuNwKeNpG9ZR3+ilq2WE3g4bQ71OXHYvgUAI+WMgfEdDEKBgSjKzzsth7hQFGb5KjL5eFLIPKexDDHgJDjnxDnvwDHlxdrtxdrpwdLlxdrlw9XmQj+jRqTQZIiL2kJCdNfmM1MmeSWRZpn/DThr+9izBjgoyL8pAvXwxVYFi1uyQ2bOhlcHesburTwSSUiQlxUhuThyF+fEU5MWTnxeL4+n/MLjpTWqv+QJPPdONJ8pEclqGid/ceyGlJYmndR9lWSZg76aysp5N+1zsrQtSVzmIZxzu7eMlkrGSyMwyDYsmKykuykIbn4MgRj9Hn4q4ddhc9A54op4HIeKzYjHIGONjT2u6/ekSskeJWJUClVJEJclIQghRDiAeFLGCfHSkVQ7JhAIRAwJBFBAUAqJC+CCnGAgJSlxiDIP9XnyeY7+jSjmE1u8iqFASlFQEUIwq0M6J2+NtVBCuAb4HTB9lkWrgPlmWnztze3WOk+VIcVv/+KepM1zEQ88G6Os8ti5WoYCpU2PoHRaOO8MoHXTvHWuTcwClKFNkdjAnz86smUpS85NwmbKoHkqgojpI/b5eWusGT8q9uKQkgfOX5nLekhxycz76GrmxEg6FaHvmNfrfe4nAVRfxZl0SW9Z24DhO/eD8BZl87UvzycuN/jnlcBg5FEIOhQkHg8ihMG6Hk3Xvr0EOBpk/fSaiP4jf4cI9PIDHMYTdH2QorKIbMy0jGtrb3HQ0D4/pwpuQqOezn57BlZeXfOxTlj9p4jYcltmxp5PnXz7Apg3tBPyjKxG9Uc3y80woGhp5td5MMHTstWfawixuviOXGY7X6X1+O3sfrkZpjmXeU78jZfmCU9rXQDDEjh2dvP1OA+s2tOAeY0ZDVqGFKbNTWDwlQKm+FbOjAdv+bro2RwStvdPFoDaehth8GhKLGBhj5opaKxHwhwhHOQ6H/p6UrKO9Jbq/QPnsRH58WQvqqgPsvP8Azm43CpWIKdvApFsKSF+UjFOVSFXiSla9M8wb/957zORWXKwCtUFHb5dzXI7Ph4gxSeQJw+Qe2ExaXxNqSUYTq0JtVqOJVaFL0KBP1mFI1aFP0WFI0aGOiW5sExKUuJXxuFXxuJWWg/fxDAVMDA/6sA65cYxE0oDtVg/2YQ/2g88dVs+ox/GjwBSnZfb5uSw6L4UidSPJjv3ILS20vdfFUI0Vz5AP75APn803qnjXJFkwTy0mdkoh5imRelljQTaC+L/hoA3gHRym9anXaH/2JcypXjKuLMVXvoAmdwr7W9W01NtoqRugp9X6kdR86w0q8tO0xNXsoHhlMe80WmiqOjbCrFAI3PnpmXz20zOQpDPz/wsH3NgGO9i5r4uKWg91LX5aGmzHdaY+EaIokJBmIjffxNzJSpbMSSA1LRdJO7Zz3smIW5/XT0+fY9QU5EOGUXFmPdIEX09lWcbnC+J2B3AfErITYAiqVCkOZ20o1SIa5REiNhxElIOIRE4Mckgm5A8TDoQIB8KEAjLhYJhwIHIbTcIJIhGhKwooDUo08Vq8UgxDNvm4478TcU7cjmXjgpBKpK42EVAAQ0CFLMtNH9lOnWPcHClu/x5TxLK7J2O6dDYP75rKWy+1RD0ZTMsOctWVZl7ZbqRiW8+o6zbEaMgqiKe/235CJ8UPIwqQFR9kapaH6cV+sooSEBKz2N8bT1W9n6aqflpqBwiMMQ3xEJmZZpYtzWHpktxxOTZ+lIR8fhr/8R+G17yI+dMXscZexqo3Okc17hBEgRWXFPKFz8wiNdV0wvWPVbQ5WzvpWb0Ra90+ghYdXdlT2d1poKpigM7m4eNuIzHJwOfunMkVlxWfsQHCRPNJEbfdPXaef7Wat9+qpb/v+IOl+CQ9ly3RUNZbwX+6S9jVeKzjp0ojsfIzM7hsmpXs9jfZ/ZvddG7oJWnZPOY/9Tu0yScXAZVlmeqafl57o47V7zZgt584TVcUBfImJTJlVjJLyjwUKJswjdTTv72brk19dG/vx+EUaI/JoMWcQ4slD4cwtnpGnUFFbmkiPW0jDPVFdz7Vm9TMW5xM474eWjuOnfzRGVR8+mYL1ydtpPLhfTS/1RF1PQlT4ij/QgkxpUlUJ65kS72ep/645ZgsijRHF7cb9uC/8hJ22FPYX+nEOjj+bBdBgKR4JQW+TrL3bCRxpCtqYxulXooI3VQdxjQ9xgw9xnQ9xjQ9mrhjTXhkwCuZ8SrNeKUYvFIMPikGn2QgoNDjV+jxizp8Pjli1OIO4PMECAXDhEIy4VAYrzvAYK+DgR4HA90OBnscpzTAG+vxyE0XKVX2klRZgaGqAUk+9lqjjDFiKs7FVJyLeXIhsVOLiZlciDbpk1eWcbLIsszQ9n00Pfo8w5vXYSk1YJkSh35WCb7kfPpIZX+XgcZGDyMDblwO3wc3uw+3039Skzcng8mswmEPRN1eXn48P/n+UsomJZ2RfTmScCiI19FHc1svtU02mju8dHQH6OrxYhv24rB5j+rkoDOqSMuKITNdQ26miuI8A8V5ccSaY1HpLIiK8WfQHBK3CoWCwsLju0qHQiH6em3YHKMbLhkMEgkGEY05ZkKyF0KhMB5PRMi63UE83uj/x7EiCKBUSajUEkq1ArUK1FIYiYMCNhxAJBRxdveHCQXChP0hQocfhyds0k6hEtElacFgZMSrZXjAPWpq9/HweQcYHnHRcRxxq5BEUjLNxFiCPPXgrYde/t8Rt+f4ZHCkuH2AHOJRYimLZdrXyqnJvoz7H3PS0XiscIkxSHyxsIq4i+bwr3c1VO7qHXUbxZNiWHxZEb29Aap3d9NSO3BSxh0xRpGiDJnS7CA5ORoseRk02y1U13tPSuxaLDouW1HEtdeUkZJ89rv+Bpwu6v78BNYNr5L85RW8PTKd155vYagvepqXQiFw6aVFfO7TM48rck9GtAXdHtqfX0XnSy+jmZKIc94SVlfq2b627bip5Pn58Xz/24spn5pywm2cbXycxa3T6ef9Dc288loV+/f2nbCuPTPPzBVzw0zr2kNP7oX84ZUehqP8X9Nz47jtnhkslNYjbN/E1vv24hnwMfnn95x079qBARdvvl3HK2/U0t5mPeHyoihQMCWJaXOTWVLiJFdswDDUSO+Wbjo29NK9Y4A+wUxLTBatKcV0Ki2Ex9iTVGdUUTY7neLyFFr2t7PpveiO0UazhosvzyDTU8df31Dg9h67UNnMFL5z9RDGrWvY9adKvEPHF+uCCJPvLKLk5gKa4pexw1rM33++FteHRH6au5fru95FpxRQmlRoV0ylNn02m2sUNNfbTirtTlKKZCRJlDibSdu8hhjXiR1wlXopInQP3Q4KX0O6HpU+uhMuRARwWFASFNWERDVBUYWMIlJzJoiEBCV+hQG/ZMCvMOCTjNh8GjoHoKMrSHebje7WEbrbrKctjVMlCeSaw8yM97NsVjLJU/IwFeWgSbJ8otKKTzdBt4fBLRX0b9hJ//qdeNrriS8ykDA5DtOMHBRpyYTUBgIKbaT+W6HDhxabT40vKBIICoTC4A8KePwCTo+AywsuV/iwQZh92INt2M1Qr3PMJQtjRRBg5cpJfOWLczEaJs5R+WQJh4IE/C58PjeDQzb2H2hAkmD+vBmYY5MQxYnLlmppacHrjUwq5efno1Qe+5uWZZmhATtDVj+hUYSdUqUgwQAxlliED5sAjINwWMbtCeBy+nG6/Ph8p/C/PixkFajUEhoVqKUQCjmAQg5E6mLDYUK+MCF/KCJm/aHI81Pssy0qJUSlhCBJiJICQXnwXpIQJQlZDuPtGyLo8qA2KVEmGLGGDIwM+8YlnmU5jM83wOCgi6YmG/94vAmlSkFqtpm03DjSc2LJytKQkxTEiA1rZwMLL/rsobefE7fn+HhxpLh9SFuC2RMZCAmiQMHKLBK/fAUPbCxgzevHGl4LAlxeJnJ98nZaZ17Kv98WqN0bvQemKMIViwWuvtKC05DB/jYttQeGaTjQS3fLyEnbqScmKMnLkijIVZOZH4tDSqS+0TMusSuKAksWZ3PjdVOYMT31rB+s+IZGqP7NI3jr1hP7pWt4qTGft19qPGbQewiFQmDFiiI+f2d0kXuqos1W3UjdA0/gadtD3BevZou7hHff7qK5enQTkUsvKeSrX55PfPzZ35D9EB83cdvX5+Dd9S2sWdvIgX19ow42DiEqBCZNS+Ty0hHymipJXnkrz+3x8u9n9kVdfumVxVy3Mo7JA6/Q/MRuKv/VgDY1ifnP3k/iwvG1Nvd6g6zf0MIrb9Swc2fXCdMUBQFyShKZPj+V88tc5It16Psb6N7SQ/v6Hqoqw7RrU+hMKaRTl4wzNPZIhdGsoWxOOlPmpDMt10vLtir+8ZyLYeuxgxhBgPkXZHNbSTMvv2RndZf5mHOZpBS54bY8bk9dT/XvN9Kx/oOJQCE9EeXKpSy89Vo0Bx1x/cM2bDVN2GuaaHvuLRInqZj97Sn0Jcxig3sBf/vZmmN+67NmpvHAHy49qhe1LMt4B5rZuHobaxo07N7rHDXifCL0BiUl6QJT2ncRv3M7smt86ZEqoxJNvBptnBqtRYM2XhN5Hq9Ba1GjMqpR6iWUOglJIyKMMaMmjIhXacajjMMlxdLlNNHQraK5Ezq7ffR12OjvdkyoU71areC8ZXlcv3ISUyYnn/XXi7OZkNfH0I79EbG7YRfOlk6CDisK/KhiVGjMKtQxKtRmFQqVeLAmUUSQBBRqBUqthKRToNCpUFjiEOLjEGLNBPVmPFIM/W4jncMq2vtFujo99LRb6WmznrJZW4xZw43XT2Hl5SUkJOgn6GicGqf7+jQ4OMjAQOSartVqSUxMRKvVHv7+O2xO+ga9+EcpbxFFAbNRxBKnR9KM3/37UJqx0+XH6Qzg8YxuTHVcjhSyKgUaFWiUocMiVgwHCPtCH4jXQ48D49uWIAiIaiWiSoWoUkZE7KF7pRJRFRG0o50/ZFnG5w/h8QTweiM3vz98wut49HWFCQYdhMNehkY8jDgDGLQe8uPsmEKDaAMjaAIjSPIHk4OdAw6yrnv00NOPt7gVBOFaWZafn9CVHr3+dCBTluUtp2sb5xgfR4rb6t0ViJv2U//Q0zjqWwEwZRmYee9i3tFczqP/aIl6USgpjucO7T5ycoaoLryEJ1/101wzGHV7Rp3IzcU9rJjUh7owA09CHp3BVHY3qqmtsdFWN0hPu+2k00mUKpG8XB0F+Vqy8824FLHUVo5QubNzTOZUeXlx3HDtZFZcXIhWO3q04WzA3dVH1X0PIjgPoPrMjTyzI4F1bzSOWpd8SOTeflM5OTkf9MibqIuiq62Lql/+Hev2NWR+/xq2aebz+ovtozpl6g0qvvGVBVx5efHHYoB4totbWZZpbhlm1ftNrN/QRGP9iaNtAEnpJpbO0zE/eABjv4usO+7Ebk7mez98h9q6Y3/HRrOGG780l+WZDSQ1vsv2X+6hb88QqZedx7x//Qp1/Ngd15tbhnn+pSreeLMOl+vEUbfMgnimzU9nabmfYmU9MUN1dG7qYvv7bvZ2m+hMLqRDacEdGN/3KTZBT9nsNKbOTmZGhpUETwPeqmp++6qFHV3RszqSM2P4zM3xxL71PP/0LKOq3nrMMvHJBr7xOTNFu//L7vv34rdH0orjZkwi/xt3UqkJIIjiqN8nd1cf6y+/G1xdLLpvJtbcuaz3LORvPzs2gnvekhx+88uLRk37l0M+2nZv5r2dg6zfL9NQazspDwOVRsH0YjUzencSt78aldGAu6OXgHV8/cuPhyCCKImISvHgvRD1uaRRoNQrURoklHolKoOE0qBEZVSiitcjZaQQSkqlzR1HY5+GjTt91NZGapTVOiUarRKNToVaq0SSRHzeIG31g2OuzcvMNnP1laVccWkx5pizs13Px5GQz49vcATfwDD2zh52rdmA7PNTnFeAQpYJ+/yEfH7C/kDk3uvDb3XgH7HhH7YRsNsQQ05UBtAlatAn6dDlJ6EszIbMTLoCCRxo11LbHKStYZjO5pGTmgARRYHZc9P51JWTWDg/6yM1Tzzd16dgMEhjY+NRgvLQdftEoiviECyclKFgMBgmGAwTCo1eo3o8BBFEUUQUBURRRiEAhCPGTuFwpAVPmMiYMyxHtjGW7QhEauhFAUE82JpKjEzMCaJ4lCnUWAiHI+ae4VA4ch+Wx7Yfo+3eof7noowshxCRkf1OZK+d+IZ3CXb34h3y4R324XcGCLiCh+8DrgA9Njd39lQdWt3HXtyGgSrg5xMpcgVByCRiQvVp4JeyLP98otZ9jlPjKEOp+noKCgqQw2F6399K/V/+TdfraxGVIpM/U4zv+hv47VMS9fuPjc7qDCq+cWM+Ke/+k+QLEnhHfSHPPtczqgFCUUkCP/3uYjKUw/jaqwhZWwlJIQKxFoZViRzo1FPTItDcaKOt/uRdAwUBMnNMTC43E5MUR3ePj8odnSesATYYVNxy01RuubEcne7sFrn2+haq7n0AbUwvnk/dyH82aNnybvNRNTgfJsasZsrUFGbPSGfKpHiaGnciCMKEXBSdrZ3s+8Ef8HfsIf1HN7PePY2Xnqqjtz16a5m5czL48Q+Wkpx0dqeGn43idmDAxdadHWze3s7ePd0M9I8toqbRKZk1N4Fl2QOkVmzHNGkhWTdfhSo2htfeqOW392/E4zlW+JRMT+WWu0uZ7Xkbz/qdbP/1PgIumfLffpOir9w+pkmKQCDE2vUt/OeFSioqorfhOJK4RD0zlmSzbJbAZH0jwfYGNq/1sKclhmZ/LF1uFb5xGnorJJHckgSKp6dSXqamxNxHrLWOcFUDPm8MWx1F/G1DAIfj2POOpFJwyTX53JC4m50v9vIvVxnWkWNrQCfPTuWHK3sZ+fOLNL7WDkDi0tlM+t7nSV6+AK/XO6bvU8DpYsvN38S6Yyvn/3Eu9oJ5rPcu5q8/PTaCe/mlxfzkh+eNyUsg4Oxn75advF/hZfs+L51t449wmuM0XDLFR+6b/0Uj6Em9ZDEIAiMVNdhrmnB3jl6ucibxmmN4p2gF9fLorrcxWkgxBikrkMicls7+DjW1B0boahk+4aBakkSWX5jP5++cRWbGx6+Vz9nMqZx3Aw4nnp4B3J29uFq7cLZ04mxux9/XhegfRJ+qQT+ziHBJMQ2BNCrb1TQ0eWiq6sMd5bd/PDRaibnzMrhkeSEL52ei1ZzZccOZuD55vV46OzsJBAL4fQHsDh+B40Q0lSoRg1pAo9eOWeyFwzJeX6S3rM8XHJ/AEyLndkmpQCmBSpJRCCHEcBDZH4yYOQXlw/fH+2ELohiJrEqKw2nChx8rFKdkDhcOy/j9IXz+iFtz8DjmUuNGAK1GRK8Mgs9PKBAi7AsSsLsIefwM/v0FXFuiZ2MdyRAB7qHl0NOPvbitAwqIfJ06gGeAp2VZrjruG6OvSw+sJNIDdxkR06kwcLssy89M2E6f45SIJm6PpOvNdez47A/x9AyQNMNC6c8u5ZGG2bz+34ao+f5XXFnC9YlD2N54DMuXLuexXfm8/0Zz1GbuCoXAzTeVc/dnZh3VS04OeMDdh+zqw+0cxuby0jigoLpDor5dprXZRVfryHHF22jExGooK48nKSuWrk4PFZvajhu9iI3T8vm7ZrHyqhKU0tnt9ju8p4rqX/wJY5YX92Wf4r+btGx+t2VMx0mrVZCVpSU5ORalSkJ5sCebUhIPNhtXoFJJGA1qDHoVBl2kv6Bef/CmU2IwqDAY1IcH1gObd7Pn678gLjeA/ut38fyuRFb9pxJfFNGk0yn56pfncdUVpWet4dTZIG5HrB627+xky44O9uzupLtr7G01FJJIwSQLS8tlpvZuRRpRknnj9VjmTUMQBBwOH7/49Xreee/YEgSFJHLZreVctThMYe/rVP+tgroXWtBnp7PwP38kftaUE26/t8/Biy9X89Kr1YycIItCrZGYMi+D8qkGEoLt9LTZqGwSaegUsNpPzvHSbNFRPC2VsqkxzM5xkhxoRdXVgRA2IKWUYpy2CEdQ4pe/2cD7a6L7IhZOTebua9Vo//Uo7xov5+V9vmOyTESFwMob8rgzZR0V33sXa5OdxCWzmfqrr5Mwb9rh5cbzfQqHQuy+5z66X3yZ8/80F0fBXN5zRCK4HzaZuumGKXzjqwvGnQ3hcQyyY+s+Vm+2UrHfRX+Pc8wDLoUkMm9ODBcPr8H16m7SLltG+a++gdJkwFbdiKOh9aCw6MTZ3IG7sxdvzwAh76n38gVQaDVoUxM/uKUkoEmyoIo1salXwWNrR3BHOe+MRqxeYIV9M0uWGgjPn8NeRwqbdvqo3t193JR5URRYfmE+d981i6xM8wR8snOcrvOuLMt4evqx1zRjPVCH7UA14eEWlPEK1Itn0hZTxJ5WLVUHbDRV9Y/L0VmlVjBrdhoXLy9k6cJs9ProLuMTyZm6PnW29/LiSztweAQSLGrUUaLVKrWCtDiB5IzEMUVr/f4QQ0NuBofdEePAsR5qITJRqzeqiNELGDUBVGEvstNJ0HkwIukMEvQee80QRBFJp0Gh1aDQaZB02g8eazUIEzjec7sD2Bw+bDYPTqcfX5T9mWhUQoh41xBGNYRcHrwHGnGs34W3vm1M7/+kiVsJuAf4LmDhg69YA7AN2AlUAP3AyMGbFogDYoFCYBYw++BNwwd9b98GviPLcuWE7vQ5TokTiVsA/4iN3V/9JS1PvoLKpGTG92ezv/R6/vJIL8P9x9ZwZWWb+ekXpjD083vJXKymd9HVPPKyQOXOrqj7kJJq4sffW8Kc2RnH3Vc55Ad3PwHXAFaHk5pWF5VNfmqbgzQ0uujvGp8js6QUKZ6SiD5WT1NVH4M9owuFtHQTX7p7DsuX5Z/1DsvDFdU0PvwEktiO71Of4r9bjWMWuaeKIIDBoMRgVGIyKjEalWhlH9JwP8nZWsLp+eze66DxQPTa7Iw0I//3hbln5XE+0+LW5wtSVz/A3sp+9lX2UFfTPy4xC5EL/6RyC/OKg5Ra9yEeaCVm7kXk3HwFqtgPIkx7Krr50U/foydKD8rEdBO33jObxcadmGo2sPXeCobrbGRedwmzH7kXVczoEfdwWGbrtnaefbaCrTu7jy+WBEhKjyHOoiXs89Ld6cJhH3+P5UOYLTpySxMpLDZRnhugQNeLwW1Db05BkzcdwZCKcIThyvtrmvjFb9ZjjeLEqzOquO62IlaIa9n3p528XnYz+2uiGO3Fafnq3QmUVTzH7t/uIRwSKf/1Nyn6ym3HzPSP9/skh8Ps+PyP6X39Dc7741zshQt4e3A2/7hv3TG/7f/7/Gw+c+f46p4/zPBQP++v2c+qNYNU19ijTkodgwAzZsVxnWEX9r+uRpuTy/Tff5fkZfOO/TyyTMDuxNPTj3/ETsBqx29zErQ7I2mpbg911dUQkimeWoY21oyk1yIZdAfv9ShNerQpiShNhmPE/MCAi5/8Yg3btkZ3pB4LhfFhFq57mjS9i6xPTSJ4xWW8VZvI5nU9DB2nX6sgClywLI/P3zXzY9V+7mzkTJ93gx4vw7sqGdi4E2dNBWJsiOCy89nUl8auHUM0VPaNK5ooKUWmz0jhogsKWbYkB5Pp9KSvn+7jNDRk4y9/XM2qDSP4R/Ey0eqVXLlIx2duX0hcbtZx19fcMsyadc28t7aZ+ijlL6MRn2SgcGoyk0s1zM6xkeprxrd9LwM7exisGsHaaCd8MJgiSBKmohzMkwsxleZhzMtEn5OOISf9tJnBud0BKqv72FHRzd59XdTVDOJynvx1TKtX4vMGRzWPyi1NoK1+aNSsm7lzM/jW1xaSkx0pFwr5/QTsToJ2F36bg6DTTcjrI+TxHrz3EfL6aG1v58JffufQaj7e4vbwiiNR1/8DvghkHnx5nMkBAISAV4HfybK8feL28BwTxVjE7SG63ljLjs/9CE/PADmXZhD79Rv43euJVGw59juvUin46pfnUrxvDcPvvcik75/P6uD5PP1Ux6gpwZdcXMg3v7qA2NjxnZTlcIiwe5Dunj627+1nX6WN2mYvbS2OqBHjaBhi1OQUJ+C0+2ipGd0IqajIwle/NO+EQvxswNM7QOPfn8bbtoPgNVfy/O5Y9mzpwj4y/lYhZ5r0eJFlJXqKZ+RSMr+YtIxYFKfgrDgRnM7BQygUpqV1hH2Vfeyt7KW6qo/2VutJmUfExGmZOiOeeTlO8tq2E6wfwTznPDKuvhB9VtpRyzqcPv7y0DZeeCl6cs7c5XnccFMG5dZXGXp7Lzv/UIkcVjD9T98n/3PXHzU4CLrcOBrasNe10FXZwruVTjaNGBjyHH8AIYoCMvKoPUPHSnySgdzSBEoKVEzL8ZMX5yfOqEdjTEQwpYM6Nupgxmrz8uvfbeCdd4+NWAOUzU7ni9cKCA//nX3OMp4JFmKLkoZcNDWJH15nxfGnZ2l+swPz5ELmP/17zJOLoq73ZL5P4VCIbXd8l/5332XZn+YyVLyMN1pL+NdvNx4z+PnONxdx/bWTT7jOsRAMhti4qYbnXqqhYs/QmM6rk8vjuDm3Ds8DLxMK6yn51mco+urtiGNM5zvZ35ssy7z2Zi2/u39D1P6aRrOGeRcVMNzvpKfNSl+H7bifR6EQuKBQYvLrjyPah0lfmkryZy5gj3IGqzcHOLC9c9T3CwKcd34eX/zc7MODy3OMj486Y8Y7MMyBn/6FgXffJO32BXTMvJSnXrBTv3/8KfeiQmBqeRIXX1DE8mV5E1qnfbqOU2tbH4/9fT3vb7HiHWWCS6VWcOF8A3euLCF7zvSoy4TDMlXV/axZ18z765rp7IhepvRhRFEgpzSB8pmJzC/xUqjpILyngqGtLfTtGWS4zoYcktEkJxA7rQTz5MLIbUoRpqJcFOrTFzWXZZmubjt7D/Sye28P+/f30NZy8n2bTbFaMnMM5KUJxIWGeW9HkI5RdH9Suombb81guWUfB/ylPPGSi6pRAkgKhcDtt07js3fOPMp08Hg0NDQc2fLpkyFuD29AEERgOXAdcB6QPYa3eYAdwJvAM7Isn7io6hwfGeMRt3B0FNeYoWfaLy7ged9FPPdkY1Rn4nkLsvjKBbHUfeVH5CwzoLttJY9syuD9VxuizjSZTGq+9fWFrLi48JRn1ZxuH2tf3czGnb3sbfAx2D82UZeYbkRAoK9zdIOUxYuy+fbXF46pj+xHTcjro/WZ1xjZ/CaqeUUMJBZS2W+iuiFAc83gqK2EziYkSSApTiLVoiQrI4biqTnkFSSRmWHGbNacEUOqiRo8yLJMd4+D/QeFbFV1H00NQyedqqTRKckvjWdyoYLJpkEse7cS6AsTv/h8MlZeiDYlep3h+g0t/PK3GxgYODb7QmtQcd3ds7mopI+srlXs/fNeWt7uxFSSy7TffQcEAUd9C/a6Fhz1rTjqW3F19tKXkktV+TIO2PQEg6fv+qTRKcnIjyMvV09xjsiUPImMBA0mfQySKQ1UY+uduHZ9M/f9aj0jUSZ8dAYV195RypW69Rz4zivsWf5/vFbhOib6LIgCl12Ty2ezNrHvu29ja3ZQ/PVPM/UXX0OhGb1dyMl+n8LBIJtv/DrW7Zu44C/z6cq5mFcq03j2ga3H7Nt9P7uAFRcfvyflePH5grz+diWPP7mPnq4Tuy8XlsZyW3kX4l//i7XNS9aNlzLjD99DZT7+ufNkjk/Dvjbu+/X7HGiO3gd3+qIs7r4GEiveRrTEIaYk49HG0zpsoKFH4v11Npqqo48mY+M03DRZQewzj+Ht6iOuxEzezZNxLriIpzfHsOmd1lFLXARR4NIVRXzxc7NJSjKc8HOc4wM+anF7CFt1I3u++Rvse3ZS/Nvr2KA7jxeebjyhf8doiAqB8vIkVlxUzAXn5Z5yRHeij9OOHQ089q+d7K6wjSrWFJLI0nkm7rw4g5ILFh3zd5fLz/adnWzc3MbGzW0Mj+LB8mEklYKiqclMmxHLkmI7yUOVWFdtp3dbP4OVw4R8YUzFuSQsmknCwhkkLpyBPif9tI8DBofcVFX1sbeqj8qqPupqB3COszb7EJJKQVaemcIciQKdlUx3J2a7DaU+mTptHn9+dwiX69jziVorccmnCrmlrAHPyxsxnXcz/votqApUrBeX8Nwz7XS3WqNuMyleyfe/uoBFF5aecP8+0eL2mA0KQhowH0gHEoikI3uBgYO3A8AuWZZPPgZ/jjPKeMXtITpfX8POz/8Y38Agk+4qZXDlbfz+MTc9UfpSxsRq+OHX5qJ+/B+49m9h2k8WsstyOY8+2U9rbfSBxJLF2fzwu0snrFVMOBRi+6tbWLupkX3d0NTuPWGPMIVSRKNVjtpiR6VScNcdM7jtlvIxz4Z9lMiyjKu1k5F9ddgrqwgMtyIn6hlJzqHOn0TXiIJAEIJBmVAYQkGZUAiCIZlQUCYQCOPzBvF6Avg8h+4DY0tXPI1otQqSE9WkpZnIyo4nOzuBnEwzWZlm4uK0E3bBO9nBw/Cwm8rqfvZW9nKgso/6ugEc9pPvx6lUK8gttjC5WMWU+GFS2/bi2dmElFhM4tL5pFyyGI1l9FTIoSE3v71/I+++H72uNLc0gVu/OI254feRDuxk688rsLc7UZpNBJ1u5GAQUSmiSzfgm1TCYFoevcoE9nSq6eqemBrKI1FpJFIyY8jM1FGcr2FKoY6i7BhijLFI+gQExfhn5m02L7+5fyOrVjdE/fukWWncfZMe8wuPseelIVYvuoPqKG7IpjgtX/5sAlP2PEvFHypQxlmY98RvoqbhfphTGYyG/H7WX3Y3ga4qlt4/l5b0y3h+i4mXH9t91HIKhcD9v72ExQuzx7zu8bD3QC9/fWwbO7d1nzC3K7vAzO0LrBiefI6+7f3ETiul9LufJevaS6IuP9bjEw6F6Hh7I489V8GqFk3USRWjWcPNny5gmecdvG0a4heeh7d/CHdXH77+XmTHAPht6At0bEhewdP/HRjVXX/23HQ+U+ij98F/Yq9tRpegoeSuMjyXXMkzm2PZuKpl1P6qSpWC6z5VxmfumEHMOXflMXG2iFuIXENbn36NXV/8OakL44n7wWd4dncqq5+vGlPbwdFQKASmzUjm0ouKOX9p7kn10J2I4xQMhnnjzT089Vw1zc2jT3qLosD82THcvjSe6VddePgaG3HsH2HTljbWb2rlwIG+MZvUafVKSmakMXO6kUV5g5gadzO0qoKuTX3YWhyYpxaTfMF8EhbOIGHBdDQJpy/dPxyW6e6x09A4RF3DENV1A9TWDDAYZSJ4rMTE68gtMFGcKVOg6CO5swZ1UEvs7IUknT8PbXICwWCYPz+0maefORB1HdMXZXHX5SFi3nwBTeFFZH/6hsO95L0Dg/T+9xECBXG80lHGG/+txxGlxAZgXnaYr9wylYLLFo46PvqfErfn+ORxsuIWwDdsZfdXf0nrv18lsTye3Ps+xZ+3F7NxdWvU5a9aWcrVxh5qvvdrJt+Zh/GmS3lyXzGvP1N9jCkKRKK43/v2Yi5aPvZ9Ggshv5+6V9bzylvV7LQbaOs68YBcUoqjpp6lpZn47rcWs2BeZtS/n+3Y+wd57/GnoX+YSSVFKEUBORSCUJBwKAgHb6GAn3DQTygcIiyECSMjKwRCoohXkHCjwokat0KHS1bjDClx+hU4fQIOt4zNHsJu9WEf9uA+Sffr8aLWKEhJ0ZOSYiA5xUxGWgzpKSZSU4wkJxmIjR27+B3L4MHl8lNd08++qj72V/ZRV9s/ZgfjaAgCJKaZyM4zUZgJhSYrqb01uDbsQ9RnEr9gPsnLF2Aqzj3h55BlmdffrOP+P23G4Tj2O69UK1hx01RWLFUxaeBVOl48QO3zzWjTzQQnlzCclEO3aKHDoaajN0x3p2vMaf9jJSZeR3qmgcwUiYIsDZPKkijIScQQY0GSxj/gi8b6DS3c+6t1DEcRL1qDimvumMSnUnfT+L3nqNLN4AXlFBxRJriKy5P4/jXD2H73DG3vdZN53SXM+utPUceZx7QfpzoY9dscvLfoJnR6Kwvum0ldytU8sxpWPXf0wEilUvDQA5czY1rquNY/Hjq6bPzhoc1sWNN6QhOqtCwTty7zkb3hNdpebSQcUpC0bC7Zt1xJxjUXolBGXGaPd3xCXh+OhlbaX1jNlh0NvCJOoX8w+pz6tAUZfOECGwldQ6Rcd+dxa8TdXX00P/AnhDIDT7aVs+btjqiDc51eyde/Np9ZoW6qf/UIQzv2Y0jVUfrZybiWXc6zW2LZsKol6nXt0Ptvv3Uat9w49Yy76n7cOJvE7SGcrZ1sve072Cv3M/kH59E672aeeraPyh3Rx/9KlYJQKHzCCXWIOG/PmJnCiouLOG9RLgbD2CbvTuU4NTYN8cZbFbzxdhvDQ6OPhwQBZkw3c+tcHQtvuQIEIZKWu6+X3RXdbNnWzkAUH5bRMMVpKZuVzuxyFfPSe1Hu2cbA6iq6tvThd4kkL59P6oolpK5Ygi4taczrHSuyLDM46Ka9w0p94xC1DUM0NA7S2jIyagr2WBAVAmnZseQX6ChN9ZMXaEOzZw+yW4t51jxSLlxITNnR2Yl9vXa++uUXqWs/9rpkSTZwx51ZlNe9TMiWQNG3vjxq5kvAbqP3lccZyEjn6S2xrH+jPmrk3aBXcLmhhRULcrHMmYqpKAdNcsLhfTonbs/xseZUxO0hOl97nx2f/wlhl5Xy789nU/a1PPZYe9SIZ1pGDN+/KZf+r/8AY6KPad+fT2XSpTz2nIP926Ibfyw7P5fvf3vJuGtxx4Ktpol1f36BtX0K9jpjsJ/IwEZg1AjF0qU5fOtrC0lJPrtb2nyYiRw8yOEwvmEr3r4hums6aKvppLNlkJ6OEQY6h3CLEn5DDB6NHr9STUBUEkSBP6zA65dPafb7ZFCqRCwJOhITDSSnmEhNNpKWYiQ1yUhiop7EBMPhwcWHj5MkqWhoHGLfgV72VfVTXd1LV4f9lCz9YxP0ZOaZKchWUJTgIsvTBrv34ajsRWHJJW7WdBKXzMIyZyqicmyD4uFhN2vfPMCrb9ZS2RJ94FE4NZkrby7BZK1loH2Y1j4V3VaJnv4g/T3uMff9HCsKSSQpzUhGqpJ0g48U3wDZBpmCeTNIO2/BmD/beLDbvfz2D5t46+36qH8vnZnGZ2+NI3Pr02y/dzvbLvo8G5qPFTaiKHDldTncHreGvd9/F59TZOZDPyb75ivGlSUwEb87V0cP78y5luSpamZ9ZxoHkq7liRecbHij7qjl9HoVjzx8JSXFCePexnjo7rHzwCPbeXdV4wl7lZtiNSxbbOQiUyXOp95nYO8QIX8YTZIFfU46KkssAyEvgslAekwcgb4h3J29uDt7CdisSFOzeadkJTurok+UmWK13HxTGissPSSffx0KzdiPr62qgc4nH2Bw1gz+tlpP3f7oPgzTpyVw388uJlxRwYGfPsjQ9n2Ysg1M+twUnItX8NTGWNa91TTqec0cp+XGayfzqZWTTsv17ZPA2ShuIZIxUPO7x9j/oz+TMtdC5n13sGpwKi8+foCRUSJ8cXFKYhKMdDTbCAZOfE6VlCKzZ6ex4qIili7KOW5bwvEcJ1mWqakd4I3VVWxY30Z39/EnYFVqiQWzDFxZpiRu5gL2Vfaza28PBw70Mjw0Pg+PhFQjZbPSmF8uMs3cRnjjZvrebaB7Wz+atHRSVywh7dKlJCyaOSH1srIsMzTsob3dSnuHlbYOGy3tVjo6bHR32UfNshgPepOarII4ivNUlCY7ybbV41u3C3dPGEPJVJKXLyDpvDmoYmMOR1oP7184zGv3v8L9b/Th9B57zpwyN50vLe4j9NpuSr7/bUxFuWPap5DbTfc7z1EhpfPYsyN0NA5FXa4kV8WicA0Je7YR6nejS0tBl5GMzaTm6hf+dmixc+L2HB8vJkLcwsEo7ld+QetTr5F1YRr6b9zG7182Ub3nWNMFhSTw6ZsnU/TmvxnZuJkZX5mE7opl/LepnP8+diCqKDabNfzgO0tYdn7eSe3fifCP2Kh/9AVWv7Sb/SmTqOoVxzTL+mFUKgW33zqNO26dhlb78ZiRP5nBg98foq/fSW+vk55eB729jsh9n5OeHgd9fU58Z8Cd+Uyg1UrEWXTEx+sQRS+SAqw2Ba3NIwTH2Rf0SHRGFZn58eRlqyhO85Mn9KCpOYB1Yw0+hxrjpMmHU7BiJhWMqa+ed2CYkf117N1Yx9aqYfaPSHQ4pFEzRpUqBckZMbgcXoZPIcJ8PCSVgoycGHJTIE0YIWGgDe2evXj3tqA0Gcj77HUUfulmDNnpp2X7ABs3tXLvr9YxOHjsZ9Tqlay8YwrXFVTR89vn2LZZZvWcm+iNUqNvtuj46mdjyX3331Q+Ukn8vBnMe/I3J7XvEzVoH66o5r1FN1N4VQqTPlvG3qQb+ce/etm1tuWo5WLNGh57ZCXZWaff2Kivz8GDj+7k7TfrxnQezS2KZcYkBdPj+khp3Il9ZzveYR/ekUifRlO2EWFKAW1Jk6jzJlDbDu1trqjrFkSBpRdmsFK7h4EH30IOSSg0qkibD40ahUaNZNChNBlQmvRIRv3Bx5GbKtaEOj4WVVwMrqZmnNXvsDX9fB5/dijqtUmrk/jinVO44ebZ9L6ziQM/+QtDO/YTW2ii9PPl9M+8lCff1bL1/eZRj4VSKXL+Bfncev0USktG78X7v8jZKm4PMby7ki23fAtPRzuTvzEX11W38exqmXWv1Yz6/85LCJE7JYEeu5ravX1jyoBRqkRmz8ng0gsLmTM7nVjz0cfhRMfJ4wlQXdvPqvfqWb+hdUweJMYYNYXpArEaFX0BHfV1g5Hes+NAIYnkFCdQWp7A3NIgxWI93nc20bOmlYEqG5YFs0m7NBKdNeYf32F5NGRZZmTEQ3uHjbZ2K63tERHb0WGju9uOZ5QMipNBUookpseQmW2kNE+gPNVG0kA9nq37Gdjdy0iDnYAzOOrknqhUotCqQavFoY9jf1wBGxV5x0yKKySRlTcXcXHf6/S+XIdCp0cOBgkHQ8jB0OHH4UAQORhEDoYO/i14+F4OhhAUkPGlC9iUczmvvNg6ahmZKArk5OopywhQSgdixUY+9c6aQ38+J27P8fFiosTtIQ5FccWwgyk/X85L8oU8/3RL1MhPQVE8d6YNM/zbB0hfksTUb81lf9wK/vGMjQOjRHEvWp7Pd761eEJdBo8kHArR8cJqttz3KLszprE7mIzNNv4TY5xZzT1fns9lK4rPupY2H8blcvPSS6uwO0KUl89AFCX8gTBeTwCrzYvt4G1w2E1Pj5PePgdDQ+6Jazr+P4BSrSAjL47sHD3FGSEKdQOY2+twbtqPrd6GlJiDZfYU4ueWY5lbfsIUrIDDia2qEWtlAz1762nuHKFXoaFVSqRmUI3d+RFNLAiQnBFDVkE8BdkKJidaSWjcRc9j6xiptR5ezJCfRdFXbiP39qtQGk+fwc6I1cMf/7yFN96qi/r34ump3Hl7MpOaXmTnD9eyKe0C1oSzog5Ky2Ym890V3fT+9Fn69lqZcu9XKPnWXcfMxI+ViRy0d721ng2X3820L5WQe00Ru5Nu5q8PNh+TJpmUZODxf6wkOenMZJcMDLr462M7ef21GkJjNBhTqhRYkvWYzUpiYxQIyDQ0eejvPrHxXVZBLJ9b5iZr79sE7V5C/jAhf5iwP3T4ccgfIuQNEXAFCXiCBF1BAu4gQU9wVMduQ7qR1O9fxd/rStm9NbpLbk6GhmWFKi49Px/RYaf61/9gaMd+LGWxlHxxFk0FF/PkmzJ7N7cf9zMU5Bq56drJrLhi8lnfW/1McLaLW4Cg20PFt39Hw0NPk1geT9F9K9lpWM6zTzTSVNU/6vvitSEWF/kxlOaypw5q9429RjUjM4Zp01KZNjmZxAQ9RqOC/fu24/PJZGZPprvHTVPrCK3tVro6rAwNjj3CqlRFyrBO9hp/qKd4eZmGuTkjGJv3Y393Fz3bevE6NYdTjZOXzUPSj89XJRQK09Zupa5+kOraAaprB2hsHIpaOnImUEgieqMao0mJ0ShhMorEGARMujAxqgAmpR/8fnpsEn1Wkb4Rmf6hEMPW4KjHNzZBzxc/m0LG83/Fur8HRAFRISAoBESFiHDosSR+8LokIBz824eXFRUCgkqBbd5y/rErhf07Tuz0LWNn747vHXp6Ttye4+PFRItbOBjFvec+Wp95nfyVuXjuupP7/x2ks3nkmGUlpchNF6aR9uCvUIpu5v6gnNDcJTzfUMYL/9yHO4oTXWyclh99dylLl+Sc8r6ORjgYpPWZN9j3s4eoNudwIHc29e3jrxPNTlTxra8tYN75JadhL8eHy+Wnrn6Q9g4r7R022ttttHdG0nN8Zzgd+IwjgN6gQlIpCAXDuB3+k7brPxGiQiAly0xWXgxFmVAcZyNluBHP1v1Yd3cQkM3EzijHMiciZs1lBaOm4QY9Xuy1zYxU1tO6p4m2ASc9sop+wUB/QEfvSPikJl8mGlOslvOuLOKyOV7SQs0om6poebGGllUdBJwfzBQnnT+X4q/dQeqKJWOKRJ8s4bDMK6/V8MBDW7FHGfRodEquvKOc6yc34f7nf9n4ry7eXfJpmgePHVgqVQquuymLq0NvsefHa1EnpTP/6d8TN33SKe3jRA/aa//4Lyq++Svm/Wg6yefnsSPhFh78fRWNlUf3lM5Ij+Eff72SxMQz59o7POzm70/s4eUXKye8ThsitYB6kxqdUY1SpUBSiEhKAUmK3JRH3itArQKNCrRqOXJThtGpw2jFAGoCaPChDnlRBz2o/B6UXic4XKh0sC3hAh77jwOHLbpZi1YnMbtQZF6giYShEQKDNkb2VmMpMVB0z3z2Jizn6Vec1O09/gBTqxHJShDJNoUpiJOYUpJIzrQ8jPlZKE3/O47LHwdxe4juVRvYefdP8fb2MOmuUrR33cjq1jxef6aavuO0vhEEyNV7KM0XUWRnUdsG9fv7Tip77KNAb4q0UswrMjO7OECR1IJ/wzYG1jUyVOPCPH0aScvmkbJ8/jG1psfjUGeBPRXd7D3QS03tIM3NQ6P22f0kYLboKJ0Sj14TRiWBJEW+H8gfVMTJsnDEYwiHiZiAhiOPw2EIhSLXwQ9elw++LjMy7KOnzXrcc7HfP0LV3h8eenpO3J7j48XpELeH6Hz1PXZ8/icolR6Kf3E5j3fNZfVrrVHTNQoK47i8cTWKHVuZdFs+uXfMYKf2Eh7/d/+oJg0rLink219feNqaogOEAwGan3iFyp8/RJdPom7pFezq04zbbKA8OcQdF2cx54YlqGNjTtPeHk1/v5OKfT3s29/L3n091DcMnTZBNxqiKBATr8Ns0WGK1aIzqtAb1OgMKlQaCVEhIkkigigQ8AXxeYP4PAGG+pw0HOjDGiWN9BDHM/kaC2nJSjLSVMQm6lFoNVidIkNDfqwDLmzjML1KSDWSmRdLQbZEcbKbbH8b4T2VjGypx94ZwFhUgmVeOZZ55cTPmRrVcCjk92OtbaFpWy0N9T102Xz0+yUG/EoGXQoGhwMEToMo+DCiKGBJ0pGSoiMhXkt7m5P6+uFRlzdbdJx/VTFXzLSR79zC0MZGGl5upXf34FG16WmXn8ekH/4fltlTTvtnqK0b4Je/WU/lKBGTovIU7rgzi+lDr7H/p++xbjib99MW4Y3Siik9N5Zv3Syj+ucTNL3SSuEXb6H8N99E0p36AHuiB+2yLLPjsz+k5cmXWPrb2Zhm5LA17mYe+OVuOhqP/h9mpMfwyMNXnvG2NFabl6f+s4+XXq7GOoob8dmKpBTR6lVo9SrUGhHbsBd7lH7HR5KTb2JRoZ8UTw8Wjw0qW1B4e8n7yvlUGBbwxroAFZujm1ZFI8akJDMBkpQe4hU+EpSQGqsnpzQdS0k2xvwsVGfo+nKm+DiJW4j0+z7w84eovf9xYnL0lH1lFq5Fl/P6vgRW/afyuNe0QyhEGUuMiMqkxekG6+DZlSmVkGokpySBgnwd5dlecqQuQvuqsG2upn/PEMrEXJIumE/yBfOInz0FhWpstbOyLNPSOsKeih52VXSxp6LnlByKz3HynBO35/hYczrFLYBvaIRd99xH+3NvUnxbCR1X3MFDT9qj9oZTqkSuyPKT9fTDJE02M+cH0xnJX8gLtYW89M+9eKKIjfh4HT/+/lIWnaZWF4cI+fw0/uO/VP78IZwjLtovvoJdqjw6Osc3QDPqRQotYcpS1Cy+aApTL5p+0mmNhwgGw3R22WhpHaGlZYSGxiH2Huilr/f0969VayViE/TEWvSYE3TEWvTEJugwW/TEJuiJM4EubEcdtKEOOlCG3CjDbpQhD2I4gEgQUQ4hyGFCooqgqCYoqvEo4xnS5tE+rKFqRyfvvVgV1XlUoxVZsDwbtdFIZ/MwXS0jDJ3E5xYFSDf4KVL1UZbqo6TMgCo1kWEplqGQgQGnigGbyJBVxuMJk5KkoDTdT57Ug6q2GvumKoYrhxAMSVjmlmOZNw3LvHJMJXlH/X/9vgCNO+qo3d1Ma+cQPbYgfS6BATsMjgTGnLo5EUgqBWlZJnJSRAozNMxaMpWyknRCQZkn/l3Bk09XjBrRj0vUs2xlMZfNcJDn2MzI1kYOPFbHcN3R0YmMay6i7IdfILb89GcuOJw+/vr3Hfz3hcqokzhqrcQVt0/j2mndqN95ifd/W8s75ddT6zh2ckwQBS66Ios7UzdT88O3CYb1zHn0PlIvWTJh+3s6Bu0hv5+1y+9kZHcF5/95HuribDYZb+TPP9t6TN/u9HQT/3j4qo+k72o4LLNtZyfPvnCAbVvaxyzuPu6oNRLxCVoscQoSDSHSY33kFRnZ3h7Lhve7Rm0/NBYMBon4GJE4bYh4dYhELaTE6ckpTKVgdiGWgozTmi1xuvi4idtDjOyvZefdP2VwawXJMy0Uf2U+A1NW8M5+ExvfaqCzafRJw7OJ+GQDqdmxpGcZyUuDyWkO4oYb8W3fz8iONmwdATRZhYczkRIXzRhXqUl3j4MtW9vYsr2DPRU92EfJiJgIBFFAZ1BhMKnRmzQYTUpMBgGTJoQiHCQUlAkGZcKIhGWBECIhBIJBcDgCOOwBHA4/Trv/Ex09hnPi9hwfc063uD1ExyvvsfPun6DWesm772oebZrG2reit43IzdCzZM3jJAcGmP3NKcRfMIltykt4/F8d1Ozujrr+yy8t4ptfW4jRODHtQkbDb3NQ9cu/UfenJwj5A1hnzaJy8nnsrgucVBTRaJQoSJOwxKgwxxqJT7MQnxJLXIwWc4wGpVLE6QrgcvlxOn04XAGcTh9Op5+OLjutrSN0d9lPydjoEJJKgUqtQFIqUEgiSpUCneFgpNWoQm/SEGvRYU7QE2vREWvREaPxoQnaUQdsaII2NEErmqANddCGJmBDkiMTEkFPEPegF5/Nj8/qx2fzE3QHI/VwgTDhoIykVaDUSyj1SowZeuKLzXgkMwOGEvbLM3n5ySr2bYlerzY/286Xb9WgTk+jL5DA3jYtdfUumqsH6GwaHnfEWhAgJVYkHQeJHfXEWdtJMvhIipfRGiXsHU6cfSFM06ZimDUV3dRSNEWF+CUVQwMOWuu66O0cpH/Yw4gjyIgzjNURwuEcvc7mVBBFAa1Bidd9fIE8ZXYqcyaLFBn6MVbsJNQrUH7/L9AkxhMOy7z5dh1/eXhbVOMliAx0LrimlEum2slzbMK1t4X9j9bSv++DgZogimTesIJJ378b86TTcz45ElmWeXt1A3/48+ao7X0Aps7P5LqbspnleZumP7zLa9VprE2ZGzVaG5ug5547TGS+8QS1/64l57aVTP/j90ZtvXCynK5Bu3dwmNWzryVkH2D5g/ORM3NYp72Oh+/dTH/XsQL37w9d+ZE6vPt8QfYd6GXT9g62buugpfHMZ5h81FgSNJTmq9EY1dS2BGlvmHjho9criI9RYDGKJMaqSE+LI7csi9z8JNLSTOj1p+5Mezr4uIpbiJybOl95j/0/+jO26gYyz0sl99ZyXNOWsrU3h3Wr2qna1TXhbvQng0ojkZhmIjXLTGaGmsK0IIUWO/rBdvyVDTj3NuNocxNSJWIunxIRs3OmYizIHpdLfCAQomJfD5s2t7FpSzutrceWq50qGp2S5MwYUjLNpKdryEsJkBfvJCY0QrirD299J84D7dgO9BASTMTNLCdhwXQs86cTU1YwpoCD2+NnaDjiRTI47GZoxMPQsIuRYRcjI56DXiU+7DYfoZCMTi8xPOTF7fzoy4jGwjlxe46PNWdK3EIkirvn67+m9alXKbipmM4r7+Dhf9sZjBJpExUCC6Vupm96kcIVqUz70mS6khbyYmUWL/+zImoULzFRz49/cB7z557+frOOpnb2fvt3dLwUuegGUxLpuf56tnTH0NF6bFT6bEFUCCSkmkhIMWJJMR6+t6QYiDOBgiCiHImminIQZciDMuRGCntQhdwR0XpQuKqDdkQiF+WAO4irz4Orxx257/Xg6nUfvveP1mJJEFDFxqAyG0GI9NeVQ2E83f2oTRIpcxLIWJJC/IJcGi0XsaHezIuP7Iya2qUNeblgaAuLLT3E5pswTctEKp+CLTaHvZ0mqhqCNNcM0t4weNLpzKIY6Q8XCoHPHyZ4BiOtEDGmSkoxkJqqJjNVTU6mDrcLXn6tg+6e0dPdymanc8OlKia3vUn1X3Yy0uCk/Lffouie2xAEgX0HevnN7zdSWxu95YlGp2T5tWVctShAgX0DvpoW9j9WT8+2I1J/BYGcW69k0g/uxlR4+urhj2RPRTcP/nUbe/dFr1+0pBi5+q5pLM9swrTnbVb/so5XMq+g2Rl9Emz24jTumVFL249fwOvSMPsf95G2YuKitUdyOgft1qoG3pl3PbpYgWUPzMOblMtG7ad4+GcbjhG4iQl6HvzzZeTnxU/Y9k+FcFjGZvfS3T3Cu+9uwuOHKZMno9NqUEgCClFEoRCQJBEZCPjD+PxB/IEwvkDwqOf+g/eBQAi/P0QgEMYfCOH1BvB6g7jdATwePz5vEI8ngNcTxOcL4vUEP7J6R1EUyMzSk5KsQmdS094VpKPZOmrP3IkixqQkNVlLVnY8eYVJFOTGkZMVS2qKEYXio4v4fpzF7SHCoRBtz73JgZ8+iLOxjbjiGPKvyUdz2TJ6tcXsatFTuWeAmj3do7YRmih0BhVJ6TEkphlJT1WSlRQi1+IhKdhHuK0D7/4G7NV9eD1alAmZmEoLMU8uxFxWgLEoZ8wpxkfS1+dk89Z2Nm1uY/vOTjyeifsuq7US2UUWsooSyMmQKEj2kW0YROfqIVhZh62ig8GqEYZqrPgdYWJnTCJh/rSImJ1Xjjbl9LqT9/ba+cXPX2Xz7ujjQkkpsmxpBrGJZvz+EH5/mEAwRMAfipy3jmgZJQgCwgdPIo8FkBQioiigkCLnxsPnSEXEcEpSiCgUB/926HVRRJKEg6+LSIqD7xcjfx8Y6OLzdy0/tLVz4vaThiAImcA9wKVAJuADGoH/Ag/LsnzS/TMEQTABK4BlwAwgF9ABNqAKeAN4VJZl6yl8hBPtwxkTt4fofX8rO+7+CXgGyL/3Kh5tncH61e1RI1oJZolle1+mVNvPvB9NQyopZJt0EU/8s5naip6o6195ZQlf/8qCMzIT3bd+B3u+9itGKqoBMGYaUN/zKdbaC9i81YbT9tE4+B1Co1OSXWQhpziB7KJ4ijPDmMURNIEPoqwRoWpFkqNfcALuIH67H6/Vj7vfg6vPg/uQgD342O+I/l5dejKGvEyM+Znos9PQZaSgS09Gm5aINsmCMsYYNVXO1dFD49+eo/GR/+AbHCF5loUZ95ThKyxnn+4C/vNEA3s2tEbd5uQ8E59daCDONYi7vQdvbxeirw9NvIB2/mQCBZOosiawrwEaqwdpqx86q9Ii1VqJhGQDSYkqUhIk0lPVZKcbyMuKIy09EZUuDlFU0No2wu//sIktoziLA0yamcZVVyWxRFpP0x/fo+mNdkxFuSx49g/ElpcwPOzmgYe28dobtVHfL4gC85bns/KqBKb516JoquXAY3W0r+s5qqY2dcUSyn/9DcyTiyb6cESlpnaAh/+2nc1bo0fyJZWCC64u5YoLdZQMvEXTo9v4z4FM1pum4vcf+7/Wm9R8+pZEZlU8Q9XDe8m+5Sqm/2Hio7VHcroH7YcclOOKTZx3/1zssQVs1lzJX3+2/hiBazSq+MPvVjBjWuqE7sOp8FGLmkAghMcTwO0J4HYHcDr9jNh9WO1eRmxebHYvNpsbu81DVeUAfT0TL0p0eiU3XD+Ja1ck0tkzwr6aERpa3PQPBhgcCjA86InanmgiUSpF0jNM5BUkUFQQT2mBhYICC/Fx2nFF7E6Wj/p7MJGEQyF639tCy79epuPld5HUMimzEkiclYR+yXRcKSX0+C20D0h09sv0d7uwj3jwH/Si8HqCBP1BQmGZcEgmFAoT9IfweYP4D/ZrFQSIidcRn2QgPslAYoJEqkUmLc5PhtGJwd5HqLEVz4FmXJ1OQkIMoikFQ142xoIsYiYVEDMp/5Rc7APBEPv397JpSzubtrTRNIEp2KZYLTklCeQUxzMpV6A0YYj/Z+88w+O4zrN9z+xs78Aueu+NvVMkRYpUb5ZkybJky7binjhOPsdpLnHixOmxk9ixE/cqq/dGihIpUuwNJArRe9+G7X2+HwtQpAiQIAmQhMT7uuaamcXs7tnB7sx5znnf502P9iH1tOI5NoCjyY2z0Y2n04cqzYp97RJsE0v68gUoNHMb3Xc6j/9uL9/7UT2RyNT9i8ULzXzjr2+huPjqGFg8nba2NioqKiZ3r4nb9xOCINwO/BaYzqGhBbhNluXOi3jtW4FngfP90kaAj8qy/NaFvscM23HZxS2kXGAb/+GHNP3LTyj5UAkDH/4UP/pdAMfQ1KNbSzRO1h94ilWfLqH8vjI6rdfzzNEsnv/FkSnrdmVlGfjWN25g5fK5q505STKRoOuXz1L/V/9BeDRVKDtndQYVf7qOt6NLeXWfxImDUwvx2URvUpOZZyIj10xOoZmaUgUVdi/m2DDGyCD66CjhYR/B0dBEDckIYVeEkCu1jniixCOJVJhwLEkikiTqj5E8xyynQqNGX5R7ajGWF2EszcdQVoihJB9Je2lmX4lwhLYfPcaxv/x3SMapfrCEikfq6My+la2NVp7+34NTGj9Jksidt1fxsYcWUVyUqus56Tw83thGoL0F2d+HkGMmUlpGSyyX+g6R9iYXve1zL3a1eiW2SQFrE8m1KyjKN1BWkk52Vjpqgw1Rmvrc+fwRfvLTQ/zu8eMkppldql6aw20fLmOj5TDJbW9w+D+OExwLU/FHKUMkQa3mmeea+O//2Yd/GuOsikVZ3PuxKq7THyR95AhNv26l9enuM74PaSsWsORfvkrmxlWXflJmQFe3mx/93wG2be+Y9pjqpTnc98kaVkl7UOzdwWv/NcBzhXfR65061Gz5uhz+aHUXI3//BH6nklU//vas5tZOx+XotDf/x885+pV/InuVnfV/vxyHuZZ9qlv537/bcVYOrkql4B/+bgubN81NLfELZT6JGlmWOXKin+dfqGfXO6OMu6bPG9QblFQUSIiSSEtPfEYDoAajioc/upiPPbjw1KCtLMvEw16cLid9Ay76+r30DwYZdsYYdSZxOKO4HSF8nrnJYTSa1BSXpFFemk5VRToVZTZKS9LQ6Wa3vvt8+h5cCFGPl94nXmVo6zs4D54g2DuIMU+PpcyELkOLLkuPuiQH0WYFtRqUSmSVGkGSkJMpl1wZUuFEKhUJhZJwUokqEUYxOky8q59Iax8RT4KkaETQ2VFlZKcGm8uLMFUUocvPnrU87LGxAO/s7eWdPT3sO9BHIDA7s7NavZLyBVlULs5gSXmSMsMolkgvyv52HIeHGD3qZPSok8BICHNt+UR4cUrMGssKL8sAzHsJhWN87S+eYse+qUOus3INfPa+fD708KbL3LKZc03cvk8RBGERsIfUTKof+EfgLUALPAh8ZuLQk8AKWZYvyMVGEISPAb8GksA24DWgHvAAecDDwEcmDg8C18myfOyiP9D07bgi4nYST2MbBz77DYLtzZR98w5+N76WrS/1ThkSZtQruL53F5tsPaz6y4WEs8rYI97Ib37cSuvxqcMSH/hwHX/8h2tm/YY7FVGPlxPf+m9av/9b5EQCUSlScV8RlZ+sY2f4On7ydJTuFseUzxUEsGfr0Zu0hIMxQsEYIX+URCKJWqtEo1Oi0SpP25YwmtXkZkkUZCYpzoiQofahibuRPGMk+/rxd3vw9frx9vrx9gXw9QdITJFjeDoKrQalUY9k1J+1VlmM6Ivy0BflYpgQs5pM22W5eXga29jz0FfwHG/BmK9n5VcXIqxazQFpM0/+opkT+6e/7q5bW8iDH1nAwrosDIazZ/Nj/gDu+mZ6jxyhzRGiNZrGiV7o7wtesGmEIAooVQpMFg22TC22NIk0I6QbZexGyExTkV9gJa8wB5U+HUFlnPH5SyZlXnjpJP/9P/twu6fOLS2sSOfuTyxmbWYn2T3bOf6fR+h5YwBtbiarf/6PZN94HQ2NI3znX96eNgQ5I9fEXY8sZEtxL0We3fS92kH9j1sIu97thBtKC1j0nT+l4P5bL8v/f3DIx//95CAvvdIybT6m1a7n7k8tZXPlGIWDWzn2g3p+P7KI/WLhlIMA5jQtn/mYldrdv6P5pyco+vg9LP33v5zT2drTuRyddlmW2f/pr9H5s6fJ35jNmq8vYdiyhKPam/jZP75NT+uZ1yNBgC98diWPfnLZFa/PPV9FTSwW4+23DvDy9kH2H/QQmqaTX12h5xbnTgw1ObSm1XK0Q6TjpPucA2tGk5qPP7yYhx5YeN57WjIRIxby4Ha56O4cprffx5AzxqgHxjwyY44Y7rEg3mmuJRdLZraR0pI0KitsVJalU16WTn6eGUm6OBE1X78HF0poeAznwRP4WruJOD1EXR4iTg9xfxBBSlUWECQJUaVEMuhS92WDDoVaBYJALB6nrb0NQath2S2bSasoRl+Yc8F1ZGdKOBzn6LFB9u3vY8++Pjo6Z2d2VhAgrzSdqiXZLKzVsSTbgT3aiXakjbGDQ4weczJyxEFgOELa8joyNizHvn459uuWTlmJ4HLT0tjDn33tDQaGpilBt9nMFz63GZP96putPZ0PjLgVBKGIVOhsGZANqEiJrl7gMHBQluULLwR6lSIIwlvARiAObJBlee97/v5V4F8mdv9GluW/u8DX/wiwCfiOLMtTxtYJgvAl4L8mdt+UZXnzhbzHDNtxRcUtgJxM0v5/j3Psr/4D+yIDsS8+yg+el+htn3rUq9iS4Kam57jzT3KxLc+mI20zzxyw8uKvjp4KzTmdnBwj3/jrTaxaMfezuACehlYOfenbjO44AIAmXc2SL1STdstiHu9eyZOPD+AcmXosJDNDw+dvUrMow0c0FkJOJpHDIeRQEDkYmtgOIcQiJPwhIo4QIVeEkDNC1JsgEpQRBAmlxYTaZkVjt6K2p01sp9ZKs/EM4RpXKth1YD9oVdx8661XbechEY5w7K//g5bv/gJBhPJ7iqj+3FK6c27mrTYbz/70MO7Rc4cGZucYKStLx2hUEwjGCASj+HwR+ns9BObA6CE7x0hNdQZ1NRnUVGVQVWXDaJh5WFQikeREwwhv7ejkzZ1dDLwnnHQSk1XL7R9bxA3LklS4tuLcdpzD/9VIxB2l8KN3sOIH3yQoqvnvH+zluReap0wBUGslbn5gAXdugCrPGwRPdHL4v5twNXvePcZmpe5v/oiyzz5wUblXF0pj0whPPNXAa1vbpi2FZLRo2HxfLZs2mKnxvE5wx0F+/bjEtrTVjPunfs66zXl8tvIEPd96BlmbyYoffovM61fO5Uc5i8vVaU9Eo7y55VOM7TpE8a15rPrzRQyYltFovJHffm8vjYcGznrO+nWFfPtvNs9pmbXzMd9FjSzLDLQe5z9+3srOnY4pS+CJCoEVCw2sHdlDgasZ+0PraTQu5JV9EvX7p4/2MVs0/OHnV3HPXdUXlQ8rJ+MkxocY72rFNTpKjzNBv19Nv1dF/yiMDEcYG/TOuBza+VAqRQoKrZSVpVNZlkZ+npncHBO5OabzmkDO9+/B5WKuz5Msy3R0uti7r4+9+/s4cnSQ6CwZYam1EtVLc6hblsXKigiFim7Sgp2EmroZ2jfK4L5RPF0B0lctIWPDcjI2rCB99SKUBv2svP9s8dgPX+Y/H+ufclB89YYcHl0tsvy+u65Ayy6cD4S4FQShDzhfMk4YeBX4mSzLr8x9q+YOQRBWAAcmdv9XluXPT3GMCDQA1YAbyJTlaZIWL60tB4HlpGZ4M2RZds7y619xcTtJeNTJsb/6d3ofe46KL1/Htuy7efrpwSkFqygKrJIGeTjnKCs/U4bbWM4ebuDXP2qks2nq+pZ33VHFn/7xWszmue+wybJM7xOvcvTP/plgf2pWOWNxOku/XIu/cjW/OFzKa0+3TWsSsnZtAX/xlfXk550dEZ+IRomN+5GTSRQaNQq1ClGlvOjwovnWeRh5ax/7P/11/J19GHJ0LP1SLfrrl9BouolnX3Dw9kstV1UO7XvJzTVRUmyltCSN4iIrxUVWigqtp2aVI5E4Bw8N8NbOTna83T3tLC2AQhLZcEclt9+VS23gLbSdRzn6/SYG3hlBaTGx4offIvuem3nymUZ+8rNDeKfJz1uyrpD7PlrEisQOdP2N1P/fSbq3DZzKqxVEkfI/fJiFf/ulOa+jGYnE2fpGO0881UDjNL9lSIWrbfpQDZtuzKIquBtr/2Fe/v4gvxc20DUuTfmc9EwDX3hQQ95zv6Tr5T7qvv6HVH3lU5dFqL+Xy/m7izjdbF3zIL62bsrvLWLZl2oZMdTSmH4nT//kKPvfODvMOy/XxL/+0y1UVtjmrF3nYr5dl6ZDlpMc2LWXf/9JD+0tnmmPq6oxs9nYQ/a2F6j6WDVdi27nV69LnDgwdYUAgOISK1/9k3WsXpU/K21NRsP4G4/g72gkFA3gEjT0JNPpdOroHpQZ6Asw3OchNotlUPQGFdnZRnJyTGRnGjDoVeh1SnQ6FTqdhEIh09x8HJVSYNPGdVitBnR6FTqtEpXq0srovZ+Yi7rZnV1uDh8Z5PDRAQ4fGZzWjf5iMFo01K7IZfEyG6uLXWRHWzE42hg9NMLgvlGGDoyhySkk66Z1ZN24loz1y2elvvhcEPT6+eZfPcmbh84+P2qtxCc+bOejty7AXFp2BVp3cXxQxO1Me4qTDToCfEqW5YY5atKcIgjCPwB/PbG7Wpbl/dMc95ekwpUBbpJledsctOVfgT+b2F0hy/KhWX79q0bcTuLYd4yDf/h3yON9WL/5CP+zN4fGIyNTHms2KLgteojPfE5EW5BOS9otPLtbxSu/rZ/SXj8tTctf/Nl6ttxQelnCKWP+AI3f+V9O/vvPSEZjiJJA+b3FVD1ax0nTBn7+qpq92zqmHNVXKhU88rHFPPrJpWg1cxdWPR87kfFAkPqvfZeW//o1yDKZS9NZ9IUawkuup55VvLVtkL3b2qesjXyhGC0aCkotFOUrKc9NkKGP0OE20tor0NvlZaDbQ3wWRrDtdj25OUZaWp0zcpOsWZ7L3Y8sYJn6GDlj79D2+1aafttOIpIk66Z1LP/x3/NWvYcf/fggI9NECmTkmbjv0SVszmsjz7mLtifaafxVG/HQu5/Hvm4Zy7//TayLqi75M56LgUEvTz7dwPMvnmT8HLUOVRqJ9bdXsvn2QqpiB8ka28fxx7v5RccCDoQzpwxbFhUCm2/J4+PWd2j/9quYl61gxQ/+BkPJ7IiCi+Fy/+587T1sXfMRIg43VR8pYfHnq3FqS2nI/DDbX2jn1ceOn3UdkiSRP/jUMh79xFKUyssrJObjdelcJGJhfv/ELn7ym75z5uTm5Bu5uTbE0o5tlN+WzxHzJn77apLGg2fPsE+ydm0Bf/Yn11FUaJ31dscDQTyHDhI4eYho2Eki3cKoKZdOr4XOIYne/ihDvR4cw/4p72NziSSJaLQSWq0Sq1VLRoaBrEwD2RkGMjMNZGbosdsNZNj1aDRTD3i9X7jU30syKdPe4eTI0UEOHxnkyNFB3LOcr52eaaBuVR5Ll5pYkTNCZqgF1WAnA+8M0b9rhPEByNy8luwb15K1Ze2cOxnPBife2MvXf9hMX//Z5yq7wMxX7laz8aP3zKi80NXEB0XcHgEOkXLw7QccpGYS9UA+sAS4ntQs5iRh4O65EHxzjSAIbwPrgQBgkWX57KnD1HFrSOXlAvydLMt/Mwdt+S/gSxO7y2RZPjLLr3/ViVtImTR1/N/j1H/je+RtyaHlpo/zy6d9U5aAASi3JflC5TE23GViVF/NO/EN/O5Hx+maJq/w+vVF/NWfbyAj4+IdAS8Eb1s3h7/8Dwy9+jYAWpuGxV+oJv2WRWwPrOfXvxmk++TU+bj2DD1/8kdruOWm8jkR5PO5Ezn2zmEO/dG3cR9rRhCh6MY8qj9eQaR8Md3qhWzdL3LgrU6GejwzKu2h1kpk5VsoKtRQW5SgWj+Mpb2BWI8LwZpPV0JFMs1KhRwjMdiEKs+AuKSOHiGfxgEd7T1x+jvdDHZ75mz2ODPPxJ2fWMKGMhclzu243mnnyPcb8Q8EkQw6Fv3TV+ivWcMPfnRg2hqCKo3ETffXcecmBdXurQSOdHDouycY735XBGuy7Cz5tz+n6KE752wgaMwRYPc7Pbz5Vid79k3tmD6JQhJZe3MZW+6uoFo4Tr7nHXpf7+R3b1jZrl+CPzD1AEPFAjtfuHEcfvhbXK0xlv3n18j/8C1XxGjkdK7E725s71G2b3qEZCRK+YcKWfblOsbVeZzIfpDmxnF+8709U7rvlpak8c2vbWJBXeact3GS+XxdOhfjbjf/+cO3efnV4XPWN9UZVdTUmFhSGGFNTYReinj8BT/NR6aeyVUoBO67t5ZPf2o5tvS5ybOE1Iyev7MP9769hDuPk4yMoSiwES8poztip21YQ/cgDPb6GOr1zJmh1YViNKmx2fVk2PVkTgjgrEwDmRkG7HY9er0SnTY1YzxdfnAikSQaTRCZcCiORBNEInGCoVQt+mAghj8QJRCI4POntieXQCBKMBglGIyjlETUagVqlYRWK5GTZSQvz0xeromCAgv5eeYLynn3OBzUH23l6OF2ZFFgyYoFlFcUk5U1fRknpzNIQ+MIJxpHaGgYobF5jEBg9jMLTVYti9YWsHqVmRWZfWQEW6C3m4Fdw/TvGiahzSP39o3k3rEJ65KaK35dninxcJhf/NNv+NmOJOEpTE3XbsjiLx4qJn/JkivQukvnAyFuZ4ogCFXAl4E/ACTAB1TLsjx9XM1ViCAIY4ANqJdlefE5jrMCk1n0T8qy/MActKUeWEgq9zddluWpk+4u/vWvSnE7Sdjhov6v/oO+J5+n+M9u5BlhI1tfGZxSOIiiwLr8AH/9kX6MGSaa02/jlT0iL//m2JSOynq9ij/6wiruu6f2os0uLgRZlhl46S2O/Ml38HemyrdkLk1nyR/XEa5Zye+banj+dyen7QzU1Gbw53+6joULsma1XfO9EynLMoMv76Dh2/+D88BxAKwVZgo2ZZN5Sw2BwiV4hDS6RtV0Dsj0DcSQk0m0atCpkuhUCTItMUo0TqwjHYSPtBAPa1Dm1pC+egX265aiyUif8jwFB0cYfOVtRrfvIDHSgqXKgu66hcRKq2gdt9Hcr6any09/h5uh3osXvEqVAkmlQBQFLGYFRRY/OUon8WO9cHIAc2SciusXov/SF/m/J9vOGc67cE0+932snBXyLoz9x6j/32a6X393VkiQJCq//AgLvvmHKE2zO/gjyzLNJ8fY9U4Pb+/qpnmawafTsdh0rLmpjJU3FFMhnqTI9Taew9387nGRbcZVjI5PfU4t6Toe+bCJhfufoP03DZR8+kEW/t2XUZmNs/qZLpYr9bvrfeo1dt//ZQBKbstnxVcWEFal0ZD1AAN+A7/6t930tp2d/SII8KG7qvn0o8vJzpr7czjfr0vnY3TEyS9+u5+XXh3E7z2/qMjMNVJba0BrMXBwzwij/VN3BQSg0K5kUbbIihyB8kITGosJyaBDkBSIkoQgKVLmRJLijMfe/ds5Hpsi/SXm8+M8eAL3wYPE+psRomNoa3NR1ZbjVOfSMmakY0hBf3+U0UEvrtEAXlfwnINZV5LJep+iQkAUBZJJmVgsQeIy1TU3GtUsWZzNkkXZLFyQRVqaFoNehdGoxuHyc/hgC8eO9dHaFaJ/MMK4e+p0E1EhkJ6uITvbSF6elewMA929HhoaRqaN5pkNtHolC1cXsGKtjevyh8gKNEFPJ31vDjKw34W2bDG5d2wk57br0WbZ56wdc0X7G2/zz491cLjh7DBkpVrBI/dl8LnP3YKkmb/XrGvidgoEQVhLKv/WAPyXLMt/eoWbNGMEQdAAk9/Yl2VZvuM8x/tJzWDvk2V5zSy35XZStW5n1JZpXuN8LkpZwEGAEydOUFp6dZSBeC+eYyc58Rf/Sny4Hc1ffoL/22On9cTUM506nYKHV3l49MYRHJbFHGQdT/70OM2Hpx5jKSu18idfWs2SxbMrGqcjEY7Q9r1f0fqvPyURCiNKAhX3FVP5qTraLNfzi9fV7H61fVpX2C1bSvjiZ5eROUuzzuFwmLffTs0ob9iwAY3mypnIXAqyLDP25j46fvQ4zj1HiLm9IIClxIQ+S4varEJtVqEyq0lE4oQcYULOMPG4Csmej3npEtLXLsG6vA5Jf/ZN6XznKRGJ4tx9mOHXdjGybTcqhRdbnRXL6jKUS+vwmYtoHrXQNaxgZNDPaL+XkQEvzmHfZenkldRkcMfDC1ib2UGhYyfdL7Rz4qctZ9Qotm9axcJ/+3NM1bNzHYjHk/T2jdPR6ebI0SH27OvHMU30xXupWJjF2lvKWbDYQl6gnlzvYaKdAzz1iyAvKtfQ55l6hF8hidxyew73a3fR+c/bMC5cSt0/fwVTVcmsfKbZ4kr+7jp++BjHv/LPABRuyWHVXy4iKalpybiLIXUlW584wY7nT055DVIqRe66o5JHPrZwTmcI3y/XpfMRCkV59oWjPPV8NyODM/ttQMqZHThvKLDJpKSuWEFlWhAFSRKyQDwpkJAhkRQmFkjIAomknPpbcuJvp15aQBBIzaoJIApCyhleTKIRk6iFBFoxgUaU0ShktJKAPhJBOeZA6R5FJbrRmeOYa7NRVhUhZGfjF630e/X0u9UMuxSMjMUJ+iKEQ7FUXdeJ2q6ntk+r5XqNy4dCEmc0KCspRWpX5LHiuizWlbrIizShHmynb8cA/fs8aOtWkXv3FmzXr0g5PM9D4r4Az//P7/nxOxp8UwxIZeYa+ItP5rPqxtVXoHWzS0dHBwsWLJjcvSZuJxEE4cvAd4F2WZYrznf81YIgCHZgctrjcVmWHzzP8SNABtAgy/KCcx17ge1II5W7XAgkSOXbHr2I15nxl+QnP/kJNtuVMQ+ZCbIsk9jXQPQXL5O3Ip22Ox7h188FGJ/G5CAnU8lX7xpheVWSZvudvH1U4NmfHp626H1ttZYbbzBhNl+e3JzkmJvoz18isecEkApVXvLFatJvWshb4Q38+nfDdDRMPQOnVIqsWWVg7So9avXczzrPJ2RZJhZNwoiDRGsfcscAYiiMoFGCUkJQSghWE2JBJmJhFpgNcxIKlRwYI3G4mfihkySbutDbVNjq0rBWWdEvLaNbV8KTu9TsOTjzDu3FIClF7DlGctPj5KkdmCJufO90QZ8TfTSAIeZHb1ajefR2FGsWXNS5SCRk/IEEo2NxRkdjjI7FGBmN4XDGSVxAOrJGp2TFpmLW3FROsS1I3vgBMvyN+NpdbHvaxzPJ62hzT//7rF2awefWjhD+998w5pRQfeoOpGVzmys8X4k+/gaxx1Izo1kr7Fz3N0uQ9Ep6LdfRlbaJgS43T/zwAANdU4e2SxLUVGlZulhPQb5q3oQTXq3Iskx3X4I9B4K0t05d730+olSKGEwqjAYRk1bAqE5iUEQxiRFMiiBpiiDpmgCZ1jjmdAm1WYdk1CLo9MgaDQlBRUJMLVFZRSgu4Y9IBGMSwYhIICLiD4u4veB0Jxl3BRl3hvC4gnhdoWlNG68xNTqDClEhzKj+MkBhhY3lGwvZtDhGWaIBw9hJBt8eoGe3A6c+F+mGFYgVBQgX4ep9VdHQzJuDmeyawjQKYNUaOzeuU6C4zN4Ec4XD4eDTn/705O41cTuJIAjLSTkOh2VZnrvh3VlGEIR8UuWNAH4ty/Ij5zm+l1TecYcsy7NihSYIgoLUjO0tEw/9rSzL37rI13rfiNtJ5Fic2Iu7kV/aQcFn1/GSfgtbXxsiPk2pkKW1Kr56axeasoWcUF7HC785waG3uqY8VpIE1q01sHaVEaXy8nTWEvVtRH78PHJ/SshmLk1n6ZfrCFct5/nuBTz92zacw1OHEOl0Ctau0rNimR6Vap7fPGaILMv4A0mczjhOV2rxeJP4fEl8vjg+X5zke74KarVAVoaSrCwl2Vkq8nNVpKVdPoMRORgmUd9G/OBJOlt9HNBX02MuuGzvfz4EAfQ6Ea1WRJIEJElAObGWpNTvQiEJxGMy4XCScGRiPbEdi138vUijU1K5OJua5TnUrcglL9FO7vgBzOE+BveOsPtZN6+ab6DBO/1tJLfIwsduEyl65Xd0vtaH8oEtSLesQZDeHx2NuUCWZaI/f4n4C7sAMBUZ2PCdFRiydXg0+bTY78QvWtn54km2PdlwzvzQtDQFi+p0lJdpyMpUXhO6l4hnPEnvUJKurgitrX6CgQ/WjKWoEFAqRSTpvdcjUComFglUkoxKklFLSXQqGb0miV4vYTApSbMqSLer0GiVjMc0jHmVjI4rcHrA5Y4z7gwy7gricQYJ+i4t11SlkSbq0EtT1KRXotYp0WhEdFoRtUogLotEYiLxWIKAN0Jfu5ORAS/+8fCMvCGmQhDAYFIhKkT83uiMZltFhYBGq0zNziaSMz4PFpuOZRuKWLfWzGJDG/bx47j2ddP1xhDDMSvinRtRlOW9L64D8riPQHMvvziRhXPs7JQxvVHFA3dYKCieO9PPK8E1cTsNgiB8C/gm4JZl+equVnwaV8PMrSAI/wt8dmL3ZVLGXBdlx/p+CUueivCIk+a/+wFjW1/H/NUH+HVHOUf3T+2qLIoCN62V+MyNTsZK7+RYu4Lnf3aYod7xKY/PzjLwmUeXsmVz8UXVEbxQkrEYnT/6Pc1//yPivkDKVfmeIqo/UU1/xlp+tz+LrU+fnHYU2mzW8LGH6rj37uoLdoW8GsP/EokkDmeQoWE/w8N++ge89PR56e3zMtDvnZGb8PmorEhnyw3FbLmhhIyM89fLu5TzFInE2f5WF08+3UzrFPmMk4gKgfIFmehNGrR6JVqdCo1eiVavQqNTolJLjA16Ob63j95250V3hK40tiwDNctzqV6WQ0l1Bpb4ELZAK5m+eiS/m67X+3nztSi7Cm6gxauZNmw7PdPAg3fqWdLwPJ2/OEbeQ/dQ9bXPo063XNbPczFcDb87WZY5+sW/o+eXzwKgtqhY9+1l2OvSSAgSXWmb6DevwusJ8+YzTezd1n7eTnOaVcuqlbksWphJZUU6xUWWi3JavhrOz9VAIpGk8aSD3fu6OXR4kI628WkHcq8xNWqNggy7imyrTJ4+SJ7aQ5nBTXa+HtGeTsJgJJRUE0pKhOJKwrFUnm0ywURovoxKCSpJQKUEpZhALUdRJiIoExGEaBQ5FEYOhUkGJ9b+EMlAaiEWRZSTCKKALCnoF9NooJTjHjutPYlpa3hfTWj1SupW5rH8uhyuKxwhJ3AcOtroerWPsXaBoi8+St59NyPMM1fg6UjG43T+5rf8rkPD1t1T54cvWJzO176ymvz8q9/V+UL5QIclC4LwG2Al0ErKRTlAKs92BbBo4rDHZFn+2JVp4YVzpXNuBUH4R+AvJ3Z3kyoxNHvFxc5+v6vaUGomjDe1c+yv/p1IbwP+z3+Kn7+pZqB7atGq1ih4YHOSW262MWhfx57tfbz2++PTlowpKrTw6UeXc/ONZZdF5IaGxzj2F/9G16+eA0BlUlL3iQoK7q3muPp6fv0K7Htj6tJBAFarlkc/sYR776mdUfmgcDjO8Iib117bQSQis2rVSvR6LQqFMDFqLiIpxFPbSlXK4VGpSj1+ISOzsiwTjsQJBlLOku7xMG5XCLcnhMMRZGDIy8Cgj6EhH6OjfuKXqVatIMCSxTncclM5WzaXYpmmDvLFGNz09Y/z1DONvPBiM+PThMMDqDUSq28sY8PtpZRoh1DHfUjJEMpEEGUihDIZJDge4tmdAk+9rSEYmV8j4uZ0HdkFZsoWZFKzLJesbC3WUBfpgVbSg22oE378AwHaXuzlzQMa9pVtmrZWLaTKM91zZxqbRl+n4wfvYL9hIwu//WXMVfNncO5qMUxKJhLsf/SvT11zRKXIki9WU/6hIgA8mnxa7bcRVGXgHgvwxtONHNrRNWNzNKVSpLQkjfw8Mzk5JnJzjGRmGLBatVgsGixmLTqd8ix32Kvl/FxtJJMyDmeAo0+8Sf3zO/EZLfj1VjyCjj4HuBwzcycWRLBY1KTbtal6spKAQkzNkioUqUVSpHJskWXkpIxMKsdXlmWSSYhEkoQiSSLhJKFIgkg4STgcJxyMn3Om/2rBaFRSlCVQpA5SGhun0q5GEY8gx6LICO8Wt0Q4414nKCYNtlLGXGcYb02IOzkeR04kiYRitA4EafaItMcN9PglwtH5MSip1krUrchj8do8VpcHyAk3YXY0MfhWL12v9qEsWET1V/+AjA0r3heztJMMv7WDV3Y28Ov9uinLdqk1Ep/6WCmf/oNNiFMYrL0f+EAbSgmC8BjwEU67BEz+aeKx14GPybLseu9zr2aulFuyIAh/AfzTxO4R4AZZlqdWabPE+0HcTjK66xBH/+Jf0WZEqN/0EE++7Js2b8RiVfHJW2Ms2lJHr1DOa78/zr5p6s1CSuR+5g+Wc9OWyyNyx/Yc4fAf/z2uw40AmAoMLPp8FabrF7IztI4nn3HQeGj6uocAKpUCrVaJTjdZ4kCJWi3h90fxjIfweMKEL8GgQxBS76FUKlCqFCgUInJSJjnREUqtmegIyYTD8WlNsq4WFAqRNavz2XR9MYsXZVNUaDl1055pZzuRSLJ7Ty9PPt3Anr29Ux4zicGsZv1tlay7sYCyxAnyxvejTqRC0EOuMJ7eELtOqNneZedYIJMEU3/3BAEWrSlg84drMafpCPoiBHwRgv7ou9u+KH5vGK87jNcdwusO4feEZ/V/otZKZBdYyCqwkF1gJqvQQnaBBZ1BhTrmwRrqwhZoxRrqQiHHcLeN0797mN7doxxOlHCofAOD3uk7SRqdkttuy+R2YRd9330DQ81iFn3nT0lfsXDWPsPl4moSb3IyyaE/+jvafvjYqcdyVmew8s8XorGqkREYNi6g27qRiNKMfzzMoZ1dHNjeyejA7Bj4S5KIUimimrieKCWRaDSMUilQW5NHVVUG5WXplJelk5U5N3ny843ouI/6v/6P1P9NltHaNFj+6HZaMpdytENNW5Nz2vJ5kwgCrLuukNtvrWTd2kJ0uksPr0wmk3jHvYyOuhkbG2fMGcDhCOJ0hXB7Yoz74oz7Eox74/h8MQK+6GWvkTsVkiRQlKOkNl/D+s0LWbWxCr3+wsyPvN4wx44Pc+TYIIePDtHSMnbBM+0KSaSozMLCCpHaojgJvR2/yk4wpqTl2BBtJ0YYG/TOSeSOSiNRuzyXRWsLWFEZJy/ahG28EfehPrq3DzC410nefbdR9ZVHsdTO3/7iVAS6e9n329/xs458mhun7nqXVVj4+2/dQEXp5TEgvZz4fBHa2p20d7jYt7+B7/7bRyf/9IETt8tJ5YWuBTYAOlKi9m3gq7IsH7qCzbtorkSdW0EQvgj8YGK3Gdggy/LUdsCzyPtJ3EJKSPU/u43j3/wPTJuL2Gq7ia1bx6YdRc7N1fCJ22Vyr19Hx5CS5352mM6m6cuTFBVZ+Myjy9lyQ+lFhdpdCHIySddvXqD+r/6d0OBEPu4yG4u/UE1ywRJ2uJfx3HPD09Y9fL+jVCmwZRuxZxuxZRswp+tJsyhIt4BBJxIXlCQEFTGUjA0HGOhyM9DporvFMa2p2HuxmDXU1mQgCOAZDzE05CYaS2Iy6tHqlGjUSjQaCY0mVa9QrZI4fGSQoeFzG8LYsgxcf1c1a9bZKQ4dJsd7CEUsRO/2Qdqe66F1WMVxYyXN6VUEldPnmgoCLFpbwJYP11GYJZPv2Yc64SUuqkmIGuKiemLREBc1xBRaogojEclIUlSRTCQJ+CJ4XSG8njCRUIxYNEEsmiAeSxCPJc/YV6kVaHQqtHpVKmx6Ilx6ct9g1qCQY+ijoxiio+gjIxiiI+ijYyiTqXwyR4OL/t0jDOwexuGQaapYw/GsRTj909/PNDolm7Zkcm9aPSP//gKitYDF//gVsrasndH/8WrkahK3kLp2HvvLf6P5X35y6jG1VcWqP19EzupU2F1CUDBoWk6fZQ1RyZgyQTrpoH5PLyePDuKYxhtgtjEYVJSXpVNZYeOGjSUsW5rzgRa7Y3uPcvAL38JTfxIAY76euk/XoLv5Ok6Eq9jfpmXvtk4Guz3nfB2VSsHaNQXcuLmU9dcVYTBcHlfbSDSCc9TFuDdIOBIjGo0RjiSIxuIEgzEGh0aIJwR0OiOxeJJIJEE0Jk+sk0QiSYKhBIFAnEAwtR53RwhcYi6tIEBhjoq6ChsltQVkZxrJyDCgUon4fFF8/gjj4xF6+zy0dbjo7HIxNhq4qPfJLbZSW61hgdlF6Ug9ifomvL1+HKZMhooqaIpmcqJfSzI5e99zo0VDYYWNsroMLDY9RouG0pw4+ZFmMvwNhJp66N42QO+bgyTiSsq/8FEq/vjj6HIuX73ry0E8FKb5xz/iyREbr77lJ5E4ezBCIYl89CNlfOmLm1C+D7wcYrEEe/b2crxhZELQOhk+7fodjbppPPb1yd0Plrg9HUEQ1MDtwB8BG4Ew8EeyLP/sSrbrYhAE4TvAX03srpZlef80x/0l8I8TuzfLsrz1It/v48AvSc14dwLrL1dt4PebuJ0kGYvR8dOnOPlvP0L38HqeDS5l767haXP3Sku0PHyPHsvK9Zw44mDrEw3TuoRCKq/s9tsq+dBd1RQXWefoU6SIB4I0/etPaf6Xn5AIhRFEKNycS80j5UQrlrB1ZCFPPNZLf8e8CpCYEUqVAmuGnjS7Hlu2kcwsLXmZMoW2KDkGH4aEG23MhegaRfZ6SQaixEJxFEoRrU2TmnUSRfzqLDzaIjyaQpyqfNqaPRzb3cPxfX2X1U1zsrzN0kU6Cr37yPLVQyRCw4tD7HnRQ0c4jSZbFaP6c+fwCAIsvq6QzffVUpwZp8Czm0xfAyIzmyGQgYSoJjIhdCcFb0JUkxAkkoJEUpRICkqSgnTqMYUcQ0pGkJJhpEQ4tT5t0UZdaONuJrtfIUcYd4cXT7sXd4eX0aNOwp4oA6Y8GhZs4mQynfg5Zh+MFg233GzjVu1hRr7/GrGElYX/8Kfk33vTvBczV5u4hZTAbfyHH3L8G/95xuOFm3NY/MVatGkpsZNExKGvZNC0DI+u+NRxjiEfJ48O0dk8ykCXe1ojvNmmIN/Mh+6u4c7bKkmfw/JEVzPJRIKuXzxD/df/k/BwaoA2rdLMos9WYV1ewKBxCTsHinnr9X4aD/aft/yYUimyelU+GzcUs3BBFkWFlssStfReLvZ3kkwm8fvGGRwYo6fXQVubk+7BCAMjcfp6/ZdsInWpZOaZqKyxsLQ0SnWkldi2vYjaIqhcwNtbm6gfjNNtKiB0jsHN2UKvE7lpeZQPr3CQmxil540Bet4YxNvrR5eXReWffIKyzzww63XPrzTJRIL+J5/krS43v9ylweOcOgOwui6Nr//VDVSXzf/c2s4uF8+/0MyLr7Tg8UyfwvCBELeCIIiyLM84rkIQhA+TEmsa4EZZlt+cs8bNAYIgrAQmBe3/yrL8+SmOEYEGoBrwABmyLF9wL1kQhHuBJwAFqbzl9bIsd19cyy+c96u4nSTmD3DyP35O9y9/C5+9j8fa8zl5fHpDn7oaHR/+cDb6umU0HR46r8gFWLwom3vurmbLDaVotXPnmBfsH6b+a9+l81fP4dCm02MpZLS4nA4yiMQvrdMhiCnXRJBJJGQS8STJpDynoWJKtQKDSYPBrEZv0mBJ15GWoceeriArHXItYTK1XnTxlIAVRoYId48QGAjiGwjgHwjgGwjiHwgQD009My8oBPSZWjKX2chZlUHmMhtoNTgM1QwbF+GQ8jl5dIgju7ppOjxIfA7yxJRqBRWLsliyrpCqrCDa4RM4e4boHJBobEzS7dbgk2bWaZCUIgvXFLD53hpK7GEK3buxB5pBlhncO8bJ37fhGwgiKgSEiUVUiKe2VXoJrV2DNl2D1ja5qNHZNGjSNSiUF/Y9SiZkYv4YUX+MqC+GfyCAu/1dMRtxv9uBDCtUNBcu43j+MsZC5x75tmUZuOMWC5si79D3gzeJyxbqvv4Fij52F6J0+Vyu55KrUdxO0vWb59n/6a+TjLz7/1OoRaofKqfm4XJExbvXhaAynRFDHU59OX519hmvEwpEGehyM9LvxTXqxzUawDXqx+cJE/BGZpy3O1MkhciG9UXc86EaVq/MuyJi7EoT8wdo/pef0PxvPyMRSnVe7YvSqHqghOy12YwaajkWXcjWNz0c2N4548E9nU5JTXUGC2ozqKvLpK42E7vt/EZ8l8pc/E6iYT8nG9s4dLifpu4orZ0RBnrG5+x+JwiQXWihpCqNuhKZZZkODPX7GX7lBDF1EeHrb6ZDn8f+I8OcbLn4gD1BAIVSkUoLusj7d5HKz8ZDz1JWbqP6q39A4YO3IyrfX07AcjLJwLNPs79jkCea7LQ1e6Y8zpKm4Q+/uJR7bl84r3NrQ6EY27Z38NzzTRw7Pjyj53xQxO1x4I9lWd5xAc/5EvCfwJuyLG+Zq7bNFaeFJsdJhQjvfc/fvwr8y8TuWaV6BEH4JPDz6f4+ccxNwIuAipRD8wZZlltm71Ocn/e7uJ0kNOKg4dv/w+gbrzP+6Uf43X49g73T54qtWGbg3nuykSqW0HhoiK1PnDhvSJdep+SGTSUsW5rL0iXZ5OaYZmV2KZmUaWt3cvjIAIePDnL4YB/eOSoNIQgp0y21WkKjk0izqbFlaEmz6Uiz68jMN6LWqIglIB5LlYCJxxPEYjKynHq+IIogCIhCEhEZhZBAJIFGSqJXJzGo4xjUMQxiEFXch3piEf1u4oNjhIb9hMbCEwJ2QsgOBkmE3xWekkGHsaIYY3khpooitDmpEVU5kSQZj+Nr7ca5vx53fQty/N1zpVCJZK/KoPjWPLJXZhBRWxk2LmTEuBBP3MCBNzo4sruH0f5xopGrxxAlVUuwmEVrC8iSRilw7yY92EYyLtP1ci8nn+zEP3Dp9XIVKhGFRoFCpUChFlGoFUhqBQp1aj8RThD1x0+J2XgofrbjwmkkEegx59NSsYYWKYvYeU5pXrGVD92sZfXIdjp/uAdZY6Pu61+g8KN3vG9E7SRXs7gFcB48ztv3/BGhgTMd6LU2DYv/eAUF69MQOPM6FFYYcenL8WgK8WpyCCvTpn19WZaJhuMEfBGikQSJWIJ4PEk8lkyFxMdT66AvylCvh6Ge1DJTMZadbeSeu6u5566aD+Rs7uRg6KRRGKS8GyrvL6bwplz8piLaVMvZfkzN8X39tJ8YueD8e71BRWaGgcwMPVmZRjIz9GRmGsiw69HplGg0StTqifuJOpW+ISlFkEGWJ/wYZBnk1H1u8rHU46ntUCjMW2++BcD6DdejUatTfg4yp0yuJp/LxOud/bd3X3tyP56QU9+xeJJYJMxQTzdNrU66R2QGhqO4RgIX7UcgqRQUlKVTUpVOXYnM0jwn1tEWPFuPMLRnmFE5F9eaLbQrMznc4CAQmPkssqgQyC60kF+aTn5ZGln5ZvQmNTqDGs17jNlkWYZEHDmZRE4mcLsiHHirl4NvdeI7x6ydQiHw0EOL+MKnV15w9YWrGTmZZOiF59jX1s8TTTZamzxTHicqBO68s4T/96VNGC9TaP5c0HxyjGeea+S119sIzPC6qZBEMnJNmNLi/P5/PzH58PtW3CZJdWFeIZVbenAGz5msc+uXZdk0x02cdQRBWAK8A2gBP/Ad4K2J/Qd5t1RPK7BclmXfe57/Sc4hbgVBWA1sJ5WnHAM+CRw/T7P6ZVn2XMznmY4PiridxNvWzfGvfRdf53F6P/JJntoFzpGpc2QEAVavMHDnh3JRli2m8dAgO184SdfJ6XNyTyfDrmfpkhyWLslmyeIcsrOMaLXStII3kUjicAQZGvYxOORjcMhLY+MoR+uH8M4wR/RykGtPsig/wOKiENdVBsi0vKtYkgmZRDRBIpIgGU0SjyRIRJMkIgligThRb5SINyWMQo4wwbEwwZEQwdEQsfcIdlGtwlhWiLG8EGNFEcbyIkwVRRjLC9Fk2Wc0cBAPhhjbfZjOnz9D3zNbSUbfvcBrbWqKbsqDleXsH7OxvSmNjoGrJ9TVnK5j+fVFLLu+mNwsBZm+E2T56jFER4kGkrQ80Ub7871Exq9seN17kYEBQw4tRUtotZRxvn6bQhJZvCqHO1ZHKT3xOh0/OYjCkk3t17+QmjV4n5SWeC9Xu7iFlHv7rnu/hGPv0bP+prZoWfntO8hZLCHEpx4ojIlafOpsAio7IaWVkNJKWLISkUwkxQufDZJlGY8jyFCPh4EuN0ff6WG0/9yGVpIkcsPGEu7/cB1LF2fP+3D2C8V1uIFjf/1dhrfuPvWY2qqi/O7ClCN2WhoOfSVdchl7GkRO7Bug9fjwrM+qv99QSCIqjYTOoCI900B+aRp5eVqKMyJUpHtID3cSPXCc4T2DnNzvp0tTgrt2Oe1JE31DFzYQacs2UrU4m4rFWZTV2EgTXRgiwxgjQ+hiztNSRCKIcgxBTiKQ5L3f9ISgwK0tZVBTzdvNBvZs76G1fvqZvMwsPX/95xtZf13hRZyhqwdZlhl++QX2t/TweKOdlsbpo/GqatL4+l9vpqbcfhlbOHvE40ne2tnJY78/PqNZ2qIqG8VVdrInzB/tOUYkpYKxoQEeXPU+LwUkCEIjqfDbyTfcDfwUeE6W5SnvLIIgfBP4FhCQZdl4Odo52wiCcCfwG2A6cd4K3C7LcvsUz/0k5xa33wIu1IDqU7Is/+ICn3NOPmjidhLnoRMc//r3iMdHaLzpIZ57M+UiOxXvitx8VOWLGB30ceDNDg6+1TVjY6JJFAoBvV6FQa/CYFBhMKgRBRge8TM8cvHlbwQB8krTqViURcXCLCSliHPEj3PYf8ba6579qlKZCQ+lY62UuTuw+0bPuqGeC1WaBV1+Frr8bIyl+WeIWG1e1qwKm4jTTdevn6fth48x1DVGU3oVjbYqnDrbrL3HpSCKArZsI/llaSy7vpiyGhv2SAdZ3nrSg22IJPF0hWh7po3urQMkomd/VwRRRFeYgybThjYzHU2mDc1pa1EpERp2EBocJTQ0llpPbIdHHJw3EW+qdquUKK1mXLZ8TuYu5FjChtt3/sgCW5aB6zfZuaOsj+RTr9D5XAea3AJqv/FFCu6/5X0raieZD+IWIBGJ0vB3P6Dpn3+MnDh76l1p0rPsbx+gYHM+orcFYjPLs00ISqIKHTGFnrioJikoSYgqEoISWRBTCyIJUU1QmUZQmU5QZSMpvjuTIssy3S0O9r/RQf2e3vOWnyktSePD99Zy+62Vl80s6WrBfayZpn/9Cb2Pv3rq/6hQixRszCF/UzZZy2zE1UYc+kp6KGdPk0TjoUF6287vuHwNUKkV5GSrybfGSHoDOEci+EMCAYUWd/TCrmVqjURZXSaVS7KpXJRFocWHNdSNNdSJOdyHYmqPU6L+GPFgnHg4QTycIBFOEI8kiIdSA85yIokxz4C51Iio0+DSldIYKOO1fbD/rZ5pZ3M3XF/I1766Ebt97sPQZ5NEKMzQi09zdNDF7xvsNJ+Y3pfEkqbhi19cwX131M3LAbDx8TDPvtDME0+eYHjk3Ndgg1nN8o0lrLyhhIzc98gbOYk25sbX18zNm+6afPR9K24l4KvA13jXERkgSapkzVGgg1TuqYGUc/KdpAySjsiyvOKyNHQOEAShEPgyKbOsPCAKtANPAt+XZXnKq/41cTs/GN11iOPf+B6iPc6BJffw4hs+QtNMNQkCrF1p4N7bTSgrlhCU9TQfHmT/9g5ajg1djC64JKwZeioWpsRseZ2dbOUI6cF20gPtqBJ+ogo9UYWe2MQ6KunxxvR0OrR0jygYHgwy0u9ldMCLc9g/KyVh0pJ+Fno7WKoYw25WorIYUVlMKM0GNFl29PlZ6Apy0OVnoc/PRtJfvnDBUDjGjp1dvPRyC/sP9DEb6VWSUsRg1mC0aDFaNBgtGlRqiVAwSsgfJRSIEvSntoOBKLFIAlGRErFZeWYy881k5pnIzDdjzzYiSSL66AhZvhNk+k+gSgSIBmQ6X+6m89VevN1T37QkvY7Sz9xP5ZcfwVCUd1GfJRmPE/cHiQdDJIJh4oHQadtB4sEwkk6DympGZTUhmU20j0TZsa+f7W91MnCeGTRIhXstWJHLretElkcOMPjzXfTtHCJt2QJq/uIz5H1oSyqs/QPAfBG3kzgPnWDfJ/6S8aazxnIBUJqNFH/8Lio/tR69JQjj3eDrheTsGbbJQERhJKRKJ6C049SX4daWgCASCkQ5squH/W+0nzeFRK1WsHJFHtevL2b9usLLkjt6tRDoGeDkd39B+4+fJBF8d7BTZVKSty6L/I3ZZC5NJ67U49KV4dXk0h+00dynoKfNTV+7k74O12U14vsgkFNkoWpJNhWLsqkuEbHHerCEurGGulEm3/0/jXf7cLd58XR68XT48A8EiHijxINxZuyMI4AhR4e1zISlzIypIo3IolX89FAR21/unrLEkFYn8fnPreSh+xde9bnsvrZWera/yFveDLYfFentnL6ipsWq5qGHF/LxB5agVs+/EOzOLhe/f+IEL73Scs7SjoIAlYuzWbW5lOplOUhKBWIyii3QiiE6jC7qRBdzoom5EUnSP+aj8IFTzvnvT3F76g0FIZOUwP0MoJ54eLpGTNa6/cx8dEz+oPBBF7cwEbLyxh7qv/EfqGot7Cy8ha1vuomEpr5QCAKsXKrlwc0JLLV1OHXluB0hGg7009k8RmfT6AXP6M6E9EwDpbUZlNRkUFKbQaZVJi3YQXqwDWuoE2UyQtQfY2j/KN4eP4IkolCKiJKAqBQRJRFJJ2HM02PM15M0WAiqbASUNsaFdIa8WoJRBcGoSDgq4PaLjI2GcQ77cQz7GexxE7uAPNSlS3O470M1bN5Uikp1ZWbhkkmZo/VDvPTySd7Y3jGjvBO9SU1ZXSZ5pWnkFVvJmXDDDgWjRIKpUjk6oxqjRYNGp0QQBMRk7JRjsCgnzii/w2mjwPFYAkEUUChE1PFx9NEx9NHR1Doyii7mQCHHSSZgcL+Djhe7GD4wNq0xiDbbTuWXH6Hssx9BZTXPzkk7B/F4kqPHhtj+Vgdv7ujEMcMZnfyyNFautnFr7RjGd7bR8VgjrmYPObddT/Wff5qMDSvm5Wj5pTDfxC2kZnFP/O33OflvPyMZm/63lL56MUUP30nurevQ2wXwDyGHRiE4CsExiLghOTu+AVGFnlF9NaPGOryafGRZpq/Dxd7X2zj6Tu+MTOJqqu1sWFfE9RuKqShP/0B8FyNON20/fIy2//kdoaEzU21UJiV567PIvS4TW40VtVlFQlDgV2Xh0+TgUebQPW5mxKPA7YrhcQbxOIKMO4N4nEF8nhCxSKqE2NVQ21wQBYSJNUwYLylS90SFInU9FhWp7dRjIuLE4wqFSDQST9UFHw/P2iC2zqiiclE2lYuzqV1golA1hDXUhSXUhTaeEmPJeBJXyzhjJ1yMHXfhaHAT9c1sUEGTkYahojiVylNWiLGsAENpAYlwJBW1MzRGeGiM0NBEFM/QKOb8KMFHH+WHz0L3NMZWZeUWvv3Nm6isuDoiniZJxmIMv/YsR7odbO21cWC/h2hk+muMyaLm4YcX8PEHlqDRzC/DrEQiye53enj8qQb27e8757GmNC2rt5Sy8oYSLDY9ghwnPdBOhr+B9GDbtFEAHyhxe+qNBSEN+BRwP7CMlNPve4kA35Fl+duXs23XuDCuidt3kWWZgRff5MS3vodmVQ47sjaz9S3PtCIXoLZayyMb3ZQuKsBhrMGvykRGYGzQR2fTKJ1No3Q0jTHunHlYl6QUsdr1WO160rMMFFfaKanNIN2qwBzqmQhP6kIfTYUAB0ZCDOwZYeCdEcbqnSTjM7guCKCzaTAVGjAWGDAVGNBnalHqJZQ6CaVeQmVVI+tMBJVphJRpeKQsmsfSaO5M0nVyjJb6YUL+8+d7msxq7rq9ins/VENR4dyWTZqkp9fDy6+08MprrQwOnbvmLIDFpmPBqjzqVuZTVq7DFu3BFB7EGBnAEBlBFsSJGXAdCVGNIhlBmQgjJUNIyfC0N4jJkjuxCaEbFzWIchxdzIEy+e4ASDIhEHQmcbe5GTkwQO+OIaLe6Tsx5roKqv/sUQo/ejsK1dyGV0ajCfYf6GP7jk527Oyacf53Zp6JZWtzuHFRkIrgMYaf3EvXq31EPHEKP3o7NX/+aSwLKue07Vcz81HcTuLv7ufEt75P96+fR06ee7rIWFFEzq0bsK1ZgnVpDcbSgpS6SIQh6oOIN7UdD0MiklrkBLFohM6OdiQhQWGWBUVsPCWKY9PXEQ1JFkYNtYwY6wiqMgj6Ihza0cWere04ZnAdANBoJLKyDGRlGsnOMpKdZSAry0BGhgG1WkIhCoinLQqFmFqLAqJCQBTFU9sKUUCtltBNDIJdjSQTCcbePkjP46/Q9/RWIo6z8xENOTrSa6yk11hIr7ZgLTMhSuJpJcVMRCQjYclERDIRVRgmSolJRBMSkbhAJCYSjonEEgKCICMgIwogICOIE2tAFGQEIbUGUAgyCDIiqeeJk8fLMqKYes6pxwU5NdgopByrJl9LmHCwEpABGUGWUchRFMnYxDqKKMdQJFPbp/6WjCImIkTHIwTHk/jHZYZdSjqiGXRG0mkbU9LVEz5nH2ESlUaiqNJGWV0mFbVp1GV7SY+ceS+PheI4G90TYtaNs9lNInIRqUqSAuuCStKW1Z5aLAsqUWjU53yaY98x6v/yn7GuNvF28T089UQ/wSnu8aJC4KEH6/jDz625orOdyUQCz+E99DfWs33EyhuHkwz1nvt3bjKrefChOj7xkaVzWt1iLnC7Qzz3QjNPPdvI0HmuZwXl6ay/vYKFqwtQKMAa6iLD34A90IKUPMc9XFSBxkqvK0HxrV+bfPSDIW7PaIQgGIFaoAyYnDroA3ZMl497jauHa+L2bORkkt4nX6Phb7+LblMpb2VsZtubbiLnCPkoLNDwyEY3N1ePEdTnMa4pYFybj1edS0KQCAVihAJRwsHYxJLaDgVjJOJJzGnaU4LWYNYgigLq+DjaqAtLuAdrqAtjeBCRJHJSxnnSw/CBMQb2jOBum5ufmSCCLkOLqcCAqdBAeo2FjIXpSDYT45p8RtVlHOi3UX/UTcP+flwzKF6/dGkO999Ty6aNJbM+m+sZD/P61jZefrWVhsaR8x6v1kosWlPAsuuLqSjXkhFqxR5oxhLqOaNebHA0RDIhI2kVKHUSCpWCyHiUsDtCxBMl7IkQdkeJTKwTkQRKgxKVQYnKqERtUqFJ16G2alCZVCSiSTwdHtwnnYx3+Rjv9hEYDp3TdRhAoVGTe/dmSj51L9k3rZvTznIwGOOdvT1sf6uT3e/0EJxhCKLVrmfJdflsWpZkqb6V0NbddL3UzchRJ5JOR+mnP0zVn34SfWHunLV9vjCfxe0k403tHP/Gf9L37LYZ52srTQYsCyrQl+RjKMpFX5SLNtuOKs2CKi0V8q7QqIkmEmx7600EQTjj/MiJCIQ9EHYhe7vB2Qz+M/tdMuBXZTFsWsSIoY6ooKW9YYS9r7fReHDgss8mqlQK0tN0pKdrSUvTkZ6WWufmGKmuyqCkxIpSuvI55sl4nJE396WE7jPbiHmmvrcoVCLmYiO6TC06uwadXYsu4921Jk2NKF1doauJ6Gl5qJNLKH5qHXZFCLsihFwRws6JtSt1jZ+MnFEY9URWr2OgaCHNEQMtHR5isQsTn/YcIwXlaZQXq6kpjFGZ7kHr7CfW0o63foDAYJCQM0zYEyXijhLxRpHPUQt8pgiShKWunPTVi8i6YTUZm1ahsZ3tZi7LMj2Pv0Lrv/8Xhs/dyq9aSzmwc+rZwewcPX/z9c2sXHZxqTAXQ9zrZnTXa5zo83HYaeJYq0xnm2fKUOrTsVjV3P9ALZ/86LJ5J2obGkd44qkGtr7RTvQckSiiQmDh6nzW315JYYUNXdRBtvcImf4GVIn39M8EBVhKEawVoLWDxppaJB2CINDW1kZFRcXk0R88cXuN+c01cTs9yXic7t+8QMPf/xfGm6t4076ZN3ZMH64MYLOruXtthAcXdWHVJ0giTriFZpAQ1SnDFFFJQlBNmKeokIVUiKo2lqrnqo250cQ9Z8wGhlxhhg+MMXRgjOHDjiln9SSjnrwPbaHwI7dhXVxNMholEY6SCEdIRlLrqMeHt6kdz4lWPCda8bZ0nVEqZyYY8/VkLkknZ20mGUttBA15jOqq2DeUy77dY9Tv6SEUOLcYMps13HFrBTffVE5tTcZFCzW/P8re/b28+lobu/f0nNeQSxAFyhdksnxjMQuWZ5GT6CDLdxxrsANxQl06GtwMHRzDddKDq2X8irsRZ1y/kuKP30X+h29BZZ47bz7PeJi3d3Xz5o5O9u7vO685zyT2HCMLVuWxdrHECns36sYD9DzfSs8bA0S9MfRFuVT+8SOUPHrfnLZ/vvF+ELeT+Lv66PjpU3T+7OmzQlwvGUmBOt2Kxp6G2mZBbbOeWjSZNiy1ZViqc1ExjOxsBncLxN/NUUyiwKkvZ9i4CKeujKA/xsmjQzQdGuDksaGrIndUrVZQUW6jpjqD2ho7NVUZFBZarmhuYyIaZWz3YRx7j+HcX49jXz2RsekNed6LIAqpcmKnlRVTqFKhwJNle+TkRLmaiTI9nL4/UbJnsmwQp5UK4j3Pk5PvOY7Tjk/VFJp5PuqpDyBgqixGrltIb1Y5zUkLJ1rH8c1yypGkUpCVZyarwExOrobirCTZlijZpjBWVQBV3I8YD0MkjBAOQTSauleJMqKcmtUWSM1QI8sQjRHzh4kHYsQCcWKBGDF//NR2cCyMrz+Ary+ArriUzBtWk7l5DRkblqM0vJt7Hg+FafneLxnd+RKjD32Knz0bYGxw6tnCO24v46v/73qMhnPPDF8MyUgIX/MR+k62sH9IyZE+NQ0Nfnzj05cymkQUBRYvtnH/A0vYvL4E6SobcDkXfn+UbdvbefrZRpqaz31N1RlVrN5SxtpbykmzKrEHmsj2HsUc7jvT4FNtgbRqSKsiFDThPt5BoGeQqNNDxOEmctq6f2iIzw7tm3zmNXF7jfnFNXF7fhLRKJ0/fYrG7/wAy+017C3Ywms7Aue8uEpKkZXVIh9bMcCKch8Xot2ivhjeHj/ePj/j3X5GjjjwdHinnNlT6LTk3rmJwo/cRs6tG84bdnTWZ4tEGatv5p3fP0NyyEmBPRM5ECI27ifYP8x4Uztx3/Qzskq9RM6aDPI3ZpO9KpNxYym9mjp2NhnZ+0Y37Q3nn0HNyjJw05Yy1qwuoKrChtmsmfbYYDBGR6eLw0cGeGdvL8fqh0kkzt9rycwzsXxjMUvXF5Gvd5LlO47d34QyGUZOyowccdC/a5j+d0YIO6982SVTZTFFH7+boofvvGiDqJkQiyV4e3c3L73cwu49PSRmOEOQW2xlwao81ixWsMjUhXn4BENbW+neNoCr2QNAxsaVVH75E+Teuel973x8MbyfxO0kyXicwZd30PfMNgZfffuCxNClos3NxLKwEuviSjKXZmHJTaCS+xGizlPHRBR6HPpq3NpiPNpCwkkVXc1jNB0eoOnQIM7zuIxeTswmNRvWF7Hp+hJWrcpDe4XzAmVZJtDVj2PfMRz763EfaSLYN0xwYOSCB0ivFhRaDZosG9psO4aSfAylBYh5uXQkzRwbhQNHhhgauHIBiBqdEpNVi1avRKNTotGpUKkVKCQRUUzlBZ8KhZcmwuMVE+HyooxClFEqkihEGUlMIglJTNoENkMMuy6EVTGONDZGtHuIUNsQgmhAnV2MOr8UQ0Ul5tpyktEYx7/5PaImH6+m3cLWl3qmnCW1pqn5i69ez+brSy5qUEaWZRLeUcabjtLRNUq7U6bLo6ZnTKSvP8LooG/G+c7pNg233lrOQ/cvISvTcMFtuVLIsszRY0M8/2Iz27Z3nNMgCiCvJI21t5Sz5LoCLDjI8R4lw3/ijJQnTIVE5FxcXQlGD/bgPtKM+1jzlOkHp+Mkxh/TNbl7TdxeY35xTdzOnHgoTMdPnqT5X/8P67pcji+9ixd3xXAMnzscNzdD4jpFJyuDh9FrUiFdCtXEKLZKRBAE/ENBvL1+vL1+Iu5zzxRKRj25t28k754t5N6+8ZIdh8/VyZZlmWDfEJ6GNhzvHGH4zX24Dp6YsiSI2qyicEsOxTfnYajMZMS4kKOBKnbsdHFox8zLJmVlGagst50ROuQPROnsdM0of3YSg1nNknWFLLu+mJI8kazACbJ8x9HFUh1ud7uX7q399GwfJOw6d9sEheLMzywIKLQaFBo1Co1qYq1G1KiR43HCI07Co87zhmoKCgWGklQJJFNlMcaKItJXLMC6pGbOwo5lWab55BgvvtzCa1vbGJ/BCLggQGGljQWr8lmzUKRG30mauxHHzna6tw0wfHCMZFxGVKsoeugOKr/8CayLquak/e8X3o/i9nTkZBLXkUYGX30bx95juA83pn4TlxlTkZnCG4vIXm3HWqQ6ZSokI+BXZeLWFePWFuFR5+N2x3GNBvA4grgdk+sg7rEAPneIRCJJMpmaKZxcX45umFotsXZNPpuuL2b9dUXnHAC83MjJJOFRJ8H+YYL9IwT7hwkPj50VNZRaosixGIgigiimjJ4UipRDuihMPDaxPfF4IplkcGgQBIG8ggKUatVZx0++DpPboohCp0Uy6FAadEiTiz61Vhr1aDLTkQx6RkcDHK0f5ODRQY7VD9Pd6bqg/6koCmQXWcjOM1CYBaX2IOpkEK8/gWssxshwgg6Hkp7hJPGZ+GFcZtQaCYNFg9GswWhSYjGJWI0yVn0CixTCLAewCGHMyRByRycjKzfxvy8J9LZPPXClVIrk5OooytdRUqintFBPRZGRPJueuNfN+JiT0TEvY+MxHAFwh0TcIRGnX0HfUJzB/sBFRVMoJJFlS9J58KMr2LCmEFG8OnPcp2J01M9Lr7Tw/Isn6euf3tkZJurCry1g7S3lFJcayAw0ke09gjEydGqWNiZbcHYIdL7UzuAbx4kHLryU1zVxe415zTVxe+EkIlG6fvUcDf/4IyzVWrpvup9n96no6/Sc83kqlUiFKUJZ20EK24+glGfuPKy2p5F392by772RzBvWoFDPnonQhXayY14/Izv20/fMNvqf3z5lXpa13ETpnQUUbMklaC2hR7uEt5qM7N3WSUfj6Ky1/b1IKgV1y3NZen0R1QvSyYq0kOU7jiXUjQAEHeGUoN02wPg0ZXUAjOVFZN24lqwta8ncuBKV1UwwGGTra6+DLHPTrbeg0517UCEZjxNxuAkPOwiNOAgPOwgPjyFIUkrMVhRhKMlHVF6eGRmHM8grr7bw4sstdHSef0ZNVAiU1WVStzKP1QsVlCvbsfma8B7qovuNAfrfHiYWSI0s64tyKfvcg5Q+eh+ajPS5/ijvC97v4va9yLJMaHAU15FG/O29+Lv7CXQPEOgeIOJwE3V7SYTOP9ByKahMSjKX2rAUGzEXGzEVGTDm6hFEgSQiAVUGUclATKEjJuqIKXQTtXh1KefzMz/R5AcjkRRIyCIJWSQuiySSIglEErKCQFSBdzyOfzyMzxPGNx7G5wnhc4cZ6vFc8GyxQiGwYnket91SwQ0bS9Dp5lf+4IUym7+TaDRBZ5eLEw0jHDw6yPHjw4xexGy9LdtI5QI7S6sEVhc5yaMHyTXEWL2D0WNOHE0evF0+4uF37/EJQWRUZ8dVvpCxgir6ohpGXFc25eVCkZQiKrWEpFKQiCcJ+iIzHghQayRESZyRCeVMsWdoWLrIzqYttaxbmYdON39qV8diCd7e1c3zLzazZ1/feX0ALDYda28uZ+UNJWSrnWR7j5Dhb0KSU+cz7JMY2Ofi5G/r8fVcerTBNXF7jXnNNXF78STjcXoee4nGf/gRWlsU3/338XpPFof2j5E4T+6nWiVSoQtQ1rqfwp4GpPcIXVWahbSlNaQtqyXn9o3Y1i6Zs9DOS+k8JKJRRrbvpef3r9D71Otn1E0EkHQShZtzKLuzAH1VNsPGxRz1V7B3j5tje3pn7GB6LhSSSEmNncXXFbJoVQ45Qj8Z/iZsgZNIcpRYKEHfjkG6tw4wWu+c1rhJk2Wn6KE7KP743VgWVZ01czpfxUhT8yi/fayerW+0nzfsWFIpqFqczYJVeayoEyiS28gINBNu66d7az+92wcJjk0IEEEg57brKf/iQ2TfvO5a6PEFMl+/T3NJPBQm5vGSiEQJev28s3MnciTG0opqZF+AyJgrlRPmcBMZc+Pv6me8sY1k9OLzZhUqEWOBAXOREVO+HlGVCvcUFCLCRNjn5PrdHM53c0LlZCqyQdJKSFoFklZCqVNM7EuorSqSGiMRKeUoHJlwFI5IJnzqbBwRE/2dLvraXfR1uOjvdOGZYYktjUbiho0l3HZrBatW5F319Ucvhov5nYTDcfr6x+npcdPV66Gtw0Vbu5P+Xs+MUy9OR2dQUb4gk4U1GtaUeanQ9aJxdOOoH2P0mIvRo07Gu7xn5fUKkoR1STW2NYuxX7cU+9ql6PKyTv19fDzMyVYHHR1OWjtctHc46R/w4vXM7SDPfEWlUlBdYWTtdcVs2VxNcaHlSjfpgmnvcPL8iyd5+dUWPOf5PwuiQFGljboVudQty6BA0UtJ7ASW2CCiHCM4EqJ/9zBdr/fjuQhjUaXZiLm2DE1GesrHIN2CKj3lazAcCbLuC49MHnpN3F5jfnFN3F46yUSC/me20vQvPyE20oX10c3s1q7kjV0BXGPn76Ro1CKldpGaDAUr6jJYcesSTMW5sx6WKssyHk8YhzOIyxXE6QrhdAYZGfXS2NhJKCJjt9tQqZQoRAFJEtFplWi1SnRaJXq9EqtVS5pVm1qnaUmz6k65Hse8fnoef4WOnz2Nc9+xs94/rcpM2V2F5G/KJWApYkRfQ70zl8P7U2WFhns9xGfgPCmIArYsA2ULMqlakkNFTRqZDGDzN2MPtKBMptyNhw6M0r1tgMF3RkhEp35dhU5L/r03Uvzxu8ncvOacAm0+iZFkUmbX7m5+/bt6jhwdPO/xxdV2lm8sZs1SNUXJFuz+Jhgepmf7IN3bBlI53xOo7WmUfvp+yj77wJzmA7/fmU/fp8tB2OVh6NW3cew7RmTERcjhwtk3gByOYjAZUUhSSkWmnHMmBGaSZDxBfNxHzBcgEYqckf8paRQoDRJKvTJV5sygRLJbSCQEwmNBwqN+QmNBkpE4yYlCMZKcYDavvIIIWrsWQ44OY64OQ64eQ44eU4EeU4GBuKTBp87Fq8nFq87Fq8lj1JWk8UD/qdrp09W5Pp30dB233lzOLTeVU11lv2pLD82UeDyJ1xtmZHScN97YRSwus2jREkRRIhZL4vdH8HgjjHvDeLwRxsYCjI0FcIwFGL9EcaiQRIqqbNTUmllVEWGJfQCjqx33kUFG652MHnPi6ThbzGpzM7GtWYxt9WJsqxdhXVqLpL3wEPJIJM7IaICRET8uVxB/IIrfH8XnjxAKx0kkkiTiSeIJmUQitY5EYoyMjJJMgtliRZYF4vFkakkkSSSSxGJJvONhPO7Qec0XrzQ6vURutpaiPB2V1bksWFzAgir7vKtJC+DzRXh9WxvPvXCSpuZLi1wTRAGtXonOoEJvUKI3SNisEhkWmQx9hAzJhz3iQO0YJtY9SLh3jLAzQtgRJuSKkJzoYwmShNJqQqnXIiqlibB+YeK6ITAaCfBo+47Jt70mbq8xv7gmbmcPWZYZe+cwLd/9JcNbd5B3dyXd6+7glWN6musdMy4/oVIpqKjJYNnibJYuzCIn24TdpsNoVM+owxKLJxgY8NLV7aa720Nnt5vObje9PR4CgdkPg9LrVVisGuw2Pfl5ZgryzaQlAsR37iT03EtIPs8Zxyv1Evkbsym8IQf7YhsefQkuXQluRRYdTgN93T6cw/4zwp1EUcCebSSrwExWpgqL4MYc6iEt1Ikp3IdCTpCIyQwfGKV/1zADe0emrxMrCGRtXkPxI3eTd8+NZzhEnov5IEZCoRgvvtzCb39fT1/fuXN3rHY9yzcWs2pdFrX6LrJ89WjG++nfNZya5T7qOKPzZl+3jPIvfJT8+26e1bD4Dyrz4fs0VySTSQZf3kn3r59jbO9RwiNO5NiEKBU4VWtbqVci6SUUShGFUkRUpnwKJrclrYTaokJlN6PIskFaGl6NFVfCiCOsZcwn4fAKOD0yLk8CjyuK1xMiFkmQPC1v9nR0BiUFuXqKcg1U5JuoLrFQXmnHYDGQTCRIRmNnLTGvn+DACKHT8k6D/cME+4YJjzimPQ8qoxLbAisZi9KxL0zDWm5GUAgEVBk49JU49FWMRKw0HR6gYX8/LceHic/AxTw3x8jmG0rZckPpJbnRzyXJpEx//zht7U6a2xy0tDoYHQvgHQ/j9UYIXUYXa61eSVGlnfIKPQuLYyzOcpDmbcd3qIPRY05G65142s8Us6JaRdqy2pSQnRC0p8/KXm4u5HoiyzJ+fxSnK4jLFcLhDDLiCDDmDOJwBnC5ArhdQdyuMN7xCNFpBocvBYVCwGRWYTIoMBskzEYl+TkG6paUsGhxHlkZhqvyeztTJs2hnn6uie1vdpyzhM9coNZKpGcaSLPryLBLZKUL5KTFydaHyBRcKN1jJAaGiQ+OEfeFSUZOL5UVZ8gb4iNHD06+3DVxe435xTVxOzf4u/po+a9f0/HTJ7HVGNA9sImD0kJ2H0vS3uyc0Uj8e1EqRaxpOtJtOmw2PUqliN8XxR+IEPDHCASiBALRy9opmAl6jYgl5sM81o/dP4ot5MAedKCPBdGmqynYmE32qgzSqy0oDSqCShtBVRpJQUJGRBZEQEYb86CLOVEmAqSqHsiMd/kZOepgrN7F8KEx4qHpbyDmmjKKP/Ehih6+C11u5gV/jqtZjHjGw/z2sXqeeKoBn296cyylSsGitQUs31jE8iIfOf56bIFWXE0OOl/uo/etwTPOoWTUU/zxuyn//INYFlRejo/ygeFq/j7NBaHhMZr/9af0PbuNQM8gJJNorGpy12ViW2xDW1NEIjsfhzIXT0SDP6LEF1EQjAjEYjLRaPK0dZJoVCYYTOB2xxh3Rxh3BfF5wudNCbkYBAGyc00sW5rLrVvKWL4sd8ZlRcJjLlyHG3AdbsR1qAHXoQaC/cNTHivpJOx1VjKX28hfn4U+S0dIMp8SuqNk03R4kMM7u2mtH57RgGlWloEtN5Sy+YZSaqszrkg5lGg0QVu7g4bGUZpaxmhtd9Ld6SYSuTIuy+mZBgor0qkqU7G4KESNdRjNUDveo72MNbhxNLjwtPvOuE/ri3KxrVmCbfUi0lcvxrq4CoXq6hnkm8vrSTAYw+EM4PSECIXjBENxguEYQW8Qv8dH0BfEPephT2OQsZHQOV+rrNzMn315AyuW581r8TodXm+Yl15p4clnG+np9lzp5kyL0aIhPdOAOV2HRiuhVotoNSIajYBaLRIJOvjWVx6YPPyauL3G/OKauJ1bouM+On76FB3/9zjBvj5yN+agvOsG9kQq2X0kRtdJ52Vx27waMRAh29NPrneAHN8QmaFRrAU6bLVWzIWG1KzNRO6aQikScoQJjIQIjoYIDIdwnvQQ85+7c6S2WSl86A5KHvkQ1qW1l3QzvRrFiM8X4TeP1fPbx+oJnmNQw2TVct0t5Vy/yU653ECm7ziC20n3tgE6X+5jvOvM3GfLoirKv/BRih66A6Vx/pRSmE9cjd+n2cbb1k3TP/+YwZfeIjziRKmXKLwxl6ybKojXLOS4v5jDLSKdbV5GB3yMu4IzSk240hhNajZeX8wtW8pYvjwXpXRh+eah4TGc++sZ2voOg6++TaBr6n6jtcJE3vps8jdkYSowEBV1OAxVjBjq6I9kcHR3D0fe7qF/BgZxADqdkoULsliyKJvFi7Kpq804w5V+NohGE3R1u2lsGuFE0yiNTaN0dbnnZNDhfJjTtNhyjNizDBTmKqjIjlKd6cXGCInmFtz1IzgaU2I2OPpuKLNCpyV9xQJsqxdhW7OY9FWL0GbZL3v7L4Sr4XoSHvfx5Pef4fUuFU0npi81Iwhw45Yi/t8fbyAjY/7fX2RZ5viJYZ58ppE3ts/uLK1KnTLvuphc8UshGnXTeOzrk7vXxO015hfXxO3lQZZlHHuP0vHTp+h9/FWU2gT5NxYi334D9cECjndKtLX6GOm/PDX1dEYVRos2Zf9v0WAwa9CbUjVyk4kkyYRMPJ4kGomnlnCccCCG3xvG743gHw9PWevuUlATp8TVSZmzjeLxHlTJi5uBlox6cm7dQNHDd5Jz64ZZcyO+GjoPkwQCUR574ji/+s0x/Odwn8wpsrDhjirWL1dQ7D+ALXCSsSNjdL7SR9/bw6fybwBElZKCB26l/IsPYVu9+H05qn41cTV9n2YTx/56mv/1pwxv30vM40WXpaXsnhJMt6/mGAvZcUSg+dgYY4O+GadqXM0YjSmhe8etlSxflnPBvxtZlvG1dTP02i4GX32b0R0HSITPjr4wFRnI35BF/vXZWEpMhBUmRo21jBpqaR/VceTtbur39uIcnrn7r0IhUFVpp7Ymg6xMAzabnowMPRl2PRl2wxlOzLKcuieEI3EikQTBQJT+QS+9vR66ejx093ro7RtndMR/UZFJ50KtkVBpJBRSqp6rQiGi1kpo9Sp0ehVavRKLWcRmBrs5QaYpSoHFT5roRnQMEm0fwNvlxd3uxdPuZbzL964PgyBgqigifdWiU7OylgUViJI0q59hrrmarifOI43sfvIl3hYr2LvHMW1pH5Va5KEH6/jMp1bN+iDL5cDnj/DyKy08+UwjXV3nrhs7FZJKQWlVOlUlCtKNMSxSGG1oHLVrDKl3gERDJ8GWUWKhJLrFdWhXL0VRV0tIVDHU0s9Y1wBBhQKv3oozrmXElcTjjs7KhMk1cXuNec01cXv5ifkD9D7xKh0/fQrHnqNobWqyltlJX19CbPESjrqyOd6loq3Nz9iQj6Dv4vJkjRYN9hwTGbkmMnIN5GWKFGbEyTKG0QpBVPEAqkQAZWJinUyZX02GAidRkBRVJAQlCVFJXNRMlMbQExV1uMMaXAEJl1/C4xNwOGM4R/w4hlM5s25H8KI7OQqSlI53s3jwKPm+/vMavOgLc8m5bQO5d28mc+OqOckJvRo6D6FwjCeebOCXvzl6TqfF6qU5bLijktXFLgrG96P39dCzbYCWp7rwvqcEkqEkn7LPP0jJp+5FY0ub649wjQmuhu/TbJBMJul57CXaf/wErgMnSITCpNdYKP1IDfE1a9k5XMzbe3x0NI4SjVzevLPTEQQwWrVk5JrIz1NTnh0nVxhF6O4hMexGTgooM824c0vpDlrpHISBvgCOId+MO4u5eSY+/KEa7ry9irS0i6s/Hg+FGdm+l76nt9L//Hai7rNz501FBgo25VCwKRtTvoGA0saooZZRfSXtgyqO7+2lfm/fJbvR63RKJEkkEk0QiybmZDBCb1KTU2Qhp8BEXqaAxZDErE1g0cax6qJY1GF0igiKZBRRjiPICQSSCJEQss9H0uMj4QkQdoUJjoUJjoYJjYXwDwbx9QdOlSsDUGjUmBdUkLakBuviKiyLq7EurLzkWvFXA1fb9SSZSND6w9/R336cIyWbeO310WldwC1WFX/4+dV86M6aq97xW5ZlGhpHefKZBra+0X7B17ScIgs1dVZWVoRYaekm/OZ+BncN4m4bJ+R4d1DLsqiKrM1ryLxhNemrFuI63Mjo69sI951Au7iQ0fw6WoM22voVDAxGGOkfxz8+fUrShXJN3F5jXnNN3F5ZvC2dqXqxz72B88BxEMBSaiJruQ3b2iJUVcVEDekMBQ2M+rWM+lQ4vBIuLyRkAZ1WRK8V0GkF9BrQa0GvkckyR7GpxtFFnWhjTrQxDyIJErEkEXeEsCdKxDO5jhJ2R4j5YwiKlFHLpGGLQjVh4qIUUeok1GYVaosKjUWF2qxC0r47uh0X1YQkKyFlGiGlFZ9gpX9cS79TyfBogqFeD8O9HoZ6x4mGZ55rlRb3sXjgMLVjzRjNWjSZ6WhzMlJmHhM5UNrsjLn495zBlew8xGIJnn62kZ/8/DAu19Q5TYIAi68r5KZ7K1hs6iRv/ACCY5j253toe76HiPvdQRJBFMm9cxNlX/go2TdehyBe3R2K9yNXW2f0Qoh6vLT816/oefxVvCc7UagE8jZkkXv/cnrzVvBmo4kDex2M9I9f1WkXKo1EYXk6ZRVGFhRGKY/3kNh9AO/+VvQ5ejI2V8LiBbT4sjjYaeDwAQf9HecPAZYkkes3FHHfh2pZuSIPUby4KIhkLMbIjgP0Pf06/c++QXjUedYxljIThTekhK4+S0dQmYZDV8GYroLWURP1+/o4sa/vskUFTYcggD3HRF5pGgX5GspyElRk+clTO9CMDxBu6sHb4yXiiRLxxoiOR4l4392OhxIkYgmScRk5niQZn/6LpbanYSjJx1hRhLG8EGN5EdaFlRgriubdjOxMuVqvJ8HBEY786T+QKNbypm0TW1/sJTLN/b+wyMhn/2AVN20uu+pErt8f5dXXW3nimUY62s/+HZ6LqqU5XLfKwNoSFwWhkzjfOE7/ziFGjjiRJyLgjOVFZG5eTdYNq8nYtApRqWTk9a342o4wqtHTrS2iZUxHe3eUvk7PBfWhLoZr4vYa85pr4vbqITg4wsALb9L//HZG3tx3qnaj0iBhzDdgytdjzDdgzNNjzNej1ChSJVsnay9CqiMpy0TGowSGgviHQgSGgwSGQwSGgoSc4bPKF1wKCrWI2qJGY1GhtWvQZ+nQZ2kxZOkw5usx5OgQJZG4oCKgysCvzsQrZdDpsdDUJdDd6qS7xcHIeZx9AQwGFQ99ZCEPPbgQk+nCyytcKlei85BMymx7o53v/3A/A4PTd04Xrs7nlvsrWWE8Sd74PkLdDlqe6qL79f4zyiBpMtIp/ewDlH32I+jzs+e8/deYnqu1MzoV8XCY7t++RN9Tr+E6eIKI04M+U0vpfWUob1zLvkA1Ow9GaTkxRugcYfLTIQhgtmjJyzNRXWmjMN+CQa+gtbURpVJg0eKlyLJIOBwnEokTDscJheK4PCEGhnwMDvkYGfZdcgkYURTILUmjus7M0sIwJe4mgq++gzzuI2dtJtZbV9As1/Bmg4Ej+0bom0EnNzvbyAMfruOeu6ov6bqVTCQY232Yvqe30vfMVkIDI2cdYyk1krM6k5w1KYO+mNKAQ1eOU19Jf9hOe5ufrpNjdJ0cY6DTPadh4emZBvJL0ygsMVCZF6cue5xMYRjlcBf+5mHcbeOnwoT9Q8Gz6o8rLSbUNivKNDPeZAy0KnILC1BqU6VLlEY9KqsJldWMympCk21Hl5uJNifzA+nmfrVfT0Z27Of4N/8d8Z41PDtWzt63+qaN7MrM0vKJjy3lnrtqUauv7GBEU/MoTz7TyOtb2whfgKBUSCLL1hdy72aRFeIBHK/V07djiJGjKUGrsprJ2rKG7JvXkXXTOvT52QT7Bhjd+TJtzjCNERuN/SpaW7z4ZqnusSCA2arFZtNjs+nIsOuxpevQapRo1Qq0WiVqtYRarcDhGOTBBzZMPvWauL3G/OKauL06iXn9DG3dzdieo7gONeA+0kQ8cP6auedDodNiKMlHX5iDviAbfWEOymw7J4Z6Eawm1m9Yj0ohIccTJGMx5Fic5MQSD4aIjfuIeXxEPV6iHh8xj5fouI+o20t4xElocDRV+mLi2iQoBAw5OkyFBiwlJqzlJqxlJvRZOuKCEp8ml3FNAZ3hXPadkGk82E97w+g5zUd0eiUfvX8BDz+0GIv58oncy915OHCon+/9915Onhyb9pia5bnc+kAVq6xt5Hv24m0cpPHX7QzuGz2js2iqLqXq/32K4o/dhUKjntN2X2NmXK2d0Xg0yujOgwy9soOx3UfwtfUQG/ehtqrIXZeF/fYl9GYuYmd7Ggf2uxjpu/DZWUkpUlKaxvXrithwXSEVFbazTJku5vyEQjGGhn0MDvpo63DSeHKMllYHgxc5g6xUKSiptrOgRsvCdBeZ7YdRD3aSsSgNxcplNIYreatezf4dPYyeZ2ZUrZG447ZKHvrIQoqLrBfemNOQk0mcB47T9/Tr9D69dUpDKrVZRfYqOzlrMshabkdpUBJSpp+qpztGFk09CrpbnDhH/HhdIcZdQcZdoWlzJN+LRqfEnmPEnm3Elm0kN0OgwBajKC1ApjiC3t9HsLEXZ7MbZ5MHZ5P7DOMmpdlI2tIarEtrSVtag7muHE2mDXWa+ZRXwtX6O7namA/nSU4m6f7tC7T96GeEH72f3+3T0np8+rqvZrOKBx+o46EHl2A0XL77VjAYOzVL29Y6fSmvqdDolKy9qZR7N8SoDuyh77HDtD7dTdQfJ33lInJuXU/2zetIW7EABIHx44c4dqiR+lGJxiE1LS2+SwovliSRnDwTxcVplJakUV5sJTvLSEaGnvR03YzN79ra2qioqJjcvSZurzG/uCZu5wfJRAJvcweuQw04D57AdbiRiMNNIhwhGY4QD0VIhMKnRKVCo8ZUXYq5tgxzbTnm2jIsteXoi3LPCkGd7ZtiMh4nPOzA39WPv7MPf0cvvvZexhta8Z7sIhmLoTarsNVZsS9Mw77AirXCQkxlxKGvoJcyth+EPa+3MzowfYdRp1fyyMOLefjBRej1cz9Sf7k6D61tDv7z+3vZu69v2mMqF2dxywM1rM3oIN+zF1/DAA2/aGPowJlCOPOG1VR95VFybll/LfT4KuNKdUaT8Ti+jl58Ld24j5/Ed7ITf1c/wf5hwqMukuEISr2EtcJM1sYipOULaJNKONxjpP64j8FuD7GLcAO1pmlZv76Ie+6ooq4287xhh7N5foLBGG0dTk6eHONE0yj1x4cYuIgwXYNZTUWdnYXlIgs1/eQHW7DnwXjuEnaNlPPWTjf1e/vOW4t29ap8Hn5wIWtWF1x0yPIksizjPtZM39OvM/TaLlxHmnivkhdEAVOhgbQKM9YKM2kVZixlJgStGp86m4hkTnkpKPTEFHp8cQ2jXgnneKoMm1opo5ESqBUJNMoEWimORhHHrPCij7vQRR0Io8P4uscZ7/bh7fbhahnH0+E9FT4sqpSkLa/Dft1S0lcswLq0FkNJ/nkNuOaDaLsamE/nKR4McfK7v2D47Tfof+ARHn/l3GaaWq2CD91VwccfXk5WpnHO2tXS6uCJpxt4bWvbBZdUtNh0XH9bGXev9FHk2EX37+ppe7YbJC113/gipY/eh8pqJh7ycuj1XRxo9tAwIHKyNXjRYtaeoaOiKoOaKjuVpemUlaSRk2OalXJf18TtNeY1p4vbX1RvIduajqTTotBrkfQ6lEY92twM9PnZKC0mVBZjKgzIYkRpMaE0ze9C2+8nZFkm0DPA2O7DqZlV1zgRh4eIw31qibrHkeMJZFkGWUZOysjJJJFI6uKqNehRaNQo1CoUWjWqdCtqmwW1zYomIz0141uUi6EoD022HVFxYSUwEtEovtZu3EebGHvnCGO7jzDe2IbKpCRnTQZ512WRtcJOzJDGgHEpu/ry2fl6Lw0Hpr+ums0a/uCTS7n/vro5DWGa687D0LCP//nf/bzyauu0s0yFFTbueLiO9bk95Hv24G/oP0vUCpJE4Udupeorj5K2pGZW23iNcyPLMnF/gPCoi/Cok/CIk/DwGBGnh6hrnOhE5EPM6yc67sM9MgrRGDqtDkHg1Gz7qXv7aV+Edx879ci7q4m/yZx5jBxPkIhESUZjyPFUBAayjCgJqC0qtHYt5lIjppocFGUFjBrz6Ylk0DmqorU9xECPF6/74kLiBFGgpDSNO26t4KbNZWRnXVindK5/b253iKP1Qxw8OsjRowN0tLsuuNyGPcdIVa2VxUVRVmYNkWWL0ynW8tpRHfve6GKo99zpFgUFZj76wELuvL3qDGfiSyHi8jDy1n6G39jDyPZ9+Nq6pzxOEAVMBXqsFWZ0dg0qowqVSYnalFqrTCrURiVyUibqjxELxIkFUuvJ/cBwaELM+omMnxmOrkqzYL9uCfbrlmJft4y0ZXUXFTUyn0TblWQ+nqfQ8BjHv/mfhOIjnFxzN6+86T9vWauaagu33lLNLTdWkp5+6UZgwWCMrdvbefzpBlqap4+Smg6lWsGN99Xw0fVecgd30vnbE7Q/30MSJdVf+RSVf/oJ2jr72LmzleOdUU62hS5KzOr0EuUV6dTWZbN0YTaLajNn5fNPxzVxe415zenidsc3/gC7pCTuCxL3BIh7gkQ9IaLjMWL+2Ls3OH/sVB6fQqNGm5Nx1qLLzURfnIexrBC1zXpNAM8RwcERRnceZHTHAUZ27MfX2o3KpERr06CxqicWFZo0Neo0LUq7GUGtBElCUCkRlAoESQJJAoUI8QRyIgGxOHI0RtIXIOnxE/eFifpihJxhQs4IIUeYiC+JKjMPU1U5lgUVmBdUYFlQgTY744L+3xGXh+Fte+h7dhuDL+9AjoXJ35hN2R2FWBfYGDPUste3iJefH6B+b++0ws9u1/O5T6/gzjsqL7ju5EyYq86D0xnkp784zNPPNhKbpsanPcfIbQ8t5MbqMYrcuwg09J4lahUaNaWfeYDqr/7BtXzaOUKWZSJjLrwtXXhbuvC1dOJr6yE4OEpkQtAmQu+KQUknoTYrUeqVaK1q1FYVGqsapVWD0m5FSLOQ0OlJIqQSouDUWkacWAOikNoQhImVgCxP/E0AEJHld19CnthICBIRhYYQGgJo8MU1jEfUOL0CDleC0bEobmcY/3iYcDB2yeZPeoOKFSvyuPv2SlauyEOruXjBdrk766FQjPrjw+ze18v+A710drgv6HyICoGiChuL6rSsqQySn6/h0FAO27cOc3xf3znzW/V6FffcXc2D9y8gJ8c0C5/mXQK9gwxv34v7aDPjjW2MN7anUkdmEV1eVsp5eHEV1kVVWBZVYSwtmJVokfko2q4E8/k8eRpaafqn/yUUHGLo9g/z4l6ZthNn55SfjiDAwgVp3HpLNTdtqbygFKV4PMmBQ/288PJJdu7sJhK5OHOmRWsLeOiBDJYHXqPrJ3tpe76HWFJC8/8+Ta81n8aOEG2dQfzeC/chsKapqVtgY9WqEtYsz6OowHJZ+9HXxO015jWni9sFS/4BrSEdSalAqRRRqiSUagV6owqbTY3ZJGLUgVErY9AkMEhxjGIQc9yPLuQCh5P4gINI/xiRER+B4RDB0RCCSouxtABDWcHEuhBzTSnmmjJUltm9kb/fSUSijLy5N2U69dZ+Eu5hrBVmzAtz0C6pIJhTxEDMijuoxBtS4AuK+ELgD8gEgknCwRiJeIJkQiaRkEkmUzVtkwkZWZYRFSKScmKRFBPbCiRJQCXJ6LQCOg1o1TJ6dRKjOo5OjKCNB1CHfSjHPSh9XrSCgEZnRl9YhmnhEkzV5TNyqUyEIwxt3U3HT55k4KUdmIsMlN1VQNGtBbjSF7AvuJSXnh/k2Ds903Y88/LM/OHnVnLjlrJLDvk7ndnuPHi9YX71m2P87vHj0xpVGC0abnpgAbetilI2voNIYycnftbC0P7TRK1WQ/kXPkr1nz16WVyjPyjEA0Gchxpw7juGp7EdX0sX3tZuYh4vSr2EIVePMVeHvsCCMs+OIt1M3GzFrzHjE/W4E0Y6R1X0DsTx+xOEQglCwQSR8ETt6EiCWCTBfL6PCwIUlaRx841l3Ly5jIJ886x1wK50Z90zHmb/wX527+3m0KF+RoYvzPPAlKalemE6S+vU2PLTeWefn31vtJ+ztJsoCmxYX8TDDy5k6ZILr5k7UyJON+ON7Smx29RBeMxF3B9MLYHJdYi4P4hCo0KdkY7Gnobanobabj21bSwrxLq4CnX6peUQn4sr/T2YL7wfzlOgd5CT3/slrvoD+B68nxcb9BzfP3DeQSaFQmDRwjRqa7IoLc6gsMhKYYHlDMEryzInWxy89GoLr21twz1N1YGZkJln4r5P1XFrdj0jT+1g9wkT/RkVdIcN9PSGph2kPhcWq5raSiOr1pawfm05BXmmKzopdE3cXmNec7q4rV3896hUF3+T0hpUGExqDCYNRpOSNKsCu0XGro+RrghgibowuIZIdPUTONGLr9eHLBkxV5edmRu6oAKl0TBbH3HeEw8EGXxtF33Pvk6w+QjG9RW4KpcwJNroH9cwMJJkZDiMY8hLKHBheSJziVorodFIaLQKtBoRrRo0KhGdVoFOr0Jn1KLTqdHoNGh1GrRaFTqNEr1WQq9TYYz48D33MoO/fAoxGaTi3iLK7ilmPHMBu/3LeP6pPhoPDUz7/kVFVj73B8vZsrl0VsoKzFbnIRSK8djjx/nFr4/in8ZZVq2R2Hh3NXdu0VId2InQ1sKJn7XQ9/bwqZBTSa+j/A8fovorj6LJSL+otlwjhSzL+Nq6ceyrx7H3KM599XhOtKLPVGOtNGOsykYsK8RjzWVESGMooGXQITLiSOIYi+AbDxP0RYhfRKdmPiEIkJltZPnyPLZcX8SK5Zc2O3surrbOev/AOHv29bF7bxfHjg7j98/8WiuKAoWV6VTVphGTJRoODDB8Hof48vJ0Pv7QYm6+sQylcvYjUeYLV9v34EojyzJOV4juHjftPW4czhBeb5jx8RDDw04kSaC6Op/igjSK883k55lJT9fN6kDvXBN1j9P2o9/T9+LLJD52J68N5HB4z+CMjc4mMRok8vIMFOSncbLFQU/vpZXDUqkV1CzPJc2QYLh3nL6BCD7vxfW5LGlqqos1LKmzc8PtyykuuLoiHK+J22vMa2ZT3M7s/cBk1WLLMpCZoSTHBtn6IBlxF2muXuSTHXiP95NUWDFWVqQKrS9KhTrp8rOvqh//XBJ2uBh6dSdju3bg0ykYyKuhLZhGa0+cnva5r3H2/9n76/BIsvTA//1GJKMypUwxMxYzQzNO45BnxuMZM61xDb+7a1/f9XoNd9fPGtb2ejwznvFgMxZ0MYMKxMycKCVT/P6Qqrq6W1xSlVQVn+fJJyOVkRGRoYjI88Y55z0riVqjwGJWkSwFsAUdlKWNs/uAiHVdFadca3nzx5101M+ccTEnN4lf+LlNPPZo8V01V77bQlYoFOPNtxv5l29dxe2e/q6xQimy/dFinn02lXXx02g662j4ThvdhwduD5ugNBko+42vUPafvobWlrzo7/Ow8/cMMPjBKQY/OMXYmVoUYghreRKWrcWMF1fTJWbSNqKhozfO6LAfjyMw49AVD6okq5bi4hQ2b8pi09oMKivS0GrvzdAcKzmoSSQkmlvGOH2+h/MXumhscBKbZdzVTzNZtGTmW/BPRBjodM1aM2W3G/ji59fw0ucqMZkevkznK/k4WG6SJNHb66G2bphrdcM0NQ7T3ztOOLSwhG4qlYg9TU96homy0lT278pn7Zr0Zem+s5Ti4Qjd33uL9v/7H2j2l9Oet5ULrQrqrwytujKQJVlLWb6a6iwle/fXULWjckWXZ+XgVraq3evgdi5JyTps6QbSU1VkWOKkqX3YgqOY+zuRWgcQ1VZMFZPBrnVdBeaKogdiTLtbGS8Hj52gy+unXbTROWGkrSvE6MDE/d68FUmjESnJV1JcoidmTOfapREGOt0zzm9PNfClV2t48XNViyokLraQ5fYE+clr9fzwx3V4ZhivThAFNu8r4Jnns9iovIy5t5bG77XR8W4vianaQJXFTPl/+hplv/EV1NakBW//wy4eieA4W8vg+ycZfP8UMdcAabtziezaTqcqj9YxHZ09Ufq6xxc1VutqJIhgMGqwJutISzNSVmKjqtxOUUEyuTlJ93WMydUU1ASDUS5e7uf4qXYuXOxnbHT+TR5FhYDZqsPnDc1a86/Tqfjcc+V8+Qtrl7xf7kq2mo6DpTDhC3PqXC/HT3dy5VI/457FDwszG51eyboNmezZmc/enXnLmoX4bkmShLu2gb7XjzBy4hSq/dW0ZG3iYjM01A7PmZ38fsjINlKcKVBqibK2wMqGp/egT1s9Lazk4Fa2qt0Z3H7xZ/8vCqWVUChKaKpfWDgcY8IbvutEI0shKUVPWrqODLuCdGOE1ISbZFc/yV4XKqWZpIoKrOsqsKwtWxU1Wv6+YbrOX+VG2xCt42o6nCq6On133bRYoRRJTtZhNGkwTT3MZg1JJg1JZg0ajRKlQkShFFEpBBLxGE3NjQiCQFlZJYKgIBKJEY7Epx4xwuE4gVAMfyBCIBDF74/g90cI+COEglGCgRiR+/wDI4hgTzcR8EdmzUao1Sp57plyXvxcJaUltnkvf6GFrL5+L9/7wQ3efqeJcHjmfbN2Ry7PvJjHNn0t1v6rtPy4nbbXu4lN3Z1XJ1uo+J2vU/KrX0adtHILICtRxDNO/5tH6X/7GI4zF7CWG1E/uo12axXXBw00NPpwDPmWdRsUShGNVoFKpUCtUaLRKNHqlOi0SmKxIBqNiM2WjEJUTCaHEkCYzBKFeEeOKUEQ7nhvclq89ebHTwjirc8IKBQi1iQtJqMao0GN2aQhxarFYtFjSZq8NqzU2oPVGtRIkkR3j5vjp7s4c6aD+gbXgpqrK5TirON8i6LAwf2FfOXL66iuSluKTV7RVutxMF+SJNHZ7ebwyS7Onu2iuWGMxAKzdi+FnLwktm3L5YmDxaxbk75irwuSJOFtbKfvtUOMnDqLa30lJ8PFtHSGcTsC96WsqlIryCswUpwap1TnozpVT/G+7SRVl67Y/TgXObiVrWrzGec2Go3T0eWmvnmUplYHbW0Oujtd884AJ4iTxbHZskXeDYVSxJZunKrtlbArfKTF3KQTJEVnxFxUiKm0EHNp/n1LYBULh+k4d5MbNzppHY3Q7RLpHYziGFlYkpI7Jdu05OQkkZuXTGGelaJ8K/l5FjLSTQvqY7pUhYdYLEEgEMHni+D1hfGMhxmfCOAZHcM97GLC6yMQiBGISIRiApGESCQhEo5AJAqRSIJIVCISjhMKRmdNvDIvdwytMpOSUhsvPlfBE4+VkDRHtsX57qe6+hG+/b1rnDjROesPbfmGTJ59pYhdlpsk91+i9UdttL3RTSw4GdRq7MlU/O7PUfLLX5T7oC9AzB+g/53j9P7wPTxXLmF7uor+qh3cdNuoawnT3+lZ1gJQZraJmrXpbFqfzdYNmWRlTp8Y5EEvtN+tB2X/BENRLlzq58SpVi5eHGB0dHFDK01n/boMvvKldezZnb+q+lQuxINyHNwpHI5x9nI/x091cOliP2PD/gUvQ6kSSUk3kZyiwWgQMeoF9DrwB2HUmcAxGsQ16l9UrWZGlonnn63ghWcqsNsNC/78corFEty4OcSx092cOdtDX4/nnq4/Jc1ATraW3JQ42UoP2UyQrddh27gJ+46NixruaiW6n8Ht/WsvJHuoqFQKykttlJd+XMslSRKdXW4Onejg1Kku2podMxYYpcTt0RdJzzVTWaTAJngY6Aoz7FfjDCnwjC++1i8eSzDSP85IP9y4/VcDYEBnVJPS6CPZ0kCKoZ5kdRibKopNEyc9SUtKchJmux19RiraDDuaZMuihy9IxOOMdgzQfLOdnn43Q84wIxMw6pUYHo3gdiw+O59KJVJYnERNdTobN+SyaW3Gso5xthhKpYjZrMVs1pL5iXdKPzNvxDOO+1ojrtoGxhsaCPZ3kphwoktWo03Vo1ljQ5GbgdechlO00ufW0TWipHcwzlC/D49jHjcF5hHAtLU6+B9/fZq//p9nWLM2gwN7C9i3p4CsBTT7GxnxcbN+mJt1I1ypHaClZfZhNkrWpPHkS8XsT2smpe9fafvXVs7fEdRq0+1U/v43Kf6FV1EaVtb/eKWKh8IMfnianh++x9jJMyQfLKJr10HO5+/n5nU34esxYPahJT5jHjdHAGypevbuL2L7pmw2rs2Y8yaJ7OGi06rYv6eA/XsKkCSJnl4Px091cOpUG/UNngWPrXuna9eHuHZ9iNzcJH7mi2t5+qmyZUvwJbs7QyM+Dp/s4OyZTm5eHyUyS2ueTzNZtOQVJVGWL1Ka7CMtOoLVO4xiPIioMiOoDSTUetr7h1HGwuQmayA5QGKrgXFTCmMaO6MRE12jKuoa/Ax2e2bf1oEJ/s//ucQ//fMlNm3O5uXnK9m3p+C+JTZzOgOcv9THsVNdXLrUT2AB3UZS0gysXWOiJj+KSowTiQlcuh7myo3gnP3kFUqRogobGyqgUtFHhn8Yk9qMrnAtyZvWo89dvozmDzO55lZ21+ZTczsfTqefI6e6OH6yi+tXB4nOcbdQZ1CxZ386r64fQnP0CE2vd9PvVCPt20d04yYckpqBwQmGBv24XcvT5+QWjVaJ3qjCYFBi1IsYtaBVgShONgsUhckhYAUBFAJE4hCIQDAMgbBEMJQgGEwQCEQJLCCD5mysKRrKS5NYuzaDzZsKqS5PXbYflpVyZzwWDDHe2I77RjOemy2TzzdaiI6PY8o2YCkyYyk2Y67OYqKwkhuOVOq61bR0hOltdy1pU66MLDOVlanUVKWxtioVk0lDOBzm7NmzBIMJ1Pp8GpudNDSM4JpHoC0qBNbtzOPRp7LYZmkhpf8C7T9qpvWNHmKBycQYxsIcKn7/mxR+7YUH5u7vcpISCcbOXKXzO28w9N5RTNuz6NrwKBeHk6m76Z3zGnQnvUFJil2LPyDhGp27FiXJqmXf/kKef7KMtTWLa8K3Us67leph2D8+X4STJ9v54K1arrf6CATvLtt2UpKWV1+u5vMvV5Oc/GDcGFutx0EsFudq3TDHTkzW2Pd2zT9Tr0IpUlyRzOYqBRvMA6R0NEBIhSa3BuvmTSRVlXymFdpM+ykejuDvGcDX2Yuv8SbhkSZ8pSVcixZwtVmguW5sXjkGTGYNTzxewkvPVVJaOv/uPAuVSEh0dLq4dmOIK9cHqasbYWRo/nlHRIVAQbmNjdVq9hWPkd52keFjXQxdHuMGuZzI2c24cuaWUPZME2Vr09lUIbE7s4fEsVO4+y2s+es/f6i6BcnNkmWr2lIFt3cKBqO8d6SdN95qoGmWLLYwVejfmskr+yKU956g+0d1DJ4fQZedSemvfomib75CQmegt89LW5eDzs4Rurs99A/4GBz0E/Cvrox501EoBHLzDFQUG9i4KYctW8vISr93CYNWcuFBkiSCAyO4ahtwXq7DeakO1+U6ol4vliIz9rUp2NfbkdbVcMWVw5V2LfVNwTnvTN8rGp2SbY8W8+RBE2sU19G1X6P9zS463u29HdRa1pRR+Qe/QO4rT8xrLOCH3URHL13ffZOeH76NJk9N15bHOT9qo6FhYta+indSqURKcpSUlGhxxwxcv+ZhfI5xD/UGFbv2FvDcE2Vs3ZR118NLreTzbiV42PZPNBrno29/xKHDTdR7NDjHFx/oqlQizzxVxs98aR0F+fc3SeTdWk3Hgdsb4qNTbZw+08W12tF5d90CMFu1rF1rZku+j3LnTRQDXrTFm0l/bP+8+m4uZD/5uvsZeOMDAi3nUJWn0525ngudRi5fdDI2OHcgWVySwgvPVfDU46V31VJFkiSGR3y0tjloaB7j2s1hmhpGCCww74jBrKFiXTqbq0V25wyguXSOwY+6GTw/QtQfw51RwIniR+gIT3/DR6tXceCFSnZuVFOla8M23sDw4TaaX+un7A9+h8KfffGhq6GVg1vZqrYcwe2dunvc/OjNRj78oAWve/a+RgXlNp45qOcR83VGvneazg/6kSQl+T/zHGW//jNYaso+Mb8kSbg9Qdo7nbS3D9HV7aS3b4KBwQCjIyFi8yzo3ktKlUh2tp7CLBUVRUbWbS6iqroIre7+1dStpsIDTNbYeRvbGTlxidHjFxk9eYmwy0NSgYnUtSnYNqQRWbOWy2NZXG1X09C0/EmDPk2rV7F2ezbPH1SxRXeD0LnrtL7RzdCFUaSpw9K+ayOVf/iLZD6556H74Vyo6LiP3p98QNd330CKDjPyyJOc82RSe903r+Z9ggDZdiVlBg/bqmNEiyr48IJI3eXBOWv816xL5wuvrOHAngLU6qVrPbHazrt77WHeP64bTXz0Z9/hQm+YTnsJvU4W3U98+8Y0vv6NbWzcsDqbUK7k4yCRSNDUNsZHx5s5f3GIthb3vFsQCQLkFSWxsVLBRn0vac3XEfS5JO/aR/ojOxdcS7jY/RToH6bv9UOMXz6OvtpCW/E+Dl1Wcf38AOE5httRKkX27Mnnhecq2bYle8YbfomExPhEmO5uNy1tDprbnLS1O+nuci04kL0lM99CzfoUdlSEWWfsJnz6EkMn+hi6OEYsnCBlcw3B7Xs4HkzlzA3ntOePIMDWR4p46XOpbIx+hDHQT/fhARq/347KnsfOH/7/MZcVLmr7Vjs5uJWtassd3N4SiyU4caabH71ez9WLs58jyakGHnk0lZcquoi+dYS217vwDwVJ3beFst/4KlnPHUBUzF7IjMcT9Pd76Ogcon/AxcDgOMPDfkYdYRyuKG5XeNkyEgrCZLNFu01FWrJIerKCbLuamjU5VG2qRq1dOT/OsLILD/MhJRJ46lsZPXGJkeMXGT15mYjHi6XQROp6G/ZNGXjK1nFpKI3aNiXNTRN456ilW0panYJ0q4JUZYhk3xiFdi27vrSf8ie23bNtWI3ikQhDH56m+z/eJdh1nYnHDnA+UsTF2iC+8bm7KoiiQFGWinJ/Jweze7G9uIt32vM4ftzJ6MDsTQQNRhVPPFnGl1+pIT9veWq+Vvt5t9zk/QPjbd00/Y9/oe4/DtOZW01vyTpaXeoFjal7S2G6yKsvVvPMK1vR61dPv9yVdhwkEgmuXO/h0JEWzl0YYWRw/smgtDoV1TUmNuX4qXRcR+vwoy/dTPpje7Cuq1h0vg9Ymv3kqWuh7e//DcHXjPbVxzk2VsypMx46G8fm/GyKTc+uHXmEQjE84yG83jDj4yEmJsL4fJG7HiNco1VSXJ3Khhotu8s8pPXfwHWsjqGLY7hbPKiTrWQ8vou0J3bTnVzED95uo/ba0IzLK6xM5cWvVbLHdJWMiev0HO2n7lst+IeClP2nr7HuL373gRhmcrHk4Fa2qt2r4PZOXT1uvv396xz6sHXWWhetXsWOfVl8focb+9WPaPthE2M3XBjysij51S9R9I2X0SRbFrUN8XgCl2sCp8ON0zmOyzmBc2wCtzuIdzxCKJwgLkEiLpGQIJGAuCSRSIBKCXqNgEEjYNSJGHUiJr0Sk1FNdq6NopoS9GbrqrlLvtIKD3crEY/judnCyPGLU8HuJeL+ANZSM2nrbaRszsRTsIYbngzqe7V0docZHRhnYoYxaJeL0awmM1NPXpaOwnwTZWUZVNXkY7PqV82xs9SkRILR01fo/v7bjNeeI/7YNi6pqzlzLYpjHhlFFQqB0jwtpd4OdqrrKHmhikbrZt45p+Lq2YE5++EWl9n4wkvVPPV4KVrt8jYRf9DOu6Um75+P+fuGaPrrf6XjX35CMBxnoHI9nZVbqOtXLjjQ1agFdlYqefWVjWw+uH7FX2tWwnEQjcU5d6GZw8c6uXjJiWts/qMcpGcZWV+hYK26n/z+JjTJRdj27iF1zyZUxqXLRLyU+yk4PEbbP3wf1/H3yHihiqGaA3xwVc+lU/14nYsf4WEhrHYD+WUpVBQpWZsXpFTTT/T8VUZP9zJ0eYywN0rKljVkPrmHjCf3YFpTzqGjnXz3+9fonGW8e6vdwDNfXcfjlWMUuo4T6Bjl6t/WM3bDhcaezLZv/wVZT+29J99xJZODW9mqdj+C21u83hA/eK2en/y0HvcsF0xBFFizOYOXDiTYOHGOru/X0ntsCEGpnrHJsmz+VkLhYTklYjFctY2MHr/AyPGLjJ2pJeYPYMzUk1JhIak6DWV5IT3aPGqHLbT3g9ebwOeLEQxECQWjJBISUkKaHM5qmS+7lhQd+TlaCtOgOAXKM3RkZGRgKshDm2Gfs9XCaiNJEu7ahslMx8ePotpXxTXbFk7fhJ4Oz5yfF0WBsiI9FROdbPRfoezRTLyb9vJevZ2zpx2M9Hln/bxareDAI0V8+dU1VFWkLtG3mtuDft7dLXn/fFZo1Enz//oObX//faLjPhImHeMHd1BnreZqq0AsurCLU0aqikfWKXnl1c1k11Qv01bfnft1HMTiMc6ea+DdQ11cvuJifI5uVbcolCLlFSbWZQao8jSRGoekTTvIeHQX+uz0Zdve5dhPUX+Aq//0Jhd+cARXTiYjKYV0DYu4HKElHdpRq1eRkWshp8BEdaHE+hwvqZ52ghfqcdwYxVHnxjcYQGNPJuPxXWQ+uYf0x3aitFhobhnjwsU+fvp6A6NjM98A1eiU7H++gqceS6J6/DA6Vw91354cfk+KS2Q9d4At/+dP0WXcu9+AlUwObmWr2v0Mbm+JxuIcOtLOd75/nY4256zz5pWk8MyjRp6w38TxozO0v91L2BMhbf9WSn/jq2Q9u/+BK/wvt4etEBmPRrlx9AbnT7bQMhSg2w3DztiimvrdKylpBvJy9RTYYhRox8nHgzkG2vQCzGWFmErz0aamrPhamFvCLg/DR84x+MFJfPVX0W0vprFgJ6eaNTTXOedVcMrL0VMtDbJh5Bzlm3Ron9nHR0OFHD8XouX68JzLyMpJ4pWXqnjhmQpMpnvf5/1hO+8WSt4/M4t4xmn9++/T8j+/TdjpQVAI2Pfk4NyxhRNj+dQ2xIlG559zQhAFykv0bCsVeHJfAUU7diCIK+N39F4eB4lEgqamDt54t4VT55zzai0CkGTVsLZczRrlAOUT/VgKq0l/dPddNzVeiLvdT5Ik0T8wTlPzGHVNozS3OGhrdTDuXdoWTQazBlu6kcJCAzWlIhUZfjLjQ8Rb2hi/3oOz3oWz0UNkIoohPwv7zg3Yd27AtmMD5qoS2jpcXLk6wOWrA9ReG8Lvnz1plzlZx+6ny9i9P52K8Hkyx2vpOdLP9f/TRMgVRpeZyqb//f8h+4VHV83v570gB7eyVW0lBLe3SJJE7fVB/u171zl/tmfWBBpWu4FHHkvjlZpupEPHaftpB56OiSVpsvywWa2FyEQ0SnTcN/mY8E9NTz7Hpv4e9k7gkiQ6olq6Ahp63Ap6BsMPRJZte6aJ/AIDhalx8hUOMl1daIadoEpGn1uAuawAU1kBppJ8lLr7O/ZqIh7HdbWBoQ9PMfLRGZRKJ8Jju7mpLuNyq4KWeue8hu6x2TSsM3nYFqxl7QYR9e5tXPbmceKagqtnB+Yc0kKhENixK58vv1rD5o1Z97Uws1rPu3tF3j9zi/kDtP/Lj2n6q38lODg5MkH6Zhu5L5Vw07CGDxtsXLvpJ77AG3f5BUa2Vog8sjmZdQf3oNDMPHTKcrsXx8HQwABvvFfPsdMuOltnbtJ6J1uqjk1FCdZFuyg2aEjfv4fUPZvv29jkC91PkiTR1eXm4tV+Ll4Z4Mb1Ibz3uGuOggQpUS827zD2iBtzRgraglw0OZmos9KRNDqi0ckbNaNjPq7WDjI+j3wLAGnZZvY9X8GOrSYKfBdJ891kotNzuwkygkDJr3yJtf/ttx6qIX7mSw5uZavaSgpu79Tb5+G7P7jJ++83EwrOHIhodEp27M/mCzu8ZLadpPMnzfSfHkZUayj4yvOU/vrPYKkunfHzspVZiIyHwky0deNt6mC8qRNfZx+hUSehESehUScRpweBGBqLGo1FjTrdgrIwG09KNqMaO/0xC11OJd09ASY8yztO8t3S6hSo1Qp8E9G7auoliAJpWWbyCvQUZ0oUal1kujqIXakn6kqAPg1DUT7GwhyMBdmTj8IcVOalLbjGwxG8DW24rzXiutaE52YjkncAy7Z8HBt3ccWVxtWbQfo65leINBpVrEsPsUvZxLYdSoJVmzndZefizThN14YITMw93EZqupHnnqnglRcqsduWrp/b3ViJ591KIu+f+YuHI3R9900a/+Kf8XX2AZBcnkTFF4tI2pLN+10lvF9rprHOteBuFamZBtaUathULLJ/bwm2omoExb1LSLVcx4HHOcr7R+o5esZJ3TXnvIYRy8jUsSE7zPpYH+WFuWQ9+wjmssJpb5KFQjF6+zz09npxugI43QEcziBub4h4LEE8IZFITK7TYFBjMmowmdQkmbVkZ5jIyjSTmWHCatXN6ybcXPvpVjB74cpkMHvzxiDeu/xtVKpEUtJN2NKNpKZqCQQTdDSO4Ri+t6MT3Kmw0s6+5yvYXJEgf/wCNn8L3g4vzT/ppOfoIFJcIqm6lK3/8mfYtq27b9u50snBrWxVW6nB7S0TE2F+9EYDP/pxHc5Z+lMIokDVhnSe3atgr/4aQz+5RMc7fYTcYVL3bqH4l75AzguPPtTZ72ayEgqRYZeHsdNXGDlxCcfZK8SdfWizTOgK09HmpxK12fCqkhlXGHFHdbhDStw+Ebc3gdsbxzUWxDXiu+t+QEnJOjJyk7Db1VjNIlYzWM6F5/MAAGTKSURBVIwJFAoBSRKQBAEQploV3LGuO67FDq9IR3+C/q5xhno98x57FaCk0ECuXQSFQOdQnL7+ILEFNC/8NFEUSMtJIr/AQEmORLHZS1ZkEEVnJ4GGHvz9PkJ+JQqTDWNBDvqcDLRpKWjTbGhTkyef02xo7FYUajWSJBH1ThAacRAadU0+T91wCPQO4W1sQhFxYC5OQr+tirGMMponUmjoEmisc+NxzC8ZiVotsq5Y5GDuKNv2mBgQsjnVbObajQna60fntU81WiX79hXy0nMVbFifiSiurCZnK+G8W8nk/bNwiViMnh+9T+N//2e8DW0AmHIMlL9aSN5jWXTH83i9oYDjZycYG1x4ACIqBApLklhbrGRrpY4de6rRpeQgiMuXfG0pjwP/hJOjH9Vx6LSTa1edhGe5cX5LapqWrVkBNokOqnesJ/OJPWhSPplB3esNUd8wQl3DCPWNo3R1uxkemlj08E130miV5OQmUVCYQllJChUlNirL7Z8ZX3a6/RSNxblaO8jh4x2cPdPN2OjikkFp9SqyCqxk5ZnISRPIsUXJSw6SpXehHBsm3ttPeMCDPseCuH4t7dECLnebaW7209EwimNo7rFz70Zqlpni6jQ27s1nQ5aLHM85kkJ9DF8eo+XHnQxfcQCg0Gqo/q+/RsXvfB1RtXoyht8PcnArW9VWenB7SyyW4PCxyX65bc2OWedNzTbzyMEUXqjqQfjoJO1vdOGod6OxWSn8uZco/oXPYyrKXdbtDYaidHe7ae1w0dLhYmh4AqVSRKtVotMq0elUkw+tEpNJw5oKO4X5yfelAH6/CpH+3kF6XzuEu/UGXnsy7uRsRgULw+MqRhwJxj0RJjxBxj0hInOMt7cYJouWomITpTlQbA2Qr/FijflRhEFQ6kGpA5UWQaEhEYsR8fvpbG2GRIKCwgKUGh2iSomgVCGoVIjKyen4uIPoaAcJnUQ0PZ1+dRYtowba+6Gr1cNA19w1lslWNV94pZpXXl5HX7+Da9e7aWgYpbVjgr6+APG7HMYqOdVARo6Z7EwVBRkJCu1BshlBOTRAwuEiPuoi6g0THo8SmYgQ9kaJhSUUSlCbVZM15mY16hQ9ygwbYqqNiC2d1nAmdT0aWjrCdLc48c+zCRlMDqFVXWlg20YNpmQjHcMaOruC9LY5FzR0U/XadF58toLHDhav6CFP5OBtdvL+WTwpkaD/7WM0/Ld/xHWlHgCNRU3J83kUfy6PREoaJ101fHhFy9UzfYQCi7u+arRK8ovMlOUrqM5Xs21LDhn5hSi0liX7Lnd7HIT9Lk6fbeSDE2Ncuuya1zXJYFSxqSDOdtUY2x7dQtZT+1BoP+6X7/YEuXJ1gEuX+7l0ZYC+OZLWLQd7qp6SUhtVlWmsrUqjMN/ExYunCIcTaAylnDzTw6WLAwseR9Zg1pBdaCU3z0hxdoKKzACZkX4Sza34b3bjHwrgHw7iHwkSHAuhsSVjKsnDUJiDp66FYE8nWdvTyNyRhnlHGV5LKR3hXK53aRnsmbzhO9TjmfeNzunY0o0UVadRXJ1KcaWNLL0bS7CXtIk6tIERej8aoPknXXg7J4NqQakk7/NPUvOnv7HsZb8HhRzcyla11RLc3iJJEtdvDvOt713j3JmeWcdO0+pVbN2bxYvb/ZS6LtD3Wj1dh/qJ+mKkP7KD4l/6AtnPHbjrO3ixWILa64OcOtdLW4eTnm43YyO+Bd+11RtUlJTbqFmTwaa1GWyoScdoXP5EN/eyEBlyuGl460NuDPrpipjoHBXp7RxfUBC0GFqdkrx8A8U5KspzldQUGSkpzkKTWYSonF9/1MXsp0Q8jq+tm/G664T7m4grQ/RlVnK0xcrFsyNz/sDrdAoe22jhF359Pxn5k1kcI5E4LW0Ort3so75hmNZWF/19/ruutRZEgWS7AXOyjqRkHVarihSLSEqShD0pjt0UxRdWMuJVMuZR4PAkcLmieJwBvM4g7jH/gmqpAdQaBdm5RlLSdMRQM9jjZbTfu+BzJ7/QyoF9hXzumXKys5IW9uH7RA7eZifvn7snSRLDR8/R+N//iZHjFwFQqEXyHs2i7JVCDPnJ9GjX8n5zFqdPjMxrPNO5pGWbKCnUUZQpUpyno6oyjaysdJSG1EXV8C70OIhHQwwPdHH8TC8Xbvipr/PMK9OxUiWyplDJVp2DPTvKKHzxUVQm49Q2RKm9PsSly/1cvNRHW7tzSWpll5rVqmZ8IrqgPtZJKXqKq+zUlCpZnzNOuqeD6M1mJuoH8LSP4+2aAIUGc3kB5ooiTKX5mEryMZfkYSzO+0x/1fHWLrr/4116/uNdAn19pG+0kbUzjbRt6STScpjQpOPTZDAcS6FzWMNAr4+hXg+jAxOAhFKpQKESUaoUKJXi5LRSgVqjIDPfSnGVjTyjm6RQD5ZgD0mhfhRSlMBYiJ6jA7S+3kXQMVmeUFnMlPzi5yn9tZ9Z1kzVDyI5uJWtaqstuL1T/4CX7/zHDd57r4VQcPa7kwUVdh7Zreepwi6iR07T+U4Pjno32nQ7Rd94ieKffxVDXta81x2Nxbl8ZYAPjrRz+nQX496lD84EAXLyk9i2PZcnHyllTWXqsiTAWe5CZDQa5eRrJzhX56CuD7raPSTusuZxNkaTiswsPaXFZqrKUli/NovComyUyrvL/rlU+ynscDH64ZsEIiPc1Jbx0XUVNy4OEZ6ldlqhFNiWB5/fmU7NgTWozEZUSUaUhskxcYOhKE0tDm40DFNfP0hbq5OB/oXfYLkXRIUAEncVjCuUImvWZnBwbwH79hSQmbH6EoLIwdvs5P2ztNzXm2j+n9+m5wfvkYhGQYCMLXbKXi4gbZMdt66AK4EaDp9LcPlE15LecDRZtGRkG8jJUJGXriDDriYz00R2honk5CS0WjOi1jxt8DvTcSBJCeIhL/5xN519Dq7ddNLQEaK9K8RAl2de1xdBgNJ8DZtMbg7UZFDxpSfR2pKJxuI0NIxy8XI/ly73U1c/QmyBN+5usdj0WG0GDGYNxiQtRpMStVJCFEAUEiBJBEISgUCCQCDOhDeEZyyA2+Fflt/JpBQ9JVU2qksUrE93k9LXiO/ENZw3R/GNJEiqLCGpsghzZTFJFYUkVRajz8lYcNZnSZJwXa2n+/vv0PPD9wkNj2FI15FSYSGl0kpKhQVLiYWQMRWfOgO/2o4kCAiShEACQUogICFICSCBKMUxRkYwh/oR41E8XRM46t046l046tz4Rz5u3WMszKHsP32Nwq+/uKRjCT9M5OD2AScIQi7wG8DTQC4QBtqBHwP/IEnSkoxoLQjCF4CvA2sAKzAMnAb+XpKkC0uxjhnWu2qD21v8/ghvvtfMD39cx8AczYO0ehWbd2Xy/NYAleMXGXirgd5jgwSdYTKe2E3JL32BzKf2Iio/+yMbicS5cKmPD462c+Z0N/45MrMutWSbju07c3n8YCnbNmahVC7NEAPLUYiMxxOcPHydQ8fauNIYwO2Yf7PS2Wh1SiwWDdZkLSkpemw2I3a7ibRUA8V5VvLzLJjNy5MZeDn2U9jhwHH0DVxSmLP+PA6fCtLdMnOze0GAqkyJzV2nSb5+DVEUUZqNqJNMqMwGBJWK0NAowWEHEUHJqDmdsfwKxmw5DAlmHOOJFRnwzofBqGb79lwe2VfIjm25GI2ru/+8HLzNTt4/yyM4NErr33+ftn/8IRGXB5jsl1v8fB4Fj2eTsKTQq9/AkbZ0zh8foPXG3MNq3Q2VRoElRY8lWUOSSYFaJaBRC3c8g1JMkEhAJC4SCksEQxJj7hhjIyFcowtvMZKXpWGzdZz95Sms+8qTKFOSaWwapfbaELXXBqm9PkRwjhvmn6ZUK8gusJJbmkJOnon81ChFKT5SRAe6qBtNbILE2BjBfhcRb4SYP0Y0ECMWiiMoBBQqEUEpIiaZUGSmkbCl4lQm0zthpmNETfdggoG+AMO9ngXnYcguTGb9hiS253jI6K5l/Ng1PO0+dDnFJG+qJnljFcmbqjEV5y3L0EWJeBzH2VqGPzrP8NFzOC/eRIrHEVUiliITKZVWLIWmyX2gEEAQEEQmb+YLAoICSIC3a4KxejfORjfRaUY8sO1YT8Xv/BxZzx+Uh4S8S3Jw+wATBOFp4PvATO3cWoCnJEnqvIt1aIGfAM/MMEsC+BNJkv5sseuYY/2rPri9RZIkLlzq599/dJOL52YfSgggu8jKhrUGNud5KXVfx/X+DfpODqMwJ1P0cy+RdnA7hppyLt5w8MHRNs6f6yUYWNgPXnKqgfRsExmpCkQBQmGJcEQiHEkQDk8+XGNBvM6F3SMxmtRs2prJY4+UsW97Llrt4ptWL1UhMpGQOHe+g3ffus6lunE8roUNK6BWi6Sn68nKNpGTk0xGehKpNj1pdsNkEGvTo9Pdvz6Uy13YDo+NMnb2Xa74Tbx+TkH9leFZ58/O0fFE2QTrOo/jrZ1sQnZnM32NVY0hVYc+TYc+VYchTYc6w4TLmEKXmE+Tw0rnkILevjDeBf6vlptCIVBQlEJVZSrra9KorkojP8+64pJC3Q05eJudvH+WVywQpOvf36Llb7/LeFMHAEqtgrxHsyj5XB7mQisOQxnNiUpOXBW4crKLwW7P/d3ou5CWqmazPcC+YhNrP/8Y7c7EZDB7fZC6+hEi8xiK7E4qjYLCCjvFNelUlumpTPOQEu0jKdSHenwET5sXZ4sHV7MXb9cEvqEA8dDH61AlmdBl2NGm2VBo1ZN5G1RKkCRivgDRCT+xCT9xnxelOowp24ChyI5iXTmD5iLa/VY6BkS6uwMM9niI3bH9CqVIUZWdzWvUbNL3oT5xikBnAFPNeuw7N5C8qRpzacE9G4P306ITPkZPXWH4o/OMfHQez82WBS9DZTGTvLGKlE3VJG+qJmVzzYJa38lmJwe3DyhBENYC5wA94AP+O3Ac0AFfAH5+atZmYLMkSYvKfS4IwveBL029PA78LTAI1AB/BBRNvffzkiT938WsY471PzDB7Z0GB8f53o9v8v77rfMahFyhFMkvNFFdEKci0YWry0utVERdn4JwZH53SbMKrFRWJ1GQHqc4NUiuOISiox3fjW68HeMkIglElYigFFAoJ59FpYgm00Kgeh3tyjwaB7W0dETp7/bO+260WqNg/YZUDj5SzmN7CzCbFlZzeTeFyERC4vyVPt59s5aLtU487vk1ZVMoRYoK9FSWW1m3Lpf16/LJzjKv6EHU71VhW5IkQv11XKxt46fnVVw8PTjrsWBM0vDIPjMvrx0ipfcGGpMSdYaVmM5KWGkirDARVpoJK02MhC009Yj0dIzT2+agt90159iwy0kQBZKTdaSmGcnMNLOmMpU1NemUldjQapcvA+tKIAdvs5P3z70hSRKjJy/R9o8/oO/1I0ixyRox+9pkip/NJXt3OlGdlRHTGq64Czl3zsW10z2Mu5emNc5yUSpFSrIVlOn95NktiMVFdDtiNDaN0d7hIh5fWO2nKArklqRQsiadsqpk1uaMkxrpIjnQiTrgwFHvZqTWwXCtE3eL9/aNRo09mZSta7GuLcOypgxLTRmGvEyU+vkfz/FwhODQKIH+Yfxd/Uy09eDr6CHuGUDURlDWlDCWUUJ/PBmNGKfY3Yx4rQVNajH2PVtJ3bMZXbp9Qd/3XgqNOnFeriPiGZ8co/7WuPVTAX503E8iEsFcVkDyphqSN1VjLMxZ0eWF1U4Obh9QgiAcB/YBMWCPJEnnP/X+7wF/OfXyv0qS9P9dxDr2AiemXr4DvCBJUvyO923AVSabQ7uBQkmSPAtdzxzb8EAGt7dEo3GOnezix280cP3qwJI3ycwpTmHTZguPVHrI7L6E46NG3G1ePB3jRH1xkmpKse9Yj237OjT25MmMuiol4u2HiqjPz3hjB576VsL9HSgSTpSlGQzkrOGyI5VL14M4hmceBulOCoVARaWVXbuL2Lopl6oy+5zNlxdaiAyHY1y42sd7b9/g0jUH4575BUe2VC3ry9Ts3ZnDnke2YDStrsLq/ShsJ0Jumm5e4/uH/Zz4aJjQLC0HFEqRtVszMZi1BINxgv4IoUD09iMYiMxrTNj5Uqknx+dVqSaTfajVCtRq5dTz5EOjmfybRqNAp1WRkWYkM91IRrqZ9HQjdpthyZrXrzZy8DY7ef/ce8GhUdr/709o/6cfERwYAUBlVJJ3MIvCJ7OxllnwanMYNKzlYp+dm1dGqLvYf1eZb5eKXq/AZpQwizE0okhcZ2RoQmJkdH6/ndPJyLNQUpNGcXUaa4riZNJLcqADc6if4LCPwQujDF4YZfSak/jUTXC1NYn0R3eQtm8Lqfu2Yi6ffhzcpSJJEqFRJ476Vi68/SGiTs2BX/pZrPnZy7ZO2YNPDm4fQIIgbAYuTb38J0mSfmmaeUSgHqhgMvBMkyRpQW1WBUF4D3gKiAP50x08U31xfzD18nclSfqbhaxjHtvwQAe3dxocHOfHbzby7rvNuBbYDPhO+eU2Nm1O5mClh8zeywy/c52+k0NEJhKk7t2CfdcG7Ds2kLJlMvHPYoTGXHjqWnCevUB0pJ6RvGKuRAq4eDNGf/f4vJej1ijIzzVQVmxh07Yitm3OxZ7yyQQLsxUiJUnC6QrQ0DLG+VNN3Ghw0tnlIzrPPj9pGXq2VSl4YpudzU89gqhYGbVxsWCI0PAYwaExQsMOIm4vEa+PqHeC6LiPRDhCIhqbekSRojGi4Qijg0OQSGCz21GqVQgKxeRDFKamRRBFSCSQJAkSElIigZRIgDQ5REciGiMeDE0+QpGp5zDxYJh4KIwgCAhKxe2bH4JSgVKnwvTcBs4b13D0fBDHyOILbPNlTtJSXJJCRamNijIbZaV2UlMNaNRKVCpRvmt+l+TgbXby/rl/ErEYA+8cp/2ff8TQoTO3x/G2FJkoeCKH/EezUFp0uHWFjOrLuTGaxo0rY9Rd6mdkCYbFEQRQCJOXUlGY/IMggHBrbPGphHSxBMQSS3MdEgRIz0mioDKVwgo7FeUGclUDJAc7sAa6UEb9OBvcDJwfYejCKN7ujxvrJVUWk/XsfjKf3odt+7ppc3Ysh54+Lxdq+7h+rY/GRgcD/T60WgUbN6Xz4ovr2L0l54HqyiG7d+Tg9gEkCMJ/Y7JJMMA2SZIuzjDfHzDZXBngMUmSjixgHUbAAWiADyVJenKG+dTAGGAGzkmStHO+65jndjw0we0t8XiCcxf6OHm+h2vXh+jucM06pJAgQGFlKls3GthX6iFt6AZj79+g98QQQVeUjMd2kfvqk2Q/dwC1xbws2xx2eRg5dhZ/w1lGNRquUsz5JpHOFveCa6M1WgUGgwqjQYHZoMCoV6ASo6hVAiq1jmAoQSAcwz0eZ2gkhN+3sH7G6dlGtlWJHCwT2PLsk6jMyQvbwCUiSRK+jl5ctQ2MN3cy0dbDRGs3E209RNz3flzC2Si0CjQmFWqzGm2yBp1Ngy5Zi86mQZusRWvTokxPQUpJJSAZOdGZytvHQ3S2Ls33sFp1VFWlUVOZSnmZjbJSG3a7QQ5gl5EcvM1O3j8rg79viK7vvknnt17D19kHgKgSSd9sI3dfJlk7UlEYNLh1BYwZK2gaz6Kx3ktn4yidjaNMeFZWf/5bRIVAdmEyhZV2CipSKSnRk6UYmhpepgdDZIyIN8LQ5TGGLowydGmMyMTHv4XJG6vIeelxcl58FHNZ4T3Z5lAoxtkLnXx0uIGrdW7GRmfft9ZkLfv2ZfPqy5soK7o/v8Oy1el+BrcrowrkwbR76tnPZLPgmZy8Y3oXMO/gFtjCZGD76eV8giRJEUEQLgCPAVsEQVAttIZ4vqLRKJHIwpstKhQKFDNkpotGoyz2JsxyLVcURXbvzGP3zjzC4RjvHGrlJ6/X097imEw9/6ny/OTQJXE8E3E63XoM2UVoy4bRd/kJBsdBpyGhVjDbDeRYLEYisbihBERRRJNsIfflp+HlpymXJNa3dPKC7Qgja5xcjWVxqUtLS+P8+unGojG8nhgeNyQ+s9FTg54LErdyTcwn6WB6lpEt1Up2ZvjYsHctlrK1084Xj8eJxxeWuONOavX0GXITiQRBrxfHueuMnbmK60o97uvNRL2freUWVSIquw6lTolCq0CpVaJRTyZTUU39TVQIk1UGAiSmamYRpo4F7txnk8fg7UNRAkEEUSlOrkcBCpVw+7WoFFHqFaiNakSTGpVJidqoAo2GqEJPVNQTVpoJKi2EVUmMxU0MuNQMOgScfUEcl8YZG5xgqM9JKDDd0EHSnP8vrUZBaamdqspUKivsVFakkpY6GcgqlUrEGZKMLObacMtqvEYoZ6h9udtzeTUtVxAEVDOMA3435/J8lhuJRG4vPxKJzPh//rTZrhGx2MzDbc1FpVJNe7NnuZYrSRLR6OJ/6mc6lxe6XFVaCqW/9w1KfufrjJ2rpec7b9H/kw8ZPDfK4LlRRJVIxhY7Ofv6yNnaQr5eze7ydDzr83FrK+lyW+locdHd4qCreQyvc/q+uokESNL0P6IKUfrkZXcBJg99AXuWmewCK9mFyWQWWCnM12CL9WIO9mIJnUc34kSKS7jbvHRcdzF8eQxXs+fjG9+CgG3PJrKfP0jWcwcw5Wffk3PZ5fLz3o/PcvLKCA1tvk9kSp7rlBj3Bnn7rTbefquN3Dwjj+zN5ZXPb8Nm/eSNotV6jVgs+RoxaamuEUtNrrldJoIgjAE24IYkSetmmc8KuKZe/kSSpFcXsI5fBf5u6uULkiS9Ocu8f8vkcEQAVZIkNS5gPXN1vEgHLgN897vfJT194QNdFxUVkZGRMe17Fy9eXPRJkpubS25u7rTv1dbWEggsrmlxeno6nnE9b3/YztkzvZ/ox5iTFUKvn/2iqVAIpGaayc0SydW5ibd14+3wIHW4KS0qJu9nniP14DaEO355mpubcThmHuJlNklJSdTU1Ez7XkdHB4P9A4QHegm4RxmM6BiaUON0xwjMUeMaiYh09UxfG5KSHMGWMvPnBcBs0ZBphzxjBFtaCurULJj6Qdq6deu0nxsaGqKjo2PW7ZrNrl27bk9L8TiuSzcZ/vAMPVdvMiiFQZIQFAIa82QtqMasRp2kQqVXotQpUemViGoREJAEBRIiCUFkU74ShVJFQlCSEJVIiEiCiDcg0TwQnJr/VmB7q3Hcx3+Tpv6OcMd7CJQWpaLRqJGEqXUiEhM1TEREWloGCUYFghGRSDhBJBwjEooR8EcI+iIEfJEZx77t7dcSDH62ZKNQSBQXzn5emM0aMtKNUw8TOt3HBany8nJsNtu0nztz5sysy53NartGZGRkUFRUNO17dXV1eL2LqzG32WyUl5cDEAqFOHXqFAB79uyhu7t72a4RQ0NDi1quXq9nw4YN077X29tLb2/vopY7n2tELBajp6cHgLy8vBkDiU+78xpxJ4fDQXNz86K2F2DLli3TFoq9Xi91dXWLXu769esxGD47Fqff7+fatWuLXm5NTQ1JSZ8d6CESiXDp0qVpPjE/5eXlJKk0DL59jP6ffMjY8UtIU4GG6+AajFl6TNkGjBl61EYVCUTCShMhpYWQyoIvrsM/EcM/Ef74MR6mu1vA7Z7+f1xcGEChmL28KwiTQ/1p9Sq0OhV6owaDWYMtN5eC8lysjGEKD91+6KIurgyocY1G8Q0H8A8F8A8HSdwRPAoKEX1eFqbSfIyl+SiN+tvvLdc1IiUlBXNYwZEjDZxti9LcEbg93m1megiTaXFBXSCgoG9Ai0Ipsq7GzJN7snn02Q0olYpVe41YLPkaMWm2a8Tbb7/NV7/61Vt/kpslr3ZTQ/PcurX4niRJMw3Rc2t+H2AALkiStH0B6/kL4D9PvdwsSdKVWeb9XeCvpl4+IUnSoQWsZ94HyZ//+Z9jtVrnO/ttZrN52hMPYGRkZNF3BI1GIyaTadr3xsbGFnUnzOGK09wm0tg4/W6ZT3B7J5VaQXq2iYIMiQqDA+uJ8/QeHcDnV6DcvxHlgY2IWam43W5CocU1z1Kr1aSkpEz7ntfr/UwBXohG0AQmf1i9CT3usBqHFzyuyCcyRC4kuBUVAkaTGrtVxKYLY1EGSKh1RLSf7VMsiiJpaWnTLtfv9zM+Pv8+w5+WbkkmfrWJ2OUm4rUtCP4ASYVmNBsy8RZno03RoEw2E1PqiIlaYgotwbiaYExJOCoSjolEYgLxuEQiISElJBLxBHFNHvG4QCyaIBZLABKSBGIihFoaQUK6VUn7CdInJj6uxY3HEyTiEm5fMuGISDQSJxpJEIvECAaiRAIBcrIW32/2boLbTzMYlFgsCpJMIpkZyaSk6Ke9S7zYwg+srmsETBbYpvvRB3A6nYuuxdZqtTNeY+/lNWK+lEoldvv0WVYnJibw+RY1SMCyXiNmuokSDAbxeDyLXm5qauq0tcfhcBiXyzXNJ+bHZrNNW0MVjUYXfbMDIDk5GY1G85m/x+NxRkdHF71ci8XyybwMHh+xczeJnb7OWNonz0W1SYUxU48hQ48xQ49CLSIBMVF7u6VKVKEnojBgyC4FXSqhQJRwMEooGCUcjE0mwxtrgUQcQRQQFQKiIKBQTSW00yhQqhVoVKCSwigTIZSJMKp4EFXcT5E5QLF5AgFIxBN4OydwNnsYu+GiMZZESPhUQK1WImTYEbNtiOkpMMNNlSW9RkRjxEddTMRU9I2buXRNJB7/7A/OdMGtWqMgOVlNiknCqgjgiWvpGYEJ7yfXfyu4vZM1RcuWcgV5qROQpOAzzdbmQb5GfOxBuka0tLTwR390q3em3Cz5QXDn1Xk+Z6WfyeB2oZmDFrKeO0vBi8tQ9BCTJBhzxujrj+HzRfF4lHzcIvyTRFEgI12NSRlhbFyBZzw+XUxzWzQSp6/TQ18nHCeJ3LJf5dF/DLLDW8vYm5fp/S/nCNrSiT+5GQozQLX8p62kUhNKmvyx0TBZNZ9tD6MOhYgkFLcfMUnFpjVJTIQUjAcEAiEJrUZAr5UwqP2olX6MqhhGRRi1IkFMJRBWGQAlIaYPVJZFPE5iyEGid4TAj05hTteQu8lG6u9VYNpSTCClkGankf5OH26fiL8r+nGm4KBvXgPet3eOE49/9oddp4uTm734PmNdPREikc82+1GrFxfMfXY5AunJCjLMMbJMYZJStQxEdTjdcXzj8ytc+f0x/P4YA8DR4w4CIRVJFjUWi4oks4IkE1jMImpVHJVKQCFOtl5QKATu0zCJMplshRAsRlRP7UD11A6UHV1IfSMkBsaQHF4iE1FcLV5cLV4QQJcylUfAqkFr0WC0qlGoJi8iRSOXSU8SiYsaYmotca2aWIqWmKihVh0kFpem2swkECQJUYohSjEUiRhiIIrIJ4O+eDRB2B1hrM7FRMcw7lYvrrbxT4w1G91sAIMSTHrEDBtilh3BbllUkLdQkteHNOrCp9QzEjUy4tQTj0tMTISJx2cezk8QwJKsJS1ZIFXlRxebIKzUIZlNoEwiJRIlQxojmqGmP5xE72CUSHj6G/ZuZ4hDZyEtNUpxUYJMQxizOobCbpnK5CWT3XtycLs87ryqzKd0eGtgz4Vmu1jIeu4cPHSh68mZ4/3bzZKzs7MfqGbJiYREW4eLG3Uj+GYZAkUQoKgimYPrY6S7axmtGyHkDJOdYUdTlE8gOZXRgMDwiA+POzhjAqfARJhj73Zy7F1IzSpjy/ZdPP4NL9nd56k93c5QSyeGwjyS1pRhyM+a9w/ocjc5DIVCnD51EgVxduzeh1anv+/NiaRYDF97H+PNHfjaetBalJhzjez53nOMZ1dzbSiFd3pUdL49QU+rAzExSGbG/MbYXY0MehVmswazSU1Skpav/kwl5WXZpKYaEEWBRCyGp7aR3rc/QtPbTqVFQFmTg0trZ3RCjcsVxeMKzqtPdjwm4XKEcTk+uT/LSj57vglMDkGk/NRDpbo1rUClFHF5TZjNKaSnGcnKMpGVaSYlWYcoCnKzZORmyXeSmyVPWsnNkmftulBTBUA8FMbf1Y+/ow9fRy9xf5CgI0TQ8cmbhSqjEq1VA6ogAWMMtVGFyqhEbZh8NhpVGHwmYglhsrVNfKrFTSRBNBwnFI4TCyeI+WNE/FGivigRX5RYYDKg03WPoO/+ZE21JjUF+77NGLeWo8xNQ5U0feuP2Sz0GiHFE/i7+wl09uCOx+lX2Bh0pUyNPDD79U+pVlBZZWVNvoeMpBiWtDSUpk8mr7x9vqhVZGzZjlKppCAaI9DTTp87QYdTz9Ao09/slcDhCONwgEqtITMQJUcXJj3FjLEoF3GWm/Jys+SPPUjXCL9/+UdkmIncLHkZCIJgB25dCX8kSdIX5ph/BEgF6iVJmr50Mf3n/h74lamXFZIkzXhGCYLwy8A/TL18WZKk1+a7nnlsx+1syQ0NDRQXFy94GSstWUw4HOOt95r5/g9v4Bj9bOFWkiYTKaWkGTmwP4WnS3tRHTlG64/bmBiLkPPy41T+wS+QVPHZHy6XK8DR4518eLSdlqaxaZf7aTnFyWzbauKRUgfmm+cZ/KAFz6BI7itPU/Azz2EsnL5wfstyJ4uZLivp/UgEEQ+FGT56jr7XDzN86BTWYh0Zu7PR7N9GfTCX2g4tTY0T9LQ6PxOk3ZkAazEmN2m6mw1zJ2i62+Vq1CLWZD1Wiw6rRUtqqpGcbDPZWWayMpPIyDCh1X7y/z9bIohIJILrSj29P/2QgXeOkJQhkfZIGaqdm2jyZ3GjW01r8zg9zWOEP3VHf9akLnP0eZvNdMtVqxWkZ5jIzjKSnWUmPzeJmup0CgusKBTz+2eu5oRSnz7vVCqVnFDqjuUGg0E++ugjAA4ePDjvbMlysphJy5UsZjFJ56REAs+NZgYPncF56Saea02ExpyfmEeIJxBmGLUgoVr8RVihUGCpKCZl6xrsO9Zj37kRQ0E2giAs+zUiFgwxfPQ8g+8ewT0xzM2CHZxr1zA6MnNroFvlCKVKpLrGwp4qJY/tLSSjet1kd5cZzuU5z5d4lL4TH/HOFQ/HbkJ/78cNBkXxs4k0AWzperaWCGxWDFNcUkzmU3vRWD8ZDMkJpT72IF0jmpqaqKqquvUnuc/taveg9bmdx3Y8MEMBBQJRfvhaHd/7/g087ukzMgKkZpv53NPJPJ95g9EfnKHtzR6ivji5X3iK6j/+ZZIq5xfgDwyO896Hrbx/qJXebs+c8wsC5Jfb2b7ZwIGiEQwXTtP/TjMJQz75X3qWnJceR2u/9+n67+eQG/FwhOEjZ+n50fsMHz6BvcpAxoFC4jt2cHYgiws34zTWDhPwLT5T7y2iKGA2azCZNOh0KlRKcbLPlkqBSjU1rVSgVIooFLd+SCafBQESiTj9AwMIQFZWFqrbd7OF2wUDQZhcj0ajRK1WoJ161miUaDSTz3q9mpRkHclWHVarDp1u+h/wpSAlEoydraXnR+/T99ohNPow9rUpJO8qQVi/jgZ/Ftfa1bQ0j9PVPEY4uPgf4KWiN6ipqUlj0/pMNq7PpLIiFbX6Lu4wrFDyUDezk/fPg0uSJIKDo7hqG3DXNuK6Wo+rtpHgwMiil6mymDEV5WAsysVYlEtSVTHWteWYywoQZwiSlkPU52fw/ZP0/fQQvv4merbt44wri8Zm/5zD9omiQEWVhf1brTz73HrsM/Q5nc5CzpdYJMD5d4/x1jkv5676Z8i8/0kllVa25wRY427Bakolfd827Ds3oDTo5/ysbPWRx7l9AN2jbMm/BvzvqZfLli15Htux6oPbiYkw3/3hTX7045v4xmdumppVYOWFpy08lXKVge+cpePtHuIRibwvPUP1//PLdzVWXVu7k3c+bOHQoTbGRuduziEIUFBuZ/tmPfvzhtGcOcnIsS6E5BJyX3mS7BceRZNsWfT2LMS9LkTGIxFGPjpPz48+YOzESdJqDKQ+XoWnYgsn2lO4cj1IW93IvPrK3kmjVZKba6GoMJnCPAvp6UbSUk2kpRpISdGj109/93O+VnthW0ok8NS1MnLsAsPHLjB68hL6ZIHUtclYdpag3LgGl8rOgEfHkEfFiEtkzBXHNRbAPebH4/Dfl+BXpVZQUWFn88YsDuwtpLzM9kCMv7vaj6flJu+fh08iHifqGSfs8hJxeQk7PfiGx6g7fxESCSpqatCajYgaNWqLGY09Ga3disaejMp4D/NAfErEM87AO8foe+0wvqZrcHADp/WbOHU1SnCOwFEQoLjMwoHdqTz3zAYy0hd3g3ux54vf4+T1n5zlvdNeWlsm5pxfoRQpr05hc16Isv5a1J1jJG/eRNr+rdi2r0epm7m/sGz1kMe5fTA1MTnWbbEgCEpJkma6OpV/6jMLcWeAWj7jXJ98Pwa0L3A9D6zhkQm++8ObvPVmI8HAzE0z8stsvPi0iUcNl+j91jlOvtdLIi6Q/zPPUfVHv4i5tOCut6WkOIXf/rUd/NavbufGzWHe+qCF48c6GPdOH2xLEnQ2jdHZBP8hQF7pM2z8goHdRR5izSe5+NI/QFIJ2S88SebTe9HaVvcA7FGfn6EPTtH3xhEmrl/CvsZExpMbiHz+tznUZOLaRS+933MiSfPry6hQCBQWp7CmOo31a9KpqU4nK9OMKCfBmJEgiljXlmNdW075b/0siVgM15V6Ro5doO/wBRz/9R+AGIZ0HeUZejZm6DFkGtGUZaB8NBMxPY242kggppp8hJUEogqCUQWB8OSQRsGoSDAMoYhAOCwRDHN7iCP/eBjnqA/XyPySfN0SjcS5eWOYmzeG+ddvXcVmN7Bndz6P7i9kw4ZMVMoHr1ZXJnsYiQoFmhQrmpSPM4oHg0GaUyZrXgtX0E2OkMNF/5sf0ffaITxXa0ndn0Pblsc4ZNpO+9UJPm4AOD17uoED+zN5+XNrKcpPvTcbPQ2DJYWv/PxzfOXnoautm5+8fp2PzroZG5l+++OxBA3Xx2i4DqJYSnHVdraaYc3JD4n/3h+SEKxY11WSvLEK64YqLGvK5IBXtiBycLt8zjAZ3BqAjcDFGebbe8f02QWu4zKTiaTUU8v5i+lmEgRBDWy79RlJku6+feYqd7N+mG997zpnTnaRmKGPDkBJTSqvPKljl3iRnn87z/EP+5ESAgVf/RxVf/RLmIrzlnzbBEFg3doM1q3N4I9/dw8XL/fx1getnD3dPWMALknQ3eKgu8XBa4A9cytr9z/JzvIgqc6r3PjFfyYaTcayZQeZT+3Dur5yVdRchcZcDLz9Ef1vH0VytJC6LZ2ML29j5MU9/LBJw403HDiGxoCxOZcFkJNnYeuWbHZuzWHThiwMhun7zcjmR1QqsW1bh23bOqr+6JdIRKP4uvoZb+liorWb8ZYuBuu6Gf/pdULDRwAQRAGVQTn1mEz4YjUoSTOoUBlVt99TT00rDSoUyXoUZj1iSjIJqx2/wsJQwEyfS8uAQ8GwM4Fj2E9fuwvnyNwJ6h1jfl5/vYHXX2/AYFSzbXsuj+4vZNf2PPT6e9f8UCaTPVyCQ6P0vXGEvtcO4zx3hfTtdnhiH5c3HODUeT+Bt6LAzLWfWp2Krbsy+NyzVezenDdj3+X7paAkn9//z/n8niRx8UITr7/dxNkLzhlrnxMJidY6B611IAhpFNT8CuurtKxJGkNsPU3XP/5v3G3jmEoKsW6owrquHHNFEUkVRehzMlZFOUZ278nB7fJ5E/jDqemvM01wKwiCCNwa4dgDHF/ICiRJmhAE4SPgSeARQRCyZ6j2fxG4lRbvjYWs40ESiyU4fKyD7/7HdVqbZg+GKjdk8IXHBTZOnKHzH69y/MQQCAoKv/YiVX/0SxgL50ogvTSUSpGd2/PYuT2PcDjG2Qu9fHCknbNnugnN0rxzbHCCo4MTHH0P9KZ8Sqs3s7ZMwcY0B+Khf6Ltz3tQpFVi37sb+86N6LPm3y9nOSXicdy1DQwfOYfz/Fk04gi2R6sw/OoeznQ+z7WGKK1/NUI4ODiv5SkUAtVrM3hkbwH79xSQmWme+0OyRRNVKsylBdO2ZIiO+5ho7yE47CA86iQ04iA06iI06iQ06sIz4iBcPzktzZLoQ2VUYsw0YMrSU5ZlYFPWZO2w+kAmkS/m0xXM5VqPgca2KF1NYwz3eWftp+b3RfjoSDsfHWlHpVaweWsOTz9Wwr7d+cval1kmkz0c/D0D9L1+hL7XDjF2/hr2GisZz1bR9+Lv83eXVLS/5mGyCDg9QYDyGjtPPVnCc09UYtKv/JuygiCwbXsl27ZXEgpFOXzkJm9/0MbNG56pceA/a7I1moPOJngNMFk2U/74U2z4TcjXD6C5cpnB/zhNXZOHqC+G0qDHXF6AubKYpIqiqaC3cDI78zwzo8seTPJ/f5lIknRJEITTTNbefkMQhO9IknT+U7P9DlAxNf23kiR9olpOEISfBf5t6uWfSpL0J9Os6q+ZDG6VwN8LgvCiJEm3S4aCINiA/zH10gP830V/qVVqdMzHj99s5K23GnGOzTyshyDA2m1ZfPmRKMUdh2j/s5scr3UiatQUfeNVKv/wFzDmZ9/DLf8kjUbJgb2FHNhbOBnonu/lvSNtnD/TQyg0c6AbmIhw/fwA18/DdwCrfSNlVY+yrlRinaIf//ePEG4ZRNBnoCteQ8q2jVjXV6CYIRvgUkpEo7ivNzF2rpaJm7VI3i7Ma9JQblzPWMnLXGxWU3/SxfC/e4H5NTfW6pRs3prDY/sK2b0zD7NZbs60EqjMRpI3VM05n5RIEHF7bwe+4VEnwZHJZ3/PIOMtXYw3deBu/ezQNHq7lpRqKweqrby0NgPxyTKGpBxqe83caE1Qf3UY5/DMNbvRSJxzp7s5d7obtVrBlu25PP1YCXt25aHTyoGuTCabn/G2bvpeO0zfa4dwXanHlGMg7/FcjL/yK7zdksXps24CE7Pn1jAlaTjwWAFffHkdpfmrt1uRVqviuWc38tyzGxmfCHH0WDOHP2rn2jUH0cjM3UsmPCEun+rj8qnJ8llW4aNUvfAq638/xjr9IGL9TcbPt+C6dILeH7xNIjZ5F1NUqTCV5GGuKMJcUUjSVPBrKiuQmzc/JOTgdnn9JpNNjXXAYUEQ/pzJ2lkd8AXgF6bmawX+ZjErkCTpmCAIP5xa3nPAEUEQ/hcwCNQAfwzcGifmDyRJci/uq6wusViCE2e7+fHr9dReGpi16bFKo2Dbnixe3eEl7dJrtP6nJs52jKOxJ1PzJ79OyS9/EW1qyj3c+rlpNEoO7CvkwL7JQPfilX6OHO/k7NkePK7Z++m4x/xcOOHnwonJ10kpa8kp2EthrooKe4Ti3nOMnvw20ogXVEkoLemoMwowFBViKspFm25fcFOgRDxOeNTJeGs3443NhHpbkTwDiNoImrWljJcU0pzyKPVdStpaJ+g/5CIeG5j38pNtenbtyuPRvYVs3pT9QGbGfVgIoni7z9x0Q2nBZKbU0PAY482djDd34m3qZLypA+eVevqOD9F3fAhoRKk9QXKFhXVVVh5Zl4rq99ZT5y/gVL2W61ed9He4pl0+QCQS58zJLs6c7EKjVbB1ex5PPVbC3p15aDTyT6dMJvtYIh7Heekmg++eYOCdY3jqWlGbVeQdyKT0117iVGw93zsr0fa3DmD2jM6Va1P53OeqefaRYjTqB+taYzZpefH5dbz4/DqCwSjHTnVy+EgTly6PEA7N3GJHkqC/w0V/h4tDgFIlkle2l7Jdn2P91xNsSh1F1d6E/1Ij7kY3zqZB+l77VHoZQSCpqgT7jvXYph6m4jy5afMDSM6WvMwEQXgW+B4fNwv+tFbgaUmSPpPkaZ41twiCoAN+Cjw1wzoSwJ/N9Pm7tZKyJfcNePnB6w0cer8Zt2vmceAAklL0PHIwhRdLu4i+eZTOd3oIjIVIqiym/Ld/lvwvP4dCq7lHW740EgmJxqZRjpzo5NTpLnq6PItajsWmJz0nCbtdRXqKQEZynAx9gFRc6N2jEAghRaIIsQREY0hRCa/PT0ISSbaYEaUECSkOSpD0agSTASnZilttoz+cRL9TxcAo9PUHGehyE5hYeDfwguJkdu3I47H9hVRWpK6KHyg5e+vykhIJvE0dOM5dY+xsLY5z15ho6779vkKrIG1dCunbUrHur6bPVMWJpiSuXPPR3jBKIj7376FWp2TrjtzJQHdH/n29kSIfT7OT948Mlu84iI77GDpyloF3jjP4/knCYy4UGpHMbalkP1XMYMVu3q5N5tyZMfyzjMIAYDRreOTxYr708hqK862zzrtc7uf5cqvb1YnTHVy6NMDoyMyt7Kaj1iopKLdTWpXM+pIE1WkOTK4uwrWNuBscOJs8uFo8RMY/mbdEY7Ni27F+MuDduQHb1rX3dNinB5k8FNADThCEPCZrcZ8GsplMAtUO/AT4O0mSpj2L5xvc3jH/l4CfBdYCFiZvD56eWsenm0Qvmfsd3I6M+XnnUAtHj7bS2jRzTcwtucVWnjugYU/8AkM/uMTAmWESMYn0x3ZR/ltfI+Px3asiUJqPwcFxzl7s4+zFPq7XDsyYeXkhtHoVOqMajVaJWjP10CrRaERUKoFYTCIWk4hGE0RCMXzeEL7xMIGJ8Jxj9M1Gb1CzaXMWe3flsXtHPraU1Tc2nlzYvvdCo04c568xevoqw0fP4bnRfPs9c66RjK127HuKmKjazEetds5dDdFeNzpra49bdHoVW3dk8/Tj5ezZnotKdW8DXfl4mp28f2SwdMdBIh7Hc7OFkeMXGfrwNKMnLpGIRlFoRDK2ppJzIAtpx3Y+6Mjlo7NBulvnLo9Urknj5RereOpgMer7XEu7ks6X3j4vp851c/psNzdvDM9aqzsdnUFFUVUaxZUprCuFypQxLOE+aGpk7PIQw1cdjN5wEf/UclVJJjKf2kv28wfJeGI36iTTUn6th4oc3MpWtfsR3DpdAd4+1MLRo200NzjmDJrUWiWbtqXyzPpxcq8eovMnzYz3+NBlpVH0cy9R+PUXMRbcmyRR94skSbS1Ozl3qY/zl/qpuzE0a1Kq+00QJ4fq2bk9h30786muSkOpXFmZIRdqJRUeHlbBEQfDR88xfPgsw0fOEhyaTC6n1CvJ2GwjY18ewS07Od6TydkrIdobHUjzCHT1BhUbN6ezZ3cRB3cXYkla/r5d8vE0O3n/yGDxx0F0wofragPOy3U4ztYyeuoKEfdk7ofbAe3+TAz7NnLBU8oHF0SunR8kMksODACjSc1jT5byxZdqKLpPtbTTWannSyQS59qNQU6f7+PylX7a2xxICxvCHmOShuKqNMrXprKtMkq+sgfLeCuB610MX3UwfNWBu8X7iWu9oFSStm8LWc8fJPvZ/Rjyspb4mz3Y5OBWtqrdi+A2kUjQ1O7gxMlWLlwapKneOa+alZxCC4/tVLErcQ3vm+cYOjdCIi6S/dwBCr/xMhmP70JUPJz9M+PxBD29HuoaRrnZOEJT8yidbS4ikYXdIV0qOr2KopIUNqzLYMuGLNZUp2M0rvyskAuxUgsPDytJkvA2tjN8+CxDR84yeuIS8WAIQRSwVVnI2JtDdM9uTo3kcOZqlM6muW+kAYiiQEm5lW1bs3jkQDmVJbZlaQ0iH0+zk/ePDGY/DhLxOOExF8GBkcmcELf68de34W3q4M4TXp+qJWOLnbTNqZh3V1MXreTwdQNXzg8zNjjz8D23VNak8cqL1Tz5SPGKzAuxWs6XCV+Y2tpBzl/u5/KVAbo6564hv5MgQG6JjcpNmWxca6AqeRBbsAPdWCfD54foOznE0KUxEp8aS926roK8Lz1D/pefRZ+5MkaYWMnk4Fa2qi1XcOv0BDhxuplzF/q5fs2J2zl7oqRbtHoV27dbeTxvgKSjh+k/0kvYGyFlyxpyX3mC/K88jy7NtiTb+KCJxRJ097hpaBqlp99L/8AEg0PjjAxN4HIG7qpZ8S1anZKMLDM52Unk5VqoKrdTWW4nK9P8wDQHn8lqKTw8rOLhCI5ztQwdOcfw4TO4ahtBkjBlG8jYlUni4G7O+Ys5Uxuls3n+BaoUu54NG21sWJfO1s1F5GVZluRYl4+n2cn758EgSRKxCT8Rt5eIe5yId4LYhJ+oL0Bswk/MFyA64SPmCxALhEhEop94RIMhxoaGkGJxLEYTxOIkQmHCDvesQ4/p7VpsNcnYqq3YN6QilVVS583jVKOeKxcdDHTNnZ8zyaLl8SdLefVzlRSu8IzHq/V8cbuDXK0d5MLlPi5dGaC/b34jK9ySnGqgclMW1RtS2ZLnITPUiMnZwvC5QfpODjN0cZT4HVmdBVEk7eB2Cr76PDkvPIrSsPq6SN0LcnArW9WWIriNRGM0t/Ry7eYAjS1u2ton6O0cn1ftLIBGq2TdBgu78r0Ut5xi5O16fAMBUratI/eVJ8h96TG5ScldikbjDA37GBnx4feHCQRj+AIRAsEo4xMh2jt6iMchJzsTvV6NWq1Ep1Vis+qw2QwkW3WkJOuwWnUPfBA7k9VaeHhYhRwuRj66wPCRswwdPkugbwi1SUX69jR4bA+XpHLOXE/Q3bawJPRWm47SMjM1lVY2rstibU0BWs3CWynIx9Ps5P2zstwKUoMjU2Ndj7qIuDyTAat7/HbwGnZ5b09H3V4inolZx76+WyqDEn2qjqR8I0kFJpIKTViKrSRy8xkRcrnab+VKE9RfGcYxy1BitwiiwOat2bz8fCV7d+ejUq68WtrpPCjny+ioj8tXB7g4VbM7MjL3/+wWg1nD2h25bN6RzqasUdL8jRhdHQxfGKb3xBCD50c/UaOrNOjJeekxCr76OVL3bXloWwJORw5uZavafIPbRDxGKDDOwJCD3j4PvYM+evoDtLb76e4cJxSITvu5majUCtauTWJHpovC+hM4j7QQckexbV9HzkuPkfPS4xhyMu76+8nm9qD8KC43eT+tXpIkMdHadbtWd+T4RRKhIPa1KQhP7qLOUMXVTjXNjV5i0YUVxDVaJTkFJjIzdGRnaMnP1lOQa6GwwI7ZYkOhmD57p3w8zU7eP/eOlEgQmhqLOtA7iL9n6tE7SGjYQWjESWjEQTw0/6SGokpEqVOgMihR6ZUodZPPCq0ChVqBQiNOPqtFFGoRUa1AoRIRlAKiUkS841lQiIgqAVEx9XeViNaqQWvTIZmSCCmT8KnsdPtSaBnU0dqToL3JRW+7c15Z1AEyMk0892wFLz5bgd1uWOyuvG8e1PNlYHCcS5f7OXO+lwsX+ggG51fWtKYa2LArjy07Uqmx9pPqa0A31knvsUG6PuzD1fzJGmJ9djqFX3/xocjhMh9ycCtb1e4Mbv/yb/4dvT6FYDhBMBQnFJYIBBM4XDHGxkK4xgLE7qJPpyVZy5oKDdX6UfKuncB9oh1tRiYZj+0k4/FdpO7bKme3uw8e1B/FpSbvpwdHIhrFcfHGVH/dc7iu1KMxK7DsLqKvZjc3g2lcawjjmWNIstkIooDVpic1XYfZqECnFdFpRfRaEb1uclogjFoNVosZpVJEFAQUooioEBAVoBBFVEowaBXotAqMOgGdRoVarUZUKlEo1CiVahRKDSi0oFAjiA9G7YN8vi29iNuLt7mTiZau2/1Tx5s78XUPkAjPPqSbUqtAZ9eis2nR27RoUzRoktRozGrUZhUasxqVWYXSYkBMMiOptcRFFXFBTWLqefK1CklQEJVEYgkF0YSCWEIgGp98jschFod4Yuo5DrEEROMKogmRWEIkmlDg8Io43QncziDOER9DPZ4F32RPsup45EARzzxRwpqa9FXdKulhOF8ikThXagc4dbqbE6e6GB31z+tzmfkW1u/OZ+f2JMoUzaRP3CDUMUTnB/30HBkg5P7kTZv0R3ZQ9M1XyP7cIygW0SrnQSAHt7JV7c7gtmrd/w+1eumy/ymUIqUlBqptPooHb6A6dgFJYcK2fT3pB7eR/tguTEW5S7Y+2eI8DD+KS0HeTw+uWCCI60o9Y+eu4Tg3OcauUhslcnAnrak1tLp0tHeFCPoXVnheLkq1ArVGgUarwmDSYExSkWRWYjWLpFok0o0R0rVB7OIE2gkfYlhA1KeiSsvFWFyAMT9rxY8HKZ9vi5eIxRhv7sR9rRH39Wbc1xrxNrQTGnXO+BlRKWDI0GPKMmDM0mPKNmDMMqC3a1GnmkkkpRBWmgkrzbhjRoa8WjwBFZ6AyHhAYNwHE74Efl+UoD9KJBQjEp56hGJEInEioRjRSJxEPLEkOSAWI9mmZ9fOPJ44WMymjVmrPov/LQ/b+SJJEm1tTk6d6eb4yS6amsfm/IyoEKjalMXWg4VsL/GR6buBdaKFkYsjdH3Yz8C5EaQ7avrVyRYKvvIcRd94GUtN2XJ+nRXnfga393dQLZnsU8xJagqyFeRrfWS6u0m+dAmzkE2KbR22Fz+H7S//BH12+v3eTJlMJvsEpV5H6p7NpO7ZDHzcjHns3DVyz11jY10z/p5uQmsrGCqooVOy0T4IjrHF1+zejVgkTiwSJzARwT02c+2FqBBIy84mK89MQY6SMuMEJTffQ/jOdUJdHmKCDUNpFSmba0jeWI02NeUefgvZUkjE43gb2nBeuIHzSj3u601461pnbEIsiAKmXAOWQjOWIhOWQjPmHAPqjCRCOjsBlQ2vkEy700jPqJJhJ7i6IngcAdxjfjwOP0H//PtB3m8KhUBpmZ3t23I4uLeQ8rLlyX4uu7cEQaC01EZpqY1v/twmevu8HDrcxnsfttLb65n2M4m4RN3Ffuou9vOa3cCWA5Xs2Luf8mfa2LD3OptGBuk61E/n+31M9PuJuDy0/O13afnb75KyZQ1F33yFvC88hcpkvLdf9iEj19zK7tpiam6VKhFbsooUE2Rq/GS6e8l0DJJmTyGpqoikiiLMFUUkVRWjUD+cTTpWk4ftju9iyfvp4SYlEvi6+vHUteKtb8VT18pw3zCDqZk4LRk4BTOjARWjrjjj4yujhnc6SrWCvNIUyiuS2FQWo1psJ3TsHKNn+wj4jKTu20HGoztI278Nlfn+FeLk8216waFRHBdv4rx4A8eF67gu1xPzB6adV1SJWIvNJFdYsBabsRSZMeebiBhs+NTpeJTptDnNdA4r6R+MMtLnZaTfi3PYN++EkCuN0aSmqDiFNVVpbN2czbo1Gej1K7uVwlKQz5dJkiTR3OLgg0OtfHi4DYdj+nPjFkEUqNiQybZHithSHiXbfx27vwnntRE63uul/9TwJ7ItKw16cj//JEXfeBnb9vUP7I0SueZW9sBIt6uwmFSoFRIahYRaiKMW4piFMMmJILZEiDSdgvRcO4ZMC7oMO6aSfEzFuSu+iZtMJpPdDUEUMRXlYirKJedzj9z+ezwSITQ0hr9viED/CIG+IRzdbgacAYYFNS5RTwglIZSEEwrCkoJwXCAUEwhHIRwFKSGRkCaH5UwkpNvPicTkEF9LeR87FonTUT9KR/0o7wHmZCM1m3+WHf9ZwTZ7D/EjJ2j774c586ob++7N5L36JNkvPIrWvrKHQnkQSZLERHsPY6cuM3r6KqOnLuPvmqGMKYAp20BKhYWUCgvJ5RYsRWai2iS8ulzG1Rlc8lhp7lPSc2Gcvg4nA10DRMO99/ZLLYAggEIhIoqTrRDUaiVKpQKFQsCcpCU9zUhmuonMdCN5uVbKymykpxkf2IBDNjdBEKgot1NRbuc3f207tdeGePf9Zg4fbScc/mzOGCkh0XhlgMYrA7yWrGPzgUJ27NtNxcF21my+xgbnAD1HB+h4rw9v5wQxf4DOb71G57dew1xRRNE3X6HgK8/L18clJNfcyu7anTW31w8fp6SiHIVOg0KrQdRq5NToDwH5ju/8yPtJdrcS8TjxYIh4IITP5eb00WNIkSjbt21Ho9VM+xlJkojGJILhOKFwnFAkTjAcJxhJ4AvGcHqCuMZDuMYjOMejjLkijLoiBAILT/5nturYsi+XJ7fFqYjfxPXmOTrf7mFiIEjqvi0UfPVz5L78OEr98h/7D+P5lojH8da1Mnr6CqOnLjN2+iqhEce084oqkeSyJOxTY7naqq2ozWpCSiseXS6jQjY3Bs20toXoah6jt8255H3G9QY1ZrMGs1lLUpKGpCQtVosWS5IWg16NXqdCq1Wi0ynR6VRoNUq0WiVKpTj5UIgfT99+KFAqRRQKAYVCfCiPg8WQ99PsJnxhPjzUxmtvNNLaNv05dYsgQOnaDLY9WsTWygS5wevYfY14GsfoeLeP3uODxIIfX19FlYrMp/eS/+VnyXx6H0qddrm/zrKTa25lDwx9fpbcJ1Ymk8mWiahQIBoNqIwGJJMeMScNAMv6iiUvjI6Ph+jodNHQ4qCpZYzm5lG6O92z1gKPu4McfaOFo29ASU0B+x7ZzpNf60J17iSdb7Rx8ef+gKu//mfkffFpir7xMsmbauRasrsQj0RwXaln9NQVxk5fYexsLVHvxLTzqgxK7DXJ2NckY6uxklyahKhWEFDZ8OjyuBHL5FqPgdZWH93NY/R3thGPJaZd1nzZUg3kZCeRkW4iK8NERrqJjAwTGWlGUlONaLVyMVS2OpiMGl55qZqXX6yiqXmM195o5MPDbdMOLSRJ0HJ9iJbrQ7xu0bJ5fyHb9++iancnlWuvsf5XB+g9NkjHe724mr0kolH63zxK/5tHUZmN5Lz4GHlfeoa0A9vkCqJFkK8qMplMJpPJPsNs1rJ+XSbr12Xe/tvERJirtQOcvzLA+Qu99Pd6Z/x8W90IbXUjvJFuZN/TP8tzf+mksu80nf9+g85v/4T2f/oRyRurKPmVL5H3hafvSW3uahed8OE4f53R01cYO3MV54UbMyZ+UptU2NckY1+bTOraFCxFZgSFiE+dhkeXy5V4Fte6dbQ0euloGGGop2nRzdftqQYKC5MpnnoUFiRTkG/FaJRzZsgeLIIgUFmRSmVFKr/9mzs4fLSd195spLFxdNr5Jzwhjr3RyLE3GilZk8bWR55g+xqB3C9e58CzDfjanXS810fP0QEiE1Gi4z46v/06nd9+HW26nbzPP0n+l5+VbwQugBzcymQymUwmmxeTScO+vYXs21sIQGeXiyPHOjlyrIPO9umHiXEM+/jpv97gfZOaPU8/w8t/eJBHf/40vT+4TtubLVz8xh9T+zv/g8Kvv0jJL38Rc0n+PfxGK1twxDFZI3vmKqOnr+K53oSUmL42VZOkngpkk7GvTcFSYEISFUxoMvDq8miTsrjeraW10U1H/SgD3fVIi0j6ZLFqqaxIpaYylarKNKoqU7Fa5RsTsoePwaDmhecreeH5SlpaHbz+ZiPvf9iK3z/9mM9tN0douznCG2YNm/YVsOPAdqq39lBaUcu6Xx5k+NIY3R8NMHhuhHg4QWh47Ha2ZX12OpnP7CPr2QOkH9iGYoZuKDK5z61sCdzZ57a1tZWSkpL7vEWye03uqzM/8n6SLaWVdjy1tjl47Vbhzjd94Q5AZ1Cx++lSXtodpWT8DAM/vUbLT7sIOSdrINMf20Xpr3yRzGf231WTvJW2f+ZyO/nTmatTAW0tE23dM86vsapJXZvyiWA2LigZ12Th1eUxImRxs1tDW6OT9vpR+jtcC85gLIoCJSUpbFiXwbq1GVRXpa26hEur7Ti4X+T9tDSCwShHPurg9TcbuVk3POf8hZWpbHukiK3r1eREGkmdaEAx4aL/zDA9RwcYuer8zE0ohV5HxqM7yHp2P5nP7EeXZluur7Nocp9bmUwmk8lkq1ppiY0//L09/Nav7+DosXa+8/0bdExTmxv0Rzn84wZOvati15P7ePHn9nLgi+cYe+caTT/oYPjwGYYPn0Gfm0nJL36ewm+8vCILb3crOuHDfa0J55V6HOevMXamltDw2IzzG7P0H/eZrbZizjESE9R4tTm4dLk0kU19r5r2iw46Gkboa7+64D6zao2C6uo0Nq7LYP3aTGqq0zAY5KbFMtl86XQqnnumnOeeKaej08Xrbzby7vstTExM332gs3GUzsZRXterqN6azYZdr7KxOERGWgM7n2gi7vDSe2KQ/tMjjNW5kOIS8UCQ/rc+ov+tj0AQSN5UPTnO+u6N2HZuQGt7uDMvy8GtTCaTyWSyJaPVKnnmqXKefrKMy1cH+Pa/X+PChb7PzBcKRDn6WiOn31Oy88mdvPDqHnZ/7jyeQ1dp/I8OvJ2D3Pjj/0ndn/wdOS8/TuHXXyRt/1ZE5eorukQnfHjqWnFdqcd5pR7XlXrGmzuZqZOrIApYis3Ya6yT/Wark9Ema4iKOjzaXEZ1udSRRUO3go4LY3Q0jNLXcXHBwaxKNRnMbt2UxaaNWVRXpaFWywlsZLKlUFSYzO/99i5+41e38dHxTl5/s4Haa0PTzhsKRLlyvIsrx7swW3Ws25nLhl1bWVPhJD2ngcKX2kiMBxi6NMrghVGGLo4RmYiCJOG6XIfrch3Nf/MtAMwVRdh3bcS+ayOpuzZiKMheVa0t7tbq+4WQyWQymUy24gmCwJZN2WzZlE1rq4N/+tYVjh/v/Mx84VCMY280cuYDJTse38znntvFjqcv4Dt+ldafdjFS66TnB+/S84N30aamkPvqk+R94SlStq1bcZlEwy4P400deBs78Da2423sYLyxnUD/7M0TlVoFKZUWbNXJ2GuspFRZUemUhBVGvNpcenW5jJJNYzd0nB+lo2GU3vazJOILa2asVIpUV6WxeVMWmzdmUVOdhkYjFwVlsuWk0Sh56olSnnqilK5uN2++1cg777fg8YSmnX/cHeTUuy2cercFe6aJ9bvLWLN5HxUlLmxZ7ax/vJWtYQ+OejeD5yeD3fEe38efb+pgvKmDjn/58eT6bVaSKotJqiomqaqEpMoikqpK0NiTH8igV76iyWQymUwmW1alpTb+5i+eoL3DyT//6xU+OtbxmUrLSCjGibeaOPuBgu2Pr+X5x3ay7sBFpPqbtP20i56PBgmNOmn9u+/R+nffQ2Uxk35gG+mPbCd17xZMJXmIKtWybH8iFiPi8hJ2egg73AT6h/H3DBLoHcTfM4i/d4hA7yDRcd+cyxJVIpZCE9bSJJJLk7CWJmEpMoFCgV+dhlebTZs2h6F4Gm1dUTobb9XMdiw4mFUoJjO73gpm16xJR6ddnn0kk8nmVpBv5bd+cye/+svbOH6ykzfebOTy1YEZM5WPDU5w+Ed1HP5RHRabnsqNWVRuWsuaYki3d1CwpY21vzRA2BPGUe/GUe9mrM6Fu9VLIja50LDDzeipy4yeuvyJZWtSLCRVlWDIz0KXmYouKw391LMuMxVdum3ZrqnLSQ5uZTKZTCaT3RPFRSn85Z8/Tmeni3/5tyscOdrxmSRH0UicU++0cO6Qgu2PVvLsEztYW3OJdb/SRO+xQbo+6MPV4iXqGafv9cP0vT6ZBEdUqTCXF5BUVYI2w46g1xIdGgCdmq7+CVQKBVI8QSIWQ4onkOJxpGiMWCBIzB8kHgjdMR0k4pm4HcxGPeOL+r76VC3mPCPmXCOWQjPWUjNJ+SYEpUhIaWVCk45Hk0GPJoN2p5mutnF6Whx0t/Yy2l+34KF5RFGgssLOpo1ZbNyQxfq1Gej1q69wKpM96NRqBY8/WsLjj5YwOurj0JF23v+wlZZWx4yf8TgCnDvUxrlDbag0CkrXpFO5cS81ay3kpo1hzuuj4GAfa8JDJMJRXM2TtbvOJg/jPT58g4FPJKcKOz2TAe+ngt7bBAGNzYoqyYTKbERlMqAyG1CaDFPTRhR6HaJKiahUICiVCEoFolJJv3Pm77Hc5OBWJpPJZDLZPVVYmMx//7PH+MVvuvmXb13l0OG2zwS5sUic0++1cv6wyNZHSnjs8V3UfK2FvS/eJNQxTP+ZEYYujuJs9CAlJBLRKJ66Vjx1rZ9Z33VeW5bvISgEdDYthlQt+jQdhjQ95lwD5jwjplwjKp2SuKAkqErBr7bj1KTTrU6n22Omt8fPQKebgS43fe3XCMySYXomokKgqiKVTRsy2bgxi7U16XICKJlslUlNNfKVL6/jK19eR2eXiw8PtfHB4TYGBma+qRYNx2m4PEDD5QF+AqSkGckvs5FfvofCUgvFeT6sGQOkbu+jODyAKh4gEYkz0efH2+NjvGcCb7eP8V4fgeEgsVD8syuRJMJjLsJjrgV/JyfRBX9mqcjBrUwmk8lksvsiP8/Kf/vTR/jFb27mX//tKu990PLZIDea4OwHbZz9oI2SNWlsPfgiezYGyaxupeSr7eD1MnLNiafDi6djAk/HOEFH6HaTvHkRQKFRoNQoUGgnn1VGJRqzGnWSavLZrEZjVqE2q9HbtOjTtGiTtYgKgQQiYaWJsDKJgCoFl9pGvyqFsYiZvhGR0e4Jhvs8DHS5Gey6StC/uIKfQiFQVZnKxg1ZbNqQydo1cs2sTPYgKSxI5ld+aSu//ItbqKsf4cPDbZw81cXQ8OxdHpwjPpwjPq6e6gYmh1zLK7WRX15DTtFeMjPUZJl8GDId6Dc4yIo4KIk40MTHEYCoP0rQGZ56hAg6QoRcYUKuMBF/jFggRjQw9RycfI6HF5bA7l6Rg1uZTCaTyWT3VW5OEn/6Xw7w89/YyLe+Xcs77zUTn6Z/advNEdpujvC6ST3Z92zjejaWJcjM7SU9MkxxeARtzIMAxEJxor4o0UAMhMkmu4JCQBDveCgFlFoFimkyBCcQiSl0REUdUYWO2NRzVNThUZoYViYREEyM+dSMuQU8I0E8Y37GBicYHRhndHAQ//j0w3/Ml1qtoKLMzoYNmXIwK5M9RARBYE1NOmtq0vm9395FR6eL02d6OHm6m7r64Tm7LAT9UZqvDdF8R3ZmtVZJaqaZ1GwzaVnZpGabycjUkW6JYVQE0BT4UMd8qOMTpEw9q+N+lIkwikQYUYpxZ/qpRFwiHo4jxSUS8QRSXJqalugfm4Df7FqenTMHObiVyWQymUy2ImRnJfFf/ng/3/z6Rr713VrefqeZ2DTD2wQmIlw50cWVE118XymSV5pCVkExmQWbyMnRk2qJY9LG0RBGkYiAABIiICAJIhICkiAgoSCGglBUQSgqEo4JhKIC4YhAMAQBX5iAL0LAFyE4Ne2fiDDumsDjHGHCHfxMTfPdsNv0rF2TwZo16aypTqO8zC4PzSOTPeQEQaC4KIXiohS+/rUNuD1Bzp7r5fTZbs6d78Pvn1+XhkgoRn+ni/7OzzYz1upVmCxaTBYdZqsRs9V++7VWr0KtVaLRiOg0oNck0KkTGDUJ1Io4gpRAIDH1LCFICUaGh4H/WOI9MT9ycCuTyWQymWxFycw08//8wT6++fWNfPd713n3/RZ8M/RJjccSdDaO0dk49pn3NDolGp0KJEgkEkgSJBLSZB/dhEQ8lljw2LBLJSlJS0W5nYoyG2Vldmqq00hPMz6QQ3PIZLKlY7XoeOapMp55qox4PEF7h4vrN4a4cXOY6zeHGJ6jCfN0QoEooUCUscGJBX1OEAVEUUBU3HoWEUWBaMS94G1YKnJwK5PJZDKZbEVKTzPx+7+zm9/41e0cO9HJG281crV2cN6fDwdjhIOxZdzCuSkUAjnZSeTnWSkpSaGizE55uY20VDmQlclkd0ehECkrtVFWauPzr9QAMDLi4/rNyWC3rn6Ezi43weDyJHiSEhLxhET8U5fZSOTuumTcDTm4lclkMplMtqJptUqeeqKUp54oZWBwnNNnujl5upurtYPTNlu+19RqBal2A2mpRrKzzeTnWcnPs5CfbyUz04RKKTctlslk90ZamvH2MEMAkiQxOuqnq9v98aPLTVePG5creJ+3dunJwa1MJpPJZLJVIyvTzBdeXcMXXl2D3x/hytUBmlsdtEw9hoYW1qxuOqJCQK9TYUnSYk7SkmTWkGTWYp56tibrSE81kpZmJC3VgNWqk2thZTLZiiQIwuS1Ks3Itq05n3jP54vgcPpxOgM4HAHGnIGpaT8OZwCXO0gwECUQjBIMRgne55Yw8yEHtzKZTCaTyVYlg0HN3j0F7N1TcPtvoVCMiYkwY45xjh07TTgssXHTRnQ6LYqpLMmKqX5iSqWIVqNEo1VOPmuUaLQKuaZVJpM9FIxGNUajmvw867zmj8cThEIxAsEogUCUcChGPCGRSCSITWVKjscT9PR08fJLy7zxM5CDW5lMJpPJZA8MrVaJVqvEaBTJydYAsHVzFjqd7j5vmUwmk61uCoWIwaDGYFDPOl+SOXCPtuizxPu2ZplMJpPJZDKZTCaTyZaIHNzKZDKZTCaTyWQymWzVk4NbmUwmk8lkMplMJpOtenJwK5PJZDKZTCaTyWSyVU8ObmUymUwmk8lkMplMturJwa1MJpPJZDKZTCaTyVY9ObiVyWQymUwmk8lkMtmqJwe3MplMJpPJZDKZTCZb9eTgViaTyWQymUwmk8lkq54c3C4zQRD0giD8niAIlwRBcAmC4BMEoUkQhL8WBCF3CZavFAThUUEQ/koQhNOCIIwJghAVBMEjCELt1HqKluK7yGQymUwmk8lkMtlKpbzfG/Agmwoq3wPKPvVW+dTjm4IgfEmSpPcXuXw70ASkTPN2ErB+6vHrgiD8viRJf7uY9chkMplMJpPJZDLZSifX3C4TQRCMwLt8HNj+C3AQ2AH8MeBjMgD9iSAIaxa5Gg0fB7bXgT8FngI2AgeAvwJCgBr4X4Ig/MIi1yOTyWQymUwmk8lkK5pcc7t8fpfJ2lmA35ck6a/ueO+8IAjHgVOAHvhfTAajCyUBR4D/IknShWnePy4IwmvAcUAH/KUgCD+QJGliEeuSyWQymUwmk8lkshVLrrldBoIgqIDfnHrZBPzNp+eRJOk88K9TL/cLgrBxoeuRJGlAkqTHZghsb81zEfiHqZdJwCMLXY9MJpPJZDKZTCaTrXRycLs89gGWqenvSJKUmGG+b98x/eIybs/xO6bl5FIymUwmk8lkMpnsgSMHt8tj9x3TJ2eZ7wrgn5retXybg+aO6ZkCbZlMJpPJZDKZTCZbteTgdnlU3DHdPNNMkiTFgI5pPrPU9s5ne2QymUwmk8lkMplstZITSi2PnKlnvyRJnjnm7QPWAHZBEDSSJIWXckMEQcgAvj710sEnmyjPdxnZc8ySdWuip6dnoYuXPQDC4TAOhwOAjo4ONBrNHJ94OMn7SbaU5ONpdvL+kYF8HMyXvJ9kS+lT8YDiXq5bDm6Xh2nq2TePef13TBuBJQtuBUEQgP9zx/b8mSRJwUUsqm++Mz766KOLWLxMJpPJZDKZTCZ7ANmBe1b7JTdLXh7aqefIPOa9M5jVLfF2/BHw3NT0ceDvlnj5MplMJpPJZDKZTDaT1Hu5soe65lYQBCUQXYJFfV2SpG/f8To09ayex2fvbPexmFrVaQmC8GXgz6ZedgNfmiVr81xy5ng/Fzg7Nb0NGFjkemSrVzpweWp6MzB8H7dlJZP3k2wpycfT7OT9IwP5OJgveT/JllIWcGuo0nua7+ehDm6X0cTUs3Ee8xrumJ5PM+Y5CYLwNPBvgACMAI9KkrToi5QkSf1zrO/OlwNzzS978HzqGBiWj4HpyftJtpTk42l28v6RgXwczJe8n2RL6VPH03xasi6Zhzq4lSQpJgjCUmQpHvrU635gK2AQBMEyR1KpW7WiY0uRTEoQhH3ATwEV4AYekySp/W6XK5PJZDKZTCaTyWQr2UMd3AJIkrQcVeWNwEtT0+V8XC3/CVPNooumXjbd7UoFQdgCvMNkn18f8KQkSTfvdrkymUwmk8lkMplMttLJCaWWx5k7pvfOOBds4uNmyWdnmW9OgiCsAT5ksil0CHhWkqSLd7NMmUwmk8lkMplMJlst5OB2eZwAvFPTXxM+1fD8Dj97x/Qbi12ZIAilwGHAymSCrJckSTqx2OXJ/t/27i9GrqoO4Pj3Fwi2KIRI0tJYq8SCQSAVY2KMRKrYGn2gjVIIbaqoiaYqYhAwJiaWBxLxTwwNsYkEDdJCo/JHkzYRFVvBB6KJRpHwUB8KaAEfREookJSfD/eMOx23u7M7O3vnzHw/yc3MOffcnV+nk9/ub+6590iSJEmqjcXtEGTmq8CO0jwPuL53TES8F/hMaR7IzD9MM+atEZFl2z/da0XEKuDXwHLgGM1dkfcN/q+QJEmSpHpM/DW3Q/Rt4ErgXOBbEbEa2EOz3M8HaNagPbm0vzyfF4iIM2kK285Nqb4LPBERF8xw2L8z06V6JEmSJI0Vi9shycwjZUmefcA5wGfL1u0FYEtm/nmeL3Nh+dkdN5ZtJndy/HRoSZIkSaqexe0QZebBiLgI+AKwCVgNnAI8RVP03pqZh1oMcUGUtdBOdF2xJoCfgf74Pmkh+Xmame+PwM9Bv3yftJDa/DxFZrbxupIkSZIkLRhvKCVJkiRJqp7FrSRJkiSpeha3kiRJkqTqWdxKkiRJkqpncStJkiRJqp7FrSRJkiSpeha3kiRJkqTqWdxKkiRJkqpncas5i4i1EZFz3K5uO24NZpr/9yMRcWofxy2NiP/0HLt2+BG3r+c92z7L2OUR8VjX+J0REYsUqiph/u1fRFzc8z68v+2YtDjmknsnzXzem4jYPmm/vzWYNvOvxa2k+XoDsLGPcRuA04cbSt0iYgWwHzi/dN2amdsyM9uLSqreJ2ZpS5KGo7X8e/JivZDG1k7g+32Me3rYgWhRvQwsAbYCd88ydmvPMeoSESuBh4BzStd3MvOGFkNSPcy/JxARrwM2leaLNF/GbYqIazLzaHuRSdJ4azv/WtxqUM9l5mNtB6FF9wvgCmBdRJyVmc9MNygilgHrS/PnwJWLFF8VIuItwG+Bs0vXzZn59RZDUl3Mvye2ATijPL8WuINmBskGYE9LMUnSJGg1/zotWdJ8PAg8A5wEXDXDuKtovkR7FvjVIsRVjYh4G/A7pgrb7Ra20oL5ZHl8PDN/CDxe2k5NlqThajX/WtxKmo9jwD3l+dYZxnUS2d3lGAERcS5wAFhVur6WmTe1GJI0NnpmjOwqj7vL4/qIWL74UUnS+BuF/GtxK2m+7iqPF0XE+b07I+IdwLt6xk68iDiPprB9U+m6LjO/2WJI0rjZQjNjJJn6o2p3aZ9U9kuSFl7r+dfiVtK8ZOafgM71ftOdve30/a2MnXgRcSHNXZHPokn012Tm91oNSho/nSlxD2fmkwCZeQh4pPQ7NVmShqP1/GtxK2kQnTOyWyLif/mkrM+6pWfMpFtDc/OoZTSF7ecy87Z2Q5LGS/kCaU1p7urZ3WmvKeOkSbcsIi6YbaP5vSXNaFTyr8WtpEHsBl4DVgKXdPWvBd5c9u3+/8Mm0kbgzPL885l5e4uxSOOqc9bgFeCnPft+Uvq7x0mTbBvw1z62bW0FqKqMRP61uJU0b5n5D5qzkXD81OTO8/2ZOXFrbJ5Adj2/LCJOaS0SaQxFxEnA5tLcm5nPd+8v7X2lubmMlyQNaJTyr8WtpEH9uDxeHhFLI2Ip8PHS55TkKTuZuh3+R4B7IsK1xqWFsx5YUZ73Tomjp38F8KGhRySNtpsyM2bbAO/mr9mMTP61uJU0qPuAl4DTaBbo3kizWPdR4N72who5/6JJ5gdL+2PAnd3XKksaSOdGJc8De08wZm/Z3z1ekjSYkcm//lElaSCZ+SJwf2luZWpK8gOZeaSdqEZTZh4GPggcKl2bgdvLDbgkzVNEnE7z5RrAGcArEZG9G/By2Q+wMSJOW/xoJWl8jFr+tbiVtBA6U5PXA+vKc6ckTyMznwIuBf5Zuj4N7GgvImksXAEsneMxpwKXDyEWSZokI5V/vd5L0kL4DXCYqestngUebC+c0ZaZf4+IS4EDNEssfDEijmbmjS2HJtWqM8XtMHBdH+NvAVaV4340rKAkaQKMVP61uJU0sMw8FhF3AdeWrl2ZeazNmEZdZj4REeto7jb9RuCGiHgpM7e3G5lUl4g4G7i4NO/NzD19HPNu4CvAJRGxKjOfHGaMkjSORjH/Oi1Z0oLIzK9m5pKyXd92PDXIzL8AHwZeKF3fiAjP3kpzsxXoXLf+sz6P6YwLjl/GTJLUv5HLv565laQWZeYfI+KjwC+B1wO3lDO4t7UcmlSLzh9HzwEP93nMo8DTwMpy/M1DiEuj4Z0RcXUf4x7JzIOzD5PUZeTyr8WtJLUsM38fEZfR3CZ/CbCjXIN7R8uhSSMtIt4HrC7N+zPztX6Oy8yMiPuALwFvj4j3ZOajw4pTrdrA1J1cZ/IpppZqkzSLUc2/TkuWpBGQmQ/RrH37Ks1UnR9ExJZ2o5JGXvdaiXNdV7t7vGveStLcjGT+jcxcyJ8nSZIkSdKi88ytJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6/wVdYdFqHXH58AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import cm\n", + "from triqs.lattice.utils import TB_from_wannier90, k_space_path\n", + "\n", + "# define a path in BZ\n", + "G = np.array([ 0.00, 0.00, 0.00])\n", + "M = np.array([ 0.50, 0.00, 0.00])\n", + "K = np.array([ 0.33, 0.33, 0.00])\n", + "A = np.array([ 0.00, 0.00, 0.50])\n", + "L = np.array([ 0.50, 0.00, 0.50])\n", + "H = np.array([ 0.33, 0.33, 0.50])\n", + "k_path = [(G, M), (M, K), (K, G), (G, A), (A, L), (L, H), (H, A)]\n", + "n_bnd = 14\n", + "n_k = 20\n", + "\n", + "fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)\n", + "\n", + "for (fermi, n_iter, cycle) in [(e_fermi_run, n_iter_run, cm.RdYlBu)]:\n", + "\n", + " col_it = np.linspace(0, 1, len(n_iter))\n", + " for ct, it in enumerate(n_iter):\n", + "\n", + " # compute TB model\n", + " h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0\n", + " tb = TB_from_wannier90(path='./', seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)\n", + "\n", + " # compute dispersion on specified path\n", + " k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)\n", + " e_val = tb.dispersion(k_vec)\n", + "\n", + " # plot\n", + " for band in range(n_bnd):\n", + " ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it}' if band == 0 else '')\n", + "\n", + " \n", + "ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')\n", + "ax.set_ylim(-0.2,0.8)\n", + "ax.grid(zorder=0)\n", + "ax.set_xticks(special_k)\n", + "ax.set_xticklabels([r'$\\Gamma$', 'M', 'K', r'$\\Gamma$', 'A', 'L', 'H', 'A'])\n", + "ax.set_xlim([special_k.min(), special_k.max()])\n", + "ax.set_ylabel(r'$\\omega$ (eV)')\n", + "ax.legend(fontsize='small')" + ] + }, + { + "cell_type": "markdown", + "id": "45062ca5", + "metadata": {}, + "source": [ + "Note that since this is an isolated set of bands, we don't have to worry about the disentanglement window here. Pay attention if you do need to use disentanglement though, and make sure that the configuration of Wannier90 works throughout the calculation!\n", + "\n", + "You see that one of the effects of charge self-consistency is the modificiation of the non-interacting bandstructure. The current results are far from converged, so make sure to carefully go through convergence tests as usual if you want reliable results. The figure below shows the difference to the reference data, which is quite substantial already at the DFT level." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a3d760e5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAGQCAYAAAB1UpekAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOyddZgcRf6H3x6fdXdNstmNu3sIECIkQIK7ywEHHByHu9yhh7u7BYhBgLi7J+vubuPTvz9mN5dkZjYrs5Zfvc8zT3dPV3fV9k5316fqK5IsywgEAoFAIBAIBAKBQNCbUXR3AwQCgUAgEAgEAoFAIOgoQtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8RtFyBJUpwkSS9IknRYkqQGSZIqJUnaJknSPyRJ8vJQHQMlSXpNkqT9kiTVSpJkliSpTJKk1ZIk3SVJkq8n6hEIBAKBQCAQCASCnogky3J3t+G0RpKkucAXgL+bIkeBObIsZ3agjnuA5wBVC8VygHNlWd7X3noEAoFAIBAIBAKBoKcixG0nIknSMGAT4AXUA88CqwE9cDFwQ1PRI8AYWZbr21HHhcA3TZtm4A3gD6Ac6AvcCkxu2l8EDJBluaY9f49AIBAIBAKBQCAQ9FSEuO1EJElaDUwHrMBUWZY3n7T/XuDfTZuPyrL8RDvq2A8MbtqcJ8vyMhdlfgDOb9q8R5bll9paj0AgEAgEAoFAIBD0ZIS47SQkSRoDbGvafEeW5ZtdlFEAB4ABQBUQLsuypQ11+AHNs7C7ZFke5abcUGBv0+YPsiwvam0dAoFAIBAIBAKBQNAbEAGlOo+Fx61/5KqALMt24NOmzUAcs7xtQXPceks+uxnHrWvbWIdAIBAIBAKBQCAQ9HiEuO08pjQtG4CdLZRbe9z6ZLelXCDLcjlQ2bTZp4WifY9bT21LHQKBQCAQCAQCgUDQGxDitvMY0LRMl2XZ2kK5Iy6OaQvvNi1HSpJ0jpsyDzctbcD77ahDIBAIBAKBQCAQCHo0LaWOEbQTSZJ0QEjTZn5LZWVZrpIkqQHwBmLbUd3TwGhgFvCTJEmvA3/iiJbcB7gFmIZD2N4hy/LhtlYgSVLMKYpogBSgFChrqksgEAgEAoFAIBD8/0MJhDat75dl2dRVFQtx2zn4HrfemvQ+zeLWp60VybJc3zRjezVwP3BP0+d4fgT+Lcvy1raev4m8dh4nEAgEAoFAIBAI/v8yBtjRVZUJcds56I5bN7eifPNohr6d9Y0GLsG93+0soESSpMOyLNe2sw6BQCAQCAQCgUAg6LEIcds5GI9b17gt9T+aIxgb2lqRJEmLgM+bzrEPeBRYB9ThMHO+CIfP7S3AVEmSZsmyXNzGak5lLh0NbAFYtWoV8fHxbTy9oLdjMpnYutVhGDBu3Di0WhGU2xXiOgk8ifg9tYy4PgIQv4PWIq6TwJPk5ORw5plnNm+WdWXdQtx2DnXHrbfG1Ni7adkaE+ZjSJIUDnyMQ9geBCbKstxwXJFM4FlJkrYBq4BBwGvA4rbUI8tyi37DkiQdW4+PjycpKaktpxecBhgMBjIyHBmn+vbti17fXiOE0xtxnQSeRPyeWkZcHwGI30FrEddJ0Il0aSweES25E5Bl2YgjoBNAi8GYJEkK5H/itq2+rRcfd+wzJwnb49vzJ44gUwDnN9UpEAgEAoFAIBAIBKcNQtx2Hs1RiftJktTSDHmKi2Nay/Gpg3adomxzrl0F0L+N9QgEAoFAIBAIBAJBj0aI285jQ9PSGxjVQrlpx61vbGMdx+fPPZWJudrNcQKBQCAQCAQCgUDQ6xHitvNYctz6Na4KSJKkAK5s2qwGVrexjqzj1qecouzUpqUMZLexHoFAIBAIBAKBQCDo0Qhx20nIsrwNWN+0eZ0kSRNcFLuH/5kWvyrLsuX4nZIkXS1Jktz0eczF8ctwiFWAByVJinbVFkmSbsSRLghgiyzLFW34UwQCgUAgEAgEAoGgxyOiJXcud+IwNdYDv0uS9AyO2Vk9jmBQNzaVSwVebOvJZVk+IknSR8C1ONLx7JYk6RUcoro5FdDFwKVNh9iAB9r7xwgEAoFAIBAIBAJBT0WI205EluXdkiRdhCMPrR/wjItiqcBcWZbrXOxrDbfi8Ou9CAgFnnZTrgG4UZblNe2sRyAQCAQCgUAgEAh6LMIsuZORZflXYCjwMg4h24jDv3YH8E9ghCzL6R04v0mW5YuBmcCnTXU04AgaVQlsBp4EUmRZ/rL9f4lAIBAIBAKBQCAQ9FzEzG0XIMtyDnB306ctx30MfNzKsqtpe0AqgUAgEAgEAoFAIDgtEDO3AoFAIBAIBAKBQCDo9YiZW4FAIBAIBAKBQPD/ElmWMVlsmC02zNampcV6bNtksaHXqIgN98fXS9vdzRWcAiFuBQKBQCAQCAQCwWmNxWoju6iao7nlHM0tJzW3gqN55aTmllNVZ2zVOQJ8dMSF+xMX7k9M0zIuPIAB8SEMSAhFkqRO/isEp0KIW4FAIBAIBAKBQHBakV9Wy9pdWazZnc2OIwVkFFRisdo7dM7qeiPV9Ub2ZZQ47YsI8mHGqETOGNWHGaP6EBXi26G6BO1DiFuBQCAQCAQCgUDQq6moaWTtnmzW7spm9e4s0vIqurT+4sp6vlq1n69W7QdgQHyoQ+yO7sO04Ql46zVd2p7/rwhxKxAIBAKBQCAQCHoVsiyzN72Yn9cfYcXmNPZlFCPLnq1DkkCjUmKy2Np87OGcMg7nlPHmj9vw0Wu45MwhXD9/FEP7RXi2kYITEOJWIBAIBAKBQCAQ9HhsNjtbDuXz87rD/Lz+CLklNW0+R2iAF/3jQkiODaF/XDDJcSEkRgWi16rRqpVo1Eo0KiVajQqlQkKSJIxmK/mlNeSW1JBbXENuSTW5JTXkldaQll9JUXldi3XWG8y898tO3vtlJ2MHRnPD/NFcMGMgeq26vZdC4AYhbgUCgUAgEAgEAkGPxGyxsXZ3Fr9sOMqvG45QUtXQ6mMDfHRMHZHA9BEJjOgfSf/YEIL89G1ug06jol9MMP1igp32ybJMRkElf+7I5K9dWazdlUVNg8ntubYdKmDboQLufeM3Lp89jOvnjyI5LqTNbRK4RohbgUAgEAgEAoFA0GNoNFpYtT2Dn9cfZvmm1BbF4vF46dRMGhLHtBEJzBiZyLB+ESiVik5tqyRJx4TvTQvHYLXZ2XW0kL92ZvLnjkw2HcjDbne2l66uN/L691t5/futnDW2L49eO4ORyVGd2tb/DwhxKxAIBAKBQCAQ9BCq6gyk5lWQlltBRmElFTWNVNUZqaozUFPvSFmjVCpQSBJqlYJAXz2hAd4E+zuWCZEBJEYGkhAZiJeu95i9VtcbWbE5lSXrj7BqWzoGk7VVxyVGBbJgSgpzJ/Rn7MAYNGplJ7e0ZVRKBWMHxjB2YAz3XzGVvNIaPl62mw+X7aK4ot7lMb9vy+D3bRmcN20Aj147Q8zkdgAhbgUCgUAgEAgEgm7AarOzL72YDfty2bg/l20H8ymudC2A2kNkiC8pcY4crAMTQhnQ9An0bbtprqex2ezsTitize5s1uzKYu3ubKy21qXqGdwnjAVTUlgwZQCD+4T16PyysWH+PHzNdO6/YgrLN6fx/i87+GNHpsuyP611+BJfftYwHrhqKvERAV3a1tMBIW4FAoFAIBAIeiFmi42MgkqO5JRzNLeMo7kVHM0pJ72gArPFdmx2T6mQjq2rVAriIwIYlBDGwMRQBvcJY2BiGKEB3t395/y/od5g5vdt6SxZd5jftqZT20qT2/ZQVF5HUXkdq3dlnfB9RLBPk9gNY2BCKIkRvjQYbXjrOm/W026XOZRdyppd2azdncX6vTmtNjcGGDswmgVTBrBgSgp9o4M6rZ2dhVqlbBLkKWQWVPLB0l18umIP5TWNJ5Sz22U+XbmHr//cz/XzR3HfZZMJD/Lpplb3PoS4FQgEAoFAIOgF2O0yWw/l8+uGI/y2NZ2jueXYXPjyHcNN+pLiinq2Hsw/4buwQG8GJYYxbUQC8yYlMzAhtEfPhvU2rDY7Kzan8fnve/l9azpGc+tMbjuL4op6iivq+WvniaJXq1IQ9FkGoQHeRAb7Eh3mR1igNyH+XoQEeBMa4HVsPcTfy6UJsNVmJ6+khvT8CjIKqkgvqCQjv4KdRwspq250Ku8OpUJi6vAEzp2cwvzJyUSH+nX47+4p9IkO4umbZvHAlVN5a8l2XvpqI1V1xhPKmC023vxxG58s383dF0/k7ksmodMI6XYqxBUSCASnJUazlbLqBsqrGymvbqDBaMHXS4Oft44AHx1BfnqC/b26u5kCgUDQIiazlTW7s/h1w1GWbjzapkixbaG0qoHSqixW78risQ9WkxgVyLyJ/Zk/KZkJQ+JQdXJQntOVzIJKPl6+m89+2+vW39IVKqWCPlGB9I8NJjLEl0BfPYF+evy9tSgkCZtdxma3YzLbqKxtpKLGQFlNA4XldeQUVbfbtNlktVNUUU9RRT37MkpOWd7fW+sQugFe+Og15JbUkF1UhcXaOvPik9Gqlcwa05cFU1KYM6H/af+e9tZr+Mclk7h+/ihe+WYTr32/lUaj5YQyDUYLT368li9X7eelO2Zz1th+3dTa3oEQtwKBoNdjs9nZm17sCK9/OJ9thwrIKKg85XGRIb6M7B/JiP6RjEqOYurwhF4VfKOnYLPZKSivI7e4mup6IwaTFaPZgsFkxWCyYDRbaTQ6lgqFhFatRKtWoVYrj607cguqCPDREuinJ6ipIxfoqxedasH/O2RZZvOBPN79eQfLN6dS12ju8jZkFVbx2vdbee37rQT76Zk9PolLzxrK9BGJKBRiRrclZFlm3Z5s/vvdFpZvTmvVMUmxwUweGsfkofGMSomiT1QgalX7TYQbDGayiqpIzavgSHYZh7LLOJxdRmpeRav9WltDTYOJmgZTq9657kiJD2Ha8ASmjUhk1pg++HppPda+3kKAj47HrpvJLeeN5d9fbOD9X3diPsnyIqOgkgX//JKFUwfw79vOIjbMv5ta27MR4lYgEPRKZNlhnvftnwf5cc3Bds1mFJXXsay8jmWbUgFHCoHZ45JYOHUA50xIwkev8XSzey3NQU+O5paTU1xNdlG1Y1lcTX5prUc7Syfj560l0FdPsJ+e6DA/4sIDiAv3/98nIoBgP70woRT0eixWGz+sOcTrP2xl55HCVh8XGeJLcmwwyfGhpMSFkBwXjL+P7tjsnt0uOz6yTIPBzJHccg5mlnIoq4zDOWWnNJGtqDXwxe/7+OL3fSRGBXLN3BFcMXs4EcIP8AQsVhvfrz7If7/bwp604hbLKhUS00cmOqL8TkwmKsTXo23x1msY3CecwX3CYRoczS3nkff/4lB2mUfraQ8JkQFMH5HItBEJTBuRQGSwZ//23kx4kA8v3j6bOxaP59lP1/HZb3ud0ggtWXeYVdvSeeCqady+aFyHBkFOR4S4FQgEvYrKWgPv/bKDj5fvJruo2qPnbjRa+HHtIX5cewi9VsXFs4Zw2wXjGJQY5tF6egMGk4XthwvY2BTBc+vBfOoNXT97BFDbYKK2wUROcTW7UotclvHSqUmMDGR4UgQjk6MYmRzJ0L4RYiZe0CuorDXwwdKdvP3TdgrL605ZfmBCKPMnJ3PW2H4MSgzD30fXpvrOmdD/2LrNZiezsIoDmaWs25vN0o1HyS+tdXtsVmEVj7z3F098uIZ5k5K5bt5IZo7q8/96NtdotvLJ8t289PUmcktqWiw7dmA0V88ZwYIpAwjy6/yIxfUGM89+uo7Xvt9ySlPhED81erUSg1Wiss7oMjdrW/D31tI3Jph+0UH0jQ4kKTaYCYNjSYgM7NB5/z8QHxHA2/edyy3nj+XOV5Y7+cg3GC08+M4ffPHbXl658xymDE/onob2QIS4FQgEvYLsoir++91WPlmx28kfpSUUCokQf4cvUIPBTHW9EZObICvHYzBZ+WjZbj5atpsZIxP526JxzB6XdNp24Gw2O+v35vDHjgw27stl59HCdvtMdQeNRgsHs0o5mFXKF7/vAxwzIwMSQhnZP4oR/SMZNyiG4UkRYoZX0GMoKKvlP19s4NOVe1rM6SlJMG5gDPMnp3Du5GT6xQR7rA1KpYKk2GCSYoM5b9oAXrp9NnvTi1m68ShLN6ayN931DKTVZmfJusMsWXeY+IgArp07givOGf7/ahautsHE+7/u5L/fbm7ReijAR8dlZw/jmrkjumywVJZlflhziH+++bvbAROVUsF50wYwd2IyY5LD2b9zEwBnnXUWWq2OsuoGCspqyS+rpaCsloOZpfy68Silp7CU8tKqeOrGWdy0cDQKhXAr6QjD+kXw13+v4bOVe3jwnT+oqDWcsP9Qdhln3fUpV8wexrM3n3na+yi3BiFuBQJBj6agrJbHP1zNF7/vO+Uocr+YIMY1JU4fnRJFfEQAgb56J0FqNFvJLqpid2oRu1KL2HmkkK2H8t2ef/UuR5CVEUmRPHrddM4a2++0EEiyLLP9cAHf/nWQH1Yf7HBuRb1WRVigD15aNXqtCp1WhV6rRq9Rodep0WlU2O0yJosNs9WG2WzFZLFhsjiWRpOV6nojVXWGNg1guMNmlzmQWcqBzFI+XbkHgKgQ32MCYcqweGHOJegWymsaeeHLDbz90/YWB9viIwK45bwxXDRrSJeZAEuSxPCkSIYnRfLQ1dPJKa7mlw1H+GT5Hg5mlbo8Jqe4mkc/WM0TH61hzsT+XDdvJLNG90V5mvrLl1U38MYPW3lnyQ6q641uy/WJCuRvi8ZxxezhXermUl1v5LYXlvLj2kMu9/t5a7lu3khuOX/sMb9Ng8HA/uPKKBQS4UE+hAf5MDI56tj3r/59Dhv25fDDmkP8vP6IS6HbaLJy92sr2bAvl9funtslM9SnMwqFxFVzRjBvUjKPvPcXHy7b5VTms5V7Wbkljf/8bTYXzhx0WvRR2oskyx0zORAIJEmKAfIAUlNTSUpK6uYWCboag8HA77//DjhGfPX6jr/IGgxmXvl2My99valFodM/NpgLzxjM4hmD6B8X0u76yqob+HXDUZasO8zqXVkt+pBOHBLL49fNZPKw+DbV0RnXqT0czi7j278O8M2fB8gqrGrTsX2iAukXE0R8RABxEQHEhweQEBlAfEQAoQFeHnuhGs1WquoMVNcZqawzUFVroKSyntySmqZPNXmljtmE9prOBfjomD0+iXMnp3Dm2L69zse6p/yeeio98frUNpj473ebefXbLS2a+U8cEsvti8Yzb1Jyjwmo1hzn4MOlu/h+9cEWZ5oBYsP9uWbOCK48Z3i3pnDx5O8gt6SGV77ZzMfLd7X4948dGM3dF09i3sT+XS7wNx/I4+qnfnRpHq1WKbhj8Xjuu2wKft4nBm1qz3Wy2ezHhO6SdYddpvmJCvHlg38tZPrIxHb+RYKT2Xoon7+/stytX/fscf149a65xIV3X8CptLQ0+vc/5v4QK8tyfkvlPYkQt4IOI8StwJOdB7td5svf9/HIB39R5MaUSqmQWDxzMH9bNI6R/SM9PkJZVFHH+7/s5L1fdrSYk2/+5GSevfnMVieT787Odk29kU9X7uHzlXtbld4BHKPFw/pGMHFoHJOGxDFxSGyPSyRvtdkpKKslt7iaA1ml7DpaxO7UIg7nlLVJ9GrVSs4en8QtC8cwbURCrxj17onirSfRk66PwWTh7SXbefHLjU5mhc2olAoWzRjE3xaNY9RxM2U9kep6I1+v2s+HS3exP7Pl54kkwZRh8SyeMZiF0wYQ0sVmk574HRzOLuOlrzfx9R/7Wxz4nDkqkfsum8zU4V3/DLHZ7Pz7iw08/clal7mPzxjdh5dun+12ELij16mu0cS9r//GJyv2OO2TJLjzwgk8du0MtCJPq0ew2ey8+8sOHn3/L5fR1L116qboy2O6xYJCiFtBr+Z0ELcNBjPlNY1U1DRSWWugotZAZa1jvcFgJqQ5mXmoL1EhvkSF+IlANcfhqU7kuj3Z3P/mKnanuQ4a5K1Tc+28kfxt0fguGZE0mq18++cBXvxqI6l5FS7LqFUKbrtgHPdfPuWUQV26o7N9NLect37azucr99DQClPf4UkRnD2uH5OGxDFuUKzT6H5vocFgZm96scP0/GgRWw7mkdnKWeqBCaHcct5YLjlzCN49eDa3J4m3nkhPuD52u8xXq/bx6AerKShzHaRJpVRw3byR/OOyycR04wxne5BlmR1HCvlw6S6+/evAKd0JlAqJmaP6sHjmIOZPTiGgjYGw2kN7fwc2m51V2zN4/9edxyLqu2P+5GTuvXQyYwZEd7i97aGu0cQ1T//ksp1Bfnpe/fscLpg+sEXB7an7Zcm6w9z24lIqXQziDOsXwUcPnseAhNB2nVvgTH5ZLXe9uoKlG4+63D86JYq37p3viJrdhQhxK+jV9EZxW1JZz/q9Oazfk8O6vdkcySlv8zkCfHTEhvkzblAMU4bHM2VY/P+rQBrH09GXYnp+BQ+88we/bnD9cFYoJK6ZM4KHr5neLTOHVpudr1bt46mP17qNhBka4MWj187g6jkj3I6SdlVn226X+W1rGm/+uI0/dmSesnzf6CAuOmMwF54xmOQOmHb3ZGRZ5mhuOb+sP8IvG4+2Ks1KgI+Oq+YM5+aFY3pkdM+eIN56Mt19fdbuzuL+t1a5NR2UJLhk1lAeunoaiVE97/fVVmobTHzz534++HWX2yBUx6NRK5kyLJ6Jg2OZOCSOMQOiO2Uwqa2/g7zSGr78fR8fLt3VYuRjlVLBxbOGcM8lE0mJ7z6xll1UxaIHv3HpDz1lWDwfPnheqwZNPHm/FJTVcuPzP/PXziynfT56Dd88eSEzR/Vp9/kFJyLLMkvWHeHu/65wGTtDpVRw+6JxPHDVtC5zvxHiVtCr6Q3itq7RxMot6azfm826PTkczW27mG0NSbHBTB0Wz5ThCUwd/v9H7Lb3pVhZa+DZz9bx9k/b3Zp6nTG6D8/dcmaXjzq6wmR2RFB+5tO1bs2Vh/QJ59+3neXSv6izO9s19UY+W7mXt5dsJ6OgssWykSG+LJo+kItmDekU0+6eTn5ZLUs3HOXXjUdYtyenRVNDSYK5E/pzx+LxPSrdQneLt55Od12fo7nlPPjOHy3O9s2fnMxj185g4GmYZkyWZXalFvHhr7v4bvUBlyaTrlAqJIb1i2DCkDgmDI4lOS6YuPCADluPnOp3IMsyR3LK+WXDEX5Zf8RturFm9FoVV88ZyZ0Xjic+IqBDbesoG/blcMkj31Fec+L7SKmQeOjqadx76eRWm6R6+n6x22Ve/2ErD7/3J+aTgqapVQo+fOA8Fs0Y1KE6BCdSXW/koXf+4IOlzgGnAKJD/fj3bWdx3tQBnf7OF+JW0KvpqeJWlmW2HMznk+W7+X71wVaZZHqa0SlRLJg6gPOmDmi1X2ZvpK0vRZPZynu/7OSZT9dSVec60mRKfAjP3XJmj4xMXFNv5LnP1/PGD1vdpsuZNymZR6+dfoIo76zOdmpuOW8t2c7nK/e2GKRGqZA4d0oKN8wfxdThCadtJNO2UlVn4Js/DvDWT9vcmp83M2VYPA9fPa1HiFwhblumq69PWXUDT3+yjvd/2eHS5xFg+ogEnrjhjG4zX+1qDCYLv21N5/vVB1m+OfWUQahcEeirIy48gNhwf+LC/YkJ88PPS4u3XoNP88fLsdRpVCgUCpQKCaVSgUKSsJhNrF2zBpPVztCRYzGYZUqrG9iXXsyuo0XsOlro1g/6eAJ8dNx83hhuPX8soQHe7bkcHuXbvw5w/bNLnN5BwX56vnx8MVPb+IzqrPtlf0YJVz/1I4eyy074XpLghb/N5tbzx3qkHsH/2LA3h1tfXEqam/fZrNF9ePnOczyaUuxkhLgV9Gp6mrgtqazny1X7+GT5njbP0KqUCoL89Md9vPDWqSmtaqCwvI7C8tpWj0KfzJA+4SycmsKCqQMYmBDa4wRbR2jtS9FktvLpyj38+4sN5Je69j8L8ffi4Wumc+28kT0mSqg7Mgoquf+tVW59XSQJLpg+iIeunkZyXIjHA2/9vi2dN3/cxqrtGS2WDfLTc+28kdxw7uhujZ7Y07HbZf7amcmbP25j5dY0Wno9ThuRwENXT2Py0LZFzPYkQty2TFddn3qDmf9+u5lXvt3s9v2QEh/Cszefydnjet5gXVdRbzCzfHMq3/11kN+3pTvN5vVUhidFcN28UVw0azC+Xj0jBsEbP2zlH6//5vT9gPhQfnjm4naZuXfm/WIwWbjhuZ/5YY1zaqJ/Xj6ZR6+d0a33hWy3Y21oRLbLYLcjyzLIctMSkGVUPl6ovHrPM9ZotvL85+t58auNLgfhNWold188kfsum4xe6/kYMkLcCno1PUHcyrLMxn25vPbDVpZvSm3RxLAZXy8Nk4bEMXmYw182OS4EP2/tKR+wdY0misrrKCirZW9GCev3ZLNhXy61DaZWtzcpNpiFU1JYOHUAI04Dk9BTvRSbZ8Ze/HqjW1GrUSv52wXjuO+yyacMzNTTWL0zk/ve/J0Dma5zQCoUEvMmJTNvfF9U9Tl4aZUnXCeL1UZpVUPTp54GowUvrRovnRp909JLq0avUyMB368+yFs/ndr0eEifcG49fywXzRrcKS+v05mMgkreXrKdT1fsafHenjEykQevnsakIXFd2DoHQty2TGdfH7PFxgdLd/LcZ+td5voEhy/+w9dM55q5PX+wriuprjfy185MNh/IY/OBPPakFrmd7e4OAn11LJgygOvmj2RUclSPeUfLsszjH67m+c83OO2bPa4fnzx8QbvNuDv7frHZ7Nzz+m+8s2S7076r54zgtbvndvo9YrfZqM/Mo/ZwBjWHMqg5lE7toXRqDmdiazz17L13QjT+g5LwH9QP/4H9HMsBfVF5d20E8LaQllfBXf9dwZ9u4m/ERwTwn9vOZt6k/h79nQtxK+jVdKe4tdns/LrxKC99vYnthwtaLNscpXHGqESmDItneFKkxx6kNpudvenFrNubw4a9Oazfm9NqsRsX7s+CJqE7flAsCkXPeIm2BVcvxao6A6u2Z/Ddnwf4bVu6W/NdgAumD+SpG8/okUF7WovVZufjZbt5/MPVTv5Px6NUSKREeRMYFEh5jYHSqgaXUSXbi0Ihce7kFG47fyyThsb1mE5Zb6XeYOazlXt48atNbqPdgiMFyENXT2fC4Ngua5sQty3TWdfHbpf55s8DPPHRarKLql2W0WlU3LF4PPdcMqnXRhzvShoMZnYcKWDzgTw27c9jX3oxJW4GDDqLyBBfzp2UzIIpKUweFo9apezS+k+FzWbnjpeX8+EyZ3/KW84by39uO6tDriZd8TyRZZl/f7GBxz5Y7bRv3sT+fPrIBR4diLUajJSs3krh0tWUbdxF7dEs7Kb2Wd+1hHdCNMFjhhB7wdlEzZ2G2qf7zdaPR5Zlflx7mPve+I1CNykWR6dE8fA10zlzTF+P9BuEuBX0arpD3BrNVr74bS+vfLuZ9PyWZ6/6Rgdx1ZzhXHbWMKJCuibAk8VqY92ebJasO8IvG464HdU/mYggH2aPT2LKsHgmDY3r9mAVAI1GCyWV9RRX1lNSWU9ZdQMNRgtGkwWDyYrBZKG+0UhGVi6NJhtGtOSV1FLTCnE/eWgcj18/k4ndMOvVWdTUG3n9h63897stbZrN7yhBfnqumTuCG84d3SN+N6cbJrOVT1Y4TOpbErmzRvfhwaunMX5Q54tcIW5bxtPXx2az88uGozz32Tq3uaKbIyA/et0M4QLQQQwmC3klNeQe+1STW1JDSWU99QYzDQZL09JMvcGM0dw6f94AHx2Bfnriw/0ZmRzFyOQoRiVHEh8R0GMHA602O9c/u4Rv/jzgtO/x62Zw72WTO9z2rnyefLh0F7e/vMwpF/nEIbF8//TFBPq2v+7GwhIKl62lYOlqiv/Y3KoZWU+i1OuImjONuMWze5zQrWs08cyn63jtuy1uLSXGDozm4aunc8boPh36TQlxK+jVdKW4raoz8N7PO3jzx20tjurqtSrOnzaQq+eM6PbZK5vNzuYDeSxZf4Sf1x92a5bripgwP4fp9FCH2E2KDfao2U6j0UJeaQ25xdXkldYe6zzkldRQUtVAcUVdu32MW2Ly0DgeunpatyS67yqq6gy8+u1m3vhhW4tBnjrKkD7h3HL+GC46Y4jIvdwFNEfM/veXGyhyMwIOcOaYvjx09TTGDozptLYIcdsynro+dY0mPlm+hzd+3Op2phZgzoQkHr9+Zo+I7P7/EavNjslsxWaXsdnt2O0yNrtMQ2Mjq1evQaNSsHDebHx6kNhoDRarjWue/snJX1WhkHj97rlcM3ekR+rp6ufJLxuOcOUTP2A6yfd6aN9wlr94BcH+rTf1rTmSQc7XyylcuprKnQc93dR2c7zQjZ43vceYLx/MKuXvryxnw75ct2UmDI7l4aunMX1kYrv6aULcCno1XSFu80preO27LXy4dFeLUY/jwv25Y/F4Lj97WI/022xOeP/z+sMsWXfklD6TJ6NUSESF+hEb5kdsmD+x4f7EhvkTEeyDQpKwyzKy7DCbk5Gx2+VjM68lTf6cJZX1x/w7PWkOeyq0aiWzxydx88IxTBtx+ora46lrNPHuzzv4ZMVu0vMrWwxQ1B68dWqeuGEmNy4YI/z5uhij2cqHS3fxny83UFzhnFewmbPH9ePBq6Z1SnRcIW5bpqPXJ7ekhrd+2saHS3e1aIUxYXAsT954Rrf4XQtOTW++T8wWG1c99SNL1h0+4XutWsmnj1zAuZNTPFZXd1ynDXtzWPTg106WXsOTIlj2whUE+blvg9VgJPe7lWS89y1lG3a2qV5taBD+A/vhN6CPw3d2YD98+sSgUKsd5hcSjj6KJCEpHO9WQ2Ep1QfTqD2UQc3BNKoPplOfkUtrX+zqAD+S77iC5DuvRBsU0Kb2dgay7HCvePKjNWQWVrktN3loHNfOG8W0EQltsn4U4lbQq+lMcXsgs4SXv97Mt38daDFI1LB+Edx18UQumD6w13TyZVnmQGYpS9Yd5uf1R1wmYO/tqJQKpo9I4MIzBnPu5JQeOeDQGWQUVPLWT9v5dMXuTpn5Pplh/SJ4+c5zutTfU+DAaLbywa87eeHLjRRXuhe5s8f14+8XTfCotUJv7bSXVNZzJKecgrJayqrrKa82UFVnwGi2YrLYsFhtWG12VEoFGrUSjUrpWKpVaNVKtGolXlo13noN3noNvl5NH28dfl5afL0cKWFsVgvr1q5BrZKYe87sFq+PyWwlvaCS1NwKUvPK2ZVaxLKNR1sMcjQwIZQnbpjJnAmeDcQi8Cy99T4xma1c/sQPTtH4dRoV3z11EbPG9PVofd11nQ5kljD/vi+cBglH9o9k2YtXEHBSv6Fq7xHS3/uW7M9/wVLj3nqmGUmhIGTiCKLnTSdkwgj8BvRFF+qZ1IxWg5G6o1lUbN9P3g+/UfzHZmRby1HAVT5eJN16KSl3X4M+PMQj7egIVpudr1bt45lP17VomQLQPzaYaSMSmDrc8QkLdG8FIcStoFfjaXFrtthYuzurKR1HeotlZ45K5O6LJzJzVMd8A3oCaXkVrNiSxsb9uWzcm9OqvHtdiV6rIiLYl7BAb3z1GnRaNXqtCr1GjVoJxUUF6NQKpowbTv+4UOIjAogJ80ej7llBOTqT3alFPPvZOpZuPOrxWdrWcOXs4Tx54xktvnAEnYPBZOH9X3fy4pcbW3SZSI4L4YZzR3HZ2cOcOm1trtNgYNnylVTUm5k5fTpBAb546zVoVAoUiu4Z5Cutqmf7oQL2Z5ZwJKecnOJqiirqqaxtxGCytiqSfWehVinQaVT46DX4++gI9vdCrVSQU1JDTnG1k/+fO0YmR3HnheO5YNrAHpkrWpZlGvOLsdTUYTeZsRlN2IxmbCYzdqMJu8WKV2wE/gP7oQnw6+7mdjq9UdwazVYuffQ7VmxJO+F7vVbFD09fzIxRfTxeZ3dep+yiKs78+ydOblujU6JY+p/L8ZbsZH+1jPR3v6Fy+/5Tnk/t70vk7ClEz5tO5Owp6EI8I2ZPhamiivwlf5Dz7UpK/mxZ6Cp1WvrecCED7r0O79jILmlfS1isNr74bR/Pfb6enOLqVh0zKDGMof3CaTCYKalsoLymkZp6Iw1GM4baSoybX2wuKsStoHdxvLjVjr8bnW8Q3noNQX56woN8iAn1IzEqkCF9wxnWL4LEyECniMDV9UZWbklj2aZUft+W3qIJmEIhccH0gdx10URG9O/+B0JnIMsyR3LK2bgvlw37ctiwL7fFIDYdJdhPT1x4ADHhfsSFBxAb5kd0qB8RQT6EN318vTRuBxB6Y+fBk2w7lM9zn6136oicjEqpoG+4noEx3owYOhCFQukwJbfL2GWHf5jdLqNQSI6gJ756An11BBy3tFhtPPr+X3y1yvULPsBHx2PXzeCGc0f3ysjbvZ1GY5PI/Wpji4HkvHRqLj5jCDcsGMXwpBOfY7IsU1FrILuoiuwihx98eXUDxZX15BRVU1RRR0WtgQaD2e3MoiQ5fm8alRKdRoWXTo2vlxZ/H13Tb0tHsL83IQFehAf5EBnkTVSoHxFBvmhUCpRKBQqFhMVio7y2kYpaA1U1jWQXV5NRUNUkWusor26kut5Ig8GM2WrrlkGdrkCSYP7kFO5YPJ6Jg2N71GCqzWymavdhyjbspGzjLso37sJYWtGqY/VRYQ7zzIF9j6U2CR49BKXu9Inw3NveTwaThYse/tYpf7m3Ts1Pz17ClOEJnVNvN1+nzIJKzvz7JydE8w00NnC5qZAxWYexVLc8S6sNDSLh0nnELDiD0MmjHCbG3YixvJL8JX+S++0KildtdFtOoVaTeNVCBj1wEz6J3W99ZbbY+GzlHp7/YgN5JTXtPo9srMG05aXmTSFuBb2Lk8WtpGs5QqROo6J/XDBjB8QQE+bHml1ZbNiXe8oRfb1WxVVzRnDn4vG9OmVMe2ju7OaV1DQFgHIs80odwZ/KaxqRJAkJh/iXJAmFJCFJoFWrCAv0JjzI58RloDeRIb7Ehvnjrdd0qH3d/VLsLnanFvH4h6v5rQULA0mCeZOSuXL2cMakhLNlw1qg49dpw94c/v7qCrfm7LPH9eOjh87v8OygoH00Gi28+8sOXvpqI2XV7lNDgSM65eiUaHKLq8kqqiarqIrGFmILCLoWtUrBpCFxzJ2YzIxRiQxMCO12cVubmkXWZz9Ttm4HFdv2YTN6LjK7yteb6HkziL3gLKLOmYrKq3c/z3vT+6nRaGHxQ1/z186sE7730WtY8vylnerX3ROuU3p+BWf+/RO8M7OYlX+EUWV5KGlBp0gSEWdOot8Ni4k+dyZKTcf6Mp1F9cE0Dj37DjlfLUO2u+7rKrQaBt53PQPvv7Hb77miijp+WnOI93/dSXpBZYupHN0hxK2gV9NWcdtWgv303HL+WG5aOIaQNkTPE3QdPeGl2JUczS3niQ/X8OPaQ27L+HtruXruCG5eOObYYIynr5PFauOtn7bz1MdrXPr29o0O4psnL2RQYliH6hG0nwaDmU9W7OHdn3dwNLe8u5sj8ABhgd6cMboPF0wfyJlj+nWZ64XdZqNw6WpS3/iyxZkgT9Ic7TX2grOInjsdtZ9Pl9TrSXrL+6nBYOb8B75i3Z6cE77389by8/OXdnp6se6+TnaLhdwffmfvv9+nYbf7dys4LA76XHsBfa9bhE9C50Wk9zR16Tkceu5dMj9Zgmx1nbrKOyGaUa88QPS5Z3TpIFpGQSU/r3ekr9x2KL/DVjhC3Ap6NZ0lboP89MwYmci9l05iaL+Ibh8pF7inu1+KXUVOcTXPfLKOz3/f69Y/L8TfizsvmsBNC0bj63WiaV9nXafC8joeeHuVyxyI3jo1b993LotmDPJIXYL2Icsya3dn858vN7JmVxZ28e49LQj01XHe1IFceMYgJg+N7xQfXGNZJRnvf0fa21/TmFvYpmMVWg1KrQalTotCp0Wp1SDLMg3ZBW471y2dK27R2STfeSXBY4a26djupDe8n+oaTZz3r6/YeFJqlgAfHb/8+7JOibZ+Mt11nQzFZaS/9y3p73yDocB1/uhm8hP6csELd5G4YAYKlapL2tcZNOQWcvg/H5D+3rfYTa6DTkaeM5XR/30I337xndaOtLwKvvlzPz+vP8KBTM8GNRXiVtCrOV7cjrn8OarMGqrqjBiMVo914CJDfJk2PIHpIxKYPjKR+IgAj5xX4Bl6Q+ehIxRX1vPvzzfw/q873JrnhAd6c9fFE7l+/ii3Zt6dfZ3+2pnJ1U/96NIM9u6LJ/L49TN7TTTx04V6g5k/d2Ty29Y0ftuafoI/WXtRKRX46DWEBnjho7IQE6ylX9++yEhYbHYaDBZqGozU1hupM5hpMJhpNFowmKwYzVYsVhsWmx2bzd6UNuz/D2qVgvAgn2PxBLIKqziUXeaRc0eG+LJo+kAuOXOoR+JB1KXnsP+JN8j9Zjl286nN1P0H9iNk0khCJ48idNJIfBJjjqUxORmb2Ux9ei41h9KbPhnUHEyn5mBaq1KbhEwYQf87riDugrO63bfxVPT091Ntg4kF//yCLQdP7PsH+upY9sIVXRZbpCuvkyzLlG3cSdobX5L3w+/YLe5/3yaFkg0RffkzJpkSLz9mjkrkh2cuQafpveK2GUNRKQefe5e0N750GXxKoVEz4L7rGfSvmzxmqmy3y/y2NY23ftru5NfdVvy8tEweFodeq6bRZKGksoHCslqKK+uFuD3dkSQpDrgDmAvEASYgHfgWeFOW5ZYdstpW1yzgcmAyEAlYgRJgH/An8Jksy+7zVbSvzk41S3ZFXLg/YwfGMDI5ktHJUQzvH+k0SyboOnp656G9VNUZePnrTbzx4za3PpCBvjruvmQStywcc0rf5a64TnmlNVzy6HfsPOI8wzNzVCKfPHyBMO/vZIoq6li+KZVlm1L5a2cmJkvLqSH+P6JSOkRmkK+eAF8dgX56An3+t/T30aHTqFCrlE0fBWqVI0CWWqVEqZCOifLmfkxzd6Z522gysXPnTiQJZp8xlYSoEAJ99U6B1lJzy/lhzSG+X32wRaGrUipaHe157MBobl44hvOnDUTbxk64uaqG/U++SdrrX7TY6dcEBZB45QIizphAyMQRHsmdaSguI/+nVeT+8Dula7adMq2JPjqc/rdeSt8bLvRYehVP05PfT9X1Rubf+zk7TnpeB/vpWfbiFQzrF9FlbemK62RtaCT7i19JfeMLqvcdbbGsV1wU/pcu4MY99eQbT7zv5kxI4qvHLzxtsjFUH0hlx21PULpuu8v93vHRjH79YaLnzWh/HfVGPl2xh3eWbG8xr21raI4Yf97UAahVzv8Ds8XGlh17mTZxVPNXQtyeTkiSNBf4AnCn+I4Cc2RZzuxgPYHAR8CCUxQdIcvyno7U5aLuLhe3zm2AlLhQRiZHMiwpgr7RQSRGBpIQGYBe27NHlU8HenLnoT3UG8y8+cNWXvp6k1Ny+Wa8dWpuXzyeOy+c0OqgTV11nYxmK3e9uoKPl+922hcX7s/XT1x42kYa7w5kWeZgVinLNqWydONRp47q/0e8dWriwgOIi/AnLtyf2HB/x3a4YzsiyKfT0+i05347lFXKD2sO8dHy3RS5mWVvNhHdfrjglOcLDfDi2nkjuW7+KGLDWn432i0W0t76iv2Pv4G5stptuaDRg+l/22XEXTQHlb7zAsYZyysp+OUvcr//jZI/NrcotBVaDX2uOZ8B/7gO376dF/SoPfTU91NlrYH5937OrtSiE74PDfBi+YtXMLhPeJe2p7Ouk2y3U755NzlfLyfrs59PmZs2dNJIkv9+FTELZ6FQqdiXXsw593xG5UnpEc+fNpBPHj7/tLFGkmWZnK+Wsuue5zEWux5kS7xyIaNeeQBNYOv72Yezy3j7p+188fteGk4RqNBbp8Zgcm112Rwc847F45k0JO6UroIiz+1piiRJw4BNgBdQDzwLrAb0wMXADU1FjwBj2jujKkmSP45Z2eYhkmXA1zhmh5VAPDAGWATM7+nidkjfcBZMSSGjoJI1u7PddjBaS2SIL4mRASRGBhIV4kugn55gPy8CffUE+esJ8tUT5KfHR69Br1WL9CntoKd2HtpKc67SF750n8ZFo1Zy44LR3Hvp5Dbnk+1qs68Pft3F3a+tcDKl1mlUvHf/gnb74VoNRhrzimjMK6Yxr4iG49atDQaQZWS7HdkuH1vHbkeWQePvgy48BF1ECLrwEPQRJ693fyTa1pBTXM26Pdms25PD2j3ZbUqZEB3ii9lqO2UU5Z6KRq08FnU9OtTvmGA9XrwG+em7/f/YkfutrtHE4x+u4a2ftrn0rw/20/PY9TOprjfy3Z8H2JfRsq+gUiExb1Iyf7tgHJOGntgxlGWZgqWr2f2P56lLzXZ5vEKrIf7iuSTdeikhY7ve39VYXknG+9+T9sYXNOYXuy0nKRTEXTSHgf+8gcBhKV3YQvf0xPdTeU0j8/7xOXvTT7yW4YHerHjpSgYkhHZ5mzx5nY4J2m9XkPfD76f0pVXqtMRfOo/+t15K0KjBTvt3HS3knHs+c0oTeemZQ3nv/gWnVb/NUlvP/sdf5+irn7q0nNBHhTH2vaeInjOtxfPsTi3iqY/XsHxzyykKg/z0nDM+id2pRS4tVyQJrp07kr9fNIF+McGt/juEuD1NkSRpNTAdh2nwVFmWN5+0/17g302bj8qy/EQ76/kUuKKpnstlWf7GTTkJUMqy3LYoEqeu/5i4Pf/ut+jXt09TqhkfwoK8CQ3wRqGQMJgsGE1WGk0O369Go5m3ftzO7rQip3P6eWt55c45XDxrMOn5lazZncXa3dms25Pd6R1CrVqJl06NTqvGq+mj16nQN69r1ei1jryRXjo1fk25I/29dfj5aAnw0eHnrSXQV09EkE+bTdJ6Iz2x89AWTGYrHy3bzb+/3OB2MEWpkLhi9nD+deVU4sLbN4DTHddpy8E8Lnn0O4ornMfOHrlmOvdfMcWtCJFlmca8Isq37KF8y14qtu6l7mgWporqTmuv2s8H/8FJBAxNJnBoMv5D+hMwJBmNv2+n1dka8stqWdf0DFq7J5vsoupWH6tUSEweFs8545NoNFp44csNNJpcP4ZVSgUp8SEM6RvOkL7hDO0bzsDEMCxWOyWV9RRX1FNcWUdJZT35pdUcOJpNrcGKv78/Cjf+ladCp1HhrXMM7nnrm595arx1any8tIQH+hAZ/L+c14G+um4Xrq3BE/fb7tQi/vbSMnYddT0b//eLJvDE9TNJz6/k278O8NnKvafMST5hcCz3XTaZs8f1oy49h+23PEbJn5tdllVo1CTfeSUD7rseXUj3m/3aLRbyflrF0Vc/pXyTs2XI8USeM5VB999I6JTR3fp76Wnvp7LqBubc85lTAJ+IYB9WvnQlyXEh3dKujl6nZkGb+91Kcr//7ZSCFsCnTyxJt15Kn2vOP6VZ/eYDecy/93On2ccbzh3Fq3+f0yueSW2h+kAqO/72JKVrt7nc3+ea8xn58gNO78b9GSU8+fEaft3Qstn30L7h3LxwDFX1Bp78aC1Gs/M7qV9MEO/cdy4T25GCSojb0xBJksYAzb/Id2RZvtlFGQVwABgAVAHhsiy3KbmhJEmTgfVNm4/Jsvx4+1vdPo4Xt6mpqSQlJbX6WLPFxlMfr+GFrza6jGFx0RmDefMf8/HSOUyL7XaZQ9mlbD9cwM4jhew8WsiBzNJW+0F1B4G+OiKCfAkP8iYi2JeIYB+iQ/xIjAqgT1TQaWE63dM6D63FYrXx6Yo9PPf5evJL3XdIF80YxMNXT6N/Bzsd3XWdiirquOyx79l8IM9p30VnDObt+85Fp1FhbTRQsX0/FceJWUORZ4LtdBTv+GgChvYndNJIwmaMJ2jkwE6Jlmmx2kjNq2B/RgkHMks4kFnKvoySNluQ+HlrOWtsP+ZNSuassX2x22Vue3EpP68/4lRWpVRw/xVTmDcpmZS4kFYPiPXW+66r8NT1sdnsvPPzDh774C+XKbcmDY3j04cvICrEF6vNztKNR3l7yXbW7s52e06F3c6Vhnym7N0KZtfRUmMXnc3w5/7R48x8m6nYsZ+j//2M3K+Xt2iyHDJhBCl3X33MzLSr6Un3SUllPXPu+cxphiwqxJffXr6yTTNjnqYt10m226lLz6Fy50EqdxxwfHYdxFrfiskHSSLqnKkk3XYZUbOnuA165oo1u7I4719fOQmx2xeN4/lbzzrtBK4sy2R+9AO77noWS63zALVXTARj33+KqLOncCirlKc/WddiikKlQuLcKSncev5Y+kYHcdWTP7J+b45TOUmC2y4Yx+PXzTzW/24rQtyehkiS9DTwQNPmeFmWt7opdz8Oc2WAs2RZXtXGer4GLsJh9hzp6WBRrWxDu8VtMxv25XDdM0vIdWHaNzwpgm+fusitv5LRbGVfejE7jxay62gRafkVZBdWUeLGrLQncrzpdP/YYAYmhjEoMYz4iIBeYW7TkzoPrcFqs/PVqn088+m6FmfgZo/rx2PXz/RYUI/uvE5mi41/vL6S937ZecL3fiYDC3WNXKBtpGrNVmxG1z7GPQ2VrzdhU0YTPmMc4TPGETB8AApl64KLyLJMWXUjWUVVZBZUkV1URXp+JQezSjmcU4a5nQGgYsP9mTuxP/MnJTN5aPyxYCerd2Zy3XM/uxTISbHBfPzgeYxMjmpzfb3tvutqPH19Cspquee1lS4HKMIDvfn0kQuYOjzh2HeHskp5Z8kOJ1+36Poqrjm6hcS6Spf1BI0ezMiX/0XY5NEdam9X0VhQwpGXPyb97a+xNrgXN15xUfT/22X0u35xm3wGO0pPuU9yS2qYd+/npOVVHPtOabcxxFvizasnEWg3Yywuw1hSgaWuAVuDAWtDI9ZGIwCSQgJJQlIqUfv5oAnwRR3ghybAF02A3wnr2pBAtKFBKLUtBzlsxmY2U1dawerlK8FgYszQYSjMVqx1DVjqGhzL2npMlTVU7zlM5c6DLsVWS/gP7Efs4tkkXrGgQwM2v21NY/FD3zi529x/xRQevbb9AZd6Mg15RWy9/iGKf9/gcn/eqDE875WIQelaiAb76blu/iiuP9fh+7/tUD4XP/qdy3dSYlQg7953LpOHdSwFkRC3pyGSJK0DpgANQIA7U2BJkibg8MsFeEKW5UfbUIcGqAF0wHeyLF/Y9L0KiAZkoFiWZdfDwh7CE+IWoKbeyD2vreSL3/c57QsP9Oabpy5i3MDWJ+uuN5jJLqoiq7CazMJKsoqqqahppKrOQGWNgco6A5W1jS5H4nsKXjo1KfGhDEwIZWBiKIMSwxiQEEpMqF+PGqHsKZ2HU2EyW/ni9328/M0m0vNddyzBEVX44WumM35QrEfr7+7rJMsyb/6wlVf+8x1Dy/IYXp5P37qKUx/oBnWAH96xEXjFRuLVtNQE+iEplY7ReElCUkjH1gHMlTUYS8oxFJcf68gZissxlVY4fHPb2xZ/X8KmjSHm3JlELzgDhb8/uSXVZBZWkVVY5RCyhVVkF1aTVVRFvaHj932wn57Jw+KZNiKBacMTGJBwor+w1Wbn8Q9X88KXG10ef928kTx/61mnjLLtju7+PfV0OuP6yLLMe7/s5N43fnMaBFEoJB67bgb3XDzphEHJmnojn63cy+tfb2DYjs3MzT2ISnb+rdfovfG+9WoufuYWNJreZ81jqqwm9Y0vSH310xZdF5ReevpctZD+d1yBf0rfTm9XT7hPDh/J45a/vYk2L5+Y+moiDLWEGeoINjWi6MR+uMrHC21wIEq9FqVeh1KvRZIkLMeL1roGt7lWO0qzoI1bPJuAQe3rG7ri5/VHuOyx77Cd5A//xPUzufeyyR6rpychyzIZH3zPrrufxVrnPHlTofXio+TxHA76X7DIID89f79oArecNxafpvfMpyv2cPvLy1wO4t583hieuuGMdr+TjkeI29MQSZLKgBBgryzLw1soFwg097KPCdRW1nG86fPdwFc4ZoEXA82Rbow4glg9JcvyJqeTeABPidtmflhziNte+NUpSq1WreTNf8zn0rM8G0zDYrU58vKaLDQaLU0+wRYMRguNJqtjvWmfwWxt+t7hN9xgMFPTYKSm3khtg4nqpmVNvdHpoetJ/Ly1DsGbEMbARIf4HZAYRnigd7eI3p7QeWiJmnoj7/26kze+30pxpfvR5slD43j02hkdHrF0R3ddJ1mWqdp9iJyvlpL34yrqM53Nk1tCE+hP8PhhhIwbRtDowfgkxuAVG4Ha18djbbTbbBgKS6nen0rN/qNU7TtK9b5Uao9kIlvbFibALkmk+oexMySWXaGxVGs9k/oowEfnELPDE5g2IoFBiWFuLSuKKurcmnwF++l5695zmT85uUPt6en3XXfTmddnx5ECLn3se5eBxOZO7M8H/1qI/3FR1Cu272PzNQ9Qe9A5uIsd+DM6mZ8Sh2FSqekTFciDV03jojMGd3pE6c7A2tBIxoc/cPiFD2nMbTlyeMSsicRfOo/Y885EE+DXKe3p6vvEbrFQvT+Viq17Kd+yl4L1OzFm5dH7/pPto7ME7cl8/cd+rn3mJyeXtudvPYs7Fo/vtHq7m8q0XH4+7w60Bw+73L86Konfh4zn5kunctsF4/DzdqTJtFht3PvG77yzxDndUEyYH+/fv4BpIxI91k4hbk8zJEnSAc0xy5fJsjzvFOXrcYjRLbIsT2hDPVcBHzdtPoBD4LpzCrQD98iy/Eprz39cPaeaLo0AtgPs37+fvn07PhKbll/JZY//SHqBcy6uOxaN5eGrpvTol74sy9TUmyiuqqeksoHSqgaKK+sdy4oGcktryCmuprTKs8GxAn11pMSFkBIfTEp8CClxISTHBRMa4NWpotdoNLJu3ToApk6dik7n2fQUdouFmr1HqU/PoT4jj4bMPBqy8rHU1GGtbRqBrm9EoVY5Rqh1OpTeOmyBgeTIanbXWClU6snzCaTAOwDbST4+YwZE8cAVk5k67NTh7TtCZ1+nk6lLzSb/2xXkf7eS+jRnkeUKOxK2hFj6nzWeoDFDCBw7FJ9+nXtdWsJmMlN3NIvsTfvIXbMD4459qAudg9C1RIZfyDGhW6ZvXWCq6FBfBieGMSix2XIihKTooFY9dzbsy+X65391eX/PGJnAG3efQ0RQxwcGuvr31Nvo7OtTWWvg5heW8ceOLKd9yXHBfP3Y+cQEenHk6bdJfeljcGGZUKT346OU8WT4O0fHTYoN4p+XTmLhlORe4Z5yMnaLhYKf/iDj9S+o2nGgxbIKjZrwsycTs3g2EXOmovLynADt7N+BoaCEyu37qdq+n8pt+6nedQibwejROnoq2rBgAkYOJHDkQAJGDiJwxAB0kV0X6fmz3/Zx56u/OX3/7E0zuWnBKBdH9F5kWebnDak89uFacourmVaYxoUZu9HZnQd/dXGRjH7nCUKnjQEcQcyueeYXNh1w1pdThsbxwb/mE+LvmUHgZjIyMhgyZEjzphC3vR1JkkKB5jB438iyfPEpypcAYcABWZaHtFT2pOPuAl5q2jQBWmAp8BiOQFX+wAXAc4AfDjPlubIsr2j1H+Oop9U/kvfff5+QEM9E+qs3Wvnv8hz25TrPtI1M9ONvs+Pw0vbuBN5Gs43SWjMl1WZKa80UVZkoqDSSV2Gk3tg+vz9X6DUKwv01hPlriQjQEO6vJTxAQ6ifhkBvNRpVzxookG127NmF2PdnYNuXju1QFhg9YzZlVijJ8wkkyzeYqsQ4RswdztCUkB5l5t0R7GXVWDfswbZ+D/bM1uVbNShVHAiKYk9wDPuDo2hQa5k6IJDrz4jplt9GVYOFzJJGMksMjmWpgZrG/73A/UwGUqpLSK4uIaW6hAhD64M9HfEPY31kP3aGxmJXqwnz1xDmpyE8QENUoJb4ED2xITp8dG0PfGOXZX7ZXso3m4udZhOUColLJ0dyzogQFKfJb03g+J8v2VbKd5uLOflFOdBcwx3Z21AXljofqFCgOm8aR8aP44ddFaQWuR/ojA3WsXhCOGP6+vfa55TtaA6WXzdg27Tfpcg/AZ0G5ZiBqEaloBiQgBQW2GP+btloxp6ehy01D3tqLva0POSK1qcBc4uXDinIDynABynAF8lHDxo1kk4DWo3DrUOWHdfOZkduNEKDEbnBgNxghAYDcnUdcm0DWD3XdzglIQGoxg9CNW4QioGJSK2Me+BJVu4p4+M1zu+6a2ZEc/aw7ok87WkyShr5dG0hRwtPNEcOMdRz9dEtDKh2HZlaNWciBWdP44VVRVTWOwd9O2dECJdPiULZCYNn5eXlXH/99c2bQtz2diRJigVymzY/k2X5ylOUzwVigQxZlvu1oZ6HgCeP++pXYKEsn+jM0xRReS3QHJ15qNyGf3x3iVsAm13m83WFrNhT7rQvJljHvecmEO6v9Vh9PQVZlqlptJJXYSSv3Eh+5f+WBrPnI0PrNQoCvNUEeKmOLb11SvQaJTq1Ar1GgU6jRK9WoNMoUCkVKBUSSgVNy6aPJKFUgkohoVBIre7Ey7KMnF+KrVnMHsiAesOpD/QESgWK5HiUI5JRjR+EIja8a+r1IHJNPdaN+7Cu34P9cHarjpFCAlCOHYg8MoUPijWsT3cRWCJMz93zEgj167j/jTtqG61kljaS0SxkSxqpamibGXKAqZEBVcUML89nSGUhWvupO3eylw7VtJFozh6HIiHylOVPRb3Ryhsrc9md7XwdQ3zV3DknnqTItuVFFvQe9ufW8d8VOdQZbCjtNublHGRuzgGUTpIXFIlRaG5fjLJPNOB4/u3LqePbzcVklLh/7iWE6lk8IYKRib49Ruy1FXtZNdaVm7H8tqXVz3gp0BfFgASUKQkoUuJR9IlGUnW+iJIbjdhzi7HnFGPPKHCI2dySU4tzN9iRqPL3J3hQHOqESBRRwUgRISgig5G82zdTLVus2Dbtx7JsI/bU3FMf0Jn4eqEaPQDVtBEohiV16W/0152lfLHe2aLn+pkxzBrafRGoO0plvYWvNxax7rCzFWMzU1MCuNSQi/rrlWByFrBleh8+TB5PasD/+jZqpcQNs2KYOqDz0osJcXua0YUzt/8A/nPcVymyLLtMbCVJ0nfAoqbNobIs729DPV1ulnwyn6zcy71v/OGU8ifIT8/HD5zL5KE9M1WCp5FlmYKyOg7nlHM4p5wjTcvUvAoMbvJmdicqpYIgPx2BvnqC/fQENX989YSY6gnOykJ/+CjsPYCtzH2Ap67Ed2Bfos87k+gLzsIvpY9Hz+1J8zhLbT1Fv64m/9uVlP61xWWy95Pxio8iZvFsos8/C/9hycc6H7Is8+LXW3jmM+dIjEF+ej68fz5Th3fcD7m6zsie9GL2pJWwO62YPWnF5LWQgqm1BPjoSIkPpn9sMH2CvIjLz8Z71x6M67ZibUVEz8BRg4i/5nxiFs9G7dt2AbortYhrnvnF5d8ya3Qib/9jLkF+nvfzE2bJLdPV1ye3pIbb73iHmatXEFfv3BmV1CpS/nUT/e+5GoXaOWCULMv8ti2DZz/byP5MF7O9TYxKjuRfV0xixoiEXityrY0GipetJf+7lZT8vhG7ufVZEBVaDV7xUXjFReEVF9m07ljqIkKPBU5SeulQqFQufweyLGOprsNUVun4lFbQkF1AQ2Y+jdn51Kfl0JjbNveHkynR+5LpF0yGXwhZviEMmTmSdx46H10rU321hN1iIefTnzn63HutyierDQvGf2gy/kP749Mv3nFtNGoUGo0jCrMsYzKZOLj/AHJtPXFeAZiLyjAUlNCYV4QhvwR7GyLpB4wcSPK91xM5f3qbUv10hFe+3coTH69z+v7lO87iqtnDuqQNnqLRaOG1H7bx2vfbaXQhWAHGD4rm6RtmMqK/I5tDfWYeu256lIqNu1yWXxPZjx/6DCcwKoTPHlrI8CTPZIFwhzBLPs3oQp/bm4C3mzazZFl22xOXJOl64L2mzetkWf6wtfW0oh0eDSjljg17c7jk0e8orznRfEulVPDKnedw3fzTy7+iLdhsdnKKqzmUXcbh7LJjy6O55S4Tc3c5skygyUBSTSkDqotJqSohzNj2rFUlel9K9L6U6n0p0/tQq9ZhUKkxqNQYlWqUdjsauw2N3YbeaibI1EicZGaoj4Lg6kqM2W17tgYOH0DCFQuIv3gOXlEdn9HtaGATY1klpWu2kvPNCgqXrWlV2h5deAhxF55D/CVzCRk/vMXO8M/rj3D9s0ucIgkrFBLP3DSLOxaPb3Vnuq7RxJ7UInamFrGrKU1XRkHHBjACfHRNAdQcUcMHxIe0GEjNZjZT8tcW8n5cRf6Pv7cYwRUc6YWSbr6Y5L9f1ar/t81m5+VvN/PEh6ud0lIoFBKPXDOdey+d3Gn+kiKgVMt05fWxmc0c/vf77H/iDWSL8zM31yeQwmuu5D8v3HjKPMZ2u8wvG47w1MdrOZjlXuROHBLLI9dM92gQmO7AXF1L3k+ryPl6OSV/bm7VQF1rkVQqlF46bE36SiWD3WTBZjLj5DvQAdR+PviMHMRfjSrWGtRk+QZTr/nfYMot543lP7ed1eFYIXabjZyvl7H/0deoz2h5pjZk4ghiLzib2IWz8Olz6sj/Ld0vsixjKq+i5mAaBb+uJu+nVTRknfp96j8oiUEP3ETched0SY7j5z9fz2MfrHb6/u1753PVnBGdXn9HsdtlvvlzPw+9+yeFbnKrx0cE8MzNszhv6gCn955st3Pg5U/Yc/+LKK3Ootig92LMqw8y5PoLOn1gTASUOg3pomjJc4BlTZvrZVme2kLZs4GVTZv/kmX5udbW04p2dIm4BcguqmLRg9+4fOHffN4Y/nPb2ag6+PKw1NVTezSL2iOZ1B7NojGv2G2KEqVGjXdCND794vHtF4dvv/hOi/jYHmw2O/lltWQWVJJZWEVG0zKzoIrMwsoTci92BJXNho/VhI/lxE+IsZ64+ipi66vws7Q9f2qx3pcjAeEcDozgSED4CZ2FlvDWqZk9PomLzhjCOROSjv0mTJXVVO44QMW2fZSs3krZhp2tmjGQFArCz5hAwuXnEnverHZHCW5LZ1uWZepSsyjbsJOyjbso27CLurTsVtWj9vcl9oKzSLhkHmHTx7apU3Ekp4yLHv6W1DznFEEXzhzMW/fOP5bUXZZlymsayS2pIa/EESRtX3oJO48WkppX3qG+o6+XhhH9IxmZHMXI/lGMSo4kMar9vnc2k5n8n/8g473vKP6j5cDxCo2axCsWMODe6/BLdj1mmFFQyfXPLmHLQef3dVigN588dD7TR3au6BDitmW66vqUrtvOtpsfpfZwhtM+GxLL4gezNH4QNoWSiUNi+ebJi1oVvMVul/l+zUGe/nity/uxmWkjEnjkmulMHNL7LZiMpRXkfr+Sot82UL5pN6Zy9+aY3YWkVBIwpP+xCPLB44ax36zkiid/pLjixEFbSXJE7719Ucej95Zt3Mn2256geq9znuVmvGIiSLr1UhKvWtjmAdm2vp9qDqSSt+QP8pf8SdWugy2e26dvHAPvv5HEKxeg1HSemwvA05+s5amP157wnSTBu/ct4PIePIO7+UAe977xGzuPuI6V4eul4b7Lp/C3C8a5nf0vqqhj8UPfkLfrCNce2UJSbZnLchGzJjL6zUfxS0rwVPOdEOL2NKSL8tzGA9lNm5tkWZ7UQtnjhfC9siy/0Np6WtGOLhO34JgRuubpn1i2KdVp38xRiXz+6CICfVvXiTFX11L02wZK122n9nAGtUezMLgK/tEGtMEB+PSNwy+lD6GTRhI6dTR+yX16nPmYLMvUNZoprqijpLKe4soGSirrKamqp6SynpoGE/WNJuoazZhqGvAtyiesqJDQ6nJ8TAa8LeZjItZVtL72UKn14nBABIcDwzkSEE6VrvUmopEhvswYkcjCqQOYNaYPeu2p80RaGxopWbONwhXryP9pVav+90q9jpiFs0i4/Fwiz5zo0rzweBqNFtLyyinOLqbwYDpHNm5HqqkjJT6KuGBfQny1SDYbdovV4T9lttCQmUfZxl1t6tgp9Tqiz51JwiVziZw9FaW2/R2Imnoj1z+7hKUu7rHkuBBiw/wcgra0xiPm8F46NcP6RTAy2SFiRyVH0S8muNNmPOuz8sj48AcyP/yh5f+5JBGzcBYD/3kDIeMcnSJZlnn35x088M4fNLoYHJo0NI5PH76AqJDWRWXuCF0pbhsLiilZu53aI5k0ZBdgKCjBWFqBtb4Rm8GEzWRyDBTJjmvUPLKhUKmQVEoUGjVKnRa1vw+aoAD04cF4xUcRODSZ4LFD8UlKQOFh88XOvj6miip23/cfMj/8weV+a2w0z4YPJdvnRL+2xKhAfnr2EpLjWhefwmqz8+2fB3j6k7VkFrp/Jpw5pi8PXzOdMQOiW/039GSODfBt2k35xl2UbdxF7ZHMLm2DpFTil5yI/5D+BI8eTPC4YQSNGnQsmrMsy7zxwzb+9fYqJ7cpvVbFRw+ez4IpKR1qg7Gskj33/YfMj390WyZ08iiS77ySmIWz2j1D2pH7pSG3kLyfVpH6+hfUp7uPzO8VE8Hgh2+l7/WLO9Vc+YkPV/PsZ+tP+E6S4IN/LeSSMz2bTrKj5BRX89C7f/L9atcDBAqFxDVzRvDwNdMJbyHK/r70Yi548Gvym9xjJNnOmflHWZi112UcCoVWw6AHbmLgP2/sUH/BHULcnoZIkvQM8K+mzfGyLG91U+5+HLlpAc6WZfn3NtaTA8QBJbIsuzWglyTpduC/TZuXyrL8VVvqOUUbulTcgmNE+9EP/uKFLzc67esbHcQ3T17IoMQwl8fWpmZRsHQNBb/+Rdn6nR41gXKHNjSIsKljCJs6mrCpY/Af0h9FN0QVbA2yLFOXlk355j3H8vRV7zvaKdepUacnIySKfT4hHPALo1Tv63gDtYBGrSQ2zJ+4cH8GJIQyblAM4wfFEhvm16EBBNlup2zTLnK/W0nedysxFLke8TwebWgQ8RfPJeHyc/GKDqcuM5+D2w6SsSuVqvRczAUl6KqrCDI2oLN53jxcUqmInD2FhEvmEn3uTNQ+ngtYZLfLPPL+n7z4lWfTY2vVSoYeJ2RHJkeRHBfSYYuL9mC3WilauZ70976lcOkatxYaAGHTxhJ2y2U8sL2MP3c6p36RJLjnkkk8eu2MLvtbPC3e6nMKKVu3jfJt+6k9lE5DTgHG0kqs9Y0eNeF0h0KrQe3ngy4sCK+4KPxS+hA0ajChk0fiE992wdZZ4laWZbI++5nd9zzncgBKUigYcN/1DHnsdn7blc2VT/zgZCUT4KPjy8cWMWNU6/36LVYbX/y2j2c/W0eui/y6zcyZkMTD10xneFLHA6X1NEwVVdQcyqAhp4CGnEKHn2xO4bFtu6ntUfVVPl5oQ4PwjovCp28sPn1i8ekbh/+Avvil9HHb8c8vq+W2F37l923OM/ax4f589fhiRiVHtbk9zciyTMb737Hnny9grnL9/w4eN4xhT99FxBmt9mhziyfuF7vVSu53Kzn49NvUuMjp3Ezw+OGMfesxAocPaHd7W0KWZR59/y/+c1IfUaGQePOeeT3CRLm63sh/vtjAGz9sxWRx3b+aMTKR5289iyF9W56FX745laue/NHJpcjfW8unN01B+96nFPzqbK4N4JecyOg3HvXIb+h4hLg9DZEkaSzQLGjfkWX5ZhdlmqMXDwCqgTBZlttkJypJ0kvAXU2bk2RZdtkTlSRpNTC9adOjP7LuELfNfLVqH7f851enB4NGreRfV0zhnksmoVYpqdx9iKzPfqZw6ZpWm3Z2JuoAPyLPnEjkOVOJPHuyR/w5O4K1oZGS1VspWLaGwuXraMxtXQqZtqL29yVs6mjCZ44nfOZ4Agb3R1IokGWZ2gYTNQ0mGo1m6g3mY7NiGrUSjUqJVqMiyE9PeKBPp+d8tNtslK7ZRvbnv5D7/UpH576HoPL2ImTiCOIWnU3sBWehDQ7s8DllWaagvI69aUXsaQr0tCet6NgIcLvbqlQwpE84I5tE7MjkSAYlhqHugkinbaUuPYfDL3xA5sc/tdhBTvML5afEYRwN/N892ycqkPfuX9DlZqFt7YxajUYqtu+ncscBqvenUp+eS2NeEabyKqwNhi4RsO1GklB66dAGBeAVG4Fvvzh8+sXjP7AvQSMG4pUQ4zTz62lxK9vtlK7fwYHHX6dktcvxaoJGDWLsO08QNGrwse/2pRdz/gNfU1B24v2kUip49e9zuHbeyDa1w2yx8fHy3Tz/+Xq3fnkA505J4Y7F45k4OLbHWQ51BrLdjs1gxNpobFoasBlMNFZVs22Do2s0ZtJEvPx8UGg1aAL80IYGodK3LdCYLMt8tnIv973xGzUNzu42Z4zuw8cPnd+hvKGNBSVsvf5Bilaud7nff3B/hj1zF9HzZnjsf+vJ+0W228n/5S8OPv0WlW5yHEsKBf3vvJKhj9/eblefFtsgyzz07p+89LVzt/jft3nGVLw9mC023vtlB89+uo6KWtcRw5Nig3n25lnMmdC/xf+vLMu8/sNW7n9rFXb7ic/vhMgAfnr2ElLiQ5Flmfwlf7Dj9ifdBiALnTyKQQ/cROTsqR75TQlxe5pynGmyFZgqy/Lmk/bfC/y7afNxWZYfO2n/1cBH7vY3lYkDjgI6YCcwTZblhpPKXA581rR5ygBXbeV4cbvhnU8ZPG0S2qAA1P4+ne5bAbDtUD4XPfwtxZUn+rpobFbOp4r5NXkY9x1u0zklhQLvxBj8Uvrg2y8Opc51uiFLbT11GXnUp+fQkF3Q4sxPSwQMTSZy9hSiZk8hZNLITr9usixTn5FL4Yp1FC5bQ8mabe0a8XZCklAH+qELDkQbEoguLAj/wUkEDh9A4IiB+CTGdFnkRE9hbTRQ8Otqsj7/haKV65GtXRugq1qjJy80Et3IwQycO5UzLppBUED7OwJ2u0xmYeUxAbu3ScyeHKitLSgVEtGhfsSF+9M3OuiYkB3cJ9wjkUG7EkNxGUf/+xlpb36Jpca9cDgcEM5PicOYdeU5PHXTLHz0nf+sA8e9azMYMVfVUpmew5bvf8FeVkViZDRYbY5OfV0DxrJKLFW1mGvqMFfVYK1r7BIrlW5FIaFQqRxRYNUqUCgw22xIKgW+EWHoI0LwigrHOy4Kr4QotEEBaIMD8O2fgC7cda5rWZap3nuE7C9+Iefr5TTmF7usWuXjxbCn7yLptstcWuUUVdSx6IGv2ZXqHIH3rosm8NSNs9o8aGc0W/ng153854sNlFQ1uC03IimSW88fy+KZg04ZzOp0xJOi7UhOGfe/tYrftqa73P/Pyyfz8NXT2x04SpZlcr5ayvbbnsBS7Ty4qPL1ZugTd9D/b5d7PEBTZ1g6yLJM8aqNHHz6bUrXbXdZRh8dzqhXHyT2/LM8PggjyzL3v7WK/363xWnfQ1dP44ErPSPkWtuWn9Yd5pH3/nIbXDHQV8cDV07jxgWj0ahbHgQ2W2zc89pK3v91p9O+CYNj+ebJCwkNONGay1JXz75HXyP11U/d9lcDhw9g0AM3EXP+Wae0MLRbLBhLKjBVVGMqr8JQVErt4UzqMnLJOprGlXuavSGFuD1tkCRpBLAR0AP1wDPA6qbti4Ebm4qmAqNlWa476firOYW4bSp3vEg+1LR+APAHzgduBpRAbVM97m1F2sHx4va/JBLM/3wQJaUSpZcOfUQoIROGEzAsBf+BffEflIRXTITHHir5ZbVc+OA37E4rIqqhmmmF6UwszsTLduqJcIVWQ/jM8YRNHuUQs8mJ+PaLb7MPgs1spiGnkPr0HGpTs6nYuo/Stdva7MOr1OsIHjeUsCmjCZ0ympAJwz1ibtqQU0DJ6q3HPo15bUtzICmVBAxNJnjcUHz6xKINDkAbEog2OADZx4tN+3aDt56zz5l92gW2MZmt/LV6D3tf/ITAtevxNbcvB68MmDQaDHovLLICi9WGhIwkyyiaPkrZjixJ1Gj0lOp8qNB50aDW0aDW0KjSYNBoiegfj29SHJEh/kQF+xAZ4ktksC8RwT5EBPtS32giv7SWvNKaE5b5pbVkFVU5mS51lMhgH16+c06Hfct6EtmZhXxxx4sErPqTwBb+35HnTGXYk3eeMFPXUUyV1VTvO0r1vqNU7jlM1c6DDrFaW4/NYGp3nk2PoFCg1GlQ+XijCfBDE+jbtO6L2s8HhUYNSiUKhQK73Y6t0YC1vhFrfSOW2nrMlTVYauux1DdgazD2GMGt8vHCf2A//JpMUf2SE6k5mEb2l0tdBoo6ntjzz2LUqw/iFdNyao0Gg5lrn13CL+udAwLNn5zMRw+ch3c7BkkajRbe+Xk7L321qcVBqrBAb66bN5Lrzx3dJT7hPQVPiLb8slqe/ngtn67c4zRDBhAR7MNb/5jP7PHtt1yz1Naz7aZHyPl6mcv98RfPZcSL/+w0S6/O9lEvWrWRHbc94dZ6LvKcqYx5/ZFWRXZuC+5MlAH+tmgc/77V86L6ZLYczOP+t1ax1UUAQnBYcdxw7mgevGoqwa2Y8S+rbuCyx75n/V5n/+ZLzhzCW/+Y3+JAVuXuQ2y76REqt7vPCurbP4GB/7yBhMvPRVIqqc/IpeZgOtUHUqnec4TK3YdozC1Etrl+H1Vg4Q6OufAIcXs6IUnSfOBzwF0I3VRgrizLTsOArRW3TWWfBf4JuLtDS4GFJ88ee4KWxG1LqP188BvYj+DRgwmZNJLQiSPwjmuff4q1oZH0r5az/vkP8U5vuSMCoIsIJXredKLnTSf8jAke9VU8HlmWacjKp3Tddsdn/c4Wgy24QlIqCRwxgNApo/FP6YM+KuzYRxsadMLImt1iwVBcjqGoDGNRKYaiMiq276dk9dZWhe0/HkVIEIpByVj69aU+Pp6qiEiqrTJ1DWbMVhsWqw2rzY7FZsdstlBU7BDxSYkxRIT4EervRUSwL8OTIhiUGNbhFAhdTVWdgZVb0ln/7R/ol/3O0OJs1HI3ioqTaFSqyfYNJssviCzfELJ9g6nS6k/ps9xWtGolg/uGMyIpkpT4ED5Zvof9ma7NmuZPTualO84hJrTnRAxvKxU1jbzw1Ube+nEbJosNpd3GhJIs5uUcINTofnYsZuEs+l63iNDJo1odMV2WZRpzCynbvIfqvUeOCVp3s4NdhaRSovb3RR8Rik/fWAKG9CdkwgjH3+bvWVFkNRqp2nWIih0HqDmYTl1aNoaCEkyllVjqGnqM+HWFV1wUY954hOh5M1p9TEu+7COSIvn+mYvbLTzrGk289eM2Xvl2M1V1RrflVEoF8yYlc960AZwzPglfL9eWSacLHRFth7JK+WDpLj5custtWr1LzxzKC7ef3epAlq6o3H2IDYvvdJneRx8ZyrgPnibqnGntPn9r6IoAdTajiUP/fo+Dz7zj0lpMqdMy9Mk7Sbn7Go9bef3nyw088t5fTt9fdc5w3rhnXqf0UfalF/P0p+tcDmg1s2BKCk/deAb9YoJbdc79GSUsfugbcoqrnfY9cs107r9iSqvEut1mI+O9bzn4zDstTnaoA/ywNjS6THHWEkLcnuY0RTW+E5gLxABmIB34DnhdlmWXQ61tEbdN5ScAt+AwhY4EjDjE8y/Aa7Isu49A0QHaK25d4RUT4RC6TR+/AX3d+sPIskzFtn1kfPA9OV8vw1rnvuMJUKnRszGyL6YxIznz4jNYPGtoh3xi2ktjfjFFv62ncOV6ildtatH08VRISiX6yFDUfj4YSys6lDbBLklkBoazKyCS/cFRFHr5e0wo+eg1jE6JYvzgWM4Y3Yfxg2K7JYBQS8iyzNHcclZuTee3zalUrd7CWTkHSal2LeSOx6RUobbbUHTz87RaoyPLN4Q0/1B2hMVRoWub+bKft5Zh/SIYlhTB8H4RDO8f6RTsyWK18d/vtvD0J2tdRkr29dLw8DXTueW8sT3uf9wS9QYzr3+/hZe/2UytCz86pd3GOTV5nF94BLnMfVoWJInAEQMJnz6WsGljCJsyGk2gP+Cw7qjac8QR+XXTLso37e5wdPb2otBqUAf4og8PwadPLAHDUggZP4yQSaPQ+HbOYF97MNc1UL55NxVb9zr8hDPyMBSWYKmpw2b0bK7S1uLTL54+V59Hyt+vQuXdvnfIJ8t387eXljlF2I0K8eWHZy7uUDComnojHy/fzVs/bXfZAT4erVrJmWP6snDqAOZM7N8hgdZTaatoq6w18Mv6I3y0fBfbDhW4LRcR5MPr98xl7sTkdrdNlmXS3/manX9/xqXYi79kHqNffxhtUEC762gtXRl9vS49h+23PUHx7xtc7g+fOZ4Jn/4br2jPzlK/+/MO/v7qcqfHxnnTBvDxg+ef0hS4texLL+aZT9fxcwuiduzAaJ69+cw2xWr4ef0RrnvmJ6cAdTqNinf/uYDFMwe1ua02s5nsL37l8PPvUXvUOVhiexHiVtCr8aS4dYVXbCS+SfH49k/ANykB36R46tJyyPzge2oOufZ7acYOHAiKYm1UP/YFRWM/biRQpVRw9rh+XHLmUOZO7N8tvoF2q5WKrXspXLmeohXrqNzZcq44T1Oj1rE/OIr9QVEcDIzEoO4av8EAHx2zxvRl9rh+nDWun5NfSFfRYDCzdk82v21JZ+XWNPKKqxlZlsf8nP3ENlS3eGyVrz/28aMZfMk5TLn0bCRZpmrPYSq27Wv67O/24GVpfiFsC0tgR1gctZoTOyphgd4MT4pgWJOIHd4vgoTIwFb7/WUVVnHHy8v4Y4fr1ByD+4Tx8p3nMHlofIf/js6kqKKOz3/byxvfb3Xrt6jXqvjbBeO46+KJ+KkVpL3zNYeeeQdjaQsitxlJInBYCiofLyp3HMBmbHu+59bUIamUSAoFklKBpFKi0utR+TrMhXXhwfil9CFgWArB44bh2y/e42l3ugtzXQPVe4/QkFNAY34xxqIyjGWV2AxGLAYjZUUlYDCht8lYqmqx1NYjWzs+G6zQqImaO52Ey+YTPXe627gMLbF2dxYXP/Id1fUnzrJ669R88vD5HRJN4MhzvnxzGm/+uJU1u7NPWV6lVDBjZCJThsczsn8kw5MiW2Ui2dNpSbQ1GMxkF1dzNLecDXtz2bA3x61lSjNeOjV3LB7P3y+cgL9P24JRHY+10cDWGx4i58ulTvvUAX6Mfftx4i+a0+7zt5WuzpstyzK5365g113PuMxOoAn0Z+x7TxJ3wdkerferVfu54bkl2E4yLz9rbF++evzCY3nc20NrRG1iVCBP3nAG508b0GpzaFmWee6z9Tzx0RqnfVEhvnz31EWM7EBk7uYgmof+8wElf27ucGwRpU5Lra+GG8uO+QMLcSvoXRwvbvdv3kaYVaL2SCZ1abnUZ+VReziDmgMedfM9JbrwEPpetwj77Jnc/uV2t0mxm/H31jJuUAwRQb6EB3kTEexLeJAPEcE+hPh7YbbYaDRZMBgtNJosNBotGEwW6g1mR5TfeuOxaL+1DUZqGkwYjJZjZrtWm/2YGa/VakelVKDXqfHWqdFr1Xjp1Hhp1fjZLMSVFxFemIdvZiaqzGzwoFlenUrL0YAwjgSGcyQggiIvP4+bsbYVSYJRyVHMHp/EWWP7MaJ/ZKfN+JnMVvakF7P5QB5/bs9g/d4cR6RtWWZ4RT4LsvYT1+B+9tuqVGIZP4bhd17ByEVnnPLFZK6qoWLHAUfnO7eIuqw8Sg6lIdc24BMShDbQH3WAr8N3McAXtb8vmgBfJLUac1UN5qpazJU1mCurMVfVYqyoprG0ErmuvsV6T0aWJIwDU9CcOY3Ic2cycEgfIoN9OuxnJMsy3/x5gPve+I2yate+fpeeOZSnb55FRAv5+boaq83Oyi1pfLJ8Nyu2pDl1cppRKRVcN28k/7xiCpHBJ5qKWhsaSX3jCw49/z7myupOb7MuMhSvmAh8EmPx7R+P/4C+aJPi2ZqdiqRRd0lntLfR3FmXrTamDB6GrayKhpxC6lKzqDmYQX1WHnUZeVg7YD0DDheb2AvOIuHS+YTNGNemNG+pueWc96+vnPLXShI8d8tZ3L5onEf8AQ9klvDWj9v5ctU+t+a1roiPCGBE/0hGJEUwtF8EkSG+hAZ4Exrg5fGo5zabHYPZisFkwWCyYjRZMJqtGMyOdYPJ6vjebMVobt62NG079lksNmx2O3ZZxmaTsdntWCxW8gsLsdpkfP2DMFlsNBgs5JfVuH1uuaL5eXD/lVM7/DxryClg3cLbqNrjHOwyeOxQJn3zMj4JMR2qo610tbhtxlxTx76HXyX19c9dWmL0ufYCRr36oEfdx5ZtOsplj33vlGljaN9wXrxjdpsHZVsjaoP89Nx/xRRuPHd0mwK7NRjM3Pj8L/y49pDTvrEDo/nmyYva/Xss27SLrE+WkL/kj9YN1p6MUoFSp0MbGohPfDS+/eMJGJqCb784SmQzI+ec2VxSiFtB76I1qYAMRaXkfLuCnK+WUbF1b+c0RKEg8uzJ9L1uEdHzZxyLOGy12Xnjh628+NXGNr3IegIam5U+teX0ryklrq6KALOBIIsRX1NjiyawVklBjUZHjUZPpc6bNP9QjgSEU+AdgNzKjlKgrw4/bx0BPjr8vLX4++jw99bi661Fp1GhUipQKxUOISrbycxIRwaCw2OoqjdTVt1Aal4FWYVtM5X21qkZNyiGSUPiGDMgmuT4UGJC/docSbTBYOZQdhmHsko5kFXKrqOF7DxS6PQyG1BVzAWZu0mscx29EEAOCiDp9isZdvulHUq946nOQ2NBCRXb91OxbR+V2/dTsX1/q83bFRo1MQvOYMC91xE8xjPJ7CtrDTz4zh98vHy3y/1+3loeuWY6Ny0c062myun5FXyyYg+fr9zrFF39ZC46YzCPXDOdPtFBLZaz1NaT9s7XFC5bS/mWPZ6JOt6ELiyYxKsW0ufaC/BP6eu0v7s6o57GbrNhLCnHVF7VNJhTg6l5UKeyBlNFdZMZsgmbwYTNYDy2bjUYsRtN2C1WZLuMbLMh2+3INjuy3Y7dagUPzNS2Fl1EKAmXzaffTRfhl5TQqmPKaxq5+JFv2bjP2d/yhnNH8eLtsz0mJCtrDfy8/jA/rT3M6l1ZTmbRbSHQV0dogDdhgd74eWtRKBQoFRJKhQKlsmmpkLBY7TSaLA6B2iRCjSZL03dNYtZsxewm12d3ExHkw2VnD+W6eaNIjOp46rWStdvYsOgOl25EKXdfw7Bn7+6STBMn093Pk5I1W9l85T9d+n/69I1j4hcvEDJumMfqW7Mri0UPfu1k4gsOM+VnbppFQqT7/7fdLvP7tnTeXrLdbfRscNwndywezy3njW3zTH92URUXP/Ide9Od4zBcMXsYr901t80R0GW7nYKlqzn0/HuUb3L9zvYEwixZ0Ktpa57b+sw8cr5eRvaXS1tM8t0eVD5eeMdH4x0fhVdc5LF17/gotNERbMyr4avVh/h1w9E2jV73NCTZjq/ZRIDZQICpEb3NQp3aIWartXoaVJpTzshGhfgyICGUuHB/YsP8Hcum9agQ3zY9MFt6KZZU1rP1UD5bDuTx545M9mWc2of1ZPRaFf1jQ4gO9SXAR+8Q2j4OM0CT2YrZasdgtFBcWUdhueNT2kJqDICY+ioWZexmSJX7QAo+yYkMuu96Ei47t83Rs13RWZ0H2W6nLj2Him37KF2zjbwfV2GuOrWLffgZExh0/42EnzHBI7NDm/bncterK9z+j4f0CeelO9s+Kt5eZFkmLa+C37al88v6I2xwIR5O5pzxSTx23QyG9nMf+VaWZRrzix0DC01m6I0FJUgqFbLN5hBddQ2Ya+raHNlYUiiInD2FvtcvJnredBRq9yZy3d0ZbS2y3U59Vj71Gbk05BbRkFNAQ04hjU3rjfklXZ5iq90oJEfY81b0nSLOmkz/Wy8hat6MU87mmsxWbn1hKV+u2ue0b9boPnz+6KIOmcC6oqrOwPJNqSxZd5hV2zOcBv7+P6PXqjhjVB+uPGcEs8f389jgQtpbX7Ljjqedfu9qPx/Gf/I8sQtneaSe9tATnifmqhq23fwoud+ucNonKZUMeexvDPzXTW2yjmiJbYfyWXj/ly4DsGnUSm5fNI77LpuCn/f/3A5q6o18unIP7yzZ4TalD3RM1AJ8/cd+7nxluVMMCIVC4tmbz2yzVYfNbCbny6Uc/s8Hp3Tp8wRC3Ap6NW0Vt83IskzJ6i0cev59t0EFOgOlXofK1xujSkOlVabULGNUqjEplVgUKiwKBRaFCrNSiUXh+JgVx60fV86oVFOn1lKr0WFTeNZEy5MoFBJhAd6kxIcwcWgc8yclM6yf51IxteWlmF9Wy+9bHT6uf+3IdDlq2pkEGRtYmLWXCSVZuJtDrAwIZs+EKVQMGYqvjw4/Ly1BfvpjKXeOpd4J8mlTAIr2dh7MFhuF5bXkljhS+lisNny8tPh5afD11uLnpXVse2vx1WvAZqX4941kf7WUgp//wtrQssVC0KhBDLz/RmLOO7PDnQarzc57v+zg8Q9WU+MiMBPAqJQorp83isUzB7Ur9UlLNBotrNuTzcqt6fy+Lb1VlgNeOjUXTB/IdfNHMW7giaaAsixjLK2get/RE/ypjcXOPmIdwadPLH2uOZ8+V59/ypQyzfSEzujxyLKMsbiM6gNpVO9PpeZAKtUH0qg5mI6tsX3ps7oMScI3KZ6AockEDkvBOyGaIy9/QtUu13EQfJLi0QUHUr517ymFrldcFEk3XUSf6xahDw9xW06WZf79xQYe+2C1077+scF8/cSFDEgIbdvf1UrqGk2s3JLOxn057EotYn9GSa8eAG4rEUE+DO4TxtThCUweFs+o5CiPBRcCh3XC7nue4+irnzrt80tOZMqSN1xaZ3QlPeV5IssyWZ/9zI7bHsda7/zuCp85nolfvtjivdQWDmaVcvnj33Mkp9zl/rBAbx69dgZjB0bz7s87+PL3fS32WzoqausaTdz16gq++N15oMvfW8tnj1zAmWP7tfp8lrp60t/9liMvf4yhoO2TC+1FiFtBr6a94vZ4Kncf4tDz75H33Uq3iaV7Ola9Hpu/HwT4owwORBUWgiI+BnV8DOrEWDThwahVSlRKBVabnUaj9Zgfb4PRTKPJQoPBTGWtgdKqBjILqsgrraGmwdgpAUFD/L0YlRLF+EExTBgcy+iU6HYLjfa+FE1mKxv357JySxq/b8vgaK7rl4sn8LKYmJN7iFn5R9ym9CnW+/JLwhC2hcUjS60znw0N8CIy2Je4cH/6RAfRNzqIvtGB9I0OIibM/wQz3JauU22DiUPZpRzKKiM9v4K8pvy0uSU1FFfUtek3EBXieyzq8ZDoQGKzUjH8tpbC5Wuxm92/lH37JzDwvutJuHxBh2eqSyrreejdP/n8N/duCH7eWi45cyjXzx/J4D7ti4pZ22BiX3oxO48W8tfOTNbtyWl1p3zMgGiunjOCRTMG4atX05BTQM3hTGoPZzhiBRzOoPZwZqtmwduDd2IMcYtnE7d4NkGjBrd5sKm7O6Pm6lrKt+6lfPMeyjfvoXLHgS7xP24vSr0Or9gIvOOi8IqNwCs2Eu/4KPwH9ydgcBIqrxOvn91qJe3NL9n70Csuo/FrAv0Z9dpDGIvLyf7iV6p2O/vEHY9CrSbuwtkM+Md1BA4f4Lbc96sPcv2zS5xmUr11at755wIumD6wDX91+7BYbRzJKWd3ahG7UovYnVpIdlE15TWNLvO8dhYKhYReo0KvVaPTOpZ6jQqtRoW+aVun+d9Sq3bkWFYoJJQKCYVCQrbbyM7ORq2UGDwwBX8fL7x0akIDvEiMCiQuPKBDQYROhaWuno2X/oPCpc6DFlFzpzPxixc8nmKrPXT38+Rk6jPz2HT5vZRvdjad1UeGMumbVwibMtojdVmsNt7/dSdPfbyWytr2DcR1VNQC7DhSwNVP/eRyRrh/bDDfP30xSbGtSxlkqW/gyEsfceTlT7BU17otpwnyx9pgcOlSowsLZvSbjxJ51qRjLiFWg/F/7iGNRkwV1TTkFtKYV0xjbiENTcvC8lIhbgW9F0+I22aK/tzEvgdepmL7/hNGw3XhwXjFRjZ9IlDpdSeYtxkKS7slJURbUPv54Juc6IhaOjiJ4HHDCB49+FgqCVmW2XGkkO9XH+THtYfIL3X/MOoMVEoFQ/tFMGFwLBMGxzJuUAzRIb6t6nB76qVYWtXApv25bNqfy4Z9uRzNKafR1LGZXZXNxszCVOblHMDb6tofslqj4+eEoWyI6HtCRO2OolIqSIgMoG90EH2igogL86G6OAtfvYqQmCTSCqo5mFnKwewy8ko6R0A14+etZVSMP9OLMohevw6pqtptWe/4aIY9dw/xF83p8Oz+xv253PXKilNGIB0/KIbr549iZNOMiVqlRKNWojluWdtoYm9aEbvTitmTWsSetOIWzcKckGUStXDRgGBmRujxqaqkLi2HurQc6jNysRnc5wb1JJJaReDwAUTOnkLopJGEjB/ers5tV3ZGZbud2iOZlG/efUzM1hzO8OxzV5LQBPqjCfJHG+RYOtYDUPv7oPLSo9TrUOq1KHXaE9YVGvWxaNEoFEhKJWazmS3btyEpFMy4YAH+0e2zVmksKGHn358m7/vfnJusUDDs2bsZcO/11B7JJPPD78n48MdTivyIWRNJ+ce1RJ412WWbth7K58KHvnHpXnHnheN56sZZ3eK/brPZqawzUFbVQFl1A6VVjZRW1dNotGCz27HZZWy2pmXTtlqpOCZOvbTq/wlVjRovnQpdk2DVa9XHBGvzukqp6PAzqDtFW2N+MWvm3UT1XudAQ4MeuJmhT97p8Xyu7aWniVtwDDAdfPptDjzxhtPEh6RUMvy5e0i551qPWaFV1Rl45tN1vP3T9lb7ow/uE8Yt543l4llD2j1IYrfLvPzNJh77YLXLei87aygv33lOq3JS2y0WMt7/jv2Pv4GxxP2Egd+AvkhqFTX7jrrcH3/pPEa9+iC6kJbjTrjjyP79DBh6LK6HELeC3kVHxW1dRi65360k99sVbke+vWIi6Hv9Yvpet8ilyZ7NbMaQX0JDbiENOYXHRG/zpzG3sMUZq+5CUirxGtCX4tBI1hjVbLbpKdX7njLok16rYtKQOGaM6sOMkYkM6RtOYXkdR3PKOJJbTmpuBUdyyjiaW96hIFoRQT6MTI5kZHIUo5KjGJkcRVigc8TC9r4UaxtMpOdXkF5QSXpeBWn5laTlV5CRX+mUHqOtKOx2JpZksiB7P0Em19fAqFSxInYgv8cOwKzs+lRQ3YXKZmNiSSazcw8RbnQfWCl43DBGvnQ/oRNHdqg+q83Ouz/v4KWvN1FQ1jWDNnqLmdiGKuLqq0i21NPfUodPZQV4MBWPOsCP4DFDCB47BP/B/UGWsRlNGApKyPr059angmrKjZtwyVziL52HV1TrZrE7szNqqa1vmpVtErNb9rY4+t8a1AF++CQ0xUSIj8I7LupYTASvuCi0IYEe86UDz1+fguVr2XHb4zRkO+c+jbvwHMZ/+Awqby+sBiO5364g9Y0vqNy+v8VzBgzpT8o91xJ/yVynIEI5xdVc/Mi37ElzDiYzZVg8nz1yAeE9KAp5T6W7RFv1gVRWz77eyRRUoVEz7oOnSbx8QZe0o7X0RHHbTNmmXWy86C4a853vhZiFsxj/0bNoAvzafX6zxUZuSTWF5XUUlNWyJ72Yn9cdcZsnWqmQOHdKCreeN5ZJQ+M6JK4Ly+u4/tklrN7lnGPW10vDf++ay8WzhpzyPLIsk//TKvb860XqUrPdlgubOoa4i+Zw+MUPacjMc9qviwhl7NuPEbOgY/7faWlp9O/fv3lTiFtB76Kt4la226nafYjCFevIX/JHm3K7SgoFUfOm0++mi4maPaXVI56y3Y6xtAJzVS2WugastfVYTvo0R960NZtcGE3/Wz8uOqetuYzR7MiZ6MFUPQB1ai2HAyI4GBTB4cAIKnSOzsvgPmHMndifmaP6MG5gTKsCPsmyTGF5HbuOFrHzaEHTsrDdZjcAseH+JEYGEBboQ1igN+GB3gT4aMjPSsVPr2TU6DEoVepj6ZOq64xU1RmorjdSVtVw7OVRWF5HeU0nRK+WZUZX5LEoZz+hddWuiyiVyHNmobj8QtQhgcdmQKw2O1abDYvVjsFkobbRRF2DidoGE2XVjRRV1Dk+5XXdEnzFW6d2mNDp1dQ3mo+1r97Qvgi9kmxnVFkec3IPEl/v3je1IGUQZRcsJCg5gdAAb7x0Grz1jvRVXjo13noN3jo1XjoNOo0KtUqBRuWYfT0+yrXVZue3rWm8/8tOftuW7rFJP53VQv+aUhLqKoitdwjaEGPLAcXailKnJWD4AILHDmkStEPx7Rd/wjNIlmXS3/2G3f943qWvWKuQJCLOmEDCFQuIPW8Wal/34sVTnVGbyUzNwTQqdx2iYts+x6zswbR2z8qqvL3wH9QP/8FJBAzuT8CQ/vgPTkIXHuKxGZbW0BmddUt9A1uu/hd5PzjP4gYM6c/UJW/i0yf22HcV2/eR9tZX5Hy1rMUcx/qoMFLuvoZ+N110QsoTg8nC319Zwacr9zgdExniy1ePL3byExecSHeIttJ121m74FanASFtcABTfnrDY+a0nqQni1sAY1klmy77B8WrNjrt8+kbx5Tv/9uiuf/xyLLMgcxS/tqZyepdWazfm0NjK+N/+Hlreeiqadx6/liUHbCeqKw18OaPW3njh20uB/PHDIjmk4fOb1WE7tINO9hz3wsuTbgBkCRiFpzBwH/e4LiOl97j8h2VeOVCRr78L7RBAW39c5wQ4lbQq2mNuDVVVFH0+0YKV6yj+LcN7cundRLB44Yx/uNnuzUIg2y3Y66qwVBcjrGkHGNJxbFlfVa+I9/v0awWOzWnwhIeRuSsiQw4/wzCZ47v0OgkOB7qOcXVbD9cyJaDeWw5kMfe9GK3uT57IpIEceEB9I12+EvFhTuiPYdlZWB4+1Pq9zrnDmwmdtHZDHvm7lan6TiZ2gYTaXnl7M0oYV9aMUdyy8kpqqaowrOC19dLQ1y4PwPiQxmVEs20EQkM7Rvu8mVqs9lpMDrEeFWtgUPZZexNK2JfRgl704pPPYggywyqKmZezn7617gOlGSRFPwVnczS+EE0qk9tGtWMQiE1CV2H4NXr1PjqtahVCmobTe0aKNDYrPSrKSOlupgBVSXE11ei9NC7TB3gh/+AvvgN6NO07Iv/gL54xUe1OKvYkFPA1usfoviPTS73R8yaeCxicGtR6nXEnDeLxMvPJfyMCU4ze+3pjFoNRqr3HaVq10Eqdx2ictchavanYre0z7JFoVETNGowIROGEzJhOEEjB+GdEN0jTC07LTq5LHPo2XfY+9ArTgMAmkB/Jn3zMpFnTjrhe1NFFWlvf03qa5+3aCqoDQ4g+a6r6f+3y4+ZqsuyzIdLd3H3ayud0uWoVQoeu24mdy4e36GOdmdRWWsgp7ia/NJaCspqyS+roaCsjvzSGkqaTK61TW4H6qalVq1Eq1EREeRDdKgfMWF+xIT6Na37t9n0s6tFW96Pv7Px0nucfBh9+ycwfdm7+PbrmmjxbaWni1twBOY68OSbHHjiDad7T6nTMvqNR+h77SKXx+aX1bJ6ZyZ/7shkza6sY7+/9jIwIZTHr5/J3In92zRoV1RRx3+/28J7P+9wGZhKkuC+yybz4FXTThmluzYtmz33/pv8n/90WyZqzjSGP3cP/oP7u31u6SJCGff+U0TPnd7qv+NUCHEr6NUcL263fvUT4QoNhoJSGgtKMBSWUpeeQ+WOA62eBdCFBRO76Gz8UvqQ9ekSx7FuUOq0DH36LpLvvNKj5myepKSijq+++Is/l2xAzisgqqGGhLpKYuurUNK2+09SKgmZMJzI2VOIOmcqgcMHeKQTWW8ws+NwAZsP5LH5QB7bDuW7jXTblWjVSpJig0mOC3F84h3LpJjgEzo45Vv2sPfBlyn5a4vbc4VNH8vwZ+8hZPzwFuuUZZniynqyi6rJLqomp7iK7KJqMgoqSc+vPGV+1M7E10vDkL7hDO0XwdCm5cCEUPRa95295tn7venF7EsvZm96CYezHUGrnAY0ZJkR5fksytxNhMF13tx6lYYliUNZE5XU6qBbHUVht9OnrpyBlcUMrCmhT205yg4EnlPqdfj2i8OnXzy+SfH4JiXgmxSPX3Jim2cXZVkm471v2fWP510GHfKKiWDs+08RdfYUAAwl5Q4z3407Kdu0m8odB1rlMiEpFHjFReLTJ/bYRxMbzv6SfBQhAUybOg21JGE3OSxKjKWVxwbaGrILqEvPoT4jj4bcwg75yXrFRDQJ2RGETBhO4IiBHkmT1Rl0dme9YPlaNl16j1OOaUmhYPTrD5N0y6VOx9iMJrI+/4UjL35I7ZFMt+dW+/vS//bLSb7zymM+b9sPF3DJo9+5NO0fOzCad+47l5T4zomm3FpyS2rYuC+HDXtzWb8vh7S8jg9kn0ygr46YUH+iQ32JCfMnJsyP6BCHCA4P8sHHS4OP3vFRq5RufweyLFNvMFPbZJ1T22iitt5IbaOZ+kYTJosNq82OxWrDZpfRqpXoNCrHR6smyFdHsL8XQf5ehPh7odOoSH3jC3bc/qTTPRYyYQTTfn2rQ3nSO5veIG6bKVy5js2X34upotppX9/rFpH03H3sy61k59FCdh4tZNfRIrcmxh1l/KAYnrzxjFOmuMsprualrzbxyYrdbgd0o0P9+OiBhUwZntDiuawNjRx85h0Ov/CB2/dH0JghjPj3vYRPH4e10cCWax8g95vlLstNXfJGq91hWosQt4JezfHi9r8kEkzbHeq1oUHEXnAW8ReeQ+jUMScI1cpdB0l/5xuyv/jVbUqT0MmjGP/Rsz1mRNRul1m9K5MPlu5i6cajWKzOHXGNzUp8XSV9astJaawipbESTW3bfNp04SHHhG7kWZPQBPp7rP0ZBce/GArZk1bcarOdtiBJEB8RQFJMMH1jgkiKCSYpJoik2GBiw/zdzkbIskzxqo0cfPYdStdsc3v+wJGDGP7s3UScOQlJkpBlmYpaA3klNQ4BW1xFTlE12cXNYra601Jg+Og1hPkp8dUpqTIqyfVAECmlQqJ/bAhD+/1P9A5MDCMy2KdFkWYyW0nNq+BQdhmHskqPLbOLq5GsVmYUpnFu9n63QbhyfQL5PGkMGf6d05n2tpgYVFnEsIoCBlcW4uOmHS2hUKvxH5xE4PAUAocPwH9wEn79E9FHhXlkUKg2LZttNz7s9vfX97pFjHjx/haDRdlMZso27CT7i1/I/f43lwK5u1Bo1ASOHETIhOGENgna1qYp6gl0RWe9Ni2b9Qtvc5k3csjjtzP44dtc3oey3U7BsjUceeFDStdtd3t+lbcXSbdcTMo916KPCKWsuoErn/iBNbuzncpq1UoevmY6d144ocuCTZVU1rNicxrr9+awYV+OR55pnkSjVuKtU6PEhiRJqNQaLFY7JouVBqPFc5GfZZnLig4xM3WP0y6vGRMY9fF/iI4JOcFNo6fRm8QtQENuIRsu/DsVW50j8mf5BvHmoKlU6pxjhLSEn7eW6BA/okJ9T1j6+Wh59+cdbGwhV/qIpEiC/fV4NbnpeOs0eOnU+Og1ZBVV8e2fB1q0kFs8cxCv3DmHID/3173Zr3bn35+hMa/IZRmfvnEMe+Yu4hafgyRJNOQVsW7hbS7TmiVcfi5j330Sld6zObRBiFtBL6e94tY3KYHIc6YQM38mYdPHolC17ENqqasn+8ulHH7hQ+rTc5z2K730DH/+H/S/9dJuM4krqqjjsxV7+Gj5brKLqlssq1IqmD3u/9g76/g27vuNv0/MlpmZHYccZmqgTZm7wopbtw466OC3dszQUbeV1q3M3CYNNMwMDtiOmdmSxXS/P2S7SSzZsmMnTpfn9brXnXSn08k++D4feJ4svrBsIlfMykYhl2KtqqPp0100rd9B8/odAaOSwSBIJETOnEjC5fP9Wd3JBSP6d/B6fZysaaO4ooXmDgstnRZaOq20dFppau+mtqkDq8OLUinvKzFTyqWE69QY9SqMehWRBg0JUfq+KSkmjPSEcFQh9A/3HYfTRe07azn5p+cG7tdOSsB047VUZuTQ0GGlsb2bhrbR75eVyyRkJPjJeS9Jz06KJDs5Er1Kwrp16wD/4MHpFSgub+7JqjZztLyZY1Ut/UoPhwONSk5mQgSZSRFkJUWQmdAzT4ogxqgNGjTweH20dPr/Xo2VjbQ/+RKyj9YgBOkt35OYxWvpEzHJzvHhKIokWk1M6KhnQns9WaY2JEOobHALEpqi41GPzyFv8TSmXjGHsIKMfqW8IwGf282JPz7H0Z89EdA+QZMUx/RnfkHCivlD2q/HZqf+w41Uvvg+jZ9sHfF+/sGgy0oloqiAyBkT/SXGkwuQqkIvQR9rOF+DdXe3xd+H+87afuuyH7qdqX97dMB7cdvuwxz71b+o/7C/VUwvpColmQ/cTP4j96FMiOVnz23kT69uD5iEn5qXwNPfv2bUPHGrGjt5f+tJPth2kp3FtWPdqGDUIfX5uKt0N3Ob+mfiN8Vn8XL2NHwSCSqFjLR4I+nx4aTFh5Oe4F/OSPC/Hk07olAwlsmt0+WhuqmLkpp2Tta0UlLdxsmaNsqrmrn86G4uq++v+NstU/JUwRxORMQH3W9qnJElUzJYPDWD+ZNSiTYGJ8OiKLJm9yl+/MyGQdX/Q4VEInDz4kK++4U5jEuPGXBbc2kl+77+S5rWbgu4XhkVTuGPHyLry7f0Pfdadxxg6/Vf798KIQhM/v0jI6o0fTYukdtLuKgRKrmVqlXELp7pzzKumIc+M2VY3+ex2Tn8oz/7zdADnL+xi2Yw7amfD7uncqjwen2s31fOcx8f5OPtJYP2ruanRnP3ysncetn4gMrDvRB9PjoPn6Rp/Q6a1u2gdeu+IfXuqmIiiVs+l4QV84iZP21UMy52u501a9bg9oosXrwEpUqF1+vDJ4r4fGLf3HvasiiKuD1enG4vTpcHl8eLq2fZ6fa/b3O4sNhdWGwuHDX1aD7dTOSuXSiswbNbHQo1H6RNYHtcxoja+pyO3mxzVmIEWb3kNSmCrKRIUmKDZ5tDGTy4PV5Kato42kN6j5Y3c+RU84iKb0kkAhF6NZFhGqKMGiLDNET3LBv1amQ9PpESQUAQQNrcgvKF15DuCJyhdCmVHJgxj10Z42i3OGk323C6BidmepeDgs5GCjqbKOhsCqpqHQheBCoNkZw0xnIyPI5Thijcpylex4ZrWTk7l6vm5rKwKH1IAZSB0LbnCHseeJSuIPYJoWRrQ4GjtYPq11dR9eL7tO85ck776gdBwJCXQURRAeFF4/zzyQVjwmtzJHFerZJEkaM//bu/F/AspNxyBbNe+N2ggZbOQyc49usnqXlrTdDScYlcTvrd1zHuB1/iiFXky7//gFN1/e2wFHIpP7xzHl++dhrh+nP73aIocrS8mQ+3l/DB1pMcKR/awF4iEYiP1PvLiE8rJ06I0iOTSnC6vbjd3s+eAW4PVrurT3ywrtXfr9vZfX6suoYCpcfNg8e3MaGjod+699Im8GFqof+BEQLiInR+8pvgJ7zp8eGk9czjInSjnvW9kOTW5xNp6bJS1dhJZYO/HaiyoYvKxk4qGzupbzUPGESZ3lzF3SW7UPrOfO74EHgnfSKrUwr8qvR6FQuL0llclMGSqRkhiTUFOtY3NhTzs+c2DprECAa5TMKdyyfxndtmk5E4sNWOx2qj+FdPcvKPzwXURhBkMvIevovCxx5CbvhMgLDmrU/Ycccj/QKwcoOO2a8+TuIVC4Z17KHiErm9hIsap5Pbf6jySE5OQZ0QgzoxBk1CDOrEWIyFOUTPnTKiWYCWLXvZefcPsFb2v14EmYzsB2+l8McPoYoenkfXYKhvNfNCT5Z2MI9SlULGjYvGce+VRcwclzSsSJnHZqdl8x4aVm+lYfWWgNnrgaBJSSB69mSi5hQRPXsyxgm5SGQyPF4fNocbq8OFzeHuW+402+kw2+no7pmb7LSbbXRZHFjsLqx2F1aHG5vdhdXhwmp3D7GDeHBE2i0UtdVS1FZLlqmVgahql0LNmuR8NiZkn0FyhguFXEpKbBhpcUbS4sNJizf2ZWGHmm3uxXAHD719s36i6++bPVrRzKm69vOaNcntbOb2sr0k2gKf77VaI29nTKJDqcEjkeKWSPFIJLglUtyCFAki2aZWP6HtaCLFGlyhORA6o2M4GhbHAXUEZWExOGShZTp0agXLpmdxzfw8rp6bN6z/ndti5cijf6H07y/181sEvzfwtCd/OuRsbShwdZmxVNRiKa/xzyvq6C6vobu8BltNI5x1PBK5HGVMBKrYKFQxEagTYtBnpfr7jDNT0OeknaHI+3nFhRisB+u5jFs6h3nv/D2kv7vpRDnHfvMU1a98FDR7L0ilpH7hSjK/cx+Pb6/m72/tCngvUMilrJydwx3LJ7J0WuagAjW96Oy28+m+CtbtKWft3lM0tYeuNRBhUDNnQgpzxqcwd2IqEzJjQ/7egWCxu6jvIbp9AlUtZurb/PO6FtM5aUVoVXL0WiVhWhU6jQJlj9+2XOoP9rncXhwuD06XF4vDhbOlnbt2rCa9+8zggg+BF3KmszUh61x/ch9UChnpPdnetPjwvuXeLPBIZH1H83qxO93UtZipae6ittlMbYvJPzWbqGk2UddqPueKpURLF189tiWgXoRv1jQK//lzxo9PO2fhNVEUcbm9dHY7+M+qAzzx1u6QHShUChn3XlnEt26dTVL0wOKgoihS+85aDnzrN0FLkGMXzWDqEz8mrODMc63kby+w/+Ff97sP6XPSmP/+P8+LEOslcnsJFzXO1ef2XOC2WDn0/T9S9s9XAq6XG3QU/OBL5D78xRHpKei1MvnPxwdZvats0H6dwowY7r2yiFsvGx9S9NxkcdDQ1k1TezeN7ZYe6xkLTe3dtHRasTvdOF1eHG4P6rY20uqryGqsIbu9EYVvaA8Gh1RGjT6SZpWOFrWOFrWeVrWOFpUeu/z8C8QIokiMvZsMcxvp3e1km1pJGcCephfNaj2fJBewIy4djyT0AZQg+MUbTievaXFGUuP9rxMi9SMeKR/pwYPF7uJYZQtHesqaj5Q3UVzRMiq90b2Q+nwsri/hmqojqL2j05vcC5dEyvHwOI5EJHA0MpEOlZbFU9K5fkEBWrWCfScb2HuijkNlTSEPjCIMam5fNoH7rppCbkrUoNuLokjDx5vY+9DPsdX0z84IEgk537iTCb/45nknjHa7nTWrViOarSy6bAna8DCkKuWgLR7/K7hQmajq11ex887v9cuyRE6fwIKPn+oTiBoM3eU1HP/t01Q+/15wNWtBIPW2lXi/cCNfe/3AgAJOMeFabl5SyO3LJpAcE9YnptRtc/Ytl9W2s3bPKfacqA+5H1WnVrB0eiYLJ6czd0IKeanRF6y31OP1YbW7+gKwFruLDpOFLdt3AzBj+hQMWg0ymRSdWoFBq8SgVaLXKIfUp9xdXsPGFff3CzKLCgWNX76fk/Gp1LWaqR0h4jYY4iJ1fsLbQ3ozEiJITwgnPSGc2HBtSAH1cwm+tveoYtc0+UlrTbN/Xtczb+0aBdu/06BVyclNiWJigoGZq95Htmd/v20MuenMe/cfhOUHJnZmq5O6FlNfpcBnCt89lQNmOzane0R6tQ1aJREGNREGDVFh/nmEQU1UmH8ebupC8uRzuHYdCPh5dUIMRY//kJSbLz/jfyv6fBz6wR858Yd/9/tM/PK5zHn18RHTZhkMl8jtJVzUuJDkthdN63ew674fBRx8gr8HbsIvHyb9zmuG1Yda3dTF86sO8vzqQzS0BVaR7fsulZybFxdyz8rJTMtP7PdQ8flE6lrNlFS3UlLTTklNW9/UMkxpernXQ46phfHtDYzvaAiqdBsqumVKuhVKHFI5Tqnss0kiwyWV4RMEBFHk7MelgEhv+lboWTh9G+G0+40AqLxujE47Rpcdo9PWr6RoIJw0xrIxIZv90clnqPYKAn0lt/FReuIj9af1+foFIuIj9cRH6kYkmzAUnI/Bts8n0tje3afufKqunfKGTsrrOiiv7xgxsawwp52bKg4wq7lqRPbXi3alhiORiRyOTOSkMTZoFj41zsiXrpnKFy+fhE6t4NCpJlbvLOXDbSUcrwpsZ3Q25k1M5b6rpnDtvLyAvtHNG3dx5LG/0ro98ADDOCGXGc/+kshpE0L/gSOIsdwjNxZwIf8+jeu2s/W6r/UTQTTkZbB43X+G1CZirWngxB/+zaln3gjY4w3+TG7KndewJmsSf9pQOnJCSUEQFaZh5ewcrpmXx6IpGSNW9j8aGOnzoGN/MZuu+FI/S0NFhJGFHz/VT5Hf5/Mr8Fc2dlLV0ElFg7/UtrLBr8Q/2gr8WpW8j+j2ljtnJISTkRhBSmxY33NwIFXplk6rn7w2m/pIbE1zF9VNJqqbu0Y1oHo6osI05KZGkdfjnuCfR5MUbegLqIg+H8d/+3RAyxuZVkPuXx6ls6iIE9WtnKjyTyer20a09We4UHg9XFldzPLaE8jE/hVCXkHCocIiyhYswhBlJNKgITJMjUGnQoWI9p/PIN3c347OcPOVxD72TWQKOVKJgEQiIJVIkEoEpFL/XBA+Wz59nUQQzthO2tO2NBgukdtLuKgxFsgtgNtsofhX/6Lkry8EHQCEjcsm5ZbLSbxykd9GZ4BoptvjZdXOMp77aD/r9pYPWv45KTuOe68s4pYl4zFo/eXXTpeHY5UtHO4pJT1c1khxRQsW+9CVX/sgiih8XpReT98kFX19BNQhlaN32SnsbKSwo5FsU2tQxduLDR6Vis6ZM7BftghFZmofiY0M80c8I8M0GHWqMen3CBeejPh8Is2dFlo7rbSbbLSabLR12WjvmbearJgsDn9PdM/2PtHfH+3zicgcdiK7Oom3mYgydxLW0Ya+oQGZydQv0BEqZDoNMQtnEL90NrGXzaZBbWDVrjJW7Shl9/G6QQfpKoWMW5YU8uB105iU7RcOOVXXzofbS/hwWwm7jg0ueBNpUHPHioncf9UUspIiad2+nyOP/ZXmjbsDbi9VKSn8ydfI/849SOQXTgTmQp9PFxp2p5uSmjZOVLVS2+z3T61vM9PY1o3V4cZqd2G22HB7fUil0r7zoPd06B3/9L3f+/q07xhsm7PXg18sUCGXkmnp4IE9a9C6ziyVtRjC2HXXvciS4tFrlH3Zw7gInX+K1BMXqcOoU53xjLI3tnDiT/+h7F+v4rUFLoOUyOXob7qCt+Jyeedo6BUNoSA1zsiVc3K5Zm4us8annDdF5nPFSF4nDWu2su3Gb+CxnEmEtKmJLPzkmWGVe1rtLqqbuk4jvV3+3tMeAjyaAohSiUBybBjp8eGkxOpxd7fi84mowmKpb7P0EdrRchA4G3KZhNQ4Y18WOq2n9Do9IZy0OCNhutAq8ERR5Nhb6zj6wP8hmvoH+z9NyOGNrKIhVXuNKkSRKW213HJqP5FBtCdOGGN5OXsajdr+mVe1x8VDxVvI7+rfD/9O+kQ+ThkXcu93qPAT5F5tDqFv94IgIABeh4muTb/r3fwSub2Eiwtjhdz2wlpdz+FH/0LVSx8MuJ06MZbElQtJuHIhcUtmIdP4H3iVDZ385+MDvPjJ4UEjqjq1gluWFHLvlUXkpkRx+FQTB0sbOVjayOFTTZysbkN0u1F5Pai8bpReDyrPacted8/kQeXpfe+s9R4Pyp5tlF4PCp9nwN7TXjglUhxSORaZgk6VvwdS5XUTZbcS5Rw7diODQRlpJPGaJSRfv4y4JbMuqbeOMkRRxNHchvlEOabj5ZhOlGPumeyNoWVEB4IglRI5fQJxS2cTt3Q2UTMmBiWIbSYba3aVsWpnGev2nqLbNnCQZua4JB64eirXzs/v60Fr7rCwamcpb244xsYDlQN+Pr27nS+Zyok5VRZ0m/MtWDcQLobzaaRgd7o5UNrInuN17DleT3FFMxUNnaOeoTxXxFlNfPvIhn4D1g6Fmj9NXEJTgIFqL5RyKXE9lSdZSRFkJUaQmRRJmkaC7+2PqPzXK0Gto6QqJSkP3ELxtFm8tKuSPcfrh3zsKoWM+ZNSWTY9i2XTs8hKihg1ZdXRxEhdJ+X/fpM9X/5Jvz5o48Q8Fq56esR9QuGzShx/1vczgaWKBn8WuHmY1V4XCuF6FckxYSTH9kwxPVOsgeSYMOIidEMKTtsc7r5AQHl9JyXVbRyvauFkdRtdFgeRdgsPHdtCaoAWpwp9JE8WzKVdrQuw56FBLpP0ZcAF6LtOei8XUSRoUiPWZub2sr2M62wKuL5Toeb1rCL2RqcGJKhGp42Hj2wk2dp1xvteBJ7PncH2+NHvrw0E0WHCuevx3peXyO0lXFwYa+S2Fx0HjnHwkd/TvGHXoNtKVErEhDga3VDnELHIFFjkSqxyJTaZAonoQ+7zIvP558nhGtKitKgRMbWZsLSbcHdbe0hoLyH1k1N5gNKSCw65DFlMNFKjAblOjeDx4m5tx1HX1E+c5nxDFRdN1IwJRE6f4Be/mlP0uekhHGtkxOtwYjp+is5DJ+g8dJLOQycwFZfh6hwlr0qplNhFM8j9+h0krFx4hp/1YHC4PLy5oZh/vbOXg2WBxTV6EaZVcutl47nnyiImZn1W/lle38FzHx3gxU8O9fWACaJIlqmV5bUnmNwe/NmrTU1k/M+/4W9tGCMD/LF2Po0kLHYXO47WsOVQFZsPVnGorAmPdwzeS0NAuMPGt498SoLtTB9zk1zF4xMXU6cbumIrQLpOxrVNpRQc3ockSE+uTKsh9+G7UNxyLa/vqeSVdUfPEEAUBH+QVq/x952G6ZRML0hi2bRM5k5MRa28sPY0I4FzvU5EUeToT/5G8S/+2W9d7OKZzHvniQumNG61u6hq6qLytKxvZUOHn/w2dY16r+/pkAgCUUZNjzK2gdQ4f0Y4OymS1HgjSTEG9JrBg9OiKGJzuOnottPV7aCzV9TSbKe2xeQv527qCpncy70ebi/bx7ym8n7rrDIFz+bP5khkYt970UYNidEGkqINJEYbSIzxL8eEa9Goejxs1QrUSjlalRyNSh5Si5Pb4+37He1mG21NnZifeRnpux8HtNrzCgLrkvP5MKUwqHhivNXEtwIEzxwSGf8aN4/iyIRBj2u0cIncXsJFjbFKbqFHDGb1Fg597w+YjgXPxlyC3zooavZkDPkZqONjUEYa8TqceCw2PFZ7z9yGx+b4rAavpxzF4/FQV++/byUnpyCTy/rWnz4XBOG090CmVqGKj/araifEoE1LQp0QM2bIw0jjQpIRj91Bx/5i2ncf6SOz5pMViJ6RKzdTJ8biaGwNqCZ8NrSpiWR/5VYy7rsxZIEd8F/Te07U8+S7e3l70zHcnoG/qygnnrtXTubmxYV9JW0Op5sPXljDoaffIv7o4aBlYABWrZ7or97Jlb94EJlybFUNfJ7IrdfrY39JA+v3lrN+XwV7jtcNaqt2MUHvcvDtwxv6KYRbZQoen7CYKkPksPdtcNq5ouYYCxvKggZT5WF68r97L9lfv5M2l4ggCOg1CrQqxQUTfzpfOJfrxOtyseeBx6h84b1+61JvXcnM//4WqfL8CzCejV4f+j3H6zhY6m9/Kq5oHrTa5XxBp1ag1yrRnBYsEUWxX3m/w+mho9s+KqR8TmM5d5TtDSi+qbjzRib87BukJEaOev94SCrIi2cy9Ykfo8/NwGR10G6y0W6202Gy0d7jXOHYfZD4fz6FzHGmRZZNpeHNJVdTrY/E6fLgcHnweH14fT68PrHPpnG06d8lcnsJFzXGMrnthc/rpWXTHuo/3EjFO+tw1wYWnrpYIchkI0pSwB/xDy8qIHL6BCKnjSdy2ni06YFtjD5Pg+zRgMdmx9HSjrm2kZ1rPwWnm1lXX05M0bi+cviRhq2+mbYdB2jdcZC2HQfpPHgiuOLqECBIpeizUjAUZBGWn4khP4Ow/Ez0uenIdVocrR3Uf/ApNW+vpXn9zkG/U6JUkHrLFWQ/dDtR04cmzNTUYeE/Hx3gmQ/30ziI0JtaKeML42NZbG5AvnUn3Sf6R/FPh0muYlXqODbFZ+ORSpmQGct3vjCHGxYUjJme7ov9uqttMfnJ7N4KNh6oGJaPqSBAWnw4WYkRJMX4My3xkXrCdCpkgo/io4eQSyXMnDkDpVLZ1xt+dtlg3+sz9j3wNoHWi6Lfz9vV49t6un+rva0T5/d+jqT0zHPPrVCy4bpbOKqKoKmje9h+ruEOK1dWFzO3qRxZkLGdMtJIwQ++RPZXvzBq956xhuFeJy5TN9tu/AZN6/sL9BR8/wEm/vrbwxKoHAm0dlnZe6K+r0x/38n6MUNkxxI0Kjl5KVHkp0WTlxZNjrsbz0//iKOytt+2MQumM+e1x1HHRY/a8ZhLKtj39V/StG57wPXqxFiKHv8BKTddPmCQv+L5d9l9/6P9xn367DQWffIsuozkQY+l917l9fpJr0/8bPlsIuzz9V/n61nu1eg4XX9AFEVqaqq46fJ5vV93idxewsWFsU5uzVYnu4/VsuFAJe9sOk5NUxdxNjMT2+uZ0F5PtqkV6Yg7tAaHTKtBptMg02uR67XIdBr/XK9F3vN+73u962V6nX+dToNMq/5sH1o1UrUKQSLB63L5s6vdVty9824rtpoGuorLMBWX0VVchqNp+H2TMr0WTXIcCoMeiUqBVKlAolKCQkZTezuCUk5GYT6ayHDkRgPyMD0SqQSvy43P6cJjc+DuMuPq6sbdZcZtseFzuvA6nHgdTgRBQKJSIu2ZFOEG1PHRft/k+GjUCbGo46NRRoVfsEHFYLDWNtK6/QBdR0r6pmDRWQQBXUYyxsJswgqzCSvMwTguC31uOlJF6NkAURTpLq2keeNuWjbvpXXHwaDK4aFCqlZhyE3HkJ9JWEGmf56fiS4rJeRjc3WZqf9oI7Vvr6Xxk614HQN7UEZMLST1liuImDKO8MkFKIwD+wD2wu3x8uH2Ev778UHW7/OLv0l8PuLsZlK7O0ixdJJlaiWjO7hNSi+sCiUfJxWwMTEHVwCl5szECL5z22y+sHRCQIXl84mLjdxa7S62Hq5m/b4K1u8tp6SmbUifl0gECtNjmF6QxNS8BAozY8lLiUKrDnw+jsW/j9tsYdOVX6Z1674z3pdq1Cx4/5/EXTYbh8tDc4ffCq6p3S/qU17fQVltO6fqO6hrMQfZux9R9m6uripmVnMlkiDPNkVsFBN+8jWy7r/xgoqinQ8M5zyw1TWx6YoH6Dpaesb7gkTC1CceI/srXxiVYw2GhrZuNh+sZNOBKrYdqaaiYWge4YEQE64lOzmSrMQIUuOMxEWoaaouxesTiU7KprHD6ldDbuqiuqmLxvbu8+qrPhTEhmtJjTeSkxxFXmoUBWnR5KdFkxJr7FeZ4DZb2HXf/1H71pp++1FGRzDj2V+SdPWSET0+j9VG8S//xck//SdgwFeQycj79t0UPvbVAS3lBiqRj5wxkQUfPTmkSqjRxCW15Eu4qDHWyG1DWzc7jtaw42gtO47WcLSieUDREY3bSXp3OwaXA63bhc7jROd2onU70budqLxuvIIEt0SKRyLBI0j9y1IpujAt4THhRMdHkpASQ0paHJpwfRDiqkWqVQ+pz3A04GjtwHSsjK4jJbTuOEjr1n3YG1ou6DENFYJMhjouCnVSHJrEWDRJsWiS4vyve5cTYoZEEIcLe3MbTeu2+4nlpj1YKvpHhIcKQSbDkJPWQ3izMRbmEDYuC11mChKpFFEUsVTU0rxxN80bd9Gyac85/Q91WamET8ojfFI+4RPzCBuXhTY1cUQDCG6LlZo3P6H0iZfpPHAstOPKSCa8qICIonGEFxVgHJcNgoDP5cLrdOHrCZr4XG68ThfWqnqqtx6gausBJFW1KIbgwyumJJFz3w3kfOULvLKtlD+/vvOM3sSzER+l5+GbZ3HvlUXogpCr0cZYJG+nw+cTOVrRzLq95Xy6t5wdxbVDKjeUyyRMzUtkweQ05k1MZXpB0pD+1mP17+Ox2dly7UP9sjcShZw5r/+F5GsvG/DzdqebioZOSmvaOXzKL2B4oKSxn5VJnNXENVVHmd5aHWRP0GkwcuqyZaiXzCUzOarPIiYp2jBmKhTOFUM9DzqPnGTTFV/CXn+m8qxUo2bu638m8cpFo3asvegw29lyqIpNB6vYdKByyIGg02HUqSjMiKEwM5bxGbEUpEeTmxJFuP7Mv8NgfyeX20tdi4nGDgtN7RaaOyw0tXfT1NG7bKGl04rZ5hwxayBBgHC9GqNORbhBTVyEjrT4cNLjjaTF+5WUU+OMQQNcwSCKIqV/f5ED3/ldwKq3zPtupOjPP0SuPzexKVEUqXlzNQe/+/vgJchLZjH1748F9d/thdfpYvf9Pwoolpp8/TJmvfj7MVWNcYncXsJFjfNJbr1eH+1mO43t3dT2moS3mKltMVHb7DcOH8yHdjiQSgTy06Ipyklgck48k3PjGZ8R26fIerHB63TRvGEnrdsP0LbrMO27j+CxXFyqi6FAHqZHGRWOMtKIMiocRaSxb1kZaUQREYYywj/vXZbpBza8d1usdB0+SeOabTSs2kzH/tCI2khAqlJiyMvA2d4VPBs8AASJhLDxOUROLSR8cgHhk/IwTsg95wf4UCCKIu27D1P6j5epeWM1Ptf58UcMhHalht0xaeyOTaNOawRBIDclitnjk5men0SH2cYLnxyipCZ4xjfCoOah66fz4HXTiTCc34HFWCRvJouD9fsqWL2zlPV7y4es5pqfGs1l0zK4bFomc8anDHnQejrG4t+nF16Hk223PEz9BxvOeF+QSJjx71+Rcff1Q9qfKIqcqGrj/W0n2Ha4huKK5j7f9CRLJ9dWHhlQMK1KF8HbGZM4HuG301LIpaTFGclMjCA9IZzMxAiykiKYmpd43s/zc8VQzoO6Dz5lxx2P9FOhVsVEsuCjJ0fN09rr9bGvpIHVO0tZu7ucQ6cah5UlTYkNY1p+IhOz4xifEUthZiyJUfqQdCxG8nrxeH1Y7C7MVifdNidmqxOLzYnV4e6zjRH4rKzfPwkoZFLCDWoi9GqMehVhWtWo9oS37TrEtpsfDvg81aYnMeuF3xEzd+qw9t264wAHv/t72nYeDLhenRjLlD//kOQbVwz6/3F2dLH1uq/RsmVvv3V537mXyb9/ZMxVs10it5dwUWOkyK3J4vAr4DX6Pd5qW8y0dlpp7bLS0jNvM9lG3fpBKhEoSIvxk9geIjshM/aiV430ulw0rd9JzeurqHtvPW7z6BrHX6wQpFI/2Q03oIgwoowIQx5uwNnSgflkObbawHL9Ie1bLgO9BmRSxNaufgbzIw15mJ6oWZOImj2Z6NlFRE4ff16J7GBwtLRT/u+3KPvXq8Mi68NBt1zJvugUdsWkUR4WjTjIoCLGqCEtIdzvodoavBxUrZSRGG1Aq1KgVsrQqhVoVHK0Peqaeq2SaKOWGKOW6HAN0UYt0eH+18Mtbx4r5K2ivoNVO8tYtbOUrYerh6RqHGFQs3hKBpdNzWDJtEySokMrRQ8FY+XvEww+t5sdd36PmtdX9VtX9Ocfkvfw3UE/a7G72HO8jgOljRzqsZ47Vdcx4Pelm9u4tvIIhZ3Br7XjxjjeyphE9QACV7kpUcwqTGbmuCRmFiaTkxw5pkUAQzkPRJ+P4l/+k6M/+Xu/dfqcNBatDq2PcSgwW52s31fO6p1lrNld1qfgHio0KjlTchOYXpDI9IIkpuUnEh85fNXmsX69jBYcbR3suf9R6t7/tP9KQaDg+w8w/mdfD7kSrLu8hkM/+GPAsmfwV2blf+cexj36lQFLkHthqahl0xUPYC4508pOkEiY8vdHyfnq7SEd1/nGhSS3nw9/jUu4aNBtc1Ja205pTRslNW2U1XZQ1eiXde8wBzalH23kJEcyvSCJKbkJFOXGM/5zQGR74fN4aN6wi5o3VlP7zrpzsniR6TTIdFoEqQTR48XrcvlLQp3ufr5/w9q/Ro1xcj7GCbmo46Lw2p042zqxN7Rgb2zF3tCCo6V91Amh6PXibO3A2TrwQHEgKMLDiJwxgfCJ/syocUIumuR4PHIp69atA2Dx3Hm4q3r7oUv982OnzonkqeOjiVk0g9gF04maU0RYfuaYi+aeDlVMJON++GXyH7mPho83Uf/xZjoPHKPraOmIZXQ1yfFEFBUQXlRA1MxJiBPHId1dQdPWE1QdrBqUiLV02WgJYdBpd3oGJRfBYNAqSYo2kJUcSU7PlJXkn0eGaYa1z9GEKIrsL2ng3c0nWLWzlJPVoZdMyqQSZoxL4rKp/uzs5Oz4z03561AhkcuZ/fIfkeu1lD/75hnrDnzrNzjbu5jw828iCAJWu4udxbVsOVTFlsPV7D/ZMGRrpEpDFH+euJjcziZurDgUsAe9oKuJHx/4hL3RKbybPpFmTf9gQ0nP8/u/q/wZqQiDmlmFySyYnMaionTGpV9civfubgs7v/gD6t5d129d9Jwi5r//T5SRw7NrOhu9gaDVu/yBoMHU3k9HmFbJvElpLJycxpwJKRRmxCL7H712RhKqqAjmvfsPKv7zNvu/+Ss8ltPu96LI8d8+TcPqLcx+6Q8YC3OC7sfZ0UXxL/5J2T9eCSqkGHfZbKb8/VHC8kLznm3etJttNz/cbzwi02qY8/qfSVy5MKT9/K/hUub2Es4Zp2du31mzDZU+hjaTldZOf6a1pctKRX0n5fUdfWVSFwp6jYLpBUlMz09kxrgkpuYljsnB47nCVt9M2ZOvUv70G35CGCLUibFEzZhI5MyJhOVnooqNRBUbhTI6AplaFfRzVrOZdR98jOhwsWDBAlQaNQjgbO2kY38xHfuKadt9JOReS01yPKm3XE7KLVcQUTSuj6D5PB4cze3YG1uw1zdjq2/GVtfsX65r8k+1TXjtw1MbHQkIMhlhhdlEzZxI7MIZxCyY1qe+GCgyLooipuOnqH//U+o+2ED77sND/k5tWiLpd15D9tfvQB09fEuRsQKvy4X5eDkdB47RceA4nQeO03noRL//qyCRIFEqkCjkSBRy5GF6wifl9fXoRhSNQxUdXFyjs9vO6p1lvLf1BJ/uqxixPrGRhFGnIj0hnIQoPTHhWn/2N1xLTLgOo07GqWOHMGrlXHvV5aOeaSmtaeP1T4t5/dNiyutDJ/IZCeEsnZbJkqmZLJichkF7fiyVLpZMlCiKHPrBHznx+2f7retatIA382ewr6RxRHx+dWoFUomAyeKgqK2W6ysOE28PXJHgRWBrfCYfpo2nSxn6czImXNtHdBcVpZMWPzLEcLgY6DzoPHSC7bd9G/PJin6fS7v9KmY8+yukquGfr26Pl13FtazaVcbqnWVD6p1VK2XMGZ/CgqJ0Fk5OG/VA0MVyvYwmLBW17Pzi92ndtr/fOkEiQRUfjSomsm9spIqJQBUbhcdq4+Sfn8fdFfha0mWmMOl33yX5+mUhBX58bjdHfvJ3jv/26X4BfXV8NAs+fpqIyQXD+5HnCZfKki/hosbp5FY589sIqrALfETBIQgwe3wKV8zKYeXsnDFfTjUUiKJI286DlPztRWrfXju4NZAgEDVzEtFzi4iaOYnIGRPRJMYO67tDfSja6pupfWcttW+toWXrvpCysKqYSOKWzyV++VziFs9EHR8z4PaiKOLuMmNraMHZ1omrvQtnexfOts4z5o7mNhyNrTg7TH7SNIr3Qn1OGjELphM+ayLHfFaEcD1F2iha12yn/oMNWMprRuR7BJmMhMvnkXrblSSsmIcifOxei0OFz+PB1WlGIpd9RmhHUJzN7fFy+FRTnxDdjqO1tHZdXH3oggBSiQSFXEpUmIaMxHAmZsazeGo6l03NQDKMLL7D5eHdzSd49sN97DgamliaQi5lwaQ0Lp+VzfLpWWQkXhj1zottsL7tR3+l5tf9VVB3xaTxXN4svCH8/2RSCQVp0UzMjiM7OZLEKAMJUXrio/QkROnRa5R4vD42H6zkzQ3H+GDTMQrLT3B11REiXIGrp1xSKfvzJvF2TA6d4tDPobR4I4uLMlhYlM7CojSijYOXYo4kAgYVfT5O/Ok5jvzoL/2ybIJEwqTfP0Let+8Z1vig3WRj7Z5yVu8qZd2ecrosoQdbC9Ki+66b6QVJ51WR/WK7XkYLPq+Xk3/8N0ce+9s52+cpIowU/virZH/ltiGVNe/4wndo33Ok3zrj+BwWfPw02uT4czqu84FL5PYSLmpcTOT2bGQmRnDFrGxWzs5h9vgU5LILq2Q8HHgdTqpfX0XJ314MKTMaNWsyKbdcTsqNK4ZNZs/GcB6K9sYWqt9YTfWrHw8pW6mOjya8aBzhk/Mx5KT57YF6rIKkKiUIAoJEQPT6cLZ14ugpMbbVNmI6UYHp+CnMJ8qxVtUP+/eeM2RS8AyvlFuQSBB9g2dwBKmUqNmTSVy5gIQrFhBWmHPBAzk+jweP1Y7XZsdrd+Kx2fHaHX3LPpe7TwRMFR2BIiIMiez8ds8cLW/mpTWHeW3dkZDKkS8WSASBxGgDcyYkc+/KIuZNShtw+/pWM/94ezcvrD5EewgtIzHhWlbMyOaK2TksnpKOXnN+srMDYawP1q12F1sOVbF2bznr95Zzqq6D+Q2nuLN0N2dTyKPh8Tw1bi522WcDZJlUwqTsOIpyEpiYHcek7DgK0mNQDYEQOV0e1u4p5601B7G/8QFLK46i9QT2S3UolNhXLsd75TJ215jYeax2UH/pQBifEcvCIn9md86E1FHP5J99Hrjrmtn74E9o3rCr37aK8DDmvP5n4pfOCXn/LreX3cdqWb+vgk/3V3CgpCHkWKlCLmX+xFQun5XD5TOzSU+4cFnusX69nG90HjrBjju/h6m4dPCNz4JEISf3G3cy7v8e7Asyn+6B7XR7euZe3B4vHq8PlUJG13trOPnIb/Fa+j974lfMY+7rf0FuGDu6GQPhErm9hIsaFzO5PR3xUXoeu3sBd62YdFH0gLktVsr+9Son//jcoKXHvf6hKTetQJuaOOLHcq4Pxe7yGqpf+5jqVz7CdPzUiB/fcKGMCidu2Rzil88jctp4pGolUqUCQSrFVt+MuaQS88kKzCfK6ThwHMup4JYbQ4FMq0Gfm44+MxldZgq6zJS+ZXViLJ0HjlH54gdUv/ZxyL3BmpQEEq6YT8IVC4iaNQllZPiIk1232YK1uh5rdYN/qmnoW7ZV12NvahtyhlwRHoYyOtxPeGOjMOSm++2RxmVjyMs4p5LBXnSY7byy9ggvrz3MobKhC4YJcB6dskcGaqWMORNS+PYts1k0JaPv/bLadh5/bQcvrz08aD9gekI4Ny4sYOWcXKblJY6qqulwMNYG66IocrTcb420fgBrpKkt1TxwYgcy8cy/f6PGwObrbmHSgsnMn5TGzMLkEbWhMludPPPKZkr+8Cyzy4tR+AIH4JxSGc4lC7jij9+CmBh2HK1hy6EqNuyvpLqpa0jfKQh+gaqpeYlMzUtgan4i4zNiUchHLtBst9tZ89HHeHcWoz9wirbN/RVnAcInFzD3zb+iz0wZcH+iKFJS08b6vRVs2F/BlkNVWIfQ0hAbrmXFzGwunzV2AkEw9q6XsQCvw8mRx/5Cyd9fwucMHPQ5G4ql82m77hpOeeVUNnRQ0dBJbbMJm9Md9PGn9ri4vXQvs1qq+q3zCBK2TJ5Nw4IFpMQZSYkNI7VnnhJnJCFKPyYTM5fI7SVc1BgKuRUEUCtkqJVyVEo5KoUMg0aJXqvAoFVh0Cgx6JT+uVaJgMD2o9Vs2F+JwzW4Z6VEIpASG4bXJ+LuiYi5PN6+CFkoKEiL5ldfvozlM7IueKYrEFymbkqfeImSP/8XZ3tX0O2kahXpd11DztfuGFAEYSQwUg9FURTpOlpC9asfU/PmJyNWrhsqerOd8T1l0Kf3+4YCl6mbhlWbqXlzNW07D+FoGoI3oUTAkJdB2u1Xk/ONO1GEoKLoc7tpXLudqpc+oO699XgdzpC/Tm40oM9O7ZnS+ua6tEToyXyLXm+/uavTjO000tpHZmsag/YbjRYEiQRdVkqfD7BxfI6/vD45PqRrt6XTyt/e3MlT7+3DYh944CKXSRifGUd6vJH0hHDS48PJSAgnPSGcxGgDxypb+MvrO3lzQzHeARTdU2LDKMyIRSLxiwR125xY7C4cLg9Otxeny4PT5cHh8gy4n5GE/74sJ0ynpKnDMmD8ISZcy02LC7llSSFT8xLG5D2yF2NhsF7bYmLzgSo2Hqhkw4EKmtpDU6kf19HAQ8VbUJ5FMBXhYcx94y/EXTZ7NA4X8PvovvDiBkp/8ySTKk4gDRK68QoC7ZMnM/cXX2fqFf7jqWzoZOOBSjYeqGTzwcohKwCDP5s5ITOWcekxZCZFkJ0USWZiOClaGd4evYW+NpOeVpPe9hN3t/UM72uf04XX5cLdbQ1eLSMIFHzvfsb//Bv9SkdFUaS500pxeTP7Ttaz90Q9+042DFk/ZHJ2PJfPyubyWdkU5SSMuUAQjI3rZSzCXFJB1csfYjp+CrfF1ld95LE5sJksOLpteJ0uOuUq1iXmsiUhC1EIbdwgiCI5Xc3cU7KbaEf/e0OTWs/TBXOo1gfX0pBIBJJjwhifEcP4zFjGZ8YxPjOGjISIC3qeXSK3l3BR43Ryu3bLHnJzcpBIBKQSAalEgkQioJRLUSvlISv77T1Rz59f38H7W08Oav2TkRDOkqkZLJ6SwYLJaf2MyXthc7jZdLCSVTtKWbWrbNByqgWT0/j1ly+jKDchpGMebbg6TZz86wuU/PWFAUmENi2RnK/dQea9N5y3nsvReih2n6qmcc02GtdspXnTnn7eg+cKqVpF5LTxfXY5MQumowgbmpWCo7WD1q37aFy3naZ1O0aEkMuNBhKvWkTKDcuIWzZ3QDGvXrjNFmrfWUv1G6tp3rAr5Cjz5xHq+GgiZ04iauZEImdMJHJqITLtZ4I4je3d/Pm1HTz74X7szoGDZlPzErhj+URuWlwYkr9nTbOJf7y9m+c+OhCUMEskAvdcMZlH71lIXETwEjOv1+cnvG4/0fX5RLw+X89cxGazsXrdJsx2D6mZ+ZhsbtpMNiobOjlZ3UZ9qxmz1YlvBJ7zCyencf/VU7lqTu6IZtVGExdisN5msrH5YBWbDlSy6WDlkBW0o8I0XDYtk6XTMpkiWii+8zv9qjMEqZSix39AztfvHNXggtvj5Y3/rqXkl0+QVz1wRU1jajoZ1y9lwV0rCZ+QgyCR4POJHKtsYcP+CjYdqGTbkZoBg0gSn48oh5U4u5kYWzdRDgtRDitRDguRDisa78gLvikSYon77Q9gwjiaO600d1ho7rBQ32ruc3YwWUMPGvZCrZSxeEoGl8/MZsXMbBJH0OJqtHCJ3H4GV5eZmjdWU/Hfd4P61AaDSa7iYFQSB6JTOGmM7dcrr3U7GdfRSGFHA4UdjYS5A/dkb43L5NWsKThlw3Pv0KjkjEuPYUJmLOMzY5mcc37dQC6R20u4qDFSPrcAO4tr+fXzm1m/r79y4emYlB3HlNwEYiN0eH0+mjt6HkqdViQCJMWEkRxjIDk2jOSYsL55tFGDIAiIosjB0kZW7yrj4+2lHCwLbr9yy5JCfnb/YlLjjMP+XecCR1sHJx//L6VPvDQguYtdPJPcb95FwsqFIyq0EwrOx0NR9PnoLqvqUc89RueRUuz1zdgbWga0OBIkkp6S1kj0OekY8jMIy88krCCLsHFZSOSh3+hFUaS7tJLW7Qf807b9dJdWDe2HSAS/160pNKIu02pIWLmA5BuWkXDFgpB88Tw2O80bd/fZ69hqGoZ2jOcRUpUSqUaNVK1EIpfh6uoe8QywIJViHJ+DalIBW70anquy0SwNHjBIiNLzhWUTuH3ZBPJSo4f1nV0WB89+uJ9/vL07aLZOq5LzrVtn882bZw2rvNRut/Pxqk8w2z3MX7AAtUqFRCIgCAISQUAQAFFkZ3Etb248xq5jddS3mkOuDJdIBO5YPoHv3DqHnJSoIR/fhcZo35d8Pn956u5jdew6Vsvu43VDskUCf9/szHFJLJ2WyWXTMpmUHX9GtsVaXc/ma75K1+GT/T6b+cDNTH3isZCFalxuL3uO11Fc0YJWLSc+Ut8nNmXUqYISZZ9P5P3nV3Pst8+QWho8k9sLUacjfuE0EhbPJGbBNL8NmsWKo8vCkWPVHDpcybETNdRXNhJpMRFn6ybOZibW3t2vFHu00C1Tsj0+g49TxmGTj0xZ8OTseJZMy2DJlAxmFiYPqfd5NOHzenF1mPwWd22d/uy2y90z+bPcPrcHp9XGyeJjIBEomDwJTYQRmVaNTKtBqlX3LSujwpEbdGO6amM48Hm9NK3fQeXz71H37rohVUIFg1Wm4FBkIsURCcTZzRS2N5De3d6vp/502KRyns+dwb6Y1HP+/rMhlQgUpMUwKSeOyTnxTM6JZ0JmHBrVyBPeS+T2Ei5qnE5uwxZ8j6SkZP8DM1JPQrT/4ZmdFMnknHhig2Qpth2u5tcvbGHjgcqA68Hf16ZSyrE7hx+9jTSo+3ziFhal96klf7qvnB899SmHTwXut9Oo5Pz6y5fxpWumnrcbur2plZN/eo7Sf76K1xZc0CXxqkWMe/SrRE2fcF6OKxAudMTXY3fgbGn3l876fH2CS8pII4rwsGF5vYqiiKO5ja4jJXQeOkHbjoO07jg4LP9bQ34mcUtnEzF/GkfcXQhqFTNTsmj9eDO1b6+l89CJkPYjUSqIXz6X5OuXEb98bp/F0GC/w3T8FA2rNtPw8Wbadh4cMQ/ZYFDFRaNNiUebmoA2NQFNaqJ/OSUBZaTR37usViFVKQP+b3xu92fK1j0DMmdbJ9bqBrqOncJUXHrOgmCtKh2lYTGUGqMpC4uhVWvgugUF3LNyMgsnp5/Rd1/Xambv8Xo6zDY6uu10mu10djv6lru6Hbi9XpJjwkiPDyctwUh6fE/JcpSBdzYf51fPbw5ayhgXoePL104lMkyDSiFDqZChlMtQKaSoFDKkUgnNHVbqWkzUtpipazFR12qmtrmLls7RF71SyKXEhmsx6tSoVTI0SjnqnkmjkqNWylApZD3LvZN/O9UZy6d9ViVH0/N5pVw6KvfVkbwveb0+Khs7OVbZSnFFM3uO17HneP2QlHB7kRZvZOm0TJZOywrJGsltsbLriz+g9p21/dZFz5vK3Nf/HFBFXhRFTlS18un+Cjbsq2Dr4eqgvaEqhYz4KD3JMQaWTc/i7ismB7TJ2/3pATY99ndid+8O2pM7llGrNbI2KY89sWl4JOcWBE6MNnDZ1AwWT81gUVH6eVeBPh1uswXTiXJMx0/RXVaNtaq+Z6obltbBYJCqVajiolDHRffMo1DFR6OOi0aTHIc2LRFtSgIyzdjO/rq6zLRu20/zxt1Uv74Ke33zBT0e48xJZP7tp4gxUdidHuxON3anmzaTnZrmLmqbTdQ0m6hpMlHT3DWkXu9gkEgEspMiGZceQ2FGDAU98/T48HMqa75Ebi/hosZQem7jo/QU9USLJufEIyDw25e2sOf4hVGujYvUsXByOgsmpbFgcho7jtbw0+c2UtcSOHO0ZGoG/3rkKpJjRq/c11bfzPHfP0P5028MGDlMvmE5hY9+hfBJ+aN2LKHiQpPbc4XX4cR0opyuIyV+Mnv4JF1HSoZFZAGU0RHEXTabuKWziV86B01SHBD872SpqKXm7TXUvr12SMrRxvE5xC2dQ9yyOcTMmxrSQMLn8WCracRcVkV3WTXdffNqrJV1iN6BB6yCTOYfvPSQ1V4Cq01NRJOagDY5fkREngaDu9viV78uLqWruAxTcRkd+4oHzOIPBHl0BHELphEzfxox86biSUnivW0lvPFpMduOnFupeaRBTVq8EREoLm/BNUyl7M8rJBIBrUqOVqVArZKjVflJr1alQBNwWY5Gpejb7sxl/7ZymQS3y8W2bVuRCHD58qVEGvVBxQK9Xh+dFgcdJhttJhvtJjun6ts5XtnK8coWTlS3DlrCHgwRBjXze4Kqi6dkkJUUMWQyL/p8HP35Pyj+2RP91sl0Ggp//BC537wLqULBzuJanvvoAJ/urxiWmjH4ye4tSwp58LppTMrubztSU1bLB9/7K4pV69C5Lpyv+HDgESSUhUVzICqZnbHp2OWDZ77VShkTsuKYmpfItPxEpuUlkJ4w8qJ8g0EURez1zX7/+APH6dh/jK7DJ7HVDV0I73xAGR3hJ7o9zwhtasIZr4faBnSucLZ30rJ1Py2b99Cyea8/sBwCDzLJVRyJTMQpleETBP+Efy5IpUg8bgo7Gkm2dg3ruHRZqWQ/eCu537wrZIcAURTpMNupburiRFUrRyuaOVrun4bT6342NCo5+WnRjEuLITUujMRoA0kxhp552IDVRqIocvxkCYUFfePTS+T2Ei4ufF7UkgGykyNZODkdu9PN+1tP0m3rTy7DtEr+9PUVfGHZhBF9sFmr6zn+u2co//dbwTNrgkDqLVcw7kcPjrpI1FAw1smtKIo42zuxlNdiqajFUl7Tt9xdXnPO0VqpRk307MnELZ1N3NI5hE/MC5iRDOXvZKtrovbdddS+vZbWrftCsv0Bv/VA9NwpxC2dQ+yiGRgn5IbUq3s6fG43zrZOv52SVIoglfSbS2SyYWXCzwdEUaS7rIrmbQfZ9sZ62nYdIs7UMWgZZSDYZHJOGaIpNcZQGhZDlT4C7zlmei7hwkMqEZDLpMikEqRSCQLgdHtwOD0jpnitVcmZOzGVBZP9djcTMuNGTNil5s3V7PziD/ze3GdBkZbEhqnz+U/byBKuWYXJfOW66Vw7P6+fKqulq5t3f/VfTr6/gZjamoCiOGMZTomUXXEZ7M4qxJ2USFykjtgI/5SREE5eShQ5KVEkx4RdEHEer9NF58HjtO44SNuOg7TtPIi9oeW8H8doQW40nBkgTY5DFR2BMjqizxJOGRWOTK8NabwlimKf9Z+1tglbbWPP1ITpWBldR0O39fEIAsfD49gflUJpWDQ+iRSPRIJbIsUnk+EUBXxnPQtjrCamttUypbWWNMsAwXGVkoQlM0m4fAHxK+YNqtA9VDR1WCgub+ZIeTNHTjVxqKyJ0tq2EU3gK+VS1Co5MokEn+jXhPB4fbi9XtxuH157F85dj/du/vknt4IgRAGJQDQQCdiB1p6pQhTPU9PFJYwILgS51ajkJETpiY3QEROu9T+MwrXEhPt7cGub/eV7tS0maptN1Leah6w8KpMKRBu1NAbpl7tqbi5PfPtKYsLPrRSpu7yG4795iorn30P0BM4MCFIpabdfxbj/+zKG3IyA21xIXChy63W5cHWa/f1EbZ3YG1qw9fTh9vbj9r4ONBgcLtTx0UTNKSJ67hSi5xQRPjEvpN7dof6dHC3t1L23npq319K8YVfQ8yMQBKmUsIJMIqYUEj5lHBFFBYRPyh/zZWLnAlEUeW/LSR575lPK6/0DC4XXQ2p3B1nmVrJMreSYWtEE8fEcCC6JlNKwGI5GJnAkIpEWzfnNOFzC2EVSjIGZ45KZUZDEjHFJTMyKG1XRrY6Dx9lyzVex1QbWijgSkcBrWVNo1gQWMRqf4fc3b2zvps0UeoYnNlxLYWYsSadncHqyOBqVnM0HK3n7za107zpITlczuV0txNo/yxyLgA8BAXHAnsMLhZj500i742pSblx+3sQYz4atvpn23Ydp2+lvg+nYf+x/WhywFxKFHGVUONJAAVtRRBRFf99wS/uot92cDh8CbokEj0SKVPSh8HqRDBAm8wHdchXNaj2e6Cjypuczdf5EjFkphBcVoIwwjtqxdtucHClv5mBJIwdL/VNJbdugoq3Dhegwfb7JrSAIeuAaYCEwD8gaYHMrsAvYCnwsiuKBUT/ASzgnnE5uH/nTazgEHQ1t3bR2WWk32WnptNBtG/7NWSoRKMyIZVp+ItML/CVBOclRQ4qier0+appNbDtSzaYDVWw6WEnDMMu1TkdUmIaHb5nFFbNyyEuNGlIm11xSwbFfP0XVyx8GLQUVZDIyvngtBT/88ohH9oYDr9OFs70Tj8WG1+bAY/XL4ts6TRzavQfR5WFcQQHyXqLXc3/pu8+cNf/sff+y6PHgtTvxOpx47Q68Dtdny3Ynri4/kXV1mPqOY7Qh02oIG59D+KQ8oucUET2nCG1a0rCy9ucSBHB1mqj7YAN1762necMu3OahZ0gEiQRDXgb63PTPouU9pcWalASUUee/zG6ksOtYLT/81zp2HQv8/JRJJdx31RQeuW02mqZGWrbso2b9Tuo+3Y3SMvR7gSM6Guek8UhmTEE/cxKCQkF1UxeVDV1UNnZS2dg5JPGmwSCXSdCpFUSGaYgxaomL1BMfqcHe2UiMQcGM6VORKRT4fH4v1dU7y9hZXEOwcYtEEBiXHsO0ggQiwzS4XH7bNGevhZrbS32LmUOnmga1SeqFtEfMyuvzjXSL35hElFFDbkoU49L8ljWZieFkJUWS3EP2RhOO1g62f+PXNL/2YcD1HkFgS3wWRyMSsGVlMmdWfr/eUFEU6ei2c6qug/L6DiobOtlyqIrtR2rOyYYq3GElr6uZ/M5mcruaiHKO7H3aIwjYZArsMgU2mdy/LPXPXVIZXkGCt6d01CuR4BUkCKJItqmV3K5m5IPkTyRyOQlXzCf5hmXELp6FJjF2RI+/Fy5TNx37imnfc6RvOl9ZWZlWgyE/A0N+JvqsFFSxUUjC9ByuLAO3h3EJKXhaOvzB4fpmbPXN2OqahmZvdwlDRti4bKLnTSFm3lSi501Fm9y/JWAkIIoilQ2d7DxWx6YDFRwpb6a6qQuT5dxFtPq+4/NKbgVBmAJ8E7gB6A23hDJyOv2gSoB/AP8VRXFkfUAuYURwPjK3+anRLJuRyfLpWcwen4LyHFUIRVHkVF0Hmw5W9tk2tJuDizaFgpTYMFbMyGb5zCwWTEpDG6QfoetYGcd++S+qX18VtNdDopCTed+NFHz/AbSpiYP+Fq/d4S9f9Yl9gkqiz+cnjT4f+HyIPevoWy/itdlxmbpxmyy4Td24Td24epadbZ04WtpxtvbOO4ZFqC4m6DKSMU7IxTghl/CJeRgn5KLLSB6xMtyRynD73G7a9xyhcd0OmtZtp333kUF7ZUOBVKNGkxSLwmhAptci12v75nK9FrlBh1SjOqtUWYpEdubrM8qZZTJ/OXPPa7nRgCo2ElVMZMi9RQOhvL6Dx575lHc3BxflunpeHr98YAnZyX6vQIfLw9/e2MnvXt6Gze4ixm4hx9RCtqmFnK4WYoZYWinVqIlbMpPk65eRdN3Svj6y8oYOXv7kCKt2llJc0XzefGsv4cLDqFMRH6knPkrXM9cTF6HDqFOh0ygxaBToNEr0PXOdWoFU4le5lpxmoycRBNrNtj5bmtLadspq2ymtbaeivoOUrlZuK9tHZnf7gMdjioqhIT6Rmsh4SsOiqPXJ6bI6R+ScDHPayTE1k9fZTH5X8xnZ2uHAKZHSrDbQqtbRodTQodLSrtTSrtLSodLQLVchDjMIp/S4KehsYkZLFUWttSG1LOhz0ohdPJOIKYWE9RDCoWTYPHYHlopazCcr6C6pxHSinI59xZhPDuwKMVKQqpRETC0kcsZEomZMIGLaeLSpif0CmaE8n7wuF9bKuj6dhj7NhlPVWKsbRly46n8d2tREoudNIXruFKJmTByywwP4kzulte0cKvNnaw+VNXH4VBPmYVhcDQWfO3LbQ2p/CSzrfatn3gjsBfYDLUAH0AmogQggHMgBpgETgN7/oNiz7R+Av4qiOLr/kRGGIAgpwDeAlUAK4AROAW8A/xRFccTTT4IgxAMngF6muVkUxYUj/T0933Vey5K1KjkLi9JZNi2ThUl6NPV1dBw8QefB43QdKcHTbfUrsapVn6myqpXINGp0mSkkXD6P2EUzzxC98Xp9HDrVxPq95azfW86uY3V4vMOvjlfKpcwsTCYzIYKUOL8NUWxzA+5X3qHjk81BPydVKcn68i3kP3I/msRYRFHEWl1Px75iTMdP+Ylma8dnCrKtHTjbuvC5z18ZzsUMQSZDm5qALiMZXWYy+swUdJkpfa9Dsdk5F4xW+bbL1E3Lpt00rttB84Zd/kHTRTDI8Fs0RfnJbmwUqrgojIXZRM2ejCEnfcCgQpvJxm9e2MIzH+zD7Ql8rU7LT+Q3X1nKnPH+qgdRFFm1s5Tv/WMtFQ2dAT8jk0q4MjeKq8JE0tob6dxxEFNx6H1agkKBdcI4thiTec+pxi0dG3Yg/wvoVWxWyqXIZFIkgMNhRyJAeJgBhUKGQiZFJpMglUiQSf1erC6PB5vDjcXmosvioNPiGLVSvdGAIIrMbK7kxoqDGEMUd7JJ5bSqdbSqdLSq9bT0LLepdTglMjw9pZZuiQRR8F+HMq+XBJuJZEsnSdYukixdJFq7gvp0DgaHVEat1kijJoxGbRiNGgONmjDaVdphk9ehwOi0sbChjAUNZRjcQxtWKqMjUEVHoIgIQxFuQKbTIno8+DxefG4Pnm4rjqZW7E1tuE3nXiU2VIQXjSO+RwMiek5RSCJ/5/p88jpdfh2LAGKFwUro/1cgSKUjE4BWKTFOyidy2ngipxUSMW18v2dlU4elR829jt3H6jhQ2ohtBFSVexGhVxFt1BKmU6FWypHJJIii3zLM5/Ph8fpwebyYO1s48vqPej92cZNbQRD+A9wJfS0VB4CXgbdFUQxZclIQBAUwH/gCcB1+kiYCNcCdoihuG8njHi0IgrAS/+8PxvhKgCtEURzREJ4gCG/hz5j3YkyRW0GAwnS/sXRnt51TPSVRAxFKQRRJ625nUlsdGeZ2Uiwd6IbROwf+kpy4pbNJvGoRCSsXoo4908PRbHWy5VAV6/eWs/VwNSeqW4fHFUSRwo5GLq85Rp4peLmRT6HAvmwx2uUL0HWbkVVU4S0px15cgmeY6q//a5DptajjolEnxqBOiEGTGIs64cxlTXL8iGQLh4vz1ZvstljpPHSCzh41zY79xzCfKA9ZnGosQBEeRuTMiUTPnkzUrMlETh+PXK/D4fLwj7d384eXt2EKEnlOTwjn5/cv5oaFBX3ZibLadh75xxrW7D4V8DNGnYof3DmP25dPJOosCxRne6ffN3jVZhpWbcHRHFppnkMq42BUErtj0jgeHo/3LLIeFaZh8ZQMLpuagdnmZMvhao6eaqKu1RyUsI8lyLxe1F43Kq8bpdeD0utBIooIiAg990uXVIpLIsMtkyHTqpCp1ch1atQalV/dWClHq1b0qRyrlXK0ar8islrpf0+r7l0+00Ko14pIo5T3WSadjuFebz6fSGe3ndoWU1/Jbu+8vL4jqKXTSEEQfYS5HIQ7bRiddvRuJ2qPC03f5EbjcaH2uPBIpHQqNXQoNZjlSnJMrUxqr0M2gmM7jyDgEaQofAP3Ew4El1RGrT6CCm04VfpIqvQRNGsMg5LYcJ2KxBgD8ZF6tGo5Hq+I1+sfQPdObo8Xj9eH1yt+9p7X+9k2Hi9WuwOXR8Tp7n9dyXxeJrTXM7O5ignt9YOWLY82JAp/XmcovaOapDjils3xq+cvmYUqOmLI3zuazyeP3YGlvAZrVT32xla/LkZDC/bGlr5lR3P7iDyjJColPo2adp+UTl9vCfuZ5eu9r2UGHfPm5DNtag6v7zjFuv2VfSrI4mmqyCq1gm/dPJM7l4wjXCXzt0s5Xfic7p65C0EmRdbj2d4777W8QxB67OzqsVTWc2DrEfZvPYyztolIp5U4m3nY1loSrQZnSjLNGgMnPTJOeuQ0a/S0qPR4pMPr/U+JDSM/LZr8tGjyUqJIjTOSGO3vsw+15eJzZQUkCIIPcAHPA38SRTH0kHfwfSqBm4D/A/KAn4qi+PNz3e9oQxCEicAOQANYgN8AG/Fnqm8FHujZ9CQwTRTFEan5FAThKuAD/NnxXvO7C0puIwxqZhemMHtCMtPyE5mcHd+vbNfj9VHd1MWpunZO1XWw+3gdm3eXEltTxaS2Oia112N0nVvpcJAfQOT0CSRfv5T0u64N6B3aZXGw93gdu4/XseuYPyI2UB+xxOdjamsNl9ccJ8UaOEMEYJfKOBYej0MqJ9fUclEpTQpSKTKtGqlGjVSjwuZ1IyjkhIWHI5FI/KSiZ9zSV/502rz/eyCRyfwPBJUSiUqJTK1ColL0zJUowvT+SHlEGMqIMBQRxh4vW8OQS3UuBC6kqrTHZqfz8ElMR0uxVjdgra7HWtOItboBe33ziESVRxOCRIKYlsxWZSQbNLHU6MI/O3d6EGFQ84M75/Glq6f2tS54vD5+99JWfvfS1oCEURDg3pVF/OS+RSH5VIo+H017i9n57/dpWbsVXXV1SOI43TIl+2JTMc+eyeQr57J0RjaTs+MDageIokhNs4k9x+vYsL+CA6WNVDV2DbuMLNqoQSaTIpdKkMukyGX+rKVc6s9iyqQS5LKedVL/a5lMikIQ0ZtNhHe0o+9oQ9vWitLUhdxkRtrVhcQ6/KIjQSbzl7ob9SiMBuRhOhRGg3/ZqEcepkfRu85oQBGm88973pMZdEgGGbiN1vVmtjpPI7ztlNd3cqqunfL6jkEtOJQeN0aXnXCnrY+8hrt65k4bRqeNMJdjWArfZ8MtSJAgIr0AVRyK8DBiF80gdvFMYuZPxZCfiUQmw+ny0GVxYLI4OF7VystrDrN6V1lI5dFp8UaumpPL1XPzmJafGHJ70unnwWWXLcUnSDFZnVQ3dVFe18GpunZOVLex+1gtltYuprTVMqmtjhxTC9phBtBDhUQhRx0f7bf4aWhBDNEmTJBIiJo1iYQrF5F45ULCxmWfs17ChXY98Hk8eKz2Hr0N51n6G/7XgkToGx9I+yYFUpUSqwde2lrCE+/tp741sJ0j+O/5S6Zk8MUrJrNyVg5PfbCPnzy7AZc78N/+liWF/PLLl5EUHVig7VxwoKSB3760lVVbjpPW3UG2qYVsUyvZptZzPvd8QIdSS7NGT4dSS7dcSbdC5Z/LVZgVKhSRRjIK0ijISaAgPYb8tGhyU6LQa87dzu/zRm7/AfxmNH6E4L9ybwKkoii+OtL7H2kIgrARv4iWB5gviuLOs9Y/Avy+5+VPRoKwC4KgA44DycBdwAs9q84LuY1c/EMmjsumMD2WgvRoxmXEMC49hnB96DdJt9lC/UcbqX13HY2fbD0vokG9EKRSEq9aROZ9NxK/Yl7QLJ/X62PvyXp+9NR6dhyt7Xtf5XEzt6mcy+pKBiSqLomUbrmSMKeNC1m06ANccgVOuQKXQolbqcStVOFWqvBo1Li0Ojw6HR69Dq9ej2gwIBp0iBoNyKQIgr8vzOv1UF9Xh0QiMKEgh9hIA5FhGmLDtUzMjhvS///zjAs9eAgGn8eDvaHFT3QbW/B0W3F3W3GbLact++deuwPR60X0+vxzj/fM1z1z31mvRa8P0e3G1Wkekeh8i0rH/ugU9kan0BgRzUM3zOCR2+eeca5VN3Vxz6/eZWdxbcB9zByXxOPfuJzJOYOLdnR22/lkVxkfbCth3Z5TWHvKvHQuB4UdjUxtrWF8RwOyELI+htx00u+6lrQ7rkabkhDiL4bWLmufrcPhU00cLGmgvL4TEb+YU05yFOMzYynMjCE3JYrspEjSE8JRhUoCmtto3brPr9a66zAd+4+NqMr4SEOm1/YQYz0yjQqJXIYglyGRy5HI/X6UrR3tIJMQn5CATCbzB9Ykks8CbD0iWJ+9T9/6M94TBOgL2gkIEiHgvlxuL6a2LiwtndjaTTi7zHjN3WCxIbPZULguTFeVN8wAeh2SThOCdeQzz3apjNKwGE6Gx1EaGc+1X1zO/929MKRBclOHhVfXHeHF1Yc5Ud0a0vcp5FIm9vnOJjAtP5HMxMD+waHed0VRpLy+g13FdWw4UMHaXaXoGhrI72wi3dxOvM1MrL07pGs8ENQJMehz0lGE6/FY7Fgq/JZ0oUJu0BG/Yh6JVy0ifsU8VFFDz84OhLH6fBoMXRYHf3l9B/96d++AAcCYcC33XzWFuy6fRGqckbpWMw/85j02HawKuP3k7Hj++PXlzB4/+mKeH2w7ycN/Xd3nSy2IIglWE9mmFnLNrYz3dKNuH7iv/lwgSKWntfGpkKmV/sRFT7Kh7z7Xc987497X7x7qf6/RYubm1f/t/YqLm9xegh+CIEwD9vS8fEoUxQcDbCMBioF8/L3HsaIonlNhvCAIfwO+DmwURXGxIPQWh50fcltaWkp2dvaQ9+EydVP/4QZq3vyExjXbhiR9b5UpqNWFU9MzdSg1yH1eFD6vf+71z7P0ciZZWlCeCq0fUZ0QQ8bd15Nx7w1BlYpFUeSNDcf4wx/fYvzRA8xtKkftDW7X4oNhWSBYZAqq9RG0K7V0K5RY5L3RN38EziZX4BX8BWOiICAiIAp+mXr/68/e9/W+xq8keT56m/JTo5lZmMTswhSumJ1DhOHieGiONC7WwcNIwuf14mrvwtHchr2pDUdzG47mdhzNbVjKa2nbdWjIiqHKpHjSb7mclJtWEDnd7z/9zubjPPTHj+iy9CdncZE6fv3ly7j1svEDZju6LA4+2HqSNzcUs/FA5aDZJY3bSVFbLfM768hobUAY7D4jCMQumkH6XdeSfP1S5HpdSL+3F3a7nQ8+Wk2XzcPN115OeNjQ7Il8Xi8d+4pp+HgTDas207H/2JA+fwkXJyKnTSBieiHKqAi8Nkef93d3eQ2e7sGJry4zBd24bGo1YXzS4maHRaBVrev3LImP0vO7ryzjxkUFA15nvRBFkX0nG3jxk0O8t+XEoFnwsxGuVzE+M5aoMC0RBjXhehXhBjU6lYzqUyfRqaQsXTyPuCgjEQY1auXA1T4er49dxbV8uL2EtzYeo6GtG6nPR5TDQrTdgsbjQttTKq70epAr5RQVJDNjQiphkQbUcdGo4qKQadWYjp+i+dNdNKza7PcSDxH67DQSr/JnZ6PnThnVCqWL7flkc7j557t7ePzV7XR2Bw/CZSdH8vDNs/jCsgl9gb63Nx3n649/FPBzMeFafnbfYu5cMbFfq8NowmRx8Ngzn/LMB/sDrte6naR1d5DW3U66uZ207nbCR6OacYTQjptvUNn78hK5/TxAEIRf4S+jBpgpiuLuINv9AH+5MsAyURTXncN3Tgd24s8UTxBFsWQsk1tneycNqzZ/RmhD7C8x5GWQeNUiImZMpN4QycZ6C2v2lLPvZH1IfbE6l4ObdS7m2FqQHToaUmZYl5GMPjcdw2mTPjed7pJKTv7leeo/3DhiAj42uZJqQyQVWiPVOn9vUrtK268E82KFQi7lytm53HX5RC6bmnleHx4XGhfb4OFCQBRFDm8v5vnHX6drzxEyzW2kWDpC7iHUpCdxMjOff5lVtJzl8ymVCHzz5ln84M55QTNKFruLj3eU8taGYtbuLQ9aqnY2CjNiuGpOLlfNzWNSdhyO5jZq3lhN1asf077r0KCfl6qUxF42m6SrF5N45ULU8TGDfmY455OzvZPGtdtpWLWZxk+2DmmgPRAEiQSpVu2vdumJ3Dudblw2B4oBAn6XEBweQcCkUGNSqLHKFdilCpwKJTkFKcyZlU94XAQemwNbbSO22iastY3Y65qwN7WF/DxSJ8QQu2QWcUtmEbt4Jgqj/rNeQocTd7cVV0cXrk4z7m4rEqkUZ3snttombHVN2GobaS+vw2y20SVVYOkJuHYreuZyJXGTcvnWL+5lQu7Ayv+nw+v1sfNYLR9sPckH20qobuoa5l8xOKKNGsZn+rU/JmbFMaswmbT48KDHs+VQFS+vPcJ7W070VW4Egkoh40tTE7lGYcO+ZRctW/aF7FEuyGTEzJvSV25syEkf1m8bDi6W55Pb4+U/Hx/kNy9uoak9eIXcrMJkvnXLbFbOzulr/zBbnXzn75/w0prD/bYXBPjq9TN47O4FhOkC+OmOEnw+kWOVLWe4dwx0fp0Oo9NGancH4xUe8qRuYm1mFK2teFpGL8sbKj535LYne/iCKIr7RnznFwkEQdiC39PXChhFUQx4ZxMEYRb+vlyAn4ui+JNhfp8M2AdMBH4hiuKPe94fM+TWY7XRsm0/zZ/upOnTXXQePB7aA1gQiJo1iaRrlpB0zRIMuRkBN2s32Vi7p5wPt59k7e5TId0cjEop9yQrmdlag33dFry28x8FkyjkRM+dQvzyucQvn4dxQi6C0FPeZvX3JnV2++ddFgdd3Q66et7v6va/Z7Y6sDnc/snpxupwY3e4sTpc2J1jd2CZEKXn6zfN5MvXTB00iv55wMUyeLhQqG7q4pf/3cwr646coVYr93pI6+5gYns9szrrMVpCE1kr10eyKzadPTGpRKXG8d9Hr2dGQVK/7ZwuD5/sPsWbG4pZtbM0pGtGEGD2+BQ/oZ2TS0Zi8BJBS0UtlS+9T+UL72MpD01XMWLaeD/RvWpx3z3hbIRyPomiSOehEz1iWJtp33V4yGXhqphIDHkZGPIy0GUmo06MRR0fjTo+BmWkEZlOg1StCpqd236kmu/9+SNKyhpQeD0ofF6UXg8qrxt1jziSxuNC63WTE6FmXlY0arfL72vd5bcoc/csj/Xe8FAhD9P7he4SY3vmMXRrdPxrSzn72hx0KdVnWN5IJQJfvHwyP7hrHskxA4s2el0uzMfLqX7tY6pe/hBbXVPIx6VN93t4u80W3GbLkESNBoJZrqJ7ymRWfP+LFF69YEj2aqLo927+YNtJPtxWwpHy5hE5pkCYmBXHNfPyuGZeHvlp0QHP6W6bk1fWHuHJ9/Zysrqt9yBJtHYxrbWGKa01JNiC93yeDUWEkYQr5pN45SLil89FYRz53s5QMNafTz6fyOufFvOL/26iMojavSDA1XPzePiWWcwcl3zGup3Ftdz763epauzq97nEaAPP/d+1zJ+UNgpH3h8+n8iuY7W8s/kE72w+3leOHCqiw7VcNy+f+ZPTmDshhdiIM6t+3N0Wuk/V9ClWO5r9do6O1g6cLe04Wv1uG6N5P/08klsffmXjEvw9ny+Lohh6Y8HnAIIgtAJRwGFRFCcNsF04fpsjgDdFUbx5mN/XmwEuBwpFUXT0vH/O5LaHvA6EOPwWTxw5coSUqBgcja19k7WyjtYt++jYfRjRHWL0Ui4jZvFMEq5ZQtzl81HFRg7pmO1ON5sPVfPRjjI+2V1ORwgetuPjdDwU6SZq525MB0a3PE9ITiDjqgXELJlF1PxpyLSj9xDx+UTsLjd2p9/uwupwY3f6ibDT7cXj8cu2uz1+1Um314fb3TM/7X2Xx4fH63/tE0VE0T/oEEURt8dDfX0DHq+ISmfEZHXRZrJT02zC4Rr8fx4fqeM7t87kjmUTUMiHp+53McDhcLBlyxYA5s+fj0p1/qLDYxkNbd387a09/HfVYVxBBFUSo/V8//Y53LK4AOvRUurfXUf9u+uwhtCz5hMkRF82i/TbryR+5cK+6624ooWX1h7lzY3HByxr64VSLmVRURpXzMpm+fSMkASoTocoinTsOkTNyx9R//Ya3KbQBOTUyfFEzpyIOiUeTXI8mtQENCnxSGIi2LF/L+A/n5RKJR6zBfOJcjp2HaZj9xHadx7COYQovkynIWLmRMKnjidi+njCp4xDOQzl1UCoauziO0+sY/OhKgbTD8pJjuBHd83jqjl9giR+T2+rvc+T2096/XOvw4Xo9uDzePC5PYhuDy67naryCvD6SE5ORiqR0HPjQvT1zP0eFj3L+H3ARdHvGd63rd8zvG8ZsW+bz/bx2fZSjdovlBWmRxamQx72mUCWMjYKdUIMMp3mjN/17EcH+cm/Nwe8X84oSORvD68gO2no/wfR56N9+wFqX1tF/bvrcHedf1uas+EOCyPjlhWk33YFET1tBEOB2erkQGkjB0qb2F/SyP6SBlo6R16bY1x6NA9dP5Xr5+cHfC75fD42vbOVXU++hfHgYeLtoRNafUEm8VcsIO7yef6/wTBVbUcSY/n59On+Sn763GaOVQbvyb56bg7/d+dccpLPHC96vD7+8OoO/vTaroAWX9cvyOOPX12KUT+6v9fnE9lX0sB7W0t4f2sJjQNknUPBgkkp/PM7K4mPHFo7Sy9Enw93VzfO9i68NjtehxOf3YnH5sDncPgFvexOvE7nmffMnvslIn3LvetOX1/f3sbVT/+29+s+N+QW6JP7E4HN+BWU3xZFcXR19C8wBEFQAb1s6mNRFK8cZHsLoAV2iaI4axjfl4G/d1cNLBdFce1p60aC3IZ8kvxNnkPkcAO9MinSSdlIZ09ANr0A4bSH/7nA6xMpabCyo6SLnaVdWJ0DR6qi9HJuTYIp1aX4Nh8E67lnc5vUek4aYykxxlJqjKFLqWFmdhh3LUgkQvf5zVh6vD4qW+yUNto4UWfhUHU3Hm/w0ynaoOCu+QlMyxpdr+RLGBtoM7t4f18LG491BD0v9Cop106PZemESBSyM7M9oihiK61n/6vbSSwpJc4ewsBdIactO4NNYUl8Ko3CNYgPrUwqMDlNz6wcI0XpBlSKkRmEii433j3H8Wzaj/dAqZ9gDQcGLYJRD1Y7oskCIaqtng4hORbZlFykU/KQ5KUhyEdX5s7q9PDfTQ3sLOnCMwjLVcokTM00cNuceKIMigG3vRjRYXHz1LpaDlf3P3elErhpZhxXT40JqKo9VIhuD979J/HuPY73UBli+4W3mRPiIpFftwDZ4qnDPu9EUaS9282pZhvt3W4sDg9WhxeLw4vF4cHi9C9bHd5Bn/+BEKGTc/nkKJYURqJRSvHVNuPZcgjP9sOIDaHZgrkFCaURcXgn5TL+minoUgZvO7gEaOhw8OKWBg5WBb+3T0jRceuceDJi+48Z27pd/H11DSUN/WmHWiHh3kVJzM0znrPS9ECobLGx7WQXu8q6aO8OfYCcGKFkXJKOnAQtaw61UdbUP4CjV0l5cFkyUzLG3pipra2N+++/v/fl54LcLgbuwO+z2qtw0ftFNuBd4EVgvfg5bPoVBCEavw0PwOuiKN46yPbN+C17ikVRHD+M71sHXBbou847uSWdSIZA1hRypBOykM6ZgGxaAYJudMtgXB4f+8pNbD7eyZHq7oBmC4IoktfZxKK2SiY11yAdStmGXoMkMgwhwoAQE44kP40D6iie3m8O+FBVySXcNCuOFZOikI7A4GWsw+LwsL2ki83HO6hoDh40mJ4Vxj2LEgnXfn6J//8yWkxO3tvbwubjnUFFmlRyCSuLollZFI1GGZhQVrXY+fPHVTSbXCCKpHZ3MLu5kuktVRjcg6vSOiQyDkUlsi86laMRCX2egBIBxqfomZ1rZFpmWNDvHymI3Ta8B07i2XsC74ESsI2yQnHvfXdKHtKiXCSxI6u6Gio8Ph9v72rmk0Nt2F2Dk3ujRsakND1XTY0hMWLsZJWGi91lXTzzaR0WR/9nQ2KEkq+tSCE9ZmSCvACi3eEPqOw+hvdgKdhHQblZIkBkGIJBh6iQ0d1mQd8aAgEMN6C4dj6yZTMQ1OduQxIMPp+I1enFbPdQ2+6gutVOTZuD0kYr3fbgz3qZz8ucrjqu7arCUBPaGN0kV3EkMpHDkYkcD4/DKfM/z9QK/73tisnB723/67A4PLy9u5m1h9vwBrk1ZMdpuHVOPOOSA2cu95WbeHJdbcDrKzdBy0PLU4gJG52AmdXhZXtJJxuKO6hqDS1BEmNQMC5Z1zedPv7xeEXe3t3Ee3taAo5bl02M5I55Cf0CwBcSnzty27dzfwbzWuBOYCn0uZ70fmkj8DLwoiiKxaN2IOcZgiAkA72NVS+KonjXINvX4LfuKRdFMWuI33UX/oy4GcgTRbHxrPXntSx5MHIrSKWETyskeuEMYhZNJ3z6BKTKCxONr2/r5o1Pj/Hq+mJO1XcSZe9mTlMFc5oqiHQOXuJkGJ9D4nWXETl3CpqkOFRxUX6z7gBo6rDwrb+tZc2e8oDrx6VH88eHljKjIHTBjbGE4ZQz7TvZwK9e2MbmQ9UB1xu0Sn5+30LuXD6wou3FhLFc9nU+UF7fyeOv7+KNDceCklqFTMo9Kyfx7VtmBC37FUWRF9cc5fv/Wo8zgODTV6+ezJdT5DS8vpr69zcguAZXX7dLZTRkZBO/bDaL7r+ahNzUof24EYLP5aZt+wGaPt5E48ebsVU3jMh+tZnJxC2fS+zyeUTNmxL0XnWh8Pqnx/jNS9uoaQ6ttFOnlpObEsXc8clcvyCP8Zmx/bYZq9eb2ebkh09+yqvrA7e/fOnqIn5yz/wR0SHw2Ow0f7KVurfW0vTJVnyO82tFJDfq0U7Mp7zVgruqjrhBelGlRgPZD32BzK/chiJiZLJRoZwHXq+PXcfr+XB7KR/tKKOhpwcy2t7NgoYy5jZVoA8hYKZOiiPhustQLJ7DMyUmXlx3DE8QdhZhUPOtm2dw35WTQ7brGk2MhevF4/XxwieH+fWL24O2k+WnRvHoF+exYkZmwLGB0+3hp89t4an3+6sOy6QSvn/7bB6+acaIi1mKosiO4jpeWnOE97eVhtSSlZMcyXXzc7lmXi55KVGDbr/9aC1f/sPHfefn6chOiuBvD68YM+PI8vJyxo/vy9d9fsjtGV8kCDHAF/BndItOW9V7AIfxk7RXRVEcmg/EGMP5ytwKghAFnMDf2/t1URSfCLDNeRWUOp3cKiONqBNiUMXHEDYui7gls4iZP3XIdhejBZ/bTcfBE7Ru3cfRV1bhOXB08A+FG8m793oy772BsIIhxSEQRZGX1hzmB/9aF/SmffcVk/nll5YQGTZy0frzgXMRothyqIqfPLuBXccC3/dWzMji6R9cM+T+xrGIsS7YMVrYX9LAX9/YydubjgfseQK/ivbdl0/m27fNJjXOGHRfNoebb/5lVUC1y0iDmn//37VMzUvkmQ/28eS7ezG1djG5rZaZzVXkdzYhDRj37o+wwhzil80hbtkcYuZNRaY5//8rURQxHSujZfNeLJV1WKvrsVY3YK2qx9naEfyDgoBxfA5RsyYRNbuI6DlFQe3MxhoOljbynb9/wu5jdfiGMD6RCAIalZwIg5rEaD3hejVqhZTO9hbUCikzi8aRkRRFfIQOjVqBRilHrZKjVyswaJXnLYC27Ug19/36PWqa+5cEx0XqeOb713DZtMxz+g6vy0Xj6i1Uv76a+g824LGG1o+qjAonbukcNEmxyLQaZFo1Uo3Kv6xR4erqpvPwSboOn6Tz8MmQbIPOhl2np0WUYXA7BrQxkWjV5H7lNvK+fU9IyuEDfucQ77sel5uPHn+F0n+9SlJN5YDbAmhSEki5cflnVmSniWVVNXby6xe28PLaI0HvfYnRBn70xfncuWISsgvoHnChn08b91fwyD/WcqwyMAWIi9Dxs/sXc/uyCUGJaXl9B3f+7G0OljX2W5caZ+SFx65negBRwXNBa5eV51cf4vlVBzlVN8B9uQe5KVHcsLCAGxYWUJA+9HO7w2znq3/8kPe3nuy3ThDgazfM4Kf3LUajOj+Vb26PF2uvoKnDhc3hxmx1suvAUR6596rezT6f5PaMLxWEfOAu/GS3V86s90C8wFr8QlTvi6J4YRzPzwHnq+dWEIQX8GfF9wEzRLG/s/j5Jrd7Xn+P/OlTUMdFj6nMgCiKuDpNtO8+TOv2A7RuO0D7niN47YOX/3kEgcORSWyPy6A4IoHZk9P509dXBMwUhII2k41Hn1rP86sPBVwfYVDz/Tvm8eVrpqIcA9HcUHCuD0VRFHltfTGPPPEJ7QGIf1ykjv/+6DoWTD5/tgijgQs9eDif8PlEPtldxl/f2MmWINl58Ntm3HtlEd++dTaJ0QOrhJbVtnPbT94MOPiZXpDIr760hDc3HOfFNYcCKh7rXA6K2mqZ0VpDblfz4D60PZAoFUTPnULk9AmEjcvCOC4bfW46MvWFywR6bHY6SivZ+u5HYLZSNG82huR4VDGRKGMiL+ixjQQcLg9/fGUbz310kMb20RVBUitlJMeEkRht6Jn0JEWHkRoXxsTseGLCzz2w5nJ7+fl/NvL4azsCmgRctyCfv39r5TkFNs2llZQ/+yYV/3134ODHaQgvGkfiygUkXLGAiGnjkYQobCT6fFgq6+g6fJKO/cdo3rSb9t1Hhqy+6pDIUPmCZ7hEuYz4265m+k++ii4jOeh2AyHU+66tvpnyZ9/k1DNvYK8fWJHZJFexKzaN8sw8HvnF3VwzL3/A7Utr2vjV81t4c2NxUJOI7ORIfnzPQq5fUDAiPdZDxYV6PpXXd/CDf63jo+0lAdcr5FK+cdNMvnf73KAWbgCvf1rM1x//iG5b/0qd6xbk88/vXoVxBC1+TlS18sRbu3ll3ZFBs7RJMQbuWD6RGxeNoyCICvdQIIoi//n4IN994pOAz7rMxAie/N5VzJ1wbhVIXq+PulYztS0mapvN1LWYepZN1LaYqW7qwmIPXBklOkw4dz3e+/LzT27POABBWIifoN0A9I5seg/KDLyBv7R323k/uHPAaKslC4KQANT3vPw9cDDIpq/2zE8AP+9ZrgzmuzscDNfndiTgdTix1Tdjr2/2e+7VN+NoavPLnbd24Gjpnbfjcw5emng6rMZwNunj2ZKQRZtaf8Y6iUTggaun8uN7FhJhGN4DYMfRGr75l1UUVwSOUibHhvGTexZy62Xjx7wX7Eg9FFu7rHzvH2t5bX3/LLogwPdun8ujdy+8oNHtc8H/Arl1uDy8uu4If31jFyU1wXvtNCo5D1w9hYdvmU1cxODVHG9vOs5X/vBBwIHLLUsKsdhdrNpZOqC7WG5KFPdeWcRtS8ejc9qpfXsNNa+vpmXrviH7VAsSCdqMJMLyMzHkZRA2LhvjhFwMeRnnjVj+L5xP4A9q/Pn1HXyyq+ycFUaHg4QoPZNz4pmUHdczjychSh/SANXp8vDGhmIef23HZ7Yxp8GgVfLnb1zObUuH137hdTipfXcdp55+nZZNewbdXpDJiFs6m5QblhF/+Xw0CcML0gaC22yhedNumtbvpGn9DswnArfhDAc+QcAxewbTf/o1Jlw2bUifHeg6EX0+mtbvoOzJ16j/YMOg5PyEMZZNCdkcjErCK/ksEPCFpRP449eXE64f+Bo8VtnCz57byIfbAhM5gEnZcfzs/sUsnRa47Ha0cL7vJ2ark9++uIV/vLMnqJ/4NfPy+M2DS0lPCOw/DP5qnu8+8Qn/+bj/MFgpl/KHry3n/qumjMjfUhRFPt1Xwd/e3MW6vQOf33KZhCvn5HLPFZNZPCVjVMZxJ6tbeeC377PvZP/2FUGAB6+dzi8eWIxWPXj7X2e3neLyZo5WtHC0vJmjFc0cr2wZtp3k/zS57cUA/bkAPlEUL44UVg9G2+dWEIQ0YPB6mcB4XhTFu4f52UDHMmrkVhRFnK0dmEsq6S6txFxaRXdpFZbKOuz1zTjbAnudjTRqtUb2RaewLzqFJu1nfUARBjW/eGAJ96ycPKwbp9vj5Z/v7OGX/90cNPo1Lj2GXzywmBUzs8ds7+lIPxQ/2VXGg7//gObO/mVvcyak8Pyj1w+a5RuL+DyTkZZOK//+cD9PvreXlgD/t15oVXIevG4a37hpVkgZMZvDzff/uZZnP+zfP6VVy5mYFc/O4poBuenCyWl88+ZZLJueFTAjYmtopv6DDTSt20HTpztxm84tUyjTqlHFRqHNSMJYkE3E9EJiF0xHkxR/Tvs9G5/n8ykYOrvtPPnuHtbtreBkdWtIFk6jgYQoPctnZLFiZjaLitL7ZZQ6zHae/WAf/3pvL01BCPncCSk8+8NrByzDDwZLRS0lT7xE5fPv4eroGnBbQSIhZtEMUm9dSfJ1l6GMDE4URhK2+maa1u/omXbiaApu4zIUnErOQDKjiMQpBYxbMJmJU3IGrHIKdJ042jqo+M87nHrq9UG9p+VGAxl3X0f6/TfzZlknP3tuY8DzLinGwAuP3cCswsEzzHuO1/HjZzew+WBV0G3mTkjh5w8sCWl/I4HzdT/xen288MkhfvrvjUGfFeMzYvnD15YNWq11vLKFO3/+Nser+p9buSlRvPjjG4ZdZXc6eoO2T7y1O+B3nf29d6+czBeWTiBCJaW7tAprTQOq2CiMhdkj3uLi8fr46xs7+cV/NgXUoEiLN/Ld2+YAYLG7sNpdWB1urHYXFruLdpONY1Wt1AZolTgXXCK3Z0EQhHHAa0ABIACiKIoXlaScIAi/Bn7Y83JmsEzpaf60cJaNzyD7T+NzRm5dXWY6D5+k89AJug6fpKu4jO7SqnMeaI406rRh7I9OYW90Ko09RHfxlHT++d2rhjVIAahrNfP9f6zlnc3Hg24zZ0IKP79/MbPHj73eudF4KDZ3WHjgt+8HjI5GGzU893/XnXNv2vnG542MiKLIrmN1PP3+Pt7ZfDxo9B38peVfvX469181ZdDsRi8On2ri7l++EzDjFWFQY7Y6gloIyaQSblo8jm/cNJNJ2QOTSmtNA3UfbKBjXzHt+4r9GafhWvMMAEEqRRFpRJeRTERRAbGLZhC3bA4Kg37wDwfA5+18Gg5cLg/r9lWw72Q9J6taqWzqoqXDitPtwe3x4nS58frEoIqrIwG5TMK8iaksn5HN1LwE3thwjBc/OYTNEdj2Qy6T8JN7F/HwzbOGnM1p33eUE3/4N7Vvrenx3A2O6LlTSL1tJck3LEcdO7hYzWhCFEVMx0/RtG47Tet30rJpT8i9wIPBIldiiohCkpKIPjMFtVGHJkyHNkyHNlyPSqukrKIUWWsnyR4J5kMn6TxwHJ97YFuWyBkTyf7KbaTcfPkZ1RhNHRa+9qeP+HhHab/PSCUCP71/Md++ZfagpcWiKLLxQCWPPbOBAyXBheNWzs7hJ/cuGhGSNhDOx/1k2+FqHvnHGg6VNQVcH23U8JN7F3H3FZMHvDYGK8u9c8VE/vyNy0PKWA6ELouDp97byz/e3k1rV/DzVSt4uSMvmisS1USbOzGfOIXpeDnWyrozrlNBIkGfk0b4pHyME/MIn5hL+KR8VHHnXqpcUtPGl3//AbuD6Jecb1wit4AgCErgavyZ2+V8lrm9WMntdKCX0D4liuKDAbaR4PenzQe6gBhRFIfrEhvsOM5rz20o5NbndtN9qgbTsTI6DhynffdhuorLcLa0j8bhjSoaNAY2J2SzJT4LhU7Drx+8jPuunDLsfpldx2p59OlP2X4keCR5zoQUvnvbHJbPyBozmdzReij6fCJ/fXMnP35mQz/FSUGAH9wxjx99ccGYL9vuxeeFjFjtLl7/tJin39/H4VOBBym9KEiL5uFbZnHz4sKQe8h9PpF/vLObR5/+NCBhlkmFoKQ2TKvkvqum8JXrp5M0QHbf5/HQsGozp556nYbVW4ZcljySkCgVqGIi0GelEl5UQOyimcQsnI5cO3D/5eflfBotnP73WbLkMjptHmqbTdQ0m6hq7KSivpNP91cEVB4dLYzPiOWZH17DxKy4kD8jiiKNa7Zy4vfP0rxx4I4iZaSR9LuvJ/P+GwnLG7vBP6/LRce+Ylq37qNl635atx/A3RWaUvZowiNX0D6lCPvSxYRPzichykBClJ6EKD3xkfq+Z7soiry85gjffeITTNb+0jDLZ2TxTIhCiKIo8v7Wk/zsuY0BA3m9uHpeHj+4Yx6Tc0a2AqQXo3k/Ka1p46fPbeTdzScCrpdJJTx0w3R+eOd8wgbpizVbnXzt8Y94c0N/tXGtSs7fv72S25ZOOKfjbeqw8Pc3d/HMB/sCtsIAxNjMzLE0s9jTiebUuQVEVTGRxF8+n8x7byB63tRhj+28Xh//eGcPP/33hmGXEw8VBo2C3JQoMhIiyEmJJCspksykCLB3MHXy51wtOegBCMJ8/IT2Rj7rue39r3YBb+LPNO7o/+mxjdNKkz3AfFEUd561/hH8/bIAPxNF8adnrb8b+E+w9SEew3knt6lx8djrmrDWNuFobMFW10zX0RLMJVXYahtxdZgu6EASQG7QoU1NQJOaiDYlHk1iLO5uK/bGVuwNLX2TqzO0Mg2zXMna5Hw2JuQwc1o2/3rkKtLih1f6JYoin+wq48fPbgjajwtQmBHDt2+dzY2LxiGXXdjYz2gPsveeqOeOn70VUGF0weQ0/vvo9SH1bV5oXOxkpLSmjac/2M9LnxwKOKA7HYunpPPNm2cNuW+sucPCl373PmuD2GYFg0Gr5Nu3zuar108fUHTEWttI+bNvUv7vtwYVjbnQ8JPeSHRZqejSE1HHR6NJikOTkoAuPQlpXCSfbtkMXJzn02gjlOtNFEX2nqjnzY3HeGvjsaAlxL2QSSVBrV0GwryJqTx8yyxWzMgOOfjp83iofvUjTvzh33Qd7Z8lPB2xi2aQ+aVbSL5u6QWz1zsXiD4fXcWltG7bT+vW/bTuOIitZmRssEJBnTaMTQk57IxNxyELrDKrlEtJiw8nIyGcjMQI8lKiiDZq+PvbuwMGpBOjDbzy0xtDVuf1eH28svYIv3x+84AloitmZPG9O+aNeLnyaDyfQlGLXjk7h988uJTs5MhB97e/pIG7fv42FQ39W9ImZsXx4o9vCGk/wVDZ0MmfX9/BC6sP9SvxFUQfGeZ2JrXVMd3cRJQpNNG2oUKXmULGPdeTfte1aJOHFsiwO93sLK7lnU3Hef3T4qDtbsEgl0mIDNPQYbYPWIklCLBkSgb3XFnElbNzUcj7j0HLysrIycnpffn5J7eCIOTiJ7S3A701lr13ew9+teTngQ8uRrXkXgiCMBnYDqgBC/BrYGPP61uBL/VsWgpMFUWx+6zP381FRm4H87k9r5AIyA16lBFhKKMjUMdFYZycT/pd16JPD+2h4LE7aN99mNq311L79hrsjQP3WlhlCtYn5bIzo5AffX0lD1w9ddhZXK/Xx2vrj/Kz/2wa8EGXHBvGN2+ayRevmIzuHEtwhovzQdo6u+186bfv81GAUrDYcC3/ffR6FhaNbTXli5HcWuwu3tl0nOdXH2TH0doBt1XKpdy4aBxfv2nmkDJTvVizu4wv/e6DAXt2z4ZCLuXBa6fxvdvnBlWa9Xm9fVnaxtVbBi3nBEAioIw0IggSnO1dfUIzMr0WdXwMmqRYNEmxqJPi0CTFo4qJAFGkY/8xuorLsFTU4Ghqw222IHqGpiA7ZEgkSGRSkAgIEgmCTIpUpUKmVSM3aFFGRaDPTPaLXk3OJ3LaeGRjxPN1NDHU683r9bHjaE0f0R2on1evVdI9SICnF/FROmaOS2ZyTjwrZmQPWl4qiiK176zlyI/+jLkkePeRTKch8/6byP7KbRhyxva9bziwN7XSzxWycAABAABJREFUvueIf9p9hLY9R/CYR05QzC1I2BeTwqaEbE4Zov0j9mFCr1EEzPAp5FIe//oK7r2yKOQgn9Pl4ZkP9vP7l7cOWAo7c1wS37p1Nitn5YxI9dJIPp/qW838/qVt/GfVAdyewPfb/NRofv/QspDai0RR5Im3d/Ojp9YH3N+D103jNw8uHbZf8LHKFv74ynbe3FD8mQe7KBJj7ybb1EpuVwvjO+oxhOB1HAiq2CgcLe1DS+wIAnFL55B57w0kXbMkoAOJKIocLG3k0/0VbNxfyY6jNQH7bk+HTCqQFh/O+MxYUuOM6NQKkmMMnKhq5aU1h2kzBbfoio/S88XLJ/HFyycNmsD5nyC3PZ6st+EntVN63z5tk16f21cudp/b0yEIwlXAS3yWlT4bpcBKURRPBfjs3VwitwBINWp0aYloUhPQpsT3+d6Zy6roOlyC+cQpxBCj6RKFnISVC0m/61oSrpiPVBEaIRR9Plp3HKDmzU+ofXvtgFkfu1TGhsQcbFcs54mff+GcxI8cLg/PfLCPv7y+c8DyOb1Gwa2XjeeelUWjVrYUDOeLtImiyF/f3MVjT3/aL3sikQj8313z+d7tcy94JjsYLhZyK4oiO4treWH1Id7aeAxrkN7BXqTFG3ng6qncdfkkooZhZWKyOPjpcxt58t29IX9GIhG4fdkEHr17ISmxYQG36S3nPPS9Pwya+ZJqVGhTEvBYbdjqW4ZVYqZNTST9i9eS8cXrzrAtcZnMfrGqDbvoPHgcS3ktro6ukO9ZowGpRoU6IQZjYQ4JVywg7fYrkWkuLn/twXAu11u3zcmT7+7lL2/sDOpLPlzMKkzmweumce28/H4Zj6ZPd3Loh3+iY29w33VVXDS537yL7C/fgiI88LkfKkRRxOdy43O68Dr8A3dldMSYaXk5HaLPh+lEOVUvf0jFc2/jaA5ewns6vIKADwGHVE6LWkeTxkCDNoxyQxQtagNmhRJRGN3WlpsXj+OJ71w5YFXJ2ei2OXnird387c1ddFmCB1qykiJ46PoZfGHZBAza4VswjsTzqaXTyh9f2cbT7+8LSrIiDGoeu3sh9189JSTng9YuKw/+/gNW7Szrt86oU/Hk967mmnl5Qz5WgN3H6/jDy9v4eEcpUp+PZEsn2aYWsk2tZJlaCXMPQbBOENBlJhNWkOVX0S/IIqzAr6Yv12nxWG10FZf16cr4PaNLQuo9V4SHkXnfDeR+84uoE2PZe6KedzYf553NJ85JCGpqXgKLp2TwwupDNHUEDxxdMSube68sYvmM7JDdKj635Lanj/Ya/IR2GWf20QI0Aq/gLzsuHrUDucAQBCEV+CawEkgCXMAp/CXXT4iiGPDM/l8itzKdBk1yPIbcdLTpSWhT4tGmJqJNTUCbmoAiwoggCPg8Huo/3EjVKx/S8PHmkHxqB4IiwkjqLZeTfte1RM6YGPIDXfT5aNm6j+O/e4bG1VuCbueUSNmdls+KP36ba6+bc07H6nJ7eW39UR5/bceAFisARTnx3LOyiJuXFJ7Twy5UnG/StutYLXf87G3qW/v3aBVmxPD3b69k5rjzozA5FIx1ctvQ1s0r647wwupDlNUO3AMvCLBiRjZfvnYqS6cFViEeDL2qmT95dsOAGYqzceXsHH52/2IK0mOCbtNx4BgHv/cHmj/dGXQbAE1KPK5OM57u0LPFoSBmwXQy7rme5BuWIdcF7ruzVNfTsHoLrVv2YTpWhrWm0S+gd4HaNhSRRiKmFpJ5340k37AcieTi6GUPhpG43kaT5MaGa7n3yiLuu2oKqupqDv/wcZrWB+/AMuRlkP/de0m745ohlR6LPh9dR0po3ri7L8DisdrxOZx9hPZ0qOKiiZk/lZgF04iZP42wgiyEMXYu+Nxu6j/cyKmnX6dx7fZzu2YkEkRjGJ7oSGzRMXSFR9KsM1Km0HPKAY3t3UGzj0OBTCrhmnl53L5sApdNyww5CGu2Onnq/b387Y1dtJmC3yd1agVfWDqBL107lXED3BuD4Vyul7Ladv790X6e/WB/0GCoRiXnoeun8/Ats0O2UFy/t5wHfvt+QOI1vSCRFx67YchCnr12Pn/+7wYatx0g29RKtqmVDHPbgJ7LgSBVq5Ao5J8JnwoCcr0WeZgeuUGHPEyH3KBDYTRgnJBL/Ip5hE/K7xtrij4f3eU11L23nor/vDOofZZPKuVIchbvRGVRrxva7x4Orpqby2N3LxyWmNnnjtwKgrCAz/poe2Uge0c+duB94AVgrSiKFy50fQkjglDIrUSpQBlhRJMchyE3HeOkfMIKMv0ENiUe2SDCKR6rjfLn3ubkn/+LtXJ0ro/hDhw69hdT/Mt/Uffe+qDbuAUJ7TNncOdzPyE679zKx3w+kY93lPKn17YPqoqnVcm5aXEhtywpZO7E1FHzh70QpK3dZOP+37zHJ7v7FT0AcN+VRfziS0tCVuY9HxiL5NZkcfDBtpO8tv4omw5WBe2L6kVUmIYvXjGJ+6+aMuy+coDtR2t45O9rOFjWGPJnxqXH8JeHLx/QmN5SVceRR/9C1csfBt1GptdiHJ+DuaQKV/vo2onJdBpSblpBxj03ED13cK9FURQxl1bStHY7bTsP0lVchr2+Ga/dgc/lPm/ZXkEuI3xyPllfupWMe66/KInuSF5vvST3T6/twHRWFi0pxkB2UiQ5yZGkxhupbuxif0kDR8ubBy0RjLWZuaHyMFNag4sIRkwZR+GPHyLxykUhkcxeZeLmDbto3ribls17B7ULGgjKSCPR8/xkN+Xmy0fUG3ckYKmspfzfb1Hxn3ewN4xs4Z86IYaIqeNRjM/FnplJY1QcFW0WSmvbOVHVSklN27B6sKPCNNywsIBbLhvPzHFJIQXWrXYXz364n7+/tTtgYPd0TC9I5PZlE7lx0biQieRQrxebw817W07wn48PsG0AEUylXMqXrpnKd78wNyT7N/CXZv/42Q387c1dAdd/57bZ/OTeRUOq0rI2tLD6mQ/Z+9Z6wqqqSLZ0ImXoHEiQSs7pPqyKiyZ++VziV8wjftkclBFGwH/dtu8+TMV/3qH6tY9xD1KCfyQigU+S8ykxxp5RUi+RCEzJTWDxlHQWFaUzNS+RTQcree6jA3yy+9Sgz3jw93U/ds9CinIThv07P4/k1geIfEZoRWAbfkL7xtm9pZdwceN0crsw+0Zc+mjMKi0WlQanQokokyGRCAj4LzqJICBIBATBv6yQS1HIpMhlEv+857VCLiXC6yL34F6S9uxCbhs4syPIZSSsmEfMwhmIHg9euxOv3YHH7sBrd+JobqNxzTZ8zoEb7NUJMeQ+/EWyvnQLirDQLTq6jpZw7NdPUf3G6qAljT5BIPy65cz7zcPn3CMliiLbj9bwl9d3snpXWUik5Oq5eVw7P4+FRekjWrp7oUibzyfy+Os7+OmzGz7rkzkNvcq5X71++pjwxR0r5Nbp8rBmzyleW3+UVTtKBx2ASyQCK2Zkcdflk7l8ZnZA8YhQUdNs4tGn1wdUugwGpVzK/901n4dvmR30u50dXRz71ZOUPvESPlfgzIGhIJPwCXk0b9w9eEmjTIa8IBvJ+AK843JxpKVh7zTjqmvE19iC2NSCpLUNWXs7qvZ2VN2DP9aqjdF8kltESWQCoiAgiiKi6L+WRQj6+gyIIiqPiyiHlSh7N0aHFaPLSaJRRVqUjuRwDWESEVeHCVeXGbepG1enGbfZEvTvMhgEuYz4pXOY9LtHMBaOnI/5aGOkrjeL3cW7m4/z4ieH2Xq4+ox1uclRrJiVxbLpWcwZn3KGIrjb4+VEVSsHSho5UNrAh9tK+jJQ4Q4bV1cfYU5jRdABtj4njYm/+hbJNywPifzYm9uoevF9yp97e9AM0HAhyGSk3LSC3G/eRdSMiaPyHcOFKIp0HS2h+rVVNK7Zhqm4dNjnfDBIVUqiZk0iZuF04lfMRz8xn/KGTg6famLfyQb2lzT8P3tnHR7HeXXx3yyTVszMkgWWZWZKYju2ww5zw/0CDTXQNg010ECbNNg02LDDdmIHzIySbTEz80qrxfn+WFmxol1pBXagPs+zz6yGdzTzznvee+85ZBfV02t2PwIYFezFBYtTufCUNJIi/Ydd32K1sXpjLv/8aOewavVymYRlMxM4e14yS6bHDTnY6+7zkl1czxtrDvDB94eHFBaUSSVcvTyTuy+dM6L3b35FE1c+8pnT3xbgreW1e87k1Glxw+7H2mOkcfMeKtduofiLDUiqRydQJshliJbjozwsSCT4TEsnZOlcoi5ZiUdcJLXNXXz49T4O/Odzog4dJLl9aOHDcp0PBydOJfTcJSyaGsu8jCi8XChOr91RwB3Pr6OifuhU5rAAPZctmcjlbtTWusJvldwClOAgtO+Iolg+7gc6iV8EjiW3yhm3I6jGVgMEjtHs06rymF1finyI4L4NgVyfIPb6R3LALxzBQ4ufp4ZgPw+CfHQE+3kQ3DcN8tERqBSQbttN7Ydradq6b8hzkOt1xN94EYm3Xt5f4+sOOgvLOPjQi1S9twaJi3MXBYHI85eRev8NeKUlur1vV6hq7ODtb7J48+uDVDcOb6fg7aFi+axEzpybxNyJkcNK7w+Hn5u07cmt5v+eXsvhUucvgaOep1evyGRmSvjPZh30c14nq83O9kMVfPRDDp9tyR1SLOco4sN9uXxZBhefmk6I3+i8WI/CYDTzz4928vT720dkUbBgUhTP376cuDDnCph2m42CF97j0F/+ic2FJ3avh5668Ej8y0vR9bhOPy709CfXO5hCT3/K9H6YpW6Kk4giEYY25tSXML2hHJ116AG0Qk9/PoueSKHX8YmA+XtpuHTJRP7vvBkD/m92u52u/FJHKvTWfbQfKaKnun7YAb9joQ4JYMJ91xN/48W/+GjuWJ43u11ka3Y576zL5vMtecPWnYMj7XLBpCjOW5jCBYvTBqXqmy02Pl+zlwMPv0By1j6X77ZWhZpvEzOJu+pcrj93OokRrj1q7RYLtV9vpuT1T6hdu7lf+OxEwHdaOgm3XEbEqqVua1eMN3pqGmjeeZDmXdm07MqiLSt/3Pxz3YEqwJeQ5fMJXbGQoFNnIffQYbHaOFhYx9bsCtbtKmLH4Srsbva1M+KDuOCUNM5flDpsmyuKIpsOlPHyF/tYs71g2AFuqURgVloEy2bGMzM1nIlxQaiVP2baOXteLFYbhVUtHCpu4HBJPZsOlA+bbXNUD+G+y+eNiBiJosh/vjrA3S+ud/qOWDI9jlfuPoNAF84IoijScaSQuvXbqFu/jYYt+xDNI1MLBkcWny42gq6iCroKXQu6jTskAqXJabzmEU2D6sffGNDTyWnV+cyuL0Vhd/18eyREkXL/jURdvAKJbOC7q7i6hQde28inm3NHfFoLJkVx7oIUTpse51Lfwhl+i+T2ZeDtX6N9z0mMHONJbn17DZxRfphZ9WVIhkgXKfPwYUtwHAf8wjEoRk7MvD1UpKhhen0pMXlHUDW5VkGWKOREX34WyXdejT4xxu1jdJVV8cX/PYH9mx+QDUHQw846hZT7b8B3SprLddyFzWbnu70lvL72AF/vKHQazfwpJBKBjLgg5mZEMi8jillpES5H/Vzh5ya34CBv//pkNw+/sYmeITqiAd5aVsxK5Iy5icydGIVGdeLUvU/0dbLa7GzNKufTzXl8sTXPrbpWnVrBOfMncMXpGcxMDR+TsIzZYuP7fSV8+P0R1uwoGPL/8lP46tU8fuNpXLIkHUEQaGzrprCymYr69r5PB91ZOUxav5bgNufPb49Uzq7AKJLaGggxuh70OewdzJdR6ZR6uiYR7kJmtzGxuYbZ9SWktdYN2Y7legXxeXQ6JZ7DR2tGA7lMwllzk7notHR89GoUMilKhQyNUo6HRoFOrUAhl9KZV0LJ66upW7+NzrxStwiSTKsm7roLSP/bH36xyssjfd4q6tvZklXOlqwKNh4oGzb1cygsmBTFv+89q99r2WLopuCfb5P35Gsu0w27ZQrWRqSwITQByzEDKwszo7n41HRWzEnsb5sNZVUUvfgeZW9/4VBhdQO62AgCF04nYME0tBEhSFUKpColEpUSad/H3Nbh8J7dso/GzXvprqgZdr+qIH/ib7yQ2GtWHdeU5d7mVjpyimndn0PLriyad2bRUz105NIdaKPDiL78LOQ6DZ35pXTkldBxpGjYtNCfQiKXE7BgGqErFhC6YmG/qFx+RRMXPfDxkB62P4VUInD2/An833nTme6GlVBVYwdvrDnAG2sPDikMdCxkUgmpMQGkxQYS7OuBt05BXWUx7T1WrAof8spbyC1vHDaz5yj8PDVcsiSda1ZOdjkY6QrNHT3c9NRXfLWtYNAypVzK3244lRvPnjrofWTrNVH/w06qP/+e2q83jzgtXZRK8Z2cQuC8KfjPmYxEoSD/mTeGrH0/CnVIAP6zM/GbNQn/2ZmoAnwxd3Rh6TRg6TD0TbuwdHTRXVlH3bfbMRRXDLtfGwLbg2NYE5lKyzEk18PcyypDFTNKc5AaXA/S6mIjSLn/BkLOP51DFS28t/4Qr6894DJ9PiLQk/pWw5DWP0eRHOnPkhlxLJkWx6y0iCGzuH5z5PYk/rcwHuTWw9zLioojzK8tGjJSm+0TwrqICRR6BoxJtn8ARJHU1lqWVeWRNFT6hyAQuGIhE++7Hr8ZGW7vPndvPm9e8xDJR7JQDjHqFrx0Lin330DAnCkjOHnXqG3u4t1vs/lsU96I6holEoGJsUFMmxBKYqQfiRGOT4ifh0ui80sgt0dR2dDBPS99y+db8obVGJHLJExJCmXuxEjmToxkRmr4cbVTOhHXyWqzsyWrnE835fLltny3CK1cJmHJtDjOX5zG8lkJYyL8drvI9kMVfPjDET7bkjcqEZ4z5iRy+sxEyupaOVTcQFZxPXXHKIVrLSbOKc1iXl0xzmKHVkHCluBYBFFkvot1AHK8g/gi6viRS0+TkRkNZSyoLSKg13WH85BPCJ9HpVOhH70/41ghEQQkEgGZADMay5lbVUh4exPS4WQxpFJ8zl3GtBf/go/v8G2/0WShw9BLW1cvnT29dBhMdBp66TKa6eox0200YzCa6TFZkCAgSEAqkSCXSfD2UOPtocbPU4Ovl4ZAbx2B3lo8XIjmuXreTGYrTR09NLV1c7ikgS1Z5WzNrnDqo+0M3h4qBEEY9t729lDxr1uWklpwmCMPv+gyFV5UKtgRn877ntEY5a7bH7lMwrnhGk4pO4Jk665hByE0YUEELp5J4KIZBC6cPmLPTIDuihoat+6j/vudVH70zZAijoJUSujKhcRddz5Bp81BIh15+YIoivQ2NNNVVEFHThEdOcX9U3dJ/GgRunIhU1/8K5qwIIfQT1F5nxXRYZq2H6AtK29EwlXeGclErFpKxPnLkIWHcM+L3/Hql0NnjDnD1ORQ/u+86Zw9L3nYciKL1cb3e0t499tDrNle4DYxHS0EAU6ZEsuVyye59DsdDp9vyePWf3zt1AIuOdKft/58zgBBI1NLGzVrN1PzxQ/Urd82oki9USqjISiUmNNmMe+SpQTMnIhMo6b1QA6H/vIctWs3udxWGxlKyPL5+M/OxH92JpqIkBEP/nYVV3Dg3a/JX/0dyrwCFDbXWUxWQcLW4FgOZM5g+RkzWbUoldSYAGzGXkrf+JT8Z97AUOranq9ZpWNtxAS2B8Vgkwz+v4T66/nzlfO5ZMlEOrtNfPjDYd76OmvYVPej0KkVLMiMZtHkaCICPQny9SDQx9Emy2XSk+T2JH7dGAm5DfXXk5EQzKT4IFKjA1BYTPS88wmmD7+EXucvTbtUSsvkyZTOnE2D3oduo5mObhOtnUZaO3vcSq90F9GdzSytzCWzucplhxigPjSC9mWnEXDaXNLiAkmNCXTpsQmOF85jz31FwT/fZlFNAeohGrSAeVNJvvsaQpbNGzeFyrLaNj7fmsdnm/PYmzf8SLwzeGgUJET4kRDuS4C3Fr1GiYdWiV6jRCkXKMw7gkouYcaM6aiUyv5GXxBAEBw114Ig9I9JuDNPpZDhoVHioVGO+KVZVNXCv1bv5p31WW6nwcqkEjITg/vJ7szUiHFVmz5e5LbXbGXD/lK+2lbAmu0FQypqHovZ6RFcuDiNs+cnD3n/DgVRFKlu6mR/fi07DlfyyabcIS2rhoJcJkEuldDj4v8liCKz6ktZVXoQDxd+g3v8I8n2DeWs8kP4uyCUeV6BfBGVTpGX63IDjUqORil3TFVyNCoFGqXsmO9ytGo5aqUcrcoxVSpkqBQylHLpwO8SMH29gc5/v4utznVkweOMU/G74zpqrBK2H65ka3YFOWVDe2sfV9jtLKwt4tTqfAJ6DQzVjbMKApuC4/kwbjL2nyFdWRBAInHcP3KZBKlEgkQiYLNaHMukcswWGyaLdVTKtxKJwOy0CFYtSmHlnER8dGoOFtfz3Z5i1u8uZn9B7QDeI4gi0xrLObvM9X0oyGTEXX8BqX+6EWWAHxv2l/Ly53v5emfhQA4liiS1N7CsMpfUtqEHKqUadZ+A2TkEzJ0yrirHptZ2Sl77mMIX3qOncuj6RU1ECLHXnEfs1eehCXUQE5vZjLmlHVNzG71NrfQ2ttJTUYOhvIbusmq6y2vorqh1quA8UqgC/fDOSMJrYhLa5BhyOpqwt3YS3mmhZfM+2g46T8+Ue+mZ9vKDRF5w+qBl5rYOGrfuo2HjburWbaUzv9Tt8/GeNIGI85eRHxHHje/uceqJOxxC/Dy44eypXL080632ut3Qy2ebc1mzvYAN+8tGVAc8HEL99VyxLIPLl2WMWK34KFo6evjDc9+41F+4/qypPHbDKaiVcrqr6qj6ZD3Vn/9A07b9bqff2xAo1fuR4xuMbs40zrt2BcvmJPX3T4wNzWTf8zSlb37qch+a8GBS/3wTMVeejUQ+uoHf+lYDH35/mPe/O9xPHmU2GwkdjUxsqWFOXYlLpWaJQk7Mtefjd9PltErk1LcYqG8xUNfUgWXTTgK/+xbvBteEtEWp4ZuIFLYGxWKVSvH2UHHnxXO48eypA9LSjyKrqI5/f7mf1Rty6OwZ3bOolEuR2bpp2fDY0Vm/fXIrCIIEWADMBIIADfAnURTrjllHgcM6yCaK4thbupM4bhhN5FZmt3FKbSErq3JRmZyTU5lWQ/zvLybx1suHTHWy2ey0GXpp7eihpdNIY1s39S1d1LV0ORqAvmltc5fbnX53a36rtZ5sCElgb0AkXsF+pMUG9qX5BJEeG0hihN+AuqutWeXc9OCHJGft49TqfLRD1OZ5Togj6Y6riLrkjBGpNw+HqsYOvtiSz5fb8tmdW+1WKsovAUq5FH9vLaH+esL89YT660mK9GNyYggTogNcKkE3d/Tw+lf7Wb0x12VNritIJAIZ8cHMnRjB3ImRzE6PHHHK9rEYT3Lb1mVk3a5ivtyWz3d7it2qCQRHTdc5CyZw/qLUUXVKWjuN7M+vYX9BrUNAJb/W7TQ4iSCAgFtqjT9FmKGNSwv3Et/pnOzVaDz5PGEy09trmVKe73QdW0wU0huuRD0tA63aQV7Vqh/JqVbtIK0qhWxU1kbDwWY2U/qf1Rx55CWX6XMmmZzPI9P4ITQR2y+optXb2M1FJfvIaKlBOkS/wSJI+D4skdXRGfALOv/xhkQi4OOhxtdTg5+XBp1GgdFo4WBhHdFVpZxTlk14d7vL7SMvXkH6Q7fiERsxaFlFfTv//nIfb605QGRJIcuqcojuah3yfKr8guiZP5fES1cyd1YS4QFj175wBbvVSvUXP1D43Ds0bhnam1qQSNBGhWJqaf/RLmWcIffS4zc9Hb+Zk/Cdlob3pAmog37MxnDW7jZu28f+W/9G2wHnxCry4hVMfeEBFF6uhZC6iiuoWbuJ2jWbaNy8F7vFvTZYk5rIOoUfa+V+NKsH1o/6e2kwGM1DDsiqlTIuPjWd/ztvulsCVOBQNt6wv5RvdhaxO7ea3PLGEbknhfrrSY8NJC02kDnpESyaHDMm7Yovt+VzyzNraXASrfXz1PDy3StZFOND5er1VH6wlqbtB9zed5NKS453MEd8QmiPi+WiM2dwxemTBtSL2i0WCl98j8N/ec5l+rk62J+U+28k9ppVo+qDFVe3sHZHId/sKmJrdsWQ7z2duZdlVbksri1C7iL4YZApeDd+KnsCIgdmLooi6S01rKw4QkyX6+yGdqWa3rOWc/lzd+IX4E1LRw/rdxezK6eKuhYDjW0GGtu6aWzrHlEJkSuIvR2Ydj1z9M/fNrkVBGE58BwQ9ZNFaaIo5h6z3o3AvwADECKK4viaEJ7EuGFE5FYUyWyuYlXJQZdpehKFnLgbLiTlvhtQB469Bu5YGE0Wqhs7qWrsoKqhg8qGDqoaO6iob6esrp3qxo4BDb7eZOSUmgIW1hSisbl+2C2ChCy/MHYExXDEO7g/cuGhUTA5MYSpyaFMTQ5j6oRQlHIpNz+zlrXfZ7OgtpDTqvKHNApXBfqReMtlxN1wYb9k/HjBaLKwN6+mv85sT271cU9jOh5QK2VkxAezaLKjNi0m1MfpeqU1rXyxLZ8vt+azN6/GrZrkYyEIkB4bxJyJkczrq1EeCdkdK7mtqG/nm51FfLU9ny1ZFW5bUEyKD+bsBcmcM38CsS6uzU/R1N5NQWUzBRXNjmllM/kVzW6nbh6LiXFB9Jgsw3rnOoPKauGM8kOcUl3gXFVWpcTv/64gJDWOonv/jrFuMPmVKBWkP3gzSXdcPUho4+eA1dhL8SsfcPjRl7E0O7ciqtXoeS9+KnneQSf47IaGzGbl3NIs5tcVD1lmYZJIWRc+gS8jU3/TJLcfokhieyNnl2W7HIABaIhLQHfTFSQunEJylD/+XoOtUURRpG7dFg7e8zQdhwbXIB5Fr0TGlpA4NgfHUa8d+N6NCfFmVloEmYnBZCaGkB4b6DRKMxpYDN0YSqowlFTSsGUv9eu20lVSiWg9/u8OiVKBPikG32np+M3MwG9GBvrE6CEj1K7aXdFup/TNT8m+9xmnKc+a8GBmf/gs/jMnDXtelk4Ddd9tp3bNJmrWbsLUNPRgxFGUePiyNyCSvQGRtCsd0VhPnZKVs5PYnFVO1TDt7dLpcdy8agYLM6NHlCLb1WMiq7CO/YV1VNZ30NBqoK65k4raJpRyCTPSY5nUd98Ml5k2ErR09HDH8+v48IcjTpefnRHGH8Kk1H6yDsPugwhuvKPtCBR7+nHQL5xs31CatHqWzojn6hWZLJkeP2jgu2HjLvbd/AgdOUVO96cK8GXCPdcRd8OFyNTuv9+tNjs7D1eydmch3+wsonAU7zu9ycjplTksGKJEb79fOP9NmEqn4if9B1Ekpa2OM8oPE9fpur7b5qlnX9pU3pb60yuMn2vGT/E/Q24FQbgGeIUfLYKaAT8cVkE/JbcKoA7wAq4QRfG/J+xET2JEOJbc3vuPj6hsh5yyJsrq2jCZf3zZRXS1ckHxfpI6nEcs7AjsCIrm4PQ5nHvBAi5bMtGlKt7xgslspbKhg9LaVkpr2yirbaOkppXykjrCD+zllMo8fMxD11m1K1TsDohmR1A01VqvQbXB4YGeTEkMQSqVsHZHAbaeXubWFbO0MnfIfUs1amJ/dx5Jt13RL1Qx3ug1W9mbW83OI1XkVTRT2Edq3I0K/lIwIyWMi09LZ9WiVJfks6vHxM4jVWzNrmBrdgX782tH7Fd4NLK7YFIUCyY5xLi0Q9TsjpTcWqw2dh6pYt2uItbtKiavwv0U1cyEYM5eMIFz5iU7Jfs2m53ali6HOFNdO+X17ZTXtVNS00phZTMto6iVPRapMQGcOjWWoupW1m4vGLGboK+HipViGzO2/oC8w3kHL/zcJaQ/dAs5j79K+TtfOF3Hf+4Upr/2yJitt8YLoiiy/VAlz63exbdbclhYXcDyihyXg2d7/SP4KDaTVtWPJEirkpMY6UdGbAAetJMWoePslctQqdTY7HYKKpv5fm8JP+wr5ft9g1Mnbzt/BktnxGMwWjAYTXQYHLWvHQYT7d3G/r+7ekyOOtheM8ZeC71mK2arDYvVjs1qZXnFEU6vzB2S5PZKZXwRmca3EROGvTZHSxikffW/4OgcIIJdFLHbRbdVZ08YRJH01lpOrzhC/BAdyiK9H5/GZAxSyPb30pAU6c+E6ABmpIQx0dpFzeMv0bh5j8t9dclVfB+awMbQBLrl7pVNSCUCE6ICyEwMZlKCg/CmxQaiUrge7OltbKH9cCHthwtoP1xIV0EZXSVV9NYf/1R5iVyOR2I0nilxeKbE4ZUSj2dKHLrYiBEPUA3X7prbOth704NUfLB20LaCTEbm038k4ebL3CaPdpuNpi17qfx4HZWr17tFdO1Asac/ewIi2e8fQadCzeVLM5ibEcnraw6w84jr2kpwtLe3rJrB+YtSB9hRjQTHUxPCarPzxdZ87njum0HRWrXVzPT2OhZ31xNUUYrEhZXisTBJpOR6B3PQL4xs31AMChUZ8UGsmJ3IZUsznKr69lTXc+DOJ6j88Gun+5R5aEm57wYSb74UmdY1me/sNlHd6AiMVDd2Ut3UyaHiejZnldNtHJ++kpeph+UVR5hXV+JUkLRLpuTdhCns9R8YxfXRq5mWFMI8DIR99y2Wg84HEQA65UrWhyezMSQBk2z8hTX/J8itIAhxQA6OVOONwP+Joph/jCfuAHLbt82rwDXAf0VRvPyEnOhJjBjHktvCwkLi4x0+iHa7SFldG59/vp3qJ15hclWRyzrW/X7hfBY9kbpjRp9lUgnnLUzh7kvmkBx1fARfRgKT2UpxeSN5r39K9zurkdcOL9LUqlCT5x3U/zk6MusMMruN6Q3lLKnKI7TH9WitIJEQfu5pJN35O/ympY/qt4wEdrtITXMnhX2Ru5KaNjq7e+nsMWHoMdPZ4xCEaW7rpNdiRyqVOrw6cXTkgSG9PDlm3njDS6firkvmcNM504bsxAF0G83synGQ3S1ZFezLrxlxbZ5cJmHahDAH2c2MZlpy2IBa4eE6D6IoUtPcxab9ZXyzq4gf9pUM6SN4LCQSgZmp4ZwxJ4nTpsWiUsioOyYtv76li/pWR3p+eV07lQ3to6o9dAVPrZLJSSHMSAlnbkYkn2/O4z9rXCs0/hRJkX4smR7HnPRI4iUmah54lvrvnCtW6mLCmfKvPyP39GDHJXfSXT64jlym0zDpybuIu/7Cca07HC3MFhufbMrh+Y93DxJ405uNnFuaxZx65zV8ZomUpnlzCV0yl6lnzycuIQxBENzqjL7wyW7u/Nf6QfNfvmslV5w+fERqKNjtdtq6jOy/52maX/8IhvIU1WmRXHcZPhesxEOjxFPr+Hh5qNGo5COKOlksNpo7uqlv7aa5vYem9m5aOntobndoMLR3GTFZbPSazdTVN2K3iwQF+qNWKVHIJMjlUuQSCYIgYLXbsVjtWKy2vo/ju9lqo9dkdQhddTuI/rGDfIJoZ2pjJadX5gyZflyt9eTT6AyyfUOHFEEM6u7gnLJsJje7JjG6mHCS77wav1XLWXewki+35bM1q3zUA1EyqYSU6AAy4wPJ1AnEGFrRVVfTlVtMx+HC4yrgpPDxROnnjSYsCG1UKLroMLRRoX3fw1EH+4/bc+suaSt/7yv23vSg0/TpiPOXMf21R5B7jGzA3W610rhlL5UffUPVJ99icpGpMWAbBPK9AtkTEEltUjJ/v+dc/L21vPDJHlZvzBmyTQ301nL9WVO5ekXmiIMD401uTX1aEJ9vyWfNjoIBAmwKm5WM5mqmNVaQ2lo7ZPnXUfRI5Rz0C+eAfxi53sGo9FoWT4lh6fR4Tp0WS7Cvc+skm8lM/jNvcOSRl7D1OH9Woi8/i4zH70AdHIDVZqeqoYOSmlaKq1sprmmltKa1P9Ov08138njAp7ebVSUHmNZU6XR5a3o63ddeQXhCBNMmhBIb6tPflpbWtHL//z1H3KYNQ3rldsmUbAhLYGtQHG2qgX1UtVKGn5cWnUqBWiVHrXSo7av6phqVHIVchlQiIBHAbLVhNFnpNVlprK9l/Uu3HN3Vb5bc/gu4CTgCTBFF0dw3fyhyexnwFnBEFMXj34s/iVHhWHJ7eMce/M0infmldBaU0ZlfStOWfS7V7Ir0fnwYN5kyvev0Y0GAs+dN4J7L5g5QzPs5Idrt1H6zhdI3PqXmqw1uG8XXavTkeQdR6BlAlc6bRrUOUfjJC7xPvXlpVd6w5t3+c6eQfOfVhK5Y+LN24MfzpXgs+TWarXR2mzD0mGg39FLfaqCmqZOapk7Kats5WFRHWe3wnYWwAD1/vXohF56S5nadUE+vhT251f2R3dGkbGtUcmalhjM/M5opiSFEBurI3rsdQRBYsHAxlU3dHCqu51BJA4dLGjhUXD+ijqpEIuCrV6PXKpHLpHT3OpRoj/fLVymXMjE+iClJoX2fEGJDfejsMfHM+9t54dM9w9bsqBQy5k+KYun0eJbOiCMq2BursZfcx14h94l/O32mJAo5E+69nqQ7riL/6TfIefhFRCej/MHL5jHt5QfRRoSM228eLTq7TbzyxV5e+mzvAMVnZ4jpaOaSor1EGVxHegSJBK+MZPznZOI1LY3D5g4kPp5DPnf/+Ggn97703YB5MqmEr568hAWZ4xPRtlutHLjjCYpffn/I9lDh60XK/TeQeOsVx90nd7w76zabnY6WDkr++yUVz72FeQibnBa1jk8j09kdGDm4jT8GerORs8uymVNX6tI2qsnTB8sFZ7Pij5eTFDMwTd1uF8kpa2RLVjmbs8rZll0xrMiip8lIdFcz0Z0tRHe1EN3ZMmTZzfGAJjyY1L/8npgrzhq1SI+7GMl90F1Vx87L7nYaOdcnRjPnk+fxSokf1XnYrVYaN++l4sOvqfrkW8yt7cNuYxUEcr2DkSyczXVP3ITC04NXPt/La1/tH1KtWyaVsHR6HJcty2Dp9Hi3BBnH43npNpr5dk8JX2zN45tdRQPeRTKbjbTWWqY1ljOxpWbIjI+j6JXIyPILY09AJLm+wSTFhnDa9FiWTo9nekrYsOrRNV9vZv+tj7q04NGkJGC+/gqy5J7kVzRTXNNKeV3buA78ugOlXEqwnwdBPjqCfD0I8tUR0jcN8tGh3r2PugefxdLSPnhbP2+mvvgAEauWAY6+03/XZ3P7c+swGB26LnHtjaysODKkIJ0oEZBOn4zfhSuJPGMRQQGe6NSKUdsB/k+oJQuCkAckANeKovj6MfOHIrezgG1ApyiKXifkRE9ixDiW3D5HNL4M/6Jq0+j4MGrioJSK4bBidiL3XjaXzMSfv9N6FKbWdio+WEvZW5/TsufQiLY1S6TUajyp0XpRrfOiRutFvdqDNqUGu0RCRFcrS6rymNpY4bzesA/6xGjibriQyAuXDxDSOFH4Oa2Amjt62J9fw/rdJXy84ciQomGxoT5cvSKTy5ZOdFrr5gw2mx2TxUZHdy97cmvYcbiSXTlVZBfVj6o+WSYRUMgFjGb7cYlWjycUcinxYb59dlC+JET4kRzlz4Qo/wGdip5eCy98uptn3t9Bu2HojvXyWQn8bkUm8ydF91sOiaJI7dpN7LvlEbrLnL//gpfMYfLzf0YilbLj0rto3nlw0DpyTw+mPP8noi49c0z+vOMBo8nCK1/s46l3t41owEIQ7cyrL+HCyiMojO4J4An+3uhDApGplEjkMqQqJXK9DrmnDrmnB0pfLzaVt/HOnkraFWpalRoMckfUdPMLV5MQMX7aBlaTif23PErp66uHrMGU6TTE/9+lpD3w++Pmkzte7ZLdaqVhwy7K3/2Kqk+/xWpw/X/RRIQw4Y/XEHP1eTR0mSiubqGoqpUt2eWs3pjT/8xL7HYW1hZyVtkhl8SyRanhi6h0dgRF9xPkzMQQLjoljVWLUpxG5ux2kSOlDWw7VMmBglqO5FRgyi0kquNHMutrct86ZShowoLQxUXgERuB0t8H0W5HtNkRbbb+qaG0irp1W13uQxcTTsr9NxB92ZnHjeSO9D6wW60c+stz5D72yqBlUo2aaa8+RPQlZ4zpnOwWC/Xf76Diw2+o/uw7tzx1LRIJvelpzL31IsJWLOLDHUU8v3r3sFoG/l4azpiTxPJZCSycHOMyi2mk16mrx0ROWSM5pY0c6Zvuy68ZIIalsFlJba1lclMlGS01qIZwijgKs0TKIZ8QyhInoJs/g8z0KKYkhpCREIyHxr00fENpFftve5SarzY6XW5SqVkTP4lvfIYefBoPeGgUJEb4ERXs3U9Wg309CPb9kch66VTDvrN6G1vYe9ODVH0yOBMHHCJo8U/8kT+8toVPNztXA4/paOa8ujwS651Hgo9CFeRPzJVnE/u78/CIi3Tvh/4E/yvk1gCogamiKB44Zv5Q5HYicBCwiqJ4/MwnT2JMGBG5FQT0yTEEnbGYgzYV/9xbS6moQBxhR3TJ9Dj+dOV8piSFjuXUxx0deSWUvf055e9+RU+V+96yP4UdgTalmhaVlhallm6ZnGBjF/EdTSiGGu2USPCaO5XEK84i4tzTkOtPTM3yL8Xn1myx8e2eYt5el+XUDP4oFHIpp02LQ6OU0917jLdmr6V/2mOyYDJbRyw69WuDWikjMsiLqCAvIoO9iQr2IiHcQWijgryGjHRbrDbeWHuQx97ZQn3L0J0zT62Sf92xgvMWpgyY35aVx4E7n6Dhh53Ozy80kMn/uI+wc06j4t0v2fv7h7B2DdYX9J87hVnvPIk28udtEyxWG29/k8Xf3t7itiWSwmYlqKeT4J4O5vnImK6XYC+tpKuoHNyoPxsNjFIZTSoPery9WXb+AoKnpOCVnog+IWpcSIa1p4fd1/2FivfXDv0bJBJ8JqeQcv8NhJ95ypiPeyzG0i6JokjrvsOUv/sVFR987dKj9ij0STFMuPd6oi5a7vL6bc0q59KHPsG7tJSLi/cS1u28/MQgU7A2MpUNIQlYXXjFSiUCp0yN5aJT0zlrbhJKhQyb2UzH4UJa9h7u92ftyC0ekTfrT3F0ALZa50WtxpN6jZ5GtQfNKi2ePnomxjucASbGBzMxLpD4MN9BbUbznkMc/ss/qVu/zeVxtNFhpNx3w3GJ5I72Pqj+agM7L/8jlvbOQcvibriQyf+4f1ycDGy9JurWb6Xiw2+o+XKDW76tokyG79wpRJ25iKKQKF7cWcGmg+XDbqdVyVk0JYb5GQ6NiLTYwH7BJVfXyWK1UVjVwpHSRnJKGxyEtqyJivp2p8dQWi2kt9YwuamKdDcjtDaJhKa4BKQLZpN4wRImZ8a5PQB9LKw9RnIff5XcJ1/DbhrsRmEHNofE81n0RLfr1d2FUi4lKcqPjLhgkqP8+z9h/vpxG2wVRZHKj75h3+8fxOQkitum8eClxJmDvNsjg7y46FSHj31mQghtB46Q88hLVH/xw7DHDFw4ndAzFxMwZzJeE5Pcrnn/XyG3XTgsf6aJorj/mPlDkdtTgG+BVlEUx1c29yTGDaOJ3B4Ls0bDYY0vhV4Bfem6Xv0jaYIw9Ht51aIUHvzdIqJDvEd9/scDoijSWVBK/fc7afhhJw0bdx83GwRXsEqlNCZNQJwzHe+4CAKjggmNDSEiOhhfT824RrZOFLk1W2w0tXf3ydUbaGrroaFPvv7o/Ka2H5f/xnnpsFArZY6R4b6R4iBfHUG+OiICvYgM8iQq2JtAb+2I7wW7XeSjDUd46I1NbqWFnzo1lpfuWkmo/4+2Gj01DRz60z8ofeszpw+5IJWSeNsVpD3we0S7yN4bHnAu+CKVkvbgzUy45zokLojAiYDdLvLxxhwefmMTJTVDCMiIIoHGLuI6mojpbCa2s5nQ7g6XKaknGhK5HH1yDF5pCXilJ+KVnojv1DSUvqNrY01tHey+6l6qv9wwLMmSqBR4JsUStHQucdech0fs6CIGRzGSdqm3qZW2g7m0Hsil7WAuLXsOOa3l/il8JqeQct8NhJ11yrClIT3V9ey45VEaP/vW6XKLVIb24rOoXbSILUVNbMuucFlzL4giAcYuojtbSLF0MlnoQV1V7bRD7y7aFSrKPPyo0nlT3ZdN5LR0ZgiolTJSYwKZGBfExLgg0vt84DUqOY1b93HoT/8Y0j5IGxlKyn3XE33l2UgV4xPTGMv7yVBWxdbzbnVqGeQzJZW5nzw/ruUP1h4jtWs3UfHh11R+tRHBzZInj4RoFHOm8oPEizcqejBY3GtPdGoFU5JCSIryJzbYk86GMnotdlTeYRRWt5FT1khBZfOwabq+RgPJ7Q1MbKkmtbVu6EH4PogSCdqZmSRefiaxq5ag8B69fZUoilR/9h37/vA3jJXOAwslej/ejZ9ChYfvqI/zU3jpVJw1L5nzF6UwLyNqTPZII4GxoZm9N/6V6s++G7TMhsCXUWmsjUxBFCRctXwST/5+CTonYpdt2fkUvfQe5e+tcTpo/FPItBp8Z0zEf3Ym/nMm4zdjoss69P8VclsAxAGXiqL4/jHzhyK3DwP3AwdEUZxyQk70JEaMsZLbn6JHKu8nunneQVTpvJHJpS4bV7lMwvVnTeWeS+eOm1z9eMNutdJ6ILef6LZn5x9XsY6hYBUEeuRKTGoNdo0GtBqkOi0yvRalpwdqH0+0vp5ovXSo9To0nlo0eh06bx0qDw1StQqJXIYglSJIJUhkMkxmM5u3bgWZhFNXLkerd+0NaLeL9JqtGE2OKGm7wSEA4xCC6aXN4FBrbe/qpam9p997ram9e9hast8aJBIBvUaJXvvjx1Or6p96aBX9f+u1Kjx1SvQaJX5eGoJ8PfDUKsd1EEMURdbtKuKB1za65RmsVsp47IZTue7MKf3nYTF0k/fka+Q99To2o/P/p/+cyUx98QG80hJp2XuIbRf8wWm6si42glnvPX1ChNVcYbhrIrPZiOtsIr6ziZgOB5kdyt/6lwqPhCj8ZmTgN2MivjMy8EpLGJFqbW9rO/tu/CtVn3yLaHMvnV+QSpDptKgCfFGHBaL09ULh7YnCxxOZVg19olCCIPxILAUBJALYRSxmE4UFhQAkJieh0KgBAVuPEYuhB2tXN90VNbQdzKOnut7t3yJIJAQunknynVcTdOrsYZ8xq7GXgn++Tc4jL7mMyu0MjGJ1zCSsXl48f/tyLjwlDZvNzoHCOj7ecIR1a3ajq6oiuquFqHGok5XpNPhOTcN3Wnr/x+zpyeGSBrKLG8gurudQcT255U0jVpH/KQQBYkJ8SIkJIDXKn6S2ehTvfkz3Qeces+BI706+4yqiLj1jzBZ4Yx18tfWa2H/boxS/8uGgZUpfL2Z/8CxBp8wa0zk6g6XLQM57X7P9+Q/wyM1zqprrFBo1hrhYDqm82WRRU+7hg00yvgN/erORpLYGktvrSWprcGntOAiCQMC8qUReeDrh5y5B5e+eNd1QaM8t4dsr78O6N8vp8g65itWxk9gZGO00S1CjkiOTStzWqlArZSyflcj5i1I5bVrsqNWpxwpRFNnzwgfk3vEYSvPgcy/1CWLCyw9zzqp5w+7LYuim8qNvKHlttdOSH1cQJBL0ybGoAn0dInE+Xo72WaemprWFpc/85eiqv1ly+2/gd8BaURRXHjPfKbkVBMEPyAV8gadFUbz7hJzoSYwY401uf4ouuZI8ryDy/YIpCQijWnCeSuKpVXLnJXP4/TnTxs3P73jipzYL7YcL6cwtcSsl6ZcOi1SGSa6gV6mkWedFndaTao0n5UoPKlT6Eaeh/xIhCKCUy1ApZCjlUhR9U6VchrLvu9Vmp6fXjMFooafXTFePid4+eyyFTEpcmA8Z8cFMTQ4lJtT7GNLqUJIdi5jDeGNLVjl//c/GYS0pjmJKUgiv33c28eGOUXK7zUbpG59y6M//dGklog4NZOLfbif6sjMByH/2TbLveRq7ZXAnPubqc5n8j/tGrF46njhS2sDdL3zLxgNl/fMEUSTc0EZKWx3JbfXDlxL8SiHVqPGdmobfzAz8Z2fiN2uSWyTEajRy4M4nKXvrM2zdY7ObOtHwmZxC1CVnEHnh6aiDA4ZdX7TbKX/vK7Lve9ZlmUq1hzf/jZ1CkZdjf4JoJ8Bo4NJ4L84KU9OdV0zrviMYa51b6LkDQSbDe2LiACLrkRjtVqaDyWwlr6KJQ8UNZBXVc6jEQXq7esY4QCOKZHY1ck5VDsFNrkt4JEoF4eeeRtw1qwiYP21UwonjlVlU9s7n7Ln+gUGDcoJEQvqjf2DCH689bu113uEy3vjTK8i27iKpvR7ZCPruZomUaq0XlTpvKj18qNI6xCwNcuWwmieCaMent4cAYxcBvQZCujtIaq93mVLvFBIJgQumEXHeEsLOPnXcdEG6Wjr47LqHED77GqkT4m9D4IewRL6MSsMoc0QtvT1UhAd6ggiVDR3DakQchVIu5ZSpsZy3MIUVsxOdRkFPNDbuL+Xiv65G2tzMNXk7SOgY/F6Ve+mZ/upD/WJT7qD9SCElr31M2TtfuiV65gotWLiF/nfjb5bcTgV24yCy14ii+Ebf/EHkto8sfQpMAazABFEUi0/IiZ7EiDFqcjtczrELNOs8yfMJJtsjgHyvQIzygY1MqL+eh69dzIWnpP5iiIG7EEURU0sbPRW1dPd9DOU1lGcXUX6oGHW3Ab25d0hxqV86uuRKcryDOeITTI5P8GAj8uMAbw8VEkEYVthnanIoqxalkB4biFop7yepxxLWo1OZVDLg/ursNrEvv4ZdR6rYlVPNntxqt218AOLDfVk0OYbFk2OYPykKvXZ864FGi22HKnjkzc1sdqOeCxzR5vsvn8fdl85FJpVgt1gof/crch57ha5C5/uQaTVMuOdakm6/CplGTW9zK7uuvJfatZsGravw9mTaqw8Rcd7S0f+oMaK5o4eHX9/Ea2v2Y7eL+BoNpLTVMaHNEcXwsI5CrVoQUIcGIJHJMNY1jSm99OeC54Q4fKak4jUxCe/0RPTJsUj6BhoFQUC0i9jNFuxmM3azhdr1Wyl+9SM6c0vGVBd6PKGLCSfqkpVEXrwCz6RYt7er37CTg3f93Wk6Kzg6nUm3X4khJJTXXl6LvKaGMEM7od3tbtUoDnlstQflHr6UefgiT03kkpvO4KzFE8ctZdJuFymvayOrL7qbXVRPdknDsGrgTiGKpLTVs7L80JA+wQCSsGACL1xJ2g0X4BsT6vb7fTzLZtoPF7D13Fsc9fA/QdjZpzLzzcePq9bF/oJaXvtgC4WfbySxvpK0llo8LaPLaDpad9+mVNMjV9AtU9IjU6Cxmh1k1tiFX2+3+xHjYyGVErh4JpGrlhJ25uJxidAeRXN7N+/f+yLyN99D3+s8GJDnFcj7cVOo0Tk0JCKDvOjs7uVAYZ3bSshalZylM+I5c24yS2fEuS1mdSLw2pf7ue2fX/drggiineUVOZxRcRipk7Y0eNk8NKGBSJQKpColUqUCiUrhmCrk2IwmrN09WA19n24j5o4uuitq6K1vwdLR5XbGzVH8T5BbAEEQXgRuwEFmPwU+Bj7o+/uSvulpwIXAUfnEJ0VRvPeEneRJjBjjEbkVZFIkcrnLNEVXsCNQpvclp89HtkTv159+MzM1nKdvXsqkhOARn88vER2GXv7w3Dd88O0htBYTXmYjnuZe9GYjwT2dzFdb8Kqtcatu4pcCO5DjHczWkDiyfMOwuTkqL5UI+HtpCfDW4u/tmAZ4a/H30hLorcPfW0OAt65/nkIuRRRF6lsNZBc5zNZf+GS3y5fcadNiue38mUydEOZ0hLan18Lh0gayCus4WFjHgYI6jpQ1jFv/XCoRWDQ5hlWLUjhjThKeuuOjJjsUduVU8fAbm9iwv2z4lfsQ5KPj7T+fw9yMKGy9JkpeX03ek/+h24VliiCREHvNKtIevLl/NL9x6z62X3Q7xprBKb7+szOZ9d7TP5vFj8Vq4+XP9/LYm5vwqa1hYks1Gc01Q/pSu4I6JAC/mZPwTIlFtIs0/LBrROlg7kCm1yFVKbF0dmHvHQVZlkiOmlSP63n9mqDw88Z7YhL+szPxSo3HMzUBj7gIl6JH7TlFZN39d2q/3ux6nz6eWHt6sfeO3bJL6u9DnV8QO0wKSnQ+lHv40ONEKCcuzIfbL5zFxaemH7c0ysY2h7VZdt/nUHEDhVXN7t0+okhyewNnlB9yGoE6FnYEKjx9qQ4MpSUyGmNcLB4B3vh5atBrlX3ZNDIUfQOTEsFOYX4ecqnA1CmZ6HUalHIpXh5qAn10+HlqkEjcHwg3d3Sx64o/OhXj0SdGM/ezF/BMdn8gZDTo6jGxemMOb319kIZdh0hvqSG9tYboriHq/Y8zJN6eBC+aQdjy+YSduXjM6eQ/RVltG//+5yeo/v02cW3Oy2JaFWo+ip9Me8YkdFolVQ0dQzoo/BReOhXLZyVw1rxkFk+J+cVlAVptdu556TteXL0TD7OjH+hl6kFvMRGtlbIyWIlx864hFd1PFP6XyK0UeB24DIYMPR1tZd4EfieeyJM8iRHjuKQlSyRIFPIRv/x7JTIKvALI9Qkm1zuIOq0nV6+YzAO/Wzgq5b1fIj7acIRbn/3aaTpNSoQv/7pgEv71tbTsPkT9hl0u/d0ArLHRdMXF0WMTMXcYsBm6obsHSU8PEosFqdWKwmZFYbc5PjarW2bro4FBpaYgKY3KGbNQBPrj7aHCR692kFQfLQF9ZDbAR4ePh3pEnRFnyCtv4sanvmJ3ztDtbYifB/HhvsilEupbDdQ1d43I2mWsUMilLJkex6qFqSyfldBvn3O8sDevhkfe3MS3e0pGtN38SVG8+adz8FUIFL/yIXlPve4y/RgcI8mT/n53v2ek3WYj97FXOPzA84O9awWBlHuvJ+3Bm0dU5zme+OaHbN546A38C/JJb63Fw+J+22RHoMk/kKQlMwlPjMRutdCZX0bL7my3RItO4pcFQS5D6ePVZ3ljw251WN9gt2MzmYbu3YwBUg8tftPSf6yVnZqGOjQQQRCoaerk5c/38p+v9g+pTRDkq+OWVTP43YrJJyQ7pNtoJq+iaYBdTE5ZI41tLgZhRZGEjkYW1hQxqbnKrfeNHajSeVPoGUCp3o92pZouuYouuZJuuWJYQSypRMDfW0tEoCexoT7EhfoQE+pDUqQfSZH+Tq1zRLud3MdfJftP/xg0+CPTaZjxxmMnLLukrcvI3jxH1lDWnnxsWUcIrKkktq2R8O7243ZciVZD4IJpBC+eSeDiGXilJowqbXw4FFQ28/dX1sPbH7KgutCp+J5VkLA5Lo1tyZOp7BxZvzE21IdlM+NZNiOeOemRbnkCH0/YrVaMdU10V9TQXVFLT0UtPdX1dFbWk7u/AKG1Dc9fQQbf/wy57T+oIJwL3AtkulglF3hEFMUPTtxZncRocbxrbseCNoWaXO8gyoMjWPF/53Htlaf0y97/mlHV2MG1j3/hNFVUJpVw3+XzuPPi2UgFqHjvKw795TmXnWhBJiP2mvNI/fNNaEICByyz2ex099njGHpMjml3L3aro0Nns1qxW230dhvJzsoCq5XkqBikZgt2Qw9icyuSqhqoqMJWWoG1dngRIolSQdz1F5Byz3Vu1bWNBXa7yCtf7OWv/9notpjESBEWoGf6hDDSYgOJCPCgsSIfpVwCnhFsza5m08EyWt0ky1qVnOWzElm1KIVTpsa69CscDbYfruTp97bzza6iEW/7x0vncNfydEr//SEF/3h7yDod74xkMp68i+BTZ/fPM9Y1suPSu2jYsGvQ+qoAX2b+9+8D1j9R6G1qZd9/PmP3q5/gX142ovS8erUHpXpfetVaZiUEEtrRQtvBXOxuqp+exP82OuQqh2qxzotqrRelej96fHx54JpF3HDWVJcpxt1GM++sy+a51buGVDL31Cq5ekUmN54zjfCA0avUjhaNbd3kljVSWNVCYVULRVXNFFa1UFHf3s8VdeZeZjSUM6+ueFTZEeAYWDLIFXTJVfTK5FgECVaJFKukbypIsEokWCRSjFJ5f3put1xBp1xFl0qDf0woCQmhpMYEkBIdSGpMAJFBXkgkAnXfbmP7RXc4bfOS7riajMduP27+vUNBFEXaDb3UldXRtPcwloISzPklGHOLMFdUD+lB7QwyDy0ecZHoYsPxzkgmcNEMfKekHtffVlDZzONvbKT53c9YWXYYnQshvsM+wbwfN4UGjWshy2Mhk0qYkx7B0hnxnD4zoV8X4kTB2mOku7KWnsq6vvKzGror6/rL0Xqq60ecAvxLxP8cue0/uCCE4KirDQCkQAtwUBTFkYUMTuJnxVDkVhsdRsjSuagCfGnPKaJ1f45T1dMThWYvHyIXzyD9rAUEzJ2CJiLkV1eXexR2u8hzq3fxwGsbMFsGN4SZiSG8ds+ZJEf5YzOZKf73R+Q8/KJLlWapWkXiLZcx4Y/XjliS392aJkN5NXXrt1G3biv13+8YMnVGqlI6SO79N45rvY4ztBt6efXzvfzrk900tY8+nUcuk5ARH8yMlDBmpIYzfULYAPsbZ9fJZrOTVVzPhn2l/LC/lJ1Hqpz+P38KnVrRVw+UxNIZ8aMSuLDbRdbuKOSZD7aza4gItlQiOPX79fVQ8dJpMXhv2071p985FX46Cr+Zk0i5/wZCTp8/4Jmr+3YbOy+72+l9Gbh4JrP++/dxEyBxB8b6Jqo/+46SD76hZeteBDffkQaZgkqdNz0yBSqbhbDudrzMY1f3lnvpiVi1FN/pE2nPzqfq0+8w1riv7Purg0SCVKVEplUj02mQe2iR96VXSxRyJH01YhKFHGnfVJDLkMhkCBIBjionCwJWq5WyinIAoiIikYpgt1ixWyyIFit2ixVLp4GemgZ6KmrobTzxKZ1yTw/0STHokxz2S94Tk1AnxvDwF9m88Mlup9tMTgrhxTtWkB4X5HK/Vpudzzbn8fT728kudn2/yKQSzl0wgVvPn/mLKOHpNVspqWmluLqVqoYOKhvaqWrowHQ4n8iD+0irKkFlt57w8+qRymlRaWlW6WhWaenUe6GMiSBwYiKJYd74Pv8SlrzB0jB+syYx+4Nn0Yb//Nf2KOxWKz3V9RhKqzCUVmNqbMHc1kFPUxvVBUWgVBA/eyreybHoYiPwiItE6ed9wvpKhZXNPPb2FvI/Xs+qov0EGZ3XcjepdLwfN5ls39BhhbHCAz1ZPDmGU6bGcsqUmONa6mPrNdFdUeO4vmXVdJdVYyir6Y/Empp+vtTxn0IilzmyP6RSLB1dDu/cEfBCQSLBKyMZhZcHUrUKqVqJVK1CplbRYDJwxlvPHl31f4fcnsRvA+5EbuVeejKfupuYq8/D3NZB24FcWvYepuil912qSJ4IKHw88c6cQODC6QTMn4Y+Pgqlv8+vivAeKW3gmse+cNqBUcqlPHjNIm4+bwYSiYDF0E3BP98m78nXsHQ6l+6Xe+mZcPc1JN5yGTKte9ZKoxHssPYYqfx4HSX//oim7Qdcrif30pP21/8j4aaLj/sIeE+vhTe/Psi/v9xHQeXQtWKCAIkRfkxKCGZSQjCTE0PITAwZMprqznUyGM2s3VHI6g1HWL+n2C3xC6VcyqlTYzlzbjKnz0rARz/09TeZrXzw/WGe/XAnBZWuRVzkMonT43uYe7nQ3syChlJ6y4ZWTw5cPJPU+28gYMH0Ac+V3WLh0F+eI/fxVwdtI0gkpD10ywnzrjXWN1G5ej1Vq9c7PDjdfC+2y1V0y5XI7Vb8ersZr5wQiUJO6MpFRF2ykoD5Uyl7+3PynnrdaR3ymI8ldxBEu1RCe68VKwIiAkqbBaXdNvoyBEFAqnHch7YxKsALUim6mHB0cRGOaXQY2qhQ1MH+fZ8ApKrBKbbuPG+2XhPGukaMtY10V9XTVVBGV3EFXSVVGEorMbd0IFrHSKYEAW1kSD+J7f8kRqMK9HP5vlmzvYDfP73GaQqvVCJwy6oZ/OnKBUOWKoiiyPd7S3jq/e1syXJdogIwd2Ikt54/g2UzEsZc9nG80NXWSfH6HTRs2UfnroNYjxTAEINqJwK9EhkNag+UdqtTIqbw9WLWO08Ssmz+z3B27uNE+dU7g90uklfRxBP/3crur7azqmg/E9qdD8qYJVLWRqSwPjwZi9T5+9ZTq2R+ZjSLJ8ewaHI0saHj168T7XaMtY395NVQVo2htMpBYkurxqRsPlIIUimqID/UQX4o/X1Q+nmj9PdB1TdV+nljM5kpePZNWvYcGpdjKrz1BC6eSejKRYQsn4/KhQf6/4TP7Un8dnEsuX1BnYyX0XXUKXjpXKa9+nD/KKbV2Ev+06+T89ir2Hqcp2bKvTywdHbDT+vwjhOkaiUe8VHoE6PRxUXiEReB79Q0PFPij0s9yXjAbLHx+DtbePLdbU4jbDNTw3n5rpUkRPgBYGppI/eJf1P4/H+xuahrVgX6Ef/7i4m/4aJhI6djfSl25BZT8NzblL7+qcvonz4phsx/3EfIkrkj2vdoYTRZKK1to6iqhZKaVkQg2EdHsJ8HQT46IoK8RhwtHel1ausy8uXWfD7emMPGA2XYnfxvfwqZVEJKdAC+nmq8PdT46jX49H9XU9vSxUuf7R1S2VSlkGGyWAdwPKndTlJ7A3PripncWoNkmLSp0JULSbnvBvxmZAxa1l1Zy/aLbqd5x2ABJU1YELPef5qAOcfX2txi6Kb6s+8o++9XNHy/Y3CdrxPYAVEiQXo82iJBIGD+VKIvPYPwc5eg8NLTsGk3Oy//45ADgEJYAPKzFzDnslWo1I5ohLm1g468EjrzSqj44Gt6GwYOYAgyGTPeepyoi1YM6PB98P1hrnr0swHrRnireX9eEK2fr6d1f86YhEpkWjVStQqrsXfcbYBkWg1yLw8Unh7IPT0cKs1SCS3t7SAR8NHpsff0Yu02YjV09017RixiOBIIchlBi2YSd/35hK5cNKp68dZOI/e/8j1vfu1cbCwq2Iu/XLWAVYtShy252ZNbzdMf7OCrbflDjt9Eh3hz1fJJXL40g0Cfn89qyx3Yek207DlE45a9NG7Zh6GsGlNTK5aOUSg3H2eUJ6XQfupifKamERHoRXiAnoggL0L99b+IcqnjTW5tNjtVjR2U1LRSUtPWN/3xo+nu5qyybObUl7gcKNznH8FHMZNoUQ+8L3VqBdNTwpiTHsGiyTFkJoaM+ZpaOg20H3HYNHYcKaKrqNwRiS2vOSHlJTaZjCa5mhaVlhallnalhnalGs+IIP5y5znETIxD6e/j1gCwKIo0bNhFzqMv0bDReUbIaCDIZMh0GmRqJRKVEplahUSlRKpS0CxauGTnp0dX/XWTW0EQVomi+PG47nTg/sOACFEUdxyvY5zEyHAsuc3dfxDJtkMUvvCuS9sPuV5H5jP3EHP1ef0dq57aBrLve5aytz5zuo0uNoK0v/4fos1OW3Y+XYXlGEoqMZRWnbAaNoW3J36zMwmYN4WAuVPwzpyAVPHze50di715NVz7+BdOo3FKuZT7r5jPbRfMRC5zNIY9NQ0ceegFSv6z2mWNh0SpIPrSM0i87Qq8UhOcrjNeL8Xuihpy/vYKJa9/4jJaErJiIZlP/xF9QvSojvFzYizXqaHVwOdb8vh4Yw47DlceFwFbD40Cm02kx+R4pmR2GxPa6pncVElGc7XLmqejkCgVRJy/jOQ7r8Y7PcnpOtVffM+uq+7D3Da4hi5kxUJmvvkYShcjwWOF3WKh7rsdlP/3S6q/+MHlgNp4Qunrhe+MDDwnxFK3fhvthwoGraMO9mfWe08TuGA6ADaTmUN//gd5T73uMorsMzmFuDuu5ojKgiCRuLyfemoa2LzyBtoO5g6YL0ilzP3kOcLOPGXA/LtfWM/zqwd2fuakR/D105chl0nprqqj5N8fUbNmEx15JWNS/JWoFKgC/ZDrdfRU1WNp7xz1vn7pUAX5E3XJSmJ/d96olHS3ZVfw+6fXUFjlvKwkOsSbOy6cxaVLJg6rhlxc3cK/PtnDO+uy6Ol1/f6UyySsnJ3ENSszmT8p+hcbzXUGm8mMqbkNU1MrndV17NuwBdFkJik2HqkoYjeZsZkcllQ2kxl7rwlzexfmtg7MrR2YWtox1jcdFy/mEr0fP4QmkO0bRq9MjkQiEOLnQUSgJ+EBnoQHeg76fiJsaMbjPW612amsb/+RwNa2UlLtIK9ldW1OM4FUVgunVeWxpCrPZcp5mYcPH8ROprjPDzrQW8us9AhmpUYwKy2c9LigUZNZURTpKiqndX8O7Yf7yOzhQpcq/+MFhY8X2ohgtJEhaCJD0EaEoI0MoVvvyW3v72VLWdugdOvTZ8bz5p/Ocet+6G1soS07n44jRZia2zC3d2Lp6MJQVk1nXgnmtuPb3v6mam77fGtzgIfGk+QKghCBQ4TqKuBvoig+NF77Pomx4VhyW1hYSHx8PKLdTv0POyl8/h1qvtrodLvgpXOZ/u9H0IT9WDfUsu8wB/7wGE3b9g8+jkxG+sO3knzX7/pHquw2G8aaBrK3ZPHma+voLqvCx9SDp6kXT7MRL7MR7TAd8tFCqlbhNzODsLNOIfLC5ce9LtRdGE0W/vqfjTy/epfTfvHEuCBeumvlgPqqzsIyDv3lOSo//HrIfQedOpvE264gZOncAVHs8R7xNZRXk33/s1S8t8bpcolcTuKtl5Hyp5tQeHqMaN+iKFJU1cLBonryyhvJLW8iv6KZlo4eBBx+nIIAfp5aFk+NYeXsRGalRYzLyPp4XaeGVgNrthfw+ZY8Nh0sx2obv0iiwmYlrbWWzKZKJrbUoLYNn5LpOSGOuOsvIOrSM1zaP9hMZrL++HcK/vn2oGUSuZyMJ+8k8dYrxrUkwGLopiO3hPZDBdSu3UT9DzuPq1WWIJXiNTEJvxkT8ZuZgd+MDHSxEf11xc5qrYKXzmXm20/2tx/tRwrZceldtGfnOz1GwIJppNx7PUGnzqa3t9et+8li6GbHJXdS8+WGAfMlCjnzvniRkKXz+udZbXaW3/nOoBTWG8+exjO3DFZ/NZRXU/rW59St20JnbrEjy2Y0kErwTI4lZNk8EATaDubRmVdCT/Vvr7449IxFTLjnOvxnThrRdiazlb+/t40n393mslwhxM+D2y6Yye9WTB5WWb2108hrX+7jpc/2Ut/qvEzlKGJDfbhq+SQuOjWdEL+Rtbk/N8bS7lq6DBjrmuiprqe7vAZDaTVN+WW05pdiLq1EMobIv1UQKPYM4LBPMId9QqjRermsHQ3y0TEh2p8J0QGkRAUwOSmElOiAcR1wGM11EkWRQyUNrN9VxLrdxezLr3HbR1Zms7GgtogVlUdcqs+3KjV8Ep1By5TJzEqLYFZaBLPTI4gJGX0NsN1qpe1gLk3bDtC4dR9N2/YflzpYpa8X2ugwRxlFdBi6qFA0kaFoI0PQRgQj9xicFbH9cCWXPPAxDU5KEf5wwUwevnbxIDE5u81GV1E57dkFtGXl0ZadT3tWHsa6oS21jjd+a+S2AIjHIYZfBbwHvCuKonMn86H3pQXOxuGBuxiH6JQduEIUxffG7aRPYkxwRm6PRc3aTey59k9OHzS5pweZz95LzJXn9DdUoihS9tZn7Lv5YacpcAELpjHrnb8PIMXgqNn48IcjPPTGRsrr2n88hs2Kp7kXL1MPfuZuYiRWpM0thPZ0EGDswsNiGnOtnCCVErx0LlGXnkHYGYuQaU5crYorbMuu4Ponv6TUiWKmVCLwhwtncd/l8wb4uLUeyCH7/mepW7d1yH0rfLzwnpiIV3oiXhOT0CRGs7umFEEhH9d0pqbt+9l/66O07nfefCh8vIi95jzib7gQXXS403VEUaSwqoUtWeVsyapgW3bFsB25n8LbQ8XyWYncev4MUmMCh9/ABY5H2ldbl5Fvdhbx2ZY8vt9bQq95hPWBokhQTycT2ur7PnUo7cMLWklVSiIuOJ24687Hb+akITsanQWlbL/4TtoODP4/aqPDmPPhs/hOTR/ZeR8Dc1sHXSWVdOaV0H6kiI6cYjpyio6rzY5JKkMSE0nC/Ex8JyXjPTEJ70kTBjz7dpuNww88R86jLw/aXpBKmfi3P5B85+8QJBJEu52C598h649PYTcNHpALmD+NiY/dPoAQjeR+stts7L/lEYpeHPjqlKqULPj6VQIXzuif19Tezazr/01148CR/X//8UwuXTpxyOtiMXRT+dE3VH+5gdb9RzDWNo24pESm0xB21ilkPHYHcr2Ojtzi/pRAQ6mjrq2nup7euiaXZRUjhVStQh0S8OMn2B9VoB9KH08UPp4ovD2x9RipXL2e+u93YOk2og70QxXgqGtT+Hih8PEERDqOFNHww64hBdYA/OdOYcI91xGybN6IOur5FU383zNr2X6o0uU6fp4abjx7KuctTOkvR3EFk9nKxxtyeO7jXRwuHbquWxBgTnokqxalcNa85F+Fxd7xSrcVRRFjXSOdeaW0ZudTuT2Ltqw87OVVCKMoXWhVqDniE8IR3xByvIPplQ09OOGpVTIzNZxZ6REsmBRNZkKwSxVtd+DudersNrFhfynrdxezfk/xkCUuziCIdmbVl3Fm+SF8Tc7LHMwyOc1LTyP25suZNSVuTOnxdquV5p1Z1P+wk6Zt+2nZlY11jDoA4Ggz+olrdBi6mPAfv0eHIde7f86iKPLqF/u481/rBw1Wq5UyXr77DM5flNq/bldxBfXfbqfu2200bNx93AZtpSolutgI7GYLlo4uLJ0Gt9vc3xq5lQG3APcAfvzo+FYE7AL2AgeBRqCt76MGfABvIAGYCkzr+6j40ff2G+CPoigeGdeTPokxYThyC47O5/7b/kbZ25873UfwsnlMf/XhAYS1q7iCHZfc6bQIXuHtyfT/PEr42acOPpbFxutrDvD4O1ucjn4dhUoho9dsRRBFAoxdpLfUkNFURVxnM7Ix+IfJPLREnLuEqEvPIHDh9J+1Tren18JDb2zk+dW7ndZrxoX58Nxtp7NwcsyA+a0Hcyn459tUvLdm2A5aPyQShGBfPAP8HSqmMimCTIYgk/Z/lyoVjvqMPhVUmYf2x+86DQovPaoAX4cQgr83UoUC0W6n9K3PyL73mUG1g/0QBEJOn0/05WcSMH8a5UaRLVnlbM12kNmh7oORQBBg1cJU/nzVfOLCRm4fcLw6WTabnR/2l/LvL/ezblfRsJFcvdlIcj+ZrcfHRQfDGXwmpxB95TlEX7JyWFVtURQp+c9q9t/6qNMU4IjzlzHt1YeHjb6LokhvY4uD4JRU0VVcMWA6lPXQWGERJDSqPajX6KnRelLv6cu8c+Zx221n4+PpumNvamljxyV3Urd+26BlmvBgZn/wDP6zHG54PTUN7LrqXuq/2z5oXYlCTsbjd5J46+WD2pKR3k+i3c6e6/9CyWsDk6pkWg2LfngTv+k/EtcDBbUsuvkNTMcodyvlUjY8fxWZiSFDHmfAMUWRph0HqfhgLY2b92AorhxRnatXRhKZT91D0OKZTvdt6TRgrGvE3NaJpb0Tc4cBa6fBkZbaY6QgNxdsIkkTU1F7e/WrMDumWuR6LergAOR6nUuC2bw7m7yn/kP1p9+5VZstSKVEXXoGHglRVH/+Pa17Dw/9G9MSSP7jtURecLrbdbmiKLJmeyFPvLuV/fm1Q66bHOnPGXMTOXNuMhnxQS5/pyiK7M6t5j9fHWD1xpxhB8qkEoGFmdGsWpTKGXOT8DqOCrRjwYkWSrIae2ndd4Smrfuo27SHxq37YISDMFZBQq53EPv9w8nyDcOgGP7aenuoWNAnojQxPoiEcL8ReRkPdZ16ei18vOEIH3x/mO2HK92Ozg6AKDKpuZqzy7JdWjuJgkDEpWcy+fHbB1kTjgS9Ta3UfrOF2rWbqPt2+6hLHgSZDH1iNF5pCegnxOIRG9FPYIcSgxvRuZqt3Prs17y9LmvQsugQbz586HwSfdU0bNhF3bfbqFu/7YT4owcunknaQ7cSMGtghonNbMbSacDa2Y25o8uhXdBrwmbs7ZuasPWaKK+s5LS//fHoZr9uctu/Y0fU9Sbg90BE3+yRHOzoHWMDvgD+Lori+FVBn8S4wR1yexQ1azay57o/ux3FtVssHH7wX+T87RWntWdJt19FxuN3OFXRNRjNvPDJbp75YMeQHqYCA29Mhc1KUls9k9rrmdXbjKzZeY2TO9AnxZD0hyuJuuxMZOqf78W/N6+GG//+FTllzlX8zpqXzOM3nkpkkNeA+cb6Jopeep+il97/WeTrj6b1aKNCUYcEYCiupP67HcMS7lqNngKvQEr1flTovKnXeGIbx0EGqUTgsqUZ/OnK+QOsfobDeHeyKurbeWddFm99kzUoynYsvEw9xHU0Ed/RRGJ7A+Hd7e4fRBDwnzWJ8HOXEH7OqWgjQ93azNTazp5r/0zVp98OWiZVKcn8x33EXXfBgM6BtbuHrqIKOgvK6Cwso6uwnM4Cx/R4CsTYgTalpp/E1qv11Gsc31tUWkRBgiDAuQtSeOiaRUSHDF0T3Howl63n/J/TDkjoGYuY8cZj/enblavXsee6vzitQfZKS2DWu0/hlZbo9DijuZ/sNhu7rryH8v9+OWC+0t+HJbs+QhfzYwbEu+uzuebxLwasFxagZ8cr144pYmesb6L0jU+oeP9rOnKL3fJ0VAX5kXzXNSTedgUSN5/lsTxvot1OzZqN5D31Ok1b97m93bGQaTUk3XEVoSsWULl6PSX//tjp//kodLERpP7pRqIuPWNEJHfD/lKe+O82tmYPrYYMEBHoyco5SSzMjCI1JpCIQE+nHfS2LiPvfXuI/3x1gLyK4dMbZVIJM1PDOXVqLKdMjWViXNAvpkb351QBBgfROvzX5yl6+YNRCWPaESjwCmC/fzgH/cJpV7rnYgAQ7OdBYrgviRF+JET4kRjhS1KkPyF+HoP+786uU3F1C69+sY931mXTbnB/UMpTqyQ2zJfIQE9aO7oxbt/LKQUHie1y3Z8KXrmISX/7g0ttj6Eg2u20Hsih9uvN1K7dTMvewyOytAFHXbz3pGS80hIcn/RE9IkxSJXHT1uluLqFKx75jAMFAweoJHY754epuDFSSfvm3bTsPjQq71upWoXnhFis3UY6C8tHdf8FLppB0h1XE7xkzojcC37TasmCIEiAU4HzgYVAlBubGYE9wFrgPVEUhx6WPImfFSMhtzB8FDfk9PlMe/VhNKE/jto1btnLjsvupqdy8K3gP2cysz981uUoX0tHD0+9v51Xv9g3pHiGU4gi87Q2bvS2IG7aPmorDqW/D/E3XUzCTRejCjixhuFHYbbYeOq9bTz+363ORR0UMu64aBa3Xzh7UK2WrddE+XtfUfCPt2g/XHiiTtk15PIR2T9YBAlVOm8qj348fLCEhzEhMZTkKH8mRAUQGeSJRBCwiyIWq53dudWs2V5AVpHrmj+NSs4fLpjJHy6YhdYN5eTx6GSZLTbW7ijkza8P8N3ekkHvb0EUCenuIK6jkfjOJuI6mvDvHVnkWpBICFgwjfBzTyP87FNRBweMaPuGTbvZceldTp8XfXIMk/7+RxAEugrL+slrV2H5ca+v7JArqdJ5U6P1pkmto1Gto0mlo1WlxSpx/tJWyqVcviyDW8+fSWzo8HX1pW9/zt7r/zIodUuQyZj05F0k3uaoK7Z0Gth3yyMuRfSSbr+KiY/+wanFzVGM9n6yW61sv+h2qlavHzBfnxjNqTs+GFA3fftz63jpsz0D1puTHsHapy5DIR+7TZPdbqfyo28o+Mebjg7pMIrgEpWSyIuWM/mZe1F4DT2wNJrr09vUStk7X1D8ygcuRRFHCqW/D2kP/B+RF6+g7M3PyHt6aFun0ZBcgB2HK3ny3W2s3z3Yb9UV9FolqTEBpMUEkhITwIToAEJ8PfDz0vSrwe84UsUbaw7w5bZ8unrc07Dw99KweIrDUzQzMQS9Voleq0SrUoyK9IqiiNVmx2qz9zsCHKuRIAiCy797e4189913wM9Dbo+iI7eYA3c+Qd03W8a0n2K9H/v8I9gTEEWHcnS/JchXx5SkUKYlhzI1OZTMxBDkEjvffvstdruI3TOGN785xPf7St3aX3SIN0unx7NkeixTkkKxWG28sHoXu179lEWFB4k0DC6POgqvWZlMferuEdegmzu6qP9uO7VrN1P7zRbXmV0uoE+KwX/uFPznTCZgzmS00WEnzAbSbnekId//6vf9/VJfo4GUtjpSWuuY1NOMdISCh+pgf7wy+kpkMpLxnBBL0/YDHH7wBXrrnQ9QeaUnkvbgLTRu3kPxqx8NKbKojQol7roLiLn6XNSBQ5c6wG+c3A46oCCEArOAMMAfRzpyL9DU9zkM7BNF8ec1LjsJtzFScnsU1V9tYO/1f3EZxZ38j/uIvuLs/sbG3N7JnhsecCp6pArwZfYHzwyoG/spWjuN/GfN/mFtUFzh9Bmx3JPhj7hxG5Ufrx9VKqREqSD6sjNJuv2qUSlmjgdyyxq54e9fsTfPeVpLeKAnj994KmfPSx7U0IuiSHd5NW3ZBbRn5zuECw4VYChxXft1vCHyY5rHSCBIpeiTY/GelIxP5gS8J03AOyN5UIpsZUMH76zL4rmPd7nMAAj28+Ch3y3i4tPSh+y4jYXcFlY28+bXB3n320MDfC+1FhMxnc3EdLYQ09lMdFfLqETU1CEBBJ0yi6BTZhK8bB4qv5ELpNktFg498LzDu9bJu0Xupcdq6Bm7b+gI0KTWsTMgml2BUTRo3I+ye+lUXH/WFG48e5pb9V42s5kDtz9O0QvvDlqmCvJnzsf/6Lc3aty2j52X3e00sqsODWTmW084TcP9KcZyP9nMZjavuGFQKnTA/GksXP+f/miFxWpj2R3vDKrvvGzpRF65+4xx7QxajUaHWvprH9NbP0xHVRDwnjSBCfdcS+SqZU5Xcff62G026r/bTslrq6n5csOQmSEyDy1x111AyNK59Da20FPTgLG2EWPftHV/jsuaNF1cJBMfvY3QMxdT+f5acp/4N535rsnDaEluVlEdr685wFfbCkasL3AsFHIpvp4a/D01+Hpq0GkUtHQYqW7soKap06ntnDvQqRXotcp+xdejpNVitWHr+94/r2/qjg2aOziW+KqV8n7S7aFR4u+lIdBHR6CPjiAfHeGBnsSEeBMV7D2kf7m7MJmtlNe1kf/GZxj+/iKCEyJhlMqQ2+3I3PCXtiOQ5x3IrsBoDviFD1ujOxQEARLCffHX2Miv6aa5a+guuFwmYe7ESJZMj2fZjHjiwhw+shX17Tz77lZy3/qCU0sOuUw/BtCkxDPtqbsJXjLXrXZEFEU680qoWbuJ2q8307TtwIjeJV4Tkwg6ZRb+cybjPzvzZxMBrWrs4IYnv2TH7kIS2xv6Ca0zj+ShoAryJ/i02QQvmUPgohmog/wBx+Bl2TtfcOThF+kuc84nlX7eTHz0D8T87rz+aGxvcyuFz71DwfP/HTKNW5DJCD/7FOJuuJDAhTNc/u/+p8jtSfz2MFpyC47Uxf23/Y3yd75wujxk+QKmvfJQfxRXFEWKX/2Q/bc8MsgCSJBISH/4Vibcc92Qda5mi43VG3P450c7OVQyskisVCJw9YpM7r1oFrY9Byh84T3qvx1cU+cOQk6fT9IdVw3ZOBwv2Gx23vz6IA+8toGWTucjdfMyIrn3snnMnxQ17Pl1Njbz/RvvIja0kZKcjFwiwW61IVpt2K1WRKsN0WrF1mvGaujG0tWN1dAzcNrVjam1A1Nz26hSZ2wIiILgVqdgKOhiI/oIbwrek5LxnjQBdaAfLR09/OOjnbz46R6XGQCT4oN54qZTmZsR5XT5SMlIT6+Fzzbn8sbXB9l+qBKp3U6YoY3YzmYHoe1qIXCEL8SjkOk0BC6c7iC0p85GHRfJjsNVFFa1oFbK8NAo8dQq8dAq0WuU6HUq9BolaqVsgPibsaaBjtxi2rLzKXr5fbpLj9/7S5BJEaRSp4JLx8Ku92CnXwQbvcIo8/B1qUDqDKH+em5ZNYOrlk9y236jp7aBbatuderb6zdrEnM+/ieakEBsZjNHHnyB3MdfdVq7GXH+Mqa+9FeXitM/xVgzAcwdXXw/9+JB2RhRl6xk5jt/7/8/N7QamH3Da9Q0DezwPHTtIu66eM6IjukuGrft48Btj9G6f3iJDalKSeDiGURdeibh556GtK9MZajrY+s10VVUTuXq9ZS+8emQXsLgGHRIuu0KYq89f8ga8Z6aBg4/8Bylb3zqsj7XZ2oak568i4B5U6n5agM5f3vFqbbEUehiI0j4/SVEXrzCrYjJUdjtInvyqvliaz5fbs13Ki54EsNDECDET09ypB8pfVHuCdEBhPh54Oup6VfSt1htVDd2UtnQTmVDBxX1jmllQwdltW1UNXb0j/n5Gg1ck7+DhI7Bg/smQcKegCjUNgtprbVuCfyZJVKyfEPZFRjNEZ9gbC4yUcaK06bFcuXpmZwyNaa/faxvNbB+VxFfb8ul47P1LC3PIaDX9aCKLDyEaU/eSeT5y4bVJOltaqVhwy7qv99B/Xc7RmTPI9NqCDp1FiGnzyfk9PkDsgF/DthtNt574Qu+eXE1sfV9+i4j6K9IlAoC5k0leMkcgk+bjWdqwoC+md1mo+L9NRx+8AUMxc5LFASZjMRbLiP1zze5zHyxdBkofuVD8p95Y1jFZY/4KGKvOQ/faenoE6NRBfn3n9NJcnsSv2qMhdweRfWXP7Dn+gecpk7IvfSOKO7lZ/U/NC37DrPtvFudNnQhKxYy863Hh+0giqLI5oPl/POjnazfUzyi8gytSs5dl8zh5vNmYCmrpPD5dyh96/NR+WZ6ZySTdMdVDjERJ7XDxxNtXUYefmMzr36x1+Uo/KT4YG67cCbnzJ/g0g5ntJ3sbqOZffk17Dhcxc4jVezOrabL0IvWYsLDYsK3txu/XgN+vd0EGjuJ7WjG0zJ03Y/o40XgkrkojEbaDuaNi1edOiQA70kT8MmcgBAXzZuFHby8o8xlBuUZc5P42/WnDEpjdfc6ZRXV8ebag6xds5uA+hpiOpuJ7WwmqqsVhRsdHWeQe3rgN2sS/rMzCZg/Fb/pEzGLAj/sK+GLrfms3VFIq4uBDkQRb1MPYd3tRJi6SBR7CTV2om9uQtI7eisMpxAEtBEheCRE4ZEQhTYqlK6CMqo+/x5zs+vOuSCRYJ8xhbfxZbvMa0Q11pI+YZxLTpvIeQsn9PtAu4PGLXvZdsEfnLZd8b+/hMxn7kGqUNCRX8LOS+9yqvwt1+uY8sJfiLpkZJHQ8Uhz766q49vpqwZ1YtIeuoW0P/++/++DhXWccuubgwZ23vvrKs6enzzi47oLY30T+295lKrPv0O0uBGlEUAV6Ic2OgyFnzdNtl4EvY4wTx8sDS30VNc7lJYbWtyqyfNKTyT5zquJuOD0Efmad+QWk3XPUy6t8MAxeJvx+B14psRTt34rh//6L1p2Z7v+aVIpwcvmEXPl2YSuWDiiWkBRFDlS2siX2/LZdKCMI6WNI6qhPAnnEACdRoFCLqOtyziiCLMg2llamcdZ5dnInNyL+V6BfBCTib/JQGZTFRNbatDYhk9qNCpV7PINZ0dgDKX6kQ3uOYOPXs3lyzK4duVkYkJ9sNtFDhbV8c3OQr7ZVUxFdiHzaouZU1+Cl9n1PaWICifzr78n6uIVLvs6FkM3TVv3Uf+Dg9C6skRzBY+EKEJOn0/o8gX4z51yXOtlj4Vot2Pp6KK3uc3hKdvSjqm5DWN9Mx05RbQcLqIttxjZCMqpwPF7AuZPI+jUWQQunI7C23NQ3atot1P58ToO//X5ITNBQpYvIPPpP6JPjHG5zrGw9Zooe+cLCl98j/asPLe2kWrVaCNC0IQH0aFXcs7qfqeAk+T2JH5dGA9yC31R3FsfHSR0chQhKxYy7ZUH+2trTa3t7Lz8j9Su3TRoXV1MOHM//RfeE5PcOnZNUyerN+bw4fdHOFg09Aj+sfD2UHHpkonMTI1gUogHxi+/pfBf/x2Vkp06NJDEWy4j7trzh1WhHW8cKW3gjufXDfK2PBaRQV7cfN50rjh9Un8t1lG428mube5i55Gq/k92Ud3IUttEkQCjgcSuZhZ11RJRXe5y1ajLziTz6XsQJAJtWfm0Hsih7WAebQdz6SwoG7HYxE8h8dDRqPOkwK6kTqunTqOnTuNJk0qHXSJBJpVw2dKJ/PHSuf1CXUNdp7bWLj59/Wv2froJZUkJsR3N+JlGr/KsjQrFf3ZmfwqWZ0o8gkRCV4+J9buL+WJrPut2FWEwDoyC6sy9hHa3E9rd0Td1fHenUzUSKHy80CdG45EQhT4hCo/EaPQJUejiIpGpVZg7uij8138pePZNTC3tLvdjU6vInzCRj7RhVEtGJtqWER/EhaeksWpR6oi9O0W7nby/v0b2fc8OitBJVUqmvvIQMZef5cg2efl9DtzxhFOVYP+5U5j59hPoosJGdHwYP6Gc1oO5fD/3kkH2GHNWP0fEuUv6//5qWwEX/OXDAY+OWilj/bNXMDXZPaGx0cJutXLkkZcofP4dzK2uUx3HE4JchlSjRqZWIVUpkKpVSFVKpCqlQ+Vdr0Oud6i+O747PgpvPUpfbxQ+nhhKKsl98jWXismCREL0FWeR/tCtqEMDHST3geeHjOSCwzEg8qLlRF28Au/MlBELFoqiSHVTJ0dKGjhS1siRkkaOlDZQXNOK2TK6AbSTGB0iu1q4Jm8HIT2DU0FFmQzNFatIuOsaQvw96dl1gIoP1lL92XdOrRJ/CqOfH1v8IvnBM4wW9cjsdLRqOeEBnkQGeqJVO7J2rDY7mw+W09DSSXpLLQtqi0htrR3STlGdHEfmX39P+LlLBhAzURTpqaqjZXc2zbsP0bIri5Y9h913aMChJh+wYDqhyx3RWY+4yBH9xpHAZjbTXV5DV3ElhuIKukoqMRRX0lVcQXdZzYjOeyyQyOVI1cr+9shusWCsdS4WCiD38kATGohMp0W0Wvuz6o5+t1usiH0ZdvZj5h+d545CvDP8pqyATuJ/D+NFbo9i2CjuP+8n+rIzEQQB0W4n9/FXOfTnfw7uYKpVTH/tEaIuXjmi4+dXNPHhD0f48IcjlI0wjSvEz4NpSSHM7azF78s1WMtH/ixLNWoiVi0l9nfn4T9n8glLWRZFkc+25HHPS99R1eC68+jtoeKc+RPIiA8mLS6Q1OgAJNgGdbJtNjt5FU3sPFLVH5mtqG8f1bl5apVMTwljVloEM1PDmZwYglatoPVADrlP/Juq1eudNsAShZzgpXOJOH8ZYWcs6jdNtxi6aT9UQOuBXNoO5tJ2IJeOnOJxeTlZBQmNah2Nag+aVTraNDpSZ6ZxwSULCU+NZuOenQiCwNzUDAwH8zi0ZhuVm/aiqaoadVRWqlbhMyUVv+np+M7IwG9GxoAULFEU2Xmkipc/38uXW/MxWWyorBZCfkJgQ7vbh42MjxQ9UjnVOi8avf0xh4diCw9DDA1B5eeFh1aJh1rRN1WiVcvpbWnH/slalF9/i6THdeetQe3B96GJ7AiKGVGtWXigJxcuTuXCU9KYED0yoayjMLW2s/OKe6hdMzgqp40KZe6n/8Jn0gS6K2vZfe2fnZYuCDIZ6Q/fSvJdvxuRAuWxGE8V2JqvN7Nl5Q0DniOpWsWp297DJzOlf96zH+7gvpe/H7Ctn6eG75+7ksRh/FTHC7XfbOHwwy/QuucQ4jC2V78UCDIZiKJLxVOpSknwsnn4zZiI7/SJmFvbyX3838OSXOjTD0iKwTsjqV87wDsjCaXv0KreziCKIgajmZaOHpo7emhu7+n/3tltGlAfa7WJWG22/ppYuUyKVCpBKhGQSR0DfIIA9S0GSqpbKatvp2EMNcC/Ffjq1USHeBMT4kNMqDcxId5Eequxv/oOta9/7HQbXWwE6Y/c1p/Ka+0xUv3lBsrf/Yq6dVvdqj1ti47hG10I2z1DRl2f62XqYW5dCfPqioe1kPPITGHSX/+P0BULEQQBc3snrQdyaNl9qJ/QuhI6GgqasCBC+shs0OKZyLTuq0e7C7vFQvuhApp3ZdO8K4uW3YcwlFSOmuj9L+IkuT2JXzXGm9xCXxT3lkcof/crp8t/GsWt/2En2y+63aldTeJtVzDpybtGnPJ71PPvwx+O8MnGHJraR2b6LbHbmd5YztmVR/DtGV1dpEdCFLHXrCL68rNGVGs1FhhNFt7+xiGg5E6NliBAXKgPfho7AXoFEo0PxdVtFFW3DOuT6ApRwV7MTA3v/0yIChgk1GQ19jpSf1rbacvKI/eJ1+jMda0SKlHIUYcGovTzRunr5fj4eaPw9ULl543cS4/dasPU1IqhpNIR5c3OH1Wq+VCwKZUIGgWSttFb23gkROE3c1I/mfVKjXd6f/earXz09QE+fns9hrxSQrvbCenpIMzQPqao8FBoUWjYHhRDud6Xap0XLUqtW2lxOnMvp1XnsbimEJXN9X2T5xXIt2FJHPYNRXRjv1KJwNTkUBZNjmHxlBhmpISPyaKkZe8htq26zWm6e/CSOcx672kU3p6U/Gc1B25/DGvX4OusT4ph1rtPDSCNo8F4W5zkP/smB25/bMA8dWggS/eu7lfMFkWR3z+9hjfWDqwvDgvQs/FfVxM2AmusscJqNlPw7JuUvvEphtIq99KWfyUQpFI8U+PRRARjbumgLSsXW8/IBp5UQf54xEXgEReJR3wkuqPf4yKR60cWxRsv9JqtVNS3U1bbRmltG4VVLRRWNlNY1TKopvu3BKlEYHJiCGfPT+a8Rakun5PadVvYe8NfXZbTeKUnkv7wrYSuXNQ/8N3b3ErVx+sof/crmrYfGP5klArqomP5RurDAe8QjDLXqbsKm5XYzmaS2upJbG8kprMZ6TCunt6zMom77AykGhUdOcW0Hy6k43DhqNXwZVoNAfOnErh4JsGnzhpUazoeMNY30bT9AC27smjelU3rviMuheFOwj2cJLcn8avG8SC3R1H9xfeOKK4TiXe5XkfG43cQd/2FCBIJPTUNbD3vFlp2ZQ1aN2D+NOZ89I9R2/BYrDY27C/lg++P8PmWvBGRNqndzqz6UlZWHMZ3mJFOVxBkMkJXLCDqkpUEnTJrWAuM8YDNZufLbQU8++EOl8rK4wGpRGBifDCz0n4ks8G+Hg7P05JKDCVVdBVXYCippKeqnp6qOnqqG4b0ixwrJAo5mvBgNOFByD0dfoA2owlTSxtdJZVY2k5cJ0yq0+A/IwO/mY6P7/SJTuvJbWYzXYXldOQUU7n7MLmb9tNbWIZvdxeSEVmMD3UuWkS1ErsLz+N14cl8Gj1xRGImSquF06rzWVqVOySpzfINZU1kKmX64Qd5wgP0rJidyOIpMcydGIVe654w1FAQRZGiF9/jwO2PDRKzQxBIe/BmUu+/kZ7qenZf86dBKsRHkfB/l5LxxJ3INGO3IxlvciuKInuu/RMl/1k9YL7vtHQWb3qnP/XVYrVx9r3v88NPbEKSIv34/p9X4us5/pEUd9Cy9zAlb35K844DmJvbsXQZsHQbwWZHkEoc4jUOuVwEBETE/vS8XzoEuQyvtATsJjMdOe5b/biC0t/HCel1TE90WcxRGIxmiqpaKKxqobSmlbqWLuqau6htMVDX0kVDq2HcVJNHA0FwZCn4e2nx0Coxma10G830mCw0tHZjHUEWQWZiCOfMT+bcBROICh4YYbd293D4oRfIf/oNl5F+74xkYn53HlEXLR8QoTeUVVH+7leUvf0FXUXlw56HRZBQ4BVIuYcPVTpvqrVeeJqNJLU3kNTeQHRnC3I3RI8kCjnqsCAQRXoq60blyXoUgkyG3/R0AvvU+32npY+o3t0d2MxmmnccpG79NurWbaXNzZrS0UAEumUKuuRKlN56osP9kQk4rpHdjmizY7fasPWasBl7sfeasBod38daPnXCIZEgSARAoEU0c7Otv606SW5P4teF40luAUwtbey75REq3lvjdLnfzElMe/UhvFITsJnM7L/1EYpf+XDQepqwIOZ88jx+09LHdD7dRjNfbsvn2Q93cLjEdZ3DTyGz25hXW8zKisPoLc5HBN2xtbELAi2hYTTHJ9KVPAF7TASqPu/AoxYHx363iyImiw2T2YrJbKPXbMVksWIyW/u+9y2zOJb1mq2YLdb+7848cceCoynGMyeEMi1IS5zMhq2uge7yGgeRLXHUswyn0vdzQh0WiDo4ALmHFlG0Y+kw0FNVh6lp7GqkXb5++M3MIG3FXAJmZ6JPjh2Qtmq32TCUVNJxpIj2nCI6jhTRkVNMZ0EponV8auWkKiX6CXF4pcbjmRqPV2o8UrWKA3c8TtuB3EHrKwN88X30bqrDoimra6Oivp3y+nbK69qpbe50+n6W2u3MrSvmjPLDQ6ZC7/MLZ01kKlUeQ9s26DVKLlk6kdsvmEVYwPgO/li6DOy57i9UfLB20DJVgC+z3nuawEUzKHntYw7c8bjTaK06JIDprz1CyLL543Ze401uwdHp23jq1TRu2TtgfuRFK5j17lP9EROD0czS299mf/5A7/GpyaGsfepSt5WmjydGYgVk7zU5Ope95v5Opq1vnr3XjLWv0+lYZsJi6MHSacDSacDaN7V0GjB3GLC0dWBqacfc2nFc0hjlnh54xEdiaml36DuMcz9OFeCLPikGfXJM3zQWz6QYNOHBw6rbHk/YbHYa27tpauums8dEZ7eJDoOJzu5eOrtNdPaY6Om1YLXasdhsWKyOFOpek5ma2noEAUJDglEp5cilUuQyCTKZFIVMglwm7bco8tSq8NA61OL1WiWeOhV6rRIfDzVSV6KKJgu7jlSx8UAZGw6UDXouhkJmYgjnLpjAuQsm9OszALQdymfvDX+leedgFfajkMjlhK5cSMiKBQ7F2qQYJFIpoijSsjubsrc/p+KDr4/rYPBYIffS4zstvT8TKWDu5P4SovGEoayKunVbqVu/jfofdrpVszwaGKUySvV+FOv9KfH0p1TvS3BEIA9ft9ipxaIriKKI3Wz5sT0y9mIx9FD00vuOPu4wbYsqwBfvySn4TE5BExaERCZFkMkQZFIk/VPHPIl84HxBJutb1jdPLvtx3Z8s799eKh3w206qJZ/ErxrHm9weRdXn37P3BudRXEEmI/mu35H655uQqVWU/Odj9t704KAIi0QhZ+qLDxD7u1VjPh9RFPloQw73vPjtiLwE1VYzyytyOKU63+WIaK9EhsruXjShQ64ixyeYcg8farVe1Go86VCoxqyQ6C4kdjsqmwWlzYrKZkVls6CyWn78brPgIxOI99WQ7qdG39VJd0UNPRW1J0yA4URAkErRxUWijQhG4eWBoJDTYzBSeqQUS00DXr09gyKoPVI5ZXpfavyDCZw1ictvX0VKWgxWYy+G0ioMRyPXJZX937vLx0+4QpBK8UiIOobEJuCZGo8uNqKfUB+NWB6860mngkghp89nxhuPucyKMJmtVDU6bDEq6jto7zIibt2F9yefo2p0PjhkFwSqklPZPmEye3oEunpcW/8E+3lwx4WzuHpFJmrl+KuNt+w7zM5L73KIkP0E/nOnMPuDZxAtVkdtrYtobcyV55D57L3jnnFxPMgtONIc109bNcgjMf2R20i9/8b+v5s7ejjlljcpqBzYJs9ICeOLJy4Zl4j5WHC8ro+7EO12LJ0GTC3tmFra6a1rpDO/lI7cEjpyi+nMKx0k4jVS6GIjiLrsDFR+PrRl59N2MJf2w4XD2mWNBlKNGq/UeLwmJuGVnoh3eiJe6YknJJNoLPg57oPa5i6+3lHImh0FbDxQ5rZI1+SkEM6Z/yPRFUWR6s+/59Cf/0lHTtGw28t0God9XbA/Sl8vFL5etPTa2LtuF9LScoJ6OocUfzrekMjleE1MxHf6RAeZnT4Rj/jh7QZHA1EU6ThSSOXq9VStXk/HEGVLY0GzWkeRhx/Fnv4Ue/pTo/VEFBxX2d9Lw72Xz+N3KyajkI/Nnqm7ooYdl91N09Z9g5bJtBoCFkzDp4/M+kxORR0ScMJtJo/FSXJ7Er9qnChyC44o7oHbH6fs7c+dLtfFRjDtlYcIWjyTlr2H2HrOzU7rPOKuv4DJ//zTuMjEdxh6efjNzbz02R6nKVMyqYRZaeEE+XpQUtNKQUUzBqMZf2MXq0oOMrm5yul+rQjUaj0JMnaNWGioW6agVuNJrdaTBrUHPTIFRpkco0xBj0yOUer4bhcEZHZbn2m8DZndjtxuQ2a3obOa0Zl78eiz5dFZfvzuIK8OAjtaEaRxgyCg8PZE4eUBgoBosyHa7BhrG12mRqkC/Qhe5jCONzW3YWppx1jXRE9V/binKLYrNVRqvWhS6TDK5NgEAbsg0CuVY0fA09KLl9mIp9mIp6kXX5sJbe/4jygLwYEET57wI5FNS0CfGDPkM9BT08Cuq+9zKogkUcjJePIuEm+53O0XaOPWfRy8++9OSwccJykQuOp0dqRN4aU91bR1uY7ohvrruevi2Vxx+iRUCplbxx8J7FYrOX97mSMPv+T0nki++xrSHrqFklc+JPv+Z51GAdQhAUz79yOEnj5+0dpjcTw77e05RXw784JBUei5nzxP+Dmn9f9d2dDBopvfGFQvOSUphK/+fileupGp+I4nfm5yOxxEu52e6nrasvLIe+p1p51WdxEwbyqTn/8T3ulJ2K1WugrL6Soqp6tPzbVf1bWidtwjvZqIELwnJuIzJRXfqWn4TElD5T90psWJxM99H3T1mPh2TwlrthewbleR2xZMk5McEd1z5k8g3N+Dig/Wcviv/3LpYfpLgzYqFK+0BDxTE/BKS8ArNR6PxOhxTzE+FqIo0paVR9Xq9VSuXkdXYfm47l+Qy7DHRpOt8GS7TU2J3p8O5eD7SaOSc+uqGdx2waxxGeQr/2Ate294AEvHYK0Ov1mTmPXfv6OLDh/zccYTJ8ntbxyCIEQAtwDLgQjABBQDHwEviqI46p6sIAh64HRgMTAZiAE0QAeQA6wBXhNFsX0MP2G4czhh5PYo6n/YyZ4bHnDZyEdetIJJT92NRCZj2wW30bhpz6B1fGdkMHf1c+Nm7H2ouJ5b//E1u3KcP79Bvjoeve4ULlicSruhl6rGDqoaOqndsAvZa2+jrnK+XYtCw2HfEPx6DSS2N7pV//JbgiYsCF1sBB5xEWijQh21sGFBqEMDUAf6OWpinaTKdVfVUfzyBxS/+iEmJ/6oEqWCjCfuJPHmy/q3t9ts9DY0011RS09lHd2VjqmhvIbO/FIMJZW/+BqYVqWGGq0njXofomems+zCRaQvmoxcpx3Rfso/WMu+mx50ms6mT4ph9vvP4J3hnr+pobyaA7c/TvVn37lcRzd/Bt+nz+DNvJYhU+EjAj25+5I5XLpkIsrjQGoBOgvL2HnZ3U6VauVeema+9TjqkAD23vCAU99agJirziHzmfGP1h6L491pd6qgrFE7FJQnTeifl1/RxKm3vkVzx8BX2aT4YNY8dSk++p+HVP7cpGYkEEWRunVbyL7v2VHX/wkSCfE3XUz6Q7e4rJu1mcwYyqr6yW6/rUlRBd3lNeOWRq2NDO0ju6n4TkvHZ2raiNug8cIv6T6wWG1sySrns815fL4ljxZX3uI/QWZiCMtnxrNseiyB5aWUvfU5VZ99d1wi9COBRZDQoPGgQa2nQe1Bg8YDe3gYN9x2DuedfuLcHtqy8ih/fw1Vq9djKHUeMBgNlP4++M+ahCQ1iU29Cl7Lb6Oh23XmlFQicNXyTO67Yh7BviOzl3MGS6eBfbc8Qtlbnw1aJkgkpP7l96TcfwMS2fF5F44FJ8ntbxiCICwH3gVcKTQUAKeLoujaedn1vpcBnwHDDQs1ABeJoujaTX4M+DnILTjUcnMefYncJ15zGlmR6TSk/fVm4m+6iOz7/0HBs28OWkcV6Mecj/9JwNwp43JOdrvIO+uy+NOrPwzq6B3FtAmhPH3zUqYk/egLabfZKHvrM7LvfYbexhan2wmTJ2K54kLMDS2Iew+iyDqM3EVa568JZokUu78fwSkx+CZE4hEfhUdsOLq4SHQx4SP2b/wpbL0mil5+n6x7nnbaEfCfM5np/3kUfUL0sPuyGnsdaYU5RbQeKqR812E684pRNjv/nx1PdMhV1Go9qdF69X08Mfj7M3VKAqdMjeXCU9LwHEXUzNTazr7fP+S0vhRGJohkNfaS9/fXyH3sVZfKk9LkeL5Jmc6HzUO/izLig7hl1UzOWzgBuWxs6V2uMFwKts+UVKa/9iglr31M4QvvOh3oUIcGMv3fD49rba0rnIhOe94zb3DwjscHzFOHBrJk98cDBgZzyxo5/Y53aGgbGOlNjQng08cuIjzgxIsU/ZJIjbsQ7XYqP17HoT//c0hBIKlaic3o/JlS+nkz8W+3E3P1uSOymbKZzXSXVTvauLxSOvNL6cwroTO/FEvn2Cx8BIkEr/RE/GZNwm9mBv6zMtFGh50Q8vNLvQ8cnrFlfLopjy+2uk90Q/31nDo1lrlxfsSXFtC78wCNu7Ix1YxOjXg4KP280UaGoI0KQxsZgi4mnFKUvLS3mu/KO1yq1s9ICePJ3y85bh7YxoZmKt5bQ+mbn9J+qGBc9umZEo//7Ex8Z2bQERHJt9UGvtpRxIGCoWuo5TIJZ8+bwH1XzBs3S7SGTbvZdeW9TpWztVGhzHr3KfxnZY7LsY4HTpLb3ygEQZgI7MARSTUAjwEbATVwIXBt36r5wFRRFEf09hAE4VLgHcAOfAesA7KBdiAMuAS4oG/1HmC2KIpZo/5Brs/jZyG3R9GeU8Se6/5M8w7nogv65Fim/OvP9NY3s/uaPw3qtAoyGZlP/5GEmy8btxdtu6GXR9/azMuf7XWpoHjB4lQeuHoh0SE/Kh2a2zs5/NfnKfzXu05TagWZjKTbLif1z79HrtfRVVxB7bqttO49TEdOER15peNuXTNSSNUq5B5aZH2fbiTUGW1UdproREqzSkeLSkuzSkezSktnX32wTCrholPTuPuSOcSFjU7Veii05xSx4+I7nL4EpSolaQ/dQtIfrnQ5AiqKIvkVzWzJKneIhuwv7a8FVVothHW3E25o6/+EdbejHGPKdrtCRZPKg0a1jia1B00qHU1qHQ1qDwwKh8jJnPQI5mZEMT8jivTYQJeCJ+6g7ttt7LrqXqeG8OrQQGa88RjBp84edj+iKFLz1Qb23/a3QXWbR2EPDmRNQiZf4D1kffjyWQncsmoGcydGHteO8FAp2IJUSsp91+ORFEPWnU+4FDuLufpcMp++54TVIJ6ITrsoiuy+5n5KX/9kwHyviUmcuvXdAcIvhZXNLL3jHeqaB6bOBfnqWP3ohUxODBn38xsKv1RS4w7sFgulb33OkQf/NaSFikSpcBm985mcwtSXH8R3StqYzkUURYx1jQ5bl+x82g4V0H6ogM7ckjHV/6sCfB0q8LMm4TdzEj5TUsc8mOkMv4b74GhE95NNuXy5Nd9togsO7/m2rl70JiPRXS0EGrvQWUxoLSZ0VjNKmwVBJiM61IfYCH+UGhUyncbxntZpHKUpgoDFaqWouAhBrWLy0sX4JESjjQxx6SMriiKbDpTxyFub2XHYdbT0gsWpPHTtYiICxz7AZTOZqVmzkdI3P6Pumy1jU2WWSvGZkkrAvCn4z52Cz4wMDtR18dW2Ar7aXkCZG1aIof56rj1jMlecPokgn/ERwbIae8m+7xkK/vGW0+VRl6xkygsPoPAce2T4eOJ/htwKghCFI3U2DggGFDhIVyWwH9griuLPm2MxjhAEYSOwALAC80RR3PmT5XcBT/b9+YAoig+NcP8XAAuBv4miWOlinZuB5/r+3CCK4uKRHMPN8/hZyS04RruLX/2QrHufwdLu3KYl4vxlxP7uPPbc8IDTDnfUZWcy7eUHx8Wi4yjyK5q4+4Vv+W5vidPlcpmEa8+Ywj2XzcXf68eUrfYjhey7+WGn6dTg8C+c9Pe7iLrkjAEdftFup7uylo6cYjpyi+nIKcZY24ilowtLR5dDybOjy2lUChx1lBKlAqlSgdxLj9LPG5W/N0p/n77vjqnc06OfwMo9tFjlUrbu2Q1qBUuWLXPaeeg2mvlowxFe/WIfWUWuO2tSicBlSzO457K5A5QjxwO2XhNZ9z3jNIoPoE+MZsJ9NxB18QoEqZSCyma2ZFWwJaucrdkVNLYN7w2rtFqI6WohqbOJGaZWfJvqEYbx35Qo5OgSohAT46kKi6BW44XFzxdUKofyNQ4FbIngUMH29dQwOz2CjLigMZHZozC3d3Lwricpee1jp8sjL1rB1Bf+4pZFSGdROftvfZS6b7Y4XW7z0LEmOp21XhEuLYNUChmXLpnIzedNJ2GcRsFdQRRFyt/7iv03P+I0BdsjIYqMx++k+NUPqVu31ek+9MmxTH3prwTOn3Zcz/WnOFGddpvZzIZTrhpUExq8dC7zv3p5wIBQSU0rS29/m+rGge2wWinj9fvO5qx57qWyjwd+DaRmONhMZkrf+IScv71CT1XdiLcXJBISbr2c9IduGfe0YJvZTFdBGW3Z+bTuz6F172FaD+S6fL8Me64yGd6Tkvsju34zMxwKzWMc1Pq13QcWq43NB8v5dHMuX2zNp3UERPenUMikrJyTwHVnTiUhwg9/T41rxedRXqejJPehNza5LMtSKWTcev4M7rho9qiU1Nuy8ih+7WMq3vsK8yit+CQKOX4zJxEwbwoB86biNTWNouYeduVUsfNIFd/tKXGZcfdTLJ4Sw/VnTmXZzHhk4/AOPoqWvYfYefkf6cwfnMwp1+uY8uIDRF9yxrgd73jif4LcCoJQBQw3bNsLfAO8Lori18f/rI4fBEGYChxlJq+IoniDk3UkwBEgGWgDAkVRHHf5WEEQ9gJTcER4A0RRHNccyl8CuT2K3sYWsu59elCU4ShkWg0Jt15O697DTpVNvdITmbP6OfTxUeN2TqIo8s2uIu5+4VtKapz7g3poFPzhglncvGoGOrWif7vKj77h4J1PuBy595+dyZR//cXt2sejsJnNWDoMiHY7UpUSqVKBRCEftc3DSF6KoiiyN6+GFz/dw+qNOdhc+BbKZRKuXjGZey+bS+A4jYgeRcPGXey+5k8ua3O6vX34LnIC21R+tP0/e+cd30Z9/vH3aW9Ltrxn4hE7e5NNSELYo2WvMgoUWgpt6aAT2lLaXxfQQWmBQktb9g4BAtl7L9vxjPeWLVvWXvf7Q7ZJiGzL2wG/X9HrNO6k80W6+36+z/N8HqWm18iiIIqY3XbS7FayOlqYam8l2daKMJS6NUEgZuFMki45l+RLVmKaM3VEI5Y1b3/Cga8/EjYaKTcaWPC3R8i4/pJ+38fvcFLw2N858fvnzuwDC4iCwJaUKbyZNh2nPPzgJs6k5Z4rF3DXFfMxj0KvVOuxIg5+89Ez2t50k3n3tSii9BT/6cWw0TGpSsn0n32D3AdvH1GTlN4YzUG7p9XKhsXXn5Eqm3XP9Sx46pHTvqOVDVYu/8H/KK0581Lzk9vO5aGblw/LpEx/nG2ipi8CHi8nX3gzJHKrI28z040mLYkFf3tkxMzNugn6/dhOlNN6IJ+2/cdp3XcM69HiQRv1qZPju3p8zyF2yRxMc6YO2AjybP4e+PwBdhytYv2eUtbvKuFkBNHEvhAEMOnVqJVyNCo5GqUcmUzS1YJQpKOjA5lEIDkxDp1GhaZrPbVS1rO+2aglOVZPcqyB5FgDRp0KQRAQRZG3txXx43980mvUM96k5d4vL+TKFXn9pu/6HU6qXllP8ZP/HnTasXFGDglrl5Fw/hLUc2dwqKqVPQW17MmvYd+JOmyO8Kn94TDpVdx8wSzuunw+2anDm10W9PnI/+VTFDz297DR6LhzF7LohV+jy0gZ1s8dSb4o4jbS0V73Dh0CbhdFMX+EdmlEEQThV8CPuh4uEkVxby/rPUQoXRlgrSiKvTuuDH5ffgd8t+vhAlEUB2/JGP79x4247cay5wj7v/ELrIfCm72oUxOJmT89rMGNTK9l8Qu/Oc0RdDjweP385Y29/Pa/O3o9ocabtDx0ywpuu+RTB1if3UHBY3+n6A//DCsaBImErK9dx8xHv4Uy2jis+xwpgx08VDZYeeLVPfxr/WHc3vCDH51awfduXMo3r1k0rK1eGuss7Pj2b/C8vg6hj/Ngu0JNucFMq0qLLBhylFYE/cS7OklydAw59bg/1ImxJF18LkmXrCRhzeJh6//narJw8Ju/pPq1D8O+nrB2GYv++Vi/hmuiKFLz+occ+s5vep2EKYmK5b/ZC6jVmcK+PjUjlvuvWcR1a2aMiPPxZ/FaOzj2sz9R+tT/whroqJPiSL/hEir/uw53Y/gU5MQLl7Pgrw+jmzx2DpWjPWjvLKtiw+LrzjBom/WrbzPtR6fP37bZXNz4yGtsPVx5xvssmZHKP3/0pWHPzPgsZ7Oo6Y2A10vFC29R8Njfw9bi9UfadRcz74kfoU6IHYG9C4/f6aLtQD6W3Ydp2XUYy+4jeFrCT/T2h0SpIHruNKKmZxOVl9nTi1ebltTr5Ozn4Xtgc3j49weH+csbe6lqHF89azUqOUnmLrFrNhAfreVkvZWP95fjdPcer8lNN3PlijyuXJHHzMz4ngky6/FiCh/7+6AMs1TxZgwrFuCZPo361AyKHUHKalsprWmlosE6YD/I1PgoLl0yhcuXTWHpzLQR8XtoLyhl91d+EHa8KlUpmfXr74S6Eoxhj+nB8EURt4eAA4QcfGsBC6FIohZIBeYA5xKKYnbjBq4YCcE30giCsA1YDjgAoyiKYUfugiAsJlSXC/ALURQfHoF9+RPwza6H80RRPDTM7z/uxC2ETJrK//EKR3/8RK8NzA25k3HUNBBwnJn2k/ud25n9mweRyIe3d2Zrh5Pf/ncHT7+9v9fedwkxOh64djF3XjavJ5LbX7qnMsbIzF99m8w7rxmQichwMNTBQ7PVwZOv7uZvb+3D5QkvclPiDPziztVct3o6EsnAIpmBQJCiagt78mtCs7YFNZTVhgZXWR3N3FR6gDT70GbE+0Ofk0H04jk0GORI4kykO0SaN+zsdQImHBKFnLgVC0i65FwSL1yOYcrkAUd1RVGk4t9vc+jbvw77u5DpNMz+v++Sfe+N/b53R2EZB+5/lKaNu8O+3q5Q8WrmXPbGZYSNfq+eP5kHrlnEmgWZo2IsIwaDlP/zDY7+8A9hHbQB4lcvxmNpo/1o+EiBOjGWeU/+mNSrLxzTHoIwNoP2lt2H2XjeV84YdM7/68/I+fpNpz3n9QV44In1vLD+TD8Eg1bJEw9czA3nD60etC8+D6KmNwJeLzVvbODkC2+FspAGMJaTqBRMuvkK4lYuRJ+Zhi4zDaXZNGrfZ1EUsZ+swbLrEJbdR2jZdZiO4yVDcmqWatQYpkxCl5mKwmhAYdSHymei9KBWkl9RhqBUsGDxItR6HRKFHLlB11NmM9a/5d4oqGjmmXcO8N8Nx7C7RrZqTxoMEOuy45bJaVeOfObMqUwzKbnJXUfi/v0ELQOb+GhPSqYqPZP82BT2eOQ4exlDRMqMyfFctmwKly2bwqyshBH7bgS8Xk789lnyf/lU2MBF9PzpLP73b4nKyxyRzx9pvhDiNlIEQcgFHgC+CsiATiBPFMWB5+GMIYIgtABm4KgoirP7WM8EdP+SXxNF8doR2JejwExCtb8xoigOrmCh9/cfl+K2G7eljaM//CPlz73e6wBAbtTjaz+zf1js0rksfeWJYWsXdCpVje388vkt/O/jY72OS6INar7+5YXc+6WFRBvUIaOedZs59K3Hek2pNc2dxvy//JTYxXOGfZ97Y7gGkY1tdn7/v5088+6BXoX/vNwkfnPv+SybmR72dZ8/wInKFo6UNnK4tIGjpY0cK2vE0ccMMqLIzNY6LqvKZ3Ln0LP2BZmM6LlTiV02L3RbOhdVXEzY4+Ssb6J+/Tbq399C48e78Dsi7wymSUsi6cLlJF6wjPjVi3s1mBCDQZx1TdjLqij4zTNhTZMAEi9awcKnf442re8KEp/NzvFf/JXiJ/8dNt3QLwhsTM7l3YwZuGWnTw7JZRKuXzODb169iBmZw/+76g3L3qMcuO8XtB0InwykSUlAk56EZWf4uT9BKiX7Gzcy8xcPjBsjj7ESb9Wvf8iOax444/nFL/6WSTdfcdpzoijyxKu7+ck/NobtA37+gkx+c+/5TJ0UN+z7+XkWt6firG2k4sV3OPn8m306LPeFTK8NCd3JqSiio5AbdMijdF1LPYooPTKdBkEmRSKTIcikCDIZEpn0tOc+fa2P58JEoHyddlr3H8fSFdm17D7S66T0cCNIpShjjChijCjNptAtxogqLgZVfAzKuBjU8TGo4s0o46JRRhtHNIrWZnPx6sZ8XvzwCIdK+q6zjtIqufnC2czKikchl6GUS/H4Apysa6O0tpWSmlZqmzpo6XCe/vsTRRKdNvKsjaTb20izW0lydCDrajVYrTVxIC6NA7FpNGmG3yBPGgySaWthems9C1qqiXXbiVRCegQp+TFJHItJ5lh0ErYwfWYHQkaikUXTUlk0LYULzskiIzF8htFwYtl7lL13/oSO/JIzXhNkMqb/9F6m/fBrwx5cGU0mxG0YBEFYQqj+Vgf8SRTFb4/xLkWMIAgqoDsU+L4oipf2s76dUAR7jyiKi4d5Xy4h1Os2on3p5T36S/JPAPYDHD9+nMzM8TnL1H6kiOM/+B2W7QfDvi5IJYhhnI2VcdEseOE3xK4cGbOYgopmfvHCdj7e33s3KJ1azu0Xz+aeK+eTGKMLtbd54t+U/O65Xs070m6+jGm/eABVwsga8gC43W62bQtFlFesWIFKNTTHy9oWG79+cScvb8zvVfhfuiSby5fmYLW7ae1wUW/pJP9kM4WVFrz+QaYKiyJrZU5W1RdjrqlGsPdvIAWgiDFinJ1LzJK5xCyZg2n+dGTaMy+4/R2ngMdL646DNH64ncYPt+Moj7xfnyCVEn3OTOLWLEGmU+M4WYvjZA2OyjqclXVhZ4ZP3f8Zv/0eqddf3OcstSiK1L6ynvwfPdFrum6hMYH/Zc+nQXu6+ZRJr+KOi2fz1cuGz1UyEqwHCyj54/PUv/VJ2NclKgWmudNoO1iA2EsKXPz5S5n+fw9iyJ08krs6YIb7dzcQyv/2Esce/L/TnhOkUhb+7/ckXXbeGevvLazjnt+/HzalUiIRuPXCmfzwlmXDWms9lsdnLBBFkba9R6l+8V3q3v4E3yCNd0YcQegRulKdGrk+JKJlPWJah0yvBUGCr6MTd0MLjpM1OKvqx0WfcUEmQxFjRKZTI9WokWlUSLVqpGo1Mq0KqUZ9Rl3waWNtUUQMioj+AGLAj+gP4PP4aGzpoL65g9Y2OwERRAQCgkBQkOCUybHLlXQqVNjkKlSZaVxx4yquuWBWT3ZXXwQCQZqqm6hct5WObfvw7DuCGGFquCMpicap06mekkezxkCT1UG9pZOW9sgnYgUxSIKzkyntTUxvayC3vRF1IPIIq0Mq50BsGodi0ygyxePvxYywP+QyCbOy4lmYl8w5U5NZkJc0qtcjv91J4c//QvlTL4X9LuvzJjPvmUcxzZ0aZuuzi/LycmbM6MnMmRC33QiC8ADwOFAmimJOf+uPFwRBiAW6e2m8Iori9f2s3wTEAfmiKA5bjpYgCNGEapfTgQChetvw/XL6fp+IvyTPPvssZvPIi6nBIooigT35eF94H7FpAKkvgoD86vOQX3c+wgj12CystfPG3iYKanrvCCURYO4kA+dNj2F2hh6htR3v8+sI7DoefgONCsX1a5BdvHTE9nu4CAZFvP4gHn8Qrz90v7TByfuHWqhpHZz7Zn8oZRKyEjTkJGnISdSSnahBpwrVfIrBIGKDhUBxNcGyWnB5QCkHuQxBLkMwGZCkxSNJT4Ao3YikLgXrWggcPIH/QBHBwgoYrGjvA+nyWSi/egWCsfcLvGh34d9XgH/DXoJFVWHXaVVqeCVzHgdjU09LQU4wKrh4TiwrpppQyUfnOyiKIsFjZXjf2EzwWFmv6wlp8YitHeAI//0SUuJQ3H4psnm5I7WrZzXeVz7B99KG05+USVE+9BVk8880uXN6ArywpY5tJ8KnhCvlEs6dauKCWWaSoz/fQnSkEQNBghX1BI6VEjhaRrDg5IicP8YEmTR0A/D5oZd2e597ZFIkqfFIJicjnZWFdH4egubT340oiohNbQQOFOHfVxD6DgzxWEkyEpFMz0RijiJgMmDX6LAq1VikKizuIG2dPtrbXcjqm9E2NGNubSHNbiXFbh2wP0VI0KayKzGTcoMZUYg8Wq6SS0g0KUk0KkPLrvupZhUK2djUrvoPFuF9+k3ElvYzX5QIyC9fgfzGtQiKszdaeyoWi4U777yz++GEuO1GEIT5hByH3aIojm4BwBAQBCGVUHsjgBdFUfxKP+tXE6o7LhdFMWuY9kFKKGJ7YddTPxdF8ZFBvtfnRtx2I/r8+N7bge+1jSHREiGSnDSU37kBScLw92HtprTBwdv7mzl4su9Zd5NWxrlTo1k5LZrYqmo8z7yDWHtmf1LoGqTfdgnSeblDb6vgDWDp9GGxeWm1+2jt9PY8trn8iGLIFa773NL9mM8+DwQC3YJW7NU1eTiJNSjISdSQk6QlJ1FDmlmNdID1u2OF6HQTOFpK4EARgSMlIVE2FIx6FPd+Cfk508N/nt2Ff38hgZ1HCRwp7XVg7BMkfJSax/vp0/FKPzWDyk3WcuncWOZOMgy4RnqwiIEggb35+N7YTLC8D7Mdox4CAejsJfKgU6O4/nxkFy4e95NCY4koinifX4f/3c+0SJJJUX77BmRLZ4bdbk9pO//aUofV0XvkZla6nvOmRzMrXY9aMfF/MFREj49gUSW+j/cR2H38iysIP8/IZUjn5CDJyyB4sp5gYcXQrxORIgihCVKNCrGxddDfL49EyrHoJD5Mm0pjdOwpTs6hMYNSLkGnlKJTy9CrpOhUMnQqKXp1aGnWK0g0KTFpZeOmjlrssOP553sEtoaPLUkmJaH4xtVIs84eJ+RImBC3vSAIwiPAzwCrKIojpyaGmfEQuRUE4e/A3V0P3ydkzDWoadvPS1pyONxNrZz4xV+p/NfbEKGZhUyvZdYTPyLthv7bowyFgopmnnh1H29tLwpbq3Yqy2emccnCSUw9fgjrUy/i7wyfThu3ehHTf/0gUdMjq4sOBkWKa1rZW1jH/hN17Cusp3yIrQhGi/SEKGZmxjMrK54Zk+OYmRk37C2FBspwpUmKokhnYTlNn+yi+ZNdWHYcGrCrJIBUo0KXmYYuOx1ddga67HTEQID6tzfS9MkuxH768x6LTuKlrHk0d9VkCQJcsWwK9121gLk5iYP62waDt91G3RsbKH3y3zjKwrb8BkCqDqUPensxkxKkUibddQ25P74HZYxxhPZ2+BgPabeiKHL467+g6l9vnf6CRMLcvz1M+i1XhN3O4fbyp9f38Zc39vdqIgehPp3LZ6Vx0aJMFk1LISc1JuK+kuPh+IxHnNX1HP32b2jsxZxQER1F1Ow8ZFo1Ppsdv82Bz9ZJwOFGDAYI+gOhlFp/KKU26A9EfP2cYHyhSoojduVCjHPyUOdOIt/aRLCqkbhKC03vbcHTPKydI3ulXm3gvYzp7I9LPy1Cu2b+JP7v3tVMGoU62OEm6PdT+ezrFP7yqbAlAhKVkrwf30PW/Tef1bW1vfGFTksWBOE/wEKghJCLsoNQne0CYFbXai+Jonjz2OzhwBnrmltBEH4NPNT1cAehFkOD7wLe/+eNa0OpSOgoLOPID/9A3bubIt4m46bLWPDUI8gNIyuYyuva+ONLu3h54/E+bfW7maSC2xoKSTkafpZQkEjIvPMaZv7yAVRxn84ZdTo9lNe1UVbbRnG1hX2FtewtqKVjAH3gxgMZCUae+u6lnDdvfNVHwsgZ3PidLpq27KP0r/+lZech/HZn2F55w0WLSsdLWfM4GpMcStmXSbj5gll85/olZKWMzjykt91G7TsbqX7tQxo37CTo66Om2GRAqlHjqmvqdZ3Uqy9g5i8fICr37JmcGy+GScFAgL13/IiKf799xmvz/vxTptzX++W7tsXGI89u4uVPjkeUvaFRyZmVlcDMrAQyEo2kxxtJT4giIUaPUadCrfw0YjNejs94RBRFat74iIP3Pxq2xzWEDObm/O77GKf1f00Xg0HEQLfw/VT0in5/KEW65zl/lzAOEPD68Hc68HV04rPZ8XZ0hu532PFaO3A3t+FubsXd1Iq7yTKoCbzRQJ2SgC4jGU16Mi6tlqamdpqa2mlss2O1hy95CAoCAUHStQzV1YoSCenJ0UzPTCRvUiwqqRA6dl5f6Hi0tOFpseKsaejVULI/JEoFCWuWkHjhchLWLD7Ncf+zvxelQkHLjoNUv/oBNW9swN1kGdwB6oP4i1ZgOf98XrcE+WhfGT7/mZMkKoWM79+0jO9cvwTlKLSKGw6atuzl4P2P0n78TMMogLiVC1n4j19iyM4Y3R0bRb7QhlKCILwEXMen/W17Xup67iPgZlEUB9cUbYwYK7dkQRB+APym6+EhYJUoiiOal/J5ELfdNG8/wOHv/47WPUciWl87KYUl//39qDgT2xweXtuUzwvrD3OgqH/z8MyOFm4sPUCGPfxPJ6BSUrlyFdsnTaWksZMma2TmSaOJRiUn1qgl1qjpWmoxGzXEmrTUtdh45p0DeMK4KkskAt+8+hx+dvt5aFSnz4iKwSDO2kY6SyrpLK3EVlJJZ2kV3rYOBImAIJUiSCUooo1Ez5+OedEsoudPR67TDvnvGanBduPG3Rx56Pe9OgEPBz5BQn50Evvj0jhoTsMvlaJVyfnqZfO4/5pFJMcOv6PmZxmIoAVQJcQiUcpDRjS9kLBmCbMe+zYxC8Kn0I5nxpN4E4NBDtz3C0r/9tIZr2V/4ybmPf7DPqMT1U0dPPPuAf657hBttsHPxSrkUow6FUqFDJlEwON2IZMKGKMMKOQy5DIpcpkktJRKUCpkGLRKonQqorRKDFoVRp0Kg1ZJjEFNcqyBpFjDqPRfHgu8HZ0c/dEfQ/9vYcaDgkRC5t3XMvPn9582GTraiKKIv9PRJXYtIeHbZAkJ31MEsM9mJ+jxEvB4u5Y+Ah4PAZdnVKLLHomUQlMiR2OSORqT3K+Tr1wm4dzZGVy2LJcrV+QRZ+r7OiMGgzRv20/5P9+g5s0NYdsY9oYhdxIzH/02qV9eGzZlt6/zSTAQoGXHQRo/3omjugFXbSPO2iactY29mlr2hkQuJ+Pmy8h98I7TJk5Ka1r51pPr2XSwIux2WSnRPPHARayeP34nIB1VdRz+3m977R8vNxqY+/vvM/mOq8dN2nRfdNjd1Fs6sXa6aLe7ae9099y3drpp73ThcPvw+wP4AkF8/gA+f2jZaW3h4P+642xfPHE7n1Bd6BJgBaAhJGq3Ad8TRfHAGO7eoBmLPreCIHwd+GvXwxPAClEUh3+q7czP/dyIW+hyhH3rY4788A90llT2v4EgMOWBrzDr0W8h045OaXj+ySZeWH+Elz4+1udAUBBFFjVVcNXJI5i84ddrU6hZlz6dHYmZBAbgQBhn0pISayAlPorEaC1OawMmrYy5c2ajVCoRBAFBAIGupUDoOeh5TSaVoFbKu26yM+73l35Y1djOL/65hZc++Uw7JVHE4HMzWwMPLEknyWOns7QKW0kl9rIqAu6BRaMFiQTTnDwybrmCSbdcgTLaOKDtuxluMdJ2qIAjD/0h1OcyQjRpSXjb2vHb+3e6PFXQHo1J6WnrY9KrelpUxQyju+2piMEgnaWVtB0soO1QIW0H87HsPNyvoAXQTU5FFEUcFb1fS6PnT2f2rx8kYc2S4dztUWU8iVsInTuPPPR7Tvz22TNei1u5kGWvPYnKHN3ne7g8Pl75JJ/XtxSw9XAl/nFSG2qO0pAcayA5Vk9yrIH0BCN5GbHkpceSFh+FNMJU6fFKy+7D7L/3EdqPFoV9XabXMu1H9zDlga8gU59d6d3dvxMxEGT1ueeilEgJuD2hm8tDwOXG73TjbbfhtdrwtrXjam6jtbwWW0Ut7rpGxCYLwiCyYU7qY3qEbo3OBIJArFHDqnmTuWTJFNYuzCRK1/fxFEWR9mPFVP73Xapeeh9nbeNgDwUAxlm5TH3obtKuuRCJ9NNr/mDOJ53l1dS8sYG697fQuvdon9F1uUFH9r03kHP/LWiSwreBE0WR1zcX8v2nPqKxNby55hXLc/nNveePSsueSPG73Jz47bMU/uYfvY4v0q67mHmP/xB14vC3PRssPn+A8ro2KuqtVDV2UNlopbKhnequ+9bOwZt5iu4OPHv+2P3wiyVuT0UQBCVwCXAfsBJwA/eJovjPsdyvwSAIwmPAD7seLhJFcW8v6z0E/Lrr4QWiKG4It14En3cL8C9CEe+TwPLR6g38eRO33QR9Psqfe53jj/wlonQcbUYyC//+CxLXLhuFvQvh9vpZt7OYDfvK2HK4kpqm8EF6RcDPhdWFXFhT2KtjYYtKxzsZM9gTn3GGK2FafFSoD9z0FBZNSyU33Yxa+WkUZiwG2X6nC2dNA86aRgr3FfLO69sR6xqId3US7+xEE+hfBA0GiVJB6pfXknXXNcStPGdAs6/DdZw6y6o4+pMnqH5lfZ/rqRJiiVk4g5iFM4lZMIPo+dNRRhsRRRFXQzOdxRWhyHVJJc3HS6k9dIKAzY5FpaVWE4VNoUYT8GHwujF4XZj8XoxqGeZJyehS4lEnxqJOigvdEmNRJ8WjjDEi04ZaZEgU8l6PTzAQwNc9mLR24LXacNU303a4EOuhQqxHTkQkwLuRKOQYZ+XiaW3H0UfKnmHKJGb+qvfoxdnEeBO3EBqcFvzqbxz76ZNnvKbNSGb5m38hek5kbS467G427Cvn/V3F7M6vobqX89tYo1LImJJmJjfdTF5GLNMnxzEvN3lUW4wMB8FAgIoX3uToT57stdWXKi6GnPtvIfveGwY9yTfSiKJIh8NDc5udZquD2mYr23cfxOMPkpmZDYIEfyCI0+PD4fJid3npdHqxdrpo7XBiaXfS1uk6zetCGgyQ6LSRYm8n1WElw9ZKps2CXIx88sUfayb+8tXMue0KYpfM6bdXrr2ylqr/raPyv+/RUdi763s3EqWClMtXEbNwJvXrt9K0ZV+frZN0WelM/cFdTLrlCqRKRUTnE7/TRfPWfdR/sJ2GD7dH1FdZk5LAlG/dStZd10ZcxmVzePjF81v421v7wnqOKOVSHrh2Md+7aVlErZBGimAgQPUr6zn6o8dxVIU3MTTOnMK8P/2E+HNHpp1kpHi8fgoqmjlS2sjhkgYOlzaQX94UNvttOPhCiFtBECSiGPlZQBCEqwmJNRVwviiKkRdDjgMEQVgIdAvav4uieE+YdSRAPpAHtANxoigOeEQuCMKXgVcBKaG65eWiKFYObs8HzudV3Hbjszso+uPznPjdcxENtid95Urm/vEhlDGjO6soiiKVDe1sPVzJ1iOhW4Ol87R1TG4nX6o4wtKm8Gk/AC16I0XnrkK3dgWLZ6ZzztSUflNOBzvIFoPBUPpY1yy6r9OBt70zJHrabfjaO0Oz6e2deK0duOqacNY04qhuwNvWHtFnjCTGGTlM+datZNx4GVKVst/1hypGHNX1FP7mH5Q98xqiP7wJjz4ng2k/vpeEVYtQJ8f3K+AcLi9//uu7lP/5PyyuK0U1gN6D/SFIJEg1KmRaTWipVuF3uvBabfg6Ovt/g36QKOQkXrAMTUoCzdv201HQ+wBQl5nG9J/cS8bNlyORfT5STMejuO2m4j/vsPfOn5wRyZHI5Uz76b1Me+juAZuoNFsdHC6p51BxA+V1bVQ1tlPV1EFdi61f072xIDnWwNwpicyfksS83CTm5CQRbRg//0e94bM7OPHbZznx+3/2mnIq02rIvPNqcr99G9r05FHew0/pdHrYk1/DjmPV7M6voaLBSrPVgXeEBuynIgsGyLC1ktPRzIy2erI6LEjOqLALjyreTOIFy0hYu5TE85eiiI7CVd+Mo7IO67Fiql5ah2VXBJ0bBYH4lQvJuPlyUq+6AEWUvuclV2MLVS+/T9EfX8BZ09DrW6iT4ki//hLiLlnBgY4mBImE89esIdjURntBKR0FZXR0LwvLIq59Ns7IIe97XyX9+ksGbZh0tKyR+x9/n32F4YVjQoyOR+9azQ3nzxw1V34IjV2qX/+Q44/8BduJ8rDrKKKNzHr0ATLvunZMrjl1LTa2Hq5k+9EqDpc0UFDRPKqZMF8UcXsMuF8UxS0D2OabwJPAJlEU14zUvo0Up6Qm+wmlCO/+zOvfA37b9fCMVj2CINwGPN/b613rrAXeAxSEHJpXiKJYPHx/Rf983sVtN64mC/m/fIqyv7/Sq7DoRhkXzfw//ZS0ay8as+iQKIqU17VR2dBOh8ODzeEOLe1ufCdKiX/rHaLLexcDmrQkDFMmoU1PQpuR3LPUJMfjszlwNTTjamjBVd+MvaaBqqMFiJ0OjHoDQlD81FwkEPzUVMTr+zQdzO0ZU4MQmU6DPmcS+ux0DDkZqJNCqULd5iedJZW07j2K9Whx///fsdFk33sD2ffegDohttf1BitGrMeKOPG756h6eX2v+6JOimPGI99k8u1fjuhCGgyKvPTXt8j/7bNMqz0Z8aBsrJEo5CReuJyUy1fjaWun9Kn/4ajsve2PPieD6T+5l/QbLv3ciNpuxrO4BWjdf4xtX7ovrJGXae40Fr/wa4wzpgz5c/yBIO12Nx12d8/S4/XjcLo5ePgwgYBI3rRpCIIMX+DTmjBfIIjH66fD7qbD7qHD4cbm8IQeOzw0tdmxu4b3HDU5ycS83CTmTkli/pQkZuckjmnkqS+ctY0c/fHjYY3CuhGkUtKuu4ip37sT0+wzexsPN202FzuOVbHjaBU7j1VzpKxxzCY2BAEyk6OZOimO6ZPimBWnJbW6HMfm3dR/uL3XrgVh30sqHZAJoHFGDhm3XEHGDZeiSUnoc92A10vV/9ZR+H/PYCs62fd+mPQIJj3UtxIcYPlO6A1CYjvvB3eRuHbZsIx/gkGR598/xMPPbqK1lzKs+blJ/P6bF3LO1JFtpyMGg9S+/QnHHv4zHfnhzaIEiYSse29g5i/uH9XshjabKxTcOFzB5kMVlNQMn9O1Tq3AqFdh0qkx6lWn3ddrFChkUmTdfgbS0LK1uZ4f3Hl591t8bsVtkFAt7XpCtaX7I9imu8+tXRTFkXcrGWYEQZgD7ATUgB14DNjc9fh6Pm3VUwLMF0Wx8zPb30Yf4lYQhEXARkJ1yj7gNuBYP7tVK4pi+2D+nt74oojbbmyllRz78eO9GgacSvyqRcz57feInhe+l+hY07R5D0d//ASW3RHMEJ+F+CQSmlV6mjR6mtQGmtSh+/6EeH7+/au4auXUfi++fqeLlh0HOfn8m9S8uYGgt/fkColCTvoNl5L7rVvDDvQGIkZEUaRp0x5O/O5ZGj7a0et6cqOBaQ/dRc43b0Gm6V/ciMEgnzz1Okce+wfJDYNz3BxN1ElxmOZOI3ruVKLnTsU4cwoV/36Hkj+/iKe1vdftDLmTmfaTe0NRA+nns0/qeBe3EIoebf/yN8OeYyRyOdnfuJFpP/zaiJgVDcfxsTk81LXYqG3uoK6lkzqLjZqmDkpqWimqahlSTRqEzO9y08zMnZLEvK4I74zM+HFlYNV2MJ8jP3qcxg29n4cgVMuZft3FpF93MbrJqcP2+a0dTt7bUcybWwvZfKhiVKNPCrk0VGtt1jM5KZrMZBOTk6PJSokmJ9V8hmFhNwGvl5ZtB6h9bxN1727qcwIuUjRpSWTceCkZN146qEmhbmFW8NjTtB0sGPL+9IY8Ss/0n36dnG/ejFQxfBM31k4Xj/17G0+/tb/X78D1a2bw09vOZXJy37X9A0UURere28Txh/+M9ciJXteLO3ch8/70Y0wzc4f188MRCATZXVDD+l0lbD5UwdGyxr6y0Psk1qghPcFIRqKJ9IQoMhJMZCQayUg0khoXNSiX6i+EW7IgCAWE0m+7P3AH8BzwtiiKZzaACm3zM+ARwCGKoj7cOuMdQRAuA/4D9CbOS4BLRFE8I4QWgbh9BBioAdXtoii+MMBt+uSLJm67aT1wnGM/eaJP4dFN2vUXM+vRb6PPTBuFPRsYoihSv34rx37yRJ8n7fGKItqIJjUBTWoi+sxU9DkZ6LMzMORk0CJTcf+TH/Lx/vBpQ1csz+WJb10ccW2cp9VKxYvvUPq3l/o1GzMvnkPKFatIvnw1htxQu4VIBttBv5/q1z/ixO+ew3qo9wGIVKUk55s3M/WhuyOaHfa0Wjn099c59vi/0FvC19MBiIKAOi0JbWIs6vgYVPFmVKcsJXIZrkYLrvpPI/fd991Nlj5rvHpDopCjMEWhiI7CkDuZ6LlTewRtdyTcUVXHiT8+T/mzrxNw9m6iFjU1i2k//foZZimfR84GcQsQ8HjJ/8VfKfy/Z8JGp2Q6Dbnfvo3cB+84La1yqIz08RFFkWarg6KqFoqqLJyoslBwsokjpY1DivjKZRKmT4rvivAmMndKEtkpMb0KqdHCeuQEhb97lupXPug3yhg9fzrp111M2rUXoU1LGvBnDZeg1WsUxBo1yEQvaoWUxIQ4FAo5UomARilHp1agVSvQqRWY9GpiojSYo9RER2lIMusxR2mGHH0URZH2o0Wc/Pfb1Lz24YAMoSQKOTELZ5J197Wk33jZkM9pjpoGmrbspep/62jeui/kIj1C6DLTmPO775Ny5ZphzWArqmrh+3/d0Ot1XSaVcMuFs/jBzctJTzAO6bMCbg/Vb3xE8eMv9DkhYJyVy4xHvknKFatHNFvP6fax8cBJ1u0sZv3uEiwdkftSdJOVEs3s7ERmZycwJyeR2dmJI1Iu8UURtzLge8CP+dQRGSBIqGXNYaCcUO2pjpBz8mWEDJIOiaK4YFR2dAQQBCEdeICQWVYK4AXKgNeAv4iiGPbbOSFuzw6atx/g2E+eoHlb38kIgkxK9j03MP2nXx/Tlgq94aht4NhPn6T6lQ8GbO0/nEhVSuRGAwqjvmepMBqQR+lQJcSiTU1Ak5aEJjUBbWpivw7Voijy34+O8b2/fkR7mJ6D0QY1v7/vAq5fMyPii5IYDFL/wTaKn/gXjZ/s6nd93eRUlHExBNweOqxWCATRyBWhvo8+P0Gvj6DPh9h1X+yjZYVUrWLyHVcx7aG7+09H83ipW7eZ0hfeouGDbUj6GJD65HISb76SJT+7B13G4FK7gn4/frsTv9NFwOnG73Cdct+J3+lGplGFhKzJ0LOUqlVhj70oirTsPEjxk/+m9s2P+zwuMQtnMvUHd4UGUv0YtXxeOFvEbTetB46z59aHejXHkUfpmXTLFWTdfe2wpCuP1fEJBIKU1rZysKieA8X1HCyq51hZ45CNW9Lio8hJjSE71UxOagw5aTFMSTOTZNaPavmLo6qOosdfoOyZ1/qcaOomet40zEvmYl40C/Oi2WgnpYTd38EKWrlMwtwpSSybmcaCvBSSzHriTFriTFrUSvnYGB663LQfK8Z6uJC2Q4W0bD/Qb0pwfyjNJuJWLCDu3AXELJyJcUZOn9c/URRxVNbSvO0AzVv30bx1/6D74w6FuHMXMvfxH0ZsJBcJoijy4Z5Svv/UBspqw7c7lMsk3HHJXL5307IBt6rrLK+m7O8vc/Kfb/SZIRQ1LZsZP/8mqV86f8SuOy3tDj7YXcp7O4rYePAkLk/kvhhRWiXLZ2ewbGYac3MSmZmV0K8793DxhRC3PR8oCPGEBO5dQLcDS2870d3r9q6z0TH5i8IXXdxC6ETb+Mkujvzoj1j76TUqVauY+oO7yP76jahihzd1ZqC4m1upeeMjql75ICTOh3I+0KgQYgyYkhKQ67TIdBpkei2a5Hi06ck9UT+ZWoVEpUCqUiJVq0JLlRKpShEyHorAmGkwNLR2cv/j61m3M3xJ+kWLsvnTdy4hZYAXwfbjxRQ/+W8q/vPuiNYQK80mcr55c+h700c7FVEUsew+TMW/36b61Q/xWvt2mO1Ua4m77WoufvTr48b9NODxUvXKeoqf/Hef0WuApIvPJe/7dxK3YsFZ7348UM42cQuh/9vjP/8LRb//Z59tnWIWzSbjpstIvvjcQae4jqfj4/MHKKho5mBRyBDrYHE9+SebCAxDvahJr2LqpDimZcQxdVIs0ybFMXVS3IibV3larZT+7SVKn/ofrobes0E+izI2ukfoStJT2d/iYl2JhQ+Lm/FFoGdVChmLp6eybGYaS7sEbV9R7eH+HoiiSMDpwtVoCfXabbTgqGnAXl5DZ1kV9vJq7GXVfU7GDQuCgC4zDeOMHNQJZhSmKORGPUGPl9Z9x7DsOYqnJbzwiwRVXDS6nEkYcjLQZ6Wjz0pDl5lGwO0JZe00tOBuaDnNf6P9WC+WL4LA5Fu/xMxffavXNkCDwesL8NRb+/j1v7dhc4SPQivlUu68fD7fvXFpn1laQb+funVbKP3bS/2m4BvyMpnxyH2kXX3hiIjaNpuLd7cX8fqWAjYfqoi4rlytlLFkRhor505i5ZwM5mQnjlmbsi+UuO35YEGIBm4HrgHmEXL6/Swe4DFRFH85mvs2wcCYELef0l2XcfTHj9ORX9rnuoJcRtpVF5B197UDbikzFFwNzdS+s5GaNzbQtHnvgEwshoLcoCNqejZxKxYQv2oRsUvnRlQjOpx099D7zp8+CJvOY9Aq+c2953PbxXMG/P/hbm6l9OmXKH3qpYhaR0WKNiOZ3O9+lczbv3zG8fK227AVV9BZUtG1rKT1QH6f/V27adCbMNx6DV/5v6+jHOX/h95wNVkoe/plSv/W9zEUpFLSb7iEqd+/c1gifGcr40m8DRR7ZS3HH/kLlS++068I0OdkkHTRCsyL52CaOxV9ZlpEA8rxfnxcHh/Hyps4WBSK7h4srqekxjKkOcZTSTLrmZuTyJzu25SkEWlPFAwEaNm2n6pX1lPzxgY8Fuug3scvCHQo1LQpNXQoNbilMvyCBJ9EiiiXk54WS15OMrmZCShlEsRgMGRYGAzd6DIyDD0Woet5n8dLZUUFiCJpKalIBeGMdT77PkG/P5RxYnfiszsJOEJLf9dtuK6bMp2G2GXzUMXF4G5uxd3chrO6ftDHcNiQSTHNmEL0vGk9N+OMKf1OPlv2HOHQd37Tq4+HTKth2o/vIffB24e1Hrel3cEfXtrJ398+gNvbi+miUsZXL5vH166YT1ZKKHtODAZpO1RA7TsbOfn8m2HN705Fn5PBjIfvI+26i4e97MXm8LBuZzGvby7gkwPl+PyRTY7MmBzPxUuyWT1vMgunpgyqPnYk+EKK29N2QhD0wDQgC4jqeroG2NJbPe4E44cJcXsmYjBI9WsfcvTHf8Re3n8akD4ng6y7r2PSrVf2GZUbLJ3l1dS+9TE1b32MZfeRoUVohwmJQo55yRxSrlxD2lUX9JtiO5y0tDt48M8f8tqm8FHB8+ZO4qnvXjqoJvF+l5vyf7xC5UvvYz1yYliiuYJEgjI2GlWCGXWCGb/Dha24YsCz8l6JlKPmFExXX8w3HrubmKi+U7pHA1EUad17lJKn/kf1K+v7NOwaL+1HxgvjXbxFQkdhGcd++iQ1b30c8XlJbtBhnJGDdnIquoxktBnJqBNjUUQbUUR3pbqrlHgDAT7evAlBEM6a42NzeDhS2sCBonoOFYcEb2VD+7C9f0KM7nTBm5NEknn46pyDfj9Nm/aEhO6bH+NrnxjCnYpMryV22TziVy4kbuU5RM+deoaLuyiKdJZW0rx1P83b9tO8dX+frXxGC0Emwzg9m5hFs0hYtYi4884JO14RRZGqV9Zz5Ae/x1ldH/a9oqbncM6zj2I+Z9aw7mNDaye/++9Onlt3sNd2UIqAnxtjYFXAivTAYdwRZB3Er1pE9j3Xk/Kl84fVdd/h8rJ+dymvbyngoz2lEZUuSCUCS2emcdnSXC5dmjOoccpo8IUXtxOc3UyI294J+v1U/uddjv70CVy1fc8IwqdtTmKXzsW8aDbR86b1W1P6WURRxFpSxbGPdlO5/RCB3QdQ14W/wHwWl1TGYXMq++PSqdaZkAWDyIMB5MFAz32N30uis4MURzsp9nYSXDakw3AeMS+eQ9o1F5J+46Wo481Dfr9IeHdHEQ88vp7GNvsZr2lVcn5592q+dsWCiPrndZwop+LFd6j873u9XtDHiqKoOHYnTMJ8ySp+8a3LyE4d+5pvv8NJ5f/WUfrU//o1MtNmJDPl/q8w+Y6rhtVw6Gzn8yBuu7FX1FD+3Ouc/OcbA0pxjQiZFGWMCVVsNEqzEaXZ1HNTxZsxTsvCOHPKqPcmjxSHy0tZXRsl1a2U1FgoqW6ltCZ03+HufTIoUhKidZ+ay+QkMinRRHKsAZM+fC18b4iiSL2lk+JqC0VVFkrKG2nZdRDfsSIyOlqYbLNg8I2cgdG4QxAwTJmEac5UoudNI27FfExzzhSzveHrtNO67zgtuw7R+Mlu2vYfH1M/jHCYZucRv2oR8asXE7diPnKdtuc1v8tN8RP/ouCxp/Hbw1jLCAI5993MrF99C7l+eDMKalts/PY/23lh/WECXj8JLhtT2puZ2VpHnrURudh/VFRuNDD5ti+Rfc/1GKZMHrZ9c3v9fLS3jNc3F7B+dwnOCH7DGpWctQuzuGzpFC5clD3m/bJFUcRZ24j1yAkcVfV4W9vxWKx4TlnWNjRwd8Oe7k0mxO0EZxcT4rZ/Al4vJ597nWMP/3lA0TZBKsU4cwrmRbOIWTgThckQaq4nCKFBhyAQCAapKKmlascRHMeLUdbUoPJGPoDwSKQcjUlhX1w6x6OT8A8w1UYWDJDgtJHsaCfe1Yna7+u6eTF5nCQ5O1AHIjdAEGQyki85l8l3XEXSxeeOeG/SNpuLHzy1gf98dDTs60tmpPL09y4PKwjdza1UvrSOyhffGdHWCoOhQW1gd8Ik9sRlkDQtk99+Yy0r504a692i40Q5pX97iYp/vYXPduakwqnErVzIlAduJfmy8z73zseD4fMkbrsJ+v3Uv7+Fmjc/pv6DbUOqGRwo6uR4jDOnYJqVi3HmFKKmZqFOikMZYxx0XZ0oigQ9XvwOJwGXB0EuQ6qQI+m6CTIZ/kCQTqcXnVqBQh759zwYFKlp7qCgopmCimYKK1ooONlMcY2l16jVQFArZaE2OLEGks0GYqLU+AMi/lN7BfuD+AIBapttFFdbeq177DoYmN12Mm0WJttaSbO3Ee12YvI6h2WCdCyQqlWhjJrEWHSTU9FlpoVc+7Mz+jV8OhUxGMRWXIFlzxEsu4/QuucI7fmlo5plJVEpCcql0DlwB14IXbtjFs4gZsEMoqZmYZiaSdTULIJeH8d++iTlz70e9u/RpCay4KmHSb70vKH+CSEjr+MlWA8XYj1cSOO+fDqOFyPtp1f9qZgWzGDK128k7bqLkamHx3zJ6wuw8UA5r28u5L2dRXQ6+8/okkklTEo0khpvJDFGR6xJS7ReTbRBjcmgJsagxqQPOXvHRmlGLB1ZDAbpLK2k7fCJ0HE9VIj1yIl+U+db8XE/Fd0PJ8TtBGcXE+I2cvwuN+XPvkbBr/8eUSrMSOGSyjgWk8whcyrHYpLxSkdQQIoi0R4nyY52sjpayGtvIsPWirRXH7lPUSXEknnn1WR/7foRT1v+aG8p3/jD+9S1nJlGp1LI+NkdK/nm1YvA66X2nY1UvvgODR/tiLj2SpBKT19XEE4x1FL0GGtJVEpEvx93Uyvu5tZ+BzdBQaBZpaNJradRY6BJY6BCH0O1zkR8tI6Hv3oeX7lw9piZSkBocqf27U8o/dtLNG/Z1+e6EqWCjBsvZcoDt2KaNfK9As9mPo/i9lS66+HqP9iGZfcRrAcLQr+JUUYil4cETFIc6sRY1ImxCHIZAYcr5AjucHY5g7sJdN/vej7gdPdbU+zrqittV6rpUGlx6PS4DFH4jEYC0SYUKYlMXTaTZXMnMysrAVk/v2WfP0BpTStHShs5VNLAkdIGjg6xPdFwE2fSsnr+ZC44J5uLzslEbrfjrG3EWduEs7YRd2MLAbeXgNtD0BNahm5eRJ8PJBIEiQRBIiBIpaHJB4nQ9VzX/a7nA8Eg9Q31IAikpKUhVyrOWL/7fei+L5Eg1aiR6TTIdZqQQaJOg0wbWsr1WlTxMch02kH5ZXitHVj2HsWy5yite45g2Xts0CncMp0G05ypPZMyhtxQlLH7uAX9gZ6/CYkEiVyGXK9Fptci77rJdBo8fj8bNmxAdLqZF5OEPb+MtoP5WA8WYCupHLTQVsWbiZqaicJswrLrcK91rWnXXsS8J3/c0/6tGzEYDHUV8PnwWKyftqDrNrSqb8bV0IyjuoHO4opBGXk1qvUci0lmd/wkWmPjWb0gk0sW53DBOVnED7JOvaqxnc0HK9h8qIKP95cNuSd2X0gkApOTTORlxJKXHktueix5GWampJlRKwfWQszvdGHZfSSUEr9tP2378/E7Bj7hMSFuJzirmRC3Ayfg8VLx77fJf+xpnMPQ3D0SbHIlR8wpHDSnUmRKQK5WYtSrkUoEJIKA5JSlIAh4fQHcHh9Ojw+n2zcsrp7dqPw+prQ3Ma+lhtmttWj9/Qy6pBISLzmPvPtvIX7VohEz37I5PPz475/w7HsHT3teEEWyO5q51NnI9PqTiOFSrD6DPjuDhPOXkLBmCfErF6IwReF0Otnw4Ucgiqy96EI0mr5n9YN+Px6LFXejBVeXK6e7sYXGdhcvFbbwcaMbi0pH4DNRJaVcyv3XLOJ7Ny1DrxkZ9+lIcFTXU/aPVyh/9vV+Tba0Gclkfe16Mu+4aly2yhqPfN7F7WcRRRFXfTNthwqwl1Vjr6zFUVmHo7IOj8WK12obd2mbw4VHIqVaZ6LeFItiajbpK+ax8PwFLJieFtHgNRAIUlbXxqHikNg93CV6I4kgDQcKuZQl01NZvSCT8xdkMmNyfETlHsPBWP9OgoEAHQWltO45imX3ESx7jgypLZA2PRnzkjnELp1L7NK5RM3IGZbMlr6Ok6/TjvXwCSx7jtC0eS/N2w5E1AZqwHRN+gqCQNDvR/T5R8R1OiBIKImK5VhMMkdjkmnS9N4lYX5uEhcvzmH57HSi9Wr0WiUGjRKdWnHapHFLu4MthyrZcqiCzYcrqKgfY1MwQol+kxJNTM+MZ35uEvOnJDF3StJp7YB8NjstOw921XgfoHX/ccQBRLp7Y0LcTnBWMyFuB0/Q76fqpXUU/OppbMUV/W8wAOwyBS3meIKZk5AsmkfMojmkJBpJiTOQGhdFtEE9IJHo8wdwefw4PT58/gBeX9fNH6DT7mTnrt34gyIzZ81FkEjx+gPYnV6arHaa2hw0tnZS1dhOaU0rHaekrkmDAfKsjSxsrmJ+SzXKYN+RUCE1mZnf+grZXx25+ssthyq49/fv4SyvYXFTBYubKoh1951CC6FIc8aNlzLpliswzso94/gOdZDV2Gbn589t5l8fHO51Ev3q86bx6N2rh9y8frCIwSANG3ZQ+reXqF+3pe+BiSCQdPG5ZH/9RhIvWDaRejxAxnrQPh7xu9z42m0EPF6cNjs7t25F9PiYm5OH2OnA09IWqgmzWPG0WLFX1NJRUNqnkdl4xS2RUR1lRpg/i3NuvZQ1161GJhtYWnN5XRuHu8Tu4ZIGiqssNFntQ+wKJ2dKqpkp6WZy083Mykpg+ax0tOrhc8cdCKP9O3G3tNG691Mh27rvWPia0wgQZDJMc/IwL54dErNL5o5YFtNAjlPA66V17zGaNu2hceNuWvcc7bO113hAk5JA3LkLSL5sFQlrl3KkoZO/v72fN7YUDjqNX6uSo9coUcilVDf13XZvtFH7vUyytZJub0PvdaPx+9D4vWj8HuKCPvR+D3KvB8E/+BIGeZSeqGlZqOJiQj4GMUYUMSFfg0aPk2X3fqV71QlxO8HZxYS4HTw2h4d9hbXsPlZF3dsfk7F9G2kdfUe4/IKARyrHI5X1JPYGBAkd0WbInkzs/GlMWbWAectnYtSPzmB3IBdFURRptjooqbZwuLSRA0V1HCiqp6LeisrvY2FzFcsay8m09X0cAnIFhstWs+hbtxC3bO6wRXNdjS3Uvv0J5f96m7Y9R/pdX6pRk/rl85l0yxXEr17cp0Ab7CDL5fHx59f28Lv/7ew1tXB+bhK//cYFLJ4+uJ6gQ8VtaePkP9+g7O+vYD/Zt0O4MjaazDuvIevua9FlpIzSHn7+mBC3p+Nua6fhg21Y9hzB09SGy9JGa00dotuLzqBHKpP1eBaAGPoXDBL0B/B3dOLrdBBweYYlajEWdKo0BObOZO5NFzP3hgtRmKL63ygMXl+AhtZO6lps1LV0UmexUdtsw+ZwI5dKkcskyGShpVwqQS6TYtSrmJIWSoNMjYsatahsJIzk78TvctORX0LrvuM99bL28upBv586OR7z4tmYF83GvGgWprnThq3usz+Gcpz8DifNOw5i2X0EW2EZHYXldJZUjo3gFQQMORmhVO05eaHl7DxUseE7UTRbHbz44RHe21nMvsLaMWsmoVMriNKpiNIqT1sadSokEgntdhdWm4tWmwtrp4u2rqUogiAGSXJ0kGlrZbLNwmSbhURnByNZjCTIZMhNBuRaNRK5rCutv8sPBoFmj4M7yrZ0rz6q4nZ8NEOaYIIvAN2z5AeK6tmTX8OeghryK5pPac6thtlryepoYW1tEXMstUjC1KXKRBGZ34s64MM+fRrxN1zO0ruuJM48uIHMaCMIAvHROuKjdSyfndHzfLPVwdbDoZSelw5X4C05yXn1pSxurEAVPHOwKfV5cbz5ARvf/ABvbCzpN1/OnK9+iaipWQNz+AwG6Sgope79rdS+/Qmte8MbS51KEDhhSmB3/CT8i+bz2+9eQeK04ReVoijy2uYCfvqPjb3OCifHGvjlXau5bvX0UR9QiqKIZfdhSp/6H9Wvfdhv9Ct22Tyy772B1KsuQKocmyjOBJ8PgsEg9e9vpfLFt2nZfRh3Uyuir3dR2knzsO9DAGhTaanXRFGjM9Gq0uGRSvFKZHikn968EileqYyk5Bgy4qJINqlJMKhIMKiJ0yuJ1SnRigHs1Q3Yqhtw1Tbirm/C32hBbLEgaY8sIqR3O2HXHk7u2kPZfQ8j5uUw69YryLz+IrRpSRH/XQq5lPQE45hlf4xX3JY22o8UYT1yInQ7fAJb0clBp81KlAqi500LCdkuQTuaLfGGE5lWQ9IFy0m6YHnPc0Gfj87yamyF5XR0CV5HVR1eqw1vWwfeto5BiV+JUnFK/XvXsuuxPicD48wpp7k290ecScuDNyzlwRuW0mx1sGFvGev3lPDJ/vIRS9uPMahZODWFc6alsDAvmXm5yRi0AyshCvp8VL32ESXPvU7bniOII5Em3gei34+3pQ1vL/YxdsYukj8RuZ1gyExEbs9EFEWqGts5WNzAoeJQv8LDJQ2npeP2h9llZ3VdMSsaylD14zasiosh9eoLSLlyDXHnLhjW5uiRMBIz4yfr2li3q4SPNh1D2LSNlbXFJDn7N9wQowwkrTqHpFWL0E1ODbX7MJuQatWh+tUmC+6mVjoKy2jdc5TWfcf6de3tpkFnZEdcBnviJ9GuPL1e9isXzubhr57XZ8/IgRynfYW1fP+pDewtCD/ZqVHJ+e4NS3ng2sVoVAMzjBgqvk47lf99j9K/vUT7seI+15XptUy65Qqy77ke44wpo7SHXwy+aJFbV2MLJ373HDVvfYyjqh5GoBZvKHSb0hw1p8DMqczOSWJ2dgJzcxKZmZVwWp3bQHC3tNF2MJ+aHYep3HoQV34xivb2Ab2HYe40Jl97IalXXYA+K31Q+3G2EunvRBRFfB2dOGsbQ+ZEpZV0llbRWVKJ7UQ5ztrGIe2HNiMZ8+I5oe4Hi2Zjmp076tfqvhjt84koigScLjxdQrdl50GOP/KXXh3SU65ay+zfPIg+M33EfDdOxesLsPNYFev3lPLxvnJqmjsiatsTjoRoHZctm8KiaamcMy2FyUmmQf8N7uZWyv7xCqV/ewlX/fBP2g0XEzW3E5zVfNHFrd3lpbCimfyT3bcmCiqaabMNfhZtcpKJxdNTWTw9lYVpJqSfbOHkM69GVJcrN+hIuvhckq9YTdJFK0alL6jL5eKjDz8El4fV55+PxqAPpakMsn3GZ2ntcPLu9hNsfn4d5u07mNNSE5Hb8nCgNJtIv/FSJn/lStzpafz47xt5+ZPjYdfVqOTcf80ivn3dkrCzsJEMHmqaO/jpPzbyysb8sJ8hCHDzBbN45Kur+hTSI0H78eJQG58X3+m3hsw4K5fse28g48ZLh72H4QQhvgji1lZaSeH/PUP9us24m0bfKXmwaFITybjpMjJuvhzjtOG/JroaWzi5aR97//0+nl0HiOqMvN7POHMKqVetJfWqCwac6TLeCfp8eNo6Pq2rtlix1zdTsHc/uL2kp6Qi6WrP5LM58La147Xa8LR14KpvHjaTJKlGTcyCGZgXzcK8eDYx58w6wwV4vDEezic+u4PjD/+Z4if/HbYTgTLGyIxf3E/W3deNeJvAz+Ly+HhnexH//egomw6epD+PTYkgkJ5gZE5OAjOzE4gzaomJ0hATpcHctTTpVBF3Mmg7mE/xn16k6uX3h8UjwKXVUas3cVKmQeX3k+i0Ee+yETVMvagnxO0EZzVfBHEbDIrUWWyU17ZRVttGWV0rZbVtnKhsoaLBOqQaDblMwpycxC4xm8aiaSlhree7U0DLn3ud6lc+iMiaXSKXE7dyIeYlc4hZEOo/N1gnWlEUcTe2YCs6iaOqvutWh6O6IeRaWt0An0kLFCQSBLkMiUwW6u+oUqIw6pEbDSiidKGlUY/CaEBuNKCMMaJOjkeTFIc6OR6l+czZzeqmDl57dRulL7xJ9ol8El2Da5/QFzK9lqSLVpBx02UkXbQCifz0yOj2I5V868kPKKwMn48Ta9Tww6+s4I5L5p7We66vwYOlw8kfXtrJ02/tx+0NH6lfNjON337jAubkJA71T4wYURRp+Gg7RX94nsZPdvW5rkQhJ+3ai8j++o2YF83+XA2axyMjPRgVRRGbw0OrzUlrh4u2Dif+YBCNUo5SIUOrlpNsjsJsjKyXZ6RY9h7lxO+eo3Hj7kG1RwkIAh6JDJ9EikcaWgqISINBpGIQWTCIPBhAHgygEEc++tuRkIhl3jzcSxdhTEvsGeDGRKkxR2kwG7UDGuR+FlEUObjxIJv//ib27fuY1FKPoh9jvm4MUyaRetUFpF61FtOcqWfNb1YURZy1jVgPFdB2sIC2Q6G+pmMSyeqq8Yw5Z1ZPVNY4I2fUxddQGQ/itpu2w4Xs+9rPaNsffiLZkDuZOb/7PkmXrBzR76zN4WHTwZN8sLuUt7ef6LuP8yAQBEK9ag1qNEo5KqUMtVKOWiFDpZSjkUJK8QmSd+5AV1U16M8JIlCtM1EWFUtpVCxuqYzsjhbmWGpJdg7NCCsA+CRSfBIpfokUv0RCQJDQKvp4zH2se7UJcTvB2cXnQdy6PL4u84yQgUZtc0ePkUZVYzvldW24PMNjMhJv0jI/L5lFXZHZuTmJA+5D5rM7qH71A8qfex3LrsMD2laTmkjMghlEL5iBYcokpGrlp/1W1V29VhVyHBW1tBeU0VFQSkd+KR0FZXito+sGKFUp0U1ORTs5FX1maqieZsYUjDNykEfpOVLawNvPrqPtjQ/IqaskxjM4R0oItVdIungFyVesJn7lOf3WhPr8AZ56cx+/+tfWXutykmMNfO/Gpdx28RyUClnYwYPN4eFPr+3mT6/t6fV9JiWZeOxra7hi+ZkOzCNFwOOl8r/vUvTHF+goKO1zXd3kVLLuuZ7Jt38ZlTm8accEw89wDEbdXj/7C2vZd6KO/JNNlNW2UW/pxNrpGtA5TyoRUCpkaJRyDFolRr2KWKOWxBg9KXEGMhKNZCQYiTZoiDNpMelDJinBYBCHy0v5f96l/JnXcB8vQvBGXucWQMCi0lIWFUuxMY7j0UnYlJGLbbXfS5Kjg2RHB0mOdpKcoftG7/DXrwURKIhOYHtiFkdiUk5r4SUIEK1Xh6I6xtOjO+ZT7vc8NmrQqRVnnA98/gAbdhTy3p9fR7JrH3MsEbRa60I7KYXUL68l+dKVmBfPGVd18d6OTix7jtCy4yBt+4/Tdqiw1/TVkUSqUhI1I4foOVMxzc7FODsP08wpyLTDO8EzFowncQuhFkqlf3uJoz/6I/5OR9h14lcvZu4fHhq2nuiiKHK8vImP9pWxYW8Zewpq8QdGv/whxW5leUM5SxpPogkMLkpbrTVxwhRPkSmBcn0MGfY25lhqmW2pxTSI81uHXEWjxkCDxtC1jKJBY6BNpUUMMy4R3R149vyx++GEuJ3g7GIsxa0oinh9AVxePy6PD7fHj93lpdPpwe7yYnN4sDu9dLo8dDo8tHW6ae1w9twsXUvHIOso+iPGoGZebqiv2NycJOZOSSTJrB9WgWIrPknNmx+HzJD2Het/g88JmpQEoudNI3bZPKIXz2G/X8Grr26nYdNecqyNpNrb0fvc6Hwe5KdEZxwyBW6tFn1qAjmrFpK6cgHmRbNQJ8YNaj8aWjt59PmtvPDB4VPMwU4nOdbAt65dzFUrcti3exsAy1acx78+yucPL+3sNYXdoFXy0C3L+fqXFp4WAR5JPK1WSp9+mZK//Bd3Yy9OEYSi8smXnUfWvTeQeP7SYUtBnyByIh2M1lts7DxWzaGSBooqW6hsbKe5zYHN6RmTgRuAyudlTV0RC5urB+TqKRL6DReaEtmWmMkJYzyMwHdP6/OQ1dHClPZmcjqaSO+0hjX4GywdchW7EiazPTGzzx6bfaGQSzFHaYg36YiL1hJn6r7piDNpcbi8rN9xgpoNu5jdVMUcSy1Rvsj6AEvVKmKXzydh9SIS1izBNDtv1H7joijirGmgZcdBWnYeomXHQdqPlzCaNrbK2Gh0k0MTqvrsdPTZGZhmTkGfk3HWRWQjZbyJ226c9U0cfOBX1Lz+UfgVBIHJt32JmY9+C01S/IDfv6U9ZGb58b5yNuwvo7E1Mg+O4Ubt83JOcyXLG8rJsA984qZRreeEKYEiYzxFxngCEgkzWuuZ3VrLjNb6AYlkj0RKWVQsJVFxlEbFUqsz4ZAPzPBqQtxOcFZzqri98OtPYjQndrUHCLULkEklaJRyJBKBoCgSCIgERRExKBIIBvH5g3j9n/ZM9X3mvs/X9fopz3u9/h5BOx6+whKJQHZKDNMnxzEjM55pk0LLtPioUU3zctY3UffuJmrf2UjTpj1nZe/GwSJVKYk7dwG685ezWWXmue3lIYdhUUQV8KMI+HHIFQQkn7bqUcilXLE8lzsumcuK2RlDchs+UdnCT5/ZyPu7SnpdR6WQsSBTT1qMio2FNhrbws9Gy6QS7rhkLj+5/VxijZG7Pg4FR3U9J373HOXPvU7A1fsAWBUXQ+bd15J193VoU0cvPXq4CQSCWO3urtYKTto73TjcPlxuHy6vD5cndH4J3fx4vH78gSD+QJBA17nLHwgSCITuB0URQRCQCAKCEKq3kkgEBLqWYZ7rWbfrPl3bhx5zyjoC/kAQj8+P1xfA5wvg8QVwebzU1jfiCwRRqvW4vQGcHh9Od+jWvc/j4BSJLODnnOZKFrRUk2FrQ+f3EOmvTQTaFWqOxiSzPm0qreoza83lMgl6jZJYo5bkWD3mKC1alZTW5nrUCikzpuWh16hQKKQoZFIUMhkSqYDPH8Tj9ePuniA97X4Ad9dzvk47+opKTBUniauuJK65IeL974+iqDi2JWVx0JyGf4R6PQuE2oVkdbQwr6WGuS3VRA8geqOINhK/ciHG2bkYp2UTNS0LXWbakIVe0O/HVlyB9cgJ2o8WYT1SRPvRItzNQ6+vlhsNKM0m5NFR2II+UCtITk9Drg61LpHrtShMBhSmKBQmA6rEWDTJ8aiT4sdV1Hq0GK/itpumLXs59OD/YT1UEPZ1qUZN3oO3M+WBr6CMMfX6PjaHhx3HqthyqIIthyo5frJp0Pskl0lYPiudixfnkJUSTYfDQ4fd/enS7qa9a9lqc/UEVrqztAQxyJT2ZpY2nmR+S3XE5QTQPcmXQH50IgWmRKwqLUaPk9mWWuZYasltb0IWYdmFS66gNjaJhqRUWlLTsCenoNaqUClkaFRy1IpQynTovgx113MalRyFXIpUIgmN8YOh65THG6Cmuoqf33dV90dMiNsJzi5OFbfKRd9BUJ0dLWkGg1YlJyslhszkaLJSoslOiWHa5Dhy080DTi0eaXw2Ow0bdtCy6zBtB/KxHiqMqE63P6QadShVOD0JbVoi2vQk5ImxHG+oRjAZWL5iOQqpDNEfIOjzIfr8BLtufqcLX0cnvvZOvO02vO2d+NpteDs68VptuJtacdU3426yDGmWXpBIMC+bi2vxIl4VTLyzv7LfCFVmcjQ3nD+Da86bRk6aedCfveNoFb94fgvbjw68PkYQ4Po1M/jJrecyOXl00nvtFTUU/uYZTj7/Zp9tGQx5meR+53Ym3Xw5UtXAZnBHk2BQpLHNTnVTO9VNHVQ3dVDT2EFNcwfN7Q6stlB/wHZ7ZBGsCQaOJOhnSnszM1vryba1EO/sRB3wDUgMikCLSsf+2DQ+Ss3DoQg5DUslAtEGNZOSTMzOTuDc2ZM4f0Em+kEauA0WV5OFhg+2UbduCw0fbe/XYC0SOmVKtidmsiU5m1bVyJqwCaLIJFsr8yzVzGupIdY98GiVRCHHkDuZqKlZ6CanItNrkek0yLRq5DoNUm3ovt/hwtPShqelDXf3srkNV30zHYVlBD2Db7cij9ITPXcqprnTiJ47lajp2ajizSijo3q8Esa7aBsvnA3HSQwGqfzvuxz90eO9uldLNWoy77iK3O/chm5SKg2tnRwtbWR3fg1bDldwsKieQH9uUH1g0qu4cFE2Fy/O4fwFmQN2QReDQeq3HaDsf+toevtj/BGm14uAPT2djrw8bHm5uNLTESQS1E2NRB/Px3j8OMqKyoj3Q5+TQcqVa0i5YjUx58xCMswTa6WlpeTk5HQ/nBC3E5xdfJ7EbZRWSXKsgeRYAylxoWWy2UBmsonMlBgSY3RnjeHGZwkGAthOlNN2IJ/W/cdpO1iAx2Il4PYQdHvwuzyhiF3XOUGqUmLIyyRqWhZRXTP1xmnZaDOSz0hPG+6LYtDvx91owV5Ri/1kDfbyajrLqunIL8FWVDGg3nhyg4746y/lUM4Mnj3cSHld/xeSWVkJXL1qGpcsziE33Tyo//NtRyr51b+2su1IZCL38uW5/Oz2lUybNLj06IHSWVZFwWNPU/Hvd8K6UnYTv2oRuQ/eQdKFy8dV6rHXF6C42kL+ySaOlzeRf7KZ8ro2altseH2Rz35P8ClqpQyTXk2SWU9mcjQzMuOZMTkOs1GL2agl1qhBJpFgd7hoLarEWlhGw/58rCdO4qtpQGhtQ263Iw34BxXV9AsCNVoTexInszctF0O0jrQ4I7kZZubkJHLhomxS4yK/vozWYD3g8dKy/QB16zZT995m7CdrhvR+okTAOWsmNYuWUBGf0hPxsXTdhv37LYqk2a3Ma6lmelsDafa2iNPERxOJQk70/OnELp1LzIIZmOZOQzc5td/z83gWbaIo4vGFstICwSDBoEggKCLryn5TyKTIZdJR6WE+no/TZ/E7XRQ9/gKFv/5Hr5P2QUEgP2kSbyfkUKUfnJHmqVyzahp3Xz6fRdNTkQ3Q/E0URayHCqh6+X2qXvkAZ01DxNvKo/RM/+nXybzjKhSmKIKBAJbdh6l9eyO172zEXhb5RHrMotmkXLGalCtXE5WbOaC/YaBMiNsJzmpOFbc/0MxGLdPglcrwSGR4pTLcUhlWpQarUoNTpsApU+CQK3DJ5DhlClxSeShkNWz7Azq1Ap1GiUGjRKdR9CxNOjUxUerTzDpiojTEGNQkmvXoNeM3IjUaiKKIo6qOlh0HQ5HVtg48lvbT2ip4rR2I/gCiKEJXerkYDOLxhFwE1TptyJxKqUCqVqKIMaE0G0P9ZuNiQhHfjGR0GSmoEmMHPFsY8HrpLKnEeriwqx7rUL+GR90kXXIu/huu4j8VDt7adiKiQWJafBQXnJPF6vmZzMtNInkANdPNVgf/fP8QL35whJP11vD7ZNbzy7tXc+P5MyN6z6HSUVROwa+epup/6xB76RMqyGSkX3cRuQ/eQfScqaOyX33hdPvYV1jLweL6nnZbRVWWMasXHVG60uj1PjcGb/fNhc7vQePzovF70fh9qAI+VAE/yoAfRdAPIp8RlKFru3DKw1BqNEgFCVKp0DN4VnallQmA2J3E3L3wBwh4vAS9PkR/KANjWGtBNGrks6ZivPFKsr68hvQEI5JhmkQZi8G6KIrYik5St24z9eu20LLzUJ+TR/1hmDKJ7G/cxORbv4TcoEMURewuL60dTlranbS0O2huc9BstdNkddBsDd1v7ro/mJZ0Wp+H3PYm8qyN5FkbSXB1Dnr/h4Ii2kjs0jnELp0b8laYN31QWSOj4Spud3mxdP1/WDqcZ9xvt7uxd3mB9NycoWUk5zGtSk6UTkWUVkWUTkl8tI4ks4FEs45ks4HJySZyUs1EGwb/t413cevx+mlss1PT1EFNs43alg6ay2oxvvUO6UcPI+njvHTCGM+HqVPJj04MO94UhN5PazMz4/nD/ReybObA+0O355eEBO3L67GXVw9oW4laRd6Dt5P33a8iUchp/GQXtW9/Qt17myM2U5Mo5MSvXhwStJevGrS3yGCYELcTnNWcKm7/xCRiGFh6rlcipV2hpl2p7lpqeh5bVDqkqUnMmJPJkpnpZCSaQvVScikqRZdlujJkma7ueqxSyEZllvPzgrO+ieat+2neso+mLXvpLKkctc+WKBVETc3COCMH44wcorqW6sS4AUVLPW3tNH68i5q3Pqb+/S39pggmXXoeaQ9+lfctAZ5fd5gTVb0bJ32WOJOWOTmJ5KTGdE2MaDAZ1Lg9PlptLtpsTmqbbewtrKWsNnJTiIVTk/naFQv48sqpqEbAPKo9v4T8R/9G9asf9HoVl6qUZN51LXnf++qY1tNaO13szq9hx9Eqdh6v5lBxw4gK2e6IpV6jRK389LwSas0Quq9WyJFKQ6JQJpUglQhIJaGlTCpBEAREMSQNg0ERUQx5C7S0OymutlDZYKXe0okYFNH7PCQ4baGby0a8s5MorwuD143e50Y5gLqrsw2JQo4+J4PE85eSede1ROWNXPRgPAzWPW3tNHy0g7r3NlP/wbZBtTaCUAZK5l3XMuWbN6NNT454O58/0CN0u0VvY6udyoZ2KhqsVDRYqW5s77NnZ7TbQZ61kTS7lWRHO0mOjoiNqSKlU6ujIz4RT2oKQmYGmrws9FlpGA0hZ+0onQqTXoVRr8aoUw0ocjbQ74HPH6DT2T2B8KlAtbQ7aDnlvqVrgsHS7sAzTrJFYo0actLMzMpKYH5uEvNzk8lMjo5oTDQcvxe7y0u73U2nw0OHo3vpodMZWjpd3h7/FF8giK/HXyXYZQ7qw+Hy0un0hpaurqXTg8/f+zUg2d7ORdUFLGyuQtqHy0CzSseh2FSOJmYQPX8GnS4vBRXhr//RBjWPfPU87rhk7oDadNlKKqh6ZT3VL6+no7As4u26EWQysu6+lvSbLqP9yAkaN+yk4eNdEfdglkfpSbrkXFKvXEPiBcuRG8amz/yEuJ3grGao4jYSXFIZLWo9brOZ+GmZzFw+i5zls4mamoXCODinyS8qAY+Xpk27Q6ZTm0dXzEaKMsYYErozpxA9dxrR86ZhyJ0ckXlJwO2hYcMOyp99jbp1W/qMMiVdeh4zHv4GZRoTr27M543NBTRZw5s8jRYxBjW3XjyH2y6eQ3bq0FOprEdOkP/o36h5oxenSULOqNn33kDed+8Y1ZndbhwuL5sPVbDx4El2Hq0mv6JpyMFBhVxKSqyBtPgo0uKNpCVEkRijJ9qgJsagxmRQ9/QXHO56+ROVLby5tZB3Pz6Ku6CYTJuFJEcHCU4b8a7OiFuznPUIAsoYI4a8TOJXLiT12oswTc/pf7thYjyI21MJ+ny07DxE7bubqHtn46DSlwWphJQvryXvO7djXjR7WPbL5w9Q22yjsLKZXz6/laNl4WsZT41uaX2eHqGb5OxA7/WgDPhQBvwog6GMAmXAjyrgxyeRYpOr6FQo6ZQrsctVdMqVdCpUNKv1VA/CiVUhl6JRylGr5GiUcrSq0H1FVwqvAAhdhm3BYJC21lYEQSA21oxMKkUQBNzeUHcFR1cktXs5XoTqcGHUqVg2K51V8yaxat5kclJjwk4eR/p7CQSCVDd1UFxtobjaQkl1K8U1FkqqLbS0D732fChEux2cX1vEivoyVMG+W5m1q7QciEnhYGwqpVGxiEJIwEokAnddPp+f3b4y4ki4vbKW6lc/oOrl9VgPFw5u5wWB2KVzUSfH07rnKI6quog31aQkkHzFalKvXEPsivlIFWNviDYhbic4qxkNcdsXqqQ4jFOzTq8NnZGDXD82s1XjEb/DSf2H26l5cwP167bgs42N1f1QkKqUGGflEj1vWo+BSNS0rD5P4vaKGkqffpnyZ1/H29be63rJl53HjIfvI2r2VLYfreL1zQV8uLeMupbBRVn6IsmkJN6o4Hi1o99o5MKpydy0dhZXnzdtwOlmrQeOk//Lp6h7d1Ov68i0GrK/cSN5D96BKm7oQro//H4/7e3tdHZ2Yne6abE6aG4PpU721kapP9RKGfqusgOduivyqpCNWuukbuwuL80NrXQ2W5E6nWj8PpQDNFE6WxGkEiQyGRKlAplWjcJkQBljQqYb296fwWCQlpZQVCY2NnbY0p2HC7/dibu5FXdTK95BRHRlWjW6zDTUibHDWg/fYOmkuMaCxxte5GnVClISYrB7obzBTm1LJ3UtNuotndS32Giy2sdFF4MJwpNk1nPJkhwuX5bLitkZKOSh0qDexK3PH2B3fg3rdhaz5VAlJTWWcT0BYI7SMD81ihW1JcRv2wZ9XPu76ZCrOGJOQTFlMjfcupaZ585Gk5YUtmzKZ3dgPVRI675jXbfjEQtRQSoNW6YgUSkIugc26WmckdMjaE1zp407P5gJcTvBWc2p4vbZjGXEBCQE3F6CHi8Bry/khDgG3zNdVjqmWbmhRuuzcjHNykWTmjjuTgAjhdvSRsMH26h56xMaPtzeZ3uXzyI36EKuk7HRKM2m026K6CgkilCdtNDVvsTr9XLw4EEA5syYiUyQEPR48dsdeFq7anZbrLgamnFU1mGvrBuSQ2Y3EoUc44ycHqdM0+w8jDNykGlPH1T77A5K//YSJ377LB5L+NpXgOTLVzHj4fuInjsNURQpqGjmo71lbDxwkkPF9XQ4PAPeR61KzsKpKZw3bxJr52dQeSJ0nGbMW8LLGwt5dt0hGix917Qp5FIuXpzDTWtnsnZhVs9gJBwtuw+T/8unaPhgW6/ryPRaptx/C1O+dSsq8+i4MjudLgqLS7HZ3fgD3a1zBvYeoZIE2agbrfSG3+vD1ekk4PIgDfiHtQ9q7whdvz1AEEKfKAi9C7d+D0/vK/T8/0hCadeCRIIglSDIZAgyKRK5bFyZjH0WURRxuUKpfGq1elyf+8VAIGTq53QRcHsGeM0UkKqVyPQhv4Ph+DuDQRGbw4PN6YFTvteiGHrN6fFhjtKQnhRLenraad8/ry9AQ2tI8Na1dFJvsfXcr+u632DpHJJj7XhFKZf2mK91+3qYjVqi9Sr0WmXID0StRK9RdHmDhJZKhQyJICCVSpAIAoFgKE3XHwji9vpDab1dLWasNhcNrZ00WOzUW2xUN3Vwst4acemGNBggzmUnydlBhs/BdJOSDL2caEmAtpo6UMhJmDmNRpWew7YAG+sdnBQVuGRjHw0E0KjkpMQaSI2PIqXL/DM1LoqUOAM5aWZSYg09v4GAx0vlf97hxB+ex3aifECfI5HL0U1OQZeVjj47HX+ng9Z9x+goKOvVryIc6uR4lGYT7UeLBvT5n0WQSIhdNo/kK1aTcsVq9JlpQ3q/kWZC3E5wVnOquC0pKSE7O/u014OBAPby6lAPu6NFWI8WYz1yAlcvNu4jicIUhXHWFEyz87qEbx6GvMzPRU87URSxHjlB/ftbqF+/DcueIxEPkORReuJWzCdu5TmhXoazcgdk9DTQ9D8xGMTdZMFWdJL24yU9t4780qG3KxIEdJlpmGblYpyZg3FmLqZZU9BmpOB3OCl96n+c+N1zEYvcboJBkYoGK4eKGzhW3khjqz3Us87mpM3mQq2QEx0VSnM1R2mYkmZmyYw0ZmTG99SHhTtOPn+A93eV8I93DrD5UEW/f545SsM1q6Zz0wUzmZuT2FPr2bRpDwW//jtNG3f3uq3caCD3W7cy5f5bUJhG3tVcFEWOlTfxxqbjpESJxOiVpMZHIZVIupRT34NwqVRAJpF01bpKxkUUNOgPEPD6EP0BhJG8fkoEBKkUiVSCIJUiSCWEmw3w+0Opd7Ih9hv9vHK2Hp+g3x9qo+YP0GdB7GcRCE06yGVD7kELofOeu6tfcgix57ricHux2lykJpqZMyN3QKI6EAjS3O4IZW9YHbS0O2iyfvrY0u7AanfT3ummvdOF1e4eExd0jUpOrFGL2aghtkuomruEa2yY+zq1YkwmUXz+AJUN7T0O8geK6jlYVE9jaycxbgfZHS1k2VrI7mgmwWlDNohzV6dMSYtaR5U+moPmVIqN8QT7mNzSquQYdCoMmpCYj9Kp0KoVKOVS5NKQd4pCJkUmk/TcV8ql6DTK04S/Xq1Aq1ag1yiJNoSusQM5xodLGvj6797FeriQuS01zGupIdE1/FlZpyJRyJHpNAQ8XgKOgZu6daOKN5Nw/hISzl9K0kUrUMWOzmT0cDAhbic4q+lP3PaG19pBy+4jNHywjfoPtkXsJOcXJLilMtR+X5/GAZEiyGRE5U3GeIrgNc6aMmoRraHgrG3EsvswDRt2Ur9+K6765oi3NS+ZQ8qVa0hYvXjAYvazDFdtmxgM4qiso/14MdZjxVgPn8B6qHBAtSe9IdNriZ43jZgFMzDOmEJHYRllz7yKt7W9123Cidyh0N9xKq628Ox7B3nlk+MR1S7lpZm5I9pP+tbNdPZR56OINpL34O1kf+MmFFH6of0REVBRb+XVTfm8/MlxiqosLJ8Wz61rsshMjkauUIJCD5LTv28CfOpsrlagUSnGhTFc0B/A227D3dZBoNMxYlkoMq26q0eoBplOg1TRf3lHMBjEZgsN0gwGw7hLux1rPg/HRxTFUH/w9lAv8IA78uwRQSpBYTSgMBmQG3RDirK3d7qoabbh9QdCv4GAF3x2HC4PNc026m0C37hmGRrVyJUluTw+rJ1ubA43Lo8fh9uLy+3D6fHjdHtxun14fCEnf1EMOX+LIni9XoqLixGB7OwcZDIZQVFEpZCh6xJOuq5b932NSk6MQTOif89I4Xc4ady0h/r3t1Lz/hY8IxRIcMiV1GRNwbd4AbHnLWLK5HhyUs2YjRr0GuWA2+UMN063j0df2MKfXttzepaAKJLk7OA8ZzNrPC0EyyrHbB8/i1StIm7FfBLOX0ri2qVETc8Z1xknfTEhbic4qxmsuP0sttJKGj7cTv0H22jevDeii3i11khpVBxOmZwEVyfJjnbinZ3DInrVyfGh6N+sXKKmZqLPmYQhJ2PMDKwCXi/WI0VYdh/Gsuswlt1HBtQrTZBKiVu5kLSr1pJ8xWo0SfHDtm8jbdzitrR1Cd0C2g4W0HaocMC2+uFQpySgiouhs6SiT4fl4RK5kR4nnz/Ax/vL+e9Hx1i3q/iMiIU0GGBRUyUX1hSS5Ox9BloZG03ed+8g+94bRrwGvanNzhtbCnll43H2FZ4+GXH3RVM4d0Yi6QlGUEaBNDRglEklRGmVGLQqDNqxHwx1IwYCeDs68bR24LN1MlLZxnKDtkd8SOQDH0R/HsTbSPJ5PD4Bjxdvuy3Uo9w1AKErkaAw6pEbDcijdIOazPQHgtRbOmlp7zLd83vA28nJ+jY2Hqlna4GFv3znElbPH9n+mQNlvBmLjQS20krq12+lfv02mrfsJeiNvBf8cCA3Gki5fBWpV19A4tplY54Nt+ngSe774/tUhGnBJwjwtSsX8Is7V6HXKLGVVlL79idYDxXSWVZFZ2kVvo7RaX+lNJuIXjCDmAUziDt3AbFL5g6q3dV4ZELcTnBWM1zi9lT8Thd16zZT8eK7NHy4HdHft+udU65kR/wktiRl06rUkuxsJ9VuJdUeWqY5rKj9w3OyV8ZGY8jJQJ+TgT4rHXVyPOrEWNSJsagSY1FGGwc9Qy4Gg7jqm0Mn2LJq7F3LzrIqOosrBjRrDyDVqElYs5iUK9eQcvkqlDGmQe1Xf4zF4MHbbsN6uJC2Q4W0HSoIXZhKKgdUC3MGEgn0sX386sXkfvs2ki5aMaj/48EcJ2unize3FPKfj45y5GgFyxrLWVtzghhP72Lco9cT89XrWfvze1CNYBsAm8PDu9uLeGXjcTYdqujVFOqXX5nL1PRo4k06lFHxmPRqorRKtGOUwhcOMRjE12HH09aOt70z4ghtEAGkEiTBYL/bCIKA3KBDbjKgMOqHnDb6eRRvw8nn/fgEvD7cjS14LFbEAaQuC4KAPEqHwhSFPEqPRDYwoWt3eqhu6sDl8YGrlaY2OwVVrfzsxcMA3Hj+TP7vG2sxR42toVg3n0dx67PZadqyl8aPd1H/4XbsZVUDfg+JOZpqpY6TQTkOmQKnLFRXq/Z7iXXZiXPbifPYMbmdAyrBUMZGk/ONm8i+94ZRMSo8ldYOJw/97WP+89HRsK9PzYjlr9+9lEXTUk973l5Z25NF2LhxT8RtdwaEVEL03GnEn3cOMV2CVpOWNG6ugcPNhLid4KxmJMTtqbhb2qh+9QMq/vMurXuO9Lv+CWM8m5JzOBKT8mk9iCgS43aQ4Wznwjg5c2VefCUncVQM/29NIpejio9BaTYhUSmRKhVIlAqkKkXP/aDPj89mx9/pwGez4+t0hO532An6hibCdZNTSbpkJUmXnEv8uQtHZRZwvAwe/C43tsIyrEeLaD9WHFoeLcZr7RjWz9HnZJDzzVuYdNNlA6pdHcxxEkWR1n3HKH/mVSr+t45gH8ZgzSodH6ZNZWf8ZPxSKXEmLVetnMZ1a6azMC95WC6iHq+fD/eW8crG43ywuxS3t++JJ4A/f30x09LNmKI05E6ZMuR9GC5EUcRvd+JpteJts0U8MeKVSBFkUuTBIPQz8QYg12lQmk3IjYYBC4m++LyLt6HyRTk+YjCIp7Udd5OFwAAdVwVBQKbXojAZUBgNSOSRTbgEgyJNbXbqa6tosXZSVtfO957b3/N6jEHNb79xATecP2PMB+/j5fo0FIKBAG0H8mnYsIPGj3dh2X2k30n/U1HGGIldNo/YZfPwZWfy1wMNvLizNKI5PFkwwFyTnNvnJDFH6qHhnU9oO5Df73YSpYJJt1xB7rdvI2pqVsT7OhhEUeS1zQV8988fhi3pUcilPHTzch68YSkKuZSA20Pztv3Uf7idhg+2YSs6OfgPFwRUcTFIFHKcdU1hJ8hTvryWRf98bFTKgsYLE+J2grOakRa3p9JZVkXFv9+m/LnX+60vbVVq2JScw/bErDN66EkkAteums73rpiD2WoJiaAjJ0LL4yXD4uQ7Wsij9JgXzQoZDlxyLoYpk0d9MDGeBw+iKOKqa6LtUAGt+4/Tuu84bfuPD4vglSjkJF++iklfuZKkC5f3m1o6kOPkbbdR+d/3KPvHK7QfK+7zfWu0RtanTeNAbFqvBh8ZiUauXTWd61ZPZ+qkgfWyDQSCbD9axSsb83lra2FErtExBjVXrZzGtWumE6fy4Pf7kclkI3p+iJSA2xNy8W5tjyh9TwTcMjlBmQy1ICJxu/tNVZbIZShjjCjNphGbYPqiiLfB8kU7PqIo4ut04G6y4OsYXLs3ebfQjTBVvri4hAZLB/kVltPEbTer50/mz9++hElJI5M1FAnj+frUF/bKWho37KTh4500bdwzoGuWIJMRu3QuSRevIOmiFURNz8HS4eRX/9rGP9cdxOcfXIZTQrSOb1x9DrfOScLy/mZq3tiAZffhfrdLvHA5ud+5nYQ1S4Z9fFLd1MEDj7/Ph3vLwr6+ZEYqf33wUlICbuq7orNNm/cOKDqrjDESd+5CtJNS0CTHo06OQ5OSgCY5HolCzv57H6H2nY1nbCfVqJn/l58y+bYvj/kkz2gzIW4nOKsZTXHbTdDvp+69zZQ+/TKNG3b0ua5XImV3/CQ2JudQpzv9AisIcPV50/jhLSvIy4jtee/OkkqsXWK3I78UW0kljorasP3JRhtDXibmxbOJXTIH8+I5GHInj3k7jrNt8CAGg3QUltG0ZR/Nm/fSvHUfnj6MpSJBqlFhXjyH+JULiV02D31WOnKjHplW03NRczqdbHh/PXh9rFi0BLkIAZcbv9P96dLhpH79NqpeWd9v+6bYZfPIfPCr7NfH8dLHx/l4f3lE/WJzUmM4b+4kVs6dxIrZGWF76IqiyKGSBl755DivbS6gsbX/wbJWJeeyZblct3o6q+dPRt4VpSwtLR1zcRsMBPC2deCxWPFH6F7pksrxymSoZRKUHjeiv//fv8KoD0Vph2jgEwlfNPE2UL7Ix8fvdOFutOBpG/wknlyvQWGK6lPolpaW4vP5abI6ueHXn4Sd+FIrZfzktpXcf82iMamrP1uuTz6bnabNe2j4eBeNG3bSWVo5oO1VCbEhMXvxuSSsWdITJfQHgjzz7gF+8c8ttNvDX1PkMgmXLc0hN9pLQ7uHjYV2qpt6/+7Em7R8/+blfPXSuQSaLdS8uYHq1z6kZcfBPvcxanoOed+9g4wbLx2Uz8CpBAJBnn57Pw8/uwmH+/RJSkEMkhN08cA0Ezk2C5Zdh3BUDsCYUhCIWTCDxItCkwPR86efUacuiiJVL7/PoW89hru59Yy3MM3OY+nLf8QwZfKg/r6znQlxO8FZzViI21PpLK+m7B+vcPKfb/TZ3gWgyBjPJ8lTOGJORhQ+vcgKAnxpxVR++JXlTJ8c3mgp4PXiqKils7QKW0klnSUVOCrrcDW04GpowdPSNmx/k0yrQZeVhj4rHX1WWqjPWmYqxlm5KKONw/Y5w8XZMnjoDTEYpD2/hOYt+2javJfmrfuHLZVZkEqR6bUEvb6QWB3iOVeQSkm+7DxyH7yduGXzT3utobWTVzfm8+qmAg4V10f2fgLMyU5k5dxJnDd3EolmPW9tLeSVjfmU1fb/nZZJJVxwThbXrp7OJYtz0KrPNBIZK3ErBoP4bHY8rZHX0bqlMlwyOUqZFI3fCxFkcUiVilAf6BhjqAf0KPFFFm+RMHF8QlkKrkYL3tZ2hjLe6y2ie+pvWxedwIN//pC3tp4I+x6zshJ46ruXMndK0qD3YzCM1+uTKIpYDxdS9/4WGjfsDKUaD2ACXSKXY146h8S1y0i8YBmm2XlnTKjtOFbFd578kPXu1KAAAIDLSURBVOMnm8K+h06t4P5rFnHPlxagU0p6jtOq1Wv4YF8Ff3xpF0fLendbTo2P4ie3nsuNa2cik0poP15M0eMvUPnf9/rMitGkJpL33TvI/OrVZ/Slj4SCimbu/d177D8REqwan4c0u5WsjhayOlrIdbYh9wzMo0RpNpF4wTISL1pB4tplfbbdsVfUsP/eR2j4KHxwZcq3bmX2b7475sZaY8mEuJ3grGasxW03AY+X6tc+oPhPL9K2/3if61qUWjYl57AjMfOMlOUrlufyo6+sYGZWwoA+P+jz4W5qxdXQjKuhBV9HJwGPj4DbQ9DjPW0pkcuRG7TI9NqQwYxBh1wfeqxJSUAVbz6rUljG6+BhsAQDAdqPFdO0eW+X2N2Hv9MxpvskUSrQTU7FNCcPbXoySrMJVawJZWw0qtholF03mVoFQGlNK69uyueVjfmU1pw5qzxUls1M47rVM/jSuXnE9GMcM5ritruO1m2x4rXa+jQI68YnkeCQKRGkEvSiH0kExm2CREBhikJpNiHTacbk9zoh3vpm4vh8SsDrDUVyB2g+FY5PhW4U5ZUVZ/y21+0s5oEn1lNvOdNxViIRuO+qc/jZ7SvDToSNBOPp+uR3uWnauJu69zZTt27zgNr3AURNzQr1PV27jLgV85HrtGHX63R6+NHTn/Dse+EjqUq5lLuvmM/3blpGrDH0HuGOkyiKbDxwkj+8tJMthyt73a+c1Bh+dsd5fGlFHhKJgKuxhdKn/kfpU//rMytKGWMk54GvkPONmyKauHe5PDz++JtseGkjSbY2Uhwh09C+DBZ7RRCIWTiTpItWkHjRCqLnTevXRTzo91P0+Ascf/jPYTOrlLHRLHrhNyRffO7A9+dzxoS4neCsZryI21Ox7D1K8Z/+TfWrH/ZpuuCRSNnTS8rypUun8KOvrGBOTuJI7+5Zz3gaPIwEQb+ftkOFNG/eQ9PmvbTsOITfMYiL6Sgg02pQJ8WhzUhGm56ENj0Zi0rLtgYHbxZZKHEETstaGAizshK4dvV0rlk1jdS4yI20RlrciqJIwOnC2WLFZ7VBBNGPoCDglMkJSqRoBBGZxxNRZFemVaM0m1CYoobVHOqzZGRkUFVVxebNm1m5cmXYdSbE25msW7eO//u//+PIkSPY7aFU+m3btrF06dKJ4wMEfX7cTRbcLW2IgSE4y3fRLAvi83pRajVMmTa153mbw8PPnt3EP97ZH/ZnlRYfxZ+/cwlrF46s0RCM/fXJWd9E/ftbqXtvE42f7O633ORUlGYTCWuWkLB2KYnnL0WT0v+k+/Yjldz923epbGgP+/q1q6bzy7tXkxZ/+jm8v+N0oKiOX72wtdfaVoDZ2Qn8/M5VPf+vfqeLihffofjxF7AVV/S6nUyrIetr15H51avxO5yhjLj65p7MOFdDCy1lNThLK5EHIjfS+izK2GgSL1hG0kUrSFi7FJW59+jsZ2ndf4x9d/8M65HwmQnJl69i4dM/R504ME+LzysT4naCs5rxKG67cdY3Ufb3Vyh7+uWwNRGncsIYz8YwKcsXL87moVtWsCAveaR396xlrAcPo03Q78d6rJimTXuw7DlC28ECnNUNEUUJx5qARIJFraNBpadRY6BRbaBRY6BJo8cmV4XylMOQHGvg4sXZrJo3mQV5ySSZ9RFHK0dC3AZ8fpxtHXjaO8HhRIjg2IuARyojKEhQCkGkvsgGSRK5DGV0FIoYIzLN6Hy3exO3W7ZsYcuWLcyePZvLL788rLgNBoN89NFHHDhwgP3793PgwAEaGkI9sQ8fPszs2bNH5W8YbTZt2sSaNWsQRZFJkyaRlJSE3+/nqaeeYvbs2RPi9hSC/gCellbcTa0EI6gl740mfDgtrThLqvC+sTnUdu6K1egmh1qt7Cmo4Ru/X0dhZUvY7a9dNZ3H7llDcuzI9Y8fi+uT29JGzesfUfXS+zRvPxBxOYpEISd26VwS1i4jce3SsKnGveHy+PjZs5v46xt7w37c9Mlx/PGbF7J8dkb47SM8TjuPV/Pws5vYeaz3XvPnL8jk1/eez7Qu80IxGKR+/VYKf/MPWnYeiujvGQ60GcnELp1L7NK5mJfMxTgjZ8BeCJ5WK8d/8VdK//LfsI766qQ45v/5p6R86fyzKuNupBlLcTu0JnsTTDDO0STFM/Pn9zPtR/dQ/er6UMpyLxb2ee1N5LU3nZGyvH53Ket3l7JsZhrfvn4JF56TjUQycQL7PBD0+UKtmLraMYXuh5b+7ue7bu6WNtyNFtyNFlwNLcPeXmi0kAaDxDtsxDts0Hq6wYZTKg8JXo2BJrX+tPt1LTaeefcgz7wbSnOLM2mZnZ3A7OxEZmcnMicngfQE44hc3EVRxOcP4Oyw94hZWVfLrEg+zS+REBAkyMUgqghn/QWJBEW0AWW0EZleO+qDlszMTFQqFRrN6SnfW7Zs4ec//zm33norl19+edhtbTYbF1988Wjs5rjiqaeeQhRF7rvvPv785z+fFtme4HQkMinqxDhUcTG4LVbcjRaCfUz2CBIJiGKvdbsi0LxtP83b9nPoO7/GOCOHlCvXkHPlGnb9/S4ef2UXv35xO17f6UL61U35rNtVzPdvWsb91yxCrRy9mvXhxtdpp/adjVS99D4NG3ZG3KpHl5lG8qUrSbxgGXErFgyqBnVfYS13/eYdSsKUoGhVcn5+5yq+duWCYTH0WjojjY+fuJVP9pfz8LObOVzacMY6H+8vZ+PBk9x+0Wy+f9F0FA0N2E/WYJyVS8Djo6OghIBrYDWx/SFRyDHOyg2J2SVzMC+diyYpvIdKJNhKKih+4l+cfOGt8NF2QSD76zcy61ff/kK1+DkbmBC3E3whkCoVTLrlSjJuvoLWvUcp/tOLVL8WPmXZ7HFw7cnDXFF5jN3xk9iUPIU6nZEdx6rZcaya3HQz37p2MdevmYFSMfETGq8E3B46SyvpOFGO7cRJ7CdrcDeHIhXu5la8re0EIqitHK+IgoCoUhIUQeLxIBmGLBxNwMfkzlYmd54+QAoCbUotTRo9jWoDFrWOlhYdJ6pr2LZLj1sWGpAadSryMmJJiNERH60joeuWHStBq5QikUrxdUWJRFFEFEOD4u4BczAo4vUH8Hj8+F1ugi43gteL1OdDEfAjEPlFq/toCIAsGERGBFF1ARQGPYoYIwqjfkxdyDduPLOtRKRIJBJmz57N/PnzT7t93iksLAT4Qgr7wSJIpajjzahio0O9chtbCHjONALqjlgJUgkShZygx9tn7W778RLaj5eQ/8un0KQkcN6Fy1n5pVk8eqyNjUWnmxs53T4eeW4z/1x3iMfuOZ8vn5t31kTAAm4P9R9so+qlddS9tzmia4ogkWBeOpfky84j+bLzhtS+z+P186t/beUPL+8K65S/dGYa//j+5UxOjjz9NhIEQeD8hVmsWZDJW9tO8It/bqGptJoUu5Ukp40kRwdJzg4St77Cju/1325toDg0WuLnTSN10QyMs3IxzcrFMGXSkB2YRVGkedt+iv74PHXvbe414h41PYdznvkl5kWzh/R5E4wMEyPzCb5QCIKAedFszItmM+f336fs6Zcp+/srYVOWlcEAKxvKWNlQRlFUHFuTsjkUm0pRlYV7fvcej/xzM1//8kLuuGRuv4Y6E4w8nrZ2WrYfCLX32bqf9qNFYVOIPi8IoojgciMBvIKEwugkiozx1Guj0Pk9xLgdxLgdmHuWduTi4I6HhNCkj9njYJr1TOdMu0yBRaWjRa2j7YgGm0LFMYWaHXIlNoWa79y/hozUGMwmPcfKm5CIIlIxiFQUkQaDSMUgElFEJgZQBALIgwGGGr+JdKgoSCXIDXoURj3yKB0S2dl/WTQYDBw+3H/vyc8bLleoxdPnvSxiJBAkkpAxndmEt60DV2NL2MiaGAgScHkQBAG5QYvg7IR+avidtY2UP/sa8Bo3SaVcn5PJRwEdB3RxVOlNPWVA1U0d3Pzz11k6M43f33cBs7PHp99FwOOlYcMOql9ZT+27myIyG5QbdCRetILky84j6cLlKGOG3vf3SGkDd/3mHfJPnmlKpZRL+fmdq7jvqnOQjkD7JVdDM20HC2g7WED0gXx+djAfd0P41PPhxKLWoV2+kIvuv56ElYOLcocj6PNR/dqHFP3xedoOFvS6nlSlZPrD95H34O1DFtITjBwTNbcTDJnxXHMbCQGPN5Sy/OS/+zypAXTKlexIyGRrUhYt6lAaikIu5fJludx+yRxWzpn0hUxZHquaW0d1PTVvbKD69Q+x7D4y5DY7g0Iuw6XRYZHIsUiUdChU2BRq3FIZXqkUn0RKQJAgFcWQaAsGkAaDBAWBgESCXwilzHanzgYECTqfm1RHO2l2Kyl2K8pg5DVxXomU49FJHIhN41hMck9UVS4RWJioZ2G0jKnyAKleB0J9PZ3FlXSWVRGMoOXNYEl+8vtoc9JRm2NIGLJsHTpSlQJFlB650YBMqx7zPtHhCFdz21d0Jz09ncrKyl5f7952LGtub7vtNv71r3/x8MMP881vfpNHH32Ud999l9raWhYvXsyWLVt61i0qKuKPf/wjGzdupL6+HoVCwfTp07ntttu44447kJ7iatp9rMJxww038NRTT/XUJDscDp566ineeOMNioqKcLvdpKamcskll/CDH/yAxMQzBdWp/xcxMTH86le/YuvWrTQ3N/PTn/6URx55pGfdjz76iKeffpo9e/bQ2tpKVFQUixYt4tvf/jarVq06470feeSRnjTzZ599lscff5x//etflJeXo9VqWblyJY8++ii5ubm9HtcNGzbwj3/8gz179tDS0kJUVBSTJk3ikksu4a677jrjb4rkGIiiiK+9E1dDM35n7wZITfjw2O2ILg/e1zZR996mflvynYpTJqfMEEtpVCwlUXFU6mPwS6UIAty0dhbfu3EpOWnmiN8vHMNxfQr6fDR+souqVz6g9u1P8HWc6QT9WaQqJcmXnUf6DZeSdNEKpCplv9tEgtNq46//+JCXX9mG3u1A7/MgDQZ7Jg2TzXq+dOEcktMTkOu1yI16NElxaFISkBsNvZ5HejtOQb8f6+FCmrbso2XHQdoO5A/Y5bkvXBotrhgz7phoAuWVpHZG9v2RyOXELJpFwprFJKxeTMzCmREJTlEUcdY20nYgn7YD+bQeyKdt//E+S40EmYz06y5ixs/vR5+ZFvHf9kVmouZ2ggnGkFNTli17jlDy5//0mrKs93m4qKaQi2oKKTAlsDUpmyMxKby+uYDXNxeQnmDkKxfO4paLZg/ITXaCyPG0Wqn873tU/vc9WvcdG743FoRP2zJ13UKtmkLtmhSmKNSJsSjjzZTaA3xQ0sLbxxto8tGrCdOw7JYYJM5lJ83eRqrdymRbK9kdzch6EfKKYIB5lhrmWWoIyGQE5s4i5eoLWHj7FRjMxrDbBAMBnNX12IorsBVX0FlSGVoWV+Cs7b3H4YD/lnCfHRSxOkdOWANIFDJkWg0yjTrUc1ilwAcQAGyuYfucGINmRCe3li5dSnV1NTU1NcTFxZGdnY2/6zyVkpIyYp873LS0tDBv3jxqamrIy8tj6tSpKJWfDvyff/55vva1r+Hz+dBqteTk5NDe3s7u3bvZtWsX7733Hm+++Sayrij7ggULSElJ4cCBA3g8HqZPn05UVOj8m5mZ2fO+J0+e5KKLLqKkpASpVEpaWho6nY6SkhKefPJJXnrpJT7++GNmzpwZdr+3b9/OY489hiAITJ06FaPx0xrzYDDIPffcwzPPPANATEwM06dPp7q6mnXr1rFu3Tp+/etf89BDD4V9b5/Px8UXX8zHH39MTk4OWVlZFBcX88Ybb7Bp0yYOHDjA5MmTT9smEAhw55138sILLwBgNBqZOXMm7e3tHDlyhH379pGWlsZtt902qGOgMBmQG/X4Oh24G1rw9RKhDLg9OEqr6Nx1iKk/+hpRuZk0btxN7dufYC/v3XQIQOP3MbOtnpltob7cPkFCpT6G0qhYTjRVc8Hb21m8dgHfu3n0Oxe4W9po/HgnDR/toG7dFrxt7f1uI8hkJK5dSvoNl5ByxWrket2gP18URRwVtbTsPkz7sWLajxVjOXwCX5OFZODB3jashLoDO6kL85JUrUKTmoA+Kx19djr67IyuZTqS2FA0WQwEaNt/nI49R3sE7VBb4bklMho1Bhq0IRPDZrWeJo2eZrUel+yUllDzphLvtHFOUyXnNFeS4Op9EiHo89Gy/QAt2w9w/OE/I9Np0E1ODbVV7Gqv2N1iUW7QIQYCWA+foO1Afr8Go93IjQayv3YdOffdHJFT9QTjg4nI7QRD5myP3IbDWd9E2dMvU/r0y3ha2vpct12hYkdCJtuSsmhVhS5kggBr5mdy9XnTuHhJDuZBpC37XW7aDuZj2XUYy67DtBeUEXR7CPr8BH1+RL+/574gEdBnZxA1Lev/27vv8Diqc/Hj37N9V1r1Xm3L3dhgg40NxtgGDKb3ACGEkHJDbhKSkHLh/tLLJR2S3NyEBAIkhNBbaKYa29jGuODem3rv23fO749dyZK9klayZEn2+3mefbbNzhyNpNl557znPSSfNoGUaRNIPm0CiSVFfc7bNhiGuufWCIepWraSfQ8/S/lL7/Q6OfzRXAU5JE0pIWnSWJx5WTiy03FkZ0Smc0lxd37xWRJ6n6vU6w/y+Bub+f0za2IW7eiNyaRIctlx2i0oI4jVrLA7EwiGDXyBEIFACF8ghD8YJhRjeg6lwKQUJpPCpBSZZoNz26qZXraf7MMHMMWRfm122Mm95DyKbriE1JlTIwF8cs8/txEM4q2spXXPQRo2bKNpyx7a9h7GU1FNoL6JkMcLcc6X2dFz68pIJ/uontv6Nj+n//CVuNYz0h1+/u7OOSOPV0/Vkrv29D388MNxTwU0knpuzWYzs2bN4sknn2Ts2LFA5BjidDpZvnw5ixcvxmq18tvf/pbPf/7znUHshg0buPnmm9m9ezff//73u/WYwrH7rGtBKZvNxpw5c9i2bRs33HAD999/P3l5eQC0trbyta99jYcffpgJEyawbds2rF16gDrWazabue2223jggQdwu93d2v3jH/+Y733ve4wZM4YHH3yQiy66qPPzTz75JJ/73Odob2/n7bffZtGiRZ3vdfw+rVYrY8aM4dlnn2X69OkAHD58mEsuuYQdO3Zw66238ve//73bz/vf//3f/OxnP8PlcvHHP/6RW2+9tbNH2+/388wzz1BcXMz8+fMB8Pl8nHXWWQPaBxCZ1sVXXU+goblznHxHteT23Ycov+sXQCSAGnPL5Yy/82YsTgeVb6yk4vUV1Cz/cEAZIn6TmfKEFIwxRZy1dB6zLp5D4tgCnPnZmG19z5Ubz/dTRyBZ9+Fm6j/cTO3762jYsD2+bCClyDp/NsU3XUbhdUv6Nb3M0dpLK6l8YyU1yz+k5r0PB/XiYl9MNis6MwVd3wy+gV1wtLgTSDltIslTS0iaOp46dyq/XXOY1/c1ovt5ETgz2clPFo1l6oHdHH7yVXxVQ5/23CFxXCGTvvZpxn3m2h7nEha9k57bk5xSqgj4KnAZUAT4gb3AU8AftdaDMmGmUuom4DPADCAVqAJWAP+rtV4zGNs4Vbjyspnxo7uY9t93Uvr8m+z907+oWf5hzGVTAj4uP7yNSw9vY2taHu/lTWBLWh5vrtvHm+v2YTIpzju9mCvnT+aK+ZN67NENNLVQ9dYH1EaD2cYN2zGC8QVxGmjetofmbXvgqdc6XzfZbSRPm0DO4rPJWTKfzPlnYnE6+r0/hkvr3kPs/9tz7H/0ebzl1X0ub3bYyTh3Flnnzyb7/DmkzpxyXFfOAWoa2/nzC+t48MWPqGvu+1+1MDuZhTPHMHNiLuPz0yjJT6MwOxmrxRzXSVY4bBAKG52BrMmkeg26/fWNlL34Noefeo2qt9f0WKEz7PNT9sJblL3wVrfXlcmEJSkxkqablICyWvFV1uCtqhueNG9x0rNYLDz33HPdeps7/he+853vYBgGv/nNb7jzzju7fW7WrFk88cQTnHXWWdx///3cc8893Xp8e/PII4+wbds25s2bxz//+c/OgBnA7Xbz4IMPsmnTJjZs2MCzzz7LTTfddMw6pk2bxl/+8pduKdFOp5OGhgbuu+8+rFYrzz///DEXDz7xiU9QWVnJ17/+dX7+8593C247BINBHnvssc7AFqCoqIif/vSnXHvttfz73//utnx1dTW//vWvgUhP94033tjtfbvdzic/+clB3QcWl5PEsQUY+dmR6vG1DRA69jsq7PWx76Fn2PfQM6SffToT7ryZBc//AYhUVK58YyWVr6+gZef+Yz4bi90IR4rcbamnactG3vnFHyNvKIUjOwNXYQ4Jhbk4C7Jx5mRiSXBidjmxuByYXU7CZkV4+wEwDKrC72MKhQm2tOM5XEHb/lLa9pfRuvsA/vqmuNrTIXP+mRR94lKKrr8YZ05mvz7bQRsGdWs2RebB/fe7NG3eNaD1DAYjEITy+ANIS6KLtFnTSDvrNNLOjNy7xxcfM8xj/uc0/161m589tpxNe/oO1i1mE3deM5t7P30+KYmR85VZv/4Odas2UPX2aqre+oD6tZvRccxn3l8Z58xkyt13kH/VBSekY0AMDQluh5hS6jLgcaBrROMCZkdvn1NKXaq1ju8oH3sbDuBp4PKj3iqO3m5RSv1Aa/3jgW7jVGW22xhz02WMuekymnfuY++DT3Hgkedjjs0wQWd6VYPNycrcEnak5nDQnc7yjQdZvvEgd//+dc6cnMeV507igtklTMtKpPKVdzn81GtUvrGyXz2S8TD8ARo3bKNxwzZ2/OphzA47WefP7pxDL3nahBFXlTLU7uHws8vY//CzPV5Q6MqWmkzB1RdQdMMlZC+eh9ne95X8eOw6XMfvnlrD48s+xh/s+UtUKVg0ayzXnj+VxWeOY0zu8U2HYzab+lUAxJ6eSskd11Nyx/X4G5ooe+GtPgPdrrRhEGxqIdg0dFOmmGxWTFYrymLGluhGmc2REyCTwuEcvLRgMTpceOGFMdOoy8rKWLt2LXa7nc985jMxPztr1qzO8cXr16/nnHPOiWubzz33HEC3nuCuzGYzV155JRs2bOCdd96JGdx+6lOf6hbYdnj11VfxeDwsWLCgx17xa665hq9//eu8//77hMPhY9Zz+umnM3fu3GM+1/FaU1MT9fX1pKenA/DKK6/g9/spKSk5JrDtyTPPPAMc3z6AyP+zKz8SSNbu3NnrOMf6tR9Tv/ZjPvrKjxlz8+WMu+M6Zv3mHtRv78VTXk3tyvWdt8aPd/bvgprW+Kpq8VXV0rBuS1wfWR3/2mNKn3sGxZ9YStENS3HlD2yaGSMYpGb5Og4/+wZlL7w94B5Jn9WGuzCH1MIczA4bymrFZLWA1oTaPARb2wm1tuOva4w7Dbc3SZPHkbVwDpnnziLtrNNImjg2rnoFSilmT83n1otPZ+bE3Ei2UjCMPxjGHwzhj2Yu+fwh8jOT+OYt53LO9O7jWk1mM1kLZpO1YDYzfvhVgq1t1Lz/EVVvr6b67dUDuihgTUki7cxppJ91GmlnnUb67OkkFOf3ez1i5JHgdggppU4n0jvrAtqA/wHeBZzATcDngUnAK0qp2VrrtgFu6iGOBLbvAg8AFcB04F6gBPiRUqpSa/3XAW7jlJc8uYQzf3MPp//065Q+8zp7//xkj5ORpwW8XHloK1ce2koYRXliCvvd6exPyuBgWxOvLP+AmtpDTG+oxNqPYkHHK+zzR66av7GSjUQmH89dMp+cJeeSc+E5ODIHd7qAeGmtqV/7Mfv/9hwHn/h3n+N7THYbhddcxNhPX03OBfMGrWqh1pr3Nx3kgafW8NqaPb0uO21sFrdecjo3LJpGfmbSoGz/eNnTUo4NdJ9+naq3Vsc95+JAOHIySRiTT+KYfBK63BLH5OMqyuNAWSmhUAiLxYJ7fHG3z3qajm8slxh9pkyZEvP1jz/+GIhMZdQ1rfdo9fWRE/Wysviz3DrWff/99/PQQw/FXKa6urrX9fbV7t27d3emAB+tI43X6/VSX19PVlZWt/d7Gs6TnX0kgGpra+sMbrdtixQ/jBUQ92Qw9kFXHdMCOfOysCe6MN+4lNLn3ox5rAm1trP3wSfZ++CTJE8dz7g7rmPsp66i+BOXUvyJyNRNgeZW6lZvpHbleurXbqZx8y78gxCUHQ9LgovsxWeTe/F55F++cMDBT9gfoOrNVZQ+t4yyF9+Ja/xuhxarnf1JGZQlpFCamEpFYgo33rKI733x4rjnBQ77A3gra/CUVdF+oIzWPYeit4O07D4Y8zs3aUoJ2QvnkLVwDlkLZve7d9rrD/Lyql38c9lm3ly3L+ZURUfbvK+a1VtL+d4dC/n8lWf1OC+v1Z1I/mULyb9sIQC+mnrq120h0NQSmaO+Y976aIAfbGnHCARImjSWtLOmk3bWaSSOKxxxF/fF4JDgdmjdTySwDQFLtNZdLxq+o5TaA/wCmAx8A/hRfzeglDofuCX69GXgGq11R7S0Tin1ErCeSDr0L5RSz2itmwbws4goi9PB2E9dzdhPXU3T1t3s/fOTHHjsBYItsa9NmNEUtTVS1NbIwsq9/dqWMplInj4xMiH5vDOwZ6ZhslhQVgumzpuVYFs7Ldv30bR1D81bd9O8bW9cV2q9FTXsf+Q59j8S6dVInTWN3CXnknvxfDLmzRy0XtBYjHCYulUbKH1uGaXPv4XncEWfn0k7cxoln72e4psuw5Y6eAW7gqEwz763nd89tSbmhPRdXTS7hLtunMviMwc+N+GJ0FOgW7tqQ7+Kg5gddpwFObgKsnHlZ+MqyCFhbEG34PV4Ut3Tk1wcfr7H0iijSnrSyTsl2GuvvcZPf/rTY16fOXMmv//97/u1roSE2GPYmpqagEgAuGrVqj7X4/HEP6KnY92bN/ddhK6n9fbV7qqqKqqq+k67jLX+ntbddRx11xopHWOJU1Pjn1JmMPZBT2xpKcx/8n68lTXs/evT7P3zkz0OJWnevpeN3/w5m/7r1+RduoDimy+n4IpF2JLd5F2ygLxLFnQu662uo2b9dt5+6l12Ll9PWm0NWd5WHMbQXKzzu1w05hfQlFdAQ9EYGouLwGxF1YF6dA0mpVAq0hupFCgi9yaTwmo2Y4lm3lgtJmwBP8k7dpD08WZcH2/B5Ou56nRXOjGBTe5MtiZmsislm0pXUmfRwrF5qTz6nSuZP6O4j7V0Z7bbSBxTQOKYApjffc5rrTW+mnrqtu5m7cuvoxw2Fn/xdlLH9L9InWFoPth6mH8u28yz722npb3/c8k3tfn4xu9e5+F/b+C3X13K/NP7/lkdWemdga4QEtwOEaXUbGBh9OlDRwW2HX5NZIzsFOBrSqn/0Vr3Ny/129H7MPClLoEtAFrrOqXUd4AniIzD/Wx0u2IQpJw2kbN+/13OuO9uDj35Knv//ORxVfANKhO7U7LYk5zFgZRMUmZP5/xzprD4zHEUTMnHaul5DEjWUV9YvtoGmrbsomb5OiqXraLhw819zvvakcK8/b4HMVmtJE+fGBlLM2sqaWdOI2X6pAFPZ2CEwzR9vJOa99dRs3wdNe9/FNfVa3t6CmNuvZJxd1xH6oyep8MYiOqGNh55dSN/eWk95bU9p+XarGZuumA6X71xLtPGRnpcQl4fvqpavJW1+KrqCDQ2E2huI9jcSrClDcMf6Cz4ZQSD6GCIoD+Ar6ISDIMP/u8lLDZrJEXXbEaZVPSxCUwmMIzIyayh0YYR+d3pSBqxEQwR9voiN18geu8n7PUT9kXmoFQWc+fFjyOPLSRNGot70lgy555ByhlTsLoTOtscaG7F8Adw5GRGA9lsbGnHl2bdF5NJDVoRJjF0qqurYwacsdJbByoxMTI+ftKkSezcuXPQ1tux7o6Ky/3p7Yx33QD/8R//wZ/+9KdBXXdPkpIi2SIdAWs8hnIfdHDmZjH9u//JtHv+g/KX32Xvg09S+cbKmOnGOhSi/KV3KH/pHcwuJwVXXUDxTZeSe/F5nRdWndkZFF+6gDsuXUAwFOb593fw7LvbWPnBdlwtLaT5PaT62knze0j3t+MKBrAZYWzhUOe9PXpvKIXfbOm8NducnfNz1zgSqUhIps6ReKT6fakfSnvP4Dlamq+d0+vLmFlXxoSmGixxzi1e7krm4/R8Nqfnsy8pAyNGuu/EonSWnj2BzXurqWlsJyctkdx0NznpiXH34MailMKW7MbidETSjC1mzK74LlhqrSmtaWHttjLWbi/jlQ92cbCyacBt6Wrr/hou+tqj3Lj4NH72xQtHTIaUGPkkuB06V3d5/LdYC2itDaXUY0TSlVOJBMNvxrsBpVQicEH06Zu9VCJ7DmgBkoBrkeB20FkSXJ29ZA0bt3Pg0eepWbGepo939ln0IKRMbEvNYV1WMZvSC/Bau/SW7qll5Z5afvro+7hdNs4/YwyLzxrHBWeOY0Jheq9BhyMzjZzF88hZPI8ZP/wq/oYmqt9ZQ+WyyNQGffWUGsFgZ7C7L/qaslhInjaehKJcbGkp2NNTsKUloxJdhMoOgtNBebtC+YOEWtvxVtXR2jG9TH/mUlWK3IvnU3LHdeRfecGg9iBrrflgayl/efEjnlu+nWCo55OP1EQ7X5pXzBXZNkzlh2n+3gre2H2Q1j2Hep0TLx7VDF/hkIaPtnLo8ZcBSCwpInvxXLIXzyXnwnNwZh/fnJJiaA1XtsDtt9/ebUqZodBRTOnAgQO0tbV1Bo2Dte4VK1awefPmQQ/sOtodT4/oYDnttNMAWL06/lGkQ7kPjmayWCi85iIKr7mI9tJKDjz2Avsffpa2/aUxlw97vBx64t8ceuLfWFOSKLz2Igqvu5jshXOwuCLFxqwWMzcuPo0bF5+GxxfkzXX7eGnFTl5dvZumtvh6RQeb0gZFrY2c3lDOGXVlFLfFP8fvwcQ01mcWsj6ziGpX34Hb7sP17D4cOyMrLclJfkYS+Zlu8jOTyMuI3He9JSVELkwb4TDNW/dQu2p9pHjlxh207DrQ7Vzl1V/9k5wLz6HwmgvJv/KCziFL/kCITXurWLO1lLXby1i7rYyKur7n/AVIcFi59JyJpLmdhA2NYWjChtH5uLapnTfX7Tvmc0+9s5VXPtjFf922gK9cdzZ2m4QuonfyFzJ0zovetxNJC+7J8i6P59OP4BaYA3R0oy3vaSGtdUAptQZYAsxRSlkH0EMcl2AwSCDQ/xLyZrM5ZqGOjnUOdMqqoVqvyWTqscciafpEpv7kLrJWbaT0xbepeOkdfDV1Pa5Lm82oBAdhqwUsPRdn8Pj8vLFmF2+siQRFeZlJLJ41lvNnjmXBzOJeUyJNJhP2tBSKrr+EousvQWtN6+4DVC5bRfmbq6hZ8RGh9njS0DQN2/fQsH1Px1NMoe7Be0cJKG02oY+e89Pae/XBhHFFjP3kFYy59UpSxhbGXCYcDhMeQJXEPaX1PPPuNp58dwcHKo49AVFK4wqHGN9Sx5nhZmab/Ti3lhF8o5WYpUqO+llUMBxzHletFLqX32tfVCiMivFnqhXoXnry+16vgdKatn2Hadt3mH1/eQqApGkTyLliIUXXXUzy9In9DqYsFkuvU9IYcUxbFLO9queq0QNd53CtV2sd97HHMIxu7XA4Ij0qXu+xhbjiWe/R6xvs9sbS09/D0esdM2YMs2bNYsOGDTzwwAPcc889A15vx8/Zsf5rr72WFStW8Ic//IFPfepTvVZZ7mu9R7v00ktxOp2sXr2aFStWcO6558b8fF/7uK+/t66/u6VLl+JwONi3bx9PP/00N9xwQ8x1dt2/119/fdz7oLf2Hr3ejrb39N1vzU5n4rc+y4S7P0PtBxs49OiLlD39OmHvsQGpYTXjb29n799fYO/fX8DssJN53lnkXhwpgpg4LlJoyGKCpWePY+nZ4wiGLmbV5sO8tnYvuw43UFbbQllNM17/kdRli0nHPD7HI6zB0KrjhyXb28qkpmqmNlYxubWGhPCR0ymjl+84A9iflMGmjAI2ZRRQZ0sgrGO3ymzS9Odbo7XNw842DzsPVmEAYePIepU2KGpr5Iy2Ok7z1JHXUI3t6N+VCTAdabthhClbtoKyZSswvvQDKrNy2ZJZxApnFjW2Y881zEoTa4pvpWDBGWP4xAXTueyciSQ4j71QrZTqnHZq5ceH+MbvXmfL/khKu0lpzAoCgQA/+utb/OO1DfzPFy/igrPGHbOe3tZ7tIGeR3Sw9TAFlWEYnXOPD4TVao09Nd8QrVdrTTDOWTli6en7/njXe7wkuB06HZUn9mqte/uL7Jp7FbtaRd/bOHo9PW1nCZHf+QRge7wbic5j25vOma3Xr19PeXmsqcN7V1JSQm5u7Ana165dO+B/kqKiIoqKimK+t2HDhn6PK+qQm5tLSUnJMa8HGpp59/8eoXz9FgxfdKzJhKzIrRf5wPU0cXNjOfVeO/925fFxchZaHTloTEiHjG7Zmy3s2fExe3Z8zF//CVmpCRRnJ1Ock0xBVhK2LoFPcnJytykmAKxFuRR97nqCi2YSKivHW15F+/5S2veXx1290dzuI2Vd7LQtb2EG3jF9V5O0Z6XjnjQG96Rx2LPSqAWaDu3j7JzYPYiVlZXs23fs1d2jGYamvK6V/RWN7K9opLYp8rs+UNH9S7+kpY7p9RVMNreRUpyESom814qiNSV2gB1L6qrtqBhVlUPJLlrO6PuLuCfJ63ZjiTFuKeyy0zx7YoxPxCdp036sMYo5Ne3ez4E1DlavWYMtLZmkqSW4p47HnhHf2L7JkyeTkdH9d9cRZIRCIdraBlY3z26393ii0t7ePuDgy2az9Xii4vF4BhzgWq3WHoMHr9fb54lV1wJEXfdZYWHkb/LDDz+ktfVIj0lHcNHXCZDH44n5OzCbzT3OT+33+wd8DDaZTLhckZPhjp+pazB0dED0ox/9iKuuuorvf//7+Hw+vvjFL3bOKQuR3/U777zD66+/zqOPPhpzm8FgkLa2tm4nWDfffDMPPvggW7Zs4ZJLLuFXv/oVkyZN6vyM1ppNmzbx9NNPc8stt8Ts2ezp79flcnH33Xfzk5/8hKuvvppf//rXXHXVVd0urFZXV7Ns2TIaGxu59957u223t3V31d7e3rmMy+Xiy1/+Mr/61a+444478Hq93Hzzzd3muX366afJzs5m3rx5ANx000386U9/imsfXHPNNSxYsCDmxWHDMDq/O0OhED6fD7/fz+HDh3ttf4fJP/ky039+NxUvvUPZ069T++6Hnb2GjedOPWb5Ok8jO55/GZ5/GWtaMoklhTjzs3HkZGJLjYxHVcBXrpjSeR6htaapzUd5bSsHKupZt/p9DMMgJSUFk8nULUtaa42GyLCPyAtEn0IggLXBi2tvJc79+3HtO4Cly++pafYEGhN6TuE1lMKTkkpbWjrNaekELFYyDM0iw+BQg8GHB7yEYxRampoFyQMsZVDXBo2HW5jSWBW5NVWTEIr8n7VOK6K9ZDz9LePnAuY3VXDpB6s4lJjKhoxCNmYUUp6QDEoxJhVyu3Q+pyc5OW1cFlPHZOJ22YB6PvowdpaBy+Vi1qxZAJw5MYu3H7iVR17dxE//vpJki4+ilK5LN/CbvzzJS6+lsXjWmM6pgmKxWq2cffbZMd+L9zyiJz0VjqurqzuuIRVz5syJ+X3U3NzMli3xVQSPZebMmTHH9be3t7Nx48YBr3f69OkkJx9b/yQQCLB+fW/9ekNLgtshEJ2ap+PsrteSg1rrRqVUO5AAxH8mHdF1+b5KG3bNBSqkH8HtUZ/tVVlZGe3t/a9+Wltb22NBjerq6gGfYFZXV/d4oKmtrR3wlbCjD4y6pZ3gyysI/nsVLZPyMFIGlk6nQiHG7t7PV9hBKNnNvomTeDOtmI3+vr/lahrbqWlsZ93OCpSCtEQrWUk2spJsZKclUFkZu1BSc3PzkSC/MAMKM7AGQuimFnRjK0ZDK7qxBVoHZTpmcLswZaagMlNRmakYCQ6agebWRmiN9KiaTCaam2On/ba3t3cWU+kqEDJobAvS0B6koS1IXWuQUPjYkwZ7KMiMhnJOryvntIZK3KFI4OjPTKaNAYzpMZvAYcdUUoDJbkO5HCiXHaxWsJgwnDZMGYlgUqBM0XsF6MilfK0jj3X0zEpHH0evslpzsrGE9ZHPKcBsxuSwYU6xg9kcaYPZFB2vGz0Z7ei10hoMI3qvwR/EqGmEPZXQR6XiQEMzdSs3ULdyAyQnYirKxlSYjXL3nCVQX19/TJCUnp6O0+nE4XDgi7OoytGCweCQZGEEg8Ee23Q86w0EAvj9sYuphEKhPo9pHdsNBALd2nfOOeeQnp7OwYMHGTNmDBMmTMBms5GVlcWDDz7Yud7bbruNdevWHbPeyy+/vNt+3LFjBxD5n+spgI2nvT1RSnUeZzvW7/f7aWlpidl7Mnv2bP7whz/wjW98g5/85Cf84he/oKSkBKfTSVNTE4cOHSIcDpObm3vMcaCjjV6v95jfqVKKf/zjH9x22228//77zJkzh8LCQjIzM/H5fBw6dKjzu+vCCy/stu7e1tvhy1/+MrW1tfz5z3/mM5/5DG63m3HjIkXnampqqKiIDAO54YYbuq27428kHA73+b/h9/u7LfONb3yD0tJSnnzyST796U9z1113MXbsWFpaWigtLSUQCPDAAw8wc+bMzs/Euw/OP/98Wltb++yV6ehR8ng8cQcLnceIbCd8+Rqct15E6IPNhFZs6vOzwYZmGhuaaVy3NfKC1YJKcaPS3FS53STk56CSE1CJLpQtcjHMDkzIcUV/jzF6l4MhtC+AbvdCmxfd5kW3tqOb2sDjw3mwGtfBmrh+NgBsFlRuJqaCDKw56dgtFlI5csLmDxl8fLCVmkZftx7WDtMKE7jqDBdGKEgwpAmEDfxBA1/QwBsI4wsa+AIGvmCYcPTf0mKEyfS2ke1tJae0gtyP+1e8soPHbMURDvbaa1zc1khxWyPXHNxMtdPNhowC6hPHk56cTrrbRnaKjdQEK+CjprKUvvacxWKhrq57dluRHX55y3heWXeY+sZjv+/3ljWwv7yBSXkJTMpLwByj23gg5xHx6qljxOv19msc/NFaW1tjfs/5/X4aGhoGvN7m5uaYF4eDweAx+74/GhsbY17EDYfD/apmP9gkuB0a7i6P4+mm6Ahu+xsR9Wc7Xc9iB28g0ylOt7QTfPF9gq+sAl8f6dguB6b8TFReBnj9GIer0dUNPc7rZ2luZdK6j5jERxgTijg05gwOpaZS2Rb5cuu1XRrqW4PUtwbZUd5Oi78Jr25kYl4Ck/JcTMxNICWhlwIUNgsqKw2VlXbkSy4UQje2oZvb0IEgBIKY2nyYsaBbPeg2L3j9YLeiXA5MhRmo/HRUohPldqHcCagkFxzH+FmtNW2+EPWtQdp8IVq80ZsnhCfQ8z4xGwZZ3lby25u55YPV2Ps7/ZLdhkp1R38OF7hdkSDWaQdr5DDqyMqKHXz5/ZiP40vJmpHR45eSqY8vpZ7S8EwTCnFefj6WigaMLXsJb9lLeNuByO+vJ81tGFvaMLbsg0Qnpqw0VHYapqxUcAxdVW3RXWJiIs8//zz33Xcf69atY8OGDYTD4c4e3Q6tra0xT4Z6OtkbSa699lpmz57NQw89xHvvvcfhw4cJh8OdvZALFy7ksssu6/d6CwoKeP311/nXv/7FSy+9xPbt29myZQupqamMHz+eWbNmsXTp0h7TinujlOJHP/oRV155JY8++ihr1qxh165dWK1WcnNzWbp0KZdccgmXXnppv9fdE7PZzO9+9zuuvvpqHnvsMdavX8/WrVtJTU1lxowZXHTRRSxevLjbZ+LdB/HOHzwYVEoi1kvPwXrpOVj2HUCXVmOU16Lrmvue9zYYQtc2omsbCe6pwFfeZUyq3RoJct0ugrPGoa2WyIW+sBG5+OcPgj8Queh3vNwuTLkZke/4zJQjRamOUlbvY9PBVvwxaj24bCY+dX4eC6em0dDQQCDQeyK1bm4jVF5HuLIOU30zKrqvbKH4hoa1W2w02F002l0025y02hyETCYs4TDZ3lZyPc1keVux9PI7yPa2srR0B+2OZnyhXEwFWZgsmeBMI2aecj8kuSxcPiuT0ioLmw610tDW/eKboWFHeTuHar3MKHaTnzbwqv3i5KKOZxyNiE0pVQh05Of8XWt9Wx/LHyZyUW+f1np8P7bzEHBH9GmJ1np/L8veQWQ+XIBPaa3/0Y/txJOWvA7gscceIycnp4/FjzXa0pIzXImEnl/O/j/9i3B797FvLWeMJRjtuXXkZpI4cQzuCcXYs9KPWU/Y66N11wFad+yn/WA5tpom3Ntip3a1TisimJuGe9JYKBlDhdnBweoWSqubCYZ7D3abfbClqvsXzdjcFM6anMvkLBPpzjCZKQnR9KH4daQT+Xw+3n//fQAWLFiAw+Hg8OHDcaepdaW1xhMwcKSP4UBlEwcrm9hf0cjBqshjtyVAybG78hgmwyDb20peezPZ3pbOL+j092Kn9vgzk2mbVgQmE868LFxFuThyM3HmZmFJ6ruabzzpRKFQiEOHDgFQXFwcV6XZE5VOZIRCNG3YzuGX3ubjfbsJNsefPmzLTCVhTD6u4nxOX3AOeeO7p2F3BCdKKfLzBzZP5KmWltwTi8XSOe7WMIzONNXExMS40pJ7ciLSko8WKy05XkqpHrN9gsEgfr8frXVnz6jdbo97/HhPhaw6UnAHyuVyxewJDYfDMcdQx8vpdMa8sDZU6+2allxeXo7X68Xv98c95CDW0IUOK1eu7Hwc9vlpP1BG+75S2vYdPua79mgJeypwdA1uu2g4d0okuB2AWD239qx0MhfOpunsyViKsrEmu3v4dERjq4831+3jYNWRi0uVLbCvIfI3uWT2OH7zlSXkZUTWs2XLlmMuROmwQfvBMtr2HKJt72FCPUw/aKttjnkeYS7Mo/H8mbTkZ+JJTKZdmfAGQgSCYUJhg2AojNfnx6QgJSmBBIeNBKuJxJYmnNU12HfsJ2nNjpjbbJ+Qhy//yBezyWEjcXwx7oljSSgpxNTLvu+alny0jvMIrSPVk5d/fAiPL/axqDgnmQvOHEtGcuR4I2nJRwxHWvJLL73Ebbd1hj+FvRS9HXQS3A4BpVQmdGZiPKm1vqmP5auBLGCr1np6b8se9bn/Bb4UfTpFa93jf5RS6k7gj9Gn12utn413O3G0o4Bo6vK2bdsYPz7u+LzTaCko5attYNcDj7L3T0+ie5gr1LCYKbz+Yqb+1xdInnLsuNwe113XSNmzb3D40RdoWL8txnpN3a4GOwtyGHPL5eTfeBm7gmaWbzrE+5sOsmFXBaGjgt2jC0x01bUQRIrbweTiTKaOyaQkP428aNXFvIwkslJcmI+aUL2jYIPX62XZsmUALFmyBKfT2WPBBl8gRGVdK+W1zZTXtlJW20J5bQsVda0crGziUHVT5Mu2h/Z2FJiIxRI2mNpUyazaUmY0lOMIH3uib4oxLjb5tInkXHoemYvmknH2DCwJ/Z+vNJ5CEF6vl7fffhuACy64oMdgIp71DmUhiEAgQMNHWzn8zOuUPbcMb2V8Y7ABVNjAkZ5K0sQxuCeNJWnSWMLnTMeU5MLmcFAygOMDnLoFpXpbr2EYnal1SUlJKKUGZb2D2V6Iv6DUYK/XMIzOcclut7vXQmf9We9AxVugaTStd9++fZ1DBsaOHRvXensrOtfTxQ5tGDR9vJOKN1ZS/+FmmjbuwFfbPZBVYQPVQy9sb4We+mI2m0mZMp70s2eQec5MMs89k4SxBSil+jyP8AdC/P6ZtfzmX6sIHPXdY2hISnTyqy9fws0XTe+2rzuGAoS8PqreWk35i29R8er7BFviqEysNaaQgSMnk5wL55FzwTyyL5hHQmFur0MM+vx+MgwaV2+i9Pm3KHv+TTxlR+Z0NsymHntqzQ47ORfOI++KC8i7dAH2o+ao70/hp+Z2H794fCV/ffGjmGOVLWYTd1xxJt+65VzSklxSUKqP9Q7lecSOHTuYNm1ax0sS3I520TG3HZcYX9FaX97H8m1E0pLXaK3n9WM79wHfiT6drbX+qJdlvwn8Mvr0Eq31G/FuJ452dAa3u3fvZsKECYO16hHDW1XLjl8+xJ7/eyJmhUcAZTJRdNOlnPbfd5I8dWAn8B2atuxi/yPPc/AfL+GriX0luqvM+Wcy5pNXUHjdxYQSE1m1+RDvbjjAexsOsnlfVZ+ZXfEwmxS5GW7yMtwkuew4HVacNisuhxWrGaoqyrBaTBQWFWNoRSBk4PUFaWzz0tjipanN1zkueDBZjDBTGyqZU3uIM+rKcYb7PlArs5nsxXMpvOZC8i49n4TigfUm9lesiwAjnTYMaldt4NCTr1L6zBv4qvs/Pif/gW+TMLEYV0Y6uVYnJqsFZYnMu2uymFFWCyaL5ah7c2TORdGjo4PbeIO3U4Xsn6G3Z88eQqEQFovlhH73a63xVtTQsGEbjRu207B+Kw0btuMtrx7wOq0pSbhLCkksKSKxpIjkaeNJPX0ySZPGYuohSOqtfS+t3MU9f3ozZnV+gCvmT+KBr11Kbnr3Xt9gWzsVry6n9Jk3qHj1/ThnMgCTzUrW+XPIu3QBuUvmkzSlpF/V7vvz/aS1pmH9Vsqef4vS59+kZUd8vaDKbCbtrNPIXnQ22YvOJvPcWQO6mLztQA13//51lm88GPP9tCQn3719IZ+78kwsZvm/Hw579uxh4sTOopcS3J4MlFK1RIpKfay1PqOX5VKBjoFRT2utb+zHNr4M/D769Bqt9Qu9LPsA8NXo02la6/4UlOqrHSdtcOutrGH7L/7K3j/9i7Av9nhEZTJRfMvlnPb/7iRp0sCr4sZiBINUvL6C/X97jvKX30X3ceWuI2gr/sRSCq65CHtaCi3tfj7cXsaabaWs3lrKh9vLafMOLBVwpHCa4Xzdypy6wxTs2YU5jtQ7ZTKRvXguRTcupeCaC3FkpJ2AlnY3GoPbrrRh0LRlN9XvrKHqnTXULP+QUA8ZDF11DW6zif8kUZlN0QC4SzDssGF22DE77Jhssa9GnyokeOud7J+hN1zBbU+McJhgUwv+hmYCDc3465toq6ply+q1YBhMmT4dR1IiJrsNW0oS9sw0HJmp2DPTsCb2PfwkHlv3V/OtP7zBez0EXnkZbn7z1aVcOX9S5/Er0NRC+cvvUPrsMirfWNnj+cbRXIW55F26gLxLzyd78dzj+hmO5/upZdf+zh7d+g/jn+/ZZLWSPmc6WdFgN2PeTCzO+MbOaq159r3t/Nf/vUl5beziUFOKM/n5ly7iojnH1+Eg+k+C25OQUup9InPdtgMpPU0HpJSaB3wQffojrfX3+7GNxcDb0af3aK3v62XZN4hMBRQCErTWgxbdnIzBbdOWXez87SMcfPxljEDsnkBlNjPm1iuZdu9/kDQxvnSs4+GrbeDQE/9m/9+eo3FT7HEv3dpnsZC75FyKblxK3mXndwZzobDBtgM1rNlaypZ91Ww9UMP2AzW0ekZWwJvotFGSn8bYvFRK8lMZl+oi78AezGs+ountDwj2MN6oK2UykXX+bIpuXErhtUtwxBj3fCKN9uD2aEYoRMNHWzuD3bpVG2KelA00uO2LMqkjgW703pLowmwbvG2MZBK89U72z9AbacFtLCfquHuoqomfPrqcx5dtxoiRMmsyKf7z2jl89zMLcbvs+OoaKHvhbUqffYPqt9dgxJkemj73DAqvvoC8yxaSPG3CoF3gG6z95CmrouzFtyl9/k1q3jsyzVM8TFYryadNIG3WVNLOnEbqrGmkzJjUa8Db7g3wi8dX8sBTq/HHGHYEsHTuBO678yImFsUe6y0GnwS3JyGl1M+Ajhno52qt1/aw3H8B/xN9erHWelk/tuEG6gAb8LrWemkPy9mAWiAJWK21HtQyiCdLcKu1pvKNFez8zSNUvbmqx+WU2czY265i2r1fxD2++AS28IjGTTvY/8hzHHz8Zfx1sVOeulGKjLlndF7hTZ05tdsXotaaw9XNbN1fzdb9NWw/UEtZdExsRV0LwRiVHY9XUoKdgswkCrOTKchMoiAriaLsFMblpzIuL43MFBf+ukbKX3qb0uffouqtDzD8cQTgSpF13lkUfSIS0DpzMge97QN1sgW3RzOCQdoOlNGy6wCtuw923jtuXoKjOHfQg9uemGxWrIkuLIkuLAkuzC7HSdnDK8Fb72T/DD0JbqGqoY2f/2MFD728vsfvynmnFfKbr17CpEQzpc+/SemzyyKBXxzj+pXJROZ5Z1F43RIKr7kIV0H/i3bGYyj2k7+hifJ/v0fZ829GeqR7GNbVG2U2kzy1hNRZ00g9YzJJU0pInlKCqzC323H9YGUj//3nt3lueezERIvZxBeuOot7blvQWXRKDB0Jbk9CSqk5QEdA+2et9RdjLGMCtgJTgCYgS2vdr5HdSqlXgaVEemTHxvrjUUrdBDwRffptrfUvj17meIz24Dbk9XHw8ZfZ9dtHaN7e89xwymJh3KevZtq9XyRxXH+nJB4a4UCAilff59C/XqH85XcJe+KrjOnMzSR36QJyL55P5rln4srP7nFZw9DUNrVTUddKeW0LlfWttPuC+PxBPL4g3kCI1nYv+w+WEgwZFBbk4XLYsVnN2KwW0twOUtxOUt1O0pOd0UA2maSEYyvJGuEwjRu2UfXmB1S8voK6VRvi+vKHyLjjohuXUnjdElx5Pf88J5phaCrrW2lp91Pb2MJ7K1YTDBmcM3c2aSlu3E4biS47bpcNt8t+Uo4P2rNnD8FAAIvZwpjcPHQwhBEMYYRC6GCIcDBEKBCEUBiOo8hHT5TJhCXBicXtwupOxJLgPCnG80rw1jvZP0PvVA5uD1Q08sDTa3jstY14/bGHDBVkJfGTq2cwo/IQZc8to/aDjX1Pb0TkfCN78VyKrltCwdUXnpCso6G+CBDyeKldtYHqd9dS/e5aGtZt6Vev7tEsCS6SJo8laep4kqeURIPecXzcBt/+81ts2lMV83NJCXbuvukcvnz9XFyOUyPLZzhIcHuS6pKaHAIWaK1XH/X+t4BfRJ/+UGv9g6Pevx34W0/vR5fpmpr8EnCt1jrc5f0MYD1QRCSAHqe1jqOrL36jNbht/Hgn+/76NAf+8RLBpp4n8zbZbYz79DVMvecLJI7pa1ak4RNq91D+ynscfvI1yl95L75ezihXYS4Z886I3maSOnMK5h6qAcYy0C9FIxikcdMOaj/YSO3K9VS/s5ZAQ1Pc282YN5OiGy+h6PpLhuxqdn9orfl4bxUrPj7Etv01bD1Qw46DtT1OXRCLw2YhJdFBTnpiZ6Xq3PRE8jKSyMt0k5vupiAriVT36On17XoCXFA0Bo8/iNcXjN6HCHW5gKEAk9aYtYFJG5iNI48t2sAaDmM1DEwcRxVYkwlrUgLWpESs0fF3o7FnV4K33sn+GXqnYnC7flcF9z+5mueWb4+ZfgwwJuzlP7M14/bvpmnDsbMfxGKyWclZMp+i6y8m/4pF2NNSjqud/XWiM4uCrW3dgt3G9dvivpjdG5PVSuKEIppS03mvLsgek4tKVxJVriSC5iNTEuVmuPnu7efzqUvOOCkvKg+34QxuBzbpl4jXXcAqwAksi6Yqvxt9fhPwhehyu4FfD2QDWut3lFL/iq7vSuBNpdT9QAUwHfhvIoEtwH8NdmA72gSaWzn0xL/Z99enY06305U9M42J//lJJtx5c+dVU48vSEOrl4ZmD42tXoIhg+KcFMbkpmC1DHyqgcFgSXBRfOOlFN94KcHWNspeeofDT71G1Vur++zR9ZRWcri0ksNPvQZEAvqU0yZE5qkbX4R7fDGJ44twlxThyMnsdyBghMP4a+pp2X2Q5q17aNq6m+Ytu2nYsL1faUrKYiF70dkUXnMh+VddMCJ6aL3+IMs+3Mfra/bw+to9VNXHPz9sLL5AiKqGNqoa2nq88gyQnGCnOCeF4twUxuSkMCY3lTHRx8U5KSQ4+zdn8WDTWnOwsol1O8txGq24nRbcCU62H+x9WiENhJUirMyAGXr4t7IYBhYjjNUIY+tyb4rjgq02DAJNrQSaItNqmGzWzkDXmpSAKY75h4UQp47mNh9Pvr2Vv72yIeZxWWmDcS31zGyqZKG/HmdFBRDpUeiN2eUkb+kCCq9bQv5lC7EmxZ5j+WRkdSeSd8kC8i5ZAECwpY2Gjdu7Vb9u2bk/rp7uroxgkJbt+zCxj8XA4o7XgYqEZPYmZbIvOZO9ngy+9MuX+f3Ta/nR5xdz2TkTR+VFTnEs+QYfQlrrjUqpTwD/IDLe9WcxFtsNXKa1jmPysh7dEV3/pcCi6K0rA/ix1vrPx7GNUcsIBql+dy0H//lvDj/1Wp/BVPLU8RR88RZ2jJ/CA5sO8/E9T1PfEpnOxheInXpkNimKc1IYX5BGSX464wvSmFKcwbkzirEdx/x6A2V1JzL2k1cy9pNXEvb5qXl/HRWvLqf8leW07T3U5+cNf4CG9dtiXgAwu5zY01OwJLqwuhOwJLpQTge+1iaUzcpH/3oPAiFCHi+Bpla85dV4K2oGnH7U8eVfcM2F5F+2EFtK0oDWM5i01mzYXcmjr27kqbe30tweX2XLwdTc7mfzvmo274s99UVmiit64eVI0DsmN/I8L8ON0z546Vht3gAHKxs5UNHEpj2VfLSznPU7K6hviVxU+eVnZzOhIAV3H+vpj5DJRMhkwtdlDK8CrEYYeziEPRzEHg5hjaMnwAgE8dc1do5ft7gckUA3ORFLguukSGEWQvRPmzfAsg/38tKKnby0cucxqceOUJBpjZWcXlfO9IZykoLxfQ9Y3AnkX7GIousuJveS87C4Rk8WzlCyJiWSff4css+f0/lasK2dpo930rAhEvQ2b99L8459cVXpP5oJKGhvpqC9mYWVkSForVY7e7dm8vCK9/jnzGn85723cu6swZ31Qpx4EtwOMa31y0qpGUR6cS8DCoAAsBd4GviD1jq+Scx63oYXuEwpdQtwO3A6kAJUAyui21jd4wpOQuFAgOp31nD46dcpe+HtuFJdneecxYG55/Anj52Pnt+H1vHN2wYQNjT7KxrZX9EIHPlcSqKDK+dP5rpFU1k0a+yw9O6aHXZyl8wnd8l8zrz/v2nZc5CKV5dT+foK6lZvItjcv+sqYY8XTy89waXH22AgadJYci46l9yL55N9wby4pwYYah5fkH8u28yfX1zH1v01/f68y27FZtZYLSYwWWjzBnocq3W8aps81DZ5+GhnRcz3UxId5Ka7yUlPJCc9sfNxZkoC5l6CueY2HwerGjlY2cTBqiYOVTZR13xchzAgUuzDZbdis5ixWEyYzSYsR91MShE2DIIhg1DYIBQKEwxHHgdDYTy+IAEgYDLTao2M6TZrA3s4hCMcwhEKYjP6vsgS8vgIeXx4q+pQJhW5iBPt2TU77HJ1X4iTUChssHlvFau3lvLO+v28/dH+btV3lTYobGticlM1pzVUMKmpBouOL43WlppMwVUXUHjdEnIuOhezfXgza0YLa2ICmeeeSea5Z3a+1jHHccuOfZ3BbsuO/bTs2Ievpr5f63cH/cysL2NmfRns38SOF55i+YSJzPns1Sz4/DXYkgfzkqw4UWTMrThuI2XMbajdQ/V7H1L6zBuUvfg2gcbmPj9jy83k4IxZPBpKYW94aK/1pCU5ueq8yVy/aBoLzhgzIsZ4aMOgZed+6lZvpG71JupWb+q1qNZQSZpSQuY5M8k4dxY5F8wjoSjvhLehN1UNbTz4wjoefPGjzt7I3ozNS+W8GcVMG5fFtLGZTBmTRVZqAsGA/5gxTeGwQZs3QKs3QJvHT6snQEOLh4q6VirrWqmI3irrI/c1jf2/Yj3cOnpuM1Lc4EzDZjHjclhx2q247FacDgs2i/m4g0atNf5AiFZvgFaPnzZPgGC4+8mnWRs4Q0Ec4SDOUBBzP78DTVZLlxTmREzW4btGLGNKeyf7Z+j1Z8yt1hp/MIwvEMIXCOGPZkIppVAqek9kypxYj5VSkecxHisFJqViPvb5fCxbtoxQ2GDe/PMJaTOtHj+HqprYV97AvvJGdh6q5aMd5bR3qY/gCAUpbm1gTGs9E5prmdhcQ0Io/loWjqx0Cq65kMLrLiZ74RxM1pFdvOhkqObvb2iKBr37okFvJPBtP1Te73UZJhMJZ5/B1Fsuo+CKRSQU5w9Bi09eUlBKjGrDFdxqw6Bp8y4ql62kctkqald81OOctF0pi4WkC87lveyx/Kk0QEj3/4RaKUhzO9FAQxzBztGyUxP40rVz+I+rZ5OcODJ6JTsEmlpo+GgrrXsO0rr3MK17D9G29zCt+w73q0hVLCablaQpJaRMn0jKaRNImTGJ9LNPP+GFM+K17UANv3tqDf96ewuBHubPg8jfw3mnF3PpvIksnTuBCYXpMQO1wTh5CATDlNU0c7CqKdJ7WtkY6UGN9qJWj7DgNzPFxS8/O4fibDfJbhfjx48/YRkMWmt8gRCtngDNbT5aPf5jylDZjDCOUBBnOIgjFKS/RwOL0xFJX06KVGE2mU9cdoYEb72T/TP09uzZg8frp80XYkdVmKqGVirr2qhqaKWqvo3KhjbavQF8gVCvx9ChpiBmCTqlDdwBP6kBD9meVnI9LeR4mslvbybX00x//2KSp44n7/KF5F+xiIx5M0/o8eB4nQzBbU9C7R4aP94ZuYj/wUZqV23AV13Xr3WknjGF4lsuZ8wnrxgR9T5GOgluxah2ooJbbRi07D5A3epNVL+9mqo3P+hXCkr6nBno8+by92Ayz22OnarZldNuYeHMsVxw1jjGF6SRluQiLclJWpKT5AQHJlPkNLix1cu+8gb2ljV03u86VMfGPZV9biM5wc4Xr5nNl6+fO+LnXdOGgae8mvaD5QRb2wm1tRNqbSfY5sHX2MyeLdvQgSBjJ03E4U7E7LRjSXThzMvGVZCNqyAHR1b6iB+/qLXm7Y/288BTq3nro/29Lluck8Jtl5zOJy8+neKclD7XfSJOHjy+IIeqjgS9ByujgW/0cVNb/+cZjFdOeiLj89M4a0o+Z03O56zJeRRlJ7N3794RUVHVHwhR1+yhvtlzTI8ugNIaeziEKxwkkTCmOC6WHc3icnTOr2tJdGGyWYcsjVmCt97J/hlcoVAYrz8UqXLuD0YeN1VT19TKnrImvvXQuqHZsNY4wiESQn5cwUDnhShHdLiBPRzsvLeFw1i0gcUwMOtwpPCcNjBH7yOvG1iNMO6gH3fAh/k4Kq+brFayFs4h//KF5F++aMRMEzgQJ3NwezStNe0Hy6j9YCPVK9az+/UPsBw6HNdnlclE9gXzGHvbVRRecxGWhJF97jZcpFqyEDEEGpupW/sxdWs+pn7NJurWbu51yp5Y0ueeQdENl1A9dRo/eW07q9YfBnru2ZpSnMlFc0pYMqeEc2cU47D1/S+S6nZGT+S7p6yU1jTz/PIdPPPuNtbtiJ0S09zu5+f/WMnvn1nLZy+fxdc+cQ55GSNzjIcymUgozCWhMPeY97xeL4eiX4qnjdIvRY8vyBNvbuZ/n/2QHYd6r+i7ZE4JX77ubC44q6TzIsdI4XJYmTImkyljMmO+39zmo6qhjcq6Virr26I9La2dr/WVieCwWSjqKE7VpUhVUXbyoBapGgp2m4X8zCRy0900t/uoa/LQ4jlSBEYrhc9ixWex0gBYHZBtN+EyQoRa2+PKDOkYrwsNQCSNORLsOjE7HVicDpTVIuN2xYgXDIVp9URS/Fs9/m7jTwckGqQmBbwkBX24A34SQn4SggFcoQAJoeh91+fRx8cTgA62xPHFZC+cQ+4l55F70bmnVIXjk4VSisSxhSSOLWTsJ69kLtCwv4xn7nuM8pfeYVxNOdYexlNrw6DqzVVUvbmKdQkuCq9bwtjbriZr4ZxR1VN/MpPgVgy7QFNLZGzE9r00R4sCNG/fS/vB/o+RUGYzGfPOoPC6JRRedzEedxL3/ukt/vHz13v8jMth5Y7LZ/Gla+YwNi/1eH6UbgqzkvnqDXP56g1zOVTVxLPvbefZd7exYfexPboeX5DfP7OWP7/4EZ9eegb3fvp8ctLkC/NEKKtt4cEX1vHQvzf0GtjZrGZuuWgGX7n+bKaOzTqBLRxcyYkOkhMdTCrKGO6mDBuTSZHqdpLqduILhKhraqeuyUP4qEymoIYyn4HVbCGnMJ80hyWSrdDcRrC1Pa45GY1giEBjC4HGIxfmTBYzZqcds9Nx5OawoczHP+5YiIEKGwbt3gAt7ZGA1uPvX+ZCkt9Lur+ddF/05m8nzechOeAlKeAjKeiLq6DbSKIslsjwmdmnkTn/TLLOnxPzAq8Y/dLGFfCFB+/F87tv8dcnV/D6H59l7KF9nF5fTmIPY61D7R4OPPYCBx57AVdBDuM+cy3jPnMtiWNHbw/+yUDSksVx65qWvHPrNsbmFxD2+gj7/IS9fkIeL77qeryVtXgra/BW1OCrrMVTUYOntApfVe+9ZH1JLCkid0mksm7WwrOxJbsxDM3fXtnAd//yNo2tsdMwU90OvnTtHL54zZwTmhK8cXclv3h8JS+u2NHj9G0JDivfvOVcvnrDPFyOkd0bBqMznenD7WX84dm1PL98B6EYKaodMpJdfOGqs/jCVWeRfZwXHEbjfhoM/Sk6M1yCoTBV9W3UNrf3+H/psFoozE4mKcGONgxC7V6CLW0EW9oIebyxB/X1gzIpTDYrJquV6Rcs4HB5GW889wILFy2KBL4mE5gUymRCmUxoNC1tbSilJO02BklL7lsobNDc5qOpzUdLux+jj3NCs9ZYjXDnHNPtwTY8dQ14dx2k4q6fn6BWDz5lMuEqziNp8jiSJo0ladJYUs+YQsrpk0dMtf6hdqp+P/XE4wvy4Esfcf/jK0g9dJB51Qc4s/YwznDfMxzkXHgOJZ+7gYKrLzxlK2NLWrI4aSw77XLSGdpgzJmXRca8meRcMJecJfNxlxR1e3/z3iq+ev+rrN0W+/8oL8PNXTfO447LZ5HoPPEHnZkTc3nihzew81Atv3x8FU++vYWw0f2Eot0X5IcPv8dfXlrPjz63mJsvmjHi0l9Ho2AozAvv7+QPz67hw+29ZwZMKsrgK9efzS1LZoz4dFtx/KwWM4XZyWSlJlBZH0nPPvo03xcMsaesnvQkF/mZbqzuBKzuBMjPRocNQh4voTZP5NbuwQj1r5dKG5qwL0DYF+jsFfbWNNC698hYsJXr17Fq/TqmT5zEpQsv6Hy9qUuPr2EYvLN6FZt2bGPjtq1s3LGN6rrIRcT3Hn+G6ZMmd99wZ8CsIBo4d31sslowWSwoqwWTzYrZbouMJZZgcVQKBMM0tfl6LLIGoHRkzmibEcJmhLGFQ1iN8DHVxX1ozNpAnaC0YWUyYU1J6pxjvet865ZEFxaXE1P077PjZpgUew/sB4uFqTOm43AnoKwWbKnJOHMzceZmYs9Mk5RS0Y3LYeVrN87j81ecycOvbOAPz6zl8Yp6zqgr45zq/UxrqMLUw9991VsfUPXWB9jSUhj7qSsp+ez1pEyfdIJ/glOXBLdiRDM77KSdOY30uWeQMfd0MuaegasgJ+aybd4AP/7be/zvs2uPCRYB3C4b379jEZ+/8ixs1uH/EptcnMlD917N/7v9fH775Ac8+tqmY6pJVtS18rn7XuR/n/2Qn3/pIs47Y8zwNHaUa2jx8vArG/jT8+sor+193PZIHk8rhp7dZmFMbipZqYlU1LXQ3O4/Zpn6Fg8t7T7ys5JIczsjU46YTUeCXSIFSwx/gGA02A17fYS9PnSMY1MsY/ILsdtsuBzde41WrV/HL//yf9x02ZXdgtuuWVgtba184q47Y65Xa80xGVthje4le6EnZrsNs8OOOcGJJcEZCSyGcWok0TOfP0hTtIe263Q3EKkkbA2HsRtB7OEw1nAkoB3Ko58lwYUjOx1begq21GRsqUnRW/JR90nY01I6X7O4E/qdut+1JsRY6ZEU/ZTgtPGV6+dy5zVzeOH9Hdz/1Gru3zmGZL+Xs2siPbpFbY0xPxtoaGLXA4+x64HHSJ8zg5LP3UDxTZdidcuws6Ek30JiRFAWC+4JxSRPKSFpaknkfkoJydPGY7b13bu6asthPn/fixyoiH2AuX7RNH7+pSUjsljT2LxUfvf1y/jOrefx47+9x2OvbzomLXLjnkqWfP0xrpg/ifu+eBHj8tOGp7GjzOHqZn739Br+9soGPL6ex4+5HFZuXXI6X7puzik9FlUc4XJYGV+QTpvHT1ltyzEBQTBscLCyiYZmL0XZydiPKj6nlIoEfg47ZETG8ncEvGGvn7DXR8jrizz2HRtAP/9/fx1w203KxPSJkzl9yjTOmDqVM6ZM48Lbbhrw+noS9gcI+wPQ3Nr5mtlh65wD2OJOkN6wYaK1xuMP0tQa6aH1Bo6kUloMA5sRwh4+chusQFZZLLgKc0goziOhOJ+Eolyc+dk4sjNwZKfjjN5LhVkx2ljMJq5fNI3rFk5l1ZbDPPDUGl75wMmywikUtjZwXtU+5lYf7HEu5PoPN1P/4WY2fP1/KPrEUko+ez0Z82ZKnYUhIMGtGHImmxV7egqO3CyceVmRNKCO+9xM3BPG4B5fNKAJzv2BED98+F3uf2p1zHFyJflp3H/XUi6cXTIIP8nQys9M4k/fvpIvXTuHe/70Ju+sP3DMMi+v3MUba/fy1Rvm8p1bzxuWtOrRYNuBGn7zxAc89c7WXsfT5mcmcec1s/nMZbNIS5Kr+eJYiS47k4oyqGv2UF7bckxWSIvHz/aDteSmu8lKS8DUy4lKt4A3NanzdW0YGMEQRiCIEQxG7gNBjECo87k2DIiz19edmMi7jz89sB/4OEXSqhvw1USqRVvdCdjSkrGlJEmv7hALGwatngAt7T6a2/wEomnxViOMu2PKnFAISw9VYPvD7Ij02pu8rdjTU3HOTWV22fs4cjLkgoY4qSmlmD+jmPkzitlTWs8fnlnLP5Z9zD/daTw9biaz6ko5r3IfU5qqY34+1O5h/8PPsv/hZ0maUkLJ525g7KeuwpEpnRaDRQpKiePWtaDUpmXvMmHK5EglUIcdk8M+ZF90H++t4rM/e4FtB2qOec9mNfOtW87lm7fMj2s6n5FGa80ba/dyz5/eZOeh2BON56Qn8tMvXMhNF04f9vTZkVKIYtWWw/zmiVW8unpPr8vNnVbAf153NledNxmr5cSdiI2U/XSijYaCUvEIBMOU1jT3OFewy26lOCdlUIrAjRkzhkOHDvHuu++ycOFCgF6v8BcXFbF3+84e37cmRnrK1n2wmjNmnN7lHY02oqnKhoGO3jB05HE4Enjr4JFAu79jiTt89ac/4J8vPMv3vvs9vnrXV/nJT37CSy+9RFlZGfPmzeO9997j4MGDjB07NtKyHs5Pbr/9dh599FG+//3v84Mf/KDz9ffee49FixZRXFzMwYMHeeaZZ/j1r3/Ntm3bMAyDmTNncu+997J06dIBtX+k0VrjC4RoaffT0u6nzRtAa401Ov9rx9yvR4+T7Q+TzYLF6cTscmBxOTA57Jjtts7x1qPhf/tUPe72l+yngWv1+Hn23e088trGznovmd5W5lfuY37VflICvU+xZ7JaybvsfMZ88gryLlt4UhQxk4JS4qThGpPf45jYwRIKG/zmiVX85NHlBEPHXoGed1ohf/72lUwoTB/SdgwlpRSXzJ3AhbNL+NsrG/jx396jtsnTbZmq+jY++z8v8OcX1/Hrr1xyzDy7p4qOCwE//8cK1vRQRAzAbFJct3AaX77+bGZPOTX3lTg+NquZkvw0mlq9lNa0dPaMdfD4g+w8HOnFzUlLHPR0s3PPPZfDhw9TWlpKVlYWEyZMIBSKpJsWFBRgSej7ZNTidMS1XG+MUCiSXu3zE/L4CLd7CXm8fY4nNoKR1O6ynbuZdfoZlFVWMGXKFKZOnYrdbj+uNh3tBz/4AT/84Q/Jzc1l3Lhx7N+/n5UrV3LZZZfxzDPPcO211w7q9k4Ew9B4/UHavQHafUHavAGCwRB2I4w9HCQzHMIeCvVY5KYvZpsVc4ILS4IDiysyL7P0tgvRN7fLzu2XzeT2y2ay81Atj722iceXbeZ5p5sXx8xgekMF51XuY0Z9ecw5m41gkLIX3qLshbdQiS4Kr1lCyaeuJHvxXMmEGAA5aolRZW9ZPZ+778WYlZBtVjPf+8xCvnbjPMzmk6OKp8Vs4vNXnsWNi0/jZ4+9zx+f+/CYNNsPt5dz3p0PcevFp/P9zy6iIDOph7WdfN7fdJDv/fWdHitjAzjtFm6/dBZ33TiX4pyUE9c4ERdtGPjrm4a7Gf3iAMYlmKmq91Lf4uk8VTGnJIHJREVdK81tPopzUga10vbKlSs7g7alS5fy8MMPd5vq5kQxWSLVky0JLuzRa4haa8IeL8GW9sjUSG2eHnteH33uaWZMmsLz//sXSiaMx56VhuHoObg1DE0wHCYUMgiGDHzR8aOtHj+lNc0YhsYwdGexuIqKCn75y19y/x8f4oIllwIQDAa45+4v88arL/OVr97FaWedh9lsxqQUZrMJiyl6bzZhNpswm1TnY4vJdEKzY7TWhMIG/mAYfyCEJxrQev0hMAzs4RCOcJC04xgvq0ymSBGwRFfkPsE5oKFBQojuJhdn8rMvXsQPP7eY19fs5dHXNrLsQwsfZxSQ7PdyTtV+zqvaR7a3NebndZuHw39/gcN/f4GA241p0blMuO1qJl10NqnRAoYnimFoWjx+Gpo91Ld4aWz1Ut/spaHFE3nc4qXNE8AfDOEPhgkEIvf+YIjm+mOzKk8UCW7FqKC15sEXP+LeP78VszDQ9HHZPHTv1UwvyR6G1g295EQHP//SEu64fBbf/t83WPbhvmOW+ccbH/PMu9v4yvVnc/fN55KcOPrTWnry0c5yfvDQu7z90f4el0lLcvLFq2dz57Undh5j0T/++iaey5o33M0YFCUfPI8lLQWITOe181AduelustP6X+F1tFFKYUlwYUlw4czNRIfDBJrbCDQ2E2xu7darazGbefQXvyUvO4eQx0foYAXKbCKclkJLU1vncrsP1+EPhgmGwt36Otq9kYItrZ4ANY3tna+3RV8PBoP8x1e/xfzFl+DvyO5RFr5x74955803qCgvY/3GTUycPC3un88cDYLNZoXFdCToNZsV5m73Jkwqsj9UdL9EfvWRe8PQhA2NYRiEuzzuDGaDIQKBMOHohQGzNnCEIunFydEqxgNhslq6TZtjdjpO+r9JIYaT1WLmivmTuGL+JFra/by5bh+vfLCL19ek8lrRVCY217Cgci9n1pb2+H9ta22Fl17nwEuvs97uYntWIVUTJhGaMY283DQKspIoyEwmPdmF3WbGZjFjtUbubdF7q8VEIBimzRvA4wvS7gvQ5g3i8QVo9wZp8/ppaPHS2OqjoSUaxLZ4o695Y84+Eg/taz6e3XdcJLgVI155bQtf/MVLvBUjkDGZFHffdA7//enzj6lWejKaVJTBC/fdwutr9vDtPy5jb1lDt/d9gRC//Ocq/vbKRu65bQGfu+LMETHt0WDZdqCGHz78Li+v3NXjMgVZSdx1wzxuv2ymFNwSJ9TRoYKhNeV1LTS1eRmTk4LjFJovWZnN2NOSsaclo8MGgeZWTLbIz79gzlzysrsPX9Fhg0BtA+GKI/NPt3kDA5499bpP3HrMa+kZmeTmF3D44H5KDx3sV3Ab1ppwKAyhvpc9HlYjjDPaM2sPh7AaAyv+ZLbbIr2ybhfWxARMdpsEs0IMk6QEO9ctnMp1C6cSChus2VrKvz/YxSsf7ObxA1WcWXeYudUHmdRUTU95h2l+D/NLd0HpLvzvvcL21FyWZ+SzOT2fFpuMj+7q5I8GxKiltebJt7fy9Qdei1nAZVxeKn+952rmnVY4DK0bPkopls6byAVnlfCHZ9dy39/fp9XTvfR8XbOHu3//On987kN+9PnFXLNgyqg+sdlX3sBPHlnOk29viVkVG2BMbgr33raAmy6cfkKLRAnRYXx+GpVhU2fabId2X5Ad0V7crNSEYS8Ad6IpswnlTsCIztk7dvxEQsrUZ9Xe/LYmWm122qx2wir+oSYpqWm4k5Jjvpeekcnhg/vxetpjvn8imbSOTskTjk7JM/DiTxanHYs7AUtitGfWdupcSBFiNLGYTcw/vZj5pxdz351L2H24jhUfH+KjnRWsWL+LlPXrmVN1kDFtDT2uw26EmVlfxsz6MgzgoDudPclZ7E7JZG9SJm22kzdzLx4S3IoRqb7Zw1d/+yrPLd8e8/0vXHkWP/vihSScwj1zNquZb9x0DrdefDo/e3Q5f315/THpI/vKG/jkD57h9PE53H3zuVx7/pRRNR65rLaF+x57n0de3dhjakxOeiL3fGoBt18686TqpRajj8tpY0p6ChV1bdQ0tnXrdezoxW1o8VCYnYzbNbgFlIbaa6+9xk9/+tNjXp85cya///3vj3ndMDRt3si0NC3tfryBUGfasE5IojwxBWcogDvoxxmKPQe1RRuk+r2k+L14LDbabXbCdgeW6DHMabeQkeTCZFKYTKpz+IE7MZExOSlorfF6I1VKOyq/doyBTkl0kJfhjqQJhw1ChkE4HBnrGo6mCQ80HS+WSCAbxhYOYTdC2I6jV1Yphdnl6EwxtiS6MFnkdE6I0WhiUQYTizL47BVnAlfQ7g2wcU8lG9/6iIYX3yR9w3rS2lp6/LwJGNdaz7jWei4u2wFAhSuJPclZ7EnOZE9yJnWORDjODg6b1UxakpM0tzNyn+wize0kKcGOw2bBbjVji97brRaa6ir5zprfHNc2B0qOhmJEMQzNP5dt5v89+BbVjcdeWc/NcPPnb13BRXPGD0PrRqas1ATu/9qlfOnaOXz3r+/w0opjpwP5eG8Vt/34WX7wUCpf/8Q53HrJ6SN6iqSaxnZ+9c+VPPjiR/iDsceipCc5ufuWc/ni1bMHtWiPOLHs6SlcW7N6uJsxKOzpKSiTiYKsJFIS7RyqasYX7N6L6w2E2F1aT3qSk/zMpFGTZVBdXc2qVauOed3SJajyR6elaW730eYJdI4bjUUDHosNj8UWmYc16Ccx6O+WYaK17hy7mhAKkBAKYAp4wBsZl5uS6KA4N6Vz+fRocGsyKdKTXRiGQQuRwDkpyYnJZOrc38mJDnLT3b3+zB2FncJG9L4zCI4EwpEgOHIfjgbHRiiEORzGEgphNUJYwmGs4TDm45hbVplMkfGyia5I72yCs3MqHiHEySXBaeucR5dvXIfWmrqPd7HrqTeoevU9Apt30GMKW1Sep4U8TwvnV+4FoNVqpyoxhbqUNBrTMmnLyMSTk4M5NZkEl52URAdpSU7Sk12kRoPX9CQnqUlO0pJcpCc5cTms/coA3LNnD985rj0xcCP37FacctZsK+Wbf3iD9TsrYr7/iQtO47d3LSXVLWMLYplYlMGTP7qRVVsOc++f3uTD7eXHLLO/opGv/PYVfvrocr58/dl8/sqzSEoYOT1I5bUt/PbJ1Tz87/WRyqAxuF027rpxHl+5fu6IarsYGGUynZST1ye67Ewek0FFXSu1je3HjB2tb/HS3OYnL9NNRrIr7pOG4RpecPvtt3P77bd3e80wDNq8AUprmmlp9x+Tjt0Xs0mR4LDhclhJcNhw2sz4E4/8T9fU15OdkdF9m6Ewe/dETth8VXW07j2MNSkBizshMj/vIFJKYbWYsRIJdHUojBEKoZXGMEIY4ei8v4EA4UDksQ4ffxs6iz8lurAkJmB2SfEnIU5VSikyz5hM5hmT4Wd34attoOLV5ZS//C6Vb6wg1Obpcx3uoB93YzUTGqvhwI7O1+3pKSRPm0DCmHyceVk4dTYuVxZOVzbOLCfOnIxRWUVdglsx7MprW/juX97miTe3xHw/LcnJA1+7lOsXxV/841R27vQi3vvDHTz//g5+8NC77CmtP2aZqoY2/t+Db/OLx1dy7flTuenC05g/o3jYUpb3lNbzh2fW8shrGwn00FPrsFm485rZ3H3zuZ09NEKMZGaTicKsZNLcTg5XN+Pxd0+/DRkGh6ubqW/2UJSdjMvR9zCLjvTajnTbE80XCHWmGrd6Ahj9GCPaEaAlJ9iZUpyJ0245JmgrmDSe1NRUGhsb2Xx4H0syM7tNKbRu8ya27okUlNNaE2hqIdAUSdlr3XMo8nooTHtpJZhMGMEAmBT+QBjFkbl2A82teKtqQWu0oSOBsWGgw0bncx0OHwloByFojb1TInMPm13OzoBWij8JIXriyExj3KevYdynryHsD1C7cj01Kz6idsVH1K35mLAn/u8Gf30TNe+vg/fXxV5AKewZqViT3ViTErG6EzovJkYeJ2J2OTFZLZgsZpTFgrKYMVkslNXXDdJP3H8S3Iph4/UHeeCp1fzyn6tiTu8DcOm8Cfzh7sv7TB8T3SmluPb8qVw1fzIvrdzFr/65kg27K49ZrqXdzyOvbuSRVzeSl+HmhsXTuOnC6Zw+PmfIT67CYYPX1uzhTy+s63VKH4vZxGcvn8W3bz2PvAz5OxCjT4LTxuTiDGqbPFTUtRwzlrNj2qDkRAeZKQm4XT0HuSUlJQB8+OGHtLcPfVGkYChMqydAq8dPq8ff4zCBWBTgclhJSnCQnGAnLSkSmCc4I721Pbnsssv4xz/+wU9/fz/nvPwymc5EAvVNbN68mf/84f/DarEQDB3bS9yxV7Vh4KvuflHPQxMAYV9k3G+goRlPWXXcP8tgsTjtmBOcWFzOSEDrckiKsRBiQMx2GzkXzCPngsh0ekYwSOOmHdSsWE/tysjNX9tzYao+aY2/tmFA66gn9nn9iSDBrTjhdh6q5ZFXN/LPZZupbYqdTjGxMJ2ff2kJl8ydcIJbd3Ixm01cc/4Url4wmXc3HOBX/1zFuxsOxFy2oq6VB55awwNPrWFSUQbXnD+FudMKOGty/qD1lBqGZu32Ml54fwfPLd9OWU3PRRIsZhO3XDSDe247jzG5qYOyfSGGi1KKrNQEUtwOymtaaGjtfnVdA01tPprafDjtFoweihktWbKEjIwMDh48SHFxMePHj8dms5Gfn8+TTz7ZudxVV10Vc4zsokWLMJuPjPOtq+t+dT0UCtPqDdDqCdDmiRSC6g+r2URSgp2kBDtul31AY4p/+MMf8sorr7B161bGT5zI5MmTCQQC7Nq1i0XnLWDWaTN45tWX+73eE0Uphclhw+ywY3baMTsckXu7TQJZIcSQMVmtpM+eQfrsGUz5xmfQWtO2v5Tmrbtp3r6P5m17aN62l5ad+wn7/MPd3CEjwa04Idq8AZ55ZxuPvLaRtdvKelwuOcHOvZ8+ny9ePVsq3w4ipRSLzxzH4jPH8dHOcn79xAe8uGJHjzUJdh2u476/r+h8Pr4gjTlTCpgzNZ/ZU/IZm5dKcoKjzylNgqEw2w/Wsn5nBR/tLOf1tXuprGvt9TM2q5lPLz2Du28+l+KclP7+qEKMaDaLmbF5qaS3uyitaY45TtXrDxGKpsHWNrUTCIawWSNf1263m7feeovvf//7rF69mg0bNhAOhykuLu62jubmZurrjx2S0NTU1O25xxeg3RfE4w3S7gv0O5hVRHpiOwJal71/RUdiGTduHB988AHf/e53eeedd9i9ezdjx47lZz/7Gd/85jf5/Oc/D4AtxY09LZlgaztGcIgnoO1CmUyRNDy7FZPNislmw2zreBy5SRArhBhuSincJUW4S4oouOrCzteNcJj2A2U0b9tDy+6DeMur8VbU4K2owRN9bASGr+f1eCk9wDnVhOiglCoASoHISci4Ekqrm9lf0cD+ikY+2lHBs+9to72H1OPIOuCOy2bxvTsWkZWacKKafkorrWnmqbe38uRbW9myv//peSaTIjXRQVqyi+QEG2F/G06rGVdSKs3tAZrafJRWxz55jyUtycmnl57Bf153NvmZSf1uz2jg9XpZtmwZEOmB6xg/ebLbs2cPoVAIi8XChAmSjdHBMDTVjW1UN7T1Ou2MAhJdNhw2Kw6bBYfNjMNmwWxStLZGLhYlJSVhihFQaa0Jhgz8wRCBYJhAMIw3EMTrD+EPhI4pdBUPq8VEssuBOxrQWkbA9GJGKETY6yfs9RH2ByJjZcNhQv4AGAZmS3R8rwJQkS8dBQqFMpvApFAmUyQoNZlQJoUym6PjxyJjyUzR5xK4HjEa/rdP1eNuf8l+Eh201gQamvCUV+OvaSDY0kawtZ1gSxuh6H3H87DHhw6HMUJhdCgUvQ9T2drEbRv+3bHKQq11zz1bg0x6bsWguvRbT1DVZursdYjHollj+Z87L+L08TlD2DJxtMKsZO6++Vzuvvlcth2o4cm3tvDk21s5XN0c1+cNQ1Pf4qW+5ejiBU39asesibl88ZrZXL9omkzpI04pJpMiN91NVmoC9c1eapvaY14M0hAd9xro9rpZKSxmhdWsaGhvQhM5KQl3zN0avR3vJWyzSZHotOF2RVKNYxWCGm4miwWT24LVfeTiqGEYtLREhj64ewj+hRBCdKeUwp6eij194EPC9uzZAxP/3feCQ0CCWzGoSqubUY7kPpfLTk3gkxefzqeXnsHEoow+lxdDa9rYLH70+Qv4wWcXs2ZbKS+v2sWH28vYsKuy39N7xGNKcSZXL5jM1QumML0ke8SdKAtxIplNJrJSE8hMcdHi8VPb2E5ze9/jocJaEw5p/CHAH3+hpz7boxQJncGsrd/zGwohhBDDRYJbccKYTYpL5k7g00tncsnc8QMqNCKGlsmkOGd6EedMLwIiY2a37q/hw+1lfLi9nA93lLG3rP9V88blpTJrUh5nTs5j6dwJTJILGkIcQylFcoKD5AQHPn+QmiYPDc0ewkM8fMhhteByWklwWHE5bLjs1j7H0wshhBAjkQS3YsgkJ9gZl5fG2LxUzpycx00XTpepXEYZq8XMzIm5zJyYy39cPRuITOFU1+yhocVLYzQtubqumQ83bsEXMDhj+mSy0pJIcTvITHYxbVx25xQgQoj4OOxWirKTyctw0+rx4wtExsj6orfexujGYlIKm9WM3WrGbrXgtFtw2K04bZZhm99aCCGEGGwS3IpB9YsvXci8s2YwLi+VtCSnpLKdhJx2K4VZyRRmHUk/93q95FtrAFiy5GwpRCHEILGYTaS6u/8/dRSJ8voDNLW0EQprHHY7JpMpMg2NSWExm47cLCasZpMcj4UQQpz0JLgVg2rp3PFMmJA/3M0QQoiTlor2wlrMdnQoMjY3KcktBZOEEEKc8uSbUAghhBBCCCHEqCfBrRBCCCGEEEKIUU+CWyGEEEIIIYQQo54Et0IIIYZUx1jQcDiMHuJpbYQQJ4ZhGITDkfmVzWaZ2k8IMTJIcCuEEGJIORwOIFLl1+v1DnNrhBCDoa2trfNilVTIF0KMFBLcCiGEGFIJCQmdj2tqaggEAsPYGiHE8TAMg5aWFqqqqjpfc7tlDnshxMggUwEJIYQYUm63m7q6OoLBIF6vl3379mE2m2Xe1UEQCoUAqK2tHeaWjEyyfwbf0cMLnE5ntwtYQggxnCS4FUIIMaTMZjMFBQUcPHiw86S4Y6yeGLiuad5Op1MuFhxF9s/QczqdFBUVyb4VQowYEtwKIYQYcg6Hg/Hjx9PU1ERra2tnj5oYOMMwOoO3xMTEzsJdIkL2z9Awm804nU7cbjcJCQkS2AohRhQJboeYUsoF/CdwAzAesAGlwCvA77TWh49z/RZgEbAEmAtMBlKAdmA/8A7wf1rrfcezHSGEOF4Wi4WMjAwyMjKGuyknBa/Xy86dOwE488wzpajPUWT/CCHEqUeC2yGklCohEsROOuqtydHb55RSt2itXx3g+jOBHUB6jLeTgZnR21eUUt/WWj8wkO0IIYQQQgghxEgnOTpDRCmVCPybI4HtX4ALgHOA/wbaiASgTyulZgxwM3aOBLabgB8ClwJnAouBXwI+Ir3F9yulvjDA7QghhBBCCCHEiCY9t0Pnm0R6ZwG+rbX+ZZf3Viul3gXeB1zA/USC0f7SwJvA97TWa2K8/65S6lngXcAJ/EIp9YTWunUA2xJCCCGEEEKIEUt6boeAUsoK3BV9ugP49dHLaK1XAw9Fny5SSp3Z3+1orcu11kt6CGw7llkL/DH6NBm4sL/bEUIIIYQQQoiRToLbobGQSFEngEe11kYPyz3S5fG1Q9ied7s8LhnC7QghhBBCCCHEsJDgdmic1+Xx8l6W+4hIVWOA+UPXHOxdHvcUaAshhBBCCCHEqCXB7dCY0uXxzp4W0lqHgI4peqb0tNwgOD+e9gghhBBCCCHEaCUFpYZGYfS+XWvd1MeypcAMIFMpZdda+wezIUqpXOAz0ad1dE9RjncdBX0skt/x4NChQ/1dvTgJ+P1+6urqANi3bx92u72PT5yaZD+JwSR/T72T/SNA/g7iJftJDKaj4gHzidy2BLdDwx29b4tj2fYujxOBQQtulVIK+FOX9vxYa+0dwKpK413woosuGsDqhRBCCCGEECehTOCE9X5JWvLQcETvA3Es2zWYdQ5yO+4Frow+fhf4wyCvXwghhBBCCCF6knUiN3ZK99wqpSxAcBBW9Rmt9SNdnvui97Y4Pts172MgvaoxKaU+Cfw4+vQgcEsvVZv7UtjH+0XAqujjuUD5ALcjRq8cYF308WygahjbMpLJfhKDSf6eeif7R4D8HcRL9pMYTPlAx1SlJ7Tezykd3A6h1uh9YhzLJnR5HE8ac5+UUpcBfwMUUA1cpLUe8EFKa13Wx/a6Pi3va3lx8jnqb6BK/gZik/0kBpP8PfVO9o8A+TuIl+wnMZiO+nuKJ5N10JzSwa3WOqSUGowqxZVHPS8DzgYSlFIpfRSV6ugVrR2MYlJKqYXAM4AVaASWaK33Hu96hRBCCCGEEGIkO6WDWwCt9VB0lW8Hros+nsyRbvluomnRJdGnO453o0qpOcDLRMb8tgFLtdabj3e9QgghhBBCCDHSSUGpobGyy+Pze1wKzuJIWvKqXpbrk1JqBvA6kVRoH3CF1nrt8axTCCGEEEIIIUYLCW6HxntAc/Txp9VRiedd3N7l8fMD3ZhSaiKwDEglUiDrOq31ewNdnxBCCCGEEEKMNhLcDgGtdQD4XfTpFOCbRy+jlJoHfDb6dLnWel2MZcYopXT09l6sbSmlioC3gGwgTKQq8qvH/1MIIYQQQgghxOhxyo+5HUK/BD4BTAR+oZQaD/yLyHQ/i4jMQWuJPv/aQDaglEonEth2FKX6NbBTKXVaLx9r1FrLVD1CCCGEEEKIk4oEt0NEa90anZLnVWAC8IXorasW4JNa600D3Mz06Lo7fDt6682jdE+HFkIIIYQQQohRT4LbIaS13quUmgn8J3ADMB6wAaVEgt4HtNaHhrGJgyI6F1pP44rFKUD+BuIj+0kMJvl76p3sHwHydxAv2U9iMA3n35PSWg/HdoUQQgghhBBCiEEjBaWEEEIIIYQQQox6EtwKIYQQQgghhBj1JLgVQgghhBBCCDHqSXArhBBCCCGEEGLUk+BWCCGEEEIIIcSoJ8GtEEIIIYQQQohRT4JbIYQQQgghhBCjngS3QgghhBBCCCFGPQluRb8ppRYqpXQ/b7cPd7vF8Ynxe29VSrni+JxTKdV81GcXDn2Lh99R++wHfSybrZTa2mX5/1NKqRPUVDFKyPE3fkqp+UfthwXD3SZxYvTn2HuqGci+UUr94FT7/hbHZziPvxLcCiEGKhG4Oo7lrgKShrYpo5tSKhd4D5gWfekBrfWdWms9fK0SYtS7rY/nQgghhsawHX8tJ2pD4qT1f8Af41iubKgbIk4oH+AAPgX8s49lP3XUZ0QXSqkC4B1gQvSlX2mtvzWMTRKjhxx/e6CUsgM3RJ+2EbkYd4NS6itaa+/wtUwIIU5uw338leBWHK8arfXW4W6EOOFeAm4ELlJK5Witq2ItpJTKApZEn74IfOIEtW9UUEoVA+8CY6Mv/VRr/f+GsUlidJHjb8+uAlKij+8CHiKSQXIV8K9hapMQQpwKhvX4K2nJQoiBWAZUAWbg5l6Wu5nIRbRq4M0T0K5RQylVArzPkcD2BxLYCjFoPh293661fhjYHn0uqclCCDG0hvX4K8GtEGIgwsAT0cef6mW5jgPZP6OfEYBSaiKwHCiKvnSP1vqHw9gkIU4aR2WM/CN6/3j0folSKvvEt0oIIU5+I+H4K8GtEGKg/h69n6mUmnb0m0qpqcCso5Y95SmlphAJbPOjL31Da33fMDZJiJPNJ4lkjGiOnFQ9Hn1ujr4vhBBi8A378VeCWyHEgGitNwId4/1i9d52vLYtuuwpTyk1nUhV5BwiB/qvaK1/O6yNEuLk05ESt0JrfRhAa30IWBl9XVKThRBiaAz78VeCWyHE8ejokf2kUqrzeBKdn/WTRy1zqjudSPGoLCKB7X9orf8wvE0S4uQSvYB0evTpP456u+P56dHlhDjVZSmlTuvrRuR7S4hejZTjrwS3Qojj8ThgAAXA+V1eXwgURt97/NiPnZKuBtKjj7+ktf7LMLZFiJNVR6+BH3j6qPeeir7edTkhTmV3AlviuN05XA0Uo8qIOP5KcCuEGDCtdTmR3kjonprc8fg9rfUpN8dmD3SXx1cqpWzD1hIhTkJKKTNwS/TpK1rrpq7vR5+/Gn16S3R5IYQQx2kkHX8luBVCHK/HovfXK6WcSikncF30NUlJPuL/OFIOfynwhFJK5hoXYvAsAXKjj49OieOo13OBC4e8RUKMbD/UWqu+boBU8xd9GTHHXwluhRDH6znAA7iJTNB9NZHJur3As8PXrBGnlsjBfG/0+bXAo13HKgshjktHoZIm4JUelnkl+n7X5YUQQhyfEXP8lZMqIcRx0Vq3Ac9Hn36KIynJL2itW4enVSOT1roSWAwcir50C/CXaAEuIcQAKaWSiFxcA0gB/EopffQN8EXfB7haKeU+8a0VQoiTx0g7/kpwK4QYDB2pyUuAi6KPJSU5Bq11KXABUBF96Q7gd8PXIiFOCjcCzn5+xgVcPwRtEUKIU8mIOv7KeC8hxGB4G6jkyHiLamDZ8DVnZNNa71NKXQAsJzLFwpeVUl6t9beHuWlCjFYdKW6VwDfiWP7nQFH0c38bqkYJIcQpYEQdfyW4FUIcN611WCn1d+Cu6Ev/0FqHh7NNI53WeqdS6iIi1abTgG8ppTxa6x8Mb8uEGF2UUmOB+dGnz2qt/xXHZ84C7gbOV0oVaa0PD2UbhRDiZDQSj7+SliyEGBRa6+9orR3R2zeHuz2jgdZ6M3Ax0BJ96ftKKem9FaJ/PgV0jFt/Js7PdCyn6D6NmRBCiPiNuOOv9NwKIcQw0lp/pJS6FHgDSAB+Hu3B/cMwN02I0aLj5KgGWBHnZ9YCZUBB9PM/HYJ2iZHhDKXU7XEst1JrvbfvxYQQXYy4468Et0IIMcy01quUUlcSKZPvAH4XHYP70DA3TYgRTSl1LjA++vR5rbURz+e01lop9RzwVWCSUupsrfXaoWqnGFZXcaSSa28+w5Gp2oQQfRipx19JSxZCiBFAa/0OkblvA0RSdR5USn1yeFslxIjXda7E/s6r3XV5mfNWCCH6Z0Qef5XWejDXJ4QQQgghhBBCnHDScyuEEEIIIYQQYtST4FYIIYQQQgghxKgnwa0QQgghhBBCiFFPglshhBBCCCGEEKOeBLdCCCGEEEIIIUY9CW6FEEIIIYQQQox6EtwKIYQQQgghhBj1JLgVQgghhBBCCDHqSXArhBBCCCGEEGLUk+BWCCGEEEIIIcSoJ8GtEEIIIYQQQohRT4JbIYQQQgghhBCjngS3QgghhBBCCCFGPQluhRBCCCGEEEKMehLcCiGEEEIIIYQY9SS4FUIIIYQQQggx6klwK4QQQgghhBBi1JPgVgghhBBCCCHEqCfBrRBCCCGEEEKIUU+CWyGEEEIIIYQQo54Et0IIIYQQQgghRj0JboUQQgghhBBCjHoS3AohhBBCCCGEGPUkuBVCCCGEEEIIMepJcCuEEEIIIYQQYtT7/3AMBeTFU8ZpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)\n", + "\n", + "e_fermi_ref = [14.7437]\n", + "for (fermi, n_iter, path_w90, cycle, label) in [(e_fermi_ref, [1], path, cm.GnBu_r, 'reference'), (e_fermi_run, [1], './', cm.RdYlBu, 'run')]:\n", + "\n", + " col_it = np.linspace(0, 1, len(n_iter))\n", + " for ct, it in enumerate(n_iter):\n", + "\n", + " # compute TB model\n", + " h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0\n", + " tb = TB_from_wannier90(path=path_w90, seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)\n", + "\n", + " # compute dispersion on specified path\n", + " k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)\n", + " e_val = tb.dispersion(k_vec)\n", + "\n", + " # plot\n", + " for band in range(n_bnd):\n", + " ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it} - {label}' if band == 0 else '')\n", + "\n", + " \n", + "ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')\n", + "ax.set_ylim(-0.2,0.8)\n", + "ax.grid(zorder=0)\n", + "ax.set_xticks(special_k)\n", + "ax.set_xticklabels([r'$\\Gamma$', 'M', 'K', r'$\\Gamma$', 'A', 'L', 'H', 'A'])\n", + "ax.set_xlim([special_k.min(), special_k.max()])\n", + "ax.set_ylabel(r'$\\omega$ (eV)')\n", + "ax.legend(fontsize='small')" + ] + }, + { + "cell_type": "markdown", + "id": "fcc962ef", + "metadata": {}, + "source": [ + "### Convergence" + ] + }, + { + "cell_type": "markdown", + "id": "192ebb20", + "metadata": {}, + "source": [ + "To check the convergence of the impurity Green's function and total energy you can look into the hdf5 Archive:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "57fbd7ae", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive('./ce2o3.h5','r') as h5:\n", + " observables = h5['DMFT_results']['observables']\n", + " convergence = h5['DMFT_results']['convergence_obs']\n", + " \n", + "with HDFArchive(path + 'ce2o3.h5','r') as h5:\n", + " ref_observables = h5['DMFT_results']['observables']\n", + " ref_convergence = h5['DMFT_results']['convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fae94579", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWYAAAGsCAYAAABejH5GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AADGPElEQVR4nOzdeXxU1f3/8ddnskMSQLYgqyCKa7WKiguiuH1dqtYFa9VitXX5trW0/aq17U+0WrXVutVqxYVatXVrtVWrIoiIoqLVqqhsCogSdgiB7HN+f9yZZGYySWbCzJ1J5v18POYxc++ce89JJsrNO+d+jjnnEBERERERERERERH/BDI9ABEREREREREREZFco2BWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGf5mR6ApJ+ZFQF7hTbXAk0ZHI6IiIh0P3lA/9DrD51zdZkcjOQmXfOKiIhImqX8mlfBbG7YC5if6UGIiIhIThgLvJPpQUhO0jWviIiI+CUl17wqZSAiIiIiIiIiIiLiM82YzQ1rwy/efvttBg0alNKT19TUMGfOHADGjx9PSUlJSs8v2UOfdW7Q55w79FnnBj8+51WrVnHAAQeEN9e211YkjXTNK2mlnwHRz4DoZyC3peOaV8FsbmiurzVo0CCGDBmS0pPX1NTQr18/AIYMGaL/MXVj+qxzgz7n3KHPOjdk4HNWXU/JFF3zSlrpZ0D0MyD6GZAIKbnmVSkDEREREREREREREZ8pmBURERERERERERHxmYJZEREREWD+sg2+HiciWWz5PH+PExERkZykYFZERCQHpDt09CPUTGcft85YxBn3zOPu2UuTOvfds5dyxj3zuHXGopSNZXuOU7gskgKv3AAPHgdzb03uuLm3ese9ckN6xiUiIiLdjoJZERGRDnT1MC3doaMfoWY6+5i/bAO3z1wMwE0vfJpwH3fPXspNL3wKwO0zF3f4eXSHz0Gk21s+D1690Xv98tTEw9m5t3rtwTteM2dFREQkAQpmRUQkrRRqZjZMS3fo6Eeome4+xo7YgSuOG9O8nUgfkecGuOK4MYwdsUPGvga/wmWRbm/4ODhqast2IuFsZCgL3vHDx6V+bCIiItLtKJgVEclhCjW7f6iZ7tDRj1DTjz4umTAq4T7infuSCaPaHU93+BxEcsahUxIPZ+OFsodOSd/YREREpFtRMCsikqMUauZGqAnpDx3Tff5s6qOz5/bja/DjeySSM+KEs/lv3hndRqGsiIiIbKf8TA9ARETaNn/Zhk7NYOvouNhQE0golIkNNQ8d3a/D0DHcPpF+OhNqpuv8YeHzJdJPZ8O0dJ6/vX4aGhoYnsbzx34d2xsGZrqPVISZ6f4a0v05i+SUcMgaCl8LXr2enXc8kyUDTiB/7s3w+s0tbRXKikgX5pxj69atVFVVUVtbS1NTU6aHlLWCwSB9+/YFYMWKFQQCmu/YFeXl5VFcXEx5eTk9e/bEzDI2FgWzIiJZ6tYZi7h95uKkQ5Nw6HLZxNFMOXqXuG0UamZX6OhH4Bivn9/PXMpJw4yjBjumzV3O72e2zK68/NhdufCwnahtaCLoHE1BRzAITc7RGAw2vw4GvfeanOOo3QawdkstD7y+rLmfLzdt4+R9BvOP/6zk0be/aD7/pP2Hsufgcl5dtJagc+Ag6Bwu/Iz3S4K3DQ5H0MGOvYs5ce9BPPvBquY+Pli5icNG9+eVhauZ8fGa5j4OHtWXqtoGrnv2YxqagjQEHQ2NQRqDjvqmII1NQRqanPde6HVjU5D6JkffnoWs31rf3MdvX/gUF/G9HFBWxIsLKnnl0zUU5gcozA9QkGcU5udRmBegMN8ozAtQkBeIeD9AUX6AnkV5HLdHBS8sqGw+/9K11Zy8z448/8Eq/jq/5fv03UN24ujdB7J8/Vby8wIUBIz8vAD5eUZ+wMgPeP1GXkwm8zkrlBXpQEw4u8dXj7P7V48T9eubQlkR6cKCwSArVqygpqYm00PpEpxzlJSUANDU1EQwGMzwiKQzGhsbqaurY/PmzZSUlDBs2LCMhezmnOu4lXRpZjYE+ALgiy++YMiQISk9f01NDS+99BIAxxxzTPP/pKT70WcdLV2zWcNtzrinZUXnRMOT2PDuiYvHtdtXvLBv8oE7tvqctzcU7Oj4bD+/c46GJscfZy/htpcXN+8/b9xwTt5nMH//z0oeeWtF8/6zxg7lhL0HtYSMoedg83bL66AjtO14+eM1PPfhqubzHLdHBYeO7scrC9cw85OWwHHcyL7sPaRXc6jYGAxS3xj9ujEYChsbHQ2h141NXiC5vrqOzTWNkV8hkLm/Esv2ywt4QW1BRGhb2xCkuq7lczYcLuJzTmUou3LlSoYOHRreHOqcW5mSE4skIa3XvC9fC3Nvab1foWxO0bWwdLefAeccy5cvjwplzYy8vLwMjir7NTZ611f5+Zrr2FU1NTURmYeWlJQwfPjwDmfOpuOaVz9FIiKdkM7ZrJDZGa3puO05Xj+NTUG+c8gI7n/tM26fuaS57aUTRnHS1wbxxYZt3izNUGjZFKR55qZz3mxN77Xj68N6c9bYofwtNNPQm4G4haN3r+DZD77iX/9tCTsP2bkvm2rqufqZj6htCFLT0ERtQ1Pzc+S+2oYmauqbqG0M0hRs/YfMh+Yt56F5y1vt/9v8L5rHsj1eWFDZPKsy0rzP1jPvs/Xbff4WCmW7uqbQzOW6xrZnbaQrlBXJCUf8HDf3luj/WxaVK5QVkS5t69atzaFsXl4eFRUVlJaW6vb8dgSDQaqqqgAoLy/X96qLCgaDVFdXU1lZSVNTEzU1NWzdupXS0lLfx6JgVkQkSX7UZ408p9+36Sdy23NtQxNbahvZUttAVeh5S8RzVU14f8R7dQ30LilgU00DALfMWMQtcRYQ++PspfwxyQXJ4nny3S958t0vW+1/fcl6Xl+SylBTpGvpUZinUFYkWfP+0PpPWHVV3gJgCmdFpIsKB4wAFRUVlJeXZ3A0Iv4JBALNP+9ffun9zrhlyxYFsyIiXYFfs1kjz5nq2qO1DU1srmmgqqaBzTUN7FpRGlW3818r8vj3F45G1xKQ9ulRwH2vfcatMxZR36RaStK2vIBBaFZzrJKCPHoW5WFmGBAww6zlufl16D1C2wEDI9zG215fXU9lVW2rPkb178mo/qUU5Hs1WQvyAlGv8/MCFOZ5tVoL8rwarQWh1/l5Xm3YVxau4Zn3v2o+Z2lRflRZgBP2GsT4XfpR3xikrtGrT1vf6JWMqG8KUt8Y8Rze3xj9XkNTkMrNtayrrm/1NeQHvK+1oSn1Jae21Tdx9+ylCmdFEjX31uYas62E9yucFZEuqLbWu44ys4wEUiKZVlpaipnhnMtYnWUFsyLSbaWzBqxfs1nb6ss5x7cPHM7dry7hnlc/a277P3tWkBeA3734KVU1jV74WtsQEcI2UlXbQH07tzuHNbrouUEbtzUkPOZcVVIQoEdhfnNw2BwomhEIeMFiwKLDyNhgMmDGui11rGojcBw9oCwmZLTmBabCNUYjX8e2LcwL8PInq3nqPy2ziYvzHLVNLZ/3dw8ZwbcOGEZewMgLeGNs9Tr0NbXeZ61+5nv3KGBT6OenpqGJH00cvd2hYHt9LF27ldP3G9rpPu6evTQqlA3/NxvZ53MfrmLPwb226+to72toDDquOG4MFx8+kqagozH8CC9SFvRqBjc0eWU2wvvCC5g1Bh1Pv/clT7zbUvaqMOCoD3qfczKz/UVyWnuhbJjCWRHpopqamgCvjIFuyZdcFAgEyMvLo7Gxsfm/B78pmBWRbindNWCh87NZLz58JLUNTVTVNlBVE3H7f0QZgHjb/UsLWRuaWffbFxfy2xcXthrTvz+q5N8fta5J2l2Y0Rz+BcKvQ9t5oX019U1srW/9j+rQPiWMGlBKcX4eJYV5FBfkUVwQoKTAe11SkEdxYR7F+QFKCvOa9ze/V+Dt/+tbK7hjVktN3OjQMciPJo5MW1i3vYFj+PyRoexJw5o4arBjeY9dm8tWPPD6MvqXFXeqn7b+EBG5f3tDwXT20d4fUpL5g0yqv4b8JNfguHv20qhQNt7nrHBWpAMxoWzTwL3IW/1hy/tDD4Iv3vReK5wVERGRTlAwKyLdjl81YCPPGxmkvLNsAzv168nbn2/ggy83N7ftrqUACvMDlBfnU1ZcQFlxPmXF+ZQ3v45+nrd0Pf94ryUULC/Op6q25fbwHx25MxccNrI5ZA3PKA1vd7RKZnuh5hcbazj7wOHbHWpGhrKpDh3THWrGnv8nE0cxfJsX8H/v0OEUFBRsVz9+hJrp7COR2e2p+DrS/X1K9+cskhNiZ8oeNZXglnXRwWz5jnDU1JZ2CmdFREQkSQpmRaTbSXcN2G31jSxaXc3CyioWVlazcHUVPQrz2BaapTnz0zVxj8vWUgA9C/MoLymgsSnYPCMXIN9cVDmDU/bZkdP3G9ocvobD1uKCxKby3T17aVQoGy90vGPWEkoK87tEqJnuMM2P808+cEdeeqll5vX29ONHqJnOPpIpOZLN36d0f84iOSFOKMuhU3Bzbo9uV72mJYRVOCsiIiKdoGBWRLqlVNSAbWwKsmz9Vj6t3MLCyi18WrmFRau3sGLDNuKsaZRRJQUBBpYXU15SQK+SAspLCigvDr/O955D2+H3e5V4wWpBXqDV9yDebc9Pv/8Vu1aUK9TEnzDNj/PHK3DfmX78CDXT2cf8ZRuSrgMdr4/9R/Rpd5Z9ur9P6f6cRXLC8nlxQ1kAeg6Iblu92nuOF84OPQiGj0vfOEVERKRbUDArIhmRzoW5wjpTA3bCLv1ZtHoL/3P7ayxdU+1LyYHiggBlxQVR5QC8YLWlJEB5SQFvf76BZz9Y1XxcZBmAmoYgk8YO63K3t4d1xVAznmwMNdMdOvoRaqa7j7EjduCyiaOTrksd2cdlE0e3+/+m7vA5iOSE4ePg8Cvh1RujQ1nAlbYRzEJ0OHv4lQplRUQi+PG7X3cQDAa57bbbuP/++1m6dCl1dXX06tWLTZs2ZXpokkYKZkXEd34szBUWL3hYuXEbYyrK+Pt/vuS9LzZFtZ+9aG3C40nUkWP6c+weFaGQ1ZvBGhnEFuZ3vALq3bOXRoWyqbpNPxtub9+efhRqdhympTt09CPU9KOPKUfvklBd6Xh9JBJmdofPQSRnHPFzGDmhVbjqYmfM1lVB/TYo7OFtHzpFM2VFRGL4+btfV3fttddyzTXXEAgE2H333enVqxdlZWWZHpakmYJZEfGVnwtzba5pYMFXm8kLwG6Dyvhk1RYAHnlrxfZ8CQAEDEb07cmuFWXsMrCM5eu38vT7XzW/H7no1KxP1zJ2RF8mjR3Wqb7SdZt+um97VqiZPWFaukPHdJ/frz46G0omelx3+BxEckaccLXVjFmArWugcES7x4mI5Co/f/fr6pxz3HXXXQA8/vjjnHbaaRkekfhFwayI+CpdC3Nt3FrPR19t5sMvN7Pgyyo++mozy9dvS8mYB5QVsWtFGWNCIeyYinJGDyxtXvTq7tlLo0LZVC46la7b9BVq5laoCekPHdN9fr/6SLfu8DmI5KzCMhqtkHzXslAmW1ZDnxEZG5KISDZL96LM3cnatWtZt24dAMcff3yGRyN+UjArIr7b3oW5Tt9vCK8sXMOCL70g9qMvq/hyU+tZnskqLcpnl4Gl7FpRzpiKMnatKGPXgWX06VnY5jHpXHQqnbfpK9TMvVBTRES2kxl1Bb3Ir48oexRZZ1ZERFrZ3t/9cmVh0si7FktKSjI4EvFbx4UNRUTS4JIJo7jiuDHN2ze98Cl3z14a1ebu2Uui/mHeuX9P/vzGMsZe/zLnPzifm19axIsLVm93KHva1wcz94oj+HDqMfz90kO44Zt78Z2DR3DQyL6dDmWT+Trj6eyM1ti+5i/b0Gb7KUfvwhMXj0v6YueSCaN44uJxCdd6UqgpIiLdRV1Br+gdCmZFRDqU2O9+XSOUHTlyJH369GHu3Ll8+OGHnHXWWQwaNIi8vDymTp3a3O7FF1/k1FNPZdCgQRQWFtK/f39OOukkZs2aFXW+ZcuWYWaMGDGieZ+ZNT+mT58e1f6LL75gypQp7LbbbvTs2ZPS0lL2228/br75Zmpra1uNN3x+MwPgmWeeYeLEifTt2xczY/bs2c1tGxoauPfee5kwYQJ9+/alqKiI4cOHc8EFF7BkyZK4348JEyY0j3PdunX84Ac/YNiwYRQVFTFs2DAuu+yydhcva2hoYNq0aUycOJF+/fpRVFTE0KFDOeaYY7jnnnuoq6trdUyy34NspxmzIpIx8f56unRtNYN6FfPcB6v4bN3WqPZL1m5tdY6OFOYF2LWijIDBf1dubt4fWQP2qf98yc4DyrZ70axULjrl14xWhZoiIiKJq83vHb1DwayIdFPBoGPjtvqOGybozP2HsK2+kTtneQHfTS98yrb6RiYfPILpbyxr3g/wwyN35sz9h7C+unUo11l9ehQSCFjKzjdv3jzOOOMMzIzdd9+d3r17Y2YEg0Euvvhipk2bBkDfvn3Zc889WbFiBc8++yzPPvssN9xwA1deeSUAxcXFHHLIIdTV1fHOO+8AcMghhzT3M3DgwObX//73vznzzDOprq6muLiYkSNHUldXx/vvv89//vMfnnzySV566SXKy8vjjvl3v/sdl19+Of369WPUqFFRM3PXrVvHiSeeyFtvvYWZMXjwYIYNG8bixYt54IEHeOyxx5pD3XhWrlzJvvvuy+rVq9ljjz0oKCjg888/54477uCNN97gjTfeoKCgIOqY1atXc+KJJzZ/3YMHD2bkyJGsWrWKmTNnMmPGDI477rio0Hp7vwfZSMGsiMQ1f9mGToVvyR538j478t6Kjbz0sfeLzZPvrky6z7Ci/AC7DSpnz8Hl7DW4F3vs2ItdBpZx/9zP44aona0B60d9VtBCPiIiItlGM2ZFJFds3FbPfte9nNY+7py1JCqQ7Wj/9nj3l0fRt7QoZee76aabOPfcc7njjjsoKysDvHIE119/PdOmTWPEiBHce++9HH300c3HPPbYY1x44YVcddVVHHjggRxxxBFUVFQwd+5cli1bxk477QTA3LlzW/W3cOFCzjjjDLZt28a1117Lz372s+ZgdenSpZxzzjm8+eab/OhHP2o1yzbsl7/8JXfeeSeXXnopgUAA5xz19V74ftZZZ/HWW29xxBFHcPfdd7PrrrsCUF9fz7XXXsv111/PpEmTWLhwIX379m117muvvZZjjz2WBx54gP79+wPw6quvcsIJJ/DOO+/w0EMPccEFFzS3d85x+umn88477zBq1CgeeughDj744Ob3165dy/Tp0+nZs2dKvwfZSKUMRKSVW2cs4ox75iV0y32ku2cv5Yx75nHrjEVttmkKOt5dvpGbX1zI/9z+GgffOKs5lE1GSUEe+w/vw+SDR/C70/fmhR8fxoJrjuXp/z2E607Zi0ljh7Hn4F5thrLQ+TID4dmssefrSGR/icxmDffVGQplRUREUq+2VTC7JjMDERGRjBozZgz33ntvcygLXjB74403UlBQwD/+8Y+oUBZg0qRJ/PrXv8Y5x0033ZRUf1dffTVbt27lZz/7Gb/61a+iZruOGjWKJ554gp49e/Lwww/z5Zdfxj3H9773PX7wgx8QCHhRoJlRVFTECy+8wMyZMxk5ciTPPPNMcygLUFhYyHXXXcfJJ5/M+vXrm2cCx+rTpw+PPPJIcygLcPjhhzeHsc8++2xU+2eeeYa5c+fSo0cPZsyYERXKAvTv35//+7//izpfKr4H2UgzZkUkyvxlG7h95mIguVmkkbNPb5+5OGqmZ1VtA3MWrWXWp2uYvXAtG7Ymd0tMaVE+e+xYzp6DezXPht2pXyl5HdyKkmgNWEh+gS7NZhUREck9KmUgIiLghax5eXlR+55//nm2bdvG+PHj2WeffeIed+qppzJlyhTmzJlDU1NTq3PEU19fzz//+U8ALr744rhthgwZwtixY5k9ezavvvoqZ599dqs2kydPjnvsk08+CcA555wTFTTHjvuZZ55h1qxZzWUYIn3rW9+KWz7goIMO4o477mhVo/bvf/874M3UDc8Ubk+qvgfZSMGsiEQZO2IHrjhuTFJBZbwAtG/PQu577TNmfrKG+cs20Bh0nRrP9w8byZX/MybpekDprgELms0qIiKSa1qVMtiiYFZEJBftskvrhZD/+9//ArBo0SIOPfTQuMc55/1eXFNTw/r16xkwYECHfS1evJiamhrMjPPOO6/NdosWeXeurlwZvzzgbrvtFnd/eNyPPfYYM2fOjNsmvIBXW+cePXp03P3hGrnV1dVR+xcsWADAuHHj4h4XK1Xfg2ykYFZEWmkrqJx84I6t2sYGoPsP78Nj81dE7etIcX6A2sZg83bkwlz3vvYZfXoWJrUwl181YEVERCS3tApmt66BYBACqhAnIt1Lnx6FvPvLo1J+3tiFvnqVFLC5pqF5+4dH7szkg0ekvN8+PQpTer7I2qdh4fCysrKSysrKDs+xbdu2hPoKn9c5x+uvv97p88Ybc+T5Fy5cyMKFC1N67nDZhHAgHVZVVQV4JRASkarvQTZSMCsiccULKhsaGhge0ebmFxfyh1eib0l4Z/nGhM6/y8BSjhgzgC21jTz61orm/du7MBe01IC9febipGvAhvtLtAasiIiI5I5WpQyCjVCzEXq2XghFRKQrCwQspYtlgTepJzKUjfe7352zltCjMD+piTnZorS0FICLLrqIe+65J+XnLSoqora2NmXnjT3/X//6V84666yUnz+ecNmDcODakXR/DzJJf9oVkTbFLo71+5lLeepz48WVxhG3vt4qlG1PYV6A8bv055pv7MFrlx/BS1MOp3dJYdxQNl7fiS7MFTbl6F144uJxSf+DfsmEUTxx8TimHN361hQRERHJbXUFrevnUd3xrCgRkVzXXqm57f3dL1vstddeAHzwwQcpPe8uu+xCUVERdXV1zbfqp1K6xt2ePffcE4A33ngjofbp/h5kkoJZEWnXJRNGMeWolnoxcyrzeP6LPCqr6jo8dkBZEWeNHcq95+7He//vaB767gF85+ARDN2hR8ILc23PP9CqASsiIiKp5CyfuvyYhVG0AJiISLv8+N0vG5x44omUlJQwb968hG63T1RJSQknnHACADfffHPKzht2xhlnAPDggw+yYcOGlJ8/ntNOOw3w6touW7asw/bp/h5kkq/BrJnlmdl+ZnaymV1oZleY2Y/M7FtmdpSZDfRzPCLSvmXrtnLtvz7mvrmfJ3zM14b0YspRu/CvHxzKmz+fyI2n7c0xe1TQs6ilckqyC3N19X+gRUREpPtoVc6gek1GxiEi0hXk0u9+AwYM4KqrrgLg5JNP5vHHH6epqSmqTWVlJffccw/XX399Uue+7rrrKC0tZdq0aVx22WWsW7cu6v36+npefPFFzjzzzFZ9duSkk07iqKOOorKykokTJ/L222+3avPJJ59w9dVX8/TTTyd17vb6POyww9i6dSvHHnss8+bNi3p/3bp13Hzzzaxdu7Z5Xzq/B5mU9hqzZjYamARMAA4CSjpovxR4DXgOeNY5V5/uMYpIi2DQ8eritTz0xjJmL1pLTI3uVnoW5nHY6P4cOWYAE8b0Z0BZcbvttTCXiIiIdGV1Bb2g9ouWHVtUykBEJJ5c/N3vF7/4BRs2bODWW29l0qRJlJeXM3r0aAKBAKtWrWLlypUAfPvb307qvLvtthvPPPMMZ555JnfccQd33XUXu+yyC7169WLTpk0sXbqUhgZvEbVHH3006XE//vjjnHbaabzyyisceOCBDBo0iKFDh9LQ0MCyZcvYuNFbS2batGlJnzseM+OJJ57ghBNO4N133+Xggw9m6NChVFRUUFlZyZdffkkwGOT000+nf//+vnwPMiVtwayZnQZcBhwS3pXgoTsDo4DJwGYzux+40zm3ot2jRHLI/GUbOvUPU3vHVdU28MQ7K/nLvGUsW5/4CoYXTxjFD48c3XHDEC3MJSIiIl1ZXX6v6B2aMSsiElcu/u5nZvz+97/nzDPP5O677+a1115jwYIFFBYWMnjwYE455RROPPFEvvGNbyR97iOPPJJPPvmEu+66i+eee45Fixbx2WefUVFRwYEHHsiRRx7JKaecQn5+8lFfnz59ePnll3niiSf4y1/+wrvvvst7771Hr169GDZsGKeccgonn3wyxxxzTNLnbsvAgQN54403uO+++/jb3/7Ghx9+yOrVqxk4cCBHHXUUp512GjvuuGPUMen8HmRKykdqZqcCvwZ2oyWMrQXeB94G3gXWABuAjXgzaHcA+gC7AGOBA4ChQG/gJ8APzewB4BrnnIo4SU67dcaipP9hg5ZbSC6bODpqYatFq7fw0Lxl/P0/X7KtPrHp/j3yHdsavf+8b3lpEfmBQFJjmXL0Lhw6ul/S/8BeMmFUl/prqYiISKaZ2QC8a+sD8K6zxwJ9Q2//2Tk3OUX9TAWuTrD5Ec652anoNxNqC3pH71CNWRGRNnW33/0+++wzqqqqOmx30EEHcdBBByV83hEjRuA6ul0V6N+/P1OnTmXq1KkpPS9AIBBg0qRJTJo0KaH2ALNnz273/QkTJrTbf2FhIZdeeimXXnppwn0m+z3IdikNZs1sFnA4XiBbCzwPPAI8l2xJAjPbGTgb+BawK3ARcLaZneOcezaV4xbpKuYv28DtMxcDLbd2JBKIRtb1uX3mYsaN3IFNNY08NG8Zbyxd3+6xRfkB6hqDzdsnDWviqMGO5T125fczlyY9ljAtzCUiIuILpYYpVlsQO2NW32IRkfbodz+RtqV6xuwEYB1wK3CXc67jPyO0wTm3BLgWuNbMDgV+BRwNfB1QMCs5aeyIHbjiuDFR9Xag/UA0ttj64bv056dPfMCXm2ra7WvXgWWM6NeTFxe01E37ycRRDN+2EIDvHTqcgoKCpMYiIiIiGfUF8AmQuvsQ49urg/cTX1U0C7UuZaBgVkRERDon1cHsFXiBbOIFKhPgnJsLHGtmY4F+qTy3SFcTrxh65P5IsaFsXsB4ddHaVu0i3z92j4GcN24E763YyE0vLGx+74rjxjD5wB156aWWfcmMRUREJFeZ2SjgfLw7y0YD4WRvM7AYmI1XVmBJGrq/FpgPzHfOrTazEaQ5GHXOfZTO82eaShmIiIhIqqQ0mHXO/S6V54tz/vnpPL9IV5FIIPqHWYu5+aVFUcc1BePXdunbs5BvHTCMsw8cxo69S0KBbnQoe8mEUdTUtJ5lq3BWRESkbWZ2JXANUBDatQ74MvS6HG+h3EOAy83saufcjans3zmXaN1XSVBdbCmD2s3QUAMFJZkZkIiIiHRZXWeZMhGJ0lYgetrXBzPl8fd5fUn7tWMB9h7Si++MG8EJew+iuCAP8OrYRs6yTWSRsXhjycZC7SIiIn4ys28BvwEW4C2O+5JzblNMm97AsXhlu643s2XOub/5PFRJQm1sKQOA6jXQZ7j/gxEREZEuLeXBrJn9E3gI+GeyC36JSHLiBaKRoWo8BXnGiXvvyHnjhrPvsD6t3h87Ygcumzia22cuTiiUjTeWyyaOVigrIiICPwY+Aw5yzm2N1yAU1D5mZs8D7wNTAAWzWawxrwcuvxhrrG3ZqWBWREREOiEdM2ZPBE4ANpvZ48BfnHOvp6EfEQEuPnwkH325mec+XNVuu4HlRXz7wOF864Bh9C8rarftlKN34dDR/ZIOVy+ZMEozZUVERFrsAfyxrVA2knNui5n9Hbgk/cNKLzObgbdgbxmwCfgYeAH4k3Nu43acd0gHTSrCL2pqauKWYNoetbW14YEQ7NGPvKqVze/VbVhBsN+eKe1Psk/zz0DMa8kd3e1nIBgM4pxrfi0di/w+6XvWfTjnCAaDHV47pPraAtJXysCA3sD3gO+Z2ed4s2gfds59lqY+RXLO2i11XPWPD5nxcduLThwwYgfOO3g4x+5RQUFeIOFzdzZcVSgrIiLSrJ6Whb4SUR46pqs7KuJ1f7xFzw4HrjCzyc65Zzp53i8SbThnzhz69UvfmsGbG4uIvOL5dP6rLFumKnG5ZM6cOZkegmRYd/gZ6Nu3LyUlJZgZVVVVmR5Ol1NdXZ3pIUgKNDY2Nv9B99NP278Ded26dSnvP/GUJnE74y1wsAQvoDVgJ+BqYLGZvWZmF5pZMhepIhLjuQ9Wccytr7Ybyk4+eASPXzyOE/feMalQVkRERFLiTeAsM9u7o4Zm9jXgW8C8tI8qfT7Eq6V7ErAfcBDwHeCl0Pu9gafM7H8yMroUqi3oHbVd1Lg5MwMRERGRLi3lf9YNzYi9BrjGzA4CzgUmQfMflQ8OPe4ws2fxZtL+2znXlOqxiHRHG7fW8//+uYB//feruO8X5BkNTd7tKNPfWMbA8uKE68SKiIhISl0NvAa8aWaPADOAxUA4xesFjAaOAc7GmzRxdQbGmQq3Oeemxtn/FvCQmV0E3APkAfeZ2c7OuWTvBxzawfsVwHyA8ePHM2RIR5UPklNbW9s8Q26HYbvBh+82v7fzwFKGH3NMSvuT7BP5MzB+/HiKi4szPCLxW3f7GVixYgVNTU3k5+dTXl6e6eF0CcFgsHmmbGlpKYGAJkB1dWvXrqWkpITS0lL222+/dtuuXLmy3fc7I6332zjn3sS7EP0xcDxeSHsCUAQUA6eFHuvM7FG8erT/SeeYRLqymZ+s5sq/f8jaLXVx3z9138HcOmkf7p69NGpBMEDhrIiIiM+cc/PN7DjgPuAC4LttNDW8RcIudM6949f4Uim0iFl77//JzPYHLgR2BL4JPJJkH+3+NmRmza9LSkooKSlJ5vRJyes1KGo7v2Y9+WnsT7JPcXFxWn/GJPt1h5+BQCDQXCdVAWPyAoGAvm/dhJkRCAQ6/G86Hf/N+1IIyTnXADwDPGNmvYEz8ULaQ0JN+gM/An5kZp8AfwYecc7FnxIokmOqahv49b8+5ol32/595IdH7sxPj9kVaAlhFc6KiIhklnNutpntChwJTMCbIRsu6bUZbwbtq8DMHLiD7E94wSx4NWeTCmazies5MHpHddulpURERETa4nuF+tBf0+8F7jWznfAC2m/jXaQC7AbcCPzGzF4B/uyc67IXbSLba+7idVz+5H/5anPbq35ecdyuXDJh56h9CmdFRESyQyhwnRF65LKPI14PztgoUsCVDojeoWBWREREOiGjc66dc5875651zu0KjAPuBjbg3c6Vh7ei60MZHKJIxmyta+RXT3/EOfe/1UEoO6ZVKBt2yYRRXHHcmObtm174lLtnL035WEVERHKJmeWZWWGmx9EFWcdNugbXs3/0juo1ELodWERERCRRWVMMwzn3lnPuf/Fq0C4AXIaHJBkyf9kGX4/LRvOXbeD4O17jL28ub7edF8q2PwM2Xjjbnb5XIiIiGfAjoNrM3jezM2LfNLNSM9vHzHy/Oy3L7R7xukuXLGtVyiDYALWbMjIWERER6bqyIpg1sx3N7P/M7ANgHtEXbfrTcw65dcYizrhnXtKzOu+evZQz7pnHrTMWddjWj+C3s328vmQd1z/3MWf+aR7L129r9f7Bo/py/iEjgMRC2bDIcPayiaMZO2KHTo1PREQk14XC1ivwSoI1Av+M02w48B+88PZdM7vPzC41s3Fm1sPH4WabiyJev5qxUaRCz36t922p9H8cIiIiSZo8eTJmxtSpUzM9FCEDNWbDzKwncBpejdkJtITE4VucPgX+EnpIDpi/bAO3z1wMJFcP9e7ZS5vb3z5zMYeO7tdm8HjrjEXcPnNxUqFmZB+XTRzNlKN3abdtZ/v4f898xEPz4s+QLSnI4+fHj+GcA4cTCBjH7zUo6XD1kgmj2H9EH4WyIiIi2+cYYADe3V2XOefq2mlbCOwTepwf2hc0s8XAfODC0CK5Wc3MJgMPhjavcc5NjXl/L6DGObeknXNcBFwQ2qwE/pH6kfoorxBKdoCaiD/GV6+Ggbu3fYyISK5aPg+Gj/PvOOmUZcuWMX36dHr37s2Pf/zjTA8nZ/gazJqZ4V3MngucApSE3wo9rwcew1vwa76fY5PMGztiB644bkxSi1VFhrLgzSJtK3j0I/jtTB/1jUEmP/g2byxdH/f9/Yb34eYzvsZO/Xo27+tsuKpQVkREZLudEHqe55x7vYO2DvgCGBaxLw8YA+wKzAWmpXyEEczsUCCyGH3kVM+dQ6FrM+fc9E50sx9wX2jh3n8DH+Jd1+fjfa3nAEeH2jYBFznntnain+xSVhETzK7J3FhERLLVKzfAqzfCUVPh0CmJHzf3Vnh5Khx+JRzx83SNTiIsW7aMa665huHDhyuY9ZEvwayZ7YMXxn4LCBdkCoexDcDzwJ+B57rCrAFJn3CImUg4Gy+UbS8ETXfw25k+PllVxXkPvM3aLa0n2xTmB/jZMbtwwaEjyQt0m7UyREREurr98ALXfyXS2Dk3wsx60zJzdh/gUGAkMIU0B7PAhcB32njvkNAj0vRO9hNeuPeodtqsBy5wzsUr/9D1lA6ANR+3bFerlIGISJTl87xQFryQFRILZ8OhLHjHj5ygmbPSbaUtmDWzwcC38QLZ8D09kenSfOAh4K/OuYyuRGRmw/AWcTgBb0ZDHbAEeBz4o3OudbHPzvd1FN6sgUOBQXi1yVYDHwAzgb8456pT1V9XlEg4m2wom8y5/eijsSnIn+Z8xi0vLSQYZ5m7vQb34vdnfo3RA8s67E9ERER8tVPo+b+JHuCc2wTMDj0ws53xynbtamZ7OOcWpHaIvnser0zBOGBfvIkYffGu/Tfgfa9eAKY756oyNciUK41ZAEwzZkVEog0f582UDYesiYSzkaEseMcrlJVuLOWLf5nZd8zsZWA5cANeKGuhxxfAjcBuzrkDnXN3ZUEoewJeKPpTvFutegB9gLHA74D/mNnIFPTTx8yeBmbgzVoYFeqrHBiNV2/3j0TfapazIherAi/cDC8I1tnANJFzh6WzjyVrqjntnnn87sXWoWx+wPjJ0bvw90sPVigrIiKSnXqFnjudwoVqsc4JbZ643SNqv6/JzjlL9NHGOaZHtJka5/01zrkHnHPfc87t75wb6pzr4Zwrcc4Nds4d75y7o1uFshAnmF2dmXGIiGSzQ6d44WrYy1O98DWeeKFsMuUPfDBy5Ej69OnD3Llz+fDDDznrrLMYNGgQeXl5UYtpvfjii5x66qkMGjSIwsJC+vfvz0knncSsWbPaPPcTTzzBMcccQ//+/SkoKGCHHXZgzJgxnHfeebz44otRbadOnYqZMXny5DbPZ2aYGcuWLevw65owYQJHHHEEAMuXL28+NplzSOekY8bsg3i3d4Uv7LYCf8ebHTvLORdnfmBmmNnX8GbF9gCq8YLkV/Bq354FfA+v/tdzZja2szNZzawXXiC7X2jXc8Df8Gbl5uGt3DsWOL3TX0w3FG/m6e9nLKShqeVHaJ+hvflqUw1XP/MRgYCRZ0ZewPsfR14A8iz8Orzf21eQZxw5ZgCzPl3TfO7/frGJI8cMYPbCNTz/UcutaCfvsyMj+vbgxQWVBELnNfP6CpgRCBDabwTMex0w47DR/VhdNYLpbyxr7mP+svW8vmQ9dY3BVl/vrgPLuOXMr7Hn4F6t3hMREZGsUQ8UAD07aBNu15YX8RbA3a+dNpLNYoPZLSplICISVzhcbW/mbBcIZSPNmzePM844AzNj9913p3fv3pgZwWCQiy++mGnTvEpFffv2Zc8992TFihU8++yzPPvss9xwww1ceeWVUef7xS9+wW9+8xsABgwYwNe+9jW2bdvGypUr+ctf/kJVVRXHHnts2r6evfbai/Xr1/PRRx9RVFTE/vvvH/V+cXFx2vrOdekqZeDwAs4/A0+lshRAit2GF8o2Asc45+ZFvDcrtGLub/Fm0v4EuLaT/dyJd9HdCJzjnHss5v3XgUfN7Cd4Qa2EXDJhFJtr6rnn1c8AokJZgPe/2MT7X2xKSV8vLKjkhQWtL6ifef8rnnn/q5T0MevTta32Gd7XedlRoynK18cvIiKS5dbjhbKD22rgnFtsZqW0lPOK54PQ814pHJv4SaUMRKQ7CwajFzjcXvueC/XbYM5vve2Xp3rbB14Eb/2pZT/A+Mu99lvXpa7/kh0gkLqbxm+66SbOPfdc7rjjDsrKvLtda2pquP7665k2bRojRozg3nvv5eijj24+5rHHHuPCCy/kqquu4sADD2yeobpu3Tpuuukm8vPzefTRRzn99NMxa7mJ5c0332Tp0ui7fFPtzjvvZPbs2RxxxBFUVFQwd+7ctPYnLdIRzF4FPOycW5mGc6eMmY3Fm6UAcH9MKBt2C3A+sBvwYzO7IdnFyUIr4Z4b2rwuTijbLDSbuDGZ8+eCIX16ZHoIabNDjwLumzyWrw/rk+mhiIiISGI+wFuT4Gi8O6Dics410hK+xhNO8fqnbmjiqzKVMhCRbqxmA/wu8XJ+nTLnt9GBbEf7t8f/LYWe/VJ2ujFjxnDvvfdSUNByc0xNTQ033ngjBQUF/OMf/2CfffaJOmbSpEmsWrWKKVOmcNNNNzUHs0uWLKGpqYl99tmHM844o1VfBx10EAcddFDKxi7ZJeU1Zp1zN2Z7KBtySsTrB+M1cM4F8UowgFd3dkIn+vlB6LkaL+iVJD33QWpmq2abovwAr185UaGsiIhI1zIb74aXb5rZ9hSED9c1UlH5rip2xmztJmiozchQRETEX5MmTSIvL/qO1+eff55t27Yxbty4VqFs2KmnngrAnDlzaGpqAmD48OEALFq0iP/85z/pG7RkpXSVMmiTmQXwAs5xQAVeKYFfOudWRbQpDI2tyTlXl6ahHBZ63gq82067VyNeH4pXKzYhoa/j5NDmv8M1as0sH+/2NwdUOufqEz1nrrl79lLmfdb27RNfH9ab3XcspykIwaCjyTmCzoVe0/I66AiGtr3Xrvn1yo01rNxY0+rc/UsL6dOzsPm4YOgcTUGHc+G+CO13of1EjCHUn/P2x6prDDL9jWVJLSomIiIiGfcX4Hq8BVxvAy7o5HkqQs/ZWvJLOlI6oPW+rWug9zD/xyIiIr7aZZddWu3773//C3gB66GHHhr3uPCySzU1Naxfv54BAwYwaNAgzj33XP7yl7+w//77N5c5OPjggxk/fjzl5eXp+0Ik43wNZs3sBOAOYETMW7cAqyK2LwD+AFSb2Y7Oua1pGM5uoecloVvN2vJpnGMS9TUgXCF5nplV4C0wdgYtC0bUmtkreGUO3kjy/ACY2ZAOmoQv/KmpqaGmpnUIuT1qa2vjvt5e0+Yu5/czW9dRGb9zX+YsWQ/Af1ZsYsLovnzv0OGd7yMi+O1Vks/mGu/HYW11PeceOLTT547qI+LriOzjphc+paGhYbv78Eu6PmvJLvqcc4c+69zgx+ec6muLbOacW2dmf8Rbf2CymS1wzv2+E6cK/8bWPW8NygXFvSGvCJoi5pFUK5gVEckFPXu2XgN006ZNAFRWVlJZ2fGCkNu2tfxt9v7772fPPfdk2rRpvPnmm7z55psAFBYWcsYZZ3DzzTdTUVHR1qmkC/MtmDWzC4E/4d36BbAO6Ic3azTW/cB1QG/gVODhFI+lONQ3QLtlF5xzG81sK16QOjTJriIXfCgGPozoN3L//wDHmtlPnXO3JdkHwBeJNpwzZw79+qWurkq886fCy18a/1oRfyGsnWwNvYbR/P7vZy5l8eJFHDU43o9S4n2cNKyJowY3Ru3v7Ln97CNTUvVZS3bT55w79FnnhnR9zuvWpXBxjq7hl8DxeAvE/s7MhgI/d84llHyHSiB8F+86+PW0jVLSy8wrZ7B5Rcu+LR3/Ii4i0iWU7ODVZU212IW+int7pWDCxl/uLQiWaiU7pP6cMUpLSwG46KKLuOeee5I6tqCggMsvv5zLL7+cFStWMHfuXGbOnMkTTzzBI488wscff8xbb73VXNM2vDiYi3d7LrB1azrmN0o6pLzGbDxmtjNwV2hzFrC7cy7OvT+e0K39T+GFuMekYUiRtbyqE2gf/okuTbKfyP/yr8YLZZ8F9scLZAcClwJVeJ/F783sf5Lso9uJDTPzLPp/NL0KHUcNdpw0rKl5379W5PHyl0ai4gemXj/be24/+xARERH/hQLYY4AleNerPwI+NrNzzayovWPNrCfeomHhAqWPpHOskmax5Qy0AJiIdBeBgLdYViof7/0lOpQ9aipcudx7DpvzW69dqvsOpD/+2muvvQD44IP21v7s2LBhwzj77LO5//77ee+99ygqKuK9997jrbfeam4TnrG7enX8f3cWL16cdL/hsFf85deM2R8DBcBHwPEJ1lR9DbgQ2CcN4ymOeJ3IWML3J5Uk2U/k3PYi4F/AKaFFxcBbjfduM/sQr5ZtAPitmb3g2vqzR3wdzeStAOYDjB8/niFDOqp8kJza2trmGTjjx4+nuLi4gyPaNm3ucv61ouWvcpcePoI/vrosqs03jjqMwb1LOAYYHVEm4F8r8hg9elSHZQFi+/jJxNbHdPbcfvaRCan8rCV76XPOHfqsc4Mfn/PKlV1h3dfUcs6tNLPDgZl4M2eHA9OB28zs33gzYT8B1gMNeNdj44HvATvizZZ92Tn3auuzS5dRFnNbafWazIxDRCTbzb0VXp7asn3UVDh0ivc6/Bx+P/wc3t9FnHjiiZSUlDBv3jxef/11DjnkkO0+56hRo6ioqGD58uV89VVL9aPRo0cD8P7771NfX09hYWHUcXfffXfSfZWUeJFXLpWoygZ+BbMT8S4+b0tioatwqpWOIk2Rt5kVttmqRXjmQ7I/nbG3s/1fRCjbzDk318z+DpwO7Bl6fJhoJ865dn8bivyrR0lJSfN/bOlQXFzc6fPPX7YhqhbrFceN4Ygx/VsFs8P696Yw3/tr14+OHkNBQQE3veCVAv79zKWMGz2AsSPi36Zw9+ylrfpoa/GteOcuKCjocLEuP/rIBtvzWUvXoc85d+izzg3p+pxz9WfHObfKzPbDK23wU7zryj7At0KPthiwCPh22gcp6dVqxqxKGYiItNJeKBvWDcLZAQMGcNVVV/GrX/2Kk08+mT/+8Y+cdtpp5OW13ElbWVnJ008/zfr16/nFL34BwMsvv8xzzz3Hd77zHfbZZ5/mtk1NTdx3330sX74cM+PrX/9683tHHHEEPXr0YPXq1Vx55ZXcfPPNBAIBgsEgf/rTn3jooYeSHv/IkSMBWLNmDQsWLGCPPfbo5HdCkuFLKQNaZnS+n8Qx4fIBPVI7FAC2RLxOpDxBeOZrImUP2urnc+fcwnbavhjxemyS/XQLY0fswGUTvb/6hMPMVZujs+1+pUXNoWzYJRNGccVxYwC4bOLoNkPZ+cs2NAegkX20J/Lc4C3WNX/Zhjbb+9GHiIiIZA/nXI1z7hfAXnjrItTiBa9tPRzwKHCQcy7nivN2O6UDo7c1Y1ZEJFoioWzYoVOiyxq8PNU7vgv5xS9+wZQpU1i/fj2TJk1ihx12YP/99+eAAw5g6NChDBo0iEsuuYRPPvmk+Zjq6mpuu+029t13X/r06cPXv/519t9/fwYOHMjFF18MwDXXXMPOO+/cfEx5eTnXXXcdALfeeiv9+/dn7NixVFRU8IMf/IC77rqLZPXr149jjz0WgP3224/999+fCRMmMGHChIQWM5PO8WvGbPi2/GQKVvQPPVeleCw452rNLLz4WLv39ZtZH1qC2YQX2YrTvqN7/CLbtll/t7ubcvQuHDq6X3O4WhkTzA7qFf/2y0smjGL/EX3aDGWhJfi9febihALTyHODF5i2F/z61YeIiIhkH+fcYuA8M7sEOAI4EBiNN4O2CVgLvAs865z7LGMDldRqFcyqxqyISLPl8xIPZcPizZwdehAMH5f68aWBmfH73/+eM888k7vvvpvXXnuNBQsWUFhYyODBgznllFM48cQT+cY3vtF8zGGHHcZdd93FzJkz+eCDD1iyZAk1NTUMGDCAb37zm1x66aVMnDixVV9Tpkyhf//+3HbbbSxYsIDFixez//778/Of/5yJEydywQUXJD3+hx9+mF/+8pe88MILfPDBBzQ0NABeaSxJD7+C2a+AnYFd8C5IE3F46HlZOgaEV/PrMGBnM8t3zjW20W5MzDHJWBDxOq/NVq3fb2ssOSEylIydMVvRRjAbe1xbYoPfRCUS/PrZh4iIiGQn59xWvMVen830WMQHscHsFgWzIiLNho+Dw6+EV29MLJQNiwxnD78yq0LZzz77jKqqjucPHnTQQRx00EEJnbNv375ceumlXHrppUmP55xzzuGcc86J+15bSxdNnz6d6dOnx32vX79+3HPPPUmPQzrPr2B2Dt6MgbOBv3bU2Mz6ARfhzbSdlaYxzcULZnsC+wFvtdHu8IjXryfTgXNuuZmtwKuT29HUycj3v0ymn+6scnN0Wd+2Zswmo7PBZzLH+dGHiIiIiGRYvBmzzoFWthYR8Rzxcxg5Iflw9dApXWqmrEhn+VVj9t7Q8/Fmdn57Dc1sCPA8XpmBpohjU+3piNdxx2RmAeC80OYm4JVO9PNU6HmgmR3cTrtvRrx+rRP9dEvJzJgVEREREfFVWUwwG2yAmo2ZGYuISLbqbLiqUFZygC/BrHNuPnAPXo3Z+8zsCTM7M6LJ3mY2yczuBxbizWB1wC3OuSVpGtPbtASgF5hZvP/ifwrsFnp9u3OuIfJNM5tsZi70mNpGV7fhLQIBcIeZ9YxtYGbnABNCm8855zqqR5szEq0xKyIiIiLiu579W+9TnVkRERFJkF+lDAB+iFc24Fy82aHfpGVRsEci2oXv+5kOXJXmMV2GV56gBHjJzH6DNyu2BDgL+H6o3SLgls504JxbYWb/D/gtXuD8tpn9FvgI6IX3fbg41LwKSLDoSm6IDWYryksyNBIRERERkRj5RVDSJ3qWbPVqGLBb28eIiIiIhPgWzDrnmoDvmNk/gZ8DX2+j6cfAdc65v/kwpvfMbBLwMFAO/CZOs0XACc65LdvRz+/MbAfgCmB3vNA51hrglNCKvgJsqW1gS130OmiaMSsiIiIiWaW0IiaYXZO5sYiIiEiX4ueMWQCcc08BT5nZjsD+wAAgD1gPvOecW+rzeP5lZnvjzZ49ARgC1ANLgCeAPzjntqWgn5+HQulL8BYdG4RX4mAR8E/gTufc5u3tpztZXVXbap9qzIqIiIhIVikdAGs/adneUpm5sYiIiEiX4nswG+ac+wovkMw459xy4CehRzLHTSf+7Ne22s8D5iXTRy6LXfirT48CigvyMjQaEREREZE4SmMWAFONWREREUmQL4t/iXRGbDBb0Uv1ZUVEREQky5TFBrMqZSAiIiKJUTArWSt24S/VlxURERGRrNNqxqxKGYiIiEhiUhrMmtn/mVmPVJ4z5vwHmNnx6Tq/ZJfWM2YVzIqIiIhIlmkVzGrGrIh0DXl5XqnApqYmgsFghkcj4r9gMEhTUxPQ8t+D31I9Y/Ym4PNQQFuaqpOa2cFm9m+8+qz7p+q8kt0qN9dEbQ8qVzArIiIi2c3MAmZ2pJn9wszuNLP7zWxQTJtCM+thZkWZGqekkGrMikgXVVzs/Y7tnKO6ujrDoxHxX3V1Nc45AEpKMlM+M9XB7GygP3AjUGlmj5rZCWaWdOxsZiPN7Jdm9gnwGnAssAV4J5UDluylGbMiIiLSlZjZCcBiYAZwLXApMBnoE9P0Arzr2jVm1tPPMUoaxAazNRuhsS4zYxERSUJ5eXnz68rKSqqqqjRzVnJCMBikqqqKysqW8kNlZWUZGUt+Kk/mnDvSzL4JXAeMASaFHlvN7D/AfOA9YA2wMfQoAXbAu2DdBRgLHAAMC53WgHrgfuAa55zuDcoRlVWxNWa1+JeIiIhkJzO7EPgT3rUrwDqgH+DiNL8f73q5N3Aq8LAPQ5R0KR3Qel/1Gug91P+xiIgkoWfPnpSUlFBTU0NTUxNffvklZpaxW7q7isbGRgDWrl2b4ZFIZzU1NTXPlAVvtmzPnpn5W3lKg1kA59zfzewfwOnAj4FxQCkwHjgswdOEL2g3AQ8AtzvnvkjtSCWb1dQ3sWlbQ9Q+zZgVERGRbGRmOwN3hTZnAT9wzn1qZnGnHTnn6s3sKeBC4BgUzHZtJX0grxCa6lv2KZgVkS7AzBg2bBgrVqygpsYrJeicaw4epTXnXPP3qqSkBDPr4AjJdiUlJQwbNixjn2XKg1kA58XOTwBPmNmuwJnAEcCBeDNk2/MZXumC54B/Oed0H1AOip0tCwpmRUREJGv9GCgAPgKOd87Vt98c8K53LwT2Sd+wxBdmXjmDzRHzSKor224vIpJFAoEAw4cPZ+vWrWzZsqV59qzEFwwGm4PZ0tJSAoFUVwgVP+Tl5VFSUkJZWRk9e/bMaMCelmA2knNuIfBr4Ndmlg/sCwzBq0W7A1ALrA09PnTOrUr3mCT7rYpZ+KusOJ/SorT/uIqIiIh0xkS8kgW3JRjKAiwNPQ9rt5V0DaUDYoJZLQAmIl2HmVFaWkppacrWcO+2ampq+PTTTwHYb7/9MrZglHQfviZdzrlGvDqz8/3sV7qeytiFv8o1W1ZERESyVvie9feTOGZr6LlHaociGVFaEb1drWUxREREpGOacy1ZaVVsMKsyBiIiIpK9wqtHJHMfXP/Qc1WKxyKZELsA2BaVMhAREZGOKZiVrBQ7Y3aQglkRERHJXl+FnndJ4pjDQ8/LUjsUyYjSgdHbmjErIiIiCVAwK1mp9YxZ1W0RERGRrDUHb7bs2Yk0NrN+wEV4M21npXFc4pey2GBWNWZFRESkYwpmJSutrtKMWREREeky7g09H29m57fX0MyGAM8D/YCmiGOlK2s1Y1bBrIiIiHRMwaxkJdWYFRERka7COTcfuAdv1ux9ZvaEmZ0Z0WRvM5tkZvcDC4H98GbL3uKcW+L/iCXl4gWzzsVvKyIiIhKSn+kBiMSqbwyyrrouap9mzIqIiEiW+yHQEzgX+GboEU7mHoloF14gbDpwlV+DkzSLDWab6qF2E5T0ychwREREpGvQjFnJOrFlDAAGlavGrIiIiGQv51yTc+47wBnAe3gBbLzHx8DZzrnvOqcpld1G6YDW+7aonIGIiIi0TzNmJetUxgSzJQV5lJfoR1VERESyn3PuKeApM9sR2B8YAOQB64H3nHNLMzk+SZP8Iiju7c2SDateDQPGZGpEIiIi0gUo7ZKsE1tfdlCvYsysjdYiIiIi2cc59xXwz0yPQ3xUVhETzK7J2FBERESka1ApA8k6lZtrora18JeIiIiIZL3YcgbVlZkZh4iIiHQZvsyYNbODnHNv+tGXdH2xM2YVzIqIiEg2M7MyYEpo817nXLuJnJkNAr4X2vydc66mvfbSRcQuAFatGrMiIiLSPr9mzL5hZgvM7KdmFqcyvkiLyjilDERERESy2CnAVODbHYWyIZXAt4GrgZPSNyzxVatgVqUMREREpH1+ljIYA/wW+MLM/m5mJ5mZSilIK61nzJZkaCQiIiIiCfkm4IDHE2nsnHPA3wADzkjjuMRPscHsFpUyEBERkfb5FYxeBryPd/FZAJwMPA2sNLMbzGwXn8YhXUCrGbPlmjErIiIiWW1M6PmNJI6ZF3rePcVjkUzRjFkRERFJki/BrHPuTufcfsA+wJ3AeryQtgK4HPjEzOaa2flm1tOPMUl2amwKsmaLasyKiIhIlzIk9LwqiWPC0ykHp3gskillqjErIiIiyfG1lIBz7gPn3GV4F6CnA88BQbyQdhxwH7DKzO4zs0P8HJtkh7XVdQRd9D7VmBUREZEsFww990jimHBbXxbjFR/Ezpit2QCN9ZkZi4iIiHQJGanx6pxrcM793Tl3EjAU+DmwEC+gLQXOB+aY2Sdm9n9mNrCd00k3EltftjAvwA49CzM0GhEREZGEhGfK7p/EMeG2KkTaXcQGswBbVc5ARERE2pbxxbecc5XOuZucc7sDh+DNmq3GC2l3BW7EWzDsaTM7LoNDFR/E1pet6FWMmWVoNCIiIiIJeQ3v2vVSMyvoqHGozaV4C4bNTfPYxC8lfSAQ8/GrnIGIiIi0I+PBbIxCoAjIw7tQBe8iNx84CXjOzN4zs4MyND5Js9gZs6ovKyIiIl3Ag6Hn0cCjZtZmSYPQe38FwovfPthWW+lizFrPmt2iYFZERETalvGaVmY2DPgOMBkYEd4NNAH/Bv4C7BVqMxT4GjDbzA53zr3l93glvSo310Rtq76siIiIZDvn3Btm9jfgLOCbwIFmNg2Yg1fmwAE7AuOBC/EWC3PAk865VzMzakmL0gFQtbJlWzNmRUREpB0ZCWbNrBjvovV84Ai8IDZ8v/pnwAPAg865cL2uJ8xsKt7F7m1AP+Ba4Fj/Ri1+0IxZERER6aK+i3eNehTeQrdT22gXvuadgTfxQLqTsoro7WrVmBUREZG2+RrMmtmBeGHsJKA8vBuoA54G7nPOzYx3rHMuiHdrWAB4CNgv7QMW38XWmB1UrmBWREREsp9zrtbMjgV+BPwML5yN5wvgd8BdzjnXRhvpqkoHRG9Xa203ERERaZsvwayZ/R9eILtreFfoeQHeYl9/cc5tSPB080PPfVI3QskWrWfMlmRoJCIiIiLJCQWtt5vZHcA+wL54s2gB1gH/Af6rQLYbi60xqxmzIiIi0g6/ZszehFdHy4CtwGN4s2Pf7MS5GlM5MMkewaBjdVXMjFmVMhAREZEuJhS8vhd6SC5pFcyqxqyIiIi0zc9SBu/gzY79q3OuurMncc4tBQIpG5VkjXVb62gMRk8gUTArIiIiIl1GbDC7RcGsiIiItM2vYPZrzrkPfepLuqjY+rL5AaNvaVGGRiMiIiIikqR4M2adA7P47UVERCSn+RLMKpSVRMTWlx1YXkxeQBexIiIi0rWYWRmwE1AG5HXU3jk3J+2DEn+UxQSzTXVQuxlKemdkOCIiIpLd/CxlINKu2BmzFSpjICIiIl2ImX0PuBTYO4nDHGm8JjezAcABocfY0KNv6O0/O+cmp6HPs/AW/t0bb8HeSuA14K5OrjHRdfQc0Hpf9WoFsyIiIhKXL8GsmY3vxGEOqAU2A8ucc/WpHZVkm9gZswpmRUREpCswszzgKeCk8K4MDieWb0VOzawYeAI4Meat4aHH2WY21Tn3a7/G5LuCYiju5c2SDateDf13zdyYREREJGv5NWN2Nl7Q2lmNZvY+MB24zznXkIIxSZap3FwTtT2oXMGsiIiIdAkXA98IvV4NPAi8C2wAgpkaVBxfAJ8Ax6Tp/PfTEsq+AtwOfAXsBVwFjAKuNbNVzrn70jSGzCutiAlm12RuLCIiIpLV/CxlsD0zBwrwbrvaH7jEzE50zq1IzbAkW2jGrIiIiHRR54WePwYOc85tzORgYlwLzAfmO+dWm9kI4PNUd2JmhwNnhzb/BZzqnGsKbc83s3/ihdXDgN+a2ZPOuU2pHkdWKB0A6xa2bG+pzNxYREREJKv5FcwegReu/ho4EO8v508A7wBrQ2364wWvZwA7Am8BVwMlwJ7ApNDznsDzZraPc67Rp/GLDyqrooPZQb1KMjQSERERkaTshnd32K+zLJTFOXe1T11dHnpuAi6NCGXD41hnZlcAf8WrO3sBcItPY/NXacwCYNW+VZMQERGRLibgRyfOuVeBH+EtOnAnMMo5N8U594hz7qXQ4xHn3BS8W5zuwgtwf+yce8Y5d71zbm/g+tApd8NbUEC6CeecZsyKiIhIV7ew4ybdj5mVAhNDmzOccyvbaPp3oCr0+ptpH1imtApmVcpARERE4vMlmDWz8/HqTT3vnLvMOVfXVlvnXJ1z7ofA88CxZvb9iPd+BbyKVxah+17M5aCN2xqob4wuwTZIwayIiIh0DYtDzztkdBSZcwBQFHr9aluNQov5vhk+xswK0j2wjCiLDWZVykBERETi8yWYBb6Ld3vXvUkc8ye8APY7Mfunh56/tv3DkmyxKmbhr4BB/7KiNlqLiIiIZJW/4V23nthRw25qt4jXn3bQNvx+PjA6PcPJMM2YFRERkQT5VWM2fLHW1m1N8YTbjonZ/0noOVdnJHRLlTFlDPqXFVGQ59ffDURERES2yx3At/EWqf2Hc+61TA/IZ0MjXnd0vf9FzHEfJ9qJmQ3poElF+EVNTQ01NTXttU1abW1t3NexAgW9iZxe4LZUUpvisUhmJPozIN2XfgZEPwO5LdXXFuBfMBu+J30o8F6Cx4QvvGKnTTaEnnV10420qi9brjIGIiIi0jU45+rM7Bi8GqozzOwO4FHgU+dcLvzWVhbxurqDtlsjXpcm2c8XHTfxzJkzh379+iV5+sTNmTOnzffKalZyZMS21WxgxgvP4wJ+/eolfmjvZ0Byg34GRD8DuWfdunUpP6dfUxI/Cz1/L4ljLgo9L43Zv2Poee12jUiyyuoqLfwlIiIiXZOZNQGrgHFAIfBT4F1gq5k1dfBozOTYUyTywq2+g7aRa02UpGEsGVdX0KvVvqLGqjgtRUREJNf59WfbJ4E9gePN7Dbg8lDx/1bMrBD4HXA8Xl3aJ2KaHBJ6XpKeoUomxM6YHdSrW16ni4iISPdkHWx3d5EXcoUdtI28Gy7ZO+CGdvB+BTAfYPz48QwZ0lHlg+TU1tY2z44aP348xcVtTCRwQdyCy7BgS+Z++H5jcIP2Sel4xH8J/wxIt6WfAdHPQG5buTKZCq2J8SuYvRk4FxgF/BA4zcwex5tJEK6GPwDYHziDllmxS4FbwicxszzgbLzA9kVfRi6+iK0xqxmzIiIi0oVck+kBZNiWiNcdlSfoGfG6o7IHUZxz7f42ZNaSh5eUlFBSkr4/9BcXF7d//tKBUPVlS/uGTZDG8Yj/OvwZkG5PPwOin4Hck47P25dg1jm3zcyOBJ4H9gAGAz9uo3n4iuoj4ATnXORf0ocAD4ZeP5mGoUqGrNocPWFikIJZERER6SKcc7kezEYGpkOAd9ppGznrNeGasV1O6YCoYJbq1Zkbi4iIiGQt35a9d859AXwdr+bWQrwANt5jUajNfqFjIs+x3Dl3TejxJSliZsPM7GYz+8TMtprZBjN728x+ZmY9UtVPTJ+DzGyTmbnQY3Y6+ukKnHNa/EtERESk6/o44vWYDtqG32+kO5cmKx0YvV29Jn47ERERyWm+Lg3qnGsAbgVuNbMd8erO9gm9vRFYkMrANRFmdgLwCBBZpb8HMDb0uNDMjnfOfRbv+O1wZ0yfOWtLXSPb6pui9qnGrIiIiEiXMR9v0a9C4HDgxniNQmtJHBQ+pq01J7qF2GB2S2VmxiEiIiJZzZdg1sz+X+jlW865FwGcc18BX/nRf1vM7GvA43hBbDVwA/AK3gqxZwHfA3YFnjOzsc65pOpgtdPvScBpePV1B6TinF1ZbH1ZgAHlRXFaioiIiGQ3MwsAE4BxeItR9QB+6ZxbFdGmEO86vMk5V5eJcaaSc26Lmc0E/gc4ysyGtFEP9ptAeej1P3wbYCa0mjGrUgYiIiLSml+lDKYCVxO9Cms2uA3vYrkROMY59xvn3Dzn3Czn3PeBy0PtxgA/SUWHZlYK3BXa/FkqztnVxZYx6NuzkOKCvAyNRkRERKRzQndiLQZmANcClwKTablDLOwCvAWz1phZT7KcmU2OKL81tY1mN4ee84G7Qov2Rp6jH3BTaHMTcF86xpo1SmPmXqiUgYiIiMThVzC7PvS8wqf+OmRmY/FmMwDc75ybF6fZLcAnodc/NrOCFHT9G7xFD15xzv0lBefr8ipjFv6q0MJfIiIi0sWY2YXAP4Gd8NZNWE/Lorax7scLJ0uBU9M8rkNDwepkM5sMnB7x9s6R74Xe7xTn3Czgb6HNbwAzzOwbZra/mZ0PvAkMC71/pXNuY2f76hLKKqK3q1XKQERERFrzq8bsEuAAvNu5ssUpEa8fjNfAORc0s4fwShz0wQtyZ3S2QzM7APhfvBpcl3T2PN1N7IzZQQpmRUREpAsxs51puSNqFvAD59ynZhaM1945V29mTwEXAscAD6dxeBcC32njvUNCj0jTt6Ov7+KVKjgeOCL0iBQEfu2c+9N29NE1xFv8yzmwtrJ6ERERyUV+zZh9DG/GwJk+9ZeIw0LPW4F322n3asTrQzvbmZnlA/fifc9vcs4t7Oy5upvYGrOaMSsiIiJdzI+BAmABcLxz7tMEjnkt9LxPmsbkO+dcjXPuBODbeJMZ1uBNSPgCeBQ41Dk3NXMj9FFsKYPGWqirysxYREREJGv5NWP2j3h/qT/PzF51zv3Zp37bs1voeYlzrrGddpEX1ru12apjPwO+BizFK2eQMmY2pIMmzTOVa2pqqKmpaa9t0mpra+O+TtSXG7dGbffrkZ/yMUpqbO9nLV2DPufcoc86N/jxOevfbSYCDrjNOVef4DFLQ8/D2m21nZxzk/Hq3G7POaaTxExa59yjeEFs7oqdMQuwZTUU9/J/LCIiIpK1/ApmK/Buo7ofeMDMvo13sfYBsBFoau9g51xKa9OaWTHQL7QZb8XYyL43mtlWoCdebdjO9DcS+H+hzUudc6n+reiLRBvOmTOHfv36ddywk+bMmZP0MUu+zCOyBNvaFYt56aVFKRyVpENnPmvpevQ55w591rkhXZ/zunXr0nLeLiR8jfh+EseE/zLdI7VDkaxQUAJFvaBuc8u+6tXQf5fMjUlERESyjl/B7DK8WQTgJXATQ49EOFI/zrKI19UJtA8Hs6Wd7O9PQAnwmHPupU6eo9vaFDOvpHdhZsYhIiIi0kmR17mJ6h961v3t3VXpgNbBrIiIiEgEv4JZiL5QzXTV+8giponcblYXei5JtiMzOw84Cu+ie0qyxyeoo5m8FcB8gPHjxzNkSEeVD5JTW1vbPANn/PjxFBcnXiN2a30jNfOiZ++ccOQh7NRXk0ey0fZ81tJ16HPOHfqsc4Mfn/PKle3egJQLvgJ2Bnah/bULIh0eel6WjgFJFiirgPWLW7YVzIqIiEgMv4LZ833qJ1GRpQQSmZ9ZFHpOqoCamfUDbglt/sI5tyqZ4xPlnGv3tyGLWP21pKSEkpKk8+WEFRcXJ3X+r6pbT1geMaAXJYV+/s1AOiPZz1q6Jn3OuUOfdW5I1+esnx3mAKOBs4G/dtQ4dI14Ed5M21npHZpkTOwCYApmRUREJIYv6VeWLPYVaUvE60TKE/QMPSdS9iDS7/Fq2b6DtwCaxKjcHF1ut1dJAT0UyoqIiEjXci9wAXC8mZ3vnHuwrYahRVv/jneN2Bg6Vrqj2AXAqtdkZhwiIiKStXIyAXPO1ZrZOrwL4nbv6zezPrQEswkvsmVmOwLnhjZnAWdGzlyNY4CZnRV6/blz7q1E++rKVsUEs4N66TbarLF8Hgwf599xIiIiXZRzbr6Z3QNcDNxnZscDT0Q02dvM9gKOAc7CK6vlgFucc0t8H7D4IzaY3VKZmXGIiIhI1srJYDbkE+AwYGczy3fONbbRbkzMMYmKLJFweQLtd6Pl1rc/AzkRzFZujq4OUaFgNjHpDk1fuQFevRGOmgqHJlEaee6t8PJUOPxKOOLnyY9PRESk6/oh3h/zzwW+GXqEFwV7JKJd+C/104Gr/BqcZIBmzIqIiEgHAn53aGYBMzvSzH5hZnea2f1mNiimTaGZ9TCzorbOkwJzQ889gf3aaXd4xOvX0zec3KQZs53wyg3w4HFeCJqMubd6x71yQ/vtls/zQlnwQtZE+wmHsuAdv3xecuMTERHpwpxzTc657wBnAO/hBbDxHh8DZzvnvuucc22dT7oB1ZgVERGRDvgazJrZCcBiYAZwLXApMBnoE9P0Arw6sGvMrCfp8XTE67iLk5lZADgvtLkJeCXRkzvnljnnrKNHxCGvRuyfnNyX0nXF1pitKO8mi4d0NpTs6Dg/QtPh47yZsmGJ9BN5fvCOVzkDERHJQc65p5xz++OVyzoF+D5wCXAmMNo5t6dz7m8ZHKL4pawienvbOmhqyMxYREREJCv5Fsya2YXAP4Gd8GYLrKflVq5Y9+MFoaXAqekYj3PubeC10OYFZhYvRfopXokBgNudc1FXUmY22cxc6DE1HePs7rrljNl0zmj1KzQ9dEri/cQ7fzLlD0RERLoh59xXzrl/Oufuc879yTn3pHNuaabHJT6KLWUAsHWt/+MQERGRrOVLMGtmOwN3hTZnAbs75wa01d45Vw88hRfcHpPGoV0G1ODV2n3JzH5uZgeZ2RFm9ifgt6F2i4Bb0jiOnFVZFTNjtqsHs37MaPUrNI3TT/6bd6bu/CIiIiLdWckOEIhZ0kPlDERERCSCX4t//RgoAD4Cjg8Frx15DbgQ2Cddg3LOvWdmk4CHgXLgN3GaLQJOcM5tSdc4clVtQxMbtkb/KHT5GbPhGa3hsDL83F5Y2dkZrZHnj9fP9oamwSCMvRBqt8Bc7+8SBa9ez759DmFt+Z4UPP88fBhxJ6ZCWREREZEWgQD0HABbvmrZt0XBrIiIiLTwK5idiLcq7W0JhrIA4Vu9hqVnSB7n3L/MbG+82bMn4NUDqweWAE8Af3DObUvnGHLV6pjZsuDTjNnl8zpX/zTR4xIJTcO2d0ZrbD/OwX6T4fXb4fXbWtrudQb06Adv3g111VC/Beq2hF5Xe6/rq73t8Ov66rjdDtv4OsM2xqyDp1BWRERymJl15nrVAbXA5iSuj6WrKY0JZjVjVkRERCL4FcwODT2/n8QxW0PPPVI7lNacc8uBn4QeyRw3HZi+nX23VWe324utL1talE9ZcUF6g9NXbvBKBSQbJIYD1MOvhCN+3nH7VM9ord8KWyqheo13QR9+bFkNfXeG9Uu8djOv8R6xPnzCe6SDQlkREZHPt+dgM1sJvAlMd879OzVDkqwQW2e2ek1mxiEiIiJZya9g1oWekwkh+4eeq1I8FskSlZvj1JdNZ3AaW/8VEusjtv7ryAnbP3M2NpTd5xzo2R9eu8W7YI8NYduYvZpxJX0UyoqIiCR3jRvPULy7tk43s5eBs5xzG7d/WJJxZbHBbGVmxiEiIiJZya9g9itgZ2AX4N0Ejzk89LwsHQOSzIudMXt48ZL0Bqd+1X8Na2qA3b4B6xbD+4+09Dnz1+Caotu+/7D3yGaW13rcNRu975HCWRERyW3nh54vBg7EK1HwIvAOsDb0Xn9gf+BYoAh4G7gXb52DPYGTgX7AUcDTtFwLS1fWasasShmIiIhIC7+C2TnAaOBs4K8dNTazfsBFeDNtZ6V3aJIplZtrorar+u8Pe09Nb3Ca6vqvjfWwaQVsWAobPvMe60OvN61oHWRC/H3pklcIPfpCYSkUlYaey7xH874y77m9fe88CLOubT5tfV5PCptC1UaSCdFFRES6Iefcn83sHuAA4BngIudc3HvWzWwAXiB7ErDAOXdhaP8PgXuA84BDzWySc+4xX74ASR+VMhAREZF2+BXM3gtcABxvZuc75x5sq6GZDQH+jjdjoDF0rHRDsTNmB/Uq9mfhrM7Ufx33A+i/G8z7Y3QIu2kFuGDHfaZKQQ/vAr+swltMorQC1i+GpRF/vyjuBbWbvddN9XDgRdsXms69NSqUXbDjmSwZeCLHly+k4NXrvZ0KZ0VEJIeZ2SnA94E3gG8651xbbZ1za8zsVGAucL6ZveSce9w5V2tm38WbPbsvcBagYLariw1mt6iUgYiIiLTwJZh1zs0PzSK4GLjPzI4HIlci2tvM9gKOwbsILcabLXuLc26JH2MU/1VWxdaYLfFepHrhrFjOwYEXQ0MNvHpTSx+bV8LOR3mzQxe/GHGAwbw/eI+0MK++bOlArw5Z6cCW0LV0QCiEDe0vKo0+dO6t8PafWrbD34fI78/2hKYx3+eGw3/BkqpdAWg86IcUFBSkph8REZGu7VK8a9fb2wtlw5xzzsxuwwtevw88HtofNLNpwN14ZQ+kq4s3Y9Y5sJxd/1dEREQi+DVjFuCHQE/gXOCboUf4wvWRiHbhq5TpwFV+DU78F3fGbFi8cHbdEhh2IHz6b1j0fEvboQfChs/hqe9BYw001EJjrRe8NtRE7AtvR/fbbP593qOVDn+/al9+idd3WEEPaNjWsn3kr2D8T5M/b3vhdDIzj5M4f+N+F8NLL7XsS0U/IiIiXd/eoedkJhSE2+4Vs/+D0HPf7RqRZIfSAdHbjTVQtwWKyzMzHhEREckqvgWzzrkm4Dtm9k/g58DX22j6MXCdc+5vfo1N/FffGGRddV3UvorIYBZah35tLZD1xVveI5N69IUdRoYeo1peL36xZVYuxJ/ROutaCAS2OzRtdfz2hKZtnb+mpnVbhbMiIiLhlK1/EseE25bF7A//Y9uwXSOS7BA7Yxa8BcAUzIqIiAj+zpgFwDn3FPCUme2Id4vWACAPWA+855xb6veYxH9rttQSe6PfoNhgFrxw76v/wsf/8Gdg7enRD/pGhK7Nj52gpE/r9nNvjR/KQnpC03g608/yecmXiYjXz9CD2l+ITUREpPv4AtgZ+DbwUgdtw84NPa+I2R+eYrk2BeOSTCvsAUXlUFfVsq96NfQbnbkxiYiISNbwPZgNc859BfwzU/1LZq2OqS9bXBCgV0lB/MY9M3Qn36gjYd9zWgLY4l6JH5uuGa1+hKbDx8HhV8KrNyZXuzeyn8OvVCgrIiK55J/AT4FzzOw959xt7TU2syl4Ia6j9fXwgaHn5akepGRI6YDWwayIiIgIGQxmJbe1ri9bgrW1CMLCF+Lv7z8GKvaGgmKvjmvzc+iRXxzxOvb90Ot3H4ye1VrSB2o2eq+XzoKdxsOepyX3xaVzRqtfoekRP4eRE5IPVw+dopmyIiKSi24EvoNXF/YWM/s28BDwLrAm1GYA3t1i59JS0mtt6NhIZ+EFtjPSPGbxS2kFrI8oP1y9pu22IiIiklMUzEpGVMYEswPLi+I3fO33ULUy/ntrP4WvndX5WqZtlRqIDFaTrZfqx4xWv0LTzoarCmVFRCTHOOfWm9nRwAvAQLzgta31FMBb7LYSOM45t6F5p9lI4O3Q46n0jVh8FbsA2JbKzIxDREREso7vwayZfQ04DBiJt9hBXgeHOOfcBWkfmPgq3ozZVubeCjOvab1//OUw57fe684uNNXerNbtqf/q14xWhaYiIiJZxTn3XzPbDbgGOA9oqwbSZrzZtFOdcxtjzvEZcH5aByr+i10ATDNmRUREJMS3YNbMdgUeAA5K5jC8W7kUzHYzsTNmK2IX/ooNTsPKB8ORv/AWUujsrNZ01X8NUxkAERGRnOSc2wRcZmaXA/sBewLhFUI3AguAd5xzdZkZoWREWWwwqxqzIiIi4vElmDWzwcAcoB9e2ApQjXeBGvRjDJJdVm2uidoeFBnMthXKAgz6mvfc2eA0nfVfI2lGq4iISM4ws/NCLxc6594KBa9vhB6S61rNmFUwKyIiIh6/Zsz+AuiPN/v1PuBm59win/qWLNRqxmx5KJiNDU57j4BNy1q2w8EsJB+c+lH/VURERHLRdLzr3G8Bb2V2KJJ1YmvMKpgVERGRkIBP/RyHd7H6kHPu+wplc1tT0LF6S/QdfIN6lbQOTideDTUbog+ODGbBC06Pijjm5aneeeIJ13+F5Ou/hvtIpP6riIiI5JrNoefFGR2FZKfSiujtreugqTEzYxEREZGs4lcwu2Po+SGf+pMstq66jqagi9pX0au4dXC6xylQVxV9cMXerU+YTHB6xM/h/BeSXyzs0CnecUf8PLnjREREJBd8Hnru024ryU2xpQxwsHVtRoYiIiIi2cWvUgYbgQHAJp/6kyy2KqaMQUGe0bdnobcRuXDWgn9EH9ijH5TvSFzJLJyl+q8iIiKSWv8A9gFOAmZldiiSdXr0BcsD19Syr3o1lA/K3JhEREQkK/g1Y/ad0PMuPvUnWawyZuGvgeXFBALWsiMcgK76b/SBg74GZrRJwamIiIhkxu3AcuASMzsy04ORLBMIxKkzuyYzYxEREZGs4lcwewdgwPd96k+yWOyM2UG9ittoGCeYFREREckyzrkq4GjgU+BFM7vXzCaY2Q5m7f1VWXJGq2C2MjPjEBERkaziSzDrnJsB/BY4wszuNrMCP/qV7FQZE8xW9Cpp3cg5WPVB9D4FsyIiIpKFzKwJWAjsBeQBFwAzgbVAo5k1tfPQKlC5ILbObPXqzIxDREREsoovNWbN7DzgY+ANvFmzJ5nZk3izCrZ1dLxzTouGdSMJzZit+gq2rYveNyjOwl8iIiIimRc7K1azZCVaq2BWpQxERETEv8W/pgMuYnsQ8MMEj3WAgtlupNWM2fI4wWxsGYOiXtBnpzSOSkRERKTTrsn0ACTLxQazW1TKQERERPwLZkEzByRkVVX04l9xZ8y2qi+7d/sLf4mIiIhkiHNOway0TzNmRUREJA6/gllNdRQAgkHH6s11UfsqEgpmVV9WRERERLqoMtWYFRERkdZ8CWadc8v96Eey34Zt9dQ3BaP2DYq3+FelFv4SERERkW4i3uJfzumOMBERkRznZykDkVb1ZfMCRv+youhG1Wuh6svofRVa+EtERESyn5kFgAnAOKAC6AH80jm3KqJNId51eJNzri7eeaSbKR0Qvd2wDeqroagsM+MRERGRrKBgVny1KiaYHVBWRF4gZqZAZUwZg/wS6Dc6zSMTERER2T5mdgJwBzAi5q1bgFUR2xcAfwCqzWxH59xWf0YoGRM7Yxa8OrMKZkVERHJawO8OzWxnM7vWzGaY2YdmtsTMdo5ps6eZHW9mh/s9Pkmvys3RC38lVF+2Yi8I5KVxVCIiIiLbx8wuBP6Jt7aCAetpe/Hb+4FNQClwqh/jkwwr7AmFMSHslsrMjEVERESyhm/BrJkFzOx3wCfAL4CJwB54F6+FMc2HAs8CM8xssF9jlPSLnTE7SAt/iYiISBcXmmRwV2hzFrC7c25AW+2dc/XAU3jB7THpH6FkhdhyBloATEREJOf5OWP2T8BPgDzgK+DJtho65/4NfBZqe7ovoxNfxNaYrSiPs/DXKi38JSIiIl3Kj4ECYAFwvHPu0wSOeS30vE+axiTZpqwiert6TWbGISIiIlnDl2DWzCbg1dIC+A0wwjl3ZgeHPYE3i+CI9I1M/NbhjNmaTbDx8+h9g7Twl4iIiGS1iYADbgvNhk3E0tDzsPQMSbJOqxmzKmUgIiKS6/xa/Ovi0PPzzrlfJnjM26HnPdIwHsmQyqqYGbOxwWzlh9HbgQLov1uaRyUiIiKyXYaGnt9P4pjwgl89UjsUyVqxC4BpxqyIiEjO86uUwTi8WQT3J3HMytBzRbutpMtwzrEqZvGvVjNmY+vLDtwd8mNLEIuIiIhkFRd6bmuxr3j6h56rUjwWyVatglnVmBUREcl1fgWz4ft2Pm+3VbTG0HNBisciGbK5poHahmDUvlYzZrXwl4iIiHQ9X4Wed0nimMNDz8tSOxTJWrHB7BYFsyIiIrnOr2A2PE0ymVu1wvW2NqZ4LJIhsfVlzWBAWWwpAy38JSIiIl3OHLzZsmcn0tjM+gEX4c20nZXGcUk20YxZERERieFXMBueKbtvEsecGHr+OMVjkQypjAlm+5UWUZgf8SNYvxXWLYo+qELBrIiIiGS9e0PPx5vZ+e01NLMhwPNAP6Ap4ljp7spigtlt6yDYlJmxiIiISFbwK5h9CW8WwffNrMM+zWw/4Fy8WQQvpHls4pPYGbOt6suuXgAuotSBBWCg1n4TERGR7Oacmw/cg3e9e5+ZPWFmZ0Y02dvMJpnZ/cBCYD+869xbnHNL/B+xZETsjFkXhK1rMzMWERERyQp+BbN/wCtnsBcwzczarBtrZqfhhbGFeIshaBZBN1EZs/BXRXkH9WX77QqFWqhYREREuoQfAn/BC2e/CfyVlkXBHgEeBSYDJaE2fwau8n2Ukjk9+noTDyKpnIGIiEhO8yWYdc59CfwI7yJ0MvCZmf0xoskFZna3mS0GHgf64l3Ift85t9mPMUr6dThjdtX70duqLysiIiJdhHOuyTn3HeAM4D286954j4+Bs51z33XOubbOJ91QIA96DojeV70mM2MRERGRrJDvV0fOufvNzAF3AINpWfAA4MehZws91wEXO+ee8Gt8kn6VVdHBbEWvkugGq7Twl4iIiHRtzrmngKfMbEdgf2AAkAesB95zzi3N5Pgkw0oHQHVly/aWyrbbioiISLfnWzAL4Jx7wMxewgtivwHsHNPkS+CfwO+cc8v8HJukX7szZhvrYM0n0QcM2tuHUYmIiIiknnPuK7zrWpEWsXVmVcpAREQkp/kazAI451YCPwN+ZmblRMwicM6t83s84p/Vm2NnzEYEs2s+gWBD9AEVe/kwKhERERERn5TFBrMqZSAiIpLLfA9mIznnqvAW+JJubkttA1vqGqP2Rc2YjV34a4eRUNzLh5GJiIiIbB8z+1/gMU0ykA61mjGrUgYiIiK5zJfFv0RWx9SXBRhY3k4wq/qyIiIi0nXcCXxlZs+Z2dlm1iPTA4rHzIaZ2c1m9omZbTWzDWb2tpn9bHvHbGZTzcwl+JiQmq+oC2oVzGrGrIiISC7L6IxZyR2x9WV36FlIcUFey45KLfwlIiIiXVo+cFzosc3MngEeAV5yzjVldGSAmZ0QGk/kLUk9gLGhx4Vmdrxz7rNMjC9nqMasiIiIRFAwK76IDWajZss2NULlR9EHVGjhLxEREekyDgTOBiYBFUBP4Fuhxzozewx41Dn3ZiYGZ2ZfAx7HC2KrgRuAV4AS4Czge8CuwHNmNtY5V72dXXa0UMDn23n+ris2mN2iYFZERCSXKZgVX1TGBLNR9WXXL4bGmugDNGNWREREugjn3Hxgvpn9FDgS+DZwKlAO9Af+F/hfM1sGPAz81Tn3qY9DvA0vlG0EjnHOzYt4b5aZLQZ+C4wBfgJcuz2dOec+6rhVjiodEL3dsBXqqqGoNDPjERERkYxSjVnxReyM2Yr2Fv4qHwI9+/kwKhEREZHUcc4FnXMvO+fOBwYCZwLPAA2AATsBvwQWmNk7ZvZjMxuUzjGZ2VhgQmjz/phQNuwW4JPQ6x+bWUE6x5TTYmfMgsoZiIiI5DAFs+KLys3RM2IHaeEvERER6cacc3XOuSedc6filTf4PjAbcHgh7dfxAtHlaR7KKRGvH4zXwDkXBB4KbfahJciVVCsqhcKY2bEKZkVERHKWglnxRfszZrXwl4iIiHRfzrlNzrn7nHNHAsOBK4BNeAFtXnvHpsBhoeetwLvttHs14vWh6RuOtCpnoGBWREQkZymYBcxsmJndbGafmNlWM9tgZm+b2c/MrMd2nrvczM4ys2lm9h8z22Rm9Wa21sxmh/ronaIvJWtVVsXWmC3xXgSDUBkbzGrhLxEREel+zGxP4Ad4NWd7+dTtbqHnJc65xnbaRda83a3NVgkwsxlmtj50zbsmdM17pZn12Z7zdhulFdHb1WsyMw4RERHJuJxf/MvMTgAeIfriuAcwNvS40MyOd8591olz/w/wD6Aoztv9gMNDj5+Z2becc68k20dXUFPfxKZtDVH7mmfMbvwc6qqiD9CMWREREekmzGwY8C28BcH2CO8OPW/Dq0Gbrr6L8a45AVa219Y5t9HMtgI9gaHb2fVREa/703LNe4WZTXbOdeprNrMhHTRpTjxramqoqalpr23Samtr475OVkFJ36hfwho2rqQxxWOV9EjVz4B0XfoZEP0M5LZUX1tAjgezZvY14HG8ILYauAF4BSgBzgK+B+wKPGdmY51z1Ul20RcvlA0CM4AXgP/i3bo2BO8CfRLe4hDPmtkhzrn3t++ryj6xs2UhIpiNrS/bsz+UpXUNDBEREZG0MrMdgDPwrvUOxgtiw2FsE/Ay8DDwtHNuaxqHUhbxOpHr2HAwW9pRwzZ8CDwNvA18BRTgXUt/GzgG6A08ZWYnOef+3Ynzf5Fowzlz5tCvX/oWk50zZ06nj91rQy0jI7a/WvQe79e9tP2DEl9tz8+AdA/6GRD9DOSedevWpfycOR3MArfhhbKNwDExq9TOMrPFwG+BMcBPgGuTPH8D8CfgN865FTHvvQf8y8xeB+4IjeMWYGKyX0S2WxWz8FdZcT6lRaEfvXgLf5khIiIi0pWYWQlwMnA2cCwt19nhC5u38e7S+ptzbq1Pw4oo6k99Au3rQs8lnejrNufc1Dj73wIeMrOLgHvwaureZ2Y7O+dycppobX7vqO3ixs2ZGYiIiIhkXEqDWTOblcrzhTjnXMrDSjMbS8uKs/fHhLJhtwDn49XZ+rGZ3eCca4jTLi7n3GPAYx20udPMzgP2ByaYWV/n3PpE++gKKjfH1peN+B2hVX1ZlTEQERGRrsXMHgJOwZttCi1h7GLgUeAR59ySDAwt8iKsMIH24fJbSQemzrlNHbz/JzPbH7gQ2BH4Jl5QnYyOSixUAPMBxo8fz5AhHVU+SE5tbW3z7Kjx48dTXFzcwRHx5X2wHlY90bzdvzjIMccck5IxSnql6mdAui79DIh+BnLbypXtVobqlFTPmJ0AOFouRrdH+DwuBeeK55SI1w/GHYBzwdCF9g1AH7yvb0YaxjIbL5gNADsB3SqYXRUTzFaEF/5yrvWM2Qot/CUiIiJdzjkRr9fg/WH+Yefc/AyNJ2xLxOtEyhOEg+Vky3cl6k94wSx4NWeTCmadc+3+NmQRd12VlJRQUtKZib+JKS4u7vz5d4jOlwPb1qZ1rJIe2/UzIN2CfgZEPwO5Jx2fd6qD2TmkL0hNtcNCz1uBd9tp92rE60NJTzAbuThYMA3nz6hWM2bLQ39RqvoStsVk0JoxKyIiIl3PVrwFXx8BZjjnsuJ6zjlXa2br8BYAa3f6qJn1oSWYTbiWa5I+jng9OE19ZL/SgdHbW9dCsAkCeZkZj4iIiGRMSoNZ59yEVJ4vzXYLPS9xzjW20+7TOMek2uGh50YgE7e5pVXrGbNtLPxV1Av6jPBnUCIiIiKpMyCL66V+gjchYWczy2/nundMzDHpoIUEoHUw64KwdR2UDYzfXkRERLqtnFz8y8yK8WYOALR7S5RzbqOZhVeo7aiuVWfGcgIQvn//RedcVSfO0VEBrYrwi5qaGmpqUvt7Q21tbdzXYV9t2ha13bdHHjU1NeSveIeCiP1NA/ekPs7xkj06+qyle9Dn3KKpqYmtW7dSU1NDfX09znWVm0IS09TURN++fQH4/PPPycvTbK3uKNnPORAIUFJSQmlpKUVFRe22DUv1tUVXk8WhLMBcvGC2J7Af3mJc8Rwe8fr1NI1l94jXX6Wpj+zXsx9YwAtkw6pXK5gVERHJQTkZzAJlEa8TqaEVDmYTqc2VMDPbAbgrtNkE/KqTp0r4drM5c+bQr1+/jht2UrgIdqQV6/KInCDx1eIFvLTuIw5Y+gqDItp9XlvOgpdeStvYJLXifdbS/eTy55yfn0+vXr3Iy8sjEAiQl5cXVb+wuwjXScr1YK27S+Zzds6xfv16nHNUVVUl9AeadevWbfcYuxMzK8NbN6AM6PAvHs65dP7P9mng56HX5xMnmDWzAHBeaHMT8EqaxnJRxOtX22zV3QXyoGd/L4wNq16TufGIiIhIxuRqMBu5bF59Au3rQs8pq/JrZnl4dciGh3Zd55x7L1XnzxaNQahuiA4yehV5M8561yyL2r+5ZDgiItkgEAjQp08f8vLyKCkpIRAINO/vjuGsSJhzjmAwiHOOuro6ysvLaWxspLGxvapPEmZm3wMupeVuqEQ40nhN7px728xew5s1e4GZ/dk5Ny+m2U9pKdl1u3OuIfJNM5tMy2K51zjnpsa8vxdQ45xrsySXmV0EXBDarMSryZu7SgfEBLOVmRuLiIiIZEzGgtlQMNkHL+xs97dc59yKFHcfOfWjMIH24fv4Ujmd6I/AcaHXzwG/3o5zdVRioQKYDzB+/HiGDOmo8kFyamtrm2fVjR8/nuLiltx75cYaeCv62v+bxx1BedMmSt7bGLV/j6POZvd+u6R0bJJa7X3W0n3oc4aNGzeyceNGzIySkhIGDBhAcXFxtwtlg8Eg1dXejSOlpaXNAbR0L8l+zk1NTaxevZqqqiqccwwdOrS5FEJbVq5stzJUtxe6rn0KOCm8K4PDiecyvPIEJcBLZvYbvFmxJcBZwPdD7RYBt3Ti/PsB95nZK8C/gQ+B9Xi/a4wBzgGODrVtAi5yzm3t3JfSTZQOxPs2hUSGtCIiIpIzfA1mzawf8EPgFLwaU4n8BpiOWQRbIl4nUp4gvEJtImUPOmRmN9ByATwXOMM519TZ8znn2v1tKDJIKCkpab6dMR2Ki4ujzr+xMjrL7lGYx4DeZdiSt6MPLOhB8eA9tRptFxL7WUv3lKufc2VlZXN4NWTIEAoKCjo4ousLBAIKZnNAIp9zIBBg0KBBbNmyBTOjvr6+w/8P5OL/J2JcDHwj9Ho13uzSd4ENQLCtg/zinHvPzCYBDwPlwG/iNFsEnOCc2xLnvUTkAUeFHm1ZD1zgnPtnJ/voPkorordVykBERCQn+RbMmtnBwN+B/mR4FoFzrtbM1uEtANbu9FEz60NLMJtwLdd2zncFcGVo8z/AiVm+YMR2WbU5+kur6BWacbbq/eiGFXsplBWRrBG+bTsvLy8nQlmRWHl5eeTn59PY2EhTU6f/dpxLwvVZPwYOc85tbK9xJjjn/mVme+PNnj0B7xq4HlgCPAH8wTm3rZ1TtOd5vDIF44B9gYFAX7xr/g3Af4EXgOmdWei2WyodEL29RaUMREREcpEvwayZ9QWewbtAqwbuw1tYYCrejNgL8coa7A+cjFcD9nXg/jQO6xO8Wls7m1m+c66t4mljYo7pNDO7FLgx4lzHOuc2b885s13l5ugFQwb1Ct0SXflBdMNBX/NpRCIiietupQtEJG12w7um/XU2hrJhzrnlwE9Cj2SOmw5Mb+f9NcADoYckonRg9LZmzIqIiOQkv2bM/gAvlK0DxjnnFpjZHnjBLM658GICmFkF8ChwODDPOXdFmsY0Fy+Y7YlXF6vVCrUhh0e8fr2znZnZucAfQpufAUc557r9EsarYoLZivLQrY6r/hvdsCKZNTJEREREstLCTA9Auoiy2GBWNWZFRERykV/F5P4HbxbBA865Be01dM5V4t1etRT4mZkdmaYxPR3x+vx4DcwsQMutaZvwFklImpl9E6/WmAErgYnOua86c66uJu6M2ZqNsHFZdEPNmBUREZGua3HoeYeMjkK6jlYzZhXMioiI5CK/gtmdQ88vR+xz4RehlWxb3vBqrt6KF2RenI4BOefeBl4LbV5gZuPiNPsp3q1pALc75xoi3zSzyWbmQo+p8foxs2OAv+ItiLAGb6bsshR8CV3CqqqYGbO9iqHyw+hGeYXQfwwiIiIiXdTf8K5bT8z0QKSLiA1m66uhLiXrDIuIiEgX4lcpg/LQ8/KIfZGJXRnejNRI74SeD0zTmMBb/OB1oAR4ycx+gzcrtgQ4C/h+qN0i4JZkT25mBwH/AAqBBmAKUGBme7Zz2Ern3KZk+8pWlTGLfw3qVdy6jMGA3SG/0MdRiYiIiKTUHcC3gUvM7B/Oudc6OkByXGwwC7B1DRSV+j8WERERyRi/ZsyG//wbGQRviHg9Is4xoVWiGBDnvZRwzr0HTAKqgFLgN8A8YBbRoewJzrktnejiOKBH6HUB8AjwYQePUzrRT1ZqaAqyZktd1L6KXsWwSgt/iYiEzV+2oeNGKTyuKwoGg/z+979njz32oLi4GDOjd+/emR6WSDPnXB1wDPAuMMPMfmtm+5hZcQeHSq4qKoWCntH7tqicgYiISK7xK5hdEnoeFt4RmhVaGdo8Is4xB4eet6ZvWOCc+xewN17phEXANrzZu+8AVwD7OueWtHkCadPaLXU4F71vUK+S1jNmB2nhLxHJTbfOWMQZ98zj7tlLkzru7tlLOeOeedw6Y1GaRpZdrr32Wn7605/y6aefMnr0aA455BDGjYtXgUgkM8ysCVgFjMO7U+qneCHtVjNr6uDRmMmxSwaVxsw/UZ1ZERGRnONXKYO3gP2AscCTEftfACYDl5vZc865RQBmdgBwOV4d2vnpHpxzbjnwk9AjmeOmA9PbeX8qMLXzI+vaVsUs/FWYH6BPfj2siwkSBu3j36BERLLE/GUbuH2mt17QTS98CsAlE0Z1eNzds5c2t7995mIOHd2PsSO673pDzjnuuusuAB5//HFOO+20DI9IJC7rYFuktbIK2Ph5y3b1msyNRURERDLCr2D2ReB/gW/izUIN+z1wDl65go/M7L94t/7vgrdYlgNu92mMkmKVMcHsoF7F2OoFRKz7BpYHA/fwd2AiIllg7IgduOK4Mc0hayLhbGQoC3DFcWO6dSgLsHbtWtatWwfA8ccfn+HRiLTpmkwPQLqgVjNmK+O3ExERkW7Lz2D2ISDPzHZyzn0O4Jz7yMwuAe4OjWW/mOOmOude8GmMkmKrYhb+qiiPs/BX/12hoMTHUYmIZI9wCJtIOBsvlE1khm1XV1PT8m9JSYn+vZDs5JxTMCvJi10ATKUMREREco4vNWadcw3OucnOuXPDoWzEe/cDewE3Ac/ilTe4EzjAOfdrP8Yn6RFvxiyVsfVltfCXiOS2SyaM4orjxjRv3/TCp61qznaFUHbEiBGYGbNnz+bDDz/krLPOYtCgQeTl5TF16tTmdi+++CKnnnoqgwYNorCwkP79+3PSSScxa9asqPMtW7YMM2PEiBHN+8ys+TF9+vSo9l988QVTpkxht912o2fPnpSWlrLffvtx8803U1sb/e9R5PnNvDvOn3nmGSZOnEjfvn2bv46whoYG7r33XiZMmEDfvn0pKipi+PDhXHDBBSxZEr8M/YQJE5rHuW7dOn7wgx8wbNgwioqKGDZsGJdddhmbNm1q8/vZ0NDAtGnTmDhxIv369aOoqIihQ4dyzDHHcM8991BXV9fqmLa+B7fcckvc74GIZFirYFalDERERHKNXzNm2+WcWwj8PNPjkNSqrIr+JbCiVwksjwlmK7Twl4h0LcGgY+O2+pSe88z9h7CtvpE7Z3kh300vfMq2+kYmHzyC6W8sa94P8MMjd+bM/Yewvrp1MJesYDBInnMELHXlMF977TV+85vfYGbsvvvu9O7dGzMjGAxy8cUXM23aNAD69u3LnnvuyYoVK3j22Wd59tlnueGGG7jyyisBKC4u5pBDDqGuro533nkHgEMOOaS5n4EDWwKNf//735x55plUV1dTXFzMyJEjqaur4/333+c///kPTz75JC+99BLl5eVxx/y73/2Oyy+/nH79+jFq1Kiombnr1q3jxBNP5K233sLMGDx4MMOGDWPx4sU88MADPPbYY82hbjwrV65k3333ZfXq1eyxxx4UFBTw+eefc8cdd/DGG2/wxhtvUFBQEHXM6tWrOfHEE5u/7sGDBzNy5EhWrVrFzJkzmTFjBscdd1xUaN3R9+Dxxx/nqaeeavN7ICIZEBvMblEpAxERkVyTFcGsdE+xM2YHlwVgzSfRjTRjVkS6mI3b6tnvupfT3s+ds5ZEBbId7e+sWT86gB16FHTcMEHXXHMN5513HrfffjtlZWWAV47g+uuvZ9q0aYwYMYJ7772Xo48+uvmYxx57jAsvvJCrrrqKAw88kCOOOIKKigrmzp3LsmXL2GmnnQCYO3duq/4WLlzIGWecwbZt27j22mv52c9+1hysLl26lHPOOYc333yTH/3oR61m2Yb98pe/5M477+TSSy8lEAjgnKO+3gvfzzrrLN566y2OOOII7r77bnbddVcA6uvrufbaa7n++uuZNGkSCxcupG/fvq3Ofe2113LsscfywAMP0L9/fwBeffVVTjjhBN555x0eeughLrjggub2zjlOP/103nnnHUaNGsVDDz3EwQcf3Pz+2rVrmT59Oj179kz6e3DllVfy8MMPd/AJSqqY2UBgTyBcCHoD8JFzTveri0czZkVERHKeL6UMzCxoZo1mtnsSx4wKH5fOsUn6rIoJZndmBQRjPs6KvXwckYiIpNsee+zBtGnTmkNZ8ILZG2+8kYKCAv7xj39EhbIAkyZN4te//jXOOW666aak+rv66qvZunUrP/vZz/jVr34VNdt11KhRPPHEE/Ts2ZOHH36YL7/8Mu45vve97/GDH/yAQMC7LDIzioqKeOGFF5g5cyYjR47kmWeeaQ5lAQoLC7nuuus4+eSTWb9+ffNM4Fh9+vThkUceaQ5lAQ4//PDmMPbZZ5+Nav/MM88wd+5cevTowYwZM6JCWYD+/fvzf//3f1Hn6+h78Nhjj9GzZ08ef/zxNr8HkhrmucjMPgS+Al4C/hZ6vAR8ZWYfmtn3zVI4VV26prKYYHbrWgg2ZWYsIiIikhG+BLMhnb341EVrFxQMOlbHlDIYWrs4utEOo6BYt1SKiHQn5557Lnl5eVH7nn/+ebZt28a4cePYZ5994h536qmnAjBnzhyamhILJurr6/nnP/8JwMUXXxy3zZAhQxg7dixNTU28+uqrcdtMnjw57v4nn3wSgHPOOScqaI437tgauWHf+ta34pYPOOiggwBa1aj9+9//DngzdcMzhduT6Pdg3333bfd7INvPzPoArwF/BHbHu4aN99gdb+HbOWbWOyODlewQO2PWNcG29ZkZi4iIiGRENpcyCAeyLqOjkE5Zt7WOxmD0R7fDlk+jG6mMgYhIt7Pbbru12vff/3r1xRctWsShhx4a9zjnvH8zampqWL9+PQMGDOiwr8WLF1NTU4OZcd5557XZbtGiRYBX7zXRMUeO+7HHHmPmzJlx24QX8Grr3KNHj467P1wjt7q6Omr/ggULABg3blzc42Il+j1YuHAhgGbMpklo9uszQHiK83rgceAtoBLvunYgcABwJtAv1PYZ4HC/xytZokc/vB+NiGvm6tVQ2vH//0RERKR7yOZgNlyobWtGRyGdEltfNj9glKz7KLrRIC38JSJdT58ehbz7y6PScu7Yhb56lRSwuaahefuHR+7M5INHpKy/YDBIXlNtxw2TEFn7NCwcXlZWVlJZ2fHiNtu2bUuor/B5nXO8/vrrnT5vvDFHnn/hwoXNwWaqzh0umxAOpMOqqqoArwRCIlL1PZDtdjZwKF7C9ihwqXNuS5x2D5nZlcBdwLnAoWb2LefcX/0bqmSNvHzo2R+2RtSWrV4NqNSXiIhIrvA7mE1o9quZ9QR+GNpcmr7hSLrE1pfdsawAWx0bzGrGrIh0PYGA0be0KOXnvXv20qhQ9orjxnDJhFHcPXspN73g3XFw56wl9CjM55IJo1LSZzAYpKqqLiXnak9paSkAF110Effcc0/Kz1tUVERtbWoD5sjz//Wvf+Wss85K+fnjCZc9CAeuHUnke+B9zlVR55eUOzv0/Kpz7tz2GjrnqoHvmNkwvNmy5wAKZnNV6cDoYHaL1oYTERHJJWmpMWtmn0U+It56Kfa9OI8vgU3At/CC3H+lY4ySXrEzZr9euhYaY35hrFAwKyICRIWv0BLKAlwyYRRXHDem+b2bXviUu2d3rb9Z7rWXN/vrgw8+SOl5d9llF4qKiqirq2suV5BK6Rp3e/bcc08A3njjjYTap/t7IAn7Ot516x+SOObO0PO+qR+OdBmxZQuqFcyKiIjkknQt/jUi5gFeAaXBcd6LfQwC8kLt3wJ+m6YxShrFzpjdt2B5dINeQ6FnX0REcl17oWxYVw9nTzzxREpKSpg3b15Ct9snqqSkhBNOOAGAm2++OWXnDTvjjDMAePDBB9mwYUPKzx/PaaedBnh1bZctW9Zh+3R/DyRhO4SeP0/imHDbHdptJd1bWUX0dvWa+O1ERESkW0pXMPvnmAd4swieifNe5GM6cA9wNXA0cIhzTjVmu6DKzTVR22OCMb+nqIyBiEhCoWxYVw5nBwwYwFVXXQXAySefzOOPP05TU1NUm8rKSu655x6uv/76pM593XXXUVpayrRp07jssstYt25d1Pv19fW8+OKLnHnmma367MhJJ53EUUcdRWVlJRMnTuTtt99u1eaTTz7h6quv5umnn07q3O31edhhh7F161aOPfZY5s2bF/X+unXruPnmm1m7dm3zvkS+BzNnzuT8889P+nsgCdscet4xiWPCbatSPBbpSlrNmO24DreIiIh0H2mpMeucOz9y28y+E3r5C+fcx+noU7JL7IzZYfWLoxtUaOEvEclt85dtSDiUDQu/Hz7uphc+Zf8RfRg7Ivsn3P3iF79gw4YN3HrrrUyaNIny8nJGjx5NIBBg1apVrFy5EoBvf/vbSZ13t91245lnnuHMM8/kjjvu4K677mKXXXahV69ebNq0iaVLl9LQ4C2g9uijjyY97scff5zTTjuNV155hQMPPJBBgwYxdOhQGhoaWLZsGRs3bgRg2rRpSZ87HjPjiSee4IQTTuDdd9/l4IMPZujQoVRUVFBZWcmXX35JMBjk9NNP///t3Xl8VNX9//H3hySsAdnC4gLIoihYNxCwyFIVbV2qVsWvVarWunXxS9sv+tWfit3U1orW+hWl7rV1aSu17oKCosFiXVoXFpcgKDuGLSGQ5Pz+uHcyS2YmM8nMnWTm9Xw85jF3Ofeec5kZ5pPPnHuOysrK0v43iJ1sDBnznrzxYs+X9HSKx1wQcSwKVWnf6HV6zAIAUFCy1WM21vWSfiaJSKNArN0aTsya6tV7e8xs1vSYBVDgRg/qqcuPHiYptaRsSGTP2cuPHtYmkrKSl3C85ZZbVF5ermnTpqlXr156//33tWzZMnXt2lWnnHKK/vCHP2jWrFlpn/trX/taQ8/VQw89VJ9//rnefvttVVdXa8yYMbr22mv11ltvqbg4/d+je/TooXnz5umRRx7RCSecIOec3n77ba1atUoDBgzQ+eefr7lz56adUE6mb9++ev3113XHHXfoqKOO0rZt2/Tuu+9Kko455hjddddd2nPP6I6ZTf0bzJgxQwsXLmzWvwFS8hd5w3CdamYzzcwSFTTPTEmnyruj7PFgmohWqVFiljFmAQAoJIFE586564OoB62Dcy6qx+xAW6eS2pgRKUjMAoCmH7ufxg/rnXZy9dJJQ1pdT9lUxkOVpLFjx2rs2LEpn3fQoEEp9fIsKyvTzJkzNXPmzIyeV5LatWunqVOnaurUqSmVl6QFCxYk3T9p0qSk9bdv316XXXaZLrvsspTrTPRvUF9fr61buVs+y+ZI+oGk4ZKukfQtM7tf3nwJ6+QlYPtJGiPpO5JG+Mct9Y9FoYpNzG4jMQsAQCHJWbcJvyfBYIUnPNgs6VPnXH2u2oTM+LJqt3bVhl/GkVYRXaBLn8YTHQBAgWpucrU1JWWBQuec221mX5f0kqR9JR2o5BPYmqRPJH3dOVcbQBPRWsUmZndtk3btkNp3yU17AABAoIIayqCBmR1nZv+QN9HBckmL/cdySVvM7EkzmxJ0u5A5a2Im/hrZriK6QP+DpcR3+AEAALQ5zrmVkr4i6bfyJgOzBI8tkm6WdIhz7rPctBatRte+jbcxziwAAAUjsB6zZtZe0gOSzgxtilOsi6QTJJ1gZo9KOs85tyugJiJD1sZM/HVoyWfeDXwh/Zn4CwAA5B/n3A5J/2NmV0s6XNJIRd8d9p6kfxHfokH7Uqmks7S7Krxt+zqp5765axMAAAhMkEMZ/EneJAcmqVbSi/LG3Vrrb+sr6QhJx0oqkTTVb9+Z8U6G1mtNVGLW6QB9Gl2A8WUBAEAe8xOv5f4DSMxMKu0jfVkR3sYEYAAAFIxAErNmdoKk0+T1m3xZ0gX+7V7xyg6QdK+kr8mbOOEbzrlngmgnMiOyx+ye2qRuLmbCERKzAAAAgKe0X0xilqEMAAAoFEGNMXue//yupOMTJWUlyR9r6+uS3vE3nZ/VliHjInvMjmwX01u24x5S94EBtwgAACB7zKyrmV3rP5qc4dTM+keU7xREG9GKlfaJXt+2NjftAAAAgQsqMTtWXm/Z3zrndjdV2C9zs7whDsZmuW3IsLVbw5N/jWgXk4Nn4i8AAJB/TpE0U9K3nXOpZNXWSvq2pOsknZS9ZqFNKI2ZAIyhDAAAKBhBJWbL/OcP0jhmqf/cO8NtQZZF9pgdYTE9Zvsx8RcAAMg7oSG7HkulsHPOSXpEXieEM7LYLrQFXWMTswxlAABAoQgqMbvDf+6VxjGhGWyrkpZCq+KcixpjdmS7iugC/Q8JtD0AAAABGO4/v57GMaGJwQ7McFvQ1jTqMctQBgAAFIqgErPL/OepaRxzVsyxaAO21dSqaledJKlMlepnX0YXYOIvAACQf/b2n9ekcUwo+7ZXhtuCtqZRYpYeswAAFIqgErNPyrtV63wzO6+pwn6Z8+XdEjY3mw1DZq3dWtOwPCK2t2xJF6nXkGAbBAAAkH31/nPnNI4JlS3OcFvQ1sRLzNbXxy8LAADySlCJ2dvl9SAwSfeY2dNm9i0z29vMSvzH3v62ZyTd45f9QtLvA2ojMmBdRGL2QKuI3tnvIKldUbANAgAAyL5QT9lRaRwTKst964UuNjHr6qSqTblpCwAACFQgiVnn3A5JJ0qqlJdwPV7e5AgrJe30Hyv9bcf5Zb6UdKJzjjFm25DIHrONx5dl4i8AAJCXXpUXv15mZiVNFfbLXCbv7rBFWW4bWrsuZfLePhG2r8tJUwAAQLCC6jEr59zbkg6S9Fd5t3tZgke9pL9I+opz7t2g2ofMWLc1YuIv+zR6J+PLAgCA/HSf/zxM0p/MLOGQBv6+P0vaL+ZYFKqiYqlL7+htJGYBACgIgY5p5Zz7QtIZZtZP0mRJIyX19HdvlvSepAXOuXQmTkArEuox203bNaDdhuidJGYBAEAecs69bmaPyJu89jRJY8xsjqRX5A1z4CTtKWmCpAvlTRbmJP3FObcwN61Gq1LaV9oRETuTmAUAoCDkZLIB59xaeT0FkGdCY8yOaLcyekdRe6lseA5aBABAas477zw98MADuu666zRz5sxcNwdtzwWSeks6RtJekmYmKBe6Z/1FSd/JfrPQJpT2kSJzsSRmAQAoCIEMZWBmE/xHpzSO6Rg6LpttQ2aFesyOiJ34q+8IqajJIdcAoPCsLA/2OKStoqJCM2fO1K233prrpqAVc87tlDdXwnR5E9gmGrZrlaQfSTrePwaQSvtFr29fn5t2AACAQAU1xuwCSS9J2jeNY/aKOA5tRKjH7Mh2MePL9mPiLwBo5OUbpPuOlxbNSu+4RbO8416+ITvtQpSKigpdf/31JGbRJOe5TdIASYfLG7bgSv9xoaTDJA1yzv3eOedy11K0OqV9ote3rc1NOwAAQKCCHMrAmi6S0eMQsJ110raaWknSyNges4wvCwDRVpZLC2/0lufN9J7HT2/6uEWzwuUX3igNniQNHJeFBgJoLj/p+rb/AJpW2jd6nR6zAAAUhKB6zDZHqG11OW0FUrZll/fcWTs12GLmb+t/SODtAYBWbeA46ZiZ4fV5M5vuORuZlJW840nKAkDb1zU2McsYswAAFILWnJgd5D9vyWUjkLrKGq9z8wG2Uu0s4u48K5L6HpijVgFAKzZ+eurJ2XhJ2VR62AZk0KBBMjMtWLBA//nPf3TWWWepf//+KioqippI6/nnn9epp56q/v37q3379iorK9NJJ52kl15KPHLR448/rilTpqisrEwlJSXq2bOnhg8frmnTpun555+PKjtz5kyZmc4777yE5zMzmZkqKiqavK5JkyZp8uTJkqSVK1c2HJvOOQCgSY16zJKYBQCgEGRlKAMzG5BgV38z297E4R0kDZH0c0lO0vuZbBuyJ9RjdkS7iugdZcOlkpTnfQOAwhJKroaSrvGGNWjlSdlIr776qn71q1/JzHTggQeqe/fuMjPV19frkksu0Zw5cyRJvXr10siRI/XZZ5/pqaee0lNPPaUbbrhBV155ZdT5rr76av3qV7+SJPXp00cHH3ywqqqqtHr1aj300EPaunWrjjvuuKxdz0EHHaRNmzbpvffeU4cOHTRq1Kio/R07dsxa3QAKSGxitmartKtKat85N+0BAACByNYYs5/G2WaSXmjGuR5sYVsQkEo/Mdt4fFkm/gKQR+rrperNmT3noed6f4C/8mtvfd5Mb33MxdIbd4W3S9KEGV75HRtbXm99veSKJcvcDTTXX3+9pk2bpttuu01du3aVJFVXV+uXv/yl5syZo0GDBunuu+/Wscce23DMo48+qgsvvFBXXXWVxowZ09BDdePGjbrppptUXFysP/3pTzr99NNlFh56fvHixfr4448z1vZ4br/9di1YsECTJ09Wv379tGjRoqzWB6B1WFKxWaMH9QzsuEaJWUnasV5qPyj9cwEAgDYjW4nZRBN2pTOR105Jv3PO3ZuB9iAAlbu8l3dkbI9ZJv4CkE+qN0u/GZL9el75dXRCtqntzdBOkl30llznXhk5nySNGDFCc+bMUVFRUcO26upq3XjjjSopKdETTzyhQw45JOqYqVOnas2aNZo+fbpuuummhsTsRx99pLq6Oh1yyCE644wzGtU1duxYjR07NmNtBwBJmvXict02f4WuOH64Lp2U+v/3dy74WDc9t1SXHz1M04/dL71KO3SVijtJtdXhbdvWST0GpXceAADQpmQrMXt+zPp98oYluEbS50mOc/ISsmskve2ca2rYA7QilbukDtqlYbY6egeJWQAoGOeee25UUlaSnnnmGVVVVWnChAmNkrIhp556qqZPn65XXnlFdXV1Kioq0sCBAyVJy5cv11tvvaXDDjss280HUOCWVGzWbfNXSJJuem6pJKWUnA0lZSXptvkrNH5Y7/R6zppJpX2kypXhbYwzCwBA3stKYtY590Dkupnd5y/Odc59kI06kXuVNab9bLVKrC56R7+DctMgAEDgDjjggEbb3n33XUlegnX8+PFxj3POmzSyurpamzZtUp8+fdS/f3+de+65euihhzRq1KiGYQ6OPPJITZgwQd26dcvehQAoSKMH9dQVxw9vSLKmkpyNTMpK0hXHD2/ecAZd+5GYBQCgwGSrx2ysyf5zvLFnkScqd0lHxQ5j0Guod2sWAKAgdOnSpdG2yspKSdLatWu1du3aJs9RVVXVsHzPPfdo5MiRmjNnjhYvXqzFixdLktq3b68zzjhDN998s/r165eZxgOAwknY2OTseWP2bFQ2XlI2neEPopT2iV4nMQsAQN4LJDHrnFsYRD3Ind310o5a08jimNx7Pyb+ApBnOvWU/idLE07FTvTVsbu0szK8PmGGNyFYhtTX18vVZj8UKC0tlSRdfPHFmj17dlrHlpSUaMaMGZoxY4Y+++wzLVq0SPPnz9fjjz+uhx9+WB988IHeeOMNlZSUSFLD5GChHrixduzY0YIrAVAo4iVnd+/erQHOG3VAynBSVmo8ARiJWQAA8l5QPWaR57bs8p6Z+AtA3mvXTurSO/PnXTQrOil7zExp/HRv+7yZ3rZXfi217+xtz4T6emnr1sycK4mDDvKGtPn3v//dovMMGDBAZ599ts4++2xdddVVGjFihN5++2298cYbDUMkhHrsrlsXP6GxYsWKtOsNJXsBFJbY5Owt8z9Wt5IifWvfeq1cVKFb5n/SULbFSVlJKo3p/b99fcvOBwAAWr12uW4A8kNljVSsWh1gn0XvIDELAE2LTL5K4aSs5D0fE7Fv3kyvfBty4oknqlOnTiovL9drr72WkXMOGTKkYQiDL774omH7sGHDJEnvvPOOdu3a1ei4O++8M+26OnXqJMkb/xZAYbl00hBdcfzwhvWtu033LS/KfFJWajyUwbamh34BAABtG4lZZETlLtMQ+0IdbHf0DhKzAJBcsqRsSBtPzvbp00dXXXWVJOmb3/ymHnvsMdXVRU8UuXbtWs2ePVu//OUvG7bNmzdP06dP1zvvvBNVtq6uTnfddZdWrlwpM9Nhhx3WsG/y5Mnq3Lmz1q1bpyuvvFL19fWSvGEb7rzzTj344INpt3/w4MGSpPXr1+v9999P+3gAbdulk4bou+P3jbtvYK/OOnJIr8xU1GgoA3rMAgCQ70jMIiMqd0kjrCJ64x4DpM7NmJEWAApFKknZkDaenL366qs1ffp0bdq0SVOnTlXPnj01atQoHXHEEdpnn33Uv39/XXrppfrwww8bjtm+fbtuvfVWHXrooerRo4cOO+wwjRo1Sn379tUll1wiSbr++us1dOjQhmO6deumX/ziF5KkWbNmqaysTKNHj1a/fv30gx/8QHfccUfabe/du7eOO+44SdLhhx+uUaNGadKkSZo0aVJKk5kBaPuK28Uf0mTlpip9847XdOkf/6WP1m9vWSVdYxKzO9Z7Q84AAIC8RWIWGVG5y+KML8vEXwCQ0Mry1JOyIfGSsyvLM9+2LDAz3XLLLSovL9e0adPUq1cvvf/++1q2bJm6du2qU045RX/4wx80a1Y42XzUUUfpjjvu0GmnnabevXvro48+0rvvvqsOHTrotNNO07x583TNNdc0qmv69Ol66KGHdPjhh6uqqkorVqzQV77yFb3wwgu64IILmtX+P/7xj7r44ovVr18//fvf/9bChQu1cOFC7dy5s9n/JgDaju6dS5Luf/a9tZoya6Gu+Mu/9UVlM4c9ie0xW18rVW9u3rkAAECbwORfyIjKGmkEE38BQOoGjpMmXiktvDG1pGxIqNy8md7xA8dlq4VpqaioSKnc2LFjNXbs2JTK9urVS5dddpkuu+yytNtzzjnn6Jxzzom7zzkXd/v999+v+++/P+6+3r17a/bs2Wm3A0Dbd+eCj3XTc8sa1tu3c9pV37gHbb2THn1zlZ5453N9Z9xAXTZpqHp0aZ/85CvLw/+PdymTZJIi/o/avi7+hJORxwEAgDaLHrPIiC01rvFQBiRmASC5yf8rnf9c6knZkPHTveMm/2922gUAkBRKyi5tWD9pQJ1+M6ZOP5ocf8xZSdpVW685r36qCb9+WbfPX6EdNbXxC758g3Tf8eFhaYpKpM4x49VuX9f4uEWzvONeviHdy8mu5t7Bke5xQdUDAEAASMxKMrMBZnazmX1oZjvMbLOZ/dPMfmpmnTNYz1lm9ryZrTGznWZWYWYPmVlqXYdasT12r1OpxdzOSWIWAJrW3B5P9JQCkCZi3vTEJmV/fPQQHbOX15v10gn76orjhyc9fltNrX774nJN/M3LeuD1Cu2qjRgvdmW5d8eEFD1meOxwBttiErORY5MvvDH1ZGO2k5mxSeZUpZtkDqoeAAACUvCJWTM7QdK/Jf1E0nBJnSX1kDRa0m8kvWVmg1tYR0cz+4ekP0uaIqmfpA6SBko6R9JrZtZ4kLxW6MM3nm+0bVddvQbWVURtq+3cR+raL+lxAAAACAYxb3pik7JXHD9c3xs/MKrMpZOGNErOxpsjbOP2Xbruyfd19C0LNPftz1Vf77wf1+JN6FjaJ/rgyB6z8SaMTOVHumwnMxMlmVM5fzpJ5qDq8S2paN74vukel0/15NO1UE/zjsuna6Ge5h2XT9cSlIJOzJrZwZIek7SHpO2SrpZ0pKSjJc3xi+0v6WkzK21BVfdIOtFfflnSKZKOkPRdSR/Lex1+ZmYXtqCOrCu/56c64NkzVf5gdDy9YVuNRrZbGbXN9TsofNyD13jH3fPTQNoJAACAMGLe9MRLyl46aUjcsrHJ2XonHdi/a9yyqzZX678ffUff+N2remnpOs2q/oZu3H1WuMC8mY0n+9q+3nuOScreuPsszao+oemLCSKZOXCcXh34g/B6KvXEXM+rA3/QdJI5qHokzXpxuc6YXa47F3zcZNlIdy74WGfMLtesF5enVD6f6smna6Ge5tWTT9dCPc2rJ5+uJUgFnZiVdKu83gK1kqY4537lnCt3zr3knLtI0gy/3HBJP25OBWY2UdLZ/uo/JB3rnPu7c26Jc+5eSWMlfebv/7WZdW/epWTXh288r3GrvLh93Ce/i0rOrttaoxH2aVT54r0OleQlZcd98jvvuFVz6DkLAAAQvFtFzJuSJRWbU07KhsQmZz9Ys02/Pv0gTd6/LG75pWu36YL739Rt8z/S7LqTo5Oza96NLrx9bdyk7Oy6k3Xb/BVN9vxZ4vZvnPxNM5l54+6ztMTtn7iOis06d9mRqdcT5/znLjuy6WsJsJ7b5q+QJN303NKU//CPTOin9NrkUT35dC3U07x68ulaqKd59eTTtQStYBOzZjZa0iR/9R7nXLyfgX8r6UN/+b/NrKQZVYUC3TpJlznn6iJ3Ouc2SrrCX+0hr0dBq3PAmONUPvhHDeuRydm1W3ZqZLuKqPLW/+CopKwklQ/+kQ4Yc1wg7QUAAAAxb7pGD+qpy48eJim1pGxIZHL28qOH6cxRA3Tf+Ufo0YvG6vCBPZIe2yg5G+nTV6OSizftnqrZdSc3tG/0oJ5NXs8ex85oUTJzj2NnJK1n9KCeuuL44Y2vI149CZLMqV5LkPWEpPKHf7xe1oVUTz5dC/U0r558uhbqaV49+XQtQSvOdQNy6JSI5fviFXDO1ZvZg5JukBdATpL0YqoV+LeCHe2vvuicW52g6N8kbZXUTdJp8oLjVmfctJ+r/EGFe8B+8juVPyjt6HW0etj2qLJvlc/XuFX3N6yXD/6Rxk37eZDNBQAAADFv2qYfu5/GD+ud9h9tl04aolGDekQdN2ZwL/3lknGa/+F6/eb5ZVq2blvcY0PJ1itLHonesWN91OpPix/TBcXPyUr7qveqfaQn+nrj0pb28SYOi3zu2F0y06WThuhOzdCNL0acP5S0HD89fPIESdlUktOhMjc9p+jrmDdTqtkmHXqu9Oa90uvhTht31Z6g5+tH64YJHfVfI+ulDaFbS53/5BqtX3qA1HN7ke577RCV1Vbqu8XPhevZtlY65GzpnYelN+6Kuo5QUjadRLt3PUujns8bs2ejsukMfZFqPfGOb+315NO1JKuH90BhXEuyengPFMa1BKmQE7NH+c87JP0rSbmFEcvjlUaQKm9MrQ5xzhPFObfLzBbLmyThCDMrcc7tTqOewMRLzu78/L2oMjVqr8NIygIAALQGxLzN0NyeNPGOMzMdc2BfTR7eR0+++7l++8Jyrf6yulG52XUnax9br28Xv5Tw/EXmVKYt0o4t0sdNjJFX1F7q4iVtLy3tqw8GdNRrqw/UV4s+8PbPmylVbZYOmyYtmROVzHyydpzGjNxPkzvNk179u7S7Wtpd5T9HLlc1LF+6u0rTum1XXc0O1TlTkfkJ1Vd/6z1iXFz8tC4uflr6p7xHiqZKmtohzo43ZnuPCM1JyobE+8N/9+7dipwCLhN/8KeSYGgr9eTTtSSqh/dA7uvIdT28B3JfR5D1BMFcwy+RhcXMNkjqLeld59whScr1kBQafOJx59yZadTxfUm/91dPdc7NTVL2NkmhsQJGOOc+SLWeFNqxt6RVkrRq1SrtvffeLT5n7DAFCcuRlM0r1dXVeuGFFyRJU6ZMUadOnXLcImQDr7O0YsUK1dbWqri4WMOGDct1c7Kmvr5eW7dulSR169ZN7doV7AhHea25r3M6n4PVq1drn332Ca3uk6THJAJGzJs5mfp+rKmt05/f+Ey3v/SRNu3YFbWvg3bpww7nq50V5t9omRRKyk7ar0xjh/RKWC7Rn8PO76n7xiebtHD5xobtw7vXa2g3p8qSMi36ODxG4cT9emvM4MT1NCW2non79dbYwb21+JNNWrh8Q8P2SfuV6cihXj0m854t+lzmb7CGdTWsL/poo+Z9GO6JfeyBfTRhWJleWbFBL37QeHujk4fOmeA6zKRXlm/Q8++va9h23Ii+mrBfWaPtUw70tjd6CWJeFJdg16srNkRdyzEH9NH4ob0bXWNoe3PFnm9kj3rtv4fT5vZ99PLyTVmr5+iI65kfZ7uU+P0bKbbIax9t1EtLw+f72vA++urQ3o22h+oJv4+i328N74E477fY1/r4Ef00cf8yLVy2Qc+9vzZq+4T94o/H7bU9/gWGrvuV5Rv0wgfR76mj/PfaixHbj/Xfa4krSv4PGfv5GNmjXsO7O21u31cvLQt/bpv7uZESf3Ym7tdHC5dv0PMx/24T9y+LOl9klaaolUZteHnpej3zXvh83ziov742vI9eWrpez/xnTXj7yH6aPLyPpMbvo9gNsa/VgmUb9Ox70W2etH+ZFsR5D0xKMCZ7KhKdL3Z7ppKy2Yh5CzIxa2YdJYV+pn7aOXdiE+W3S+oiabFzrulpPMPH3ajwWFqjnXNvJin7U0m/8VePd86lPEuWH4Qm00/SEklavnx5xoLUtx75ub668o6E+18b+H0ddtY1Cfej7dm5c6deeeUVSdKECRPUsWPHHLcI2cDr7H3h7t69W2amYcOG5W3Csr6+Xtu3e0PRlJaW5u11FrrmvM7OOa1YsUL19fUqLi6ODEDjWr16tfbbb7/QKonZVoKYN7OJ2Ux/P+6oqdUDi1fp3tc/045d3pC8lxQ92Xg4A0n1TmqX7C96RNnuOmpkzb25bgYAoBX48dFD9L3xA5sumIJsxLyFOpRB14jl7QlLhe2QF6SWZrGeHRHL6dazKtWCr7zyinr3bv6veFF6jtHfN27UN3c82mjX37tMlXqOaehVgPwT+sME+a1QX+euXbuqS5cu6tKli9avX6/OnTvnuklZF0rcIb+l+jrX1NSotrZWO3bsUFVVlT788MOk5Tdu3Jh0P3KGmDdLMvX9OFTSVV+RXvy8nQ7c8JRmFIeTsl+60oZ5HNqZdPvuU/Rs/RHqbVtUpi0qs0qVmf+sLd52q1R325Ggtrav3nnZ6fDosyaTCw+b4Cu1nbqk6MmGsXsBAIXppAF1Gli1TC+8sCwj58tGzFuoidnIn7d3JSwVVuM/p3u/Ujr11EQst5n7hosHfVV6Pzoxu9V1lvY7IUctAoCWq6mpUadOnVRbW6svv/xSktSpU6eGW7iAfFZbW6stW7aovr5e9fX12rUrlVAJrRQxbxtQWiL9T6cnNaL4sYZtodvwI3vQ/rBkrnbs7thksrG9dqu3n7j1krVbVKZwEre3bdEQfaGe7Rrn0Le5jtrk9lC12munOqjatVe1OsRdr3Ydwvucv80vc2LRYp1fHO4MXem6RCWMf7P7TN1dd2JUgjX0HLst2c2/sT2MI5PZoe0kZwGgMHUocjpmr9Y/SkChJmZ3Riy3T6F8aHj5xqP0Z66eyCHs060n+f2FEbd1TZgwIaO3db3z0JWNtnWzKvXe/AbDGOQhbnEvDLzO3m3ca9as0c6dO2Vmqqys1JYtW1RUVJRXyVnnnOrqvNtn8+3aEJbO6+ycU21tbUPZnj176qCDDlJRUVHSOlavZuSCVoqYN4Oy9f1YvPh2lbzdOCkrhZOKoSTjlSWPaMSeXTW/53+p3vlj+jk1LDvnDZXotKecv32DnDZElPn6lkc1ekv4Nv8vXRf18JOmXW2nnt7jbD3V1RtiOPF/F/F3tDPpzK2PauqWcFI2XpL5f0oe04DepXq629SE/y5Njbh3wtZHddbWcFI2Xj1XljyiQb066+luU5NcS/LxUkM+21ytTzZWNSozuHdnDeiZud8YEtUzqFdn7dOjk0L9hUP/Pg2JbH9DeD36+Nj9X1Tu1OrKnYq1V/eO6r9Hx6hjUhVbfO3WGn2xpXEde+7RUf26dUj+msTsTDSWpiSt2bJTq75sXM8+PTppr+6Zi2M/r9ypVXEm7msL9cT7t/68cqc+25y8nkTvq9j3nWL2h8qsS/Ae6N+tg/p26+C3rXHj4r01kr1f1m6t0edNvJ8zYc2WnSnX05JhQxNdz557dFTfbh2izp1oDOZ47Ygtu2F7jdZva/x7ap+u7dWna+NZFmNfglT+dtiwrUZrttY02t6/Wwf16RZvJsfmWb+1cT01daaVnffP2DAGUnZi3kJNzG6LWE7lFqou/nO693mmU0+XiOW06mlqTIvID0unTp0yNpFP+YPXaNwX9zesV7pSdfd/of7qyjtU/ngRE3/lsY4dOxbkpFCFppBf53333VefffaZqqvDAWsouZUvnHMN10eP4PyV7usc2t+uXTsNHDgwpeRTof4/0QYQ82ZJxr4fF82SFv6yYTUyKdu9c4kqq3Y3Ss6etGGOTjp4L2n89ObVNy+clL1x91l6pMO3dFbNXxvOf9bWe3XWEQMydv7ZdSere+cSza6Kvo6pW+7V1NHZr6dF1+O7c8HHWrA8PLN352Knqlrv/fbJxiqdMWpARiaVia0n9B6QpIpNVZo6OnP1RM5UHlnP55U7dc7YQS2uJ1kdX2zZqXPHtbyOpupZ9WW1zh4zMCv1RL4HsllPUNeTjXqS1bFma42mHblvm3k/x6sn8j2QzXpy8dlZv22Xzv/q4Lx4D9wy/2OVlJRkpB4pOzFvQc7y4ZzbKSk0METSn9L9GWpDAWTK41r5IoPHpn6yj+wBkG49gSt/8BqN++R3Det/7zJVCw/7P7028PsN28Z98juVP0ivWQBtUygptc8++6h79+7q0KGDiouL8+pRVFSk6upqVVdXq6ioKOft4dE6XueOHTuqrKxMQ4cOLcge8/mEmLeVWzRLmjezYTUyKXvF8cP1zrVTdMXxwyV5PWdv3H1W+Nh5M73jW1jfHsfO0DvXTtEex87Iyvln150cdS3Zuo6s1OOL/YP/pAF1umF0nX58dPiP/JueW6o7F3zcrPMnqif2PdCW6smna4lXD++B1lFHLuvhPdA66giynmwq1B6zkvShpKMkDTWzYudcbYJyw2OOSccHCc6TrJ5aSR+lWU+gYpOyrw38vtRzjCTpsLOu8XrK+vu95KzoOQugTTIzlZaWqrQ03flp2obq6motXeoFMocffji9HvMUr3PBI+ZtjVaWJ03Khnr2hJ5vem5po56zmjdT2mesNHBc0/UlSMpG1nOnZujGF2POL6XW0zRJsrTxtajxdbS2enyxf/D/+OghGljlTSDzvfEDVVJS0rA/9NycXlnxEgvx3gNtoZ58upZ49fAeaB115LIe3gOto44g68m2guwx61vkP3eRdHiSchMjll9Ls44lCk+AMDFRITNrL2ls6BjnXKudZSM2KVs++EeNxpIdN+3nKh/8o/A6PWcBAAByhZi3NRo4Tpp4paTESdmQSycNid9zduKVGUnKRtbTrJ6zCZLMya4lbo/WleWtox5fvD/4Y8cpjHxtpOb1ykqWWGhr9eTTtSSqh/dA7uvIdT28B3JfR5D1BKGQE7NzI5bPj1fAzNpJmuavVkp6OZ0KnHPbJM33V48xs0S3dp0mqZu//EQ6dQQpXlI2UU9YkrMAAACtwtyIZWLeVuROO1On11ybNCkbEpucPb3mWt1pZzZdSZxkZrykbGQ9cZOzyZKZA8dpycCLGs6fKFkaey2RSdMlAy9qOskcVD1K7Q/+2HpC0vnDP5/qyadroR7eA9TDeyBIBZuYdc79U9Kr/up3zSzeN/RPJB3gL9/mnNsdudPMzjMz5z9mJqjqZv+5WNIdZhY1rbGZ9ZZ0k79aKekPaV1IQD584/mUk7Ih8ZKzH77xfJIjAAAAkEnEvK3TkorNuum5pXrTeX8sJvujMiTyj8s33XDd9NxSLanYnLwet79urT1NUtNJ2ch6IpOzt9aepiVu/6TXcsaySQ1J5nSuJZRkPmPZpKavJcB6Uv2DP7aekJRemzyqJ5+uhXqaV08+XQv1NK+efLqWoBVsYtZ3uaRqeQHkC2b2v2Y21swmm9ldkn7tl1su6bfNqcA595KkR/zVkyW9aGYnm9koMztf0mJJA/z9VzrnvmzuxWTTAWOOU/k+35OUWlI2JDI5W77P93TAmOOy1kYAAADERczbyowe1FOXHz1MUmp/VIZE/nF5+dHDNHpQzybrcRP/V6fXXJtSUjaynj2OnaHTa66Vm/i/SesJXcubbnizruVNNzzlawmyHin7r02+1JNP10I9zasnn66FeppXTz5dS+CccwX9kHSSpC2SXILHMklDExx7XkS5mUnq6CTp6SR11CU7PgPXuHeorlWrVrmW+GDxc422VVVVublz57q5c+e6qqqqlI9D25PKa422j9e5cPBaF4YgXudVq1ZFxjV7u1YQ4/FoFA8S87ZQNj5L//x0UyDHBVFPPl1LovKpvAfa0vVk+rh8upZE5XkP5L6OXNfDeyD3dQRZT6xsxLyF3mNWzrl/SPqKpFnyeglUybu96k1JV0g61DnXohljnXPVzrkTJH1b0ouS1subIGGVpD9JGu+cm9mSOoLS3B6v9JQFAADIHWLe1qm5PXbSPS6IevLpWqinecfl07VQT/OOy6droZ7mHZdP1xKU4lw3oDVwzq2U9GP/kc5x90u6P43yf5IXlAatYYyvNWvWZPzk1dXV2rhxoyRp9erV6tSpU8brQOvAa10YeJ0LB691YQjidY6JL4oSlUNuEfO2DP9ngvcAeA+A90Bhy0bMa8677Qd5zMxGSVqS63YAAICCMNo592auG4HCQ8wLAAAClJGYt+CHMgAAAAAAAACAoNFjtgCYWQdJB/mrG+RNvJBJ/RTunTBa0toMnx+tB691YeB1Lhy81oUhiNe5SFKZv/wf51xNFuoAkiLmRQB4D4D3AHgPFLaMx7yMMVsA/DdK1m4pNLPI1bXOudXZqgu5xWtdGHidCwevdWEI8HVemaXzAikh5kW28R4A7wHwHoAyHPMylAEAAAAAAAAABIzELAAAAAAAAAAEjMQsAAAAAAAAAASMxCwAAAAAAAAABIzELAAAAAAAAAAEjMQsAAAAAAAAAASMxCwAAAAAAAAABMycc7luAwAAAAAAAAAUFHrMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMyiRcxsgJndbGYfmtkOM9tsZv80s5+aWedctw8tY2YuxceCXLcViZlZHzM70cx+ZmbPmtnGiNfu/mac73gz+5uZrTazGv/5b2Z2fBaajxRl4nU2s/PS+Nyfl90rQiJmdpiZXeW/zqv8z+F2M1tuZveb2VFpno/PNNAEYt7CRCyc34iRQfyM1qA41w1A22VmJ0h6WNIeEZs7SxrtPy40s2845z7JRfsANFiXiZOYmUmaLemimF17STpV0qlmdrekS5xzLhN1Ii0ZeZ3RupnZQkkT4uxqL2mY//iOmT0k6ULn3K4k5+IzDaSAmBfIW8TIIH5GzpGYRbOY2cGSHpMXlG6XdIOklyV1knSWpO9J2l/S02Y22jm3PVdtRUbcKen/kuzfEVRD0GKrJH0oaUozjv2FwgHn25J+LeljSUMkzZB0qL9/g6T/1+KWoiVa8jqHHCfpiyT7V7fg3Gi+vfznLyQ9LulVSZ9JKpI0TtJP/DLnyovzzk5yLj7TQBOIeeEjFs5/xMggfkZOkJhFc90qL0CtlTTFOVcese8lM1sh7wtpuKQfS/pZ4C1EJq13zr2X60ag2X4maYmkJc65dWY2SNKn6ZzAzIbKCywl6U1JE5xz1f76EjN7UtJCSaMkXWFm9znnPs5I65GqFr/OMZY75yoy0TBk1FJJV0n6q3OuLmbfYr+n7GuS9pP0X2Z2p3Pu1diT8JkGUnariHlBLJyviJFB/IycY4xZpM3MRkua5K/eExOghvxW3q9NkvTfZlYSRNsANOacu84595RzriW36kxX+Me8H0YEnKE6qiT90F8tlvTfLagLzZCh1xmtnHPuROfcY3GSsqH9G+X1mg05PcGp+EwDTSDmBfIbMTKIn9EakJhFc5wSsXxfvALOuXpJD/qrPRQOagG0Mf64Wd/0V5c65xbHK+dvX+avnuIfByB4CyKWh8Tu5DMNpOyUiGViXgBR+D4FkAkkZtEcodmed0j6V5JyCyOWx2evOQCybF+Fx7VcmKxgxP69JQ3KVoMAJNU+Yrk+zn4+00BqiHkBJMP3KYAWIzGL5jjAf/7IOVebpNzSOMegbTrDzJaZWbWZbTOzFWb2gJlNznXDEIjIz+/ShKUa7+dz37bdb2brzGyXmW00s8Vm9gsz26vpQ5FjEyOW431m+UwDqSHmRQixMOLh+xSxiJ+RNhKzSIuZdZTU219NOqOgc+5LhWco3Seb7ULWHShvIpmOkkolDZU0Td6kF0+Y2R65bByyLvLz29RMoqsSHIe2Z6KkPpJKJPWSNEbS1ZI+MrOLc9kwJGZm7SRdGbHpsTjF+EwDTSDmRQxiYcTD9yliET8jbcVNFwGidI1Y3p5C+R2SusgLYND2VEl6UtJ8eb/ybpdUJu8L5xJ5XzanSPq7mR3rnNudo3Yiu9L53O+IWOZz3zZ9IulvksoV/iNisKRvyZtIqqOk2WbmnHN356aJSGK6pCP85Secc2/GKcNnGmgaMS8kYmEkx/cpQoif0WwkZpGujhHLu1IoX+M/d8pCW5B9eznnKuNsf9HMbpf0rKRD5QWnl0r6XYBtQ3DS+dzXRCzzuW97npD0gHPOxWxfIulRMztRXtBZImmWmT3pnFsbdCMRn5lNlHSjv7pe3v/L8fCZBppGzAuJWBjJ8X0KifgZLcRQBkjXzojl9glLhXXwn6uz0BZkWYJANLRvnbxf/0JByA+DaBNyIp3PfYeIZT73bYxzbkucoDJy/1OSrvdXO0v6biANQ5PMbIS8PwyK5f3xd6b//3Q8fKaBphHzglgYTeH7FMTPaDESs0jXtojlVG7B6OI/p3ILGNoY59wnkl70V4ea2Z65bA+yJp3PfZeIZT73+WmOpFDwOTFZQQTDzPaV9IKkHpLqJP2Xcy7Z7NB8poGmEfOiScTCBY/vU6SK+BkJkZhFWpxzOyVt9Ff3TlbWzHoo/AW0KllZtGkfRCwz22R+ipzMIOnnXtGTGfC5z0POufUKfw/wmc8xPwkwT9Ke8gL+C5xzTzRxGJ9poAnEvEgDsXDh4vsUKSF+RjIkZtEcH/rPQ80s2TjFw+Mcg/xjuW4Asi7yD47hCUs13s/nPn/xuW8FzKy3vJ5ag/1NP3TOPZjCoXymgdQQ8yIVfCcWLr5PkQ7+r0BcJGbRHIv85y6SDk9SLrKL/mvZaw5y7MCI5S9y1gpk06cKv7ZN3XozwX/+XFJFthqE3DGzPvJmoZb4zOeMme0h6XmF/w++0jl3R4qH85kGUkPMi1QQCxcuvk+REuJnJENiFs0xN2L5/HgFzKydpGn+aqWkl7PbJOSCmQ2WdKy/+olz7vNctgfZ4Q9m/3d/dbiZjY1Xzt8e6g3w92SD4KNNu0jhX/yTjWOKLDGzzpKelnSYv+mXzrmbUj2ezzSQsrkRy8S8aIRYuLDxfYo0ED8jIRKzSJtz7p+SXvVXv2tm4+IU+4mkA/zl25xzuwNpHDLGzE5KdtuemfWV9BdJJf6mVHtqoW26VVKtv3y7mXWK3Omv3+6v1vrl0YaY2SAzO7SJMidKusZf3Snpvqw3DFHMrL2kJyR91d90m3Pu/zXjVLeKzzSQFDFvYSMWRopuFd+nBYv4GZmQbKwkIJnL5d2q1UnSC2b2K3k9BDpJOkveL0KStFzSb3PSQrTU7ZJKzOyvksrl3XJTLam3pEmSLlH4doxFIhhttcxsvKShEZt6RywPNbPzIss75+6PPYdzbrmZ3SzpSkmjJL1mZjdJ+ljSEElXSAoFJb9xzq3I2AUgJRl4nQdJetnMyiX9Q9I7ktbL+3V/sKTT/Ufo1/6f0jMoJ/4saYq//JKke8xsZJLyu5xzy2M38pkGUkbMW7iIhfMcMTKIn9EaGL3o0VxmdpKkP0rqlqDIckknOOc+Cq5VyBQzq5A0MIWif5V0oXOuMqsNQrOZ2f2SvpNqeedc3IHp/ds150i6IMnh90i6yDlXn04b0XItfZ3NbJJSuwW3StJ059zdaTQPGWJm6QZuK51zgxKci880kAJi3sJELJz/iJFB/IzWgB6zaDbn3D/M7CvyehKcIGlvSbskfSTpcUm/d85V5bCJaJnvyBvEfpy8X/t6y/uDZLukVZJel/SAc648Zy1EoPxA8rt+z5GLJI2W977YKGmJpLucc8/msIlomX9JOkfeZ36UpP7yXt9iSV9Kel/SfEl/cM6tz1UjkTl8poHUEPMWLGJhpITv04JG/IwWo8csAAAAAAAAAASMyb8AAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmASAHzGySmTn/MSnX7WnNzGxQxL/VebluDwAAAFJDzJs6Yl6gMJGYBYAYZjbCD4hqzaw0YnuRmW3z943LZRsBAACAliDmBYDcIzELAI2N95/fcc5tj9h+qKRSSTsl/SubDTCzmaFfzLNZTy5F9AiYmeu2AAAAFCBi3gAQ8wJIpjjXDQCAVigUpL4as32C//xP59yullTgnFsgyVpyjkLhnKsQ/1YAAACZRszbihDzAoWJHrMA0FgoSF0Us/2oBNsBAACAtoaYFwByjMQsAEQwsz0lDfJXY4PRRMErAAAA0GYQ8wJA60BiFgCihQLRFc65daGNZnaApN6S6iW93tJKEs1Qa2bn+WNsXRexzcV5DIpzTjOz083sr2a2ysx2mtmXZvZPM7vGzLonac/9/nkr/PX+ZnaTmb0fMflDZDt7mNn5ZvZHM/vAzLab2S4zW2tmz5vZRWbWPkFdFTHjiF0X5/rujyif0gy1ZtbezC4zs5fNbENEe54xs3PMLOF3Xpzr725mP/Ovf4eZVZrZK2b27UTnAAAAaEOIeUXMS8wL5B5jzAIoWH7Ac1+C3cNiAqmQdpIqzaKGf9rXHxMqZ8ysTNITkr4as6uDpNH+4/tm9k3n3BtNnGuspH/IC8oTeVvSwDjb+0qa4j8uMbNvOOfWpnYVzWdmAyU9K+mAOO35uv+42L/+zU2ca7h/rkExu46SdJSZjXPO/SAjDQcAAMgyYt6E5yLmJeYFco7ELAC0LnMlvSnpMkmX+tsOilPu89CCmXWRtFBegLZLXuD9jKRVkrrIm8Dhx/ICtmfN7FDn3MoE9ZdK+qukjpJ+KelFSVV+G9ZElCuS9Iakp+QFrOsktZe0r6RzJB0vb0bfRyRNiqljil/2P/76nZL+L6bMlwna14iZlUp6SdJgf9NcSfdK+sJvzw8kTZTXM+QpMzvKOVeX4HSdJT0pqZekX0iaJ2m7fy3XSdpbXrD/D+fc86m2EQAAAFHmiphXIuYFCh6JWQCF7AlJiyPWe0p6zV+eIi/IC1koqY+k78sLiCJ9rgxxzlXK652wPmLbe00cdqO8AHWLpGOcc2/G7F9kZg9LKpfUX17wdW6Cc/WSF5SNd869G7F9SUy5rznnVsQ5/nVJD5vZ+fICxYlmdrRzbn7E9SyXpIgeGOtTuMZkrlM4QP2Fc+6aiH3/MrO/SnpI0rcljZN0kbzAOJ4ySSWSxjnn3o85zwJ5gXVHeX9EEKQCAIC2gJi3MWJeYl6gVWCMWQAFyzm3xTm3NPSQF6BJXtD0YsT2bfICVEn6W+Qx/mN3Ti5Akpn1lnShv3ptnABVkuT3Fvi5vzrVzDonOe2vYwLUeOeLF6BG7r9PXq8CSTolWdmWMLMOCl//B5JmxmmLkxdUbvI3NXVL1rUxAWroPB/J65kghWcrBgAAaNWIeRMi5iXmBXKOxCwAhIUCj9ditofGsPo4iLGj0nScvF+zJemxJsq+4j+XSDo8SbmH02mAPwFDPzPbz8xGhh7ybquSpIPTOV+aDpfU3V++P9HtWs65rQr/+xxoZv0TnM9J+lOS+v7lP/dINrEEAABAK0bM6yHmTYyYFwgIQxkAQFhodtpFMduPTLC9NRgVsbwmZoKGZPol2L7dOfdJKicwsxPkjQk2QVLXJEWTTajQUiMjlpNO8ODvD41hNlLR44eFbHTObYqzPSRyEoWukiqbaiAAAEArQ8xLzEvMC7QSJGYBQJKZdVT4F/XYYDTUeyC2V0Fr0KfpInEluq2rsqkDzYuE50j6bop1dUqxXHP0jFhe10TZyJ4fPROUqWriHPURy0VNlAUAAGhViHkbVDZ1IDFvA2JeIItIzAIoSGZWIWlggt1vJPgV/m4zuzti/QHn3HkZblq6QoHSLiW/VSvW6gTbE83cGukChQPUdyTdKu+X+c8lVYVurTKzB+VNuJByl4YWck3sD6odAAAArQIxLzEvgNaNxCwAtG2hW5DaS9rknIt3q1Kmfc9//ljSkc656gTlegTQlsjbrPpJWp6kbN8ExwEAAKB1I+YNI+YF8giTfwEoVFMkHRTxKPe3/yZm+4P+9mdith8k6eostq+pX8JD3o5YnpKNhsQxwn/+e6IA1b/167AA2vJexPKYJsoekeA4AACAfEXM23zEvACyjh6zAAqSc67hV2YzayfpQH/1CefcexH7hvmLz0ZuD8DOiDZ0cM7VJCj3rKTd8madnW5mDzvnarPcttB3R6IxuyTpZEl7NnGenfJm1+3Qgrb8S94YYd0lfcfMbok3S62ZdZV0pr/6QUC9LAAAAHKKmLdFiHkBZB09ZgFAOkTSHpKqJb0Z2mhmnRSeAfaVgNsUGUQNSVTIOfe5pPv81YMl3WVmCX90M7M+ZnZhC9u2wn8+ycwa3bplZkMk/V8K5wldY8Lra4ofvP/BXx0h6bo47TFJv1d4ptzfN7c+AACANuwQEfOmg5gXQNaRmAUAaYL/vNg5tzti+zh5v8pvlvSfgNv0esTyLDObYGbDzGyo/4gMRH+i8G1KF0h618wuN7PxZnaImU0ys++b2ROSVkm6pIVtC93qtpek183sfDM7wm/jTHm/6PeU9FaK13iymV1sZiMjri+dmXd/JukTf/kaM/ubmZ1oZoeZ2bckvSRpmr+/XNLd8U4CAACQ54h500PMCyDrGMoAAKSJ/nNsD4FQ8LrIOZfq+FcZ4Zz7yMwek3cr0hQ1HktrX0kVftntZjZR0sOSjpd3i9qtSU6/tYXNu03SsX6bhku6N2Z/tbyg8AQlH3PrZkmny7uta3bMvgcknZdKY5xz28zsaHm3uA2XdKr/iPWapJPj3fYFAABQAIh500PMCyDr6DELoKD5t/yM91djg9SjEmwPyjmSZkj6p6QtkuoTFXTObXbOfV3S0fJu81ohabukWnm9H5ZIukPSN+QFmM3m97A4QdKP5N0GVyUvMP1IXrB5mHPu8RTO8468Hhp/lvSZpERjiqXSpgp5t7X9QNJCeTP37pa0TtJzks6VNME5x8y0AACg4BDzpo+YF0AQLOAfxAAAAAAAAACg4NFjFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAvb/AU6bFe764KKWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,2, figsize=(8, 2), dpi=200)\n", + "\n", + "ax[0].plot(ref_observables['E_tot']-np.min(ref_observables['E_tot']), 'x-', label='reference')\n", + "ax[0].plot(observables['E_tot']-np.min(observables['E_tot']), 'x-', label='result')\n", + "\n", + "ax[1].plot(ref_convergence['d_G0'][0], 'x-', label='reference')\n", + "ax[1].plot(convergence['d_G0'][0], 'x-', label='result')\n", + "\n", + "ax[0].set_ylabel('total energy (eV)')\n", + "ax[1].set_ylabel(r'convergence $G_0$')\n", + "\n", + "for it in range(2):\n", + " ax[it].set_xlabel('# iteration')\n", + " ax[it].xaxis.set_major_locator(ticker.MultipleLocator(5))\n", + " ax[it].grid()\n", + " ax[it].legend(fontsize='small')\n", + "\n", + "fig.subplots_adjust(wspace=0.3)" + ] + }, + { + "cell_type": "markdown", + "id": "4952537b", + "metadata": {}, + "source": [ + "Note that the total energy jumps quite a bit in the first iteration and is constant for the first two (three) one-shot iterations in this run (the reference data) as expected. Since the HubbardI solver essentially yields DMFT-convergence after one iteration (you may try to confirm this), the total number of iterations necessary to achieve convergence is relatively low." + ] + }, + { + "cell_type": "markdown", + "id": "9afd381d", + "metadata": {}, + "source": [ + "This concludes the tutorial. The following is a list of things you can try next:\n", + "\n", + "* improve the accuracy of the results by tuning the parameters until the results agree with the reference \n", + "* try to fnd the equilibrium lattice paramter by repeating the above calculation of the total energy for different cell volumes" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/tutorials/NNO_os_plo_mag/tutorial.ipynb b/.doctrees/nbsphinx/tutorials/NNO_os_plo_mag/tutorial.ipynb new file mode 100644 index 00000000..1d3cd1f9 --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/NNO_os_plo_mag/tutorial.ipynb @@ -0,0 +1,846 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "40ad917b-d7a1-4950-8593-abb9b4934e8a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2023-11-24 09:49:44.156139\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "np.set_printoptions(precision=6,suppress=True)\n", + "from triqs.plot.mpl_interface import plt,oplot\n", + "\n", + "from h5 import HDFArchive\n", + "\n", + "from triqs_dft_tools.converters.vasp import VaspConverter \n", + "import triqs_dft_tools.converters.plovasp.converter as plo_converter\n", + "\n", + "import pymatgen.io.vasp.outputs as vio\n", + "from pymatgen.electronic_structure.dos import CompleteDos\n", + "from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType\n", + "\n", + "import warnings \n", + "warnings.filterwarnings(\"ignore\") #ignore some matplotlib warnings" + ] + }, + { + "cell_type": "markdown", + "id": "c24d5aa3-8bf2-471e-868d-32a0d4bb99f7", + "metadata": {}, + "source": [ + "# 4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2" + ] + }, + { + "cell_type": "markdown", + "id": "aed6468d-cb0b-4eee-93b4-665f4f80ac2d", + "metadata": {}, + "source": [ + "In this tutorial we will take a look at a magnetic DMFT calculation for NdNiO2 in the antiferromagnetic phase. NdNiO2 shows a clear AFM phase at lower temperatures in DFT+DMFT calculation. The calculations will be performed for a large energy window with all Ni-$d$ orbitals treated as interacting with a density-density type interaction. \n", + "\n", + "Disclaimer: the interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!\n", + "\n", + "This tutorial will guide you through the following steps: \n", + "\n", + "* run a non-magnetic Vasp calculation for NdNiO2 with a two atom supercell allowing magnetic order\n", + "* create projectors in a large energy window for all Ni-$d$ orbitals and all O-$p$ orbitals\n", + "* create the hdf5 input via the Vasp converter for solid_dmft\n", + "* run a AFM DMFT one-shot calculation\n", + "* take a look at the output and analyse the multiplets of the Ni-d states\n", + "\n", + "Warning: the DMFT calculations here are very heavy requiring ~2500 core hours for the DMFT job.\n", + "\n", + "We set a `path` variable here to the reference files, which should be changed when doing the actual calculations do the work directory:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6dde4dcd-c06a-45e0-9c06-ca11be265713", + "metadata": {}, + "outputs": [], + "source": [ + "path = './ref/'" + ] + }, + { + "cell_type": "markdown", + "id": "b1356ed1-b4a6-48d2-8058-863b9e70a0be", + "metadata": {}, + "source": [ + "## 1. Run DFT \n", + "\n", + "We start by running Vasp to create the raw projectors. The [INCAR](INCAR), [POSCAR](POSCAR), and [KPOINTS](KPOINTS) file are kept relatively simple. For the POTCAR the `PBE Nd_3`, `PBE Ni_pv` and `PBE O` pseudo potentials are used. Here we make sure that the Kohn-Sham eigenstates are well converged (rms), by performing a few extra SCF steps by setting `NELMIN=30`. Then, the INCAR flag `LOCPROJ = LOCPROJ = 3 4 : d : Pr` instructs Vasp to create projectors for the Ni-$d$ shell of the two Ni sties. More information can be found on the [DFTTools webpage of the Vasp converter](https://triqs.github.io/dft_tools/unstable/guide/conv_vasp.html).\n", + "\n", + "Next, run Vasp with \n", + "```\n", + "mpirun vasp_std 1>out.vasp 2>err.vasp &\n", + "```\n", + "and monitor the output. After Vasp is finished the result should look like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bf1b811e-af03-4714-a644-ad7a7b57c42b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DAV: 25 -0.569483098581E+02 -0.31832E-09 0.42131E-12 29952 0.148E-06 0.488E-07\n", + "DAV: 26 -0.569483098574E+02 0.75124E-09 0.25243E-12 30528 0.511E-07 0.226E-07\n", + "DAV: 27 -0.569483098574E+02 -0.12733E-10 0.17328E-12 28448 0.285E-07 0.826E-08\n", + "DAV: 28 -0.569483098578E+02 -0.41837E-09 0.17366E-12 29536 0.151E-07 0.370E-08\n", + "DAV: 29 -0.569483098576E+02 0.22192E-09 0.19300E-12 29280 0.689E-08 0.124E-08\n", + "DAV: 30 -0.569483098572E+02 0.38563E-09 0.27026E-12 28576 0.388E-08 0.598E-09\n", + "DAV: 31 -0.569483098573E+02 -0.92768E-10 0.34212E-12 29024 0.218E-08\n", + " LOCPROJ mode\n", + " Computing AMN (projections onto localized orbitals)\n", + " 1 F= -.56948310E+02 E0= -.56941742E+02 d E =-.131358E-01\n" + ] + } + ], + "source": [ + "!tail -n 10 ref/out.vasp" + ] + }, + { + "cell_type": "markdown", + "id": "3364605b-c105-4ad8-9350-6569b506df07", + "metadata": {}, + "source": [ + "let us take a look at the density of states from Vasp:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3529d644-40f5-4b6b-98f0-2d3a6acdb524", + "metadata": {}, + "outputs": [], + "source": [ + "vasprun = vio.Vasprun(path+'/vasprun.xml')\n", + "dos = vasprun.complete_dos\n", + "Ni_spd_dos = dos.get_element_spd_dos(\"Ni\")\n", + "O_spd_dos = dos.get_element_spd_dos(\"O\")\n", + "Nd_spd_dos = dos.get_element_spd_dos(\"Nd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5fec0ad8-7ab4-4a02-bd72-b679f6ce6ed4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAIyCAYAAAAzNWwJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9foH8M9JR9qme5eWJauILFERRUVxIYgo4gIUFb3oHSg/r6hXvSpuQRFxe70O9KosEcGtIMgSEGSPMkqhdM+0TdLk/P4oaXO+J0kzTrryeb9evCQn55ycYtvkOc/zfR5JlmUZRERERERERK1A19oXQERERERERMGLQSkRERERERG1GgalRERERERE1GoYlBIREREREVGrYVBKRERERERErYZBKREREREREbUaBqVERERERETUahiUEhERERERUathUEpERERERESthkEpERERERERtRoGpURERERERNRqGJQSERERERFRq2FQSkRERERERK2GQSkRERERERG1mnYZlNbU1ODLL7/EnXfeiQEDBiA2NhYGgwEDBw7EU089herqapfHfvTRRzjnnHMQHR2NxMREXHXVVVi3bp1P12Gz2TB37lz0798fkZGRSElJwYQJE7B7925fvzQiIiIiIqKgIsmyLLf2RXjrvffew1133QUA6NevH04//XRUVlZi3bp1qKqqQnZ2NlavXo3U1FTFcTNmzMArr7yCyMhIXH755airq8NPP/0EWZaxcOFCXHvttR5fgyzLuOGGG7Bo0SLEx8dj5MiRKC4uxq+//oqIiAj88ssvGDp0qKZfNxERERERUUfTLoPSjz76CBs2bMD999+PXr16NW7Pz8/H6NGj8ccff+Dmm2/Gp59+2vjczz//jJEjRyIpKQnr169vPG79+vUYMWIEIiMjcfjwYSQkJHh0De+//z7uvPNO9OrVC2vWrEFaWhoAYPHixbj++uvRo0cP7N27F6GhoRp+5URERERERB1LuyzfvfXWW/HGG28oAlIAyMjIwOuvvw4AWLJkCcxmc+Nzc+bMAQA8+uijiuOGDRuGadOmoaKiAu+//77H12A/34svvtgYkALA+PHjMXbsWOTk5GDZsmXef3FERERERERBpF0Gpe4MHDgQAGAymVBSUgIAjWW6AHD99derjrFvW758uUevcfjwYezevRuRkZEYPXq03+cjIiIiIiIKVh0uKD106BAAICwsDImJiQCAvXv3wmQyISUlBVlZWapjzjzzTADAn3/+6dFrbN++HQBwxhlnICwszOX57PsRERERERGRcx1uweOrr74KALjyyiuh1+sBALm5uQDgNCAFAIPBgPj4eJSVlaGqqgoxMTFuX6O589m32/drTr9+/Zxu37dvHyIjI9GlSxePzkNERERERNTScnNzYTAYcPLkSZ+O71CZ0pUrV+I///kPwsLCMGvWrMbt9hExUVFRLo81GAyKfd1p7nzenMsdWZZhsVj8OgcREZGvbDYbdu/ejd27d8Nms7X25RARURtlsVhgNBp9Pr7DZEr37NmDSZMmQZZlvPTSS41rS4GG4A4AJElyebw3TYg9OZ83du3a5XS7PYPq6nkiIqJAMhqNiI6OBgBs3ry58aYrERGRI1eVn57qEJnSvLw8XHnllSgrK8OMGTMwffp0xfP2clx30XtNTQ0ANL75utPc+ezbPTkXERERERFRMGv3QWlxcTEuu+wy5Obm4vbbb8fs2bNV+9jXZObl5Tk9h9FoRHl5OeLj45tdT+rJ+ezbuRaUiIiIiIjIvXYdlFZVVWHUqFHYu3cvrrvuOrz77rtOS2r79OkDvV6PoqIip4Hk1q1bAQADBgzw6HXtpcE7d+50uubT2/MREREREREFq3YblJpMJlxzzTXYvHkzrrjiCvzvf/9DSEiI030jIyNxySWXAAAWLVqket6+bcyYMR69dvfu3dG3b1/U1tZixYoVfp+PiIiIiIgoWLXLoNRqteLmm2/GL7/8ggsuuABLlixBeHi422NmzJgBAHj66adx4MCBxu3r16/H22+/jdjYWNx5552KYzZt2oTs7GyMHDnS5fkefPBBFBYWNm5fsmQJvvrqK3Tv3h3jxo3z9UskIiIiIiIKCu2y++78+fOxdOlSAEBycjLuvfdep/vNnj0bycnJAIBLL70U06dPx6uvvopBgwbhsssug9lsxg8//ACbzYZPPvkEiYmJiuNramqwb98+1NXVqc59xx13YOXKlVi6dGlj4FpcXIzVq1cjIiICCxYsQFhYmMZfORERERERUcfSLoPSsrKyxr/bg1NnnnjiicagFADmzp2LQYMGYf78+fjhhx8QFhaGkSNH4tFHH8Xw4cO9ugadToeFCxfi1Vdfxfvvv4+vv/4aBoMB1157LZ566im/2yITERERUccky7JX4wiJWookSZqNvfTqdWX+RLRZnFNKREStyXFOaXV1NeeUEvnBZrOhoqICZWVlMJlMrX05RC6FhoYiJiYGcXFxiIyM9OgYf+OWdpkpJSIiIiJqL2RZxsmTJ1FRUdHal0LUrPr6epSVlaGsrAyZmZmIjY0N+GsyKCUiIiIiCqCqqqrGgDQ1NRWxsbEup0YQtSabzYa6ujqUlZWhuroax48fR1hYmMcZU18xKCUiIiIiCqDKykoAQGJiIpKSklr5aohc0+l0iI6OhsFgQF5eHqqrq1FRURHwoLRdjoQhIiIiImovampqAAAxMTGtfCVEnpEkCQkJCQAaMv2BxqCUiIiIiChAZFmG1WoFAOj1+la+GiLPRUREAGhYYxro3rgMSomIiIiIAsTxw3xrjNog8pVO1xQqMiglIiIiIiKiDotBKREREREREbUaBqVERERERETUahiUEhERERERUathUEpEREREROTEqlWrIEkSpkyZ4vExI0aMgCRJjX9CQkKQkJCAnj17Yvz48Xj99ddRUVHR7HksFgvefPNNXHzxxUhNTYVer0dmZibGjx+Pr7/+2u2x5eXleOyxxzBo0CAYDAZERkaiS5cuuPDCC/Gvf/0L27Zt8/jraQmhrX0BREREREQUXI4cOYLu3bvjoosuwqpVqzQ556pVq3DxxRfjtttuwwcffKDJOf1xxRVXID09HUDDrM9jx45h+fLlWLJkCR5++GHMmzfPZbB79OhRXHXVVdi9ezciIyMxfPhwJCUl4ejRo/jyyy+xZMkSjB8/HgsWLGgc3eJ47IUXXojc3FzExMTgvPPOQ2pqKoqLi7F582asWbMGJSUleOuttwL9T+AxBqVEREREREQae+ihhzBixAjFtoqKCrzyyit4+umncfvtt8NiseCuu+5S7TNixAgcOXIEN954I958800kJCQ0Pr93717cdNNNWLx4MWw2G5YsWaI4/m9/+xtyc3MxZswYLFiwAHFxcY3P1dfX44cffkBBQYH2X7AfWL5LRERERETUAuLi4vDEE080ZnL/8Y9/qALEmTNn4siRI7j88svx6aefKgJSAMjOzsaPP/6I9PR0LF26FJ9//nnjc7W1tfj2228BAHPnzlUEpAAQGhqKUaNGeVWO3BIYlBIRERERUYt54okn0L17dwDA6tWrFesvxWBp9+7dmDhxIjIyMhAeHo7MzEzceuut2Ldvn2K/KVOm4OKLLwYAfPjhh4pzPvHEE437rVixAnfccQf69u2L2NhYGAwGDBw4EM8++yxMJlNAv25HkyZNwvDhw1FXV4d33323cXtJSQk+/PBDAA1BpU7nPFxLTk7G448/DgCYM2dO4/aysjLU19cDAFJSUgJ1+Zpj+S4RERERUSuw2WSU1Zhb+zJ8khAVDp1O8unYQYMGYfz48Vi8eDHS0tJw5ZVXNj43fPjwxr//9NNPuPrqq1FbW4szzzwTI0aMwN69e/Hxxx9j6dKlWLlyJS644ILG406ePInvvvsOPXr0UJxn0KBBjX+/8847YTQa0a9fP/Tv3x+VlZXYtGkT/vWvf+Gnn37C999/j5CQEJ++Lm/ddNNNWLt2LX755Rc8+uijAIBffvkFdXV1GDRoEPr27dvs8X/961/x+++/o6SkBElJSUhOTkZERATq6urw1ltv4cEHH2yJL8VvDEqJiIiIiFpBWY0ZQ57+sbUvwydbHr0USdF6n44dN24cBg0ahMWLFyM7O9tpUyKj0YiJEyeitrYWb775JqZNm9b43CuvvIIZM2bglltuwcGDB6HX6zF16lT07NkT3333HYYPH+6y0dFbb72Fyy67DAaDoXFbVVUVbrnlFnz99df45JNPcOutt/r0dXnLHizv2bOncZu9K+6QIUOaPT4hIQGnnXYacnJysG3bNowcORLh4eGYPHky3n33XcycORMLFy7EVVddhWHDhmHYsGGqct62guW7RERERETUpnzxxRcoKCjABRdcoAhIAeD+++/HkCFDkJeXh6VLl3p13nHjxikCUgCIiYnBK6+8AgBYtmyZfxfuheTkZAANJbd2JSUlAIDU1FSPzmEv0S0uLm7cNnfuXEyePBmSJGHz5s146qmnMGrUKCQlJeHiiy/G999/r9WXoBlmSomIiIiIqE1Zs2YNAGDixIlOn580aRK2bNmCNWvW4KabbvLq3AcOHMDKlStx8OBBGI1G2Gw2yLLc+FxLsb+mJEmqbfb/+nKOqKgofPTRR/jXv/6FRYsWYe3atY0lvqtWrcKqVaswZ84czJgxQ6svxW8MSomIiIiIqE05ceIEAKBbt25On7dvt+/nCVmW8cADD+CVV15xGfRVVVV5dZ3+sGc3ExMTG7fZs6eFhYUenaOoqAgAkJSUpHquT58++Ne//gUAsNlsWL9+PR5++GGsWbMGM2fOxPjx49G1a1e/vgatMCglIiIiImoFCVHh2PLopa19GT5JiApvkddxzAD68ryjzz//HC+//DKysrIwd+5cDBs2DCkpKQgLC4PZbIZer/c4Q6kF+/rR008/vXHbwIEDAQBbtmxp9vjS0lIcPnxYcZwrOp0O559/Pr799ltkZ2fj2LFj+O6773D33Xf7ePXaYlBKRERERNQKdDrJ52ZBHV2nTp0AoDHoEh09ehQAkJGR4fE57etP33zzTYwZM0bx3KFDh3y5TL989tlnANA4ygYALrnkEuj1emzfvh27d+9WBKzOjpdlGWeddVZjhrU5UVFROOecc3Ds2DHFOtTWxkZHRERERETUosLDGzKt9pmaIvuol08++cTp8/bt9v08Oae9oVDnzp1Vz33xxReeXLZmFixYgN9++w1RUVGYOnVq4/akpKTG7r/3338/bDab0+OLi4sxa9YsAPB6bWhOTg6ApsC/LWBQSkRERERELSo5ORlhYWHIycmB1WpVPX/DDTcgLS0Na9aswTvvvKN4bt68efj999+RlZWFa6+9tnG7Pcjat2+f09fs3bs3AOCdd95RlOmuWbMGL730kt9fkycqKirw5JNPYsqUKQCA+fPnN3bQtXvhhRfQpUsXfP/997jlllsU3XmBhq/v0ksvxcmTJzF27FjcfPPNjc+Vl5dj6NChWLp0KSwWi+I4i8WCp59+Gtu2bUNkZKRiPmxrY/kuERERERG1qPDwcFx55ZVYvnw5Bg4ciDPPPBPh4eE4//zzcfvtt8NgMOCTTz7B1Vdfjb/85S9455130Lt3b+zduxd//PEHDAYDPv30U+j1TeXP3bp1w4ABA7B582acc8456NevH0JCQjB27FiMHTsW//jHP/DBBx/gjTfewKpVqzBgwAAcP34ca9euxf/93/9h9uzZmn6Nzz//fOO81OrqauTl5eGPP/6A2WxGbGws5s+fj8mTJ6uOS0hIwKpVq3DVVVfh888/x1dffYULLrgASUlJOHr0KDZs2ACbzYZx48bh008/VR2/adMmXHfddYiNjcWQIUOQnp6O8vJybNu2Dfn5+QgJCcGbb76J9PR0Tb9efzAoJSIiIiKiFvfee+/hgQcewA8//IBPP/0UVqsV9fX1uP322wEAI0eOxO+//45nnnkGP//8M/78808kJydj0qRJePTRR9GnTx/VORcvXox//vOfWLNmDbZs2QKbzYasrCyMHTsWvXv3xu+//46ZM2di48aN+Oqrr9CnTx+8/fbbuOuuuzQPSr/77jsADU2GYmJikJSUhDFjxmDkyJGYNGkSYmNjXR7bvXt3bN++He+99x6++OILbNmyBZWVlUhOTsbYsWNx++23Y+zYsarj4uLisG7dOnz77bdYtWoVDh06hN9++w0hISHo0qULRo8ejb///e8YMGCApl+rvyS5JVtMkVf69esHANi1a1crXwkREQUjo9GI6OhoAA13+cWB80TUPJvN1lhO2qdPH+h0XD1H7YM337v+xi38qSAiIiIiIqJWw6CUiIiIiIiIWg2DUiIiIiIiImo1DEqJiIiIiIio1TAoJSIiIiIiolbDoJSIiIiIiIhaDYNSIiIiIiIiajUMSomIiIiIiKjVMCglIiIiIiKiVsOglIiIiIiIiFoNg1IiIiIiIiJqNQxKiYiIiIiIqNUwKCUiIiIiIqJWw6CUiIiIiIhanCRJkCQJCQkJKC8vd7rPE088AUmS8Pzzzzvd/sEHH2h2PSNGjIAkSThy5Ihm5yTPtNugdMuWLXj++edx3XXXITMzE5IkISIiwuX+9m96d38uueQSj19/ypQpbs/11ltvafFlEhERERF1aOXl5XjllVda+zKoFYW29gX4atasWVi2bJnH+992220un1uxYgWKi4txwQUXeH0dV1xxBdLT01Xb+/Tp4/W5iIiIiIiCiU6nQ2hoKObOnYv77rsPCQkJHh33t7/9DTfddBMyMjICfIXUEtptUDps2DAMHDgQZ599Ns4++2yngaEjV6n98vJyfPbZZwCASZMmeX0dDz30EEaMGOH1cUREREREwS4sLAx33nkn3njjDbz88suYNWuWR8clJycjOTk5wFdHLaXdlu/OnDkTTz75JMaMGYO0tDSfz7Nw4UKYTCace+656NWrl4ZXSEREREREzXnkkUeg1+vx6quvorS01KNj/FlT+s4776B///6IiIhAZmYm/v73v6OiosLr85B22m2mVCsLFiwAAEyePLmVr4SIiIiIgorNBtR6FoS1OZGJgE6b/FZmZibuuusuzJ8/H3PmzMEzzzyjyXmdeeCBBzBnzhzo9XpccskliIqKwieffILffvsNer0+YK9L7gV1UJqbm4s1a9YgLCwMN954o0/nWLJkCRYvXgyr1Yru3bvj6quvRnZ2tsZXSkREREQdTm0p8FKP1r4K3/wzBzBoVz778MMP47333sNrr72GGTNmICkpSbNz261btw5z5sxBYmIifv31V/Tr1w8AUFJSgksuuQQbNmzQ/DXJM0EdlH7yySeQZRmjRo3y+Rv/tddeUzyeOXMm7rnnHrz66qsIDfXsn9f+AyHKyclBjx7t9BcVEREREZGHOnXqhLvvvhvz5s3D7Nmz8dxzz2n+GvbpGP/3f/+n+PydlJSEl156CVdccYXmr0meabdrSrXgT+nu4MGD8dZbb2H//v2oqanBoUOH8PrrryM+Ph5vvPEG/vnPf2p9uUREREREHdZDDz2EiIgIzJ8/H8XFxZqff+3atQCAG264QfXc5ZdfjsTERM1fkzwTtJnSrVu3Yvfu3YiPj8fVV1/t9fHTp09XPO7evTvuvfdeXHjhhRgyZEhj6UHnzp2bPdeuXbucbneVQSUiIiIi6mgyMjIwbdo0zJ07Fy+99BJeeOEFr45/7733GgNPu+TkZMyePRsAcOLECUiS5PLzeZcuXTxutETaCtqg1J4lnTBhgqaLms844wyMHTsWixYtwo8//ojbb79ds3MTERERUQcSmdiwNrM9igxMVnHmzJl4++238frrr+OBBx7w6ti1a9fiww8/VGzr2rVrY1BKbVdQBqVWq9Wv2aTNsY+Wyc/P1/zcRERERNRB6HSaNgvqCNLT03HPPffg5ZdfxosvvgiDweDxsR988IHbETEZGRk4cuQIjh07hp49e6qez83N9eWSSQNBuab0p59+Qn5+Prp27YoLLrhA8/OXlZUBAKKjozU/NxERERFRRzZz5kxERUXhjTfeQEFBgWbnHT58OABg4cKFqud++OEHlu62oqAMSu2lu5MmTYIkSZqe22QyYcWKFQCAIUOGaHpuIiIiIqKOLjU1Fffeey9qampU5bj++Mtf/gIAePnll7Fnz57G7aWlpXjwwQc1ex3yXtAFpTU1NVi6dCmA5kt3N23ahOzsbIwcOVKxfd++fVi2bBmsVqtie1FREW666SYcO3YMAwcOxHnnnaftxRMRERERBYEHH3wQBoMBtbW1mp1z+PDhuO+++1BcXIzBgwdjzJgxmDBhQuPSu3PPPVez1yLvtNs1pStWrMCsWbMU28xms+Kb6bHHHsPo0aMV+3z55Zeorq7G2WefjezsbLevUVNTg3379qGurk6xPT8/H+PGjUNSUhKys7ORmZmJwsJCbNmyBVVVVcjKysIXX3yheRaWiIiIiCgYpKSk4K9//StefPFFTc/78ssvo0+fPpg/fz5++OEHJCUl4YYbbsBzzz2HcePGafpa5Ll2G5QWFRVh48aNim2yLCu2FRUVqY5zLN31Ve/evXHfffdhw4YNyMnJwaZNm6DX69G7d29cffXVmD59OhISEnw+PxERERFRRyfLstvnX3jhBZdjYZ544gk88cQTXr+mJEmYNm0apk2bpnpu1apVXp+PtCHJzX03UKuxzyl1NceUiIgokIxGY2PTvurqaq+6YBJRA5vNhn379gEA+vTpA50u6FbPUTvlzfeuv3FLu82UEhERtRfrcorx2aZjyEyIxNTh3ZEUrd18bCIiovaOQSkREVEA/X6kFBPf2wh7XdLaA8VYfM95CA9ltoSIiAgIwu67RERELem1nw/CcaHMjuMV+HbXyda7ICIiojaGQSkREVGAlFSb8NvBYtX2n/ZoNwyeiIiovWNQSkREFCCbj5bBalP3E/wzr6IVroaIiKhtYlBKREQUILtOVDrdfrTEiDqLtYWvhoiIqG1iUEpERBQgu084z4jaZCCnqLqFr4aIiKhtYlBKREQUIPsKqlw+d6CAQSkRERHAoJSIiCggLFYbTpTXuXw+r6ymBa+GiIio7WJQSkREFAD55XVOmxzZHXcTsBIREQUTBqVEREQBkFvqPhOaX1HbQldCRETUtjEoJSIiCoBjzZTn5jNTSkREBIBBKRERUUCImdLYiFDF4xPMlBIREQFgUEpERBQQx4SgdOhpSYrHVXX1MJrqW/KSiIjapOLiYjz22GMYPHgw4uPjERUVhZ49e+Luu+/Gzp07W/vyqAUwKCUiIgqAY2XKTOigzvGqfUqN5ha6GiKitunHH39Er1698PTTT+P48eO46KKLMGbMGISFheHdd9/FoEGD8Pzzz7f2ZVKAhTa/CxEREXmrsFK5ZrRPWgzCQ3QwW22N20qMZnROjGrpSyMiahN+//13jB49GhaLBc899xweeOABhIY2hScrV67EpEmT8PDDDyMqKgr/+Mc/WvFqKZCYKSUiItKYzSajqMqk2JYWG4FEQ7hiW0m1ch8iomAhyzJuu+02mM1mPPXUU3jooYcUASkAXHXVVfjyyy8hSRJmzpyJo0ePttLVUqAxU0pERKSx0hoz6oUZpamxeiRFh+OkQwa1hOW7REHNJttQbipv7cvwSbw+HjrJ9/zWN998gz179iAzMxMzZ850ud+FF16ICRMm4IsvvsDrr7+OF1980aPzjxgxAqtXr8bhw4exdu1avPLKK9izZw+io6MxatQoPPvss8jMzPT5+klbDEqJiIg0ViCU7uokIMkQ7iRTyqCUKJiVm8px0ecXtfZl+GT1jauRGJHo8/ErV64EAEyYMAFhYWFu973lllvwxRdf4JtvvvE4KLWbPXs23njjDVxwwQW45pprsGHDBnz00Uf4+eefsX79emRlZfn8NZB2WL5LRESkscJKZVluUrQeoSE6JEfrFdtLjSzfJaLgtG3bNgDAkCFDmt3Xvs/u3bthsVi8ep23334bX3/9NVavXo3//e9/2L9/PyZOnIi8vDyuUW1DGJQSERFpTMyUpsU2BKPMlBIRNSgpKQEApKamNrtvSkoKAMBms6G0tNSr17nhhhtw1VVXNT4OCwvDq6++CoPBgGXLluH48eNenY8Cg0EpERGRxgrFJkcxEQCApGghKOWaUiIKUrIsK/7ryb4AIEmSV69z0003qbYlJSXhsssug81mw7p167w6HwUG15QSERFpTMyUpp7KlCYblOW7JSzfJQpq8fp4rL5xdWtfhk/i9fF+HZ+cnIx9+/ahsLCw2X2LiooANASkCQkJKC4uxgMPPKDab+rUqRg+fLhiW9euXZ2es1u3bgCAEydOeHnlFAgMSomIiDRWIKwpTT2VKRXLd0tZvksU1HSSzq9mQe3ZwIED8dtvv2HLli2YPHmy2323bNkCAOjXrx/CwsJQXV2NDz/8ULXfiBEjVEGpK55kaKnlsHyXiIhIY2IGNDnm1JpSlu8SEQEARo0aBQBYtGhRs82LPv30UwDAlVdeCaAhyynLsurPlClTVMe6mm2am5sLAOjUqZOvXwJpiEEpERGRxsqEYDPpVIY0PlI59sBUb0Odxdpi10VE1FZcddVV6NOnD44fP44XXnjB5X6//vorFi1ahPDwcPz1r3/1+nU+//xz1bbS0lJ8//33kCQJw4YN8/qcpD0GpURERBoTM6D2st24SPUsvopa78YbEBF1BDqdDh988AHCwsLw+OOP44UXXoDVqrxJ980332DcuHGQZRnPP/984zpQb3zxxRf47rvvGh/X19fj/vvvh9FoxNixYzmntI3gmlIiIiINWaw2VNXVK7Y1F5SmxUa0yLUREbUl5557Lr766ivcdNNNeOihh/Dyyy9j2LBh0Ov12LFjB/bs2QOdTodZs2bh/vvv9+k17r77bowaNQoXXnghOnXqhA0bNuDw4cPo1KkT5s2bp/FXRL5ippSIiEhDYuku0BSUhoboEK1X3g9mppSIgtmVV16JAwcO4F//+hcyMjLw888/46uvvkJdXR2mTp2KP/74A48++qjP53/ggQfw3//+FxUVFVi6dCkqKysxefJkbNy4EV26dNHwKyF/MFNKRESkodIaZVAqScq1pHGRYag2NWVSK2oYlBJRcEtJScHTTz+Np59+OiDnv+2223DbbbcF5NykDWZKiYiINCSOeYmLDENoSNPbbaxQwlvOTCkREQU5BqVEREQaEjOl4mxSsQMvy3eJiCjYMSglIiLSUKnYeTdKGZSKzY4YlBIRUbDjmlIiIiINqYJSg/ugtJJBKRGR5latWtXal0BeYKaUiIhIQ2JQmhQtBKVRwprSGnW3XiIiomDCoJSIiEhDJUJQmsDyXSIiIrcYlBIREWlInFPaXPkug1IiIgp2DEqJiIg01Gz5LoNSIiIiBQalREREGhKDUpbvEhERuceglIiISCOyLKO8RhlkelK+K8tywK+NiIiorWq3QemWLVvw/PPP47rrrkNmZiYkSUJERITL/Z944glIkuTyz0MPPeT1NdhsNsydOxf9+/dHZGQkUlJSMGHCBOzevdufL42IiNqpOosNZqtNsS0+UhmUxgvddy1WGbUWa8CvjYiIqK1qt3NKZ82ahWXLlnl93Pnnn4+ePXuqtg8ZMsSr88iyjBtvvBGLFi1CfHw8Ro8ejeLiYixevBgrVqzAL7/8gqFDh3p9fURE1H45K8WNjVS+1YqZUvtxUeHt9i2ZiIjIL+32HXDYsGEYOHAgzj77bJx99tlIT0/36LipU6diypQpfr/+f//7XyxatAi9evXCmjVrkJaWBgBYvHgxrr/+ekycOBF79+5FaGi7/ScmIiIvVdapg9KYiDDVY0kCHCt2y2ssyIiLDPTlERERtUnttnx35syZePLJJzFmzJjGgLAlzZkzBwDw4osvKl5//PjxGDt2LHJycnzK5BIRUfslZkpj9KEI0UmKbSE6CdF65Q1LNjsiomBkX0aXkJCA8vJyp/vYl+A9//zzHp/3yJEjkCQJI0aM0OZCHa7jgw8+0Oyc1KTdBqWt6fDhw9i9ezciIyMxevRo1fPXX389AGD58uUtfWlERNSKKoXgMtZJqS6gLuEVjyMiCibl5eV45ZVXWvsyqBUFXW3pzz//jG3btqGurg5ZWVkYNWqU1+tJt2/fDgA444wzEBam/sBx5plnKvYjIqLgIGY83QWleWW1Lo8jIgoWOp0OoaGhmDt3Lu677z4kJCS09iVRKwi6TOnHH3+MV199FW+//TYee+wxnHXWWbj++utRXV3t8Tlyc3MBAFlZWU6ft2+370dERMFBDC7jIp3f+42N4KxSIiIACAsLw9SpU1FZWYmXX365tS+HWknQBKU9e/bE7NmzsWvXLlRXV+PYsWP45JNPkJmZicWLF2Py5Mken8sewEZFRTl93mAwKPZrTr9+/Zz+ycnJ8fiaiIio9VXW1isei8Gnnap8t67e6X5ERMHgkUcegV6vx6uvvorS0lKPjysuLsZf/vIXpKenIyoqCoMHD8ZHH33k17WsXr0aI0aMQHR0NJKSknDttddi7969fp2Tmhc05buTJk1SPDYYDLjllltw8cUXo3///vjyyy+xbt06nHfeec2eyz7kXJKkZvYkIqJgos6Uck0pEbkm22ywumjw09aFxMdD0mmT38rMzMRdd92F+fPnY86cOXjmmWeaPaakpATnn38+9u/fj6ysLIwdOxYnT57E7bffjmnTpvl0HcuWLcP48eNhtVpx3nnnoUuXLti0aROGDh2Kq6++2qdzkmeCJih1JSMjA7fffjtmz56N7777zqOgNCYmBgBgNBqdPm/fHh0d7dE17Nq1y+n2fv36eXQ8ERG1DeJIGJdrSqNYvktEgLW8HAfOO7+1L8Mnvdb9htDERM3O9/DDD+O9997Da6+9hhkzZiApKcnt/o888gj279+Pa665Bp9//jn0ej0A4JtvvsHYsWO9fv2qqipMnToVVqsVn376KW6++WYAQH19PaZOnYoPP/zQ+y+KPBY05bvu9OrVCwCQn5/v0f5dunQBAOTl5Tl93r7dvh8REQUHTzOlsREcCUNE5KhTp064++67UVVVhdmzZ7vdt7q6Gh9//DFCQ0Mxb968xoAUAEaNGoUJEyZ4/foLFy5EcXExLrvsssaAFABCQ0PxyiuveJxsIt8wKAVQVlYGwPPM5sCBAwEAO3fuhMWi/iCxdetWAMCAAQM0ukIiImoPVN13I5wXJLF8l4hI7aGHHkJERATmz5+P4uJil/tt3boVtbW1GDp0qNMkkGNQ6am1a9cCAG644QbVcwkJCbj88su9Pid5LuiDUlmWsXTpUgDweDRM9+7d0bdvX9TW1mLFihWq5xctWgQAGDNmjHYXSkREbZ4YXIplunZiWS8zpUREDcvqpk2bhurqarz00ksu9ztx4gQA11WJzravXbsWU6ZMUf2xB7++nJO0ExRrSouLi7Fy5UrceOONivR+dXU1HnjgAWzcuBHp6em49tprFcdt2rQJt956KzIzM/HTTz8pnpsxYwbuuusuPPjggzjvvPOQmpoKAFiyZAm++uordO/eHePGjQv410ZERG2HGJR62n2XQSlRcAqJj0evdb+19mX4JCQ+PiDnnTlzJt5++228/vrreOCBB5zu40vT0YMHDzpdF/rEE08gOTmZjUxbWbsNSlesWIFZs2YptpnNZpx77rmNjx977DGMHj0a1dXVuO222/D3v/8dffv2RZcuXVBeXo6tW7eipKQE8fHxWLRokWrES01NDfbt24e6ujrV699xxx1YuXIlli5diuzsbIwcORLFxcVYvXo1IiIisGDBAoSFOf8wQkREHZM42sXlmlIGpUQEQNLpNG0W1BGkp6fjnnvuwcsvv4wXX3yxcdSio06dOgEAjh496vQcubm5qm32zKgrvpyTtNNuy3eLioqwcePGxj9Aw10Tx21FRUUAgKSkJMycORODBw9GXl4evvrqK/z2229IT0/H//3f/2Hnzp04/3zvOp/pdDosXLgQc+bMQadOnfD1119jx44duPbaa7F582aPuvgSEVHHUW+1odokzCn1cCSMqd6GOos1YNdGRNSezJw5E1FRUXjjjTdQUFCgen7IkCGIiIjAxo0bcezYMdXzn332mdevOXz4cAANDY9E5eXl+P77770+J3mu3QalU6ZMgSzLbv/Y74bExMTg+eefx6pVq5CXl4e6ujoYjUbs3LkTs2fPRmZmptPXGDFiBGRZxpEjR5w+HxISghkzZmDnzp2ora1FcXExFi9ezFEuRERBqErIkgKezykF1ONkiIiCVWpqKu69917U1NQ4LbmNjo7GxIkTUV9fj+nTp8NkMjU+9/333+OLL77w+jUnTJiAxMRE1fFWqxX/93//h+rqat++GPJIuw1KiYiI2hJnJbiuR8I4CUpZwktE1OjBBx+EwWBAbW2t0+eff/559OzZE0uXLkWvXr1w880345JLLsGoUaNw1113ef16sbGxeOedd6DT6XDjjTdi+PDhuOWWW9CnTx8sWrQIEydO9PdLIjcYlBIREWlAzHSGhUjQhzp/mw0P1SEyLESxjetKiYiapKSk4K9//avL55OTk/Hbb79h6tSpMJlM+PLLL1FSUoJ3330XDz74oE+vOX78ePzwww+44IIL8Mcff+Cbb77B6aefjvXr16Nnz56+finkAUm2t5qiNsdeBrxr165WvhIiImrOupxi3PLuxsbHCVFh+ONx13Ptzn32J5ysbGqk998pZ+Pi7NSAXqO3jEZj4wzv6upqpw1HiMg9m82Gffv2AQD69OkDnY45IWofvPne9Tdu4U8FERGRBowmZaMig959g3uOhSEiImrAoJSIiEgDNWZlo6NoBqVEREQeYVBKRESkAXEcTFR4iIs9G8RGKoNWBqVERBSsGJQSERFpwCgEpc2V74ozTNl9l4iIghWDUiIiIg2Ia0pZvktEROQZBqVEREQaEDOlUeEMSomIiDzBoJSIiEgDRlWjo2bWlEYI5bt1DEqJOiJJkhr/brPZWvFKiLxjtTZVADl+HwcCg1IiIiIN+D8Spt7FnkTUnkmShPDwcAANs3+J2ovKykoAgF6vD3hQ6v4dk4iIiDzittGRzQqUHgKiU4GIOADqoJSNjog6rpiYGJSUlKCgoAAAYDAYoNMxN0RtjyzLMJlMqKqqQmlpKQAgISEh4K/LoJSIiEgD4kgYg30kTOlhYMF1DUFpeDQw7g3g9GsQF8U1pUTBIikpCUajEXV1dThx4kRrXw6Rx+Lj4xEXFxfw1+EtGiIiIg3UmF2U7y7/R0NACgDmamDpPUB1kWpNabWpHvVWrjcj6ohCQkLQpUsXJCUlNZbyErVVISEhiI2NRWZmJtLT01skq89MKRERkQaclu+W5ACHf1XuaDECOxchru/tqnNU1dUjwcAPrEQdUUhICFJTU5GamgpZliHLcmtfEpGKJEkBXz/qDINSIiIiDajKd/WhwK6lznc+vAZxZ96t2lxRa2FQShQEWuuDP1FbxfJdIiIiDYjlu9H6ECB3vfOdj/6GiFAgPET5Nsx1pUREFIwYlBIREflJlmXVnNKoMB2Q97vzA+rKIZUfRWyksmCJs0qJiCgYMSglIiLyU43ZCnF5WHztMaCuwvVBxQcRq5pVyqCUiIiCD4NSIiIiP4lZUgCIrjrk/qCSA6pZpQxKiYgoGDEoJSIi8pPRZFVti6g46P6gYgalREREAINSIiIiv4njYEJ1EkJLD7g/qDRHNau0sladcSUiIuroGJQSERH5ydmMUql4v3KnzCHKxxXHmSklIiICg1IiIiK/iWtKDWE6oFjIlPa4RPm48jjiIoTuuwxKiYgoCDEoJSIi8lO1sKY0K7waMFUqdzrtYuXj+jqkhhoVm5gpJSKiYMSglIiIyE81Qvlut9AS5Q66MCDrLEBSvu2moVjxmHNKiYgoGDEoJSIi8lO1EJR21hUpd4jLAkL1QHS6YnOyTRmUMlNKRETBiEEpERGRn8SRMJ0gBKXxnRv+G5uh3GwtVTxmUEpERMGIQSkREZGfaoRGR+k2MVPapeG/hlTF5ph6ZVBaWWuBLMuaXx8REVFbxqCUiIjIT2L5brK1QLlD/KmgNDpFsTnSrAxKbbL6XERERB0dg1IiIiI/iXNKE+vFoPRU+a6QKY0wCw2RwBJeIiIKPgxKiYiI/GQ0O64plRFnOqncIe5UUBqtDEpDa4qhk5S7MiglIqJgw6CUiIjIT46Z0lgYEW6rVe4Ql9XwXyEolYyFiI0MU2yrrGX5LhERBRcGpURERH5yDEpTpAr1DjGnuu4K5buoLkScEJSW15i1vjwiIqI2jUEpERGRnxzLd1OlcuWTEXFAWETD34VMKcxVSItUdtstq2H5LhERBRcGpURERH5yzJSmokz5ZHR6098Nyu67ANBVb1Q8LmOmlIiIggyDUiIiIj85jnFRZUpj0pr+HhEHhIQrns4Mq1I8LjMyKCUiouDCoJSIiMgPsiyjxqF8V7WmNNohKJUk1brS9NBqxeNSZkqJiCjIMCglIiLyg6neBqutaV1oqiSW76YpH0clKB6mhCiDUmZKiYgo2DAoJSIi8oNj6S4ApKJcuUNMuvJxVJLiYaKkXFNaykZHREQUZBiUEhER+aHGZFU8Vq0pjRaC0shExcM4uVLxmJlSIiIKNu02KN2yZQuef/55XHfddcjMzIQkSYiIiHC6r81mw5o1a/Dggw9i6NChSE1NhV6vR48ePTBt2jQcPnzY69efMmUKJEly+eett97y90skIqJ2QMyUprhrdASoMqXRNiEo5ZpSIiIKMqGtfQG+mjVrFpYtW+bRvocOHcKFF14IAMjMzMR5550HnU6HTZs24e2338ann36KlStXYvjw4V5fxxVXXIH09HTV9j59+nh9LiIian+M5qagVA8z4qQa5Q6qNaXKoDSqvlzxuKquHharDWEh7fa+MRERkVfabVA6bNgwDBw4EGeffTbOPvtsp4GhnSRJuOKKK/DII480BqcAYDKZMG3aNHzwwQeYOHEiDh48iLCwMK+u46GHHsKIESN8/TKIiKidc5xRqsqSAk6CUmX5rt4idOtFQ7Y0NcZ59Q8REVFH026D0pkzZ3q8b48ePfDtt9+qtuv1erz55ptYunQpcnNzsW7dOlx00UVaXiYREXVwRoc1paomR6ERDbNJHQmZ0tA6oVsvgDKjhUEpEREFjaCvDYqIiEDv3r0BACdOnGjlqyEiovbGMVOaJCnXh8KQ2jCb1FGkciSMVFuCuEhllQ7XlRIRUTBpt5lSrVitVhw9ehQA3JYAu7JkyRIsXrwYVqsV3bt3x9VXX43s7GytL5OIiNooxzWlCVKV8kmhVLdhmzJTippSJESGoqK2aRQMO/ASEVEwCfqg9LPPPkNhYSFSUlJw3nnneX38a6+9png8c+ZM3HPPPXj11VcRGurZP2+/fv2cbs/JyUGPHj28viYiImo5jpnSBFQrnxQDUEAdqMpWZEZZcKS0aVMpM6VERBREgrp899ixY7jvvvsAAE899RT0er3Hxw4ePBhvvfUW9u/fj5qaGhw6dAivv/464uPj8cYbb+Cf//xngK6aiIjakmqHNaU+ZUoBdNbXKR4zU0pERMEkaDOlRqMR1157LYqLizFu3DhMmzbNq+OnT5+ueNy9e3fce++9uPDCCzFkyBC89tprmDFjBjp37tzsuXbt2uV0u6sMKhERtR01Zi8zpWFRQIgesJoaN3UKrwEQ2/i41GhRH0dERNRBBWWm1GKxYPz48diyZQuGDx+OTz/9VLNzn3HGGRg7diysVit+/PFHzc5LRERtU7XJzZrSSCeZUklSBatpYcrZpuUs3yUioiASdEGpzWbDpEmT8N1332HgwIFYvnw5IiMjNX2NXr16AQDy8/M1PS8REbU9RndBqbPyXSfbk3XK47imlIiIgomm5btHjhzBmjVrsH37dhQVFaGiogJxcXFISUnBoEGDcMEFF6Br165avqTX7r33XnzxxRfo3bs3vv/+e8THx2v+GmVlDTPnoqOjNT83ERG1LTVmhzWlqvJdz4LSRCiDUq4pJSKiYOJ3UFpWVoYPP/wQ7777Lvbu3QsAkGVZtZ90ak5b3759cdddd+HWW29FQkKCar9AeuSRR/D222+jS5cu+OGHH5Camqr5a5hMJqxYsQIAMGTIEM3PT0REbYtj+W68JASlzsp3AVX5bqwQzDJTSkREwcTnoLSmpgYvvvgi5syZA6PRiMjISAwfPhznnHMOsrOzkZiYiNjYWFRUVKCsrAx79uzBpk2bsHnzZtx///149NFH8cADD+CBBx6AwWDQ8mty6uWXX8Zzzz2H9PR0/Pjjj+jSpUuzx2zatAm33norMjMz8dNPPzVu37dvH/bu3YsxY8YgJCSkcXtRURHuvvtuHDt2DAMHDvRpxAwREbUv9vJdCTYkQCzfddLoCFAFqzG2CsXjcjY6IiKiIOJzUNqjRw8UFBTgiiuuwKRJkzBu3DiPgkuj0YglS5ZgwYIFePLJJ/H222/jxIkTXr/+ihUrMGvWLMU2s9mMc889t/HxY489htGjR2Pbtm144IEHADR0yX3mmWecnnPq1KkYPnx44+Oamhrs27cPdXXKVv35+fkYN24ckpKSkJ2djczMTBQWFmLLli2oqqpCVlYWvvjii8bsMBERdVzGUyNhYlCDEEmoFHJZvqsMVqPqlUFplake5nobwkODrvUDEREFIZ+D0qFDh+Lf//43Bg8e7NVxBoMBkydPxuTJk7F161ZVYOmpoqIibNy4UbFNlmXFtqKiIgBAeXl5Y0nx+vXrsX79eqfnHDFihCIodaV379647777sGHDBuTk5GDTpk3Q6/Xo3bs3rr76akyfPr3FS5OJiKh1GE+NhEkUmxwBbsp3ldv15nLVLuU1ZqTGRvh7eURERG2ez0Hpl19+6feLn3nmmVi6dKlPx06ZMgVTpkzxaN8RI0Y4Xefq63GdOnXCK6+84vX5iIio47GX76qaHIVGAuFRzg8SMqWhpjJIEuD4llNiZFBKRETBwee6oOrq6uZ3IiIi6sDM9TZYrA2RpKrJkavSXUCVQZVqSxEXGabYVsZmR0REFCR8DkrT0tIwceJErFy5EjabTctrIiIiahccZ5SKY13cBqXiczUlSBSC0vIaNjsiIqLg4HNQWltbi//973+4+uqr0alTJ9x3333YvHmzltdGRB2Mud6Gz3/PxTu/5qCcWSDqAJTjYISg1NV6UkDdlddWj05R9YpNpZxVSkREQcLnoPTIkSN45pln0LdvXxQWFmLevHkYOnQosrOz8eyzz+LIkSMaXiYRtXeyLGPqR5sxc/EOPLtyL0bPW8vAlNq9GrO18e8J3pTvOnkuS1+reFzGoJSIiIKEz0Fply5d8PDDD2Pnzp34448/MGPGDHTq1An79+/HY489hh49euCiiy7Cu+++i/Lycg0vmYjao98OluDX/UWNj4+X1+Kj9Udb8YqI/OeYKY1BjfLJiDjXB4ZHAyHhik0Z4crjS3nThoiIgoQmA9AGDhyI2bNnIzc3Fz/++CNuu+02xMTEYM2aNZg2bRoyMjJw/fXX48svv4TFwjUyRMFo9f5C1baf9qq3EbUnjmtKYyRlphP6WNcHSpKqvDc91Kh4zEwpEREFC02nckuShEsuuQTvv/8+CgoK8Pnnn2PMmDGQZRlLlizB+PHjkZ6ejnvuuUfLlyWidmBPvnqG4978StRb2SiN2q8as7tMqZugFFCtK00OUZb/lrLRERERBQlNg1JHer0eEyZMwLJly5Cfn4/XX38diYmJKCsrwzvvvBOolyWiNupgoXqMlKnehiMlRid7E7UP1aamNaWxkhCU6t2U7wKqdaWJEjOlREQUnEID/QJ//vknPvnkE/zvf/9DaWkpACAkJCTQL0tEbUi91YbCqjqnz+06UYmeqTEtfEVE2lCU70Io3202U6oMSuPkSsVjziklIqJgEZCg9NixY/j000/xySefYNeuXZDlhsHiAwYMwOTJkzFx4sRAvCwRtVHF1WbYZOfPHS5mppTaL6O78l13a0oBVflutE0ISpkpJSKiIKFZUFpRUYGFCxdiwYIFWLt2LWRZhizL6NSpE2655RZMnjwZ/fv31+rliKgdKah0niUFgLyyWpfPEbV1ykZH/q0pjaovV57bbEWdxYqIMFYXERFRx+ZXUGo2m/H111/jk08+wcqVK2E2myHLMqKjo3Httddi8uTJGDlyJCRJ0up6iagdOuk2KK1x+RxRW2dsXFMqI1os320uUyp039Wby1W7lNdYkB7HoJSIiDo2n4PSu+66C4sXL0ZFRQVkWUZISAguu+wyTJ48Gddeey2ioqK0vE4iaseYKaWOyp4pjYIJoZLQSVrfzFppIVMaaiqDToKi1L3UaEZ6XIQWl0pERNRm+RyU/uc//wHQMKN08uTJuOWWW5Cenq7ZhRFRx1FYaXL5XH5FHeqtNoSGBKwZOFHA2NeUqtaTAkCEd913pZpSxEeFo9RhLSmbHRERUTDwOSj95z//icmTJ+OMM87Q8nqIqAMqr3X9wdpqk3Gysg5ZCayuoPbHPhJGtZ4U8CBTqgxKUVuKhMhQBqVERBR0fA5KX3jhBS2vg4g6sIraerfP55XVMiildqnmVPlurJgpDYsCQsLcHyyU78JqRkakFTkOm9iBl4iIgoHm9XLffPMNxo0bh8zMTOj1etx5552K52bMmIETJ05o/bJE1IaVN5PtOVbKZkfUPlWfCkpjJC+bHAGqRkcA0DlCeZ5So8XnayMiImovNA1K7733XowZMwZfffUVqqurYbFYGmeUAkB8fDzmzp2Lzz77TMuXJaI2rqLW/Qfr/ArXjZCI2rIa86nyXTFT2tw4GKChvFenzKZmhCuDUpbvEhFRMNAsKH3//ffx1ltv4ZxzzsG2bdtQUVGh2mfYsGHIzMzE8uXLtXpZInKw83gF/r1sJ+b/fAC1ZmvzB7SQ8hplUJoSo1c8PlHODrzUPtm770b7kimVJNW60rRQo+JxKct3iYgoCPg1p9TR22+/jcTERHz99ddISkpyuV/Pnj1x6NAhrV6WiE7Zd7IKE95aj1pLQzC6/lAJFtw5tE3MCRbLd0/PiMXqqqLGx8cZlFI71Vi+60umFGhYV1pd0PgwJaQaQGrjY2ZKiYgoGGiWKd21axeGDRvmNiAFgPT0dBQWFmr1skR0yqs/7W8MSAHgt4Ml2HCotBWvqIHVJqOyTtno6PROyg/szJRSe1RvtcFU3zCbVNV915NMKaBqdpSAKsVjBqVERBQMNAtKdTodbDZbs/udOHECBoNBq5clIjQEfr/uL1ZtX7W/9W8AVTpZT9o3QwxK6xTrz4naA6NDiXwMhBsrnmZKIxMUD+NkIShloyMiIgoCmgWl2dnZ2Lx5M2pqXHfRLCkpwbZt2zBgwACtXpaIAOQUVTeWETraeVy9trulVdY5CUrTlfMbay1W1bpTorbO6PAzF6tRpjRarlQ85ppSIiIKBpoFpRMnTkRRURH++te/or5e/eFYlmX84x//QHV1NSZPnqzVyxIRgMPFRqfbdx6vbPUMpNGkbLikk4CuSQaIS11PVLCEl9qXGnPTe516TWmcZycRgtIoS7nica3FijpL22laRkREFAiaBaX33nsvhg8fjg8//BB9+/bF3/72NwDAn3/+iQceeAB9+/bF//73P1x88cW47bbbtHpZIgJwtMR5UFpRa2n1JkKOH9wBICo8FOGhOqTFRCi2nyjnWBhqX6pNbsp3Pc6UKrvv6i3q6gZnJfBEREQdiWZBaVhYGL799ltMmzYNubm5eOONNwAAW7duxcsvv4ycnBzceeedWL58OXQ6TcejEgW9IyWuy+Zz3TzXEmqE0TRR4SEAgE7xYlDKTCm1L47lu6pGR95033UQWqduTuasBJ6IiKgj0WwkDABERUXhjTfewJNPPonVq1fjyJEjsFqtyMrKwsUXX4xOnTpp+XJEdIqrTCkA5JbW4LwWvBaR66A0Eltzyxu3Myil9qaqzk35rqeZ0khlplSqLUVUeIji56aCmVIiIurgfA5K161bh2HDhjmdgZiSkoLrr7/erwsjIs/luyl9PVra2plSdfkuAGTGRyq2t3aZMZG3ApEpRU0J4iJCFUFpZa26TwMREVFH4nMd7fDhw5GWlobbb78dS5YsQXV1tZbXRUReKKo2uXwut9WDUteZUkfMlFJ709TxWvZ9TalBCEqtZqRHKDOjLN8lIqKOzuegdNasWejRowc++ugjTJgwASkpKRg1ahTeeOMN5ObmanmNRORGncWqKCMU5bV6UKq8tkgXQWleGYNSal/sQWkEzAiThA65nmZKDamqTV3ClTd5Wb5LREQdnc9B6b/+9S+sX78e+fn5eOedd3D55ZdjzZo1+Nvf/obu3btj0KBBePzxx7Fp0yYtr5eIBMVusqRA65fFiplSw6ny3c6JyqC0sMrkdNYqUVtl/35VrScFAL2HI2HCo4DwaMWmTmFVisfsvktERB2d321wU1NTceedd2LZsmUoKSnBV199halTp6K4uBhPP/00hg0bhoyMDNx9991Yvnw5amuZDSHSUnG1udnna82tN+fQVflutyQDdMKS9ENFXAZA7Uf1qQqFWHE9KeB5phQADCmKh2khlYrHzJQSEVFHp+lsFr1ejzFjxuDtt99GXl4efv/9d/zrX/9CRkYG3nvvPYwbNw5JSUm4+uqr8e6776KoqEjLlycKSsVVykxpXGSYap/WzJaqGh3pG4LSiLAQdE6MUjyXw6CU2pGmTKnw8xUaCYSofw5dilaW8KZIyqCUjY6IiKijC+jA0CFDhuCpp57C1q1bkZubi9deew0XXnghfvzxR0ybNg1vvvlmIF+eKCiITY66JEYhIUr5gbh1g1IxU9rU9LtHirJs8WAhg1JqPxqDUl8779oJmdIkuVzxmJlSIiLq6AIalDrKysrCvffei2+//RbFxcVYuHAhhg0b1lIvT9RhiZnSlBg9MhOEcSut2ESoxuS8fBcAeqYqg9KcQtfzVonaGnv5rs8zSu2ETGm8EJSy+y4REXV0Ps8p9YfBYMB1113XGi9N1OGIjY6So8MRFiJh5/GmEsDj5a3XgbfG4joo7ZFiUDy3r6AKVpuMX/cXoaLWgstOT4NB3yq/poiaZTTbM6XiOJgY704kdOCNqS9TPGamlIiIOroW/7T3/vvvIy8vD48//nhLvzRRhyQ2OkqO1iNaryzfbc1xKzVCR13H8t3TM5QdSg8XG3H1a2uxO78hoM6Ii8DHd56DnqlefsgnagEuM6Xelu9GK8t3DZZSxWNmSomIqKNrsfJdu3fffRdPPvlkS78sUYclZkqTottY+a6L7rsA0DcjBtFCJtQekAJAfkUd/rV0Z2AvkMhHVa7WlHpbvitkSiPMJYrHFTUMSomIqGNr8aCUiLQllvYlRIUhSwxK21L3XYegNDREhyFdE9wev/FwKY6WcK0ptT3GU0FprN+ZUmVQGl5XrHhcZaqHzSZ7fX1ERETthc/lu4WFhT4dZ7Hwji+RlsSgNC4yDGmxEYptBZV1sFhtCAtp+ftQ7rrvAsDoARlYvd/9eKhfDxRjcpLB7T5ELclqkxu/t9VrSuOcHOGG0H1XV1+LKNShBg0/x7LcEJg6G/dERETUEfgclKanp0OSJK+Pk2XZp+OIyDlnQamYKbXJwMmKOtVc0JZQ66Z8FwDGDuyE2d/tQ6HQRdjR7hMVAbk2Il9VO6yV9n9NaapqU7JUgVy56eZSZa2FQSkREXVYfqdNunTp4tWf8PBwLa4bW7ZswfPPP4/rrrsOmZmZkCQJERERzR730Ucf4ZxzzkF0dDQSExNx1VVXYd26dT5dg81mw9y5c9G/f39ERkYiJSUFEyZMwO7du306H5G3LFabKhMZFxmGuMgwGITg71hZy3fglWW5sUOpnZgpjQgLwWs3D0ZKjB4AEB6iQ7qQ6d2dXxXYCyXyktFdUOrtmtLwaCBUeSMpTVepeMwOvERE1JH5nCnt3r07jhw5grVr1yIzM9Pj44YNG4ZNmzb5+rKNZs2ahWXLlnl1zIwZM/DKK68gMjISl19+Oerq6vDDDz/g+++/x8KFC3Httdd6fC5ZlnHjjTdi0aJFiI+Px+jRo1FcXIzFixdjxYoV+OWXXzB06FBvvywirzj7oBoXGQZJkpCZEIn9BdWN21uj2ZGp3gZxKZyYKQWAoaclYdUDI3C0pAYpMXrsPVmJyf9p+j2xN78SVpuMEB2rLKhtUGRKxUZH3mZKJamhA295buOmzuFV+N3hR7aSQSkREXVgPmdKzznnHADA5s2bNbsYbwwbNgyPP/44li9fjpMnTza7/88//4xXXnkFSUlJ2L59O7788kt8++23+PXXXxESEoLbb78dZWVlzZ7H7r///S8WLVqEXr16Ye/evVi0aBFWrVqFhQsXora2FhMnTkR9fX3zJyLyg7OgNPZUiV9mfOs3OxKzuAAQpVcHpQBg0Ifi9E6xSInRo0+6cgSMqd6Ggsq6gFwjkS+U5bvimlIvg1JA1YG3U6iyOqDaxPcTIiLquHwOSocOHQpZlrFx40avjpNlbToIzpw5E08++STGjBmDtLS0ZvefM2cOAODRRx9Fr169GrcPGzYM06ZNQ0VFBd5//32PX99+vhdffFHx+uPHj8fYsWORk5PjdSaXyFtiUBoRpkNEWEPQl5WgXD/aGplSsfMuoC7fdSYlWo+IMOWvp9actUokss8oBTTIlAKqdaVpIcqgVCyDJyIi6kh8DkqvuuoqTJ8+XRHgeeLNN9/Ezz//7OvL+qSurg4//fQTAOD6669XPW/ftnz5co/Od/jwYezevRuRkZEYPXq03+cj8pWzJkd2qlmlbSRTGhnmPFPqSJIkJ5nell8TS+RKU+ZS9n9NKaDqwJsqKZt7VZvUP0tEREQdhc9rSnv37o1XXnnF6+MGDx7s60v6bO/evTCZTEhJSUFWVpbq+TPPPBMA8Oeff3p0vu3btwMAzjjjDISFqbsh2s9n348oUMR1ZoqgVAjqWiPTKAalEWE6j9eFZiZEIaeoaT5pXikzpdR22INSPSwIl4SAMcLLkTCAKlOaJAaldcyUEhFRx+VzUNqe5OY2NI9wFpACgMFgQHx8PMrKylBVVYWYmBin+3l6Pvt2+37N6devn9PtOTk56NGjh0fnoODkTaY0v6IWNpsMXQs2CxLLdz0p3bUTx9q0RqaXyBV7kBgrZkkBTdaUJtjKFY+NXFNKREQdmN8jYdqD6uqGDqRRUa5nNBoMBsW+/pzPm3MR+aOixnVQmiVkSi1W2e0s0ECoMbmfUeqOmOk9yUZH1IbYM6XRkpObJT6tKVWW78YJQSkbHRERUUfmc6Z07969yM7O9vsCtDqPO/bmSpLkOkPkTQMmT87njV27djnd7iqDSmQnZkpjHYLS5Gg9wkN1MNfbGrcdL69Belzz83y1UmPxPShNjlbONC41mjW5JiIt2EvnVetJQ/RAqN77E0YrG/bF1JcqHjMoJSKijsznTOkZZ5yBiRMnYufOnT4dv23bNtx0003o37+/r5fgMXs5rtFodLlPTU3DB4vo6Gi/z2ff7sm5iPzhrnxXp1M3C2rpdaU1Jt/LdxMNyg/2JdUMSqntsP/sadJ5F1AFpXpbDSLRVB3A8l0iIurIfA5KH3vsMSxfvhwDBw7EmWeeiTlz5mDz5s2wWJwP+DaZTNiwYQOee+459O/fH0OGDMHKlSvx+OOP+3zxnurSpQsAIC8vz+nzRqMR5eXliI+Pb3Y9qSfns2+370cUKO6CUqD1mx2JjY68yZQmCZnS4mqTZiOliPxVWWfPlGowoxRQNToCgGSHZkfMlBIRUUfmc/nuv//9b9xzzz145pln8NFHH+Gf//wnJElCWFgYunXrhoSEBMTExKCyshKlpaU4evQo6uvrIcsy4uLiMH36dDz88MNISUlp/sX81KdPH+j1ehQVFSEvL0/VoGjr1q0AgAEDBnh0voEDBwIAdu7cCYvFourA6+35iHzVXFDaOVEZlOYUtew6Z38aHSULmVJTvQ1GsxXR+qDoz0ZtXGVtw/e2ZpnS8GggLAqwNJ0vBRU4hoYMKoNSIiLqyPxqdJSamopXX30VJ06cwH//+19cd911SExMxP79+7Fx40b8+OOP2LRpEw4ePIikpCRcf/31+OCDD5Cfn4+XX365RQJSAIiMjMQll1wCAFi0aJHqefu2MWPGeHS+7t27o2/fvqitrcWKFSv8Ph+Rr5oLSvukKTP/u09UBvyaHGmZKQWAkuqWbdRE5Io9U6rqvutrplSSVNnSFKm88e8s3yUioo5Mk+67kZGRuO2227Bw4UKcOHECBQUF2LFjB9auXYsdO3agoKAAJ06cwOeff45bb70VEREt12jFbsaMGQCAp59+GgcOHGjcvn79erz99tuIjY3FnXfeqThm06ZNyM7OxsiRI12e78EHH0RhYWHj9iVLluCrr75C9+7dMW7cuAB8JURNmgtK+2Uq5yUeKKxGndB8KJD8CUqjwkMQEab8FVXMdaXURmi+phRQrStNcSzf5ZxSIiLqwAJSB5eSkhLwLOiKFSswa9YsxTaz2Yxzzz238fFjjz2G0aNHAwAuvfRSTJ8+Ha+++ioGDRqEyy67DGazGT/88ANsNhs++eQTJCYmKs5XU1ODffv2oa5OPYrijjvuwMqVK7F06dLGwLW4uBirV69GREQEFixYoCrrJdJac0Fp34xYSBJgX4pptcnYX1CFAVnxLXJ9/pTvSpKEJINeMZ+UHXiprWjqviuuKY1zsreHDMr3TcdMKct3iYioI2u3i7OKioqwceNGxTZZlhXbioqKFM/PnTsXgwYNwvz58/HDDz8gLCwMI0eOxKOPPorhw4d79fo6nQ4LFy7Eq6++ivfffx9ff/01DAYDrr32Wjz11FMc50IBZ7HaVJnI+ChlUBqtD0W3JAMOFzd1it51orIFg1LfM6VAQwmvY1DK8l1qC2w2GVWngkTVSBgtM6Uob/y70WyFLMuajSIjIiJqS9ptUDplyhRMmTIloMeNGDHCbbfPkJAQzJgxo7GUl6gliVlSQDmn1O70TrGKoPTPvArcfE5AL62RKijVexmUGpTrSkuYKaU2oNpc31h9oCrf9XVNKeC2fNdqk1FnsSHSyxs7RERE7YEma0qJqOU5C0rF8l0AGJilLCf8M688UJekoirfDfM2U6rswFtUxUwptb5Kh589VaZU3/xYMZdUjY4qFI9ZwktERB0Vg1KidkoMSiPCdNCHqoM+sVR378mqFmt2pM6UeleckShkSp0F4kQtzfH7MEYS1pRqWL6bLASl7MBLREQdFYNSonaquSZHdv0z46BzWIZmtcnY1UKjYfxdUyp+TZUMSqkNsM8oBZxlSrULSlNRDqBpCQkzpURE1FExKCVqp8QAzVVQatCHomdqtGLb9mPlgboshRrhQ7TBi+67ABAbodyfmVJqC+wzSgGtR8Ioy3fDpXrEomk9OINSIiLqqBiUErVTnmZKAWCgUMLbUutKa4QyYW+btIiNmxyDAaLW4nhDKFbLkTBCUAoo15WyfJeIiDqqgAelBw8exIYNG5CbmxvolyIKKhU1ngelAzrHKx5vz6twvqPG/C3fFYNSZkqpLbB/H4bDAr0kfE/6kykN1QMR8YpNqZxVSkREQcDnoLSgoABffPEF1q1b5/T53377DdnZ2ejTpw/OP/98dO/eHWeffTZ27tzp88USURMxQHM2DsZukJApPVxsDPgH3HqrDeZ6m2JblJflu+o1pfxQTq2vss7FjFLAvzWlgJNZpU03kBiUEhFRR+VzUPrxxx/j5ptvxr59+1TPHThwAFdeeSUOHDgAWZaRmJgIANiyZQtGjhyJ4uJi36+YiAB4V77bKy0akqTcdsRhdmkgiKW7gA+Z0gjl11RrsaoCXaKWZi/fVa0nBfzLlAJOxsKUN/6d5btERNRR+RyUrl69GhEREbjhhhtUzz3xxBMwGo3o0qULduzYgaKiIpSUlGDs2LEoLi7GvHnz/LpoIvIuKI0IC0GnuEjFtiMlAQ5KTeqg1NtGR86+Jq4rpdZm/x6MEdeT6sKA0Aj/Tu5mVmm1k58pIiKijsDnoHTv3r0YMmQIDAaDYrvFYsGXX34JSZIwe/Zs9OvXDwAQHx+PDz74AAaDAd9++61/V01EKBeC0ng3QSkAdEuOUjwOeKbUrM7qeN/oSB3EciwMtTaXmdKIWKhKErwllu86ZEprnfxMERERdQQ+B6WFhYXo0qWLavvmzZtRW1uLyMhIjBkzRvFcfHw8zjnnHBw4cMDXlyWiU1QjYaLcB6Xdk5U3kA4XOyk91JDY5CgsREJ4qHe/cvShIYgIUx7DZkfU2spONRmLFdeUCk2KfCJmSlHe+HejmZlSIiLqmHwOSk0mEyorK1XbN2zYAAA488wzodfrVc+npaWhpiawH4aJgoE35bsA0CVRmSk9WVnrYk9tiEFpZJh3WVI7cV2pvckMUWspM5oBALGSUG0Q4cc4GDshU5osNb3P1jIoJSKiDsrnoDQrKwvbt2+HzaZsOvLTTz9BkiQMGzbM6XEVFRVITk729WWJ6BRvg9K0WOVat/yKOs2vyZFYvmvQe7ee1E78upgppdZWWnMqKFVlSrUISl03OnJWEk9ERNQR+ByUXnzxxcjLy8Ozzz7buG3Dhg347rvvAEBVumv3xx9/ICsry9eXJSIAFqtNlYlsLijNEBodnayogyzLml+bnSpT6uV6Ujtx1A3XlFJrqrfaGm+MOF1T6i8hU5qISujQcPNX/JkiIiLqKHwOSv/5z39Cr9fj3//+N7p164azzjoLF110EaxWK8455xxccMEFqmM2bNiA/Px8nHvuuX5dNFGwc5YtdDenFAAy4pSZ0hqzNaClsOIHaG/HwdgxU0ptSXmtBfZ7OYHJlCqD0hBJRhIaSnhZvktERB2Vz0Fp7969sXjxYiQlJSE3Nxdbt26FxWJB37598b///c/pMXPnzgUAXHnllb6+LBHBeWDWXKY0NVa9xvtkAEt4xVLDKC/HwdjFRiiP40gYak329aRAgNaURiUBkvKt2V7Cy0ZHRETUUfn2KfGUUaNGITc3F2vXrkVRURGysrJw/vnnQ6dzHutOnDgRN998M0aOHOnPyxIFPTEojQjTQR/qPhOpDw1BkiEcJQ4fqk9W1qFPekxArjFQmVKW71JrKnUMSgORKdWFAFHJgLGwcVOqVI7dMkfCEBFRx+VXUAoAERERuPTSSz3a9+qrr/b35YgIQEWNOKM03KPjkqP1iqC01GjS9Loc1ZiERke+ZkpVQSk/mFPrKatxzJQGYCQM0NDsyCEoTUAVAK4pJSKijsvvoFRktVpRWloKSZKQkJCAkBDfsiNE5Fp5rVnxOL6ZGaV2SdHhQEHT45Jqs+ud/aRVoyNVppTlu9SKSo1N33+xCED5LgBEJigeJkoNQSnXlBKRp2RZxn/WHsaSrceRHheBf199OromGZo/kKiV+Lym1NGxY8fw0EMPYeDAgYiIiEB6ejrS0tKg1+sxcOBAPPTQQ8jNzdXipYgIQLmYKfU4KFWuKy0OZFBqUX6ANvjafTeCjY6o7XCsLlBnSjUKSqOSFA/jpWoAgNFcH9CO2UTUcXy57TieXrEHu/Mr8fPeQkz6z0aY6nlji9ouv4PS+fPnIzs7Gy+99BJ27NgBq9UKWZYhyzJsNht27NiBl156CX369MG8efO0uGaioFfmY/lukkG5X0uW70ZqVL7LoJRakzJTGqigNFHx0F6+a5MBU73N2RFERAoLNiiTQcdKa/Hj7kIXexO1Pr+C0hdeeAHTp09HXV0dJkyYgC+//BLHjh1DXV0damtrkZubi6VLl2L8+PEwm824//778dxzz2l17URBq6LGt/Ld5GhlUNqS5bu+NjoSu+9WBXCMDVFz7GtKdbAhRqpVPqlZ+a4QlJ4q3wVYwktEzTPVW7Ejr0K1/df9Ra1wNUSe8XlN6a5du/Doo48iISEBS5cudTqXNCsrC1lZWbjmmmvw66+/Yty4cXj88cdx9dVX44wzzvDrwomCWXmtWL7rWaY00SCU7xrbQVAqZEqr6iyQZRmSJPl8bUS+snffjRazpEDAyncTUN349xqLFQni/kREDvbmV8FsVVdV7DiuDlSJ2gqfM6Xz5s2DzWbDggULnAakogsvvBCffPIJrFYr5s+f7+vLEhH8WVMqZkoDWL6r0ZzSGCFTarHKqLOwhJFahz1TqlpPCgSufFeRKWWlABG5t/OE8+Bzf0EV6iystqC2yeeg9Oeff0Z2djauvPJKj48ZNWoU+vbtix9//NHXlyUiAOVi+W6kZ0FporCmVBwtoyUxU2rQa9PoCGjIlhK1BnvJe5yYKZVCgLAobV5EzJRKTZlSo4kfKInIvWOltU6319tkHCiodvocUWvzOSg9ceIE+vfv7/Vx/fv3R35+vq8vS0RwVr7rWVAqjlepMtXDagtMN0/VSJgw34LS6Ah1hpVjYag1yLLcWL4bKzkZB6NVSbm4phTVABp+TjmrlIiac6LceVAKAIdLjC6fI2pNPgel4eHhMJm8L/0zmUwIC/PsAzQROacu3/VsTakYlAJAZYC62Yrluwa9b+W7YSE61XrUSjY7olZQbapH7anSt4B13gWAKOWqUb1kQRQa3m9rLfzeJyL3jrsJSo8UMyiltsnnoLR79+5Yv349bDbP13bZbDasX78ep512mq8vSxT0rDZZlSn0NVMKBG7EiipT6mOjI0C9rjRQgTSRO4VVjjNKnWRKtSKU7wJNY2GYKSWi5hwvcxOUMlNKbZTPQeno0aNRVFSEOXPmeHzM7NmzUVRUhDFjxvj6skRBr7LWAlmouPV0TmlEWAjCQ5U/9oEISm02uTGjZGfwsdERoF5XyrEw1BoKKusa/x7QTKk+FtApf17iT60rZVBKRO5YrDYUVNW5fP5oiZMmbURtgM9B6X333YfY2Fg8/PDDeO6552C1un6jtFqtePbZZ/Hwww8jLi4O06dP9/VliYKeuJ4U8DxTCqizpYEISuvqrarA2deRMICTTCnXlFIrKHLIlMZJQrMQLYNSSVKtK0081YG3xsQbMkTkWqnRrHr/dXSUmVJqo3xOXSQlJWHhwoUYM2YMHn30Ubz55puYMGEChgwZgtTUVMiyjMLCQmzZsgWLFi3C8ePHERoais8++wxJSerSJCLyjNh5NyJMhwgvmgjFRYYpPlw7C3L95Syb40/5rnpWKT+YU8srrGz6uXGcHQpANcbFb1GJgLFQ9Xo1HOdARG4UNzPqrbjajKo6C2KcdLYnak2+19MBuPTSS7FmzRrcdttt2Lt3L+bOnavaRz51u6ZPnz744IMPMHToUH9ekijoqTrveli6a9cSmdIaJ2Mr/CnfFd88uaaUWoNj+W6CmCmN1DgoFTvwnsqU1rJ8l4jcsI+tsouJCEW1qV6RPT1aUoMzMjWs7iDSgF9BKQCcffbZ2L17N7755husXLkS27ZtQ0lJCWRZRnJyMgYOHIhRo0bhqquugqRVu3yiICbOFvWmdBdQB6WBCPBqhA6hktSQ0fVVrFC+y0wptQbHRkfxpxoPNQpEptSBPSjlmlIicqfEqMyUdoqLRLWpXtGRl0EptUV+B6V2o0aNwqhRo7Q6HRG5UCaU7/oblAYiU2o0qWeU+nNTSpUp5ZpSagWFVS2YKRWC0niw0RERNU/MlCZFhyPREK4MSku5rpTaHt9TF0TUKsqMQlDqb/luTSDWlGozo9QuNpKZUmp9jmtK48WgVOtMqdA4KUZq6Jgp/mwRETkqET4jJBrC0TUpSrEtlx14qQ3SLFO6bt06/PLLL9izZw/KysogSRISExNx+umn4+KLL+ZaUiKNFAtvOMkx3gWlYtOgwGRKlR+co/0MSrmmlFqbLMuKTIOq0ZHWmVIhKLWPoGGmlIjcKREaHSVH65EWG6HYxrEw1Bb5HZT++eefuOOOO/DHH38AaGpsZGcv2TvnnHPwn//8B6effrq/L0kU1MQ3nESD3qvjW6J8t1oo3zXofe+8C3BNKbW+4mozTPU2AIAeZkRJQodLzTOl8YqHsacypWx0RETulAnVTwlR6kwpx8JQW+RXUPr777/jkksugdFohMFgwKhRozBo0CAkJydDlmUUFxdj27Zt+Pbbb7Fx40YMGzYMq1atwuDBg7W6fqKgUypmSqP9K98NxEgYMVPqT+ddAIjlmlJqZXllTZmFODj5QBfwTGnDa7J8l4jcESuJ4iJD0SVRGZTmV9bBVG+FPtS/G8ZEWvL5k6LVasXEiRNhNBpx5513Ys6cOYiNjXW6b2VlJWbMmIH3338ft9xyC3bt2gWdjstZiXyhamLgZaZUnXUMRKZU2/Jdriml1naszKF0VxI670ICIuO1fUExKLVnSi02bV+HiDqUSuH9MTYyTJUplWXgWGkteqZGt+SlEbnlc2S4bNkyHDx4EDfeeCPeffddlwEpAMTGxuK9997DhAkTsH//fixfvtzXlyUKeuJg7ESDf2tKAxHgqTKlGq8prTbVw2qTXexN5L1dJyow4a116P3oNxj3+m/4M69c8bxjplTVeTciDtBpnHEQGx3BXr7LGzJE5JqYKY2NCENMRJjqs0IuO/BSG+NzULp8+XLodDo8++yzHh/z3HPPAWgIaInIe+Z6m+ouqLfluzFOMqXiWnB/aR2UiuW7AFDNbClp5HCxETe9vQG/HymDud6GbcfKcdM7G3CgoCkjmueQKY0XmxxpvZ4UcJIprYUONtRauKaUiFxTle+eGhunXlfKZkfUtvgclG7ZsgV9+vRB9+7dPT7mtNNOQ3Z2NrZs2eLry/ps1apVkCSp2T9PPfWUR+fr1q2b2/Ps3bs3wF8RBSNxPSkAJEV7W76rDPBsMmDUuHmK2Ogo2s9GR2IgDXBdKWnnyeW7UCXcSKkxW/H4sl2NN2zy3JXvar2eFAD06uqjaNSw+y4RuWS1yarfZfb3/K6JDEqpbfM5fZGfn4/hw4d7fVzv3r2xdu1aX1/WZ+np6bjtttucPme1WrFgwQIAwAUXXODVeV2dMy4uzul2In+UGJWluzoJiI9UZxHdcZZ1rKqz+L3u05GYKY3ys9FRVHgIQnSSomSXQSlp4UBBFVbtK3L63PpDJfgzrwIDO8fjcHFTdlQ1DqYFMqVAw7rSk+YY7V+LqA0xmurxwMLt+HV/EbomGTDv5sFc++ghZxVE9p4MXZIMiu2Hilm+S22Lz58UKyoqfAq8YmNjUVlZ6evL+iw7OxsffPCB0+e++eYbLFiwAJ07d8ZFF13k1XldnZMoEMQmR4mGcOh0klfniHaWdaytR4aG91GMZm0bHUmShJiIUJQ7tLqvrGX5Lvlv4ZY8t89/9vsx9EqLVpbvimtKA5EpDTcAUgggN2VG41CDPJsMi9WGsBA2C6SOafb3+/DNzpMAgN35lbj748344f6LEOLle10wcnaz1n4jupcQ2O/Jb/nP4kTu+PyuVl9f71MHXZ1Oh/r6tvVh0p4lnThxIrsCU5smZkq97bwLACE6CYZwZTmt1h14xe67/q4pBdQZ3kB0DabgYrPJWPrHcbf7fLXtOHYer4TjsmtV+W4gMqWS5GRdqX0sDEt4qWOqt9qwSLhRdKjIiM1HSlvpitoXce54iE5C1Kn3+36dlEsCiqpMKKyqa7FrI2pO0EdgRqOxsfHSpEmTWvlqiNwrrFQGpckx3jU5sgt0B151oyP/O5OK60rFhk9E3tp5ogJFVcqfqY/uOAeOCRmj2Yr5vxxU7NMpvFbxOCCZUsDJrNKGNWB1bHZEHdTu/Eqn70cbDzMo9YSYKY2NCIUkNfxC65ZkaAxQ7XadYLaU2g6/0hcffvghPvzwQ62upVUsWbIERqMRgwcPRr9+/bw+/qWXXkJOTg70ej369euHa6+9FikpKQG4UiLgZKXyrmZabIRP54mJCEV+RdNjrddnGlWNjpgpJd/YbDKOl9ciJUaPiDBtx66sFtaSnpZswIW9U3B+z2SsOVDcuP3X/cr9MkKrAMdvcUOSptfViJlSCjL7ToozgN1vJyVxWYvjDWidTkLfjFhsOVrWuG33iUpc3Ce1xa6PyB2/Pin6OkbCftemLbCX7k6ePNmn4x988EHF4/vvvx/z5s3DnXfe6fE5XAXDOTk56NGjh0/XRR2TmCn1PShVBnhaZx0DUb6rypRyTWmHd6y0BlP+uwk5RUYkR4fjhfEDMLJvmmbnXy0Emxf2briheO3gTEVQKkpGhXKDIUAf6lxkSms4q5Q6qINF1U637znJjJ4n1JlS5Xv96UJQ6vh3otbmc/muzWbz+Y/V2jbu8p48eRI//fQTQkJCcPPNN3t17NixY7FkyRIcPXoUNTU12LlzJ2bMmAGTyYSpU6fiyy+/DMxFU1ATM6XpPgalsU5mlWpFlmVV+a4mmVJVyTEzpR2ZLMv426dbkVPUkB0srjbjr59uxYny2maO9Eyt2Yptx8oV2y7q0xCUXtEvHZEus7IyouuFUsLolglKYySW71LHllPovCPskWIjv+89IM4otXfetTurW4Li8YZDJTDX2wJ+XUSe0G4GRDv06aefwmq14sorr0R6erpXx86bN0/xuF+/fpgzZw769OmDv/zlL5g5cybGjRvn0bl27drldLsv5cTUsRWoyne9b3QEOMmUaph1NNXbUG9TVlEEJFPKoLRD23G8AtvzlBnJOosNr/9yEM9c29/v82/PK1d8n+ok4JxuDWtDDfpQXN4vDcu2nVAdl6a3QGdVVizAEKAlGxHKxiRNmVJ+OKeO6VCx80ypTW6YFczRMO6pglLhvX54z2RIEhobt9WYrVhzoEjTChQiXwV1oyN/S3edmTp1KlJTU7F//34cPnxYs/MSybKsYflu4DKlYpYU0KbRkfjmyvLdjk1cx2m3eGseKmr8/34Vy9b6ZsQqbp5MHNrV6XETsp3cCApYpjRe8TBWYlBKHZcsy8gvd90N9rhGVRIdmbgUJ06oMEqK1mNQ53jFtv9tyg30ZRF5JGiD0j179uCPP/5AdHS0xxlNT+h0usZ1oPn5+Zqdl6isxgKzVVlm42tQGsjuu2KTI0Cb8l1VIG0KfKa0ss6CtQeKUVjJtvktbcfxCqfb6yw2LN6ah1KjGe/8moPHvtyJ9TklXp9/qxCUDumqLGs7p3siruynrKAJD9Hhpr5Cx+vw6IaZooGgWlPaUNrIMkbqiKpM9ah1872dV1bTglfTPqnLd8NU+4w/M0vx+Mc9hfgjl2tLqfUFbVD68ccfAwCuu+46REVFaXrusrKGH+7oaJaZkHZOVigDI0kCUmJ8Ld8NXCmseK4QneRmfZ7nxDfXQGdKtx0rx/nP/4xJ/9mIEbNXYcnWvOYPIs3syHMelALAqz8dwNj5a/Hsyr34eMNR3PzuBqzc4flNQFmWsSXXfVAKAC9NGIDrh2RBH6pDt6QovHfbWcgKE8oLA1W6CzjpvstMKXVcYiWQ6HgZM6XNcTYSRnTNoE6Ij1K+nz7/zV6fm5cSaSUog1JZlvHpp58C0LZ0F2hYH7pv3z5ERUUhOztb03NTcBPXkyZH6xEW4tuPsLimVMtMqbs5af4IZHMmUb3Vhvs++6Px36XGbMVDi3ewfKyFlNeYcaLCdXa6otaCPOED6hNf7YLF6lnDjkPFRpQLJcBndlEHpTERYZg9YSD2PT0KvzwwoqE7r1EoKw5U6S7gsvtuLYNS6oCaq0gRf+ZJzd1IGLuYiDD8dURPxbaNh0uxap/zJRNELSUog9I1a9bg6NGj6NSpEy655BKX+82fPx/Z2dl4+OGHFdu/++47bNmyRbX/n3/+iQkTJkCWZUydOhXh4eGqfYh8JZYuZcT5VroLBDbA86R8yBeqNaUaj7Fx9MPuAhwpUf57m602LNnCbGlLyC1V/tvrJKBbkvuKlsIqEzYc8qyMV1xPmhqjR1ZCpNtjGm+sVBcqnwhkpjRcWW1jQMOHcncljkTtVWGV+0yp2H2e1JobCWM3eVhXdBI+Q7y5Kidg10XkiaAMSu0NjiZOnAidzvU/QXFxMfbt26daG7p+/XqcddZZ6NatG0aOHImbbroJQ4cOxZAhQ7Bnzx5cdNFFeO655wL6NVDwOSoESV0SfS87D2TToAohKBUbLfhKnd21BKzc6Mc9hU63rz3oenYlaedYqTIj0ik+ElPO69bscb8f8Wxd1J955YrHZ3ZJ8DybbxS+NwKZKdXHKF9Kavh34ZxS6ojEaiBRcTNBKzU/EsYuIiwE91/WW7Ft05FSHCysCti1ETUn6IJSk8mERYsWAQAmTZrk0zmuuOIK3HHHHYiNjcX27duxePFiHDx4EMOHD8e7776Ln376SfN1qkRHhexR12YyR+4EsvtuoIJS8c3VYpVRZ9F+vposy/jNRfD5R245SydbgJgp7ZwQhZvO6YLTM2JdHNFADDZd2X2iUvF4QOc4F3s6UXVS+Tg6gKMU9MpMaTQaPrTXmjlXkDqeAmFNaWa8snqhuUwqqSuIXGVKAeCaQZlIjlb2pfj6TzbopNYTdHNK9Xo9SktLm98RwBNPPIEnnnhCtX3YsGEYNmyYxldG5N6xUg0zpUKgaDRbUW+1IdTHNaqOxKBUq/JdMVMKNATTkeH+N1FydLy81mWZmNlqw76CKlVLfdLWsTL193pEWAgWTB2Kp7/ejU1HStEtyYAzMuPw1uqmkrPtx8ohy7LbrKfVJmNPvjIb0Fywq1B5XPk4NtPzY70VrsyU6iULwlCPWgszpdTxFFYpf++ekRmrWMdfbapHjbkeUeFB99HVI/VWG6pNza8ptQsP1WHswE54/7em8YXf7SrAfZf2dnkMUSAFXaaUqD2SZVmVPeqS6PsYCjFTCkD1ZuYrVaMFN3dqveHsmrXsGmy376T78qUDBSxvCjSxy6Z9vWeiIRwv3zgIa2deggVTh+Kmszsr9iursaCsmRmmR0qMqjWZ/Tp5kSmtPKF8HNvJ82O9JZTvAg3rSpmtp45I7L57hpOfyyJmS11y1rCwufffK/opKz325Fei1GjW9LqIPMWglKgdKKo2qcZAdPGjfNfZG5VWHXgDVb4bFqJTjZYJRLOjvc0EpQcLq90+T/4TP3i6mseblRCJUJ0yK3q0xOj23LuE0t2UGL3no5UsdUCN0EwpkJlSvXqsWLRUx5Ew1CEVVyt/7rslG1S/8xmUuubsJq2rNaV2Z3ZNUP0bbz7iWTUhkdYYlBK1A7lCk6PwEB3SXXxQ90RUeAhChA/zYjDpq0AFpYD6DVZs6qCF/c1kQpt7nvwnfjh1FTSGhuiQKXTNFSsKROJ60n6dvCjdrTqh3hbITGmYAYDy5zQatey+Sx1SufD7PNEQrvrZ57pS18QqpbCQ5meEh4XocGbXeMW23xmUUithUErUDuwTAqGuSVGqoNIbkiQhWi82OwpMprS5O7XeCOR8VTuxfFdcP9pc0EP+sdlklAjlY2IzDkfi2mrxBo5o14kKxWPv1pMKQWl4DBDhxfHe0umcjoVh+S51NDabjPIa5c99fFQYUoWglJlS15yNg/Gkq/hZXRMVjzd52MWcSGsMSonagb1CY5Zsbz5IuyAGi1p14C0xKj80JBm0m9crzlfVek1pvdWGnCJlee6lfZUjP46X1wZsFA01ZEusNuW/b3KM6+8hsQu12CTJkSzLTjKlbXQ9qZ3YgZflu9QBVdXVQ/ixR0KUs0wpZ5W64uuM8LO7KYPSPfmVqLeywze1PAalRO3A3pPKD9LZ6eoGKN6K0QuzSjXKOpZUe57l8lagM6X5FXWwWJWfjC7qrQxK6yw2NoIIIGeZkCSD6++hjDhl+a44VsJRcbVZlYU93ZvyXVXn3ZYISoVZpahFHct3qYMpq1H/TmWm1DvqTKlnVUriEgZzvQ2Hi92vzScKBAalRG2cud6GHceVJYd9MzQISgMwq7TGXK/K4iRpGJSKd361XlOaJ3R9NYSHoG9GjKpU2nFMAWlLXE8aHxWG8FDXb1ViE6QCF+N8AKiy4PpQnXejlSrylI8D2eTITizflWqZKaUORwxKw0MbGtulCj/fXFPqmqrzvYeZ0gRDuKpHxe78Shd7EwUOg1KiNm7niQrUWZSlNIM7J/h9XvENS4uso5glBYCkaO3Kd9WBtLaZUrH0MyshCqFOmkqJI0tIO2JQ2lym3ZtMihiUdk82eLc2u/Sw8nFCV8+P9ZWQKY1BLWrMnFNKHUu5MMopIaphPWRKNDOlnnK2ptRT4o3u5rrQEwUCg1KiNm7dwWLF495p0UjQYJ2mGOBpkXUUA4rwUB1i9No1OhLfZMVujf4SM6X2+Zid4pVB6Uk32Tjyj/ihU/xQKkqNVT5fYjTD4mI9VE6hsiStR6p65IpbpYeUjxNP8+54XwhBqQF1qptURO2dmClNiGp4j0uJdd9992iJEeNe/w19Hv0Gd3zwOyqamVPckfnTZFDsU7GHmVJqBQxKidowWZbx9Z/5im3DTkvS5NxigBeITGmyIdyj7n+eSjQor7lM47WdeapMaUNQmhrDErKWUix+DzUzQ1T8fwO4zqaImdIeKaeCUlkGNv8XeKU/8EwnYPFUoLpIebDVApTnKrcldHd7bZpwUr5rttrYiIQ6lDIhmIyPavhdL96UKqk2NTZCs9lk/OXjLdh2rBymeht+3luIR5ftbJkLboNUjY68yJSKfSoOFHAeN7U8BqVEbdh3u06qymhG9c/Q5NxiE4Qqk/93mIuETKmW60kBIFFoeKN1wyExU9r51HpDsQMkS8gCR12+674qICEqDGEhyhsfrm4aqINSQ8Nf1swBvr4PqMgFLEZgx0Lgg6sAk8P+FccAWVjLmdgCQamT8l0AnFVKHYo4DsaeKRUrIWxyU4f3zUfLVO+PK3fkq84VLMRmhZ6uKQUcbtCdcqKCDdWo5TEoJWqjft1fhOmfbVNsy4yPVLVv95XYyVZskuALca2l2ITGX2KmVOugVLx+e6aUA9xbjri2LDHKfVAqSZI6k+2kvLrWbFU1qOqREg0U7AJ+eVZ94uL9wM9PNz0WS3cj4oEobX4W3dKLmdKGr42zSqkjEct340/93CcZ9BCXfRee6rC9VljaAgBWm4yNh0sDc5FtnK8jYYCG9fWOZJkzuanlMSglaoM2HCrB1I82w1SvLNH7x8ie3jVmcSMQ3XfF8tfOiZEu9vSNs0ypVjNDrTZZtVY0M74hU8qxBC1H1azDgw9Wntw0OFxshPitclqKAfj1JXUG1G7LB0DNqQ+4YpOjlsiSAqry3ehTmVJ24KWORCzfTThVvhuik1QVN/bfv1uPljk9lziLOFj4OhIGAAz6UNX73KEijoWhlsWglKiNKa8x495PtsIsBKSj+2dgwpDOmr1OILrvHhPLXxO8GLfhgSShwZPZaoNRow/nJcamtUp2aadKx9Tlu2x0FCji3f44D4JS8cOUs0ypOHevU1wEokwlwO6vXJ+4vhbY/H7D34v2Kp9riSZHAKBXNiCJlli+Sx2Pq/JdAKru5ycr62Czyfgj13lQGqxNetSNjjzPlALqbOmREgal1LIYlBK1Ma/9fFBVlnrNoE549aZB0GmUJQWcdN/VIFN6rFTMlGoblDrrOlzqZAyNL+wlYXY6qWlNrFgeWmI0s9FMgKhL0Jq/2y+uOyty8j1xotzJeuGdi5RZ0jAD0OsK5YFbPgRstoYyX8WLnt7sdWlCLN9FQ8DNTCl1JGVG542OAPUykJMVdcgrq3V5Q3LPyeAMSlVzSr1odASog9LDzJRSC2NQStSG1Jjr8fnvxxTbRvRJwcs3DEJoiLY/rqo1pX5mSivrLKqySfuaTK0YwkMQHqr8d7A3vfCXsyZN9lJpMVMqy9qvZ6UG4t1+TzKl4ixTsVkSANV60syESODPL5Q79b0aGDFTuKBc4Miv6qA0vX+z16UJodGRvXyXTUioI3GbKY1T/nwXVNbhYJHrOZrHy2pdjoXqqMz1NlX1hCe/Ox2pglJmSqmFMSglakO+/jMf1aam4FAnAbOuOUOzdaSOxPUm5nqbXx90/zxWoXgcHqJrWLOnIUmSVCW8YoMMXxUJmVLHktBEQ7jq/wGbHWnP4qQc25MPVuKaM0+C0j6RVUD+NuVOA28EOp0JpPZTbv/pKcAkZF/Szmj2ujThZCQMwEwpdSyqNaUOTe3SYtTlu+5GltjkhmxqMHFW6eTNnFIA6CJUNomN/4gCjUEpURuydOtxxeOLeqdoXgJrJ2ZKAd/Xldaarfhpb4Fi2+mdYqEPDfHpfO4kCN1YxdmovioU1ok6BqUhOnUwLO5P/nP2/edJCVpKdPPfE+IHrEHmrcodIuKAbhcCkgQMnigcvEX5ODoNiO3U7HVpwsVImBqz/2vAidqCOotVleWLd/g9nxanLt89UOh+jqY43qujE5c9AN6X72YKlU0nK+u4TIVaFINSojaiss6C348oW9nfcJZ2jY1E4ppSwPsOvDXmejy85E8MfPJ7/Pe3I4rnBneJ9+PqXEuKDkymVMx8iutIxRLeYo2CYWoilu4CnjXr8CRTeqJC+SH1tIp1yh1OuxgIOfUzMeBGQOcmy9D1/IbgtSUIQWmEZEEo6lm+Sx2Gs597d42OCqtMHgSlwTXORPw31IfqEBHm3U3hzHhlUGq1yShgRRC1IAalRG3EbweKUe/Q/TU8RIcLe6cE7PUiwtTrM73NlN7/+Tb8b9MxmJ3cTb24T6pf1+dKopCxLNFobafY6EgMQsV1i1plaKmJrx+sxP83NWarIpNoNNUr5p+GwIrEk0JQ2vPSpr8bkoHeV7p+wW7Dm70mzQjlu0BDsyOW71JHId5YlCRl2X66kCktNZqxRxj7EhaivEkUdJlS4b3b2867QMN7a0SY8jMBS3ipJTEoJWojVu0rUjweeloiDHrv1oR4S1xX6k0H3t+PlOK7XQVOnzs9IxbDeyartu8q2YVpP0zDLStuwfKc5d5d7Cli+a5m3XfF8l2ho6uYoXWWjSP/+Dr8PTla3ZXZ8aaB2Hl3gHQIIWZhjahjUAoAgyc7f7GQcOD0cR5dlyb0zoNSjoShjkLsvBsbEaZYwy923wWguhF6kXADt8DJWKiOzJdRWiJJktBJyJYeLw+ujDO1LgalRG2EWLorvskGgriu1JtM6YINR51uz06PwZuTzlSNrzlpPIm7vr8Lv534DTuKd+CRtY9g2cFlXl9zoBodqct3m8uUMijVmi+ddwEgWh+qyvo7dlPOE4LSiyIOKk+Qkg3EZii39bxU3fAIaAhIDUkeXZcmwtTNwgxSHWqZKaUOQt15V/lzHxsRCkO464qJGH0oBmTFK7YFWyM61YxSJ8tzPCGW8J4oD67gnloXg1KiNqC42oRDxcr260O7B/6Dr/jG5emaUovVhp/3Fiq2TRzaBT/930VY8Y8L0DVJ/UH6832fo8qsbOP/1va3YJO9a6SQKDa10aB8V5ZlFFWJ5bvKu/NiMKxV2TA1ETP1nn6wkiQJKW7Kq8VM6bCw/coTdD1PfdKQUGD8e0BkYtO2+C7AZU95dE2aCQkFQpUfFFm+Sx2J2Hk3TqiGkSTJ6XuKXa+0aNVNxGBrRCf+7vQlUwqox7gFWxk0ta7A1gYSkUe2HC1TPI4KD0HfjBgXe2tHNau01rNM6dajZaqs6t8v6aVa++No7fG1qm151XnYUrAFZ6ef7dHrAkBiALrvVtbVw1SvDI6by5Sy0ZH2fM2UAg3l1Y5jXxzLqx3XRUmwoV/9HuXBXYY5P2na6cC9G4D93zQEhn1GARGxHl+TZvTRQH3T12CQalm+Sx1Gea37TCnQMENzd36lajsA9E6LUS23KKgM8kypj0GpmCkVR2kRBRIzpURtwGahdHdwl3iEhgT+x1PswOtppnTbsXLF474ZsW4D0pLaEuwt3ev0udXHVnv0mnZiA6KiKhNkWXaxt2eKnNxVF1+Ha0oDz5+g1F15teMHqx7SCUTbhA+3Xc51feKYNGDIlIYZpq0RkAJAuDJLFA2W71LHUS7OKI1SrxHvmuR6NFqvtBhVt/SSahOsNv/eF9oT8Yayr5lScSzM8SDrYkyti0EpkYdKjWasyykOyJ3DzUKmdEjXRBd7akucYyZ28HNle1654vGZzYx/cRWQAsDGkxs9ek07selFrcWKKpN/MxvFzruxEaGqrq9i0FNqNMMWRB96WoL4wcqbu/1is6NiF+W7Z+mE0t3YrIay3LYsXFk1EYU6zimlDkNcU+osoOqW7Lp8t4+TTKlNDq51/6omcV7OKLXLjFcG/8fLa/2+6UvkKZbvEnlg4eZjePTLnTDV26CTgPsu7Y1/jOylybktVht2HVdmbs7qmqDJuZsjZko97b67/ViF4vFAocmE6FDFIZfP7S3di9K6UiRGeBaIixlMACisrPP5TRhw0uTISbdHMVNqtcmoqLUgwaC+q0++8aeDpDirtMhF+e4ASfhe7HyOF1fYSoQOvAapDiUWDrWnjsGTTKmr9xidBAzsHIeo8FDopIZg1K6wyuT0d3lHpNWa0k7xyn+vOosNFbUWxDv5f0KkNWZKiZqx72QVHlqyo3HNoU0GXv5hP77dma/J+Q8WVqva2w/IitPk3M3xpftuUZVJlS0e2Dne7THuglIA2HRyU7OvaxcRFoJ4Yc2Rv+uHVONgnAS+SQb1thKj89e1WG3YX1CFihrPR+yQs0ZH/pfv1lttOOkwHqKf7ojywE6DvbvI1qAq361FLTOl1EGIQan4+x0AeqVGO218dkZmHGJOjZARfwcEU7Mj9Tgt33JOYhk0EHzrc6n1MCglasbbv+Y4XZvy9Io9mqxZ2S0MAc+Mj2yxu5LiG5cna0r3nVR20I0MC0HPVPUsRUeHKw67fX7zyc3Nvq6jdOHu98kK/z58iOW7zoLS8FCd6kNRUZW62dHBwipcPHsVLn/lVwx97kcs2pLn17UFE//WlDov3z1ZWdeYPQlFPbKlXOWBGQO9v9CWFq78+YqSOKeUOg6x0ZGzoFSnkzD0NHVH+gt6Nc3DFkt4xd/rgVJUZcLuE5WtuoZVPRLGt0xpeKhO1Wn+ZJDNfKXWw6CUyI0acz2+/tN5RjSvrBY/7inw+zV2CUFpv04t10zFl+67h0uUo2t6pBoUg86dOVF9QvF4QMoAxePfT/7e7Os6EkuyCvy8I15U3Xz5LuAkGydkSm02GX/79I/GNvp1FhtmLv4TBwuVgTw5508HSVeZUsc5e72k49BLwvd4hvJ7sU0SynejORKGOhBxJIyrm7J3Du+ueK8xhIdg4tCujY/ThCxfS8wqXb79BM57/idcNW8NRs9boxot1lLEfhD2G3o2oxE1v/8Oc26us8OcEvs2FPh505fIUwxKidzYeKgU5nrXa7dWuAhYvbHrhHJ95uktGpQKmVJT85nSw0XKoLSbm/lxAGC1WVFYo5xpOva0sYrHhyoOoaS2pNnXtksTZ9L5W77rQaYUUK8rFcfRbDxcir1CJtlqk/Hx+qN+XV+w8KcETQxKy2ossFhtOF7e1D3yDJ2QsY/vCkS2zPptvwiZUgO771IHIcuyaplDvIubUeeeloT5Nw/GWV0TMLR7Ij684xx0chhhosqUBrh8t6rOgkeW7IDF2pAh3XuyCvN+OhDQ13RGlmWnN/TMecdx6JpxODr5VuRcfgWK337Ho/OlqcbrMCillsGglMiNtQeL3T7/y75CWKy+NxyRZVk1e61fp5ZZTwqoS3w8WVN6RMiUnuamKyIAlNSVwCorP0CP6DwCUaHKLn+bCzwv4VXdyfXzTVP88OKsmRLgfuwIAHy366TT477afsKv75NgIMuyy7v9nhBvGAANHZIdM6X9pCPKHdpD6S6gDkpZvksdRI3Zquqp4KzRkd2o/hlYdM95+Pwvw3BWN2VzvBQxUxrg8t31OSWqzu9f/3mixbuy15itqtLhuMgwFM6ZDUte0/KRorlzUbdvv3i4ijjejeW71FIYlBK5sSNPmcW8+Rzl6Iiqunr8LswY9UZeWa0qEGzZ8l1xTWl9s+3fDxcLmdJmgtICo7LEOVQXipSoFAxOUzaYsZfwyrKMVcdWYdb6WViwewFq69UjeLS+kyuWebkKSsXAp0jIlP66v8jpcWU1FlWZNilVm+pVH6y8WReVEBUOsYq8uNrUWEoNAH0kYX1veyjdBdTdd1HL8l3qEMpr1dU5cU7WlHpCrHApCHAp7fpD6uqeshoLDhVXB/R11a+p7m0QDQuqf/5FuVGWUbFkcbPnU9/0ZaMjahkMSolckGUZe04qA4lL+6aif6Yyk7nuoOdlpyIxwIuJCEVGXMu1sBczUVab7PbDrsVqw7FS5TDtZoPSGmVQmhaVBp2kw9lpZyu2b8zfCFmW8dhvj+HvP/8dX+z/Ai/8/gLu+PYOmKzu13z686ZZZ7Gqbgw460AIqDvwOmZKK2osOCT8/3S00ckHGGribEauNx9OQ3QSEg3qZkeOM0p76JRrm5HS17uLbC1OMqXmelurNlYh0kKZURlQhegkp112PSEGU4UBzvBtzS13uv1AQQsHpUZlYB+qkxCyZRNkk/p90bhufbPn07oSichTDEqJXDhers5i9s2IxXCHbn8AsOVomc+vcVQohe2ebIAkuW8apCUxUwq4L+HNK6tFvfBBuLnyXWdBKQCck66cD3mk8gieXP8kluUsU2zfWbITC3YvUJ5D/PBRVefzgG9nJV7i2iQ7scNricMHqj+Pl7t9nd+P+P59EgzEdWU6CYgO9+7DqVheXewwvigWRqRK5cIBvb2+zlbhZE0pAJbwUrvnrOO2r++BYlf2wipTwEppZVnG4SLnwafYDDDQxIZ7CYZw1O3c5XRf04EDqC9yXtFjp+puz6CUWgiDUiIX9uYrG9bEnspiDumibIyy7Vg56n1cL3ikRJl17NpM06DmLN6/GDd/fTPu+fEe7C7Z3ez+0Xr1h35xVqSjI0ImMD4qrNnxNWL5rj0o7ZfcDxmGDMVziw84Ly1aenCpIugU3zQtVhmlRnUJkyfE9aQRYTrEOPl3AdyvKd1xvELcXWFPPst33RG/72IiwqBrpquzSBWUVpsaM6WnSUJTMl0okNjd+wttDary3Ybv2RrOKqV2Tiw9dTYOxlPisg6rTVbcONRSWY3FaXUHoH6fDDTx3zAxKhym/a7Xjtbu3On2fOJN2eJqk8+fcYi8waCUyAUxiOibEQtJknBmV2VQWmuxYk++byM/xExpt6QoF3s274t9X+CJ9U9gZ8lOrD2+FlO+nYIjFUfcHhMaooMhPESxTeyA6kgsN+7eTJYUAE7WKJv/pBkaglKdpMOY08Y0ezwAHK08igPlTV0Nk6PV6wfzfWxbL64nTYuNcHmnPkkV9DR9GMgpVP7bDBG+T46X16qyAtTEnxmlduKa35yi6sZy9J6648qdE7oDIb5/AG5R4cqfM4N0auSQmR8UqX0r97DzrieSovWq8WSOpad1Fite/mE/Rrz0Cyb/ZyMOFPg+qkt8L3R0pLjG5XOBUCqU7yYa3Aelpr173Z5PvOkry+qxaUSBwKCUyAVxfWCf9BgADb/wxZLVbcd8K80UM6XNjVdxxWw14/Vtryu21dbX4u0/32722AQn6/BcUQWlHlyvOA4mNSq18e/X9LwGOsmzX0Ob8jc1/j00RKda9+lrUCqul3E1DgZQBz3VpnrUnSqhFJtbXHZ6GsJClB+Q9p3kvFJXtAhKxUzpHw5rvnpI4nrSPl6fv9WExygeGtDwAbHGwkwptW/lQpbPXefd5oToJKREux4L8+iXOzHvpwM4UlKDNQeKcdM7G3yeKyreUHZ0rKxlg1JxXW5qmA2W48dd7A3U7d3n9nyJhnDVexebHVFLYFBK5ILY0MextHZAlrLZ0W4fMqVWm4xcMShN9i1TurlgM0rr1F2Avz38Lcrryt0eK3aadXdHVBwH01yTIwCq60qObFqT2zW2Kyb3naw6pm9iX4zqNkqxbUfxDsXjTvHKoNSxoY03xEypqyZHAJBsUAesJUYzZFnGoSL1TYweKcqyS5bwuubPjFI78abBgcKmGwWqoDS5l9fnbzVC+W6UZIIONs4qpXZPzJT62nnXTizhPVnR8Pv9UFE1Fm1Rdt8uMZrxn7XC7GIPubsJWhTAtazOlAqBfabZ/VKS5jKlkiSp3gdP+njTl8gbDEqJXBDvdnZOaBrS3TdDObZFnDXqifyKWtV8Nl/XlK47vs7p9nq5HutOOH/OTryzXOzmzrEYeHlSvisGpQkRyrLW6UOm4+bsmxEqhSJECsGV3a7EO5e9g7PSz1LsJwalGQ5D0wHgRIVvQakqU+qiyRHQECiJd5CLq0woMZpVmb4eydE4Xfg+2XuSQakrYlCqRabUkToobSdNjgBVoyOgYV0pg1Jq78SRMP5kSgFnndkbfr+v+DPf2e74dOPRxmoXb7jr7Ftvk1WBYiCVCtVNGTXux9SZc3NhM7pf9yrOKmUHXmoJDEqJnKizWFXlKp0Tm7KYpwuzRPedrPR6PMNRIUsarQ9FksG3N+RNJze5fG7N8TVuj032MFNaZ7GqAr/mgtJ6Wz0qTMq7tokRyoHnYbowPDL0EWyauAnrbl6Hly56CfER8Tgj+QzFfseqjsFoaXoj7SS8aeaX+/amKZZvucuUSpKkHgtjNKmC9fBQHTITItE7XVl2mVPUsg0w2hOxaUjjjFJTFbB7GZC3GbC5X0Mp3mCxk2BDZ0lZRo6knj5fa4sLV/+cRaGOs0qp3RPLd/1ZUwqoM6X28t3vdxc42x2VdfVYta/Q6XPuNFfO2pJBnBgAJ1Urg1J9nz5AiEPvCFmG6eBBt+cU15UyKKWWEFRB6YgRIyBJkss/3377rVfnKy8vx3333YeuXbtCr9eja9eumD59OsrLywPzBVCLOe6kFNQxKBUzpXUWm9vGB86IpbBdk6J8aoVfb6vHwXLXbzBrj6+F1eb6w6v4Qd7VGptjpTUQp640V75bbipXbRODUruwkDBEhTX9G/eI76Fab3q4oqnUKiNOmSnN9zFTKo6EET/UiMQS0eJqMw4JowG6JxkQopNUa4Rbuitje+J0TenxLcAr/YAvbgXeGwl8MRmwum4WJf6/sUtFOcIl4Wcgvqvf19xi9DGqTdFSLUfCUJtls8nIKapGlZtu7oCTRkc+3pi1UwdTJhhN9dh1wnVJ67JtJ1w+50pBlfsgzdmosUAR15TGVRYrHoef1h3hXZW/70wHDsAdsWLI37EwNpuMn/cW4H+bcvk+SC75NqG4nRs/fjyio9XlUJmZmR6fo6SkBMOGDcOBAwdw2mmnYdy4cdi1axfmzZuHlStXYsOGDUhKStLysqkFietJE6LCFONTkqP1SI3RK9Yj7smvRM9U9feVK2Km1NcmR0crj8Jic/3GX24qx96yveiX1M/p8+Ka0mIXmVKx8VNKjN7pSBlHzta5xuvj3R5jpw/RIys6C7lVuU3XUHGoMYOqXlPqY6OjKrHRketMKaDuwFtSbUapMCfutJSG/5diJrmwquEDkqGZf7dgJAalsREhwJf3AnUOHyb3fg38/DRw2ZNOz+Hq/12mpPyQhhA9YEjx63pbVEhYwzVbm77PWL5LbVVhVR3u+nAztudVQJKAKed1w2OjT3c64kk1EsbPTKlYvnuyog5/5lXAXSHTT3sLUVlnaarO8EBzQWdLZhbFf0NDmXIOaVinToBNhvnQocZtzQWlWmZKq+osuPODzdh0pOHzQKhOwksTBuDawVk+n5M6pqDKlNrNnj0bH3zwgepP//79PT7H/fffjwMHDuC6667Dvn378Pnnn2Pnzp34+9//joMHD2LGjBkB/Aoo0I6VKbNujllSO7GE19t1peLdwq4+joPZV6rspJcalYpusd0U2zbmb3R5vKrRkYtMqXi9nqwnLatTdiWO08chVOd5QHZa/GmKxznlOY1/FzOlBZV1XpdQm+qtqjv17taUAg3jaBwVV6vLd+1BqbP/p2KGnBqIa0r7Vm8Aipw05NjwBlB+zOk5UmP0iAhTv61lScKw+PjOgK6dvf2pxsLUMVNKbY7NJuPuj7Zge17DzSRZBv772xF8uinX6f6qTKnfjY6UwVRhVR225irfhzonRip6A5jrbfhup3J0mTuyLKvmW4vr2cUGeoFis8koE/4NwyvLFY/D0tKg76Vs7FbnZmQMoF5T6k+jo38v29UYkAINa24fXrIDeS3cpZjavnb2rtw2nDx5Ep988gnCwsLwxhtvIDS06UP2Sy+9hJSUFHzyyScoKHC+hoHavuNCUJqVEKnaR9Xs6ISXQalqRqlvmdL9Zco3lz4JfTA0Y6hi24YTG1weL76ZFlWZIIt1uvBtHIyqyZE+wcWeznWP6654fKyqKRjJEDKl9TbZZZbXFWd3u9OayZSK/14l1SZVFvm05IaMeURYiGrta0vPsGsvxEzpaaUu1kJbzcDq550+pXNSMg0AWWKmNK6zT9fYqoQOvAauKaU2aMWOfGw7Vq7a/tbqHNQLjf2sThoCiWv2vSVm+Iqrzdh4WPk+dHGfVFzUO1Wx7avtnpfwltVYYLEq3yP7ZihL7EuNLdPoqMRoVt2MDSlXfr2hycmqoNR0wP2aUjG493UkzM7jFVjyh3o8TZ3FhrdW5zg5goIZg1IffPPNN7DZbLjwwguRlpameE6v1+Pqq6+G1WrFN99800pXSP4Ss4XpseqgVOys6k2m1GaT1eW7HmQenRGD0t4JvXFuxrmKbVsLt8Jkdf6mIs7lNNXbUG1Szz8Ug1JfxsG4Wk/qSla0srwnr6qppX+yQa/qhOvtWBjxbnZ4qK7ZUSRiM6r8ijrkCuXePRzKuMV/J2ZKnROD0tRi19l9bPsUKHJ+p99ZUKoq343v4vX1tTrVrNJa1Jo5p5Talo/XH3W6Pa+sFhsOKd8PymrMqj4FyTH+rSnNdHID+df9ykqJM7sk4JpBnRTbfjtYjGXbjuP5b/birdU5bm9wiqWskgT0SQtMUNrQdLHO6Y1iZ9eikwCUlii2hSQnQ99bGZRai4tRX+q6S2+GcDO12lTf7PpgZz5Yd8Tlc19tO+FT52PquIIyKP3Pf/6De++9F3/7298wb9485OY6LytxZfv27QCAM8880+nz9u32/aj9ETvQiiWugLp8t6jK5LZNvKOCqjqY6pV3jbv5WL7rmD0EGhoEnZ1+NiQ0BWwmqwnbC51/Pzobo+HsrqgqU+pD+a6/Qenx6qY7rjqdpCoxcjc7zpkioQQrLVbfbLMpcU3ppiOlqjvV9vJdQB2Uuhu6HswqHT7wJKMCUdXOP9wCAGQb8OO/ofpEC+c3S5yW77Y3qvJdE8t3qU3JK6tRlGmKfhG63IqBnyQBiX6OhInWh7odDQUAg7vE49K+aTCEN3WktcnA9M+24a3VOXj+m724cu6vLhvyiDczkwzhqmUf4jpPX6zckY+znv4RQ5/9Cde9uQ4lTgJl8QZ6pwgJtmpl473Q5BSEd+kCKVz5b+suWypmSgHv319rzVaXo3iAhs7H63NKXD5PwScog9Knn34ab775Jl5//XVMnz4dPXv2xKxZszw+3h7EZmU5X6Rt3+5psNuvXz+nf3JyWNrQWsRf9M6C0u5JBsWbGgDs8rCEVyzhjAwLcfoazbHarMirVg4E7xzTGXH6OJyedLpi+28nfnN6jsjwECQI63jEtR7VpnrVG7EvM0q9DUozY5TNxyrNlag0N/0bi+tKvc2UHheaIzVXuguoGyyJcVFqjF7RMEMs/XbW2TnYmeqtqLM03aTpoxN+d4ZGAsPvV27btxJ48zzgp1lAbdPNj0Gd41XnV2VK49phplRVvlvL8l1qU5Zvdx2AAOqMZYkwXzMhKhyhIf5/LHV3gzfJEI4uiVGIDA/BFf3SXe5XXG3Gg4v+dJqhVM22jolAojgqrNq/oLSwqg7/98X2xqqlP3LL8eTy3c1ey2mh6sA1NCUZUkgIwnv2UGx31+woIizEaVWQN37ZV6i4caaT1P9vVgvfExTcgioovfDCC/Hxxx8jJycHNTU12LdvH5555hmEhobi8ccfx6uvvurReapP3YWKinL+i89gMCj2o/ZHzKA5Cxh1OkmVLd153HXbeUditszXcTAFNQWotylL+DrHNGSBxBLe7458B5vsfM5jF6GRk1iOelho5CNJnjVmEjOlCRHerSnNMGQoMr4AcLyqKVuqmlXq5Zum2GXZ2dphUecE91+32IE5M14MnDnvTVRZq/wezpaERkap2cD59wGRwk2Nwt3AmtnA2xcBlQ0fiIf1SIKyyafcQcp3ld9X0Wx0RG3Mz3uVfTSyhTnNB4uqFRURYqbU1zndoq5u+h2c2TWh8b327otOQ7ibIHjTkVJsPlqm2i5WRKXG6pFoUN7Y9TdT+tW2E6qf7xU78lX/ZmJVU1cob3pKej10p6ZNRKjWlTbTgVfV7Mi7G6pilvS8HskYf6YymfPbQeF3MwW1oApKn3rqKUyaNAmnnXYaIiMj0bt3bzzyyCP48ssvAQD//ve/UVvb/A+d/c6ZqyDCVe2/K7t27XL6p0ePHs0fTJqrt9pQIqwHEWd52vXrFKd4vNPNLDRHRzQaByOW7kaGRjZmIy/vdrniuePVx/FH4R9OzyN2F84Vri9HmMOZlRCJiDBlltgZVaMjL4PS8JBwpEYpG1I4lvBmCAGft7NK8zzosizKiItAiJPRBnZiUOosU2rzsktwRyeuJ+0jBqVp/YDIeGDcGwCc/NuXHwW++juAhvmm5/dMbnwqCZWIlIQPiO2yfFf5fRXFkTDUhlTUWrA1t1yx7f7LeivW/csysDOv6T2yWMgmupoz7C3H5ROiIV2b3oOy02Px6k2DEBXu+r1syVZ1kx6xaigtJgIJQtlxqdHs9WdBRyt3qLPOVpuMdUK5qzjSrJOsfE8LTU5u/KyqbnbkPigV15V6c0PVZpOx5oAyC3pV/wwM75Ws2HagsFr1+5+CV1AFpa5cfvnlOOuss1BRUYENG1x3KbWLiWm4+2c0Ol9vUFPT8IHe2SxUavsa3kyU21yV1p6RKQSlxz0r31VlSpO1WU/aOaZz4xtQ38S+OC1OOVLlw10fOj2PmPU8KmQQDwlBaY8Uz763xaA0KcL72b2Z0coSXsegVMyUiuW4zRHLlJvLggJAaIhO1eHRkfhvkxmvPKe53oZio2+dDDsq8UNJjxChc3lK34b/9hkF3PQpEJOhPsnBH4D8PwEA/7769Mby8l4RQqZDF+r8+LaO5bvUhq07WKxYWx8eqsOFvVJUXeq3K4JS5e/B5taCemqwkxJ+O8egFABG9c/AbzMvwad3DcWiacMw47Leiud/3lugCi7Fktm0WL2qa7Cp3ubzz6ep3oodLqqu1ucoM4tiB/kUi7ietCkIdBaUugucxeUx3oyF2V9Yhco6ZQXMxdkp6NcpDuGhytBju5NuzRScGJSe0uvUD2t+vvs1EQDQpUtD6VdeXp7T5+3b7ftR+yLeBQ3RSUh0UVZ0RqbyDfd4eS3KPOi6p+pkq1Gm1F66CzRk8q/peY3i+V+O/YJ1J9apziOW74plrTkuRp40p8zkX/kuAGTFuG521EnMlHqxXlOWZXX5bmLz5btAw5w7V8RMaWqMukuwOHIo2FUKXR07S8qGKEjo1vT37KuA+3YAExcBkcL30x8fAwB6psbgm+kX4If7L8SH1wrrxmIzAV3zWf42h+W71Iat2qfMig3tnojI8BAMzIpXbHcMQMTGPVoFpQM6x8NZMUtUeAj6CzeSASDBEI7zeiTjrG6JGD1AecOqoNKker8WS2ZTYiOQIJTvAr534N2bX6UaOWO3+YjyPVWcl5pkUgalIY5BaW9lwG2rqkL9SdfzWVWNBD1s5AgAvwtjeLISIpERF4nwUJ3q/8EfQoadgheD0lPKyhp+0D3Jbg4cOBAAsHXrVqfP27cPGDBAo6ujliR23k0yhLss1+yZEg29cNevuWZHsuxkHIyPQanjiBRAGZQCwA29b0C8Pl6x7ekNT6OuXvnmoirfLa1R3EHNKRQypanNX6/FZkGFSXm319tGR0DDulJHJ41Nb6LindyiahPM9c7XzYrKaiwwCneyPcmUAg1lX66ImQGdTlJdJ5sdKVU6ZErDYUEyhOymuAY0JAzodRlwzl+U2w983/jXiLAQ9EqLgb5aKL9rj+tJAVX3XZbvUlshy7KqYc1FvVMAAAOyXC9xEct3kzUq343WhzoNPi8/Pa3ZZSenJRtUY9LWH1KWzIqNENNi9IjWh6puPvoalP7ppjfFoWKjYoyKmLWNqVUe65gpDU1Pb1xfale3d6/L1xLLd71ZU7pJCJ7P6db03i9msrfmqtftUnBiUAqgqKgIa9Y0DGp3NebF0ZVXXgmdToc1a9agsFB5R99kMmH58uXQ6XQYNWpUQK6XAsuTzrt2oSE6ZKvKk8qbPb+Y4eimYfmuo+jwaPx98N9Vx7y7413FNrExRI3Z2ng32GaTVXeKPcmUigEp4Fum1F1Q6qwTrvgm7YqYJQ3RSao3YVf6dXIelHZPNjjNqovNjpgpVXIs382QSqCDkCVwFUj2vVr5uOwIUCJ0LS8XOvm216BUr2waEy3VoYZzSqkN2F9QjZPC790RfRqCUnGJS15ZbePPu5gpFcdt+WPSuV1V2yY62SaSJAlDT1MuM3FsYGizyarsZFpsBCRJXVFV6mOzo4MFVS6fs9pkHChouElcZ7GqKruiql0HpZIkISI7W/F87VbnfSYAJ5lSD5fHyLKsypSe3b0pKB3UJV7x3I7jFX6tv6WOI2iC0g0bNuCXX35RfeMfOXIE1157LYxGI8aOHasY8zJ//nxkZ2fj4YcfVhyTkZGBm2++GWazGffeey/q65s+GDz44IMoKirCLbfcgvR01+3Gqe3yJigFgEHCneC1B9x3kxObHOlDdR6NIhHJsqzKlIqlrgBwfe/rMTDl/9k77/A2qqyNv6MuWe69O7ZTbKf33huQQCD0HghLX1hKaLvA0r+lLL1sgAChhEBCIBAS0nuvThw7dtx7t2WrS/P9IRfdO6Nmyy2e3/PwkLkzGo1taeaee97znhHE2OqM1Wg2tQeakX4KqOUS4pjWB3FJvY7TUzXJiZFEK3Q9KQBO1tYd6KC0rLldYu+vlEJJrXy768BLB9pRAQq32xHQE61WRlEP21bohu5CppSkQdselHJ6iir8bSZHfISnAepwcqzoMHVyyjTJvw+aHAEc+a4PdEQbHQGBnmL3BXJxPjpA2VZbnxSq5mQQM8tsaiJaBust+S4ALB0dg3tnJEIiYqCWS/D8olSMS3BPqTOMKsuxVz/VaY0caW1rj1KO2ZGDtjBWK4uaJgPMFv7vb66D/qitnG/5/RXXaTn+F/LGemJbEkoaCynHjCG2tcePO3yfKErhozGYodG7NiUqrtNxFinsf/e0pLu22Sg8EwUA9KOgNDMzE7Nnz0Z0dDRmzpyJG2+8EVOnTkVKSgr279+PtLQ0rFxJZo+qq6uRlZXFW2f67rvvIikpCevWrcOQIUNw4403YtiwYXj//feRlJSE//73v931owl4GU5Q6uJBOXVgKLF9rKDWaQYjn6cdjMiJm6sjGgwN0JjIFVU6UwoAIkaE5yc9DzHTHrzpzDpsK9jWfoyI4WT/WiVEF6hVW1+5xK2eqnRQGiAPgEQkcXC0YyLU5OJOvaEeWpMtsGcYBpFUttRdB97WB3srg8J8HRzJZVC4L2/7gpmDw3iO5msLIzyA7bHPlMbSQamzzCbDALHjybHSU+R2PRWU9kXnXYBHvmsQMqUCvQJaujt9UGib4Z5MIkIydW89X9YIs8XKyTi6q1RxB5GIwTOXpeDCK5fh1PPzcNfUAW6/dijlqp9ZroGpJYCkA2mGaQ+mafdgvrYw2RUazHlnN8a8sg2z3t6FMzzKKrpchiaj5dlFt24LUcvA1pCL4vaZUgBQjSWDUn16Oqx6/oVcOlMKuKdEOkJlSYN8ZMRCdkygEgFUb/T0YseSZYH+Q78JSidMmID7778fkZGRyMjIwLp163D27FmMHDkSb7/9No4ePYqwMP4JJR8hISE4evQoHn74YRiNRvzyyy9oaGjAQw89hCNHjiCEuhEI9B08zZROTAyCxC6oNFlYHMipcXg8t0epd0yOJIyEk1VsZVDgIEyJnkKM7SzaSWzTtT/pLQ9L2gUwJdLPrZ6qne1R2kqEiqs4KNfaSXj96YDPvUxpBhWU0rWgzhCLGNw2iZSCRQcoMT81nPd4OiilW9H0d+yDUk6mNMCF5C6SVAGg7HT7v1n2EpLv0kZHOsHoSKDHaTaYcTSPvNe3SndbSaXurRlljajQGEB3xqKN67yBSMS4rYBphe4/bjRbkdMSKNItWIJ9ZJC2nJ+vLYw9LMvi4R9Otql0imp1uHf1caJGVGs0o5RS+1w2lHwGtj67aG+KuEAlzNXOg1LlqFGAqP33wZpMDrOlCqkYgVTw6M7z9Wg+GZSOtesNC9gWk+maX2d1tAL9h34TlKakpODjjz/G8ePHUVlZCZPJhPr6ehw8eBCPPfYYlEruzfDFF18Ey7L46quveM8ZGBiI999/H4WFhTAYDCgsLMQHH3yAoCDPzVwEeg+eBqW+CilGx5EB10/HixwczdejtGP1pMVNpHQ3wifCaSZyXvw8Yvt4xXFY2Xb50DBKUnOm2FbnQa9gDovhl67S0JnSjpgcAYBKquLIfsub7M2OPM+UWq0sx5CKDkotVgs+T/8c1228Djf/cTP2FO8h9j84KxnLpw5ATKAS4xOC8OWd4xyaaHBcgj2w1u8P2AelUQy1oOMqiIwcRW6XnwGsLZM8fT1gpOqz+qx8l8w2+UAPvckq9LwV6FEOXqyB0U6GKhExmJxE1mSmRNKZUg3HNEcuEXECoJ4iQCXj9JdufV5UUPdu+2wip6aUCkpPFzcgs5y8H5U16LHlXPvzjC4rYRhb2xp7sso1vIaJyT4MWCP5nuIQcoFArFZDkZZGjGm2bYMjIvzpZ5fr5ysdlI4fwH3200HpWSEoFUA/CkoFBNyFdt8Nc6Pec9EI8qHxV0YFjhfwO8rlV3snU+rKeZdmXMQ4YrveUI/c+ty27RFUsFnTbMS50kbOCiadUXWEt4JSwHldaSRHGus64Dtb2sCZMNA/14enPsR7J95DZm0m0qvT8dD2h4h2OlKxCP9clIp9T83G2vsmYXCEY/kvLTFu0JkE6aUd9XZBaSjqyZ2+Lmrz6UypSQtUtzSFp7OkYGwtYfoiPPJdBlYhWyrQo9DS3THxgfBVkMElnSnNqtCgqJYMbiL9FW4pcLoLzjWX24JSekExwq/9+UMHpTXUM2bzWf72K3+mt49frKK8DvyVHLfaBp0J5Y16jnw3ScLtfy0J4fYG9507l9jWbNsG1spf30qrfOi/G01Nk4HzM/DV8tLP29ZFcIH+jRCUCghQeJopBYAlo6LhI2vPkrEssPzro8im6jFZlutk2+F2ME2uTY7siVZHI8KHkgHVZrT9Oy5Ixem/+e2hAs7vg89qnw9vBqX0ddsHpVFuZkotVhZvbcnCjDd34soP9xP7EkN8iLY4xZpifHXuK+IYFizeO/FeRy6ft1ZKyJa2Y98SJpShVsxpIyMadSg30Kw4a/s/XU/qFwVIvNN2otuh5LsihoUSRiEoFehR9uWQctHpg0I5x9AqFKPZir2UISDdNsuq06H50CEYixyrjrqSIdQiY2uGs5yTKW2fH9BBKd2z/Egef1nPnuyqNtOj3CqynjQx1AcxgUqOEWFmmYbjTxEH8tkn8vWFSMF99vjOI1VTlqpqNB84yHtttJKLfk+ao1QrGJVMzOtWTyuzGnQmlwGvwKWPEJQKCNihNZrRZCAzWO4EpX4KKR6cnUyM1WlNuPnzw0SQVN6oh5bqLehOz08+3HHepRkSRNrBX6i90PZvhmEwL4UM/tYcJScEfgqJ20F0ra5nMqWOgr3XNp3HhztzOJInAJhB1UD9fOFnmK3cTGZGTQayarPcvu5WVDIJ/JVk9sBde/3+gL18N4QOSn24k1wOYankdmXLYgudKe2r0l2AI98FbA68Qq9SgZ6iuE7LWWSdPpD7fQ30kXEW5v48SxpI2i+I6rMuIPeqJSi8cxkuzl+Ami9XefGq3WNwBJ0ptQWlZZTRj30w7Uy+a7GyOF/G3+pFa7Qgq2UBm84yJoWqwTAMJ0g+WVTPUV1FWclnG11P2oo8cQDkgwcTY3VrfuA9Np4KSvmen/bQ0t3RcYG8Nb1R/gqOWeCZknqn5xa49BGCUgEBO+isIOBeUAoA90xLxNRk8iFQpTHg6XXpbbKUi5XkQ0QlEyPCr2OOg5ygVO06KB0cSD6IsurIAGueA6OeVqYPCnXbKbjO4B2jI8BFr1JqslPbbCSMIwAgp7IJX+7P4z23iAFumdBupsOyLDbnb3Z4LTuKdrh93fZ0pPa1v9AalIphQRCoiZurTCkAhFNBaUVLUFqXT44HJnTo+noFMu5ikA+jFzKlAj3GfipLGqiSOuzhTGdL6cXZxJYWMizLovTpp2EqbFlQYllUvvkm9JmZXrpq96DLMSo1BtQ2G7k1pX6Oa0rt5bt51c1Ov6ut5T60826ra+0Qqi73t1MlhFEUwwDhZnJ+4SgoBYCAG64ntpt27ISpnCsvpsuL8muancps6aDUURsehmE4/hSCA6+AEJQKCNhBB6VKqZiQ5TpDKhbhs9vGYDTVq3L3hSocyrXdqHMqyQl36yqop5gsJsKBFnAvUzo4iAxKc+pziO3xA4I4NST2zElx36Haq/JdtWP5Lp0pBbgtV9afKOb0c2vl6cuGIDmsXRqZ25CLkqYSh9dyvNxxXzdncINSIVMK2KR8rRPUIDRCxFB/KLUbnzlHmdJLKSiVyAHKyMwHXOWFgEB3QUtwJyeHOFy0pGs0aQaE2IIffXo6DOfPkztZFvXr13f8QjtAQrAKMgk5Rc4sb+QsJtobHQX7kAvYDTpTWysZurUazfGCOlitLHKrqaC05dk0hMrccg0TfSCqI5+5Yp560lb8r7wSjMouC2q1on7tT5zjaGWURm9GvZa/V2mzwcwxEByX4Hgxmi4Fop3+BfofQlAqIGAHXz2pJ0Gjj1yCVXeORxiVXV2512YoREtz7IMhTyhrLiOccwH3gtIBfmSvtmpddVvPT8DW6uRuB/3cAlVSLEhzYTpjR1caHZU3l7f9/Gq5BH4KcrJOB3yb0kmpWLifHCsWDsavD07B36YnEfuOVzgPOk9VnYLJ4rqBOA1XZixkSgFSuhtGS3cZEaByPLFqfyEVlNYXAAYNT1Dqor1Mb4ZhABnVFgZ6wTBLoEewWlkcuEjWSNJKIXtctdxKbAlKm/bs5d2v2bqtW41wJGIRBlLP55OF9WjUk983Z+67QHuvUley1+MFdSht0EFvIp/ryS0ZZNrBmCYl0penHYzj0gexWg3/xYuJsfpffgFrIRe5ogIURMs7wHFd6YnCOljs0rcSEYNRcZ4FpYKbeP9GCEoFBOygnXfdle7a46+S4uE5A4mx3ReqUKnR42IVvzTHU2jprp/MD34y1302+QJX2jDp1onxvKva985IgkrmuOWMPSaLCRqqFYc3g1KT1UQEvXTLFftMaXmDnrOqvPL2sXhgZjJGUK6GAHCs4hixPT1mOrFtsBiQ25ALT+EaMgmZUsBFPakqBBC5oVQIGQQw1HGV523BqT19OVMKAHJyYqpi9BypuoBAd5BR1shxMHcWlDqS9QKATCxCXEvtYvP+/bzHmMvK2iW93QSdndydVcU5xl6+y9fSpvV3RDvl0s+e4jpdm6KqFV+5pG0OkhblD5mTfqtj44Nc9iilCaQkvOayMjQfPESeQyzitMehF9dbOZpHXv/QaH8onSjNhlNmRxq9mQh4i2q1WHusCAcv1gjOvP0EISgVELCDzpTSGU93uWZUNFR2N2OLlcWGkyUcaUtSaMcypZ4677aikCgQpiTlkEUa0sxIJhHhq2XjMG1gCBgGkIoZ3Dk5AfdMS3T7+uh6UqBzNaUhyhBOD9ayJjsJr5OA7whV4+KrkCAtit9BmGVZTqZ0VuwsTlCcXZ/t/sW3wOn3JhgdAaCCUtDOu27KxaUKIJjMeOPiTsBM/Y77elBK1ZWqoRPkuwI9Au26Gx+sIhzMaeKDVZyFuVaGxfhDLhGDNZuhP3fO4Tl0p0937GI7CG0uRD9L/JVS+Ni54krEIgRQgWltky0oLaKC0rlDwjilQT9T/c2TwtrLexRSMUbyLKK2MiHR86BUkZoKeUoKMdawfh3nuIHhdJ/ZRs4xANd5l68/qT3hfnLOwv/BXFv2/aOdOZjx5k6s+PkMblp5CH9bfVxYgOsHCEGpgIAdHWkHw4ePXIKFQ0mp6ztbLxATcACcQn936YjJUduxVABb1Mi13A/zU2D13RNw8l/zcPxf8/DilWkQu2lwBHCluyJGBH9Zx37W1teHq0jDG+cOvO2Z0tNF9cS+sfGBDn+WSm0lKrWVxNjo8NEYGEhmvrPrPA9K6QlZqSDfBQA06NqzLaFMPbnT3aAU4Ep4s/4gt8VyQO2+/LxXQsl3fRi94L4r0CPQJkfOsqSAzdhmioNjxsTbFiwNublgjUbeYwBAd+qUZxfZSZz1ngaAhBCu0smR2RGdKU0I8eFkS+lMKb1oPTmZv5QhRC3HkAg/mKvJTK4k1PnfBAACrrmG2NZs3wGrlrxWWjmVUcoNSo1mK04WkUGpI5OjVhiGwaRE8mfacb4Sv54qwZtbsggjp60ZFfjPZs+d7wX6FkJQKiBgRyUdlKo7FpQCwLWjyeCPrhUJUcucmgo5o6OZUgCI9SXbYtCZUnsCVDL4KbiSJFfQQWmAPABid2SYTnDWFoYT8NllIVut/Fuh+6PZQ7sRqyQqJPglYGBA54NSOnDW6Lnth/ojztvBeBCUhqeR22VUViUgDhD18Uce1avUB4L7rkD3ozdZcISSak4b6DoAunJkFO9462s5Bkf0+2Z2b1BCZ0ppBgRzM8N0m5PaZiPMFitKKPO9uCAVRlGmiDQDw8nv+9LRMeCzuFg6Jhoi1gpLDfk3kYS6bqflt+gKQGzXY91gQPNBsmcpLb3OKGvkyGnTSxo4c5yx8a7VUbR54vbMSjy2lj8j/s3BfE7GWeDSoo8/oQUEvIu3MqUAMDEx2GnQOSImoEPOu0DHepS24klQ2lG8aXLUirO2MHTjdftMaWY5uarrbKJB9yAdHDQYIkbEzZR2RL7L0/qnXMiWosHOyTGUDko9ypSmON8fOtj5/r4AnSkV3HcFeoBTRfUwmNsDEBEDTEp0HZROTQ7hZAeHRPhiclJLUJpDusHTi0iGixe7tbYw1FfOWyfairuZ0rIGPWEABNiC0tFOTIAAYDilpIoNUuHyYeRzUCUT4/ZJCbDU1gJWMih0Jd8FAElgIFRjxhBjmh1k27NUKiht0Jk4QfbBi2TmfHC4LwJ5jJ9oZgwKBS1con9XrZitLH465v35ikDvQQhKBQTs8GZQKhIxWDo62uH+mYNdr2LywbIsJ5D0RL5LB6XO2p90lFpdFwSlaseZ0sgAqqa0JVNa3WRAdRMpB3MmyaIzpa19XemgtLy5HM0mfrMHRyhlYs4ERzA7Ahp07dniDteUAlz5Lme/i6C1L8CR7+oE+a5At3OMqq1MifSDv5PgrRWGYfDxLaMxLiEQIgaYMCAIX945rq2cwlhMLrb6zp1LbFsbGmCu4poNdRUMwzh9XgxwIyitbTZwpLu+cgkCVFKnNaKAzSiI5vVrhuGa0dGQiUVIDPXBqjvHITpAyaknhUgEcZB7z1317FnEdtPOXYQLb3SAkuNwf7KwnthurQVtZVKSG67psKmxpg10fy607kSJYHp0CSMEpQICLVitLKq94L5rz3VjYzmrgK3MSQnn3+GCRmMjmkyki68nmVI6uKvQVnj9Jk9nSjtjctSKc/kuJY01mKHRmzjSXblExOm7Zg9fphQA4v3iwYD8Q9LZanfgZHQFsyPUO60p9eA7EjgAkDiRw18KQakg3xXoBdCGNq5qB+2JDlDip/smI+fVy/HjvZMI53RTEXlPVU0YD0ZJfqeNdDa1i3FkigdwW5oA3KC0rtnECUpjg1RgGAbBarnD/q0Dw9S8pTN+CineuX4ksl5ZiO2PzcCElppMOlgXBweBEbtXMuM7ezaxbamtJQynGIbBaEqKax+EGswWHKM+ExMT3QtKAeD+mUm848lhavx83yRirKReh+zKJt7jBfo+QlAqINBCvc4EMyUb6WxQGhukwg3jYjnjs4eEcdqYuEteQx6xLWEkiPBx38CFNgwyWAyoN9R36FocUaUjH5AhStcyIlc4k+9G8Lg6ljXokUkFpYPCfR2aHBktRhRqyJYDrZlSuViOMBWZtaOPdQfaJVgwO3JVU+qBmkAkAsKGON4fluZ4X1+Bct8VjI4EuhuLlcWJAs9cVvkQ8dyHTVSmVBYXB3ki6fpuyLno8Xt1BkcGToEqqYNMKTlnqOHJlMbZuRTPTeVfeJvnYLwVhmGI8h9zlfs9SmlkcXGQDSD7k2uPHiW2J1OZzz0XqtoWs/fnVBNyboYBJia6/5mYmBiM5VR/9BC1HJ/cMhpj4gM5ZVC7skgzQoFLByEoFRBogZbuArYbY2d5emEKYRQQF6TCv6/s+ASZDkpj/WIhFblvRhSqCuVk/Sq0FR2+Hj7o89EBXUegg9JafS30LS0/FFIxx2CitF6HTMq63pkUq7CxEFaWrMkZ4N/+oIzziyP2daQWl5YZlwvyXdS31JRKYEYQQ62Ae5IpBYC4SfzjqmBbL9O+joz8/KqFmlKBbiazvBEayqDNHUMbV1iammCpryfGpNExkCcnE2OcutMuZkJiEG9/0NFxgbyeEHxGR5yg1M4gacnIKF7zIrp21BV0ptQd5117VBPGE9vNR44Q21OTySC3uE6HUy3O9n+mlxP7RscFIkDlup7UnueuSMGnt47G9WNj8PfZyfjzkWkYGO4LhmEwfRD53rt4+sUKXBoIQamAQAuVGjJACPKRQeqkWbW7+Kuk2PDgFHx66xi8d+NIbHpkmtN+bq7IbcglthP93e8fCgBSkRShSvImb5919AZVWvKh4Y2glC8bTJgdBXAdeLMqyEypM5Oj/MZ8YjtUGQq1XQ0fXYtb2NiRTCm54lsqBKVtLROCwdP7zpOaUgBInsM/Hj+l7zvvAhz5rgp66EyCg3NfRKM34adjRfjtdGmfynbTMs34YBXCeEzcPIXOkgKANDoK8oFUUHqxezOlKpkEC4Zynz2LR/A7CXNrSo0cx1j7539iqBp3TSGzhNeMjuatJ3UGt0epZ54VqnHjiG3d8RNgze33lpRIX05mePXBAuhNFmw9Ty5CX8bz+3IFwzBYODQS/7l2BB6bP5hQqdH+G8cL6mCyWOlTCFwCSFwfIiDQP+CYHHkhS9qKVCzi9C3tKJ0NSgEg3Ccclbp2CUxFs3czpXSvT1oy3BFUUhX85f5oMLRLPMuay5DgnwDAVqt0tqQ9sMmrbsIFTlDKX78DcIPS1vO2QgeljmpKjRYjPj39KXYX74afzA+PjH4EI8NGAuDKd8vqBflubbPte8eR7jJiQOmhLDB+CiD3BwzUuQYt6MQV9iI48l3B6KgvUqUxYMlH+9scTFMj/bD2vklQy3v/lOwoZXI0Nr7zJnYANyiVhIdDJJdDlkTWGxpycsCybIed6zvCigWDcSi3pm2OMDU5xGFQSqurapqNnO9oHLUo/c8rUpAS6YcDOdUYHuOPWyfGe3yN3Exp54JSa1MT9OczoRw2FIAtaLx6VDTe2Xqh7ZgNp0rAol3t0oq35jqtTKDk4QazFRmljRwnZ4G+zyWwdCwg4B286bzbleTWk0GpvcTUXeisY7nWe5lSrUnLMWLyRqYUcF5XSjca336+ktM3zZl8N78hn9hO8EsgtuN8Sfmuo5rSfx/8N1amr8SFugs4VnEMd225CycrT9qun8qUCvJdoLbFHZljcuQT6nl2U6oEpv2DHAtKAoZe2/EL7E1Q7ruCfLdv8taWLKKlRkZZIz7e2b2y1I7AsiwnKB2X0HnpLgAYKZMjaYzNvE8+kHQ+724HXsCW2fzzkWn4v6XD8NHNownHYBra34BlgWbqOxpPBaUMw+DaMTF454aRuHPKAEg6oNDiZko9k+9Kw8K4daXHjxHbt06Mh1Labp5kZYFfTpLu/VOTQxAT2HElGB8BKhmSQskFueNUXbPApYEQlAoItNAXglK9Wc9p4ZIY0IFMKZW59KZ8l68+1VtBKR1M2zvw0kFpbjXZsiXUV+70b0pnSuP9yNVqOlNa3lwOo4VsN3Oy8iR+u/gbMWaymvDSwZdgZa2cTGmrS3B/RW+ytE3YuD1KO9YyCZMfAea9DMROAIYuBW7/FZB2Xl7YK5CTiyoqRg+94L7bp6htNmL9Sa7K4ufjxbA66M/YW6hoNKCikXxOjvXAedcZHJOjlqBUGhXl1IGXtVpRt+ZHFD/8MKre/wBWXdeoT0LUctwwLg5XDI+ETOJ46hyokjrdLxYxiA7smMmhM8zVnaspBQDVWLJfqf5MOrEd5CPDQ7NJOTXNfTP4nXQ7yxiqbvl4oRCUXooIQamAQAuVfSAoLWgsAAty4jLAr/OZUm8aHdHSXV+ZL5TOWnV4gLO2MElhavpwgrQox9JdgBuU0hloOihlwaK4iZxI/ZD5A++5c+pzsLtot0OX4P5KndauHQynR2kHJd8iETDl78DdfwHXfgkEcN2v+yyUfFfIlPY99mZXwWThBp+VGgPSSxp4XtF7OFdKXp+vXIJEHgfajmAsJo3jWjOljEjE48DbHpRWvPoayl98EZqt21D98ccovHMZUQvZ3TAMw1l8tCc6QOkVrwoajvuuh/JdAFAMHUZs686e5Rzzt+mJDh2JrxkdjakDO++0zwcdlNIO0AKXBkJQKiDQAm10FNYLg9KL9aTJQ5RPFFRSz6UyXZkp7Yp60lacBqWhzidHjvrBAUCdvo6oVQW48l21TI0gBZkVsK8r1Zl12FW0y+F7bMzdyOsS3J+D0pqm9qCU2w7GO9n1SwoZ3adUB61BMDrqS+zNrnayr3e7ip4rJc3IUqL8eFu7dARTMakAksa2997mOvDanoOG7GzUffcdsU93+jQ0f/3llWvqKOFOjJ/ig70rbQUAS1MzWC1ppuSpfBcAlMPJoNRUWAhzHRn8ScUirLx9LG6w68HOMMANY2Px2tXk673J6DgyKC1r0KNMaKl2ydH7q+oFBLqJvpApzazNJLaTAjomleFkSpsrvGYeQWddaaffzuCsptRXIUW4n5wjL2sl1UmmlM6SSkQSRKm5RhaxvrGo1bfXVNk78J6uOg2d2fFDcnfRbujMOkT4K9ocZ4H+bXZUa/d74NSUeuq82x+g3HfFDAvW1H8/P32Rk05kh6eL+1am1JX6xF1YlnUo3wXAdeBtyZTWfrOa93x1P6yB3+WXe+XaOoKzTGlXBKXmCu6isiTM8/unPDkZjFwO1tD+DNWfPQv1tGnEcUqZGP937XA8Pn8QCmu1iA5UcvwSvE1SqBq+cgnRjuhsSWOXv69A9yJkSgUEWqikghlnq509RUZtBrGdEpzSofPQQanRakSdwTtyGLp/J19w11Ho6y5pKoHZ2v6QGhTu2MgoLcqxxT5tchTnGweJiLtmR5sdFTQWtP37ZMVJzrFipt0Uwmg14kTFCaEtjB32QWkI3RJGCEq5yLgSdcbUzHMgP2uOFGLhu3sw5Y0d+GTXRbBs765hvNQwWawoqNE63H+qqL5X/03oTKmze6onmKuqiEAIAKSx7bJ7GU+vUtZshmbrVt7zaY8fh0Wj4d3XHcQ4qRmND/KO3NkeU2kZsS0ODIRI6XmwxkilUKSmEmO69HQHRwNhfgqMTQjqlsBQJGKQFk0ugvR2ubuA5whBqYAAAK3RjCZKBtfb5Lssy+J8zXliLDUo1cHRzglRhkDEkF9/b7WFoYPSOL84B0d6Dl3nabaaifcb58B0I8JPgQQnK9SuTI5aoX8WIiitJIPSmbEzMSyElDMdKD2AKKqfank/liDZZ4w58t2O1pReyvAEpWJzs1uBzJZz5Xh6fToyyzUoqdfh/zZn4qsD+V1wkQKOKKhphtmJmVGVxsAx3OstNGhNKK4j71XeypTSWVJGJiNqImn5rrWxEY1//AFLfT3/Ca1WaI8e9cq1dYSBYY4XRxNdlJl0BFNZKbEtjYx0cKRrFC0tYFrRp3PrSnuKodQiyDkhKPUqDVoTNp4uxdH82h5bHBOCUgEBcLOkALzSENyblDSVoNFIrlSnBncsKJWIJAhRkjUn3qortZe0AlyDoM7gL/fn1HXa922dlBTM+7qpA0OcSpPtg0uA26PU0XhrMGu2mnG66jSxb1TYKEyOmkyMHSg9wDE76s81pa09SgEHLWEESKRKsNRikg/0nNZHNBYri5d/z+CMv7stu1e7P9c0GfD6n+ex9JMDeP3P832+J2tOJdkqK0QtJ1ps8B3Dh95kwQ9HCvHSxgx8tT+Ps6DaFZwrIwMAmUSEZBfmcu5CB6XS6Ggwdu2gpFFREKnIRcXK995zek7t0WNO93clzn4vQ6O9k122x1RGZkolUR0PSpVDqaD0/HkHR3Y/w2LI352QKfUexwvqMPOtnXj4h5O47tODeOKnMz3iBi4EpQICACoaycDARybudY3M06tJGU2APIAjZ/WECJX3e5UaLAaO0REtee0sdB2tfd/WkbEBvLXAVwxz/pDmBKWUyVErtNNxWXMZdGYdLtRdgNZMyvJGho3EpKhJxFhOfQ4C1eTEuj8Hpa1GRzKYEMBQMlQhU8qFYcBKyUyLD3RoNjoPSg7n1XCyXADQoDPhr3Pec972JiaLFXesOoLPdufieEEdPtudi8fWnurpy+oUdMA5MEzNyZxluwhKq5sMWPLRfjyzPh1f7s/DixszcPl7e1Fc51gW7A0yKOnu4HBfr7nIGumg1K6eFLA58CqoYMlMSVbpnsb6DO4iTHeRFKoG3xpoqK+8S8qC6N+FNLLjJTOKFLIkyFxeDnNtrYOjuxdaLl6pMaCysf8+P72F2WLFEz+dRp22fYFy3YlibDxT6uRVXYMQlAoIgGty1NuypABwrJxc+R0eOrxTxkThPuSk3xvy3Zz6HE7LGm9mSgEg0Z9sD2CfKZWKRXh64RBi/7SBIZg52HHWzWK1cLK7juS7fD9LYWMhR7ob7xePEGUI0oLTIBVJiX16Jp/YLqvX9eo6sq6k9XsXTNeTAkJNqQMYyuxIzeih0TsPSjell3VoX0/yw5FCnC0hPxd/ni3H6aL6nrkgL0AHpclhagyksmrOMqUsy+IfP55CZjlZL1lYq8X9356A2eI8Y94ZuPWk3pHuAoCpiDI5io3hHKMcMcLpOUIfeYTY1p8/32P3VaVMjORQbrZ0eBdkSQHAVE4uKHdGvisbMACMnFzY1Wf0jmxpYogPfGSksoD+XAp4zh/pZcir5noTfL43r9uvRQhKBQTQN5x3j1aQNTLjwsd16nyctjBeyJRm1pDuwHG+cR1qWeMMOiil2+QsHRODL+8ci5snxOHpy4Zg5e1jnQbv5dpyGK1GYsxRUKqSqjjZ6bzGPE5QOipsFABAKpYiJYhcea42kdfbbLSg0UVQcanSqlDg1JOKJIAioPsvqA/AyMl6NRX0aNQ5l+AeuFjjcN/B3BqYujCY6Qgsyzqsd914uvtX771FThU3KKWlns6C0q0ZFQ5byqSXNGDtsWLefd6gq5x3AT75Lk9QOmqUw9fLEhLgv3gRMWZtbISppMTBK7qe2UO4i2oL0jqubHIGLd+VdkK+y0gkkA8ZTIzpz/dc1tkekYjhuOgLEt7O82c6/9wvvaQB+TzBalciBKUCAuj9PUqrddXIayBXrcZFdC4opYOrsqbOZ0zO15IrqkOChjg4suMkBpBBaX5jPqwsOamePSQcr109DPfNSIKCqtmiKWggpbtqqRrBCv7aVIAr7c1vyOc477YGpQCQFpJGvl8zd9W5vJ9KeFvb93DrScM4cjyBFmSUfNdFprRKY0BuleOJhdZo6XUTuzPFDQ6veev53ik3doXVyuJiJfkz8QalVfxBKcuy+HBnjtP3WLk3t0vqwPQmCy5Sfw9nLbY8xZV8FwB8Jk0Eo+BXMPnOmwdJZCTEgWQvS/25ngum7p46ACHq9p7UKZF+uHKk95zoW2EtFpjpoLQTmVKAK+E1eKGu1HDxIirffhsV//cfNO3e3eEsNi3hPdvL7l09QbPBjF9PlWDz2XIYzJ7V3RvNVuzLcdw72dm+rkB46gsIoPe3g9lZtJPY9pH6YHDQYAdHu0e0OprYLmvufFB6vOI4sd3RljXOSPIna0p1Zh1KmzqePaGddxP8EpxmVuks6oHSA6jUkXW09kEp7cB7ruYsgu0mKwBQ2g8deE0WK2pajI64zruCyZFDKAdeNXROzYqO5ZP1YD4yMaeO8VCu40xqT7Ajs9LhvoIaLdFKqK9Q2qCDzkROGJNCuUFplcaABi3373m8oA5nqD6mS0eTwVtedTO2O/nddZTMcg0sdsEuwwBDIrzUo9RohJmSn/LJd0VKJdTTp3NPIBIh4IbrwTAMp51JT9aVhvkpsOHBKXh83iD884oUrL13ossF0o5gKisHayI/L9LoaAdHu4cihf49di4orf9lA3KvWoKalZ+jdtUqFN17Hypefa1DgemwaCEotae22YjL3tuLR9acwn3fHsfNKw9Db3I/MD2WX+vUKO3ARSEoFRDodnp7pnRL/hZie2r0VN4+mp4QqSZXUyu0FTBZO+7EWdJUgpx6ciW/s9lcPkKUIfCTkROirNqsDp+PNjmK9+eX7rZCt6WhpbuB8kAimzo0hDToqNZVIyyADELL6vtfprS6yYDWOUkoqImFj1BP6hA5+dlXQ4dGJ0HpESooHZMQhKnJpPP2odzeYWTSiqvV+TPF9d1zIV6EzjSq5RKE+8kRH+wDiYhcBMup4vbYXHeClKLGB6vwf0uHYUgEKedef8L7El5aujsgxAc+XjICNJWWAlRwwpcpBYDge5ZzFBT+Vy+BrOV4RSqV4csky0m6m5hAFR6eMxDLpyXCVyF1/YIOYMzPJ7ZFvr4QBztW+rgD/Xs0FhTA0tQxGaf2xAmU/fOfgJkMfOq+/RaNv/3m8flo9+LSBj3qtX1vkcpbvL89G4W17SZnxwvq8M3BfLdff9DFgiS9ENbVCEGpgAC4mdIwv94TlFY0V+BoOVlPuiBhQafPG+VDSomsrJXjnOsKk8WEny78hMd2PYZrf7uW2BcgD8DQ4KEOXtlxGIbh1GmeqznX4fNxglIH9aStDAwY6HT/yLCRRKY13i8evlJy4qj2JX/P/bFXqb1kmSPf9RWcdx2iICdlfozWqXyXNgIZGx+ICQPISeuJgjoiE9aTNOpNOOXCzCi9mydK3oCuFU0KU4NhGEjFIiSE+Dg9Vm+y4HfKCfP6sbGQiEW4fVICMb49s9LpIkVH4Jocec+wx1hMBtsif3+I/fizsMphwxD97n8hiYgAJBL4L1mCiH/+s22/fDBZLqLvpqDUqtXCVFraI8ZKxoJ8YluW4Fzp4w7yQYMAsV1Wl2VhyPL8d8maTCh/4QXAwp+5q3rvfbBGzwLKxFAfyCjX5/Nl3EWc/oDOaMG649xFqJ95xhxB32unDyJVSsV1um4N+oWgVKDfw7IsSuvJoKA3yXe/OvcVUTOplCgxNXpqp88bIA+AUqIkxjyRwTabmnHnljvx0sGXsLVgK5pM5ERqQcICiEXelysB3P6sGbUdl2nxyXddvTcDxw/9MeFjiG0RI8LAQDKQFStIuVppP6wprbBbCAqjg1J11xiCXBLQQSm0Do2OWJbFeR7X1HEDyNq7JoMZmeW9w8Xy4MUaIkCWiUW4YSzpeu2o7rI3w3HetXNnpR14syvIYw/l1hALDwwDLBllk2heNjQCUnH7/chotmKrl9v8dKnzbnERsS1zIT31mz8fA3ftxJDTpxD1xusQKdufYYoUMig1V1R0eTuTxq1bkT1jJnJmz0HelVdxTIe6GmM+uagqS0jo9DlFcjnkSWSZTEckvPU//wxDtuM6aFNpKTQ7d3l0TqlYhIHh5PflfFnvuHd1N0fza6Hhkd5eqGhCmRsL3VYrywlKrxsTA5mEDA270+FYCEoF+j0NOhOaqabsMQHedYztKIfLDuOHzB+IscWJiznBZEdgGAaRPqSE15O60pcOvoQzVWd498lEMtw19K5OXZ8z6KD0fE3H7P8NFgMnEHeVKVXL1BwHYHvo3qQAOEGpUUy+pzsPkEsNe8k8J1Mq9Ch1jDKA2PRjmh26NxfX6TiTltQoP4T5KpAQTN7jjub1Dgnv3uwqYnvcgEAMjSaDIGcOtb2VizztYFrhBKXUsXSN7ajYAEQH2J4BgT4yTB8Y6vT4zmC2WJFZ1pVBKWVyFOteCzFGzF3wlCUkcMyQulLCa6qsROmKp2DV2DJ1huxslP3zX132fnzQ8l1ZgvPnl7vQZkd6D82OWLMZNZ9/QYzJU1OgGEZ6LNSvX+fxtaVEkp+/3rKg1t0cK6hzuM+RS7c9eTXNHJXN2IRApFAlAd1ZtysEpQL9HrqpPMMAEf49myllWRY/ZP6A+7bdBwvbHjBLRVLcOfROr71PlJqU8JY0uWehf6ryFDblbeLdJxVJ8dKUlzjn9iZ0UFqrr0WF1vPswMX6i5y+qq6CUoCbDW0lTBnGK+8dFDiI2G6wkH1RS+r6X1BaZi/fpWtKhR6ljuHJlDqS79Ir3IEqKSJaVCBjE4KIfUedTHC6k33UZGpqciiSqJ6PuVXNXeIy25XwtYNp+3c4OQnMrmiXI7Isywky56SQizbzUsntPReqvNbmJ7e6GQYzeS6vyncLyUypNKbjJj2MWGyTntqhP991QWnDhl/B6sh7d/P+/TAWFDh4hfcx5pGu/LL4BK+cl64r9TQo1WzdymnJE77iKQTedBMxpj1w0ON6VbqOur/Kd084uWefcyOQpHs+h/vJEemvRBpVtytkSgUEupESWrrrq+DIF7oTo8WIFXtW4LXDr8FsJSeb9wy/B7G+7q0kuwNdV+puW5jVGauJbZVEhUdHP4rXp72OLUu34IrEK7x2jXzE+sZy6jQ7UldKGyTF+sbCR+rj4Oh25iXM4x2/PPFy3noeOlNaYygG0P63LarTwWjuXb0iu5p2cwaWK9/1FeS7DuHUlDY7rCHMoDJcqVF+bZ/PcQmkhPdYfm2Ha+JYlkVWuQZFdoYbHaGoVov8GvIc0waGIInKJOpMFpQ19h3Je22zkeMYbB+UDqLkiKUN+jZH5ezKJs7CKd0Dcxa1rTGYcSzfO4sMGdSENNJfgSAfmYOjPcdYSC7QyeI7l+lTDKZ6bHagFtJdmnbt4h1vPnCgy97THotGw8k0ywYkeOXctJOxITsbVg/qPxt+JU2MFCOGQzVhPHznzwMk7SZZrMmE5gP7Pbq2VCpTeqFCA3Mv67XcHVyocByMuxNIZpaTrx8WHQCAG/Rf7MZyCSEoFej30Fmq6MDOS2M7itlqxlN7nsLm/M2cfXPi5uBvw/7m1fejHXhLm13XlNbqa7GjaAcx9sDIB3D3sLuxKHERQlVd386DYRhOu5mz1Wc9Ps+FugvENp3RdMTY8LGcxQEJI8H1g67nPT45IJnYtrAWiOTtMkWLlUVhbfc2qe5pCluCDx/ooWJIozEhU+oE3kypg6CUmpik2LXxGEdlSisaDZzgxx1K6nW47L29WPDuHkz7z04s//oYdEbPeuW1QkvOgnxkSI30Q5ivHEqqnUZxJwLgBq0JPxwpxJojhV43BeKDlhvLxCLE2j1nBoT4gDLgbXPrpbOkUf4KzqQx3E/BkdTuzPKOhJd23vWmdJdlWW5QGte5oFRO1ZUauihTamlqgu7UKd59zYcOd8l70nCyl1Ip5AOdG/G5i5yS78JshiE7263Xmuvq0LRvHzEWeONNYBgGYrUaqnFjiX1NHtaVDqGCUoPZivya/vX81BktqNQYHO4/X9boUk2SRQWlrfeVZEqZcrGqqduUKUJQKtDvoTOlrbU6fHS1u94HJz/AtsJtnPG7ht6Ft2e87XXjIDpT6o7R0Z95fxIZXLlYjiXJS7x6Xe5A9/90VN/qDDooHRzoXu9XiUiCN6e/iUC5LdskE8nwwuQXEOvHn8X2lflyftcB/qQVe05l/3qoFrRMIjj1pIBQU+oMD9x3aQOQVLuAYkCID4KpjJenPemMZiuWf32MWHHfdr4Cr23qWF/DXVQgNSU5BCIRA4ZhOIuF9H3bXc6XNWLOO7vwzPp0PL0+HXPe3t22QNJV0EHpgBAfSOwcROUSMRKCSYVGq4R3x3nydzJrSBivGoPOnu65UMU5piPQGZdUL0p3LdXVYLXk714WH9epcyqGUG1hcnNhNTievHcUw4VswMqfndOdPMk77ilWrRaVb7+D/FtuRdmLL8JUQZao0H1Y5QOTIZJ5J4stVqshjSP/FgY3JbyaLX8RLWAYuRy+8+a2bfvOmkUc37xvn0dzqyAfGcKpDgn9TcJbVOf8ntVsdK0moYPSwa1BKaVM0ZusHb7feooQlAr0e9zJlJ6pOoM7/rwDI1ePxIwfZ+Cd4+9Ab/aufOxY+TGsOruKGFNJVPhg9gf4x5h/dImTbbQvWb9T1lTmslfpzqKdxPbc+Lnwl3tvouIuw0OHE9tnq8/CYnU/Q8OyLLLqSPnuoCD3MqUAkBaShs1LN+PLBV9i89LNLgNzWsLr708GAN0pkelp6rXGNnOeMNSTO2W+gMy1hLrfwsmUNkOj4066G7QmzkTCPihlGAYTk8jWMNtaAiCr1eZIXtfsXK63/kQxr/Plt4cLkFft2SKL0WzFfqo/6Uy79gT0YmFHsrp6kwX3rj6O6qb2n6tKY8Dzv3musvAEjvMuNenjG8upbEKD1oTjhaQMd04Kv4pgBtXKIbNcw+m/7Sksy3ap8y6dJWVkMkjCO7cgJR80yGYM0YrFYgsgWzebmmFp7HyNnOGiY1dZc2UlzHWdk0+zLIvihx5CzcqV0B0/jvo1P6Lg9tthaWr/LOnPkUGpMi2tU+9JwzE7ctOBt/H334lt9axZEKvbP9/q6dOJ/eaqKuJv5A5DIsjPYX9z4KUX0kLUcqip3sF5VY7vwQ1aE8qpoLU1KA31lcNXQZ6ru+YnQlAq0O+hV5zoyc/xiuO4c/OdOFF5AlbWilp9LVadXYV7t94Lo8U7/ZtMFhNeOPACYbojFUnx4ZwPMTN2plfeg48B/gOIbTNrRlFjkYOjgSZjE45XHCfG5sXx11d2NXRQqjVrcbHhotuvz2vMQ4OBlKYNCRri4Gh+VFIVxkWMc0uyzG0LQ65696egtMDugRrKCCZHHkEFpWKGhUXP/ezQ9aQysYhjGDSHyq7tvlCFNUcKMeOtnZj8xg6Menkr7vuW/L63wrIsvjqQ72Af8NMxx/cRPo7l13Jc0GcMbv9exdCZ0g4EpV8fyCcazbeyK6uKI1P1JrTJEV0jC4DT5iK7sgm7s6uI9jhyiQiTEkN432NEbABnUkoH+Z5SUq9DA9VuyKtBaQEZlErjYsGIOjctFat9IKMyfLrTp2E1GlH+8iu4MGECLoyfgPwbboSBMgnyBGOO46AUgMdBFk3T7t1oPnCQGDMVFKLq/ffbtvXp6cR+ug60s3TEgddUVgbtsWPEmP8i0mNCGh8PKdX6p3m/Z3WlXAfe/pUpLaDuY/HBKgyg+h3nVTueU2RR9ahSMdP2eoZhOM+K7nI87zdBqVarxYYNG3D33Xdj+PDh8PPzg4+PD0aMGIGXXnoJTU2e/cITWhoUO/ovs5uaNgt0DquVRS61mmT/xdab9Xh679O82cMTlSfw9rG3vXIdP2T+gEIN+YD++6i/Y1zEOK+c3xF+Mj+EKMlJTm5DrsPjD5YdJKS7UpEUE6Mmdtn1OSNEGYJoNflg80TCe6LiBLEdpgrjSGy9SVIA2fdNB9KZkO5NeClj/0AV2sF4iIKrSmD0DRz5Gx2UDgxXQ0o1nZ89JIxoRG80W/H0+nQU1bYHfLuz+GWgh3JrnU4Efz1V6pEkj66BHBHjjxB1u0Svs/Jds8XqMIgGgC1e7u1pj7N2MK0MDKMdRRuxi6onnZQUDKWMXzEjFYswicp8773QuaCUzpL6K6VOy1s8xVhI9djsZD1pK8rRo4lt7eFDKHvun6j77jvAYlv40J0+jcJld3U4o2nIcb4AasjKcrrfFXXfrOYdr//pZ1jq62GqqOS0g1EMHcb7mo6iSCODXH1mJliLczVS4ybSlV/k6wsfKjPKMAx8pkwhxpqpGlRXpERyvy/9iUKqhjY+iBuU5jpRq2RRbXSSQsnnA32PEjKlXub777/H1VdfjS+//BJWqxULFy7EtGnTkJeXhxdeeAHjxo1DZaXnxgB33HEH73/+/t0vZxTwnNIGHXQm8iZr/2Vcm7UW5c3lDl//feb3OF/TsfqpVjRGDT478xkxNjx0OG5Lva1T53UXuuems6B0T/EeYnts+Fi33Gq7iuEhZLbUk6D0QCnpkDgmbAxvrZa3oFvFNJorAVG77DKrXNNvHHjtJ+lc510hKHWKzBcsyM+pGlo06si6UtrkiHasBIAAlQyXD+uY0/HXTgI8wBY0OpsU2cOyLDafI++zMwaTWVyufNezOtC/MiqINkQ02zK6JihtNpg5ATRtJAKQ0mrA1jJp/Uly4YquG6WZNpBcYNyXU90pHwQ+6a4375EmjslR5+pJW/GZOIHY1mzdhsaNGznHmcvLicyjJxioTCkjlRLbdMDoCZbGRjQfOcK7j9XpUPfTT9AePkSMi3x9OW1cOgudKWV1Opftbhp+/4PY9l0wn7fOlQ5KtceOwap3X25OZ0rLGvSo13pHudYXoBUfsTxBqbMSCjpTOpgyT+MEpd3kedFvglKZTIb7778fFy5cwNmzZ7F27Vps3rwZWVlZGDVqFDIzM/Hoo496fN6vvvqK97/IyEjXLxbocWhJgq9cgjBf2+o8y7JYl002dlaIFRAz5Er1Byc/6NQ1rLuwDo1G8uG/YtyKLqkh5cPdoNTKWrG3eC8xNiN2RpddlzvQEl53g1KNUcMJsLs645vgn8D57Ihk7RNho8WK7Mr+IUGyz+KF0jWlQqbUOSIRoCAnZH5oRk0zWVdKZw7oSVwrD85KdrsF1pE8mzlXcZ0Wf2WQQeTzi1I55iPumu2cLKonsrMAMJ/qvRkTqCK2S+v1HjlCfrU/3+n+8+WNLp14d2ZV4vlfz+KD7dmobnLPPIdW4jAMkBjKXchLDlVz6rhoZg12HpROTSaD0kqNARc6ocDI6ELnXQAw5lOZ0k6aHLWimjiJrCt1Qv1PP8NU6trgzx6LRgMzZTqknjOH2KbrZT2h+cABwiiIpv6HNWj86y9iTDV+PBixd+cMkpAQSELJ0hRndaWGnByOGZL/okW8x/pMmmi7l7XAGo3QHuMvFeBjQIgPofIA+pfZEZ98l76vOA1KHZgctUIvnNElCF1FvwlKb7/9dnz88ccYSNllR0ZG4qOPPgIArF+/HkYP+jAJ9A0a9Sb8dKwIv50uhZ7KitJBaVKYum0lOKMmgxOgfTz3Yzw48kFibG/JXuTUOa8vcYTJasJ3md8RY3Pj5mJE6IgOna8jJAaQQenFen5ZUmZtJmr0pGPs9OjpvMd2F3RQerHhIifAb4VlWfx28Tcs27wMk3+YDIOlfVIpYSSYEzeH93XeQi6WI86PnHSFBpHSsbNuNLy+FLAPmCKYWnKnEJS6hOFx4LXvg2k0cxc4UqP8gPoi4OgXQOYfgMmWlRgY7os3rx1OTPD8FBI8uWAw/Kgg6ZXfz8NksWL1wQLYx4M+MjGuGxuDaQPJCay7QekGKiOYGOLDCYDomlKjxYoqNwPDsyUNOJJPfs7+c+1wSMXtgQvLcpvJ2/O/PRexbNVRfHOwAG9vvYBF7+9zK1ubU0X+HWIDVVBIucGDSMRgVFwgZ7yVgWFqxAapHO4HbBN1OqO8N7vjLrxniumg1H0FGGs0ouG331D57rto2LgRLBVksWYzDBfJZ40sIaHD12qPNDzMFvS4g9mM2q+/9uj8dJYUEgnHvIcvKGVZFjVffInsadORPWs26tau5T2/9shRYltEKe9MpaVo2radGPOdNdO9i/cQeSpdV5rh4Eig4Q8ySyoJDYVqHH8JktjPD8rh5PPbEwmvVCzi1GH3FwmvxcqimFrEiw9WcRy8i2q1vOqr1r7S9gwOJ4NSuu6dr9dyV9BvglJnjBhhCwAMBgNqampcHC3QlzhTXI9Zb+7Ckz+fwd9/OIl5/92NXLsVn4vUKra9ZIHuFRqtjsaY8DG4JeWWtlYgrazJWtOh69tZuJMjD75z6J0dOldHoXtoZtdlQ2viTrb2l5BGBPF+8Q5boHQXQ4KGQCoiZVN8/UpZlsWrh1/Fc/uew7GKY5z9s+JmdYuDMP27Dggg7zfp/SAorWs2Es6pUQx1z/WP6eYr6oNQQak/mlFjN2G4WNUEk4XMIg7THgE+HAv88Riw5mbgy/mArh4AcNXIaGx/fAbeuX4E3rpuBPaumI0HZyXj8flki6Tsyia8u+0Cvj1EZriuGxsLX4UU0ykH2KP5dYRRDx9NBjPWnyCD0sUjojgy0VC1nJMZcdeBl5Yah/rKsWRkNCfIOlFQz/v6jNJGvPEn6RNR3qjHYz+edimPdcd5txXaQdeeq0a6rndnGIYj4aV7v7pLRaOe0wdxeIx790hzVRXyrr8BpSueQs2nn6H0yRUoXH4PrLr2v5exoAAs1apFPsQzozlnBN5+O+94wE03IvDWW4mxupY6TXehg1JZfDzkyaRngKmkBKyJzLzXff89Kt98E+aqKpjLylD+/Ato/PNPzvm1p8iWMsF33w2FM2ddsZiTqfUWtHmS7gR/uxuWZdFISXf9Lr/cafaWU1fqodkR7cCbWd4/gtKKRj2MFjLYjA3iBqVWlr/2vrxR3+Z+3wqdKY0NVHLut91RVyoEpQByc23ZMKlUiqCgIBdHk7z55pu477778Mgjj+B///sfqqq80xtMoPPoTRbct/o4MVkrqtURzd1pMxB7x7GDpaTz3eUDLoeIEUElVeHaQdcS+zZe3MgbyLnirwJSgjM8dHi3ZkkBIC04jZCVWlgLztWc4xy3r4RcxZwSNYVzTHcjE8uQEkyu5PJJePeV7MOPWT/ynkMuluPhUQ93yfXR0HWlIjkpATvuYFJ8KUFmrFhE0plSP9K8SoAHJbkoFsA0EavYdD3pIH8rfP54ALBvY1V2Gtj5attmbJAK14yOwbVjYuCvsi303DIhjjNZ+WjnRcIlV8QAt0+yGdRMHEA+P5sMZpfZi7VHi9BkaJ8giRjg2jHchQmRiEFUgIIYcydTWa814tfTpDzz1gnxkElEGBkbQIxnVfBf6+d7c8EXWx/Jr8WOTOdeFHRGgs7u2OOovlcsYrBklHvfi6lUUHo4rwYGs/utslqhs6S+cgln0ssHa7Gg5B+PwUCZPWoPHULF//1f27ae2i8JC4Mk0HGm2FN8Z85E4C23EGM+kycj/KmnEHTnnYBdsMRqtaj9/nu3z22kTI7kSUmQxVMmTRYLTCXtiy1WoxE1n5LeEQBQ9d77YO36nVqbm2HIJE2SVKNHIfC2W+mXtuE7d65Xf3fke5OmUbrTp3kDeN3JUzAVkY7bfg6ku634TCXnEIbsbJgq3Pd24Zod9Q/5bgHVDkYpFSNULYe/SopAFblIn1/DlfDSBnVquYSjsJCIRUgIIZUZtGFbVyAEpQDee+89AMDChQshl8tdHE2yYsUKfPbZZ3j//fdx7733IiEhAV988YVH50hLS+P97+JF5+5uAs5Ze6wIpTzGFrnVzfhwZzb0JgunZqZ1JbhWX8vpYTk1emrbv68ffD1ETPvXR2vWcjKrrjBajJwazauTr/boHN5AJVVhUCDZn/N01WliW2PUcIK9KdE9H5QC7pkdfXTqI97XBimC8M7MdzitcbqK5EAyU6qxkg/xzPLGS96s4XBuexDqj2aoGEqCKWRKXaMiXVaDmEYiKKUDwQdU2wEdFfwDwLFVgMaxkZtELMILi52bp1w1MhqJLYt5YX4KjtnG4Tye921Bozfho51k1mlOSrhDmSrtwFta79oY5ZeTJYSETSpmcNMEm8JjCBVw87kJ600W/JFe5vD8zhx9Ae5EOSXCcV1mpL8Sc1O48vXrx8ZyamodMSUphCin1JusOF7AdZht1Jvw6e6LeGztKaw+mM8JXNOL64ntodH+EIlc12k2bNjAaQnSSv2aH6HPugAAnMBLPmQw30s6Rfg/n0P0B+8j+J57EP3B+4hd+T+IFArIYqLhd/nlxLF1q79122iHzpTKk5Mh9veHmJLZ2kt4m/fvh5knaWHMz0fzwfYFcN2ZM4BdkAqJBIqhQ+G/aBHkA5M5rwfDIPiee9y67o6gGjcOjMJuMchqRRNPRrPhl/XEtiw+HoqhzvumKocNg8iX/A7aZ0uN+fmo37ABTXv2wMpTWkebt2VVaGC2cOWqlxqFtWSgGRekalOWxFELRwU8daUXqPvcoHA1r4EZX+/krqbfB6WbNm3CF198AalUipdfftnt11155ZVYv349CgoKoNVqcfbsWTz22GMwGAxYvnw5NmzY0HUXLeAW644XO9y3cm8eNqWXERI3hrH1egOAI2Wk851KosKw0Ha79QifCE49JW2K5IpDZYegNbeveDFgurQnqTNGho0ktul2KUfKjsDMkq1gxoaP7Y5LcwmdWT5TfYaQ1GXWZnIyv7ek3IKvF36Nbddtw/SY7quLpeW7DcZaKOTt8hqWdT6J7+uwLIstdi6rHOkuGMCv69ryXDKoyGxYIDSoabLLlNoFpQysmKXdwn8eqwk4u55/Xwuj4hyrh+QSER6dS2b/xyeQx7eaI/Hx6e6LhJIFAP42PdHB0VwH3lIXbWFYlsWPR8mFnwVpEQjztU2y6SxwfnUzx3cgvaQBBieu2Huzq1HAk40AbIEfLZ+j35Pm5SVpSLIzLBkRG4CnL3Nf1hroI8OwaDI4oiW85Q16LHp/H974MxPrT5TgX7+ew80rD0NrbL/HnynhX7B1htVgQNUHHzo9puYzW7aQzpQqBns/KGUYBn7z5iHs8cfgN28eISUNvvsu4lhLXR3qf3bvGU7XwrZKd6UJZLbU3sjJkewVADRbt7b9W3uSPE6RmgqRQgFGIkHUm29C5EcGYqGPPgqli+CvM4gUCqgmjCevdzN5P7HqdGjcRMqQ/a++2qVTMyORwGciWfvb+McfsBqNKPvXv3Bx4WUoe/oZFP3tXuQuvAy6c+RznDZvM5qtbjt+92Vo59244PYFq4RgcvEqv4arJuGaHPEvlNG9SgX5bhdz/vx53HrrrWBZFm+++WZbbak7vP/++7j66qsRFxcHpVKJtLQ0vP322/j4448BAE899ZTb5zp37hzvf0lJSa5fLMBLRaMep4sd1+cZzVY8tpbMBg4O921rPn6yknwwjAkfw6ldvGbgNcT2maozyK5zv2H2jsIdxPbIsJGcnqHdxaiwUcT2obJDaDK234D2lJBOtaPDR0MldW/lvquhzY4aDA1Ez9fNeWQGO1wVjifHPonR4aM5f9OuJtY3FjIRaY8/JI6ctB7KvXTq2uu1Rhy8WIMjebWo1OixP6eGmKRH0kGpOhwQd+/fpE9CZUqDGQ1qW9x3WZYlMqWjmBz4G5y4i55zHpQ6Qixi8NZ1IxBPrcyPH0AHpbW8dZdlDTp8vjePGJubEo5xCY6D4CgqKHXVq/RMcQMn+3nDuPY6+EGUuYeV5WYDjlCLRImhPvBXkp/R7w/zO63SGQmJiNuUnibSX4lNj0zDt3dPwNp7J2HdfZM47+cK2oV3n11QyrIsHv3xJGdie7ygrq1u1mplOaZPw9wISuu++x7mcjLzrqTmVY1//glDbh50dPCV4jwj720UQ4bAZ9o0YqzitddQcOcylP7zn2g+dIj3dRaNhvMzypJti410n1X7TKnu1CmH19K0fUebhFd3kjxONWokcc2JG35B0B23w/+qqxDz0YcIufdvDs/rLXxnzSK2NTt2EDLbht9/h7XZLhgUieC/5Cr3zj2XrIVt3r8fF8aOQ/1PPxPjptJSFN51NyGJDvSRIdKflPTTpQuXIrR8N95OWULfj+nvOcDTDsZBSQF9r+oOB95+G5QWFxdj4cKFqKurw2OPPYZHHnnEK+ddvnw5wsLCcOHCBeTl5bl+gUCXsP08WZfgq5C01T05Yqad3f75WtLWnM4kAsC0mGkIVZLGFOuz3ZvgWawW7CzaSYx1tfurM6ZET4FE1O60abKa2q7PZDVheyHp9DctmnyY9ySRPpGcYN5ewru/lJQaXZF4Rbe126GRiCQct+PIEFJad/Bi3wxKrVYW9VojCmu0+PVUCe7+6ijGvrINN608hOs/O4jxr27HrV8cJl4z3Jd6yPkL9aRuQQWlgYymLeNY3qhHnbbdYGW62EWbpJLjgI4r7+Tj+cWpmJcajtsmxmP9/ZOxeAQ3q00HpXVaE6/s6+2/LhAZSLGIcZkRpINSV5nSnym1THSAElOS2u8VPnIJ4iipMJ1FOEa59k5LDsHS0aTE/KfjxZwMKwCcp86VGOrjVvsduUSMqQNDMH5AECRiz6dptAvy2dIG1LV8PnZlVeFQLr8a49tDBcirbkZmuYb4DAHAiJgAp+9paWxsy4K2oho/HrH/+wwiH7uJMsui9KmnYG0iPxPKsd2vvAm+Zzk5YLVCe+gQGn5eh8I7l6Hijf/jLKhwnHfFYshbXIPpPqvGQlumlDWboTvLNeBrxVxVBX16OlirlRO8KkeRC8bSqCiEP/MMov7vDfh2kbkRjd8VV4BR2n33LBbUfmkrU2NNJk6trM/kyZBGuNf/2HfBAk72l3XQBcPa0ICy518gxmgJb39w4PUsU0pmjs0WK7Kp+7GjTCkt3y2u0/He57xJvwxKq6urMW/ePBQWFmLZsmV46623vHZukUjUluEsK3NchyLQtezLIWs3Zg4Ow+PzByPYh9vEuZUFabZaHitrRWYtKS1KCeKu4kpEEixJXkKMbczdSLQaccSZ6jOo1ZMTg1mxsxwc3fX4yfwwOWoyMfbzhZ/BsiyOlh1Fg4HMOs+Nn9udl+cUhmE4daWtNbFV2irO37I75bp80BJeqYpcQMks16DGzVYXvYEmgxkv/nYOI1/6CyNf2orpb+7EI2tOYXtmJcwunFfnRlN9IQWTI/fwoWpKoWmrKaUnZdPFlGnZuHsAiV12gbUC+e61YrhpfBxW3j4WLy8Z2lbqQBMTqEQUlb2gJek5lU1Yd4IMGG8cF+vUmRYAYuhMqRP3XauVlIoDttpMui6SltPaZxGsVhbHqHrMcQOCcPMEMviobTbiz7Pc5/0J6rX0BLqrGB0fAKVd2xmWBfZfrIbVyuL/Nmc6fJ2VBT7Yno39OaTcNz5Y5bIdTfWnn8HSQD4nwh5/DGJ/fwTceAMxrk9PJ7ZlCQmQhjnvwdoV+IwfD/8lSxzur/3qK9Sv/YkYM9JtbOLjwchs8woZLd8tsAWl+qwssDrysyqmjIk0O3fCcOECrBpyIUM5cqTLn6OrEfv6wn/RFcRY7TerUbv6W1T8500iewkAQXfc4fa5RQoFgu7gd0rmo3n/fiKLnUq1jqLNKy9FOEEpkSklv6dFtVrCAT2/htsmxlFJAd33lGWd9z71Bv0uKNVoNLjsssuQmZmJa665BitXrnSpe/eUujrbg0itdv6AFeg6aGv/aQND4K+U4skF/HUrw6L925wYCxoLoDOTDxDa4bUV2piowdCATbmbXF7f9gIy85gckMzpYdndLExYSGyfqDyBg2UH8XM2KaMZHjIc0ereFTzQEt70atukh86SqqVqzrHdDR2U1puKoJKRmduDfUTCqzNacMvKQ/jqQD7HYt4VQ6P9kKqkMnT+PdtiqM/gxOjI3lhHDS1GMFRJwaCFQBzVwzF3l9cujWEYXgmvPR/syIZ9AkolE+MRqjaVDzpTqjGY0ag38R57pqSB09Jk0YhIznF0fz57uW9WhQYa6nM9Nj4IyWFqTE4i/wbfHuJKeI8VkD/3GCfSZG8il4gxIZF8rx3nK7HxTClHzhzuR5o7/nq6FN8dJlv+TE5yXlZiLCpC3erVxJjvvHlt0t2g228HpI4lyD7Te055E/nSv21Bs4N5YOWbb8LS2B7oGLK5Jket0JlSU7GtLQyd/ZTGx8H/GnLu0LRrN7RHSYMoaWys2xnHriZ4+XIw9n9DlkXFq69y/u7KkSM5rrouz33XXZAPGsQZl0RGIn71N5BQCxbVH7YbF9J1pRmljS7bNPVlGnQm1FMqBnvJLi3fNVlYQlFygZLuhqjlCHKQrFHJuK68XW121K+CUoPBgKuuugrHjh3DggUL8MMPP0DspIdSRzh37hyysrKgUqkwxIs9twTcp7Reh/JG0kVvdEtT8uvGxnImE2IRg+cXp7YtTpyvIaW7Ycowh7WesX6xmBAxgRj78NSHaDY5Xk1iWRY7ish60p6U7rayMGEhInzIB+C9W+/F1oKtxNhlAy7rzstyCzrQvFB7ATqzjtNbdWLkxG6vI6UZGEhOvi825GDcAHLVnM5U9Fbe3XbBae12K3JKsjgqLgBf3jEOotpc8sCg7nFB7vNQRkcBaEaNRgeLlcVZO4Oa8aJMiGG3Ki6SAvGTgMSZ5Pm8GJQCwPgB5D3Wvq40p7IJv1EtWpZNSWgzH3JGZAD3GEcS3r+oLGliqA9vPSedJbCvA6Wlu7FBSkS0ZIFvnUhmxY4X1OGUXR1mRaMeRVSD+7HxXdO2g4/plIR3/ckSPL2OzFAOClfjj79PIxbFLFaWY44yJZn8e9rDsiwqXn2N7MkplSLsicfbN8PD4X/lYofn8HfROqQrYWQyRL74IpK3bUXUm28i8PbbiP3WpibUr13btq2/QLkG2welLTLeNiwWGIuKuXWiI0dx6jQNmZlo2LiRPK4HJM2OkMXHI/SRvzs/SCJB+HPPeZzoESmViFv1JfyuuAKQSsEoFPC7cjEGrPsZqnHjEPLAA8Tx2mPH2lycafVBTbMRVZq+ozTylCIqSypiSAO4YB9ZmzdKK/Y1qPSiFO1ATkNnS7va7KjfBKUWiwU33XQTdu7ciWnTpmH9+vWQyRxLOQHgww8/xJAhQ/DMM88Q41u2bMHx48c5x585cwbXXXcdWJbF8uXLXZ5foGs4WVhPbPsrpUhsaVMgFjH4/I6xeGBmEpJCfTAxMQjf3DWeMNeg60kdZUlbuT2NlJ5Uaivx0PaHUKnl77eVXZ+NIg3pCDk7brbT9+gOpGIp/jbcuWmCUqLElclXdtMVuU9acBrRosfMmnG2+iwOlB4gjrNv69NTJAWQBmaNxkaMjCdvxftzen+mtLrJgFX783n3qWRizBocireuG4H0F+fj/EsLsfvJmfhq2Tj8/vBUrL9/MsJ85UAtVXcf5Nh5VcAOKlMqYlj4WDWo1OiJ+99UEVXHFjsBkPlwg9KaHKCBlOB1BjpTWm4XoL2/ncySquUSLJ/q3t9dLhEj1JfM7DmS8G47T/YAnp/Kn3GiJ2XljXo0tGQijuZT0l2758S81HDbZ9iO1zadbwu+acMyX7mEY6zUlSweEQUZVY+qo+rBnlwwBCFqOW5z4regkIowfVCow/0Nv2xA065dxFjQzTdz+naG3Hsv2VqkBeXo0VAMG8YZ726k0dHwX7wIEc8+C98FC4h9td+sBms2g2VZp61sxP7+EAeT301j7kWeOtGRUI4cCRHVQkZ/hqz/7k1BKQAE3X23U6ltxPP/gnLY0A6dWxIcjOi338KQM6cx5NRJRP/nP5AE2b5vAddcDXEIuRBXt+YHADbpqg+lNDp3CUt4aZOjSH8lUafOMAxHwltg10KGNl9z5Qbe3W1h+k1Q+uGHH+KXX34BAISEhOCBBx7AnXfeyfmvuro9Q1FdXY2srCxObejBgwcxduxYJCQkYM6cObjxxhsxYcIEjBkzBufPn8eMGTPw+uuvd+vPJ9DOiUJyIjEyNoCoI1LJJFixcAi2Pz4Ta/42CVMop0I6UzokyHnGe1r0NEyIJLOlxyqOYdEvi/B5+uewsqR+n3bdjfSJ5K1Z9ZimKmD9vcCH44AfbgKqLnh8imuSr8G4iHEO99+Zdif8ZN1TF+UJfL1Wv834Fo1G8uHUG3qrRvpEQiUhHxoRofXEdmGtlrMi2ttYe6wIRruecFIxg+/vmYBz/16Ac/9egFXLxuPaMTHwVUghEjGID/bBzMFhGBrtb1tJ19YAVK0yggXHcbdQcWWgQYwGxwvqCJXIFDoobQ1GI4YDCspNNZ/smdwZkkJ9OPX7h/NqkFOpwcYzZJb0zskJCHRS60/jjtlRlcaACxXk5GleKn/NYkKIDyd4yyy3SQCPUplS+6BUKhbh7qlkZv9IXm2bo/Dms2SmdmxCIMRu9Pn0FqG+cl4jqlYmJgZhbortd3LPtEQopPzTwcuHRcJPwa8uMVVUoIKa64hDQhBy/32cY2VxcYh8+WVA1P4+Il9fRL70b6+XUHWW4OV3E9vmyko07d0Lc1UVLHXk/EJBKeLkieQCS/ORIzAVk/XTypEjwUgkUE937m9At2LpaRiGQfgzzyDmow+hHD3a9rdkGCiGD0fs558j8PrrvfIenDGZDAHXLiXGGn/9DVatFiIRgyH9yOyogOpRSgegfGP2gSzXedd5UEqrS2gjOG8jcX3IpUGd3Y2kNTjl48UXX0RIiPP6iQULFqCoqAhHjx7F6dOn0dDQAD8/P0ydOhW33HILli1b5nVZsID7nKSC0lbprjuwLIuM2gxizFWmlGEYvDDxBdyy6RbUGdrfW2fW4b0T7yG7LhuvT3u9LZNHO9nOjpvd+YeyxQx8ew1Q3rLSWn0BKDkBPHCQdwLrCLFIjDemvYE7/rwDxU3kg3R4yHDcPexuB6/seYaHDCdMjWiJ9MDAgRx5ck8gYkRIDkjGmer2VXE9U4Ign+i2ukAAOHCxGjcE9WydsTP+OEMu1l05Itpl7RkBLd0VSQG/GP5jBUgkckDuBxjaJ19B0OD30+1/k1DUYbCI6tXcGpSKxEDCNCDz9/Z9eXuAETd65fJa60r/tAvMdl2owu4LVdws6TTPJNsxAUqiXUkxT1B6mOqNqpZLHLrHSsUiJIb6ELK2CxUaRAcqUdZAloGMSyCfJXdMTsA3BwuI1jSvbjqP8kY9J1O7cGj333vun5mEjWdKOcYmEhGD5xeltT13QtRyPDx7IN7cQmYBZRIRHppF1sC3wrIsyv/9EseYJ/LfL0IcEMD7Gv/FiyAfmAzN9u1gjSYEXHcdZDG9y58AAJTDhkExYjj0p9vv0Q3r14ORkFNmkUoFaQx5z5IlJkJ79Kjd637hvEY+0FbC4Tt7FhopyW4r8tQUyGJ65/3Qd84c+M6ZA9ZoBAtA1A2qwMDrr0fN/1YCLa1zrFotNDt2wn/RFUiN9MNxO1OxS7ktDL1YTbuHA9y60vwWcyK9ycJx43WVKaVrdi9WNUFntEAp65oYp99kSl988UWwLOvyvwS7moDW13z11VfEuSZNmoQvvvgCZ86cQXV1NUwmE2pqarBz504sX75cCEh7EIPZgrMl5A1pVFyA268vaSqBxkg+ZFODUl2+LtYvFp/M/QTBCm7tzaa8TfjwpK2heF5DHscN1iv1pGd+bA9IW2kqB3a84vGpwlRh+P6K77F04FL4Sn0RpAjCDYNvwGfzPoNcLHd9gh7ClYHR9Oiedd21h64rPV+TgUlUrXNvlvAW12lxjnrwXzvGwwlUDeliicAEQNxv1kk7D7XYFMI0YLNdHeUUEeW6K/cDouzaSwygvg95ewAvGoTQCpQ/zpThd2ohY9mUBASoPJvQRlF1paX1es4xdFulcQmBTlur0BLezHINjlHS3UCVlJM1UEjFeO2aYRyPnC/25cFkaf9dSsUM5jmQD3clyWFqvHHNMNgnaMUiBv+5djjHtfS+GUm4elR7gCgVM3j96mFIdNBXtWn7djTtIBf+/K5c7LJNiWLIEIQ++CDC/vForwxIWwm4hszMaXbuQvM+0qVaPmgQGBH5uZInkZlSuvWNYvhwMC1zRPXs2RwX3lb8Lut93g00jEzWLQEpYGuF4zOZ7BDQ+LttUY1jdnQpZ0op+W4cT6aUbgvT+prsiibiFs8wwEAHPUpbSYn0Je5vVtamJOkq+k1QKtA/OFfaSEgKGQYY6UFQSteTBsgD3M6upYWkYcNVG7B04FKivhEAVqavxJ7iPdicv5kYD1YEY3TYaLevzyFHV/KPn/oe0NV7fLpARSBenPwiDtx8ALtv2I1/Tvwn1LLe7SbtMijt4VYw9gwLIWuoTlWdIvonArZMaW91ETxATfoDVVJOFsklNZQrrFBP6hm+pDQzkiGlplPFlHQ3YRoZ9NNBaUMRUOe93tqXD4uExIlc1Vch4chf3YF2g+ST79L1nBMTHRv1ANw+fVnlGo50d2xCEK+iZcagUDw2l+scas91Y2MdOlx2NdeMjsHGh6fib9MTcd+MJGx8aCquGc1dQBKLGPz3hpH47aEp+OSW0dizYhaWOlhoYs1mVL79Dvn6oCCEU/4bfRm/Ky4na2DNZtR+/Q1xjCKVq6KSDXB+H1OOHNH2b5Fczts+Rezvj8AbvaNauJTwo9rSNO3bB3NdHWeBJa+62aErd1+HDkrjg3w4x8RRYwW1zWBZliPdjQtSQSVzvhCskknaPFlaoRekvYkQlApcUtAmR8mhaof1MHzQ9aQpQSkeSWsDFAF4cfKL+HD2hxAzZMb8qT1P4dPTnxJjCxIWQCzqZGa9oQQoPcm/z6wDzq3v3Pn7CAl+CQ5b1YSrwjEidATvvp6Avpay5jIMjiZNSKqbjLhY1bU9wTrK4Vxywj4pKdhpJoqXcipoCnU+sReg8KODUvtAjHVcT9pK6BDAhzKwySadtjtDkI8M81t6P/Px4Kxkj7OkALemlDY6qtToOd8bV0EpnSnNKtdw2tg4W3R5aHYynpjP//kNUcvx6BzX7W66krQofzx7eQqevmwIZwJPMzwmAJcNi0Skv9LhMY1//AFjHrmAEf7MM5A4yPr1RcRqNfwowyMa1Tiu/4LCzviI9zWjRhHbwcvvhnp2u9EhI5Ui4uWXIPbtPlOsvoLv3Llg5HZqLbMZms2bkRLpS9SFsyxwipoLXgoYzVaUNZD3Oz75bkIIOaY3WVGpMSCLynC6a7yWFkX6D5wrde2431GEoFTgkoI2OfKknhTw3HnXEdNipuHJcU8SY02mJo7p0eWJl3fo/AQ525zvz/yj8+/RB2AYBtcOupZ339JBSzsf/HuRxIBE+ErJB0KVKYvTM9C+dq43cSSfzERNGOB80s9LOdmeAhG9Z9GgT+BPLsDYB6VJTCknc8oJShkGSKKklhm/evECgUfmDOI190kOU+POyQkdOicdlFZo9DDZqWPoBRO1XII0F4HYkEjyu6gxmJFNuUyOddJjlGEYPDR7IL69ewIG2cnhUiL98N3yCQjzc93upq/Asiw3Y5iWBr8rvPAs62X4L73G6X6+oFQSGgpptANZslgM5ZgxxBAjkSDmow8R8/FHiHz1FST+vhF+8+d3+JovZcRqNdSzyVY6jVv+glwixtBo8jtOzwUvBUrqdbBS4ik++W64r4LThi2/utnjdjCtcH63BfVuva4jCEGpwCXFyQIqKI0PcPu1LMsio8YzkyNn3DzkZsyLn+dw//DQ4Rge4lxy6hZlp5zvz90N6C/dGgt7rh98PUKVZPYnWh2NW1Nu7aEr4kfEiDA8jPzbHy4/zDFjOV1c330X5SZlDTpO/0W6BYhLmqsBDenCioiebwvRp6BMoeyDUE4rGN8oIIQnW5dKtXcq2G/LYBccBM6stZmldUJCPjjCF68sGUrUNEYHKLHy9rFQSDu2SBQTSAalLAuU2xkS0SZHrupJASDCT4EIJ4GjUirGUCpbwMfUgSHY8uh07HtqFg4+Mxub/j7VpZFIX0N38hT0GeRzMuSB+zm1lZcCqnHjII3nN5tTjhgBiQNTTOXIkbzjitRUiNXcMhiGYeA7ezYCli7ltNIRIPG7nFz80B49CktDAycBcbzg0gtKaZMif6UU/kquEtDmdk8Gq/k1zZxFbroW1xFj4snne1aFBvVao4OjO8eldxcR6LeUN+hRSrkljvIgU1qlq0Ktnlxld8fkyBEMw+Dfk/+NGDV/Xc6jox/1jhV+GWVwNO1xm5NpK1YTcJF0/L1U8ZP54dN5n2J02Gj4Sn0xKmwUVs5bCV9Z75sYToyYSGzvLd6LEbHkxLc3ZkrPFJPSHV+FxKWtPAfalEuiAIL5XT4FHOAkUzpdRP1+E2eC48YD2DKlSmpB4dMpwKqFwPp7gJWzgNVXd+oybxofh98fnoYn5g/C/y0dhi3/mI4BIdw6KHfxV0qhopwf7R0pj+aRk9EJLqS7gO1e7WwBc/yAIKIXoKtzxQSqEOmv7HWtTrxBw8bfiG1pTAzUM2f2zMV0MQzDOGxzEnAdvyoHANQz+P0LfOc5XqQWcA/1lCmkhNdiQdOePRgdT871ThXVw0qnFfs4eVRZgrP7aALlwPvXuQo06s3E2IjYALfed1i0P6dlFG0EBwDrjhc77BvtLkJQKnDJQLeC8ZVLkOzAOZAPup7UR+qDGN/OWbL7ynzxzsx3EKQgJ37/GPMPp/1A3cZqASool834KcCAaeSYF2vFejuDAgfh68u+xoGbD+Cby75BrF9sT18SL9NiyL9RhbYCYUHkZzijrBF6quF9T0ObHAyN8if6ALtFyQlyOyxVcN71FKqmNBx1EMMCGUyYJCIzWUh24IgqVQDjXLR5KjrsfL/FBKT/DGx+Bjj8P0BbyzkkNcoPD80eiBvGxUEt79zfmWEYzoTrYpVNaluvNXLMPMY5kd3aM97JcVOTPWh1dAnDms3QbPmLGAu4dmmbm+ylSOCtt0KRlkaMyQcNgt+VVzp4BeA7fz7E/lRmXSqF/5KruuIS+xUilQo+kyYRY5odOziZUo3ezLkX9HVyq8mSgsRQx0EpXTu+PbOS2A5RyxHl715ZgUwiwkgqgKUVKQCwM6sSWmPn5itCUCpwybAvp5rYHhkX4NFkme5POiRoCMdFtyOkBKdg/ZXr8fT4p3Hv8Hvx46IfcdfQuzp9XgBAdbbNzMieyBHAoIXkWPZfbf29BHoHif6JiPIhA4ti02EioWWysL2uEXgGZXLgql6Pl/y95HbM2E5cUT+Fku+KGRZhqMcY0QWoGIPdHgZIJOuwCCY/DPi7uXBDS3mbqoDP5wLr7gYOfQz8+STw0QSuiZWXSQojFxtbjY3o1XuFVIRh0a5ltwAwP82xy3pP9BjtjTQfPgxLLbnoQMspLzVEcjnivvgcgTffBEVaGgJuvAFxX37htBWKSKFA+HPPEuqEsEcfhTQsrDsu+ZKHritt3rMXYUoRR9q/N7uqOy+ry8mrJjOltCuuPa7KDUbGBnik5BhP+UZsO19JdAewWllOK66OIASlApcELMti9wXyBuTp6jannjSo4/WkNMHKYNyScgseGvUQUoM7LgnmQMsgfaMAnxAgeS453lzluvZUoFthGAYzY2cSY1sL/0QStfp58LjewgAAifZJREFUtqTrnO46Ap0pTYv2MCg16YFCKvuWMI3/WAHH+IQAVN/gQYo6PBBTQB4XNRLwcSJhVfgDN6+19Yl1xdmf2/9tNgDfX8+9rzRXAj/cCBi6LktBK2ByWkyJjlBtXEbFBrotu40KUPLWRk9NDkEsj8Nlf0SzeQuxrRg6FLI4/prLSwlxQAAinn8eA9b9jMgXX3RYS2qP/5VXYsD6dQh//l+I/+F7BN/tpYVoAfjOmkUE/NbmZmgPH8G0gaSfxJ4L1fRL+zRc+a5jJeCwGFdBqXuLda3MTSEXVPKqm9vuu4CtzrSmufN1pkJQKnBJkFfdjGJKyz59UKiDo/mhg1KvBo9dRdlpcjuyxTwnOIlbo9ePJLx9hUWJi4jtIk0RYiIqiLGMst4jQaptNqKMqtum7eJdcnEHld1ngISpnb+4/gbDcALJrxf7Y5qIuickzYZLwlOBh44Bt/8KXPcV8Gg68OhZbr3pln8CjS0GVZufAUpPcE4FwNbzdO87/Pu8QDInU9oSlNJtXDw04Hr6siGQitsnu3KJCCsWOm/x0V9gWRZN+/cRY36XLXRwtAAAKFJSEHTzzZw2MAKdQxIaCuVw0ihQs2M7ZgwiFwuO5NdC10k5aW9BZ7RwPFOc1ZSG+yk4Zkf2TB3o2fx4WLQ/xwxu45mytn/vz/HOAoAQlApcEmw8XUZsh/nK3ba7BoAqbRUqtaTmPi0kzcHRvQhOUGrXVmMgZSufTdYCCfQ8Q0OGIsEvgRhrlh8gtnuTfJfuT6aQipxKiHg5s4bcjp8MqDx07xWwEUapOS78xW21Q7d9cYRYajNESrsaCIgDAmKBxe+Rxxgagd8eBk6sBo594fx8R1Z2PltacgL47jrg7RRg7R1AfREAICmM/MyVNehR0ajnqAqc1YnyMTouEL8+OBXXjYnBVSOjsPbeSRhOOWL3V4x5+TCXks9Z9YwZPXQ1Av0d9Rzyvta0cxcmJQUTLaiMZisO5XZeUtobaF14s8eVYdx0B4FnkI8Mw90sa2iFYRgsoPpO/3CkEEazrSxsb7YQlAoIAAD0JgvWHC0kxuanhXukl6ezpCqJihMs9DpYlivfjbBbPaSD0pLjtlYcAr0GhmGwJHkJMZarPQCI2ldEs8o1sPQSF8GzJWSAPCTCz2W7DYLK88D5jeRY6pLOX1h/JYxSc2RRPYmVQUDshI6fP/VKII3q1ZizDfjtIXJMogSu+xqwr8E3aoBT33f8vYuOAqsusy2maUqBjA3AV1cA+kYMCPEBbRewck8uzHbfE5lY5FFLsFZSo/zw5nUj8N6No9x2p+wPNO/fT2xLwsMhS0rqoasR6O/4UnWl5vJyyAvzMDougBjflE4upPRV6AXh+GAVlDLnBmOOauGvHBHluTkhgBvGkVL9Ko0B604Uo7bZ6LVMqWB3KNDn0OhN+DO9HOklDahuMuBsaQNHUnjdGM8cV/n6k3rD5KhLqS8E9FS9YaRdUBo/GZD6AKbWOgTWNqEccWO3XaKAa65KvgofnvwQZtZm12606iH1OwVTva1ljM5kQUFNMxI9cJLuKugHY5vJkdloW/SovQg0VQBNlUBjCVCZafucimWAMhDQ1gCsneGWTA0M52+5IOAGdKaUJmVR512NF7wC4Gvnxyx6B0hbAqT/BGT+3j5+bBUw4V7P39NssJknmcn7OuoLgL1vQz7v3xgc4UeoCD7fl0ccOn5AEFQyYYrjLeig1GfKlEuy5Y1A30CWlARpTAxMxcVtY007d2FB2jwctTM823yuHK9cPRRySdc7RB8vqMWnu3PRpDfj6lHRuG5sjNe+Ixm0l4MbBoOTk4IxJj6Q6Nkql4iwfNqADl1DapQfxicEEbX7/9mciQsVGmJBsDP08lm3gICtlqWu2YgThXV48bdzmPDadqxYdwarDxXgz7PlKKola0knJgZhuIsib5pzNWRblbTgPiDdpbOkigDSRVMit8nx7BEkvL2OEGUIZsSSMjhl8DFiO7O8d9SVch+M/kDmH8C7w2y9LX99ENj+EnD4U1tGtCYbsBhsWbOGQrsFkhYm3AsoA7rvB7jUcJUFTfFCCwqli17Pkx8GRt5s+/f4v5H7qs5zW1a5w7EvbQEo775VgEmPMS6yoDMHe1YzJeAY1mhE85EjxJjPlMk9dDUCAjaVES0fb9q9G1cMjyTGNHpztxgeHc6twQ2fHcLWjAoczK3BinVn8MGOHK+dn2Mw6IaXA8MweP+mURgUblvQDveT4/2bRiEmsOPGbQ/PIb1K6rQmrNqf3+Hz0QjLiAK9Er3Jgq8O5GPz2XJcqNC43ftILhHh+UVpHq1OsSyLM1VkgNc3TI6ooDRyOOFIBwAYNJ+U9OVsByxmoSdkL2PpwKXYXri9bZuVFUMkL4HVEA3AVld6+bBIRy/vFpoNZuTVkEHlZON+YM39ADqwSho+FJj+pHcuro/AsiyOVRzD8YrjsLAWDA4cjGkx0yCnXHTdxjccCB8GVKRz9/nFcBelOovcF2BbapsYMTDtMWDms+37E6YBftG2LHkr6T8B4R4s8lkttvYyjjA0ABc2Y0z8WHx7qNDhYTMHC+03vIX21CmwWm37AMPAZ7IQlAr0LOqZM1D33Xdt27rTpxFj1XOyeb+dLsW81HC+U3gFq5XF0+vTOdnC/267gLkp4ZyeoR05P+0t4e45owOU2PzIdJQ16hGilnU6YzxtYCguGxqBP8+Wd+o8jhBmpgK9jsIaLe786ghyKftrV/gqJHj/xlEe3wAu1l9EnYHsbzcybKRH5+gRnNWTtpI8j9zW19t6RCY56Vso0O1MjpqMCJ8IlDe33+ilAUdhqGgPSnua82WNRJvKMFEj4vc/hQ4FpEmzgWtWAlKl62MvEap11VixZwWOlh8lxv1kflg6cCluGnITItUdWHgYfBl/UDr+Hu8vPj14BKg8ZpPXxk2ymSHZIxIBQ5cCB95vH0tfB8x+3rbPHS5stkm+ifNKAaupfTt7K2bMuxwSEcMrGxsR489x6BXoOM37SfM1RWoqJIEuMugCAl2Mavx4MEolWF2LWs5qRfPevVg8YjgRlG7LqIDWaO4yOf/u7CpOD1HAZvvx4c5sfHzLmE6d/3x5I5qpxIwn/cFFIgbRAd571r6yZCjOljZwVIoA4K/s3O9YkO8K9Cpqmgy49YvDLgNSsYjB3JRwPDw7Gc9cNgT/vWEE9jw5C7OGeL46frSCnCRG+kQiWh3t8Xm6HU6mdAT3GP9oIHIkOWbfa1CgVyAWiXF18tXEmNT/FMDY+n6d7wVtYWhn0yfUW8HQNc2BCbaFkJG3AFMeBRa/D9y1xfbfDd8BS78A7j8I3PaLrc9mP0Fj1OCuLXdxAlIAaDQ2YtW5Vbhs/WX4x85/YE/xHpitZvdPPv4eW69Re0IGAxPu6+RV86AMAFKvstUB0wFpK8OuI7cbCoHiI/zH8nH4U3I7ciQw/xVyLG83glRSh22/bp5w6ffO7E746kkFBHoakVwOn0mTiLGmXbtx2bBIwghNZ7Jg+/lKdBW/n3ZspvTn2XKin2dHoE2EEoJVCPNVODi66wlWy7Hmb5M4RnCLR0QhtJPXJWRKBXoNLMvi2V/SUVir5d0vYoBIfyXmp4Xj7qkDOqWLt4eeKI4NH+uV83YpzdU2R0p7+DKlgC1zYd/gPmMjcMU7tppTgV7DkuQl+PT0p2BbMo+MWA+JXzrMDWNQUq9Dg9YEf5W0x64v3c551w9NuNK8iTwgdYmtx6VgfkLAsixeOPAC8hrynB5nYS3YVrgN2wq3IUwVhodGPoQlyUtclyKow2xB/oYHgKosmwpi0X8BaQ9NWiKG2YLi6qz2sTNrgbiJrl9bnQPk7SHHJtzHXXBrKALq8vHo3IHYfaGKcKdOi/LD0tEx/Oe3WoGjK201q41ltmua+4Jn8mIvYWlqgvbYMUiCgqAYNqzXmgaZ6+qgP0fWBQvSXYHegnrGDDTt2NG23bRvH6IUYkxJDiHalGxKL8PiEVFef3+WZbEvp8rJfmDV/jy8evWwDr/Hvhyyrc2U5J5f0I0OUGLDA5NxorAehbXNSIvyx6BwX6S94vq1zhAypQK9hr8yKrDlXAUxNihcjS/uGIu9K2Yh65XLsP/p2XhhcZrXAlKjxYgDpaQ0aWxEHwhK6f6kEiUQMpD/2KFUSwdDg82FV6BXEaWOwuRocrIn9TvZ9u+MHpbw2mdKrxAfhsJqJ91hRMCc54WAlIffLv6GrQVbibEgRRCGhzpYRAJQqa3E8weex7/2/wsWqxv19NFjgAcOAc/X2gLUwIROXnUnYBhutvTsOpvk1xUnKJdfZZDt/hWWAqioiVj+XgyPCcBHN4+Gv9K2WDM+IQif3TaGv00Ry9qMuP5cAVRl2u6D2VuAL+YD5Wc9+AE7T/OhQ8iZOQvF992P/OtvQMnf/w6rwY3fTw+gPXQI9rp9RqmEcvSoHrwiAYF21DNJsyNrYyN0J0/iCsqDYUdmJZoMHihQ3CSnsgkVjeR3dz5Vv7ruRDHqmo0dOn+TwYwjeWRQOrUXBKWAzUhpTHwgrh4Vg0Hhvl45pxCUCvQKzBYr/m9zJjEW5CPDt3dPwJyUcMQGqSD1pB9iCwaLAV+e/RLLNi/D3Vvuxtfnvobers3AwdKDaLZzBGXAYFr0tI7/IN0FXU8angaIHBSw+8cAcdTKdvpPXXNdAp2ClvCKffIAke2B15NBqc5oQXZlu4T4KjG5kIPBlwPBQs9CGq1Ji3dPvEuM+cv98cMVP+C7y7/DxiUbcdOQm6CU8Nf7/HrxV7xx5A333oxh3K/b7GroNj/6eiDrT+evMRuAU9+RYyNvtik6GAZImEruKzkOwNaL79Tz85D58kKsvW+S4wXLQx8Dp3n6phqbgPV/sxksdQOm0lIUP/x3WJvaJX2ardtQ8drr3fL+ntJ8gPyuq8aNhUgm66GrERAgkYaHQ55CtsZq2r0bC9IiILHT8BrMVmw/X0G/vNPQ0tpIfwVeumoo8d56kxXfH3FsyuaMzWfLoTe1t1ETixhMSgru2MX2AXrJE0ygv/PT8WJOHekLi1MR5tdxCVqzqRnLNi/Df4//F8cqjuFI+RG8dewt3PTHTShrstUAbMojJYgjw0YiVNUHWgnQmdJIx1kXAMCwa8ntrM2AoefrFAVIpkZPhUTUXlXBMBZIfLIBcHuEdifnyxvRqpAMQx3GM+QCEobf0P0X1Qf4PP1zVOvIScu/J/8bUWqbjCzBPwHPTngW26/bjn9N/BeGBg/lnGNN1hrsKd7DGe/VBMbbnHjtoQNOmszfbX1s7RlzZ/u/oymzkNJ2FQHDMFBInbhK1lwEtr7geH/lOeDcL86vz0tUf/IprBruvbf+p59gyPFeCwlvwLIsmuh6UkG6K9DLUM+YTmw37d6NQB8ZR+b6xxnHtZ8d5VRRPbE9OSkEEf4KTmuabw7mQ2/ybOGLZVl8QfVfnjEoFAGqS3dRSAhKBXocndGCd7ddIMaGx/jjyk7q/1859ArSq7mulDn1Obhl0y3YnL8Zf+WTfTvnxs3t1Ht2G3RQ6qietJXUJYBdsAOzDsjc5PDwLsGkA/a/D3yzBFhzC3B2PSELEwB8pD4YE05OvsU+tto8ukdod2Iv3Z0hPg0RY/d3k/sBA+f3wFX1bsqayvBNxjfE2JToKZgTN4dzrK/MF9cPvh4/LPoB/535X0hFZO3wq4dehcli4ryuVzPiJnI7eytQdYH/WAA4/hW5nTCNLEmIoiSjFRmASQ+32PYi6d7rzvt3Aea6OtRv2MC/02pF3Q9ruvwaPMGYnw9zKTmRVwsmRwK9DN+ZM4ltQ3YOjMUlWEQFhrsuVEGj9+59NJ0yABwZFwAAuHvqAGK8otGAz/fmenTuHZmVHOf968Y4qJe/RBCCUoEeZ9WBPI4m/6mFQzpl/JBdl43fc393uL9KV4Undz8JM9teY6AQK7A4aXGH37Pb0NYCtdTNLWqk89f4BNvacNjTnRJeQxPw1RXA1n8BuTttWZGflwG/3AeYO1ZrcakyPZpc9ZWoswCwyK5s8nil1VukF7c/eGeKTpE7k2b1nKlOL+b9k+/DYGm/r4kZMZ4c67ov69z4uXhuwnPEWGlzKX7J6Z5MntdIvYpyBWaBff/lP7b0FNfgyD5LCnDNjqwmW4bTFUVHgfO/kWMTHwCu/ZIcy9/LbUXjZTRbtwImx5Piht9/d7u21KLRoG7tWlT8503UfLkKxuIS1y9qQZ+ZiZrPP0f5K6+i6v0PoEvnr6lt2r2b2JaEhUGWnOz2+wgIdAeKYcMgploUNe3ehfmpEZCK2+eRRrMVWzO8J+FtMpiRS7WCGdrSqmV4TAAmUzLbD3fmoLCG38iThmVZfLCDVE4khfpgflpEJ6649yMEpQI9Sl2zEZ/sukiMTRsY0ml3sS/OfkFsixgRghRBTl+zdNBSBCr6QO81O9kaAEAsB8K5sj8OtPnIxR02F9/uYMszbTVgBGfWAOvuBizeNyDoq0yLIWWPImkjRPIKWKwssis6Zy3fUVpXg8WwYJqImsAm9xF1QTdyvuY8Z1HsukHXISnAvbrbawZeg1FhZGZw1dlVsLJWB6/ohcjVwNi7ybHT3wNFPO1h9rxJbquCgSGLyDGFHxBMmbnR90I+DrxHbisDgRkrgMFXcFvppHdtu6zGTWRdrSKNdP21NjRAs821CV3D738gZ85clD//Amq//BKV//kPLi5YgPJXX4NVx+0dCABWgwH1GzYg7/obkLfkalS+9Tbqvv0W1R9/jPzrrkPp089wXqv5izTo8pk6tde6BAvwozVpUa+vB3sJq5IYsRjq6eRzs2n3bvirpJg2kCzH+vUU1bWgE2SUkr27xSIGKZHt/UOfvTyF8P7Tm6x45pczbv0tDl6s4UiDH5yVDLHo0v7+CUGpQI/y4c4caPRkQPLUwiGdOmeRpgh/5pEP//uG34fflvyG8RHjeV8TrY7GQyMf6tT7dhulJ8jtyOGA2I1WIYMvt7n0tsJagIwNXr00XirOASdWO95//jfg1wds7RoEkOCXwOmT2yrh7Ym60ka9CRcqbDVwo5hs+DHUSq8QlBKwLIu3j79NjKmlatw/8n63z8EwDOd+VNxUjEOlh7xyjd3GhPsAqQ859tMyMiNZeMimnLBn0oP82XdawlviIiitywcy/yDHpj5mC0ylCiCNNBZDNhmEeRNTZSW0hw8TY8F/+xtUk8hWOY0bHSt8AKD2m9UofeIJWBspOb/FgrrVq5G39Foi82nIzkbF//0HOTNnoezpZ6A/Q5nktdCwYQOKHnigLVNrqqiE7iT5+/WdP8/ptQn0Hoo0RXhw+4OY9MMkTPtxGq769Spsyd/S05fVZagpCa/20GFYtVpOGdi+nGpUN3nH6Zru3T0wTE3Utg+N9setE+KJY/bn1OCnY8Uuz/3JbjJZExuk7HRJW19ACEoFeoz04gZ8dSCfGLtqZBSGRvvzv8BN6IyCUqLEzSk3w1/uj0/nfYo70+6EhGmvr0wJSsHK+Suhlqk79b7dRgkVlEaNdu91cjUw+DJyrIszAwBasiAuVgbP/Aj88Q+hxhS2gGRKFFm3JVG3mh11f13p8fy6NpOjGWLa9Xko4HfpPyg9YV/JPhwuI4OPu4fd7VKpQTMuYhwGBQ4ixtZeWNvp6+tWfMOBmU+RY43FwKfTbPXleXuBdfeQ+xUBwDhqrBU6KLXvv8zHkZWAfXZZ5kvKggdfTh5fdBjQ1Ts/Z1UW8O21wCvhwDtpwO433VJ6aLb8RdzfRCoV1DOmw//Kq4jjmvbtg7mujvccTfv2o+IN527Mxtxc5F9/PfJvvgUXL7scuYuvRO2qVbA4OKc92oOHUPbMM2CtVtT//BN5vWq1YHLURyhsLMStm27FnuI9bXOhvIY8PLH7Cbx44EWirOBSwWfKFEDcHhCyRiMaN2/BvNRwKO0CRYuVxcbT7dnSZoMZlY36DmWS6aB0GM/cdcXCwYj0JxfYXvkjA5Uax/XwGaWNRI9VAPjb9CT+VleXGJf+TyjQ4xjNVqw5UohH1pzEY2tP4fO9udiZWYn7vj1OND2Xihk8Pm9wp96rUluJDTkbiLEbBt8Af7ntZiEVSfH42Mex/frt+GzuZ/hx0Y9Ys2gNYn1jO/W+3QbLcmWwtCulM2gJb+FBoNF7chYOzTXAeWrlf+YzwJ1/ABIqE3L8K1sPwb5m6NIF0P1Kxco8gDHgTEn3Z0oP59W2/ZtTT5rMNe3pz1isFrxz/B1iLFwVjltTbvX4XAzD4PpBZGuVXUW7UKOr4X9Bb2XiA0AsmQ2Evt5WX/71IqCBquOc/oRNqssHHZRWngeMDmq0LGbgDBXEj76dPHfCNFv5QyusxVbz7ojqHOCLeUDOVsCstwXYO18B1t/jUunRuIk0llPPnQORQgHfeXPByO2uwWyGZvNmzuuNhYUoefxxzvsoRgwnXw8ALAvdiRMw5pHOnfZIIiLgt2gRRD5kJrtx05+ofPtt1K0hTZd8588XWsH0AViWxfMHnketvpZ3/7rsdbj9z9tRpCnq5iuzZW/fPPombv/zdtzz1z346NRHqNRWeuXcYj8/+Ewhn5v1P/0EH7kE89PIvqHfHCyA1mjGvzeew5hXtmL8a9sx481d2JftWTkTbXI0LIYblPoqpHj1arK8qlFvxsc7L3KObWXdCTKTGqKWXfIGR60IQalAl1LXbMTSTw7g6fXp+PVUKdafKMErf5zHsq+OoqSerF95aNZAxAU76DHnJt+c+wYmO5dFqUiK21Nv5xwXpAjC5OjJSA1OhYjpQ1+DunygiSrU9yQoTZ4DyKkb57kNnb0qx6SvJV0vxXJgwr22noM3fAdQLqM48j/gs+lAIZlp6m9MiJhAZPMZkQVin1xklDZ0u9nRwVxbEBSCBgwT5ZM7kwU5nz0/X/gZOfWkOcXDox6Ggl6AcZMrEq8gephaWAu2FbiuOexViKXAjd8BIW4sOMZOsAWxjogYBtjfr1kLUMFv0oO8XUAzNeEdu4zclqmABMpNNtvB79dqBX65F9DzLAydW8+ti7XDVFrKkcL6XXY5UF8EseYi1DPIergGSsJr1WpR/NDDsDaQ7x3y0EMY8OOPGPDLek59qiNUkyYi+oP3kbxtK6LfehNx33zNCUxrv/gSlipygh50m+cLKwLdz++5v+N4BY9/gx0ZNRm4fP3lmPnjTExdMxUTv5+Iq3+9Gu8ce6etXZ43YVkWn57+FIt/WYxvMr7BycqTOFR2qG3s5ws/e6XmNeBasvWd7uRJGLKzcS0V0OVVNyP1+S1YtT+/rQdoYa0Wd311FKepOk5HaI1mXKwiPR4cqfxmDwnHVSNJRdHaY0Wo13JNHq1WltO65qbxcc5bXl1C9KHZuEBfw2plcd+3xzmrSXyMiA3A/TPdMwFxRLWumiNvW5K8pG/0HXUXehVfFQIEJbr/eokcGHIFOdZV/flYlltLmrLYVs8FAAPnAtd9BTDUzbYyA/hyvs2Zt6mqa66tl6OWqTEijHQblfhcgMnCuv3Q9AaVjfq295suotoQydS2IEIAgE2l8e6Jd4mxwYGDsShxEf8L3EAtU2NmzExibEtBH6wL8wkBlm8F0q5xfExYGnD9akDkZPIlV3ODW0dmR6d/JLejRpMtZlqh2xnlbOMvI8jcCJQcc3xte/4DlDmo16SCTJGPEuozTwDvDgU+mw5/PVlGoTtxAsZiW7aEZVmUPvccDBfIdjq+8+cj5EFbAC9PTETCmh8Q8veHIVJzy1DEoSEIvmc5EjdtQvyqVfCbNw+MxLbopUxLQ/S7/wVEjqeDqokToUhJcfyzC/QKGgwNeOvYW8RYlE8Unhr3FLG41UqNvgYNhgY0m5qRU5+DVedWYfGGxVh1dhUsVu8sfurNejy550l8dOojWFjuObVmLf598N94ZOcjqNO7lpg7w3fWLIhDSJPMmi9XYWpyCK+0lsZoseLZX9LdCpAzStt7dwM2k6PUSAcKDwBPLhhMmBRpjRbe2tLjhXUobySlvYv7QS1pK0JQKtBlfH+kkJD+OSIp1Adf3DEWMknnPo7/O/M/6Mzt2VcRI8KyocucvKIPcpEKShNnOp1M8EKbexQfAeq7QMpTdopo2WA1M6jJDUfB7Xeg4PY7UP3JJ7DEzACu+R83MAWA0z8An07tt1lTbl2pbVJ6rKBzD25P2Hq+PSs/U0wFpYkzAYkg52vljSNvoMlErpyvGLcCYmdBlhssSFhAbB8rP4YqbR9crFH4A9etAu7eCgy91ragBgC+kcCkh4C7NttqUF1BS3hLT3GPMTRxzZOG38B/Pjrb31RuM2drQXv0KIofeRR59z+PsqP+MDY5+HtazTbDNqr8gGVZNPxGtqTxC68GU5fdtq0O10IsI2W5jb/brr/m88+h+ZOU88oHJiPq9dcIJ1xGKkXoAw8geddOxHz0IcJWrEDEiy8g4aefMHDXLoQ9/jjkiWTvxLb3nzYN4f98jncfI5UiwsE+gd7FByc/4Mh2n53wLG5NvRXfX/49EvwSXJ7DYDHgnePv4B+7/gGtyb32JY4obSrFHZvvcMtgaWfRTly54Uq8fextbM7fjIyaDDQZPXObZ6RSBFy7lBhr+O03mEpK8cgcngUpHs6VNmJnlmtJMZ1soU2OaGICVbh8GNk3lZbpAuBkSQeFqzEo3Nfl9VwqCEGpgMe0ygue+yUdr206z2nuCwB6kwUfUj2Wgn1kuGZ0NOJbJLohahnunjoAGx6cghC1nHMOTzhQcgBrMskamMWJi/tOrag7mI1AHtk3DkmzPD9P4kybmYg9XeHCe/Lbtn+a9SLk74xE5Ze/QHvkCLRHjqDqvfeRu/hK6JgUWxYlYhj3HE3lwNeLbe1r+hlTosmgVCSrASOtwaHc7qsp/P207QEpghXTROnkTsF1t42NFzdiawHp3HpV0lUYH8nv9u0JU2OmQiVpL2tgwXLeq08ROx649gtgxUXghXrg8UxgwauO60hpOEEpT6Y083fAfkLNiIGhDrK0wUlAAOmQiRybhLdu7VoU3HY7NFu2QF9hRP1FH+RtCYWuWgpcsxKYTvWdLU8HDrxPDOnPZcB4kawf808gS1cYMeAbR47Vr/0JjX/+iap3yN6uIj8/xHz4IUdy24pYrYbvnDkIvmsZAm+8EcphQ8GIXS+MBN18M8JWrAAk7WUDIh8fRL/3LuRCb9Jez7nqc1ibRSrFZsXOwozYGQCA5MBk/HDFD1iSvIQoDXHEzqKdWP7XcmiMGo+vhWVZbC/Yjht+vwEZNRnEPhEjwvWDrudVkNQb6vHVua/w5O4nccPvN2DSD5Mw48cZWP7XcmzK3QSz1bWhWNDtt4NR2JVLWCyo/ugjzE0Nx+2T4jnHJ4Zwv0c/HnW9SE8Hpe4YdN40jpyPZpZrkGFnXmixsvgjnQxKrxjWf7KkAOD6kykgYIfRbMUD353ANrsMyud7c/HSVUNx68T2L/zaY0UcCcJ7N47C1IG21XGrlYXIzX5LZqsZZc1lKGosQoGmAFm1WThfe75tRdBqtaJSR65sSUVSPDjywQ79jL2WnK3ceqbEDgSlEhmQsogIGnF2PTD54c5dnz0mPZD+E4AWb6YDgTDwxFLm8nIU3HYbYj74AOp7dtlqSne9DhjsFjosBuCHm4A7NtomtP2EIUFDEKQIIla+JeoLOJwbimaDGT7yrr19Z5Vr2upJRzI5CGSoVeuBQj0pAGTVZuHlQy8TY4HyQDwx9gmvnF8ulmNW3Cz8kdve2mRL/hbcnHKzV87fo3Sk5yUdlFZn2TKjcjvZ6hlKups0G1CHOb6G5LnAMbve1jnboA+9DOUvvcw53GoSoWhfCBL/NQ2S1CW2ljOVdhPvXf8HDFkMhNqck+u++454vdTHDGUot5bMP16H+pz2CbKptBQl/3iMc63Rb70JWTx3cu0Ngu9aBr+FC9B88CAgEkM9YzokQZ65Rgt0P2arGS8degmsncu9QqzA0+OfJo5Ty9R4ecrLWDFuBbLrsmG0GiFhJLCyVmzJ34KfLvxEnCO9Oh1/3/F3fDrvU8jFrhMHFqsFu4p24euMr3GykrtYpJaq8faMt9uM/C4bcBn+tf9fDk2ZAKBWX4vDZYdxuOwwPjn9CV6c/CLGhDv20ZAEBSHwhhtQ+/XXbWMNGzYg8NZb8O8r05Aa6Yc/0sugM1owJyUcd05OwC8nS/DsL+2LrtvPV6KmyYBgJ8mSM8WunXdpJiYGI8pfgdKG9rnxLyeLkRqVCgA4ml+LKg3pjHzFcDK7SsNaLNCnp8NcXw9FSiqk4Q7uc30EIVMq4BFv/5VFBKQAYGWBf/16tk3yoDdZOM5ikxKD2wJSAE4DUpZlcajsEF488CIW/7IY474dh8vXX457t92L1w6/hnXZ65BRk4Hy5nKUN5dzAlIAeGjUQ4hUO/8y9zlOk5lgxE0C/KP5j3UFXdtVesJmouQtsv5oC6Drsn2grXR8c2d1OhTdfz8at24HJj0APHTMls21x6wHfrwN0FTwnuNSRMSIMDmKcuH1uQCjxYp9OZ65BHaEj3a2Kx1miU+RO0NTAP/+4QbojGJNMe7fdj9RNgAAz058FgG0GqETLExYSGyfqDyBiub+810giBhKyv1Zqy1D2YqmHMjdRb5mxI3Oz0ll/dn8Qyh77jnAzJ+ZsegZlD3/b7BiKXDlh6T5ksUA/PYwYLXCWFyCho0bidf6J+hssbhEYaupfzQd8I+FMsQIZYjzVh2hj/0D6unTnf8snUQaFYWApUsRcPWSTgek9fp6VOuqiRZtAt7n63NfczKS9464F1Fq/iybr8wXo8NHY2LkRIyNGIvxkePxr0n/wufzP4efjFQsHKs4hhW7VzitMdWatFiTuQZXbrgSj+56lDcgTfBLwHeXf0c4y0+PmY6fF/+M2bGz3fo58xvzsWzzMnye/rnTus/g5XdDpLIzzWRZVL7xfwCAG8fHYfXdE/Dz/ZNx/8wkKGViLBoRCbld+ZjZymJTumPDpyYD1+RoOI/zLo1IxGDJKHLO9uup0rYuFL+fITshDInwRXKY41aF+sxM5F55FfJvvAnF992PnFmzUP7Kq2BNfbeDgRCUCrjNqaJ6/G9vLu8+lgX+8eMplDfo8f3hQk6W9JG57un5ixqLcNeWu3DPX/dgXfY65Dfmw8y6lmzYMyduDu5Mu9Oj1zhEWwuc+gHY91/g/EbA3EP9vWpzuU3gh1/Pf6w7DJgOKKkJhzddeE98AwCwGBlUnSXrIcRBQZDTphkmE0oeewzV/1sJqzwQuGWdre7MnqZy4Kc7+lXLGDoolaguAjDjTycPTG/wx5ky/NbWy43F5SKqrnegIN09UnYEt/15G6p0ZH3ndYOu4wSRnWVy1GSopeTkxJ06rd6O/vx5lL/6GooeeBDlL70Ezc6dYB0Egm1IlUBYKjlWate7Of0nqjepmtuPlGbANMIJvO6CFPqz55y8AGjavRv1a38CYsZwHYOLDoHd+y7Kn3+eCGwZsRWBA5ttG0s+AZu6BHp1GHDjd2DEEoSPbgQj4p9s+19zDYKXL4ferHdLxthTWKwW/JL9C67acBWm/TgNs9bOwuy1s/G/M//r1dfdVzlTdQYfn/qYGEv0T8QdqXd4fK7xkeOx+vLVCFYEE+M7inbg9SOvcwJBk9WE1RmrMX/dfLx6+FUUaqj2Ti3Mjp2N76/4HokBXFPGUFUo3pv9HtZfuR73DLsHEyMnIsonCgz4ExcsWLx34j28eexNh4GpJDQUwX/7GzGmPXoUmm38ztp+Cinmp0UQY7SM1p704gbCC00qZpDixOTInmtGk0FppcaA/TnVMFus+DO9nNjnzODIkJuLgjvuJEsDrFbUffstSh5/AqyLFlW9FUG+K+A2b/+VxWtK2Eq91oS7vz6K4joyazApMRgTE4MdvKqd7QXb8cy+ZzhZB3dRSpS4I+0O3Dv83s63eWFZ4PCnwI5XAPtie99I4PK3bPLX7sJqBTY9aWt/0IpUBaQu6fg5xVKbE+6JdokLzv4MTH204+dspTy9LVNRk6mG1Uj+LaLfeQeq0aNQ+syzaPzDLtC2WlH1zjuo+fRTyAcNgjw5CYrmUVDLTkOqbLnBFh4EdrwMzHup89fZB6CDUkZshFiVj01nZfhnk6HTtdh8bEovwz9+PNW2PYQpQpKIekCnXOX19+0rWKwW/C/9f/j09KecDNDosNFYMW6F199TJpZhdtxs/Hax3TDnj7w/cHsat91VX4C1WlH133dR8/nnhNNt3fc/QBIRgYDrr0PANdcAjAiGnGwYc/PAGvSQhIdDNW4cpFEjgQq77Gj+fmDSgwDLwnLoW5jqbVMbmdoM0YjFttYvzpD7AnETgfy9MDWLUXWGnGDKfM2Im1mNvL9CYTG0Z2kr/u//4DNxAmSznrPVsdblw9gkhqZEgYY/P4ahgWx5FZCkhURhRdaUB/BF7SHs+eE/aDY1I1wVjnnD5mB5+lZETapD6eEAsOb2+6bk1qX4fJYEO3+ajWpdNSSMBEOChmBR0iJcM/AaXmfVnqBaV42n9z6Nw2XkIlaNvgYfnPwAB0sP4oPZH0Atc5z96WmqtFU4XnkcVqsVsb6xSA1OdWhWVqOrweqM1ThYdhBmqxnjI8Zj2dBlCFN5R0JZ3lyO33N/R5GmCBE+EZgdOxuDg9rdpwsbC/HIzkdgtLbLwUWMCC9NeQlSsZTvlC5J9E/Ep/M+xbLNywjjth+zfkSQIgj3j7gfALC3ZC/eOvYW8hoc98KN8InAP0b/A5cNuIww5eJjYOBADAxsT14YLUaUNJXgbPVZrM5YjfO154njV2esRpgyDHcOvZP3fEF33oG6tT/CXNr+7Kp88y2oZ8zg7be7aHgkNp5uz1QezqtFpUaPMF9uO6/TxfXE9pAIP7dbtiSH+WJYtD9Rk/rLyRJYWRY1zaSs/4ph/Go/1mhE8cN/57SIakXz11+o+eILhNxzj1vX1JtgWG80BxLoEtJa+o6dO+d8xbY7OJpfi+s+PUiMPblgMM6WNODPs+UOXmXj5/smYWyCcxnQ9+e/xxtH3iDqGWh8pb6I84tDgn8CUoJSMMB/QFvwqZQokRqc6p2HM8sCf66w1Tc6YvoKYNazHauJchdDE1B4CDi6ErhANVOf/DAw/5XOnT93F/ANFVws3w7EjO3cedfeDmT8CrNOhJzfw8Ba2idXvvPmIeYDmxEIa7Gg/JVXUP/DGkdnsiECApOaETa8ESJpy+fjph+Bwd7NRvVWrt94PfFANtWPhr7setwyIQ6vXs1jDtVBWJbFqv35ePmPDGLx6VnJd/ibxG7xwD/WJjnsys++m7BWKwxZWbA2NUE+eDDEfm6a5XQQR5NuwDap+mrhVxz5m7fYX7If9227jxj79apfebMP3qS5uRnqljYjTU1N8HFgsOMJ5a+9hrpvVrs+kA+Ggc+IJAT6HoY60gDWCugaAtAc9xCadu+AISff7lgW6gkjEfLYs1AOHw4AMFlMOF55HBfrL0IlUWFi5ERbqceBD8Bu/icKdwVzyg3iZlfDJ8yIplI5ivaQC6yy+HiE//M56PdvgubXtdDX8TtSSxQWDLi8EquGTcZHplLe9hgBLIPnqqowp1qPphIF9CyDX6aPx0plgUPFULAiGI+PfRyLEhe5nPh3JYfLDuOpPU+hRu/ciG1CxAR8PPdjyMS9w7nbylqRU5+D3UW7sbNoJ9KrSUO3CJ8ILB+6HEsHLYVE1J7HOVZ+DE/sfoLz8/rL/fHh7A8xMmyk0/fVm/WQiWUOF9DXZq3Ff47+BwYLqc6aEzcHy4ctR6OxEc/tew7VOrKUY1naMjw2lqpF7gBHy4/i3q33En3fAWBM+BiYLCacqeZvfwQAKUEpuD3tdixIWAAp3Yu8A1isFqw6twrvn3ifmCMyYPDZvM8wKWoS7+sa/vgDpY+Ttf1hTzyO4OXLOcfqTRaMeXkrmo3t38uXrkrD7ZMSOMc+8N1xbLLLanr6LP5iXx5e/r1dbq2UijExMQg7s9pVN8Oi/bHx4am8r6/5/HNUvvW28zeRSJDw4xoo3exfrDVpcbziOCq0FQiQB2Bs+NgOlaB0Nm4RgtJeTG8KSm/5/BD257TffEN95djz5CwYzVZc9t4eonDbnvmp4fjf7Y6DHIvVgrePv43VGdwJSpRPFG4achNGhY9CvG88/OX+3fPQ3fs2sN2NTNzIW4HF79qyjt5CW2trhZK5CSg6ZGszQKMOBx483N7vs6NYzMB7I4BGO1vyoUuBa7/s+DlztgHf2izZy4/5o87OuAMiERI3/gZ5Uns/WpZlUf3BB6j++BOXp5aqzYidXgO5n8X2s9+7Fwi4hNyVHbDq7Cq8c/ydtm3WKkVT9rOAVYkbx8ViQVoE0qL8EOor7/D3Q2e04LkN6Vh/ooQYV8CAEz5/h8pi58A4+e/AfK4BTHfTtG8/yl9+CaYCm2SMkckQdPddCH3oIbfcRj2BZVlsL9yOVw+/ypkEAjan5DemvuHVOlIas9WMeT/PI95/+bDleGT0I132noD3g9KG3/9A6RPeMYGCiAVYAKyLzz3DwP/apTh8VTI+zv8WzVVlmHaWxdRzVsRWAxJGBFlQMFBfAYuBDBL8BzQjakJLRiIgDvlVl0O37jeeN3Hy9mIWUTNr8H9jB+A3kWsl0ESdDqP0Rqz1VaNG4t5neUr0FLww8YVu91KwWC1Ymb4Sn5z+xO3a0SuTrsQrU15xeL/KbcjFrqJd0Bg1SApIwuzY2VBJXWS73cRoMWJH0Q6crjyNjJoMZNVlodnU7PJ1yQHJeG7CcxgVNgrfnv8W/z3+X96FBcBWs/nVwq8wKHAQMW62mvH9+e+x9sJaFDQWQCFWYGr0VCwfthxpIbb5Hsuy+OjUR/jszGce/2wTIyfik7mfEMFzZ9icvxlP7n7S9YEtTI+ZjttTb8f4iPFdMlfbeHEjnt33LDEWqgzFz1f+jCAFN/HBsiwKbroZulOn2sYYmQwDfllPzENaeXTNSWw41Z4tHT8gCGvvJQNelmUx5Y0dxJz3P9cOx/Vj3Z+LVGkMmPj69rZaUj4cBcSmigrkXnY5rNp2d/G8cODnqSI8vs5K1GTKkpMwYN06iOSOFVVGixHfnv8W3xz7H6BpglECaJSARCzFjYNvxMOjHvbouycEpZcwvSUoPZZfi2upLOkLi1OxbIqt59nh3Brc8vlhmKkvWKBKij/+Pg1RAfzZy7KmMvz74L+xv3Q/Z9+VSVfiuQnPee1B5DbpPwPr7uaOBw4A6nhkKslzgeu+Jp0fO4C1MhdNnz8L3bFDMDbYHB7FMiukPhYoAk1QBhshVVvAiCXAreuBxBmder829v0X2Pai3QAD3LeXvz2LMwwaW83rphWAoQGGRjFy/wwjJov+S69B1Kuv8r5cd/o0Kt/5L7SHnfckFcstiJtZA0WgGYgeY3PklXU+cwPAJpPO3QFc+AtoLAHkfkDcBFugLu+5PmHVumrM+2kekSkxVM+GsWo+cVywjwxDIn0xJMIPaVF+GB7jjwEhaqJhN8uyKKnXIaeyCSX1OtRrTajSGLA1owIl9dzJ8geJh7G49D1y8OETtjYaPQTLsqj+8CNUf/wx+OoJ/K++GpGvveqVSZHJYsLRiqP46uxXOFh2kLNfzIjx8KiHsWzoss6XDLjBm0ffxDcZ37RtR/pEYvPSzV363t4MSk3l5ci98ipYG+3ctSUSBFy9BPrMLOjT0x2/2As0y4GyICChApC4ET9JVGYkLqyCWGb7nP008XZ8WH4Ez33eiFg3vcakPmYET67HM6NisF/ctTWVKokKj455FDcMvqFbPo8X6y/i+QPP40wVN2sWZjbj+epaqFgWT4SFoJZaKFoxbgVuS72NGNOZdXj98OvYkLOByIgFK4LxzIRnOD17Adv9IK8hD+XN5QhSBmFQ4CCHP/vm/M14+9jbKG92ru5yhlKidKvEKFwVjjWL1iBEaTN41Jq0eHLPk9hTvIf3+MWJi3FL6i34/vz3hEzfXVKCUrBy/kr4y10b7njCmsw1ePUw/3O7lbTgNDw9/mmX2WFv8Hn653jvBPlMmhkzE+/Pfp/3nq87fRr5N95EPCtkyUmIfPllGHNzoT+XAdZshnLECBxNHIt7fmy/BzEMcOiZOQj3a5fwFtZoMf1Nsl/81n9Mx0APe4ku//oYxzS07frEIhx5bg4CVFw1QckTT7b1MAYAK4Dn7hDjYhSDG3ZbsPQA+UwMWrYM4U9xS0qMxcW4+N1K5Oz6DeFlevja5ZXqVcDRQQx+Hy+CX/IQfDTnI4T7uNFDGkJQeknTW4LS2744jL3Z7U/gMF859qyYRWjod2RW4PG1p1GntUk9YgKV+OSWMUiL9sVfBX/hj9w/kF2XDStrhUqigkwsQ1ZdFu/K6gMjH8B9w+/rfilS4SFbT0yLva6fAZZ+bgtMjn5uk/XS1xw5ErjlJ8ctB5xgqS5F9QsPon7PeVhNzn9ekYyFMi0FiokzoRw2DMphwyAJDfX4PQm0tcC7w8i62bhJwJ1/AA7qaADYbvDFx4CsTUDeHluvwJZVY5YFivYEobms/UbOyGRI2rIZ0kjnq/jmqiroMzJgyLkIXXo6mnbuBGsg5UsiqRWx02qhCjParvX61YC6E78Hq9X2c+x6g6xTa0XhD0z9BzDpIe9mxT3gid1PEMY2rFUKbd7DsBqdf+ZUMjGGRvkjOVyNZoMZR/NqHaoaaJ6dHoJ70m8Ao6trH0yaA9y2vkM/gzew6nQoe+6faNy0yelxES+/hMDrruvQe2hNWuwo2oFdRbuwv2Q/UVdlT5gqDG9OfxOjw0d36H06QmZtJq7bSP5cX8z/wiv9UB3hTlDKsiwaDA3QW/QIVYby1uCxVisK774b2oOHiPHI119HwNVLAAD1p49j74f/ROzBfMhb4je9FCgOAZrlDAaWsVB1k9ccI2IRN6sGqpb2LZ+FReFDH1sGKqCJxfPfWxDjSKmqlsM/xgTf0CoYByjxaEI8TpnqiEMYMLhn+D2YFj0N32R847L3rJRlcWuDBoubmlEpEWO1ny/2q/gXfEeHjcaLk1/EAP8Bnv3QblKtq8Znpz/DTxd+4s0WTtPq8GpVDQJbzFYyZFIsiwyHVtQeLIogwqfzPm2TXlY0V+DvOx5GBlU7aM8Ng2/AU+OeglQsBcuy2FuyF++eeBfZddltx4SrwvHAyAewJHlJW3Bqspjw1rG38H3m9279fEqJEv5yf7eD1zHhY8CyLE5UniDGh4cMx5cLv4TGqMGD2x/kOOS6y5SoKThXcw71hnre/eMixuG9We/BV9Y1i6fbC7fj5YMvc6TKkT6ReHDkg1ictLhbFkEAm9z6ge0PYH8Jmcx4evzTuCXlFt7XVLz+BtEixhGS2Fj8Pe1mnFe0zydeXJyKO6e0f49+PFqIp9a1zxNC1DIcfW4uGIaBpakZupMnYK6pgTQiEsphQx32Ez5eUIuln3AXOgHg5glxeI1HDqw9ehQFt5E+AttHMPjsctv9Vmxh8erXFiTaxboswyD+66/gM972jDBXV6P6k09R++MaMGbHjsoAYBIDa6aLcHRmBD5buBKJ/q5LRYSg9BKmNwSlu7Iqceeqo8TY84tScddU7sNOazTjTHEDrCyL8QlBaDDW4fHdj+N4xXG33ksikuDFSS/iquQeMFGpPA98dQWgpWYZ818FJj/Uvp25Cfj5Llh0emgrZTA1SyASs1BEKSFfeC+YtCuBkEHOAzrY6ik1/3sBFSt/hlnb8eBbEhkJRUoKJKGhEAcFQhIQAJG/P2RxcVCkpTmVbbSx+z/ATmoldMJ9wMI3uHWDJj1wcjVw4AOgvoD3dLUXfFBxglytDb5nOcIef9yTHw0AYCwo+P/27ju+ifp/4PjrkibpLp20tEBLGQWk7L0KKEsUZAiIWsSBIiCIoPgDBTciOBC3oCgggogCKl9FhghlCLJnh1BKgdK9Mz6/P0IiIemi0Ej5PB+PPAr3ubu8c7kk977P4uzkpyk8YvtjrqgFoZ3S8QotAo9A6DkDmt9nnoPVEZMRzv4FZ3ZC7gXzjQdFZW4enbDFPNdhWWo2g4EL7OdJrAIJmQnc8+M9NjdxTAZPis7fhSG7GddzIHUPrZp3Bjfgjn0T4Z9ttoVjNpgHhKlihrQ0cn7byKVFi9CfdjzC45UUNzfqrV2LNqz8UyZlFWWx6NAiVhxfUWZzvq6hXXm1y6v4ulayCX0FCSEY/ONgTmX+O11PTO0YFvRccMOes7SkNDErkW+Pf8v6hPVkFJmTLjcXNzrX6szIqJG0DW5rvbmY/uWXnH/9DZt9ew8YQOhbcwE4kXGC5/54jpMZJ3ExCPyzwaCGdG/zhRWArljQ6ajgjr0m6l+ZLygCV189HsFFeAQX4e5fjKnJMI6k1sGwaDmuFRyw28XdQK0OmXgEmRPSxT5ezPezfa91xYK7d5roeFTglwPpXnCkjsKOKIWjdRTa1upAbc9abDyz2XpsLNxc3Hiz25vE1I4BzO/rhn828OauN+1GcwaIyctnWnoGta+6iPzd3Y1X/H256GLfXFOr0vJEiyeIbRp7Xfr1gbl10xeHv+C7k9/Z9XUEUAvBhIxMHsrK+fcbSa0FYzEb3d2YVNP25qG3xpMP7/gYvbGYKb9P4FIJN4CudJtfE/pHDmDzmc3sSt1V4notg1oyu9NstGotz259lv0X95e63xCPELqHdadHnR60rdkWjVrD7tTdvLn7TY6lHytxu8ebP87j0Y+jN+l57NfH7KZDaeTbiMyiTM7nV3wKJ5WiYkaHGQxrOIyc4hxWHF/BiuMrrMlyuHc49ze+n6ENh5Y4GNP1kq/PZ0PSBk5mnkSr0tIiqAWda3W+5gGVKiOtII0hPw6xncNb5cLX/b62NoO+kqmwkMShQyk+FW9XdrV8Tx/Gd3iCc57mGu624b6sfPzfAQef+mYfP1zRxHdAdAgLRrTg0uefc+mjjzHlXfHbodHg3rw57p064tGxI27NmqFc8VmdvOJvvt9n22XGx03D/yZ3s6mdBfPgRgmDB9u8hjwdPDVWTbaHQiPfRjQLbEbcnyt5Y7ER7RVfFaaaAYTPeYv8XTu5tPgLREHFBhP9s7HCsiH+LOj7kcPjeyWZlFZjzk5KM/KKuev9bTaj6fp7ann1PliX+APHM47jqnalVc1W3NvwXpuT9VTGKcb/Pp6zuWcd7dqOn6sfb8e8XaW1DlZJf8K3D9gnpG0fMY+0e0ViZioqIu2NmaSv/BFhsE3YXNyMeNYqxKsuuDeujSowHPwiwK8e+EVebvKoULzjB1Lf/pi8f+wnUL+eFI0Gt9at8ezWDc/u3dDWq+e49rk4Dz7oAJm2F/ui8WCKm01An5aL4UIqxoO/YTy+FVNeHiaDylqzq9aZcHE1odKaKM52ITPeHa4Yzl0dEEDkT+uveRAaY24uyU+MI3/3brsy34a5BN6WY25e5xEErWOhVey/fU2zU+DvpbBnsblJbmUpauj6NHSbCi7Xf+Tb0rwS9worjq+wWy6Ka1J4sQeG7Ggqm5y2C/djfoc8wrY9b5+oNxkI9y5xvOENoE9JIWP5cnL/2EbRsRIuCtVqgp55Bk1oLc5OtO1b6dG9G7U/+qjMFhcFhgKWHl3KokPmGo3SBLgFMK3tNPqG93XaoDJLjy7ljV22yV15BjwSQnAk/QjbkrdxNvcsHhoPmgc1p3OtzqXWsFydlOrcdGw+s5lvjn/jcMCnK7UIbMGElhNodkFH0v0PwBXz57kEB1PvhzXk6ARLjixh8eHFDqcMGdxgMA80foA3dr9h83ye+YJHM70Zee4EWi8Das0VlzJqLVuHvM+UvW/hnlHAA7+b6HzU9lJH0ekQ3dvznv9eUjUF+OQLvPMh0wPuqu3DsBTz7+7X3t7M8a9hF1f3sO5kFGU4bLpaGh+dDx/0+oDowGi7sjx9HqtOrGJP6h7yDHnUdvGm//kk2p/6w/H4AkC2SmG+ny/feTnuQtIsoBlzus2htte1979PyEpg0cFFrE9YX+KAS3X1el6+eImWRZbfNcV8s7DLZDj5P1g9lg/dBB/41ijXc7qbTNQv1nPA9cZ8z7YMakmnWp1o7NeYJh61CMxJg4vHIOecuTWUdy0IaoIxpCXfxq/mo/0f2SRBkT6RPN/+edoFtTTf1M5JJUOlMPLvuZzNK33KLh+dDzM6zOBszlk+O/iZw9YY7i7uvNb1NXrV6WWzXAjBxYKLqBU1fq5+Th3cypn+SP6DcRttp2IK9Qxlaf+l+LvZz/agT0nhn/sfQJ+SYld2tVM+oUzuPgHD5b65cdN7Eezjit5oou2rv5GZ/+/32Gt3NabbqgXk/PxLSbuzUnl64tWrF/5jx6KrF0F+sYGnvvmbX4+Yb1gEeGr5+IHWtK5r3z/24vsLSXv/fZtli+5Q8UsbFbU8arFiwApquNbgw78/5PQn7/Pg79d3SpjDdeCDe7144873S22ZI5PSaswZSanBaOKf9HyOncthwe8nOZZ6xUWaKp+WrX/mVK59cgDmO/bjmo8jMSuRl+JeKtfgAe4u7twdeTdPtnjyhg4SYkcI89x2exabk5arm+TWvwNGfgPqf+9qFSUmcvbpKRQdLbl5kYXiYsLdX4+LhwGNuxGNuxFFLchLdSUryc3xwByKwL2eP27d+qGuGYYxPYOikycpOHAA46XSRzQsD5eQEHT166OrF4E2IgJtuPmvS1AgypldiEX9KMpQyEt1JfecjoI0LcJU+R+8sA8W4tWzfJNjl8RUWMjZp6eQ+/vvdmUqrQn/Rrn4Nsiz9v3Cv4F5cvoLh+3f2zII/4YYat2O8Z8jiMQ/UdQCjYfR9qI3qAkM+sC+1tRkMidzmafBUAjuAeb+ua6VH5G1wFBA7M+xdkPjWwTqwmjmPoK8jKYcOptlN1fwlbxcXQj39yDAU4uvu5ZAbx13+aXQ9OSHKKccNCP0CoGxW6+piXpFGTIyuPTJp2QsXYooLvnGjcrDg9B33saza1cAzr3wIpnffmuzTujb8/Hu18/h9rnFuXx74lu+OvKVw8GLrtTUvykD6g1gSMMh5R7hW5hMFB46RO4ff1B06hSmrGwUnQ6XoCB0kfVwa9Ua1yaNUVQVu5GQr8/njlV3kF38b7/M3nV7My+m5NEYD148yPy/5rPn/B67Mq1KS486Pbir3l10Cu1krVXTG/VkFGVwJu0MbeqaB6ubtmEqR5N3Yrh0iRp5ghp5UCMPfPIENXLBowgueUF8iMLJWgpnA6DeOZjxnYJHrm0y89fzd7GtVja7z+22mdLCwt3FnVmdZtEvwvz+5enzuG/9fSRk/TtXtoLCR2lZdMrJtNl2XcfRzDy/1SaBCswU9E8LZUTY3XhHNMCjUyfUnp7sSd3Do78+apMQqxU18xrFcuzSET66aNvcGOD59s8zMmokYL4B+9XRr1gbv9ZupNKrBbkF8fEdH1Pft36p69nJT4ekbZCRBAUZ5u4WRbnm75qz5pZIca46ZgX4c1ZjX2vqofEgtkksjf0b809WEkfP7eJ4+lHOFWfhqXalkU8k3evfRc86Pa19IAGOXjrKp/s/5Lczm0scGV9nMhGblcMjWdm4WS4nNR4w+BPbqdMuHMX09RCedi1io0fpY0XU0etZcP4iEXoD6zzdecnfj8IyPic6VBRR9ne9VqVlRugd3FMkzMnkxWOQW0otpmsNaNgXQ9OBHPIOIl2fTbBHMI0LC1H2fQWHvze/J5eddHXngZCa5OG4aWSoZygf3v6htWl1WkEaH/z9AesS1lFgKMBFcSGmdgxPtXqKcJ/wMl/PrWz+X/NZfGixzbKGvg35vPfnDq8nDZcucfHd98j++WdMOTmoAwNwb90G/enTdq2xVtaPYdFt5vPX0jrQUcvB31Rx6FevqlDcikZDzf97nhrDh6MoCv9cyuNsRgHNa9fAQ2f/+c35fRPJTz5p0y82IRimx6pxcdGypN8Sbgu4DTDftHh1x8s0fnE5Tc6UHkexGjY1V/Do0oX7ej+Da1AwxvR00pctI+Orr+3GbEjxg7dGuPJQn+kMaTDEpnbelJfHhY2/0P7BWDxD68qktLwKCwt5/fXXWb58OadPn8bPz4++ffvy0ksvERYWVqF9ZWZmMmvWLL7//ntSU1MJDg5m0KBBzJ49mxo1alQ61qpKSjPzi1n1VzI/H0rlcEoWhXr7L3ZFk4Zfva8oVlW8CQqYh1Uf13wc/m7+5BbnUmgsJMg9iFZBrW78YEZCmAcpSvnbPIdm6gHzv/NLuBANa2fuN3fF4DZZP/5I6qzZNiOeXU8ekZ4EvzIXbcsYuzIhBIZz5yg4cJDCQwcv/z103WJReXigCQ3FcC4ZY871fX0B48cTOP7J67IvYTBwbuYLZH3/vcNylcY8Mb1fwzxcXCuYiBohrzCS7NzG5B5Iwngp3W4dtdaIq78e94Bi3IOKcQsworQaCeHdIP8SImkbxhPbKb6Qh6FQBQJULgIXd9A2bo6qxVCIvrdSoybnFOcwdctUh4ODWYxqPIopbaaQmWfi0NksDiRncTo9H0+dmvpBnnSI8KO+5iJK2gnzRW5GEpzZZb5J44ibLzzw/Q1vtmwqKCD9q6+59OmnmHJKr7F0a96ckDdeRxfxbzcCY3Y28XfeifHiv59rdUAAkevXofbxQQjBiYwTxJ2LY3vKdv46/5fDJohgbjbXMaQjt9e9nW5h3co976AhI4O8bX+S+8dW8rb9iTHd/jy6kktgIF69e+Pdtw9urVqVe9Tg9/a+x6cHP7Vd1uM9etTpYbMsrSCNd/56hx/ifyh5Z0IQnAEeheDu4oaLlw+p6lwuqHPxLIDQZCPfvmGuqf6jaUP8DeVPoovV4GK0r7//vqPC8piSX2sD3wbM6z7Prk/ksfRj3Lf+Ppvkz9vFg6VZRsIvnEC4+/N1dD/ePG8/mEyX0C7M6z7P4e/ND6d+YMafM8r1mqa2mepwfti0gjSWHV3GiuMrbG4YWPSq04sZHWbYJH3Xxek4+OU5SNlHvqLwvq8PX3t7WZs8V4QKaOEVQQOvuhxLP8b+wpL7VLoIwV25eTyRkUWI8YoErEZdGP41hNjXBJN1lvylQ3hKlUacm+ObO53zC5ijCsan0yRwqwH7V3Ds+BqmBPlzWmPfVLSmwcBT6ZncmZfPDjdXXgkMIrmEUytM5cq81PM0yXM8v2OZXH0gOBqykh0PfHjZAZ2WSUGBXLxq5OS2wW15s9ubDs8By00gb603ri72c2NK9vQmPWN+GcPfF/+2WR7mGcb09tPpEtrFYV9XIQSiqAiVq/k4G3NzSRoxwqZprAmF57o8zsGASFrVqcHqcZ15+tu/bUaofzxjHwO3LLXbvyYsDH1qKhhKH9isxr33EjxzBoqD8xpA6PWkf72UC/Pn27QyMSnwfKyahBDF5gaZhdFkZOaacfR8ayuhDn6CTApsaabwXVcNj94xneGNhtvVuOf+sY3kp55CXHWdme0GX/VUEd82hH41e9AiEXy2H8Zl10FUxQbuSkxAV7++TErLo7CwkF69erF9+3ZCQkLo2rUrSUlJ7Nq1i8DAQHbs2EGkg2GiHbl06RIdO3bk5MmT1KtXjzZt2nD48GEOHz5M/fr1iYuLw9/fvglBRdzopNRoEizd+Q9zNxwnp7DkD4/a8xjuod+AqnwDpFytWUAz3uv53vX/MS6N0QDJu8wjwh7/GdLL7ksAQGRP88A5l0fTNebkkPrSy2SvXWu/rkqFW3Q0hvNn0Z+z7wdUHi4eUHPCQ3jFTq1QMxxhNFKckEDBgYMUJ5/BmJ6BMSMDY1YWhrQ0ihMSHI5MWlUUrZbASZPwe2j0dW1eJIQgY+kyLsydazcAkvW51QLvuvl41ylE62FACDAUqDEUqjBqayFcgzGZVAiDEaE3oc9TyDtxEVNexfpZqFxMuPrqUetMGItVFGW5YCwq4WpIEei8DbgFGXFv3Qr3QePQtOjleN0yCCH4/czvfPD3B5zIOOFwnTY12zC3+1zzZ85QbL4RczoOTu8w96vNK+f5GtIChnwOARWs2akAY2YmWT/+yKVPP8NwseS4CrTwdz2Fzc0Uitvdxl3176ZbaDdCvUKtFx7Zv2zg7KRJtvu/ozM/PdCA305v5FwZzeoA+ob3ZXzL8dT1rlvmuoa0NAr+/pv8ffso2PMXBQcPmmvLr4E6MADvO3rj3a9vmQlqZmEmA9YMIKvo34trD40Hb3R9g86hnYnPjGdd/DpWnlhJvsH2okIxCYKyIOqMoFmS+eFbSqOWfJOJNifN59meBg1xr2DN7tUO1lV4dYQKk8r+e0GlqBjddDTjWoxDp3bcbPPLw1/y1p63bJb5u/ozssFQ/krbz45z9jWbd9W7i9mdZ5fat/Ldve/y2cHPSo39qVZP8Ugz+zkOr5Svz+fPlD85ePEg2cXmWrWY2jFE+UWVul2lmIywdwlsnA0FGezXafm/QH/+KeFitzJ0JhNDcvKIzc6m1tUDpUQNgLsXgHsp85IXZKL/YTyfpG5liY+XdfCjGkYjDxVriO30f6hvGwpXnmfn9lP8vxf4Pm0Pm93dSHVRE2ww0icvn755+bhe8VuXryh8UsObFd4+5F7ehVbAPTk5PJWeiVcV/S5mqVSs9PLkkIc37jWb0a3Zg/SO6PtvkpR7AdITzN/Faq15tHfPIPAKvn4jyt8CzuedJ/aXWIddxQLcAuge1p3e4b1pF9yu1KlyCo8dI2nYvYgrkr/zbr6M6zmFfI0rC0a2ZMq3+yk2mr/fW1w4wWtxn6Fc8X2v6HSEfbAQz86dMeXlkb9nD3nbd5C3YwdFJxz/Vnt07kzoO2+j9vq3EsRUWEjmd9+R/vkih82Nl8ao+KGjin7h/ZjTbY7Da6xCQyFT142j3rdxdD0s8CgyDxq3u4HC6s4qDHWCmdNtDq1rti75mBw9yumxYzFeKP/1rUxKK+CFF17g5ZdfpmPHjvzvf/+z9pOZP38+U6ZMoVu3bmzZsqVc+3rwwQf56quvGDx4MCtWrMDlcufliRMnsmDBAh588EG+LMdoX6W5kUnpgeRMZqw5xIHkq+8YmlDU+SguuSiadDTef6Pxse8z4+/qz9jmY8kuymbp0aV2AzlY3B15NzM7zLxxd/5Mxn+bMhVkwLn95mZOJ36BgtJrKWy4uEHMs9DpKVCpMKSnk/X991z67HOMGfavTVs/ktB583FtZJ6HrCghgdzffyfn1w0UHDhcZkKouCj43tmFgP+bi9r7+g7hDuZkOn/XLnK3bCV361YMqdc+BL5aa8TF3YSLzoTKLwB1eEtUQRGoPD1BCAyXLmFMT8eYk4PKzQ3XxlH4DB6MtoItDyqiKCGRi++8Q87//nfDnuNGc/FS4xrVELcOvdA1boI2PBxt7bAS75pezSRMbD6zmY/2f+SwSW+giyfzVMG0TIgDfQVrwD0Cods0aPtwmYN2lRpjXh6GixfRX7iA4eJF8+OC5a95WfGZMzZ3ga9kUMHGFgrbmqo4FQJGtf2Pr5uLG7U8alHLsxahHrWIeX8Hfn8l2Kzze7TC8u4qsjyv2l4INAZwK4bONVoRGzGMCE0IpoICTPkFmAryEdZ/F2DKz8eYnk7x6dMUnz6NMa2c84JUkDowAO/efUqtQV19cjUvbn+x9P0YBY2SzYlnWBqEpAtCMkFTgZlJrmdSeqQ2vDFMTaHuqv74igt9I/ryaLNHy+wbaxImpmyewm+nfyvXc97f+H6mtp1a5uigJmFi6pap/O8f++8UlaLiuXbP2dVI/Ofkp5sT07++JF+B1/19WVNCX9OK8jSZGJmdw6isHPyvvPGiqCCiO3R+CiJ7lLyDq539i6Jj64jPOIla50O9+v3RNOxj02XGTtI2+Hs5xP8OOaX3DSxS4KRGiwDq6fV4lHWpq9KAf/1/p7u6FA8Xy+6qY+VZE/LSrKPQ2/EIMtce6wsg7STkXSh5X1ov84jyGg/z2AVuNaDmbVC7PUR0K98UdEY9XDgCZ/eamygX5YJdy5DLn0ONq/k73/oI+Pff7v6V+g2oCsk5yYz+ZXSpg0n56nzpVbcXd0feTYvAFg4TuUufL+LC3Lk2y34Pa8Xc1iNtxhapnXOe+Vvfx1NveyO71ltv4dbvDoqMRagVtU2rDP2FC+ZuKV9/bfe8ugYNqPXWXFTu7mSvX0/6V1+X2GVrU7TCR/1V1PWJ4JsB3+ChKfkGhsFk4NMDn/L1oSUo2TnkuIHaRcvdkXczufXkck0fpE9N5czYxyk6Xo7BIJFJabnp9XqCgoLIzMxk7969tGxp2xStefPmHDhwgD179tC6dcl3DgBSU1MJDQ1FrVZz5swZatb8d/6eoqIiateuTXp6OmfPnrUpq6gbkZSezy7krQ3HWbU3GaEUoXZLQu2egNo1FZU2DUWTgaKUfqc/yi+KBT0XEOwRDJj7+iw9upQlR5ZY79xH+EQwNnos/SP6l11TZtSb7xrmpJoHGypIN/8tzLrqkW3+W5RtHpynOA+umC9MmMBkUDDpVRj1ivnfBhXCoCCEeYh/RQFUoCgCRQWKTyjUj8EU3gd9eh5FCYkU7N1LwaFDJTa98BkymOAZM1CV0PzIcOkSeXFx6JPPok89hyHlHPpz5xCF+bgE18SzWwzed92NpuaN758H5pq1opMnKTp+guLERIqTEilKTKI4MRFRaF/7rQkLw6NLZzzbtcQ9WKAmx/yjGNbWfBf3P6Tw+HHSPvjQnJxe768ylco8GEoFR6qrFLUabViYOUGNMPf5dW0cha5hQ2tTo6sJIVhzag2vxL1M8VV92tRCMDI7h8czs/EpTw2eRxB0nghtxiA07ojCQmuCJgryMVxKx3DhPIYLF9Cfv2BOLC9cwJSbg9AbEIbLD6MBkZdfqSbm25oorOim4rxvxWra/bME8z8z4uagO2q2GxRpQGMErR60hvLNV1kZ2nr18OjcGU1wMKbCAvTJZynYu5fifxyPXn01SxNfr149cY1ujtrTfBEihGD6tumsT1hvs75PrqBFgqBVvKB5YuWnUCkpKVX7+uISEIA6wB+XgEBc/P1ReXhQFB9Pwf79GM79Wytd7ObCli41WNNBQaXV4qnxpJZnLcJ9wokOiKZzaOmDLdnFpM9n9C+jS+xfbTGh5QQebfZouVtr6E16Pj3wKUuPLrU2wY0OiGZS60m0DW5b7vic7uxfsP4ZSNnLca2G5V5e7HfVkqtS4Wc00rhYT2PFjQiPWlzIP88WkccWdzcKHNxw8DcYGZWTxwjfaLxC25gHAHL1MXdvcfM196+/Dn3mK6woB7LPQW4qnD8Mfy8ztwgpD0VlnmM8tA0ENoKgxuYBCa8eSTYrGY6ug8OrzS1MruZTG1o9CNHDwbcu5F2CuIXm0emNJfeHrxS1Fup2hoZ9oHY783e2SW++KX/xOJw7YH7/Uw+YxzWoNMWcmF6drNr9P8Bc06v1NA/KZSgEQ5HtX0Vljt9FZ/6rqM014oranPgqalC5XP53xb73U/NSeWbLM2WOsgzmUYt71OlBI99GeGo8cXNxw0vrhafaneLx0yneYzuC8g/1uvDpbXdhVKlpmpbAzF1f4lNs27zk5N3RfNXVxPH049b+1+4u7gS5BxHkHkSgeyDB7sE0+vsSdd/9AaW4YkOCm4C17RWW9VAR7FmLz/t8Xu7BywoNhdYRpBv6NjQny0KYP0M558w3U/QF5pvXlr+Kyvz5dvfHqPLk3JyPydm4qdTnMSrQ90wCPnVlUlqmTZs20bNnTyIjIzl16pRd+csvv8wLL7zAiy++yKxZs0rd1+LFixkzZgy9evXit9/s79Y+/PDDLFq0iMWLFzN69OhrjtmSlO7dsxuDSY8wCAxCjzAYMJqMGE1GTEYDRqPJ/NdkxHT5YTQaEUYDeoOR9NwC4tPS2Xc2mSMXkzBpz4PuAormEmohUJnMF2Yq0+X+PyZQC/Nddp0edHpw1YNbEUQrAcSoa6EqKMSUV4AwgcpVi8rdFaF1IVdtwkWjwVMoiMJ8REE+oqgIoddj0hsQxQaE3nB58BkjikkPxkIUxXwaCqGAMH9ehMnyb8X8iVQuf0+pBJjAeHkEWJP+8t8K9HW6FiovL0Jmz8K7f/8b+jxVRZhMGFJTKUpMxJB6HnUNH3T166OpU+emG9GvKCGBS598Sta6dWX24yiNW8uWePXpjWf37mjr1kVRqTAVFqJPOUfR8WPk791H/s6dJTbFAfMgBi4hISgaDcasTIxplR+kCpUKXZ1QXBvVR9eoAWofL1SKHsWQi7iUhOnMQc5eSOJXFw+UIgXPQvAoALdiYU7ADOBlELgahLWPn6JSQO2ColYjVC6g1iBUWiguhoJCKKyiCSGv8neEwvIYFWl1vJnYciL96/XndPZpNiRtYF3CujIHJQJofdLE1O9MqJzw66a4uuLRoQMe3bri2a1biS0GiuLjyd6wgZwN/yv3XWhUKnSNGuHesgXaiHoIbw+WnVxB4pmDhKUJGp8RhJdSAVMqnQ4hTHYXSwUuLrQ+fAiAlB9+IKBNG1wCA8us0defP09xfDwqT090jRqVb3qqCsgpzuGZLc+wPWW7XZm/qz+zO82me+3u17Rvo8lISl4Kbi5uVdvt5HoSwtxc//D3cP4IFOeAVy1zItPgDnPNm6KY1zt/mMKjP7I94Wd2F52nAIGP2o2WvlF0jhqCpmFfcyL6XyYEnNoIW990nEACeIeZR2hvMQp8yj9dFACZZy5PKXbe3Ly2VivzMXTUciDtFPw81Vyje8tRoIRBsSq2G5V5sEIXV9C4Xf7rbq7VtSzTuJlbuWlcQa3DKATri87yeX4CCcayB9p0JCBLMM/BTc00d3eydB5EZtg3ZY1rpPD2Papy9+NucFYwbZURn3Lesz1RC5b2UHO0jkKU1o93fdtTy2CwrbQpslTa5JiTfp23uUbdcnxc3ABhrvDJvwS5F6Ecg5FeKeecJ5eOe1NwRcO7Yg2cqK1wrJEaJVLDoleP4OYXKZPSsrzzzjtMnjyZYcOG8e1VIzQCrF+/ngEDBjBo0CC+L2EgFYtJkybx7rvvMnXqVN5880278oULFzJ+/HgmTZrE22+/fc0xN23alKJTp1gbUfaEtdKN5dmjB8Ez/g9NaAV/yKQqpb9wgazvviN38xYKjhyxNgtVeXuba3V8fVF5eqDS6lB0OhSt1tzkuEljPLp0QVPOlg2GixfJ37cPffJZjDnZqD090dSpg2uDBmjCwmzmIjPm5lF04jgFcX+Qv3k9+cdPYyq6uZL+G61YDXvrK6xvq+J4bYW7I+/m6dZP2w3tbzAZiDsXx4/xPxKXElditwGAjkdNPLHeVOE5KitK5e6Oa/No3Fq0wL11G9zbtqlwAlaUkEjOhl/I/mVD+RPUSlL7+ODerh0enTri0amT9WaUqbgYU1YWxuxsVO7uFHl64nV5Oqer5yl1NiEEW5O38nPSz5zJOYOP1oeY2jHcWe/OUpu1SdWYEJC41dzHNu24uVluzabmKa0ie1ZdU1Qh4OSvsOUN6wjJdlxczc1+henfUZWl6yLJxYXfPdz4n4c7hyv4fdz2hImnV5tQlyM7OhkCs0epKdZU7Dc9KEPw3EojYaXcs/47QmFNR4UjdRR8TCYeyM5hTGY2VT8zrC1jkYK+QI2igNbLwJU9I5p+kAuBUdeclJbSeL96OX15wvWSRti1LD9djonZr+e+4N8a0asdO3YMtRDclZjgsFy6wRQFtacnah8flK1boHf5+htL/yGWwVTycs2Pf5KcGg4AQoUoyETkZWEqKkYYFYRJcea4VDecUMCosn2YVIr138UuIPaAbp+OALcA1risYQ1rytyvURgpNhZjMBkwmAzoTXqMl/t0rVG58LNJjWtOsXkEwfI0X1YUFEVlPm8Ulbk2WaUyL7/8F5UKRaP591FUCLt2mR98UrkDBQiTEVNuLqacXEzF16e2WqXTobi5odJqUbRacy1nbg78vtH8KIXpiuPWpk0bVJUc6OhG28IWZjPb2WFI/ykXgNKbHt5QxiBzs0iTwVwDqHL5twmrdeqYGiC8zeuYDObxMoTA3CxMf7lZZQEVroVUa8y1ZCqXkpvEmvs+mZ/TZDT/u6S+sTeVTAD0QK5KRY5Khb4ctZkngTVF4JdT+rEu1MKlbAVRetf+Ep/jbgHe+eZBiFSXv2ZNChToINdVQZ8DrvsFXiYTRpOJ94D3Kv5UVSo+3YSmoHy5jyO3TFKam2u+A+Xu7nj6EcvdX8t6VbWv0iiKgs7dHV2dOpXajzPEx5tHuy3vaMZS5clj7sANboZ8TcdcUVA8fVE8fe2mypDKduUxVyvqsucNvckqzBSNBrWvL2rfa5866HpSqVToLtc0/NcT0upEfp9XvRt2zNXaywloGSx9LsuzbjVRFee5BvC9/KiQMhpO6YBKN2p3EJQbUMr41ZV2I4+5puB0pVrT3DJJqaWVckl95SrSivl67gtu/DykzlBVc6xK/5LHvOrJY1715DGvevKYVz15zKuePOZVTx7zqvdfPua3zG1Pr8tzAOXlOe7Ym395lEjLNDFVtS9JkiRJkiRJkqRb2S2TlNa53AQ2OTnZYblleZ1yNJW9nvuSJEmSJEmSJEm6ld0ySWnz5s0B2Lt3r8Nyy/Lo6Ogq3ZckSZIkSZIkSdKt7JZJSjt37oyPjw/x8fHs27fPrnzVqlUADBgwoMx99e3bF5VKxR9//MGFC7aTwhUVFbF27VpUKhX9+vW7PsFLkiRJkiRJkiRVU7dMUqrVahk/fjwA48ePt+kPOn/+fA4cOECXLl1o27atdfn7779PVFQU06dPt9lXSEgII0eOpLi4mHHjxmEwGKxl06ZN4+LFi9x3330EBwff4FclSZIkSZIkSZJ0c1NERYeKvYkVFhYSExPDzp07CQkJoWvXrvzzzz/s3LkTf39/4uLiqF+/vnX9WbNmMXv2bGJjY/niiy9s9pWWlkaHDh2Ij48nMjKSNm3acPjwYQ4dOkRkZCRxcXEEBARU8SuUJEmSJEmSJEm6udwyNaUArq6ubNq0iZkzZ+Lu7s6aNWtISkoiNjaWffv22SSkZQkICGD37t1MmDCB4uJivv/+e7Kyshg/fjy7du2SCakkSZIkSZIkSVI53FI1pZIkSZIkSZIkSdJ/yy1VUypJkiRJkiRJkiT9t8ikVJIkSZIkSZIkSXIamZRKkiRJkiRJkiRJTiOTUkmSJEmSJEmSJMlpZFIqSZIkSZIkSZIkOY1MSiVJkiRJkiRJkiSnkUmpVGUKCwt57bXXaN68OR4eHri6utKgQQMmTpxIamqqs8Or1latWkXv3r0JCAjA1dWVOnXqMHjwYLZt2+bs0Kq9l156CUVRUBSFb775xtnhVDvHjh1jzpw59OrVizp16qDT6QgODmbw4MH88ccfzg7vplZYWMiLL75Iw4YNcXV1pVatWowZM4bk5GRnh1bt5Ofns2bNGh5++GGio6Px9vbGw8OD5s2b89JLL5Gbm+vsEKu99PR0goKCUBSFqKgoZ4dT7aWmpjJ58mQaNmyIm5sbfn5+tG7dmmnTpjk7tGopLi6OIUOGEBwcjEajwc/Pj169erFq1Spnh2Yl5ymVqkRhYSHdu3dn165d+Pn50bFjR7RaLbt27eLs2bMEBwezY8cOwsPDnR1qtWI0GnnwwQdZtmwZHh4edOnShRo1anD69Gn++usvZs6cyYwZM5wdZrV1/PhxmjdvTnFxMUIIli9fzogRI5wdVrUSFhbG2bNn8fb2pn379vj6+nLkyBEOHTqEoijMnz+fSZMmOTvMm05hYSG9evVi+/bthISE0LVrV5KSkti1axeBgYHs2LGDyMhIZ4dZbXz22Wc8+uijADRt2pQmTZqQnZ3N9u3bycnJISoqii1bthAUFOTkSKuv0aNHs2TJEoQQNGrUiGPHjjk7pGprx44d9O/fn8zMTJo0acJtt91GTk4OR44cITk5GYPB4OwQq5WVK1cyYsQITCYTbdq0ITIykpSUFP78809MJhPPPvssb7zxhrPDBCFJVeDdd98VgGjfvr3IysqyLi8sLBTDhg0TgHjwwQedGGH1NG3aNAGI/v37i0uXLtmUpaenixMnTjgpsurPZDKJbt26iZo1a4qBAwcKQCxfvtzZYVU7d9xxh1i2bJkoKiqyWf7RRx8JQKjVanH48GEnRXfzmjlzpgBEx44dRU5OjnX5vHnzBCC6devmxOiqny+//FI88cQTdt/JKSkpomXLlgIQI0eOdFJ01d9vv/0mAPHYY48JQDRq1MjZIVVbZ8+eFTVq1BBubm5i9erVduU7d+50QlTVl16vF4GBgQIQ33zzjU3Z9u3bhaurq1AURZw6dcpJEf5LJqVSlRgyZIjDD4QQQuzbt08AonHjxk6IrPo6ceKEUKvVok6dOiIvL8/Z4dxyPvnkEwGIr7/+WsTGxsqk1Al69+4tADFr1ixnh3JTKS4uFjVq1BCA2Lt3r115dHS0AMSePXucEN2tZ/v27QIQOp3O7uaLVHn5+fmifv36okmTJuLEiRMyKb3BHnjgAQGIBQsWODuUW8LBgwcFIKKiohyWW26ar1ixooojsyf7lEpVQqfTlbmOn59fFURy6/jss88wGo08/vjjuLu7OzucW0pqairTpk2jV69ejBo1ytnh3LKaN28OQEpKipMjubls27aNzMxMIiMjadmypV350KFDAVi7dm1Vh3ZLspzHRUVFXLp0ycnRVD+zZ88mPj6eDz/8EI1G4+xwqrWMjAy+/fZbfHx8eOSRR5wdzi2hPNff8N+4BpdJqVQl7rjjDgDeeecdsrOzrcuLi4t57bXXAIiNjXVKbNXVxo0bAfOxT0xM5LXXXmPs2LFMnz6d3377zcnRVW8TJ06koKCADz/80Nmh3NISEhIACA4OdnIkN5f9+/cD0KpVK4flluWW9aQby3IeWwYnka6fAwcOMG/ePB566CG6devm7HCqvT///JOioiK6dOmCRqNh1apVTJo0iSeffJIFCxZw/vx5Z4dY7dSrV4969epx7Ngxvv32W5uyHTt2sGHDBiIiIv4T57+LswOQbg0PPPAAP/30EytXriQiIoJOnTqh0WjYtWsXOTk5vPrqq9ZBHqTr4/DhwwDs3LmTKVOmUFRUZC174403uP322/nuu+/w9vZ2VojV0rp161i5ciWzZ8+mQYMGzg7nlhUfH8+6desAuPvuu50czc3l9OnTgHkQKUcsyy3rSTfWu+++C0Dfvn3LXeshlc1kMvHoo49So0YN3nzzTWeHc0uwXJfUrFmTrl27smPHDpvy6dOns3jxYoYNG+aM8KoltVrNF198wV133cXw4cOZO3cukZGRnDt3jm3bttGuXTu++uortFqts0OVNaVS1VCr1SxfvpxnnnmG9PR01q1bx/fff8/Zs2dp0aIFXbp0cXaI1UphYSGFhYUATJo0ie7du3PgwAGys7P59ddfiYiI4LfffuOxxx5zcqTVS25uLuPGjaNhw4Y8++yzzg7nlmUwGBg9ejRFRUUMHz6c1q1bOzukm4pl+pGSmv17eHjYrCfdOD/99BOff/45Go2Gl19+2dnhVCsLFixg165dzJ07F39/f2eHc0vIyMgAYMmSJRw4cIDPP/+cixcvkpiYyNNPP01eXh73338/Bw4ccHKk1UvXrl3ZsmULERER7NmzhxUrVrB161Y8PDy4/fbbqVWrlrNDBGRNqVROQ4cO5dChQxXaZsmSJbRr1w4wfxHdc8897N69m3fffZchQ4bg7u7O1q1bmTBhAr169WLlypUMGjToBkR/c6rMMTcajdZloaGhrF271noX7Pbbb+eHH36gRYsWfPvtt7z88suyRu+yyp7nzz//PGfOnGHjxo2yRqOcKnvMHZkwYQLbtm2jXr16fPDBB5UN8ZYjLs8UpyhKqeXSjXX06FHuv/9+hBDMnTvX2rdUqrwzZ84wY8YMunfvzujRo50dzi3Dcm1iMBhYuHAhY8aMASAgIIB58+Zx+vRpVq1axZtvvsnXX3/tzFCrleXLl/PQQw/RoUMHvvnmG5o2bUpKSgpvvfUWr7zyChs3bmTLli1O71Mtk1KpXJKSkjh+/HiFtsnPz7f+e/LkyWzZsoV33nmHiRMnWpcPHDiQ0NBQ2rdvz1NPPcWAAQNwcZGnJVTumHt4eKBSqTCZTNx///12zTKaNWtGmzZt2LVrF1u2bJFJ6WWVOea7du1i4cKFPPDAA/Ts2fNGhFctVfa75WovvfQSH330ETVr1mTDhg2yD9418PLyAiAvL89hueX4e3p6VllMt5rk5GT69u1LRkYGTz/9NE899ZSzQ6pWxo0bR3Fxsez3X8Us3y0qlcrhOCJjxoxh1apVbN68uYojq75OnjxJbGwsNWvWZP369daWLg0aNODjjz/m3LlzrF27lsWLFzu99Zy8+pfKZc+ePde8rdFoZPny5cC/ozZeqU2bNkRERBAfH09CQgINGza85ueqTipzzAHq1q1LYmIidevWdVgeHh7Orl27uHDhQqWepzqpzDH/6aefMJlMHDx4kJiYGJsyyyTsloRp6NChjB8/vjKhVhuVPc+vtHDhQl588UV8fHz45ZdfqF+//nXb962kTp06gDkxcsSy3LKedH2lpaVxxx13cPr0aR566CHeeustZ4dU7axbt44aNWrwxBNP2Cy3dHs5ffq09Xt83bp18gbMdRIeHg6YB59z1JrIUi6vS66fb775Br1eT9++fa0J6ZXuvfde1q5dy+bNm2VSKlV/Fy5coLi4GKDEQXUsy9PT06ssruquZcuWJCYmlnhMLVMLyB/b6+vvv/8usezo0aMcPXqUFi1aVFk8t4qlS5cyYcIE3N3dWb9+vTzGlWBpJrp3716H5Zbl0dHRVRbTrSInJ4d+/fpx7NgxBg8ezKefflpiM2qpcjIzM9myZYvDsoKCAmuZwWCoyrCqNcsUUxkZGQgh7M5teV1y/VluIt4M199yoCPphvPz87M2H3VUK5KdnW1tvldSrZ5UcZYRRzdt2mRXlpOTY72wLGnaB6liZs2ahRDC4cPSTGn58uUIIXjnnXecG2w189NPPzF69Gg0Gg3ff/89nTt3dnZIN7XOnTvj4+NDfHw8+/btsytftWoVAAMGDKjq0Kq1oqIiBg4cyJ49e+jTpw/Lly9HrVY7O6xqqaTv6sTERAAaNWpkXVajRg3nBluNNGvWjIiICAoKCti5c6dduaXZrrwuuX4sU6KV1Cpp9+7dwL+11M4kk1LphtPpdPTt2xeAp59+mnPnzlnLCgsLGTduHPn5+XTu3JmQkBBnhVntjBgxgvDwcDZs2MCXX35pXW4wGHjqqafIyMjgtttukxfw0k3tzz//tHYLWLFiBb1793ZyRDc/rVZrbV4+fvx4m76l8+fP58CBA3Tp0oW2bds6K8Rqx2g0MnLkSDZt2kTXrl1ZvXr1f2KKBkm63iwj00+cOJG0tDTr8r/++ot58+YB8Pjjjzsltupo4MCBAGzdutWuD3VcXBxvv/024Lh7XVVThBxGT6oC8fHxdO7cmfPnz+Pl5UXHjh1xc3Nj9+7dpKSk4Ofnx5YtW7jtttucHWq1EhcXx+23305eXh6tWrUiPDycvXv3kpSUhL+/P5s2baJZs2bODrPaGz16NF9++SXLly9nxIgRzg6nWvH19SUzM7PUyb+7dOnCI488UsWR3dwKCwuJiYlh586dhISE0LVrV/755x927tyJv78/cXFxss/udfTuu+8yadIkAO65554Sm9q99dZbBAQEVGFkt5akpCQiIiJo1KiRdSwA6foymUyMGDGClStX4ufnR6dOncjNzWX79u0UFxfz6KOP8sknnzg7zGpl6tSp1r7pTZs2pUmTJqSkpLBjxw5MJhOPPfYYH3/8sZOjBIQkVZHU1FQxefJkERUVJVxdXYVOpxP169cXTz75pDhz5oyzw6u2Tpw4IUaNGiVq1qwpNBqNCAsLE48++qj4559/nB3aLSM2NlYAYvny5c4OpdoBynzExsY6O8ybUn5+vpg5c6aIjIwUWq1W1KxZU8TGxorTp087O7Rq58UXXyzXuZyYmOjsUKu1xMREAYhGjRo5O5RqzWg0ioULF4qWLVsKd3d34eHhITp16iSWLFni7NCqrdWrV4vevXsLf39/4eLiInx9fUWPHj3E0qVLnR2alawplSRJkiRJkiRJkpxG9imVJEmSJEmSJEmSnEYmpZIkSZIkSZIkSZLTyKRUkiRJkiRJkiRJchqZlEqSJEmSJEmSJElOI5NSSZIkSZIkSZIkyWlkUipJkiRJkiRJkiQ5jUxKJUmSJEmSJEmSJKeRSakkSZIkSZIkSZLkNDIplSRJkiRJkiRJkpxGJqWSJEmSJEmSJEmS08ikVJIkSZIkSZIkSXIamZRKkiRdpihKmY/Ro0c7O8xbRkxMDIqikJSUdMOfS1EUwsPDb/jz/JeFh4eXeu7fbMenKs8f6V89e/akbt26FBcXX9P2GRkZuLq6olKpOH36dJnrjxkzBkVR+L//+z8A9u3bh6IozJ0795qeX5Ik53BxdgCSJEn/NbGxsSWWdenSpQojka6HzZs306NHD2JjY/niiy+cHU65zZo1i9mzZ7N48eIqvRkyZMgQPD097ZYHBARUWQzSzWn9+vVs2rSJDz/8EK1We0378PX15c4772T16tUsW7aM5557rsR1CwsLWb16NQD3338/AC1btuTuu+/mtdde4+GHH8bPz++a4pAkqWrJpFSSJOkqN1PiIl0fR48eRaPRODuM/4S33nrrpqsVdWTJkiXk5+cTGhrq7FBuGc8//zxBQUGMGTOmUvt54IEHWL16NV9//XWpSenatWvJysqidevWNG7c2Lp8+vTp/Pjjj8yZM4c5c+ZUKhZJkqqGbL4rSZIk3fKioqKIjIx0dhjSdVSnTh2ioqLkzYYq8ueff3LgwAFGjBhxzbWkFv3798ff35/Dhw+zf//+EtdbunQpYE5ir9ShQwfq16/PokWLrrkZsSRJVUsmpZIkSZVg6WtnNBp58803adiwITqdjtq1a/Pss89SVFTkcLvc3FxeeuklmjVrhru7O97e3nTv3p01a9bYrZuUlISiKMTExJCdnc2UKVOIiIhAo9EwadIk63r79u2jX79++Pj44OPjQ58+fdi9ezdffPEFiqIwa9Ys67q33XYbiqJw4sQJh/ElJSWhUqlo0KABQogyj8OV/feWLVtGhw4d8PLyokaNGtZ1hBB8+eWXdOvWjRo1auDm5kZ0dDRvvfUWer2+zOew+OOPPxg/fjzR0dH4+vri5uZGVFQUzz33HJmZmTbrjh49mh49egDw5Zdf2vSRvPJ4XN1n8rvvvkNRFEaMGFFiHOPGjUNRFD799FOb5RV5b0sSHh7O7NmzAXjooYds4t68ebPNul999RVdunTB29sbd3d3oqOjef311yksLCz3812LpKQkxo4dS3h4ODqdjsDAQIYOHcqBAwfs1r3yHDxx4gQjRoygZs2aqFQq1qxZY3OO5+Xl8fTTT1O7dm3c3Nxo1aoVa9eute5r5cqVtGvXDg8PD2rWrMnEiRMpKCiwe85r7VO6bds27rnnHoKCgtDpdISHhzNx4kQuXrxot+7o0aOt78nWrVvp2bMnXl5eeHt7c+edd3LkyJESn2ft2rX06dMHf39/XF1dadiwITNnziQ3N7fU11LS5ys3N5dnnnnGetyaNGnCe++9hxDC7vyeO3euTT9MR3r06IGiKGzbtq1cx+2zzz4DYNSoUSWuc/DgQUaNGkVoaCg6nY5atWrx0EMP2b1HWq2We++9F4Cvv/7a4b7S09P5+eefUavVDj+nI0eOJC0tje+//75c8UuS5GRCkiRJEkIIAYiKfi0Com7dumL48OHCw8ND9OjRQwwYMED4+PgIQIwaNcpum9TUVNGkSRMBiNDQUHH33XeL22+/XXh4eAhAvP766zbrJyYmCkC0a9dOtGjRQvj6+opBgwaJwYMHi1mzZgkhhPjzzz+Fm5ubAETLli3FiBEjRHR0tNBqtWLs2LECEC+++KJ1n++9954AxNSpUx2+rhkzZghAvPHGG+U6Dt27dxeAeOyxx4RKpRJdu3YVI0aMEJ07dxZCCGE0GsWwYcMEILy9vUWvXr3EwIEDRXBwsABE//79hdFodLjPxMREm+Xt27cXOp1OtG7dWgwePFjceeedIiQkRACiadOmIicnx7rup59+Kvr06SMAERkZKWJjY62P77//3rqe5X20KCwsFD4+PsLNzc1mfxZ6vV4EBAQIrVYr0tPTrcsr+t6WZMqUKaJ58+YCEJ07d7aJ++jRo9b1HnvsMQEIV1dX0b9/fzF06FAREBAgANGxY0eRn59frucTQoi6des6PN6O/PHHH8Lb29t6zIcOHSo6duwoFEURbm5u4vfff7dZf/HixQIQI0aMEN7e3iIiIkIMHz5c9O7dW6xbt856jnfs2FG0b99eBAQEiAEDBoiYmBihUqmEWq0Wv/76q5g/f75wcXERHTt2FIMGDRL+/v4CEPfdd59djCWdP6V59913haIoQq1Wi44dO4qhQ4eKqKgoAYiIiAiRkpJis35sbKwAxNNPPy3UarVo3ry5GDJkiGjYsKEAhL+/vzh37pzd8zz99NPW961bt25i8ODB1uPfunVrkZub6/C1lPT5KigoEO3atROACAwMFEOHDhV9+/YVWq1WTJw40e78vnjxotDpdCIkJETo9Xq7+E6ePCkURRFRUVHlPnZBQUHCw8PD7nNssWrVKqHVaq2vcejQoaJly5bW43To0CGb9bdv3279HDna50cffSQA0a9fP4fPt3HjRgGIBx54oNyvQZIk55FJqSRJ0mXXmpQConHjxjYXvwkJCcLX11cA4tSpUzbb9OvXTwBi2rRpori42Lo8Pj5eREZGCrVaLfbv329dbrlgt1y0Z2Rk2OzPaDRaL4LffPNNm7KXXnrJuu2VSWlmZqZwd3cXQUFBNjEIIYTBYBChoaHCxcVFpKamlus4WC6aXV1dxebNm+3K58yZIwBxxx13iAsXLliX5+bmirvuuksA4v3333e4z6uTivXr19skgkKYk0hLgjZ79mybsk2bNglAxMbGlhj/1RftQggxZswYAYglS5bYrb9+/XoBiEGDBtksr+h7W5oXX3xRAGLx4sUOy1etWmW9aD958qR1eVZWlujSpUupNx0cKW9SmpWVJYKDg4VGoxErV660Kfv111+FVqsVoaGhoqioyLrckpQCYvz48cJgMNhsd+U5HhMTY/P+WratX7++8PPzE1u3brWWnT17VgQFBQlAxMfH2+yzoknpjh07hEqlEnXr1rV5j0wmk/VzNHToUJttLEmpSqUSy5Ytsy43GAxiyJAhAhAzZ8602WbFihXWm0dXxlZcXGw9h5955hmHr6Wkz9fLL79s/X7IysqyLt+/f7/1e+jq8/u+++4TgFizZo3d/p599lkBiHnz5pV8wK5w9OhRAYhu3bo5LE9ISBDu7u7Cx8dHbNmyxabsyy+/FIBo27at3Xb169cXgNi4caNdmeUcX7p0qcPnzM7OFiqVSoSHh5frNUiS5FwyKZUkSbrMclFc2uPK2rUrt/ntt9/s9jdhwgS7pGLfvn0CEJ06dRImk8lumzVr1ghATJgwwbrsygv23bt3223z66+/CkBERUXZ7dNgMIiIiAi7pFQIIR566CEBiFWrVtksX7t2rQDE4MGDSzpUdiwXzU8++aRdmaVW0cvLS1y8eNGuPDU1Veh0OtGsWTOH+yxvUpGfny9cXFxEq1atbJZfa1JqqWnp06eP3fqjRo0SgE1Sdi3vbWnKSkq7desmAPH555/blR04cEAoiiK8vLxsksPSWJLSkh779u0TQgjx9ttvC0BMnz7d4X4mTZokAPHdd99Zl1kSy8DAQJGXl2e3jeUcV6vVNgm2EOabLoGBgQIQL7zwgt22kydPdnicKnr+DBw4UABiw4YNdmUmk0m0bNlSqFQqm3PYkpTef//9dtv89ddfAhDdu3e3WW6pAT927JjdNgUFBSI4OFjUqFHDpnawtM+XEEKEhYUJQOzYscOu7IUXXnB4fm/ZskUAYsCAATbL9Xq9CA4OFlqt1uHn1RFLov3oo486LH/qqacEID7++GOH5YMGDRKA+Ouvv2yWz5o1SwBizJgxNsuTkpKEoijC09PT4flkERoaKgCbRF2SpP8m2adUkiTpKrGxsSU+6tSpY7e+RqMhJibGbnnDhg0BOHfunHXZr7/+CsDAgQNRFMVuG8uUM7t377YrCwkJoU2bNnbLt2/fDsDQoUPt9qlWqxk8eLDD1/n4448D2PWJtPz/0Ucfdbhdae6++267Zfv27SMtLY0uXbo4nFakZs2aNGjQgEOHDjnsG+jI2bNn+eijj5g0aRJjxoxh9OjRPPHEE2i1Wk6ePFnhuB2JiYkhNDSU3377jQsXLliX5+fn88MPP+Dt7c2AAQOsyyvz3laUXq8nLi4ORVG477777MqbNWtGdHQ0OTk5pQ4U48iQIUMcnvuWqTUsr3PQoEEOty/tdd5+++24u7uX+Nzh4eHUr1/fZplKpaJu3boA3HHHHXbbWAaouvJzVlEmk4mNGzfi5eVFr1697MoVRaFz586YTCb++usvu/LevXvbLXP0+b9w4QL79++ncePGNGrUyG4bV1dX2rRpQ2ZmpsPz2NHn6/Tp0yQnJxMWFkaHDh3syocNG2a3DKBbt240adKEn3/+mbNnz1qXr127ltTUVO65555yTwNk+Xz4+vo6LL/ys+FISeeMZQCj7777zqaP9NKlSxFCMHjw4FLPJ8s566g/sCRJ/y1yShhJkqSrVHRKmJCQENRqtd1yy1yPVw52ZBnQ49lnn+XZZ58tcZ9paWl2yxwlxAApKSkA1K5d22F5Sdu1a9eOli1b8uuvv/LPP/9Qt25dzp07x08//USdOnUcXmiXxdFzWV7zzz//7DBZu1J6enqZU3jMnz+f6dOn3/BRNVUqFSNGjGDevHmsWLGCCRMmAPDjjz+Sm5vLQw89hKurq3X9yry3FXXp0iWKi4sJDg62ieFK4eHh7N+/33p+lFdZU8JYXmf79u1L3U9FzmGLkt57Dw+PEsstZSUNKlYely5dsg4w5OJS+qWRo9cVFhZmt8zR5/+ff/4BzFMQlfVZSEtLs0tcHR2/a/38Azz22GNMmjSJRYsWMXPmTODabkplZWUB4OXl5bDccs4EBweXup+rj229evXo1KkT27dvZ926dQwdOhQoedTdq3l7e9vEJ0nSf5dMSiVJkiqprIvLKxmNRgC6du1KvXr1SlzPUQ1FSclHWXGIUkbPHTt2LI8//jiLFi1i9uzZLF68GIPBwMMPP4xKVfHGNI5itLzmBg0a0KlTp1K31+l0pZbHxcUxZcoUfHx8+OSTT4iJiSE4ONi6Xa1atSpVY3a1UaNGMW/ePJYtW2ZNSpctW2Ytu1Jl3ttrVZ5zryLnZ3lYXuewYcNKraVylLRe6zlc3vJrZXlNXl5eJbYssLDU2l5LXJbnCQkJKfOmj7+/v92y0o7ftRyb2NhYpk+fzqJFi5gxYwbJycls2LCBevXq0bNnz3Lvx8fHB4Ds7GyH5UajEUVRePDBB0vdT9OmTe2WPfDAA2zfvp2vv/6aoUOHsm/fPo4cOUKtWrXKjNGSjFrikyTpv0smpZIkSVXIUqMydOhQJk6ceF32GRISApib8Tly5syZErcdNWoUU6dOtdaUfP7556hUKsaMGXNdYoN/X/Ntt91W4Vroq1mmd3jllVeIjY21KSsoKCA1NbVS+79ay5Ytady4MXFxcSQkJODr68uGDRsICQmxTjVjcSPe25L4+/uj1WpJTU2loKAANzc3u3UstXKW8+N6CQsL4/jx48yYMYPo6Ojrum9nCQgIQKfTodFoKn2OlsZyjgQHB1+35ynr81/ScoAaNWowfPhwvvjiC3799Vd27NiByWTikUceqVCSGxQUBJhbOjgSFhZGfHw87733nrX2sryGDx/OU089xc8//0xGRoa1lvS+++4r88ZZRkYGAIGBgRV6TkmSqp7sUypJklSFbr/9doAKzVlZFkvt43fffWdXK2oymUqdp8/T05P77ruP5ORkpk6dSkJCAv369XPYHPFatW3bFh8fHzZt2lRiTUp5WS4yHTVVXLlypcNaYa1WC4DBYLim57TUiC5btoyVK1dSXFzMyJEj7S6Ir/d7W1rcGo2GDh06IIRg+fLlduWHDh1i//79eHl50bx58+sSj8WNOIedzcXFhZiYGNLT09m6desNe56wsDAaNWrEgQMHSExMvC77rFu3LrVq1SI5OZmdO3fala9atarU7ceOHQvAxx9/zKJFi3BxcWH06NEVisFyjh07dsxheWXOGV9fX+68806Ki4v55ptvrOf7/fffX+p22dnZpKSkEBERUeFEWJKkqieTUkmSpCrUoUMHevXqxaZNm5g8ebK1H5uFyWTif//7X7knrAfo2bMn9evX5+jRo7z99ts2ZW+88QYJCQmlbm8Z8Oidd94Brm2Ao9LodDqeeeYZMjMzGTJkiLUG70oHDhxgxYoVZe7LMnjM559/jl6vty4/cuRIif04a9WqBcDx48evJXzrQEJLly4tsekuXP/3tqy4Lc2JX3zxRZv3OCcnh/HjxyOEYOzYsdbk9noZO3YsgYGBvPbaayxevNjuRkBeXh5LliwhOTn5uj7vjfb888+jUqmIjY11+B6lpKSwcOHCSj/PjBkzMBqNDBkyhEOHDtmVx8fHs2jRogrt05JYTpkyhZycHOvyQ4cOsWDBglK37dChA82bN2f16tWcPn2aAQMGVLh2vVGjRgQFBbF3716HN1GmTJmCm5sbkydPZu3atXbl6enpfPDBByUOdGbpOzpz5kxSUlJo1qxZmTdbdu/ejRCCrl27Vui1SJLkJM4b+FeSJOm/hctTX8TGxpb4uHrOQRxMtWBhmQbj6qlYUlNTRXR0tACEn5+f6Nmzpxg+fLjo0qWLdeqLt99+27q+ZbqMq6eWuNIff/whXF1dBSBatWolRo4cKZo3by60Wq149NFHBSBeffXVErdv166dAERISIjQ6/VlHSo7ZU2/YTQaxciRIwUgdDqd6Nixoxg+fLjo1auXdcqagQMHlrnPtLQ0ERwcLAAREREh7r33XnH77bcLjUYjhg0bZp3W5GqW4922bVsxevRo8fDDD4sffvjBWl7a+yiEEJ06dbKeH1FRUSWuV9H3tjRnz54Vrq6uQq1Wi759+4oxY8aIhx9+2GYqEcu8lm5ubuLOO+8Uw4YNsz5Phw4dSp0u42rlnadUCCG2bdsm/Pz8rMftzjvvFIMHDxZt2rQRHh4eNlPICFHyZ8GirHO8tPOrpH1XdEoYIYRYsGCBUKvVAhDR0dFiyJAh4s477xS33XabUKvVwsfHx2Z9y5QwmzZtcri/ks6radOmWafAadOmjRg2bJjo06ePiIqKEoBo3rx5hV5Lfn6+aNOmjXXanWHDhol+/foJnU4nxo8fLwDRoEGDEl/3Bx98YD2/169fX8oRKtno0aMFILZt2+aw/LvvvhNubm4CEI0aNRKDBg0SAwcOFC1atBBarVYAdnMwWxQVFVnPN0DMmTOnzHhmzJghAPHNN99c0+uRJKlqyaRUkiTpMssFT2mPqy8WryUpFcJ8ETl//nzRvn174eXlJXQ6nQgPDxe9e/cWCxcutJkfsDxJqRBC7NmzR/Tp00d4eXkJLy8v0atXL7Fjxw7xyiuvCEB89NFHJW47ffp0AYjnn3++1OcoSXkTgFWrVom+ffuKgIAAodFoREhIiOjQoYOYNWuW3byNJe3zzJkz4r777hOhoaHC1dVVNG7cWLz++uvCYDCUmJSePHlSDBo0SPj7+wuVSmX3vpSVlC5cuNB6Drz00kulvsaKvLdl2bBhg+jcubPw9PS0Pv/VCdCSJUtEp06dhKenp3B1dRVNmzYVr776qsjPzy/38whRsaRUCHPSPGXKFBEVFSXc3NyEp6enaNiwoRg+fLhYsWKFzfyoN0tSKoT5czRq1ChRu3ZtodFohJ+fn4iOjhZPPvmk2Lx5s82615qUCmGeB/eee+4RwcHBQqPRiKCgINGqVSsxdepUu/k6y/NasrKyxOTJk0VoaKjQarWiUaNGYt68eeLMmTPWmxQlOX78uABEWFiYMBgMJa5Xmj///FMAYty4cSWuc+LECTF27FhRr149odPphI+Pj2jcuLF46KGHxLp16xzO72vx+OOPC0CoVCpx5syZMuOJjIwUAQEB5Z6nV5Ik51KEKGVYRkmSJOmm169fP3755Rfi4uIcjogqhCAqKoqTJ09y6tSpUkeOlSTp5rJixQpGjBjB448/zocffuhwnddee43/+7//48UXX2TWrFnX/FwtW7YkOTmZ5OTkMkfSvpF27NhBp06dmDZtGnPmzHFaHJIklZ/sUypJklQNpKen2/XVFEKwYMECfvnlF+rXr0+7du0cbrtq1SpOnDhB//79ZUIqSTepv//+G5PJZLPs4MGDTJs2Dfi3b/TVsrOzef/999FqtTz22GOViuHVV18lLS2Nzz//vFL7qaw33niDGjVqWF+7JEn/fbKmVJIkqRqIi4ujU6dOREdHU69ePYxGI4cOHSIhIQE3Nzd++uknYmJibLZ55JFHyMzMZN26dRgMBnbt2kWrVq2c8wIkSaqUqKgosrOzadasGb6+viQlJbFnzx6MRqPDWtLFixezZcsWtm7dSmJiIpMnT2b+/PmVjqNnz56cOnWKU6dOXfdBtspj3759tGrVijlz5sikVJJuIjIplSRJqgYuXLjArFmz2LRpEykpKRQUFBAUFET37t157rnnaNasmd02iqLg4uJCw4YNefnllxk8eLATIpck6XpYuHAh33zzDSdOnCAjIwN3d3eio6N5+OGH7eb0BRg9ejRffvklgYGBjBgxgrlz5zq1ya0kSbc2mZRKkiRJkiRJkiRJTiP7lEqSJEmSJEmSJElOI5NSSZIkSZIkSZIkyWlkUipJkiRJkiRJkiQ5jUxKJUmSJEmSJEmSJKeRSakkSZIkSZIkSZLkNDIplSRJkiRJkiRJkpxGJqWSJEmSJEmSJEmS08ikVJIkSZIkSZIkSXIamZRKkiRJkiRJkiRJTiOTUkmSJEmSJEmSJMlpZFIqSZIkSZIkSZIkOY1MSiVJkiRJkiRJkiSnkUmpJEmSJEmSJEmS5DT/D/U0LNbB8mAeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,dpi=150,figsize=(7,4))\n", + "\n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , vasprun.tdos.densities[Spin.up], label=r'total DOS', lw = 2) \n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , Ni_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Ni-d', lw = 2) \n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , O_spd_dos[OrbitalType.p].densities[Spin.up], label=r'O-p', lw = 2)\n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , Nd_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Nd-d', lw = 2)\n", + "\n", + "ax.axvline(0, c='k', lw=1)\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.set_xlim(-9,8.5)\n", + "ax.set_ylim(0,20)\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7d42627e-84c4-4386-92bd-f1193e9fd8fd", + "metadata": {}, + "source": [ + "We see that the Ni-$d$ states are entangled / hybridizing with O-$p$ states and Nd-$d$ states in the energy range between -9 and 9 eV. Hence, we orthonormalize our projectors considering all states in this energy window to create well localized real-space states. These projectors will be indeed quite similar to the internal DFT+$U$ projectors used in VASP due to the large energy window. " + ] + }, + { + "cell_type": "markdown", + "id": "19285c12-c23a-4739-b5b1-56aa724bfb7f", + "metadata": {}, + "source": [ + "## 2. Creating the hdf5 archive / DMFT input\n", + "\n", + "Next we run the [Vasp converter](https://triqs.github.io/dft_tools/unstable/guide/conv_vasp.html) to create an input h5 archive for solid_dmft. The [plo.cfg](plo.cfg) looks like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "825c6168-97a7-4d2d-9699-b1d1e9af95dd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[General]\n", + "BASENAME = nno\n", + "\n", + "[Group 1]\n", + "SHELLS = 1\n", + "NORMALIZE = True\n", + "NORMION = False\n", + "EWINDOW = -10 10\n", + "\n", + "[Shell 1]\n", + "LSHELL = 2\n", + "IONS = 3 4\n", + "TRANSFORM = 0.0 0.0 0.0 0.0 1.0\n", + " 0.0 1.0 0.0 0.0 0.0\n", + " 0.0 0.0 1.0 0.0 0.0\n", + " 0.0 0.0 0.0 1.0 0.0\n", + " 1.0 0.0 0.0 0.0 0.0\n" + ] + } + ], + "source": [ + "!cat plo.cfg" + ] + }, + { + "cell_type": "markdown", + "id": "2c3f2892-bb0a-4b8d-99af-76cff53b194b", + "metadata": {}, + "source": [ + "we create $d$ like projectors within a large energy window from -10 to 10 eV for very localized states for both Ni sites. Important: the sites are markes as non equivalent, so that we can later have different spin orientations on them. The flag `TRANSFORM` swaps the $d_{xy}$ and $d_{x^2 - y^2}$ orbitals, since the orientation in the unit cell of the oxygen bonds is rotated by 45 degreee. Vasp always performs projections in a global cartesian coordinate frame, so one has to rotate the orbitals manually with the octahedra orientation. \n", + "\n", + "Let's run the converter:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "8c687309-93f0-48b0-8862-85eca6c572e5", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Read parameters: LOCPROJ\n", + "0 -> {'label': 'dxy', 'isite': 3, 'l': 2, 'm': 0}\n", + "1 -> {'label': 'dyz', 'isite': 3, 'l': 2, 'm': 1}\n", + "2 -> {'label': 'dz2', 'isite': 3, 'l': 2, 'm': 2}\n", + "3 -> {'label': 'dxz', 'isite': 3, 'l': 2, 'm': 3}\n", + "4 -> {'label': 'dx2-y2', 'isite': 3, 'l': 2, 'm': 4}\n", + "5 -> {'label': 'dxy', 'isite': 4, 'l': 2, 'm': 0}\n", + "6 -> {'label': 'dyz', 'isite': 4, 'l': 2, 'm': 1}\n", + "7 -> {'label': 'dz2', 'isite': 4, 'l': 2, 'm': 2}\n", + "8 -> {'label': 'dxz', 'isite': 4, 'l': 2, 'm': 3}\n", + "9 -> {'label': 'dx2-y2', 'isite': 4, 'l': 2, 'm': 4}\n", + " Found POSCAR, title line: NdNiO2 SC\n", + " Total number of ions: 8\n", + " Number of types: 3\n", + " Number of ions for each type: [2, 2, 4]\n", + "\n", + " Total number of k-points: 405\n", + " No tetrahedron data found in IBZKPT. Skipping...\n", + "[WARNING]: Error reading from EIGENVAL, trying LOCPROJ...\n", + "[WARNING]: Error reading Efermi from DOSCAR, trying LOCPROJ...\n", + "eigvals from LOCPROJ\n", + "\n", + " Unorthonormalized density matrices and overlaps:\n", + " Spin: 1\n", + " Site: 3\n", + " Density matrix Overlap\n", + " 1.1544881 0.0000000 -0.0000000 0.0000000 -0.0000000 0.9626619 -0.0000000 0.0000000 0.0000002 -0.0000000\n", + " 0.0000000 1.7591058 -0.0000000 0.0000000 -0.0000000 -0.0000000 0.9464342 -0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 1.5114185 0.0000000 -0.0000000 0.0000000 -0.0000000 0.9548582 -0.0000000 0.0000000\n", + " 0.0000000 0.0000000 0.0000000 1.7591058 -0.0000000 0.0000002 0.0000000 -0.0000000 0.9464339 0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -0.0000000 1.8114830 -0.0000000 -0.0000000 0.0000000 0.0000000 0.9495307\n", + " Site: 4\n", + " Density matrix Overlap\n", + " 1.1544881 -0.0000000 0.0000000 0.0000000 0.0000000 0.9626621 0.0000000 -0.0000000 -0.0000001 -0.0000000\n", + " -0.0000000 1.7591058 -0.0000000 -0.0000000 0.0000000 0.0000000 0.9464343 -0.0000000 -0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 1.5114185 -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.9548582 0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 -0.0000000 1.7591058 0.0000000 -0.0000001 -0.0000000 0.0000000 0.9464344 0.0000000\n", + " 0.0000000 0.0000000 -0.0000000 0.0000000 1.8114830 -0.0000000 0.0000000 0.0000000 0.0000000 0.9495307\n", + "\n", + " Generating 1 shell...\n", + "\n", + " Shell : 1\n", + " Orbital l : 2\n", + " Number of ions: 2\n", + " Dimension : 5\n", + " Correlated : True\n", + " Ion sort : [3, 4]\n", + "Density matrix:\n", + " Shell 1\n", + "Site diag : True\n", + " Site 1\n", + " 1.9468082 -0.0000000 -0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 1.8880488 -0.0000000 0.0000000 0.0000000\n", + " -0.0000000 -0.0000000 1.5912192 0.0000000 0.0000000\n", + " 0.0000000 0.0000000 0.0000000 1.8880488 0.0000000\n", + " -0.0000000 0.0000000 0.0000000 0.0000000 1.1979419\n", + " trace: 8.512066911392091\n", + " Site 2\n", + " 1.9468082 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 1.8880488 -0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 1.5912192 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 1.8880488 -0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -0.0000000 1.1979419\n", + " trace: 8.512066911289741\n", + "\n", + " Impurity density: 17.024133822681833\n", + "\n", + "Overlap:\n", + " Site 1\n", + "[[ 1. -0. -0. -0. -0.]\n", + " [-0. 1. -0. -0. -0.]\n", + " [-0. -0. 1. -0. -0.]\n", + " [-0. -0. -0. 1. 0.]\n", + " [-0. -0. -0. 0. 1.]]\n", + "\n", + "Local Hamiltonian:\n", + " Shell 1\n", + " Site 1 (real | complex part)\n", + " -1.5179223 0.0000000 0.0000000 -0.0000000 0.0000000 | -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 -1.2888643 0.0000000 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 0.0000000 -0.9927644 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -1.2888643 0.0000000 | 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 -0.0000000 0.0000000 -1.0828254 | 0.0000000 0.0000000 -0.0000000 -0.0000000 0.0000000\n", + " Site 2 (real | complex part)\n", + " -1.5179223 -0.0000000 -0.0000000 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -1.2888643 0.0000000 -0.0000000 0.0000000 | -0.0000000 -0.0000000 0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 0.0000000 -0.9927644 0.0000000 0.0000000 | 0.0000000 -0.0000000 0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 0.0000000 -1.2888643 0.0000000 | 0.0000000 -0.0000000 0.0000000 -0.0000000 0.0000000\n", + " -0.0000000 0.0000000 0.0000000 0.0000000 -1.0828254 | 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000\n", + " Storing ctrl-file...\n", + " Storing PLO-group file 'nno.pg1'...\n", + " Density within window: 42.00000000005771\n", + "Reading input from nno.ctrl...\n", + "{\n", + " \"ngroups\": 1,\n", + " \"nk\": 405,\n", + " \"ns\": 1,\n", + " \"kvec1\": [\n", + " 0.1803844533789928,\n", + " 0.0,\n", + " 0.0\n", + " ],\n", + " \"kvec2\": [\n", + " 0.0,\n", + " 0.1803844533789928,\n", + " 0.0\n", + " ],\n", + " \"kvec3\": [\n", + " 0.0,\n", + " 0.0,\n", + " 0.30211493941280826\n", + " ],\n", + " \"nc_flag\": 0\n", + "}\n", + "\n", + " No. of inequivalent shells: 2\n" + ] + } + ], + "source": [ + "# Generate and store PLOs\n", + "plo_converter.generate_and_output_as_text('plo.cfg', vasp_dir=path)\n", + "\n", + "# run the archive creat routine\n", + "conv = VaspConverter('nno')\n", + "conv.convert_dft_input()" + ] + }, + { + "cell_type": "markdown", + "id": "bee3bf4f-0b75-445c-b3d3-7402f778fff4", + "metadata": {}, + "source": [ + "We can here cross check the quality of our projectors by making sure that there are not imaginary elements in both the local Hamiltonian and the density matrix. Furthermore, we see that the occupation of the Ni-$d$ shell is roughly 8.5 electrons which is a bit different from the nominal charge of $d^9$ for the system due to the large hybridization with the other states. For mor physical insights into the systems and a discussion on the appropriate choice of projectors see this research article [PRB 103 195101 2021](https://doi.org/10.1103/PhysRevB.103.195101)" + ] + }, + { + "cell_type": "markdown", + "id": "18739e80-3c9e-4bea-9e0b-677421ec99aa", + "metadata": {}, + "source": [ + "## 3. Running the AFM calculation\n", + "\n", + "now we run the calculation at around 290 K, which should be below the ordering temperature of NdNiO2 in DMFT. The config file [config.toml](config.toml) for solid_dmft looks like this: \n", + "\n", + " [general]\n", + " seedname = \"nno\"\n", + " jobname = \"NNO_lowT\"\n", + "\n", + " enforce_off_diag = false\n", + " block_threshold = 0.001\n", + "\n", + " \n", + " n_iw = 2001\n", + " n_tau = 20001\n", + "\n", + " prec_mu = 0.001\n", + "\n", + " h_int_type = \"density_density\"\n", + " U = 8.0\n", + " J = 1.0\n", + "\n", + " # temperature ~290 K\n", + " beta = 40\n", + "\n", + " magnetic = true\n", + " magmom = -0.3, 0.3\n", + " afm_order = true\n", + "\n", + " n_iter_dmft = 14\n", + "\n", + " g0_mix = 0.9\n", + "\n", + " dc_type = 0\n", + " dc = true\n", + " dc_dmft = false\n", + "\n", + " [solver]\n", + " type = \"cthyb\"\n", + " length_cycle = 2000\n", + " n_warmup_cycles = 5e+3\n", + " n_cycles_tot = 1e+7\n", + " imag_threshold = 1e-5\n", + "\n", + " perform_tail_fit = true\n", + " fit_max_moment = 6\n", + " fit_min_w = 10\n", + " fit_max_w = 16\n", + " measure_density_matrix = true" + ] + }, + { + "cell_type": "markdown", + "id": "26910f2d-fd3d-4d72-adc5-99e79f72452d", + "metadata": {}, + "source": [ + "Let's go through some special options we set in the config file: \n", + "\n", + "* we changed `n_iw=2000` because the large energy window of the calculation requires more Matsubara frequencies\n", + "* `h_int_type` is set to `density_density` to reduce complexity of the problem\n", + "* `beta=40` here we set the temperature to ~290K\n", + "* `magnetic=true` lift spin degeneracy\n", + "* `magmom` here we specify the magnetic order. Here, we say that both Ni sites have the same spin, which should average to 0 at this high temperature. The magnetic moment is specified as an potential in eV splitting up / down channel of the initial self-energy\n", + "* `afm_order=true` tells solid_dmft to not solve impurities with the same `magmom` but rather copy the self-energy and if necessary flip the spin accordingly\n", + "* `length_cycle=2000` is the length between two Green's function measurements in cthyb. This number has to be choosen carefully to give an autocorrelation time ~1 for all orbitals\n", + "* `perform_tail_fit=true` : here we use tail fitting to get good high frequency self-energy behavior\n", + "* `measure_density_matrix = true ` measures the impurity many-body density matrix in the Fock basis for a multiplet analysis\n", + "\n", + "By setting the flag magmom to a small value with a flipped sign on both sites we tell solid_dmft that both sites are related by flipping the down and up channel. Now we run solid_dmft simply by executing `mpirun solid_dmft config.toml`. \n", + "\n", + "Caution: this is a very heavy job, which should be submitted on a cluster. \n", + "\n", + "In the beginning of the calculation we find the following lines:\n", + "\n", + " AFM calculation selected, mapping self energies as follows:\n", + " imp [copy sigma, source imp, switch up/down]\n", + " ---------------------------------------------\n", + " 0: [False, 0, False]\n", + " 1: [True, 0, True]\n", + "\n", + "this tells us that solid_dmft detected correctly how we want to orientate the spin moments. This also reflects itself during the iterations when the second impurity problem is not solved, but instead all properties of the first impurity are copied and the spin channels are flipped: \n", + "\n", + " ...\n", + " copying the self-energy for shell 1 from shell 0\n", + " inverting spin channels: False\n", + " ...\n", + "\n", + "After the calculation is running or is finished we can take a look at the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f42d62cc-f8b4-4fc7-af76-cdf7ba13e8ea", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(path+'/nno.h5','r') as ar:\n", + " Sigma_iw = ar['DMFT_results/last_iter/Sigma_freq_0']\n", + " obs = ar['DMFT_results/observables']\n", + " conv_obs = ar['DMFT_results/convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "65dba97b-a64c-4d88-b7cc-3607605a9aa3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7oAAAQACAYAAADP8iXwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeViU5f7H8ffMMOyLgCjgiqiRa2ppVpZmHT25lGnZ0U62Wtm+Wv1atNM5Vm5Zltmm7ZZbZdpyKtfE3bTcUlLRA6igIDszzPz+GEAQUJaBGcbP67rmgrmf+3nu7+MgzHfuzWC32+2IiIiIiIiIeAijqwMQERERERERcSYluiIiIiIiIuJRlOiKiIiIiIiIR1GiKyIiIiIiIh5Fia6IiIiIiIh4FCW6IiIiIiIi4lGU6IqIiIiIiIhHUaIrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOieZt26dQwfPpzIyEjMZjNhYWH079+fBQsW1Oh6+/bt46677qJ169b4+voSERHBJZdcwuTJkyusb7PZeO211+jcuTN+fn5ERERwww03sHPnztrcloiIiIiIyDnDYLfb7a4Owl3Mnz+fm266CZvNxoUXXkhsbCxJSUn8+uuv2Gw2xo8fz8svv1zl6y1evJhRo0aRn59Pt27daN++PWlpafz+++8EBASwb9++MvXtdjs33ngjCxYsoFGjRvTv35/U1FRWrVqFr68vy5cvp1evXs6+bREREREREY+iRLeI1WolOjqaY8eOMW/ePEaOHFlyLD4+niuvvJL8/Hz27t1LbGzsWa+3bds2evbsSVBQEF999RWXXXZZyTGbzcaWLVu48MILy5zzwQcfcMcdd9CuXTtWr15N06ZNAVi4cCEjRowgNjaW3bt34+Xl5aS7FhERERER8Twaulxk9+7dHDt2jLi4uDJJLkDv3r0ZMGAAdrudzZs3V+l6DzzwAAUFBcydO7dMkgtgNBrLJbkAU6dOBeDVV18tSXIBhg8fztChQ0lISODrr7+u7q2JiIiIiIicU5ToFvHx8alSvbCwsLPW2bVrF6tXr6Z9+/YMHjy4Stfdv38/O3fuxM/Pj0GDBpU7PmLECACWLFlSpeuJiIiIiIicqzQGtkibNm1o06YNu3fv5ssvv+TGG28sORYfH88PP/xATEwMl19++Vmv9fPPPwNw9dVXk5eXxxdffMGmTZswGAx06dKFG2+8keDg4DLnbNu2DYBOnTphNpvLXbN79+5l6omIiIiIiEjFlOgWMZlMzJ07lyFDhjBy5EgmT55MbGwsycnJrFmzhp49e/Lxxx/j7e191mvt2LEDAD8/Py644AL27NlT5vjTTz/NwoULyyTNiYmJADRv3rzCaxaXF9erio4dO1ZYvmfPHvz8/GjZsmWVryUiIiIiIlKfEhMTCQgIICUlpdrnauhyKX369GHlypXExMSwadMmvvjiC1atWkVAQABXXXUV0dHRVbrOiRMnAHjttdc4fvw4ixYtIj09nT179jBq1ChSU1O57rrrSE5OLjknKysLAH9//wqvGRAQUKZebdjtdiwWS62vIyIiIiIiUlcsFgvZ2dk1Olc9uqV8/vnn3HbbbVx88cXMmzePjh07kpSUxJQpU3jppZf4+eefWblyZYVDi0srLCwEHCs5f/LJJ/ztb38DICQkhE8//ZS9e/eyceNG3nzzTV566SXAkXwCGAwGp91Pcc/y6Yp7eis7LiIiIiIi4mqVjVCtCvXoFtm7dy9jxowhIiKCpUuX0rNnTwICAmjXrh2zZ89myJAhxMfHM2fOnLNeKygoCIBmzZqVJLml3XbbbQCsWLGi3DmVfWJRXB4YGFit+xIRERERETnXKNEtMm/ePCwWCwMHDiwZJlxa8eJUpZPTyrRu3RqAVq1anfH40aNHS8qK58sePny4wnOKyzWvVkRERERE5MyU6BYpTiRPXw25WHH58ePHz3qtbt26nbFuWloaULZ3tmvXrgD88ccfFc6f3bJlCwBdunQ5a/siIiIiIiLnMiW6RSIjIwHYtGlThcc3btwInOqNPZP+/fsTEBBAQkIChw4dKne8uFe4eMsggJiYGM4//3xyc3NZunRpuXMWLFgAUOV9eUVERERERM5VSnSLXHvttQCsWrWKWbNmlTm2bt06pk+fDsCIESNKymfOnElcXBxPP/10mfr+/v488MADWCwW7r333jLzbr///ns+/PBDDAYDY8eOLXPeo48+CsCTTz5ZZljzokWL+Oabb4iJieG6666r/c2KiIiIiIh4MK26XKR79+48/vjjTJkyhXHjxvHmm2/SoUMHkpKSiI+Px2azMXbsWK666qqSc1JTU9mzZ0+ZbYKKvfDCC6xevZqlS5fSrl07evXqxdGjR1m3bh02m41///vf9OzZs8w5t99+O8uWLWPx4sXExcXRv39/UlNTWblyJb6+vnzyySdnXfFZRERERETkXKce3VImT57MokWL+Nvf/kZKSgqLFy9m586dXHHFFXz66afMnj27ytfy9fXll19+4d///jeNGjXiu+++Y8eOHfTr149vv/2WZ555ptw5RqOR+fPnM3XqVKKjo/n222/5/fffGTZsGJs2beKSSy5x5u2KiIiIiIh4JIO9eANXOWdoH10REREREXF3tclb1KMrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOiKiIiIiIiIR1GiKyIiIiIiIh5Fia6IiIiIiIh4FCW6IiIiIiIi4lGU6IqIiIiIiIhHUaIrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIexcvVAVTF/v37Wb16NcnJyeTn51dYx2Aw8Nxzz9VzZCIiIiIiIuJu3DrRLSgo4M477+TTTz8FwG63V1pXia64i9SUQ+z9/k0Ck9fjXZhDgcmf7KjetB14L40jW7g6PBERERERj+fWie7zzz/PJ598QmhoKDfffDPt27cnMDDQ1WGJVCgvJ4vt791Dt7Rl9DYUnjpgBQ5swTLrbdaHD6LrXW/j6xfgsjhFRERERDydWye6n332GY0aNWLLli20atXK1eGIVCovJ4uE1wbSs+B3MFRcx2wopNfxb9gxfT+xD3+Pr78+tBERERERqQtuvRjV0aNH6dOnj5JccXvb37uHjgW/c4bR9QDY7dCx4He2vXdv/QQmIiIiInIOcutEt1WrVmRnZ7s6DJEzSk1JpFvaMgAMlfTmFis+3j1tKakph+o4MhERERGRc5NbJ7p33HEHGzZs4NAhJQTivvZ+/xbm0nNyq8BsKGTf97PqKCIRERERkXObWye6jz/+OIMGDeLvf/87K1asOOOqyyKuEpi8vkbnBSTHOzkSEREREREBN1+Mqm3btgAcPHiQ/v37YzabiYqKwlDB+FCDwUBCQkJ9hyiCd2FOjc4LshwjPy8HH19/J0ckIiIiInJuc+tE98CBA2WeFxQUcPDgQdcEI1KJApO/YwuhamptO0TepJb84duRzMiLCe3QnzYXXI63j6/zgxQREREROYe4daJrs9lcHYLIWWVF9YIDW2p0rq/BQqf83+Dgb3DwbXKW+bDbrxPZUb0J69if2K6X4WX2dmq8IiIiIiKezmDXxNdzTseOHQHYsWOHiyPxDKkpiTSa1RUvQ9U/mLHZIR8zfgbLGetl2f1I8O9MbnRvwjtdRZvOl2DycuvPp0REREREnKI2eYveMYvU0v92rSeMqn1eZLc7thjaGD6UC8bOZudvq8jYtZzg5Hja5u/E57TEN9CQS9fcDZCwARJmcPJrf/7y70pes0uI6HwVMR17YTSZ6uK2REREREQarAbRo/vHH3/w1ltvsXr1apKSkjAYDERFRXH55Zdz77330qlTJ1eH2KCoR9d5dm/8iVbf/gM/Q0GVz9nh3ZnYR37A1y+gTHlebjYJW1ZwcvcvhKSso23BLrzPsm1ROoHsD7iA/OaX0rRLf1rFXajEV0REREQ8Qm3yFrdPdGfMmMETTzxBYWFhhdsLeXl5MXnyZB566CEXRNcwKdF1jgO7NhH6xVBCyAYgy+7Ln4EX0TlrbYX76lrsJraED6LrXW+XS3Irkpudyb7Nv5C15xdCj6wn1vLnWffrPUEw+wMvwNLiMiK7Xk3L9hdgMLr1LmIiIiIiIhXy2ET3v//9LwMGDMDf35977rmHf/7zn7Ru3RqDwcCBAwf4+OOPefvtt8nJyeHHH3+kf//+rg65QVCiW3spiXsxfvA3mnAcgAK7F39ePYdOlw0lNeUQ+76fRUByPN6FORSY/MmO6k3bgffSOLJFjdvMzkwnYfPPZO9ZQfixdcRa9mIynPm/byqNOBjUHWvLy4ju9jeat+lY7cQ3NeUQe79/k8Dk9U69HxERERGRM/HYRPfvf/87P//8MytWrOCSSy6psE58fDyXX345V199NcuWLavnCBsmJbq1c+JYMpmz+tPS9j8AbHYDv/V+je4Db63XODIzjvPX5h/J3bOCxqkbaGP9C+NZEt+jhJEY3B1bqz406zaA6NbnVZr45uVksf29e+iWtswpPdQiIiIiItXhsYlueHg43bt357///e8Z61199dVs2bKFtLS0eoqsYVOiW3PZmen8b8bVtLf+WVK2vuNz9LrhcRdG5ZBx/Bh/bfqB/H0raZK6gTa2A2c9J4UIDoX0gJg+tOg+gMiW7QBHkpvw2kA6Fvx+1mvs8O5M7MPf4+sfWNtbEBEREREp4bGrLufk5BAREXHWehEREeTk5NRDRHIuK8jPI+HN6+lSKsmNb3UPvd0gyQUICYug299uhr/dDEB6agr7N/9Awd6VND2+kda2xHLnRHKMyIzv4bfv4bf/43+GpvwvpAcBOYfpWPB7ySrRlbHboWPB76x/7156PfhxXd2aiIiIiEi1uHWPbvv27bFYLOzbtw9TJSvJWq1W2rVrh9ls5s8//6ywjpSlHt3qsxUWsvW1EfTI/KWkbH3j4fQc916DWewp7chhDmz+AWvCKqJObCwZeu0MFruJjHu3ac6uiIiIiDhNbfIWt36Hfu2113Lw4EHuvPNOTp48We74yZMnueuuu0hMTOS6665zSpvr1q1j+PDhREZGYjabCQsLo3///ixYsKBa1yleNKuyx+7du8udc+utt57xnLffftsp9yjVY7fZ2DjrrjJJ7uagK7no3ncbTJILEN60OT2uuYNeD3xIy+d3cmzsNjb1eJUNYUM4bIiq1bXNhkL2LpmG3WZzUrR1KzXlEPFzn+L3Sf3Y81Ivfp/Uj3VznyE15ZCrQxMRERERJ3DrHt3jx49z0UUXceDAAYKDg7nmmmtKEsj9+/ezdOlSTp48SZs2bdi4cSOhoaG1am/+/PncdNNN2Gw2LrzwQmJjY0lKSuLXX3/FZrMxfvx4Xn755Spdq3Xr1hw8eJAxY8ZUeHzSpElERZVNLm699VY+/PBDBgwYQGRkZLlzxowZQ79+/ap/Y6dRj271xM8ZT++Dpz5k2O7bg7hHluHt4+vCqJwv5dA+Dm35kdZbXyWCEzW6Rq7dmzRjGCfNEeT4NMEaEAnBUZgbRRMQ3oLgpq1oHNXKZf92WmBLREREpOHw2MWoAJKSkrj77rtZunRphccHDRrE7NmziY6OrlU7VquV6Ohojh07xrx58xg5cmTJsfj4eK688kry8/PZu3cvsbGxZ71ecaJbnX/e4kR3+fLl9O3btya3USVKdKtu/fwp9Nrxr5Lnf3q1p9lD/yUgqJHrgqpje17qxXnW8iMOnOk4wZwwNSbLuzH5fk0pDIzCFBKNT1hzgiJaEtq0JY3Cmzq1x1wLbImIiIg0LB67GBVAdHQ0S5YsYf/+/axZs4akpKSS8ssuu4yYmBintLN7926OHTtGXFxcmSQXoHfv3gwYMICvv/6azZs3VynRlYZvy/dzufCPl6BoMaZEYzMaj/3Ko5NcgAKTP1jrto0wThJWeBJy/4JcKNqOuIx8u5k0YxgZXo3J8W2CxT8SgiLxCm2Gf3gLQpq0IjyqZZV7Xre/dw89tcBWg6I9nEVExN3ob1PD4faJbrGYmBinJbUV8fHxqVK9sLCwOotB3Mcfvy6hU/xjmIr2pT1KGOYxiwlr0szFkdW9rKhecGBLtc+Lb3YbTS6+iaxjieSf+B+FGUmYspLxyT1CYMExwgrTCKX8XPvK+BgsRNuPEG05ApYdkAkcKV/vBEGkG8PJ9I4gz68JhYFRGIOj8Q1vRkB4C0IjW2GzWumWtgwMZ05y4dTx7mlLSU05pD9aLlB6iHnv0kPMrcCBLVhmvc16DTEXEZF6pL9NDU+DSXTrWps2bWjTpg27d+/myy+/5MYbbyw5Fh8fzw8//EBMTAyXX355ta47efJkEhIS8PHxoWPHjgwbNuysWyYtWrSIhQsXUlhYSExMDEOGDCEuLq5G9yXVt2/bGlr/eBfeBke3ZgYB5IycT+tW57k4svrRbuA4LLPeqXAOa2UsdhPthjxWlBReXGm9/Lwc0lIOcfLIQbLTDmE58T/ITMErOwX//KMEW47R2JaGr8FS5bZDySTUlgl5ByAPKppebLUb8DJUb5aG2VDIvu9n0fjW/1TrPKmd4iHmPQt+LxlNcTqzoZBex79hx/T9GmIuIiJ1Tn+bGia3mqP70UcfATBs2DCCgoJKnlfVLbfcUqv2V69ezZAhQ8jIyChZjCo5OZk1a9bQs2dPPv74Y9q2bVulaxXP0T2dv78/r7/+OnfccUe5Y8VzdE9nMBi49957mTFjBl5eVf9sonhM++kSEhKIjY3VHN0KHNr3OwGfXENYUc9jrt2bg4M/J+6iq1wcWf3a8PrN9Dy+pErDfA0GWB821GnDfO02GydPHOP4kUQyjyaSf/ww1owkjFnJ+OQ4eocbFaYRZs/AWM3ktboOGyJJ6nI/fuEtHQtpRbd226HrnjKUypU/eyIiIhXR3ybX8ZjFqIxGIwaDgV27dtG+ffuS52djt9sxGAwUFla9B6oy27ZtY9iwYezfv7+kLCgoiIceeoinn34af3//Kl3nwQcfpF+/fvTo0YOIiAj++usvPvjgA2bMmEFhYSGLFy8utyXSjBkz8PX15corr6R58+akpKTw3Xff8eyzz3LixAkefvhhpk+fXuV7UaJbPalJByl49yqi7UcBsNqN7LhiNl2vvPEsZ3qeai/c9MgP9T5Mx1KQT1pKIulHDpKTdpiCE//DfjIJc3YKfnlHCbakEm5Lw9+Q79R2T+LPcWNjTnpHkOfblMKgaEwhzfAJb0Fwk5aERbUhuFF4vW095UkrSaemJBIy64JqjyZoSHs4e8oHEtKw6OdOpObOhb9N7sxjEt0JEyZgMBh44IEHCAsLK3leVS+88EKt2v/888+57bbbuPjii3n11Vfp2LEjSUlJTJkyhXfeeYfevXuzcuVKzGZzjdt45513uPvuu2nfvj179uyp0jl//PEHPXr0oLCwkP3799OiRe3+02jV5fIyTqSS9kZ/2tgOlJRt7DaJi64d57qgXCwvJ4tt791L97SlDTaBsttsZJ48QdLMQcRZd9Vbuzl2H9KM4Y5tlvyaYg2IwhjSDJ+wFgQ2aUloZGtCG0dhNJlq1U5DX0naUpBPVsZxsjPSyM06wYkVb9EzfVm1rxPfciy9b59cBxE6jyd9ICENhyf/3Cl5l/oSP/cpeh+YVe3z1rW+j4s1/anWPCbRdaW9e/fSsWNHmjZtyu7duwkIKPsLf+jQoSxZsoTZs2czduzYGrdjs9mIiori6NGj/PXXX1VeYOuGG25gwYIFfPDBB9x22201bh+U6J4uLyeLv6YPoIPlj5Kyde0e4+LRz7swKveRmnKIfd/PIiA5vsG+majpH6n9xlbkmwJoZDlGuP14tT7NPZsCu4lUYzgZXhHk+DbFEhAFwdF4hzXHv3ELQiNbE960BV5m70qv4cqhVFZLAdknT5CVcZzczOPkZ6VTkH0Ca04GhbkZ2PMyMORlYCzIxMuSiZc1C19rJr62bPxt2QTYc/AzFDglFoBsuy8ZxhCyTCHkmkMp8Amj0DcMAhpjDGyMd3AT/EKaEBgWRUjjSAICQ+q1170hfyAhDZOn/tx5cvLuiRrSBxKFVitpRw6RfuQgWccOUXD8EPaTybRN/oYI0qt9vb+MrSi4ZjqNo9sS1rR5rT/cPld59PZC9WXevHlYLBYGDhxYLskFuPHGG1myZAkrVqyoVaJrNBqJjY3l6NGjJCcnVznRbdeuHQDJyck1blvKs1oK2DXzBrqVSnLjo2+ht5LcEo0jWzT4BZlqusBW0NilxBT9IbYVFpJ67H+cSD5A1rFECo4fwpaRhDk7Cb+8I4RUcyEtb0Mh0fajRFuOnlpVOqVsnUK7gaOGUE54RZDt05SCgEgIjsarUTNMZv8aryQd2jiKrMx0R09q5gnys05QkJ2ONSedwtwMbLnpGPJOYihKUs2WLLytWfjZsvCzZRNoz8bfkE8IEFLlf9HTg6rpiRULMOQRYM8D6xHHCpi5Z66fbzeTbggm09SIHHMjCrxDsfqGYfcPxxgQgTm4CX6NmhAQ2pSQ8CiCGjWu8ZsUT9/aqiG9ka0qT7gnT/y504JADYe7rVCck5VBWvIBMo4mkpd2GMuJwxgzk/HOPUJA/lEaWVMJt5+gicFOEye12cZ2EL69HnD8zTlqjCDdO5Jc/2gKQ1pgDmtFQNM2hEbHEhHVGlM11uFxNk/4nVcRt050TSYTt956K++///4Z6911113MmTMHq7Xmm38ePnwYgODg4AqPF5cfP17Bhp/VdOKEY1nYwMCq//KtyTlyZnabjS1vjqFnztqSsg2NruHiO2e4MCqpC40jW7Ih/Jpq9X5uCR9Er1K/3I0mE40jW9I4smXl59pspB8/SlryAbKOHSAv7TC2jP/hlZWMb24KwZZUGhceI8CQV6W4TQY7TThOE+txsO6BbOBoqQrVTBbNhkKCZl2AyWB1qyS10G4g2+CPt72gWitu14aPwUJT0mhamAaFOFbsPsPuV1a7kROGIDKNIWR7NSLfOxSLbzg2v3CMgY3xCorAJziCgNCmBIVH0Sg8Ei+zN6kpiR67tZW7vZF1Bk+5J0/9ufPE5L00T0k26vMDCbvNxonUZI4nHyAr9RD5xw9jL1rA0jfvCMEFxwizpRFMNv7AGf8Vnfy3rTQfg4UW9iRa5CdB/hbHDhEHTh232E0cMTbmhDmSHP9orMEtMIW2JKBJUSLcLAazd9W2Qq0OT/mdVxm3TnTtdjtVHVld2xHYkZGRAGzatKnC4xs3bgQcqynXxo4dO9izZw/+/v5V3jIoPz+fpUuXAtCjR49atS+nrHv3IXqXmg+41f8Sut/3Yb0NZ5T61eXOt9nx2oGzDuMzGBzD+Lre9Xa12zAYjTRqHEmjxpGcaZulzIzjHE/az8mjB8lLO4Q1/X+YspLwyT1CUP5RwmypNCKr2u1XhY+h5h8IVibT7ke2IYBcYwB5pgAKvIKwmIMoNAdi8wkGn2CMfiGY/Bth9m+ET0AjfIJC8QsKJSA4jIDAEIJNphoPMY+P+idNeo8iJ/0I+RlHsWYew56dijE3De/84/gUpBNQmE6wLYMQe1aNVuv2MtgIJ4NwWwYUJEIBnO0lyiAAE4ZqD3lvCFtbeWLPWkO6p+KpA9knTzimDmRnFI3KcEwd8PvrexrX4Ocud/bf+M2vFTaDF3ajF3aDFzajGbvJDAYv7CYzdqMXGM1gMmMwmsHkBSZvDCYzBpOj3GgyY/AyYzB5Y/RyPDeavTF5eWM0mTGZvTF5mTF6+eBlNmPy8sbL2wcvL29MZm/MZm+8zN6YTF4lf5M9NXkHz0s2nPWBREF+HqnJBx1bEqYmYkn/H5xMxpyTgn/eEUKsqTS2HSfMYCXMifGfJIA0Y2MyvSPI822Cf85hOhVsr/Z1jhGKNwWEkH3WumZDIdH2I0QXHIGCbZAOJJ46Xmg3kGII54S5Kdl+0ViCmmMKa4VfRGsaRbelSfNYfHyrtmBusYb0O6+m3HqOrtFo5NZbb+WDDz44Y70bb7yRb7/9lpycnBq3tWXLlpIk8q233uLee+8tObZu3TquuuoqsrOz+e9//8tVVzm2mpk5cyYzZ85k2LBhTJo0qaT+Dz/8QOPGjcslpdu3b+emm25i165dPPjgg8yYcarncM+ePezevZvBgwdjKjU87tixY4wdO5avvvqKrl27snXr1mot0FURzdGFdZ9O5OK900qe7zR3os0jPzS4/8BSPQ1pga3c7ExSkw+QceQAuamHsKYXDbPKSSEw/yitrfudMmc42+5LtsGfHGMAecZA8r0CsZqDsHoHYfMOwuATgsEvBJNfCF4BjfAOaIRvYCh+QY0ICGlMYFAjp807qo+VLa2WAjKOHyXzeArZx4+Ql3EUa+ZRbNlpGHNS8co/jk/BCQIs6QTZ0gmxZzp1bnZVFdhNHDM2Js8YQL4pgAJTAFZzIIXmAOzmQOw+QRh8gzH6BuHlF4zZPwRv/xB8AxvhGxiCf1AoAYEhdTYnzBO32qiPe7LbbORknyxKUE+Qm3WCgqx0LDknKcxNx5Z3EnveSQz5mSXz283WLHwKs0vmt/vbc52+mrw7K7CbsOKFEVuNRnxs8b8Ue6cbMPsH4x3YCL+ARvgFh+Ef1Khe5+pXxtPmUtfk97jVbmRj1CiMlsySbQTDCo+VbPXoLIV2A2mGUNK9GpPl0xSLf1NsQdGYG0UXbSPYksZRrfELCKr1PZX+25SZcZzUw3vJSNlP/rH92NMP4Z11iMC8FBpbU5x2n8cI5bhXU7L8oikIbI4xtCW+Ea1pFBVLkxbtyt1XQ/k97lFzdBMTE8s8z8rKKldWzGq1smfPHn788UdiY2Nr1W737t15/PHHmTJlCuPGjePNN9+kQ4cOJCUlER8fj81mY+zYsSVJLkBqaip79uwpN282Pj6eiRMn0qpVK2JjY4mIiGD//v1s2bIFq9XKFVdcUSYxBsfc2+uuu47w8HDi4uJo1qwZR48eZfPmzWRmZtK8eXO+/PLLWie5Ahu/fqtMkvuXsTXNxn3t1n84xDl8/QPp9eDHZ1xgq5ebfPLvFxBEi7adadG2c4XHf5/Uj875W6p93T1ecQSN/pCAkHACg0MJ8PLCXfoHnDHE/Gy8zN6EN21OeNPmVapvt9nISE/jZFoS2SeOkpt+BEvmMQqzjmHIScMrNw3vghP4W04QWJhBI3uGU4ZfexsKaWY/4hhWXfze6izzjiuSZfcjx+BHrtGffKM/+aYALF6BFHoFYPMOLPowIwiDbxAm32C8/EMw+4fgExCCb0CI4wON4FB8fPw8umetJvfUI+1bNix+A4PBiC3vJLa8DChKUE0FWZitmXhbs/AtzMHPlo0/OQTYcwgw2Gv3f+4cexvgbSjEm5p/2NQ951fY8GuFx2x2A5kGP3LwJ7foQ6X8og+VrOYg7N5BJR8qmYo+8PMOCMEnoBG+QaH4BTYiMCSszP+P6nLn4dh2mw2LpYC83GwK8rIpyM3BkpdNQX4O1qJHYX4uhQU5FBbkYrfk4vvXj9UeTeBlsNE75ZNaxVp+t4NIjMHRmEObExjhWOAxrElzmnh5VXsObm3/NgWFhBEU0gs69qo49qwMjh1OICP5L3KP7ceWnoh35mECcpMJt6YQwYkqxRnBCSKsJyBzt2Pdj9OW9TlOMGleTcn0jaLAJ5SL0pZ61O/xirhdj27pvXOL98c9G7vdzmuvvcaDDz5Y6/YXL17M22+/zebNm8nIyCAoKIgLLriAO++8k1GjRpWpO2HCBCZOnMiYMWOYO3duSXl8fDzvvfceGzduJCkpiYyMDIKDg+nSpQujR4/mtttuK9NrC5CUlMTkyZNZt24dBw4cIC0tDR8fH9q3b8+QIUN46KGHCA0NrfX9wbndo7vtl3l0XHkvXgYbAEmGpnjf9V8aR7dycWQi1eOp2x00hD2czyYnK4P01BSyjqdgXPowbQv/cnVItVZgN5Fj8COnaC514xqsQLrT3JGT4ReA3VbyMGA/9Rw7BrvN8U6x9LFS5QZsju+xO54XHy+pYzv1fanyMmXF1yl1PKTweJXfTLqb4lEZucYAxwgAr0Ca5e0lnIxqX+ugoTnJ7W6CQgsUWrHbLI7vbRYMNiuGQgvYHV+NNgsGuxWDzYrRbsVos2K0WzDaCzHZLBjtVkx2KyYKHV+LvvfCiheFeNmteGHF2wUjJpytwG5yjIwx+JNXNIXD4hWI1SuQwqLRMfgEOaZw+AY7Rsf4h1BotRD3063V7in8300/4RsY7Eg683Kx5GeXSTptBbmOhyUXuyUPLLlgzcVgzcdYmIfRmoexMB+TLQ+vwny8bPl42fPxtuVjthfgQwE+9nx8KMBUg6kezpZGCCdMjcnyjiDfvym2wChMjZrhF9acoCYtCYuKISg4tE575135tykvN5tj//uL9KS/yD32F4UnEjGfPIR/bjJhlhQi7Gn19jq54j2ER20v1Ldv35LkduXKlTRt2rTSuaze3t5ER0czdOhQhg0bVp9hNmjnaqK7e8N/abV0VMmWJmmEkHvzMpq37eTiyESqz5M3sG9IQ8zPpqYfSKwPuxb/C4ZhzT2JJedkmSGtBks2JksWXpYsvAuz8S7McQxrtecQYM/Fp54W9JLaKbB7kVUqOco3BVLgFYDVHIStaH67wSeoaOpA8Kn57YEh+AWF4RcUSmBQowpXam1IH4TZbTYKC61YLQVYLAUUWgqwWguwFuRTaC3AarFgs+ZTsPgBzrPuqfb1MwjgmCkSX1sO/vZs/R9xU+kEsrvpEAiOwhzanIDwFgQ3bUV4ZItqzz2tK+76t8lSkM+x/+3nRFIC2UcdibDXyUP45yTRyJJCE1uq06bg/O7Tnc5PL3fKtarKoxLd0qo6R1eq51xMdA/s2kToF0NLFgTIsvuRcv1C2na91MWRidRcQ5lfU1OesIezKz6QKMjPIycznZzMdHKz0snPdswBteRmUJhzEnv+ScjLhIIsxzxQaxZe1my8rY6E2deWgz85BNpza7Rw17kk1+7NQe+2RcNdg7CaA0sNd3UkqF7+jTD7B+MTGIpf0fz2wJCwOn3z7okfhDkzec/PyyH75AlyTp4gLzudvKwTWLIzsOZkFH2olIk9PwNjQRamAsc8ae+iudLFw9AD7Tlu0dtZ3/LsZvIN3uTjQ4HBG4vBB4vRB2vRo3nenzWac+qKBKqmGtrfpkKrldSUgxz/3z6yj+zHcvwA7Q98VqNRH3u84jjv2fV1EGXlPGqObmn79+/XdjpSa8kH9+D/xQ0lSW6B3YsDf3uXTkpypYGrj5WkXckT9nCuj3nHp/P28cXbp3j175qz22zk5GSSczKdnKwT5GVlUJCTgd8vzxNr21/t6x0hnAONrwAM2A1Gx80ajDgmiRmxG0yO+acG46lH0TEMBgwGE/aicwzF55a6jqH0eQbDqedGx3UMBqNjaGNRmQEDGEwYjAZCNrxWo3va59vJLd+cu+Lnrq7VdD/0tgPvLVfu4+uPj68/YU2a1Tie4v8f2SdPkJPp+EApP+sElpwMCnMyKCyzsNhJvCxZeFmz8LE6Fhbzs2UTbj9Rq2TZYjeRjzf5Bm8K8MZiLEo8DT5YTT4UGn0oNPlQaPLFZvLF7uV44OWHweyLweyHweyH0dsPo7c/Xt5+mHz8Mfv6Y/bxw+wTgLdfgOPfq+irr9GI7xliqukHEtlRvWv871DfGtrfJpOXF02bx9K0+an1jH6ftJ7wGqzzUWByj971qnLrRLdVK82blNo5fvR/WOdeRxSO/Y8L7QZ2XDKNbpcOcXFkIrXn6x9I7MPfs94Nh1LJKQ31AwmD0Yh/YAj+gSHAqb/H8fvWEluDN7L7W9/ktvPD41N21+ie3PnNeUP9uauMuyXvZf9/1ExNFxX8w7srcU/8hNnsjRlwpy4hZ34gIXUnK6oXHKj+z547/86riFsPXS6Wk5PD8uXL2bt3L5mZmRXumWswGHjuuedcEF3Dc64MXc46eYLk16+mnXVvSdn6js/T64bHXBiVSN1oaEOpzjXuOrerJjxxWKwn3hN41s8deMZidaU1pLnU1eHp02o8QUP6neexc3QB5s6dyyOPPMLJk6fG+5++GnPx88LChr9yX304FxLd/Lwc/px+DZ3zt5aUxbe+l963vuzCqETkXOcpH0h44htZT7ynYp7ycweelbw3pGSjOjztAwlP1VB+53lsovvTTz8xYMAAQkJCuO+++1i+fDnx8fG8/fbbJCQksHjxYvbu3cv9999Pjx49GDNmjKtDbhA8PdG1FRay9bXh9Mg8NW9qfcQIet77rss3hhcR8QSe+EbWE+/Jk3lK8t5Qko3q8qQPJDxVQ/md57GJ7t///nf++9//snnzZrp27cptt93GRx99VNJzW1hYyBNPPME777zDunXr6NRJ28RUhScnunabjQ1v3Umv1IUlZZuC+tP94fkYT9u7WEREas4T38h64j2Je2soyUZNecoHEp6qIfzO89hEt3HjxsTFxbFmzRqAcokugM1mo23btnTr1o2FCxdWdikpxZMT3fg54+l98NSCGtt9exD3yDK8fc60RqCIiNSUJ76R9cR7EvfVEJIN8Wzu/DvPY7cXysrKomXLliXPfX0dyUpmZiZBQUGAY6/dXr168fPPP7skRnEf67+cXCbJ/dOrPbH3LVKSKyJShxraVhtV4Yn3JO7L1z+QXg9+fMZkw523fpKGz1N/57l1ohsZGUlqamqZ5wB//vknPXr0KCk/fvw4ubm59R6fuI8t383hoh3/duzBCBw0Nifi7m8ICGrk0rhEREREqsJTkw0RV3HrlXni4uL4888/S55fcskl2O12XnnllZIthtauXcsvv/zCeeed56owxcX+WPMNndY9jrFo0/UjhONz61eERkS5ODIREREREXEFt050Bw0aRGJiIuvWrQOgf//+dOnShYULF9KsWTN69OhBv379sNlsPPzww64NVlxi72+rifnvXXgbrABkEEDeyPlEtmzn4shERERERMRV3DrRveWWW/juu++IinL0zBmNRpYuXcrVV1/N0aNH2bp1K/7+/rz00kvcfPPNLo5W6tuhfb8T/tUoAgx5AOTYfUge9BGtzu9xljNFRERERMSTufUc3ZCQEAYMGFCmrFmzZnz//ffk5OSQkZFBkyZNMGnbmHPOsaQDmD69njBOAo4VCff2fZOuF13l4shERERERMTV3DrRPRN/f3/8/f1dHYa4QMbxY2S9N5QY+9GSsm09/sOF/W5wYVQiIiIiIuIuGkyim5yczNq1a0lKSgIgOjqa3r17Ex0d7eLIpD7l5WSRNOtazrcdLClb1/5xLh56jwujEhERERERd+L2iW5SUhIPPvggX3/9NTabrcwxg8HAtddey4wZM2jevLmLIpT6YrUUsHvmCC6wnNowOj56DL1HPefCqERERERExN24daKblJRE7969OXToEAEBAVx99dW0bt0au91OYmIiP/74I4sXL2bjxo2sW7dOvbsezG6zsfXNW7goJ76kbEPoIC6+8zXXBSUiIiIiIm7JrRPdZ555hkOHDjF69GhmzJhBWFhYmeMnTpzg4Ycf5uOPP+b//u//mDNnjosilbq27t0H6J3+Xcnzrf6X0n3cXAxGt144XEREREREXMBgt9vtrg6iMk2bNiUwMJA///yz0pWVCwsLad++PZmZmRw9erTCOlJWx44dAdixY8dZarqHdZ+8wMX7Xit5vsO7M7GP/ICvX4DrghIRERERkTpVm7zFrbvDsrKyuPjii8+4fZDJZOLiiy8mOzu7HiOT+rLxqzfLJLkJphhajPtaSa6IiIiIiFTKrRPd888/v2SV5TNJSkoiLi6uHiKS+rTtl3l02/psyfP/GZoSctc3BDcKd2FUIiIiIiLi7tx6ju7DDz/MmDFj+OGHHxgwYECFdX788UdWrVrF3Llz6zc4cYrUlEPs/f5NApPX412YQ4HJn+yo3vg070Tc6ofwMjhW2k6lEfxzMY0jW7o2YBERERERcXtunehefvnljBs3jqFDhzJy5EhGjhxJq1atADh48CBffPEFX375Jffddx9XXHEFiYmJZc5v2VJJkbvKy8li+3v30C1tGb0NhacOWIEDW7DvB4PBUZRp9yP9+s9o26ajS2IVEREREZGGxa0XozIajRgMBux2O4birOc0lR0zGAxYrda6DrFBcvViVHk5WSS8NpCOBb+fta7NbuD3vu/Ttd/weohMRERERETcRW3yFrfv0a0swZWGa/t799Cz4Hfs9lO9thWx28FosJP3+1egRFdERERERKrIrRPdFStWuDoEcbLUlES6pS0Dw5mTXDh1vHvaUlJTDtE4skXdBygiIiIiIg2eW6+6LJ5n7/dvYS49J7cKzIZC9n0/q44iEhERERERT6NEV+pVYPL6Gp0XkBzv5EhERERERMRTufXQ5RdffLHKdQ0GA88991wdRiPO4F2YU6/niYiIiIjIucetE90JEyaUrLpckeKFqopXXlai6/4KTP6OLYRqcp6IiIiIiEgVuHWiO2fOnArLbTYbhw4d4ocffiA+Pp777ruPCy+8sJ6jk5rIiuoFB7ZU+7zsqN51EI2IiIiIiHgit95HtyomTZrEv//9b+Lj4+ncubOrw2kQXLmPbmpKIiGzLqjWglQWu4mMe7dp1WURERERkXNIbfKWBr8Y1dNPP03z5s155plnXB2KVEHjyJZsDb8GcOyTeybFx7eED1KSKyIiIiIiVdbgE12Azp07s2bNGleHIVXU5c632eHduUr76O7w7kzXu96un8BERERERMQjeESim5CQgNVagxWOxCV8/QOJffh71ocNxWI3VVjHYjexPmwosY/8gK9fQD1HKCIiIiIiDVmDTnTT09N57LHH+O233+jZs6dTrrlu3TqGDx9OZGQkZrOZsLAw+vfvz4IFC6p1ndatW2MwGCp97N69u8LzbDYbr732Gp07d8bPz4+IiAhuuOEGdu7c6Yzbcxu+/oH0evBjMu7dxrrW9/G7T3f2eMXxu0931rW+j4x7t9HrwY+V5IqIiIiISLW59arLbdq0qfRYVlYWaWlp2O12/Pz8mDRpUq3bmz9/PjfddBM2m40LL7yQvn37kpSUxIoVK/jll18YP348L7/8crWuOWbMmArLQ0JCypXZ7XZGjhzJggULaNSoEYMGDSI1NZWFCxeydOlSli9fTq9evWp0b+6qcWQLGt/6H1eHISIiIiIiHsStV102GivvcDabzURFRXHFFVcwfvx4OnToUKu2rFYr0dHRHDt2jHnz5jFy5MiSY/Hx8Vx55ZXk5+ezd+9eYmNjz3q91q1bc/DgwUr3AK7IBx98wB133EG7du1YvXo1TZs2BWDhwoWMGDGC2NhYdu/ejZdX7T6fcOWqyyIiIiIiIlXhsasu22y2Sh/5+fkcOHCADz/8sNZJLsDu3bs5duwYcXFxZZJcgN69ezNgwADsdjubN2+udVuVmTp1KgCvvvpqSZILMHz4cIYOHUpCQgJff/11nbUvIiIiIiLiCdw60a1PPj4+VaoXFhZWJ+3v37+fnTt34ufnx6BBg8odHzFiBABLliypk/ZFREREREQ8hVvP0a1Pbdq0oU2bNuzevZsvv/ySG2+8seRYfHw8P/zwAzExMVx++eXVuu7kyZNJSEjAx8eHjh07MmzYMCIiIsrV27ZtGwCdOnXCbDaXO969e/cy9URERERERKRibt2j+/rrr2MymVi2bFmldb777jtMJhNvvfVWrdoymUzMnTuXkJAQRo4cyUUXXcRNN93EFVdcwWWXXcYFF1zAjz/+iLe3d7Wu++STTzJ79mxef/117r77blq3bs37779frl5iYiIAzZs3r/A6xeXF9URERERERKRibt2ju3DhQqKjo7nmmmsqrTNw4ECioqJYsGAB48aNq1V7ffr0YeXKlQwbNoxNmzaxadMmAIKCgrjqqquIjo6u8rWGDh1Kv3796NGjBxEREfz111988MEHzJgxgzvvvJPw8HCuu+66kvpZWVkA+Pv7V3i9gICAMvWqonjy9ukSEhKqtKCWiIiIiIhIQ+TWPbp79uyhU6dOZ6xjMBjo3LlzpfvSVsfnn39Or169aNmyJevXrycrK4s///yTf/zjH7z00ktcddVVWCyWKl3r9ddfZ9iwYbRs2RI/Pz86duzI1KlTS3qex48fX6Z+8erMBoOh1vchIiIiIiJyLnPrHt309PQqLf4UGhrK8ePHa9XW3r17GTNmDE2bNmXp0qUlPajt2rVj9uzZJCcns2TJEubMmcPYsWNr3M6dd97Jc889x59//sn+/fuJiYkBHL3GANnZ2RWeV1weGBhY5bYqW4a7sp5eERERERERT+DWPbqRkZH8/vvvZ633xx9/0Lhx41q1NW/ePCwWCwMHDixJcksrXpxqxYoVtWrHaDSWDBtOTk4uKW/ZsiUAhw8frvC84vLieiIiIiIiIlIxt050+/Xrx44dO1i4cGGldRYtWsQff/xBv379atVWcSIZHBxc4fHi8tr2HAOcOHECKNs727VrV8CRtFc0PHrLli0AdOnSpdbti4iIiIiIeDK3TnSffPJJvL29GT16NA8//DA7d+4kLy+P/Px8du7cycMPP8yoUaPw9vbmySefrFVbkZGRACULUJ1u48aNALRu3bpW7ezYsYM9e/bg7+9PXFxcSXlMTAznn38+ubm5LF26tNx5CxYsAGDw4MG1al9ERERERMTTuXWie/755/PRRx9hNBp544036Ny5MwEBAQQEBNC5c2def/11jEYjc+fOpXPnzrVq69prrwVg1apVzJo1q8yxdevWMX36dABGjBhRUj5z5kzi4uJ4+umny9T/4Ycf2Lx5c7k2tm/fzg033IDdbufOO+8st1XRo48+CjgS/KNHj5aUL1q0iG+++YaYmJgyKzWLiIiIiIhIeW69GBXADTfcQLdu3Zg2bRo///wzhw4dAqBFixZcddVVPPzww7Rr167W7XTv3p3HH3+cKVOmMG7cON588006dOhAUlIS8fHx2Gw2xo4dy1VXXVVyTmpqKnv27Ckz1xYgPj6eiRMn0qpVK2JjY4mIiGD//v1s2bIFq9XKFVdcwaRJk8rFcPvtt7Ns2TIWL15MXFwc/fv3JzU1lZUrV+Lr68snn3yC2Wyu9b2KiIiIiIh4MrdPdAHatm1bsi1PXZo8eTKXXHIJb7/9Nps3b2bPnj0EBQVxxRVXcOeddzJq1KgqXWfAgAEcOnSIjRs3sm3bNjIyMggODuayyy5j9OjR3HbbbZhMpnLnGY1G5s+fz4wZM/jggw/49ttvCQgIYNiwYbz44otaLVlERERERKQKDPbiDVzlnFGcMFe2/ZCIiIiIiIir1SZvces5umvXruX2228nPj7+rHXWr19fj5GJiIiIiIiIu3LrRPfNN9/kiy++4Pzzz6+0zvnnn8+8efPqZWiziIiIiIiIuD+3TnTXrVtHt27daNSoUaV1QkND6d69O7/++mv9BSYiIiIiIiJuy60T3aSkJFq2bHnWei1btiy38rGIiIiIiIicm9w60Q0ICCA1NfWs9VJTU8vtSSsiIiIiIiLnJrdOdLt27cqaNWs4fPhwpXUOHz7M6tWr6dKlSz1GJiIiIiIiIu7KrRPd22+/nby8PIYMGcLWrVvLHd+6dStDhw6loKCA22+/3QURioiIiIiIiLvxcnUAZzJ69Gi++uorFi5cyEUXXUT37t2JjY3FYDCwb98+tmzZgs1mY9iwYYwZM8bV4YqIiIiIiIgbcOtEF+CLL77gP//5D9OmTWPTpk1s2rSp5FijRo145JFHeOaZZ1wYoYiIiIiIiLgTg91ut7s6iKqwWCxs2rSJQ4cOAdCiRQsuvPBCzGaziyNreDp27AjAjh07XByJiIiIiIhIxWqTt7h9j24xs9lM79696d27t6tDERERERERETfWYBJdq9XKtm3bSEpKwmAwEBUVRdeuXfHyajC30ODZ7XYayACAc4LBYMBgMLg6DBERERERt+P2WWJ+fj4vvPACb7/9NpmZmWWOBQUFcc899zBhwgR8fX1dFKFnKywsJC0tjczMTAoKClwdjpzG29uboKAgwsPDMZlMrg5HRERERMQtuHWim5+fT//+/YmPjwegS5cutG7dGoCDBw+ybds2Jk+ezJo1a/j555/x8fFxYbSep7CwkMTERPLy8lwdilSioKCAtLQ0srOzadmypZJdERERERHcPNGdPn06a9eu5bLLLuOtt96iU6dOZY7/8ccf3H///axevZrXXnuN8ePHuyhSz5SWlkZeXh4mk4mmTZsSEBCA0ejWWy+fU2w2G9nZ2Rw5coS8vDzS0tJo0qSJq8MSEREREXE5t151uWvXrqSkpJCQkEBgYGCFdbKysoiNjaVp06Zs3769niNsmKq6ellCQgIFBQVER0cTEhJSH6FJDWRkZJCUlIS3tzexsbGuDkdERERExClqs+qyW3fP7du3j759+1aa5AIEBgbSt29fEhIS6jEyz2e320vm5AYEBLg4GjmT4tenoKBAi4WJiIiIiODmia6Xlxc5OTlnrZeTk6PVl52sdMKk4crurfTro0RXRERERMTNE93OnTvzyy+/sH///krr7N+/n19++YUuXbrUY2QiIiIiIiLirtw60b377rvJzc2lb9++fPjhh2W2t8nPz2fu3Ln07duXvLw87rnnHhdGKiIiIiIiIu7Crcf7/vOf/2TNmjW8++673H777dxxxx00bdoUg8FASkoKdrsdu93O3XffzejRo10droiIiIiIiLgBt+7RBZg9ezbz58/nsssuw8vLi+TkZJKSkvDy8qJPnz7Mnz+fWbNmuTpMERERERERcRNu3aNbbPjw4QwfPhyr1UpaWhoA4eHhWoBKREREREREymlQmaKXlxdNmzZ1dRgiIiIiIiLixtx+6LKIOzIYDBgMBkJDQ0lPT6+wzoQJEzAYDLz88svlzm3dunXdBykiIiIico5qUD264rmOZebzxcZE1u8/Tla+lUAfLy5uE86NF7YgIsjH1eFVKj09nenTpzNx4kRXhyIiIiIiIkWU6IpL5VkKmbhkBws2H8ZSaC9zbPXeVF776U9G9GjBC0M64Gs2uSjKihmNRry8vHjttdd4+OGHCQ0NrdJ5u3btwmw213F0IiIiIiLnLg1dFpfJsxQy5oMNfL7hULkkt5il0M7nGxIZ88EG8iyF9RzhmZnNZu68805OnjzJtGnTqnxeXFwcsbGxdRiZiIiIiMi5TYmuuMzEJTtYv/94lequ33+ciUt21nFE1ffMM8/g4+PDjBkzOH68aveiOboiIiIiInVLia64xNHMPBZsPlytcxZsPsSxzPw6iqhmmjVrxl133UVmZiZTp051dTgiIiIiIoISXakFu91ORq6lRo+P1h6sdLhyZSyFdj6KP1DjNjNyLdjt1WuzKp5++ml8fX154403SvZ5FhERERER19FiVFJjJ/OsdJ34Y722+cYv+3jjl301Pn/bC38jxM+5C0FFR0czduxYXn/9daZMmcKkSZOcen0REREREameBt+je/XVV9OmTRst7iMu9dRTT+Hr68vMmTNJTU11dTgiIiIiIue0Bp/oHj58mAMHDnDgwAFXhyLnsKioKO655x6ysrKYPHlyja7x448/0qNHD3x9fWnWrBnPPvsshYXutdK0iIiIiEhD0OCHLn/00Ufk5OS4OoxzUrCvF9te+FuNzn131V/MXF79IcgPXNmWO/u0qVGb4Ii5rowfP57Zs2fz5ptv8vjjj1fr3K1btzJ48GDuu+8+PvnkE3bu3Mkdd9yB1Wrl5ZdfrqOIRUREREQ8U4NPdC+66CJXh3DOMhgMNZ7vesslrZi9KqFaC1KZTQZu6d3a6XNsnSUyMpJ7772XadOm8eqrrxIQEFDlc6dMmULnzp2ZPn06AOeffz7/+9//eOqpp3j22WcJDAysq7BFRERERDxOgx+6LA1TkyBfRvRoXq1zRvRoQUSQTx1F5Bzjx4/H39+ft956iyNHjlT5vF9//ZVrrrmmTNmgQYPIzc1l8+bNzg5TRERERMSjNZhE12KxsHnzZpYsWcKSJUvYvHkzFovF6e2sW7eO4cOHExkZidlsJiwsjP79+7NgwYJaXXfv3r34+flhMBgYOHBghXVuvfVWDAZDpY+33367VjG4mxeGdKRXTFiV6vaKCeOFIR3qOKLaa9KkCePGjSMnJ4cPP/ywyuclJycTFRVVpiwyMhKApKQkp8YoIiIiIuLp3H7ocnZ2Ni+88ALvv/8+J0+eLHMsKCiIO+64gwkTJhAUFFTrtubPn89NN92EzWbjwgsvpG/fviQlJbFixQp++eUXxo8fX+P5knfffTf5+flVqjtgwICSJKe08847r0Ztuytfs4kPb+/JxCU7WbD5UIXDmM0mAyN6tOCFIR3wNZtcEGX1Pfnkk8yaNYvs7OxaXcdgMJT5KiIiIiIiVePWiW5GRgZ9+/Zl+/btAHTt2pXWrVtjt9tJTEzkt99+47XXXuOnn35i1apVhISE1Lgtq9XKfffdh81mY968eYwcObLkWHx8PFdeeSWvvvoqd911V7W3Mnr//fdZvnw5Y8eO5Z133jlr/aeeeoq+fftW9xYaJF+ziUnXd+bRq9vz5aZDrPsrjax8K4E+XlzcJpwbL3T/4cqni4iI4L777uPVV1+t8jlRUVEkJyeXKSt+fnpPr4iIiIiInJlbD11+/vnn2bZtG/369WPHjh1s2bKFRYsWsXjxYjZv3syOHTu48sor+eOPP3j++edr1dbu3bs5duwYcXFxZZJcgN69ezNgwADsdnu150sePXqUJ554gquuuop//OMftYrRk0UE+XBfv7Z8fEcvFo+7lI/v6MV9/dq6bZJrt9vJy8ur9Pgrr7yC3W7Hbrfz1FNPlTv39O2wLr30Ur777rsyZcuWLcPPz48ePXo4LW4RERERkXOBWye6CxcuJDIykm+++Ya4uLhyx+Pi4vj6669p2rQpCxcurFVbPj5VS6jCwqo2p7TYgw8+SG5uLrNmzapJWHKOeOyxx9i+fTuPPfYYu3btYtGiRTz//PM8+OCDWnFZRERERKSa3DrRTUtL44orrsDf37/SOv7+/lx++eUcP368Vm21adOGNm3asHv3br788ssyx+Lj4/nhhx+IiYnh8ssvr/I1ly1bxhdffMEzzzxD27Ztq3zeokWLeOCBBxg3bhyTJ09m9+7dVT5XGqbu3buzZMkSli9fzgUXXMD999/PuHHj+Pe//+3q0EREREREGhy3nqPbpk0bTpw4cdZ6GRkZxMTE1Kotk8nE3LlzGTJkCCNHjmTy5MnExsaSnJzMmjVr6NmzJx9//DHe3t5Vul52djbjxo3jvPPOY/z48dWK5Y033ijzfPz48dx7773MmDEDL6+qv2QdO3assDwhIaHa84yl7g0YMIABAwa4OgwRERERkQbPrXt0x44dy4oVK/jtt98qrfPbb7/xyy+/cOedd9a6vT59+rBy5UpiYmLYtGkTX3zxBatWrSIgIICrrrqK6OjoKl/r2Wef5eDBg8yaNavKyXG3bt14++23+fPPP8nJyeGvv/7izTffpFGjRrz11ls88cQTNb01ERERERGRc4Zb9+g+9NBD7Nu3j379+vHAAw8wcuRIWrVqBcDBgwf54osvmDlzJnfffTePPPJIrdv7/PPPue2227j44ouZN28eHTt2JCkpiSlTpvDSSy/x888/s3LlSsxm8xmvs2nTJt544w1uueUW+vXrV+X2H3rooTLPY2JiGDduHJdffjk9evTgjTfe4NFHH6VFixZVut6OHTsqLK+sp1dERERERMQTGOx2e/nNS92EyeTYN9Vut1e6l2hlxwwGA1artcpt7d27l44dO9K0aVN2795NQEBAmeNDhw5lyZIlzJ49m7Fjx1Z6HavVykUXXURiYiK7d+8mIiKi5NiKFSvo168fAwYM4Pvvv69ybAA33HADCxYs4IMPPuC2226r1rmnK050K0uEAWw2G3v27AEc+/cajW7d+X9O02slIiIiIp6oKnlLZdy6R7dFixaVJrjONm/ePCwWCwMHDiyX5ALceOONLFmyhBUrVpwx0T18+DC//fYbkZGR3HDDDWWOpaenA7Bhwwb69u1LYGAg3377bZXia9euHUC5vVZFRERERESkLLdOdE/fa7QuHT58GIDg4OAKjxeXV3V155SUFFJSUio8duLECVauXElISEiV4ytelEtbzYiIiIiIiJyZxjgWiYyMBBzzayuyceNGAFq3bn3G67Ru3Rq73V7hY/ny5YBjdV273V7Sw3s2+fn5LF26FIAePXpU6RwREREREZFzlRLdItdeey0Aq1atYtasWWWOrVu3junTpwMwYsSIkvKZM2cSFxfH008/Xev29+zZw9dff01hYWGZ8mPHjnHTTTdx6NAhunbtyiWXXFLrtkRERERERDyZWw9dLnbgwAFWrVpFcnIy+fn5FdYxGAw899xzNW6je/fuPP7440yZMoVx48bx5ptv0qFDB5KSkoiPj8dmszF27FiuuuqqknNSU1PZs2ePU+bNJicnc9111xEeHk5cXBzNmjXj6NGjbN68mczMTJo3b86XX35Zb3OWRUREREREGiq3TnTz8vK46667+OyzzwDHCsuVqW2iCzB58mQuueQS3n77bTZv3syePXsICgriiiuu4M4772TUqFG1uv6ZtG/fnocffph169aRkJDAhg0b8PHxoX379gwZMoSHHnqI0NDQOmtfRERERETEU7j19kIPPfQQb7zxBk2aNGH06NHExsZWuCJysTFjxtRjdA2XthfyLHqtRERERMQTeez2Ql988QWNGzcu2a5HRERERERE5GzcuusnKyuLPn36KMkVERERERGRKnPrRLdjx44cOXLE1WGIiIiIiIhIA+LWie7jjz/Ohg0bWLt2ratDERERERERkQbCrRPdG264gVdeeYVrr72WF198kbVr13Lw4EESExMrfIjUF4PBgMFgIDQ0lPT09ArrTJgwAYPBwMsvv1zu3NatW9d9kCIiIiIi5yi3XowKoEuXLoSGhjJx4kQmTpxYaT2DwYDVaq3HyMSpso7Clg/hwK9QkAXegdD6Muh+CwQ2cXV0lUpPT2f69Oln/NkUEREREZH65daJ7rfffsv111+P1WolIiKCVq1anXF7IWmALLnw3Xj47TOwWcoe+2s5rHgZuo2Gga+A2dc1MVbCaDTi5eXFa6+9xsMPP1zlfY537dqF2Wyu4+hERERERM5dbp3ovvDCC9jtdubMmcMtt9yCwWBwdUjiTJZc+GQEHFxTeR2bBTbPhdR9cPMCMPvVW3hnYzabueOOO3jrrbeYNm0a//rXv6p0XlxcXB1HJiIiIiJybnPrObq7du3i8ssvZ8yYMUpyPdF348+c5JZ2cA18/1TdxlMDzzzzDD4+PsyYMYPjx49X6RzN0RURERERqVtuneg2btyYwMBAV4chdSHziGO4cnVs/dQxl9eNNGvWjLvuuovMzEymTp3q6nBERERERAQ3T3RHjBjBunXrOHnypKtDkYrY7ZCbXrPHhnfKz8k9G5vFcV5N28xNd8TsZE8//TS+vr688cYbpKWlOf36IiIiIiJSPW49R/ell14iPj6e66+/nnfffZeYmBhXhySl5WXAK63qt81Vkx2Pmhp/EPwaOS0cgOjoaMaOHcvrr7/OlClTmDRpklOvLyIiIiIi1ePWie7gwYMxmUwsX76c8847j9atW9OsWbMK5+saDAZ+/vlnF0QpAk899RTvvPMOM2fO5LHHHqNx48auDklERERE5Jzl1onuihUrSr63Wq3s27ePffv2VVhXi1WJK0VFRXHPPffw2muvMXnyZF555ZVqnb9q1SqmTp3Kb7/9RmJiIi+88AITJkyom2BFRERERDycWye6+/fvd3UIcia+IY6hwDWx9g1YPaX6513+BPS+v2ZtgiPmOjJ+/Hhmz57Nm2++yeOPP16tc7OysujQoQOjRo3i4YcfrpsARURERETOEW6d6LZqVc/zP6V6DIaaz3ftORZ+nVG9BamMZsd5Tp5j6yyRkZHce++9TJs2jVdffZWAgIAqn3vNNddwzTXXAI6EWUREREREas6tV10WDxbUFC4YVb1zuo2GwCZ1E4+TjB8/Hn9/f9566y2OHDni6nBERERERM5JSnTFdf7+CrS6rGp1W10GA6s379UVmjRpwrhx48jJyeHDDz90dTgiIiIiIuckt0p0TSZTjR9eXm49ClsqYvaDmxdAj1sdw5IrYjQ7jt+8EMy+9RldjT355JMEBASQm5vr6lBERERERM5JbpUd2u12l5wrLmT2gyEzoN//wZaP4MAaKMgC70BofRl0v8XthyufLiIigvvuu49XX33V1aGIiIiIiJyT3CrRtdlsrg5BXCWwCVz+uOPRAJztg5VXXnml0i2G9KGMiIiIiEjdcqtEV+RclZWVVbJHdEFBASkpKfz22294e3vToUMHF0cnIiIiItKwKNEVcQObNm2iX79+Jc9nz57N7NmzadWqFQcOHHBdYCIiIiIiDZASXRE30LdvXw1pFhERERFxErdadVlERERERESktpToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOhKhQwGQ8n3Wg3YvZV+fUq/biIiIiIi5yolulIhg8GAyWQCID8/38XRyJkUvz4mk0mJroiIiIgISnTlDPz9/QHIzMx0cSRyJsWvT0BAgIsjERERERFxD16uDkDcV3BwMJmZmRw/fhwvLy+Cg4NLennF9QoLCzl58iTHjx8HICgoyMURiYiIiIi4ByW6UqmgoCBCQkLIyMjg6NGjHD161NUhSSUaNWqkRFdEREREpIgSXamUwWAgMjISPz8/Tpw4obm6bsjHx4fQ0FBCQkI0P1dEREREpIgSXTkjo9FIaGgooaGh2O12rcDsRgwGg5JbEREREZEKKNGVKlNiJSIiIiIiDYFWXT7NunXrGD58OJGRkZjNZsLCwujfvz8LFiyo1XX37t2Ln58fBoOBgQMHVlrPZrPx2muv0blzZ/z8/IiIiOCGG25g586dtWpfRERERETkXKFEt5T58+dz6aWXsmjRIlq0aMHw4cPp1KkTK1as4IYbbuCpp56q8bXvvvvus85xtdvtjBw5kkceeYTDhw8zaNAgOnbsyMKFC7nwwgtZv359jdsXERERERE5VyjRLWK1Wrnvvvuw2WzMmzePjRs3Mm/ePFatWsWaNWvw9fXl1VdfJSEhodrXfv/991m+fDl33XXXGevNmTOHBQsW0K5dO3bv3s2CBQtYsWIF8+fPJzc3l9GjR2O1Wmt6iyIiIiIiIucEJbpFdu/ezbFjx4iLi2PkyJFljvXu3ZsBAwZgt9vZvHlzta579OhRnnjiCa666ir+8Y9/nLHu1KlTAXj11Vdp2rRpSfnw4cMZOnQoCQkJfP3119VqX0RERERE5FyjRLeIj49PleqFhYVV67oPPvggubm5zJo164z19u/fz86dO/Hz82PQoEHljo8YMQKAJUuWVKt9ERERERGRc40S3SJt2rShTZs27N69my+//LLMsfj4eH744QdiYmK4/PLLq3zNZcuW8cUXX/DMM8/Qtm3bM9bdtm0bAJ06dcJsNpc73r179zL1REREREREpGLaXqiIyWRi7ty5DBkyhJEjRzJ58mRiY2NJTk5mzZo19OzZk48//hhvb+8qXS87O5tx48Zx3nnnMX78+LPWT0xMBKB58+YVHi8uL65XFR07dqywfPfu3ZjN5kqPi4iIiIiIuFpCQkKFnYBVoUS3lD59+rBy5UqGDRvGpk2b2LRpEwBBQUFcddVVREdHV/lazz77LAcPHuSXX36pUnKclZUFgL+/f4XHAwICytSrDYPBUOMfmLpSvMhXbGysiyNxHk+7J0+7H9A9NRS6p4ZB9+T+PO1+QPfUUOieGgZ3vCez2VySB1WXEt1SPv/8c2677TYuvvhi5s2bR8eOHUlKSmLKlCm89NJL/Pzzz6xcufKsSeKmTZt44403uOWWW+jXr1+V2rbb7YAjCXWWHTt2OO1ada24d7khxXw2nnZPnnY/oHtqKHRPDYPuyf152v2A7qmh0D01DJ52T5qjW2Tv3r2MGTOGiIgIli5dSs+ePQkICKBdu3bMnj2bIUOGEB8fz5w5c854HavVyl133UVISAhTpkypcvtBQUGAY8hzRYrLAwMDq3xNERERERGRc5F6dIvMmzcPi8XCwIEDK+wev/HGG1myZAkrVqxg7NixlV7n8OHD/Pbbb0RGRnLDDTeUOZaeng7Ahg0b6Nu3L4GBgXz77bcAtGzZsuT8yq5bup6IiIiIiIhUTIlukeJEMjg4uMLjxeXHjx+v0vVSUlJISUmp8NiJEydYuXIlISEhJWVdu3YF4I8//sBisZQbHr1lyxYAunTpUqX2RUREREREzlUaulwkMjISoGQBqtNt3LgRgNatW5/xOq1bt8Zut1f4WL58OQADBgzAbreX9PACxMTEcP7555Obm8vSpUvLXXfBggUADB48uLq3JiIiIiIick5Rolvk2muvBWDVqlXMmjWrzLF169Yxffp0AEaMGFFSPnPmTOLi4nj66aedEsOjjz4KwJNPPsnRo0dLyhctWsQ333xDTEwM1113nVPaEhERERER8VQGe/Fyv8ITTzxRsoBUx44d6dChA0lJScTHx2Oz2Rg7diyzZ88uqT9hwgQmTpzImDFjmDt37lmvv2LFCvr168eAAQP4/vvvyx232WyMGDGCxYsXExoaSv/+/UlNTWXlypX4+Pjw888/c8kllzjtfkVERERERDyRenRLmTx5MosWLeJvf/sbKSkpLF68mJ07d3LFFVfw6aeflkly64LRaGT+/PlMnTqV6Ohovv32W37//feSfX2V5IqIiIiIiJydenRFRERERETEo6hHV0RERERERDyKEl0RERERERHxKEp0RURERERExKMo0RURERERERGPokRXREREREREPIoSXREREREREfEoSnRFRERERETEoyjRFREREREREY+iRFdEREREREQ8ihJdERERERER8Sherg5A6l9kZCTZ2dm0bNnS1aGIiIiIiIhUKDExkYCAAFJSUqp9rnp0z0HZ2dlYLBZXhyEiIiIiIlIpi8VCdnZ2jc5Vj+45qLgnd8eOHS6OREREREREpGIdO3as8bnq0RURERERERGPoh5dERERERGRc1XWUdjyIRz4FQqywDsQWl8G3W+BwCaujq7GlOiKiIiIeDJPfBPriffkifQ6uTdLLnw3Hn77DGynrd/z13JY8TJ0Gw0DXwGzr2tirAWD3W63uzoId5KXl8ekSZP4/PPPSUxMJCwsjIEDB/Liiy/SvHnzKl+ndevWHDx4sNLju3btIi4urly5zWbj9ddf5/3332ffvn0EBgbSt29fJk6cSIcOHWp0T6crHuuuOboiIiIe7ExvYgGM5ob3JtYT78kT6XVyf5Zc+GQEHFxz9rqtLoObF4DZr+7jOk1t8hb16JaSl5dH//79Wbt2LVFRUVx77bUcOHCAOXPm8O233xIfH09sbGy1rjlmzJgKy0NCQsqV2e12Ro4cyYIFC2jUqBGDBg0iNTWVhQsXsnTpUpYvX06vXr1qdG8iIiJyDqnKm1ibBTbPhdR9LnsTWy2eeE+eyNNfJ0/ppf5ufNWSXHDU+/4pGDKjbmNyMvXolvL888/zr3/9i969e/Pjjz8SGBgIwLRp03jssce4/PLLWblyZZWuVdyjW51/3g8++IA77riDdu3asXr1apo2bQrAwoULGTFiBLGxsezevRsvr9p9PqEeXREREQ/3zYOON+NV1eNW938T64n3VJqnJFCe+jp5Ui915hGY3rHi+6iM0QyP7qz3n8Xa5C1KdItYLBaaNGlCeno6W7ZsoVu3bmWOd+3ale3bt7Np0yZ69Ohx1uvVJNHt2LEjO3fuZPHixVx33XVljl177bV88803LFiwgOHDh1f5mpW1A0p0RUREKtTQE44G9Ca2yjzxnoopgXL/16mBDPM9K7vdcS+rJsOaadU//8rn4PLHnR/XGWjoshOsWbOG9PR0YmNjyyW5ACNGjGD79u0sWbKkSolude3fv5+dO3fi5+fHoEGDKmz/m2++YcmSJbVOdEVERKQCnrIwy9aPqpdogKP+j8/C+UPBXgi2QrDbHA9bYamyUsdOL7fbwGarZd3C8uV2GxzfX7N7WvYEdP0H+IY4Hn6NHF/N/mAwVO96daEhD/O12SD/JORlnPq6+cOavU5f3QvtBoCXD3j5VuGrL3h5O74aver+tazPYb52O1hyoCAHLNlFX3OgINvxKP6+zNeq1C06Ri36OA+sqfdEtzaU6BbZtm0bAN27d6/weHF5cb2qmjx5MgkJCfj4+NCxY0eGDRtGREREpe136tQJs9nstPZFRESkCtw94bDbHclE7gnITS/6egLySn1fXH6gim/IT7f9C8fDk+z8yvE4ndHrVPJb8mhUcZlfBeVevs5Jrlw5T9KSVzZJLX6UPD9ZwfFSZfknnRMHwL6fHI+aMBirlhybvEslyVVNqL0dCeJvn1Yvpi0fQ3hbMJjKJ6AVJqZZp7635NTs36E+FGS5OoJqUaJbJDExEaDSlZWLy4vrVdWTTz5Z5vkjjzzC66+/zh133FHn7Rd39Z8uISGh2otqiYiIeLT6SjisBZUnqGcsz3D0bopz2KyQk+Z41ITJ+wzJcUgFyfFpz718HMN8f/useu1u/RT6/R/4Nz6VbFaYlJ50/CydKXEtLKjZvbsbu839EkR7oWOEhKfxDnR1BNWiRLdIVpbjEwp/f/8KjwcEBJSpdzZDhw6lX79+9OjRg4iICP766y8++OADZsyYwZ133kl4eHiZebjObl9ERESqqKYJR7cxYDRWnpwWJ6ilj1my6+AGnMQcAGFtHD2VRpOjN6rMV2P55+XKKqhbpo6xgrrF5RUdKzp33Sw4trv69+QTDEFRp3okrbnO+bcqLIDsY45HTXj5Oe6rJsN8p3cqSlLdaJkd70BHAl/Tn/GAxhDdHax5jg+DrHlgza/ga64jsT2XmP0dD29/x/9R7+LngaW+D6igzhnqbngXVr1a/VhaX+b8+6tDSnSLFC8aZahkGEp11+x6/fXXyzzv2LEjU6dO5bzzzuPuu+9m/PjxZRLds7VfE5VN2q6sp1dERKTaGvrCTQAb36tZwvFev7qJ52xKhtSGFj1Kfe/bCA6th93fVv+6fR513/l32cfgl5eqf96lD5W9J2v+qZ7NvPRTvZ6lH7kVlBXXd1YvaG0S7sJ858RQrHgYt09w0c9W0VefkNOen3681FdTUUqxanLNXqde91b9Z6/QWjYBLsyvJCmu7GsV6xYWJdzpiTV73X2CHAtTeVeUeAZUkqCeVtfLz/EhkLNddCesmV79RcO63+L8WOqQEt0iQUFBAGRnV/wpVE6OYzhE8ZZDNXXnnXfy3HPP8eeff7J//35iYmKq1H5xeW3bFxERcQp3XrjJZnMkJVlHi3rdjkLWsVPfZ6cWHSv63hVDHk3eZZPTypLW08t9Qxw9gWeSeQT+/MGz3sR2uwVWvFL7e/LygcAIx6MmLLkVJ8HFvfcVJceln9usNWv3TLwDK09Ci5+XlDUqX8fs57zFnJz1Op2JyQtMgeBTT++JP7rO8TutuppdCKPmOT0cpwhqCheMqt42UN1GN5wPL4so0S3SsmVLAA4fPlzh8eLy4no1ZTQaiY2N5ejRoyQnJ5ckuvXVvoiISK25YuGmQosjKS2XtB4rel7q+5zUukkoKuITXCoJbVQqMT1L0lqXq/564ptYd7kns5/jERRZ/XOLV9MtTnq/GgdJW6p/neYXwvXvle9NdQfu8jo5U+tLa5bouvsw37+/AmkJVd8yaeArdR+Tk7nR/wzX6tq1KwBbtlT8C6e4vEuXLrVu68SJE0DZ3tni9v/44w8sFku5lZed2b6IiEitOGvhpoLsop7V4gS21PenJ7C5J5x7D87Qpi/c8rWro6iYJ76Jbej3ZDAUDU0NgOBoiLumZolu+79DWIzz43OWhv46na4+eqldwezn+BDy+6ccaw409D2cK6BEt8ill15KSEgICQkJbN26tdxeugsWLABg8ODBtWpnx44d7NmzB39/f+Li4krKY2JiOP/889m1axdLly4tM3/Xme2LiIjUSk0WbtrykWPrjIKsogS2KHmt6yHDRjMEFA1TDYiAgCYVf//7Qvh1evWv37qP82N2Fk98E+tp96QEqmG8Tp7YS13M7Of4ELLf/zl+Tx9Y03DXWqiAwV7dVZY82LPPPsu///1vLrnkEn788ceSlY6nTZvGY489xmWXXcbq1atL6s+cOZOZM2cybNgwJk2aVFL+ww8/0LhxY3r06FHm+tu3b+emm25i165dPPjgg8yYUfbT7ffee4+77rqLdu3asWbNGpo0cfxgLVq0iOHDhxMTE8OePXsq3Ge3OooXo6pssSoREakjDXHhJrvdMcyyeE7rxvdgx2LXxeMdWJSoRjj+zQIaFyWtpb4vTm59G1VteHDmEZjesfoJx6M73fd1Ky3rqOe9ifWUe/rmweolUD1udd4+uvXBU16nqkzXKNbqMrh5ofsn8A1EbfIWJbql5OXl0bdvX9avX09UVBR9+vTh4MGDrF+/nvDwcNatW0fbtm1L6k+YMIGJEycyZswY5s6dW668VatWxMbGEhERwf79+9myZQtWq5UrrriCZcuWldtKyGazMWLECBYvXkxoaCj9+/cnNTWVlStX4uPjw88//8wll1xS6/tUoisiUs/OtHATuKZ3Iz/r1HDhrCNFX4u+zz5WtszZq7yezi+sKFGtLIGNOPXwrngbvlrz9IRD3JMSqIbDkus5vdQNSG3ylnobulxYWIjFYsHX131feF9fX5YvX86kSZP47LPP+OqrrwgNDWXMmDH861//okWLFlW6zoABAzh06BAbN25k27ZtZGRkEBwczGWXXcbo0aO57bbbMJnKr5hoNBqZP38+M2bM4IMPPuDbb78lICCAYcOG8eKLL2pbIBGRhqg+F26y5JVKXkslsNmnJ7NH638/18BIuOT+05LZCPBv7B6L6XjavEJpGDxtmK8n8/Bhvp6oXnp0v/nmG0aNGkV+fj4PPPAA06ZNY82aNXz77bdERkYyZswYQkND6zoMKaIeXRFpEBriMN+K1LansNByal5rSY9r6US2VO9rfobTwy9h9HL0sOafdLwe1dWmH9zyldPDcir12IgrecowXxEncvuhyxdccAFhYWEMGjSIWbNmccstt/DSSy/h4+NDdnY2rVq1YtOmTYSHh9d1KIISXRFxc+44zLemajL302CAFhdDbrojoc1Jq7PwwOAYIhzYtKiHtWiocPHz4u8Dmji2xTEaYdVk+OWl6jd15XNw+ePOv4W6oIRDRMQtuH2iGxAQwPr16+nUqRObNm3i4osv5umnn+Zf//oXSUlJXHvttVx99dX85z//qetQBCW6IuLGqj1fzQn7s1aX3e7YFicvw9G7mXey1PelvuadhEPr4cgf9RsfOJLSMslr6cS1VJl/ePWHDXv6wk0iIuI23H6Obm5ubskKwj169MBoNDJy5EgAoqOjeemll3jssceU6IqInOuctT9rZex2sOY5ktCShPS05LRc8nrSMSS45Hgm2Atrdn+14RNcqoc1oih5Lf5aqiwgAry86y4OT95qQ0REPEa9r/5gMBjw8fEps+Jwhw4dSExMrO9QRETEndRkf9atn0CzCx3Dfc+YnJZKXqvTE+kqjVrBwEmlhhI3qf+e6zPRwk0iIuLm6i3RnTBhApdffjkXXXQRBoMBQ6l97by9vcnOrufVH0VExH0UWmDt69VPQm1W+Ob+uompKrz8wDfY0dvqGwy+Iae+9wmG3UvhxP7qXzesDcQNcn68zqKVYkVExM3VS6I7evRoli9fzuzZswGw2+3ceuut9O7dmwsvvJBmzZrVRxgiIp7LnVcottsh5zhkHIKMw3Dyf6e+zzgMGf+DzGSgnrd1N5pLJakhp30fUnnyWvr42YYI+zWq2cJNrS+r0S3VK221ISIibqxeFqMqlpmZyaZNm9iwYQMbN25k48aNHDp0yBGIwUBhoQvmPJ2DtBiViAdxhxWKLbmOZPVMiaw1t27aBkfCFd29koS1dG9ro7IJq9nPMeS5LmnhJhERkRpz+8WoigUFBdGvXz/69etXUnb06FE2bNjApk2b6jMUEZGGryorFNsssHkupO6r2QrFtkLHHq3lEtnDp57X6fY3VdDiYvfdn1ULN4mIiLiE0xPd+Ph4unTpQkBAQJXqN2nShMGDBzN48GBnhyIi4tmcsUJxXsapXtfSvbDFvbInkxzzYJ3BHAAhzSt/bP8SVkyq/nXdfZivFm4SERGpd05PdC+99FKMRiOxsbFccMEFZR5RUVEl9caOHUuPHj24++67nR2CiIjnq8kKxVs+Akueowe2uFc2/6Rz4jGYICjqzImsb6MzDxXucRusmlL9Yb7db6l1+HVKCzeJiIjUO6fP0R09ejTbtm1jz549JXNui1dYbty4MRdccAGxsbHMnz8fLy8vkpOTndm8VIHm6Ip4gJWTYXkNFjmqKb9QCD5DEhsYCSYnfHb6zYPVG+bb49bq7aPrallHtXCTiIhIFdUmb6mzxajy8/P5/fff+e2330oeGzduxGKxYDAYsNvttGjRgoMHD9ZF83IGSnTlnOfOKxQXy88qtajT/0oNKS76enw/Tlul2OTtSFaDm0FIi1IJbNHz4GbgE+icts6mKvOOi7W6DG5eqB5QERERD+WWiW5FMjIymDNnDv/3f/9H586d+eijj2jfvn19NS9FlOjKOcsdVigGx56xmcll58aeLJXMZhyGvPS6aTuwKVz6cFES29yRyPo3BqOxbtqrCUuuhvmKiIhIw1l1OSQkhIcffpjY2Fiuu+46fv/9dyW6IlI/6mOFYijaMzat/KJOJUntYchKAbutxrdSK006QO9xrmm7qrQ/q4iIiNRSvfboltahQwf8/PzYvHmzK5o/p6lHV85Jzpr7WZBdQS/saVvvWPOcE7PRC4KjT5sbWzSceO9PsPGd6l/zyufg8sedE5+IiIhIHWowPbqltWnThl9++cVVzYvIuaRGKxR/DP4RjiHEpefG5p5wXlwBEUXzYk9b2Kk4sQ1sAkZTxedGXQCb53jeCsUiIiIiTuD0RPehhx6iW7dudOvWjY4dO+LlVXETCQkJREZGOrt5EXG2hrBw09ls+qB6CSGAvRBWT655m2X2jC21qFNJMtusdvNLg5rCBaOq10vdbXTDec1EREREasHpie4bb7xRsp2Q2WymY8eOJYlvp06d8PHx4ZNPPuHPP/9k1qxZzm5eRJzlTAs3/bUcVrzsugWB7HZHz2r2sVOPrGNln5cuL8h0bvsGU1HS2qzUasVFCzsVl51tz1hn+PsrkJZQ9RWKB75St/GIiIiIuAmnJ7qLFi1i69at5R6G097wtW3blrS0NL7//nu6d+9OkybqZRBxG/W1cFNp1nzIToXso0Vfjzl6k7OPlSovSlxzUsFmrV17VeHbCLqMLNsrG9LcsXJxZUOK65PZz/FvrxWKRURERMqo88WoUlNTyyW9+/btw2azlUl+o6Ki6NGjB19//XVdhiNoMSqpAmcs3GS3Q15G2SS1sp7XrGOQn+HUW3CKNv3glq9cHUXVZB3VCsUiIiLiURrMPrrFsrOz2bZtW5nkd8eOHVgsFgoLC+s7nHOOEt061tDntGYegekdqzen1WCE8691DBEu6YE9BoUFdRcnOFYlDog49QhsAgGNi543KfraGHYsgl8rWEH5bLRCsYiIiIjLNLhVlwMCArjkkku45JJLSsqsVqsSL2nY3HlO65lY84uGCB919Kxu/bgGCzfZYOdi58TjE1yUrBYlrYFNyiazJUltRNXnwQZFQfxbWqFYRERE5Bzhsu2FTufl5UXXrl1dHYZIzbhiTuvZ4ime35p1pNT3pRLa4q91PWTYYCrVy1pZz2up43XxIYBWKBYRERE5p7hNoivSoH03vmor34Kj3vdPlZ/Tejb5WaclqWdIXp29ynBVBEXBZY+U6o0tSlz9QsForP94TqcVikVERETOGUp0RWor84hjuHJ1bP0U+j7j6L08a+JaVG7JqZv4i/mGOBLU7GOQl1798yPioNfdTg/LabRCsYiIiMg5Q4muSG1t/aj6c1ptFpjeoe63yPELdSSvxfNcA5s65raWKSv66uXjOGfVZPjlpeq31foy58ZeF8x+jp70fv+nFYpFREREPJgSXZHaOvBrzc6rUZJrAP/w05LUJpUnryZz9ZvodguseMWzF24KbOJYTVkrKouIiIh4JCW6IrVVkFW780sWayqdsFaUuDZxJLmmOv5vq4WbRERERKSBU6IrUlvegTU7r3lP+Mfn4BfmHos1laaFm0RERESkAauzRDcnJ4dNmzaRnJxMfn5+pfVuuaUBDXcUqUjrSx375FZX+wGOnlx3pIWbRERERKQBM9jtdruzL/r8888zffp0cnIqXyXWbrdjMBgoLCx0dvNyFh07dgRgx44dLo7EQ2QegWnng70aP8tGMzy6s2EM9806qoWbRERERKTe1SZvcXqP7quvvspLL72El5cXgwcPpn379gQG1nBopwvk5eUxadIkPv/8cxITEwkLC2PgwIG8+OKLNG/evErXSE9PZ9myZXz77bf89ttvHDx4EKPRSIcOHRg1ahTjxo3DbC6/SNCtt97Khx9WPi9y1qxZ3HPPPTW+N6kjKdvBbqveOQ1pTqsWbhIRERGRBsbpie67776Ln58fq1evpnv37s6+fJ3Ky8ujf//+rF27lqioKK699loOHDjAnDlz+Pbbb4mPjyc2Nvas15kyZQr//ve/MRqNdOvWjSFDhnDs2DF+/fVXNmzYwIIFC/jhhx/w9/ev8PwBAwYQGRlZrvy8886r9T2Kkx3eDF/eAlRjYITmtIqIiIiI1CmnJ7qHDh3iyiuvbHBJLsB//vMf1q5dS+/evfnxxx9LeqKnTZvGY489xu23387KlSvPep3AwECeeeYZxo0bR7NmzUrK9+7dy1VXXcWaNWt46aWX+M9//lPh+U899RR9+/Z1yj1JHUrdB5/dAJaiIfrmAIi9Ev78XnNaRURERERcyOmJbkU9kQ2BxWLhjTfeAODNN98sM9z60Ucf5cMPP2TVqlVs3ryZHj16nPFaTz31VIXl7dq14+WXX2bUqFF8/vnnlSa60gBkpsAnwyAnzfHcaIabPoXYfprTKiIiIiLiYk5PdG+66Sbee+89Tpw4QWhoqLMvX2fWrFlDeno6sbGxdOvWrdzxESNGsH37dpYsWXLWRPdMunbtCkBSUlKNryEulpcBn4yA9MRTZcPediS5oDmtIiIiIiIu5vREd8KECaxdu5brr7+e9957r0pzWt3Btm3bACodcl1cXlyvpv766y/gzD3fixYtYuHChRQWFhITE8OQIUOIi4urVbviJJY8mDcajvx+qmzAJOg8wnUxiYiIiIhIGU5PdK+55hpsNhu//vorcXFxtG7dmubNm2MwGMrVNRgM/Pzzz84OoUYSEx29c5WtrFxcXlyvpmbMmAHAtddeW2md4iHUxcaPH8+9997LjBkz8PKq+ktWvBz36RISEhrMBxBuxVYIi8fCgdWnyi59CHqPc11MIiIiIiJSjtMT3RUrVpR8X1hYSEJCAgkJCRXWrSj5dZWsrCyASldCDggIKFOvJt5++21++uknGjVqVOE83m7dutG7d2+uvPJKmjdvTkpKCt999x3PPvssb731Ft7e3kyfPr3G7Ust2O3w3XjY+fWpsq7/gKsmui4mERERERGpkNMT3f379zv7kvXCbndsD1NZ8l18vKZWrlzJQw89hMFg4IMPPiA6OrpcnYceeqjM85iYGMaNG8fll19Ojx49eOONN3j00Udp0aJFldqsbGPlynp65QxWT4GN75563vZqGPoGuNGHNSIiIiIi4uD0RLdVq1bOvmS9CAoKAiA7O7vC4zk5ji1kSq/GXFXbt2/nuuuuo6CggNdff51hw4ZV6/xOnToxdOhQFixYwE8//cRtt91W7RikFrZ8BL+8dOp5dHe48UMwmV0Xk4iIiIiIVMro6gDcRcuWLQE4fPhwhceLy4vrVVVCQgIDBgwgPT2dCRMm8MADD9Qovnbt2gGQnJxco/OlhvZ8B0tK9bSHxcLo+eAd4LqYRERERETkjJzeo1vahg0bWL16NUlJSRgMBqKioujTpw89e/asy2ZrpHjbny1btlR4vLi8S5cuVb5mUlISV199NSkpKTz00EO88MILNY7vxIkTQM16lKWGDm2A+beB3eZ4HtgU/rkIAhq7Ni4RERERETmjOkl0//zzT2655RY2btwIlJ//2rNnTz766KOSXkp3cOmllxISEkJCQgJbt24tt5fuggULABg8eHCVrnfixAkGDBjA/v37ue2222q1iFR+fj5Lly4FqNUevlINx/bAZzeCNdfx3CcYbl4Ioa1dGpaIiIiIiJyd04cuJycnc8UVV7BhwwaioqJ48MEHmT59OtOnT+ehhx4iOjqa9evX07dvX7cahuvt7c39998PwP33319mru60adPYvn07l112GRdddFFJ+cyZM4mLi+Ppp58uc62cnByuueYa/vjjD2688Ubefffds64wvWfPHr7++msKCwvLlB87doybbrqJQ4cO0bVrVy655JLa3qqcTcb/4OPrIdfRi47JG276DCI7uzYuERERERGpEqf36L700kscOXKERx55hEmTJuHt7V3m+CuvvMLTTz/NtGnT+M9//lNuz1hXevbZZ/npp59Yu3Yt7dq1o0+fPhw8eJD169cTHh7OnDlzytRPTU1lz5495RL2//u//2PdunWYTCa8vLy44447Kmxv7ty5Jd8nJydz3XXXER4eTlxcHM2aNePo0aNs3ryZzMxMmjdvzpdffulWWzJ5pNwT8MlwOFk8V9sA178LMX1cGpaIiIiIiFSdwV7bfXNOExMTg6+vL7t27aq0jt1up0OHDuTl5bnddkS5ublMmjSJzz77jEOHDhEaGsrAgQP517/+VW5bnwkTJjBx4kTGjBlTJmm99dZb+fDDD8/aVul/+qSkJCZPnsy6des4cOAAaWlp+Pj40L59e4YMGcJDDz1EaGioU+6xeHuhyrYfOmdZcuHjYZAYf6rsminQ8y7XxSQiIiIico6qTd7i9ETX19eX4cOH8+mnn56x3ujRo1m4cCF5eXnObF6qQIluBQqtMH8M7P72VFmfx6H/c66LSURERERqxG634+Q0R2rBYDDUaGRqbfIWpw9dDg4O5tChQ2etd+jQIYKDg53dvEj12e2w7LGySW63f8KVz7ouJhERERGplsLCQtLS0sjMzKSgoMDV4chpvL29CQoKIjw8HJPJVOftOX0xqt69e7N27Vq+++67SussW7aMX3/9VQsriXtY8TJsnnvqefuBMPg10HxoERERkQahsLCQxMRE0tLSlOS6qYKCAtLS0khMTCy3AG9dcHqP7lNPPcWyZcu47rrrGDVqFKNGjaJ169YYDAb279/Pp59+yueff47JZOKpp55ydvMi1bPxfVj58qnnzXvCiDlgqtMtpkVERETEidLS0sjLy8NkMtG0aVMCAgIwGp3epyc1ZLPZyM7O5siRI+Tl5ZGWlkaTJk3qtE2nv5vv3bs3c+bM4e677+bDDz/ko48+KnPcbrfj5+fHO++8w8UXX+zs5kWqbtcSWPb4qeeNz4NRX4C3v+tiEhEREZFqy8zMBKBp06aEhIS4OBo5ndFoLHldkpKSyMzMbHiJLsDNN99M3759effdd1mzZg1JSUkAREdH06dPH+64445yKxiL1KuDa2HBHWC3OZ4HRcPNC8E/zLVxiYiIiEi12O32kuHKAQEBLo5GzqT49SkoKMBut9fp1ql1Nj6zefPmTJw4sa4uL1JzR3bC5zdBYb7juW+II8ltpA9fRERERBqa0qsra7iyeyv9+tR1oqufBDm3pB+CT4ZDXobjuckH/jEPmnZwbVwiIiIiIuI0te7RbdOmDQaDgZ9++omYmBjatGlT5XMNBgMJCQm1DUGkanKOwyfXQ6ZjKD0GI4z4AFpp9W8REREREU9S60T3wIEDAFgsljLPRdxKQQ58diOk/nmqbNA0OH+w62ISEREREZE6UetE12aznfG5iMsVWmHBbXB446myvk/Dhbe5LiYREREREakzmqMrns1uh28fgj+/P1XW4za4YrzrYhIRERERkTqlRFc82y//gq2fnHoeNxgGTYU6XOFNRERERERcy+mJ7u23384HH3xw1npz587l9ttvd3bzIqesfwdWTz31vOUlMPw9MJpcF5OIiIiISD0yGAwYDAZCQ0NJT0+vsM6ECRMwGAy8/PLL5c5t3bp13QdZB5ye6M6dO5c1a9actd6vv/7Khx9+6OzmRRx2LIbvnjz1vEkH+MdnYPZzXUwiIiIi0uAdy8xn5i97+ef76xn21q/88/31vLl8H8cy810d2hmlp6czffp0V4dRb2q9GFVNFRQUYDKpZ03qwP5VsGgsULR5eHBzGL0A/EJdGpaIiIiINFx5lkImLtnBgs2HsRTayxxbvTeV1376kxE9WvDCkA74mt0rzzEajXh5efHaa6/x8MMPExpatffFu3btwmw213F0dcMlc3TtdjtbtmwhIiLCFc2LJ0v5HeaNhsICx3O/UPjnIghp5tq4RERERKTByrMUMuaDDXy+4VC5JLeYpdDO5xsSGfPBBvIshfUc4ZmZzWbuvPNOTp48ybRp06p8XlxcHLGxsXUYWd1xSo/ulVdeWeb5999/X66smNVqJSEhgZSUFP75z386o3kRhxMH4JPhkH/S8dzLD0Z9CRHnuTQsEREREWnYJi7Zwfr9x6tUd/3+40xcspNJ13eu46iq55lnnuH9999nxowZPPLII4SFhZ31HIPBQKtWrThw4EDdB+hkTkl0V6xYUfK9wWAgJSWFlJSUSuubzWYGDx7MlClTnNG8CGSnwsfXQ9YRx3ODCW6YCy16ujQsEREREWnYjmbmsWDz4Wqds2DzIR69uj0RQT51FFX1NWvWjLvuuouZM2cydepU/v3vf7s6pDrllER3//79gGNIcps2bRgxYgSTJ0+usK63tzeNGzdusGO9xQ3lZ8GnN8DxhFNlQ1+H8wa6LiYRERERcRt2u52TedYanfvR2oOVDleujKXQzkfxB7izT5satQkQ7OuFwclbYj799NO89957vPHGGzz66KOEh4c79fruxCmJbqtWrUq+f+GFF+jWrVuZMpE6U2iBL2+BpC2nyq58Drrd7LqYRERERMStnMyz0nXij/Xa5hu/7OONX/bV+PxtL/yNED/ndg5GR0czduxYXn/9daZMmcKkSZOcen134vTFqF544QWGDh3q7MuKlGezwdf3Q8LPp8ouugv6POa6mERERERE3NhTTz2Fr68vM2fOJDU11dXh1Jk6WXXZbrfzySefcMMNN3DBBRcQGxtLmzZtyj0a6gpe4iZ+ngDb55163uFa+Psr4OQhHiIiIiIiniIqKop77rmHrKysSqebns2PP/5Ijx498PX1pVmzZjz77LMUFrrXStNO30e3oKCAQYMG8csvv2C3VzyW3WAwVHpMpEri34JfZ5x63roPDHsHjO61Z5mIiIiIuF6wrxfbXvhbjc59d9VfzFxe/SHID1zZttZzdOvK+PHjmT17Nm+++SaPP/54tc7dunUrgwcP5r777uOTTz5h586d3HHHHVitVl5++eU6irj6nN6jO3XqVH7++WcGDx7M3r17+ec//4nBYCA/P59du3YxYcIEAgICeOKJJ7DZbM5uXs4Fvy+AH54+9bxpZ7jpUzD7ui4mEREREXFbBoOBED9zjR63XNIKs6l6IwbNJgO39G5d4zZD/MxOX4iqtMjISO69916ys7N59dVXq3XulClT6Ny5M9OnT+f8889n+PDhvPjii7z++utkZWXVUcTV5/RE94svviAsLIzPPvuM2NhYjEZHE2azmfPOO4/nn3+epUuXMnXqVD744ANnNy+eLuEXWHzPqeeNWsLNC8A3xHUxiYiIiIjHahLky4gezat1zogeLdxqa6GKjB8/Hn9/f9566y2OHDlS5fN+/fVXrrnmmjJlgwYNIjc3l82bNzs7zBpzeqK7b98+evbsSUBAgKOBokS39JjtPn36cOmll/LWW285u3nxZElb4Yt/gs3ieO4fDjcvhqBI18YlIiIiIh7thSEd6RUTVqW6vWLCeGFIhzqOqPaaNGnCuHHjyMnJ4cMPP6zyecnJyURFRZUpi4x0vB9PSkpyaoy14fRE12QyERwcXPK8OOE9duxYmXrNmjVjz549zm5ePNXxvxx75RYUDYcw+8Oo+dC4rWvjEhERERGP52s28eHtPflHz5aVDmM2mwz8o2dLPry9J77mhrFuzJNPPklAQAC5ubm1uk7xMOu6HG5dXU6f4dysWTMSExNLnrdt60hE1q1bx3XXXVdSvn37dgIDA53dvHiirKPw8TDILvqwxOgFN34MzXu4Ni4REREROWf4mk1Mur4zj17dni83HWLdX2lk5VsJ9PHi4jbh3Hih+w9XPl1ERAT33XdftebpRkVFkZycXKas+PnpPb2u5PRE9+KLL2bhwoXk5ubi5+fHNddcwyOPPMJDDz2Ej48PzZs355133mHXrl0MGTLE2c2Lp8nPhE9HwIkDp8qGzoR2V7ksJBERERE5d0UE+XBfv7bc169hjCw82243r7zyCq+88kqVz7300kv57rvv+Ne//lVStmzZMvz8/OjRw306opw+dHn48OH4+/vz3//+F3D06D788MMcOnSIwYMHc8EFF/Dmm2/i7+9f6T+oCADWAvjiZkjedqrsqolwwT9cF5OIiIiIyDnsscceY/v27Tz22GPs2rWLRYsW8fzzz/Pggw+61Yhdp/foDho0qFxX9tSpU7nooov46quvOHHiBO3bt+fBBx+kXbt2zm5ePIXNBl/dC3+tOFV28Ti49CGXhSQiIiIicq7r3r07S5Ys4emnn2bmzJmEh4czbtw4XnzxRVeHVkbd7UJ8mptuuombbrqpvpqrsby8PCZNmsTnn39OYmIiYWFhDBw4kBdffJHmzau3rHh6ejoTJkxg8eLFpKSkEBkZyXXXXcfEiRNp1KhRhefYbDZef/113n//ffbt20dgYCB9+/Zl4sSJdOjg/qu3VVdqyiH2fv8mgcnr8S7MocDkT3bUxXQJysT/jwWnKnYaAX/7N7jRBHcRERERkXPRgAEDGDBggKvDOCOD/WyDts8heXl59O/fn7Vr1xIVFUWfPn04cOAAGzZsICIigvj4eGJjY6t0rbS0NHr37s3evXtp06YNF154ITt27GDHjh20bduWdevWER4eXuYcu93OjTfeyIIFC2jUqBH9+/cnNTWVVatW4evry/Lly+nVq1et77Njx44A7Nixo9bXqqm8nCy2v3cP3dKWYTYUnrlym76OFZa9vOslNhERERFpOGw2W8luLuedd17J9qbifqr7WtUmb3H6T4HRaMTb25tp06adsd5tt92Gl1e9dShXyX/+8x/Wrl1L7969+fPPP/niiy9Yv349U6dO5dixY9x+++1VvtYjjzzC3r17uf7669mzZw9ffPEFf/zxBw888AD79u3j0UcfLXfOnDlzWLBgAe3atWP37t0sWLCAFStWMH/+fHJzcxk9ejRWq9WZt+wSeTlZJLw2kJ7Hl5w1yc3Fl7whs5XkioiIiIhIldXJxx1Wq5UnnniC2267DYvFUmk9d+pMtlgsvPHGGwC8+eabZSZSP/roo3Tp0oVVq1axefPms14rJSWFTz/9FLPZzFtvvVUmoZ88eTIRERF8+umnHDlypMx5U6dOBeDVV1+ladOmJeXDhw9n6NChJCQk8PXXX9fqPt3B9vfuoWPB75zt5bfbwY88tn38RP0EJiIiIiIiHqFOEt2BAwfSs2dPPvzwQ/r27cvRo0frohmnWrNmDenp6cTGxtKtW7dyx0eMGAHAkiVLznqt7777DpvNxuWXX14mYQXw8fFhyJAhFBYW8t1335WU79+/n507d+Ln58egQYNq1b47S01JpFvaMuDs022Lj3dPW0pqyqE6jkxERERERDxFnSS6kZGRrFixgtGjRxMfH0/Pnj357bff6qIpp9m2zbGFTffu3Ss8XlxeXM/Z1yr+vlOnTpjN5lq17872fv/W2efknsZsKGTf97PqKCIREREREfE0dTZJ1sfHh48//phOnTrxf//3f1x22WXMnTu3pGfS3SQmJgJUurJycXlxPWdfy5ntFyuevH26hISEKi+q5WyByetrdF5AcryTIxEREREREU9V50uSjR8/nq+++gqj0cjIkSOZMGFCXTdZI1lZWQD4+/tXeDwgIKBMPWdfy5ntuzPvwpx6PU9ERERERM499bLs8eDBg1m3bh1DhgzhX//6F7///rvbLftdvDCWoZKJo9VZOKsm1zrbOTVR2TLclfX01ocCkz/UYOHoAlPFHwCIiIiIiIicrt729+nQoQObNm1i+PDhLF682KkJnTMEBQUBkJ2dXeHxnBxHj2Lp1Zidea2znVNcXpX23VlWVC84sKXa52VH9a6DaERERERExBM5vVu1ZcuWNG7cuMJjoaGh/Pe//+Wee+5xq62FwBE3wOHDhys8XlxeXM/Z13Jm++6s3cBxWOymap1jsZtoO/DeOopIREREREQ8jdMT3QMHDvDqq69WetxkMvHWW2+RmJjIX3/95ezma6xr164AbNlScW9jcXmXLl3q5FrF5/zxxx8V7j1cnfbdWePIlmwNvwagSvvoAqxvdA2NI1vUcWQiIiIiIuIpXDZRtnnz5rRq1cpVzZdz6aWXEhISQkJCAlu3bi13fMGCBYBjvvHZDBw4EKPRyOrVq8vtIZyfn8+SJUswGo38/e9/LymPiYnh/PPPJzc3l6VLl9aqfXfX5c632eHduUr76K6znc+EgptJzcqvn+BERERERKTBc68VoVzI29ub+++/H4D777+/zFzZadOmsX37di677DIuuuiikvKZM2cSFxfH008/XeZaUVFR/OMf/6CgoIBx48ZhtZ5afenJJ5/k2LFjjBo1isjIyDLnPfrooyV1SifIixYt4ptvviEmJobrrrvOaffsKr7+gcQ+/D3rw4ZWOoy5wG7iM+uVjCkYz74Thdw+dyPZ+TVYxUpERERERM45tV6Mqk2bNhgMBn766SdiYmJo06ZNlc81GAwkJCTUNgSnefbZZ/npp59Yu3Yt7dq1o0+fPhw8eJD169cTHh7OnDlzytRPTU1lz549JCcnl7vWa6+9xrp161i4cCFxcXFceOGF7Nixgz/++IPY2FimT59e7pzbb7+dZcuWsXjxYuLi4ujfvz+pqamsXLkSX19fPvnkE8xmc53df33y9Q+k14Mfk5pyiH3fzyIgOR7vwhwKTP5kR/Wm7cB7ObErn/wf9gCw/XAG93yymffHXIS3lz6fERERERGRytU6Yzhw4AD79+8vmVd64MCBKj/2799f6xtwJl9fX5YvX85zzz2Hv78/X331FQcOHGDMmDFs3bqVtm3bVvlajRs3ZuPGjTzwwAMUFBSwePFiMjIyuP/++9mwYUOFC3YZjUbmz5/P1KlTiY6O5ttvv+X3339n2LBhbNq0iUsuucSZt+sWGke24OJb/0Pnp5dz3rPr6fz0ci6+9T80jmzBuL6x3HrJ/7N33+FRVfkbwN+ZyUwmZVJIhQRI6BJqQjWAAiIuRRBYRFFQlLVg3/UHKy5NiiDgsroWRAEVkI6CykqRDgmhRYqUQAiQRkJ6Mpn6+2Myk06mJTNz836eJ09m7px77/eaROadc+45Eaa2h69m4f+2nINO51wTmREREREROSuRSASRSAR/f3/k5ubW2GbOnDkQiUT48MMPq+0bERFR/0XWA5He2aY/pnpnXEe3tnV2nYlOp8frP5zBz4nlveZT+0di5vCODqyKiIiIiJyFTqfD5cuGUYDt27eHWFzPo/8KM4HTa4Hko4CqEJB5AxH9gOhJgHdw/Z7bChWXdZ01axbmzp1brc2cOXMwd+5cLFq0CDNmzKi0b8uWLZGcnGyXWiz9WdmSWxpsHV0ia4jFIiwf3xU5RSocS8oGAHx1+AaCFXJMHWD+MHkiIiIiIpuoS4BfpwNn1wO6KqukXP8dOPAh0H0i8NhiQCp3TI21EIvFcHNzw7///W+89dZb8Pf3N2u/S5cuueytk3b/uGPKlCn45ptv6my3Zs0aTJkyxd6nJwFyd5Pgy2dj0LGpj2nbgl8uYceZOw6sioiIiIgaDXUJ8P04Q09u1ZBrpFMDp9YA3481tHciUqkUL774IvLz87F8+XKz9+vQoQNat25dj5XVH7sH3TVr1uDIkSN1tjt69CjWrl1r79OTQCnkUqyZ0hPNm3iYtv1j8zkcunLXgVURERERUaPw63TgZt0ZB4Ch3e4ZdbdrYO+99x7c3d2xYsUK3Lt3z6x9XPkeXYdNX6tSqSCR1Ly0DFFNghVyfDulNwK8ZAAAjU6Pl78/hcTbuY4tjIiIiIiEqyDDMFzZEmfWGe7ldSJhYWGYOnUqCgoKsGzZMkeXU+8cEnT1ej1Onz6NoKAgR5yeXFhkoBdWP98TnjLDhyTFKi2eX30SN7KK6tiTiIiIiBotvR4oybXuK35l7cOVa6NTG/az9pwluYaa7eyf//wn5HI5PvnkE2RnZ9v9+M7ELpNRDRo0qNLz3bt3V9tmpNFokJSUhPT0dDz77LP2OD01Ml3C/fDFMzGYsuYkNDo9sotUmPRNHLa+8iCCFc514z8REREROQFlHrC4ZcOe89BHhi9rTb8JePjZrRwAaNasGf72t7/hP//5D5YuXYpFixbZ9fjOxC5B98CBA6bHIpEI6enpSE9Pr7W9VCrFiBEjsHTpUnucnhqhAe2CsPSvXfHWxrMAgFv3SvDcNyex8aU+UMhdc2Y4IiIiIqL6NmPGDKxcuRKffvop/v73vyMwMNDRJdULuwxdvnHjBm7cuIHr169Dr9dj3Lhxpm1Vv+7cuYPCwkL8+OOPgv2PSg1jdPcwzBz2gOn5xbR8vPTdKZRqtA6sioiIiIjIeTVt2hQvv/wyCgsL8dFHlvc4Hzp0CKNGjULLli0hEokwZ84c+xdpB3bp0W3ZsnwYwOzZs9G9e/dK24jqy9QBrZCRr8SqIzcAAMeSsvHOpnP4ZEJ3iMWiOvYmIiIiokZB7msYCmyNY58Ah60YiTrgXaDva9adEzDUXE+mT5+OL7/8Ev/973/xj3/8w6J9CwsL0bFjRzz99NN466236qdAO7BL0K1o9uzZ9j4k0X29N+wBZBWWYsfZVADAz4lpCPJ2x+yRHSESMewSERERNXoikfX3u/b6G3B0hWUTUomlhv3sfI+tvYSGhuKVV17B8uXLsWTJEnh5eZm977BhwzBs2DAAhsDsrOpt1mWNRoMdO3Zg5syZeOmll/DNN9+YXktNTUViYiI0Gk19nZ4aEbFYhCXjuqJ/2/Kh8GuOJePzg0kOrIqIiIiIBEERAnR72rJ9uk8EvIPrpx47mT59Ojw9PfHZZ58hIyPD0eXYXb0E3YMHD6JVq1YYO3YsFi1ahFWrVuHIkfIFlvft24fu3bvjxx9/rI/TUyMkcxPj82di0DmsfIjHkt2XsTnhlgOrIiIiIiJB+MtioGU/89q27Ac8trh+67GD4OBgvPrqqyguLsbatWsdXY7d2T3o/vHHHxg2bBgyMzPx5ptvYvPmzdBXWQNq7Nix8PT0xNatW+19emrEvN3dsPr5nogI8DRtm7HtD/z+p3Mt1k1ERERELkbqATyzBYh5zjAsuSZiqeH1Z7YCUtdY8vL//u//4OXlhZKSEkeXYnd2v0d33rx5KC0txW+//VbrWrqenp544IEHcObMGXufnhq5QG93fDulN8Z8fgxZhaXQ6vR4dd1prJ/aG91b+Du6PCIiIiJyVVIPYOQKYOBM4PS3QPIRQFUIyLyBiH5A9CSnH65cVVBQEKZNm4YlS5Y4uhS7s3vQPXjwIPr06VNryDVq0aIF9uzZY+/TE6FFgCfWPN8TE1aeQGGpBiVqLaasOYktrzyI1kHeji6PiIiIiFyZdzAw4B+GLxdQdXRtVYsXL8bixTUPta5rX2dm96HL+fn5CAsLq7NdaWkptFqud0r1o1OYL1Y+GwOpxDDrck6xGpO+jkdGvtLBlRERERERua7CwkKcPXsWZ8+ehUqlQnp6Os6ePYuLFy86urRK7B50mzZtikuXLtXZ7vz581xrl+rVg20CsXx8NxhXGLqTW4LJ38Qjr8SCqeGJiIiIiMgkISEB3bt3R/fu3ZGWloYvv/wS3bt3Ny055CzsHnQfffRRXLhwAdu3b6+1zZo1a3Dz5k0MHz7c3qcnqmRk12aYNaKj6fmf6QWY+m0ClGqOJiAiIiIistTDDz8MvV5f7Ss5OdnRpVVi96D73nvvwdvbG0899RT+9a9/ISEhAQBQXFyM8+fPY/78+Xj11VcREBCAd955x96nJ6rm+dhIvPJwa9Pz+Bv38NYPZ6HVue49B0REREREVDu7B92WLVvi559/hr+/PxYsWIDevXtDJBJh8+bN6Nq1K2bNmgWFQoEff/wRoaGh9j49UY3+b2h7jI0ONz3ffSEds38679I32BMRERERUc3sPusyAPTr1w9XrlzB119/jb179yI5ORlarRbh4eF45JFH8NJLL8HPz68+Tk1UI5FIhA/Hdsa9olL8fvkuAOD7EykIVsjxxuC2Dq6OiIiIiIjsqV6CLgAoFAq89dZbeOutt+rrFEQWkUrE+O/EaDz9VRzO3soFACzfcwXBCndM6NXCscUREREREZHd2H3oMpEz85S54ZvneqJVkJdp23vb/8CeixkOrIqIiIiIiOyp3np0i4uLkZCQgLS0NJSWltbabtKkSfVVAlGNmnjJ8O2UXhjz2TFkFpRCpwdeW38a617sjR4RTRxdHhERERFZQGRcSxKATqeDWMy+PGel0+lMjyv+3OpDvQTdWbNm4eOPP0ZxcXGtbfR6PUQiEYMuOUS4vyfWTumF8V8eR4FSg1KNDi+sTcDml/uiXYjC0eURERERkZlEIhFkMhlUKhWKiorg6+vr6JKoFkVFRQAAmUzmekF3yZIlmD9/Ptzc3DBixAi0a9cO3t7e9j4Nkc0eaOqDryb1wKRv4qHS6JBXosbkb+Kx9ZUH0czPw9HlEREREZGZFAoFsrOzkZFhuB3Ny8uLPbtORKfToaioyPTzUSjqv2NJpLfz+ipt27ZFamoqDh8+jOjoaHsemuwkKioKAHDhwgUHV+Icfv0jDa+uPw3jX0LbYG9sfrkv/Dxlji2MiIiIiMyi1WqRkpICpVLp6FKoDnK5HC1atIBEIqmzrS25xe4fc9y6dQsPPfQQQy65jL90bop5ozqZnl/NLMSLaxOgVGsdWBURERERmUsikaBFixYICAiATMbOCmckk8kQEBBgdsi1ld2HLoeGhtr7kET17tk+LXE3X4n/7L8GAEi4mYPX1p/BF89Ew03CYS9EREREzk4ikSA4OBjBwcHQ6/Ww88BVsoFIJKr3e3KrsnvQnTBhAlatWoWcnBz4+/vb+/BE9ebtIe2QWVCKH07eAgDsvZSB93ecx6IxnRv8D5OIiIiIrOeIYEXOxe5dVXPmzEHHjh0xZswYJCUl2fvwRPVGJBJh/uhOeOSBENO2H07ewsd7rjiwKiIiIiIispTdg+6wYcOg0+lw6NAhdOjQAW3btsXAgQMxaNCgal+DBw+29+ltduzYMQwbNgxNmjSBt7c3evXqhbVr11p8nFOnTmHOnDno378/mjVrBnd3dzRv3hzPPPMMEhMTa9wnOTnZ9OlTTV8cFl7/3CRifPJUd8S0LB+N8J/91/DdiZsOrIqIiIiIiCxh91mXLZnGWyQSQat1ngl/tm/fjr/+9a/Q6XQYMGAAAgMDsW/fPuTm5uLtt9/G8uXLzTqORqOBVCoFAAQGBqJXr17w9PTEmTNnkJSUBKlUivXr12PcuHGV9ktOTkZkZCRCQkLw2GOPVTuur68vVqxYYfN1ctbluuUWq/DXL47jamYhAEAkAj6fGI3HOjV1cGVERERERI2DLbnF7kH35k3Ler5atmxpz9NbLScnB5GRkcjLy8PWrVsxZswYAEBGRgb69euHa9euYf/+/Rg4cGCdx9JoNOjXrx/+9a9/4S9/+Ysp/Ot0OsyaNQsLFiyAQqHA9evXERgYaNrPGHQfeughHDhwoF6uE2DQNVdqbgnGfn4MaXmGaeplbmJ8O6UX+rQKcHBlRERERETC51TLC7Vs2dKiL2exatUq5OXlYdSoUaaQCwAhISFYsmQJAJjdo+vm5oYTJ05g+PDhlXq4xWIxPvjgA3To0AEFBQX4+eef7XsRZFfN/Dywdkov+MgNc7apNDpM/TYBf6bnO7gyIiIiIiK6H66bUmbXrl0AUG04MQAMHz4ccrkce/futXkRapFIhM6dOwMAUlNTbToW1b92IQp881xPuLsZ/lQKlBpM/iYet3OKHVwZERERERHVxu7LCx06dMisdsYFg9u0aeMUU38bJ4iKjo6u9ppMJkOnTp2QkJCAy5cvo2vXrjad6/r16wBqX3M4IyMDs2fPRlpaGnx9fdG7d288/vjjXPzaQXpENMGnT0fjpe8SoNMDGfmlmPRNPLa8/CCaePFnQkRERETkbOplMipLgquXlxcmTJiABQsWICgoyJ6lmC0/Px++vr4AgLy8PPj4+FRr88QTT2DHjh346aefMHLkSKvPdeTIEfTv3x8ymQzJyclo2rR8ciPjPbo1adGiBTZt2oTevXubfS7jmPaqkpKS0Lp1a96ja6Ef4lMwY9sfpufdmvth/dTe8JTZ/fMiIiIiIqJGz6nu0Z00aRJGjhwJvV4PkUiE6OhojB49GqNGjUJ0dDREIhH0ej1GjBiBwYMHQy6XY9WqVejbty+ys7PtXY5ZCgsLTY89PT1rbOPl5VWtraXy8/MxZcoUAMDbb79dKeQCgLu7O1555RUcOHAAGRkZyMvLw/HjxzFs2DCkpKTgscceQ3JystXnJ9tM6NUC7wxpZ3p+9lYupq07DbVW58CqiIiIiIioKrv36GZmZqJPnz6IiorCihUr0KpVq0qv37hxA2+++Sb++OMPnDhxAgqFAi+99BLWrVuHd999F4sXL7bqvOPGjcP58+ct2ufbb79Fr169cOfOHYSHhwMA1Go13Nyq99BNnDgR69evx/r16/HUU09ZXJ9Wq8WoUaPw888/o1evXjh8+LBFQ5GN5586dSpWrlxp8fkr4qzL1tPr9Zj144VK6+qOjQ7H0r92cYoh+EREREREQmFLbrH7mMsZM2ZAo9Fg69atNQa5yMhIbN68GW3btsWMGTOwevVqfPHFF/jf//6Hn376yeqgm5ycjMuXL1u0T3GxYUIhhUJRaVtNQ5eNbb29va2q729/+xt+/vlntG/fHj///LPF99u+9957WL9+Pf73v/9ZdX6yD5FIhDmPR+FuQSl2X0gHAGw9fRvBPu6Y/lgHB1dHRERERERAPQTdX375BYMGDbpvkHN3d0dsbCx+/fVXAIZhwd27d8eRI0esPm9CQoLV+/r4+MDX1xd5eXm4ffs2OnbsWK3N7du3ARjulbXUu+++i2+++QbNmzfHnj17Kq2da662bdsCANLS0izel+xLIhbh3xO6YdI38Yi/cQ8A8PmBJAQr3PF8bCTuFpRi48kUxN24h8JSDbzd3dCnVQDG92iOIIW7g6snIiIiIhI+uwfd/Px8ZGVl1dkuOzsb+fnl65H6+/s7dOhn165dcejQIZw+fbpa0FWr1Th//jzc3d3Rvn17i467aNEiLF26FMHBwdizZw+aN29uVX05OTkArO9RJvuSSyX4alIPPPnlcfyZXgAAmLvzIvZczMDJ5HtQayvfEXD4ahb+vfcKxsU0x+yRHSGXShxRNhERERFRo2D3yaiioqJw4MABHDt2rNY2x48fx++//15pVuDbt28jODjY3uWYbfjw4QCALVu2VHtt165dUCqVpsmzzLVy5Uq899578PPzw//+9z+LQ3JFW7duBQDExMRYfQyyL18PKdZO6YUwPw/TtmNJ2dVCrpFaq8eG+BRM/iYeSrW2ocokIiIiImp07B503333XWg0GgwZMgTTpk3D77//jmvXriEpKQm///47pk2bhkceeQQ6nQ7vvvsuAEMv8KlTp9CnTx97l2O2F198ET4+Pvjxxx+xbds20/bMzEz83//9HwDgnXfeqbZfhw4d0KFDB9y5c6fS9i1btuCVV16Bt7c3fvnlF3Tr1q3OGr799lvTEOmKtm3bhhkzZgAAXn31VUsui+pZiI8ca6f0gkxi/miEuBv3MHfnxXqsioiIiIiocbP7rMsA8O9//xszZsyASqWqNhxZr9dDKpVi4cKF+Pvf/w7AMBPzpk2bMHjwYPTo0cPe5Zht69atGD9+PPR6PR566CEEBgZi7969yM3NxRtvvIEVK1ZU28d4fTdu3EBERAQAQzhu3rw5VCoVOnfujOjo6BrPN3r0aIwePdr0/OGHH8bhw4fRoUMHREREQC6X4+LFi/jzzz8BGD5EWLJkic3XyVmX7SuzQIm+i/ZDqzP/T0kqEeHYjMG8Z5eIiIiIqBZONesyALz11lsYNWoUvv76axw/fhypqakAgKZNm+LBBx/E888/j9atW5vaR0ZGYvr06fVRikXGjh2LQ4cOYf78+Thx4gRUKhUeeOABTJs2Dc8//7zZxykuLoZKpQIA/PHHH/jjjz9qbBcREVEp6E6dOhVBQUE4e/Ysjhw5gpKSEgQFBWHMmDF45ZVX8Mgjj9h0fVQ/Np28ZVHIBQzDmDcl3MK0gW3qqSr74eRaRERERORq6qVHl5wbe3Tt69mv43D4at0TsFXVNtgb/xzWAYHe7qYvmZvd7yawmlKtxdydF7Dl1O0a7zuWSkScXIuIiIiI6o3T9egSNSaFpRqr9ruaWYgpayovi+Ujd0Ogwh1B3u7l371l5WFYUf68PsOlUq3F5G/iEVe2fFJNjJNrXb9biLVTejHsEhEREZHTYNAlspG3u/3+jPKVGuQrNbh+t6jOtgp3t0rBtzwMlz8PKnvuKbOsxrk7L9w35FZknFxr0ZjOFp2DiIiIiKi+1EvQ1ev1WLduHX788UdcvXoVBQUFqGmEtEgkQlJSUn2UQNRgekc2sWrocpifHDI3CbIKSlFgRa9wQakGBaUa3MiqOxR7yiRl4VdWoWfYHUFVngd6y1Ci0mLLqeqzf9/PllO38M6Qdrxnl4iIiIicgt2DrkqlwvDhw7F///4awy1gCLi8NZiEYnzP5lix72qt6+fWRCoRYce0fqZgqFRrkVVYiqxCFbIKSsseG57fLSytsE2FvBK1xTUWq7RIuVeMlHvFdbZ1E4ugEfDkWgAn2CIiIiISOrsH3WXLlmHfvn0YOXIkli9fjnnz5uH777+HUqnE9evXsXHjRixduhSvvPIKFi9ebO/TEzW4YIUc42LCsSH+ltn7jIupHKjkUgnC/T0R7u9Z574qjQ7ZRaXIKlAhq7DUEIQLy59XDMn3ilQWX4+lIdfoq8PXkZRZiICyXuIAb3cEeMsQVPa9iZcM7m6OvY/3fhNsHb6ahX/vvcIJtoiIiIgEwO5Bd+PGjWjSpAnWr18PLy8viMWGWWSlUinat2+PWbNmYeDAgRg4cCDat2+PKVOm2LsEogY3e2QUrt8tMuu+1t6RTTB7ZEerzyVzE6Oprwea+nrU2Vat1eFekQp3K/QIZ1XpITYG43tFKliZcQEAucVqbDtz575tfORuZSFYZvoe4FU2dNpLhoCy4dMB3u7wkbtVW4fbFpxgi4iIiKjxsHvQvXbtGgYMGAAvLy8AMAVdrVYLicTwprF///6IjY3FZ599xqBLgiCXSrB2Si/M3XkRW07dcprleKQSMUJ85AjxkdfZVqvT416RCn/7LgFnUnLrpR7TZFtm3Fcsk4gNQdgYhk0huEKPsZcMQQp3NPGSQSq5/9JMnGCLiIiIqPGwe9CVSCTw8fExPTcG3rt37yI0NNS0PSwsDDt37rT36YkcRi6VYNGYznhnSDtsSriFE9ezXer+T4lYhCCFOwZ3CLYq6A5+IBhRzXyRVViK7MJSZJf1FmcXqqyabEul1SEtT4m0PKVZ7X09pKbeYOOkW4beYhncxGJsSuAEW0RERESNhd2DblhYGFJSUkzP27QxTE5z4sQJjB492rQ9MTER3t7e9j49kcMFKdwxbWAbl5mYqSprJ9f6cEyXWkOhUq1FdpHKFIDvln3PLhs2nV2kMg2jvlekgtaKMdR5JWrklaiRZMbSTOZwtQm2iIiIiKic3YNunz59sHXrVpSUlMDDwwPDhg3D22+/jTfffBPu7u4IDw/HypUrcenSJYwcOdLepyciG9ljcq2q5FIJwvw8EOZX933FOp0eeSVq0z3Ehom3KofhbONrhaUoUmnNrtNSK/ZewZ6LGQjz80AzPzma+nqgWdnjZn4eCPCS2fU+YltwJmkiIiKiciK9ndf5+fnnn/Hiiy/iyy+/xOOPPw4A+Pvf/46PP/7Y9IZQr9fDy8sLCQkJaN++vT1PT2aIiooCAFy4cMHBlZCzMmfiJqPekU0cOnFTiUpr6hXOrjDjtGnodFEpTt3MgVKts/u5ZW5iNPM1hN6mvh4IKwvATf0Mj5v6esDLvV6WKze530zSgGPuDSciIiKyB1tyi92Dbm1++OEH7NixAzk5OWjXrh3eeOMNtG3btiFOTVUw6JI5DAHKuSbXstazX8fh8NUsh5zb10Nq6AU2BmI/eVkPsQea+homCqtrIq3auNIHEkRERESWcomgS86DQZcscbeg1CUn16ro0/1XsfS3KxbvN75HOHpHBiA1twSpeUrD97Ivew2ZFosMw8WNw6ErhmLjl7+ntMYh0v/clmjREPOnerXgTNJERETkMhh0ySIMutTYZBYoEfvhfosn2Do2Y3CNYV6v1yNfqUFaniH03slVIs0YgssCcXqeEhpbFiauQC4Vo5lveS9wMz8PKOQSLPr1skUTd93vmoiIiIicjS25pd5uHktOTsahQ4eQlpaG0tLSGtuIRCL861//qq8SiIgA2H+CLZFIBF8PKXw9pOgQ6lNjG61Oj6zCUtwpC8BpuUrcyS0pC8eGMJxdpDKrFqVah+tZRWatP3w/nEmaiIiIGgu79+gqlUpMnToV69evB2Do+aj15CIRtNr6mzGVasYeXWqMnPF+VqVaa1grOLekLBArkZZXUhaIDWG42M6zSvvI3TCwQ3DlybN8DTNi+3i4Oc0s0gBnkiYiImrsnGro8ptvvolPPvkEwcHBmDhxIlq3bg0vL69a20+ePNmepyczMOhSY+VqE2zp9Yallow9wIYQbHi8788MFJXaNwR7ySSVZo02DZcum0Ar1FcOd7f6/+/CmaSJiIgIcLKgGxoaCp1Oh8TERISGhtrz0GQnDLrU2Alhgi1HzSQdpHCvNllWxecBXjKIxdb3CjtjzzsRERE5hlPdo1tYWIihQ4cy5BKR0wpSuGPawDYufa9q78gmVgXdoVEh6BDqUzZxVvn9wqUa89YZvltQirsFpTh3O6/G12USMZpW6A2uOJu0OWsLz915wayQCwBxN+5h7s6LLjWTNIdjExERNQy7B92oqChkZGTY+7BERFTB+J7NsWLfVYtnkp4/unO1QKXX63GvSGUIvXklFZZRKn+eWVAKc8b/qLQ63Mwuxs3s4lrbGNcWNgZfYyD2lEmwOeG22dcDAFtO3cI7Q9o5fUi833Dsw1ez8O+9Vzgcm4iIyI7sHnT/8Y9/YOLEiTh27BgefPBBex+eiIhg35mkRSIRArzdEeDtjs7hvjXuq9LokJGvrNYTbArEuSUoKNWYVUdeiRp5JWpcSss3u/baqLV6rI9LwZuPtLX5WPXFnOHYaq0eG+JTcP1uIYdjExER2UG9rKP78ccfY+HChXj99dfxyCOPICwsrNaZPFu0aGHv01MdeI8ukTA42/2s+Uo10spCb8WllIyP03Ltt7ZwVe5uYijkUvh4uBm+y93gI5dCIXcr+zJsU5i2Gdoa23i7u8FNIq6X2v65LdGiDySe6tXCpYZjExER1RenmowKAPbt24dXXnkFSUlJ9z+5SASNxrweALIfBl0i4XClmaQrri1cMRCnli2ndCktv96CsDm8ZBJTEPbxkNYYkH2qvVYepr1kbtUm4sosUCL2w/0WDzE/NmOw0w/HJiIiqm9ONRnVrl27MGbMGGg0GgQFBaFly5b3XV6IiIisJ5dKsGhMZ7wzpJ3TzyQtEYsQ4iNHiI8cqGEwj6NmkjYqUmlRpNIi3coR1SIRoHCvGIqlyC4qtSjkAoZhzJsSbrnMZGmcYIuIiJyR3Xt0Y2JikJiYiFWrVmHSpEm1Dlkmx2GPLhE5o0/3X8XS365YvN9LD7XC2OhwFCjVyC/RIF+pRoGy/HuB8XmJ8Xn5a4Vm3lfc0EJ83DEuJhxB3u4IVLgjyNsdQQrDY4W7m1P828r1jomIqL451dBlT09P9O3bF/v27bPnYcmOGHSJyBk5YpivVqdHYWnFEKxGfoVwXPF5vrJyO2NgVqrNW5rJXtzdxIbQawy/Zd+DFO4I8paVfZcjUCGDp8zuA7cAON/94UREJExONXQ5MDAQ3t7e9j4sEREJnD1nkjaXRCyCr4cUvh5Sq4+h0uhqDMv5SjW+OJCE61lFVh+7JqUaHW7nlOB2Tkmdbb1kkmph2PTY2FuscEegtwzubuYHUaGvd0xERK7P7kF33LhxWLduHfLz8+Hj42PvwxMRkYDNHhmF63eLzO4pnD2yYwNUdX8yNzGauMnQxEtW7bXMfKVVw7F7RTZBiyaeyCosxd0Cw1d2kQpaCyfrKlJpUZRdjOT7rGts5CN3qx6GqwTjIIU7dDo9tpwS5nrHREQkHHYfulxcXIzBgwfDy8sLX331FSIjI+15eLIDDl0mImfmSjNJ18Wew7F1Oj1yilW4W1iKrAIV7hYqcbegFFmFKlMYNgbje8Uq2H9NBdu8O7Q9J9giIiKLONU9uoMGDYJKpcLx48chkUgQERFR6zq6IpGI9/I6AIMuEbmCuwWlTj+TtDkcsY6uRqvDvSIVMgtKy4Kx4Xt5MC4PyXklapvOZS5fDzf0bxuEQG/DUOkAb3fT48Cyxx4yx35wwQm2yJH4AQtRdU4VdMVisfknF4mg1WrteXoyA4MuEVHDcfaJm0o1WmQVqgxhuMZgXD58ukhVv/9me8kkZQG4PAgHVXgcUBaKg7zd4eNh39mnnf3nRMLFD1hcCz+QaFhOFXRv3rxpUfuWLVva8/Q2O3bsGObPn48TJ05ApVKhY8eOmDZtGiZPnmzRcdasWYPnn3++1teffPJJ/PDDDzW+dunSJcyaNQsHDhxAYWEh2rRpgylTpuDNN9+06IOE2jDoEhE1LKEMxy5WaTDp63gk3MxxdCmQSkQI8CoPvxV7h6tua+Ilg5vk/v9+OqLnvaHwjbnz4gcsroMfSDiGU8267GzB1RLbt2/HX//6V+h0OgwYMACBgYHYt28fnnvuOZw7dw7Lly+3+Jhdu3ZFt27dqm3v3bt3je1PnDiBwYMHo7i4GL169UJERAQOHTqEd955B0ePHsXmzZudYv1EIiIyn1wqwaIxnfHOkHYuPRzbU+aGh9sHWRV0H+0Ygs5hvsguMtxnnF1oGDqdXViKnGLLh0+rtXqk5yuRnq80q72/p9QUfk09wwp3BHjJIJWIsSlBeBNs3e+N+eGrWfj33isu+8ZcKOFd6DOYC+XnZM4HEmqtHhviU3D9biE/kHASdu/RdVU5OTmIjIxEXl4etm7dijFjxgAAMjIy0K9fP1y7dg379+/HwIEDzTqesUd39uzZmDNnjln7aDQadOjQAUlJSVi+fDnefvttAEBhYSEeffRRHD9+HN988819e4rNwR5dIiKyVn2sd6wuu6c4q0L4NT6uui27UAWNhbNP15eJvVvghX6R8POUwUfuVmevcUMSak+hkHrVHLF2eEMR0s8JEPaID8C5P5Bwqh5dV7Vq1Srk5eVh1KhRppALACEhIViyZAnGjBmD5cuXmx10rbF9+3YkJSWha9euppALAN7e3vjvf/+L6OhoLF++3OagS0REZK36WO9YKhEjxEeOEB95ncfS6/XIK1FXCsLZpkBcfVtxPd5XvC4uBeviUkzPFe5u8PWUws/TsDazn4cMvqbH5dt9PWTlbTyl8JBK7D5aS4g9ha7Yq6bT6VFQts52Xoka+Uo18ksM62z/kphmUcgFDNf33vZEjOwaBh+5GxRyKXw9DN995FLIpWKHj/xzxZ/T/WQWKAW7pJqQR30ADLomu3btAmBYB7iq4cOHQy6XY+/evVAqlZDL6/6H2N41dO/eHa1atcL58+eRnJyMiIiIeqmBiIioLo5c71gkEsHPUwY/TxnaBNfdvlilQXahcbh0WSAuW5fYOIT6TEouSjU6m2srKNWgoFSD2zklFu0nk4jhUxZ6/TzKwrBnWVA2bveUGtp4SOHnadheWy+yUN+YOyK86/V6FJZqkK80hNX8ErXpcdXgWr6trK1SjcJSjd2X+tpzMRN7LmbW+JqbWAQfDykUcjf4yMu/+1QIwwq5W7U2vmXPFXIpJGLbgrIQPmTR6/VQaXUo1eiw+kiyVR9IbEq45dRLqgntA4maMOiWSUxMBABER0dXe00mk6FTp05ISEjA5cuX0bVrV7OPe+rUKbz77rvIz89HaGgoBg0ahIceeqjGtufOnau1BuP269ev49y5cwy6RETkMHKpBGun9HKJCbY8ZW7wbOKG5k08a23z7NdxOHw1y+JjS8Ui6ABobRxKrdLqTD3SllLI3ar1IN+6V2zVG/N1cTfx6sNtIBGLIBbB4T2DFVkb3t9+pC285W6Vwmi+siyQlpQH0vwSTXlwrRJenWSkvFk0Oj3uFalwr0hl9TG8ZJLqYbnS84rBubxX2UcuhVKts8uHLFqdHiqNDqUaLUo1OpSqKzzWaMueV9xW9qWu+Lx6O5UF7Wy17LfLWH00GV7uEnhIJfCUSeApc4OHzPhYAg+pm+F7hW2esorbyh5X2N9evfZC+ECiLgy6APLz85GbmwsACA8Pr7FNeHg4EhISkJKSYlHQ3bVrl6mnFgDmzZuHhx56CBs3bkRISEiltikpKXXWULFdXYxj2qtKSkpC69atzToGERFRTYQywRZg6HW2Jui+NaQdXn24NQpLDSEpt9gQoIyPc0sM6xTnFVd8rkFesQq5JWq7DKsuUGpQoNTgFizrRa7Jv/dexb/3XjU9F4kAiUgEsVgEiUhkCsASsfFx1e+o0rbsu1gESdl+xm3Gx+Iq26vvb3j9Ymq+VeG9z6J9ThNUFe7lgdHXQ4qrmYVWBVI/DylaBngiX6lBQVkoV2ltD2ZGRSotilRapOXZ7ZD3pdbqMWjpAUjdxChVa6HS6iz+WTsjnR5lH2DZ97giESoF34pB2RicK4dnN3hIJYbALXODp1QClUYryAn4qmLQhWGyJyNPz5o/8fXy8qrW9n6aNm2KOXPmYNSoUWjVqhVKSkoQHx+P//u//8PBgwcxfPhwxMXFQSIp/5TbeGx71UBERFTfghTumDawjVMP0avL+J7NsWLfVYsnBRrfozlEIhEUZb1c4f6WnVel0ZUFY1V5OC5WI7csLBsDcfUQrWqQ8KbXAxq9Hk6TFK1gz9I9ZZKyIeOGHk3Dd0Ovpq+H8XHl14ztveVu1YYEf7r/Kpb+dsXiOqYOaFXt702p1iJfqUZB2bDpAqXG1DNdUNZLXfW1is8LSjU2/bexVUGpBrB8QEOjpNcDxSpt2Qdl1vfcW8oVhmNXJZigO27cOJw/f96ifb799lv06tUL5kw8benk1EOHDsXQoUNNz318fDBy5EgMHDgQMTExOHXqFDZu3Iinn3662r61DUewtIbaZierraeXiIioMaqPCbbMIXMTI0jhbvFxdDo9ClUa5BVX7z3OLVZjfVwK7uTa3sMrNHKpuFI4NQZTQ0itGFwNz8tDraEXVmrnWbVt+YClKrlUArlUgmCFdbVodWX3ItcQhGsNyVXa1HcvrLub2PAllcDdTQyZmxjubpJq292N26UVHpva191OLq28z+qjyVix72rdBVYxuW9LPN6tGYpKDaG0RK0xfC8LqYbHhm3FauN2DUrKetSNz4tVWrvMIWAPJ65nM+g6QnJyMi5fvmzRPsXFxQAAhUJRaZuPj0+tbb29vW2o0rD/G2+8gddeew3/+9//KgVdb29v5OTkoKio6L712loDERERVebICbYsJRaLDAFMLkX1yGP4YNyansJXHm6NyX0joNXrodPpodXpodMbvrQ6mJ5rdfpKbQyPYXityr5aHWpoq4dOjxraVtwfFdrq8dO5VIsn+QKAmJb++OKZGCjkbk43kY6jPmCpiUQsKpsRXGrV/nq9HqUandlLWlXVJcwXc0dFVQ+eZY9lEsfNJj2xTwt8duCaxR9IvDaord1+VlqdHiXq8iBcHpTLtqm1ZYG67HV15aBs2kdtCNfJWUVQWfHBRKGDe/4tJZigm5CQYPW+Pj4+8PX1RV5eHm7fvo2OHav/43X7tmEce4sWLaw+j1Hbtm0BAGlpaZW2t2jRAjk5Obh9+za6dOlSrzUQERFROVeaYKsu1vYUTomNdNr77zxlEqvC+6AOwU57TYBrfcByPyKRCHKpBP3bBloVdId2CkX3FhaO/W8gzvCBhEQsgre7G7zd7RPdrJ2Az17nbyjOs7K5gxknmDp9+nS119RqNc6fPw93d3e0b9/e5nPl5OQAqN4ze78aKm6vKQQTERGRbYwTbB2bMRjvDm2P/m0D0b2FH/q3DcS7Q9vj2IzBWDSms1OHXKD8jbkl6qun0F7G92wOqcSyHr3ahvk6E+MHLE/1alHr9UklIjzVq4VLLO8i1J/T7JFR6B3ZxKy2zvyBhJG511JVn1YBdq6kfjHolhk+fDgAYMuWLdVe27VrF5RKJQYPHmyXNXS3bt0KAIiJiTG7hjNnzuD69evo2LEjIiMjba6BiIiIamacYOu7F3pj+6ux+O6F3pg2sI1TB8GqhPbGXIjh3UgoH7AAwv058QMJ1/hAoiqR3tIZjgTq3r17iIyMRH5+PrZu3YoxY8YAADIzMxEbG4tr165h7969GDx4cKX9OnToAADYt28fwsLCTNv/85//YMqUKZV6bdVqNRYuXIg5c+bAw8MDV69erbSPWq1G+/btcePGDSxfvhxvv/02AKCoqAhDhgzB8ePHsWrVKrzwwgs2XatxMqraJqsiIiIi16dUawUxFNtIqdaafQ9o78gmLhE4hEjoP6e7BaUuv6QaAPxzW6JFw7Gf6tXCIevo2pJbGHQr2Lp1K8aPHw+9Xo+HHnoIgYGB2Lt3L3Jzc/HGG29gxYoV1fYx3hh/48YNREREVNru4eGBjh07omXLllAqlTh79ixSU1Mhl8uxbt06U5iu6NixY3jkkUdQUlKC3r17o2XLljh8+DDS0tIwevRobN26FWKxbR3xDLpERESNh1DemAPCC+9CxZ+T83OVDyQYdO3o6NGjmD9/Pk6cOAGVSoUHHngA06ZNw/PPP19j+9qC7uzZs3H8+HH8+eefyMrKgl6vR3h4OAYPHoy33377vvf6XrhwAbNnz8aBAwdQWFiI1q1bY8qUKXjrrbcqrbtrLQZdIiIicmVCCu9Cxp+Tc3OFDyQYdMkiDLpERERERAQ49wcSDLpkEYVCAbVajdatWzu6FCIiIiIioholJSVBKpWioKDA4n0563Ij5OXlBanUugXB60tSUhKSkpIcXYZdCe2ahHY9AK/JVfCaXAOvyfkJ7XoAXpOr4DW5Bme8JqlUCi8vL6v2ZY8uOQUhDqcW2jUJ7XoAXpOr4DW5Bl6T8xPa9QC8JlfBa3INQrsm9ugSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaBw1mUiIiIiIiISFPboEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaC4OboAanihoaEoKipCixYtHF0KERERERFRjVJSUuDl5YX09HSL92WPbiNUVFQEtVrt6DKIiIiIiIhqpVarUVRUZNW+7NFthIw9uRcuXHBwJURERERERDWLioqyel/26BIREREREZGgsEeXiIiIiIjs7m5BKTaeTEHcjXsoLNXA290NfVoFYHyP5ghSuDu6PCoj1J+TSK/X6x1dBDUs4xAADl0mIiIiVyTUN+ZCoVRrMXfnBWw5dRtqbfWoIZWIMC6mOWaP7Ai5VOKACglwjZ+TLbmFQbcRYtAlIiJqPIQUCl3hjXljp1RrMfmbeMTduFdn296RTbB2Si/+rBzAVX5ODLpkEQZdIiIi4RNaKHSVN+aN3T+3JWJD/C2z2z/VqwUWjelcjxVRTVzl52RLbuFkVEREREQCYwyFG+Jv1RhyAUCt1WNDfAomfxMPpVrbwBVabu7OC2aFXACIu3EPc3derOeKqKrMAiW2nLpt0T5bTt3C3YLSeqrI/u4WlOLT/Vfx7NdxeOKzo3j26zj89/drLnUNjeHnBHAyKiIiIiLBsSYUOnOvmrVvzN8Z0s7lhme7sk0na/9gpTZqrR6bEm5h2sA29VSVfdxvhMThq1n4994rTjdCokSlxb1iFXKKVLhXpEJO2eP/XcgQ7M+pIgZdIiIiIgGpj1Co0+mh1euh1emhM37Xodq2Sq/r9dDqUPl1vd5wLJ0eOj1q2V62X4Vtv11MbxRvzF1NiUqL1LwSpOaW4E5OCTaeNH8obEVfHkzC6Zs58PGQwkfuBl8PqeGxhxQ+cil8PMq2yQ3bFO5uEItFdr6a2pkzbN44QuL63cJ6GTavVGuRU1wWWIvUhtBqeq7CvWK1KdDmFqtwr1gFpVpn1xpOXM92qb8nBl0iIiIiAbG2V63/kv2QSsSmUFsxyLqqVYev49a9YoT4yBHiI0eorzuCFXKE+srRxFPWoGGpLs42aZher0d2kcoUYu/kliA1V4k7ucVIzVUiNbcE2UUqu5wrX6nBvj8zzW4vEgEKdzf4eEgrBODKYdgQlt3gI5eWB+eyx3KpGCKR+T97e4+QKNVokVusrhBSVcipEFRNAba4PNQWqxx/e0FhqcbRJViEQZeIiIjIBRUo1biZXYyb2cVIzi7CzewiJGcX42xKjlXHU6p1du8BcrScYjV+qKWXUSoRIVghR7CPO0LKwm+wjztCy0Kx4csdCrm0Xmt01JDYUo0W6XlK3CkLslVD7J3cEpRqnPP3Qa83hON8pQa3c0os3l8qEZlCscIUlmsOzjqdHpsSLBshselkCvw83FCq0VcOrWXBtaEDo0LuBn9PGfy9ZGjiKcWF1HxkWnG/rbe7a0VH16qWiIiIqJ45U89abrGqQpAt/34zuwhZhfbpTbM3kQiQiEQQi0WQiESQiEUQiwCJ2PjY8CURiyAW19TW+JoIkrL9LqcXIF9p33Cg1uoNIS/3/kHJSyapFHxDfOWmYBzi444QHzmCFXLI3Cyf47W+hsTq9XrklagrhNgSpOYpK/TMllgVdGoiEYsQ6iNHMz85CpUaXEovsPgYf+kUil6RTZBXokZ+iQb5SnXZY8P3AqUG+SVqFNgpIKq1emQVqurtb0irBz4/eL1eju0lkxgCq5cM/p4Vv0vh51llu5cUfh6yar+bn+6/iqW/XbH43H1aBdjrMhoElxdqhLi8EBERUXWOWI7HODz0ZnYRkrOKTb2yxu95JWq7nMcc3Zr7Yf7oTpUCqaQsgIrFqPC4wveKr5e1t2RIqLmsfWM+sH0Q2oUokJGvRHq+Epn5pUjPV9bLMNAALxmCfeQILQu/5gyXtnaJF7VWh4x8Q3A13COrxG1joC0L7/a6Ri+ZBGH+Hgjz80Czsq9w//LHIQp3uEkMQSqzQInYD/dbNHReKhHh2IzBZn2IpNHqUFiqQX6JxhCEKwTi8sfVg3J+WVB2th5qD6nEFEgrhlZjcDX0wMpMwdbPUwp3N9v/31PfPyd7siW3sEeXiIiIGr36nGxGr9cjs6AUyVlFNfbO2jKMUS4Vo2UTL7QM8EREoOH72ZRcbLZwMioAGNIxBJ3CfK2upT6N79kcK/ZdtfiN+ZJxXau9Mdfr9Sgs1SAjX4mM/FKk5ymRUaBERl7Z83wlMvOVyCwohcaC+5Ozi1TILlLhUtr9azIOl/b3kOLAlbtmHx8AfohPwb5LGcgqLIU9bp0WiYBghbspxIb5eSDM3wPNfMue+3vAR+5m9ocXwQo5xsWEWxTex8WYP1LCTSKGn6cMfp4ys49fkVKtRb5SXSko55uCsqZKODa0u5xeAJXW8oDs7ynF412blfeymkKr1BRoHTU7c33/nJwFgy4RERE1erZONqPT6ZGWr8TNrIo9skWme2hLbFin1ksmMYXYlgFeiDB990Kwwr3ahEpDOoZgx9k7FofC8T2aW11jfbPnG3ORSASFXAqFXIo2wYpa99fpDL3thkBs6BHOyC81BOICJdLzDGH4ngUTMpk7XLo2esCiIcdyqbhyiK3SKxviY92Q6/uZPTIK1+8WmfX31DuyCWaP7GjX89+PXCqBXCrBfX7s1Tz7dRwOX82y+Fydwnwxd1Qni/drKM78c7IXBl0iIiJq1KxZjmfjyRSIyvZNzi5Gyr1iqGwYFukjd0NkoFflIBto+B7gJbNoOLBQe2sa+o25WCxCkMIdQQr3+/Z0l2q0yMwvLe8hLusRTi8LyMZeY1s+7KhNoLesUnit2jPr7ymtl6Hk9yOXSrB2Si/M3XkRW07VPAN4fdwGUF96RzaxKug6+/2sQvs51YT36DZCvEeXiIionLX3f1oqwEtmGGIc4FUpyEYEeFo9FLM25gzFNuod2aRe1v2sD4b7qF3vjbler0dBqcYQgPMMoXjpb5eRlqe0+Fhtgrzx1eQeaOord6prrMndglJsSriFE9ezHT6xm7Vc6X5Waznzz8mW3MKg2wgx6BIRUWOn0+mRmleCqxmFmLfrAm5kFdvluMEK97IgW37PbESAF1oEeMKnnpepqcpVQ6E5nPmNubmsHRLbv20gvnuhdz1URLWxdtIwsh0noyIiIiKqgVanx+2cYlzNKMTVzEJczSzAtcxCXMsstHlW2gAvGaYOaGUaatwywBOeMud5ayWXSrBoTGe8M6Sdy4fCqoIU7pg2sA2mDWzj6FKsJtQhsULUGO5nFaJG0aOr1WqhVqshl8sdXYpTYI8uEREJjUarQ8q9YkOYzSgo+16IpLuF9bakCHvWyBaNYUiskAh5hIQzY4/uffz00094+umnUVpaitdffx3Lly/HkSNHsGvXLoSGhmLy5Mnw9/d3dJlEREQu6W5BKTaeTEHcjXsN0luo0uhwM7vIFGSNPbTX7xZZtQRImJ8HpBIRkrMtH7rMnjWyhVAnDRMqIY+QECrB9+h269YNTZo0wfDhw/H5559j0qRJmD9/Ptzd3VFUVISWLVsiISEBAQHW/2OlVCqxaNEibNiwASkpKWjSpAkee+wxzJs3D+Hh4VYf9+rVq+jSpQuUSiWGDh2K3bt3W32sitijS0REtjL0blzAllO366V3o1SjxY2sItOQ42uZBbiSUYjkrCKL1jY1at7EA22DFWgb7I22IYbvrYO94e3uxp41chihThpGZC/s0b2Pq1evIi4uDp06dcJDDz2EPn364J///Cc++OADpKamYtSoUVi2bBkWLlxo1fGVSiUGDx6MY8eOoWnTphg1ahSSk5OxevVq7Nq1C8ePH0fr1q2tOvZLL72E0lLz10ojIiJqCOa8OVdr9dgQn4Lrdwvv++Zcqdaa7pm9mlmAqxmGx8nZRbA0z4pFQMsAL7QJ9i4LtN5oG6xAqyCv+947y541cpTGsMQLkaMIPuiWlJQgODgYABATEwOxWIwnn3wSANCsWTPMnz8ff//7360OugsXLsSxY8fQt29f/Pbbb/D29gYALF++HH//+98xZcoUHDx40OLjfv311/j999/xt7/9DStXrrSqNiIiovowd+cFs3qgACDuxj3M3XkR7w9/AEl3Cyv10F7NLETKvWJYOrZMIhYhIsDT0EMbUt5DGxnoZXUQ4GQz5CgcEktUPwQ/dFksFiM9Pd0UdhUKBc6dO4dWrVoBAG7duoWoqCjk5+dbfGy1Wo3g4GDk5ubi9OnT6N69e6XXu3btisTERCQkJCAmJsbs42ZmZqJDhw6IiYnBzJkzMXDgQA5dJiIip2DNMF9rSSUitAr0RpuQsh7asmAbEeAFmZvY7ufjZDNERM6FQ5frMGfOHAwYMAA9e/aESCSCSCQyvSaTyVBUVGTVcY8cOYLc3Fy0bt26WsgFgHHjxiExMRE7d+60KOi+8cYbKCkpweeff47bt29bVRsREVF92HSy5hBoC5mbGK2DjGG2rIc2xBstmnhCKrF/oK0Ne9aIiIRD8EF34sSJ+P333/Hll18CAPR6PZ577jn07dsXPXr0QFhYmNXHPnfuHAAgOjq6xteN243tzPHLL79g48aNmDdvHtq0acOgS0REDqfR6pB0twgXUvOwPj7F6uN4SCWm+2fblN0/2zbYG82beEIiFtV9gAYihDVaiYgaO8EH3e+++w4AUFBQgISEBMTHx+PkyZPYsGEDlixZAgCVengtkZJi+Me+tpmVjduN7epSVFSEV199Fe3bt8f06dOtqqkiY1d/VUlJSVZPkEVERMJWqtHiakYhzt/Jw/nUPJy/k49Lafk2r0Ub1cwHO1/rB7ETBVoiIhIuwQddI4VCgYEDB2LgwIGmbZmZmYiPj0dCQoJVxywsLAQAeHp61vi6l5dXpXZ1ef/993Hz5k3s378fMpnMqpqIiIjMVazS4FJaAS6k5hmC7Z18XM0sqJf7b5t4yRhyiRoRvV4PgU8FRBaoevtoQxBU0D1+/Di6dOliCph1CQ4OxogRIzBixAirzmf8463th2bJH3dCQgI++eQTTJo0qVIYt0VtN23X1tNLRETClVeixsXU/PJQm5qP63cLzV7CRyIWoW2wNyQiES6kWT6BY59W1q9XT0SuQavVIjs7GwUFBVCpVI4uh5yMTCaDQqFAQEAAJJL6n9BPUEE3NjYWYrEYrVu3Rrdu3Sp9NW3a1NTub3/7G2JiYvDSSy/ZdD6FQgEAtU5mVVxcDACmJYdqo9FoMHXqVPj6+mLp0qU21URERM7rbkEpNp5MQdyNe/U6yVFWYSkupObj/J28smCbj5R7xWbvL3MTo0OoAlHNfNEpzAedmvmifagCcqnEqlmXpRIRxvdobs2lEJGL0Gq1SElJgVKpdHQp5KRUKhWys7NRVFSEFi1a1HvYFVTQfeqpp3Du3DlcvnwZV69exebNm029rYGBgejWrRtat26N7du3Y+fOnTYH3RYtWgBArRNGGbcb29Xm9u3bOHv2LEJDQ/HXv/610mu5ubkAgPj4eDz88MPw9vbGrl27bKqbiIgalmHZmgvYcup2tYB4+GoW/r33ilXL1uj1eqTnK3H+TnmovZCaj7Q8899oesok6NjUB53CfBHVzPC9TbB3rbMdByvkGBcTjg3xt8w+x7gYzlZMJHTZ2dlQKpWQSCQICQmBl5cXxOKGmzWdnJtOp0NRUREyMjKgVCqRnZ1tWv61vggq6K5btw4AUFpaij/++ANnz541fZ08eRJ79uzB3r17odfr0by57Z8sd+3aFQBw+vTpGl83bu/SpYtZx0tPT0d6enqNr+Xk5ODgwYPw9fW1olIiInIUpVqLyd/EI+7GvVrbqLV6bIhPwfW7hVg7pVeNYVev1yPlXrEh1JYNP76Ymo/sIvOHB/rI3dApzLdSqI0I8LJ4xuPZI6Nw/W7Rfa/JqHdkE8we2dGi4xOR6ykoKAAAhISE8P0qVSMWi02/F6mpqSgoKGDQtYa7uzt69OiBHj16mLbl5eVh9erVmDlzJjp37oxvv/3W5vPExsbC19cXSUlJOHPmTLW1dLds2QIAdd4DHBERUev9vAcOHMDAgQMxdOhQ7N692+aaiYioYc3decGsQAgAcTfuYe7Oi5g/uhOu3y00zXps7KktUGrMPm+gt8wQapuVh9pwfw+7TAYil0qwdkovzN15EVtO1byurlQisqqXmohcj16vN92Ta+5cOdQ4GX8/VCoV9Hp9vU5QJcigWxNfX1+89dZbaN26NUaPHo0//vgD7dq1s+mYMpkMr732GhYsWIDXXnsNv/32m+mHt3z5ciQmJqJfv37o2bOnaZ9PP/0Un376KZ544gksWrTIpvMTEZFzyyxQYsspy9ZD/yE+BdtP34bSguV8wvw8ENXMp/ye2jBfBCvc6/UNhFwqwaIxnfHOkHbYlHALJ65n1+t9x0TkvCp22HC4Mt1Pxd8PBl07GzlyJNq3b4+FCxdi7NixNh/v/fffx969e3Hs2DG0bdsW/fv3x82bNxEXF4eAgACsXr26UvusrCxcvnwZaWlpNp+biIic26aTNfd23o8euG/IjQz0QsdmhgmiOoUZwm0TL8ctSRekcMe0gW0wbWAbh9VARERUVaMLugDQqlUr7N+/3y7Hksvl+P3337Fo0SKsX78eO3bsgL+/PyZPnowPPvjALvcCExE1Rg01Q7E96PV63C0sxZ2cEtzJLUFqbgnu5JRgZ2Kq1ccUi4A2wd6GocdhvujUzAcdm/lAIZfasXIiIiJhEukFtJLzm2++ie7du6N79+6IioqCm1vNOf6BBx5AaWkprl+/3sAVOgfjOrq1rbNLRORI95uhGHDMvZ9qrQ7peUrcrhJk7+SWf6ksGGpcl3Yh3vhxWj94yHhvKxE5P51Oh8uXLwMA2rdvz+HLVCtLf1dsyS2C6tH95JNPTOO8pVIpoqKiTMG3U6dOcHd3x/fff48rV67g888/d3C1RERUlb1mKLZUsUqDOzkluF01xJZ9z8hXQteAHwuH+MgZcomIiGwgqKC7bds2nDlzptpX1Zuc27Rpg+zsbOzevRvR0dH1PrU1ERGZx5oZiheN6Xzfdnq9HjnF6rLQWow7ucoKjw1hNqdYbY/yoZC7IczPw/Dl74HkrCIcuppl8XH6tAqwSz1ERESNlaCC7ujRozF69GjT86ysrGqh99q1a7h69Sref/99U7umTZsiJiYGP/74owOqJiIiwLoZirecuoW3BreFVq+v1ANb8XFqbgmKVVq71BikcK8UZCs99veAT5X7ZzMLlIj9cL9FE1JJJSKM78H5HYiIiGwhqKBbVWBgIIYMGYIhQ4aYthUVFeHcuXOVwu+FCxewa9cuB1ZKRETWzFCs1urR98N9dhlW7CYWoamfHGF+Hmjm54FwU5j1RJi/B5r6yi0eJh2skGNcTDg2xN8ye59xMc432RYREdWv8ePHY/PmzYiLi0OvXr0cXY4gCDro1sTLywsPPvggHnzwQdM2jUbDiZmIiBzM3CHLVZkbcj1lElPva7Oynthw//Ie2WCFHBKx/dfzmz0yCtfvFpl1fb0jm2D2yI52r4GIiJzb6dOnIZFI0Lnz/W/HIfM1uqBbEzc3N3Tt2tXRZRARNTpqrQ4XU/NxOiUHf9zJs+lYTbxkZb2xclMvbMUw6+cprdeF6Wsjl0qwdkovzN15EVtO1dxr7YiZpImIXJUrLT9njtzcXCQlJSEqKgoeHh6OLkcwGHSJiKjBZBWW4vTNHJxOycXpmzlIvJMLpdq2ZXliWvrhuxd6w1PmvP+kyaUSLBrTGe8MaYdNCbdw4nq2IN6cERE1pPstP3f4ahb+vfeKS35oePr0aQBA9+7dHVyJsDjvuwIiInJpWp0el9MLcColB2du5uBUSg5uZhfb/TyDOoQ4dcitKEjhjmkD22DawDaOLoWIyKU4avk5e9q9ezeWLl2K+Ph4SKVSjBw5Eh9//DFOnToFAIiOjnZwhcLiGu8MiIjI6eUWq3AmJRenU3JwOiUHZ1NyUWTGbMcyiRidwnzQIVSBjQm3obVgZinOUExE1DjUx/JzDWn27NmYN28e3N3dMXDgQEilUmzfvh3nz59HREQEAPN7dK9cuYIXX3wRWVlZkEgkePnllzFt2rR6rN6566gNgy4REVlMp9Mj6W4hTt00hNpTN3OQdLfIrH2DFe6IaemP6Bb+iG7pj05hPnB3M3zqrgc4QzEREVVi7fJz7wxp5xT/Rnz//feYN28eYmJisGPHDoSHhwMAbty4gR49epiGLnfr1s2s47m7u+Ozzz5Dp06dUFhYiJiYGDz88MOIioqqr0tw6jpqw6BLRCQA9T0xR4FSjXO38kyh9kxKDvKVmjr3k4hF6NjUBzEt/dG9hR9iWvojzM+j1kmhOEMxEZHw6PV6s/7NqM23x25atfzct8eT8WL/Vlaf10fuZvMkhnl5eXjjjTfg4+ODnTt3omnTpqbXIiMjMXXqVCxevBiRkZHw8/Mz65gtW7Y0Pfb29ka7du2QkpLS4AHTWeqoDYMuEZELq4+JOfR6PW5mF1fqrb2SUWDWMj5NvGRlPbV+iG7hjy7hvhbdP8sZiomIhCdfqUHXub81+Hk/2X8Nn+y/ZvX+52Y/Cl8PqU01fPnll8jJycHMmTMrhVyjNm0MczZYe39uUlISTp06hT59+thUp62cpY6KBBl0i4uLkZCQgLS0NJSWltbabtKkSQ1YFRGRfdlrYo4SlRbnbpfdW3vT8P1ekarO84tFQLsQhWkYckxLf7QM8LT502/OUExEREKxa9cuAMCECRNqfL2wsBCAdTMu5+XlYezYsfj000/h7+9vfZE2cpY6qhJc0J01axY+/vhjFBfXPrOnXq+HSCRi0CUil2bNxBwLn+iEO7klZcOPc3HqZg4upeVDY0Z3rY/cDd3LAm10C390be4Lhdy2T7rvhzMUExGRqzt79izc3d1rHc6bkJAAwPKgW1paitGjR2Py5MkYM2aMzXVay1nqqImggu6SJUswf/58uLm5YcSIEWjXrh28vb0dXRYRkd1ZMzHHD/Ep2HMhHVlm9NYCQJtgb0SX3Vcb3cIfrYO8IRbb1ltLRESNj4/cDedmP2r1/l8duo5Pf7d8CPLrg9rYfI+uLdRqNQoKCuDr61vjaKfMzExs27YNQOWgu2fPHjz66KM4cuQIYmNjAQA//fQTnnzySWzevBnDhg3D008/jd69e+Ptt9+2qcb7eeCBBzBixAh89NFHpm0qlQqdOnXCxIkT8a9//atB6rCWoILuV199BQ8PDxw+fJjrUBGRoG06WfP9q/ejB2oNuV4yCbq18DPNhNy9uR/8PGV2qJSIiBo7kUhk072ukx5siS8PJVn0755UIsKkvhE232NrC6lUCn9/f+Tk5CAjIwMhISGVXl+6dClKSkoQEhJS6f7dIUOGYOjQofjnP/+JQ4cO4eDBg3jqqaewatUqjBgxAj///DO2b9+OLl26YPfu3QCAefPm4fHHH7dr/bGxsThx4kS1mjUaDaZPn45ff/21QeqwlqCC7q1btzBo0CCGXCISPHOHLNemZYAnYlr4o3tLf8S08Ef7UAUk7K0lIiInFKyQY1xMuEsuPxcdHY19+/Zh1qxZ+OKLL0w9u19//TWWLVtmalPVRx99hG7dumHhwoVYvHgxlixZgokTJwIAhg8fDp1OZ9b57927h3v37v+ewcfHB8HBwdW2x8bGYv369dBoNHBzc8OtW7ewYMECrF+/HnK53KI6HEFQQTc0NNTRJRAR1Yu8EjXO38nDudu5+ON2Hk5cz7bqOK0CvbDp5b4I9Hb8P/5ERETmctXl52bNmoX9+/dj5cqVOHr0KKKionD+/HlcvHgRvXv3RlxcXI3353bu3BkTJkzAzJkzMW/ePEybNs2q8//nP//B3Llz79tm8uTJWLNmTbXtsbGxKCkpQWJiIqKjo/H2229jwIABGDVqlFW1NDRBBd0JEyZg1apVyMnJcaoZv4iILFGs0uD8nXwk3s5F4u08/HEnDzeyiuxy7DB/D4ZcIiJyOa66/NyAAQOwefNmzJ07F3/++SdSU1MRHR2NDz/8EIcOHao16J47dw6//PILpFIpgoKCrD7/rFmz8P7779+3jVgsrnF7u3btEBgYiBMnTiArKws7d+7E+fPnra6loYn0er1lN3k5MaVSiUcffRQSiQSrVq1C69atHV2SUzLO+nbhwgUHV0JESrUWf6YXmEJt4u1cXMssNGvNWmu8O7Q9ZzEmIiK70ul0uHz5MgCgffv2tQYne7lbUCro5eeuXbuGfv364YUXXoCbmxu+/PJLXLt2zSGT7I4aNQqenp44c+YMnnjiCSxatMim41n6u2JLbhFUj+6wYcOg0+lw9OhRdOjQAREREQgPD69xljORSIR9+/Y5oEoiaqzUWh2uZBSUBdo8/HEnF3+mFZi1tA8A+HpI0SXcF13CfdEywAvvbfvD7H0Bwyfd43s0t7Z8IiIipyDk5efu3LmDIUOGYPTo0ViwYAEKCgrw2Wef4aOPPqpzCHJ9iI2NxYwZMxAWFlZnz7CzEVTQPXDggOmxVqtFUlISkpKSamxbU/glosbhbkEpNp5MQdyNe/X2SbBWp8f1u4WmXtrEO3m4mJqPUo15kzZ4ySToFOaLrs390DnMF13D/dC8iUel/3edSclxyYk5iIiIqLrs7Gw8+uij6NGjBz777DMAgEKhwMyZM/H+++/j5ZdfrjQ7c0OIjo6GXq/HsmXL4OXl1aDntpWghi7fvHnTovYtW7asp0qcG4cuU2OlVGsxd+cFbDl126739uj1etzMLkbinTwk3jKE2gt38lCk0pq1v7ubGFHNfNAl3M/UY9sqsO41a5VqLSZ/E2/2xBxrp/RymnuWiIhIOBp66DI1nGeffRZ37tzB/v377XI8Dl22UmMNrkRUN3NCoVqrx4b4FFy/W1hrKNTr9UjLU1a4p9bQY5uv1JhVh1QiQodQH3QO90WXMF90CfdD2xBvSCWWvylw1Yk5iIiIyHlptVpkZ2dj69at2L59O86cOePokqwiqKBLRFSbuTsvmL32bNyNe5i78yIWjemMuwWl+ONOLs7dMsx+nHg7F1mFKrOOIxYBbYMV6Bzui67hvugc7ocOoQq7Bk65VIJFYzrjnSHtBD0xBxERETWMgwcP4pFHHkGrVq2wefNmtG3b1tElWUWwQTc+Ph6HDx9GamoqRCIRmjZtiv79+6NXr16OLo2IGlhmgRJbTt22aJ8f4lOw/1IGMgpKzd6nVaCXoae2bAhyx6Y+8HJvmP/NCnliDiIiImo4gwYNgk5n3pwizkxwQffKlSuYNGkSTp48CcAwzBAon3yqV69e+Pbbb132kwkistymkzUP670fPXDfkBvm54GuzX3ROcwPXcN9ERXmC18PqY2VEhEREZE9CCropqWl4aGHHkJGRgaaNWuGv/71r4iIiABgmKhq8+bNiIuLw8MPP4yEhAS7zVqmVCqxaNEibNiwASkpKWjSpAkee+wxzJs3D+Hh4WYdQ6PRYP78+Th58iQuXbqEu3fvQq1Wo3nz5nj00Ucxffp0tGjRwi71EjUmucUq/HYxw6ZjBCnc0bWsp9Z4b22AN4cDExERETkrQc26PG3aNHz++ed4++23sWjRIshkskqvq9Vq/POf/8Ty5csxbdo0fPLJJzafU6lUYvDgwTh27JhpeHRycjLi4+MRFBSE48ePo3Xr1nUep7CwEAqFAt7e3ujSpQuaNWsGlUqFs2fPIiUlBb6+vti/fz+io6NtrpmzLpMQFZVqcDWzEFfSC3A5owBXyr4y8s0felxVq0AvrJ/aB6G+cjtWSkREJCycdZnM1ZCzLgsq6EZGRkIul+PSpUu1ttHr9ejYsSOUSiVu3Lhh8zlnzZqFDz74AH379sVvv/0Gb29vAMDy5cvx97//HQMGDMDBgwfrPI5Go0FcXBx69+4NN7fyjnatVot//etfWLRoEXr37o0TJ07YXDODLrkypVqLpLuFZUG2PNjezimx+7n6tw3Edy/0tvtxiYiIhIRBl8zFoGsluVyOsWPHYt26dfdtN3HiRGzduhVKpdKm86nVagQHByM3NxenT59G9+7dK73etWtXJCYmIiEhATExMVafR6PRQKFQQKlUorCw0ObFmhl0yRJ3C0qx8WQK4m7ca9DZfNVaHZKzinAlo9DQQ5tu6KFNzi6CzsL/a8ncxFBpLJ9U4d2h7Tm5ExERUR0YdMlcXEfXSj4+Prh161ad7W7dugUfHx+bz3fkyBHk5uaidevW1UIuAIwbNw6JiYnYuXOnTUFXJBJBLBZDLBZX6u0lqk9KtRZzd17AllO3q03kdPhqFv6994pd1mfV6fS4lVOMy+kF5b20GQVIulto8QRSHlIJ2oV4o22IAu1DFGgXavguFgGxi/dbdDypRITxPZpbejlERERE5AQElZr69u2Ln3/+Gb/++iv+8pe/1Njml19+wdGjRzFy5Eibz3fu3DkAqPW+WeN2Yztr6PV6fPjhhyguLsYjjzwCd3dOgEP1T6nWYvI38fddd1at1WNDfAqu3y3E2im96gy7er0eaXlKXM4owNWMAlxONwTaa5mFKFFrLapPJhGjVZAX2ocq0C7E8NU+RIFwfw+IxaIa9xkXE44N8XV/EFbenuvPEhEREbkqQQXdGTNm4JdffsHo0aPx9NNP4+mnn0ZERAREIhFu3LiBdevWYcOGDZBIJJgxY4bN50tJSQGAWmdWNm43tjPX9OnTkZGRgfz8fCQmJiIpKQkdOnTAypUrLTqOsau/qqSkJLMmyKLGa+7OC/cNuRXF3biHuTsvYtGYzqZtWYWlVSaFMtxLW1CqsagOiViEiABPtA9VoG2wwhRsIwI84SaxbFjU7JFRuH63yKzr6h3ZBLNHdrTo+ERERETkPAQVdPv27YvVq1fjpZdewtq1a/Htt99Wel2v18PDwwMrV65Enz59bD5fYWEhAMDT07PG14330hrbmWvr1q1ISkoyPe/UqRPWrVuHyMhIKyslMl9mgRJbTt22aJ9NJ1Og1eqQklOMKxmFuFeksvi8LZp4ol2It6F3tizYtgrysmlYdEVyqQRrp/TC3J0XseVUzevqSiUiuwzHJiIiIiLHElTQBYBnnnkGDz/8ML766iscOXIEqampAIBmzZqhf//+eOGFF9C8uX3uuzPO4yUS1TxU0tp5vq5duwYAyMrKwqlTpzBz5kzExMRg1apVmDx5stnHqe2m7dp6eokAYNPJmkPg/Wj1wCYzw3Goj7zs3tnye2nbBHvDy73+/3ckl0qwaExnvDOkHTYl3MKJ69kNOsEWERERETUMwQVdwDBkeO7cufV+HoVCAQAoKiqq8fXi4mIAMC05ZKnAwEAMHToUffr0QZcuXfDKK69g0KBBdgvqVD8cNUuxNUo1WqTnKZGWp0RaXgnS8pRYF2fZUPvaNPGSoV2Id6VJodoGK+DrKbXL8W0RpHDHtIFtOKMyERERkUAJMug2lBYtWgAAbt+uuSfLuN3Yzlq+vr4YMWIEPvvsM+zZswdTpkyx6XhUPxpqlmJzlWq0yMwvRWpuCdLzlUjNLQ+zaXklSM9TIqvQ8iHGtQnwkuG1QW1MwTbQ27lCPRERERE1Hi4ddFu1agWRSIS9e/ciMjISrVq1MntfkUhU6T5Ya3Tt2hUAcPr06RpfN27v0qWLTecBDL27AHD37l2bj0X2Vx+zFN+PWqtDep6yLMAawmt6nrJSqM0qLLX6+Nbo2MwHz8fyPnIiIiIicjyXDrrJyckAALVaXel5Q4mNjYWvry+SkpJw5syZamvpbtmyBQAwYsQIm8918OBBAOBsyU7K1lmKK1JrdcgsKEVabglS85RIzytBaq6ybIixYVtWYSmsvAW8GpEICPR2RzNfOUJ95cgsKMWZlFyLj9OnVYB9CiIiIiIispFLB12dTnff5/VNJpPhtddew4IFC/Daa6/ht99+M820vHz5ciQmJqJfv37o2bOnaZ9PP/0Un376KZ544gksWrTItP2nn36CVCrFY489Vmlyq+LiYixYsAAHDx5EaGgoHnvssYa7QDKLVbMUJ9xC5zAfFJVqTUOJjaH2bkEpdHYKsUBZiPWTI9RHjmZ+Hgj1laOprxxNfT3Q1FeOEB85ZG7lS/VkFigR++F+iyakkkpEGN+D944TERERWWP8+PHYvHkz4uLi0KtXL0eXIwguHXSdwfvvv4+9e/fi2LFjaNu2Lfr374+bN28iLi4OAQEBWL16daX2WVlZuHz5MtLS0iptP336NObOnYtmzZqhe/fu8PX1RXp6Os6ePYt79+7B19cXmzZtsnpiK6o/Vs1SrNPjve3nbT53oLesLLh6mMJrxVAb7OMOdzfLhkgHK+QYFxOODfG3zN5nXIzzTbRFRERE5CpOnz4NiUSCzp1rHvFHlmPQtZFcLsfvv/+ORYsWYf369dixYwf8/f0xefJkfPDBB2bPkDxmzBgUFBTg8OHDOHnyJO7duwcPDw+0adMGL730El5//XU0bdq0nq+GrGHukGVLNfGSVep5bepXvSe2via1mj0yCtfvFpl1bb0jm2D2yI71UgcRERFRNYWZwOm1QPJRQFUIyLyBiH5A9CTAO9jR1VksNzcXSUlJiIqKgoeHh6PLEQyR3trFXp3QlClT0K9fvzpnJV6zZg0OHTqEb775poEqcy7GdXRrW2eXLPPEZ0etuqfVQyrBg60DygKsR6UQG+pbfyHWXIZZpC9iy6mae6ylElGDziJNREREzkmn0+Hy5csAgPbt20MsFtexh5XUJcCv04Gz6wGduvrrYinQfSLw2GJAKq+fGurB/v37MXjwYDzzzDP47rvvHF1OvbL0d8WW3CKoHt01a9YAQJ1B9+jRo1i7dm2jDbpkX97u1v0Z9Yjwx9fP9ay7oYPIpRIsGtMZ7wxph00Jt3DierbTrwtMREREAqUuAb4fB9w8UnsbnRo4tQbIugY8swWQOlfv6O7du7F06VLEx8dDKpVi5MiR+Pjjj3Hq1CkAQHR0tIMrFBZBBV1zqVQqSCTsgSL76B3ZBIevZlm8n6vMUhykcMe0gW0wbWAbR5dCREREjdWv0+8fciu6eQTYPQMYuaJ+a7LA7NmzMW/ePLi7u2PgwIGQSqXYvn07zp8/j4iICACotoJLTa5cuYIXX3wRWVlZkEgkePnllzFt2rR6rt41Nbqgq9frcfr0aQQFBTm6FBKI8T2bY8W+q5ylmIiIiKg+FGQYhitb4sw6YOBMp7hn9/vvv8e8efMQExODHTt2IDw8HABw48YN9OjRA6dPnwYAdOvWrc5jubu747PPPkOnTp1QWFiImJgYPPzww6YhvlTO5YPuoEGDKj3fvXt3tW1GGo0GSUlJSE9Px7PPPtsQ5VEjwFmKiYiIiO5DrweUedbvH7+y5nty70enNuzX9zXrzyv3BSos+2mNvLw8vPHGG/Dx8cHOnTsrTS4bGRmJqVOnYvHixYiMjISfn1+dx2vZsqXpsbe3N9q1a4eUlBQG3Rq4fNA9cOCA6bFIJEJ6ejrS09NrbS+VSjFixAgsXbq0AaqjxmL2yCicuH4PN7KK6mzLWYqJiIioUVHmAYtb1t3O3g59ZPiy1vSbgIefTSV8+eWXyMnJwcyZM2tcQaVNG8OtYdbcn5uUlIRTp06hT58+NtUoVC4fdG/cuAHAMCS5VatWGDduHD76qOZfaJlMhsDAQEil0oYskRoBdzcxJHVMMMhZiomIiIgal127dgEAJkyYUOPrhYWFAMy7P7eivLw8jB07Fp9++in8/f1tK1KgXD7oVuy+nz17Nrp3715pG1FDOJ6UjWuZ5b25U/pF4GpGIWcpJiIiImrEzp49C3d391qHFickJACwLOiWlpZi9OjRmDx5MsaMGWOXOoXI5YNuRbNnz3Z0CdRIrT6WbHr8ULsgzBrB+ySIiIiIABjudZ1+0/r9j30CHLbitsMB79p+j64N1Go1CgoK4OvrC1EN9/pmZmZi27ZtACoH3ZUrV+Kll16q1r5z5844e/Ysnn76afTu3Rtvv/22TfUJnaCCLmAYwrxu3Tr8+OOPuHr1KgoKCqDXV58NVyQSISkpyQEVktDculeMvZcyTM+fi41wXDFEREREzkYksu1e115/A46usGxCKrHUsJ+N99jaQiqVwt/fHzk5OcjIyEBISEil15cuXYqSkhKEhIRUun/36aefxuOPP256vnfvXkydOhXTp0/Hr7/+iu3bt6NLly7YvXs3AGDevHmV2pOBoIKuSqXC8OHDsX///hrDLWAIuLW9RmSNb48nw/grFRnohYfacukqIiIiIrtRhADdngZOrzV/n+4TnWJpoejoaOzbtw+zZs3CF198YerZ/frrr7Fs2TJTm4q8vb3h7e0NAPjpp5/w6quv4rvvvsO4ceMAADqdrgGvwHXVMX2Oa1m2bBn27duHESNG4OrVq3j22WchEolQWlqKS5cuYc6cOfDy8sK7777LXxCyi6JSDX44Wb6s0OS+LSEW2zYNPRERERFV8ZfFQMt+5rVt2Q94bHH91mOmWbNmQSQSYeXKlejcuTOefPJJREVF4cUXX0TPnj0B1H5/7g8//IBnnnkGGzZsMIVcMp+ggu7GjRvRpEkTrF+/Hq1bt4ZYbLg8qVSK9u3bY9asWfj555+xbNkyfPPNNw6uloRg+5k7KFBqAADe7m4YGxPu4IqIiIiIBEjqATyzBYh5zjAsuSZiqeH1Z7YCUnlDVlerAQMGYPPmzejcuTOuXLmCPXv2oGnTpvjpp5/Qv39/ADUH3a+//hovvfQSduzYgeHDhzd02YIgqKHL165dw4ABA+Dl5QUApqCr1WohkRiWc+nfvz9iY2Px2WefYcqUKQ6rlVyfXq/HmgqTUI2LCYdCzqWriIiIiOqF1AMYuQIYOBM4/S2QfARQFQIybyCiHxA9ySmGK1c1duxYjB07ttr2kSNH1rgs6ooVKzB37lzs3r0bffv2bYgSBUlQQVcikcDHx8f03Bh47969i9DQUNP2sLAw7Ny5s8HrI2E5ci0L1zINa5+JRMDkByMcWxARERFRY+AdDAz4h+FLYBYvXoz58+dj06ZNiIyMRHp6OgDAw8MDvr62zQLd2Ahq6HJYWBhSUlJMz9u0aQMAOHHiRKV2iYmJphu8iay15miy6fHA9sGIDPRyXDFERERE5NL0ej0WLlyIwsJCDBs2DE2bNjV9ffjhh44uz+UIqke3T58+2Lp1K0pKSuDh4YFhw4bh7bffxptvvgl3d3eEh4dj5cqVuHTpEkaOHOnocsmFJWcVYf/lTNPz59ibS0REREQ2EIlEyMvLc3QZgiGoHt2xY8fC09MTe/bsAWDo0X3rrbdw69YtjBgxAt26dcN///tfeHp6YvFi55iJjVzTt8dvmpYUah3khf5tAx1bEBERERERmQiqR3f48OFIS0urtG3ZsmXo2bMnduzYgZycHLRr1w5vvPEG2rZt66AqydUVlmqwOaF8SaHnHowwrYlGRERERESOJ6igW5sJEyZgwoQJji6DBGLb6dsoKDUsKaRwd8OYaC4pRERERETkTAQ1dJmovul0lZcUGt+zObzcG8XnRURERERELkNQQVcsFkMmk2H58uX3bff888/DzY3hhCx36OpdXL9bBKBsSaG+EY4tiIiIiIiIqhFU0AUAjUaDd999F88//zzUanWt7fTGmYSILFCxN3dwhxC0CPB0XDFERERERFQjwQXdxx57DL169cLatWvx8MMPIzMzs+6diMxw/W4hDly+a3r+fGyE44ohIiIiIqJaCS7ohoaG4sCBA5g4cSKOHz+OXr164ezZs44uiwTg2+M3TY/bBnvjwdYBDqyGiIiIiIhqI7igCwDu7u747rvvsGjRIty+fRv9+vXDli1bHF0WubACpbrykkKxXFKIiIiIiMhZCTLoGk2fPh07duyAWCzGk08+iTlz5ji6JHJRW07dRpFKCwDwkbvhie5hDq6IiIiIiIhqI/iph0eMGIETJ05g5MiR+OCDD/DHH39ALBZ0vic70+n0WFthEqoJvVrAUyb4Px0iIiIiIpfVKBJfx44dkZCQgIceegjbt2/Htm3b7Hp8pVKJ2bNno127dpDL5WjWrBmmTJmC27dvm32M3NxcrF+/Hk8//TQ6duwILy8vKBQK9O7dGytWrLjvDNJUvw5cyURydjEAQCwCnu3T0sEVERERERHR/Qgq6LZo0QKBgYE1vubv7489e/bg5ZdftuvSQkqlEoMHD8a8efNQWFiIUaNGoXnz5li9ejWio6ORlJRk1nGWLl2KiRMnYuPGjfD09MTIkSPRq1cvnDt3Dm+99RYGDRqE4uJiu9VN5lt9NNn0eEjHEDRvwiWFiIiIiIicmaCCbnJyMpYsWVLr6xKJBJ999hlSUlJw/fp1u5xz4cKFOHbsGPr27YsrV65g48aNiIuLw7Jly3D37l1MmTLFrON4e3vjvffeQ0pKChISEvDDDz9g3759+OOPP9CiRQscOXIE8+fPt0vNZL5rmQU4fDXL9Py5ByMdWA0REREREZlDpLdn92Yjo1arERwcjNzcXJw+fRrdu3ev9HrXrl2RmJiIhIQExMTEWH2eDRs24Omnn0ZERARu3Lhha9mIiooCAFy4cMHmYwndv3acx3cnDMsKdQhV4Nc3+3O2ZSIiIqIKdDodLl++DABo374958OhWln6u2JLbuFvoQ2OHDmC3NxctG7dulrIBYBx48YBAHbu3GnTebp27QoASE1Ntek4ZJm8EjW2ni6/z/q5B7mkEBERERHZ3/jx4yESiRAfH+/oUgTDpaeObdWqFUQiEfbu3YvIyEi0atXK7H1FIpHZ98/W5ty5cwCA6OjoGl83bje2s5ZxmHVoaKhNxyHLbE64heKyJYX8PKUY1Y1LChERERE5WlZJFrZd3YaE9AQUaYrg5eaFnqE98UTbJxDoUfN8Pc7u9OnTkEgk6Ny5s6NLEQyXDrrJyckAYJqR2Pi8oaSkpAAAwsPDa3zduN3YzlorVqwAAIwaNcqi/Yxd/VUlJSWhdevWNtUkdFqdHt8ev2l6PqFnC3jIJA6siIiIiKhxU2qU+DD+Q/yY9CM0Ok2l146nHcdn5z7D6DajMaPXDLhL3B1UpeVyc3ORlJSEqKgoeHh4OLocwXDpoKvT6e77vL4VFhYCADw9a56F18vLq1I7a3zxxRfYu3cv/Pz8MGPGDKuPQ5bZ/2cmUu4ZZrmWiEV4ti+XFCIiIiJyFKVGiVf2voKEjIRa22h0Gmy5sgXJecn4/JHPIXeTN2CF1jt9+jQA1HgrJFmP9+jawDiPV233bdo6z9fBgwfx5ptvQiQS4ZtvvkGzZs0s2v/ChQs1frE3t25rjpVP+jU0KgRhfvx0jYiIiMhRPoz/8L4ht6KEjAQsPrm4niuy3O7du/HII4/Ax8cHAQEBeO6555CTk4NTp04BqP12SLKOoILulClT8M0339TZbs2aNWYv+3M/CoUCAFBUVFTj68Z1b729vS0+dmJiIkaPHg2VSoUVK1bgiSeesL5QssiVjAIcvZZtes4lhYiIiIgcJ6skCz8m/WjRPjuu7UBWSVbdDRvI7Nmz8Ze//AVHjhxBbGwsYmNjsX37dgwZMgRxcXEA2KNrby49dLmqNWvWAECdIfbo0aNYu3atWaH4flq0aAEAuH37do2vG7cb25krKSkJQ4cORW5uLubMmYPXX3/dpjrJMmuOJZsed2zqg54R/o4rhoiIiMjF6fV6FKgLrN5/w58bqt2TWxeNToMNf27A5KjJVp9XIVXYZcWN77//HvPmzUNMTAx27Nhhmsfnxo0b6NGjh2nocrdu3Ww+F5UTVNA1l0qlgkRi+8RCxmV/jL+cVRm3d+nSxexjpqamYsiQIUhPT8ebb76J2bNn21wnmS+vWI1tFZcUiuWSQkRERES2KFAXIHZDbIOfd2XiSqxMXGn1/kefOgofmY9NNeTl5eGNN96Aj48Pdu7ciaZNm5pei4yMxNSpU7F48WJERkbCz8/PpnNRZYIaumwOvV6P06dPIygoyOZjxcbGwtfXF0lJSThz5ky117ds2QIAGDFihFnHy8nJwdChQ3Hjxg08//zz+Pjjj22ukSyzMSEFSrVhUrMmXjI83tWy+6KJiIiIiIy+/PJL5OTk4PXXX68Uco3atGkDgPfn1geX79EdNGhQpee7d++uts1Io9EgKSkJ6enpePbZZ20+t0wmw2uvvYYFCxbgtddew2+//WaaaXn58uVITExEv3790LNnT9M+n376KT799FM88cQTWLRokWl7cXExhg0bhvPnz2P8+PH46quv2JPYwLQ6PdYeK19S6KlezSGXckkhIiIiIrLOrl27AAATJkyo8XXj6iy8P9f+XD7oHjhwwPRYJBIhPT0d6enptbaXSqUYMWIEli5dapfzv//++9i7dy+OHTuGtm3bon///rh58ybi4uIQEBCA1atXV2qflZWFy5cvIy0trdL2mTNn4sSJE5BIJHBzc8MLL7xQ4/mM9yGT/e25mIE7uSUADEsKPdOHSwoRERER2UohVeDoU0et3n/thbVWDUH+W5e/2XyPrq3Onj0Ld3d3REVF1fh6QoJhJmkGXftz+aB744ZhGRi9Xo9WrVph3Lhx+Oijj2psK5PJEBgYCKlUarfzy+Vy/P7771i0aBHWr1+PHTt2wN/fH5MnT8YHH3yA5s2bm3WcnJwcAIBWq8X69etrbcegW38qLin0l06haOrLJYWIiIiIbCUSiWy61/WpDk/hm/PfWDQhlZvYDU91eMrme2xtoVarUVBQAF9f3xpHamZmZmLbtm0AKgfdPXv24NFHHzXN0AwAP/30E5588kls3rwZ7777LkaMGFEp86hUKnTq1AkTJ07kHD9lRHpbF3t1InPnzkX37t3x+OOPO7oUp2b8ROnChQsOrsR5XErLx19WHDY93/pKX8S0bOLAioiIiIhcg06nw+XLlwEA7du3h1hs/2mA5hybg61Xt5rdfly7cZjd1/GBr0mTJsjJyUF6ejpCQkIqvfZ///d/+OijjxASElJtROpjjz2G4uJiHDp0CAcPHsSwYcOwcuVKTJw4ES+++CIuX76Mw4fL37suXLgQq1atwsWLFyGXyxvk2qxh6e+KLblFUJNRzZ49myGXrLK2wpJCncN8Ed2CSwoREREROYsZvWagR0gPs9r2COmBGb1m1HNF5jFOMjVr1ixU7F/8+uuvsWzZskptKvroo49w9OhRLFy4EI8//jiWLFmCiRMnAjBMiHvq1CloNIYe7lu3bmHBggX4+OOPnTrkNjRBBV0jjUaDHTt2YObMmXjppZcqrZebmpqKxMRE0y8GUU6RCtvP3DE9f+5BLilERERE5EzkbnJ8/sjnGNduHNzENd996SZ2w7h24/DFkC/gLnFv4AprNmvWLIhEIqxcuRKdO3fGk08+iaioKLz44oumCWtruj+3c+fOmDBhAmbOnIl//OMfmDZtmum12NhYlJSUIDExEQDw9ttvY8CAARg1alTDXJSLcPl7dKs6ePAgnn32Wdy5cwd6vR4ikQhqtRpTpkwBAOzbtw/PPfccNm3ahLFjxzq4WnIGP5y8hVKNYUmhQG8ZRnStPvU7ERERETmW3E2O2X1nY1q3adh+dTtOpp9EkaYIXm5e6BnaE0+0fQKBHoGOLrOSAQMGYPPmzZg7dy7+/PNPpKamIjo6Gh9++CEOHTqEuLi4GoPuuXPn8Msvv0AqlVZbFrVdu3YIDAzEiRMnkJWVhZ07d+L8+fMNdUkuQ1D36P7xxx/o06cPtFotXn31VcTGxuKvf/0rnnvuOVOvbnFxMUJCQjBy5Mj7TvokZLxHt5xGq8OAJb8jNU8JAHhjUBu882h7B1dFRERE5Doa4h7dxuTatWvo168fXnjhBbi5ueHLL7/EtWvX4O3tbWozatQoeHp64syZM9WWLXVmvEfXSvPmzUNpaSl++eUXLF++vMYeW09PTzzwwAM4c+aMAyokZ7PnYoYp5LqJRZjIJYWIiIiIyEHu3LmDIUOGYPTo0ViwYAH+8Y9/QKvVVltVJjY2Fhs3bkRRURHef/99B1Xr3AQVdA8ePIg+ffpg0KBB923XokULpKamNlBV5MxWH002PR7epSlCfHgDPxERERE1vOzsbDz66KPo0aMHPvvsMwCAQqHAzJkzsWzZMqSlpZnaRkdHQ6/XY9myZfDy8nJUyU5NUPfo5ufnIywsrM52paWl0Gq1DVARObPzd/IQn3zP9Py5ByMcVwwRERERNWoBAQE1DtF966238NZbb1XatnbtWgwcOBDjx49voOpcj6CCbtOmTXHp0qU6250/fx4tW3KIamNXcUmhrs390J1LChERERGRk9JqtcjOzsbWrVuxfft23opZB0ENXX700Udx4cIFbN++vdY2a9aswc2bNzF8+PAGrIycTXZhKX48Vz58/Xn25hIRERGREzt48CBCQ0OxbNkybN68GW3btnV0SU5NUD267733Hn744Qc89dRTePfdd01rSRUXF+P8+fPYsWMHFi5ciICAALzzzjsOrpYc6YeTt6AqW1IoSOGOYZ25pBAREREROa9BgwZBp9M5ugyXIage3ZYtW+Lnn3+Gv78/FixYgN69e0MkEmHz5s3o2rUrZs2aBYVCgR9//BGhoaGOLpccRK3V4bvjN03PJ/ZuAZmboP4UiIiIiIgaNUH16AJAv379cOXKFXz99dfYu3cvkpOTodVqER4ejkceeQQvvfQS/Pz8HF0mOdD/LqQjPd+wpJBUIsLTvVs4uCIiIiIiIrInwQVdwDANd02zkxEBlZcUGtGlGYIVXFKIiIiIiEhIOF6TGpXE27k4dTPH9JxLChERERERCY8ge3SLi4uRkJCAtLQ0lJaW1tpu0qRJDVgVOYM1FZYUim7hh67N/RxWCxERERER1Q/BBd1Zs2bh448/RnFxca1t9Ho9RCIRg24jc7egFLvOpZmePxcb6cBqiIiIiIiovggq6C5ZsgTz58+Hm5sbRowYgXbt2sHb29vRZZGT2BCfApXWMCV7iI87/tKJM28TEREREQmRoILuV199BQ8PDxw+fBjR0dGOLoeciEqjw/cnypcUeqZ3S0glvEWdiIiIiEiIBPVO/9atW3jooYcYcqmaX8+nIbPAcL+2TCLGU1xSiIiIiIhIsAQVdENDORSValZxSaGRXZsh0NvdccUQEREREVG9ElTQnTBhAuLj45GTk1N3Y2o0zqTk4OytXNPz52MjHFYLERERERHVP0EF3Tlz5qBjx44YM2YMkpKSHF0OOYm1FZYU6hnhj05hvo4rhoiIiIiI6p2gJqMaNmwYdDodjh49ig4dOiAiIgLh4eEQiUTV2opEIuzbt88BVVJDysxX4uc/Kiwp9CCXFCIiIiIiEjpBBd0DBw6YHmu1WiQlJdXas1tT+CXhWReXArVWDwBo6ivHo1EhDq6IiIiIiIjqm6CC7o0bNxxdAjmRUo0W6+JSTM+f6cMlhYiIiIjI+YwfPx6bN29GXFwcevXq5ehyBEFQQbdly5aOLoGcyC9/pCGrsGxJITcxnurFJYWIiIiIXJ0mKwu5W7agOP4kdEVFEHt5wbNXL/iNGwu3wEBHl2eV06dPQyKRoHPnzo4uRTAEFXSJjPR6faUlhUZ3a4YmXjLHFURERERENtEplchYsBC527cDGk2l14qOHcPdTz+F35gxCJn5HsTurrOUZG5uLpKSkhAVFQUPDw9HlyMYggq6hw4dMqudTCZDQEAA2rRpY5d7dZVKJRYtWoQNGzYgJSUFTZo0wWOPPYZ58+YhPDzc7OMcPHgQBw4cQHx8POLj45GVlYX27dvjzz//tLnGxuZ0Si4Sb+eZnnMSKiIiIiLXpVMqcWvq31B88mTtjTQa5G7aBNWNG2j+1UqI5fKGK9AGp0+fBgB0797dwZUIi6CC7sMPP2xRcPXy8sKECROwYMECBAUFWXVOpVKJwYMH49ixY2jatClGjRqF5ORkrF69Grt27cLx48fRunVrs4715ptv4ty5c1bVQZWtqbCkUO/IJujYzMdxxRARERGRTTIWLLx/yK2g+ORJZCxchKbz5tZzVZbZvXs3li5divj4eEilUowcORIff/wxTp06BQCIjo52cIXCIqigO2nSJOTm5uKnn36CWCxG9+7d0aJFC+j1ety6dQtnzpyBTqfDyJEjUVJSgrNnz2LVqlXYv38/4uLiEBAQYPE5Fy5ciGPHjqFv37747bff4O3tDQBYvnw5/v73v2PKlCk4ePCgWcd69NFHMX78ePTs2ROBgYH8ZbdSep4Sv1ZYUuj52AjHFUNERERENtHcvWsYrmyB3G3bEPTG605zz+7s2bMxb948uLu7Y+DAgZBKpdi+fTvOnz+PiIgIAOzRtTdBBd0lS5agT58+GD58OFasWIFWrVpVev3GjRt48803kZiYiBMnTkChUOCll17CunXrsGTJEixevNii86nVanzyyScAgP/+97+mkAsA77zzDtauXYtDhw7h1KlTiImJMat+o+TkZItqoXLr4m5CozMsKRTm54FHHuCSQkRERESOotfroSsosHr/e+vWV7snt04aDe6tW4+A55+z+rxihcIutzl+//33mDdvHmJiYrBjxw7TrY03btxAjx49TEOXu3XrZvO5qJyggu6MGTOg0WiwdetWyGTVJx6KjIzE5s2b0bZtW8yYMQOrV6/GF198gf/973/46aefLA66R44cQW5uLlq3bl3jJzDjxo1DYmIidu7caVbQJdsp1Vqsr7Ck0LN9W8KNSwoREREROYyuoABXevVu8PNmf/45sj//3Or928XHQeJj2+1veXl5eOONN+Dj44OdO3eiadOmptciIyMxdepULF68GJGRkfDz87PpXFSZoBLAL7/8gn79+tUYco3c3d0RGxuLX3/9FYDhPt3u3bsjJSWl1n1qY7yftrYhxsbtvO+24exKTEN2kQoAIJeKMaFncwdXRERERESN1ZdffomcnBy8/vrrlUKuUZs2bQDw/tz6IKge3fz8fGRlZdXZLjs7G/n5+abn/v7+Vg1LMIbj2mZWNm63JkTbQ1RUVI3bk5KSzJ4gy5UYlhS6YXr+RPcw+HlySSEiIiIicoxdu3YBACZMmFDj64WFhQDq5/7cJUuWYNeuXWavTCM0ggq6UVFROHDgAI4dO4YHH3ywxjbHjx/H77//XmkM/O3btxEcHGzx+Yy/mJ6enjW+7uXlVakd1a+Emzm4kFr+AQaXFCIiIiJyPLFCgXbxcVbvn/3NamR/8YXF+wW88orN9+ja6uzZs3B3d6+1AyohIQFA/QTdbdu21RqwGwNBDV1+9913odFoMGTIEEybNg2///47rl27fnLzdwAAiCtJREFUhqSkJPz++++YNm0aHnnkEeh0Orz77rsADL3Ap06dQp8+fSw+n15vmPCott5g4+uOcuHChRq/hNibCwBrjiabHj/YOgDtQ23/nxMRERER2UYkEkHi42P1V5OJTwNuFvbPubmhycSnbTqvrRNRqdVqFBQUQC6X13iszMxMbNu2DUDloPvAAw+YsoqRSqVCu3btMHfuXKxcuRIikajaV5cuXUzt79y5g5MnT2LMmDEAgD179kAkEuHo0aOmNj/99BM8PDxMvc7mHNeVCKpHd/z48UhNTcWMGTPw+eef44sqn/zo9XpIpVIsWbIE48ePB2AYxjxnzhwMHjzY4vMpyj7lKSoqqvH14uJiAKg0GzPVj9TcEuy+kG56/tyDEY4rhoiIiIjsxi0oCH5PPIHczZvN3sdvzBiHLy0klUrh7++PnJwcZGRkICSk8kogS5cuRUlJCUJCQirdvxsbG4sTJ05Ua6vRaDB9+nRoNBo8/vjjptf27t2LqVOnYvr06aZt27ZtQ3R0NFq0aAEAGDJkCIYOHYp//vOfOHToEA4ePIinnnoKq1atwogRIwAATz/9dJ3HdSWCCroA8NZbb2HUqFH4+uuvcfz4caSmpgIAmjZtigcffBDPP/98pR7NyMhIq394xl+c27dv1/i6cbuxHdWf70/chLZsSaFwfw8M5pJCRERERIIRMvM9qJKTUXzyZJ1tPXv2RMjM9xqgqrpFR0dj3759mDVrFr744gtTz+7XX3+NZcuWmdpUFBsbi/Xr10Oj0cDNzQ23bt3CggULsH79esjlcgDlHWk//fQTXn31VXz33XcYN26c6Rjbtm3D2LFjKx33o48+Qrdu3bBw4UIsXrwYS5YswcSJE02ve3t713lcVyK4oAsYwuv8+fPr/Txdu3YFANPaV1UZt7tqd7+rUKq12BBfPuHX5L4RkIhtX/OMiIiIiJyDWC5H869WImPhIuRu21bzurpubvAbMwYhM9+D2N294YuswaxZs7B//36sXLkSR48eRVRUFM6fP4+LFy+id+/eiIuLq3Z/bmxsLEpKSpCYmIjo6Gi8/fbbGDBgAEaNGlWp3Q8//IC//e1v2LBhA4YPH27anpWVhcOHD+PLL7+s1L5z586YMGECZs6ciXnz5mHatGk11lzbcV2NIINuQ4mNjYWvry+SkpJw5syZar+kW7ZsAQDTcACqHz+dTUVOsRoA4CGVYHwPLilEREREJDRiuRxN581F0BuvI3fLVhTHx0NXVASxlxc8e/WC37ixDh+uXNWAAQOwefNmzJ07F3/++SdSU1MRHR2NDz/8EIcOHaox6LZr1w6BgYE4ceIEsrKysHPnTpw/f75Sm6+//hrvvPMOduzYgUGDBlV6bceOHXjggQfQrl27StvPnTuHX375BVKpFEFBQTXWe7/juhoGXRvIZDK89tprWLBgAV577TX89ttvppmWly9fjsTERPTr1w89e/Y07fPpp5/i008/xRNPPIFFixY5qnTB0Ov1WH0s2fR8THQYfD2ljiuIiIiIiOqVW2AgAl9+CXj5JUeXYpaxY8dWG0YMACNHjsRHH31U4z4PPvggDh8+jP/85z9455130LZtW9NrK1aswNy5c7F792707du32r5bt241TUJldO3aNQwdOhSvvvoq3NzcMGfOHDzzzDOV5hKq67iuRnBBV6/XY926dfjxxx9x9epVFBQU1Dj7sUgkQlJSks3ne//997F3714cO3YMbdu2Rf/+/XHz5k3ExcUhICAAq1evrtQ+KysLly9fRlpaWrVjrVq1CqtWrQIAlJaWAgBu3rxZaUbozz77jAtKVxB34x4upVVcUijCccUQEREREdlBbGwsZsyYgbCwMLz//vum7YsXL8b8+fOxadMmREZGIj3dMBmrh4cHfH19kZeXh/379+PDDz807XPnzh0MGTIEo0ePxoIFC1BQUIDPPvsMH330EebOnWvWcV2RoIKuSqXC8OHDsX///lqX9hGJRHZd9kcul+P333/HokWLsH79euzYsQP+/v6YPHkyPvjgAzRvbv4w2tu3byMurvIaY0qlstK2/Pz8qrs1ahWXFOrfNhBtQ7ikEBERERG5tujoaOj1eixbtsw0YlSv12PhwoUoLCzEsGHDKrWfMWMGFi1ahF27dqF58+amuYSys7Px6KOPokePHvjss88AGFaOmTlzJt5//328/PLLCA0NrfO4rkikd/Rir3a0aNEizJw5EyNHjsTy5csxb948fP/991Aqlbh+/To2btyIpUuX4pVXXsHixYsdXa7DGBesvnDhgoMrsc3tnGIMWPI7yiZbxteTe3C2ZSIiIqIGptPpcPnyZQBA+/btIRaLHVyR63v22Wdx584d7N+/36L9xowZgzZt2mDJkiX1VJltLP1dsSW3CKpHd+PGjWjSpAnWr18PLy8v0384qVSK9u3bY9asWRg4cCAGDhyI9u3bY8qUKQ6umGzx3YmbppDbMsATA9sHO7YgIiIiIiIrabVaZGdnY+vWrdi+fTvOnDlj8TH69u1bbXbmxkpQH7dcu3YNvXr1MnXvG4OuVqs1tenfvz9iY2NNXffkmkpUWvwQf8v0fFLfCIi5pBARERERuaiDBw8iNDQUy5Ytw+bNmytNQGWud999t9psy42VoHp0JRIJfHx8TM+Ngffu3bsIDQ01bQ8LC8POnTsbvD6ynx1n7yCvxLCkkKdMgr/2CHdwRURERERE1hs0aBB0Op2jyxAMQfXohoWFISUlxfS8TZs2AIATJ05UapeYmFhpKm1yLXq9vtIkVONiwuEj55JCRERERERkIKig26dPH1y4cAElJSUAYJo17M0338Svv/6KP/74A6+//jouXbqE3r17O7JUssHxpGxczigwPZ/MJYWIiIiIiKgCQQ1dHjt2LH799Vfs2bMHjz/+ONq0aYO33noLH3/8MUaMGAHA0Bvo5eXVqGdddnWrjyWbHj/ULgitg9g7T0REVKvCTOD0WiD5KKAqBGTeQEQ/IHoS4O2iEzkK8ZqIHEWrBoqzgdJCQK8FRBLA3RvwDAAkrjtqUlBBd/jw4UhLS6u0bdmyZejZsyd27NiBnJwctGvXDm+88YZVN3eT4926V4y9lzJMz5+LjXBcMUREJExCCVHqEuDX6cDZ9YBOXfm1678DBz4Euk8EHlsMSOWOqdFSQrwmI6H83lUkxAAlpGvS6YD820DxPQBVVpxVFQAF6YBnE8AnHHDBJaMEtY4umceV19Fd8PNFfHX4BgAgMtAL+955iLMtExGRfdwvRAGAWOo6IUpdAnw/Drh5pO62LfsBz2wBpB71X5cthHhNgCB+76qtjQrUHqAAACLXC1D3C4UAXO6adDrgXpLhQ5W6yLyBJq3tcl0NuY6uC/wUiAyKSjX44WT5kkKT+7ZkyCUicrTCTODQR8C3o4FVjxi+H1pq2O5KjCHq9NqawwZg2H5qDfD9WEN7Z/brdPMCIWBot3tG/dZjD0K8JoH83olE5e/HdBqNIUAVZ6PmQAjD9uJsQztXmGXYGAqFdE35t80LuYChXf5tu5y24qzSFX9v6oOghi4bJScn49ChQ0hLS0NpaWmNbUQiEf71r381cGVki+1n7qBAqQEAeLu7YWwMlxQiIhcjpKGJQhtCak2IGrmifmuyVkGG4ediiTPrgIEznff3UIjXBAjm904kEkEmk0GlUqHo7k34iiwMUH4t6rdAW1kTCp35mrTqsp5pCxTfAxRNbR6eXVRUBACQyWQMupZQKpWYOnUq1q83/I/wfqOyGXRdi16vx5oKk1CNiwmHgksKEQkbQ6HzMmcIqbEXKuua8w8hdfUQpdMCOo3hzatODcR9UXvvYK3HUAO/LwS6PQ2Y3j+VfTfruSVtKz5H+fP7tb2w3bprOvQR0PNFQOxmeIMudjMMBZYYvxu3SSw7tj24+u9dFQqFAtl3M5BxrxjwEsFLBpg18K4oG/AKcd77W7VqQ4219uTWwNZrMv5N1fT9fq+Z2uhqeA3l+6sKy9pYVBRQmAUoQqy6JJ1Oh6KiImRkGObaUSgUVh3HEoIKutOnT8e6desQHByMiRMnonXr1vDy8nJ0WWQHR65l4Vqm4ZM0kYhLChEJGkOhc4dCQBi9UDodoFUB2lLrg+Gut4BWA8uCprosaJY9NgVPTeUQqtPW8FhTtr+mlsdVj6upfA5L3oDfz6nVhi8hiV9p+KqTqCz0GkNwlSBsfE0sqdDOGJLdamjnVkOYdqt8juQj1v3e/fQG0Lrs906vrfBdV+X5fbZXa3O/Y+hqaV95e4DIDUUR46H0a4fUUn/D/8fM6rHTA9m13X8puu/TOtvXSVT3bnqddaEw+2KF69dXe7nmv1snnzrpXgbglmvzYeRyOQICAmyvpw6CmowqNDQUOp0OiYmJCA0NdXQ5TssVJ6N6Yc1J7PvTcL/XoA7B+Oa5ng6uiMjJCKX3U4iTzfz0huFnY66Y55wvFFZUkAF8HGXZG3SxFHjzHCD3NYRLTakhYGpUVb6XVnjdHu3u097SgEFEddJKPJAdPgQFQTFQebjQvz1kHpkXENjO+t1lMigUCgQEBEAiMW8UhS25RVA9uoWFhRg6dChDrsAkZxVh/+XySU2eY28u2UoooRAQXu+nEHoKK6rvoYk6XXmPn1ZV4buqvNewpu1mt1dX3yf9D+t6oT7uaNk+1PDEUsOssQDKe7pE5j839YpZsa/peS2v5aYA6iILLwiGpV/EbobfQYt75chSEm0Jgm/+hOCbP0EPMfRiQUUN52AcJWAaRSCr8FxWPnLA9CUrH0VgfH7jkGHpIEtFPgTEbrKqbJFIVO/35FYlqN++qKgo07hvEo5vj9803VrQOsgL/dsGOrYgcl1CC4VCGxLryPvV9PryIGccNmp6rK4QAtV1t9OqyoeUXttrXShc+TDgFVR3ENVpbLtuso3cHwiPqT58terw14rDWKs9rmH46/2OVW1YraT6sY7/Fzi0xPLreXgGMOAf9v/vZA+HPgL2z7d8v4HvlV+TTldlOHjF4eXG4eJVhoqb/u6qDiWvZWh6tX0rDlvXVD5H8hGgOMvya/JoAoT3NPzsReKy75Iq3++33c2CthZsF0uAPXOAtDMAABF0EOlU5l1Ts+7AkA/KhwnrdWX3k2qrbNNVGDKtr7K9alt9+RDrGtvpqxyvhvPodcClnUD+Hct/Tk1aG+4Prxg4JcYgKqshiFZsZxziLisLqBXa2CMsWvv31LKPayydVEZQQfcf//gHJk6ciGPHjuHBBx90dDlkB4WlGmxOKF9S6LkHIxr806BGTyi9n0ILhYBr9H7qtDUMMa1lqGniRutC4XdPAAFtqodRUyjUVH5cU0h1tsCYf8e6N1auRiIDJO6AW23f3Q1tKn23R/sq7eK+AA4utrz+B19zzmDY80XgyMeWDy+PnlR/Ndmq+yTgwGLbrkksNvR4QWb38qxibdjoO805f+8A4IHhpqBrkQ4jgMj+9q/HHrwCrfs5dXsa6Puq/euxB3v8PbkAQQXdv/71r7h9+zZGjRqF119/HY888gjCwsJqDUYtWjjxtN8EANh2+jYKSg1vQBXubhgTzSWFGozQej9dIRRawqrez++B1oMN99hYfR+khfdD6rX1c/0VZZw3fFEFovIQV63HQFble4WehhrbVml/bgNw77rlJbV4EHjyu8oB01k+uOzxAnB4uXDe9ClCDG+yLbk3vPtE5/7wUojXJMSwwWsycPZrEuLfUw0EFXQBoEuXLvD398fcuXMxd+7cWtuJRCJoNE72CT5VotNVXlJofM/m8HIX3K+scxJa76cjhsTqtIBGCaiVgKbEEPrUJYZt9tied8uK3k8NsOlZ666nMTMNEa04tKzKc3GV4Gh87VY8UJRZ9zmqCu4IPDTd+jBan0uliETW9W60GWzoGXFGQnzT95fFQHaS+RO7PWZFj3ZDE9o1CfH3jtdk4OzXBAjv76kGgkoNu3btwpgxY6DRaBAUFISWLVtyeSEXdujqXVy/a5h4QiQCJveNcGxB5hLCUF8h9X7qtEDC19YNid3yAhDW3czwWaUNZ3StnUhS89DS/DTrJpvxjwRiJleZcENWQxCtaWKOGu6NMk3kUfbYll5Ha4cmdhoLRI22/rz1SYi9G4Dw3vRJPQwfQu6eYfjgrqafl1jqWiNzhHhNQvu9A3hNrnJNQvx7qkJQywvFxMQgMTERq1atwqRJk3gvZy1cZXmh51bH48DluwCARx4IwarJPRxcUR3uN9QXcJ3/WVi7dMg7F2sO8np92TBWpSEEmgJiheem71Uf19SmrmNU/F7ifPdeOppEBviGm3FfY4UQKpFafs/j/drV1ttobSgc9C/nvV/N3n9PzkJoSyYZqUuE+aavMBM4/a1h8iNX/QC2KiFdkxB/73hNDV+fLZz478mW3CKooOvp6Ym+ffti3759ji7FqblC0L1+txCDlh00PV/3Ym/EtnHSIW+A66/9qdcb/semzAeOrgDiv7T8GN6hhjUyjb2aFUMnGXoxpR6Am9zwJZUDbh6G4GfabnzsbnhNKq/Qvsr2wx8DGX9YXkergcCkHXa/PLtgKDRwhVBo8f/ztrrWGz8nftNHAibE3zteE9mI6+iWCQwMhLe3t6PLIDv49vhN0+O2wd54sHWAA6sxg6OH+qqVQGk+oMwzhNXSvAqP82t5XLFNge2TBhWmG76ExDsU6DCs9rDpJq8juFbYLrHz/27vXbcu6Eb0s28d9sT7oDjkzVl4BxtGCTjrSAESJiH+3vGayIEEFXTHjRuHdevWIT8/Hz4+Po4uh6xUoFRXXlIo1smXFLJ1oiOtpkIAzSt7nF/D47zq2437ac1cp85ZSGSVQ6Kbe83fpXW8Xuv+VXpHT34NHFlueZ29pjrvP2S8T5Kh0NGkHoYP7AbOZO8GERE5HUENXS4uLsbgwYPh5eWFr776CpGRkY4uySk5+9Dl1f/f3p3HRV3nfwB/fWcY7vv24BLBAxHxwPu+0jKP1LK1MLd27Xar327beuaWXbZW21bblpqbpVnqWlaWtyl44ImiiKAoKrdyM8N8fn8AI8ggzDDMd2Z4PYsHzOd7zPvjlxm+7/l8vu/vb+lYuvUMAMDd0Q4Jr4yGs70FfyZj7HWF9m7VNyI3pvhOa5IU1XEZKqAHMHpx/aRTNwJaJwlVOpj/ZuOcElvNGqbEArwOioiIiABw6rLOfffdB6VSiV27dqFLly4IDQ1t9D66kiTxWl4LpNUKrKlzS6GH4oItM8kVovqENScFOLHeuH1UFpk2JqC6QqyDe/W1so7udX720NPufkd7zc8H3jMucY+aCkSOM32fTIFTYq1n9BOw7ZFCTnmzCprcXBRu3IjSQ4ehLSmBwsUFznFx8Jz+AOx8LbheRBvCY0RETbGpEV2FAaNEkiShqqqF1yRaKUse0d2Vko3HVh8GACgkYM//jUSQt7N8AdVNaHNSgOyzQM45IOcsUFZg4ieTbiegepPVO3/2aNiucmrZrVCABqOfmnIFCtOcUZptD61GAYWdFs7+lfAML4WdY83IrzWMftYpntNkn6ypeE7N6KfmwDoUXrBv2KfOlbAb9LBVjn7a4oks+2TZtOXluPHa6yjctAnQ6KnYbmcHz2nTEPC3V6BwcDB/gEbiMbIOtnScarFP1sGS+8SqyzUuXbrU9Ep1hISEtFIkls2SE91HPkvEvtRcAMD4qAB88oiZbimkS2hrEtnss7eTWwMT2mYlhgDQPhaY/OHt5NbezfxTehvzv+egPbQGN5I8UJjuDAg9ybMk4NmpFAG9b0IRN8cqpsRqiwpw45kZKDx8BdDq6ZNCwLNfEAI+3AiFq4f5AzSCLZ70sU/skxy05eXIfOIPKD18uMl1nfv1Q9Cn/4bC0bI/POIxsvxjBNjecQLYJ/bJdJjoyqy8vBzLly/HV199hcuXL8Pb2xv33HMPXn31VXTs2NGgfRUWFmLJkiXYtGkTrl+/jsDAQEyZMgVLly6Fp6enSeK1pET33PG9SPrXArhl5EGlFqhUSbji74ENATPx+lOPYKCpqy2bMKEFADj7AvYuQOElaDWoTgwznBtPosJqEkMlLPren9qiAmROG4XSzKZvDeQc5Iig73ZB4ebZ+oG1gC2eINlqny49/jjKjxxtcl3Hfn0Q8ul/2CcZ2OLv3rWFi1D4zTfNXt9z5ky0e3VpK0bUMrZ8jASAu81dql1u6ccIsM3jZKt94vu4PMeJia6MysvLMXr0aBw4cADt2rXD0KFDkZGRgUOHDsHPzw8HDx5EeHh4s/aVl5eHgQMHIjU1FZ06dULfvn2RnJyM5ORkdO7cGQkJCfDxaXniZwmJbkHOVex46j50SS6HnZ66RxoFkBLlhLEf/wBPn3aGP0FrJLT+3QC/roBfl9s/u/gCRTegfTsKl3a7ozy76U+7HP0rEDLiFhR/ttypvrZ4MsE+WUefriz4G4o2ftfsPrnNeAAdlxlxTbkZ2WKfbO13T5OTg9SRo/SPaDTGzg4Ru3fJPq2vMTxGsPhjBNjecQJss098H5fvODHRldGiRYuwbNkyDBw4ENu3b9fdx/fdd9/Fiy++iGHDhmHPnj3N2tejjz6KtWvXYtq0aVi/fj3s7KqLMD333HP44IMP8Oijj2LNGgOK6TRC7kS3IOcqDs4ai7ArTf/qpXeUMPCrX+Dl10H/CnUT2uyU28mssQmti19NMqsnob2LK4+ORtGhrOa/AfZvj45rLLMYmi2eTLBPNaygT+dGDIeiqvl/lrRKCV327GWfzMhcv3tCiOr3+NovrRYCALRaXZvQCgC3l0OI+ttptTWPUV1NXteG6u1qtsn/ch0KvvjCoH8HAPB69FF4PfQgdO/8Em4XwKz7vV6bVOfHxtap3Vltk9TEuvWfV5OXj4v332/wMQrbshl2Xl71/t11/36ofzzq/ds3Z/07j2fddUXDfd25/s3NW1C4cWPz+1PDc9ZD8HxgOiSFVH15kEIBqeY7JKnOzwpISn3tNT8rldX/xrX7kO7YnxGs+X28sdenJicHaePvMbhP4T9uu90nPa8h3W+6vteXnu+mvC0l38dryPS7x0RXJmq1Gv7+/igsLERSUhJiY2PrLY+JicHJkydx5MgR9OnT5677un79Ojp06AClUonMzEwEBATollVUVCAoKAj5+fm4evVqvWXGkDvR3TgjFlGnypudFJ6OdsKMDUf1J7TZZ4HyQsODqJvQ+tcmtt0AF8NHzC35DVBotYBGA6HVQmiqAG0VRFUVUFUFUaUFqjR3rKNB4fr1KPjSwPsCA/CYOhXu995714Pa5B+euy1v8o9W48tvbt2Km99+28T2DblPnAjXkSNr/t20+r/r/l2NWF5Vczz0tWvrfK85PnXb1dnZqMrNNbhPCldXKFxcmreyqU4UmrmfqqJbEMWG325LcnOFndsd905v7DlN1t5Yc/0F6sICiJu39K98F5KHO+z0Xa5y59vMnX/C9f1Jb8Y64s4d3+V5tMXF0BYXN3yeJkj29pDs7esnMXWT1jtOmomsir4EuPbnRpJkbUmJUa8lhYcHlO7utz/cQZ0PDOp+WAABaPV8wADoTVLvXE+3bp3Xqd73GGug7wOiO5PjuuvW+S6qNIDGiAK2dnbV73l3utu/YWPLjNnmLsuqzz0Mf5/1mz8fvvP+aPB2LcHbC8lk//79KCwsRHh4eIMkFwCmT5+OkydPYuvWrU0muj/++CO0Wi1GjhzZIJF1cHDApEmT8Pnnn+PHH3/EnDlzTNkNszp3bDe6JFdf99nctKVrchluLA1BAG4a/HzCyQ/CJxLwjoTw7gzh2RnCMwywd4PQaHRfKNVAXMyCUF+G0KirE4q6yzUaCE11G6pq2tUaiCoNCvbsNCjJBQBFlcDFRx+BU1h4nSRGUy/5EdoqQKMn0dElqjXrVGnrtdX9bk43N23CzU2bzPqcre3Wtm24tW2b3GGYlLFJiiUTRcVQF9lYn27egtqIBNmSicpKiMpKucMgah1a7e2EsUZrpYTamzehvWn4OVGb1owk3eTHq/Yc0oYUJvxm9kS3JZjotsCJEycAAL1799a7vLa9dr2W7uvzzz9v1r4sWdJHi9DLwA+Q7LRA2jZnnHNygiQAhbb6S9ICCq1U87MEhZDqtAMKrYAkACC95utn03eoBaouZqD4YobcYRARtVlCqv6StE1/+KqPVgK0ijqjQTVnylLtD+L2fiUrHQhrDi0ASDWDijUdFjWP67brawP0b1e7fm2bWylgb8TntxoFUGZffRwUWkAhqo+FJO742biuE7UpeXlX0FnuIAzARLcFLl++DACNVlauba9dz1z7qlU71H+ntLS0ZhfIMjW3jDyjtvO6JQG3mjoNseGziFZWJQFaBVClAFQaQGnEP2W5HVDg1vjylpzkNTn638S+PUsAeyM+VC21B674Vv/b1J7QaqXan6u/VynqLJfqrtvEd92/uaS3XVvnmOhrf+A3LUKzDe/ThXbAmtHKJtcz1dVNhhz3R3ZUofN1w58jLRBYO+r2aWqjsTcSS2PrG/o7q2/9h3dr0emGYfsBgIsBwLoRCr139rrTnevoDbsZ64gmppjXPs+jO6rQ+VrTcd3pfHvg03uUehOZ2kL1dZMhfT/r1pXqbFN33UaSKu0d21a33+7v1N+0mLXX8Gl864cpsGmQESmSELcPSSPJcO3P9RPou6xTZ18vfVuFHs0/XdA5FQK8Nb36/aHRpLTev63proNsirHH6JuhzTxGQjRMfhv5boplkgDifzXyPS8A+HKU4o7jUzPNtu7vfb3laLC8yQ8g6q7T1PKatue3VKF7puF9Sg4C/jFVWe93ueYpG7y36vu9r/tY3/rNXldP+7xtVehytTm9qO9cB+DfE/T/vb3bn5fmvO8bso2+53ryhyp0NaJPBYoywzeSERPdFiiumf7n7Oysd7lLzXVwxc2YJmjKfVkyldpyklEtgCpldSJR76tOm6YmidF9V1YnJrXLtQog4qqAZ6nhz5/lBWzvrdCfMNVNcO74+fa60u2fa5fdkRjp9qmnrXY9IcEkJ3ybBht5wmcGxvZpy0DL7VP7PCA02/A+HY5U4FyQaU9OlZKy+kuhhEJSGPRYKd1uO5V1Cp2vG/5H9FR3Z/gNHgiB6us8df+J+o+r/6/+TytqihQB9ber811bZz8Aqre5o616vcb3dfTGVXS6oTa4T4ldFTjb2UG3f62wnGtWD0co0Pma4fEcjVDgUoD5EiND7IyRMGM/9N4FoDEaRfV2RpF0Y763E28TOhWqQI/Lhh+j06EKVNi30WMkSRASYM6Lfg5HKtD5uuHH6VBXBU6HWubfphNhCnTPNLxPJzspcMvFMn/3ksIV6HLV8D4ldVYg088y+3QsXIGuRvTpYrj+PMVSMdFtgdoTm8YK7BhS58uU+6rV2EXbjY30moNaJcGYP+lZPkDhw+MhlAoIOyWEQgKUyurHSgWESgmhUEDYKQCFsvq7UgmtsrqtdplQKAA7JYRSCSgk3b933QIy9X7WczzuXJ7w8ce4Z3u+wX06GeeDvk8/D6n2P0nS7bv2Z71tddul2/HUba+7rF67dPd1AeA/qreh2X/W4JOJqyO64rMRfwFwO5kAoDvpr1lw9+U16rbV+7nOfuq21U0ydN/rPNdXyo+g2Z9qcJ/Sh3bC6wP/0PyNzGiD8t/Q7L9gcJ+ujOiCz0f+VZdg2ins6iWfCoUCdlKdtprk1E6yg0JRJ0mt2V4hKUxW3XKVyz+g2fNvg/vU7qFH8Ndh800Sg6mt8vsHNHsN71On3z2BpDv6pBVaXYKuhRZV2ipd0l7bXiUaaauTMNf9qrvuXdvq7HuV3bvQ7D9n1OvptYFP6Nrq/l2r+x7Q2N+7xtZp8P5wt3008pzrzq7D7p4XMOZ4devdfqNrl+/qKcGnfTj+1P1RAGjRe3iDdY18D69t+7fqTaPex6+N7I6vxy7RG5MhfdAXU934G/ShkX7p2iUJa5LXYPe+jww+Rg8O+CMe6f7I7Q+47vjbUvshUt3HdT8Yq/sBV4M2PR+CQej/UKzuNrXfP1G9YdRxujwsEv+s8/6g729oo8vuPAdr8LDx9e98Xelbd53dv4z6e3t5eCQ+HPan6r8pNce+9meFVJ3U6/7m1Pk9qf0bpPu5dlvUtNf5WQEFINXsB4p6v39323Zd8IfQ7F9tcJ9CHp6Lo0Oerfc7V/ffrbF/T73nNPrWb8Z6jf1uLHF6Hpr9xwzu0/lBQc3fwAIw0W0BN7fqeZolJfqrhJaWVg/z1d5yyFz7smRFoT7A5RyDt8uO8sesp1eaPiATWDU9F5pfDT+R9XpgOmZEzmi9wIx0qsc92N0zxeCTiQFR9yCuXZx5gjRQZlEmdvdcaXCfhvW8H5PCJ5knSANdK7lmVJ8GRk1Av8B+5gnSQJP6PYL1PT/DqONVze7TnhglHuo32zwBGsGUfao9ydNpegZ6q0iJTsHunueNej3dH36/eYI00K3KW/h4zPtol1+FqCam/EoAkoOB1WMVeLLTfXgg8gGzxGiIE0a+j8d1H4coH/k+DL+bWV1nYeK4z9Auv6LZx+i/4+2xrdsseDp6miNEgx038jgNjp6I4UHDzROkgS7fumzU36bBPSZiWMdh5gnSQNMG/B7re641/H08Lh72Sj1Vly1ATNcR2N3zuMHHKSpysHkCNBHLnPdgJYKDgwEAV65c0bu8tr12PXPty5L1fvJVaAz8rdMogN5PLWudgExgUr9HsLdnzTVNTaxbu3xPjBL3WejJ+bSIaVg7zh7Jwc24Nha3TyamRkw1R3hGYZ+so0++Tr7InzfFoD4VPDkNvk6WeZ9CwDb7ZIu/e9MipkE4qPD6TCV+6SU1+ndKowB+6SXh9QeVEPYqi+2TLR4jXydfTOw6xaBjdG/XqXwtmZkt9onv49ZxnPRhotsCMTExAICkpCS9y2vbe/bsadZ9WbIusSNwLsoRQPOTwpQoJ3TpZZmf8gG29wZoiycT7JN19AkA/m/IAvz8TFyz+vTTs3H48+C/mTdAI9han2zxd8/XyReTwydDrZLw6QQlnnxGia+GK3AiVML59sCJUAlfDVfgyWeU+HSCEmo7CVM6T7HYPtniMQKAl+NeRkzHfs06RjEd+uHluJflDvmubPE42WKfAL6PW8txupMkjLn4kwAAlZWV8Pf3x82bN5GUlNTgXroxMTE4efIkDh06hH797j5V8Nq1a+jYsSPs7OyQmZkJf39/3bKKigoEBQUhLy8PV69eRWBgYIvibsmNl02hIOcqDs4ai7ArTf/qpXeUMGj9Dnj6tDNDZMYr15Tj2W1/RPS6wxh5UuidxqxRVE/7OPm7fvhw4r/hoHQwf6DNVK4px5O/PokjN47Ao0Rg1AmB7pcEnCoFyuwlnAmRsDNGwk0XCX0D+uLjsR9bdH8A9sla+gRU9+vNw29i5/FNGH5c3aBPe3qpMKrXVLwc97JV9AewvT7Z4u9e3T41xRr6ZIvHCLj9Wtp8YTM02obl9O0UdpjSeQpfSzKyxT4BfB+X6zi1JG9hottCCxYswGuvvYZBgwZh+/btuurI7777Ll588UUMGTIE+/bt063/z3/+E//85z8xdepULF++vN6+Zs+ejS+//BIPPPAAvv76a9jZVV9C/fzzz+P999/H7NmzsXbt2hbHLHeiC1Qnu78+NQldk8saTQpTopww9uMfLD7JrWWLb4C2dDIBsE/W0qdauWW52JS6CYevH0aJpgQudi7oF9gPUyOs71PlWrbUJ1v83bO1Ptlaf+ria8my2WKfavF3z7yY6MqovLwcI0aMQGJiItq1a4ehQ4fi0qVLSExMhI+PDxISEtC58+1bKy9ZsgRLly5FfHw8Vq9eXW9fubm5GDBggO4+t3379kVycjJOnz6N8PBwJCQkwNe35S8gS0h0a507vhdJ/1oIt4xcqNQCapWEolBf9H5qmUVPV74bW3oDBGyvPwD7RGRKtvi7Z2t9srX+2CpbPE622CdbZMnHiYmuzMrKyrB8+XKsW7cOmZmZ8PLywj333INly5YhKKh+Ge67JboAUFBQgMWLF2Pz5s24ceMGAgICMHnyZCxduhTe3t4mideSEl0iIiIiIiJ9mOiSQdzc3KBWqxEeHi53KERERERERHqlpaVBpVKhqKjI4G1ZdbkNcnFxgUqlkjuMetLS0pCWliZ3GCZla32ytf4A7JO1YJ+sA/tk+WytPwD7ZC3YJ+tgiX1SqVS6GkiG4oguWQRbnE5ta32ytf4A7JO1YJ+sA/tk+WytPwD7ZC3YJ+tga33iiC4RERERERHZFCa6REREREREZFOY6BIREREREZFNYaJLRERERERENoWJLhEREREREdkUVl0mIiIiIiIim8IRXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvCRJeIiIiIiIhsChNdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbIqd3AGQ+QUGBqKkpATBwcFyh0JERERERKTX5cuX4eLiguvXrxu8LUd026CSkhKo1Wq5wyAiIiIiImqUWq1GSUmJUdtyRLcNqh3JTU5OljkSIiIiIiIi/aKioozeliO6REREREREZFM4okuyyimqwPrDl5GYno/iCg1cHewwoJMPZvYNgp+bg9zhERERERGRFWKiS7IoV1dh6dZkbDx6BeoqUW/ZvtRcrPz1PKb3CcLiSd3hqFLKFCUREREREVkjJrpkduXqKsR/fgiJ6fmNrqOuEvjq0GVczCnGmrlxTHaJiIiIiKjZeI1uG1FYWIiMjAxkZGRArVZDq9XKFsvSrcl3TXLrSkzPx9KtZ1o5IiIiIiIisiVMdNuIlStXIiwsDGFhYUhNTUVeXp4scWQXlWPj0SsGbbPxaCZyiipaKSIiIiIiIrI1THTbiPnz5yM9PR3p6emIiIiAj4+PLHFsOJzZ4JrcpqirBDYcyWyliIiIiIiIyNYw0W0jPD09ERoaitDQUKhUKigU8hz65k5ZvlPCRXlGoImIiIiIyPow0SWzKq7QmHU7IiIiIiJqe5joklm5OhhX6NvY7YiIiIiIqO1hoktm1T/M26jtBnSS55piIiIiIiKyPkx0yaxm9guCSikZtI1KKWFm36BWioiIiIiIiGwNE10yK383R0zv09Ggbab3CYKfm0MrRURERERERLaGiS6Z3eJJUc2ewtwv1AuLJ3Vv5YiIiIiIiMiWMNEls3NUKbFmbhxmxQU3OY25X6g3HFVKM0VGRERERES2QBJCCLmDIPOKiooCACQnJ8scCZBTVIENRzKRcDEPxRUauDrYoVxdhcMZBQAAezsFfvnTMIT4uMgcKRERERERmVNL8hYmum2QJSW6+hRXaDB6xW7cuFUBABjd1R+fzeknc1RERERERGROLclbOHWZLI6rgx1emdhN93hHSjZ2nL0hY0RERERERGRNmOiSRbo/pn29glVLt55BubpKxoiIiIiIiMhaMNEliyRJEl6d3ANKRXWxqsv5pfhkz0WZoyIiIiIiImvARLeNKCwsREZGBjIyMqBWq6HVauUOqUldAt0wZ1Co7vG/dl9AZn6pfAEREREREZFVYKLbRqxcuRJhYWEICwtDamoq8vLy5A6pWeaPiYCfmwMAoEKjxavfn5E5IiIiIiIisnRMdNuI+fPnIz09Henp6YiIiICPj4/cITWLm6MKr0zsqnv8y5kb2HUuW8aIiIiIiIjI0jHRbSM8PT0RGhqK0NBQqFQqKBTWc+in9OqAuNA6han+l4wKDQtTERERERGRftaT7VCbJUkSlk6O0hWmysgrxad7WZiKiIiIiIj0Y6JLVqFbO3c8MiBE9/ifuy7gSgELUxERERERUUNMdMlq/GlsJHxd7QEA5Wot/v79WZkjIiIiIiIiS8REl6yGh5MKf53QTff4p+Tr2Hs+R8aIiIiIiIjIEjHRJasyrXcH9A3x0j1ewsJURERERER0Bya6ZFUkScKrk3ugpi4VLuaW4LP96fIGRUREREREFoWJLlmd7u3rF6b6YMcFZBWWyRgRERERERFZEia6ZJVeGNcFPi7VhanK1FV47QcWpiIiIiIiompMdMkqeTip8JcJXXWPfzh1DftTc2WMiIiIiIiILAUTXbJa03t3RGywp+7x4v+dRqVGK19ARERERERkEZjoktVSKCQsm9wDUk1hqrScEqz6jYWpiIiIiIjaOia6ZNV6dPDA7/oH6x6/tyMV12+WyxgRERERERHJjYkuWb2XxnWBl7MKAFBaWYXXtrEwFRERERFRW8ZEl6yep7M9/nLP7cJUW09k4UAaC1MREREREbVVTHTJJszsG4SYIE/d48VbkqGuYmEqIiIiIqK2iIku2YTqwlRRusJUqdnFWHMgQ9aYiIiIiIhIHkx0LdTevXsxefJkhISEQJIkLFmyRO6QLF7Pjp54qN/twlQrf01F9i0WpiIiIiIiamuY6Fqo4uJidO/eHW+99RYCAwPlDsdq/Hl8F3jWFKYqrtDgdRamIiIiIiJqc5joAjh69CjeeOMNTJs2DR06dIAkSXB0dGxyu/LycixevBiRkZFwdHRE+/btMXfuXFy5cqXFMU2cOBHLly/Hgw8+CAcHhxbvr63wcrHH/43vonu8+XgWEi/myRgRERERERGZGxNdAMuWLcNf//pXbNq0CVlZWc3apry8HKNHj8arr76K4uJiTJ48GUFBQVi1ahV69+6NtLS0Vo6aGvNQv2BEd/DQPV78v2RoWJiKiIiIiKjNsJM7AEswcOBAxMTEoF+/fujXr1+zpgq//vrrOHDgAAYOHIjt27fD1dUVAPDuu+/ixRdfxNy5c7Fnzx7d+vn5+cjPz7/rPt3d3eHv79+yzhCUCgmvTo7C1H8dAACkXC/CFwcvYe6QMJkjIyIiIiIic2CiC+Avf/mLQeur1Wp88MEHAIAPP/xQl+QCwAsvvIA1a9Zg7969OHr0KPr06QMAeP/997F06dK77jc+Ph6rV682LHjSKzbYCw/2DcL6I5kAgH/8ch73xbSDv1vTU9KJiIiIiMi6ceqyEfbv34/CwkKEh4cjNja2wfLp06cDALZu3aprW7RoEdRq9V2/Pv/8c7P1oS348z1d4O5Y/VlOUYUGb/yYInNERERERERkDhzRNcKJEycAAL1799a7vLa9dj0AUCgUUCjM+7lCVFSU3va0tDSEh4ebNRY5+Lg64P/Gd8HCLckAgO+SruLhuGD0DfWWOTIiIiIiImpNHNE1wuXLlwEAHTt21Lu8tr12PWMUFxfj+PHjOH78OCorK3H9+nUcP34cZ86cMXqfbdHD/UMQ1d5d93jhFhamIiIiIiKydRzRNUJxcTEAwNnZWe9yFxeXeusZ48iRIxg5cqTu8SeffIJPPvkEISEhyMjIaNY+kpOT9bY3NtJri6oLU/XAAx9VF6Y6e+0Wvky8jPhBofIGRkRERERErYYjukYQQgAAJEm66/KWGDFiBIQQDb6am+TSbX1CvDC9z+3R93e2n0NucYWMERERERERUWtiomsENzc3AEBJSYne5aWlpQBQrxqz3AoLC5GRkYGMjAyo1WpotW1r+u7LE7rCrbYwVbkGb7IwFRERERGRzWKia4Tg4GAAwJUrV/Qur22vXc8SrFy5EmFhYQgLC0Nqairy8vLkDsmsfF0d8OLYSN3jb45ewdFLBTJGRERERERErYWJrhFiYmIAAElJSXqX17b37NnTbDE1Zf78+UhPT0d6ejoiIiLg4+Mjd0hmN3tACLoGuukeL/7faVRpWz7NnIiIiIiILAsTXSMMHjwYHh4eSEtLw7Fjxxos37hxIwDgvvvuM3dojfL09ERoaChCQ0OhUqnMfqsjS2CnVGDZlB66x6ev3sK6Q8ZXxiYiIiIiIsvU9rIdE7C3t8czzzwDAHjmmWfqXav77rvv4uTJkxgyZAj69esnV4jUiH6h3pgW20H3+J2fzyG/pFLGiIiIiIiIyNR4eyEAP/zwA5YtW1avrbKyEgMGDNA9XrhwIe69917d4wULFuDXX3/FgQMHEBERgaFDh+LSpUtITEyEj48PVq1aZbb4m6OwsBCFhYUAALVaDaVSKW9AMnp5Ylf8cuYGiio0uFmmxls/peCNByxnmjkREREREbWM2RPdL774wuT77NWrV4uuh83JyUFiYmK9NiFEvbacnJx6yx0dHbFr1y4sX74c69atw+bNm+Hl5YX4+HgsW7YMQUFBRsfTGlauXImlS5fqHvv5+ckYjbz83Rwxf2wkln1/BgCw/kgmHooLRq8gT3kDIyIiIiIik5CEKW76agCFQtHo/WcNJYSAJElYvHgxFi1aZJJ92qq6I7rjxo2DUqnE2bNn5Q1KRpoqLe59fz/O3SgCAPTs6IFNTw2GUmGa300iIiIiImqZqKgoAEBycrLB25p9RLc1pvT26tXL5Pu0NZ6envD09AQAqFQqeYOxAHZKBV6dHIUH/50AADh55SbWH87Ew/0t55ZQRERERERkHLMnuvHx8eZ+SiK9+nfyweRe7bHleBYA4K2fUzChRyC8XOxljoyIiIiIiFqCVZfbiMLCQmRkZCAjIwNqtRparVbukCzCKxO7wcW+ujBXYakab28/J3NERERERETUUhad6C5btsziqhdbq5UrVyIsLAxhYWFITU1FXl6e3CFZhAB3R8wfE6l7/NWhyzh5pVC+gIiIiIiIqMUsOtH9z3/+o7d68ebNm7Fv3z4ZIrJe8+fPR3p6OtLT0xEREQEfHx+5Q7IYcwaHIsLfFQAgBLBoSzK0WrPWaCMiIiIiIhOy6ET3+vXr6Ny5c4N2SZLw0ksvyRCR9fL09ERoaChCQ0OhUqmgUFj0oTcrlVKBpZOjdI+PZxbim6OZMkZEREREREQtYdHZTvv27XH+/PkG7dHR0W361jhkeoPCfXFfz3a6x2/+dA6FpZUyRkRERERERMay6ER3ypQpWLp0KTQaTb32mzdvws7O7AWjycb97d5ucK4pTJVfUokV2xt+yEJERERERJbPohPdJUuWoKCgAIMGDcJPP/2kqxy8YMEC9O3bV+7wrAqrLjetnYcTnhsdoXv8ZeIlnL56U8aIiIiIiIjIGBad6Hp4eGD//v3o3Lkz7rvvPvj4+CA8PBxJSUl466235A7PqrDqcvPMHRyGcD8XAIBWAIu2nGZhKiIiIiIiKyMJIaziLD4nJwfHjh2Dvb09+vTpAzc3N7lDsiqFhYUoLCwEAIwbNw5KpZLXOTdif2ouZn+WqHv89vSemNG3YfVvIiIiIiJqPVFR1QVjk5OTDd7W4i901Wq1SElJQUVFBYYNGwZHR0e5Q7JKnp6e8PT0BACoVCp5g7FwQyJ8MTE6ENtOXQcAvPFjCsZFBcLDif9uRERERETWwKKnLl+8eBE9e/ZEjx490KdPH3h5eeGRRx7B9evX5Q6NbNyCe7vDSVVdmCqvpBL/+IWFqYiIiIiIrIVFJ7rPPvssQkJCcOLECZw9exZffPEFzp8/j8GDByM3N1fu8MiGtfd0wjOjbt/D+YuDGTiTdUvGiIiIiIiIqLks+hpdT09PJCQkoGvXrro2IQSmT58OPz8/fPzxxzJGZ71aMte9LanQVOGelfuQnlsCAOgX6oUNfxwISZJkjoyIiIiIyPa1JG+x6BFdBweHBvfQlSQJCxYswJYtW2SKyjrx9kKGc7BTYsn9UbrHhzMKsOnYVRkjIiIiIiKi5rDoRHfixIl45513GrS7uLigpKREhoisF28vZJzhkX4YHxWge/z6thTcKlfLGBERERERETXFohPd1157Db/88gvuu+8+7NmzB/n5+cjMzMSSJUvQu3dvucOzKvPnz0d6ejrS09MREREBHx8fuUOyGgvv6w5HVfVLJbe4Ait/SZU5IiIiIiIiuhuLTnTbt2+Pffv2obKyEiNHjoSfnx9CQ0Oxf/9+vPfee3KHZ1U8PT0RGhqK0NBQqFQqKBQWfegtSkcvZzw94nZhqjUHM5BynYWpiIiIiIgslcVnO506dcL27dtx6dIlfP/999izZw/OnTuHmJgYuUOjNuSJYZ0Q4uMMAKjSCizakgwLruNGRERERNSm2ckdwJ1CQkLQp08f9O7dW/cVGBiIoKAgBAUFyR0etVGOKiWWTIrCY6sPAwAOpefjfyeyMLlXB5kjIyIiIiKiO1nciO6LL74IDw8PfPPNN5gyZQo6dOiADh06YNKkSVi8eDG2bNmCzMxMucOkNmhkV3+M6Xa7MNVrP5xFEQtTERERERFZHIu+j25FRQVOnjyJpKQkHD16FElJSTh9+jQqKyvh6+uL7OxsuUO0SryPrvEy80sx5t09qNBU357piaFh+Nu93WWOioiIiIjI9rQkb7G4qct1OTg4oF+/fujXr5+uTaPR4NSpUzh27JiMkVFbFeTtjCdHhGPlr9WVl1f9loGZfYMQEeAmc2RERERERFTL4qYuN8XOzg6xsbGYO3eu3KFYlcLCQmRkZCAjIwNqtRparVbukKzWvOHhCPJ2AgBoWJiKiIiIiMjiWNSI7uHDh5Genq53Wa9evRAZGWnmiGzHypUrsXTpUt1jPz8/GaOxbo4qJRbfF4XHvzgCADh4MQ/fn7yGSTHtZY6MiIiIiIgAGa7RFUIgNjYW6enp2L17N2JjY3XLHnvsMXzxxRd6t+vRoweOHz8OSZLMFapNKSwsRGFhIQBg3LhxUCqVOHv2rLxBWbm5qw9jZ0r1deKB7o7Y8eJwuDhY1GdHRERERERWy6qu0f3hhx9w8uRJPPfcc/WS3FpCCMTHx9drO3/+PBISEvDjjz9i4sSJ5grVpnh6esLT0xMAoFKp5A3GRiye1B37L+SiUqPF9VvleH9nKv46oZvcYRERERERtXlmT3S/++47SJKEF154Qe9ySZKwatWqem2XLl1CeHg4vvnmGya6ZDFCfFwwb1gnvL/zAgDgs33pmNEnCJ39XWWOjIiIiIiobTN7MarExERERUUhODi42duEhIQgNjYWhw4dasXIiAz35IjO6OB5uzDVkv+xMBURERERkdzMPqKbmZmJsWPH6l0mhGg0SejYsSN27tzZmqERGczJXolFk7rjj2uPAgD2X8jF+sOZyC2uQGJ6PoorNHB1sMOATj6Y2TcIfm4OMkdMRERERGT7zJ7oVlRUwNHRUe+y1atXY/Xq1XqXOTk5oaKiohUjIzLOuO4BGB7phz3ncwAAL393qsE6+1JzsfLX85jeJwiLJ3WHo0pp7jCJiIiIiNoMs09d9vHxQVZWlsHbZWVlwcvLqxUiImoZSZLw1wld0VQ9cHWVwFeHLiP+80MoV1eZJTYiIiIiorbI7IludHQ0Dh06hJKSkmZvU1xcjEOHDqFHjx6tGBmR8dYczEBzr8xNTM/H0q1nWjUeIiIiIqK2zOyJ7n333YeysjIsX7682du8/vrrqKiowKRJk1oxMiLjZBeVY+PRKwZts/FoJnKKOBWfiIiIiKg1mD3Rffzxx9GuXTu88cYbePvtt5tc/80338Sbb76JgIAAPPHEE2aIkMgwGw5nQl1lWKVldZXAhiOZrRQREREREVHbZvZiVE5OTti4cSNGjx6Nl19+GR999BGmT5+O2NhY+Pr6QpIk5ObmIikpCRs3bsSlS5dgb2+PjRs3wsnJydzh2ozCwkIUFhYCANRqNZRKFkMylcT0fKO2S7iYh6dHdjZxNEREREREZPZEFwAGDhyIAwcOYPbs2Thz5gxWrFihdz0hBLp164a1a9eid+/eZo7StqxcuRJLly7VPfbz85MxGttSXKEx63ZERERERHR3siS6ANCrVy+cPn0a27Ztw48//ogTJ04gNzcXQgj4+voiJiYGEyZMwMSJEyFJTdWzpabMnz8fc+bMAQCMGzeOI7om5Opg3MvI2O2IiIiIiOjuZD/TnjhxIiZOnCh3GDbP09MTnp6eAACVSiVvMDamf5g39qXmGrzdgE4+rRANERERERGZvRgVka2Z2S8IKqXhsw7Sc0pwq1zdChEREREREbVtFpnobtmyBa+++qrcYRA1i7+bI6b36WjwdhuTrmD0ij3434ksCGFY1WYiIiIiImqcRSa6mzdvrlc4icjSLZ4Uhf5h3s1a11F1+2WXU1SB5746hkc/P4SM3JLWCo+IiIiIqE2xyESXyNo4qpRYMzcOs+KCG53GrFJKmBUXjMOvjMH/je8CB7vbL799qbkYt3IvPtiRigpNlbnCJiIiIiKySbIXoyKyFY4qJZZPi8YLYyOx4UgmEi7mobhCA1cHOwzo5IOZfYPg5+YAAHh6ZGfc17MdFm5Jxt7zOQCASo0WK345j03Hr+K1KdEYGM5iVURERERExmCiS2Rifm4OeHpkZzw9svNd1wvxccGax/rhh1PX8OrWM8guqgAAXMwpwaxPEzCtdwf8bWI3+Lg6mCNsIiIiIiKbYZFTl4UQLM5DbYIkSbivZ3v8+uJwxA8MQd1bRn+XdBWjVuzB14cuQ6vl64GIiIiIqLkkwYyyzYmKigIAJCcnyxwJ3enklUK8sukUTl+9Va+9b4gXXpsajS6BbjJFRkRERERkXi3JWyxyRJeorerZ0RObnxqMxZO6w9Xh9pUFRy4V4N739+GNH1NQWqmRMUIiIiIiIstn8SO6P/30E/bu3QshBPr27Yt7770Xjo6Ocodl1Tiiax2u3yzH0q3J+PH09XrtHTydsGxKFEZ1DZApMiIiIiKi1mezI7pLlizBxIkT8c0332Dr1q2YNWsWOnfujJ9//lnu0IhaXaCHIz6a3Qefz+mLjl5OuvarhWWYu/oI5q09ims3y2SMkIiIiIjIMll0ovvxxx/jzTffRGpqKk6fPo3c3Fz8/ve/x+TJk5GYmCh3eERmMaprAH7503A8OSIcdorb1ap+Sr6OMSv24LP96dBUaWWMkIiIiIjIslj01GU3NzecOnUKoaGh9dqXL1+OLVu2ICEhQZ7ArFBhYSEKCwsBAOPGjYNSqcTZs2flDYoMdu56Ef626RSOXCqo1x7V3h2vT41GTJCnPIEREREREZmYzU5dHjRoEA4ePNigfdasWThx4oQMEVmvlStXIiwsDGFhYUhNTUVeXp7cIZERugS6YcMfB+LNB6Lh6azStSdn3cKUf/2GRVtO41a5WsYIiYiIiIjkZ9GJ7tChQ/Hcc89hz5499drPnj2L4OBgmaKyTvPnz0d6ejrS09MREREBHx8fuUMiIykUEh7sF4wdLwzHA7076tqFAL44eAmjV+zB1hNZvBc1EREREbVZFj112cnJCRUVFZAkCXFxcejTpw+0Wi22bduGzz77DKNHj5Y7RKvEqsu25WBaHhZsPoW0nJJ67cMi/bBschRCfFxkioyIiIiIyHgtyVssOtHVaDRITk5GUlKS7uvEiRMoLS2Fj48PYmNj0atXL8TGxmLWrFlyh2s1mOjangpNFT7dexEf7LyACs3twlQOdgo8M7Iz/jC8ExzslDJGSERERERkGJtNdPXRarVISUlpkPwWFBQ0vTEBYKJryy7llWDB5tPYl5pbrz3czwWvTY3GgE6csk5ERERE1sGmE93c3FzcuHEDISEhcHV1lTscm8BE17YJIfD9yWt49fszyCmqqLfsgd4d8crErvBxdZApOiIiIiKi5rHZqssrVqxAu3bt0LNnT3h6eqJr16743e9+h3fffRd79+6VOzwiiyRJEibFtMeOF4fj0YEhkG7fehffJl3B6Hf3YP3hy9BqLfozLiIiIiIio1n0iK6vry/mzZuHuXPnIi0tDceOHUNSUhKOHTuGtLQ0aDQauUO0ShzRbVtOZBbilU2nkJx1q157v1AvvDY1GpEBbjJFRkRERETUOJuduuzv74/ExESEhYU1WFZcXMypzEZiotv2aKq0+OLgJazYfg4llVW6djuFhCeGdcJzoyLgZM9iVURERERkOWx26vJDDz2E3bt3613GJJeo+eyUCswdEoZfXxyOCT0Cde0arcBHu9Mw9h97sCslW8YIiYiIiIhMx6JHdIuLizFjxgw8+eSTuP/+++UOx2ZwRJd2ptzAws3JuFpYVq99Qo9ALJ4UhUAPR11bTlEF1h++jMT0fBRXaODqYIcBnXwws28Q/NxY1IqIiIiIWofNTl3esGED5s2bh5s3byIwMBADBw5Enz59dF8+PrxVijGY6BIAlFZq8P6OC/jPvovQ1ClM5WKvxIvjumBm3454bdtZbDx6Beqqhm8TKqWE6X2CsHhSdziqOO2ZiIiIiEzLZhPdDh06YPDgwZg9ezYuXbqEo0eP4ujRo0hJSYFWq0VVVVXTO6EGmOhSXSnXb2HBptM4cqn+vaid7ZUorWz6NdY/zBtr5sYx2SUiIiIik7LZRNfd3R0nTpxoUIyqrKwMx48fx8CBA2WKzLox0aU7abUCG45kYvmPKbhZpjZ4+1lxwVg+LboVIiMiIiKitspmi1FNmDABJ0+ebNDu5OTEJJfIhBQKCQ/FBWPni8Nxb3Q7g7ffeDQTOUUVrRAZEREREZHhLDrRHTVqFBYtWoSzZ8/KHQpRm+Dj6oBu7Qy/r666qnpEmIiIiIjIEtjJHcDdPPPMM6iqqkLPnj0xZMgQDB48WFeIKjg4WO7wiGxSYnq+UdslXMzD0yM7mzgaIiIiIiLDWXSiW1RUhBMnTiApKQlJSUn48ccf8c4776CyshI+Pj7IycmRO0Qim1NcoTFqu8JSw6/tJSIiIiJqDRad6Do6OqJ///7o37+/rk2j0eDkyZM4fvy4fIER2TBXB+PeFk5fvYnHVh3ClNgOGNs9AM72Fv32QkREREQ2zOKu0Y2OjsatW7cAAD/99BOys7PrLbezs0Pv3r0xd+5cOcIzm1WrVmHkyJHw8/ODm5sb+vTpgy+//FLusKgN6B/mbdR2AsCuczl4/uvj6Pv3XzH/62PYdS4b6iqtaQMkIiIiImqCxQ25zJo1C5IkAQAmTZoErVaLdu3aoXfv3vW+OnbsKHOkrWvHjh24//778dZbb8HLywubNm3CI488Ajs7Ozz44INyh0c2bGa/ILy3IxXqKuPvPFZaWYXNx7Ow+XgWfFzscW/PdpjcqwN6B3vqXt9ERERERK3Fou+jW15eXu8a3aSkJCQnJ6OyshK+vr4NRnuNdfToUfzyyy84dOgQEhMTkZWVBQcHB5SXlzcZ3/Lly/HVV1/h8uXL8Pb2xj333INXX321VRLxiRMnwsnJCd9++22L9sP76FJT/vrdSXx1qPlVlB/qF4T7Y9pj8/Gr+PHUdRQ1cp1vsLczJvdqj8m9OqCzv6upwiUiIiIiG9SSvMWiE1196l6ja6rpy1OmTMGWLVvqtTWV6JaXl2P06NE4cOAA2rVrh6FDhyIjIwOHDh2Cn58fDh48iPDwcJPEV2vQoEGIjo7GJ5980qL9MNGlppSrqxD/+aFmVWDuH+aNNXPj4KhS6rbdlZKNzcevYldKDiobmbrco4M7pvTqgEkx7RHg7mjS+ImIiIjI+rWpRLc1vPnmmygtLUW/fv3Qr18/BAYGNpnoLlq0CMuWLcPAgQOxfft2uLpWj069++67ePHFFzFs2DDs2bNHt35+fj7y8++eNLi7u8Pf31/vsjVr1uCJJ55AQkICevfubUQvb2OiS81Rrq7C0q1nsPFopt5pzCqlhOl9grB4Unddknunm6Vq/Hj6GjYfv4rE9Hzoe7eRJGBQuA8m9+qAe3oEwt1RZequEBEREZEVsplE9/Dhw0hPT9e7rFevXoiMjDRLHJIk3TXRVavV8Pf3R2FhIZKSkhAbG1tveUxMDE6ePIkjR46gT58+AIAlS5Zg6dKld33e+Ph4rF69ukH7li1b8OCDD+Kjjz7CY489Zlyn6mCiS4bIKarAhiOZSLiYh+IKDVwd7DCgkw9m9g2Cn5tDs/dz7WYZtp7IwuZjWThz7ZbedeztFBjTzR+Te3XAiC5+cLDTn0ATERERke2zqkRXCIHY2Fikp6dj9+7d9ZLExx57DF988YXe7Xr06IHjx4+bpZBNU4nurl27MGrUKISHh+PChQsNli9btgyLFi3C4sWLsWTJEgCAVquFVnv36rMKhQIKRf1C2F9//TXmzJmDjz/+GHPmzDGqP3dioktyS71RhM3Hr2LL8SxcKSjTu467ox0mRlcXseof5g2FgkWsiIiIiNqSluQtZq+6/MMPP+DkyZN47rnnGoyEAtWJcHx8fL228+fPIyEhAT/++CMmTpxorlAbdeLECQBodApxbXvteoD+JLYpn376KZ599lmsXr0aDz30kMFx1v5i3CktLc3k1w8TGSIiwA3/N74rXhrXBUcvFWDz8av44eQ1FJSqdevcKtfg68OZ+PpwJtp5OOL+mOoiVt3aubFyMxERERHdldkT3e+++w6SJOGFF17Qu1ySJKxatape26VLlxAeHo5vvvnGIhLdy5cvA0CjlZVr22vXM8a7776LP//5z/jwww8xYsQIXL9+HQCgVCrh5+dn9H6JLIkkSegb6o2+od5YPCkKe8/nYMvxLGw/cx3l6tszIK7dLMcney/ik70XERngism9OmByr/bo6OUsY/REREREZKnMnugmJiYiKioKwcHBzd4mJCQEsbGxOHToUCtG1nzFxcUAAGdn/SfZLi4u9dYzxvvvv4+qqirMmzcP8+bN07WHhIQgIyOjWftobIi/sZFeIjmplAqM7haA0d0CUFKhwfYz17H5WBb2X8hFlfb2FRbnbxTj7Z/P4e2fz6FfqBcm9+qAe6PbwcvFXsboiYiIiMiSmD3RzczMxNixY/UuE0KgsUuGO3bsiJ07d7ZmaM1WG2Nj0ydNcdlzc5NZIlvk4mCHqbEdMTW2I3KKKvDDySxsPp6F45mF9dY7nFGAwxkFWPK/ZIzo4of7e3XA2G4BcLK/exGrnKIKrD98GYnp+S0qsEVERERElsnsiW5FRQUcHfXfM3P16tV6qw4DgJOTEyoqKloxsuZzc3MDAJSUlOhdXlpaCgC6Ww5ZgsLCQhQWFgKorhqtVLKaLVkHPzcHzBkchjmDw5CRW4Itx7Ow5fhVXMy9/frTaAV+PZuNX89mw8VeifFRgZgc2wGDw31gp7x9bXz1LZOSsfHolQa3TNqXmouVv55v8pZJRERERGT5zJ7o+vj4ICsry+DtsrKy4OXl1QoRGa522vWVK1f0Lq9tN2R6dmtbuXJlvdsb8Tpfskahvi54fkwEnhvdGaev3sLm41fxvxNZyCm6/SFYSWUVvjt2Fd8duwpfVwfc17MdpsR2QJcAV8xZdRiJ6Y3fz1pdJfDVocu4mFOMNXPjmOwSERERWSmzJ7rR0dHYv38/SkpKdNeyNqW4uBiHDh3C4MGDWzm65omJiQEAJCUl6V1e296zZ0+zxdSU+fPn625PNG7cOI7oklWTJAnRHT0Q3dEDr0zshoNpedh8/Cp+On0dxRUa3Xq5xRVYfSADqw9kwM3BDkV1lt1NYno+lm49g+XTolurC0RERETUigy7340J3HfffSgrK8Py5cubvc3rr7+OiooKTJo0qRUja77BgwfDw8MDaWlpOHbsWIPlGzduBFDdV0vh6emJ0NBQhIaGQqVSGXyrIyJLpVRIGBLhi3dmxODIgjH48OHeGNs9ACpl/Wvom5vk1tp4NLPeSDERERERWQ+zZzuPP/442rVrhzfeeANvv/12k+u/+eabePPNNxEQEIAnnnjCDBE2zd7eHs888wwA4Jlnnql3re67776LkydPYsiQIejXr59cIRK1SY4qJe7t2Q6fPtoXh/82BsunRaN/mLdR+1JXCWw4kmniCImIiIjIHCRhihLBBjp48CBGjx6NiooKhISEYPr06YiNjYWvry8kSUJubi6SkpKwceNGXLp0Cfb29tixYwcGDRrUKvH88MMPWLZsme5xYmIiJElCXFycrm3hwoW49957dY/Ly8sxYsQIJCYmol27dhg6dCguXbqExMRE+Pj4ICEhAZ07d26VeI1RtxhV7dTls2fPyhsUkZnM+PgADmcUGLxdRy8nvDA2EpEBbgj3c22ymjMRERERmU7tbVEbu23q3Zj9Gl0AGDhwIA4cOIDZs2fjzJkzWLFihd71hBDo1q0b1q5di969e7daPDk5OUhMTGzw3HXbcnJy6i13dHTErl27sHz5cqxbtw6bN2+Gl5cX4uPjsWzZMgQFBbVavMZgMSpqyzRa4z7Pu1JQhhc2nAAASBIQ5OWMCH9XRAS41Xx3RWd/Vzjby/JWSkRERESNkGVEt65t27bhxx9/xIkTJ5CbmwshBHx9fRETE4MJEyZg4sSJjd6vlpqPI7rUlj3yWSL2pea22v47ejkhUpf8Vn/v7O8KFwcmwERERETGasmIruyJLplfS35hiKzRP3em4p3t5w3erls7NygkCReyi1Gh0Rq8fQdPJ0QEuCIywA2d/W9/d22FBDinqALrD19GYno+iis0cHWww4BOPpjZNwh+bg4mfz4iIiKi1sZElwzCRJfamuyicgx+YyfUVc1/u1MpJRx4eTT83BxQpRW4UlCK8zeKkZpdhNSa7xeyi1GuNjwBbu/hqBv5jQxwQ+cAV0T4u8LNUWXwvsrVVVi6NRkbj17R2z+VUsL0PkFYPKk77wtMREREVsXqrtEl86s7dVmtVvM+utSm+Ls5YnqfjvjqUPOrKE/vc3skVKmQEOLjghAfF4ztHqBbR6sVuFJQhtTsonpJ8IXsYpSpqxrdd9bNcmTdLMee8/Wv/W/n4agb+dVNgw5whXsjCXC5ugrxnx9CYnp+o8+lrhL46tBlXMwpxpq5cUx2iYiIqE0w+4juF198YfJ99urVCz179jT5fm3JkiVLGhSjys7OljEiIvNqTlJYq3+Yd4uSQq1W4GphmS7xPX+jGBeyi5CaXYzSysYT4MYEujvqCl/pkmB/N7zx01mDkvdZccFYPi3a4OcnIiIikoNVTV1WKBQmKy4lhIAkSVi8eDEWLVpkkn3aKhajIqqd5nsGG49myjLNV6sVyLpZppv6nHqjGOezi3HhRhFKjEiADVV3OjYRERGRpbOqRHfNmjUm32evXr0QExNj8v3aKl6jS21dTlEFNhzJRMLFPIso3CSEQNbNcqTeuH39b2p2MVJvFKO4QmPS5/q/8V3w9EjLucc3ERERUWOsKtEl+THRJbIOQghcv1Veff3vjeriV+drkuEiIxPgoRG+WPv7/iaOlIiIiMj0WIyKiMgGSZKEdh5OaOfhhOGRfrp2IQQmfbAfp7NuGbzPwxn5eOPHFIzu5o/YIE/YKRWmDJmIiIjIIjDRbSNYdZnIdkiSBC8Xe6O2LVdr8fGeNHy8Jw2eziqMiPTDqG4BGB7hBw9nw29vRERERGSJmOi2EStXrmxQdZmIrFf/MG/sS81t0T4KS9XYfDwLm49nQamQ0DfEC6O7+WNU1wCE+7mYrHAgERERkbnxGt02glWXiWxLdlE5Br+xU2/16MbYKSQ8NzoCh9LzkZied9dtQ3ycMaqrP0Z3DUBcmDfs7TjFmYiIiMyL1+hSkzw9PeHp6QkAUKk4PZHI2vm7OWJ6n44G3Ud3Rt8gPDc6AgBQVK7G/tRc7EjJxu5z2cgtrqy37qW8Uqz6LQOrfsuAi70SQyP8MKqbP0Z28eftiVogp6gC6w9fRmJ6vkVU/CayVnwtEVFTOKLbBrHqMpFtKFdXIf7zQ0hMz29y3f5h3lgzN07v/YG1WoGTV29i59kb2JGSjeQmilzFBHlidFd/jOrqj6j27pzi3AzV93BOxsajV2S5h3NrYsJB5mTLryUiaoi3FyKDMNElsh3VJ31nsPFopslO+q7dLMOulBzsTLmB/RdyUa7WNrpuoLsjRnb1x+iu/hjc2RdO9jyxvJOpPpCwNEw4yNxs9bVERI1joksGYaJLZHtyiiqw4UgmEi7mmXRUrVxdhYNpediRcgM7z2Yj62Z5o+s62CkwKNwHo7oFYFRXf3TwdDL6eW3JX787adAU81lxwVg+LboVI2o5JhwkB1t8LRHR3THRpSaxGBURtZQQAinXi7AzJRs7zt7AscxC3O0vSNdAN10V515BnlAqDJvibAtTYo0pGqZSSjjw8miL7iMTDjI3W30tEdHdMdGlJi1ZsqTB7YWys7NljIiIrF1ecQV2n8vBzpRs7D2fg6IKTaPrervY19yz1x/DIv3g7th4UTxrnRIrhEBxhQa5xZXILa5AXnEFvjl6BTvOGv5e6+NqD383R6iUEpQKCXYKCXYKBeyU1T8rFQrdMpVSUfO9dl1F9frK2u9S/ccKCUqlAiqFvu1vP4ddIz/fLFPjoX8nQKNlwkHm88+dqXhn+3mDt/u/8V3w9MjOrRAREZkDE11qEkd0iag1qau0OJyRj51ns7EzJRsXc0saXddOIaFfqHfNaK8/Ovm56pZZ2pRYrVagsEyNvOIK5BRXVCexRRXIK6lAblF1Qptb215cgQpN49czt3VMOKglHvks0ah7hwd7O2PZlB7o1dETHs686wSRtWGiSwbhNbpE1Nou5hRjZ0p10nsoPf+uo39hvi419+z1x+bjWdhwpHWnxGqqtMgvqWyYuNb8nFNcgbyaxDW/pNKgkUtqnIeTHSb36oCIADdE+rsiMsANXi72codFVmLqv37DscuFLdpHJz8XxAZ5ITbYE72CPNE10A12St4jnMiSMdElgzDRJSJzulWuxr7zudiRcgO7z+Ugv6Sy6Y2aqXZKrJujnW5kNa/OKGtOUQXySqoT2NrR14JStcmeXx+FVD1V29fVAddvlqOwzPDn697OHc+PiYCmSkCj1UJTJVClFVBrtdXfqwSqtNqa7wKaKi00WlH9VbtN3fba7auqt69eV1uzrtCtW3cd3b612nr7vVsVbkP5ujogMqA66Y2o+R7p78aRN2rgd58m4Le0PJPu00mlRHRHD8QGeSI22BOxwV4IcHc06XMQUcsw0SWDMNElIrlUaQVOXCnEzrPZ2JGSjbPX7n7P3uawVypQWdW6U4btlQr4uFYnr741331qfvZzc6h5XN3u5WyvK7xli9cVGjuF1BD+bg71k98AV0QEuN312m5TsoVCaLYkOesm4j8/hNxiwz8kC/N1RkGpGoXN/ICrvYcjegV76kZ+e3TwsKhaAERtDRNdMggTXSKyFFcLy7CrZorzrnPZd63ibGrO9soGiaufqz18axNXl9s/uzvaQZIMqxoN2GalWGOT91Fd/RDo4YTUG0U4f6MYN40Y6Q50d2yQ/Eb4u8LNRAmwtRZCs1XqKi0+2p2G93ekGnUJQe1rydfVHpfySnEsswDHLxfiWGYhzmTdatY+7RQSurVz1013jg32QqiPs1HvB0RkOCa6ZBAmukRkiSb/cz9OXLnZon14OKl0iWvdJNbX7Xbi6lcz+upsb2eiyO/O1m7FY4rkXQiBnKIKnL9RjPM3ipCaXaT7uai88erdjWnv4Vh97W9N8htZkwC7ODT/GFtaIbS2LvVGEV785gROtuA94W6vpXJ1FZKzbuLY5UIcu1yI45mFuFpY1qz9ejqrqpPemlHfmCBPeDi1/MMWziQgaoiJLhmEiS4RWSJjp8TGBnnio9l94O1iD3s7yyssY4sJVGsl70II3LhVgfM3iqoT4BvFOJ9d/b34LrevakwHT6c61wBXJ8Kd/V31fshhax9IWKsqrcB/9l3Eil/Oo7JOFfP2Ho74+5RofLI3rdVeSzduleuS3mOXC3Dyyk2UqauatW24nwtig71qRn090SWg+YWuOJOAqHFMdKlJvL0QEVk6W7yetVb1iewZbDyaaRMnsuZO3oUQuHaz/Hbye6MI57OLceFGEUoqm5eI1JIkoKOXE7rUSX59XRzw2OrDvDewzNJzS/DSNydw9FJBvfaZfTtiwX3d4e6oMutrSVOlxfkbxTiWWaBLgC9kFzdrWyeVEj07euiu9+0d7Al/PYWubPGDMCJTYqJLTVqyZAmWLl2qe+zn54fs7GwZIyIiqs8Wr2e9U05RBTYcyUTCxTyrn5poCcm7ViuQdbPsdvJ7oxipNSPAzR2Jawlr+JDFGmi1AmsTLmH5j2frVfX2c3PAmw9EY1TXgAbbyPVaulmmxonM26O+xzILDSp0FRt8+/ZGPTp4YOnWZM4kILoLJrrUJI7oEpE14PRR62OJybtWK3C1sOx28nujCOezi3Ahu9ikt0caGuGLtb/vb7L9tUWZ+aX488aTOHix/q2DJvdqj6X3R8HT2bLvtSyE0BW6qh31bW6hK6UEaAVgyIm4tX24R9RSTHTJILxGl4gsFafxUWuq0gpcKSi9XQSrJhE+e+2WQclGrdhgT2x6arDJ42wLhBBYfzgTy74/U2/6ubeLPV6b0gMTotvJGF3LlKurcPrqzXrX+2bdLDfZ/jmTgNqSluQt5ik5SURE1AyOKiXWzI2TfUos2SalQkKIjwtCfFwwtvvt6bCz/5OI/RcML4TmakBVZ7rtxq1y/OXbk9h9Lqde+/ioALw2NRq+rtY9WumoUqJvqDf6hnrr2moLXdXe4siQQld3SriYx0SXqBn4Dk1ERBbFUaXE8mnReGFspMVNiSXbNKCTt1GJrr2dAuXqKn7g0kxCCGw+fhWLtyTjVp3bSLk72uHVyT0wuVd7m70/bYC7I+7pEYh7egQCqC50dd8H+5FyvcjgfR29VIDl284iLqw6mTbFrY2o+XgbKOvBqcttEKcuExER3WZMIbRa/m4O+OPwcDwcFwwneya8jcktrsDfNp3Cz8k36rWP6OKHN6b1RKBHw4rEts7YW6rVJUlAt0B3xIV5o3+YN/qFeVv9iLil4m2g5MFrdMkgTHSJiIjqM7QQ2p18Xe3xxNBOmD0gBC6c0lzPtlPXsGDzaeSXVOraXB3ssPC+bpjZN8hmR3GbYuwt1ZrS2d9Vl/j2D/Npkx8imBrrR8iHiS4ZhIkuERFRfYacyMYGeyKqvTs2HLmCSk39Ks5ezio8PrQTHh0YAjfHtj2ltLC0Eou2JON/J7LqtQ8K98Fb03uio5ezTJFZBmNmEtgpJDw3OgJnsm7hUEZ+vQ8PGhPs7Yy4MG/EhXljQJgPgryd2uyHC8biHQHkw0SXDMJEl4iIqCFD7w2cfasc/957Ef9NvNTgtkXujnaYOyQMjw0Kg4dz20t4d6bcwF++PYWcogpdm5NKib9O7IrZ/UOgUDDRAlqWQAkhcCG7GInp+TiUno/E9DzcuFXRxB6AQHfH24lvJ2+E+7ky8b2LtnCPd0vGRJcMwkSXiIiocYbeGzi3uAKf7ruItQcvobSyfiVdNwc7xA8Kxe+HhMHLxbLvCWsKt8rV+Pv3Z7DhyJV67X1DvPDOjBiE+rrIFJllMuWUWCEELueXIjE9H4kX83EoIw+Z+WVN7tfHxR79QqsT3/6dvNE10B1KfhChY+wUc94GyjSY6FKTCgsLUVhYCAAYN24clEolzp49K29QRERENiS/pBKf70/HmgMZKKrQ1FvmYq/E7IEheGJoJ5stFrQ/NRd/3nii3j1j7e0UeGlcJH4/pBOTp0YYOpPAEFmFZTickY+Ei/k4lJ6HtJySJrdxc7RDv9Dqa3zjwrzRo4MHVEqFQc9by9oqFKurtMguqsCNW+W4cbMcN26V4z/703GloOkPDO40NMIXa3/fvxWibFuY6FKTlixZgqVLl+oe+/n5ITs7W8aIiIiIbNPNUjVWHUjH5/vT691GBwAcVQrM7h+CPwzrBH932ygSVFKhwRs/pmBtwqV67T07emDFjBhEBLjJFJl1MXQmgTFyiytwOD2/etQ3PR8p12+hqUzASaVEnxAvXeIbE+TZZMJtaRWKtVqBgtJKXL9VjuxbFbh+qzqJvXGrJqmt+corqWzy36O5YoM9sempwabZWRvGRJeaxBFdIiIi8yoqV+OLg5fwn30XUVCqrrfM3k6Bh+OC8cfhndDOw0mmCFvuUHo+XvrmBC7nl+ra7BQSnh8dgXkjwo0eCSTzuFmqxuGMfBzKqE58T1+9iSrt3VMDe6UCvYI80b9TdeLbO9irXqVxc1coLq7Q3B6BLapOXq/fLEd2UTmu36x+nF1UbtTtw1qCI7qmwUSXDMJrdImIiMynpEKD/yZcwqf7LiK3uH6VXHulAjP6dsSTI8KtqgpxuboK7/x8Dp/9ll5vBKxroBtWzIxBVHsP+YIjo5VUaHD0UgEO1RS4Op5ZiMoq7V23sVNI6NHBQzfiu+3UNXybdLXZz9lYheJKjRY5xTVJ663ymlHY2yOwtaOzxXdcJmAKns4qBLo7wt/dEfnFFTiddcvgffAaXdNgoksGYaJLRERkfmWVVVh36DI+2ZOG7KL61XHtFBIe6N0RT40MR4iPZRdsOp5ZiBc3HK93vadCAp4cEY7nRkfAwY73D7UV5eoqHM8s1FV1PnqpoEGF8ZZSShIeGxyKkkqNbgS2dhqxqTmqFAh0d0RAzVeghyP83Rx0Pwe4OcLf3aHeCDOrLsuLiS4ZhIkuERGRfMrVVdhwJBMf7U7DtTqFmwBAqZAwuVd7PD2yM8L9XGWKUL9KjRbv70jFR3vS6k1vDfdzwYqZvdAryFO+4MgsKjVanM66WZ34XszDkYyCBoXX5KBUSPB3c4C/uyMC3R10iWz1l4NudNbd0c6oWynxPrryYaJLBmGiS0REJL8KTRW+PXoVH+66gKuF9au6KiTgvp7t8cyozoi0gGJOZ7Ju4YUNx5FyvUjXJknA7weH4aXxXcxSUIgsT5VW4Oy1W7oR3x1ns6Fp4hpfQ3k5q/QmrbqRWQ8H+Lg4tGpVb3Nfd0y3MdElgzDRJSIishzqKi02HatOeC/lldZbJknAhB6BeGZkBLq3dzd7bJoqLT7anYb3d6bWm7oZ7O2Md2bEIC7M2+wxkeWa+uFvOJZZaPB2Xs4qzOgbVC+ZDXB3hJ+bg8UkjK15GyhqHBNdMggTXSIiIsujqdJi68ksfLDzAi7qud/p2O4BeG5UBKI7mqfQU+qNIrz4zQmcvHKzXvsjA0Lw8oSu9SrtEgHAI58lYl9qrsHbWVOFYnPcBopua0newncoIiIiIgtgp1RgamxH3B/TAT+cuoZ/7kzF+RvFuuW/nLmBX87cwMgufnh2dAR6B3u1ShxVWoHP9l/EO9vPo1Jzu/BQew9HvDU9BkMifFvlecn69Q/zNirRHdDJpxWiaR1+bg54emRnVlS2AhzRbYM4oktERGT5tFqBn5Ov4/2dF3D2WsPbmwyN8MVzoyPQL9R004czckvw0jcncORSQb32GX06YuGk7nB3VJnsucj2sEIxmRpHdImIiIhsjEIhYUJ0O9zTIxC/ns3GBztT600j3peai32puRjQyRvPjY7AwE4+eivK5hRVYP3hy0hMz290qqVWK/DfxEtYvi0FZeoq3bZ+bg54Y1o0RncLaP0Ok9Xzd3PE9D4dDapQPL0Pp/xS6+CIbhvEEV0iIiLrI4TA7vM5eH9HKo5dLmywvF+oF54dFYGhEb6QJKmmeE4yNh69ctfiOY8PDcXCzck4kJZXb/n9Me2x9P4oeLnYt1aXyAaxQjGZEotRkUGY6BIREVkvIQR+u5CH93ek4lBGw2SiV5An5g3vhFW/ZTQr2VBIQN07wni72OO1KT0wIbqdKcOmNoQVislUmOiSQZjoEhER2YaEi9UJ752jscYaHxWA16ZGw9eVU0mp5VihmFqKiS4ZhIkuERGRbTmSkY/3d17A3vM5Ru9j2eQozB4Qovc6XyIiObAYFTWpsLAQhYWFAAC1Wg2lktNEiIiIbEXfUG98MTcOxzML8cL647iY2/A+vE25Va5hkktENkMhdwBkHitXrkRYWBjCwsKQmpqKvDzTTHEiIiIiy9EryBMdvJyM2jbhIs8NiMh2MNFtI+bPn4/09HSkp6cjIiICPj7Wc2NuIiIiar7iCo1ZtyMiskScutxGeHp6wtPTEwCgUvFm70RERLbK1cG40ztjtyMiskQc0SUiIiKyIf3DvI3abkAnzvYiItvBRJeIiIjIhszsFwSV0rCiUiqlhJl9g1opIiIi82OiS0RERGRD/N0cMb1PR4O2md6H9zUlItvCRJeIiIjIxiyeFNXsKcz9w7yxeFL3Vo6IiMi8mOgSERER2RhHlRJr5sZhVlxwo9OYVUoJs+KCsWZuHBxVSjNHSETUulhej4iIiMgGOaqUWD4tGi+MjcSGI5lIuJiH4goNXB3sMKCTD2b25XRlIrJdTHSJiIiIbJifmwOeHtkZT4/sLHcoRERmIwkhhNxBkHm5ublBrVYjPDxc7lCIiIiIiIj0SktLg0qlQlFRkcHb8hrdNsjFxQUqlUruMOpJS0tDWlqa3GGYlK31ydb6A7BP1oJ9sg7sk+Wztf4A7JO1YJ+sgyX2SaVSwcXFxahtOaJLFiEqKgoAkJycLHMkpmNrfbK1/gDsk7Vgn6wD+2T5bK0/APtkLdgn62BrfeKILhEREREREdkUJrpERERERERkU5joEhERERERkU1hoktEREREREQ2hYkuERERERER2RRWXSYiIiIiIiKbwhFdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbAoTXZJVeXk5Fi9ejMjISDg6OqJ9+/aYO3curly5IndoBjt69CjeeOMNTJs2DR06dIAkSXB0dJQ7LKOVlpZi8+bN+P3vf4+ePXvC3d0dLi4uiImJwauvvori4mK5QzTKu+++i2nTpiEiIgIeHh5wcHBASEgI4uPjkZycLHd4JpGfnw9/f39IkoSuXbvKHY5RRowYAUmSGv366aef5A7RaNevX8ef/vQnREZGwsnJCd7e3ujTpw/+/Oc/yx2aQXbv3n3XY1T79eqrr8odqkESEhLwwAMPIDAwECqVCt7e3hg9ejQ2btwod2hGS0hIwOTJk+Hr6wtHR0dERkZiwYIFKC0tlTu0Rhn7N/WLL75AXFwcXF1d4e3tjYkTJ+LAgQNmiLhphvYpMzMT//rXvxAfH49u3bpBoVBAkiQkJCSYMeq7M6RPWq0W+/btw5///Gf0798f/v7+cHBwQHh4OObNm4f09HQzR6+focfpf//7H+Lj4xEdHQ1fX1+oVCr4+/tj4sSJ+OGHH8wYeeNMcY46ZswY3fv69evXWylSExNEMikrKxODBg0SAES7du3EzJkzRVxcnAAg/Pz8xIULF+QO0SCTJ08WAOp9OTg4yB2W0T799FNdP6KiosSMGTPE+PHjhZubmwAgunbtKm7cuCF3mAbz8fERjo6OIi4uTkydOlVMnTpVREZGCgDC3t5ebNu2Te4QWyw+Pl5IkiQAiC5dusgdjlGGDx8uAIgHHnhAxMfHN/g6efKk3CEa5cCBA8LT01MAEN27dxczZ84UEyZMECEhIUKpVModnkHOnj2r99jEx8eL2bNn694/du7cKXeozbZhwwahUCgEANG3b1/x4IMPiqFDh+ra/vKXv8gdosH++9//CqVSKQCIPn36iKlTp4qgoCABQMTExIhbt27JHaJexvxN/dOf/iQACCcnJzF58mQxfvx4YWdnJ5RKpfjuu+/MFHnjDO3TP/7xjwbrAxAHDx40Y9R3Z0ifUlNTdet06NBBTJ48WUydOlV06NBBABBubm5i3759Zu5BQ4YepwceeEBIkiR69OghJk6cKB588EHRv39/3bYLFy40Y/T6tfQcddWqVQKA7tzi2rVrrRit6TDRJdksXLhQABADBw4URUVFuvYVK1YIAGLYsGEyRme4N954QyxatEhs3bpVXL9+3eoT3TVr1ognn3xSnD9/vl57VlaWiI2NFQDErFmzZIrOePv37xdlZWUN2v/1r38JAKJ9+/ZCo9HIEJlp/PrrrwKA+MMf/mATiW56errcoZjM1atXhaenp3ByctJ70p2YmChDVK1j27ZtAoAICgoSVVVVcofTLGq1Wvj5+QkA4uuvv6637MCBA8LR0VFIkmRVH8JmZmYKR0dHAUB8/vnnuvby8nIxY8YMAUDMmzdPxggbZ+jf1B07dggAwsfHp97frQMHDgh7e3vh4eEh8vPzzRF6owzt05YtW8Sf/vQnsW7dOpGamqp7X7SkRNeQPl24cEGMHz9e7Nmzp157eXm5mDNnjgAggoODRWVlpTlCb5ShxykpKUnk5uY2aE9ISBCurq5CkiSRnJzcmiE3qSXnqNnZ2cLHx0eMGzdOhISEMNElakplZaVuVCMpKanB8p49ewoA4siRIzJEZxrWnujezYEDB3T9q6iokDsck+ncubMAIPsfJGOVlpaKzp07i+7du4vz588z0bUwjzzyiAAgPvjgA7lDaXUPP/ywACBefvlluUNptlOnTulmq+hTOyKyfv16M0dmvGXLlgkAYuzYsQ2WZWdnC2dnZ6FSqfSepFuapv6mTpw4UQAQ//jHPxose+655wQA8c4777RihIYz9DzBEhPdOxl77lNWViY8PDwEALF79+5WiMx4LTmfe/zxxwUA8eGHH5o4qpYxpE8PP/ywcHR0FBcuXLC6RJfX6JIs9u/fj8LCQoSHhyM2NrbB8unTpwMAtm7dau7QqBliYmIAABUVFcjLy5M5GtNRKpUAAHt7e5kjMc7SpUuRlpaGjz76CCqVSu5wqI6CggJs2LABHh4eePzxx+UOp1WVlJRgy5YtAIDZs2fLHE3zOTg4NGs9b2/vVo7EdI4ePQqg+pr3O/n5+aF79+5Qq9XYtm2bmSMzrfLycuzYsQPA7fOHunhOYflqrx0HgKysLJmjMR1rP6/4+eefsW7dOvztb39DeHi43OEYzE7uAKhtOnHiBACgd+/eepfXtteuR5bl4sWLAKAr1GILvvjiC5w7dw6RkZHo1KmT3OEY7OTJk1ixYgUee+wxDBs2DBkZGXKHZBKfffYZ8vLyoFAoEBkZiSlTpiA4OFjusAz222+/oaKiAmPGjIFKpcLGjRuxf/9+qNVqdO3aFTNnzkRAQIDcYZrEd999h5KSEsTGxiIqKkrucJqtU6dO6NSpE1JSUrBhwwbMnDlTt+zgwYP4+eefERYWhmHDhskYpWFKSkoAAF5eXnqX175/nzhxAo888ojZ4jK1lJQUVFRUwM/PDx07dmywvPac4uTJk+YOjZqpqqoKly5dAgAEBgbKHI1pnDx5EuvXr4dKpcLo0aPlDsdgpaWlmDdvHrp27Wp1xRJrMdElWVy+fBkA9P5Bqtteux5Zlvfeew8AcM899zR7FMTSvP3220hOTkZJSQnOnj2L5ORktG/fHuvWrYNCYV2TXbRaLZ544gl4enrirbfekjsck/r73/9e7/FLL72EhQsXYuHChTJFZJzait4BAQEYOnQoDh48WG/5X//6V6xatQozZsyQIzyT+u9//wsAVpc4KZVKrF69GpMmTcKDDz6It99+G+Hh4bh27Rr279+PuLg4rF271qpGZvz8/ABAl0Dcqbbd2j8Ya+qcwsXFBZ6enigoKEBRURHc3NzMGR41w9dff43s7Gz4+flh0KBBcodjlK1bt+Lbb7+FWq3G5cuXceDAAahUKvz73/9GWFiY3OEZbOHChcjIyMCuXbus6n2vLus6myObUXtrGmdnZ73LXVxc6q1HlmPbtm347LPPoFKpsGzZMrnDMdrPP/+MNWvWYOPGjUhOTkZQUBDWrVuHPn36yB2awT744AMcOnQIb7/9Nnx8fOQOxySGDRuGtWvXIi0tDaWlpTh37hxee+012NnZYdGiRboPW6xFQUEBgOqZAydPnsRnn32GnJwcpKen44UXXkBJSQlmz55t9SNO169fx44dO6BUKjFr1iy5wzHY0KFDsWfPHoSFheHIkSNYv3499u7dCxcXF4wZMwbt27eXO0SDDB8+HADw1VdfobKyst6yhIQEnDt3DgBQVFRk9thMqalzCoDnFZYsMzMT8+fPBwC8+uqrVvsB+okTJ7BmzRqsW7cO+/fvh729Pd577z08+uijcodmsKSkJLz33nuIj4/Xe+mDtWCiS7IQQgAAJEm663KyLGfPnsXs2bMhhMDbb7+tu1bXGv36668QQqCgoAB79+5Fly5dMGLECLz22mtyh2aQzMxMLFiwAMOHD8ecOXPkDsdkXn31VcyePRudOnWCk5MTIiMj8corr2Dz5s0AgMWLF6OsrEzeIA1QVVUFANBoNHj33Xcxd+5c+Pr6IjQ0FCtWrMD06dNRWVlp9SPy69atQ1VVFcaOHWuV0w+/+uor9O/fH8HBwUhMTERxcTHOnz+PWbNm4e9//zvGjBkDtVotd5jN9rvf/Q7BwcG4fPkyJk+ejOTkZBQVFeGnn37CjBkzYGdXPbHP2max3Kmpc4q665BlKSkpwdSpU5Gbm4spU6Zg3rx5codktAULFkAIgbKyMpw6dQpz587Fk08+icmTJzf4oMmSVVVV6WaJvfPOO3KH0yLW/c5GVqt22lDt9UN3qr2Jvaurq9lioru7cuUK7rnnHhQUFOCFF17A888/L3dIJuHp6YmhQ4di27Zt6NOnDxYuXIjDhw/LHVazPfXUU6isrMRHH30kdyhmMW7cOPTt2xc3b95EQkKC3OE0W+17nkKhQHx8fIPlc+fOBQDs3r3bnGGZnLVOWwaA1NRUxMfHw8/PDz/88APi4uLg4uKCiIgIfPLJJ5g0aRIOHjyIVatWyR1qs7m4uOD7779HcHAwfvrpJ/To0QPu7u6YMGECFAoFXnjhBQCNX8NrLZo6pwB4XmGJ1Go1HnjgARw9ehRDhgzBunXr5A7JJBwdHdGjRw98+OGHePbZZ/H999/jgw8+kDusZlu5ciWSkpLw1ltvwdfXV+5wWoSJLsmitpjMlStX9C6vbbfGojO2KDc3F2PHjsXly5fx2GOPWf0nfPqoVCo8+OCDEEJYVWXO77//Hs7OznjyyScxYsQI3ddDDz0EoPratdo2W5myFxERAQC4du2azJE0X2hoKIDqIiv6puXVLs/OzjZjVKZ19uxZHDt2DK6urpgyZYrc4Rjs66+/hlqtxj333KOb5lpXbXEqa/swIjo6GikpKVizZg2effZZPPnkk/j4449x+vRp3TrWVDRMn6bOKUpKSlBYWAhPT09en2shtFotZs+ejZ9//hkxMTHYunUrnJyc5A7L5Gorz9dWorcGW7duhSRJWLNmTb3zihEjRuD69esAgGnTpmHEiBHYv3+/zNHeHYtRkSxqp7wmJSXpXV7b3rNnT7PFRPoVFRVhwoQJSElJwbRp0/Dpp5/edXqYNav95DInJ0fmSAxTWFiIPXv26F1WVlamW6bRaMwZVqupvd7VmkZmam+jVlBQACFEg9dQ7W26rKlPd1q7di2A6hOgu10raalqkyR3d3e9y2vb8/PzzRaTqTg5OeHRRx9tcK3gr7/+CkD/7YesSZcuXeDg4ICcnBxcuXKlQVEqnlNYnqeeegobNmxAZGQktm/fDk9PT7lDahXWel4hhMDevXsbXV5bUDE3N9dcIRmFI7oki8GDB8PDwwNpaWk4duxYg+UbN24EANx3333mDo3qqKiowOTJk3HkyBGMHz8eX331le6ecLaoNiG0pnvFCSH0fqWnpwOoPgGsbbOFE4mcnBzs27cPQOO3J7NE0dHRCAsLQ1lZGRITExssrx0ltKY+1SWE0E07tMZpy8DtW5ocOXJE7/LaSxpqR9+t3Z49e5CUlISoqCgMHjxY7nBaxMnJCaNGjQJw+/yhLp5TWJZXXnkFn3zyCYKDg/HLL7/A399f7pBajTWeV+zevbvRc4uQkBAA1TOqhBCWP3tHEMnkb3/7mwAgBg0aJIqLi3XtK1asEADEkCFDZIyu5QAIBwcHucMwmkajEVOnThUAxNChQ0VJSYncIbXY3r17xddffy3UanW99srKSvH+++8LhUIhnJycxOXLl2WK0HTS09MFANGlSxe5QzHYwYMHxc6dO4VWq63Xnp6eLgYPHiwAiPvvv1+m6Iz38ccfCwCiX79+IicnR9d+5MgR4enpKQCIb775RsYIjbdnzx4BQLRv315UVVXJHY5Rjh49KgAIAOJf//pXvWUHDx4ULi4uAoD45ZdfZIrQOMeOHWvwnnf06FHRvn17IUmS2Llzp0yRGaapv6m//PKLACB8fHzE+fPnde0HDhwQDg4Owt3dXeTl5Zkj1GYz9Dxh+PDhAoA4ePBgK0bVMk31qfYcLzAwsN5xsmR369ONGzfEO++8IwoKChos2759u/Dz8xMAxMaNG1s5SsMYe44aEhIiAIhr1661QlSmx6nLJJsFCxbg119/xYEDBxAREYGhQ4fi0qVLSExMhI+Pj1UV/ACAH374ocHtdiorKzFgwADd44ULF+Lee+81d2hG+ec//4lNmzYBqJ5689RTT+ld75133rGaYgVpaWl47LHH4Ovriz59+sDHxwe5ubk4deoUrl27BkdHR6xevRpBQUFyh9qmpaSk4LHHHkO7du0QGRmJwMBAXLlyBUePHkV5eTmioqLw6aefyh2mwZ544gns2LED33zzDbp06YJBgwahuLgYBw4cQGVlJZ544glMnz5d7jCNUluE6ne/+53VVvDt3bs3XnrpJbzzzjt46qmn8OGHH6J79+7IysrCwYMHodVq8Yc//AFjxoyRO1SDzJ8/H2fOnEGvXr3g6+uLjIwMJCYmQqFQ4JNPPsHIkSPlDlEvQ/+mjhkzBs8//zzee+899OrVC2PHjkVlZSV++eUXaLVafPnll/D29jZrH+5kaJ+uXbuGqVOn6padOXMGAPD444/rLnO49957Zb2vuCF9On78OF566SUAQFhYWKN3OXj88ccxZMiQ1gu6CYb0qbS0VHd/9759+6Jjx44oKSnB+fPnkZKSAgD405/+hAceeMCsfbiTrZ2jNpvcmTa1baWlpWLhwoUiPDxc2Nvbi4CAABEfH2+VI2qrVq3SjQY09rVq1Sq5w2y2xYsXN9kfACI9PV3uUJvt4sWL4pVXXhGDBw8W7dq1EyqVSri4uIioqCjx7LPPitTUVLlDNBlrHtE9c+aMePLJJ0Xv3r2Fn5+fsLOzEx4eHmLAgAFixYoVorS0VO4QjVZVVSU+/PBDERsbK5ydnYWLi4sYNGiQ+OKLL+QOzWjl5eXCy8tLABAnTpyQO5wW++6778S4ceOEj4+PsLOzE15eXmLkyJHiyy+/lDs0o3z66adi+PDhws/PT6hUKtG+fXvx8MMPi2PHjskd2l0Z+zd11apVok+fPsLZ2Vl4eHiI8ePHi3379pm/A3oY2qfa9/G7fcXHx8vWHyEM69OuXbuadV4h97mSIX0qKSkRb731lpg4caIICQkRTk5OwsHBQYSGhoqHHnpI7Nq1S9a+1DLVOaq1jehKQvDGYkRERERERGQ7rHN+EREREREREVEjmOgSERERERGRTWGiS0RERERERDaFiS4RERERERHZFCa6REREREREZFOY6BIREREREZFNYaJLRERERERENoWJLhEREREREdkUJrpERERERERkU5joEhERERERkU1hoktEREREREQ2hYkuERGRhZAkCZIkyR1Gq5kzZw4kScLu3bvlDoWIiGwcE10iIiILlpGRAUmSMGLECLlDaVJoaKhNJ+pERGQ9mOgSERGRWSxfvhxnz55FXFyc3KEQEZGNs5M7ACIiImob2rVrh3bt2skdBhERtQEc0SUiIrJQS5YsQVhYGABgz549umt4JUnCnDlz6q2bk5ODl156CV26dIGjoyO8vLwwYcIE7N27t8F+d+/erdvH9evX8fjjj6Njx46ws7PDypUrAQDXrl3DW2+9heHDh6NDhw6wt7dHYGAgpk2bhsOHD+vd36VLlwCgXpyhoaG69e52jW5mZib++Mc/IiQkBA4ODvD399f7XED96dxlZWV4+eWXddt17twZb775JoQQep/j6aefRpcuXeDs7Axvb29ERUXhj3/8I86dO3e3Q0FERFaGI7pEREQWqlevXnjggQfw7bffIiAgAPfcc49u2ZAhQ3Q/p6SkYMyYMbh69SrCw8MxceJE5OXlYefOndi+fTvWrl2Lhx9+uMH+c3Jy0K9fP2g0GgwZMgTl5eVwdnYGAGzZsgV/+ctf0LlzZ0RHR8Pd3R0XLlzApk2b8P333+P777/HuHHjAACBgYGIj4/Hxo0bUVJSgvj4eN1z+Pr6NtnPU6dOYdSoUcjNzUXXrl0xbdo0XL58GZs2bcLWrVuxbt06zJgxo8F2lZWVGDduHJKTkxEXF4du3bphz549ePnll1FUVIS///3vunWvXLmC3r17Izc3Fz179sSkSZNQXl6OS5cu4dNPP8XAgQPRpUuXZhwVIiKyCoKIiIgsAgBx55/m9PR0AUAMHz5c7zYajUb06NFDABDvvfee0Gq1umVJSUnCx8dHuLi4iBs3bujad+3apXuuqVOnirKysgb7PXnypDhx4kSD9p9++knY29uL8PDwes8lhBAhISEN4q8rPj5eABC7du3StWm1WhEdHS0AiL/+9a/19vnNN98IhUIh3NzcxPXr1xv8mwAQQ4cOFTk5Obplhw8fFnZ2dsLZ2VkUFRXp2hcvXiwAiBUrVjSIKyMjQ1y4cKHRuImIyPpw6jIREZEV27p1K06fPo1Zs2bhueeeq1f1ODY2FgsXLkRJSQn++9//NtjWwcEBH3zwARwdHRssi46ORs+ePRu0jx8/HjNmzEBaWhpOnz7d4vh3796NU6dOISwsDMuWLasX//Tp0zFlyhQUFRVh1apVDbZVKBT4z3/+U2/UuG/fvpgwYQJKS0tx5MgRXXt2djYAYNSoUQ32ExISgvDw8Bb3hYiILAcTXSIiIiv2yy+/AACmTJmid3ntFGd917r27t0bHTp0aHTfFRUV2LJlC/72t7/hD3/4A+bMmYM5c+bg1KlTAIDU1NQWRg/s27cPAPDggw9CqVQ2WP7II4/UW6+u0NBQREZGNmivbbt27ZqurU+fPgCAp59+Grt27YJGo2lx7EREZLl4jS4REZEVy8jIAFCdKD744IONrpebm9ugLTg4uNH1T506hfvvv1+3f32KioqaHWdjsrKyAKBe0aq6attr16urY8eOerdxdXUFUJ2o15ozZw62b9+ODRs2YNSoUXB2dtaN/s6dOxf+/v4t6AUREVkaJrpERERWrKqqCgAwYcKEuyZrXbt2bdCmb8oyAAghMHPmTGRkZGDevHmYN28eOnXqBFdXV0iShFdeeQXLly/XW9nYWHWnLDd3eVPb1KVUKrF+/Xq8/PLL2LJlC3bt2oWEhATs3bsXy5cvx88//4wBAwYYHDcREVkmJrpERERWrHZUc968ebj//vtNss+UlBSkpKSgb9+++Oijjxosv3jxokmeBwDat28PAEhPT9e7vPaWRaa6/25sbCxiY2OxZMkS3Lp1C0uXLsW7776L559/HomJiSZ5DiIikh+v0SUiIrJg9vb2ANDoNaVjxowBAGzevNlkz1lQUABA/9TggoIC3XXBd2oqVn2GDh0KAFi/fr1udLqu2iJateuZkru7O15//XVIkqS77piIiGwDE10iIiIL5uvrC5VKhbS0NL2J4PTp09G1a1esXr0ab775JtRqdb3llZWV+O677wxK5Dp37gyFQoGdO3fWKzhVXl6OefPmIT8/X+92taOz586da/ZzjRgxAtHR0UhPT8eiRYvqTYfevHkzvvvuO7i6umLOnDnN3qc+a9eu1Vsl+qeffoIQ4q7XKxMRkfXh1GUiIiILZm9vj3vuuQdbt25FTEwMevfuDXt7ewwePBiPPfYY7OzssGnTJowfPx4vv/wy3nvvPfTs2RPu7u7IzMxESkoKCgsLsWnTJkRHRzfrOf39/fH73/8en376KWJiYjBq1Cg4OTlh3759qKqqwpw5c7B69eoG291///3Ys2cPRo8ejZEjR8LFxQW+vr544403Gn0uSZLw5ZdfYuTIkXj99dexadMm9OrVC5cvX8Zvv/0GOzs7fP755wgMDDT2nxAA8O233+LRRx9FeHg4oqOj4eTkhIyMDCQkJECpVOL1119v0f6JiMiycESXiIjIwv3nP//BI488gry8PKxbtw6fffYZ9uzZo1vetWtXHD9+HEuWLIG/vz/279+PH374ATk5ORg2bBhWrVqlm+LcXB999BFWrFiBsLAw7NixA/v27cOYMWNw5MgRhISE6N3mueeew4IFC+Dq6opvv/0Wn332Gb7++usmnys6OhpJSUl44oknUFxcjI0bN+LcuXOYMmUKfvvtN8yYMcOg2PV54YUX8PTTT8PNzQ379u3Dpk2bkJ2djVmzZuHw4cOYNm1ai5+DiIgshyRMWTKRiIiIiIiISGYc0SUiIiIiIiKbwkSXiIiIiIiIbAoTXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvCRJeIiIiIiIhsChNdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbAoTXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvy/07+2NTaDbtFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(nrows=4, dpi=150, figsize=(7,8), sharex=True)\n", + "fig.subplots_adjust(hspace=0.1)\n", + "# imp occupation\n", + "ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][0]['up'])+np.array(obs['imp_occ'][0]['down']), '-o', label=r'Ni$_0$')\n", + "ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][1]['up'])+np.array(obs['imp_occ'][1]['down']), '-o', label=r'Ni$_1$')\n", + "\n", + "# imp magnetization\n", + "ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][0]['up'])-np.array(obs['imp_occ'][0]['down'])), '-o', label=r'Ni$_0$')\n", + "ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][1]['up'])-np.array(obs['imp_occ'][1]['down'])), '-o', label=r'Ni$_1$')\n", + "\n", + "# dxy, dyz, dz2, dxz, dx2-y2 orbital magnetization\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,4]-np.array(obs['orb_occ'][0]['down'])[:,4]), '-o', label=r'$d_{x^2-y^2}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,2]-np.array(obs['orb_occ'][0]['down'])[:,2]), '-o', label=r'$d_{z^2}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,0]-np.array(obs['orb_occ'][0]['down'])[:,0]), '-o', label=r'$d_{xy}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,1]-np.array(obs['orb_occ'][0]['down'])[:,1]), '-o', label=r'$d_{yz/xz}$')\n", + "\n", + "ax[3].semilogy(conv_obs['d_Gimp'][0], '-o')\n", + "\n", + "ax[0].set_ylabel('Imp. occupation')\n", + "ax[1].set_ylabel(r'magnetization $\\mu_B$')\n", + "ax[2].set_ylabel(r'magnetization $\\mu_B$')\n", + "ax[-1].set_xticks(range(0,len(obs['iteration'])))\n", + "ax[-1].set_xlabel('Iterations')\n", + "ax[0].set_ylim(8.4,8.6)\n", + "ax[0].legend();ax[1].legend();ax[2].legend()\n", + "\n", + "ax[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5d0d0238-d573-4e18-9785-79408d6ac73d", + "metadata": {}, + "source": [ + "Let's take a look at the self-energy of the two Ni $e_g$ orbitals:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "daf0c1d8-a1fe-413d-a7b2-2eed78258e9f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAKPCAYAAADHbpOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3zU9f3A8ddl770TEkImJCFh77CHbAHRKlVcbdXWqm21rdVWq60L/Wnt0OLCVQVEAQVl74CMAAkkgUDIJHsnl3F3vz++5JJwl5BA5vF+Ph55NPf9fr7fe19Nwr3v8/m83yqdTqdDCCGEEEIIIUS/YtbbAQghhBBCCCGE6DxJ5oQQQgghhBCiH5JkTgghhBBCCCH6IUnmhBBCCCGEEKIfkmROCCGEEEIIIfohSeaEEEIIIYQQoh+SZE4IIYQQQggh+iFJ5oQQQgghhBCiH5JkTgghhBBCCCH6IUnmhBBCCCGEEKIfkmROCCGEEEIIIfohSeaEEEIIIYQQoh+SZE4IIYQQQggh+iFJ5oQQQgghhBCiH5JkrgW1Ws2f//xnwsPDsbGxwc/Pj/vuu4/s7OxO36usrIzHHnuMoKAgrK2tCQoK4te//jVlZWVdH7gQQgghhBDipqPS6XS63g6iL1Cr1UyfPp2DBw/i6+vLpEmTyMjI4MiRI3h6enLo0CFCQkI6dK/i4mLGjRvHuXPnGDRoECNHjiQ5OZnk5GRCQ0NJSEjA3d29m1+REEIIIYQQwpTJzNwVf/vb3zh48CDjxo0jLS2NL774gsOHD7Nq1SoKCwu57777Onyvxx9/nHPnzrFkyRJSU1P54osvSEpK4le/+hXnz5/niSee6MZXIoQQQgghhLgZyMwc0NDQgJeXF2VlZRw/fpxhw4a1Oh8bG8upU6c4evQoI0aMaPdely9fxt/fH3Nzc7KysvD29tafq6urY8CAAZSUlJCTk9PqnBBCCCGEEEJ0hszMAfv376esrIyQkBCDRA5g2bJlAGzatOma99qyZQtarZb4+HiDZM3a2poFCxag0WjYsmVL1wQvhBBCCCGEuClJMgecPHkSgOHDhxs933S8aVxP3UsIIYQQQggh2iLJHJCZmQlAQECA0fNNx5vG9dS9hBBCCCGEEKItFr0dQF9QVVUFgJ2dndHz9vb2rcb11L2aREVFGT2empqKra0tgYGBHb6XEEIIIYQQontkZmZib2/P5cuXe+T5ZGYOaKoBo1Kp2j3f0/fqyHM11FZRV1vdZfcUQgghhBBCXJ+Ghgaqq3vuvbnMzAGOjo4Abf4fX1NTA4CDg0OP3qtJcnKy0eNRUVFQmMJ/3nmTSTMXdfh+QgghhBBCiK7X1oq67iIzc6BfppidnW30fNPxjixn7Mp7dVRReWWX3UsIIYQQQgjRP0gyh9JHDuD48eNGzzcdHzp0aI/eq6NKKjq+/04IIYQQQghhGiSZAyZMmICzszPp6emcOHHC4Py6desAmD9//jXvNWfOHMzMzNi3bx8FBQWtztXV1bFp0ybMzMy45ZZbuiT2Rp05h8qcu+ReQgghhBBCiP5DkjnAysqKX/7ylwD88pe/bLXf7fXXX+fUqVNMnDiRUaNG6Y+//fbbREZG8oc//KHVvXx9ffnJT35CfX09Dz/8MI2NjfpzTz75JIWFhdx55534+Ph0SewXdb7sK7TvknsJIYQQQggh+g8pgHLFn/70J7Zv387BgwcJCwtj0qRJXLp0icOHD+Pu7s4HH3zQanxRURGpqank5eUZ3Ov//u//SEhIYP369URGRjJy5EiSk5NJSkoiJCSEN954o0tjr9OZUVPfiJ2V/OcUQgghhBDiZiEzc1fY2Niwa9cunnnmGezs7Pj666/JyMjgnnvu4cSJE4SGhnb4Xh4eHvz444/86le/or6+ng0bNlBeXs4vf/lLjhw5goeHRxdHryIxs6yL7ymEEEIIIYToy1S6rmx8JnpUVFQU5/Kr8HvgXzw1J5KHpoT0dkhCCCGE6Md0Ol2X9sQVor9SqVRt9o1uT1NrgrZai3U1WZfXzwWb5RGrOktavn9vhyKEEEKIfkij0VBcXExlZSX19fW9HY4QfYaVlRWOjo64u7tjbm7e2+EYJclcP2eBBhtVPReLeq7TvBBCCCFMg0ajITMzE7Va3duhCNHn1NfXU1xcTHV1NYGBgX0yoZNkzgSYoyW7tKa3wxBCCCFEP1NcXIxarcbc3Bxvb2/s7e0xM5OSCkJotVqqq6vJz89HrVZTXFyMl5dXb4dlQJI5E2CBhtKaht4OQwghhBD9TGVlJQDe3t44O0vfWiGamJmZ6X8ncnNzqays7JPJnHz0YgLM0aLR6iiqrOvtUIQQQgjRT+h0Ov0eOXt76VkrhDFNvxv19fV9sjiQJHMmwBKlMfmu1IJejkQIIYQQ/UXLN6aytFII41r+bkgyJ7qFOVoAjlws6eVIhBBCCCGEED1FkjkT4K9SZuQaNNpejkQIIYQQQgjRUySZMwFeqnIA0gulPYEQQgghhBA3C0nmTIAFGgDS8itplNk5IYQQQgghbgqSzJkAS5WSzNU1askoltk5IYQQQgghbgaSzJkAjY2b/vszeZW9GIkQQgghhBCip0gyZwJ2WUzSf/990uVejEQIIYQQQvSk5cuXo1KpOHLkSG+HInqBJHMmILfRUf99yuWKXoxECCGEEEL0pOPHj2Nubk5MTExvhyJ6gSRzJiDUSaP/PrdM3YuRCCGEEEKInlJWVkZ6ejqRkZHY2tr2djiiF0gyZwJi3Ju70dc2aCitru/FaIQQQgghRE84fvw4AMOGDevlSERvkWTOBIy2zmr1+ExueS9FIoQQQgjR/+3evRuVSsXKlSuNnl+5ciUqlYrdu3frj2VkZKBSqZgyZQoVFRX8+te/ZsCAAdjY2DB48GDeeOMNtNrrayG1detWZsyYgZOTE+7u7qxcuZLS0lKOHTsGwPDhw6/rvqL/k2TOBIRVHGr1+MeM0l6KRAghhBDi5lZXV8e0adNYs2YNo0ePZubMmVy6dIknnniC+++/v9P3+/Of/8wtt9zC/v37mTBhAhMmTGDDhg3MnDmTw4cPAx2bmUtLSyM+Pp4hQ4YQExPDP//5z07HIvoei94OQNw4G5UGG0sz1A3Kpz1HMyWZE0IIIcSN0+l0VKgbezuMTnGysUClUvXa8yckJDB06FDOnTuHh4cHAOnp6cTHx/Phhx9y6623snDhwg7d65NPPuH5559nxIgRfP311wQEBABw8eJFRo4cqV9mGRcXd817WVtb869//Yvo6GiqqqoYMWIEU6ZMISoq6vpeqOgTJJkzBbpG/F1sSS9UGoanXZZec0IIIYS4cRXqRmKf+6G3w+iUk3+ehbOtZa/G8Nprr+kTOYCQkBCeeeYZHnroIf75z392KJkrLy/n0UcfxcnJiU2bNuHr66s/FxwczIMPPsjLL79McHAwLi4u17xfUFCQ/nsHBwfCw8PJzMyUZK6fk2WWpkDTyGBfJ/3Dwso61A2adi4QQgghhBDdwc3NjZkzZxocv/POOwE4ePAgOp3O4PzV3nnnHUpLS/nVr37VKpFrEhoaClzffrn09HSOHTvG2LFjO32t6FskmTMFOg0jglybHwIpMjsnhBBCCNHjWs6AteTk5ISLiwtVVVVUVFy7L/DmzZsBuOOOO4yer6qqAjpfybK8vJylS5fy9ttv4+rqeu0LRJ8myyxNgVbTamYO4HR2GXEDXHonHiGEEEKYBCcbC07+eVZvh9EpTjbd//b2eqtSdmRGrkliYiLW1tZtLoM8evQo0Llkrq6ujsWLF3PPPfewZMmSDl8n+i5J5kyBTkO4tyN2VubU1CvLK0/nXPsTHyGEEEKI9qhUql7ff9YbrKysgObZr6tlZWUZPQ6QmZlp9HhFRQXl5eXY29vj5ORkdEyThoYGKisrcXZ2NlrMpaCggK+++gponcy9++67/PznPzcYHxMTQ2JiInfeeSdjxozh8ccfb/f5Rf8hyyxNgVaLm70Vz8wfoj+UclmSOSGEEEKI69G0Ry0tLc3gXHFxsb6KpDHFxcVs377d4Pjnn38OwPjx469ZbdPS0hJXV1fKy8vJz883OP/aa69RW1uLt7d3q/10d955J3l5efqvjz/+GBsbG5566im2bNnChg0b2Lp1K3FxccTFxbFx48Z24xB9nyRzpkCnzMZF+TV/ypNyuZIGzfUtARBCCCGEuJkFBwcTGBjI6dOn+eabb/THq6urefDBB6+55+13v/sdxcXF+scXL17kr3/9KwAPP/xwh2JoKmzy7LPPtlqe+d5777Fq1apWY5o4ODjg4+ODj48PR44c4eGHH+bjjz/mrrvuYt68eWi1WhITE/VfHW2RIPouSeZMgVZJ5sK9HbEwUz7pqW/Ucr7A+NIAIYQQQgjRvr/85S8ALF26lGnTprFw4UJCQkJISkpqNwkaO3YsZmZmhIWFsWzZMhYuXEh0dDQ5OTmsWLGCxYsXd+j5n332WVQqFe+++y4xMTHcfvvtREVF8cADDzBq1Cig7f1y//vf/1ixYgWff/45y5Yt69TrFv2LJHOm4EoyZ2NpTpi3o/5wcq4stRRCCCGEuB733nsvH3zwAYMHD+bAgQMcOXKEBQsWcOjQoXarQFpbW7Nz505+8pOfcOjQIb7//nsGDBjAa6+9xocfftjh54+Pj2ft2rXExMSQlpbGtm3b8PX1ZePGjUyaNAkwnsy99957/PznP+frr79m3rx5nX7don9R6TpTVkf0KVFRUVCYQvJ/H4JFb9Og0fKzNUfZlVoIwD3jgnhuUXQvRymEEEKIvkir1ZKamgpAREQEZmbyGf+NyMjIIDg4mMmTJ7N79+5eieHNN9/kueee49tvv2XcuHG9EoOp6ezvSVP10eTk5G6PDaSapWmwcQagtkGjT+QAErPKeikgIYQQQgjRk15++WVeeOEFvvzyS4KDg7l8+TIAtra2ODs793J0orvIRzCmQKcUOnGyscTdwUp/OOVyJVqtTLwKIYQQQpgynU7H3/72N6qqqpg7dy6+vr76r5deeqm3wxPdSGbmTMGVPXMAg32c2H++CIC6Ri0ZxdUM8nTorciEEEIIIUQ3U6lUlJeX93YYohdIMmcKdM3J3BC/5mQOICm3QpI5IYQQQohuNnDgQKQUhehpsszSFFzYrf82vEU1S4DkHPmURgghhBBCCFMkyZwpqGluShnu3XoW7qQUQRFCCCGEEMIkSTJnCq4UQAEI9XJA1eLU6ZxyKYIihBBCCCGECZJkzhS0WJ9tZ2VBgKut/nF1vYZLJTW9EZUQQgghhBCiG0kyZwpazMwBRPg4tXp8KrusB4MRQgghhBBC9ARJ5kzBVcncYN/WRVBOZ0sRFCGEEEIIIUyNJHOmwCCZaz0zd1oqWgohhBBCCGFyJJkzBVf1NJkQ6sFrt8XqHydJERQhhBBCCCFMjiRzJqH1zJyzrSW3RPugulLWsrpew4Wi6l6ISwghhBBCCNFdJJkzBTrDWTd7awtCPZt7ziXJUkshhBBCCCFMiiRzpsBIMgcQE+Cs//6UFEERQgghhBDCpEgyZwqsHY0ejvZrLoRyOqesh4IRQgghhBBC9ARJ5lo4ePAgc+fOxc3NDQcHB0aPHs1HH33U6fscO3aMv/zlL0yaNAk/Pz+sra0ZMGAAK1as4NSpU10fuN8wg0PJueW8vu2c/nFSTjkaKYIihBBCCCGEyZBk7ooNGzYQHx/P1q1bGTp0KHPmzOHcuXOsXLmSJ554osP3aWxsZOTIkTz33HOkpKQwbNgwFi5ciLW1NZ9++ikjR45k3bp1XRu8TmNwyN/Flqq6Rv3j2gYtFwqruvZ5hRBCCCFEr1q+fDkqlYojR470diiiF0gyB5SWlnLvvfei0WhYt24du3fvZt26daSkpBAaGsobb7zBrl27Ony/MWPGsHnzZvLz8/n2229Zu3YtaWlpPP300zQ0NHDfffdRVFTUdS9AqzU45GJnha+zTatjJ2XfnBBCCCGESTl+/Djm5ubExMT0diiiF0gyB6xevZry8nIWLVrEkiVL9Me9vb155ZVXAHj99dc7dC8LCwsSEhKYN28eZmbN//eamZnx17/+lcjISCorK/n222+77gUYmZkDiPRpvZfuZFZZ1z2nEEIIIYToVWVlZaSnpxMZGYmtrW1vhyN6gSRzwObNmwFYtmyZwbl58+ZhY2PD9u3bUavVN/Q8KpVK/6lJbm7uDd2rldpy0DQaHI70dWr1OFGSOSGEEEIIk3H8+HEAhg0zrJ8gbg6SzIG+KMnw4cMNzllZWREdHY1arSY1NfWGn+vChQsA+Pj43PC99ArPQF2FweHBVyVzZ/MqUDcYn8UTQgghhBCK3bt3o1KpWLlypdHzK1euRKVSsXv3bv2xjIwMVCoVU6ZMoaKigl//+tcMGDAAGxsbBg8ezBtvvIHWyNaYjti6dSszZszAyckJd3d3Vq5cSWlpKceOHQOMv4cVNweL3g6gt1VUVFBWVgZAQECA0TEBAQEcPXqUzMxMYmNjr/u59u/fz7Fjx7CysmLOnDkdvi4qKsro8fT0dEKa8jWtYZI2+Kpllo1aHcm5FYwIcu3wcwshhBBCiI6rq6tj2rRppKenM23aNOrr69mxYwdPPPEEp06d4oMPPujU/f785z/z/PPPY21tzdSpU7G0tGTDhg0kJSUxcOBAoOMzc2lpaTzwwAMUFRVhbm7OL37xCx555JHOvsQb1lfiMAU3fTJXVdVc4dHOzs7oGHt7e4OxnVVRUcF9990HwOOPP46vr+9138soreEyy2APe6wszKhvbP4UKDGrTJI5IYQQQohukpCQwNChQzl37hweHh6A8gF8fHw8H374IbfeeisLFy7s0L0++eQTnn/+eUaMGMHXX3+tn3i4ePEiI0eO1C+zjIuL69D9rK2t+de//kV0dDRVVVWMGDGCKVOmtDlx0F36ShymwCSSuWXLlpGUlNSpa9asWcPo0aPR6a7de60jY9qj0Wi48847OXfuHKNHj+b555/v1PXJyclGj0dFRUFhivLASDJnYW5GuLcDSTnNSzBl35wQQgghOkynA3U/q4Zt4wwqVa+G8Nprr+kTOYCQkBCeeeYZHnroIf75z392KJkrLy/n0UcfxcnJiU2bNrWaCAgODubBBx/k5ZdfJjg4GBcXlw7FFRQUpP/ewcGB8PBwMjMzezyJ6itxmAKTSOYyMjI6vZ+tpqYGAEdHx1bHnJyc2hzr4OBwXfH97Gc/49tvvyUiIoJvv/0WKyur67pPu4wkcwBDfJ1aJXNS0VIIIYQQHaYuh5eDrj2uL3nqEti69NrTu7m5MXPmTIPjd955Jw899BAHDx5Ep9OhukbC+c4771BaWsrTTz9tdEVXaGgocP375dLT0zl27Bhjx469ruu7Sl+Jo78yiQIoR48eRafTdeprypQpADg5OeHs7AxAdna20fs3HQ8MDOx0bL/73e94//33GTBgANu2bWv1KU2XMrJnDpRkrqXMkhqKq+q6JwYhhBBCiJtcy1mnlpycnHBxcaGqqoqKCsPCdVdrqrZ+xx13GD3ftP3neipZlpeXs3TpUt5++21cXXtv+01fiaM/M4lk7kY1FTVpWnfcUkNDA0lJSVhbWxMREdGp+/7973/ntddew8vLi23btjFgwIAuideoNmbmJoZ58OTsCJxsLPXHTmaXdV8cQgghhBAm7nqrUnZm605iYiLW1tZtLj08evQo0Plkrq6ujsWLF3PPPfe06q/c0/pKHP2dSSyzvFHz5s1j7969rFu3jhUrVrQ6t3nzZtRqNXPnzsXGxqbD93z33Xf54x//iIuLC99//32nE8FO0zYYPRzq5UiolyPHM8vYfjYfgMSscqZFendvPEIIIYTo/2yclWWL/YmN8w3fomlLTFvF77Kystq8NjMz0+jxiooKysvLsbe3N7qtp6WGhgYqKytxdnY2uhyzoKCAr776CmidzG3bto1Zs2axf/9+JkyYAMDGjRu5/fbbWbt2LXPnzuXOO+9kzJgxPP744+3GcCMGDx7M/PnzefXVV/XH6uvriY6O5q677uKZZ57pkThuBjIzBzzwwAM4OTnxzTff6H8xQPlFefLJJwF44oknDK6LjIwkMjKSnJycVsfXrVvHQw89hIODA999912HKwzdkDZm5prEDWj+wyZFUIQQQgjRISqVsv+sP311QfGTpj1qaWlpBueKi4uNruZqeX779u0Gxz///HMAxo8ff839cpaWlri6ulJeXk5+fr7B+ddee43a2lq8vb1b7aebOXMms2fP5g9/+AMAe/bs4Sc/+QmrV69m/vz5bNmyhQ0bNrB161bi4uKIi4tj48aN7cZyPSZMmEBCQoJBzI2NjTz11FM9FsfNQGbmUDaqvv/++yxfvpxly5YxefJkPDw82L59O2VlZTz66KNMnz7d4LqmoisNDc2zYgUFBdx1111otVqCg4N55513eOeddwyuXbx4MYsXL+66F9HGnrkmcQOa1yGfzCrr0MZbIYQQQoibUXBwMIGBgZw+fZpvvvmGRYsWAVBdXc2DDz54zT1vv/vd79i+fTvu7u6A0krgr3/9KwAPP/xwh2IYPnw4O3bs4Nlnn+U///mP/n3be++9x6pVq/Rjrvbqq68SFxfH3/72N15++WVeeeUV7rrrLkBZjdbRJaIlJSWUlJS0O8bJyQkvLy+D4xMmTOCzzz6jsbERCwsLsrKyePHFF/nss8+wsbHpVByifZLMXbF06VL27t3LCy+8QEJCAvX19QwePJhHHnmEe++9t8P3qampob6+HoDTp09z+vRpo+MGDhzYxclc+zNzQ1vMzJXXNnCxqJpBntdXnVMIIYQQwtT95S9/4b777mPp0qXEx8fj4ODAkSNHcHJyYuHChW3OJI0dO5b6+nrCwsJaNQ2vqalhxYoVHX7/9+yzz7Jz507effddDhw4QFRUFElJSZw5c4YxY8Zw+PBho/vlYmJiuOOOO3j66ad5/vnnr7sZ91tvvcVzzz3X7ph77rmHDz/80OD4hAkTqK2t5dSpUwwfPpzHH3+c+Ph4fVIsuo4kcy1MmDCBLVu2dHi8sU2sAwcOvOG+dJ1m7QjuoW2ezi6tYdUPaViZm1GvUT4FOZ5ZJsmcEEIIIUQb7r33XlQqFatWreLAgQO4urqyYMECXnrpJX7zm9+0eZ21tTVbt27lj3/8I19//TVFRUX6vnCPPfZYh58/Pj6etWvX8txzz5GSkkJubi7Dhw/npZdeYu/evW0mcydPnuS7777D0tIST0/P63npgJJM/ulPf2p3jJmZ8R1b4eHheHh4kJCQQFFREZs2bep0T2jRMSpdj2ceoqs0NQ1P/k0gPHWxzXEFlWpGv7ij1bGfjB7A35cM7e4QhRBCCNFHabVa/ZaRiIiINt+Yi47JyMggODiYyZMns3v37l6J4fz580ycOJH7778fCwsL3nnnHc6fP3/dvZJvxKJFi7Czs+PEiRPceuut/P3vf+/xGLpCZ39PmqqPJicnd3tsIAVQTIOu/f1yXo42eDpatzp27FJpd0YkhBBCCCF6UE5ODjNnzmTx4sW8+OKL/Pa3v0Wj0bSqKNmTJkyYwBdffEF1dfU1Z/jE9ZNkzhR0YAPp1c3D0/KrKK8x3s5ACCGEEEL0H8XFxcyaNYuRI0fyr3/9CwBHR0eefvppVq1aRV5eXo/HNHz4cHQ6HatWrcLe3r7Hn/9mIcmcKbjGzBxAlJ9hP5PjmTI7J4QQQgjR37m7u5OcnMzatWtbLQN87LHHqKqqatW+oKd89NFHTJ06leXLl/f4c99MpACKKWhUQ9aPMGBUm0Oi/AwbaB69VMLUSMNyskIIIYQQonN6pQheH6PRaCguLmb9+vVs2LCBEydO9HZIJk+SOVOg00J5ZrvJ3BAjM3NHM2RmTgghhBBCdI09e/YwY8YMBg0axNq1awkLC+vtkEyeJHOmQtN+n7kgNzscrC2oqmsedzK7jAaNFktzWW0rhBBCCCFuzLRp06QZeA+Td/GmQtt+MRMzM5VBERR1g5YzuRXdGZUQQgghhBCim0gyZyo0165MGRNgbN+cLLUUQgghhBCiP5JkzlR0IJkbaiSZO3appDuiEUIIIYQQQnQzSeZMhab+mkOGBrgwIsiVaS0qWB67VHrTV14SQgghhBCiP5JkzlR0YGYu2MOe9Q+N55VlQ/XH8ivqyC6t7c7IhBBCCCGEEN1AkjlTcY0CKC15OFgT7GGvf3xM9s0JIYQQQgjR70gyZyo6sMyypeGBrvrvj8q+OSGEEEIIIfodSeZMxTX6zF1t5MAWyZw0DxdCCCGEEKLfkWTOVJhbdmhYo0bL5lO5nMhsTuBS8yupVHd8maYQQgghhBCi91n0dgCii4y8r0PDzM1U/PGr01Som2fydDo4kVlGfLhnd0UnhBBCCCGE6GIyM2cqdJoODVOpVNI8XAghhBBCCBMgyZyp0HYsmQOI8XcxOCbNw4UQQgghhOhfJJkzFR2cmQOI8TecmTuRWUajRtuVEQkhhBBCCCG6kSRzpqK64zNrQ40ss6yp15ByubIrIxJCCCGEEEJ0I0nmTMX+1zo8NMDVFhc7w+qX0jxcCCGEEOLaVq5ciUqlYvfu3b0dSq9Yvnw5KpWKI0eO9HYoNz1J5kxFY12Hh6pUKmIDXAyOSxEUIYQQQghxLcePH8fc3JyYmJjeDuWmJ8mcqehEMgcQN8DF4NixDCmCIoQQQggh2lZWVkZ6ejqRkZHY2tr2djg3PUnmTEUXJHO55WqyS2u6KCAhhBBCCGFqjh8/DsCwYcN6ORIBksyZDk19p4bHGknmAA6eL+6CYIQQQggh+r/169czevRobG1t8fb25u677yY3N7fdaw4dOsSiRYvw9PTE2tqagQMH8vDDD7e6Tq1WY2NjQ3BwsMH18+fPR6VSMXXqVINz0dHRWFhYUFFRoT+WkZGBSqViypQp1NbW8vvf/56goCCsra0JDQ3l5ZdfRqfTdfq1b926lRkzZuDk5IS7uzsrV66ktLSUY8eOATB8+PBO31N0PUnmTIWmczNzbvZWBLnbEehmR5C7nf74gfSiro5MCCGEEKLfefvtt1m2bBnHjx9n/PjxTJkyhe3btzN27FiKi41/+P3JJ58wadIkNm3aREREBEuWLMHa2pp///vfDB8+nJSUFABsbGwYM2YMGRkZZGRk6K/XaDTs378fUJJCtVqtP1dUVMSZM2eIi4vDycnJ4Lnr6+uZNWsW7777LoMHD2bq1Knk5OTw+9//nmeeeaZTr/3Pf/4zt9xyC/v372fChAlMmDCBDRs2MHPmTA4fPgx0fGYuLS2N+Ph4hgwZQkxMDP/85z87FYtonyRzpqKxczNzAFt/Hc/eJ6fy1JxI/bGD6cXX9emNEEIIIYSpyMjI4Le//S3W1tZs376dHTt28MUXX3D+/HkiIyPZvHmzwTVZWVn87Gc/Q6VSsXHjRvbv38/nn3/O2bNneeyxx8jPz+fuu+/Wj58yZQpAq4qYJ06coLy8nKioKOrq6khISNCf2717NzqdTn/d1Q4dOoRKpSItLY2tW7eydetW9u3bh4WFBW+88QZVVVUdeu2ffPIJzz//PCNGjOD8+fNs2bKFjRs3kpiYyMWLF/nqq68AiIuL69D9rK2t+de//sWZM2c4dOgQb731FsnJyR26VlybJHOmopPLLAFsrcwBGDfIHZVKOVZYWcf5go79sgshhBDi5qBu0FBe29DhL2MfDFeoO359bb3G4Pr6Rm2716gbDK+5Xu+//z51dXXcfffdrZInOzs7/vGPf6BqeuPUwurVq6mtreUnP/kJ8+fP1x83MzPjpZdews/Pjx9//FGfoE2ePBlonczt2bMHgGeffbbNc20lc2ZmZqxevRoPDw/9sZEjR3LLLbdQU1PD0aNHr/m6y8vLefTRR3FycmLTpk0EBATozwUHB/Pggw+i0+kIDg7GxcXlmvcDCAoKIjo6GgAHBwfCw8PJzMzs0LXi2ix6OwDRRa4jmWviam/FEF8nknOV9dcHzhcR5u3YVZEJIYQQop/79+503txxrsPjT/55Fs62rXvaTnhpJ5Xqxg5dv3R4AKuWx7Y69k1iDr9bd6rNa349PYzHZ4Z3OMb2NC11XL58ucG5iIgIhg0bpi8E0mTfvn0A3HXXXQbXWFtbc9ttt/Hmm2+yb98+xo4dy/jx47G2tm6VsO3evRsXFxeWLVtGQECAwTkzMzMmTpxoNOaBAwcSHm74+puO5eXltf+igXfeeYfS0lKefvppfH19Dc6HhoYC179fLj09nWPHjjF27Njrul4Ykpk5U3EDyRzAhNDmT3EOpEsRFCGEEELcvJqKlQQGBho9b+x40zUDBw40ek3T8aZxNjY2jB49mkuXLpGRkYFWq2X//v3Ex8djZmbG5MmTSUhIQK1WU1RURHJyMnFxcW3OiLWcRWvJwcEBgLq6a9dXaFo+escddxg937RU83oqWZaXl7N06VLefvttXF1dO329ME6SOVOhabiuy2rqGzlysYTymuZkMOFCMY0abVdFJoQQQgjRrzQtEzW2nPJarnVNy/Mtl1omJiZSVlamX0Y5ZcoU/b65vXv3trtf7npjvVpiYiLW1tZERUUZPd+0VLOzyVxdXR2LFy/mnnvuYcmSJTccp2gmyyxNxdDbr+uyl7aksObQJQBUgA6oVDeSlFthtBedEEIIIW4+D00J4b6JhmX02+JkY/gW88Dvp9HRGmtW5obzDYvi/JkV5dPmNdYWXTdH4efnR1paGpcuXSIsLMzgvLE9X35+fqSmpnLx4kWjyx0vXVLeb7VcvjhlyhReeOEFdu/eTUlJif5Yy/9tea4p+esODQ0NVFZW4uzsbDQxLCgo0Bc/uTqZe/fdd/n5z39ucE1MTAyJiYnceeedjBkzhscff7x7gr+JycycqQifc12XxQa46L+3tmz+cThwXloUCCGEEEJhY2mOs61lh7+MJQNONh2/vqlIW0tWFmbtXmNjaXjN9Wral7Z27VqDc2lpaSQmJhocnzRpEgCffvqpwbn6+nr9vZrGAYwfPx4rKyt2797N7t27cXV1JTZW2SsYGhqq3zfXtF8uPj7+hl9bWywtLXF1daW8vJz8/HyD86+99hq1tbV4e3sb7Ke78847ycvL0399/PHH2NjY8NRTT7FlyxY2bNjA1q1biYuLIy4ujo0bN3bb67jZSDJnKnTXV8EpLtBF/726oXlp5UHpNyeEEEKIm9S9996LlZUVa9as0Rc2AaitreXXv/41Wq3hdpT7778fW1tbPv/8c7799lv9ca1Wyx//+EdycnIYNWpUq+Iftra2jBo1ikuXLrFt2zb9frkmkydP5tChQyQlJREbG9vhCpLXq6mwybPPPtuqIul7773HqlWrWo1pycHBAR8fH3x8fDhy5AgPP/wwH3/8MXfddRfz5s1Dq9WSmJio/1q4cGG3vo6biSRzpkJ7fclcsLu9QbUpgKMZpV1a4lcIIYQQor8YNGgQL7/8Mmq1mqlTpzJjxgzuuOMOQkNDSUpKatV6oElgYCDvvvsuOp2OBQsWMGnSJO68806GDBnCqlWr8Pb2Zs2aNQbXNS2nVKvVBnvipkyZQn19PTqdrluXWDZ59tlnUalUvPvuu8TExHD77bcTFRXFAw88wKhRo4D298v973//Y8WKFXz++ecsW7as2+MVksyZDt31FSwxM1MxrMXsnIWZsiyirlHL8UulXRGZEEIIIUS/89hjj/Hll18SFxfH/v372bFjB1OmTCEhIQF3d3ej16xYsYK9e/cyf/58zp49y7p166itreWhhx7i2LFjREZGGlzTMoEzlsy1da47xMfHs3btWmJiYkhLS2Pbtm34+vqyceNG/fLQtpK59957j5///Od8/fXXzJs3r9tjFQqVzlhXR9EvREVFQWEKyQ87QNgsWPwfsDf+x6U9/9hxjlXb0gBwtbOktEapjPnI1BB+N9vwj44QQggh+j+tVktqaiqg9E5rubxPiM548803ee655/j2228ZN25cb4fTpTr7e9JUCTQ5ObnbYwOZmTMd536AmuvrDzc8qLnXR01989LKA+el35wQQgghhGjbyy+/zJ/+9Cc+/fRTgoODuXz5MpcvX6a8vLy3Q7spSDJnShrV13VZ7AAXrqyupK6xebnmqewyKtTX179OCCGEEEKYNp1Ox9/+9jeqqqqYO3cuvr6++q+XXnqpt8O7KUifOVPSWHddlzlYWxDh48TZvAoA7KzMqanXoNXB4QslzBzi3ZVRCiGEEEIIE6BSqWQGrpfJzJwp0VxfMgcwIshF/72bvZX+e2lRIIQQQgghRN8kyZwpuc5llgDDA5V9c442Fvg62+iPH5R9c0IIIYQQQvRJsszSlFznMkuA6ZHe/PB4PKGeDlwqqWHqa7sBSM2vpLCyDk9H6y4KUgghhBBCCNEVZGauhYMHDzJ37lzc3NxwcHBg9OjRfPTRR11y7/vuuw+VSoVKpSIhIaFL7mngBmbmnO0sCfd2xMxMxUB3O/xazs7JUkshhBBCCCH6HEnmrtiwYQPx8fFs3bqVoUOHMmfOHM6dO8fKlSt54oknbujeu3bt4oMPPkClUnVRtG1orO+S26hUKsaHeugfy1JLIYQQQggh+h5J5oDS0lLuvfdeNBoN69atY/fu3axbt46UlBRCQ0N544032LVr13XdW61W8/Of/5yoqKjub6J4AzNzVxsf0tx8fP/5IqS3vBBCCCGEEH2LJHPA6tWrKS8vZ9GiRSxZskR/3Nvbm1deeQWA119//bru/de//pXz58/zn//8B0tLyy6Jt003sGeuiVar43xBJSXVzbN8OWW1pBdW3fC9hRBCCCGEEF1HCqAAmzdvBmDZsmUG5+bNm4eNjQ3bt29HrVZjY2NjMKYtSUlJvPrqq9x3331MnDixy+Jt0w20JgBo1GgZ+/edFFUp9xnkYc+FomoAdqYUEOrleMMhCiGEEEIIIbqGzMwBp06dAmD48OEG56ysrIiOjkatVpOamtrhe2q1Wh588EGcnZ31s3vdasrTMOHXN3QLC3Mzgtzt9I/9XJoT110phTd0byGEEEIIIUTXuumTuYqKCsrKygAICAgwOqbpeGZmZofv+89//pOEhARWrVqFm5vbDcd5TV1UW2V0cHOsdY3N++R+zCihQt3QNU8ihBBCCCGEuGE3/TLLqqrmvWB2dnZGx9jb2xuMbU92djZPP/00U6ZM4e67777hGKOiooweT09PJ8TpygOt5oafB2D0QDf+TToA5wsqcbG1oKy2kUatjgPnirglxrdLnkcIIYQQQghxY0wimVu2bBlJSUmdumbNmjWMHj26Q1UaO1vJ8ZFHHqGuro5///vfnbruhui6JpkbMdAVlQp0OiitaWBahCc7U5UlljtTCiSZE0IIIYQQoo8wiWQuIyOjU/vZAGpqagBwdHRsdczJyanNsQ4ODte87/r169m4cSPPPPMMkZGRnYqpLcnJyUaPR0VFQWGK8kCrAa0WzG5s5ayTjSWDfZw4k1cBgLujtf7c7rRCtFodZmbd3C9PCCGEEEIIcU0mkcwdPXr0uq91cnLC2dmZ8vJysrOzGTJkiMGY7OxsAAIDA695v02bNgGwbds29u7d2+pcYmIiAA8//DBOTk788pe/NFpB87rsfwPKMmHZezd8q9HBbvpkrlLdiJkKtDoorKwjObeCmADnG34OIYQQQgghxI256QugAMTGxgJw/Phxg3MNDQ0kJSVhbW1NREREh++ZkJDAnj17Wn2Vl5cDcOLECfbs2aNPEruG7oZbEzRpWQQlMbOMYQNc9I93pRZ0yXMIIYQQQvRXK1euRKVSsXv37t4OpVcsX74clUrFkSNHejuUm54kcyi95ADWrVtncG7z5s2o1WqmT5/eoR5zH374ITqdzujX5MmTATh06BA6nY7HHnusS19HVzQNBxg1sDmZu1yhZniQq/7xzhRJ5oQQQgghbmbHjx/H3NycmJiY3g7lpifJHPDAAw/g5OTEN998w1dffaU/XlBQwJNPPgnAE088YXBdZGQkkZGR5OTk9Fis7WpUd8ltPB2tGeRpr3/saGOp//5kdhnFVV2TNAohhBBCiP6lrKyM9PR0IiMjsbW17e1wbnqSzAFubm68//77mJmZsWzZMqZOncptt91GREQE58+f59FHH2X69OkG16WmppKamkpDQx/pv9ZFM3OgtCgAsDRXYaYCHydlVlKngz1p0kBcCCGEEOJm1LQtadiwYb0ciQBJ5vSWLl3K3r17mT17NomJiXz33XeEhITw/vvv8+abb/Z2eB3TRTNzAHePG8jnD47l9F9m88tpYUyN9NSfk6WWQgghhLgZrF+/ntGjR2Nra4u3tzd33303ubm57V5z6NAhFi1ahKenJ9bW1gwcOJCHH3641XVqtRobGxuCg4MNrp8/fz4qlYqpU6canIuOjsbCwoKKigr9sYyMDFQqFVOmTKG2tpbf//73BAUFYW1tTWhoKC+//HKn22wBbN26lRkzZuDk5IS7uzsrV66ktLSUY8eOATB8+PBO31N0PZOoZtlVJkyYwJYtWzo8vrO/GN2+SbaxvstuNcSvdYuGKRFefH4kC4C9aYU0arRYmMtnAUIIIYQwTW+//Ta/+tWvMDc3Z/LkyXh4eLB9+3bGjh2rL553tU8++YSVK1ei1WoZP348AwYM4Pjx4/z73//mq6++Yvfu3URGRmJjY8OYMWPYu3cvGRkZDBw4EACNRsP+/fsBJSlsSvoAioqKOHPmDMOHDzfaSqu+vp5Zs2aRnJzM6NGjGTx4MHv27OH3v/89lZWVvPDCCx1+7X/+8595/vnnsba2ZurUqVhaWrJhwwaSkpL0sXZmZi4tLY0HHniAoqIizM3N+cUvfsEjjzzS4eu7Sl+JoyvJu3FT0oUzc1ebGOqBpbnSX65C3cjxzLJuey4hhBBCiN6UkZHBb3/7W6ytrdm+fTs7duzgiy++4Pz580RGRrJ582aDa7KysvjZz36GSqVi48aN7N+/n88//5yzZ8/y2GOPkZ+fz913360fP2XKFKD1h/0nTpygvLycqKgo6urqSEhI0J/bvXs3Op1Of93VDh06hEqlIi0tja1bt7J161b27duHhYUFb7zxBlVVVR167Z988gnPP/88I0aM4Pz582zZsoWNGzeSmJjIxYsX9fUl4uLiOnQ/AGtra/71r39x5swZDh06xFtvvdVmH+Xu1Ffi6EqSzJmSLtwzdzV7awvGBLvrH0uLAiGEEOIm0qCG2rKOfxlbvaQu7/j19TWG1zfWt39NQ9d9qP3+++9TV1fH3Xff3Sp5srOz4x//+AcqlcrgmtWrV1NbW8tPfvIT5s+frz9uZmbGSy+9hJ+fHz/++KM+QWuqct4ymduzZw8Azz77bJvn2krmzMzMWL16NR4eHvpjI0eO5JZbbqGmpqZDfZnLy8t59NFHcXJyYtOmTQQEBOjPBQcH8+CDD6LT6QgODsbFxeWa92sSFBREdHQ0AA4ODoSHh5OZmdnh67tKX4mjK8kyS1PSTTNzBZVqEjPLmBrpxf7zRQDsSingqTmR3fJ8QgghhOhj9r8Be17q+PinLoGtS+tjb8RAXXnHro+9E279d+tjp9fCNw+3fc3k38PUP3Q8xnY0LXVcvny5wbmIiAiGDRtm0J943759ANx1110G11hbW3Pbbbfx5ptvsm/fPsaOHcv48eOxtrZulbDt3r0bFxcXli1bRkBAgME5MzMzJk6caDTmgQMHEh4ebnC86VheXl77Lxp45513KC0t5emnn8bX19fgfGhoKHBj++XS09M5duwYY8eOve57dIW+EseNkpk5U9LFM3MV6gamr9rN6Bd38LOPjxHdYh9dyuVKcstqu/T5hBBCCCH6gqZiJYGBgUbPGzvedE3TnrKrNR1vGmdjY8Po0aO5dOkSGRkZaLVa9u/fT3x8PGZmZkyePJmEhATUajVFRUUkJycTFxfX5oxYy1m0lhwcHACoq7v2+8Sm5aN33HGH0fNNSzWvt5JleXk5S5cu5e2338bV1fXaF3STvhJHV5BkzlTYusGo+7v0lk42ltRrtPrHeeVqBrrb6R/LUkshhBBCmKKmInfGllNey7WuaXm+5VLLxMREysrK9Msop0yZot83t3fv3nb3y11vrFdLTEzE2tqaqKgoo+eblmpeTzJXV1fH4sWLueeee1iyZMkNxXkj+kocXUWWWZoKOzeY9dcuv+3YYHeySrIBSLhQzJQILz48mAEoSy3vGhPU5c8phBBCiD5m4uMw9qGOj7dxNjz2+Gnje+mMMbcyPBZzG0TOa/saC5uO3bsD/Pz8SEtL49KlS4SFhRmcN7bPys/Pj9TUVC5evGh0ueOlS5cAWi1fnDJlCi+88AK7d++mpKREf6zl/7Y815T8dYeGhgYqKytxdnY2mhgWFBToi59cncxt27aNWbNmsX//fiZMmADAxo0buf3221m7di1z587lzjvvZMyYMTz++OPd9hoGDx7M/PnzefXVV/XH6uvriY6O5q677uKZZ57pkTh6kszMmYpuKn4ydlBz0ZOEC8VMH+ylf7zvXBE19Y3d8rxCCCGE6EMsbZQ9cB39MjZLZOPc8eut7Ayvt7Bq/xrLrkvmmvalrV271uBcWloaiYmJBscnTZoEwKeffmpwrr6+Xn+vpnEA48ePx8rKit27d7N7925cXV31bQ9CQ0P1++aa9svFx8ff8Gtri6WlJa6urpSXl5Ofn29w/rXXXqO2thZvb2+D/XQzZ85k9uzZ/OEPyp7FPXv28JOf/ITVq1czf/58tmzZwoYNG9i6dStxcXHExcWxcePGLn8NEyZMaFUBtCnuxsZGnnrqqR6LoyfJzJyp6K5kLqQ5mcsoriHIzQ5Hawsq6xqpa9SyN62IOdE+3fLcQgghhBC94d577+WVV15hzZo1rFixQp+A1dbW8utf/xqtVmtwzf3338+rr77K559/zu233868ecosolar5Y9//CM5OTmMGjWqVcENW1tbRo0axYEDB8jPz2f27NmYmTXPtUyePJm1a9fS0NDQ7n65rjJ8+HB27NjBs88+y3/+8x/9DN17773HqlWr9GOMefXVV4mLi+Nvf/sbL7/8Mq+88oq+GMy8efOM/n9mTElJiX4msi1OTk54eXkZHJ8wYQKfffYZjY2NWFhYkJWVxYsvvshnn32GjY1Np+LoL2RmzlR0UzLn72JLoFvzp2PHr1S1bPLDmcvd8rxCCCGEEL1l0KBBvPzyy6jVaqZOncqMGTO44447CA0NJSkpqVXrgSaBgYG8++676HQ6FixYwKRJk7jzzjsZMmQIq1atwtvbmzVr1hhc17ScUq1WG+yJmzJlCvX19eh0um5dYtnk2WefRaVS8e677xITE8Ptt99OVFQUDzzwAKNGjQLa3i8XExPDHXfcwdNPP81vf/vb627G/dZbbxEWFtbu15NPPmn02gkTJlBbW8upU6cAePzxx4mPj2fRokXXFUt/IMmcqaivhoNvQ21pl9967CA3/feH0ouZFeWtf7zjbAGNGtP6hEMIIYQQ4rHHHuPLL78kLi6O/fv3s2PHDqZMmUJCQgLu7u5Gr1mxYgV79+5l/vz5nD17lnXr1lFbW8tDDz3EsWPHiIw0bOvUMoEzlsy1da47xMfHs3btWmJiYkhLS2Pbtm34+vqyceNG/exkW8ncyZMn+e6777C0tMTT0/O6Y3j22WdpaGho9+v99983em14eDgeHh4kJCTwww8/sGnTJt56663rjqU/UOl0Hd2JKvqaqKgoKEwh+WGH5oMPHwavru3/9tXxbJ748iQAA9xs+e7RSYz463Z9pcvPHhzD+BCP9m4hhBBCiD5Gq9WSmpoKKL3TWi7vE6Izzp8/z8SJE7n//vuxsLDgnXfe4fz58/q2CD1p0aJF2NnZceLECW699Vb+/ve/39D9Ovt70lQJNDk5+Yaet6Pkt9bUdEPj8JaJWlZJLaXVDUwIbf5E6odkw02yQgghhBDC9OXk5DBz5kwWL17Miy++yG9/+1s0Gk2ripI9acKECXzxxRdUV1fzpz/9qVdi6EmSzJmabtg75+NsQ4invf7xgfQiZkU1Fz3ZdiYfmeAVQgghhLi5FBcXM2vWLEaOHMm//vUvABwdHXn66adZtWoVeXl5PR7T8OHD0el0rFq1Cnt7+2tf0M9JMmdqumFmDmBiaPPs3MWiaqYP9tJXHc4pqyU5t6JbnlcIIYQQQvRN7u7uJCcns3bt2lbLDx977DGqqqoMWhj0hI8++oipU6eyfPnyHn/u3iCtCUxNN1W1vG3kAEYOdGN8iDvuDtYADA905dglpeDKD8mXifY30iBUCCGEEEKIbqTRaCguLmb9+vVs2LCBEydO9HZIPUZm5vq9q5pydtPMXLS/Mwti/fSJHMCsIc1VLb+XfXNCCCGEEKIX7NmzBx8fH1atWsXatWsJCwvr7ZB6jMzM9Xeqq5I5TX2PPfXsKB/+viUFgNT8StILqwjx7PmqRUIIIYQQ4uY1bdo0k2sG3lEyM9fv9czMnDEDPewZ4uukf7w1SRqICyGEEEII0VMkmevvVFf9J+yBZK66rpFdqQWoGzTMjWmuavnd6Z6vWCSEEEIIIcTNSpK5/u7qZZbdVAAFQKfTsfKDI8Q9/wP3fvAjxzNLmRPdXKUoObeCzOKabnt+IYQQQgghRDNJ5vq9nltmqVKp0OmgQaP0lDtwvohQLwfCvZv3yW1Jktk5IYQQQggheoIkc/1dy5m5W16B0T/r1qdr2W9u/7ki5WlbzM59J/vmhBBCCCGE6BGSzPV3LffMWTuBtWO3Pt3EsOZk7lROOSXV9cyNaU7mTmaVkVNW260xCCGEEEIIISSZMwEtZuZ6oPhJpI8jXo5KrzmdDvadKyTc24FBHvb6MVukEIoQQgjR56larO65Wcu6C3EtLX83VFfXqugDJJnr71r+UHVj8ZPmp1MxOdxT/3hPWiEqlYpbWlS13HQyt9vjEEIIIcSNUalUWFlZAVBdXd3L0QjRNzX9blhZWfXJZE6ahvd3KhWgFCTpqR5zkyM8WXssG4C9aUVotToWxvrzz13pAJzMLudCYRWDpIG4EEII0ac5OjpSXFxMfn4+APb29piZyWf9Qmi1Wqqrq/W/G46O3buV6XpJMtfvtUjm9r0OpRmw4P+69RknhnpgpgKtDoqq6jiTV0G0vzODfZ04m1cBwNeJuTwxM7xb4xBCCCHEjXF3d6e6uhq1Wk1urqysEcIYGxsb3N3dezsMo+Sjl/6uZQGUunKoKuj2p3SxsyJugIv+8Z60QgBuHeanP/b1iRx0Ol23xyKEEEKI62dubk5gYCDu7u76JZdCCIWVlRXu7u4EBgZibm7e2+EYJTNz/d3Va3c13b9vDmByuBfHM8sAJZl7ZGooC2P9+fuWFHQ6yCyp4XhmGSOCXHskHiGEEEJcH3Nzc7y8vPDy8kKn08mHsUKg7Cnti3vkribJXL93ddPwHkrmIjx5Y3saAIWVdTRotPg42zA+xJ0D54sBZXZOkjkhhBCi/+gvb2CFEApZZtnfXf0Ht4eKoMT4O/P8oih2/mYyO38zGUtz5UdpUZy/fszmU7k0aKTUsRBCCCGEEN1Bkrn+TnXVf8IeSubMzVTcPW4ggzwdWn2CNyfaB2sLJabSmgb2pBb2SDxCCCGEEELcbCSZ6/d6Z5llW5xsLJkxxFv/eO2xrF6MRgghhBBCCNMlyVx/Z7DMsneTOYBlIwL03+84W0BBRc/MFgohhBBCCHEzkWSuv+sDyZxGq+PHjBL2XmlREB/mib+LrRKOVqdvMC6EEEIIIYToOpLM9Xu9s2euya7UAka9uJ3b/nOIv29JAZT9dLeNbJ6d++LHLLRaKXMshBBCCCFEV5Jkrr/r5Zm5IDc7SqrrATibV0F2aQ0Ay0cOwOxKaJklNRy6UNyjcQkhhBBCCGHqJJnr71omc1YOEDm3R59+kKcDgzzt9Y93nC0AwM/FlikRXvrjnx/J7NG4hBBCCCGE6G6V6gYSLhSzet8Ffv2/E1wqru7R55em4f1ei2TO3hOWvd/jEcwc7M07hRcA2H42n3vGDwTgjlED2JmiJHffJ1+muKoOdwfrHo9PCCGEEEKIG1WpbiApp4KknHJO55STlFPOxeJqdC12E9U39uzWIknm+ruWM3O9VMlyxhBv3tmrJHMJF4qpUDfgZGPJtEgvvBytKaiso0GjY8OJHB6YNKhXYhRCCCGEEKKjaus1nMkr52RWOaeyyziVXc6Fop6ddesISeb6u5ZNw3u4+EmT4YGuuNpZUlrTQINGx960QuYP9cPC3IylIwL49+50AL5JzJVkTgghhBBC9CkNGi2plys5mV3GqaxyTmaXca6gCk0HC/g5WlsQ5e9EjL8z76y16eZoW5Nkrt/r/Zk5czMV0yK9WX9caUGw/Uw+84f6AXDrMH99Mnc6p5zzBVWEejn0SpxCCCGEEOLmptHquFBYxclsZcbtZHY5Z/MqqG/Uduh6RxsLov2ciQlwJtrfmRh/Z4Lc7DC7Uvnvsyd7Nr2SZK6/a7nMsqEWkr6C0Blg49SjYcwc4qVP5namFNCg0WJpbka4tyNDfJ04k1cBwDeJOfxmVkSPxiaEEEIIIW4+Op2OrJJaZcbtSuKWnFNOdb2mQ9fbWpoT468kbkMDnBka4NIqcesLJJnr71ous0QL6+6Fhw6BzZAeDWNSmCdW5mbUa7RUqBs5mlHKuBB3ABYP82uRzOXyxMxwVFe3VBBCCCGEEOIGFFSoScxS9redyinndHYZpTUNHbrW0lzFYF8nfdIWG+BCqJcD5n0ocTNGkrl+z8gPWC/snbO3tmBciDt70goB2HE2X5/MLYz15+9bUtDplJ5zxzPLGBHk2uMxCiGEEEII06Bu0HA6p5zEzDJOZJWSmFlGbnnH3gObqSDMy1FJ3Aa4EBvgTISPI9YW5t0cddeTZK6FgwcP8sILL5CQkEB9fT1DhgzhkUce4Z577rmu+2m1Wt577z0++ugjkpOTUavV+Pr6Mm7cOP74xz8SFRV140Ebm+HqxaqWe9IKcba1xMK8ecbQx9mGscHu+sbh3yTmSDInhBBCCCE6RKfTcbGomhOZZSRmKclbSl4ljR0sUDLQ3Y6hAS4MDXAmdoALUX5O2FmZRhpkGq+iC2zYsIHbbrsNrVZLfHw8Hh4e7Nixg5UrV3Ly5Elef/31Tt2vpqaGBQsWsHPnTlxdXZk4cSI2NjZcvHiRL774gltuuaUbk7neqWo5N9qHMC8HRga5tkrmQFlq2ZTMbT6VxzPzh2BpLj3rhRBCCCFEa2U19UrSdiV5S8wqo7y2Y8slfZ1tWi2VjPF3xtnOspsj7j2SzAGlpaXce++9aDQa1q9fz5IlSwDIz89n4sSJvPHGGyxYsICpU6d2+J733nsvO3fu5L777uMf//gHdnZ2+nN5eXk0NHTsB/LaVFe+Wnwy0Uszc+4O1m02BZ8T7csz3yRT36ilpLqevWmFTB/s3cMRCiGEEEKIvqRBoyUlr5LErFJ98tbRfm62luYMDXAmLtCFYQNcGRbogrdTz7YG6G2SzAGrV6+mvLycRYsW6RM5AG9vb1555RWWLFnC66+/3uFkbufOnXz55ZeMGjWK//73v5iZtZ6B8vX17dL4sbCBxtrmx700M9ceZ1tLZgz24rvTlwH48miWJHNCCCGEEDcRnU5HXrn6StKmJG+nc8qp62BbgDAvB+IGuOiTt3BvB4PVYDcbSeaAzZs3A7Bs2TKDc/PmzcPGxobt27ejVquxsbl2tv/OO+8A8Pjjjxskct3Cwrp1Mqep7/7nvA7LRw7QJ3M7zhZQUKnGy/Hm+vRECCGEEOJmUd+o5UxeBcculXL8UinHLpVyuaJjkw5u9lYMG+BC3AAXhgW6MnSAM042prtc8npJMgecOnUKgOHDhxucs7KyIjo6mqNHj5KamkpsbOw177dz504AZsyYQVJSEmvXruXy5cv4+Phwyy23MHbs2K59ARZXJUR9YGYuo6ia7WfzCfVyYEqEF6C0L/BztiG3XE2jVsdXx3P4xeSQXo5UCCGEEEJ0hZLqeiVpy1QSt5NZZR2adbM0VzHEz5lhA1wYdmXWbYCbrbSy6oCbPpmrqKigrKwMgICAAKNjAgICOHr0KJmZmddM5vLz8ykqKsLV1ZX33nuPp59+Gq22+Yf4+eefZ8WKFbz//vtYWnbs04W2CqWkp6cTEhKizMy11Et75pr83/Y0/m/7OQCmRXrpkzlzMxW3jRzAmzuUc1/8mMXP4wfJL6oQQgghRD+j1eo4X1jFsSszbscvlXZ4r1uAqy3DAl2VmbdAF4b4OmFj2f/aAvQFN30yV1VVpf++ZZGSluzt7Q3GtqW0tBSAyspK/vCHP/DTn/6UP/3pT3h5ebFjxw5+8Ytf8Mknn+Dv789LL73UBa+APjczN3qgm/77fecKqVA36KfFbxsZwFs7z6HTwcWiao5cLGHMIPfeClUIIYQQQnRAVV0jJ7PKmpO3zFIq1Y3XvM7K3IyYAGdGBLkyPNCV4UEuJrXN5nK5mhOZpVdaJpSRW1aLn4ttjz2/SSRzy5YtIykpqVPXrFmzhtGjR6PTXbs/RUfGNNFoNAA0NjYybtw41qxZoz+3dOlSbGxsmD9/Pm+99RZ//OMfcXJyuuY9k5OTjR7Xz9hdPTPX0MvJXLAbbvZWlFTX06DRsf1MPkuGK7OeAa52TArzZO+V5uJf/JglyZwQQgghRB+TW1bLjxklHM1QkreUyxV0pK2bh4M1I4NcleQtyJVof6d+2YzbmPpGLcm55RzPLON4ZiknLpUaNCqvrdf0aEwmkcxlZGSQmpraqWtqamoAcHR0bHXMWHLVNNbBweGa9215v/vuu8/g/Lx58/D29iY/P58jR44wY8aMTsVtVMtkbsofYPjdN37PG2BhbsbsKB8+P5IJwHenL+uTOYA7Rg3QJ3Pfns7jzwuiTLr/hxBCCCFEX9a0ZPLIxRKOZpTwY0YpOWW117zOTAURPk6MCHJhRJArIwLdTHKv21fHs/n0cCanc8qpv8YewA72Me8yJpHMHT169LqvdXJywtnZmfLycrKzsxkyZIjBmOzsbAACAwOveT8/Pz+srKyor68nKCjI6JigoCDy8/MpKCi47rhbabnM0skfHHu/5P/cmOZkbu+5QirVDTheWWo5Y7C3fuaurlHLVyeyuXdCcG+GK4QQQghx06hv1JKUW86PF0uU2bdLpZTVXLsHsqO1BcOCXBkRqMy8xQ5w1r+/6+8aNFrO5FZgYa4iys+51bniqnqOXSpt81o/ZxtlD2CgC3/7queWWIKJJHM3KjY2lr1793L8+HGDZK6hoYGkpCSsra2JiIi45r0sLCyIjo7m+PHjlJSUGB1TXFwMdGymr0Nazsz1gUqWAGMHueNiZ0lZTQP1jVp2phSwKM4fACsLM24bEcA7ey8A8EnCJVaOH2hyn+IIIYQQQvQFVXWNHL9UytGMEo5klJCYVYa64dpVJgPd7Bg50JWRQW6MCHIl1MsBczPTeL9WWFnH8Uxl79/xS6Wcylb63c0f6svbd7aucD88yEX/vZWFGTH+zgwPdLmyB9C1VaPyN3q4kIskcyhLH/fu3cu6detYsWJFq3ObN29GrVYzd+7cDvWYA1i4cCHHjx9n165d3H777a3OZWRkkJGRAcCwYcO6JP5WM3O9XMmyiaW5GbOH+PDF0SwAvj2Vp0/mAO4cE6hP5tILqzl0oZjxIR69EqsQQgghhCkprKzTJ25HM0pJzi2/5vI/lQoifZwYPdCVUcFujAxyw8fZNAqVNGi0pORVNidvmaVklRhfRnois8zgWJSfM8/MH8LwQBeG+PWtPYCSzAEPPPAAL774It988w1fffUVS5YsAaCgoIAnn3wSgCeeeMLgusjISAB27NiBv39zovLwww/z+uuv88EHH7B06VJmzpwJKNUwH3roITQaDfPmzWPAgAFd8wJazsxp+kYyB3BLTHMytzutkKq6RhyslR+5IHd7Jod7sufK3rlPEzIlmRNCCCGEuA7ZpTUkXCjhyMVifswo5WIHWgRYWZgRF+DCqGBXRg5UZt5MtSn3vR/8yP7zRdccZ2VuhpeTNTX1jdhZNadJNpbm3D+xb24JkmQOcHNz4/3332f58uUsW7aMyZMn4+Hhwfbt2ykrK+PRRx9l+vTpBtc1FV1paGi9xtjT05MPP/yQ5cuXM2fOHMaOHYuXlxcJCQlcvnyZ4OBg3nnnna57AS1n5n5cDTnH4Y5Pu+7+12l8iAdONhZUqBv1Sy0Xxvrpz/90bJA+mfs++TIFFWq8nEzjEyAhhBBCiO6g0+nIKqkl4WIxCReKOXyhpEPFSpxsLBg50I2RA10ZPdCNmADnPjXDdCPyymv5MUNZRjpjsDfx4Z6tzg8NcDaazPk42TA8SFkuOSywf1belGTuiqVLl7J3715eeOEFEhISqK+vZ/DgwTzyyCPce++9nb7frbfeysGDB3nxxRfZv38/R48eZcCAAfzmN7/hD3/4A+7uXViOv+XMXEUuqPrGf1YrCzNmRfmw7phSQGbTydxWydzUSC/8XWzJKaulUavjfz9m8ej0sN4KVwghhBCiz9HpdGQU13D4wpXk7WIJeeXXrpHg62zDqIFujLqybDLcyxEzE9jvptXqSCuo1CdvR6+qvKkCg2Ru1EA3LM0vEOXnrO91NzzQtUf7wXWXvvGuv4+YMGECW7Zs6fD4a/WfGzVqFF9//fUNRtUBVzcNryvv/ufsoAWxfnx1PJsJoR7Mi/Ftdc7cTMWdYwJ59XtlhvOzw5k8PCUEC3Oz3ghVCCGEEKLX6XQ60gurOXyxmIQLJRy+UExB5bW30QR72DN2kNuVBM6NAFfTaRFw5ErVzR8zSjh2qf1m5T9mGFadnBDqwem/zMamh4uT9ARJ5kyBuVXrx3WVoNMpO1l72YQQdxL+OB0vR+PLJ5ePHMD/bU+jQaPjcoWa7WcLmBPt08NRCiGEEEL0Dp1Ox7mCqiszbyUcvlhCUdW1k7cQT3vGDnJnzCB3xgS7taqoaGqe3nCacwVV7Y4Z4GbLqCA3Rge7GZyzsjDdiQJJ5kzB1TNzOi3UV4N1F7U+uAEW5mZtJnIAno7WzIn2ZdPJXAA+PXxJkjkhhBBCmCydTsf5gioOpjcvmyyprr/mdeHeDkryFuzO6GA3PB2tr3lNf1BQoebwxRKOXCzh8MVi/rIwyqAo3siBbq2SOTMVDPFzYmSQMgs5cqCrSSez7ZFkzhRYGPllrqvsE8lcR6wYE6hP5vadK+JiUTXBHva9HJUQQgghxI1rKlhyML2Ig+nFHEwv7tDMW6SPI2MHueuXTro7mEbyll1aoyRuF5TWCVdX3jx8ocQgmZsQ6k5mSbU+eYsLdNFXSL/Zyf8LpuDqmTmAugrA1/B4H6DV6lptwB0d7Ea4twNp+conLp8mXOJP84e0dbkQQgghRJ92uVzNoQtFHDyvJG/XqjapUsEQXyfGBCvJ2+hgN1zsrNq9pr9o0GhZfyz7yszbtStvHrlYYnBs/lA/5g/1MzJaSDJnCtqametD1A0adqUU8E1iLiXV9Xz5i3H6cyqVihVjg3j2m2QA1h7L5rezI0xyk6oQQgghTE9JdT0JF4r1s28XCtvv89aUvI0b5M64EHdGDnTD2bb/93jTanWoVLQqvGJhpuLV71Mpbmcpqb+LLWOClSR27KAurPh+E5BkzhS0OTPXd1wqruGhT4/rH1+9lPLWYf68tCWFmnoN5bUNbDqZy20ju6ipuhBCCCFEF6pUN3DkYol+2eTZvGu/7wr1cmB8iDvjQ5R9b672/X/mTaPVcTavgoQLxfqKk58+MJYhfk76MSqVitHBbmxJuqw/Fuxhz+iBboy5MgsZ4GrXG+GbBEnmTIGxmTl130rmInwcifB2JDVfmTHccDybJ2ZF6M872liyeJg/nx3OBOCThEuSzAkhhBCiT1A3aDiaUaqfeTudU45G236LqgFutowf5MH4UHfGDXLHywQKdGi1OlLzKzl0JYk9crGYiqvaBBy+WNwqmQO4JcYXdwcrffGWm7VYSXeQZM4UGJ2Z61vLLAFuHa7MvgGsP57DYzPCW+2dWzEmSJ/Mncwu52hGCSMHGpaXFUIIIYToTlqtjjN5Few/X8T+c0X8mFFCXaO23Ws8Ha2ZEOLO+BAPxoW4M8DNNGabauobWX8sm0NXWidcq/LmkYsl3DshuNWxhbF+LIyVPW/dQZI5U9ByZs7cGgJGgV3fS4KWDPPn1e9T0Wh15JTVcuhCMRNCm6sVDfFzYnSwm37j63/2pLNakjkhhBBC9IDcslr2nyti3/kiDp4vanePF4CLnSXjBinLJseFeBDiad/vm3TrdDqD12CmUvHXb89S30Yya26mIsbfmTGD3Bgb7M6Iga49Eaq4QpI5U9AymXPwhnu/7b1Y2uHlZMPkcE92phQAsO5YdqtkDuChySH6ZG772QJSL1cS4ePY47EKIYQQwrRVqhs4lF6sn327UNR+0RI7K3NGB7sx4crM2xBfp1YrjPqrrJIaZdbtSt+7DY9MaLUM0sbSnBGBrhy6UAwoPd6i/Z0ZN8idsSHujBroJm0CepH8P28KWi6zbFT3XhwdsGxEgD6Z25KUx3OLonCyaa7eNCXCk0gfR1IuK8tE/7MnnTduj+uNUIUQQghhQho0Wk5mlbHvXBH7zxeRmFXW7r43MxUMDXBhUpgHE0M9GBboipWFWQ9G3D3yyms5lF6sfF0oJru0dauAQ+nFLB7m3+rYrcP8GezrxLgQZc+bKVTeNBWSzJmCljNzmms3oexN0wd74WJnSVlNA+oGLd+eyuMnowP151UqFQ9NCeHX/0sEYOPJXJ6YGW4y686FEEII0TN0Oh0XiqqVpZPniki4UExVXWO71wx0t2NimAcTQz0ZN8gdZ7v+n7SoGzTsSSvkwHklib1W24SD6UUGydzyUVKUrq+SZM4UtJqZ69vJnLWFOYti/fjo0CVAWWrZMpkDmBfjy2s/pJJVUotGq2P1vgs8tyi6N8IVQgghRD9SXtPAgfQi9qQWsu9cIbnl7a9YcrGzZEKIx5UEzsMkPzyuqmvk5x8fa3fMIA97xoYoVTelz1v/IsmcKWg5M9eohoz9SiGUAaN6L6Z23DZygD6ZO3aplPTCKkI8HfTnLczN+Fl8CM98nQTA/37M4pFpoXg5ShlbIYQQQjTTanWczilnT1ohe9IKOZFZSnsdA6zMzRg50JWJYR5MCvUkyq//73vTanWkXK7kwPkiDqYX8c+7hmNn1fwW38PBmsG+Tq164Q1ws9U3LB83yAMfZ3mP1V9JMmcKrm5N8OE88B8JD+7onXiuIcrPqdW+uH1pha2SOYDbRgTw5vZzFFXVUdeoZfW+i/xx7uDeCFcIIYQQfUhBpZp9aUXsSVNm30prGtodH+njqOx7C/Nk9EA3bK3MeyjS7pNdWnNl2WSxQeXNIxdLmBLh1Wr8vBgfQjztmRjqwQQTnYHsE+qrlS8r+x57SknmTIG5leGxur7VNLwllUrFfRODSS+oYtmIAMK8DatV2lia8/P4Qbz43VkAPj50iZ/FD8LDwUiDdCGEEEKYrAaNlmOXStmTVsjetEKSc9t/j+PhYMWkME/iw5W9b56O/f+9Q3lNAwfTlT1vB84XkVFc0+bYA+eLDJK5X04L6+4Qb071NZB9BC7ug4x9kHMMysvAM7LHQpBkzhT0k6bhLS0fee2NtHeNDeQ/e9Iprq6ntkHD6n0X+f0tPffLIYQQQojekVVSo0/eDqa3X7jE3EzFiEBXJkd4Mjnc02RaBjTJKqkh/tVd6NpZPmqmgpgAFyaFejBziHfPBXezaVBD9o9K4nZxH+QcBU37/Qi7myRzpsDCyCdO6r47M9dRdlYWPBg/iJe2pACw5lAGP4sfhJu9kZlIIYQQQvRbtfUaEi4Ws/fK3rdrVVz0d7ElPlxJ3saHurdqc9RfXSquZv/5In4yKrBVMhrgaouPkw15VxVzGeRhz4QryyZNpfJmn6NphLxEuLALLuyBrCPXrhyv6tn2FZLMmQIzczCzBG2LNeMN1aDVKOf6sZ+ODeKdPemU1jRQU6/hvf0X+N1smZ0TQggh+ruskhp2phSwK7WAQ+nF1DVq2xxrZWHG2EHuTA73ZHK4ByGeDqhU/Xv2raqukUPpSgK791whl64snYzxd2ZogIt+nEqlYkKoB7tTC/TJ24RQD/xdbHspchOm00FhipK4XdyjFBW81tYlKwcIHAfBk2DgJFj7056J9QpJ5kyFhQ3UX7UBuK4CbF17J55O0Gp1HL5Ygk6nY3yoR6tz9tYWPDBpEK9+nwrAhwcyWDk+2CTWvwshhBA3kwaNlh8zStiVUsDOlALSrzH7FuJpz+RwL+LDPRgT7N7vC5dotTrO5FXol48ezyylQWO4dnJvWmGrZA7gLwujsLca2u8T2D6pLLM5ebu4F6ry2x9vaQ+BY2HgRAiOB984MO+9lEqSOVNhYQ31V+2Tq6vs88nc3rRCnv76NFkltcQGOPPNLycajLl7XBCr912gtKaB6noNb+5I44XFMb0QrRBCCCE6o6BSze7UQnalFLD/XBGV7ex9c7C2YHyIO5MjPIkP8zSZiosl1fX8dfMZ9p0rpKiq/f1VYV4OONsZbidxsJa37F2muvhK4rZHSeJKL7Y/3swSBoyG4MkwaDL4jwDzvrOkVX4yTIWxIij9YN+cp6M1WSW1AJzMLiflcgWRPk6txjjaWPKraWE8v/kMAJ8fyWLl+GBCvRwM7ieEEEKI3qPV6jiVU87OlAJ2pxZwKru83fGhXg5Mi/RiSoQnI4PcsLLo2f1GXa1Bo8XSvPVrcLC24Ifky1TXawzGO9taMjHUg/hwDyaFeeInSye7Xl0VZB6CC7uVBO7y6WtcoALfoc3JW+C4Hm010FmSzJkKY0VQ+nhFS4DBvk7E+DtzOkf5Y/9pQiZ/XRxtMG7F2CA+OpTBpeIaNFodL29N4b93j+zpcIUQQghxlfLaBvadK2RnSgF7Ugtb9Ty7mpWFGeND3Jka4cW0SC+TmH3LK6/Vzz4eOF/E1sfiW70uKwszxoV4sP1sPmYqiBvgQny4J/HhnsQGuGBuQpU3+wRNI+Qeh/SdSgKX/SNo254RBsAtREncgicrSyft3Hok1K4gyZypMJrM9f2ZOYAVYwN5ar3yKclXx7N56pZIg+UEVhZmPDk7kkc+Ow7AtjP5HL5QzJhB7j0erxBCCHEz0+l0nCuoYueVvW/HLpWi0bZdN9/fxZapkZ5MjfBifIhHv9/71qjRciKrjF0pBexKLeRsXuv3W3vPFXLXmKBWx+6fGMytw/yZGOohVSe7Q+klJXlL3wEX9kJd+zPCOPg0J2+DJoNzQM/E2Q0kmTMV/XRmDmBhrD8vfHuWSnUj1fUaNpzI4adjgwzGzY3xYVigCycyywD425YUvn54vGwGFkIIIbpZfaOWIxdL2H42n+1n88kurW1zrLmZihFBrvrZt3Dv/l95sriqjj1pyuzj3rRCKtRtz/QcOF9kkMyNC5EPn7tUXaVSafL8DiWJK0lvf7y1s1KwpCmB84yAfv4z2USSOVPRcs/cqAcgfA74DO29eDrB1sqc20YM4P0DygbUTxMusWJMoMEffpVKxdNzB7PsP4cAOJlVxu60QqZGePV4zEIIIYSpK6upZ3dqIdvP5rMntbDd4iVu9lZMCfdkaqQX8WGeJjX7VFXXyJi/7aCxndnHAW62TIvwYkqkF+Nk1VDX02qVfm/pO5WvrMPtL500s1QqTg6aAoOmgm9sr1ac7E6m+apuRi1n5nxiIGxm78VyHe4aG6hP5lIuV3L0UimjBhquVx450I0pEZ7sTi0E4M3t55gS7tnvP/ETQggh+oKMomr97NuPGe0vn4zxd2ZqhJLADTWBvV/ltQ3sP1fE5AjPVts9HKwtiBvgwtFLpfpjluYqxgS7M+XK6x/kYS/vRbpaeY7SrDt9J6TvgtqS9se7h0HodAiZBkETwPrmKJQnyZypaDkz13iNzvR9UIinAxNC3TlwvhiAjw9dMprMAfx6epg+mUvMKmPvuSImh3v2WKxCCCGEqdBodZzILGXb2Xy2n8lvt/ebtYUZE0M9mD7Ym+mDvfB2MlJJux/R6XSk5VexK7X13r//rBjBnGifVmOnRnqRXVrL1EhPpkR4MSHUQ9oFdLX6Grh0sHn2rfBs++NtnJWZt5DpEDIVXAJ7JMy+Rn4KTUXLmblGde/FcQN+OjZIn8xtScqjoGIwXkb+oRgW6Ep8uCd705SE7v+2pxEf5iGfiAkhhBAdUF3XyL5zhWw7U8Cu1AJK2qk+6eFgxfRIb2YM8WZCqDt2Vv37rWNdo4aECyXsOJvPjrMF5JQZ7v3bnVpgkMw9MCmYh6eEyHuNrqTTQfF5OPcDnNumJHKadiYkVOYQMKp59s1vGJj172I6XaF//0aKZi1n5hra3pTcl80Y7I2Pkw2XK9Q0aHR8eDCDJ+dEGh376+lh+mTuRGYZ+84VES+zc0IIIYRReeW1bD9bwPYz+RxKL6Zeo21zbKSPI9MHezFjsDexAS6Y9fPlkxqtjq9P5LD9bD570wqN9ntr4m5vhZOt4X4/awtJGrpEfQ1k7FOSt3M/QNml9se7Drwy8zYNgicps3F9mbpc6WvXg0s8JZkzFdaOzd+fXgfZR8E7CmY+13sxdZKFuRn3ThjIG9vTWD5yALePGtDm2BFBrkwK82DfuSIAXt6awvgQdyzM+3ezUSGEEKIr6HQ6UvMr+SE5n++TL5Oc23a7IgszFWMHuesTOFPo/daSmQre3HGOzJIao+eHBjgzNcJL2fvn79zvk9c+RaeD4nQ4v01J4DL2tz/7ZuWo9HkLnaYkcG6Dei7W69FYr/Sxu7BL6WmXcwwqKsDT+GREd5BkzlRYOzV/X3xO+eqHyy1XjA1i2YgA3B2MtFq4ymMzwvXJXHJuBe8fuMjP4kO6O0QhhBCiT9JodRzPLOWH5Mv8cCafS8XGkxcAZ1tLpkZ4Mn2wN5MjPHGy6d/VJxs1Wo5eKmX7mXxuHe5PlF/zDI5KpWL6YC8+OJABgI2lGZPCPJkxWEngvBz7996/Pqe+5krbgCsJXOnF9sd7x0DYDAidCQNGg3k/+FlM/hpOfAKXDkBD279nPUGSOVPRcmauifoaDRP7IHtrC+w7uKF4RJAry0YEsO5YNgCvb0tjdpQPQe723RmiEEII0WeoGzQcSi/m++TLbD+bT1FV2/vfBrrbMWOwsv9tZJBrv1/NUqFuYE9qITvO5rMrtZDy2gYArC3NWiVzAPOH+qJu0DJziNK43MZSlk12qeJ0JXE7f2X2rb0JBWsnpXBJ2EwInQFOfj0W5nXRasHsqt+VwhTltRqj6tmfLUnmTIWNk+GxftI0/Eb8ad5gdqcWUFRVj7pByx83nOaT+8fIBmUhhBAmq0LdwK6UAn44k8/ulIJ294DFDnBh1hBvZkd5E+LZ/5t3ZxbXsP1sPjtS8jl8ocRo77ftZwr43ezWy9xGBLkxIsh4lWxxHRrrIfMQpH0PaVuv3bTbK0pJ3sJmwoAxfXv2rbEeshKuNCTfoRRdmf9G6zGDpsLuvyvfW9hA4LgrlTWnwto7ezRcSeZMhbWxZK7t9fH9hVar42B6MeND3I2uYXexs+IvC6P45WcnADhwvpi1x7JZPrLt/XZCCCFEf1NQoeaHM/n8cCafQ+lFNGiM939r2v82O0qZgfN1tu3hSLvHv3af5+sTOaTlV7U5xsrcjHEh7swY4o1Wq5O9b12tuliZjUrdorQOaO99ppUjDJoMYbOU2Tdn/56Ls7N0Oii50Jy8XdwHDS1adKjLlTEtPwjxHwGTfqsUZRkwFix7b6muJHOmwmgy179n5tYezeKdvRc4X1DFv+8azi0xvkbHzYvx5evBuWw/mw/Ay1tSmBPt0+/X/wshhLi5XSis4oczSgGTE5llbY6ztTRnSoQns6K8mRbhjbOd6f37l5xbYTSRc7O3YlqkFzMGezExzFN6v3UlnQ4Kziozb2nfQ/YR0LVdBRWvIUriFjZLmX2zsOq5WDtLXQ4X9ypJ6fkd7VfVLMtUkj33FnUZzC1g+jPdH2cHyE+8qTC2Z05TrzQQt7h2MZG+aMfZAs4XKH+4X9+WxqwoH8yNfMqmUqn46+IoDpwvorZBQ3F1Pf/YcY6n5w3p6ZCFEEKI66bT6UjKqWBrch4/JOdzrqDtWShXO0tmDPZmdpQPE8P6/x4wdYOGvWmFfJ+cz/gQd5aOCGh1ftYQb749lQdAmJcD0wd7M3OIF3EDXI2+NxDXqbFOaR3QtHyyLLPtsebWyuxb+BwlgXPpR6uidvwVfvxv2+ctbGHgBKUtQuj0Pl1VU5I5U2FszxyAugIc+mf/tcdnhvP9mcvodHCuoIpNJ3NZPMz4NL2vsy2PTA3htR/SAPjgQAZ3jA4kxLPn+nwIIYQQnaXV6jiRVcbWpDy2JF0mu7TtXrH+LrbMjvJhVpRpFDApr2lgZ2o+3yflsyetkNoGZe9ffoXaIJmbGunF03MHM3OINwM9pNBZl6oqUHq+pW6B9F2tlxhezcEHwmdDxC1KCwGrPvzfoiJPmXmzsoOoW1ufC51umMx5DVHaIYROh8Dxvbp0sjMkmTMVxmbmQFnP3E+TuQgfRxbG+vFNYi4A/7c9jXlDfbFs4x+vByYN4vMjWeSU1dKo1fHit2d5f+WongxZCCGEuCaNVsfRjBK2JF1ma9JlLle0Xfkv0sdRn8AN8XXq9wVMLper2XbmMt8n55NwodhoAZOEC8WU1zS0Wi7qZGPJg/F9d3akX2laPpn6rZLA5Rxrf7zfMGX2LXwO+Ma23jvWl2gaIeeokpie+wEun1aO+w03TOYGTlQS04ETlAQuZFrfr6rZBknmTIWxPXPQ74ug/Hp6GJtP5aHR6sgoruGr49ncPirQ6FgbS3OenjeYhz89DsDOlAJ2pRYwNcKrJ0MWQgghDDRotBy+UMJ3SXn8kHy5zRYCKhWMCHRldpQPs6N8CHQ3jQbe3yTm8MGBDBKzytoc42BtwZQIT2ZH+WBt2b9nHfscrQayDkPKt8pXe73fLO2Uao3hs5UvR5+ei7OzqgqVoiXnflD2vqnLDMfknlCKt9i7Nx+zdoTfpPTdxLQTJJkzFW3OzPXvIiiDPB1YOtyfL48qveTe2nGeJcMD2pyduyXah9HBbhy5WALAs98k8f1j8dhZyY+6EEKInlXXqOHg+WK2JOXxw5l8ymoajI4zU8GYYHduiVESOG+n/rG8qzPyK9RGEzl3eytmDlH2/o0Pdcfaon/v/etT6mvgwi5I+Q7StkBNcdtjnQIg4srs28BJfX+JYfIGOPgPyDkOGK/sCoBLkLJs0ljfOxNI5ECSOdNhbql8ktLUhd7RB+w8wKz//yd+dHoYG07k0KDRkVNWy8bEXIO19E1UKhV/WRDFgrf3o9HqyCqp5fUf0vjTfCmGIoQQovupGzTsSStka9Jltp/Jp7Ku0eg4CzMV40M9uCXah1lDvHF36J/FyprodDpOZpez5XQe1pbmPDEzvNX52VE+/O27FAAGuNkye4gPs6N9GB4oBUy6VHWxUrgk5Vtlv1hj23sw8RsGEfOU/W/eUX03uTHWtLuuyvjyUDNLZelk2Czlyz20776uLtL/3+mLZtaOzcncbR9B4NjejaeLBLjasTjOn7XHlNm5/+xJ59Zh/m32jxni58TP4wfxr91KA8v3D1xk3lBfhgW69ljMQgghbh7VdY3sSi1gS9JldqUUUNNGE28rCzPiwzyYE+3LzMH9v4WAUryllO9OX2bL6Txyy5XZD1c7Sx6dFtqqQEuQuz1/WTCE0cHuDPZ17Pd7//qUkotK8pb6ndLIu632AWYWyqxb5DyImNt3e7/pdJCf3Lz3zc4d7vi09ZjQGc3fO/opzcjDZytFWdparWaiJJkzJdZOUKX0Wuvvyyuv9vPJg1h3PFtf2XJHSgEzh3i3Of7R6WFsTbrMhaJqtDr4/frTbPrVRKwsZA2+EEKIG1ehbmDH2Xy2nL7MnrRC6hqNv4G2sTRjaoQXc6J9mBbphWM/74HasnjLlqQ88ivqDMaU1jSQcKGEiWEerY6vnBDcU2GaNp0O8hKv7H/7DgqS2x5r5agkOpHzlATI1qWnouycuiq4sPtKArcNKnObz1nYQoO69dJPJ19Y8Cb4j+zbs4o9QJK5Fg4ePMgLL7xAQkIC9fX1DBkyhEceeYR77rmn0/cqLS3lpZde4ptvvuHSJaUR4aBBg7j11lt58skncXJqo2DJjWj5SYS6vOvv34tCvRyZNcSb75OVZPXdventJnM2lua8tHQoy985BEBqfiX/3p3Or2eE9Ui8QgghTE95bQPbz+Tz7ek89p0rpEFjfK+OvZU50wd7c0u0D5MjPE1i3/b5gio+OpjB1uTLFFYaJnCgvJ8ePdCNuTG+RPreXLMj3U6rVQqYnN2kfJW30//N0VdZOhk5T5mJ66v9hsuylCWhqVuU3nYa40WBaKyFS/tbz8YBjFjZ7SH2B/3/r0sX2bBhA7fddhtarZb4+Hg8PDzYsWMHK1eu5OTJk7z++usdvldhYSHjxo0jPT0dPz8/5syZQ2NjI4cOHeLFF19k/fr1HDp0CBcXl659ES17zZnYzBzALyaHsDu1kOUjB/DgpGuXJx4d7MaKsYF8kqD8wXt71zluifEh3Fv+gRFCCNExleoGtp/N59tTeexNK6JeY3wGzsnGgplDfLgl2jSaeF+tsLKOjxMuGRw3U8G4EHduifZlVpQ3Xo59vHBGf6JpVJKYMxshZXPz6itjPCOvLJ+cp+yFu3qPWV/z42r49jftDFCB//Are99mgu+wHgutv+m2ZK6hoYHU1FQKCwspLy/H2dkZT09PIiIisLTsW0sMSktLuffee9FoNKxfv54lS5YAkJ+fz8SJE3njjTdYsGABU6dO7dD9/v73v5Oens6tt97K559/jrW18olIZWUlc+fOZf/+/bzxxhs899xzXftCWs7MVeRA3ilAp/QEMQHDAl05/MfpuNhZdfiap+ZEsuNsAXnlaho0Op5af4p1vxgvm62FEEK0qaqukR1n89l8Ko89aYXUt7GE0s3eitlR3syJ9mXcIPd+v5S/vlHLwfQijl8q5YlZEa3OjQ52w93eiuLqen3xlrnRPsw0geItfUpjHVzYA2e/UZZQ1pa0MVAFA8YoCVzkPHAP6dEwO6y+BkougE906+MDxhiOtXFWZt/CZkHI9H7bJ7mndWkyV1hYyIcffsi3337LkSNHqKsznIa3sbFh9OjRzJs3j3vuuQdPz97/D7V69WrKy8tZtGiRPpED8Pb25pVXXmHJkiW8/vrrHU7m9u7dC8BTTz2lT+QAHB0d+c1vfsP+/fv58ccfu/ZFAFg7twjiVeXLfyQ8uKPrn6uXdCaRA3C0seTFW6O578OjAJzILOOjgxncN1HW7QshhGhWXdfIjpQCvj2Vy67UthM4d3sr5kT7MC/Gl9HBbq2KfPRHDRot+88XsflkHtvOXKZCrVTfXDzMn0GeDvpx5mYqHpsRhrWlObOGeHf632PRjvoaOL8dzm6EtO/b7hGsMleaXQ9ZCJHz+27/t4o8Zflk2lZlH5ytKzxxtvW+Nu9opR2ChbWyJDTiFhgwFsxl0WBndcn/Y+fOnePZZ59lw4YN1Ncr6109PDwYMWIEbm5uODk5UV5eTmlpKSkpKezZs4c9e/bwpz/9iSVLlvD8888TGhraFaFcl82bNwOwbNkyg3Pz5s3DxsaG7du3o1arsbG59vKBlglcW9zc3Dof6DWf2MjywerCrn+efmZapDeL4vz4JlHZTPvq96nMHOLNADfTaMQqhBDi+tTUN7IzpYBvT+WxM6WgzSImrnaWzIn2Zf5QX8aYQAKn0epIuFDMppO5bE2+bLT/3ZakyzwytfV7s5+OG9hDEd4E1BVKsY8z3yiJXFM18quZWykNvAcvUGbg7Lrh/eON0ung8ilI3ar0s8s90fp8ZZ5SsMWvxVJJlQp+sa9vvp5+5oaTuV/96le8++67aDQapk6dyp133smUKVMIDm575uPChQvs2rWLzz77jC+//JL169fzs5/9jH/84x83Gs51OXXqFADDhw83OGdlZUV0dDRHjx4lNTWV2NhrL1mcOXMmBw8e5OWXXzZYZvnaa68BXFdRlWuyMVJUxYSTOa1Wx3dJeQS42hE3wKXdsc/OH8K+c0WUVNdT26DhuU1nWH3PyJ4JVAghRJ9RW69hV6qSwO1IyUfdYDyBc7GzZE6UD/OG+jJ2kDuW/TyB02p1HL1UyuZTuXx3Oo+iKuPFJqwtzJgS4Um0v7PR8+IG1JYp7QPOfKP0gGur4IeFLYTNgMGLIHyWsvywr9E0wKUDzRU1K7LbHmvlqLRP8Ltq35skcl3ihpO59957j4ceeognn3wSPz+/Dl0zaNAgBg0axP33309OTg6vvPIKq1ev7pVkrqKigrKyMgACAow3og4ICODo0aNkZmZ2KJn77W9/y65du9iwYQODBg1izJgxNDY2cvDgQczNzXnvvfeYOXNmV74MhbGZuYYaqK8GK/uuf75elHChmL9sTCblciVjB7nxv5+Na3e8u4M1z8wfzONfnARg+9l8dqUUMDXSqyfCFUII0YvUDRp2pxaw+VQeO84WUNtgvA+ck40Fs68kcBNCPfp9AtdSeW0Dd/43gUatYQVOKwszpkV4MW+oL9MivbC3lqVuXUZdoVRrTN4A6TvaTuCsHJU+aUMWKvvG+vr7tvRd8NltbZ93CVKWTobPgaAJYCHLcrvLDf+2XrhwAR+f61+z6+/vz5tvvskf/vCHGw3lulRVVem/t7MzvuzO3t7eYGx7HBwc2Lp1Kw8++CCffvopGzZs0J9buHAhI0aM6FSMUVFRRo+np6cTEtJiw6t1G+0Oqgv7/h+FTtLqdKRcVip2Jlwo4WB6EeNDPNq9ZnGcP58fyeLIRWUz8XObkhkf6o61hWlVHBNCCKEkcHvTCvn2dB7bz+RT3UYjb0cbC2YN8WH+lQSuvxcx0el0nMmrINjDvlVLBFd7KyaGebA7VVmxY2muIj7Mk/mxvswY7N3v+9/1KXWVyt635A1KzzSN8VYO2Loq1SeHLIRBU/pmC4HqIqUR+eAFrY8Hx4OVA9Q3vTdWQcAoiJijNCT3jLype7/1pBtO5m4kkeuq+yxbtoykpKROXbNmzRpGjx6NTme8R0xLHRnTUmZmJvPmzSMvL481a9YwZ84cALZs2cLjjz/OxIkT2bZtG2PHju3Ufa+p5cycyhx0V/7hqi4C14Fd+1y9bHyIB2MHuZFwQUnMXv8hjXG/cEfVzh8OlUrFcwujmP+P/Wi0OjKKa1i976LBngAhhBD9U1Mxj02JufxwJp+qukaj4xytLZg5xJt5Q32ZGOZhEh/qncuvZNOpPDafyuVCYTVv3hHHojj/VmMWx/mj0epYMNSP2VE+ONtJAtdl6quvJHBfKQlco9r4ODt3GLwQhixSipmY98H/BqUZV5ZPfqskcjqtUsDEqcUKPEsbJcGrLVX28oXfItUne0m3zaOXlJRw+fJltFot3t7e3Vq1MiMjg9TU1E5dU1OjbDR1dHRsdcxYM++msQ4ODgbnjLnnnntISkri66+/ZtGiRfrjd999Nw4ODixdupQnnniCgwcPduh+ycnJRo8bzNi13DOnMmuRzJnmvrknZkbom4IfvVTKvnNFxIe3/3M22NeJn44N4sODGQD8Y+c5FsX5EeAqxVCEEKI/0mh1HLlYwqZTuWw5nUepkWIeoDTyVhI4PyaZSB+4jKJqNp/KZfOpPP1qlSabTuYZJnPD/Fk8rPUxcQPqa+D8Nkj6SknkGmuNj7N1VRK4qFuVJt59rWKjTgeXT19J4DZDvpEJkpRvYfSDrY8t/rfMvvUBXf7TdOutt3Lw4EGKiopaHffz82PGjBncddddzJgxo42rr8/Ro0ev+1onJyecnZ0pLy8nOzubIUOGGIzJzlY2dQYGBl7zfllZWezevRtra2sWLFhgcH7RokVYW1uTkJDQ4eqYHdbWMsuqgq57jj5kdLAbk8I82HdO+VlbtS2NSWEe7c7OATw+M5zNp3IpqqpH3aDlqfWn+Pi+MZhJ7zkhhOgXdDodiVllbDqpzEQVVBpfxmZnZc6MwcoM3ORwT5NI4C6Xq9l0MpeNJ3M5nVPe5rhKdQNarU7+betqDWql+mTyV0r1xoZq4+NsnJWZq6hbIXhy35uB02ogM0FJ3lI2Q1lm22Md26iJIYlcn9Dlydw333wDgLm5OU5OTmi1WsrLy8nJyeGjjz5izZo1jBs3jjVr1jBo0KCufvrrEhsby969ezl+/LhBMtfQ0EBSUhLW1tZERES0cYdmTYmfvb09ZmaG6+7Nzc2xs7Ojrq6OsrKyLlumCrRO5nQt9gaY6MwcKIlZUzJ3MquMnSkFTB/s3e41zraWPD2vuRjKgfPFfJxwiXvGD+zucIUQQlwn3ZW90ptO5rLpVC5ZJcZnQZqKeSyM82NqhBe2Vv0/gWvyu7UnWXc8m7Z2f0T7OzF/qB/zYnyl/U5X0jQoBT9Or1WKmdRXGh9n7awsOYy69coeuD5c9KO6ED6cB7Txw+QZ2dyQ3G+4JG59WJcnc+vWrWP48OEEBgbqk5na2lpOnjzJ999/z5o1azh48CDx8fEcOXKkwxUwu9O8efPYu3cv69atY8WKFa3Obd68GbVazdy5czs0i9aUnJWUlHDx4kWDFg3p6emUlpZib2+Ph0f7BTs6reUyS12LUsvVRYZjTcTwQFemRniy68qG7te3pTEt0uuas3OL4/zZmnSZ75PzAfj7lrNMDPMgxLNjS2mFEEL0jItF1UoCdzKXcwXGC5GZm6mYFObBgqF+zIoy3WIevs42BolcuLcDC4b6MT/Wj2AP0yp21qu0Wsg6rCRwyRugtsT4OCtHiJyrJHAh0/peEZPGeri4R1neadnifayjDwwYA1kJzccCRl9J4OaDh9QT6C9Uus5W97hBGo2GZ555hpdeeon77ruP1atX9+TTG1VSUkJwcDAVFRWsX7+eJUuWAFBQUMCECRM4f/4827dvZ/r06a2ui4yMBGDHjh34+zevQY+NjeXUqVPMnDmTtWvX4uys9AcpKytj2bJl7Nixg7vuuotPPvnkhuJu2jOn31NXVwl/N9JeIXoZLHvvhp6rLzudXc6Ct/frH/9nxQjmRF97xrO4qo7Z/7dX32sndoAL638xrt83gxVCiP4ut6yWzady2XQyr82lhCoVjAl2Y0GsH7dE++Jm34dnQTqoqZn3N4k5BLja8ej0sFbnzxdUMeP1PQxws2VRrD8LYv2I8DHSlkhcH51O2S92eh0krYfyLOPjLO2VsvvRSyBkeuskqS9oqFX62J35RlkKWlcOd3yuJJ0tHfmv0vdu8AKlAqVjF64Wu4kZvD/vZj2ezDUZN24cGRkZ5OXl9cbTG1i/fj3Lly9Hp9MxefJkPDw82L59O2VlZTz66KO8+eabBtc0zf5cvHiRgQMH6o8fPnyYGTNmUFVVhYeHB2PGjAEgISGB4uJiBg4cyIEDB254VtLgh0Wng+dc0U+ZT35KmSb3CAOfmBt6rr7uZ2uO8sMZZZYt0seR7x6d1KF9Aj8kX+ZnHx/TP/7NzHB+ddU/nkIIIbpfUVUdW07nsfFkLj9mlLY5LnaACwtjlaWEPs597E30ddDpdCTlVPBNYg6bTuWSX6Hs//N1tuHAU9MM/i1Lyiknys/pmitQRCeUXISkdUoSV5hifIy5tdIHLmYZhM0CS9uejfFa6quVKppnvoFzP7RoGXBF7E/g1v/0Tmw3mZ5O5nqtnI67u3un2wl0p6VLl7J3715eeOEFEhISqK+vZ/DgwTzyyCPce++9nbrXmDFjSExM5OWXX2bHjh1s374dMzMzgoODefDBB/nd736Hm1s3dL1XqZR9c3VXPsWMmAt+cV3/PH3Q4zPD9clcemEVybkVxAQ4X/O6WVE+LBsRwLpjyl7HN3ecY2qkF9H+175WCCHEjSmvbeD75MtsOpnLgfNFGOlnDSgf0i2I9WPBUD8C3U1jL9il4mq+Sczl68QcLhQaFtHIK1dz+GIJ40LcWx2Xf5+6SFUBJH+tLKPMPmJ8jMpMKV4ScxsMnq8UNelL1BVKFc2z38C57W1X07SwVVpWCZPU7clcYmIiL730EuHh4Xh6eqLRaDh06BDfffcdU6dO7e6n75QJEyawZcuWDo9vb1IzJCSEd999tyvC6hybFslcXRsbdE3QYF8nFsb6YWdlziNTQzu18fvZBUM4lF5MTlktjVodj3+RyKZfTTSJqmdCCNHX1NQ3sv1sAZtO5rIntZB6jdbouCB3OxbG+rEg1o9wb9NYSlhcVcemk7l8nZhLYlaZ0TEWZiriwz1ZFOdH7IA+ljz0d+oKpXLj6bVwYU/rYnEtBYxSErghi8Gx/aJqveq/U6H4vPFzVg7KDOKQRRA2E6xkP6Wp6vZkrqqqii+//BJoXpYYHR3NHXfcwd///vfufvqbT8vG4XUVvRdHL3jzjrjrWnbiZGPJq7cN5c7/HgbgXEEVq35I5el5hm0qhBBCdF5do4Y9qYVsOpXH9jP51DYYfxPt42TDglhfFsT6EePvbHJLCY9dKuUvm84YPTcyyJVFw/yZF2Ma+//6jMZ6Zdnh6S+v9IJro5m3RwQMvQ2il4Jb36i2rldXBdoGpV9dS2GzWydz1s7KXr4hC5ViLH1tKajoFt2ezE2cOJG8vDwOHDjA5s2bWb9+PTU1NSxfvpygoKDufvqbT8v2BDfRzBxwQ//ojw/x4L4Jwbx/4CIAq/dfZP5QP2IHuHRRdEIIcXNp1Gg5dKGYjYm5bE2+TKW60eg4N3sr5sb4sDDWn5FBribRF02j1XHGyHL/yRGeONlYUHHl/4twbwcWxfmzMNZPWgl0JZ0Oco7Dyc+VQiZtVaJ0CoCYpcosnHd03yq/X1+jJKHJX0HaDzD+VzDt6dZjhixUXmPkPGUGLnhy326HILpFjxdAqaio4De/+Q0ffPAB69atY/HixT359CbF6AbLT5bB+W3K98FTwN5D6SUy/w1wD+nxGPsTdYOGeW/tI/3K3oXRA9344udjTe6TYSGE6C5arY5jmaVsTMzlu9N5FFfXGx3naG3B7GgfFsT6MSHE3WSqCKflV/LV8Ry+PpFDQaWaQ3+YjrdT6yItr/+QSp1Gy6JYfwb7Osq/MV2pLBNOfQEn/9f28kNbV6WNQMxtMGAsGOkJ3Gvaa0juHga//LF1wqnVKq2ozHutBIYwot8XQBk5ciRvvfUW48ePN3reycmJ//73vyQnJ/P8889LMtfVWvaayz3evNSyIuemSuZ0Oh3fJ+fz2ZFM/nv3CKwtrr3/zcbSnOcWRrPiPWW55ZGMEr5Pzu9QmwMhhLhZNVVj3HQql80nc8ktN76MzcbSjBmDvVkQ68fkcE+T2ZdcVFXHxsRcvjqRTVJO6+0N3yTm8LP41v/2PjEroifDM33qCqWC46kvIGOf8TEWNsrsVczyK73g+tDsVWO90kYg+StI+a7thuTVBVCZB04tKqGbmQF9KBkVvaLLk7njx48zadIkZs6cyW9+8xtmzpxpdJyLiwt79uzp6qcXLffMWdg0J3PVhb0TTy/QaHX85N0EjmQoyyo+Scjk/onB17hKMTHMo1UT8pe2nGVapBdWFvLHUgghWjqXX6k08z6Vx8Uiw2qMAJbmKiaHe7Ig1o8Zg72xtzaNGQR1g4btZ/P56ngOe9IK0Rgpw2lhptK3GRBdTNMIF3YrSwxTNre9Dy5oIsTeoSxH7GuVKAEOvwu7XgC18V6KzQ3Jl/S9JFT0GV3+V/XAgQP84he/4IcffmDbtm34+voyY8YMhg8fTkBAAFqtlp07d/L999/Lnrnu0HLPnHmLX/rqop6PpZeYm6kY7OuoT+b+ues8y0cG4Ghj2aHr/zh3MHvPFaHR6sgoruGThEvc18FkUAghTFlWSQ0bT+ay6WQuKZeNzyCYqZR9yAtifZkT5YuzXcf+9vYHGq2OP32dxOZTuW3uARwa4MySYUpDb3cH6x6O0MRdPq0soTy9FqryjY9xD1USuJjl4NrH32fauhomcpb2EDFHSeBCZ/S9huSiz+nyZG7cuHEkJibyySef8NJLL3H27FnWrFnDxx9/rB/TtE3vl7/8ZVc/vWiZzJm1WMJSVdDzsfSiX04LY+2xbGrqNZRU17N630UenxneoWvDvB25Y9QAPj2cCcBbO8+xdHiASb0hEUKIjsqvUPPtKaWZd1vl9EGpxrgg1o+5Mb54OppmEmNupuJ8QaVBIufrbMPiYf4sGeZPmIm0UegzKi8rydvJ/0F+G/2JbV2VKpSxPwH/EX2nkIlOp8R86kulKN2C/2t9PmKOsooKFYTPUhK4sFlgJcVwRMd1y3oHlUrFT3/6U376059y+PBhvv/+exITE8nKyqKhoYHAwEDuuusubr/99u54+ptbyz1zLf+Y3UTLLAE8Ha15YGIwb+1UNkCv3neBn44LwqODn5I+PjOcbxJzqaprpKymgX/sPMef5kurAiHEzaG0up4tSUoz74SLxbRVKi3a34kFQ/2YH+uHv4vplEEvq6ln86k8Bvs6MSKodTn4JcMD+DGjFDsrc26J9mXJcH/GDnLH3ASqcPYZjfWQtgVOfKIUBNEZ6UVoZgnhs5UELmxW31qCWHIRktbB6XVQmKIcM7OA6c+CnVvzOGtH+OkG8BkK1g69E6vo97p98fqYMWMYM2ZMdz+NaNJyz1zLf31vomWWTR6MH8THCZcorWmgul7D2zvP85eFUR261sPBmoemhPDq96kAfHQog5+OCyLIXZpuCiFMU1VdIz8kKwncvnNFNBrZBwYQ4mnPwlh/5sf6EuJpOm9AGzVa9qQVsu5YNjvOFlCv0bIw1s8gmZsb44uNpRmzo3ywszKNPYB9xuUkJYE79UXb7QQCRinLKKOWtE6MeltVISRvUGYRs48Yntc2wpmvYeR9rY8HGS8YKERH3fBfoUcffZTRo0ezbNkybGxkXW+va7nMUttiGchNNjMH4GhjySNTQ3nh27MAfHr4EvdPDO5wL5/7Jwbz2eFMcspqadDoeHlrCv+6a0R3hiyEED1K3aBhV0oBG0/msjOlgLpGIzMgQICrLQti/Vgw1M/kyumn5Vey7lg2Xx3PoaiqdcGS75MvU6luaLXn2tnWkluHBfR0mKartlSZwTrxCeQlGh/jHAixt8PQO8AjtEfDa1ddFZzdpCRwF3aDTmN8XMAoZQ9f5IIeDU/cHG44mXv77bdRqVSMHj2a8PBwZs+eTVxcHEOHDiUuLo7IyEjMzU2j/HC/0HJmrrFFf5+bMJkDWDE2iPf3XyS3XE2DRscb29J4/fa4Dl1rY2nO72ZH8NgXiQB8d/oyRzNKGDmwD30SKIQQndSg0bL/XBGbTubyw5l8quqMF/LwdLRmXowvC+P8GDbAxaQSuPKaBjaezGHdsWxOZhuvJOjhYMWiOH/q20hwxQ3QapTkJ/FTOLsZNEaqflrYKI2wh61QqlL2pX5wTSpy4OtfGD/nEQFDb4PoZeAmRdRE97nhZG7Tpk38+OOPODsrJV+3bdvGtm3b9H/0raysGDJkCHFxccTGxuq/XFxcbvSphTEt98w11jZ/fxMuswQlIXtsZjhPrjsFwIbEHH42eRCRPk7XuFKxMNaP9w9c5NSVf+z/uvkM6x8abzINboUQNweNVsfhi8VsOpnHlqQ8ymoajI5ztrVkbowPC4b6McZE94F9+WMWf/omyWiSZmmuYuYQb5aNCCA+zFP+1ne1kouQ+JnyVZFtfIz/CCWBi17ad9oJaLXK0smA0a2TSs8IZb/bZeU9Bk7+StxDl4N3dN8pxCJMmkqna2tb8/W5dOkSiYmJJCYmcvLkSRITE8nIyGh+wis/2AMGDCAuLo6vv/66K5/+pmK0w3xxOvxj+JUHZkCLf6yevgyWprNBvaM0Wh1z/m8v5wqqAJgx2IvV94zq8PVHLpaw/J1D+scrxw/s8N47IYToLTqdjsSsMjaezOXbU3kUVBrveWZvZc6sKB8WxPoyMdTT5PtqnswqY9E/D7Q6Fu3vxG0jBrAw1g9X+z5USMMU1NfA2Y3KMsq2mnrbeSj74IatAK/BPRtfe4rTlSqap/4HZZmw8jsYOKH1mKMfQN5JiLkNAsf1zRlE0aOMvj/vRl2+czcoKIigoCAWLVqkP1ZRUaFP7JqSvOTkZDZt2tTVTy9a7plDqyRv9p7KV331TZnMmZup+O3sCH7+8TEszFT4ONvQqNF2+BPX0cFuLBnmz1cncgD48GAGYd4O3DWmj/evEULcdHQ6HSmXm5p555JVUmt0nJWFGdMivFgY58fUCC9srUxrO0SFuoFvT+Xx48USVi2PbbVEdGiAM+HeDhRX1bN4mD/LRgQw2LdjqzVEB+l0kHMMTnwMp9dDvZGehCpzpRpl3F3K/5r3kfY/NSVKIZOT/zMsZHLyc8NkbuS9PRebEEb0SBkmJycnJk2axKRJk/THNBoNKSkpPfH0Nxfrq/rb/OoEOPn2Tix9yKwh3vxqWihLhwcw0KPzFSlfvDWGcwVVnM5Rllv++ZtkBnk4MC7EvatDFUKITrtYVK0kcCdz9asQrmZhpmJimAcLhvoxK8q7VVEPU6DV6jiYXsy6Y1lsTb6MukFZmXLP+IHEDnDRj1OpVKy+exS+LjZYyjLKrlVbpvRUO/5R2z3hPMKVGbihd4Cjd4+G16bGeji/TUnW0r4HTb3hGJWZ0itOiD6m12rqmpub66chRReytAFzq+Y/RHWVgCRzKpWK38yKuO7rba3M+e/dI1n49n4KKuto1Or41ecn2PfkVJP7RFsI0T9kldTw3ek8Np/K03/QdDWVCsYEu7Eg1o9bon1xM8ElhJeKq1l3LJv1x7LJLVcbnF97LKtVMgcQ6C5NmbuMTgdZR+DYh8qMVqOR2WArR4heoiRxAaP61l6yHc8rSyXbaoXgNUTpZRdzm3w4LvqkG07mUlJSiIyMvOFAuuo+AmV2rqZY+b6uondjMSE+zja8e/dIlr9ziPpGLUVVdaw7ns1Px8pySyFEz8gpq+W7U3lsPp3HyayyNsfFDXBhQawf82J88XE2vbZBVXWNfHc6j3VHszmSYfxNuIudJYvj/LltpLQR6Ba1pfD/7N13WFTX1sDh3wy9dwQURVHBCjbsxiQm0dhiYnoxMb2Ynpt+b25y86XdJDe9N1M1RZOYYoy9V7BXBAQEAekdZub7YwMzwwwIwgxtvc/Dwzlnn3Nmgwizzt57rd2LVBCXfdD6OT3HwfAbYOAscG6ndVpLsi0DOY8gVUog5ioIGdK+gk8h6mlxMDd48GCuvPJKHn/8cQYPHtzs6xMSEnjxxRf58ccfqaqynl1LNJOLtzGYK7f+tFaoKTknC8ro4df0J7Sx4b5cPSqcLzanAPDx+uNcE9ezU2Z8E0K0Dyfzy/h9bwa/7c0g/kR+g+dFh3jV1YLrzCNPFdU6Jr28mtwSy6lwWg1Mjgrm8hE9OG9AMC6OMnOiVRkMcGIz7PxCFcCuthwJxc0fYq+B4fMgqL/du2hVRZGqB+fiBQPq1XobehXsWqhKIURdrEbhIs8DBykILzqGFv+kPv3007z66qt89913xMTEcO2113LOOecQExODk5PlfPyKigri4+NZvXo133zzDQcOHMDDw4N//vOfLe2KqGW6bq68EIqzVBYmfTX0HNN2/WonDAYDa49k8/Kfhyksr2LVQ5Oblb3tlol9+HJLCnoDpJwu5a/9mUwbIlMvhBCtJ7OgvC6A25mS1+B5kUEeTB8axoyhofTv5tXgeZ2Ji6MDE/oG8svuk3XH+gZ7cvmIHswZ1p1g7843EtnmSnPVerKdn0POEevnREyEETeqYMnRxZ69s85ggJRNKovmgaVQVQqhMZbBXM+xMOcDiJrWfkohCNEMrVKaICsri+eff56FCxdSUFCARqPBycmJiIgI/Pz88PLyorCwkNzcXFJSUqiursZgMODj48NNN93E448/TlBQUGt8PV1Kg6lPP59hTP877AaIX6i2w4bBbWvs18F26mR+GZNeXk21Xv3oPz1jIDdPaF5Bz7u/2cVvezIANVq35K5xnaqgrhDC/k4VqgDu970ZbE9uOIDrE+jB9KGhTB8aSlQ3r075u6dap2ftkWwWbU/lokEhXDbCfKrkpmM53P7VTmbFhHH5yHBievh0yu9DmzIYIGWjCuAO/Gw9KYh7oHEULrCv3btoVUE67P4G4r+GvCTL9ru2tK/yB6LT6ZClCYKDg3njjTd48cUXWbx4McuWLWPjxo0cOWL59CYkJISJEycyffp0rrjiClxd5Qlaq3PzNW6bThPIS7F7V9qjMF83rooL56stJwB4c+VRLhveHV/3picGuH1Sn7pgLiE1nx0peYyK8LdJf4UQnVdWYTl/7MtUafRTcmno8WpEgDszhoZx8ZBQBoR2zgAOIDmnhMU7UvlxVxqnClVdvNMllRbB3Jg+AWx/cgquTjKNstWVnFbB0M7P4fQx6+f0maxG4aKmg2M7SKpTVQ6Hf1ejcImrACv/kVx9VEFvR3nfKTqXVp0Q7Obmxrx585g3bx4A2dnZZGVlUVBQgI+PD8HBwTICZw8eJt9jvUnR8LJcNW+8fvmCLuj+Kf35Of4kRRXVFJRV8cbKo/xrZtOzqw7t4cuYPv5sOa4WTb+16hhf3DSq077BEkK0npP5ZSzfn8kf+zLZntxwANfT350ZNSNwA0O9O+3vl7JKHX/sy2DR9lS2JlkmM9mZksexrGL6BnvWHdNqNbhqJZBrNQYDpO2A7R+rjJQ6KwXmPYJh2LUqoYl/H/v3sSFJ62HRdVCeb6VRA5HnqiyaUdNVxm8hOhmbru4MCgqS4K0tmAZzVWXmpQryT0A3KQkR6OnC3ef15cU/VK3DLzencN2YXkQGeZ7hSqPbJ0XWBXPrjmTz8vLDPDpVMrIKISwl5ZTw575M/tyXwe60hhNThfu7MX2IWgM3KKzzBnAGg4G96QUs2p7KL7tPUlRebXGOk4OGKQO6ccWocHqfRX1Q0QSVJbD3e9j+CWTusXKCRiUDGXGjWlPWXgp7mwoeqL4OU34REHudykbpG94m3RLCXiRVT2dkGsyV5oBPOOQmqv28FAnmatw4LoKvtqSQlldGtd7AC78f5ON5o5p8/Tn9g5jYL5D1R3MAeG9NImE+rlw/NsJGPRZCdBQGg4GDGUX8uT+T5fsyOXyq4WLD3X3d6kbghnTvGmu/vt2WyhNL9lpt6xfsyZWjwpkzrDsBnu0gkUZnlH0EdnwCCd9ChZWHCx7BMPx6NQrnF2H37lnQVavpk3u/h5lvgLNJtlaPABVoHvsbBs5Wo3A9x4FWCsKLrqHFwdz8+fOZMGEC8+fPb9Z1L730EsuXL2fVqlUt7YKozyPQuF2SDX69jMFcvqybq+Xq5MDj0wZw9ze7APj7YBZrj2RzTv+mjSZrtRreuXY4V7y/mUOZ6o3av37ZT5CXK1MHh9is30KI9kmvN5CQls/yfZn8uT+TlNOlDZ4bEeDO1MGhTB0c0iWTd0wZEMzTP2vQ1SSi8nB2YGZMGFeMCmdYuG+X+37Yha4KDv2mplLWJkmrr9cEGHUzRM9oH2vhTieqdXC7v4UitU6dvlMg5krz8y76P5j9Drh627+PQrSxFgdzn3/+OUCzg7lDhw6xdu3alr68sMZ0ZK4kB7qPMO7nn7B/f9qxi4eEMLKXHztqUn8/tXQvf91/Dm7OTVuL4e3qxGc3jWLOO5vILCxHb4B7vtnFG1cNY/pQKVcgRGdXrdOzLTmX5fsyWb7/FJmFVupu1YgO8WLq4BCmDQ6lfzfPTh+wpOeX8cOONFYeOsX3d4w1q/kW7O3KuVFB5JdWccWocKYPCcXDRSYL2URBOuz6QtWGK860bHf2UtMRR93cPrI8VleomnC7voCkdZbt8V9aBnMylVJ0YTb9zZmbm4u/v2T4szuzYC4bfHsa9yWjpRmNRsOzswcz8+0N6PQGUnPL+N/KIzw+rel/0EJ93Ph8/iguf38zReXVVOsNLPh2F2VVMcytl4FNCNHxFZVXse5IDn8fPMWqQ1kUlFU1eG5suC9TB4cwdVAIEV1g3VdFtY6/D2SxaEcq649m1yV3+ftAlsUDrneuHS5FvW3FYICktWoU7tDvYNBZntNtsArghlzePhKjZR9RAVzCNyphW31aRzWdctj19u+bEO2YzYK5//73vzz99NM88cQTPPnkk2hl7rL9mGWzrDLfl2mWFgaGeXPrxD68v1ZNRf1hRxoLzuuHZzOeEkeHePP1LaO54dNt5JdWoTfAw9/vpqxKx/Vjetmq60IIO0nPL2PlwVOsOHCKLcdPU6WznoJSq4G43v5MHRTCRYNDCPVxs3NP28bhzCIWbU9lSXwaeaWWwe3iHakWwZwEcjZQUQx7voNtH0H2Ict2B2cYeIkK4sJHQ3sZHf7xFrUezprAKLV2L+Yq82UkQgjABsGcTqfjjjvu4NNPP8VgMPDMM8+wfPlyvvrqKyIiIlr75YQ1rr6gcTA+iTN94pZ/Qj2xay+/wNuJ+87vx+97M4gN9+XpGQObFcjVGtrDl+9uG8N1H28jp1ildX566T7KK3XcOqkdpXEWQpyRwWBgX3ohKw6e4u8DpziQUdjguU4OGsb3DWTa4BCmDOjWZZJ2FJVX8evuDBbtSGV3ar7Vc3oFuHPFyHCZpWBrucdh28dqfZm1hCY+PWHkTWpUy7MdZhkPqFdw3NENBs2BEfPaV9ApRDvUqsFcbm4uc+fOZc2aNfTr149XX32Vp556ik2bNhETE8Obb75ZV4NO2JBWq55eFZ9S+w4mbywqCqEsD9xl+qspN2cHfr1nAj7uLUu7HB3izeLbx3Dtx1vJKFBrZ57//SDFFdXcc15fnBxkhFqI9qqkoprNiadZfTiLlQezGl3/5uvuxHlRwUwZ2I2J/QLxcm2HKdttyGAwMOvtjSTllFi0uTppuXhwKFeMCmd0b/9OvzawzRgMKsPjtg/hyHKsFsruOwXiblOf27ouX2UJ7PtJPWgecaN527DrYO1LEDxIBXBDLgc337bopRAdTqsFc0eOHGHGjBkcO3aM8847jx9++AFfX18uuugiHn/8cV5//XXmz5/PsmXL+PDDD1vrZUVDPIKMwZyuEqa+qEoU+PZsH3Pj26GWBnK1+gR5svj2sVz78VZO5Kpsdm+sPMp7axLpE+TBgFBvokK8iArxYkh3HwIbeIpfrdOz4VgO3bxdGRBqzNC1KTGHn+NPUl6tw9lBi5uzA+MiA5gyoBuOEiwK0WQGg4FjWcWsOZzNmiNZbE/Ko1Knb/D8iAB3LhjYjSkDujGil1+X/v+m0WiYNjiEd9ck1h0b2sOHK0aGMys2DO8uFtzaVUUR7P4Otn4Ap49atjt7qeLeo26FwL6W7fZ2MkGthdvzPVQWqbIHsdea16zz6QF3b4eASBmFE6KZNAaDwfrE/ybSarXExMRw4sQJ8vLyuP3223n77bdxcDB/ArRy5UrmzZtHRkYGoaGhBAcHs3v3bnQ6K4tyRZMMGqTqxe3fv9+yceFsOL5GbU9/Tc2PF812LKuI8io9g7v7NPvazIJyrv14C4nZlk+ua2k1MLFfEFeMDGfKwOC6NSS5JZXc8dVOtiWpReDjIgO4bkwvlsan89eBU1bv1d3XjevH9uKa0T3ljZQQDSipqGbjsRzWHMlm7eFs0vPLGjxXo4ERPf2YUhPARQZ5dKlRpmqdnjWHs1m0I5Uh3X249/x+Zu3JOSVc8u5GLontzhUjwxkYJmnhbep0oloLl/C1mmVTX0A/GH27WlvW1g9tK4rVGridn0NGgmX7lV/BgJn27pUQdtHo+3MbaJVgTqPRoNVqefXVV7n33nsbPDcvL49bb72Vn376qe4PogRzZ6/RHxbTxcSTn4DJj9qxZ53D3wdOcf+iBLxcHfnt3on4ezS/5k5OcQWP/biH1Yez6+opNcTX3YlLYrszoW8gzy47UDeq11zdvF14eW5Mk+vlCdGZGQwGjpwqZu2RLNYczmZ7cm6DyUsAvFwdmdgvkMlRwZwXHdzgyHlnlpRTwuIdqfy4M42sIrX+N9THlQ2PnoeD1jyYrdLpZfq4Len1airl1vfh2AorJ2ig34UqiOtzbtsXys46CNs/USOHlUWW7S7eagrl6DsgqL/9+yeEHXTIYM7b25tFixZx0UUXNemaTz/9lPvuu4/S0lIJ5lqg0R+WPx+HLe+q7VG3wvT/2rFnHd/J/DLOeWV13Zu+86OD+XjeyLN+Kl9RrSMxq4TDpwo5lFnEoYwiDmQUkl3zRqm5hvf05dyoYKp0ehJzSli+L5PqesHitaN78uT0Abg7S+0m0bWk55ex8VgOG4/lsCnx9Bn/nw0K8+ac/kFMjgpmeE/fLjl9sqxSxx/7Mli0PZWtSVbSwgNf3hzHxH7ykMguKktUoewt71ufSunirZKZxN0C/u0gwVb+CVhyB6RstN7eI06tkxt0CTh3/hIdomuzdzDX4nd5en3D6wsaMn/+/GYXGRfNZJq+tyS77frRQYX5uvHo1Gj+89tBAFYeyuKTDUncMvHs/mi6ODowMMzbbBqSXm9ga1Iu3+9M5fe9GZRXmf9f0mjg0anRxPTw5d01x1h/NIfuvm78Y2oUs2LCzALLzIJyvticzCfrk+rW/Hy99QT7Txby7a1jmlwEXYiOKK+kks3HT9cFcMmnGx/V9nZ1ZGL/ICb3D+Kc/kEEe7vaqaftS23Gzu+2n+CXhJMUVVRbnOPkoOGCgd24clRPxkVKWnibKzypEprs+AzK8y3bA6Ng9G0w9Cpw8bR79xrk2c2yFIKLN8RcrYK4bgPbpFtCdAUtHpkTbafRyH/XQvhlgdruNQFmvAZrX1Z15hxc4Kbf7NjTjslgMHDzFztYdSgLUG9qfrxzHEN7+Lb6axWVV7FsTwbf70hl14l8vFwdefXyGC4cFFJ3TkFpFV6ujmi1DY8OHsos5IFFuzlokkb9woHdeO+6ERbTo4ToqLKLKtienMu2pFy2JuVyKLOQxv6SaTQwOMynZvQtiNjwrjn6Vt/fB05xy8IdVtv6d/PkipHhzBnWvcuUWmhTJ+Nh87uw/yfQ1w+qNdB/as1UysltmyBEr4fElRAaa1ni4O9nYMPrEDIURt0CQ+bKKJzokjrcNEvRdhr9YTn8B3x7ldoOjILLPoYPJqp9Rzd4MkMyRjVBbkklF7+xvi5FeXdfN765dTS9Amz3ByqrqBw3J4ezTnVeWa3n6aX7WLQjte7Y/PG9+edMeTIqOqa0vFK2JeXWfRy3kg6/vt6BHozvG8D4yEDGRgbg6978Na+dicFgsJgmXl6lY/T/raSgTBX59nB2YGZMGFeMCmdYuG+XSvbSJvQ6OPy7CuJObLJsd/JQKftH366yPLalkhxVw27Hp+qh8HlPw6SHzc8pPKk+uo+Q9xeiS+tw0yzr0+v1vPvuu/z4449kZGQQHBzM4MGDiY2NJTY2lqFDh+Lq2jWntNiVh8kTs5Js8Otl3K8uU8c8g+3frw7G38OZN66K5eqPtqA3qLU4c9/fzML5cWblAlpTsFfL/n84O2p5fs5gcoorWFkzqvjpxiR6B7pz/diIVuihELZTXqVj/8kC4k/kE5+aT3xKHicLGq73VivIy4XxkQGM6xvI+L6BdPd1s0Nv27+MgjJ+2JHGkvh0Ft0+liAv4yibq5MDc4Z1Z296AVeOCmf6kFA8XGSNrc1VFKnAaOv7kJds2e4TrmrDDb+hbWutGQyQulUlNDmwVJU5qrXzc5jwgHntOu8w9SGEsKtW/639zDPP8Pzzz1M74HfkyBE2bNhQ94RPq9XSr18/YmNjGTZsGI888khrd0GA+Zq5slz1hM/V1zgHPy9ZgrkmGt0ngH/NHMS/flFPWLKLKrjig818euMoRkW0z+Lrjg5a3rpmGFd+sIW96QWAKl4+OSqYcH/3Nu6dEIrBYCApp4SE1HwSUvOJP5HPwYxCi2Q+1oT6uBLX2199RPjTN9hTRpJqVFbrWXXoFN9tT2XdkWxqv50/7Urj9nPMR3iemj5AppzaS16KWg+3a6H10gI9RsGYu2DALHBow6C6ohj2LFJBXJaVkQWNFkJjoCwfPALs3j0hhLlWn2YZERFBRkYGX3/9NVOnTiU/P5+9e/eSkJBAQkICu3fv5tixY+j1ejQajWSzbIFGh3ErS+D/TJ6QPXQEvrsa0neq/dnvqOkbosm+35HKYz/trSsx4OSg4f3rRnD+gG5t3LOGZRWVc/EbG8gpVtn8LhjYjY9uGNnGvRJdUWW1nmNZxRzIKORgRiEHThZyIKOwborfmfQO9CAuwr8ugOvh5ybBWz3HsopYtD2Vn3alc7qk0qK9X7AnKx48pw161sWl7YBNb8LBX8FQL2mcxgEGzoIxd0P4qLbpX63cJBVsxn9lPdj0DIER82D4PPDpbv/+CdFBdPhplrm5uUydOpW5c+cC4OnpSY8ePZg2bVrdOaWlpezZs4fdu3e39suLWs4e4OQOVTVZ3Uqy1dq52mAu+3Db9a2DunxkOD5uTtzzbTyV1XqCvVwZ3tOvrbvVqGAvV56cHs0Di9T/tRUHTrHy4Kl2HYCKjs1gMJBVVEFiVjGHMlUJjgMnCzmaVdRofTdTbk4ODOnhw7BwX2LDfRnRy6/LZpw8k5KKan7bk8GiHansTMmzek64vxtXjAhn7sgedu5dF6bXw5E/VRB3YrNlu4sPjLgB4m4H33D798+a42uMJY1M9Z4EI2+G6OngcHZruYUQttPqwdyQIUPO+LTU3d2dMWPGMGbMmNZ+eWHKI1DVfgEVzAVFGdskmDsrFw4K4ZtbRvPA4gTeu3YEfmdRSNzeLontznfbjLWjnvl1P+P7BuLqJOUKxNmrqNaRcrqUxKxiErOLOZ5dQmJ2MYnZJRRbSXHfmL7BnsSG+zKspwreorp5ydS/Jrrlix1sPn7a4rizo5Zpg0O4cmQ4Y/oENJoFV7SiqnLY8x1sett6fTi/3jDmToi9Bly87N+/Wroqy8Bs6BUqI2V5viorEHstjJwvxb2FaOdaPZi7++67ueOOO8jJySEwUGrStCmPYJNgLsc8mMuRYO5sjYzwZ9VDk3Gy8mbzZH4ZYe0s8YJGo+G5SwZz8RvrqdYbSM0t47UVR3ji4gFt3TXRjpVV6kjPL1MfeWWk55dyMr+8ZruMjIIymrC0zYyTg4a+wV4MDFU1F2s/+7jJ0/6msJaRcmZMmFkwNzDUmytHhXNJbHd83OX7ajelubDjE9j6IZRkWbaHj4FxCyBqmnnSEHvLOaqmUu5fCvdsAzeT2SXOHjD5MdA6qvpw7amOnRCiQa0ezF1zzTX8/vvvzJ49m59++olu3WQ6V5upn9Gy+3Djfl4KVJWBU/sKPDoKa4Fcck4JM97awPQhofxr1kDcndtPVrj+3byYP6E3H647DsCH647TL9iTy0e2k+k97ZxOb6CkspqSCvVRXKGjslqtfam/7NhBq8HZUas+HLS4ODng7KD2XWqO2XOUxGAwUFGtp6SimtJKHSWV1eSVVJFbUkluSQU5xZU125WcLqngdHElOcUV5JU2bS1bQwI9nYkM8jQL2voFe+HsKCNuzVFZrWflwVN8vzMNP3dnXr0ixqx9Zkwob6w8wgUDu3HVqJ4M7u7TRj3tovKSVWmB+C+NyxrqaGDADBh3L4THtUXvFL0ejq2ArR+oGnG1dn0J4+81P3fMnfbtmxCixWzybvPf//43U6dOZciQIdxyyy3MnDmTYcOGSUkCezPNaFmSDX4RqmC4rgIwqCd0oUPbqnedSmW1ngXfxlNcUa3WrpzI4+1rhhEdYpvyBWfjvvP7sepQFseyigF4/Ke9deuQ/tqfSbXOwB2TI+kd2PWKvFZU6zh6qphjWeojJbeUzIIyMgrKOV1cSVlV6yZqcjQJ+JwctDhpNTg6aHF00OCkrfnsoMXJQYOjyb5Wo8FgMKAzGNDpDehrP+upO1ZZraesSlcXvJVWVjd7BK05X0evAHcigzyJDPakT6AHkcGeRAZ6yqhQC+1LL+CHnWn8nJBeF1i7Omn516yBeJvUoPRydWLTY+fjINMo7etkPGx8U6Xsr5/UxNFVTVEce3fb1ocrL4D4r2H7R5B73LJ97/eWwZwQosNp9WDuzz//5NJLL6WiogKDwcCLL77ISy+9hFarJSoqimHDhtWVJYiNjcXfv+1Tu5eUlPDTTz+xbds2tm7dyu7du6msrOSFF17gscceO+v7Llu2jFdeeYWEhAQMBkNdKYYZM2a0Yu8bUX9kTusAgf3g1D51LPuwBHOtpKCsyuzN1LGsYma/vZGnZwzk2tE920XWPQ8XRz67cRRz3t1ITnEl1XoD8z7dZnbO0oR07j2/H7dN6mN19LGzqKjWsfV4LhuO5bAzJY+9aQVU6vRnvrCVVOsNVFfqKK1s39l8HbUaQnxc6e7rRnc/N/W5ZruHnzs9/Nw69c+JvZ0uruDnhJN8vzONgxmW2QTLq/T8tf8Uc0eYJzKRQM5ODAY4ukIlNUleb9nu5q/qw8Xdav4w1d6yD6uplAnfQlWJZXvQABh9Gwy90v59E0K0ulYP5h5//HHKy8u5+OKLmTp1KgUFBezevZuEhAQOHjzIgQMH+OabbwC1lqe6unkL5W3h6NGj3HDDDa16zzfffJP77rsPR0dHpkyZgouLC3/99RczZ87kjTfe4N577fA0zCyYy1Gfw+PA2VOtn/Ptafs+dBFBXi58f8dYXv3rCO+vTQSgolrPU0v3sfFYDi9eNrRdrAsK93fn43mjuOrDzZRXWQYvFdV6Xll+mJ9rgrppg0M7zRvFap2eVYey+DnhJGuPZDc7SUctZwctHi4OuDg6UBujm36HqvVqWmNltZ5Knb6ulEV74eqkxdfNGX8PZwI8nQnwcMbfw8VkWx0P9XGjm7drp/n3b6+qdHrWHs7m+52prDqUZTXjp0tNMpPLR4Yzto/U9bI7XRXs+wk2/g+yDli2+/WGcfdAzDXg3MZ1PH+9TxX0rk+jhaiLYfTtEDER2sEDRiFE62j1YO7w4cPExMSwbNkyi7bi4uK6wC4+Pr7dlCbw8vLi5ptvJi4ujlGjRvHjjz/y/PPPn/X9jhw5wkMPPYSLiwurV69m7NixdcfHjRvHQw89xLRp0+jXr19rfQnW1R+ZA5jxum1fswtzctDy2LRoxkUG8ODiBHKKVZ2nP/ZlsietgA+uH9Eu1rPEhvvyvyuHcfc3u9DpDTg7apnUL5DdaQVkF6l6dEdOFXPPN/H0CjjMrRP7MHdED7Psl7XrxNrDiOOZZBdV8OWWFBZvTyWzsLzB85wdtUQGedK3Zrpgd183QnxcCfJywdPFEU8XRzxcHJu95qt26mNltZ4Knc64XfO5Wq+nSmegWmegSq+nWmegWqcCwWqdwaRdj84ADhrQajVoNRoctBocNBq0Wg0OWtBqNDg7aHF3ccTD2QE3Zwc8nB1xd3HA3dkRNycHCc7amQMnC7ll4Q6rbcN7+nL5yHCmDw01m1op7KSyFBK+ViNxtcnETHUfqaYpRs9o26QmpoIHme+7+qracCNvBr9ebdIlIYRttXowFxISwoAB1rPkeXp6Mn78eMaPH9/aL9sikZGRfPzxx3X7P//8c4vu98Ybb1BdXc3dd99dF8gB9O/fnyeffJIHH3yQN998k7feeqtFr3NG9dfMCbuY1D+I3++byIOLdrPhmBoRTc8v45qPtrDw5tHEhvu2bQeBqYNDWH7/RNLyyhgZ4Y+niyMFZVW89OchvtlqfNOScrqUp5bu439/H+Gm8b1xd3ZgxYFTbEvKpX83Lz64fgTh/m38JLoB+aWVvL/2OF9sSra65s3VScuEvkGMjQxgRC8/BoZ62yQ5h4NWg1tNYAXyhrwryy+txMfNyewhyNAePvQL9uRozVrWYC8XLh3eg7kjetA3WLIJtomyfLXObMv7UJpj2R51sUpq0nNM241wFWVCxh7of6H58dhrYPV/wCdcTfkccnnbjxYKIWyq1YO5OXPm8Msvv7T2bTuU2lHJ2sLppi6//HIefPBBfv31VzsEc1amWQq7CPZyZeH8ON5bm8hrK46g0xsoLK/muo+38vlNoxgZ0fZrRfsGe9E32FjnyMfNif+bM4TrRvfi/bWJLNtzsi5xRk5xJa8sNy9ncSCjkKs+3MLXt4wmwNOZt1cd47e9GYzpE8DTMwa22bRSnd7A55uS+d+KIxTVm0rp5KDhwkEhzIntzoR+UmtP2F5FtY5VB7P4KT6dNYez+P6OcWYPdDQaDdeM7sn25FwuHxHOxH6BUmOvrRRlwuZ3YMdnUFlk3qZ1VGvMxt9nXubH3jJ2q+yZ+35UiVYePACuJom2XDzh9vVqGUUHmDkhhGi5Vg/m/vnPf/LTTz/xwgsv8Pjjj7f27du9/Px8TpxQIxvDhg2zaO/RoweBgYGkpKRQUFCAj48Np92ZBnNVJVBZourICLvQajXcfW5f+gV7cvc3u6jSGajU6Vs9M2JrGxjmzZtXD+ORi6L4aP1xFm1PpaLaenKQ9PwyrvhgMwaom6L5w840thw/zdvXDLf7KGRidjH/+GEPO1PyzI4HeDhz88TeXDEynEBPF7v2SXQ9BoOBHSl5/LQrnd/2nKSw3PhQYcmuNIv/FzeN781N43vbuZeizulENZUy4RvQVZq3ObnD8HkqM6VvG5Vy0evhyJ+w5V3zxCuVVaokwti7zc+X6ZRCdCmtHsxddtllDBs2jKeeeoqDBw/y5JNPEhXVhk+x7Kw2kPPz88PDw3rg1KNHD3Jycjhx4gRDhgyxXWfc6y2UL8lRwdzpRMjcA9lHoO/50GOk7foguHBQCB9eP5IF38bz5tWxTOwXdOaL2oFwf3eenT2Ye8/vxxebkvltTwYOWg3nDQjGzcmB//19FICsmiDOVFpeGXPf28TlI3swuncAo3r7071eMXWDwUBRRXWrrQX6ZusJnvl1f139NwBvV0duPyeSG8dF4OHSfur+ic7peHYxS+LTWRKfTlpemdVzthzPtVr8W7SBjN2w4X/Wywu4+qpkIXG3g0cbJZ2pLFEB5pb3IDfRst0rDFy8LI8LIbqUVn93s2rVqrrtr776iq+//pq+ffsycuRIhg0bVleSICCgc2bkKi5W6x7c3Rueo14b5NWeeyaDBg2yejwxMZHIyEZq2Dg4qlTJZblqvyRHPbFb8U84VJOgRqOVYM4Ozo0OZsOj5+Lr7tzWXWm2QE8XHrowiocuNH8o083blSeW7KW2ZraLo5YLBnbj970Z6A0qq+O321L5dlsqABP7BfLPGQPpG+zJn/syef73g5zML2P++N48OX3AWb+5rdLpeW7ZARZuTjE7PismjGdmDcLfo+N9z0XHsmj7Cb7Zlsru1Hyr7W5ODlw0qBtzhvdgfGSABHJtyWCAlI2w4XU49rdlu1cojL1HJQ1pq0CpIB22faCyUpYXWLaHDVN9HDgbHGQdrhBdXasHc0lJSSQkJJCQkFCXufLo0aMcPXqUb7/9tu6PWPfu3Rk2bFiLk42AWpu2b9++Zl2zcOFC4uLiWvza9TUly1/tOXbhEWQM5opPqc9BUcZgLvuQ/frSxVkL5HR6A1lF5YT6uFm5on27Oq4nPm5OvLvmGP27efHgBf3p4efOtqRc7v023iJz5PqjOUx9Yz0DQr3Yl26sofXxhiQqdXr+PWtQs9/kFpRWcdc3O9l47HTdsUBPF56fM5iLBoW07AsUook2J562COQ0GhgfGcicYd25aHAInjIy3LYMBji2Eta9AqlbLNv9I2HC/WpdnGMbTsU2GGDhLDh9zPy4RgvR02HM3W2beEUI0e60+l+XXr160atXL2bPnl13rLCwsC6wqw3y9u/fb7V8wdlITk7m8OHDZz7RRGlpaau8dn1eXupJXkmJlUKd9V7b07Npmcr2799v9XhDI3ZmvEMhp+Z7U5CmPgdFG9uzm/d9E62nSqfnocW72Zp0msW3j6VXQMdbz3jxkFAuHhJqdiyutz8rHpzEH3sz2Zacy/bkXFJOq595nd5gFsjVWrg5Ba1Gw79mDmxyQFdQVsV1n2xlb7rxyfXQHj58eP1IQnxcW/BVCWGpSqdnw7EcHDQaJvU3nyo9Z3gPliacBCA6xIs5w7ozO7a7/By2B3o9HP5dBXEZCZbtoTEw4UEYMLN9lBfQaFQZgeU1OQecPWHY9WrKp7+sqxRCWLLLo0Jvb28mTpzIxIkT647pdDoOHWqdUaEdO6zX6GkLPXuqQtx5eXmUlJRYXTeXlpZmdq5N+UUYt/NrpqEF9jceO30U9Lr28UesCzEYDCz4Jp4/92cCcM1HW/n+jrGE+Xa8ETprvFyduGJUOFeMCsdgMLDiwCn+89tBTuQaH6JM7BdIYXl13YjG55uSqdTpeXbWoDNm8yuuqObGz7aZBXIzY8J4Ze5QyVApWo1Ob2BbUi6/7jnJH3szyCutYlhPX4tgbnxkAAvO68u0waEMDPNu4G7CrvQ62L8E1r9qvdB3xESY+CD0ObdtRrmqK2Dv91BVBnG3mrcNu07Vt4u5GoZfD65tX59UCNF+tTiYe+GFF4iJiSEmJobu3bs3+ToHB4emjSx1ML6+vvTs2ZMTJ04QHx/PhAkTzNrT0tLIycmhZ8+ets1kWdchk6xWecnqc2B/QAMYoLoccpMgsK/t+yLqaDQaJkcF1QVz6fllXPvxVj67cRQRgR1vhK4xGo0qBzCpfxBfbUlh14k8Zg4NY+rgEArLq7n+k63sSVNB2TdbT5CWV8Y71wzDq4HEKKWV1cz/bDvxJ/Lrjs0f35unZ5z9ujshahkMBnanFfBLwkl+23uSU4XmCX7iT+STmltqVl/R0UFrsaZUtBFdFexZDBtes5yqCNDvQpj4MPQcbf++gapht/MzVcOuOBNcfCDmKvP1ea7ecMcGmUophGiSFgdzTz75ZN0bKH9//7rArvZj0KBBODp2rbUC06dP57333uOHH36wCOa+//57AGbMmGGfzpiOzNUGc87uENgPco6o/RObJZhrA1fF9aSsSse/f1VPjZNySpj+5nqeu2Qwlw7v0ca9a32uTg7cMrGP2TEfNye+nD+aeZ9tI6FmhG7dkWwuf38zC+fHEextPk3NYDDw0OLdbEvOrTt2/ZheEsiJFjEYDBw+VcSvu0/y6+4MsxFkU86OWs6NCqK8nZcX6ZKqKyD+K5WdsuCEZfuAmSqIC4u1d8+UgjSVlXLnF+Y17CoKYNdCy/IC8vtMCNFELY6y7rrrLvbs2cOePXs4ffo0q1atYtWqVXVvrBwdHRkwYEBdcBcbG0tMTEynyGYZHa3Wnq1cudJsVPK+++7jww8/5P333+eqq65izJgxABw9epTnn38eBwcH7r33Xvt00iyYS1GLqzUa6DXeGMylbFRTOYTd3TS+N2VVOl7+U61dLKnU8eDi3aw6lMWC8/oRFdL50077uDvx3W1jeHBxAr/vVSOVhzKL+PeyA7xzzXCzc99bm8gf+zLr9q8aFX5WiVOEMPVzwknuX5Rgtc1Bq2FC30BmxoRx4aBurVZKQ7SSylKV9XHTm1CUYd6m0cLgy9SauG4D26R7ZO6DTW/Bvh9AX23e5uCiRuX6XdQ2fRNCdAoaQyumVkxKSmL37t11HwkJCSQnJxtfzOQNV2hoKLGxsa2WBKWl5syZQ0aG+kOQlpZGeno64eHhhIWFAaq/S5YsMbum9utJSkoiIiLCrO3111/nwQcfxNHRkQsuuABnZ2f++usvysrKeO2113jggQda3OfaaaoNJUgBoDQXXjZZNP3IcVUzZ+8P8OPN6phPT3hgb4v7I87e73szeOzHPWbFhQHG9gngtkl9ODc6uI16Zj96vYEX/zzEh+uOA+Co1bDp8fMI9lKjc+uOZHPjZ9vQ1/zGOqd/EJ/eOAoHrQRyomn0egNJp0uIDDJPPpVTXEHc83/X/WxpNBAX4c/MmDAuHhIq5S3ao/JC2PEJbHobSnPM27SOMPQqmPBA28w6MRggaR1sfAMSV1q2u/rCqFtUUhPPzv+7XYiupknvz1tRqwZz1hQVFZkFd7WZLMvKytBoNOh07WO6SkREBCkpKQ229+rVyywwhcaDOYBff/2VV155hfj4eABiY2N55JFHmDVrVqv0uUk/LAYDvNgTKmoyCN6yCnqMgKJMeNVkjcd9e1QNOtFm0vPLuP+7eLYn55kdD/F2ZfXDk3Fz7vyJPXR6AxNeWkVGgSpr8MhFUdx9bl/S8kqZ8dYG8kurAAj3d+PXeyZ0yLp9wr6qdXq2JuXy575Mlu/PpLC8ivinL7T4/3TVh5spq9Izc2goM4aGSSbK9qq8UNVg2/Q2lOebtzk4q8yP4+9r279nuip4IxYK08yP+/SEsXepPro0LZu1EKLjsXcwZ/PFbF5eXkyYMMFs7Zher+fIkSPs3r3b1i/fZPUDtaY4Uxw8c+ZMZs6ceZY9aiUajfqjllkz8paXpII5rxAI6GtcIJ6yUYK5Ntbd141vbx3Dkvh0Pt+UzP6TKgD/v0sHd4lADtSUtitHhfO/v48C8N32E9xxTiT/+GFPXSDn6qTlg+tGSiAnGlRepWPjsRyW789kxYFT5NX87NRaeySLqYPNS2p8flOcZEJtzxoL4hzdYOR8GLdAleNpaw5OMOZO+OtJtR8yVAWYAy8Bh66VQ0AIYXtt8ltFq9USHR1dt+ZM2JhfhDGYyzcZfew1XgVzAf3apFvCkqODlstHhjN3RA92puSxPTmP86K7WZxXWa3H2bHx9P0d1RUjw3lz5VH0BkjNLeOhxQlsSjQWBX/+kiGS/l1YyCosZ+WhLFYePMWGYzmUV+mtnueg1ZCYbVkHVAK5dqqxIM7ZU6X1H3M3eAZZvdymSnNh6wcq+2T9BCYj5qnkYnG3Qu9zJKGJEMJm5BFRV2AtoyXApIfh3CfUKJ1oVzQaDSMj/BkZ4W/RlllQzqXvbuTu8/py9aieaDvZmrEwXzfOjQpm5aEsgLpizABTBnTj0uFNL4EiuobU3FImvry6wXZnBy0T+gUydXAIFwzohp+sgWv/Gg3ivNR6s7F3g7vl70ibKzyp+rXzc6gqUWvghs8znzrp4gVXfW3/vgkhuhwJ5roCa7XmAHztULRctCqDwcCTS/ZysqCcJ5fs49fdJ3nx0qGdrjbd1XE964K5Wl4ujvznksGSubILKyitYmNiDhcM7IaTSWH5Hn5uRAS4k3zaWFLAw9mBSf2DmDo4hHOjgyULZUfRnoO404mw4XXY/R3oTabulufDri8sR+eEEMIOJJjrCvxMslmaBnOiw0nLK2NHijFBypbjuUx9Yx0PXRDF/Am9O01mx8lRQYR4u5JZWF537InpAyQpRRdTrdOzOy2fdUdyWHc0m92p+egNsPj2scT1Nr6Z12g0nBfdjeX7M5kyIJjzB3RjdB9/XBxl6mSH0Z6DuIzdKojbvxSot1bezR9G3wExV9u/X0IIgQRzXYPpNMuCdJVpy0GeUndE4f7urHhwEv9cup8/96t6a+VVep7//SC/7c3g5blD6d+t49emc3TQclWcMRHKmD7+XDUqvI17JWzNYDCQfLqUzYmnWX80m43HcizKdQCsP5ptFswB/GNqlBSP74jaaxBnMEDKJtjwGhz727LduzuMvUetjXPuXDMjhBAdiwRzXYFvOKABDGDQQUEa+JuM1lWVQeo2yNyjsoGJdi3Yy5X3rx/B73sz+OfP+8gprgQgITWf6W+uZ2ZMGOdGBTOpXxA+7h03aL9rcl/yS6sorqjm8WnR8ia9EyuuqObJJXvZcvw0pworGj030NMZR61l8h9JYNLBtNcgrpauCn64CYpPmR8P6Avj74ehV4KjrL0UQrQ9Cea6AkcX8A6DwnS1n5dsDOZKcuC1AaBTAQGDLgUfSTDREVw8JJSxfQJ4btkBfopX/7ZVOgM/7Urnp13pBHm5sO2J8ztsEOTsqOWZWYPauhuiFen1BhKzi4kM8jRL3OPh7MCGozmcLqm0uMbJQcPIXv5M6h/ExH6BDAz17nRJf7qU9h7E1XJ0Vv1Y8U+1HxoDEx6EATNBKw8OhBDthwRzXYVfhDGYMy1P4BGoAr3atXQpG2HoFfbunThLfh7OvHZlLDNjwnhiyd66YtsAE/oGWgRyX25O5r01iVwyrDvzxkXQzVvWoAnbySmuIOFEPgmp+cSn5rEntYCiimp+v3eiWXkJjUbD6D7+/L5XTR3uF+zJuMgAJvUPYkyfADxc5E9Vh1dZAts+go3/g7I887a2DOKqyiHha1U6YOR887aR8yGlprxA5HlSXkAI0S7JX8iuwi9CBWpgmQSl1wTjseT1Esx1QOdGB7PyoXP4+2AWaw5nse5INpOjLOsuZRdVcLKgnHfXJPLR+uPMjAnjqlE9GdnLDwOw5nAWP+xMw0Gr4R8XRdMzwN3+X4zokArLqzicWcSetAISUvNJSM0jNbfM6rlbk05b1AqcNzaCGUPDiOvtT6Cniz26LOyhqlyl8F//KpSYZ6ht0yCuohh2fAqb31ZTKd381dRJ0/VvLl5wzXf27ZcQQjSTBHNdRUPlCQAiJkDCV2o7eaPduiRal7uzI7NiwpgVE4Zeb0BnMFick2Myjc10SmYPPze0Gg0nco2p3U8VlrP49rEddpqmsA293mAxzTHldAnnvLKmSddrNVgN8kb3CWiN7on2QlcF8V/BuleMs0JqOXuqDJBtEcSVF8C2D2Hzu1CWazxelgu7FsKYO+3bHyGEaCEJ5rqKhgqHA0SMN27nJkJhBniH2qNXwka0Wg1aLIOwe87tSy9/dz7flGw2JTMtz/zNtYezAy9eNlQCuS6sqLyK5JxSjucUk5RTQnJOCceyi8ksKGfbE1PMAroefu64Omkpr9Jb3CfYy4XYcF9ie/oSG+7L0B6+eMq0yc5Lr4M9i2Hti5Z/axzd1JTF8feDh52D99Jc2Pq++igvMG9zcIHh10PUNPv2SQghWoH8Re0qzIK5FPM2357qI/+E2k/ZCEPm2q1rwn7CfN24/ZxI5k/oze97M/hhZxobjuVQO4in1YCTg5aHLowiMsizbTsr7GbXiTz+2JvByfxy0vLLSM8rrcuSak16fhnh/sYpuA5aDVHdvDieXUJ0qJcK3sL9GNbTl1AfV3ko0BXo9XBgKax5AXKOmLc5OMOIm2Dig+AVYt9+FWerqZTbP4bKYvM2Jw8YdbMqMeDVzb79EkKIViLBXFdhGsyV5aonk64+xmMRE9UicFDr5iSY69ScHLTMju3O7NjuZBaU89eBTKp1Bi4c1I0eftbXyRWUVuHm7ICzo2Va+Fo6vaFDFS7PLqrgaFYRx7NLSM0tJbuoguziCvJKKymr1FFepaeiWkdFlZ7yah37/n2RRSHq819dQ0mFDlcnLa5ODrg4OeDqqK377OrkUNcW08OXy0b0MLs+NbeU+NR8k3ON57s4auu+33qDqsMW7OVq8W+w60QeReXVVFTpKK3UUVheRWFZFUXl1TXb1ZwuqeB0cSUT+wXxz5kDza4/klnER+uTmvx9O5hRaBbMASycPxpvN0cJ3LoagwEO/wGrn4dT+8zbNA4w7DqY9EhNiRw70+vho/Og4IT5cRdvtVZv9J32HyEUQohWJsFcV+EZrKa4VNdMp8tLVqmWa/UabxLMybq5riTEx5UbxkY0ek5BWRXXfrKF0godM4aGEhnsiZerIzo9lFZWE38iny3HT3Mos4ixfQJ46bKhHSJ5ymsrDvPtttQmn19epbcI5rKLKqwWtrbmktgqi2Bue3IuDy7e3eQ+LL9/ElEh5oXhH1yUQPLp0gauMNfT3/Lfpbufm9Vz3ZwciAj0oHegO70DPYgI8CA6xJt+3SxHbTtyTUNxFgwGSFwFq/4DJ3fVa9SoZCLn/AMCItukewBotTDyJlj5b7Xv5gdj7lZTPd18265fQgjRiiSY6yo0GvVHtfbJadZB82AuYoJx+/RRKMq0/3QY0S6VVFRz02fb2JdeCMCbq441ev7OE3mUV+vs0bUzMhgMxKfms2RXOudGB3FetPlUqj6BzZtKWlGtA8yDlmq9ZaKZhlgrbG1tnVljDFi+Xv0AszE5xZZFufsEeXJ1XDjdfd0Iq/mICPCgm7eLjLQJS8kbVRB3YpNl28BLYPLjEBxt3z6dToTcJOg3xfz4qFtg97cQe62aUuniZf16IYTooCSY60pChhqDuZMJEHOVsc2vF/iEQ0HNKEXyBplqKQA1JbM59egevrA//bu17Rum8iodP+1K56stKRzIUEFoYXmVRTDXO9CDQE8X+gR5EBHgToi3K0HergR4OOPm5ICLkxYXR+O0R393Z4vX+vbWMZRX6Siv1lNR87m8SkdFlY6Kmu3yKvU5tqevxfW+7k7E9PBR55hM6ay9rj4rSUrp4edGpU6Pi6MWN2cHvF2d8HZzwsvVEW9X9dnfw5lATxfCfC3/Lbv7uvHCpUOb+N0VXVbaDhXEHV9t2dZ/Gpz7BITa+eco+7Aqe7D3e3APgPv2gLPJ6LOrN9y9TWrECSE6LQnmupKwWNj9jdrOsDKtK2KCeoLpHggVRXbtmmi/nB21vHvtcNYeySb+RD7HsotJyi6hUqfHQaPBQauhd5AHY/sEoDcYuHZ0L4t7bDqWQ7i/u8U6q9am0xv4cWcar604QmZhuVnb6kNZVOn0ODkY15udPyCYHU9NqX+bZokJ923R9RcPCeXiIdazxxoMBqp0BrQaVVhbg/X3pJ/cOKpFfRCiUVkHVRB3aJllW59z4bynoMdI+/Ypc58qe3DgZ6gdrS7Jhl1fWJYXkEBOCNGJSTDXlYTGGrcz96jF4VqTRAoTHlApo4Oi5I+fMKPRaJgcFczkqOBmX1tepeOh73dTVqXjw+tHEtfbNnWlthw/zdNL93E0q9iibXRvfy4b3gN9vWGt9j6FUKPR4OzYvvsoOrH8E7D6BdjzHRjqjRL3HKuCONMp+vaQuRfWvgQHf7Vs8+8DXlJWRwjRtUgw15WEDAaNVv1RriyG08cgqL+xPSiq7fomOi3TmnbXfbyVV6+IYWZMWKvdv7xKx2srjvDR+uNmUxCdHbRcOSqc68f2avNpn0J0KMXZaurijk9AV69ERWgsnP80RJ5v34d+jQVxgVEw6WEYdCk4yNsaIUTXIr/1uhJnDwjsD9mH1H7GbvNgTggbCPVRqfQrq/VU6vQs+DaerKIKbp7Qu8X3Tsop4Y4vd3L4lHFasEYDc2K78+CF/RsssyCEsKK8UNVk2/yOZU22gH4qiBswy/4zN36+B+K/tDzebbAqezBglvksEyGE6EIkmOtqQmNMgrkEGHp5m3ZHdH6zY7vT3deNWxfuIK+0CoDnlh0gxNuV6UNbNiXKy9WRsipj5szIIA9euyK2xevYhOhSqsrVKNy6/6o6pKa8u8PkxyDmmrYb9fKttw6322A451GIniFBnBCiy5Pfgl2N6bo5a0lQQK2ly9gD2z+2njpPiGYaGeHPT3eNJ9zfWM/swcUJ7DqR16L7Bnq68PlNo/D3cObGcRH8du9ECeSEaCpdNez6Et4aAcufMA/k3PzgwudhwS4YfoP9ArnyQstjo28DV18VxF3xJdy+HgbKaJwQQgBoDAZ5t95RDRo0CID9+/c3/aLkjfD5xWrbxRseTTH/g1hRBG/EQOlptb9gV9sWfRWdSmJ2MZe+u4mCMjVCF+jpzJK7xrc4y2VBWRU+blK0WogmMRjU2rNVz0HOEfM2Jw8YezeMuwdcfezXp8x9ak1c+k71d8epXgmNnKPgHykBnBCi3Tur9+ctIL8VuxrTGkAVhZCXZN7u4gUeQcb9pHX26ZfoEiKDPHn/uhE4Oag1NznFldzw6TayisrPcKWyKTGHgpqpmqYkkBOiiY6vhY/Ph8XXmwdyWicYfQfclwDnPWm/QC5zHyy6Ht4fDwd/gcJ02LXQ8rzAfhLICSGEFfKbsatx8YKAvsb9jATLc3qfY9xOWmvzLomuZWxkgFmB6qScEq77eCvFFdWNXrfl+Glu/Gw7V3ywmcyCpgV/Qoga6btg4WxYOEuNftXRQMzVsGAnTHsJPJtffuSs1A/iTB39yz59EEKITkCCua7IdN3cyQTL9j6mwdw6tYZOiFY0d0QP/jHVWArjgoHd8HB2aPD8I6eKuPWLHVRW6zl8qoj5n29Hr5cZ4kKcUfYRWHwDfHQuHF9j3hZ1Mdy5Cea8D369rF7e6hoL4mrXxF2z2D59EUKITkCyWXZFoTGw7we1bS0JSq/xxnp0pachaz+EDLFvH0Wnd9fkvpRV6nB1cuDuc/tatJdXqbbSymru+noXRTUjdy6OWv49exBarRTTFqJBBemw5gVI+Nqy4Hev8TDlGQiPs19/Tu2HNS9aBnAg2SmFEKIFJJjrisJijdsZu9VieNO6QW6+avTu5C61f3ytBHPCJh660Hqh+p0pedz51U7evHoYS+PTOZZlrHn11tXDGBXhb68uCtGxlBfAhtdhy3tQXW86csgQOP8Z6Gvngt8AB362PhInQZwQQrSIBHNdUYhJEpTyfJUExb+P+Tl9zjEGc0lrVWYzIexgZ0ou8z7dTnFFNTd8so1KnXFU4fZz+nDhoJA27J0Q7VR1Jez4VGWErF8rzq83nPcUDLq07YKmMXeqALOiEIIHqdp1EsQJIUSLSTDXFbn5qhTPuYlqP22HZTDX+xz1dBfUOovCk+AdZs9eii6qolpPdc06TdNALjbcl4cbGMkTossyGGD/Elj5b8hLNm/zCFZB0/AbwMFOGV/zkmHbR3D+v8DR2XjczQ8ufE59jp4pQZwQQrQS+W3aVYWPNm6nbrNs7zUevGqCN10lbPifXbolxLjIQD6ZNwoXR+OvJy8XR966ehhODvIrS4g6yRtVmYEfbjIP5Jw8YPITcG88jLrZPoFcQRr8ep8qQL75bYj/0vKcETfCwNkSyAkhRCuS36hdVfgo43aalWDO0RkmPGDc3/k5FGXavFtCAIzvqwI6X3cnXBy1vHpFTIsLiwvRaWQdgm+ugs8vNi8zoHGAkTerIG7yo+Diafu+FGXC7/+AN4epvxP6mhIj6/4LVVJCRAghbE2mWXZVPUyymGXug8oScPYwP2f4DbD+VdU2+jZwdLFvH0WXNqFfIJseOw+DATxc5FeVEBRlwur/U6Ne9TNURs9QUxuD+tunLyU5air+9o8tE6349IRz/gFa+X8rhBC2Jr9pu6rgAeDsBZVFYNCpgrK9J5qf4+QKV36pioy7S/ZAYX/uzvIrSggqimDTW+qjqtS8rccouOA56DXWPn0pzVX92PoBVJWYt3mFwaSHYdj15uvlhBBC2Iy8U+qqtA7QY4SxiGzqVstgDuxbh0gIIYSRrgp2faHqs5Vkm7f591G14gbMsl+ZgcRVsHieykhpyiMYJj4II25SDwGFEELYjQRzXVn4aGMwl7a9TbsihBCihsEAh5bB38/A6WPmbe6BKkPliBvtl6GyVkiM+fRON3+YcD+MuhWcZU2rEEK0BQnmujLTdXOp2yyLh1uj10FhOvj2tG3fhBCiK0rdBn89DalbzI87usHYu2H8feDqbft+VJWB1gkcTN4meATA6Dtg+0cwboHadvGyfV+EEEI0SIK5rqzHCON2WS6cToTAvtbPrSiCXV/Ctg9Ao4V7dkp6aSGEaC05x1StuIO/mB/XaCH2Wjj3CfvU+qyugJ1fwPr/wnlPw/DrzdvH36cCOTdf2/dFCCHEGUkw15W5+UFQNGQfUvtp2xoO5kpz4a8njVNsjq2A/hfZp59CCNFZFWfD2pdg52fGtP61+l2k1sV1G2j7fuiqIP4rVVKgME0dW/syDL3SPJmJPUYFhRBCNJkMrXR1PUzqzVkrHl7LrxdEXWzc3/q+7fokhBCdXWUJrH0F3oxV0xZNA7nQWJj3K1y72PaBnF4HCd/C2yNh2f3GQA6g+BScjLft6wshhGgRGZnr6sJHq5pF0HgwB2p9xKFlajtxFWQfhqAo2/ZPCCE6E101JHyt6sUVZ5q3+faC8/8Jgy61/TR2vR4OLIU1L0DOEfM2rZNKsDLxIfAOtW0/hBBCtIgEc12daemBrANQlt/wWoiICRA8CLL2q/1tH8L0V23dQyGE6PgMBjj6F6z4F2QfNG9z9VVFtkfdAo4utu/HkT9h1fNwaq95m8YBhl0Lkx6RJFdCCNFByDTLri6gn0p1DYABjq9u+FyNBkbfZtw/9Jt6YyCEEKJh6bvgi5nwzRXmgZyDi0oocl+CylRp60AOoCQHvr+pXiCnUWvjFuyAWW9JICeEEB2IBHNdnVYLfacY94+uaPz86BnG7aIMy+k5QgghlNwk+GE+fHQuJK83adBAzNWwYCdc8KxKRmUvnkEQd6txf+BsuGsLXPqhKkQuhBCiQ5FplgL6XQB7vlPbR1eotRQNrdfwCISQIZBZ81T3+BpZNyeEEKZKc2HdK7DtI9BXmbdFngdT/g2hQ23fj5MJUFEIvSeZH5/wAOQlqzVxYbG274cQQgibkZE5oKSkhC+//JIFCxYQFxeHi4sLGo2GF1988azut3PnTp555hkmTpxIWFgYLi4uhIeHc91117Fnz55W7n0r6Hu+qmUEUJIFGQmNn99nsnH7+BobdUoIITqYqjLY8Dq8EQtb3jUP5LoNget+guuX2D6QyzoIi66HD8+BX+9TZQdMufvDlV9KICeEEJ2AjMwBR48e5YYbbmiVe1VXVzNy5EgAAgMDiYuLw93dnfj4eL7++msWL17MN998w9y5c1vl9VqFm5/Kanlis9o/ugK6D2/4/D6TYdNbajt5g8rO5iA/SkKILkqvgz2LYdV/zFP7A3j3gPOegqFXgNbBtv04nahq1u1ZDNSsZ849DgnfwIh5tn1tIYQQbUJG5gAvLy9uvvlmPvjgA3bt2sWTTz7ZovuNHj2aZcuWcerUKX777Te+//57jhw5wpNPPklVVRXz588nJyenlXrfSvpdYNw++lfj5/YcCw41RWQrSyDnsO36JYQQ7dmxlfDBObD0DvNAzsVHTadcsANir7ZtIFeQBr/cC2+Pgj2LqAvkQE2L9+tlu9cWQgjRpmQ4BYiMjOTjjz+u2//555/P+l6Ojo5s2bLF4rhWq+W5557jxx9/5NChQ/z222/Mm9eOnpT2uxBWPqu203eqjGcegdbPdfZQi/Z9e0HEeHD1sV8/hRCiPcjYAyv+aZkBWOsEcbfBpIfVdEZbKjoFG16DHZ+CrtK8LTAKzn0CBsyyfc06IYQQbUaCOTvSaDQMGTKEQ4cOcfLkybbujrlug8ErDIpOAgY49jfEXNXw+WPutFvXhBCi3chPVdMp64+AAQyeC+c/DX4Rtu/H6hdg05tQVWp+3LcXTH7cPtM6hRBCtDkJ5uzs+PHjAISEhLRxT+rRaNRUy11fqP2jfzUezAkhRFdSlq9Gwba8D7oK87aIiWq2QmNrjVtbeb55IOcVBuc8AsOuBwcn+/VDCCFEm5Jgzo42bNjAzp07cXZ2ZurUqU2+btCgQVaPJyYmEhkZ2VrdU1Mt64K5v6GiCFy8Wu/+QgjR0VRXwPaPVamBsjzztqABKojrd4F6IGZPEx6EXQvByV2VGBg5H5xc7dsHIYQQbU6COTspLCxk/vz5ADzwwAOEhoa2cY+s6DMZnDygqgQqCmDbh+pNwpmU5UHhSehmPegUQogOR6+H/T/Byn9D/gnzNq9QtR4t9lrbTmWsroCdX8ChX+H6peav5dUNrlkEYcPBxdN2fRBCCNGudYpgbu7cuezbt69Z1yxcuJC4uDgb9cicTqfjmmuu4ejRo8TFxfHss8826/r9+/dbPd7QiN1Zc/GE0berqUQAG9+EUbc0nOAkbQf88Q84GQ/ugfDAfnB0bt0+CSGEvSWtg7+etqy56ewFE+6DMXepRFC2oquG3d/A2pehIFUd2/sDxFxpfl79YuBCCCG6nE4RzCUnJ3P4cPPS45eWlp75pFZy22238dtvvxEVFcVvv/2Gs3M7DnjGLYBtH0FlkVqTseV9mPyo9XP9ekPmPjDoVbHxg7/AkHZUP08IIZrj1AH4+xk4utz8uNZRTWOc9A/wDLLd6+v1sO9HWPN/qj6cqY3/U0lN7D2dUwghRLvWKYK5HTt2tHUXGvTII4/w6aefEh4ezooVKwgMbCDdf3vh7q8yVa57We1vfgdG36YKi9fnEQCDL1NPkEFNy5RgTgjR0RSehNX/Bwlfq4dTpgbOhvP/BQGtuD65PoMBDi1Tfcg6YN6mdYIRN6pSBxLICSGEqKdTBHPt1QsvvMB///tfgoODWbFiBeHh4W3dpaYZexds/UCtm6sogM3vwnkNFFKPu9UYzKVuhYzdEBpjv74KIcTZKi+ADf+DLe9BdZl5W/gYuPA5CLfhdHyDQRUdX/Wc5ZROjRZir1GjgVL0WwghRAOkkqiNfPjhhzzxxBP4+vqyfPlyoqKi2rpLTefmB+PuMe5v+xB0VdbP7T4cuo80Ofcj2/ZNCCFaqrpSBXBvxKo1wqaBXEBfuPJrmP+nbQM5UHXivr6sXiCnUfXq7t4Os9+RQE4IIUSjJJhrgejoaKKjo0lPTzc7/sMPP3DnnXfi6enJ77//TmxsbNt0sCVG3w4OLmq7PB9SNjZ8btxtxu2930Nprk27JoQQZ0WvV4lE3hkFfz4GZSa/qzyCYfprcNcWGDDDPlMaB881/p4FiJoOd26EuZ9AYF/bv74QQogOT2MwGAxt3Yn2YM6cOWRkZACQlpZGeno64eHhhIWFARAaGsqSJUvMrtHU/LFPSkoiIiICgKysLMLDw6msrGTIkCEMH269iOwll1zCJZdc0qI+12azbCjbZYt9fYUxEcCoW2H6f62fV10Brw2E0hy1P+UZmPCAbfokhBBnI2kdrPinyr5ryskDxt8LY++xbYr/zH0QPBC09Z6h/vkEZB+E856C7iNs9/pCCCHswubvz+uRNXM14uPjSUlJMTuWmppKaqpKC92rV9OmupSWllJZWQnA3r172bt3r9XzIiIiWhzM2dyAGcZg7tBvMO1lyzciAI4uaoH++ppgb9PbKviT2kdCiLZ2aj+s+BccW2F+XOOgfm9Nfgw8g233+pl7Yc2LKsHJ3E9V0ihTFzwLDvKnWAghxNmRvyA1kpOTm32NtUHNiIgIq8c7pKiLQXOfyu5WdFI90e7RwJPj0bfDlnehqlSN0G3/SEbnhBBtpyCtJkPlN0C938kDZqkMlbacynjqAKx9EQ78bDy25kUYeIl58W8J5IQQQrSArJkTDfMIVBndah1a1vC5nsEqs2WtjW9AZYnt+iaEENaU5auRuLdGqFIDpoFcz7Fw8wq48kvbBXLZh+GH+fDeOPNADsDRFYpP2eZ1hRBCdEnySFA0bsAMOLFJbR9aBlP+1fC54+6D7Z9AyFA49wlw9rBPH4UQoroCtn8M616BsjzztsD+ai1v1MW2S2yScwzWvqSSQNUfCew2GCY/DtHTpVacEEKIViXBnGhc9AxY/oTazjkC2UcgqL/1cz0CVCY2317yhkUIYR96Pez7EVY9C/knzNs8u6kgatj1tpvOWHgSVv0Hdn9rWXA8KFq9/oBZ1tcbCyGEEC0kwZxonF8vCBmiFvEDHPoVgh5q5PwIu3RLCCE4vkZlqMzYbX7c2RPG3wdj77b9DAF9NexZbB7IBfRTiVUGzTFfHyeEEEK0MgnmxJlFzzAGc3t/hAkPNm/kraoMnNxs0zchRNeTuVeti0tcaX5c6wgj58Okf4BnkH364tsTRsxTUzz9+8A5j8GQuRLECSGEsAuZ9yHObOAlxu2s/XBkedOvTVoPb8RCciNFx4UQoilyj8OPt8D7EywDuYGXwN3b4OJXbBPIFZ6E3x+BQ79btk18CGa/C3dvh5grJZATQghhNzIyJ84sOBr6T4Ujf6r9dS9D/4vOPDoX/zX8sgAMOlh8g1pP5xVi+/4KITqXokyV2GTn52pao6le41Wtth4jbfPa+amw8X+wayHoKtWDqf5TzdfAeYfBsGtt8/pCCCFEI2RkTjTNpH8Yt9N3Wj4VtyYo2viEujRHTUMSQoimKsuHlc/Cm8PU7w/TQC5oAFz9Hdz4m20Cubxk+OVe42vrKtXxrP2Nl2kRQggh7EiCOdE0PUZA5PnG/bUvw5mKo/cYYR4EHv7DNn0TQnQuVWWqVuUbMbD+VagqNbb59oQ5H6iR/qhprZ8593QiLL0L3hwOu74AfZWxzSsMpr0C/S5s3dcUQgghzpJMsxRNd86jxhG51K2QtA76nNP4NYPmwOr/qO1T+9TTbsl4KYSwRlcNCV/BmhehKMO8zT0QzvkHjLgRHF1a/7Wzj8D6/6o6cfVLDPiEw4QHYNh1tnltIYQQ4ixJMCearudo6H0OJK1V+xteO3MwF9hXFezNOaL2D/8BY+60bT+FEB2LXg8Hf1b12k4fM29z9oLx96rfGy5etnn90lyVVEVXYX7ctxdMehiGXgWOzrZ5bSGEEKIFZJqlaJ5Jjxi3j6+B7MNnvibqYuP2od9avUtCiA7KYIBjK+GjyfD9jeaBnIMLjL0H7tutRuRsFcgBuPtDzFXGff9IuOQ9WLATht8ggZwQQoh2S4I50TwRE6DbYOP+to/OfE30dON2yib1FFwI0bWlboMvZsJXl5oX/dZo1XTGBTvhoufBI6B1Xzd9F5zYYnl84oMQPAgu/UiVOIi9BhycWve1hRBCiFYmwZxoHo0G4m4z7u/+FsoLG7+m+0jwCFbbBh0cXWG7/gkh2reT8fD15fDJBZC83rxtwEy4awvMfgd8w1vvNQ0GOL4WFs6Gj86F3x62TODkF6GSqgy9AhxkBYIQQoiOQYI50XxDLgdXH7VdWawCusZotRA11bh/WKZaCtHlnNoP310LH06Go3+Zt0VMhFtWwZVfQVBU672mXg8HfoGPzoOFs9TUcIBTe61n123tzJhCCCGEjcnjR9F8zu4w7HrY/Lba3/YhjLrVvIhufVHTVdFdUGtkqiskK5wQXUH2EVjzAuxfAtQbDes+Es57Evqc27qBVHUl7F0MG/4Hp49atocNNz6QEkIIITowCebE2Rl1C2x+BzCopAXHV0Pf8xs+v8850HMsRJ6nEqI4SEIBITq13OOqHuWeRZap/kOGwnlPqXptrRnEVRSr2nCb3oaik5btfc5VJQZ6T5JROCGEEJ2CBHPi7Pj3hv4XwZE/1f6WdxsP5pzcYP6f9umbEKLt5KfCulcg4WvQV5u3BQ2Ac59Qa+NaO5iqKoe3RkBxZr0GDQycDRPuh7BhrfuaQgghRBuTYE6cvdF3GIO5Y3+rjHShMW3bJyFE2yjKhPWvws7PQVdp3hbQFyY/DoPmgNbBNq/v5Ar9LoD4L9W+1glir4Zx96l6l0IIIUQnJMGcOHt9JqvgrTat+IbX4fLPz+5eBoNMexKiIyrJUf/3t38M1eXmbb494ZzHYOiVrZshMnWbWnfbe6L58fH3wYGfYcQ8GHMXeIe13msKIYQQ7ZAEc+LsaTQw8SFYfIPa378Uzj3WtKfgej2UZIFXCOz4FP76J0ROhssXNp5IRQjRPhRnwaY3YfsnUFVq3ubdHSY9DLHXtV7Bbb0ODv6qEi+lbVf1Lu/YYP4QKLAfPHRYJWkSQgghugAJ5kTLRM+EgH41GeMMsPF/MPvths/PTYKNb6jpmW5+KhX5bw9DzzHg1xvK88Hd306dF0I0W1EmbHxTPYSpLjNv8whWD3hG3KimPbaGiiKI/1qty81PMR4/tQ+S1qoZAqYkkBNCCNGFSDAnWkarVdnhfr5L7e/+Tq2N8elu/XyDHnZ+praLMuDHW1Qh8ayD6mm+m599+i2EaJ7Ck+pBzM7PLadTugeoKY6jbm29YCo3SU3d3PUlVBRYtvcaD45urfNaQgghRAclwZxouSGXw+r/g8I00FfBqudgzvvWzw2IhKBoyD6k9k/uUp/LciFqmqybE6K9KUhTa+J2LbRMbOIRBOPuhZHzwcWz5a9lMEDiKtj2UU1ypXp16TQOMOgSGHsPdB/e8tcTQgghOjgJ5kTLOTqrp/J/PKL2d38L0TNgwAzr50ddbAzmavWaoDLdCSHah7wUFcTFf6Ue0pjy7Kb+z4+4qXWnNZblwXfXWI78uXjD8BtUBl3f8NZ7PSGEEKKDk2BOtI6R82HPd5C+U+3/eh+EjwbPIMtzo6fDhteM+xotTHtRRuWEaA9yj6sgLuEbyzpxXqFqWvXwG1TtyJaqn8XW3R8Gz4WEr9R+QF+Iuw1irgZX75a/nhBCCNHJSDAnWoeDI8z5EN6foJIilOaogO6qry2DtLDh4BliLO474kb15H3P9yoYjJ5umXJcCGFbJxNUAqMDP6u1raa8u6sgbtj1LU9sUl2hslLu/BwGXwYjbzJvH32b+v0Rdxv0OVey2wohhBCNkGBOtJ7AvnDhc/D7w2r/8G/w24Mw9UVwdDGep9Wq85beCaGxcN7T6rz9S1S7g5NlMFdeqGpL9RzTOmtzxNmrKoMjyyEoCoIHtHVvREsYDHB8jQrijq+xbPcJh4kPQuy15v+Hz0b2Edj1hRrxK8tVxyoKLYO50Bi4ZlHLXksIIYToIiSYE61r5M1w6Dc4vlrt7/gU0nepYuL+vY3nDb1CPZUH0DpA9xHGYC59l/k9K4rhnTiV/bLPuXDDUlt/FaIxK5+DLe+oZBT37wGfHm3dI9Fcep0agdv4P8jYbdnu3wfG36+mN7akTlxVGRz4RY3Cndhk2Z6xGzL3QsiQs38NIYQQoguTYE60Lq0WLv0Qvr4cMhLUsYwE+HAy3L4O/HqZnOtg3O4+0rh9Ml692axtd3BW6+8OLFVBYmEGeIfa9usQDdvyjvps0MHW9+HC/7Rtf0TTVZVBwtew6S3IS7ZsDxumgrgBM83/fzaHwaCCtN3fqlIl5fmW5zi6qYc5I25Uxb+FEEIIcVYkmBOtzzMY5i+Hv55UdaJAvaHb8p5KdGJNaIwa6THooKpEZbvsNki1OTpD2nbjuSd3gfd0m34JogG6elkNDQbr54n2pSxP/V/c+gGUZFu2R54PE+6HiIktT0S0ZxEsud16W7fBKoAbcjm4+bbsdYQQQgghwZywESdXmP4qeIXAqpqRm0PLYOoL1t8sOrtDt4FqyhWoRCi1wRyomlKF6Wo7bYdKkiLsryDVfH/8/W3SDdFEBemw5V01zbGy2LxNo4VBl6oSA6FDz+7+umqV/MhUvwtB62QsZ+DkXjMKd5P6fyxZa4UQQohWI8GcsK1hN8Cq5wGDCgQyEtRULmu6jzQGc78sUEkXaqd6dR+pMuCBsfyBsL/cJOO2dw/rpSdE28s+DBvfgD2LLWvEObqqrJTj7gG/iObfW1cFSWth7w9wbCXcG2+elMjdH/pfBCU5EHOlKjUgZQWEEEIIm5BgTtiWVze13i11i9o/+GsjwdwI2PmZcX/pnXDJe8YEKbVOxoNeLynL20KeSTBnmtBGtA8ntqqkJod/t2xz9VXp/kffDh6BzbuvrgqOr4UDS1SCo7I8Y9uhZRBzlfn5cz9rWeIUIYQQQjSJBHPC9gbMNAnmlsH5/7R+Xo+R5vt7Fqm1PDFXQlgsoAEMKp356aMqNb6wr1wJ5todvR6O/qWCuBObLdu9e8DYu1Wh7+aU9aiuVCNw+5eqgM1aIhNQWTHrB3MSyAkhhBB2IcGcsL0BM1QyFICcw2oKmLVALLA/eAQZEzSMvkOVMABw8YKgaMg+qPbTd0ow1xZMgzk/CebalK5KTXXc+Ibx/4WpoAFqPdyQuap2Y1PpdfDLvXDoVygvsH6Ogwv0nQJDL4f+086u/0IIIYRoMQnmhO35Rag6UrXr4Q7+aj0Q0zqoaZWb3oKoaSqYM02W0GOEeTAXe43Nuy7qMZ1mufLfKvCe+kLb9acrqiiGXQth8ztQmGbZ3nOcykzZ78KmJRsxGMzP0zpA5m7LQM7BBfpdAAMvUWviZB2cEEII0eYkmBP2MWCWMZg7tAwmPWz9vH4XqA9ruo+A+K/UtiRBsT+DwXxkDiD/RNv0pSsqyVF1/bZ9ZH3KY9R0FcSFxzV+H10VnNgCR5fDkeUqGO87xfyc/lPV/1dHV9U2aI4K4Fy8WuurEUIIIUQrkGBO2MeAmbD6ebV9Ml4FAb49m3cP0yQomfugqlyVQBD2odfBzDdgxT+hOFMdqyxp2z51BblJsPlt9SCjuty8TesEQ6+E8fc2PO1Yr4dT+yB5PSSth5SNat1prSN/WQZzQ65Q05r7T23eOjshhBBC2JUEc8I+gqLBPxJyE9X+in+qjHfNqTkVPBCcPdW0ze7DVd0sCebsx8FRJaPBYCwKXVXapl3q1DL2qKQm+5eAQW/e5uypim+PuQt8ultem3UIktZB8jpI3mCefbK+I3/CtJfM/y8G9VcfQgghhGjXJJgT9qHRQNyt8Odjan//Eoi62JjgpCkcnOCRRAng2pqTu3FbgrnWZTCoIGzj/yBxlWW7R5BaSzrqZnDza/g+310Nuccbbndwgd4T1chbU9fWCSGEEKLdkWBO2E/cbSr5ScpGtf/bw9BzLPiGN/0eEsi1PWeTYK5SgrlWodep/xsb/6emIdfn1xvGLYCYq6EoQ02NTNsO6TvgvKeh7/nm5/eeZB7MabSqvmPERNXWcww4e9j0SxJCCCGE7UkwJ+xH6wBz3of3xqs1OxUF8NOtcMVC8Axu696JppKRudZTXanqKW543TgF2VRgfzWC5uCigr1V/4GyXPNzUrdaBnN9JkP6LhW49Z6kHppI9kkhhBCi05FgTtiXb0+4+BXjmqsTm+HNYWrUYezdZ58tT6+D3x+BnCMw5RnLAuSi5X57GPTV5skzJJg7O5WlEP8lbHzTenkBJ3eV7CTniPpoTNp2y2OD5qgPIYQQQnRq2rbuQHtQUlLCl19+yYIFC4iLi8PFxQWNRsOLL77Yaq8xf/58NBoNGo2GLVu2tNp9O6ShV8KQy437lcWw5gV4bxyctjI6UV9lCRxbCSv+BUf/Vsf2fg87PlEZ+768FLKsFFEWLbPvB9j5Gez70XhMplk2ncEA2Ydh6Z3wSiT88Q/zQE6jVQHYbWvBPdAy6YmpwP4Qcw1Mfw0u/I/t+y6EEEKIdklG5oCjR49yww032Oz+q1ev5rPPPkOj0WAwGGz2Oh2GRgOXvA9hw2HdK8ZpY/kn4LNpcMPPEDyg4ev/fBx2faG2S7Kh3xQ1Ba1WRQF8fTncshK8utnu6+hKyvKsZ0TUV6m6ZQ5O9u9Te1ZeqB4oZO2HUwcgYzdk7rEsLQCgcYBh18L4+yEgUh3rNhAKTqg6b0FREDxIHes2SK19ayz5iRBCCCG6DAnmAC8vL26++Wbi4uIYNWoUP/74I88//3yr3Lu8vJzbb7+dQYMG4ePjw6ZNm1rlvh2egyOMvUu9iV3/mkr8AFB8Cj67GK5fAmGx1q+NmGgM5pLWqXpziavNzylIhc8vVtn/sg+BVyhc/a0qayCar36xcFNVpeDgY7++tHcHl8Gia5t+/nlPwcQHzY+d/y814ubfR601FUIIIYSwQoI5IDIyko8//rhu/+eff261ez/33HMcO3aMdevW8dRTT7XafTsNVx+44N8Q2A9+WaCmlpXlwpdzYMFOcPe3vKb3RON2QSqkbAD/3qowskZrnJ52+pj6ADWqtPkdtV5PNF+eSTAX0Ff9uzm5q4/GpgN2NqW5KuFIyiaVddLVB6762vyc2tG1BmnArxdEng/dR0DEBMtTug1stS4LIYQQovOSYM6G9u3bxyuvvML8+fOZMMHKGzZhNOw6cHKDn25TSTbKcmH9q3CRlRFSrxAIjIKcw2q/IA3u3Ah5KWpq2/HVsPV94/mhsXD5Zyq9u1D0elj1nJraev7TZx6xNB2ZC4q2DGA6q6JTah1myiaVrCfrgHm7q49aC1dbp628EPb9ZP1eLt4w+naV7MdVRjKFEEII0XISzNmIXq/n1ltvxcfHh5dffrmtu9MxDL4M8pJh5bNqf9tHMOZO8OlheW7vScZgLmk9jLhRjXb49YJ+F6jRo9zj6nPwAPAKk8LIpg4sgQ2vqe2SLJj3a+Pnm47M+XfyoPjUfjjwCxxdbr3mm6nyAhUQe4XC9o9h3cuWawvd/GHC/TDqVvMafUIIIYQQLSTBnI288847bNmyhS+++AJ/fytTBYV1o+9UQVxRBugqVJbL2e9Yntd7Emz/SG0nrTMfHdE6QNyt9utzR7TZ5HuatO7M5xeeNG779Gz9/rQnuxaaj+zW5x6oim73HAOhMZC+U41ymhbpBjX6Nm4BjL7j7EtuCCGEEEI0QoI5G0hLS+PJJ59k8uTJrZIlc9CgQVaPJyYmEhl5pvU5HYyzO5zzKCy7X+0nfANjF0BwtPl5ERMADWBQI0vZhy3PEQ1zdG3e+ZUlxu3OMkVQVw3FmZYjv4Pnmgdz3j3Uz1uvsdBznFrfqdGoUbvlT0LKRvPrnT1hzF2qbqKbr82/DCGEEEJ0XZ0imJs7dy779u1r1jULFy4kLi7OJv25++67qaio4L333rPJ/Tu9YdfD5rdV8hKDXk27vPob83Pc/SFkiEr3DpC48szBnK4aTh9tvOxBV+Hg3LzzTYM5Z3eVbr80B6rK1L+Dd1jz+5CxB07ugoGz7ZtqX1cFu7+D9f9Vgelta82n4PYYCQNmQffh0H+qWiNo2l6cDSueht3fmt9Xo4URN8Hkx8EzyD5fixBCCCG6tE4RzCUnJ3P48OFmXVNaaptixz/++CO//PILTz/9NNHRrTNStH//fqvHGxqx6/AcHFW69u9vVPuHf1NJJQZfan5et0HGYG75E2rNnVeI5f1KcuCHmyBtB1RXwGMnwMWzaX0pzgb3ANBqz/rLaZfqj8yZTlO1prLYuO3soTKPpu9Q+5d+DEMvt35dQ4qz4JMLVN2142tVghpb0+thz3ew+gVVw61W+i7oMcK4r9HAlV9aXm8wQMLXajSuPN+8re8FcOFz8qBACCGEEHbVKYK5HTt2tHUX6vz6q0oksWLFCtatM1+LlJCQAMBdd92Ft7c399xzD3PnzrV3FzuGgZdA+BhI3aL2l90P4aPBp7vxnCFzjaMjAX3Bs4EC4W5+cDJB1UMDFYT0mXzmPqz6jypqHjYcbl6hgszOwrHeyFxlcePruly81ChWRbGaRujkZmyrOosHI0f/MhbQPlOSkdaQvhN+/4cxAK2lcYCMePNgzprTibDsAUhaa348eKCqB9f3/NbtrxBCCCFEE3Sid6fty5YtWxpsi49Xb14vueQSO/WmA9JoYM778P4EFWiUF8DSO+D6n42jZJHnq4QpqVvVqEhDI0taBwiPg2N/q/0TW88czFWWqEAO1FTA5PUQeW6rfGntwoz/wYGaeopaRxWkNRbM3bFBfTYY1GdnD2Pb2QRz+mrjtrVspa2lqgxW/Au2fQgYjMe1jhBztSrW7d+n4et1VWrK75oXjcEnqID2/H/CqFukqLcQQggh2owEc63s888/5/PPP7faNnnyZNauXcvmzZsZM2aMfTvWEfn3hmkvw893qf2kdbD5LRh/n9rXaGDai027V/gYk2Bu85nPd3RT68p0lWo/L7lZXW/33P3hqWzLEbozqQ2YnUxS7Juup2uq4mzjtoeN1pdl7IGfboXsQ+bHB86GC549c229rEPw0y2Qudf8eP9pMP2/tg1ChRBCCCGaoJMtBLKv6OhooqOjSU9Pb+uudF6x16hkFLX+/jccX9P8+/Q0CZ7TtqtkKI3RatVUz1oFac1/zfauuYGcKdNgrqqs+deXZBm3PYPPvh8N2fk5fHSeeSAXFA03/AJXLGw8kDMYVHmMD88xD+Q8guHyz+HqbyWQE0IIIUS7ICNzNebMmUNGRgagSgsAvPvuuyxduhSA0NBQlixZYnZNbdKVqqoq+3W0q9FoYOYbKnlJ0Ukw6GDxPLh1FQQ0oyxD9xFqap2+Wk3bzNqvaoQ1xrQ4tmnRbGFe/PpsplmWmI7MBba8P/W5B5pP5Ry3AM57GhxdGr+uLA+W3gWHfzc/PvwGNZpnz6ybQgghhBBnIMFcjfj4eFJSUsyOpaamkpqaCkCvXr3aolsC1JTAq7+BT6dBdZnKJPjNlXDL302v4+XsDiFD1fo3gJRNZw7mTEdvOts0y+aorlTBl7OHWivm4NjyBCim0yxX/Uet2bvg3y3va60BM1TwtfkdtfayKesdM3bDoush3+T3gEcQzH4X+l/Yen0TQgghhGglEszVSE5ObvY1BoPhzCeZWLNmTbNfQ9QIGwZz3jOWKzh9FN4bB2PvgRHzzBNyNCRivDGYO/AzjLnT+nmluWoExs9kZC63DUbmDAaVdMM0cGotn06D/BNq5HPKM9DnXPAIsH5u9iH4YKLadvGGx1PByeT7XdnCkTmA1G3Nv8eZjFsAw69v2mhawjcqW6VpkpO+F8Al79pmGqgQQgghRCuQNXOi4xg0RxVkrlWYDssfh9cHw9G/m3C9SZ26E5sbHm379ip1z01vGo+V5aqMmvaUkQCv9IW/nga97uzvk30Edi8yT1RSdBIK06AgFX68WSWWaYhZwfCaIK7F0yyzzPdbMo21sgR2fGrMtFlLozlzIKfXw9/PwNI7jYGcRqsyVV6zWAI5IYQQQrRrEsyJjuWcR2H8/aB1Mh4ry1VFwQvOkIgmbBgE9DPu7/ne8pzSXJUgpTDNct2UraZa/vmEGin77lo4usJ4fPcitb5v05twfPXZ3bs4Cz6eAktug5/vMR6vn7SkLK/he1gL5loyzVJXZfl6RRlnl0ilqkwF38seUMW8mzNaXlWmfm42vG485h4A1/0EEx/qfIXihRBCCNHpyLsV0bFoNGpt1f171BRLx5qgoqJQFRZv7M28RgMxVxr3T+2zPOfY32DQq23PbhAYZWyzVTCXsRtObIJDy6DwpDpmMMDW94znZB85u3tv+B9U1Iwo7v/JeLz+1Miy/IbvUVls3K4L5lowzbIkx/rxvBTrxxui18NPt6mSFQBb3oG9PzTt2rJ8WDgbDiw1HgseCLet6Vz1BIUQQgjRqcmaOdExeYfBRc9D8AD4+W517OhfsPs7iL264euGXqmCj6FXQnC0ZfuR5cbtfhdAyWnIUVlLbbZurvS0cbs2s6NGA0OugL2L1X5RxtndO3Wr5TGDwXI0rckjc57qc8R4leLfyaP52SjrT7GslZdk/d+kIev/Cwd/Me4PvRIGX9rw+XWvnwNfXmJediDyPLj8C3D1bvrrCyGEEEK0MQnmRMcWey3s+wkSV6r9Px8FfZWqCRbYz7J8gW9PmPIv6/cyGCB5vXG/34VwMkElCvGLOHOR6bNVajJS5W6ShMS/j3G7KPPs7n1qv/m+Xq9S9hvqrcErz2/4HtamWfr2VB9nIzAK7tiogrov5xiPNydYPvQbrH7euB95vso6qXVo/LrCk7DwEmOADqrswPTXwMGpwcuEEEIIIdojCeZEx6bRwKw34Z0xUFmkkpT8ssDYPuN1GDm/afcqSIXiU8b9XuNh4OyGg7/WoNerdXq13E1GubxCjNtnOzI36y346RbjflWJ9WQqjY7MWZlm2RJOrhAyWG2PvBl2fKK2m5oEJfuwml5Zyz8S5n6iSiY0pugUfD4dco8bj41bABc8p36OhBBCCCE6GFkzJzo+nx5w0X+sty1/Uo2sNUXaduO2X2/bFLOurzzffJTMtDyAV6hx+2yDuQEzzPcrS6wnLGl0zZyVkbnW4t/M8g/VlfDjLcYA09kLrv72zFkrS3PV1ErTQG7yExLICSGEEKJDk2BOdA7D56lRuAGz1Iha7dquqlL4/RHriVH0OkjbAUf+UvtpO4xtPUbZvs9gvl5O4wCuvsZ9b9Ng7iynWTq6qvvWqii2njWyohB01dbvYW3NXGsxreV3Mh5ObGm8DMP6/0LmHuP+pR9AUFTD5wNUFMHXcyHrgPHY+f+CyY9KICeEEEKIDk2mWYrOQaNR0ylrp1QmfAtL71DbR/6Eg7/CwFnG85PWw+Lr1fRC317Qb7f5yJy9grmSeuvlTIML05G5ymIoL2x+gg6NRgVgtRktK4sbXldWXmC9cLi1aZalufDrvSqZTFUZzPv1zNMcrTEdmSvNgU8vUqNs0dPh/GfAM8jYfjIe1v3XuD/iRnVeY3RVquRD+k7jsYkPwcQHm99XIYQQQoh2RkbmROcUcxVETDTu//GoedHvgEjjOrH8FMg6qEoE1Oox0ridnwqJq2D7J5BztOHXzE+FA7+o0a+mspbJspZ7IGhNAqSzHZ0znRpZWdJwPbeGkqBYm2ZpMKgAOXGlKqvQnFpzP90GH0yCry5T5QgcXc3by/Ig/itYXW/q7OoXjFNSfXvChQ1Mra1lMKhR2aS1xmNxt8F5Tze9r0IIIYQQ7ZgEc6Jz0mjUtEsHZ7VfdBI+Og/SdqqAbOmd5ud/eA7oKtW2oyt0G2xsW3KHyrr424MqMMhPhU1vw+lE4zlleSpAWXw9/HxX0/vZUCZLUEWrPc8yCcrJBJUU5pd7YejlcNcWuH+fClJdfWDwXIi62Pya2uC2LM98xHDolWpa4sSHIXyMOubsbn5tc4K5UwdU4Hzsb/U9H3a99fNMC6iDSnIy4kZAozJXung1/jpbP4Cdnxn3B18GU1+SqZVCCCGE6DRkmqXovAL7qQBkzf+p/dPH4JMLQKNV5QtM1QZyERMhKBocnY1t/hGQskFtH18LK59Vo3w7PoG7t6mU9geXQVlNVsoDP6vROZcmrC+rP82yPq8QNXrnFWLZ58akboXsg+qj+0i44FljW1CUCoxATVs06NXURp8eKtj99EL1PZq3DHqOhqip6sOUoyugAWrWIpqO3p1JSbZx2yMIck2CYo3WWLS9MF0lLKkt0eDiBTPfUMXiA/s1/hpH/4bljxv3u4+E2e+oAFkIIYQQopOQYE50bpMeVun4N74JGNQ0vfo11kydPgbX/Wh+zDRJR22R6qFXwejbjbXJ6qfVT9umClGfiVcI9Byrgjprdezm/QpObs0fTTItFh4+uuHzJj1svv/huaoOHcBvD8GdG6xfp9GAk7v63kLDUzfr0+vNgznPYPMRztpArtbyJ1W2SlNnCuTyU+HHm4338u4BV32jvo9CCCGEEJ2IPKYWnZvWQY1K3fS7SnRSyycc5n6mAhJTRRmwZ5H5MWtB1p7vzNPcnzpg3u7UxBT+w66D+X/Cgh1wwb8t253dz25aYOo243bPRoK5+qpMRthO7W38XNOplk2dZlmWZx5Mu/o0Xjri8O9qOmZT6apUIFe7/s/JHa75Dry6Nf0eQgghhBAdhARzomvoNQ7u3AQXPg/TXoG7t8LgSyFiguW5G/5nnh7fNONirWHXw5C5xv1Mk8Dn6kXNC6DOhsEAecmQut38uF4PK59TBdBrNTYyV9+UZ4zbpglkrDENhJs6zdJ0VM7BGUpOUzdVE43xuKmvLoOq8qbdf/Xz5qOS01+DkCFNu1YIIYQQooORaZai63DxhHH3mB+LPB+O/mV+LDdRTaccNEft+9UL5gL7w7SXjPuluVCYZty3ZfBwfC1s/J/KrgkQ0E+N6oGa6rj0Tti/xHh++GhI+EaNNlaWwPAbVOKT7ENq2qFvLwgxSfbi5m/crh3d+utpNcLp7AEjbjJm3TQN5po6zbIky7hdf71cQCRc/jksvsF81BPg1Si4f48ayWvIsb9hw+vG/ZhrIPbqpvVLCCGEEKIDkmBOdG19z7d+fP1rMPASNcXRzQ8CoyDnsEr8MfczY4r+qnJV/6yWewB4h7VuH3VVqixB6Wk17bA2kAM4fVSNbrn7w6LrzKckBkXDpR/Btg9V8AZQnKVKCqx9Ue37R6oRxrI8CB6oAqpapXlqBHDzO8apkYMuNQZzZzPNsrixYK6vCoQ9QyyDufC4xgO5snz42SRQD+wPF7/StD4JIYQQQnRQEsyJri2gr/XjmXtUsfGoaSqgu3Yx7FkM/S6EboNg2YMqyUnWQZXmv1bIEPM1bgaDCr7yU9RIkVO9mmqH/1SBmHuAGiWrX3g7+wi8U1PA3MHZ+pTJtG0qMDIN5CLPU6Ncrj716swVmycCyU2EtTWjjFEXQ48njG1leVBdYb7GzfRe1qZZVpaqpDC1iWHqM83e6RGkEs7Uqv238DIpx9B9pEp4cuHz1u9X66+njKUbHJxVwN2UbKJCCCGEEB2YBHOia9NoYOqL8Odj4OINocMguabI9N/PQN8LVIDlFwHn/MN4Xdp24zq5Pd8Zj3cbrI6nbFbBUMEJVQAbIG0HXPKu8dzKUvj2SuP+Q4fNAxlQ2R5r6SohZZPl15C6Vd2rVo9RcM1iY0DlbBLUVBab77v5GevLHf7dfJ1cVYmxrZZpAFd/muXKZ2H9q4AGPLupIHXcveZTHU2nWdbPZFk7KugVajwWGgMzXrP8mk0lroL4L4375zxqPnVUCCGEEKKTkmBOiDF3Qt8paqSoIBXenwgY1NTE3d+odWb1hcWq0bu6/eGQdUCtM3u/JqmKac00UGvXJjxgTK1vWjAcrNeZc/WpKQFQE6xZK6twYqt5kDTsevORMbORuRLz9W3e3c0DNtPabGCeSKX+vXy6q/WEzh4qscn6V2saDFCcqT6W3qGmQI6+XdV4qz/N0nQ00b82mDMtlJ5p+fWaqiiGX+4z7ocMgfH3NXy+EEIIIUQnItkshQAVYLn5qmAg5irj8dX/Zz7qVSs01rjdfQTcthoeT4cL/wPammck9WumYTAJeDCfcujqY31qokZjOVpX38ldcOtquGIhDJwNA2eZt7t4Gbcris3Xt51pfZ9p2QBHN5UIpdaM1+G+BLh9HRxd3vA9lj+mCpFnH4bgASrpTMgQ8A6F4lPG8+qmWZqMzNVOnWzI6v9To5+gvu+z3214iqcQQgghRCcjwZwQ9Z37JDi4qO2iDNjwmkpCYios1riduU+1OziqaYseQQ3fe/ciY3KP0lzjcffAhq8xDW5qdR9h7GN1OeQcUYHcFQtVH0w1OjJ3hmDOdGTOuYHaeTs/My/NMOsty3PStsPn09X6wut/gjs2QPgYY7uTu/HrbOrIXPYR2PaBcX/8/RA6tOHzhRBCCCE6GQnmhKjPN1xNC6y17hX4vzD4YJIKxkCtjdPWjADpKozZInVVUF7QyM31KlMmmE+ztDbFspa1YC5kKHQfbtw/saXh682CuSLzkTmvBoK5qS/BVd+Ab0/r96lVclrVtas19CroNR40DlbOzVbTLvU1I5amyU/8I9U0TDD/eotPGc+vb/kToK9W2749YdIj1s8TQgghhOikJJgTwpqJD4Krr3FfVwkZu1Udt4I0cHRRUwZrnUxQnw/+apmm3yPYfH/3t2r6ollmx8ZG5qxMswweYJ7Z0rRQdn3OJtMsLUbmrASKXqEw5g6Inq5KMdTdx0p2yDX/Z6xH5+wFFzyrEpmYJi3xMQkIE1fBlpokMNaSnwB4dTNuG3SWawsBjq6AYyuM+xf+xzJTqBBCCCFEJyfBnBDWuPnB3E9VNkWtSZ4ggw4O/6G2TadaHvhZlSHY/rHxmHuAusdV36ggx6u7Oq6vhl/vN08GUlmiAhSDwbIv1kbmgqKhp8k0xdSt1q8FURbkyQAAJmNJREFUK9MsTYJNN3/zgA3MyzXUlhyofx+AiiJVrqHW5MeMgVjwIOPxkhyImm7c//sZFRiblSUwCeZcvMwDx/rr5nRValSuVq8JMKDeOkEhhBBCiC5AgjkhGtL3fJXc44mTMOIm4/HaYC7EZH3WsRUqsEnZaDx29SIYfBmEj1IZFieblDZIXAmHlhn3k9bC13NV4e/60zStjZ4FD4Qeccb9iiLzZCJb3oNPp6k6dqZBWHU5VBQa953cVEkGU7XZNkGVMqhlWiQcVDFx03sNu86kf9Emr1mqpkDWjhCGj4bcJMuC4aYaWze341O1RhAADUx9wby2nxBCCCFEFyHBnBBn4uiigrJayetV8NStXi2z5A3G7ZCh0GOkefuwG2DgJcZ902Cm1qFl8OFklVSlVv2ROfcA8AwCjwBj2YSeY4zTOU8nqrp5JzbBT7eqkcVeE6D/VPV1lJsEYPmpUHba/P4BJsFcdYVxu/40S9Pg0dFVZQOt5eKliqDXKjoJV38DaCBlA6x72XrBcGtfs+nIXFWZeUbQ4TdI0hMhhBBCdFlSZ06Ipug5Rq2hK89X6+cSV0P0DBUkpWxQtd32/2Q8P+5Wy9EirRbmfKCmHaZsoEG5x+GTC9WoYGBfyzVz1/5g3J71Fpz7lCrAXft6iauM7RWFatTwpt+Mx07tVyUKji6HP/4B+nq160pz4Od7VP25wP7wzzxVQLz+eYUnjdumUzWrylVfug2G/BTja57zD1XM/NjfMGgOfDbVeE1TR+Z2fGoMIh1d4dwnEEIIIYToqmRkToimcHCCfhcY94/8qYKzG5fBAwdUiv/aKYmuPioFf0Nir7HMIjn6Dpj8BFATkFWVwOaaFP9eYTDpH6qu29XfqRptpry6mQeOyevN23d+Yb7fbZDq6/pXVSbO+jQOEP+lGiVM2aS+Thcv85E3gLwU47ZpbbdNb8F/guHIH8Zjp/arz/0vhItfNi9y7uoL7v71viYrwVxlKWz4n/H4yPlnrsEnhBBCCNGJycicEE3Vfyrs/V5tH1muRqq0DmqEaPM7xvNG32G5vgzg+FpYfL1aE+cRDH3OVQlG+k1RUzC9Q1VQ8/vD6vy9P8JFL6h7nfdk0/qo15tP9wRI36GmbYbUTAutKIJf7zO2O3upkgW1PE2ySZaZ1MIzex2dWvdWxyT5Su06OtOi6VkHjNu6KvNyBhETLO9vNs2yJpjb+ZkxCHR0VXXlhBBCCCG6MBmZE6Kp+k4xZrYszYG0HWp74+smo3K+MPZu69d3G2TMDlmSBePvhVtWwDmPGpOcxF5jTBRSWQQHf2leH7MPQulpy+O7TEbnVj5rLAaudYL5f4Bfb2O7aQKW0gaCuezDoCs37ptOwawosjz/9DFjSYSdn8Ppo2pbo1VF2uszDSiLMqyMyt1sXsJACCGEEKILkmBOiKZy84Ve44z7R/6AwgzY9pHx2IT71TRLazwCod+Fxv3d31me4+wBgy817sd/1bw+Jq0zbmtM/nsnfK3KJ6z+P9j2ofH4xIfUtM0Qk2QupolNSnOsF+0+uct8v9Kk3IFpMFdbPNygVwFgeQGsecHYPux66DbQ8v71R+Z2fm4yKuemsoMKIYQQQnRxEswJ0Rz9pxm3t7yvEpVU14xQeQRD3G2NXx9zlXH74K/WR7GGXW/cTl6vEqI0VZLJerkRN4JTTVmCyhJYfAOsfcnY7uQBEx5Q28EmAVV+qvk9n/WD/+sBCd8aj6XXC+Z0FcbRuYoGpmxmHYANrxtHDp08Gk5gYroWriQLtr5n3B85X0blhBBCCCGQYE6I5okyycBYXQYFJ4z7kx62LKxdX/+pxpG7qlIV0NXXY6QqCl4r/uum9U2vM8+SGXUxDLms4fMNOnCqyUIZPMB4/PQx6hKx1KosUusDa9UfmQNjMXLTYM63p3F701uw8U3j/vj7Gk5gYnrcoIf8mu+zxgHG3mX9GiGEEEKILkaCOSGaw7+PSnBSn19vNRJ2JvVr1i29E9a9Yn6ORmNegDvhG8uyANZk7jWud9M4qHIKI+djEZjVMq0bZzoyl5tofapoSTYUpKvac6Z18GpVWgnm/E3W4mUdUAEkqGmU4+5p+Gtx9gAXK30YOAt8ejR8nRBCCCFEFyLBnBDNNe0l+EcS3PQHTH8Npvwb5v2qArWmiLnafH/P95bnDL3SmGyl6CQcWHrm+5qul+s+XJUTCBsGl39unuCklpNJxk3/PioZCqiAq36BcIDlT8AbQ2tq01VZtteNzJkUJQ/sb3medw9VYuFMo5jWRu3GyKicEEIIIUQtCeaEOBvu/ioZyqibVdIT3/CmX9tjlPl+dbnlOZ7BED3duP/X06rQd2NM68v1nmTcHnQJ9D3f8nwnN+O2g5N54OXgbP019NUqGUktn3CY+SZc+jG4B6hjpiNzoTHGoBSg7wVwx3oIi238awHLdXHdR1h+74QQQgghujAJ5oSwN40GLnjWuN9Q0pTz/2UMqgrTYf1/G76nrhpSNhv3Iyaat1sbBTMN5sB83Zxp3bjG9J8KI+bB0MvB1RsMBss1c9Nehu4j4cLn4ZrFlgXCG2Ka0RLUqJymgSmjQgghhBBdkBQNF6ItjK1ZL6arqlnXZkVAJIxbAOtfVfub3oaYayDIytTFrP3Gwt9aRwgfbd5eW7vOlFO9wuamwZyuEtz8oCzPeMzBRSVnSdloPNZjpPk9qivMp2C6eKnRy1E3W/8aG2M6zdIrFAbObv49hBBCCCE6MRmZE6ItaB1UNsdJD4Oze8PnTXxITWUEFST98Yga/aqvtoA5qLpx9e/ZpJE5kyQoWkfLtX1T/qXWBp77JLh4Q484GHhJvZsaYPLjKlgdfkPDNfeaot9Fxu1z/qGmggohhBBCiDoyMidEe+bsAVNfgEU12S2Pr1FlAbqPMD8vfadxu3u90bLa+1gca2RkLj8Ftrxr3j7yZhWEnvMPFWSaliqo5eQGkx9r8MtplojxcMcGlSWz5+gzny+EEEII0cVIMCdEexc9A0JjISNB7Z+Mtwzm0rYbt+tPfQRwsZKdsv40S99e6lhtVkpTWkfzbJ21gdzBXyFxFZTkQL8L1GhcawoZ0rr3E0IIIYToRGSapRDtnUajSg3Uyjpo3l6WDzlHjPvWMj5aKzVQf5qlVmterNzseg/ryUdSt8KOT+HgL+ZTPYUQQgghhM3JyJwQHYHperb6wdzJXcZtNz9VM66+7iPg2h9hz3dw7G+VZdK3l/XXqb2fxkEFhgad9ambAB5Bxu3S0037WoQQQgghRKuQYE6IjsB0PVvWAZUEpXakLM10vdwI6yNoHoHQb4r6aMzw6yHhKxXIGXSQukVlwrzlb+vnuwcat0ty1BTQI8tVFkv/SIia2rSvTwghhBBCNJtMswRKSkr48ssvWbBgAXFxcbi4uKDRaHjxxRdbdF+9Xs9HH33EhAkT8PPzw83NjT59+nDttdeyf//+Vuq96BKCTIK5sjwoPmXcN10v19AIWlP1HAMPHoQbfzMeqyyC6krr53uYBnPZaqrlmhdg+ROw/aOW9UUIIYQQQjRKRuaAo0ePcsMNrZu4obS0lJkzZ7Jq1Sr8/PyYMGECrq6uJCUlsWjRIqZNm8agQYNa9TVFJ+YRAJ7djEFc1gFVh81ggHSTtWrW1ss1l3eYKj1gqiwPvLpZ6ZdJMFeaY14w3MVKbTshhBBCCNFqJJgDvLy8uPnmm4mLi2PUqFH8+OOPPP/88y2650033cSqVauYP38+b731Fu7uxsyBGRkZVFVVNXK1EFYEDzAJ5g5C5HmQl2y+Vs00UUpLOHuAg7MqHg5Qlms9mDOdZlleYN4XCeaEEEIIIWxKgjkgMjKSjz/+uG7/559/btH9Vq1axeLFixk1ahQfffQRWq35bNbQ0NAW3V90UcEDVZ05UCNzYF5fzj8S3P2tX2swwNeXQ9JaFaBd9Q1ETGi4qLdGYwzkAA79Zr5ur5bpyByo4LJW/dE9IYQQQgjRqmTNnA188MEHADzwwAMWgZwQZ80sCUpNRkvTcgDW6svV0mggZZMxQPvuGmNg2BT1C4jXcvYwr1dnFszJyJwQQgghhC3JyJwNrFq1CoApU6awb98+vv/+ezIzMwkJCWHatGmMGTOmjXsoOiSz8gSHQK+vVyz8DOvlnD2gqsS4X79oeGOqKxpucw+EghNqOzfJeFyCOSGEEEIIm5JgrpWdOnWKnJwc/Pz8+OSTT3jyySfR6/V17c8++yzXXXcdn376KU5OTk26Z0OJUhITE4mMjGyVfosOICjKuF1VogK5jN3GY91HNH69iyeUZBn3mxPMObo23OYRYAzmTINFCeaEEEIIIWxK5gC2sry8PACKiop4/PHHufbaazl8+DB5eXn88MMPBAYG8tVXX/H000+3cU9Fh+PipYp911p2P+hrEul4hULIkMavd/Yw33dya/z8i14wbl/SwDRLAI9gtfYuoK9lf4UQQgghhM10ipG5uXPnsm/fvmZds3DhQuLi4lq9LzqdDoDq6mrGjh3LwoUL69ouu+wyXF1dmTFjBm+++SZPPPEE3t5nThLRUE06KW3QBQUPhPyaUbDaJCgA4xaAwxlGep09zffPNDI36mZw9VaJTPpe0PB5V38HtWtD3xwOuYlqW4I5IYQQQgib6hTBXHJyMocPH27WNaWlpTbpi5eX8Q3s/PnzLdqnT59Ot27dOHXqFNu2bWPKlCk26YfopIIHwJE/zY+5+cOIG898bf2RuDONzDm6wLDrznxf0yQ/ZnXmJJulEEIIIYQtdYpgbseOHWc+yU7CwsJwdnamsrKSXr16WT2nV69enDp1iqysLKvtQjTINAlKrTF3WU6htEZb7797c9bMNZUUDRdCCCGEsJtOEcy1J46OjgwePJhdu3aRm5tr9ZzTp1VhZU9PT6vtQjSofq03F2+Iu7Vp12rqLZF1tkEw92iyCugqCsGnR+vfXwghhBBC1JEEKDYwa9YsAFavXm3RlpycTHJyMgDDhg2zZ7dEZxDYHzQOxv1Rt4Cbb9OurR/MOZ5hmmVTGQxQXgi5xyHnCHgGQUCkmqYphBBCCCFsRoK5FoiOjiY6Opr09HSz43fddRfe3t589tlnrFixou54cXExd955JzqdjunTpxMeHm7vLouOztEF+k9V257dYOzdTb+2fjDXWgXtT8bDi+Hw5jD4Ykbr3FMIIYQQQpyRTLOsMWfOHDIyMgBIS0sD4N1332Xp0qUAhIaGsmTJErNrapOuVFVVmR0PCgri888/54orrmDq1KmMGTOG4OBgtmzZQmZmJr179+aDDz6w8VckOq25n8Lx1RAyFDwCm36dm59t+mPah/IC0FWdObOmEEIIIYRoMQnmasTHx5OSkmJ2LDU1ldTUVIAGk5k0ZM6cOWzatInnn3+eDRs2sGPHDsLDw3nooYd4/PHHCQgIaLW+iy7GyRWipjX/ugv/A9EzoKoUMLRef9zrBZSlp8ErpPXuL4QQQgghrNIYDIZWfFcn7Km2zlxDdeiEsJvnw6CqxLgfeT5c/1Pb9UcIIYQQog3Y+/25rJkTQrScR72R5vL8NumGEEIIIURXIsGcEKLl6k+1lBpzQgghhBA2J8GcEKLlPILM9yWYE0IIIYSwOQnmhBAtVz+rpot32/RDCCGEEKILkWBOCNFy7vXWzMnInBBCCCGEzUkwJ4RoOZlmKYQQQghhdxLMCSFazmKapQRzQgghhBC2JsGcEKLluo8w35dgTgghhBDC5iSYE0K0XFCUeUAnCVCEEEIIIWxOgjkhROuoKDJuy8icEEIIIYTNObZ1B4QQncTgy6AgVQV1PuFt3RshhBBCiE5PgjkhROuY/Fhb90AIIYQQokuRaZZCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0BJSQlffvklCxYsIC4uDhcXFzQaDS+++OJZ3zMvL49HH32U6Oho3NzccHNzY9CgQTz11FMUFha2Yu+FEEIIIYQQXZFjW3egPTh69Cg33HBDq90vOzubsWPHkpiYSFhYGFOnTqW6uprNmzfz/PPP8+OPP7J582Z8fX1b7TWFEEIIIYQQXYuMzAFeXl7cfPPNfPDBB+zatYsnn3yyRfd74YUXSExMZM6cORw/fpwlS5bw66+/kpSUxIQJEzh06BCvv/56K/VeCCGEEEII0RXJyBwQGRnJxx9/XLf/888/t+h+69atA+DRRx/FxcWl7riXlxcPPfQQGzZsYPv27S16DSGEEEIIIUTXJiNzNmAawDXE39/fDj0RQgghhBBCdFYSzNnABRdcAMBLL71ERUVF3fGioiL++9//AjBv3rw26ZsQQgghhBCic5Bpljbw8MMPs3r1apYsWUKfPn0YPXo01dXVbNq0CQcHBz755JO6gE8IIYQQQgghzoYEczbg6enJn3/+ya233srXX3/NkiVL6tpmzZrFiBEjmnW/QYMGWT1+6NAhnJycGmwXQgghhBBC2E9iYiJOTk52e71OEczNnTuXffv2NeuahQsXEhcXZ5P+nDhxgunTp5ORkcHChQuZOnUqAH/88QcPPPAAEyZMYMWKFYwZM6ZFr6PX66mqqmqNLosmSkxMBFTSHGEf8j23P/me2598z+1Pvuf2J99z+5Pvuf1VVVVRXV1tt9frFMFccnIyhw8fbtY1paWlNuqNWg+3b98+li5dyuzZs+uO33DDDXh6enLZZZfx4IMPsmnTpibdb//+/VaP147INdQuWp98z+1Pvuf2J99z+5Pvuf3J99z+5Htuf/I9tz97z5jrFMHcjh072roLdVJTU1mzZg0uLi7MnDnTon327Nm4uLiwZcsWysvLcXV1bYNeCiGEEEIIITo6yWbZytLS0gDw8PBAq7X89jo4OODu7o7BYCA/P9/OvRNCCCGEEEJ0FhLMtbKQkBAAcnNzSUpKsmhPTEwkLy8PDw8PAgMD7d09IYQQQgghRCchwVwLREdHEx0dTXp6et2x3r17M3ToUABuv/12CgoK6try8/O5/fbbAbjkkktwdOwUs1yFEEIIIYQQbUCiiRpz5swhIyMDME6VfPfdd1m6dCkAoaGhZiUGgLqkK/UzSn744YdMmTKFFStW0LdvX0aPHg3Ali1bOH36NBEREbz88su2/HKEEEIIIYQQnZzGYDAY2roT7UFERAQpKSkNtvfq1Yvk5GSzYxqNBoCkpCQiIiLM2hITE3nppZdYuXIl6enpaLVaevfuzaxZs3jkkUfw9/dv7S9BCCGEEEII0YVIMCeEEEIIIYQQHZCsmRNCCCGEEEKIDkiCOSGEEEIIIYTogCSYE0IIIYQQQogOSII5IYQQQgghhOiAJJgTQgghhBBCiA5IgjkhhBBCCCGE6IAkmOtgysvL+de//kX//v1xdXUlLCyM+fPn1xU6F61v8uTJaDSaBj/+/PPPtu5ih7Rz505efPFFLr30Urp3745Go8HV1fWM1y1cuJC4uDg8PT3x9/fn4osvZtOmTXboccfX3O/5M8880+jP/mOPPWbH3nc8paWlLF26lJtvvpmhQ4fi7e2Nh4cHMTExPPvssxQXFzd4rfycn52z+Z7Lz3nLvfbaa1x66aX069cPHx8fXFxc6NWrF/PmzWP//v0NXic/52evud9z+TlvXbm5uQQHB6PRaIiOjm70XFv/nDu22p2EzZWXl3P++eezadMmQkNDmT17NsnJyXz22WcsW7aMzZs3ExkZ2dbd7LQuu+wyPD09LY537/7/7d19TJXlH8fxjyCSaEAgKqhsCsGKogmtmQS6Mh+yMh9WtmrKysq2yqlbWwWuYeUSZtRvudWcIokucdZ82NRkPqKUglr41BRFpiwgQAQBiev3R+PkCeTIw7nxxvdr4w+u67rd93z3cfrlnPtmWA9UY38pKSn66aefOnTNwoULtWLFCvXv318TJ05UfX29du3apZ07d2rjxo2aPn26m6rtHTrTc0mKi4tTeHh4q/XY2NjuKKvXysrK0rx58yRJUVFRmjx5sq5evarc3FwtWbJE69ev1969ezV48GCn68h553W25xI574rPPvtMtbW1io6O1sMPPyxJKiws1Nq1a7Vhwwb9+OOPmjJlitM15LxrOtNziZx3l4ULF6q8vPy2zrk95wa2kZSUZCSZxx9/3NTU1DjW09LSjCSTkJDQg9X1XuPGjTOSTFFRUU+X0qssW7bMJCcnmy1btpjS0lIjyXh7e9/y/O7du40kExgYaM6ePetYz83NNf369TN+fn7mr7/+sqJ02+poz5csWWIkmdWrV1tXZC+SkZFh5s+f75RXY4y5fPmyGT16tJFkXn75Zac9ct41nek5Oe+6AwcOmOvXr7da/+abb4wkExISYpqamhzr5LzrOtpzct59fv75ZyPJvPnmm0aSiYyMbPOcVTlnmLOJxsZG4+/vbySZ/Pz8VvvR0dFGkjly5EgPVNe7McxZw9Vg8cwzzxhJZsWKFa323nvvPSPJpKamurHC3odhrufk5uY6+t/Q0OBYJ+fuc6uek3P3Cg8PN5JMYWGhY42cu1dbPSfn3aOurs6Eh4ebBx980Jw9e7bdYc6qnHPPnE0cOHBAVVVVCgsL0+jRo1vtz5o1S5K0ZcsWq0sD3K6+vl67d++W9G/Wb0b+YTePPPKIJKmhoUEVFRWSyLm7tdVzuJ+np6ckqV+/fpLIuRX+23N0n08++UTnzp3TypUr5eXldctzVuace+Zs4vjx45KkmJiYNvdb1lvOofutWrVKFRUV8vDwUEREhF544QWFhob2dFl3hdOnT6uhoUFBQUEaPnx4q/2W/J84ccLq0u4KOTk5OnbsmOrr6zV8+HBNmTKF+yu66Pz585IkLy8vBQQESCLn7tZWz29Gzrvf2rVrdebMGUVERGjUqFGSyLm7tdXzm5Hzzjtx4oTS0tKUmJiohIQEXbhw4ZZnrcw5w5xNFBcXS1Kbgbh5veUcut/SpUudvl+8eLGSkpKUlJTUQxXdPVzlf8CAAfL391dlZaVqamp07733Wller5eZmen0fVJSkmbOnKk1a9a0+VAguJaeni5Jmjx5sry9vSWRc3drq+c3I+ddt3z5chUWFqq2tlanTp1SYWGhQkJClJWVJQ+Pfz4MRs671+30/GbkvHOam5s1b948+fv764svvnB53sqc8zFLm2h5nLKPj0+b+wMGDHA6h+6TkJCgzMxMnTt3TnV1dTpz5ow+/fRT9e3bV8nJyY7/IMB9XOVf4u+AO4SHhys1NVWFhYW6du2aLl26pHXr1mnYsGHatGmTXnvttZ4u0Za2b9+uVatWycvLSykpKY51cu4+t+q5RM67044dO5SRkaHs7GwVFhZqxIgRysrKcnrnh5x3r9vpuUTOu+rrr7/WL7/8ouXLlyswMNDleUtz3uW77mCJN954w0gyH3/8cZv7LTdhRkREWFzZ3WvHjh1GkvHz8zN1dXU9XY7tqZ2HcXz//fdGknniiSdueX1ISIiRZC5fvuyuEnud9nrensuXL5vAwEAjyRw8eNANlfVeJ0+eNPfdd5+RZL788kunPXLuHu31vD3kvPMqKyvNvn37zIQJE4wks3TpUsceOXeP9nreHnLuWnFxsRk4cKAZN26c03pRUdEtH4BiZc55Z84mWt5+ra2tbXO/rq5OkniL3EITJ07Uo48+qurqah0+fLiny+nVXOVf4u+AlYKDg5WYmCjpn58K4/aUlJRo8uTJqqys1MKFC/X+++877ZPz7ueq5+0h553n7++v+Ph4bd++XbGxsUpKStKvv/4qiZy7S3s9bw85d+2dd95RY2OjVq5cedvXWJlzhjmbaHnQRklJSZv7Les8kMNa999/vyTpypUrPVxJ7+Yq/7W1taqqqpK/vz/3V1iE7HdMeXm5nn76aRUXFysxMVGpqamtzpDz7nU7PXeFnHeNl5eXXnrpJRljHE/tI+fu1VbPXSHn7du6dat8fHw0f/58jR8/3vE1e/ZsSf/cH9ey1vKRSStzzgNQbKLlkcr5+flt7resR0dHW1YTpMrKSkn89NDdIiMj5e3trbKyMpWUlLS6oZj8W4/s376amhpNmTJFp0+f1owZM/Tdd9+pT58+rc6R8+5zuz13hZx33aBBgyRJZWVlksi5Ff7bc1fIuWtVVVXau3dvm3vXr1937DU1NUmyNue8M2cTcXFx8vPz07lz51RQUNBqPzs7W5L07LPPWl3aXausrEz79++XdOtfGYHu0b9/fz355JOS/s36zci/tYwx2rx5syTxSGsXGhoaNG3aNB05ckSTJk3S+vXrHb8D6r/IeffoSM/bQ867R8t/csPCwiSRcyv8t+ftIeeuGWPa/CoqKpL0z+DWsubv7y/J4px36Y47WOqjjz4ykszYsWPNtWvXHOtpaWkub7JE5xw6dMjk5OSY5uZmp/WioiITFxdnJJnnn3++h6rrXeTiYRy7du0ykkxgYKA5e/asYz03N9d4e3sbX19fU1FRYUWpvUZ7PS8rKzMZGRmmvr7eab2mpsa89dZbRpIZOnSoqa2ttaJUW2pqajLTp083kkx8fPxt9Yqcd01He07Ou27fvn1mw4YN5saNG07rjY2N5quvvjIeHh6mf//+pri42LFHzrumoz0n5+7R3gNQjLEu532MMabrIyGsUF9fr/HjxysvL0/BwcGKj4/XxYsXlZeXp8DAQB0+fFjh4eE9XWavsmbNGiUmJio4OFgREREaOnSoSkpKdPToUdXX1ysqKko5OTkaPHhwT5dqO9u2bXN6RHheXp769Omjxx57zLGWlJSkqVOnOr5fsGCB0tPT5ePjo6efflqNjY3atWuXmpub9cMPP2jmzJmWvga76UjPL1y4oJEjR8rX11cPPPCAQkNDVVVVpfz8fFVUVMjf319bt25VXFxcT7wUW0hPT9eCBQskSdOnT5evr2+b51JTUx0fi5LIeVd0tOfkvOta/p0cNGiQYmNjFRgYqPLycv3222+6cuWK7rnnHmVkZOjFF190uo6cd15He07O3aOlr5GRkTp9+nSbZyzJeZfHQViqrq7OJCUlmbCwMNOvXz8zZMgQM2fOHKefeKH7nDx50syfP9/ExMSYoKAg07dvX+Pn52fGjBlj0tLS+JUEXbB69Wojqd2v1atXt3ldbGys8fHxMX5+fmbSpElm//791r8AG+pIz69evWo++OADM27cODNs2DDj7e1tfHx8TFRUlFm0aJEpKSnp2RdjA0uWLHHZb0mmqKio1bXkvHM62nNy3nXnz583H374oYmLizPBwcHGy8vLDBgwwERFRZl3333X/PHHH7e8lpx3Tkd7Ts7dw9U7cy3cnXPemQMAAAAAG+IBKAAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAC40aFDh+Th4aGYmBg1Nzff8tymTZvUp08fTZs2zcLqAAB2xjAHAICbNDc36+2335YxRunp6fLwuPU/uzExMZKk3Nxcq8oDANgcwxwAAG6ybt06nThxQhMmTFB8fHy7Z0NDQ+Xp6any8nKVl5dbVCEAwM4Y5gAAcJNly5ZJkhYtWuTyrKenp3x9fSVJpaWlbq0LANA7MMwBAOAGhw8f1smTJxUcHKyJEyc67e3fv18FBQWtrmm5p669e+sAAGjBMAcAgBvs2LFDkjRhwgSne+VKS0uVkJCgzz//3Ol8XV2dqqurJUlDhgyxrlAAgG0xzAEA4AbHjh2T9O+DTVocPHhQkhQREeG0fvz4cUlSSEgIwxwA4LYwzAEA4AaXLl2SJA0fPtxpfdu2bZKkoKAgp/WdO3dKkp566inHWm1trTw9PbVmzRrNmTNHAQEBCggIUEpKijtLBwDYBMMcAABucOPGDUnO979VV1crOztbkvT333871puampSRkSFJevXVVx3rx44dU3Nzs1asWKHnnntOR44c0eLFi5WcnKzz589b8TIAAHcwhjkAANwgNDRUkpSTk+NYW7x4sYKCgvTQQw/p0KFDjvXk5GQVFRVpzJgxTg9LKSgokIeHhzIzMzVr1iyNGjVKr7/+uiTpzz//tOiVAADuVH17ugAAAHqjV155RVu3btW3336rixcvqqqqSnl5ecrOztbGjRu1YcMGTZ06VRUVFcrLy9PQoUOVmZnp9Gfk5+dr7Nixio6Odqy1vCMXFhZm6esBANx5GOYAAHCD2bNnq6SkRP/73/+0Z88eRUZGauPGjZoxY4ZiYmJUWlqqPXv2aODAgZo7d65SUlJa3V9XUFCgSZMmOa0dPXpUI0aMaHXPHQDg7tPHGGN6uggAAOCssbFRAwcOVFZWlmbNmuVYnzt3rqqrq7V58+YerA4AcCfgnjkAAO5Av//+u27cuKHY2Fin9aNHj7ZaAwDcnRjmAAC4AxUUFCggIEAjR450rF2/fl2nTp1imAMASOJjlgAAAABgS7wzBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADb0fyCvjlT/pwbbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,dpi=150)\n", + "\n", + "ax.oplot(Sigma_iw['up_2'].imag, '-', color='C0', label=r'up $d_{z^2}$')\n", + "ax.oplot(Sigma_iw['up_4'].imag, '-', color='C1', label=r'up $d_{x^2-y^2}$')\n", + "\n", + "ax.oplot(Sigma_iw['down_2'].imag, '--', color='C0', label=r'down $d_{z^2}$')\n", + "ax.oplot(Sigma_iw['down_4'].imag, '--', color='C1', label=r'down $d_{x^2-y^2}$')\n", + "\n", + "ax.set_ylabel(r\"$Im \\Sigma (i \\omega)$\")\n", + "\n", + "ax.set_xlim(0,40)\n", + "ax.set_ylim(-1.8,0)\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2a07a928-e69f-4ad1-91ea-0386024ed5de", + "metadata": {}, + "source": [ + "We can clearly see that a $\\omega_n=8$ the self-energy is replaced by the tail-fit as specified in the input config file. This cut is rather early, but ensures convergence. For higher sampling rates this has to be changed. We can also nicely observe a splitting of the spin channels indicating a magnetic solution, but we still have a metallic solution with both self-energies approaching 0 for small omega walues. However, the QMC noise is still rather high, especially in the $d_{x^2-y^2}$ orbital. " + ] + }, + { + "cell_type": "markdown", + "id": "8b22265a-4138-4d9c-8315-917320f27cb3", + "metadata": {}, + "source": [ + "## 5. Multiplet analysis" + ] + }, + { + "cell_type": "markdown", + "id": "d3c2f507-757a-4880-b9dc-1f254c78c512", + "metadata": {}, + "source": [ + "We follow now the triqs/cthyb tutorial on the [multiplet analysis](https://triqs.github.io/cthyb/unstable/guide/multiplet_analysis_notebook.html) to analyze the multiplets of the Ni-d orbitals: " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c00e89e4-cf2e-4fca-84b1-11cb42072217", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "pd.set_option('display.width', 130)\n", + "\n", + "from triqs.operators.util import make_operator_real\n", + "from triqs.operators.util.observables import S_op\n", + "from triqs.atom_diag import quantum_number_eigenvalues\n", + "from triqs.operators import n" + ] + }, + { + "cell_type": "markdown", + "id": "fe674d6b-dae6-4497-82f5-6b8004afb275", + "metadata": {}, + "source": [ + "first we have to load the measured density matrix and the local Hamiltonian of the impurity problem from the h5 archive, which we stored by setting `measure_density_matrix=true` in the config file: " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "786a549c-9306-4099-a4f0-3f19d2bdbb36", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(path+'/nno.h5','r') as ar:\n", + " rho = ar['DMFT_results/last_iter/full_dens_mat_0'] \n", + " h_loc = ar['DMFT_results/last_iter/h_loc_diag_0']" + ] + }, + { + "cell_type": "markdown", + "id": "585625be-0888-460e-879b-2a60215a69bb", + "metadata": {}, + "source": [ + "`rho` is just a list of arrays containing the weights of each of the impurity eigenstates (many body states), and `h_loc` is a: " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "efeafafa-502b-4acd-8e76-4f7eab6eb9c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(h_loc))" + ] + }, + { + "cell_type": "markdown", + "id": "72450efb-b8b8-4169-9c01-6fb6259a3178", + "metadata": {}, + "source": [ + "containing the local Hamiltonian of the impurity including eigenstates, eigenvalues etc." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "d767053a-f785-44d1-8a82-eafc5c8b9911", + "metadata": {}, + "outputs": [], + "source": [ + "res = [] \n", + "# get fundamental operators from atom_diag object\n", + "occ_operators = [n(*op) for op in h_loc.fops]\n", + "\n", + "# construct total occupation operator from list\n", + "N_op = sum(occ_operators)\n", + "\n", + "# create Sz operator and get eigenvalues\n", + "Sz=S_op('z', spin_names=['up','down'], n_orb=5, off_diag=False)\n", + "Sz = make_operator_real(Sz)\n", + "Sz_states = quantum_number_eigenvalues(Sz, h_loc)\n", + "\n", + "# get particle numbers from h_loc_diag\n", + "particle_numbers = quantum_number_eigenvalues(N_op, h_loc)\n", + "N_max = int(max(map(max, particle_numbers)))\n", + "\n", + "for sub in range(0,h_loc.n_subspaces):\n", + "\n", + " # first get Fock space spanning the subspace\n", + " fs_states = []\n", + " for ind, fs in enumerate(h_loc.fock_states[sub]):\n", + " state = bin(int(fs))[2:].rjust(N_max, '0')\n", + " fs_states.append(\"|\"+state+\">\")\n", + "\n", + " for ind in range(h_loc.get_subspace_dim(sub)):\n", + "\n", + " # get particle number\n", + " particle_number = round(particle_numbers[sub][ind])\n", + " if abs(particle_number-particle_numbers[sub][ind]) > 1e-8:\n", + " raise ValueError('round error for particle number to large!',\n", + " particle_numbers[sub][ind])\n", + " else:\n", + " particle_number = int(particle_number)\n", + " eng=h_loc.energies[sub][ind]\n", + "\n", + " # construct eigenvector in Fock state basis:\n", + " ev_state = ''\n", + " for i, elem in enumerate(h_loc.unitary_matrices[sub][:,ind]):\n", + " ev_state += ' {:+1.4f}'.format(elem)+fs_states[i]\n", + "\n", + " # get spin state\n", + " ms=Sz_states[sub][ind]\n", + "\n", + " # add to dict which becomes later the pandas data frame\n", + " res.append({\"Sub#\" : sub,\n", + " \"EV#\" : ind,\n", + " \"N\" : particle_number,\n", + " \"energy\" : eng,\n", + " \"prob\": rho[sub][ind,ind],\n", + " \"m_s\": round(ms,1),\n", + " \"|m_s|\": abs(round(ms,1)),\n", + " \"state\": ev_state})\n", + "# panda data frame from res\n", + "res = pd.DataFrame(res, columns=res[0].keys())" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "54f249f9-15b8-4b1c-bebb-7b63952e875e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Sub# EV# N energy prob m_s |m_s| state\n", + "4 4 0 9 3.640517e-01 0.310283 -0.5 0.5 +1.0000|0111111111>\n", + "0 0 0 8 0.000000e+00 0.125113 -1.0 1.0 +1.0000|0101111111>\n", + "5 5 0 9 3.640517e-01 0.083760 0.5 0.5 +1.0000|1111101111>\n", + "20 20 0 8 8.851884e-01 0.074717 0.0 0.0 +1.0000|0111111011>\n", + "2 2 0 9 2.739907e-01 0.044306 -0.5 0.5 +1.0000|1101111111>\n", + "55 55 0 10 7.125334e+00 0.038609 0.0 0.0 +1.0000|1111111111>\n", + "3 3 0 9 2.739907e-01 0.035831 0.5 0.5 +1.0000|1111111011>\n", + "51 51 0 8 2.745626e+00 0.033932 0.0 0.0 +1.0000|0111101111>\n", + "1 1 0 8 4.903654e-09 0.031693 1.0 1.0 +1.0000|1111101011>\n", + "21 21 0 8 8.851884e-01 0.019748 0.0 0.0 +1.0000|1101101111>\n" + ] + } + ], + "source": [ + "print(res.sort_values('prob', ascending=False)[:10])" + ] + }, + { + "cell_type": "markdown", + "id": "2af9aa9e-481b-48fb-952e-0d53080236c3", + "metadata": {}, + "source": [ + "This table shows the eigenstates of the impurity with the highest weight / occurence probability. Each row shows the state of the system, where the 1/0 indicates if an orbital is occupied. The orbitals are ordered as given in the projectors (dxy, dyz, dz2, dxz, dx2-y2) from right to left, first one spin-channel, then the other. Additionally each row shows the particle sector of the state, the energy, and the `m_s` quantum number.\n", + "\n", + "It can be seen, that the state with the highest weight is a state with one hole (N=9 electrons) in the $d_{x^2-y^2, up}$ orbital carrying a spin of `0.5`. The second state in the list is a state with two holes (N=8). One in the $d_{x^2-y^2, up}$ and one in the $d_{z^2, up}$ giving a magnetic moment of 1. This is because the impurity occupation is somewhere between 8 and 9. We can also create a nice state histogram from this: " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "52d1d26d-587f-4b4d-a46a-f71850423b7d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyMAAAIqCAYAAAA3q5W5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAABY+klEQVR4nO3deVxWZf7/8feNsggiLuCCu6QyUZiYpampmallg5rNd7QmFHWcjDJpfpozmqilzbg0rm2TaI2Wk5UzWma55DIgqZgkKRoh6KgTIiiLgMj5/dH35hsDKMuB4w2v5+PB4yHXdd3X9TkyjefNOdc5NsMwDAEAAABADXOyugAAAAAAdRNhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYIn6VhdQV7Rs2VLZ2dlq166d1aUAAAAApklJSZGHh4cuXLhQ4c9yZaSGZGdn69q1a1aXAQAAAJjq2rVrys7OrtRnuTJSQ+xXROLj4y2uBAAAADBPQEBApT/LlREAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEvwaF8HYBiGDMOwugz8L5vNJpvNZnUZAAAADo8wcou6evWqLl++rMzMTBUUFFhdDv5L/fr15enpKS8vLzVo0MDqcgAAABwSYeQWdOXKFf373/+2ugzcQEFBgdLT05Wenq7WrVurUaNGVpcEAADgcAgjt5irV68WBZGGDRuqSZMmcnNzk5MT23tuFYWFhcrNzVV6erqysrL073//W87OzlwhAQAAqCDCyC3m8uXLkn4KIm3atGFvwi3IyclJDRs2lIeHh86ePausrCxdvnyZMAIAAFBB/Lr9FpOZmSlJatKkCUHkFmez2dSkSRNJ//dzAwAAQPkRRm4hhmEUbVZ3c3OzuBqUh/3nVFBQwBPPAAAAKogwcgv5+ckse0Qcw89/ToQRAACAiuGMFwAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGIElau3atbDab1q5da3UplTJgwAAehQwAAOBgHDqM5Obmas6cOerSpYvc3Nzk6+ur0NBQnT17tkLzdOjQQTabrcyvEydOVNMRAAAAAHWXw76BPTc3V4MGDVJUVJRatWql4OBgnT59WpGRkdq6dauio6Pl5+dXoTlDQkJKbffy8jKjZAAAANxIhIXnXBGXrVu7DnPYMLJgwQJFRUWpd+/e+uKLL9SwYUNJ0tKlS/XCCy8oNDRUe/bsqdCcjnqLEgAAAOCIHPI2rWvXrmnFihWSpFWrVhUFEUkKDw9XYGCg9u7dq8OHD1tVYq1w+vRp2Ww2DRgwQNnZ2QoPD1fbtm3VoEEDBQUFacuWLUVjP/zwQ91zzz3y8PBQixYt9Nxzz+nq1atVWn/79u0aMmSI2rRpI1dXV/n6+qpv376aO3duVQ8NAAAAtwCHDCP79+9XRkaG/Pz81L179xL9o0ePlqRiJ8uovPz8fA0aNEjvvfee7rrrLvXq1UtHjx7VyJEjtWPHDr322msaO3as6tevr4ceekjXr1/XihUrNHHixEqv+cYbb2jo0KHas2ePfvGLX+ixxx5TQECATp8+rYiICPMODgAAAJZxyNu0jh49KkkKCgoqtd/ebh9XXosWLVJiYqJcXV0VEBCgkSNHysfHp2rF1gLR0dEaMGCATp48qSZNmkj66Za28ePH6+mnn9alS5e0a9cu9evXT5J07tw5de/eXRs2bND8+fPVqVOnCq/56quvqlGjRjp69Kg6dOhQ1G4Yhr766iszDgsAAAAWc8gwkpKSIklq06ZNqf32dvu48po+fXqx76dNm6bly5drwoQJ5Z4jICCg1PbExMQKb6i/VdSrV09vv/12URCRpKeeekrTp0/X999/r5deeqkoiEiSr6+vnnjiCb322mvau3dvpcLIjz/+qC5duhQLIpJks9k0cODASh8LAAAAbh0OeZtWVlaWJMnd3b3Ufg8Pj2LjbuaXv/ylPv74YyUnJysnJ0fHjh1TeHi48vLyNHHiRG3evNmUuh1Vhw4ddNtttxVrc3JyUvv27SVJgwcPLvEZe/A6f/58pdbs0aOHjh49qhdffFGJiYmVmgMAAAC3Noe8MmIYhiSV+ZI7e395LV++vNj3AQEBWrJkibp27arJkydrxowZGjFiRLnmio+PL7W9rCsmjqB169altttDX2n99r68vLxKrblq1SqNGDFCf/rTn/SnP/1Jvr6+6tevn0aPHq1Ro0bJyckhczQAAAB+xiHP6Dw9PSVJ2dnZpfbn5ORIUrGnbFXGxIkT1bx5c508eVJJSUlVmsuR3ezN5tXx5vPAwEB99913+uSTTzRp0iQ1bNhQGzdu1OOPP67+/fsrPz/f9DUBAABQsxwyjLRr106SynzTur3dPq6ynJycqny7ESrPzc1NI0aM0FtvvaWEhATFx8crMDBQ+/fv1zvvvGN1eQAAAKgihwwj3bp1kyTFxsaW2m9vDwwMrPJa6enpkqp+lQVVd/vtt+uZZ56RJH377bcWVwMAAICqcsgw0qdPH3l5eSkxMVFHjhwp0b9p0yZJ0vDhw6u0Tnx8vBISEuTu7i5/f/8qzYXyy8nJ0fLly5WRkVGsvbCwUF988YWkql/1AgAAgPUcMoy4uLgoLCxMkhQWFlZs78jSpUsVFxenvn37qmfPnkXtK1eulL+/v2bOnFlsru3bt5f6pva4uDg9/vjjMgxDEydOlIuLSzUdDf5bfn6+pk6dqhYtWqh3794aM2aMHnvsMXXs2FEfffSROnXqpMmTJ1tdJgAAAKrIIZ+mJUmzZs3Sjh07FBUVpc6dO6tfv35KTk5WTEyMmjVrpsjIyGLjL168qISEhBJ7P6KjozV37ly1b99efn5+8vHxUVJSkmJjY1VQUKD+/ftr4cKFNXlodV7Dhg21atUq7dy5U0ePHlVcXJxcXFzUvn17TZo0SWFhYWrcuLHVZQIAAKCKHDaMuLm5affu3Vq4cKE2bNigzZs3q0mTJgoJCdH8+fPVtm3bcs0zZMgQnTlzRgcPHtTRo0d1+fJlNWrUSH379tUTTzyh8ePHq169etV8NLemDh063PAxyTd6E/q4ceM0bty4Sq1bv359TZkyRVOmTKnU5wEAAOAYHDaMSFKDBg00b948zZs376ZjIyIiFBERUaK9d+/e6t27dzVUBwAAAOBGHHLPCAAAAADH59BXRuA4ynvLlre3txYvXly9xQAAAOCWQBhBjVi3bl25xrVv354wAgAAUEcQRiBJuuuuuzRnzhzddddd1TL/jTbCm2HcuHEaMGBAta4BAAAAcxFGIOmnMFJdQaQmVPbJXQAAALAOG9gBAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjewO6gOL35qdQk3dfrVR0yfMzc3VwsXLtT777+vlJQUNW3aVEOHDtW8efPUpk2bCs2VkZGhiIgIffLJJ7pw4YJatmypESNGaO7cuWrcuLHptQMAAKA4rozAYeTm5mrQoEGaN2+esrKyFBwcrLZt2yoyMlJBQUFKTEws91xpaWm65557tGzZMtWvX18jRoyQp6enli9frp49eyotLa0ajwQAAAASYQQOZMGCBYqKilLv3r118uRJbdy4UTExMVqyZIlSU1MVGhpa7rmmTZumU6dOadSoUUpISNDGjRt17NgxPfvss/r+++8VHh5ejUcCAAAAiTACB3Ht2jWtWLFCkrRq1So1bNiwqC88PFyBgYHau3evDh8+fNO5Lly4oPXr18vZ2VmrV69W/fr/d7fiokWL5OPjo/Xr1+s///mP+QcCAACAIoQROIT9+/crIyNDfn5+6t69e4n+0aNHS5K2bNly07m2bdumwsJC3X///WrRokWxPldXVz366KO6fv26tm3bZk7xAAAAKBVhBA7h6NGjkqSgoKBS++3t9nE1NRcAAAAqjzACh5CSkiJJZT4xy95uH1dTcwEAAKDyCCNwCFlZWZIkd3f3Uvs9PDyKjaupuQAAAFB5hBE4BMMwJEk2m+2G/TU9FwAAACqPMAKH4OnpKUnKzs4utT8nJ0eSij1lqybmAgAAQOURRuAQ2rVrJ0k6e/Zsqf32dvu4mpoLAAAAlUcYgUPo1q2bJCk2NrbUfnt7YGBgjc4FAACAyiOMwCH06dNHXl5eSkxM1JEjR0r0b9q0SZI0fPjwm841dOhQOTk5ad++ffrxxx+L9eXl5WnLli1ycnLSsGHDzCkeAAAApSKMwCG4uLgoLCxMkhQWFlZsv8fSpUsVFxenvn37qmfPnkXtK1eulL+/v2bOnFlsrlatWmnMmDHKz8/XlClTVFBQUNQ3ffp0paamauzYsWrZsmU1HxUAAEDdVt/qAoDymjVrlnbs2KGoqCh17txZ/fr1U3JysmJiYtSsWTNFRkYWG3/x4kUlJCTo/PnzJeb6y1/+ogMHDuijjz6Sv7+/7r77bsXHx+vYsWPy8/PTa6+9VlOHBQAAUGcRRhzU6VcfsbqEGufm5qbdu3dr4cKF2rBhgzZv3qwmTZooJCRE8+fPV9u2bcs9l7e3tw4ePKg5c+Zo8+bN+uSTT9SiRQuFhYVp7ty5atq0aTUeCQAAACTJZvBShRoREBAgSYqPjy9zTGFhoRISEiRJXbt2lZMTd9Hd6viZAQBgoggvC9e+bN3aDq4857ll4cwJAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACh5Kbm6s5c+aoS5cucnNzk6+vr0JDQ3X27NkKzdOhQwfZbLYyv06cOFFNRwAAAAC7+lYXgEqK8LK6gpuLuGzqdLm5uRo0aJCioqLUqlUrBQcH6/Tp04qMjNTWrVsVHR0tPz+/Cs0ZEhJSaruXlwP8/QIAADg4wggcxoIFCxQVFaXevXvriy++UMOGDSVJS5cu1QsvvKDQ0FDt2bOnQnOuXbu2GioFAABAeXCbFhzCtWvXtGLFCknSqlWrioKIJIWHhyswMFB79+7V4cOHrSoRAAAAFUQYgUPYv3+/MjIy5Ofnp+7du5foHz16tCRpy5YtNV0aAAAAKonbtOAQjh49KkkKCgoqtd/ebh9XXosWLVJiYqJcXV0VEBCgkSNHysfHp2rFAgAAoFwII3AIKSkpkqQ2bdqU2m9vt48rr+nTpxf7ftq0aVq+fLkmTJhQiSoBAABQEdymBYeQlZUlSXJ3dy+138PDo9i4m/nlL3+pjz/+WMnJycrJydGxY8cUHh6uvLw8TZw4UZs3bzalbgAAAJSNKyNwCIZhSJJsNtsN+8tr+fLlxb4PCAjQkiVL1LVrV02ePFkzZszQiBEjKlUrAAAAyocrI3AInp6ekqTs7OxS+3NyciSp2FO2KmPixIlq3ry5Tp48qaSkpCrNBQAAgBsjjMAhtGvXTpLKfNO6vd0+rrKcnJyKXpx4/vz5Ks0FAACAGyOMwCF069ZNkhQbG1tqv709MDCwymulp6dLqvpVFgAAANwYYQQOoU+fPvLy8lJiYqKOHDlSon/Tpk2SpOHDh1dpnfj4eCUkJMjd3V3+/v5VmgsAAAA3RhiBQ3BxcVFYWJgkKSwsrNjekaVLlyouLk59+/ZVz549i9pXrlwpf39/zZw5s9hc27dvL/VN7XFxcXr88cdlGIYmTpwoFxeXajoaAAAASDxNCw5k1qxZ2rFjh6KiotS5c2f169dPycnJiomJUbNmzRQZGVls/MWLF5WQkFBi70d0dLTmzp2r9u3by8/PTz4+PkpKSlJsbKwKCgrUv39/LVy4sCYPDQAAoE4ijDiqiMtWV1Dj3NzctHv3bi1cuFAbNmzQ5s2b1aRJE4WEhGj+/Plq27ZtueYZMmSIzpw5o4MHD+ro0aO6fPmyGjVqpL59++qJJ57Q+PHjVa9evWo+GgAAANiMir6gAZUSEBAg6ac9CWUpLCxUQkKCJKlr165ycuIuulsdPzMAAEwU4WXh2nXvF71mKc95blk4cwIAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsATvGQEAALhF3LnuTkvX/zbkW0vXR93DlREAAAAAliCMAAAAALCEQ4eR3NxczZkzR126dJGbm5t8fX0VGhqqs2fPVmneU6dOqUGDBrLZbBo6dKhJ1QIAAAD4OYcNI7m5uRo0aJDmzZunrKwsBQcHq23btoqMjFRQUJASExMrPffkyZOVl5dnYrUAAAAA/pvDhpEFCxYoKipKvXv31smTJ7Vx40bFxMRoyZIlSk1NVWhoaKXmfeedd7R7925NmjTJ5IoBAAAA/JxDhpFr165pxYoVkqRVq1apYcOGRX3h4eEKDAzU3r17dfjw4QrN++OPP+r//b//pwcffFBjxowxtWYAAAAAxTlkGNm/f78yMjLk5+en7t27l+gfPXq0JGnLli0Vmve5557T1atX9frrr5tSJ8xz+PBhvfrqqxo1apRat24tm80mNze3Ss+XkZGh559/Xu3bt5erq6vat2+vqVOnKiMjw7yiAQAAcEMO+Z6Ro0ePSpKCgoJK7be328eVx2effaaNGzdq3rx5uu2226q8Cb66Wf0c8vIw81nl8+fP1z/+8Q9T5kpLS1Pv3r116tQpderUSSNGjFB8fLyWL1+uzz77TAcOHFCzZs1MWQsAAABlc8gwkpKSIklq06ZNqf32dvu4m8nOztaUKVPUtWtXzZgxo0q1BQQElNqemJgoPz+/Ks1dl/Xu3VvdunVTz5491bNnT7Vs2bLSc02bNk2nTp3SqFGjtHHjRtWv/9N/Bs8995xWrFih8PBwrVu3zqzSAQAAUAaHDCNZWVmSJHd391L7PTw8io27mVmzZik5OVm7du2Si4uLOUXCVFUNiXYXLlzQ+vXr5ezsrNWrVxcFEUlatGiRPvjgA61fv15//vOf1aJFC1PWBAAAQOkcMowYhiFJstlsN+wvj0OHDmnFihV66qmnNHDgwCrXFh8fX2p7WVdMULO2bdumwsJCDRw4sETYcHV11aOPPqo1a9Zo27ZtGjdunDVFAgAA1BEOuYHd09NT0k+3V5UmJydHkoo9Zas0BQUFmjRpkry8vLR48WJzi8QtqTr2GwEAAKByHPLKSLt27SSpzE3m9nb7uLKcPXtW33zzjVq2bKnHH3+8WJ/9qUpff/21BgwYoIYNG2rr1q1VrBxWM3u/EQAAACrPIcNIt27dJEmxsbGl9tvbAwMDyzXfhQsXdOHChVL70tPTtWfPHnl5eVWiUtxqzN5vBAAAgMpzyNu0+vTpIy8vLyUmJurIkSMl+jdt2iRJGj58+A3n6dChgwzDKPVr9+7dkqQhQ4bIMAzeP1FLmLnfCAAAAFXjkGHExcVFYWFhkqSwsLBie0eWLl2quLg49e3bVz179ixqX7lypfz9/TVz5swarxe3DrP2GwEAAKDqHPI2Lemnx/Hu2LFDUVFR6ty5s/r166fk5GTFxMSoWbNmioyMLDb+4sWLSkhI0Pnz5y2qGLcCs/YbAQAAoOoc8sqIJLm5uWn37t2aPXu23N3dtXnzZp0+fVohISE6cuSIbrvtNqtLxC3I7P1GAAAAqDybwU3yNcL+npGy3kMiSYWFhUpISJAkde3aVU5OZWfFO9fdaW6B1eDbkG+rbW6bzSZXV1fl5uZW6HPnz59XmzZtVL9+fZ05c0bNmzcv6svLy1Pbtm2Vlpamf//73+V6y3tFfmYAANyM1f++V+e/3eUSYeEDgyIuW7e2gyvPeW5ZOHNCrVTWHqFWrVppzJgxys/P15QpU1RQUFDUN336dKWmpmrs2LHlCiIAAACoGofdM4K65dNPP9X8+fOLteXn56tXr15F38+ePVuPPPKIpBvvEfrLX/6iAwcO6KOPPpK/v7/uvvtuxcfH69ixY/Lz89Nrr71WvQcDAAAASYQROIjU1FTFxMQUazMMo1hbampqueby9vbWwYMHNWfOHG3evFmffPKJWrRoobCwMM2dO1dNmzY1tXYAAACUjj0jNcTsPSO4NfAzAwCYiT0j7BlxROwZAQAAAOBwCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAS9a0uAJVz3P8XVpdwU784cdy0uQ4fPqwvv/xSX3/9tWJiYnTu3Dm5uroqNze3wnN16NBBycnJZfYfP35c/v7+VSkXAAAA5UAYgUOYP3++/vGPf5g6Z0hISKntXl5epq4DAACA0hFG4BB69+6tbt26qWfPnurZs6datmxZ5TnXrl1b9cIAAABQaYQROIQZM2ZYXQIAAABMxgZ2AAAAAJbgygjqrEWLFikxMVGurq4KCAjQyJEj5ePjY3VZAAAAdQZhBHXW9OnTi30/bdo0LV++XBMmTLCoIgAAgLqF27RQ5/zyl7/Uxx9/rOTkZOXk5OjYsWMKDw9XXl6eJk6cqM2bN1tdIgAAQJ3AlRHUOcuXLy/2fUBAgJYsWaKuXbtq8uTJmjFjhkaMGGFNcQAAAHUIV0aA/zVx4kQ1b95cJ0+eVFJSktXlAAAA1HqEEeB/OTk5yc/PT5J0/vx5i6sBAACo/QgjwM+kp6dLkho2bGhxJQAAALWf6WFk27ZtGjFihFq3bi1XV9diTybatm2bwsPDde7cObOXBaosPj5eCQkJcnd3l7+/v9XlAAAA1HqmhpEpU6Zo+PDh+uc//6msrCxdu3ZNhmEU9Tdu3Fh/+ctf9MEHH5i5LFDCypUr5e/vr5kzZxZr3759uw4fPlxifFxcnB5//HEZhqGJEyfKxcWlpkoFAACos0wLI2vWrNEbb7yhe+65R998840uX75cYkzv3r3VunVrbdmyxaxlUUd8+umn6tWrV9GXJOXn5xdr+/TTT4vGX7x4UQkJCSX2fkRHR+vuu+9Whw4dNGjQIP3617/Wvffeqx49euj48ePq37+/Fi5cWKPHBgAAUFeZ9mjfN998U02bNtXWrVvVrFmzMsfddttt+uGHH8xats76xYnjVpdQo1JTUxUTE1OszTCMYm2pqak3nWfIkCE6c+aMDh48qKNHj+ry5ctq1KiR+vbtqyeeeELjx49XvXr1TK8fAAAAJZkWRuLj4zVw4MAbBhFJatmypQ4cOGDWsqgjxo0bp3HjxpV7fEREhCIiIkq09+7dW7179zavMAAAAFSaabdpOTk5qbCw8Kbjzp07Jw8PD7OWBQAAAOCgTAsj/v7+OnTokHJycsock5aWpm+++UaBgYFmLQsAAADAQZkWRp544gmlpqbqmWeeUUFBQYl+wzD03HPPKSsrS7/5zW/MWhYAAACAgzJtz8iUKVP00Ucfad26ddq/f7+GDBki6adHpv7+97/X1q1bdfLkST3wwAMKCQkxa1kAAAAADsq0KyPOzs76/PPP9bvf/U4pKSlavXq1JCk2NlZLly5VYmKiJkyYoC1btsjJiRe/AwAAAHWdaVdGJMnd3V2rV6/W3LlztWfPHp0+fVrXr19XmzZtNHDgQPn6+pq5HAAAAAAHZmoYsfPx8dHo0aOrY2oAAAAAtQT3SwEAAACwRKWvjMybN6/Si9psNs2ePbvSnwcAAADg+CodRiIiImSz2WQYRrF2m81W9Gd733+3EUYAAAAAVDqMREZGlmiLiorS22+/rXbt2mn06NFq166dJCklJUUfffSRkpOTNWnSJN13332VrxgAAABArVDpMPLf7wo5cOCAJk+erNmzZ+ull15SvXr1ivX/6U9/0vz58/Xqq69q3LhxlV0WAAAAQC1h2gb2l156SV27dtXcuXNLBBFJqlevniIiItS1a1fNmTPHrGUBAAAAOCjTwsjXX3+tO+6446bj7rjjDn399ddmLYs6IicnR5s3b9aECRMUGBioRo0aycPDQ926ddO8efOUlZVV4TkzMjL0/PPPq3379nJ1dVX79u01depUZWRkmH8AAAAAKMHU94ycOHHClDG4uVW/22V1CTf1zBsPmDbXhg0bNGnSJElSQECAhg4dqitXrigqKkpz5szR+++/rz179qh58+blmi8tLU29e/fWqVOn1KlTJ40YMULx8fFavny5PvvsMx04cEDNmjUzrX4AAACUZNqVkb59++qbb77RokWLyhyzePFiHTlyRH379jVrWdQRLi4uevrpp3Xy5EkdO3ZMf//73/X5558rISFB3bt314kTJ/T888+Xe75p06bp1KlTGjVqlBISErRx40YdO3ZMzz77rL7//nuFh4dX38EAAABAkmQz/vvZvJUUFxen++67T1evXlXXrl2LnqZls9mUnJysjz76SCdOnFCDBg0UFRWlwMBAM5Z1GAEBAZKk+Pj4MscUFhYqISFBktS1a1c5OZWdFevalZEbiY6O1n333SdXV1dduXJFLi4uNxx/4cIFtW7dWvXq1dOZM2fUokWLor68vDy1bdtWly5d0r///e9ifaWpyM8MAICbuXPdnZau/23It5aurwgvC9e+bN3aDq4857llMe02rcDAQO3cuVPjxo3TiRMn9PLLLxe9X8Sed7p06aK1a9fWuSCC6tWtWzdJPwWJtLQ0tWrV6objt23bpsLCQg0cOLBE2HB1ddWjjz6qNWvWaNu2bTz5DQAAoBqZumfk3nvv1XfffaevvvpK+/fv17lz52QYhnx9fdW3b18NHDiw2AsQATP88MMPkiRnZ2c1bdr0puOPHj0qSQoKCiq1PygoSGvWrCkaBwAAgOphahiRfnrb+sCBAzVw4ECzpwZKtWzZMknS0KFD5erqetPxKSkpkqQ2bdqU2m9vt48DAABA9eAGdzi0zz77TO+8846cnZ01f/78cn3G/hhgd3f3Uvs9PDyKjQMAAED1MO3KyLvvvluh8U899ZRZS6OOOn78uJ588kkZhqFFixYV7R25GfseprJuGTTpmQ4AAAC4CdPCyLhx48q1H8QwDNlsNsIIquTs2bMaOnSo0tPTFR4erqlTp5b7s56enpKk7OzsUvtzcnIkSQ0bNqx6oQAAACiTaWHkpZdeKjWMFBYW6syZM9qzZ4+SkpI0btw4tW/f3qxlUQddvHhRgwcPVkpKisaPH6/FixdX6PPt2rWT9FOgKY293T4OAAAA1cO0MBIREXHD/mvXrun555/Xpk2bdPDgQbOWRR2TmZmpYcOG6cSJExo1apTefvvtCj+hzX47V2xsbKn99nYeQQ0AAFC9amwDu7Ozs5YtW6YGDRroxRdfrKllUYvk5eUpODhYhw4d0pAhQ/T++++rXr16FZ5n6NChcnJy0r59+/Tjjz+WWGPLli1ycnLSsGHDzCodAAAApajRp2nVr19fPXr00JdfflmTy6IWuH79usaMGaPdu3erX79++vjjj2/6pvWVK1fK399fM2fOLNbeqlUrjRkzRvn5+ZoyZYoKCgqK+qZPn67U1FSNHTtWLVu2rJZjAQAAwE9Mf8/IzVy4cKHMjcNAWVauXKlPPvlEkuTt7a0pU6aUOm7x4sXy9vaW9NPekoSEBJ0/f77EuL/85S86cOCAPvroI/n7++vuu+9WfHy8jh07Jj8/P7322mvVdzAAAACQVINhpLCwUKtWrVJ0dLTuueeemlq21nrmjQesLqFGpaenF/3ZHkpKExERURRGbsTb21sHDx7UnDlztHnzZn3yySdq0aKFwsLCNHfu3HK9yR0AAABVYzNMeqnCAw+UfXKclZWlpKQkXbp0STabTVu2bKlz9+MHBARIkuLj48scU1hYqISEBElS165d5eTEOylvdfzMAABmunPdnZau/23It5aurwgvC9e+bN3aDq4857llMe3KyFdffXXDfmdnZ/Xt21cvvfSSBg0aZNayAAAAAByUaWEkKSmpzD4XFxd5e3vL2dnZrOUAAAAAODjTwggvMgQAAABQEabd4B4aGqo1a9bcdNzatWsVGhpq1rIAAAAAHJRpYWTt2rXav3//Tcf961//0rp168xaFgAAAICDqvFH/+Tn51fqrdmlyc3N1Zw5c9SlSxe5ubnJ19dXoaGhOnv2bLnnKCgoUEREhB555BF16tRJnp6ecnNzU+fOnfXMM88oJSXFlFoBAAAAFFejYcQwDMXGxsrHx6fKc+Xm5mrQoEGaN2+esrKyFBwcrLZt2yoyMlJBQUFKTEws9zxz587V3r171apVKw0dOlRDhgxRfn6+Vq9ercDAQMXGxla5XgAAAADFVWkD+3+/W+Tzzz8v830jBQUFSkxM1IULF/Sb3/ymKstKkhYsWKCoqCj17t1bX3zxhRo2bChJWrp0qV544QWFhoZqz549N53Hzc1N+/fv17333qv69f/vr+P69euaPXu2Fi5cqClTpujAgQNVrhkAAADA/6nSSw9//oI3m82mm03l7OysoUOH6p133inXW7LLcu3aNTVv3lwZGRmKjY1V9+7di/V369ZNcXFxOnTokHr06FHpdQoKCuTp6anc3FxlZWXJw8Oj0nPx0sPaiZ8ZAMBMvPSQlx46Isteemh/t4hhGOrUqZNGjx6tRYsWlTrWzHeN7N+/XxkZGfLz8ysRRCRp9OjRiouL05YtW6oURmw2m5ycnOTk5FTsqgkAAACAqqvSGfbP3y0yZ84cde/evUbeN3L06FFJUlBQUKn99nb7uMowDEOvvvqqcnJy9OCDD8rV1bXScwEAAAAoybRf98+ZM8esqW7K/oSrNm3alNpvb6/ok7BmzJih//znP7py5Yri4uKUmJgof39/vfXWW+Wew36Z6r8lJibKz8+vQvUAAAAAtZlD3nuUlZUlSXJ3dy+13763wz6uvD766KNiT+G64447tH79enXs2LGSlQIAAAAoS6XDiH0vxXfffacuXbpU6N0hNptNBQUFlV26aKO8zWa7YX9Fff/995Kkixcv6vDhw/rjH/+oHj166K9//atCQkLKNUdZG3fKumICAAAA1FWVDiPt2rWTzWYr2pDetm3bMsOB2Tw9PSVJ2dnZpfbn5ORIUtHjfivK29tbQ4YMUa9evRQYGKinn35aDzzwgNq2bVu5gqvBkv8ZbnUJN/XCxq2mzZWTk6MvvvhCW7Zs0cGDB3X69Gldv35dt912mx577DGFh4dX6OfdoUMHJScnl9l//Phx+fv7m1E6AAAAylDpMHL69Okbfl+d2rVrJ0llvmnd3m4fV1leXl4aPny4Vq9erS+//FKhoaFVmg+Vt2HDBk2aNEnST1eZhg4dqitXrigqKkpz5szR+++/rz179qh58+YVmresK15eXhY+WhAAAKCOcMg9I926dZOkMt+Mbm8PDAys8lr296GkpqZWeS5UnouLi55++mlNmzZNnTt3Lmo/f/68HnnkER05ckTPP/+8NmzYUKF5165da3KlAAAAKC+HfENbnz595OXlpcTERB05cqRE/6ZNmyRJw4dX/VYm+1vceRKWtZ566imtXr26WBCRpFatWmnVqlWSpI8//lj5+flWlAcAAIBKqPSVkYo+Nve/VeUWKhcXF4WFhemVV15RWFiYvvjii6InaC1dulRxcXHq27evevbsWfSZlStXauXKlRo5cqQWLlxY1P7Pf/6z6M3wP9/zkpOTo1deeUV79uxRy5YtNXTo0ErXi+plv1KWl5entLQ0tWrVyuKKAAAAUB6VDiMdOnSo9Ib1qj5NS5JmzZqlHTt2KCoqSp07d1a/fv2UnJysmJgYNWvWTJGRkcXGX7x4UQkJCTp//nyx9tjYWM2dO1e+vr7q3r27vLy8dOHCBX3zzTe6dOmSvLy89Pe//73Sm+FR/X744QdJkrOzs5o2bVqhzy5atEiJiYlydXVVQECARo4cKR8fn+ooEwAAAP+l0mHk/vvvr7GnZ5XGzc1Nu3fv1sKFC7VhwwZt3rxZTZo0UUhIiObPn1/uJ1+NGjVKmZmZ2rdvnw4ePKhLly6pQYMGuu222zR58mQ9++yz/Kb9Frds2TJJ0tChQ+Xq6lqhz06fPr3Y99OmTdPy5cs1YcIE0+oDAABA6WxGZV/KgQqxv2ekrPeQSFJhYaESEhIkSV27dpWTU9lbeurao33L8tlnn2n48OGqX7++Dh48WHTL1s0899xzGjhwoHr06CEfHx/98MMPWrNmjZYtW6br16/rk08+0YgRI246T0V+ZgAA3Myd6+60dP1vQ761dH1FWPg0y4jL1q3t4MpznlsWh3yaFiD99C6QJ598UoZhaNGiReUOIpK0fPnyYt8HBARoyZIl6tq1qyZPnqwZM2aUK4wAAACg8qr117iZmZnKzMysziVQR509e1ZDhw5Venq6wsPDNXXqVFPmnThxopo3b66TJ08qKSnJlDkBAABQOtPDyNatWzVs2DB5eXmpcePGaty4sRo1aqRhw4Zpy5YtZi+HOujixYsaPHiwUlJSNH78eC1evNi0uZ2cnIoe4/zfDzsAAACAuUwLI4ZhaMKECQoODtb27duVmZkpLy8vNWrUSFlZWdq+fbtGjBihcePGiW0qqKzMzEwNGzZMJ06c0KhRo/T222+b/iCF9PR0SeIJagAAANXMtDCybNkyRUZGqlWrVnr99dd1+fJlXbp0Senp6bp8+bJef/11tWrVSu+9917R04+AisjLy1NwcLAOHTqkIUOG6P3331e9evVMXSM+Pl4JCQlyd3eXv7+/qXMDAACgONPCyFtvvSV3d3ft27dPkydPlqenZ1Gfp6enJk+erH379qlBgwZ66623zFoWdcT169c1ZswY7d69W/369dPHH38sFxeXG35m5cqV8vf318yZM4u1b9++XYcPHy4xPi4uTo8//rgMw9DEiRNvOj8AAACqxrSnaSUlJemhhx5Sx44dyxzTsWNHDRo0SF988YVZy6KOWLlypT755BNJkre3t6ZMmVLquMWLF8vb21tS2S+6jI6O1ty5c9W+fXv5+fnJx8dHSUlJio2NVUFBgfr376+FCxdW7wEBAADAvDDi4+NTrt8ku7i4FJ0sovJq4h0etxL7Pg5JRaGkNBERETf939eQIUN05swZHTx4UEePHtXly5fVqFEj9e3bV0888YTGjx9v+u1fAAAAKMm0MDJy5Ej97W9/U3p6upo0aVLqmEuXLmnXrl0aO3asWcuijoiIiFBERIQpn+ndu7d69+5tTmEAAACoNNP2jLz88svq1KmTHnjgAe3atatE/65duzR48GB16tRJCxYsMGtZAAAAAA7KtCsjwcHBcnFx0eHDhzV48GA1bdpU7du3lySlpKQoLS1NktSrVy8FBwcX+6zNZtPOnTvNKgUAAACAAzAtjHz11VdFfzYMQ2lpaUUB5Oeio6NLtJn9nggAAAAAtz5Tn6YFAAAAAOVlWhix35IFAAAAAOVh2gZ2AAAAAKgI066M/FxKSorOnz+vvLy8Msfcf//91bG0Q/v53pnr16/LyYmseKu7fv160Z/Z+wQAAFAxpoaRd955R6+88oqSk5NvOvbnJ3H4ic1mk6urq/Ly8nTlyhU1a9bM6pJwE1euXJEkubq6EkYAAAAqyLQw8vrrryssLEyGYah79+7y8/OTh4eHWdPXGU2aNNGFCxf0448/qqCgQJ6enpzo3mIMw1BeXp4yMzN16dIlSSrzRZ8AAAAom2lhZOnSpXJxcdGnn36qBx54wKxp6xwvLy/l5uYqIyNDly5dKjrZxa2rcePG8vLysroMAAAAh2NaGDl79qwGDhxIEKkiJycntWzZUh4eHsrMzFR2dja3tN2C6tWrJw8PD3l6esrT05MrVwAAAJVgWhhp166dDMMwa7o6zWazqVGjRmrUqJGkn24L4u/21mGz2QgfAAAAJjAtjISEhOjPf/6zzp8/r1atWpk1LcTJLwAAAGon054dO2PGDA0YMEBDhw7V3r17zZoWAAAAQC1l2pWRevXq6c0339SgQYM0cOBAubi4qGXLlqX+Rt9msykxMdGspQEAAAA4INPCyPHjxzVw4EClpqYWPfq0PO8bAQAAAFA3mXab1gsvvKAff/xRISEhiouLU1ZWlgoLC8v8AgAAAFC3mXZl5F//+pcCAwO1Zs0as6YEAAAAUIuZdmXExcVFnTt3Nms6AAAAALWcaWFk4MCB+uabb8yaDgAAAEAtZ1oYefXVV5Wenq7p06ezJwQAAADATZm2Z+Rvf/ubhg8friVLlmjz5s0aMGCAWrduXeajfWfPnm3W0gAAAAAckGlhJCIiQjabTYZh6Pvvv9f3339f5ljCCAAAAADTwkhkZKRZUwEAAACoA0wLIyEhIWZNBQAAAKAOMG0DOwAAAABUBGEEAAAAgCVMu01LkgzD0Pr16/WPf/xDp06dUmZmpgzDKDHOZrMpMTHRzKUBAAAAOBjTwkh+fr4eeeQR7dq1q9QAIqnoaVsAAAAAYNptWkuWLNHOnTs1fPhwnTp1Sr/5zW9ks9mUl5en48ePKyIiQh4eHvp//+//8VJEAAAAAOZdGdm4caOaNm2qDRs2yMPDQ05OP+UcZ2dnde3aVS+99JIGDhyogQMHqmvXrgoNDTVraQAAAAAOyLQrI99//73uueceeXh4/DTx/4aR69evF43p16+f+vTpo9WrV5u1LAAAAAAHZVoYqVevnho1alT0vT2UpKamFhvXunVrJSQkmLUsAAAAAAdlWhhp3bq1UlJSir6/7bbbJEkHDhwoNi4uLk4NGzY0a1kAAAAADsq0MNKrVy/Fx8fr6tWrkqSHH35YkjR16lRt27ZN3377rZ599lkdP35c9957r1nLAgAAAHBQpoWRxx57TO7u7vryyy8l/XRl5Pnnn9eZM2c0fPhw3XXXXVq1apXc3d31pz/9yaxlAQAAADgo056m9cgjj+j8+fPF2pYsWaKePXtq8+bNSk9PV5cuXfTcc8+pc+fOZi0LAAAAwEGZ+gb20vz617/Wr3/96+peBgAAAICDMe02LQAAAACoCMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlqu09I2lpaTp37pwkqVWrVvL29q6upQAAAAA4IFOvjBiGoZUrV+oXv/iFmjdvrrvuukt33XWXWrRooV/84hdasWKFCgsLzVwSAAAAgIMy7cpIXl6eHn30Ue3cuVOGYahJkyZq3769DMNQSkqKEhIS9Pzzz+uf//yntm7dKldXV7OWBgAAAOCATLsysmDBAu3YsUMBAQHatm2b0tLSFBsbqyNHjigtLU3btm3THXfcoV27dmnBggVmLQsAAADAQZkWRv72t7+pcePG2r17t4YMGVKif8iQIdq5c6e8vLz03nvvmbUsAAAAAAdlWhg5d+6cBg0apGbNmpU5xtvbWw888IDOnz9v1rIAAAAAHJRpYaR169bKz8+/6bhr167J19fXrGUBAAAAOCjTwsgTTzyhnTt3Kjk5ucwxycnJ2rlzp8aOHWvWsgAAAAAclGlhZNasWRo0aJDuv/9+rVmzRtnZ2UV92dnZWrNmjfr3769BgwbppZdeMmtZAAAAAA6q0o/27dSpU4k2wzB09uxZTZo0SZMmTVKTJk0kSenp6UVjbDab/P39lZiYWNmlAQAAANQClQ4jp0+fvumYS5culWi70W1cAAAAAOqOSocR3qQOAAAAoCpM2zMCAAAAABVBGAEAAABgCdPDyLFjxzRlyhTdeeedatasmby9vXXnnXfqmWee0bFjx8xeDgAAAICDMjWMLFu2TEFBQXrzzTcVHx+v9PR0Xbp0SfHx8Xr99dcVFBSkZcuWmbZebm6u5syZoy5dusjNzU2+vr4KDQ3V2bNnyz1HRkaGNmzYoLFjx+r222+Xh4eHPD09de+992rZsmW6du2aafUCAAAA+D+mhZEvv/xS06ZNk4uLi6ZNm6YjR44oPT1dGRkZ+uabb/TCCy/I1dVV4eHh2rlzZ5XXy83N1aBBgzRv3jxlZWUpODhYbdu2VWRkpIKCgsr96ODFixfriSee0MaNG+Xu7q5HH31U99xzj44eParnn39eDzzwgHJycqpcLwAAAIDiTAsjS5cuVf369fXFF19o8eLF6tatm7y8vNSoUSMFBgZq0aJF+uKLL+Tk5KQlS5ZUeb0FCxYoKipKvXv31smTJ7Vx40bFxMRoyZIlSk1NVWhoaLnmadiwof7whz8oJSVFhw4d0gcffKCdO3fq22+/Vbt27bR//369/PLLVa4XAAAAQHE2wzAMMyZq1qyZgoKC9OWXX95w3ODBgxUbG6u0tLRKr3Xt2jU1b95cGRkZio2NVffu3Yv1d+vWTXFxcTp06JB69OhR6XXef/99jR07Vh06dFBSUlKl55GkgIAASVJ8fHyV5gEAALXXnevutHT9b0O+tXR9RXhZuPZl69Z2cFU5zzXtykhOTo58fHxuOs7Hx6fKtz3t379fGRkZ8vPzKxFEJGn06NGSpC1btlRpnW7dukmSzp07V6V5AAAAAJRkWhhp27atoqOjdf369TLHFBQUKDo6Wm3btq3SWkePHpUkBQUFldpvb7ePq6wffvhBktSyZcsqzQMAAACgJNPCSHBwsJKTkzVx4kRduXKlRP+VK1c0adIkpaSkaMSIEVVaKyUlRZLUpk2bUvvt7fZxlWV/8ldwcHCV5gEAAABQUn2zJpo5c6Y+/vhjvfvuu9q8ebMefvhhdejQQTabTUlJSfr000915coVderUSTNnzqzSWllZWZIkd3f3Uvs9PDyKjauMN954Qzt27FDjxo314osvlvtz9nvm/ltiYqL8/PwqXQ8AAABQ25gWRpo2baq9e/fqd7/7nT799FO9//77JcY88sgjevPNN9WkSZMqrWXfc2+z2W7YX1l79uzR1KlTZbPZtGbNGvn6+lZpPgAAAAAlmRZGJKl169basmWLkpKStH///qKN376+vurbt686duxoyjqenp6SpOzs7FL77RvkGzZsWOG54+LiNGLECOXn52v58uUaOXJkhT5f1lMEyrpiAgAAANRVpoWRoKAg+fn56cMPP1THjh1NCx6ladeunSSV+aZ1e7t9XHklJiZqyJAhysjIUEREhJ599tmqFQoAAACgTKZtYE9ISJCzs7NZ092Q/ZG7sbGxpfbb2wMDA8s957lz5zR48GBduHBBU6dO1Zw5c6peKAAAAIAymRZGOnfuXKUXGVZEnz595OXlpcTERB05cqRE/6ZNmyRJw4cPL9d86enpGjJkiJKSkjR+/Hi99tprptYLAAAAoCTTwsiECRO0Z88enThxwqwpy+Ti4qKwsDBJUlhYWLG9I0uXLlVcXJz69u2rnj17FrWvXLlS/v7+JZ7klZOTo4cffljHjh3Tr371K7399ttlbowHAAAAYB7T9ow8++yzio+PV//+/fXiiy/q0UcfVbt27eTi4mLWEsXMmjVLO3bsUFRUlDp37qx+/fopOTlZMTExatasmSIjI4uNv3jxohISEnT+/Pli7X/84x914MAB1atXT/Xr19eECRNKXW/t2rXVchwAAABAXWVaGKlXr56knx6r+/vf/16///3vyxxrs9lUUFBQpfXc3Ny0e/duLVy4UBs2bNDmzZvVpEkThYSEaP78+eV+y3t6erok6fr169qwYUOZ4wgjAAAAgLlsRlVfyvG/7C84LK+kpCQzlnUY9kf7lvXoXwAAgDvX3Wnp+t+GfGvp+orwsnDty9at7eCqcp5r2pWR06dPmzUVAAAAgDrA1JceAgAAoPIyj79qdQlAjTLtaVqlyczMVGZmZnUuAQAAAMBBmR5Gtm7dqmHDhsnLy0uNGzdW48aN1ahRIw0bNkxbtmwxezkAAAAADsq0MGIYhiZMmKDg4GBt375dmZmZ8vLyUqNGjZSVlaXt27drxIgRGjdunEzaMw8AAADAgZkWRpYtW6bIyEi1atVKr7/+ui5fvqxLly4pPT1dly9f1uuvv65WrVrpvffe07Jly8xaFgAAAICDMi2MvPXWW3J3d9e+ffs0efJkeXp6FvV5enpq8uTJ2rdvnxo0aKC33nrLrGUBAAAAOCjTwkhSUpIGDRqkjh07ljmmY8eOGjRoUJ17xwgAAACAkkwLIz4+PnJxcbnpOBcXF3l7e5u1LAAAAAAHZVoYGTlypHbt2qX09PQyx1y6dEm7du3SiBEjzFoWAAAAgIMyLYy8/PLL6tSpkx544AHt2rWrRP+uXbs0ePBgderUSQsWLDBrWQAAAAAOyrQ3sAcHB8vFxUWHDx/W4MGD1bRpU7Vv316SlJKSorS0NElSr169FBwcXOyzNptNO3fuNKsUAAAAAA7AtDDy1VdfFf3ZMAylpaUVBZCfi46OLtFms9nMKgMAAACAgzAtjPCELAAAAAAVYVoYsd+SBQAAAADlYdoGdgAAAACoCMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlHDqM5Obmas6cOerSpYvc3Nzk6+ur0NBQnT17tkLz7NmzR3PnztUjjzwiHx8f2Ww2+fv7V1PVAAAAACSpvtUFVFZubq4GDRqkqKgotWrVSsHBwTp9+rQiIyO1detWRUdHy8/Pr1xzTZ06VUePHq3migEAAAD8nMNeGVmwYIGioqLUu3dvnTx5Uhs3blRMTIyWLFmi1NRUhYaGlnuuhx56SK+88oq++OILxcbGVmPVAAAAAOwc8srItWvXtGLFCknSqlWr1LBhw6K+8PBwrVu3Tnv37tXhw4fVo0ePm8735z//uejPp0+fNr1eAAAAACU55JWR/fv3KyMjQ35+furevXuJ/tGjR0uStmzZUtOlAQAAACgnhwwj9v0dQUFBpfbb29kHAgAAANy6HPI2rZSUFElSmzZtSu23t9vH1aSAgIBS2xMTE8u9oR4AAACoCxzyykhWVpYkyd3dvdR+Dw+PYuMAAAAA3Hoc8sqIYRiSJJvNdsN+K8THx5faXtYVEwAAAKCucsgrI56enpKk7OzsUvtzcnIkqdhTtgAAAADcWhwyjLRr106SynzTur3dPg4AAADArcchw0i3bt0kqcwXFNrbAwMDa6wmAAAAABXjkGGkT58+8vLyUmJioo4cOVKif9OmTZKk4cOH13RpAAAAAMrJIcOIi4uLwsLCJElhYWHF9o4sXbpUcXFx6tu3r3r27FnUvnLlSvn7+2vmzJk1Xi8AAACAkhzyaVqSNGvWLO3YsUNRUVHq3Lmz+vXrp+TkZMXExKhZs2aKjIwsNv7ixYtKSEjQ+fPnS8z117/+VX/9618lSXl5eZKk5ORk9erVq2jM6tWry3zJIgAAAICKc9gw4ubmpt27d2vhwoXasGGDNm/erCZNmigkJETz589X27Ztyz3X2bNnFRMTU6wtNze3WNuVK1dMqx0AAACAZDOsfClHHWJ/z0hZ7yEBAADo8OKnlq5/+tVHLF1fEV4Wrn3ZurUdXFXOcx1yzwgAAAAAx0cYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxR3+oCAAAAfu64/y8sW/sXJ45btjZQF3FlBAAAAIAlCCMAAAAALMFtWgAAAIDFOrz4qaXrn371EUvW5coIAAAAAEsQRgAAAABYgjACAAAAwBLsGQEAALeUX/z6nNUlAKghXBkBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJZw6DCSm5urOXPmqEuXLnJzc5Ovr69CQ0N19uzZCs+VkZGh559/Xu3bt5erq6vat2+vqVOnKiMjw/zCAQAAADhuGMnNzdWgQYM0b948ZWVlKTg4WG3btlVkZKSCgoKUmJhY7rnS0tJ0zz33aNmyZapfv75GjBghT09PLV++XD179lRaWlo1HgkAAABQNzlsGFmwYIGioqLUu3dvnTx5Uhs3blRMTIyWLFmi1NRUhYaGlnuuadOm6dSpUxo1apQSEhK0ceNGHTt2TM8++6y+//57hYeHV+ORAAAAAHWTQ4aRa9euacWKFZKkVatWqWHDhkV94eHhCgwM1N69e3X48OGbznXhwgWtX79ezs7OWr16terXr1/Ut2jRIvn4+Gj9+vX6z3/+Y/6BAAAAAHWYQ4aR/fv3KyMjQ35+furevXuJ/tGjR0uStmzZctO5tm3bpsLCQt1///1q0aJFsT5XV1c9+uijun79urZt22ZO8QAAAAAkOWgYOXr0qCQpKCio1H57u31cTc0FAAAAoPzq33zIrSclJUWS1KZNm1L77e32cTU1lyQFBASU2n7ixAk5OzuX2Q8AgF1iRvkfwlId/Br7Wbq+UrOsW/tDa/+dPvcfC49dUsCWhjcfVJ342VumKj/7xMREOTs7V+qzDhlGsrJ++mG5u7uX2u/h4VFsXE3NdSM2m63SPyQz2J8u5udn8T8wFqjLxy7V7ePn2OvmsUuOf/xVCQOOfuySJB//Sn/U0Y+/c4uqnRBKjnvskir9s68Nx+7IP3tnZ+eic+aKcsgwYhiGpJ9O8G/UX9NzSVJ8fHyFxtcU+xWZW7W+6lSXj12q28fPsdfNY5fq9vHX5WOX6vbxc+x189glxz5+h9wz4unpKUnKzs4utT8nJ0eSij1lqybmAgAAAFB+DhlG2rVrJ0llvmnd3m4fV1NzAQAAACg/hwwj3bp1kyTFxsaW2m9vDwwMrNG5AAAAAJSfQ4aRPn36yMvLS4mJiTpy5EiJ/k2bNkmShg8fftO5hg4dKicnJ+3bt08//vhjsb68vDxt2bJFTk5OGjZsmDnFAwAAAJDkoGHExcVFYWFhkqSwsLBi+z2WLl2quLg49e3bVz179ixqX7lypfz9/TVz5sxic7Vq1UpjxoxRfn6+pkyZooKCgqK+6dOnKzU1VWPHjlXLli2r+agAAACAusVmVPRxUbeI3NxcDRgwQDExMWrVqpX69eun5ORkxcTEqFmzZjpw4IBuu+22ovERERGaO3euQkJCtHbt2mJzXbx4Ub169VJiYqL8/Px09913Kz4+XseOHZOfn58OHDggb2/vGj5CAAAAoHZzyCsjkuTm5qbdu3dr9uzZcnd31+bNm3X69GmFhIToyJEjxYLIzXh7e+vgwYN69tlnlZ+fr08++USXL19WWFiYvv76a4IIAAAAUA0c9soIAAAAAMfmsFdGAAAAADg2wggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGGkFsvNzdWcOXPUpUsXubm5ydfXV6GhoTp79qzVpVW7w4cP69VXX9WoUaPUunVr2Ww2ubm5WV1WtcvJydHmzZs1YcIEBQYGqlGjRvLw8FC3bt00b948ZWVlWV1itVu6dKlGjRqlzp07y8vLS66urmrfvr1CQkIUHx9vdXk16tKlS2revLlsNpv8/f2tLqfaDRgwQDabrcyvzz//3OoSq92FCxc0bdo0denSRQ0aNFDTpk3Vo0cPTZ8+3erSqs1XX311w5+7/WvevHlWl1ptDhw4oMcee0wtW7aUs7OzmjZtqkGDBmnTpk1Wl1btDhw4oODgYHl7e8vNzU1dunTRrFmzlJOTY3Vppqjs+cy7776re+65Rw0bNlTTpk318MMPKyoqqgYqrjjeM1JL5ebmatCgQYqKiip6Q/3p06f19ddfy8fHR9HR0fLz87O6zGozYsQI/eMf/yjW5urqqtzcXIsqqhl//etfNWnSJElSQECAbr/9dl25ckVRUVHKzMyUv7+/9uzZo+bNm1tcafXx9vZWdna2AgMD1bp1a0lSfHy8Tp48KRcXF23evFnDhg2zuMqaMW7cOL377rsyDENdu3bViRMnrC6pWg0YMEB79uzRY489poYNG5bof+GFF3TnnXdaUFnNiI6O1sMPP6yMjAzdfvvtuuOOO5SZmanvvvtOZ8+eVUFBgdUlVosTJ07o1VdfLbXv+vXr+tvf/iZJ2rVrlwYOHFiTpdWIDz/8UL/+9a9VWFiou+++W35+fjp37pz+9a9/qbCwUDNmzCjz78fRrV+/XiEhIbp+/bp69Oihdu3a6dChQzpz5oy6deumffv2ydPT0+oyq6Qy5zPh4eF67bXX1KBBAz300EPKzc3Vzp07ZRiGPvzwQ40cObK6y64YA7XS7NmzDUlG7969jczMzKL2JUuWGJKM+++/38Lqqt+rr75qvPTSS8aWLVuMCxcuGJIMV1dXq8uqduvWrTOefvpp4+TJk8Xaz507Z3Tv3t2QZIwZM8ai6mrG/v37jatXr5ZoX716tSHJ8PX1NQoKCiyorGbt2LHDkGT89re/NSQZXbt2tbqkate/f39DkpGUlGR1KTXu3//+t9G4cWOjQYMGxscff1yiPyYmxoKqrPfZZ58Zkoy2bdsa169ft7oc0127ds3w8fExJBkffPBBsb6oqCjDzc3NsNlsxvfff29RhdXnzJkzhpubmyHJWLNmTVF7bm6u8fjjjxuSjN/97ncWVmiOip7P7Ny505BkNGvWrNi5QFRUlOHi4mJ4eXkZly5dqonSy40wUgvl5+cbjRs3NiQZsbGxJfoDAwMNScahQ4csqM4adSWM3EhUVFTR30NeXp7V5VjitttuMyQZ8fHxVpdSrXJycozbbrvNuP32242TJ08SRuqA3/zmN4YkY8WKFVaXcksZO3asIcl48cUXrS6lWnz77beGJMPf37/U/uDgYEOSsXHjxhqurPrNnz/fkGQMHjy4RN+PP/5ouLu7G87OzsbFixctqK763Ox85uGHHzYkGa+99lqJvueee86QZCxevLgaK6w49ozUQvv371dGRob8/PzUvXv3Ev2jR4+WJG3ZsqWmS4OFunXrJknKy8tTWlqaxdVYo169epIkFxcXiyupXnPnzlViYqJef/11OTs7W10Oqll6err+/ve/y8vLSxMnTrS6nFtGdnZ20e0tTz75pMXVVA9XV9dyjWvatGk1V1LzDh8+LOmn2zP/m4+Pj26//XZdu3ZNn332WQ1XZh377VjS/53r/dytev5X3+oCYL6jR49KkoKCgkrtt7fbx6Fu+OGHHySpaHNjXfPuu+8qISFBXbp0UadOnawup9rExcVpyZIlGj9+vO6//36dPn3a6pJq3DvvvKO0tDQ5OTmpS5cuGjFihNq1a2d1WdXmX//6l/Ly8vTggw/K2dlZmzZt0v79+3Xt2jX5+/vrV7/6lVq0aGF1mTXu448/VnZ2trp3766AgACry6kWnTp1UqdOnXTixAn9/e9/169+9auivujoaG3fvl0dO3bU/fffb2GV1SM7O1uS1KRJk1L77f/OHT16VL/5zW9qrC4rnThxQnl5efLx8VGbNm1K9NvP/+Li4mq6tBsijNRCKSkpklTq/xB/3m4fh7ph2bJlkqShQ4eW+7dpjmzRokWKj49Xdna2jh8/rvj4ePn6+mrDhg1ycqqdF4ULCws1adIkNW7cWH/+85+tLscyL7/8crHvf//732v27NmaPXu2RRVVL/tT4lq0aKF+/fopOjq6WP/MmTMVGRmpxx9/3IryLGPfuF6bT0Tr1auntWvX6tFHH9X//M//aNGiRfLz89P58+e1f/9+3XPPPXrvvfdq5dVgHx8fSVJycnKp/fb2uvQLmZud/3l4eKhx48ZKT09XZmbmLbO5v3b+i1zH2R/f6u7uXmq/h4dHsXGo/T777DO98847cnZ21vz5860up0Zs375d69at06ZNmxQfH6+2bdtqw4YN6tGjh9WlVZsVK1bo66+/1qJFi9SsWTOry6lx999/v9577z0lJiYqJydHCQkJeuWVV1S/fn299NJLRYG8tklPT5f009W/uLg4vfPOO0pNTVVSUpLCw8OVnZ2tJ5988pb7bWh1unDhgnbu3Kl69eppzJgxVpdTrfr166c9e/aoY8eOOnTokDZu3Ki9e/fKw8NDDz74oHx9fa0usVr0799fkvT+++8rPz+/WN+BAweUkJAgScrMzKzx2qxys/M/6dY8BySM1ELG/z6t2Waz3bAfdcPx48f15JNPyjAMLVq0qGjvSG23Y8cOGYah9PR07d27V127dtWAAQP0yiuvWF1atThz5oxmzZql/v37a9y4cVaXY4l58+bpySefVKdOndSgQQN16dJFf/jDH7R582ZJ0pw5c3T16lVri6wG169flyQVFBRo6dKlCg0Nlbe3tzp06KAlS5Zo9OjRys/Pr1NXyzZs2KDr169r8ODBatmypdXlVKv3339f9957r9q1a6eYmBhlZWXp5MmTGjNmjF5++WU9+OCDunbtmtVlmu6JJ55Qu3btlJKSouDgYMXHxyszM1Off/65Hn/8cdWv/9PNP7X1Snhpbnb+9/Mxt5K68xOqQ+yX3ez3U/43+4uASnsOP2qXs2fPaujQoUpPT1d4eLimTp1qdUk1rnHjxurXr58+++wz9ejRQ7Nnz9bBgwetLst0U6ZMUX5+vl5//XWrS7nlPPTQQ7r77rt1+fJlHThwwOpyTGf//3wnJyeFhISU6A8NDZX008sB64q6cIuWJJ06dUohISHy8fHRp59+qnvuuUceHh7q3Lmz3nzzTT366KOKjo5WZGSk1aWazsPDQ1u3blW7du30+eef64477lCjRo00bNgwOTk5KTw8XFLZe0pqo5ud/0m35jkgYaQWsm/ULOtN6/b22ryhE9LFixc1ePBgpaSkaPz48Vq8eLHVJVnK2dlZ//M//yPDMG65J4mYYevWrXJ3d9fTTz+tAQMGFH39+te/lvTTvcT2tlvp8nxN6dy5syTp/PnzFldivg4dOkiSWrZsWep+MHv/jz/+WINVWef48eM6cuSIGjZsqBEjRlhdTrX64IMPdO3aNQ0dOrTo9pufs29or61B9M4779SJEye0bt06Pfvss3r66af1xhtv6NixY0VjauvDC0pzs/O/7OxsZWRkqHHjxrfMfhGJDey1kv02nNjY2FL77e2BgYE1VhNqVmZmpoYNG6YTJ05o1KhRevvtt2942bau8Pb2liSlpqZaXEn1yMjI0J49e0rtu3r1alFfbX0T943Y91XcSr8NNIv9Ee7p6ekyDKPEf+v2R3nXxmMvzXvvvSdJGjVq1A3vna8N7CedjRo1KrXf3n7p0qUaq6mmNWjQQE899ZSeeuqpYu07duyQVPqjf2urrl27ytXVVampqTp79myJjey36vkfV0ZqoT59+sjLy0uJiYk6cuRIif5NmzZJkoYPH17TpaEG5OXlKTg4WIcOHdKQIUP0/vvvF71fo66zn4z7+flZXIn5jJ9eYlviKykpSdJP/0jZ2xo3bmxtsTUsNTVV+/btk1T2I88d2Z133qmOHTvq6tWriomJKdFv/614bTz2/2YYhjZs2CCp9t+iJaloP8yhQ4dK7bffkmq/OlZX7NmzR7GxsQoICFCfPn2sLqfGNGjQQA888ICk/zvX+7lb9vyvxl+ziBrxxz/+0ZBk3HfffUZWVlZR+5IlSwxJRt++fS2sruapjryBvaCgwBg5cqQhyejXr5+RnZ1tdUk1au/evcYHH3xgXLt2rVh7fn6+sXz5csPJyclo0KCBkZKSYlGFNS8pKalOvIE9Ojra2LVrl1FYWFisPSkpyejTp48hyfjlL39pUXXV74033jAkGT179jRSU1OL2g8dOmQ0btzYkGR8+OGHFlZYM/bs2WNIMnx9fY3r169bXU61O3z4sCHJkGSsXr26WF90dLTh4eFhSDK+/PJLiyqsXkeOHCnx//eHDx82fH19DZvNZuzatcuiyqrPzc5nvvzyS0OS0axZM+PkyZNF7VFRUYarq6vRqFEjIy0trSZKLTdu06qlZs2apR07digqKkqdO3dWv379lJycrJiYGDVr1qxWbmb7uU8//bTEI2zz8/PVq1evou9nz56tRx55pKZLq1YrV67UJ598IumnW5KmTJlS6rjFixcX3bJUmyQmJmr8+PHy9vZWjx491KxZM128eFHffvutzp8/Lzc3N61du1Zt27a1ulSY7MSJExo/frxatWqlLl26qGXLljp79qwOHz6s3NxcBQQE6O2337a6zGozadIk7dy5Ux9++KG6du2q++67T1lZWYqKilJ+fr4mTZpU6huZaxv7xvUnnniiTjxFKSgoSL///e+1ePFiTZkyRatWrdLtt9+uc+fOKTo6WoWFhfrtb3+rBx980OpSq8Xzzz+v7777TnfddZe8vb11+vRpxcTEyMnJSW+++aYGDhxodYlVVtHzmQcffFBTp07VsmXLdNddd2nw4MHKz8/Xl19+qcLCQq1fv/7We/Gx1WkI1ScnJ8eYPXu24efnZ7i4uBgtWrQwQkJC6sRvhSMjI4t+W1TWV2RkpNVlmm7OnDk3PW5JRlJSktWlVosffvjB+MMf/mD06dPHaNWqleHs7Gx4eHgYAQEBxrPPPmucOnXK6hJrXF25MvLdd98ZTz/9tBEUFGT4+PgY9evXN7y8vIxevXoZS5YsMXJycqwusdpdv37dWLVqldG9e3fD3d3d8PDwMO677z7j3Xfftbq0GpGbm2s0adLEkGQcPXrU6nJq1Mcff2w89NBDRrNmzYz69esbTZo0MQYOHGisX7/e6tKq1dtvv23079/f8PHxMZydnQ1fX19j7NixxpEjR6wuzTSVPZ+JjIw0evToYbi7uxteXl7GkCFDjH379tX8AZSDzTBuwQcOAwAAAKj1av81TAAAAAC3JMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAcGg2m002m01NmjRRRkZGqWMiIiJks9n06quv1mxxAIAbIowAAGqFjIwMvfbaa1aXAQCoAMIIAMDhOTk5ycXFRX/5y1+Unp5udTkAgHIijAAAHJ6zs7MmTpyoK1euaOnSpVaXAwAoJ8IIAKBW+MMf/iBXV1ctW7ZMly5dsrocAEA5EEYAALVC69atNWnSJGVmZmrJkiVWlwMAKAfCCACg1pg5c6bc3Ny0YsUKpaWlWV0OAOAmCCMAgFrD19dXv/3tb5WZmanFixdbXQ4A4CYIIwCAWuXFF1+Um5ubVq5cqYsXL1pdDgDgBggjAIBapVWrVvrd736nrKwsLVq0yOpyAAA3QBgBANQ6M2bMUIMGDbRq1SqlpqZaXQ4AoAyEEQBArdOyZUs9/fTTys7O1p///GerywEAlIEwAgColWbMmCF3d3etXr1a//nPf6wuBwBQCsIIAKBWat68uaZMmaKcnBytW7fO6nIAAKUgjAAAaq3p06fLw8NDV69etboUAEApCCMAgFrLx8dHzzzzjNVlAADKYDMMw7C6CAAAAAB1D1dGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABY4v8DeAtWBguUaZ4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# split into ms occupations\n", + "fig, (ax1) = plt.subplots(1,1,figsize=(6,4), dpi=150)\n", + "\n", + "spin_occ_five = res.groupby(['N', '|m_s|']).sum()\n", + "pivot_df = spin_occ_five.pivot_table(index='N', columns='|m_s|', values='prob')\n", + "pivot_df.plot.bar(stacked = True, rot=0, ax = ax1)\n", + "\n", + "ax1.set_ylabel(r'prob amplitude')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f5111521-4e2b-4bce-8270-654883a31cd6", + "metadata": {}, + "source": [ + "This concludes the tutorial. This you can try next:\n", + "\n", + "* try to find the transition temperature of the system by increasing the temperature in DMFT\n", + "* improve the accuracy of the resulting self-energy by restarting the dmft calculation with more n_cycles_tot " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb b/.doctrees/nbsphinx/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb new file mode 100644 index 00000000..f53ec5dc --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb @@ -0,0 +1,471 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "a661f418-c4f0-435e-8db9-ff074ad58b49", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from h5 import HDFArchive\n", + "from triqs.gf import BlockGf" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "55c5a91d", + "metadata": {}, + "outputs": [], + "source": [ + "plt.rcParams['figure.figsize'] = (8, 4)\n", + "plt.rcParams['figure.dpi'] = 150" + ] + }, + { + "cell_type": "markdown", + "id": "0275b487", + "metadata": {}, + "source": [ + "Disclaimer: charge self-consistent (CSC) calculations are heavy. The current parameters won't give well converged solution but are tuned down to give results in roughly 150 core hours.\n", + "\n", + "# 2. CSC with VASP PLOs: charge order in PrNiO3\n", + "\n", + "Set the variable `read_from_ref` below to False if you want to plot your own calculated results. Otherwise, the provided reference files are used." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1e21a834-d629-43a6-8c93-6f7e786aeca0", + "metadata": {}, + "outputs": [], + "source": [ + "# Reads files from reference? Otherwise, uses your simulation results\n", + "read_from_ref = True\n", + "path_mod = '/ref' if read_from_ref else ''" + ] + }, + { + "cell_type": "markdown", + "id": "13dd34fd", + "metadata": {}, + "source": [ + "PrNiO3 is a perovskite that exhibits a metal-insulator transition coupled to a breathing distortion and charge disproportionation, see [here](https://doi.org/10.1038/s41535-019-0145-4).\n", + "In this tutorial, we will run DMFT calculation on the low-temperature insulating state. We will do this in a CSC way, where the correlated orbitals are defined by [projected localized orbitals (PLOs)](https://doi.org/10.1088/1361-648x/aae80a) calculated with VASP.\n", + "\n", + "## 1. Running the initial scf DFT calculation \n", + "\n", + "(~ 2 core hours)\n", + "\n", + "To get started, we run a self-consistent field (scf) DFT calculation:\n", + "\n", + "* Go into folder `1_dft_scf`\n", + "* Insert the POTCAR as concatenation of the files `PAW_PBE Pr_3`, `PAW_PBE Ni_pv` and `PAW_PBE O` distributed with VASP\n", + "* Goal: get a well-converged charge density (CHGCAR) and understand where the correlated bands are (DOSCAR and potentially PROCAR and band structure)\n", + "\n", + "Other input files are:\n", + "\n", + "* [INCAR](1_dft_scf/INCAR): using a large number of steps for good convergence. Compared to the DMFT calculation, it is relatively cheap and it is good to have a well converged starting point for DMFT.\n", + "* [POSCAR](1_dft_scf/POSCAR): PrNiO3 close to the experimental low-temperature structure (P21/n symmetry)\n", + "* [KPOINTS](1_dft_scf/KPOINTS): approximately unidistant grid of 6 x 6 x 4\n", + "\n", + "Then run Vasp with the command `mpirun -n 8 vasp_std`.\n", + "\n", + "The main output here is:\n", + "\n", + "* CHGCAR: the converged charge density to start the DMFT calculation from\n", + "* DOSCAR: to identify the energy range of the correlated subspace. (A partial DOS and band structure can be very helpful to identify the correlated subspace as well. The partial DOS can be obtained by uncommenting the LORBIT parameter in the INCAR but then the below functions to plot the DOS need to be adapted.)\n", + "\n", + "We now plot the DFT DOS and discuss the correlated subspace." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f4a4fc12", + "metadata": {}, + "outputs": [], + "source": [ + "dft_energy, dft_dos = np.loadtxt(f'1_dft_scf{path_mod}/DOSCAR',\n", + " skiprows=6, unpack=True, usecols=(0, 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f1c5c3ca", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAIyCAYAAACzVnNbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAD1HUlEQVR4nOzdd3wb9f0/8JeW5W3Hzl5kJxBIAmEFAgTCHi20UNpSCpTSL9BBmy/doS0to/0BZZSWL2WUTVsoK0CBsFcgJAESsgjZw0kcx9uWrXG/PxxJn/vc56STdDoNv56PRx+1pNPpYiT5Pu97D5emaRqIiIiIiIiIqN9x5/oAiIiIiIiIiCg3GBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcKNigwZ84cuFwu0/+99NJLyuc99NBDOPzww1FZWYm6ujqcfvrpeP/99x0+eiIiIiIiIqLc8+b6ADL11a9+FZWVlYb7R4wYYbhv3rx5uPXWW1FWVoaTTz4ZgUAACxcuxCuvvIInnngC55xzjhOHTERERERERJQXXJqmabk+iHTMmTMHb731FjZu3IgxY8Yk3f7111/H3LlzUV9fj0WLFmHixIkAgEWLFmHOnDkoKyvDxo0bMWDAgCwfOREREREREVF+KNjygVTdcsstAID58+fHAgIAMGvWLFx++eVobW3F/fffn6vDIyIiIiIiInJcvwgKBAIBvPbaawCAc8891/B49L4FCxY4elxEREREREREuVTwPQXuu+8+NDU1we12Y9KkSTj77LMxevRo3TZr1qxBT08PBg0ahJEjRxr2ccghhwAAli9f7sgxExEREREREeWDgg8KXHfddbrbV199Na655hpcc801sfu2bNkCAMqAAABUVFSgtrYWzc3NaG9vR1VVVcLXnDp1qvL+tWvXoqyszBCUICIiIiIiIsqGLVu2oKKiAjt37kzr+QVbPnDsscfi4Ycfxvr169HV1YW1a9fi+uuvh9frxW9+8xvcfvvtsW07OjoAAOXl5ab7q6io0G2bDk3TEAwG034+ERER9T8b9nRi3a6O2P82NXXm+pASikQiWLVqVex/kUgk14dERNSvBYNBdHam/7ejYKcPmHnllVdwyimnoKamBg0NDSgrK8Ojjz6Kb33rW5g9ezbeeecd5fNGjBiBHTt2YMeOHRg2bFharx3NIFi5cmXax09ERET9y+HXv4rd7T2x22MHVuCNq+fk7oCSaGlp0U1ram5uRm1tbe4OiIion8t0HVqwmQJmTj75ZBx66KFobW3FBx98AACxcoBE0ZOuri4AQGVlZfYPkoiIiGgf+epMkV2vISKiPFd0QQEAsZGDDQ0NABCr8d+2bZty+87OTrS0tKC2tjZpPwEiIiKibGJIgIiInFSUQYHm5mYA8av+kydPht/vR2NjozIwsGzZMgDAtGnTnDtIIiIiIgByYgATBYiIyElFFxRobGyM9Q2IjhosKyvDCSecAAB48sknDc+J3nfmmWc6dJREREREahpzBYiIyEEFGRT44IMP8MYbbxhq7jZt2oRzzjkHnZ2d+NKXvqQbQThv3jwAfSMM161bF7t/0aJFuPvuu1FdXY1LL73UmX8AERERUYz+fIaZAkRE5CRvrg8gHWvWrMEll1yCYcOGYdKkSRg6dCi2bduGpUuXIhAIYOrUqbjnnnt0zznxxBNx1VVX4fbbb8eMGTNw0kknobe3FwsXLkQkEsGjjz6Kurq6HP2LiIiIiIiIiJxXkEGBI444AldccQU+/PBDrFq1Cu+99x4qKiowY8YMnHfeebjiiitQVlZmeN5tt92GGTNm4M4778TChQvh8/kwd+5czJ8/H7Nnz87Bv4SIiIj6O/YUICKiXCrIoMD++++Pv/3tb2k99+KLL8bFF19s7wERERERERERFaCC7ClAREREVCzkxAC5ZxIREVE2MShARERElEcYEiAiIicxKEBERESUQ3JmABMFiIjISQwKEBEREeURjbkCRETkIAYFiIiIiIiIiPopBgWIiIiIcijCkYRERJRDDAoQERER5VBE7imQo+MgIqL+iUEBIiIiohyKRNhokIiIcodBASIiIqIckssHmCtAREROYlCAiIiIKIcM5QOMCRARkYMYFCAiIiLKIfYUICKiXGJQgIiIiCiHjNMHGBYgIiLnMChARERElENypgAREZGTGBQgIiIiyhFN0ww9BBgiICIiJzEoQERERJQjxskDbDRIRETOYlCAiIiIKEdUpQPsKUBERE5iUICIiIgoR8KKVAGGBIiIyEneXB8AERERUX+zcNUuvPfFHnzt0FHGBxkVICIiBzEoQEREROSghtZuXPbQEgDA88sbDI8zJkBERE5i+QARERGRg17+bGfs5z0dPTk8EiIiIgYFiIiIiPIKGw0SEZGTGBQgIiIiSqKzJ4TvPPAR5t7yJpZu3pvV12JIgIiInMSgABEREVESD7y/Ca+v2Y31jZ341r2Ls/paTBQgIiInMShARERElMRrq3fFfu4OhjPal8vlSvi4xlwBIiJyEIMCRERERElEpHX6rrZA1l6LmQJEROQkBgWIiIiIkpDX6e+s2+PYaxEREWUTgwJERERESYTCEd3t7t5Qjo6EiIjIXgwKEBERESUh9xHI6tV8pgoQEZGDGBQgIiIiSqInqM8UyGbdPxsNEhGRkxgUICIiIkpCzhSIZBAVSDJ8gI0GiYjIUQwKEBERESXR3asPCgSlHgN2YkyAiIicxKAAERERURKBkJwpkL3X0pgqQEREDmJQgIiIiCgJeZ2e3Z4CREREzmFQgIiIiCiJrx4yUnc7m80AmShAREROYlCAiIiIKIlKv0d3mwt3IiIqFgwKEBERESURlqIArPsnIqJiwaAAERERURLysIFsxwQYdCAiIqcwKEBERESUREQaN5DJkt1lYRvGBIiIyCkMChBRQdI0DU8t24Y//neN4WSdiMhuxvKB7L4ev9WIiMgp3lwfABFROu55ZwNueHENAODhRZuw8ven5viIiKiYGTMFsrts7ysfsJJTQERElBlmChBRQYoGBACgszecwyMhov5AzhTIKEHJlXyxz0wBIiJyCoMCREREREmE5SgAi/6JiKhIMChARERElERE7imQ5ddjzIGIiJzCoAARERFREnKmQPYbDTIqQEREzmBQgIiIiCiJcER/O/uNBrO6eyIiohgGBYiIiIiSMJQPcNFORERFgkEBIiIioiTk8oGMpg9YwKADERE5hUEBIioK8gxxIiI7GRsNZrl8gD0FiIjIIQwKEFFRCDEoQERZZBxJmP6+XBa2YaYAERE5hUEBIioKoUgk+UZERGkyTB/I0XEQERHZjUEBIio4muISWjDMU3Qiyh5jo8Fslw8QERE5g0EBIio4hjRek/uIiOxiqB7IeqNBfqcREZEzGBQgooKj6h8QkoeIExHZyOnyAYYEiIjIKQwKEFHBUQUFgswUIKIskssH5Nt2Y6IAERE5hUEBIio4qqyAMHsKEFEWGTIFMpk+YGn8QPr7JyIiSgWDAkRUcFRNBYOcPkBEWeR03xKNUQEiInIIgwJEVHBU4wd7QwwKEFH2OD19gIiIyCkMChBRwVFdsesOhnNwJETUXzjeaJAxByIicgiDAkRUcFSVAgEGBYgoixwfSZjd3RMREcUwKEBEBSesOBtnUICIsknOFMhk+oALyTsNsjyBiIicwqAAERUc1cm4qvkgEZFdHC8fyPL+iYiIohgUIKKCE1H0FHC6MzgR9S/GRoPZfT0mChARkVMYFCCigqMqHwgxKEBEWWQMPGb3O4cjCYmIyCkMChBRwVFlBYRV3QeJiGzidKYAERGRUxgUIKKCo1r/h9hTgIiySA5GPv3xdmzd25W9F+RXGhEROYRBASIqOKpGgywfIKJskoMCPaEIvnTnu+gJpT75xJV8+ABjAkRE5BgGBYio4LCnABE5TfUV09wVxBtrdmfl9VieQERETmFQgIgKjnL6QJg9BYgoe8wmnGRrHCobDRIRkVMYFCCigqM6OWemABFlkypDKZuYKUBERE5hUICICo5q/a/qM0BEZBdVhlI28RuNiIicwqAAERUcVQCAiQJElE3OZwrwS42IiJzBoAARFRxV+YBZvS8RUaY0TbM1nd/C8AEiIiLHMChARAVHdcWOV9WIKFsSBR2tjBdMB7/SiIjIKQwKEFHBUQUAOHyAiLLFidIBN9MHiIgoRxgUIKKCowoAsNEgEWVLxIGgY215ie42v9KIiMgpRREU2Lt3LwYPHgyXy4UpU6Yk3Pahhx7C4YcfjsrKStTV1eH000/H+++/79CREpEdVKm8DAoQUbY48f1SU+bTlSJonD9AREQOKYqgwLx587Bnzx5L21100UX47LPPcOKJJ+Lwww/HwoULceyxx+Lpp5924EiJyA7q6QM8gSai7LC7fEDVh6Cq1KtrQMivNCIickrBBwVee+01PPjgg7jssssSbvf666/j1ltvRX19PT799FM888wzeOmll/D222/D4/HgkksuQXNzs0NHTUSZUAUA2FOAiLIlYvN0E6/bePpVVeqFS4gWMCZAREROKeigQHd3Ny6//HIccMABuPrqqxNue8sttwAA5s+fj4kTJ8bunzVrFi6//HK0trbi/vvvz+rxEpE9VOUDnD5ARNli98jTEq8iKOD3cVQhERHlREEHBa699lqsX78ed911F3w+n+l2gUAAr732GgDg3HPPNTwevW/BggXZOVAispU6U4BBASLKjkTlA640lvJexaiB8hKP7jYDnURE5JSCDQosX74ct9xyCy655BIce+yxCbdds2YNenp6MGjQIIwcOdLw+CGHHBLbJxHlP/X0AeePg4j6B7vX56rd+TxuqdEgERGRM7y5PoB0RCIRXHbZZaitrcX/+3//L+n2W7ZsAQBlQAAAKioqUFtbi+bmZrS3t6Oqqirh/qZOnaq8f/369Rg/fnzS4yGizKjqe9lokIiyxYnvF5/XtS/roO+1+JVGREROKchMgb/85S9YvHgxbrrpJtTX1yfdvqOjAwBQXl5uuk1FRYVuWyLKX5w+QEROsjsTSfV15XW7oa9E4HcaERE5o+AyBbZu3Yr58+fjuOOOw8UXX2zpOdG6PJdqBpC0jRUrV65U3m+WQUBE9lLV9zIoQETZ4kR9f4nXzZGERESUEwWXKXDllVeit7cXd911l+XnRMsBOjs7Tbfp6uoCAFRWVmZ2gESUdaryAY4kJKJssb+ngHGHPo+LPQWIiCgnCi5T4Pnnn0dtbS2uuOIK3f2BQABAX/+AOXPmxLatrKzE6NGjAQDbtm1T7rOzsxMtLS2ora1N2k+AiHKPIwmJyEmO9BTwuNOaZEBERJSpggsKAEBLSwveeust5WPd3d2xx0KhEABg8uTJ8Pv9aGxsxLZt2wwNB5ctWwYAmDZtWhaPmojsoqrv5UhCIsqWRDGBBJWJKe3P53En3YaIiCgbCq58QNM05f82btwIoC8AEL2vtrYWAFBWVoYTTjgBAPDkk08a9hm978wzz3TmH0FEGVE3GszBgRBRv+BMpoBcPsAvNSIickbBBQXSNW/ePADAddddh3Xr1sXuX7RoEe6++25UV1fj0ksvzdXhEVEKVFkBbDRIRNniRNCxr3wgjl9pRETklH4TFDjxxBNx1VVXoampCTNmzMDZZ5+N008/HcceeyyCwSDuv/9+1NXV5fowicgCTh8gImfZ+/2i2luJ162bksSvNCIickq/CQoAwG233YZ//OMf2H///bFw4UK8//77mDt3Lt566y189atfzfXhEZFFqpNl9hQgomzJ9teL3+vGWdOH6zMFWD5AREQOKchGgypjxoyx1H384osvxsUXX5z9AyKirFFPH8jBgRBRv5Cw0WBa+9Pv8MnLj0J1qU+3M36nERGRU/pVpgARFQdVUICZAkSULdksTzp4dC0OGlkDIL0AAxERUaYYFCCigqOePsCgABFlh1PfL6505hsSERFliEEBIio4DAoQkZOy+fViFgbgVxoRETmFQQEiKjjhiPE+Vg8QUbbYvUA325+YKMBGg0RE5JSiaTRIRP0HMwWIKJvaAkH8/a0NqK8swbdnjcnq94tYMuAWfmagk4iInMKgABEVHDYaJKJsuvHF1Xh88VYAQH2lH6Prym3dv1kWgFs3fYDfaURE5AyWDxBRweFIQiLKpmhAAABueGF1wkyBdHoDirsTAwEuZgoQEVEOMChARAVHdQWNmQJElA0et8v2q/bi15W+fEDcht9pRETkDAYFiKjghNlTgIgc4nLZn4kkfl+JgQCPmCnAQCcRETmEQQEiKjjq6QM8gSYi+3ncLltT+TVNw91vrY/dFpsLsnyAiIhygUEBIio4qitoPIEmomxwu1y2Bh3fWLsb6xs7dfuP/SyclTHQSURETmFQgIgKjupkmT0FiCgb7C4fuPedjYb9R+lHEvI7jYiInMGgABEVHFVPAY7vIqJscLvsbTTYG9LXP4klAx6WDxARUQ4wKEBEBUdVPqAKFBARZcrjciHxt0tqMwl7paYo+pGE8Z+ZKUBERE5hUICICk5Yca4cUTQfJCLKlNttb08BOVNA11OA0weIiCgHGBQgooKjOkHnVTUiyga3y95U/pC0M91IQjfLB4iIyHneXB8AEVGq1NMHeAZNRPbzuFPrKRCJaLj/vY3o7g3j0mPGorxEf6oVDJv3FHCx0SAREeUAgwJEVHBUkwY4fYCIssHlcqU0feC+dzfi+hdXx27/cO5E3eOhsHmmgPgzyweIiMgpLB8gooKjuoLGi2pElA195QPWv2DEgMAjH242PC5nCpj2FOB3GhEROYRBASIqOKqsAKbaElE2uFPMFBDtausx3GcsHxBey83yASIich6DAkRUcFRX0DiSkIiyweNKPH1AXNRb6T0QlMoHXLpMgfj9DAoQEZFTGBQgooKjnD7AkYRElAVut/VU/kUbmpJuY718gEEBIiJyBoMCRFRwWD5ARE7pW6hb+375fGd70m0SjiQUgwIMdBIRkUMYFCCigmMWFOgNRXDd86vwvYeWYOOezhwcGREBQHdvGO99sQcdPaFcH0rG3C6X5UyBgVV+w33yFAH5+8utG0koPI+BTiIicghHEhJRwVGdK4cjwDOfbMe9724EAGxt7sZ/rzrG4SMjIgC46P7FWLxpL6YOr8bzP5ytq5svNG534p4Cokq/8bSqKxhW3h8l/mZYPkBERLnATAEiKjiqpoKapuHxxVtit1c3tDl5SES0T2tXEIs37QUArNzRhk1NXTk+osy4XdZHnobCxg27ehNnS3iE+gG3cFbGkYREROQUBgWIqOCoygfCmobCvRZJVDzkoF1vqLCL491Jpg+I5H4BANDVE074HK+HjQaJiCi3GBQgooKjnj6gFXSKMlGx0iw26ctXbpcrYaaA+K0TUnQH7OpNHBTQZQroggKWD5GIiCgjDAoQUcFRBgU0MFOAKA/In8NCv+DtcVsPbKjKB7qDicsHvELNgDiJQG5QSERElC0MChCRo9Y3duCP/12DpZub095HWJGNzFRbovxQ6Ak7cnmS3+uxPB5QVT7QmaR8QCRmDfA7jYiInMKgABE56lv3foj/e2s9zv2/95M24DKjuoIWjmgFvxghKkaFtrYNBPWL+FKfO2GegPiYaiEvlg8s22IMhorfWy6WDxARUQ4wKEBEjmpoDQDoWyh8vKUlrX2opw8ALhYQEOWc/DkstJ4C3YaggCfhVfv/eXgp3li7u++GYrNo+cCGxg589a73E742yweIiCgXGBQgIsdoNl0yVPcUYFMBorwgfQ4LLVMgKNUned3upN9dVz6yDID6u6ljX/nADS+uTvq74PQBIiLKBQYFiMgxdl34UpYPcCQhUX4o8LWsvBZ3uZIHNqLZBarNPtq4FwDQ1q0ulxK/z9xulg8QEZHzGBQgIsfYlSlgVj5ARLlXaOUCMvnoXbC+QFdd3S/x9p1q9ao6pELfR4CZAkRElAsMChCRY+QT63Sv7Jt1AucpNFH+KbS1rSp4aWWBHo5oyn9raF8woDeUfIQBewoQEVEuMChARI6x6wqiPDIs2f1E5Bx5YVwMmQNW/gWBYFi5XXDf95LcqyBKzA7wcPoAERHlAIMCROQYu64Yml21k0eJEZHzCn0tq/p6sVL61BuKKLcL7ssQCJms8iv8ntjPLpYPEBFRDjAoQESOkc9xxfndqWBQgCh/2dU7JF9omrVU/p5QRF0+sO+5Zr+Xcw4eEftZVz5QZL9HIiLKXwwKEJFj5JPc7z60BJ9tb015P2ZlAoFg8ppdInJWoa1tVeUPVv4JPaGwOlNgX9mAmAUQ9aevHoRxgypjt9lokIiIcoFBASJyjOoU94ePf5zyfsyCAj0hZgoQ5Zr86Sy0pa0qBGClvr8nFFFuFwqbP/mo8QN1tzmSkIiIcoFBASJyjOrK18Y9nSnvx+wCWnea5QhEZB/DlfYCv+Ktadb+DT3BiDIAEto3LsXKtBWWDxARUS4wKEBEjrHrHDds1lPAwsgvInJWoS1t1Y0Gkz/PvHxg332KqIBcUaArH2CqABEROYRBASJyjF1XDK2OJGztCmLFttaCv1JJVEjk9PtC+vjtbA3g/L8v0t2naZqlq/bmjQbNMwXkPgMelg8QEVEOMChARI6x4yRX0zTTed+yU29/G2fd+S6uXbAq8xcmImsKeDH7u+dWYldbj+4+Dfp/0tTh1crn9oTCyn4EiXoKuKVIgYvlA0RElAMMChCRY1RX7OWT4mSCYc1ycKGhNQAAeOD9Tam9CBGlrZCXsi+t3Gm4T9P0C/SxAyuUz+01aTTYm2D6gEvKH2D5ABER5QKDAkTkGNU5bok3ta+hbE0Y+O+KBvz66RX4fFd7VvZP1H8V9uJWg6YrC3C5XJgwuNKwXURTl0pEMwXU5QP62/pGg2kcLBERURq8uT4AIuo/VKm1Pk+qQQH7mwnubA3gikeXAQAWrW/C61fPsf01iPoL4/SB3ByHncQsJ7PspnBE3XsgFMsUMD5Hvks/krAIfnFERFQQmClARI5RneP6U8wUCAT1mQInTBmcySEBAF76rCH284Y0RiQSUZyh0WCOjsMufeUD8dtul5z038dsER+MRDMFkkcFdOUDhf6LIyKigsGgABE5RnXOvKejN6XpAGKmQInHje8dOy7j4yr1eXS3zaYbEFFyxXaBW4N+wW/WBkXT1H1Tor0BVJkCbpfcU8D4PCIiomxjUICIHGN2Je3NtY2W9yFmCvi9bpSXeBJsbY3fp/8q7OoNZbxPIupT6EECTeoV4HK5lAv8vvIB4/2hBIt7eTceF8sHiIjIeQwKEJFjzE5xL3ngI8v7EDMF/D43vO7Mv8bktN5EI8SIKDH505NKJlB+0iz1FIhomjIAkuiKvzyRwMXyASIiygEGBYjIMXakw/YEhaCA1wOvJ8WZhhYEw/Y3MyTqL+QgQKGvbeWeAi6Xuj+ApqmbqYZi5QOqkYR6bmYKEBFRDjAoQEQFJRSJL9i9Hhe8ZpftMtDLoABR2optLSsv9uU+AFFhTV0+ENbMRxLK+xKHsbC3CREROYVBASJyjB1XvsQTZY/LZUv5gHzyHWT5AJFtiiFIEJF6Cqi30ZT/2Oj3i/L7T54+IAQ5w8XwiyMiooLAoAAROcaOC1/iibXb7bKlfEAuF2D5AJF9VCn1hUSDpp8+4FJPEoho6u+4cKSvJ4EyJiDtR9dokJkCRETkEAYFiMgx4Ujmi21xvd6XKWAtKJCo2ZkcBOgNMShAlC75o1boF7w1DbrGCKaNBiOaaQAkoqmv/HsM5QNCpgCDAkRE5BAGBYjIMWajuUq81r+KxBPlvkwBa89NdIItlwswU4DIPgUfFIA+Q0nVZBAwnz4ARMcVGh+UR6oyKEBERLnAoAAROcbsJLc3FLF8AiyeWHvc+pPoxM8zf8xYPsCTcaJ0yVfLC72LvtwqwHwkofn3TDiiKcsB5P4EHvYUICKiHGBQgIgck2jhbzVlX2406LPYUyDRwoQ9BYjsYygfyM1h2Kavp0D8tsvlUjYb1DTz8gGzyQQycRoBMwWIiMgpDAoQkWPE8gG/VDIQCIYt7UNuNGg1U2B7S7fpY3JmAEcSEqVPXsoWeqYANBgaDar0NRQ0eSysWVrki99nBf97IyKigsGgABE5RkyfrfB7dY/1pJEp4HW74LM4kvBvb6w3fUzODAixfIDIPkX2cXK7XMo+KBHNvKFpWNMSNjuN8jBTgIiIcoBBASJyjJwpIF7kt5opIO7D7XLp5non0hYIWtonwOkDRJmQF7+FfsVbbjTodgGDq/yG7RI1GgxFIpZ6BOgyBfg1REREDmFQgIgco7vK73Gh1BfvvG01U0DMNrBaOgAk7oAuBwHY4IsoffKnp9A/TpqmSeUDLgysVAQFIuZ9AyKRxM1Oo8TvtBCjAkRE5BAGBYjIMc1dvbGfPS6Xrq9AT8hapkBYSy8okCiHWS4fUHUJJyJr5CDACysacnMgNtGg/ze5XEBVqdewXUQzTl6ICmvG6QOq7y+3bvpAesdLRESUKgYFiMgRmqbh729viN0eUFECvzeeKRAIpp4pEO3UPWNUrYXXN39M7iHAWl4i+zz98XYs3bw314eRNk0aNeg2mXqSqHwgHNYMZRReRVBA7CnA4CQRETmFQQEicsSane1Yvq01dvu0A4ei1JdGpoCifGDcoIqMjk3OFGBQgCgTxs/PTS+vzcFx2KMvU0AoHwBQ4vEYtoskaCYY1ozTB3we4ymYeBe/h4iIyCkMChCRI9bt7oj9XFHiwXdnj9NlCvRYzBQIS1fsAON4QxWz0+u/vfkFnvp4u/QaPBknSlexfXw0KQPA7XJBVbkU0cyKB4BwJGL4vXgV2QZuF0cSEhGR8xgUICJH7G4LxH4+clw93G4X/EKmQMBipoC+0WDf/5corrjJVFfwPtveiv/3kvEKJq/QEaWvGD898vQBlzIoYL6QD0eMwUZV+YAYKJCnohAREWULgwJE5IjG9p7Yz4Or+zp3l6aVKWAsH1DNDJepTq8XrW9SbssrdET2ciGVpqD5pW8koXCHy4W6CvX0AbOvjmA4ougpYPzecrOnABER5QCDAkTkiLZAKPZzTVkJAOgyBayOJNT3FOh7vqo2V6Y6WVdd7QOMjQeJyLpUPmsFQZoq4HYBXzlkBIZU6wMDicsHNMgTBlUlCB7d9AF+DxERkTMYFCAiRwSC8fKAMl9fhoDYC0B8PBFdUGDf+bOVTIFUMFOAKH3mS+PCpEGfAeCCC6U+D17/3zmYLkw+iWjqMiUACEWMmQKdvcbvPHH6AMuYiIjIKQwKEJEjunrjmQLlJfuCAj6hfCCNTAF3CuUDY+rLLe1ffg0iylwhx9k0zdhTAAAq/F4cMro2dn84YfmAZrjy/8MTJhi2c7tZPkBERM5jUICIHNEt9AwoKzFmClgdSSienEevqllpNHjA8GrDfS6TnGam7RKlT/Xx2bin0/kDsYmm6f9N4sJd7AGgaZppllEorA8YHDdpEC44Yj/DdiwfICKiXGBQgIgc0S1kCkTLB0qFTIGA1UaDup4CKTQaTOH8OsyeAkRpU33WPKoC+gKhwXyxL/67Ipr590xvWB/0vOErB8WCo2b7Y8YSERE5xWvnzjZt2oR33nkHn376KRobG9Ha2oqamhoMGjQIM2bMwDHHHIP99jNGxomo+HUJ9bPlGWQKiFfPolfsrDQaTOX8mlfoiNKnWkAXclAA0E8vEbMDxGSjcIJGg/J0FY9JlhJ7ChARUS5kHBRobm7Ggw8+iHvuuQdr1qwBoG60E03T3X///XHZZZfh29/+NgYMGJD26/75z3/Gu+++ixUrVmD37t0IBAIYOnQo5syZg5/97GeYOnWq8nkPPfQQ7rzzTqxatQolJSU48sgjMX/+fBx11FFpHwsRJdctNBIsjQUFUu8pEIkYywesrDdUp+tmT2MtL1H6VEGBQp4+oEkNBMXvG3mEoFlGQW9Y//1m9p3FTAEiIsqFtIMCXV1d+H//7//hlltuQWdnJ8rKyjB79mwcfvjhmDJlCurq6lBdXY3W1lY0Nzdj9erVWLx4MZYsWYKf/OQnmD9/Pq6++mpcffXVqKioSPn1b7jhBnR2dmLatGk46KCDAAArV67EQw89hH/+85945plncNppp+meM2/ePNx6660oKyvDySefjEAggIULF+KVV17BE088gXPOOSfdXwcRJdEtZgrEygfSmT4Q/zl6Am1lBjozBYicofqsFfJEDw3QjRMUAxxeXfmABrNUATlTwG0SFdAFGQr3V0ZERAUm7aDA+PHjsWvXLpxyyin41re+hbPPPtvS4r6zsxNPPfUUHnnkEVx77bW4++67sWPHjpRf/9lnn8XMmTNRWlqqu/+uu+7ClVdeie9+97vYsmULPJ6+xcfrr7+OW2+9FfX19Vi0aBEmTpwIAFi0aBHmzJmDSy65BHPmzMkoe4GIzImZAmWZZAqIjQajQQErVyFTuHoZtnYoRKSgusIdKeDP1MJVu3DK1CGx2+LCXfw5lCBToMeQKWBSPsBMASIiyoG0Gw0eccQRWLp0Kf773//iggsusHy1v6KiAhdeeCFefvllLFmyBEcccURar3/00UcbAgIAcMUVV2DChAnYsWMH1q5dG7v/lltuAQDMnz8/FhAAgFmzZuHyyy9Ha2sr7r///rSOhYiSS9pTwHKmgCookDwqkMrpdbiQVzBEOaYqISzkTAGgb6RglPh945VGCJr3FNB/v5n2FBDOypixRERETkk7KPDMM8/g4IMPzujFDznkEDz99NMZ7UMlmh1QUlICAAgEAnjttdcAAOeee65h++h9CxYssP1YiPq7QDCMr/ztPfQKmQDRqQN+n9ho0OL0AV1tb7R8wGjmfgMwYXBl7LaqT4BZKIGZAkTpU13hLvSr3p098ekp4veGx6PPFDCfPqD/UnGZnH153PEHCv13RkREhSPtoEBHR4edx2Gbhx56CGvXrsWkSZMwbtw4AMCaNWvQ09ODQYMGYeTIkYbnHHLIIQCA5cuXO3qsRP3BA+9vwrItLbr7ykv6KpdKPGkEBcJipkDf/6suuv3q9P0xpr48djuV0+tCv6pJlEvqngLOH4edAsL3k9gOQJ4WYFo+wOkDRESUx9LuKTBkyBCcffbZuOCCC3DqqafC7U47vpCRm266CStXrkRnZydWr16NlStXYvjw4Xjsscdix7RlyxYAUAYEgL6ShtraWjQ3N6O9vR1VVVUJX9NsssH69esxfvz4DP41RMXnj/9dY7gvWj5QIpQPbGjstLQ/MVMgPn3AeILdd1d6Tbt4Mk6UPtXCuNADbQGh/ElsEij3ADBrICg3UvV61NvJp1KRBPskIiKyS9or+e7ubjz++OM466yzMHz4cPz4xz/GkiVL7Dw2S15++WU8+OCDePLJJ7Fy5UqMGjUKjz32GGbOnBnbJprVUF5ebrabWE+EfM2AICom0V4C4uJ7T0ePpeeKZQDuBI0GXdBf0XtiyVZdCnDf89Qn2yEGBYjSpgoAFHqgrStoUj4gBQXMxpmKPVUAwGdyIcUjBQDYV4CIiJyQdlBg06ZNuP7667H//vtj9+7duOOOO3DEEUdgypQpuOGGG7Bp0yYbD9Pcq6++Ck3T0NzcjLfffhuTJ0/GnDlzcP3118e2iTY9StSMTNUYyczKlSuV/2OWAJHRGdOG6W67XPHP4qdbW3SPWfkcqjIFVFwuly5YsGZnO+b9+xPDsaiYndgTUXKqAMCgKn8OjsQ+IQuNBkMRzTT4IU5fcbvMRxLK32mFHkwhIqLCkHZQYPTo0fjlL3+Jzz77DB9//DHmzZuH4cOH4/PPP8c111yD8ePH47jjjsM999yDlpYWGw9Zrba2FscccwxefPFFzJw5E9dccw0++ugjAIiVA3R2mqcnd3V1AQAqKytNtyGi1I2sLdPdFk+izz54hO4xKyfAYWWmgKJ8AIBLaiX48spdSfcP8OocUSZUH5/TDxzq/IHYSPzeEb9uxMaAEU0zLVMSgwI+j/mpl5wpUOhlF0REVBhsaQQwffp03HzzzdiyZQteffVVXHTRRaiqqsI777yDyy+/HMOGDcO5556LZ555BsFg0I6XNOXz+XD++edD07TYNIHRo0cDALZt26Z8TmdnJ1paWlBbW5u0nwARpUZesHuFk+gRA/QBAytp++JJcjTAoLrm5nIZ63MN25i9Bq/OEaVNFdzz5KjvkF0iiqkngH6EYChs3mhQ7EmQSlCApUxEROQEW/9Ku1wunHDCCbj//vuxa9cu/Otf/8KZZ54JTdPw1FNP4atf/SqGDh2KK664ws6XNRg4cCAAoLGxEQAwefJk+P1+NDY2KgMDy5YtAwBMmzYtq8dF1B/J579igy2vtFBINVMgegKtbDQIF/xeT+KdsacAke2KsdGgLkPJJFMgbLF8wKzJIGAsK2CAkoiInJC10L3f78d5552HZ599Fg0NDfjrX/+Kuro6NDc34+9//3u2XhYA8NZbbwFArMa/rKwMJ5xwAgDgySefNGwfve/MM8/M6nER9UdyCr+4UJfrZ60sxsVx39FggLLRoAso9aX3FcfyAaL0qQIAhf6J0pUPQN1TIKzpMwXEkatio0E5GCpiTwEiIsqFrOfzLV++HH/84x9x4403Yu/evQAAjyfJ1bsk3nnnHfzrX/9CKKTvJB4MBvGXv/wFDz/8MMrKynD++efHHps3bx4A4LrrrsO6deti9y9atAh33303qqurcemll2Z0XERkJC+w/cIYQo8n9RNg8aTbk6B8oO+1jN814pW33lDE8Li8DRGlRvXxSaWZbz5qCwjTB4QvHLfUaFD8fhK/67p15QPmmQKcPkBERLngzcZOt27disceewyPPvooVq5cGTsZmDZtGi688EJccMEFGe1//fr1uOSSSzBw4EDMnDkT9fX12LNnD1asWIGGhgaUlpbigQcewKhRo2LPOfHEE3HVVVfh9ttvx4wZM3DSSSeht7cXCxcuRCQSwaOPPoq6urqMjouIjOQFtnii7JVPgC0sxkPKRoPG7dwuF8pKjEGB3nAEpe6++8t86gAlr84RpU/1+Smmta3bZPpAOBJBOBL/fvP73GjfN2nVcvmASy4fyPRoiYiIkrMtKNDa2oonnngCjzzyCN59911omgZN0zB8+HB885vfxIUXXoiDDjrIltc67rjj8Ktf/QpvvfUWli9fjj179qCkpARjxozBueeeix/96EeYMGGC4Xm33XYbZsyYgTvvvBMLFy6Ez+fD3LlzMX/+fMyePduWYyMiPXmBUCJmCqQRFBCDDPFUW0VPARdQqsoUEFYnteU+9WsU0wqGyGHF2FNApJ8+IAYF9It4MVPJ6vQBOVAaYlSAiIgckFFQoLe3F88//zweffRRvPjii+jt7YWmaaisrMQ555yDCy+8EHPnzlWOC8vE2LFjcf3116f13IsvvhgXX3yxrcdDROYSlg8YegokPwHWNxrs+3/VyG+zngI7WgKYMLhv9KjZOoWNBonSV4w9BUS66QMufaaArqeA8F2nmz6QoKeAsdFgRodKRERkSdpBgcsuuwz/+c9/0NraCk3T4PF4cNJJJ+HCCy/EOeecg/LycjuPk4gKlHz1v6a8JPaz2+2CyxVfnFuaPqAYDaYKPLqgLh/4xj0fYPGv+oKVmslSheUDROkLKxayRZsp4NH3FAib9RSwWD4A9GUfRL+D2FOAiIickHZQ4L777gMATJ8+HRdeeCG++c1vYujQobYdGBEVh+auoO72MRMG6m573S4Ew/tOgFMsH4ieXKtOsfsyBYxBgcb2HrR1h1BT7jPNFCimBQyR05SfnyL6SLlMegpEIpru+0kMCoR031uJezx7XC6EYf07kYiIKFNpBwV++tOf4sILL8SBBx5o5/EQURHZ3RbAgk936O67+OgxutueFIMC6kwB43Zulws1ZeqeAdEogtmr8UScKH2q6R3FFGgTM/zF8gE5U0AsHxD5VPVO4v7dAPYlFhTT742IiPJX2kGBP/3pT3YeBxEVoUc+2Ky7fd3ZBxqabPXN7O7LN7ZSy69rNJhw+gDMgwL7mI1JY1CAKH3qkYTOH0e26HoK6BoNagiF4/9QVaYSkLjRICD3KSiiXxwREeWtxH+Z0vDf//4XZ599NkaMGAG/349LL71U99i8efOwY8eOBHsgomKxqqFNd1s1AlC8aJZqpoAnQU8Bj9tlOl0gWe9TnogTpU9VB18oHylfknp/QF+uJPYHCEc0BIWGCmYjT630FBD3SURElG22BgWuvPJKnHnmmXjuuefQ0dGBYDCouxJXW1uL2267Df/85z/tfFkiylPVSa7UA/r6WiuZAmITs2inbtUpttvlQp3Q1FDFLDU3zPNworSpMnDMmnrmG3lMqooYhHS75KBA/N9Z4VcnYybNFGBQgIiIHGZbUOD+++/H//3f/+Hwww/HJ598gtbWVsM2s2bNwogRI7BgwQK7XpaI8ph8peyQ/QYYtkn1BDgszOhKlikwqMqP/YdVGx6Lbm3aaJAn4kRpU32OC6V8INmCHdBnN3nd+qCmLlNAMf2k7zkpZAoUyi+OiIgKmm1Bgbvvvht1dXV4/vnnMW3aNNPtJkyYgA0bNtj1skSUx8TT2YGVfowdWGHYxptyUEDRU0Cxncftgsvlwj8uPsz0uMzOt61kLBCRmrqnQGF8pqwEBVwmPQUiUlCgPM2eAmL2AQOURETkBNuCAitXrsSsWbNQX1+fcLuhQ4di9+7ddr0sEeUxcSHwtUNHKrdx67p3KwacS8RzZHeCRoPR+4bWlCqOa9//m70GT8SJ0qaePpCDA0mDlfIB3fQBt/j9paE3JAQFzDIF2FOAiIjyTNrTB2RutxsRCyf0O3bsQEWF8WohERUf8SvBbdLdT27UlYwuU2DfPlX79iTqJqhFj8+spwBPxInSperVUSg9BXqC4aTbuEyCAmFNQziUvKeAWHKgoutTwO8iIiJygG2ZAlOmTMGSJUvQ1dVluk1TUxM++eSThOUFRFQ8xMWB2Ro99Z4C1ssHzEQXKGYn3MwUIEpfIU8faAuEkm4jlg+I5U/BcESXKVBZqg4K+H2JT71SDZQSERFlyragwAUXXIDGxkZ8//vfRyhk/KOqaRp+9KMfoaOjAxdeeKFdL0tEeUw8n1U1AwRS7ykgBhpiC3/Frt2JggKa8fXY3IvIHsGQIlOgAD5S1z2/ytJ2bpOeAvK/sapUPX3F700yfcDFoAARETnLtvKBK6+8Ev/5z3/w4IMP4t1338Upp5wCAFi+fDmuvvpqPP/88/j8889xwgkn4KKLLrLrZYkoj4k9BczW6B53qiMJxYV83/+7FFGBROUD0T2IAYYSjxvdkb7U4RBnEhKlTWy2F5f/n6l7391oaTvxmyVRRlKVSflASZKggBjQNBubSkREZCfbMgV8Ph9eeuklXH755diyZQv+9re/AQCWLVuGP//5z1i/fj0uvfRSLFiwAO4k9XREVBwiuqCA+uRZbMSdaqaAOzaSULXfRJkCmuH1fB6eiFN+Ui+y81ev4ngttBwqGG6T8gFZdZlZpoC6AWGUPlMgxYMjIiJKg22ZAgBQXl6Ov/3tb7j22mvx1ltvYdOmTQiHwxg5ciSOP/54DB8+3M6XI6I8Jy6ts5MpYN5o0EKfQd2+xKt3TNmlfPHcpzvwq6dWYOrwajz63SPgtTAyL9fEuvqoQmk0aIX4XWZWpuR1u1BpkimQrHzAzekDRETksLSDAu+//z5mzZqlrBMeNGgQzj333IwOjIgKX6o9Baw0+BNPkhNmCiQqH4hOH9DETIH4iTozBShf/OjxjwEAH27ciwfe34TvHjMux0eUnDJToJg+UsJXi1mmQJnPg1KThoLJggJelg8QEZHD0r7kMHv2bAwZMgSXXHIJnnrqKXR0dNh5XERUBKyVD+jnfCdj5/SBUEQdFLByHEROW7S+KdeHYElPUJEpkMOP1PaWbny2vdW2/Zk1GhT5fR6U+dRlAqn0FOB3EREROSHtoMAf/vAHjB8/Hg899BDOO+88DBo0CKeddhr+9re/YcuWLXYeIxEVKEuNBnX1s8kLaMOK6QNyvMHlMs9M6Duwvv+LsHyACkhTZ2+uD8GSzh71BKJc+GJ3B+be8ibO/Mu7eHjRJlv2aSUoUOn3wG8SFEg+fSD+M8ejEhGRE9IOCvz617/GokWL0NDQgL///e84+eST8c477+AHP/gBxo4dixkzZuA3v/kNFi9ebOfxElEBEdf4ZpkC4kxuK1fFxH3GT8j1+05UOgCIPQXi9+nKB3giTnlob6EEBXoVQYEcHAcA/P75VQjsy1y45tmVtuxT/HoxDQqUek3LB5JlCnjYU4CIiByWcceiwYMH49JLL8Wzzz6LpqYmPPfcc/jud7+LPXv24LrrrsOsWbMwbNgwfO9738OCBQvQ3d1tx3ETUQEQywfM1umpngDrMgVc0UaD+m3MAhBR0V2EdSMJheNgHS/loaaOnlwfgiWqTIFc1cY3tFg750glk0H8vjELQFb6vSjxuJUZUsmmD4jfX/wuIiIiJ9jaxtjv9+PMM8/E3XffjW3btuGjjz7Cr3/9awwbNgz33nsvzj77bNTX1+Oss87CPffcg8bGRjtfnojyjLjGN1uoi1foVV3LZcqeAtK+k009jfYUEMsVWD5A+a6zN5zrQ7Bk2ZYWw335vrZN5SPvslQ+4IPL5UKpooQgaflAis1XiYiIMmXrSELZzJkzMXPmTPz+97/Htm3b8Nxzz+G5557Dq6++ihdffBENDQ34zW9+k81DIKIcstJToLwkftLclWTRI58gu00aDSYtH9i3GzEIUVYS/zpkUIByKRAM48pHl2Fbc1euDyVlQcXkASB3mQJJvgpiUskUEHfpcrngcbsM3xlVpX3fJ6U+j+F7LZXyATYaJCIiJ2Q1KCAaOXIkrrzySlx55ZXo7OzEyy+/jKqqKqdenohyQF8+oD47LxcW48mCAnIqrcdkJKHZ7PCo6F6C4fj+ynziSMK+RULCZoVEWfLIB5vx+prdysdau4KoKffZ8jqhcATbW7oxckB5wmkdqWgPGEsHgPwfrZfK0clZTx6XC2FpD9EMAdUEgmTlAx6OJCQiIofZWj5gVUVFBb7yla/gpJNOysXLE5FD9OUD6m30mQLqBUWUfDUuWibgkhsNJgsK7DvR7hEyBeQ0X16go1x5ZdUu08cOu/5VLNm015bX+d7DS3HcTW/iykeX2rI/QN1PAMj/7JtU1t5yrFD1fRMtEfArmg0mzRTQTWTJ798bEREVB8eDAvfffz9+//vfO/2yRJQDHcICQVVbC6RYPmA1UyCd8gHp+HgyTrmSqOa8NxzBFY8uy/g1Glq7Y9kIL6/chZYueyYbqCYPAPn/eUrlirz8/eLzmAcF1JkCiU+93Jw+QEREDnM8KHDPPffg2muvdfplichhmqZhQ2NH7PagKr9yO7F8oDtJUECur403GtRvlywoENUbNs8U4Mk45UqyhpuN7ZlPIZADcFaafFphtp9iqo2Xv14SNRNUPZZKpgDLB4iIyAmO9RQgov4logHNXcHY7VF15crtxEwBs6uMsX2aBQUM5QOJjy02klCYPiCn+XIUGDkpEAzj8keWYuveLmzc0+n469v1bhf7dIhyFWSTvxvMpFQ+IO2zrMR84V+qKB9IZfqASd9GIiIiW6UdFNi9W90EKZlgMJh8IyIqeHIX8iq/+uumTFE+sKstgFdW7cKxEwdiv/qK2OPywsIsU0CePnDmtGF4fnlD7HZ0JGFIWMD4pUgCMwXISfe8vQFvrnVuTG+2WmiGTFax+f550lIIi8gjT0sVjQNLEpQPpDJ9QAxcEhERZUvaQYGhQ4em1ZmbHb2J+gezBbxMzBTo7g1D0zR898ElWLG9FfUVJVj0y7mxk2j56r3b4vSBbx4xWh8UiGUKxPcnn6hzPjg56cXPdlreNp//hJqVCeR7+UAmmQLqbIC+7zV/htMHmClAREROyLh8YPTo0Slt39DQwGwBon5AXgR4TXL6K4SeAp29ITS0BrBieysAoKmzF5ubOjFxSN/4UvmiWfTk2TAiTAoKHDV+oO52bCShcIzyiXq+L2KouGgprEorTbJuMnt9e/YjZwhF5ax8wGIAJZXaffn7JVHfAFUWQdJGg+L0AZYxERGRA9I+sxg7diw2bdqEd999FyNGjLD8vFmzZmHx4sXpviwRFQg5jdhrkilQVRr/GmrrDqEtoA8aiifF8glybPqAtE9Vo0Gv2xVb6EcXYGJqriFTgCfjlKd8+wJs3b1hBIJhDKgoSXkf2crYC5n0FMj3IFsqR2cpKLDvv1FZiWIkYZKmJ+LDzFgiIiInpD194PDDDwcALFmyxLaDIaLiYbV8oLY8vqBp7e41zDkPhoSggLDgcLniZQLG6QPG1xG3ie5FXMDIQYF8r4Gm/svtcmF3WwDH3/wmZl63EM98vD3XhxQTMqmBz/fFbSoxQDnAmahvgJwpUOJxG8qbZLryAQYniYjIAWkHBY444ghomoYPP/wwpeelkiJJRIVLvjLoM7k6Vlvui/0cDGuGcWvi2EDxBFl/Yp64fKBvi/h9yp4CbDRIOZTKn0aPG7jzjS+wsy2AiAb8+F+fpPF62Xl/m00fyPdMgVRSBeTvl3LF9IEKf999chZBsiaDgD7TKd+DKUREVBzSLh84/fTTsXnzZkycODGl5911111oa2tL92WJqEDIacRmF8dqyny623JQQKxRFtP9xRNned+q8gF93GDf9AHhhNvrccHt6hul2PdaPBkn56TS/d7jcuHzXe1ZPJr0mWUK5HsX/VR+/3KmQLnfGBSIfq/J4wqtBAXE/ed9MIWIiIpC2kGBSZMm4dZbb035eQcffHC6L0lEBURcHHjdLtMaZp/HjUq/Fx37ygYMmQKh+H50i3jhxFnetzpTIE6VKeDzuOFxuxDZF8xg2i7lK7fbZZp5Y1W2egoUaqaAfHiPfvcIXHCvOhNS/n4Rm6VG1ZT1lUXJTQVVpQYyt276QH7/3oiIqDhkdlZBRGQiLF2FT0TMFmjs0AcF/v72BuU+xRNzK40GlT0FpP0xbZdyJZXFn8ftStqsLlfMGg3m++JWLqc4eHSt6bZyUEDOBgCAQZV+5WOqbQ37F7+HGJwkIiIH5OdZBREVPPGKoded+KtG7CsgZwq8+8We2M+mQQG5fMByTwF9NgMbfFGudPaEU9o+00wBWSrp84mIGUKlvvgxmgUL8oV8dC5DqDEuWaZAiceN6rK+++TMAFX/gUT7z/dgChERFYe0zyrWrFljywHYtR8iyi9mC3gVXVCgo9d0O/2V/fjXl3wCr0pM0GcKGHsKeKSgQL4vYqi4dEhTNxIJRzT4LNSmJ5Kd4gF9MFBssperK95ymcSLKxqU28mHl6i6Qg5yyj0F6itLYq9bVarvmZJq+QAzBYiIyAlpn1UceOCBuOCCC/DZZ5+l9fxPPvkEX//613HQQQelewhElMfEK4a+JOUDtWXxsYR7pEwBUUS3iI/fL5/AW+0pEJKyGcSU7HyvgabiEYloKQUFIhEt6WcqV0JCY1BxHF++fJ6ufHSZ8n65fCBRUED+fqn06zMFBu4rHQCA6lL9Y1YyBbzMFCAiIoelHRS45pprsGDBAkyfPh2HHHIIbrnlFixZsgTBYFC5fU9PDz744APceOONOOiggzBz5ky8+OKL+M1vfpP2wRNR/pKvwidSI2QK7G4PWNqneLVOPoFXpf6KVww1rW8RsGVvl+4YxZRsscEhUTZ1BVMrHQhrmu09Bey6IC1+RsXygXxf3KrKB8yu6svTB+TygdF15fHH/HJQIHl/Z7G3Sb4EU4iIqLilPX3gt7/9La644gpcf/31eOihh/DTn/4ULpcLPp8PY8aMwYABA1BVVYW2tjbs3bsXmzdvRigUgqZpqKmpwVVXXYVf/vKXGDRokJ3/HiLKE/JV+EQqhKtnZt3LgUQ9BfQn6ckmEmrQ8O8lW3WPez0u+LzxrcRRiETZ1BGwniUAAOGIsaeApmkpTRTI0vAB3edGLB8I5fnnSVU+8Pdvz8T/PLwUXb36oI3cs6RSygY4cERN/DEpKFBqoXxA/G5jw1MiInJC2kEBABg8eDBuv/12/PGPf8S///1vPP/883jvvffw+eefG7YdOnQojjnmGJxxxhn42te+htLS0kxemojyXCrTB7wWr3pmMn1A3EjTgJ//Z4XuYbmje2+eL2KoeHT06DPsSn1uBILm7z9N0wxBgd5wBH5v8gVntoVMegokCvY5TRVAkRstugAcM3EQFv/6RJxxxzvY3NQFM/LCf+LgytjPcqaAlWCMvuFp8u2JiIgylVFQIKqsrAwXXXQRLrroIgBAY2Mjdu/ejdbWVtTU1GDw4MHMCCDqZ4JCT4Fk5QO+BI/XVcT7DVifPmDcT7JzcS/LByhHdrTES2bqK0qw9JqTMOYXL5huH9Y0XVYLAPSEMgsK2LX2FD/34mI5n4JsXb1hw2JdLm+IBhYr/d6kkx7koIDYOFV+zEqZBkejEhGR02wJCsgGDRrEIABRPxfWlQ+knykgNlTT9xSI3++Rr/opzqPlngLG13HDL3R0Z/kAOeWml9fGfm7q7Ju+UeJ1mwamwhFjT4GeYATIIAFPbrSXLjFToELoyh+OaAiFI5azguyi+ubp7AklDAq4XfoSAbE3gsoAIXAp35afa+X3LP6K8r0XAxERFQdn/zoTUb9h1hRQJdGVODHtWH/iHj9plxca6qCA8LjiuujgKj8zBSgnVmxvNdznTzByMBLRDJ+pnlBqzQrlZpy2NRoUgmnywrsnTz5TqkkP4veM/H1S7kt8/aSmzIfvHz8eVX4vzp05EuMHxcsHXC4XhtXEozWzJw5MenziuFU2GiQiIidkJVOAiEgcSZisp0Ci8WpBYSFh1qdA3n9YscIRt1AtCuoqSnRBAWYKUC75vR60Q92AMKxphpKZVBfcqsCYHYLCZ1ROnQ8EjWn7udCuaOwYNslCAoAyC2MEf3rKFFx98mRls8dfnDYFt7zyOWZPHIhzDh6RdF/i11nErmgNERFRArn/60xERcms/l8lUaaAWIssBhrETAGfO3mKrniy3tjeo3y8xCs2GuTJOOWOnClQUeJB574u+JGIcbHYk6AxoZPETAF5pF8uUuFVjf0e+WAzNu7pxF/f+AJfnjEcPzhhoi4IKH9flVsICvS9lvp77sszRuDLM5IHA1Svz/IBIiJyAssHiCgrxNpiedEuG1LtN32sNxyJLfLFhZB4NU/OFFCdR4tbbGvu1j02sLLv9Vk+QPlCDgo8/6NjYj+HNc3wHk+1fECOm9lXPhDfUYn0b8jF+lb173pi6Tb8+F+fYN3uDtz8yue44N4PsL0l/p0gBymdzm4Q+xkwU4CIiJzAoAARZUUohekDEwZXmT6mafGrZeKCQ9ynnO6b7ET6060tutv3X3woALDRIOUNt/SeFptphiOaIRsm9fIB+bY9i08xs0cObKjKerJN9V1QLzUGfO+LJty6MD5KWf6++t6x4xC9a/aE5D0BMiX/tyYiIso2BgWIKCtCJvX/KuMHVWDcoArTx6NNwMxHElrIFBA2aeyIlw9cNGs/TBtZC0DfLX3vvi7wuRCOaPj10ytw9l/fw5JNe3N2HOS8eSdNAgB8/bBRsfuOmTjQkAYvN6DLtImfI5kCOVjgqoJ7YwYav2vW7GyP/SyPSJ00pAp3fWsmLp09Fjecc5D9Bylxs3yAiIgcxqAAEWVFosZdMpfLhf85dpzp49Grj+KVxkTZB+rFR3z7tu5g7OfqsvhM8WE1ZbGfd7fFZ8c77aXPduLRD7fgk60t+Nrdi3J2HOSMEbXx991hY+oAAN86cj+cuP9gTB5ShatPnmx4vwelIEBPMNXyAf1nxK6lp67BqNsNd46b5qm69+9sTfzZVo1NPGXqUFxz5gEYXV9u27GZvj6DAkRE5LCsF8p98cUX2LNnD4YPH47Ro0dn++WIKE8Edan+yeOPZ0wbjl8+tUJ5lT96tc9qoEG1+BCvtLZ2x7uPV5XGvwbFTIHuFBdZdnptza7Yz1wTFD/xKn/06nqpz4N7Lzosdv8uKUgld9DPuHzApgW7+Ln3eVxwu1yxz2MuFrghRcPQ3e2JgwK5npCgazTIngJEROSAtDMFdu3ahX//+994//33lY+/9957mDJlCiZPnoyjjz4aY8eOxWGHHYbPPvss7YMlosIhpu2WeBNnCgB948vMTsaj+zLrKSBL1miwLSBkCpTGMwXKSuKv353Lbu5cB/QrvUKTQLkOP8ot1Q+0CtkuQBpBAbnRYErPNqcfReqWmubZ9CIpUJUPBJNMFqmwOG0gW8T/1rkouSAiov4n7aDAww8/jG984xtYu3at4bF169bh1FNPxbp166BpGurq+tIhly5dirlz52LPnj3pHzERFQRxNFmikYOiihJ1UCA6CSBisXxAPZLQuD8AqBQyBcQRat296hnxTtjblbt+BuS8RM35ouT3e0OrfoJGIMPMFrsuSIsLbq/blZflA8mUM1OAiIj6mbSDAm+99RZKS0vxta99zfDY7373O3R2dmL06NFYsWIFGhsb0dTUhC996UvYs2cP7rjjjowOmojyX68ujdjaV43ZPPBYpoCufMB8n/JVVQBwQR1EKBGOTXz9XJYPvLm2MWevTc7SNE0XpJKb80V5pPf07vYe3e3UGw0a5w/YQQ4G5rqTvtx7wYpyX/5kCnAIChEROSHtoMCaNWswc+ZMVFTou/gGg0E888wzcLlcuPnmmzF16lQAQG1tLR544AFUVFTgpZdeyuyoiSjvBXWLg+TlA4D5lILekLEmWR7Zlmw/ijhB37EJizAxU6CrN3dBAeo/QhFNl1ZvFhSQY2ByEKAnlGqjwcS30yVPHdGXDzgfFOhNY1Vd6sttD2YxU4DlA0RE5IS0//Lt3r1b2ThwyZIl6O7uRllZGc4880zdY7W1tTj88MOxbt26dF+WiApEOuUDZg0JU200qCotMNvaJ7xmmZApEMhRUKBRugJMxa1XWtyXmHxW5Pe0XC7Qk2EPjD+9tCaj50fpywfcUn28LS+RknSyE8py3FNA/G4L5eKXRkRE/U7aQYGenh60tbUZ7v/ggw8AAIcccgj8fr/h8SFDhqCrqyvdlyWiAhFMo3zAbKGvKh+QSwTExVR9hfG7x2WSKiBmFegyBWwsHwgEw/hka4thAaiytZnfj/2J/J7wm6Suy+93OShw+2vrsHDVLlglL5VfXb0b767LvN9PSMoQ8uQ4UyCdngKluS4fyHFzRiIi6n/SDgqMHDkSn376KSJSFPu1116Dy+XCrFmzlM9rbW3FwIED031ZIioQvWlkCpiVBPTGMgXEGej6bc87dGTfPlzAFXPGWz5OsbRB11PApkyBSETDt+9bjLP/+h7O//uipOnAXT0sW+hP5PR2q5kCqrfRZQ8tsZxpolqfX/HoUkvPTURfPqDPFCiUpnllOQ4K5LoPAxER9T9pBwWOP/54bNu2DTfccEPsvg8++AAvv/wyABhKB6I+/vhjjBw5Mt2XJaICITb4KrHaU8AsKBCKBgXi93mkff72rKn4yzcOxoIfzsbM/QYY9mHWU0BsWCheIewJRWw5Id+wpxOLN+0FAHy8pQXrGzsSbt/RE0z4OBUXOe3frP+G3GjQzEf73mvpaA9kPnFD10tEnj5QIAvc3GcKxH9mUICIiJyQdlDgpz/9Kfx+P377299izJgxOPTQQ3HcccchHA7j8MMPxzHHHGN4zgcffICGhgYceeSRGR00EeU/+YqhFWZjBqOlCGJqsrxIKvG6cdb04Zg6vEa5D9OggEmmAJD5mDcA6OzRL7Q+3tqScHs7FmZUOHrD8fdYiddtWuZiMSZguUGmZtO0AVkorP/ce3KcCm+1yakonzIFclFyQURE/U/aQYFJkybhP//5D+rr67FlyxYsW7YMwWAQ+++/Px5//HHlc2677TYAwKmnnpruyxJRgUinfCCVngJW9xllNpJQ3I/cYMyOCQRyo7BPkwQFOnoYFOhPxCkC/gTvaZdLf9XdTFu3tUyTbK01xfe71+OSxus5v8D9+mHGhsjJlOa40aAYSGGmABEROcGbyZNPO+00bNmyBe+++y4aGxsxcuRIHH300XCbdBC/4IIL8I1vfANz587N5GWJqACI5QNWr9bJzdRi+9oXFEhnzGGUeflA/IFSr/2ZAmLDRQBY3WBs0CrqYKZAvyI2GvQnGYXncbsQCSdeJAYsjiZUBQXsuEKuazDqdutS4QPBMFZsa8XU4dUJR4raqbI09dOcnGcKMChAREQOyygoAAClpaU48cQTLW171llnZfpyRFQgxAW82ex1mVmqbHThFEpjokGU6UhCYT9utwulPjcC++q8u20ICsgn9cu2tCAS0UwXRcwU6F96db03Er+nfR43guHE78lwkqBBIlVpLKBlYomP1+PSpcJf8sBHAIBzZ47EzedNz/i1rEgnIyKvggIsHyAiIgekXT5gJhwOo7GxEXv27EE4yckLERWvgNBAzZ9hUCB69TEoLThSYWUkIQCUl8QXRnaUDwSl7vIAsKmp03T7dikoUF9RkvExUP4SyweSBc8GVRlHbcqsjuBT9RSos+G9FtSV+LiUwa8nl26DlseL3dIkGRvZluuSCyIi6n9s+cu3detW/OIXv8D06dNRWlqKoUOHYsiQIfD7/Zg+fTp+8YtfYMuWLXa8FBEVCPGKd4Xf2hXIiHH9DADo3ZcSHcyop4CaVyp3Eq8S2jGWMKS4cmsWoACM5QNcEhS33hSCAkOrS5Puz+oiUrUmN2v0mQpdpoDbbVoSZEcWjhXpNFTMp0yBQpnYQEREhS3joMCdd96JKVOm4KabbsKKFSsQDoehaRo0TUMkEsGKFStw0003YfLkybjjjjvsOGYiKgCdaQQFzFJlVdMHzJoSmjLZXO5NIDYb7A5mnsovNxoEEncUl8sH2H28uIkNOf3exIvRYTXJgwJWMwVUMr0qHYlougkDcvmAyLEpG2n8k/Kq0SA//0RE5ICMggJ/+tOfcNVVVyEQCOC8887DM888g61btyIQCKC7uxtbtmzB008/ja9+9avo7e3FT37yE9x44412HTsR5THdYsfiVX2zBU2vstGgTZkCnkSZAiapCymQGw0Cxtn0IkNQgFcKi1oqmQIjBpTpblcqgm1hs3QbCzIJKABAUHptn8dt2uBT/Hfnm3zKFGD5ABEROSHtoMDKlSsxf/58DBgwAG+++Sb++c9/4ktf+hJGjBiBkpIS+P1+jBw5El/+8pfx73//G2+88QZqamrwm9/8Bp999pmd/wYiykPiyazVtGSzBXB8+oC+XjkVpj0F3OaZAl292ckU6EnQId5QPsA1QVFLpdHgaQcO071fZ08YaNhGFYRSUb2vMl2AyqUyXrfL9LPf41BQIJ1/UXWZz/bjSIWHPQWIiMhhaQcF7rjjDkQiETzyyCM45phjkm5/7LHH4tFHH0U4HMadd96Z7ssSUYFIKyhgWj6wb/qAbga6/dMHAP1VwmyMJAQSXyVl+UD/IgaIkmUKHDiiBvd8+1DMGlePbxw+Gj84YYJhm0wWkaoAVkrPl4MCHrfpZ9+pTIF0GhoOs9C7IZt0PQW09P4NREREqUh7/tDrr7+OKVOm4NRTT7X8nNNOOw37778/Xn311XRflogKhLiYtTqT3GxBE5s+EMqg0aDiEFwuY8CiXJcpkJ1Gg4mukspBAS4Hilsq0wcA4Pgpg3H8lMEAgK17uwyPZzJ9IMOYgKJ8wGWaodOrmMqRDa+t3p3S9l63emKCk+TXj2hAiolRREREKUk7U2DHjh046KCDUn7eQQcdhIaGhnRflogKhLg4sdoU0CwoEL2qKC46Ui4fUOQK+NzGr0B9o0EbggKKlVbCTIEAMwX6E32jwdT+JJcrGuI9vngLXl65M+lzVW8r2zMF3G7TxaxTmQIb9piP/1RJddRpNsjNGVlCQERE2ZZ2UKCkpAQ9PT0pP6+npwc+X27r9Ygo+8QTWbOxZImeI4ouVsRFhzxKMBnVIagWAHaPJFQ2GhQWRLvbAnjkg83Y1tyFnlDYcAWV64HilkqjQVl5iTrZ7/JHluKTrS0Jn6t6W2W6+AyGjZkCuS4fSJUqUOg0+RAYGCQiomxL+6/f2LFjsWjRIkRSuLIQiUSwaNEijBs3Lt2XJaICIS4wrF59k7ury/vSTx/I/IqeKoOh3O5MAUWadG+4b7+apuHif3yE+c98hgvu/RBt3cbGhqwnLm5igCjVTIFSn3p7TQPuevOLhM9VLTQznT4QkvqIuFyJygcy/2zZQQ5aePIgU0AOeGb634WIiCiZtIMCZ5xxBhobG3HLLbdYfs7NN9+MxsZGnHnmmem+LBEVCF2jQYuZAkeNN3ZTB+IZAhmNJFQcg2ofYqaALT0FFCf00ZGEbYEQVjW0AQA2N3Vh6eZmw7ZcDxS3VKYPyMwW3IC6XEZ068LPDfeFLU4uMCMGwKIBN1WJA5A/mQIDK0t0t1PNQMoGlg8QEZHT0v7r9+Mf/xjV1dX45S9/iRtvvBHhBFH/cDiMG264Ab/85S9RU1ODq666Kt2XBQB0dXXhmWeewaWXXopp06ahuroaFRUVmD59On7/+9+jo6PD9LkPPfQQDj/8cFRWVqKurg6nn3463n///YyOh4iM0mk0+I3DR+ErB4/A2TOG48Ij94vdH963r1Aa2QdRqq2V5QNCSrY9mQLm5QNyFkBbd9CwLTMFiks4ouHddXuwvaUbgH7CRalPvYBOh9liHOh7T72zbo/h/kyvSPcqgnYVfnWJgxMjCa0spne1yWWQuf+8yd9LqmwjIiIiO6U9faC+vh5PPPEEzjzzTMyfPx933XUXzjvvPMycORODBw+GpmnYvXs3li5diieffBLbt2+H1+vFP//5T9TX12d00I899hguu+wyAMDUqVNx6qmnoq2tDe+//z5++9vf4vHHH8dbb72FwYMH6543b9483HrrrSgrK8PJJ5+MQCCAhQsX4pVXXsETTzyBc845J6PjIqK4dBoN1paX4M/nzwAA3Pn6utj90ZP7THoKqGqb1ZkC8fvs6CmQqNGg3G+gLWAMCvAiYXH5/YKVeHDRZlT6vXj7Z8cjEBTKB2wMCgQTvHEaWgPK+zO9Iq37fO5b2FblMCiQLKhX4nEbenjkw1V5+XtJ1ZeEiIjITmkHBQDgxBNPxDvvvIOLLroIa9aswW233WbYJnqVa/LkyXjggQdwxBFHZPKSAPqaHF5xxRX4yU9+gokTJ8bub2howBlnnIGPP/4YP/7xj/HYY4/FHnv99ddx6623or6+HosWLYo9b9GiRZgzZw4uueQSzJkzBwMGDMj4+Ij6u0hE03U3t9poUCRmF0QDDOIJfIk3tX2qshVUQQGxeVtXr7HGP1XqRoN9ixU5YNAWUL+epmkJU8WpcDy4aDOAvtGTD7y3EYGQmClgX+p6ooDWmp1tyvsznj4QEcsH+v4tlSZBASfKB5J9fitLvdjb2au7b8ao2iwekTVyv5R8KbUgIqLilfEZyGGHHYZVq1bhhRdewJVXXomjjjoKkydPxqRJk3DUUUfhyiuvxIIFC7Bq1SpbAgIA8O1vfxt/+9vfdAEBABg2bBj++te/AgCeeuop9PbG/9hHex/Mnz9f97xZs2bh8ssvR2trK+6//35bjo+ovwtLKe/pjPkSswsisUwB46LDKtUhqJoVVpbGFzHtJov0VKhSf6NXSYMh/e/p/S+MKd0AswWK1d6u3lh/CQDwe1PPFPjJiZOU9wcSXCX/7XMrYz9PHlIV+zmiZVauIgbAop8t8fMkcmKhKwdGbv/6DN3tqlIvfnnaFN19vz1rarYPKymXy6XrLyFnMxAREdkto0wB0WmnnYbTTjvNrt2lbfr06QD6Rh82NTVh2LBhCAQCeO211wAA5557ruE55557Lu644w4sWLAA//u//+vo8RIVIzkF12qjQd1zhEV/SFU+kGKgQRVEUN03oDzeeKxZuoqYDlWdtirzAQCWKBoNAn39GTxJGsdR4QlHtFjWCJBepsCP5k5AU2cPHtqXgRBlljq/obEDW/d2x25PHVGNtbvadcckf7Y0TUNPKAK/150wY0X1+TTNFHBgoSs3Cp04uEp3u6rUi28duR9eWrkTH29pwe1fn4ExAyuyflxWlHjjpQ3MFCAiomyzLSiQLzZs2AAA8Pl8qKurAwCsWbMGPT09GDRoEEaOHGl4ziGHHAIAWL58uXMHSlTE5HFnVhsNisR1SVhVPpBip3ZVYoEqU6CuIh4U2NuVeVBAnt0O9GUPaJqGlTtaLe2Dc8qLUzii6RsNppEp4HK5MG1kLQApKGBSPvDKql262wcOr8FTy7bHbociGuTD+NXTK/D44q04/9BR+NO500yPJSiUD/jyoHxADIwMrCyBXwq6VPl9qPB78fSVR2f9WFIlfjepvkOIiIjsZFtQ4P3338cbb7yB1atXo7m5GS6XC3V1dTjggANw/PHH21Y6kMztt98OADj11FPh9/sBAFu2bAEAZUAAACoqKlBbW4vm5ma0t7ejqqpKuV3U1Knq9ML169dj/Pjx6R46UdGQr45bbTQo8ngUmQK66QPZaTQ4oMIX+zkQjKC7N4yyBJ3ck1FNHwhFNFz/wmrc++5GS/tgTKA4hSKartFgutMHVJ8vs/IBuZxlyjD93zv5s9vc2YvHF28FAPxryVb8/LQpusCZft+KTIE8KR8oK/HA79V/3iv89jV2tFuJl+UDRETknIyDAsuXL8d3vvMdfPzxxwCM9YjRVMPDDz8c9913Hw444IBMX9LUiy++iPvuuw8+nw9/+MMfYvdHRxSWl5ebPreiogItLS3o6OhIGhQgosQikcwzBeSeApGIpitLSDXQoGp2qCpBEMsHgL5sgRElZSm9liioaN4WCmv4xwebLO+DQYHiZMgUSLPRoOrzJafOR5VIC+MpQ6sNxyTq6NH31ejsCSUICqTQaNCBha74uy3zeQxBl3R6ODhFDFgGWT5ARERZllFQ4KOPPsIJJ5yAzs5OVFRU4LTTTsOMGTMwcOBAaJqGPXv24JNPPsFLL72EDz/8ELNmzcKbb76Jgw8+2K7jj1m9ejW+9a1vQdM03HTTTbHeAkA8UJGoFjKV5korV65U3m+WQUDU39iSKSB8XkORiGFxLS9uku7PYqaAz+NGVak31mSwubMXI2rTDwqoMgXkhVYyvaFIRtkKlJ/CEU03fSDdRarq82XWU6C1Oz728uDRtYbPkRzQkyVqDyKOQfTt229VDjMFAlITRzlTINXvECeJx9bDTAEiIsqytIMC4XAYF1xwATo7O3HppZfilltuQXV1tXLbtrY2zJs3D/fffz+++c1vYuXKlXCn2Dk8kW3btuHUU09Fc3Mz5s2bh6uuukr3ePTKf2dnp+k+urq6AACVlZW2HRdRf2XIFEir0WD8OeGIZlhcpxpoUG2vCgoAfdkC0aCAPLIsVaoxb4s37k1pH79bsBK3nj8jo+Og/BOOaLrpA2lnCig+X2bj+Brbe2I/Hzmu3tAEVA7opZKlImYK+NzRRoM+5bY9jgQF9FkYctDFLIshH5QwU4CIiByU9sr82WefxRdffIHzzz8f99xzj2lAAACqq6tx77334rzzzsPnn3+OBQsWpPuyBnv27MFJJ52ELVu24JJLLsHNN99s2Gb06NEA+oIHKp2dnWhpaUFtbS1LB4hsII8kVF2lT0ZM7VcGBVJtNKgqHzA5rgFCenRzhs0Gg4pMge0t3YotzT398fbkG1HBMZYP2JcpEAxrygZ1YlBgUKXf8NmUm1pqUJcEqqh6CtSUqYMCjmQKhPS/W7mxaHkeZ9+wpwARETkp7aDAggUL4Ha7ccMNN1h+zo033gigL6Bgh/b2dpx22mlYs2YNvvKVr+Cee+5RnrBMnjwZfr8fjY2NysDAsmXLAADTppl3VSYi6+QFfHojCfVBAbl8QDU5wOr+YvswSR+uK48vZDLNFJBrtK0oS3NxSIWlr3wg80wBs6Cbqq9AY4cQFKgyBgWSZQok+tTppg/sC9rVlpsEBRzpKaAvH5DPD8YPzt/MQF1PAQYFiIgoy9IOCixduhSTJ0/G2LFjLT9n3LhxmDJlCpYuXZruy8b09PTgy1/+MpYsWYJTTjkFjz/+ODwe9Yl0WVkZTjjhBADAk08+aXg8et+ZZ56Z8XERkf5qo8uV7khCsaeAhu3N+qvrZqn/ZlTH4LOSKZBhUCCdE3qzOmwqLl29Yd0Vc7NU+2TMYm6qEgIxU2BwlR/yR0Au/ZFDWonie7pMgX07Nst+6A2pex7YSdXE8TdnHgCXCxg3qAJfmj4868eQLrF8wImsCiIi6t/SDgo0NDRg0qRJKT9v0qRJ2LFjR7ovC6Cvn8E3vvENvPHGGzjmmGPw1FNPoaRE3Q05at68eQCA6667DuvWrYvdv2jRItx9992orq7GpZdemtFxEVGfTKYERMmZAr99Tt/gM9X9qrIVzAILdcIEgr1plg+EwhH8z8NL8M66PSk/l0GB/qGps0d32+yqejLiFXGRKlOgIxAPFFSX+eByuXSfNTlTQOZKkCsgBsDE8h5VVo8TC90eRWnGd2aPxUe/PhELf3Jc2uUaTvDpygc4foSIiLIr7TPP1tZW1NTUpPy86upqtLW1pfuyAIA777wTTz/9NABg4MCBuPLKK5Xb3XzzzRg4cCAA4MQTT8RVV12F22+/HTNmzMBJJ52E3t5eLFy4EJFIBI8++ijq6uoyOi4i6iMGBdJpMggYewp8srVF93ii2mbl/hRBBLO+BPpMgaBym2QWrtqFl1fuSuu5fWMRzRujUnHY0xEPOKlG5lll1veiWxEUEBf90cW6x+2KfWblcpdUJvOo9g0A5SVe3dQDwKHyAZPSjIGV/qy/dqbYaJCIiJyUdlAgFAqlNUHA7XYjFEptHJesubk59nM0OKDyu9/9LhYUAIDbbrsNM2bMwJ133omFCxfC5/Nh7ty5mD9/PmbPnp3RMRFRnNhoMJ0mg4A+mJBOXb5hf8rpA+pjE+ewp9tT4JVV6QUEgPSvGFNhEd9bAzL4bz5n8iC4XYD8MelUjL4UF+6efX/DPQk+a/InT248KNqytyv28wAh26bSrwgKOD19IM1xj7lS4o3/N2GjQSIiyrb8HdKbwO9+9ztompb0f2PGjDE89+KLL8aSJUtiEwdeeuklBgSIbCbWFqcbFPAKQcdkKc1WpFI+IC5o0p0+kMmJvPj61D/UZvDffFhNGf7yjUNwwRGjdfd3BfWZApqmKUt7vO4EQQHpo5cocaC1K77wHzGgLPazavSfEyMJ9eMeCywowEwBIiJyUEaFqw8++CAefPBBu46FiIpExIZMAbmnQKZUmQJeC5kC6QYFMjmRL7QFDGVuQEVm2SFnTBuGM6YNw/JtrVixvRUA0NWjDwrIwbXo+9+d8LOWOHNA1CFkJoiBgAq/8f3s9EhCv8mkkXwlBiyZKUBERNmW0V9JK1frVf8jouJmR6NBuadAplRJASVmjQaFBdqutp60vrcyOZGfMao27edSYcokU0BUVhJfgMvTB+RRodFsHF2mQJL3utlnYXVDG976vDF2u6JEDAoYrz84MWYvoGg0WCj0jQYZFCAiouxKOygQiUTS/l84nP1RRESUO3Y0GnS7rHdEt0JVPuA16YtSV6FvRPbSZztTfr1AML3vuSPH1eHM6cPSei4Vrkx6CojKhaBAt/QeDEb0i0ufMlNAv42V8oGte7tw1l/e1d0nBgJUV+mDDnTUDwTVjQYLAUcSEhGRkwrrryQRFYRwxI6eAvHnRWzIMPIoAgCJygfGD6qI3b7i0WVoD6Q2haC1O7WGql87dCQ2/fEM/PN7s+AvsKZoZE1zgqaVg6tKbXkN8Qp9p1Q+EJYW4h5lTwH9/uR4nOqj+JfX1xkCd2L5gKp3h9OZAv4CyxQoEQIpTvyuiIiof2NQgIhsZ0dQQDc73YaTYlWlgNn0AQD4yiEjdbd/8q9PU3q91hR7EZg1PaTisbMtYPrYkGp7xuSJ5QPdUvmAWGMPIBZ80mfl6D9rckBONX1ADj4A+j4Cw2vLDI87EhQIFUejQWYKEBFRtvEslIhsZ8dIQkcaDSYYq3rRUWN0t19dvQtbhZFrybR0p5ZZwKBA8ZPH8okGV9uVKSD2FNAv1sXbXrcrdjVazJiJGDIFEk8jANSBAjFT4AfHT9AdF+DMQrdHN5KwsD5f4veBE6UWRETUvxXWX0kiKgh2lw9kbySh+bFV+r2GEW8vr7TWW6AnFDYsyJJJdCxUHBIGBarsyhSIL8bFaQAA0C28J8WMAk+CTAFDTwGLxyH2FBhQUYK3f3Y8bvzKQbH7nOkpULiNBsXyAWYKEBFRtjEoQES20wUF0mw06LG9p4BqJGHir8DffWkqpg6vjt2+6831lrIWuk0CAgeNqIn9XCV1ZGemQPFr7TIPCuxXX2H6WCrE4MKOVn25gth4UGxImOizluw2oM4ekCcO1Ff6ceS4+thtJ8oHegq4fEAMEnL6ABERZRvPQonIdvZkCsS/nmzJFFAcR7Jj83ncuOyYcbHbTZ29+OmTyXsL9Jhc2bv5vOkYO7ACU4ZW4bavz9A9phrbRsXFLFNg4uBKXbp9JkbVlcd+3iaVu4jZK+VCRoG+f4ccBNDvXxUAUAUK5HIBQL/QDUU0RGz4XCeiazRYYOUDfmYKEBGRgwrrryQRFQQ7ggJiub8NiQIplw9EyVcYn1q23XRWe5TZOMLJQ6vw+v8eh5d+fCymDKvWPZYsoSLbCyjKvpbuePPJg0bUoMrvRU2ZD78+Y3/bXmNUXbyp37bmbt37Rmw8KL6vU8kUaLMwhaPU51Zm4ZRI98kjEu2mH0lYaJkCnD5ARETO4aUpIrKdHY0GEzUBPOOgYSnvL9VGg1F+xXzzlq4gBlSUmD7HLFMAAFz7Vv/DpMZy8rg4WVjT4Ab7DhSqPzy/Cve9uzF2+8hxdXjqyqMQCmu6+v5MjRwQzxToDUewp7MnNu5QnymgDgrIWTlyAOwX/1mOV35ynLSN/hjMsh7kEplgWEO2EmQ0TdNNWyhVfI7zGXsKEBGRkwrrryQRFQS7RxICwMDK+CL8giNHy5unvD/AWqaAKu24PRBSbBnXE0x+Eu92uzBn8iAAQJnPg6/OHJlwezsmMFBufLG7QxcQAIC6Cj98HretAQGgb0FeXRpfae9oifcVsNJTQH6fyW+7z3d1JM2UMSuF8UmfpWAWF7u94YguWMFMASIiInMMChCR7exuNAjoU4HlNGRL+1Mch6VMAUVQIFkKtTwP3sxN507H/DP2x2OXHWGY5X7YmAG623Y0W6Tc+GJ3h+G++gSZJpkS30s7WrpjP+umD/jU0wcMQQFFMKqps1d3W96iosQsU0D/GczmYjfQq993oQUFdIEafvaJiCjLGBQgItuJCwtV2r4VclBAvMqZbGqAlf0BgMdCpsABw2pQVapf5KgyBYLhCH76xKc4+6/v4YP1TZaOaVCVH989ZhwOHj3A8NiP5k7U3XYqU+CDDU348p3vYv4zK9jHwCadPcb3S51DQYHtzfGggJXygWSZAvI+gRTKB6QgXDa76suBuUIrH0jU/NFO76xrxFl/eRe/X7AqaQYIEREVL/YUICLbiQsLb9o9BfTPE/dpJe1fpiwfsJApUFbiwYIfzMacm9+M3deuyBR47pMdeGLpNgDAJ1tbUj4+2fRRtbrbWe7JFvP1v38AAPh0WyuOmTgIp0wd6swLF7Hmrl7DfbXlvqy93ggxKNCiDgqUWQwKqBaKTZ09CV+/wq++Ku92u+B1u2J9C4JZXOyKzT5drvSyi3LJm+C/iZ0uvG8xAGDF9laceMBgHDV+YNZei4iI8ldh/ZUkooJgR6PBRM+TG5ZZoWw0aDG4MGZgBQ7dL341X5UpsHDVroT7OGJsnaXXipLLHXKRQvzOukbHX7MYtSneL9VlWQwKDNBPIIgSMxYqTEYSyu8z1XrUOFpRv1Gi8ZpO1crrJg94PbEGn4UiF+UDizfudeR1iIgo/zAoQES2i2Sh0aAonaBAuiMJo8QSAlWmQCJuF3DJ0WNTeo78789Fo0FmE9ujzbCIBqpLsxcUGDlAnSnQKYwkFBfuicsHjG8CuZGm1fIBQP+Zy2ZXfTFToNBKBwB9vxOnPvv8vBMR9V8sHyAi24XsaDSY4HnplQ8Y77PSaDCqSljEqTIFNEO7tT77D6vGPd+eqRsVZ4X8z89Fo0GuEeyhakxZXZa9P79i+cC25q7Yz1098YWymOKfKFVd9b4TF9wq5SaNBgH9qL1sZgqIPUjKCqzJIOBcTwEiIiKAmQJElAV2NBp0u10we2pa5QOKIEMqWQy6TAFF4zgzw2pKUw4IAIryATb9K1ht3cb3SzYXqmL5QHsgFEv3FzMFxIW7W5o+8P4Xe/Dwok3o7g0rrx73SFf45U0qTXoKAHL5gDM9BQpt8gCgL23iZ5+IiLKNmQJEZDvx6mK6jQb79qO+P52ggKp/QIli3KAZsQZcVT7ggvrfqRppaAXLB4qH8v2SxRr3QZV++L3u2OJ9455OzBhVq+8pIGYKCJ+NDzbsxfUvroamAat3tmPulMGG/QcM5QP53VPAX4BBAV2mAIMCRESUZcwUICLbhWzIFEgknfIBVaZAKh3JxUwBVeM4M+lepXS5XLoSglyUD7CAwB7y++XaL03N6uu5XC5MHV4du710czPaAkGs2N4au6+2LD4SUfxsvLp6VywY9NiHW5SBuZ5Q4vKBxEEBoadAFoMC4jEWYk8Bjy57w5nRI/y0ExH1X4X3l5KI8l7Ehp4CiaTVaFA1kjCFq/hVfrHRoPWgQLqZAoC8MGCmQL75YncH5t7yJsb84gVccO8HpotlsdHg/DP2x7dn7Zf1YztsTHzaxR+eX4Vj/vSGLl1fLDFIlM2j7imQrHzAYqZAFhsNdgvjF0u9zBQAgM1NnfjrG19g7c52W/ZHRETFg0EBIrKdeAEw3ekDiaRTkqAKTqSWKZC4fMBMJkEBMcsiJ40GGRQwFYlo+P6jy7C+sRMA8N4XTXjukx3KbcVGg0eOq3dkPN7xUtq/PEZwuNCMMFEZjVwaABgzBeQ1a6JMAX2jQad6ChTeqY5Y0hGxISigaRq+++AS3PTyWlz8j8VZnfxARESFp/D+UhJR3hPTXe0OCrhdgDedRoOK40i3fKDDgfIBQM4USHs3aTObqEDA6p1tWLtLf8VVdQU2EtHQIdTyZ3MUoUjMFFARr+YnCgqoyweS9RSw2mgwiz0FhGMsKym8TAGvzZkC3cEw1u3uAAA0tAawYnuLYZvsh6qIiChfMShARLYLa9krH0indABQZxek0miwMhflAwlGxTmBmQLmPt3aarhvU1On4b6O3pDu9ygGl7LJ43bhyzOGW9q2xGO+aLYyklDeJHH5gDM9BXSZAgVZPhD/3rDjsx8M6feRSl8UIiIqfgwKEJHtxHN9uxsNphsUUB1HKg0Lk5UPmMU+Mul87s5xo0HGBMw98/F2w30b9xiDAm1S2r5TQQEA+Nqho5T3/+iECbrbiYJjqjRzOVNAfm/mw/SBbiEoUIjTB+RMAVUZRyp6wvpATlhRusHPOxFR/8WgABHZzq6RhCpiKnYq5IyFVMsQxMVcZ28Y8/79CfZ09CR9HjMFis+rq3Zh8aa9hvu37u02/HcSG975ve60Sl/SNXFIpeG+EbVl+N5x43X3JQoK7GozvsflTAH5dqJMgRKHGg2KwZiKAiwfkMuuMv34y/0bwvxwExGRgEEBIrJdSDgBzUajwXTIx5FqxoFcC/7Usu244YXVSZ+XyVVKXVAgJ5kCXDjINjd14rsPLYndrimLvy96wxHsaOnWbd8lBAWcrm0fVOk33PfcD442LNoTBa62NXcZ7pMzBeRyGuuZAtl7f23dG//vMFKYtFAo5O+rUIZjCeWMj2xmaRARUeFhUICIbCdmCrgd6LRuhXwcqfQTANTN055SpJDLMpo+4LK3A3nK9r1kOKJhV1sg4xTmQvfJ1hYcd9Obuvtu//oMDK0ujd2W+wqIaezlDqexu1wuHDNxYOz2QSNqUK8IFCR6j65v7DDc1yNlBsjZO4n+neIY0Gz2FNgqBDNG1ZVn7XWyRQ4KZJopJAcBeoIMChARURyDAkRkO/EE1sFs6YS8Uv+AVCYP9D3fjfIEV3rNTtrzpXxg8ca9uO75VVi3K/UZ5Zc++BGOuOE1/OI/KzI6hkJ308trdLePnlCPOZMHY8zA+KJz0x7zoEBpDtLYf3vWATh4dC2GVPvx81OnKLdJFCD7YIOxTELOFJAzAxL1ERH7eGTranU4omF7czxTYHQBBgXksqtMJxCEpKwM+b8hANYLERH1Y3lyuk5ExUQ3fcCdH18z8kl2qpkCQOImcWZXPTMZSShmCmRSPtDVG8I37/kA9767ERfet9jy8zQAX+zuwJtrGwEA/1qyFaF+mna8Ylsr3vuiKXZ7dF05/vy1GQCAsQMrYvdvatKn24s9BRIFlbJlwuAqPH3l0fjgl3MxW8gaEKUaIJMXlEeMTTz+0Oy1VE0M7dDQ2q1bRI8cUHhBAUNPgQyDAnIzSLkPBBER9W/OtUEmon4jHM6/TAG5h0A6UwyqSn3KxmuAfvEnsitTIJ2S4k17OvHrZ1ZgQ2NnbJG0sy2ASESzNBVC0zS0dvfq70v9MArapj2d+OHjH2PF9vgIwumjavHMlUfBtS9os199PCiwWS4fEHsK5LALvitBGU+qATJ5QSmuVy+XmhjKnJg+IPYTGFTld7yXgx28UjA100wBOSigzBQgIqJ+i0EBIrKdLlMgT3oKyEGAdDIFEnVVN5v77c9gRnqmjQYvuPdDbJca3wF9WQ2l7uTHpXrF/pZh/PP/LNcFBADgy9OH6xbZo4Qr0dtbArptdeUDeToaL9XPgrig3NDYgccXb4ndThZrE18rW5kCW/cK/QQKsMkgYH9PAfn5zBQgIiJRnlzDI6JiEonkYfmAJ7PpA0Di8gF5Hn1UqS+TRoPxn1NNHw5HNGVAALB+lbAvAKD/vSWaSKBpGhpau4uqs/mHG4019fKov+G18UaD8vSBXJcPWCGXD1RL7/NSnxvP/eDo2G1xQfmdBz7SbZssCFjiQKNBsclgIfYTAOzvKcBMASIiSiQ/ztaJqKiE8rDRoLzwkRdvVshjCUWtJkEB2zIFUlwUJPr39YSsXSVMNVPg2gWrMOvG1/G1uxcV9aQCsYcAAIyojV+Nbu0O6rrxi5kCuSwfSETOFDhx/yG625ccPRZVwntfXFDKPRSSlaWIn8NsLUx1mQIFGhRwu10Q4yvhDMc3yvEXVaZA8X5iiYgomTw5XSeiYiKmulupXXeCvKg2W8QnYlY+EApHDGPZovwZZQqkXz6Q6N+X2jgy66/7wPubAAAfb2nBovVNiTcuYPUV+rF+Ayv9uq76DUJARhcUyNdMASkoMLSmFBceuR+Avpr8S44ao8t4CUc002yQlDIFshQU2KIrHyjMoACg/12G0mkqImCmABERJcKeAkRkO135QJ70FBgizJIH0kvlNisfMAsIAJnVkesbDaYWFOhMcExW07ZVV/utxiYaO9QNGQtdiddtKAlxu10YVlMWW4xub+nGxCFVAORGg/n5J1duhul2ufD7L0/Fd48ZiyHVpSj1ebC3U99wsicUUZbgpJIpkLWeAsI4wkLNFAD6Pv/RrKtMewrI3x9Ws4WIiKh/YKYAEdkurCsfyI+ggHyVNp1U7uoydflAl8nkAcC+6QOpZgokOiarmQKqV5SvOJo+t0hzkWvKfMpO/mJfgW3ColQXFCjJzz+5csCsoycEl8uF/eorYkEt+X1s1qgu2ec92z0FunvDaGyPB6RG1RVmo0FA31cgk5Gkquenli1ERETFLj/PUIiooNkVFLjp3Gl2HI5SOsc1oKJEeX93gk7emQQFdOUDKV4pTJS9YHkxpmw0qCZfibQaPCg0Zhkm+9XF+wxs3BMfS9hVAD0FxJ4IAPDxlmbDNvL72Cz9PNflA9uEJoPefRkchUr8jgpl3FOAmQJERGSOQQEisp1uJGEGQYGZ+w2w43CU5O7eVshd2aO6E2YK2FQ+kOIiO1H5QI/FcWR9kwb0r2vWQFDujp5htnPeMlucjRsUDwpsaOwAALR09WLBpzti95eV5Gf5gJz5oPoXej1u3WfG7D2U6/IBcfLAiAFleZOplA6v8Luye/pAQJEpUKRxPCIisoBBASKynXhVyp1BT4F0xgZa5fGkflzy1dLoIsksVd/tgq4BXao8ukyB1J7bmah8wOJi7MUVO/HBBv1IPrN1g3wlslgzBczS5scNio8pXN/Ylylw68LPddvka6YAAFx39oGxn3952v7KbcT+GKpFJQAke7tnu3xgS1PhjyOM0k8fybDRoPR0ZgoQEZEoPy9bEFFBExeI6VyRjz03gwV10n27Uw84mAUpzMoH/F6Psv7cKvEQbW00mMIV2pteXqu7rZk81dAdvThjAhhY6VfeP17IFNjW3IWeUBgPLtqs2yad5pZO+fphozC8thSVfh8OG6PO0PF73Yj2jzRbVKbUUyArmQLxfg4jC3jyAAD4hN9lMNPyAU4fICKiBBgUICLb6TIFMggKqBbh4hXNTJSkkYXglZ4TTent7rV/HCGQWaPBhOUDGSwINJPVvqHnQeFmbSf0pRnDlfePqiuHd1+3+IgGrN/dadgmk0kU2eb1uHHClCEJtxEzZcwyBZKWD2Q5U0DsKVDITQYBfTaT3dMHzDJeiIiof2L5ABHZTkwdz2QkoU9xNX/6yNq09yeSZ7Nb4VMseO5/d6Np+UBpBv0EgGw2Gkx/QWAWm8i05jlfHTmuTnf7/MNGKbfzedwYXR+/Mn3tgpWGbfI5U8AKMahhmimQ5PPuz3JPgdbuYOzngRXqrI5CIX7/BTMMoFjJFDAL+BERUfFjUICIbKcrH8igBMDnNT43gxiDft82lSb8/vlV5uUDNmYKpFqj3xZI1Ggwk0wBNTloUSyJAmK5wE9PmWxaPgAA4wbG+wp8uHGv4fHacvVIy0JRYnemQBaCAp098c9iub+wgzDid2cm0wc0TcMrK3fp7mOmABERiRgUICLb2dVoUFX3b1dQIJ1MgXJ/atMHMhlHCMiNBlMMCghXTGVmCwIrVyOtTh/IpJdCPhH/ucney+MHVyR8vLZMPdKyUFjJFEjWQyTb5QOdQilPhcnntVB43PZMH7jrrfV4TpiCAagzBVxFE8ojIqJUMShARLazaySh6mq+XSeuJWmk9k8bUYPpo2oN9+/t7FVun8k4QkB/1TXVoEB7IB4UuPrkSbrHuk2u8r702c6k+zU7jLB0JbNYpg+IKdXJ4hwHDKtO+PjQmlI7DilnxCCXWV+KZCUS2c8UiAcFKgs8KCB+/xkaeabg7rc2GO5jpgAREYkYFCAi24kXADPJFHC5XIYrj2kMDVBKp9Gg2+3Cv//nSDx+2ZG6+3e19Si3L8uwhlzMFMikfGD/YdU4aERN7Paba3ejLWDMJHhxRUPS/ZrVHcuLllSnJeQrfaZA4m2PnzJYmR3icbvwg+MnpJWdkk90mQImi8qyksQLcV+WewroygcKvIeD+N2XbvmApmm6PgtRPaGIadYPERH1P4V9hkJEeSli00hCwJg2a9d5bImiX4EVfq8HR46r0/27drcHlNtmOpdeP6c8teeKmQLVZT4cPLo2dvvDjXsx7Xev6I47EtHw7hd7ku/YLFNA+u+U6rSEfCUGY5JlqVSX+vCzU6fo7nt13nH47Hen4OpTJmfl+JxkJVOgIlmmgEefEm9n8EjTNF35QKFnCnhtKB9YuaNNeb+mGcccLtrQlNZrEBFR4WNQgCiP7W4P4Py7F+FLd76L9Y0duT4cy8SrxpmUD6jYNV/72ImD0n6uy+VCVWl8wbHbLFMgw6CAO5NGg93xxVF1qU+ZtfC3N9bHft7e0o32BM0Jo8yOQl5g2J0pEApHsHTzXnSZjH/MFvHXbiXp5dLZY3Htl6bi8DF1+PuFMzFhcGXGGSP5wi+8n83Sz5P9W+VMCjv7CnQHw7r/XoXeU0DfaDC939P3H1tm+lhA6guxdHNzWq9BRESFj0EBojz2p/+uxYcb92L5tlbM+/enuT4cy8T1YLJu5KnKpBb2kUuPwNiBFThj2jCcd6h6tJxVVaXxTvK7zDIFMi4fiP+cSk+BQDCsm4hQU+ZDhSKt+/Nd7bGfX1u9y/C4illwQj4+u0cUXvyPj/DVuxbhlNvedrQeOqILClh7L1901Bj8+/JZOHnq0CwdVW6UWuopkHghLpdQ2BXkA4xjOFXv+ULi9WSeKbC5qcv0MdUUEvYaICLqnwr7LyZRkfvPsm2xnz/d2pK7A0lR2MbyAVkmJ62zJw7EG1fPseU4xEyBli51p/9MgwLpNhpsbI9nLrhcQH1libK+Wpw2sFYIECRilrAg9xRItTFiIk0dPbHShq17u/Huuj048YAhtu0/MXGShkMvmafEEZtmn8Ok5QNSUMDKxAurxM+h1+1CaYYjQXNN31PA/v4Lqv+GTZ29GFFbZvtrERFRfivsv5hElJfsGkmocuS4elv3ly4xKGAm454CaTYaFHsF1JWXwOdxY0y9cVye2IBsdYM+KHDi/oMxXNEt3+wo5CCAndMHmqWgy+52dblGNugyBRx71fxU6hVHEqoXqckCYXKDTzubDW5o7Iz9PLquvODHYuqCAmkE2ZI1ElT9N2zqcO6zRURE+YNBASKynbhAzLSngPz00gwX2nYRywfM2Nto0PqiYFtzd+znIdV9C/s5kwcZrgBGgwLhiIa1O+NBgaevPAr3XnQYZo0faNi32UJDXrTYWT7Q2q0f+bi3MzsLlz0dPbjjtXV49pPtsfvEf2+hLzIzJWYKqFLPgeTlA16PW/eZtjUosCfed2XcIGMQrNDoegqk8XkSvwdUekKKTIEO9XhVIiIqbiwfICLbiZ3n05j8p+N1u21tRmYXS5kCdpYPpHDlfb1wxXTsvsWR1+PGbV+fgfP+b1HssWhQYENjR6wHgdsFTB5aBaDvaqvM7DAMmQI2BgXk8ow9WVq4/ORfn+CddX1lCgPKS3DspEH6/hj9OyagyxSQm9RFWQkClnjdCOwLKtj52d4ovu8HFkFQQJw+kMbvafHGvQkfDygCO1v2mvcgEDV3MnhARFRMmClARLaL6DIFMvuaOWhkTaaHkxXVDmQKiOnDTy/bju5ea/0UNu6JL47GC4ujw8bUYdEvT4jdDgQjCATDWL6tNXbfpCFVsau9EwZXGvZt3lNAGkkYiW6vZTwPXQ4K7M3CgkTTtFhAAACeWrYNn21vxVufN8Y3YqZA7GezTAErxBICezMF4u/7cYOM791CI2YKyNM9rNjU1JnwcdUkjxdXNAAAtjV3YXuLeabB9S+uTvl4iIgofzEoQGSz1u4gVu1oy3ghBBTuGkRcIHoy/EecLDSUu+CI0Rnty05OZAqIVwp3t/fgBosn4huE8ZVjpTTqmjJ9MKOtO4gV2+NBgYNGxIMwh44ZYNi3ZtJVICw3GtQ0fLK1BUf98XWcfOvbGY3UbOmWMwXsLx9olV7jmU924AfSOLf+ningT5Ip8H/fmmlpPyUWehOkQ3zfjyuKTIH0yoeixM/Jd2ePxS3nTdc9Lr/nAeDDjXvxz8VbMPtPb+CYP72Ojzapsw1eWbkz5eMhIqL8xaAAkY26e8M49ba3cfod7+D6FzK/klKoaxAxUyDDRAFccvRYXDFnPP7n2HH4+WlTMjwy+8iLaxVVx/9UiFcKAeDhDzYnfY6mabpMgXED9VdMy3we3ZXa1u4glm9rid2eJmRmRPsR6Pevft1QWM4UiOAn//oEDa0BrNvdgcc+3JL02M20dOkzA1SLmUyp6q83SePcfJm+mQtcaZJMganDqy3tp0R4X9uVKdDc2atrSFkcmQLx33cwkvrvSZxCMrSmFF+dORKzJ8T7hJhNTfnFUysA9DXZ/ON/16T8ukREVHj69xkOkc2eXLoVDa19nd/vfXdjxvsr1MZmYv27N8OFVInXjZ+fOgW/PH1/Syn7TrESFBilqMlPRTrjHHe19aBLKDOQG665XC5UC8fe1NmLlTvaYrcPGlmr235Unb45odn1Srl8oLkrqAtOfCZkI6RKXrzI8+jtkKwpGwCMKYKrz5mQMwXSzYYSxxLa1VNAbDJYVerFwMoSW/abSz7dSMLUf9dtgfjnJPp9JX5vWQmuLd3cnPLrEhFR4WFQgMhGTo5Ky2e68oEi/ZYZUK5edPzPseNQ5vPgyzOG4+BRtRm9RjpBgSahM3+l36ucklBTFi99WLWjLZbC7XIBU/Y1GYw6/cBhuttmowbloECntHCv9Kff11YuH+gIZCMokLjB2mkHDsXM/YzlFP2JnCkgvxWsxjB1QQGbMgXE5prjBlUWbEBVJPZjSad8ICgEXKK/czEgKGfgqBRDcIWIiJLj9AEiG6Vz4laMdOUDRXByrlJbblxs+zwu/OK0KfjZqVMyHsUI6NOHrWrrNl4dlIn3i1fza8t8hpGPP5w7EXe/vSF2O2hyZVfuKSBvl8kVYXnx0p6FoIBZU7XBVX688pNjUWsSBOpPDJkC0uNWF+LZCApsaFQ31yxkPl2jwdR/T7qgwL7vkhpdUEAfbJs6vFqXNQTY2/OBiIjyV5FewyPKDbtjAoW6nNaPJCzUf0ViqqBATZkPLpfLtn+z3FMASB54ElOCzZohilkOX+zuUN4fVen3YnhNvLeAOPatLRDE0x9vw+qGNkN6s9wtPZPFn5zm3BuOKGespyMQDON///0p/vHeJuXj35k9lgGBfeTpA3L5gNV3vW76QNie/44bhfIBuWSmUImf/3TKB4Kh+HN8qqCA9LlSlWe1B0KWp54QEVHhYqYAkY3MUqvTVYgX2SMRTZdWXKxBgZoy40JxcJWxMV8mVI3tuoPhhKn4bYH4iX61SabAyAHxPgFik0FVoAMApo2sxY7Wvm7ja3a247SDhiEc0XDR/Yvx8ZYWeNwu/OD4CbrnyHPVM8sUMNY+d/aEdVeu0/Xk0m34z7JtuvsuOXoMtjR14YDh1bjsmHEZv0ax8EtTA4yZAtb2I2YKiAvXTIiZAmMHFn6TQUBfPiCX51ghZgpEAwxiUKBRKncbVqv+/trT0ZNxfxQiIspvzBQgslG65QNvf96IhxZtQiCovyLjKsBcgbAUGCnWoEBdRYlucQMAQ6r9tr+GLNlVuzbh6p9ZY0bxBL9T2N/ASvXxTxb6DKxu6Esv/nBjEz7e0gKg732/eKN+dJkcBFi5XZ+WbFUgGMbOfc07dfu3Ka35jTW7DfedNX047rv4MPzvyZOL9v2bDrGnQCAYNvYUsPh9pRtJaEOjwXBEw2ZhUkSxZAroGg2mMX1AnFigKh9oaNWXzFxy1Fjdf+OoxiyMACUiovzCoACRjdLJFPhseyu+ff9i/ObZlbhRnkNfgOsROTDiKcR0Bws8bhfG1Ouvno0YUGaydXpUIwFTCQqY9RTYr169aJosNRmMOnBEfEzhsi0t0DQN732xR7dNs1T339mjP87ecERXqmDVss3NyiyDVMoHekJh3PP2Bjy8aJPh/bmn09hsbWStvf8di0V5STxDpas3BE3KFbCcKeCxt6fAtuau2HvE5QLGFklPAbGnSMblA15jUGBXW3yx73YBB46oxlNXHI1LZ4/V7UfOKCAiouLDoACRjSJpZArcIAQCHlyUfA59vpMDI8V8pfWo8QN1tw8eZW93elXmQVcwcZM9cQxZdZm6zGC/enUq8In7D1HeL3bd39PRg81NXbjnHf3ITTkosFex2DYEvZIIhiO46631ysdSaYB2z9sbcP2Lq3HNsyvxn6X6UgFVB3azjIn+rrwkfoU/ohn/G1j9pPttbjQolg4MrykzNMssVN5MMwWEYFq0p4BZiVB5iRculwsHDK/GNWcegKPG18ce28NMASKiosegAJGN5NR5K+SSAVEhLqcNmQJFHBS4cs742MiukQPKcMqBQ23d/2BFpkCXDeUDEwZVYoR0NbzU58a0kTXK7esqSjBhcLxO+4YXVxsWc81S3X+zIijw2prdyvvN/P3tDXhn3R7lYz1B64ukm1/5PPbzz/6zPPZzJKJhh2LqgLuI37OZKCvRL7YXrW/Sb5CjkYTrG4uvySCQeaPBXl1QoG9fqpIkQB/wAYBBVfHAGDMFiIiKH4MCRDZKp6VAoj4EhZh5L/97inmBNbi6FC//+Fjcdv4MPHXlUQkbAKajWjE9IGn5QCB5+YDb7cJjlx2huy8QjCQcKTdzdDxb4JVVuwyPy4u79h51RsMnW1tMX0O2Yltr7OcRtWW6K/h2TB/Y3d5jmJLwlYNHZLzfYlUmXYH/n4eX6m5b7ilg8/SBDcJYzfGDiqPJICBnCmTWaDCaKSAu9kUV0neX+FljpgARUfFjUIDIRnL5wLpd7Rj7yxdw2u3vYEOjup460cleQTYa7Cc9BaLqK/04++ARtk8eAPrmvh89oV53X7JMAXF8n9n0AaCvr8A3Dh8Vuz3vpEkJ9zttlDqLIFWrGqw3HBRLEi6fMx5lJfZeYW7q1C92jhpfj1+cPiXj/RYrnyfxKYPVj7rPG9/QnvKBYs0UEKcPpP57ErMLov/tfB53LLtJJAcgmSlARNS/MChAZCN5QXzSrW9D0/o6ts9/5jPlcxKlhRbiRfb+Mn3AKTeeM013u6s3SU+BbqGngCLTQPTL0/fH2TOG48szhuNbR+6XcNvpI2sTH6hF6QYFBlf5DSPxMiWW7gys9OOxy47MSnCnv7D6SS/xxP872hEU2ChkCowrknGEgD5TQM5oSSYS0XQBZ59QiqB6j8tNUgdVMihARNSf2JvrStRPfb6rHY99uAVPSE3MRO/L9bf7JLoC1JnkqnA+6k89BZwwur4csycMxLv7uv3LXf1lVsoHoqpLfbjt6wdbOo4pQ6swckAZtjXHa/Cr/F7TMgEzq4WgwJamLgysKtF1tReJfQrqKkp0DersKB8ICH0JxCwESk+i8hORrqdAhiMJO3pCui76Y4sqUyD++0x13G1Q+rsilmwMry0zBOdGDtA3Hx1YJZYPWO8DQsVtfWMHQmHNdFINERUuBgWIbPC9h5ZgkzAnOxVmJ3uq2nFN0yyfeOdKfysfcILYBCxZpoDV8oFUeT1u3H3hTNzyyudo6erFuEGVOHJcPa5+4tOU9rNxTyc+2dqCs//6HoC+wMWz3z8aY6Qxcpqm6SYDDCj3SUGBzK8wi5+xUm9xdKzPJblZnZkSG/87bhQmD5T63BimaM5ZqLxucSRhar8nObNALP2YNKQSr67W9wWRG48yU4BkH25owjfv/RDhiIb/+9YhOPXAYbk+JCKyES+NEGVod3vAUkDA7ITZLC10d3vAcF+mV9WcIF6gcrmKu9GgU8QmYIkyBYLhiK7ngJ1BAQCYOrwG9198GJ668mjcfN50w0LCTF1FCSr2vf81DbGAANAXxPjrG18YntPZG9Z9NmrLS/TlAylMHzATELIN5M76lBq/1215FKCdIwk37In3Exg7sLKovm/ElP9UywfkIIKYdTB74kB5c4yUygcGVsX7DnQHw+hMMSOIis8PH/84FvS//JFlOT4aIrIbgwJEGVrT0G5pu9F16tnwZpkCqumGARsWQtkm9hRgloA9KvzxxZZYHiBrD+hP3JP1FMhUlcX9e9wuTB1u3qjw+eUNaE0y0rC2zAe/z97yAV2mQJHMts+2U6YOUd5vNupORUxlD2YY6FwvZAoUU5NBAPAImQKplg/IAWQxU2DWuHocPLpW9/h+9frfXX2FX9fThtkCtJvvAaKixqAAUYZWW2ycZjZlwOz+gGLR0xPM/x4DYSFVoJiu2uVSfUU8lbcpwXiwNqF0wO2C7SMSZWY9C06YMlh3u8TjxoEjzIMC3cEwHvlws+6+FiFIUFXqhdfjtr18QGw0yKCANf978mTl/UNSSNsvsTNTQJg8MH5gcQUFxKv7co+AZBKVD7hcLlxy9NjYbY/bhTH1+qC1x+3SBXo4lpCIqLgxKECUIctBAZMrYmZXPDsCxnTNgsgUEA6RmQL20I0HS3ByLvcTyHb/CbNMgclDq3D712egdN+V/TOmDcPM/QbothlYWYLvCAuTRz7YHPuMbG/pxmOL40GC+n2LEzumD4i/km4xKODln0MrJg2pUgaDhtWkGRTIMFNggy5ToHgmDwCAT9dTIMVGg8Lnw+N2GRq+nn7gUJwwZTBcLuD7x0/QjT+MGsi+AkRE/UbBNhpcunQpFi5ciMWLF+PDDz/Ejh074Pf7EQgY67BFDz30EO68806sWrUKJSUlOPLIIzF//nwcddRRDh05FZs1O62VD6hqQjfu6TSkfCfarx0p09kmprl6mSlgC6szw3VBgVJ7+wmomGUieN0ufHnGCBw7cRBauoMYU1+OcETDcZMG4a3PGzG6rhx//tp0jK4vx0OLNiEU0dDQGsCbaxtxxLg6fPnOd3Udz+v3LU50mQI2ZM2Iv6/a8uz/vopFmc+j+90BKWYKeOzJFNA0TT+OsOjKBzKYPiAEW8TeBFFejxv3X3wYunvDpv00BlX5Y3+HmClARFTcCjYo8Ic//AHPPvtsSs+ZN28ebr31VpSVleHkk09GIBDAwoUL8corr+CJJ57AOeeck6WjpWLVG4rgi90dyTeEevTgDx4zb9azZqcxA6GpsxcTrR9eTkSEngIsH7CH1aCA+NjASus13unyetwoL/HomhsC8cXMgIoSDNh3ld/rceGBSw5Da3cQNUIWw8lTh+DFFTsBAI9+uBlfNHYYRqDFMgV8mZcPiO/IvZ3xhe2AFGri+7tSn/Gq8tB0MwUyCArsbAvosj3GFln5gL7RYPrlA2LGgSxRg01OIMgfu9sDmP/0Z3C5gOvPOUiXxUFEZIeCDQrMmjUL06dPx2GHHYbDDjsMQ4cOTbj966+/jltvvRX19fVYtGgRJk7sW1otWrQIc+bMwSWXXII5c+ZgwIABCfdDJNrR0m3aE0CmSv9cucO89ODzXcZgw8odbThyXL31A8wB8fchp6xSesST8+auIILhiK5GOKqhtTv287Aaa5MBMlXh9xqCAmYZIi6XC7Xl+sX3BUfsFwsKvPl5I95Y22h4XjxTwI7ygfixic0M68oZFLBK1X8hlfIB8b2bSW8IsXRgUJUfVQ5kxzhJTOm3+ncmSpcpkGZpjL5sqTfBlpRt1z2/Gq+s6hsjWV7ixa3nz8jtARFR0SnYIsqf//znuPbaa3HmmWdiyBB1N2TRLbfcAgCYP39+LCAA9AUXLr/8crS2tuL+++/P2vFScdrbZf1EKdUrPbvbjKUwn2xtSWkfuSCmubrZU8AW4sk5ADSZnKA3tMbfM6lcuc2EqoTAk+DKpGzWuPrYFV7VxA0gnvWgbzSYXvmAPlMg/ntkpoB1fkVQYLjF8ZSANJIwg54CYpPBcUWWJQDog2tmPWnMJCsfsII9BfLHc5/uiP389Mfbc3gkRFSsCjYokIpAIIDXXnsNAHDuuecaHo/et2DBAkePiwrfXmFxNrgqcTpfqld69nYaF34fb2lOaR+5IJYPsKeAPUp9Hl1TP7MT9F1CIGloCjXemShXpB+nsghxu1340dwJCbdRNRrs7EkzKCAcmhjUY6aAdXWK/gsjUggK2FU+sHFPV+znYusnAOinD6T696NXFxTIPFOAPQWIiIpbvwgKrFmzBj09PRg0aBBGjhxpePyQQw4BACxfvtzpQ6MCJy4qxtQnPim12j1a0zQEwxG0KRoQbmvuzvuTM/HfyfIB+4iN8OQmb1Hie6bGocZ5FYpMAX+K6cpnzxiBYycNMn184L7FybDaeKBja3OX2eYJuaAuH2CmgHWj6ozj65IFRUV2BQU2NcXLB5J9/xYifaZAquUD8e1L0gwKpJIpEEkxaEFERPmlYHsKpGLLli0AoAwIAEBFRQVqa2vR3NyM9vZ2VFVVJdzf1KlTlfevX78e48ePz+xgqaCIV/PrkiwqrM6Zbu8JISDVaJd43LErP9ubu/O6yZC+0WAOD6TIiFfJe8Pqq+TdwvtGdQU/G1TlAyUpBgVcLhf+dsEh+M2zn+GpZcbU2ImD+76TxRRxset8ai/W93+RiIbmLuufX4obOUCfFbBffblypJ0Z3fSBDMoHNgnvgTFFWT4g9hRI7fcklht40ywfkEehappmOuY009GSRESUW/3ilL2jo6/usLy83HSbiooK3bZEVshXGudMNr/aqWnWxkr94LGPcecbX8Rul/rcuk7y3TaMYssm/UjCfvEV4wi/haurXb3xTIGKEmdivgMUafepBgWAvuDCn782A+//4gTd/W5XPDVc7C7f0hVUltgkE13StAWCED+OLB+wLhqkiZqVYvNTOzIFQuEItuyNZ4sU2+QBQL+Yj2ipXY0P2lA+IAbKekMRQ0NRUYfJaF0iIioM/SJTQNt35dIswi1uY8XKlSuV95tlEFDxahIWJfUVJbhq7kQceeNrptsHwxF43Imv4L79eSPeFm6PqC3TNWAL5HtQQMwUYPWAbUq8yTu2i5kCiUaN2Wl0nTHYWuJJ/7XlPhSTh1bHFjV1FSWoLvXGyiQ27ulAXUVdSvuP/hkQxx563C5dzwZK7JiJA/H1w0bhhRUNOGJsHa6am9qgVPG9nGpafNR2YfKLy6V+HxY6Oagaimgosfil2iuOJEwzKDBAKkHa0dKNiUP6AkJDq0uxVXjs1NvfxqfXn6MsJyIiovzXLy7jRcsBOjvN0027uvquOFRWVjpyTFQc5EyBoTWlOGPaMNPtU20WBQDHThqkGwGW90EB9hTICl3n/aBJpkDQ+fKB/eqNi7FUewqI5PfM0ePjV6FdLhfGDop/R4sj6VK1dmd77OcRtWVw871qmdfjxh+/Og0rfncK7r3oMAxOsamlXD6QSlA+SiwfGV5TphyTWOjktP9USgiCQuAw3Z4CcknIba+ui/0sjznsDUXw2prdab0OERHlXr8ICowePRoAsG3bNuXjnZ2daGlpQW1tbdJ+AkQiOVMAAEq95ienYp2nlVICAJg7ZYjuqm/elw9oHEmYDSXC+6rHpH63q8f5oIDcdA5Ir3wgqrLUqzv2C47cT/f4+Az7CkQbDf7zoy2x+6aNrEl5P5Q++cp1MI1sgc1N8dKBMQOLL0sAAHzu9H9PYgDB57Xne/iFFQ2xn1WZl6t2tNnyOkRE5Lx+ERSYPHky/H4/GhsblYGBZcuWAQCmTZvm9KFRgVM1Giz1mX+sxJM6K4v7ihIPDh9bp9tnwOQqcb4Q617TbXBFRvpMAeN7JxSO6Jp9lTnUU0A1Hz6ToIDf68EN5xyEWePqcfvXZxhqxcdmGBRwu/pGe76zbk/svvMPG5X28VLq5JGVwTSa1In/7Ytx8gAAeKTfk9VAMqAvH8hGb5euHmMPgS1708/cISKi3OoXQYGysjKccEJf86onn3zS8Hj0vjPPPNPR46LC16wMCiTIFBCu3ohN4cwcMa4eJV43yoR9dido9pQPxBIJDzMFbKNrNKhYRHVJgYIKhzIFBlSUYPIQfYZVJkEBADj74BF4/HtH4sszRhgeGzsow0wBlwv3vbsxdvvg0bWYPWFgegdKaZFTzxkUUJP7a4RS+D2J5QPp9hQA4k0+RbvaAsrRuFv3dqf9OkRElFv9IigAAPPmzQMAXHfddVi3Ll4Xt2jRItx9992orq7GpZdemqvDowLUEwqjXbhaYiVTQGyqFehNfoJ3+Ni+Jmp+X+GUD+hHEjIoYJeSJD0FxNIBwLlGg0Bf4zlRJj0FkpEzBaKZKYFgGH9e+Dn+7631CTvad/SE8NJnO2O3/+fYcQmb0JL95Br3VMfZLd/Wgrc+b4zdnjCkOHsBGcos0pw+UJJB+cCN5xwk7MeNUDiCj7e0KLfd1tylvJ+IiPJfwQYFXnjhBRx55JGx/wFAb2+v7r4XXnghtv2JJ56Iq666Ck1NTZgxYwbOPvtsnH766Tj22GMRDAZx//33o64utS7W1L+1dAV1t+ss9BQQT9S6gskzBQ4bMwAAUFsW7wLdnMYYNifpRxJysWUXv9hTQLHoFTNPvG5X2s3F0nGkNJKupsxnsmXmxKvCPaEIdrT2XZ3843/X4I7X1uGP/12D55fvSLiPaDbLiNoynLj/kKwdK6ll0lMgEtFwwb0f6u6TM1WKhfz1GU7h92THSEIAmD6qNvY93huKYM3Odny8tVm5bXNXEB2KsgIiIsp/BTs7prGxER9+qD8x0DRNd19jY6Pu8dtuuw0zZszAnXfeiYULF8Ln82Hu3LmYP38+Zs+e7chxU/FoEkaalZd4YmUDicsHhJ4CFsoApo2sBQAMrPTH7lOlbeYTMSjARoP2qfTH31edihPvLmkcoZNXv4+eMBDDakrR0BrAxMGVGF5TlrXXqvB7MbymFDtaAwCA1Q3tGDmgHA+8vym2zQvLG/CVQ0Ym3deFs/YzdFin7PO4XfC4XbHvimCCzA7Z7vYetAf07/9hNalNPygULpcLPo8rFjQJpjJ9wIaRhEDf37MDhldj+bZWAMCfXlqj68ch29bchSlDq9N+PSIiyo2CDQpcfPHFuPjiix17HpHso017Yz9HswSAZI0G4yd1yYICvz3rgNjJ3KCqeFCgsYCCAhxJaJ+q0vjV97ZA0PC4GBSocKjJYFRZiQePXXYk3lq7GydNHZr1spFpI2uxo7WvBOCTrc04eHSt7nErmQp+rxvnH8oGg7ni88SDAqmUD2xu0veR+MohI4q6/MPjjgcFQmlnCmT2+zll6tBYUCBRQAAAdrR0MyhgA03T0NwV1J1bEBFlEy+REKUoEtFw9ROf4rfPrYzdJ/7hHlRlftVKPKnrShIUEE+sdJkC7XlePqAxKJANVaXxhb58pRQAOoXyAafGEYrGDqzAxUePxYja7GUJRM0QggAfb2nB2p3tusdrypMHBc45eAQG8IQ7Z8Sr14l6QMg279XXrf/itCm2HVM+EscShlLKFLCnfAAAvnP0WMslGtub2WwwE5qm4U8vrcHYX76IQ/6wENc9vyrXh0RE/QSDAkQpWralGU8u1Y+2FIMCctM1kXhSl6xhoLieHlQV33++lw9EmCmQFWKmQLsiU6BDCBRUlhZsEpglM0bVxn5evq0VO1r0C5Fk3exdLuC7x4zNxqGRRWLPi1SmD2xpigcFzp4xHIMTBGGLgTjWNbVMAXvKB4C+TKAnr5iFn54yOem221sCGb1Wf7d8WyvuenN97Pa9727U/U0lIsoWBgWIUrRud4fhPjEoUOH34ryZ6npm8UQtWfmAmII9qDJ+4ru3qzel0VROC3MkYVZUJ8kUEEsKqoo8KDBtZE2s+VlHTwiLNjTpHg+G9CfRQ6v1C8crjhuPCYOLszldofDpggLWFz3bhQDQqLpyW48pH3nSzBTotTFTAOgLSn7/+Am4/eszEm63vYWZApkQyxKjWrqNQWAiIrsxKECUInnqAACMlFKmf3X6/rho1n64+Kgxuvpm8UqPmCkwqs6Yci026RsoZApoGrA3jycQiM0UOZLQPrqeAoqTRDFQUOXPXvf/fFBe4sUh+w2I3X5xRYPu8Z6QPuAmZqzcd9Gh+NmpxZ1yXgjEEZupZAo0tMYXncOy2NAyX/jSzRQQSjJKMuwpIPrS9OE4ekK96eNfKILmZJ2qh8DezvzODiSi4sCgAFGKVKnbR0gj2QZUlODaLx+I331pKuor43/kgyblA9NG1OK3Zx2g24e4ni4v8aJCqBPf3Z6/JwkRjSMJsyFZTwHxfVldVtyZAgBw3KRBsZ8DQf2icsX2Vt1tcdEpBlcod8TFbiqNBne2xtPTi3XqgEgsH2hoDeAvr63D4o3Gq8ky8XcqBmAy5XK5cN9Fh+H6cw5UPv7F7vaUgjykJ3+XAcCejvy9CEBExYNBAaIUyZ3fRw4ow+Fj60y31zWKMmk0WOrzYPJQfTqzPM5vYFVhjCUUzweZKWAfMeOkozdkqDPVZQr0g4WvGBSQrW/sxMY9nft+7tAF0TLtxE72SKfRoKZpaBCCAkOq+0FQQPj78eN/fYJbFn6Ob9zzQdJsMfF3akf5gKjU58FZ00fo7otm4wTDGtY3MlsgXapeQ/mcGUhExYNBAaIUtXXHF18lHjce+s7hCU+6xCs9gWAYf35lLa7658dYtyveMb2sxG2ov5eb9A0RGmqJJ8b5JixkQ7CngH3ETAFNA9p79NkC+qBA8WcKHDCsWjeVQ/ba6l0AgPvf3Ri7b1CVH1OH12T92Ci5dMoHdrYF0CMsdkcMKP7yAVW2VTii4dlPtid8XjBLmQJmRtfH+ztcdP9iXPHIUmyVJkVQcgFFUKApjy8CEFHxYFCAKEVimvavTp+CcYMqE27vFQIGz326A3e8/gWe/WQH/vvZztj95SVeQxDAL53IjRT6Dmxuyt+TLfH8ntMH7FPp1y/05TKWdl2jweLPFHC7XTh56hDTx1/dFxR4fc3u2H1XnzzJkQUSJedLY/qAWK8+qMqvy54pVl6TgLOcSSYTgydOvOeHC/0ddrX14L+f7cQ1z36W9dctNqoGxCwfICIn8OyIKImPNu3Fl+98F9c88xk6ekJ4Y21j7LFqCyelPmFhvHDVLuU2pT4Pxg2qjF0VmjC4EuOlYMNoodP2f5bpRyLmk7DGkYTZ4PW4US70lZD7CrT1s0wBADj9wGGmj320qRm72wO6rJqjxpuPCyVn6XoKWCwfWLsznl01aUjiYGyxMOvLkqw0K5vlAypDa4xZO29/3qjYkhJRZQqwfICInNA/zhyJ0tQbiuAHjy3DrrYefLqt1TD6rNrCFVmvhRrmMp8HdRUl+Of3jsSHG/fi/MNGGU76xPrZxvYeBIJhlPo88q5yLsKRhFlTXeqL9aKQJxCIQYLqfhIUmDW+HlOHV2PljjYAwJShVdjT0YM9Hb0IRzQ8vGhzbFuP29UvGtMVCr83/t21da+1MXarGtpiP+8/tNr2Y8pHZn8/kn23itkXctZZNgytLgOgb/BZW27spE/Af1c04O63N+CIsXX4xWlT4BL+W6r6BTVx+gAROYCZAkQJvLl2N3a1xf8gy+OW9h+e/MTUylWa6BXgQ8fU4fvHT1DWSs+eoL/KGW2klm84kjB7xKkCbQG5p0D/Kh8A+hb6t399BsYNrEBtuQ9XnzwZc6fESwr+8voXsZ/3qys3TcUm55X64v8t7nzjC7z0WUOCrfusbohnCuw/rH8EBcRGtaJkX6266QOOZAoYA27JShz6o0hEw5WPLcMnW1tw99sbdO9pAFi7y9ikkeUDROQEniERJfDUMvNmTsdNGoQRtckbXVkZy1dm4Yr/qLpyXVr4ujydB82RhNkj1lC3dOlPFMXMgf5SPgAAEwZX4bX/PQ6f/OZknHjAEHzjiNHK7U6YMtjhI6NE5Cynyx9ZlnD73lAEX+zuf0EBsxKsfCsfGK74WxiKcDShLBAKQ/gTiQ174n/HQ+EI1iv+rrN8gIicwKAAkQlN0/CWSU3k8JpSPHDJYZb2Y+XqZGmJtTKAY4UxbHLWQr4IR9hTIFvEoECrEATQNA0dPf1rJKFITL+dMaoW4wZW6B73eVy44Mj9nD4sSqDUm1rp0+e72hHcN9LV53FhwuB+0lPApHwg2VX4XocbDY6XPnMAELTYK6I/6QnqfydiwGZHS0CX4RHF6QNE5AQGBYhM9IQihpnBIweU4aenTMZbPztetxBJxMpc9HKLvQEmCM0Hxatm+UQMCjB91F5iY0sxM6AtEILwa8eA8v4VFJDd8Y2DdbevP+cgjFUsWih3xPKBKPG7Q7ZsS3Ps5wOGVfebKRKmjQaTfLVGAyiAM0GBuko/po+q1d3Xqeik39/1SIESsbRjY5O6JLC5K6i8n4jITv0nx5QoRU9/rC8dWHntKajwp/6R8ZrUhIrKLGYKiFfHCiNTIIcHUoRqy+KNu8RMgWYhvdTtstYAs5gdOKIGH/5qLjbt6cS0kbWWP1/kHFWT1B0t3RglTFkRLd0cDwocst+ArB1XvjHLNEu20O9xuHwAAO676FA8+P4mXS+Pfy7egq8fri7p6Y96QvpAiRg33yT0CZo+qhafbm1x6KiIiJgpQKR091vr8cunVsRuV/m9lur+VaxMH7A6RUAcU7ipqSvhlbVc0Y8k5FeMncTygQeFzvpNQlBgQHkJGzyib1rHEePqGRDIU37Fd96WvV3Y0NiBC+79AOf87T18tGkvgL7mbB8Ik18OGd1/ggJmmWbJgs29wuLTiekDADCw0o8fnzgJU4ZWxe67ZeHnefl3KlfkTAHxN7NJyBQ4YFi1MpuGiChb+I1DJLn3nQ248b9rYrfLfB5cc+YBaS+0zLpHi8otLlzEFOjeUATbm62N8nJShJkCWbNlb5futrYvACNmCgyo4Bgwyn+qIOvqhjZc/I+P8N4XTfh4Swsuf3gp2gJBLNncHJsC43G7cNT4eqcPN2fMAqualnihrZs+4GCphcftwgOXHB4LZjS29+C5T80b9vY3ck8BMSrQ0BKI/TxyQBnqK4xTiIiIsoWn7ESCnlAYt7zyeez26LpyLPjh0fjaYaPS3qeVTAGrWQhlJR7dxIP1jflXQiCOJEw2S5tSI5YMAEDXvprdvcIkgjrOBqcCMKTauOC57oXVusBXU2cv7nh1HZ5YsjV231Hj61GvGNlarMwyBZJdfNf1FHA4Oju0phTHT45P+7h2wSp20N9HLh8Qp/U0tMWDAsNrS1Ffye9yInIOgwJEgs+2t+maC/7ze0diwuCqBM9Izko9ZyopzuMGxbMF8jEoIGYKMI3dXt86Ul+b27IvSCBmCtQxU4AKwH711ho/3vvuRjyxdFvs9lcOGZGtQ8pLlSZ9bMIJMgXCEU2Xsu/LQVPGa848IJYB19IVxD/e2+j4MTghkmJphFw+ID59Z2s8829odRnq+V1ORA5iUIBIsGpHa+znw8YMUM5eTpVZ92hRKkEBsa/A+kZ1t+JcEk9WrfzbybrjhJGUQDwYIGYKsHyACsGBI6oxtLo0pecMqynFmdOGZ+mI8lNtmbppaKLFaG+CDvdOGVVXju8fPyF2+4H3N6EtkF4X/Q83NOGhRZvw4YYmtOawE7+mabjjtXX4n4eXYHVDG65/YRXG//pFXP3Ep0nLOaLMMgV6QmE0tsdHDw6rKUUdyweIyEEMChAJGjvii6tRA9RdsFNl1j1alEoTw/3q48e1vSX/egqEmSmQNS6XS1c+0qrMFOjfkweoMPi9Hiz44Wxc+6WphsdG1Jbhv1cdY2iQ95OTJjnWST9fVJsFBRIsQg1BgRyNb7xw1n6o2pfp0B4I4cH3NqW8j0Xrm/D1ez7Ab55difP//gHm/vlNbGnqSv5EhR0t3Xhl5U7DwtyqDzbsxZ8Xfo6XV+7CV+96H/e8sxGaBjy5dBv+YfHfJvcUiAYTNu3pimUNeN0ujBhQholDKuWnExFlTf/660qURFNHPFJvVz2fWU1olNftSulEd1hNfFHYkOdBAfYUsF9teXyR0LLvqtnezvjVswHsKUAFYlCVHxcdNQY/EK4oA8APT5iA/YdV489fm4GKEg8q/V7870mTcN7MkTk60typMQkKJOroLzYZBHKTKQD0jUb99lH7xW7f/to6vP15o+Xna5qGm19ZCzH+saejF99/bBmC0r8xma7eEE6/4x187+GlmPfvT1N6btTybS3C/vSBhT/+dw06ekJJ92FWPiCOGB4zsAI+jxvnzhypDOhk889qV28o5ZIIIioODAoQCfYIQQG7UveSjY5KdWTa8Np4yu2Olm7LaYtO0QUFmClgO3HR37yvbKC5iz0FqHBdcvQYjKrrC3ZeNGs/nL+vsesZ04bhs2tPwfLfnowfzp0IVz8MMtaaBPkSfe0bggI5yhQAgEtnj8PAfQH2UETD5Y8sxbvr9lh67ssrd2Lp5mbD/Su2t+JXT61I6W/f8582xIKoLyxvsPw80ee7zHv49IYj+O+K5Ps1Kx9Yt7s9dt/EwX0ZAgMr/fjSdGO5jKYlnz6Rqi92t+Osv7yLA37zMg65biH+/Mra2N/yNTvbcOF9H9r6ekSUf9QdbIj6qVUNbbGfR9fZVT6Q+ES2NIXSAaCvs3NUZ28Ynb1h02ZUuSCmtTIoYL8aIVMgWj4gdvZmpgAVmvpKP16bNwfNXb0YIvUZcLlcWb0ymu9MMwUslg943K6cfg/XVZTgvosOw9f//gG6g2F09YZxyQOLcev5M0z7QzR19ODxxVtw5xtfmO73iaXbMLy2DD85aZKl42i3cBU/mY827U34+Gurd+O8QxNPKpIzBTRFpsCEwfGygVOmDsWTQqPNqHBEszTZyIrW7iAuvG8xGlr7ph+0dAVxx+tfwO/zIBiO4I7X1hmmXZi9L4mocDFTgGifxvYebN0bT8c/eHStLftNVj6Q6oK+vES/vVw/mmshZgpkldh4rKWrF5qmYYdQRiIvqogKQYnXzfeugtniK1FPATG1PtnfHydMH1WLe759aKx3TjCs4YePf4xbF34eO9ZgOIIPNjRh3r8+waw/vo6bX/kcAaH+fsLgSl3pFADc+84GhCyWEWR6Zb2htVs3LlPlnXWN2Jpkm0DQJFNglzoocOh+A5T7SRQUStXf3vwiFhDQ3f/GF7jtVWNAAAAOGFZt2+sTUX7In8uLRDn2ydaW2M9Dqv0YVmPPCWqy8oEKf2qZAvJJntWTIqeITe9Kvan92yg5sfFYeyCExo4e3dWnEQMyn5hBRPlBXghHJar71gcF8uPaz+yJA/HYZUfgOw98hOauIDStr8fACysaMGlIJT7csBdNwt+OqCq/F3/86jScMW0YAGBbcxdm/+kNAH2Zcqsb2nHQyJqkr5/pGvqjTcYyBqAvE6K1O4hwRENnbxjn/O19PPSdw3HAcPWiuSOgz1jQNKCjJ6QrH5gyNP5cs2kyEZv+7PeEwnhk0ebY7TOnDcPz+8orOoW+CSVeN+ZMGoRXVu0Sjl3rlyU9RMUqP/5aEOWBZVvif/QPHjXAtj92ya7UVJSkFpvzSUEGuX40W1q7g3hz7W5saDSvq+zuDWPljngJhtmJEaWvqjT+fmkLBLF+d3wsZW25j2mdREUknUaD4mP5NBb24NED8MTlR8X6RwB9afMvrthpCAgMqvLjqrkT8fbPjo8FBABg5IByXRbfks2JU/qjEmVWiNY3duDKR5fizws/12UXfLQx/jpfOWQEVl57Ct68eg6WXXMSfn7q5Nhjezp68K37PsTmJvW44DYpKBDRNDy8aHPsanx1qTfWUyDqsmPGGvZjV6bAhxv2xhb/ZT4P/t+503DU+HrDdqPrynHi/kNitxdtaMJh17+Kz7a3Gra1S0tXLy6870Mcd9MbeH3NruRPIKKMMChAtM+HG5piPx+yX61t+002kjDV8gG32wXxPC8Uzn6jwRXbWnH8zW/i4n98hLl/fgt3vbleud3HW5tj5QMVJR5MGVqV9WPrb6pK9ZkCa3bGgzD8fRMVl1KfR9koMFGD+Hwu4ZowuBL/vepYnK+ovS/xuHH0hHr85RsH472fn4CfnDRJeaV8xqja2M+rhT5AiVhtqP/nVz7Hiyt24o7X1uGpZdtj94v9BA4bU4cKvxdjBlYAAL537Hj8v3Onxf4u7+3sxd/f3qDc/14p+DHv35/iTy+tid0+9cChhlG+Pz5xEuZJvRMSBYVS8cba3bGfZ08ciPISL85SNDccUu3XBaSBvkkQ97+70ZbjUHly6Ta8s24PNjd14WdPLs+7rEiiYsOgABGAzp4Qlm+LR7xnjRto276TXampSKNJoBhoCNmVR2iiNxTBDx5fFjuZ0TTgTy+tweKNxis0r62On2AcOqYuaUCEUletyxQI4bPtYlCAmRlExWaAooQg0ZXvfJ8AU+n34k/nTsPTVx6FU6YOwcTBlfjO0WPx4a/m4tHvHomzpg9PODFhf+F7bnVDu+l2Ig3WFtEvCBME/vpmX6PD1u4g1u6Kv85hY+oMz/vaoaPw7VljYrcf/XCLst/P7nZj7X7UiNoy/Or0/Q33V/i9uOToMbr77BobKE6COG7SIADAaQcONWx38gFDccykQZg1Tp9F8KkwptFuYhbCno5efLbDWgCIiNLDM3YiAEs2x69wV5V6bU17T1bTWVmaelBAnDvdG8pupsC/lmzF5iZj86TfPrdSd/KpaRoWCvWGJx4wxPAcyly1kCmwaU8n/rMs3pl6/2HMFCAqNqoGjFaDAsl62uTSwaMH4O4LD8XCecfhN2cdYFo/L9tfaHK3dle7pSvI6WTbR3szLN28N/b8uooSjB9Uodz+VGkx/YfnVxm22d3WY7gP6Pubfsc3DjYdQSkHd+woH9jVFsA6YerBMRP7LobUlpfgijnjY/cPqynFV2eORKXfi8cuOwL/961DYo9taurKWrPj5VJpwhqLWSFE/7+9+w6PqkzbAH7PpPceEtIJpABJCL0TqVI+QIhLpEhRQBERQURcXIoKIoKiix0RliJLkV0QCyBlqaFJbyZACCFSkpBe5/3+gDmZyZT0zCRz/66L62JOm2dmTpI5z3ne56WqYaNBIgD/u3Zf+n+HINcavbtS3rRBVZlO0Mpcjuwn3y3Sch53oN96+g4+3XsdDtbm+Pr5tvBxrn7DudzCYny697r0ONzbUSrXvHw3E79dTEX/iMfjPY/fSFPrztw73LPaz0+aVEs4lVMSKrFSgKjheZwUUL9A0ncdbOyVAtXVrJE95LLHQwIKixW48SAHzRrpT4iWvbNekSZ5RU8S7vuvln4/aBugu99QhyBXWFvIpVkT/nXsFrqHeKDPkwR5iUIgOT1PY7+pTzVF3xaNEOnrrDMWeZnnrIlKgQMqr8vXxUZtGuZZfUMxoKU33B0s4eVoLb1mmUyGXuGNYC6XoVghUKIQuPWw/Pe/sk7dSkfiffW+DKoJDCKqecabQiaqQwdUkgLdn5TQ1ZRyZx+oZKNBAGjhU9ptedvpZCz55Sre2HwWSWm5uJiSiTe3nK32FEwAsPrwTdzPepx9sDKX4/vx7TAworTp088XUgE8/oL11YHSPgPdmrnD24ld8GuDak+BskJq+IsZERmeVyUrBYqNtNFgTbG2MEOwR2kzvosVKCsv+25V5Jq6qEQBhUJg/fEkaVn7IM2hA0oymQxvPR2mtuzfJ29L/z9/55FGY2BbSzO80S9Ub0IAqJ1KgZ0qQyWeCvVUS3bI5TJE+DrB28lGIwliYSaHv1tpAmHt0Vs1Ot7/Smomxq+O11h+44H25o1EVDOYFCCTl5lfpJaB7t6sZpMC5c4+UMkpCQFgiEojoG1n7uDLA+qN/w7/+RBHEh6W3a1SMnIL1Y47vksQGjlaqzUh2nflHgqLFVh3PAn7VO46jOkYUK3nJt3KNntSZWPJKSCJGhovLdPj6rtTXKLSZ6YhVgoAQIhKU1XVCjVdyiZRKjIbgUwGXEnNUqu8eCpMfwXcuC5BeGdQc+nxgWv3pRl7Dl2/r7H94mER5cYBAGZlLsyr22jwflYBDv9Z2k9gkMoMDxWhmpT517Fb6PbhPny+/0+1KYmr4u6jPIxZFa8xSwPApABRbWNSgEze1dTSBkIOVuYIUMmA14Sann0AAIa0aowmOsY1Kv3njzt615fniwMJyHryh9nB2hwv93g8xrB7iDusnjSByiooxrLfrmLBfy9K+3UOdpPKJanm6UoK1HSFCxEZB22VAvruFKvOSNNQkwKuKmPvl+++Vu72Za+hK3pRffxGaXLd0dpc7WJYl9Ed/eH8pDlkYbECz355FEkPc5GoclHbLtAFP07pjCGtfCoUR9kZCarbX/iz369L70EjRyutzRP1KZtEuPsoHx/+chUdF+/FnG3ncC45o9LVioXFCkxZf1qqTpTLgFn9Sqd7TErLlfo8EFHNY1KATN4VlaRAqJdDueMMK8uilmYfeKNvqMZyb5U7Sqk6GhpVxF+Z+fj+8E3p8Us9guH05EuOraW51KUYAL46mCiVqzZytMInI1rV+HtIpeytzKWkjKqR7f0NEA0R1TatlQJ6rrcaek8BQHPWndt6qgXyCks0KisqVikgw8mb6dLjEe00p1HUxsrcDO8MLK0WeJhTiBfWnMBBlWGKz7b1Q7S/S4WOp6T6WVZn+EDi/WxsUBkSMbFbE42kQ3kGRzXG12PaoF+LRmrVkAXFCmyMv43B/zyMfp8cxNcHE/TOuKDqvZ8u4UxShvT43aEt8WK3IGmqR2X/AiKqHUwKkMlT7WgbVgvd2/VNrQQATja6x4jrMyDCG38fEA5vJ2s421ogrp0fZquMZ0zLqXpS4JM911DwpKOwu72VxnRIL3ZrorGPpbkcX41pC08td7Wo5shkMgS5a1aJeDpaGSAaIqptWmcf0JMVaOg9BQBoJJ6PJmofLvefP+6g1cLf8M99f6otL65ApYAMwJmk0qRAm4CK300f3sYXS4aXDg24fi8bD7JLS+ube1e+KazqEILqDB/48Jer0uv3c7XBmE6VH+4nk8nQt4UXvhrTFodn98S0Xs3gbq8+c8K1v7KxaNcVdFr8OyZ8fwK7zt9FQXGJ1uPtOJuCtUdvSY/j2vlhVIcAWJmr94/YGH9b2+5EVAOYFCCTd1WtUqDmu7fbltNI0LWC0zBpM7F7Exyd0wt//KMvPhgeqfbl8WF21cb2/XkvG5tOlP7hfa1XU43X0D7IFSPaqt81+WBYBFr5OVfpOalygj01S1gbs7EjUYOkvVJA90Wh6rqGWilgWWZY3pcHErSWlr/2wx9SgltVtpYx62XdyypAyqPSu9yt/Z0rFeOIdv6YojK1n1JTT3uEelX+BoTqZ1mRSgdtTt5Mwy8XU6XHs/qFwcq8er1oPB2tMaNPCA7N7omPno1C+zJDEUoUAr9fuYcp60+j/ft78Y//XMCRhAdSc0KFQuBjlSEgET5OmD+4hfT4mdalQyx2qTRHJKKaxSkJyaQJIdSSAuFV+ENdHttymr9VJylQlmqm/uGTqQorU8p/LzMfvZcfkB4HutkiTkdZ+uJhEejazB3X72WjezN3tK3kmESqurBGDvgJpV+OzOUyeDiwUoCoIdLWd6aiPQXKm/2mvnq6pRe+P3JTepx4Pwfrjt3C+C5B0jJ9Y9of5RWhcSWm7fVxtqlSFdwbfUPxILsA/z6ZDACI9nfGJyNawaKcXkPaqA0fqEKlgBACi3Zdlh5H+Trh/yrZYFAfawszxLbxRWwbX9x8kINtp5Ox9fQd3MkonYbxUV4R1h69hbVHb8Hd3hLNPB3wMKdArd/C4mERsLYo/d4U29oXH/5yFcDj3gUpGXmV+uyIqGKYFCCTlpqZj6yC0jsGIbWRFChndoGaTAqoHquwWIHsgmK9U9gpCSEwZlU8Dql0IwYe30XQ9eVFLpepzURAdafsWFRPB6sGe0eQiDTpu1FsCj0FOjZxw7SeTfHp76XDApb+ehX9W3pLlRWqf9vLyswr0limb0hGdCWrBJTkchk+jI3CiHb+SM8pREyoR7nNh3UeS+WjrExSICO3EKeT0pGVX4zTKmP23x4QXmv9fwLd7TCjbyim9w7B0cSH2HIqGT9fuIv8otKqjQfZhXiQrT7so2eYJ1qqTLkMPK5E8HO1we20x8mFU7fSmRQgqgVMCpBJu6fSjM/JxgKOFbiArqzyhg+oZsSry8XWEmZymfSF4X5WQYWSAj+euaOREHCzs8SACK8ai41qTpSf+pcmD/ZxIDIp+i4Ki00gKQAAM/qG4vnOgYhZuh/ZBcXILSxB96X78EpMU0x5Khj3MnU3uHukJSlQpKelf2WbApbVJqB6+wNVGz6gUAg88/kRjen8eod7okMTt2rHVB65XIYuTd3Rpak7Fg5pgV3n7+Kn86k4mvAARSXqryEm1AMr4lppPU4bfxcpKfDH7QzekCCqBUwKkEl7qNKMz60G79irstFz0e9QhZkH9JHLZXC3t8RfT5Id97MK0KScKZT+yszHgh2XNJavHt+OswgYKQdrC7QLdMGJJ52xa7IElIiMz/K/RWHGv89Kj/VdFJaoXNw25KQA8LgR7uTuTbDsyZj0wmIFPt5zDbmFxXqnac3U0lOg7EWqqrLj5A2hKsMHbqfnaiQEAGB675Aai6uiHKwtMKKdv1Q1ceJmGh5kFyKnoBiRvk5oH+Sq8ztHSx8nbP8jBQBwMeVRXYZNZDKYFCCTptqMz82+dpICZnIZrC3kamVzSrVRAufhYCUlBS7dzdR7N0AIgbe3nVe7a/Le0JaIbeNboxUMVPMWD4vAir1/wsfZBqM7Vr57NBHVH89E+2Dt0Vv443YGAM4+oOqVp5qiqESBrw4mSk0F1x27BT9XW537aKsUKNbSqBB4PCyvReOab0JcWXJZ5SsFsrQkPwZGemuU6Nc1FztL9G1R8UrEFo1L472UklnpfklEVL6G2YGGqIIe5pQmBWpybH9ZuoYQBLrr/tJSVZ4OpaXkC3Zc0ptV33IqGXuv3JMeLx4WgdEdA5gQqAeaejrgs+ei8Vb/MH5eRA2cTCZD+6DSu9X6Gg2aQk8BVXK5DDP6huLQ7J5SEiSnsATrjt3SuY+2ngKFOpICkb5OkBvB+6heKVCxfbLL9FVwsDbHzD51XyVQXc1VkjKZ+cVITs/TszURVQWTAmTS0nJUKwVqr3u7rhkIBkTUfNl3szLT1f168S+t26Vk5GGhyrCBbs3cEdfOT+u2RERkWOp3inVvp5oUMDcz/MVsXfFwsEJsG1/p8RWVmYXK0l4poP1NDdBTcVCXVD//8oYP3MvKx8WURxqVAj+92q3cIYXGyMnGAn6upZWVHEJAVPOYFCCT9iC79nsKALqTAoMia75ZzgvdgtQe52rpwJySkYcX15yUujM7WJljyfBIluMRERkp1ZvVFR0+YNZApyTUZVhrX63LW/k5Y5jKfPfaKgWKdNx+j/JzrpHYqquiPQUS72fjqaX7MfDTQ5i99Zy0vE2AC/zdjCPBURUtvEuHEFxMyTRgJEQNk2n9tSAqQ3X2gdpMCjjbaB57cFTjWint9HSwxuQeTaTHeUUlautTMvIwdOVhXLpb+kd13uAWnOKHiMiIVbT7vNrwARPL87YLdFG7o6w0umMAmnurlqBXLCkQ7GFnNJ3uXWxLZxLaee5x071jiQ/xf58dwsvrTiGv8PHf+m2n7yDnyf9VqyHta7ixcV1T7etw+S6TAkQ1jUkBMlm5hcU4dStdetzU06HWnktbE8PavClva1H6x3/v5Xu4nZYrPf7+yE3cyypNhkzu3kSt5JKIiIyPTFaxMeWmXCkgk8k0KvBkMqBtgAucbEovqrVOSahl+MCsfqGwMDOO9zC2benwvn+fvI0Ldx5h2sYzOH/nEX6+kIqN8UkQQmDPZe1DBu2t63dSIMSr9Dva9XvZBoyEqGEyjt90RAbw+5V70l10BytztAuq/jzCutTWzAa69Ar3lP6fmpmP5745hlsPc3A1NQtfH0yU1g2M8MacAeF1GhsREVWemUpSQFRwSkJTmH2grG7N3NUeB7jaItDdDo4qSYHMPG1TEqpnWlr5OaNv84p3yK9tce380MTdDsDjnhKDPjukluD/5WIqvj9yU2cvhZqeArmuhTQqTQokpeVKlRFEVDOYFCCT9d8nc94CQJ8WjWBlXnsd3N3sNJsY1uZXtZY+TnhvaEvpcXJ6HgZ+egj9Pjmott0gzm9PRFQvqF7f6599oPT/ZqY2fgCPx86rUk5NWNlKgdXj2hnFrANKFmZyvUn8+BtpWKDSPLgsLydrnevqA39XW1iZP75sEQJIuM9qAaKaxKQAmaRHuUXYf/W+9HhIKx89W1efu9bhA7X7ZWN0xwDM+7/m0uOyUxN1a+aOp8I8y+5GRERGSPUCv1hPozlTrxSwMjfD+8+UJsV7Pvk752itUilQTk+Bxk7WcKnFPkNV1ad5owr1OPB0sMLIDv7SY1tLMwyLrt/DBM3kMgSrzJxw/Z7u2SWIqPLqdy0RURX9cvGuNCexm50lugS71erzeTkZponf+C5B8HSwxptbzkqNh5T+9UIHg8RERESVZ6HSH6BEx/R5QNmeAqaXFACAUR0C4OVojdzCEgx8MvWvk0qjvtzCEhSVKNT6BahOSWhhbrz3zN4b0hLXUrNw9S/tF8XWFnJ883xbBHvaIzk9D8npuXh3SMt6PfOAUrNG9lKT5IR7OQaOhqhhYVKATNJ/VIYODIr0hnktNxLy1zLPcV19VRsY6Y1QLwfM3X4eJ26mo0Qh8MpTwXX07EREVBNUL/CLFbo7DarPPmCaSQEA6BXeSO2x6vABAMjILYKHQ+nQPtVKAWOusHCytcDWKZ3x3z9SEOhmi9YBLnh723n8+McdeDtaY9GwCGkaxbUT2hs22BrmozJLUmpmvgEjIWp4mBQgk3PzQQ6OJj6UHg+u5aEDALROkVRnWQEATT3t8cOkTigoLkFeYQmcbY2vLJKIiHQzr+DwAbVKARPsKaCLnaUZLMxkUu+AjNxCtaRAoUpSwFhmHNDF3spcbXjA8hGt8MHwSFgacYVDTVDti/AXkwJENaph//Yg0mLdsVtQ9mgK9rBDa3/nWn9OW0tzrX0F6pqVuRkTAkRE9ZC56vABfUmBenLHu67JZDK1v3/puep9BdSGDxh5UkCbhp4QAABvlaGYSSpTLRNR9TX83yBEKnILi/Hvk7elx2M7B9Z6wz8lvzJDCGR1WSpARET1muoFftnp81TlF5Wus7GovVl16iNXtaRAodq6IrVKAf59NkbNPEsbDSal5SK3UHNqSSKqGiYFyKRsOnEbmfmP/4jYW5ljWOu668Zbtq+ACQ/1JCKiSlIdPqCvUiCvqLSprDWTAmqcVZoNZuhJCtR2nyGqGj9XW1hblE5LeP0vTktIVFP4W49MRm5hMVbu+1N6HNvGF/ZWdddWw8+l/nf+JSIiw1BvNKg7KZCvkhSwsWRSQJWLSqVAWo768IEileEDlkwKGCUzuQwhjRykx7pmYCCiyuNvPTIJxSUKLNxxCQ+yH98ZsLaQY0pM3Xbg16gUqNNnJyKi+ky1p0CxnikJ81Smn+XwAXUudrorBVRndDDn8AGjpZYUSGVSgKimcPYBavAu383Euzsv4UhC6YwDYzsHwtPRWs9eNS9YZSwcAOj+SkdERKSuorMPqA4fYFJAnbOengKFxfVn9gFTFuZVmhS4xkoBohrDpAA1SEIIxN9Iw6pDN/Dbpb/U1rX0ccTUp5rWeUzNGqknBTidDhERVZRqo8FiPY0G1XoKcPiAGlc9sw9w+ED9oFopcIWVAkQ1hkkBanB+u5iK93ddxq2HmtPVDIzwxtJnI2FrWfenvqO1hdpjNsghIqKKUm1+p6/RYD6HD+ikr9Gg2lSOHD5gtFQrBe5nFSAtpxCudpxqmai6mBSgBkMIgY9+u4qV+xI01oV5OWBar2bo39KrzqYgLE8qKwWIiKiCzCvYaJDDB3Rz0VMpkF9c+r5ZmbNSwFh5OFjB2dYCGU8+v6upWegU7GbgqIjqPyYFqEEoUQjM3X4eG+NvS8tkMqBrU3eM7hiAPuGNIJcbPhkQ7GGHhPs5AIC2AS4GjoaIiOoLsyoMH+DsA+pcVO4o/5WZDyGEdKMgv6j0PeVUjsZLJpMhtJEDjt9IAwBcupvJpABRDWAqlOo9hUJg1uazagmBZp722P16D/zrhQ7o18LLKBICAPDduHZwtbOEs60F5g5qbuhwiIionrCoQKNBhUKoXdyyUkBdU5WGv1n5xWrDDFWncmRSwLhF+DhJ/79w55EBIyFqOFgpQPWaEAILdlzEtjN3pGVtAlzw3bh2cLKx0LOnYQS42SH+7V4oKhG8g0NERBVmpjoloY6kgGoJPMBKgbKcbCzQxMMOiU8q9s4mZyDQ3Q5AmUoBDh8wahG+pUmBc8kZhguEqAHhbz2q11bsvY41R29Jjzs1ccO/XmhvlAkBJXMzOb+oERFRpVRk9oHs/GK1x/ZWvPdTVitfZ+n/Z2+X3mVW6ynASgGjplopkPggB9kFxXq2JqKKYFKA6q1fLtzFJ3uuS4+jfJ3wzdi2BplZgIiIqDapdsTXNfuA6sWRuVzGhnlaRPk5S/8/q3KXuYA9BeqNQDc7ODxJeAkBXOQQAqJq418Lqpf+vJeFmf8+Kz0O9rDD9+Pb864IERE1SKqVAkUVSArYW5sbzWw7xkQ1KXDhziMUPam6KChW7SnAr8fGTC6XoYWPo/T4PJMCRNXG33pU75xLzsBz3xxHzpO5mB2szPH1823VugoTERE1JOYqPQV0VgqoDB+wY9WcVuHeDlLTxoJiBa6mZgEo02jQnJUCxi5SZRjIuWQmBYiqi0kBqjeEEPghPgl/++oo7mcVSMuX/S0KwR72evYkIiKq31SnJCxRCAihmRhQrRRwsGZSQBsrczM09y69y6wcQpD+ZN57AHA04r5E9JhqXwFWChBVH5MCVC/czyrAi2tO4q1t56UOweZyGT4cHom+LbwMHB0REVHtsjBT/8qmbQYCteEDHE6nk1pfgdsZUCgE7mbkScs8HKwMEBVVRpRKpcCNBzl4kF2ge2MiKhf/YpBRu5eVj3VHb2HVoRvScAHg8bRCn49qjS5N3Q0YHRERUd1QrRQAHlcLlO2Hp5oUsGNSQKfHF5SPZy46e/sRktPz1L5jNPVk9aGx83O1QSNHK/yV+TgZcOJGGvpHeBs4KqL6i38xyOg8yivCrxdTseNsCg7/+QBlb4Z0D/HA0thINHK0NkyAREREdcy8TFKgqESh0SW/bKNB0k61UuDavSycuJkmPQ5ws2WVRT0gk8nQIcgN/z2bAgA4zqQAUbXwtx4ZjZyCYnyxPwHfHb6BXJWMvZKTjQXe6BeK0R382VGZiIhMiuqUhID2ZoOqjQYdeGGrUxP3x1PaZRUUQwjg64OJ0rpwL0c9e5IxaR/kqpYUIKKq418MMgqX72bilQ2nkXg/R2NdYydrjGjnj/FdA+FozeY/RERkelRnHwDK7ynA4QO6yeUytAtyxe9X7gEArv6VJa0L92ZSoL7o2MRV+v+V1Eyk5RTClTNREVWJyTUazM/Px7x58xASEgJra2s0btwYEyZMQHJysqFDM1l/3M7A3748qpYQcLa1wOiO/tg0qSMOze6J13o3Y0KAiIhMVtlKgeISzaTAozyVDvr8m6nX671DNPo0AEBLHyYF6otgD3t4PmkKKQSw70mSh4gqz6SSAvn5+ejVqxcWLlyI7OxsDBkyBH5+fli9ejVat26NhIQEQ4docs7ezsCYVceR9eTuhkwGTO7RBIdm98R7QyPQoYkb5Fr+aBMREZkSszLD5ooVCo1tHmYXSv93tecdU30ifJ2wcEgLjeVtA1y1bE3GSCaToVd4I+nxnst/GTAaovrNpJICixYtwpEjR9CpUydcu3YNmzZtwvHjx7Fs2TLcv38fEyZMMHSIJuVc8pOEwJMxkBZmMnw1ug3m9A9nkx8iIiIVcrkMqjlybT0FHuaUJgXcWEZdrlEdAvD5qNbS415hnnCyZYVFfdK3eWlS4MC1+ygs1kyWEVH5TCYpUFRUhM8++wwAsHLlStjbl043M2PGDERGRuLgwYM4deqUoUI0KadupWH0t8eRqZIQ+HxUG/Rt4WXgyIiIiIyTuVnp17YiLcMH0nJK52pnUqBiBkR448hbPfHFqNZY8Vy0ocOhSuoU7CYly3ILS3DroWZvKiIqn8kkBQ4dOoSMjAwEBwcjOlrzl35sbCwAYMeOHXUdmkkpLFbg64MJiPv6mJQQMJfLsHJka/RRyfYSERGROtVpCctWCgghkKZaKcDhAxXW2NkG/SO8WaVYD1lbmMHbyUZ6vCE+yYDRENVfJvPb7+zZswCA1q1ba12vXK7crqoUCgUyMjKqdYyG5lLKI/xx+xGu38vEgasP8CC79E6GmVyGD5+NQnsfa75vREREesgKc6B4klBftfc83J80WQOAtOxCFOSUdtG3KM5DRobm9L414dGjR3ofE9WlASEO+OrgfQDAqr0XcO9BGgLcbA0cVfVM6BKkVhlEVB6FQgG5vOrnjMkkBZKSHmcOfX19ta5XLldup0+LFpqNaQDgypUrUCgUcHFxqWKUpmn4x4aOgIiIqH5ZWs76wBV1Esbj5woMrLsnIyrH54YOoAbMNnQAVC+pDo+vLJNJCmRnZwMAbG21Zw7t7OzUtqsKZYYmLCysyscg06Sc+SI4ONjAkVB9xPOHqornDlUVzx2qKp47VFU8d3RLSkqSrmerwmSSAkI8Hnsnk2mf3k65viIuXryodbmygkDXeiJdeO5QdfD8oariuUNVxXOHqornDlUVz53aYzKDVRwcHAAAOTnau5Lm5uYCqF7ZBREREREREVF9YjJJAX9/fwBAcnKy1vXK5crtiIiIiIiIiBo6k0kKREVFAQBOnz6tdb1yeWRkZJ3FRERERERERGRIJpMU6NKlC5ycnJCQkIAzZ85orN+yZQsAYNCgQXUdGhEREREREZFBmExSwNLSElOnTgUATJ06Va23wPLly3Hu3Dl07doV7dq1M1SIRERERERERHVKJirTdr+ey8/PR0xMDI4fPw5vb29069YNt27dwvHjx+Hm5oZjx46hadOmhg6TiIiIiIiIqE6YVFIAAPLy8rB48WJs2LABt2/fhouLC55++mm8++678PPzM3R4RERERERERHXG5JICRERERERERPSYyfQUICIiIiIiIiJ1TAoQERERERERmSgmBYiIiIiIiIhMFJMCRERERERERCaKSQEiIiIiIiIiE8WkABEREREREZGJYlKgluXn52PRokWIioqCnZ0drK2t0axZM0ybNg2pqamGDo/qgS1btqBv375wd3eHtbU1/P39MWzYMBw6dMjQoVE9sXDhQshkMshkMvzwww+GDoeM1JUrV7BkyRL06tUL/v7+sLKygpeXF4YNG4b//e9/hg6PjEB+fj7mzZuHkJAQWFtbo3HjxpgwYQKSk5MNHRoZsdzcXGzfvh0vvPACIiMj4ejoCDs7O0RFRWHhwoXIzs42dIhUT6SlpcHT0xMymQxhYWGGDqdBkQkhhKGDaKjy8/PRo0cPxMfHw9XVFZ06dYKlpSXi4+Nx584deHl54ejRowgMDDR0qGSESkpK8Pzzz2PDhg2ws7ND165d4ezsjKSkJJw6dQrvvPMO5s6da+gwychdvXoVUVFRKCwshBACGzduRFxcnKHDIiPk6+uLO3fuwNHRER06dICLiwsuXbqECxcuQCaTYfny5Zg+fbqhwyQDyc/PR69evXDkyBF4e3ujW7duuHnzJuLj4+Hh4YGjR48iODjY0GGSEfr2228xceJEAECLFi3QvHlzZGZm4siRI8jKykJYWBgOHDgAT09PA0dKxm7cuHFYu3YthBAIDQ3FlStXDB1SwyGo1qxYsUIAEB06dBCPHj2Slufn54tnn31WABDPP/+8ASMkY/bmm28KAGLAgAHi4cOHauvS0tLEtWvXDBQZ1RcKhUJ0795dNGrUSAwZMkQAEBs3bjR0WGSk+vTpIzZs2CAKCgrUln/55ZcCgDAzMxMXL140UHRkaO+8844AIDp16iSysrKk5cuWLRMARPfu3Q0YHRmzNWvWiJdfflnje0tKSoqIjo4WAMRzzz1noOiovtizZ48AICZNmiQAiNDQUEOH1KCwUqAWxcbGYuvWrfjhhx8wYsQItXV//PEHoqOjER4ejkuXLhkoQjJW169fR3h4OHx8fHD58mXY2toaOiSqh7755htMmjQJ69atw+7du7FmzRpWClCV9OvXD7/99hvmz5+PefPmGTocqmNFRUXw9PRERkYGTp8+jejoaLX1UVFROHfuHE6ePIk2bdoYKEqqj44ePYrOnTvDysoKmZmZsLS0NHRIZITy8vIQGRkJS0tLbN++HSEhIawUqGHsKVCLrKysyt3G1dW1DiKh+ubbb79FSUkJXnrpJSYEqEpSU1Px5ptvolevXhg1apShw6F6LioqCgCQkpJi4EjIEA4dOoSMjAwEBwdrJASAxzdBAGDHjh11HRrVc8rfLQUFBXj48KGBoyFjtWDBAiQkJOCLL76AhYWFocNpkJgUqEV9+vQBAHzyySfIzMyUlhcWFmLRokUAgLFjxxokNjJue/fuBfD4HLpx4wYWLVqEyZMnY86cOdizZ4+Bo6P6YNq0acjLy8MXX3xh6FCoAUhMTAQAeHl5GTgSMoSzZ88CAFq3bq11vXK5cjuiilL+brGwsOCNMtLq3LlzWLZsGcaPH4/u3bsbOpwGy9zQATRkY8aMwa5du7B582YEBQWhc+fOsLCwQHx8PLKysvD+++9LjVeIVF28eBEAcPz4ccycORMFBQXSug8++AC9e/fG1q1b4ejoaKgQyYjt3LkTmzdvxoIFC9CsWTNDh0P1XEJCAnbu3AkAGDx4sIGjIUNISkoC8LgZpTbK5crtiCpqxYoVAICnn366QhW2ZFoUCgUmTpwIZ2dnfPjhh4YOp0FjpUAtMjMzw8aNG/HGG28gLS0NO3fuxI8//og7d+6gVatW6Nq1q6FDJCOUn5+P/Px8AMD06dPRo0cPnDt3DpmZmdi9ezeCgoKwZ88eTJo0ycCRkjHKzs7GlClTEBISgtmzZxs6HKrniouLMW7cOBQUFGDEiBEcL26ilFPG6RrOZmdnp7YdUUXs2rULq1atgoWFBd59911Dh0NG6LPPPkN8fDyWLl0KNzc3Q4fToLFSQI/Y2FhcuHChUvusXbsW7du3BwCkp6fjmWeewYkTJ7BixQoMHz4ctra2OHjwIF599VX06tULmzdvxtChQ2shejKk6pw7JSUl0jIfHx/s2LFDarzTu3dv/Oc//0GrVq3w73//G++++y7vBDcw1f298/bbb+P27dvYu3cv77qYmOqeO9q8+uqrOHToEJo0aYLPP/+8uiFSPaXsSS2TyfSuJ6qoy5cvY/To0RBCYOnSpVJvASKl27dvY+7cuejRowfGjRtn6HAaPCYF9Lh58yauXr1aqX1yc3Ol/7/++us4cOAAPvnkE0ybNk1aPmTIEPj4+KBDhw547bXXMGjQIJib86NoSKpz7tjZ2UEul0OhUGD06NEanXgjIiLQtm1bxMfH48CBA0wKNDDVOXfi4+OxcuVKjBkzBj179qyN8MiIVfdvVlkLFy7El19+iUaNGuHXX3/leF8T5uDgAADIycnRul55Htnb29dZTFR/JScn4+mnn0Z6ejpmzJiB1157zdAhkRGaMmUKCgsL2RupjvBKVI+TJ09Wed+SkhJs3LgRQGlXXlVt27ZFUFAQEhISkJiYiJCQkCo/Fxmf6pw7ABAQEIAbN24gICBA6/rAwEDEx8fj3r171XoeMj7VOXd27doFhUKB8+fPIyYmRm2dctoe5YVebGwspk6dWp1QychU9/eOqpUrV2LevHlwcnLCL7/8gqZNm9bYsan+8ff3B/D4Yk4b5XLldkS6PHjwAH369EFSUhLGjx+Pjz76yNAhkZHauXMnnJ2d8fLLL6stVw6xTUpKkr7r7Ny5k0nJamJSoJbcu3cPhYWFAKCzGZxyeVpaWp3FRfVDdHQ0bty4ofPcUE7bw1+ApM0ff/yhc93ly5dx+fJltGrVqs7iofpl/fr1ePXVV2Fra4uffvqJ5wpJpd2nT5/Wul65PDIyss5iovonKysL/fv3x5UrVzBs2DB88803OoekEAFARkYGDhw4oHVdXl6etK64uLguw2qQ2Giwlri6ukpl39ru3mRmZkplnrruBpPpUnb43rdvn8a6rKws6QuYrumhyDTNnz8fQgit/5TTn27cuBFCCHzyySeGDZaM0q5duzBu3DhYWFjgxx9/RJcuXQwdEhmBLl26wMnJCQkJCThz5ozG+i1btgAABg0aVNehUT1RUFCAIUOG4OTJk+jXrx82btwIMzMzQ4dFRkzX95kbN24AAEJDQ6Vlzs7Ohg22AWBSoJZYWVnh6aefBgDMmDEDd+/eldbl5+djypQpyM3NRZcuXeDt7W2oMMlIxcXFITAwEL/++ivWrFkjLS8uLsZrr72G9PR0tGzZkl/YiajGHD58WBrutmnTJvTt29fAEZGxsLS0lIYbTZ06Va23wPLly3Hu3Dl07doV7dq1M1SIZMRKSkrw3HPPYd++fejWrRu2bdum0S+JiAxLJtgyttYkJCSgS5cu+Ouvv+Dg4IBOnTrBxsYGJ06cQEpKClxdXXHgwAG0bNnS0KGSETp27Bh69+6NnJwctG7dGoGBgTh9+jRu3rwJNzc37Nu3DxEREYYOk+qJcePGYc2aNdi4cSPi4uIMHQ4ZIRcXF2RkZCAoKAjdu3fXuk3Xrl3x4osv1nFkZAzy8/MRExOD48ePw9vbG926dcOtW7dw/PhxuLm54dixY+w9QVqtWLEC06dPBwA888wzOofVfvTRR3B3d6/DyKg+unnzJoKCghAaGir1S6LqY0+BWhQcHIyzZ89iyZIl+Pnnn3Hw4EEIIeDn54dXXnkFb731Fnx9fQ0dJhmpjh074syZM1iwYAH27NmD8+fPo1GjRpg4cSLmzp3Lhk5EVKMyMjIAADdu3JDKM7VhUsA0WVtbY9++fVi8eDE2bNiA7du3w8XFBWPHjsW7774LPz8/Q4dIRio9PV36/48//qhzu/nz5zMpQGQgrBQgIiIiIiIiMlHsKUBERERERERkopgUICIiIiIiIjJRTAoQERERERERmSgmBYiIiIiIiIhMFJMCRERERERERCaKSQEiIiIiIiIiE8WkABEREREREZGJYlKAiIiIiIiIyEQxKUBERERERERkopgUICIiIiIiIjJRTAoQERERERERmSgmBYiIjJxMJiv337hx4wwdpsmIiYmBTCbDzZs3a/25ZDIZAgMDa/15jFlgYKDec7++vT91ef5QqZ49eyIgIACFhYVV2j89PR3W1taQy+VISkoqd/sJEyZAJpPh73//OwDgzJkzkMlkWLp0aZWen4ioNpkbOgAiIqqYsWPH6lzXtWvXOoyEasL+/fvx1FNPYezYsfj+++8NHU6FzZ8/HwsWLMDq1avrNBk1fPhw2Nvbayx3d3evsxiofvrpp5+wb98+fPHFF7C0tKzSMVxcXDBw4EBs27YNGzZswFtvvaVz2/z8fGzbtg0AMHr0aABAdHQ0Bg8ejEWLFuGFF16Aq6trleIgIqoNTAoQEdUT9enCkWrG5cuXYWFhYegwjMJHH31U76oCtFm7di1yc3Ph4+Nj6FBMxttvvw1PT09MmDChWscZM2YMtm3bhnXr1ulNCuzYsQOPHj1CmzZtEB4eLi2fM2cO/vvf/2LJkiVYsmRJtWIhIqpJHD5ARERkpMLCwhAcHGzoMKgG+fv7IywsjMmeOnL48GGcO3cOcXFxVa4SUBowYADc3Nxw8eJFnD17Vud269evB/A4iaCqY8eOaNq0Kb777rsqD2MgIqoNTAoQETVAyrHWJSUl+PDDDxESEgIrKyv4+flh9uzZKCgo0LpfdnY2Fi5ciIiICNja2sLR0RE9evTA9u3bNba9efMmZDIZYmJikJmZiZkzZyIoKAgWFhaYPn26tN2ZM2fQv39/ODk5wcnJCf369cOJEyfw/fffQyaTYf78+dK2LVu2hEwmw7Vr17TGd/PmTcjlcjRr1gxCiHLfB9Xx2xs2bEDHjh3h4OAAZ2dnaRshBNasWYPu3bvD2dkZNjY2iIyMxEcffYSioqJyn0Ppf//7H6ZOnYrIyEi4uLjAxsYGYWFheOutt5CRkaG27bhx4/DUU08BANasWaM2Rl71/Sg7Zn7r1q2QyWSIi4vTGceUKVMgk8nwzTffqC2vzGerS2BgIBYsWAAAGD9+vFrc+/fvV9v2X//6F7p27QpHR0fY2toiMjISixcvRn5+foWfrypu3ryJyZMnIzAwEFZWVvDw8EBsbCzOnTunsa3qOXjt2jXExcWhUaNGkMvl2L59u9o5npOTgxkzZsDPzw82NjZo3bo1duzYIR1r8+bNaN++Pezs7NCoUSNMmzYNeXl5Gs9Z1Z4Chw4dwjPPPANPT09YWVkhMDAQ06ZNw/379zW2HTdunPSZHDx4ED179oSDgwMcHR0xcOBAXLp0Sefz7NixA/369YObmxusra0REhKCd955B9nZ2Xpfi66fr+zsbLzxxhvS+9a8eXN8+umnEEJonN9Lly5VG4evzVNPPQWZTIZDhw5V6H379ttvAQCjRo3Suc358+cxatQo+Pj4wMrKCo0bN8b48eM1PiNLS0v87W9/AwCsW7dO67HS0tLw888/w8zMTOvP6XPPPYcHDx7gxx9/rFD8RER1QhARkVEDICr76xqACAgIECNGjBB2dnbiqaeeEoMGDRJOTk4CgBg1apTGPqmpqaJ58+YCgPDx8RGDBw8WvXv3FnZ2dgKAWLx4sdr2N27cEABE+/btRatWrYSLi4sYOnSoGDZsmJg/f74QQojDhw8LGxsbAUBER0eLuLg4ERkZKSwtLcXkyZMFADFv3jzpmJ9++qkAIGbNmqX1dc2dO1cAEB988EGF3ocePXoIAGLSpElCLpeLbt26ibi4ONGlSxchhBAlJSXi2WefFQCEo6Oj6NWrlxgyZIjw8vISAMSAAQNESUmJ1mPeuHFDbXmHDh2ElZWVaNOmjRg2bJgYOHCg8Pb2FgBEixYtRFZWlrTtN998I/r16ycAiODgYDF27Fjp348//ihtp/wclfLz84WTk5OwsbFRO55SUVGRcHd3F5aWliItLU1aXtnPVpeZM2eKqKgoAUB06dJFLe7Lly9L202aNEkAENbW1mLAgAEiNjZWuLu7CwCiU6dOIjc3t0LPJ4QQAQEBWt9vbf73v/8JR0dH6T2PjY0VnTp1EjKZTNjY2Ijff/9dbfvVq1cLACIuLk44OjqKoKAgMWLECNG3b1+xc+dO6Rzv1KmT6NChg3B3dxeDBg0SMTExQi6XCzMzM7F7926xfPlyYW5uLjp16iSGDh0q3NzcBAAxcuRIjRh1nT/6rFixQshkMmFmZiY6deokYmNjRVhYmAAggoKCREpKitr2Y8eOFQDEjBkzhJmZmYiKihLDhw8XISEhAoBwc3MTd+/e1XieGTNmSJ9b9+7dxbBhw6T3v02bNiI7O1vra9H185WXlyfat28vAAgPDw8RGxsrnn76aWFpaSmmTZumcX7fv39fWFlZCW9vb1FUVKQR3/Xr14VMJhNhYWEVfu88PT2FnZ2dxs+x0pYtW4SlpaX0GmNjY0V0dLT0Pl24cEFt+yNHjkg/R9qO+eWXXwoAon///lqfb+/evQKAGDNmTIVfAxFRbWNSgIjIyFU1KQBAhIeHq118JCYmChcXFwFA/Pnnn2r79O/fXwAQb775pigsLJSWJyQkiODgYGFmZibOnj0rLVdeMCkvmtLT09WOV1JSIl2EfPjhh2rrFi5cKO2rmhTIyMgQtra2wtPTUy0GIYQoLi4WPj4+wtzcXKSmplbofVBetFhbW4v9+/drrF+yZIkAIPr06SPu3bsnLc/Ozhb/93//JwCIf/7zn1qPWfai7qefflK7EBfi8UW88gJ5wYIFauv27dsnAIixY8fqjL/sRZMQQkyYMEEAEGvXrtXY/qeffhIAxNChQ9WWV/az1WfevHkCgFi9erXW9Vu2bJEumq5fvy4tf/TokejatavepI82FU0KPHr0SHh5eQkLCwuxefNmtXW7d+8WlpaWwsfHRxQUFEjLlUkBAGLq1KmiuLhYbT/VczwmJkbt81Xu27RpU+Hq6ioOHjworbtz547w9PQUAERCQoLaMSubFDh69KiQy+UiICBA7TNSKBTSz1FsbKzaPsqkgFwuFxs2bJCWFxcXi+HDhwsA4p133lHbZ9OmTVLyTjW2wsJC6Rx+4403tL4WXT9f7777rvT74dGjR9Lys2fPSr+Hyp7fI0eOFADE9u3bNY43e/ZsAUAsW7ZM9xum4vLlywKA6N69u9b1iYmJwtbWVjg5OYkDBw6orVuzZo0AINq1a6exX9OmTQUAsXfvXo11ynN8/fr1Wp8zMzNTyOVyERgYWKHXQERUF5gUICIycsqLEn3/VO8uq+6zZ88ejeO9+uqrGhd1Z86cEQBE586dhUKh0Nhn+/btAoB49dVXpWWqF0wnTpzQ2Gf37t0CgAgLC9M4ZnFxsQgKCtJICgghxPjx4wUAsWXLFrXlO3bsEADEsGHDdL1VGpQXLa+88orGOuVddQcHB3H//n2N9ampqcLKykpERERoPWZFL+pyc3OFubm5aN26tdryqiYFlHca+/Xrp7H9qFGjBAC1i+KqfLb6lJcU6N69uwAgVq1apbHu3LlzQiaTCQcHB7WLc32USQFd/86cOSOEEOLjjz8WAMScOXO0Hmf69OkCgNi6dau0THlh7+HhIXJycjT2UZ7jZmZmagkOIR4nvTw8PAQA8Y9//ENj39dff13r+1TZ82fIkCECgPj111811ikUChEdHS3kcrnaOaxMCowePVpjn1OnTgkAokePHmrLlRUgV65c0dgnLy9PeHl5CWdnZ7W74/p+voQQwtfXVwAQR48e1Vj3j3/8Q+v5feDAAQFADBo0SG15UVGR8PLyEpaWllp/XrVRJjomTpyodf1rr70mAIivvvpK6/qhQ4cKAOLUqVNqy+fPny8AiAkTJqgtv3nzppDJZMLe3l7r+aTk4+MjAKglSoiIDIk9BYiI6omxY8fq/Ofv76+xvYWFBWJiYjSWh4SEAADu3r0rLdu9ezcAYMiQIZDJZBr7KKc8PHHihMY6b29vtG3bVmP5kSNHAACxsbEaxzQzM8OwYcO0vs6XXnoJADTGxCsfT5w4Uet++gwePFhj2ZkzZ/DgwQN07dpV67R2jRo1QrNmzXDhwgWtY8O1uXPnDr788ktMnz4dEyZMwLhx4/Dyyy/D0tIS169fr3Tc2sTExMDHxwd79uzBvXv3pOW5ubn4z3/+A0dHRwwaNEhaXp3PtrKKiopw7NgxyGQyjBw5UmN9REQEIiMjkZWVpbdRmzbDhw/Xeu4rp3ZTvs6hQ4dq3V/f6+zduzdsbW11PndgYCCaNm2qtkwulyMgIAAA0KdPH419lA0iVX/OKkuhUGDv3r1wcHBAr169NNbLZDJ06dIFCoUCp06d0ljft29fjWXafv7v3buHs2fPIjw8HKGhoRr7WFtbo23btsjIyNB6Hmv7+UpKSkJycjJ8fX3RsWNHjfXPPvusxjIA6N69O5o3b46ff/4Zd+7ckZbv2LEDqampeOaZZyo8DaXy58PFxUXretWfDW10nTPKBoJbt25V65Gxfv16CCEwbNgwveeT8pzV1g+CiMgQOCUhEVE9UdkpCb29vWFmZqaxXDnXu2qzQWVDrdmzZ2P27Nk6j/ngwQONZdoSEgCQkpICAPDz89O6Xtd+7du3R3R0NHbv3o1bt24hICAAd+/exa5du+Dv76/1Qqc82p5L+Zp//vlnrRfLqtLS0sqdQm758uWYM2dOrXcVl8vliIuLw7Jly7Bp0ya8+uqrAID//ve/yM7Oxvjx42FtbS1tX53PtrIePnyIwsJCeHl5qcWgKjAwEGfPnpXOj4oqb0pC5evs0KGD3uNU5hxW0vXZ29nZ6VyvXKerqWdFPHz4UGrwZ26u/yubttfl6+ursUzbz/+tW7cAPJ4Cs7yfhQcPHmgkDrS9f1X9+QeASZMmYfr06fjuu+/wzjvvAKhaUvDRo0cAAAcHB63rleeMl5eX3uOUfW+bNGmCzp0748iRI9i5cydiY2MB6J51oCxHR0e1+IiIDI1JASKiBqq8L/eqSkpKAADdunVDkyZNdG6n7Q6drou/8uIQemYPmDx5Ml566SV89913WLBgAVavXo3i4mK88MILkMsrX+SmLUbla27WrBk6d+6sd38rKyu9648dO4aZM2fCyckJX3/9NWJiYuDl5SXt17hx42rdMS5r1KhRWLZsGTZs2CAlBTZs2CCtU1Wdz7aqKnLuVeb8rAjl63z22Wf13qXVljSo6jlc0fVVpXxNDg4OOitrlJRVC1WJS/k83t7e5Sbd3NzcNJbpe/+q8t6MHTsWc+bMwXfffYe5c+ciOTkZv/76K5o0aYKePXtW+DhOTk4AgMzMTK3rS0pKIJPJ8Pzzz+s9TosWLTSWjRkzBkeOHMG6desQGxuLM2fO4NKlS2jcuHG5MSqTAcr4iIgMjUkBIiKS7ijGxsZi2rRpNXJMb29vAI/LiLW5ffu2zn1HjRqFWbNmSXcKV61aBblcjgkTJtRIbEDpa27ZsmWlqzDKUk4v9t5772Hs2LFq6/Ly8pCamlqt45cVHR2N8PBwHDt2DImJiXBxccGvv/4Kb29vaapDpdr4bHVxc3ODpaUlUlNTkZeXBxsbG41tlHelledHTfH19cXVq1cxd+5cREZG1uixDcXd3R1WVlawsLCo9jmqj/Ic8fLyqrHnKe/nX9dyAHB2dsaIESPw/fffY/fu3Th69CgUCgVefPHFSiUZPD09ATyu9NHG19cXCQkJ+PTTT6W79xU1YsQIvPbaa/j555+Rnp4uVQmMHDmy3MRleno6AMDDw6NSz0lEVFvYU4CIiNC7d28AqNSc9eVR3n3funWrRlWAQqHQO0+3vb09Ro4cieTkZMyaNQuJiYno37+/1nLoqmrXrh2cnJywb98+nXcSK0r5JV9bqfTmzZu1VkVYWloCAIqLi6v0nMqKgA0bNmDz5s0oLCzEc889p3FBUtOfrb64LSws0LFjRwghsHHjRo31Fy5cwNmzZ+Hg4ICoqKgaiUepNs5hQzM3N0dMTAzS0tJw8ODBWnseX19fhIaG4ty5c7hx40aNHDMgIACNGzdGcnIyjh8/rrF+y5YtevefPHkyAOCrr77Cd999B3Nzc4wbN65SMSjPsStXrmhdX51zxsXFBQMHDkRhYSF++OEH6XwfPXq03v0yMzORkpKCoKCgSiciiIhqC5MCRESEjh07olevXti3bx9ef/11aRyzkkKhwG+//YZDhw5V+Jg9e/ZE06ZNcfnyZXz88cdq6z744AMkJibq3V/ZcPCTTz4BULUGg/pYWVnhjTfeQEZGBoYPHy7dwVZ17tw5bNq0qdxjKZu3rVq1CkVFRdLyS5cu6RzH37hxYwDA1atXqxK+1Mhv/fr1OocOADX/2ZYXt3I4w7x589Q+46ysLEydOhVCCEyePFlKLtSUyZMnw8PDA4sWLcLq1as1EjE5OTlYu3YtkpOTa/R5a9vbb78NuVyOsWPHav2MUlJSsHLlymo/z9y5c1FSUoLhw4fjwoULGusTEhLw3XffVeqYygv7mTNnIisrS1p+4cIFfPbZZ3r37dixI6KiorBt2zYkJSVh0KBBla4uCQ0NhaenJ06fPq01iTVz5kzY2Njg9ddfx44dOzTWp6Wl4fPPP9fZaFTZO+Cdd95BSkoKIiIiyk12nThxAkIIdOvWrVKvhYioNnH4ABFRPaHvLpm/vz8WLlxYreOvX78effv2xSeffIK1a9eiVatW8PDwwJ07d3D16lXcv38fH3/8sdSRuzxmZmZYvXo1+vTpg5kzZ2L9+vUIDQ3FpUuXcPnyZUycOBHffPONzovDVq1aoX379oiPj4e3tzcGDhxYrdenzdtvv41Lly5h48aNCA0NRevWreHv748HDx4gMTERN27cwJAhQzBixAi9xxk/fjyWLVuGHTt2IDQ0FO3atUNaWhoOHDiAoUOHIj4+XiPpEBgYiMjISJw8eRLt27dHixYtYGZmhsGDB2vt5l5WUFCQ1OzsypUrCAsLQ+vWrbVuW5Ofbd++fWFtbY2PP/4YFy5cQOPGjSGTyTBr1iyEhoYiNjYWkyZNwtdff42WLVuiZ8+esLW1xf79+3H//n107NgRCxYsKPd5KsvFxQU//vgjBg8ejAkTJmDBggVo2bIlrKyskJSUhMuXLyMnJwdnzpyp0YqT2ta9e3esWLEC06dPR7du3RAZGYlmzZohPz8ft27dwuXLl2Fvb49XXnmlWs8zevRonD9/Hh9++CFatWqF6OhoBAUFITMzE7du3cKVK1cQFRVVqSE8s2bNwo4dO3D48GEEBwcjJiYG2dnZ+P333zFx4kT885//1Jscmjx5MqZMmQKg6knBAQMG4Pvvv8fx48fRpUsXtXXNmjXDunXrMHr0aAwePBihoaEIDw+HEAK3bt3CpUuXUFhYiJEjR2odCjNw4EC4urri4cOHAMqvEgCA/fv3S3ERERkNg02GSEREFQI9c7Qr/0VFRWnsU3b+byXl3Ozz5s3TWJebmyuWL18uOnToIBwcHISVlZUIDAwUffv2FStXrlSbH1w5h3vZ+c7LOnnypOjXr59wcHAQDg4OolevXuLo0aPivffeEwDEl19+qXPfOXPmCADi7bff1vsculR0TvgtW7aIp59+Wri7uwsLCwvh7e0tOnbsKObPn68xb7uuY96+fVuMHDlS+Pj4CGtraxEeHi4WL14siouLRUBAgND2J/f69eti6NChws3NTcjlco3PRd/nKIQQK1eulM6BhQsX6n2Nlflsy/Prr7+KLl26CHt7e+n59+3bp7bN2rVrRefOnYW9vb2wtrYWLVq0EO+//77Izc2t8PMIIaT3rrzPUOnOnTti5syZIiwsTNjY2Ah7e3sREhIiRowYITZt2iQKCgqkbfX9LAhR/jmu7/zSdeyKnpNlnTx5UowaNUr4+fkJCwsL4erqKiIjI8Urr7wi9u/fr7bt2LFjtX4mSvrOq71794pnnnlGeHl5CQsLC+Hp6Slat24tZs2aJU6dOlXp1/Lo0SPx+uuvCx8fH2FpaSlCQ0PFsmXLxO3btwUA0bFjR537Xr16VQAQvr6+ori4WOd2+hw+fFgAEFOmTNG5zbVr18TkyZNFkyZNhJWVlXBychLh4eFi/PjxYufOnUKhUOjc96WXXhIAhFwuF7dv3y43nuDgYOHu7q52HhIRGZpMCD3tn4mIiGpJ//798csvv+DYsWNaO8ILIRAWFobr16/jzz//1Ns5n4jql02bNiEuLg4vvfQSvvjiC63bLFq0CH//+98xb948zJ8/v8rPFR0djeTkZCQnJ5c7k0htOnr0KDp37ow333wTS5YsMVgcRERlsacAERHVmrS0NI2yeSEEPvvsM/zyyy9o2rQp2rdvr3XfLVu24Nq1axgwYAATAkT11B9//AGFQqG27Pz583jzzTcBlPbGKCszM1MaXjBp0qRqxfD+++/jwYMHWLVqVbWOU10ffPABnJ2dpddORGQsWClARES15tixY+jcuTMiIyPRpEkTlJSU4MKFC0hMTISNjQ127dqFmJgYtX1efPFFZGRkYOfOnSguLkZ8fLzOsfJEZNzCwsKQmZmJiIgIuLi44ObNmzh58iRKSkq0VgmsXr0aBw4cwMGDB3Hjxg28/vrrWL58ebXj6NmzJ/7880/8+eefNd7ksiLOnDmD1q1bY8mSJUwKEJHRYVKAiIhqzb179zB//nzs27cPKSkpyMvLg6enJ3r06IG33noLERERGvvIZDKYm5sjJCQE7777LoYNG2aAyImoJqxcuRI//PADrl27hvT0dNja2iIyMhIvvPACxo4dq7H9uHHjsGbNGnh4eCAuLg5Lly41aMk/EZEpYFKAiIiIiIiIyESxpwARERERERGRiWJSgIiIiIiIiMhEMSlAREREREREZKKYFCAiIiIiIiIyUUwKEBEREREREZkoJgWIiIiIiIiITBSTAkREREREREQmikkBIiIiIiIiIhPFpAARERERERGRiWJSgIiIiIiIiMhEMSlAREREREREZKKYFCAiIiIiIiIyUUwKEBEREREREZmo/wfy4xfgJAF0LgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fermi_energy = 5.012206 # can be read from DOSCAR header or OUTCAR\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.plot(dft_energy-fermi_energy, dft_dos)\n", + "ax.axhline(0, c='k')\n", + "ax.axvline(0, c='k')\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.set_xlim(-8, 5)\n", + "ax.set_ylim(0, 50);" + ] + }, + { + "cell_type": "markdown", + "id": "892a15f1", + "metadata": {}, + "source": [ + "The DOS contains (you can check this with the partial DOS):\n", + "\n", + "* Ni-eg bands in the range -0.4 to 2.5 eV with a small gap at around 0.6 eV\n", + "* mainly Ni-t2g bands between -1.5 and -0.5 eV\n", + "* mainly O-p bands between -7 and -1.5 eV\n", + "The Ni-d and O-p orbitals are hybridized, with an overlap in the DOS betwen Ni-t2g and O-p.\n", + "\n", + "DFT does not describe the system correctly in predicting a metallic state. In a simplified picture, the paramagnetism in DMFT will be able to split the correlated bands and push the Fermi energy into the gap of the eg orbitals, as we will see below.\n", + "\n", + "We will use the Ni-eg range to construct our correlated subspace.\n", + "\n", + "Note: with the coarse k-point mesh used in the tutorial the DOS will look much worse. We show here the DOS with converged number of kpoints for illustration." + ] + }, + { + "cell_type": "markdown", + "id": "afb54167", + "metadata": {}, + "source": [ + "## 2. Running the CSC DMFT calculations\n", + "\n", + "(~ 150 core hours)\n", + "\n", + "We now run the DMFT calculation. In CSC calculations, the corrected charge density from DMFT is fed back into the DFT calculation to re-calculate the Kohn-Sham energies and projectors onto correlated orbitals.\n", + "\n", + "With VASP, the procedure works as described [here](https://triqs.github.io/dft_tools/latest/guide/dftdmft_selfcons.html#vasp-plovasp), where the GAMMA file written by DMFT contains the charge density *correction*. In the VASP-CSC implementation, we first converge a non-scf DFT calculation based on the CHGCAR from before, then run DMFT on the results. The VASP process stays alive but idle during the DMFT calculation. Then, when we want to update the DFT-derived quantities energies, we need to run multiple DFT steps in between the DMFT steps because the density correction is fed into VASP iteratively through mixing to ensure stability. \n", + "\n", + "### Input files for CSC DMFT calculations\n", + "\n", + "We first take a look into the input file [dmft_config.toml](2_dmft_csc/dmft_config.toml) and discuss some parameters. Please make sure you understand the role of the other parameters as well, as documented in the [reference manual of the read_config.py](https://triqs.github.io/solid_dmft/_ref/read_config.html) on the solid_dmft website. This is a selection of parameters from the dmft_config.toml:\n", + "\n", + "Group [general]:\n", + "\n", + "* `set_rot = \"hloc\"`: rotates the local impurity problem into a basis where the local Hamiltonian is diagonal\n", + "* `n_l = 35`: the number of Legendre coefficients to measure the imaginary-time Green's function in. Too few resulting in a \"bumpy\" Matsubara self-energy, too many include simulation noise. See also https://doi.org/10.1103/PhysRevB.84.075145.\n", + "* `dc_dmft = true`: using the DMFT occupations for the double counting is mandatory in CSC calculations. The DFT occupations are not well defined after the first density correction anymore\n", + "\n", + "Group [solver]:\n", + "\n", + "* `legendre_fit = true`: turns on measuring the Green's function in Legendre coefficients\n", + "\n", + "Group [dft]:\n", + "\n", + "* `n_iter = 4`: number of DFT iterations between the DMFT occupations. Should be large enough for the density correction to be fully mixed into the DFT calculation\n", + "* `n_cores = 32`: number of cores that DFT is run on. Check how many cores achieve the optimal DFT performance\n", + "* `dft_code = \"vasp\"`: we are running VASP\n", + "* `dft_exec = \"vasp_std\"`: the executable is vasp_std and its path is in the ROOT variable in our docker setup \n", + "* `mpi_env = \"default\"`: sets the mpi environment\n", + "* `plo_cfg = \"plo.cfg\"`: the name of the config file for constructing the PLOs\n", + "* `projector_type = \"plo\"`: chooses PLO projectors\n", + "\n", + "The [plo.cfg](2_dmft_csc/plo.cfg) file is described [here](https://triqs.github.io/dft_tools/latest/guide/conv_vasp.html). The [rotations.dat](2_dmft_csc/rotations.dat) file is generated by diagonalizing the local d-shell density matrix and identifying the least occupied eigenstates as eg states. This we have limited k-point resolution wie also specify the band indices that describe our target space (isolated set of correlated states).\n", + "\n", + "### Starting the calculations\n", + "\n", + "Now we can start the calculations:\n", + "\n", + "* Go into the folder `2_dmft_csc`\n", + "* Link relevant files like CHGCAR, KPOINTS, POSCAR, POTCAR from previous directory by running `./2_link_files.sh`\n", + "* Run with `mpirun -n 32 python3 solid_dmft`\n", + "\n", + "### Analyzing the projectors\n", + "\n", + "Now we plot the DOS of the PLOs we are using to make sure that our correlated subspace works out as expected. You can speed up the calculation of the PLOs by removing the calculation of the DOS from the plo.cfg file." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2bba493e", + "metadata": {}, + "outputs": [], + "source": [ + "energies = []\n", + "doss = []\n", + "for imp in range(4):\n", + " data = np.loadtxt(f'2_dmft_csc{path_mod}/pdos_0_{imp}.dat', unpack=True)\n", + " energies.append(data[0])\n", + " doss.append(data[1:])\n", + " \n", + "energies = np.array(energies)\n", + "doss = np.array(doss)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4ffe8e91", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAIqCAYAAABc0/OtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAD/q0lEQVR4nOzdd3wUdfoH8M/sZrPpPRCK9CpSBERRwNBUEBUVKyog+jv07vDkzjv10LOdHcFyoCdwiL2ioqIiCKIEERARpEZ6SyF1k2yd3x9hNzOzM9tr8nm/Xt5ld2dnJ2WX+T7zFEEURRFERERERERE1OLoon0ARERERERERBQdDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAnRPoDmpKCgACaTCR06dIj2oRAREREREVELcOjQIaSmpuLEiRMBPZ9BgRAymUywWq3RPgwiIiKisHE4HNi1a5frdq9evaDTMfmUiCharFYrTCZTwM9nUCCEnBkCO3bsiPKREBEREYVHZWUlsrOzXbeLioqQlZUVvQMiImrh+vTpE9TzGdYlIiIiIiIiaqEYFCAiIiIiIiJqoRgUICIiIiIiImqhGBQgIiIiIiIiaqEYFCAiIiIiIiJqoRgUICIiIiIiImqhOJKQiIiIiKiFE0URoihG+zCIWjxBECAIQkRfk0EBIiIiIqIWyOFwoKqqChUVFTCbzdE+HCI6zWg0Ijs7G5mZmdDpwp/cz6AAEREREVELI4oiTpw4gaqqqmgfChEpmM1mnDhxAg0NDSgoKAh75gCDAkRERERELUxNTY0rINCqVStkZGRAr9dH+aiIyG63o7q6GiUlJaisrERqaioyMjLC+poMChARERERtTDV1dUAgJycHOTm5kb5aIjISafTITc3FzabDadOnUJNTU3YgwKcPkBERERE1MLU1dUBANLT06N8JESkxvneNJlMYX8tBgWIiIiIiFoQURRht9sBNDY0I6LY43xv2u32sE8GYVCAiIiIiKgFkS4wIj36jIh8I31vMihARERERERERGHBoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERFRlK3ZXYLPth2DwxHeZlJE5JkgCCFrvtipU6eA9hXo85TWrFkDQRAwdepUn59TWFjo+hkIggC9Xo/s7Gx069YNV199Nf7zn/+gqqrK5+er/XfgwAGv2yj/KywsDPrnEStC9fsNpYRoHwARERFRS7Z610ncumQTAODBCWbcOqxzlI+IiMLlwIED6Ny5My688EKsWbMm2oej6eKLL0ZBQQEAoKamBocPH8by5cvx0Ucf4b777sMLL7zgMdggfb5SWloapkyZ4nb/l19+iZMnT+KCCy5At27dZI/16tXL6zEXFhZi7dq12L9/Pzp16uR1e1906tQJBw8eDHv3/2hjUICIiIgoima+vdX19SOf/cagAFEzsWrVKlit1og9L5Tuvfdet6vzVVVVmDt3Lh577DFMmzYNVqsVt99+u8/Pl1qyZInbfYWFhTh58iRuu+02v7IbKHgsHyAiIiKKolqzLdqHQERh0LVrV5+ucIfqeeGWmZmJhx56yLWgnzlzJk6ePBndg6KQYFCAiIiIiIhIg7MGvrCwEPX19bj33nvRsWNHGI1GdOvWDU899ZRqermydvyhhx5C586NmUBr166V1cxLr4xr1Zx//vnnuPXWW9G7d29kZGQgNTUV/fv3x+OPPw6z2Rz6b1zDTTfdhGHDhqGhoQGvvvpqxF5Xi/P3s3btWgBA586dZT9bqbq6Ojz66KM466yzkJycjMzMTIwYMQLvvPOObDtnP4aDBw8CgGx/0tKEffv24aGHHsLQoUNRUFCAxMREtG/fHrfccgv27NkT3m88hFg+QERERERE5IXFYsFFF12EHTt2YMiQIejduzfWrl2Le++9FzU1NXjsscc8Pn/AgAG4+uqr8eGHH6J169a45JJLXI8NGzbM6+tPnz4dJpMJffr0Qd++fVFdXY2NGzfin//8J1atWoWvv/4aer0+6O/TF9dffz2+//57fPvtt5g9e3ZEXlOLs0eBsyfB1VdfjbS0NLftampqMHLkSGzevBn5+fmYMGECTCYTVq9ejXXr1mHDhg2YN28eAKCgoABTpkzBBx98AJPJJOuBkJeX5/p64cKFeOqpp3DmmWdi8ODBSEpKwm+//YbXX38dn3zyCdatW4d+/fqF/WcQLAYFiIiIiIjIRRRFVDfEX1lLRlJCWLu6FxUVYfjw4dizZ49rYbhp0yYMHToUc+fOxb333qu6GHWaOHEiBgwYgA8//BC9evVSrav35OWXX8bYsWORmprquq+mpgY33ngjPvvsM7z55pu45ZZbAvre/DVgwAAAwM6dOyPyep7k5eVhyZIlrp4Ezz77rGqjwfvvvx+bN2/GmDFjsGzZMtfvateuXbjwwgvx/PPP46KLLsL48eNdv581a9bAZDJp/q4mTpyI22+/HV27dpXd/7///Q+33nor/vKXv2D16tWh/pZDjkEBIiIiIiJyqW6wof/DX0f7MPz2y78uQmayIWz71+l0WLhwoexK8eDBgzFu3DgsX74cmzZtCuvovIkTJ7rdl56ejrlz5+Kzzz7DJ598ErGggPNnUFFRofr4yJEjVe9ftmyZ6vcRbiaTCYsWLYJOp8P8+fNlwZtevXph9uzZmDlzJl544QWMHz/e5/2ed955qvdPmzYNixYtwpo1a1BVVYXMzMygv4dwYlCAiIiIiIjIi06dOqFHjx5u9zvvO378eNiPYe/evfjiiy+wb98+mEwmOBwOVz+DvXv3hv31nZyvqZWZoTWSsEOHDmE9Li2bN29GfX09zjvvPHTv3t3t8ZtvvhkzZ87EDz/8AFEU/co4qa2txfLly7F161acOnXKNTni+PHjEEURxcXFGDhwYMi+l3BgUICIiIiIiMiL9u3bq97vvOoczmZ/oijib3/7G+bOnava1BBoLCWIlLKyMgBATk6O6uPeRhJG2rFjxwBAtawAALKyspCZmYmqqipUV1f7fGV/9erVuP7661FaWqq5TSR/L4FiUICIiIiIiFwykhLwy78uivZh+C0jKbxLm3D2K/Dm3XffxXPPPYf27dtj3rx5GDp0KPLz82EwGGCxWGA0GjWDBeGwdetWAMCZZ54ZsdcMBV9+h77+nmtra3HttdeivLwcDzzwAG644QZ07NgRycnJEAQBN954I95+++2I/l4CxaAAERERERG5CIIQ1tp88t+yZcsAAAsWLMCECRNkj/3+++8RPx7nCD+t3gGxpm3btgCA/fv3qz5eVVWFqqoqpKamIj093ad9rlu3DuXl5bj66qvxyCOPuD0ejd9LoHTRPgAiIiIiIqKWIDExEQBgs/k33cHZ0O+MM85we+y9994L/sD88MYbb+CHH35ASkoKbrvttoi+tieefraDBg1CcnIyNm7cqNp74Y033gDQOBpSmingaZ+efif79u3Dli1bAvguooNBASIiIiIiogjIy8uDwWBAcXEx7Ha7z89zNjP873//K0tHX7duHZ555pmQH6eaqqoqPPzww5g6dSoA4KWXXkJ+fn5EXtsXzmyA3bt3uz2WmpqKW2+9FQ6HA3/84x9hMplcj+3ZswePPfYYAODPf/6zz/t0/k4++ugjWU+ByspKTJ8+3dVwMB6wfICIiIiIiCgCEhMTcckll2D58uXo378/Bg4ciMTERFxwwQWYNm2a5vNmzpyJJUuWYP78+VizZg369euHo0eP4vvvv8df//pXPPvssyE9zieffBJLliwB0Fg7f+TIEfz888+wWCzIyMjASy+9hJtvvjmkrxmsyy+/HK+99hpuvPFGXHTRRa5mgQsXLgQAPPHEE9iwYQNWrlyJLl264MILL4TJZMLq1avR0NCAmTNn4tJLL3Xb59q1azF69GiMHDkSqampyMvLw5NPPonBgwdj7NixWLlyJXr06OFqrLhmzRrk5eXhiiuuwCeffBLRn0GgmClAREREREQUIQsXLsTNN9+M8vJyvPXWW1i0aBHWrl3r8Tk9evTATz/9hMsuuwxlZWX49NNPUVtbi1deeSUsmQJfffUVXnvtNbz++uv45ptvUFpaigkTJuA///kPDh8+HHMBAQC46qqrMHfuXLRv3x7Lly/HokWLsGjRItfj6enpWLt2LR5++GHk5eXh008/xbp16zB48GC89dZbeP755932OXPmTMyePRtpaWn48MMPsWjRIlc/BQD45JNP8M9//hP5+flYsWIFNm/ejOuvvx4bNmxAVlZWJL7tkBDEeGiHGCf69OkDANixY0eUj4SIiIjiRad7P5fdPvDkpRpbxobKykpkZ2e7bldUVMTVyS8BDofDlQ7ds2dP6HS8TkgUa/x5nwa7DuUnABEREREREVELxaAAERERERERUQvFoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERERERFRCxX3QYETJ07g7rvvRo8ePZCcnIycnBwMGjQIf//731W3X7p0KYYMGYK0tDTk5ORg/PjxWL9+fYSPmoiIiIiIiCj64jooUFRUhN69e2PevHkwGAy4/PLLcd5556G8vBzPPfec2/azZs3ClClTsH37dowZMwZDhgzBypUrMWLECCxbtiwK3wERERERERFR9CRE+wACdezYMYwfPx5msxkfffQRrrzyStnjGzdulN1evXo15s6di9zcXBQVFaF79+4AGgMLhYWFmDZtGgoLC5GdnR2x74GIiIiIiIgomuI2U+Dee+9FZWUlnn76abeAAAAMGTJEdnvOnDkAgNmzZ7sCAgAwdOhQzJgxA1VVVVi8eHF4D5qIiIiIiIgohsRlUKCiogLvvfceMjMzcdttt3ndvqGhAatWrQIATJo0ye1x533Lly8P7YESEREREVHcEARB9p9Op0NWVhaGDx+OhQsXQhRF2fYPPfQQBEHAQw895PNrWK1WLFiwACNHjkSrVq1gNBrRrl07XH311fjss88CPva3334bgwYNQkpKCgRBQKdOnQLeVywSRRHvvfcerr76apxxxhlISkpCeno6+vTpgzvuuMMtUxwA7HY7Xn31VYwYMQLZ2dlITExEmzZtMGjQIPzxj3/0+PMuLy/Ho48+iqFDhyI/Px8GgwF5eXm48MIL8fTTT6O0tDSc325ExWX5wA8//ACz2YwxY8bAYDDggw8+wPfffw+r1YpevXrh2muvRevWrV3b79q1C2azGfn5+Wjfvr3b/gYOHAgA2LZtW8S+ByIiIiIiik1TpkwB0LioLC4uxg8//IDvv/8eq1atwttvvx3wfg8ePIjx48fjt99+Q3JyMoYNG4bc3FwcPHgQH3/8MT766CNcffXVeOONN5CUlOTzfn/66SfcdNNNSEpKwkUXXYSsrCzk5eUFfJyx5uTJk7jyyitRVFQEvV6PQYMG4fzzz4fFYsGOHTvw8ssv4+WXX8YjjzyCBx54AABgsVhw2WWX4euvv4Zer8e5556LM844Aw0NDdi6dSvmz5+PVatWYcKECW6v9+mnn+KWW25BVVUVsrKycO655yInJwfl5eXYsGEDvvvuO/z73//G+vXr0adPn0j/OEIuLoMCO3bsAAC0bt0aw4cPR1FRkezx++67D//73/9wzTXXAAAOHToEAKoBAQBITU1FVlYWKioqUFNTg/T0dI+vr/WLLy4uRteuXf36XoiIiIiIKLYsWbJEdnvlypUYP3483nnnHUyePFl1IelNVVUVCgsLceDAAVx33XVYsGCBrJ/Zrl27cP311+PDDz+Ew+HARx995PO+ly9fDofDgRdffBG33nqr38cWy2pra1FYWIhdu3bh0ksvxfz589GhQwfZNps2bcLf//53FBcXu+578cUX8fXXX6NTp0745ptv3NZpP//8Mz7//HO31/vqq69w5ZVXQqfTYc6cOfjzn/8Mg8HgetxiseCNN97A/fff32yyBeK2fABoHC+4bds2LFq0CKWlpdi/fz9mzZoFk8mEm266yXXlv7a2FgCQkpKiuc/U1FTZtkRERERERAAwduxY3HzzzQCAjz/+OKB9/OMf/8CBAwdw0UUX4a233nJrcN6rVy988803KCgowLJly/Duu+/6vO8jR44AALp06RLQscWy++67D7t27cKYMWPwySefuAUEAGDw4MH45ptv8Ic//MF1nzOoMnv2bNULt2effTZmz54tu6+urg633HILHA4HFi5ciFmzZskCAgCQmJiIW2+9FZs3b242JRpxGRSw2+0AAJvNhueeew633nor8vLy0KlTJ8yZMweTJk2CxWLB008/DQCu2h9BEDT3qawP8mTHjh2q/zFLgIiIiIioeTr77LMBAIcPH/b7ueXl5XjttdcAAPPmzYNOp74My8vLw4MPPgigqVG6J0uWLIEgCPjf//4HABg5cqSrH4Iz22Hq1KkQBAFr1qzBV199hZEjRyIrKwuCIKCyshJA47rqxRdfxKBBg5CWloa0tDQMGTIECxYscK29pAoLCyEIAg4cOIB3330X55xzDlJSUtCuXTv8/e9/h8ViAdCYSX3DDTegVatWSElJwahRo/wq2T516hQWLVoEAHjhhReg1+s1t9XpdBg6dKjrtvMqfn5+vs+vt3TpUpSUlODcc891lZBoadeuHYMC0eRM79fpdKq/LGfKzJo1a2Tbm0wmzX3W1dUBANLS0kJ5qERERERE1AzU1NQAAIxGo9/P/fbbb9HQ0IABAwagd+/eHre9/vrrIQgCfvrpJ5SXl3vctlu3bpgyZYrr4uTFF1+MKVOmYMqUKejWrZts27feegvjxo2DyWTCuHHjcM4550AQBNjtdlxxxRWYOXMm9u3bhzFjxmDMmDHYtWsX7rzzTlxzzTVwOByqr//888/jpptugsFgwMUXXwyLxYJnnnkGt99+O/bu3YvzzjsPGzduxPDhw9GtWzd8++23GDlyJE6ePOnzz62+vh5nn32215+bkrN0fNGiRbDZbD49x1lOcOONN/r1WvEuLnsKOCMyBQUFqm9K5+MlJSUA4EoxcabVKJlMJlRWViIrK8trPwEiIiIiomZNFIGGqmgfhf+SMgEPmcHBEEXR1am+X79+fj9/69atAIBBgwZ53TY7OxtdunRBcXExtm7ditGjR2tuO2zYMAwbNgxTp05FcXEx7r33XhQWFqpu++qrr+Kdd97BddddJ7t/zpw5+OKLL9C3b1988803aNWqFQDg+PHjGDlyJJYtW4aXX34Zd955p9s+Fy1ahNWrV2P48OEAgBMnTmDAgAF4/fXX8dNPP+GWW27BM888A51OB1EUMXXqVCxduhTz58/Hww8/7PVn8fPPPwNoagzvj9tuuw3ffvstPv30U3Tt2hVXXnklzj//fJx//vmaveaCeb14FpdBAWfqTkVFBURRdCsLcEbUnFf9e/bsCaPRiNLSUhw5csTtj2DLli0AAnuDExERERE1Kw1VwFMdo30U/vvHQSA5K6S7tNvt+P333/H444+jqKgIRqMR06ZN83s/zvWJc8HtTX5+PoqLi1FWVub3a2m59NJL3QICQGNaPtBY1iA9vjZt2uCZZ57B5ZdfjhdeeEE1KHD33Xe7AgJA40XbyZMn47nnnoPFYsFTTz3lKpUQBAF//etfsXTpUqxdu9anY3b+3PwpAXC68cYbcfToUfzrX//CoUOH8Pzzz+P5558HAPTu3Rt/+tOf8Ic//EFWkhDM68WzuCwf6Nu3Lzp37oz6+nr8+OOPbo87ywacEZ7k5GSMGjUKAPDBBx+4be+8L5AuokRERERE1Lw46/ITEhLQo0cPLFmyBOnp6Xj77bcD6iPm7F/max8zX3qi+evyyy93u+/QoUM4dOgQCgoKXOslqQkTJiArKwu7d+9W7bQ/duxYt/uczQ4LCwuRkCC/Bu382R0/ftynY/an75uae+65B4cOHcKCBQtw7bXXujLKd+7ciT/+8Y+YNGmSZmlESxKXQQGgsXsnAMycOVMWQdu8ebOrKceMGTNc98+aNQsA8Nhjj2Hv3r2u+4uKivDKK68gIyMD06dPj8ShExERERFRDHPW5U+bNg133XUXFi5ciIMHD+LKK68MaH95eXkAmsqbvXEuwHNzcwN6PTVqXfuPHTsGAJoN8wRBQMeOHWXbSrVr187tPudUN0+Pmc1mn47Z+XMLZvRfXl4eZsyYgXfffRf79+/H7t27cfvttwNonCTx9ttvu7Z1/ryby6hBX8Vl+QAA3H777Vi1ahXef/999OzZE+effz5qa2uxfv16WCwW3H777Zg0aZJr+zFjxuCuu+7C888/jwEDBmDs2LGwWCxYuXIlHA4H3nzzTeTk5ETxOyIiIiIiigFJmY2p+PEmKTNku3J27g+V/v37A2i8gOnNqVOnsH//ftnzQiEpKUnzMV8yEtS28fS8UGQ5DBgwAEBTuXco9OjRA//9739x6tQpfPjhh/j8888xefJk1+sdPXoUW7ZswbBhw0L2mrEuboMCOp0O77zzDgoLC7Fw4UKsXr0agiBg8ODBmDFjhmuOqNS8efMwYMAAvPTSS1i5ciUMBgNGjx6N2bNnt6hfOhERERGRJkEIeW1+Szdq1CgYjUb88ssv+O2333DmmWdqbvvOO+9AFEUMHjzYdaU8XNq2bQsAriCEmkOHDgFo7DEQaaNGjUJSUhJ+/vln7Nq1C7169QrZvgsLC/Hhhx/Kss4vvfRSfP7553j77bcxc+bMkL1WrIvb8gGgMTBw5513YsuWLTCZTKitrcUPP/ygGhBwmjp1KjZt2uSaOPDll18yIEBERERERGGTm5uLW265BUBjcz6tOvaysjI8+uijAJrKn8OpQ4cO6NChA06cOIHVq1e7Pf7555+joqICPXv2jErzvZycHNe4+T//+c+w2+2a24qiiA0bNshue1JcXAygKTACALfccgvy8/OxYcMGvPbaax6ff+zYMRw4cMDbtxAX4jooQEREREREFA+eeuopdOjQAV9//TVuvPFGVFRUyB7fvXs3xowZgxMnTuDyyy/HDTfcEJHj+vOf/wygMVghraU/ceIE7rnnHtk20fDkk0+ie/fu+OabbzBx4kQcPnzYbZtffvkFF110EV5++WXXfZdffjlefPFFVFZWum2/YsUK17ZXXXWV6/7U1FQsWbIEOp0Ot912G+bOnQur1Sp7rs1mw9KlSzFo0KBmExSI2/IBIiIiIiKiWLBw4UJ8+eWXqo+lp6dj5cqVyM7Oxpo1azB+/Hi8++67+PTTTzF8+HDk5ubi4MGD2LBhAxwOByZOnIi33norYsd+9913Y/Xq1VixYgW6d++OUaNGQRRFrFq1CjU1NZg4cSLuuOOOiB2PUnp6OtauXYuJEyfis88+w4oVKzB48GB06tQJFosFO3fuxK5duwA0NpV3Onz4MGbOnIm//vWvOPvss9GpUydYrVbs2rULO3fuBADcdtttblMZxo8fjw8++ABTpkzBrFmz8Mgjj+C8885DTk4OysvL8eOPP6KyshJZWVk+j5iMdQwKEBERERERBeHo0aM4evSo6mOZmU0NEDt37oxffvkFCxcuxHvvvYfNmzejuroaeXl5uPzyyzFt2jTV0YHhpNfr8emnn2L+/PlYsmQJvvrqKwDAmWeeiWnTpuEPf/gDdLroJpi3adMGRUVFeO+99/Duu+/ip59+ws8//wyDwYCOHTvijjvuwPTp0zFo0CDXcz744AN8/vnnWLlyJfbs2YPffvsNFosFrVq1wpVXXolp06bhsssuU329K6+8EsOHD8d//vMfrFixAhs3bkR1dTUyMzPRr18/XHbZZbj11lubTaN6QQx2+CO59OnTBwCwY8eOKB8JERERxYtO934uu33gyUujdCS+qaysRHZ2tut2RUUFsrKyondA5DeHw4Hdu3cDAHr27Bn1BR8RufPnfRrsOpSfAEREREQxpMJkifYhEBFRC8KgABEREVEMefTz36J9CERE1IIwKEBEREQUQz7aol6XTEREFA4MChARERERERG1UAwKEBEREUVRp9yUaB8CERG1YAwKEBEREUWRTidE+xCIiKgFY1CAiIiIKIp0AoMCFFmC5G+O08mJYpP0vSmE+d8JBgWIiIiIooiJAhRpgiBAr9cDAMxmc5SPhojUON+ber2eQQEiIiKi5oyZAhQNKSmNvSxqamqifCREpMb53kxNTQ37ayWE/RWIiIiISBODAhQNGRkZqKmpwalTp5CQkICMjAxX9gARRY/dbkd1dTVOnToFAEhPTw/7azIoQERERBRFOuZtUhSkp6cjMzMTVVVVKCkpQUlJSbQPiYgUsrKyGBQgIiIiau6YKUDRIAgCCgoKkJycjIqKCvYWIIohRqMR2dnZyMzMDHs/AYBBASIiIqKoYlCAokWn0yE7OxvZ2dkQRZGTCIhigCAIEQkESDEoQERERBRFeo4foBgQjYUIEcUGVrERERERERERtVAMChARERFFEVO2iYgomhgUICIiIooihgSIiCiaGBQgIiIiIiIiaqEYFCAiIiKKIlYPEBFRNDEoQERERBRFjAkQEVE0MShAREREFE1MFSAioihiUICIiIgoihgSICKiaGJQgIiIiIiIiKiFYlCAiIiIKIpYPUBERNHEoAARERFRFIksICAioihiUICIiIgoipgpQERE0cSgABEREVEUMShARETRxKAAERERERERUQvFoAARERFRFDFRgIiIoolBASIiIqIoElk/QEREUcSgABEREREREVELxaAAERERURQxUYCIiKKJQQEiIiIiIiKiFopBASIiIqIoEtlqkIiIoohBASIiIqIoUpYPpCbqo3MgRETUIjEoQERERBRFyjyBbq3To3IcRETUMjEoQERERBRL2HmQiIgiiEEBIiIioigSFUEAhgSIiCiSGBQgIiIiiiJlEICJAkREFEkMChARERFFk6i8yagAERFFDoMCRERERFHETAEiIoomBgWIiIiIYgiDAkREFEkMChARERFFERsNEhFRNDEoQERERBRF7uUDDAsQEVHkMChAREREFEXKGABjAkREFEkMChARERFFkXLaAKcPEBFRJDEoQERERBRDmClARESRFLdBgcLCQgiCoPnfl19+qfq8pUuXYsiQIUhLS0NOTg7Gjx+P9evXR/joiYiIiBq5lQ9E5zCIiKiFSoj2AQTr6quvRlpamtv97dq1c7tv1qxZmDt3LpKTk3HRRRehoaEBK1euxNdff433338fV155ZSQOmYiIiMjFvacAwwJERBQ5cR8UePbZZ9GpUyev261evRpz585Fbm4uioqK0L17dwBAUVERCgsLMW3aNBQWFiI7OzvMR0xERESkjSEBIiKKpLgtH/DXnDlzAACzZ892BQQAYOjQoZgxYwaqqqqwePHiaB0eERERtVBumQGMChARUQS1iKBAQ0MDVq1aBQCYNGmS2+PO+5YvXx7R4yIiIiJSYkyAiIgiKe7LBxYtWoTy8nLodDr06NEDEydORIcOHWTb7Nq1C2azGfn5+Wjfvr3bPgYOHAgA2LZtW0SOmYiIiMhJGQRwsKcAERFFUNwHBR577DHZ7b/97W944IEH8MADD7juO3ToEACoBgQAIDU1FVlZWaioqEBNTQ3S09M9vmafPn1U7y8uLkbXrl39OXwiIiJq4dwbDUbnOIiIqGWK2/KBESNG4PXXX0dxcTHq6uqwe/du/Pvf/0ZCQgIefPBBPP/8865ta2trAQApKSma+0tNTZVtS0RERBQJoiJXQHmbiIgonOI2U+CRRx6R3e7Rowfuv/9+DB48GBdffDH+9a9/4f/+7/+QnJzsauAjCILm/vwZ/7Njxw7V+7UyCIiIiIh8xUwBIiKKpLjNFNBy0UUXYfDgwaiqqsKGDRsAwFUOYDKZNJ9XV1cHAEhLSwv/QRIRERGdxvIBIiKKpmYXFADgGjl4/PhxAHA1Hjxy5Ijq9iaTCZWVlcjKyvLaT4CIiIgolBgDICKiaGqWQYGKigoATVf9e/bsCaPRiNLSUtXAwJYtWwAA/fr1i9xBEhEREUEtU4BhAiIiipxmFxQoLS3FunXrADSNGkxOTsaoUaMAAB988IHbc5z3TZgwIUJHSUREROSkbDRIREQUOXEZFNiwYQO+/fZbt0j6gQMHcOWVV8JkMuHyyy+XjSCcNWsWgMYRhnv37nXdX1RUhFdeeQUZGRmYPn16ZL4BIiIiIg0OZgoQEVEExeX0gV27dmHatGlo06YNevTogYKCAhw5cgSbN29GQ0MD+vTpg1dffVX2nDFjxuCuu+7C888/jwEDBmDs2LGwWCxYuXIlHA4H3nzzTeTk5ETpOyIiIqKWio0GiYgomuIyKHDuuefijjvuwI8//ojffvsNP/zwA1JTUzFgwABcc801uOOOO5CcnOz2vHnz5mHAgAF46aWXsHLlShgMBowePRqzZ8/GsGHDovCdEBERUUunjAEwJkBERJEUl0GB3r17Y/78+QE9d+rUqZg6dWpoD4iIiIgoQMpySGYKEBFRJMVlTwEiIiKi5sI9BsCoABERRQ6DAkRERERR5HAwU4CIiKKHQQEiIiKiKHIoGw1G5zCIiKiFYlCAiIiIKIrsbpkCDAsQEVHkMChAREREFEV2RRBAmTlAREQUTgwKEBEREUURMwWIiCiaGBQgIiIiiiK3oECUjoOIiFomBgWIiIiIokQ5eQAAowJERBRRDAoQERERRYmynwDAmAAREUUWgwJEREREEXaovA6fbD0Kk9nm9hh7ChARUSQlRPsAiIiIiFoSk9mGS19ch5oGG4Z1y3N7nCEBIiKKJGYKEBEREUXQp78cQ01DY4bA9/vK3B5nogAREUUSgwJEREREXtgdIl797nfM/vhXnKxuCGpfZqvd4+MicwWIiCiCWD5ARERE5MWqnSfx7y92AgCOVzZg0dRzwvZaagMJiIiIwoWZAkREREReLFhb7Pp61a6SoPYlCILnDRgUICKiCGJQgIiIiMgLZZ3/5oOnwvdajAoQEVEEMShARERE5IVdkdP/2/GasL0WGw0SEVEkMShARERE5IXJbJPddoSx8J8xASIiiiQGBYiIiIi8qFUEBcQwXs4P576JiIiUGBQgIiIi8kKZKWBjpgARETUTDAoQEREReWGy2GW3gwkKeB0+wKgAERFFEIMCRERERF50yk2R3XaEeeXOEgIiIooUBgWIiIiIvLiwR77sdjBrdi+JAkHvn4iIyB8MChARERF5YVes0sN9JZ8xASIiihQGBYiIiIi8sDuUQYHwvh7LB4iIKFIYFCCiuHTKZMGgR1ei072fY9uRymgfDhE1cza7fJEexuEDAJgpQEREkcOgABHFpbvf3YpykwUAcPlLP0T5aIiouXPLFAjzsp2JAkREFCkMChBRXFq7pzTah0BELYhyBGH4MwUYFSAioshgUICIiIjIC/eeAsGMH/A+f4CZAkREFCkMChARERF5YXM4ZLe5aCciouaCQQEiIiIiL5SZAo4wRwXCvX8iIiInBgWIiIiIvFD2FAhmye69eICZCEREFDkMChBRs6C8ikdEFEqRzhTgJxoREUUKgwJE1CxYbA7vGxERBchmVyzTwz19gKkCREQUIQwKEFHcUTtZttgZFCCi8GGmABERNVcMChBR3LEqr9gBsDIoQERhpJw+EO6KJSYKEBFRpDAoQERxRy0AwKAAEYWTMlMgmEW74FOnwcD3T0RE5A8GBYgo7qj1D2BPASIKJ+X0gfCXDzAqQEREkcGgABHFHbWsADODAkQURpGecMKBKkREFCkMChBR3LGqnC2bzLYoHAkRtRQRzxRgUwEiIooQBgWIKO7YVRoN1lnsUTgSImopQtlTwBcMCRARUaQwKEBEcUfZBRxgpgARhZf79IFwZwqEdfdEREQuDAoQUdxRq+1VpvYSEYWSMkMpmI8cAd7HD7DRIBERRQqDAkQUd+wql9A4kpCIwsk98Mj6ASIiah4YFCCiuGNT6SlgVbmPiChUlBlKb288jG1HKgPal+A9UYAxASIiihgGBYgo7qiVDzBTgIjCSa1E6dpXisLWz4Q9BYiIKFISQrmzAwcOYN26dfjll19QWlqKqqoqZGZmIj8/HwMGDMDw4cPRsWPHUL4kEbVAaifnNgYFiCiM1IKRDVYHVu8qwWX924b89dhTgIiIIiXooEBFRQVee+01vPrqq9i1axcA9dm6wulcud69e+P222/HLbfcguzs7GBfnohaILWu3xaWDxBRGKlNPQkn9k4lIqJICTgoUFdXh6effhpz5syByWRCcnIyhg0bhiFDhqBXr17IyclBRkYGqqqqUFFRgZ07d2Ljxo3YtGkT7r77bsyePRt/+9vf8Le//Q2pqamh/J6IqJlT6ynATAEiCie1TIFwUrvAQkREFA4BBwW6du2KkydP4uKLL8ZNN92EiRMn+rS4N5lM+Oijj/DGG2/g4YcfxiuvvIJjx44FehhE1AKpnZyrTSQgIgoVrbGnvjQNDAQ/0oiIKFICbjR47rnnYvPmzVixYgUmT57s89X+1NRU3Hzzzfjqq6+wadMmnHvuuYEeAhG1UGppvA7m2hJRmDgcYkgX6WGKIxAREQUk4KDAxx9/jLPPPjuoFx84cCCWLVsW1D4A4NSpU2jVqhUEQUCvXr08brt06VIMGTIEaWlpyMnJwfjx47F+/fqgj4GIIketpwCrB4goXLSyBEJJr5OHCpgpQEREkRJwUKC2tjaUxxGUWbNmoayszKftpkyZgu3bt2PMmDEYMmQIVq5ciREjRoQkOEFEkaHWU8Ae4SZgRNRyRKKfQH6aUVaKwOkDREQUKQEHBVq3bo3Jkyfjiy++gCOKJ+OrVq3Ca6+9httvv93jdqtXr8bcuXORm5uLX375BR9//DG+/PJLfPfdd9Dr9Zg2bRoqKioidNREFAz2FCCiSAr15AG1PgQ5qYmysgJ+pBERUaQEHBSor6/H22+/jcsuuwxt27bFX/7yF2zatCmUx+bTMcyYMQNnnnkm/va3v3ncds6cOQCA2bNno3v37q77hw4dihkzZqCqqgqLFy8O6/ESUWiopfKyfICIwiXUmQIGvfvpV05qInSSaAFjAkREFCkBBwUOHDiAf//73+jduzdKSkrwwgsv4Nxzz0WvXr3w+OOP48CBAyE8THUPP/wwiouLsWDBAhgMBs3tGhoasGrVKgDApEmT3B533rd8+fLwHCgRhZR6TwFGBYgoPELdUyDJoHe7LyvFIMsgUPucIyIiCoeAgwIdOnTAfffdh+3bt+Pnn3/GrFmz0LZtW+zZswcPPPAAunbtigsvvBCvvvoqKisrQ3jIjbZt24Y5c+Zg2rRpGDFihMdtd+3aBbPZjPz8fLRv397t8YEDB7r2SUSxT72nQBQOhIhaBE+ZAkKIZgmkJOpl+2JMgIiIIiXgoIBU//798eyzz+LQoUP45ptvMGXKFKSnp2PdunWYMWMG2rRpg0mTJuHjjz+G1WoN+vUcDgduv/12ZGVl4emnn/a6/aFDhwBANSAANI5JzMrKQkVFBWpqarzur0+fPqr/FRcX+/eNEFFA1E7QeVWNiMIlEp8vxgS9YlYhP9OIiCgyQhIUcBIEAaNGjcLixYtx8uRJvPvuu5gwYQJEUcRHH32Eq6++GgUFBbjjjjuCep0XX3wRGzduxDPPPIPc3Fyv2zsnJaSkpGhuk5qaKtuWiGKXWipvqBuBERE5ecwUCCBRQC3GkJigY6NBIiKKioRw7dhoNOKaa67BNddcg4qKCrzzzjt48MEHUV5ejv/+979YsGBBQPs9fPgwZs+ejQsvvBBTp0716Tni6X9ZBQ//cot+/Ou7Y8cO1fv79Onj8z6IKHBqkwZYPkBE4eLpFCGQxbvauEFjgk4xkpCIiCgywhYUcNq2bRvefPNNvP322zh16hQAQK93b7DjqzvvvBMWi8WvoEJ6ejoAwGQyaW5TV1cHAEhLSwv42IgoMuwqEQBHBOaIE1HLFInygcZMAfYUICKiyAtLUODw4cN466238Oabb2LHjh2uq/D9+vXDzTffjMmTJwe8788++wxZWVluJQgNDQ0AGvsHFBYWurZNS0tDhw4dAABHjhxR3afJZEJlZSWysrJcAQQiil3q5QM8gyai8PD08RKq8gFjgl6RKcDPNCIiioyQBQWqqqrw/vvv44033sD3338PURQhiiLatm2LG2+8ETfffDP69u0bkteqrKzE2rVrVR+rr693PWaz2QAAPXv2hNFoRGlpKY4cOeLWcHDLli0AGoMWRBT72GiQiCIp1J8vantjTwEiIoqWoBoNWiwWWQPBP/zhD/juu++QkpKCm266CV9//TUOHz6Mp59+OmQBAWewQfnf/v37ATQGAJz3ZWVlAQCSk5MxatQoAMAHH3zgtk/nfRMmTAjJMRJReKn3FOAZNBGFRyTKk9pnJ0MnsHyAiIgiL+BMgdtvvx0ffvghqqqqIIoi9Ho9xo4di5tvvhlXXnmlx07/0TBr1iysWLECjz32GC699FJ0794dAFBUVIRXXnkFGRkZmD59epSPkoh8YbczKEBEkRPqjxdlc+N+7TMxpndr2UhCZj8REVGkBBwUWLRoEQCgf//+uPnmm3HjjTeioKAgZAcWamPGjMFdd92F559/HgMGDMDYsWNhsViwcuVKOBwOvPnmm8jJyYn2YRKRD9T6BzAoQETh4mmBHkBLAZl2Wcn48I7zodcJQe+LiIgoEAEHBe655x7cfPPNOOuss0J5PGE1b948DBgwAC+99BJWrlwJg8GA0aNHY/bs2Rg2bFi0D4+IfKQWAFArKSAiCoVwXrVvlWGEQd9YzSmwfICIiKIg4KDAU089FcrjCFqnTp3c0vHUTJ06FVOnTg3/ARFR2LCnABGFm/OcQhAEONynoAa576avpdkBnD5ARETREFSjQTUrVqzAxIkT0a5dOxiNRlmd/ooVKzBr1iwcO3Ys1C9LRC2IaqYAgwJEFCJFxeXo99DXKHx2DU5UNYQ1U0CaHSBtNMiPNCIiipSQBgXuvPNOTJgwAZ9++ilqa2thtVplV++zsrIwb948vPPOO6F8WSJqYWwqjQbZlIuIQmXywg2oMdtwsLwOT3+1K+SfL1r707HRIBERRUHIggKLFy/Gyy+/jCFDhmDr1q2oqqpy22bo0KFo164dli9fHqqXJaIWyK6Sy6sWKCAiCoT0Kv2G4nKPV+2FALoDSvenl+xAL4kKMPuJiIgiJeCeAkqvvPIKcnJy8NlnnyE3N1dzu27duuH3338P1csSUQuk2lOAV9WIKAz0esGnnkX++O1YtetrneTyjDRAwKAAERFFSsgyBXbs2IGhQ4d6DAgAQEFBAUpKSkL1skTUAqmdLDt4Ak1EYaAXhJAu0A+V12HxD/ub9i/JDtBJvuZnGhERRUrIggI6nQ4OH9rzHjt2DKmpqaF6WSJqgdRKBWw8gSaiMNAJQkib/j36+W9u+3eSlQ8w+4mIiCIkZEGBXr16YdOmTairq9Pcpry8HFu3bkW/fv1C9bJE1AKpZgrwBJqIwkCvC235QHmtWXZbFhRg+QAREUVByIICkydPRmlpKf74xz/CZrO5PS6KImbOnIna2lrcfPPNoXpZImqBVHsK8ASaiMJAr/OWKeBfp0GzTZ5VKZ04ICsfYKCTiIgiJGSNBu+88058+OGHeO211/D999/j4osvBgBs27YNf/vb3/DZZ59hz549GDVqFKZMmRKqlyWiFkitVIBBASIKB71O8DuVv7LOAptDRF6a0e0xZVBAWjIgzxTw80CJiIgCFLJMAYPBgC+//BIzZszAoUOHMH/+fADAli1b8Nxzz6G4uBjTp0/H8uXLodOF7GWJqAWyq/QUYFCAiMKhMVPA98+XTQdO4fwnV2PoE6vw3Z5St8fNNrvstiCoNxrkZxoREUVKyDIFACAlJQXz58/Hww8/jLVr1+LAgQOw2+1o3749Ro4cibZt24by5YiohVLNFGCqLRGFgU7wr6fA41/sRJ2lceH/5o8HMaJHvuxxizJTQNZosOl+lg8QEVGkBBwUWL9+PYYOHSqLcDvl5+dj0qRJQR0YEZEWtZNlXlUjonDQ6wT4MFzJZcuhStfXX+046fa4W08BSSCAjQaJiCgaAs7jHzZsGFq3bo1p06bho48+Qm1tbSiPi4hIE3sKEFGk6AXfewpU1Vm9bqPMFNBplA8wU4CIiCIl4KDAo48+iq5du2Lp0qW45pprkJ+fj3HjxmH+/Pk4dOhQKI+RiEjGrnLZznE6KNBgtaO6wfuJORGRL/wZSfjZr8e8buM+faApEJAgCQrYVHqnEBERhUPAQYF//vOfKCoqwvHjx/Hf//4XF110EdatW4c//elP6Ny5MwYMGIAHH3wQGzduDOXxEhGpZgXYHCJKahowes5aDHxkJZb/4v3knIjC4/Ntx3Hjqxvw4eYj0T6UoHkbSSitokxPMrg9rvy8Ut6WTh+QBgjYJ4WIiCIl6DEArVq1wvTp0/HJJ5+gvLwcn376KW677TaUlZXhsccew9ChQ9GmTRv83//9H5YvX476+vpQHDcRtWBqQQGHKOLFVftwtLIeNoeIP7/9cxSOjIgsNgf++NYWrC8ux1/f/wU1cZ6548/0gXSje6um2gabx+dIgwrSAIGDJVFERBQhIZ0NaDQaMWHCBLzyyis4cuQIfvrpJ/zzn/9EmzZtsHDhQkycOBG5ubm47LLL8Oqrr6K01H1UDxGRN1o9BXYcq4rC0RCRlDIIcKyyIUpHEhpeMwUkX1vs7qVN3sqZEiUjB6RBAWYKEBFRpIQ0KKA0aNAgPPLII9iyZQsOHTqEF198ESNGjMA333yDGTNmYMGCBeF8eSJqprTKB9SmoRBRZCnfhyLie3GrEwSPV+2lj1gDCAoYJEEBafkAMwWIiChSAh5J6K/27dvjzjvvxJ133gmTyYSvvvoK6enpkXp5IooRB8tN+HDLUYzp3Qr92mcFtA/V8gGHCIYEiKJP+T6MtwveyqaCBr3v5QNqQYEaL+UD0uwAWaYAgwJERBQhEQsKSKWmpuKqq66KxksTUZRN+99P+L3MhIXrfseWB8YiyaD3ex9qJ8t2UQQTBYiiT/k+jLegQL3VLrudakzwWD7w9Y6TGNO7NfQ6QXViQHV9Y6aAKIpYsLbY42vLGw36cdBERERBCGv5gJrFixfjkUceifTLElEMEEURv5eZAAB1Fjs2H6wIaD9aPQUE5goQRZ3yfRhv5QMmsyIokKj3mCnw4ZYjeGT5DgDqARBnpsDqXSV4+svdbo/LGw02fc3yASIiipSIBwVeffVVPPzww5F+WSKKAcoT5kCX8KqZAg4x8B0SUdjEW6aAsgTAoNd5XaC/VnQQAFSDBz/sKwMA/Pe731WfK30KGw0SEVE0RDwoQEQtl691ud6ojyRkTIAoFsRbZoCS2tH7etFebTvnQr/B5t5vAJD3MJCVDzBTgIiIIiTgngIlJSUBPc9qje95xUQUuFCd42qdLPPCGlH0Kd+H8fa+VDYaFOFbQFMURdXtzKeDAWZFrwIn6bQGaaYAyweIiChSAg4KFBQUBDT+SxQ5NoyopQpVpoDNoX7FzWxTP+kmoshRvsvjLXNA7WNKGShQ02B1qG5nOR0UsGhkCqQam5qtSoMCar1TiIiIwiHo6QMdOnTwa/vjx48zW4CohVKeL79WdACDOmXDmODfBAKtTAGThUEBomhzu9Ie52tbUfQty8lksalu5+xRoBUUHdWrtetrveSiSaiCqERERN4EHBTo3LkzDhw4gO+//x7t2rXz+XlDhw7Fxo0bA31ZIopjypPcr3acxMc/H8V15/gXXNQMCpg9zwMnovBzzxSIL27lDxB9qu+vt9hVF/KW00EBtSzJKUM7YmCHLNdtWaNBZgoQEVGEBNxocMiQIQCATZs2hexgiKh5Uzth/seHv/q9H620WgYFiKIv3i9wK8sdGjMFvH9TWpkCzp4CaoWTtw3vIgsW6Dh9gIiIoiDgoMC5554LURTx448/+vU8X+ryiKh5CnejQZYPEEWf+6I6fv7dF0URK387qXK/9+eazHaPPQXUogLK5AFZ+QAzBYiIKEICLh8YP348Dh48iO7du/v1vAULFqC6ujrQlyWiOBaqxYHNrr4fZbDgzjc3Y8Pvp/DAhN648uz2IXltIvLCLf0+fny27Tge+3yn7D6tqQJKdRabavDA4iFTQKeICsjLB7wfLxERUSgEHBTo0aMH5s6d6/fzzj777EBfkojiXCgufNnsDleNrjdf/HoCAHD3u7/4FBSw2BxITAg4gYqIoNJTII6iAn9++2e3+0TIU/lH9szHt7tL3bYzmf3vKaAMCujYaJCIiKKAZ79EFDFqaf9GPxfhdRqzvoMhiiKmL/kJ/R7+Cq8XHQj5/olaEve1bHwvbh2iKPue0pIM6NYqzW07u0NUDXx6yhRwKx+QfByy0SAREUUKgwJEFDFq5QNJBv/GEdaHoW/A9/vKsGpXCRqsDjzwyY6Q75+oJVFr1BfPRFFe368X1Bf4do0yA1dQwIeeAmw0SERE0RBwUGDXrl0hOYBQ7YeIYp/aha+qeqtrjrcvpBMG9DoB/7ikV9DHdfhUvew2G3wRBc59pF98EyH/7FKm/Ds5HKJq4NP5+SaohBLcegqw0SAREUVBwEGBs846C5MnT8b27dsDev7WrVtx/fXXo2/fvoEeAhHFGa0a2Tc3HPR5H3WSTIEUgx7DuuUFfVwpifJshVoLRxsSBSqeewqoUY4kFARB9aq/VvmAc4SqaqaA4ra00aDW6FUiIqJQCzgo8MADD2D58uXo378/Bg4ciDlz5mDTpk2wWq2q25vNZmzYsAFPPPEE+vbti0GDBuGLL77Agw8+GPDBE1F80QoKPLT8N5/3US/pKZBi1MOQoH7Vzh/Kk3XXCDEi8pvyank8jSRUJy8L0Gl85GiVD9g8ZEJ5mj7ATAEiIoqUgKcP/Otf/8Idd9yBf//731i6dCnuueceCIIAg8GATp06ITs7G+np6aiursapU6dw8OBB2Gw2iKKIzMxM3HXXXbjvvvuQn58fyu+HiGJYKNYGZmvTCXZigg4Gfehbo5gZFCAKWLMrH1BkCuh1gmopQGP5gPvzra5MAffnKO9KYE8BIiKKgoCDAgDQqlUrPP/883jyySfx3nvv4bPPPsMPP/yAPXv2uG1bUFCA4cOH49JLL8W1116LpKSkYF6aiOJQKEZs2RxNC3aDTofEEAQFrHb5cZnDMOGAqKWK97WtQ5SXBagt7oHGdH+1rAjnFAG1x5T70uuaPs9YPkBERJESVFDAKTk5GVOmTMGUKVMAAKWlpSgpKUFVVRUyMzPRqlUrZgQQkdviOxDSMV0JesHnTAFRFDVP5s02u+I2MwWIAuWWKRDnUQFlpoBOUO8PoAweONlPBwvUgqLKUgRppoCnsgMiIqJQCklQQCk/P59BACJyozV3W6tGV4306plep4NB79uTHWLjKDE10pIEgEEBomAoRxLG+wVvEfL6fq3pA42NBtW/WatdVL3yn5ooPw1LkHxIaX1eEhERhVroi3GJiDRojR50iNqPKdkk2QYJOgGGBN8+xqRlB0oWxWuzfIAocMp1cSjKhqKpMVOg6bZeI4qpNX0AaPz8UWscqFPsK4HTB4iIKAoYFCCiiPF0kisdNeh5H00LeL1O8LmnQFmtRfMxZgoQhU/cBwUU0wcEQb2vgENU7ykANH72+bLIl/UUCEG5FRERkS8YFCCiiJHWyGanGGSP1fsYFJCm1Br86Cnw6ne/az7GngJEoaNcysZ5TAAQ5d+DThBUy5bsDu0AiM0u+jRiUJ4pwM8hIiKKDAYFiChipI0GUxITZCfAJovNp33IewoImqm8Skcr6zUfs9iUmQIsHyAKlPJqebxnCjhEURaM1AlAu6xk1e00ywfsDp9GDLKnABERRQODAkQUMUcq6lxfG/QCkhP1rtuBZAok6Hz/CPN0Pq7MDODJOFHglO+e+WuK4/o9JUI5fUBAQab7WGWbXdT8nLE5RLefgVo8U8+eAkREFAUMChBRRJhtdryweq/rdmZKoqzzts89BezyngK+8jQWTZkZwFpeosAp32qbD1bgm50no3MwIaBsNKjTCW5TAwDArjF2EGj8TFEGBRJVmqQmsKcAERFFAYMCRBQRG/efwuFTTSn81w5ujxRJpkAg5QPO8oNJg9p7fZ7W6fUXvx7He5uOKF6DtbxEgXN/t/3vh/1ROI7QECEPKuoE9QW9w6HdaNDqcLhd+VfrhyItH2CmABERRUrYgwL79u3Dhg0bcOjQoXC/FBHFsN9LTa6vu+SnYvK5HYMvHzh9Ap1k8P5RpnayfvhUHe58c4vb/TwZJwqc2rpYgO9ZPbFGVGQA6FQmDwDOTAH1fag1GlSbnCLts2JncJJi2dEtwL5vmkEnUSICgggKnDx5Eu+99x7Wr1+v+vgPP/yAXr16oWfPnrjgggvQuXNnnHPOOdi+fXvAB0tE8evwqaZ+Aud2zgGAwMoHVHoKJBv0Wpu7qJ22fLn9hOq28Vz/TBRtze3dI6JxsoCTIAg4I0el0aBDu3zAqtJoUC1TQNZTgOUDFKsObwReHQW8cTWwYUG0j4aIQiDgoMDrr7+OG264Abt373Z7bO/evbjkkkuwd+9eiKKInJzGBcDmzZsxevRolJWVBX7ERBSXquqtrq9zU40AoMgU8K18wK6YPgAASb4EBdSuXmpcvLTyZJwoYP681+KCKM800gsCLuvXFr0K0mWb2R3amQJWu8Mt2Kg2jUDWU4DBSYpVn/4ZrvDfV/dF9VCIKDQCDgqsXbsWSUlJuPbaa90ee+ihh2AymdChQwf8+uuvKC0tRXl5OS6//HKUlZXhhRdeCOqgiSj+1JqbFv3pSY0ZAvKeAr5lClgll+wS/AgK5KYm+rR/gGm7RMEQm1mugMOtfABI0OvwxczhGN+3wHW/XdTuKWCxuQcFLjqztdt2HElIcaG+ItpHQEQhFnBQYNeuXRg0aBBSU1Nl91utVnz88ccQBAHPPvss+vTpAwDIysrCkiVLkJqaii+//DK4owbw3HPP4aqrrkL37t2RmZkJo9GIjh07YsqUKdixY4fm85YuXYohQ4YgLS0NOTk5GD9+vGYJBBGFjjQokOYKCvhfPqDWU8Co0vRLacjpkgVfMFOAKHBq6+IDZSb3O+OE2vQB5/+3yWwqI/BUPmC2OWT7SE3U464x3d22k/YUkAZAiYiIwingoEBJSQk6dOjgdv+mTZtQX1+P5ORkTJgwQfZYVlYWhgwZgr1797o9z1+PP/44VqxYgZycHIwePRqXXnopkpKSsHTpUgwcOBArVqxwe86sWbMwZcoUbN++HWPGjMGQIUOwcuVKjBgxAsuWLQv6mIhIW02DJChgdM8U8LV8wCYrH2j8CPOpfEDlPkGrYRiv0BEFTG1hrNfHb/2ACFGW6i/92JAu4m0OUbPnWoNVHvRcOetCtEpPcttOr2OmABERRZ77oF0fmc1mVFdXu92/YcMGAMDAgQNhNBrdHm/dujXq6urc7vfXJ598gkGDBiEpSf6P6oIFC3DnnXfitttuw6FDh6DXNy4WVq9ejblz5yI3NxdFRUXo3r0xQl9UVITCwkJMmzYNhYWFyM7ODvrYiMhdTUNTT4FgygfsKiMJDT4sONQWKlrPYi0vUeDUFrNaHfvjgSgqRxI2fS86ySLe4WH6QL0iKCANJkhJmw/yc4hiV/y+n4lIXcCZAu3bt8cvv/wCh6L2dtWqVRAEAUOHDlV9XlVVFfLy8gJ9WZcLLrjALSAAAHfccQe6deuGY8eOyZogzpkzBwAwe/ZsV0AAAIYOHYoZM2agqqoKixcvDvq4iEidvKeAAYC8fMDXkYTSjtzOq2paV/yl/Dm/tjFtlyhgakGBeL7qfaSiHtJTHb3k8yZBMS1Aq6eA8vNNpxEUYKYAERFFQ8BBgZEjR+LIkSN4/PHHXfdt2LABX331FQC4lQ44/fzzz2jfvn2gL+sTZ3ZAYmJjY7GGhgasWrUKADBp0iS37Z33LV++PKzHRdRSORwiTpksrttq5QN1PpcPNJ2dOzMEfLkKqXayrvU0nowTBU4tK8cRx++p345XeygfkF/Z1+opoMwU0Gt8+LCnAMWH+H0/E5G6gIMC99xzD4xGI/71r3+hU6dOGDx4MC688ELY7XYMGTIEw4cPd3vOhg0bcPz4cZx33nlBHbQnS5cuxe7du9GjRw906dIFQGNTRLPZjPz8fNWAxMCBAwEA27ZtC9txEbVUp0wWdLn/C1nzPmdQIFkWFPAxU0Clp4AviYyqY9J8eA0i8o9NpVGn2vi9eFItGakqDUJKpwVY7Q6fywe0eiwkSMoHGJwkIqJICbinQI8ePfDhhx9iypQpOHToEA4dOgQA6N27N95++23V58ybNw8AcMkllwT6sm6eeeYZ7NixAyaTCTt37sSOHTvQtm1bvPXWW9CdXjA4j00rQyE1NRVZWVmoqKhATU0N0tPTVbdzck5UUCouLkbXrl2D+G6Imp97P3QPtjl7CiRLGgRW1lndtlNjt7v3FNCphDffvv08LPr+d3yzswSARk8Bjat1LB8gCpxaACDeF7jSoKU081/az8RmF5Gg0fO0zuxbTwH3xoWiT+VRRJHFv0mi5ibgoAAAjBs3DocOHcL333+P0tJStG/fHhdccIFrMa40efJk3HDDDRg9enQwLyvz1VdfuUoDAOCMM87A66+/jkGDBrnuq62tBQCkpKRo7ic1NRWVlZWora31GhQgIt99/dtJt/ucmQLS+tlfj1b5tD95psDpngIqJyhJBp3sZPql1fswvm8btM5w70Xi6TWIyD9qAYB4f09JG6VKP7fk5QMOzfMfaU8VAEjUq2+nVwQL7A5Rlo1AREQUDkEFBQAgKSkJY8aM8Wnbyy67LNiXc/PNN98AACorK/Hrr7/ikUceQWFhIR577DH885//BNBUS+wp2q7VHEjNjh07VO/XyiAgasku7JGPtXtKZfc5U2R/L62V3e/LVTFpT4EEV6NB9+0EQZBd0Ss3WXDfR79i8dRzJNtovIZK+jMR+UYtKJCf5j6NKJ6YbU2fO9LPKIOsfECEXqf+2SENCugEeZmAlDKDwObQzj4gIiIKlYB7Cmix2+0oLS1FWVkZ7HbfaoRDISsrC8OHD8cXX3yBQYMG4YEHHsBPP/0EAK4r/yaTSfP5zjGJaWlp4T9YohakV4E880Z6heySs9rIHrP6sBiXXnF0nlirNRrUCe73r95VIrvNngJEoadWqjPurIIoHEnoSD8T5D0F5JkCWmUStQ1NQYHEBO1TL2WwIN7LLqiZYkkLUbMTkqDA4cOHce+996J///5ISkpCQUEBWrduDaPRiP79++Pee+911fWHm8FgwHXXXQdRFF3TBDp06AAAOHLkiOpzTCYTKisrkZWVxdIBohBTpsNKr6y1ypBfPbQ5vNfyq/UUUM0UgCCb+e0Puw/HQUTq1DJttEbwxQtpnxHpt6JXjCTUCihKMwW0SgeU+3Puk4iIKNyCDgq89NJL6NWrF5555hn8+uuvsNvtEMXG5jgOhwO//vornnnmGfTs2RMvvPBCKI7Zq7y8PABAaWljynLPnj1hNBpRWlqqGhjYsmULAKBfv34ROT6ilkR5tV46ccCgqL/1N1PAeQKtlikgCECqMbC8WyuvzhEFTHUkYZy/pSrq1KcPyBoNOkTZlX3p4r9GGhTwUA/gXj7AACXFoDifJkJE7oIKCjz11FO466670NDQgGuuuQYff/wxDh8+jIaGBtTX1+PQoUNYtmwZrr76algsFtx999144oknQnXsmtauXQsArkkAycnJGDVqFADggw8+cNveed+ECRPCfmxELY2yE3mSZOKAsoGWL13/pVfxnc9XuwgpCEBqonvbFOlrSOuEZa/Bq3NEAVO7Wu5P355Yp9NqNGiXlw9IA6C1kkaFRo/lA+6NBomIiMIt4KDAjh07MHv2bGRnZ2PNmjV45513cPnll6Ndu3ZITEyE0WhE+/btccUVV+C9997Dt99+i8zMTDz44IPYvn17UAe9bt06vPvuu7DZ5N18rVYrXnzxRbz++utITk7Gdddd53ps1qxZAIDHHnsMe/fudd1fVFSEV155BRkZGZg+fXpQx0VE7pQL/ZRED0EBH06AZT0FXCfkaj0FBKQY3YMCFsnxtMlM9voaROQftYWsWvZAvNIaSWi1yzMFpJ91JslIQo89BRTZU/wsopjEngJEzU7AQYEXXngBDocDb7zxBoYPH+51+xEjRuDNN9+E3W7HSy+9FOjLAgCKi4tx/fXXo02bNrjkkkswefJkXHzxxejYsSNmzpyJxMRELFmyBGeccYbrOWPGjMFdd92F8vJyDBgwABMnTsT48eMxYsQIWK1WLF68GDk5OUEdFxG5U57UJhs8lQ94zxSwqfQU0MoUSFMpH3h5TbH312DKLlHAmmP5gJSs0aBOu9Gg9LPO154Cys8y9hQgIqJICHgk4erVq9GrVy9ccsklPj9n3Lhx6N27t2uMYKAuvPBC3H///Vi7di22bduGsrIyJCYmolOnTpg0aRJmzpyJbt26uT1v3rx5GDBgAF566SWsXLkSBoMBo0ePxuzZszFs2LCgjomI1JXUmGW3O+Smur7W6RrHBjrPo305Abar9BRQG2MoQECqSqbAC6v34c6R3ZBk0EOE+usxZZcocGrv4+aUKSD9uJFmO9nsoqxcKkkrKOAhU0AQBBj0gqu/CgOUREQUCQEHBY4dO4bLLrvM7+f17dvXNRUgUJ07d8a///3vgJ47depUTJ06NajXJyLfHD5Vh8+3HZfd99exPWS3DXqdq7bflxNgm489BXQCkJ2SqLoPs9WBJINe8+qlLxkLRKROLQDQjGICsgkB0gknVkWmgLR8QMpTUMC5f2dQgAFKik0sHyBqbgIuH0hMTITZbPa+oYLZbIbBYAj0ZYkojrzx40HZ7RuGdECnvFTZfdKTaostsEwBtekDCXod8tONbvcDcJ3PaDU/44k4UeDU6uAdzeg9JS8fkGcKWCTNS9V6mgCeywca9ykJNLB8gIiIIiDgoEDnzp1RVFQEhx+pbQ6HA0VFRejSpUugL0tEceRQeZ3s9tkdsty2kaXf+vB5YpX1FDj9EaZy0SJBJyAvTSMocJrW1Us29yIKnFoAIF7eUt6u4gPyzKQEvXwBL51okp6kERTwIVPAiQFKik38uyRqbgIOClx66aUoLS3FnDlzfH7Os88+i9LSUo7+I2ohslPl6fvdW6W5bePvVTG7bPqAdqaAXiegXVYyMlROzJ2ba/UUYHMvosDF8/QBo5er+IC8h4lBEdQ0W5umDKh99gDegwLKfRIREYVbwEGBv/zlL8jIyMB9992HJ554Ana7XXNbu92Oxx9/HPfddx8yMzNx1113BfqyRBRHlOuAAWdkuW0jOwH2ZfqA5CRZ76GngF4nIDFBh6XTz9Xcl9b5NjMFiAKn9v7RKtWJNb5kCui1pg/YRTRIMgUyktRLJf3JFOBnEcUm9hQgam4CbjSYm5uL999/HxMmTMDs2bOxYMECXHPNNRg0aBBatWoFURRRUlKCzZs344MPPsDRo0eRkJCAd955B7m5uaH8HogoRkkXAn8c2VV1SoC8fCCwTAFB5QTFeWKtFogQT5+3a129tPPqHFHA4nkkoS+HKZ2kKg1qWu0O2feuVT7gLRtBGWggIiIKt4CDAgAwZswYrFu3DlOmTMGuXbswb948t22ci4KePXtiyZIlOPdc7at2RNS8yJoCqgQEAMAgKx/wJVPAvaeAWqZAgtqdpznLBrSCEDwRJwqcaqPBOMgUOHyqDqdMFq/bSYOb0p4CFrsDYtPkQbfyKSejQX0qQdM+2VOAiIgiK6igAACcc845+O2337BixQp88cUX2Lp1K8rLyyGKIvLy8tC/f3+MGzcO48ePV71KSETNl3Rmt9b7Xznn2xvpNs7nqu1b7ykocHoX0sWLfDY4T8SJAmW2ugf34uEtdflL3/u0ndb0AWXcQ2skqtaoQid5+QCzligG8XyeqNkJOijgNG7cOIwbNy5UuyOiZkB6kqy1SJelyvpwAmxTGUmodn4i3a+S86qlXZKZYEzQw2pvvMznS28DokgQRRG/Hq1Cx5xUZKbExzjfBpt7j6F46ClQUWf1aTvpR5nBQymAVlAg2VumgM6/QCkREVGwAm40SETkjTT1VevCvSHB3+kDTQt2b9MHtDhfRRpgSDJIgxM8EafYMHflHlz+0g+48NlvUeXjojXa1DMFms97StZoUK8V7BSQnaoexEn2minAzyKKcc3o/UxEjUKWKbB+/Xp8++232LlzJyoqKiAIAnJycnDmmWdi5MiR7CVA1AJJFwI6jUW6wc9UWV8zBXwpH5AGLYwJTSfqrOOlWPHC6n0AgMo6K+at2oN/XdYnykfkXYPVPVMgmm+pkpoGVNfb0E1lJGogZCMJNTKSUhL1SE1UP8VK8pIpYGBPASIiirCggwLbtm3Drbfeip9//hmAe4qg8x/PIUOGYNGiRTjzzDODfUkiihOyoIAPPQV8yxSQ9gHQbjToISbg+pySBhiMBv8aHhJF2o6j1dE+BJ/UmG1u90UrU2B/mQmXvfg9as02PHV1X1x3Toeg9yn9bNHKFEhPMiDNqH6KxZ4CFPfYU4Co2QkqKPDTTz9h1KhRMJlMSE1Nxbhx4zBgwADk5eVBFEWUlZVh69at+PLLL/Hjjz9i6NChWLNmDc4+++xQHT8RxTCfpg/o/Ru/Jd2mKVNAvu8EneCxsalzD9LjS2KmAMW4Y1X10T4En1TXu5c5RCvb+N+f/4ba00GKf3z4q2ZQwJ+eB9KsJ62gQFaKAakaQQH2FCAiolgTcFDAbrdj8uTJMJlMmD59OubMmYOMjAzVbaurqzFr1iwsXrwYN954I3bs2AGdhyZgRNQ8SNfWmuUD0pFeKg3KlGwqPQWUe/ZUOgBIpg9IMgISE1jHS7FDFEW3lPvjVQ3RORg/rdtb5nZftDIFDpbX+bSdP4cnnz6gfi6TnZKIxASdbKqJk7fyAek+GaAkIqJICDgo8Mknn2Dfvn247rrr8Oqrr3rcNiMjAwsXLkRNTQ0++OADLF++HFdccUWgL01EccLhQ6NBaSqtyeI5KOBwyBdKeo1GgwleggLOBYrZ1hQUkKb6MihA0VRrtuGG/27AsUp5ZkA8LBC1jjFah+5rlrM/hyf9eNHrBAiCe1Ah6/SkiFRjAioVDSK9NRqUlVSxfICIiCIg4Mv1y5cvh06nw+OPP+7zc5544gkAjQEFImr+pFcHta7eZyQ3deiubvDcXd2uOPNu6ikg37dWVoKTcy/ShmipRnn5QDyMUKPmackP+/Hr0SqUmyxuj92/7FdUqaTnB+LL7cdx22ubsPK3kyHZHwBU1LkfMyCfGhKL/MlkUH7eqDUbTE86HRRQaTboT0+BeAgEUUvEngJEzU3AQYHNmzejZ8+e6Ny5s8/P6dKlC3r16oXNmzcH+rJEFEekV+K1ggLpSU0nzTUN7g3KpJQnyFrTB7xlCjgX/PWyoID85J3ZAhQt64vLNR9768dDWLju96Bfo85iw4w3tuCbnSdx+9JNMPtQuuML5VVxJ1+aiEZTUEEBlb4CzoW/NNjo5L2ngH99Vogij3+XRM1NwEGB48ePo0ePHn4/r0ePHjh27FigL0tEcUIURew5Weu6nZ9mVN0uI0mSKeDlCqhyKkCCRlBA76VnifP8v8GqXj4A8AodRd7hU3XYuP+U1wXqi6fHFAZD2Z+gSmMx7696jRIgW4xP9PAnMUj5eZOskg3gXPirNRv03lOAmQJERBRZAfcUqKqqQmZmpt/Py8jIQHV1fIxVIqLA2R0iymrNrttd8lNVt8tQyRSw2BzYfaIG3VunyU6gNTMF4LmnQMfcFFnDMecCQBpkSElkpgBFz4EyE0bNWRO12vtQsdg1ggJR+saUnw1a/AkKKLOe0ox6lNXKt3H2DVAbS+i1fIA9BSjmsXyAqLkJOFPAZrMFNEFAp9PBZvOcIkxE8U+ZLpyZnKi6XbokU6DmdE+BP7+9BZe99D0m/ucHWbNC5cLC1VNA8VGkPGkf27u17LZ4OvVRGhRQpvTG+pVNal4e/ey3qAYEQvXSFpv6niy22H4/BVM+oJYN4MoU8JBFoEWWKcDyASIiigDOBSSisLAoFtWJevWPG2lPgap6K0qqG/DVjsbGZ7tO1ODgqaYr/FqZAsqTdGVQYEZhV9lthytToGl/yYny42OmAEXSkYp67xudpnb12V/K63yh6qupfN87RS1TIAzTB5QfZapBgdPZAClqPQW8TR/QcTwqERFFVlBnFq+99hpee+21UB0LETUjyvp/Q4L62XlOalMGwSmTBaWSkgNAXqOs3KdecJYPyCnLB/LSjEjQCa4TbGejQU+ZAqzlpViVmKCD3SHiiS924kB5He4b3wtd89P82ofg62rZT1oZAbGeeeNPpkCCIjUpVWWR7/w8UQZwBAEwJni+HiP9/LKxfICIiCIgqKBAoCO7wnUyQkSxQ9k126CRKZCf3tSAsKLOivJa+UgzaVd06T71OsE1elD5maI26aAxm+B0UEBlf0ZFUEAZgCAKJ9GPa9V6nYBPfzmKhd/vB9DYoPCru0eE69D8ohUUiPXpA6Ifb/cExbSBNEkJlFNyonqjwWSD3us5kLSnADMFiIgoEgIOCjgYvSYiD7QmBShJgwIAcEhSLgDIxxpKr5pJ96fcter4Q8ldzoCmNNXZmKCDTmgqLWCmAMWqBJ2Ad3867Lq9+2RNFI9GTrvRYGyfM/gTlFEGOKXNUp1yT2dAKbMIvE0eAAADewoQEVGEsacAEYWFdMGdqNdpXh0zJuiRmdx0pe1whTwo8MO+MtfX0quN0hNz5b6VV/IAeYmB2vQBg14nSwuO9Sub1Lz42/3emOB9cenX64eo1aB2+UBsv5+UMcC/jtUeuawMcGYku2cKOIOdykwBX/pB6NlTgIiIIoxBASIKC+mCW22RLiXNFlA2XJPOZJcuLKT7dMsUUAlASJsRqpUPGPQ6WYYBMwUokuos6lfY1SToBCR6qUv3JlxFfBbJe0raXFSrAWGkOTTe18pyyNuGd9HchyFBmSkgDwoIAtAmMxmAe1AgXSWrQClBz54CFONYBkzU7DAoQERhYbWpX9VX08pDUEC2T83yAe89BaSbOFQaDRr0guxknD0FKJIq6yzeNzrNLopem9VFizRTQNp5P1qZAsosohdW71XdThkr8LTmMSgaDWYkyxf6rdKNrqBNliKLwKegAIOTREQUYbF5VkFEcc+iSM33RJYpoOgpICXLFNBp71M1KCD5WhQbrwz+XmaSHaN0oWWO8bnq1HxYbA6Y/MgUsNtFn2rTo0EaFEhNbFoAx8oV73nfqAcFlJkCnoICysynTMXCv11Wsuvr3LRE2WPpKk0J3fYvnT4Q42UXRETUPDAoQERhYZX1FPCcaigdS1hu0r5iatMoSdApggDKzAHlfaIIfLTlqOzxxqBA00JLOvWAKJz8yRIAGuvMlZkCgU4Danp+UE93kQUFJJkCsd6jQ3l0OkHAXaO7q26r7CmQlSxf+J/dIbvpsRRFUIA9BYiIKAYxKEBEYSGr1/eS6uzrVU+rQ6PRoGI7taAAFOUDf33/F9nDCXoBSQZJpoA1Nq5sUvNXWW+V3e7eKs3j9naH6NZo0N/MlnCVBEunD0jr6bUaEEaDWl8BhzJTAMDtI7rg3nG93LZVliRkpciv/vdrn+n6WplFoAxgqkngSEIiIoowBgWIKCyUnf09SfTweLbkhFuWKeChp4BaZYG3U3GDjpkCFB3/+2G/7PZXfxnhcXubQ4TRIP8jr/ej/EBNqJae0owAaQO+eqtds8lfpNU02NzuU6bp63UC0owJmHFhV/Ro7TlIowwKdMhJcX2tDAr48jOQ9xSInWAKERE1XwwKEFFY+NNTwFMndemC3yqbPtD0HIOiPEHtPFp6dU95VRAActISZZkCDcwUoAh5e+Nh2W2dTnCbby9lVykfqLcGGRQIUf2ANCNAuVhuiEKgTS0YWFnvXq7haYSqtzGCbTKTXYGA9KQE9CxIdz1m0OuQIWku2CU/1esxS3uixHrZBRERNQ8MChBRWCg7+3viqZO6NC1a2qxMuk9leYJdZYEjzdqtrLO6Pd4mI0lWxtAQ5CKLKBjJidoLUZvDAUGx3PVnpKGaUPUUkL5flVfJgz3GUNl6uBKHT9XhP9/uw69HqgB4/rzy1hxQrxPw/oyhePzKvvj0T8OQovjd3Ty0IwCgc14qbj6vk9fj4/QBin0cSUjU3HjveENEFAB/ygeUs7ylpItz+fSBppMSZfmBWoqu9MrfwXKT2+M6ncDpAxQzUhSZAh1zU3CwvHEyh90hugW+/C0fUAYBwtNoUP6+jsYCV613wqvrfocAAb8ercIzX+3GDUM64KIzW7seT1B8nvgyRrB1RhJuPLeD6mP3XNwLt17QGVkpiaqTUZSkr8+eAkREFAnMFCCisLDapE0BPZ8I92mbofmYzSG6eglYZdMHmj6+lEEBtUwB6RFs+P2U7LG/X9ITAGIqU6CkugGbD1aELK2b4otyQf36ree6vrY5RLe/izqLe528J8q/KjFEXQWkafjJigai0VjgqgUith+txq9Hq1y33954CM9+vdt1WxnEHN+3jetrT59VnuSmGX0KCADsKUBERJHHoAARhYU/PQX6tM1Ep9wUzced+7I51AMNyo7e3jIFDlfUub7u3z4TM0Z0BSAfH3asst7jMYdTea0ZY55bi6sXrMczX+32/gRqNmZc2Pi3ePN5HV33jeyZD73k710U3WvN6/wMYimDCqHLFGg6jiSD9wyecJN+DjmpLex3HKt2fa0coTrurAL84cIu6Nc+E/+4xH0aQaixpwAREUUagwJEFBb+lA/odQIeueIszcedTf/k0we096maKSA5zy+vbWo0NqZ3a1dQoX12ctM2Jv9mx4fSf9f9jurTHdLnrymO2nFQZBRkJLm+Ht27FQDgmsHtccOQM3BBt1zcP7637OoxAJjM8swAv8sHvNwOlHQRm6jXyRa40cgUUBuFePhUncqWTZIVpRuCIOC+cb3x6Z+GYUSP/JAenxrpSEL2FCAiokhgTwEiCgvpybinRoJOw7vnISVRr9qMzDke0KrRU0BJ5eKgrHygrNbs+jonrSk7QFo7rDa2LFJKq83eN6JmQzo5wJlyb9Dr8MRV/Vz3l9bI/yakf8OA/038lHEztYkcgZC+7xMT9NDrBNfCNhoLXLWgQLWX97ayQWKkSQOe7ClARESRwEwBIgoLs59BAUEQkC1J35ft63SmgHRRkeChT4FamrJ0tKH02KSvKR09VmuOXlBg+bZjUXttijxpUECZcu+kDILtK6mV78PPngLK3IBwNBpMTNBBL0T3qrda+YA3GVEPCkiyKwI4fiIiIn8xKEBEYWGW1BYbE7Rnrksp03adnPPNrQ71RoNKagEDtS7kjcfWtB/p6LHaKGYKsI645bA7RNlCOsmg/h7QK/6mK+rk5S3BjvsLVaaA2S4PCkR7vJ5apoA3aR6moUSCniMJKdZxIiFRs8OgABGFhax8QOPqp5JWSYDZ1VNA0mjQQ/mAWg8Dra0TJUGBWMgUKKluiMrrUnRIg2eAe8d+J+V7QxkE+PVolayPhzfKGMBFc78LycQNWaaAXpA1AWVQwDcGjiQkIqIIY1CAiMLCLFsc+PZRo9WQ0Lkvm8ZIQgDonJfq+npgh2y3fQgaqQLSY5P2FKhusPpwxL55ZW0xLnhyNeav2ed120NemqBR86JsEKiVLaMcZ6cMCny27Ti6/3OFz4tgtaXmS6u9/316Y/WUKRCF8ZqBLKqV4yAjTc/yASIiijAGBYgoLJxX9wE/MgU0+gQ4r2BaNUYSAsCMC7sgQSegfXYybh/R2W0fWuUDnjIFlGPbAlFS3YAnVuzC0cp6PP3lbhyp8Lzor6gLXTCCYl+94up8kkapjadpG1I/7i/3aTu1P+2Xvg0+KCDPFNArMgXiY4Eb7aBAQpQnNhARUcvD6QNEFBaB9BQwaCx8nJkCVpv2SMLrzumAy/q3RbJBr5oV4EtQQJopIIqNV2ODXSAcr5KXA6zZXYqbJDPolZS14tS8SVP2ExN0skW0lIdqGZkTVb6Vn4ghG0Iop2w0KO8pEJaX9CjNmOB3KVCa0bfPq3CRZkGxpwAREUUCMwWIKCykXb99mT4AaGcKOAMM3vaZkpigWSag86F8IC1JHgAIRV8BZZ336l0lHrevZFCgRam3NP19aPUTABrLXzyN4XSq9DHTRC1TQCtw5g+LonxAmgpfb7Vjx7GqkGTg+GrSoPZ+PyfNGN3pA3pmChARUYQxU4CIwkJWPuBjUEBrUdJwel/Kq5D+8KXRoDFBj0S9zrWwqWmwoXWGXy/jRlnjvXpXCURR1AxesHygZWmQZNR4CgoAjUEzb4tEX0fwqa3LM0Mwis+i6CUiXeBOWbwRAHDNoPZ45pr+Qb+WL7SmOXiSGu1MAfYUICKiCGOmABGFhUkyN12reZqSTWMUnytTIJiggFamgGI/0myBmhA0GzSrnNQfKNfuK6DMFIh2J3QKL2mjQW/vk9YZSV7353ujQff3Wqt0o0/P9fj6skwBwa1BIgC8v/kIHBG6Ah5ImUS033PMFKDYx5mERM0NgwJEFBbSNObM5ESfnqM1K92ZKWAOKiigfr9yMkKoxxJaVRZpntKnK0zyQISyoSI1L9JGg94yaqQTNrTYfGzmp/YnqPexmaH2PkW3RoN6jTdeVX3sZsREu9GggT0FiIgowhgUIKKwkC6ofb3ypnVVzJkpEMiYQydfygcAebPB2obggwJq6dyeUryVjQa5KGjepI0GvWUK+BIUsGpk2/gi2FR15WsrewpIhSLg5pMAfhwxlSkQxO+TiIjIVwwKEFFY2D2MD/TlOVLO/gSyRoN+1gprlQ8YPGQK1IRg4aKWzq2cMS+lbBQXhdHuFEGyoICXv+nxfdvIbl/cp7XbNj6XD6j8XSmbYvpLGezyFBSQTicJp0DePrlpvmU2hYt8JCF7ChARUfgxKEBEYSG9apjg41V9raucDa6eApJUaz8zBbQatyszDtJlPQVCP30AABo8BAXcMgUYFWjWZD0FvAQFzumUg8VTB2N49zzcMrQj/jKmh9s2PpcPqCyXg8kyANwDEsqRhFLSqQvh9OP+U35tLwhAgQ+9G8JJOoXFISJi/ReIiKjlYgcrIgoLu2Rx4ssoNeVzpMwhmT7gfgwGveA2F17WUyAU5QMqV26ldeRA40m/TidAFEW3TAGtPgvUPNRLpnT40il/VK/WGNWrMUOgtMbs9vgbGw5BLwh48LI+mlfpAfVMgWCvSiv/1g169UaDgHzqQjj9crjSr+0Nep1mVlGkJCh6O9gcIhJ9/AwlIiIKBDMFiCgsbLJMAd9OaJUnw07Oq+3KGej+UDvPV+tLkJ7UNJat1hyC6QNeggIvrNqLfg9/jSe+2Il6q90tBZvZw82b9G/B3/F50qwWqdeKDuKzbcc8Plct1BRs/boyK0Y5klCq3kO2TDT5m4EUDsqfGfuKEBFRuEX/X78A1NXV4eOPP8b06dPRr18/ZGRkIDU1Ff3798cjjzyC2tpazecuXboUQ4YMQVpaGnJycjB+/HisX78+gkdP1DJYZZkCvn3UnN81V/V+52LFbA2i0aBKVEAtsCAdSRiS6QMqCy1nT4EGqx3PrdyDWrMNr3z3O3Yer3HblpkCzVuDLCjg39+0pyDCh1uOenzu0vUH3O7z1ADTF8pGoIIgaAbvGqyxERTIUARW/A02hoMys4p9BSjmRDmbhohCL/r/+gXgrbfewpVXXonFixfD4XDgkksuwfDhw7F//37861//wjnnnIOSkhK3582aNQtTpkzB9u3bMWbMGAwZMgQrV67EiBEjsGzZsih8J0TNl/Tqlq+ZAhPPboeURD2SDXqc3SHLdb8zwBBUpoDKfcomg4C8fKA6TOUDzgWRcmFUXOIe0GRQoHnZV1KLu9/diiU/7IcoiqizNP2NhXIUXnaKQfMxh0PERz+7Bw2CzRRQK+/JTFY/DmUJTTj4coVd+R6PhbWOQfHZ5mvzSCIiokDFZU+BxMRE3HHHHbj77rvRvXt31/3Hjx/HpZdeip9//hl/+ctf8NZbb7keW716NebOnYvc3FwUFRW5nldUVITCwkJMmzYNhYWFyM7Ojvj3Q9TciKIou0Ju8DFT4Kx2mfjx/tEAgNfWH8DPhyoBNC1WpCfH3ma6K6kFJowqV2ZDP5LQffHjTJ1WXpktN1nctnWIjT/PaNc5U2j84fVNKC41YdnPR9HvjCzUmZv+PlK8jCT0h9Z4TwDYfdI9I6XxOaGbPuAMCmSlqHfyl2b9hIu392+yQR+R4IS/khSfbWolSERERKEUl5kCt9xyC+bPny8LCABAmzZt8J///AcA8NFHH8FiaTrBnjNnDgBg9uzZsucNHToUM2bMQFVVFRYvXhyBoydq/pTrEb2PmQJAY01/epJBNrHAuVgJptGgWm2zek+BpqBAZX3wPQU8lQ8oF0bf7Dypug8mCzQfxaUm19fLthyFSZopkOh/nH5Ej3zV+z0tiO94Y7Pq/Va7CDGIPzbp+9M5hjQripkCNYqeIFcMaCu7nZOaiOHd82T3TT2/U7gPy6sEvXxqQ6yUWhARUfMVl0EBT/r37w8AMJvNKC8vBwA0NDRg1apVAIBJkya5Pcd53/LlyyN0lETNm7LhmCGAztnSk2KrSqaAv0EBtWwFY4L7ldlW6U3jyEqqG/x6DTVqqb/OK6rKK4CbD1ao7oNjCZsnm8PhChABQIrR/0yB+8b1Ur1fqx/GnpM1OFBe57p9ab82imNy/1vbdaIaz361GzuPV3s8FqtKpkC2RqZARIICisDIbcO6yG5npxrwwIQzXbfPyEnGHYXdwn5cvpBmQjVEIKuCiIhatrgsH/Dk999/BwAYDAbk5OQAAHbt2gWz2Yz8/Hy0b9/e7TkDBw4EAGzbti1yB0rUjClreT2NRtMirfe3qSyi/S0fUM0UUNlHa8mM8pIaM+wOMaDjd1JL/bXaHPji1+O4880tPu2DfQWaJ6tdlAUFAskU6N0mA3Ou6Y+/vv+L7H6TRlBg5W/ybJQLuubh823HXbdtdhHS/oV2h4gbX/0Rp0wWvPnjQWyaPVbz/WCxuTcCzdTobRCJq9/SwEirdKOsiSjQGLDo0Todux+7BHaHiJQAfv7hkmTQw+RsSBqh8Y1ERNRyxc6/gCHy/PPPAwAuueQSGI1GAMChQ4cAQDUgAACpqanIyspCRUUFampqkJ6e7vE1+vTpo3p/cXExunbtGuihEzUbyoZlCQGM+ZL2ALA5GtOaZTXLev+uqqr1FFALChRkNgUF7A4R5bVmtJIECvylzJpw3udrQADgWMLmymZ3yBbvgfYUUPvbVl4l13JelxzZbavDgWQ0HcexynqcOt3roqLOimOV9TgjJ0V1X7LpA6ezcKKZKSAtoUhLSnD7+TqDMGoZQ9EmnSwRif4LRETUsjWr8oEvvvgCixYtgsFgwKOPPuq63zmiMCVF/UQGaAwMSLclosBZFatYgx89BVzPkaT7W2wOt6Z8/pYPKMd8AerZBmnGBNkEghNBlhColQ+U1bo3FPRk08FTQR0DxSabQ54pEOiVarUpGjUN6v0wlGUFyoBXMBMI1BoNak1BiMRCV9qvIc3oHhTwdwRkJEmboDJTgIiIwq3ZZArs3LkTN910E0RRxDPPPOPqLQDA1TjJU/duf5or7dixQ/V+rQwCopYmFOUDykwB5eLa//IBtZ4C6vtonWFEbWnjguJEVQP6qScZ+UQtKPD5r8dVttR286KNOPDkpYEfBMUkm10+kjCQngKAesCr1myDwyFCp3jsSEW96+u7Rnd3e65yAoHyn0bl/qTk5QON22WnamQKWMK/0FVOdlAGXbQmI8SCpARppgCDAhRrOA2HqLmJ3TC5H44cOYJLLrkEFRUVmDVrFu666y7Z485yAJPJpPZ0AEBdXWPjpbS0tPAdKFEL4d5oMJDyAXlPAeXiOhSZAlr7kJYQnAwyU0CtfMCbQDIrKP7YHA6YzMH1FADUywccovxKudPhU01NBs/ISXEPCigyBZT9LDz9Zao1As1PN6puG4mr38rJDsrgZOe81LAfQ6CkWQxsNEhEROEW90GBsrIyjB07FocOHcK0adPw7LPPum3ToUMHAI3BAzUmkwmVlZXIysry2k+AiLyTZgoIgueri1oMiukDPx2Qp9D7HRRQWThp1RJLmw0GUz7wzW8nsWpXid/P06rDpualusEmq63P1Bjf541WFpxaX4GjlU2ZAu2zk90WysGUD8imD5wO6qUb1QMdEckUkE12aDwO58jBdGOC24jCWCL9bDKzfICIiMIsrssHampqMG7cOOzatQtXXXUVXn31VdWTo549e8JoNKK0tBRHjhxxazi4ZUtjw69+/fpF5LiJmjurZGERSJYAoMgUcDgw4w15Yz61K/8e96eWKaDRALFAGhSoMvv1Ok47j1fjtqWbAnpubpoRJTWBvS7Fj2OSBbogAHlpgQWDKuvUe1SoBQWkjQ2zUxIhCAIMesH1nlX2A1GGCHQeyvCki1dn0E4QBCQZdG5XuxtUympCTfq9pp7uJ/DPS3vj4j4F6NYqLbbLB5gpQEREERS3mQJmsxlXXHEFNm3ahIsvvhhvv/029BrdyJOTkzFq1CgAwAcffOD2uPO+CRMmhO+AiVoQaV2y2hV6X8h6CqhcvfTUI0SNWk+BcJYPLPv5aEDPAxrHp1HzJw0K5KUZA5rSAQDdW6lnuFWrNBuUpvg7y1Sk2QLKfiD+jMM8fKrp+0mVZAhkJbsvvhsinSlwujTDoNdhaNdczbKGWCGdPhCJ8Y1ERNSyxWVQwG6344YbbsC3336L4cOH46OPPkJioueI/6xZswAAjz32GPbu3eu6v6ioCK+88goyMjIwffr0sB43UUshXcQH0mQQkGcYKK9eBrQ/1fIBrUaDwZcPHKmo876RBgYFWgbp+rt1RuC/87PaZWLK0I7oki+vkVdOIHA4RNgkL+qcWiB7r9k9Nxr0FCQoq23Kbuma39SfR60sIhIjCWWZAgE2cYwWeVCAmQJERBRecVk+8NJLL2HZsmUAgLy8PNx5552q2z377LPIy8sDAIwZMwZ33XUXnn/+eQwYMABjx46FxWLBypUr4XA48OabbyInJ0d1P0TkH7WFh7+8ZQr4Sy04oZkpIAkK7CsJbExpMCfyWnPgqflqnZ7kfSMPHr7iLADAlfN/wM+HKgEA1fXy8gHlWE9nUMzze823zIHNByuwYvsJ1+1cydSBTJWxhJGokw/FuMdokZYPsKcAERGFW3z9K3laRUWF62tncEDNQw895AoKAMC8efMwYMAAvPTSS1i5ciUMBgNGjx6N2bNnY9iwYWE9ZqKWxC65sh9wpoBe3mgwWP5MH2iTKV+gfbD5CCYN8m8uYaCN1IwJOlwxoC2eW7knoOdT7PI0+rZVEJkCUulJTQtwZaaA21QQvTMoIO/fIaU8ZLVvYX+ZCZNeXi+7T5od4KznlzJHoqeAJX4zBaSNBpkpQDHHz/I9Iop9cRkUeOihh/DQQw8F9NypU6di6tSpIT0eIpKTNxoMsKeATnuhEtD+VDIWtIIC+elGdM1PRXFp4xjTv73/CwQAV/sRGCg3+dco8LrBZ2DyeR2Qn25Em8xkv55L8cFTKUr77NBkh6QnNf2zXq1oNKgc62lwZgrotDMF7IoogFpQ4MVVe93ul2YHqE35MEdgoVtnjt9MAaO00SAzBYiIKMzisqcAEcU26cIi0OZpoS4f8Gf6gCAIuHtsD9l99330K8prfV/o+zs9wGjQoV/7LAYEmrHjVdpBgQ4hKhnJkGQKKBsN1kpq7AUBSDldty57rykbDSrW7qLbPAL1Ras0U+Cqge3cHo9ESrwsU0AlWyGWJSWw0SAREUUOgwJEFHKy6QMBlw9oNz8LhFoZg1ajQQC4tG8bnNkmw3XbYnfg/c1HfHoti82Byjr3zu+eeDoWah7KPASKOuaGKijQdEW80iT/G5SOKExLTIDu9HvCU6NBZQ8Bh0p8Ti17QDrub+yZrfF/I7rI+gxEonxA1lPAGF+ZAtJGg5H4WRERUcvGs1AiCjl5pkCg5QPaVy+D3Z+TpyaIgiDgv7cMkt335Ipd+MCHwID0iqzUjed2cH19docs2WNqKdbUvJR6yDTp1ipN8zF/tM9uyjQpLpU3yZQFBSTBA72n8oEARxRKMwUEQcD943vjwzvOd90XkZ4C5jjOFJA2GmSmABERhRmDAkQUctJFvF4X2MeMdMGuXJgEQq2MwdtkhPbZKZg/eaDsvidX7PTYMA4A6izqQYG/jO6O8X0LcNXZ7fDw5X1kjyV7WbR4e02KbVa7A9/tKVV97IoBbUNW896zoCm7ZffJGtnfjTRYJe09IG806LmnwEmVvgjKP80EnaC6CJde/bY7xJBkAHkSz9MH2GiQiIgiKb7+lSSiuCAtHzAEming4Xl92mZoPqbFn5GEUsrFelmtBVX1Vll6tFKdxuSBVhlJmD+5MfvAvRO855+TzSEG/LOk6HI4RExasB6/HKly3TdlaEdkpybC7hBx+4guIXutngXprq9rGmwoqTGj9ekRm9JpBNIpBQZZTwHl9AH5iv9Pb/2MLQ+MlW+j6DOQlWKAoNKdXFkiY7Y5Ah5Z6o0oirKeAilxnCnAngJERBRuzBQgopCTlQ+EYPoAAGRLupnfP753APvzr3zAKdngvpgoN1k8PkcrKKB87XFnFQBorAO/YoB7MzapUGRLUHRsPlQhCwgAwBk5KfjLmB7460U9Zc0Bg5WZbEB+etN4w30lTSUE0kyBNEmNvcfpA4qL1KdMFrcmgco/zYxk9e9H2lEfCG9afL3VLstgSI2zngLSgKUlzBkVRP5jgJqouWFQgIhCTpqCrFzc+0o5GcAkGS/mLdVejVr5gC/N/TrkpEAZT6hQCQrYHSJmvv0zLpq7Fmt2l/h0TM9e0x8v3HA2PvnTMNfVXKcbhnSQ3Q5FXwVfrN51EiOe/hZ/fGsLbFyMhMTRinq3+8I5ZaJrfqrra2lQQNpTQFY+4KHRoFowqrjEJLutLB/I0ggKKN/T4ewrIP28AORBkHggb7Qavvf+l9uPY9hTqzHr3a1wMPBIRNRiMShARCEnXUwG3GhQ8Tzp1bJAOvUHminQNisZ91zcS3afWqbA+5sO49NfjmHPyVrM+2avT8eUakzA5f3bonNeqttjf7+4p+y2PYwLA6lbl2zCoVN1+HzbcXz+6/GIvGZzV6oydaBVhlFly9Domt/UtFAaFKiuVy8fkL7XfGkseLTSPcghlakRFEjQ62Tvw3AGBaR9PXSCPB0/HshKOsIYnJvxxhYcqajHRz8fxVqNnhdERNT8xde/kkQUF2SZAgHWDHsKJgQSFAi0pwAA3FHYFed1yXHdPqUSFPjWS3aA8sq/N8pUa2WtdyT8dOBUxF+zOSozuQcF8tLCFxTo0bqpr8CekzWur6slPQWkC3fpe9TqQ1Cgsk7596/sKaDdb0P63lWWIYRSrWzyQIJqj4NYJs3eiFSW0C9HKiPyOkREFHsYFCCikJNlCgTYU8DgoewgkPF9ak36/Gncl5vatIhTCwoIHmosB3bIwvRhnX1+LcA9iBGNngIceBAap2rd/15y07QXzsHq3lo9U6BKkimQkdyUTm/QaV+VVvu7q1f0AlD+nWhlCgCAUdKjwxzGrvqyyQPG+GoyCMiDopYIjG8E+H4nImrJ4qvIjojigrynQGBBAZ2H5wWWKeD/SEKp7NSmhY5aUEDL6F6tsGjqOT5v76TsxRCpq4VSLDEODbW/l/Qw1rh3b9WUKVBusqCs1oy8NCOq65uunksX7tIAVIXJgskLN2BfSS2entRfNVNAWa+v3MJjUECWKRC+xa4sUyDO+gkA8s+maGQJERFRy8JMASIKOXn5QOjTdn1N+5dSC04kqUwW0JLjJVNASyBNEQG4NTeMzvQBRgW8EUURFpvDY5O2MsXfS6+C9LCms+elJcrKE9YXl6Oq3oof95e77pMu3KUL0JfX/o4f9pXjZLUZC9bsc5s+AAD1knp9wL3EICvF16BA+MoH6iSBi9TEOA8KRKifCBERtVwMChBRyNlDMH3Ak0DKB9SCE/40H8uRLHQq3GqqtQU6H10QBPmoOJYPxJzVu07izAe/Qo/ZKzByzhqVWvtGpxQ9BeZdPyCsxyUIAkb2zHfdnvn2z+j/8NeyLvYdc5qaW0rLaKQNPTf8fko1U8DbyE3PmQKRKR8wyTIF4rB8QPLeV06ECNTK307i5kU/4pOtR0OyP2rB4qxHBxF5x6AAEYWcNQQ9BTwJVaaAP8GF7NSmGnC1kYRaUoK4SilN67ZHIYWYQQFtNQ1W3PXOVld9/cHyOny4RX2xJe0p8PnMYehVkBH247vy7HYeH+/aqiko4Ol9oJYBYVIEBZSbeMoUkAbiGsKYKWCyyBsNxptQjyS0O0TcvnQT1u0tw13vbFXNduLbnYio5WJQgIhCTpopoNb1PxgGvRDQPtV6CviVKSAJCpyKQKYAgOhnCnCZoOn7vWWoaZCn0W8/WuW2XYPVLltESxtWhtPQrrkeH5cGqzyVuNhVIkPK8gFRsU3sZQrEX1BAmtkUip4CdYrf2W/HqoPeJxERNR8MChBRyEmvbAU6klBLoEEG9fIBPzIFJGPWDp+qx/Eqz7PanYIJCuhlXeHZaDBWWGwOvPLd72737zjmHhRQXpGVNqwMJ0EQMOea/qqPXX/OGbLbyvGXUmqd75WZAsp+F5nJHkYSGiLTaFB6jPEYFJBOX7HaRbfAi78aFAGYBmv4sjSIiCj+MChARCEnTXUPdfmA8uTWV8rj0OsEv6YPSDMFAGDoE6uxetdJr89LDiJ1WRpQiU6jQVKqabDi5kU/YuvhSrfH9pXUol6xYK5uaBoDmJKoD6gfRqBG9mqlev/M0d1lt5M9BMcOnapzu0/5PUqvygP+TB8I38L0RFWD62tP5QyxShnEDPb9rwwCqGWAsF6IiKjlYlCAiEJOnikQGw2JlBkGSX72JZBmCjjdumST62utvkshyxSIYqPBqjor1uwucVsMtjQ7j1djzHNr8eP+U677BnXMRuLp4I1DBHaekKdl10pKDNIifMU6JzURbTKTXLdTE/XY9eglaJuVLNvOU1Bgh0qauTIVXVlO43P5QBgzBXadqHF93aN1WtheJ1yUActg3//KAAwzBYiISIpBASIKOfn0gdgICihPsv0pHQAa6649LZ60ruSFqqdAsFcKX1q9F6OeXYP3Nx32+Tmi2Ji2fNWCHzD1fz/h1iU/BXUM8cxqd2DWe7/gZHXTJIH22clYeusQ9G2f6bpvh6KvQI3kKnpaUuTT2P80qpvr6+nDOqv+3Xt6L6z8zT0bRjl9QJn94KkRqCxTIEw9Bax2B/aVNAUFerYOf2PHUDMogqmWICcQKJsVmswMChARUZP4K7QjopgnvaoV6p4CgVIGBYwBTDDISU3E0Ur1XgL1GlfeQjV9IJBmYzUNVsxfUwyHKOKVtY018Pd8sA2TBrWH4MNIKRGNV4qLS00AgKLfy2G1O/wqu4h3NQ1WzF25F+9vOixb4LfJTMKrtwxGqjEBfdpmYPPBCgDA9qPamQLpUahtn3xuR5zfNQ9ltWYM6pCtuo2nYJcaZVBgSOcc7Cup9em5xghMH9hfZnItgvU6QTZpIV4oPzeD7SmiDCoqsz2I/BMbwX4iCh0GBYgo5GxhHkkYCGUQwN9MAaCxSZxWUKC63qp6fzQzBf7x4TZ88esJt/utdhGJCT4EBUTRLe24pZUdP//NXiz+Yb/svqsHtsez1/RzBVbObNN0JXr3yRrZtrVRzhQAgM55qeicp70w9tRoUI10Qbn1cCXe+vGQ6/YfR3b1+FxpVkG4UtilpQNd8lIj2schVJSfm7YgMwWU5QfKwA6Rf1rYPwRELUDLudxDRBEjLx+IjY8ZZVDAU4qzFrW+Ak5ltepjCj2Ne/NGerXQ35riBqtdNSAAuDeK06L2ip7GFO45WYOHPt2B7/aU+rT/eLDw+/1u903o10aWadGtVVPNenFpraxTfDR7CvhKmSmg9t7469gerq+lC8rrXimSbac2+lP2WonSoEB4ygd2S/o69GoTf6UDgHtmkzXI8iG7ItOIQQEiIpKKjbN1ImpWrI7YazSoPMmWXk30lXICgZMoiiitMas+FqpMAX/Th49UuHeNd9IqdVBqXNsKKvepu33pJixZfwC3LN6ICpN6kKQ56NNWvtCUBgVqGmyyvwVZTwFjbHbBVwaurhzQThZEmzW2B64Y0M51u95qh+P0e1zZLNBbZlBSJDIFjje9t3sVpIflNcJNrxMg/VFag2zKqEw0qGf5AAUlNv5dJ6LQYVCAiEJOelVK2fU/WoJZnDtpZQrUmm2ajcBSQ9RTQHmlz5vKOvVyBsCPoIDkf133eQgKHCxvCkR8t7f5ZAtI6XUCctOMsvuyUhKRl9b0tyGtr5f1FIhS+YA3ylKavPREPD2pHzrnpeLy/m3xfyO6yAIHoqjdD8Db+z1J2lMgAuUDPVvHZ1AAUGYKBVs+IH++SSVTgAnhREQtV2yeoRBRXJONJIyRoIByIZercdXf4z40nlPdoH3VLajygSBGElZp9DgAfG8yJqpEABw+NhXwdbt4k5OaqLrw7ZqfhrLaxlGFu0/W4PxueQCAWnPT7yFWywcKMpJkt8tqLLjn4nay7ADl77POYldtount/S4vHwh9UKCmwSrr+9EzTjMFAMCgE+DMt1FOD/CXsidJSx8vSkREcswUIKKQC9VIwnnXDQjB0agLpKyhtWLx5FTrISgQTIaCPohGg56CAr4uxtTW9VpHoTy+ZhoTQKLG5IUzJSUFvx5pHEtYa7bhvU1HXPdHq9GgN+2zk2W3i34vd9smSdGsr05jpJ3XTAHJfnzNWPHHHkmjxzRjgtv3Fk+kmQLWEDcaNLF8gIiIJGLzDIWI4lqoRhIO1BihFgqBjNVTpn87F0DSq8FKysWUP6RNGv3tKeApKFBv8W2B8fmvx92CGloZAMpFSyDTEuKB1kK2f/ss19e/HKkEAMz5erdsm1jNFBAEAWN6t8Y3O08CAP48qpvbNjqdgGSD3vX911nVF5XegoCykYRhaDS4U9JPoGdBuk+jN2OVQRYUCO795PBh+kBzDeRRGMTx+4qI1MXmGQoRxbVQjSQMZEKArwIJCihHtzkXvlrlAymJeuiC+P7DlSngzxXa9zcfkd0WNdZxyp4KzXWBMaRTjur9/dpnur7+vcyEmgYr/vfDAdk2sdpTAACevLovHv8iAenGBEzo11Z1m1SjJCigkX7uLQgonXQQjvKB3SfkQYF4lijJZgp1poCvJUREqprrBzxRCxa7ZyhEFLdClSmgFhR44YazA96flLK5mi8S9e7P+XL7cc2reME2N5SWOESjp4AarZGEbpkMzeRCkiDIz38Le+arbtcpNxXpSQmoabBBFIGXVu9z2yaYppPhlpdmxHPXDvC4jbQfgFb5gNfpA2EOChw81dTssrtkKkQ8kn7+BRsUUAYVNUcSOuzAsZ+BvB5AUnyOcyQiIv+xpwARhVw4MwW65KUGvD+pJIP/H39q38o9H2xDjUamQDBNBoHgpg+c8jASMJjFmFZsQrloaSYxAYw7q8D1dWqiHpMGtVfdTqcTZNkCr3z3u9s2OWn+N7eMJdKghlZgyfv0AWlQIPTlA1V1TX/3WiNE44U0m8kSxEjC0hoz7nn/F9l9WkEdfHwHsHA08N9CwM5sAiKiloJBASIKOVmjwQAa+jkZVYICoSplVNu3N+lJ7nPmaxpsqG5QvyqfYgjuynAw0wc8BQVMGguCw5KrrFp87SnQXAiS8MafRnX3mPnST9JXQI1Wo8p4IQ1yaZWgeCvLkZYPhKPRYKUkQyYz2f39Gk8MIWo0+PSXu9xGEKoFdUSIwLZ3G2+cKgaKVwf8mtTMsacAUbPDoAARhVyoRhIm6AS3cw9diE5GkgMoH+jTNgNXDWzndv9xyQg0qRRjKDMF/AsKlNc2BQWeuKqv7LHnVu7BvpIa5VPw8tpir/vVKiVVllA0l5JTaRDE25/yiO7qpQUA0C4rGW3iPCggLYfRCix565uQJGs0GPqggLRsJislzjMFJIFLSxCNBpV9QQAfAzKW2oBfk4iI4guDAkQxbvPBCvywr0x1Znyski5g9brAP2YEQXBbXIbqxxBITwGdTsBz1w7ArkcvkS3YD2pcYQ+227xs+kAQmQKd81Jlae+1ZhvGPPedrCmb3SHi01+Oed2v1t+hTXEl0+pnuUOskgcFPEcFzuuSgwu65cruu7x/W1wzqD1evPHsoJpOxoIUH8oH1LJppKTvO7PN4dYVPxgOh4jqZpQpYAxB+cB3e0pV77faRbd9LvpeUfKiCy6oSURE8YNBAaIYtm5vKa5esB6TF/6I9ze5X+2JVdIFYTDlA2qCSTnulJvi+vrqgeq14b5IMuiRLbkKeahcPSgQbLf5QDMFRFGUBQXy0hKRn2502+7NHw+6vl5fXKbZG0FK6zCU0wdCPZLwtfUHMPzp1fj357+FdL/eSL8Nb0kqgiBg8dRz0LtNBhL1Otw9pgdeuOFsPHNN/7CO14wUaaaAVqO6jGRvmQLyhaY5iFp5pVqLTfb7iveggCEh+OkDtyzeqPlYveJ3aLMqyqAEniKSlvgOcBKRu9hthUxEuPvdra6v//7hNlx7zhnROxg/yHoKhPjqaDCd8+dPHoQ5X+9Gn7YZGN27VVDHkZNqQFmtGUA4MwUkPQX8SB8urTXLFumtMpJUAxTSTIFvd6lfUVTydfpAsHPVpUxmG/79xU5YbA68um4/LjmrDQZ1jMwiW/QjUwAAjAl6rLhreDgPKWrkmQJa5QPeMgXkC80Gqz3ohpxOFYo+GhkxPALSF6HqKaDFpPgsNUDx2cqgAGmKn8xFIvJNfP+LSdTMldVqN4uLZTZZT4HQnlj2bZfpfSMNZ7bNwKKp54TkOKSZAlpXxdOMwV2pDHT6gLRhYFaKARlJBnTISXHbrrKu6crgpoOn3F5b7fvydfqAv9MSPDle1SBLdd55vDpsQYHjVfXISDIg9XRAR/r9xnn2f9CkmQL1muUD/mUK1FvtCNVvcufxatfX7bOTgxqHGgsSgywf8FaaoQzsGKAI9AgsHyAiaini+19MIopJthCWDygXYrHSPMyXcWdpQV6plP7s/Okp8NvxpgyATrmNIxzHntka3RRz20tPZzpU1Vux/WiV6/6P/3gBNt4/GjcM6eC2b62eAsrMgFBmCpTWmGW3T1Y3hGzfUi+t3ouhT6zGBU+tdgVWZJkCLTwqIGs0qJEpkJbo+W/eoNfJMmBC2WzwlyNNf8P9vUyCiAfyRoP+BwU2Hazw+Lgy6ypBGRTw0FMgmBGJREQUexgUIIph8Tr1J5TlA2cFkRkQTr4EBdJD2Ghw/ppinxfD2w5Xur7u177x52dM0OP16UNwXpcc12MVdRbY7A4UFZe5rojnpiaiX7tM5KYZcWbbDLd9a08fUO8psPN4NY5UeB916ElJjfz7PlYZnqDA/344AKAxg+LNHw9h88EKfLu7qaxCiNc3ZIhIyweU9ehOvgROpNkCDdbQLS63Hal0fd23fWx+bvhDmilgtfkfZNu4v9zj47UNnssHfjpYpZlt8J9v9/l9PNSctOzPQqLmiEEBohBbWnQAf3xrC3Ycq/K+cTNlDWH5gHTM2xUD2ga1r1CKRKaAcub7o5/51mTvV8lV/36SK6ZtMpOxWFI+IYqNUwrW7ilz3Tese55rYXehyog9h2amgHxxZ3OIeGPDQYx7fh2GP/0t1mp0QfeFMlPgmMYIyGCU15pRLqlJf3ltMa5esF62TQtPFFBkCriXD9w2rLNP+5EGBYJpHColiiK2HZH+3cd/UMCgD67R4CFJGVFemhGDFSU3ZYoeDAZB/rt4fvU+LN+mPpHkfz/s9/t4iIgodjEoQBRCO45V4cFPduDzbccxZfFPQe/Pl8ZmsUiWKRBk+cAdhV1x9cD2mDigLe4f3zvYQwuZvDT3bv5K2SnB9RSQdh8HgM+2Hff6nDqLDXtONpUP9FcsjlISE5AqWdyV1JhlY8uGSwIBHXLd+xBoZwrIHzBb7Zj98XbXcz7XWFz4QhkUKDeZNbYM3J6T3meyp3pJjW/ukr1MH5hyfief9iNtNmgOUVDgQHmdbHpGML1HYkVikOUD0oyamaO74YM7zkdhz6b3t/J9pcwUECDihVV7/X5dIiKKPy37DIcoxL7afsL1tbMzfTDiMyQgv6oVbPlAqjEBc67tH+whhVwrlRF/QGOwoKzWjDRjAs7plKO6ja8SA2iUdvhUvasUIDFBhy75aW7b5KUbYTo9RnHHsSoclVx5H949T7btRWe2xte/nXTd9jVToMTt6n7gKf/KfVXUWTW2DNy+khqPjycm6DC0a27IXzeepCrKB5T9JXyNYcrKB2yhCQpISwe65Kd6nYIQDwxBNhqU9gxwjmeUBjNPVdXg8YSFyBcq8YjtZreeAno4ZNkGRC5xesGCiLQxKEAUQv40g2vOpJkC+maac52vEhRI1Ouw7M7z8dWOEzi/ax5yfcgm8ERZPuCLckkwKj/NqPrzz0sz4uDpoIC0OVt2igGtM5Jk2z50eR9ZUMBkblo4iKKI0hozMpINsuaSAGBWLPaCOYdUXtGsrLNAFMWQ1fiv21uKZ77arfn4nYVdMb5vG7efTUujLB9Qftz5+vtIlpYPWELTU2BbM2syCCh6CgSQKWCWBBKMp7MOpEGBjkeW49qE1QCA1kIF5qb8GZDE7nRwwKDXhfS9Rs2EVsoYEcUtBgWIQkhrNF2g4vE8TBRFWXAkkIVtPGiV7r5AzE834oycFNw2vEtIXkPtZ2e22WFM0O4KXioJCuSlqfc9aJPZdOw//t7UjExt0ds2KxlZKQbX+MKfD1egb/tMiKKI+z76Fe/8dBjts5MxXVFPblY0kFPe9oey0aDVLsJksSMtyEaOQGNA4OZFGzUff3pSP1w7+IygX6c5kI8kVMkU8HE/0vKBUE0fkDUZbAalA4CifCCATAF5UKDxdycNZp5T9pHr6366/eiYaVAEBUSkWsrR8PUjSO40BOg5zu9jICKi+NA8z9aJoiSQTAFRFPGfb/fhr+/9IpsvDwBCHBYQKAMjzTVToFWG0a3xXEeVGvxgOFN+pZQdw5XKa5uah2llKvQqSHd9XVxqcn1dkKl+Jfyqs9u7vv7x91MAgC2HKvDOT4cBAEcq6mVd+gH5ggQANh445fG4tVhsDtXSgzqz55+DksMhqo5T/GSre6+DedcNwD0X98SiKYMZEJBIlQRhas02KH+avvZACXX5gN0hYvvRatft/mc0j6CAIehMgaafbaIrU6ApUHjSni7bfmA7eamRHnY8a3gZyUXPAW9fD5QX+30MREQUHxgUIAqhQDIFvtpxEs98tRsfbjmCf3y4Tf5gHK6nlYGRYBsNxqokgx7dW8lPqru1cq/fD4ZakKHWy2JY2oQvV2NCQu827qMGAaCfxhVWaS392j2lMNvsmP+tfIFwXDERoKreve7/S0nPDV+9vuGg6ves1uhOy7YjlRj42EoMfWI19peZZI/9dqzabfsLuuXhjyO7YXTv1n4fb3MmzcwwmW1un3eB9BTQGm3oj30lta4pBnqdgDPbNMeggP//tkizc5zlA/mSQOFJa7Js+wl95D0zXkmchwv1kn+Tflro+vISnXZ2DbUA8ZjGSEQeMShAFEKBBAUWff+76+v1xfK50vH4z65bUCDIkYSxbNKg9rLbY88M7SJSLShQE4JMgb7tMlUzOK7RuCo+rFueK+W71mzDy2t+x6pdJbJtTlTLr+Yfr3K/un/fR9tg8uMK//JfjmmOYfQnKPCH1zejss6KE9UN+OeyX133i6Ioa7LopFV20dJJR2w6RGDTgQrZ476XDzQFBZQZJYGQlg50b5Umm5IQz6QjCQOZPiB9jlr5QIUoD2LqXr/c8w7Fpv09nfiq38dDRESxq/merRNFgVr5wCmTBcWl2uPOLB6uAMVjMN5ubxmZAgBw67DOmHZBJ7TLSsZdo7tjWLc870/yQ5vMZLf7qhs8d94vkwQFtBa3rTKSMHNUd7f7z8hRL39ITtTjwh5No8zmfrPHbRtlsEJt+kZFnRVFisCXJ54yC/yZby8NUEgDb2W1FreMhuHd89hUTUN6kryHw21L5WNXff25JUlq5UORKdAcmwwCTVf3gQB7CkgyBZId1cBb16HL8qvRWzgIAKiCn5lNjtD0fyAiotjDoABRCNkVHdiHP70aAx9didFz1uLNHw+qPsfm4QpQPPYUsCp+BsGOJIxlep2Af13WBz/cOwp3j+0R8sWkXie4jQisrvejfMDDFe+7xnTHNZJMh79f0tPjfkf2bOXxcV8ps2E8kWYf3FHYFR0kQYtQLCZPKrIbCjKScNdo92AJNVI2uGxQNI/09c9feiU/FI0Gtx1tCgr0bd88SgeA4HoKiKIo6ymQs/s9YM+X0B/5EQ8nvQUAsIh+NuoUGRQgp+b77zpRS8WgAFEIbD9ahXs/3Ib3Nh2R3X/4VFNq8j+XbVd9rqeTPX+uhsYKZQlFcy4fiIQnr+4nu+0tU0BWPpDqeSTioxPPwtTzO2HK0I646byOHre9sGd+SDJX1heXAWhc1K/49Tj2ldRobiudOjC0S66s+710BnugpL0K2mQmYcP9ozG4U07Q+22pAikfCLbRoMXmwE5JX4jmlCkQTFDA5hBlIyPTDqx0fT1EbCyhEdxaRXohhmZ8JMWv9cVl+HZ3CUR//3aIKOZxJCFRkERRxIw3NuNIhXttsi+0GkipXQmNh3nRypPX5pwpEAntspIxpndrfLPzJACgWqWBn1R5rW+ZAkDj4uyhy/v4dBxtMpNxZ2FX/Od0g0GDXsANQzpgaZF6BoyWXSdq8J9v9+GZr3YDaOyK/sb0czGks3wxLooiTlY3fS+tM5JkV5hDETCT9jdIDcF4w5YuJdG3n6G8fCC4hebuEzWu2vlEvQ49C9K9PCN+BDOSUNmrQW86LrudBDN0yoVdz0uB478A1fLgtgvLB1q0VTtPYvprmwAAv+RZ0XxycogIYFCAKGjFpSafAgJai2Otkz1lajPQeKInvcoWi6SZAoIA6BgUCJp0NKGnoEC9xQ6TJJiUp9FoMFD3XNwLNwzpgOp6G9plJWP3yRqfggJ5aUbodXAt8p0BAaDx7//h5Tvw6Z+GyZofVtVbZe+N1hlGRaZA8AuUWgYFQibZoPe5wV9SYugyBbYdrXR93btNumwhHe+kmQKees+oUf67Ihjk/UnyhCroBMW/PZe/CKTkAIIA62tXwrB/tfxxlZGe1HLc8eYW19cnqxuQ2XzeakSEOC4f2Lx5M5588klcddVVaNeuHQRBQFKS+oxtqaVLl2LIkCFIS0tDTk4Oxo8fj/Xr10fgiKm5+nG/bzXSXfJTVe/XSgtVu9+fzu3RIs18MLB0ICRks8Wr3Rv4OUn7CQBAdkrou+i3z07BmW0zkJliQI7GyEMlvQ4Y0T1f8/Edx6rx1sZDsvuk32digg6ZyQYkG8IXFEgzxnawLVb8YUQX1fvbZ7s3xdSSJOlNYA4y42Pb4aZ+Av2aUekAACQmNAXJ/C0fMCuCLYIi9f+aHgZZ+YCl+6VAaq6rMURCrsrv2dlTgMGBFkkaaBLZU4Co2YnbM/ZHH30U9913H5YtW4Zjx4759JxZs2ZhypQp2L59O8aMGYMhQ4Zg5cqVGDFiBJYtWxbmI6bmasPvp3zaTi0jwOEQUVKjvsiTdpF3CsVCKNykmQJqY+/If9IF1+GKOs3tpP0EMpMNYb9qmqsRFLh9eGeMO6vAdbtvuyxc1KdAtk2iXoczcpq+r+e+3u3ql7D4+/24eN53rscKMpIgCAKSJenpoWhQVyuZmJDqY+p7S3fPxeoNKTvlqQc91UiznYItA2muTQaB4HoKSCcP6HUCBJs88+zWASlIk2RsJKZlyx4X1IICzvIBu/u/TUREFN/i9ixo6NCh6N+/P8455xycc845KCgo8Lj96tWrMXfuXOTm5qKoqAjduzd2mC4qKkJhYSGmTZuGwsJCZGdne9wPkZQoivjxd98yBdSCAu/8dFhz+00H3IMN3prMxQKbZPpAcx5HGEnts5u67nsqVZEGmLz1EwiFzGQD9DrBrblkskGP+ZMHYs2eUhyrrMeEfm2RkqjHOZ2y8dOBCuSlJeLxK/tiQIcsjHxmDUwWOyrqrFiwphgX9ynAI5/9Jttf26zGLLAUQ/CNBqUtOUolP6+89NCWWjRXCXod2mUl42il/O+wsx9BgeTEpsWucoKBP+otduw52dSosjk1GQQaA2dOwfQUMCboAEVQIN1WgesGtwM2nr5DUAQQc9QyBU7v06odmKTwaLDa8cra3yEIwP+N6BLzZYREFH/iNijwj3/8w6/t58yZAwCYPXu2KyAANAYXZsyYgRdeeAGLFy/GX//615AeJzVvJ6obNK/0K6nVhN6/7FfN7X86WOF23y+Hq9CnbWxfDbNJvk82GQwN6RX1Y5X1sDtE1SyM/WW1rq+l4/vCRacTkJlswCmT/Mphgl4HQRDcxhi+94ehqDHbkJaY4Oo18X8jumLuN3sANGYILFhT7PY6bbMav//kEPQU0EmiAtKRhwUZ3svPqFGqSqlFp1w/MgUk5QPBjJb87Xi1KyCVbNCjW6u0gPcViwwJQWQKSMoHElWCAqgtQZpB+hmi+DzJ7uy+U2f5gEUlKMCSgrD673e/uz4ndQLwp1EcnUpEoRW35QP+aGhowKpVqwAAkyZNcnvced/y5csjelwU/45VujcD1GLxs6HWwXKT233f7i7xax/RYJNcNU7Qt4iPmLBrl9W0wLc5RNliVmp/WdPfTJe8yCyQpE0QnbQyRARBQEaSQdZ88vYRnZF/+iq9smO6UzuVoECgi0npkZ1kUCAgalMGumr0TFETqpGEvx6pdH19VruMZleuFNJMAaviM8NUAtRJstySFMHmrA7uO3VmCpTtdn9s46t+HR/557mVe1xfP/v1Hg9bEhEFpkWcse/atQtmsxn5+flo37692+MDBw4EAGzbti3Sh0Zx7kRV04lWFy/psxY/rvSIoojjVe4Lv+/3lrk1kIo1Nsn3yUyB0EhO1MuaDR7VKCGQlhZ0zA1/pgAAZKgEBaRXgr1JSUzAYxPPgqdJm85MgYykptdSm87hC+nrSN9jrTMZFPCVs5xDyp+r9NKggDmI8oHtx6pdX/dtlxXwfmKVbCShn5kCsskd+hrArshoqzwElEoW99mdFC+eArMxT36fs6fA4Z/cXk/c+F+OLCQiimMtIihw6FBjV2u1gAAApKamIisrCxUVFaipqVHdRqpPnz6q/xUXu6e9UvN2vKppEeat0ZavV3pOmSw4ZbKobl9vtWPvyVqVZ8UOuyxTgEGBUJEuvk0a9fTVksZ5WSnui/VwUMsU8HU0ndPFfQrw2MSzoBVD6prfuODs1aZpBv2vR6shBpCyLJzOFRBFESWSCQfMFPBdj9bpstt5aYnI9WP8ZZKh6dQjmEaD2yVNBs9qlxHwfmKVvNGgf3/rzuDxZP03+LR+qvsGh38CSiS9O1r3cdvElnGG/A5npsCRjW7bCqYS4NhWv46RiIhiR4sICtTWNi6iUlK0r5ylpqbKtiXyhTRToCAzCSN6aI9dc4hwa8imZuCjKzHosW9ct5MNerSVXMWsaYjtsYRWaVCAIwlDJsWH1PkaSSNK6VX1cGql0qAvOYAmWJPP7Ygv/zICN54rT1tO0Anod7qrfN92TSnOZbVmj+MZNZ0OPJwyWWRXXxkU8J2yoZ+yd4Q3svKBAIMCDVY79pY0/Xt9VrvY7rUSCIMkqGp3iD79++HkzMD4t2GxxgZVgOX0z0/QA63OdNskIbeT7LbVZgMcDtVMAQDACWZbthQcSUjU/LSIM3bn1STBQ36qP1ecduzYofpf165dgz5Wii/HJSnMbTKS8PTV/Txu729dKAD0aZuBVGNTDa/JHNtBAbtDPgqLQkO60NYKCkhH7KUlRaaPbK+CdLf7Au2M3aN1Ou4e00N23zmdclz7y0szygJk2yQ15b5y/knulnStT0nUIyM5bvvuRtzw7nmYfG4HdMpNwdgzW+NvGmMKtcjKBwL4TASAXSdqXIvkJIPOa/lWPEpU9GTxp9mg2eZAFrxnPgIAOpwHJLlnWiQqggLHK01Axf7GgIKKkr2bfD4+IiKKLS0iKJCe3njSajK5N25zqqtr7Kablta8uhdTeCkzBQoyk3DVwHaa20uDAr5e9bn2nDPkQYEAR7FFipXTB8LCl9nu0iyS9AgFBXq3cV9M+Fs+IJWSqJeVEdwytKPsceksemn6uK8ECHA4RMz7Zq/rvoEdsj0GjUkuQa/Dv6/sizX3jMSrtwxGaz+zLIySWnm7Q/S7sz4g/933bpPRLJuaSnsKAP71FTDb7HjB8JJvG3cbrXq3kC1/7+0vqQFqT2q/5vEdPh8fERHFlub3r6iKDh0a01GPHDmi+rjJZEJlZSWysrJcAQQiX0iDAm0yG5uhpap05nYy25sWc74s7tONCZjQrw3SJEGB2pjPFGBPgXBI9pJybbU7ZMGC9AiVD5zZJsOtSWAg5QNOqcYETB/WGcYEHaZd0AmXnFUge1xaQrAtkKCAALzz02Fs3H/Kdd9N53X08AwKNWUmSSDZAjuOSfoJxPiY1kAZlJkCfvycLDYHRui1R97KdBurfr9iAkGmYAJ+Wqi5m+zafRxNSEQUp1pEUKBnz54wGo0oLS1VDQxs2bIFANCvn+fUbyIph0OUjzQ7ndacojLD20l6Fb3Wh94AF59VgJTEBNlc8FgvH7Cxp0BYeBvHp/y7kAaSwik7NRHnd82V3RdMUAAA/nnpmdj92Dj867I+blfw+0rq2bcfrXKVfjVY7Xhu5R4sWFPssUynzmLHs183dV0f37fALfBA4WVUXAE3+9lXYNuRSry98bDrdnNsMgioBAX8aDaoGmjpfjFw61dAiuT9mlYAFPRV34liIsEAXTGw/UPN10xzeM4kICKi2NUiztiTk5MxatQoAMAHH3zg9rjzvgkTJkT0uCi+lZnMsgWwMyjgKVNAuljxpWHguNOLleyUpnF05bUWv481kjiSMDykC22TSlBA+fcUqaAAAEwcIC+ZCWd9vrzZoAXHTmfrPLx8B15YtRdPfbkLn/5yzOM+Tpka30MpiXo8OMG96zqFl1tQwI8r4A6HiBv+u0F236CO2SE5rlhjUGRa+dOTxu1n2v0iYPJ7jf0DxjwMV8fNwn9Acx5opvrEJk/qj273+zlERBR9LSIoAACzZs0CADz22GPYu7eplrSoqAivvPIKMjIyMH369GgdHsWhncebmjilGxNci7AUD/XU0pO6WrNVczunYd0b50S3Oz2nHZDPoo9FNpYPhIV09F9VvfvfTmWddPJAQkSbPI7///buOz6KaosD+G+2pveE9EIgCS0JvUPoVUCIgoJSlGJDBFHxgbT3UCwIKnZBUEAUBKUoAtJ7CYReUoAktJBeN7t73x/Lzu5kS3o2yZ7v55PPZ3fuzOzd3Ukyc+bcc1v5oJGTZhaCUE97BLianumlqtzsZQh00+3/yM10KFVqwZ3jownp5drXK72a8ME8UnskYpEgYFiRGQhuZRQYBMUaezTMWkAcxwmKDVaopkDp4WkDP9A9bvMcMD0OeO0s0G6S6Z1Iyj/NpFZG0rkKb0OM42ttFOXADw8t2xlCSINXb8st79ixA4sXLxYsUygU6NSpE/983rx5GDJkCACgb9++eP3117FixQpER0ejX79+UCgU2L17N9RqNdatWwc3N7dafQ+k/nrvj4tYe+wW/1z/wsLcVHAVyRRYPKIl5BJNgMHfTT8oUFDh/tYmpYqGD9QEV3tdtkhGvuFUfBkFugwSN711a4O9XIJfpnTGwesP0bd5I4hqOCDRI8wDPx+/DQD498oDgxkQyjP7QYCbLV7oFlIj/SNlk0tEUD6+uK9IpsDltBzB87cGhtf48WZJUjEHbQykIgUZVYpSwWNZqdkZ3Mp57L90DPiqM/90pXIYDqtbIbtYBeBdg9X9TiwGHERAh8mAvIHUaEo7B2x9GXBsBMSuBmxdauylGGP4cNc1fLU/AQCwIMYFE84+jSM2eZiheBlb1d1q7LUrgipHENLw1NugwMOHD3HixAnBMsaYYNnDh8LI6vLlyxEdHY0vvvgCu3fvhlQqRZ8+fTB37lx061Y3/tCSuu9iarYgIAAIgwJdmriX3oSn0Cs0WFZQIMxLd/fLz0V3Z7SuZwrQlIQ1w00QFDAcQpKpt8y1loMCABDiYY+QWpoWrneEFx8UOHwzHTHhnoL28hx2c4c0r/TUiaTq5FIxf8e/QkGBu7oCgxwHvNSzYU8FLJWIoI0KVGT4gLg4U7jAtpI3PRo1B57ZiHv/LMOWzGB8onwCaoigZnmmt9m7EDi3Hnj5GCCunYKnNWrDM0BuGvDgEnBkOdB3QY291PmUbD4gAAAuR/4LiDWf9XLZl9haROeqhJCaUW+DAhMmTMCECRNqbTtCtM7ezjRY5qMXFPB3tcOY9gH45dQdg/UUSr1Cg2UUDNS/oPZ31WUKPMpXoFChqtK0bzVJvxhW6TGxpPLcywgK6C9zs6v9oEBt6hLqAVupGIUlKuQVK/HraeHvWnGJ8OLJ1U6KTL3hFc90CMSAFlRc0JJs9OoKVKTQYMID3dTCM/qENfipJPWHD1QkU0CiFxQoFtlBLqnC34TwgfAOH4ipagaX03cw5/dyzGrw6AZw/xLgG135160rcvVqlFzaWqNBAf1ZNQCgKZdaY69FCCH6KLeXkApKN1LoLyrARfD8vSea483+YVg4rIUgYKA/JlR/9oEOwYZ3cfRTYhs52QjG4KZm1d0hBPpTElKmQPVxLStToMCymQK1yUYqxuBWPvzzs7ezBO3X7+cKnuvXuVgxJhpLnmxZo/0jZZPrT7FZgTvgyY90QYHGnrWTmWJJ+jMQXL6bgzm/X8C2MgppAgCn0N3JV0iqJ41fJOLwTIdAvNKrnNkZJXX3/1SlsYpPn1kRpYvzlpS6d+eJrBp9fUKI9aKgACEVVHo8t6NcgqGtfAXL7GQSvNq7KcZ3CRbUGFAo1bj9qACnkzOQW6S7c+nvZov1L3YU7EOsdwdMLOLg46ILLtzJqLtDCEr0hg9IxPQnprroZwpkFZYIgi9AqUyBBh4UAICn2pmujH4+JRsXUzV33I7cTBcM1Ql2t2/wd5frA3klMgWUKjWS0nVBgdoarmJJMr3P6b0/LmHDydt4bUNcmbVlOIXuc1JKbM2sWXGzB0Tg4OxeZa7HSuru/6lKq+GgQF6x8HdBUSoo8LLkjxp9fUKI9aIzdkIqqPRd2h8mtIeznelxk/onddfv56L/8gOI/foYPvv3Jr/cUS4xuIAufZc92F13AnzzgZnxnBamEhQapIuv6qJ/oc8YkFUgPA71Zx9wMXM8NhQdQ9wQ5G56loN1JzR1P5bvuc4vC/GwR0u9KQ2J5ehnCpS3psD1+3n8uhIRh1DPhjnrgD5TQ7D2XL5vdjtO7y69SlL9s4G4lAo8rrcZY7DO7uNnq/11La6GgwL5pYYVdhBdEzwfID4FMco/3IYQQsqLggKElGHXpXvo+sG/mPbTGTzMLcbOC/f4tqWjWqFDiPkCTvondR/tuoaiEsOTCgcbCVxLXcgFlrrg0a+wvmLvDdRVgikJafaBauMglwiOpdLBKWuqKQBopmsb3znYZPvWuDRk5Ctw7k4Wv2zJk61oSEsdoZ8pUN4pCePu6MbJN/NxqrN1VaqTflBZX1nHsUipCwqoqzlTwJirfiOxXinMHuh/879AXgObSk9dzgvyzGTg/C9AoWENIsYYbj8qMHrclw4KlObLZSDB5jlg7XCgIKN8fSGEkHKgM3ZCzHiUV4yZG88hNasQf1+6hw5L9gja3e3LnsfZ1EmdPge5FE28HPBcpyCEetpjxZhog6kNG+vdFcsrVgqGH9QlSv3hA3QBVm04jhNkCzwqFRSwppoCWk+3DxDU7PBzsYWzreb3prBEhXd/v8AXvhSLOLQJcrFEN4kRdnoX9LM3xSM9z3CazdJOJekugloHutREt+ocqYkhWOIyAq5i/aCAtOaHWfh6eeJd5WQkqRsJG059X+OvXavKkylwYROwIgrYMhXYMs2g+Z3NF9Djo30YvOKQQWBAf3YhJ5jJCEzcr5km0WLofzshDQ0FBQgx49tDify0WYAmbVtfeU5MZZKy72Y52EjAcRwWj2iJvbNiMDzaz2Cdvs2EJ1vxKdkG69QFgkwBmn2gWnk46IJQj/LMZApYSVDAQS7BqgntEeJhD1c7KRaPaIHR7QP49r8v6bJ6Wvo6QV6O30VSO+xlwrHS7++8anZ9xhgO33zEP+/U2PTUrw2J6aCA+e0kKt3FJZNW//CB0kIeD287pm4hbDi/HlDXbMp9rWJlZApc3wVsfkHv+d9ARiL/VKFUY+Pj2VIS0/NxQi/QxRjDqWTd8xYi4dTHhq/1V/n7TQghZaCgACEmMMaw0ci0glorxkTD3aEcmQLlKLbnKC97dlBPR7kgCBFnZGrEukBJNQVqjH5Q4GFuEf+YMSbMFLCC4QNazXycsO/NGMS91x+9IxrhpZ6hRlOrJ3YNsUDviCl2pVL/N59NMbv+1Xu5fDYBxwFdQq0jKCA3kWkmKqNYplQvUwC1kCkQ4aMZ3rZE+SzWK3vrGrJuA9d21Pjr15qyMgWOrDBc9ser/MMChXB4QKHe83s5RXiQq8uYacEl84+LmIk6MYkHzPeHEELKiYIChJiQW6wUFG/TahPogr9ndDd6N98YUyd1+hzKERQAgB5NPfnHcaWmYasrhFMS0p+Y6qQfFNCfGjOroIRPkwcAz3IEqxoqV3sZPhvTWrDs6Xb+GB7ta2ILYgn2Rv7mmastcOiGbmx6pJ8zXKwk8GUqU6CsLCypWpcpwMlqPigQ6GaHpl4OyIMd3lW+iN2qNrrGXe8ClZmJ4FECsGqQ5iezjLvmtcVc1sO1v4FbRwyX3zoCZCQB0Axr0ieXiIHzG4EVUSjaOU/Q1lwvU2CHWjg7EW/7jHJ1mxBCylK+KxFCrMyey/exaPtlwbJ/3ugBF1spvJxsTGxlnKnq0focbMr3qxitlylwPiULjLE6N71aiUp30lSe907Kz9NRd7H/7aFEvDkgHABwN1uXNWAjFcHJ1rr/tA+J9EGwRzf8ffEeBrTwphkH6iB7ueFQjhv38+BiJ8Wne64jp1CJGX2b8t/dn+fT+PV6hHkabNtQmfobalPGUBipSpcpwMlrfpYGjuOwakJ7rD2WjO8OJWGpcgxiROch5VSabIHtbwDDPgfE5ZwZpSAD+HkUkKm5mMbWl4GmfYGsO0DnVwD30Jp7M+aYyhR4eB3YMNr0dn+9DYz9FQUKYVBAxAHYMgUAEJL5HcK4JrjOAtAr3BMRSbpMxcOqVugvOgNHrlRwJaRHZd4FIYQYsO4zR0KMWLb7Oj4rVd2/c2N3hDVyNLGFeeUrNFi+X8Uofxf+cXqeAmnZRfBzqfnK0hUhzBSgoEB1ytErLqlQqvmg0P0cXVDA28mmzgWKLKGFrzNa+FIwoK4ylilw8MZD/Hz8Fh/kOpn0CFte6Yr03GJcTM3h1xsWZT1ZH6YyBcr6FZepi/hcUJG85msKAECAmx3+M6Q5nG2l+PgfYLVqIKZIHg8dOL8ByE4BRn4LOJXj+/v3v7qAAADcOqz5AYBLvwPjtwPeLav/TZTFVE2BQx8Ln/eeB4jEwJ4Fmuc3dgHFuShUCIMKouIcwfMI7jauswBE+Tqgya1Ufvk1FoAk5o1ILkmwPuSVOy8hhJDSKLeXED0Z+Qp88a8uICAWcXihWwi+fb5tpfdZnqCAYzkzBdzsZQhw0wUBzutNt1ZXCAsN0p+Y6lQ6vTqnSDMe9Z5eUKBRBTNZCLEEY8HMj3ZdE2S95BQp8fwPJ/Hahjh+WftgVzStZIC2PjJVHFP/72xpjDHYMN3nKK7lC8dXezdFTLgnPlWOwil1mK4h+RCwshNwbCVQUmR848JM4PBy4PQPpl+gMBNYNQC4/k+19rtcjGUKMAYkHdQ9dwkCus8CurwuXC/poEGmgCw/VfBcDM3+W9mlQwbN33clE+Em80MCMxJMKcoxXNZQpd8ATn6nyTwhhFQ7OmMnRM+hGw+hf661Y3o3zBvaHI425Ux5NEImLsfsA+XMFACE2QJ1MiigoikJa8rMfmGC59pig/f0LqS8nSkoQOo+/b9j5qRmFQqKr80eEFFDPaqb3OyN/+9RmQkKKFRq2EIvKGBT8zUFSvtwVCQ83FwxTvEutqq66BqKszU1Br5oB5xdCxRmaS6qU05rhgh8EgHsmV/2CyjygN9fNB1cqCEqlRKvrD+LCynZ+HL/TbT77x58teUfIPeubqXJ/2pSOUQiILi7bvmf01GSc1+wP2n+XcFzCacJGjRV6WYsSGI+UECKG2ojdYyKLDMLEavtKQnz04HvegM73wS+76c5bggh1YqCAoToSUrP5x8PjfRBhLdTlfcplVRfTQEAaKU3Pvra/dxK9akm0ZSENcffVZgGrL1YEgQFKFOA1APBHvaY3ruJ0UKsDnIJpvZobLB8dLsAdAhxq43u1Rn6dUT0mQsKFJWoYc/pAikSm9rPrPByssEXz7RBCSfDjJJX8HbJZBSK9IIT2XeAP18DlgYBC12A7/sA59YBSr2LfBtnHOn+E+aVTOAX3WJ6U/MWZQN3z5e7T7+euoPpG+JwMbXyF9JMrcaO+LsYvvIwPvz7GtLzipF5ZotuBc8IwN5D93zQUkDy+G9yQToC4j4R7E+enyZ4LgKDiAN8cuL5ZfFM87uw01ixwWLLZApwqOVpJq/v0r3XvHvAlT9r9/UJsQIUFCBET1qWroiPn2v1jNWXl5FCLxOLKjR/eqinrmhU4sN8M2taBk1JWLOi/HVBoYfaoEAOZQqQ+mdm/3BcXTwQ03oKi8bN6NsU7wyKwOLhLWAj1fz9fCLKFwuGtbBENy3Kw8RMIuaCAsUlKthCFxSQ2lpmuEVUgAsmd28MgMNGVS90L/gYf9kNAxOVkXln5w50fR2p4w7j5cM2+EnVH/2KP8STxQvRs/hTnFU30a1beiy/Ccnp+Xhrczz+PJ+GcT+cqPR7knCai2Htx9+US8G70g26FYK6Cjdo1ALo8x7/1P/WFjhAVwRSXiDMFBBDjbBGjpCmneSXnX48BCOZ+WCF8knh/qspUyCnqAQf77qGsd8fx+u/xGHf1Qeau/FFOcjIV+Cr/Qn8um25a2gmMj1dc414JKzzhNQztfv6hFgBKjRIiJ5Labqoe+m7spVVVk2BimQJAEColy4ocCezAMVKVYWCCjVNkClAUxJWO09HGwCaE8EHOZoT/9KFBgmpLziOw/Q+TXD1Xg4upmZjWs9QvNhdc2f0uc7BeLKNP1RqBmfbyg/hqs8qnSmgN3xAalv7wwe03ugXhpPJGYi7nYV0OOOljDFoIu2HLwL2ITzrILiCdN3K/h2gaj8ZJ226YueVTGz65jI/hd8N5s+vdkTdEm1ENzVP7l3QDD8oo/Liv1cf8I+NTTVcWVPE24ULgrsartRhCnDwY6AwAyKmRBfRJfyjbg8AsDEICqjQr1EucO0Cv+yMXl2GT5WxKGYyvCXdqFlQDTUFcopKEPvVUVy/nwcA8MNDPHXpFUB8CQCQwfzwl2IaPOGG96Q/4Qnx8Sq/ZoWd/Un4/N7F2u8DIQ0cBQUIeexedpEgKNC5cfWkqZYVFChvkUEt/ZNExoD84roWFNCrKUDDB6qd/vf/MK8YajVD8iNdxkh1ZbgQUlvsZBL8OLGD0baK1FtpiExmCjAzQQGlCu6cLijAySxXmNFGKsaGyZ0w5/cL2BKnKap3s8QdAxNj0dJnAma1LUALLgnnCtzxR05THPkjHVkF58zu829VB7wm2ap5knsXeJQAeDQxXLGkCMhJBdwaQ23m86qKUJEw/X/DoyYYrWYQ6WfJiaVA4xjNrAkAeojiTQYFFkt/BK79yD8vcQvD9TR/vTU4QZBAMNyikub/cYkPCDghD+tkSxAs0tU+aMKlYrXsQ2QyRzQp9X4BAA7eVe6DWSe/A/SDRwDw4AqgVmvqNhBCqgX9NhHy2L5rujsJgW52gjT9qpCVMXzApYJ3wErvT6GsnbF9hQoVztzKENyVLo0xhuv3dHUOrPXuXk3ycJDxjx/lKZD8KB9FJbpjoIlXzc9JTgipHZXJFFAo1bDTGz4AWe1MSWiKjVSMZU9HYfnoaLjZ6/5+Xbybh4m71ejwTxCmHHbAjvi7BnfxbaVizBvaHCff7YO/Z3TH2kkdcIkF4z5z0a10eQsMFGQAn7cFPm8D/PVWuYMC2QUlWLnvJv6+eK9c69txCv7xZlV3zPkrBeNXnxRMHwsACO3NPxwkPgkZSsBBDY9Hp83uX9rlJaBUUb8S6N0EUBajKu5kFGDrOd0MCB822iMICGi5c7nGAwKAZoz/t72A+5er1JfSSlRq/Lr5V6h2vm2kMR/IulWtr0eItaOgACGP7bygi9j3jvCqtrnepWVkCjjbycy2G+yv1N332ggKnE7OQNel/2LUV8fQ+f29WPbPNTAjJ1nnU7KR9rjoHccBXUI9DNYhVeOqd7xk5BfjVHIG/7yJlwPsZNZ9Z5WQhsTVTgZjpVnMBQVKlErY6l2sQmr57CGO4zCitR/2zOyJkW2MVNHXIxOL0CvcE0tHtcKJ//TBC91C4OVkgwhvJ/QI88TgVt7YqtJL0//3v4BKKdxJ/K9ATorm8clvIS7JK1c/3//rCj7adQ3Tfj6D44mPjK7zSq9QnHuvH/Y844wITjc93pfKYQCAQzfSMf+PS8KNmg3lCw66c7l4TvwPRokPme9MxFCg9fNYMSZasLgYesF2lQJV8dvpO9D+Kw9zl2FAyV6+7WvlE9is6m50u7GKOcIFaWeBvQur1JfS/joWh5j42RBDM4SEOXgD+vUormyr1tcjxNpRUIAQAI/yinE0QXcCMKhl9aXDVXemAMdxgiEJCpXKzNpVdyejABN/PIWMfM3Jh5oBn/17Ez+fMJwr+Ofjush9uyBXk3e5SOW5O+gHBRR4e7Nu7GlHK6vMTkhDJxZxRocQmAsKqEtP0ye1bKaAPjd7GZY9HY0/X+2KZzoEwF6muevdyEmOF7qF4MuxbXB6Xl+sntgBo9sHwsnIdMBdQj1wQV1qdoorfwifp18XPHUqKN/c9r+c0hXQm7fV+Lj1QS194GInQ5MUXYZCiW87MHddWv+WuFTczdYVLoatKxD1DP90tuRXfCz9xngnWsYCQz8Fnv4JEEswPNoP+9+M4ZsV1RQUUKsZfo/TZQnMDr4JrkBzHlTEpPhS+QRWKocbbHdBHYzT6nCksFJB/8QDVc5c4CkVaHl4Ory4LACAgolxpceXQPSzunWOfQGoa/b8hxBrQkEBQqDJEtCeZDVykqN9cPVdXJVVU6AyKfb6MxrkFinBGMPB6w8xfUMc5m69YJi6WEmMMfxn60XkFikN2hZtu4TrelMipmUV4s/zuvTCcZ2CqqUPREg/U+B8irDytLVN10aINQhyN7yoNxcUUCkKhAskda/4aKS/C94fGYnTc/th76yeOPpOH8wb2hyDW/kYDQTo69TYHUUolWF34htAP3stJ1XQLFZpAiVylP8iukBh/IKzha8ToMgH4n/jl0nbjcdnz7QWrNf5/X+R8FCXocB6z0UmNNMc23CG/6PvN44Fpp8DYn8A2k0SjJfXn1WmuoYPnEzOQEqmJnDBcUCPnB18W6JXX+TAAYnMF4fFwnofN1rMQDFkGFj8AWYppun1pRBIOVXp/ujL/eNNNC7SBWUWKCdgf0EQ0H2WbqW8+0DauWp5PUIIBQUIAQD8ejqFf/xEpK+wSFAVGZuHW5+LXcWDAvrF5H46fgv/23EFz686iT/Pp+Hn47fxyrqzUJs5aSyvredScfD6Q/75u4Mj4PX47n+JiuH7Q4kAgKISFWZvOs8PZfB0lGNQS58qvz4xpD8mt7SOIe612BNCSG0IdjecPUBpLlNAUShcUAeGD5hiKxMj1NMB4gr8zw31tIetTan3dOcEcHGz7nneA0EzpyzG99KPcEH+AiaLt5fr/2OxUgWlynB4HsdxwP73geLHQVmZI9DiSbT0c0aEt7Co47LduoyFy9lSTC1+HTlM2PcHrm1w7437aPT8D4BbiNG+6E/vq2B65wxMVem75T8cTuIfjwwshvyObjhDs6HT8e+snjj3Xj90e/NXoOM0wCUImPQPnnx6Ajwc5MiDHTare+CSTVvdTn8cAmx/QzNbwP1LhsM6yuHS7jVwvLCGf75RGYP1qt64kJINuAYBgZ11Kyf+W+H9E0KMo6AAsXoPc4txIVV3x/WpdgHVun9pGcMHKpMpoN/H38+m4nu9f+6AZkzjprMppTerkISHeZi3VTcusmeYJyZ3b4w5gyP4ZX+cS8OdjAKMX3USR27qhl/M7h9eZoYEqRxzQQH9u0mEkIYh2MMwKGDuolatlymghFhT/b4B4TgOvr7+hg07ZgJZj9P/S4SBkci0jegrjoOMU+E/0vVmZ2/Qpz+skJdyGjj6he5563GAXBMMWD2xPTroZRruiL+Lj3ZdhVKlxq5L93GSNcNIxUJsV3VELrNFgdwTXqM/K/Nvt37QRDB8AKjUEIJTyRnYfVlXUHCm/U5do2cEuMDOaOzpABc7mWbow6ClwIx4ILAjOI5DdIALv/q23KbCnZ9eBfz5KvBVF2CJL/BtDLBlGnDoE+Dyn8CDq4DSeJ+3nbwCu8NL+Ofx6hC8p5wAgEO8NjOucS/dBgn7K/zeCSHGUUUqYvVO6xVq83G2QVij6q3eXhPDB8Z3DsL2+DTE3c4yuc6/Vx7g6UoGOPKLlZj60xnkFWui/A5yCf47oiU4jsPgVj74344rSM9ToFipRvcP9wm2HRLpg9i2Rk7YSLUwFRQY2KKGp4UihFhERTMFmEJXU6AY8gZ5opfn1gInbkego+iqbmFRNrBxHPDiHqBEOIQiNOOg4LlKzSAtcyZfDnuu3EcUs4Mzp7e/VQMAPP783ZsCvf/DN/k422L95I7ou+wAkh9ptlm5LwFnbmUi8aFm6tibzB/LXf8Drm8YBrb0htFKkqV7wnEQizio1AyK0t+osrhC2SAZ+Qq8tj6Ofz7CPRW+Sb/rVug4TTOewIypPRvjwPUHKFEx/KqKwTPifxEkemC4oqoYSIvT/AjekBhwDdbc+Zc7AnYeSEi7j46ph/k6AgBwvcNiFB/WnEOlZhUiPa8YHqG9gP2PAwd3TmiGcsgMf0cIIRVDt/KI1TuRpAsKtA92q7ZZB7TkEvNnHubu/JoiEYuwfHQ0n8oPaKZuGtcpkH8uKHJUQfP+uIibD3RjIT9+KgoBbppxrXKJGJO6GU9xHNXGHytGR1fr8AsiZCMVI8DN8ATw+S5Uw4GQhijYw7CmgLkp9lhJPv9YwVX8/0t9oGLAGMVc9C7+GG+WTNU13D0H3PgHUJqeOhfQTHdXFo4D/r36AIUoVehR/TglnhMBTyznswS0JGIRvn2+neDv9PHEDDzI1Y3/XzisBYZE+lRo2IR2XUFNAf3+lINazTDr13O493hqYR9RFj5SfwSOPR6C4BqiyXwoQ/tgN+yZ2ROzB4QjrHEwBqo+wZDi/2FOyQvYoOyFy+oglDAz5z5MBWQkAAn/Apf/AE7/gNC07YKAwKMWEzBqyFBBoc2v9icAvm0AudPjN1SiydwghFRZQwwgE1Ih+lO61UShNkcb879mlU35DnK3xz9v9MC+aw9QVKJGTLgnbj0qwM/HNVWWtVMDVoRKzfDWpnj8flZXpOnlmFDN3Qw9k7s3xoFrDwUBlQldgvHe0OYUEKgFkf4uuJMhDPqEelZvhgshpG6oaKYA9GYfKOYa5pAiRxsJGERIZL5IVPngackhdOAuaxrPrTcYPlBaVkEJHMsoaPjw8UW8WG4igNB7LhDczWhTWCNH7JrRA+9sviAowAsAgW52aBvkava1jZGIOCgAlJQ+da/A8IHvDiVi3zVNnSAplNji+S2k2Y/v8IskwJNfl3u4SZC7PV7p1QSv9GqC7MIS7L58Hzsv3MWCm+koVqghhwJNuRQ0E91GY+4uQrk0hHJpCOQeQMqZroOggAR57V+H++B5AMfhqXb+mmAAgE1nUvDOoAhI/doCiY+zFFNOAo17lvszIIQYR0EBYtVyi0pw+W4O/7wmpnQrKyjg41z5IlAudjI82VqXql+i1J0opucVQ6FUl2tsP2MMH/x1Fd8cTBQsbxfkipn9wgzWl4pFWPtCB/x66g4SHuajWxMP9G3eqNLvg1RMpxA37Ii/yz93kEsEWSOEkIbDXm74P8RsoTy91PkSUcPMFBjfJRjfHdLW0uHwZclQdJA9Dgpc3V7m9o/yivnsNy1mIvtCBCNBAb92QNcZZl/DTibBijHRaOnnhI93XYdCpUaPME+8N7Q5bMoeu2BAmymgLJ0pUEZQICNfgZNJj+BkK8VHu67xy7/22gzv7HO6FQd+AAR2qnC/AM0wyNi2/oht64+iEhVOJ2fi4I2HOHjdHb/dE04fKYESgdwDhHJpaMRlwhGFcOeyoYAUqfDClElTENQ4nF9/Ws9QfH8oESUqhuzCEpxOzkTngA66oMCd6pnxgBBrR0EBYtWS0wv4WYzsHldBrm5OZdQMcK3E7AOmeDvbgOM0MzMxppkm0FiRqtI+//emQUAAAFY80xoSE4US5RIxnuscXNUuk0ro3awR5v2hKwIZ6GZX7cNeCCF1l7kpCZlepkAJ1zCDhf6udvhlSics2nYZl+/m4JC6FR4wF0H6uTkZuQUAhHfrS1TGP1Nx6aBAYGdg5LeAqOwLe47jMKVHKJ5qG4CswhKElOP/sSm6GQg4qEUyiNSPgwEq01MQq9QMo746iqR0zZASN+TgKfEBtJWnoE+ObrYBRI8F2r9Y6b7ps5GK0a2pB7o19cC7g5vhQU4RDt1Ix6EbD3HoRjoe5UOT4cF8BdvJxCK8P7IVghoLaxI520rRtYkH9j/OcNh37QE6h+lNk5hySnPCQ/8DCakSCgoQq5amN+7e18W2RlLfHWQS/kK9NGdbabVezMkkIng72eDu46EDSen5ZQYFNpy8LZg2Sev759vBz6XuTmVlzfxcbNE+2BWnkjMBAKOosCMhDdoHI1vhnd8v8M/NDR/glLr/ayWihjl8AAA6NXbHzte7490tF7D+xG1sUXXFVMmOcm2bkZtvsKxYaTylXZApMPUQ4BNZ4b662svgWon6QfrEIl2AnomkAB8UMJ0pkPwonw8IAMCH0m/QVxwHQZzDJwoY8kmNXVR7OdlgVFt/jGrrD7Wa4eq9XJxKzsD5lCxkFZSgUKFCuLcjnuscZPLGTM8wTz4ocDQhHejVTtdYmAE8SgA8mtRI/wmxFhQUIFbtbpbu5MmnhqZzE4k4OMglyC0yLAYU6ln9FXMDXO34oMDEH0/h4OxeCHQ3LFQFAP9cuof/bLkgWLbkyVbo08wLjZwa7slkQ/Dp6Ggs230dfi62GN+ZigwS0pA93S4APx5NxtV7uQDMFxrk9IrslYgaZqaAvoXDWsDf1Ra7jw7B+OJ/YMOZvnOulZFrWHNAoTReO0DG6S0XWe60WaJ304Lp98NMUCCrQL+NCWdrAACJLTDy+wrNXlAVIhGH5r5OaO7rVKHtujbx4B9fSstBFrODi2cE8PDx+0k9TUEBQqqIZh8gVu2uXjE+3yqM7S+Lk4mCRkMifY0ur4pQL2Gkfeu5VKPr/Xv1Pl7bEAftDadGTnIcfrsXnu0YSAGBesDf1Q7Lno7GrP7hJod4EEIaBpGIQ89wT/652UwBvSJ7SisICkjFIrwc0wS/zXkW77m8j72q1tii6ooRxYtMbpOZV2CwrNhEUEDM6X3W5RgyUFP0ZypQi/TOKVTCGw6MMaw6nIS5Wy8gPiUbAIMtiuCOHDhypYIhsasAT8O6QXVNUy8HeDhoMi0YA44nPtLMQqBVespDQkiFUaYAsWqp+pkCLjV3IexkKxW8lpb+FILVZXL3EGw4eZt/nlkgvItQqFDhP1svCGYYcLSRYM2kDvB3NZ5RQAghxLL07xSbKzQoVukXGrSeIWAcx+GJoSPw3A+aYLsMpjMGsvMM/x+bDAro59pzlgsKSMS6779IZAftYISj21fjZrQnnusUBI7j8NfFe1i0XVN00R6F2C5bjDDuDs7btAe0syJKbIHZNwymU6yrOI5D51APbHs8k8PRhEcY6N0KOP94hUc3Ldc5QhoIur1ErFaxUiWYUs/YtE/VpZGT4d2aIa18IJdU/wlGY08HvNZbl0a3+/J9XErL5p9/tOuaICBgJxPjh/HtEeFdsXQ+QgghtUesN+bbXKaASG/2AYXYugK93Zp4IMrfGQCggBQPmIvR9XIKDDMFjA0f6NusETimV2tAZLnT5kh/F/7xL/m6u+Qd763HH3/+jl3HzkH9z3xk/70YdtBkQY4W70dLUTJknArti4/rduYVUW8CAlqdGutmhzqdnAk469XSyUkzsgUhpCIoKECs1ta4VH4eYplEhG5NPcrYovJ8jRTs04/6V7ewRrp/9imZhXjyy6P4cv9NfHMgAauOJPFtIg74bVpndKiBqRgJIYRUH/1Cc+YyBSRKXWE5pcS6ggIcx+GlGF1QPI0Z/9+WYzRTQFho0NVOig9HtQQHvc/agpkCbw8Mh9PjKY6XFQ9HotobgGZ4w2b5Qgz8Jwaio8vxTP46LJauQgR3GzMkm43vzKX6sxRrWrsg3Xd59V4OChwCdI3pNwC9WTcIIRVHQQFilVRqhq/2J/DPR7Xxh4dDzY29NFbFvyYnzxka6YPpfZryxYQVSjU+/Psa3v9LWGToh/Ht0cLXuQZ7QgghpDrolw4pMRsU0KspYGWZAgDQt5kX//gucze6Tk5B2YUGf53aGW62pYIAFiw06O9qh4+figIAFEGON0umQcGMBylGiQ/jb/k7cOIMMyIAAM4BxpfXYU29HOD4OCiiZsC5Im9A8njYp7oEuH/Rgr0jpP6joACxSjsv3EXyI80/SxEHTOvZuEZfz9/VSFCgBufU5TgOM/uF4adJHU0GO6b3aYoeYZ5G2wghhNQtUr2ogFJlfPw7AEj0agpYW6YAAEjEIvw6tTOcbaV4wBnPAMwvLIKqVGBFv6aAv6stmjZyBNSlpim0YKFBAOjfwhuLR7QEAJxlYZhdMhVqZv5cQmWsvfnwmuhejRKJOLQJdOWfn03J00ynqJV6xgK9IqThoKAAsToqNcPKfbqiNE9E+SKoBusJAMJ0fq2azBTQ6tbUA3tn9sSELsGCysW9wj0xs1+YYBkhhJC6Sz8oUGImKCDVCwqorDAoAAAdQtxwbE5vjO7b2Wi7iKnwKL9YsEw/U0AuefxZs1JBAQsOH9B6rlMQlj0dhfBGjsgPH4X4Ht8gngvDZXUQflT2hwq6PqpFUhxr/SEKJx8BbN0AqR3wxGdAQAcLvoPK05/KMDE9H/Brp2tMOW2BHhHScNDsA8TqbDpzh5/rGQBeigmt8dcM9XSARMQJi0PV0vW4s50UC4a1wKu9m+BSWg6KS1SUIUAIIfWMVKILCihUZoYPCDIFajbgXZfZySSAbwujbRKo8CCnGF6OulmH9GsKyLRFgOtYpoDWyDb+GNlGW2ivHQq6j8LJpAx0draFuOQKcHo1IJZA1P5FdNPeTX/zOqAsqncFBvUFu+uCXIkP84FmetMSUqYAIVVCQQFiVXKLSvDRrmv88+HRvrVSdV8mESHU0wHX7uuCEVxtRQUe83CQoycFAwghpF6S6RWnNTd8QKrSGy8vs96gAAAgoJPRxRKo8CC3CICupk5xuTIF6maCrZ1MgphwbS2FDsYzAcRSzU89Fq53vnY5LQfFjVqDHyCZkQAUZAB2VDiZkMqom3/dCKkhi7ZdRnqeAgBgIxXh7YERtfbaET71NzpPCCHEsiozfEBi41Cjfarz5A5Aq6cNFkugwv0c4fABo0GBOpopYK1a+DrBVqr5DhQqNc7nuQB2esUk0+Is0zFCGgAKChCrUKJS44t/b+C3Myn8spdjmhidKrCmhHsLgwI1WGeQEEJIA6MfFDA3fECu1gUFpLYUjMaIL4GnfxIsknIq3M8RTmGnX1NApg0KlJSq3i+pvXMGYkgqFqF1oAv//NStTMCvrW4FGkJASKVRUIA0aPdzivDjkSQMXnEIH/9znV8eFeBSK7UE9LWkqf8IIYRUkiBTQGk6U8BGrbvYldnV/PC4Ok8sBZoPA1xDdIvKzBR4nBGQ91C3gswBENOoW0trF6wbHnA6OUMYFKBig4RUGv11Iw3OvewirDtxC/9efYBLaTkG7Z6OcqwYHS04waoN0XrRbQBITs+v1dcnhBBSf8kkuvQyk8MH1CrIobvYldtTUIAn0p3ySqHCAzOZAvzwgfsXdCt4NK3R7pHyaR+sm5bw9K1MqLq20823cOcEoFYDIrrnSUhFUVCANBgqNcP3hxKxfM8NFJaoDNo5DhjTPhBvDQiHq72s1vvnZCMs8BN3J6vW+0AIIaR+KldNgaJswVMbe5ca7FE9o1dkTw4FUnOFQYEivfMGPihwN163gndkjXaPlE/rQFeIOEDNgNwiJW7KWyKcEwFMDRRlAQ+vAI2MzzpBCDGNggKkQUjLKsTMX8/heGKGQVuAmy0Gt/LBk639amWmAXMcbSTILVICAFr50XACQggh5SMMCpioKaAXFFAzDraOrsbXs0bOAcCDywCAMC4Fxx4VQKVmEIs0GRgFCiW/qr388enxPb2ggA8FBeoCB7kEzX2dcDFVkwl65I4C4d6RwN1zmhVuHaWgACGVQPk1pN7bd+0BBq04JAgIuNvL8PbACOyZ2QMHZ/fCnEHNLB4QAIBfpnSCVMxBJhbhrQHhlu4OIYSQekJYaNB4poCyIJN/nAtbONjWflZcneXbmn8YKUpCTpESF1J1QZR8hS5TwE4uBlRK4N5F3fbeUbXSTVK2rqEe/OPDN9OBoK66xltHLNAjQuo/yhQg9RZjDD8cTsKSnVeg1rtpMqSVD5Y82QrOdnVvPt4Wvs44M68fihQqeDnZWLo7hBBC6glZOYYPFGY/gna+gWxmDxcbOs3j+bXhH0aKEgAA+689QHSACwCgoFgvU0Am0WQVKAs1C0QSwLtVrXWVmNe9qSe+OZgIADiW8Agl7TtBenylpvHWUYAxmuKJkAqiTAFSLzHG8MFfV/HfHbqAgJ1MjI+fisIXz7aukwEBLScbKQUECCGEVIhUv9CgidkHCnLS+cc5cICjnIICPL1MgUZcFryQif3XdLMLCDIFZGIgVa+SfaOWgJT+b9cV7YJd+boPhSUqnEMzXWPefSAj0UI9I6T+oqAAqXce5RVj5q/n+SgxAPi52GLTtC6IbesPjqLDhBBCGpjy1BQoytUNoysQ2dP/Q30OXoCTP/80UpSI8ylZyMhXABDWFHCQS4AUvTnv/dvVWjdJ2WykYnRs7M4/33dHBXjqBQaSD1ugV4TUbxQUIPVGfrESX/x7AzEf7ceWuFR+eTMfJ2x9pSua+1q+ZgAhhBBSE2SlagowZhgYUOXc5R/nStwM2q2ebzT/MFKUAMaAQzc02QJZBSV8m4ONRJgp4EdBgbqmR1NdXYGDNx4CwXp1BRL2WqBHhNRvFBQgdV5KZgE++ecaeny4Dx//cx25euP+2gS64JfJneDpKLdgDwkhhJCapZ8pAABKtZFsgdz7/MM8mYdhu7XTu+PfS3QOALD/2kMoVWokp+fzbX62SuDhNaPbkbqhR5gn//hiag4e+fTQNSbsA1QlRrYihJhCg81InZNfrMTRhEc4fOMhDt1MR+LDfIN1nGwkeL1vGMZ3DoJETLEtQgghDZtULBwKUKJSGwQKxPm6oECRjVet9KteCR8M7FkAAGglSkYIdxcHr8sQn5rN1xSQiUVorr4B4HHQxcYZcAu1TH+JSU29HBDiYY+kx8GcbTlNMEEsB1TFQHEOcPs4ENLdwr0kpP6wuqupoqIizJ8/H2FhYbCxsYGvry8mTZqElJQUS3fN6l27l4uZv55D60W7MXntaaw5dssgICCXiDCtZygOvdUbL3QLoYAAIYQQqyCVCP/flSgNMwVsC3XDB0psKShgwDMcaKSbReAJ0TE8ylfg7U3x/LLoABfIU47qtvHvAIjoXKOu4TgOg1p688+3XckWBgFu7LJArwipv6zqr1xRURH69OmDRYsWIS8vD8OHD0dAQABWr16NNm3aICEhwdJdtEoqNcPKfTcx5LND+P1sqtH5l0M87PHOoAgcm9MH7wyKqNOzCxBCCCHVTVYqCG7wv5IxOBfe0bU7BtZGt+qfliP5h8PERwEw3HiQxy/r1NhNWKiO7jbXWYNb+fCPz9zKRIZvT13jle2aqQkJIeViVcMHlixZgqNHj6Jz5874559/4ODgAABYtmwZZs2ahUmTJuHAgQMW7qV1ScsqxBsbz+FEUoZguZONBN2aeqB7U090a+KBADc7C/WQEEIIsbzSQwVKSgcF8h9Cri7knzL3JrXRrfqn5Uhg70IAQBNRGppzt3CZBfPN3YPsgON6Mw8EU1Cgrmrh64RQT3skPM4qXZ8ThVe1jZlJmroQXhEW6x8h9YnVZAqUlJTg888/BwCsXLmSDwgAwMyZMxEZGYmDBw/izJkzpnZBqtmO+LsYtOKQICDg52KLFWOicWZeP3w5ti2e6RBIAQFCCCFWTyziINIrK2AQFHiky3bMZA7w8KThA0a5BgP+7fmnY+UH+cfeTjZoo44H1I+L1MmdAO/IWu4gKS+O4zCuUxD//Pv4YjCPcN0KaXEW6BUh9ZPVBAUOHz6MrKwshIaGonXr1gbtsbGxAIBt27bVdteszo37uZj602m8sv4ssgt11WGHRPpg5+vdMTzaz+COCCGEEGLt9P83lqhKpUZnJPIPk5k3fJxta6tb9U/0WP7hsw7nMLZjINoGueLzZ6IhPvGVbr3GMYDYqpJq652RbfwheRwtyyoowX1bvaKQhz8FFAUW6hkh9YvV/KU7f/48AKBNmzZG27XLtetVllqtRlZWVpX20dBcSMlGfEoW7mQUID41GxdTswXttjIx5gyKwPBoP7DifGQVW6ijhBBCLKMgE4j7SfNYcK3Lyn7MamJ5Ne6juvrIGGaXpEChUoMDcOvHdbgnFYN73N7i/p/8FpdUbohGUY2dj2RnZ5t9Xud5dgCKHn+uRXcxO/w3wB/A3/9D1q1DuvWajQXonK7Oa+rC4VJaLgDg5ettsIrboWlIuYr0D7oiyb0HGMeZ2YPGlUYjUCx1rMmultukrlRMm1SMWq2GqApFUa0mKHD79m0AgL+/v9F27XLteua0aNHC6PKrV69CrVbD1dW1kr20XhM/snQPCCGEkIZiD/CxX629WnBwcK29Vs1YbHzx0kG12w1SZXcAbBEsOff4pzxWVG9nquBtS3eA1Ev6w+MrymqCAnl5msqydnbGx6fb29sL1qsMbYQmIoKKmpCK0c58ERpKcyGTiqPjh1QWHTuksujYIZVFxw6pLDp2TLt9+zZ/PVsZVhMUYI9T8TgT6UOsAtOWXLp0yehybQaBqXZCTKFjh1QFHT+ksujYIZVFxw6pLDp2SGXRsVNzrGawiqOjZoxQfn6+0faCAk0hkqqkXRBCCCGEEEIIIfWJ1QQFAgMDAQApKSlG27XLtesRQgghhBBCCCENndUEBaKiogAAZ8+eNdquXR4ZSfPREkIIIYQQQgixDlYTFOjatSucnZ2RkJCAuLg4g/ZNmzYBAIYOHVrbXSOEEEIIIYQQQizCaoICMpkMr776KgDg1VdfFdQWWLZsGeLj49GtWze0b9/eUl0khBBCCCGEEEJqFccqUna/nisqKkJMTAxOnDgBHx8fdO/eHbdu3cKJEyfg7u6O48ePo0mTJpbuJiGEEEIIIYQQUiusKigAAIWFhXj//fexfv163LlzB66urhg4cCAWL16MgIAAS3ePEEIIIYQQQgipNVYXFCCEEEIIIYQQQoiG1dQUIIQQQgghhBBCiBAFBQghhBBCCCGEECtFQQFCCCGEEEIIIcRKUVCAEEIIIYQQQgixUhQUIIQQQgghhBBCrBQFBQghhBBCCCGEECtFQYEaVlRUhCVLliAqKgr29vawsbFB06ZNMX36dNy7d8/S3SP1wKZNm9C/f394eHjAxsYGgYGBGDlyJA4fPmzprpF6YtGiReA4DhzH4ZdffrF0d0gddfXqVSxduhR9+vRBYGAg5HI5vL29MXLkSBw6dMjS3SN1QFFREebPn4+wsDDY2NjA19cXkyZNQkpKiqW7RuqwgoICbN26FS+88AIiIyPh5OQEe3t7REVFYdGiRcjLy7N0F0k9kZGRAS8vL3Ach4iICEt3p0HhGGPM0p1oqIqKitCzZ0+cPHkSbm5u6Ny5M2QyGU6ePInU1FR4e3vj2LFjCA4OtnRXSR2kUqnw/PPPY/369bC3t0e3bt3g4uKC27dv48yZM5g3bx7mzp1r6W6SOu7atWuIioqCQqEAYwwbNmzAmDFjLN0tUgf5+/sjNTUVTk5O6NixI1xdXXH58mVcvHgRHMdh2bJlmDFjhqW7SSykqKgIffr0wdGjR+Hj44Pu3bsjOTkZJ0+ehKenJ44dO4bQ0FBLd5PUQd9//z0mT54MAGjRogWaN2+OnJwcHD16FLm5uYiIiMCBAwfg5eVl4Z6Sum7ChAlYu3YtGGMIDw/H1atXLd2lhoORGrNixQoGgHXs2JFlZ2fzy4uKithTTz3FALDnn3/egj0kddlbb73FALDBgwezR48eCdoyMjLY9evXLdQzUl+o1WrWo0cP1qhRIzZ8+HAGgG3YsMHS3SJ1VL9+/dj69etZcXGxYPnXX3/NADCxWMwuXbpkod4RS5s3bx4DwDp37sxyc3P55Z988gkDwHr06GHB3pG6bM2aNeyll14yOG9JS0tjrVu3ZgDYM888Y6Hekfpiz549DACbMmUKA8DCw8Mt3aUGhTIFalBsbCw2b96MX375BaNHjxa0nTt3Dq1bt0azZs1w+fJlC/WQ1FU3btxAs2bN4OfnhytXrsDOzs7SXSL10HfffYcpU6bg559/xu7du7FmzRrKFCCVMmDAAPzzzz9YsGAB5s+fb+nukFpWUlICLy8vZGVl4ezZs2jdurWgPSoqCvHx8Th9+jTatm1roV6S+ujYsWPo0qUL5HI5cnJyIJPJLN0lUgcVFhYiMjISMpkMW7duRVhYGGUKVDOqKVCD5HJ5meu4ubnVQk9IffP9999DpVJh2rRpFBAglXLv3j289dZb6NOnD8aOHWvp7pB6LioqCgCQlpZm4Z4QSzh8+DCysrIQGhpqEBAANDdBAGDbtm213TVSz2n/thQXF+PRo0cW7g2pqxYuXIiEhAR89dVXkEqllu5Og0RBgRrUr18/AMDy5cuRk5PDL1coFFiyZAkAYPz48RbpG6nb9u7dC0BzDCUlJWHJkiWYOnUq5syZgz179li4d6Q+mD59OgoLC/HVV19ZuiukAUhMTAQAeHt7W7gnxBLOnz8PAGjTpo3Rdu1y7XqElJf2b4tUKqUbZcSo+Ph4fPLJJ5g4cSJ69Ohh6e40WBJLd6Ahe+6557Bz50789ttvCAkJQZcuXSCVSnHy5Enk5ubif//7H194hRB9ly5dAgCcOHECs2bNQnFxMd/2wQcfoG/fvti8eTOcnJws1UVSh23fvh2//fYbFi5ciKZNm1q6O6SeS0hIwPbt2wEAw4YNs3BviCXcvn0bgKYYpTHa5dr1CCmvFStWAAAGDhxYrgxbYl3UajUmT54MFxcXfPjhh5buToNGmQI1SCwWY8OGDXjzzTeRkZGB7du3Y8uWLUhNTUV0dDS6detm6S6SOqioqAhFRUUAgBkzZqBnz56Ij49HTk4Odu/ejZCQEOzZswdTpkyxcE9JXZSXl4eXX34ZYWFhePvtty3dHVLPKZVKTJgwAcXFxRg9ejSNF7dS2injTA1ns7e3F6xHSHns3LkTP/zwA6RSKRYvXmzp7pA66PPPP8fJkyfx0Ucfwd3d3dLdadAoU8CM2NhYXLx4sULbrF27Fh06dAAAZGZm4sknn8SpU6ewYsUKjBo1CnZ2djh48CBee+019OnTB7/99htGjBhRA70nllSVY0elUvHL/Pz8sG3bNr7wTt++ffHHH38gOjoav/76KxYvXkx3ghuYqv7deffdd3Hnzh3s3buX7rpYmaoeO8a89tprOHz4MBo3bowvv/yyql0k9ZS2JjXHcWbbCSmvK1euYNy4cWCM4aOPPuJrCxCidefOHcydOxc9e/bEhAkTLN2dBo+CAmYkJyfj2rVrFdqmoKCAf/zGG2/gwIEDWL58OaZPn84vHz58OPz8/NCxY0e8/vrrGDp0KCQS+ioakqocO/b29hCJRFCr1Rg3bpxBJd5WrVqhXbt2OHnyJA4cOEBBgQamKsfOyZMnsXLlSjz33HPo3bt3TXSP1GFV/Z9V2qJFi/D111+jUaNG2LVrF433tWKOjo4AgPz8fKPt2uPIwcGh1vpE6q+UlBQMHDgQmZmZmDlzJl5//XVLd4nUQS+//DIUCgXVRqoldCVqxunTpyu9rUqlwoYNGwDoqvLqa9euHUJCQpCQkIDExESEhYVV+rVI3VOVYwcAgoKCkJSUhKCgIKPtwcHBOHnyJB48eFCl1yF1T1WOnZ07d0KtVuPChQuIiYkRtGmn7dFe6MXGxuLVV1+tSldJHVPVvzv6Vq5cifnz58PZ2Rl///03mjRpUm37JvVPYGAgAM3FnDHa5dr1CDElPT0d/fr1w+3btzFx4kR8/PHHlu4SqaO2b98OFxcXvPTSS4Ll2iG2t2/f5s91tm/fTkHJKqKgQA158OABFAoFAJgsBqddnpGRUWv9IvVD69atkZSUZPLY0E7bQ38AiTHnzp0z2XblyhVcuXIF0dHRtdYfUr+sW7cOr732Guzs7LBjxw46Vgif2n327Fmj7drlkZGRtdYnUv/k5uZi0KBBuHr1KkaOHInvvvvO5JAUQgAgKysLBw4cMNpWWFjItymVytrsVoNEhQZriJubG5/2bezuTU5ODp/maepuMLFe2grf+/btM2jLzc3lT8BMTQ9FrNOCBQvAGDP6o53+dMOGDWCMYfny5ZbtLKmTdu7ciQkTJkAqlWLLli3o2rWrpbtE6oCuXbvC2dkZCQkJiIuLM2jftGkTAGDo0KG13TVSTxQXF2P48OE4ffo0BgwYgA0bNkAsFlu6W6QOM3U+k5SUBAAIDw/nl7m4uFi2sw0ABQVqiFwux8CBAwEAM2fOxN27d/m2oqIivPzyyygoKEDXrl3h4+NjqW6SOmrMmDEIDg7Grl27sGbNGn65UqnE66+/jszMTLRs2ZJO2Akh1ebIkSP8cLeNGzeif//+Fu4RqStkMhk/3OjVV18V1BZYtmwZ4uPj0a1bN7Rv395SXSR1mEqlwjPPPIN9+/ahe/fu+P333w3qJRFCLItjVDK2xiQkJKBr1664f/8+HB0d0blzZ9ja2uLUqVNIS0uDm5sbDhw4gJYtW1q6q6QOOn78OPr27Yv8/Hy0adMGwcHBOHv2LJKTk+Hu7o59+/ahVatWlu4mqScmTJiANWvWYMOGDRgzZoylu0PqIFdXV2RlZSEkJAQ9evQwuk63bt3w4osv1nLPSF1QVFSEmJgYnDhxAj4+PujevTtu3bqFEydOwN3dHcePH6faE8SoFStWYMaMGQCAJ5980uSw2o8//hgeHh612DNSHyUnJyMkJATh4eF8vSRSdVRToAaFhobi/PnzWLp0Kf766y8cPHgQjDEEBATglVdewTvvvAN/f39Ld5PUUZ06dUJcXBwWLlyIPXv24MKFC2jUqBEmT56MuXPnUkEnQki1ysrKAgAkJSXx6ZnGUFDAOtnY2GDfvn14//33sX79emzduhWurq4YP348Fi9ejICAAEt3kdRRmZmZ/OMtW7aYXG/BggUUFCDEQihTgBBCCCGEEEIIsVJUU4AQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIIYQQQgghxEpRUIAQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIIYQQQgghxEpRUIAQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIqeM4jivzZ8KECZbuptWIiYkBx3FITk6u8dfiOA7BwcE1/jp1WXBwsNljv759PrV5/BCd3r17IygoCAqFolLbZ2ZmwsbGBiKRCLdv3y5z/UmTJoHjOPznP/8BAMTFxYHjOHz00UeVen1CCKlJEkt3gBBCSPmMHz/eZFu3bt1qsSekOuzfvx+9evXC+PHj8eOPP1q6O+W2YMECLFy4EKtXr67VYNSoUaPg4OBgsNzDw6PW+kDqpx07dmDfvn346quvIJPJKrUPV1dXDBkyBL///jvWr1+Pd955x+S6RUVF+P333wEA48aNAwC0bt0aw4YNw5IlS/DCCy/Azc2tUv0ghJCaQEEBQgipJ+rThSOpHleuXIFUKrV0N+qEjz/+uN5lBRizdu1aFBQUwM/Pz9JdsRrvvvsuvLy8MGnSpCrt57nnnsPvv/+On3/+2WxQYNu2bcjOzkbbtm3RrFkzfvmcOXPw559/YunSpVi6dGmV+kIIIdWJhg8QQgghdVRERARCQ0Mt3Q1SjQIDAxEREUHBnlpy5MgRxMfHY8yYMZXOEtAaPHgw3N3dcenSJZw/f97keuvWrQOgCSLo69SpE5o0aYJVq1ZVehgDIYTUBAoKEEJIA6Qda61SqfDhhx8iLCwMcrkcAQEBePvtt1FcXGx0u7y8PCxatAitWrWCnZ0dnJyc0LNnT2zdutVg3eTkZHAch5iYGOTk5GDWrFkICQmBVCrFjBkz+PXi4uIwaNAgODs7w9nZGQMGDMCpU6fw448/guM4LFiwgF+3ZcuW4DgO169fN9q/5ORkiEQiNG3aFIyxMj8H/fHb69evR6dOneDo6AgXFxd+HcYY1qxZgx49esDFxQW2traIjIzExx9/jJKSkjJfQ+vQoUN49dVXERkZCVdXV9ja2iIiIgLvvPMOsrKyBOtOmDABvXr1AgCsWbNGMEZe//MoPWZ+8+bN4DgOY8aMMdmPl19+GRzH4bvvvhMsr8h3a0pwcDAWLlwIAJg4caKg3/v37xes+9NPP6Fbt25wcnKCnZ0dIiMj8f7776OoqKjcr1cZycnJmDp1KoKDgyGXy+Hp6YnY2FjEx8cbrKt/DF6/fh1jxoxBo0aNIBKJsHXrVsExnp+fj5kzZyIgIAC2trZo06YNtm3bxu/rt99+Q4cOHWBvb49GjRph+vTpKCwsNHjNytYUOHz4MJ588kl4eXlBLpcjODgY06dPx8OHDw3WnTBhAv+dHDx4EL1794ajoyOcnJwwZMgQXL582eTrbNu2DQMGDIC7uztsbGwQFhaGefPmIS8vz+x7MfX7lZeXhzfffJP/3Jo3b47PPvsMjDGD4/ujjz4SjMM3plevXuA4DocPHy7X5/b9998DAMaOHWtynQsXLmDs2LHw8/ODXC6Hr68vJk6caPAdyWQyPP300wCAn3/+2ei+MjIy8Ndff0EsFhv9PX3mmWeQnp6OLVu2lKv/hBBSKxghhJA6DQCr6J9rACwoKIiNHj2a2dvbs169erGhQ4cyZ2dnBoCNHTvWYJt79+6x5s2bMwDMz8+PDRs2jPXt25fZ29szAOz9998XrJ+UlMQAsA4dOrDo6Gjm6urKRowYwUaOHMkWLFjAGGPsyJEjzNbWlgFgrVu3ZmPGjGGRkZFMJpOxqVOnMgBs/vz5/D4/++wzBoDNnj3b6PuaO3cuA8A++OCDcn0OPXv2ZADYlClTmEgkYt27d2djxoxhXbt2ZYwxplKp2FNPPcUAMCcnJ9anTx82fPhw5u3tzQCwwYMHM5VKZXSfSUlJguUdO3ZkcrmctW3blo0cOZINGTKE+fj4MACsRYsWLDc3l1/3u+++YwMGDGAAWGhoKBs/fjz/s2XLFn497feoVVRUxJydnZmtra1gf1olJSXMw8ODyWQylpGRwS+v6HdryqxZs1hUVBQDwLp27Sro95UrV/j1pkyZwgAwGxsbNnjwYBYbG8s8PDwYANa5c2dWUFBQrtdjjLGgoCCjn7cxhw4dYk5OTvxnHhsbyzp37sw4jmO2trbs33//Fay/evVqBoCNGTOGOTk5sZCQEDZ69GjWv39/tn37dv4Y79y5M+vYsSPz8PBgQ4cOZTExMUwkEjGxWMx2797Nli1bxiQSCevcuTMbMWIEc3d3ZwDYs88+a9BHU8ePOStWrGAcxzGxWMw6d+7MYmNjWUREBAPAQkJCWFpammD98ePHMwBs5syZTCwWs6ioKDZq1CgWFhbGADB3d3d29+5dg9eZOXMm/7316NGDjRw5kv/827Zty/Ly8oy+F1O/X4WFhaxDhw4MAPP09GSxsbFs4MCBTCaTsenTpxsc3w8fPmRyuZz5+PiwkpISg/7duHGDcRzHIiIiyv3ZeXl5MXt7e4PfY61NmzYxmUzGv8fY2FjWunVr/nO6ePGiYP2jR4/yv0fG9vn1118zAGzQoEFGX2/v3r0MAHvuuefK/R4IIaSmUVCAEELquMoGBQCwZs2aCS4+EhMTmaurKwPAbt68Kdhm0KBBDAB76623mEKh4JcnJCSw0NBQJhaL2fnz5/nl2gsm7UVTZmamYH8qlYq/CPnwww8FbYsWLeK31Q8KZGVlMTs7O+bl5SXoA2OMKZVK5ufnxyQSCbt37165PgftRYuNjQ3bv3+/QfvSpUsZANavXz/24MEDfnleXh574oknGAD2xRdfGN1n6Yu6HTt2CC7EGdNcxGsvkBcuXCho27dvHwPAxo8fb7L/pS+aGGNs0qRJDABbu3atwfo7duxgANiIESMEyyv63Zozf/58BoCtXr3aaPumTZv4i6YbN27wy7Ozs1m3bt3MBn2MKW9QIDs7m3l7ezOpVMp+++03Qdvu3buZTCZjfn5+rLi4mF+uDQoAYK+++ipTKpWC7fSP8ZiYGMH3q922SZMmzM3NjR08eJBvS01NZV5eXgwAS0hIEOyzokGBY8eOMZFIxIKCggTfkVqt5n+PYmNjBdtogwIikYitX7+eX65UKtmoUaMYADZv3jzBNhs3buSDd/p9UygU/DH85ptvGn0vpn6/Fi9ezP99yM7O5pefP3+e/ztU+vh+9tlnGQC2detWg/29/fbbDAD75JNPTH9geq5cucIAsB49ehhtT0xMZHZ2dszZ2ZkdOHBA0LZmzRoGgLVv395guyZNmjAAbO/evQZt2mN83bp1Rl8zJyeHiUQiFhwcXK73QAghtYGCAoQQUsdpL0rM/ejfXdbfZs+ePQb7e+211wwu6uLi4hgA1qVLF6ZWqw222bp1KwPAXnvtNX6Z/gXTqVOnDLbZvXs3A8AiIiIM9qlUKllISIhBUIAxxiZOnMgAsE2bNgmWb9u2jQFgI0eONPVRGdBetLzyyisGbdq76o6Ojuzhw4cG7ffu3WNyuZy1atXK6D7Le1FXUFDAJBIJa9OmjWB5ZYMC2juNAwYMMFh/7NixDIDgorgy3605ZQUFevTowQCwH374waAtPj6ecRzHHB0dBRfn5miDAqZ+4uLiGGOMffrppwwAmzNnjtH9zJgxgwFgmzdv5pdpL+w9PT1Zfn6+wTbaY1wsFgsCHIxpgl6enp4MAHvvvfcMtn3jjTeMfk4VPX6GDx/OALBdu3YZtKnVata6dWsmEokEx7A2KDBu3DiDbc6cOcMAsJ49ewqWazNArl69arBNYWEh8/b2Zi4uLoK74+Z+vxhjzN/fnwFgx44dM2h77733jB7fBw4cYADY0KFDBctLSkqYt7c3k8lkRn9fjdEGOiZPnmy0/fXXX2cA2DfffGO0fcSIEQwAO3PmjGD5ggULGAA2adIkwfLk5GTGcRxzcHAwejxp+fn5MQCCQAkhhFgS1RQghJB6Yvz48SZ/AgMDDdaXSqWIiYkxWB4WFgYAuHv3Lr9s9+7dAIDhw4eD4ziDbbRTHp46dcqgzcfHB+3atTNYfvToUQBAbGyswT7FYjFGjhxp9H1OmzYNAAzGxGufT5482eh25gwbNsxgWVxcHNLT09GtWzej09o1atQITZs2xcWLF42ODTcmNTUVX3/9NWbMmIFJkyZhwoQJeOmllyCTyXDjxo0K99uYmJgY+Pn5Yc+ePXjw4AG/vKCgAH/88QecnJwwdOhQfnlVvtuKKikpwfHjx8FxHJ599lmD9latWiEyMhK5ublmC7UZM2rUKKPHvnZqN+37HDFihNHtzb3Pvn37ws7OzuRrBwcHo0mTJoJlIpEIQUFBAIB+/foZbKMtEKn/e1ZRarUae/fuhaOjI/r06WPQznEcunbtCrVajTNnzhi09+/f32CZsd//Bw8e4Pz582jWrBnCw8MNtrGxsUG7du2QlZVl9Dg29vt1+/ZtpKSkwN/fH506dTJof+qppwyWAUCPHj3QvHlz/PXXX0hNTeWXb9u2Dffu3cOTTz5Z7mkotb8frq6uRtv1fzeMMXXMaAsIbt68WVAjY926dWCMYeTIkWaPJ+0xa6weBCGEWAJNSUgIIfVERack9PHxgVgsNliunetdv9igtqDW22+/jbffftvkPtPT0w2WGQtIAEBaWhoAICAgwGi7qe06dOiA1q1bY/fu3bh16xaCgoJw9+5d7Ny5E4GBgUYvdMpi7LW07/mvv/4yerGsLyMjo8wp5JYtW4Y5c+bUeFVxkUiEMWPG4JNPPsHGjRvx2muvAQD+/PNP5OXlYeLEibCxseHXr8p3W1GPHj2CQqGAt7e3oA/6goODcf78ef74KK+ypiTUvs+OHTua3U9FjmEtU9+9vb29yXZtm6minuXx6NEjvsCfRGL+lM3Y+/L39zdYZuz3/9atWwA0U2CW9buQnp5uEDgw9vlV9vcfAKZMmYIZM2Zg1apVmDdvHoDKBQWzs7MBAI6OjkbbtceMt7e32f2U/mwbN26MLl264OjRo9i+fTtiY2MBmJ51oDQnJydB/wghxNIoKEAIIQ1UWSf3+lQqFQCge/fuaNy4scn1jN2hM3XxV1Y/mJnZA6ZOnYpp06Zh1apVWLhwIVavXg2lUokXXngBIlHFk9yM9VH7nps2bYouXbqY3V4ul5ttP378OGbNmgVnZ2d8++23iImJgbe3N7+dr69vle4YlzZ27Fh88sknWL9+PR8UWL9+Pd+mryrfbWWV59iryPFZHtr3+dRTT5m9S2ssaFDZY7i87ZWlfU+Ojo4mM2u0tFkLlemX9nV8fHzKDLq5u7sbLDP3+VXmsxk/fjzmzJmDVatWYe7cuUhJScGuXbvQuHFj9O7du9z7cXZ2BgDk5OQYbVepVOA4Ds8//7zZ/bRo0cJg2XPPPYejR4/i559/RmxsLOLi4nD58mX4+vqW2UdtMEDbP0IIsTQKChBCCOHvKMbGxmL69OnVsk8fHx8AmjRiY+7cuWNy27Fjx2L27Nn8ncIffvgBIpEIkyZNqpa+Abr33LJlywpnYZSmnV7sv//9L8aPHy9oKywsxL1796q0/9Jat26NZs2a4fjx40hMTISrqyt27doFHx8ffqpDrZr4bk1xd3eHTCbDvXv3UFhYCFtbW4N1tHeltcdHdfH398e1a9cwd+5cREZGVuu+LcXDwwNyuRxSqbTKx6g52mPE29u72l6nrN9/U8sBwMXFBaNHj8aPP/6I3bt349ixY1Cr1XjxxRcrFGTw8vICoMn0Mcbf3x8JCQn47LPP+Lv35TV69Gi8/vrr+Ouvv5CZmclnCTz77LNlBi4zMzMBAJ6enhV6TUIIqSlUU4AQQgj69u0LABWas74s2rvvmzdvNsgKUKvVZufpdnBwwLPPPouUlBTMnj0biYmJGDRokNF06Mpq3749nJ2dsW/fPpN3EstLe5JvLFX6t99+M5oVIZPJAABKpbJSr6nNCFi/fj1+++03KBQKPPPMMwYXJNX93Zrrt1QqRadOncAYw4YNGwzaL168iPPnz8PR0RFRUVHV0h+tmjiGLU0ikSAmJgYZGRk4ePBgjb2Ov78/wsPDER8fj6SkpGrZZ1BQEHx9fZGSkoITJ04YtG/atMns9lOnTgUAfPPNN1i1ahUkEgkmTJhQoT5oj7GrV68aba/KMePq6oohQ4ZAoVDgl19+4Y/3cePGmd0uJycHaWlpCAkJqXAgghBCagoFBQghhKBTp07o06cP9u3bhzfeeIMfx6ylVqvxzz//4PDhw+XeZ+/evdGkSRNcuXIFn376qaDtgw8+QGJiotnttQUHly9fDqByBQbNkcvlePPNN5GVlYVRo0bxd7D1xcfHY+PGjWXuS1u87YcffkBJSQm//PLlyybH8fv6+gIArl27Vpnu84X81q1bZ3LoAFD9321Z/dYOZ5g/f77gO87NzcWrr74KxhimTp3KBxeqy9SpU+Hp6YklS5Zg9erVBoGY/Px8rF27FikpKdX6ujXt3XffhUgkwvjx441+R2lpaVi5cmWVX2fu3LlQqVQYNWoULl68aNCekJCAVatWVWif2gv7WbNmITc3l19+8eJFfP7552a37dSpE6KiovD777/j9u3bGDp0aIWzS8LDw+Hl5YWzZ88aDWLNmjULtra2eOONN7Bt2zaD9oyMDHz55ZcmC41qawfMmzcPaWlpaNWqVZnBrlOnToExhu7du1fovRBCSE2i4QOEEFJPmLtLFhgYiEWLFlVp/+vWrUP//v2xfPlyrF27FtHR0fD09ERqaiquXbuGhw8f4tNPP+UrcpdFLBZj9erV6NevH2bNmoV169YhPDwcly9fxpUrVzB58mR89913Ji8Oo6Oj0aFDB5w8eRI+Pj4YMmRIld6fMe+++y4uX76MDRs2IDw8HG3atEFgYCDS09ORmJiIpKQkDB8+HKNHjza7n4kTJ+KTTz7Btm3bEB4ejvbt2yMjIwMHDhzAiBEjcPLkSYOgQ3BwMCIjI3H69Gl06NABLVq0gFgsxrBhw4xWcy8tJCSEL3Z29epVREREoE2bNkbXrc7vtn///rCxscGnn36KixcvwtfXFxzHYfbs2QgPD0dsbCymTJmCb7/9Fi1btkTv3r1hZ2eH/fv34+HDh+jUqRMWLlxY5utUlKurK7Zs2YJhw4Zh0qRJWLhwIVq2bAm5XI7bt2/jypUryM/PR1xcXLVmnNS0Hj16YMWKFZgxYwa6d++OyMhING3aFEVFRbh16xauXLkCBwcHvPLKK1V6nXHjxuHChQv48MMPER0djdatWyMkJAQ5OTm4desWrl69iqioqAoN4Zk9eza2bduGI0eOIDQ0FDExMcjLy8O///6LyZMn44svvjAbHJo6dSpefvllAJUPCg4ePBg//vgjTpw4ga5duwramjZtip9//hnjxo3DsGHDEB4ejmbNmoExhlu3buHy5ctQKBR49tlnjQ6FGTJkCNzc3PDo0SMAZWcJAMD+/fv5fhFCSJ1hsckQCSGElAvMzNGu/YmKijLYpvT831raudnnz59v0FZQUMCWLVvGOnbsyBwdHZlcLmfBwcGsf//+bOXKlYL5wbVzuJee77y006dPswEDBjBHR0fm6OjI+vTpw44dO8b++9//MgDs66+/NrntnDlzGAD27rvvmn0NU8o7J/ymTZvYwIEDmYeHB5NKpczHx4d16tSJLViwwGDedlP7vHPnDnv22WeZn58fs7GxYc2aNWPvv/8+UyqVLCgoiBn7l3vjxg02YsQI5u7uzkQikcH3Yu57ZIyxlStX8sfAokWLzL7Hiny3Zdm1axfr2rUrc3Bw4F9/3759gnXWrl3LunTpwhwcHJiNjQ1r0aIF+9///scKCgrK/TqMMf6zK+s71EpNTWWzZs1iERERzNbWljk4OLCwsDA2evRotnHjRlZcXMyva+53gbGyj3Fzx5epfZf3mCzt9OnTbOzYsSwgIIBJpVLm5ubGIiMj2SuvvML2798vWHf8+PFGvxMtc8fV3r172ZNPPsm8vb2ZVCplXl5erE2bNmz27NnszJkzFX4v2dnZ7I033mB+fn5MJpOx8PBw9sknn7A7d+4wAKxTp04mt7127RoDwPz9/ZlSqTS5njlHjhxhANjLL79scp3r16+zqVOnssaNGzO5XM6cnZ1Zs2bN2MSJE9n27duZWq02ue20adMYACYSididO3fK7E9oaCjz8PAQHIeEEGJpHGNmyj8TQgghNWTQoEH4+++/cfz4caMV4RljiIiIwI0bN3Dz5k2zlfMJIfXLxo0bMWbMGEybNg1fffWV0XWWLFmC//znP5g/fz4WLFhQ6ddq3bo1UlJSkJKSUuZMIjXp2LFj6NKlC9566y0sXbrUYv0ghJDSqKYAIYSQGpORkWGQNs8Yw+eff46///4bTZo0QYcOHYxuu2nTJly/fh2DBw+mgAAh9dS5c+egVqsFyy5cuIC33noLgK42Rmk5OTn88IIpU6ZUqQ//+9//kJ6ejh9++KFK+6mqDz74AC4uLvx7J4SQuoIyBQghhNSY48ePo0uXLoiMjETjxo2hUqlw8eJFJCYmwtbWFjt37kRMTIxgmxdffBFZWVnYvn07lEolTp48aXKsPCGkbouIiEBOTg5atWoFV1dXJCcn4/Tp01CpVEazBFavXo0DBw7g4MGDSEpKwhtvvIFly5ZVuR+9e/fGzZs3cfPmzWovclkecXFxaNOmDZYuXUpBAUJInUNBAUIIITXmwYMHWLBgAfbt24e0tDQUFhbCy8sLPXv2xDvvvINWrVoZbMNxHCQSCcLCwrB48WKMHDnSAj0nhFSHlStX4pdffsH169eRmZkJOzs7REZG4oUXXsD48eMN1p8wYQLWrFkDT09PjBkzBh999JFFU/4JIcQaUFCAEEIIIYQQQgixUlRTgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVL/B9WmHgU+JXPjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.plot(dft_energy-fermi_energy, dft_dos, label='Initial DFT total')\n", + "ax.plot(energies[0], np.sum(doss, axis=(0, 1)), label='PLO from CSC')\n", + "#for energy, dos in zip(energies, doss):\n", + "# ax.plot(energy, dos.T)\n", + "ax.axhline(0, c='k')\n", + "ax.axvline(0, c='k')\n", + "ax.set_xlim(-8, 5)\n", + "ax.set_ylim(0,)\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.legend()\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "2a2a3293-3ef7-4457-942d-8a6bdcaabe29", + "metadata": {}, + "source": [ + "This plot shows the original DFT charge density and the PLO-DOS after applying the DMFT charge corrections. It proves that we are capturing indeed capturing the eg bands with the projectors, where the partial DOS differs a bit because of the changes from the charge self-consistency. Note that this quantity in the CSC DMFT formalism does not have any real meaning, it mainly serves as a check of the method. The correct quantity to analyze are the lattice or impurity Green's functions.\n", + "\n", + "## 3. Plotting the results: observables\n", + "\n", + "We first read in the pre-computed observables from the h5 archive and print their names:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d353c296-868a-45b5-bda6-2481d4df74ed", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5', 'r') as archive:\n", + " observables = archive['DMFT_results/observables']\n", + " conv_obs = archive['DMFT_results/convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ad578719-aa61-4560-baba-f01a4f28b726", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['E_DC', 'E_bandcorr', 'E_corr_en', 'E_dft', 'E_int', 'E_tot', 'imp_gb2', 'imp_occ', 'iteration', 'mu', 'orb_Z', 'orb_gb2', 'orb_occ'])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "observables.keys()" + ] + }, + { + "cell_type": "markdown", + "id": "bd150f57-3a8c-418a-a088-470180c86d87", + "metadata": {}, + "source": [ + "We will now use this to plot the occupation per impurity `imp_occ` (to see if there is charge disproportionation), the impurity Green's function at $\\tau=\\beta/2$ `imp_gb2` (to see if the system becomes insulating), the total energy `E_tot`, the DFT energy `E_dft`, and DMFT self-consistency condition over the iterations:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "41e955de-7a19-4e1f-bf27-f6973a8855d1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAS/CAYAAAC5X2fcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUVf4G8PdOTW+UJEBo0iUgVRAQUEHBAliwUxZcdNVFLKurS9HVVdZ1FQsqEor6Q0AFpKksSlWQAAqh10BCQiCQXqbe3x93ZjKTTDKTycydm+T9PM995s5t50wISt6c7zmCKIoiiIiIiIiIiIiISBFUwe4AERERERERERERVWBgR0REREREREREpCAM7IiIiIiIiIiIiBSEgR0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2BERERERERERESkIAzsiIiIiIiIiIiIFYWBHRERERERERESkIAzsiIiIiIiIiIiIFISBHRERERERERERkYIwsCMiIiIiIiIiIlIQBnZEREREREREREQKwsCOiIiIiIiIiIhIQRjYERERERERERERKQgDOyIiIiIiIiIiIgVhYEdERERERERERKQgDOyIiIiIiIiIiIgUhIEdERERERERERGRgjCwC6L9+/fjX//6F0aNGoWkpCTo9XpERESgU6dOmDRpEnbs2OH3NpcvX45bb70ViYmJCAkJQdu2bfHoo49i9+7dfm+LiIiIiIiIiIhqTxBFUQx2JxqjoUOHYvv27R6ve/TRR7Fw4ULodLo6tVdeXo777rsP69evd3tepVJhzpw5mDlzZp3aISIiIiIiIiKiuuEIuyC5cOECAKBFixaYPn06vvnmG+zZswe7du3Cf//7X7Rs2RIA8MUXX2DSpEl1bm/KlCmOsG748OFYs2YN9uzZg5SUFFxzzTWwWq2YNWsWFi5cWOe2iIiIiIiIiIjIdxxhFyR33HEHJkyYgHvuuQdqtbrK+dzcXAwaNAgnTpwAAGzfvh1Dhgzxqa1t27Zh2LBhAIA777wTq1evdmkzNzcXffr0wfnz5xEbG4szZ84gJibGp7aIiIiIiIiIiKhuOMIuSNavX4/x48e7DesAoGnTpnjnnXcc77/55huf2/r3v/8NAFCr1Zg/f36VNps2bYq5c+cCAPLy8pCSkuJzW0REREREREREVDcM7BTMPioOAE6fPu3TM4qLi/HTTz8BAEaMGIFWrVq5ve7uu+9GVFQUAGDVqlU+tUVERERERERERHXHwE7BjEajY1+l8u2Pas+ePTAYDACkhS6qo9PpMGDAAMc9JpPJp/aIiIiIiIiIiKhuNMHuAFVv27Ztjv0uXbr49IyjR496/YwuXbpg06ZNMJvNOHnyJLp16+ZVG5mZmTWeLy8vx7FjxxAfH49mzZpBo+G3HRERERERERHVf2azGZcvXwYAJCcnIyQkxC/PZXKiUFarFW+99Zbj/fjx4316TkZGhmO/unJYu6SkJJf7vA3snO8jIiIiIiIiImqM9uzZg379+vnlWSyJVah3330Xe/bsAQCMGzcOffv29ek5RUVFjv2IiIgarw0PD3fsFxcX+9QeERERERERERHVDUfYKdC2bdvw0ksvAQCaN2+Ojz/+2OdnlZeXO/Z1Ol2N1+r1esd+WVmZ1204j+Kr7vwNN9wAQEqbExMTvX42EREREREREZFSZWdno3///gCAZs2a+e25DOwU5vDhwxg3bhzMZjP0ej1WrlyJ+Ph4n5/nXDvtvIiFO/bFKQAgNDTU6zY8ldo6S0xMrNX1RERERERERET1gT/n7GdJrIKcPXsWI0eORF5eHtRqNb766qsaV3b1RmRkpGPfU5lrSUmJY99T+SwREREREREREQUGAzuFyMrKwi233IKsrCwIgoBFixZh3LhxdX6u82g2T6u5Ope2ciEJIiIiIiIiIqLgYGCnALm5uRgxYgTOnDkDAPjggw8wYcIEvzzbeaXXY8eO1Xit/bxGo0GHDh380j4REREREREREdUOA7sgKygowK233oojR44AAN566y08+eSTfnt+v379HItNbNu2rdrrjEYjdu/eXeUeIiIiIiIiIiKSFwO7ICotLcXtt9+O/fv3AwBeeeUVvPjii35tIzIyEjfffDMAYPPmzdWWxa5atQqFhYUA4JdSXCIiIiIiIiIi8g0DuyAxGo0YN24cfvnlFwDA9OnT8frrr9f6OUuWLIEgCBAEAXPmzHF7zfPPPw8AMJvNePLJJ2GxWFzO5+bmOoLCmJgYTJ06tdb9ICIiIiIiIiIi//DferNUKw8++CA2bdoEALjpppswZcoUHDp0qNrrdTodOnXq5FNbN910Ex544AEsX74ca9euxYgRI/DMM8+gRYsWSEtLwxtvvIHz588DkEpyY2NjfWqHiIiIiIiIiIjqjoFdkKxatcqx//PPP6NHjx41Xt+mTRukp6f73N6iRYtQWFiIjRs3YsuWLdiyZYvLeZVKhZkzZ2LatGk+t0FERERERERERHXHkthGIjQ0FBs2bMD//d//YcSIEWjevDl0Oh2SkpLw0EMPYefOndWW1BIRERERERERkXwEURTFYHeCGrbMzEwkJSUBADIyMtCqVasg94iIiIiIiIiIqO4ClXlwhB0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2BERERERERERESkIAzsiIiIiIiIiIiIF0QSr4cLCQhQVFcFisXi8tnXr1jL0iIiIiIiIiIiIKPhkDez+97//Yf78+dixYwfy8vK8ukcQBJjN5gD3jIiIiIiIiIiISBlkC+z++te/4qOPPgIAiKIoV7NERERERERERET1iiyB3bJly/Dhhx8CAEJCQjB27Fj06dMHcXFxUKk4jR4REREREREREZGdLIHdp59+CgBISkrCzz//jGuuuUaOZomIiIiIiIiIiOodWYa3HTx4EIIgYPbs2QzriIiIiIiIiIiIaiBLYGcymQAAvXr1kqM5IiIiIiIiIiKiekuWwK5t27YAgOLiYjmaIyIiIiIiIiIiqrdkCezuvvtuAMBPP/0kR3NERERERERERET1liyB3XPPPYfWrVvjvffew7Fjx+RokoiIiIiIiIiIqF6SJbCLjo7GDz/8gPj4eAwaNAjz589HXl6eHE0TERERERERERHVKxo5Gmnfvj0AoLS0FHl5eXj66afx17/+FU2bNkVYWFiN9wqCgNOnT8vRTSIiIiIiIiIioqCTJbBLT093eS+KIkRRxKVLlzzeKwhCgHpFRERERERERESkPLIEdhMnTpSjGSIiIiIiIiIionpPlsBu8eLFcjRDRERERERERERU78my6AQRERERERERERF5h4EdERERERERERGRgshSEutOTk4ODh06hKtXrwIA4uLi0L17d8THxwerS0REREREREREREEna2AniiIWLFiADz/8EEeOHHF7Tbdu3fD000/jscce4wqxRERERERERETU6MhWEpuXl4chQ4bgL3/5C44cOQJRFN1uR44cwRNPPIEbb7wR+fn5cnWPiIiIiIiIiIhIEWQZYSeKIsaMGYNff/0VANCkSROMHz8e119/PRISEiCKInJycrBnzx6sXLkSubm5+PXXXzFmzBhs27ZNji4SEREREREREdWZ1Sqi3GxBiEYNlYqVg57w6+WeLIHdsmXLsHPnTgiCgIceegjz589HZGRklesmTJiAt956C08++SS++OIL7Ny5E1999RUefPBBObpJREREREREROSTI1mFWLjzDL5Pu4gykwWhWjVGJSdg6uD26NYiKtjdU1wwpvSvV7AJoiiKgW7k9ttvx/fff49hw4bh559/9uqe4cOHY9u2bRg1ahQ2bNgQ4B5SIGVmZiIpKQkAkJGRgVatWgW5R0RERERERET+890fF/DcygMwW6tGLBqVgHfG98SY61oGoWfKDMaU/PWqrUBlHrLMYbd//34IgoCnnnrK63uefvppAMDvv/8eqG4RERERERERkQdWq4hSoxlWN+FKMCmlX0eyCqsNnwDAbBXx3MoDOJJVKHPPpGDsrg93YtX+CygzWQAAZSYLVu2Xjn/3xwXZ+6Tkr5eSyFISe/XqVQBAu3btvL7Hfq39XiIiIiIiIiKSjxJHZsnVL6tVRGG5CXmlJuSXGpFfakJ+mRF5Jbb3ZRXn0jILqg2f7MxWEXd9uBPRoVroNSroNCroNWrotSro1KqK1yrHpPfO90ivzpvzsYr9c1dK8OzKA7DUEIw9u/IAYsO0aNc0AkaLFSaLFWaLKO2brTBbXfdNFiuM7vbN0r0m237l+5z3D13w7uuVsvMs3hnf0+c/w/pOlsAuOjoaV65cQVZWFnr16uXVPVlZWQCAqCjWLRMREREREVHDp6Q5xtyVLNpHZq39IytoJYu17Zcoiig2mKXArdSEPFvYZg/h8uxhXKkReaUmFJRJxwrKTPD3BGJmq4grJUb/PrSOLFYRExalBrsbbm1My8bb9/YI+t+FYJElsOvevTu2bduGxYsX4/bbb/fqnkWLFjnuJSIiIiIiImqogj2SzWyxosRgQbHRjOJyMw5dKMDfvjkISzWJldkqYsaKP3DoQgESokMBAAIAwZarSPvSG0GQ3tvfuF4nVLqn4jjcPCs7vwzvbj6B6gZnma0inln+BxZsPw2DWXSEcp5Gc5EylZksKDdbEKaTJbpSHFk+9b333outW7di9erVmDNnDmbPnu34C1eZKIp49dVXsXr1agiCgPvuu0+OLhIREREREVEj0RBGshnNVpQYzCi2bSUGM4psryUGM4rKzSgxWFBitO+7Xuv8Wm6y1rrfVhH4bMfZOn32QBABHM4qCnY3yA9CtWqEaNTB7kbQyLJKrMlkQs+ePXHs2DEIgoBu3bph0qRJuP766xEfHw9BEHDx4kX89ttvWLp0KQ4fPgxRFNG1a1ccOHAAGk3jTFMbCq4SS0REREREShDskWyAVIJYVG5CYZkZf2TkYcaKA9WOZAOkEWbdWkTCKgooNpikkXAGM4zm2ods5Bu9RoXYMB1iwrTSFqpDbLgWMWE6xIRqselwDvadz/P4nGGdm+HPQ9rDYLHCYLLCaLHCYLLAYJbmgqt4tbjs2895Oub8vi50ahW0agEatQpatQo6x74Are2Y/byumn2tm+vt+xvTspF2ocBjP+7p3apezGEXqMxDlsAOAM6dO4ebbroJZ8+erXZ0nZ0oimjfvj1+/vlntG7dWo7uUQAxsCMiIiIiomBzN5LNTqMSvJ6TzWSxoqjcjMIyk/RabkJhmcn26vze3TXSiDYKDo1KsIVuUtAWE6ZDrD2EswVyjmDOHsqF6hCqq3mU15GsQtz14c4aS281KgFrnxosSzAsitIiD89/fQDrDmR7vP6uni0w954e0KoFqFWCx8ymrpT29aqrQGUesg1da9OmDQ4ePIg5c+YgJSUF+fn5bq+LiYnB1KlTMWvWLERERMjVPSIiIiIiImqgjmQVVhvWARVzsh3IyEeoTo3CMrM0Cs4WujmHcaVGi8y9Vy6VAAxs3wQQ4FigQRQBEaLTvo2b4/bxQyKc7kfFG+fjVtGKI9lFXi0EoVULePu+nogL07mMjIvQawISRnVrEYV3xvf0GAjLFT4JggC9Ro0nhnbA92kXPQZjjw+9xmMo6U9K+3oplWwj7JwZjUbs27cPhw4dwtWrVwEAcXFx6N69O/r06QOdTid3lyiAOMKOiIiIiKhxCsZccRariEtF5cjKL8OF/HJcyCvD13szcCa3RJb2g0EQgHCdBhF6DcL1akToNYgI0TiORYRoEK637esr76sRaTsfrpfueeGbA1i1/4LHduUuWXx25R+K7JfdkaxCpOw8i41p2Y6S69HJiZgyuF3Qwid/jSwNBCV+vXxR70tiqfFiYEdERERE1LgEcq64UqMZWfnluJBfJoVyebZX23axoLzBrQqqVQt48+5kRIVo3QZwoVr/BqJKLVlUar8qU9KiJoDygzGlfb1qi4Ed1VsM7IiIiIiIGo+6jOgRRRG5xUZHAOcI4vLKkFUgveaVmgL9EbymVQuIDtUiKkSLyFAtokI0iArRIirU/mo7Zr/GaT8qVIN/rD6EVb8rc8SYUkdmKbVf9UF9D8aUqt7PYUdERERERESBoZQfxL2ZK+7ZlQdQajBDo1a5hHL2UXPBXP1UJQCjuicgOkxXQ/BWcUyvUdVpTrSpQ9pj7YEsjyPGpgxu53MbvhpzXUt0bB6puJFZSu1XfaBSCQjTMQaqL/w6wu7zzz937E+YMMHtcV84P4vqH46wIyIiIiIKjECWnnpDFEUUG8zILzUhr9SIuT8cwy+nrgS8XW/oNSq0jAlFi5hQZOSV4tyVUo/3cCSbe0oJhCtTar+ocakXJbEqlfTbBUEQYDabqxz3qYOVntWQXLp0CXv27MGePXuQmpqK1NRUXLki/c9t4sSJWLJkiV/amTNnDl599VWvrt2yZQuGDRvml3btGNgREREREfmfv4OecpMFBWVS8JZXYkJ+qRH5tvf5pSbklUjv80uNyCu1nS81BW2+uLhwHVrEhDhCuZa2rUVMKFrGhqJJuM7xc6jS5z5T+hxjRFS9elMSW13+x6nyqoqPjw92F4iIiIiIqB7ytvTUbBERE6Z1CdjyKr3aA7gyk0XmT1E9jUpAQnSII4RrGSsFcS0coVxIrUr7urWIwjvje3oMOIMVjtn79/a9PThijIgA+DmwO3v2bK2OU4WkpCR07doVmzZtCmg7aWlpNZ5v107+uRGIiIiIiOqLYJXgWawirhQbcKnIgMtFBnzw80mPI9ssVhHPfX1Aph7WXuf4CLSMDXMZFdcyJgQtYkLRPDIEaj9/fevD3GecY4yI7Pz6X4I2bdrU6nhjN2vWLPTr1w/9+vVDfHw80tPTAx6Yde/ePaDPJyIiIiJqiAI1V1y5yYJLhQZcLi7HpcKKQO5SUbnTvgFXig0IUuWp1zQqAWqVAIMXi0YEY644gCPZiKj+YHQfRN7OK0dERERERMHjbq64MpMFq/ZfwNo/sqrMFSeKIgrKTK7hWzVhXFG5Mufrjg7VIiZMi5gwHWLDtIgN0yE6VHqNDZeOx9jex4RpERuuQ7hOjaPZRV7NFReMVU+dcSQbESmdLP+F+tOf/gRBEPD6668jMTHRq3suX76MF198EYIgICUlJcA9JCIiIiIiJVHK6o/ezBX3zIo/sHzPeZSZrLhsC+KMFs+jzOSSGKVHbLheCtbsAZvt1R7IxTgdjw7V+lyOqvS54oiI6gtZArslS5ZAEAQ899xzXgd2hYWFjvsY2BERERERNQ6BKj2tjtUqIr/M5AjaLheXV+wXGfDL6Sse54oTRWDXmat+75s7KgFoGqGHwWxFQZnJ4/XBKD2tD3PFEREpHccANzIjRozA/v37UVRUhJiYGHTr1g233XYbpk2bhtjYWJ+emZmZWeP57Oxsn55LRERERI1LbUtPqyOKIkqMFlwuMiC32OASwEmhXMV+brHBYyAnhxCtCs0jQ9AsUo/mtk3aD0GzKD2aRejRPEqPJuF6qFUCjmQVKrr0lHPFERHVjWIDu/LycgCAXq8Pck8als2bNzv2L1++jG3btmHbtm2YO3culixZgjFjxtT6mUlJSf7sIhERERHJqD6Vnj638gBiQqXyzcrBW+X3ZSaLzJ/AvZgwrUv4Zt93vI+S9iP1GgiC91//+lJ6yrniiIh8o9j/cv7yyy8AgPj4+CD3pGFITk7G2LFj0b9/f7Ro0QImkwnHjx/H//3f/2HTpk3Iz8/HPffcg3Xr1mHUqFHB7i4RERERBZjcpafulJssyCs1Iq/EhDe/P+pxpJvZKmLi4lRZ+lZbGpWAWXd2Q3yUFMo1jwpB0wgd9Bp1wNpk6SkRUcMliKLo9/Hfr732msv7OXPmQBAEPPHEE2jevHmN9xoMBpw+fRpr166FwWDAgw8+iC+//NLfXVSk9PR0tGsnDVmfOHEilixZ4pfn5ufnIyYmptrzn376KR5//HEAQIsWLXDq1CmEhoZ6/XxvSmL79+8PAMjIyECrVq28fjYRERER+Z+70lM7+8gsb0pPnZUZLbhaakReiRF5pUZcLTEiv9RkezXiaqlJenU6rpRRcHaxYVrH6LdmEdLr7jNXkHah0OO9wZgrzplSRkoSETU2mZmZjspDf2YeARlhZw/onImiiI8//tjrZ4iiiJCQELzwwgv+7l6jU1NYBwDTpk3D3r17sXDhQmRlZWHVqlV4+OGHvX4+AzgiIiIi7yghVPG29DQqRIsmETrklZocIZz0asLVUlsIV1IRwhnMylkV1Vm4Tl0RwjkFcRXvpXnj4sJ10GlUVe5X+lxxdiw9JSJqWAL2X3TngXv28M6bwXwhISFITEzEDTfcgOeffx49ewbvt1SNybRp07Bw4UIAwLZt22oV2BERERFRzYJRfmq1iigqN6OgzIT8MiMKykwoKDNh4Y6zXpWeTl6izNJTANCo4FigoWmVAK5iv2mEHuH6uv3IU1/miiMiooYlIIGd1er62zWVSgVBEHDo0CF069YtEE1SHTn/uVy4cCGIPSEiIiKqOyWMZLOry8qn9tVOC8qkkWwFZSYUlpmQX2pyBHD5ttfKxwvLTfD/5DeBIQiAViXAaPHc4Tt7JuL9B3rVaoGGuuJccUREJDdZxky3bt0agiBAp9PJ0Rz5IABTGRIRERHJTgkLKVTuj6fy0xkr/sD/juRArRIcgVthWUXw5mk0nNKoVQJiw6SVXOPCdIgJ0yIuXCe9D684HhuuRWyYDrFhOkSFanH8YpFXpadPDO0ga1hnZx9p9/a9PRQTBhMRUcMlS2CXnp4uRzNUB0eOHHHst2jRIog9ISIiovqkoYxkq4nBbEFRuRmFZSbptVx6LSo3obDM9up03Pm6nMJyj4GbVQTWH8yudb/koBaAuAg9YsMqwrXYcCl4q3jvei5Sr/Hpe6G+lJ5yrjgiIpID/09DAKSVYu2GDh0axJ4QERFRfVAfR7I9u/IAyk0WxIXrbaGaawBX8WpGUVlFCGdU6GIKtaFVC4gO1SIqVOtYLMKTu3q2wLwHrmPpKRERURAwsKvnlixZgsmTJwMAZs+ejTlz5ricT0tLQ2hoKDp06FDtMz799FOkpKQAABISEjBu3LiA9ZeIiIjqv0CNZHNmslhRYjCjqNyMYoNtq7Rf5Dhmwi+ncj2OZLNYRbz4bVqd+hVMKgGICtUiOlSLGFv4Fh2qRUyY9Cod17k9HqZTO4I3b1c9fXzoNSw9JSIiChLZA7stW7ZgzZo1OHDgAHJzc1FWVlbj/GmCIOD06dMy9lA+O3fuxKlTpxzvc3NzHfunTp3CkiVLXK6fNGlSrdvYt28fpk6diuHDh2PUqFFITk5GkyZNYDabcezYMXz55Zf43//+BwBQq9X49NNPER4e7tPnISIiosBRSumptyPZwrRqxEeHVArWqoZvRbbArXIgV26q/6PaakOtEjBlcFvEhOkQE6qrCOBsoVtUqNbnUtPKWHpKRESkfLL9H/DSpUt44IEHsG3bNgDVL3IgCILLuWD8Vk8uCxcuxNKlS92e++WXX/DLL7+4HPMlsAMAi8WCzZs3Y/PmzdVe06RJE6SkpOCuu+7yqQ0iIqKGQinBmJ1cpadWq4gSo60c1GmONnuJqH1eth8PX/RqJNtjX+zzW9+URKdWISpUg8gQLaJCbK+hGkTqtYgM0UjBWogGUSHS6xe7z2HHyVyPzx17XUu8PLqbDJ9AwtJTIiIiZZMlsDOZTBg1ahT++OMPiKKIXr16oUWLFtiwYQMEQcAjjzyCvLw87N+/H1lZWRAEAb1790b37t3l6F6DNnr0aKSkpGDXrl34/fffkZOTgytXrkAURcTFxaFnz5647bbbMGnSJERF8R9mRETUeCltTjbA+9JTURRRYrS4BG3OIVtRpRDONZST5mkrNpjRWBaNbxkTgqhQXUXg5iZocwRxTsFcZIgGIVp1rdpqFRuGXac9l59OGdyurh+r1lh6SkREpFyCWFM9qp989tlnmDZtGgRBwKJFizBx4kQcPnwYycnJEAQBFovFce13332HJ598Enl5efj8889xzz33BLp7FGCZmZlISkoCAGRkZKBVq1ZB7hEREZErd8GYnb08sK5zslUmiiLKTBaUGCwoMZhRYjRL+0YzSg0WnMwpwvs/n4SHwWyI0GtQajR7vK4+EwQgQqdBRIgGEfqK18gQDcJtx3edvoJjF4s8Puue3q3wzvieMvS6QjC+v4iIiEgegco8ZBlh9+233wIAbrvtNkycOLHGa8eMGYPu3bujb9++mDRpEnr06IGOHTvK0U0iIiKSkVJKT72Zk+25lQfQtkk4WseFVQnWig1mlBrNttDNFr4ZLCg1mm3nKq6puF663x+/Ni02mOv+kADRqgVEhWgR4RSsRepdg7dIvbQfbgvgIvRal0AuQq9BqNbz94i3CykEYyQby0+JiIiotmQJ7A4cOOAofXVHFEWXuequueYaTJ8+Ha+99hrmzZuHDz/8UI5uEhERNUhKCcbsglV6ajRbUVBmQkGZEfmlJuSVmpBfasTnu855nJPNbBUx5qNfarymoYnQa1xKQe1lomkXCnA2t8Tj/eN6tcC79/eSoacSpS+kwPJTIiIiqg1ZArurV68CANq1q/iNpk6nc+yXlpZWWZn05ptvxmuvveZYwZSIiIhqpz7PyVYTo9mK/DIjCkpNyC8z2cI3+3spjMuvvF9qRInRUuNzG5IwnbrKfGzO87JFOYdwlRZLiAzRIkKvgbqaMMnbkWyPDbkmUB+vWvVhJBtXPiUiIiJvyPKvBZ1OB7PZ7BLSOS9wcOHCBXTq1MnlnpCQEMc5IiIiqh1/BGP+5k3p6YwVf+BgZj70GjXyy0wosIVx+aUmFJQ17OBNJQDheql0NFSnQvqVUq9KZvUaFb55YiBiQnWOElKNWhWwfnIkGxEREVHgyRLYtW7dGseOHUNOTo7jWHx8PCIjI1FcXIzffvutSmB3+PBhAHAplSUiIlIypZSeehOMPbvyAEK0aiTFhsFoscJotm0WC4xmKwy2reJ41X2Dy3tLlesMld7nlRo9lp5aRSBlZ3oAvir+F6pVSwGbXo1wnfQappMCszBdxbmqxzQIt+/rNAjTqxGh10CvUbn8u+fZlX9g1X7Pv7i8o0cLJLeMCeAnrYoj2YiI3DMajSguLkZJSQmMRiOsVmuwu0REHqjVaoSEhCAqKgrh4eGKyaFk+VdM7969cezYMfz+++8YNWqU4/iNN96IDRs2YN68eRg/fjz0ej0AoKCgAP/+978hCAK6desmRxeJiIh8JnfpqdliRZ5t5NmVYiOulhhxtdSIq8VGXC0x4KdjlzwGYxariGlf7PN73+qLCL0G0aFaxIRpcanIgMtFBo/33HptPF4b0x3htkUQqisZ9Zepg9tj7R9ZilxEAeBINiIiZ6IoIjc3F7m5ucHuChHVktlshsFgQEFBAUJDQ9G6dWuoVIGrVvCWLIHdzTffjP/7v//Dhg0b8PLLLzuOP/7449iwYQN+//13JCcnY8yYMSgtLcW6deuQmZkJQRAwYcIEObpIRETkE3+UnpYZLbhSYkBeiQlXSgxSAFfdZisPJUmkXoPoMCl4iw3TOUK4mFCd9BqmQ4z9WJgW0bbjWqeSUW/nZJt+cyfER4XI8bEAKL/01I4j2YiIgOzsbBQUFLgcEwQBarU6SD0iIm9ZLBaItnlIysrKcP78ebRp0yboI+0EUfRmdpS6yc/Px3XXXQdRFPHzzz/jmmsqJiGeOnUqFi1aJHXG9sWwd+nWW2/Fhg0bFJFsku8yMzORlJQEAMjIyECrVq2C3CMiqu+UVHrqKehRCcBTwztAr1VXG8KVmRrmnGy+UgnA6ORExIZVH7rFhmkRFeoavNWFu+DVzh6MyT3nn92RrEJFl54SETV25eXlOHv2rON9kyZNEBUVBb1eH/Qf+InIM6vViuLiYly8eBEWi/Tv8qSkJERERHh1f6AyD1kCO09SUlKwcOFCHD58GGazGR07dsSECRMwffp0aDT8jW19x8COqP5SSjBmJ2fpqSiKKDFakF/quupoXqkJBbZjm47k4PzVUr+2KzcBgF6rgk6tgk6jhl6jgk5jfy9t1R5zeq9Tqyv2NSro1ZXu1ajw2fYz2H7Sc6nQPb1b4Z3xPQP/4StRejCmtL+PREQkuXjxIvLy8gAAzZs3R5MmTYLcIyLyRWFhoWPh05iYGCQmJnp1X4MO7KhhY2BHVP/IPSebN3wdASWKIkqNFuSXmZBXYkRBmeuqo3klRuSX2QK50or9gjIjTBbl/y8yKkSDuHCdbdMjLlyLPzLycSKn2OO9d/dqif/ef13gO2njbenp2qcGBzUgYzBGRES1cebMGRgM0lyonTp1YhksUT1ltVpx4sQJiKIIvV6P9u3be3VfoDIPDl8jIlIAJQUE/piTra6sVhFGixUm2wqjR7IK8ezKA7DUsOrpMyv+wPoDWYAgVIyKKzOhoNQEo6V+rNCmUQmIDdchLswWwEVU7DeJ0CE2TIcmTsdjw3VuS0K9DcamDvHuHyH+wjnZiIioIbKX0Gk0GoZ1RPWYSqWCWq2G2Wx2/L0OJv5rlIgoiJQ0kk0URRzIyPcYjM1Y8QdOXipCk3A9TBYrTBYRBnNFuGZ/NdrOGc0W26t0zH5NxfVV7/e0wqn7/gP/O3qprl+GgBAE4MaOTdEkQi8FcBFS8BYbJgVxceHS8ahQjV/mulFyMDbmupbo2DxS0aWnRERERETBJntJrNlsxnfffYfNmzfj0KFDuHr1KgAgLi4O3bt3xy233IIxY8Zw7roGhCWxRO75Y5J7q1VEqcmCEoMZxQaz9Fpu2zeaUWywoLjc7HK+xGhGke1YicGCYqdzvgRljYFaJTgteiAtgBAdpsXBzAKcuuS59JRzsrmnpJGlREREvjp58iTMZjM0Gg06duwY7O4QUR348ve5Qcxht2bNGjz99NPIyspyHLM37zyiIDExER9++CHGjh0rV9cogBjYEVXl7eqio7onQq9RocgethnMTvsWlBjN4Eyk3rMHb9FhWsSEahEbprPtS6uOxoRpER1m2w/VOVYljdC7H/nGOdmIiIiIgR1Rw6GkwE62YWzvvvsunn/+eQBSSCcIAtq2bYv4+HiIoohLly4hPT0doigiKysL99xzD9555x0888wzcnWRiEgWV4oN+Of6Ix5Hs1lFYENatky9ahg0KgFP39QBceE6RNtGwsWEVQRzkdUEb75ScumpM87JRkRERERUv8jyr/fdu3fjhRdegCiKiIqKwiuvvILJkyejadOmLtfl5uZi8eLF+Ne//oWCggK88MILGDhwIK6//no5uklE5HdWq4hTl4ux71yeYzubWxLsbtWZSgD6t42DXquGVq2CXqOCVi1Aq1ZBp1E5Hat4r9OooFMLjvcVx1yv0aqFKve+uu4w1h3wHF6Oua4lpt/SSYavgGubnJONiIiIiIj8SZbA7r///S+sViuio6Pxyy+/oFu3bm6va9q0KV544QXccccduOGGG1BYWIj//ve/WLFihRzdJCKqs2KDGQcy8h3h3P7zeSgqN8vWvk6tQkSIBuF6NcJ1GkToNbb3GkTobK8hGkTo1dK+bbPvv//TSWw6kuOxnXG95J2T7YmhHfB92kWPpadTBreTrU/O7CPt3r63B0tPiYiIiEjxtm7diuHDhwMAtmzZgmHDhgW3Q1SFLIHdzp07IQgCXnzxxWrDOmddu3bFiy++iJdffhnbt2+XoYdERLUniiIy88pcRs8du1gIf67boFYJmDKoLSJCtLZQTY0IvRbherVL0Gbf12lUdWrvmVs64edjlxQXjLH0lIiIiIgA16Bp9uzZmDNnTnA7RLK7cuUK3n//faxZs8YxtVq7du0wduxY/PWvf0WTJk2C3UW/kOWniry8PABw/KXyhv3a/Pz8QHSJiBqpuky+bzBbcOhCIfbbA7rzebhcZPCpH2pBgMWL1SLGXtcSL9/u+Rcd/qLkYIylp0RERERE8pgzZw5effVVABWLhSpBamoqxowZg+xs1+lyDh48iIMHD2LhwoX47rvv0Ldv3yD10H9kCewSExNx7tw5n+8lIqqrI1mFWLjzDL5Pu+gIekYlJ2Dq4PbVBj2XiwyOstZ95/KQllkAo8XqU/stY0LRu00s+rSOQZ82cRAh4u75vypuJBug7GCMpadERERERHU3bNgwRQVx3rhw4QLuvPNO5OTkQKPR4Nlnn8Udd9wBAFi/fj3++9//IisrC3fccQf27duHli1bBrnHdSNLYHfLLbcgJSUF27Zt83oBia1btwIAbrrppgD2jIgag+/+uFBlxFiZyYJV+y9g7R9ZeGd8T9zRowVO5BRJAZ1t9Ny5K6U+tadRCbi2ZTT6tI5Fnzax6N0mBonRoVWuU+pINkD5wRhLT4mIiIiIGpdXXnkFOTnSfNvLli3Dfffd5zg3ZMgQ9O3bF+PHj0dOTg5mzpyJRYsWBaurfiHLTzvPPfccli1bhrfeegtjx45Fp041r+B34sQJzJ07F+Hh4XjhhRfk6CIRNVBHsgqrDcUAwGwV8czyP/DSt2koM1l8aiMuXIfetnCuT5tY9GgVjRCt2uN9Sh7JZsdgjIiIiIiIgi0nJwdffvklAODWW291Cevs7rvvPtx666348ccf8fnnn+PNN99EfHy83F31m7rNTu6lzp0745tvvgEADBgwAO+99x6uXr1a5bq8vDzMmzcPN9xwAwBg5cqV6Ny5sxxdJKIGauHOMzWWnQKACHgd1gkC0Dk+Eg/2b43/3NcTW54fhn3/uAULJ/bFE8OuQf92cV6FdXb2kWyHX70VR167FYdfvVURiycQERERUf1ntYooNZph9eeqaAq3detWCIIAQRCwdetWiKKIlJQUDB48GE2aNEFUVBT69++PL774wuU+o9GITz75BAMGDEBcXBwiIyMxaNAgrFy5stq20tPTHW0tWbIEAPD111/jlltuQfPmzREaGoouXbrgpZdecszt786kSZMgCALatm1b42dbsmSJo7309PQq59u2bQtBEDBp0iQAwL59+zBp0iS0a9cOer0eglBRMVP561S5Dfv8dQAc1zlv6enpOHjwoOP93Llza+w7AHzwwQeO63/99VeP1ztbu3YtLBbpZ7bJkydXe539s1ssFqxdu7ZWbSiNLMMm7GWtzZo1w8mTJ/Hcc8/h+eefR7t27dC8eXMIgoCcnBycPXvWUUPdsWNHvP3223j77bfdPlMQBPz0009ydJ+I6plykwWHLhQgNf0q1vx+oU7PCtep0at1rDT/XJtYXJcUg+hQrZ96WoEj2YiIiIjIX3yZv7khMplMGDNmDNatW+dyPDU1FRMmTMDevXsxb9485OXlYezYsdi+fbvLdb/++it+/fVXnDp1Ci+//LLH9qZMmVKlDPP48eOYO3cuPv/8c2zevBndusmzoNwnn3yCp59+GmazOWBt9OjRA/369UNqaioWL16MF198scbrFy9eDEAa1GUfqOWtHTt2OPaHDh1a7XXO53bu3InHHnusVu0oiSw/HdqTWztRFCGKIk6fPo3Tp0+7vefkyZM4efJklUkQBUGAKIouzyOixu1SYbm0aqtt7rlDFwpgsvj2W8TWcWG2eedi0ad1LDonREKtoLnbiIiIiIhq4s38zWOuq9+T8Xtr5syZ+O233/Dwww/joYceQkJCAk6cOIE5c+bg+PHjeP/993HnnXfigw8+wK+//oonnngC48aNQ5MmTfDHH39g5syZyMrKwqxZszBmzBhce+211bY1f/58pKamon///pgxYwY6duyIS5cuYenSpVixYgWys7Nx66234vDhw4iKCmxompqaii+//BJJSUl4/vnn0adPH1gsFpfQqzpjx45F3759MX/+fHz88ccAgLS0tCrX2Rd0mDp1KlJTU3H8+HHs2rULAwcOdPvcAwcO4PfffwcA/OlPf6r1Zzp69CgAIDo6GgkJCdVel5iYiKioKBQWFjruqa9kCexuvPFGBmxE5BdmixXHc4qw/1we9tpCusy8sjo/V6dWYfuLw5AQVXVxCCIiIiKiurJaReSVGgPaxomcIjy78gAsNczf/OzKA2geqUen+MiA9iU2TBf0Rct+++03vPfee5g+fbrjWO/evTFs2DB07twZhYWFeOihh5Cbm4tVq1Zh7NixLtf17dsXvXr1gsViwYIFCzBv3rxq20pNTcXo0aPx3XffQaOpiFpGjRqFa6+9FrNmzUJmZib++c9/VltJ6C9HjhxBcnIytm/fjpiYGMfxQYMGebw3JiYGMTExaN68ueNY9+7dq73+wQcfxLPPPouSkhIsXry42sDOPvJQo9FgwoQJXn6SChkZGQCAVq1aebw2KSkJhw8fdtxTX8k2wo6IyBcFZSb8fr5i5dY/zuejxOjb4hA1ubNnC4Z1RERERBQweaVG9Hl9c7C7AYtVxIOf/Rbwdvb94xY0idAHvJ2aXH/99S5hnV1CQgLGjRuHpUuX4vLly3jggQdcwjq7Hj16YPDgwdi+fbvH0Wl6vR6fffaZS1hn98orr2DlypU4dOgQUlJS8Prrr0OvD+zX5qOPPnIJ6wIlMjIS999/PxYtWoQVK1bgvffeQ1hYmMs1RqMRy5YtAwCMHj26xhFy1SkqKgIAREREeLw2PDwcAFBcXFzrdpRElkUniKjx8WWCW1EUcTa3BN/sy8TfV6Vh5LvbcN1rmzBpcSre//kUfjl1xeuwTiUAXROjcHtyAjz9Yk+jEjBlcDuv+0lERERERMr3wAMPVHuuR48ejv3777+/2ut69uwJADhz5kyNbY0cORItWrRwe06lUmHixIkApMU29+/fX+Oz6iopKQlDhgwJaBvOpk6dCgAoLCzEqlWrqpxft24dcnNzAfhWDgsA5eXlAACdTufxWnsYWlZW90qsYOIM50TkV7WZ4LbcZMHBzALH/HP7z+fhaolvZQKReg2uax2DPm1i0bdNHHomRSMyRFocwt08HnYalcBVWYmIiIiIGqBOnTpVe8559Jk319lHeFWnX79+NZ7v37+/Y//QoUPVlo76g3MYKYeBAwfi2muvxeHDh7F48WI88sgjLufti03Ex8fj9ttv96mNkJAQlJaWwmj0/POiwWAAAISG1u8KKgZ2ROQ3nia4nXVnNzSN0DsCusNZvi8O0bZJmGPl1j5tYtGxefWLQ4y5riU6No9Eys6z2JiW7QgSRycnYsrgdgzriIiIiIgaoMqlmc5UKlWtrrNarTW25Tznmzvx8fGO/atXr9Z4bV3FxsYG9PnuTJ06FTNmzMCWLVuQnp6Otm3bAgCys7Pxww8/AAAmTJjgtmTYG5GRkSgtLfWqzLWkpASAd+WzSiZLYFd5aeTauvHGG/3UEyIKlCNZhdWOYgOkCW5nfXfYp2frNCr0aBntCOd6t4lF01rOh9GtRRTeGd8Tb9/bA+VmC0I06qBPgktEREREjUdsmA77/nFLQNuY9d1hbEjL9njdHT0S8epd1a946g+xYZ5LFxsSTwttiqJvAxV8oVarZWvL7tFHH8VLL70Eg8GApUuXYvbs2QCAzz//HBaLNK2Rr+WwgLTYRE5ODjIzMz1ea19sIikpyef2lECWwG7YsGE+rxIrCALMZrOfe0RE/mS1inhv84lqw7raahapR1+ncO7aFlHQa/zzPx2VSkCYjoOLiYiIiEheKpUQ8EUYnhzeAT8evljjv8s1KgF/GdYh6AtCNDQ5OTk1nr906ZJjPy4uzuWct6P47CPHlKhJkyYYO3YsVqxYgSVLlmDWrFkQBAFLliwBIJXNdunSxefnd+vWDfv27UNBQQEuXrxY7cIV2dnZKCwsBAB07drV5/aUQLafWuVMk4kCwWoVOTIL0t/l7IJyHMzMx4HMAuk1Ix/FBt9WblUJQJeEKMfouT5tYtEqNtTnkJ+IiIiIqLGyV5Vw/mb5paamen2+e/fuLuciIyMBAPn5+TU+4/jx4751zge+/Dw2depUrFixAunp6di6dSv0ej2OHTsGoG6j6wBg8ODB+OKLLwAA27Ztq3ahkG3btjn2Bw0aVKc2g02WwG7Lli0erykpKcHx48fx1VdfYe/evbjhhhvwz3/+06WunCgYarOIQkN0tcSIA5n5OJhR4AjpcosNdXrm4A5N0b9dHPq0iUXPpBhE6DnijYiIiIjIHzh/c3Bs2rQJ2dnZSExMrHLOarVi6dKlAKT55Xr37u1yvl27dgCkhS2OHz+Ozp07V3mG0WjEt99+G4CeuxcSEuLYNxgMjpVXa3LzzTejffv2OHPmDBYvXuy4Jzw8vMaVeL1x11134YknnoDVasXixYurfZ59RJ9KpcJdd91VpzaDTZafkocOHerVdaNHj8aMGTPw1ltv4eWXX8Znn32GZcuWBbh3RNXztIjCO+N7Ysx1LYPYQ/8qNpiRZhs1dzCzAAcy85GZ59+lsEO1anz+p/6NepQiEREREVEgcf5m+RkMBkybNg2rV6+uMofcW2+9hbS0NADSSLPK4ZdzZvLOO+9gwYIFLudFUcT06dORlZUVoN5X5Rw8nj59Gt26dfN4jyAI+NOf/oR//OMf+Pbbbx1fh/vuu88xitBXCQkJePjhh/HFF1/gxx9/xDfffIN7773X5Zqvv/4aP/74IwBpTr3qymbrC0UOa3nppZewZ88erFixAnfeeScefPDBYHeJGiFvFlF4buUBdGweGdTfUvlaqltusuBodqEjmDuYWYDTl4sR6Or10cmJ/McCEREREZEMOH+zfPr27Yt169Zh0KBBmDFjBjp27IhLly5h6dKlWL58OQBp4YSZM2dWubdXr14YMGAAdu/ejc8++wxGoxETJ05EdHQ0Tp48iU8++QRbt27FwIEDsWvXLlk+zw033ODYnzFjBl555RUkJiY6SmXbtm3rdsXXyZMnY/bs2SgtLXUcq2s5rN0bb7yBH374AZcvX8aDDz6IvXv34o477gAArF+/Hu+88w4AoFmzZnj99df90mYwKfZv7qRJk7BmzRosWLCAgR0FxcKdZzwuomC2inhq2X6MSk5AbJgO0aFaxITpEBumRUyYFtGhOsSEaaFV+7+0uzalumaLFScvFbvMO3f8YhFMFt/TuagQDXq0ikGPVtHo0SoGYToV/rRkr8cJbqcMbudzm0REREREREr05JNPYtu2bViyZAkeeOCBKucTExPx448/Ijo62u39ixcvxtChQx0hn72E1u7ZZ59FcnKybIFdhw4dMH78eKxcuRKbNm3Cpk2bXM6fPXsWbdu2rXJfixYtMGrUKKxfvx4A0KlTJwwZMsQvfUpKSsK6deswduxYXLx4EXPnzsXcuXNdrklISMCaNWvQqlUrv7QZTIoN7Fq3bg0AOHToUJB7Qo2R1Sri+7SLXl17JrcEH205XeM1EXqNLczTSsFemBYxodK+FOzVLujzVKr70qguaBapxwHbvHOHswpRZvJtUQgACNGq0L2FFMz1TJJe2zYJqzIRKSe4JSIiIiKixmrx4sUYOXIkFixYgLS0NBQXF6NNmzYYO3YsXnrpJcTGxlZ7b5cuXbB//3688cYb2LhxI7KzsxEdHY0+ffrg6aefxujRox3zs8nlyy+/RN++ffHNN9/g+PHjKCoq8riSLSCVo9oDu8mTJ/u1T9dffz3S0tIwb948rFmzBunp6QCkeQDHjBmDZ555Bk2aNPFrm8EiiApdvvXHH3/EqFGjEBIS4jKUkuqfzMxMJCUlAQAyMjLqRdJdajSj26wfg90NR9AXG65FTKgU9IlWET8cvggPg/98plEJ6JIYKYVzttFzHZtHQOPlKMEjWYWc4JaIiIiIGo2TJ0/CbDZDo9GgY8eOwe4OySg9Pd2xYMTixYsxadKk4HZIIWbOnInXX38darUaGRkZbhfiUCpf/j4HKvNQ7Ai7jz76CEDFSDsiOYVo1AjVqus0Ks0fig1mFBvMuJDv34Uf7AQBuKZZBHq0ikZPW3lr18QohGjVnm+uBie4JSIiIiIiapwsFoujnHfUqFH1KqxTGkUFdnl5edi7dy/effdd/PDDDxAEAXfffXewu0WNkEolYFRyAlbtv+Dx2vZNw9G1RRQKSk3IKzUiv9SEgjITig1mGXpaO61iQx3BXI9WMejeMgqRIdqAtMUJbomIiIiIiBqXFStWICMjAwDw+OOPB7k39ZssP01XXtLYWx07dsSLL77o594ox6VLl7Bnzx7s2bMHqampSE1NxZUrVwAAEydODEh9+vLly7F48WIcPHgQeXl5SEhIwJAhQ/Dkk09iwIABfm+vPps6uD3W/pHlcRGFDx/q7bbU02i2oqDMhIIyKcTLKzUhv9SIgrKKYC+/zBTQoG9Yp2bo1ToWPZKi0aNlNJpE6D3fREREREREROSlU6dOwWw2Y+/evZgxYwYAIDk5GaNHjw5yz+o3WQK72k6Tp9FocO+99+K9996rdgWVhiA+Pl62tsrLy3Hfffc5Jn60O3fuHM6dO4dly5Zhzpw5bpeYbqzspZ2+LqKg06jQLFKPZpG1C8lqCvqulhjw6fazsHgxgV2oVo1Fk/qxHJWIiIiIiIgCpvJcb1qtFh9//HGVRQqpdmQJ7GbPnu3xGpVKhcjISLRr1w6DBg1C06ZNZeiZciQlJaFr165Vlkr2lylTpjjCuuHDh2P69Olo0aIF0tLS8K9//QunT5/GrFmzkJiYiKlTpwakD/XRmOtaomPzSFkXUfAU9F0sNHhVqjs6OZFhHREREREREckiNjYWvXv3xmuvvYYbbrgh2N2p9xS7SmxjMHv2bPTr1w/9+vVDfHy8ywoz/iyJ3bZtG4YNGwYAuPPOO7F69WqXMuXc3Fz06dMH58+fR2xsLM6cOYOYmBi/tA3Uz1Vi3bFaRUUsonAkqxB3fbjTY6nu2qcGc1VWIiIiIqIA4yqxRA2HklaJVfnlKeSTV199FXfccUfAS2P//e9/A5DmEpw/f36VOQWbNm2KuXPnApAW/khJSQlof+or+yIKwR61Zi/V1VTTD0+lukRERERERESkbAzsGrji4mL89NNPAIARI0ZUm/TefffdiIqSAp5Vq1bJ1j/yzZjrWmLtU4NxT+9WCNVKAWyoVo17erfC2qcGY8x1LYPcQyIiIiIiIiLylSxz2JWXl2PlypUAgFGjRqFZs2Y1Xn/58mV8//33AICHHnoIGo0s3WyQ9uzZA4PBAAAYOnRotdfpdDoMGDAAmzZtwp49e2AymaDVauXqJvnAPtLu7Xt7KKJUl4iIiIiIiIj8Q5YRdhs3bsSkSZPwyiuvIDY21uP1sbGxeOWVVzB58mT88MMPMvSw4Tp69Khjv0uXLjVeaz9vNptx8uTJgPaL/EcppbpERERERERE5B+yBHZff/01AOD+++/3arScRqPBgw8+CFEUHSPzyDcZGRmOfU8TH9onSax8nyeZmZk1btnZ2bXvOBERERERERFRIyVLrWlaWhoEQcCNN97o9T1DhgzBf/7zHxw4cCCAPWv4ioqKHPsRERE1XhseHu7YLy4u9roN56CPiIiIiIiIiIjqRpYRdpmZmQBqF+zYR4NduHAhIH1qLMrLyx37Op2uxmv1er1jv6ysLGB9IiIiIiIiIiKi6skyws5sNgOAY/EDbxiNRgBAaWlpQPrUWISEhDj27V/T6jj/+YSGhnrdhqfy2ezsbPTv39/r5xERERERERERNWayBHbx8fFIT0/HoUOHMGDAAK/uSUtLAwCPK8pSzSIjIx37nspcS0pKHPueymedeZobj4iIiIiIiIiIvCdLSewNN9wAURTx2WefeX3Pp59+CkEQvA74yD3nMM1emlwd55FynJeOiIiIiIiIiCg4ZAnsHnroIQDA3r17MX36dIiiWO21oihi+vTp2Ldvn8u95Jtu3bo59o8dO1bjtfbzGo0GHTp0CGi/iIiIiIiIiIjIPVkCu1GjRuGmm26CKIr48MMP0b9/f3zxxRc4d+4cjEYjjEYjzp07hy+++ALXX389PvzwQ8eqsmPGjJGjiw1Wv379HItNbNu2rdrrjEYjdu/eXeUecmK1AsYS6ZWIiIiIiIiIKEBkmcMOAFauXIlhw4bh0KFD2L9/PyZNmlTttaIoIjk5Gd9++61c3WuwIiMjcfPNN+P777/H5s2bkZmZ6XbOuVWrVqGwsBAAMG7cOLm7qWwX04BdHwFHvgNMpYA2DOg2Bhj4JJCQHOzeEREREREREVEDI8sIOwCIi4vDb7/9hunTpyM0NBSiKLrdwsLC8Oyzz2L37t2Ii4uTq3v11pIlSyAIAgRBwJw5c9xe8/zzzwOQVut98sknYbFYXM7n5ubixRdfBADExMRg6tSpAe1zvZL2DbBgGHDgKymsA6TXA19Jx9O+CWbviIiIiIiIiGpt69atjixh69atwe4OuSHbCDsACA0NxbvvvovZs2djy5Yt+P3335GbmwsAaNq0KXr37o3hw4cjOjpazm4Fzc6dO3Hq1CnHe/vXAgBOnTqFJUuWuFxf06jEmtx000144IEHsHz5cqxduxYjRozAM888gxYtWiAtLQ1vvPEGzp8/DwB46623EBsb61M7Dc7FNGD1NMBqdn/eapbON+vMkXZEREREREQy2Lp1K4YPHw4AmD17drUDV6jhyc/PR2pqKvbs2eN4zc7OBgAMHTq0wQWPsgZ2djExMRg3blyjL71cuHAhli5d6vbcL7/8gl9++cXlmK+BHQAsWrQIhYWF2LhxI7Zs2YItW7a4nFepVJg5cyamTZvmcxsNzq6Pqg/r7KxmYNd8YNzH8vSJiIiIiIiIKMDmzJmDV199FQBqXDhUTr169UJ6enqwuyGboAR2JL/Q0FBs2LABy5Ytw5IlS3DgwAHk5+cjPj4eQ4YMwVNPPYWBAwcGu5vKYbVKc9Z548BXQHgzoPNtQKv+gJp/rYiIiIiIiEi5hg0bppggzlvO/Y2Pj0e/fv2wfv36IPYosGRLFuwll/Hx8dDr9TVeW15ejkuXLgEAWrduHfC+BcuSJUuqlL3W1qRJk2o18u6hhx7CQw89VKc2GwVzWcWcdR6JwK/zpC0kBuhwM9DxVqDDLUB4k0D2koiIiIiIiKhReOqpp9CuXTv069fPkRUJghDkXgWOLIHdzp07ceONNyIyMhLp6ekeA7uysjJ0794dpaWl+PXXX9G/f385uklUQRMqrQbrdWhnU54PHPpW2iAArfpK4V2nkUBCD6AB/8eEiIiIiIiIKFDsC2o2FrKsErtixQoAwNixY71a0CA2Nhb33HMPrFYrli9fHujuEVWlUgHdxtTxISKQmQpseR349Ebgv12BtU8DR9cBhiK/dJOIiIiIiKhaVitgLJFeG4nKq5+KooiUlBQMHjwYTZo0QVRUFPr3748vvvjC5T6j0YhPPvkEAwYMQFxcHCIjIzFo0CCsXLmy2rbS09Mdbdmr577++mvccsstaN68OUJDQ9GlSxe89NJLyMvLq/Y5kyZNgiAIaNu2bY2fbcmSJY723M3l1rZtWwiC4KjC27dvHyZNmoR27dpBr9e7jEarbpVYexv2+esAOK5z3tLT03Hw4EHH+7lz59bYdwD44IMPHNf/+uuvHq9v7GQZYbdr1y4IgoARI0Z4fc/IkSOxdOlS7Ny5M4A9I6rBwCeBtK9rXnhCUAM9HwKyfwdyDtX8vKJsYP/n0qbSAm0H2Ubf3Qo0uca/fSciIiIiosbrYpq0iN6R76SqIW2YNCBh4JNAQnKweycbk8mEMWPGYN26dS7HU1NTMWHCBOzduxfz5s1DXl4exo4di+3bt7tc9+uvv+LXX3/FqVOn8PLLL3tsb8qUKVi0aJHLsePHj2Pu3Ln4/PPPsXnzZnTr1q3uH8wLn3zyCZ5++mmYzR4WUqyDHj16oF+/fkhNTcXixYvx4osv1nj94sWLAQCdO3fGDTfcELB+NRSyjLDLyMgAIP2heKtDhw4AgAsXLgSkT0QeJSQD4z4FVNXk2ioNcPcCYOyHwBO/ADOOAHe8B3QeLf0PsSZWE3BmK/Dj34EPegPv9wK+fwk4/TNgNvj7kxARERERUWOR9g2wYJi0OJ59ih9TqfR+wTDpfCMxc+ZMrFu3Dg8//DA2bNiAffv24auvvnJkE++//z42b96MSZMm4ddff8UTTzyBTZs2Yd++fUhJSUGLFi0AALNmzcLhw4drbGv+/PlYtGgR+vfvj6+++gp79+7Fxo0bcf/99wMAsrOzceutt6KwsDCwHxpSIPnUU0+hVatW+PDDD7Fr1y7s3LkTb775psd7x44di7S0NDzxxBOOY2lpaVW2li1bAgCmTp0KQAomd+3aVe1zDxw4gN9//x0A8Kc//akuH6/RkGWEXUFBAQBArVZ7fY/92itXrgSkT0ReSb4XaNYZ2DUfOLLG6bdTY4GBf3H97VR0S6DvZGkzlQPndgIn/wec+BHIO1tzO1fPAL99LG3acOCa4UDHEUDHkUBUi5rvtVqlRTI0oVIpLxERERERKY/VCpRdDWwbl44Cq6dVXyVkNUvnI+KB5l0D25fQuKD/fPLbb7/hvffew/Tp0x3HevfujWHDhqFz584oLCzEQw89hNzcXKxatQpjx451ua5v377o1asXLBYLFixYgHnz5lXbVmpqKkaPHo3vvvsOGk1F1DJq1Chce+21mDVrFjIzM/HPf/4Tb7/9dkA+r92RI0eQnJyM7du3IyYmxnF80KBBHu+NiYlBTEwMmjdv7jjWvXv3aq9/8MEH8eyzz6KkpASLFy/GwIED3V5nH3mo0WgwYcIELz9J4yZLYNe0aVNkZ2fjzJkz6N27t1f3nDlzBgC8mvOOKKASkoFxHwNjPvI+GNOGSKvEdrgFuO0t4MopKbg7+SNw7teay2xNJcCx9dJmb99eOtuyD6CyBd8c5k5EREREVH+UXQXeVsBUOFYzsPSOwLfzwmkgvGng26nB9ddf7xLW2SUkJGDcuHFYunQpLl++jAceeMAlrLPr0aMHBg8ejO3bt2PHjh01tqXX6/HZZ5+5hHV2r7zyClauXIlDhw4hJSUFr7/+usfFOOvqo48+cgnrAiUyMhL3338/Fi1ahBUrVuC9995DWJhrxZnRaMSyZcsAAKNHj0ZCQkLA+9UQyBJ3X3fddQAqFp/whn2xiZqSXCJZqVSALrz2vyUSBKBpR+CGp4CJ64C/nQXGfwH0ekT6zZYnF9OAHf8BUkYAb3cAvn0M2PgCh7kTERERERHV4IEHHqj2XI8ePRz79rJVd3r27AmgYlBRdUaOHOkooa1MpVJh4sSJAIC8vDzs37+/xmfVVVJSEoYMGRLQNpzZy2ILCwuxatWqKufXrVuH3NxcACyHrQ1ZArsxY8ZAFEWsWrUKX3/9tcfrV65ciVWrVkEQBLcpN1G9FhIFdLtLGrH37DHgz9uA4a8ALfsCEGq+t+wqkLYS2LPA8zD3i2l+73qtNMIVqYiIiIiISDk6depU7Tnn0WfeXFdUVFRjW/369avxfP/+/R37hw55WLCwjpzDSDkMHDgQ1157LYCKhSWc2Y/Fx8fj9ttvl7Vv9ZksJbGTJk3Cm2++ifT0dDz00EPYvXs3nnnmGSQlJblcl5GRgXfffdex1G9SUpIjqSVqkFQqoMV10jb0b0DxZeDUZql09tTPgKHAt+dazcAXdwOtBwBhTYCwONtrE2kuCcexOEAfJY0C9BeW6hIRERERkQJULs10pnKqnPLmOquHgQjOc765Ex9fUV119Wpg5zIMxtRiU6dOxYwZM7Blyxakp6ejbdu2AKTFNn744QcAwIQJE9yWDJN7snyltFotVq1ahRtvvBHFxcV477338N5776F169ZITEyEIAjIysrC+fPnAQCiKCIiIgKrV68OeF03kaJENAOue1DaLGYg4zcpvDuxCbh8tHbPKrkEHF3r+TqVxinEawKExboJ95wCvrAm1Yd8ad9UneTWXqqb9rW06m7yvbX7HEREREREDUFonDSvWyBtfB44vNrzddfeDYwO7MIHCI0L7PMVRvAwCEIURZl6UrsFP/3l0UcfxUsvvQSDwYClS5di9uzZAIDPP/8cFosFAMtha0u2aPO6667D7t278cgjj+CPP/4AAJw7d84lpLPr06cPvvjiC3Tp0kWu7hEpj1oDtB0kbSNeA/LPA0fXAT++7N92rGYp3Cu55P09jpDPabSeCOD4BkCs5jdP9lLdZp050o6IiIiIGh+VKvCLMAx5TvqZoaZF7lQaYMizQV8QoqHJycmp8fylSxU/b8XFuYaZ3o7iKykp8bF3gdekSROMHTsWK1aswJIlSzBr1iwIgoAlS5YAkMpmmfHUjqxjEbt164b9+/dj06ZN2LBhA37//XfHxINNmzZF7969ceedd+Lmm2+Ws1tE9UNMa+D6J4CfX69YaCJYfAn57PetegzoPw2IawfEtgOiW1WsfEtERERERL5LSJaqWipXvdipNNJ5/gLd71JTU70+X3lxzcjISABAfn5+jc84fvy4b53zgacRg+5MnToVK1asQHp6OrZu3Qq9Xo9jx44B4Og6XwSleHjkyJEYOXJkMJomqt9UKmk+uANfeb62RR+gw81A6RVpsYrSK0Bpnu31CmAxBL6/7lw6Cqx/puK9SiuFkfYAL7at676u+vkkfGK1AuYyQBNa+xV/iYiIiIiULvleqapl13zgyBqneaXHAgP/wrAuQDZt2oTs7GwkJiZWOWe1WrF06VIA0vxyvXv3djnfrl07ANLCFsePH0fnzp2rPMNoNOLbb78NQM/dCwkJcewbDAavpiu7+eab0b59e5w5cwaLFy923BMeHl7jSrzkHmf7I6pvBj4pzQfnaZj7XfOq/5+xKEr/47aHd6VXbZtzuFfpeKBCPqsJuHpa2tyJSKgI8Cq/hsV5v2AGF8MgIiIiosYiIRkY9zEw5iP+slomBoMB06ZNw+rVq6vMIffWW28hLS0NgDTSrHL4NXToUMf+O++8gwULFricF0UR06dPR1ZWVoB6X5Vz8Hj69Gl069bN4z2CIOBPf/oT/vGPf+Dbb791fB3uu+8+xyhC8l5QAzuz2Yy8vDwAUsrM1UKIvOCPYe6CAOjCpS2mtXftOkI+pwCvzDZiryQX2PnfmkNEXxVflLbzu6qe00dJo/CcR+W5K7XlYhhERERE1BipVNK/+Sng+vbti3Xr1mHQoEGYMWMGOnbsiEuXLmHp0qVYvnw5AKBVq1aYOXNmlXt79eqFAQMGYPfu3fjss89gNBoxceJEREdH4+TJk/jkk0+wdetWDBw4ELt2ufm5KABuuOEGx/6MGTPwyiuvOBYNBYC2bdu6zXAmT56M2bNno7S0Yhonf5XD/vHHH441ESq7ePGiY748u3vvvRcRERF+aTsYZE/Ijh49ivnz52Pz5s04efKkY7EJQRDQsWNHjBgxAo8//rhX6S1RoxWMYe4uIV9S1fMFGd6V6kYnAaExwNV0wFhUtz4ZCoGLB6WtMnupbXhTIHOPFDi6w8UwiIiIiIiojp588kls27YNS5YswQMPPFDlfGJiIn788UdER0e7vX/x4sUYOnSoI+Szl9DaPfvss0hOTpYtsOvQoQPGjx+PlStXYtOmTdi0aZPL+bNnz6Jt27ZV7mvRogVGjRqF9evXAwA6deqEIUOG+KVPa9aswauvvur23PHjxzF58mSXY8OGDWNg562///3v+M9//gOr1VplSWNRFHH8+HGcOHECH3/8MV544QX861//krN7RPWL0oa5e1uq++BXUt9FURqdd/UskHe26mtxzasseeSp1NblWjOw4x3g3sXel9gSERERERE5Wbx4MUaOHIkFCxYgLS0NxcXFaNOmDcaOHYuXXnoJsbGx1d7bpUsX7N+/H2+88QY2btyI7OxsREdHo0+fPnj66acxevToKiPIAu3LL79E37598c033+D48eMoKiryuJItADz66KOOwK5yiEbeE8TKyVmAPP3005g/f74jqOvatSuuv/56JCQkQBRF5OTkYM+ePThy5IjUMUHAU089hXnz5snRPQqgzMxMJCVJI7IyMjLQqlWrIPeIAsZd6amdvVTX29JTYwmQd859mJd/PjDlt2FNpTAxIRlI6CG9NukAqFmuT0RERETunTx5EmazGRqNBh07dgx2d0hG6enpjgUjFi9ejEmTJgW3Qwoxc+ZMvP7661Cr1cjIyHC7EIdS+fL3OVCZhyw/hf7yyy/46KOPIAgCunXrhgULFrjUQzvbtWsXHn/8caSlpeHDDz/E/fffX+21RKQw/izV1YUD8d2krTKLGSjMdDM6L116NRb71v/SXODMFmmz04QAzbsBCd0rQrz4awE9J00lIiIiIiJyZrFYHOW8o0aNqldhndLIEth9+umnAKSlin/55Zdqa7YBYODAgdi+fTv69OmDs2fP4pNPPmFgR1SfyFGqq9ZULDaB4a7nnEttr54GvntKKo/1lbkcyNovbc7i2leMxou3vUa18L2k1mpVRmkzERERERGRj1asWIGMjAwAwOOPPx7k3tRvsgR2O3bsgCAIeOmll2oM6+yio6Px4osvYtq0adixY4cMPSQivwvWilSCIC00Ed4USOoHnNnq3WIYtXX1jLQd+a7iWGhc1ZLaph0Btbb651xMA3Z9JD3HMSJxjDQnoBIWwWCQSERERERENTh16hTMZjP27t2LGTNmAACSk5MxevToIPesfpMlsLt48SIAaalib/Xu3RsAkJNTx4nniahx83YxjPFfAlajFKDZt8ILtWur7Cpwdpu02al1QPOuriFe/LVASLT7Of9MpVLAmPZ17eb88zelB4lERERERKQIled602q1+PjjjyFwQb86kSWwCwkJgdFoRElJidf3FBdLc1Dp9fpAdYuIGoOEZCn48rQYRpdR0vtuYyrOlVwBcuwB3iHp9fIxQLR4377FCGQfkDZnkYlA0UUA1az7YzVLfW7WWf6ATMlBIhERERERKVJsbCx69+6N1157jVOb+YEsgV27du1w4MABrF27FjfeeKNX96xbtw4A0L59+0B2jYgaA18XwwhvArQfJm12pnIptHMeiZdzCDAU1q5PRdmer7GagSV3SmW1Gr1tC5FG7WlCAI39VQ+o9dVc43Rcra/mmNM9lw5XH27a+xSsINGlHyzVJSIiIqLgatu2LUSxml/ANyL8GgSGLIHd6NGj8ccff+DDDz/EqFGjcPPNN9d4/U8//YQPPvgAgiCw5pmI/MNfi2FoQ4AW10mbnSgC+edcQ7yLaUBBRt37XZ4HZO6p+3O8JagA0VrzNVYz8N2TQJ/JQGgsEBpje40FQmKkFXQDNfxd6aW6DBKJiIiIiMgPBFGGKDQ3NxcdOnRAUVER1Go1HnvsMfzpT39Cr169oLL9QGO1WvH7778jJSUFCxcuhNlsRnR0NE6dOoUmTZoEuosUQJmZmUhKSgIAZGRkoFWrVkHuEZFMSq8COYddQ7zLR2ueT68hENTugzz7vv145WMhMdKoweq4K9W1s5c2c84/IiIiktnJkydhNpuh0WiqzOVFRPWLL3+fA5V5yBLYAcCmTZtw1113wWg0OiYe1Ol0iIuLgyAIuHLlCoxGIwBpOKVOp8P69etxyy23yNE9CiAGdkROzAbg0lEgZYQ0vx250kU4BXkxFeGe1QwcWF7z6D+VBnj4WyCxh7Qyr0orlfkGeqSbkoNEO478IyIiChgGdkQNh5ICO1lKYgFg5MiR2L17N/785z9j7969AACDwYDs7KrzOPXr1w8LFixAz5495eoeEZE8NHqpnLb7PdIiDp4kDQCue1AK+szlgNkovVoMbo7ZXs2Gis1iqHrMXI5qF7sINmOxtBVm1v5eqxn4YkzV44JaCu7UWtums4V52qrHnYM+t+d1Ughn3y/NBVIXVh8kWs3A6j8DYXFAyz6ANhxQy/a/XuWP/GOQSERERETklow/NQDXXXcd9uzZg9TUVGzevBmHDh3C1atXAQBxcXHo3r07brnlFvTr10/ObhERyW/gk9KKqzWVx6o0wO3/8X+wIopSu+4CwP/NBk7+6PkZkYlAVEugPB8oy5M2T3PfBYtokUIhc1lw2rdagC/GVbzXhEgjCXXhFa965/c1nat0jT5CCgHdhV1KXu1X6UEiEREREVGQyRrY2fXr14+hHBE1bgnJUmDiqZQyEOGFIFSMGtNXOnfzTOD0T56DxIe/du2bKAKGoorwzjnIK8uvdDzf9bipxN+fUNnM5dJWmuu/Z2rDXMM8QFq9uLqRlFYzsOoxoOgi0LyrdK82zPacsIrnqbX+66OdkoNEO478IyKiWlCr1TCbzbBYLBBF0TEFFBHVL6IowmKxAIBjvYVgCkpgR0REkEKJZp2BXfOBI2ucRhqNBQb+JTgjjXwNEgUBCImSttg2tWvTbKw54Cu9CuxdJI2UI/dMpdJWctn7e0QrsOmVmq9RaW0BXjigDa3Ydw713AV9jvdO12rDpJWTq/veAmwlxNOkvxfB+P5X+sg/BolERIqk0+lgMBggiiJKS0sRHh4e7C4RkQ/sf48B6e91sMm26AQ1Xlx0gsgLSvtB/GKasoLE1Y97N+df93uAW9+U5vOzGKUAyL5vMdk2277Vab/yeavztUbAYq76TLMBOP49g8RAiEwEWvWtCAq1YU6BoW3fcS7UFhKGVgSD9n2NXgqTvaHkxUOUHiQSETVyhYWFuHDhAgAgIiICrVq14ig7onro0qVLuHLlCgAgPj4ecXFxXt1X71eJpcaLgR1RPaaUIPFiGrBgmOdS3T9vlTfAqE2QOOI1wFgCGGwLaxhLbFtRxb7Bab/KueKKRTlq+jpQBUHlFOCFugaAOqdgz1QGHF1b8zyMghq4ewGQ0MM1RNSEBPbvhpKDRDul/HeCiChIrFYrTpw44RiZExERgbi4OISFhTG4I6oHLBYL8vPzcenSJcexa665xutRdvV+lVgiIqqHVCpp9FKwBXPOv5p4u3jI4BlAtB9/WWE2VoR3lUNAQxGw7q/SKECPBCC8uRS2GEsa3mhB0VrxdarzsyzAt1Pcn9OEuoZ4LluYm/2wqqGfu3P551hCTERUD6hUKrRs2RIXLlyAKIooLi5GcXExBEGAWq0OdveIqAbO89bZNWvWjCWx1DhwhB0R+Y3SSnUBZY6A8nbkX8+HgHEfS/uiKIV8xhLbnHhlFfvGUmlxEGNpxXx51R4rrXSf00aBEZ0EtLvRaSXhcEAf6X5VYV04oIusKCP2deSHEr/vK+PIPyKSWVFRkSO0I6L6KTo6GomJibUaHcuSWKq3GNgRkd8p7QdxpQWJSiwhtlqB1X+WRiR6ktgL6DxKCgRNZU7hX5lTAOjmuNUU+M/RkAgqp5DP6VXvFPzZwz290/mSK8D/ZtY8IjMYJep2HPlHREFktVpRXFyMwsJCGI3GKiN3iEh51Go1wsLCEBMTg5CQkFrfz8CO6i0GdkTUaCgpSFTiCKhAB4kWU6XRgWW2rYbgz1gC/PYJ5wUMBH0kENfetlpwpU0b5hQS2vbtqwzrImzHwiuOe7uAiBK/74mIiKhB4xx2RERESqeUOf8AKZRo1llZI/8CPRehWguoo4GQ6NrdV3rF+xLiu953CgJLXffN5a6j/9xd4/Lq7npbwFjTAhj1haEIyD7gn2cJ6moCP6dgz1Qmfa9X97UL9px/jn4oKNgnIiIixeIIOwo4jrAjIgoypQUELCGumShKowXXPA4c+tbz9fHdgXZDXRciqbLqsO1cQwgC60ofBST2BCLibVvzitfIBGk/NM7/f1dYqktERNQgsSSW6i0GdkRE5JaSgkQlllL6O0gURWkUoGNV4eKKMM/gFPQZnYK+ytcaioCcwwAa+D8fBbVTkBfvuh9Z6Zg3o2qV+P3lTEl/F4mIiOoZlsQSERFRw8IS4pr5u4RYEKSVYbWhAJr53i9vVyFuOxi47pGKsM8+Z6CxWJpL0FhiW2m40qaEVYVFC1CULW2e6CJqHq1nKKz+zxAIbqkuR/0REREpFkfYUcBxhB0REdUrShtt1BhLiK2WikVCXAI/p7DPWFwRAhqKgT2f1u/FQ+LaA9fcDGhDAE2ItNCGJsR1czkX6nSNXgpi7e/VOs+LdCh91B8REVE90ahG2LVv396xLwgCTp8+HcTeBN758+fx/vvvY8OGDTh//jz0ej06dOiA8ePH4y9/+QvCwsJ8fvacOXPw6quvenXtli1bMGzYMJ/bIiIiahCUNPIPsI20+xgY85EygsRALx4CACq1tMqsPhJAvHf3lF31buRfmxuALncAxTlA8SXptShHei3N9b3PdXX1jLT5heA+yLMHfRYTkLUf1ZY2W83A6j8DYU2BdkOkP49gUFp4TkREJCNFBnbp6ekQBAGiKELw9NvBem7Dhg14+OGHUVBQ4DhWWlqK1NRUpKamYuHChdi4caNLiElERESNkJKCRCWWEA98Ekj72vPIv1H/rr5/FhNQkmsL85y3S0DRxYqArzgn+GW7NRKloMtcBpTn+/YIqwX4YgwgqIDw5q5lvvbXyvvaEP90n6W6REREygzsAKAxVOoeOHAA48ePR2lpKSIiIvD3v/8dw4cPR1lZGZYvX47PPvsMx48fx+23347U1FRERETUqb20tLQaz7dr165OzyciIqJGpCGO/FNrgahEafPEUFw11HMerWffL8nx/TMpgWgFii9K28WDNV8bEuO0MEdCxWvlY/qo6kt23ZXqmkql0ZNpX7NUl4iIGg1FBnZWqzXYXZDFM888g9LSUmg0GmzatAkDBw50nLvpppvQsWNH/O1vf8OxY8fw3//+F7NmzapTe927d69rl4mIiIhcNdaRf/oIaWtyTc3XrZoGHFzu+XlNO0vlumaDtJqvYzMApjKn4wbb6DnbeyXN21eeL225x2u+ThPqtNqu0yg9qxnY9m9p0Q93grlAh0s/WKpLRESBx0UngiQ1NRX9+/cHAEybNg2ffPJJlWusViu6d++Oo0ePIjY2Fjk5OdBqtbVqx3kOu2D9UXPRCSIiIpKdUkKVQC/SYTG7D/LM5YCpvOo5Uynww0tS+W991ayLFM6Gxkqj+kJjbZttXx8dmD9zluoSEZEbjWrRicZgzZo1jv3Jkye7vUalUmHChAn4+9//jry8PGzduhUjRoyQqYdERERE9ZhSRv4FepEOtQZQ20b7eStzr3cLdFw7Dhg8w1bme9Gp3Pei6zGLwbe+++ryMeDn12u4QABCoqsGedUFfM7Hq5uHj6W6REQkMwZ2QbJjxw4AQHh4OPr06VPtdUOHDnXs79y5k4EdERERUX2jtEU6vF2gY8hzUt9qmtJPFIHyAtucfRddX12O5QCGghoe5E9iRXlu3tna3aoJrRrkAcCJ76X5/NxRSqkuERE1KEEJ7EwmE/bv349Dhw7h6tWrAIC4uDh0794dvXv3rnXZZ3109OhRAECHDh2g0VT/x9ClS5cq9/hqxIgR2L9/P4qKihATE4Nu3brhtttuw7Rp0xAbG+vzczMzM2s8n52d7fOziYiIiBoEJS3S4c9Rf4JgC7hipMCqJqYyp4U5Ko3YK7wInPlJCgCDyVwGFJUBRbX896vVDHwxDmg7GIhsIc3LF5kovUbZ3gd6xKdSysCJiMgvZA3siouL8c9//hMpKSnIy8tze01sbCymTJmCf/zjH4iMjJSze7IpLy9Hbm4uAHisbY6NjUV4eDhKSkqQkZFRp3Y3b97s2L98+TK2bduGbdu2Ye7cuViyZAnGjBnj03PttdpERERE5IFSSnWDMepPGwrEtpU2d1Y/7l2pbmw7qe9l+UBZXsVmDfK8fCWXgcOrqz+vj7IFeQlVQ71I2+rEEfGARl+7djm3HhFRgyRbYHf06FHcdtttyMzMrHHxg6tXr+I///kPVqxYgR9//BGdO3v4TV09VFRU5NiPiPA834g9sCsuLvapveTkZIwdOxb9+/dHixYtYDKZcPz4cfzf//0fNm3ahPz8fNxzzz1Yt24dRo0a5VMbRERERFTPKGnUH+B9qe79X1QNokRRCqvK8lyDvHKnfbfH8wFDYcA+kgtDobTlnqj5urAmrkGey75txF54M0Cl5tx6REQNmCyrxObn5+Paa691lEZ2794dEydORP/+/REfHw9RFHHp0iWkpqZi6dKlSEtLAwC0bNkShw4dQnR0dKC7KKuMjAy0bt0aAPDoo4/i888/r/H61q1bIyMjA9dccw1OnTpVq7by8/MRExNT7flPP/0Ujz/+OACgRYsWOHXqFEJDQ2vVhjclsfYVcblKLBERERFVy10AZWcv1fV3AGUxS/PwuQv4Sq8CO96uOUQMBkEFhMYBpbk1X1eXFYiJiMgr9XqV2Llz5yI7OxuCIOC1117Dyy+/DEEQXK7p3LkzhgwZghkzZuDNN9/EP/7xD2RlZWHu3Ln417/+JUc3ZRMSUrH6lNFo9Hi9wSCtvFXbIA1AjWEdAEybNg179+7FwoULkZWVhVWrVuHhhx+uVRsM4IiIiIjIL4JRqqvWAOFNpM2d/HTvSnVb9AHaDZEW2ijKtm0XAzOCT7R6DusAKWhMGQnEXyuNzotIqFqKG5kgLbBR6eczv+HcekREPpFlhF3Xrl1x4sQJ3H///Vi2bJlX9zz44INYsWIFOnfuXOfFFpSmvLzcEb7dfvvtWL9+fY3XR0REoKSkBAMGDMCuXbv83p+9e/eiX79+AIDHHnsMCxYs8OvzA5U2ExEREVEDppSg52IasGCY51Ld6kayGYpti21kA4VOQZ7jNUt6NZcH6hN4ptYDkfEVAV6VYM+2hcR4H+xxbj0iaiTq9Qi7c+fOAQAmTpzo9T2TJk3CihUrHPc2JCEhIWjatClyc3M9lpPm5eWhpKQEQOAWd+jWrZtj/8KFCwFpg4iIiIioVpSyQEddV9XVR0hbk2uqb0MUpXJce5DnNtizvYoWv3wsFxYDkH9e2mqiCakI8iLiq47Us28nNgFrHufcekREdSBLYBcZGQmDwYDmzZt7fY/9Wm8WZaiPunbtih07duDUqVMwm83QaNz/URw7dszlnkCQYZAlEREREVH9FehSXUGQylJDY4HmNfyb32orhS28AKTcKgVtcjKXA3np0uYrqxlY9WdAHwm0HRy8UFYpIziJiKohS2CXnJyMLVu24OTJk+jVq5dX95w8edJxb0M0ePBg7NixAyUlJdi3bx+uv/56t9dt27bNsT9o0KCA9OXIkSOO/RYtWgSkDSIiIiKiek0Jq+qqVEBEc2nrfrd3c+u1vRG4doxtlJ7zlu3dPHiBIFqAZeOlfW0YEN5UWvk2vFml/Urvw5oAam3d2mapLhHVE7IEdtOmTcPPP/+M9957D/feey9UHv7HZrVa8e6770IQBPz5z3+Wo4uyGzt2LN58800AwOLFi90Gdlar1bGCbExMDIYPHx6Qvnz66aeO/aFDhwakDSIiIiKiBkEppboDn5TKSz3NrXfbv6oPosxGoOSSm9LbHNf3ZVcD8xkAKTTzphzXLiSmmnDPTdAXEuMaqrpbhVhppboc+UdENrIEdvfddx9++OEHLF68GGPHjsWCBQuQkJDg9tqcnBxMmzYNv/32GyZPnoz7779fji7Krn///hgyZAh27NiBlJQUTJw4EQMHDnS55p133nEsuDF9+nRota6/TVqyZAkmT54MAJg9ezbmzJnjcj4tLQ2hoaHo0KFDtf349NNPkZKSAgBISEjAuHHj6vrRiIiIiIgo0Oo6tx4AaHRAdCtpq4nZYFs4w0OwV55fp4/klfJ8abty0vO1Kg0QZgvyNHrgwj4A1UwHZDVLX8u49kDL3n7ssJc48o+IKpElsPv8888xdOhQHDp0COvXr0f79u0xcuRI9OvXD82bN4cgCMjJyUFqaio2bdoEg8GAfv36YejQoY4RZu5MmDBBju4HzLx58zBo0CCUlZVh5MiRePnllzF8+HCUlZVh+fLljtVaO3XqhOeee67Wz9+3bx+mTp2K4cOHY9SoUUhOTkaTJk1gNptx7NgxfPnll/jf//4HAFCr1fj0008RHq6A3xYSEREREZFngZ5bz06jB2JaS1tNjCXAv9sHd8VbZ1YzUHxR2ry9/rPh0qq5IVHSPHt622tItOt7faTtmiinayrdo1J71259GPlHRLITRBlWHFCpVBCclv8WRdHlvbOazjkTBAFmcw3Dv+uJdevW4ZFHHkFhYaHb8506dcKGDRvcjpLzNMLO+XxNmjRpgpSUFIwZM6b2H8ALgVrimIiIiIiIbJRSSrn6ce/m1ut+LzD8ZaAkFyi5bNuc9ktzK96XXgFEa+D77m+6iEqhn3OgFyW9NxQDuz+q+fOpNMCftwZ3pJ1Svr+IFChQmYcsI+yAqiuR1pQTNqZVS++8804cPHgQ8+bNw4YNG5CZmQmdTocOHTrgvvvuw1NPPYWwsDCfnj169GikpKRg165d+P3335GTk4MrV65AFEXExcWhZ8+euO222zBp0iRERUX5+ZMREREREZFs6tvceoOfAZpcI22eWC1AWZ5TsHe5+qCv5ApgKPDbx6kTY7G0FWXX7TlWM7D0LqlUNzQOCIuTXkNjbftOr6FxUijoxSAYryi9VFepQaJS+0X1iiwj7M6dOxeQ57Zp0yYgzyX/4gg7IiIiIqJGxF2Jp519br1AlniaDU4hXq40/9666YDVFLg2lUSlrRrihcVWCvncBH8avetzgv3nWBOlBolK7ZedUoNEpfbLS4HKPGQJ7KhxY2BHRERERNTIXEwL/Nx6teFtqW6XO4AhzwKGIqC8UHo12F7LCyq9r3TeUIRqF7WoD7ThthAvBlDpgKz9qPHzCGrgnhQgsYc0ulMbKv05q7XV3+MPSg0SldovQLlBolL7VUsM7KjeYmBHRERERNRIKWXkzMU0YMEwz6W6dZkrzmqVSmCrhHqF7kO+8gLg+Mb6OT9fTVQaKXixB3iOfdt7nZtjHq+zvealA0vvDOyfoy/k+P7ylVKDRKX2ywf1fg47IiIiIiIiamSUMrdeQrIUAHgKCOoSpqhU0kISIVEAWnp3j7cj/1r1B7qMBkqvAmVXgbL8in37a01hkZys5oqQMljtL7oNiEwAIACCSprTT1A5vUel95XPC5XOVX5f6dqLaZ6//lYzsOoxoMudgFonjUR0edUBGl3FvvNxl/1qrnEXiF9Mq/573t6n1dOk1ablDjiV2C+FYWBHREREREREDV/yvVIAoKRSXW8X6bjjvzX3TxSl0X0uIV6etFUO9pyPlStkgQ5/MxYDV04FuxdVXToqbYEgqKsGf+X53gWJX4wDmnT08HxfFjKp5p7cE971a9d8YNzHPrTbMMhaEnv06FEsWLAAO3bswJkzZ1BUVASrtebhv4IgwGxWyG8KyCcsiSUiIiIiIkVRSqkuENzSQItZCu2cA72SXGD9jMazSAcplzYM+PuF4P8d9aDel8S+9dZbmDVrFiwWCzhtHhEREREREQWNUkp1geCO/FNrgPAm0ubs3C/eler2fBC44z2pz6Yy26vTvtH5uJvz3l7X0Ob5I++YSqVgXSl/V2UmS2D39ddf4+WXXwYAqFQqDBkyBD179kRMTAxUCk9KiYiIiIiIiAIqIVkq/RvzkTJG/nlbqjvwSUAbIm2BIoqAxSiFN2unA0e/83xP2yFA/z/bgj5RehVFaYPttco5d+/h3bWHVwMXD3ruV2xboEVv6fNYTIDFYHs1Oh2rtG+2vzf4+AWsx7Rh0t+FRkqWwG7evHkAgJYtW2Ljxo1ITm68kwYSERERERERuaWUkX9yLNLhLUEANHppG/oCcHyD5yDxtjflnZOw4wjvVom9/0vf+yWKgNVSTbhndH985zwgfbvnZ7fqJ42WrL5x3/pbnQNfARf2eX5Gt7GKL4cNJFkCu4MHD0IQBPzzn/9kWEdERERERESkdEpcpENJQaLc/RIEqYRZrQEQ5t09EfHeBYl3vCvv16z1AO/6NfAvsnVJiWQJ7LRaLQDguuuuk6M5IiIiIiIiIqorpZXqAsoMEpXar8YccDYAsqwSO3DgQOzZswebNm3CzTffHOjmSGG4SiwRERERERH5nZJW+3WmtH5dTFNWkKj0ftVSvV4lduLEifjtt9+wZs0aBnZEREREREREVHdKmfOvMqX1S4kjJZXcL4WQ5SsxZcoUDBkyBAsWLMC6devkaJKIiIiIiIiIiOzsQaLSQjGl9ivIZJvD7rvvvsPEiRMxbtw4PPDAAxg/fjw6deqEsDDPkyW2bt1ahl4SEREREREREREFnyyBHQDExMTgr3/9K3bv3o2vvvoKX331lVf3CYIAs7mGlUOIiIiIiIiIiIgaENnGGz7zzDMYOXIkcnNzIYpirTYiIiIiIiIiIqLGQpYRdl9++SXef/99AEBUVBTGjRuHHj16ICYmBirWKBMRERERERERETnIEth98MEHAIAuXbpgy5YtiI+Pl6NZIiIiIiIiIiKiekeW4W3Hjh2DIAiYM2cOwzoiIiIiIiIiIqIayBLYabVaAECnTp3kaI6IiIiIiIiIiKjekiWw69KlCwDg4sWLcjRHRERERERERERUb8kS2E2ePBmiKOKrr76SozkiIiIiIiIiIqJ6S5bAbsqUKbjjjjvw5Zdf4sMPP5SjSSIiIiIiIiIionpJllVit2/fjr/+9a+4fPkypk+fjmXLluGBBx5Ap06dEBYW5vH+G2+8UYZeEhERERERERERBZ8sgd2wYcMgCILj/W+//YbffvvNq3sFQYDZbA5U14iIiIiIiIiIiBRFlsAOAERRlKspIiIiIiIiIiKiekuWwG7Lli1yNENERERERERERFTvyRLYDR06VI5miIiIiIiIiIiI6j1ZVoklIiIiIiIiIiIi7zCwIyIiIiIiIiIiUhAGdkRERERERERERAri9znsXnvtNX8/ErNmzfL7M4mIiIiIiIiIiJRIEEVR9OcDVSoVBEHw5yNhsVj8+jySV2ZmJpKSkgAAGRkZaNWqVZB7RERERERERERUd4HKPAKySqw/M0B/h39ERERERERERERK5vfAbsuWLf5+JBERERERERERUaPh98Bu6NCh/n4kERERERERERFRo8FVYomIiIiIiIiIiBSEgR0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2CnA+fPn8fzzz6Nr164IDw9HXFwc+vfvj//85z8oLS31WzvLly/HrbfeisTERISEhKBt27Z49NFHsXv3br+1QUREREREREREdSOIoigGuxON2YYNG/Dwww+joKDA7fnOnTtj48aNaN++vc9tlJeX47777sP69evdnlepVJgzZw5mzpzpcxs1yczMRFJSEgAgIyMDrVq1Ckg7RERERERERERyClTmwRF2QXTgwAGMHz8eBQUFiIiIwBtvvIFff/0VP/30Ex577DEAwPHjx3H77bejuLjY53amTJniCOuGDx+ONWvWYM+ePUhJScE111wDq9WKWbNmYeHChX75XERERERERERE5DuOsAui4cOHY+vWrdBoNNi+fTsGDhzocv7tt9/G3/72NwDAq6++ilmzZtW6jW3btmHYsGEAgDvvvBOrV6+GWq12nM/NzUWfPn1w/vx5xMbG4syZM4iJifH5M7nDEXZERERERERE1BBxhF0Dk5qaiq1btwKQRsBVDusA4LnnnkPXrl0BAO+99x5MJlOt2/n3v/8NAFCr1Zg/f75LWAcATZs2xdy5cwEAeXl5SElJqXUbRERERERERETkPwzsgmTNmjWO/cmTJ7u9RqVSYcKECQCkMM0e8HmruLgYP/30EwBgxIgR1aa8d999N6KiogAAq1atqlUbRERERERERETkXwzsgmTHjh0AgPDwcPTp06fa64YOHerY37lzZ63a2LNnDwwGQ5XnVKbT6TBgwADHPb6M5CMiIiIiIiIiIv9gYBckR48eBQB06NABGo2m2uu6dOlS5Z7atlH5OTW1YzabcfLkyVq1Q0RERERERERE/lN9UkQBU15ejtzcXADwOBlhbGwswsPDUVJSgoyMjFq143y9p3bsEyTa7+vWrZvX7WRmZnrdj+zsbK+fS0RERERERESkZM45h9ls9ttzGdgFQVFRkWM/IiLC4/X2wK64uDhg7YSHhzv2a9uOc9jnSf/+/Wv1bCIiIiIiIiKi+uDy5cto27atX57FktggKC8vd+zrdDqP1+v1egBAWVlZwNqxt+FLO0RERERERERE5D8cYRcEISEhjn2j0ejxevvCEaGhoQFrx96GL+14KtUtLy/HsWPHEB8fj2bNmtU4Z59SZWdnO0YH7tmzB4mJiUHuEVHg8fueGiN+31Njw+95aoz4fU+NEb/vA8dsNuPy5csAgOTkZL89t/4lJw1AZGSkY9+b8tOSkhIA3pXP+tqOvQ1f2vE0Px4gLa7RUCQmJnr1mYkaEn7fU2PE73tqbPg9T40Rv++pMeL3vf/5qwzWGUtigyAkJARNmzYF4HnBhry8PEeYVpu54gDXIK02C0PUth0iIiIiIiIiIvIfBnZB0rVrVwDAqVOnalxF5NixY1Xu8ZbzSq/Oz6mpHY1G06BGwxERERERERER1TcM7IJk8ODBAKRS1H379lV73bZt2xz7gwYNqlUb/fr1cyw24fycyoxGI3bv3l3lHiIiIiIiIiIikh8DuyAZO3asY3/x4sVur7Farfj8888BADExMRg+fHit2oiMjMTNN98MANi8eXO1ZbGrVq1CYWEhAGDcuHG1aoOIiIiIiIiIiPyLgV2Q9O/fH0OGDAEApKSkYNeuXVWueeedd3D06FEAwPTp06HVal3OL1myBIIgQBAEzJkzx207zz//PABp1ZInn3wSFovF5Xxubi5efPFFAFIoOHXq1Dp9LiIiIiIiIiIiqhsGdkE0b948hIaGwmw2Y+TIkXjzzTexe/dubNmyBdOmTcPf/vY3AECnTp3w3HPP+dTGTTfdhAceeAAAsHbtWowYMQJr167F3r17sXjxYgwYMADnz58HALz11luIjY31z4cjIiIiIiIiIiKfaILdgcasV69eWLFiBR555BEUFhbi5ZdfrnJNp06dsGHDBkRGRvrczqJFi1BYWIiNGzdiy5Yt2LJli8t5lUqFmTNnYtq0aT63QURERERERERE/sHALsjuvPNOHDx4EPPmzcOGDRuQmZkJnU6HDh064L777sNTTz2FsLCwOrURGhqKDRs2YNmyZViyZAkOHDiA/Px8xMfHY8iQIXjqqacwcOBAP32ihqlVq1YQRTHY3SCSFb/vqTHi9z01Nvyep8aI3/fUGPH7vv4RRP6JERERERERERERKQbnsCMiIiIiIiIiIlIQBnZEREREREREREQKwsCOiIiIiIiIiIhIQRjYERERERERERERKQgDOyIiIiIiIiIiIgVhYEdERERERERERKQgmmB3gBq+8vJypKWlAQCaNWsGjYbfdkRERERERERU/5nNZly+fBkAkJycjJCQEL88l8mJApw/fx7vv/8+NmzYgPPnz0Ov16NDhw4YP348/vKXvyAsLMwv7SxfvhyLFy/GwYMHkZeXh4SEBAwZMgRPPvkkBgwY4Jc23ElLS0P//v0D9nwiIiIiIiIiomDbs2cP+vXr55dnCaIoin55Evlkw4YNePjhh1FQUOD2fOfOnbFx40a0b9/e5zbKy8tx3333Yf369W7Pq1QqzJkzBzNnzvS5jZqkpqYysCMiIiIiIiKiBo2BXQNx4MAB3HDDDSgtLUVERAT+/ve/Y/jw4SgrK8Py5cvx2WefAQC6dOmC1NRURERE+NTOww8/jGXLlgEAhg8fjunTp6NFixZIS0vDv/71L5w+fRoA8Nlnn2Hq1Kn++XBO0tPT0a5dOwDSN29iYqLf2yAiIiIiIiIiklt2drZjkNLZs2fRtm1bvzyXgV0QDR8+HFu3boVGo8H27dsxcOBAl/Nvv/02/va3vwEAXn31VcyaNavWbWzbtg3Dhg0DANx5551YvXo11Gq143xubi769OmD8+fPIzY2FmfOnEFMTIzPn8mdzMxMJCUlAQAyMjLQqlUrvz6fiIiIiIiIiCgYApV5cJXYIElNTcXWrVsBAFOmTKkS1gHAc889h65duwIA3nvvPZhMplq38+9//xsAoFarMX/+fJewDgCaNm2KuXPnAgDy8vKQkpJS6zaIiIiIiIiIiMh/GNgFyZo1axz7kydPdnuNSqXChAkTAEhhmj3g81ZxcTF++uknAMCIESOqTXnvvvtuREVFAQBWrVpVqzaIiIiIiIiIiMi/GNgFyY4dOwAA4eHh6NOnT7XXDR061LG/c+fOWrWxZ88eGAyGKs+pTKfTOVaJ3bNnj08j+YiIiIiIiIiIyD8Y2AXJ0aNHAQAdOnSARqOp9rouXbpUuae2bVR+Tk3tmM1mnDx5slbtEBEREREREZHCWa2AsUR6VRKl9ivIqk+KKGDKy8uRm5sLAB4nI4yNjUV4eDhKSkqQkZFRq3acr/fUjn2CRPt93bp187qdzMzMGs9nZ2d7/SwiIiIiIiKies1qBcxlgCYUUClgnNTFNGDXR8CR7wBTKaANA7qNAQY+CSQks18KxcAuCIqKihz7ERERHq+3B3bFxcUBayc8PNyxX9t2nMM+IiIiIiIiokZJiQFU2jfA6mmA1VxxzFQKHPgKSPsaGPcpkHwv+6VADOyCoLy83LGv0+k8Xq/X6wEAZWVlAWvH3oYv7RARERERERHJTkkj2ZQUQFnM0tcl64+qfXJmNQOr/gwYioDYNoBoBUTR9mqt5r3TMbg753xNNecLs4DUz2zPqKZfq6cBzTo36pF2DOyCICQkxLFvNBo9Xm9fOCI0NDRg7djb8KUdT6W62dnZ6N+/f62eSUREREREROSW0kayXUzzHIytngaotEBMEmAut20GwFQmvTqOeThuLgdMzu/Lqh4XLd73XbQA65/xy5fBr6xmYNd8YNzHwe5J0DCwC4LIyEjHvjflpyUlJQC8K5/1tR17G76042l+PCIiIiIiIiK/8PdINrMRMBZLzzCWuG4m+35ppWuKbcdKpGM5h6sP6+ysZuDrCb595sbqyBpgzEfBHz0ZJAzsgiAkJARNmzZFbm6uxwUb8vLyHGFabeeKcw7SMjMz0bdv32qvdR4lxznpiIiIiIiISHG8Gcm26jHg9BZAF14pdHMO4mwBnLHEc9BGwWMqlUYQ6sI9X9sAMbALkq5du2LHjh04deoUzGYzNBr3fxTHjh1zuac2nFd6dX5OTe1oNBp06NChVu0QERERERFRAybXXHFWC1B8CSjKrtgKs4Gii0BRFnBhn+eATbQCf3wZuD42VOHxgEoNCCrbJlR6rbxVOg5317k5BgCnf/aubFcbJn3PNVIM7IJk8ODB2LFjB0pKSrBv3z5cf/31bq/btm2bY3/QoEG1aqNfv37Q6XQwGo3Ytm0bXnrpJbfXGY1G7N692+UeIiIiIiIiauT8NVecKALl+bbwrZowrugiUJxT/UIEDYVaD2hDAU0IoLHv6yvea5zea0Ocjoc4bZWe4facHtg0Cziy2nOfej4k71xxqx+XSpg96Ta20ZbDAgzsgmbs2LF48803AQCLFy92G9hZrVZ8/vnnAICYmBgMHz68Vm1ERkbi5ptvxvfff4/NmzcjMzPT7Xxzq1atQmFhIQBg3Lhxtf0oRERERERE1NB4O1ecqcwpfLNvF6WVQIsuVrw3lwXvs9SGJkQKJnURUimmLkx61Ybb3jtt9usOfQNk/Ob52T0fBMZ9EvjPYHfjc8CxdTWPSlRpgIF/ka9PgBT4pn2tvH4pjCCKohjsTjRWN954I3bs2AGNRoPt27dj4MCBLufffvtt/O1vfwMAzJ49G3PmzHE5v2TJEkyePLna8wDw888/4+abbwYA3HXXXVi1ahXUarXjfG5uLvr06YPz588jJiYGZ86cQWxsrB8/pTR/nn1evIyMDC5SQUREREREpGQX04AFwzyXn+oiAWORLF2qFUENXPcwoI90Ct0ibAFbuC2McxPEacMAtQ/jmrz5eqk0wJ+3yr+Krbvg1blPtV2ko6H3yweByjw4wi6I5s2bh0GDBqGsrAwjR47Eyy+/jOHDh6OsrAzLly/HggULAACdOnXCc88951MbN910Ex544AEsX74ca9euxYgRI/DMM8+gRYsWSEtLwxtvvIHz588DAN566y2/h3VERERERESkUKYyID8DyD8H5KUD+eel/bPbvVuMIVBhnUoDRCQAUYlAZAIQmShtJ34EMnZ7vr/H/cCYDwLTN3cSkqWAyVMAJXdYB0ihV7POwK75EI+sgWAqhagNg9BtrDSCLRh9svXrNFrhyuZ30T1/C8IEA0pFPQ7FDEeTW2bgmuQBwemXgjCwC6JevXphxYoVeOSRR1BYWIiXX365yjWdOnXChg0bEBkZ6XM7ixYtQmFhITZu3IgtW7Zgy5YtLudVKhVmzpyJadOm+dwGERERERER1ZG/F3cwG4GCjIogLv88kHeuYr84p+5t1FZYEyCyhRTERSVWhHGRiRXvw5q6//wdR3g3ki0YpZRKDcYAHLG2wULTNPxQfidEUxkESyhuM7XAVGsbdPN8e0B898cFPLfyKszWCRDwCEJgRDl0EHNU0Hx1Fe9YLmDMdS2D1DtlYGAXZHfeeScOHjyIefPmYcOGDcjMzIROp0OHDh1w33334amnnkJYWFid2ggNDcWGDRuwbNkyLFmyBAcOHEB+fj7i4+MxZMgQPPXUU1XKcYmIiIiIiEgmvi7uYLUAhRecgjhbMGffL8qSbxEHbXilAC4BiLIFc/aALjJBWgzBV0oeyQYlB2MHYLbaZ0MLAUwiVu2/gLV/ZOGd8T1lD8aOZBW69EmECmUIcZw3W0U8t/IAOjaPRLcWUbL2TUk4hx0FHOewIyIiIiIiqoanubxuewtI6OEUxDmNkCvI9K50NVA0euDP26VgLkTGYOViGrBrPnBkjVPAOTaoI9mqBmMVNCpBlmDMahVhtFhhMFthNFtxOKsAU5buhcVNn+xUAvDciM5oFqWHyWKF2SLCZLHCZHs1W6wwWkSYLVbpuFWEyey6b7ba75Hus99jv99kqThvtogoMZpRQ5cc7undCu+M7+nHr1BgBCrzYGBHAcfAjoiIiIiIyA1vF3cItLAmQExrIKYNENsGSP8FuLDX8309HwLGfRz4/lXDarGgvKwYIaERUDktrii3I1mFuOvDnW7DOjuVADw7ohOaRephNEuhmskiwmi2wmixSK9mq0vgZn/vbt/g5lxNwVx9FKpV4/Crt0KlEoLdlRpx0QkiIiIiIiKihsBqBS4dAdb+VZ6wTh8NxNoCuZg2UjgXa99PklZTdebtqqfBmCsOUkC2cOcZfJ92EWUmC0K1aoxKTsDUwe39UkJZbrKgoMyEvFIj8ktNyLe/2o4VlFacKygzIf1KSY1hHQBYReA/m07UuW+NSZnJgnKzBWG6xhldNc5PTURERERERCQXUQQuHQXSdwLp26URbGVX/fd8bZibIM6+3xoIja3d8xQ8V5y70tMyk8XtnGwGswUF9qCtxIj8MlNF2FbmFMTZjtlDunKTTPP+UY1CtWqEaII3cjLYGNgRERERERER+ZMoArkngLPbgfQdUkBXmlu3Z8a1B2LbuQZxMW2l/bAmgODnskGnVU+VMldc5cUKKjNbRUxf/gdeX38EJUYLSo0WmXtYPwkCkNwiCjqNGhq1AK1aZdsEaNQq6NQqaFQCtBrXfa1KulZju9Z+n0YtQFdpv+K5Aj78+RS2HL/ssV+jkxMVXw4bSAzsiIiIiIiIiOpCFIErp2wB3U5pK7nkv+drw4Cn9gEqlf+e6Y2EZGmOujEfAeYyQBMqax+uFBtwIqcYJy8V4UROEb5Pu+ix9BQALhcbZehd7dmDMb1WDZ0t/NJpVNBp1I59vUZV6Zzrvt7jObXj/Zy1h7H2QJbHft3dS97FHV64tQt2nMyt8c9SoxIwZXA72fqkRAzsiIiIiIiIiGpDFIGrZ6TRc2d3SAFd8cXaP0cbDphKPF/Xbaz8YZ0zlQrQhQfs8fmlRpzIKcaJnCKczCnC8ZwinMwpxpWS4AdvUSEaxIbrEBOqRXSYDrFhWsSEahETpkNMmBYxYVp8vTcTv56+4vFZcgdjjw+9BhvTshUXjHVrEYV3xvf0uKquP+YjrM8Y2BEREREREVHjYrXWbsSYKAJ5Z6Vgzh7QFXkeuVRFdBLQdgjQbgjQdjBQXqDoxR3srFYR5WYLQjTqOpUoFpabcDKnyCmcK8bxnCJcLjL4sbfuRYZoEBOmRWyYDtG2wM1d+BYTpnMciw7VQu3F5+0cH+VxlVgGY67GXNcSHZtHImXnWWxMy3YsHjI6ORFTBrdr9GEdAAiiKDasdX9JcQK1xDEREREREVGtXEwDdn0EHPnOaU62McDAJ6vOyZZ3zjb/nC2kK8ysfXtRLV0Duti2Va9J+8bz4g7J99a+bT/wdTXWYoMZJ22B3ImcIpy4VIwTF4twsbBcln7rNCr839T+iAvXSyPjQrXQqAM7QtHdYhh29mDMvhiG3I5kFSo6GPNXIBwsgco8GNhRwDGwIyIiIiKioPMUjI38FxASWRHQFZyvfRuRiVJA13awFNLFtvNuMYiLaYpa3AHwLoAa0S0epy4VS/PM5UjzzJ3IKcaF/DK/9UOnUaFDswh0io/AyUvFOJxV6PGee3rLW3pqx2CscWJgR/UWAzsiIiIiIgqqi2meS099ERHvFNDdKK3kWpfVWmtbqhsgR7IKPZZ4+ptWLeCaZhHoGB+JTs1tr/ERaNMk3FGW6k2/NCoBa58aHNSAjMFY4xKozINz2BEREREREVHDtusj/4R14c2kcK7tECmga9KhbgFdZQFe3MEbBrMFb/94LGBhnUYloG3TcHSOj0TH+Ah0cgrmtB7KVpU8J5szlUpAmI5xC9UNv4OIiIiIiIioYbKYgLPbgbSvfbs/rElFQNd2CNCss38DuiAzmq04kVOEg5kFSLuQj7QLBTiWXQizte7PVglA2ybh6BgfYQvnItEpPhLtmoZDp/F99CAXK6DGgoEdERERERERNRzGUuD0T8DR9cCJH4Dy/Nrd33kU0P4mKahr1iWopan+ZLJI4dyhCwW2gK4Ax7KLYLTUPZ1r0yQMHZtLI+U6J0SiY/NItG8WjhCt2g89r8o+0u7te3uw9JQaLAZ2REREREREVL+V5QEnfgSOrgNO/STNA+cLbRhw/7J6H9KZLVaculyMg5kFjoDuSHYhjP4YOudEr1Fh/z9GIDwkONECS0+pIeN3NhEREREREdU/hdnAsfXSlr7TP3PUdft/9u47LKozbQP4PQ2GDlKkKqgooIA9urFG01CjRmNM2WjW9L5JzCbbUr5ssokxbWOyKUZj6qrRGKPGGDuJiRVBURABpQsW6gBTzvfHkZEyDZhygPt3XXMxM6c9gzgOt+/7PrNcGtZ1pFmB3iAg93I4l1Ek3o4XV6Jea99wzpTpSeEuC+uIujv+zSIiIiIiIqKu4fxpcRTdyR+AwgO2HxccB1RkA4KFEEuuBMY+1PkaOyCzuAqfpOZiS0apcU22GxNDcc+4fi3WZDMYBOSdr0VGYaVx3bnjxVWoa9R36vrRgZ5IjPRHUoQfEiP9oJTLMP+j36x2Y100LqZT1yUi8xjYERERERERkTQJAlCaLq5Hd2IjUH7CtuNkCqDvH4D4m4C4FMAvEshYC6y/3/RIPLkSmP0hEJpo3/ptsCGtqE3XU41Wj3WHi7AhrRh3XNUH7ko50gsrcby4CjUNnRtJ2KeXJxIvB3NJEX4YHOEHPw9Vm/26QjdWou6MgR0RERERERFJh0EPFPx+ZSTdpbO2HadUA/2vAeKmi40jPHu13J44V+zyuu99IPM7QFsnrlmXMEscWeeCsC6zuMpsKAaI011X7TvT4fNH+HsgKVIM5xIjxJu/p5tNx7IbK5FryQRBMD/GlcgOCgsLERUVBQAoKChAZGSkiysiIiIiIiKnMBjEBhBKD8trw+kagNzdwMmNwMnNQF2Fbed39wUGXi+GdAOmAu7e9q3LgXR6AxZ9dhC7s8vtcr5wPzWGRPhdDuj8kRjhh15etoVz1nRkbT2insJRmQdH2BEREREREZF9lWYA+5YBmRuajWSbCYx9+MpItoZq4NQ2cSTdqW1AY7Vt5/YKAeKmAfHTgegJgLIDoZRcDrh5tf+4Tjp7vg57TpVj76ly/HKqAjUdXHuut687EiPEUC4p0g9DIvwQ7ONu52qvYDdWIufj3zgiIiIiIiKyH1NrxWnrgKNfAxlrgKF3ANWlQO4uQN9g2zkDosVRdPEzgMhRgFzhiMrtrrpei32nz2PvqQrsPVWO/PN1HT7XQ5P6Y0TfACRG+CHEV23HKolIihjYERERERERkX2UZphv7ACIzx/+zLZz9R5yOaSbLt6XSX8qpt4g4FhRJfaeKsee7AocPnvRYqdVW3moFHj6ukGcjkrUgzCwIyIiIiIiIvvYt8x8WGeVDIgaLY6ii5sG9Opn19IcpaRSg73ZFdhzqhypORW4VKe1+zVSEsMY1hH1MAzsiIiIiIiIqPP0WuDYuvYdI1cCMRPEkG7QNMCnt2Nqs6O6Rh1+z7tgDOlyztW06/hALzeMjw3C+Nhg9PZ1x8IVByyOwlPKZVg0LqazZRNRF8PAjoiIiIiIiDru/Gkg7Usg7Svb16QDgJveE4M6D3+HlWZOe7qeCoKAEyXVxmYRB/IuolFvsPlabgo5RkYHYHxsMMbHBiEhzLfFNZfOS8ZTq4+aDO2UchmWzktGQriv7S+OiLoFBnZERERERETUPg01QOZ3wJEvgbO/tv94lafYfEIut3tplmQWV+GT1FxsySiFRquHh0qBGxNDcc+4fi1CsfLqBqTmiOvQ7T1VgYqadgSRAPoHe2HCwGBMiA3GVf16WeywOnNoBGJDfLA8NQ+bM0qMdaUkhmHRuBiGdUQ9lEwQhM6vgElkQWFhIaKiogAABQUFiIyMdHFFRERERETUboIAnN0nhnTH1wPa2o6fK/l2YPYH9qvNBhvSiiyOZLt/Yj/oDAL2ZFfgRElVu87t56HCuAFB4lTXgcGI8PfoUI3tGflHRNLgqMyDI+yIiIiIiIjIvMoi4OjX4rTXC7mdP59cCYx9qPPnaYfM4iqzYR0A6AwClu08bfP5FHIZhvfxN05zTYr0h8IOAZtcLrM4Go+Ieg6+ExAREREREVFL2nogazNw5AsgdycgWFmzzaMXkHQrMOwOoDwLWH+/6W6xciUw+0MgNNExdZvxSWquxcYOtujTyxMTBorNIsb2D4SvWmWn6oiI2mJgR0REREREROKU15I0ccprxhqg/pLl/WVyYMC1Ykg38EZA6SY+H5oIBA8C9r0vrnOnrRPXrEuYJY6sc3JYZzAI2JJR2u7jvN2VGNs/8PJadEHoG+jlgOqIiExjYEdERERERNST1VYA6avFKa9lx6zvHxgrhnRJ8wHfMNP7hCaKa9TNXAboNIDSw+kNJgCgXqvHyl/yodHqbT7mgYn9MCW+N4ZG+UOlcH7NREQAAzsiIiIiIqKeR68Dcn4G0r4Asn4EDFrL+7v5AENuBobdCUSOAmQ2rtcmlwNuzh+ZpmnU48vfz+DDPbkor7a9w6uHSoFnro9jwwcicjkGdkRERERERD1FebYY0h39Bqgps75/9HgxpIuf4ZLgrb3qGnX44rcz+GhPLipqGtt9fEpiGMM6IpIEBnZERERERERdncFgfuppfSVwbJ045bXwgPVz+UUBQ28Hkm8DesU4pl47q23Q4fPfzuDjPbk4X9v+oA4AlHIZFo3rGq+XiLo/BnZERERERERdVWkGsG8ZkLmhWXOHmcBVDwINlWKX18zvxTDPEqVaHEU39A4gZqJL1pvriJoGHVbty8cne/NwwUJQNz42CCP6BOC9nTkmu8Uq5TIsnZeMhHBfR5ZLRGQzBnZERERERERdUcZaYP39gEF35TltHXD0a/Fmi4gRYkg3ZA7g4e+QMh2hul6LVfvO4OO9ubhUZ379vYkDg/HYlFiM6BsAALhucCiWp+Zhc0YJNFo9PFQKpCSGYdG4GIZ1RCQpDOyIiIiIiIi6mtKMtmGdrbyCgeT5YlAXEm//2hyoql6Llb/kY3lqHio15oO6yYPEoG5Yn4AWzyeE+2LpvGQsmZuEep0eaqWCa9YRkSQxsCMiIiIiIupq9i1rX1gnVwIDbxBDuthrAYXKcbU5QKVGixW/5OHT1DxU1Zt/3VPiQvDYlFgkR/lbPJ9cLoOnG38dJiLp4jsUERERERFRV1FfCaSvBtL/Z+MBMuDal8QGEt7BDi3NESrrtFj+Sx5W/JKHagtB3bUJvfH4lFgMifBzYnVERI7DwI6IiIiIiEjKBAE4uw84vAo4/p31BhItDwZGLQLcvBxVnUNcqmvE8tQ8rPwlH9UN5oO66wf3xmNTYjE4nEEdEXUvDOyIiIiIiIikqOYckPYVcORz4HxOx86h8gSUHvaty4Eu1Dbik725+OzXfNQ26s3ud+OQUDx6TSwbRRBRt8XAjoiIiIiISCr0OuD0dnE0XfaPHWsq0VzCLEAut0tpjnS+pgEf783Dqn35qDMT1MlkQMqQMDw6ZQDiQhnUEVH3xsCOiIiIiIjI1S7mA0e+AI58CVQXW95XrgT6/gHI/wUQzI9Cg1wJjH3IrmXaW0VNAz7ek4vPfztjMaibnhSOR68ZgIG9fZxcIRGRazCwIyIiIiIicgVtPXDyB3E0Xd5u6/sHxgLD/3i5gUQIkLEWWH+/6VF4ciUw+0MgNNH+dbeDwSCgXqeHWqmAXC4zPn+uuh4f7c7FF7+fQb3WYPJYuQyYkSwGdQNCGNQRUc/CwI6IiIiIiMiZyo6LIV36/wDNRcv7Kj2AwbOB4XcBfcaIw82aJM4FggcB+94HMr8DtHXimnUJs8SRdS4M6zKLq/BJai62ZJRCo9XDQ6XAjYmhuHlYBHacLMeXv59Bg858UDdzaAQeuWYA+gd7O7lyIiJpkAmCILi6COreCgsLERUVBQAoKChAZGSkiysiIiIiInKy+irg2LdiA4miQ9b3Dx8mhnRD5gBqGzqgGgxi91ilh8vXrNuQVoSnVh+FztC+XzUVchlmDg3HI5MHoB+DOiLqIhyVeXCEHRERERERkSMIAlCwXxxNd3ydOALOErUfkDRfnPba3tFxcjng5tXxWu0ks7iq3WGdQi7DzcMi8PDkAYgOcv1rICKSAgZ2REREREREtrJlJFttBXD0azGoq8i2fs6YCcCwu4D46YDKw771Otknqbk2h3VKuQxzhkfi4ckD0CfQ08GVERF1LQzsiIiIiIiIrCnNAPYtAzI3NFsrbiYw9mFxNJxBD5zeCRxZBZzcDBi0ls/nEwYMvQMYdgfQq59zXoODGQwCNmeU2LSvQi7D9qcmom8gR9QREZnCwI6IiIiIiMgSU91YtXXiKLqMNcCgFKDoMFBVaPk8MgUw8AZxbboBUwFF9/l1rOBCHd75Odtsx9fW9AYBwT7uDq6KiKjr6j7/QhAREREREdlbaUbbsK45gw448b3lc/TqJ4Z0ybcDPr3tX6MLnTlfi/d25GDdkSLo27FunYdKAbVS4cDKiIi6NgZ2RERERERE5uxbZj6ss0SpBhJmiUFd3z8AMpndS3OlvAoxqPsurX1BXZOUxDDI5d3re0JEZE8M7IiIiIiIiEyprwKOfdu+Y8KSgWF/BBJvATz8HVKWK+Wcq8GynTnYkFaEDuR0AMRmE4vGxdi3MCKiboaBHRERERERUZOac0DWFuDkJrGJhKHR9mP/tBXoM8ZxtbnQqbJq/GdHDjamF0MwE9SpVXLceVVf9A30xIsbM012i1XKZVg6LxkJ4b4OrpiIqGtjYEdERERERD1bxSkxoDu5CSg8AKADQ8dUnkDkaLuX5mpZpdV4d8cpbM4oMRvUeagU+OPYvrh3fD9jI4kRfXtheWoeNmeUQKPVw0OlQEpiGBaNi2FYR0RkAwZ2RERERETUsxgMQNEh4OQPQNZmoCK78+dMmAXI5Z0/j0ScKKnCu9tPYcuxUrP7eLopcNfYaNw7PgaB3i07viaE+2LpvGQsmZuEep0eaqWCa9YREbUDAzsiIiIiIur+tPVA3h4ga5M45bWmzLbjZApAMMDiqDu5Ehj7kF3KdLVjRZX4z45T2Hrc/PfH212JBX/oi0Xj+qGXl5vF88nlMni68ddOIqL24jsnERERERF1T5qLwKlt4ki6nO1AY41tx7n5ALFTgbjpwICpQM7PwPr7TXeLlSuB2R8CoYn2rd3JMgor8c72U/j5hPmgzsddibuvjsafxsXA39NyUEdERJ3DwI6IiIiIiLqPSwXiNNeTPwBnfjUdspniHQrEpQCDpgEx4wFlsymeiXOB4EHAvveBzO8AbZ24Zl3CLHFkXRcO69IKLuHd7aew4+Q5s/v4qpX407gY3P2HGPh5qpxYHRFRz8XAjoiIiIiIpMdgAHQaQOlheW04QQDKjl1pGlGabvs1guOAQSniSLrwYZavE5oIzP4AmLnMtrok7vDZi3jn51PYnV1udh8/DxUWjYvBwquj4atmUEdE5EwM7IiIiIiISDpKM4B9y4DMDc1Gss0Exj58ZSSbXgec/RU4uVkM6SrP2nhyGRB1FRA3TbwF9m9/fXI54ObV/uMk4mD+Bbyz/RT2nqowu4+/pwr3ju+Hu8b2hQ+DOiIil2BgR0RERERE0pCxtu1acdo64OjXQMYaYPS9QN1FIPtHoP6SbedUqoF+k8WAbuANgHewQ0qXuv15F/DO9mz8knPe7D69vNxw7/h++OPYvvB256+KRESuxHdhIiIiIiJyvdIM840dAPH53z6w7VweAcDAG8U16fpf06VHxNnKYBBQr9NDrVRALpcZn993+jze2Z6N33IvmD02yNsN903ohzuu6gsvBnVERJLAd2MiIiIiInK9fctsbxBhin/fK1Ndo8YAip7xq05mcRU+Sc3FloxSaLR6eKgUuHFIKEZGB+C7tGLszzMf1AX7uOP+y0Gdh5vCiVUTEZE1PeNfMSIiIiIikiZtPZC3R5zy2l5hyWLDiEEpQO/BgExm/ZhuZENaEZ5afRQ6g2B8TqPVY92RIqw7UmT2uBAfdzwwsT9uv6oP1CoGdUREUiSpwK6iogJFRUUoLy/H+fPn4eHhgeDgYAQHB6Nfv36Qd+EuTEREREREdFl1KXDqJyDrRyB3p7hOXXtc9y9g8CzAL9Ih5XUFmcVVbcI6a0J91XhwUn/cOiqKQR0RkcS5NLCrrq7Ghg0bsGvXLuzduxc5OTlm9/Xy8sKYMWMwfvx4TJs2DcOHD3dipURERERE1GGCAJQcBbK3ig0jig93/FwqT2DMQ2K31h7sk9Rcm8O6cD81Hpw8APNGRsJdyaCOiKgrcElgd+jQIbzzzjv49ttvUV9fDwAQBMv/2NTU1GD79u3Yvn07XnjhBQwaNAgPP/wwFi5cCC+v7r+ILBERERFRl9JYB+TtFgO67K1AdYl9zpswq8eHdQaDgM0Ztn0/VQoZtj81ER5ukppcRUREVjj1XfvQoUP4+9//jp9++gnAlZAuLCwMo0aNwogRIxASEoJevXohICAAGo0GFy5cwMWLF5GdnY0DBw4gPT0dWq0WJ0+exGOPPYYXXngBixcvxuOPPw53d3dnvhwiIiIiImqusuhKQJe3G9DV23acTA6EDAbOHQcEg/n95Epg7EP2qbWLqtfq8cGu06jXWvg+NaPVC7B90iwREUmF0wK7u+++G59//jkMBvEfluHDh+OOO+7AnDlz0KdPH5vP09jYiD179uCrr77C+vXrcf78eTz33HP44IMP8Pnnn2PcuHGOeglERERERNScwQAUHwGyt4hBXWmG7ce6+wIDpgADbwAGXAt4BQIZa4H195vuFitXArM/BEIT7Vd/FyIIAr4/WozXf8xC0SWNzcd5qBRQcxosEVGX47TA7rPPPoObmxsWLFiAp556CgMHDuzQedzc3DB16lRMnToVH3zwAdasWYNXXnkFJ0+exI4dOxjYERERERG1h8EA6DSA0sO2qaYNNWKjiKwfgVNbgdpy268VEAMMulEM6fqMBZRuLbcnzgWCBwH73gcyvxObUag8xWmwYx/qsWHdoTMX8fKmTBw5e6ndx6YkhkEu71ndc4mIugOnBXYPPvggnnvuOURG2q+Tk7u7O+68807ccccdWLNmDfR6vd3OTURERETUrZVmAPuWAZkbmgVjM4GxD7cNxi6eudwwYguQnwroG227hkwhBnMDrxeDusABgMxKeBSaCMz+AJi5rH1BYjdUcKEOr/14Ej+kd2z9P6VchkXjYuxcFREROYNMsNbtgaiTCgsLERUVBQAoKCiwa2hLRERERB1gberprA8A/z7iNNesH4HyE7afW+0PxF57earrFMAjwG5l9xTV9Vq8v+s0lqfmoVFneq26Mf16YXxsMN7alm2yW6xSLsPSecmYOTTC0eUSEfVojso82CqIiIiIiKgnKc0wH9YB4vPr7m3fOYMGiaPoBt4ARF0FKPhrRkfoDQL+d6AAb27LQkWN6VGM0YGe+GtKPK5N6A2ZTIbJg0KwPDUPmzNKoNHq4aFSICUxDIvGxSAh3NfJr4CIiOyF/5ISEREREfUk+5aZD+tsJVcB0VeLAd3A64Fe/exTWw+291Q5/rXpBE6WVpvc7qtW4vGpA/HHMX3hprwyRTgh3BdL5yVjydwk1Ov0UCsVXLOOiKgbYGBHRERERNQTCAJQkQ0cW9ux4z0DgdjrxJCu/zWAmqO37CHnXDX+tekEdmaZbt6hlMtw55i+eHxKLAK83EzuAwByuQyebvz1joiou+A7OhERERFRd1VZBOTtBvL2ALm7geri9h0fHA/EpYghXcQIQK5wTJ090IXaRrz9cza+/P0s9CbWoAOAqfEheC4lHv2DvZ1cHRERuZrLArtffvkFa9euxenTpyGXyxEXF4d58+Zh+PDhVo89deoUrr/+eshkMpw+fdoJ1RIRERERdQF1F8RwLm+PGNSdz+n4uZQewIO/9tgOrY7SoNNj1a9n8O6OU6iuNz01OS7UB/+YnoCrBwQ5uToiIpIKpwd2Wq0Wd999N77++usWz2/cuBFLlizBzTffjPfffx/BwcFmz9HY2Ij8/HzIrLWEJyIiIiLqzhpqgLO/AXm7xBF0pRkATI/WarfBsxnW2ZEgCNh6vBSvbjmJM+frTO4T5O2OxdcPxNwRUVBwHToioh7N6YHdPffcg6+++srs9nXr1iE1NRVr1qzBuHHjnFgZEREREZHE6RqBooNiOJe3Gyg8CBi07TuHZxBQdx4Wgz25Ehj7UKdKpSsyCivxf5sysT/vgsnt7ko57h3fDw9M6g9vd65aRERETg7sUlNT8fnnn0MmkyE2NhZLly7FpEmT0NjYiF27duG1117D/v37UVZWhuuuuw7ffPMNbrrpJmeWSERERETkOAYDoNOI001tGb1mMACl6WI4l7sbOLsP0JoenWWW2h+IGQ/ETBRvQbHAsW+B9feb7hYrVwKzPwRCE9t3HWqjtLIeS7ZmYd2RQghm8tGZQ8PxzA1xiPD3cG5xREQkaU4N7JYvXw4AiIiIwK+//opevXoBALy8vDB79mzMmjULb775Jp577jnU19dj7ty5WLFiBe644w5nlklEREREZF+lGcC+ZUDmBjFwU3kCCTOBsQ+3DMYEQVx3LneXGNLlpwKai+27lsoT6DMWiJkA9JsIhCa1bRaROBcIHgTsex/I/K5ZTbPEkXUM6zqlrlGHD3fn4qM9udBo9Sb3GdE3AH+fFo9hfQKcXB0REXUFTg3sfv31V8hkMjz11FPGsK65pm0jR47EzTffjIsXL2LBggWorq7GAw884MxSiYiIiIjsI2Nt29Fs2jrg6NdAxhrg+lcBd+/L01z3tL+Tq1wJRI4SA7qYiUDkSEDpbv240ERg9gfAzGXtG/VHZhkMAtYdKcKSrSdRVtVgcp/IAA88e2McpiWGcU1uIiIyy6mBXXGx+OFj7NixFvebOHEi9uzZg+uvvx7FxcV4+OGHUVNTg6efftoZZRIRERER2Udphvmpp4D4/JbF7T9vaKIYzvWbJI6mc/fueI1yOeDm1fHjexiDQUC9Tg+1UgF5s8YQv+eex/9tysSxoiqTx3m7K/Hw5AG4++poqFUKk/sQERE1cWpgp9WKC+IqFNb/gRo8eDD27t2LqVOnIi8vD3/5y19QXV2NF1980dFlEhERERHZx773zId17dGrvzi9NWYiED0e8Ars/DmpXTKLq/BJai62ZJRCo9XDQ6XAjYmhSBkShrWHCvHj8VKTx8llwPzRffDnqQMR7GPDyEciIiI4ObALCQlBUVERzp49ixEjRljdPyYmBnv37sW1116LEydO4OWXX0ZNTQ3+9Kc/OaFaIiIiIqJ2aqwDio8AhQeAgv1A1qaOnccn7PIIuoniVFe/SPvWSe2yIa0IT60+Cp3hSucIjVaPdYeLsO5wkdnjxscG4e/TEjAo1McZZRIRUTfi1MBuyJAhKCoqwt69ezF79mybjgkPD8eePXtw3XXX4ciRI3j77beRnp7u4EqJiIiIiKwQBOBiHlBwQAzoCvcDpccAwXSTAasG3Qj0nyJOcw0cAHB9M0nILK5qE9ZZMyDEG3+bFo9JA4O5Th0REXWIUwO78ePH48cff8SaNWuwdOlSm//xCgwMxM6dO5GSkoJff/0VO3bscHClREREREStNNQAxYfFkXOFB8WQrq7CPudWeQK3fsWmDxL0SWquzWFdgKcKT147ELeN7gOlgn+WRETUcU4N7G644Qb87W9/Q3FxMdatW4c5c+bYfKyvry+2bduGWbNmYdu2bQ6skoiIiIh6PEEAzudcmdpaeBA4dxwQDI65XsIshnUSZDAI2JJhem261pRyGXY8PQkBnm4OroqIiHoCpwZ2w4YNw/jx41FcXIzPPvusXYEdAHh4eOCHH37A/PnzsX79egdVSURERERdnsEA6DSA0sO2IKy+Eig6JAZzBfuBooOA5mLHri1TAL0HA5GjAN8wYNe/LTeekCuBsQ917FrkUPvzL0CjtW2Ks84gwF3J0JWIiOzDqYHdoUOHsHv37k6dQ6VS4dtvv7VTRURERETUrZRmAPuWAZkbAG2dONU0YSYw9mEgNFHcx2AAKrLFNecKD4hr0JWfBGD7GmUteAUDkaOByJFA1GggfBjg5nVle0AMsP5+06GdXAnM/vBKbSQJ2WXVeGNrFn7KLLP5GA+VAmqlwoFVERFRT+LUwG7UqFEIDw/H9OnTMWPGDEyZMgVqtdqZJRARERFRd5Wxtm0wpq0Djn4NpK8G4lKAxlqg8BDQUNmxa8iVYrgWOepKSBcQbblBROJcIHgQsO99IPO7ZkHiLHFkHcM6ySi4UIe3fz6F9UcK0Y4eEwCAlMQwyOVsMEFERPYhEwShg/+V2H7yy9MRmppNqNVqXHPNNZgxYwamT5+O8PBwZ5VCTlRYWIioqCgAQEFBASIjI11cEREREXU7pRnAR5MsTz3tCO9QIGrUlYAuLBlw8+z4+do7VZecory6Act25uDL389Aq2//r0dKuQzfPzIOCeG+DqiOiIikzFGZh1NH2BUWFuKHH37Axo0bsWPHDmg0GmzatAmbN2/Ggw8+iKFDh2LGjBmYMWMGRowY4czSiIiIiKirEASgqhioyAIqTgHlWcCJjZ0P6+QqMZCLujxyLnI04BdpefRcu68hbzldllyqql6Lj3bn4tNf8lDXaHqtugBPFSYODMYP6SUmu8Uq5TIsnZfMsI6IiOzKqSPsmtNoNPj555/xww8/YNOmTSguLhYLuvyBKDQ0FNOmTcOMGTMwdepUeHh4uKJMsgOOsCMiIqIO0WuBC3nienMVWUB59uX7p4DG6s6f3zfyyrpzkaOA0CRAxeVaegJNox6f7cvHB7tOo1KjNbmPl5sCi8b3w73jY+CjViGzuArLU/OwOaMEGq0eHioFUhLDsGhcDMM6IqIezFGZh8sCu9YOHTqEjRs34ocffsDhw4cBcOpsd8HAjoiIqBuzxxTPhporQVxFljhiruIUcOG0/ae4AsDNHwPR4wBffqbsabR6A1YfLMC720+hrKrB5D5uCjnuHNMXD0/uj0Bv9zbbDQYB9To91EoF16wjIqLuH9g1V1xc3GbqLHAlwOPU2a6FgR0REVE3ZEs31uYEAagtF4O58qzLAV22OGquqtB5das8geeKuH5cD2MwCNiYXoy3tmUj/3ydyX3kMmDO8Eg8PjUWkQGdWKeQiIh6lB4V2DVXX1+Pn3/+GRs3bjQ7dXb69Ol46KGHkJyc7MpSyQwGdkRERN2MqW6sTeRK4NqXgMABl4O5ZuvM1V+ybx0qLyAoVuzAei5TDBGtSb4dmP2BfesgyRIEAbuyyvH61iycKKkyu9+NQ0Lx1HUDMSDEx4nVERFRd9Atmk50hFqtxvTp0zF9+nQA4tTZptF3R44cQUlJCT755BNEREQwsCMiIiJytNIM82EdID6/9a/2vaZXMBA06Eo4FzRQ/OoTfmWknC1dYuVKYOxD9q2NJOtA/gW8/uNJHMi/aHafcQOCsPj6QUiO8ndeYURERDaQfGDX2ogRIzBixAg8//zzxqmzP/zwAzw9u+aw9bq6Oixbtgxr1qxBTk4OGhsbERUVhWnTpuGxxx5Dnz59On2NnJwcHDhwAPv378f+/ftx5MgR4zTjFStWYOHChZ2+BhEREXVDBj1QWQBU5ADnc4Dzp+zTjdUkGRDQt1Uwd/m+Zy/rh4cmArM/tDzyb/aHpqfrUrdyvLgSb2zNws6scrP7JEf54y/XD8IfBgQ5sTIiIiLbSX5KbHd2+vRpTJs2DVlZWSa3+/n54auvvkJKSkqHr7F7925MmjTJ7HZnBHacEktERGQH9mjuYE7dBeD8aTGQqzglfj1/WrzpTS/M32EKdzGEC4oVA7nggeKIucABgMqj8+cvzQD2vQ9kftdsbb1Z4sg6hnXdWn5FLd7clo3vjxab3Sc2xBtPXz8I1yX0Ni6xQ0RE1Bk9dkpsd1VTU4Pp06cbw7p7770X8+fPh4eHB3bu3IlXX30VlZWVuOWWW7Bv3z4kJSV16DrN81i5XI74+Hh4eXlh//79dnkdRERE5GDtbe5gjq4RuJjXLJDLuTxy7hRQd94xtYePAHrHXx4pN1AM5/z7AnKFY64HXB5p9wEwc5njAk6SlLKqeryz/RRWHyiAzmB6LEKEvweevHYgZg2LgIKdXYmIqAtwamCXmpqK5557DgcOHIAgCOjbty8mTpyIOXPm4IYbbmixb1VVFdasWYOzZ88iNDQU48ePx5AhQ5xZrkO98cYbOHnyJADg9ddfx+LFi43bxo4di8mTJ2PChAmoq6vDE088gR07dnToOhEREViyZAlGjRqFESNGwNvbGytXrmRgR0RE1BWYau6grQOOfg1krBGneCbOvbJNEIDq0mYj5ZqNmrt0BhAMzqtd5Qnc87PrwjK5HHDzcs21ySku1TXig12nsfLXfDToTP9sB3m74ZHJA3DbVX3grnRgUExERGRnTgvsMjIycN1116GhocE46isnJwenT5/Gp59+iuHDh+Obb75B//79cfLkSUydOhUlJSUtzjFw4EA8++yzWLBggbPKdgitVot33nkHABAfH4+nnnqqzT5jx47FokWL8OGHH2Lnzp04dOgQRowY0e5rxcbG4umnn+50zURERORktjR3WHcfcOYXoL7qyjTWxhr71+LuK05ZDYq1vRtrwiyObKNOMRgE1Ov0UCsVkDcbFVfboMOKX/Lw4e5cVDeY/vvh467E/RP74e6rY+DlzklFRETU9TjtX6+lS5eivr4eCoUCt912GwYNGoTi4mJs2bIF+fn5OHToEK666irs378fd955J4qL2649kZWVhT/96U9Yv349Vq9eDTc3N2eVb1e7du3CpUuXAAALFiyA3MyH2YULF+LDDz8EAKxbt65DgR0RERF1QQY9sGeJ9eYOgh44+Kl9rilXAgHRQGAsEDRADOgCL6815xUMNK33xW6s5GCZxVX4JDUXWzJKodHq4aFS4MbEUCwY2xdHzl7CeztzUFHTaPJYd6UcC/8QjQcm9keAV9f8XYGIiAhwYmC3Z88eyGQyPPHEE1iyZInxeUEQsGrVKjz66KO4ePEiJk2ahMLCQshkMjzwwAN49tlnIZPJ8Msvv+CDDz7Anj17sHHjRtx///1YsWKFs8q3q7179xrvT5w40ex+I0eOhJeXF2pra5GamuqM0oiIiMiRzR2aaOuBykKxA2tlAXDp8tfKQuDSWaCyCBAc0YkVgFeIGMIFDrgyai4wVuzQqlBZP57dWMmBNqQV4anVR1usRafR6rHucBHWHS4ye5xCLsOto6Lw2DWxCPVTO6NUIiIih3JaYNc0vbV1x1OZTIYFCxYgPDwcN9xwA4qKiiCTyTBhwgQsW7bMuN+tt96KW2+9FUuWLMFf/vIXrFq1Cg8++CBGjx7trJdgNydOnDDej4uLM7ufUqlE//79kZ6e3uIYqSksLLS4vfXUZiIiIkmyV3MHQQDqL5kI4ZqCuUKg9pzDXgYAMWwMHNBqpNzl+2q/zp8/cS4QPIjdWMmuMour2oR1trgpORxPXjsQ0UFcs5CIiLoPpwV2CoW4yKufn+kPiddeey1uuukmbNiwATKZDHfffbfJ/RYvXoxdu3bhxx9/xKefftolA7uCggIAgJeXF/z9/S3uGxUVhfT0dJSXl6OhoQHu7u5OqLB9mtoXExERdVntae5g0IuNHZpGyF062+z+5ZDOEevImSOTAyPvETuwNo2a841w/Ppx7MZKdvZJam67wrrJg4Lx9PWDMDjcDiE0ERGRxDgtsIuMjMSpU6eQlpaG4cOHm9zn5ptvxoYNGwAAo0aNMnuuhQsXYsuWLfjll18cUqujVVdXAwC8vb2t7uvldeV/CmtqaiQZ2BEREXVptjR3+PYeYN97QN0FoKrI+tpyzpQ0H5i2xPp+jsJurGQHer0Bm9Jtm5UhlwFf3TsGY/oFOrgqIiIi13FaYDdp0iRkZ2fjjTfewG233QYPD482+wwcONB4v0+fPmbPNWDAAADA2bNn7V+oE9TX1wOATU0zmgd0Go3GYTV1RtOIQXNKSkq65EhIIiLqhgQB0FxsOSru0AobAjgBKD5i/3rUfoBfH8A/CvCLAvwiL9/vAzRUA1/OYXMH6tbKqxuw7nAhvj5wFg06g03HGAQgKZKj6oiIqHtzWmD3yCOPYPny5cjKysLUqVOxfPnyNuu3DR48GO+++y4OHjzYYmRZa00j1BwdYOl0OqhUNiy+bMWKFSuwcOFC42O1WlwIt7HRdHer5hoaGoz3TYWcUhAZGenqEoiIqCtyRHMHvQ6oLr6yVlzl5WDO+LgQ0Nba51pWyQCfsGYhXFSzYO5yOKf2tXwKNnegbkhvELAnuxzfHDiL7SfOtXvNOg+VAmqlwkHVERERSYPTArshQ4bgX//6F5599ln89ttvGDx4MMaOHYtJkyZh+PDhGD58OKKjo/HII49YPdeuXbsAmF8PT+p8fHwAiFNcramtvfJLhS1TaImIiCSvM80dGqqbBXDNmzpc/lpdDAi2jdLpNIV7yzCuRSAXKa4jp7Q+mt4iNnegbqTgQh1WHyzAmoOFKK2q7/B5UhLDIJfL7FgZERGR9DgtsAOAZ555BkFBQXj66adx6dIl/Prrr9i3b59xu5+fH4YOHYphw4Zh+PDhGDZsGOLi4iBv9r/ux48fx1tvvQWZTIahQ4c6tF6lUmmX7qxhYWEtHkdGRuL3339HbW0tLl26ZLHxRNN00+DgYK5fR0REXZ+15g43vAaED205ZbV5QFd/yVWVA3IVcPOHgH+0GMx5BjmnyQKbO1AXVq/VY+vxUqw+WIBfcs53+nxKuQyLxsXYoTIiIiJpc2pgBwB/+tOfcPPNN+Ozzz7Dhg0b8NtvvxnXdLt06RJ27dqF3bt3G/dXq9VITEzE8OHD4efnh/fffx/V1dWQyWR49NFHHV5v62m79pCQkIBvv/0WAHDy5EmMGTPG5H46nQ6nT58GAMTHx9u9DiIi6iEcMfW0vXSNQP4eYN19gKA3vY9BB2x+yjn1yOSAT7g4Eq66BLh0xvoxibcAQ+Y4vjZz2NyBupDM4iqsPliA9UeKUKnRWtxXrZIjJTEM80f1QcklDZ5ac9TkNFmlXIal85KREG5lKjkREVE34PTADgD8/f3x+OOP4/HHH4der8eJEyeQlpaGtLQ0HDlyBEePHsWFCxcAiOvU7d+/HwcOHDAeL5PJ4OHhgTVr1iArKwtJSUlITExEeHi4K15Ou40bN854f/fu3WYDu4MHDxqnxF599dVOqY2IXEQKgYopUq2LbNOZqae2aqwDakqB6jLLX+s6P7KmXVSerZo4RIqNHJoe+4QBisvr1JZmAB9NYnMHok6qqtfi+7RirD5YgPTCSqv7J0X64dZRUZiRHA5f9ZV1o2N7+2B5ah42Z5RAo9XDQ6VASmIYFo2LYVhHREQ9hkwQhPat8uokBQUFxhCvKcjLz89vsY9M1nLtil69eiExMRHJycl46623nFht+zQ2NiIkJASVlZWIj4/H8ePH27wWAHjggQfw4YcfAgD279+PUaNG2eX6K1euxN133w2gbUMMRygsLERUVBQA8c+VTSqImnFGoNKd6pI6KQWcpqaeNmlqVpA41/SxgiBOPbUYwl2+NVQ59GWY5RXcLJC7HMQ1f+wRAJj4t9Wszny/iHowQRBwIP8ivjlwFpszSlCvtbyGpJ+HCrOHRWDeyCir4ZvBIKBep4daqeCadUREJFmOyjwkG9iZUlVV1SLES0tLQ2ZmZptuqzKZDHq9mek2EvHPf/4T//d//wcAeP3117F48eIW2/ft24cJEyZAp9Nh4sSJxkYbzeXn5yMmRlzDw9w+pjCwI5IIqQYEUq1LyqQWcNoyYkymACYsBhTKtoFczTlA1/EF4e3Cv68YvJkK43zDAZUDOqeXZrC5A5GNzlXXY93hIqw+UIDcCuudl68eEIh5I6Nw/eBQqFXs8EpERN0HAzszdDodjh8/3mIkXnp6unFKrVRVV1dj5MiRyM7OBgDcd999mD9/Pjw8PLBz50688sorqKmpgYeHB3799VeTDTZsDezWrl3boiNtamoqli9fDgBYtGhRiym6oaGhuOGGG+z0KkUM7IhMsHUK3qJtQHCcuJ9BBxj0ze6bemzqZuYYvbbt9spC4MDHlrtsyhXAHzcAff8g3neF7jKSzRKDHmisFYMjbZ049VRbd/k5TbP7rbZr64DTO21bk02qVJ7Ac0Wu+7OV0s8XkYTo9Abszi7H/w4UYPvJc9CbWGeuuVBfNW4ZGYlbRkShT6Cnk6okIiJyLgZ23VBOTg5SUlJw6tQpk9t9fX3x5ZdfYvr06Sa32xrYRUdH48wZ235xa89IPVsxsCMyYf0DYlfMrkwmBzwDxamJXkGXv7a+3+yxm3f7piiaIrWRbMVHgU+usTKSTQ6Mvg9w920VuNW2DNlaB3L6Bue9DntQeQE+vQHvUPNf9ywBjq+zfq7k28WuqETkFNamnp45X4vVBwuw9lAhyqosvzcp5TJMiQ/B/FF9MGFgMBScykpERN2cozIPlzSdINGAAQNw5MgRLFu2DGvWrEFOTg4aGxsRFRWFlJQUPP744+jbt6+ryyQie6suA46tdXUVnScYgNpy8WYLpdpKuNfsvmcQoHRrebypkWzaOjH4zFhj+0g2XQPQUCOuvdZYI95vrAEaqq98bagBGqubbWva3uo5rfVpYBAMwO//te17JEVqf8AnFPDubebr5UDO3cf6ucY/CZz4ns0diCQis7gKn6TmYktGqbG5w42JobhnXD/0C/bCj8dK8b8DBdiXa71pTL9gL9w6Mgo3D49EsI+7E6onIiLq3pw2wm7NmjW45ZZbHHb+wsJCnD17Fn/4wx8cdg3qGI6wI4IY7pzcBGSsBnJ2ALC8KDcBUPtdCfAUKiB/r9gMwRyZHBh8sxgMWgrbDFrnvQapk8mAflMA36bgrVUg590bUKnte02ukUgkCRvSivDU6qPQmZjWKpMBaqUcGisNJDxUCkxLCsOto6Iwsm+AySZqRERE3V2XH2F366234qWXXsI///lPuwZ3Z8+exauvvooVK1bgr3/9KwM7IpIOXSNweocY0p3cLK6J5SgyhRh2GG9WHiuUbbfLFEDuLkCQSNOe+krxdj7Htv0FQ/cYuWiWTJwC7OYpNlxQeV2+79ns+cvP5e0Fyk9YP2XSbc6fepo4FwgexOYORC6UWVxlNqwDxP8bsRTWJUf549aRUZiRHAYftcpRZRIREfVoTgvsYmNjcfz4ccyfPx+LFy/G7bffjjvuuAODBw9u97lqa2uxfv16fPnll9i+fTv0ej3kcjkGDBjggMqJiNrBYAAKfhOnaB5fD2gudu58cTOA61+2EsYpO782XBNb19YbPBsY/9TlKbEV4teac1fuG5+XQLdRKZDJgbjp4jp+bUI2T8DNy3IIp/IQb7b+Odva1MRVU09DE8WgcOYyNncgcoFPUnPNhnXm+HuqMHtYBG4dFYW4UF8HVUZERERNnDYlVqfT4d1338W///1vVFRUGIfMx8bGYsyYMRg1ahSGDRuGkJAQBAQEICAgABqNBhcuXMDFixeRnZ2NAwcOYP/+/di/fz/q6+vRVPqNN96I1157DUOGDHHGS6F24pRY6hHKjoshXcZaoLLA+v5KtbiWGiy8BcuVwH27nDviyNagx9a6BEFsotA82GsR6LW6X1dhuUOt3cnEtdfcvAF37ytf3X3bPufmI+5rfM4H2PsmkL3F+mVc0USBU0+JyIT6Rj2SXvwJjXrb3muv7h+I+aP74NqE3lCrXNQZnIiISMK6TZfY2tpavP/++1i2bBnOnj0rFtGOkSFN5SoUCsycOROLFy/GVVdd5ZBayT4Y2FG3demsGIpkrAXOHbe+v0wBDJgCJN4CDEoBsn+UZqDiyqDHYBBHJTYP9mrOAT/93ba15+QKYNR9rYI1XxPB2+XATeXZudGJ9g447a00g1NPiQgAUFZVjy9/P4uvfj+DippGm4/LfOl6eLqxTx0REZE53Sawa2IwGLBt2zasXr0aO3fuRH5+vtVjPDw8MHr0aEybNg233347wsPDHV8odRoDO+pW6i6IU10z1gBn99l2TNRVYkg3eLbYCbU5qQYqUqvL1qm6HMlmmsHAqadEPZAgCPg97wI+33cGW4+XtnsarIdKgeMvXg+5nM0kiIiIzOl2gV1rRUVF+PXXX1FYWIjy8nJcuHABarUawcHBCA4ORmJiIkaOHAmVigvbdjUM7KjLa6wDsjaLIV3Oz5ZHUzUJjhNDusS5QEC09f2lGqhIpS6OZCMislltgw7rjxTh831nkFVW3eHzzBkeiaXzku1YGRERUffT7QM76r4Y2FGXpNcBuTvFkO7ED4C21voxvhHAkDlA0jyg9xD7NYIgEUeyERFZlHOuBl/8dgbfHipEdYPl/1ySweIqqlDKZfj+kXFICGeDCSIiIksclXlwQQoi6lksBSqCABQeEEO6Y+vEBgjWqP2BwbPE0XR9/sCQxpES5wLBg6Q9kk0uFzu+EhE5iU5vwPaT5/D5vjNIzbH875aHSoFZwyLwxzF9cepcNZ5afdTkNFmlXIal85IZ1hEREbmQ0wM7vV4PvV4PNzc3Z1+aiHqy0gxg3zIgc0OzoGcmMPZhQOEGpK8Wg7pLZ6yfS6kGBt0ohnQDpgJKd8fXT6LQRHGNupnLOJKNiHq08zUN+OZAAb787QyKK+st7hsT5IU7x/TF3BGR8PMQl5dJCPdFbIgPlqfmYXNGCTRaPTxUCqQkhmHRuBiGdURERC7m9Cmxb731Fv7yl78gISEBf/vb33DLLbe02F5TU4OcnBwMGTIESiUHAHYHnBJLLmdpKqWtZHKg3yQgcR4QNw1Q8xcZIiJyLkEQkFZwCav2ncGm9BI06g1m95XJgClxIbhrbDTGDQiy2DjCYBBQr9NDrVSwwQQREVE7dYspsTqdDq+99hp0Oh2USiVuuummNvucOXMGw4cPh5ubGwYPHoxhw4Zh+PDhGDZsGJKTk+Hp6enMkomoqyvN6FxYFzFCDOmG3Ax4h9i3NiIiIhvUa/X4/mgxPt93BhlFlRb3DfBU4dZRfXDHVX0Q1cu2z81yuQyebvyPciIiIilx6r/MP/30E86dOweZTIZ33nkH7u7mp5E1NjYiLS0NaWlpWLFiBQBALpcjNjYWo0aNwieffMKOsURk3b5l7Q/rAgeIIV3iXCCwv2PqIiIisqLgQh2++O0M/newAJfqtBb3TY70wx/HRmN6UhjUKoWTKiQiIiJHcWpgt2nTJgDA2LFjcfXVV1vcVyaTISoqCmfPnjU+p9frcfLkSWRlZWHcuHG49957HVovEXVh9VVAxmog/X82HiADxjwEJN0ChA1lh1ciInIJg0HA7lPl+HzfGezMOgdLi9e4KeWYnhSGu8ZGY2iUv9NqJCIiIsdzamB36NAhyGQyzJgxw6b98/PzcenSJeNIu7S0NKSmpiI3NxdvvfUWAzsiakkQgKLDwKEVYpdXbW17Dgau+Rs7fBIRkUOZWy+usk6LNYcK8MVvZ5B/vs7iOSL8PXDnmL64dVQUenmxkRsREVF35NTALi8vDwCQnJxs8zH+/v6YNGkSJk2aBADIyclBXFwcsrKycPz4cQwePNgRpRJRV1JfKXZ5PfQZUJbRsXOoPMWOo0RERA6QWVyFT1JzsSWj1NiR9cbEUEweFIxfcs7ju7Qi1GvNN5EAgPGxQbhrbDSuiQuBgs0hiIiIujWnBnaVleIiuSEhHV+4fcCAAZgwYQJ2796NH374gYEdUU8lCEDhAeDQSnE0nU7TufMlzALkcntURkRE1MKGtCI8tfoodIYr81s1Wj3WHS7CusNFFo/1USsxd0Qk/jimL/oFezu6VCIiIpIIpwZ2bm5u0Gq1qK01P03Nzc3NuJ85119/PXbt2oVDhw45okwikjLNReDo/4DDnwHnMi3vK1MAfa8GzvwCCHrz+8mVwNiH7FsnERERxJF1rcM6W8SF+uCusdGYNSycHVyJiIh6IKf+6x8YGIja2loUFZn/n8TY2FjU1NQgM9P8L+JJSUkAgIyMDk59I6KuRRCAs7+Jo+kyvwN09Zb39+8DDF8ADLsT8AkFMtYC6+833S1WrgRmfwiEJjqiciIi6uH+s+OUzWGdUi7DDUNCcdfYaIyKDoCMDZCIiIh6LKcGdklJSTh79iy2bduG+fPnm91PqVQaQzlTmqbUlpeX271GIpKQugvA0W/EoK4iy/K+ciUQN00M6vpNbjm9NXEuEDwI2Pe+GPhp68Q16xJmiSPrGNYREZEdlVXVY3NGCX44WoxDZy/ZdIxSLkPqXyYj1I/rqRIREZGTA7tJkyZh48aNWLduHd5++234+Ph06Dzyy7+IV1dX27M8IpICQRCnsB5aCWR+D+gbLO8fEAOMWAAMvQPwtrA+ZmgiMPsDYOYycb07pQfXrCMiIrs5V12PH4+V4oejJThw5gKE9s2Ahc4gwNdD5ZjiiIiIqMtxamD3xz/+EX/7299QVVWFJ554AsuXL+/QeUpLSwEAnp6e9iyPiFyptgI4+rUY1J3PsbyvXAXEzwBGLASix7cveJPLATevzlRKREQEAKioaRBDuvRi/J7X/pCuOQ+VAmqlwn7FERERUZfm1MAuKCgIDz30EN58802sXLkSgwcPxpNPPtnu86SmpgIAwsPD7V0iETmTwQDk7xVDuhMbAYP5ZjMAgF79xZBu6O2AV5AzKiQiImrhQm0jth4XQ7p9p8+jnb0kzEpJDINczjXriIiISOT0llMvv/wyNm/ejJMnT2Lx4sUoKCjAq6++CrVabdPx1dXV+PTTTyGTyXD11Vc7uFoi6jCDwfzU05pzQNqXwOFVwIVcy+dRuAEJM8W16aLHAVyAm4iInOxSXSN+Ol6GjenF+PX0eehtSOm83ZW4LqE3kiL98PKmExYbTyjlMiwaF2PPkomIiKiLc3pgp1ar8dNPP+Gaa65BTk4O3n33XWzYsAEvvvgi5s2bB3d3d7PH1tbWYv78+SgrK4NMJsMdd9zhxMqJyCalGcC+ZUDmhmbNHWYCVz0IaM6Lo+lObjLdsbW5oIHiaLqk+YBXoDMqJyIiMqrUaPHT8VJsyihB6qkKmzq9erkpMDWhN6YnhWN8bBDUKnGKa4CXG55afdTkOZRyGZbOS0ZCuK/dXwMRERF1XTJB6MxqGx1XUlKCKVOm4OTJk8aW9f7+/rjxxhtx9dVXIz4+HoGBgVCpVCgtLcWePXvw8ccfo7i4GAAwdepUbN261RWlUzsVFhYiKioKAFBQUIDIyEgXV0QOk7EWWH+/9TDOHIU7MHi2GNT1GcPRdERE5FTV9VpsyyzDpvQS7DlVDq3e+sdkTzcFpsT3xrTEMEwaFGwM6VrLLK7C8tQ8bM4ogUarh4dKgZTEMCwaF8OwjoiIqAtzVObhssAOADQaDV5++WUsXboUjY2NYkFWfkEXBAEDBw5EamoqgoK4hlVXwMCuhyjNAD6a1LGwLjj+8mi6eYBnL3tXRkREZFZNgw7bT5Thh/QS7M4uR6POYPUYtUqOKXG9MS0pDJMHhcDDzfZmEQaDgHqdHmqlgmvWERERdQOOyjycPiW2OQ8PD/zrX//CwoUL8X//939Yu3Yt6uvrze4vl8tx22234b333oO/v7/zCiUi6/Yta19Yp/QAhtwsrk0XNZqj6YiIyK4sBWN1jTpsP3EOm9JLsDPrHBpsCOnclXJMHhSCaUlhuCYuBF7uHfsYLZfL4Onm0o/gRERE1AVI4tNCbGwsVq1ahQ8++AA7d+7E77//jlOnTuHixYtQKBQIDg7GiBEjMH36dPTr18/V5RJRa9Wl4nRYm8iAG18Dkm4FPPwdWRUREfVAmcVV+CQ1F1sySo1TT29MDMUfx/RFSWU9NqWXYPvJMtRrrYd0bgo5Jg4KxvSkMEyJ7w3vDoZ0RERERO3l0imx1DNwSmw3VnYc2Pc+kP4/wKC1/bi/FgNuXo6ri4iIeqQNaUVmmzvYSqWQYUJsMKYlhWFqQm/4qlV2rJCIiIi6m245JZaIuiCDATi9XZwCm7uz/cerPMXpsERERHaUWVzV4bBOKZdhXGwQpieF49qE3vDzYEhHRERErsXAjohso9WII+n2vQ9UZHX8PAmzALncbmUREVHPVa/VI6OoEofOXMRnv+a3K6xTyGX4Q/9AzEgKx3WDe8Pf082BlRIRERG1DwM7IrKs5hxw4BPxVnfe/H5y1eWmExZ+WZIrgbEP2b1EIiLqGUoqNTh05iIOn7mEQ2cvIrO4Elp9+0bUyWXA/80aghuHhKGXF0M6IiIikiYGdkRkWtP6dBmrAX2j+f08g4BR9wCjFgF5e4D195vuFitXArM/BEITHVczERF1G1q9AZnFVTh05iIOnb2II2cuoriyvtPnNQjA7GER7NRKREREksZPKkR0RXvWpwuOA8Y+DCTOA1Rq8bnEuUDwIDHoy/wO0NaJa9YlzBJH1jGsIyIiM87XNODw2UuXR9BdRHrRJZs6ubaXh0oBtVJh9/MSERER2RMDOyJq3/p0/a8Rg7r+UwCZrO320ERg9gfAzGWATiM2mOCadURE3ZbBIKBep4daqYBcbuLfBRP0BgHZZdU4fPaiMaDLP1/XoevLZUBcqC/qtXrkVtRa3T8lMczmOomIiIhchYEdUU9m6/p0CncgaR4w5iGgd4Jt55bLATcv+9RJRESSk1lchU9Sc7EloxQarR4eKgVuTAzFPeP6ISHct8W+lRot0grE0XNHzl7EkbOXUNNgYvkEG/iqlRjeNwDD+wRgRN8AJEf5w9tdicziKtz0XqrFxhNKuQyLxsV06LpEREREzsTAjqgn6sj6dN4hzquPiIgkbUNaEZ5afbRFOKbR6rHucBG+TyvGX26Ig7+nyjiC7tS5Ggjt6w1h1D/YCyP6iuHc8D4B6B/sbXKEXEK4L5bOS25TVxOlXIal85LbhIlEREREUsTAjqin6Oz6dERERBBH1pkLxQBAZxDwr80nOnRuD5UCQ6P8jQHdsD7+8Pe0vZPrzKERiA3xwfLUPGzOKDGO/EtJDMOicTEM64iIiKjLYGBH1N3Zc306IiLq0S7VNeLVLScsTjttj6heHsaprcP7BCAu1AdKRefWPW0aabdkblK719YjIiIikgoGdkRdncFgurmDzevTuV1en+5h29enIyKibk0QBBRd0iCzuArHi6uQWVKFzOIqFF3SdPicbgo5EiP9Lodz/hjeJwAhvo4bxS2Xy+Dpxo+6RERE1DXxUwxRV1WaIU5vzdwAaOsAlSeQMBMYeCOQ8xOQzvXpiIjIOq3egNzyWhwvrmwR0FVqtJ0+97UJIbgqJhDD+gRgSIQv3JUKO1RMRERE1P0xsCPqijLWAuvvBwzNOuxp64CjX4s3S4LjxG6vSfMAlYdj6yQiIrsxGIROT/GsbdDhZOnlUO5yOJdVVo1GncHO1Yrr0X1450hORyUiIiLqAAZ2RF1NaUbbsM4WXJ+OiKhLyiyuwiepudiSUWpsonBjYijuGdfPYhOF8uoGcdRciRjMnSiuQt752g53a20ilwG2LGGXkhjGsI6IiIiogxjYEXUFmktAyVHxduBj28M6rk9HRNSlbUgratORVaPVY93hInyfVoyl85IxIykcZy7UtZnSWl7d0Onr+6qVSAj3xeBwPySE+WJwhC8adQbc/P6vFhtPKOUyLBoX0+nrExEREfVUDOyIpKbuAlCSJoZzxWni/Yv57T+PXAU8kQH4hNq3PiIicorM4qo2YV1zOoOAJ75Jw1/WpqPeDlNaw/3USAj3uxzQ+SIhzBeRAR6QmRiVvXRestnalHIZls5Ltjj6j4iIiIgsY2BH5Eq1FWIg1xTMlRwFLp21z7kNWsDdxz7nIiIip/vv7tMWR7EBgAC0O6xTyGXoH+xlHDWXcDmcC/Bys/kcM4dGIDbEB8tT87A5o8Q4VTclMQyLxsUwrCMiIiLqJAZ2RLYyGACdBlB6AHJ5+4+vLrs8rTXtckB3FKgqtHeVV6g8xVqJiEjyLtU14nhxFY4VVeJYcRWOFV5C3vm6Tp/XQ6VAfJhPi2mtg0J9oFZ1vltrQrgvls5LxpK5SZ1uhkFERERELTGwI7KmNAPYtwzI3CB2YlV5AgkzxQYOoYlt9xcEoLqk2ZTWyyFddUnn6lC4ASEJQEM1cOG09f0TZnUsWCQiIoc6V12P40VVOF5ciWNFVThWXInCi5pOnzfI202c0np51NzgcF9EB3pB4eAQTS6XwdONHymJiIiI7ImfrogsyVjbtiOrtg44+jWQsQaY9V+g79iWU1qL04Dac527rsIdCB0ChA0FwocCYclAcDygdBMDxI8mWW48IVcCYx/qXA1ERNQpgiCguLIex4oqcbxp5FxRJc7ZoRlEc25KOfYsnoTevmqT680RERERUdfDwI7InNKMtmFdcwYdsO6ezl9H6SGO1GsK5sKGAsGDAIXK9P6hicDsD83XJleK202N/iMiIqsMBqHdUzwNBgFnLtRdntJaaRxBd7FO6+BqgRlJ4Qj14xIIRERERN0JAzsic/YtszyKrSNUXkBYkhjKhSWLIV1gLKBo51/FxLliqLfvfSDzu2ZTdWeJI+sY1hERtVtmcRU+Sc3FloxSYxOFGxNDcc+4fi2aKOj0BuRW1Irh3OUprZnFVahp6Ny/GW5KOeJDfZAQ7ochEb7wclPi6TXmu8QCYkfWReNiOnVdIiIiIpIeBnZEphgM4pp1neHmcyWUaxo5F9gfkHd+oW8Al0fafQDMXNa5ZhhERIQNaUV4anXLcEyj1WPd4SJsSCvGLSMioVTIcKyoCidKqtDQzs6srXm6KZAQ5oshEX4YHC5+HRDiDZWi5fu4TIY2dTVRymVYOi+ZHVmJiIiIuiEGdkSm6DTiqDVbufu2DObChwEBMc4J0ORywM3L8dchIuqmMourzIZiAKA3CPjmQEGHz++rVmJIhF+LcM7WZhAzh0YgNsQHy1PzsDmjxDjyLyUxDIvGxTCsIyIiIuqmGNgRmaL0EKeY2hLaKdXAX/LtN3KOiIgcQqc3oPhSPfLP14q3ijrkn6/F/rwLFqedtkeQt5sYzoVfCeciAzw61QwiIdwXS+clY8ncpHavrUdEREREXRMDOyJT5HIgYabYDdaawTczrCMi6oCONHewRqc3oOiSBnkVtThzvu7yV/F+wcU6aPX2CeYAINxPjcGXw7khEWI4F+Lj7rBOrXK5DJ5u/OhGRERE1BPwUx+ROWMfBjLWWG48IVeKTR6IiMhmtjZ3MEerN6DwoubyKDkxjGu6X3hRY7fRcqb8eepADO/rj8Hhfujl5eaw6xARERFRz8bAjsic0ERg9ofA+vtNh3ZypbidHVmJiGxmqbnD92nFWDovGTOHRqBRZ0DhxboWo+TyztfhzHkxlNM7MJQzx0OlwKPXDOB0VCIiIiJyOAZ2RJYkzgWCBwH73gcyvxPXtFN5AgmzxJF1DOuIiGxmrbmDziDgiW/S8OrmkyivaXBYKOejViImyAvRgV6IDvTEr6fP4+CZi1aPS0kMY1hHRERERE7BwI7ImtBEYPYHwMxlYvdYpYdzur8SEdmJI9aKs0bTqEdpVT1KKjUoraxHSWU9vj1UaHW6qgCgtKq+09f3bQrlgrzQN9ALMUGe6BsohnQBnqoW68zdUFyFm95LtVibUi7DonExna6LiIiIiMgWDOyIbCWXA25erq6CiMhmnV0rzhRBEFBVr0NZlRjClVZqUFJZ3+yx+LVSo7Xzq2nL31NlHCUnhnJe6BvoiZggL/h72r6+XFMXVnOj/5RyGZbOS+7w94yIiIiIqL0Y2BEREXVDtq4V15zBIOBCXSNKm4K3KtOBXF2j3mmvI8BThWjj9FUvRBtHynm2K5SzZubQCMSG+GB5ah42Z5QYA86UxDAsGhfDsI6IiIiInEomCILzV22mHqWwsBBRUVEAgIKCAkRGRrq4IiKi7i3Thimechkwe1gEGvUCyirrUVKlQVllAxr1BidWapqbQo7VD4xBTKA3/DxVTr++K6YQExEREVHX5KjMgyPsiIiIugmd3oCiSxq8vCnT6lpxBgH49nCRw2vyUSsR5qdGb181zl4Qu75aMyM5HEOjAhxemzlyuQyebvyIRERERESuw0+jREREXYggCKioaUReRS3yKmqQW16L3Ipa5FXU4sz5Wmj1zhs4H+jlhlA/NUJ91Qj1UyPMT41QPw/j41A/Nbzdr3zUsGXkH5s7EBERERExsCMiIrIbe06lrG3QXQ7lapFbLoZzeRViOFddr7NTxabJZUCIz5UQrrdvUxinRtjlQC7E1x1qlaJd52VzByIiIiIi2zCwIyIi6qSOdmPV6Q0ovKhBbvORcuViSFdaVe/wuhVyGf50dTTC/DxaBHJB3m5QKuQOuSabOxARERERWcemE+RwbDpBRN2ZqW6sTZRyGZbekoyxAwKR12zqqhjO1eDs+Tqra811hEohs2lq7JzhkVg6L9nu17cVmzsQERERUVfHphNERESXSSXoySyuMhvWAYDOIODx/6U55NpuSjliAr0QE+SFfsFXvvYL8kZJZX2XWCuOzR2IiIiIiEzjp2QiIuoyOjr11FaCIKCuUY8LtY24WNdo/HqxVtvi8YVa8bn887UOGSHXRCYDIvw9xDAuyAv9gr0REySGc+H+HlCYCSsDvNy4VhwRERERURfGwI6IiLoEU1NPNVo91h0uwvdpxVg6Lxkzh0a0OEbTqMeFukZcbBG0NeJCnfby16ZtVx436gzOfmkI8FS1COP6B3shJsgbfQM9293YoQnXiiMiIiIi6rq4hh05HNewcyypTA0kcqTM4iqrUzxlAIb28UejzmAM3+q1zg/fzHFTyNAv2Ns4fTUm6PL9QC8EeLk59Np8nyAiIiIicgyuYUdELTh6aiCRK2n1Bpy9UIfT52pwurwW3+w/a3XqqQDgyNlLTqmvvdQqOY49fz2USsd0XrWGa8UREREREXUt/PRO1AV1ZGogkRRV1mmRU16D0+U1yC2vxenL9x3VPbU9VAoZAjzd0MvL7cpXLxV6ebrB//LjNYcK8EvOeavnmpYY7rKwjoiIiIiIuh4GdkRdjC1dKZ9afRSxIT4caUedZo+plHqDgMKLdS1DuXPi1/O1jXau2DSFvCl8UyHAUwzgAryuPBbDODf0unzf31MFb3clZDLLr3lgb58u0Y2ViIiIiIi6FgZ2RF3MJ6m5Vkce6QwClqfmYem8ZCdVRd1NR6Zc1zTokHt5hFxTIJdbXou8ilo06p2zlpxKIcPLs4YgyNvdGMAFeLnBV209fOuIhHBfdmMlIiIiIiK7Y2BH1IUYDAK2ZJTatO/3R4vwz+nx8PN07GL21P1Ym3L99+nx6BfkbZy+2jRqrqyqwe61BHm7o1+wF85VNSD/fK3V/W9KjsCto/rYvQ5L2I2ViIiIiIjsjV1iyeHYJdZ+qjSNSHpxm837q5VyTEsKx62jojAqOsAhI4yoe7GlG6u9KeUy9A30RP9gb/QP8Ua/IC/0D/FG/yBv+HmqbK5LKZfh+0fGuTQgYzdWIiIiIqKehV1iiXq4EyVVWLzmaLuOqdcZ8O3hQnx7uBAxQV64ZWQk5gyPRG9ftYOqpI5yZtBTVa9F8SUNii9pUHSpHkUXNcbHx4srHRbW+XmoMCDEG/2DvdAv2FsM6IK9ENXLEyqF5YYMXWXqKbuxEhERERGRPfC3CiKJa9QZ8N7OHLy/M6dTQUpeRS1e/zELb2zNwuRBIbhlZBSuiQuBGztXulRH1oqzRKc3oKy6oVkgp2kWyNWj+JIG1Q06B7wSkVwG9OnleTmQ82oxaq6Xl1unRnly6ikREREREfUUnBJLDscpsR13tOASnlmbjqyy6nYdJwMgkwHW8r1ALzfcPDwC80ZGIba3T8cLpQ4xtVZck6YRYzOHRrR4vvXoOOP9y6FcaVW91T93exkS7ouBvX1aTGPtG+gJd6XC4dfm1FMiIiIiIpICR2UeDOzI4RjYtV+9Vo+3tmXj4725JsOX3r7uqKhphN5C0DO2fyDWHy7C/w4WILfc+mL9w/r4Y97IKExPCoOPWmWPl0EW2LImm1wG3DgkFBqtwRjKOXJ0XHt4qBQ4/uL1DMuIiIiIiKhH4xp2RD3EgfwLeGZtOvIq2oZsCrkMD03qj0euGYDT52qtTg28f2J/3DehHw6fvYjVBwqxMb0YdY16k9c9cvYSjpy9hJc2ZiIlMQzzRkZidEwvNqpwAINBwDvbs61OcTYIwCYbuwJ3RLCPO8L9PRDhr0aEvwfC/T2w9Xgpfsu9YPXYlMQwhnVEREREREQOwhF25HAcYWeb2gYdlmzNwmf78mHqb2VCmC9en5uEIRF+LZ5vz9TA2gYdNmWUYPWBAhw8c9FqTdGBnrhlZBTmjmCjio6qrtciq7QaJ0qrcbKkCidKqnCypAp1WoNDr6tWyS+HcR7GME68ieFcqJ/a5NTVrtKNlYiIiIiISAo4JZa6LAZ21qWeqsCz69JReFHTZpubQo7HpgzA/RP7W+2k2R6ny2uw+mABvj1UhIqaBov7ymXApEEhmMdGFWYZDALOXKgTQ7nSajGYK61CwYW2f6b2YGp0XHizcC7AU9Xh0ZEdWVuPiIiIiIioJ2JgR10WAzvzquq1eGXTCXxzoMDk9qFR/lgyN8mhDSG0egN2Z5XjfwcLsOPkOZPr4jUX6OWG2cMicOsoy40qpNoUwB51VdVrcbKkGidLq3CiRAznskqrodGanm7cGQq5DI9dMwARAZ5WR8fZU2ZxFbuxEhERERERWcHAjrosBnambT9Rhr+tP4bSqvo229yVciy+fhDuvjoGCieGXeeq69vVqGJolD9uHdWyUUVmcRU+Sc3FloxSY9BzY2Io7hnXz6VBT0fq0hsE5J+vbRbOiQFd0SXHjJozZc7wSCydl+y067Um1eCViIiIiIhIChjYUZfFwK6li7WNeOmHTKw/UmRy+1UxvfDanCREB3k5ubIrBEEwNqr4Ib0YtWYaVTRpGn0V4a/G+7tOS24qpS1TPCcNDMGJUnF9uZOXp7RmlVWj3g5rzSnlMvQP9kZcmA/iw3wRF+oDpVyGhSsOcK04IiIiIiKiLoyBHXVZDOyu2JxRgn9uOIaKmsY227zcFHg2JR53jO4jqZFMTY0q1hwswIF8640qLHF2AGUwCDhWXImb3//VakdWewn0cjOGcvFhvogL88GAEG+TU1i5VhwREREREVHXxsCOuiwGduJU0+c3HMeWY6Umt4+PDcKrNyciMsDTyZW1z+nyGqw5WIhvDxeivNpyowpzQn3VGBTqA4MgQG8Qb4IA6C8/bv68wfgcrtw3CJf3bfucQRBgMFw5lyOpFOKoudbhXIhP+7rpcq04IiIiIiKirouBHXVZPTmwEwQB36UV4cWNmbhUp22z3VetxN+nJ+CWEZEd7ujpCjq9Abva0aiiqwvydkf85ems8WE+iAv1Rf9gb7t2y+VacURERERERF2PozIPpV3OQkRtlFRq8Nd1GdiZVW5y+9T43vjX7CHo7du+EVlSoFTIMTWhN6Ym9Ma56nr8b38Blm7LdnVZnaaUA7G9xVAuPtQX8WG+GBTqg2Afd4dfWy6XwdONb8lERERERETEwI7I7gRBwNf7C/Dq5hOobtC12d7Lyw0v3DQYM5LCutSoOnNCfNR4ePIAvL/rNDRay80ppMxdKUf689fBXdV2rTkiIiIiIiIiZ2JgR2RHZ8/X4dl16fj19HmT22ckh+OFGQkI9Hb8iC1nkstluDExFOsOm+5829yQcF/MSA6HQi6DXCYTv8plUMhkkMtgvN/8eYUcLfaVyy7vL4eJfZudVwa8vjUL2zLLrNY1PSmcYR0RERERERFJAgM7IjswGAR8ti8fr/+YZXKUWbCPO16eNQTXDw51QXXOcc+4fvg+rdhiN1alXIbX5yY7tZnCn6cOxM6T56zWtWhcjNNqIiIiIiIiIrLEfiumE/VQp8trMO/DfXhxY6bJsG7uiEj8/OeJ3TqsA4CEcF8snZcMpZmGCUq5DEvnOTesk3JdREREREREROZwhB2RjVp38dTpDfh4bx7e+jkbjTpDm/3D/dR4dU4SJg4MdkG1rjFzaARiQ3ywPDUPmzNKoNHq4aFSICUxDIvGxbgsFJNqXURERERERESmyARBMD9PjMgOHNXi2Fkyi6vwSWoutmSUGoOeqwcEIv98HXLO1Zg85s4xffCXG+Lgo1Y5uVrpaB1wSoVU6yIiIiIiIqKux1GZB0fYEVmwIa0IT60+2mL9M41Wj59PnDO5f99AT/z75iSM7R/orBIlSy6XwdNNem8xUq2LiIiIiIiIqAnXsHOxuro6LFmyBKNHj0avXr3g7e2N+Ph4PP300zh79mynz6/T6bBt2zYsXrwY48ePR3BwMFQqFfz9/TF8+HA8/fTTOH36tB1eSfeTWVzVJqwzRyYD7hkXgx8fn8CwjoiIiIiIiIg6hVNiXej06dOYNm0asrKyTG738/PDV199hZSUlA6dv7y8HPHx8Th//rzF/dzc3PD666/j8ccf79B1rOmqU2KfXJ2GdYeLrO7no1bisz+NxvA+AU6oioiIiIiIiIikwlGZB0fYuUhNTQ2mT59uDOvuvfdebN++Hb/++iv+9a9/wdvbG5WVlbjllluQnp7eoWs0NDQYw7qhQ4fi+eefx+bNm3Ho0CHs2LEDixcvhlqtRmNjI5544gl89NFHdnt9XZ3BIGBLRqlN++r0AoZG+ju2ICIiIiIiIiLqMbiQk4u88cYbOHnyJADg9ddfx+LFi43bxo4di8mTJ2PChAmoq6vDE088gR07drT7GjKZDNdeey1eeukljBkzps32yZMnY86cOZg8eTI0Gg2eeeYZ3HbbbfDx8en4C+sm6nV6aLR6m/bVaPWo1+m5LhoRERERERER2QVH2LmAVqvFO++8AwCIj4/HU0891WafsWPHYtGiRQCAnTt34tChQ+2+TkREBH766SeTYV2Tq666Cg899BAAoLKyEj///HO7r9MdqZUKeKgUNu3roVJArbRtXyIiIiIiIiIiaxjYucCuXbtw6dIlAMCCBQsgl5v+Y1i4cKHx/rp16xxWz+TJk4332YBCJJfLcGNiqE37piSGQS6XObgiIiIiIiIiIuopGNi5wN69e433J06caHa/kSNHwsvLCwCQmprqsHoaGhqM982Fhz3RPeP6QWkliFPKZVg0LsZJFRERERERERFRT8B0xgVOnDhhvB8XF2d2P6VSif79+7c5xt52795tUz09TUK4L5bOSzYb2inlMiydl4yEcF8nV0ZERERERERE3RlXyXeBgoICAICXlxf8/f0t7hsVFYX09HSUl5ejoaEB7u7udq2lpKQEK1asAAAEBQW1mB5rq8LCQqvX6KpmDo1AbIgPlqfmYXNGCTRaPTxUCqQkhmHRuBiGdURERERERERkdwzsXKC6uhoA4O3tbXXfpimxAFBTU2PXwE4QBDzwwAPGev7xj3/Aw8Oj3eeJioqyW01S1DTSbsncJNTr9FArFVyzjoiIiIiIiIgchoGdC9TX1wMA3NzcrO7bPKDTaDR2reOVV17B999/D0BsPPHII4/Y9fzdjVwug6cb/8oQERERERERkWMxfbBAp9NBpVJ1+jwrVqxo0fFVrVYDABobG60e27whREdGv5nz5Zdf4h//+AcAIDo6Gl999VWHG040TfE1p6SkBKNHj+7QuYmIiIiIiIiIehoGdi7g4+MDQJziak1tba3xvi1TaG2xadMm3H333RAEAb1798a2bdsQGhra4fNFRkZa3K7T6Yz3u/J6dkREREREREREzTXPOZrnH53FwM4CpVJpl+6sYWFhLR5HRkbi999/R21tLS5dumSx8UTT6LXg4GC7rF+3a9cuzJ07F1qtFgEBAfjpp58wYMCATp/XkvLycuN9jrQjIiIiIiIiou6ovLwc0dHRdjkXAzsr4uLi7H7OhIQEfPvttwCAkydPYsyYMSb30+l0OH36NAAgPj6+09fdv38/ZsyYgfr6enh7e2PLli1ISkrq9HmJiIiIiIiIiMh+GNi5wLhx44z3d+/ebTawO3jwoHFK7NVXX92pa6anp+OGG25ATU0N1Go1Nm7ciKuuuqpT57RVYmIi9u/fD0AcKahUdr0fu+br8O3fv7/NqEmi7og/99QT8eeeehr+zFNPxJ976on4c+84Op3OOLMwMTHRbufteslJNzBp0iT4+fmhsrISn332GZ555hnIZLI2+61cudJ4f/bs2R2+XnZ2Nq677jpcvHgRKpUK3377LSZNmtTh87WXWq3GqFGjnHY9RwsLC7O6bh9Rd8Ofe+qJ+HNPPQ1/5qkn4s899UT8ubc/e02Dba5jbUGpU9zc3PDYY48BAE6cOIE33nijzT779u3D8uXLAQATJ040GXjl5+dDJpNBJpOZDeDOnj2LqVOnoqysDAqFAl999RVSUlLs92KIiIiIiIiIiMiuOMLORRYvXoz//e9/yM7OxjPPPIOcnBzMnz8fHh4e2LlzJ1555RXodDp4eHjg7bff7tA1zp8/j6lTpxobVzz11FOIi4vDsWPHzB4TEBCAiIiIDl2PiIiIiIiIiIg6j4Gdi/j4+GDTpk1ISUnBqVOn8NFHH+Gjjz5qsY+vry++/PJLDB06tEPXyMjIwKlTp4yPX3/9dbz++usWj1mwYEGLqbhERERERERERORcnBLrQgMGDMCRI0fw2muvYeTIkfD394enpycGDRqEP//5z0hPT8f06dNdXSYRERERERERETkRR9i5mJeXF5555hk888wz7T42OjoagiCY3T5p0iSL24mIiIiIiIiISHo4wo6IiIiIiIiIiEhCGNgRERERERERERFJiEzgnEkiIiIiIiIiIiLJ4Ag7IiIiIiIiIiIiCWFgR0REREREREREJCEM7IiIiIiIiIiIiCSEgR0REREREREREZGEMLAjIiIiIiIiIiKSEAZ2REREREREREREEsLAjoiIiIiIiIiISEIY2BEREREREREREUmI0tUFUPdXX1+PjIwMAEBwcDCUSv7YEREREREREVHXp9PpUF5eDgBITEyEWq22y3mZnJDDZWRkYPTo0a4ug4iIiIiIiIjIYfbv349Ro0bZ5VycEktERERERERERCQhHGFHDhccHGy8v3//foSFhbmwGiIiIiIiIiIi+ygpKTHOKmyef3QWAztyuOZr1oWFhSEyMtKF1RARERERERER2Z891+znlFgiIiIiIiIiIiIJYWBHREREREREREQkIQzsiIiIiIhIcgwGA2pra2EwGFxdChERkdMxsCMiIiIichKGUNYdPXoUCxYsgI+PD7y9veHj44MFCxbg6NGjri5N0vizRUTUvTCwIyKSAH7IJiLq3qQcQknp36Cvv/4aI0eOxKpVq1BXVwcAqKurw6pVqzBy5Eh8/fXXLq5QWt8vQNo/W4D0vl9ERF0FAzsi6lGk9qFR6h+yiYiskdr7ahMp1SXVEEpq/wYdPXoUd911F3Q6ncntOp0Od911l0vrk9L3C5DuzxYgze9Xc1J6jyAiMkUmCILg6iKoeyssLERUVBQAoKCgAJGRkS6uiHqio0eP4s0338TatWtRV1cHT09PzJ07F08++SSSk5NdUtPXX39t9hcTpVKJVatW4bbbbnNBZUQ9m8FggEajgYeHB+Ry6fzfptTqkuL7qhTrOnr0KEaOHGk2hALE9/yDBw86tT57/huk1+tRV1dnvNXW1rZ4bOpmap/ff/8dJSUlVq8XHh6OMWPGwNPTs8XNy8urzXOmbk37tefvkjP+zRYEAY2NjWhoaLDplpWVhWeffRZ6vd7sORUKBT777DOMGDHCGJp5e3tDoVB0qlZrpPwZR2rvEUTU9Tkq82BgRw7HwM6xpPYLXBMp1SXFD41S/QWOuicp/X1sTmp1SfWXOCnWJcX3VWfXpdVqUVtbi5qamja35s+vXLkSaWlpVs/Xv39/jB8/HnK5HHK5HDKZrMP3re1XWlqKt99+2+LIIrlcjhkzZkCtVlsN2hobG+3yPXUFtVptNdzTaDT4/vvvrX6/5s+fD19fX5sDt9Y3Z34fPTw8WgR41r5a20etVkMmkwGQ9mccqb53EVHXxsCOuiwGdo4hxV/gpFhXRz40CoKA+vr6NjeNRmPxsS37ND3OysrChQsXrNZ/zTXX4J133kF0dDS8vb3t9n3p6qQW9DSRWl1S+/so5bqk+kucFOuS6i/jttb11VdfISIiok2wZu3Wet+GhganvTYiqVMoFMZgr7q6GlVVVVaPSUxMxOzZs6FSqaBUKqFUKlvcb/24s/dPnDiBCRMmSO69qzWpfZYgIusY2FGXxcDO/qT4C5w96xIEAQ0NDS2CrtaPbb1t3rwZ2dnZVq+pVqvh7u5uvJYUBQYGIjo6usUtJiYG0dHR6Nu3r0MCPal9aJRi0CPVurr7+4Q9tSeASkpKAiC+TzXdmj82d78j2zIyMnDttddareubb75B//79odPpoNfrodPpjLfmj+21bevWrcjKyrL6fe3Tpw+GDRsGg8EAQRBgMBiMN2uPO3LMuXPnUFtba7UuIiJLkpOTcf/996N3794ICQlB79690bt3b/j4+BhHETqCFD9LNCe1z4REUsLAjrosBnb2ZcsvlnK5HE8//TTCw8Nb/ELoyFtZWRk+//xzi9NFZDIZxowZAzc3N4shm1QDM6kLCgpqE+g13dob6EnxQ6MUgx5n1dW0rlFdXR00Go3xZu5xTk4OlixZYnX61iOPPII+ffpApVJBpVLBzc3NeL+zj5VKZZtfbNoTjA0ePLhTYX17wv78/HxUV1d36s+IiFry8PCwaW255ts2bNiAgwcPWj33iBEjcNNNN7Vrzby6ujrU19c74ZU7hkqlgru7u/Hm5uaGM2fOgL/KOY9arTaGd82DPFPPBQQEtCvUkupnHECanwmbY5BIUsDAjrosBnb2tWDBAqxatcrVZVAX1BToNY3Kax3oeXl5AZDmh0Zbg57NmzcjISEBACwGzJ3Z3nxbVlYW7rzzTqsLfj/zzDMIDAw0GbTZGsJ1xX+ulUplixCvtrYWGo3G6nEymaxLvl7q2dzd3Y1TApvfsrOzUVBQYPX4wYMH44YbbmgxctDSqMKObjMYDNi2bZvF960mSqUSzzzzDLy8vGwO3Tw9PaFWqzv0i7Ojp1vr9Xrj+6qtDTFqa2uxZMkSizU1r+3ee+81jtq3dLNln+bhnKnvp62fCRcsWICPP/4YtbW1qK6uRk1NTae/1tTUsLuqBUql0hjgmQr3mj9fVFSEMWPGSHKqrhQ/EzaRepBIPQsDO+qyGNjZj8FggI+PD+rq6lxdSo+kUqmgVqvh4eEBtVrd4tbe51atWoVffvnF6jXVarXTRgQEBwcjJCQEmZmZFsMShUKB1157DeHh4WhsbGzXTavVtvuYppFl/OeKiOzFy8urxWL6nbk1hVkqlcrktaS45l97gp6VK1c6vqBmpBgQSPX75cqfLUEQoNFoWgR4TfdfffVV7Nmzx+o5YmJiMHLkSGi1WuOUe1vuW9pmSxDdVY0YMQJ33nkn3Nzc7HJTKBQWp/hK8b2riRTfJ1qT6sg/1uUYDOyoy2JgZz+1tbU9uvGAXC43GYJZuqWmptq01tK1116Lf/7zn23O3/TY3d0dCoXCbq+lPR+CBg4ciDNnziA/P9/krayszG51EVHXpFAojFORFQqFcaH15vctbWvPMXv27LFpbdChQ4dizpw5LTqXWutm2pHHTc+988472LFjh9W6GEJJ+xdxQKzvrbfewpo1a4wjZ2655Rb8+c9/7jINrJxFaj9bgGu/XwaDwbjuZutQ77HHHsO6deusniMqKgqRkZEoKytDWVlZt10bUyaTWQz0SkpKbGqQ1q9fP1x99dVQKBRQKBSQy+V2vd/6ucLCQvzjH/+wGM66+v1LiiP/WJdjMbCjLouBnf20Z4SdXC7HxIkTjb/IOPIGAN98841N/6upUqmwdOlS45SZplvT9BBLN6VS2e7vWU/4kF1XV4ezZ88aA7y8vLwWgd65c+ccUT5JgFqthqenJzw8PIzrRanVahw8eNCmqUoKhQJTpkyBVqttcWsaDWnpsaumQtnyXmHpZur4jz76CLt27bJ67ZkzZ+KVV14xvu81fw9s/Z5oj22PPfYY1qxZY7WunjSqpyvW1URqIZQUg57WpDTiQsrfL6n9bAHS/H519D2itrYWZWVlOHfunDHEa35r/vylS5ec8ErIFm5uboiMjERAQAB69epl8Wvz+15eXh1uLiLFn3vW5RwM7KjLYmBnX1KdliHVugBp/2PgjA/ZdXV1FkfoMdCzTetgBYDNU2/kcjmmTJnSJlwzdd/WbWq12uwHSmf8fTQYDO0K+LRaLV555RX8/PPPVs89Y8YMvP76622CNXPrOHWWVIMeqdYFSPd9Vap1NSelEEqKQY+USf37JaWfLUCa3y9Hv0c0NDTg3LlzJsO91s9VVFRwuQ8JUqlUVkM9U9sKCgrwhz/8wS7/ZguCYBwZ2nRr/djUzdQ+p0+fxvPPP2/xM6tcLsc//vEPREdH2zTK0R7bT5w4gZSUFEl+xukIBnZdSE1NDQ4fPoz9+/dj//79OHDgAPLz8wEAffv2Nd7vqHnz5rX4H/e8vDxER0eb3Fen0yEjI8NYx/79+5GZmWn8C2vpWHthYGdfUv0FTqp1NZHih8bmXPkhu7a2FmfOnEFubi7mzJmDxsZGq8fIZDIkJCQYF8N2xK2p66ibmxtefvllbNq0yWpd8+fPx/vvv29y9JK5kUy2bDdHqkG1VP8+SrUuQLpBj1TrAqT7virVuqRMakGP1PH71T5S+35J5T1Cp9Ph/PnzuPfee7Fx40ar+0dERCA+Pt7m9X8bGhoYCEqQv78/QkJCLIZttjS56SlcMdijIxjYdSGTJ082O7Wms4Hdpk2bMH369BbPWQrdXnzxRbzwwgtmz8fArmv6+uuvcccdd5j8R5i/WFomtQ+NUsMAqnvUBUj376NU6wKk80tcV6mriVTfV6VaFxFJg1TeIxz5WUKv13eo2VdjYyP+85//2NQgbciQIUhJSYFer4derzeuI+iI+zqdDunp6QwiexBPT09UV1dL/t9xh2UeAtndxIkTBQACACEgIEC49tprBW9vbwGA0Ldv3w6ft7q6WujTp48AQAgJCTFeIy8vz+wxzz//vHE/tVotjBkzRujfv79Nx9pLQUGB8XoFBQUOv15PERQUZPy+AhDc3d2FBQsWCGlpaS6tKy0tTViwYIHg6ekpABA8PT0lURfZJi0tTVAqlS1+tlrflEqlS/48v/rqK7O1KZVK4auvvnJ6TVKuSxCk+/dRqnU10ev1Qk1NjaDX611dSgtSrYuIiDpHip8lpPqZ8K677rJYU9Pt+uuvF9avXy8sX75ceOONN4S//vWvwoMPPijceuutwnXXXSeMGjVK6N+/v9CrVy9BJpPZdE7eXHOrqalx6s9YRzgq8+AIOwf46KOP4O3tjdGjR2PAgAEAgOjoaJw5c6ZTI+yeeOIJvPPOO5gyZQoiIyPx2WefAbA8Sm7r1q3Iz8/HqFGjkJSUBKVSiYULF9p0rL1whJ39lZWVITQ0tMVzx48fR0JCgosqaksq/2tJ7ccRUN2nriZS/fso1bqIiIicTYqfJaT4mdARIxINBgOqqqpw4cIFXLx40fi1+X1z22pqauz10tpNqVRCpVK1uDV/TqlU4uTJkzY1CpPL5Rg2bBgMBoPJ0Y0dfa6zevoIOwZ2TtLZwO7gwYMYM2YMlEol0tPT8corr3Q4dGNg1/Vt3boVN9xwg/Gxp6cnqqqqoFAoXFgVdSdS/NDYnFSDHqnWRURERF2D1D5LSPEzoZSCRK1Wi4sXL+K+++7Dhg0brO4/YcIEPP744ybDNlOhm7ntSqXSpm62rl7uxlwA+MADD+Cbb75xWV325qjMQ2mXs5BD6XQ63HvvvdDr9fj73/+OgQMHurokcrEjR460eJyUlMSwjuwqOTkZK1euxKeffiqpD41N5HI5vLy8XF1GG1Kti4iIiLoGqX2WkOJnwttuuw0JCQmSCBJVKhVCQkLw4osvYtOmTVZH/r377rtOre/JJ5/EV199ZbWuP//5zw65vlwuh1wuh1LZMnp69tlnsXbtWpfV1VVI57cvMuvNN99EWloaYmNj8dxzz7m6HJKA1oHdsGHDXFQJdXdNHxpd/cGMiIiIiFxHap8Jm4LE6upq1NTUoLq6GitXrnTZqL/k5GSsWrWqTTDVpGnkn7PrY11dmzT+tpFZeXl5ePHFFwEA77//Ptzd3V1cEUkBAzsiIiIiIurppBQk3nbbbTh48CAWLFgAT09PAOLSRQsWLMDBgwddtgY06+q6OCVW4h544AHU1dXhtttuw9SpU11djkmFhYUWt5eUlDipkp6huroaOTk5LZ4bOnSoa4ohIiIiIiIiANKcQsy6ui4GdhL2xRdf4KeffoKfnx/efPNNV5djVtPiiuQc6enpaN4rRqFQIDEx0YUVERERERERUROprUXYhHV1LYwuJerChQt48sknAQCvvPIKQkNDXVwRSUXr6bDx8fFQq9UuqoaIiIiIiIiI7K3HjrDT6XRQqVSdPs+KFSuwcOHCzhfUypNPPony8nKMGjUKDzzwgN3Pb08FBQUWt5eUlGD06NFOqqb74/p1RERERERERN1bjw3spGzHjh347LPPoFAo8OGHH0p+DndkZKSrS+hR0tLSWjzm+nVERERERERE3UuPDeyUSiVOnDjR6fOEhYXZoZqWXnvtNQDAyJEjkZWVhaysrDb75OXlGe9v3LgRwcHBAID58+fbvR6SDq1Wi2PHjrV4jiPsiIiIiIiIiLqXHhvYAUBcXJyrSzCpoaEBAPD777/b1Mr4scceM95nYNe9ZWZmorGxscVzHGFHRERERERE1L1Ie64lEbXQev266OhoBAQEuKgaIiIiIiIiInIEBnYStGvXLgiCYPG2YMEC4/55eXnG56l7a71+HafDEhEREREREXU/DOyIupDWI+w4HZaIiIiIiIio++nRa9g5Sk5ODlJTU1s8V1NTY/y6cuXKFttuuOEGhIaGOqSWmpoarF27tk19TdauXYugoCDj46FDhzIEkiiDwcARdkREREREREQ9AAM7B0hNTcXdd99tctv58+fbbNu5c6fDAruKigqztQDA4sWLWzx+/vnnGdhJVF5eHqqqqlo8x8COiIiIiIiIqPvhlFiiLqL1dNigoCBERES4qBoiIiIiIiIichSOsHOAhQsXYuHChQ69xsqVK9tMrTUlOjqazSi6idbTYYcOHQqZTOaaYoiIiIiIiIjIYTjCjqiLaD3CjtNhiYiIiIiIiLonBnZEXQQDOyIiIiIiIqKegYEdURdQVlaGkpKSFs8xsCMiIiIiIiLqnhjYEXUBrdev8/T0RGxsrGuKISIiIiIiIiKHYmBH1AW0ng6blJQEhULhomqIiIiIiIiIyJEY2BF1AVy/joiIiIiIiKjnYGBH1AUwsCMiIiIiIiLqORjYEUlcdXU1cnJyWjw3dOhQ1xRDRERERERERA7HwI5I4tLT0yEIgvGxQqFAYmKiCysiIiIiIiIiIkdiYEckca2nw8bHx0OtVruoGiIiIiIiIiJyNAZ2RBLH9euIiIiIiIiIehYGdkQSl5aW1uIxAzsiIiIiIiKi7o2BHZGEabVaHDt2rMVzbDhBRERERERE1L0xsCOSsMzMTDQ2NrZ4joEdERERERERUffGwI5IwlqvXxcdHY2AgAAXVUNEREREREREzsDAjkjC2HCCiIiIiIiIqOdhYEckYa0bTnA6LBEREREREVH3x8COSKIMBgM7xBIRERERERH1QAzsiCQqLy8PVVVVLZ5jYEdERERERETU/TGwI5Ko1uvXBQUFISIiwkXVEBEREREREZGzMLAjkihT69fJZDLXFENERERERERETsPAjkii2CGWiIiIiIiIqGdiYEckUQzsiIiIiIiIiHomBnZEElRWVoaSkpIWzzGwIyIiIiIiIuoZGNgRSVDr9es8PT0RGxvrmmKIiIiIiIiIyKkY2BFJUOvpsElJSVAoFC6qhoiIiIiIiIiciYEdkQRx/ToiIiIiIiKinouBHZEEMbAjIiIiIiIi6rkY2BFJTHV1NXJyclo8x8COiIiIiIiIqOdgYEckMenp6RAEwfhYoVBgyJAhLqyIiIiIiIiIiJyJgR2RxLSeDhsfHw+1Wu2iaoiIiIiIiIjI2RjYEUkM168jIiIiIiIi6tkY2BFJDAM7IiIiIiIiop6NgR2RhDQ2NuL48eMtnhs6dKhriiEiIiIiIiIil2BgRyQhJ06cQGNjY4vnGNgRERERERER9SwM7IgkpPV02OjoaAQEBLioGiIiIiIiIiJyBQZ2RBLC9euIiIiIiIiIiIEdkYSkpaW1eMzpsEREREREREQ9DwM7IokwGAxtAjuOsCMiIiIiIiLqeZSuLoCIRHl5eaiqqmrxHAM7IiIiIqLOEQQBtbW1qKqqQn19PfR6vatLW1vtUAABAABJREFUIiIJUSgUUKvV8PX1hZeXF2QymatLAsDAjkgyWq9fFxQUhIiICBdVQ0RERETU9RkMBpw9exYajcbVpRCRROl0OjQ0NKCyshIeHh7o06cP5HLXT0hlYEckEabWr5NKsk9ERERE1NUIgtAmrJPJZFAoFC6sioikRq/XQxAEAIBGo8HZs2fRt29fl/8+7vTA7t///jcWLFiAsLAwZ1+aSNLYIZaIiIiIyH5qa2uNYZ1CoUBoaCi8vb0lMXKGiKTDYDCgpqYGpaWl0Ov10Gg0qK2thbe3t0vrcvo71V//+lf07dsXM2bMwHfffQedTufsEogkiYEdEREREZH9NF8fOjQ0FL6+vgzriKgNuVwOX19fhIaGGp+rrq52YUUil7xb6XQ6bN68GXPmzEFERASefvppHD9+3BWlEElCWVkZSkpKWjzHwI6IiIiIqOPq6+sBiNNgXT1Shoikz9vb2zgNVgrrXjo9sMvIyMATTzyBoKAgCIKA8vJyvPXWW0hKSsKYMWPw8ccfSyLJJHKm1uvXeXp6IjY21jXFEBERERF1A03dYBUKBUfWEZFVcrncuMalFLpJO/1da/DgwXjzzTdRVFSEdevWYcaMGVAoFBAEAQcOHMADDzyAsLAwLFiwALt373Z2eUQu0Xo6bFJSEhfDJSIiIiIiIuqhXPbfDEqlErNmzcKGDRtQWFiI119/HfHx8RAEAXV1dfjiiy9wzTXXYMCAAXjllVdQVFTkqlKJHI7r1xERERERERFRE0mMCw4JCcHTTz+NY8eO4bfffsN9990HX19fCIKA3Nxc/OMf/0B0dDRSUlLw7bffQqvVurpkIrtiYEdERERERERETSQR2DU3evRo/Pe//0VJSQlWrVqF0NBQCIIAvV6PrVu3Yt68eYiIiMCzzz7bZpF+oq6ouroap06davEcAzsiIiIiIiKinktygR0A5Ofn47XXXsM///lPlJWVGbt0CIIAQRBQUVGBJUuWYMCAAXjzzTddXC1R56Snp7d4rFAoMGTIEBdVQ0RERERERESuJpnATqPR4IsvvsCUKVMwYMAAvPTSS8jPz4cgCIiLi8Mbb7yBsrIy/Pzzz7jtttugVCqh0WiwePFifPHFF64un6jDWk+HjY+Ph1qtdlE1RERERERE1NoLL7wAmUxmHFBE5GguD+z27duH++67z9gZdteuXTAYDPDw8MDChQuRmpqK48eP48knn0RwcDCuueYafPnll8jKysKwYcMgCALeeustV78Mog7j+nVERERERNQV5efnG0OsztyIqC2XBHYlJSV47bXXEBcXh3HjxmH58uWoqqqCIAgYPnw4PvjgA5SUlODTTz/FH/7wB5PniI6Oxr///W8AQHZ2tjPLJ7IrBnZERERERETts3LlSmPgl5+f7+pyiOxO6ewLTps2DT/99BMMBgMEQQAA+Pv74/bbb8e9996L5ORkm88VExMDAKirq3NIrUSO1tjYiOPHj7d4bujQoa4phoiIiIiIqB0iIiKQkZFhdvv111+P4uJihIeHY+vWrU6sjKjrc3pgt2XLFuP9CRMm4J577sHcuXM7tGaXp6cnJkyYwCG01GWdOHECjY2NLZ5jYEdERERERF2BSqWy2DBPpVLZtB8RteX0wC4kJAQLFizAPffcg9jY2E6dKzw8HLt27bJPYUQu0Ho6bHR0NAICAlxUDRERERERERFJgdPXsCssLMRrr73W6bCOqDvg+nVERERERD2PwWBAbW0tDAaDq0txKYPBgC+++AIpKSkIDQ2Fm5sbgoODMXnyZLz//vttZiMBwK5duyCTyXD33Xcbn4uJiWnTyKL14J7ffvsNf//73zFp0iTjtXx9fZGQkIAHH3wQmZmZjn65RnV1dXj77bcxefJk9O7dG25ubggJCcF1112HFStWQK/Xmz02OjoaMpkMCxcuBACcPHkS9957L6Kjo+Hu7o7evXtj9uzZ+O2332yqpbCwEM899xyGDx+OgIAAqNVq9OnTB7feeit27txp9rjmDUdWrlwJAFi3bh1SUlIQHh4OpVKJSZMmtThGEAR89tlnmDBhAgICAuDt7Y3ExES89NJLqKqqAgDjOV944QXjcVqtFqGhoZDJZLjxxhutvqZjx44Zz/PKK6/Y9H2QIqePsFMqnX5JIslKS0tr8ZjTYYmIiIiIuq+jR4/izTffxNq1a1FXVwdPT0/MnTsXTz75ZLvWc+8OLly4gJtuugm//PJLi+crKiqwa9cu7Nq1C++99x62bNmCvn37dupaK1eubBHwNdFqtThx4gROnDiBjz/+GO+++y4eeuihTl3LmgMHDmD27NkoKipq8Xx5eTm2bduGbdu24b///S++//579O7d2+K51q1bhz/+8Y8t1vU/d+4cvvvuO2zcuBFffvklbr31VrPHL1++HI8++ig0Gk2L5wsKClBQUIDVq1dj0aJF+O9//2sxyxEEAXfddRc+//xzs/s0NjZizpw5+OGHH1o8f+zYMRw7dgxffPEFtm3bZvJYlUqFu+66C0uWLMFPP/2EoqIiREREmL3Wp59+CgBQKBRYsGCB2f2kziVdYolI/N+k1oEdR9gREREREXVPX3/9NUaOHIlVq1YZA5a6ujqsWrUKI0eOxNdff+3iCp1Hr9dj+vTpxrBu4sSJWLNmDQ4ePIjvv/8es2bNAiCu+T1lyhTU1NQYjx01ahQyMjLw8ssvG5/bunUrMjIyWtxGjRpl3K7T6RAQEIAFCxbg008/xd69e3H48GH88MMPeOmllxAUFAS9Xo9HHnkEO3bscNjrzsjIwOTJk1FUVISQkBA8//zz+Pnnn3HkyBFs3boVDz/8MJRKJfbv34+ZM2dCq9WaPVd6ejruuOMO9O7dG++99x5+++037Nu3Dy+88ALUajX0ej3uu+8+lJeXmzz+008/xT333AONRoMhQ4bgP//5D1JTU3H48GF8++23SElJASCGen/5y18svq63334bn3/+OcaPH4+vvvoKBw8exM8//4w//vGPxn0effRRY1iXkJCATz/9FAcOHMD27dvxyCOPIDc3F/Pnzzd7jXvuuQeA+Hv0qlWrzO6n1WrxxRdfAACuu+46i8Ge1MmEplatTvLSSy+1+xiZTAa1Wg0/Pz/ExsZixIgR8PX1dUB15AiFhYWIiooCICb1kZGRLq5IGk6fPo0BAwa0eI7fHyIiIiIi+zh16hR0Oh2USqXZJZkMBgPOnz/v8FqOHTuG6667Djqdzuw+SqUSP/30k0ObMwQGBkIud964nejoaJw5cwZ9+/ZFfn6+8flly5bhkUceAQDcddddWLlyZZtmkn/729+M0xmfeeYZvPbaay22Nx81l5eXh+joaLN1FBUVISAgAJ6enia3V1ZWYsKECUhPT8e4ceOwd+/eNvu88MILePHFFwGII8raSxAEDB06FOnp6UhOTsbPP/+MoKCgNvv9+OOPmDZtGgwGAz755BMsWrSoxfam7ykAjBgxAtu3b4efn1+Lfb788kvceeedAIA333wTf/7zn1tsLygoQFxcHOrq6rBgwQJ88sknJkfQNf0ZyOVynDhxAgMHDjRuy8/PR0xMjPGxuT9HADh8+DBGjhwJQRAwevRo7Ny5s82fxdq1a3HLLbcYHz///PMtpsUCYrC7Z88exMbGIjs7u811AGD9+vW4+eabjeecM2eOyf3MseV9ozWHZR6Ck8lkMkEul3fq5u7uLsybN084deqUs8unDigoKBAACACEgoICV5cjGWvWrDF+XwAIQUFBgsFgcHVZRERERETdQnZ2tpCZmSlkZ2eb3efcuXMtPpN399u5c+ec+CcgCH379hUACH379m3xfHx8vPF3oKqqKpPH6nQ6IS4uTgAgBAQECPX19S22r1ixwvi68vLyOl3rd999ZzxfRUVFm+3PP/+8cXtHbNy40Xj80aNHLe47b948AYBw9dVXt9nW9D21dB6DwSCEh4cLAITZs2e32f7UU08JAITw8HBBo9GYrUOr1QoRERECAOFvf/tbi215eXnGOvz9/c3+OQqCINx///02vfbZs2cb93v++efbbF+1apVxe2pqqslzzJgxw/iz1dDQYPZa5tjyvtGaozIPl0yJFQTBmEg33Td3M7VPY2Mj1q5di6FDh2L79u2ueAlEnWZqOqyp/40gIiIiIiLqLoqLi3HixAkAwLx58+Dj42NyP4VCYRxBd/HiRRw+fNhuNdTW1iI/Px/Hjx83rqGmUqmM248ePWq3azXZsGEDAGDQoEFISkqyuO+ECRMAiOvdmWtAkZiYaPY8MpnMuNxSbm6u2VpmzJgBtVpttg6lUomxY8cCAPbt22d2vxkzZpj9cwRgzG2GDh1q8bXfddddZrcBwNy5c+Hv7w8AWLFiRZvtZWVl2LJlCwDgzjvvhJubm8XzSZ3TAzuDwYD8/HyMGTMGgiBg9uzZWL9+PQoKClBfX4+GhgYUFBRg/fr1mDVrFgRBwFVXXYXTp0/j4sWL2Lt3Lx588EHI5XLU1dVh7ty5ThnCTGRvrTvEsuEEERERERF1d8eOHTPev+qqqyzu23x78+M6oqKiAn/9618xaNAg+Pj4ICYmBkOGDEFiYiISExMxbdq0Fvva28GDBwEAWVlZbTratr41TRdubGzEhQsXTJ4vLi7O4vV69eoFAKiurm7xfGVlJXJycgAAH374odVa1q5dCwAoLS01ey1LIVx9fb3xeiNGjLBY88iRIy1u9/DwwO233w4AWL16NWpra1ts//zzz43Tzv/0pz9ZPFdX4PTArrq6Gtdddx0OHjyINWvW4Ntvv8XMmTMREREBNzc3qFQqREREYObMmVi3bp1x4cnrrrsOAHD11Vdj2bJl+OGHH6BQKFBVVYVly5Y5+2UQdVrrwI4NJ4iIiIiIqLtrHkBZ64IaGhpq8rj2OnToEOLi4vDqq68iOzvb6hp0rbum2sO5c+c6dFzzDrDNmVuPr0nTWoWtR+jZuw4ACAgIMLvt0qVLxvshISEWrxEcHGy1jnvvvReAmC19++23LbY1jbobNWoUEhMTrZ5L6sz35XWQt99+G9nZ2Xj00UdtWvxvzpw5ePDBB/Hee+9h6dKlxqYV119/Pe644w6sWrUKW7ZswT//+U9Hl05kN2VlZSgpKWnxHAM7IiIiIiLnCgwM7HCA0R6PPPIIVq9ebXW/W2+9Ff/5z38cVkdgYKDDzt0R1pYEshas2aKxsRHz5s3D+fPnoVKp8Oijj2LmzJkYOHAgAgIC4O7uDkCcOtq/f3+7Xbe1puDs6quvxn//+1+bjwsPD3dIHQDwxBNPtGlqYY6l6aUKhaLTdQHWfx4AcWbaiBEjcOjQIaxYscI4jfb3339HZmYmgO4xug5wQWC3Zs0ayGQyzJ492+Zjbr75Zrz33ntYt25diy6zM2fOxKpVq4zDK4m6itaj6zw9PW3uQENERERERPYhl8ttGtXTWX/961+xbt06q11in3vuOafU40pNUzUBy9MsAXGgg6nj2mPHjh3GddyWLVtmHKHV2sWLFzt0flsFBgairKwM5eXlDu0EbEsdTerq6hxeS9Oac4D10X22huf33HMPDh06hN27dyM3Nxf9+vUzjq7z8PDAbbfd1uF6pcTpU2Lz8vIAAL6+vjYf07RvU+viJn379gUAVFVV2ak6Iudo3XAiKSnJbv8rQURERERE0pKcnIxVq1ZBqTQ9ZkapVGLVqlVITk52cmXO1zwg+v333y3uu3//fpPHAbaNxgKA48ePG+/Pnz/f7H5Na8w5StOMquzs7DbZhjMFBwcjIiICAPDzzz87ZDRhc2q12jhy0dr32NY/g9tvvx2enp4QBAGfffYZNBoNvvnmGwDigC8/P7/OFS0RTg/smjqvZGRk2HxM077Nu7YAYgMLoGViS9QVcP06IiIiIqKe5bbbbsPBgwexYMEC4/pjnp6eWLBgAQ4ePNhtRgVZEx4ejvj4eADiDLzWTRGa6PV6rFy5EoC4Rtrw4cNbbG/e3bShocHs9ZqPajS3DpvBYMBHH31kU/0dddNNNxnvv/766w69ljVNteTm5hqbSjjSlClTAIjdd9PT083ut2rVKpvO5+vri3nz5gEAPvvsM6xduxaVlZUAYPMU367A6YFdYmIiBEHAG2+8gfr6eqv7azQaLFmyBDKZrM2igadPnwZg28KERFLCwI6IiIiIqOdJTk7GypUrUV1djZqaGlRXV2PlypU9YmRdcw8//DAAoLy8HI8++qjJUV4vvviicU2y/2fvvsOaOtswgN9J2HsqIigOXIh7g9WqddU66mrrrFqrHVatrXa4OqWt/WqHsyqO1qqtVq111C2KiiKKuFBBQUEQQfZKzvdHJBJIIEAm3L/rymVyxnueQIjk5h1vvPGGYq65InXq1FHcL8oGVCk+9dCGDRtUHvPRRx8hPDxc8ydQCcOHD1cElStWrMDatWvLPP7KlSvYs2ePTmr54IMPFF/PadOmlduz7d9//y0zaCvP1KlTFT0i33jjDZXB6V9//YWdO3dq3OaUKVMAyEdifvjhhwCABg0aoGfPnpWu09joPbArmvzv6tWr6NWrl1L31JKuXLmCXr16KX5ISyalhw4dgkgkKnMJYSJjk5GRgejoaKVtDOyIiIiIiGoOsVgMW1tbxUqeNc20adPQtWtXAPIQrVevXvjzzz8RHh6OvXv3Yvjw4fj8888BAI0aNcL8+fNLtdG2bVtFL7v58+fj4MGDuHnzJm7duoVbt24pVnrt16+fYnXSTz75BG+//TYOHDiACxcuYOvWrejTpw+++eYbBAQE6PQ5SyQSbN26FXZ2dhAEAVOmTEH//v2xceNGnD17FuHh4di/fz++/vprBAQEwN/fH8ePH9dJLQ0aNFAsfPH48WMEBARgypQp+PvvvxEeHo5z585hx44dmDdvHho3bowXX3wR9+7dq/T12rdvr5g78Ny5c+jYsSOCg4Nx4cIFHD16FDNmzMDo0aPRqVMnxTnlDXkOCAhQBKBFcyG+/vrrGg+VNgV6X3RiwoQJ+PPPP7F3716cPXsWrVq1UqzyUfRDlJSUhPPnz+PSpUuK8wYNGqRY/QMAnjx5gu3bt0MQBAwYMEDfT4Oo0kr+ZUIikRh00lEiIiIiIiJ9kkgk+OeffzB48GCcOnUKx44dw7Fjx0od17x5c+zbtw92dnal9tnb22PGjBn45ptvEB4ejn79+intP3r0KHr27AlbW1ts3LgRQ4cORW5uLpYvX47ly5crHduzZ0/8/PPPOv9c5u/vj1OnTmHEiBGIjo7GgQMHcODAAbXHV2Tu/4qaOHEirK2tMXXqVKSnp2Pt2rVqe/0VBcxV8dNPP+HBgwf4559/cPXqVbz++utK+xs0aIDff/8djRs3BqA85FmdyZMnY86cOYoaJ06cWKUajY3eAzsA2LFjB9555x38+uuvEAQBERERpSbhB+RLKYtEIkydOrXU0taFhYXYtWsXAKBDhw76KJtIK0oOh23evLlGb0ZERERERETVhYuLC06cOIHff/8dv/32Gy5evIjHjx/DwcEB/v7+GDFiBN544w1YWFiobWPJkiXw9fXFxo0bERUVhSdPnkAqlZY6rl+/fjh//jyWLFmCI0eOIDk5GU5OTmjRogXGjBmDyZMnV6kHWUW0atUKV69exe+//46dO3fiwoULSE5Ohkwmg6urK5o2bYrAwEAMGzas1Lx92jZ69Gj07dsXq1evxv79+3H16lWkpqbC3NwcHh4e8PPzw/PPP48RI0bA29u7SteysLDA7t27sWHDBqxduxaRkZEoKChA/fr1MWzYMMyZM0epd5wmC0eMGzdOEdi98MILVa7R2IgEXS8JUoaLFy9i9erVOHz4MG7duqW0r1GjRujduzemTp2q8xcp6VZ8fLziBycuLg5eXl4GrsiwJk+ejHXr1ikejxs3TuPJNYmIiIiISDPR0dEoLCyEmZmZ0jxmRGScQkJC0L17dwDyKdCKFqtQ5/Dhw+jTpw8AYOvWrYqFKKqiMu8buso8DNLDrkjbtm2xYsUKAPJVXdLS0gDIV30tOaEkUXXBBSeIiIiIiIiIlG3ZsgUAYG5ujvbt25d7fFFHGFdXVwwZMkSntRmC3me47NWrF3r16oX169crbbe0tETt2rVRu3ZthnVUbeXn55daaKVNmzaGKYaIiIiIiIhIDx49eqTopKXKgQMHsGrVKgDA4MGD4eTkVGZ7sbGx2L59OwD5YhPVMUfSew+7kydPQiaTqVzlhai6u3btGvLz85W2MbAjIiIiIiKi6uzKlSsYMmQIRo4ciT59+qBRo0YQi8W4e/cudu/ejc2bN0MqlcLa2hpfffWVyjbu37+P7OxsxMTEYN68eSgoKICVlRVmzpyp3yejJ3oP7GrVqoXExMRy01Ki6qjkcFgfHx84OzsbqBoiIiIiIiIi/ShvNVoHBwds374dTZo0Ubl/zJgxOH78uNK2zz77DHXr1tV6rcZA70NiW7duDQC4efOmvi9NZHCcv46IiIiIiIhqmg4dOiA4OBijR49G8+bN4ebmBjMzM7i4uKBTp05YsGABbt26hb59+5bblo2NDdq0aYPg4GB88MEHeqjeMPTew27KlCnYv38/Vq5cidGjR+v78kQGFRERofSYgR0RERERERFVd3Z2dpgwYQImTJhQ6TaOHTumvYJMgN572L388ssYO3Ysjh8/jkmTJiErK0vfJRAZhEwmKxXYcf46IiIiIiIiIipJ7z3sNm7ciN69e+Py5cvYsGEDdu3ahZdeegmtWrWCs7MzJBJJmeePHz9eT5USaVdMTAzS09OVtrGHHRERERERERGVpPfAbuLEiRCJRIrHqamp2LRpk0bnikQiBnZkskrOX+fm5lZtJ8ckIiIiIiIiosrTe2AHAIIglPmYqDpSteBE8fCaiIiIiIiIiAgwQGAXExOj70sSGQXOX0dEREREREREmtB7YFe/fn19X5LIKKjqYUdEREREREREVJLeV4klqokePnyIhIQEpW0M7IiIiIiIiIhIFQZ2RHpQsnedjY0NfH19DVQNERERERERERkzgyw6UeTWrVvYuHEjQkNDkZiYiJycHOzfvx+NGzdWHHPlyhXcu3cPtra26NGjhwGrJaq8kvPXtWrVChKJxDDFEBEREREREZFRM0hgJ5PJMHfuXPzwww+QyWSKVWJFIhHy8/OVjo2Li8OgQYNgZmaGmJgY1K1b1xAlE1UJ568jIiIiIiIiIk0ZZEjsm2++ie+//x5SqRSenp4YMWKE2mMHDBiAhg0bQiqV4s8//9RjlUTaw8COiIiIiIiIiDSl98Du2LFjWLt2LQDg448/RmxsLLZt21bmOSNHjoQgCDh69Kg+SiTSqoyMDERHRyttY2BHREREREREROrofUjsypUrAQADBw7EF198odE5nTp1AgBERUXprC4iXbl8+bLSY4lEgpYtWxqoGiIiIiIiIiIydnrvYRcaGgqRSITJkydrfI6XlxcAIDExUVdlEelMyeGwzZs3h5WVlYGqISIiIiIiIiJjp/fALikpCQDQoEEDjc8xM5N3BCwoKNBJTdqWmZmJEydO4LvvvsOoUaPQoEEDiEQiiEQi+Pj4VLn9UaNGKdoTiUSIjY1Ve2x6ejr++OMPvPHGG2jXrh2cnJxgYWEBd3d39OzZE9999x3S0tKqXBOpx/nriIiIiIioujt27JjS59Sim5mZGVxcXNCgQQM899xzmDVrFv76669SC06q4+Pjo7JdVbeePXuqraMiN218bieqKr0PibW2tkZ+fj6ys7M1PufevXsAAGdnZ12VpVUvvfQSjh07ppO29+7di+3bt2t07L59+zBs2DDk5eWV2vfo0SMcP34cx48fx3fffYctW7bg+eef13a5BAZ2RERERERUc0mlUqSmpiI1NRWxsbE4efIkfvjhB7i7u2PGjBmYN2+eopMOET2j95+KBg0aICIiAhcvXkTXrl01Oueff/4BALRo0UKXpWmNIAiK+87OzujQoQNCQ0ORmZlZpXYzMzPx1ltvAQBq1aql6K2oTkpKCvLy8iAWi/HCCy+gf//+aN26NZycnBAfH4/ffvsNW7duxcOHDzFo0CCcOnUKbdq0qVKNpCw/P7/U3IsM7IiIiIiIaoaQkBAEBgbq7TxjMX36dMVnV0D+WTY1NRWXL1/G4cOHcejQISQnJ2P+/PnYs2cP/vnnH7i7u5fZpqenJw4cOFDmMba2tqhVqxYiIyPVHuPv7w8A6NChA9avX6/yGAsLizKvQ6QPeg/s+vbti4sXL2L16tWYNm0axOKyR+VeuHABmzZtgkgkQv/+/fVUZdW89tprmDp1Kjp16oTGjRsDkHfjrWpg9+mnn+LevXvo3bs3vLy8sGHDhjKPNzc3x5tvvomPP/4Y9erVU9rXtm1bvPTSSwgICMCMGTOQnZ2N999/H4cPH65SjaTs2rVrpbp6t27d2kDVEBERERGRvixatAiLFy/GkiVLMHfuXI3PCwoKwrx587Bw4UIsWrRIdwXqUK1atVQutDdgwADMnTsXUVFRGDduHC5evIhz587h5ZdfxuHDh8sMyszNzTVevE+T42xtbbkYIBk1vc9h984778Da2hqRkZF44403ypyX7q+//kL//v2Rn58PBwcHTJ06VY+VVt7UqVPx2muvKcI6bTh//jx+/vlnWFpaYvny5RqdM3r0aKxcubJUWFfcu+++iw4dOgCQzzmQkpKilXpJruRwWB8fH5MZ2k1ERERERJUTEhKCxYsXAwDmzZuHoKAgjc4rCusAYPHixQgJCdFZjYbk5+eHU6dOKUYfhYSEaPw5l6im0HtgV7duXfz4448QBAHBwcFo2LChUlfZtWvXYvr06fD19cWoUaOQkpICkUiE1atXw9HRUd/lGoXCwkK88cYbkEqlmDdvHpo0aaLV9nv27AkAkMlkiImJ0WrbNR3nryMiIiIiqnkCAwOxZMkSxWNNQrviYR0ALFmyxKSHxZbH2tpaMZoOAL777juTWWhSncLCQqxduxYDBw6Ep6cnLC0t4ebmhueeew4//PADcnNz1Z7bs2dPxcIZAHD//n3Mnj0bjRs3hrW1NVxdXdGvXz/s27dPo1pSU1PxxRdfoGvXrnBzc4OlpSU8PT0xZMgQ7Nixo8xzixbfKOrheeTIEYwcORLe3t4wNzdXuSjH7t270a9fP7i5ucHGxgZNmjTBBx98gMTERADPFg+ZOHGi0nnt2rWDSCRC8+bNy31OKSkpsLS0hEgkMpkOXVVhkJkdJ0+eDJFIhBkzZuD+/ftYtWqV4of0hx9+APBsHjhLS0usXLkSI0eONESpRuH7779HREQEfH198dFHH2m9/eKLUpQ3RJkqhoEdEREREVHNVDQMtiiEK/pX1fBYVWFdRYbRmio/Pz+88MILOHjwIO7fv4+wsDB069bN0GVVyu3btzF48GBcvXpVaXtKSgpOnjyJkydPYvny5di7dy98fX3LbCskJARDhw5VGgGXm5uLgwcP4uDBg/j2228xZ84ctef/+++/GDNmDNLS0pS2JyQkYPfu3di9ezdefPFF/PHHH7Czsyuzlk8++QRfffWV2v2CIGD69OlYtWqV0vbo6Gh899132Lx5M/7991+150+ZMgVvv/02rl+/jjNnzqBLly5qj/3tt98UU05NmjSpzLqrA4OlM5MmTcL169cxe/ZsNGrUCIIgKN3q1q2L6dOn49q1a5gwYYKhyjS4mJgYRVfq5cuXw9LSUuvXOH78OADAzMxMq8N4azqZTIaIiAilbVzUg4iIiIio5pg7d265Pe1qalhXpE+fPor7J0+eNGAllZeQkICAgABcvXoV9vb2eP/997Fv3z6Eh4fj6NGj+Oijj2BjY4Po6Gj0798fT548KbOtYcOGQSKRYMmSJQgJCcG5c+fw/fffw8nJCQDw0UcflVrcsMh///2HwYMHIy0tDT4+PggKCsKxY8cQHh6OPXv2YOzYsQCAvXv3lpu17Ny5E1999RX8/f2xbt06nDt3DsePH8fs2bMVxyxZskQR1nl5eeHnn3/G2bNnceLECXzyySd48uQJRowYgezsbJXXGDNmDKytrQFA7SIgRYr2N2/evMxgr7ow6NrJXl5e+O677/Ddd98hPT0dSUlJkEqlcHV1hZubmyFLMxrTpk1DdnY2Xn31VaU3Mm3Zu3cvLl++DADo168fHBwcKtxGfHx8mfsTEhIqVZupi4mJQUZGhtI29rAjIiIiIjJOycnJlT7Xzs5OETqUNHnyZGRmZuKLL74AIA/tMjMzMWPGDPz444+K7YB8ocFJkyYparGxsYGtra3Kdh8/fgypVKpRfeWtwGpI7dq1U9y/efOm2uMKCgpw5coVtfstLCy0Pn2UpqZOnYqHDx/C29sbx44dQ8OGDZX29+zZEyNHjkT37t1x584dfPfdd/j8889VtnXz5k3Ur18fp06dQt26dRXbO3bsiI4dO+K5555DYWEhVq9ejWXLlimdm5WVhXHjxkEqlaJv377YuXMnbGxsFPvbtm2LQYMG4bnnnsPUqVOxY8cOHD58GL1791ZZy+XLl9G7d2/s3btXqfPQc889B0D+Wf+zzz4DADRs2BChoaGoVauW4rju3btj4MCBeP7550stxljE0dERI0eOxMaNG/HHH3/ghx9+UPmzFBERoegQM3nyZJVtVTsC6UX9+vUFAEL9+vU1PmfTpk0CAMHR0VFISEhQ2jdhwgQBgABAiImJqVRNKSkpirokEokQHh5eqXaK6tDkFhcXV6lrmKLt27crPXc3NzdBJpMZuiwiIiIiohrh5s2bwtWrV4WbN29qdHxFPteUvP38889q23Vzc6t0uwsXLlTbbosWLTRuRx+OHj2qUd0lXbx4UXHesGHDSu0v+sxa3k3Tz9pFx/fo0UPjGssSGRmpaHPXrl1lHvvhhx8KAARPT89S+3r06KFoZ/fu3Wrb6NKliwBAaNu2bal9P/30kwBAsLKyEh4+fFhmLZ06dRIACGPGjCm1r6gOsVhcZt7w9ddfa/TcZ82apThuwoQJpfafOHFCsX/z5s0q23j33XcFAIK5uXm5z60qKvq+IQiCEBcXp5PMgxOWGanHjx8rupl+9dVX8PDw0Gr7UqkUY8aMwd27dwHI/5LD3l/apWr+uqK5GomIiIiIiAhKc6iVHKFkCnbt2gVA3hvyxRdfLPPYop5pDx48QFxcnMpjnJycymynffv2AIA7d+6oraVHjx5KPd3KqiU0NFTtMQEBASoXmChy+PBhAICrq2uZNY8fP77MWrp3746mTZsCUD0sNj8/H7///jsA4MUXXyz3uVUXBh0Sa0iFhYUwNzevcjvr168vtcqJNsyePRvJycno2LEjpk2bpvX233rrLezfvx+A/AU/f/78Srel7o2mSEJCAjp16lTp9k0V568jIiIiIiIqW/GQrqwpmurXr4/Y2Fg9VFQx58+fBwBkZ2fDzEzziCUxMRHe3t6ltvv6+pa5GKSLiwsA1eFmUS0HDhzQuLNI0SquqrRq1arMc4uGKLdp0wYSiUTtcf7+/rC0tFRa8LKkyZMn48MPP8SRI0dw9+5d1K9fX7Fv9+7digU4asJiE0UMFtilpKRg8+bNOHnyJO7cuYOMjIxyx9+LRCLcvn1bTxUazpEjR7BhwwZIJBKsWrVK6yu3fvTRR1i9ejUA+XLj27dvL/OHqzxeXl7aKq1a4QqxREREREREZXv06JHiflEYZUqSkpIqdZ66RRiKzzmnSlE+IJPJlLYXFBSUWhW2KnUAgLOzc5nnpqamAkC5Pd4kEgmcnZ3LDAcnTJiATz75BAUFBdiwYQMWLFig2Ldu3ToAQJ06dTBgwIAyr1WdGCSw2759O6ZOnYr09HQA8mWANaHN4YRmZma4du1aldupU6eOFqpRVrRqUIcOHXDjxg3cuHGj1DExMTGK+3v27FFMIvrKK6+U23bRKkXt2rXDP//8o3ZyVKq8hw8fllpsg4EdEREREZHxqmzwAigP6yzp2rVrEASh1AITzs7OisADkE9TNGPGDKVzywpvTp48qfGiE8aseEeHomGRpqToe9CgQQPs3r1b4/MaNGigkzoAYNSoUVUaRVekKh17KqpWrVoYPHgw/vrrLwQHB2P+/PkQiUR48OABDh48CEA+tLYivRhNnd6f6dmzZ/Haa69BJpNBEAR4enqibdu2cHFx0XpPsvI0a9ZMr9fTVFE30bNnz+LVV18t9/jib+plBXbLly9XLBfevHlzHDhwAI6OjlWsllQp2bvOxsYGvr6+BqqGiIiIiIjKo6uVVN3c3BAUFKQU1i1ZsgRz585FUFCQ4jPaF198ATs7O8ydO1ejdk2xN5oq//33n+J+YGCgASupHFdXVwDyThvNmjUzWKBkZWUFGxsbZGdnIy0tDS1bttT5NYt6zZUXdkulUqVwWp0pU6bgr7/+QkxMDI4fP46ePXti48aNijCyJg2HBQwQ2AUFBUEqlcLa2hpr1qzBa6+9pu8SaqRNmzbhnXfeASBfbvnQoUNwc3MzcFXVV8n561q3bq3Xv04QEREREZFxKB7KAc/COgCKf4v2F/2raWhn6q5cuaJYuMDb2xsdOnQwcEUV17ZtW/z777/Izs7GqVOn0KNHD4PWcurUKZw6dQrZ2dnlDq+tKj8/PyQmJiIiIgJSqVTtZ97IyMgy568r0rdvX9SrVw/37t3D+vXr0bNnTwQHBwOQL4DRpEkTbZZv9PS+Suzp06chEokwb948hnVqHDt2DIIglHmbMGGC4viYmBjFdlV27NiB119/HYIgwMvLC4cPH4anp6e+nk6NVLKHHRecICIiIiKqecoK64rMnTtXMW0RIA/tiqZJqs5ycnIwfvx4xefYOXPmmORwxyFDhijuf/PNNwasBBg8eDAAICsrC7/88ovOr9e7d28A8jUK9u7dq/a4jRs3atSeWCxW9KL7888/sW/fPsUUYZMnT65itaZH74Fd0SSI/fr10/ela6SDBw/i1VdfhVQqRa1atXDo0KEyl2Um7eCCE0RERERENZsmYV2RmhbaXb16FYGBgYrPTT169MD06dMNXFXldOzYEX379gUA/Pvvv1i4cGGZx8fGxmLLli06qWXatGmKkXTz58/Hvn37yjz+1KlTOHHiRKWvN2HCBFhaWgIAZs2aheTk5FLHhIaGVig8nDRpEsRiMbKzsxXhnZ2dHUaOHFnpOk2V3uPrOnXq4N69e1pdQMLY3Lp1CyEhIUrbMjMzFf8Wdeks0r9/f3h4eGi9jjNnzmDYsGHIz8+Hubk5/ve//6GgoECx9LIqXl5ecHJy0notNUlGRgaio6OVtjGwIyIiIiKqOUJCQjQO64qoGh4bEBBgkvO6JSUlKX3uzMrKQmpqKi5fvozDhw/jv//+U/Ss69KlC/7880+Ym5sbqtwqW79+PTp06ICEhAR89tlnOHDgACZNmgR/f39YWVkhJSUFly9fxv79+3HkyBEMHTpUo/nqK8rBwQFbtmzBgAEDkJeXh0GDBmH48OEYPnw4GjVqBABISEjAhQsXsHPnTly+fBk//fQTnnvuuUpdz9PTEwsXLsTHH3+MO3fuoH379pg3bx46duyIvLw8HDhwAEuXLoWnpyeysrKQnJxcbhbk7e2Nvn37Yv/+/YpVZUeNGlXmwi7Vld4Duz59+mDdunW4cOECOnbsqO/L60VISAhef/11lftSUlJK7Tt69KhOArv9+/crlmguKCjAmDFjyj1n/fr1mDhxotZrqUkuX76s9Fgikehlwk8iIiIiIjIOgYGBWLhwIRYvXqxRWFekeGi3cOFCkwzrAGDFihVYsWJFmce4u7tj5syZ+PDDD01yKGxxnp6eCA0NxciRIxEWFoazZ8/i7Nmzao93cHDQWS19+vTBgQMHMGbMGCQmJmL79u3Yvn27zmqZN28e7t69i1WrViEuLg5vv/220n43Nzds374dL7/8MgD54hjlmTJlCvbv3694XBOHwwIGCOzef/99bNmyBd999x3GjBkDe3t7fZdApFMlh8M2b95cozclIiIiIiKqPhYtWoQ+ffpUOHSbO3euyfasU0UsFsPe3h6Ojo6oX78+2rdvj+7du2PQoEGwsLAwdHlaU79+fZw9exa7du3C1q1bcfbsWTx8+BAFBQVwcnKCr68vunbtisGDB6N79+46raVXr164ffs21q9fj3/++QeXLl1CSkoKxGIx3N3d0bx5c/To0QPDhw9H06ZNq3QtkUiElStXYuDAgfjll19w/vx5ZGdnw8vLCwMHDsQHH3wALy8vpKenAwAcHR3LbXPw4MFwdHTEkydP0LRpU3Tr1q1KNZoqkaBupQId2rlzJ8aMGQN/f3+sW7cOfn5++i6B9Cg+Ph7e3t4AgLi4OHh5eRm4It2aPHky1q1bp3g8btw4jSfZJCIiIiIi7YiOjkZhYSHMzMzg6+tr6HKIaqzimcCvv/5abo+5W7duKX5mg4KC8OGHH+q8xiKVed/QVeah9x52RZMGNm/eHGFhYWjVqhX8/f3RrFmzcpccFolEWLt2rT7KJKo0LjhBREREREREJFd8kY0uXbqUe/z69esBAGZmZhg/frzO6jJ2eg/sgoODFZMMikQiCIKAyMhIREZGlnmeIAgM7Mjo5efnl1rUg4EdERERERERVUdZWVlIT09HnTp1VO6/ePEiPv/8cwBA+/btyx1hmZ6ejtWrVwMAhg4dqpP5/k2F3gO7evXqVesVYqlmu3btGgoKCpS2tW7d2kDVEBEREREREelOcnIymjdvjqFDh6J///5o2rQpLC0t8eDBA+zfvx9r165FTk4ORCIRvv/+e5VtJCUlIT09HQkJCVi8eDEePXoEkUik8WIt1ZXeA7vY2Fh9X5JIb0oOh/Xx8YGzs7OBqiEiIiIiIiLSrdzcXPzxxx/4448/VO63sLDAmjVr8Nxzz6nc/+GHH2LDhg1K26ZPn44OHTpovVZTYtprJxMZGc5fR0RERERERDVF3bp1sXXrVuzbtw/nz59HUlISUlNTYWNjAx8fH/Tp0wfvvvsu6tevX25bFhYWaNSoEd544w28++67eqjeuDGwI9IiBnZERERERERUU5ibm2PUqFEYNWpUpdsIDg5GcHCw9oqqJsS6bHz27NmYPXs2kpKSVO6XSqW4d+8e7t27V2Y7d+7cQbt27dC+fXtdlEmkFTKZDBEREUrb2rRpY5BaiIiIiIiIiMh06bSH3Q8//ACRSIQpU6agVq1apfZfv34d/v7+EIvFKCwsVNtOTk4OIiIiuFgFGbWYmBhkZGQobWMPOyIiIiIiIiKqKJ32sNOUIAiGLoGoykoOh3Vzc0PdunUNVA0RERERERERmSqjCOyIqgNV89exVygRERERERERVRQDOyItKTl/HYfDEhEREREREVFlMLAj0pKSPey44AQRERERkeGIxfKPu1KplNMwEVG5BEGAVCoF8Oz9w5AMXwFRNfDw4UMkJCQobWMPOyIiIiIiw7GwsAAg/xCel5dn4GqIyNjl5eUpwv2i9w9DYmBHpAUle9fZ2NjA19fXQNUQEREREZGtra3ifnp6ugErISJTUPx9ovj7h6EwsCPSgpLz17Vu3RoSicQwxRAREREREezs7BT3U1JSkJKSohjuRkRURCqVKt4jihR//zAUM0MXQFQdcP46IiIiIiLjYmFhAXd3dyQnJwMAkpKSkJSUBIlEApFIZODqiMgYFJ+3roi7u7tRDInVS2C3fPly1KpVq9T2pKQkxf3PPvtM7fnFjyMyRiUDO85fR0RERERkeK6ursjPz8eTJ08U29jLjojUcXR0hKurq6HLAKCnwG7FihVq9xX9ZWPx4sX6KIVI6zIyMhAdHa20jYEdEREREZHhiUQieHp6wsXFBWlpacjOzmZgR0RKJBIJbGxs4OTkBCsrK0OXo6DzwI7LZ1N1d+nSJaXHEokELVu2NFA1RERERERUkpWVFTw8PAxdBhGRxnQa2B09elSXzRMZhZILTjRv3tyoUnkiIiIiIiIiMi06Dex69Oihy+aJjALnryMiIiIiIiIibRIbugAiU8fAjoiIiIiIiIi0iYEdURXk5+fjypUrStsY2BERERERERFRVTCwI6qCa9euoaCgQGlb69atDVQNEREREREREVUHDOyIqqDkcFgfHx84OzsbqBoiIiIiIiIiqg4Y2BFVAeevIyIiIiIiIiJtY2BHVAUM7IiIiIiIiIhI2xjYEVWSTCZDRESE0jYGdkRERERERERUVQzsiCopJiYGGRkZStvatGljmGKIiIiIiIiIqNpgYEdUSSWHw7q5uaFu3boGqoaIiIiIiIiIqgsGdkSVpGr+OpFIZKBqiIiIiIiIiKi6YGBHVEmcv46IiIiIiIiIdIGBHVEllexhx/nriIiIiIiIiEgbGNgRVcLDhw+RkJCgtI097IiIiIiIiIhIGxjYEVVCyd51NjY28PX1NVA1RERERERERFSdMLAjqoSSgV3r1q0hkUgMVA0RERERERERVScM7IgqoeSCE5y/joiIiIiIiIi0hYEdUSWU7GHH+euIiIiIiIiISFsY2BFVUEZGBqKjo5W2MbAjIiIiIiIiIm1hYEdUQZcuXVJ6LJFI0LJlSwNVQ0RERERERETVDQM7ogoqOX9d8+bNYWVlZZhiiIiIiIiIiKjaYWBHVEGcv46IiIiIiIiIdImBHVEFMbAjIiIiIiIiIl1iYEdUAfn5+bhy5YrSNgZ2RERERERERKRNDOyISggJCVG779q1aygoKFDa1qZNm3LP04bKts+69HOertvXdV1ERERERERkPBjYERWzaNEidO/eHUFBQSr3lxwO6+PjAycnJwQFBaF79+5YtGiRQepSh3WxLiIiIiIiIjJBApGOxcXFCQAEAEJcXJyhy1Hr5MmTijoBCEuWLCl1zIwZM5SOGTZsmLBkyRKlbSdPntR7XaqwLtZFREREREREuqWrzIM97IieCgwMxJIlSxSP582bV6onVMkedpmZmZg3b57i8ZIlSxAYGKj3ukoKCgpiXayLiIiIiIiITJXWoj8iNUylh12Rkj2ainpCSaVSwd7eXmmfquP0XVdlj2NdrIuIiIiIiIiqRleZBwM70jlTC+wEQXVYcuvWLYOFdWXVVZH9rIt1ERERERERkfboKvMQCYIgVLZ3HpEm4uPj4e3tDQCIi4uDl5eXgSvSTMnhiGPGjMFvv/1W6rhXX30VgwcPLrc9Jycn9O/fX+W+y5cv4+rVqxrVtXv3bmzZskXxeNy4cdi4caPK4ZNDhw4tNYxXUyKRCKNHj1a57+7duwgNDS2zrqKvi6rtwcHBsLCwKNVuYmIijh07Vql6AWDgwIFwcHBQ2lby61JWXeq+j71794a7u3up7Tk5Odi1a1elai15/SVLlmDu3Lkqv49z586t1DWIiIiIiIhIt3SVeTCwI50z1cAOKB32VEWrVq1w6dIllfs++eQTfPXVV5Vu28XFBY8fP1Y8Lgp5li1bhpkzZ1aqTTMzMxQUFKjc9/vvv2PMmDGVahcAHj9+DGdn51Lb//vvP/Tt27fS7d64cQNNmjQptX3mzJlYtmxZpdsNCQlBQEBAqe0PHjxA3bp1K93u2LFjsXnzZsXjkt/HwMBAvPnmm2jbti2aNm0KMzOzSl+rPCEhIZWaH6+y5+m6fV3XRUREREREBOgu8+CiE0RlmDt3rtJCAcZKVVhHz7z++uuGLkGll19+Wen1Vfz7aG1tjZCQEIwbNw4tW7aEvb09OnfujGnTpmHVqlU4d+4ccnJytFLHokWL0L1793IXwSgpKCgI3bt3x6JFi7RSh6nUBcgDQX2ep+v2dV0XERERERFVDAM7onL0799f5fBNY+Ti4sKwzsTMnTsXLi4uStucnJxKhXG5ubk4d+4cVq1ahWnTpqFz586wt7dHy5YtMX78ePzvf//DsWPHkJaWVqHrh4SEYPHixQA0W7m2SPHep4sXL9Z64GOsdQHGGyQaa11ERERERFRxuhtfRVQNbNmyBWPHjoVMJlO539vbG05OThq15evrq3Zf7dq14e/vX6HakpOTkZiYqLTt8ePHCAoKUoR2rq6uFW63SFnDL52cnNS2q6ouAPDw8FDMAyeRSFSea2dnV+l6AagNVq2srODh4VFuXerY2Nio3G5mZlaleh0cHBAUFKTUsw6AxqGbVCpFVFQUoqKisGnTJsX2zZs3azxkOTAwEEuWLFGEXEX/lhX8qppnT9vDT421rpJBYnk1qapt8eLF6NOnj1ZrM9a6itdnjEObjbUuIiIiIiKuEks6Z4qrxAqCIERERAhisVjtyrAABLFYLEREROi9tpKriLq4uBjFqqKsS7t1NW/eXPD29i7zNajqFhYWpvJ6OTk5wrx584StW7cKN2/eFKRSqdpa1H1N9L2CrTHWVdFr6as2Y61r4cKFlWq/qL6FCxfWqLoEQRBOnjyp1/N03b6u6yIiIiIyJF1lHgzsSOdMNbBr166dRuFIu3bt9FqXug/Z+g5SWJf+6kpOThYOHjwoBAUFCa+88orQtGlTQSQSqXw9mpmZCTk5OSqvee7cOaVj7e3thcDAQOHdd98V1q1bJ8yYMaPMr4mhvmblXdcQdRljkGiMdZ08ebJS1ylZn7YDH2OtSxCMN0g01rqIiIiIDI2BHZksUwzsvv766wr1aPr666/1UpcxBhesyzB1ZWRkCKdOnRJ+/vlnYfLkyUK7du0ECwsLoVWrVmqvu2rVqnJfyxKJROnx9OnThaSkJMWHdVU1ZWZmCo8eParU7fHjx2rrzc7OVhy3YMECpesvWLBASElJERYtWmSw4LU6v770WU9Vj69OdRlrkGisdRWvT5/n6bp99kgkIiIyLQzsyGSZWmBX8gOGpjdj+dBrrB/GWZfu68rLyyvzZ2zatGmVem2X91qfM2dOpduqX7++2nq/+eabCrcnEokEc3Nzwd7eXm27u3fvFpo1aya0bNlSaNOmjdC+fXuhc+fOQkBAgNCjRw+hd+/eQr9+/YQXX3xRGDJkiDB8+HBh1KhRwmuvvSaMHz9eyMzMVPt96t27t7Bo0SKhT58+Stv79OkjLFq0qMxbamqqynrj4uLKPbfkreT11fXgfOedd4Tr168LDx48EDIzMwWZTKb261YVNfHnUdc16bs2Y63LWHv+GWtdREREpH0M7MhkmVJgV9mwrqZ+UGJdplXXihUrhL59+wru7u5afY0bU2BXdLOyslLb7oYNG6r0c56enq7UXlXfN4pusbGxKus9c+aMVtovOUdiyV6LgHxeTkdHR8Hb21vw8/MTunTpIvTt21cYMWKE8PrrrwvvvfeeMH/+fOGbb74Rrl+/rvZrnJeXV2qbsfX8M+a6jDFINMa6jLXnn7HWRURERLrBwI5MlqkEdiV/wa7IHHY18Rd/1mW6dclkMiE+Pl7Ys2eP8NlnnwnDhg0TfHx8NAp8VDHGwM7Ozk5tu2vXrq10uwCE7OzsUm1qI7TTdWBX8vUXGxtbpTZ27Nihst7CwkIBgGBpaSm4ubkJDRs2FNq0aSN0795daNasmVIbL7zwgrBkyRKhf//+5f58SKVSYcmSJZW+Xbx4Ue1rYtCgQUrX79+/v/C///1PePnll5W2v/XWW8KVK1eEmJgYITk5WcjOzjZYr0QGnJW7Xk35Aw0RERHpDwM7MlmmEtgJgvIQloiICMHMzKzMD6xmZmZCREREjR1aw7qqR11FHj9+LBw5ckRYunSp0KZNG7VBT0nGGNg5OTmpbVeTufzKuqnqPSYIgmBnZ1eldnUV2Dk6Oio9LgpeL1++XKV2//vvP5X1pqWlVandsWPHqmy3oKCgSu2uWrVK7WvCycmp0u3OmTNHbbvz5s0Txo8fL0yfPl344IMPhEWLFgnfffedsGLFCmHTpk3Cjh07hIMHDwqnTp0SLl26JNy6dUtITEwUMjIyFAFl8WupG9qs73DH2Ooytp5/xlyXsc6rZ6x1ERERaUJXmYdIEAQBRDoUHx8Pb29vAEBcXBy8vLwMXFHZQkJCEBgYCADYsmULxo8fj8LCwlLHmZmZYePGjXj11VdLnafruvRxnq7bZ136Oa8ygoKCMG/ePMVjZ2dnpKamKh4vWbIEc+fOVTxOT09HdnZ2pa4lkUjg7u6ucl9WVhYyMjIUj3/++Wd8+eWXisdOTk5IS0tTPJ49ezYmTpyIwsJCCIKAdu3aqWz3zp07CA8PR2FhoeImlUqVHpe1fcmSJRCLxUptlvyaFWnZsiWaNWum0ddi+fLlKr8W0dHR+PjjjzVqo6Tr16/jypUrpbYvWbIEPXv2RPfu3VFQUFCpts+ePYtOnTqV2h4XF4d69epVqk0A2LFjB4YNG1Zqe2FhIczNzSvd7qpVqzB16lSV+5ydnZVeSxWxcOFCLFq0SOW+li1bIioqqlLtvvHGG1i9enWp15aLiwseP36seOzj41Oh/1cHDRqk9PNb3Pvvv49z585p1E58fDxiY2MVj62srJCbm6t4XPx94sKFC7h79y7s7e1V3szMzDSuX52SX6eS71Pl7dcVY6pr0aJFWLx4cYWvUVRjWa/16lgXERGRpnSWeWgt+iNSw5R62KkSEREhTJgwQbCxsREACDY2NsKECROEiIgIQ5dGpHXG1nPG2OtSVUPJueIMNbRN07pyc3OF5ORk4fbt28LFixeFEydOCP/884/w+++/CytXrhS+/fZbYf78+cJ7770nTJo0SRgxYoTQt29fISYmRuV1o6KiqtQTTt1QW2PtYfftt9+qbbd+/fqVbnfmzJlqv5dVuU2ePFltvX379tXKNUq+5stb8MbKykpwd3cXGjZsKLRu3VoICAgQ+vfvL4wcOVL45JNP1NYbGxsrnDt3Trh27ZoQHx+vdtVoQ79PGMP7lzFNy2AKdREREVUEh8SSyTL1wK6IVCoVMjMzBalUauhSiHTC2OamMva6yrp2TQ4I8vLyhBs3bghhYWHC4cOHhb///lvYuHGj8PPPPwtff/218NFHHwldu3ZVGdw0a9ZMOH36tMp2CwsLhUGDBlX6tm/fPrU1jx49Whg0aFCpOfaKbs7OzoK7u7viDzfFb8uXL1fbrpubW6VDr08//VSprZKBq7EGdqrmuhwzZkyl22vfvr3aeufOnVvu+WKxWOmxm5ub0LRpU2HIkCFq2/3++++Fpk2bVurWvXt3lW2W/NkrOeXG4MGDha1btwpHjx4VoqKihOTkZK3/vmGs8+oZa12CYLxDdY21LiKimoqBHZms6hLYEVVnxjjXkjHXpck1GXBqVp+p9UgsLCwU0tPThYSEBCE6Olp4/Pix2ja//PJLYc6cOcL06dOFcePGCS+//LLQt29fISAgQGjdurXQqFEjwcPDQ7CzsxNEIpHar4Op97AbPHhwpdvq2bOn2nrfeuutSrfbunVrte1+/PHHlW7X09NTbbslFzcp7yaRSAQPDw+hVatWQp8+fYS0tDSV7ebm5gqZmZlqr1ucsb6nGmNdxjrvrLHWRURUkzGwI5PFwI7IuBlr7wZjrasi1+KHXs2ua2whoiHqkslkQlZWlpCUlCTcuXNHePTokcoaSgaJQ4cOFVasWKHx7ejRo2pr2LNnj8btDB06VKkOe3t7tV+rqVOnCo0bNxZq166tspdiWbdBgwaprXfcuHEmFdj973//q3S7IpFIKCgoUNnurl27BEA+ZYePj4/QqVMn4aWXXhImT54sfPTRR8L//vc/4bfffhP+++8/4dKlS8Inn3xS5uva2N4fDFGXsQ7VNda6iIhqOgZ2ZLIY2BEZL2P95d9Y61J1DWMJEo21Lk2vx5BA89pMPeAsLCwU0tLShLi4OOHq1avC2bNnhUOHDgl///23sGnTJmH58uVCUFCQ8OmnnwobNmxQW8f48eMFS0tLkwnsKtrDrvjNzc1Nbbtr1qypdLvlfQ+7desmzJgxo1I3mUymst6LFy+qPadbt26lrj9z5sxSvT+NoRd1VY+vbnUREdVkDOzIZDGwIzJuxjq8xhjrMtYg0VjrUncdY+n5Z6x1aXJNBpzP5OfnCykpKUJsbKwwc+ZMpevb2dkpPR4zZozw559/Cv/995/a9iIjI4U///yzUrd//vlHZZslvy62trZKj318fIQmTZqoXQClRYsWauv98ssvqxzYAaV7bw4ZMqRK7akL7LZv316ldmfMmKGy3YcPHwpTpkwRPv74Y2HZsmXCli1bhCNHjghXrlyp9JyAxvoeYax1GevcesZaFxFVHwzsyGQxsCMyfsb6y6wx1mWMQaIx12WsvUGMta6KXIshgWbXNXQPo4rWlZeXJ8THxwvh4eHC/v37hY0bNwp//PGH2vbfe++9SodfJYPD4rX88ssvRhnY3b9/X2W7586dK/O8knMCjhkzRpg1a5awZMkSYd26dUJycnKFvn+a7tcVY6vLWP8PMta6iKh6YWBHJouBHRFVN8YYJFalfV3VZaw9/4y1LlXXMJYg0Vjr0vR61TlUycjIEKKjo4VTp04JO3fuFFauXCl89tlnwjvvvCOMGjVK6Nmzp9CiRQvBzc2t1OImLVu2LNWzrmilX2MN7PLz81W2u2fPniq1GxERobLd+/fvC35+fkrHjhkzRjhy5Ijw5ptvKm1/8803hePHjyvdcnNzVbb75MmTUsdW5JaRkaH29fPRRx/p9fVurO+pxloXEVU/DOzIZDGwIyKquYy1d4Mx1mWsHy6NtS511zGWnn/GWFdBQYGQkJAgXLp0Sfjvv/+EyZMnqwyvlixZIhw9elSYOnVqpW/qArvz58+Xe26nTp1U1uXh4aH2ua1du7ZKgV1CQoLKds+cOVOldtX97nv69OkqtRseHi4IQvkL03h7ewvDhw8XZs6cKSxdulTYtm2bEBoaKsTHxwuFhYUVfAWpZ6yhvrHWRUTVCwM7MlkM7IiIajZj6/lX1fY55Np46jLWD+PGWldZ1ywZ9BgqqKhsXSdPnhTefvttYcSIEcJzzz0nNG3aVHB2dtYo/NJkFV5jDexUfc00vUkkEsHb21vo1q2bMHr0aGHOnDnCpUuXtPa9M4aQ2pjrIqLqg4EdmSwGdkRERJozxiCxKu1zyLVx1FXWtUx1vj9NFJ8TcN++fcKGDRuEb7/9VpgzZ44wfvx4oV+/fkLPnj3Vnl/VVXj1EdgJglAq2KzsbdeuXSrrLSwsFMaOHSvMnTtX+Pnnn4Vdu3YJ4eHhQnJyslJvypo8PL2ijO09tartc+gw1WQM7MhkMbAjIiIiXTDWnn/GWlfxaxhTcGHMdYWFhQkLFiwQ3nzzzVJz2RXdbGxsBFdXV5W3shbJUHeOJrfiPeEq28NOkyCwSHx8vNpzrK2tBV9fX+H5558Xxo8fLzz//PNK+xcuXCjIZLJqGQhXlrG+RxhrXUTGjoEdmSwGdkRERKQrxtobxBjrMtahgcZaV1nXNpUhxEOGDBHmzZsnjBkzRujRo4fQsGFDwcLCQm34pm613NDQ0CoFgfb29iq/XmfPnhUsLS0rfTt//rzKeu/cuaPyeIlEolRHyYVY+vfvL/z222/CnTt3dPY9M9ZeuMZaV/H69Hmerttnj8TqhYEdmSwGdkRERESGZazz6hlrXZpc01R7jEmlUiExMVEICwsTduzYISxbtkz44IMPhLFjx6pdLGTbtm1VCuzU1VPVRT3CwsJU1nv79u0qtbtq1Sq1X/f169cLe/bsES5duiSkpaVV9NsmCILxvu6NtS5j7flnrHUJgvEGicZaV1UxsCOTxcCOiIiIyHCMteeMsdZV1rWMZaiuvuu6cOGCMGvWLGHEiBFC586dhbp16wpisbjCQZiLi4tSu8Ya2O3bt09lu/n5+aWet4ODg9CyZUth4MCBwrRp04SvvvpK2Lx5s3DixAnh7t27ahc0MdaepcZWl7G+TxhrXYJgvEGisdalDQzsyGQxsCMiIiIyLGP9oGSsdRW/hrEEF8ZWV35+vnD37l0hJCRE2LJli/DNN98I7777rjBs2DChQ4cOgp2dncowzBR62EVFRalsNyYmpsJticViwdvbWwgICBAOHTqk1B4DYe3UU9Xjq1NdxhokGmtd2qKrzEMkCIIAIh2Kj4+Ht7c3ACAuLg5eXl4GroiIiIio5gkJCUFgYKDeztN1+7qsKygoCPPmzVM8XrJkCebOnau146tbXeVd18XFBY8fPy5VR1ZWFq5fv17p6zRr1gy2traltufl5eHKlSultgcHB+Pnn39WPLa3t0dGRobisa+vL8RiMcLCwmBvb1/q/BMnTqBHjx6Vrnffvn3o37+/0raSX6vOnTvjhRdewOnTp3HkyBHF9l69eiEgIEBlu9OnT0edOnVKbU9JScGyZcsqVeupU6eUrl/0PStZ78yZM/H+++/DyckJtra2EIlElbpeeTR9Lev7NW+MdRnr+4Sx1qUNOss8tBb9EanBHnZEREREZCqMtSeIsdZV3vVMfc6/4o4fPy506tRJ8PDw0GrPvblz51apR6C61X2jo6Or1O6kSZOUHpdc1KTkTSKRCC4uLkLDhg2Fdu3aCb169RJefvllYdKkScLs2bOFxYsXC8uWLRMiIyO1+j3UdL+uGGNdxtIT11TqqioOiSWTxcCOiIiIiEyJsQ7VNda6Sl7HmIILXdWVm5sr3Lp1Szhy5IgQHBwsfPbZZ8KUKVOEvn37Cs2aNROsra1LBVrp6ekq2zp+/LhRBnYHDhwo9bXRxq2sRT0aNmwo+Pj4CK1btxZ69OghDBkyRJgwYYLw3nvvCQsXLhQGDRqk1NaMGTOEq1evCrNnzy7ze3j9+nXh2rVrlbo9evRIbb3R0dHCtWvXSl1/9uzZwq1bt4SPP/7YYMFTTfp5NDQGdmSyGNgRERERkakx1tUMjbUuY+05Y6i6ZDKZ8OjRIyE8PFz4+++/heXLl6s9dtOmTUYb2AmCUKpnnZOTU5Xa3bp1q9qvWWUWMyl5U/W9s7KyqnR73377rdrvnbe3d4XasrGxEdzc3ARvb29hwYIFatv9/vvvhZkzZwofffSR8Nlnnwnffvut8Msvvwjr1q0TtmzZIuzatUs4ePCgcPLkSeH8+fPC1atXhZiYGCExMVHIyspStFOde7waE11lHmYgIiIiIiIiJZWdH0+X8/1VpX1d1lWRuaaKthcdX/SvoefM0nZdIpEIrq6ucHV1Rdu2bcs8NjAwECNHjsT27dtL7fP390fz5s3LPN/JyUnldjs7O4waNUrjmkuqXbs2goKClOYfBIC0tDQ4OTlBEAQ8efKkwu2qqzczMxMymawypSoY8zxnAJCdnY3s7GwAUJo/saRt27bhzJkzlbrGK6+8gi1btgBQ/br+9NNPUVhYqDje29sbO3fuxM6dO8tst2fPnliyZInKfZ9++ikOHTpUoTq9vb0RFxenqOubb75ROddlTcbAjoiIiIiIiColJCSkwhPDqwoRAgICtBoqGmtdqmzdulUprCu+SEdkZCTGjBlTqeDCw8MDW7durXRdZS0ekpaWhiVLlmDOnDnIyMhAWlqa0u3JkyelthXdPD09VV6vMuFfcba2tiYV8FhbW6vdl5OTo7V2S76ui4d1gHyRhKLgrCx169ZVu+/WrVs4e/ZsRUtVwrCuNAZ2REREREREVCmBgYFYuHAhFi9eXKEP2cVDhIULF2o9FDPWukpS1wuw+HZd9kLUVl3qes1VhJubG44fP65R8BcbG1uq519WVhaCgoJMJujRV2AHyL9HJXuwGQszMzOlENHFxcVkvoe6xsCOiIiIiIiIKm3RokXo06dPhcOtuXPn6rQHm7HWVaSsIbv6HDpsLHVZWVnhueeeq3B9xXv+qasnMzOz0nWJRCK1+2JiYhT3v/nmG3z88ccq6wKA9957D6+++ipycnKQk5ODxo0bq2139OjRuH//vuLY7Oxsxf2Sj7Ozs1FQUKA4V1Vgp2pos7Eo2ePv8ePHJhW86pJIEATB0EVQ9RYfHw9vb28A8u62Xl5eBq6IiIiIiIjIcDSdX68i8/BV57rKu66h6jGWuqRSqSLAs7CwgKOjo9rabG1tkZWVpXg8fPhwDBgwoNxr+Pj4oHfv3ir3HT16FHfu3KlQzfv27cNff/2leFwy4DSlYbE6yzy0tnwFkRpcJZaIiIiIiEiuoith6mvlTGOtS9PrGWqFUWOtq6xrG3o1VmOtq7J0lXkwsCOdY2BHREREREQkCCdPnqxUIFEyyDh58mSNqEvdddTVZ2whoqHq0uSaDDi1h4EdmSwGdkRERERERHILFy6sVBBRFGQsXLiwRtVlrD3/jLWuilyLAad2MLAjk8XAjoiIiIiI6JnK9kTTVQ+2qravq7qMteefsdal6hrGEiQaa13awMCOTBYDOyIiIiIiIqoMY+35Z4x1GWuQaKx1aYuuMg+uEks6x1ViiYiIiIiIqLJCQkIQGBiot/N03b4u61q0aBEWL15c4VVWi1aTXbhwIRYtWlRj6tIGXWUeDOxI5xjYEREREREREemHMQaJVWlf13VVFQM7MlmxsbFo0KABAODcuXOoU6eOgSsiIiIiIiIiIqq6hIQEdOrUCQAQExMDHx8frbRrppVWiMqQnJysuF/0IiYiIiIiIiIiqk6Sk5O1FtiJtdIKERERERERERERaQWHxJLO5ebmIjIyEgDg7u4OMzPT69hZvIsrh/VSTcHXPdVEfN1TTcPXPNVEfN1TTcTXve4UFhYqRhb6+/vDyspKK+2aXnJCJsfKygodO3Y0dBlaU6dOHS6cQTUOX/dUE/F1TzUNX/NUE/F1TzURX/fap61hsMVxSCwREREREREREZERYWBHRERERERERERkRBjYERERERERERERGREGdkREREREREREREaEgR0REREREREREZERYWBHRERERERERERkRBjYERERERERERERGRGRIAiCoYsgIiIiIiIiIiIiOfawIyIiIiIiIiIiMiIM7IiIiIiIiIiIiIwIAzsiIiIiIiIiIiIjwsCOiIiIiIiIiIjIiDCwIyIiIiIiIiIiMiIM7IiIiIiIiIiIiIwIAzsiIiIiIiIiIiIjYmboAqj6y83NRWRkJADA3d0dZmZ82RERERERERGR6SssLERycjIAwN/fH1ZWVlppl8kJ6VxkZCQ6depk6DKIiIiIiIiIiHTm3Llz6Nixo1ba4pBYIiIiIiIiIiIiI8IedqRz7u7uivvnzp1DnTp1DFgNEREREREREZF2JCQkKEYVFs8/qoqBHWmdn5+f0uOCggLF/Tp16sDLy0vfJRERERERERER6ZQ25+znkFgiIiIiIiIiIiIjwh52pHVRUVFKj+Pj4+Ht7W2gaoiIiIiIiIiITAt72BERERERERERERkRBnZEGpLJBGTnF0ImEwxdChERERERERFVYxwSS1SOqw/S8WvIHeyLTEROgRTW5hIM8PfAlMCGaOHpYOjyiIiIiIiIiKiaYWBHVIZdEffx/rZLKCzWqy6nQIod4fexO+IBlo5qjSFt6hqwQiIiIiIiIiKqbjgklkiNqw/SS4V1xRXKBLy/7RKuPkjXc2VEREREREREVJ2xhx1pnZ+fn9LjgoICA1VSNb+G3FEb1hUplAlYGxKDpaNa66kqIiIiIiIiIqru2MOOSAWZTMC+yESNjv03MoELURARERERERGR1rCHHWldVFSU0uP4+Hh4e3sbqJrKyS2UIqdAqtGxOQVS5BZKYWPBHyciIiIiIiIiqjomDEQqWJlJYG0u0Si0szaXwMpMooeqiIiIiIjImMlkMmRmZiI9PR35+fmQSjXrBEBEhiORSGBjYwMnJydYWVkZuhwFBnZEKojFIgzw98CO8PvlHuvv5QixWKSHqoiIiIiIyFhlZGTg/v37EAROl0NkSgoLC5GXl4fU1FQ4OjqiTp06EIkM/xmfgR2RGlMCG2J3xINyF56IiEvFlftP0LKuo54qIyIiIiIiY6IqrBOJRJBIOBKHyNgVFhYq7j958gQWFhZwc3MzYEVyDOyI1Gjh6YClo1rj/W2Xygzt8gsFvLHxPHa/Ewh3e0s9VkhERERERIYmk8mUwjo7Ozu4uLjAxsbGKHrpEFHZpFIp0tLSkJSUBABITk6Gg4MDLCwsDFoXV4klKsOQNnWx+51ADG/nBWtz+V/HrM0laOBmq3RcwpNcTNt8AXmFnKOCiIiIiKgmyczMVArrvLy8YGtry7COyERIJBK4urrC1dVVsS0zM9OAFcmxhx1pnZ+fn9LjgoICA1WiHUU97b4d0Qq5hVJYmUlQKBMw9tezOBf7WHHchbupmP/3FQQNb8X/nImIiIiIaoj09HTFfRcXF34WIDJRDg4OSElJAQBkZWXBxcXFoPWwhx2RhsRiEWwszCAWi2BhJsaKse1Q18la6Zht5+MRfDrWMAUSEREREZHe5efnA5DPWWdjY2PgaoiosiwtLRWBe9HPtSGxhx1pXVRUlNLj+Ph4eHt7G6ga3XG1s8Sa8R0wfMVp5BQ8Gwr7xd5r8K1lj0Bfw09SSUREREREuiWVyj8LSCQS9q4jMmFFC8UUFhZCJpMZuhz2sCOqihaeDvh+VGulbVKZgLd/D0fsoywDVUVEREREREREpoyBHVEVDfCvgxm9fZW2PckpwBsbzyMj17Tn7yMiIiIiIiIi/WNgR6QFM3v7op9fbaVt0UmZmLU1AjKZYKCqiIiIiIiIiMgUMbAj0gKxWITvR7VBMw97pe2HriVh6X83DFQVEREREREREZkiBnZEWmJraYY14zvA2cZcafsvR29j96UHBqqKiIiIiIiIiEwNAzsiLfJ2scHyMe1hJlZeHerDPy8hMv6JgaoiIiIiIiIieubYsWMQiUQQiUQ4duyYocshFRjYEWlZ10auWDjYT2lbboEMUzedR1JGroGqIiIiIiIiMn3Fg6ZFixYZuhwygJSUFCxcuBCtW7eGo6MjHBwc0Lp1ayxcuBApKSmGLk9rGNgR6cC4LvUxpnM9pW0JT3IxfXM48gqlBqqKiIiIiIiIqHyLFi1SBKPGJCwsDP7+/vjss89w+fJlpKenIyMjA5cvX8Znn32GVq1a4fz584YuUyvMDF0AVT9+fsq9ywoKCgxUiWEtfMkP0UmZOBfzWLHtwt1UzP/7CoKGtzK6Nz4iIiIiIiKqGXr27AlBEAxdRoXcv38fL730Eh4+fAgzMzPMnj0bgwYNAgD8888/+P777/HgwQMMGjQIFy5cQN26dQ1ccdWwhx2RpmQyID9L/q8GLMzEWDGmHeo6WStt33Y+HsGnY3VQIBEREREREVH19Mknn+Dhw4cAgN9//x1BQUHo3r07unfvjqCgIPz+++8AgIcPH2L+/PmGLFUrGNiR1kVFRSndjhw5YuiSqiYxEtg5Dfi6LvCVp/zfndPk28vhameJNeM7wNpcorT9i73XEBL9SFcVExERERERQSYTkJ1fCJnMtHpSEZX08OFDbN68GQDQr18/jBw5stQxI0eORL9+/QAAGzduVIR7poqBHVFZIv8EVvcELm0BCrLl2wqy5Y9X95TvL0cLTwd8P6q10japTMDbv4cj9lGW9msmIiIiIqIa7eqDdMzeFgG/hQfQYsEB+C08gNnbInD1QbqhS9O5kqufCoKAtWvXIjAwEK6urnBwcECnTp2wadMmpfPy8/OxcuVKdOnSBS4uLrC3t0dAQAC2bdum9lqxsbGKawUHBwMAtm/fjj59+qBWrVqwtrZGs2bNMG/ePKSmpqptZ+LEiRCJRPDx8SnzuQUHByuuFxsbW2q/j48PRCIRJk6cCAC4cOECJk6ciAYNGsDS0lJpWiZ1q8QWXWPx4sWKbUXHFb/Fxsbi8uXLisdBQUFl1g4AP/30k+L406dPl3t8cbt374ZUKp8P/vXXX1d7XNFzl0ql2L17d4WuYWwY2BGpkxgJ7HwTkBWq3i8rlO/XoKfdAP86eK+3r9K2JzkFmLLxPDJya+Ycf0REREREpH27Iu5j8M8h2BF+HzkF8oAjp0CKHeHy7bsi7hu4Qv0pKCjAkCFDMGXKFJw6dQqPHz9GRkYGwsLCMH78eLz33nsAgNTUVLzwwguYPn06zp49i9TUVGRmZuL06dMYPXo0vvrqK42uN3nyZIwaNQqHDx9GcnIycnNzcePGDQQFBcHPzw9Xr17V5dNVUhQ+btiwAbGxscjPz9f6NVq1aoWOHTsCANavX1/u8UXHNG3aFN26davQtU6ePKm436NHD7XHFd8XEhJSoWsYGy46QaRO6C/qw7oiskIgdDkwbEW5zb3X2xc3EjOwPypRse1WUiZm/hGB1eM7QCLmIhRERERERNWVTCYgNVv7oUlxNx9mYPa2S5CqGQJbKBMwe9sl1LK3RJPa9jqtxdnGAmIDf8aZP38+zp49izFjxuC1116Dh4cHbt68iUWLFuHGjRv48ccf8dJLL+Gnn37C6dOnMX36dAwbNgyurq6IiIjA/Pnz8eDBAyxYsABDhgwptcBiccuXL0dYWBg6deqEWbNmwdfXF0lJSdiwYQO2bt2KhIQE9OvXD1FRUXBwcNDp8w4LC8PmzZvh7e2NOXPmoH379pBKpUqhlzpDhw5Fhw4dsHz5cqxYIf+cGxlZupNK0YIOU6ZMQVhYGG7cuIHQ0FB07dpVZbuXLl3CxYsXAQCTJk2q8HO6du0aAMDR0REeHh5qj6tTpw4cHByQnp6uOMdUMbAjUkUmA67u0uzYq38DQ34BxGV3WBWLRVg6qjViV2ThemKGYvvh60lYevAGPuzfrAoFExERERGRMUvNzkf7Lw4ZugxIZQJeXXNW59e58GkfuNpZ6vw6ZTl79ix++OEHRU86AGjXrh169uyJpk2bIj09Ha+99hoePXqEHTt2YOjQoUrHdejQAW3btoVUKsXq1auxbNkytdcKCwvDwIEDsWvXLpiZPYtaBgwYAD8/PyxYsADx8fH4/PPP8e233+rk+Ra5evUq/P39ceLECTg5OSm2BwQElHuuk5MTnJycUKtWLcW2li1bqj3+1VdfxezZs5GVlYX169erDezWrVsHADAzM8P48eM1fCbPxMXFAQC8vLzKPdbb2xtRUVGKc0wVh8QSqVKY82zOuvIUZMuP14CtpRnWjO8AF1sLpe3Lj92uUV3TiYiIiIiIdK1z585KYV0RDw8PDBs2DACQnJyM0aNHK4V1RVq1aoXAwEAAKLd3mqWlJdasWaMU1hX55JNPFKHX2rVrkZeXV9GnUmG//PKLUlinK/b29hg9ejQAYOvWrcjOLv05Oj8/X7GC68CBA8vsIadORoa804udnV25x9ra2gIAMjMzK3wdY8LAjkgVM2vA3EazY81t5MdryNvFBsvHtINZie7hH/55GZHxTypSJREREREREanxyiuvqN3XqlUrxf2iwEmV1q3lCwjeuXOnzGv17dsXnp6eKveJxWJMmDABgHy+vPDw8DLbqipvb290795dp9cobsqUKQCA9PR07Nixo9T+PXv24NGjRwAqNxwWAHJzcwEAFhYW5RwpD08BICdHs441xoqBHZEqYjHQYohmx7YYWu5w2JK6NHTFosHK8x/kFcowddN5JGXkVqgtIiIiIiIiKq1JkyZq9xXvfabJcUU9vNQpWnxBnU6dOinuX7lypcxjq6p4GKkPXbt2Vczvp2rxiaJttWvXxosvvlipa1hZWQGARotnFPVgtLbWvGONMeIcdkTqdH0biNxe9sITIgnQ9a1KNT+2S31cS0jHb2fvKbYlPMnFtE0XsGVqF1iaSSrVLhERERERGR9nGwtc+LSPTq+xYFcU9kYmlHvcoFZ1sHiw+gUUtMHZpvyeULpmY6N+1JS4WKcLTY6TyWRlXqv4nG+q1K5dW3H/8ePHZR5bVc7OzjptX5UpU6Zg1qxZOHr0KGJjY+Hj4wMASEhIwP79+wEA48ePVzlkWBP29vbIzs7WaJhrVlYWAM2GzxozBnZE6nj4A8NWATvfVB/aOXoDtdVPwFmehS/54VZSJs7GPHvDDr+Xhk93XsE3I1pBJOLKsURERERE1YFYLNL5IgxvP98YB6ISUahmlVgAMBOL8FbPxgZfEKK6Ke+zmyCo/55om0Si/84f48aNw7x585CXl4cNGzZg4cKFAICNGzdCKpUCqPxwWEC+2MTDhw8RHx9f7rFFi014e3tX+nrGgENiicriPwKYegxo/ZrqOe3SYoG7pyrdvIWZGMvHtENdJ+WuutsvxGP9qdhKt0tERERERDVPC08HLB3VutR82UXMxCIsHdUaLTwd9FxZ9ffw4cMy9yclJSnuu7i4KO3TtBdfUc8xY+Tq6qpYuCM4OFgRUAYHBwOQD5tt1qxZpdtv0aIFAODJkydITExUe1xCQgLS09MBAM2bN6/09YwBAzvSOj8/P6Vbr169DF1S1Xj4A8NWAB/dB+bek/eqKy7khyo172pniV8ndICNhfJfQb7YexUno5Or1DYREREREdUsQ9rUxe53AjG8nReszeWfMazNJRjezgu73wnEkDZ1DVxh9RQWFqbx/qIVY4vY29sDANLS0sps48aNG5UrrhIqM9qraPGJ2NhYHDt2DKdPn8b169cBVK13HQDFar0AcPz4cbXHFd8XEBBQpWsaGgM7Ik2JxYC1I9BthvL2W/8BiVWbNLR5HQd8P6q10jaZALzz+0XEPDLev6IQEREREZHxKeppF7W4H65+1g9Ri/uxZ52OHTx4EAkJqucPlMlk2LBhAwD5/HLt2rVT2t+gQQMA8oUt1IVy+fn5+Ouvv7RYcdmKFnkAni3iUJ7evXujYcOGAOQLTRQtNmFra1vmSryaGDx4sKInoqqFLYoU9egTi8UYPHhwla5paAzsSOuioqKUbkeOHDF0SdrVdgxgrdyFGad/qnKz/VvWwcw+vkrbnuQU4I2N55GRW1Dl9omIiIiIqGYRi0WwsTCDWM0QWdKevLw8vPnmm4r52opbsmQJIiMjAch7mllaKs8f2KNHD8X9pUuXljpfEAS89957ePDggZarVq9OnTqK+7dv39boHJFIpOhJ99dff2Hr1q0AgJEjRyp6EVaWh4cHxowZAwA4cOAA/vzzz1LHbN++HQcOHAAgn1PPw8OjStc0NAZ2RBVlYQt0mqq87cqfQFpclZue0csXA1oqv6ncSsrEe39EQFrGxLGkOZlMQHZ+IWT8ehIRERERkZZ06NABe/bsQUBAALZu3Yrw8HDs378fr776Kj755BMA8oUT5s+fX+rctm3bokuXLgCANWvWYOLEiTh69CjCw8OxdetW9OrVCytXrkTXrl319ny6deumuD9r1iycOHEC0dHRuHXrFm7duoXCQtULM77++uuQSCTIzs5GRkYGgKoPhy3y5Zdfwt3dHQDw6quvYt68eQgJCUFISAjmzZuH1157DQDg7u6OL774QivXNCSuEktUGZ2mAqeWAYU58seyQuDMcqD/11VqViwW4buRrRHzKAvXEzMU249cT8J3B29gbv/KT9JZ0119kI5fQ+5gX2QicgqksDaXYIC/B6YENuTQACIiIiIiqpK3334bx48fR3BwMF555ZVS++vUqYMDBw7A0dFR5fnr169Hjx49kJSUhA0bNiiG0BaZPXs2/P39ERoaqpP6S2rcuDFGjRqFbdu24eDBgzh48KDS/piYGPj4+JQ6z9PTEwMGDMA///wDAGjSpAm6d++ulZq8vb2xZ88eDB06FImJiQgKCkJQUJDSMR4eHvj777/h5eWllWsaEnvYEVWGrSvQbpzytgsbgOzHVW/a0gxrxneAi62F0vYVx25jV8T9KrdfE+2KuI/BP4dgR/h95BTIu6jnFEixI1y+nV9XIiIiIiKqqvXr1+P3339Hz5494erqCktLSzRp0gQffvghoqKiFCudqtKsWTOEh4dj+vTpqF+/PiwsLODu7o7+/ftj7969KofK6trmzZvxzTffoFOnTnB0dFTMIVeeceOefVZ+/fXXtVpT586dERkZiU8//RQtW7aEnZ0d7Ozs4O/vj08//RRXrlxB586dtXpNQxEJRWvtEulIfHw8vL3lK6vGxcVVi6QbAJAaC/zYDhCKzVHQ61PguQ+00vzZOykY8+tZFBYbumlpJsb2aV3RystJK9eoCa4+SMfgn0OUvo4lmYlF2P1OIHvaEREREVGFRUdHo7CwEGZmZvD19S3/BKo2YmNjFQtGrF+/HhMnTjRsQUZi/vz5+OKLLyCRSBAXF6c0H56xq8zPs64yD/awI6osZx/Ab5jytjMrgYIcrTTfuaErFg/xU9qWVyjD1I0XkJSRq5VrVGeCIOBhei6W7LtWZlgHAIUyAWtDYvRUGRERERERUfUklUoVw3kHDBhgUmGdseEcdkRVETBDvuBEkexHQMTvQMfJWml+TOf6uJaQjs1n7im2JabnYtqmC9gytQsszSRauY6pkskEPMzIReyjbNxNyUJMShbuPspGbEoW7qZkK4a/auLfyAR8O6IVV9AiIiIiIiKqpK1btyIuTr4g47Rp0wxcjWljYEdUFXVaAw2fB+4cfbbt9E9A+4mAWDth2sKX/HArKRNn7jybHy/8Xho+2XkF345oBZHIOAMmmUxAbqEUVmaSKoVgMpmAxPRcxD7KQmzK02DukTyQu/s4C7kFMq3Um1MgRW6hFDYWfFskIiIiIiLSVNGqsefPn8esWbMAAP7+/hg4cKCBKzNt/GRKVFUB7ykHdqkxwLU9gN9QrTRvLhFj+Zj2GPxzCOJTnw23/fNCPJrXccDr3Xy0EoxpS2VWY5XKBCQ8yUGsondcFmKe9pq7+zgb+YXaCeXKYm0ugVUN77FIRERERERUUSXnejM3N8eKFSuMtnOJqWBgR1RVDXvKe9olXHq27dQPQIshgJbeoFxsLbBmfAcMX3Ea2fnPhnl+/s9VBO2/jvxCmUbBmK7tiriP97ddUpozrmg11t0RD/DJwOZoXNuuVG+5uMc5yJfqJpQTi4ByprADADjZmCNfKoOVlnpGEhERERER1STOzs5o164dPvvsM3Tr1s3Q5Zg8BnZEVSUSyXvZ/Tnp2bYHF4HYk0CD57R2meZ1HPD9qDaYtvmC0vai3mfFg7Glo1pjSJu6Wrs2IF/EIa9Qhpx8KbILpMjJlyK3QIrsfClyCqSIfpiBr/69pjYcK5QJWPzPVa3WVMTaXIL6rjbwcbWFj5stfFxtUN/VFj5uNnicmY8hv5wqd+GJhCe5mBQchjXjO8DWkm+NRERERERUNh8fHwiCBr0Dqjl+DXSDn0qJtKH5EMCpPpB299m2U8u0GtgBQP+WHhjbuT42n72r9phCmYDZ2y5BLAI8nazlgdrTUE3xb9F9FduznwZxOfnF7j+9GfJ92MZC8jSQk4dxDVxt5SGdmy1q2Vuq7W5dx9EaS0e1LtXzT5XTt1Mw5tezCH69I5xsLHTxNIiIiIiIiIjKxcCOSBskZkC3d4F/5zzbdusQkHgF8Gip1Utl5xeWe4xUJuDdLRFava4+2FmaKQI5n2I95uq72sDdTn0oV54hberCt5Y91obE4N/IBMXcep0auCAs5jGyi60mGxGXhldWn8HGyZ1Qy95KW0+NiIiIiIiISGMM7Ii0pc0Y4NjXQHbKs22nlgHD12jtEjKZgH1XErXWnqG09HRAA3e7YqGcPKRztbXQ2cSkLTwdsHRUa3w7opXSIh1X7j/B+HXn8DgrX3Hs9cQMjFwZis2TO8PbxUYn9RARERERERGpIzZ0AUTVhoUN0OlN5W1X/gLS7mntErmF8qGpxsJCIoajtTlq21tC05jN2lyC3e8E4qdX2+L9vk0xvL0X2td3gVsVetBVhFgsgo2FmWJF3ZZ1HbHtza6o46jcm+5uSjZGrgzFraQMnddEREREREREVBx72BFpU6c35CvEFmTLHwtSIHQ5MGCJVpq3MpPA2lyicWhnZyGBjaUZrC3k5yn+LX7fQnm7jYUEVk+3K+6bS2BjYQZrcwmsLMSwsTCDlZkYZpJnmf/sbRHYEX6/3JoG+tdRhGXGonEtO2yf1hVjfz2L2JRsxfbE9FyMXBmKjZM6w9/L0YAVEhERERERUU3CwI5Im2xcgHbjgbMrn20L3wD0+FC+r4rEYhEG+HtoFIwNb+eFpaNaV/mampoS2BC7Ix6UubCDmViEyYEN9FZTRXg522DbtK4Yv/Ycric+61WXml2AV9ecwdoJHdC5oasBKyQiIiIiIqKaQm+BXa9evfR1KQDAxIkTMX78eL1ekwgA0OUt4Nwaee86QN7bLuxXeWinBcYajBXNEaduNVYzsQhLR7VGC08HvdZVEbXsrbB1aldMDD6Hi/fSFNsz8woxft05rBzbHs83q2W4AomIiIiIiKhG0Ftgd+zYMX1dCiKRCD179tTb9UiZn5+f0uOCggIDVWIgzvWBli8DkdufbTu7Ur6KrLl1lZs35mBM3WqsA/3rYHJgA6MO64o42phj8+TOmLrpPE7deraASF6hDG9sPI//jW6Dl1p7GrBCIiIiIiIiqu70FtgtXLhQX5cCAPTo0UOv1yNS0m2GcmCXnQJE/AZ0nKKV5o05GFO3GqspsbU0w7qJHTFjy0UciHqo2F4oEzDjj4vIyC3Ea53rGbBCIiIiIiIiqs5EgiCoH1dHpAXx8fHw9vYGAMTFxcHLy8vAFenJppeB24efPXb2Ad65AEi0m5PLZILJBmPGrlAqw9y/IvFXeHypfR8NaIY3ezQyQFVEREREZEyio6NRWFgIMzMz+Pr6GrocIqqCyvw86yrzEJd/CBFVSsB7yo9TY4Fru7V+GbFYBBsLM4Z1OmAmEePbEa0wsZtPqX1f77uObw9cB//mQUREVLPIZAKy8wshK2M+YSIioqriKrFEutLgOaBOGyAh4tm2U8sAv2GAiOGaqRCLRVj4Ugs4WJvjx8PRSvt+OXob6TmFWDzYj4EpERFRNXf1QTp+DbmDfZGJiulIBvh7YEpgQ5OYp5eIiEwLe9gR6YpIBATOVN6WEAHEnDBENVQFIpEIs19ogk9fbF5q36Yzd/H+9ksokMoMUBkRERHpw66I+xj8cwh2hN9HToEUAJBTIMWOcPn2XRH3DVwhERFVNyYR2N24cQMnTpxATk6OoUshqpjmg+Vz1xV36gdDVEJaMKV7Q3wzvBVKdqbbefE+pm8OR+7TX+CJiIio+rj6IB3vb7uEQjVDYAtlAt7fdglXH6TruTIioso7duwYRCIRRCIRjh07ZuhySAWTCOy++OIL9O3bF8nJyYYuhahixBKg27vK224fARIuG6YeqrJRHb3x82vtYC5RTu0OXXuI19eHITOv0ECVERERkS6sOnFbbVhXpFAmYG1IjJ4qIqrZigdNixYtMnQ5pEdpaWn477//8OWXX2Lo0KHw9PRUvBZ69uxp6PK0ziTmsAsJCUH//v1Rr149lftv3ryJhQsXYsaMGejataueqyMqR5sxwNGvgexHz7ad/hEY/qvhaqIqGehfB7aWZnhz03nkFjwbCht6JwVjfj2LDa93hJONhQErJCIioooQBAGPMvNxOzlTfkvKwu3kTNxKysD9tFyN2vg74j5aeTmgfX0XNPOwh5nEJPpGEBGptGjRIixevBgAjGahvbZt2yI2NtbQZeiNSQR2CQkJGDVqlNr9TZo0QXh4OH744QcGdmR8zK2BztOAo18823ZlB9BrPuBc33B1UZX0aOKOTZM7Y9L6MGQU61V3KS4No1edwabJnVDLwcqAFRIREZk2mUxAbqEUVmYSrS3uVCCV4d7jbNxOysTt5KxiAV0m0nOr1kteKhOwcPdVAICNhQRtvJ3Qvr4z2tVzRtt6TvxjHhEZlZ49expNEKep4vXWrl0bHTt2xD///GPAinTLJAI7R0dHZGZmlnlMt27dcPToUT1VRFRBHScDId8DBdnyx4IUCP0FGPiNYeuiKuno44ItU7tgwrpzSMnKV2y/8TADI1aG4rcpneHtYmPAComIiEyPNlZjTc8tUA7lkuTB3N2U7HKHt2pDdr4Up2+n4PTtFMW2xrXs0L6eszzEq++Ehm52XGWeiKgC3nnnHTRo0AAdO3ZUjMAUiarv+6hJBHYdOnTA3r17sXTpUlhZqe6x4uHhgYcPH+q5MiIN2bgA7SYAZ1c82xa+EegxF7B1NVxdVGUt6zpi27SuGPvrWSQ8eTZk5t7jbIxYeRqbJ3eGb217A1ZIRERkOnZF3C+1wEPRaqy7Ix5g6ajWGNKmLgB5D7wHT3LkodzTQE5+y0JyRp6hnoJat5IycSspE1vPxwEAHK3N0a7e01549Z3R2ssJtpYm8fGMTIlMBhTmAGbWgJjDtMm0zZkzx9Al6JVJ/MS+8cYbuHfvHmbPnq32mNu3b6sN84iMQte3AZHk2ePCHCCM89hVB43c7bB9Wlc0cLNV2v4wPQ+jVoXicnyaYQojIiIyIZqsxjprawQmrDuHF388Cb+FBxAYdBQT1p3DZ/9cxW9n7+HMncdVCusszcRo5mGPF1vVwYzevlj2Shv8+EobmJXTE04sAno1rQUfV8171j/JKcDRG8n47uBNvLbmLPwXHcCLP57Egl1XsCviPuIeZ1douJpMJiA7vxAyPfQgrAhjravaS4wEdk4Dvq4LfOUp/3fnNPn2aq7k6qeCIGDt2rUIDAyEq6srHBwc0KlTJ2zatEnpvPz8fKxcuRJdunSBi4sL7O3tERAQgG3btqm9VmxsrOJawcHBAIDt27ejT58+qFWrFqytrdGsWTPMmzcPqampatuZOHEiRCIRfHx8ynxuwcHBiuupmsvNx8cHIpEIEydOBABcuHABEydORIMGDWBpaanUG03dKrFF1yiavw6A4rjit9jYWFy+fFnxOCgoqMzaAeCnn35SHH/69Olyj6/pTOJPOEOHDsWrr76KlStXIj4+Ht988w2aNWum2H/8+HH8/fff6NGjhwGrJCqHkzfgPwK4vPXZtnOr5KvIWnDYpKnzcrbBtje7Yvy6c7iWkK7YnppdgNfWnMWvEzqgS0P2piQiIlLn15A75Q5XlQnA8ZvJVb6Wm50FGrrboZG7HRq526JRLTs0dreDp5M1JCrCOQFQGyaaiUVKPf8eZeYh/G4qLtxLRfjdVFyOf4K8Qlmp81Q9t6gH6Yh6kI6NoXcBAO72lsWG0TqjZV0HWJpJlM7TxhBiXTDWumqEyD+BnW8CsmLzMhZkA5e2AJHbgWGr5J9LaoCCggIMGTIEe/bsUdoeFhaG8ePH4/z581i2bBlSU1MxdOhQnDhxQum406dP4/Tp07h16xY+/vjjcq83efJkrFu3TmnbjRs3EBQUhI0bN+LQoUNo0aJF1Z+YBlauXIl3330XhYVVm5+zLK1atULHjh0RFhaG9evXY+7cuWUev379egBA06ZN0a1bN53VVV2YRGAHABs3boS9vT1Wr16NvXv3onHjxvDx8UFSUhIiIyMhCAI++OADQ5dJVLZuM5QDu+wUIOI3oNMbhquJtMbd3hJ/vNEFrwefQ/i9NMX2zLxCTFh3DivGtkOvZrUNVyAREZGREAQBD57k4sr9J4i6/wSX49Nw7OYjrV5DIhahvouNPJirZfs0nJMHdBVdAGJIm7rwrWWPtSEx+DcyQRFADfSvg8mBDZQCKDc7S/T180BfPw8AQH6hDFcT0nHhrjzAu3A3FYnpmq08m5yRh/1RidgflQgAsJCI0bKuA9rXl4d4yRl5WLznqkZDiPWpIkObaxSZDMh5rNtrJF0rHdYp1VAo329XG6jVXLe1WLsYfBju/PnzcfbsWYwZMwavvfYaPDw8cPPmTSxatAg3btzAjz/+iJdeegk//fQTTp8+jenTp2PYsGFwdXVFREQE5s+fjwcPHmDBggUYMmQI/Pz81F5r+fLlCAsLQ6dOnTBr1iz4+voiKSkJGzZswNatW5GQkIB+/fohKioKDg66Da3DwsKwefNmeHt7Y86cOWjfvj2kUilOnjxZ7rlDhw5Fhw4dsHz5cqxYIZ/SKTKydM/MunXlP8NTpkxBWFgYbty4gdDQULULgV66dAkXL14EAEyaNKmyT61GMZnATiKRYOXKlRgzZgx++OEHHDp0CNHR0QCARo0a4auvvkLfvn0NXCVROTxaAo37ALcOPdt2+ieg/euAxGR+HKkMjjbm2DylM97cdAEno5998MgrlGHqxgs19xdUIiKqsQRBQNzjHFx58ARX7j9B5P0niHqQjsfFFmyqCntLMzSs9bSn3NNQrnEtW9RzsYWFmfbCghaeDlg6qjW+HdGqQqvXWpiJ0cbbCW28nTA5sAEA4EFaDi48De/C76Ui6kE6pBoMGc2XyhB+Lw3h99Kw5mRMmccWygTM3nYJDlbmaOJhD4lIBLEYkIhEMBOL5ffFIohFIkjEoqf7qz55uyZDm9/fdgm+texrXk+7nMfAt40MXYU8tNswSPfX+eA2YOum++uU4ezZs/jhhx/w3nvvKba1a9cOPXv2RNOmTZGeno7XXnsNjx49wo4dOzB06FCl4zp06IC2bdtCKpVi9erVWLZsmdprhYWFYeDAgdi1axfMzJ59thswYAD8/PywYMECxMfH4/PPP8e3336rk+db5OrVq/D398eJEyfg5OSk2B4QEFDuuU5OTnByckKtWrUU21q2bKn2+FdffRWzZ89GVlYW1q9frzawK+p5aGZmhvHjx2v4TGo2k0sIunfvju7duwMAnjx5AkEQlF6AREYvYKZyYJd2F7i2C2g53GAlkXbZWJjh1wkd8N6WCMVfxAH5L6gzt0YgI7cQY7vUN2CFREREuiGTCbj7OFseyj0N567cf4L0XO0NyTITizD/pRbwfTqM1d3eUq+rBIrFIthYVO1jlKeTNTydrPFSa08AQE6+FJfj0xTDaC/cTUVqdkGVa5XKBLweHKbx8SIRFMGd5GmQJxbJgz2JWAyJuNj+YscUD/7iU8tfibdQJmBtSAyWjmpd1adIVKbOnTsrhXVFPDw8MGzYMGzYsAHJycl45ZVXlMK6Iq1atUJgYCBOnDhRbu80S0tLrFmzRimsK/LJJ59g27ZtuHLlCtauXYsvvvgClpaWlX5emvjll1/0kpXY29tj9OjRWLduHbZu3YoffvgBNjbKUz7l5+fj999/BwAMHDgQHh4eOq+rOjC5wK44R0dHQ5dAVHE+gYBnO+BB+LNtIT8Afi/Lf0si3dLTSlmWZhL8/FpbzNsRiT8vxCu2CwLw6d9XkJFbiOk9jeAvrEREpFcymVCh3ln6UNmapDIBMY8yn4Zy6Yi8/wRXH6QjM0938yUB8uGpE7r66PQa+mZtIUHnhq7o/HS+W0EQEPMoC+H30hRDaW8mZaACa1BUiiAAhYIgn1BPx/6NTMC3I1oZzc8BVU+vvPKK2n2tWrVS3B89erTa41q3bo0TJ07gzp07ZV6rb9++8PT0VLlPLBZjwoQJ+OCDD5Camorw8HC1PdG0wdvbW9HRSR+mTJmCdevWIT09HTt27MDYsWOV9u/ZswePHslHH3E4rOZMJrALCwvDp59+itDQUMhkMtSrVw/PPfccxo0bp1G3TiKjIRIBAe8B2yc825Z4GbhzDGj0vMHKqvYSI4HQX4Cru+ST7prbAC2GyFfv9fDXySXNJGJ8M7wV7K3MsP5UrNK+oP3XkZ5bgA/7NdVrrwAiIjIMY5yAvyI1FUpluJWcich4+XDWK/ef4GpCOrLzpVWqwcHKDC3rOsK/riOcbMzx3cGbZQ4NNROLFMNKqzORSISG7nZo6G6HEe29AADpuQWIeBrghcU+xunbKQausmpyCqQIvfMI3Rq58Xch0pkmTZqo3Ve895kmx2VkZJR5rY4dO5a5v1OnTor7V65c0WlgVzyM1IeuXbvCz88PUVFRWL9+fanArmixidq1a+PFF1/Ua22mzCQCu3PnzqFHjx7Iy8tD3bp14eLigsTERKxevRpr1qzBqFGjEBwcrPMupURa0/wlwKUh8LjYX2lOLWNgpysGXClLLBZhwaAWcLQ2xw+HopX2rTh2G+k5Bfh8iHxOCGPrcUFERNphjBPwl1fTrBeawNXW4um8c+m4lpCu0UqnZXG2MVeEc0X/ejlbK4U1nk7W5a7GWuPmPXvKwcoczzVxx3NN3CGTCfBbeAA5BVULTA1tzK/n0LKuAyZ09cFLrT1hZS4p/yRTZu0in9dNl/6dA0TtLP84v5eBgbqdRw3WLrptXwMlh2YWJy422kaT42Syst8Di8/5pkrt2s8Wn3v8WLeLjzg7O+u0fVWmTJmCWbNm4ejRo4iNjYWPjw8AICEhAfv37wcAjB8/XuWQYVLNJL5S8+fPh0gkwn///YfevXsrtkdFRSEoKAibN29Gamqq4kVA6t2/fx/bt2/Hv//+i+vXryMxMREuLi4ICAjAhx9+iM6dOxu6xJpBLAG6vQv8M+vZtjtHgYRLQB3O5aFViZGarZTl3lRnPe1EIhFm9mkCeytzfP7PVaV9v529hxM3k/EoM99oelwQEZH2aDIB/+ytl5CalQ9vFxvFkMfiRwtPNwqKx4o9So9L7hfU7L+fmo1vD9xQO+qxUCbg2wM3NHl6arnZWcK/rgNaPg3nWtZ1hKejVbk9qSqyGmtNJhaLMMDfAzvC75d77NA2nvh8aEvIZIBUECCVCZA9/VdxEwTInv4rlQnFjpVBKoPyOYIAqVTFOYIAqQz4/exdhN9L0/i5XLmfjg/+vIyv913Hq528MbZLfdRxtK7CV8eIicW6X4Sh+/vAtT3qf/cFALEZ0H22wReEqG7Ke38TdD2mvRiJRP/h97hx4zBv3jzk5eVhw4YNWLhwIQBg48aNkErlf1zgcNiKMYnALjQ0FK+88opSWAcAfn5+2LhxI9q2bYv3338fv/76K6ZMmWKgKk3DTz/9hKCgIDRq1AgvvPACatWqhejoaPz999/4+++/sWXLFowaNcrQZdYMrV8Fjn4FZCU/23ZqGTBineFqqo5Cfyn7FxZAvj90OTBshU5LmRzYAPZWZpj312WlD0lxqTmK+4bucUFERFWTnluA20mZuJ2chdvJmfj74v1yJ+CXCgIW7bla5jHGzMPB6mko56DoPVfbwarS7VV2NdaaZkpgQ+yOeFDm68tMLMLU5xrB3spcb3W1qOOAwT+HlPu6L+lxVj5+OXobK4/fQT+/2pjQ1QedGrhwuGxFefjLR4+o+4O12Ey+X0d/qK7JHj58WOb+pKQkxX0XF+Xeh5r24svKyqpkdbrn6uqKoUOHYuvWrQgODsaCBQsgEokQHBwMQD5stlmzZoYt0sSYRGAHlN29dNasWfjjjz+wfv16Bnbl6NSpE06cOFFqAsqTJ0+id+/emD59OoYMGcLhxfpgbg10fhM48sWzbVE7gd4LAGcfg5VVrWSnAFf+0uzYq38DQ37R6UIUADCqgzfsLc3w7pZwlDWyqFAm4P1tl+Bby569CYiIjIxMJuDBkxx5KJeUidvJRbcsJGfkGbo8narrZK0I5vzqOqKlpyPc7XXze6M2VmOtzoqCTWMbQqxJXQP96yD8Xirii/3RsohUJuDfyET8G5mI5nUcMKFrfQxpUxfWFtV8uKw2+Y+Qjx4JXS7/HVcxf/NQoOtbDOt0JCys7BWZi+9v2bKl0j57e3sAQFpaWplt3LhRtd7PFVGZsHzKlCnYunUrYmNjcezYMVhaWuL69esA2LuuMkzif8BmzZrh7NmzZR7Ts2dPrF69Wk8Vma6XX35Z5fbu3bvj+eefx8GDBxEZGYkOHTroubIaquMU4OT/gIKnfykRZPIeYbqeT6I6y0kFru8Fov4Gbh8BBA3ndinIlq8ea2Gr0/IAYIB/HXQ+64pTt8qeLLpQJmBtSAyWjuIwaSKiitLGaqy5BVLEPJL3lLudlKUI5u4kZ5n83GGa6udXG228ndGyrgNaejrC2dbC0CVRMcY6hFiTuqQyAYevPcSG0Fi1vxNdS0jHvB2RWLL/OkZ39Ma4LvXh5ax+rjEqxsNfPnpkyC/y33HNrHX+h+ma7uDBg0hISECdOnVK7ZPJZNiwYQMA+fxy7dq1U9rfoIF8MZ2MjAzcuHEDTZs2LdVGfn4+/vpLw84IWmBl9ayndF5enkadenr37o2GDRvizp07WL9+veIcW1vbMlfiJdVMIrAbN24cZs6cic2bN5dabaRIWloa8vPzdVpHUlISzp07h3PnziEsLAxhYWFISZH/5zJhwgRFV09N3Lt3Dz/++CP27t2Le/fuwdLSEo0bN8aoUaPw1ltvlTnppa6Ym8u7ynMSSD2ydgbaTwTO/PJsW/gmoMdczilRETmpwPV/5T0U7xwDZAUVb8PcRv6LjB7IZALC76ZpdOy/kQn4dkQrDgUiItJQRVdjFQQBKVn5SsNYi27xqTnQ15RDIgCeTlaK93sRnv4rUj5Gvk2k9LjoTvH/KUoeo2hHAKKTMqHJ07I2l2DFmPb8P8jIGesQ4vLqkohF6Ovngb5+Hoh+mIENobHYEX5f5crDadkFWHX8DtacuIM+zWtjYjcfdG3kyuGymhCL9fIHaZKHWm+++SZ27txZag65JUuWIDIyEoC8p1nJ8KtHjx6K+0uXLi3VGUkQBLz33nt48OCBjqovrXjwePv2bbRo0aLcc0QiESZNmoRPP/0Uf/31l+LrMHLkSEUvQtKcSSQzb731Fn777TdMnDgRFy5cwOzZs+Ht7a3YHxUVha1bt6Jt27Y6raP4qi5VsXfvXowZMwZPnjxRbMvOzlaEgL/++iv+/fdfNGzYUCvX08S9e/dw6NAheHh4wN+fXaT1qst04NyqZ3NMFOYA59YAz39k2LqMXU4acONpSHf7aOVCuuK8O+vtr465hVKNe2bkFEhx8Goi+vl58JdSIqJylLfy6dz+zeDjZvu0x9yzYaxPcqr4f0gJErEI9V1s0NDdDvceZ+Hmw8xyz3m5nZfeelTP3hah0WIFA/3rGEXwQ5ox1iHEmtTlW9seXwz1xwf9muHPC/HYGBqLuynZpY6TCcDBqw9x8OpDNKlth/FdffByu7pG+byp5unQoQP27NmDgIAAzJo1C76+vkhKSsKGDRvwxx9/AAC8vLwwf/78Uue2bdsWXbp0wZkzZ7BmzRrk5+djwoQJcHR0RHR0NFauXIljx46ha9euCA0N1cvz6datm+L+rFmz8Mknn6BOnTqKzyQ+Pj4qO/u8/vrrWLhwIbKzn/0Ma2s4bEREBCIiIlTuS0xMLNWJasSIEbCzs9PKtQ3BJN7ZJBIJDhw4gCFDhmDZsmX45Zdf0LBhQ9SrVw+pqam4dOkSZDIZPv30U73V5O3tjebNm+PgwYMVOu/SpUsYNWoUsrOzYWdnh48++gjPP/88cnJy8Mcff2DNmjW4ceMGXnzxRYSFhenlxVVQUIBx48YhLy8P33zzjUFWlKnRnLyBliOAy38823ZuNRAwg38NK0kR0v0tH+6qSUgnNn8ahpbTl+BeKHA3FKjfVQuFls3KTAJrc4nGod20zeHo6OOMOX2bonNDVx1XR0RkmjRZjfXLf69p9Zr2lmZoWMsOjdxt0cjdDo3c7dC4li3qudjCwkysqKu8CfjNxCJMDmyg1drKouliBfqsiQgAHK3NMTmwAV7v5oNjN5MQfPouTtxMVnnszYeZ+PTvKwjafx2jOnhjfNf6qO/K353JcN5++20cP34cwcHBeOWVV0rtr1OnDg4cOABHR0eV569fvx49evRQhHxFQ2iLzJ49G/7+/noL7IpGAG7btg0HDx4slX3ExMTAx8en1Hmenp4YMGAA/vnnHwBAkyZNSs2hX1l///03Fi9erHLfjRs38Prrrytt69mzJwM7fXB0dMSxY8ewZcsWrFu3DqdPn8bNmzcBAP7+/vj888/Rv39/ndawYMECdOzYER07dkTt2rURGxurGGuuqZkzZyI7OxtmZmY4ePAgunZ9Fg706tULvr6++PDDD3H9+nV8//33WLBgQak23NzcFENxNXH06FH07NlT5T6ZTIZJkybhxIkTeOONNzBu3LgKPR/SkoAZyoFdzmPg4m9A56mGq8lY5KQBN/Y97UmnYUgnsQR8XwD8hgFN+gE3D6hfKatIYS7w+yhgwm7AU7e9dcViEQb4e2jUu6FIWGwqRq8+g+eauOODvk3h76X6P3oioprqf4duVHhVSk3VdbJGw6JQ7mlA19jdDu72luX2fjbGhQGMsSai4sRiEXo1q41ezWrjdnImNoXexZ8X4pGZV/p3uYzcQqwNicG6UzHo1bQWJnTzQWBjN/YOJYNYv349+vbti9WrVyMyMhKZmZmoX78+hg4dinnz5sHZ2Vntuc2aNUN4eDi+/PJL/Pvvv0hISICjoyPat2+Pd999FwMHDqzQNFzasHnzZnTo0AF//vknbty4gYyMjHJXsgXk05oVBXYlQzTSnEgQ9DUzh+bOnz8Pf3//Mic1lMlkePz4MaysrAyWmBYP7DSZwy4sLAydOnUCALz55ptYuXJlqWNkMhlatmyJa9euwdnZGQ8fPlTMLVfk3XffRUZGhsZ1zps3T+XyyYIgYMqUKVi3bh3Gjh2LDRs2KJaT1qb4+HjFEOa4uDh4eXlp/RrVwm8jgehif7Vwqge8exGQmEyurj25T5RDOqkG81NKLIHGfZ6FdFYlPmQkRpZeKcvWDUi7p3yctTMw8V+gdvlzNFSFJj0uyjKgpQdmv9AEvrU5FwQR1UyCIOBy/BMciErEvisJiHlUevhcRViYidHQzfZpIPes11xDd1utDLe7+iDd6BYGMMaaiNTJzCvEXxfisSE0FneSs8o8tqG7LSZ09cHw9l6ws9T979LR0dEoLCyEmZkZfH19dX49Mh7FM4H169dj4sSJhi3ISMyfPx9ffPEFJBIJ4uLiVC7EYawq8/Osq8zDKAM7sVgMMzMzNGvWDG3btlXc2rRpo7b7qCFUNLD75JNP8NVXXwEAzpw5g86dO6s8bsmSJfjoI/n8ZQcPHsQLL7ygvaKfkslkmDJlCtavX49XX30VmzZt0tlQWAZ2GooNAYJfVN42fK18WfaaQBHS/Q3cPqxhSGcBNH4B8BsKNOlfOqRTRSZ7tlKWIAW2jgNu7lM+xq428Po+wLVRZZ6JxlTNtVTETCzC6I7eOHYjGffTclSeLxYBw9p6YWYfX3i7cMU0Iqr+CqUynIt9jINRD3EgKhEJT3Ir1U77es5o4mGn6DHX2N0Onk7WkOihR442Vq/VNmOsiUgdmUxAyK1H2HA6FkduJJW5MIydpRlGtPfC+K710dBduZOHNl/3DOxqLgZ2pUmlUjRo0ABxcXEYNGgQ9uzZY+iSKsSYAjuj7LrzwQcfKCYT3LRpEzZt2qQ0sWHxEK9t27Ymk9aePHkSgHxJ4/bt26s9rvgKMSEhIVoP7IqHdaNHj9ZpWEcVUD8AqNsBuH/+2bZTPwAthysvEWcqigdj6npu5qYX60lXkZCuqCedhiFdcUorZYmBkcHyobAxx58dk/kQ2DAYmLRP3tNRR4a0qQvfWvZl9m7IK5Ria1gcfjpyC8kZeUrnywTgr/B47L50H690rId3ezVGLQcrNVcjIjJNuQVSnLr1CPuvJOLQtYdIza7aAhHW5hJsn9bVYMGUMS4MYIw1EakjFovwXBN3PNfEHXdTsrAp9C62no9DRm7p4bKZeYUIPh2L4NOxeK6JOyZ2q4/a9lZYeypG45Wkiahitm7diri4OADAtGnTDFyNaTPK/5mDgoIU9+/fv4+LFy8q3Xbs2IEdO3YoQjx3d3e0bdsW7dq1w5dffmmosst17Zp8ouPGjRurXE2lSPHhq0XnaItMJsPkyZMRHByMkSNHYvPmzVUO6+Lj48vcn5CQUKX2awyRCAh4D9hWbB7BxEjgzlGgUS/D1VVRiZFA6C/A1V3Php62GAJ0fRvw8JeHdDf3y0O6W4cBaV75bUosgEa95SFd0/6AlRZ72ppbAa9uATa9DMSdebY9PR7YOETe087eQ3vXK6FoHqFvR7RS+VdeSzMJxnf1wcj23tgQGosVx26XWs2wQCpg05m72H4hDhO6+mBaj0ZwtrXQWc1ERLqWkVuAozeScSAqEceuJyErX7NFejTBlU+Jqo/6rrb4dFALzHqhCXZevI8Np2MRnaR6VeYTN5NVLmBRfCXppaNaY0iburoum6jauXXrFgoLC3H+/HnMmjULgHytgYEDBxq4MtNmlIFdcXXr1kXdunUxaNAgxba0tLRSId6hQ4dw8OBBow3scnNz8ejRIwAot3uks7MzbG1tkZWVpUimteWzzz5DcHAw7Ozs0KRJE3zxxReljhk6dCjatGmjcZtFXT9JC5q9CLg0Ah7ffrYt5AfTCewi/yy9uENBNnBpC3B5mzywS7pWgZCu19OQboB2Q7qSLGyBMduADS8BCZeebX98B9g4FJi4F7DV7eqs5fVusLaQYFqPRnitcz38euIO1obElPoAm1sgw6oTd/D72XuY0r0hJndvoJd5W4iItOFRZh4OXZUPdT11KwX50vIntQaABm626OfngSa17fDhn5e58ilRDWRraYaxXepjTOd6CL2dguDTsTh07SEqMlVwoUzA+9suwbeWPXvaEVVQyaGj5ubmWLFiRbkLM1HZTPKTnJOTE55//nk8//zzim25ubm4fPmyAasqW/FFIjRZJKMosMvMVP0XosqKjY0FAGRmZqoNN318fCoU2JEWiSVAt3eBf2Y+2xZzHHhwUecrl1ZZYmTZK7EKUiAhouw2xOZA495Ai6HykM7aSctFlsHKERi7Uz6PYHKxnq3J14DNw4AJe3QbGmrIwcocs/s2xYRuPlhx7DY2nrmL/ELlD7UZeYX436Gb2BAai+k9GmFc1/qwMuewdyJTVx3nGYtPzcbBqIfYH5WI87GPNf5w7efpgH5+Hujf0gO+tewUHwgkYhFXPiWqwUQiEbo1dkO3xm6Ie5yNzWfvYmtYHNI0HEpfKBOwNiQGS0e11nGlRNWTs7Mz2rVrh88++wzdunUzdDkmzygXnTAVFVl0Ii4uDvXqyefCGjduHDZu3Fhm2/Xq1UNcXBwaNWqEW7duaa1mXdBkSGzR6rhcdEIDBbnAD/5AVtKzbX4vAyPXG64mTeycJu9JV1Fic+WedPoM6VTJSATWD5D3rivOuwswbkex+e+MQ8KTHPx4+Ba2nY+DVM0n3doOlpjR2xejOnjDXKL9laCJSLeuPkjHryF3qsV8S4Ig4FZSJg5EJWJ/VCKu3E/X6DyRCOhY3wV9/Wqjn59HmQvtcOVTIiouJ1+KvyPi8fHOK2UuUFHEXCLCuU/6wNlG8+lFuOgEUfXBRSdqICurZxPB5+eXP7F+Xp58yKC1tbXOatIWBnBaZm4FdJkGHP7s2barfwOP5wMuDQ1WVplkMvmcdZoSmQGNi0K6gYYP6Yqz9wDG75aHdk+KDUmPOwP88Rrw6lb598hI1HG0xtcv++PN5xrif4duYvelB6V+GX2YnodPdl7B6hN3MKtPE7zU2lMvKyESUdWpWk3a2OZbKq/nnyAIuBT/BAeiEnEgKhF3krM0atdcIkK3Rm7o39IDfZrXhru9pUbnlTc3KBHVLNYWEgxpUxcf7bii0fEFUgHdvj6MEe29MaFbfTSuZa/jComIVDO6wC47Oxvnz58v8xhra2t07NhRTxVph739szd6TYa5ZmXJf5nVZPgsVUMdJgEnvwfyn75WBJl8IYcXlxq2LlVkUiB8k3yuOk3NvAw4GvGEvk7ewPhd8tAu8+Gz7XeOAdsnAqM3ARJzQ1Wnko+bLZa90hbTezbC0oM38d/Vh6WOuZuSjZlbI7Di2G3M7tsEfVvU5rwSREbs6oN0tcM7AcPPt1RWz78mte1wLvYxDlxJxMGrD5HwJFejNm0sJOjZ1B39/DzwfLNacLCq/HstVz4loiJWZhJYm0uQU6DZAjY5BTJsOnMXm87cRXdfN0zs5oPnm9Zi+E9EeqX332JCQ0Px+eefAwAmT56M4cOHK+2PiYlBz549y/0QeerUKXTp0kVndWqblZUV3Nzc8OjRo3KHkKampioCO1Nc0MHPz0/pcUGBZnNGUDHWzkD7iUDoz8+2XdwM9PwIsHUzWFlKBAG4sU/eEzC5AqsZm9sA9nV0V5e2uDYCxv0NBA8EclKfbb+5D9gxFRj+q3zOQSPTzMMBa8Z3wMV7qfju4A2cupVS6pgbDzPw5qYLaO3thA/6NkVAY1cGd1pSHecYI8P5NeROmQsoAPLQ7sO/LmFke29YmYthZS55djMTw9qi6L4EVhZixX1ziahKP/dl9fzbGX4fNhYSjVd2dbIxR5/m8qGu3X3dOOcmEWmdWCzCAH8P7Ai/X+FzT0Y/wsnoR6jvaoPxXX0wsoNXlf6YQESkKb0Hdh9//DGOHz8OPz8/vPTSS2qPK29qvblz5+L48ePaLk+nmjdvjpMnTyqWPDYzU/3lv379utI5VEN1eQs4u/LZIg6FucC51cDzHxu2LgCIPQUcWgTEn6v4uS2GAmITmUetdgtg3E5gw2Agr9g8S1E75MHj4J+M9rm0reeM36Z0welbj/DtwRu4eC+t1DGX4tIwdu1ZdG3oijn9mqJ9fWf9F1pNVKc5xshwBEFAzKMsXLyXhvB7j7HzomYfLK/cT8eV+1EVupZELIKVWfGA79l966ePLYvdtzKTKMK/tOx8rA2JUbtAhACUG9Z5OFih39P56Do1cIEZ59ckIh2bEtgQuyMelPmHEBHkc2aqOuRuSjY+/+cqlh68gRHtvTC+qw8a1+JoKCLSHb0GdtHR0Th+/DhEIhG+/vprWFion8hTJBJhwYIFpbanpqbixx9/REhICK5fv45mzZrpsmStCgwMxMmTJ5GVlYULFy6gc+fOKo8rHkQGBAToqzytiYpS/tBQfAJGqgDHuoD/KODS78+2nVsNBLxnuIUPEi7Le9Td+q9y54vNgK5vabcmXfNsC7y2Ddj8svKw34jN8u/DgCD5b3ZGqltjN+xo5IrD15Lw3cEbuJ6YUeqY0DspGL7iNHo3q4X3+zZVCpjYY6x8pjDHGBmnJ9kFiIhPw8V7qbh4Lw0RcWl4kqOfXulSmYCsfKnGveC0oYGbrWJl11Z1HfmeQkR6VTS/ZXkrSXf0ccHmM3ex5dw9pKpYXTY7X4qNoXexMfQunmvijte7+cCLHYOJSAf0Gtjt2LEDANC0aVMMGjSo3OMXLlyocvuZM2cQFhaG7du3Y/78+VqtUZeGDh2Kr7/+GgCwfv16lYGdTCZTrCDr5OSE559/Xq81kpEJmKEc2OWkyueL6zJNv3Wk3AaOfgVc+VP9MbVbAo16A2d+edYrsDixGTBsFeDhr7s6daV+V+CV34HfRwHSYovGnFslD+36qH6vMhYikQh9WtRGr2a1sOfyA/zvv5uITSk95+Dh60k4fD0JL7X2xOBWdbAvKpE9xsph7HOMkfEolMpw42EGLt5Lk9/iUjVefMGUtahjjwEt66BfSw/41rLj8HsiMqghberCt5Z9uStJf9i/GWb09sXuSw+w/lQsriWoXtH6xM1knLiZjE+fc4V/HRs4WAFSqRQSCRM8IlMkk8kglcr/mGkMP8d6DexCQ0MhEonw4osvVqmdYcOG4dy5czh3rhLD8QyoU6dO6N69O06ePIm1a9diwoQJ6Nq1q9IxS5cuxbVr8vnA3nvvPZibc36EGq1Wc6BJf+Dm/mfbQn8GOk7Wz6IHGYnA8W+A8A2qQzgAcPYBnv8UaDlcPjy01UggdLl8ZduCbPnQ0RZD5T3rTDGsK9LoeWDURmDrWOWvRcj38tDuuTmGq01DYrEIQ9rUxUD/OvjrQjyWHY5WORH8nksPsOfSA6Vt7DFWmlQm4Kcj0RrNMbY2JAZLR7XWU2VkDJLScxH+NJiLuJeGy/FPNJ7svKJqO1iigZstcgpkyCuQIrdAipwCKXILZMgtkCKvUKaT62riz+nduPADERkVTVeStjKXYFQHb4xs74Ww2FQEn47BgaiHkKr4fz/yYS6cLUVo4CZGzIMkeHnU4nycRCYoMzNTMT2btbW1gavRc2AXGRkJoOrDPFu3ln/oKTn0UtdCQkJw69YtxeNHjx4p7t+6dQvBwcFKx0+cOLFUG8uWLUNAQABycnLQt29ffPzxx3j++eeRk5ODP/74A6tXrwYANGnSBO+//75OngeZmID3lAO7J3FA1N/yYExXctKAU8uAMyuAwhzVx9jWAnp8CLSbAJgVG97u4Q8MWwEM+UV+rpm10c7zVmFNBwAvrwb+nAz5LE1PHfkcsLDTf8/HSjKXiPFKp3oY2rYufjt7D8uP3kJKVn75J+JZj7HGtezg5+mo40rV09dQ3Sc5BYh7nI24x9m49zgbcanZuPc4B/FPtxWUE9YV2XkxHiIIaOJhD9/a9mhS2x6ejlY1vreRsQ65rmhduQVSRD148rTnXBoi7qXhfpqa904NuNtbol09J3g6WmNj6F1Iy5jX10wswvqJncrswSmTCcgrlBUL8uRhXk6BVB7wFT59nP/sfq7iOOXwLye/EEdvJKudv64466cLXBARGSNNV5IWiUTo1MAFnRq44EFajsrhsmfjc9HNy0o+rcHjFFzLyYO9vSPcHW3hYG1e4/+/JzJ2MpkMmZmZSExMVGyzt7c3YEVyIqG81R20yNHREZmZmQgJCSnVs6zI1atX0apVK4jFYuTnq/4AGR4ejg4dOsDBwQFpaWk6rFjZxIkTsWHDBo2PV/el3bNnD8aOHYv0dNVdq5s0aYK9e/eicePGlarT0FStEhsdHQ0AiIuLg5eXlyHKMl2CAKx9AYgPe7attj8w7aT2504ryJHPk3fyeyA3TfUxlg7yELHLdMPNpWdo4ZuA3e+U3j74J6DdeP3XU0VZeYVYfyoGq07cQUaump6UJYhEgKejNWo5WKK2vRVqO1iiloMVatlboraD1dObJRy1/Euqthd3yC+U4UFaTrEwLvtpQCffpsv5xGwtJGhc2x6+tezQpLYdfJ/er+tkXe1/sTfWRTo0qUsQBNx7nK2Yc+7ivVRcTUhHgbRyv05ZmInhX9cRbbyd0LaeE9rWc1YKc1XNkVikaL4lffd4nb0tQqOVFoe382LPUiKqlnILpNgd8QDrTz8bLjuqhR3a17GEi60FnG3MIRb9v737Dm+y3P84/k6a7hYKlE3ZVKAgG5kCDpSjMkTR40AQ8biPW0GPuDc/9aCiHBD1eFzgQEQFF1OQVTbIKpsCZbSlu01+fzx0BJI2bTPbz+u6ejV9cufJNyWk7Sf3fX9NYDJhNpsJtpgJDjJTtX+6iwSugoICu/wmPDycZs2aufw7ecl9+92ZeXg1sAsNDSU/P5/Vq1fTpUuXCp8nMTGRbt26ERwcTE5OjhsrLJ27AjuAvXv38tZbbzFv3jwOHDhASEgIrVu35tprr+Wee+4hIiLCHSX7hAI7D9g611iKWdJNX0HrS9xz/oJ8o4nCwpch/bDjMZYw6Hk79HsAImq7534D2Z/vw4+PnnXQBCOnQ8drfFJSZZ3IyKHnC7+WucSzPEIs5hIhXij1osNKhHzFQV+NMEuZPxArElzYbDZSTuey/+SZWXLHSwZzWRxOzXJpppA3eSLI86eZbP4YQJVVV5DJxOUd6pOdZyVx/ylOuDgj1ZFmdSKMcC7OCOfaNaxBiKX0WchbDqWVud+SN205lMbQt5eW+lphMZv47p5+2rtRRKo0m83GyqQTfPjHHuZvTmZQ83AGt4zAZDJmGYdYzEZwB5hNEBFiISo0SJ2xRfxYeHg4TZs2xVyOVWJVIrBr0KABx44dY/78+VxyScWDhl9++YXBgwdTr149uymL4p889eStVqxWeKcHHC9ekk2LC+GWuZU/79Y58Nvz9ucuyRQEXW6CAY8ZnWul2JLJRtfckkxBcN1/oW3l9ur0hczcfNo/Nd8n9x1qMdsFePULg70z4V56Tj53/29tqQFBkMnEbf1bkFtgtZsl56l9w7ytIkGev81k82TQU2C1kVdgJd9qI7/ASl7Bma8LbORZz3wusBaNKbquwEpSSgYv/rDV7eFtVKiFznExRbPnOsfFUCcqtMLnU/AqIuK/Dp7K4r/L9zJ/4wEaRpiIrxNMnfAgwiznvl7Xjgyhca1w6kSGODiT8TMtyI+2ihCp6oKCgggPDyc6OprIyMhyv0nuqczDq3vYFQZ2iYmJlQrsNmzYUHQ+kWrBbIY+98Hc+4qPJS2Gg2uhcdfyn89mg92/wy/PwOF1zse1Hw4XPQmxbcp/H9VB/4cgN8MI7grZCmDWGLjhC2h1kc9Kq4gwSxDhwUE+Cbhy8q3sO7NPXEUV2Gy8v3i3G6symEzQsEYYcbUjaFo7wu5zdl4Bt3ywsswg8dZ+zUnPzmf7kXR2HDlNeo5rS49LysgtYP3+U6zff8rueGRIEK3rRZ3ZGy+KNvWiaVM/ijV7TvLQLPtAxV3NQ/ILrGTnFzc0yM4rICfPSna+/eec/AK7Md8mHnKpScfoD/6keZ1I8orCN0fB25nrzozx9UxJkwnOqx9tt7S1Vd0ot/7B5ep+S97gaqdFEZHqonFMOI8Pacv9l7RhzrqDzFy2h23Jp0q9TYvYSG7p3YyR3Zqw/0SWX73JJiK+59UZdnfddRfvvfce/fr1Y/HixRU+z8CBA1myZAm33347U6dOdWOF4gmaYecmednw1vlw+kjxsfbDYZTry7QBOLAGfn3aCPycaTkILn6qYmFgdWOzwU+Pw5/v2R+3hMPNX0OzPr6pq4Jc3ZtqUNt6XN8jjqPpORxNy+ZIWjZH0nI4kpbNsfQcl5tY+IsaYRaa1okgrlZxGFcYzDWKCSO0lI3zyzvTyGazcSQtxwjvjp5mx5H0SgV5FWU2wbBOjYgKC7YP3hx8NhoTFH921CGvuqkTGVIUzHWJi6Fjk5pEh1XPzu7+NPNPRMRf2Gw2/kw6wYfL9rBgS3KpbyyFWszkFlhx9Je5Zi2L+L8qsSR2zpw5jBgxApPJxIIFC7j44ovLfY5FixYxaNAgTCYTX3/9NcOGDfNApeJOCuzcaOkb8MvTxV+bzHDPaqjTquzbHvvL6Ga6tZRltI26wiWToOXAylZavVitxuzHxP/aHw+Jhlu+C6jg011LFnPzrRw7bQR4R9OyOZqeYxfqHU3L4Uh6NqcyPdfUoaTgIBONY8LPmSXXtLYR0tWMqFzQ4o49xhwFeTuOnmb7kXSXm4GI5716TUd6t4ylSa2q3xxERETc48DJTD5ZsY/PV+2r0O8+2hdUxL9VicDOZrORkJDAtm3bqFu3LkuWLCE+Pt7l2+/evZt+/fpx5MgR2rRpw9atW/XLsh9S0wkPyjoFb3SA3PTiY93HwZX/5/w2qQdg4Uuw7lOwWR2PqdPGmFHX7ir3d56tLqwF8PV42PSV/fHwWjDmB6jf3jd1VYA396bKzivgWHoOR9NLhHnpJUK9tGySU7NIz3Ftma7ZBFee35BmdSKNWXK1ImhaJ4IGNcK8sheMJ2YaFQZ5O46ms/3IaXae+awgr/yCg0xYzGYsQSaCg8xYzCYsZhOHU7Nx5Zeh8OAgNj9zmWaRiYhIhWTlFjBn3UE+/GMP25LTy75BCeq8LeK/qkRgB/DDDz9w1VVXARAZGckLL7zArbfeSmRkpNPbZGVl8eGHHzJx4kRSU1Mxm83MmTOHK64IvE3dqwMFdh624En4Y0rx10GhcPcqiIkz9rorlHEclv4frPwPFDjpplyjMQycAJ3+DkH+sS9SQCvIgy9Hw18/2B+PrAe3/uTaTEg/4W9dKf/5eSJz1h0qc1x1+mXWZrNxNN2YkVcyyPsrOY3TLgac7mQ2QVhwEGHBQYRazEWfQ4ODCDvzeceRdA6nZpd5rk5NanJt9zhCgoxwzRJkJth85nPJsK3E12eHccFnbht85pjFbHL6Jp+rS8Gr0/NLREQ8x2azsWL3CWYu282CLUdduk1IkJmNTw8mNNj5Nh0i4htVJrADeOWVV5gwYULRL85RUVH079+frl27UrduXaKiosjIyODYsWOsXbuWJUuWkJ6eTmGpzz//PBMnTvR22VJBWhLrZmmH4M3zwXrWdPrgCGg/DLqNhaRFsOzf9jPxSgqvBf0fhh63QXCY52uuTvKy4bPrYPdC++M1msCtP0JMU5+UVVH+sjeVJ7uLVjUFBVYSnp5Pdp6TGbUlBJlNXN+jCeHBFkKDzYRZgozPDkO3oFLHBAeZy7w/f/139Ne6RESkasvMzaf9U/NdHl8nMphrusdxXfc4WtaN8mBlIlIeVSqwA/j444+58847ycrKMgopZRleYYnh4eG88847jBkzxhslipsosPOAmX+DvcvKf7vgCOh9N/S5F8Jqur8uMeRmwH+vhv0r7I/XamHMtItWh+uK8OZS3UDnzzPG/PXf0V/rEhGRqstqtZEwaT5ZeeWfGd+zRW2u7xHHkA4NCQ/RrDsRX6pygR3AoUOHmDx5Mv/9739JSUlxOq5OnTqMHj2aBx98kMaN9ctyoFFg52bJG2HaAGPPNFeZg6H7WLjwEYiq57napFh2Knw0FA6vsz9et62xp11kHZ+UFej8bamuv/L3GWP++u/or3WJiEjV5eqbbM5Eh1oY1qUR1/doSofGekNexBeqZGBX0ubNm9mwYQMpKSmkp6cTHR1NnTp16NSp0zl7oklgUWDnZt/cAes/c3GwCc4fZexTV7uFR8sSBzJPwIdXwNEt9scbnA+3zIXwGJ+UVRX4y1JdfxYIM8b89d/RX+sSEZGqx5U32UzgUnOkhEY1uL5HHEM7N6ZmeLDbahSR0lX5wE6qLgV2bmS1wkuNIS+z7LGmILh9ITQ83+NlSSnSj8DMy+HEbvvjcRfAzd9AiPOGOyKVpRljIiIi/s+VN9kSGtXgi1X7+WrtQU5k5JZ6vlCLmb91bMh1PeK4oEXtUrefEpHKU2AnAUNdYj0oNwNebOT6+ImHFAj5g1P7YeYQSN1vf7zFALjhSzX+EI/TjDERERH/5uqbbLn5Vn7deoTPV+1n8Y5jlPXXfIvYSEZ1j2Nkt8bUi9bvnCKeUO0Cu0OHDvHkk09iMpmYMWOGr8uRclBg50HlmWEXHAETDoK57M6N4gXHdxmh3ekj9sfjL4frPjFmROZngSVc/2YiIiIi1VR53mQ7eCqLWav3M2v1AQ6eyip1bJDZxMVt63F9zzgubFMXiwvd3UXENdUusNu8eTMdO3bEZDJRUFD+rjniP7Qk1s1c3cOu0w0wYqrn6xHXHd1qdPjNOmF/vGYcZB43gtjgCGg/zOjm26Cjb+oUERERkYBRYLWxdGcKX67az4ItyeQVlP4nfv0aoVzbLY5R3eNoWifCS1WKVF0K7CRgKbBzs+SNMG0gWPOdjzFbjP3rFPj4n0OJRvfYnLTSx5ktMOJ96HiNd+oSERERkYB3/HQO3yQe5PNV+9l59HSZ4/u2rsN1PZoyuH19woKDvFChSNXjqcxD82BFAk2DjkaQY7Y4vr4w6FFY558adYEbZ4GljD1ErPnwzT+MgFZERET8h9Vq7Ctstfq6EpFz1IkK5bb+Lfn5gQv56s7eXNutCeGlBHHLdh7nvs8S6fXSrzz93Wa2JTt+U9lqtZGZm4+1lG62IuJemmEnHqcZdh6SvBGWvwtbvi2xlHI49L5LYV0g+Hg47P697HFa2iwiIuIfkjfC8ndgyxxtYyEBJT07j+83HObzVftZv/9UmeM7xcVwfY84rurUiH3HM5m+dDc/bkwuaoYxpGMDbuvXUh3nRc7QklgJWArsPMxqVbOCQKPmISIiIoFl42xj5rujLUm0jYUEkK2H0/hi1X6+STxIalZeqWNDgkzkWW0OO9FazCYmj+rEsM6NPVSpSODQklgRccxshpBIBTqBJD/LtbAOjHH5pXf9EhEREQ9K3ug8rANtYyEBpV3DGjw9NIE/J17MW9d3pk+rOk7H5hY4DusA8q02HvpyPVsOlbEvs4hUmN/+hV+rVi1Gjx7N6NGjfV2KiIh7WcKNmXOuWv4O5Od4rh4RERFxbvk7pTf7AuP65e96px4RNwgLDmJY58Z8Or4Xix8ZxD2DWlO/Rmi5zpFvtTFjaZKHKhQRv10SK4ErISHB7uu8vDx27NgBaEmsSJFv7oD1n7k+vk4buGIytBzguZpERETEXnoyvNkRCnLLHmu2wHX/g2Z9IEx7e0ngyS+wsmj7MT5buY9fth516TZhFjNbnr0cs9nk4epE/JeWxIqIVCW973be6deR4zvg46Hw1W2QfsRzdYmIiFRnNpuxtHXRa/Cfi2Hyea6FdWDMsvvsOnilGbw/AH6aCNvmQeYJz9Ys4iaWIDMXt6vPv//exeXbZOdbueN/q9lw4JTnChOppgJqht2KFSvYtm0beXl5xMXF0b9/fyIjI31dlpRBTSdEnChtA2uT2fijAQcv0aE14eJ/QfdbwRzk8TJFRESqtPwcSFoC23+E7fMhdb+b78AE9ROgWV9o3tf4HBnr5vsQcR+r1UbCpPlk5ZWv+WPf1nW4Y0Ar+rWOxWTSjDupPqpdl9iSDh06xLXXXsuKFSsAsNlsmEwmQkJCuPnmm3nmmWdo2LChj6sUZxTYiZQieaOx582Wb40GE8ER0H449L4LrAXw/QNwaK3j2zbqAlf8HzTu6s2KRUREAt/pY7BjPvz1I+z6HfIyvHv/ddsaS2eb9YXm/SC6gXfvX6QMD365jq/XHqzQbTs0rsEdA1oxpENDgrRUVqqBah3YjRw5km+++Ybzzz+fG2+8kTp16rBv3z5+/PFHVq1aRb169Zg1axb9+/f3danigAI7ERdYrUY3WEu4fcdfawGsmQm/PAs5qQ5uaIIet8FFT0J4jLeqFRGRqsTZz6CqxGaDo1uMgG77T3BgNQ5nsTtiiTjTsb2U8SYz1O8Ix7a6voS2pNqtzsy+62cEeTFx5T+HiBttOZTG0LeXkm+teFzQvE4E4y9syciuTQgL1qoQqbqqdWBXo0YNWrRowZo1a7BY7Pd8WrRoEbfccgsnTpxg9erVxMfH+6hKcUaBnYgbnD4KC/4FGz53fH1kPbjsBeh4LWgJgoiIuCJ5o9EBdcucErO8hxn7rDbo6OvqKi8/B/YsNQK67T/BqX2u3zamKcQPgfMuN0K0rd8538bCbIER70PHayAvCw6ugT3LYO9S2L/qTNhXTjFNjfstXEJbq3nZP9/9NXj117qkTHPWHeShL9c7DO0sZhPPj+jAyYw8PliWxLH0HKfniY0KZVy/FtzYqyk1woI9WbKIT1TrwC4qKoo777yT1157zeH1e/bsoVOnTlx55ZX873//83J1UhYFdiJulLQE5j0EKX85vr7FhfC3yVBXb16ISDWnkKB0pe2jWjKACjQZKbBjwZmlrr9B7mkXb2iCJj2MgC5+CNRrd25AVto2Fs4CzvxcY2uLPUth7x+w/89y1FRCjcZGcNesj7GEtk7r4vr8NXj117qkXLYcSmPG0iR+2HiYrLwCwoOD+FvHhozr14L2jYxuyNl5BXy99iDTFu9iz/FMp+eKDrVwY69m3Nq3OfVqhHnrIYh4XLUO7Lp370779u35+OOPnY4ZO3Ys33//PceOHfNiZeIKBXYibpafC8unGB3sHL1rbw6Gvv+ECx+G4HDv1yci4ksKCcqWvBGmDXQc1hUyW+D2hb79nrkSutpscGxb8VLX/StxealrSBS0GmQEdG0GQ1Rd99XlTEE+HF5vzL7bswz2LYectPKdAyCqvhHeBUcYs++tDpoD+DJ4raqBcDVmtdrIzi8gzBKE2cm+dAVWGz9tSua9RbvYeNDRVi6GkCAzI7s14fYLW9IiVk0kJfBV68DunXfe4bHHHmPDhg20bNnS4ZhHHnmEqVOncvp0Bd6xEo9SYCfiISf3wI+PGX+gOBLTDP72OsQP9mpZIiI+o5CgbFYrfHkzbPu+7LE146DVRRBRG8JrOf9w95tDZYWu+bmwd5nx8++vH+HUXtfPXTMO4i83ZtI17w+WUPfWXl7WAuPx7l1mzMDbuwyyTrrv/CYz9LoTohoAtuIO9Od8pozrHX12dBuMhh6bZoHN6rwufwiExWNsNhvLdh5n6qKdLNt53Ok4kwn+1qEhdwxoRccmNb1YoYh7VevA7vXXX2fGjBlkZmby6aef0rdvX7vrCwoK6NatGzExMSxcuNA3RYpTCuxEPMhmg23zjOAu7YDjMW2vhCGvQE393xORKixQZo15U24GHNkCyRvgyCZIPvOR73zJWoVYws8K8WKKL5cW9gVHnLvstLTQ1WSGRl0hZXs5ZqWZoHG34qWu9RP8e69Xq9VoXFG4B97ePyCjiq4giqwH7YcaHXNj46HuecbMQX/+95Fy23DgFO8t2sWPm5IpLXno1zqWOwa0om/rOpj0HJAAU60DO7PZjMlkwmazYTKZ6NWrF4MHD6Zp06akpqby2WefkZSUxPz58+nSpYuvy5WzKLAT8YLcDFj0ijEjwdEfOcGRMPBx4132IG32KyJVTHYafH4D7FlS9th6CcaeY7VbGh9VISCw2SDtoBHGHdlohJfJm+DEblxeHuoLQaH2AZ4pyAipKltzcIQxMzD+coi/DKLquaVcn7DZIGVH8RLavcsg/bCvq/KcsJoQe56xF2/dtmcun2fMjNRelAFt97HT/GfJbr5ac5DcAuezLzs2rsmdA1txWUIDgpwsvRXxN9U6sPv+++9Zt24diYmJJCYmsmfPHgC75L1Pnz4MHDiQTp060blzZ1q3bu2jaiUhIcHu67y8PHbs2AEosBPxuCNbjKYU+/5wfH299nDlG9C0l3frEhFxp4J8oxPn7t9h1+9n9i0rZfldaYIjoFYLqN2iOMSr3dL4ukZjMAe5tfRKN8PIzzH2bEvedGbW3EbjszuXUQaiGo3PLHUdYix1Da6iG9rbbEYQu+s3+OFhX1fjPcERRqONum3tw7zaLSr+RqQa0/jE0bRsZixL4n8r9nE6x/mM6Baxkdx+YUuu7tqYUIubX4dF3KxaB3ZnS01NJTEx0S7E27ZtG/n5+UUhXmRkJOeffz5Lly71cbXVjwI7ER+z2WDdp/DzvyDTyb4hXW6CS56FyDrerU1EKq46/3Fps8HxXcUB3Z4lFduov7yCQqBW8+IQr1aL4jAvpmn5goKKNMPISCkO5ApnzaX8VfqyX3eq3wGa9jbCwKKPE8bnbOcbyntNo65GQBd/ufE9DPSZkuVhtcJLjY3nUllMZmgx8MzrhunM98nZZ8q4vozPNmCjkyYYnmAOhjqtipfUFi6vjW3jfG9FNabxC6lZefzvz718sHQPKadznI6rGx3KuH4tuPGCpkSHnfua60ozDBFPU2BXhpycHDZu3FgU4q1du5aNGzeqCYUf0JJYER/JPAG/PA1rP3J8fXgtuPRZ6HxT9fvjXySQVNc/LjOOQ9JCI6DbvRBS9/u6InumICO0KwzwSs7Oi2lmP8OrrGYYw6dCw04lwrkzAd3pZDfUaYY6bYznSoMOUL+jcZ//G1m5/f6sBUZoZxfmnTR+9px9zC7sO4Vblunel2h8r6uzb+6A9Z+VPa7TDTBiqufrKeRqXQ3ONwK2Y9uMZb/5WW4swgS1mhUvqS0M845uge8fUGMaP5KdV8BXaw8wbfFu9h53HkBHh1m4qVczxvZtTr3oMLYcSmP60t38uDGZrLwCwoODGNKxAbf1a0n7RjW8+AhEFNhVSOGed+JbCuxEfGz/KuOX0yMbHV8fdwFc8X/GH3JSNVXnmVmBrjp1Pc3Lhn3Li2fRJW8o3+1N5tK7Uhaq0QRCo+FkEuRnV6zWsosxlmjWbgFhMfDXPNdqq6zQGsasuAYdjKCtfgeo187xTCNfPbesVsg5O+g7ZcwIn/8EWPPKPkdwBEw4qNczf220UpG6rFYjlD/2lzGL9Ng2OLbduOzN2ZzVrTGNHymw2vhx02GmLtzF5kPOZ1CHWMx0b1aLP5NOUGA9N8qwmE1MHtWJYZ0be7JcETvVPrBbuHAhP//8M6dPnyYuLo5OnTrRtWtX6tTRci5/p8BOxA8U5MPKafD7C5DrYOaxKchoSDHwceMP2UIKegJbdZ2ZVVX46x/j7mK1GrPJCgO6fcvLH6DVS4BWg6DlIAirATOHuP79slqNGWwndjv4SHL8WulPYpqdmTV3Jphr0NGY8VeeN6uTN8Lyd2HLtyVeI4YbTTl88Zzy1xlj/sxfQ3131WWzwekjZ4K87WeCvL+Mj4yj7q8b9PzyMZvNxtKdKUxduIs/djnZ2qUMFrOJ7+7pp5l24jXVOrCbMmUK999/PyVLLZw517hxY7p06ULXrl3p0qULQ4cO9VWZ4oQCOxE/knYIfppg/HHmSHQjuPwlY5nRincV9AQyf/0jLhD4Iqi22SD7lPF/NO0wpB+CP6c5nxlbUtPeMGgiRDeE6Ab2obs3lOf7lXqwOKBLWgQZx8p3X1ENigO6lgMhur799e4MCTJSzg3yTiYZn73Z4MESZjQMatDBWEJYvwPUTzACSnfxlzdnqnpI7Sn+Frx6q66sk8YsvGPbzoR5Z4K81H2VO29QCDyy0+hYKz61fv8p3lu0i582J1Pe1GJk1yZMHtXJM4WJnKVaB3YtWrTgxIkTvPvuu3Ts2JEDBw6wfv36ooYTu3fvLlr+WlDgpQ1OxWUK7ET80M5fYN7Dxh+fDplwuMeQgp7S6Y/ewOapGYkF+cYMkbRDRhBXGMiVDOfSDrtv/6bgSCO4Kwzwij4aFn+Oqg+hUZW7H1e+XznpsGfpmX3ofjf+qC7vY2ne1wjoWg0y9qAqawaZN8KLzBNnwrvCjxKhXmVm/UTVN0K5Bh3OzJo739hQ392dav2Z3myoOH/5GXQ2b9eVm3EmwDuzpPbYX3B0K5zY5fo5giOh0/XQY5wRkItP7Tp2mv8s3s1Xaw6Q52AZrCMmE1zdpTHtGtagXcMatG0QTZ2oUA9XKtVVtQ7soqOjGTNmDFOmTHF4fXp6elHX2Pvuu8/L1UlZFNiJ+Km8LFj6hvFRkOv67RT0nMvbS08L8o39njKOGeFARgqcPnrm62Ow6zdIP1z2eTpeCyOnu7++QFTRkCDntPG9Tjt0ViB3GNIOGpczjnpn/7LyCok+K8yrf26oF90QQiLOvW1p3y9TELS90njcB1aVr6OpyQyNuhQHdE16giWkYo/PV+FFTroR4p1MguM74fcXXfseBIfDhEP+FbT4ir/OGJPAVZ6uumeL62UEd+2HgUWBjy/tSclg4OsLK3z7utGhtG0QXRTgtW1Qg9b1ogix6HVXKqdaB3a9e/emY8eOTJs2zdelSAUosBPxc8d3wbyHjNkvrtL+LsXcNRskN9NB+OYgjMs4ZszucUeXRYDaraFRZ2h4vtGlssH5EFHbPecOFK7MSDSZjY7KtoIzwdyZkC7H+cbYVUZoTfuZeuYgWP+5+0LIWs2LA7oWFxodrKsS7ctWcf46Y0wCk6v/F52JqANdboJuY42GMuJ1VquNhEnzycpz36o6i9lE63pRRoB3Jshr17AG9aJDK9XA0mq1kZ1fQJglCLNZjTCrumod2H322Wc8/PDDbNmyhZo1tZdAoFFgJxIAbDbYNBu+Go9LQZA69BlcWnoaBFe8YSw/dBS+ZRyD08cgL8NrZZepZtPiAK/wI7qBr6tyv+xUYybU/Imwd5mvqykWEQs1GhqzKNMOlT0+tAZgMjpvBoKwGGg5wNiDruWgqv+Hr5aoi/gHV/4vUhislPa7kAlaXwzdx0H8ZdVrybofePDLdXy99qDH76dWRDBtG9SgbcNo2p35HF8/mrDg0v+9txxKY/rS3fy4MZmsvALCg4MY0rEBt/VrqSYYVVi1DuwA7rzzTrZt28YXX3xBvXr1fF2OlIMCO5EAkZsBLzZyffyEg5XfAyvQVfbd+kASWa9EgHcmzItpVr6OlGfz9OwZq9WYCXcyCU7uKV6mWPjZm40DwNjIPLqB0dylxpmP6IZGOFd4LLpB8ZKr8gY9uZlG19P0ZONxpx858/nM16ePGJe9PSvQHAxNexkBXatB0LBz9fsDV/uyifgHV/4vNu0Faz6CtR8Zr5ulqdEEuo2BrqPPbYIjHrHlUBpD315Kfil72QWZTNzWvwUnM3PZlpzOX8np5ORXfla42QTNYyONAK/EjLwmtcIxmUzMWXeQh75c77A2i9nE5FGdGNa5caXrEP9T7QO7qVOn8vjjjwMwdOhQLr74Yrp27UpCQgJBQdXsl74Ao8BOJECUd3+Xpn3goieNDeGro8rsh+M2JmOJTmRdiKprfI6sZ8wWS97g+bsPq2ksoS05E69O67LDGHfu+ZefAyf3lgji9hRfPrUX8rMr/PDKJazmmdCt4ZngrVGJIK4h1GgM4bXLH0x6IujJOX0mvCsM85KLLxceTzvsnlmf130CrS6CkMjKnyvQaV82Ef/g6v/FgjzY9j2smgF7lpR+TrPF2Luzxzho3r9yb2ZJmcobjBVYbew5nsG2w+lsS05j65nPB066p9lTdKiFuNrhbE1OL7WbrcVs4rt7+mmmXRVUrQO7CRMm8Oqrr3J2qSaTidDQUDp06EDXrl3p1q0b48eP91GV4owCO5EAUpEZYy0GwKAnoOkFnqnJH2WdhD/fg4Uvu//cQaHnBnCRsRBV78zXZz6i6hkBUJDl3HO4OjNr+FTIPQ2H18PhDXBkMxTkVK7+4Aiju2XJmXh12xU3DqhIAJV5wj6IO5kEJ/YYx9IO4rb9/MpiCjKWQNV0EMh5MpDyVdCTk37uLL20w7DyfWMvv7Jo6bxj2pdNxD+U5//ise2w+gNY/6mxnUJpYuOh+63Q6e8QHuO2csXelkNpzFiaxA8bDxctPf1bx4aM69fC5UAsLTuP7cnpbE1OZ9vhNLYeTuOv5HQyct23R97ZRnZtwuRRnTx2fvGNah3YNWzYEJvNxuzZszn//PPZu3cviYmJrF27tqg7bHp6OiaTiYICz/3nEtckJNi3Ps/Ly2PHjh2AAjsRv+fS/i5OtL4EBk6EJt3cXpbfOLUPVkw1lsqUd/ZR7VZG101n4Vvh5dBo97wzX5FgrCAPUrafCfDOhHjJG4xQrzLMwVCvHdSMg+0/lt6swGSGTjdC3unicK6sP44qw2Q2/lhz5d/T100B/CXoURMFEamucjNh01ewegYcSix9rCXc+DnbY5zR/Vo8wt3NHaxWGwdOZrE1Oa1oRt625HT2HM8odfacq8KDg9j8zGVqRFHFVOvArkaNGowfP57Jkyc7HbNjxw4SExMZNWqUFysTRxTYiQS40oIek9nYMD7rhPPbxw+BQROMmVVVxeH1sOzfsPkb12YWnc1XwYU7ZmZZrUZodnhdcYh3eH3pzwF/Ywk3OpHWbgG1WthfjmkKKX+pKUB5qImCiAgcXGsEdxu/Mt5MKU2jrkZwl3A1hER4pz5xq8zcfLYfOc22w0aAt+VwGtsOp5GWXf43ub++sw9dm1WxjujVXLUO7AYNGkTTpk356KOPfF2KVICWxIoEoNKCnth4WPsxLJlsLJFzpt1VMHAC1E9wPsaf2Wyw61cjqEtaVPHz+ENw4e6ZWTYbpB4wZt+VDPHSXeho6ikRdYwArjCIKxnORTcoe9aimgKUj75fIiKGrJOw/nNjr7vjO0ofG1YTOt9oLJmNbeN4jL/MppYy2Ww2Dqdms+VwKnd+spa8Atejlb6t63Bbv5YMiK+r2XZVQLUO7H766SduuOEGNm3aRKNG5ehgKH5BgZ1IACvtl8a8LFjzISz5P8g46uQEJkgYYQR3deM9Xa17FOQZy13+mAJHNjkfZzIbIWb9BFj4koILgNPHIHm9fYh3Msk95zaZjSW1tc+EcGeHcmFu2MBZTQHKR98vEZFiNpvRnGLVDKNZRVnbi7S40NgXte0VEBTs3oZM4nUPfrmOr9ceLPftWteLYly/Fozo0piwYDXTDFTVOrB79913WbBgAbt27WLWrFm0bdvW1yVJOSiwE6nicjOMX06XvQmZxx2PMZmh47Uw4DGo08qr5bksOw3WfmTsUZdWyi9cwRHQdTT0utMIikDBRWmyU43vz6FE+HmSa0uKTUFwwR1GIFdy6WpQsOfrBc1uKC99v0RE7KUnw9r/Gm9sph0ofWxUA2jSHbb/pDf/AtiWQ2kMfXupw861rqgTGcLNvZtxU69mxEaFurk68bRqHdiZzWZMJhM2m42goCD69evHxRdfTJcuXejSpYtm3fk5BXYi1UROOqycZiwhzT7leIwpyOiaNuCR4rDL19IOGR1fV8+EnDTn4yLrwgX/MN4Nj6jteIyCi9KpWYGIiFQnBfmwYwGsmm5ss1FR/rC9hpRpzrqDPPTleoehXZDZxOD29Vm15wQpp3OdniPEYmZk18aM69eC1vWiPVmuuFG1DuxmzZrF+vXrWbduHYmJiRw+bOyZZDqzH03dunXp0qULXbt25YUXXvBlqeKAAjuRaiY7FVa8B8vfdh6AmS3Q5Sbo/zDExHm3vkJHthjLXjfOAmue83F1WkOfe+H86yE4zHv1VUVqViAiItXVid3Gm4OJn1SscZPezAoIWw6lMWNpEj9sPExWXgHhwUH8rWNDxvVrQftGNcjOK2DOuoNMX5LEjqOnSz3XoPPqclv/lvRpVaco+xD/VK0Du7OlpKSQmJhIYmIi69atY926dWzfvh2bzUZBQQW694lHKbATqaayThp7sayYCrlOfiEJCoGut0D/B6GGF2ZLF+4vs+zfsPPn0sfG9YK+9xldbzVbzn3UrEBERKqzvGxjn7rVM2D/n67fLjgCJhzU7yQBwmq1kZ1fQJglyGFTCZvNxqLtx5i+JImlO1NKPVe7hjW4rV8LrurUiBCL/v39UbUK7NasWcP5559PcLDre9VkZWWxYcMGLrjgAg9WJhWhwE6kmss4Dn/821gum5fpeExQKPQYB33vh+j67q+hIB+2zjGCusPrShlognZXQp/7IK6n++sQg/b8ExERgf2rYMYlro/vcTt0H2M0vJIqY+vhNKYvSeK79QdL7TRbLzqUW/o058YLmhITEeLFCqUs1SqwM5vNhIaGsmXLFlq0aMHUqVPp3LkznTp1IiIiwtflSTkpsBMRwOgguuxNYx+X/GzHYyzh0HM89P0nRMZW/j5zM4ylJ8vfhlP7nI+zhEHnG6D3Pf7bFKMq0p5/IiJSnVmt8FJj529oOtOoC3S5GTqMhPAYj5Qm3nc0LZuPlu/hkxX7SM1yvl1LeHAQ13Zvwq19W9A8NtKLFYoz1Sqwe/TRR0lMTGT69Ok0a9asqOmEyWSidevWdO7cmS5dutC5c2c6d+5M/foemI0hbqPATkTspB2GpW/AmplQ4GTT3eBI6HWHEaA5a/BQmtNHjRl9q6YbS3OdCa9tBIQ9xkNU3fLfj4iIiEhluNqQyRFLGLQbauwL3Ly/3vyqIjJz8/lqzQFmLE1iz3HnYa7JBIPb1+e2/i3p3qyW9rnzoWoV2J2trKYT9evXLwrx1HTC/yiwExGHUg/Aksmw9r/Omz6E1oBed0GvO+3fQXY2Mytlh9FIYv3nUJDj/L5rNTfCwM43QohmbouIiIiPuNKQyRUxTaHzTcaKAV819BK3KrDa+HXrEaYvSWLlntIblXSKi+G2fi0Y0qEBliAFt95WrQO7s6npRGBRYCcipTq5Fxa/Bus+BZuT1/Cwmkan1uYXGjPztswpsffZMONd5W3z4K8fgFJ+rDXqajSSaDcUzEEeeTgiIiIi5VJWQ6ZLnoHM48ZMvPTDZZzMBC0HGrPu2l6pDvdVxPr9p5ixNIl5Gw9TYHX+u27jmHDG9m3OdT3iiA47tydAWc0wpGIU2JVBTSf8lwI7EXHJid2w6FXY8AXYrO49d/zlRiOJZn2M9QMiIiIi/sSVhkwF+bDrN0j8L/z1o/MVCoXCYuD8UUZ417CThx+AeMPBU1l89McePvtzH+k5zmdlRoVauL5HHGP7taBxTDhbDqUxfeluftyYTFZeAeHBQQzp2IDb+rWkfaMaXnwEVZMCOwlYCuxEpFxSdsDCl2HTV5Q6W64sQSHGL6m974V6bd1WnoiIiIjHuNqQKSMFNnxphHdHt5R93gYdjUYVHa+t2P7A4lfSs/P4YtV+Zi7bw8FTWU7HBZlNnN+4JhsOpjqcmWcxm5g8qhPDOjf2ZLlVngI7CVgK7ESkQo5uhYUvGctfyyO0JvS4FS64A6IbeKY2EREREX9gs8GhREj8xFham5Na+vigEGh7hTHrruUgbRES4PILrPy0OZn/LEli/f5TFTqHxWziu3v6aaZdJVSbwC4zM5PVq1eXOiY8PJwePXp4qSKpLAV2IlIph9fDtEHO97crKSgYHtll7HknIiIiUp3kZcHW741Zd0mLyh5fo7HRpKLzjVC7hefrE4+x2Wys2XuS6UuSmL8lmfKmPCO7NmHyKC2brqgqE9gtX76c5557DoBx48YxcuRIu+s3b95Mx44dy2xJvGzZMnr16uWxOsV9FNiJSKXkZsCLjVwfP/EQhER6rh4RERERf3dyD6z7DNb9D1L3lz2+eX9j1l27oRASce71ri7VFZ/bezyDmcv28MWqfWTlubYvdHhwEJufuUyNKCrIU5mH1/+nTZw4kZ9++on9+/dz1VVXOR1ns9lK/Xjssce8WLWIiPiMJdzYeNkVwRHGeBEREZHqrFZzGDQB/rkBbv4GOoyEoFDn4/csMTrVTj4P5t4PB9YYy22TN8I3d8BLjY03UF9qbHydvNFbj0TKqVmdSJ4emsBvDw10+TZZeQVk57uwmkW8yuLNO9uxYweLFi3CZDLx0ksvERIS4nSsyWTiqaeeOuf4yZMn+fe//83SpUvZtm0bbdtqI3F/k5CQYPd1Xl4Z3YtEREpjNkP7YbD+s7LHth+ud31FRERECpnN0Ooi4yPzhNHUK/G/xpYjjuSkwZqZxkd0IzidDLYSs7TyMo3fyTbOghHvQ8drvPM4pNzq1wgjPDiIrLyyg7jw4CDCLNrP0N94NbD7+uuvATjvvPO48soryxw/adIkh8dXrFjBqlWrmDVrFv/617/cWqOIiPih3ncbvxhanbevx2yB3nd5ryYRERGRQBJRG3qONz4ObzCWy274ArJOOh6ffsj5uaz5xoy8uucZHWjF75jNJoZ0bMDXaw+WOfZvHRtqOawf8uo0hOXLl2MymbjiiisqdZ4RI0Zgs9lYuXKlmyoTd9q8ebPdx2+//ebrkkQk0DXoaLyLa3byPpPZYlyvXxhFREREytbwfBjyCjz0F1z7IbS+BChnYGPNh+XveqI6cZPb+rXEUkYQZzGbGNdPTUf8kVcDu40bjXXuffv2rdR5OnUyupds3ry50jWJiEiA6HgN3L4QOt1QvKddcITx9e0LtSRDREREpLwsoZAwAm76Ch7YBBc9CTHNXL/9lm+NhhTil9o3qsHkUZ2chnYWs4nJozrRvlENL1cmrvDqktiUlBQA6tev73SMyWTCbDZjLmUPonr16gFw4sQJ9xYoIiL+rUFHGDEVhr2jTmUiIiIi7lSzCVz4CPS8A152sctlXqbxO1lIpGdrkwob1rkxbepFM2NpEj9sPExWXgHhwUH8rWNDxvVrobDOj3k1sMvOzgYgLCzM6Zj27duTn1/KHkUYoR5AVlaW+4oTEZHAYTbrF0MRERERTwiJNFYx5GWWPTY4wngDVfxa4Uy71645n+z8AsIsQdqzLgB4dVpCrVq1ADh+/HilzlN4+8LziYiIiIiIiIgbmM3QfphrY9sP12qHAGI2m4gIsSisCxBe/Z/VoEEDABITEyt1ng0bNtidT0RERERERETcpPfdzpt9ldT5Bs/XIlJNeTWw69OnDzabjblz51bqPN999x0mk4nevXu7qTIRERERERERAc7sG/x+2aHd6g+8U49INeTVwO6yyy4DYNmyZfz6668VOseiRYtYvHgxAJdffrnbahMRERERERGRMzpeA7cvhE43GHvVAZiC7Mds/hq2Vm5Cjog4ZrLZbDZv3ZnNZiMhIYFt27ZRt25dlixZQnx8vMu33717N/369ePIkSO0adOGrVu3FjWgEP914MAB4uLiANi/fz9NmrjYcUhERERERER8z2o1usFmp8G7vSD7VPF1kfXg7j8horbPyvM7hd8vS7j2+KsGPJV5ePWZYzKZeP311zGZTKSkpNC9e3emTJlCRkZGqbfLyspi6tSpdOvWjeTkZEwmE5MnT1ZYJyIiIiIiIuJpZrPRPbZGQxjyqv11GUfhx8d8U5e/Sd4I39wBLzWGFxsZn7+5wzguUk5enWFX6JVXXmHChAlFgVtUVBT9+/ena9eu1K1bl6ioKDIyMjh27Bhr165lyZIlpKenU1jq888/z8SJE71dtlSQZtiJiIiIiIhUETYbfHY9bP/J/vjfP4fzhvimJn+wcTZ88w+w5p97ndli7AnY8Rrv1yUe56nMwyeBHcDHH3/MnXfeSVZWllFIKbPlCksMDw/nnXfeYcyYMd4oUdxEgZ2IiIiIiEgVknYI3ukFOanFx6IawN0rILyW7+ryleSNMG2g47CukNli7AnYoKO3qhIvqRJLYksaPXo0O3bs4IEHHiA2Nhabzeb0o06dOjzwwANs375dYZ2IiIiIiIiIL9VoBJe/aH/sdDLMf8I39fja8ndKD+vAuH75u96pR6oEn82wO9vmzZvZsGEDKSkppKenEx0dTZ06dejUqRMJCQm+Lk8qQTPsREREREREqhibDf53Dez8xf74jbOhzaW+qckXrFZjr7q8zLLHBkfAhINqRFHFeCrzsLjlLG6QkJCgYE5EREREREQkEJhMcNVbxtLY3PTi49/dZyyNDavpu9q8KT/LtbAOjHH5WUYDD5EyKNYVERERERERkfKr2QQue97+WPohWPCkb+rxBUs4WEJdGxscYYwXcYECOxERERERERGpmK63QMuB9sfWfgy7fvNJOV53aq+xPNgV7YdrOay4TM8UEREREREREakYkwmu+jeERNkf/+4+yEl3fJuqIjsVPrseCnJdG9/zds/WI1WK1/awu+iii7x1VwCMGTOG0aNHe/U+A8GpU6d46qmnWLVqFUlJSZw8eZLY2FjOO+887r77bq6++mpMJpOvyxQREREREZFAUasZXPoMzHuo+Fjqfvj5KbjyDd/V5UkF+TD7Vji2zfXb7PoVGnfxXE1SpXgtsFu4cKG37gqTycTAgQO9dn+BJCUlhQ8++IBevXoxfPhwateuzdGjR5k7dy7XXHMN48ePZ9q0ab4uU0RERERERAJJt1th87ewZ0nxsdUfGMtAWw7wVVWes+DJczvk1moJTbrBtnlnGlGYgBLLZRe+DOf9Deq392alEqBMNpuri60r55lnnvHG3RQZOHAgAwZUwReFSiooKMBms2Gx2Ge16enp9OrViy1btrBp0ya3duz1VItjERERERER8SMnkmBqH/uuqTHN4M4/IDTK+e0CzeoP4PsH7I9FxML434zZhlar0Q32yBb4YDDYrMXjGnaG236FIK/NnxIP81Tm4bVnyKRJk7x1V1KKoKAgh8ejo6O57LLL2LJlCzt37nRrYCciIiIiIiLVQO0WcMnT8OOjxcdO7YVfn4W/veqzstxq9yKY97D9saAQuP5TI6wDo7FESCTE9YA+98GyN4vHHl4Hf7wF/R9CpDRqOlEOR48e5fvvv+epp55iyJAhxMbGYjKZMJlMjBkzplzn2rdvHw8//DDt2rUjMjKS2rVr07NnT15//XUyMzPLPoGbZWdn89tvv2EymWjfXtNzRUREREREpAJ6jIemfeyPrXwf9izzTT3ulLITvrwZbAX2x4e+DU0vcHybgRMg9jz7YwtfNmbfiZRCczDLoX79+m45z7x587jxxhtJTU0tOpaZmcmqVatYtWoV06dP54cffqBly5ZuuT9HTp06xZtvvonVauXo0aP88MMP7N+/n0mTJtGmTRuP3a+IiIiIiIhUYWYzDHvbWBqbn118fM7dxtLYkAjf1VYZWSfh01FGZ9iS+j8Ena5zfrvgMBj+Lsy4tHhpbEEuzLkLxv2ipbHilGbYVVBcXByDBw8u9+3Wr1/PqFGjSE1NJSoqihdeeIE//viDX3/9lfHjxwPw119/ccUVV3D69Gl3l13k1KlTPPPMMzz33HO8//77JCcn89prr2npsoiIiIiIiFROnVZw0b/sj51Mgt+e9009lVWQB1+OhhO77I+3uwoGPVn27Zt0hz732h87lAh//Nt9NUqVo8CuHJ566inmzp1LcnIy+/bt4/333y/3Oe6//34yMzOxWCwsWLCAiRMn0rt3by666CKmTZvGq68a6/q3bdvG//3f/zk8R8mluK58OOrQ27x5c2w2G/n5+SQlJfHss8/yxBNPMHLkSPLz88v9uERERERERESK9LoTmvS0P7biXdj3p2/qqSibDX54BJIW2x9v2AlGvG/MKHTFwIkQG29/bOFLcHSre+qUKkdzL8uhsp1uV61aVRSejRs3jt69e58z5qGHHmLmzJls3bqVN998kwkTJhAcHGw35u9//zvp6eku32+DBg2cXhcUFETz5s15/PHHCQoK4tFHH+U///kPd955p8vnFxEREREREbFjDoJh78B7/aAg58xBm7EU9I6lEBzu0/Jc9uf7sGam/bGoBnD9Z0ZjCVcFh8Gwd+27xhbkwrd3wbiftTRWzqFnhBd9++23RZfHjh3rcIzZbGb06NFMmDCBkydPsnDhQi699FK7MVOmTPFIfYMHD+bRRx9l4cKFCuxERERERESkcurGw6CJ8EuJrZeO74TfX4TBz/muLlft+AXmT7A/ZgmDv38KNRuX/3xxPaD3PfZLYQ+theVToN8DlatVqhwtifWiJUuWABAZGUm3bt2cjhswYEDR5aVLl3q8rkKHDh0CwGJRjisiIiIiIiJu0PseaHzW37/L34YDq31Tj6uOboPZY4tnwxUaPvXcx1MegyZCnbMaPf7+onF/IiUosPOirVuNtemtW7cuNRRr27btObdxl3Xr1tl1py104sQJJk6cCMCQIUPcep8iIiIiIiJSTQVZjKWgQSHFx2xWo2tsXrbz2/lSxnGjI2xOmv3xgROhw9WVO3dwuBH6mUrEMYVdYwu0n7wU01QqL8nOziYlJQWAJk2alDq2Vq1aREZGkpGRwf79+91ax4cffsj06dMZNGgQzZo1IzIykr179zJv3jxOnz7NyJEjueGGG8p1zgMHDpR6/eHDhytTsoiIiIiIiASyem1hwGPwW4llsMe2waJX4JJJzm/nC/k58MVNcGqv/fEOI2HAo+65j7ge0Ptu+KPEdlcH1xgzD/vd7577kICnwM5LSjaJiIqKKnN8YWB3+vRpt9ZxzTXXkJqayooVK1i8eDGZmZnUrl2bfv36MXr0aK6//npMJlO5zhkXF+fWGkVERERERKSK6ftP2PodHF5ffGzZW9B+KDTq4ru6SrLZ4PsHYd8f9scbdzcaaJTzb+VSDXoC/voJju8oPvb7i3DeEKh7nvvuRwKWAjsvyc4unuobEhJSykhDaGgoAFlZWW6to1+/fvTr18+t5xQREREREREpVVCwsTR22kCw5hnHbAXw7d1w+0KwlP13ssf98W9Y94n9sRpN4PpP3d/VNjgchr8LMwYDNuNYQc6ZrrELjC67Uq1pDzsvCQsLK7qcm5tb5vicHKPtdXi4/7e63r9/f6kfK1eu9HWJIiIiIiIi4msNOsCFj9gfO7oZlrzum3pK2vYD/HzW8tzgSPj7ZxBd3zP3GdfTWBpb0sHVxtJYqfY0w85LoqOjiy67ssw1IyMDcG35rK+VtSefiIiIiIiICAD9H4Stc+HIxuJjSyZD2yuh4fm+qSl5I3x1G0Uz3QAwwdXTPF/TRU/C9p/g+M7iY7+9APFDoG68Z+9b/Jpm2HlJWFgYsbGxQNlNGk6ePFkU2Gl/OBEREREREakygoJh+DtgLjF/yJp/pktqnvfrST8Cn14PeRn2xy+ZBO2u9Pz9B4cb++NRYn+8ghzj+2Et8Pz9i99SYOdF7dq1A2Dnzp3k5ztv17xt27ZzbhNIEhIS7D4uuugiX5ckIiIiIiIi/qJhJ+j3oP2x5I2w9A3v1pGXDV/cCGlnTarpdAP0vd97dTTtde7S2AOrYPk73qtB/I4COy8qbPaQkZHBmjVrnI5btGhR0eW+fft6vC4RERERERERr7rwEajX3v7YolfhyGbv3L/NBt/dYwRjJTXtDVe96d6OsK4Y9ATUbmV/7Lfn4dh279YhfkOBnRcNHz686PLMmTMdjrFarXz88ccAxMTEMGjQIG+U5labN2+2+/jtt998XZKIiIiIiIj4E0uIsRTUVKIbqjXP6JJa4HxFmtssfh02zrI/FtMUrvsELKGev/+zhUQYXWPPWRp7t5bGVlMK7LyoZ8+e9O/fH4AZM2awfPnyc8ZMnjyZrVu3AvDPf/6T4OBgr9YoIiIiIiIi4hWNu0Lf++yPHV4Hf7zl2fvd/A38/rz9sZBouOFLiIz17H2Xpmkv6HWX/bEDK2HFu76pR3xKXWLLYenSpezcWdy5JSUlpejyzp07+fDDD+3Gjxkz5pxzvPXWW/Tt25esrCwGDx7MxIkTGTRoEFlZWXz++edMmzYNgPj4eB566CGPPA4RERERERERvzDgcdj2A6T8VXxs4ctw3hVQr6377+/gWvjmTvtjJjNcOxPq+cEe8hc9Cdt/hBO7i4/99jzEXw6xbXxXl3idyWaz2coeJmAEcB999JHL4519a+fOnctNN91EWlqaw+vj4+OZN28erVu3rlCd/ubAgQNF3W73799PkyZNfFyRiIiIiIiI+I0Dq2HGpWCzFh9r3A1uXQBBbpxnlHYI/nMRpB+2P37ZS9D7Lse38YW9f8DMvwElMoW4C2Dsj2AOcnoz8Q1PZR5aEusDV111FRs2bOCBBx4gPj6eiIgIYmJi6N69O6+88gqJiYkBHdapS6yIiIiIiIi4rEn3c7ukHlwDK9zYJTU3Ez67/tywrtsY6HWnw5v4TLM+cMEd9sf2/wl/vuebesQnNMNO3C4hIcHu67y8PHbs2AFohp2IiIiIiIg4kJcF7/WD48XbUBEUCncuq/xSUKsVZt0CW7+zP968P9z8DQT54d7xuZkwtQ+cTCo+ZgmDO5ZBbOBO8KmKNMNOAoa6xIqIiIiIiEi5BIcbXWM90SV14YvnhnW1W8Koj/0zrAPHXWPzs9U1thpRYCciIiIiIiIivte017nLU/f/CX++X/FzbvgSFr9mfyysptERNqJ2xc/rDc36wAX/sD+2f0Xlvh8SMBTYiYiIiIiIiIh/uOhfUKuF/bFfn4Xju8p/rv0rYc499sdMQXDtR4HTcfXip9z3/ZCAosBORERERERERPxDSAQMe9v+WH4WfHevsRedq07tg89vMJbVlvS3V6HVoMrX6S0hkWeWCpeQnwXf3qWlsVWcAjtxO3WJFRERERERkQpr3g963m5/bO8yWDXdtdvnpMOn10PGMfvjPf8BPW5zT43e1LyvUXtJ+1fAymm+qUe8QoGdiIiIiIiIiPiXiydBTDP7Y788DSeSHA4vYi2Ar8bD0c32x1tdDJe96NYSveqSSVCruf2xX57R0tgqTIGduJ26xIqIiIiIiEilhEbB0Cn2x/Iyyl4a+8vTsP1H+2Ox58G1MyHI4vYyvcbZ0tg5d5dvqbAEDAV2IiIiIiIiIuJ/Wg6AbmPtj+1ZAmtmOh6f+An88W/7Y+G14YbPjc6wgc7RUuF9y7U0topSYCciIiIiIiIi/unSZ6FmnP2xn58ymkqUtGcZzL3f/pg5GK77BGq39GiJXuVsqbCWxlY5CuxERERERERExD+F1YCr3rI/lnsavrvP2K8uNwOO74QvbgJrnv24K98wGjZUJaFRjpfGlreLrvg9BXYiIiIiIiIi4r9aXwxdbrY/tvt3eKEBvNgIpnSHrBP21/e5F7qedZuqokV/6DHe/tjeZbDqP76pRzwigHdcFH+VkJBg93VeXp6TkSIiIiIiIiIuuOwF2PUbpB0sPlaQe+aCzX5s/OVwyTNeK80nLnkadsy3Xxr8y9PQ5tKqtQS4GtMMOxERERERERHxb2E1od8Dro3t9yCYgzxbj685Whqblwlz7tHS2CpCM+zE7TZv3mz39YEDB4iLi3MyWkRERERERMQFB9e4Nm7Nh9D0Ao+W4hdaXAg9boNV04uP7V1mfH3B7c5vJwFBM+xERERERERExL9ZrbBljmtjt3xbfWaZXfIMxDS1P/bLJDiR5Jt6xG0U2ImIiIiIiIiIf8vPMpZ8uiIv0xhfHYRGwdC37Y/lZaprbBWgwE5ERERERERE/JslHIIjXBsbHGGMry5aDoDut9of27MEVs/wTT3iFgrsRERERERERMS/mc3QfphrY9sPN8ZXJ5c+CzXPWhr7s5bGBrJq9gwWERERERERkYDU+24wl9E702yB3nd5px5/EhoNw6bYH8vL0NLYAKbATkRERERERET8X4OOMOJ956Gd2WJc36Cjd+vyFy0HQrex9se0NDZglRFNi5RfQkKC3dd5eXk+qkRERERERESqlI7XQN3zYPm7RjfYvExjz7r2w42ZddU1rCs0+DnY+Quk7i8+9vMkaHMp1Grus7Kk/BTYiYiIiIiIiEjgaNARRkyFYe8Y3WAt4dVvzzpnQqNh6BT47/DiY3kZMOceuPlbKMjR9ytAKLATt9u8ebPd1wcOHCAuLs5H1YiIiIiIiEiVZDZDSKSvq/A/rQZBtzGw5sPiY3uWwIsNoSD3zIzEYcaegNV9RqIfU6QqIiIiIiIiIlKVXPoc1Dxr4kxBrvE5LxPWfwbTBsLG2V4vTVyjwE5EREREREREpCoJqwH9Hih9jDUfvvkHJG/0Tk1SLgrsRERERERERESqmgOryh5jzTcaeIjfUWAnIiIiIiIiIlKVWK2wZY5rY7d8a4wXv6LATkRERERERESkKsnPMvaqc0VepjFe/IoCOxERERERERGRqsQSbnSDdUVwhDFe/IoCOxERERERERGRqsRshvbDXBvbfrgxXvyKxdcFSNWTkJBg93VeXp6PKhERERERERGppnrfDRtnGY0lnDFboPdd3qtJXKYIVURERERERESkqmnQEUa8b4RyjpgtxvUNOnq3LnGJZtiJ223evNnu6wMHDhAXF+ejakRERERERESqqY7XQN3zYPm7RjfYvExjz7r2w42ZdQrr/JYCOxERERERERGRqqpBRxgxFYa9Y3SDtYRrz7oAoMBORERERERERKSqM5shJNLXVYiLFKmKiIiIiIiIiIj4Ec2wE4/Lzy/uSHP48GEfViIiIiIiIiIi4j4lc46S+UdlKbATjzt27FjR5Z49e/qwEhERERERERERzzh27BjNmzd3y7m0JFZERERERERERMSPmGw2m83XRUjVlp2dzcaNGwGoW7cuFkvgTew8fPhw0ezAlStX0rBhQx9XJOJ5et5LdaTnvVQ3es5LdaTnvVRHet57Tn5+ftHKwo4dOxIWFuaW8wZeciIBJywsjB49evi6DLdp2LAhTZo08XUZIl6l571UR3reS3Wj57xUR3reS3Wk5737uWsZbElaEisiIiIiIiIiIuJHFNiJiIiIiIiIiIj4EQV2IiIiIiIiIiIifkSBnYiIiIiIiIiIiB9RYCciIiIiIiIiIuJHFNiJiIiIiIiIiIj4EQV2IiIiIiIiIiIifsRks9lsvi5CREREREREREREDJphJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIiIiIiIiJ+RIGdiIiIiIiIiIiIH1FgJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIiIiIiIiJ+RIGdiIiIiIiIiIiIH1FgJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiZdi3bx8PP/ww7dq1IzIyktq1a9OzZ09ef/11MjMzfV2eiNuYTCaXPgYOHOjrUkVccvToUb7//nueeuophgwZQmxsbNHzeMyYMeU+308//cTVV19NkyZNCA0NpUmTJlx99dX89NNP7i9epILc8bz/8MMPXf6Z8OGHH3r08Yi4Yu3atbz44osMGTKEuLg4QkNDiYqKIj4+njFjxrBkyZJynU+v9+Lv3PGc12u9/7P4ugARfzZv3jxuvPFGUlNTi45lZmayatUqVq1axfTp0/nhhx9o2bKlD6sUERFH6tev75bz2Gw27rjjDqZNm2Z3/ODBg3zzzTd888033H777bz33nuYTCa33KdIRbnreS8SKAYMGMDixYvPOZ6bm8uOHTvYsWMHH330ETfffDPTp08nJCTE6bn0ei+BwJ3PefFvCuxEnFi/fj2jRo0iMzOTqKgoJkyYwKBBg8jKyuLzzz/nP//5D3/99RdXXHEFq1atIioqytcli7jFnXfeyV133eX0+sjISC9WI+IecXFxtGvXjgULFpT7tk8++WTRH29dunTh0UcfpVWrVuzatYtXX32VxMREpk2bRt26dXn++efdXbpIhVXmeV9o/vz5NGrUyOn1TZo0qfC5Rdzh4MGDADRq1Ihrr72W/v3707RpUwoKCli+fDmTJ0/m4MGD/Pe//yU/P59PP/3U6bn0ei+BwJ3P+UJ6rfdTNhFxaODAgTbAZrFYbH/88cc517/66qs2wAbYnnnmGR9UKOJehc/nSZMm+boUEbd46qmnbHPnzrUlJyfbbDabLSkpqeh5fsstt7h0jh07dtgsFosNsHXv3t2WmZlpd31GRoate/fuRT8vdu7c6e6HIVIu7njez5w5s+g2SUlJnitWxA2uuOIK2xdffGHLz893eP2xY8ds8fHxRc/pxYsXOxyn13sJFO56zuu13v9pDzsRB1atWsXChQsBGDduHL179z5nzEMPPUS7du0AePPNN8nLy/NmiSIiUoZnnnmGK6+8slJLBN944w3y8/MBmDJlCuHh4XbXR0REMGXKFADy8/N58803K3xfIu7gjue9SCD5/vvvGTVqFEFBQQ6vj42NZfLkyUVfz5492+E4vd5LoHDXc178nwI7EQe+/fbbostjx451OMZsNjN69GgATp48WRTwiYhI1WCz2ZgzZw4Abdu2pVevXg7H9erVi/POOw8wfn7YbDav1SgiImUr2TBr165d51yv13upasp6zktgUGAn4kBhV53IyEi6devmdNyAAQOKLi9dutTjdYmIiPckJSUV7RNT8vXekcLrDxw4wJ49ezxdmoiIlENubm7RZbP53D+B9XovVU1Zz3kJDPqXE3Fg69atALRu3RqLxXlvlrZt255zG5FAN2vWLM477zzCw8OJjo6mTZs23HLLLfz+++++Lk3Eq0q+rpd8vXdEPw+kqhozZgz169cnJCSE2NhYevXqxZNPPlkUbogEgkWLFhVddvR6rtd7qWrKes6fTa/1/kmBnchZsrOzSUlJAcruhlOrVq2ijpn79+/3eG0i3rBlyxa2b99OdnY2p0+fZufOnXz88cdcdNFFjBgxgtTUVF+XKOIVJV/Xy/p5EBcX5/B2IoFu0aJFHD16lLy8PI4fP86ff/7JCy+8QOvWrXn//fd9XZ5ImaxWKy+//HLR16NGjTpnjF7vpSpx5Tl/Nr3W+yfnU4dEqqn09PSiy1FRUWWOj4yMJCMjg9OnT3uyLBGPi4iIYOjQoVx88cW0bduWqKgojh07xqJFi3jvvfc4fvw43377LcOGDePnn38mODjY1yWLeFR5fh4UvnkD6OeBVAktW7bk6quvpnfv3kUBxe7du/nqq6+YPXs22dnZ3HHHHZhMJm6//XYfVyvi3BtvvMHKlSsBGDFiBN27dz9njF7vpSpx5TlfSK/1/k2BnchZsrOziy6HhISUOT40NBSArKwsj9Uk4g0HDx4kJibmnOOXXnop9957L0OGDCExMZFFixYxdepU7rvvPu8XKeJF5fl5UPizAPTzQALfiBEjuOWWWzCZTHbHe/TowXXXXcf333/P1VdfTV5eHg888ABDhw6lQYMGPqpWxLlFixbx+OOPA1CvXj2mTp3qcJxe76WqcPU5D3qtDwRaEitylrCwsKLLJTfrdCYnJwfgnNbvIoHGUVhXqH79+syePbvol9gpU6Z4qSoR3ynPz4PCnwWgnwcS+GrWrHnOH3AlXXnllUyaNAmAzMxMZsyY4a3SRFy2efNmRowYQX5+PqGhoXz55ZfUr1/f4Vi93ktVUJ7nPOi1PhAosBM5S3R0dNFlV6a5Z2RkAK4tnxUJZC1btuTSSy8FYOfOnRw6dMjHFYl4Vnl+HhT+LAD9PJDqYfz48UV/6JXc3FzEHyQlJTF48GBOnjxJUFAQn332WandX/V6L4GuvM95V+m13rcU2ImcJSwsjNjYWMBo116akydPFv3QLrkBrUhV1b59+6LL6holVV3JjcfL+nlQcuNx/TyQ6qBevXpFvy/p54H4k0OHDnHJJZdw6NAhTCYTH3zwASNGjCj1Nnq9l0BWkee8q/Ra71sK7EQcaNeuHWDMIsrPz3c6btu2befcRqQqs9lsvi5BxGtKBtQlX+8d0c8DqY70M0H8TUpKCpdeeim7d+8GjC08Ro8eXebt9Hovgaqiz/ny0Gu97yiwE3GgX79+gDHlfc2aNU7HlZwW3LdvX4/XJeJrW7ZsKbrcqFEjH1Yi4nktWrQoep6XtQxk8eLFADRu3JjmzZt7ujQRnzt69CjHjx8H9PNA/ENqaiqXXXZZ0e8qL7/8MnfffbdLt9XrvQSiyjznXaXXet9SYCfiwPDhw4suz5w50+EYq9XKxx9/DBib9Q8aNMgbpYn4zO7du/n5558BYz+7xo0b+7giEc8ymUwMGzYMMGZUrFixwuG4FStWFM24GDZsWKkbOItUFdOmTSuadeGOfZJEKiMzM5MrrriCtWvXAvDEE0/w2GOPuXx7vd5LoKnsc95Veq33LQV2Ig707NmT/v37AzBjxgyWL19+zpjJkyezdetWAP75z38SHBzs1RpF3Gnu3LmlLv8+cuQI11xzDXl5eQBuf/dOxF/df//9WCwWAO69916ysrLsrs/KyuLee+8FwGKxcP/993u7RBG32rNnD4mJiaWO+f7773nuuecAY+/fsWPHeqM0EYdyc3MZMWIEy5YtA4zfy59//vlyn0ev9xIo3PGc12t9YLD4ugARf/XWW2/Rt29fsrKyGDx4MBMnTmTQoEFkZWXx+eefM23aNADi4+N56KGHfFytSOXce++95OXlMXLkSHr37k3z5s0JDw8nJSWFhQsX8t577xVNh+/Xr58COwkIS5cuZefOnUVfp6SkFF3euXMnH374od34MWPGnHOO+Ph4Hn74YV5++WVWr15N3759eeyxx2jVqhW7du3ilVdeKfqF95FHHqFNmzYeeSwirqrs837Pnj0MGjSI3r17c9VVV9G5c2fq1auHzWZj9+7dzJ49m9mzZxfNuHj99dc141p86u9//zsLFiwA4KKLLmLcuHFs2rTJ6fiQkBDi4+PPOa7XewkU7njO67U+MJhs2kFQxKm5c+dy0003kZaW5vD6+Ph45s2bR+vWrb1cmYh7NW/enL1795Y5buTIkUyfPp2YmBjPFyVSSWPGjOGjjz5yebyzX4msVivjx4/ngw8+cHrbcePGMW3aNMxmLV4Q36rs837hwoUubfMRERHBG2+8we23317uGkXcqbzLUps1a8aePXscXqfXewkE7njO67U+MGiGnUgprrrqKjZs2MBbb73FvHnzOHDgACEhIbRu3Zprr72We+65h4iICF+XKVJpH330EYsWLWL58uXs3r2blJQU0tLSiIqKIi4ujj59+nDLLbfQu3dvX5cq4nVms5kZM2YwcuRIpk2bxqpVq0hJSSE2NpYePXrwj3/8gyFDhvi6TBG36NatG5988gnLly9n9erVHD58mJSUFPLz86lVqxYJCQlcfPHF3HbbbdSrV8/X5Yq4lV7vpbrQa31g0Aw7ERERERERERERP6J5vCIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIVHsDBw7EZDIxcOBAX5ciIiIiosBOREREpKpauHAhJpMJk8nE008/7etyRERERMRFCuxEREREqqE9e/YUhXkffvihr8vxiDFjxmAymWjevLmvSxEREREpF4uvCxARERER8bWFCxf6ugQRERGRIpphJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIi1YzJZKJFixZFX48dO7ZoP7uymlT89ddf3HfffSQkJFCzZk3Cw8Np2bIlY8eOZe3atU7vs2QDjIULF2K1Wvnggw8YNGgQ9evXx2w2M2bMmKLxVquV3377jYcffpi+ffsSGxtLcHAwMTExdO7cmYcffph9+/Y5vK+nn34ak8nERx99BMDevXvPeXwmk8nuNq52iV26dCk333wzzZs3JywsjJiYGLp06cKTTz7JsWPHXH78AF9++SUXX3wxdevWJTw8nPPOO49HH32UEydOlFrD9u3buffee+nQoQNRUVGEhITQqFEjOnfuzK233soXX3xBTk5OqecQERER/6Y97ERERETEJc899xzPPvss+fn5dseTkpJISkrio48+4l//+hfPPPNMqefJzs7msssu45dffnE65tlnn3V4ntTUVNavX8/69euZOnUqn3zyCSNGjKjYAyoHq9XKfffdxzvvvGN3PCcnh3Xr1rFu3TrefvttZs2axaWXXlrquQoKCrjxxhv59NNP7Y5v376d1157jW+++YYlS5bQoEGDc247a9YsbrrpJnJzc+2OHz58mMOHD7N+/XpmzpzJxo0b6dChQwUfrYiIiPiaAjsRERGRambjxo0cOnSIyy67DIDnn3+eYcOG2Y2pV6+e3ddPPfUUzz33HAB9+vTh1ltvJSEhgeDgYP766y/efvttli9fzrPPPktsbCz33nuv0/t/7LHH2LBhA0OHDmXMmDE0a9aMI0eOkJaWVjQmPz+fhg0bMmLECHr37k3Lli0JCwtj//79/PHHH7z77rucPn2aG264gbVr19KuXbui2951111cc801PPnkk8yZM4dGjRoxf/78Sn3PHn/88aKwrkWLFjz22GN07dqVjIwMvvvuO95++21SU1O58sorWblyJZ06dXJ6rqeeeoo//viD4cOHM3r06KLH/8477zBv3jx27tzJAw88wGeffWZ3uyNHjjB27Fhyc3OpV68e99xzD7169SI2Npbs7Gx2797N4sWL+frrryv1WEVERMQP2ERERESkSvr9999tgA2wTZo0ye66pKSkoutmzpxZ6nlWrlxpM5vNNsD25JNPOhxTUFBgu+mmm2yALTo62nby5EmntQC2f/3rX6XeZ1JSki03N9fp9fv377c1btzYBthuuukmh2NuueUWG2Br1qxZqfdls9lsAwYMsAG2AQMGnHPdhg0bih5/hw4dznlsNpvN9uOPPxaN6dmz5znXn/34n3/++XPGWK1W2+DBg22AzWKx2I4ePWp3/YwZM4puv3HjRqePJSsry5aZmVnmYxYRERH/pT3sRERERKRUr7zyClarlW7duvHss886HGM2m5kyZQqhoaGkp6cze/Zsp+eLj49n0qRJpd5n8+bNCQ4Odnp9kyZNeOSRRwD47rvvsNlsLjySipk6dSpWqxWA//znP8TExJwz5vLLL+fWW28FYOXKlaxatcrp+bp168bEiRPPOW4ymXjwwQcBY4bh8uXL7a5PTk4GoFatWqUudw0LCyM8PLz0ByUiIiJ+TYGdiIiIiDiVl5fHjz/+CMA111xzTrOGkmJiYujYsSPAOWFTSddddx1BQUHlqiMtLY2kpCQ2b97Mpk2b2LRpExEREXbXeUrhXnvt27enV69eTseNHz/+nNs4csMNNzj9Pnbr1q3o8u7du+2ua9iwIQAnT55kzpw5ZRcuIiIiAUt72ImIiIiIU1u2bCEzMxOACRMmMGHCBJduVzgbzJHzzz/fpXPs3buX119/nblz57J3795Sx6akpNCyZUuXzlseOTk57NixA4ALLrig1LFdunQhODiYvLw8Nm3a5HRc27ZtnV5Xu3btosvp6el21w0dOpSYmBhOnTrFiBEjGDhwIFdddRUXXnghnTt3LncIKiIiIv5LM+xERERExKmjR49W6HaFIZ8jtWrVKvP2P/74I+3bt+ftt98uM6wDyMrKKld9rjp58mTR5fr165c6Njg4mDp16gBw4sQJp+MKZwY6YjYX/3peUFBgd12dOnX47rvvaNy4MTabjd9//50HH3yQ7t27U7t2bUaOHMn3339fao0iIiISGDTDTkREREScKhkavfbaa1x++eUu3S4yMtLpdWXNBDt+/Dg33HADmZmZREVF8fDDD3PZZZfRqlUratasSUhICAC//fYbF198MYBH97ArVNpy4EKerqN///7s3LmTr776ih9++IHFixdz4MAB0tLS+Prrr/n666+57LLL+Prrr0sNBkVERMS/KbATEREREacKZ4yBsZ9dac0O3GXWrFmcOnUKgK+//ppLL73U4biSs988peRswNKW+YLRKKJwZl3Jpa3uFhYWxo033siNN94IGHvdzZs3j7fffpvt27czf/58nnjiCd544w2P1SAiIiKepSWxIiIiItWQK7PFABISEopmtC1YsMCTJRXZvHkzYIRezsI6gNWrV5d6HlcfY2lCQ0Np06YNAH/++WepYxMTE8nLywPwSrBZqGXLltx7772sWrWKJk2aAPDll1967f5FRETE/RTYiYiIiFRDYWFhRZdzcnKcjouIiChadrpw4UJWrlzp8dry8/OL6rJarQ7HZGZm8vHHH5d6nsLHWNrjc8Ull1wCGA04VqxY4XTc9OnTz7mNN9WoUYMePXoARhMOERERCVwK7ERERESqoTp16hTNnNu1a1epY5944omi2WrXX399qeMLCgr49NNPOXDgQIVrK5zRlpGRwezZsx3ex2233cahQ4dKPU/Dhg0Bo3HG2R1Xy+POO+8sagZx++23k5qaes6YBQsWMGPGDAB69uxZFJy50/z58zl8+LDT61NTU4sC1RYtWrj9/kVERMR7tIediIiISDVksVjo0aMHy5Yt44MPPqBLly507tyZ4OBgwFiOWrgPW9++fXnqqad45plnSEpKonPnzowbN47BgwfTsGFDcnJy2LNnD8uXL2f27NkcOnSIjRs3Fi3PLK9Ro0YxceJEcnJyGDNmDOvWreOSSy6hRo0abN68mSlTprBmzRr69u3LsmXLnJ6nT58+AFitVu644w7uvfde6tSpUxQ+tm7d2qV6OnbsyEMPPcRrr73Gxo0b6dq1K4899hhdunQhMzOTuXPn8u9//5uCggJCQkJ4//33K/S4y/LZZ59x1VVXcemllzJ48GA6dOhA7dq1SU9PZ9OmTbz99tscPHgQMEJGERERCVwK7ERERESqqQkTJnDVVVcVdWUtadKkSTz99NNFXz/99NPExMTw+OOPc/r0ad566y3eeusth+cNCQmxW3JbXv8lK6QAAAKlSURBVE2aNGHq1KncdtttZGVl8dJLL/HSSy/ZjbnuuusYP358qUtPL7roInr16sWKFSv49NNP+fTTT+2uL09H15dffpmMjAzeffdddu/ezT/+8Y9zxtSsWZMvv/ySzp07u3ze8srLy+OHH37ghx9+cDrm7rvv5t577/VYDSIiIuJ5WhIrIiIiUk1dccUV/PrrrwwbNoxGjRoVza5z5v7772fXrl3861//olevXsTGxmKxWIiMjCQ+Pp6RI0fy3nvvcfDgQZdnrzkzduxYlixZwvDhw6lbty7BwcE0bNiQyy+/nC+++ILPP/+coKCgUs9hNptZsGABTz75JJ06dSIqKqrCjSjMZjPvvPMOixcv5sYbb6Rp06aEhoZSo0YNOnfuzMSJE9mxYweDBw+u0Pld8eabb/LVV19xxx130L17dxo3bkxISAjh4eHEx8czZswYli5dyttvv120hFdEREQCk8lWnrcWRURERERERERExKP01puIiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn7k/wFvfb04F7hV9wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=4, sharex=True, dpi=200,figsize=(7,7))\n", + "\n", + "for i in range(2):\n", + " axes[0].plot(np.array(observables['imp_occ'][i]['up'])+np.array(observables['imp_occ'][i]['down']), '.-', c=f'C{i}',\n", + " label=f'Impurity {i}')\n", + " axes[1].plot(np.array(observables['imp_gb2'][i]['up'])+np.array(observables['imp_gb2'][i]['down']), '.-', c=f'C{i}')\n", + " \n", + " axes[3].semilogy(conv_obs['d_Gimp'][i], '.-', color=f'C{i}', label=f'Impurity {i}')\n", + " \n", + "# Not impurity-dependent\n", + "axes[2].plot(observables['E_tot'], '.-', c='k', label='Total energy')\n", + "axes[2].plot(observables['E_dft'], 'x--', c='k', label='DFT energy')\n", + "\n", + "\n", + "axes[0].set_ylabel('Imp. occupation\\n')\n", + "axes[0].set_ylim(0, 2)\n", + "axes[0].legend()\n", + "axes[1].set_ylabel(r'$G(\\beta/2)$')\n", + "axes[2].set_ylabel('Energy')\n", + "axes[2].legend()\n", + "axes[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')\n", + "axes[3].legend()\n", + "\n", + "axes[-1].set_xlabel('Iterations')\n", + "fig.subplots_adjust(hspace=.08)\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "599730cc-8214-48cd-80a6-14676f2e23c0", + "metadata": {}, + "source": [ + "These plots show:\n", + "\n", + "* The occupation converges towards a disproportionated 1.6+0.4 electrons state\n", + "* Both sites become insulating, which we can deduce from $G(\\beta/2)$ from its relation to the spectral function at the Fermi energy $A(\\omega = 0) \\approx -(\\beta/\\pi) G(\\beta/2)$\n", + "* convergence is only setting in at around 20 DMFT iterations, which can be also seen from the column `rms(c)` in the Vasp OSZICAR file, and more DMFT iterations should be done ideally\n", + "\n", + "Therefore, we can conclude that we managed to capture the desired paramagnetic, insulating state that PrNiO3 shows in the experiments.\n", + "\n", + "## 4. Plotting the results: the Legendre Green's function\n", + "\n", + "We now take a look at the imaginary-time Green's function expressed in Legendre coefficients $G_l$. This is the main solver output (if we are measuring it) and also saved in the h5 archive." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "91f19160-3f34-4738-a9fa-8fe9c4289b0c", + "metadata": {}, + "outputs": [], + "source": [ + "legendre_gf = []\n", + "with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5') as archive:\n", + " for i in range(2):\n", + " legendre_gf.append(archive[f'DMFT_results/last_iter/Gimp_l_{i}'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "50176755-edbb-41ed-9656-5c648a08a6c0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCMAAAIqCAYAAAAekIA6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1gUV/fA8e8uHaQIIipS7BUVKxpU7CZq7L1ETfE1sSVGTVWjSUz5xZ5XY2JJ0VhiNC9GE3sXOzawIcUOgigifff3x7gLyy4KStXzeR4eYe6dmTu7uOycvfcclVar1SKEEEIIIYQQQghRSNRFPQAhhBBCCCGEEEK8WCQYIYQQQgghhBBCiEIlwQghhBBCCCGEEEIUKglGCCGEEEIIIYQQolBJMEIIIYQQQgghhBCFSoIRQgghhBBCCCGEKFQSjBBCCCGEEEIIIUShkmCEEEIIIYQQQgghCpUEI4QQQgghhBBCCFGoJBghhBBCCCGEEEKIQiXBCCGEEEIIIYQQQhQqCUYIIYQQQgghhBCiUJkX9QDEsytXrhyJiYl4enoW9VCEEEIIIYQQQrwAoqKisLOz49atW0+1v8yMeA4kJiaSlpZW1MMQQgghhBBCCPGCSEtLIzEx8an3l5kRzwHdjIhz584V8UiEEEIIIYQQQrwI6tSp80z7y8wIIYQQQgghhBBCFCoJRgghhBBCCCGEEKJQSTBCCCGEEEIIIYQQhUqCEUIIIYQQQgghhChUEowQQgghhBBCCCFEoZJghBBCCCGEEEIIIQqVlPYsRHv37uW7774jODiYqKgopk2bxvTp04t6WEIIIYQQogTRarVotdqiHoYQ4jmiUqlQqVSFek4JRhSiBw8eULt2bQYNGsSECROKejhCCCGEEKKE0Gg03Lt3j7t375KSklLUwxFCPIesrKwoXbo0jo6OqNUFv4hClmk8cvz4cb766it69eqFu7s7KpUKa2vrJ+6XnJzMtGnTqF69OtbW1lSoUIGRI0dy7do1o76vvPIKs2bNon///lhZWRXEZQghhBBCiOeMVqvl1q1b3Lp1SwIRQogCk5KSwq1bt7h9+3ahzL6SmRGPzJw5k7/++itP+yQnJ9OuXTsOHjxI+fLl6d69OxERESxfvpxNmzZx6NAhqlSpUkAjFkIIIYQQL4KEhATu3bsHQNmyZXFwcMDMzKyIRyWEeJ5kZGRw//59oqOjiY+Px87ODgcHhwI9pwQjHmnevDn169enSZMmNGnShHLlyj1xny+//JKDBw/SvHlztm7dSqlSpQCYPXs2EydOZOTIkezZs6eghy6EEEIIIZ5j9+/fB8DZ2RkXF5ciHo0Q4nmkVqtxcXEhPT2duLg4EhISJBhRWKZMmZKn/mlpaSxYsACA77//Xh+IAHjvvff4+eef2bt3L8ePH6dRo0b5OlYhhBBCCPHiePjwIQD29vZFPBIhxPPO3t6euLg4EhMTC/xckjPiKe3fv5/4+HiqVKmCr6+vUXufPn0ACAwMLOyhiQKybH841+OTntjvenwSy/aHF8KIhBBCCPG802q1ZGRkAEjOMSFEgdO9zmRkZBR43giZGfGUTp06BUDDhg1Ntuu26/rlhzp16pjcHhYWJrkpCtiy/eHM2BTCioMR/P6WH+5ONib7XY9PYuCSIKLilE8wRvpXKsxhCiGEEOI5k/VmoLDL7gkhXjxZX2e0Wm2Bvu7IzIinFBUVBUDFihVNtuu26/qBUtozODiY4OBgUlNTuXXrFsHBwYSEhBT8gMUz6VS3HJ7OtkTFPWTgkiCTMySyBiI8nW3pVPfJeUeEEEIIIYQQ4kUkMyOe0oMHDwCwtbU12W5nZ2fQD+DYsWO0adNG//MPP/zADz/8gJeXFxEREU8857lz50xuz2nGhMg/7k42/P6Wnz7YMHBJkMEMieyBiMfNnhBCCCGEEEKIF53MjHhKuilzOU1bMbW+JiAgAK1Wa/SVm0CEKHq6gET2GRISiBBCCCGEEEKIvJGZEU9Jl804pyyjuqzHWatsiJIv+wyJVt/sAi1kaLUSiBBCCCGEEEKIXJKZEU/J09MTgGvXrpls123X9ctv8fHxREREEBERQVpaGhqNpkDOI4xlZGhpX7us8r1GS8ajWTBW5mq2nrvF3cTUohyeEEIIIcQLQaVSPZdJPa9du8bIkSOpUKEC1tbWVK9enalTp5KcnFzUQytRIiIiUKlUBAQEFPi5AgICUKlURjPeVSoV3t7eBX7+kkqCEU+pfv36AJw4ccJku257vXr1CuT8c+fOpVKlSlSqVIlLly4RGxtbIOcRioTkNNYcjaLf4kO0+nYXy/ZHGPW5FP2AzwJDaPrldt5eeZxd56NJz5AgkRBCCCGKNylfXnyEhYXRsGFDli9fjouLC927dycjI4OZM2fStm1bUlJSinqIQuQbWabxlF566SUcHR0JCwvj5MmT+Pr6GrT/8ccfAHTt2rVAzj9hwgSGDx8OQMeOHTEzMyuQ87zIMjRa9l++w58nrvHvuVskp+UusJCWoWXzmVtsPnMLNwcrejWsSN9GFansKkt2hBBCCFG8SPny4mXkyJHExMQwbtw45s2bB0B6ejr9+vVjw4YNfPnll3z22WdFPMqSwd3dndDQ0BwLDhSG0NBQLCwsiuz8xZ3MjHhKlpaWjBkzBoAxY8YY5I6YPXs2p0+fxt/fnyZNmhTI+Z2cnPD29sbb2xsLCwvUankq88ul2wnM2hJKi6928NqyI/wVfIPkNA0jzLZQgTv6fk42Fmx4uwUHPmhLeUdrANQqqMAdRphtAeD2/RQW7Q6j7Xd76LPoIGuORvEgJb1IrksIIYQQIjspX158HD16lL1791K2bFm++eYb/XZzc3MWLVqEhYUFCxYsIC0trQhHWXJYWFhQs2bNAls2nxs1a9akSpUqRXb+4k7uYB/5+++/8fPz038BpKamGmz7+++/Dfb55JNPaNasGQcPHqRatWr0798fPz8/Jk6ciIuLC8uXLy+KSxFPIS4xlRUHwum2YD8d5uzlhz1XuH0/cxrcCLMtTLP4lTVWX1CBO3g62/L3+Jb4epbG3cmGP0a3wNPZlnLaO6y1/oJpFr/yuvk/Buc4FnmXKevP0OTz7Uxce4qgK7Emq64IIYQQQhSWnKqF6ZS0qmFZ8wQkJiby3nvv4eHhgY2NDQ0bNiQwMFDfd926dTRt2hQ7Ozvc3NwYN24cSUnGwRhvb29UKhVarZZ58+ZRu3ZtrK2tcXd3Z9y4ccTHx+fL2Ddt2gRAt27dsLKyMmhzc3OjZcuW3L17lwMHDuTL+R48eMCMGTPw8fHB1tYWBwcHWrduzcaNGw36HT9+HJVKpb9HMuWbb75BpVLx8ccfG2xPTU1l3rx5NGnSBHt7e+zs7GjatClLly41+T5Yl2MhIyODb775hurVq2NlZYWHhwdTpkzJ0zKVnHJGrFixApVKxfTp04mKimLQoEG4urpiY2ND48aNDX5HsluyZAk+Pj7653/s2LHcu3cvx/6PyxkREhLCiBEj8PLywsrKCjc3N1q1aqWfEZNVbp8rndDQUIYOHUqVKlWwtrbG1dWVBg0aMGHCBG7evJnjeAubBCMeiYmJ4fDhw/ovUMpzZt0WExNjsI+1tTW7du3i008/xdbWlo0bNxIREcFrr73GyZMnqVq1alFcisil1HQN/567xVu/HKPZl9uZHhjCmeuGLybmahXta7lRv8MQrqvc8FDdZp3NF6wdUNHgD7G7kw1rB1Rknc0XVOQ211Vu9Bs6mk+61KJmOXuDYyalZbD+xDUGLAki4P92s2DHJW7kYp2mEEIIIURBeB7Ll6emptKuXTt+/fVXGjRogJ+fH6dOnaJnz55s376dOXPmMGjQIMzNzenYsSMZGRksWLCAN954I8djjh07lkmTJlGxYkV9LocFCxbQunVrEhISnnnMp06dAqBhw4Ym23Xbdf2exe3bt2nWrBnTpk3j7t27dOjQgWbNmnH8+HF69uzJV199pe/bqFEjatasyeHDhwkLCzN5vFWrVgEwaNAg/bbExETat2/PhAkTiIiIwN/fn4CAAC5fvswbb7zB6NGjcxzf4MGDmTFjBhUrVqRjx44kJCTwzTff8Prrrz/ztetERETQpEkTDhw4gL+/P76+vhw/fpwePXqwdetWo/7vv/8+o0aN4tKlS7Rt25bmzZuzcuVK2rRpk+dcHuvWraNhw4asWLECe3t7evXqRYMGDQgLC2PChAkGffPyXIGSu7BRo0asXLkSV1dXevbsSbNmzfSBoQsXLuT5sSowWlEi3b17VxseHq4NDw/XVqtWTVuzZs2iHlKJoNFotKeu3tVO3XhG2+Czf7VeUzaZ/Ooyf6922f4r2jsJyVqtVqtduu+KtvmUFdpr06tptdMctNq59bTau1GZB74bpWyb5qC9Nr2atvmUFdql+64YnPOTDWe0PtP+MXk+7w82aYf8FKT9K/i6Nik1vSgeGiGEEEIUQxkZGdqQkBBtSEiINiMjw6hdo9Fo4x+m5stX6M172pe+2qH1mrJJW+XDv7VVPvxb6zVlk/alr3ZoQ2/ey7fzxD9M1Wo0mmd+bABt9tuZ8PBw/faAgABtXFycvm358uVaQFu1alWts7Ozdu/evfq269eva8uWLasFtGFhYQbH9PLy0gJaBwcH7bFjx/TbExIStG3bttUC2nffffeZr8fX11cLaP/66y+T7XPnztUC2vfee++Zz/Xyyy9rAe3kyZO1qamp+u1hYWHaKlWqaM3MzLSnTp3Sb58xY4YW0M6YMcPoWCEhIVpA26BBA4Pto0eP1gLaoUOHahMSEvTbo6Ojtc2aNdMC2k2bNhnso3vuatWqpQ0PD9dvv3LlirZ06dJaQHv58uVcXaPud6F169YG23W/B4B27Nix2rS0NH2b7jFu2bKlwT4HDhzQAlpnZ2ft2bNn9dvv3LmjrVevnv54Wcesux4vLy+DbRcvXtRaW1trLSwstGvWrDFoy8jI0AYGBhpsy+tz9dprr2kB7fr1640ek5CQEO2NGzeMH6xsY3jca05WtWvX1tauXfuxfR5HEliWUHPnzjVIXuPq6lqEoyn+bt1LZmPwddYfv8al6Acm+7jaW9HT153eDStSI9tsBl2SJjPPFrChD9yNgJ+7wmvKdDp+7qpsK+2NWc8/eCPKXL+PSqWiXkUn6lV04uMutdgacpt1x66y//IddLPTtFrYd+kO+y7dwcHanO4N3OnbuCI+7o7PZckqIYQQQuSP+8np1P/M+FPcZ5WuyZxCf+1uEp3n7svX45+a1hFHm4JL7GdmZsaPP/5I6dKl9duGDRvG5MmTuXz5MlOnTqVly5b6tgoVKjB48GDmzJnD3r17qVy5stExx4wZQ6NGjfQ/lypVioULF1KnTh2WLl3KrFmzjJZX5MWDB8p71JwSLtrZ2Rn0e1rBwcFs2bKFFi1a8NVXXxm816xcuTLfffcdPXr04KeffmL+/PmAMlNh6tSprFy5kk8//dTgeCtXrtT30YmOjuann36iUqVK/PjjjwaPi6urKz/88AMNGjTghx9+oEuXLkZjXLBggcHyhkqVKjFkyBAWLFjAvn378iUPg+5azc0zb4nfeecdPvvsM4KCgkhNTcXS0hKAxYsXAzBx4kTq1Kmj7+/i4sK3335Lp06dcn3eOXPmkJyczJgxY+jXr59Bm1qtNiiA8DTPVXR0NABt27Y1OnetWrVyPc7CIMGIEkqqaTxZUmoGW0Nu8cfxaxy4fIcsf1P1rMzVdKxTjt4N3fGvWgZzs5xXLumzRr+2KTP4MK+eEklAC1YO0HQU5SySGOlXw+QxrC3MeLV+BV6tX4Eb8Un8eeIa645fIzL2ob7P/eR0fg2K5NegSGqWs6dPo4r09HXHpdTT/3ETQgghhHiReHt7Gy2ZVqvVeHl5ERMTQ4cOHYz20d3g5rSmfsCAAUbbatWqRf369QkODub06dPPlLxe++hTqpw+iNLmU66xbdu2AdC9e3eT5/L39weUhJo6lStXxs/Pj6CgIE6cOGGwlGT16tWo1WqDx2fPnj2kpaXRuXNnkwGa+vXrY29vb3AOHQsLC6M8DwDVq1cHcn5+8iogIMCo0oW5uTmVK1fm+PHjxMbGUr58eQD2798PYBQ8AOVezNnZmbi4uFydd/v27QCMGjXqiX2f5rlq1KgRW7ZsYdiwYXzyySc0bty42BY7kGBECeXk5ISTkxOAlIvJQqPRcjQijvUnrrH5zK0cK1c08S5N74YVeaVeeRys8/j4WZWCKu3g2FLQZin3mXIf/v1Q+V5lBi5Vwa02lK3z6N/a4OQFj14MKjjZMKZtNd5pU5Uj4XGsPXaNzWdukpSWoT/k+VsJfP53KF9tOU+7WmXp28iDgBqujw2aCCGEEEK86Nzd3U1u180uMNWua8tp/b+Xl5fJ7d7e3gQHB3Pjxo2nGaqevb0yMzdrlb6sHj5UPrwqVerZysVHREQAMGXKFKZMmZJjvzt37hj8PHjwYIKCgli5cqU+GBEUFERYWBht2rShYsWKRudYtGgRixYtyvEcphKGli9f3uQHrbrrzmt+hpxkHe+TznPjxg1UKhUeHh4m9/H09Mx1MOLq1asAJmffZPc0z9WkSZPYv38/gYGBBAYG4ujoSLNmzejatSvDhw/X/54VBxKMEM+FyNhE/jxxnT9PXuNqnOlkkBVL29CrYUV6N3THy8Uu7ydJTYSgRXBgPqTknDUXAG0G3LmgfJ3bkLndshS41jQIUqjK1qFZZReaVXbhs+512Hz6JmuPXeVY5F39bukaLf+eu82/525TppQVvRsqyziqli0+LyZCCCGEKHwO1uacmtbxmY9z814Sb/x8jGt3k6hY2oafXmsMYLStvGP+JLB0sC7Y25AnLXPNz2Ww+TVjwdPTk5MnT3Lt2jWT7brtz1qqMiND+eCrZcuWj70hLlOmjMHP/fv3591332X16tV8++23qNVqfeLKrEs0sp7D19eXevXq5Wl8hbVEuSiXQqtUqlyd/2meKwcHB3bu3MmBAwcIDAxk9+7d7Nixg61btzJr1qx8W+aSHyQYIUqs+8lpbD59k/UnrnE04q7JPqWszHnFpxy9G1akibczavVTvOikp8LxFbD3W0iMNm5XmSnBB0s7cHCHuHDQ5FD/OfUBXD+mfBkM1A3K1qaUWx36la1Nv+61CVdVY92pWNafuGZQZvTOgxR+2HuFH/ZewdfTib6NPOha/ylmeAghhBCixFOpVM+ce+F6fBJv/XKca3eTjKpmrBnVXF9R461fjpeoihr5LTIyEh8fH6PtUVFRgJJ34lnUr1+fv/76ixMnTphs123P6819droZAX369GHcuHG53s/V1ZUOHTqwZcsWdu/eTevWrVm7di1WVlb07t3b5DkCAgKYPXv2M423OChfvjwRERFcvXrVZMVE3e9Abnh4eHDp0iXCwsKoW7fuY/s+7XOlUqnw9/fXL+OIiYlh/Pjx/P7773z00UesWbMm18cqSDLXW5QoGRotuy9EM/b3kzT5fDsf/HnGKBChUkHLamWYN6ABRz9uzzd96tOsskveAxGaDAj+HRY2gi2TjAMR1k7w9hEYfwpKeyszJzJSYcxReDsIei+FlhOh+svg9IQI9oPbcGUXHFoIf70NSwKotKQ6ky8N5lDln9nVOIiPKl2kqtkt1GQuDTkZFc9HG87Q9IvtvLsmmIOX76AxlRwjJ0GLIP7qk/vFX1X6CiGEEOK58qTynTmV/XwRmbqBO3/+PMHBwdjb2z9zkECXyDEwMNBoKcLt27fZt28fjo6O+hvMp9W+fXsANm7cmOd9dTMgVq1axY4dO7h9+zZdunTRLx/XadOmDWZmZmzatEn/6X5JpnvM161bZ9S2bdu2XC/RgMzHf8mSJbnu+zTPVVaurq5Mnz4dgDNnzjzTsfKTBCNKqPj4eCIiIoiIiCAtLQ2NRvPknUqwi7cTmLU5lOazdjB8+VECT90gJd3wmquWLcWUzjU59EE7fn29Gd0buGNj+RSJPbVaCN0Ei16Cjf+B+KyRzkcBDSdP+M9+KFsDnDyUpJalvZWklr/2UJZj+PSBdlNh0GqYcAY+vAavb4Ouc6HpW+DlDzaljU6fOQ4NxF5Gff5/VDo7n7duTme7xXtctH2DbXZT+dZ8Ma+b/Y2/+gz2aXFsOHmNQT8dptW3u5i7/SJX4x7mfGxQggv/fKAk43xcQCL+qtLnnw8kICGEEEI8Z/49eyvHQIRO9oDEv2dvFcFIi97ChQs5efKk/ufExETGjh2LVqtl5MiRBokajxw5Qs2aNWnXrl2uj9+0aVNeeukloqOjDfIDpKen8/bbb5OWlsbYsWON8sVNnz4dlUqlT27/JH5+frRr145du3bx7rvvGlXn0Gg0bN26VZ+0MasePXpgZ2fH+vXrWb58OWC8RAOUnBzDhw/n0qVLDB061Cj/BMDBgwfZvHlzrsZc1HTJJmfPnk1oaKh+e1xcHJMnT87TsSZMmIC1tTWLFy9m/fr1Bm0ajcbgMXma52rx4sWEh4cbnXfLli3Asy/zyU+yTKOEKgmlPZftD6dT3XJPnMp3PT6Jf8/eyqxW8UjsgxT+d+oG609c4+z1+yb3LW1rwav1K9C7UT6VwbyyG3bMgOvHDberzMDSFlISlKDDa5uUIISOLiChq7KhK/uZtY+VPXg0Vb50tFplVsTtcxAdArdDIPocxFyA9GSTQzTXJFONy1Qzv2ywPVZrzwWNBxcSPDi/y5OxOzxwrlSPV5tUp3PdclhbZAvM1OzK/T0LcchpvJAZiLgbwX2bijjU7IoQQgghnh+6919Pes+mC0iYes/2ohgyZAjNmjWjbdu2ODo6snfvXm7dukWdOnUM3peDkmzywoULJCebfj+Xk+XLl9O8eXPmzZvHzp07qV27NkePHuXKlSs0a9aMjz/+2Ggf3YeSeUlqv3LlSjp27MjcuXP55ZdfaNCgAa6urly/fp0LFy4QExPDnDlzjGZh2NnZ0b17d1atWsXq1atxdHQ0WZoTYP78+Vy5coXff/+dTZs20aBBAypUqMCtW7e4fPky169fZ/z48bzyyit5eISKhr+/PxMmTGDu3Ln4+vrSvn17bGxs2LlzJ56envpKI7lRvXp1li1bxmuvvUafPn2oW7cudevW5e7du5w5c4YbN24Y5CHJ63O1ePFiRo8eTe3atalVqxbm5uZcuHCB4OBgbGxsmDZtWoE8Rk9DghElVHEv7blsfzgzNoWw4mDEY9cWZp0aCDDEz4ud56NZf+Iau85HG9S41jFXq2hbsyy9Glakbc2yWJrnwwSfa8dhx2cQvidbgwp8+kJpLyVnhKlAhE72gMT5TeA3+vHnVanAvpzyVTVL5FyTAXFXsgQpHv0bFw6YXobhokqghVkILQjJ3HgDIjeU5eBfnlC2DpXrNMWrVmNULlVZdjadn+5OZp3NF7ibCkhkCURcV7nR9+5k3jibzshnmxkohBBCiGImt8EFdyebFzYQAbBgwQIqVarETz/9RHh4OM7OzrzzzjvMnDkTR0fHfDlHtWrVOHnyJFOnTuWff/5hw4YNeHh48Mknn/DRRx9hbW1ttM+pU6cAGDp0aK7P4+bmRlBQEIsXL2bNmjUcPXqU1NRUypcvj6+vL927dzdZxhKUmRC6xJW9e/c2WboTwNbWlq1bt/Lzzz/z66+/cvr0aQ4fPkzZsmWpUqUK48ePZ+DAgbkec1GbPXs2NWrUYOHChWzbtg0XFxf69evHrFmz6NGjR56ONXDgQGrXrs0333zDrl27WL9+Pc7OztSsWZMPPvjAoG9en6uZM2eyceNGDh8+zI4dO0hNTaVixYq89dZbTJo0yWTOi6Ki0uZX+ldRZOrUqQPAuXPningkmZ60/jB7n3IO1rSo6sLO89HEPzSd/NHH3ZHeDd15tYE7znaW+TPQ6POwc6YSOMiu+svQ9hMo9yixTNAiqNnVdCAiq/iruQtEPI3URIg5/2gGRZYgRWJMng6TrrYkrXQ19sS7cjnZgQEW+yjD3cxgCxgGIpI+xtzZ84VOWiWEEEIUBY1Gw4ULFwCoUaMGarWssi5s3t7eREZG5lvVjPyk0WhwcXGhcePGbNu2raiHI54DeXnNedb7UAlGPAeKYzACHh+QuB6fRL/Fh7gen4S5WmVyBgSAm4MVPXzd6d2wItXd8rGM5d1I2D0LTq9RcjNk5eWv5HrwbJZ/5ytoD2KU5R2Plnlob4egiQ7FLP1pEkyplBkbWo0EIoQQQogiJsGIolecgxHHjx+ncePGHDx4kObNmxf1cMRzoDCDEbJMQxQY3dpCXUBi4JIglg9vwt6LMXz973mS05QgQPZAhJW5mk51ytG7UUX8q5bB7GnKcebkQbSy3OLYcuPym+XrK0GIKu2Um/GSpJQrlAqAygGAkmbTTKOBu+EkXz9D2Lkj3I88jevDMCqpbmKmetwfU62SywJ4mKGmn/0Z+g3rRAUJRAghhBBCFCuNGjUqlkESIXJDZkY8B4rrzAid6/FJ9F18kBvxj0/g09Tbmd6N3HnFpzz21s9WL9tIUjwcnK8stUjLVmXCpZqyHKN295IXhMijyNhENhwN4+Txw7gkXqaG+io1VVepob5KOdXdnHc0t4G6vaDRCKjY+Ll/nIQQQojiQmZGFL3iPDNCiPwmyzREnhT3YATAsYg4+iw+ZLTd09mWXg3d6eVbEU8X2/w/cepDOPID7J8LyfGGbQ4VIeADqD8QzF6sSUIZGi0HLt9h3fFr/HvuFmXSo1ljOQMP9R3StWrUaMhxQopbXWg0HOr1A+v8SdYkhBBCCNMkGCGEKEyyTEM8UXx8PPHx8QCkpaUVu2oa2ZV3skFFZh0ItQoWDmzIyz7lnr0cpynpqXDiZ2VJxoPbhm22LtDyfWg8EiyMMxK/CMzUKlpVd6VVdVfu3wpH9fP72CfdIVJTloGpnwCwzuoz3FWxaFChzlrB4/ZZ2Pw+bJv6aLbESHBvKLMlhBBCCCGEELkmodUSau7cuVSqVIlKlSpx6dIlYmNji3pIOdIlstSi3ARbmKnQaOGrf85z417eai8/kSYDTq2B75soN8xZAxFWDtDmYxh/Cpq//cIGIgzEX8VhTQ/sk65xXeXGwNRPuKUqww3K0DdlGpGasqjRckfrwBWrWob7pj2Ek7/BT23hh5Zw9CdIvl801yGEEEIIIYQoUWSZRgmVdWZEx44dMTMzIzQ0tGgHZYKpihrAE8t+5plWCxe2KGU6o0MM28ytoemb4P8e2Do/23mKSmwYnPgF4qPAyRMaDgOXKs92zPirOZbvvBmfxLBlR3BKvc3vlp/jpY4mUlOWjzPeZGzFMJrc+xd1sokcExZ24NNbyS3h3vDZxieEEEIIWaYhhChUkjNC5ElxzRnxpNKe+RaQCN8LO2bAtaOG21Vm0HAotJ4CDhWe8WqK0Mnf4H/jQJuRuU1lBq/OB98hT3/coEXwzwc5lu+8Hp9Er/8ewOz+dX1A4rO0oSzPeBk3Gy3f1o3E/14g6ijjXCCAUp2k0XDw6QtW+ViWVQghhHiBSDBCCFGYJBgh8qQ4BiNyE2x45oDE9RNKEOLKLuO2un2gzUfPPnugqMWGwcImhoEIHZUZjDn61Nd4PT6J9d9/zOqE+kaBiKx9Bi4JIj0uipfNj7E0vbNBe2VXO758yYJmd/+H6tRq4yShAJalwKePEpio4PtUYxVCCCFeVBKMEEIUpsIMRsirmSgQ/5699cQgg7uTDb+/5Yensy1RcQ/59+yt3B085gKsGQo/tjEORFTrBP/ZD32WlvxAxL3rsP4N04EIULYf/gEy0p7q8P+evcXshHY5BiIg8zkyd/ZkaXpn2tYsi51lZrLUKzGJDNgYz5DrPQkddAR6/gAefoYHSX0Ax1fAkgD4obXyfcqDpxqzEEIIIYQQ4vkgMyOeA8VxZgTAsv3hdKpb7omzHa7HJ/Hv2VuM9K/0+APGR8Hur+HUKtBqDNs8W0C7qeDV/BlHXYjSUyH2EkSHKpUo6vY2bI+/CnPrPv4YpcpB0l0oVxcCPoRqHfI0hKd5jqITkpmz7SJrjl5Fk+XVQ6WC/o09eK9jdco+vKIEHU6thpR7xge0LKUs32g8QlnOIYQQQgiTZGaEEKIwyTINkSfFNRiRbx7EwL7/g2PLICPVsK2cD7SbBlXbF9/SkpoMpfJE9rwJZ/6A9a8r35etDW9ny72g1cLMsqDJds1ZWdhAWpLy/eD1UK29YfuVPUpFkQq+4FwF8vENTOjN+3zxdyj7L98x2G5racbbAVV4o2VlrLUpELIRji2Ha0dMH6hCQyUoUbc3WNrl2/iEEEKI54EEI4QQhUmWaQgBkHwPdn4O8+rD4cWGgQiXqtBnOby1V5kNUBwDEadWK8sSvnSHrZ8at5fNUirzzkVlpkRWKhU0eSPna1OZQUZ65s8VGhj3Ob4c/nwTFjaGXV/k+RIep1Z5B359vSnLhzehimtmEOFhagb/t/Uibf9vNxvP3UVTbyC8sQ1GH4Smb4GVo+GBbpyA/42F/6sBm96DW2fydZxCCCGEEEKI4keCESVUfHw8ERERREREkJaWhkajefJOJUVaEhyYpwQh9n4LaYmZbQ7u0G0+vH0Y6vbK10/68+zGSTjyI2x6Fy5vN25PfQA3gyE9SVmKkZ1LNbCwVWZF1O6u9M/u5Vnw6kIl8JCVygxeXQAf3YC3dkOPxWBXxnj/6ycyvy9fz7g9+Hf4taeSCDRi/+Ou1iSVSkWbmmX5Z0IrZnavQ2lbC33bjXvJTFgTTM9FBzkWEQdudeCVb2FiKHT/HtwbGx4sNQGOLYXF/vBjOzjxK6QmIoQQQghhikqlQlUcP5B6RteuXWPkyJFUqFABa2trqlevztSpU0lOTi7qoeVo+PDhqFQqdu/enet9pk+fjkqlYsWKFbnqHxERgUqlIiAg4KnGmBcBAQGoVCoiIiIMtqtUKry9vQv8/C8K86IegHg6c+fO5bPPPtP/7OrqWoSjyUHQIqjZFZw8Ht8v/iqc36TMAjjxixKASLhp2MfGGVpOVPpYWBfcmLNLSVASZrpUBRsnw7ZD/4Uza5XvreyVpSJZla2d+X3MeWXZRdY/mOaW8MFVMHvCf0PfIeDZHE7+quTNcPIE36GZCTor+JquUpGRDl4twNxamXlhqk/EfgjbqXylJIC3v2F78n1IT4ZSZR87RAszNUObe/NqA3f+u+syyw9EkJqhBMhOXY2nz+JDdPEpz5TONfF0sVOuyXeIMgvi+Ao4vRZS7mce8Pox5evfj6Bef2UZh1udxz9OQgghhBAlXFhYGM2bNycmJoa6devSsmVLjh07xsyZM9m+fTu7du3CysqqqIcpRL6QYEQJNWHCBIYPHw5Ax44dMTMze/wOhS1oEfzzgbK84rVNOQck4q/Cz13hbgTs+QaS4gzbLe2hxRjwexusHQp82AaWvwKRB5TvB66GGi8btmddZhF93nj/cj7Q/b/gVhvK1DC93OJJgQgdlyrQfnru+mY9ds/FyvcpCUrSyOxuZJk5UaGhcfv5TbBxtDIjpU5P6PT4pR6ONhZ8+EotBjXz5Ot/zrP5TGaFlL/P3GRbyG1GvOTNO22r4mBtoTxGXb6DDjPg7Holt0TWMaXch6M/Kl8VmyrlQev0BEvbPDwQQgghhBAlw8iRI4mJiWHcuHHMmzcPgPT0dPr168eGDRv48ssvDT6QfJG4u7sTGhqKrW3RvQ8MDQ3FwsLiyR1FrsgyjRLKyckJb29vvL29sbCwKH7JjGp2hdLeSpDh565K0CG7+Cj4qZ3SBwwDEWZW0HwMjD8FAR/kLRARGwbbpsG6Ecq/sWHGfTLSlMoca1+DhU3hYZxxH6ss54wOMW53bwhe/tDkTajXz8T+9uA7WJmRUNQ3z1b2poMhnb9SEoDWehUqNjFuv3FS+ff+dUiKN25PuKUsqQnfq8yieMTLxY7/Dm7Euv80p17FzBwRqRkafth7hYBvd/ProQjSH82ewNIOGg6Dt3bBqL3QeKQSiMrq2hH4622YXRM2Tza99AWUQJip37fs4q8qfYUQQgghioGjR4+yd+9eypYtyzfffKPfbm5uzqJFi7CwsGDBggWkpT1dWfeSzsLCgpo1a+Lp6VlkY6hZsyZVqlQpsvM/b4rZHax4bjh5KDMicgpInP0TFjRWKj1kpTJTbkrHnVA+hbdzydt5T/4GC5vAgblw7k/l34WNle1Zqc0h6L9KpYc7F0zf2OpmPljYZVasyKpyAIz4G7r8H/j0yds4i4vKraHle9D/VyhT1bj9bmTm9+4mlnlEBcG2qfBzN/ihlVFzE29nNr79EnP616e8Y+bymrjEVJb+bzt/fP0Gt5cNQps1aFS+PnSdAxPPQ7d5xstLku/BkR/gv36wtKOS90L3/Ohm5OQUANPRzcj55wMJSAghhBDZhN9J5Kst5xmz6gRfbTlP+J2Sk8Mpa16BxMRE3nvvPTw8PLCxsaFhw4YEBgbq+65bt46mTZtiZ2eHm5sb48aNIynJ+D2ft7c3KpUKrVbLvHnzqF27NtbW1ri7uzNu3Dji4+PzZeybNm0CoFu3bkZLMdzc3GjZsiV3797lwIED+XK+q1evMmrUKLy8vLCysqJs2bL06tWLo0eP5rjP+vXradq0KTY2Nri5uTFs2DBu3Ljx2PPs2bOHgIAASpUqhYuLCz179uT8eROzip8gp5wRK1asQKVSMX36dKKiohg0aBCurq7Y2NjQuHFjg+c8uyVLluDj46N/PseOHcu9eybK0j/yuJwRISEhjBgxQv94urm50apVK/0Ml6wePHjAjBkz8PHxwdbWFgcHB1q3bs3GjRtNHjs0NJShQ4dSpUoVrK2tcXV1pUGDBkyYMIGbN2+a3KckkGCEKDimAhIX/4Vlr8AfIyAjxbB/nV7wzhElMaNjxbyfLzYM/jcOtBmG27UaZXvWGRIqlWFOB1MzH5q+qczM+PAatP0k7+N5HgxeC++dhwG/Q7VOxu26mRNguppH4h3Ui1vQM3IWewLCeL99ZWwtzehrtpvtlpMYkLoet6i/UR2Yi3ZhE8OgkVUpZVnGW7vhrT3K99mXmlw9DBv/A9/VgC1TwLVWLmbkZFkaVNpbmcUjhBBCCADWHrtK+9l7WLwnjE2nb7J4TxjtZ+9h7bFczDosRlJTU2nXrh2//vorDRo0wM/Pj1OnTtGzZ0+2b9/OnDlzGDRoEObm5nTs2JGMjAwWLFjAG2+8keMxx44dy6RJk6hYsSLdu3fX79O6dWsSEhKeecynTp0CoGFDE0tns2zX9XsWZ86coWHDhixZsgRbW1t69epFtWrV2LBhAy1atGDdunVG+yxcuJA+ffpw4sQJWrRoQUBAANu3b8fPz4/Y2FiT5/nrr79o164de/bsoX79+nTs2JHTp0/TrFkzLl++/MzXkVVERARNmjThwIED+Pv74+vry/Hjx+nRowdbt2416v/+++8zatQoLl26RNu2bWnevDkrV66kTZs2pKSkmDhDztatW0fDhg1ZsWIF9vb29OrViwYNGhAWFsaECRMM+t6+fZtmzZoxbdo07t69S4cOHWjWrBnHjx+nZ8+efPXVVwb9T5w4QaNGjVi5ciWurq707NmTZs2akZqayrx58/RlOEsiyRkhCpYuILGss3Lzt8rEcoaqHaDdp8on4s/ixC/GgQgdbYaSADJr3oV6/ZSEjWVrgUcz430cKjzbeJ4XDuWVL1NcqkCl1nAj2HTOiRsnlUBPdAiWdlsZ8/6bDKymxWn5T5hhWAFGpc0g46+x3HNphLNnLcPjVGgAFeZBx8/hzB9KydKbWf4QJ99T8pMcXqyMI/VBZkAia86S7IGIx+UzEUIIIUqQ5LQMUtKVv62WZmpsLA3ziaVnaEhMVd4nqVQouZuyOXM9ng/XnyFDqzXYnqHR8uGfZ6jr7oC7k7L01MpcjbWF4TlS0zUkpSnnMFersLMyvNXQaLSkZmiM9isIhw4dIiAggIsXL1K6dGlA+QR9xIgRjB49mri4OHbu3EnLli0BuHHjBr6+vqxatYqZM2dSuXJlo2P++uuvHDp0iEaNGgHKp9vdu3dn586dTJs2jdmzZz/TmKOiogCoWNH0h3K67bp+T0ur1TJ48GDu3LnDhx9+yBdffKGvSvLHH3/Qv39/Xn/9dVq1aoWbmxug3Oi///77WFlZ8c8//+hnJzx8+JAePXroZ3VklZCQwBtvvEFGRgarVq1i4MCBgJID44033uDnn39+puvI7ueff2bs2LHMnj0bc3Pld2/evHlMmDCBzz//nI4dO+r7Hjx4kO+++w5nZ2f27t1LnTpKovTY2Fjatm1LUFBQrs976dIlhg0bhkajYc2aNfTrl3m/o9Fo2Lx5s0H/ESNGEBISwuTJk/n888/1OSiuXLlCx44d+eSTT3jllVeoV0+phDd//nySkpJYv349vXr1MjhWaGgoTk5OuX+QihmZGSEKnpMHdJ1rvL28L4zYAkP+ePZABCg5KPLS3ngEtP1YKRHq6P7s538RNRwGr/0PpkRAs1HG7QYzJ3xBpcLl4hqjQISOGRrWL53F97suk5xmIrBkZa88b6P2wpu7lPNb2GU75wlIvAMqtRJ0WNZJCUJIIEIIIcRzbNHuMOp/tpX6n23lk41njdpPX7+nb2/7f3tMHqP3fw8aBSJ0MjRaxq46qT/GsgPhRn3+Cr6ubx+5wniq/53EFBbtNpHLqwCYmZnx448/6gMRAMOGDcPV1ZXLly8zZswYfSACoEKFCgwePBiAvXv3mjzmmDFj9IEIgFKlSrFw4UJUKhVLly7N86fp2T14oJR5zylBo52dnUG/p7V7927OnDlDpUqVmDlzpkF51D59+tCjRw8SEhJYvny5fvuyZctISUlh2LBhBsskbG1tWbBggckSq+vWrePOnTt06NBBH4gAJQfGnDlzKFXKRHL1Z1C5cmW+++47fSAC4J133qF06dIEBQWRmpqq3754sZLkfeLEifpABICLiwvffvttns47Z84ckpOTGTVqlEEgAkCtVtO1a+Ys3ODgYLZs2UKLFi346quvDJJh6safkZHBTz/9pN8eHR0NQNu2bY3OXatWLcqXz+FDwxJAghGicJStaZhAUW0G/X9RSk/mF6cnJLN5Urt4emo1mJsoM1WvP/RYDE1HQa1uyrYnBI3cNNF8++8F2n23h7+Cr6PN4U0R7g2VJT0Tz0OX2Upljqy0jwIe96/DXB+YV18CEUIIIcRjaHL4k6uTlJrDDNRiyNvbm6pVDfNhqdVqvLy8AOjQoYPRPrrEhDmtwR8wYIDRtlq1alG/fn3u37/P6dOnn2nMuvc8pm7ss7Y/q3379gHQv39/kxX5hg4datAPYP/+/QBGN9sANWrUwNfXOLfY4/YpXbq0wUyF/BAQEGBU6cLc3JzKlSuTlpZmsJTkcWPr2LEjzs7OuT7v9u3bARg1ysQHc9ls27YNgO7du5t8nv39/QEM8nboAmDDhg3jyJEjaDSmP9QriSQYIQqe7hNprVZJUKm2AE2GkvQwN1UPcqvhMOX4pqjMwHdo/p1L5E5pL2gwEF75Bho+evyfEBS6pnUF4Hp8EuNXB9P/+10cj7yb8w7WDtDkdRi1D97YCb5DwCL7JwrazCU8fm8rpUqFEEIIYUBt+h5YL/vSj+LM3d3033rd7AJT7bq2nGY46AIZ2ekSGj4pkeOT2NsrlcQSE00nDH348CHAM88o0I0zp0SMpq5H931OlSxMbX+afZ5FTstbdI9X1uf1xo0bqFQqPDxMfziVl7Fdvarcz5ha2pNdREQEAFOmTEGlUhl9lSlTBoA7d+7o95k0aRIBAQEEBgbSrFkznJ2d6dSpEwsWLMiXXCVFSXJGiIJlamo8ZG7Lvqb/WbhUgVfnGyexVJkpn6C7SBmeYqHhMDi4wGR+D63KDG2DIViczCAtQ0t11VWWxkwn8Mfm7Kjcl4E9euDhnEOZVJUKKjZSvjp9CafXwpElcOeiYb8tk+H4CmjzMdTsYrrkqRBCCFHCjA6owkj/SoCSMyK7eu6OnJqmfBKd05++9W+3oMdC00s1zNQqFgzyNcgZkV33Bu50rFMOUHJGZFfGzorRAYXzfiyn2QW5bc+L/Jqx4OnpycmTJ7l27ZrJdt32/LqJz8tj9KRZG6Y8zT7PorDOk9O5c3P+jAzl/W/Lli0fG7zQBSUAHBwc2LlzJwcOHCAwMJDdu3ezY8cOtm7dyqxZs9i3b1+JLTcqwQhRcB63Rv+1TQUTkPAdAp7NlWSV8VHKp/C+QyUQUZw8JmikenUB7/h2okuAUlKs6YVfsFclMch8J6ciImg3uzQjX6rE222qmEy8pWftCNU7w6GFj46tzly2AUpSzTWDlWSXbT+BKm0lKCGEEKJEs7Ywe2xiSHMzNY42j58U7ePuxKzePnz45xkysqzZMFOr+KqXD7XLOz52f0tzNZYmghQ6arUKa3XJmV2RXWRkJD4+PkbbdQklK1R4tuTn9evX56+//uLEiRMm23XbdYkNn5ZunOHhxnk/QLlOwCAXQYUKFbh48SKRkZFUq1bNaB9TSTV159EdLzf7FJby5csTERHB1atXjZbzQN7G5uHhwaVLlwgLC6Nu3bqP7aubvdGnTx/GjRuX63OoVCr8/f31yzhiYmIYP348v//+Ox999BFr1qzJ9bGKE1mmUULFx8cTERFBREQEaWlpxW/t0JOSBZoq+5lfSzZcqihVM/osU/6VQETx4zsExhwF/3ehbm/l3zFHwVdJHOVdxo7Fg30Z5JRZcnVNRhtS0zUs3hNGm29381tQJOmpycryn+yy//6NPw3DAk0nu/ytFyx/BSIPFtz1CiGEECVEv8YebH+vNaMDqtCtfgVGB1Rh+3ut6dtYci2ZuuE7f/48wcHB2NvbP3OQoEuXLgAEBgYaLRW5ffs2+/btw9HRUX9D+rR0iTvXrFmj/6Q+q99++82gH2TmMjBV8vPixYsEBwcbbX/cPvHx8SbLbRaWx41t27ZtxMXF5fpY7du3B2DJkiW57rtx48ZcH98UV1dXpk+fDihlWksqCUaUUHPnzqVSpUpUqlSJS5cu5Vjbt8ic3/TkZIHZAxLnjUsCiefYk4JGajXW4w6j6b6I22WaE2QboG+KTUzlk41nWTb7Ax5+Vx/2z4GE20pjToGwyq3gncOmS7ZGHYTlL8OvveC66U8jhBBCiBdFpTJ2TOlckwUDfZnSuSaVytg9eacXwMKFCzl5MrNSWGJiImPHjkWr1TJy5EisrDKTeR85coSaNWvSrl27XB+/adOmvPTSS0RHRzNlyhT99vT0dN5++23S0tIYO3asUZLG6dOno1KpGD58eK7OExAQgI+PD+Hh4UydOtVgmcnGjRv5888/KVWqlMHxRowYgaWlJb/88otBYsukpCTGjx9v8oPRvn374uzszNatW1m7dq1+e0ZGBhMnTnzmqiDPQpdscvbs2YSGhuq3x8XFMXny5Dwda8KECVhbW7N48WLWr19v0Ja9tKefnx/t2rVj165dvPvuu0aPgUajYevWrfoEm6BU/jA1i2XLli1A/ufeKEwSjCihJkyYQHh4OOHh4VSrVg0XF5eiHpIhv9HQ+asnL7/QBSQ6f6XsI0RWlraofQfhNuYfNk16hXfbV8dGPwVVS7uH/2D7IBK2Tyd210KIv8r9Hzo/fkbOyK1KG5CuzlYBJGwH/NgGVg+G2yEIIYQQQugMGTKEZs2a0blzZ/r370/VqlXZvn07derU4bPPPjPo+/DhQy5cuEBYWN5KmS5fvhwXFxfmzZtHvXr1GDBgADVq1ODPP/+kWbNmfPzxx0b76AIB2YMUOVGpVKxcuRIXFxe+/PJL6tSpw6BBg/D396dnz56o1WqWLVtGuXLl9PtUrlyZr7/+muTkZNq0aUP79u0ZMGAAVatW5ezZswblK3UcHBxYsmQJarWa/v374+/vz6BBg6hRowZ//PGHvpRqUfD392fChAncuXMHX19funbtSt++ffVLUPz8/HJ9rOrVq7Ns2TJAWX7h4+PDwIED6dy5Mx4eHvoZLzorV66kXr16zJ07Fy8vL9q1a8eAAQNo2bIl5cqVo1OnThw7dkzff/HixVSuXJk6derQp08fBgwYgK+vLxMmTMDGxoZp06blwyNSNCQYUUI5OTnh7e2Nt7c3FhYWqNXF8Kn0G527PBBOHhKIEE9ka2nO+PbV2D0pgL6NKlJTfZVKqlv69p6HKrNs6Xwckq5xXeXGrZ5/gH054wM5eXCr5x9cV7lhrkkhpGJ/8Ghm2Of8JljUAta/AbGFUw9dCCGEEMXbggULmDVrFpGRkfz111+oVCreeecd/fKJ/FCtWjVOnjzJ8OHDiYmJYcOGDahUKj755BN27dqFtbW10T6nTp0CMkty5oaPjw8nTpzgzTff5MGDB/zxxx9cuHCBHj16cODAAfr27Wu0z4QJE1i7di0NGjRg//797Nixg4CAAIKCgnL8YLR3795s27aNli1bcvLkSbZs2ULt2rU5dOiQyVwNhWn27NksWrSIqlWrsm3bNg4cOEC/fv3YtWuXwSyX3Bg4cCBHjx5l0KBBxMbGsn79eoKDg6lWrRrz58836Ovm5kZQUBCzZ8+mWrVqHD16lI0bN3Lt2jV8fX35/vvvGTJkiL7/zJkzGTlyJCqVih07dhAYGMjDhw956623OH36NM2bN8+Xx6MoqLT5lf5VFJk6deoAcO7cuSIeiRCF5+z1eyz6azfVbmykouoO76f9B4ARZlv4N6MJZqU92OY6F2tztVLBo2YXMLfienwSA5cEkR4XxQD7U/R+5wvcHa3h0jbYORNuZasRrjKDBoOg9ZT8SbIqhBBC5IFGo+HChQsA1KhRo3h+APWc8/b2JjIyMt+qZuQnjUaDi4sLjRs3Ztu2bUU9HPEcyMtrzrPeh8qrmRCiRKrr7sjC0a9Se+AsvnecqN++PONlblAG4iOwjtoDV3bBHyPg+gl9ICIq7iHmzp5KIMLJRqmkUb0jvLUH+v0CZWpknkiboVRnWdAQNk/OzE0hhBBCCFHETp48SXx8PDNmzCjqoQiRZxKMEEKUWCqVio51yvHvhFZM7VobR5vMtZIvq4/ov39gX5nrDvX1gQhPZ1t+f8sPd/tsayvVaqjdHd4+BD1/0OeWACAjFY78APPqw7ap8DD3WZaFEEIIIQpCo0aN0Gq1JXqqvnhxSTBCCFHiWZqrGelfiT2TAhj5UiXM1SqWZHSlb8pU1mf483VcK/y/2WUYiLBOhTm1IXCCUkEj69RLtRnUHwBjjkHXuWCfpQJHehIcmKcEJXZ/Bcn3C/tyhRBCCCGEKPEkGCGEeG442VoytVtttr7big61y3FUW5OJaW/za0ZHfayhdfUyOFibw5k/4MFtOL4cfuulzHzIzswCGo+AcSeh0yywLZPZlnIfds9SghIH5kHqw8K5SCGEEEIUqoiIiGKZL0KIkk6CEUKI505l11L8OKwx8wc2MGr7NSiKNv+3m9uHVmVurD8QzLNlTdZoMmdLWFhD87dh/CloNxWss2TMTopTlm3MbwCHl0B6Sr5fjxBCCCGEEM8bCUYIIZ5L1+OT+L9/LwJgplIZtN15kErAjbf5P9sJ3HNtBL4mSmFd2goLGsH+ufAgWtlmVQpaToTxp6HVZLAsldn/wW3YMknZ58QvkJFeQFcmhBBCCCFEySfBCCHEcydr1QxPZ1v2TmnDtndbGSS4TMKahXFNqX91IiM2P+BydILhQU78AnFhsH0abJ5k2GbjBG0/VmZKNB8D5llqft+7Cv8bC983VZaCaDQFd6FCCCGEEEKUUBKMEEI8V7IHIn5/yw93JxuqudmzeXxL3J2sjfbZdSGGTnP3MfWvs8Q+SIGku8rMCJ2GJmZOaDRgVwY6faHklGj8OqizVOeIC4P1r8PilyB0k2GCTCGEEEIIIV5wEowQQjw3cgpE6Lg72bD2Py3wdLYFwMo88yUwQ6Pll0ORBPzfbpYcjSPl7aPQegp4+EHlNsYn++cD+LUXnNuoJLbsOhuGrIeytQ37RYfAmsHwY1u4vEOCEkIIIYQQQiDBiBIrPj6eiIgIIiIiSEtLQyNTwYXg37O3cgxE6Lg72fD7W354OtuSkq6hb+OKeLnY6tsTktP5cvN52i8LZ3OZEWhH/qOU+swqLQlOrYawHbDuNTizFk7+Br/2VIIPptw4oVTtWP4KRB7Mz8sWQgghhBCixDEvjJOkpaVx4cIFYmJiuHfvHo6Ojri6ulKjRg0sLCyefABhZO7cuXz22Wf6n11dXYtwNMVL+J1E1hy9yrW7D6lY2pb+TTyoVMauqIclCsFI/0oAdKpbzmQgQkcXkPj37C1G+lciJT2DXw9FMm/HJRKSlcSTV+OSeHvlCZp4l+aTLrWp7+GUeYCL/0LKPeV7y1JQrh4sCQBthomzqYAssyGiDsLyl6FKO2j7Cbg3fKZrFkIIIYQQoiRSaQuoaG5MTAwrVqzg77//5siRI6SkGJe7s7a2pmnTpnTp0oXXXntNbqjzID4+nvj4eAA6duyImZkZoaGhRTuoYmDtsat8+OcZMjSZv9ZmahWzevnQr7FHEY5MlARxianM33GJX4MiDX6HAHr6ujOpUw0qONkoSy0iDyhJLq0dwcIWDszN+cD1BsCDW3Blt3Fbza7Q5mNwq23cJoQQ4oWn0Wi4cOECADVq1ECtlonNQoiCk5fXnDp16gBw7ty5pzpXvgcjLl26xNSpU9mwYQOpqakAlClThho1auDs7IyDgwP37t3j7t27nD9/ntjYWAAsLS3p1asXM2bMoGrVqvk5pOfes/4SPC/C7yTSfvYeo5tIUAIS299rLTMkRK5cjn7ArM2h7DgfbbDdylzNW60q85/WVbCzyjKxbN0IOPdnzges1Q36/wbh+2DnTLh6OFsHFfj0gYAPwaVK/l2IEEKIEk+CEUKIwlSYwYh8XaYxduxYlixZQkZGBm3atGHQoEEEBARQqVKlHPe5cuUKu3btYtWqVaxdu5b169fz1ltvsWDBgvwcmngBrDl61WQgApTkhGuPXWVK55qFPCpRElUtW4qlw5uw/9IdPv87hPO3lLKfKekaFuy8zOqjV5nUsQa9G1XETK0CJ8/HH9DlUYC1UksY+S9c3q4EJW6eetRBC2fWwdk/wXcwtJoMTjKTRwghhBBCPL/yNbS6dOlSRo8eTVRUFNu2bWPEiBGPDUQAVK5cmddff50dO3YQGRnJf/7zH5YtW5afwxIviGt3Hz6hPamQRiKeF/7VyvD3uJZ83duHMqWs9NtjElKYvP40XRfs5+DlO9BwGKjMTB9EpQbfLKVBVSqlOsebu6HfL1CmRmabNkNZ+rGgIWyeDAm3le1BiyD+6pMHHH9V6SuEEELkRQn9O6NSqVCpVEU9jHy1adMmPvroI9q3b4+joyMqlYrOnTsX9bBKpIiICFQqFQEBAQV+roCAAFQqFREREQbbVSoV3t7eBX7+kipfZ0ZcuXKFcuXKPfX+7u7uzJs3jw8//DAfRyVeFBVL2z6hPeeEhkLkxEyton8TT7rUq8Di3WH8uO8KKelK9ZrQm/cZ9NNh2tcqy5dtvqXsrkmGSSxVZvDqAuOlF/tnK2U+23wEbx9SZkXsngV3I5T2jFQ48oMSmPBoCuF74PBieG1TzjMm4q/Cz10zj+E3Ol8fByGEEM+poEVKuWr5O1MsDBkyhHv37hX1MIQoFPkajHiWQERBHEe8WPo38eDHfVdyzBkhCSzFsyhlZc77nWowsJkn3/5zno3BN/Rt20Oj2X2hPOMarOJN+wPYJF5Xlm74DjUORCTFw8GFSjWOX16FbvOg0XCo21spD7r3W7h/XembnqQEIlApb/5WvALDNxu/Ucz6BrG0t5IUUwghhMiNml2VQMTdCOVviamAhPydKTS9e/emVq1aNGnShISEBLp161bUQyqx3N3dCQ0Nxdb28R9YFqTQ0FCpHvkYkgFHPDcqlbFjVi8fZQ1/FmZqFV/18pHklSJfuDvZMHeALxvfeYnGXqX129M1WmafyKDZYX9+cvuE1ICpppNRnt+UWRbUygFqd1e+N7OAxiNg7Ano/BXYZa0u9CjAFh8FP7SEmIuZTdnfID7uUy0hhBAiOycP5W9Hae/MgETWJRvyd6ZQLV26lPfff5/WrVtTqlSpoh5OiWZhYUHNmjXx9HxCbq8CVLNmTapUkeTkOZFghHiu9Gvswfb3WjM6oArd6ldgdEAVtr/Xmr5ZZkWkpGfkmOhSiNxq4OHEuv805/tBDQ2WAN1PTufzv0PpOGcP/5y9hVHBIt8hMGILeLeE5u+ATWnDdgtrqNIWxgVDu6lK6dCsku7Cf/1g99cQGyZvEIUQQjy7nAISJTAQkTVPQGJiIu+99x4eHh7Y2NjQsGFDAgMD9X3XrVtH06ZNsbOzw83NjXHjxpGUZJxjzNvbG5VKhVarZd68edSuXRtra2vc3d0ZN24c8fHxhXiF+efBgwfMmDEDHx8fbG1tcXBwoHXr1mzcuNGg3/Hjx1GpVPj5+eV4rG+++QaVSsXHH39ssD01NZV58+bRpEkT7O3tsbOzo2nTpixdutT4PRKZORYyMjL45ptvqF69OlZWVnh4eDBlyhRSUlJyfX055YxYsWIFKpWK6dOnExUVxaBBg3B1dcXGxobGjRsb/I5kt2TJEnx8fPTP/9ixYx+7rOZxOSNCQkIYMWIEXl5eWFlZ4ebmRqtWrZg3b55R39w+VzqhoaEMHTqUKlWqYG1tjaurKw0aNGDChAncvHkzx/EWtnwv7WlKaGgoXbp04cqVKwV9qheSlPbMveS0DEb/dhwnW0v+r299o1kUQjyN5LQMfj4YwcKdl0lISTdoa1bJmU+71qauu6PxjhnpYJZttVzkIVjeGap3Vkp9lvaGQ99D0H8h9YHpAZSQN4hCCCHy7oll9rRaSM6nHAP3r8PvA5SZeOpHU8s1acrSw4GrwcE9f84DSrD9GZNP6pJXZr2diYiIoFKlSjRv3hyNRkNYWBh+fn48ePCAvXv3olKp+Oeffzhz5gyTJ0+mSZMmuLm5sW/fPmJjYxk0aBArV640OI+3tzeRkZG88847LFmyhICAAEqXLs2ePXu4ffs29erVY//+/djb2z/T9WS3e/du2rRpQ6dOnfjnn3/y9di3b9+mbdu2hISE4O7uTqNGjXj48CGHDh0iMTGRWbNm8cEHH+j716pVi/Pnz3P58mWTn/Q3aNCAU6dOcfbsWf29SWJiIi+//DL79u2jTJkyNG7cGLVazaFDh7h79y6jRo1i8eLFBsdRqVR4eXnh5+fHpk2b9MGiffv2ce/ePQYPHsxvv/2Wq2vU/S60bt2a3bt367evWLGCESNG8Nprr7Flyxasra1p2LAht2/f5tChQ6jVarZs2ULHjh0Njvf+++/z3XffYWVlRdu2bbG1tWXnzp14e3tjZWVFUFAQ4eHhBsEH3fVkT2y5bt06hg4dSkpKCnXq1MHHx4e4uDjOnj3LjRs3DH6n8/pcnThxAn9/f5KTk2natCmVKlUiISGBK1euEBoayq5dux6b1LPElvbMSWpqKpGRkYVxKiFylJyWwX9+O87uCzEAqIBvJSAh8oG1hRmjWlehT6OKzNl+kVWHo9BNvjkcHke3hfvp5VuRSZ1qUM7ROnPH7IEIgN1fKv9e/EfJL/H6v9D2Y2g2CvbPgSM/Qka2TwVsyzx6IyrBCCGEeOEk34OvvfL/uJq0zO/jo2BRi/w9/pRIsHHK32NmcejQIQICArh48SKlSyuzEHU3oaNHjyYuLo6dO3fSsmVLAG7cuIGvry+rVq1i5syZVK5c2eiYv/76K4cOHaJRo0aA8ml19+7d2blzJ9OmTWP27NkFdj35bcSIEYSEhDB58mQ+//xzfV6DK1eu0LFjRz755BNeeeUV6tWrB8CgQYOYOnUqq1at4tNPPzU4VmhoKKdOnaJBgwb6m1OASZMmsW/fPoYOHcp///tf/bKTmJgYunXrxg8//EC3bt3o0qWLwfEiIyOxtbXl7Nmz+hv78PBwGjVqxMqVK/nss8/yZenDzz//zNixY5k9ezbm5sp7snnz5jFhwgQ+//xzg2DEwYMH+e6773B2dmbv3r3664yNjaVt27YEBQXl+ryXLl1i2LBhaDQa1qxZQ79+/fRtGo2GzZs3G/TP63M1f/58kpKSWL9+Pb169TI4VmhoKE5OTrl/kApYvizTmDFjxmO/fvjhh/w4jRDPLPVRFQSApLQMNAU/MUi8QFxKWfF5Dx/+mdCKgBqZOR+0Wlh/4hpt/m83c7Zd5GFquukDJN+DlCyzH9pkqSxkVwY6faEs8VBle+m+fkzJJbHpPXgYl49XJIQQQpRMZmZm/Pjjj/pABMCwYcNwdXXl8uXLjBkzRh+IAKhQoQKDBw8GYO/evSaPOWbMGH0gAqBUqVIsXLgQlUrF0qVL87SEoCgFBwezZcsWWrRowVdffWWQYLFy5cp89913ZGRk8NNPP+m36x6b7LNGsm7T9QGIjo7mp59+olKlSvz4448G+S9cXV3194c53ScuWLDAYIZBpUqVGDJkCAD79u3L6yWbpLtWXSAC4J133qF06dIEBQWRmpqq366bwTFx4kSDgIuLiwvffvttns47Z84ckpOTGTVqlEEgAkCtVtO1a2aC2Kd5rqKjowFo27at0blr1apF+fLl8zTegpQvMyOmT59O+fLlsbS0NNme9YkUoqhYW5ix9LUmjFxxFGc7S+YOaICFmaRNEfmvups9K0Y0Zc/FGL74O4SLt5UAQ1JaBvN2XGL10SgmdapJL1931Fln5lg7wps74eK/cGkrVGpteOD4q8r0Wa0G1OagyUCf3FKrgWNL4ex6aPsJNBpheuaFEEII8QLw9vamatWqBtvUajVeXl7ExMTQoUMHo310n7bntKZ+wIABRttq1apF/fr1CQ4O5vTp0zRp0iQfRl+wtm3bBkD37t31S12y8vf3B+Do0aP6bZUrV8bPz4+goCBOnDhBw4YN9W2rV69GrVYbPD579uwhLS2Nzp07Y2VlZXSO+vXrY29vb3AOHQsLC5PLCKpXrw7k/PzkVUBAgFGlC3NzcypXrszx48eJjY3V37jv378fwCh4ANCxY0ecnZ2Ji8vdB0Lbt28HYNSoUU/s+zTPVaNGjdiyZQvDhg3jk08+0S+PKY7y5Z2qp6cn3377LX379jXZHhwcbBBFFKKo2FiasWx4EyzMVJhLIEIUsNbVXXmpSkvWHrvG7G0XuPNACczevp/C++tOseJgOB+/UpvmVVwyd1KpoEZn5Sur+KtKac9EJdpN9c7g/x6sHggPbmf2S46Hze/DseXw8ldQqVXBXqQQQoiiZe2oLHl4VlnzRehyRIDxtvzKG5E9QXM+c3c3PU47O7sc23VtOc1w8PIyvRzG29ub4OBgbty4YbK9uNHlL5gyZQpTpkzJsd+dO3cMfh48eDBBQUGsXLlSH4wICgoiLCyMNm3aULFiRaNzLFq0iEWLFuV4DlMJQ8uXL4+ZmZnRdt3sivyagZJ1vE86z40bN1CpVHh4mF4S6+npmetgxNWrSrUaU0uBsnua52rSpEns37+fwMBAAgMDcXR0pFmzZnTt2pXhw4fne26TZ5EvwYgGDRoQHBycYzBCl31WiOLAxtL4xQ0gJiEFFztLw0+qhXhG5mZqBjXzpFv98vx3dxhL94frlwudvX6fgT8G0bG2Gx++Uivn8rO6bObxUZnbruyGbvPhjR2woivER6BkQnn0Wht9Dn7uppQO7fi58iZSCCHE80elevbcC/FXYfUg5e9M9qTIwzdnVtRYPajEJEw29SlyXtrzoqTd52RkZADQsmXLx94QlylTxuDn/v378+6777J69Wq+/fZb1Go1q1atAgyXaGQ9h6+vrz6XQW7l53NTHM6T07lzc/6nea4cHBzYuXMnBw4cIDAwkN27d7Njxw62bt3KrFmz2LdvX7EpN5ovwYiJEyfy4EEOWd6BqlWrsmvXrvw4lRAFIjI2kQFLgmhbsyyf96hbpC9O4vlkb23BlM41GdTUk2/+vUDgqcxPT7aG3GbXhWiGNfdmXNtqONpmmTKYtayanStYloK74dDsP2DnArjA8E2ZfSxLGVbdCPlLWfbx0nh4aQJY2hbSFQshhCgRnlS+U1f2U9fn564lJiCR3yIjI/Hx8THaHhWlfFhQoUKFwh7SU9HNCOjTpw/jxo3L9X6urq506NCBLVu2sHv3blq3bs3atWuxsrKid+/eJs8REBBQohJ75qR8+fJERERw9epVo+U/kPk7kBseHh5cunSJsLAw6tat+9i+T/tcqVQq/P399cs4YmJiGD9+PL///jsfffQRa9asyfWxClK+zFNv2bIlL7/8co7tdnZ2tG7dOsd2IYpSVOxD+v8QxM17yaw8HMW0/0mJVFFwPJxtWTDQl/WjW9DAw0m/PS1Dy9L94bT+v10sPxBOWsajZKvnN2W+QXxzF4w9Dj2XQPN3Mg+qe6NoX14JRPgOA/fGme3pybDna1jYBM7+qWTUFEIIIcDw70xOQQbd35nS3krf85sKd4zFhKkbuPPnzxMcHIy9vX2eZwAUlfbt2wOwcePGPO+rmwGxatUqduzYwe3bt+nSpYtRhYY2bdpgZmbGpk2b9J/ul2S6m/p169YZtW3bti3XSzQg8/FfsmRJrvs+zXOVlaurK9OnTwfgzJkzz3Ss/CSL5sULr7SdBeWdMsstVnMrPuuoxPOrkVdpNrzdgvkDfXF3stFvj3+YxmeBIXSas5dtIbfRNvsPQdUncavnH8qbQbUZ1O8Pts6GB3TyIMXBW/n+9Gqo2xt6LIZSbpl97l+DP0YoyzpuFZ8/REIIIYqQ32jo/NWTZzvoAhKdv1L2eQEtXLiQkydP6n9OTExk7NixaLVaRo4caZCo8ciRI9SsWZN27doV+LimT5+OSqVi+PDhuerv5+dHu3bt2LVrF++++67RDHeNRsPWrVv1SRuz6tGjB3Z2dqxfv57ly5cDxks0QMnJMXz4cC5dusTQoUON8k+AUi4zexnL4kqXbHL27NmEhobqt8fFxTF58uQ8HWvChAlYW1uzePFi1q9fb9CWvbTn0zxXixcvJjw83Oi8W7ZsAZT8FsVFgQQjYmJiGDlyZEEcWoh8Z29twc8jm9LQ04kve/ow1K8AanULYYJKpeLV+hXYMbE1kzvXoJRV5sq5K3cSefOXY7T5v90MOO1Lv9XXuB5vnORJJyZkH1bXDyk/ZKSCa3VoMFCZSfHSeFBnWfoRuR9+aCWlQIUQQij8Rudu2YWTxwsbiAAYMmQIzZo1o3PnzvTv35+qVauyfft26tSpw2effWbQ9+HDh1y4cIGwsLA8nWPmzJn4+fnh5+fH22+/DShJInXb/Pz8jKpJaDTKbMrslSEeZ+XKldSrV4+5c+fi5eVFu3btGDBgAC1btqRcuXJ06tSJY8eOGe1nZ2dH9+7diY+PZ/Xq1Tg6OtKlSxeT55g/fz5t2rTh999/p3LlyrRq1YoBAwYQEBBAxYoVeemll9i6dWuux1yU/P39mTBhAnfu3MHX15euXbvSt29fqlWrBihBg9yqXr06y5YtA5TlFz4+PgwcOJDOnTvj4eFh9Hjm9blavHgxlStXpk6dOvTp04cBAwbg6+vLhAkTsLGxYdq0afnwiOSPAglG3L9/n59//ln/H0OI4s7B2oK1o5ozqFnxiRSKF4e1hRlvB1Rl1/sBDGzqSdYcqhGxDwGIintIv8WHTAYkrscn0T8wiY/TRhKtciGlfBOo8uiTGCt76DAD3jkM1Tpm7qQrBTrfFw4vgYz0grxEIYQQosRbsGABs2bNIjIykr/++guVSsU777zDvn37cHTMn+ogYWFhHD58mMOHD+s/gb93755+2+HDh42qSZw6dQqAoUOH5vo8bm5uBAUFMXv2bKpVq8bRo0fZuHEj165dw9fXl++//54hQ4aY3DfrTIjevXubLN0JYGtry9atW/npp59o2LAhZ8+eZcOGDYSFhVGlShW++eYb3n///VyPuajNnj2bRYsWUbVqVbZt28aBAwfo168fu3btyvExyMnAgQM5evQogwYNIjY2lvXr1xMcHEy1atWYP3++Qd+8PlczZ85k5MiRqFQqduzYQWBgIA8fPuStt97i9OnTNG/ePF8ej/yg0hZA+tewsDCqV69OWlpasa1pWtLFx8cTHx8PKLVtzczMDKYMifwTcuM+tcrbS1JLUWjO37rPF3+Hsu+S8ZRGRxsL/hzdgipllbJT1+OTGLgkiKi4h3g62/L7yAa4mycYV89ITYT/NocKDeFmsJIEM6uyteHlr6UUqBBCFDMajYYLFy4AUKNGDXlvXQS8vb2JjIwsllUzNBoNLi4uNG7cmG3bthX1cMRzIC+vOXXq1AHg3Lmny7knr2Yl1Ny5c6lUqRKVKlXi0qVLxMbGFvWQnkt/n75Jt4X7mbXlfLH8AySeTzXLOfDLyKYsH9GEqo+CDjr3ktLoOHcvy/Zf4WrcQ8NAxFt+uJcpbbqM55EfIT4SQjZAWiK0nw6WWfKjRIcopUDXDIW7+VCvXgghhBAF7uTJk8THxzNjxoyiHooQeSYzI0oomRlR8HZdiOaNn4+RoVH+i7zbvjrj21cr4lGJF016hobfj0QxZ/sl4hJTDdpUgBYyAxFZEmEa0Gjgv83gzkXl55fGK0s3Em7DjhkQ/Jthf3NrKQUqhBDFhMyMKHrFeWaEEPlNZkaIJ3JycsLb2xtvb28sLCzkD1MB8PVwosajyhpOtha0q1W2iEckXkTmZmqGNvdm1/sBjGpVGYssCSV0b4lsLMwIuXE/5zdJarVSFrTdNHD0hBbjle32btDje3hzJ5Srn9nfoBToeikFKoQQQggh8p3cwQqRAydbS1a+0YyXqrqw6g0/6rrnT2IiIZ6Go40FH75Si1Vv+pE9fcmF2wm8+csxuszfzz9nb6LRmAgeWJWClu/B+GCwczFsc28EDuXB0g4ssywLuX8N/hgJK7pIKVAhhBAvrIiICJkVIUQBkGCEEI9R2s6SlW/4UbuCQ1EPRQiuxycxcd0ptFowV6vInlI15OZ9/vPbCV6Zv4+/T+cQlFCbmTjwcbj4j5LkMvUB1Ho1WynQA7DYXwlMJEp+GiGEEEII8ewKLBgh0UPxPNNotOw8f7uohyFeINmrZuyZ3Ib9H7SlnIO1Ud/ztxJ4Z9UJOs3dy1/B1/V5T3J05xJY2CnfV/CFfr9Am48ge7jj7HqYUwcO/yClQIUQQgghxDMpkGCEs7Mz06ZNkzwG4rmk0Wj5eONZRq44xvwdl4p6OOIFYFS+81GySncnG9a/3QJPZyXJpI2F4ayHS9EPGL86mA5z9rDh5DXSMzSmT1B/AEw4oySsbPspxF2BnZ+TmZUii/Qk2DIZfmgJV/bk74UKIYQQQogXRoFEC0qXLs20adMK4tBCFLkFOy/z+5EoAGZvu8i6Y1eLeETieZZTIELH3cmG39/yw9PZlqS0DMo7WtO2ZlmDvBJXYhJ5d80p2s/ew7pjV0kzFZSwc4EOn0HVdnDiF9BmPH5g0SHwy6uwZoiUAhVCCCGEEHkmUxeEyKOBzTyo4qpMaW/kVZrOdcsV8YjE8+zfs7dyDEToZA1I3LyXjH/VMmyd0IruDSqQpfgGEbEPmfTHadp9t4c1R6NITc9hpkR8VO4HGBqoVN3Y+YWSc0IIIYQQQohcUGnzMbmDl5cXQ4YMYfDgwdSuXTu/Diue4Fnru4q8i76fzDf/XmD6q3UoZWVe1MMRz7ll+8PpVLecyUBEVtfjk/j37C1G+lfSbwuLecD3Oy+zMfg62VNHuDvZ8HabKvRpVBEr8yxLPLZNgwNzcz5R/YEQexmuHTXc7uAOHWZA3d4YlfwQQgjxVDQaDRcuXACgRo0asgxaCFGg8vKa86z3ofkajFCr1agevQH19fVlyJAhDBgwgHLl5JPjgiTBCCHEk0TcSeT7XZf586RxQsvyjtaMDqhCv8YeWFuYQWyYMtvB1FINlRmMOQqlK8GZtUrg4sEtwz6eLeDlr6F8vQK8IiGEeDFIMEIIUZgKMxiRr69me/bs4Y033sDJyYkTJ04wceJEPDw8ePnll1m1ahUPHz7Mz9MJUezcTUxl/fFrRT0MIYx4l7Hj27712TUxgAFNPDDPsn7j5r1kpv51jtbf7mL5gXCSHbzh1flK4CErlRm8ugBcqoBarSS+7P8LStWNLDMhog7CktYQOEFKgQohhBBCCJPydWaETlpaGps3b+bXX39l8+bNJCcno1KpsLW1pVevXgwePJgOHTroZ1GIZyMzI4qHuMRUBv90mNCb9/m0a21ezzJVXoji5trdhyzaHcbaY1dJyzD8M1CmlBX/aV2ZIdXSsT67Sskh4eQJvkOVQISOVgsrukLkfuVny1KQ+sDwRNaO0OZjaPw6mMmSJiGEyCuZGSGEKEwldmaEjoWFBd27d+ePP/7g1q1b/Pjjj7Ru3ZqkpCR+/fVXXn75Zdzd3Xn//fcJDg4uiCEIUeimrD9N6M37AMzcFMLRiLgiHpEQOatY2pYvevqwZ1IbhjX3wtIs88/BnQcpfP53KP4/RfKDxVASuy2B9tMNAxEAKQmgzjJ7os9yGLweXKplbku+p5QCXewPV3Znbg9aBPG5qEQTf1XpK4QQQmSjUqmeuw83N23axEcffUT79u1xdHREpVLRuXPnoh7WEw0fPhyVSsXu3btzvc/06dNRqVSsWLEiV/0jIiJQqVQEBAQ81RjzIiAgAJVKRUREhMF2lUqFt7d3gZ//RVHgoVUHBwdef/11du7cSVRUFF9//TV169bl1q1bzJ49m0aNGlG3bl2+/vrrgh6KEAVq+qt18HBWEgz+p3UVGnuVLuIRCfFkFZxsmNG9Lnsnt2HES95YmWcNSqQya8t5/L/eyfe7LpOQnGa4s7UDDPsL+v8GjUdC9Y5QrT2MPggdvwArh8y+MaHwS3elFOjOL+CfD+Dnro8PSMRfVfr884EEJIQQQrwQhgwZwqxZs9ixYwf3798v6uEIUaAKdZ5XhQoVmDRpEqdOneLs2bNMmTIFZ2dnQkJC+OijjwpzKELkO3cnG35/04+PXqnJlM41nrtIvXi+lXO0Zlq3Ouyb0oY3W1bC2iLzz8Pdh2l8++8F/L/exYIdl7ifNSihUkGtbtB1TuY2c0toMQb+cwAs7QxPFBoI++cqyzfuRuQckNAFIu5GQGlvqNk1H69WCCGEKJ569+7Nt99+y+7duwkMDCzq4RQr7u7uhIaG8ssvvxTZGEJDQ9mxY0eRnf95UyQLeGNjY9mzZw979+4lLk6msovnR8XStrzVqsqTOwpRTJW1t+bjLrUZ1boKP+67wq+HInmYqlTVuJeUxnfbLrJk3xVGvlSJkS9VwtHWIueDnfodUhOV79VmoHlUnUOTCsmpSkJMXUDitU3g5KG0Zw9EZG0TQgghnmNLly7Vf5+XJQ8vAgsLC2rWrFmkYyjq8z9vCm1mRHJyMmvWrOHVV1+lQoUKjBkzhkOHDuHi4sI777zDoUOHCmsoQhS6YxFxrDkaVdTDECLXypSy4sOXa7F/SlveaVOFUlaZseuE5HTm7biE/9c7+W7rBe4mphofQKOBsCyfHDQbDT1/gFJZSj3rSofejYBlHZUghAQihBCi6MWGKaWb141Q/o0NK+oR5VrWvAKJiYm89957eHh4YGNjQ8OGDQ1mG6xbt46mTZtiZ2eHm5sb48aNIykpyeiY3t7eqFQqtFot8+bNo3bt2lhbW+Pu7s64ceOIj48vxCvMP1evXmXUqFF4eXlhZWVF2bJl6dWrF0ePHs1xn/Xr19O0aVNsbGxwc3Nj2LBh3Lhx47Hn2bNnDwEBAZQqVQoXFxd69uzJ+fPn8zzenHJGrFixApVKxfTp04mKimLQoEG4urpiY2ND48aNHzvDZMmSJfj4+Oifz7Fjx3Lv3r0c+z8uZ0RISAgjRozQP55ubm60atWKefPmGfV98OABM2bMwMfHB1tbWxwcHGjdujUbN240eezQ0FCGDh1KlSpVsLa2xtXVlQYNGjBhwgRu3ryZ43iLuwKdGaHVatmxYwe//fYbGzZs4MGDB2i1WqysrOjduzdDhw7l5ZdfxtxcMqyL59fRiDiGLztC4qNPl/s38SziEQmRe852lkzqVJM3W1Zm2YEIlh8IJyE5HYCElHQW7LzMsv3hDGvhzRv+lXApZaXsqFbDiC1w4mc4vARaT1FyTNTsAvu+g0PfQ0aWIMb9GzCvnjJbQpMmgQghhCgqJ3+D/43LDBgDHFyglHz2HVJ048qj1NRU2rVrR1hYGH5+fjx48IC9e/fSs2dP/vnnH86cOcPkyZNp0qQJHTt2ZN++fSxYsIDY2FhWrlxp8phjx45lyZIlBAQE4OPjw549e1iwYAF79uxh//792NvbF/JVPr0zZ87Qtm1b7ty5Q82aNenVqxdRUVFs2LCBwMBAVq1aRd++fQ32WbhwIWPHjsXMzIzWrVtTpkwZtm/fjp+fH/Xr1zd5nr/++ovevXuTkZFBixYt8PT05MiRIzRr1oxu3brl6zVFRETQpEkTrK2t8ff35/bt2xw6dIgePXqwZcsWOnbsaND//fff57vvvsPKyoq2bdtia2vLypUrOXDgAFZWVnk697p16xg6dCgpKSnUqVOHFi1aEBcXx9mzZ5kwYQLjx4/X9719+zZt27YlJCQEd3d3OnTowMOHDzl06BA9e/Zk1qxZfPDBB/r+J06cwN/fn+TkZJo2bUrTpk1JSEjgypUrzJs3jx49elC+fPlne/CKirYAHD9+XPvee+9pK1SooFWr1VqVSqVVq9XaVq1aaX/88UdtfHx8QZz2hVW7dm1t7dq1i3oYwoT0DI22zf/t0npN2aT1mrJJW+OTzdrb95KKelhCPLX4h6naudsuan2m/aP/vdZ91fxki/aLv0O00feTDXfKyDA+0J3LWu3/1dRqpzkYf00vrdXGRRTOBQkhRDGXkZGhDQkJ0YaEhGgzTL2e6qQmabUP7ypfKYnG7elpme1JObwXv35SeQ3O6bX55unMY6SaeD+TlpLZnpxg6mJM7/eUAG3225nw8HD99oCAAG1cXJy+bfny5VpAW7VqVa2zs7N27969+rbr169ry5YtqwW0YWFhBsf08vLSAloHBwftsWPH9NsTEhK0bdu21QLad999N9+uS2fXrl1aQNupU6d8Pa5Go9H6+PhoAe2HH36o1Wg0+rZ169Zp1Wq11t7eXnvr1i399vDwcK2VlZXWyspKu2vXLv32xMREbYcOHfSPeda2+/fva8uUKaMFtKtWrdJvT0tL07722mv6fZYvX56rceue29atWxts1z2vgHbs2LHatLQ0fdvcuXO1gLZly5YG+xw4cEALaJ2dnbVnz57Vb79z5462Xr16+uOFh4cb7Adovby8DLZdvHhRa21trbWwsNCuWbPGoC0jI0MbGBhosO3ll1/WAtrJkydrU1NT9dvDwsK0VapU0ZqZmWlPnTql3657rNavX2/0mISEhGhv3Lhh/GA9g1y/5mif/T40X5dpfPHFF9SuXZsmTZowd+5cbt68SfXq1Zk5cyZXrlxhz549vPHGGzg6OubnaYUotszUKpa+1oSy9lZYmqv5YWhjyjpYF/WwhHhqjjYWjG9fjQMftGVSpxo4ZckZkZSWwZK9V2j5zU5mbgoh+n6y0mCqPnXCTUh4NK1Tla1dm6FMDY65UEBXIYQQz6H9c+BrL+Xr74nG7TdOZrYvaGz6GEs7Gs6IyEqbAX+MzDxG0H+N+5xZl9m+qr9xe2KMMs5CYGZmxo8//kjp0pnVzYYNG4arqyuXL19mzJgxtGzZUt9WoUIFBg8eDMDevXtNHnPMmDE0atRI/3OpUqVYuHAhKpWKpUuXkpKSUkBXk792797NmTNnqFSpEjNnzjRIut6nTx969OhBQkICy5cv129ftmwZKSkpDBs2zGCZhK2tLQsWLDCZuH3dunXcuXOHDh06MHDgQP12c3Nz5syZQ6lSpfL1uipXrsx3331nMOv+nXfeoXTp0gQFBZGamjkjc/HixQBMnDiROnXq6Le7uLjw7bff5um8c+bMITk5mVGjRtGvXz+DNrVaTdeumUm4g4OD2bJlCy1atOCrr77CwiLzfZRu/BkZGfz000/67dHR0QC0bdvW6Ny1atUqubMiyOecEZ9++innz5/X54E4fPgwoaGhfPzxx3h5eeXnqYQoMSqVsWP1W34se60Jrau7FvVwhMgX9tYWvNOmKvuntGVK55o421nq25LTNCzdH47/N7uY/r9z3LxnvP6Wgwszv1ebWKp34zj8t4VSBjQtuQCuQAghhBGt5vHtqQ8LZxz5wNvbm6pVqxpsU6vV+nuSDh06GO1TpYqShDynNfgDBgww2larVi3q16/P/fv3OX369LMOu1Ds27cPgP79+2NmZmbUPnToUIN+APv37wcwutkGqFGjBr6+vkbbH7dP6dKljZZNPKuAgACDm3tQAh+VK1cmLS2N2NjYXI2tY8eOODs75/q827dvB2DUqFFP7Ltt2zYAunfvbjKA4+/vD2CQt0MXABs2bBhHjhxBo3nC/9MSJF+DEX379uV///sfN27cYP78+TRp0iQ/Dy9EiVXZtRT+1coU9TCEyHelrMwZHVCF/VPa8PErtShTKjMokZquYcXBCFp/s5tPNp7henxmUOJn92kkNPwPoFJyR5T2hjd2QNV2mQfXpsPeb7g3pwlc2VN4FyWEEC+q7DPVsrO0LZxx5AN3d3eT2+3s7HJs17XlNMMhpw9XdQkNn5TIsbjQjTOnRIymrkf3vaen6dxnprY/zT7PomLFiia362ZgZH1eb9y4gUqlwsPDdG6qvIzt6lWlRHnlypWf2DciIgKAKVOmoFKpjL7KlFHuF+7cuaPfZ9KkSQQEBBAYGEizZs1wdnamU6dOLFiwgISEhFyPszjK18yRa9asyc/DCfHc+2FPGOUcrenewPQfTCFKCltLc95sVZkhfl6sOhLF4j1hxCQof/RTMzT8FhTFmqNX6dPIA9dSlvyx8wjtbTZgj9YwWeWQP+H4LxA4DmW5Jjg+jIJfXoX6A6HjF2DnUnQXKoQQxZX/u+A3WvnezNK4vYIvTIlUvjfxiSwAr2+FH9uaXqqhMoM+y8Dx0c2buYllpz59lUTFYHrWm52rMs5CYOpT57y054VWq823YxWmvDxGumvMy+P2NPs8i8I6T07nzs35MzKU/1stW7Z8bPBCF5QAcHBwYOfOnRw4cIDAwEB2797Njh072Lp1K7NmzWLfvn36WT0lTaGUsUhPT2fTpk0cPXqUO3fu0KxZM0aOHAkoUak7d+5Qu3ZtqaohXijf77rMt/9eQK1SXsBerV+hqIckxDOzsTTjdf9KDG7myZqjV1m0O4xbj3JHpGVo+f1IFBVVd1ht9QXu2ttcV7lh1vMPymWtmlG7G5qtn6BOyVZa69TvcPFf6Pg5NBiU85tpIYR4EVlYK185MTMHG6fHH6NCA6VqRvZqGiozeHUBlPN5/P7mlspXTtRqUJfc3FmRkZH4+Bg/BlFRSvn2ChVKxns53TjDw8NNtkdGKkGrrLkIKlSowMWLF4mMjKRatWpG++geA1Pn0R0vN/sUlvLlyxMREcHVq1eNlvNA3sbm4eHBpUuXCAsLo27duo/tq5u90adPH8aNG5frc6hUKvz9/fXLOGJiYhg/fjy///47H330UYmdFJCvyzRM2bNnD5UrV6Z3797MmjWLn376Sb9GB2DHjh34+vry119/FfRQhCg24hJTWbZf+QOg0cK87RdJTX9+1n8JYW1hxmstvNkzOYDPe9TF3clG39ZBfRRP1W0iNWXpm/QxPVdGGSzhSNj+jT4QYfS/IikO/nobfu4Gdy4VwpUIIcQLxncIjDmqzGCo21v5d8xR8B1c1CMrcqZu+M6fP09wcDD29vbUq1evCEaVd7rEnWvWrNF/Up/Vb7/9ZtAPMnMZrFu3zqj/xYsXCQ4ONtr+uH3i4+PZunVr3gefTx43tm3bthEXF5frY7Vv3x6AJUuW5Lrvxo0bc318U1xdXZk+fTqglGktqQo0GHHmzBleeeUVoqOjGT9+POvWrTOaxtS7d29sbW1Zv359QQ5FiGLF2c6SlW82w9nOkkpl7Fj5hh+W5gUeGxSi0FmZmzHEz4td7wcwq5cPFUvbsDzjZT5LG8rA1E+4QRlu3kumw+w9HLgcw/X4JAaENOfn9A5koCax8Rjo+CV0mgUWdpkHjtgHi1rA7q8hvWRkLxdCiBLDpQq0n64sy2g/XflZsHDhQk6ePKn/OTExkbFjx6LVahk5ciRWVlb6tiNHjlCzZk3atWtn6lD5avr06ahUKoYPH56r/gEBAfj4+BAeHs7UqVMN7s82btzIn3/+SalSpQyON2LECCwtLfnll18MElsmJSUxfvx4k0kV+/bti7OzM1u3bmXt2rX67RkZGUycOJEHDx7k/WLziS7Z5OzZswkNDdVvj4uLY/LkyXk61oQJE7C2tmbx4sVG97QajYbNmzfrf/bz86Ndu3bs2rWLd9991+gx0Gg0bN261eDD+8WLF5ucxbJlyxYg/3NvFKYCXRcxY8YMUlJS2Lp1q8lSJKCUg6lVq5bBf+zn2datW/nwww85d+4cLi4ujBgxgs8++8xkJlvxfKtZzoHf3/TDydYCNyn3KZ5zluZqBjb1pE+jimw4eZ3vd9lyIzYzK/vD1AwG/3QElQq0WjOWOr9D514f4eZdB8wfvbmr/SpsngQXHv1Rz0iF3V/C2T+g61zwfqnwL0wIIcQLY8iQITRr1oy2bdvi6OjI3r17uXXrFnXq1OGzzz4z6Pvw4UMuXLhAcnLeKkLNnDmTv//+G4D79+8DEBQUhJ+fn77Phg0bDJZQ6AIB2StJ5ESlUrFy5UratGnDl19+yYYNG2jQoAFRUVEcOHAAc3Nzli1bRrly5fT7VK5cma+//pp3332XNm3aEBAQQJkyZdi3b5++fOWmTZsMzuPg4MCSJUvo168f/fv3Z/78+Xh6enLkyBFiYmIYPHgwK1euzNPjk1/8/f2ZMGECc+fOxdfXl/bt22NjY8POnTvx9PTEz8+PoKCgXB2revXqLFu2jNdee40+ffpQt25d6taty927dzlz5gw3btwwCPisXLmSjh07MnfuXH755RcaNGiAq6sr169f58KFC8TExDBnzhz97I3FixczevRoateuTa1atTA3N+fChQsEBwdjY2PDtGnTCuQxKgwF+lHsnj178PPzyzEQoePp6Vliss8+i5MnT9K1a1datWrFyZMnmT9/PgsXLuTjjz8u6qGJIlKjnL3JQERJTYT0ogu/k8hXW84zZtUJvtpynvA7iUU9pGLHwkxNv8Ye7HivNbP71adyGTuDdt2vvrOdBWfT3NGos6w9dqwI/VeCWx2DfbhzEVa8An+9Aw9zP61SCCGEyIsFCxYwa9YsIiMj+euvv1CpVLzzzjvs27cPR0fHfDlHWFgYhw8f5vDhw/pP7O/du6ffdvjwYaNqH6dOnQIyS3Lmho+PDydOnODNN9/kwYMH/PHHH1y4cIEePXpw4MAB+vbta7TPhAkTWLt2LQ0aNGD//v3s2LGDgIAAgoKCcHExnVy6d+/ebNu2jZYtW3Ly5Em2bNlC7dq1OXTokMlcDYVp9uzZLFq0iKpVq7Jt2zYOHDhAv3792LVrl8Esl9wYOHAgR48eZdCgQcTGxrJ+/XqCg4OpVq0a8+fPN+jr5uZGUFAQs2fPplq1ahw9epSNGzdy7do1fH19+f777xkyZIi+/8yZMxk5ciQqlYodO3YQGBjIw4cPeeuttzh9+jTNmzfPl8ejKKi0BXjXY21tTffu3Q3WV6nVaoYPH86yZcv027p168auXbuKdKrO8ePH2bZtG0eOHOHw4cPcuHEDKyurJ0Yzk5OTmTVrFr///jtRUVE4OzvTuXNnZsyYYVReZvDgwZw/f57jx4/rt82fP58PPviA6OhofdmZvKpTR3ljfu7cuafaXxQvyWkZvLPyBP2beNCxTrkn7yCKhbXHrvLhn2fI0GS+pJqpVczq5UO/xqbLRgnI0Gj55VAEnwWGmGyv4mrHGy0r09PXHWsLMwgNhDVDTPYFwLYMdPoS6vWTBJdCiOeCRqPhwoULANSoUQO1WpZ1FjZvb28iIyOL5YdFGo0GFxcXGjduzLZt24p6OOI5kJfXnGe9Dy3QV7Py5csbrMHJydmzZ3Os21tYZs6cyYcffsiGDRtyPUsjOTmZdu3aMWPGDB48eED37t3x8PBg+fLlNGzYkLCwMIP+Bw4c4JVXXjHY1qVLF5KSkgwCFOLFlZyWwZu/HGPH+WjeWXWC7SG3i3pIIhfC7yQaBSJAudGe8sdpftx3xWgfrVZLWoYkLb11P5nlByIAJXiTPXwQFqM8tv5f72T+jkvEO9WBOj2Vxirt4PUd4JYls/nDO7DhLfi1B8SGIYQQQjzPTp48SXx8PDNmzCjqoQiRZwUajOjYsSPnzp1jw4YNOfZZsWIFkZGRdOnSpSCH8kTNmzdn6tSpBAYGcuvWrVzt8+WXX3Lw4EGaN2/OxYsXWbNmDYcPH+a7774jJiZGX75U5+bNmwbruwD9WqwXYZmKeLKouIecuhoPKGUQN5+5WbQDErmy5uhVo0CEjhZYfsA46VBsYirVPt5C3Wn/8tJXO0lOM85mvf74NX4/EsWWMzeJSSj8JI0FvezkenwSA5cEERX3EE9nW/ZObsP+D9ri5mA8NfLOg1Rmb7uI338v8KnF+9zq8Qe8/A14NIa3dkOHmWBhm7nDld3w3+aw91tIT83XcQshhBDFRaNGjdBqtSV6qr54cRVoAsuPPvqI1atXM3DgQCZNmkT37t0BJaHL2bNn2bhxI19++SUuLi689957BTmUJ5oyZUqe+qelpbFgwQIAvv/+e4MlFu+99x4///wze/fu5fjx4zRq1CjH46geTSNWyXRiAVR3s+fX15sxZOlh2tQoyzd9lBJR4XcSWXP0KtfuPqRiaVv6N/GgUra19qLwJSSn8d3Wi5y5fu+x/UwkmCb+YRoAD1LSSUnPwMpENZUFOy8R8SjJ488jm9La3tWgfc62iwSevoGTjQU9G1ZkqJ/hDLPohGTOXb+Po60FZeys8HSxJbdMLTv5cd+VfFt2kj0Q8ftbfvryn3++/ZK+rZSVOanpGaRmKONITtPwa1Akvx2GTrXv8WarOBp5OcNL46B2d/itF8ReVk6SkQI7P4czjxJceskbNSGEEEKI4qJAgxFeXl78/fff9O3bly+++IIvv/wSlUrFunXr9GU+XV1d2bBhg0G21pJg//79xMfHU6VKFXx9fY3a+/Tpw+nTpwkMDNQHI8qXL8/Nm4afdOt+zj5jQry46ns4sfGdl/BytsXcTF3gN4Xi6RwKi2X86pNEJ6RgZ/n4ajhVyhoHju4lZX5a72hjaTIgGZ+UlqWPcYbsa3eTuBKjzFZ4qWoZo/YTkXf5z28nAKhV3oEt41satKemaxix4ghONpY42Fjw0Ss1sbe2eOyykw//PEMTb+dnCoY9LhAB4O5kw+9v+en7VCxtQ+c65dhw8jqxicrjptXCP+du8c+5WzT0dOKtVpXpUNEMs/smZpnFnIflnaHRcKVEnU3ppx67EEKIF09ERERRD0GI51KBBiNAKZty8eJFli5dyvbt24mIiCAjI4OKFSvSvn17Ro0ahZOTU0EPI9/pstY2bNjQZLtuu64fwEsvvcSWLVuYOXOmftvmzZuxsbF57OwJHV2CkOzCwsKoUkXqPz9PqrgqM20K+qZQPL1yjtb62Q2JqRmPSlIa9zNTq/i8h4/R9noVnTjwQVviH6aSkm46d4R/1TLEJaYS/zANFztLo/Z7TwhW6MYH4GSi/V5SGgcux+p//rRrLeDxy04yNFrWHrvKlM41Tbbnxr9nb+UYiNDJHpCo4GTDgQ/asuHkdX7cd0UfhAE4ERXPf347QYvS95hdqjbl7h4DWxeo/jIEr0RZLAMcXwHnN0PnWVC3tyS4FEIIIYQoQgUejACwt7dnwoQJTJgwoTBOVyiioqIAjCpm6Oi26/oBTJw4ET8/PyZOnMgbb7xBaGgoU6dOZdy4cU9dSUM83wr6plA8vUpl7PhPQBUW7wljTJuquJSyZOpf54yqaXzVy8dkwMjCTI27k43JG3GdhYNMBzt1JnWqwaBmHtxLSqNuBeOSYpbmaiqXsSM+KQ2XUqaCGZmzMyzN1NhYKDM8rt19+NjzXrublOUYadhZmmFulvsURCP9KwHQqW65x16/LiDx79lb+n0GNvWkf2MPdp6PZsm+KxwJzyzlefCuI368S1+b47Su6EKzdm/i2ug1CBwP0Y+qdSRGw/rX4d+PoMYr0GIsuEgwVwghhBCisBVKMOJ5pCtDamtreg22nZ2dQT9QZksEBgby4YcfsnDhQlxcXHj77bdznf02p5IpOc2YECVfXm4KRcHZfSGa6m72VMh24/x2QBV6N3THy0X5/96iShnWHrvKtbtJVCxtQ7/GBZvbo0Y5e2qUs8+xvVfDivRqaDpgCuBiZ8WXPX2IT0olNV2jXypSsfTjc0tULJ35OHy15TybTt/gpSplGNbcixYmlouYogsuPIm7k41RX7VaRfvabrSv7Ubw1Xh+3HeFLWduosSBVKxLasy602AZspNevu680fNvql5eoeSP0D5KFPrgNhxfrsyW6DYPGr2Wq/EIIURhy7qMT6PRSGlPIUSB0mRJdlbQeQ3zNRhx/vx5atZ89k9p8+s4BUlXZzinJyinOsSdOnWiU6dOBTYu8XzJy02hyH837yUxc1MIm8/colMdN34Y2tig3drCTB+IAGW2REmaqVLazpJBzTyNtvdv4sGP+66YnJVjplbpc5VotVr2XowhITmdf87dokNtN6P+Wq22QP+QNfBw4vtBDbka95BlB8JZc/QqD1OVgENquobVR6+y+uhVBlX24gtthlHpUNBC4DiwcoC6PQtsnEII8bRUKhWWlpakpqaSmJiIo6PxTDghhMgviYnKUlhLS9M5zfJTvgYj6tatS//+/fnwww+pW7dunvcPDg7mq6++Yv369aSlpT15hyJkb698Gql7srJ7+FD5RFuWX4hnkdubQoDgq/HULu+ApYmqDOLpHLgcy+YzSqnff8/dZuf527StaXzD/bypVMaOWb18jPKVZF92cvt+CtEJyfr2ltWMZ0V8teU8J6PiaVmtDC/7lKdq2YJ5TfRwtmVatzpMaFedlUciWXEggugs5VBrRP2O6nF/8f4YDpH7od1UsJY3+kKI4sXe3p7Y2Fhu374NKDNwZYaEECI/aTQaEhMT9a8zuvvdgpSvwYhPP/2U7777jtWrV1O/fn0GDx5M69atqV+/PhYWxsnTUlJSOHnyJLt27WLVqlWEhIRgZ2fH1KlT83NYBcLTU/k08dq1aybbddt1/YR4Grm9KYxJSGHQj0GUKWXFux2q8Wp9d8zUkpzvWfVu6M7ao1c5EhFHI6/SRss0nmf9GnvQxNv5sctOyjlaEzy1I4fDYwm9mUBZB2uj4+w4H83l6AcciYijtJ1lgQUjdBxtLXg7oCqv+1fif8E3+HHfFS7efoCzKuHJOx/9CUI3wctfK2VCJcGlEKKYcHFxITExkeTkZG7cMFE1SAgh8pG1tTUuLi4Ffp58DUZMmzaN0aNH88UXX/DLL78wadIkVCoVFhYWeHt7U7p0aezt7bl//z5xcXFERkaSnp6OVqvF0dGR8ePH8+GHH+Lq6pqfwyoQ9evXB+DEiRMm23Xb69WrVyDnj4+PJz4+HoC0tDTMzB5fWlCUXLm5Kfx+12UepmYQFfeQmZtC6VC7HKWsJCVMXtxNTMXBxsIgiKNSqZjZoy7BV+/St5EH6hcswJObZSd2Vua0relmcsbIjfgkLkdn5s1pVc34tX3FgXAiYh/SqnoZ/Cq7YGuZP7+3VuZm9G3sQZ9GFdlzMYaETV6QEPTkHR/cgnWvQbVO0OX/wEkCykKIomdmZoanpyexsbEkJCSQmpr65J2EECKPLC0tsbe3x8XFpVDuL1XanJIbPKOkpCTWrl3Lpk2bOHDgALdu3TLqU65cOVq2bEmXLl3o168f1tbGn6oVFZVKhZWVFcnJySbbU1NTKVu2LPfu3ePEiRP4+voatNevX5/Tp09z5MgRmjRpku/jmz59Op999pn+Z1dXV6Kjo/P9PKJkmP6/c/waFEmGRssnXWrxRsvKRT2kEkOj0bLu+FW+2nKedztUZ1hz76Ie0nMjQ6PlzPV77LsYw4XbCSarg3RbsJ8z1+8B8PErtXizVQH97saGoV3YBJUugWUW6Vo1F7UVqa2OMmywsIU2H0Gz0WAmwT0hRPGh1WpzzE8mhBBPQ6VS5TlHhK6QQk6FFp54zoIKRmQXExNDdHQ09+7dw9HRkbJlyxbrGRBPCkYAfPLJJ3zxxRe0aNGCrVu36itozJ49m4kTJ+Lv78++ffsKZHxZZ0Z07NgRMzMzQkNDC+RcomSIuJPI0v3hfNylFtYWhpHM09fi0WiVZH/C0Lztl5iz/SIA9tbm7JjYmrL2xScw+jyLfZBC4y+2o/sr9O+EVkbVQbaeu8X95HRaViuDm4llIHly8jf437jMihoogYiZ6UOYYr4GW1WK6f3K+SgVN9wbPdv5hRBCCCGeIyUmGFHc/f3338ycOVP/8+HDh1GpVDRt2lS/7dNPP6VLly76n5OTkwkICODw4cOUL1+eli1bEhkZyeHDh3FxcSEoKIiqVasW+Nif9ZdAPN+0Wi09/nuQU1fj6VTHjSmda1LZVRKr6sQkpND2u90kJKdjZ2nGwsENaVOjbFEP64WQkJzG/07dYN/FO4TFPGDru62MIvL9Fh/iSEQcADO712Hos85ciQ2Dk79CfBQppSryl6oNc09osLwfzkzz5VRQxbIovRsfWvyOS9Y8Eyo1NH0L2nwM1g7PNgYhhBBCiOfAs96HyrzTR2JiYjh8+LDBNq1Wa7AtJibGoN3a2ppdu3Yxa9YsVq1axcaNGyldujSvvfYaM2fOxMPDAyGK2r/nbnPqarz++7daVSnaARUzrvZWTO5Ug0NXYvm0a23KO744SSqLmr21BYObeTG4mZfJEqAJyWmciLqr/9mnopPRMU5fi8fCTE3Ncva5m1roUgXaTwfACugH9GyvYfOZmszaXZ3oW9e4gyPbUxrxkfkq+pnvUfbTauDwYgj5H7zyLdTq+nQXLYQQQgghAJkZ8VyQmRHicY5GxDEjMIQz1+/RvlZZfnot/3OYlASRsYnMCAxhUuca1Cxn+Mm2qRthUfSiE5KZu/0Sey/G8CAlneOfdDCqEjNs2RH2XozB1d6K6d3q0KVe+ac+n1ar5VBYLEv2XWH3BSX47KcOYY7595RX3zXsXKMLvPINOFZ86vMJIYQQQpRkMjPiBSXVNERuNfF25n9jXuKfs7eoYqKsYvzDVJbuD+cN/8o42hqX4H0e/BYUyYxNIaSma7iXlMbaUc0NKmNIIKJ4KmtvzZc9fdBqtcQmphoFIpLTMjh8JRZQltu4lLI0Osbt+8k42ljo86iE30lkzdGrXLv7kIqlbenfJLMyjUqlokXVMrSoWoYLtxL4ad8V/g1OQaNSGw/uwt9kXNmNWbtPleUbajOW7Q+nU91yuD+hBOz1+CT+PXuLkf6VnuZhEUIIIYR4LsjMiBJKqmmI/DJrSyg/7LmCvbU5EztUZ/hLz98N0q4L0YxYflT/87LhjU2WohQlS1TsQ8auPsnpa/HYWJgRPLUjluaGgYNRvx5jz8UYmlVyoWY5e37aH06GJvPPnplaxaxePvRrbHpZXfTdBEI2fk2zyCWYa9M5p/WigfqKQZ/7peuys+pHnDq4hTP2rZj3n245BiSuxycxfnEgPgl78Xh5ogQkhBBCCFFiSQLLF5RU0xD54fb9ZFp/u4vkNA0AkzrV4J02BZ90tSiM/u04xyPvMrVbbbr4lJfZEM+Ru4mpXIp+QNNKzgbb0zM0+M7YRkJKOgBqFWhM/MUzU6vY/l5r/QwJUx5Gh3N072Y+CauJ3/1/+Mh8FaVVD/TtGlSo0RKlceU92y9NBiR0gYjvHn6Mlzqa+NYzcWoz7hmuXAghhBCi6EgwQkjOCPHUHqams2x/OD/svYKVuRl7Jwdga1lyV2+lZ2hYd/waPX3djcqb3nmQgpW5Gnvr53MpijB2OTqBbgsOkJSWkWMgQqeHbwVm921gsHzHlPQMDf+eu83q3SfoEfNfepvtN+oTrXVktPW3zB/9qj4gkT0Qke7ohfmI/2fvvsOjqrY+jn9nJj0EAiGQkEJCkw6hVwWkCSgKiqKCiBUr9qvXguWKet+LiAVFQCxYQKSIhSaGXkIHQVoSAqElMBDSMzPvHyNJJpNCySQh/D7Pk4fM2fucs8brxTlr9l7rF/BXoWMRERG5MikZIUpGyGUzp2Vx4OQ52tZ1/GbZZrPx4k876HFNIP2aBVXo1QRbDp3m33N38tfRszzRqwFP972mvEOSCiAzx8Km+NOM/3UPO46cKXbu/93WilvbXlhBSpvNxsa401T94WYaZ2xzGk+1eTKa13hm1B2EVPdRIkJEREQqnSuugGXdunVp27Ytbdq0yf0JCgoq6zBEJB9/Hw+nRARA9N6TfL8xge83JtAytBoz7+9YYVcW/LrjKH8dPQvAp9EHuTkqhHqBzgU75eri6WaiS/2adG1Qs9hkhNEA1zeu5XQ8NTMHX0/n/1QaDAY6hHhCDRMk2o/l2Ay4Gez5fV9DJt/Z/s2EqZuZZ+3GTPe3lYgQERERyaeQEuGu9cwzz1CtWjVmz57NzTffTEhICCEhIdx444289tprzJ8/n4SEhLIO64pjNpuJi4sjLi6O7OxsrFZreYcklYzNZmPCkr25r6t5u1fYRATA2N6NCKrqBcBNretQzbvixipl7/b2YU7dOPLrXC+A6r6O3ThsNhs3fbSKwR+vZvqqWM6kZTue5OEL9y+FAf8H9a8nZdRyjvi1yh02Gmw86/4jKzzGUtd4gkRjEH90nEa2X0ipvjcRERGRK1G5btPIzMxk+/btbN68mU2bNrF582Z27txJVlYWNWvWVHeIYqibhpSFPcfO8r/Fe1ny13EWPNaVlqH+DuM2m61ctm4cO5NBUDUvp+Mr953E083kVMhQBGBWTAIv/rTDqZvGO0NaMKRNqFOyYueRMwz6MK8mxMrnexJWw6fwi9tsYDCA1UrWxhlYF7+MlyXVYfgLSz/eybmT6lWrMLJzBHd1DMffx7kdqYiIiMiVoNLVjMjJyWHHjh1s2bKF0aNHl3c4FZa6aUhZOnjyXKFbHiYu3UtcUipP97mG8IAiHtJKUWpmDpOW7WPaqli+vq8jnesHuPyeUrnEJqUyKyaBw6fTCa3uzbB2YUV20Zj85wHe/X0PAG3rVmfOmC5Oc1buO0m7ujXw9sgrmHrEnM6rk2fyecYzFFyMsd9ah39l30+MrTFe7kaGtgnl3q6RNKilLUUiIiJyZalwyYisrCw8PPRNT1lSAUspD8nnMrn2veWkZllwMxr4bERbrm9S26X3fOCrGJb8dRyABrWq8OsT3fFwK/PdZnKVsNls7DmWwoJtiTQO8mNwa8ftFQmn0uj+3nJ8PUz0axbEW7c053Ra9j/FKl+irvFkkdf+KqcP7+XczjnsSbwe1wRyX7dIujWoWaELxYqIiIicd7nPoaX6KT4nJ4drrrmG8PBwNm3a5DC2dOlSfv/9d44dO1aatxSRcvL9xgRSsywAVPFyo30ZbI14vFcDzj+nZWRbOHw6zeX3lKuXwWCgSXBVXujf2CkRAfDzdnvlytQsC1sPmzmVmpWva8ZJcqoEQ0hbcPfB6u64+mKk2xKWeD7P9Ub7fyv//PskI6ZtoN/EFXy/4RAZ2RbXv0ERERGRclSq3TTmzp1LfHw8I0eOpG3btg5jM2fO5KuvvgLs9Q1at26d+9OrVy9q1XKuYi4iFdfD19UnqKoX7y/dy8jOdalaSHHLjGwLXu6mQs6+NC1D/RndNRJvdxOP9mzgsDRepKxl5Vip4unGucwcel5Ti7GfLXRo35k6fB6TN2dwa5d06ocEYvm8D6bUvIR8sOEU0zz+x0JLJ8Zl30MS1dh7/Bz/+mkH7y36m7s7hnN357rU8nOujyIiIiJypSvVbRp33XUX33//Pfv37ycyMtJh7N577+XLL7+kZs2aJCUl5QVgMNC3b19+++230grjqqNtGlKeMnPs3+B6ujkmBtYcSOKJ77bwaM8G3Nkx3Gm8OGv2JzFx6T6mjGyrAn9SoWVkW/hjzwmOxO2l78b7Hdp3frfXxos/7QCgS/0Avr0thJzpA3A7eyi33uV55wxVGJd1Fz9argXyBjxMRm5sVYfR3SJoVqdaGb87ERERkaJVqG0aGzdupHnz5k6JiPMMBgMnTpzgyJEj/Pbbb7zzzju0atWKxYsXq/iiyBXK083klGiw2Wz8d9HfJJ3L4vWf/+KZWdsu+Hov/rSDO6euZ0PcKd79/e/SDlekVHm5mxjQIpgHAv9ySETgH8aCrYm58xrV9gP/MNxG/0pO1XAKloWoYjvH/7l/xtKaE2jontcZKctiZc7mwwyctIo7pqxlyV/HHbqBiIiIiFypSnWbRmJiIv379y9xXnBwMMHBwfTr14+2bdvSp08ffvzxR1555ZXSDKdSy99NIzs7G5NJy9Wl4jiYlMqeoym5r0d1iXCaE5uUyg8bEzh8Oo3Q6j7c3t7e1SAiX1eOWTEJPNarASH+3mURtsil6zQGALfGg8A/DJvNxg0tgsjIsbDlkJmbWtexz/MPw23UAvj1OSwHozFZs8gxeuBmzQKgwblNLPb8izUNH+S5hK4kpuTk3mLdwVOsO3iKugE+3NslgtvaheHrWar/GRcREREpM6W6TcPb25ubbrqJH374wWns4YcfZsqUKVitVqexkJAQmjVrxuLFi0srlEpv3LhxvP7667mvAwMDOXHiRDFniJStEykZfPzHfo6dzeCzEe0cxmbFJPCvOdvJ/wWvyWhg/JAW3BIVwsBJK/FyN/Gfm1vQIlRL0+XKlnAqjdDq3k5dMl6dPp9qBxbwo+U6ptb8lmbn1jqM24Ja8WfjV3l/pxfbD59xuq6flxvDO4RzT5cIJexERESkzFWo1p7h4eEEBwezfv36QscTExOpU6eO0/GePXuyb98+Dh8+XFqhVHr5V0b07dsXk8mkrS5SIdlsNoeHsNikVHr/LxpLIX/1mIwGlj59Hd7uJgL9PDEZ1eJQKqeUjGzavrWUrBx7gn76PW3pZVkNvz4PaXl1lWwYoeuTbIp8kGnrjrJo1zEK7tIwGQ30bxbE6G6RtK1bvSzfhoiIiFzFKlTNiHbt2rFp0yYSExMLHS8sEXH++KlTp0ozlErP39+fiIgIIiIicHd3x2gs1f8pRUpNwW+Df9iYUGgiAsBitTErJoGgal5KREil5uvhxrf3d2Rk57rUD/SlW8Na0HwoPLYRglrmzjNgxbD6fVouuIHJXdOIfq4n93WLpEq+7RkWq41fdhxl6OQ13Pzxan7elki2xXkVooiIiEhFUqpPsMOHD8dqtfLcc89d1HkpKSlODywiUjkdPp1Wwnh6GUUiUn6MRgPtImrwxuDmLH36Ojzc/vnPsZc/mJw7yHicjYMvBxG26gVeub4Oa1/sxauDmhJWw3F7xtYEM49/t4Vr31vOp9EHOJOW7fo3IyIiInIJSjUZMXToUKKiovj+++957bXXLuic7Oxs1q1bR3h4eGmGIiIVVGh1nxLGtfddri4OyXijEUb/TmKHl4i31eaLnL5YbPnGN38FH3fA7+BvNAmuyvD24RS2iOjomQze+W0PncYv45V5Ozl48pzr34iIiIjIRSjVZITRaOTbb78lMDCQt956i5tuuonY2Nhiz3n77bdJTk6mT58+pRmKiFRQt7cPK3ILhsloYFi7sDKOSKSCMblTZ8AL+D+/Dd+bJzCnzZdQu0Xe+LnjMGsEGd8MZ8aidU41JPJLz7bw9bp4rp8QzX0zNrJmfxKlWCpKRERE5JKVagHL8/bu3UufPn1ISEjAZDLRp08fbrjhBtq1a0ft2rVz53zxxRf8+OOPeHt7s337durVq1faoVwVLrdwiEhZmxWTwIs/7cCS7ynKZDTwzpAW3KZkhIgzSzas+RCWvw3WvK0XZ23eTMkZiK8hg1BDEodtgfxg6UGcLRhPNyOZOc61IxoH+TG6WyQ3taqDl7vaQouIiMilqVDdNPI7e/Ysr776Kp988gk5OTmF1oSw2Wx4eXkxc+ZMbrnlFleEcVVQMkKuRLFJqcyKSeDw6XRCq3szrF0YkTV9yzsskYrLZoOPO0LS38VOy7EZeTHnfo5G3soNzYP4Yk0c+084b9OoWcWDuzvV5a6OdQn083RV1CIiIlJJVdhkxHkJCQl8//33zJ8/n3379pGUZF8iGhwcTL9+/XjhhRe45pprXBlCpadkhIjIVeLoNvh5LCRuJsvgiYcts9BpOTYjvbP+i2etRtzXLZKAKh7MWBPHyn1JTnM9TEYGt67Dfd0jaRxUNff49FWx9GseRIh/8XVcjpjTWbTzGKO7RV7WWxMREZErS4VPRhSUk5MDgJubWwkzpThmsxmz2QxA3759MZlM7N69u3yDEhER17NaIH41ZzbNodrOGUVO+yTnJt7LuYPwGj4sf7YHJqOBvcdT+GJ1LD9tPlLoFo6uDQIY3TWSuKRU3vxlN+E1fPjuwU5FJiSOmNMZPmUdh06l8eqgpkpIiIiIXEUuNxlRqgUsL4Sbm5sSEaVg4sSJREZGEhkZyb59+0hOTi7vkEREpCwYTRB5LdVsZ4ud1tcYgzcZ3N89MrdobKPafowf0pK1L17Ps30bUavA9ozV+5O578sYvlwTR3Ufdw6dSmP4lHUcMTu33M2fiAiv4UO/5kGl9x5FRESk0ivzZISUjrFjxxIbG0tsbCwNGzYkICCgvEMSEZGy5F98S+wGxkRWV32ZYTX2OY39+fcJ9hxLYfLdbZkwrBXN6lR1GD90Op3TadkYDHDoVBq3fbrGISFRMBFR3OoJERERkcIoGXGF8vf3JyIigoiICNzd3TEa9T+liMhVpc1IMBTfDaNGViJe390Kc8dA2inAXjz60+gDLNx+lKGT13AyJZOFj3fjhwc70bdpbfLXmz6/kTPRnEGfCdEs+eu4EhEiIiJSKrRfQkRE5EoUUB9umgQLngCbJd+AARr0hgN/5B3f9i3sWww3vMtqz+vYezyvu8b1TWpjMBjoWC+AjvUCiE9OZcaaOGZtTCA1K++6aVkWHvgqBgNgAyUiRERE5LIoGSEiInKlirobwjvDlq/BfMi+dSNqhD1RcXQ7LHgcjm61z01Lgjn30bVBH7645SUmbUonwNeDBrWqOFyyboAvneoFcG/XCBbvOs4Xq+Mctmicr3qdY7Gy9K/j3NYuFB8PfZwQERGRi1Pm3TSk9Km1p4iIFMqSA+snw9I3wJqVd9zdB/q8QVqre/Dx9HA45Yg5nWvfW46HyciwdqGM7d2QX3Yc45V5OynsA0M1b3fu7hTOPZ0jqFXVy7XvR0RERCqMK66bhoiIiJQRkxt0fgwCGzkez06DX5/F55tBcGKPw9AXq2KxWG2kZ1tYtucEZzNzmLLiIDbAzWhwqCkBcCY9m4+XH6Dbu8t5bvY29h5Pce17EhERkUrBpcmI0aNHM3369BLnzZgxg9GjR7syFBERkauTwQD3/grt7geTO3j45Y0lrIfPusOf70KOfeVEraqe1PC1r5a4tW0oI6ZuyC1WGf18T6Kf60lwNXtL0Px5iSyLldmbDtP3/RXcM30Dq/cnocWXIiIiUhSXbtMwGo2MGjWqxITEAw88wPTp07FYLMXOk8Jpm4aIiFyQlOP25MRvL8CunxzHajSAWyZDWAcysi1MXx3Lt+sPcfh0ukOxyp82H+b9pftIzcjhVFoW/t7uuJkMJJ3Lcrpd0+CqPHBtJINa1sHdpMWYIiIilUml2KaRlZWFyVR8ezIRERG5TH61oUotuO0LGP49VA3JGzu1H6b1gV+e5dTpU+Ss/gTr6QSHRITNZmPKioMknErjVFoWVTzd8Ek/ygjDr7wysAmNg/wcbvfX0bM89cM2rn1vOZ9FH+BsRnYZv2ERERGpqMq9/LXNZmPz5s0EBgaWdyhXFLPZjNlsBiA7O1vJHBERuTjX3AB1u8Kn3cEcl3d84+cEbPmBJ3LOMtS7NqY7fiHon/adfx09y9/5akJMvyWIkPmPE5J9nHUJAYx+8t+s3p/MlJUHWbH3ZO68o2cyGP/bHj78Yz93tA/j3m6RagkqIiJylSv1bRq9evXK/f3PP/8kKCiIxo0bFzo3JyeHAwcOcOzYMUaMGMGMGTNKM5RKbdy4cbz++uu5rwMDAzlx4kQ5RiQiIlccmw22/wC/PgeZZwufUy3cXnPCPwyAuKRUpq+OxXL6EP858yKcjuOsdyhVH/od/MP4ck0czUOq4uvpxtSVsczfeoRsi+NHDZPRwMAWwTzQvR4tQqu5+l2KiIiIC1zuNo1ST0YYjXk7PwwGQ4nFq9zd3enfvz/Tpk2jZs2apRlKpZZ/ZUTfvn0xmUzs3r27fIMSEZErU2oyxEwDSzaseh+sBbZT+NaEB5aDf7j9tTkB25eDMJyOg+oRcM9C8A/j6Jl0ur+7nByrjTbh/nx8VxuMBgNfronjm3XxnM3Icbp1p3o1ePDaevRoVAuj0eA0LiIiIhVThUtGxMfHA/btF/Xq1ePWW2/lv//9b6FzPTw8qFmzJu7u7qUZwlVHBSxFRKTUHP8LFjwOR2Icj5s8YeQCqBYCXw6CAokIgPG/7uazFQcBCPH3Jvq5Hrj9U7gyNTOH2TEJTFsdS8KpdKfb1g/05YHu9bg5KgQvd209FBERqegqXDIiv9dff52oqChuuukmV91CUDJCRERKmdUCG6fCopfBWqBLhsEENotTIgIgeu9JPl6+nw2xp3h5YBPu717P4dRsi5VT5zKJiTczZeVBtiWYnW5ds4oHIztHcHenurktRkVERKTiqdDJCCkbSkaIiEips9lgxkCIX13IoAHunAWN+hZ66tYEM/UDffHzclz5OG/LEZ6fs52hbUK5r1sEp9Oy+XzFQZbsPk7BTyNe7kZubRvKfd3qEVnTt5TelIiIiJSWKyIZkZaWRkxMDEePHiUzM7PIeSNHjnR1KJWSkhEiIuISVivETIc/3oKM0wUGDdD5UejxInhWKfFSNpuNgZNW8ddRe6HMIW1CmDCsNQAHT55j2qpYftx0mMwcq+NdDNCnSW0evLYebetWx2BQXQkREZGKoMInI1599VXef/990tLSipxjs9kwGAxYLBZXhlJpKRkhIiIuY06wr5Awx4PBCDbHZAE+gTD4Q3ur0GIkmtMZ/PFqTqbYv5T4fWx3GgdVdZiTfC6Tb9Yd4ovVsZjTs52uERXuz4Pd69G3WRAmFbsUEREpV5f7HOpWmsEU9N577/HWW2/h5ubGoEGDaNSoEVWqlPztiYiIiFQA5gR7sUpzfF6NiENrYd4YsP7TGSPtJHx3BzTqD4Peh6p1Cr1UHX9vVr3Qk/lbE9l55IxTIgJgxpo4Ek6lkZLhnIgA2HLIzJiZmwmv4cN93SK5rV0oPh4u/SgjIiIiLuLSlRENGzYkMTGRlStX0qZNG1fd5qqnlREiIlLqziciCumawcm98EkneyHL/Dz84PpXoP39YLy4jhjHz2bQ9Z1lFNilUaxq3u7c3SmcezpHUKuq10XdT0RERC7P5T6HGkszmIISEhK47rrrlIgQERG5khSXiAAIbAS3fwPGAq25s1Lgt+dh6vVwdNtF3XLGmrgSExENalVx2J5xJj2bj5cfoNu7y3lu9jb2Hk+5qHuKiIhI+XFpMiIoKMiVlxcRERFX2LOw6ETEeY0HwKMbwDfQ/trNO28scQt8dh38/iJknrugW97VMbzErhm1q3ry57PXcV+3SHw98lZeZFmszN50mL7vr+Ce6RtYvT8JNQsTERGp2FyajLjjjjvYsGEDp08XrMAtIiIiFVanMdD/naITEecF1IMHltvnjt0BLW/PN2iDdZ/ApCj4+7cSbxla3Yd+zYr/EmP1/mQe+24r7SNqsObF6/nXDY0JKrA9I3rvSe6aup6Bk1Yxd8thsi15yy2mr4rliDm9xFiOmNOZviq2xHkiIiJy6VxaMyIjI4O+fftiMpmYOnUq9evXd9WtrmqqGSEiIhXGgeUwexRkmB2PNx4EN7wH1UKKPDU2KZXeE6KxWIv/aHJz6zpMvCMKgKwcKwu3J/L5ylh2/9M2NL/gal6M6hKBxWbjvd//JryGD9892IkQf2+nuWBPRAyfso5Dp9J4dVBTRneLLDYWERGRq1WFbu3Zq1cvsrKyWLt2LUajkYiICEJDQwvtEW4wGFi2bJmrQqnUlIwQEZEKw2aDn8fC5hnOYx5VoNcr0OGBIgtczopJ4MWfdjgkJEwGAxE1fThwMhWAX5/oTtM6jt04bDYbq/cn8/nKg0TvPel0XR8PEyajgZSMnCITEvkTESUlLURERK52FToZYTRe+C4Qg8GAxWIpeaIAYDabMZvNALmrT3bv3l2+QYmIiJwXtwqWvg4Y4PB6x7E6UXDjBxDcqtBTY5NSmRWTwOHT6YRW92ZYuzAia/qy/bCZlfuSeLRnA6dzxi3YRY7Vyv3d6pGRY2Hqyljmbz1CtqXwjzlBVb2Y80iX3GSDEhEiIiIXp0InI+Lj4y9qft26dV0USeUzbtw4Xn/99dzXgYGBnDhxohwjEhERKYTVCltnwuKXC2zdMEDHMdDr3+BZ5bJucSIlg27vLCfLYsVggJn3daRLg5ocP5vBl2vimLn+EGfSs53O83Qz8tbNzehUryZ3TV2vRISIiMhFqNDJCHEdrYwQEZEryrmT9oTE9u8dj1cJhkET7N05LtEHS/fx/tK9gL3jxsrne+Hhlrc6MzUzh9kxCUxbHUvCqaILWCoRISIicuEuNxnh0m4a4jr+/v5EREQQERGBu7v7RW2JERERKXNVAmHIZ1DzGsfj547C98Ph+7vgzJFLuvRD19Vj/JAW1Kvpy71dIx0SEQBe7iaq+biz6Mlr+eSuNrQK8y/0OkYDbE8wqy2oiIhIGSiTlRE5OTksXLiQjRs3kpSURMeOHRk9ejQAiYmJJCUl0bRpU9zc3FwdSqWkApYiInLFSDkOvz0Hf80Hgwls+epFXUCBy+JYrTayrVY83RzP/WX7UR79djM1q3jyQPdIHry2Hr/tPMajMzdT2Ieg5iFVeabvNfRoFFho0W0RERG5/OdQlz/9R0dHM2LECI4cOYLNZsNgMJCdnZ2bjFi2bBmjRo1i1qxZDB061NXhiIiISHnyqw3DvoKTf9tf/zwWDq2x/551Dn5/ATZOg9B2kJMB/uHQZiQElNwe3Gg04FkgiWGz2Ziy4gAASecy2Zl4lsQzGbzz2x5sgJvRgMVmI/9XMzuPnOXeLzbSrm51nul7DZ3rB5TCGxcREZH8XLq2f8eOHQwYMIATJ07w5JNPMnv2bKelj0OHDsXHx4c5c+a4MhQRERGpSAKvsf+M+gVu+gi8q+eNJe+Fbd/Crp9g9UT4qD1s+eaSbpOZY6VZSLXcrRu3RIU4dM2Ifr4nfz7Xg+BqXk7nxsSfZvjn67hr6jo2Hzp9SfcXERGRwrl0ZcQbb7xBZmYmixcvplevXoXO8fHxoUmTJmzZssWVoYiIiEhFZDRCmxFwzQ0wpQecSXCeY7PAgicgvPMFrZDIz8vdxNu3tODpPo2Ys+kw4xbscuqa8eJPOwjx9ybHYuPkuUy83I1kZFtzr7F6fzKr96/h+sa1eLpvI5rVqXaZb1pERERcujIiOjqaTp06FZmIOC88PJzExERXhiIiIiIVmW9NqFGv6HGbBdZ9csmXz8yxMnP9IadERNK5TOZsPkxM/GlOnsskwNeDjGwrtat60irMMemwbM8JBk5axaPfbmb/iXOXHIuIiIi4OBlx9uxZQkJCSpyXmZmJxWIpcZ6IiIhUYj4l1GaI+QLWfQrWi//MsGjnMadEBMCvO46SlWNfBRHo58mPY7oQXsOH42czGdyqDl/f14FWoY5JiV+2H6Xv+9E8M2sbh5LTLjoWERERcfE2jeDgYHbv3l3ivJ07d1K3bl1XhiIiIiIVnX948eM2i73A5ZavYfBHUCfqgi89ulskAP2aB+UmIgBGdKpLo9p+TFlxkHYR1Yms6ct3D3Zi0c5jjO4WicVqo09TM3d1qsv0VbHsOZYCgNUGczYfZv7WI9zePozHezUkqJC6EyIiIlI4l66M6Nu3L7t27WLu3LlFzpkxYwbx8fEMHDjQlaGIiIhIRddmpL3dZ0mO74QpPeH3FyHzwrdLjO4W6ZCIADAYDHSqF8D0Ue0Zc529HkWIv3du8mLJX8f5v8V7+ffcHbQIqcYHd7SmXk3f3PNzrDZmrj/Etf9dzpsL/yLpXOYFxyMiInI1c2ky4qWXXqJKlSoMHz6cV155hZiYGADS0tLYuXMnb731Fo888ggBAQE8/fTTrgxFREREKrqA+nDTJOeEhMFk77zhwGavIfFxR9jzS6nc3mAwON7BZuOzf9qCZltspGVZGNw6hMVPXct7t7Z0SGxk5ViZtiqWa99bzn8X7eFMWnapxCQiIlJZGWwFe22WslWrVnHbbbdx/PjxQv8jHxgYyNy5c+nSpYsrw6jUmjVrBsCuXbvKORIREZFSkHzAvhXDfMi+dSNqBPjXhfWfQvQ74FUdzhxyPKfxILjhXagWWmphWKw2vlgdy/RVsSSeyWD+o11pFeafO56VY+XLNbFMWXGQk+eyHM7183Ljwe71uLdbJFU8XborVkREpFxc7nOoy5MRACkpKUybNo2lS5cSFxeHxWIhNDSU3r1789BDD+Hv7+/qECo1JSNEROSqkZUGBiOsmgArJ4A13woENy/oPQ46PAjGC9jucYGyLVZW70+ixzW1nMZenreD5XtO0qxOVTbEJmNOz3EYr+HrwSM96nN3p7p4uZdeTCIiIuXtikhGiGspGSEiIlelk3th4ViIX+14vHbziy5weSmSz2XS5Z0/yPynG8e4m5qRkp7NlJUHSclwTErUrurJY70acnu7MDzcXLpLVkREpExc7nOo/msoIiIiV6bARjDqFwhu7Xj8+E74vNc/BS5TXHb7jXGnyLHav9OpWcWDO9qH8fj1DVn5fE8e6VEf73wrIY6fzeSVeTvp9b8/mR2TQI7F6rK4RERErgRaGVEJaGWEiIhc1RK3woLH4NgO57GqITDgv9B4IKybbK8t4R9W/PXMCbBnIXQaU+Ktj5jT+WJVLEHVvLi/ez2HsRMpGYyctoH9J8+RY3H8uBVW3Zvn+zdmYItgjEbHmloiIiJXggq1TaNevXoYDAaWLl1KZGQk9erVK/mk84EYDBw4cKC0QrmqKBkhIiJXPasF/poP3jXgl6fhVIHPFIGN4eQeqB4B9ywsOiFhToAvB8HpOOj/zgUlJIqy5K/jPPBVTLFzGgf58Uzfa+jdpJZToW8REZGKrEIlI4xG+66PPXv20KhRo9zXF8pq1ZLFS6FkhIiISD7ZGYUXuDyvqIRE/kRESUmLC3Dr5DXExJ++oLmtw/x5tu81dG0QoKSEiIhcESpUzQir1YrVaqVRo0YOry/0Ry6c2WwmLi6OuLg4srOz9c9PRETkPHcv6PkSjFkD1SOdx0/HwbS+9uTDeaWciLDZbDzSsz7B1bwuaP7WBDN3T1vPHVPWERN36pLvKyIicqVQAcsr1MSJE4mMjCQyMpJ9+/aRnJxc3iGJiIhULIGNoOXt9lagBaUkwuQucGJPqSciwL79tFfj2rStW734eQVer489xa2fruWe6RvYcfjMZcUgIiJSkbm0gGVmZibHjx+nevXq+Pn5FTonJSWF06dPExQUhIeHh6tCqXTMZjNmsxmAvn37YjKZ2L17d/kGJSIiUhEd2wGLXgLvmvDXT87jRpO95kQpJSLye+e3PXwaXXJNrMiaPsQmpTkd798siKf7NqJR7cI/R4mIiJSXCrVNo6AJEyYQGRnJtm3bipyzbds2IiMj+eCDD1wZSqXj7+9PREQEERERuLu7X3R9DhERkatGUAu452cY9oX9zxr1HcetFvufN39WqokIgNvbh2EqoVtGgK8Hvz5xLd/e35E24f4OY7/vOka/iSsY+/0W4pJSSzU2ERGR8uTSlREdO3YkOTmZ/fv3Fzuvfv361K5dmzVr1rgqlEpNBSxFREQuQnYGLB0H6yc7Hje6Q48XoMsT4OZZarebFZPAiz/twGLN+8hlMhp47campGTk4OflxsjOEYC91sSff5/kv4v28NfRFIfrmIwGbmsbyuPXNyTE3xuA6ati6dc8KPd1UY6Y01m08xijuxVSQ0NEROQSXO5zqFtpBlPQgQMH6NKlS4nzmjVrxvr1610ZioiIiIhd6knY+5vzcWs2/PEWbPseBvwf1O9ZKrcb1i6M9hE1mBWTwOHT6YRW92ZYuzAia/o6zTUYDPRsXIscq5UHvtrkMGax2vh+YwI/bT7CnR3DqeHrzoQl+5ixJo7vHuxUZELiiDmd4VPWceiUfRuIEhIiIlIRuDQZkZqaiq+v839oC/Lx8eHs2bOuDEVERETEsVilfzg07Asx08FmA/5ZuZC8H76+GZoNgX7/gap1Lvu2kTV9eaF/4wue/1n0wdzfm9epytmMnNxkQpbFyow1cXi6Gajq5cahU2kMn7Ku0IRE/kREeA0f+jUPuuz3IiIiUhpcWmggLCyMmJiYEudt2rSJ4OBgV4YiIiIiV7uCXTNG/QoD/wdjd8CY1eBZoEjkrp9gUhtY+zFYcsosTJvNxqM9G9A+wt6J442bm7Psmet4+5YWDq1CM3NsnM3IwQAcOpXG7Z+t5Yg5PXe8YCKiuNUTIiIiZc2lyYi+ffty8OBBPvzwwyLnfPzxxxw4cIB+/fq5MhQRERG5mhXXvrNaKNRuBmPWgl+BVRA56fZOHJO7QvzaMgn1/FaN2Q934ZcnutEmvDruJiN3dgxn+bM9eHVQU7zc8z7Cna9Ecfh0OgM/WMn+EylKRIiISIXn0gKWCQkJtGjRgpSUFG688UYefPBB6tevj8FgYP/+/UyZMoWff/4ZPz8/tm7dSkREhKtCqdRUwFJERKQE6ybD7/8quX1n/qRFYVrfBX3eAN+aroq0RKdTs+jy7h+kZ1mKnGM0gNWGEhEiIuIyFbqAZVhYGAsWLODWW29lwYIF/Pzzzw7jNpuNmjVrMmvWLCUiRERExHU6jbH/2XhQ8e07/cPsyYrVE2HfEjDHO45vnQl7foHrX4W2o8BoclXERdqaYMb6T2cOf293hncI46u18aTmS06cb9xxc1QINXw8yjxGERGRkrh0ZcR5ZrOZKVOmsGzZMhISEgB7oqJ3797cf//9VK9e3dUhVGpaGSEiIuIC2Rmw/lOoEwWL/g3HdziOB7eGQe9DSJsyD+1kSiYz1sRS3ceD+7vXI/lcJv9bvJdvNxxymluzin3OiE518fV06fdQIiJyFbnc59AySUaIaykZISIi4mKWHNg41d76MyvFcazdfXD9K+Bdfl+u5K8RYSCvjkR+/j7u3N8tkpFdIqjq5V7WIYqISCVzuc+hLi1gKSIiIlIpmNyg08PweAxEXuc4FjMNPmwHW7/9p0Vo2SpYrLJVmH+h88xp2fzf4r10e+cPJizZizktq2wDFRERyUfJCBEREZEL5RcE4Z2dj6clwbwx8MUAOP5XmYVTMBHx7QMdua9bJE2DqwL2LRoAhnznnM3IYdKyfXR7dznv/b6H5HOZZRaviIjIeaW6TaNevXoYDAaWLl1KZGQk9erVu/BADAYOHDhQWqFcVbRNQ0REpIzFrYJfnoHIa2HLN5CdljdmMNkLZvb4F3j6uSyE4tp32mw2NsWfJtjfO3dOVS83LFabQ6FLAG93E3d3CueBa+tRy8/LZfGKiEjlUqFqRhiN9oUWe/bsoVGjRrmvL5TVai2tUK4qSkaIiIiUA6sVjEZ7O9Df/wV7FjqOVwmC/uOh2S1gMBR+jcswfVUsbyz8q8T2nfmTFk/0asDk6ANkW5w//nm6GRneIZyHr6tPUDUlJUREpHgVKhkh5UPJCBERkQpg72L45Wk4k+B4vF5PGPB/ULNBqd9y+qpY+jUPKjIRcd4RczqLdh4jtLo3Y2ZuxmK14eVuxNvdxOm0bIe5HiYjt7ULZUyP+oRW9yn1mEVEpHKoUMmIXr16ccMNN/Dcc88BsGLFCoKCgmjUqFFp3UIKoWSEiIhIBfHLs7Dxc+fjRncIiYIqwVAjEtqMhID6ZR8fcPh0GlNXxlK7qhf3dKnLzHWH+GzFQZIK1I5wMxoY0iaER3s2oG6Ab7nEKiIiFVeFSkYYjUZGjRrF9OnTC30trqFkhIiISAWRdgqWjoPNX0JAA0jeX/g8gwlumgRRd5dpeEXJyLbw/YZDfLBsn9NKCZPRwOBWdXi0VwPqB1YppwhFRKSiqVCtPT08PEhNTS3NS4qIiIhcOXxq2JMM9/8BY9bCDe8VPs9mgQVPQHLFKN7t5W5iVNdIGtV2Lrhpsdr4acsRek+I5rFvN/P3sZRyiFBERCobt9K8WIMGDVi2bBnR0dFERkYCcO7cOQ4dOnRB54eHh5dmOCIiIiLlI7St/c+ziUXPsVlgwWMwYh64eZZJWMWx2WzcEhXCiZRMYpNSefjaevy26xjxyWn/jMPC7UdZuP0o/ZsFcUubELYcMnP4dBqh1X24vX0YkTW1nUNERC5MqW7TmDRpEmPHjsXwT8Vom82W+3uJgRgM5OTklFYoVxVt0xAREamgZt8Lu34qfk5AA3uBy/o9yyamElisNlbvT6J7w5pYrDZ+3p7Ih3/s5+DJ4le/mowGxg9pwbB2YWUUqYiIlKfLfQ4t1ZURTzzxBKGhocyfP5/Dhw+zfPlyatWqRePGjUvzNiIiIiJXBv8LWPWZvB++vhmaDYF+b0PVYJeHVRyT0cC1jQIBcDMZuCUqlJtahfDjpgRe/GkH1iK+xrJYbbz40w7aR9TQCgkRESlRqSYjAIYMGcKQIUMAewHLG264QQUsRURE5OrUZiSs+dC+JcPJ+dWj/zzd7/oJ/v4drn8ZOjwEplL/mHbJTEYDfl7ulLSc1mK18f6SvXxwR+sLXh0rIiJXp1ItYFnQa6+9xs033+zKW4iIiIhUXAH17QUtDSbH4wYTDP4YHvwTQtrmHc9Jg0UvweQucGhdmYZakgEtglny1HWEVfcudt6CbYkM+2wtK/aepBR3A4uISCVTqjUjevXqRf/+/Xn++ecBWLFiBUFBQTRq1Ki0biGFUM0IERGRCi75AGz5GsyH7Fs3okbYExUAViusmQRLX3M+r/Vd0OcN8K1ZtvEW453f9vBp9IV1AWkV5s8TvRrQq3EtrZQQEalkKlRrzz///JM9e/bkvu7Zsyfvvvtuad5CRERE5MoTUB96j4Nbp9v/PJ+IADAaocH1ULOQL2+2zoQP20LMdLAWttWj7N3ePgyT8cISC9sSzNz3ZQyDPlzF7zuPYS2q4ISIiFx1SjUZ4eHhQWpqXqVlm82m5Xn5rFixgsGDB1O3bl0MBgPjxo0r75BERESkIghqAWPWwsAJcO3zULtF3liGGRY+BZO7QeKWcgvxvMiavowf0qLYhESr0GoOr3clnuXhbzZxwwcr+XlbIhYlJURErnqlWhmpQYMGLFu2jOjoaCIjIwE4d+4chw4duqDzw8MvoOL0FezcuXM0bdqUO++8k7Fjx5Z3OCIiIlKRmNyg/X323697ATZOhT/egqwU+7GTf8GUHtDydrjhXfCuXm6hDmsXRvuIGsyKSeDw6XRCq3tzS+sQ/tx7gtikNMYPacHWBDMfLtvHsj0ncs/7+3gKj3+3hYlL9/JYrwbc2LIObiaXljATEZEKqlRrRkyaNImxY8fm7gm02WwXvD/QYDCQk5NTWqGwadMmlixZwoYNG1i/fj2JiYl4enqSkZFR7HkZGRmMHz+e7777jkOHDlGjRg369+/PG2+8QWhoaKnFFxERwahRo0pldYRqRoiIiFRSKcdg0b9h54+Ox31qQt+3IP00NLkR/MOKv445AfYshE5jXBdrEXYeOcP7S/Y6JCXOqxvgw6M9GnBLmxDc/0lKTF8VS7/mQYT4F18o84g5nUU7jzG6W6RL4hYRkeJd7nNoqa6MeOKJJwgNDWX+/PkcPnyY5cuXU6tWLRo3blyat7kgb775JvPnz7+oczIyMrj++utZs2YNwcHBDB48mLi4OL744gsWLlzI2rVrqV+/fskXEhERESkNfkHQfzwc3QrJ+/OOpyXBvIftv6/9CEYvKjohYU6ALwfB6Tj76zJOSDQPqUa9QF+W7XEei09O4/k52/lg2T7G9KhPWlYOb/+6hxlr4vjuwU5FJiSOmNMZPmUdh06lASghISJyBSr1BtZDhgxhyJAhABiNRm644QamT59e2rcpUefOnWnVqhXt27enffv2BAUFlXjO22+/zZo1a+jcuTOLFy+mSpUqAEyYMIFnnnmG0aNHEx0dnTv/1KlTnDp1qthrVq1alVq1al3emxEREZGrV5Va8OhGezHLLV/DsR2QnZY3fvYIfNIJ7l8GtQp8AZQ/EVE9AhoPKsvIAUjPsjB/a2Lu63s61yUlI4f5+WpHHDGn8/K8nQRW8aS6jzuHTqUxfMq6QhMS+RMR4TV86Ne85M94IiJS8ZTqNo2CXn/9daKiorjppptcdYsLZjAYit2mkZ2dTa1atTCbzWzevJmoqCiH8VatWrF9+3ZiYmJo29beD3zcuHG8/vrrxd73nnvuYcaMGU7HtU1DRERELon5EPz+on3bRUHX/Qt6/AsMBudExD0LS97O4SJn0rJ5f+le/vz7BL+PvRYvdxPxyal8svwAczYfJqdAQUujAaw2CKvuzfcPdc5NSBRMRBS3ekJERFzrcp9DXZqMOC8nJ4eFCxeyceNGkpKS6NixI6NHjwYgMTGRpKQkmjZtiptbqS/UyFVSMmL58uX06tWL+vXrs3//fqfxN998k1dffZXXXnstN4FgtVqxWq3F3tdoNGI0OhdmUjJCRERELsveRfDrc2COdzwe2gGufxUWPFYhEhH5ZWRb8HI3ORxLOJXGqC82EJeUhqWQj6X+3u7MfrgzPp5uSkSIiFQgFapmRGGio6MZMWIER44cyS1omZ2dnZuMWLZsGaNGjWLWrFkMHTrU1eEUadu2bQC0adOm0PHzx8/Pg6ITDSIiIiIu16gf1O0KkzvbV0ucd3iDfUUEgH94hUlEAE6JCIB9J1I4cNLeGr6WnyfmtCyyLHlJCXN6Nn3eX5G7WkKJCBGRysGlT9I7duxgwIABnDhxgieffJLZs2dTcCHG0KFD8fHxYc6cOa4MpUTn248W1THj/PELbVNamHPnzrF161a2bt1KVlYWx44dY+vWrfz1118XdH6zZs0K/Tlw4MAlxyQiIiJXMM8q8OR26P8ueFZ1Hk8/A7vmQU5WmYd2IWw2G+/+9nfu6/qBVVj5Qk8e6B6Jd4HExfmdHH2b1qaql8u/TxMRERdzaTLijTfeIDMzk19//ZUJEyYUuvLBx8eHJk2asGXLFleGUqJz587lxlMYX19fh3mXIiYmhqioKKKiojh69CifffYZUVFRDBgw4JKvKSIiIlc5gwE6PQxjVoOxwMqDzDOw5GV4NxzWfQqu3517UQwGA5+PbEefprUxGQ28dlNTalf15t8Dm7LqhZ6M6BTudM7UVbF0e3c5H/2xj3OZpdcWXkREypZL08rR0dF06tSJXr16FTsvPDycJUuWuDKUEp1fsWEwGIodvxw9evS4rOsUtRfn/F4dERERuUqZE+DLG8FqAaM72Cxgy1fXKjsdfn8Btv8AN06E4FblFmpB4QE+fD6yHQdOnqN+YJXc4xk5VqL3JgFgAPJ/gjqTns3/Ld7L1FWxPNC9Hvd0iaCKp1ZLiIhcSVy6MuLs2bOEhISUOC8zMxOLxeLKUErk5+cHQGpqaqHjaWn2Flrn232KiIiIVAgFu2Y8scW+daNaIXUiEjfDZ9fB3DFwNtF5vBzlT0Tk75pxPhHRo1EgVTwdV36Y07L576K/6f7uH0z+8wCpWikhInLFcGkyIjg4mN27d5c4b+fOndStW9eVoZQoPNy+DPDw4cOFjp8/fn6eiIiISLkrqn2nfxjc+xv4n/98lX/lpw22fQuT2sCyNyEjpezjLkb+RISvhyl3RcSWBDOzHu5CaHV74cr87+h0Wjbv/r6H7u8t59PoA6RlKSkhIlLRuTQZ0bdvX3bt2sXcuXOLnDNjxgzi4+MZOHCgK0MpUatW9uWKmzdvLnT8/PGWLVuWWUzFMZvNxMXFERcXR3Z2doktRkVERKSSKSoRcZ5/GIz6xT6GDarUhhoN8sZz0mHl/8F7kfakhLV8V6mCYyIivIYPE25vTYuQagA827cRTYOr8sNDnQmv4YMNqOrlhpd73sfZU6lZvPPbHrq/u5wpKw6QnlX+70lERArn0mTESy+9RJUqVRg+fDivvPIKMTExgH3Lw86dO3nrrbd45JFHCAgI4Omnn3ZlKCXq2rUr1apV48CBA4UW0/zxxx8BGDRoUFmHVqiJEycSGRlJZGQk+/btIzk5ubxDEhERkbK0Z2HRiYjz/MPsY9Uj4NxxaDcaBk0E38C8OdZse1JiYkvYv6xsYi/Cop3HchMR3z3YiX7Ngpj/aFc+HB7FnR3tqzxC/L357sFOhNfw4WxGDsM7hPPQdfUcum8kp2bx9q976P7eH0xdeVBJCRGRCshgK43KjMVYtWoVt912G8ePH3cqDmmz2QgMDGTu3Ll06dLFlWFgMBjw9PQkIyOjyDkvv/wy//nPf+jSpQuLFy/O7aAxYcIEnnnmGbp168bKlStdGueFMpvNmM1mwL4CxWQyXdCWGBEREalE1k2GxoMKT0TkZ06wJy86jbG/zkyBH0bCwT+c5zboDX3fglpNSj/eCzB9VSz9mgcR4u9d7LyE02nc8dk6TqRkMLpbJHd1CGfm+kN8tTae9GzH5EPNKp6M6VGfuzqG41WgZaiIiFya840Uimq0UBKXJyMAUlJSmDZtGkuXLiUuLg6LxUJoaCi9e/fmoYcewt/fv9Tv+csvv/Dmm2/mvl6/fj0Gg4EOHTrkHnvllVcctodkZGTQo0cP1q9fT3BwMN27dyc+Pp7169cTEBDAunXraNCgARXN5f5LICIiIlep7bPh12cg44zjcYMR2oyEHi+BX+3yia0Es2MSeO7H7bmvv32gI13q1yTpXCafRR/g63XxZGQ7bmMN9PNkzHX1uVNJCRGRy3ZFJCPKw4wZM7j33nuLnfPFF18watQoh2Pp6emMHz+eb7/9loSEBKpXr07//v158803CQsr4VuHcqJkhIiIiFwyq8XeZWPJOIhf5ThmMELU3XDDe+Be/EqFsrZs93Fenb+LI+Z0BrQI4pO72jqMn0jJ4LPog3yzLp7MHMekRC0/Tx7pUZ87OigpISJyqZSMECUjRERE5PLZbPD3r7DkVUje7zjm4QcD/w9aDAOjS0uOXZT0LAufRh/gtnahhFb3cRhLzcwhM8dKjsXK5OgDzFx/iKwCSYmgql480rM+t7cPw9NNSQkRkYtxxSQjNmzYwMqVK0lMTMRgMORug8i/bUIunGpGiIiIiEtYsmHRv2HDZ85jwa2h338goluZh3Wx3v19D9+uP8QzfRtxZ4dwklOzmPznAb7d4JyUCK7mxSM9GzCsXaiSEiIiF6jCJyP27t3LyJEj2bhxI2AvWgnkFrPs0KEDX331FQ0bNnRlGJXOuHHjeP3113NfBwYGcuLEiXKMSERERCqVfUtg3iOQlgS2Ai3ErxkI7e+H2GgwHwL/cHuNiYD65RNrAbFJqfR9P5psi/1z56uDmjK6WyQAx85kMPnP/Xy3IYEsi+P7qpOblAjDw63irAAREamIKnQy4ujRo7Rp04bjx49Tp04dbrvtNiIiIgCIj49n9uzZHDlyhODgYGJiYggODnZVKJWOVkaIiIiIy1mtcHwXrPof7Jpb/FyDCW6aZK8xUc4W7zrG07O2cS4zhzrVvFj2TA+8PRxXPBw9k84nyw/ww0bnpESIvzeP9mzArW1DlZQQESlChU5GPProo0yePJmnnnqK8ePH4+Hh4TCenZ3Niy++yIQJE3j00Uf58MMPXRVKpaaaESIiIuJyCRtg0UtweGPRcwwmeGxjhVghcSIlg/d+/5ue19RiYEvnL7yyLVbcTUYSzel8vHw/s2IScldSnBfi783jvRowtG0o7iYlJURE8qvQyYjIyEi8vLyK/cbeZrPRtGlTMjIyiI2NdVUolZqSESIiIlImbDaYeSvsX1r0nK5PQZ9xZRbSpVix9ySvzN/JKwObcn2TWhgMBg6fTuOTPw8wu5CkRFgNbx7v2ZBb2oQoKSEi8o/LfQ516d+m57dpFMdgMNCmTRuOHj3qylBERERE5HIZDOBZtfg5W76ChGJWT5SzrBwr437eRXxyGvd/FcN7i/4GINtio6qXO9c2DKRJsB8mQ945CafSeX7Odq7/XzSzYhLIKbCtQ0RELp6bKy9etWpVEhISSpyXkJBA1aol/IdNRERERMqff3jx42nJMK031G4Ot06HwGvKJq4LFBN/ivjkNACMBhjUMphZMQm8+NMOLNa8FRFGA7SPqM7mQ+bc44dOpfH8j9v5ePl+Hu/VkJtb18FNKyVERC6JS//27Ny5M2vWrOG3334rcs6vv/7K6tWr6dKliytDqXTMZjNxcXHExcWRnZ2N1aoMvYiIiJSBNiPttSFKcnwnfNwBfnkG0s0uD+tCdalfk9+e7E6X+gEM7xCOj4ebUyICwGqDzYfMfDW6A7e1DcVkzFsqEZ+cxrOzt9Hn/RX8tPmwVkqIiFwCl9aMWLt2Lddeey1Go5E777yTO++8k4iICAwGA7GxscycOZPvvvsOm83GihUr6NSpk6tCqXTU2lNERETKzZZvYMETYLPkHTOYoMvjsGEKZKc5zveuAT1ehHb3gsm9bGMtgs1mI8ti5f0l+/g0+kCR88b0qM8L/RsTl5TKR8v3M3fLEafERb2avjxxfUNubFXHIWkhIlKZVegClgDffPMNDz30EOnp6RgMjn8522w2vL29mTJlCnfddZcrw6h01NpTREREylXyAdjyNZgP2bduRI2wd9E4dxLmPggH/nA+J6Ah9H4dGg+w15+oAB77djMLtxddu+zGVnX4cHhU7uu4pFQm/bGPeVuOUCAnQb1AX568viGDWiopISKVX4VPRgAcPnyYzz//nFWrVpGYmAhAnTp16N69O/fddx9hYWGuDqFSUzcNERERqXDMCbD9e1j5PmSnOo751IQbP4Amg8ontnze+W3PBa2MKOjgyXN8+Md+5m91Tko0qFWFJ65vyMAWwZiMBqaviqVf8yBC/L2LjeWIOZ1FO48xulvkJb0XEZGydEUkI8S1lIwQERGRCivlOCz/j30Vha1AbYXIa+HmT6FaSPnEBsQmpdJ7QrTT1gsAk8HA0meuI7Kmb5HnHzh5jknL9rFgWyIFP1U3rFWFlqHVmLP5COE1fPjuwU5FJiSOmNMZPmUdh06l8eqgpkpIiEiFV6Fbe4qIiIjIVc6vNtw0CR5eDTXqOY7FroAP28Ifb0Fmiv3Yusn2VRUlMSfY516myJq+jB/SwmlbhdEA7wxt4ZCIsNls/LjpMJk5ebUy6gdW4YM7oljy1LXc1KqOw+6TfSfOMWfzEdxNBg6dSmP4lHUcMac7xZA/ERFew4d+zYMu+32JiFR0Ll0ZkZmZyfHjx6levTp+fn6FzklJSeH06dMEBQXh4eHhqlAqNa2MEBERkSuC1QrLxsHaT8Ca7TjmWwsiusKuuVA9Au5ZCP5FbOU1J8CXg+B0HPR/BzqNuezQYpNSmRWTwOHT6YRW92ZYuzCnFRHztx7hye+3Uq+mL2/e3JyuDWo6XWff8RQ+WLaPX3YcdVopAVCzigdzH+lKWA0fwDkRUdzqCRGRiqRCr4yYMGECkZGRbNu2rcg527ZtIzIykg8++MCVoYiIiIhIeTMaoc8b8EI8DPyfPQFxXuoJeyIC7EmGGQMLXyGRPxFRPQIal07diciavrzQvzEfDo/ihf6NnRIRZzOyeesXe7Hwg0mpTF15sNDrNKztx0d3tuH3J69lYItgp/Gkc1n0+t+ffLv+EIdPpykRISJXLZeujOjYsSPJycns37+/2Hn169endu3arFmzxlWhVDrqpiEiIiJXvMwUWP0BrPkIcpy3L1A1BEYvylshUTARUdzqiVJ2LjOH/1v0N1+tjcPdZGTJU9cRHuBT4nl7jp3lg6X7+G3nMacxA2ADJSJE5IpUoVdGHDhwgKZNm5Y4r1mzZhw4UHQVY3E2ceJEIiMjiYyMZN++fSQnJ5d3SCIiIiIXx9MPer0Mj2+Chv2cx88egU86wZEt5ZqIAKji6ca4m5qx4LFujB/SotBERPK5TKdjjYOqMvnutvz6RHf6N3OsBXH+G8HBresQXNXLFWGLiFRYLk1GpKam4utbdPXh83x8fDh79qwrQ6l0xo4dS2xsLLGxsTRs2JCAgIDyDklERETk0lQLgbtmwW1fgneBzzRZ5+DzHvBBy3JLROTXPKQaQ9qEOh1POJVG9/eW8++5OziTlu003rROVT4d0ZYv7m2HocDYh3/s566p60kspLiliEhl5dJkRFhYGDExMSXO27RpE8HBznvqpGj+/v5EREQQERGBu7s7RqMao4iIiMgVrtnN8PwBuO0rCGjgOHa+LWiVIHCrWKsIbDYbry3YRVqWhZnrD3H7lLUUthP6iDmd1+b/hQ2cunesPZhMv4krmL/1SBlFLSJSvlz6BNu3b18OHjzIhx9+WOScjz/+mAMHDtCvXyFL80RERETk6mIwQLPB8Mg66PGS83jCOpjQGLbMBKvFebwcnEnPJuFUWu7rh6+rj8HgmGwo2DVjxfM9+fWJbni7m3LnpGTk8OT3W3n8uy2Frq4QEalMXFrAMiEhgRYtWpCSksKNN97Igw8+SP369r+c9+/fz5QpU/j555/x8/Nj69atREREuCqUSk2tPUVERKTSyV8jIrfUYwGBTeD6V+CaAfYkRjnKyrEybVUsMXGnmHpPO4dkRHHtOw+fTmPwR6tJTs1yuF5QVS/+N6xVoe1DRUQqgst9DnVpMgJgxYoV3HrrrSQlJTlliG02GzVr1mTWrFn06NHDlWFUakpGiIiISKVSWLHK0/HwzS1gyXKeH9IOrnvOXgSznJMSNpvNKRFxx2drSTidTs0qHsx/rJtT14wj5nRu+3QNieYMp+uN7hrJ8/2vwSvfCgoRkYqgwicjwN6GcsqUKSxbtoyEBHu/6LCwMHr37s39999P9erVXR1CpaZkhIiIiFQaxXXNMCfAtH6QUkRdBS9/6P8OtB5eRsGWbPqqWN5Y+Ffu695NavPp3W1wMznuls6/esJoAGu+T+gNa1Vh4h2taVanWlmFLSJSoisiGSGupWSEiIiIVAoX0r4z/xx3b8gupANF5HUw4L8QeE0ZBF289CwLbd5cQnq2vb7FbW1D+e9trQqde8SczqKdx+hYrwZP/bCVvcfP5Y65mww83ecaHry2nlPxSxGR8nC5z6FqwXCFMpvNxMXFERcXR3Z2NlartbxDEhEREbk8exaW3L7TP8w+Vj3CnojoOMbeYSO/2Gj4pBPMexTMh8og8KJ5e5j4+fGudKpXA38fd14c0KTIuSH+3ozuFkmzOtVY8Fg37usWmTuWbbHx7u97GD5lnUOxTBGRK5VWRlyhxo0bx+uvv577OjAwkBMnTpRjRCIiIiKlYN1kaDyo8EREfuYEe/Ki0xiwWmHV/2DF/yCnwEoJkwdEjYAuT0KNuq6LuwQ2m41Dp9KoG+DrNDZvyxG6NqhJoJ+n09jq/Uk8O3sbR8/k1ZOo4unGuJuaMbRNiFNNNhGRsqJtGlcps9mM2WwG7C1UTSYTu3fvLt+gRERERMqTxQJ7FsAfb0Hy/gKDBmjQG4Z8Bj4B5RJeYXYeOcNNH62iiqcbz/VvzJ0dwp22YZxJy+aV+TtZsC3R4fgNzYP4zy0tqOHrUZYhi4gASkYIqhkhIiIi4sCSA9u+hT/fgbMFil26eUPPF6HDg/aaE+XIarUxZPIatiaYAYis6cvvY7vj6VZ454z5W4/w8rydpGTk5B4L9PPkv7e2pMc1tcoiZBGRXKoZISIiIiKSn8kN2oyExzfbt2jkl5MOS16FSVEQMx0s2eUTI2ADbokKwc/TDYA3BzcvMhEBMLh1CIvGXkuX+nkrO06mZDLqi428Mm8n6VkWV4csIlJqtDKiEtDKCBEREZFinPgbfrofTv4NlkzHsRr1oOPDUK8XbP3GXvDSP9yezAioXzbhpWSwaOcxRnSOcBo7fjaDWn6eDrUhrFYb01fH8t6iv8nKyStiXq+mL+/f3ppWYf5lELWIXO20TUOUjBARERG5EKnJsGoCbPjcOSlRkMEEN02CqLvLJrZCpGXl0GfCCiJq+vDG4ObUD6ziMP73sRTG/rCV3UfP5h5zMxp44vqGPNKjPm4mLYIWEde5IpIROTk5LFy4kI0bN5KUlETHjh0ZPXo0AImJiSQlJdG0aVPc3NxcHUqlpGSEiIiIyEU4cxii34XN3wDFtEc3mOCxjWW2QqKgd3/fw+Q/DwDg62Fizb+up5qPu8OczBwLE5bsZcqKg+T/VB8V7s/E21sX2r1DRKQ0VPiaEdHR0dSrV4+hQ4cyfvx4pk6dyqpVq3LHly1bRlRUFPPnz3d1KCIiIiIiUC0UbvoQRv0CRvei59kssOXrsosr/61tNg6cOJf7+p4uEU6JCABPNxMv3tCE7x/oRIh/XkHOLYfM3PDBSr7bcAgthBaRisilyYgdO3YwYMAATpw4wZNPPsns2bOd/jIcOnQoPj4+zJkzx5WhiIiIiIg4iugCjQcWP2frt/ZaE2XMYDDw2Yi2fHp3WzpE1ODxXg2Lnd+xXgC/je3OkDYhucfSsiy8+NMOHvhqE0nnStiWIiJSxly6L+KNN94gMzOTxYsX06tXr0Ln+Pj40KRJE7Zs2eLKUEREREREnFWPKH783HH4uANEXgc3f2JfVVFGDAYD/ZsH0b95UKHjL/y4nXqBvozuFom7yUhVL3cmDGtN7ya1eWnuDsxp9k4hS3cfp9/7p3l3aEt6N61dZvGLiBTHpSsjoqOj6dSpU5GJiPPCw8NJTEx0ZSiVjtlsJi4ujri4OLKzs7Fai9nvKCIiIiKFazPSXhuiJLHRMKkNLH4Z0k65Pq4SrNx3kh9iEhj/2x4GTVrFibMZuWMDWgSzaOy1XNsoMPdYcmoW938Vw4s/bSc1M6c8QhYRceDSZMTZs2cJCQkpcV5mZiYWi/oiX4yJEycSGRlJZGQk+/btIzk5ubxDEhEREbnyBNS3d80omJAwmCCwseMxSyas+RAmtoQ/34XMlLKLs4CJS/fl/u7tYaJmFU+H8dpVvfjy3va8MbgZnm55H/m/25DAgEkr2RR/usxiFREpjEu7aURGRuLn58f27dtzjxmNRkaNGsX06dMd5vn4+KgbxEUwm82YzWYA+vbti8lkYvfu3eUblIiIiMiVKvmAvVil+RD4h0PUCHui4tguWDgWTsdB6gnHc7z8oe0o6PEiuHuVabinU7N4b9HfzI5JYN6jXWkeUq3IuftPnOOpH7ay48iZ3GNGAzzWswGPX98Qd7UAFZFLcLndNFxaM6Jv375MnTqVuXPncssttxQ6Z8aMGcTHx/Pss8+6MpRKx9/fH39/fwDc3YupAi0iIiIiJQuoD73HOR8Pagb3L4GsNNgwBVa9Dxlm+1iGGVZPtB+/7l/Q+VEwlU2r+uq+Howf0oLHezWgTr4uGuct/es4Vmxsjjdz+HQanesH0DqsGjPXH8JqA6sNJv2xnz/3nuT921tTP7BKmcQtInKeS1dGxMfH07JlSzIzM3nuuecYPHgwHTp0YNiwYbz88svMmzePt99+G19fX3bs2EFQUOHFeaR4l5uREhEREZELlG62b9VY86F920Z+NRtBz39D08FgMJRLeADJ5zLp9u5y0rMdt0GbjAYevq4eP287yqFTabnHvdyN/HtAE+7uVBdDOcYtIleWy30OdWkyAmDVqlXcdtttHD9+3OkvN5vNRmBgIHPnzqVLly6uDKNSUzJCREREpIztmgc/P5m3SiK/4NZw/atQv5c9KbFuMjQeBP5hxV/TnAB7FkKnMZcV2sNfx/D7ruOFjpmMBhY81pWv18bz/cYEh7HrGgXy31tbUqtq2W45EZErU4VPRgCkpKQwbdo0li5dSlxcHBaLhdDQUHr37s1DDz2Uu91ALo2SESIiIiLlwJIDaz+C+DWwbzFQ4GN1jXpQvzdsnGJvIXrPwqITEuYE+HKQvTZF/3cuKyHx2LebWbj9aJHjt7UNxcfDhJe7iVkxCZz+pwUoQHUfd8YPaUH/5sGXfH8RuTpcEckIcS0lI0RERETK2Ynd8Mdb9pUNBZk8wJJVdEIifyKipKTFBSgpGdE4yI89x+ydQNrWrY6/tzvL9jgW5xzaJpRxNzXFz0u1yUSkcJf7HOrS0rlPP/00b775pitvISIiIiJS/mo1gTtmwv3LILyz45gly/7n6Tj4or89+XBeKSciAEKr+xQ7npqZk/t7twY1mXpPO96+pQXe7nntTedsPsx17y3ntx1FJzVERC6HS5MRH330kUNbTxERERGRSi20HdzxLTS+ESikGOSZwzC5MxzZ7JJEBMDt7cMwGQsvRGkyGri7U10Gt65D7aqedKxXA4PBwJ0dw/ntye60DvPPnXsqLZsxMzfz7u97yMqxXnZcIiL5uXSbRr169YiKimLOnDmuuoWgbRoiIiIiFdLpeNj8Fez+GZL+LmSCAbCVaiLivFkxCbz40w4s1ryP+iajgXeGtOC2dvb72Gw2bDYw5ktc5Fis9Ju4ggMnUx2u1zS4KhPvaE2j2n7EJaUy6Y99dIoMoGO9GtQN8C21uEXkylGha0Y888wzfPnll8TGxuLn5+eq21z1lIwQERERqcCsFtj+Ayx/G84kOI83uxV6vwrV65bqbWOTUpkVk8Dh0+mEVvdmWLswImuWnDj4ZftR5mw+zIq9J8nJl8zwcDPyQv/GeJqMvDx/J2CvP/H72GuLvNYRczqLdh5jdLfIy39DIlKhVOhkREpKCtdddx2+vr5MmjSJqKgoV93qqqZkhIiIiMgVICcTVvwPVrzrPGYwQfOh0O0pqN207GMrRFpWDv/55S9mrndMoPh6mkjNtAD2Qpf/G9bKYTzRnM7bv+6mcZAfM9cf4uiZDF4d1FQJCZFK5nKfQ91KM5iCBg8ejKenJ6tXr6Zdu3YEBwcTHh6Ol5dz72KDwcCyZctcGY6IiIiISPk5dwK2f1/4mM0CO2bZfxr1h25PQ3jHso2vAB8PN/5zS0t6Nw3i+R+3czIlEyA3EQEQvfcER8zphPh75x5bdzCZhduP5nb0CK/hQ7/mQWUbvIhUeC5dGWE0Xnh9TIPBgMViKXmiONHKCBEREZEKrmCxypE/w6G1sOhFSEsu/JywjnDtc9CgNxgKL0hZVk6lZvHiT9tZtOu401hodW9+eKhzbkIif2tRX08Ti5+6ziFZkXQuk5d+2kHHegF0jKxBszpVMZTz+xORi1ehV0bExsa68vJXNbPZjNlsBiA7OxuTyVT8CSIiIiJSPorqmlE9HOp2yRszuYMlO++8hPUw81ao3QK6jYWmN4PJpR/fi1TD14NP727Lj5sO8/rPf3EuX3vQw6fTueXj1cx9tCsAG2JPAeBuMvBM32scEhHnxxf/dZzFfx2ndlVP1r14fdm9ERGpMFy6MkJcZ9y4cbz++uu5rwMDAzlx4kQ5RiQiIiIiTi6kfWf+OR6+kJVayIWA6pHQ9QlodSe4O297LisJp9J4etZWNsaddjhuNNg7dmRbbITX8OG7Bzs5JSIAXp2/k6/WxgMwuHUdPrjDsa7c2YxsnvxuCx3+6dbROtQ/t+NHbFIqP2xM4PDpNEKr+3B7+wsryikipa9CF7AU18m/MqJv376YTCZ2795dvkGJiIiIiKN1k+H3f5XcvjN/QqJ+L4hfA9VCIXm/81zfWtD5UWg3GryqujL6IlmsNj5bcYD3l+wl2+L4OOFmNBD9fM9CExFgXxmxbPdx1sWe4q4O4Qxr7/jP5I89xxk9IwYAfx93Nr/cB6PRUGS70vFDWjCsXem1RRWRC1OhtmmsWLHiss6/9tqi2wKJI39/f/z9/QFwd3cv32BEREREpHCdxtj/bDyo6EQE2MfuWQh7FtrPOXcC3H3AHA+rJsLOOfYilwCpJ2Dpa7BqArR/ADo+DFUCXf5W8jMZDTzSowHXNgzk0W83E5+cljtmsdrIzrEWeW6HyBp0iKxR5Pj6g6fy5kbUwGg0EJuU6pSIOH+vF3/aQfuIGlohIXKFKdWVEUaj8bKKz6iA5aVRAUsRERGRSu5ULKz9CDZOAwp8fHfzgqgR0OVxqF63TMM6Yk7njs/WknA63eG4r4eJRU9dS2h1n4u+5rYEs33lxMFT3NgqmBGdI3jntz18Gn2gyHPG9KjPC/0bX/S9ROTSVaiVESNHjnRKRiQnJ7Nw4UIMBgNRUVGEh4cDcOjQIbZu3YrNZmPgwIEEBASUZigiIiIiIpVHjUhocw9snOo8lpMBGz+HmOnQ4lboOhZqN3V5SEfM6Qyfso6E0+mE1/ChSbBfbreN1CwLAyet4tcnuxe5XaMorcL8aRXm73Ds8Om0wifnjqcXOy4iFU+pJiNmzJjh8Pro0aN06tSJPn368OGHH9KoUSOH8b179/Lkk0+ybds21q1bV5qhiIiIiIhULsEt4b4lsPR1+5aNBn1g/WRIPWkft1lg+w/2n0Y3QPenIayDS0I5n4g4dCott1hlzSoejJi2Ibebxpn0bG76cBULHu920QmJgkpaYRFa/fKuLyJlz6UFLO+55x6WLVvG/v378fIqvOJveno6DRs2pFevXnz11VeuCqVS0zYNERERkauIzQaZKfbildnpsHUmrJ5kry9RUNVQ+9aN0PbQZiQE1L/s2xeWiDifbDCnZTHkkzUcTMrrCFK7qic/PdL1shISsUmp9J4Q7VQzAuz1K5Y+fZ1qRoiUsct9DjWWZjAFLVq0iO7duxeZiADw9vame/fuLFq0yJWhiIiIiIhUDgZDXhcNd29ofz88vhma3uw89+xhiF8NqyfCR+1g8+V/+bdo57FCExEA/j4efHFve2r4euQeO342k2/XH7qse0bW9GX8kBaYjI5bwk1GA+8MaaFEhMgVqFS3aRR09uxZkpKSSpyXlJRESkqKK0MREREREam8DEY4UUKbd5sVFjwOZ49BtyfBzfOSbjW6WyQA/ZoHFbraoW6AL1NGtOXOqevJ+qerxi/bE7mvW6RDkuJiDWsXRvuIGsyKSeDw6XRCq3szrF2YQyJidkwC/ZoHUdVL3eZEKjqXbtPo0KEDW7duZdmyZXTv3r3QOatWraJnz55ERUWxYcMGV4VSqWmbhoiIiIiQnQ4bpsCK/0HmmeLnVgmCzo9Au9Hg6eeScH7elsjj323Jfd2ubnW+ub8jXu6mUr+XzWbj/SV7mfTHftrVrc6Xozvg6+nS711FrnoVepvGCy+8QE5ODv369WPMmDH88ccf7N+/nwMHDvDHH38wZswY+vXrh9Vq5YUXXnBlKCIiIiIilZu7N3R9Ehr0KnnuuWOw5FV4vxksexNSS17NfLFubFWH5/pdk/s6Jv40z/+4HVd8F7rkr+NM+mN/7n3e+PmvUr+HiJQul66MAPjoo4947rnnyMzMdGr7abPZ8PDw4N133+XJJ590ZRiVmlZGiIiIiEiuJa/Za0RcDDdvaDMCujwO/uGlForNZuOFOduZFXM499jjvRrwTN9rijnr4lmtNl6au4PvNybQsFYVZt7fkVpVi65bJyKX73KfQ12ejACIj49n2rRprF69msTERGw2G3Xq1KFbt27ce++9REZGujqESk3JCBERERHJlXwAPmpvb/VZmMAm0LAvxEyHrAJ12wwmaHEbdBsLtZqUSjjZFiujvtjA6v3Jucf+e2tLbmsXVirXP89itTFp2T5Gdq5LQJVLq4chIhfuikhGiGspGSEiIiIiDrZ8AwuecExIGIzgVwdu+wLCOkC6GWKmwbrJkHrS+RrXDIRuT0FY+8sO50x6NrdOXsO+E+cAcDMa+Gp0B7o0qHnZ1xaR8qFkhCgZISIiIiLOkg/Alq/BfMi+9SJqBNSoZ28Nml92Osx9GPb8AtZs5+tEdLevlKh/fd656yZD40HgX8LqBnMC7FkIncaQcCqNWz5ZQ9K5TAD8vNyY+0gXGtRyTQHN89KzLMxcH8/orpEYC7QGFZFLd0UkI9LS0oiJieHo0aNkZmYWOW/kyJGuDqVSUjJCRERERC5Z+mmYFGX/E+ydNs4dc54X1NK+UiLlKCx6CapHwD0Li05ImBPgy0FwOg76vwOdxrA1wcwdU9aSkW1v+Rla3Zu5j3Ql0M812yrOZeZw34yNrI89xZ0dw/nPzc2d6tiJyKWp8MmIV199lffff5+0tLQi59hsNgwGAxZLEfvapFhKRoiIiIjIJds+G3663/67RxV4fDMkboFVEyBhvfP8auGQnQppyUUnJPInIgrM+X3nMcbM3MT5p5DWYf58/2Anl7T8fOPnv5i+Ojb39f9ua8XQtqGlfh+Rq9HlPoe6tPnue++9x1tvvYWbmxuDBg2iUaNGVKlSxZW3FBERERGRi9HyNgioD4v+DQ17g19tuKa//Sd+Dax6H/Ytzpt/5pD9T4PJnmyYMRBG/ZKXkCgmEQHQv3kQL93QhP/8uhuArQlmnvphKx/f2abUt1E807cR2w6b2RR/mqFtQrk5KqRUry8il86lKyMaNmxIYmIiK1eupE2bNq66zVVPKyNERERE5LLZbGC1gKnA95XHdsC3d0C10H9WShTy+OBVzZ508K5ebCIi71Y2Xpm/k2/WHco99tC19XhxQOl08MjvbEY2364/xIPd66lmhEgpqtArIxISEujVq5cSESIiIiIiFZ3B4JyIsNns9SHOHrb/NB0M3jVg60ywZOXNyzgDn3W3d+ywWUusJ2EwGBh3YzMSTqUTvdfeyeOzFQcJD/Dhro51S/VtVfVy5+Hr6pfqNUXk8hldefGgoCBXXv6qZjabiYuLIy4ujuzsbKxWa3mHJCIiIiKVzck9ELc673XUCLhxIozdAV2fBI8CnTBs/3wm7fNWiZ023ExGProzisZBedd4df6u3OSEq+0/cY4fNh4qeaKIuIRLkxF33HEHGzZs4PTp0668zVVp4sSJREZGEhkZyb59+0hOTi7vkERERESksqnVBB5ZB41ugPq9oEFv+3G/IOjzBjy1Ezo/7nzerLth8cuQnVHs5f283Pni3vbUrmrvpmGx2nh05mZ2Hz1b2u/EwZ5jZ7ljylpemLOD7zYoISFSHlxaMyIjI4O+fftiMpmYOnUq9etreVRpMZvNmM1mgNx/xrt37y7foERERESk8spOB3dvx2Mn98KnXf/ZsmHAqZ5EzUZw86cQ2rbYS+88coZhn60lLcveXS+4mhfzHu1K7apepRf/P2w2Gzd9tJodR84AYDIa+OOZ66gb4Fvq9xKpzCp0a89evXqRlZXF2rVrMRqNREREEBoaWmhvX4PBwLJly1wVSqWmApYiIiIiUubMCfBpN8gw21/XbgbX/gvm3AvWnLx5BiN0ewquewHcPIu83LLdx3ngqxis/zydNA+pyg8PdsbXs/TL3MUnpzLss7WcTMnkf8NacUuU2n2KXKwKnYwwGi98F4jBYMBisbgqlEpNyQgRERERKVPmBJgxAMz5tjh0eQL6vmlfLTH1esgssNWiVlO4eTLUaV3kZb9cE8drC/I+0/ZuUovPRrTD5IIuGAdOnmPf8XP0b646dyKXokInI+Lj4y9qft26pVs592qhZISIiIiIlBlzQl77zmqhUKcNxK+BxzeBt3/enGm9IeWY47lGN+j+LHR/Btw8Cr386z/v4ovVcbmv7+0awWs3NnPJWxGRS1ehW3squSAiIiIiUsnsWWhPRORv35luzktEgP3YfUvhk46QlZp33JoD0e/A37/Ya0kENXe6/MsDm5JwKp2lu48D8MXqOOrW8GFU10hXvqtc87YcoVZVT7rUr1km9xO5Wrm0m4aIiIiIiFQyncZA/3fyEhHgmIg470xCXiKiSi3wq5M3dmwHTOkBK/4LlhyH00xGA5OGt6ZFSLXcY28s/Iulfx0v3fdRiO83HOKpWVu5/8sYYuJOufx+IlezMklG5OTkMG/ePP7973/z0EMPMX369NyxxMREtm/fTk5OTjFXEBERERGRCqPTmLxERFGi38v7vVoYPLIW2o7KO2bNhj/egml94OTfDqf6eLgx7Z521Klm76ZhtcHj321h5z8dMFzhREoGr//8FzYbpGVZeO7H7eRYrC67n8jVzuXJiOjoaOrVq8fQoUMZP348U6dOZdWqVbnjy5YtIyoqivnz57s6FBERERERKSu3ToeOD9vrRPR727564sYP4O45jqskEjfDp91h9QdgzStoX6uqF9PvbU+Vf7pppGdbGD1jI4nmdJeEW8vPiykj2+LhZqR2VU8+H9kON5MWkou4ikv/37Vjxw4GDBjAiRMnePLJJ5k9ezYF62UOHToUHx8f5syZ48pQRERERESkLPnUgBvehbE7IbxT3vEGve2rJMI65h2zZMKSV2F6f0jan3u4cVBVPrmrTW43jRMpmYyesZGUjGyXhNy9YSCfj2zHrIc606BWFZfcQ0TsXJqMeOONN8jMzOTXX39lwoQJDB061GmOj48PTZo0YcuWLa4MRUREREREykPV4MKPJ+2z/2nI90hyeAN82g3WTQarfYvEtY0CeevmvEKXe46l8Ni3W1y2heK6RoHUDfB1ybVFJI9LkxHR0dF06tSJXr16FTsvPDycxMREV4YiIiIiIiIVxbpPIP2fApFu3tD4xryxnHT4/V/29qGnYgEY3iGch66rlzsleu9JXl2wy2nVtatYrDbG/7abhFNpZXI/kauBS5MRZ8+eJSQkpMR5mZmZWCyWEueJiIiIiEgl0OUJuO5f9kRE96fhjm9g2Nfgk6+dZvxqmNwVNnwOVisv9GvMgBZBucPfrj/E5ysPujzUbIuVJ7/fwmfRB7lr6nqOnclw+T1FrgYuTUYEBweze/fuEuft3LmTunXrujIUERERERGpKDyrQM8X4fFN0PlR+7GmN8Gj66Hp4Lx52anw67Pw9c0YzyYwYVhrWof55w6//esefttx1KWhrtqXxMLt9nscOpXG+0v2uvR+IlcLlyYj+vbty65du5g7d26Rc2bMmEF8fDwDBw50ZSgiIiIiIlLRVAsBd++817414bYvoVYTx3mx0fBJF7y2f8PUkW0Jq5F3ztgftrLl0GmXhdizcS3+PcAeT/eGNRl3UzOX3UvkamKwuXCjVXx8PC1btiQzM5PnnnuOwYMH06FDB4YNG8bLL7/MvHnzePvtt/H19WXHjh0EBQWVfFFx0qyZ/S/EXbt2lXMkIiIiIiKXaf8y+GZI0eP+dTnn34gf4nz4OvNa4mzB1KziwdxHuhJWw8dlYS3cnkjvJrXxcje57B4iV5LLfQ51aTICYNWqVdx2220cP34cg8HgMGaz2QgMDGTu3Ll06dLFlWFUakpGiIiIiEilkZMFG6dC9LtQpzW0HA6/Pw8ZZ5yn2oy8mHM/sy09aFCrCnPGdKGat3vZxyxyFarwyQiAlJQUpk2bxtKlS4mLi8NisRAaGkrv3r156KGH8Pf3d3UIlZqSESIiIiJS6aSdgswUqF4X4tfAFwMA50eXHJuR3ln/Jc4WTJf6Acy4twMebi7djZ7rxNkMJizZy2s3NsPbo2KtmJi+KpZ+zYMI8fcudt4RczqLdh5jdLfIMopMKosrIhkhrqVkhIiIiIhUakteg9UTix62tOGB7GcAA7e1DeW9W1s6rcoubYnmdO6aup7YpFS6NajJ1HvaVZgtHNNXxfLGwr8Ir+HDdw92KjIhccSczvAp6zh0Ko1XBzVVQkIuyuU+h5ZNylBERERERORSmQ8VO9zHtJlP3D8ggDMs2HSQT5bvc3lIX6+LJzYpFYBV+5NYtOuYy+95ofo1DyK8hg+HTqUxfMo6jpjTnebkT0SE1/ChX3PV75Oy5ebKi69YseKC5nl4eBAQEECDBg1cnsEUEREREZErjH94iVMGmDbQ0bib5ZbWdIveyYHDA6nf+36oE+WSkJ7tew1HTqezYFsiz/e/hsGtQ1xyn0sR4u/Ndw92yk02DJ+yzmGFRMFERHGrJ0RcxaXbNIxG40UlF3x9fbnjjjv4z3/+Q2BgoKvCqnS0TUNEREREKrXkA/BRe7BZLuq0xJaPUGfIeBcFBTkWK3/+fZLeTWu77B6Xo7CkA6BEhJSKCl0zYtSoUZjNZhYsWIDRaCQqKorw8HBsNhsJCQls2bIFq9XKjTfeSHp6Olu3biUpKYl69eqxfv16AgICXBVapaJkhIiIiIhUelu+gQVPOCYkDCa4cRJkp9rrSuQ4bkd4l1Hc/tjbRNT0zTt4eJP9z5A2cBWsys6fkDAa7CVAbTaUiJDLVqGTESdOnKBTp040a9aMDz74gHr16jmMx8bG8uSTT7Jjxw7WrVuHn58fDz30EDNnzuS5557j3XffdVVolYqSESIiIiJyVUg+AFu+tteQ8A+HqBEQUD9vbN4jkLDO4ZRFbj3pOGYK/gG17Ae+HgIHlkG1cOg/HpoMKvUwV+9P4s+/T/DSgCblug39iDmdeVuOMDsmgbjkNIexBY92pWWYf/kEJpVChU5GjB49mqVLl7J//348PDwKnZOZmUnDhg25/vrr+eKLL0hNTSUyMpKAgAB2797tqtAqFSUjREREREQAqwXWTcay9HVM1qzcw6eMAfgN+wT38A7w3wZ5qytG/QIR3Uo1hOV7TvDQN5vIyrHyQPfIMk9InEnP5vedR/lp8xHWx54qcl6vxrWYPqp9mcUllU+F7qbx66+/0q1btyITEQCenp507dqV3377DbDXjYiKiuLQoeIr5oqIiIiIiDgwmqDLY5jGrOaYX7PcwzWsybh/fzu2n5+E0PaAAarUhvDOztdY8iosexOO7bTvZ7gINpuNydEHyMqxAvDNukMcOpVWwlmXLyvHypK/jvPozM20/89SXpizo9hEBMAfe07wY0yCy2MTKYpLkxFnz54lKSmpxHnJycmcPXs293X16tXVVUNERERERC5NYCNqj43ml1oPkmnLayBo2L0AzhyGodPg1un25EV+WWmwYSqs/D/4tCvsX3ZRtzUYDHw+sh3N6lSliqcbX93XgboBviWfeAlsNhub4k/zyryddHx7KQ98FcMvO47mJkLOczPan6vqVPNi5fM9aRFSLXfshZ92sP9EikviEymJS5MRzZo1488//2TNmjVFzlm7di3Lly/PXeIBcPjwYWrVquXK0MrFF198Qc+ePQkMDMTPz4+2bdsyc+bM8g5LRERERKTSMZjc6fPgu7xS+2N2WCPyBs4ehjmjYedPkHnO8aT9S+zFMAE8/ArfwpFa/Jet1bzd+fq+jnz/YCfaR9S4vDdRiLikVN5fspce//cnQyev4et18ZxOy3aYU8PXg6FtQqhd1ZMcq43wGj7MHtOFsBo+/G9YK0z/fO9rsdq45ZM1HDGnF3InEddyaTLiueeeIycnhz59+vDoo4+yfPly9u/fz4EDB1i+fDmPPvoovXv3xmq18txzzwH21RSbNm2iU6dOrgytXCxbtoybbrqJX3/9lS1btnDHHXcwYsQIfvjhh/IOTURERESk0vFwM/Lve4fybLUJTMi+lWxbvpUQMdNgcheIW2V/vW4yVAuDvv+BkHbQeAC4ezle0JIDH7eH/2sE0e9BWuFbIWr4etA83wqEy3UqNYuv1sZxyyer6fF/f/LBsn3EFyhI6elmZFDLYKbd0465j3RhY9xpjp/NdOqa0ai2Hw/3qJ97XkpGDkOVkJBy4NIClgATJ07kX//6F1lZWU5bL2w2G+7u7rz99ts888wzgL3DxqxZs7j++utp167dJd9306ZNLFmyhA0bNrB+/XoSExPx9PQkIyOj2PMyMjIYP3483333HYcOHaJGjRr079+fN954g9DQ0EuOpygDBgzA29ubOXPmXPI1VMBSRERERKRoCafSuPnj1dRO28v/3D+libFAfbq6XSB+DVSPgHsWgn8YWLLB5O44b/ts+Ol+++8GEzx/ELz9LygGm83G+0v2Elrdh2Htw0qcn5FtYdnuE8zdcpg//z5JjtX5sc1ggE6RAdzSJoT+zYOo6mWPd/qqWN5Y+FeR7Tszsi30m7jCIaHx8sAm3N/dsfuhSHEqdDeN82JjY5k2bRpr164lMTERgODgYLp06cK9995L/fr1S7jCxbv55puZP3++w7GSkhEZGRlcf/31rFmzhuDgYLp3705cXBwbNmwgMDCQtWvXlnqsXbp0oUWLFnz22WeXfA0lI0REREREirfl0GnumLIOa04Wj7v9xCNuC3AjX30FoxtYcxwTEvmZE+DTbpBhtr+OvA7uWeA4x2aDDZ9Dwz5QIzLfYRtv/7qbz1fGYjDAxNtbM7h1iFOMVquN9bGnmLflCL/uOEpKZk6h76VR7SrcEhXK4NZ1qFMg0XDe9FWx9Gse5JSIOG/lvpOMmLYh9/XrNzXjni4Rhc4VKcwVkYwoD++++y5paWm0b9+e9u3bExQUVGIy4tVXX+XNN9+kc+fOLF68mCpVqgAwYcIEnnnmGa699lqio6Nz5586dYpTp4qvUlu1atUi6198+eWXPPDAA6xbt442bdpcwru0UzJCRERERKRkv+04ypiZmwFoaTjARz6fE24ppIuff11728/zCQlzAnw5CE7HQdUQaH6rvZ5Eo76O5yVuhSnX2X+v0wbu/Q3cvTiZksnASSs5kZIJQNPgqix4rCtuJvuu+b3HU5i75Qjztxwh8Uzhzyu1/DwZ3LoOt0SF0iTYr1QK/o/9fgvzttq/LK7i6cbSp68jqJpXCWeJ2CkZcYEMBkOxyYjs7Gxq1aqF2Wxm8+bNREVFOYy3atWK7du3ExMTQ9u2bQEYN24cr7/+erH3veeee5gxY4bT8fnz53P77bczefJk7r333kt7U/9QMkJERERE5MJ8Fn2A8b/tAcCTLCYF/05f8ywMNscuFPgFw31L7L+fT0QUtWrivCWvwuoP7L+HdYL7FuUO7Tuewu1T1hFU1Ytv7u9IjsXKgm2J/LT5CH8dPVvo5Xw8TPRvHsQtUSF0qV8Tk7F0Ow4mncvk+v9FcybdXgCzf7MgPh3RtlTvIZXX5T6HupU85fLl5OSwcOFCNm7cSFJSEh07dmT06NEAJCYmkpSURNOmTXFzK5NwCrVq1SrMZjP169d3SkQA3HrrrWzfvp2ff/45Nxnx6quv8vLLLxd7XaPRuUbo999/z6hRo/j0008ZNWpUqcQvIiIiIiIle/DaesQlp/HdhkNk4sFDR2/ijTa9GXn8HUjenzcx5Sh80NJeG8KaXXIiAsA/HAIbw8k90OwWh6GGtf2YOaQWNZc8zq+fd+aT481ItAUQYTjKC25/Emo4yWFbID9aexLWsAW3RIXQp2ltfDxc94xUs4onLw1ozAtzdgDw+65jLPnrOH2a1nbZPUXOc/nTf3R0NCNGjODIkSPYbDYMBgPZ2dm5yYhly5YxatQoZs2axdChQ10dTpG2bdsGUOR2ifPHz88De6KhsGRDcT7//HMef/xxZsyYwR133HFR5+Zvf5rfgQMHXFJ3Q0RERESksjEYDLw5uBlHzOms2HsSgFc3++A1+FuGnZlh76rBP4vHbVb7j9Gt5EQEQPv77T8ndkMV+wN9jsXK6gPJzN18mLC/PuMZ4zbuZhvt3UOZahnAeLepuBnyVmU8bPgVQ+tJ0LqDC969s2Htwpiz+QgbYu3bz1+dv5PO9QOo4ll+XxTL1cGlrT137NjBgAEDOHHiBE8++SSzZ8+m4K6QoUOH4uPjc1ndJErDoUP2vWJFdcw4f/z8vEsxYcIExowZwwcffECPHj04duwYx44d4+TJk5d8TRERERERuThuJiMf3xlF4yC/3GMv/nyAFfWetteKqFbgmcCaA3ErL/j6tsDG7Dxt4o2f/6LT+D+4Z/oG5m1NpB9rc+estjRjvLtjIgLAYLNgXfAEJB+4tDd3kQwGA2/f0hx3k30LyNEzGUxYvLdM7i1XN5emu9544w0yMzNZvHgxvXr1KnSOj48PTZo0YcuWLa4MpUTnzp3Ljacwvr6+DvMuxaRJk7BYLDz88MM8/PDDucfr1q1LXFxciecXtRenqBUTIiIiIiJSOD8vd6aPas/NH6/mREomFquNh7/ZxM8jIqhvMDmfMG8MHNvJkY7/ZtGuE4zuFuk05fDpNOZvTWTuliPsP+H83PBC9oPc7LmBIR4b6VW3Cm7xVqc5AEabhZTFb+M3fNplv88L0aCWH2N6NGDSsn0AzFgTyy1RIbQIrVYm95erk0uTEdHR0XTq1KnIRMR54eHhLFmyxJWhlOj8io2iqtKWRp3PC0k4iIiIiIhI2ajj7820e9oz5JPVZFtt+Gcdx3PmE8Bxe42IjmNg6WuQ808R/HUfc3T9CiamPw7A6G6RnEnP5rcdR5m75QjrYwvvtOduMtDzmloMadOGHtc8jJebkeMf3lpsbDlx60rxnZbskR71WbgtkYNJqVht8OLc7cx7JK/jh0hpc2ky4uzZs4SEOPfPLSgzMxOLxeLKUErk52dfopWamlroeFpaGkBuu08REREREbnytQitxps3N2fST8v5zuMtQjlBojGI6nfOxzswAiK7w7e3w5kEANrZdrDI699szZjMIzNPsXT3CbJyCl/h0K5udW6OCmFQy2D8fTwcxg7bAmlaTFx7PZvRseDBcyfBqxq4eRR2ymXxcjfx1i3NufPz9QDsPHKWL9fGc18hK0BESoNL01zBwcHs3r27xHk7d+6kbt26rgylROHh4QAcPny40PHzx8/PK29ms5m4uDji4uLIzs7Gai38L0ARERERESneHY0M/Or/LnWNJ4i31uLWtJd4YMFxLFYb1G5G4vClbDS2zJ0fzEl6rhyOx64fnRIRkTV9ebpPI1Y815Mfx3Th7k51nRIRALHhQ8ixFf44ZrXBtsj7nAd+fwEmNIbfX3RJTYku9WsytE1evYz/Lf6bI+b0Ur+PCLg4GdG3b1927drF3Llzi5wzY8YM4uPjGThwoCtDKVGrVq0A2Lx5c6Hj54+3bNmy0PGyNnHiRCIjI4mMjGTfvn0kJyeXd0giIiIiIlemPQvxzzhCknsdhme9TCI1WbUviRd/2sG6g8n0/2w7w9Ke59PsgZzfve1lyGaixyeMc5tBLR8Do7pEMO/RrvzxzHU8cX1DwgMKr0V3Xt/uXXnJ8oBTQiLHZuRflofp072b4wnpp2H3QkhLhnWf2Dt2uMC/Bzahuo87AGlZFl6bv7NUtqyLFGSwufDfrPj4eFq2bElmZibPPfccgwcPpkOHDgwbNoyXX36ZefPm8fbbb+Pr68uOHTsICgpyVSgYDAY8PT3JyMgodDwrK4tatWpx5swZNm/eTFRUlMN4q1at2L59Oxs2bKB9+/Yui/NCmc1mzGYzYE/6mEymC1qFIiIiIiIihVg3Gcs1Axn5YyKrDxT9Rd8txpX8x30aPoas3GPW0A4Yh30FVYMv6pazYhL47KfFDDX+SajhJIdtgcyx9uDhIX3pVC+A9GwLjWr/0/Fj/zL4bjhYMsGnJjyzB0zujhdMPgDVI8F4ed85/7jpMM/O3pb7+tO729C/+cW9N6n8zjdSKKrRQklcmowAWLVqFbfddhvHjx93Kg5ps9kIDAxk7ty5dOnSxZVhlJiMAHj55Zf5z3/+Q5cuXVi8eHFuB40JEybwzDPP0K1bN1auvPCWPmXlcv8lEBERERERu9TMHG7+eDX7CumGYTBA53oB3HWNjf67nsN0fEfeoG8tuG0GRHS9qPvFJqUyKyaBw6fTCa3uzbB2YRw1p/Pot5up4uXGz491y9vmkW6GnXPAaoGODzpeKCcLJjQBd29ofSd0fBh8alzcm/+HzWbjzs/Xs/agPSlTu6onS5++Dj8v9xLOlKtJhU9GAKSkpDBt2jSWLl1KXFwcFouF0NBQevfuzUMPPYS/v3+p3/OXX37hzTffzH29fv16DAYDHTp0yD32yiuvOGwPycjIoEePHqxfv57g4GC6d+9OfHw869evJyAggHXr1tGgQYNSj/VyKRkhIiIiIlJ6tiWYGfzxaodjY3rUZ2TnugRX87YfyE6HX56Frd/kTTKYoO+b0OkRe+biEhwxp9Pjv8vJttgf07o3rMlXozsU2fUv1+6f4Ye77b+bPOHZv8G7+iXFAHDw5Dn6f7AytybGPZ3r8vrg5pd8Pal8Lvc5tEz6tPj5+TF27FgWLlzIzp072b17N0uWLOGFF17A39+f2bNnM2nSpFK958mTJ1m/fn3uD9gzfPmPnTx50uEcLy8vli9fziuvvIKPjw/z5s0jLi6Oe+65hy1btlTIRISIiIiIiJSeI+Z0Hv9uCwAmowE3oz0J8Mv2o1jzf43r7g2DP4JBE8H0z8oFmwUWvQQ/joZM55UVFyLE35uxvRsB4Olm5JaokJITEQAn99iTIQBNbnRORNhskLgVLvC76HqBVXisZ97zz1fr4tmaYL6gc0UuRJmsjChJ586d2bBhQ7m397ySqGaEiIiIiEjpOmJOZ/iUdRw6lUZ4DR++e7ATgNOxEH9vxxMPb4JZI+DskbxjgU3g9m+g5sV/oWmz2Xj957+4tW0ozUOqXfiJKcdg2/cQ3hnCCzQGPRwDU6+HmtdAmxHQ+bESV29k5lgY8MFKDpxMBaBJcFV+fqwrbqYy+U5bKrgrYmWElD510xARERERKT2FJSJC/L0J8ffmuwc7EV7Dh0On0hg+ZZ1zu8vQtvBgNER0zzt2cjd83hP2/HLRsRgMBsbd1OziEhEAfkHQbaxzIgJgyz/bSZL+hr9/v6BtJJ5uJt6+pUXu691HzzJ9dezFxSRSBCUjrlBjx44lNjaW2NhYGjZsSEBAQHmHJCIiIiJyRSoqEXHeBSUkqgTCiHnQ9cm8Y5ln4fs7Yenr9qKTpeCSF7afO5H3e9TdhY8X0i60Y70Abm8Xlvv6/SX7SDiVdmkxiOSjZMQVyt/fn4iICCIiInB3d8d4me17RERERESuVot2Hit+GwbOCYlFO485X8jkBn3egGFfgUeVvOOrJsA3QyH10lcz22w2pq48yH1fxmCxXkJCYvi38MQWuO5f0PQm5/GN0+CTTvB5L9g1z2HoxQGNCfC118VIz7bw6vydl54UEfmHnmBFREREROSqNrpbJK8OalpkIuK88wmJVwc1ZXS3yKIv2HQwPLAcajbKO3ZwOUy5Do5svuj4snKsPPXDVt76ZTd/7DnBfxf9fdHXAKBGPej5Inj4Oh63WmHrt/bfj2yCUwcdhv19PHhlUNPc18v/PsmvOwpJrTRgPAAALgxJREFUxohcBCUjRERERETkqje6W2SxiYjzQvy9i09EnBfYCB74w56YOO9MAkzvD5u/uqjY3E0GsizW3Nc/b0vkbEb2RV2jWOeOg88/3TcMRmg13GnK4FonuDkyb6vJuJ93cSa9FGOQq46SESIiIiIiIq7g6Qe3fQl93rQ/5ANYMmHB47DgCcjOuKDLGAwG/ntrK66p7UenejVY8FhXqnq5l16cVYPhoRXw8CoY+D/764Ix/PYc7x8dyUyP8bQwHORkSib/XbSn9GKQq45baV7MZDKV5uWkGPlbe2ZnZ+ufvYiIiIhIRWQwQNcnoE5rmH0vpCXZj2/+Eo5th2Ffg39YsZcA8PV04+v7O1DdxwN3V7XWDGph/yno5N9weCMGoKtxBxbsKydmrj/ELVGhtK1b3TXxSKVWqv8W22y2S/6Ri6PWniIiIiIiV5DIa+2rD0La5R1L3AKfXQsHll/QJWr5ebkuEVGcc8ehRn0ArLVbkFOrOQA2G7z00w6yLVbY8yuk/pNoST4AS16zJ1+WvGZ/LVKAwaZMwBUp/8qIvn37YjKZ2L3buRWPiIiIiIhUIDmZ8PuLEDMt75jBCL1egW5P2VdSXISMbAtLdx9nUMs6pRxoATYbHFoHORlscmvF0Mlrc4de7VWL0ev621/UagbHd4ItXytTgwlumlR4S9ErRGxSKj9sTODw6TRCq/twe/swImv6lnxiJdasWTMAdu3adUnnl+o2DSk7/v7++Pv7A+DuXor7xURERERExHXcPGHQBAhtBwufgpwMsFlh2ev2ThY3Twavqhd0qcOn03jo603sSjyLzQY3tnJhQsJggLqdAWgL3NkxnG/XHwLg2MqvwJRjn3dsm/O5Nou9TobJ3b4yJKC+6+J0gVkxCbz40w6HlqqfrzzI+CEtGNau5C02UjgVsBQRERERESlrre+E+xaDf3jesT0L4fOecOLCVjw/N3s7uxLPAvD8j9vZf+KcKyIt1Av9G1OziicAaVYTp0wBxZ9gs8JPD8KXNxY+vuQ1WPU+bP0OMs6WcrSXLjYp1SkRAWCx2njxpx3EJqWWU2RXPiUjREREREREykNwK3gwGhr0zjuWvB8+vx52/lTi6eOHtKCql32x++3tw6gb4OOqSJ1U83bntRubAvCNpQ/tUj8gKaBdCWcBVWo7H8tOh9UTYek4mPcwZKY4z/n9JfjuTvtqksMxlxX7xfhhY4JTIuI8i9XGrJiEMoulstE2DRERERERkfLiUwPunAXR79p/ALJT4cd77ds2er8OpsIf2yJq+jJpeBQnUzK5rRy2CwxqGcyczYf58++TWDGy8FQooygmUeDuC1UL2Upy7rjj6yq1nOfErYBjO+y/R3S3b3PJb8X/wfpPoUoQNB8C3Z92HM9Ks9/HLwjcvUt+c/84fDrNfkvDUW43/Umo4SSHbYH8YOlBnC2Yw6fTL/ha4kjJCBERERERkfJkNEHPl6BOG5j7IGScsR9f+xEkboXbvij8AR3ocU3hx8uCwWDgzcHN6fN+NBnZVmZkdGeE5wJMWAuZbIKHV0KNes5jJg9o/wCcO2ZfJWEqpCZeSr6EhV+Q8/jZREg9af+J7O48nrAevr7Z/nutpvDIWuc5O34E30D79WvUIzndSmh1H24z/cl4t6m4GfLe1wOmX3gx535qVr/P+TpyQZSMuELl76aRnZ2NyWQq34BEREREROTyXNMfHvwTfhhh70gBEL/K3v5z2FcQ1uGCL5VtsZZJG9CwGj481bsR43/bQ5wtmH9l3897HtMwOHXT+LDowpVV68DA/yv+Rv3ehpREOHei8IRG/tUVhW0FyT/uXsh2lqxUmJOXWFhx40rGzE9kXDdPni2QiABwM1gZ7zaVow1GFh+3FEnJiCvUxIkTef3113NfBwYGlmM0IiIiIiJSKmrUg/uWwM9Pwo5Z9mMpR+GLAdB/PLS/v8T2n2sPJPPs7G18PrIdTetcWGeOyzG6WyRztxxhz7EUZlt6cMKnDdNb7cF0NsFeoDNqxOV30Gh5W/HjN7wHnR+zJx1qNXUeTzfn/V7YyoqUY7m/2jAw+sc4cmwmTq+ajpuxkJUe2BMSYXFzoEGLC3gDUpDBZrMVXo1DKrT8KyP69u2LyWRi9+4Lq7orIiIiIiIVnM0GGz6HRS+CNSfveMs7YND74FF4scpv1x/ilfk7sVhthNXwZsGj3aju6+HycLccOs2QyWs4/3T5TJ9GPH59Q5ff96JYsu3bOKwW8C9QY+PEHpg3Bs4dJ8dqo13aB5jTspns+RE3GNYUfc3mQ+HW6a6Nu4Jq1qwZALt27bqk89VN4wrl7+9PREQEERERuLu7YzTqf0oRERERkUrDYICOD8KoX+1FGc/b/j1M6wunYgs9rY6/F9Z/MgLHz2ay7bC5DIKFqPDqjOhUN/f1h8v3V7y2lyZ3+5aQgokIgFqN4cHl8PRfuD3zF5/d3ZbImr50iGpd/DXzt2aVi6InWBERERERkYoqvCM8tALCu+QdO74DplwHexc7Te9xTS2e63cNQVW9mP1Q5zItcPlsv2uo5ecJQFaOlX/P3cEVuRDfYKBjvQAWP3UtAd3vt9e8KHSeyb4FRS6JkhEiIiIiIiIVmV9tuGcBdHo071jGGfh2GCz///buPDyqKl/3+FupzIGkyABkYEgYJQwiiCgi2GIQpVUGp24Q0VYazrHlgrflqAjYaOMVHOg+tuLAoK0oKjiDCi2CDA0CAmkgGAgkEKaEIiHzsO4fRUJCEpJAqirD9/M89WitvXft39btetwva6/1V6m4/JwGEwd10MrJA9Wrjc2lZQb6emnW7bGl3zckpmn59iMuraG2dqbY9X+X/aLCoorzQnhZPRxzXdw+v2IgUd2knKgWE1gCAAAAQH1n9ZJueV6KvEr6/FGpIFuSkdbOkY5uk0a8IfkHS3IsuWnzd/48EZW5pXtr3dS1pVbvPSFJmv3VHg3u0lLBLpi3orZW7j6myR9uV25BsQJ8PDWzTJBSTu8xUttrpe3vSvbDdTcpZxPHyAgAAAAAaCh6jJYeXiMFl3kQ3v+ttGCwlLqzysOMMfpwy2Gdzsp3ankWi0XP3tld/t6OkQTpWfn669f1b6J9Y4w+23FEuQWOERHvbTqk/cczqz4gpIM0ZKZjssohMwki6gBhBAAAAAA0JC2vcEy22OW28232Q9LbN0u/LK2we25BkR5ftlNPfLJLf1q6vdJXEupSpM1PU27uXPp92c8p2piY5tRz1pbFYtG8u3upR2SQmvt6atH4furUqrm7y2pSCCMaKLvdrqSkJCUlJamgoEDFxc7tUAAAAADUI75B0j3vSTc9I1nOPdYV5krLJ0hfTZUKz4+A+PyXo/pkW4okad3+U3rth0Snl/fAde0VGxFY+v2p5buUV1jk9PPWhr+3p94e11efTrxO13cKdXc5TQ5hRAP1yiuvKDo6WtHR0dq/f7/S0upX0ggAAADAyTw8pIFTpTGfSH7B59u3vCX9rY+UslWSdFefKN3WM1ySdHX7FrqvX5nlKO3J0qZ/1HlpnlYP/XVkD3lYHN8PnMrSa/9yfghSlZTT2fr1xNkK7S0DfRkR4SYW0yDXWoHdbpfdbpckxcXFyWq1as+e+vcuFgAAAAAXsB+WPhwrpe4432bxkEa9LXUfqez8Qi38KUkPD4yRt+e5P5O2J0uLh0unk6Rb5kj9J9Z5WbO+iNfCn5IkSd5WD3392EB1bNmszs9zMTuS7frD4i3y87Zq+aQBCm3m49LzN1axsY4JP+Pj4y/peEZGNFA2m03t27dX+/bt5eXlJQ8P/lUCAAAATZatrfTgKscqDyVMsfTxeGn1bPl7WfVfN3asPIho0V7qOtwpZU2N66LwIF9JUn5RsZ5avkuu/PPwE5m5um/BJp06m6/k9Bw9smSr0+fMQM3wBAsAAAAAjYGXr3TH36Xfzpc8vM63r3tRev8eKe/cawplgohiW3sVjv1csrVxSknNfDw1q8ySmZsPpmvZzylOOVdlWjb31eQhnSRJnh4W3duvrTytPAbXB/xbAAAAAIDGpM846aFVUvPw8237V0lv3CAdXFcaRBQGtdPDlhl6cVO2U8uJi22tuG6tSr8///UepZ3Nc+o5y3rkhhg9ckOMljzUT3f3dU7ogtojjAAAAACAxiayj/THn6S2/c+3pSeWBhFF3s31TsbV8jm+XVvWrdS3G3+WigqdVs6sO2IV4G2VJNmzC/TcV86Z766gklcwLBaLnrz1Cl3XgRUz6hMmsGwELnfiEAAAAACNVHGR9PWfpa1vVb+vxUNq1koKjDj3iSz/1+bhjr96XtoEkAt/OqhZX/yn9Pt7D11TuyU1N/3DMbdFFa+UJKdn66HFW/TnawM0RFucMiEnzrvc51DPuiwGAAAAAFCPeFil6ydL2xY6gomLMcVSZqrjc+TnqvfzD70grLgwuAiXvAMqHHb/te21fPsR7Uw5I0l6esUurZx8g3y9rNVfx6Z/SCunSZtfl8Z9WSGQ2JFs10OLtsgn66g6fzNbspxwbCCQqLcIIwAAAACgsSqZrLK4yDGppSmWTJHk3VyK6K3i7HR5ZB6VctJr/pvZpxyfYzur3sc3qEJYYQ2M0Py+Nv0xNVVHioKVlGb09zW/6vGhXao/Z9fhjiDidJLjei4IJAJ9PRVWfEJveM9WW8sJnfGNUpCTVghB3eA1jUaA1zQAAAAAVHDh8p3jvnS0X9hmayMV5EgZR8t8jjj+mpl6/u/PnpBUd4+PZ42vjitYraNiFBDatvJRFv7BksVS9fWUBBL2ZOW+dat8zx7WWf82avbIN05bIQQOl/scShjRCBBGAAAAACinmgf3KrdJ2pKUrrSzebqle3j53yzMl84eKx9WXPjJTHWMvKgrVp8yIUWE5NNMiv/MMZKjebh07/uSf4i05HbHxJxB7WUdX/E1DtQ95oxooux2u+x2uySpoKBAVmsN3rMCAAAA0PhVEzbI1sbRVrLPudceTFCU3tt0SLO++I88rRZ9Euyv2Iig88d5eku2to5PVYqLHCMoygUWR86NsCjTVpRfs2spypNOH3R8LpSZKr154/nv3s1l7TtOyjopBYRJXr41OwfcgpERDdTMmTM1a9as0u9hYWE6ceKEGysCAAAAUC+UTPZYWRBRVtnQ4pY5OtX9Qd00b63O5BRIkmLCAvTt5BvkafWo2/qMkbLT9PzS75WYmKBwS7raedk1ppuX/HKOnw8tCrIv/RwenlLYFVJ4L8cn4kqpVWylE2vi0vCaRhNVdmREXFycrFar9uxxzlq9AAAAABqYapbBLGVPlvZ+WbrqxI8JJ/XAwn8rtJmPXh/bR1e1beG0Eo9n5GrIvLXKzCuUJN3eK0Lz7+vt2GiMlHumwhwWm3/ZpZy0FEVZTqiDJbV0OokasXhIoZ3PBxThvaTWPRyTbaLWCCPAnBEAAAAA6sxnO47o2pgQtQx0/msO725M0vTPzj/HLBp/tQZ3aVnl/tn5hfqv1z7TzPRpaudxQsbDSxYZqbhQ8mku2dpLpxIcr3fUVHBM+YAi/ErHxJm4KMIIEEYAAAAAaJCKi41G/mODdiTbJUltgv307eRB8vOuYk48e7IKF94mzzOHql4hZOwKxyseqb+U+eyUCrJqXlhQWym8pyOYKAkpmre65OtsjAgjQBgBAAAAwKmMMTqdXaDgAO86/+09qRn67d/Wq7DY8Wj6x0EdNG1YV+UVFulkZp6iWvg7dryMFUJUXCSlHzgXTOyQju5wBBR5Z2peaLPWF4yg6CUFRal274pc4BJfp6kPCCNAGAEAAADAafIKi/TMinit//WUvnj0eqcEEnO+2avX1yZKkjw9LHr/4Ws0d1WCUjNytGLSAIUUnrh42CBVH0hcyBjHvuVGUOyQstNqXrhfcPlJMsN7SS2iaxZQXOJEo/UlkCCMAGEEAAAAAKcoLCrWPQs26edDpyVJAzqGaPH4fnW+wkZOfpHiXlmr5PQcSZKPp4fyCoslSX3atdDSntvl9d2Tzn9wN8YxYeaFAUVmas1/wyfo3CseZUZQhHSUPC549cSerIw3blFgTkqNApYMvygFTlhZ/SgKF7nc51DPuiwGAAAAANB4eFo9FNetVWkYkVtQrLN5hbL51+3oCD9vq/5yR3c9sHCLJJUGEZIUHRogc81EyepR/SsNtjaOh/pLfaXBYpGCIh2frreeb888Lh3b6QgmSkIK++HKfyPvjJS0zvEp4eXvWLmjTECxMMFHb57+s5b5PafI00mO0KGKV0+OWFrprtN/1h92F+rB62t/WfURIyMaAUZGAAAAAHAWY4z+tHSHmvt6auZvY+XtWbejIsp69IPt+uKXo5IkLw+L/nBDjP48tIsslzMvg7Nkp58LKMqMokj7tcaHG6uP9po22pvfSjd67pJNGZKtnfTAV44dygYROU/JM7itPnikvyJtfk66oNrhNQ0QRgAAAABwqsKi4jp/NaMyJzJzNWTeWmXkFkqSbusRrv/9/VVOP2+dyc2Qju0qH1Cc2ieZ4uqPLWVxjNAwxfU2iJB4TQMAAAAA4GTOCiJyC4o07ZOdurlba93WM1wtm/tq2rAr9OTyXZKkr3alatTe4/pN1wayrKZvoNR+gONTIj9bOh5f/hWPE3uk4oIqfsRIxqhYlnobRNQFwggAAAAAQK0dz8jVmz8e0LRhXS8prEg7m6cJ7/6srYdO65vdxxRu89VVbVvo3qvb6NNtKdp6bp6K6Svi1X9KiPy9G+jjq7e/1OZqx6dEYZ4jkDg3QWZe8nbp+C75qLB0F2OkCJufXm2EQYQkOX+cDQAAAACgUdmalK7hf1uvt9Yf1Asr917Sb5zJKdD+E2clOSasXPRTkiTJw8Oi50f2kKeHY56II/YcvfxdQp3UXV8UWry0vbCdXsscoPtP3KdbU/+g48XBjm3GQ0XGIqvFaKnPbEXqlJurdY4GGi3BbrfLbrdLkgoKCmS1Wi9+AAAAAADUkfc3H9bJzDxJ0pvrDurWHuHq3bZFrX4jJqyZXh/TR/e/s1kje0dp9ojupds6t2quCYNi9L//SpQkvfNTku64MlLdI4Pq7iJcqLCoWPFHM7TpQJo2HkjTloPpysovkiRF6JQ+8J6tth4ndKi4pe7Lf1qS9IH3bLU7c6jiKhuNBBNYNlAzZ87UrFmzSr+HhYXpxIkTbqwIAAAAQFORnV+oka9tUOLJs5p5e6x+f027S/6tfccy1blVsworZuQWFGnoKz/qUFq2JKlnVJCWTxogq0c9XFnjAkXFRntSM7QxMU2bDqTp3wfTlZlXWGG/kiCiXZkg4pglVBaLRa2KTzqW/TTHpRbt610gwWoaTVTZkRFxcXGyWq3as2ePe4sCAAAA0GQkp2freEau+rYPrnbf4mKjFTuO6I4rI2sVJqzff0pj3t5c+n3mb7vpgQHRl1SvMxUXG+05lqFNB9K1MTFN/z6YVroiSFXaWtP0ke/zal2UqhS10t255yerlKT7FmxSYfrhehtIsJpGE2Wz2WSz2SRJXl5e7i0GAAAAQJPTJthfbYL9q90vt6BIU5f9oq92pir+aIamD+9W43Nc3ylUI3pHavn2I5KkF1ft09DurRUe5N4JHYuLjRJOZJaOfNh8MF327KpWx3Dw9LDoyjY29Y8J0bUdQnT1sQ/l/X2qjlha6e5KVs344JH+um+BdFf6U45A4nSStPdLqf9EF1yh8xFGAAAAAADqTMrpbEW1OB9SzF+9X1/tTJUkvb3+oHpEBunO3pE1/r2nbrtC/9p3QvbsAmXlF2nm5/F6Y2zfOq/7Yowx2n/irGPOh0RH+JCelX/RY6weFvWMCtK158KHPu1alFsR5Ejog/pkbaKWZvaqdPnOSJtfuUDi3ua/aFTXB1Tzf3L1G2EEAAAAAKBOvL/5sGZ8tls3dAmTn5dVUS38dXuvcK1NOKn4oxka2ClUv7miZa1+M7SZj54cdoX+/MlOSdKq+OP6Nv6Y4mJbO+MSJDnCh8STWdp44NzIhwNpOnX24uGDh0XqEWVT/5hgXRsTor7tg9XMp+pH7lW7j+mlzJvUNti/QhBRomwg8VJ6qJrtPqYHr69/r6lcCuaMaAQu910dAAAAALhcr/3wq/7fyn0V2q0eFv3PsK5Kz8rX/7m5s7ysHrX+bWOMBr34gw6nOyazDA/y1XdTBlX6sH/EnqNVtXxoN8bo4Kksx5wP5wKIktVCquJhkWIjgnRthxD1jwnW1e2D1dy3dq/Qv7P+oIZ2b11pEFHWpVyTszFnBAAAAADA7a6MslXaXlRs9Ndv9ur7KYMuKYiQpIU/JZUGEZKUeiZX877dpxm/jS233xF7ju5bsKl036oe3o0xOpyeXTrnw8YDaTqecfHwwWKRuoUHOuZ8iAnR1dHBCvK7vPn7ahouRNr86lUQURcIIwAAAAAAl+3H/aeq3FZUbPTR1mQ9cUvXS/rtod1ba9GG8oHE4g1JGtE7Uj3PhSBlg4i2wf4a2r38axzJF4QPqWdyqz1v19bNz418CNE10cGy+XtfUv2oiDACAAAAAHDZUk5nV7M955J/u2TuhHvf2Kjkc79TbKT/+XSXPvuvATqemVcuiChZHvPjn1NKA4gj9urP36VVc8ecDx1CdE10iFoEED44C2EEAAAAAOCylV1Bo/Ltl7ccZ6TNT0snXKsR//uTTpybzyH+aIZeXb1fn+04qsPp2QoJ8FaPyEDdu2CjktOrDx86tmyma2POjXyICVZoM5/LqhE1xwSWjQATWAIAAABwt4OnsjTkpbUqKq74iGn1sOj7KYMUHRpw2ec5Ys9R3EtrlZVfVOtjY8ICSud8uCYmWC2b+152PU0VE1gCAAAAANwuOjRAfx3ZQ//z6a5ygYTVw6I5I3vUSRAhOUZIfPTHa3Xb/PXV7ts+xL90zof+MSFqFUj4UF8QRgAAAAAA6sTdfdvo6vbB+mhrslJO5yiqhZ/u7tumzoKIEjZ/b1ktFhVdMNC/bbB/6ZwP/WNCFB50ea+GwHkIIwAAAAAAdSY6NOCSV82oiZJVM4qMkdVikZFRsZEibL764JH+irQRQDQEl7bIKwAAAAAALnbh8p0/PnGj1j3xG7UN9tdRe67uW7CpRqtmwP0IIwAAAAAA9d6FQUTJKIiSZT/bBvvrcHo2gUQDQRgBAAAAAKjXqgoiShBINDyEEQAAAACAem3V7mNVBhElLgwkVu0+5oZKUVNMYAkAAAAAqNcevD5akjS0e+uLTlBZEkis2n2s9BjUT4QRAAAAAIB6r6bhQqTNjyCiASCMaKDsdrvsdrskqaCgQFar1b0FAQAAAABQQ8wZ0UC98sorio6OVnR0tPbv36+0tDR3lwQAAAAAQI1YjDHG3UWg9sqOjIiLi5PVatWePXvcWxQAAAAAoEmIjY2VJMXHx1/S8bym0UDZbDbZbDZJkpeXl3uLAQAAAACgFnhNAwAAAAAAuBRhBAAAAAAAcCnCCAAAAAAA4FKEEQAAAAAAwKUIIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFzKYowx7i4Cl6d58+YqKChQhw4d3F0KAAAAAKAJSExMlJeXlzIzMy/peEZGNAIBAQHy8vJydxk1kpiYqMTERHeXgXqC+wFlcT+gLO4HlMX9gLK4H1AW94P7eHl5KSAg4JKPZ2QEXCo2NlaSFB8f7+ZKUB9wP6As7geUxf2AsrgfUBb3A8rifmi4GBkBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAAAAAADgUoQRAAAAAADApVhNAwAAAAAAuBQjIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCPgdLm5uZoxY4Y6d+4sX19fRURE6MEHH1RKSoq7S4MbDB48WBaLpcrPypUr3V0i6tjPP/+sOXPmaOTIkYqMjJTFYpGvr2+1xy1ZskT9+vVTs2bNFBwcrFtvvVUbNmxwQcVwptreDzNnzrxonzFt2jQXVo+6lJ2drRUrVuihhx5Sz549FRgYqICAAPXq1UvPPvuszp49W+Wx9A+Nz6XcD/QPjd9LL72kkSNHqlOnTgoKCpKPj4/atWuncePGKT4+vsrj6CMaBosxxri7CDReubm5uummm7RhwwaFh4dr4MCBSkpK0r///W+FhYVp48aN6tChg7vLhAsNHjxYa9eu1ahRo9SsWbMK26dOnaoePXq4oTI4y5133qnPPvusXJuPj49yc3OrPGbKlCl6+eWX5efnp7i4OOXm5mr16tUyxmjZsmUaMWKEs8uGk9T2fpg5c6ZmzZqlAQMGqGPHjhW233bbbbrrrrucUiuc66233tLDDz8sSYqNjVW3bt2UkZGhDRs2KDMzU127dtXatWvVsmXLcsfRPzROl3I/0D80fqGhocrKylLPnj0VGRkpSYqPj1dCQoK8vb21YsUKDRs2rNwx9BENiAGcaPr06UaSufbaa01mZmZp+7x584wkc8MNN7ixOrjDoEGDjCRz8OBBd5cCF5kzZ4555plnzBdffGGOHTtmJBkfH58q91+9erWRZEJCQkxCQkJp+4YNG4y3t7cJCgoy6enprigdTlDb+2HGjBlGklm4cKHrioRLLF682EycOLHcf+fGGHP06FHTu3dvI8ncd9995bbRPzRel3I/0D80fuvXrzc5OTkV2l977TUjyURERJjCwsLSdvqIhoUwAk6Tn59vbDabkWS2bdtWYXvPnj2NJLN161Y3VAd3IYxAdQ+ft956q5FkXn755Qrb/vSnPxlJZu7cuU6sEK5EGIHKbNiwofTeyMvLK22nf2iaqrof6B+ato4dOxpJJj4+vrSNPqJhYc4IOM369etlt9vVoUMH9e7du8L20aNHS5K++OILV5cGoJ4qGUopne8jyqLfAJqGXr16SZLy8vKUlpYmif6hKavsfgCsVqskydvbWxJ9REPk6e4C0Hj98ssvkqSrrrqq0u0l7SX7oWl5++23lZaWJg8PD3Xu3Fl33nmn2rZt6+6y4GZ79+5VXl6ewsLCFBUVVWF7Sb+xc+dOV5cGN1uzZo127Nih3NxcRUVFadiwYerTp4+7y4KTHDhwQJLk5eWl4OBgSfQPTVll90NZ9A9Nz5IlS7Rv3z517txZMTExkugjGiLCCDjN4cOHJanSzqBse8l+aFpmz55d7vvjjz+u6dOna/r06W6qCPVBdf1GQECAbDabTp8+rczMTDVv3tyV5cGN3n333XLfp0+frlGjRmnRokWVToaLhu3VV1+VJN1yyy3y8fGRRP/QlFV2P5RF/9D4vfjii4qPj1dWVpb27Nmj+Ph4RURE6P3335eHh2OwP31Ew8NrGnCakiWY/P39K90eEBBQbj80DTfccIPeffddJSYmKjs7W/v27dNzzz0nT09PPfPMM6X/w4Gmqbp+Q6LvaGo6duyouXPnKj4+XmfPnlVycrL++c9/KjIyUp988onGjh3r7hJRx77++mu9/fbb8vLy0l/+8pfSdvqHpqmq+0Gif2hKVq1apcWLF+vjjz9WfHy82rRpo/fff7/cCBj6iIaHMAJOY86tGmuxWC66HU3Ls88+qzFjxigmJkZ+fn7q3LmznnzySa1YsUKSNGPGDOXk5Li3SLhNdf1G2X3QNIwZM0ZTp05Vt27dFBAQoKioKP3ud7/Tli1bFBISohUrVrB2fCOyZ88ejRkzRsYYvfjii6VzBUj0D03Rxe4Hif6hKfn+++9ljNHp06f1448/qkuXLho8eLCee+650n3oIxoewgg4TcnQp6ysrEq3Z2dnSxLD5yBJiouLU9++fXXmzBlt2rTJ3eXATarrNyT6DjiEh4dr/Pjxkhx/YoaGLyUlRbfccotOnz6tKVOm6LHHHiu3nf6haanufrgY+ofGy2azaeDAgfr666/Vp08fTZ8+XVu2bJFEH9EQEUbAaUomI0xJSal0e0k7kxaiRKdOnSRJqampbq4E7lJdv5GVlSW73S6bzca7nqDPaEROnTqlm2++WYcPH9b48eM1d+7cCvvQPzQdNbkfqkP/0Lh5eXnpnnvukTGmdHUM+oiGhzACTlMylG7btm2Vbi9p79mzp8tqQv12+vRpSaTVTVmXLl3k4+OjkydPVvo/E/QbKIs+o3HIzMzUsGHDtHfvXo0cOVJvvvlmpcOs6R+ahpreD9Whf2j8QkNDJUknT56URB/REBFGwGkGDBigoKAgJSYmavv27RW2f/zxx5Kk4cOHu7o01EMnT57UunXrJFW9HCwaPz8/P/3mN7+RdL6PKIt+AyWMMVq+fLkksYRfA5aXl6c77rhDW7du1dChQ/XBBx/IarVWui/9Q+NXm/vhYugfmoa1a9dKkjp06CCJPqJBMoATPfXUU0aSue6668zZs2dL2+fNm2ckmeuvv96N1cHVNm7caNasWWOKi4vLtR88eNAMGDDASDK33367m6qDq0gyPj4+VW7/7rvvjCQTEhJiEhISSts3bNhgfHx8TGBgoElLS3NFqXCBi90PJ0+eNIsXLza5ubnl2jMzM82ECROMJNO6dWuTlZXlilJRxwoLC82IESOMJDNw4MAa/Xukf2i8ans/0D80fj/++KNZunSpKSgoKNeen59v5s+fbzw8PIyfn585fPhw6Tb6iIbFYgxTisJ5cnNzNXjwYG3evFnh4eEaOHCgDh06pM2bNyskJESbNm1Sx44d3V0mXGTRokUaP368wsPD1blzZ7Vu3VopKSn6+eeflZubq9jYWK1Zs0YtW7Z0d6moQ1999VW55dg2b94si8Wifv36lbZNnz5dt912W+n3yZMn69VXX5W/v79uvvlm5efn67vvvlNxcbE++ugjjRo1yqXXgLpTm/shKSlJ0dHRCgwM1BVXXKG2bdvKbrdr27ZtSktLk81m05dffqkBAwa441JwmV599VVNnjxZkjRixAgFBgZWut/cuXNLh2NL9A+NVW3vB/qHxq/k/xtDQ0PVp08fhYSE6NSpU9q1a5dSU1Pl6+urxYsX6+677y53HH1EA+LuNASNX3Z2tpk+fbrp0KGD8fb2Nq1atTLjxo0rl2KiafjPf/5jJk6caK666ioTFhZmPD09TVBQkOnfv7+ZN2+eyc7OdneJcIKFCxcaSRf9LFy4sNLj+vTpY/z9/U1QUJAZOnSoWbdunesvAHWqNvdDRkaGeeKJJ8ygQYNMZGSk8fHxMf7+/iY2NtZMnTrVpKSkuPdicFlmzJhR7b0gyRw8eLDCsfQPjU9t7wf6h8bvwIED5sknnzQDBgww4eHhxsvLywQEBJjY2Fjz6KOPmv3791d5LH1Ew8DICAAAAAAA4FJMYAkAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCMAAAAAAIBLEUYAAAAAAACXIowAAAAAAAAuRRgBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAADgNhaLRRaLxenneeCBB2SxWPTDDz84/Vy19c0338hisWjSpEnuLgUAAJchjAAAAHCj7du3S5J69+7t5koAAHAdwggAAAA3IowAADRFhBEAAAButG3bNnl6eqp79+7uLgUAAJchjAAAAPVKUlKSLBaLBg8erJycHE2bNk3t2rWTj4+POnbsqBdeeEHGmEqP/eSTT9SvXz/5+fmpVatWuv/++3X06NFqzzdhwgS1b99ePj4+CgsL0+jRo7Vz584K+95zzz2yWCx64oknKmzbu3ev/P39FRgYqAMHDtToWs+cOaODBw+qW7du8vX1rdExAAA0BoQRAACgXsrPz1dcXJwWLFigK664QjfeeKOOHDmiadOmafr06RX2//vf/67Ro0dr27Ztuu666zR48GB9//336t+/v9LS0io9x/r169WrVy8tWLBAzZo10+23365OnTrp008/Vf/+/fWvf/2r3P6vv/66oqKiNHfu3HKTYRYUFOh3v/udcnJyNH/+fMXExNToGnfs2CFjDK9oAACaHMIIAABQL23cuFEWi0UJCQlauXKlVq5cqXXr1snT01Mvv/yyzp49W7pvUlKSHn/8cfn4+Oj777/X6tWr9eGHH+rXX39V165d9eWXX1b4/YyMDN11113KycnRsmXLtHv3bi1btkwbNmzQt99+q6KiIo0dO1b5+fmlx7Ro0UJLliyRJN1///2y2+2SpKefflrbt2/X6NGj9cADD9T4GpkvAgDQVBFGAACAesnDw0NvvfWWQkNDS9v69u2rYcOGKTs7W1u3bi1tf+edd5SXl6f7779fgwcPLm339/fX3/72t0qXD33nnXd07NgxPf744xo9enS5bUOGDNGkSZN05MiRCkHGjTfeqKlTpyo5OVmTJk3SDz/8oLlz5yoiIkJvvPFGra5x27ZtkggjAABND2EEAACol9q3b6/OnTtXaC9pS01NLW1bv369JOnuu++usH+XLl0qfdj/7rvvJEl33nlnpee//vrrJUlbtmypsG327Nnq3bu3PvjgA91xxx0yxmjx4sUKDg6u5qrK2759uywWi6688spaHQcAQENHGAEAAOqlqKioStubNWsmScrLyyttK5mksm3btpUeU1l7UlKSJOmaa66RxWKp8CkZLXHq1KkKx3p7e2vRokWSHK97/Pd//7eGDBlSsws7Jzc3V3v37lWHDh0UGBhYq2MBAGjoPN1dAAAAQGUqe7WiKiWra9TmmKKiIknSXXfdJX9//yr3u+aaaypt//DDD0v/fvv27SouLpaHR83/nGfXrl0qLCzkFQ0AQJNEGAEAABq8iIgIJSQk6NChQ+rUqVOF7YcPH67QFhUVpX379unpp59Wz549a3W+devWac6cOYqIiFDXrl21Zs0azZkzR08++WSNf4P5IgAATRmvaQAAgAavZH6HZcuWVdiWkJCgHTt2VGgvea1ixYoVtTpXRkaGxo4dK2OMFi5cqPfee08hISGaOXNmuUk1q1OyksZVV11Vq/MDANAYEEYAAIAGb/z48fL29taSJUu0bt260vacnBw99thjKi4urnDMhAkTFBYWpueff14LFy4sfdWjRFZWlpYsWaKUlJRy7ZMmTdKhQ4f06KOPKi4uTuHh4XrzzTdVUFCg3//+98rOzq5RzSzrCQBoyggjAABAgxcTE6MXXnhBubm5uvHGGzVkyBDde++96tixo3bv3q3hw4dXOKZFixZavny5AgIC9OCDDyo6OlrDhw/XqFGjdPXVV6tVq1YaN25cuQksly5dqn/+85+KjY3VCy+8UNo+YsQIjR8/XgkJCZoyZUq19RYVFWnXrl2KiIhQy5Yt6+YfAgAADQhhBAAAaBQmT56sjz76SFdeeaXWr1+v1atXa/Dgwdq0aZNCQkIqPWbAgAHatWuXpk6dKj8/P61Zs0bffvutMjIyNHz4cH344Yfq1q2bJCk5OVkTJ06Ut7e33nvvPfn6+pb7rfnz5ysmJkZvvPGGPv/884vWunfvXuXk5DAqAgDQZFnMhWMSAQAAAAAAnIiREQAAAAAAwKUIIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCMAAAAAAIBLEUYAAAAAAACXIowAAAAAAAAuRRgBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAAAAAADgUoQRAAAAAADApf4/7FJWuqqEdCAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "for i, legendre_coefficients_per_imp in enumerate(legendre_gf):\n", + " if len(legendre_coefficients_per_imp) != 2:\n", + " raise ValueError('Only blocks up_0 and down_0 supported')\n", + "\n", + " data = (legendre_coefficients_per_imp['up_0'].data + legendre_coefficients_per_imp['down_0'].data).T\n", + "\n", + " l_max = data.shape[2]\n", + "\n", + " ax.semilogy(np.arange(0, l_max, 2), np.abs(np.trace(data[:, :, ::2].real, axis1=0, axis2=1)), 'x-',\n", + " c=f'C{i}', label=f'Imp. {i}, even indices')\n", + " ax.semilogy(np.arange(1, l_max, 2), np.abs(np.trace(data[:, :, 1::2].real, axis1=0, axis2=1)), '.:',\n", + " c=f'C{i}', label=f'Imp. {i}, odd indices')\n", + "\n", + "ax.legend()\n", + "\n", + "ax.set_ylabel('Legendre coefficient $G_l$ (eV$^{-1}$)')\n", + "ax.set_xlabel(r'Index $l$')\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "8308345c-3f72-476c-8f58-583f9aeb1ccf", + "metadata": {}, + "source": [ + "The choice of the correct `n_l`, i.e., the Legendre cutoff is important. If it is too small, we are ignoring potential information about the Green's function. If it is too large, the noise filtering is not efficient. This can be seen by first running a few iterations with large `n_l`, e.g., 50. Then, the coefficients will first decay exponentially as in the plot above and then at higher $l$ starting showing noisy behavior. For more information about the Legendre coefficients, take a look [here](https://doi.org/10.1103/PhysRevB.84.075145).\n", + "\n", + "The noise itself should reduce with sqrt(`n_cycles_tot`) for QMC calculations but the prefactor always depends on material and its Hamiltonian, the electron filling, etc. But if you increase `n_cycles_tot`, make sure to test if you can include more Legendre coefficients.\n", + "\n", + "## 5. Next steps to try\n", + "\n", + "Here are some suggestions on how continue on this type of DMFT calculations:\n", + "\n", + "* change U and J and try to see if you can reach a metallic state. What does the occupation look like?\n", + "* try for better convergence: change `n_cycles_tot`, `n_iter_dmft` and `n_l`\n", + "* play around with the other parameters in the dmft_config.toml\n", + "* analyze other quantities or have a look at the spectral functions from analytical continuation\n", + "* try other ways to construct the correlated orbitals in CSC, e.g., with Wannier90\n", + "* apply this to the material of your choice!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "550fa534-c187-49d7-96e4-0848f53dd854", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/tutorials/SVO_os_qe/tutorial.ipynb b/.doctrees/nbsphinx/tutorials/SVO_os_qe/tutorial.ipynb new file mode 100644 index 00000000..ee54edd7 --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/SVO_os_qe/tutorial.ipynb @@ -0,0 +1,194 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "845b8205", + "metadata": {}, + "source": [ + "*Disclaimer:*\n", + "\n", + "Heavy calculations (~ 800 core hours): Current tutorial is best performed on an HPC facility.\n", + "\n", + "# 1. OS with QE/W90 and cthyb: SrVO3 MIT" + ] + }, + { + "cell_type": "markdown", + "id": "dd661dbd", + "metadata": {}, + "source": [ + "Hello and welcome to the first part of the tutorial for solid_dmft. Here we will guide to set up and run your first DMFT calculations. \n", + "\n", + "To begin your DMFT journey we will immediately start a DMFT run on strontium vanadate (SVO). SVO is a member of a family of material known as complex perovskite oxides with 1 electron occupying the t2g manifold. Below, we show the band structure of the frontier (anti-bonding) t2g bands for SVO.\n", + "\n", + "![svobands](./ref/bnd_structure.png \"SVO band structure\")\n", + "\n", + "In these materials, the electrons sitting on the transition metal ions (V in this case) are fairly localized, and the fully delocalized picture of DFT is insufficient to describe their physics. DMFT accounts for the electron-electron interaction by providing a fully interacting many body correction to the DFT non-interacting problem.\n", + "\n", + "If you want to generate the h5 archive `svo.h5` yourself, all the necessary files are in the `./quantum_espresso_files/` folder. We used quantum espresso in this tutorial.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "a707e94e", + "metadata": {}, + "source": [ + "---\n", + "## 1. Starting out with DMFT\n", + "\n", + "\n", + "To start your first calculation run:\n", + "\n", + "```\n", + "mpirun solid_dmft\n", + "\n", + "```\n", + "\n", + "Once the calculation is finished, inspect the `/out/` folder: our file of interest for the moment will be `observables_imp0.dat`, open the file:" + ] + }, + { + "cell_type": "markdown", + "id": "8be4eba3", + "metadata": {}, + "source": [ + "```\n", + " it | mu | G(beta/2) per orbital | orbital occs up+down |impurity occ\n", + " 0 | 12.29775 | -0.10489 -0.10489 -0.10489 | 0.33366 0.33366 0.33366 | 1.00097\n", + " 1 | 12.29775 | -0.09467 -0.09488 -0.09529 | 0.36155 0.35073 0.36169 | 1.07397\n", + " 2 | 12.31989 | -0.08451 -0.08363 -0.08463 | 0.33581 0.34048 0.34488 | 1.02117\n", + " 3 | 12.29775 | -0.08282 -0.08296 -0.08254 | 0.32738 0.34572 0.34479 | 1.01789\n", + " 4 | 12.28973 | -0.08617 -0.08595 -0.08620 | 0.33546 0.33757 0.33192 | 1.00494\n", + " 5 | 12.28825 | -0.08410 -0.08458 -0.08510 | 0.33582 0.33402 0.33759 | 1.00743\n", + " 6 | 12.28486 | -0.08474 -0.08549 -0.08618 | 0.32276 0.33028 0.32760 | 0.98063\n", + " 7 | 12.29097 | -0.08172 -0.08220 -0.08118 | 0.32072 0.33046 0.33529 | 0.98647\n", + " 8 | 12.29497 | -0.08318 -0.08254 -0.08332 | 0.34075 0.32957 0.33089 | 1.00120\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "f795444f", + "metadata": {}, + "source": [ + "The meaning of the column names is the following:\n", + "\n", + "* **it**: number of the DMFT iteration\n", + "* **mu**: value of the chemical potential\n", + "* **G(beta/2) per orbital**: Green's function evaluated at $\\tau=\\beta/2$, this value is proportional to the projected density of states at the fermi level, the first objective of this tutorial would be to try and drive this value to 0\n", + "* **orbital occs up+down:** occupations of the various states in the manifold\n", + "* **impurity occ**: number of electrons in each site\n", + "---\n" + ] + }, + { + "cell_type": "markdown", + "id": "fa14d3d7", + "metadata": {}, + "source": [ + "## 2. Looking at the Metal-Insulator Transition\n", + "\n", + "In the following steps we will try to drive the system towards a Mott-insulating state. \n", + "\n", + "Inspect the script `run_MIT_coarse.sh`, we iterate the same type of calculation that was performed in the last step for a series of value of U {2-10} and J {0.0-1.0}. \n", + "\n", + "Run the script, sit back and have a long coffee break, this is going to take a while (about 6 hours on 30 cores).\n", + "\n", + "Once the run is finished run \n", + "\n", + "`python3 ./collect_results_coarse.py`\n", + "\n", + "The script will produce a heatmap image of the value of G(beta/2) for each pair of U and J. The darker area corresponds to an insulating state.\n", + "\n", + "![coarsegrid](./ref/MIT_coarse.jpg \"Coarser grid\")\n", + "\n", + "Do you notice anything strange? (hint: look at the bottom right corner and check the output file `observables_imp0.dat` for U = 2 J=1.0. )\n", + "\n", + "We have seen that for 1 electron per system U and J are competing against each other: larger J favor the metallic state. The coulomb integral U wants to repel neighbouring electrons while J would like to bring electrons together on one site,. When the latter component dominates the resulting phase is known as a charge disproportionated state which is also insulating. What is happening in the bottom right corner is that the J favors here charge disproportionation but the unit cell has a single site, therefore the system has trouble converging and oscillates between a high occupation and a low occupation state." + ] + }, + { + "cell_type": "markdown", + "id": "d9b0cbe7", + "metadata": {}, + "source": [ + "## 3. Refining the diagram\n", + "\n", + "In order to get better resolution in terms of the diagram you can run the script `run_MIT_fine.sh` and plot the result with \n", + "\n", + "`python3 ./collect_results_fine.py`\n", + "\n", + "The result is also visible here:\n", + "\n", + "![finegrid](./ref/MIT_fine.jpg \"Finer grid\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "4a2c0e61", + "metadata": {}, + "source": [ + "## 4. Plotting the spectral function\n", + "\n", + "The spectral function in DMFT represents the local density of states of the impurity site.\n", + "In order to plot it we need to use one of the scripts that implements the maximum entropy method ( [Maxent](https://triqs.github.io/maxent/latest/) ), while in the folder run (be aware that you need to substitute `/path_to_solid_dmft/` with the path where you have installed solid_dmft) :\n", + "\n", + "`mpirun -n 30 python3 /path_to_solid_dmft/python/solid_dmft/postprocessing/maxent_gf_imp.py ./J0.0/U4/out/svo.h5`\n", + "\n", + "and plot the result by running in the docker container:\n", + "\n", + "`python3 read_spectral_function.py`\n", + "\n", + "\n", + "![Afunc](./ref/A_func_J=0.0_U=4.jpg \"Afunc\")\n", + "\n", + "\n", + "Take care to edit the values of J and U in the python file. What is happing to the spectral function (density of states) as one cranks U up?\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "171f01ad", + "metadata": {}, + "source": [ + "## 5 Visualizing the MIT\n", + "\n", + "We will now plot the spectral function at different U values for J = 0.0 eV:\n", + "\n", + "Run the script `run_maxent_scan.sh`.\n", + "\n", + "Then collect the data:\n", + "\n", + "`python3 read_spectral_function_transition.py`\n", + "\n", + "![MIT](./ref/A_func_transition.jpg \"MIT\")\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb b/.doctrees/nbsphinx/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb new file mode 100644 index 00000000..691622bc --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb @@ -0,0 +1,480 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "50bbc308", + "metadata": {}, + "source": [ + "# 5. Plotting the spectral function" + ] + }, + { + "cell_type": "markdown", + "id": "e8d5feac", + "metadata": {}, + "source": [ + "In this tutorial we go through the steps to plot tight-binding bands from a Wannier90 Hamiltonian and spectralfunctions with analytically continued (real-frequency) self-energies obtained from DMFT." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0d69c4d5", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "from IPython.display import display\n", + "from IPython.display import Image\n", + "import numpy as np\n", + "import importlib, sys\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import cm\n", + "from timeit import default_timer as timer\n", + "\n", + "from ase.io.espresso import read_espresso_in\n", + "\n", + "from h5 import HDFArchive\n", + "from solid_dmft.postprocessing import plot_correlated_bands as pcb" + ] + }, + { + "cell_type": "markdown", + "id": "c3ce4f44", + "metadata": {}, + "source": [ + "## 1. Configuration" + ] + }, + { + "cell_type": "markdown", + "id": "42a860c4", + "metadata": {}, + "source": [ + "The script makes use of the `triqs.lattice.utils` class, which allows to set up a tight-binding model based on a Wannier90 Hamiltonian. Additionally, you may upload a self-energy in the usual `solid_dmft` format to compute correlated spectral properties.\n", + "Currently, the following options are implemented:\n", + "
    \n", + "
  1. bandstructure
  2. \n", + "
  3. Fermi slice
  4. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "b8d962f9", + "metadata": {}, + "source": [ + "### Basic options" + ] + }, + { + "cell_type": "markdown", + "id": "b652e03a", + "metadata": {}, + "source": [ + "We start with configuring these options. For this example we try a tight-binding bandstructure including the correlated bands (`kslice = False`, `'tb': True`, `'alatt': True`), but feel free to come back here to explore. Alternatively to an intensity plot of the correlated bands (`qp_bands`), you can compute the correlated quasiparticle bands assuming a Fermi liquid regime.\\\n", + "The options for $\\Sigma(\\omega)$ are `calc` or `model`, which performs a Fermi liquid linearization in the low-frequency regime. The latter will be reworked, so better stick with `calc` for now." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b8f73a48", + "metadata": {}, + "outputs": [], + "source": [ + "kslice = False\n", + "\n", + "bands_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}\n", + "kslice_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}\n", + "config = kslice_config if kslice else bands_config" + ] + }, + { + "cell_type": "markdown", + "id": "3c6ece97", + "metadata": {}, + "source": [ + "### Wannier90" + ] + }, + { + "cell_type": "markdown", + "id": "6d0ce79b", + "metadata": {}, + "source": [ + "Next we will set up the Wannier90 Input. Provide the path, seedname, chemical potential and orbital order used in Wannier90. You may add a spin-component, and any other local Hamiltonian. For `t2g` models the orbital order can be changed (to `orbital_order_to`) and a local spin-orbit coupling term can be added (`add_lambda`). The spectral properties can be viewed projected on a specific orbital." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "27a94d47", + "metadata": {}, + "outputs": [], + "source": [ + "w90_path = './'\n", + "w90_dict = {'w90_seed': 'svo', 'w90_path': w90_path, 'mu_tb': 12.3958, 'n_orb': 3,\n", + " 'orbital_order_w90': ['dxz', 'dyz', 'dxy'], 'add_spin': False}\n", + "\n", + "orbital_order_to = ['dxy', 'dxz', 'dyz']\n", + "proj_on_orb = None # or 'dxy' etc" + ] + }, + { + "cell_type": "markdown", + "id": "57f41c87", + "metadata": {}, + "source": [ + "### BZ configuration" + ] + }, + { + "cell_type": "markdown", + "id": "f23d7e3a", + "metadata": {}, + "source": [ + "#### Optional: ASE Brillouin Zone" + ] + }, + { + "cell_type": "markdown", + "id": "fc7b2fac", + "metadata": {}, + "source": [ + "It might be helpful to have a brief look at the Brillouin Zone by loading an input file of your favorite DFT code (Quantum Espresso in this case). ASE will write out the special $k$-points, which we can use to configure the BZ path. Alternatively, you can of course define the dictionary `kpts_dict` yourself. Careful, it might not define $Z$, which is needed and added below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c6e46f88", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G [0. 0. 0.]\n", + "M [0.5 0.5 0. ]\n", + "R [0.5 0.5 0.5]\n", + "X [0. 0.5 0. ]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dZ1hUV9eGnxl6RxBB6SAoHRQw2IXYDfYu9p7ymcSoURLR2KJRo76aqAliD8FGjEkU1KAgioIIioKINBUEpddhzvp+TOSNr6CUmTkzw7mvyx9hztnrOWEWa6+z116bR0Tg4OCQPfhsC+Dg4GgYzjk5OGQUzjk5OGQUzjk5OGQUzjk5OGQU5Xd8zr3K5eCQPLyGfshFTgWjtrYWxsbGuHPnDttSOFoJ55wKxoEDB/D8+XN8/fXXbEvhaCW8dxQhcNNaOaK2thampqYoLCyEmpoa7t27B1tbW7Zlcbwbblqr6Bw4cABVVVUAgLq6OgQGBrKsiKM1cJFTQfh31HyFuro67t69y0VP2YeLnIrMv6PmKwQCARc95RgucioADUXNV3DRUy7gIqc8ERsbC0dHR4wbNw4pKSlvvbahqPkKLnrKL1zklDGICJs3b8aKFSsAADweD0QEJycn2NnZYfPmzbCzs3vtHg8PD9y7dw8qKioAgKqqKqirq4PH40EoFIJhGJSVlUFNTU3qz8PRJBqMnJxzyhB5eXlYuHAhwsPDYWFhgR9++AHOzs44deoUtm7ditzcXCgpKWHQoEEYMWIEJkyYgPbt26O0tBRlZWX143h6euK3335Dp06dAABqampo3749W4/F8W4adE4Q0dv+cUiJNWvWkJKSEqmoqNB3331HtbW1BIDWrl1bf01ERAStWLGCzM3NCQDxeDyaOXMmXbx4kYRCYf11pqamlJOTw8ZjcLSMBv2Pc06WKS4uphkzZhAA0tTUpHPnzhERkUAgoG7dutHGjRvfuEcoFNL3339P/fr1Ix0dHQJAGhoaNGjQILp79y7nnPIH55yyxrZt20hfX5/4fD4FBgZSdXV1/Wd1dXVkY2NDu3bteusYFRUVdPDgQTIyMiI+n08ASEVFhYYMGULJycmSfgQO8cA5p6xQWVlJS5YsqXeky5cvv3ENwzBUUFBAFRUVTR43Ly+Pvv/+e1JWViYAxOfzaciQIRQcHEwFBQVifAIOMcM5pyxw8OBBsrGxIQA0f/58ys/Pb/C6urq6N3LOpmJqakoHDhygZcuW1eenAGjChAkUGRlJdXV1rX0MDvHCOSeb1NbW0qpVqwgAqaur0/nz5996vUAgIA8PjwZzznfx75xTKBTSjz/+SO7u7qSrq0sASFdXl3x8fLhpr+zQoP9xRQhSICoqCr169cL69esxcOBApKSkYNCgQW+9h8fjobq6Gnp6eq2yzefzsWDBAty+fRt5eXn45ZdfoKenh+vXr8PFxQUeHh6YNWsWkpKSWmWHQwI05rXERc5WIxQK6bPPPiMApKWlRb/++muT72UYhp48eUKlpaXNttuUt7XPnj2jHTt2kIeHR/2yzODBg+nw4cP0/PnzZtvkaBXctFaaZGZmkq+vLwEgGxsbun37drPub23O2ZyllN9//50++ugjsrCwqM9PBw4cSBEREVx+Kh0455QGDMPQxx9/THw+nzQ1NWnfvn3EMEyzx6mtrSU3N7dW55zNQSgU0uHDh8ne3r5+/bR9+/bk5eVFsbGxzR6Po8lwOaekKSgowLhx47Br1y5oa2sjMjIS8+bNA4/XcHXW2+DzRb8aAwMDcct8q81p06YhNTUV+fn5CA0NhaGhIW7evAkfHx+4u7tjyZIlSExMlJqmNk1jXktc5GwWq1atIh0dHVJVVaXNmzeTQCBo1XgMw1BGRga9fPmy2feKu0IoJyeHdu7cSV5eXvXT3kGDBtHhw4eppKREbHbaMNy0VhKUlJTQrFmz6svvEhMTxTKuNHPO5nDu3DmaOXMmWVpa1r9I6tGjB124cIHLT1sO55ziZseOHWRubk58Pp+WLFnSojerjVFbW0suLi60YcOGZt8rjdpaoVBI4eHh1KVLF9LS0iIAZGxsTJ6ennThwgWJ2lZAOOcUF1VVVbRo0aL6Bf2YmBix26irqyNvb2/66aefmn2vtAvfq6qq6NdffyVPT8/6aa+rqyutWrWK4uPjpaZDjuGcUxycP3+eHB0dCQCNGDGCnj17JhE7DMPQgwcPWlQTy+aulIcPH9KuXbvI29u73lH9/Pzo0KFDYp1ZKBicc7YGgUBAAQEBBIAMDQ3pzz//lKg9Wc05m8Nff/1FY8aMISsrKwJASkpK5OTkROfPn+fy09fhnLOlPHjwgHr06EEAyN7entLT0yVus7a2lhwdHWU252wOQqGQoqKiyMHBgdTV1QkAdezYkXr16kVnzpxhW54swK1zNheGYTBt2jQ4OjoiNTUVx48fR2pqqlQ62fH5fBgYGKBjx44StyVp+Hw++vbti5SUFBQVFSEsLAwODg6IiYnBqFGj4Orqig0bNiA+Pp5tqbJFY15LbTxy5uTk0MCBA+urZFJSUqRqn2EYSkpKanRL2duQtcjZGA8ePKBt27bVz0oAUI8ePejgwYNUVlbGtjxpwk1rm4JQKKRFixaRpqYmaWpq0p49e17rzyMtFCHnbA4XL14kX19fsra2rt+Ebm1tTefOnWt1QYccwDnnuygoKKCxY8cSAGrXrh09fPiQNS0CgYC6du1K69evb/a98uicr2AYhq5evUpeXl6koqJCAMjExISGDx9OoaGhLapTlgO4nPNtrFu3Ds7Ozvjtt9+watUq5OXloXPnzqzp4fF46NSpE8zNzVnTwAY8Hg+9e/dGXFwcysrKcOLECXh5eeHcuXOYOHEiXF1dsXnzZiQnJ7MtVfI05rXURiJnaWkpjR8/vr7CRVzld62FYRi6efMmPXnypNn3ynPkbIy0tDRat24dvffee/X5qZOTE4WEhCjC+ik3rf1fwsPDydramng8Ho0ePVqmirjbWs7ZHK5du0Z9+/at33+qpqZGlpaWdPToUXnNT7lp7StqamowfPhwjBw5ErW1tbhy5QpOnToFXV1dtqXVQ0Sws7Or3zrG8V98fHwQFRWFzMxMREdHo2fPnsjJycHUqVNhZmaGyZMn4/jx42AYhm2praMxryUFjZwJCQnk7OxMAMjZ2blF00ZpUFdXR0OHDqVjx441+15Fj5wNUVlZSSdPnqRRo0YRj8ern/Zu2rSJ0tLS2Jb3Ltr2tFYgENDQoUOJx+ORsbFxfWd1WYVhGIqJiaHs7Oxm39sWnfPfpKWl0YoVK8jHx6c+P7W0tKQDBw7Ian7adp3z4cOH9b8oMzMzys3NZVvSO+FyTvFw9+5d6t+/P3Xs2LH+2AorKyvas2ePLOWnbS/nZBgGU6ZMgbOzM+7fv48jR44gKysLpqambEt7J0QEGxsbLudsJU5OTrh8+TKePHmCa9euYfDgwcjKysLixYthZmaGefPm4ejRo7KZnzbmtSTnkTM3N5f8/PwIgFxGkrq6Oho5ciSFhoY2+155fF5pUlJSQidPnqTRo0fXny9jb29PGzdupMePH7Mhqe1Ma5cvX076+vqkoaFB69evZ6X8rrUwDEOXLl1q0ZeFc86mk56eTosXL6ZevXrV56dGRkYUHBwszaU1xXfOFy9e0IABA+p7xaamprItqcVwOaf0SU9Pp/fff58MDAzqj81wdHSkb7/9VtL5qWLnnKGhoXB2dsaVK1cwadIk3Lt3D/b29mzLajFEBAsLixa11eRoGba2toiIiEBhYSGuXbuGyZMn4/79+1i+fDlMTU3xySef4OjRo8jPz5eOoMa8luQkcpaVldW/ibW3t6eEhAS2JYkFoVBIEyZMoBMnTjT7Xi5yio+ysjL65Zdf6jdEvPon5vY0ihc5Y2Ji4O7ujtjYWHh5eeHGjRvw8PBgW5ZY4PF4mD17Ntzd3dmW0qbR1tbGxIkTMXDgwNfenKurq0vctlw6Z3V1NXr27InevXtDKBQiKioKcXFx0NfXZ1ua2GAYBkOGDMGxY8fYltKmKS8vR8+ePbFw4ULweDx07twZenp6UvmuyZ1zJiUloUePHoiNjYW9vT1u376Nvn37si1L7BAROnXqxLaMNs3JkydhZGRU/13LzMxE+/btUVZWJhX7cuOctbW1GD58ODw9PZGXl4czZ84gNTVVoaLlv+Hz+fD19YWLiwvbUtoctbW1GDZsGMaNG4eamhqsXLkSqampMDMzg76+PpSVlaWiQzpWWklGRgYmT56MuLg4dOnSBVevXoWRkRHbsiQKj8fDhAkT0KVLF7altCn+/vtvjBw5EqWlpejYsSMuXrwIBweH+s+7dOmC2NhYqWiR6cjJMAyWLFkCFxcXpKamYvv27UhJSVF4xwREz+7v74/Q0FC2pbQJGIbB9OnTMWDAAJSWlmLBggXIzc19zTGljcxGzmfPnmHYsGFITEyEu7s7fvvttzbVsoOI0KFDB1GlCIdEuXPnDgYOHIiCggK0a9cO586dg4+PT4PXxsbGtu2c88CBA/XF6jNmzMDNmzfblGMCopxzxIgRCrM0JKt8/vnn8PDwQEFBAcaMGYPnz5836pgAYGho2DZzzqKiIvTu3RspKSno1q0bjh49iq5du7ItixV4PB6GDh0qlQbWbZHHjx/D19cXmZmZ0NTURFhYGIYNG/bO++zt7XHt2jUpKJShyBkREVGfW/bv3x/R0dFt1jEBUQ40fvx4nDx5km0pCsemTZvQuXNnZGZmYsCAASgoKGiSY0ob1iNncXEx+vbti+TkZDg4OODMmTPw9PRkWxbrEBHatWsHoVDIthSFoaCgAH5+fkhOToaqqir279+P6dOnN2uMmJgYlJaWSkjh67AaOa9fvw4vLy8kJyfD09MT8fHxnGP+A5/Px6RJk+Dt7c22FIXg559/hqmpKZKTk+Hh4YFnz5412zEBwNjYGKqqqhJQ+CasOGd5eTn69++Pnj17ora2FhEREbh58yY0NDTYkCOz9O7dGxYWFmzLkGvKy8vRp08fzJ07FwzDYOvWrUhISICBgUGLxuvcubNU6moBlpzTy8sLUVFR4PP5WLNmDd5//302ZMg0RISpU6fi9OnTbEuRW8LDw9GhQwdER0ejc+fOyMjIwGeffca2rCbDinOqq6uDx+NBKBRi1qxZ0NDQwIgRI5CQkMCGHJmEiKCtrY26ujq2pcgddXV18Pf3x6hRo1BdXY0VK1bg4cOHYpmFREdHK3bOmZOTA01NTdy/fx/jx4+HkpISzp07h+7du8PQ0BALFy5EXl4eG9JkBj6fjzlz5qBnz55sS5EroqOj0b59e5w9exYmJiZITk7Gxo0bxTZ+x44dFTvntLGxgZmZGbp27Ypff/0V5eXl+PPPP9G7d2+UlpZi79696NixI2xsbLBx40bU1tayIZN13NzcYGxszLYMuYBhGMyaNQt9+vRBSUkJ5syZgydPnsDJyUmsdmxtbRU75zQwMHhjN8mQIUNw9epVVFdX4z//+Q+6du2Kx48fY+XKldDQ0ICnpyd+/fVXNuSyAhFh9uzZOHv2LNtSZJ67d+/C1NQUISEh0NfXR3R0NH766Se5byvKivrKykpUV1c3+JmSkhI+/PBD3L9/H0VFRVi6dCk6dOiA+Ph4TJw4ERoaGhg+fDhu3bolZdXShYigpqYGgUDAthSZZvny5XB1dUVeXh5GjRqFgoIC9OrVS2L2rly5IrWck5UeQoaGhqSlpdWse1JTU2nChAmkra1d38fFwMCA5s2bJ+5+LjKBUCikZcuWUWRkZLPvbQs9hLKyssjGxqa+i3t4eLhU7Pr7+5O6urq4h5WdHkK2trbNLmS3t7dHaGgoysrKcP78efTp0welpaXYv38/OnbsCGtra6xfv77RiCyP2NjYKOxm8tawZcsW2NjYICMjA3379kVhYSH8/f2lYtva2hpqampSscWKc7Zr1w56enotvn/QoEG4cuUKampqsHv3bjg4OCArKwuBgYHQ0tKCp6cnQkNDZbPFfhMhIixcuBB//PEH21JkhpcvX8LDwwPLli0Dn89HcHAwoqKioKmpybY0icCKc1ZUVKCqqqrV4/D5fCxevBgpKSkoLi7GF198AWNjY8THx2PSpEnQ1NTEsGHDcPPmTTGoli5EBB6P12bfVP8vBw8eRMeOHZGYmAg3Nzc8ffoUs2bNkrqOqKgolJSUSMdYY/NdkrGcszmkpaXRpEmTXstP27VrR3PnzpXZ8zj/F6FQSIGBgXT58uVm36tIOWdFRQX169ePAJCSkhJ9++23rOoZOXKkYuecnTt3hqWlpcTGt7Ozw/Hjx1FWVoaIiAj07dsXZWVl+Omnn2BqagorKyusW7dO5vPTDh06KOyUrSn8/vvvMDIyQlRUFGxsbPDo0SMsW7aMVU1WVlaKnXPq6+tDR0dHKrbef/99REVFoaamBj/++CMcHR2RnZ2Nr776ClpaWujevbtMHlHOMAw++eQT/PXXX2xLkTp1dXUYM2YMPvjgA1RVVWHp0qV49OiRRP+gNxVpfk9Y25VSWVkpVZt8Ph8LFizAvXv3UFxcjGXLlsHY2BgJCQmYMmUKNDU1MXToUJnLT9vaOmdsbCyMjIxw+vRpdOjQAYmJidiyZQvbsuq5evUql3NKi/T0dJo8eTLp6Oi8lp/OmTOH1fxUKBTS2rVrKSoqqtn3ymPOKRQKae7cufW/gxkzZsjk0Y2jR49W7JzTzs4OVlZWbJh+A1tbWxw7dgylpaW4ePEi+vfvj7KysvrNuVZWVli7di0r+amGhgZUVFSkblfa3Lt3D2ZmZvjpp5+gq6uLqKgohISEyGT5nYWFhWLnnHp6etDW1mbD9Fvx9fXF5cuXUVNTg71798LJyQnZ2dlYvXo1tLS06puOSSPvYBgGX3zxBc6fPy9xW2yycuVKuLi44NmzZxgxYgQKCgpk+ngNaW7hY8U5y8rKUFFRwYbpJsHn8zF//nzcvXsXpaWlWLFiBUxMTHD79m1MmzYNmpqaGDJkCG7cuCFxLaSgfWtzc3Nhb2+PjRs3Ql1dHadOncLZs2elth2rpcTExHA5pyzy6NEjmjJlymv5qb6+Ps2aNUvsOZ5QKKRvv/2WYmJimn2vrOec27dvJyUlJQJAvXr1orKyMrYlNZkxY8aQhoaGuIeVnZyzS5cusLa2ZsN0q7CxscHRo0dRWlqKy5cvY8CAAaioqMCBAwdgbm4OS0tLrFmzRmz5aV1dncwt8bSG4uJidO/eHZ9++in4fD7279+P6OhomUxxGsPc3FyxN1vr6OhAS0uLDdNio3///rh06RKqq6uxf/9+ODs7IycnB0FBQdDU1ISHhweOHDnSYudiGAarVq1CRESEmJWzw5EjR2BiYoKEhAS4uLggNzcXc+fOZVtWsxEIBFJLNVhxzpKSEqmdNyFp+Hw+5s6di+TkZJSWluLLL79Ep06dkJiYiICAAGhoaGDw4MEtPplKFt9YNofq6mr4+fkhICAAAoEAGzZsQFJSEjp06MC2tBZx7do1bj+nvJORkUFTp04lXV3d+vxUT0+PZs6cSdnZ2e+8XygU0vbt2+n69evNti0rOecff/xBWlpaBIAsLS0pIyODbUmtZty4cYqdc3bt2hU2NjZsmJYa1tbWOHLkCEpKShAVFQVfX19UVlYiJCQEFhYWsLCwQFBQ0FsrpYqKimS+/rch6urqMG7cOAwbNgyVlZVYsmQJMjMz5fI9w/9iamoqvTfKjXktSTByDh48mHr06CGp4WUWoVBIP/30E7m4uBCPxyMAxOPxyM3NjUJCQl6riBEIBASAAgMDm22Hzch5/fp1MjAwIABkZGREt2/fZkWHpFi4cCHp6uqKe1jZiZzFxcXSm7fLEK/aXSYlJaG0tBQrV65Ep06dcOfOHcycORMaGhoYOHAgYmJiwOPxAEDm1/1ewTAMFi1ahPfeew8vX75EQEAA8vLy4O7uzrY0sXL9+nUu52xLZGZmUkBAwBv5aY8ePejs2bPNHk/akfPBgwdkampKAEhHR4cuXrwoNdvSZvz48Yqdczo4OHDnTv4LS0tLHDp0qD4/9fPzQ0VFBW7cuIEPPvgA5ubm+Prrr6W+k6cpfP3113B0dMSTJ08wdOhQFBYWwtfXl21ZEqNTp06Kvc6ppaXFHVrUCH379kVkZCQqKiqgpKQEIyMjPHnyBN988w20tbXh5uaGkJAQsRYn8NbwoLFeA+rr1GH8nTGyirPeec/Tp0/RtWtXfPPNN1BVVUVYWBj++OMPuZmGt5Tq6mrFXucsKiqSXn2inKKkpAShUIiPP/4Y5eXlCAwMhKmpKZKSkurPl3n//fcRHR0tFntVq6pQHVgNbVVtzP3t7cUBu3btgqWlJVJTU+Hj44P8/HyMGzdOLDpknRs3bnA5Z1vn1ZvdhISE136emZlJ06dPJz09vfr8VFdXlwICAigzM5OImp9zIui/v+rJJyaT026nBq8rKioiT09PAkDKysq0Z8+eFjyZfDNx4kTS1NQU97Cyk3M6OTmhc+fObJiWK1JSUlBYWPjazywtLXHw4EEUFxfj6tWreP/991FdXY3Dhw/DysoK5ubmKCkpadGun9q6WlzJuoJJzpPe+Oz48eMwMTHBrVu34OjoiJycHCxatKjFzyavmJiYSG2PLSvOqaGhIbXDYOQVhmGwd+/et05be/fujYiICFRVVSEkJASurq548uQJysvL4eDgAFdXVwQHBzcpP9VYrwG19WqoFFRiWc//NtGqrq7GoEGDMGXKFAgEAqxZswb37t2DiYmJWJ5T3qisrJTeZoTGQipJcFrr6elJXbp0kdTwCkFdXR0BoLVr1zbrvoqKCtLW1qaOHTvWT3tVVFTI19eXrly50uA9r6a1WcVZpLtRl8b8MoaIiC5cuFDfXtTc3JzS09Nb91AKgLu7O4ncRqw06H9czimjCIVCOnToEN25c6fZ977KObOysmjGjBlv5KfTpk2jx48f11//75zzWNIxUlqjRGMnjq2vYPr444/F8UgKweTJkxU753R2doadnR0bpuWKGzdu4MmTJy2+38LCAiEhISguLkZ0dDQGDhyI6upqHDlyBNbW1jAzM8OqVateu8euxg5MBYOT5SdhaGiIuLg47Ny5s7WPojB06NBBsXNOdXV1qTVJklcYhsHRo0fF1gqlV69euHDhAqqqqnDw4MH6Iw02bNgA3hoevu5ojpN6vfCjlxdoM2Gy7mQ8f/4cnp6eYrGvKJSXl0st51SWipX/obCwUGH2c0oKHo+H4uJiKCkpiXVcPp+P6dOnY/r06aisrMTmzZtRu20nduYlowR60EMJ7nwYBNf/fC9Wu4pCfHy81L67rETOzMzMVk3X2gI8Hg+hoaEYO3asxGxoamoiaOJETKnrjBLoAeChBHrgh1wHnj6VmF15xtHRUWpdPFhxThcXF9jb27NhWq6IjIxERkZGs+7hreHhyawn6BzSGRrrNTDl5JTGLz52DPDygiPvPvRQAoCghxI41twGunUDrlxp3QMoIEZGRlBWls6EkxXnVFNTU/gazNbCMAxOnz6N+Pj4Zt9resAU6TPTUbWqCsfGHnvzgupqYOFCYOpUwMMD/LQHSG1nj6twwalJH4KfmADo6QG+vsD33wMK2p6zJZSVlUEoFErFFivOWVBQgJcvX7JhWm7g8XgoLCwUfw+h9HTAxwfYuxdYvhy4fBkwNUWNvjbqcA+pfXsDTk5AXBzwwQfAp5+KnFiG+wxLk4SEBJSXl0vFFivOmZWVhadcTvNW+Hw+Tp8+jfHjx4tv0JMnge7dgaws4OxZYNMmoLEpmp6e6PoNG4DQUOC994CHD8WnRU5xdnZW7JzT1dUVXbp0YcO03EBEOH36NFJTU1s/WG0tsGQJMG4c0LUrcPs2MGLEu+/j84EvvwT++gt49gzw9BQ5dRvG0NBQsXNOVVXVNnFAT2tgGAYRERFISkpq3UBZWUCfPsCOHcD//R9w9SrQ3HMuBw4E4uMBOzvA3x/46itASnmXrFFSUqLYOefz58/x4sULNkzLDTweD8+ePWvdIL//Dnh4AA8eACdOiF7utPRFnKUlEB0NzJ4NrFsHDB8OtMH3BomJiYqdc2ZnZ7f+i6fg8Pl8/PHHH5g8eXKz7z3UZwBees8G88EHIqeKjwfEsV6qrg789JPoZdLly6L89fbt1o8rR7i4uCh2zunu7o6uXbuyYVpuICIcOnSo2dNagfb3GPPLLrg9Ow8DFKFu5lxAnHtneTxg/nzR9LiuDujZEzh4UHzjyzgGBgaKnXMqKytL7QHlFYZhEBMTg5SUlCbfk5eXh7vB116r9klYeRDlx48D4j6+3ttbFJF9fICZM4HFi0UvnhSc4uJixc458/Ly3tjhz/E6PB4POTk5TWomRUT4+eef4ezsDNVBZq9V+zhVJUB7yhSUaGsjY/hwCGJixFdU0KEDcOEC8MUXwA8/AP36AQpelnnnzh3Fzjlzc3ORl5fHhmm5gc/nIzIyEtOmTXvrdXl5efD398euXbtw+fJlOG7fisIJHyIZLnj59Q5o1VSh/PhxFLq6wvTPP6HSuzfyDQyQs2AB6PHj1gtVVgY2bwbCwoC7d0Vlf1FRrR9XRnFzc5PakYWsOKeHhwccHBzYMC03MAyDPXv24NatW41ec/LkSbi7u8PV1RVxcXFwcXEBAChv2wxn3ANfTQVQUYH2pEmwvXkTai9fomDjRlTr68N83z7wbGyQZWWFgg0bwGvtNqhx40RVRe3aAX5+wLZtCln2p6+vL/adQo3S2C5s4s5KYRWBQEBWVlb0zTffvPFZUVERBQQEUOfOnenatWsND9CjB5GnZ6PjM48fU/aiRfSsXTsigIQA5QN0auZMopqalgsvKSEaPVrUZGPiRCI5OrW6KQQEBEiii4fsdEJ49uwZCgoK2DAtN/B4PGRmZr6Rc168eBGurq7Q1tZGYmIifHx8Gh5g9Gjg1i0gJ6fh8a2sYL5nD0xevEBdbCyKNTSgD2B0SAhKdXSQMWwYBNHRzY9+urqisr9Nm0RT3ffeA9LSmjeGDJOcnNyizoYtojGvJa6HEKswDENXrlyhrKwsIhI17vrkk0/I1NSU/vrrr3cPkJoqil47dzbJXpa1Nf0N0KnZsyndy4uq+XwigPL09Chr3jxiHj1q/kNERBAZGhLp6hKdOdP8+2WQmTNnkra2triHlZ3I2a1bNzg6OrJhWm5gGAbffvstrl27hps3b6Jbt24oKChAUlISBg8e/O4B7O0BR0fg9Okm2yQAeZ6esI2Lg9rLlyj89ltUGRjAYv9+8GxtkWVpiefr1wNFRU0b8P33gYQEkZZRo4BVq+S+7E9PT09qOScrzsnn8+X+OHVJQ0R48OAB9u3bhxEjRmDNmjU4duwYDAwMmj7I6NGiN6ctWbbS00P7ZctglZEBysxE7uLFUCsrQ4fAQNQaGuJRt24oO3Lk3WubFhaigoW5c0U7XIYNA+S4dPPFixeoq6uTjrHGQipJcFrr4uJC1tbWkhpeIUhOTiYAZGdnR0+ePGnZILduiaa2wcHvvDTL2pouA28/YoFhSBAbSxkffEDFampEAJWoqtKjIUOoJiqKiGHebmT/fiJVVSJLS6L4+EYvu55znZTXKlP6C1Gf3IyXGaS8Vpmis6Lf+RyShutb24YRCoW0ZcsW0tDQoM8//5zu3btHH374IZ05c4aYd335/xeGIbKwIPrgg3de2iTn/De1tVT+66+U7u39en46Zw4xb2s+HRdHZG5OpKb21j8aQ48Mpa67uhIRUdf/dKVBhwY1TZeEmT17ttRyTm4pRYbIzMykfv361XdZDw4OpsjISFJSUiIAFBcXR3l5efUHFjWJTz4ROcI7ljSa7Zz/pqSECjZvpkxra9FXCqAsc3N6/s03RC9fvnn98+dEfn6iaxcsIKqufuOSipoKUv9GnUYdH0Vq36hRWY1sLMn83//9H+np6Yl7WNl5IcTxOkSE4OBguLu7Y+jQodi1axdWr16NGTNmwM/PDw8fPkRISAg8PT2xa9cu2NjYoF+/fhAIBO8u7xs9GqipEW2YlhS6umj/xRew/Fd+qlpeDqOvvkKtoSEyPDxQdvjwf/NTIyORnuXLRTtc+vUDcnNfG1JTVROBfQNxJvUMgvoHQVtVOlU576KgoECxc04nJyeysrKS1PByRX5+Pg0bNoxUVVVJVVW1fumkMR4/fkyzZs2iuXPnEpFomtWnTx+KiIho+AaBQLScMWXKW8dtVeRsCIah2hs36JG/PxX9k5+WqqjQo8GDqebvv/+bn548SaStTWRkRHTp0mtDuP/oTvw1fBp5fKR4NIkBaeac3GZrFgkPD4erqyscHBzg6OiICRMmwMzM7K33WFlZITg4GPv37wcAtGvXDnfu3EFYWBgAYMuWLThz5sx/I6qysqh7wblz0t01wuNBxdsbNuHh0C8vR0VYGJ57eMA0IgKq/fvjub4+sufMAbm6AjdvAoaGoo4L330HECH0bijuF9xH9Kxo/J72OxKfJUpP+1vo3r07dHR0pGOsMa8lLueUGMXFxTRp0iRSUVEhPz8/IhK9CGopNTU19OLFC8rLyyNVVVXCPxFQIBCIIvHZs6L87i3FC2KPnI3xT3762MaGhK/yUzMzKli2jMjXV1RKOH4saa/Xoo1XNxIR0djQsWS53VKyupoIl3MqMJcvX4abm1t9Lxpzc3PRL6IV676qqqowMDCAsbEx0tPTsWPHDvj7+yMyMhKWlpbwXrkSjJZWswoSJMY/+anVo0fgZWUh96OPoFJZifabN0Nw+TIAYHrdSbQrrsYKo9EAgGNjjuF5xXPsuL6DTeUARLM+gbj3xjZGY15LEoycjo6OZGlpKanhZZLKykpasGABqamp0bZt24iImvfWtQXk5uZSQEAAeXl5Ud2YMVShq0v9+/ShsLCwN5ZlpBY5G+JVfjpyJBWpq9e/8RWAT3dMB5Pwh73S19QICp9zFhYWoqipJWAKQHx8PLp3744//vgDtbW19YXTls3tgtdMTE1NcejQIcTFxUFp3DholpZC484dBAUFAQDOnDmDv/76691vfCXNq/z0zBnol5Wh4sQJlKtroz1ewO3JnzBYNAH3l65gXycALy8vqeWcrPQK8fDwQHFxMRumpYpAIEBQUBB27tyJH3/8Eb1798a9e/cwbNgw6YsZNgxQUcHZOXOQ9dFHAIBPP/0UeXl5mDFjBlZKX1HD8HjQyszE3WrL19qt3NxzCcNP2WLatGkICAhg7XxXTU1NqZWecjmnhEhNTYWPjw+2b9+O8vJyGBkZwdLSkh3HBEQd3P38oBQeDhtra/B4PNy4cQOrV6/GxIkTIfxns3VQUBBiY2PZ0ZiZKTqfZelSOLoov9ZuZeq2uQgLC0NpaSl69+6N9957D7t375Z6u5u8vDzFzjkdHBzIwsJCUsOzilAopO+//5709fVp9+7dtGXLFtq4cSPbskTs3SvK5xo4yj7D0pIuA2RoaEi3bt2iO3fu0NChQ2n//v1UW1srWV0MQ/Tzz6L1Th0dogMHRHW8u/dSss+8N3JOgUBA586do0mTJpGuri75+/tTWFgYVVVVSVYntYHaWmNjY0m8jmad7Oxs6tWrF6moqJC+vj4VFxezLel18vKIeDyioKA3Pnr1Qmj37t3EMAydPn2atLW1SUlJifLz8+n27dt06dKlVi35NKrpgw9EX8X+/Yma+ZKspKSEgoODacCAAWRgYEDz5s2jK1euiF/nPyxYsIB0dXXFPazsvBBStL61RKIes926dcOAAQNgbm6OgIAA6Orqsi3tdYyNRX1m37KkwuPxwOPxMGrUKBQWFiImJgYdOnTAhg0bMHToUPTr1w8AUFVV1Xo9p04Bzs6iDn7btwMXLzb7qAhdXV3MmjULly5dQmJiImxsbLBw4ULY2triq6++QpqYuzCoq6uDx+OJdcxGacxriStCaBIFBQU0ZMgQUlVVpenTpxMRUV1dHcuq3sJ334miVEbGaz9+11JKcXExrV69mnbv3k1Eoumdo6MjnWlJh4OiIqKAAJGObt2I7t1r/hhvgWEYio+PpyVLlpCxsTF5e3vTrl27qKCgoNVjjx8/njQ0NMSg8jVkJ3JmZWUpxLHzZ8+ehaurK4RCIYRCITp27AgA0uvO1hJGixb2m1uQoKenh6CgICxevBhCoRD+/v4oLi7G48ePUVtbi4CAAGzbtg217yoRvHgRcHUVnar99dfA9euijg1ihMfjoVu3bti+fTtyc3MRFBSEa9euwdbWFv7+/ggLC0N1dXWLxn748KF4Zg1NoTGvJQlGThMTE9LX15fU8BKnpKSEJkyYQJqamnTs2DFiGIYeP37Mtqym4+pK1Lv3az9qSRECwzAkEAgoOTmZdHV1CQCdPXuWCgoK6OrVq6/nfRUVou1rAJG9PdGNG+J6miZTUlJCBw4cIF9fX2rXrh3NnTuXoqKimpWfLly4ULFzTjc3N7k9n/PKlStwd3fHlStXUF1djcrKSvB4PFhZWbEtremMGQPExAD5+a0ahsfjQVlZGc7Oznj27Bl+++03DB48GIcPH0afPn1ga2uLoqIiCK9fFzWb3rkT+OQT0eFH3t5iepimo6uri5kzZ+LixYtISkpC586dsXjxYtjY2CAwMLBJZ6GqqalxOaesUVVVRYsXLyY9PT06e/Ys3blzhy79zxYnueHOHVEE2/vfJQpxlu8VFxfTl19+SQvnziX6+muq4/HoqbIy/fn5560eW9wwDEMJCQn06aefkomJCXl5edHOnTvp+fPnDV4/bty4N3LO2tra1r4dlp2llC5dupCZmZmkhhc7CQkJ1LVr1/odH4mJiWxLah0MQ2RjQzRkSP2PxF5bm5JC1L07EUAPvL3JydSUxo0bR0RE69evpx07dlBNa5pXSwCBQEB//vknTZkyhfT09GjEiBEUGhpKlZWV9dc0tM45a9Ys8vb2fu26ZiI7ztmpUydq166dpIYXGwKBgNauXUsGBgZ0+PBhWrZsGe1sYh9Ymefzz4lUVIj+WYsVm3MKhUTbt4taoxgaEp04QUSiCFVWVkZVVVVkbGxMfD6fAgMDiWEYiouLk9i6ZEspLS2lkJAQ8vPzo3bt2tGcOXPo77//pkWLFr2Wc1ZVVZGmpiapqanRgAEDWvoHR3acUx6mtWlpaeTm5kbKyspkaWkpc3/lW010tOjXf+wYEYnJOTMzRYUEANGIEUTPnjV4WVVVFYWFhdGjR4/oxo0bBICMjY3p1q1bzW9iJgVycnLo22+/JWdnZ9LR0SE1NTW6f/8+ERGFhYWRjo4OASANDQ0aMWJES5bSOOdsCgzD0K5du8jQ0JDWrFlDnTp1ojVr1rAtS/wIhUTGxkTjxxNRK52TYUQldzo6ohK8n356d5vMfygtLaVVq1bRgAED6OXLl/TLL7+Qk5MTbdq0Seb+IDIMQ35+fqSsrEwmJibk6elJdnZ2BFE/bgJAmpqaNHny5ObOBGTHOe3s7KhTp06SGr7F5Obmko+PD6mpqdGqVauISDS1VVjmzxc5U1VVy50zP59o1CjRV6lPnzeKG5rLiRMnyMzMjDp16kR1dXV06tQp+uGHH2TGUV/lnAKBgEJDQ4nP57/mnK8cdP78+c2ZBcjOUkplZWWLF4ElARHh+PHj8PDwgJqaGoRCIdq3bw8Ain0C9+jRQHk5EBnZsvvDw0Xld3/8Ier9c/kyYG3dKkljx45FdnY24uPjoaSkhO3bt+Pzzz/HyJEjAQCPHz8WRRWW6NWrF/T09KCsrIznz59DXV39jWsqKytx6NAhLFu2rHXGGvNaaiPT2sLCQho8eDDp6OhQZGQk1dTUSLxDgcxQU0Okq0sIApl/rlQfOasEVcQL4lGHzR0avq+4mGjmTFG0dHcnSk6WmMTa2lo6dOgQRUREUGVlJeno6JCxsTGdPn1aYjbfxr97CDk4OLwRNf/336JFi5oybIP+p8Bh4d388ccfmDt3Lqqrq1FRUYHKykqoqqpKvEOBzKCqCgwfDtBxFGgwKP0nCGyO2Qw1ZbWG77l8GZg5U9RndtUqUQmeqqrEJKqoqCAgIAAAUF1djdWrVyM0NBTa2trIzs7G2LFj8f7772PFihXQ09OTmI5XZGdno6amBo8fP8b9+/ehq6sLhmFQVVUFDQ0NGBsbw8LCAnZ2dtDS0sLAgQNbbItHb58iSGT+YGdnh4qKCjx9+lQSw7+T8vJyLFiwABcuXEBYWBiUlZWhpKTU+FmXikxYGHj3JsAzXwXWGQIMGLUH39V+B3tDeyQ8S0D+F/9UEVVViZxx+3bAzg44dEh09iaLXL9+HWPHjsXTp0+RlpaGqqoq3L59G2PHjpXY0fAeHh5ITExEeXk5zpw5AxMTE5ibm8Pc3BwaGhotHbbhkqPGQipJcFprZmZGhoaGkhr+rURHR5OFhQWpqKiQkpIS5ebmsqJDZigrI6wGHeqmQe0/A333n+9IfZ06bY/d/t9p7a1bRA4Oomnshx8SlZezq/lfMAxTv6zxySefkLKyMpmampJAIKDCwkKxL818/PHHUmuNycq01snJSeo9hGpqarBy5UocPnwY+/btw++//46ePXvC1NRUqjpkjn8izOQ7tZg3BDhZfhIeJh7/fEjA2rXAN9+I9oKePw8MGsSe1gbg8Xj1e4O3bt0KFxcXCAQCKCsrY/z48UhLS8PKlSuxePFisdiT5tGVCpNzZmVlwcTEBGpqb+ZKd+7cwdixY5GVlQV3d3eMHDkSo0aNkr5IWYUHKAuFcH4CxKrG4oTPCeQ8vCU6JHfjamDKFOA//wHatWNb6VtRVlbG3Llz6/97xowZ2Lp1KwoKCsAwDMaPHw8LCwsEBgbC0NCwRTYyMzNRU1MjLslvp7GQShKc1trY2JCJiYnYxisvL6d27drVb3Z+RV1dHa1fv57at29PQUFB1KFDB3b6sso4CAIxAIV3ArltcCXauZO291aiDst4RKGhbMtrNQzD0NOnT8nW1pYAUEhICJWWltLx48eppKSkWWMpfA8hCwsLat++vdjGCwwMJHV1ddLU1KRz584REVF6ejo5OTmRuro6/fjjj0Sk4AUFrQBBoAq+KiXCiQqMjIkA2j7LgTpsEt/vSBYQCoUUHx9PZWVldOTIEQJAOjo6lJ6eTlVVVU3KTxX+OAYHBwfY2tqKZay8vDxs3bq1fm/l1KlTsXXrVrz33nvQ1tYGwzD1vXwUuqCgFQiM9qITkw93JKNzwQPUTZmOJT/fQ/7yAraliRU+n49u3bpBW1sbEydOxO7duzFjxgxYW1tjw4YNMDY2RmBgIKtFDv9G7r+ty5cvf+28xOLiYnz55Ze4ceMGbG1tUVFRUd8+hKNhHhy5hRLMw6sGzg8eq8FZWhuKWUJZWfm1l0Tdu3dHp06dcOPGDfB4PKxbtw6lpaVYtmxZfbUYIKpQklp1W2MhlSQ4rbW2tiZjY+NWj3Pv3j3S0NBosDIjqIH2jxwNI/xhL+mhiACG9FAkU2eTSJva2lpiGIa8vLxIWVmZ5s2bR0REkZGRVFZWRh4eHsTj8cRttkH/Y6UIwcrKCpWVlXj+/HmrxvH19UVUVBSYf7qV/xttbW08ePCAWyppIr+NHIunv6XCfpIbfI8fZVuOTHDz5k3o6+uDx+PBzs4OGhoaGDRoEP7++29xLwU2OE1hJefs2rUrbGxsWjXG5cuXce3atQYdExCVen344YetstGWSPHxwiLcQ2rf3mxLkRm8vLxgZ2cHa2trBAcHw9zcHBcuXHhtmitJ5DbnHDNmDGpqaqCpqVmfA5iYmMDGxgZOTk5wcnJC797cF42j9VRUVCA6OhppaWlQV1fH8ePHpWKXFedMTU1FZWVli++/dOkSysrK4Obmhq1bt8LW1hbm5uay3S+WQy7ZsWMHtmzZgmfPnuGLL75AYGCg1Dr5y1XkZBgGfD4fNTU1MDQ0xKpVq+Dn58e2LA4FpLq6GitWrMCOHTugpaWFq1evomfPnlLVwErO2aVLF1g3c1NueHg4bGxscO3aNQwdOhS5ubkYP368hBRytGXCw8PRvXt37NixA+PGjUN6errUHROQo8i5Z88e5Ofn10+HVVRUWFbEoWjU1dXhww8/xL59+6Cvr48///wTQ4YMYU0PK855//79Jp03cf78eZw6dQp79uzBwYMHoaKi0uKCZQ6Ot5GSkoLZs2fjxo0bcHFxwenTp8VWxdZSWJnWKisrv3PrTXFxMUaNGoWDBw/i4cOHMDEx4RyTQ+wwDIOZM2fC2dkZqampOH78OJKSklh3TIClyGlnZ9foIm5aWhry8/PRp08fHDhwAM7Ozgp1lieH7JCbm4vZs2cjIiICRkZGiIyMhKurK9uy6pGpnDMmJgYDBgxA+/btkZ2djUmTJrEtiUMBYRgGH3/8MYKDg8Hn8/HDDz9gwYIF0jugqImw4pwpKSmv5ZwvXryApqYmnJ2d4efnh6VLl3I7SDgkQmFhIRYtWoQTJ05AV1cXN2/ehL29PduyGoSVnFNVVbXe+X799VeYm5sjMDAQenp6+PPPP7m1Sw6JEBQUBCcnJ4SHhyMoKAgFBQUy65gAS5Gzc+fOKCoqAgCUlZVBT08Pw4YNY0MKRxugrKwMixcvxpEjR2BoaIibN2/Czc2NbVnvhJXIWVBQgISEBNy9exezZ89GVlYWFy05JEJoaCjc3Nxw9OhRTJ06FRkZGXLhmABLzpmdnY26ujr07t0bH330Ef76669Gd5dwcLSEmpoajB07FpMmTUJVVRWuXLmCI0eOSK0uVhyw4pyPHz/Gvn37MGTIEAQHB2PkyJEwMDDA2rVrkZGRwYYkDgUiPj4enp6eOHXqFLp164aEhAS53KHEinNqa2tj3rx5+OWXX5CdnY1Zs2bB2toaq1evhq2tLfT09LBs2bL6vJSDoynU1dXB398fXl5eKCwsxLlz5xAfHy+3bWpYcc5/Y2RkhODgYNy+fRtZWVn46KOPUF1djS1btsDExARDhgzBl19+ifLycralcsgw6enp6Nu3L86ePQtTU1PExsbK/UtG1p3z31hYWGDXrl2oqqrCzZs3sWjRIkRHR2PTpk2wsLDA4sWLERkZyeWnHPUwDIMpU6bA2dkZ9+/fx9GjR5GdnQ0rKyu2pbUamXLOV/D5fHh6euL7779HYWEhvv/+ewwePBgHDhzAwIEDoaWlhTVr1uDRo0dsS+VgkSdPnmDo0KE4fvw49PT0kJycjClTpshcpU9LkUnn/Dfq6ur4v//7Pxw/fhz5+fmYN28eLCwssGbNGnTu3BnGxsZYuHAhXr58ybZUDiny2WefwdnZGVevXq3vVGBmZsa2LLEi8875b3R1dbFv3z6kpqYiKysLq1evRklJCfbu3YuOHTti1KhR+PLLL1FaWsq2VA4J8fLlSwwfPhzbt2+Hjo4OEhMTsXTpUqkeMCQt5PaJzM3NERQUhMrKSty4cQOLFy9GVFQUNm3aBFNTUyxatAhXrlzh8lMF4uDBg3B2dsaFCxcwe/ZspKWlyXT5XWuRW+d8BZ/Ph7e3N7Zv345nz55h7dq1GD58OA4ePIh+/fpBTU0Ny5cvR3p6OttSOVpIeXk5BgwYgJkzZ0JTUxNxcXH4+eefoa6uzrY0ydJYt2mSYMd3aVBaWkqffvopmZqaEo/HIwBkZWVF06ZNo8LCQrblyRwbN24kADJ3CtvVq1fJ1taWeDwe+fj4UFFREduSJIHsHGQkDXR0dLBt2zbk5uYiOzsbmzZtQkFBAY4cOYKOHTti9OjR2LBhA5efyig1NTXo06cP+vTpA6FQiL///hvXrl2Dvr4+29KkhsI6578xMzPD8uXLUVpaipiYGHz00UeIiYnBqlWr6t/2RkdHc/mpjJCUlARvb29ER0fD3t4ecXFx6Nu3L9uypE6bcM5X8Pl89OzZE9u2bUN2djbWrVuHwYMH4/Dhw+jTpw/U1NQwf/58PHz4kG2pbZLa2loMGzYMnp6eyMvLQ3h4OFJTU2FkZMS2NHZobL5Lcp5zNofS0lL6+uuvycDAoD4/dXR0pIkTJ9KTJ0/YlicV2M4509PTycfHhwCQjY0NPX/+nBUdLNG2cs7moKOjgzVr1uDFixfIzs7Gt99+i7y8PISGhsLKygqjRo3Crl27uPxUAjAMg/nz58PNzQ0pKSnYs2cPHj582Haj5b9pzGupDUXOhhAKhXTx4kX67LPPyMTEhACQsrIyzZ8/n65evdqkI8rlCTYi59OnT+m9994jAOTg4EDZ2dlSsy1jcJGzOfD5fPj6+mLr1q3IycnBhg0b0L9/fxw5cgR9+vSBuro6xo8fz+WnLeSHH36As7MzEhMTsWjRIiQlJcHc3JxtWbJFY15LbTxyNkZZWRlt3779tfzUw8ODxo8fT+np6WzLazHSipwvX74kNzc3AkBubm50//59idqTE7jIKQ60tbWxZMkSvHjxAjk5Odi8eTOeP3+OsLAwdO3aFSNHjkRwcLC4Tz5WCP766y+4uLjg3r178PX1RWxsLNcw/C1wztkKTE1N8cUXXyA3Nxfh4eFYsmQJbt68iTlz5sDAwABz587F1atX2/z6aXl5OVxdXTF06FDo6uoiNjYWFy9ehIaGBtvSZBrOOcWEv78/tmzZgpycHGzZsgXe3t745Zdf0LdvX+jp6WHIkCFIS0tjW6bUuX79Orp164bk5GR069YNN2/ehKenJ9uy5ALOOcWMkpISli5diuvXryMvLw8hISFQV1fHhQsX0KVLF/To0QNTp05Famoq21IlSnl5Ofr06YNevXqhpqYGFy9eRHx8PLS0tNiWJjdwzilBtLW1MWPGDBQUFCAnJwffffcdioqKcOzYMTg5OcHf3x/Hjh1TuPz07t278PHxQXR0NNzc3JCUlARfX1+2ZckdnHNKCVNTU3z++edIS0vDiRMn8NFHHyE+Ph5Tp05Fu3btMHHiRLnff1pbW4vp06eje/fuyM/PR0hICBISEqCnp8e2NPmksde4xC2lSJy6ujravXs3OTg4kJaWFgEgAwMD6t27t9SXGFq7lJKRkUEODg4EgHx8fCg/P1/MChUabilF1lBSUsLixYuRkpKC/Px8HDlyBJqamoiOjoaDgwO8vb3x4Ycf4v79+2xLbRSGYbB161a4uroiNzcXn376KaKjo9GhQwe2pck9nHPKCFpaWpg6dSpycnKQnZ2NrVu3oqamBnv27IGTkxM++OAD/PrrrygpKWFbaj15eXno3Lkzli5dCg8PDyQnJ2Pbtm0K2c+HDbj/izKIubk5PvvsM9y5cwenTp3C3Llzcfv2bUycOBH6+voYPHgwoqKiWM1PT5w4AWdnZzx58gSjRo3CpUuXYGlpyZoeRYRzThln9OjR2LdvH7KysnDo0CHY2toiJiYG/fv3h6mpKXr16oW4uDip6SkoKICtrS3Gjx8PKysr3L59G6dPn+YOO5YAnHPKCUpKSggICEB6ejry8/Nx9OhR6Onp4dq1a+jRowe8vLzw5Zdf4t69exLTEBkZiW7duuHx48fo378/YmNj4ejoKDF7bR3OOeUQLS0tTJkyBQ8ePMCjR4+wbds2CIVCbNq0Cc7OzhgxYgRCQ0NRWVkpFnuFhYXo3r17fbf969ev4/Lly1BRURHL+BwNwzmnnGNjY4NPP/0UCQkJOHPmDCZNmoQ7d+5g0qRJ0NHRgY+PD/7+++8W56dxcXHo0aMHEhISMGDAACQkJMDb21vMT8HREJxzKhAjR47E8ePHkZmZifDwcFhbWyMxMREDBgyApaUlevbsiUuXLjVprMrKSkyaNAk9e/aEQCBAWFgYLl26BE1NTQk/BccrOOdUQJSUlODv74/09HS8ePECx44dg4mJCWJjY+Hn5wdPT0+sW7eu0fw0JSUFXbp0QWhoKIYOHYrk5GSMGzdOyk/BwSOit33+1g855Iu7d+8iIiICR44cQUJCAgBg0KBBmDVrFtLS0rB69Wr4+voiJiYGOjo6WLBgAdatW8ey6jZBg8eicc7ZRjl79ix+/PFHJCUlITc397XPhg8fjp9//hnGxsYsqWtzcM7J8SYMwyAqKgr+/v4oLy9Hr169cOXKFa7KR7pwzsnxdqqrqxX/cCDZhHNODg4ZpUHn5OYuHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyyru6MjVYVsTBwSF5uMjJwSGjcM7JwSGjcM7JwSGjcM7JwSGjcM7JwSGjcM7JwSGj/D+YYxCd4Xe9YQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "scf_in = './svo.scf.in'\n", + "\n", + "# read scf file\n", + "atoms = read_espresso_in(scf_in)\n", + "# set up cell and path\n", + "lat = atoms.cell.get_bravais_lattice()\n", + "path = atoms.cell.bandpath('', npoints=100)\n", + "kpts_dict = path.todict()['special_points']\n", + "\n", + "for key, value in kpts_dict.items():\n", + " print(key, value)\n", + "lat.plot_bz()" + ] + }, + { + "cell_type": "markdown", + "id": "31956a53", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "e47c2a48", + "metadata": {}, + "source": [ + "Depending on whether you select `kslice=True` or `False`, a corresponding `tb_config` needs to be provided containing information about the $k$-points, resolution (`n_k`) or `kz`-plane in the case of the Fermi slice. Here we just import the $k$-point dictionary provided by ASE above and add the $Z$-point. If you are unhappy with the resolution of the final plot, come back here and crank up `n_k`. For the kslice, the first letter corresponds to the upper left corner of the plotted Brillouin zone, followed by the lower left corner and the lower right one ($Y$, $\\Gamma$, and $X$ in this case)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "68c0f047", + "metadata": {}, + "outputs": [], + "source": [ + "# band specs\n", + "tb_bands = {'bands_path': [('R', 'G'), ('G', 'X'), ('X', 'M'), ('M', 'G')], 'Z': np.array([0,0,0.5]), 'n_k': 50}\n", + "tb_bands.update(kpts_dict)\n", + "\n", + "# kslice specs\n", + "tb_kslice = {key: tb_bands[key] for key in list(tb_bands.keys()) if key.isupper()}\n", + "kslice_update = {'bands_path': [('Y', 'G'),('G', 'X')], 'Y': np.array([0.5,0.0,0]), 'n_k': 50, 'kz': 0.0}\n", + "tb_kslice.update(kslice_update)\n", + "\n", + "tb_config = tb_kslice if kslice else tb_bands" + ] + }, + { + "cell_type": "markdown", + "id": "bf58de16", + "metadata": {}, + "source": [ + "### Self-energy" + ] + }, + { + "cell_type": "markdown", + "id": "67e42361", + "metadata": {}, + "source": [ + "Here we provide the info needed from the h5Archive, like the self-energy, iteration count, spin and block component and the frequency mesh used for the interpolation. The values for the mesh of course depend on the quantity of interest. For a kslice the resolution around $\\omega=0$ is crucial and we need only a small energy window, while for a bandstructure we are also interested in high energy features." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "70fd0787", + "metadata": {}, + "outputs": [], + "source": [ + "freq_mesh_kslice = {'window': [-0.5, 0.5], 'n_w': int(1e6)}\n", + "freq_mesh_bands = {'window': [-5, 5], 'n_w': int(1e3)}\n", + "freq_mesh = freq_mesh_kslice if kslice else freq_mesh_bands\n", + "\n", + "dmft_path = './svo_example.h5'\n", + "\n", + "proj_on_orb = orbital_order_to.index(proj_on_orb) if proj_on_orb else None\n", + "sigma_dict = {'dmft_path': dmft_path, 'it': 'last_iter', 'orbital_order_dmft': orbital_order_to, 'spin': 'up',\n", + " 'block': 0, 'eta': 0.0, 'w_mesh': freq_mesh, 'linearize': False, 'proj_on_orb' : proj_on_orb}" + ] + }, + { + "cell_type": "markdown", + "id": "6e314f15", + "metadata": {}, + "source": [ + "__Optional__: for completeness and as a sanity check we quickly take a look at the self-energy. Make sure you provide a physical one!" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e7cb04b5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrAAAAGtCAYAAABePTTsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACzxklEQVR4nOzdd5hb1bX38d/WNE3vxfa4dxsXMMZgwECooaQBCeGmkAJpN73f1Js3nfRySQ9JSA8EQjEBAtg0GxsXbNy7x/b0XjRF2u8fmhnPOdPHozrfz/Pokc4+R0eLgzE6Wnutbay1AgAAAAAAAAAAAKKFJ9IBAAAAAAAAAAAAAH2RwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBBYAAAAAAAAAAACiCgksAAAAAAAAAAAARBUSWAAAAAAAAAAAAIgqJLAAAAAAAAAAAAAQVUhgAQAAAAAAAAAAIKqQwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBBYAAAAAAAAAAACiCgksAAAAAAAAAAAARBUSWAAAAAAAAAAAAIgqJLAAAAAAAAAAAAAQVRIjHQBCwxiTImlJ92aVJH8EwwEAAADCIUFSYffrHdba9kgGg+jHfRMAAAAmmJi6ZyKBFb+WSNoU6SAAAACACFkpaXOkg0DU474JAAAAE1XU3zPRQhAAAAAAAAAAAABRhQqs+FXV82L9+vWaOXNmJGOJO21tbVq/fr0kac2aNUpNTY1wRPGHaxxaXN/Q4vqGFtc3tLi+ocX1Da3Dhw9rzZo1PZtVQx0LdOO+KYT4Oy+0uL6hxfUNLa5vaHF9Q4vrG1pc39CKtXsmEljxq7d3e0lJiUpLSyMZS9xpa2tTQUGBJKm0tJS/SEOAaxxaXN/Q4vqGFtc3tLi+ocX1Da22tra+m6xlhJHgvimE+DsvtLi+ocX1DS2ub2hxfUOL6xtaXN/QirV7JloIAgAAAAAAAAAAIKqQwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBNYAjDFFxpjrjTFfMcasNcZUG2Ns9+PuMZzvGmPMfcaYMmNMe/fzfcaYa0IQPgAAAAAAAAAAQExLjHQAUapiPE5ijDGSfibpDteuKZJeL+n1xphfSHqvtdaOx2cCAAAAAAAAAADEOiqwhndc0mNjfO9XdTp5tVXSmyWd1/28tXv8Dkn/70wCBAAAAAAAAAAAiCdUYA3sK5I2Sdpkra0wxsyQdHg0JzDGzJH0qe7NzZLWWGvburc3GWP+JWmdpHMlfdoY81tr7cFxiR4AAAAAAAAAACCGUYE1AGvtl6y1D1lrz6SV4Ed1OkH4wT7Jq57PaJX0we7NREkfOYPPAgAAAAAAAAAAiBtUYIVA99pXr+3e3GOt3TDQcdbaDcaYvZLmS3qdMeZDrIUFAACAsXhg2wn9bN0hpSZ5dPHcQt18bqlKc9MiHRYAAAAAhMT6fVX6zmN75U1M0BdvWKSzpmRHOiSMMyqwQmOmpCndr9cNc2zP/lJJM0IVEAAAAOLXP7eW6cN/2abdpxq15Vi9fvif/brmB8/omf1VkQ4NAAAAAMbd1mN1etfvNunlsga9eKRWH/rLVlEbEn+owAqNhX1e7xnm2L77F2qEa20ZY0qHOaSk50V7e7va2tqGOhaj5PP5BnyN8cM1Di2ub2hxfUOL6xtaXN/QCsX13XKsXp/6x8v9xpvbu/Tff9qie+9YqSk5qePyWdGuvb090iEAAAAACLGa5na9956X1Ok/nbA6VNWiV042UoUVZ0hghcbUPq/Lhjn2+CDvG87x4Q8J2rhxow4ePDiKU2M01q9fH+kQ4h7XOLS4vqHF9Q0trm9ocX1Dazyub8BKX9+WoE6/GXB/Q1uX3vGr5/WRs/xKnAC9F6qrqyMdAgAAAIAQ+/oje1TR2H/y2lN7KklgxZkJcBsbEZl9XjcPc2xLn9cZIYgFAAAAcep4s1TlGzh51XtMi9GzFUMfAwAAAACxIBCwWrvz1ID7ntpbGeZoEGpUYIWGt8/rjmGO7ZsqHk1vl+GqtUokbZKkVatWafbs2aM4NYbj8/l6Z02vWbNGXq93mHdgtLjGocX1DS2ub2hxfUOL6xta4319f/Cfg5KO9m5Pz0vVX999rt70q806Wnu6hfRTFV599k0XKNMb31//6ToAAAAAxLeyuja1dvgH3Lf1eL1qWzqUl54c5qgQKvF9Bxs5fRc0GO6/lpQ+r0e8UJW1dsjWhMacnmWbkpKi1NSJse5BJHi9Xq5viHGNQ4vrG1pc39Di+oYW1ze0xuP6Pr2/1rF9zZJJKsnL0vfedLZuvOv53vH6tk79YdNJffyq+Wf0edEuJSVl+IMAAAAAxKw95Y2D7rNWemZ/lV67fEoYI0Io0UIwNJr6vB6uLWB6n9fDtRsEAAAAJEnHalq1t6LJMXblwmJJ0orpubpqUbFj36+eOazaluGaAwAAAABA9Npb3jTk/qf20EYwnpDACo2+1VGlwxzbtxXg8RDEAgAAgDj0+O4Kx3Z+erLOnpbbu/2pa+bL02fpq7ZOv37/wpEwRQcAAAAA42+PaxKfx7Xc7+5TQye4EFtIYIXGrj6vFwxzbN/9u0MQCwAAAOLQ064Fil+1oEgJfe7e5hRl6nWu1hm/e/6I2gbpFw8AAAAA0c5dgXXd0smO7bK6VllrwxkSQogEVmgclnSy+/Ulwxy7pvv5hKQjoQoIAAAA8WX3KWfv90vnF/U75o5LZjm261o79bfNFP0DAAAAiD3tXX4drm5xjF2x0Hkf1NLhV11rZzjDQgiRwAoBG0zxPtC9ucAYc/5Ax3WP91RgPWBJDQMAAGAE6lo6VN3sXM9qwaTMfsctKMnSZfMLHWO/fOaQuvyBkMYHAAAAAOPtYGWL/AHnT+iXzCt0dKKQglVYiA8ksELnB5K6ul//2BiT2ndn9/aPuze7uo8HAAAAhnWgqtmxnZRgND0vbcBj33PJbMd2WV2bHt5xKmSxAQAAAEAo7K1wdqGYkpOqnLRkTcr2OsaP17aFMyyEUGKkA4hGxpiLJM3pM1TQ5/UcY8xtfY+31t7tPoe1dp8x5juSPiPpXEnPGWO+JemgpNmSPi3p7O7D77TW7h+3fwAAAADEtf0VzgTWzIJ0JSYMPDdt1cw8LZ+ao23H63vHfr7ukF6zbLKMMQO+BwAAAACizR7X+lcLSoJdKKbmpqms7nTSigqs+EECa2DvlvT2QfZd2P3o6+5Bjv2cpCJJ71QwWfWXAY75taTPjz5EAAAATFQHKp0JrLlF/dsH9jDG6L2XzNJ779nSO7brVKOe2V+tNfMKB30fAAAAAESTQ1XO9a/mdSewSnMdzc90nARW3KCFYAhZawPW2ndJuk7BNbFOSurofn5A0rXW2ndba1mEAAAAACO2v9I583B2UcaQx1+5qESzCtIdY7985tC4xwUAAAAAoVLe4HNsT+tuoz7V1U69bzUWYhsJrAFYa2+z1pqRPkZwvkesta+z1k6x1qZ0P7/OWrs2HP88AAAAiC8H+1VgDZ3ASvAY3b5mlmPsmf3V2utqwQEAAAAA0eqUK4FVkhVc+6pfBVYtFVjxggQWAAAAEEOafJ066bpxmzNMAkuSXn/2FOWnJzvGfv0sVVgAAAAAol9HV0A1Le2OsZLsYAJroAosa23YYkPokMACAAAAYshBV993j5FmutoDDsSblKC3nD/dMXb/1pOqamof5B0AAAAAEB0qm3xy56Qm9SSwcp0JrPaugKqauc+JBySwAAAAgBhywNU+cFpemrxJCSN671vOn67kxNO3AB3+gP6w4ei4xoeJwRhTZIy53hjzFWPMWmNMtTHGdj/uHuE5buvznuEet4X2nwgAAADRzL3+lTfJo+zUJElSUWaKkhOcqQ7WwYoPJLAAAACAGOJOYM0pyhzxewszU/S65ZMdY/dsOCpfp39cYsOEUiHpQUlfkHSNpPzIhgMAAIB4Vt7Yf/0rY4wkyeMxmsI6WHGJBBYAAAAQQ8obnDMJp+enDXLkwN510SzHdm1Lh/659cQZx4UJ7bikx87wHFdLWjLE4/4zPD8AAABimLsCq2f9qx6lrgQWFVjxITHSAQAAAAAYuYpG18LFWd5BjhzY/JJMXTy3QM/sr+4d+/Wzh3XLyqm9MxiBEfiKpE2SNllrK4wxMyQdPoPz7bPWHhmPwAAAABB/TrkSWJOynQmrKTnO7QpXxRZiExVYAAAAQAypbHLeiBVlpYz6HO++2FmFdaCyWev2VZ1RXJhYrLVfstY+ZK2tiHQsAAAAiH/uFoLFrol8BRnO+6LqZufEP8QmElgAAABADKl0VWAVZY6uAkuS1swt0NyiDMfYr589k+IZAAAAAAgddwvBSdnuBFayY7u6qSPkMSH0SGABAAAAMaKlvUtN7V2OseIxVGAZY/Tui2c6xp7ZX6095Y1nFB8AAAAAhMJwa2AVZFKBFY9YAwsAAACIEZVN/W/Cika5BlaP1y6fom8/ulc1LadnJv76mcO68+ZlY44POAN3G2MWSsqV1CjpgKQnJN1lrT0x1pMaY0qHOaSk50V7e7va2ljsezz5fL4BX2N8cH1Di+sbWlzf0OL6hhbXN7QGur4Ba/utaZXnNY7vbplJzvNUNfHdbiDt7bGV2COBBQAAAMSIStdNW3pygjJSxvaV3puUoLecP10//M/+3rEHtp3Up65ZoMLM0Vd1AWfokj6v87sfqyR93BjzEWvtz8d43uMjPXDjxo06ePDgGD8Gw1m/fn2kQ4hrXN/Q4vqGFtc3tLi+ocX1Da2e69vYIXUFnPc9u7ds0Mmdp7fLW6W+6Y6m9i49/OhjSqIHnUN1dXWkQxgV/vUBAAAAMaLCVYHlXrh4tN5y/nQlJ56+JejwB/SHDUfP6JzAKB2S9B1JN0o6r/txi6S/S7KSvJJ+Zoy5I2IRAgAAIKLqXctZeYztV3Hl3pakps7QxYTwoAILAAAAiBHuCqyiMax/1VdhZopev3yK/rr5dJHKPRuO6v2XzpY3KeGMzg2MwD8l/c5aa13jmyT91RhzvaT7JCVJ+r4x5l/W2vJRfsbUYfaXdH+eVq1apdmzZ4/y9BiKz+frnTm9Zs0aeb1nlnSHE9c3tLi+ocX1DS2ub2hxfUNroOv7nz1V0o4dvccUZ3l1zdUXOt5nrdWXtjytzsDpr5aLzzlfS6ZkhSfwGBFrHQdIYAEAAAAxwr0G1plWYEnSuy6e6Uhg1bZ06L4tJ3TrqmlnfG5gKNbahmH2P2SM+V9JX5WUJuldkr42ys8oG2q/Mab3dUpKilJTU0dzeoyC1+vl+oYQ1ze0uL6hxfUNLa5vaHF9Q6vn+tb6Ao7xSdmpA173/IwUlfeZ9NfUKf79uKSkxFa7eFoIAgAAADHCvXBx0TisVTWvOFMXzy1wjP18/UF1+QODvAMIq18q2EpQcq6TBQAAgAmiutnZQ3CwiXwFmcmu97UPeBxiBwksAAAAIEa4E1jjUYElSbdfPMuxfbSmVQ++fHJczg2cCWttpaSelaanRDIWAAAAREaNKxGVn5E84HEFGc4Jfu7EF2IPCSwAAAAgRlQ2Om/cisYpgXXx3AItLc12jP3kyQPyB9xLEwERYYY/BAAAAPHKXUmVnz5wJwp3AquqiQqsWEcCCwAAAIgR/dbAGocWglJwHaAPvmquY+xgVYse3Vk+LucHxsoYUyQpv3uTskAAAIAJqMZVSVUwwgqsmhYqsGIdCSwAAAAgBjS3d6m5vcsxNl4VWJJ0xcIiLZyU5Rj78ZP7FaAKC5F1h05XYK2LZCAAAACIDHciKj9jsAos1xpYVGDFPBJYAAAAQAyodK1/JUlF41SBJQWrsP77sjmOsT3lTXpid8W4fQbQwxgzwxhz9jDHXC/pC92bPkm/DXlgAAAAiDr9WwgOXIFVmOleA4sEVqxLjHQAAAAAAIbnbh+YmZKo9JTx/Tr/6rNKNKcoQwcqm3vHfvzkAV25qFjGsAwRTjPGXCSpb8azoM/rOcaY2/oeb62923WKGZKeMsa8IOlBSdskVSpYbTVL0k3dj54/eJ+w1p4Yn+gBAAAQK9q7/GryOTtRDFaB5V4biwRW7COBBQAAAMQA9wLE7tmF48HjCVZhfeSv23rHdpxo0OO7KnTV4pJx/zzEtHdLevsg+y7sfvR19yDHXtD9GEyrpI9aa38xqugAAAAQF2oHWMdq0DWwMp3jda2d6vQHlJRAI7pYxb85AAAAIAbUt3U6tnMHaZtxpq5fOkkzC9IdY995bK/8rIWF8fWSpLdI+qmkjZKOKZis6pBUIelJSZ+TNJPkFQAAwMRV0+xMYCV6jLK8SQMeWzBAZdZACTDEDhJYAAAAQAxoaHXeeOWmDXzTdqYSEzz6yBVzHWP7Kpp1/1a6t+E0a+1t1loz0scA72+y1v7RWvvf1trzrbXTrbXp1toUa22JtfZya+3XrbWVkfjnAwAAQHRwtwHMS0+WxzNwe/PctGS5d7k7WSC2kMACAAAAYkB9q7MCKzs1NBVYknTD0slaUJLpGPve4/vU3uUP2WcCAAAAgJu7Amuw9a8kKcFjlMc6WHGFBBYAAAAQA9wtBHNCVIElBdfC+vQ1CxxjJ+rb9KeNx0L2mQAAAADgVtPiTEANtv7VYPvrWmkhGMtIYAEAAAAxwF2BlZMaugSWJF06v1DnzchzjP3kyQNqbu8K6ecCAAAAQI9+FVjDrAWcm+bcX9vSOciRiAUksAAAAIAYUO+aORjKCixJMsboU9fMd4zVtHTol+sPhfRzAQAAAKBH9ShaCErBNbL6qmuhAiuWkcACAAAAYoC7hWB2WujWwOpx7ow8XbGwyDH28/UHVVbXGvLPBgAAAAB3C8H8YVoI5qY7J/rV0kIwppHAAgAAAGJAuFsI9vjk1QvkMae3fZ0Bfe3h3WH5bAAAAAATm7uFYEH6MBVY7haCzSSwYhkJLAAAACDKWWvV0BbeFoI95pdk6r9WTXeMrd1ZrucOVIfl8wEAAABMXDXNo63AciWwqMCKaSSwAAAAgCjX2uFXp986xnJSQ99CsMfHr5qnXFfC7Ev/ekWd/kDYYgAAAAAwsVhrVd3CGlgTGQksAAAAIMq517+SpJz08FRgSVJOWrI+efUCx9iBymb97vkjYYsBAAAAwMTS0uFXR5dz0lx++tAT+folsKjAimkksAAAAIAoV++66UrwGGWmJIY1hjetnKqzpmQ5xn74xH6VN/jCGgcAAACAiaFmgOqpYVsIprkTWJ0KBOwgRyPakcACAAAAolx9q7MCKzs1ScaYsMaQ4DH639ec5Rhrau/SZ+97WdZyQwgAAABgfNW2OO+D0pITlJY89EQ+dwWWP2DV5Osa99gQHiSwAAAAgCjnTmDlpIavfWBfK6bn6sZzSh1jT+2t0t9fKotIPAAAAADil7sCa7jqK6l/BZYk1dJGMGaRwAIAAACiXH2b84YrOy0yCSxJ+sL1C1WY6Vw4+f89uEsn69siFBEAAACAeFTrTmClpwxy5GmpyQlKTUoY8jyIHSSwAAAAgCgXLRVYkpSTlqxvvH6JY6ypvUufuW8HrQQBAAAAjBt3BVbBCCqwpP5tBElgxS4SWAAAAECUa2hzJbAGaIsRTlcsKu7XSnD9vir96cVjEYoIAAAAQLxxr4E1kgosqX8Cq44EVswigQUAAABEuXpXz/bsCFZg9fjiDYtUnOVqJfjQLu0tb4pQRAAAAADiibsCK2+EFVi57gos1sCKWSSwAAAAgCjXr4VgBNfA6pGdmqRv3rjUMebrDOgDf9qi1o6uCEUFAAAAIF70XwNrhC0EXfdLVGDFLhJYAAAAQJSrd7UQzI1wC8Eel80v0tsvmO4YO1DZrC/c/0qEIgIAAAAQL2pcLQQLMkbWQrBfBRYJrJhFAgsAAACIcu4WgtFQgdXjf65bqLOmZDnG7t1Spn+8VBahiAAAAADEg34VWCNsIZjnmvBXRwvBmEUCCwAAAIhy7haC0bAGVo+UxAT95M3nKCMl0TH+hft36pWTDRGKCgAAAEAsC1ipznUflJ9OBdZEQwILAAAAiGLW2n4tBHOipIVgjxkF6frmjUscY22dft3+u82qbPJFKCoAAAAAsaqlS7KusYKRVmCRwIobJLAAAACAKObrDKijK+AYy4miCqwe1y+drP9aNc0xdrLBpzt+/5J8nf4IRQUAAAAgFjV19h9zV1YNhgRW/CCBBQAAAESxhrb+d27R1EKwry/esEjnzchzjG07Xq9P3/uyrHXPnwQAAACAgTV3Gsd2TlqSkhJGls5wJ7AafV3q9AcGORrRjAQWAAAAEMWa2/snsDK8iQMcGXkpiQm66y3nqDQ31TH+wLaT+sET+yMUFQAAAIBY0+y6DcofYfWVJOUO0HLdva4wYgMJLAAAACCKNfq6HNupSQkjnnkYCfkZKfr121cqI8WZZPvhf/br7ucORygqAAAAALHE3UIwPyNlxO/NSevfsaKulTaCsSh673wBAAAAqNmVwIrW6qu+5pdk6kdvXi7j7PqhLz+4S/dvPRGZoAAAAADEDHcLwYKMkVdgJSV4lOW6b2IdrNhEAgsAAACIYk2uBFZmDCSwJOlVC4r1ldee1W/843/frid2VUQgIgAAAACxol8FVvrIK7Ck/utg1ZHAikkksAAAAIAo5l4DKzMlNhJYkvTW86frE1fNc4z5A1bv/9MWrdtXFaGoAAAAAES7fmtgjaICS+qfwKohgRWTSGABAAAAUax/BVb/fu7R7AOXzdG7LprpGOvoCuj232/W03srIxQVAAAAgGjW5GohOJo1sCQqsOIFCSwAAAAgirkTWBkxVIElScYYfe7ahbppRaljvKMroDt+/5Ke2kMSCwAAAICTuwKrIH10FVi5ac7ja1tJYMUiElgAAABAFIvVNbD68niMvvmGJXrt8smO8Q5/QO/5w0usiQUAAADAwb0GlruiajhUYMUHElgAAABAFHOvgZURgwksSUpM8Oh7b1yu1589xTHe4Q/oPfe8pL9vPh6hyAAAAABEkw6/1B5wthAsyBxdC8HcdHcFVucgRyKakcACAAAAolisr4HVV4LH6Ds3L9MbXEksf8Dqk/94WT9fdzBCkQEAAACIFu7qK0kqGO0aWGlUYMUDElgAAABAFGtudyWwYmwNLLcEj9GdNy/Tza41sSTpG2v36KsP7VIgYCMQGQAAAIBo4E5gJSd4lDXKThT9KrBIYMUkElgAAABAFGuMgzWw3BI8Rt++aanec8msfvt+9exhvfeel9TiStwBAAAAmBiaO13tAzOSZYwZ5OiB9VsDq5UEViwigQUAAABEsWZffKyB5WaM0WdfvVCfu3Zhv32P7arQzT97Qaca2iIQGQAAAIBIcldg5Y+yfaDUP4HV2uGXr9N/JmEhAkhgAQAAAFEsntbAGsjta2bpuzcvU6LHOaNy16lGveYnz2n78frIBAYAAAAgItwJrIKM5IEPHIJ7DSyJNoKxiAQWAAAAEMXca2BlxPgaWAO5cUWpfv/O85Sd6kzOVTW1640/f0EPvXwyQpEBAAAACLemfi0ER1+BlelNVIJrkhwJrNhDAgsAAACIUl3+gFo7nG0uRrt4caxYPadA/3z/as0qSHeMt3cF9N9/2qpvrN2tLn8gQtEBAAAACJfxaCHo8RjlpjknyLEOVuwhgQUAAABEqZb2/j3a42UNrIHMKszQP99/oVbPzu+37+frDum/frVRlU2+CEQGAAAAIFzGo4WgJOW62ghSgRV7SGABAAAAUarR19lvLN7WwHLLTkvS7955nm5dNa3fvo2Ha3Xdj57VhkM1EYgMAAAAQDg0u1oIFmaOvgJLknLTnQmsOhJYMYcEVogYY+wIH09HOlYAAABEJ/f6V8ZIaUkJEYomfJISPPra687SV167WEkJzpvXqqZ23frLDbrr6YMKBGyEIgQAAAAQKv1aCKaPLYGV70pg1bb2nyCI6EYCCwAAAIhSTT5nAisjJVEe10LE8coYo7ddMEN/e88FmpztdewLWOlbj+7RO+7eREtBAAAAII50+gNq6XLe8xRkjrGFoDuB1dI+5rgQGSSwQu8uSUuGeLwjcqEBAAAgmjW3O2cIZqbE7/pXgzl7Wq4e/tDFumReYb996/ZV6ZofPKPHXimPQGQAAAAAxlvdAFVSBRljq8DKS3O3EKQCK9ZMvDvg8Ku01u6MdBAAAACIPe4KrHhf/2owuenJ+u1tK/WTpw7o+0/sk+3TObC2pUN3/OElvfm8qbp1wdhubAEAAABEhxrXOlUeI+WmjVcFFmtgxRoSWAAAAECU6tdC0Dtxv757PEYfunyuVkzP1Uf/uk2VTc72H39+8bie2twcoegAAAAAjIeaZmeSKS89WQljbKOel+6cAEgCK/bQQhAAAACIUv0rsCZuAqvHhXMK9OhH1ujqxcX99pXVsx4WAAAAEMvcFVhjbR8oSXnpzve6z43oRwILAAAAiFLuNbAyJuAaWAPJS0/Wz96yQt+6cYnSkhMiHQ4AAACAcVLjWqcqP2Ns7QMlKd/VQrCutUOBgB3kaEQj7oBD72ZjzJslTZPUJalc0vOS7rbWPjXWkxpjSoc5pKTnRXt7u9ra2sb6URiAz+cb8DXGD9c4tLi+ocX1DS2ub2hxfUNrtNe3rtl5TFqi4XtdH685q1DLJq/Up+7bpZdPNEY6HAAAAABnyN1C8EwqsNzv9QesGto6+62NhehFAiv0Frm253Q/3maMuV/SbdbahjGc9/hID9y4caMOHjw4ho/ASKxfvz7SIcQ9rnFocX1Di+sbWlzf0OL6htZIru/+wx71bZpQfapMjz12LIRRxabbSqUnPEYP72I2JQAAABDLqsexhWCuaw0sSappaSeBFUNoIRg6rZL+Iul2SRdLOlvSVZK+Jqmm+5jXSXrAGNP/vyQAAABMeG1+57Y3kQTNQBI80tWlVncs8A9/MAAAAICoVetKYJ1JC8GUxIR+6whXN7MOViyJWAWWMaZA0hRJhZLyJbVJqup+HLLWBiIV2ziZYq2tH2D8cWPMjyWtVTCpdYmk90n60SjPP3WY/SWSNknSqlWrNHv27FGeHkPx+Xy9s6bXrFkjr9cb4YjiD9c4tLi+ocX1DS2ub2hxfUNrtNf3j6e2SHX1vdvLFy/QVauG+xo4cc0+eFCfj3QQAAAAAMasZhwrsKTgOlhNvq7ebXeCDNEtbAksY0ympNdKulTBiqQ5QxzeYozZIOkZSQ9ba7eEPsLxNUjyqmdfhTHmJkm7JSVL+qBGmcCy1pYNtd8Y0/s6JSVFqampozk9RsHr9XJ9Q4xrHFpc39Di+oYW1ze0uL6hNZLr29LhnNOVl5nGv5MhpKSc2c0tAAAAgMhyV0gVnmkCKyNFR2pae7drmtvP6HwIr5AnsIwxKyR9WNKNknqmmJrB3yFJypB0effjy8aYvZJ+Kulua21LqGINJ2vtIWPM45KukzTHGDPZWnsy0nEBAAAgejS3dzm2M1JYwhYTopsFAAAAJqBAwKqutdMxNh4VWH3RQjC2hOwOuDtx9VUF132STietTinY2u4lSZWSaiXVSUqVlCcpV9I8SSslLZWUJGmBghVKXzbG3Cnph9baeEiV7lIwgSUFb0BJYMWghrZO/WVLuR56+ZTKG3xKTDCalpemy+YX6dolk1SSTeslAAAwNi0ksKCJ180CAAAAE1NDW6e6As51f89kDayB3k8LwdgSkjtgY8xvJb1Vkqd7aIukP0q611p7bBTnSZa0RtKtkl6v4OzCb0h6nzHmrdbaZ8c18PAbrhINUe6VOqMv/OgFNfqcPy4drWnVM/ur9Y21u/WmlVP1wVfNVXEWiSwAADA67gqs9JSECEWCSKCbBQAAACaS6gHa+51xAivdWcFV0xIPdTETR6imcL5dUoek30n6rrV231hOYq3tkPSEpCeMMe+TdLOk/1GwIutVkmI9gbWoz2uqr2LMzjqj3+z1yG+7Bj2m0291z4Zjun/rSX322gV688pp8njIWwIAgOF1+QPydTo7wVGBNTHQzQIAAAATkbu9X5Y3USmJZzaJL8/VQrCGFoIxJVR3wHdJ+oa1tmy8Tth9k3WPMeaPCiayYnr6qTFmlqQruzcPWWtPRDIejM7Ok43dyauRJaOa27v0uX/u1KM7y/X9Ny0/496tAAAg/rV0+PuNpZPAint0swAAAMBE5a7AciefxsJdwVVDC8GY4hn+kNGz1n5gPJNXrnNba+3frLV/DsX5x4Mx5gZjzKC/LhhjiiX9Q8EZkVKwpQdihLVWX127r1/yatXMPH335mX64S3LdeM5pUpO7P+f1zP7q3XtD5/RhkM14QoXAADEKPf6VxIJrAni7ZK6JP1S0gJr7bnW2u+PJnklBbtZWGufsNa+U1KJpLdJ2itpuoLdLAAAAICo4k5g5acnDXLkyLkLCWoGaFOI6MUdcGj8WFKSMeZeSS9IOiKpTVKBggsvv1fBGZBSsA0iCawY8siOcm0va3SM3XhOqb5901IldLcHfO3yKfrk1fP1ncf26h8vOXO5lU3tuvWXG/TRK+bp/ZfN6X0PAABAXwMmsJJjugkBRoZuFgAAAJiQ3O39Cs5w/SupfxVXfVunuvwBJSaEpLYH44wEVuhMlvTB7sdg7pX0bnrQx46OroC+/e89jrFpuan6xhuW9EtElWR79Z2bl+k1yybrE3/frsqm0/+aA1b67uP7tPFwrb7/puUqzKSlIAAAcGp2JbC8SR5usiYAa+0HQnhuK+lvoTo/AAAAcCb6tRBMG/8WgtZKda2d/B4bI7gDDo23S/qSpEcl7VNwceUuSfWSdkj6uaTV1tqbrLX1EYoRY/DoK+U6WtPqGPvYFbMHbBfYY828Qj3y4Yt18dyCfvuePVCta39ES0EAANBfS7tzDawM2gciihhjiowx1xtjvmKMWWuMqTbG2O7H3WM43zXGmPuMMWXGmPbu5/uMMdeEIHwAAABEoX4tBMejAmuAJFhNC/UksSLsd8HGmBmSVkiaI2mSpGRJrZKOSXpJ0iZrbUyvpGatXSdpXaTjwPi7b4uzk8v0DKurFhYO+76CjBT97h3n6a51B/Xdx/YqYE/vq+puKfjxq+brfZfMloeWggAAQP0rsFj/ClGmYjxOYowxkn4m6Q7XrimSXi/p9caYX0h6b3cFGQAAAOJUtbuFYPqZJ7ASEzzKSUtSfWtn71htc0ynHyaUsN4FG2OOK9habyg+Y8xaSb+x1j4ShrCAEals8umZ/dWOsYtLAgrecw/P4zH6wGVzdO70XH3oL1tV0ehsKXjnv/fqxe6Wgu7erAAAYOJxr4GVnkwCa6KL4smAxyXtlnTVGN77VZ1OXm2V9G1JByXNlvQpSWd376+S9PkzjhQAAABRq18LwXH6jTQ/PdmRwKpuIYEVK8J9FzxlBMek6vRMuy2S3mGt3RnasIDh/WvbSfn7lE4le6yW5o1+EuiqWfl65EMX66N/2671+6oc+9btq9J1P3pGP37z2Tp3Rt4ZxwwAAGJXS4czgUULwYktCicDfkXSJgWTZhXdybXDozmBMWaOgkkqSdosaY21tq17e5Mx5l8KdrY4V9KnjTG/tdYeHJfoAQAAEFWstf0SWAXj0EJQkvLTU3SwqqV3u6aZFoKxItxrYG2T9CtJH5V0s6TLJF0i6VpJ71GwdcRuSab7sULSi8aYK8McJ9DPfVtOOLaX5VmlJIztXPkZKbr7tpX65NXz5e4YeKrBpzf9YoO+//g+dfoDY4wWAADEuv4tBMf4xQPxYopO3ycN9uiZDPigMWaTMeasUAVjrf2StfYha+2ZtBL8qE5Pqvxgn+RVz2e0Svpg92aipI+cwWcBAAAgirV2+OXrdP4Wmp+eNC7ndq+lVUsFVswI6zROa+05IznOGLNA0oclvUuSV9I/jDELrbUnQxkfMJhjNa3adarRMbay8Mxa8Pe0FDxnWrClYFXT6cy/P2D1w//s15N7KvW9Ny7T3OLMM/osAAAQe9wtBNOowJrotilYpfSKpDJJ1ZICktIlTVWw1d4lkhZ2H98zGfC11trHwx7tMLrXvnpt9+Yea+2GgY6z1m4wxuyVNF/S64wxH2ItLAAAgPjjrr6Sgq3/xoM7gdX3d1hEt3BXYI2ItXaPtfZ9ki6V1CQpQ9InIxoUJrT1+52t/vLSkjQ3e3zumy+YHWwpuHp2fr99O0406LofP6v/e/qAOrqoxgIAYCJpafc7tjNYA2tCs9aeY629w1r7Q2vtvdbaddbaZ6y1j1prf2mtfb+1drGkRZJ+LqlLpycDDtd6MBJm6nSL+XXDHNuzv1TSjFAFBAAAgMhxJ7CSPFZpyePThaIwwzvkZyF6RfVdsLX2eWPMFyV9X9J1CraYAMLuGVcC68LZefKYE4McPXqFmSn6w7tW6SdPHtCPntzvWGuroyugbz+6V/dtOaGvvHaxVs8uGLfPBQAA0ctdgZVOBRZGwFq7R9L7jDF/kLRWpycDRtu91MI+r/cMc2zf/Qs1irW2jDGlwxxS0vOivb1dbW1tQx2LUfL5fAO+xvjg+oYW1ze0uL6hxfUNLa5vaJysbXZsZyYFv58FC/fPTI7XeY6KhrYJ+72vvT22knexcBf8XPfzcDceQEh0+QN6/kCNY2z17DypYvwSWJKU4DH68BVz9aoFRfrY37Zpf6XzL+0Dlc269Zcb9brlk/U/1y1UUaZ3kDMBAIB40NLhTGBlsAYWRiEGJgNO7fO6bJhjjw/yvpE4PvwhQRs3btTBgwdHeXqM1Pr16yMdQlzj+oYW1ze0uL6hxfUNLa7v+Hmuwkg6fc+TmTR+1/d4rfPcx6sb9dhjj43LuWNNdXV1pEMYlahsIehyfffzxEyJIuK2l9WryTUDevWsvJB93pLSbD34wYt0+8UzNdAEg/u3ndTl31mn3zx7mLaCAADEsWZXC0EqsDAG0TwZsO8ir82DHhXU0ud1RghiAQAAQIQ1dTi3M5PGb9nTLNe5mjolVlWNDVFxF2yMuUfSeZL2KTj7rkXBG5OVkpZJsgq2vwDCbv0+Z1Z6QUmmijJTQvqZ3qQEfe66Rbp+6WR9/v6d2nGiwbG/qb1LX3lol373whF94qr5um7JJHk8Z15OCwAAogctBDEOonkyYN92Ah2DHhXUt89J6ig/Z7iKrRJJmyRp1apVmj179ihPj6H4fL7emdNr1qyR10sXifHE9Q0trm9ocX1Di+sbWlzf0Hj+oT1S2cne7ayk8bu+Jxt8+t7O53u3/dZo1ZrLlJOadMbnjjWx1nEgWu6CEyTNkeS+WzAKJq/+LelD4Q4KkPqvf7VmXmHYPnvZ1Bzd/4EL9acXj+nbj+5Rk8/5Q9bRmlZ98M9b9ctnDunDlwfbD45HX1gAABB57gRWBgksDCCGJwP2XTAieZhj+84eG1Uyzlo7ZHvCvt+dU1JSlJo62vwYRsrr9XJ9Q4jrG1pc39Di+oYW1ze0uL7jp6bV2YEiK9mO2/UtTer/dbO502hS3sT7d5eSEtrCjPEWLXfB35X0iqTVktZISlPwRmudpE9aazdHMDZMYL5Of7/qpwvnFIQ1hgSP0VvPn65rFpfoG2t3674t/dfeermsQe/63WbNL87U+y6dreuXTlJiQix0CAUAAINppgILIxOrkwGb+rweri1gep/Xw7UbBAAAQAyqavI5trOHm+I0CimJCcpOTVJDW2efz2vX3OLMId6FaBAVv3Bbazdba79qrb1WUr6kmxRMXl0iab0x5p0RDRAT1o4TDer0n26I6jHSium5EYmlMDNF33vjcv39vRfonGk5Ax6zt6JJH/nrNl36naf1hxeOqK3DP+BxAAAg+vVvIZgwyJGY4L4r6YsKJqraFExcScH7qVXW2muttbWRCm4IfSujhlujq28bwOMhiAUAAAARVtHY7tjOGufufoWuJWGqmtsHORLRJKwJLGPMsJ9nrW231t5nrX2VpDcqOGvwl8aYV4U8QMBl85E6x/aCkqyIt+9ZOSNP975vtX72lhWaVZA+4DFldW36wgOv6Pxv/Edff2S3jtW0hjlKAABwplranRNRIv0dBNEphicD7urzesEwx/bdvzsEsQAAACCCAgGraldCKTvZDnL02BRmuBJYTSSwYkG4K7C2GWMuHenB1tp/SPqMgrMI/ydEMQGDeumoM4EVqeorN2OMrjmrRP/+6Bp95+ZlmlM0cNeVhrZO/WL9IV3ynaf0jt++qIdfPiVfJ1VZAABEu46ugDr8AccYLQQntjicDHhYUs8q3ZcMc+ya7ucTko6EKiAAAABERm1rh7oCzoRV1ji2EJQGqMAigRUTwp3AOkvSf4wxDxpjVo7wPS90P58XopiAAVlrteWYM4F17ozoSGD1SErw6KYVpXrsI2v0i7eu0PKpOQMeZ6301N4qfeBPW7Tya0/os/ft0KYjtbJ2fGcyAACA8eFuHyhRgYX4mgxog19EH+jeXGCMOX+g47rHeyqwHrB8gQUAAIg7FY3O9a+MrDLGuYVgEQmsmBTuBNZuBW+grpW0wRizzhjzNmNM1hDvubb72QxxDDDuDle3qLalwzF2zrToSmD18HiMrlpcon++f7X+fPv5unR+4aDHNvm69OcXj+nmn72gS+58Wt96dI92lDWQzAIAIIo0D5DAogJrwovHyYA/kNTzh/3HxpjUvju7t3/cvdnVfTwAAADiTKUrmZSZJCWMczaANbBiU7jvgpdJ+qSkz0lKk3RR9+PXxpgtkrZKOiipXlKGgq0iblCw9cWeMMeKCc7dPrAoM0WluamDHB0djDG6YHa+Lpidr8PVLfrDC0f195eOq8nX/0cwSTpW26q7nj6ou54+qNLcVF27ZJJefVaJlpXmyOMhZwwAQKS0dPT/f3daUkIEIkEU2S1poYIT/K41xjwr6deS7rfWNg7ynpBNBjTGXCRpTp+hgj6v5xhjbut7vLX2bvc5rLX7jDHfUbBS7FxJzxljvqXgPeFsSZ+WdHb34Xdaa/eP2z8AAAAAokalqwJrvNsHSrQQjFVhTWBZa7skfcMY8xsFk1i3S0qRlKDgDcu5A7zNKJjAuitccQKS+rUPXDE9V8bETlJnZkG6vnjDIn38qnl6eMcp/XPLCW04XKPBCq3K6tr0i/WH9Iv1h1SQkaI18wp0ybxCXTy3UHnpIfi/BgAAGJS7hWB6cgKTSxBtkwHfLentg+y7sPvR192DHPs5SUWS3qlgsuovAxzza0mfH32IAAAAiAWVjc5kUlbS+HeKIoEVmyLSh8RaWyHpQ8aYL0t6h6SbJa1QMJHl1i7p69ba34QvQkDadrzBsR2t7QOHk56SqDeeO1VvPHeqTtS36f6tJ3TfljIdrGoZ9D3Vze26b8sJ3bflhIyRlpXm6JJ5hbpkfqGWTslWYkK4u48CADCxNLf7Hdu0D0S8Tga01gYkvcsYc6+kOyStVLCaq1rSJkk/t9aujWCIAAAACDF3C8HsMFRg1bZ2qNMfUBK/c0a1iN4JW2trJX1X0neNMZmSFivYhiK7+5Djkp4eoiUGEBJtHX7tq2hyjC2bmhOZYMbRlJxUfeCyOXr/pbO180SjHt5xSmt3ntLRmtZB32OttO14vbYdr9cP/7NfGSmJOndGrs6bmadVM/O1tDSbv+gBABhn7gqsDBJY6BYtkwGttbdJum0cz/eIpEfG63wAAACIHRXhaCGY4UxgWSvVtnSoOMs7/h+GcRM1d8LW2iZJG7ofQETtOtUgf+B0qarHSGdNyYpgROPLGKMlpdlaUpqtT18zX7tONWrtjnI9svOUDg1RmSUFF5V/em+Vnt5bJUlKTUrQsqnZOntars6emqPl03JUlMlf/AAAnIlmdwtBElhwYTIgAAAA4oW7AisULQRz05KV4DGO33yrmtpJYEU57oSBAbjbB84rzlRacnz+52KM0eLJ2Vo8OVufuHq+jlS3aN2+Kq3bV6XnD1bL1xkY8v1tnX5tOFSrDYdqe8em5KRq+bQcnT01R0tLc7RgUqayvEmh/kcBACBu9FsDK2Wg4hogiMmAAAAAiGXu9ahC0ULQ4zEqyEhWRZ/1tiqbfDo9/wvRKD5/kQfO0Mtl9Y7tpaUT5y+yGQXpmlGQrrevniFfp1+bj9Tp6b2VenpflQ5UNo/oHCfq23Sivk0Pv3yqd6w0N1ULJ2Vp4aQsLZqUqYWTsjQ1N40F6QEAGAAtBAEAAABMBNba7kTSaVnJ41+BJUlFmV5nAquxfYijEQ1CcidsjLnZWvv3UJy7+/ylkqZZa58P1WdgYtt+vN6xvbQ0JyJxRJo3KUEXzS3QRXML9HkFZyW8eLhWLx6u1cZDtdrrWidsKGV1bSqra9Pjuyp6x9KTE7RgUpYWdie05hRmaHZRhvLTQzDNAgCAGNLc7nds00IQAAAAQDyqa+1Up9+ZsMoOUSOn4iyvdpw43XnrVINviKMRDUJ1J/xXY8wXJX1lPBNZxphpkj6r4GLFX5dEAgvjrqG1U0dqWh1jy6fmRCaYKFOU6dX1Syfr+qWTJUl1LR3afLRO247Xaeuxer1c1tBvzY6htHT49dLROr10tM4xnp2apJn5qUpp96g41Spxb5UWTsnT1Lw0JSV4xvWfCQCAaOSuwIrXVsboj8mAAAAAmEgqGp1JJCMpM0Rz20uyU4b8bESfUN0J71dwEeG/GGPulPQnSX+01r4y2hMZY9IlvV7Sf0m6XFKCpICkA+MXLnDayyfqHdvJiR7NL8mMTDBRLjc9WVcuKtaVi4olSf6A1YHKZm09Vqdtx+u17Xi9DlQ2qyswurLfhrZObSvrlBRMVv3r2A5JUqLHaHp+mmZ3V2rNzE/X1Lw0TctPU0mWVwm0IwQAxIn+LQRZA2sCYTIgAAAAJgx3EikvPUkJZuQT5EdjUnaqY7ucBFbUC1UCa7GkD0n6jKRpkj4t6dPGmP0KLiy8SdJWSZWS6rofqZLyJOVKmidppaTzuh9eBZOvkrRW0qettTtDFDsmOHf7wMWTs6j6GaEEj9H8kkzNL8nULedNkyR1dAV0oLJZu081avepRu3qfq5r7Rz1+bsCVgerWnSwqkXq04pQkpISjEpz04IJrbxUTctL07S8nu00ZXpDVHsMAEAIuCuaaSE4oTAZEAAAABNGuauNX0mWV1JbSD6rOMs75Gcj+oTkTtha2yXpe8aYn0t6v6QPKJjImidprqS3jvBUPUkrv6QHJN1prd04zuECDtvLGhzbyybo+lfjJTnRo0WTs7RoclbvmLVWFY3tjoTWgcpmHapuUUdXYEyf0+m3OlzdosPVLQPuz/QmakpOqqbkpGpy78Pbu12UmaJEEpUAgCjR0uGuwCKBNYEwGRAAAAATxsl+CayUQY48cyXuBBYVWFEvpHfC1toWSXcaY74r6UpJb5R0maQZI3h7m6QXJT0s6U/W2pOhihPo6+Wyesf20tLsyAQSx4wxKsn2qiTbq8sWFPWO+wNWJ+radLCqWXtO1mn9tn2qbDOq8yerdgwVW301+bq0p7xJe8qbBtyf4DEqyfJqco5Xk3NSVZLlVXHvI0XFWV4VZqbIm0QLJwBA6DW3+x3bVGBNHEwGBAAAwERS3uCstioOZQIr25nAqm/tlK/Tz+99USwsd8LW2oCkf3c/ZIyZImm1pFJJhQrOFvRJqup+7JC02Vp7Zr9YA6NU3uBTRWO7Y2zZ1JzIBDMBJXiMpuUH17Q6f3qmJjftkSRdddXFarcJ3e0Dm3WwqlmHqlp0vLZVx2pb1drhH+bMw/MHrE7Ut+lEfZuCE5kHlpuWpOIsr4qyvCrOTFFRVooKMoKP/IxkFXa/zk5Nkoc1uQAAY+ReA4sE1sTDZEAAAABMBKcGqsBqDc1nuRNYUvD34BkF6aH5QJyxiNwJW2tPSBq3BYmB8bLdVX2VmZKomfn8BRYNctKStWJ6slZMz3WMW2tV09KhozWtvQmtnsfx2tZ+/xM8U3Wtnapr7Ry0kqtHoscoLz05mNzKTFFBRvfr3udgwqsgI0W5aclKTqR9IQDgNHcCKyOFGYETFZMBAQAAEM/6J7C8IUtgZaQkKiMl0bHmcHkjCaxoxlROoI/tx+sd20tKs6miiXLGmN6EkDu5JUm+Tr9ONfh0sru66mTvw9dbcTXWdbeG0hWwqmxqV2VTu3Rq+OMzUxKVl5Gs3LRk5acnKzf99HNeerLy0pKVl3H6OTMlUcbwZxMA4lWzuwIrma/tCGIyIAAAAOJJuSuBVZyVovry0H1eSbZXByqbB/18RBfuhIE+Xi5rcGzTPjD2eZMSNLMgXTMHmUnRU8HVk9g6UR9MdlU2tauiwaeKJp8qGn3ydY5/kquvpvYuNbV36WjNyKaYJCUY5aZ1J7f6JrzSkpU/QCIshyovAIgZ1tp+7XFpIQgAAAAg3jT5OvtN3ivJSlF9CD+zJMuVwGokgRXNQnYnbIz5YvfL/7PWVp/BeWZI+o0ka629fDxiAwYSCFi97GohuKw0OzLBIGz6VnAtLc0Z8BhrrRp9XapsDK6RVtHoU3ljMLFV3dyu6qaO4HNzuxp9XQOeY7x1+vtUeI1QpjexN+GV7U1QW51H6UnS8eeOqignXfnd+/LTU5SbnqQMqrwAICLauwLyB6xjLIMEFgAAAIA4M9DSH8VZKdoTws90r4NFBVZ0C+Wd8JclWUn/kDTmBJakdEmXdp8LCJnDNS39kg+DJTQwsRhjlJ2apOzUJM0tzhzy2PYuv2qaO1TTHExqVXUntnq2exJeNS3tqmnpkA3j32xNvi41+fpWeQUrsp48eXDA45MTPcGWhenBqq683gRXsvLSU3q3e8ayU5NouQkA48A9A1GiAmuiYTIgAAAAJgJ3Ais/PVkpiaFd/7ckiwRWLOFOGOj20pE6x3ZRZoomuTLywHBSEhM0OSdVk3NShz3WH7Cqb+1QbUufR2uHapuDz3UtHapp6VBd91hNS4faQ7Be12A6ugIq7642G4kEj1FuWlKfpFYwyVWQkaKCzOBzYWaKCrsr3lKTQ/uFBABiVcsACSwqsCacL4vJgAAAAIhz5Q1tjm13dVQoFLsrsGghGNUieidsjJkl6ai11j/swUCIbTpS69heOSOP9mkIqQSPUX5GivIzUkb8ntaOLmfCq8+jrjVY+VXX2p34aulQfVtn2Kq8/AGr6uYOVTd3jOj49OQEFWam9LZwLMpKUVFmioqyvCrO8qooM0XFWV7lpiXx3yKACcVdgeUxkjeJdQwBAAAAxJeT9c7kUTiKCSa5KrAqSGBFtYglsIwx10n6s6Q9xphbrbUHIhULIEkvHXVWYK2YnhuhSIDBpSUnKi05UaW5aSM6vssfUENbZ78qr4r6Fm3ffVDNXZI3u0D1bcHEWE1LhzrCVOXV0uFXS02rjvS2NBxYcoJHhZnBBFdxpjf43J3gCia7guM5JLoAxImWdufcrnTWJMQAmAwIAACAWOdu3xeOCiz3Z1Q2tcsfsEpgWYyoFJEEljHmQ5K+q+ACLCskbTXGfMRa++tIxAPUNLfrUHWLY2zljLwIRQOMn8QEz4BVXm1tbXrMt1+SdNVVy5WaGmx5aK1Va4e/N5lV2xJcv6sn+dVT2VXTJyE20Fot46nDH9CJ+jadqG8b8rieRFdxVoqKMoOJraI+lVw9SS8SXQCinbuFIO0D4cZkQAAAAMSDU43uCqzhl+Q4U+4Elj9gVdXUHpbkGUYvrHfDJviL4Y8kvV+SkdQoKVPB3uy/MMa8WtLt1tq6wc8CjL/NruqrtOQELZyUGaFogMgxxig9JVHpKYmamjeyKi9fp7+3fWHfVobBhFe7qpo6VNXcruqmdlU3t4dsHa8RJ7oSPcHqrT6JrcLe1yma0r2GmTeJNboARIZ7YkA6CSz0wWRAAAAAxItTrt9wwtFCMD89WSmJHsfvUyfqW0lgRamw3Q0bY9Il/U3SNQomr16RdIOk+ZLullQs6fWSVhlj3matfSpcsQHu9oFnT8tRYgJrTQAj4U1K0KTs1BHNkrHWqqm9qzuZ1aHq5nZVNZ1+VDT5VNnYrsom34jX0hqtjq6AyuraVFY3dKKrKDNFpbmpKs1Ncz2T4AIQWu4KLBJYkJgMCAAAgPgTiRaCxhhNyU3VoarT3bjK6tq0YnrIPxpjEJa7YWNMqaSHJC1R8GbrMUlvtNY2SjpijFmiYBLrWklTJD1ujPmupM+FIz5g85Fax/aK6bQPBELBGKMsb5KyvEmaVTj0sZ3+gKqa2lXZ1K6KRp8qG32nXze1q6KxXZWNPtW0hCbRVdn92VuO1Q+4vygzRVPzTie1SnPTNCUnVQUZKcpICshvpQQ6FQIYA3cFVkYKCfOJjsmAAAAAiDcNbZ1qct37hKOFoCRNyemfwEJ0CkcCa6Wkr0sqUfBm6/8kfbjvYsPW2mpJ13e3w/imJK+kT0i6XNI3whAjJrCGtk5tL2twjJ07PTdC0QDokZTg0eTudn5D6egKqLr5dGKrstEXTG41BZ97xmvHOdHVk+ByV3D2MEpQWqL04wMbNaswQ/OKMzW3OPg8uzBDyYlUeQIYWEu737GdnkwF1kTGZEAAAADEoxOupJEx0uQcrwKdoZmo3FdprnPZjLK61pB/JsYmHHfDv1awP7tf0settT8a7EBr7Y+MMU9J+pOkxZLOlvSXMMSICey5A9XyB2zvdnKiRytnUIEFxIrkxJEnuqqanQmuyu4EV0V34utUg08NbZ3jEpeVUUuXdKCqRQeqWvTYrorefYkeo9mFGZpfkqnJOakqzExRQUayCjNTVJiRouJsr7K8SeMSB4DY09LhrsAigTWBMRkQAAAAccmdNCrO9ColMUHj9LPMkEpznb8hUYEVvcJxN+yR1CTpFmvt2uEOttbuMMacK+l7kt7X/X4gZNbtrXJsr5qZp9RkWvUA8SY50aMpOamaMkyiq9HXqRPda2SV1bW6ntvGJcHVFbDaW9GkvRVNgx6TmZLYnZjz9iboJud4NTU3TdPz01WQkazgcigA4o27hWAaLQQnMiYDAgAAIC4ddyWN3EmlUHJ/lrsaDNEj1AksI+mYpOuttTtH+iZrbbukDxhj1ip40zbMSinA2FhrtW6fM4F16fyiCEUDIBpkeZOUNSlJCydlDbjfneA6Xtv9XNemykafals7ZO2Abx2VpvauIZNc6ckJmp6frhkFwYTWjPye53QVZabI4yG5BcSqFlcCK50KrImMyYAAAACIS+4KrEgmsMrq2xQIWH5LiUKhvBu+rPt5p7W2ZiwnsNY+ZIw5S9Ki8QsLOG1PeZPKG32OsUvnky8FMLjhElxd/oBO1TbpocefVlOn0ZS5i3W0vkP7Kpq0v6JZJ+rHZ1ZPS4dfu041atepxn77vEkeTc9L1/T8NM0sSNfMgnTNKszQrMJ05adTuQVEO3cCK4M1sCYqJgMCAAAgbrnb9rnXpQol92f1rK9elOUNWwwYmZDdDVtr143Teaokjcu5JqrjdW2a2umXN4n2M25Pu9oHluamalZBeoSiARAPEhM8KshI1uR0SbK66uzJSk09PbOn0depfeVN2lPepINVzapqald1c3v3c8e4tCj0dQYGrd7KTk3SrMJ0zSoIJrRmFwaTW9Pz05SSyP8ngGjgbiFIBdaExGRAAAAAxDV3AmtqXvgqsAozUpSc4FGHP9A7dryujQRWFOJueAJ4291blXjf8eAPqt3rv/Q8T8lN7V0TJictacLNyn9w+0nH9qXzCyfcNQAQXlneJJ07I0/nzsgbcL+v06+KRp9O1LfpZL1PJ+vbgo8GX3Atrto2xxes0Wpo69TWY/XaeqzeMe4xwRlIzuRWhmYXpqswM4W/G4Ewamn3O7YzSGBNOEwGBAAAQDyz1qqs1t1CMHwVWB6P0ZTcVB2ubukdO1HfphXTc8MWA0aGu+EJpLq5Q9XNHXq5rGHA/WnJCY7E1tTcNE3NS9W0vDRNy0tTdmp8Jbh2nmjo13rr6sUlEYoGAIK8ScG1rabnD1wN6g9YlTf6dLS6RUdqWnWkpkVHqlt0tPt1e9fYklsBKx2rbdWx2tZ+1anpyQmaWZiumQUZwXaE3W0JZxSkKzs1aUyfB2BwrIEFAAAAIJ41tnWpyXXfE841sCRpSo4zgeVekwvRIWJ3w8YYj6RLJV0gqURSmqTPW2tP9TkmWcEY/d293BFCrR1+Hahs1oHK5gH3Z3oTNS0vTVNz0zQtP01TuxNbU3ODCa9Yaz31j5fKHNuTs71aPbsgQtEAwMgkeExv5ezqOc59gYBVZVO7jtS06GhNiw5Xt+pwdbMOVQUTXGOt3Grp8GvniUbtPNF/va2CjOTedbZ6E1yF6ZqWl0brWmCM+rcQ5L8lAAAAAPHjuCtZZIw0KTu8CSx3wszd0hDRISIJLGPMdZJ+JGmGa9d3JZ3qs/0uST+R1GyMmWytbREipsnXpVdONuqVk/1/wDRGmpTl1dS8NM0sSNecogzNLsrQnMIMTclJlccTXZVb7V1+3b/thGPsxhWlSoiyOAFgNDweo5Jsr0qyvTp/Vr5jnz9gVVbXqkNVLTpY1axD1S06VBVMblU2jX2OSE9176YjdY5xY4KzmfpWbM0szNCsgnRNzknl71tgCO4KLFoIAgAAAIgn7mTRpCyvkhM9YY2BBFZsCPvdsDHm3ZJ+Lqnnl6tqSQWS7ACH/1rSVyXlSHq9pHvCEGLceeQDq5RaMEVl9W06URdcS+VEn9fljT4FBrr6o2CtdLLBp5MNPm08XOvY503yaFbB6YTW7KJggmtmQXrEqrb+te2k6ls7HWM3rSiNSCwAEA4JHtPbmvCyBUWOfU2+Th2ubtGhqmBS62D368PVzfJ1jq1qy9rgl7+yujY9s7/asS85waPp+WndSa1ggmtGfrAlYRHrbWGCCwSsWjqca2DRQhB9GWMSJV0n6WJJsyRlShruS7W11l4e6tgAAACAkXC36wvn+leDfaZ7TS5Eh7DeDRtj5kj6affmk5L+21q7xxgz4K9j1toOY8y9kt4t6SqRwBqT1OQEzS3O1NzizAH3d/oDKm/w9Sa2TtYHf3A8XhdcC+VkvU/+M8hw+ToD2nWqsd96Uwkeo9mF6Vo4KUuLJmVp0eTgc35Gypg/a2Tx+PX9x/c5xlbNzBt0vRkAiHeZ3iQtLc3R0tIcx3ige72tw9UtOlTdosPdSa3D1S06Xtc25v83dPgD2l/ZrP0DtKz1Jnl6116clpeu6fnBtrXT89JUmpsW9hlZQLi1dvr7jVGBhR7GmEsl/VbStL7DQ7zFdu8/w+lqAAAAwPhxVzuFe/0rSZqa50xgHa9rVZc/oMQEfneIJuG+G/6IpCRJOyVda63tGMF7nlEwgbU8dGFNbEkJHk3NS+v3H22PTn9Ap+p9OlYbTGj1JLaOd2+7K5lGyh+w2lfRrH0VzXpg28ne8eKslN6k1uLJ2Tp7Wo4m54zfX2K/ee6wTjb4HGPvvWT2uJ0fAOKFx2M0OSdVk3NSdeEc5xqBHV0BHa9r7U5qdSe4upNbFY1jb0no6wz0/r+hXzzdPbFLc1LkafUo32sVeKVScyflaFp+mrK8SWP+XCBauNsHSlRgIcgYs1zSWknJCialfJL2S6qXNLZyWQAAACAC+ldghT+BNbPAWczQ6bc6We/TtPzwV4NhcOG+G75cwdl/Pxhh8kqSDnY/TxvyKIRMUoJH07pnwA+k0dep490JrSM1rTpY2awDVc06UNmsJl//H2GGU9HYrorGKj29t6p3rCTLq7On5XQ/crVkSra8SaNvP/jKyQb95MkDjrHVs/N16fzCUZ8LACay5ESPZhdmaHZhRr99Le1dOlzd4nj0rLk1lv8v9AhYBVvg1rdJCs6IeujYzt79uWlJwcqt/HRNzztduTU9P9iaMNrWYwQG0jxgAisyLZcRdb4sKUVSu6SPSfqttdY35DsAAACAKHS0xpXAGqSwIpRy05KU5U1UY5/fKQ5VN5PAijLhTmBN7X7eNor3tHQ/8ycnSmV5k7R4crYWT852jFtrVdXcrgOVzTpY1aKDlc062J3YOtUwunvt8kaf1u4s19qd5ZKkpASjRZOztWJars6ZnqMV03M1KXvoTP2hqma947eb1NpnXQljpP+5diHrrQDAOEpPSdRZU7J11pT+/1+obenoU7HV0lvBdaSmRe1dZ1ZAUNfaqbrWBm0va+i3LyWxT2vCPomtaflpmkprQkQRdwVWUoKJ2JqhiDoXKTgZ8GvW2rsiHQwAAAAwFv6A1VHXelPuaqhwMMZoZmGGth+v7x07Ut0izQ97KBhCuBNYPb3XR5Mt6CmNaRzyKEQdY4yKMr0qyvRq9Wxn66nm9i7tLW8Kro11slG7TzVqT3mjfJ0j+/Gy02+1/Xi9th+v12+eC45Nzvbq7Om5WjEtV8umZmtKTpqSEoyqmtu1dke5fvnMIUfySpJuWTmt3w+sAIDQMMYoPyNF+RkpOndGnmNfIGBV2dSuozUtOlrbqmM1rcHn2lYdq2lR3Rjb1fZo7xp83a0Ej9HU3FTNLEjXrMKM4HNBumYWpqsky8skB4SVuwKL9oHow9v9/GhEowAAAADOwMn6NnW4JrDOyA9/AkuSZuanORNYrsowRF6474hPSpojaZ6kl0b4nku6n4+EIiBERkZKolZMz9WK6bm9Y/6A1eHqFu06FUxovXKyUduP16uhbWQ/Wp5s8Onky6f08MunRnT8qpl5+vJrFo0pfgDA+PJ4jEqyvSrJ9mrVrPx++xt9ncGkVk2rDlbU64UdB1Ttk1pMmsobfQrYAU46Qv6A1ZGaYBvcp/q0r5Wk1KQEzexOZs0qSNeswnTNLszQnKIMpSWTWMD4a2l3TrZJ588ZTjsiaaGCawoDAAAAMelITYtjOyMlUQUZyRGJZYar8utQdcsgRyJSwn1HvF7SXEm3SvrzcAcbYwokvUfByq0nQxsaIi3BYzSnKPij4GuWTZYUnJF/uKZFW4/Va+uxOm05Vq+95Y1n9EOlJM0rztAv3nouLXkAIEZkeZN62xK2teVoeus+SdJVV61WQlKKyupaT1du1bTqWG1LsHqrtnXE1b0Daev0B6uFTzkLwY0JLjI7ryhT80oyNa84Q3OLMjWnKGNMazQCPdwtBDOowMJp9yuYwFoj6YXIhgIAAACMzRFXkmhmQXrEOp+4Wxe6Y0PkhfuO+BeS3iXpWmPMO6y1vx3sQGNMqaT7JBVI6up+LyYYj8dodmGGZhdm6KYVpZKCrXW2H6/XS0fr9NLROm09VudYbG84t66aps+8eoGyvExeBYB4kJzo0azCDM0qzOi3LxAIrsd4tKZVR2uCSa2j3e0Jj9e2qralY0yfaa10vLZNx2vb9J89lb3jHiNNy0vT3OJgUmtecabml2RqTmGGEhNYZwvD699CkIQoev1Q0m2SPmGM+au19khkwwEAAABGz13l5K6CCid3AqusrlUdXQHWyY4iYU1gWWs3GWN+Jum9kn5ljLlW0t/7HLLUGLNE0lWSblGwz7uV9F1r7YFwxorolZGSqAvnFOjCOcF1tQIBq4NVzb0JrS3H6nSstlWd/tNlWlNyUnXRnALdct5UnT0td7BTAwDijMdjVJzlVXGWV+fNzOu3v6GtU4erW3S4ulmHq1p0sLpFh6tadLi6RW2d/gHOOLSAVW87wsd3VfSOJyd6tLAkU4unZGvx5CydNTlb80syqdZCP+4EVgYTbtDNWlvVff/0kKSNxpjPSfq7tbYhwqEBAAAAI9avAis/LUKR9E+eBax0rLZVc4r6T5BFZESiJ8kHJaVLequkN3Q/ejINf+xzXE/d4N2S/idcwSH2eDxGc4szNbc4U7ecN01SMKlV29qhgLVKS06k/Q4AYEDZqUlaPjVHy6fmOMattapobNehqmYdqg4mtA5VNetgVYuO17XKjrKVbUdXQNvLGrS97PTvzAkeo7lFGVo8OVtnTcnSWd3JLdbWmtjcLQQz+Q6DPqy1Lxtj1kjaKOnnkn5mjKmWNNxq09ZaOzvkAQIAAADDOOxOYBVGrgIry5ukgoxkVTef7s5ypLqFBFYUCfsdsbXWL+ntxph/SfqspHMGOXSXpK9aa/8StuAQNzweo4KMlEiHAQCIUcYYlWR7VZLt1eruit8ebR1+Haxq1r6KJu2raNb+iibtq2zS8dq2UX2GP2C1p7xJe8qbdO+W4FiCx2hBSabOmZarc6bn6JxpuZqWlxaxfuAIvyYfa2BhcMaYGyX9WlKmghP+jKSiEbz1DFeQBQAAAM5cpz+g43XOe+cZ+ZFLYPV8viOBVcM6WNEkYnfE1tp7Jd1rjJks6VwFb7wSJNVI2mqtPRip2AAAAAaTmpygs6Zk66wp2Y7x1o4uHahs1r6KnuRWk/ZXNOtE/cgTW/6A1SsnG/XKyUb9YcNRSVJBRrKWT83VeTNztXp2gRZNypLHQ0IrXvVvIUgCC0HGmAsk/UXBeyZJOirpZUn1kgIRCgsAAAAYsbK6NvkDzrlV7nWowm1mQbo2H63r3T5YRQIrmkT8jthae1LSvyIdRygZY6ZJ+pCk6yRNk9Qu6YCkv0n6P2vtcC0/AABAlEtLTtTS0hwtLc1xjNe3dnQnpRq080Sjdp5s0OHqlhG3Iaxu7tATuyv0xO7gmlo5aUm6YFa+Vs/O1+o5BZpVkE6FVhxppgILg/u8gsmrBkm3WmvXRjgeAAAAYFQOVzc7tnPTkpSTlhyhaIJmFTrbBR6obIpQJBhIzNwRG2Nu7K7aiinGmOsUXNur7zTtNEkrux/vNsZca609FIn4AABAaOWkJevCOQW6sE8rwpb2Lu0+1aidJxq0s7vial9FU7+ZaAOpb+3U2p3lWruzXJJUkuXVhXMKdPnCIl00t0BZ3qSQ/bMg9NwVWJlUYOG0FQq2AvwSySsAAADEosPVzjqOGRGuvpKk+SXOBNbe8iZZa5koGiWi+o7YBP+U3CrpfyTNV5TH62aMWaZglVWapGZJ35D0lKRUSbdIul3Bf66HjTErrbXNg50LAADEj/SURJ07I0/nzsjrHWvr8OvlsnptOVavLcfqtOVonWpaOoY4S1B5o0/3binTvVvKlOgxWjkjT5cvLNJlC4qozopBTe4WglRg4bSeu/tnIxoFAAAAMEYHq5w/f0e6faAkzSvOdGw3+rpU0diukmxvhCJCX1F5R2yMSZT0dkmfkTRLwcWJY3Hh4R8omLzqknSVtfaFPvueNMbsl/RtSQskfUzSV8IeIQAAiAqpyQlaNStfq2blS5KstTpW26otx+r04uE6vXCwWkdqhu463BWweuFQjV44VKOvPrxb0/PTdPmCYr16SYlWTMtl7awY0OzrdGyzBhb6OCxpsYL3FwAAAEDM2V/hbM83tyhzkCPDZ0pOqtKTE9TS4e8d21vRRAIrSoT8jtgYky7pDklXSpqqYDLniKS/S/qrtdbf51gj6TZJX+o+Vgomrzok3R3qWMeTMWalpEu7N3/tSl71+K6kd0haKOkjxphvWGs7BzgOAABMMMYYTc9P1/T8dL3+7FJJ0on6Nj1/oFrPH6zRcweqVdnUPuQ5jta06jfPHdZvnjuswswUXb24WK8+a5JWzcxTYoInHP8YGCV3C0EqsNDHfZLOknS1qMICAABAjLHWal+FswJrXnHGIEeHjzFG80oytfVYfe/YvvImXTKvMHJBoVdI74iNMUslPSJpkmvXUkmvkfQ+Y8yrrbXNxpi5kv4k6Zyet0vySfq1pG9Za8tCGWsIvK7P698OdIC1NmCM+b2CrQVzFUx4PR7yyAAAQEyakpOqm8+dqpvPnSprrQ5WteiZ/VV6ck+lNh6qVYc/MOh7q5radc+GY7pnwzHlpiXpykXFevWSSbpwdoGSE0lmRYuWdr9jmzWw0Md3Jb1ZwYlvD1hrN0c6IAAAAGCkqpra1dDmrN2IhgosSZpf7Exg7XVViiFyQnZH3F159YCkyUMctlrST4wxd0pap2ASx0hqkfRzSXdaaytCFWOIXdz93CLppSGOW9fn9UUigQUAAEbAGKM5RRmaU5Shd1w4Uy3tXXr2QLWe2lOpp/ZWqqJx8OqsutZO/W1zmf62uUyZ3kRduahYrz97ilbPLgjjPwHcAgE7QAVWUoSiQbSx1jYZYy5XsJPFemPM9yX9VdI+a60vstEBAAAAQ3NXX6UmJag0NzVC0TjNda2DtY8EVtQI5ZTOt0maruDaVU9J+rKkLZL8khZJ+qSkWxScRbhCUp6kgKS7JP2vtbYqhLGFw8Lu5wPW2q4hjtszwHuGZYwpHeaQkp4X7e3tamtrG+mpMQI+n2/A1xg/XOPQ4vqGFtc3tLi+A/NIWjMrW2tmZeuLr56j3eXNenJvlR7bXaX9lS2Dvq/J16X7tpzQfVtOqCAjWVcvyNekdqk0nesbCkP9+XUnryQpUV18jxuF9vah22rGMmNM3/I8o+B6wZ/p3jfc2621lnI+AAAARIw7KTSnKCNq1mme70pg7a9oViBgoya+iSyUNzE3dD/vk3SNK4mzVdKtxpgcSdcouBhxh6Q3WGsfCWFMYWGM8UrqmcI8ZOtDa22dMaZFUrpOr/s1EsdHeuDGjRt18ODBUZwao7F+/fpIhxD3uMahxfUNLa5vaHF9hzZP0rzZUuVkaXut0fYaj463DP4FvLq5Q3/cfEpSoopTrR478YzOLbDKZ+3akHD/+a1vl9xfz198br3SSDuMWHV1daRDCCX3f7zcTQMAACBm7K90JrDmRsH6Vz3mlThjaev0q6yuTdPy0yIUEXqE8nZ4iYLVV98bogLpawomsKyk38RD8qpb35Rt86BHndaTwIqe/2oBAEDcKEqVrpxideUUv2p8p5NZR5oH//27os3okeMJWnvcakGO1UXFVotyrZiAFjo+f/+xlITwx4Go9b+RDgAAAAAYK3cLwXnF0bH+lSQVZqQoNy1Jda2n1+jaU95IAisKhDKBld/9vHeIY3b3ef2vEMYSbn3nKXeM4PieXiejafo5XLVWiaRNkrRq1SrNnj17FKfGcHw+X++s6TVr1sjrZWr6eOMahxbXN7S4vqHF9T1zb+5+rmhs19pXKvTgjgrtOjVwj28ro931RrvrpUlZKbp5xWTdePZkFWWmhC3eeDLUn99tZQ3S9tNLp6YmefTqq68Ke4yxLJ67DlhrSWABAAAgJllr+7UQnBdFFVjGGM0rztTGw7W9Y6+cbNRVi0uGeBfCIZQJLK+ClVWD9vGw1tb26dd+MoSxhFvfBQ2SR3B8zy9AI17gwFo7ZGvCvn3wU1JSlJoaHQvixSOv18v1DTGucWhxfUOL6xtaXN8zMyM1Ve8rztH7XjVfByqb9MC2k/rnljKV1Q+89tWpxnb96KnD+r91R/Sa5ZP1njWzNb8kembNxRr3n99O65yRmOFN4s/3KKWkkFgFAAAAok1FY7uafM4mbXOLoute8qwp2a4EVkMEo0EPT6QD6GOwNoOxqG86eSSp5PTu55G0GwQAABh3c4oy9fGr5uuxD12gj5zVpQuLA8pMGXiuU1fA6r4tJ3T1D9brnXdv0sZDNbLWhjni+NPc7vw6PNj1BwAAAIBY4q6+SktO0JSc6Jqst2RKtmN7xwkSWNGAu+IQsNb6jDHVkgoklQ51rDEmV6cTWMdDHRsAAMBQjDGamSnNzAzox5ddqCf21umPG49qe9nAX96f3FOpJ/dU6uxpOfrQq+bq0vmFjkpwjJw7gZXh5av6RGWM+eJ4n9Na+5XxPicAAAAwEq+cbHRszyvOlCfKFlg+y5XAqmhsV2WTT0WZLFsQSeG4K36/MaZyPI6LsZuu3ZIuljTHGJNorR2swmyB6z0AAABRITUpQW9cOVVvXDlVO8oa9MeNR3X/thPydQb6Hbv1WL3ecfcmnTczT5++Zr5WTM+LQMSxrdnVUiODCqyJ7MsKtmMfT7F0LwUAAIA44m7Ht3hyVoQiGdzMgnSlJSeotcPfO7bzRINetYAEViSF4674fcPs77kxG+44KbZuup5VMIGVLmmFpI2DHHdJn9fPhTooAACAsVhSmq1vli7Vp65ZoN89f0S/e+GI6ls7+x334uFa3XjXC7piYbE+efV81sgahX4VWCSwJrrxnJJKj08AAABEzC5XBdbiydmDHBk5CR6jxZOztOlIXe/YjrJGvWpBcQSjQqjviifyTdf9kj7b/fodGiCBZYzxSHpb92a9pKfCERgAAMBY5aUn66NXztN7Lpmlv206rl8+c1gn6tv6HffE7gr9Z0+F3nB2qT59zXwVZTFrbTi0EEQfl0U6gHAxxoz0Pm+dtfbSUMYCAACA8dfS3qXDNS2OsWiswJKCbQT7JrB2nmQdrEgL5V3xhLnpGoi19kVjzDMKVmG9yxjzO2vtC67DPi5pYffrH1pr+09jBgAAiEJpyYm67cKZesv503X/tpP6/uP7+iWyrJXu3VKmf79Srg++ao7eceFMJSd6IhRx9GtytRDMpAJrwrLWrot0DAAAAMB42H2qUbbPlKUEj4naTh1nuSrDdp4ggRVpIbsr5qZLkvRhBdsCpkp6zBjzdQWrrFIl3SLpju7j9kn6bkQiBAAAOAOJCR7dtKJUNyybpD9uOKafPHVAtS0djmOa27v0jbV79NdNx/XFGxbp0vlFEYo2ulGBhQnuLkn/N8T+liH2AQAAIEq94mofOKcwQ96khAhFM7Qlpc4E1qkGn6qa2lWYmRKhiMBdcQhZa7caY94k6R5JWZK+PsBh+yRdZ61tCmtwAAAA4yglMUHvvGim3rhyqn71zCH9cv0htfRZ/FaSDlW36LbfbtIVC4v0v689S1NyUiMUbXRq9jmL8TNSkiIUCRARldbanZEOAgAAAOPrFVcbvmhtHyhJswszlJacoNY+97Jbj9XpqsUlEYxqYqOHS4hZax+UtFTS9xVMVrUquN7VZkmflnS2tfZAxAIEAAAYRxkpifrIFfP01Ccv1c0rSgc85ondlbr6++v15xePydpYW+Y0dFranQk/KrAAAAAAxDp3BdaiKE5gJXiMlk/NcYy9dKxu4IMRFiSwwsBae9Ra+zFr7Xxrbbq1Ntdau9Ja+21rbWuk4wMAABhvRZle3XnzMv3z/au1zHUDIAXb5X32vh16669fVFkdX4ckqamdNbAAAAAAxI+OroD2VzQ7xha71pmKNium5zq2txwlgRVJJLAAAAAQMmdPy9U/37dad960VAUZyf32P3ugWld/f73u2XBUgcDErsZqbne2EEwngQUAAAAghu061agOf8AxFs0VWJJ0jiuBtb2sQR1dgUGORqhxVwwAAICQ8niMbj53qq5aXKKvPbxLf9tc5tjf0uHX5+/fqcd2Veh7b1ymgoyJuUBus89ZgZVBAgsTy83GmDdLmiapS1K5pOcl3W2tfWqsJzXGDNzL9LTeBQ3a29vV1tY21o/CAHw+34CvMT64vqHF9Q0trm9ocX1Di+s7chsPVDq2ZxekKVldamvrGuQdkb++Cwu9ju2OroC2HK7UstLorhwbqfb29kiHMCrcFQMAACAsslOT9O2blunaJZP02ft26FSD82Zk/b4qXfvDZ/TDW87WBbPzIxRlZFhr1exuIcgaWJhYFrm253Q/3maMuV/Sbdbahn7vGt7xkR64ceNGHTx4cAwfgZFYv359pEOIa1zf0OL6hhbXN7S4vqHF9R3av/d51LcJXIFp1mOPPTbi90fq+pakJqi8zfRu/+WJF1UxOT46hlRXV0c6hFGhhSAAAADC6tL5Rfr3R9folpVT++2rbGrXf/1qg37wxL4J1VKwvSugTr/zn5cKLEwQrZL+Iul2SRdLOlvSVZK+Jqmm+5jXSXrAGJMUiQABAAAwNkeajWN7RmZs3OPNdMV5pMkMciRCjbtiAAAAhF2WN0nfvHGprl0ySR//+3ZVNZ1uYxCw0g+e2K9XTjbqB29aPiHWgnJXX0lSBhVYmBimWGvrBxh/3BjzY0lrFUxqXSLpfZJ+NMrz98+UO5VI2iRJq1at0uzZs0d5egzF5/P1zpxes2aNvF7vMO/AaHB9Q4vrG1pc39Di+oYW13dkqprbVfvCc46xW6+6QPOKM4Z8XzRc35Ztp/TCA7t7t8vavbryygtlTOwnsmKt4wB3xQAAAIiYNfMKtfbDF+ujf92mZ/Y7Wxk8vqtCN971vH719nNVmpsWoQjDw73+lUQFFiaGQZJXPfsqjDE3SdotKVnSBzXKBJa1tmyo/X1/hEhJSVFqaupoTo9R8Hq9XN8Q4vqGFtc3tLi+ocX1DS2u7+B2H3J2f05PTtBZ0wqU4Bl5EihS13f13GIFv4IGVbd06ESTX3OLM8Mey3hLSYmtNadpIQgAAICIKshI0e/ecZ4+dc38fjcze8qb9LqfPqeXjtZFKLrwaGjrdGwnJ3rkTUqIUDRA9LDWHpL0ePfmHGPM5EjGAwAAgJHZeqzesb1sas6okleRND0/TZOznZVfzx2IrbWj4gUJLAAAAEScx2P0/kvn6J53rVJOmnOZm+rmDt36yw16YldFhKILvUafM4GVncpSP0Afu/q8nhKxKAAAADBiW445JyGePS0nMoGMgTFGq+cUOMaeP1gzyNEIJRJYAAAAiBoXzM7X/e+/ULML0x3j7V0Bveeel/S3TccjFFlouSuwslj/CugrNqbqAgAAQJLk6/Rrm6sC65xpuZEJZoxWz853bG84VCN/wEYomomLBBYAAACiyoyCdN33/gu1Zl6hY9wfsPrUvS/rJ0/ul7XxdePQ2OZcA4sKLMBhUZ/XJyMWBQAAAEZky9E6dfgDvdseI62cmRfBiEZv9WxnBVajr0uvnGwY5GiECgksAAAARJ3s1CT9+u3n6qYVpf32feexffr2v/fGVRKrXwUWCSxAkmSMmSXpyu7NQ9baE5GMB6e1dfj16M5T+vvm42pytUEFAAAT2wuHnO32zpqSrSxvbN3jlGR7NcvVGeS5A7QRDDcSWAAAAIhKSQke3XnTUr3/0tn99t319EF969H4SWK518CKtZs7YCyMMTcYYwbtl2mMKZb0D0k9/0H8NCyBYUj+gNUPn9ivVV9/Qu+9Z4s++Y+XdcX31mnzkdpIhwYAAKKEe72oC2blD3JkdLvQVYW1bl9lhCKZuEhgAQAAIGoZY/SpaxboSzcsknGtgvOzdQf1zUf3xEUSy12BRQtBTBA/lnTUGPMjY8ybjTEXGGOWG2OuMMZ8VdIrks7uPvZZkcCKCv/voV36/hP71Og73fq0orFdb/rFBj24nQ6PAABMdC3tXdp+vN4xdsHs2ExgXTzXmcDafKSu370bQosEFgAAAKLeOy6cqW/fuLRfEuvn6w7pW4/ujUxQ46ixXwvBQYtSgHgzWdIHJf1J0vOStkp6XNLnJPX80nGvpBuste0RiRC9ntlfpbufPzLgPn/A6rP37VBNM/+aAACYyDYfrVNX4PQkw0SP0coZsbX+VY+L5hYoOfF0CqUrYLV+X1UEI5p4SGABAAAgJtx87lTdedOyASuxfv3s4cgENU6owMIE9XZJX5L0qKR9kmoldUmql7RD0s8lrbbW3mStrY9QjOjW6OvUJ//+8pDHNLd36cdPHghTRAAAIBo9f7Dasb20NFvpKbE5QS8tOVGrXdVj/9ldEaFoJqbY/JMDAACACemmFaWSpE/+Y7v6dg786sO7VJLl1XVLJ0UosjPTtxWXxBpYmBisteskrYt0HBiZP244pvJGn2PsU9fM1ysnGvXwjlO9Y/dsOKrbVs/QjIJ09ykAAMAE8NQe5zpRq13rSMWayxcU6em9p6uunt5XpS5/QIkJ1AaFA1cZAAAAMeWmFaX61o1LHWPWSh/96zZtOFQzyLuim7uFIBVYAKJJIGD15xePOcYumlOg966Zrf+5bmG/1jpUYQEAMDEdr23Vvopmx9hlC4oiFM34eNXCYsd2fWunthyrj0wwExAJLAAAAMScN547VZ+8er5jrMMf0O2/36z9FU0Rimrs+q+BRQILQPR47mC1jtW2OsY+euU8eTxGU3JSddvqGY59D+84qSYfC5wDADDRPOmqvspLT9byqTmRCWacTMlJ1YKSTMfY2p2nBjka440EFgAAAGLS+y+drbecP80x1uTr0u2/39xvTaloZq1lDSwAUe1PG53VV/OLM3XOtJze7dsvnqUEz+kFCn2dAa3dUR6u8AAAQJRwJ7AunV/o+I4Qq65eXOLYfvjlU/IH7CBHYzyRwAIAAEBMMsbof19zlq5a5GzpcKSmVR/+y9aYuaFo6/SryxUra2ABiBaVTT49vsu5WPmtq6bJmNM/RhVmpuiy+YWOY/7xUllY4gMAANGhpb1LLxx0tnR/VYy3D+xxwzLnWsuVTe168XBthKKZWEhgAQAAIGYleIx+9OaztbQ02zH+9N4qfe/xvRGKanQGqhbLSk2MQCQA0N/fN5c5kuzeJI9ed/aUfsfdtKLUsf3ikVoddbUdBAAA8euZ/VXq8Ad6txM9RhfPLRziHbFjTlGmFk7Kcow9+PLJCEUzsZDAAgAAQEzzJiXoZ29ZoYKMZMf4T586qEd2RH9v8sa2rn5jmVRgAYgCgYDVn190tg+8YenkAducvmpBsXLTnOMP7ajodxwAAIhPD77svPdaOSMvrlqju6uw1u44pc4+CTuEBgksAAAAxLzJOan66a3nKNHVX/0Tf9+uozUtEYpqZNwVWJkpiXHRJx5A7Fu/v0pldW2OsVtXTRvw2OREj25YNtkx9uTe6pDFBgAAokdrR5ee3O1c/+q6pZMGOTo2Xb/E+T2nrrVTT7nW/ML4I4EFAACAuLBqVr6+eMMix1hrh18f+es2dUXxzLhGVwIrK45mKQKIbe7qq4WTsrR8as6gx1/jWuB816km1bWHIjIAABBN/rO7Um2d/t7tBI/Rq88qGeIdsWdafprOmZbjGPvrpuORCWYCIYEFAACAuPHW86f3W4dl67F6/eSpAxGKaHjuCiwSWACiQUWjT0+4ZlLfumqajBm8QnTlzDxleZ1r+O2so6IUAIB495BrPajVs/OVn5ESoWhC500rpzq2n9pbqfIGX4SimRhIYAEAACBuGGP0v69ZrBn5aY7xHz95QFuO1UUoqqE1+pwJrOzUxEGOBIDw+dum4/IHbO92WnKCXrd88hDvkJISPLp8YbFjbEctCSwAAOJZo69TT+2tcoxdH2ftA3tcv3Sy0pMTercDVvrHS1RhhRIJLAAAAMSV9JRE/eCWsx3rSPkDVh/96zY1t3dFMLKBNbY5Y8ryUoEFILL8Aau/uFrivGbZZGWO4O+nKxc5E1gHGo3aou+vXgAAME4e3H5SHV2nW7YneoyuXhxf7QN7pKck9lvz8y+uST8YXySwAAAAEHeWT83Rhy+f6xg7WtOqrz+yO0IRDc7dQjCbFoIAImz9viqdqG9zjN26atqI3rtmXqGSE07/1OC3RrvrqcICACBe/W1zmWP7ioXFyklLjlA0oeduI1hW16bHd5VHKJr4RwILAAAAcen9l87Wium5jrE/bTymFw/XRiiigblbCLIGFoBI++PGY47txZOztGRK9ojem5GSqNVz8h1jtBEEACA+7S1v0vbj9Y6xN64sHfjgOLF8ao6Wljq/F/3m2SORCWYCIIEFAACAuJSY4NEP3rRcaX16lEvSZ+57Wb5Of4Si6s9dgUULQQCRdKqhTU/uqXCM3bpqmowZeRLK3UZwV71Rhz8wyNEAACBW/X2zs+VwUWaK1swtjFA04WGM0TsvnOkYe/FIrXaUNUQoovhGAgsAAABxa2pemj5+1XzH2KGqFv3fUwciFFF/jf1aCCZGKBIAkP666bj6LuOQnpyg1y6fMqpzXLHQmcDy+Y02Hakfh+gAAEC08HX69Y8tzvaBN64oVWJC/Kccrl0yScVZKY6xn68/GKFo4lv8/2kCAADAhHbb6hla5mrxcNe6g9pX0RShiJz6VWDRQhBAhHT5A/rrJudM6tcsn6KMlNEl1ouzvFo2Nccx9uTeqjMNDwAARJEHtp1QfavzXubmFfHdPrBHcqJHb7tghmPs4R2ndKAyOu4x4wkJLAAAAMS1BI/RN96wVAme0+2vOv1Wn7n3ZQX6lhlEiLsCixaCACLl6b1VOtXgc4z916ppYzrXVa42gk/urZa1kf87FwAAnDlrre5+/qhjbM28Qs0qzIhQROH3llXTHZN8rJV+8mT0dPqIFySwAAAAEPcWTc7Se9bMcoxtOVavv7l6toebtVa1rR2Osdz05AhFA2Ciu/v5I47tpaXZOmtK9sAHD8OdwCpvbNcrJxvHGhoAAIgim4/Wafcp5//Xb1s9PULRREZ2WpJuWz3DMfav7Sd1sKo5MgHFKRJYAAAAmBA+dPlczSxId4x969E9qnclkMKptcMvX2fAMVaQQQILQPjtq2jSsweqHWNvWTX2H6LmFGVoWl6qY+yxV8rHfD4AABA9frH+kGN7en6aLp1XFKFoIuddF81UenJC73bASt9+dE8EI4o/JLAAAAAwIXiTEvS/r1nsGKtr7dT3Ht8XoYik2pb+ybM8KrAARMBvnzvi2M5LT9Zrlk8e8/mMMbpifqFj7LFdFWM+HwAAiA57y5v0uOv/6W89f7o8fVq2TxS56cl6u6sK69+vVGjjoZrIBBSHSGABAABgwlgzr1DXLC5xjN2z4aheOdkQkXiqm9sd28mJHkcfdQAIh9qWDv1za5lj7L9WTZM3KWGQd4zM5QsKHNt7ypt0tKbljM4JAAAi6/+edq7zlJ2apDefN7Y1M+PBey6Zrdw05zrGX3tkd1SstxwPSGABAABgQvn89QvlTTr9NThgpS8+8IqsDf8NhrsCKz89WcZMvJmLACLr188ecrQzTfQYveX8M1/HYllptjKSnH+3umdsAwCA2HGkukUPbj/pGHvHhTOUPoEn4WWnJukjV8xzjL1c1qA/vXgsQhHFFxJYAAAAmFBKc9P0gUvnOMZeOlqn+7acCHssNc2uBBbrXwEIs/rWDv3u+aOOsdcsm6ziLO8ZnzvBY3RWrjOB9ehO1sECACBWfeexvepbWJSWnKDbXC30JqJbV03TrELXestr96ii0RehiOIHCSwAAABMOLevmaXp+WmOsTv/vVe+Tn9Y46hxVWDlpaeE9fMB4DfPHVFze1fvtjHSB141Z4h3jM7SPGcCa/PROp2sbxu38wMAgPB4uaxeD718yjH21vOnKyeNSXhJCR79v9ee5Rhrau/S5+/fGZFOH/GEBBYAAAAmHG9Sgr50wyLHWHmjT797/khY46hxrYFVkM7NH4DwqW5u12+ePewYu2HpZM0uzBi3z5ifbZWa4Pzh5pEdpwY5GgAARCNrrb716B7HWJY3Ue+7dHaEIoo+F84p0BvOmeIYe3xXhf62+XiEIooPJLAAAAAwIV02v0irZ+c7xn761AE1tHaGLYZ+a2DRQhBAGH33sX39qq/+exyrryQp0SMtcVVhPfgyCSwAAGLJozvL9dyBGsfY+y+bQ/WVy+evW6Q816TEL/9rlw5VNUcoothHAgsAAAATkjFGn75mgWOs0delu9YdDFsM1bQQBBAhu0426q+bnIuLv375FM0rzhz3zzon35nA2n68XsdrW8f9cwAAwPhrae/SVx7a5RgryfKy9tUA8tKT9c03LHGMtXX69f4/blFrR9cg78JQSGABAABgwlo2NUfXLZnkGPvtc4dV3hCexXbdLQSpwAIQDv6A1Rce2OlYhD01KUGfciX1x8u8bKuc1CTH2L+2nwzJZwEAgPH1o//s1ynX/dHnrlsob1JChCKKblctLtGtq6Y5xvaUN+kz9+5gPawxIIEFAACACe0TV89Xgsf0brd3BfSDJ/aF5bP7tRBkDSwAYfDb5w7rpaN1jrH3XTpbJdnekHxegke6amGhY+zel8r4EQcAgCi39VidfvnMIcfYRXMKdP3SSYO8A5L0+esWal6xc03Rf20/qf97OnzdPuIFCSwAAABMaDML0nXLyqmOsb9tPq6DIe5Tbq1VTbN7DSxaCAIIrQOVzbrz33sdY9Pz03T7xbNC+rmvXVbi2D5U3aItx+oGORoAAESar9OvT/x9u6NiOynB6MuvWSxjzOBvhNKSE/Xzt56rzJREx/id/95LFfookcACAADAhPfhy+cqtU8LjICVfvLkgZB+ZkuHXx3+gGOMCiwAodTS3qX33fOS2rtO/91jjHTnTcuUmhzaNkBnT83WrIJ0x9jfNpWF9DMBAMDYfXPtHh2sanGMfeSKeZpTlDHIO9DXzIJ0/eCW5XLn+j7xt+16Zn9VZIKKQSSwAAAAMOEVZXn1jgtnOMYe2HZCh6tbBn7DOKhxtQ+UWAMLQOhYa/WZ+3Zof6WzuvTtF8zQeTPzQv75xhjduKLUMfbQyydZ0BwAgCj0+K4K3f38EcfY0tJsvWdNaCu2483lC4v1uWsXOsY6/AHd8fuXtOlIbYSiii0ksAAAAABJ7754ltKSw1eFVdvS6dhOTUpQWnLiIEcDwJm589979aCrZc2Ckkx9+poFYYvhxnNK1WfJQbV0+PXANtroAAAQTY7XtuqT/9juGEtJ9Oi7Ny9TYgLphNF610Uz9bYLpjvG2jr9etuvX9TTeysjFFXs4E8cAAAAICkvPVlvu2CGY+z+bSd0tCY0VVi1rgqsPNoHAgiRXz97uN+i4ZneRP38rStC3jqwr5Jsry6ZV+gY+93zR2StHeQdAAAgnFrau3T77zervtU52e5LNyzW3OLMCEUV24wx+tINi3XDssmO8bZOv979u816YNuJCEUWG0hgAQAAAN1uv3imYy0sf8CGrAqr1nVTWED7QAAh8PN1B/X/HtrlGEvwGP3wluWanp8+yLtC5+2rZzi295Q3acMhWugAABBp/oDVx/+2XXvKmxzj1y2ZpDefNzVCUcWHBI/R9964TFcsLHaMdwWsPvLXbfqdq10jTiOBBQAAAHTLz0jp197hvq0ndKymddw/iwosAKEUCFh9c+0efWPtnn77vv76s/SqBcUDvCv01swt1KwCZ+Lst88djkgsAAAgyFqrLzywU4++Uu4Yn1OUoW/euETGmEHeiZFKSvDorreco9ctd1ZiWSt96V+v6HP/3KH2Ln+EooteJLAAAACAPt598Sx5k05/TfYHrP7v6fGvwnKvgZWfkTLunwFgYmpp79IH/rRFP1t3sN++T1+zQG9aOS0CUQV5PKZfFdbjuyt0sKo5MgEBADDBWWv1jbV79KeNxxzjWd5E/fJt5yrTmxShyOJPUoJH33vjct3m+i4kSX/ceExv/PkGnaxvC39gUYwEFgAAANBHYWaK3rLKVYW15YQqG33j+jk1rgqsfCqwAIyDfRVNes1PntXaneX99n3+uoV636WzIxCV040rSpWZkti7ba3006dC064VAAAMLhCw+uIDr+gX6w85xpMTPLrrLSs0syD87Ybjncdj9KUbFuljV87rt2/78Xpd/+NntW5fVQQii04ksAAAAACXOy6ZpeTE01+VO/wB/Xac+5KfanAmxIqzvON6fgATS6c/oJ88uV/X/+hZHaxqcexL9Bh98w1L9O6LZ0UoOqeMlES9bbVzosAD206GpF0rAAAYWKOvU7f/frP+sOGoY9xjpB/eslwXzimIUGTxzxijD10+Vz9403JH9w8p2Gr+7b95UV+4f6daO7oiFGH0IIEFAAAAuBRlenXjOVMcY/dsOKrm9vG7gTjpSmBNyU0dt3MDmFh2lDXohh8/q+88tk8d/oBjX6Y3UXe/4zzdcl7k2gYO5J0XzlRqUkLvtj9g9ZOn9kcwIgAAJo4Dlc163U+e03/2VDrGPUa686ZlevWSSRGKbGJ53dlT9M/3X6jp+Wn99v1hw1Fd+8Nn9NLRughEFj1IYAEAAAADePfFs9R3reImX5f+8uKxwd8wCv6AVNnU7hibkkMCC8DolDf49Jl7X9Zrf/qs9pQ39du/eHKWHv7gxbpobvTNoM7PSNFbzncm1f7xUpl2n2qMUEQAAEwMj+48pdf99DkdqnZWbCclGP3k1nN044rSCEU2MS2clKV//fdFumJhUb99R2paddPPntdn79uhOlcL+omCBBYAAAAwgNmFGbpiYbFj7DfPHlanq7phLOo7pIB1jpVSgQVghBraOvWtR/fokjuf0l82He/394nHSLdfPFP3vm+1pg0wozda3L5mlqMKK2Clrz28W9baId4FAADGor61Qx/5y1a9954t/TpL5KUn6/fvXKVrqbyKiOzUJP3ybefq/712cb+WgtZKf37xmC777tO6Z8NR+d1f/OIcCSwAAABgEO+9xLlezMkGnx5++dQZn7e23Ti205MTlJ2adMbnBRDfyht8+voju3XhN5/UXU8fVHtX/4T6gpJM/fP9F+pz1y2St09yKBoVZXr13ktmO8aePVCt/+yuHOQdAABgLJ7YVaErv79e92872W/fWVOy9OAHL9IFs/MjEBl6GGP01gtmaO2H1+jsaTn99te3durz9+/Uq3+4Xo+9Uj5hJvyQwAIAAAAGsWJ6nlZMz3WM/WzdwTO+Wahzdg/UlNxUGWMGPhjAhGat1bbj9frE37fr4m8/qV+sPzTgenypSQn6+JXz9K//vkjLpuaEP9Axun3NTJVkeR1jX3hgp5p8nRGKCACA+LGnvFFv/82LevfvN6vK1cJckl63fLL+8d7VtDOPIjML0vX391ygz756gdKS+09G2lfRrDv+8JLecNfzev5AddwnskhgAQAAAEO4Y42zCmtPeZOeO1BzRuesdSewuGEE4NLQ2qnfv3BEr/7hM3rdT5/TP14qU6e//w8UCR6j/1o1Tes+eak+ePlcJSfG1m1+WnKiPnXNfMfYqQafvrF2T4QiAgAg9p2sb9On/rFd1/7wGa3bV9Vvf5Y3Ud974zJ9/03Lo75ieyJKTPDoPZfM1n8+fomuWzpwW8etx+p166826g13Pa/HXilXIE5bCyZGOgAAAAAgml25sFizCtIdixzf/fwRXTS3YMzndLcQnEwCC4Ck1o4uPb6rQg9uP6l1+6oGTFj18Bjp2iWT9LEr52lWYUYYoxx/rz97iu7bckLPHqjuHfvTxmO6YmGRXrWgeIh3AgCAvg5Xt+hnTx/UfVsHnvgiSZfOL9Q337BUJdneAfcjekzKTtVPbz1H/3Vetb7y0C7tKW/qd8zWY/W64w8vaV5xhm5bPVOvXT5Z6Snxk/aJn38SAAAAIAQ8HqN3XDhDX3jgld6x/+yp0PHaVk3NSxvTOes6nNtTcklgARNVRaNP/9ldqSf3VOjZA9XydfZf16qvlESPbj63VLdfPEvT89PDFGVoGWP0jTcs0VXfX6+2Tn/v+Mf+tl0Pf+hiqlQBABiCtVabjtTpd88f0dqdpzRYIU5hZoo+dfV83bSilPblMWb1nAI98qGL9eDLJ/Xdx/bpWG1rv2P2VTTrf/65Q19/ZLdef/YUvfm8aVo0OSsC0Y4vElgAAADAMN5wTqm+/eheNXWvO2OtdM+Go/rstQvHdD53BRY/zgITh6/Tr23H6/X8wRo9uadCO080juh9pbmpumXlVN1y3jQVZKSEOMrwm5qXpv+5doFjskB9a6fef89L+ssdFyh1gDUgAACYyBraOvXg9pO6Z8PRAStzeqQlJ+iONbN0+8Wz4qoyZ6LxeIxeu3yKrl0ySX/ddFw/W3dQZXVt/Y5rbu/SHzYc1R82HNX84ky9ZvlkvXb5ZJXmjm3yZaTxJxYAAAAYRnpKom46t1S/fe5I79hfNh3XR66YN+ofVQNWqnetgVVKBRYQt1rau7TlWJ02HqrVi4drte14vTr8Q1dZ9UhO9OjyBUV683nTdNGcAnk88T1b+i3nT9fzB2u0dmd579j2sgZ97G/b9NNbz4n7f34AAIbT0Nqpf+8q19odp/Tsgeoh2w2nJHr0ppVT9d+XzVFRFu0C40VSgkdvOX+63rRyqh56+aTuevqg9lU0D3js3oom3fnvvbrz33u1ckaublg2WbNS2gc8NlqRwAoRY8zTki4ZybHWWr6FAwAARLm3nj/dkcBqaOvUv7af0JtWThvVeZo7pS7rrsCKzdlwAJz8AauDVc16uaxBO8rqta2sQTtPNMg/ikW1PUa6cE6BXrNssq4+q0RZ3qQQRhxdjDH61k1LtetUo47WnG6Ns3Znub784Cv639cspuURAGDCOVHfpqf3VuqxVyr03IFqdQ3zvSIjJVFvvWC63nnhTBVmxl/VNoKSEjx6/dmleu2yKVq3v0p/3HBUT+6pHLSF5KYjddp0pE5djdUDHxClSGABAAAAIzCrMEOXzCvUun1VvWN3P39Ubzx36qh+UK11TXhLSjAq4sYSiDkNbZ3aX9GkvRVN2lfepF2nGvXKyUa1dviHf7NLpjdRl8wr1BULi3XJvELlpieHIOLYkOVN0q/edq7ecNfzavJ19Y7//oWjSvAYffH6RSSxAABxrb3Lr81H6vT03ko9vbdK+ysHrq5xm5GfprecP103nztV2akTZwLMROfxGF02v0iXzS/Sifo2/XnjMd27pUynGnyRDm1ckMAKvc2S3hHpIAAAAHDm3r56uiOBtftUozYfrdPKGXkjPkeda/2rSdmptMUCopQ/YHWqoU3Halp1tLZVh6tbtLe8Sfsqms7oRwGPkRZNztL5M/P1qoVFWjkjT0kJnnGMPLbNLc7Uz96yQm//zYuOWea/fe6Imn1d+voblnC9AABxo9HXqS1H67T5SJ02HQm2G27vGnm74cvmF+q/Vk2fEO2GMbQpOan6xNXz9bEr52nTkVrdv+2kHtlxSg1tnZEObcxIYIVei7V2Z6SDAAAAwJm7dF6RpuWl6Vjt6dZWdz9/ZFQJrArXOrusfwVEh//sqdKTJz06Wd+mo7WtOlbTqrK6thGvVzWURI/R0tJsnTczX6tm5mnFjNwJ1RpwLC6cU6Af3LJcH/rzVkcrnL+/VKbyRp9+dMvZE7pSDQAQmzr9AR2qatHuU43aeizY0m1PeeOgbd8Gkpzo0aXzCnXd0kl61YIiZfKdAi4ej9GqWflaNStfX37NIq3fV62HXj6pdfuqVN0Y6ehGhwQWAAAAMEIej9HbLpiurz68u3fs0Z3lKm/wqSR7ZAsjn2h1zoqcX5I5rjECGJuvrt2vxKy6cTnX5GyvlpRma2lpjpaV5uic6TlKS+b2e7SuXzpZ/oDVR/+6zfHD3jP7q3Xdj57RD9989qgmEAAAEC5d/oBO1LfpUHWLDlW1aM+pRu0ub9S+imZ1jLC6qq+ctCRdPLdQVyws0uULi5WRwvcKjExKYoKuXFSsKxcVyx+wevDZrXr9XZGOauT4kw4AAACMws3nTtV3H9unts7gOjf+gNWfNh7Vx66aP6L3n2hxJrAWTsoa9xgBhEeix2h2YYbmlWRqfnGGFk/J1pIp2SrIYF278fLa5VPkTUrQh/681dFO6WSDT2/8+Qt6+wUz9LGr5lHRBgAIO2ulyqZ2nTwZbDN8uLq5+7lFx2pb1ekfRVnVAJaWZuvSeYW6ZH6Rlk/NUQLtAXGGEjxGiyfF1gRKElgAAADAKGSnJun150zRnzYe6x3704vH9IFXzVFKYsKQ721u71KNaw2sRSSwgKiXlpygaXlpmp6fprlFmd0Jq0zNLEhXciJrMYXa1YtL9Oc7ztcdv39J1c3tvePWBtu4/mv7SX3oVXN066rp/PsAAIyr3vUwa1t1vLZVx2pbdbCySTuPJKiyTerY8Ny4fE5ygkdLS7N17ow8rZyRqxXTc5WTRqtcgARW6C0wxmyStEBSkqRqSS9JulfSn621sbuCGgAAwAT1tgumOxJY1c0demTHKb3+7NIh37e3otmxnegxmlucEZIYAYzOtLxUzZyRr+Isr6bmBpNV0/PTNC0vXQUZyTKGWc+RdM60XD3y4Yv0oT9v1YZDtY59tS0d+vKDu/Tb54/oI1fM1XVLJpPIAgCMSCBgVdPSofIGn8rqggmqnsfx2uB6mF0DLlB1Zt8LJmV7tWhSllbMyNXKGXlaMiVb3qShJ8MBExEJrNAr7n70mNL9+P/t3XuYJVV96P3vry/T3dNzYQYGhts4AoJgkCgC4hsQz1GSE2I0xiiJ9xwvT85JYnI85uJ53wQ5OZiL5tXzenw0YESN8ZZE1CA6XgAxjwreicAgCAgKA8PMwEz39H29f1T1dHVP7+7eu7t6X+r7eZ797FW71q5a9evf9NTqVbXqV4E/jogXp5Run/ebC4iIhf86AlunC6Ojoxw8eHChuqrTyMjIvGWtHGNcLuNbLuNbLuNbLuO7NE/Y2Mu524/g5nv3Hfrs7268m188bfOCf+S+9f7Zz9c56ai1TI2PcdBLmlbE6Ojo4pWkGj74qqfxpCc9qdnN0AKOXt/PR177TP7+a/fw9h07Z00pCHDfo8P84ce/z19edwevPH87v3XuNjYNevW6JFXR8NgEjx4YY8/Q7Neux0d48PERdj02woOPjfDw/pFlT/W3kI0DvZy0ZZCTt6zj9GM3cPqx6znj2A3eXSUtkQNY5ZkCvgx8Dvg+8CiwHng68AbgdOAM4PqIODel9JNaG6rh/qVW/OY3v8ndd99d5+a1VF/96leb3YSOZ4zLZXzLZXzLZXzLZXwX9nNrgpuZuUry9ocO8O5PfonTjqjdAf7q3V3AzF0BG6f2s2PHjjKbWSm7d+9udhMklay7K3jdhSfxvDOO4YrP3c6O23YdVmfX46P8zRd28q4v/4iLTt3CJU891gfeS1IbG5uYYt/wGHuHx9k7PMbeoZny9MDUo0Nj7BkaZc+BMfYMjzEyPrX4hldIf28X248c5KQtgzzxqEGeeNQ6nnjUICcdNeiFFNIyefZWnhellPbN8/lNEfEe4ErgVWR3Z70TeNHqNU2SJEnLdebmxJb+xCMjM3dcfflnseAA1gNDs+/OOm6wvKs9JamTbT9qkL975TO45d49XPG52/nuT/YdVmdsYoodt+1ix2276Ovp4lknH8kFT9rChadu4eQtg04LKUmrLKXEwfHJbPBpaIx9w+PsGR7LBqeG8sGp6YGqoay8b3icA6MTzW76oedhbtu8lmM3rGF4171sGYAXX3wB248+gq4u/0+RylDpAayI6AFWYsKW16SUri5+UGPwanrdeES8FjiP7NlYvxYRx6eUflrHPk9cZP1W4BaA8847j5NPPrmOTWsxIyMjh65Kv/DCC+nv729yizqPMS6X8S2X8S2X8S2X8a3PY0f+lMuu3XloeedjXRx/5nk85dj1h9WdmJrizTffCMwMWr3gwrM5/6TNq9HUSnDWAal6ztm+mX/5nWex47ZdXHXTj7nl3r3z1hudmOL6nY9w/c5HANi6oZ+zt2/i6ds2cfYTNvHkret99ogk1SGlxOMjEzN3Rg3NDD7ty++M2le4S2q6PHf611bR3RVs3dDPiZsHDg1UnZi/b9u8ls2DM8/DPHjwIDt23ANkz7Jy8EoqT6UHsJoppTQREe8H/ib/6NnAP9bx/QcWWl+8kqyvr4+BgYFGmqkl6O/vN74lM8blMr7lMr7lMr7lMr6Lu/SZT+TdN97D7gNjhz577033cdWrzjms7g8e2MfYnPn1f377FgYGnFZkpfT19TW7CVqGiNgG/D5wCbANGAXuAj4BvCelNNzE5qmFRQS/+JSt/OJTtvKDB/bx91+7h2tvfXDBZ5o89PgI1/7gQa79wYMAdAVsP3KQU49Zz6lb1/Pkres5acsg2zavZe0a/3QiqfONjE+yd3iMRw+MzZqab28+PV/xsz1D2SDVxFTrzybQ2x1sHlzD5sE+Ng/2ctS6Po7dOMDWDX1s3TjA1o39HLuxn6PW9dHtQJTUcip9FpYPIp2+Apt6sMHv3VYoH78C7ZAkSdIq6u/t5jX/1xP5my/M3IX1pdsf5vv37+OsE4+YVXfHD2c/p2Xb5gE2Oye+BEBEXAJ8BNhY+HgtcE7+em1E/HJK6cfNaJ/ax1NPOIJ3Xvo0LvvVp7Djtl1c+4MH+be7di/6R9apBD/ePcSPdw/x+R8+NGvdlvV9PCG/Av+EzWs5en0fW9b3cfT6Po7e0M+WdX2s6emqsWVJWn1TKTE0Dgcm4Ns/2cfQxGMzA1HTg1DDY7M+GxqbbHazl2RDfw+bB9dwxNo1bFrbe2hgavNgH0cOrskGq9atYfPa7H19X49TxkptrNIDWAAppTuauHt/e0qSJLW5Vz1rO+//2j3sGZq5C+tvv3gnH/ztc2fV+8KcP4g+97Qtq9I+qdVFxFlkd1mtBQ4AbwOuBwaAS4HXAacB10bEOSmlA81qq9rHEWvX8JJnnMhLnnEi+4bHuOlHu/nqnY9w049289DjI3Vt65H9ozyyf5Rv3Tf/9IQAm9b2cvT6fo7e0MemtWtY39/DhoHe7L2/d3Y5X7eur4eB3m6nnpK0qJHxydmDT8XX8Bh7DswMSO3J75aaSvmffb/3neY2voburuCIgV6OWNs7a0Bq0+AaNk2X167Jl7PyxoFeerq9YECqksoPYDXZGYXyz5rWCkmSJDVsXV8Pb7jwJN523cx1UTfe+QjX73yY55x2NAB3P3KAHz08+2/uzz3dASwp906ywasJ4OKU0tcL674SET8C/prs+cH/Dbh81VuotnbE2jU8/6zjeP5Zx5FS4u5HDvDt+/bynfv28e2f7OWuh5c/Jrp3eJy9w+Ps3LW/7u/29XTR39vNQG83A2u66e/tpr+3K1vu7aZ/TTf9Pd0MrMk+689fPUzx411Bbxdw+8OsG+inuyvo6erK3ruDnjnL2fqYXa8r6C7U7ekKB9WkkkxOJfaPjPPYwcNf+4bHD5u+b/p1cLy1745a093FpsFskOmwAam1+YDUYKGcD/T7u0bSYhzAapKI6AF+u/DRV5vVFkmSJC3PK8/fzpU33cPuA6OHPvvzT/+Q8//wSPp7uw+7+2pDb+KsEzasdjOllhMR5wAX5YvvnzN4Ne0dwGuA04E/iIi3pZTGV6mJ6jARwSlHr+eUo9fz0nO2ATA0OsFdDx9g56793PnQ/ux91352PT66yNZWxujEFKMTUzx2sJG07gbgH+769xVtUwTzD3TNGvDKPu+OIAK6IujqIl8OuqY/K6zv7irUzd+n63Z3za473/ridottmil3zTNQl39eqDtrfffMwF22nJUnxsf42TB0B9y3Z5jBgURv90wserpnx8Y/xHe2qanE0NgEw2OTHBidYGh0ggOjEwyPTjI0NlH4bJLh0QmGxiYOH6QaHmf/6ASpxR8b1RWwaW02Fd+mwZmp+DbnnxU/nx6UWrum22n6JJXCAawSRMRzgO+mlPbVWN8LXEl2BSHAZ1NK969S8yRJkrTCBtZ080e/dBp/9E8/OPTZT/YM844dO3nTxafxz99+YFb9MzcnuuzkSwAvLJQ/MF+FlNJURHyIbGrBTWQDXl8svWWqjMG+Hs468YjDnl14cGyS+/cOc9+jw9z36BA/2TPMg4+NHJpS8OH9I4xPtvhfohuUEoxPpvz4pprdnCbK/mx2xfe+sWjNriAbCOuePXDWW1ieHhzrnlvO34sDZIcNvnXXHpTL9tE1a1Bu7mBg5IOJMwODcwcYF69TXJ6pv/Q6E1OJsYkpxianGD44wr37swHCO3cdYHDtxKH4Tb9PTSUen3O30oGRCcYnE5NTiYmpxOTUFJNTMDk1lS+nwvtU9j6ZmEyFdZMz3537ncnC8sj4zGDVcJs8H2o+a9d0c+S66QGnfBAqLx85OPt9cz5NnwOyklqFA1jleBXwmYj4DHADsBN4HFgHnA28gezqQYCHgTc2oY2SJElaQS9++gl84pb7Zz0j5cqb7uHKm+45rO5TN3fmHzylBlyQvw8B316g3o2F8i/gAJZWwcCabk49Zj2nHrN+3vUpJfYNj/NwPpj18OOjPLx/lMcOjrN/ZJzHRyay94Pj7B+Z4PGR7L2d/xCu2qYSjE1O4Y+3HtmfJd9+681Nbkf76OmKWXc/HTnYx6bB3kN3R2WDUX2s7Zni1lu+zmAvXPJL/4GBgYFmN12SGuIAVnnWAb+Vv2q5Fbg0pXT4XzUkSZLUVrq6gr/4tZ/jkv/9NSanag9QHb82cepGB7Ck3PSFfXellCYWqHdHoXx6zVpzRMQJi1TZOl0YHR3l4MGDS920lmBkZGTecifp74JtG3vYtnEd2Z8BFjc+OcWB0ezOjpHxSUbGpzg4PsnoRPY+Mj516POR8UkOTi9PTM2qf3Bsgocf3cfYFHT3DeR3oRx+N8mhcqvPWyZVTG93sLG/lw0DPWzo72HjQC+bB3vZNDA9NV82MHXE2rw82Mv6vp4lTdU3MjLC/X0zZa2sKvz/1kzGt1yjo6szRfJKcQCrHH8FfA84HzgD2AJsBkaBXcC3gH8CPpVS8tocSZKkDvHkrRu4/AVP4X98av5nkfT3dPHKJ43hrCwSREQ/cFS++MBCdVNKeyNiCBgETqxjN0ueqv2b3/wmd999dx2bVj2++lUf+7xU/flrlgB681fRcdOFA4tuN6VsMsCplL0m57zPLU8xZzkFk3PrJEjMvE/vI00vF8tz182znIhDy4dts1B3KmXlyRrHNHs5DtWZf/2ceDD7u9J8uiPR3w193dDXlb33d6dsOX8NdMPansRAD6ztycpru7PyQA+s6YKIGs++G8pe48Aj+atR/v4tl/Etl/Fdebt37252E+riAFYJUkq3A7cD72xyUyRJkrTKXnbeEzg4NslfXHv7Yeve8p9OZePu+Qe3pAoqzsu2+F/fsz/nDbLU21wkzRIB3WTPHGrMatzB1Vp3iRUHzIqDd/MOfM07GBZMTc0Mis1Xv/agWmTfm/P9RfcPTE7FvAOIxc/mDh7CfAOKhRiQfXnuZ7W2n5g/0YJET1eWhzNxXTgp+7qyQaCBnmxQqKcr0UX23K7u/Plds14c/vmsZdK83+2es43erunBqJQPUM0MVvV0NZRSkqQ6OYAlSZIkrbDXXnASx2zo59Pf+ymPHRynuyt4wc8fzwvP3MKOHQ5gSbniTSZjS6g/Pd9JPQ/yWOxura3ALQDnnXceJ598ch2b1mJGRkYOXTl94YUX0t9/2H1FWgbjW67p+AZw0bONbyNSSvlAW2IqJbq7gp6ubORnbv72ruljcioxPjXFxGQ27WUErOvrobfb0aJ6+fuhXMa3XMa3XO0244ADWJIkSVIJnn/WcTz/rONmfebzdaRZig81WLOE+vnTPFjyP6SU0oJTExafI9LX1+dD7kvU399vfEtkfMtlfMtlfMtlfMtlfMtlfFdeX1/f4pVaiJcwSJIkSZKaYX+hvJRpAQfz96VMNyhJkiSpzTmAJUmSJEladSmlEWD6KdInLFQ3IjYxM4B1f5ntkiRJktQaHMCSJEmSJDXL7fn7KRGx0BT3T57nO5IkSZI6mANYkiRJkqRm+Vr+PgicvUC9ZxfK/1ZecyRJkiS1CgewJEmSJEnNck2h/Jr5KkREF/DKfHEfcH25TZIkSZLUChzAkiRJkiQ1RUrpZuCmfPE/R8T581R7E3B6Xn5XSml8VRonSZIkqakWmmNckiRJkqSyvZFsWsABYEdEXEF2l9UAcCnw+rzencA7mtJCSZIkSavOASxJkiRJUtOklL4bES8F/gHYAFwxT7U7gUtSSvtXtXGSJEmSmsYBrM7VPV146KGHGBgYaGZbOs7BgwfZvXs3AA888IDxLYExLpfxLZfxLZfxLZfxLZfxLddDDz1UXOyuVU+tJ6X02Yh4KtndWJcAJwBjwF3AJ4F3p5SGS9i1/aYS+TuvXMa3XMa3XMa3XMa3XMa3XMa3XO3WZ4qUUrPboBJExDOAW5rdDkmSJKlJzkkpfavZjVBrs98kSZKkCmv5PlNXsxug0hzd7AZIkiRJTeT5sJbCPJEkSVJVtfy5sFMIdq47CuVnAj9tVkM61FZmrtQ8B3hogbpqjDEul/Etl/Etl/Etl/Etl/Et1/HAN/LyHQtVlHL2m8rl77xyGd9yGd9yGd9yGd9yGd9yGd9ytVWfyQGszjVWKP80pfRA01rSgSKiuPiQ8V15xrhcxrdcxrdcxrdcxrdcxrdcc+I7VqueVGC/qUT+ziuX8S2X8S2X8S2X8S2X8S2X8S1Xu/WZnEJQkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUhzAkiRJkiRJkiRJUktxAEuSJEmSJEmSJEktxQEsSZIkSZIkSZIktRQHsCRJkiRJkiRJktRSIqXU7DZIkiRJkiRJkiRJh3gHliRJkiRJkiRJklqKA1iSJEmSJEmSJElqKQ5gSZIkSZIkSZIkqaU4gCVJkiRJkiRJkqSW4gCWJEmSJEmSJEmSWooDWJIkSZIkSZIkSWopDmBJkiRJkiRJkiSppTiAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYHWAiNgWEb8TER+PiJ0RMRQRIxHxQER8OiJ+MyJ6Vnif50fEhyPi3nxfD0bE5yPi0pXcTyuIiHURcWFE/PeI+ERE3BMRKX/du4L7uaiw3cVel63UfpttteI7Z5+Vyd9pEbE2It4cETdHxJ6IOBARt0fE2yNi2wpsvyPzN//9+vY8VkN57G7O83XtCu7n0oj4Qp6LI3lufjginrlS+2hFZcY3Ii6rIycvWpkjar6IODoifiUiLo+I6yJid+E4ry5pn5XJ39WKb4Xz9+kR8ZY8tvdHxGj+/9WdEXF1RFxQwj4rk79VF/aZShX2mUq1WvGds8/K5O+0sM/UkLDPVKoy41vhc077TCVarfhWOH+r12dKKflq4xdwOTAFpEVetwDbVmiffwZMLrCvzwD9zY7NCsb4+gWO9d4V3M9FS/g5Tr8ua3Zc2i2+hf1VKn/zYz4ZuGOBY94H/PIy99Fx+Qtcksem1nHcAZy0zH30A59dYB+TwP/T7Fi0Y3yBy+rIyYuaHY8VjOtCx3n1Cu+rcvm7WvGtYv4CNy7xeD8ErFmB/VUuf6v8wj7TasT4+gWO9d4V3M9Fdfx+vKzZcWm3+Bb2V6n8zY/ZPlNjx2SfqY3jSwXPOfPjXug4r17hfVUuf1crvlXMXyraZ1rRK8zUFMcBAQwBnwK+DPwIGAFOB34fOAd4BvCliHh6SulAozuLiNcCb80X7wauAG7N2/FG4DnA84GrgJc3up8WE4XyXuBbwPnAuhL3+dtkHehaHi5x36tt1eJbxfyNiHXAvwKn5R9dCXwMOEh2vH8KbAQ+GRHnp5R+sAK7bfv8jYizgE8Aa4EDwNvI/nAwAFwKvI4sptdGxDnL+L36fuBX8vL1wLuAnwFnAm8h60hfHhEPppSuanAfLWcV4zvtzEXW37PM7beq+4HbgYtL2n4l87eg7PhOq0r+Hp+//wz4JHAT8BOgm+y84E15nVcAPcBvLXN/Vc/fqrHPVD77TOWyz1Qi+0yNsc9ULvtMq8Y+U7nsM62savaZmj1y6Gt5L+CvgD8C1tdY3w18nJmR0YZHRYEjyE6WE3AfcNQ8+/pMYV8XNjs+KxTj15P9gz+l8Nm9lHs14UXNPu4OjG9V8/eywjG9eZ715wPj+fqvLGM/HZW/zFzlOg6cP8/6NxeO988a3MezC9v4DNA9Z/1Rea4mYA9wRLPj0mbxPZT7zT7eVY7tW8lOMI/Jl7cXYnn1Cu6nkvm7ivGtXP6S/eHwJXNzqbD+KGBnId4XLGNflczfKr+wz7QaMbbP1BnxrWr+XlY4JvtMSz8e+0ztH99Dud/s413l2Npn6oz4Vi5/qWifqemB91X+CzgSGM0T6vvL2E7xP8dLa9Q5AZjI63y22cdeYkzvxc5Yu8W3cvkL9DLTAb0N6KpR772F2Jzd4L46Jn/JrsCePpb31qjTlcd0+j/q3gb2c23+/QnghBp1Li205U3Njk2bxbdyJ7M14lBWZ6GS+buK8TV/54/LrxTi/a5lbMf89TXfz9w+08rHtIxz+o4552zR+FYuf7HP1Gjc7DN1Rnw950z2mdo4vubv/HHpuD5TF+p4KaVHgelb3E9exqZemL8/DvxLjX09AHwpX3xefiu+1ApemL9XKX8vIruKEuCDKaWpGvWuLpRfVGJ72sULC+UPzFchj+WH8sVNZLFesjy3/mO++MU89+bzL2Q5C53zs3lhoVxKfFWuiuevmuuGQrmhc1rzV7XYZ5KAaubvRdhnasQLC2X7TCvvhYWyfaY2VPH8VXPdUCh3RJ/JAazq6Mvfa52MLSgi1gDn5otfTymNLVD9xsI+z2lkf9JKqnD+XlAo31izVjaH/lBe/oXymtM2puM2BHx7gXrFmNYbt3OZ+b1c82eT5+o3pr8TEb117qcVrUZ8Va4q56+aa02h3NA5LeavFmafSZVV4fy1z9QY+0zlss/U/qqcv2qujuszOYBVARFxNNnDiQHuaHAzTyJ7+NtStlFcf3rNWlrIFRHxQESMRcTeiPhuRPy/EXFqsxvWpqqav8X21zzulNIE2QOa536nUe2ev9MxuCuPTS3LyZUl/WzmrO8hy+V2txrxnSUivhgRj+Y5+XBE3BARfxIRm5az3Qqrcv6uOvN3lmcXyo2e05q/mpd9prbU7uecraaq+WufqTH2mcpln6n9VTl/V535O0vH9ZkcwKqGNzNzIvqJBrdxYqFc67bBaffX+J6W7nzgeLL5uI8Afh74A+D2iLgsIqJpLWtPVc3f6fYPpZT2LVJ3+ri3RETfgjUX17b5GxH9ZA+ihEVyJaW0l5mrMOvNlUrm5CrGd67nApvJcnIL2Qnd24AfR8QLlrntKqpk/jaR+QtERBfwJ4WPPKfVSrPP1H7a9pyzRVU1f+0z1ck+U7nsM3WMSuZvE5m/dG6fqWfxKmpnEXEe2UkQZAn3ngY3tb5QPrBI3aFCud3nw15tD5LNH/o14MdkD8rbBjwfeAXZL+I/J7sd9C1NamM7qmr+Th/3YscMhx/3aAP764T8rSdXIIvbIPXnStVzEsqN77RbgWuAm4GfkeXgacDLgIvJ/ljwzxHx/JTSdQ3uo4qqmr+rzfyd7Q+ZmdrqUymlbzW4HfNXh7HP1HY64ZyzFVU1f+0z1c8+U7nsM3WGqubvajN/Z+vIPpMDWB0sIo4B/ons55yAV6WUhhvcXH+hvNBc2DD7JG6gwf1V0S3AE1JK43M+/w5wTUS8D9gBbAT+JCI+kVL63iq3sV1VNX+nj3uxY4blH3en5G89uQIzcas3ZlXPSSg3vgDvTCldNs/n3wQ+FBFvAN4LdANXRcQpKaWDDeyniqqav6vJ/C2IiGcDf5kvPgz8zjI2Z/5qFvtMbadTzjlbUVXz1z5T/ewzlcs+U2eoav6uJvO3oJP7TE4huEoioici0gq8Xr3E/a0HrgVOyD96S0rpK8s4hJFCeU3NWpnirfSr8othteNbhpTS0DwnssX1NwP/NV+MQrl0HRDfqubv9HEvdsywzONu5fytUz25AjNxqzdmLZ2TJVqt+LLYFDAppfcBV+WLxwEvqncfFVbV/F015u+MiHgK8CmywYVR4CUppV3L2KT528LsM5WrA87pW/qcswPiW9X8tc9UP/tM5bLP1Bmqmr+rxvyd0el9JgewOlBk8+V+Gjg7/+hvU0p/ucBXlmJ/obzY7YCDhfJSbnfW0n0ceCwvP3uhipqlqvk7fdxLuYV3NY67HfK3nlyBmbjVG7Oq5ySUG9+lel+h3Ko52Yqqmr+tpuPzNyKeSHYl+iZgEvjNlNKNy9ys+SvAPlOHa4dzzlZU1fy1z1Q/+0zlss/UGaqav62m4/O3Cn0mpxBcJSmliYg4fQU29eBCKyOih+wBbc/JP7oqpfSmFdhv8YFtJ9SslSk+sO3+mrVW0GrFt9ny47wTOIfsga+rud92jm9V8/cB4DxgMCKOWOTqlOnjfiSl1Mhc7otqVv7WI6U0EhG7yR6au2CuRMQmZv6jrjdX5ubkQvMSr3pOlmUV47tUtxXKLZmTLaqS+duCOjp/I+I44EtkV0sm4LdTSp9agU2bvy3MPlO5OuCcfknsMzWsqvlrn6lO9pnKZZ+pY1Qyf1tQR+dvVfpMDmCtopTSHWVuPyK6gA+TPfwTsit33rBCm7+TbBS3G3jyInWL629fof0vquz4tpBoxk7bPL5Vzd/bgF/Py08GvjFfpfyPOCfni2Ufc1Pyt063AxcAp0RET0ppoka95eRK8SRqqTk5AdxV535a0WrEd6naIR9bUZXzt5V0bP5GxFHAF4GT8o9+L6X0oRXavPnb4uwzlavNz+nrYZ+pflXNX/tMjbHPVC77TO2vyvnbSjo2f6vUZ3IKwc7yPuDSvPyvwCtSSlMrseGU0hhwc754fkQsNP/l9C2Zoyw8Qqs65SfNp+aLP2tmW9pJhfP3a4XyQrdKP4OZq7b+razGtFH+TsdtkJlpheZTjGm9cbuFmQdh1vzZ5Ln6zOnv5Lnc7lYjvkt1RqHcyjnZaqqcv62kI/M3IjYCX2Dm+P4kpfR/VnAX5q/sM3W4NjrnbCkVzl/7TI2xz1Qu+0ztr8r520o6Mn+r1mdyAKtDRMTfAq/NF78MvHihh4M26Jr8fQM1HnwXEScAz51uR0pp/3z11LBLyeIPsNz5TKvmmvy9Svl7AzPzp78qImpdefLqQnklbjWupV3y95pC+TXzVciv3n5lvrgPuL6eHeS59eV88bl57s3nRczErMyfzWq6plAuJb51KF5x38o52VIqnr+tpOPyNyLWAtcCT88/+l8ppb9ayX2Yv9Vmn6ky2uWcsxVdk79XKX9vwD5TI64plO0zrbxrCmX7TG2o4vnbSjoufyvZZ0op+WrzF3AZ2TyXieyKi8EGtrG9sI0batTZTPafYgLuBY6cs74b+ExhO89pdmxKjPm903FYifiSPWjvokW2cS6wN9/GFPCMZsehXeKb16lk/gKXF47pzfOsPx8YXyR2lctf4Kt5W8eB8+dZ/+ZCTC6bZ/2rF1qf1/kPhTqfBrrnrD8KuC9fvxfY1Oy4tEt8gTOBUxZpwxsK23iQBv7vbIfXnH+/Vy/xO+ZvE+Nb1fwF1pBdRTh9XO9scDvmr69auXFZ4edun2l1Yn7vdBxWIr504DlnK8U3r1PJ/MU+U6Nxs8/UxvGlouecNY6z+O/36iV+x/xtYnyrmr9UtM/kM7DaXET8HvDn+eJPgT8Cnlj7oiEAdqYGrjRMKe2JiD8G3gs8AfhmRPwv4Fayh8X9ATMPQv5oSun6evfRiiLiFOAX5ny8bvo9Il49Z93nU0oP1bmbjcD1EfEDsittvk32y3US2EY2R/8rgN68/ttTSu0+VQOwavGtbP4CfwO8lGwair/O4/0x4CDZ8b6F7HmIB8li0IhOzN83kv1xawDYERFXkF3RNkB2VeTr83p3Au9oZAcppa9ExMfy7f0q8MWIeCfZbe1nAv+DLH6Q3Q6+t7FDaUllx/ds4KqIuB64juzf+aNkuf5k4OXA8/K6k8AbUkpDjR1Ka4mIXwBOKXx0VKF8ytzfqSmlqxvZT1Xzd5XiW9X8/ShwcV7+CvD+iPi5BeqPpZTubGRHVc3fKrPPVD77TOWyz1Q6+0yNsc9ULvtMJbHPVC77TKWqZp+p2SOHvpb3IrvdPdX52j7PdrYX1t+wyD7fSnY1UK3tXwv0Nzs2KxjjV9cZ34vqje+c9Qu9Jsg639HsuLRTfKucv/kxn0J2UlvrmB8DfmWB71cyf8k6kY8tcDw7qXHFD0u4miWvN5DnXK19TC70/XZ+lRnfOn6v7AZe0OxYrHBcr67nd6r523rxrWr+1hPX/HWv+eurjvy6oYEc2z7PdrYX1t+wyD4rdc5Zx++u6ddF9caXDj3nbJX4Vjl/82O2z9RY3OwztWl86/i90lHnnPmxX13P71Tzt/XiW9X8rSeu+eveTshf78BS3VJKfx4RXwD+K3ABcAzZNAPfBz6QUvpoE5vXrn4G/AbZ1ATnAseTXaHQT3ayspOs431VSune5jSxM1Qxf1NKd0XE08iO+TfIOmdrgPuBzwHvSindt4xddGT+ppQ+GxFPJbvy7RLgBLKHWN4FfBJ4d0ppeJn7OAhcEhG/RXYCcRZwBLALuCnfx9eXs49WVXJ8Pwf8Z7KcfBrZv/MjgQD2kP17/zzZ9AWPL+c4qqzK+Vsy83cVmL8qWxXPOVdBR55ztqIq5q99psbYZyqXfab2V+X8LZn5uwpaJX8jH02TJEmSJEmSJEmSWkJXsxsgSZIkSZIkSZIkFTmAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYEmSJEmSJEmSJKmlOIAlSZIkSZIkSZKkluIAliRJkiRJkiRJklqKA1iSJEmSJEmSJElqKQ5gSZIkSZIkSZIkqaU4gCVJkiRJkiRJkqSW4gCWJEmSJEmSJEmSWooDWJIkSZIkSZIkSWopDmBJkiRJkiRJkiSppTiAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYEmSJEmSJEmSJKmlOIAlSZIkSZIkSZKkluIAliRJyxARvRGxMyJSRLy02e1ZTES8J2/rB5vdFkmSJEmdzz6TJKlRDmBJkrQ8vwecCtwOfHIlNxwR78s7TikinlPnd/9j4bvvLqx6GzAGvCIizlnJ9kqSJEnSPOwzSZIa4gCWJEkNioh1wJ/mi5enlKZWeBcfKpRfUed3X14of3i6kFK6H/ggEMBfNN40SZIkSVqYfSZJ0nJESqnZbZAkqS1FxJuBvwbuB7aX0BkjIu4CTgb2A8eklA4u4TsDwC5gPbAzpfTkOetPA+7IF89NKd2ysq2WJEmSJPtMkqTl8Q4sSZIaEBHdwO/mix8toyOWm76icD3wgiV+54V5fShcSTgtpbQT+E6++MblNE6SJEmS5mOfSZK0XA5gSZLUmOcB2/LyP5S4nw8D07dLL3VKjOl6idpt+0j+/usRsbHBtkmSJElSLfaZJEnL4gCWJKltRURvRPwwf+juv0dEzxK/9938Oz9dxu5fkr//KKV06xL2eW5EXBkRd0bEgYgYiog7IuL/RMSTan0vpXQP8LV88eKIOHqR/RxD1lEEuDGldF+Nqv+cv/ez9KsUJUmSJLUR+0zz7sc+kyS1CQewJEnt7L8DZ+TlN6aUJpb4vW/l78dFxEkN7vs5+fs3FqoUET0R8R7gm8BrgScBg8Ba4DTgvwA/jIjXLbCZ6SkxeoDfXKRdv5nXK37vMHkn7cF88aJFtilJkiSpPdlnOpx9JklqEw5gSZLaUkRsBf7vfPG6lNKX6/j6DwvlsxvY9wnA9nxxsYf5vh/4nbx8HfBy4FzgHOB1eVt6gb+LiOfX2MYngOkHES82Jcb0+mHgnxapO932CxapJ0mSJKnN2GeqyT6TJLUJB7AkSe3qLWRX5AFcXud3HyiUT2lg388qlL9bq1JE/DrwynzxdSmlX04pfSSldEtK6VsppauAZwBfyev87/mm9EgpPQ58Ol88OyJOr7G/M4Cn54vXpJT2L3Ic387fT1lsmg1JkiRJbcc+0+H7s88kSW3EASxJUtuJiCOB1+eLX0spLTglxTx2F8rHNtCEEwrlhxeo96f5+6fyjtdhUkojwO/mi9upPTVFcWqLWlcUFj+vORVGQbHtxy+hviRJkqQ2YJ/JPpMkdQIHsCRJ7ejVQF9e/vsGvj9VKK9p4PtbCuW981WIiOOZmWrjEwttLKV0OzMdxPNrVNvBzPzrL4uImLO/AF6WLz4IfGmhfeb2FMpbataSJEmS1G5ejX0m+0yS1OYcwJIktaOX5O9TwKfmroyIcyLiYxHxkYiY7/+6wUJ5uIH9by6U5+2MkU1zMe2jEZEWegFH5XW3zrexlNIk8I/54jbg2XOqXAScmJf/Ma+/mGLbj1xCfUmSJEntwT6TfSZJansOYEmS2kpEbGDmKr3vpJT2zVPtl4CXAuellKbmWX9iofyTBpoxUigP1KjT6PzoaxdY98FCee6UGPVOhQGz236wZi1JkiRJbcM+0yH2mSSpzR320ENJklrcU4DuvFzrYcDTDwy+s8b6pxXK365RZyGPFMqbgfke/NtdKL8M+MESt13r6kRSSrdGxPeBs4AXR8TvppQORsQA8Ot5te+nlJa6r+JVkY/UrCVJkiSpndhnss8kSR3BASxJUrs5pVC+e+7KiOgHLswXH6ixjempJEaAWxpoQ7Hjsgm4b546jxbKKaX07w3sZz4fBP4W2AD8KvBx4AX5Miz9SkLI2j7NzpgkSZLUGewz2WeSpI7gFIKSpHazsVDeN8/6X2ZmSomhuSsj4nTg9HzxupTSyNw6S3BroXxqjTrFKx0vbmAftfwjMJGXXzHnvTjn+1JMt30I+PHymyZJkiSpBdhnss8kSR3BASxJUjtbN89nvwekBdb/fqH8gQb3+y1m5j8/Z74KKaW7gNvyxUsjYluD+5q73V3AjnzxFyPi55jp7O1IKT1Ux+am2/6NlNLEgjUlSZIktSP7TPaZJKltOYAlSWo39xfKFxZXRMSLgYuAm/KPzpmz/lnAa/PF7wL/2kgDUkpjwM354rkLVP2L/L0f+JeI2FKrYkT0RcR/yafzWMz0g4l7gI8xMyXwkqfCiIg+4Kn54k0L1ZUkSZLUVuwz2WeSpI4QKaXFa0mS1CIiYiOwC+gju2rwrcDngGcCf0X2IOALgG8AAVxO1ul6FvA/gfXAKHBeSun7y2jHm4G/JpsT/uiU0nwPJSYirgZelS/uBt4H3Eg2f/ogcHLe3heRPSB4fUrpwCL77gceBI4ofPw4sDWldHDeLx2+jecxc1XiOSmlby3le5IkSZJam30m+0yS1CkcwJIktZ2I+DOyTth8Xp9SujIirgN+aZ71B4DfSCl9fpltOJ7sQcTdwKtSSvNeyRcR3cAVwJvyugsZArYspUMVEX8HvK7w0ftTSq+tVX+e738AeDWwM6X05KV+T5IkSVLrs89kn0mSOoFTCEqS2k5K6XKyjsh3gGGyTswNwMUppSvzaq8APkr20OJR4G7g/wNOX25HLG/DT4FP54svW6DeZErpj4EzgHeQTcOxl+zhwfuBHwIfIbvi8NilXg3IzJQY0+qZCqMf+LV88T1L/Z4kSZKk9mCfCbDPJEltzzuwJElqUEQ8E/g6WcfqlJTSvc1t0dJExMuBDwN7gO21pvKQJEmSpOWwzyRJWg7vwJIkqUEppW8A15FNc/GnTW7OkkREF/CWfPHtdsQkSZIklcU+kyRpObwDS5KkZYiIM8mmuJgiu6LwJ01u0oIi4qXAx4D7gdPqmH5DkiRJkupmn0mS1KieZjdAkqR2llK6NSJeDZwCbANaujNGduXjW4Gv2BGTJEmSVDb7TJKkRnkHliRJkiRJkiRJklqKz8CSJEmSJEmSJElSS3EAS5IkSZIkSZIkSS3FASxJkiRJkiRJkiS1FAewJEmSJEmSJEmS1FIcwJIkSZIkSZIkSVJLcQBLkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUhzAkiRJkiRJkiRJUktxAEuSJEmSJEmSJEktxQEsSZIkSZIkSZIktRQHsCRJkiRJkiRJktRSHMCSJEmSJEmSJElSS3EAS5IkSZIkSZIkSS3FASxJkiRJkiRJkiS1FAewJEmSJEmSJEmS1FIcwJIkSZIkSZIkSVJLcQBLkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUv5//lYMbP10WOMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "with HDFArchive(dmft_path, 'r') as h5:\n", + " sigma_freq = h5['DMFT_results']['last_iter']['Sigma_freq_0']\n", + "\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,2), squeeze=False, dpi=200)\n", + "\n", + "orb = 0\n", + "sp = 'up_0'\n", + "freq_mesh = np.array([w.value for w in sigma_freq[sp][orb,orb].mesh])\n", + "\n", + "ax[0,0].plot(freq_mesh, sigma_freq[sp][orb,orb].data.real)\n", + "ax[0,1].plot(freq_mesh, -sigma_freq[sp][orb,orb].data.imag)\n", + "\n", + "ax[0,0].set_ylabel(r'Re$\\Sigma(\\omega)$')\n", + "ax[0,1].set_ylabel(r'Im$\\Sigma(\\omega)$')\n", + "for ct in range(2):\n", + " ax[0,ct].grid()\n", + " ax[0,ct].set_xlim(-2, 2)\n", + " ax[0,ct].set_xlabel(r'$\\omega$ (eV)')" + ] + }, + { + "cell_type": "markdown", + "id": "8c249dc9", + "metadata": {}, + "source": [ + "### Plotting options" + ] + }, + { + "cell_type": "markdown", + "id": "93d1db24", + "metadata": {}, + "source": [ + "Finally, you can choose colormaps for each of the functionalities from any of the available on matplotlib colormaps. `vmin` determines the scaling of the logarithmically scaled colorplots. The corresponding tight-binding bands will have the maximum value of the colormap. By the way, colormaps can be reversed by appending `_r` to the identifier." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a2d79e6d", + "metadata": {}, + "outputs": [], + "source": [ + "plot_config = {'colorscheme_alatt': 'coolwarm', 'colorscheme_bands': 'coolwarm', 'colorscheme_kslice': 'PuBuGn',\n", + " 'colorscheme_qpbands': 'Greens', 'vmin': 0.0}" + ] + }, + { + "cell_type": "markdown", + "id": "6b2e5a0e", + "metadata": {}, + "source": [ + "## 2. Run and Plotting" + ] + }, + { + "cell_type": "markdown", + "id": "89a67dd6", + "metadata": {}, + "source": [ + "Now that everything is set up we may hit run. Caution, if you use a lot of $k$-points, this may take a while! In the current example, it should be done within a second." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "7e875f21", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2022-08-01 11:33:20.627842\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "H(R=0):\n", + " 12.9769 0.0000 0.0000\n", + " 0.0000 12.9769 0.0000\n", + " 0.0000 0.0000 12.9769\n", + "Setting Sigma from ./svo_example.h5\n", + "Adding mu_tb to DMFT μ; assuming DMFT was run with subtracted dft μ.\n", + "μ=12.2143 eV set for calculating A(k,ω)\n", + "Run took 0.588 s\n" + ] + } + ], + "source": [ + "start_time = timer()\n", + "\n", + "tb_data, alatt_k_w, freq_dict = pcb.get_dmft_bands(fermi_slice=kslice, with_sigma=bands_config['sigma'], add_mu_tb=True,\n", + " orbital_order_to=orbital_order_to, qp_bands=config['qp_bands'],\n", + " **w90_dict, **tb_config, **sigma_dict)\n", + "\n", + "print('Run took {0:.3f} s'.format(timer() - start_time))" + ] + }, + { + "cell_type": "markdown", + "id": "b7780b5d", + "metadata": {}, + "source": [ + "That's it. Now you can look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "1936db33", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDUAAAIcCAYAAADmA5UlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd6DdtnX/v4f3vae997L23tawbEuW5aE4nnFix4md4YxmNGnTpv2lM81s0yRNm7RpRjOd4TjDifdekoe2LGvvvffWW5f4/UGCBEDw7v3OR6YfLwgCIAkSBwfnACSEAMMwDMMwDMMwDMMwTLXhlLsADMMwDMMwDMMwDMMwucBKDYZhGIZhGIZhGIZhqhJWajAMwzAMwzAMwzAMU5WwUoNhGIZhGIZhGIZhmKqElRoMwzAMwzAMwzAMw1QlrNRgGIZhGIZhGIZhGKYqYaUGwzAMwzAMwzAMwzBVCSs1GIZhGIZhGIZhGIapSlipwTAMwzAMwzAMwzBMVcJKDYZhGIZhGIZhGIZhqhJWajAMwzAMwzAMwzAMU5WwUoNhGIZhGIZhGIZhmKqElRoMwzAMwzAMwzAMw1QlrNRgGIZhGIZhGIZhGKYqYaUGwzAMwzAMwzAMwzBVCSs1GIZhGIZhGIZhGIapSlipwTAMwzAMwzAMwzBMVVJX7gIwtQURtQMw2f95DECyjMVhGIZhGIZhmLZOAkAff3+dEKKpnIXJFCKqA9C/BFkdFkK0liAfpkiwUoMpNJMBrCh3IRiGYRiGYRiGiTALwMpyFyJD+gPYV4J8hgDYX4J8mCLB7icMwzAMwzAMwzAMw1QlbKnBFJpjcmfqvB+ioX2vcpaFYXKH/D9E5S1HBSOE4PujIRBUnNh9P0QI/bQ2CNcfJl+4DjERiNttG82NJ7Bm0cfkz2Op4lYq32p3GXpT4bqux0Ur/qZpb8HSY8oLKzWYQhPModHQvhfadehbzrIwTP4Y/VJTiCaQd4zt3tomAhDe/4K6EtQR/1jsvn8Cd8wYJnv4vWFiUapFpM0WxO11lc5315vq0Jvqy10MpkJhpQbDMEwqhL5PIMBF2IGVESyj7QSLwM0yeGWjGVBkYEIhjL/wheZ0+0pFaMsdM+6YMgxTcETMPhQldBoi7Td/psoOJQiOU7gHQS4/1FqClRoMwzDZYmsHbYKT5TwSAGqkE1eLHdJUSqqUUJb7TE3WH6Z0EBHXISYt1vqRkb5a1VTbBimiboUMw5QPVmowDMMUAauVhgAEARChu4JNKLeFkSBPfqogGapiOxOBXiLGLQQpOtRtdH6LclCx9YepClihwZQMoSs5wronjN8e7OJSHKjeATmFu7Hk8kOqJVipwTAMUyrMDrPQXRJi4yFzk9lUVJQ7TLZuHjmmDQDC9QRO1XXIdCNiygN3TJl84PrDlIwYF0PzmPcz//YaYBcYhskGVmowDMOUCptAYtMzpBLS8xCUTHPa8E9uklKuHYqSrfzhW2loZWR3kIqBO6RMPkj3E4YpOaauoQhWfxFlf425r+aCkyA4icJdv5Nsu/eyFmGlBsMwTFtEmzoixh0mg7BcOhVClGjlD5ZXKhpWaDD5wEoxppaJWGkY7qvBalr+Ma2ttrTdtaAApHoCFVCpQQWcdJQpP6zUYBiGacuYq7tYzGrThqnzpWWwzyt/MBLumDL5wPWHaTOYhhu2dll1q7T8ZphahpUaDMMwTEiGLjLaKBCv/MHkAHdImXxg9xOmTWF+KuM+nZnGq0KcBMGpK6D7SS3dHIbn5mUYhmFygzukTD5w/WHyhesQwzAMA7ClBsMwDMMwZYKtNZh84PrDMG0HqgeogJYa/OmoLdhSg2EYhskJNv1m8oE7pAzDMAzDFAK21GAYhmFygjukTD5w/WHyhesQw7QdqMBzakQmW2WqGlZqMAzDMAxTFthag8kHrj8M03agRIGXdHX521FLsPsJwzAMkzVCCHY/YfKCO6QMwzAMwxQCttRgGIZhsoY7o0y+cB1i8oXrEMO0HRyH4BTQUsNJ8vejlmBLDYZhGCZr2FKDyReuQ0y+cP1hGIZhALbUYBiGYRiGYRiGYSoYcgjkFHBOjQKmxZQfVmowDMMwWcNm30y+cB1i8oXrEMMwDAOwUoNhGIbJAWn2zZ0KJle4DjH5wpPNMkzbgRIOKFG4mRMKmRZTfvhpMgzDMAzDMAzDMAxTlbClBsMwDJM1PDrK5AvXISZfuA4xTNvBSRR49ZMCpsWUH1ZqMAzDMFnDrgNMvnAdYvKF3U8Ypu1AVOCJQvnbUVOwUoNhGIZhGIZhGIZhCggR9QUw299m+Vsv//ADQoj7M0ijPYC3AbjBT2c0gC4AzgHYAuBZAD8UQhwqdPmrCVZqMAzDMFnDIxxMvnAdYvKF6xDDtB0oUViXEUoULKlUHMnnZCKaAuA1eEoMkx4A5vjbZ4noo0KI3+WTXzXDSg2GYRgma9h1gMkXrkNMvrD7CcMwVcQ+AJsALMzinK4IFRqvA3gCwEoAJwD0AfBOAB/14zxIROeEEE8XrMRVBCs1SkAhTI8yzOeLAL6QYfQFQohXCpEvwzAMwzAMwzBMsaAEgQpqqVESheiXAawAsEIIcYSIhgHYlcX5LoDfAfiSEGKj5fhzRPQ0gD8BSAD4HyIaLeSoQRuClRqlIS/TI4ZhmEqDR0eZfOE6xOQL1yGGYSoZIUSmg81x578B4I00cR4loj8CeBeAkQCmAXgzn3yrEVZqlJ5cTI9yYXKa49loCRmGYTTYdYDJF65DTL6w+wnDtB2IHJDjFDS9GuJleEoNwFNssFKDKQr5mh5ljRBifTHTZxiGYRiGYRiGKQXkFHhJ1wKmVQG0U/bdspWijLBSowTka3rEMAxTafDoKJMvXIeYfOE6xDAMAwCYr+xvLlspyggrNRiGYZisYdcBJl+4DjH5wu4nDNN2cBJU0CVdjbT6p/uWCCH2FyzzAkJEUwHc4v/cEDOhaM3DSg2GYRiGYRiGYRimrbIigzgVp0ElonYAfgxv5RMA+McyFqessFKjRiGi5wFcDm/d4tMANgJ4BsAPhRCn8kh3cJoo/XNNm2GY6oFHR5l84TrE5AvXIYZpO/CcGla+C2Cmv/+AEOKxchamnLBSo3a5QdnvA8/Xaj6AvyOi+4UQj+aY7r68S8YwTFExlycnImsYhIDIMSxuCXQCgrh57XNnpeZh9xMmX9j9hKkVIm00oLe76X4b7bL5O67NZgJmAThc7kJkAxH9A4CP+j9XAfhUGYtTdlipUXusA/AIgOUADgKoBzAWwH3wlpHtDuBhIrpNCPF0MQsy4OQONPWsw4V23YECLsHEMEx2CNefCNtXUACKgGOGyQ5ClmFQlR+Z7MuyKfsuBMi37hTgzi7DMAzTNgnaWdnuEgAYv4UR348CEf2NGlBqFHlJ18OVOmeGDSL6OIB/839uAfB2IcSFMhap7LBSo7b4thDii5bwZQB+4b8AP4Dnd/VjIholhLiUZR5D0hzvD98v7Z1rfoDeVK91Wlqdelxs6IzjnQZid58J2Nx/Js517JVlERim9rGNqthGJdOGSQEIANmEGjMskzjpzku3bypF/H1S3VUN5Uc6zPvACpHKh58Rky9ch5hKxWzDzTYqpZWR2lYGYcH/lN+2c9P8rmacAruMVOl4KxG9F8D3/J97ANwghDhWxiJVBKzUqCGEEKfTHP8hEc2EZ6o0EMA7Afw6yzxSajFtH2g1pN5tQbfGU+jWeAojT2zA9Zt/DxcOTnfshQ0D52D1ZQtwqX3XbIrEMFWPzexUOaiHu26oEMg2TFUmFKjcOXUq1HNSna9eQ4wiRO5r15zCPSbMljtD5YZdB5h84TrElAthtM2ma4gSMQxT2jRbO13oNpqpPYjodgC/gKeSOQTg+mqyMCkmrNRoe/wQof/VfGSp1CgGDlz0vHgM87Y/jrnbH0erU4/dvcbjpfF341TnAeUuHsOUHAHhm1ZYDtoEnnzC8qDonYk45Ue6/QzMbNm9pfxIn29+DgzDVDNBixPjKhJgfuvS/WY0iryka8VDRNcD+B28/vsJADcKIXaUt1SVAys12h7q2sWDylaKGAieNcfoY2sx6thaXKrvhLWD5+KNUbegub5juYvHMFmR08RcEXNTpljYng93sEsL328mH7j+MMUgq7bb6p4Z/I9hCgIRXQXgUQDtAJwF8DYhxIbylqqyYKVG26NkEsAfLv8kBrYm0bXpFLo2nkLfs/vR4+JRtG+5CEck0xaEAHRsuYA5u57FFbuexZGul+HpyR/AkW7DSlB6hikgtrkk1GNVKphX9Si7EPokpzJYiVK111YlVHX9YSoCrkNMITBXDVEO6Ps2F0imZLTVJV2JaBqAJwF0AnABwM1CiFVlLVQFwkqNtscEZf9gMTM60n0ETnfoaz1GwkXf03tw5c6nMezEJrRrvZRSyUEA+p/di/tf/ypOduyH5ye8F7v7TipKuRmmaJTAJaSUVH1ngizmwRZFB1Mc2P2EyQdeopIpBuFqYcaBTOeCYhgFIpoLYJQS1FvZH0VE96vxhRA/N84fCeBZeKtXAsA/AzhDRKk6QUeFEEdzLHLVwkqNtsfHlf1F5SqEIAdHegzHIzP+HADQruUiJhxYisv3vIzeFw7FKjgIQK+LR3DPym/jXLvueGn8u7F54OySlZthbKQVrm2dZ6YyiJukzVh9hTvexYHvK5MPXH+YYuCtFmYGsnVGuSnykq7F4qMAPhhz7Gp/U/m58XseAHWE+L8yyPNLAL6YQbyaokoXs2l7ENH9RCT87YuW45OJaJTlVDXOxwF8xP95GMCfCl/S3Giq74g3h12Hn8z/Cv7n+m9hybCFaHYaYuMTgK5Np3HHmv/Dx175R/Q5u690hWWYVEi3BtcN92tUoVHTI6XqsxMCQtmYwsD3kskHaenDMNkS+z1XVypJN8knwzAVBVtqlIB8TY8yZAaAHxPRywCeBrAO3sy4dQDGAXgfgBv9uEkAHxdCXMghn6JzsV03LJrwbiwe9y6MProGc7c+ir7n7Z4yBKDnxaP48Gtfwq7eE/HItI+juYEnFGXKhCoEtQEBqOZGSdNdD4/UFRR2P2HygRUaTH4I/7+Y1cb4u1RxVOOcGkKI+wHcn8f5P0fUeoOxwEqN0pCv6VGmJADc4G9xnADwESHEYznmUTKEk8DW/jOwtd/lGH58A65f/xv0vnTEGpcAjDi+AZ958a+wctgNeHnsXUABTdQYRpJSkM5iSVGmwkkxWRwvB1s4+D4y+cD1h8kdQqjYsLibMBVHNSo1mNLBvb7a4Sl4riU/BrAKwH4AlwA0wpsQ9GkAnwEwQgjxaLkKmRNE2NVnEn587Vfw2NQ/w5l23WOjJoSLK3Y9hz9/+XPode5A6crItE0MF4VadjWxwSOlTD5w/WHygd1PmEJhdTdhGKaqYEuNEpCv6ZGfxs+RwoLDn+X2p/5Wm5CDjYOuwOYBMzBj90uYt+WPaBCt1qhdm07jo69+AcuH3YiXJ9xT4oIybQIWgNrsKGlbve5Cw+4nTD5w3WHyg+fMqDbYUoNJBVtqMFWH69RhxYiF+Mn8r2BXr/Gx8QjAFbufxydf+hx6nD9UugIybQMWgNosPDpcOLhTyjBMeQi/PfxFZ5jqh5UaTNVypmMf/Hb2Z/Hk5PvR6LSPjdet8SQ+tvhfMHvH0yUsHcPUPty5Z/KB6w+TD+x+whQKdj+pDjxLDaeAGyvVawlWajDVDRHWDZmLH137VWzrOy0+GgQWbHkY71n2LcC1u6wwTHawANRWR9nb6nUXGr6PTD6w+wlTULguMUxVw0oNpia40L47Hp7xKbw47t1IRtbl8iAAw05swl+89P/Q7YJ9FRWGyRwWgNoqPDrMMAxTO/AXvTogh+AkCrexpUZtwUoNpnYgwooRC/HglX+Hs+17xEbr1HwOH1/8eUzc/0YJC8cwtQd37pl84PrD5AO7nzCFgt1PqgM5UWghN6Z2YKUGU3Mc6DEKP5v7L9jRZ1JsHEe4uHXtT3HT2p+XrmBMjcECUFs1/W6r111o+D4y+cDuJ0xB4brEMFUNKzWYmuRSQxf8fuZf4rVRt8XGIQDT9r+Ge5d8A3Dd0hWOqRFYAGqr8OgwwzAMw5SWwk4S6m1M7cBPk6ldyMFrY+7A41M/giQlYqNddmorPr7oH1HX2ljCwjFM9cOdeyYfuP4w+cDuJ0xB4brEMFUNKzWYmmfDoCvx0OzP4lJ9x9g4PS4dx6df+n/oevFYCUvGMNVNWzX9bqvXXWj4PjL5wO4nTEHhulTx8JwaTCpYqcG0Cfb1GotfXvmPONWxT2yc9q2X8LFF/4zBJ7aWsGQMw1QbPDrMMAzDMAxTObBSg2kznOzcH7+48h9xoPuI2Dh1Iol7l30Tw4+uK2HJGKY64c49kw9cf5h8YPcThmlbEBXYUoOtc2oKVmowbYpL7brgt7M/i709x8TGcSDw7pX/jTGHVpWwZAxTfbRVgaCtXneh4fvI5AO7nzBM24InCmVSwU+TaXM017XH72Z9Bjt7T4yNQxC4883vY+L+N0pYMoZhKoYUI8A8OswwDMMwDFM5sFKDaZO0Jtrh4Rmfxra+U2PjEIBb1/4U0/a8XLqCMdUFUXRrQ7SZzn0bfsbFpM3UH6YosPsJw7QtyCn0ZKHlviKmkPDjZNosyUQ9/nT5J7G5/4zYOATgbRt+jdk7ny1dwZiKhogiW1ulrV07P/PCwveRyQd2P2EYhmEkrNRg2jSuU4dHp30MGwbMjo1DABZs/j2m72aLDSYDWMhmGIZhmMqH2+uqgufUYFLBT5Np8wgngSenfhhb+02LjUMAFm78Nc+xwaSnDZlDs+k3kw9cf5h8YPcTpiCwayHD1ASs1GAYSIuNj2N3r3GxceQcG6MPry5dwZiqpS2I2jVn+q12kGrt2iqQmqs/TElh9xMmV9K5kLaF9rsqsc1jlu/G1Ays1GAYn2SiHg/P+DQOdB8RG4cA3Ln6+xh6bEPpCsZUF34jyU1lDcCCT9HhkXaGYSoGtf3mbxPDVBWs1GCKB5Vhy5OWuvb4/cy/xNEug2LjOBC4Z8V3MPDU9vwzZGqCyEhPGxkJaAsdUp4ctHjwSDuTD+x+whQcttarbKiQK5/UtnzWFqkrdwGY2qUcHQGhGg2mkHUEBChGC9LY0Bm/nf1Z3Lfk6+h58ag1jgMX9y39Jn4y94s42WVAPkVmagSrCashcAvUlgVHTXRIhQgFm1q4niqiJuoPUzLqks3oeukkujSeQn2yCXXJZtS5rWhJtENjfQc017VHU11HnO3QE62JhnIXl6lGiAAhaq6trhUKPbknTxRaW7BSg6kpNEWFvyss2g01nm2050L7bvjdrL/CB5b8Gzo2n7fmlRBJ3P/GV/G9Bf+OxoYu+ReeqV18QYmFpCqAO9olha01GBudGk9jyKlt6H9mD/qf2YM+5/ajU/O5jM4VIJzu2BvHugzC8c4DcbjbMOzpNQ5N9R2LXGqmJiBjyEvKh6oCnGGYioOVGkxtYWlv4iwytDhEEcuOM5374eGZf4H3Lv0m6txW63kNySZ89NUv4HsLvgHX4deJiaFGTaRrtUNai9dUidRq/WFyQLgYdGoHxhxZg+HHN6Dvuf05J0UQ6HHxGHpcPIYxR9YAAFxycKD7SOzoMxk7+07G0S6DuYPKBJjfIaEqMsJIJSwRYyNwGylgekztwL0whpFYvm0He47CE9M+ines/kHsaZ2bzuL+17+Cn179BYBN2RgbNWrSWs0d0uBZVPE1VDvVXH+YwtDz/CFM2f86xh9cjm6NJ4uWjyNcDDm1DUNObcO1W/+Io10GY82Qa7Bh0By24GDiqdG2m2FqEVZqMEwatgychZcvHseCzX+IjdP33AHctep/8IfZn/ECanNgnskH06QVqFkLjmpAexbcuS4bbK3R9iA3iTFH1mD63pcx7MTmrM9vrOuIxvqOaEnUI+nUo6G1CQ2tl9Cu9RLq3ZaM0uh7bj8WbnwQCzb/AZsHzMCK4QtxtOuQrMvCtAHUtpvb7LLCc2owqWClBsNkwPKRN6HHxaOYtndxbJxRx9bhhg0P4sWJ96Wcz4MVHm2HlJOH1oBwVEsd0lq5jmqiluoPk55EsgWTDryBOTufQY+Lx9LGb6zrgAM9RuJw16E40u0ynOzUH2c79EJzXfsgjlmH6lub0PPCIfQ5dwC9zx9E/zN7MfjUtlgX0nq3GZMPLMHkA0uwuf8MvDb6dhxPsfoZ0zaIdUdhGKZiYaUGw2QCEZ6fdB+6XTqB4cc2xEabsfslHOsyCGuHXuudZjFYzHSFFqZtUM1mrdXWIVXvdTXf91qh2uoPkxuO24qp+17FlTueQtfGUynjHu/UH1sGzMTO3hNxqPvwtHNVmXWopa4djnQbhiPdhgVh9a1NuOzkFow4th6jjqyJdXMZd3gVxh5ejU0DZuK10XfgZOf+mV0g03Zgd5SyQk5h58EgNtSoKVipwTAZ4jp1ePTyT+ADr34ldqlXAvC2db/C0a6X4XCPETFxUqzQwkqONgcLRqUjuNc2VyCmLLC1Rg0jBMYeXoX5W/4Y22YCwMWGzlg7+GpsHDgn6wk8Uy3PLmmpa4cdfadgR98peH7CezDs+CZM27cYo4+sQUIktbgEgQmHVmDs4dVYOuImLBl1Cy8Py4T4Fhv8xSoPRAWeKJTbnpqClRoMkwVN9R3xp1mfxvte+1e0SzZZ4zgQeO/Sb+L713/DvtSrbYUWQZFjbO5Y49ga0yp75lXXITXKWlVlr0Gqrv4wGdP37F7cuOFBDDm1PTbOoW7DsHLY9dg8YCaSifqc8slaPUkOdvediN19J6Jj0xlM27sYs3c+j/atF7VoCZHE1TuexIRDy/HcxPuwq8+knMrH1Bjm96rK2myGqWVYqcEwWXK8yyA8Ne0juHPV92LjNCSbcf+rX8YPFnw9sxVR0sll3G7WDCnn2SAAonpcI6qhQ2rey2ooc1uBn0X1oSqibFYS7Vou4Jotf8L0vYvgxDRce3qOxRujb8He3hOCTmI5asKl9t2xZMztWDXseszc9QJm7Xoe7VsvaXF6XDyGe1Z8GxsHzMJzE+9DY0PnMpSUKTexc2ywO0ppcZzCrjLIE4XWFKzUYJgc2DpgBt4YdQuu2v5kbJxul07i7hXfxu+v+GxOebCbShtE0W0whUF1OWEqD7bWqDLUZok000KMPbwKN254EJ2bzlpPPdB9BBaNuwv7eo2NpJUrhag/zfWd8MaYO7Bq+A2Ys/0pzNr1fMQtZcKhFRh8ajsen/Zn2NdrjJ95XtkytQC7ozBMxcBKDYbJkdfGvgP9zuzFyGPrYuMMP7YB8zb/Ea+Oe2f2GbCbClPhVEWHtNLL14apivrTlrG1Qf4/NU7nS6ewcP2vMPrIGmsypzr2waJxd2HLgBmV+T76RWpq6IRFE+7GhiFXYeG6X2LIyW1atK6Np/Depd/EktG34vVRt0E4CQCWVc64Sa55iMiTvWrAjbSaIKKCthnc/tQWbHfDMDkiyMHjl38MJzv2jY1DAK7c/iRGHl5TmEwpzcZUN4FZd3VQqQKBef+kIFSp5W2r8POofNR3J3iHlDZn3MHl+PDif7EqNFqcBiweeyd+Mv8r2DJwZlEUGsWoQ8e7DMKDV34OT025H5fqO2nHHAhcve1x3Lv0G+jceAqgNPeIqVkiz5xhmLLCSg2mJNSq4rqpviP+NPNTaHHiZ0cnAO9Y9X10bDxdlDKQ+s8idDJVRvAMqaJHgYQQFWslxC4n1UEl16FaQ1oTCIi0yvGgo5aiAWnXchG3vvkj3LH6h+jQcjFyfFu/qfjRgq9iyehbc54ENBOKVn/IwbrL5uGn87+E3b3GRQ4PPrUdH3jtq+h/erflXKRuk7l9ZpicIMcp+MbUDvw0maKharAdJzqS4Wm2q79lP951MF6YdG/KOHWiFR94/d8A1y18AeKEUkOo4pGEysX+bsRGLl3BqpU4hRDDtAViFRWAQ06kXUhliWHjsuOb8eFFX8DEA0sjxy40dMUjl38Cf5z5FzjXoVfRLrFUnG/fA7+b8zd4Zdy74JIuMndpOo173/h3jDu4InpinKJIURhpSg+GYdJCDhV8Y2oHVmowRSSdrwQZcauXtUPmYv2gOSnjdLt0Are/+cMSlQjsqlIrKAJvJY1pV5owzi4n1Qc/n8xQrRHU+Rsiczko2JUV+blFJJItWLDxt3jP0v9A18aTkeObBs7Cj6/9CrYMnFUypWIp6o8gB8tG3YxfXfUPON2xt3as3m3BHat/gKu3PAqILAYtuG1mGIYpKKzUYMqKamWfauQo061sUgERnpv8fpzo1D9ltHGHVmLy3ldLVKgoKV1VmMpE6dBU0mOqNNeBSro3TGZUWh2qVNSOu/rNNq0qMnEbyZVuF47hfW98DbN3PgcylCmNdR3w2PQ/w2OXf6LkS56Wsv4c6jECD8z9PPbI1VsU5m57DLes+SnITVrOTI/ZNrPCo4rRBVv9GH/v8oMoXNa1EBsr1WsKVmowZSYTa47Mt0wVJMWQElrq2uPRGZ9AixPvP0wAblr7C/Q4f6hg+WYFC0nVhykgcSNsh+8PU61k0Lxpbgs5uo3kyuhDq3H/q19C/zN7Isf29BqHn87/MjalsVSsFRobOuN3V3wWb142P3Js0oEleMeq7yGRbMk+YXZXqXoyciHlZ8cwRYOVGkyNkakCpDgc6zoEL058b8o4Dly87/WvwXFbi1aOnOC2tqJIOc9GBbiklEu4FjH7ALucVBu1+KyydhXJ0EqxHIpox23FdRsewjtX/S/at17SjrU6dXhxwj14aM7f4FyHnqUrlEE56o/r1OG5ye/H8xPvhWs8kDFH1uCu5d9Gg3G/8sai9OCBieqCbTQKQKHn0+A5NWoKVmowbZJM3V5ykSTfuuwabBh4Rco4HVsu4K7l38nrGgoFu6RUIaZLShlMWsvlOqBWS1JfZKbqqEX3k0pwFSkEXS6dwL1vfB2zdj0fOXaiU388MPfzWDliIUDlFSPLVn+IsHr49Xh41l9GVj8bdmIz7ln6LbRvPl/E/GFvt5nKw2+jyNZW1dj3j2HKCSs1mDZKpu4sdpeWlL1+f36N0x30CcXMpmvY8Y2YuvuVwl1SrthMnQ1hqdZGU2uONvx8uI4yJaXCXUUKwYij6/ChxV/CoNM7I8c2DrwCD8z7PI53HVyGklUeO/tNwe+u+Gs01XXQwgee3oX3Lvlm0RUbkXabv4cVA7ujFB4ip+AbUzvw02SYtKRyX7E3SM31HfDE9I9qpqkEXbFBABZu+DW6Xjxe6ALnT4beO6lm32eKSBtzP0nlcsJUL4WqQ7msDpIPlegqUgjITWLe5j/i7uXfRoeWC9qxVqcOz0x+Px6f/mdoqWtfphJGqYTO+/5eY/CbK/8fLjR00cL7ntuPdy/7LzS0XCxNQUrvccvkgl9nuS1jmMLCSg2GyQGb+4opPRzoORpLR9+in2ek4wgX973x74CbxVJw5UZpiQnELXO5SGXSChTdrLWUrgPsclKbCP9fvthcPgREVMGQx1bp7iL50qnxNN6z9Fu4avuTkWOnOvbBr67+R7w19NqKe+8qxX3pSLehePCqv8fZ9j208AFnduPu5d9BfWtjyctkupaygqOCYHeU3JDzYBRyY2oGVmowTE5EpV6bm8rro2/HoW7DUqbUtfEUbn7rp8Uvcp7EuqRwm1AyMp081Pq7hmAT68oh0qnMSlGAgikeTJcPx3HSWlRks9XyqPdlxzfhQ4u/hMtObokc29L/cjww719wpNvQMpSsujjZuT8evOrvIoqNwae2410r/gd1yebSFoitNSoKdkfJH3Kcgm9M7cBPkykJbcNNISppu04dHp/+MTQn9InEzLsx6cASjDy8piSlzJl0HQuftvGsK5tSPIFiKxXY5aRKsFSBzJUFhVM8cOctB4SLq7Y+jnuWfgudms9qh5KUwIsT3oNHZvw5muo7lqmA6ak0xeaZjn3w0Jy/xfl23bTwoSc2486V/1sZq55V1i1j2B2FYQoCKzWYoqGO6jsxwmsmHeJq7iQTAae79MfLE9+jh5vxANyx+gdoaC6R722hYZeUyqCELinFdj9RS88uJ+Uh8u2NsZDI1T2jFlc/qRY6Np3Fu5f9F+ZtfQSO8ZzPtu+JB6/6O6wccWPFv3OVWH9Ode6P3875G1xs6KyFjzi2Hjet/UXZXAzYHaVC8esDP4r0EFFBl3QthVKUiPoS0a1E9GUiepqIjhOR8Lef55DeTUT0RyLaT0RN/t8/EtFNRSh+VcFKDaZ4ZGMynEL5kalCpDLxCvnWZddie79pKWPWuy24d+k3SlKqQsEuKeWnZl1SDEUGu5yUHgrc6thSopYYfGIL7l/8JQw/vjFybEffyfjZNV/AwR4jy1Cy2uF4l0H47RWfRaNh5TJ5/+u4eutj5SmUKX8Z7TdTJtS2jp9DLXIEwOMAPg/gJgC9ckmEPH4I4GkAdwIYBKDB/3sngKeJ6IfUhl9mVmowlUEuftTquZUOEZ6Z+iFcrNdHbszxmn5n92H2jqdLV658YZeUqqHQT6AYgrBZRlZklB7zXRVA0ZQV/GxLjHAxZ/uTeO+Sb6JL02ntkAvConHvxB9m/SUaDQuDgmVf4I+QEJXnfqJytNtQ/H72X6HF0d1P5257DFP2vlqmUilkIl8xRSPjwQgmhAggp4Bbye/1PgDP5XjuVwF8zN9/E8B7Acz2/77ph38MwFfyKWA1w0oNpmrRGgTFlKxSRxAvtuuKFya/TwsjRDty8zc9jK6XTqAiCp0P7JJSfpReRKFrUsFcB1KUsRJNy2uFONeSfNxJsi4Du5+UjA7N53DX8v/G/M1/jLibnGvXDQ9d+f+wdNQtnqBfJPT+Q/7zqHhz/BVgPhalrS10dTzYYyQeu/zj2vLuAPC2db/A8KPrCptZnrB7SoXA38Ra48sAbgPQXwhxGYCPZ5sAEY0C8Dn/50oAVwshHhJCrBBCPARgrh8OAH9HRG3S1I6VGkxtkYGLSznNpzcPnI0tA2ZGiqziQOA9S76pWCPahK/KlTTYJaWCMM1aK9C8VRPfLC4nTHEgUMrvYxV8apgMGXRyG+5f/CWMPBbtRO/uPQE/v+aL2NdrbJ65ZKtM8M7Jb3OCvPPZ1LbWsQyO5PsibO8/Dc9Puk8Lc4SLd6z6Pvqc3ZdzugXHIjsF4UzpqOD2utwUdD4Nfys2QogvCCGeEEIcySOZvwZQ5+//hRDikpHHRQB/4f+sA/BXeeRVtbBSg2lbZGpuWazvHBGen/z+yARipl6+x8VjuHbD79IUskJJJ0P6sEtK8Ug5z4ZCPk8gH9cBbXTekga7JRSWlNYQZfy08HMuMsLF7O1P494l30DXxlP6IRBeHXMHfnfFX+Niu67RU5U6o1afVFVJaL5KmWz5U5j6k2k5c89rzbAFWDLyZi2sIdmEd674Ljo0n8s53aLCTXRJYXeUDHCcwm8Vjj9Hxh3+z81CiKW2eH64XJf7HW1xbo3Kf5pMTWBrGyutvYx0BJ3ijFZebNcVz09+v543ovdj1s5n0OfMHqOM6lY91hsB7JJSfgrkkpK160BMvsQjUkVHF5CVb12ZvxnsflI8OjSdw7tWfBcLNv8BjnC1Y+fbdcVDc/4Gb4y5HUKpG3GPQrYzcZYM0vKiHK9wKeqPrd3NxZJj8bg7sWHQHC2s+6XjuGPVDypjqVcTQsTyshrEjJqDv5FtneHwJgMFgEVp4srjgwEMK1aBKhVWajDFQ2n0HYsg4ASNZOW2kmlNs3Nky4BZad1QCMC7l34LcF0jNKrIqOBbCCAqGLFZaxkpkEtKtoMAmljmOFq+mViVMDlgmJIHiowq0oMy2TPiyFp8ePG/YNTRtyLH9vQah5/P+yL29h4fOaa1z4666lio2CiF9UXlkfqaUyk8NMUHJfD0lPtxoPsILfWhJzZjwcbflfiaMsS4XGs7zhSFUE7Kv72uFbJzcctsqwLUj/XmNHHV49GPfI3DSo0SQAVeozjDPN9DRM8S0SEiaiSi3UT0SyKak/7sghUi7SbUuMjcoqMseutCWqOS3Q3FnEysU/M53LLmx2mTq3hFfluUgyuMtI15MRQbcW4mfngVCRUVS+xItdHJqsT3jZ9/YalLNuHGdb/C3Su+g85NZ7VjAoTXR9+G3875G5xv1y0MF6TFinchqUwqo/5kruxJJurxp5mfwrl23bUUZu5+EZMrYUWUdKS5RHYrLSxV2AGvZvoT0eBUW5nKNUTZ358mrjpJz5DYWDVKXfooTAHIZ3KYrCCi9gB+D+BW49BQf7uXiL4ohKiIJX+0TzTZjaHjwoKm0xDqhRBF//ib5twyX28nszSkG8odq74fhDm+SKCWfsKBJVg97Doc6jkqpizaL78sahgLGUwG5KAZs75r3jqLkbgskBWHiGtJBXdATUrxrW4r9D+9G7e++SP0unA4cuxCQxc8Mf1j2N1nIoj00axqv/3VUofCIhIuduiBP838NO5d8u+oU9xOFq7/FY53GYRDPUZY06ho/OYjcCut/EdS3djaXXW/Ct6JnKACz4Ohr/a0IpMzCpd5xnRR9s+niXtB2S/O2twVDFtqlJ581ijOhJ8gVGi8DOAd8NYx/giAHfCe+ZeJ6KNFLEPmZGDNEbcFAwSGJls3m/XjlsBkLxc3lS0DZmFbv2l6Oma6AN61/NuGG4oZwzSHtZvEVtKoG6n/eBSiLOgd4uxNXNM+M3YzKT2V9ZqnhIh4To08cdxWXLntCbzv9X+zKjR29J2Cn137ZezpO9FoA9h0rrTo9/hwzxF4dsoHtRh1bivuWP19tG9O12+pHKxtOFehohHbhqrtdhVMfslkRXtlvzlN3CZlv0MRylLRsKVGafgyPA3gCiHEESIaBmBXoTMhovkA7vV/Pg7gTiFE0v+9gogeA7AKwGUAvkFEfxBCnC50OUqO/LDbTN39sDgXlqK0vbo1bxhmKwQRXpj8Pgw9vhkNycYgOEkJJIJHB3RsuYC3v/VTPD09F12ULJAwwiqoMyGLYz6QCipirSMFpMjKJNl2Ok03E1/4kpNCsjIjf2z3UUBUlZWGhOtDeuIGXvuf3oWb1j6AfpZlQVucBrw88R6sGXqtcnLtDaFXc/3ZMORq9D27H7N2PhuEdbt0Eres+SkenvVpcxS5srG14dx+l4yIgthvu2vtjS/0MqxGWrMARDXD5adR2W9IE7edsn8pNlaNUkVfzOqlQGsUZ8Ln/L9JAH+uKDRkOY4D+Dv/Zw941hslogitmzmabBthVi06EGq5YWq5ZSlNV5a8i6ho1eXH2BgMO9ehFxaNf5d2XkIkI3lP2v86+p3KRhdmjrpVmLRhDgyyQqMsmCM+1rk28tli8mFyJ+JyQgSHnKpTarCVRmboukVCQ7IJ1294CO9/7V+tCo1D3YbhgflfxJph1/kd49q1wqjeOuQ9j1fG3429vcZqR0YdfQuzdzyHqmgU49pwEbPPFBS1XbW13RTTHlctRN43rWCbdk8OCyH2p9rKdNXqms/pXEo6KfvVY/JVIFipUSMQUWcA1/s/n0/x8v0RgJxB7J3FLZPaqdddQoINJRCz8nBdKcYKLbb7sGb4dTjQY6QWz5w0lADcldINJZO8zedSWcKuVyd0c1buCJce67uax8YUnvAbqihKq+xWs/uJSfw7JJdSHXF0LT78yucxc9fzcIzeogvCG6Nvx6/n/hNOdh5QpmsoHbVQd4STwBOXfxwXGrpq4fO3PIzBJ7ca7XTli+zsjlJeuC2uSdT+XLrJStXJQaMa7xqn8r+QTKbMRmh2tCgukhCiGcBSeQ4R1RezULZvqBbmt9VhWInXOolTWChhmazQklve4SbIwbNTP4gkJYLDCQi0ku4h1qn5LG5c/8sCZm6GVRCWelJpRWSYYpJqZZNaoZYF7UL2ubtePI7bVv0Ady//NrpdOhE5frTLYPx67j/htXF3wnWqy7M45xUzqDbqz/n2PfD45R+HUF5sR7i4ffUP0KHpnBG7Sq5Xtd7gtpspFA4Vfqt8Nir749LEVY9vKkJZKhpWatQOuaxjXAdgdHGKE+oFbNZv4X7Y4sVbdMRYecToIzISj8yTUxRSbZOl9YZ5fiHcVE50uwzLR9+shdeJ1kja0/a8gj5nclXAmtJFnL1oGTHNWSuwiIxHLYyUVjI2N5Nqt85Qqb76E5bXXGzAht4+qe1c3BbGk1tDyyXM3/h7fPTlf8T4g8sjebQ6dVg87l34xTVfwCHD2q9a0NymDEvCVJtDTlbxPatLaO9MpSxBurfPBLw+5nYtrEvjady85ieAMEWUCn75zfZbwu4oDJMruwAc9Pfnp4l7jf/3AIDdxSpQpVJd6nwmFfmsY7wxLqIJpV+nuX+maXnpZRNbRwiypmEmKYTIb1pMSyFJSrH+MVW9kY+cvmTMbRh7YDl6XginX0lSHepEuOwbAbhr2X/i+wv/K/eMFMLLU65CACx5MOmohVHSqqLGbrd0P6mWeqRO2BkqIbJpxzK/TsdtxdQ9i3D11kfQMWY1jL29xuHZKR/Eqc5ZNbtFR3umZCgtrCfA3hHOIJ9szzHLYitboOgocRO4ZMztGHxyG4YdD0WykUfXYvrul/Dm8Ou1uETqLOQeldhuB/fX/yOEqLnvGFM6vEHOwo3HFzKtYiGEEET0KIBPAhhHRHOEEEvNeEQ0B6GlxqOi+kYN8qbynyaTKaVax3hfmi2TdZ4Lis1iwzS4gCVOoTMXgGc+moebSjLRgOem3a+F1YlWNCf0CY+7NJ3GvI2/zyGHVNisOCpM+qiw4jBMoWlrckjpFRrprS0yscIIFdhxlm9x++mK52L0oVX40Cufx43rf2VVaDTWd8TTUz+Eh678XMkVGpnUT+tcCqluQR6GBznXH1ueZW5fBDl44vKP43y7blr4tRt/i17nDhixC1DXSolpfVmhxWSYCuXbAOTo5v8QkbZcq//7f/yfrX78NgdbatQOFbiOcXFbLZsiwxZHWnTocfylXg35LOPlryyZk5qY77YShGTRUdnXezzWD7kak/a9HoQ1JJsjZbtix9N4c/j1ON+hZ54r9ZknqiWvjA6WaZ4MlG80jQmpplH2asF0OfH+VOM9Tv9RKlX9US0sdGsLwHMJ0T/p8ftxZS2AYkO4GHNoFa7a9jj6WlY0Abylvt8ctgBvjLkDjQ3ZjkdkifL4YpcLTlU/bZdb4EddMEsf4zGZ1gVmG2Ntewq0dubFdl3x9LSP4O5l/xmE1bstuHX1D/GruZ9HMqFOg2bWrwpsDOOKWIFFZaqAQs+DUYI5NYhoLoBRSlBvZX8UEd2vxhdC/NxMQwixlYj+A8DfA5gJ4HUi+jqAHQBGwlvZcrof/ZtCiG0Fu4AqgpUatUOp1jEekuZ4f0hrDdWKQcQIRVmTfUtonXfD5rpSRDeVbNNcNOHdGHVoNdq3ho+nsa4jOrReDH47ELhr+X/h59d+peDyTLxLCgqbUabYqg4LRWWHFRqFx+xAVus9VpUHgHodYe/PUzrLY2qvsEA9xCBvWzmCkILlkwt1yWZM3P8GZu54Fr0uHI6Nt7X/5Vg0/u6SWWao9VCuZiH3c3EVKQYlU6qaYxhmgIBm95yvwn1X38lYOfwGzNz1QhDW7+w+zNvyR7wy4Z74YhrtdjW4owBtzzqNaXN8FMAHY45d7W8qP4+J+08A+gL4MDwFxkOWOD8B8M/ZF7E2YKVG7VCSdYzTrdNsChgE8sRTKb0iHF0xz7OF+XlqKRa6kQ6KZg7OFCAbbeUUITIW1S+274ZXJ9yFG9eGK510aL2IFqcB9W5oiNPn7H5M3r0I64bNL9JAjW2oqsJGhCqsOAyTLWrnrDqsMsIvWZwVROQMYbYPqmK5nIqGwipQMqXbhaOYsncxpu5dFDtnBgAc7jYML0+4B/t6p5v0PkcytMgQMBQI1VBNi00qI0fb7yxYNP7dGHp8E/oobiezdzyDXX0mYU+fiRkUzJxzowIbSZsuk2FSQOSAnLY1p4ZECOEC+AgRPQzgYwBmwbP6OA5vMPmHQoiny1jEssNKjdrBXMd4ZYq4JVnHWB/M0aVd2+hK3IgLERltnSJBpyTeNtTmuqK6qYRx7P7XmaKlmMYlxRx1emvYAkze8yr6n9mtxHEjc6rduP5X2DT4CrTWqR5I+ZJKWktd7pLDglDZKPuzrxEq1+UkvfIiUMaQ/l3NxFVDV3RUwvUWl7rWJow6sgaT9r2G4cc2wGzZVI53HoglY27DpoGzgUII3jHKC80iQ1GsWefFsP0uIxUz0Wyc+4pyLBicybC9Sibq8cTlH8f7X/0y6txwovC3r/kJfnrtV9Fc3zFtQcLJRL3fdmvLEiv14kQLbseZTLBNopdvekVGCHE/gPsLmN5TAJ4qVHq1BCs1aodc1jFuBbC9OMWB4X5CMd+OzBp666mWBK3JCGkbmjqTVG4qkeOZupVksHKKl5yA4ziaVYogB89P/QDet/grgfDbIFpxvqErOjefDeLVua24c8X/4g9X/W14rlqyAgkLdpcU4Wu6Sy+RsBlr+Sl7Z6KKMTtjlT4Krq/2UZiebluoP3XJZgw9vhFjDq7EmMOr0K61MWX8o10GY8mY27BlwMzCKDMsVKo7SbZUhEIjQ8xyZuKicqzrECwafzeu3/CbIKxr4ylct+EhPDPtw5nkavwWoWVqbJwywRaXDMPkCSs1aocV8CYIbYC3jvG/2yIRUQOAOfIcIUS6SUXzIvSZjobpEeE3aLZRg9xGEgg2C4/sWk21rFq5lf50zv1oY9hTRDIBDnUfjreGXYtpu18Owjo3n0WSEkiIZBA27Nh6XHZ0Pfb2neSnqeaDAgsLqq2oKg2XafTHZmkLsIDEVDbG6G5g3l/2eqtaZ6jKaJFGOV0hnaMKoMvFExh+bD2GH12H4cfWoyHZlPacnX0mYcXIm7Cn94T8Rg/jLDJIcS0h5ViVKjQAVHeZM3zPVw2/ASOPvKUt8zpl36vYMmAmdvWbknX24Yo9IvhdJXohhvEnCi2gsrcEE4UypYOVGjWCEOIcEb0I4O0AbiCiwTHzX7wTQFd//0/FLJM+w7z9mCaVkPe/qJIg7qMTHekIPEZUpYPFjzsb1xXbTPhWC45crTdURYalXIvH34XRB1eiU3M4bcql+o7o1HxOk0dvX/k9fPem70Y/+AXrJMXZjUYzKYmgZHmsPLN6aammkdJKI9a9pCy30+5moq4OElK4AtZC/XHcVvQ9uxcDTu3CgNM7MfDUDvS8cCSjcxvrO2L94Kvw1tBrcaLLoIKUx5zgU7pD2CzbqgqKvjHBnF1KmM29M1U9K5c6znTvsbqnCADk4JmpH8KHFn1es/K5ae3P8dNrv4omqxtKXJ7aL+VdL6M7CqJWl2xxyTBMLrBSo0rwl/z5mf/zS0KIL1qi/Qc8pUYdgP8loncKEQ7nE1FvAF/3f54G8ONilTcfMpdxLe4nQkQ8TfJzXbH/sLqqBIKkVqD4tNXixCRMRGhq6IRFE9+Nm9/8SRDeufkczrXrji5Np4OwDi0Xcd36X+OlKe9PIcBl59ebCTbLm2rvqDCZwc85dyp1lRPPzcSmMSxOXtWC47ai+4Vj6HHxCHqcP4IeF46g35k96Ht2rzbnQTpcEPb0noCNg6/ElgEz0VrXLv1JmaAqL0rz+LLG05HpFoqR/ZQJGC4cFmVFxL1TCH1iQSOvcE8UZHLwfPCUNFHh5WzH3nhlwj1429oHgkNdGk9hwYbf4JlpH8kqB+0XhdYacXFKQppxK4YJqMI5NZjSwUqNElCINYozQQjxEhE9BOA9AG4H8DwRfRvAQQCT4S0HdJkf/e+FEKdyySensiEzp5KcxghsJ+TpchG6rmTvx5G3m4qyUor8vWHIXEzdswiDToZToLRrvgAXBEcp0/RdL2H5qJtxvmMvvdgStVwFEhhMc1YZVta2ooDXxzDFwBx3Lr3VQpybifn+Fn7k1nFb0e3CMXS/cBR1bgtcx4GAA9dJwKVwX4DCMHLgkgOXEl6YH6c1UQ+X6rz4RBDkeApm7YJcOMIFCQFHuHBEEvXJJtS3NqEu2eztJ5vRruUSOjafQ8fms+jYdBYdm7z9rpdOouvF49q3NhtcEA70HINt/adj86DZON++R4HupI9NiVGBsrpQrS1sJpCFxOb7GpOX91S9RqOcjlQCQmu7VMXnW5fNx5iDKzH8+IYg/pR9r2HrgJnY2W9qbvmFQkaQadnbboZhmBxhpUZpKNQaxZnwYXjuJTcDWOBvKi6ArwghfphHHhmhjvjF6R0yCQOiJqVxHQDbZHt2ZUJ0Is3AClO1hEy78ko6NxXjL2Ku0SJ4kVpwx8FLU96H973yJYSThrbgWJeB6HPuYBgNAu9c9m38YsFXbLmEFKjDbzNLt5u0yt/FlZZSzjrPFJxacB8oKeYrQFHT65IVpVRuJq6L8QeXYdzBFeh/Zjc6NZ4GBXZtxcM2zU4puVTfCbv7TMTuPhOxo980XGzXNf1JcZDxbYuJUyzU9zyjr3iKdr+QPWbr6ic5KEtU6w7bGdm6tOSCKbsI4Ss0gopMeGbqh/DhRf+suaG8be0D+Ensaijp8tR+pWi7GaZCcAq7pGtB5+dgyg4rNWoMIcQlALcQ0b3wlhCaCqA7gCMAXgXwXSHEktKUpnBmYqZJaSr/WG8ntauITdwKRkm0hOyCWeZNviyv8ivHuTeO9BiBdUOvwZQ9i4KwPucOorG+I9q3XAzC+p7dh3H73sDmIVdZkoy57owKZC2kJY8wPatCqJikyoLltILDCo3s0FxOqLz3r9huJn3O7MM1m3+PYcc2apMal4py18z61kaMOLoOlx3fhKu3PIrWRD1anXok/b/efp3316nXjyfqkaRwvzVhxHHqomHBsXrfeiVRlCF3B8jMhaQEdbtgioU0aaR1aVHKUyhsq6Wc69QLL094D25a+/MgvEvjKVyz+WG8MPn9ueRi5GlzRyk9PMcGEws5KOiqUEVaYYopD6zUKAGFWKPYd0n5eRbxHwTwYD55FhLTfzybMA3r0imW8Lh41jSDzPWwjE7PLGKhVk55dcJdGHNgBdq3hkqMCw1d0K7lomZ1/La3HsDmQbMBJ+YVV29xgV1SbCatXniZR/ULdH0MUyjK/U4Uw82kz5k9uHX1/6H3+YNlVyyUkzqRRF3rJRRoxoyccMlB0qmDSwkknUToukMJL9xJIBmE1XlxgrDwvCQlIJxE4NrjOgkAFLgEqW4/QZgT/hZ+HOlGFIaH8QNLPyColKFbCMIJvwXQvuUC6lsbUd96CfVuK5rqO+JSfWdcbNcFF9t3x7EuA9HS0KnwN9R0abG4ihZcI2DIJ2uHXoOxh1Zg+LHQDWX67pexcdAcHOw5Oq+s4trusiGLYZNXGIZhDFipwRQN3f3EMqKfYRhgtGNxnQDTZUMTjGRC8S1ipHNBxgiBpvSwjHBm7JJC0eOqWWtsCYFL7brijXHvwHXrQ31VrwtHcLzzAPQ+fygIa0g24eY3f4KnZnw8RWoGRRYWyj6qz8JQwSl3p7zaiFhHlOXWFcfNpEPjWbxj5f9g8KntWaVYzjkMah1HuHCSRV21vWJJkoPGhs4416EnDncfjm0DZ+BQz1E5uWmktECxyB02i9F8IUWR8vzU+3H/y/+EBv/ZEgTetvYBPHDNF+HGDWRklIf2yyh+CRtQU7yKilZMW4WosMuwsvxSU7BSgykeBG2UgciY2RueEsMMsyelxAssQSlqlmibZ0NYcshwRCXwIxb6BF5kGcgQQZrqwWhE2zdUyHjpikSENSNvwNQ9r6CXMpdGh8azSFJCM/OesH8Jlo2+FSe6pl4qMLiPqYudMfZbWyEjP0xBYYVGejTFj/pNLCnhkGcxntmU3S/jxvW/TulmkiQHZzr2wb6eY7Cnz0Sc7NQPpzv2RXNDR8B1AbhICBeOm/Qn9fT3EYY5IumHu3BEKxJuKxIiiUSyFQnRCsf1w/zwMC0BQMARSSTcVjgi6bkQAHDcJOpEK+qSLUi4LahzW5FItqDO9TZvv9U7loyGlcO1hklPQrjo1HQWnZrOov/p3Zi2+2UIAOc69MSePhOxfeAM7Ok7Ca2Jhvwzi1mBRSiNoVVeyZEznfrg9bF3YsHG3wZhfc4dwBXbn8KSMbfnkXJluqMwDMNkAis1mKJBIDjkhB1mP8xs3KV1Rjrlhm1CPZvfqfJDOdfHcUJzUXM2z1R5k563ek2mBYfXfVDTtkU0kdoSI5plKnLXqcNLU96Hu1//RhDWqfUC9vUcgyEnt4ZFAXDnsu/gxzd+A+nI+PoyJCyyt75uuEKKmWAJx2lZr8KUG+G72JVBGRTmWbh3rq61Efcs+SYGnt4ZO/fQqY59sWrEQrw5dEH8pGyOA8BBEkAyUZCiGeUQWjuT1b6plIJuUUhuMlRwqIoPXykSKEuSLUi4rfpxTUmixosek+ebx+rdlsLfsBqFAHS9dBKT976KyXtfRYtTj939JmP7gBnYNnAmmus7FCgjCpRmmsWo4q6S7xu4asRCjD+wFP3P7AnCrtz2OLYMnIWTnQfkmXpIRSk0TKsN1qm3OYgcUAHnwShkWkz5YaUGUzQC15MUq5SoSohAULQ1osGhNIoPxbUjNrk83VS8Uywm5MoSJ0FQhm4qauusuaTYygZgT99J2DZgBkYfWhWEDTy1A+fadUeXptNBWI+LRzFl98tYO2xByuuJpSCTh6bSJhRfKuEVUYoHu5+kh4gAsitli5xzcVYz8elx7hDe/9pX0L71UuSYAHCyU388Mf3PcKTHCLNYVuVBMdGUELnsU/Ajgkgk0JJIoKVcs2cIESo7pJVJshkJkQS5rUgIFwk36Vm2BJYwvsWKm/QtWloDS5iE6/0Owv04FCyL61m+kLSmES48KxjjmBHmwDxXaGkCQMemM+jUeCajpXM92xtvTg6ZX7Y1qd5twehDqzH60Grc8NYD2Dx4DtYNX4BD3UfobiS5EGO9EQ58yAvJLReRSODZaR/C+xd9KbhfdW4r3rb2Afzmys+hMBMgUjjxd6DkC0pQgPQzLoX6Qx90YRiG8WGlBlMS4oRXq0BrExylCWc6d5V0DV3QPqdxUynQhF9xo5eReFaXlNQnvTL5vRh+ZC3q/JG6hEjiZOd+6Nx0Wsv3unW/wfrL5uXla1vVpKoTrNvIC1Zo2DFH98t3n4qT78jDb+IdK7+LhN8ZVWlKtMPjl38CO/tPiy+OxeKhYqn0IhIhmfBWP0k5e0aalcNywmJJaMkybZ49zx7A21b+H7o0no6Nc7ZDL+wYeDkO9BqDQz1H4VzHnp5UoaSdSLag88UTGHJsEwae3I7eZ/ah+/nDVsWbSX2yGZP3LMbkPYtxrOtgvDnyRmwYMhfJRH3aczPCvAcFkC+Odh+GVSPfhlk7ngnChpzYgkn738D6IXPzTt/DfHZlaDTjqg+3320PB4WdU4MNNWqKNtrLYUoCAeRQuN66DLb4lsb6m+qDBP5uCosO7dRQERLgeUOkd1OJsZDISBDJ2M0hXcSw3L7XjBb/TKe+WDVyIa7Y9mQQNvTEFuzvOQqDT24PwurdZtz05k/w5IyPZy+fF8hlQ5fnVJcUlTIJS2XyhmHaCGV0OSko/rsxc8fTWLDxd9auzq4+k/DHKz4D4dTbX6MqvwVVAxVWXaR/FpVfiktTOP+UaSGUKmGBGduewtUb/oA6tzVy2AVh65A5WDdsPvb1GR+1PjAakWSiHme69MeZLv2xfkRondj93CGMOrASY/cvQ58ze9NagvQ5ux8L3/wZrtz8KFaMuQXrhl2L1kSDMtYRnp+rbiK4RapLrJFoJs3R6+PuxOhDK9H94vEgbP7G32H7gMvRqE6KWotuG+yOwjCMAis1mOLhkCdcpXA/USUCMhUJquxkS5+UeMGuxZ0FxnHKwk3FKGNE2WEpv1puc3JTNQ0jolZKLZpymilALRt7GybvWYyOzeeCsPqWRrQ6dZqQOGH/Erwx7k6c7twvUm4bGV9LxqRzSSnTkIuZLQtFWcHuJ3YiLiely7mok7lfsfUJXLPl4chVuXDw1PSPYtNlV2WVHtefHMhUYVGk+xq645AWKrPMNNu61ka8bdWPMXb/MuvxLYNmY8mEd+Jkiomu5WBIujp0ussArBx3G1aOuw2dLp3G5F0vYcrOF9G56WzK87pcOonr3volrtj8KFaOuQVrRt6IZKI+uoKZooTIGGNFFdsKKhH5w0JLXTu8MOX9uGvpfwVhnZrPYd6mh/H8lPcjUrA8q0VY7PK5owQU8LqYKoGcArlWKekxNQM/TaZoSAEn1QZ1k+fJTYtLkU07IdiN/rMXLrqRQ9by2AuuHEuVtrWMcktTxgxoru+I1ye8Swvrd24/tve/PFKkdyz/7+wzsF1LLVGr11UiuEOqYBOwi/T+pO7nFDBTJZ8rtz5qVWg0J9rhF9d+IWuFBsD1J2cyalwzI5OuKBk/vDY45yzR9cIxvOeVr1gVGic798dD8z+PJ+f8BU50CRUaVkNOEa1DZjzz94UO3bF0wjvx45u/gyeu+DQOm3O+WOjUdBbz1/0GH3z+7zHqwEoQhFWOUccCsibXmwlgV7+p2Ga0+dN2v4z+p3f5aedSoDhiBLdywJ+Ptkcm375sN6ZmYKUGUzS8lU4cv9MebQiFjANFUZHFRk50i1NWyM0hB45fJvlP/S2PO+TY0wuuTSpeYsou46mKGFsZw4gIpKJAE51KO0JwHC/ddcPm43gXfTRr8MmtON+uuxbW++x+jDmwTMmvMEYXmSzJm3WiRUZTewXPDxUhpzHVSZxLWzHQ5TBV2ZtjgjHWbnL/iq2PY+7WRyKvxrn2PfCDhd/CsW5Dc8yYicWiyKdMrTQsiNhfpiso7PkGgwmU13QQvc/sxXtf/iL6ntlrlIiwcvTN+NUN/4aDvcdC1mv5UVb3bWHkt5lmPNt5AMF16rF18Bw8uOBLeGzOZ3Cyc/+0Ze9+4ShuX/od3PXq19D79B71rmn5OYXsLymJpLrtL02+Fy3K8rQEgRvX/hKO7xoUK3sU7FullLPY3z+j/ea2m2EYgJUaTDGRjbEicKuWF44mqFEQZtvIloalY2oVwtIoRLwiRhUYUWHSkqa8TjJUN7Z4JsZcHpm0zaHAGf4WTgKLJr9Xi9e58TR29Z0UGTx+25s/A7luUEYnC221/T4o9y5Loo8lRoNUDGxyLpM1vIpMiPo+RKzJip87ClWRCeF1OORg4v43cM2WP0ZSPtOhF/7v+q+jqaFzznm12fqTor3SlBcx7VcBCqC0w05EaRGXbeZFsCsS+p/cgXcv+ld0Mtw+Gus74pGr/xavTr0Pybp26e+N8Y6pf7PeHAfbB8/GAwu/gecv/wjOt++W9u5ddmwT3vfi5zFv3W9Ql2xO2ZapzzObJ2fKE1Cu18bZjr2xZMztWtiA07swZc+iaOQCu6OY1130b19c291GPydtCscp/MbUDPw0mRIhPUQjmoPMtgDSd1NttmgpBTJK+U9L19agZiv5ZdnuC8S32bv7T8GuvpO1sHEHl+Ngz1FaWPvWS1iw/sH8BOSC9Z+iD62k/cA0CP8fE0+bdx+wLmWEoijJCt7/j+vYKN+4wSc24eY3fxy5nNMd++DHN3wdbl0D8qHa6o+mhMlkPxX5aw7sZYzLLosipExfuT67UsquYBhybBPuevXf0b7lohb7RJeB+M11X8buAdNSZxxTlkLUIQIAJ4H1I67DLxZ+E+uHzU97jgOBWVufwvte+CcMPL41mqZ5T7PWasQ8FLlvufcrRt2EE4bFybyNf0AHc+6Qgr52cRqGMiBvDbfbDNMmYaUGUzQI8KwhSAo4fvvsUFpZLrKpbibkgAwXktBiwwm3dO4ecvTDIcAvU6q2mWQgGeoPOYKSql1XhJKsXFLCGwC7Kw+Cv4smvxeukkB9shlnO/SEa0yENH3nC+jQaJkgzS9jIcSBXEdg9dPKKyAFyiyWj5gKQO+7qR3G3NITEVMx+W32tu7nD+PdS/4DZLwAZzr0wk+u/1rBloguhbVGnLNFtvsayug5OYq1g6NbPtgsMAr2ZbMUznxeYftrWjikK4X9yvUmynSTtGtG+p/Yhne8/h9oaG3Uwvf3HoeHrvsSTncZkKYspaOpoROen/kxPDzv73GmY++08XueP4x7Fn0V1771K9S1NqWIKRX34Xubzbur3WUib4RZSUQAcJ06vDDlA9p5HVouYN6mP3ppGLKHVe4oijtKaRtRKrPswBQR6Z5dyI2pGfhpMkUjEO4cR99sYdpxb9MUD4FAqAhlvjJCj6f+zNB81Sp42uJF09RkOYuiQxNklfxMacZeNuVaYBNBw1VSiAgnuw/BuuELtBjjDqzAhiH6BH4OBO5QJg01haVsXFJin30e54aUXhCKKKq8A0wMbdZ9wEbJ60l+o6PaNw2kvbNOazPet/jLSIikds6l+o746XX/WlCFRtpvRYbf8VSbU6j9iMIChvI5g012RguBkkzY5mXuTpJdRobSIrbt1GtkrzP7cedr30R9Uu/w7+o3BX+a+zk013eUjU/WGzlOzuema2D39puMXy78OtYOvy6DuyNw+fZnce/LX0DPswfscSL33lByRIuQMgH1HLXd3tt3IjYNmq2dOmXPIvQ9syc+7aKsImJZGa5ImG03wzBtE1ZqMEUjnUIgXsmAIH40UUQFEIqLYNnscpkvnEY34ejlMUUPbUQgZdYWSTKu8U0h3di6kGrYkgnvRFNdeyUpgS4XT+JSfSftnEEntmLAiW1hOeKk3RLLB/otKXXmaTYfNm0NafMCpHr5RagWJdEZWb43977+NXQw3ARanHr8/NqvoFX5vgD5uWRkXH/y7rQWaSvVNyrDihBbzNSJx4RGTwyUJsG/uBS9NLteOIZ3vvrvaN9yQTu+bdAsPH7VZ9Fa1y64hTndfjkJZr6PMYaWuvZ4ccZH8PSsT6Il0S7NfQR6nz2A+176F0zYvTiDZdPt8kdWn9SYC3ll4nvQbEwaet26X8eXqSjVuIRtQ5p2m9vsGoIoHNAsxNbWZZgag5UaTPEgaAoNTVmRohHSRtgcJzKRmXbM30LXFIvQYnFdsfZWjbID/gviJyStQ8wVV2wrqsSlJ3eDLVDkZCaBhveOIE3nlPEaXGzfHSvG3qqdM+z4RqweuTAyGHPriu+lzCtS8JjyBFsqVxogw06f+gz10caUz6uEEIhdUtoy5ouk1tUC109TyadZCOSduD342nUPYoBcCtLHBeHBq/8B5zv2ApCi+vtWCN73IDOXDJhhQOR3m8d/4LZvo/6NTEXMU4u4/Hlb0K6oVpMpktFTIbRrvoA7X/06Ojee0o7t6j8VT17xF0jWNWjuTrlSkLW3Im2Yvm0eNhe/uf7LOJmBm0x9shk3rfoRblr5f6hP6Y4SKUWwmYoaSabXer5DTywbrcsBQ05sxdiDK/Qcjfa7EM2sfuvi2m52R2FyRJF9C7Nx3aglWKnBFI04Cw1bWMrNokgwhSFNeLa5u2S7QUkbYXMcae8tHRzr9SkdEqvmJeb+RTeEf82y+AVaPeomnG/fQwsddXg1jncdrIV1u3QCU3a+lPohFnKoOOO2I9UdrxBtAreDANj9BPBf35Lp3ArR60DkGycZeehNzNz5nBYmADw39YM40mN4mITyTdJcMiDvR8x3ztgEZDuhbOpcASm+j7VIRKFjVVzEKO+zvk1BY6Vt0bYrRY0LDhppQODmZd9Fz/OHtOgHe43Bk1f9FVBXl1l507TTUXcgu9Is25sTvbeee+dvrv8qthmuHXFM2Psa3vvyF9H14nHjI5FZnhL1E5vuKsLHQVg1+u04bcwJcu2Gh9LM+yEzTR8lg1Kg7G03N08M06ZgpQZTNFTFQzYbCF7NVJUEUilgsYbIOu1Im2sJ9OOmHb0gdTfFP1s/PRs5K0V8s91urWuHNya8Uwvrd3oPNlx2dSTugvUPAm5rinzbTociU9iUNSSfEdaqxZDTC63XKVR61noapysE0NB8Abev/F7kM7Np8BysG3at/qyFn7q1Z515naj5+pPtw8xMF5Qu0/jEjX2vXbS7k8StciIs+Zvlm7f2Nxh2ZK0W53i3IXh03t96LifZkK1SLO5mFaCutTR0wJNX/SVWjrklo/i9z+7HvS/+CwYf26KFZ1Mrsiq2ct2tde2waOJ7tMNdL53E7O1PZ5BOFnlmXrhiZ6CkTqXIhikHmXwgs92YmoGVGkzRICIkEgnNTSRwF0mlfHCUv3JLGH/jrDas+gl9ZCdSllhLEE+zYltRxbalH9JCqKAJlB3GtRIFFiaZfnDD6yZIk7oNQ6/B8S6DtHjTd76I7f2na2H1yWbc+NYvItlotzDNiFemo/VVrQzQRsuIR4DaGubzVr8rBZac9VdMfiOyl700wd5X0KrWbSbvef3rqHNbtLCTnfrhyekfCwumfqezK04slW7tI2J/ZbBGinKvw09ojMI9Xwsca1FsDWIqd5KYuU+C9i1sC+Lq0/jdizFj65Na2IV2XfHIvM+hqV2XoO5kZjGZweWmm7tC3eLuvXI/0tZGcvDatPvw0vT74VreJXO1sY7N5/Cuxf+GSbsXBW207gKbvuS5fgO2DpyJvb3HaWGztz+FLhdP2HM05LBCVEm9/1jAep4yU0XOMmVDhmFqFlZqMEVDNiQ2BYCTcOAk7EqClEoQ2ASfDISjbDdrmhahKMPymMqViAImuGnWG6nd0/hyhckJJ4HXJt2jJdPt4nEc6jUaSUpo4ZN3L0LHxtPRPM0t1XM2fsddf65Cha1DUFIpxcyGhSMAld8hLRYk/1eSKkgITdeyO039HqXiiq2Po9/ZvVpYq1OPX17zL6BEQumIIqNvQqZktPpJBUFQv7eqcj4DNwijc2pu+S+KIpUWyl9FEaEqCmKrrXaO7ZpSP/pep/fi+lU/0cKSTgJPXv1ZXOjU239vyO5iFLeluuJMblgGeahKDydyzfayrB29EE9c9Vm0KBNyAoAjXDQbk4omRBILV/0I17z1a5Bww/ugpa0/lehtUOsQZfTpISK8NPm+yFLv12z8ffr7piWUXfToySVur8uYLVNkHKfwG1Mz8NNkika6Tr1VGZDun6kMUOX9mDzSNWzWsvijFLoFhpmxKjjay6OVyyiA+Tv7Gxx/TYIIOwdMx35zlGbrk1g1+iYtzIHAbUv/J3OBOhvJu2ACheXeM2WnmjqkhaTQqpyi6YYyeFV6nDuAuZv+qJcHwOMzPoHmhk66m0mu712+q5+UEbWE8ioy7Y9n0T9PSeyiMkYpNQVL8M+WYMwFqtcXY0wQp8isa23ELUv+G3VJ3drnpZkfxaG+4wCiohi4FaQOZfrgjLx2DpqBP87/RzTVd9DCG5JNuNSgrzgGADO3PYWbVvwAjtuqtGTmU/L2I8ZhER2IlKtSX9fx7kOxdvgCLXjCgaXof2pnihPl6cV8P8v37le11SjDMLGwUoMpHkan3tYvTevGYYknVxtRN9MNxVRQpNxilCzSQkSzFrGeq7inpOlFEChyX7zRIWWVF1seWbqkOADgOFg8+b1aePuWCyBX4FJDZy180MltGHB8a2bPVcQbZKc/10yqsoULU6GWiZKMqT2E7n9UcPRX2u/qEOXeEc7gPPnu3b3kW3CMF3PrgJnYMWhmMCKcMp3YX+o9I22XNAV0jGKZ1Pug75dzK8eLH94+tQx+Z9h0J1GJcS2R9VlA6G1scI3QvvOxX2k/XyLCgjcfQM9zB7XDb41eiI0jFijRVQVBqOzP63mkqD/ZpJHqsWriiKHsONR7DP54zT+gsb6jdk6H5gs416FnJK3xe1/H7W/8J+paG6330tviZIno+5VJE/r6+HdFyrdg/UPh3DgpMOWowrV95Wv703/VmIpFe08KtDE1Ays1mKJhcyNJObdGtu4nFpeVbJQWmQuxWUAUCD7aZhPcLGNp1sbWVgSlXLaOgRzBOdJ7FLYas7VP3/k8Fk16T2Sw7uaVP1DKFs1WFerCfMK/md0f8zIqvEGxKNiYkEpXShUKrfOEHL4LueSXS4XLsozzNv4e3S6d1MIuNnTG47M+lZPQ5+UrvxF2lwxdYSOU71d0U/W42XgsFHsrHrYPjr+R7FCa7UimNUU931fYy0lC01yUmp9ttZuxe17HxF2LtHOO9BiOV6e9P3K+2v6BYLVszGpLc9sy2YKWOK7NNyqA2RYe6T0aD1/7z5HBgi6XTuJo96ERl8/hh9/Cu179d7RrOa8+nQyeZXhEf5fi220AuNSuC5aNuU0LG3xyK0YfXl3yNji8jfo3gRtXJiMKupyrvzE1Az9NpmjEyQb676jiQY4aRQQPh7wa629pFRKWf7kISymVHLZ2mCz52Ex5C9qGU/iH9MRfn3SPJlTVuS0YdHI7jncdoqXQ/eJxTNjzKlQZQ7vc0kr3VUVbNWeteKVUPtgeaQFl73K6nABA10vHMXvbU1qYAPDbuX8PJBKR+LHFtYzoZ6oUqOn6gxRuI2ldSFK1ZzF5pVrtRtknguFaYn+yupGHfbUbAaDLheNYsFKfR6O5rj2eueovkUzUp25fbZlluR+pQ+blZPKeZVJGLX60Qh/rORwPX/vPuNiuixa17+k92N9nPFqMeTYGntiGd7/8leh8VtbCxXyOzGKkKPfqkTfijLHE6/wNv4Pjtpa4Lc/mRjMMw2QOKzWYokGOE0wIGk4MGg1zHH3SUNPtw3EcJBIOHIf8vxarDCn4pXE1Sem6EnH5MP4qI1VpV09RXVJSupVEwyLliz3XcEnRBJNQBDrdpT/WKSbAADBxz2IsNqw1AOC6t34JuG6YSqYdL9Mlxfhts8ipJZkmvqtR27QVS41ioPcj1FHXXBPMLvrdS/4z4nby1rAFONHtsuB3nGuJOtpqWtxlUxAhRJXVoezKGlXghM852IevZchTURx8g4Kkw3aBHGlVEe0g64ul+PEtz5WC+Loa5oblP0S71ktaWV6a9Wc403VgaJFhL7CSrR9PhPuB5US6ffOfeSxVXOOfei+Dcy2b2W7Jnyd6DMWf5v8TmgxXj6FH12PHwOkRS47eZ/fjrsX/hk5NZyyDHsrIQgaurelIJhqweOK7tbAeF45g+s4XdcVk2d7H4uZrPtNakT3aHESFnSS0xhXrbQ1WajBFIxMlg11ZQJEtarpsbAVyNUklwFiPwRKulTHLb6YlrlUozPI7vHzcO7SRIke4mLR3EXb1n6rFa9d6CVdv/EN2iQORiyzFCKzasWIz1tJTXZ3R/Cl2lc65/sp3AJTxezdjx7Podf6QFnaxoQtemPrB2HMcUPC+qQoY29Y2iBveNzZVuRC3Iccvl6m80Nqf+OchFRwR5QVkXzr+wZJSD6bseAGXHVmvpb1x+HxsHT5XbzdTKSD8NtaqSLG18ZluBWjjYx9ppPzhdrznMDx2zeciq6KM27cUm4bOjcyz0evsAdz1ylcjFhvBY8iqXhgyknHulkFX4GCPkdoZV255FO1bLgbXQWlWg0in4MmdYn9gjY1hmJqDlRpM0SC18Y8bNZHCChkCgmMRqAKBxejQGpNX2QQS8gY7UgsoRrk0QUe1LtCu0S58hemHio+IdFnEhlVThBBwoUMPvDnqbVqcsfuXY8XoW+EaPoUztz4VTGJW2R0Um8SpHisdbdH9RFXstQUqWoeThaBe19qIazboSzoKAI/M+Qzg6LYbZMQBclNcxLleyA5YqjiF2i8EQkQvPG2nOfiXQfraZJ6w7ocZy/yVZ0KxsSMPzeZOoiSiKS1NBaYA0PXCEVy95lda+LmOvbB4xv2WrHXlRbBvuTPWe2C07SkVFMY5mXmf6P8yOCF+A3Cwzzg8dfVfR+bSuHzbM1g59lac7txPC+957iDueuVfPcVG2uz952M7YnuUqthChFcm36ud06HlAq7c+phePzJ5wWtMOdAW2/CqJE7hms/G1Ays1GCKRuDykTCsLowwqXAIt+jIjHRT8X47oIQDJ5Hw3FYotPJIJBJBPM11JZGdCwiR7gYiBR0tfiqBSrsR/ggICAVzSVGkCVL+BuWQ90lRtKwaf2tkBvQrtj6Ot0Zcr4UlRBI3rfqxTFG5vni9jJZ3TENR2pH90goomXVZaovqcx3IjsgKEQVKNfZIKe4lEW5f+X3UiVYteMvAWTjYa4wsSfBXUx4rHV6d9OXW+0thbyvXfSFg3U91biG2IL0CuItY75P6Xfc+qhAIv6vC19BHVipRiHMnsVmHePGjq6IACJTztoEHEgI3LP0BGlqbtLxfvOITaGnoFAwMBIMD1uujsNNt2Rd+/dMGOCxXG+mMqm2QL19k/IjDgobXLttuyz/1uoJ/fvl3D5qO56/4ZKTE89Y+iFen3hdRbPQ6dxB3v/Kv6NR01u6eqXXEVHeU9HVQvUMHe47CFmPy8Gk7X0DXi8eVE/L7FuX2LStvW9IW23CGqTVYqcEUjXAuDH3+jIQxj0Z0tZN495PIXBOkn6+vhhKe6wmCTjRNm4IiYjmCrOJpwpAqFMUJl0acCLYgLV9DmaD3IILdpobOWDnudi2dYUfWYtuAGWg2JjEbc2A5ul48Zk3SKEhGecsy1wKmAFsr18XoyHc60xUicsjBUBhmkb7xjUkb3Y/X/9ROjDjylnasJdGAJ2eFnS/vWgHyTdtUhWb6rFL0GJVEzHJnMgKvbqqbQkqXhWJtypXlja+8MO+NvO+2FWBSJqemI8tofqOVhxk+b9LaVbWDrj9GwoRdizD46EYt33WjbsD+gdP0861pxF2r2rZ6gxZkPNvoNTiR8Fyep5lutDykK5JMpYctHIStw+dh0eX3a/epzm3F9St/jGdn/zlOd+6vHet57iDesfjf0dB8MfIcguIFt1ENkM/Trp3R6i0RFk98tzF5eCuu3vhw6oqVBdl+K8m4lwV8u5hag1c/YVLAT5MpGrq1AQK5Vhu5iRVqosJd8P0x5WTHTFPmYwgpkTk8dEsRLT1HzUMvVxDukDVeMPlozHmacGcTjxWBM/UNtmzKIduPN0ctxPn23bVk5m78A16ddE8k6VuXfdeebVXIGkUsZIp+m/ocat2cNdMOdVVR4hVPvN85ZpDFadLV4Pbl342c8sKU90M4ddHkU36G1NH9aCS7IkD+i8arRjT3DDU8g/0A/9I1PYPlueb0JTGUF6mQ1VCQCPLXJwQN02jfeAZXv6m7nZzt1AdvXP6BaHmD6wuVB2mLZNNdmPdJuzyyxo/czxR5qk2y2cHW6ieFO7YardVuP9G3xr0db43RXT87Np3FDSt/hMfm/m1EsdH39B7c/tp/INHarBfOKIMIDtneLON+GffibOe+WGNYaE7Y9wb6nNkbnpgteb3GGT4ohmGYFLBSgykampDgEJyg02+3wogoNGLcT+R5qluJ47u0JNR40sVFcz9xtA1KmOamYuQvlRiyLIlEIn4Ux4EyuqIqURRrlGCESb1hutCXyiUlXbsvYn4k69tj+YQ7tbgDT27H+c69I8qO/qd2YuCxLdG0I0vmxYjcFj9sFdtIWOHkmjIqFPysbUJmLVHL7ic1pZDyOyiXb3sG3S6d0A6d7NwfG4ZdE0TTR0qB2PdIXVIz1PJmrpCVyZSsDuWxZmh61YTSYdRH/uP2YSjZ0xH2pcO0vOyi7QyIlKdnuFD5zziirFd7yj6BhZL6jwhz3/wlOjSf18r3yuw/Q0tDByUPWN1GSBEKYi0sYr6bYTLyGtW45jm6QkYtv93iw9wsmctNdWlRH5Byf00lw+LLP4jdA6ZpSfY6ux/XrPklHr72n3C6U1/t2ODjm3HLku+AXN1NTCtS7JH0CAEsHXs7muraK+kJzNv4B0XBE31+1nIY7bi1/a7Az2m0ToD1KdVARu9vlhtTM7BSgykasvMedOSNJVydhANK+MoHZUs4DhJyPoxg31dk+MoHucSrqrSQ6Un3EyJHMV9FMJ+HNleFTFsVCK0uMKEyQjPRtW0WhUZk1Ef+SZWOkpZJ2vPi8ibC+hHXRYSoq9f9Ds/O+FhkksCbVv7QCDHLh+CvHguRfAMhKQ21rgxgKh9ZB4st72RlpWB0RDNJO3hH3VbMM1Y1EgD+dMVnEErylEbO03pu0Q6pEqNoKJ3i7Dan4PtkbQcKKEdb2wP//noNmjVhT7Hut29+GTUXKvVBGR1xtW3T6pt/7uDD6zF+12KtmNuGXoV9gy/PrA3S6pg/wEFh+6vFs/1T7rGyE6QXnusY5+ibE5u3n6ytnVM2a/0nvZzq/UOiDs/M/Suc6DZEu3fDDr+Fqdufw58W/BMuGIMKIw69iYUr/g8Qrl8dDJnA9rJFKpkZKWzDG9t3w8rRN2unjzzyFgaf2BKtpBlV2BRUYpMeeahMVVDI5VzlxtQM/DSZokEOBUoGVZNvDbO4azgx4TYBJRLHodBlTgoXtjwSfuPtKMKJOckmqXNwIBQEA+WJRXiyuZvI+2Jci0Visp0UESxsQp8qpAZJGCNmbqIOSybdraXV++x+dGg9j2PdLtPCu108hlH7l2tFsMpMmtyUiwQfXpMITR3yoIxSip91TY32W8i0c13NFMKIQLVEMO9X1lYKWQjg6uoWC9/6BerdZu34lkGzcarrIPMMIKLaNIpABNJG8ZUUsnTJgFKHcnHVKOumukJmQN4uJP6WcTqku5NozUncc7U+VUAQ4CRbcO2KH2vhTfUd8drMD1nzDhUEsJZBvT5B0E+I27ckQmZDpJ1j+51B+2S2bUb5g5/m6cG3H5G2uaW+Ix6f/3e42L6bltXMzY+j76ndeOTaf0BjfSft2Pg9r2Hu2ofsZVMLEyl29BmG9yvcVo2+CRfa6eW5Zv1vgw9ftTbBedFG2m+GqUVYqcEUjdAaIrTCSKmgkMqIOKVHytVBjJEXKJOKqm4qidB1JWGsnOJE3E+kpYfUjABQlRd+66eWSZOtMii3ln+sS4oqSFsUIRa0BtnSNm+57MqIAmPOhj/h6VmfjHRpbljz87TPOjpXQIYuKREXldTlTocuq8oOU9yNKpLQwu4nVUtxVjxR8bscRNnq+3KmfeNZTNqjj663OnV4+vKPKe+JLBtMrQP8j5neg4vzb1PPVHp+pLyY+n76ODDairKSgdImDq3karsXt8Wlo94D+fyUdsnr1xvPSUQ72eY55pWo7QwRMGXrM+hx9qBWliWX34eLnXroz0ppG+W1wpKnfhl6fP0bDhCEfd+6mcf032bbKZC+zTDvWaRJUTNQ3VOMh3iuc188Me9vkXT0pV5vXPZ9JJ06PDb/c2hJNGjHZm55ApN3vGjRoGT/7fVOD89rqWuPJePu0OIMPLUDow+u1HMQQv+dCVpTXkXthNp+V1Gx2wqCqOAbUzuUTalBRL2JaCoR3UBE9xDR7UR0JRGNIuLpaGsBxwES2tKt0VVNQlcSm1uJskkXEXWeDZluwthizk0o7jC6QsHiapIgTcliurkEK7ckHKNMiouNqqxQhXI5wGIIsaBomBS0TGyCacYbAJCDJZPu0tLsef4Q+p/Zg319JmjhHZvOYfr2Z5FKi2IWMbbzYYTHXVvumFJrqrS4MWN05HtYvBVPZJ3PpH4a52WYttkpvm3l9+AY0vmysbfBrW8HT8Fi9JeCTpvyTUpVWq1Dm51LhiWJlPHKjabwVa4xYi2Y0Tc4zUVbvpXRdPxnZUygrbUxoHBeKFLC5F+to678VfLs2HgGs9bp7ktHeo3CxjELtXbKfh/ke0WBW4y9bqhtoVKfHAckV0Ix9zPZSB2Y0O9dTs8u5nlqW/D8KJLvkb5jsXjGh7R72dDaiFtf+xZOdB+Kp+Z+VluZBAAWrP4Zhh56y14fTOVU2vdFj7Bu+LU41UlfXnbuxj+A3GR4bUo9T/dSxsk12WDWiWy/lQWjgr49DMOkp2TKAyLqQkTvI6IfE9EWAEcArAbwLIAHAfwJwGsAtgA4TUTPEdHniejyUpWRKSwEpWFHjFAmG0vbhKHm5isrQmuFmHNtE5AaLimKrGHNJ5Ku4+jCDwiqckXL21RiOAiOyVE0TQgJb1goAITSkSJEkBbPtpHtnykP+HnsHDQTR3oM057ZFZv+hGev+ARcozW/ev3vAddVCupR6IF6QqHcT+yplwQ/m6oancqBUOCscoq84omZWTrrFmu9ocwGDVWXExCh15m9uOyYvvTmpfpOWDbuHan7JiL8fuiJy8OR2YK99JTOdSZWPKWqQwWbGlQtqxCR+53plvWXIe6bryI/myJ6P8NnKdsQbaZX/9L89pGibcacNb9Bu5aLWpqvXfGRqD96cI1moZX0Yu+LnqfaIY7dV9pSWzy1LY3UM10LEVOW4GRLW2zENcuPmFNA2DB6ITYNn68Vp+fZg7hx2fexZ+A0vDT7z7RjjnBx8xvfQa/Te6MvbVx9iESyf0Ncpw6vTdQHOHqdP4Tx+5f4p5rXniEWuSP7k/NKJDfaSPtdtciGpmBbDcgwTEDRlRpENIOIfgHgMIAHAHwIwGjEN9MEoDOA6wF8EcAKItpIRJ8iok7RHJhKRWr2w4k2w3kyQqsIf74zbaPIprmQOMpKJ2qY6lYirTXUc5UJPxNKWNQtJBSKwklEASiCUrCai7xORbkRCFWy7HL0EqRNnGoqXKIWJLZJSeXIk1lmu2AIGMvrKZIWOQ6WTn63Frf7+SMYeng9tg6+QgtvSDZh7obfmikqgqJaxhTtRJoVUUyBNOLWkxepXV8KBrufVCWFFWLj0kpfJ7R6Q8jL9eLWlT/QchQAXph2v98ZjXP1Imu4MN97WTaE34HYOyi/OZEOqD28IBuU77i6r8TJZ1/mkQvaszS/edZrickp0Bfo8bTfpMTV2gD48y1B+WCHv6V1Q9+TOzF++0tatltGzMfRPmMDZQn5ivyw/x+2A6TUYa3dS7Gp8TSlBHkKtWDfMeYMUeKpv812Nd09Ttf+aNdmaZfTtldEeHn2n+Foj+Fa8Kh9yzB985PYNHIBlk+8UzvWrvUS7nj1G+h06ZT27qREfwi6Yks+bwBbB83Gke7DtFOv2vQnOClWX8ka9VuSc7uhuH+Vov2uneaNYdoERVNq+MqMpwEsB3AfgA7wvqCHATwG4AsAPgngHgALAdwBT+HxWQA/gGfF0eqfMw7AfwPYTUSfI6J2xSo3UzhCpYK5uokyx0bCMxFV3TUSjh/H/yv3g9VPjBVRTJcQdQlYx3dnCQQlcy4O39UkvfuJE7kOcmSe6kZaJ4RUwcp0QbF0WKJCv03gNYRiIJRFAyFTyUeLpgfsHjAdh3qO0sKu2PQnvDjjQxET2BnbnoHTqk82aBNg1WNK8bROhhTKHPOkGHLvPqRIM4N8s0nLvPeFTJ8pPoWsY6q8rbtkZFfvMokZ18keeHwLep/dr8U93akftg6ZY0tE6+zayqiWX63fsS4ZaucRCN752I9FoTd1dZCYlUIKsqV7Jum28OMdu2nfF/Of2p6o7ZyWvt86qPkGcVQrRP05OwDmrvgZVNuSlrr2WDrzA/59JZiTaoOkkkN1AYlp42yDCo5+P8zvqqroT7sSWdwWGcgw2+3UW/js5X1V28LMNre+HZ6e/zdobNDH6q5660H0PbEDSye/G1suu0o71vXiCdz22reQcFu8e5m23imvtrWeStnEwRsT3qUd637xGCbteTV6jrXGZ0ch2saStK/chFceBbXSkKbbTK1QlKdJRD8DsAzA2+B9Ft4E8DcAhgkhBgkh3iGE+IoQ4odCiN8LIV4QQjwuhHhACPFtIcSfCyFmAegCT+HxcwBnAfQC8DUAm4lobjHKzhQOfdJP2XiSMRGoYqlhCAbh6ifKsbh4RmNurpyiKi0igg1F4xI5enyLW4lUbKiTd6rx/LsQnG8VVKXEgehv//Qgrj7KpgpVelxtk+lCdkAM1w4iLJmsr4TS7cIxjN2/HG+NvEELT4gkbnzzp1qemc/Eb+8MZHp+VayIkqZjUmuw4iZThK/kyL4i5OJyInn76h9ruQkAT836RBhFc1Og0OVECReGm0JwGbrWRskkhUuGhUzqUCFGZFUrk2LvB7/TfQ9s1SHFpartg7YP+X2XH3wlvtKGIuIypDQh/iaMGjN03woMOLpJO2fVlHfhYseeSiL6dVjLqCoE1PwRtk22fbJdk6ZciIbZ4qhlFBARxZB2j03lj6EMibTP2k3wNpI31szfKMu5zv3w3NWf0e57wk3ipte/g4ZkI1648pM42HuMds/6n9yB61b+BKS+ayZm3QquXQ9Qa8Su/lNx0BjgmLPlUSSS+kBGthPkmmXIjxK0N9ykVTiFniSUH3gtUSwV1QfhWVn8CMA4IcRMIcR/CSH2ZpOIEKLZV3h8GEB/AB+AN+fGUADXFbrQTGHRxAYpFGhhCEaIQjcVy0op5qRf0rojsJhQVzXxtkCRkQjDpBWGdFEJJyU1Vj9RLTaccCJTdSLQcPQpFB7VSUG98xJIJBJ2VxNFQVIwlxTLx1kV0oLVYAz3lX0DpuBg77HaebM3PoLXJt0dmYl9/N7X0b7pHKSGmyLSU0jGK6JkQ15JlMj9JH3WNUGtuZ8Uj9ILTcMPr0H3C0e0sKPdhuJIL6XTQv7/1EmGEO9mAqVTalpnQP0e+eGZuPMI/18qtI5wBp1Y2+bAse/HjPrns68qkTPCUAjY2k0tjtEJl59gIgCOsjwqjGeJUAkglSFhekp+8q/r4srVv9SKerZzX6ybeLvX7hntU0SZoDwvtTMfURCQeR1G/BSWFOqzTKWIUNNwHCeiYNDSTjEAobXDjhONr95tqdPQ2mmlPLL9HXw5Vk98h3afu58/ggXLfwLXacCT1/w/nOmsT+Q5YdciTNn+XFjEoJ6E77GGHBMIngtF228ivG5Ya3S9dBJTdr+ihal5xk0cam0XKtz9xHzvUog2DMNUKMVSanwfwCghxMeFEFsLkaAQokkI8SsAEwG8B8C2QqTLFI9AOZCQLiJkuKQYq4QYHfvoqiTG+YaLSiIhhSzZ+Td8oG3pOY62QovV/cTM21GUJOpqLQ4hmBMkEF5guMSEViSmf3YgXBluKlYhLZUAp6VJ6RtmilprdL10ApP2vIalE96phTsQePuKH2TU3puyFZkBGaQRxstduogKl3I0jc0OmdJgq/vxkc26mjZ6hBvX/FwLFwCenvWJ2PPV99nLV3aww7KbHTtViSG/NerIsdopL9iGaIczo82J2S/mJu9BJv/ivve2ThZB/agZ8QHH71CDCP5sIuFz8zvWmtWh8vzU9mf89pfQ48wBra4sn/l+JOvb6S4nWjtphKd5nrb23yYPaKuIqVsiWgara0mafDMtb6Zb8IyUhybfChvLp92Dw4ZFxtg9r2H8rkVo7NANT8z/f2iu072ur3nzlxh0bJNeF6yphwQKkJiS7O0zEXt7j9fC5mx5HPWtTUoipG+2fJRw270JLVkzw2zDi9J+W95fpgJh9xMmBUV5mkKITwkh9qePmVPaQgjxOyHEb4qRPlM4iKC4i4iwYVLCINtFZYsIS4GQ7W8AwrXqzc34VilCYKB0UNJyEtFGN2P3E6k4STiRMNP9RFVgwLg+9brVv/7Z2m8gNG3WBN3A3Fm5ScGl6+fLdFX295uI/X11YWb25kexZszbccnw+R125C10Pa+PAqsZZDOAUhr3k5geR+4J5laEGiPTTnelIkf6oit5FDyn7EcVsxCszZTH7FuKrpdOamEHeo7GyW6DLZn4acS4mQj1+ca4lpheLHrZLG4YCPcj3zdLnMi+7cIzWrqkAOSQT1ynV9v3/1mzIj0dKO1hKmS7qq1I4x8Iza6N5+cfr2ttwqw1D2nBx3qPxM6R8/TrCIqolN9sx20d/gwUS2qbartPcl9T/pjH1H9qe5likxORRpUU4bMIb5VxfY7ShkOPn6oquk4dnpv3V2iq76iFz1/xE/Q4exCnug/FC1d+WjuWEEnc/Pq30eXi8fR5pP2WBJUMb0zUrTU6NZ3BtF0vpEsggwpplCOrpqOM7befBa+GwuQDETUQ0UeI6BkiOkRETUR0noi2ENFPicgy2RWTLayiYoqG3uDbzEQdzWohWGnEnGPDQURwiB1V0RQR6miMonRQJxaV+UasNWSZldEcJ3QVMcthXd1FWqc45E2oppXJa5zVcz3lRziSFueSIoU442Z7wq4U8uREbb6gYSpRIg00EZZO0q01Ol86hck7XsAr0z6gRwVwy7LvGk87jxVRsqHgckVpV0SpJard/SR4N6B0Mi2dy8zJfcWTSErp7qv6zTMOLVj3YKRUT8/+pF4eOTpl3gMn/F4EJbfkZXVRsX2PbdeuBGkd0mLvy2crYjq9mfzLIh+bMjm8BaTdA9lX0/fhr06ifzw9fQQFzwXKpnb+w+dISjugpuH9lat7qW3q1A2PodOlU1qZl826H3AcreOuzielXoMWx9JGq22dbVNdJO33Jl5BESmPo+dpy1fNz1ouw4UlnRWI+jca39E3/9i5Ln3x8pW6NVV9sgkLX/9vOG4rdgy5Aism6paTHZvO4pbX/hOJZDhxKEG57+pErVY3GYkI6sXB3mOwu99k7eisrU+ivuWS7UQliSxdQwrSdPBqKG0O45tXkK3oRaYhAFYC+DG8uSb7A2gA0AnAGHiLZCwhov8kKkGBaphirn7y30Q0s1jpM5WP35fPbHOUvxY3kUQkzLHGi8RPpNscb3WTBMGp8zf/vIQxH0dCXcGlztEVF3UEp85XfMi/Mn0lnmaqmwiVOnKOEKv/sCFApfRjNj+HFiEm7tyD/SZib79JWtxZmx/DjsGzcbZDLy2836md6Hdiu/W5UyDMmm0GRdqPTL/esdeax+ff1nRwe9KGIYQjyPkmleeKJ+niS2WDKZSNObAcXZpOa3H39J2Ec5366J1f2F4fe55mx9mLqbyLZgde7dzK4zblgFLuuG9SMbZMlxVNt2nlTuH2ENf51p5HNhv0b2u4+den1DlSlBVqZ918rqo7Sfumc5i67hGtDuwbfDkODZkW5K/NJxLrPmpfMj2tu4eMm4iea9s0xUWqLWGkadaLmDkvCumWki6tncOvxobRN2r3vu/JnZi1/o8gIiyf8m7sGni5drzfyZ2Yt+ZX2vMMtnRE4nsfwdcn3KVF69h8HjN2PGdPIqjOFJTBcVJ3LagAH1nz8krSdrN4wGQJEdUBeBKA1BSuBXA/gCvhLYTxZQAX/GN/DeBvS1zEmqKYlhqfBrCMiDYS0d+Tp6li2hJ2ySvYhLURjhEgSR+00rbI6inmbylkWQQZxxKeMOfHkCsC6nFVBYsm4FHUJSVhCI6qlYpsi1XBxwuA1jlQG9Q4qw1CVLFhDfPP0/4RYemUd2vxOjWewZQdL+C5WR/TJwcE8PYV3zdC0hEd5sh64MPWG8tR0AhXpCgBNSgMqR2kaqTQ5sT6QGH6FU+s+VMWK55YWLD215F4z8z8GKC96f6xyDsUzCaopyHddOJW+NCSIf04EHy71O9YUBJF4VOKVUnyRUvP8lhTKT6gtWeUvt+ptmcyv9j4QSPit6v65K9eIxYmpr63mpIDwJR1f0JDy0XlmgnLr7g/jGO6jkD/bW1bjHY9VrFkU+qn2bJVUgVlNBVPToqyK9egXbvNjca4p7b89fh6wOuzPxxxFZux/mH0PbENIpHA83P/Eqe6DNCOT932LEbvXRJfR8yKposYxpcBONJzJLYP0JUnM7c/jXbNFxAhIsMpKzLFYPt2ZEvJ2m8/C3Y/qRC8kc/CbsXlDoQKjSUALvdX+lwqhHheCPEFAPMBtPhx/sFXhDA5UOynSQDGAvhXALuI6EUi+gARdUpzHlNr2NoD0wMCoQCntZMwVkkh6aZiCD+GIBR1J4kLs08aFliDJBQXFvXcwMzU4n5CehgsFibwFR3Biipk5q0La+qcHsE9U+KnEtjIuF/BDdceh8DhPmOxe8A0LXzm5sdxtM9YHO+m6yW7nz+MkYdWRcxqU3bkLH0CktdhEY4yohpWRKlReaiq3U+KKhCnT1vL31RgWk9Qvm+Ww6MOrkSXRt1lYG+fCbjYoUd8/oSoy4nSAYeSl6aEoLD8WkeQ9L9aJ0+5xnLs27asll6NS9tRGq3II1O/1Qjiqd8687sXPmO1fljucfBbtXzQ3UmCcvrPL5VCAAR0aDqDSRue0K5hx6hrcKrPiKjFh5PChcQh/b45MeHGOdkoJ8y2Xv2b8WZaYxgWInDgKTuUOHGriJnXmMo9RZM3DKuQ1roGvDjvL5GkRPAMHOHixtf/B3WtTWiu74Snr/nbyMpk1y/7IbqfOxSpgwCChldTtqjPInpCZG6N9i0XMXP7M5DVPi3p3FHY/YTJgUIu5xou61pUrlb2vyaESEauSYhVAOSHtweAccUuVK1STKXGDQB+DuA8/KYfwLUAfgbgMBH9gohupFgJjqkVpLxnbo5hXaEJOuY/izCSyv3EdEWJ3YylYL3NWxElURdugYuJ6qbi79tcTdQwx08zzEcJI1IUG/45FApWMq3AdJcsgpApoEWERF3wDARnqGHh81pmrITSsekspm57Fs/M+XTEWuOG1T9N8+T139rbbhHobWfFp57fp8P25eHPUXbw/bJDlP7eqEK4941MHZ/ChLXKK8+9zmKl8eysj0XiA7IzqXdywu+C8dtQmIIQUbDGfoMUk7m4jqV2fom3lKP8cj6CdJvyjbU1dEF6wffWjGIo662b8uxTuEUEecpyGd949RlFLQwdTH/rYW2lC5ccvDnzvvBe2TrsSmdeba8iHXc1L6XNC10x45YsDwcLQldOfQl2kgMDxpxZWvsZyV+3trQpGuLm4MirXhl1P/KeE+F471FYOVVvh3ucO4Sr3vw1iAinegzF4tkf1Y43tF7Cza99G3XJlvj8/LqRCce7XYYtg6/QwmbseBYdms6lbaQjLb9yrfZyWU5Kg3n7StIWcXPHZI+qfdyZIt4OZb9dbCwmJUVTagghXhJCfBhAPwD3AngaQBLeZ6ETgPsAPANgHxF9nYgmxSbGVDUC/ohYqhni/X9eNGP0PNo31n8qMrsqKJIR0RSipcDpkHqenNvDa2W9+KqQpgtzgWCmhenuJ0E+pqATCGryLilCp1JuRym3gNBmZ1fvR0RYgBRidK2RvD+m6aw850jvUdhp+O1evvlxnOvUGwf66ArkTo1nMGX782kbe6//ZhutSeGSkkZIyW9FFHY/aesU05w4k0lUVSE8H5cTEDD88Bp0uXRCC97fexzOd+yD6AfT2+JGqLxX1XDhIH2kUn7PvW9M9F4GHRWI4DUW0P/K/fDbZr/WwuxnEsO8w0L7BEX3RUx4dD+j9z/2ZLVENvNGPX2zAyn/mp0+9fspINDx4nGM3/i0FmfbmOtwtseg4NlLJUmQttH2AAjdJ9XyGeFhm+1bLcZcUzhvRrwiQCtPTHiofIGlzKSUx7sztrIEQ3OWNjP4p9wTW3yLnj96TX6ZVk9+F470Hq0dmrLlaQw+/BZAwKaRC7BpxHzteJ/TezB/1c8t5dYu0KIRMMrlBywZfydc5WBDayNmbX3CjBwhnftJkEUOyowgD6P9Lpqlhlo+ttQoP0QIfc4LsRVdONuq7I9IEW+k/1cA2Fa84tQ2RXcmEkI0CiEeEkLcAmAwgM8CWI3wczYQ3sQobxHRaiL6DBH1LXa5mNIiBHnKDeE3RuoGxf9aKjckUkZQFQ9Q9o12Wh3ZIjnpqG8BIb9hcj+wFDFHa3wLCs+Kw/EtN5wgjvwdWl84SNRJ6w7HGP3xjqujTJ6Jq+MpUBJylCmhuL44QT6OYkJMCV1ZoitGdMFKHUHz7o0+WqWN2pFvRoxwf7kxt0aH5vOYtvUZPD3n0xCGFDJ33UOA69qeuvJsQklPf0YU36ZkKqSw+0nZYPeT+NSzJZ97ueCtX0Vk72dnfCxlv8H7riqKV/W3o3wnYHQOA4UptHDTDcPaIVX+gmQn0xZe6P3IclrRfW9SBeV+UHCjlM+XtW+o3pfA4gKK5QWUv+Z3WrlngRVG8G3Uv9mhJYFpKWJRnMdZ85ltgr9NW/MH1CWbg2tLOnV4a9Z9oVWO744RuEs6MXnIcsi2xVHcMhOhRQUFlh+ktMH+pl6LmU/MpipBYl1AFCuNsKyEqCtpZpvtPqsrmFmfg2F5Ke+XmSbq6vDiNZ+JuJlc98b3UN/szXmyaPZHccJwC52040WM2rtEf9kj+jphPx5WaIAcnOw6GJsuu1qLOm3ni+h06TTSUpLVUErQ/lRvE8dkT38iGpxqyyHN3wA46+//HZHiV+ZDRNMB3OL/fEgIcdaMw2RGSZd0FUIcFUJ8WwgxE8BEAF8HsA+h3DUVwH8C2E9ETxDRu4mIzXBqAUOqVgfupaLDFSI6EqUYeBh6kPisiNJujqY4sJij+kqLOl9ZEXVRsbiv1Dl+mPe3ro6C84N0/Hh1CUIikYBDTpBOos4JV0QJTGkTYdlI5mUx8TXNbE2BWHsORjeHjL8AjvUcgR2DZ2n39fItT6G1vgO2D9LD27U24sqND1t6TmEABQonUxmln0Syc5UBSrcjJ2zKFNtIIBMP3y87sr6nQnc/IWt8XZFgp9/JXeh+4YgWdrDnKJztrI8N2L4HqiLD5mYS+ZaonUHVLF9xw1Aty8J3XnexCDdfuRt7vHRbwgmVEKoywlEUEdp+3GoiGXbCY9sni4sL1E5+qo6++Zygpx22ewkkEokgvPPFkxi78RmtvmwbvxAXuw9QlBNOoOBQO+GJhK4QkPmHbhx+Oxbkb3f7UK/XSSjx5PLmci4LY18tm6Z0kL+lW6eSLyUcfVPaXIqUUTkv1b1XlRVx7icWRVUqOeVs98FYMuuD2nPpcvEErnrzV3AcB8n6Dnj2mr9BS117Lc51y3+ELhdPZCQL6ZuvCILUTxKWjr8TLoVdhfpkM2ZvfVz7LqnfJvVc+U5ktBpKFk2JfNXC98/79hQdbu7KjiCn4JvCCnh90lRbduUV4hi81U4uwZtfYwV5c0vOIaIbiOgLABbBc1NZA2/gn8mRkio1VIQQm4QQ/yCEGArgOnhzbZyD99moA/B2eBquw0T0QyKaW66yMjkitRUxm2s1+PVNt5V/Xnxom3BFxgP5KmFjmH6LnhMVUKwuKQkKlnUNLTT00StIIdD3KZaNZZhWcDeCES3ZeANAQvH9DQYUHT0tQSLsoGg3QV6fjCivUxcslk3WrTXat1zA9K1P4fk5n9CEHACYueVJwI3Mf5QBUUuJbNxP8vEgYfeTtk1h3E/MWWb80Bj3E02RIes3xZclk3fhhjU/i1hpPH+57m8fZ7KhO2KE1nLm5Hhqp0N+J/QVDAw3E4LyQw2PmjlQnPmDuZ8HObutEKXej7nYuGuN3VesCmxYFdRxmD1M+ddRnrGiiCEQJq95GAm3NTgt6dRj7ez3BuUyn7esx7I40l0TUK6DEHTuvXClzQga1TB9c1PdM73ONqz7XpvpWz0q7Xf4O2ybZZ7qPY3cX1LLR1p5AysaUvMmIw/FZUtVLkk1vPIemm2uVhb/wMbxb8f+AVO0OJO2PoeBh9cDBJzqMRiLjPk12jdfwI1L/heOK0KFqXp/HdKv0THKoTznM537Yf1Q3c1lyq6XQ3c3+bzMqqkEmO+D+W3M/VscyTTHdDLMgq02mBwQQvwJwEwAPwEwDcAD8FZCeR7AFwFchKfMmCuEOFyeUtYGZVNqqAghXhFCfARAf0Tn3+gG4M8AvFK2AjI54Qpvk24nrjDDBFw33GRHwBVC138g7OxGLDXSmG+owkfczOixE4wmwtGkRCI6emMe97aEbrmRcJCo80bEnAT5yojQ2sKRrit1CW2iUW+TLimA7pLiBObh1lEhw7RVNVuWo5IIRvCU0UBAO/9kr2HYdtkc7X5O3/IUHNfFuhHXaeF1bgvmr33QMmqYfkWUWIKlJOOebfSas8+G3U/yoa27n2ir+WjvFUWF/GgBoI7UxuYRZgB1l4jQ7cIx9Du9W4t/vOtgnOw+JF4hEHTeyOjHkFYm1Xw+zrUkGG2WHVqlQxZOUKxakUHbj7hbpNrPY3My2VfyUpfbzng/6PQqnWXVRSTFfk5WGEH7pVjrKSt3qFYZNusGzzqB0KHpNMZu0OfS2D5xIS516avloVs1ytXAwusw55KKumcgnBBUaXfJb590t067pUM6VxBtNRfAcj4p8S2ygWxP1fue0PMwXX8iq6mRE1wngfR7II+Tmab9OTuOp71ZNPdTaKnTjZYXLPk+6pMtAAhbRszH1mG6m8jgIxswffNj/jckxt0k+J36+LLxd6DVCVeZrHNbMWvrk9onJkiCyPrNSjsKlVVTojb0RdY6VG8TV5uoyrhCbSGzAAxJs+VQZKqH17e9DXYJtR+A9wK4Npf0mZCKUGpIjPk3pgPYAMXbr3wlY3IhUFK4AoALQGhhwphcw1NiCO1c/0f419+EP4KYqUuKhjKyEGz+XBvmllBMVz03knAL3Ea0DYFQFsy14XjuJ07C8VdOkYqMUPhJOA7q6jyT4ISjuL7UJYJ5OlSXFFO4jcy1oR7XBCVHGXFSNsDaCVo++W5tDo12LZcwfcuTWDz9fk3IAYCpO56H0yp9sjN5Xb0HYS7zGmzy2jLtJAJyLCx9vODZG52QApuwkvxn5FMr1Nr15IOsT3otThEf9vqQ2aoo3vtw45qfRkT6V6Z9MPIOqWnId52IQuWo+k0wyiW/DwT1XdTdL7RvUaAkoKDjJ9Px8lXN/C0dxXJtiUT+aVg64hkpXmznad/nmM69sTKH7JBHOubymZiui+Rg8po/aXNpuE4C62e+R1MSmMuRa+lItw1V8Z9Q6oHjK/HJCc4NlBvB39QKC11xYeYRKiZi0ze3hBJPDiak2MJ5Bc17atYB8ua+irn/gdJJvn9SkZbq2TuE8137Y9nM92tfgG7nDmP2mw9676bjYPGcj+Ncp95anDlv/RZ9TuoLLqS2bdC/W/KdPdepD9YNX6DFnLzrFX9ujej3yfxmRfKMHKe8JfxCN0Vm2+0HMrXNYSHE/lRbtgkSUScALwD4JwC9AHwDwHh4K5x0A7AQwGvwFCqPE9FnCnY1bZCKUmoQUTsiupuIHoM3meiEcpeJyR3V2sJ1vS21R4ow/oYWGq5hqSGVHmYatjJEAy0HjJ9qIxYqPvQOSygI6Z3kSJgigMkNpApMntAEChUr0upAClKekOS5lAgIrQPiFV9EOibyOiICg+x8BfKLgJAKa6PRPtXjMmwbepUWNm3bM6gXzVgz5u1aeMJNYsGaB8IbahUAzC6YvsKA9kPZ92OmlVyyd0mxjfiYJxdgqMa4/7kYrjD5U0zLkkxWPNHiwx6fjHofd3a75vMYenSjFnq2Yy/s7+s3m7Z6RhRNU8ZRhg+0lTGE0MNJKZv8aMiXjpRw/9sSfG/ktclPa/CNjSpRKpG4Mma0j/T7IvabifAZSaM3I1z75it/tXbMUb75/rNs13gGY9c9rmW1c/wNuNS9f/jMHIT1JmjUgGAZW8i20Xv2qgWPtF4ApIuKcT2Adj1hOxqzmRIrhR3ioCx+Oo5Dwb7cIrdVqZeBtZ/8rdRLTWFHynEnzNvTEcpzRFgGQ2mha+4RDTNWTJGKqw0TbsGhvuO18k/d+AT6Hd8KENDcrhOen/uXmmtoQiTxtte/g/pkuEyv2T7qriG+hGW5VyvH3oakMsdhnduCGduekimkbJqL536ipJFdw585aj3ldrvsCBR4To3id4O/BOAaf/8jQoi/E0JsFkI0CyHOCiGeB7AAwMvwatd/EtGUuMSY1FSEUoOIriGiHwE4DOAheLPA1sN7wGcA/AjAvPKVkMkF4bpwk67iYuL/TrrBnBi6+4l0STHDQ+sONcwVQlFuKJtyTlCWiOLDaJk0wcoXwojCTZqOGpYcUuFgXRFFsdggsq+mErip+BYZgQLEd2VRrS08i45wlRRHjgpJU1fVMsPRBag4hYe/YxXuZNiKKXdFrDWmbn0Gb0y7NzIz+8Rdi1DX2piqVqSvOKoEakqjBVsRJdLbiz05r36wKbzHZ1OVVJv7idZhVjsnBZFUCyTt+nVeWkjEsWDNL2CqKF6d/J7YNEN3B2WU2MhBG520fE/CjiyFr6hDgRuJ1Uw/6BDqlh3qd0l2us39Striymju2yZuVuuadd8JR/dTWitQOFmnanFhtcgwXFFMK49EwsGEtx5FfUv4vXbJwfrZ94bK+cDCQpm8M+EEbpQ2F5IgD8MqJMxbbVd16wmbBYRqUeE4xr5ijSGv2/o7obatnhtownH8CWJDdxrZdqsuNupvMsqsWsdISw3vHintNKn3SX+nbM9ce/e0djmBxdf8BVoT9cr7KrDg9f9Fwk2CyMHh/pOwetKd2jvd49whXP3mr0O3l9hVWQyLo+Ad9b5s5zv2wsZh12hpT935Ijo0eQs1qE2BtV1I0VaY9yV35UEB26MYxVsttNtVTVrNZw5b0YpKBOBD/s+tQogHbPGEEK0APu//dJRzmCwpm1KDiMYS0VeJaBc8DdWH4ZniELz5NJ4CcA+AAUKIjwsh3ihXWQsJEV1GRP9BRJuI6AIRnSSi5UT0t0TUMc+0v0hEIsPt2sJcUTyu6ykePEWGgFAsNTzlhGnN4SkkNDcTX8ERuKbIcMVNRXVACefgCMvh7ad2VCEoozvat04E+462UTBjvup+UpcI59qQ7irB6ieOg7qEv0n3E8dzT1EVISTDEoS6ROh+knCUtHxBLfhbl9CsQQKBThUuA+GZLCNS+uiUKlid7j4EO4y5NaZteQr1ySasHH+7Fu4IFzeu+qkvsFMawSQc+tDKgehpXlh6aUJ2ynLF1r5V6shxJVD196aAo2/yHco8a7LG975FUWFLhhMR4CYxdv9y7filhs7YNuQq7R1Wz1XzjSg6DaWDfd8JlbuKgkONoykklA5gRDmgdOqB8L5FvkEVtmllBGmdRPVaNSWEZd/sHKvzMQT3SXF30O4hRedlsOandMqlkkIqyh3HQUPLJYx961GtDu0Zfx0u9h4SKBMSgVKAgrZJd/EI25lEIlQA6B11ZQBAU8KrioTo/bApAqKrkSASFnUdUdrDuE2W11wxRbtOspZPL4+nBDIVM3GrqgTPUh2oMDr46jt6tscQrLz8vdoz63lmP6ZteCT4vXLau3Gk92gtzpStz2Lw4XX+L70dVdvL6KdQD1kx9vbISigztj0DtQ0H4M/bpaegvkeOk341lGw+yUXumzJMrvQD0NPffzNN3FXK/rjiFKf2KalSg4h6E9FfENFyABsB/AOAoQi/e2/BmwF2sBDiViHE74UQTfEpVhdEdAuAtQD+Bl6l7QigBzxfqm8CWE1EI8pXwsIiXAGR9C0nXN3SwnUF3GQysNyQ1huROIaFRtLfPIWItPZAYN0hlM1N+psroLu/ZD4Lh9Yx0PajDSn5tVifRJQCgUmdn8Mh+HNn6O4qUnlBgXKFgonHghEMmBOfyvw9v+agcyE7GGoHwtfeaMK6VCzIQiiCjOxcrZzyLu2+dGg+jynbnsPyie9Es7Gc3Ji9b6Ch+bxMwbyjMffZiGLc2+zcT1KYcafBZsJaNGsEFsJKTmFWPIlJO4MVT8yyWOOrP4L6rtfpKzc/hoTQVxtaOeZWu5KG1In7lGCQn6z3HQjeG7lKhv+tCN4JgpFO1LVETdPbtcRJocCodNSya9cnlTWOHm610rLej+j1SwWtqvzR0nIQTd//bV3lhJwwbwJGrXsS7ZrOB8kKEDbMuc+PH8azuZAIEdYPIGxnZJygWMq1ait9aSuZyMYKqbcUzyPITD+YIq6RbkxepF4flPLLNsrR66+jtNH6caW+qxZLRJCup7IeBBOMam1wWK71U96JY71Hadc2463fo+vZQwAA16nHC/P+MmJFed2S76G+5SKgpA1EXcpMVxH123Omc19sukyfkHT6zhfQvvm8IofI69FSCALseegEbqQZElrhluAbUvmfqdrG+2gUcCvqA21V9utiY3nUK/utsbGYlKS7yXlDRO0A3AHg/fAmRJF5ypp0CMCDAB4QQqwvdnnKBRFNBfA7eIqM8wC+Bs9CpQOA98Bb4WUsgCeJaJYQ4nxcWhkyOc3xXXmmnxapgPAE3ND3QwjZwOvLshJ5VhGeoE9+PD+MhBLPqzquC6hdgFDgghKmpC+POYAQFDa+MoLw8vGEc0BQeJ4u3AjIs8K9sCiWeU2DBpcE4JILgJBMuoGgREkKJ1AlgITf0fDdcRICcH2lg3SxgSA4JO+VgHBdT/5IOOF9BuDCBTnheYKEN2+r45fZ8cQc13VDAcqb1xWuf1EnegzDzsGzMGL/iuB+Tt/0BNaMXoilk96Fa9b8OrznELhxxY/w5NV/7d9jpTekCR6q2CKfvRJik2oK5n5StJMrLptiIoSois6oJLvxvzi0t15LPW3+ioVUyhwi91We5/26fMezWvxWpx4rx9xiZKZ0lNWONOzh2n5MnEjH21T6UrhP2sc1SDXSudQ6b5WKpWhqx1ONF+k8q8cQ3tOIogKW+qklZdxreDK5EUk7bu57vwGntRnjVz+she8fMxfn+wxDQj3XMc6FrkiHplQnI55SKIuiQJbFdrG5VwXzRGMialVJqCAEhQ2m/K2cE3Sxhdc2h8pIzzRUxhdCIAHy2lkoyh+Qb2HqiUIgAlyvzfPaXQRDjML15sySysGgXRYyuwRenfcpvOORv4EjXABAXbIF1yz9IZ5Y+AUAhLPdBmPpzA9g3rIfB9fR9eJxzHvzl3h5zieCtOV1uZ4wpd4Q630CgOXjbseEPa9BqkobWhtx+Y7nsGTCO7U2PEhCDbRGKCQlaFRroN1mSsZJAGcBdAVwJRHV+a4mNuYr+0Xvn+UDEfUGMAhAH3iTn14CcMzfdgoh3BSnF5WiKTWIaD48RcZdALrIYP/vJQCPAvgFgOfKeQNKyLfhKTRaASwUQixRjr1ERNvgzYo7Dp61ypfzyawiFESy8w1vtRJNcy/8CS+VUQ1PMJDCvKoA0QVvT+BXBW3vkGyXiUQQ7gZCBMLJMAUFccL+CUUE0lBuM8MoUKBol6vsmO22qtyQppeOE1qPEHlaBte3MBEQIH/tW28uEuErV8IwaZFC8JQkqrUKOY6vxHHhCMcLE+RNNCpcCCK4SVcrvVSiBBdK5JXBD1g55S5NqdGx6Swmb38JaybcjtkbHkH7lgvBsVEHVqJ94xk0tu9m3E2rpkLZt8eTKqR08gRlHDPmfIrKWhXd2Sozbf3eeObmWkjq+JaOfjQOYnp1XtiYfUvRvuWidmTz0KtBiYStfxvmG5Q5w33/p/xemRYDQUfL/G5alCGmkkZ2qKRiILAsQPjmZ7tvoqcbfhcy3qdoudXfcfuB8kIqydV0ZRyh3BsZbrmXIQKBOj2iPNIu2vvjOMGN0Y0ZvDSGb34JHc+f0HLYMufewFVFRMoignCzPbaXPRpfuoGG4XbFnfaKRPSHZDx0EV6gjCsVCUHbK7SbIIQAGUbKQp6snqMedyH1EmFe3tX47X0or3jP3SuAOo+X8JUfWhsLAYecoE0nAly/7MKVAyxhueS9ONl3NDZMvBWT1z8WlHHIwbcweter2D5yPoQQWD/u7Ri+ZykGHw5FwYnbX8TOy67AnoHTtRcn9jtuaRBPdx2ILUPmYNy+UISdvv1ZrBr9djTXd1AKKpRkonJVqhbaH1bKuBUPqgArHGoeQeS/X4VLr1gIIVwiehLecq0D4a2A8iUzHhH1APB1JeiJohUqB4ioCzzjhGvhzW85KkX0C0S0FMCrAJ4UQqwufglDiul+8jK8yU66IvyOvQrPIqG/EOJeIcQzbUGhQUSz4FUGAPiJodCQfAvAJn//r8hb17iqkZ3spJwk1NiSSRFurd7cG1pY0p8QNKlsrXJfTkLqIpkMNy9tiwuLMF1b/PIJ+Te6kkq4RVtK+6oFvi5Am5cjNEt1HAQbEfw5NML5OByCP3GodF8BvOXq5PKvupuKkyBvMrhAwPXm7fDMW2Xe4Qz1nmykSInkh5GICMvhNVFwYcd6jfSEIYXLNz+ORGszXp+q+/kSBN62/AfqHQMUM1Yjl2g86MK4F0pBYJzswu4nTCoKN8u+kqLxO/W56VdIiT/qHZm74fdaqAvCoqnvM7QYusuJ2rnXVjPR9sMThD85UcRCI+goG51a/1sS5KV07FXrjMDdgqDNwxHuq+5y2e2bmyybWr6s9tXrRPR35JqM6/O+zf6+o8eR6WuKDk35YG7ejjYhNNlPIGmeGDwPBGXwnouL8csf0q7r6GXTcGrwBKWMsjjyW+z9ClxRzGtS3FJUpYejXTe0feUmK40ndIJnYkQzf8NvV6HGUSIbzytI15jjxaw36vXJdpyUMkurlbCdd4wwB47FRSX4Dd9S02/noaTh+HNXBBN7yn9+mVbNug/njSVcr1r2UzQ0nfeVcg5evvrTEffQBUt+gPZNF7Qw8x2G7xKkXqv6fJaPv0M7v33LRUzb8bwSoq9qpk3aDlknzYetns3uJ0zN8GUAchTii0T0GBG9i4imE9GVRPTXANYgXO3zRSHEc+UoqAkRzSCiX8BbxOMBeH360dC/FubWGcD1AL4IYAURbSSiT5G3tG3RKbb7CQHYAc8i45dCiN1Fzq9SeYey/zNbBF+j9wt4bik94ClBnrfFrRaEcEPTSUX4F76gqwnVPt5IUjjSEriqKPFIk1xkoJqvd9izipCBAJQwIYQ/2V0gtkGQCCe4UoQumZYmiGllDsseHE5IIQ/KX/IbXxdyLpBEIhwVE46nBEoQ4AoCBHnKGAjP2kQAEA4EPKVMIBPUJcIVX1xPHgESvhWH50LiJJxg5EfA67A4juMJoa4UX/VRo/BZeRcpyMWKKXdj6ME3g2vvfOkUJu58GWvHvA1XrvsdOvozoQPAsMNvofOF47rglYWkopkNGzec1KRsncS8+q4lGu6pgVGltul+oqeo/80weiScrIfDW+vt9Dm1B90uHNXi7Os7AS0NHYMTIgoHQOsMqeHafkwciknTTD9OEQACHDjBN13vvJN1v1LQ3EUyiaeGGYoHc19XShhp2bLVzg93gl3fZUF/pkaZHMKgLa+h68l9WvjWq98HJ6FY5CjlkpaOaidXrZdmHQ3S0J6zVgrLHox7oIanuvl6pTLbaJKNvpGW+umlUAgI2n1dLiGlHRegRHjca7uVPAT8477jpuuXQmn3dTnAv6fCc0v1XFt8d1EKO+skyHNbFdLShNDarhPeuPpjWPjcvwUl7dh4BnNW/hKLr/4kiAjnu/TFG7Pux7VLwgGGzpdO4urVD+Clqz7lW9JaFPdC+xNpY090G4Jtg2Zh9IHQcnPGtqexetRCtCTa2U6JUsDBArN+hUkXoZGtgXa7qpFzYRQyvSIihNhMRHcA+A2A3gBu8zcbLwG4u6gFygAimgHgq/CmjADCj+ohACvgTWp6FJ57zSl40yj0hNd3HQNvnsgp8OYJGQfgv+EpdL4J4DvFnCuzmEqN/wPwi1pZtSRP5HK0F6DPcGuySNmfiypXarjJ0P0EgaAmlRtRl5QgVBGaRRKREZ7QdBVBPMD/1sk4/l9pBqSO3gjfZFVOyUEEOEJ4SgSKKkSEIE12kunIdOVfq0uKiO4L4SUcruoi06PAkiQBIBm4pLhItgo4EHAdESgdXFeAkgJEAnD8MBKe+Qk87YZwXZBIeBOx+iNEQri+AsXV5u4I5uqAP2okBFzHK7gs49F+47Cv/2QMCWZSB2ZsfBTrR16PxZd/ADct+W4QTgDetvz7eHjB55WHJCxCgS5ARsOUG60GScFSi2Z5BhEJzY48ld1PMqet35s4RWdsfKXDqofDWsfVTqMAcO3aX2mnCwAvTf+Qno6alyUjdeUBdc4EUoQ7r4PrffAcZeQ/G4WJ+i3X75PIY79UqG4SYd5RNxPZsU21T8G9IL9x8dondd/PwB+R90rgh4uwDQzdQqKKdnLCZx4oOKC0h3742GW/1a70dL9RODZmDhxZ1yi87+E9kG2n0h4LAIp7DaCW0XA3kukodUJzu5EX6WeQ6WfFS0M21AjbaS2S/s4Finpbg6ANQii6jiCqd6YbzIchtPhhHgmvdI4IXVL8dj9UJIRygLfjPXtXwFspznXhOF77DwE4fnwp1AgI7B81F3u2XoGhu5cFeU/Y8iy2jrkOR/qOAxwHm8ctxIg9S3HZwTVBnPE7XsbW4fOwr7996jWp5FD1VUK7BwLLx92hKTU6NJ/H1J0vYeXom71YQTUSQd1R00zVHJvtSvo2XI8v3YvZHaX2EN5XpKDpFRshxAtENA7ARwC8HcBEAN3hTUdwGJ6i4EEAj4mimQZnBhH9DN7UEVIgWA3g1wAeFkLszSKdBgDXALgXwJ3w5t74GoBPEtH7hRCvFbTgPkVTUQkhPsEKjYDx/t/tKSaJAYDNlnNygoieJ6ITRNRMREeJ6BUi+nvyfLfySXdwqg1Afxk36buGtCZdtCaTSLa6vpuJ51qirnzirX5iuKjIFVGUOMlW3d0k6Ye5SRduq+V4a3g86Xpba1IoriqhK4y22orQ3VeE1BXIzr9pOQLLaAekACiVHsbvBCGR8MKlu4njeMvAyhVUpElrXb0TuqQQvGVf/eXmfH2IsoyrYuLqL09H2rKucsm9qNl02IESMTKiwKopuiK5y8UTmLB7EbaNuAbnO+jVa/CxTeh27pCfSty32uymCe2+xhHEtEUkZbNlY0tPSCHIEKjY/YSJIdadJKbKpFrxxF7PwrB2zZcw6PgW7eipLgNwuusA7wfFu5yYZZDvRlDfKbSQ05Z7dkiPL+PIzrPfg4/E8c+X6clvixOzLzvK6fdLtYX3QEU10yc/cuCGQeR/j819xb3Gf06Rffld1tL3doMluElf9SruXkoXiWBif5mWQ+hxYCN679en29p29X1+/tH77hfRvu94iYvgOrza5SjKFU8xElyqclHQVkKR7g5QVw/R7rt9c4iCz3xw3cpx+S6YaUUiqu2FspFaHCVNqeczXUtMJV6w7LG6NKvmPqQ+R29URlvWF9ItJSy/Q/7qKP69Wjrvk2gxXEyuXvJ/cIQL6YayaN6nlfkuPK5d+gPUtTb55Q3dW6Aq8ki2s+pN9N7voz2GY2f/aVqaM7c+hbpks3IP9Hspz1bb7ZStq3wW6u8MKKo7ShGSZGofIcQJIcQ3hBALhBB9hRANQoiOQogRQoh7hBCPlluh4fNBeMqWHwEYJ4SYKYT4r2wUGgAghGgWQrwghPgwvH7hBwBsgbfi6XWFLrSk6KufxEGeev1aAFfCu+COAP5ZCHFIidMAr4zJal3alYjawzM5AoD9qeIKIU4R0QUAnQAMyTPrG5T9PvBm1p0P4O+I6H4hxKM5prsvfRQPqZhQR2YkQQOnD7ODSA+TIzvaPAkUCl9qenKT1h1CCXNd73TPxcQBHCApkySpcBBw4ASjUcJfak2OtMiyqfkGLukR4Vf/qyJnSnf9RtczinDhutI1xgtLJvXJRKUw45I3iahwASQAIOFbffiWFkRA0vEnBfVGfbx54wgufBNWCN/32p+ATvrQyzDNJcUffXM9NcfBARNxsO94DDy6KbimGRsewaYR1+LlmR/Gra9+S31UuGn5D/Db678U3i+rtYbtPqWPk1XEyGhanOtEidqVSmi+8qTa3E8Kj92hRZ14Mujcw95hS4e8x/PWP+R/nUJen3SP1plSO8yqC4DstERK74Th6pLRarhcHUl2yNRzA+s1S6cXsuNlxlHzz/52lB0iKMYjlnuqvA/6M9DjU2THON9rsCKdcwoT0++lY+SrhvvlHb3iD1pel7r2xaHJ1yORUKxxEHY21aIE5dc6+hTeB1JcYZTjZr3XLpcs9yOODCqL9i0y2moVU1GvLXWGsI0OYqiDGPDlABHKA3oT5Fs+yni+ZkC6n8jfrnD9NDz3FCLPHUUIAUeEVj2uEEiQ41lhwrewBAUWGxe79sObs9+H2W+EK530Ob4D47c8hw3jbgKBcKFTbyyd+QFcs+SHQZxu54/iirW/xeszPhiar/gKDWlFI1Q3V7kjXVMhsGz8OzDi8JogzU5NZzB59yKsGbUQUqGlu+AG2QT1WP7WIsWhHM6s7SlCI1sD7XY1I8iBKKDLSCHTqhG+D+BrQoiU/dVs8PvvvyKiX8Nzr0kUKm2Tsig1iOgWeD42w4xD34LnsyP5CIDvAjhPRAOFEBdQfXRR9jNZplUqNTrnmN86AI8AWA7gIDyfprEA7oPnH9UdwMNEdJsQ4ukc88gM39JBNmGmEkI37VVH6HUBwzRv9uKops2+WayUyxQhUk4CH45YEeAIIHBrgd8REIFAIQVzuXSrpydQR5woKINUSgTlMAQpW6MrZU/fs8O7Va5nmaG6pDj+SJjrCrS2eqasIBcJ3yVFrpRCvolr6JLiXQ98E1bXEUDS9WbiV+bR8IQjgMgLc0kqRaT7ibRO8Z+PI81nXaycdjdufy5coKfb+aMYs/t1bB4xH2c79ka3i8eDY/1PbEOvM/twovtlXrlEKkFEE3FCbK4m8lCK1Lx4oYJGC49RRMHQubTtTntq2vq9MTuq9jjplRlqRzU4R8sDGL/3de2cxvqO2DFkNij4kEXzkh1KbRRZ6fyqriix+wkn6OQ4FHZ+HSd0z1A7QiR7/XJffhNJdq79Lo38rlCu+9A/F3H7SHFc/YiQ0mH12wv1e665YfhlSbcfXrcwFAbCfm8QmuqrecnyQHaKzfIHbZYXLJ8N5D6ADmeOYtCGl7RbsuvKu+A0NOh5qrcpyN9wJTLLayiuAmU5wjjyPoeDHAgVRAjvc4QU704uStXQ/UTJwKLw1n8rlUP+ht+miHgliBDqXGK6+wmp7ifCkwEc8tplrz33XWtc11sSRfrA+PfMV5tAuAKbpr4Dozc9hx6nwsHUmSt/iZ0jrkZT+65wBbBp/E0YtfNVDDyyMYgzddOT2DF8Lo70HBmmrZRffZ4irBRB1CO9x2BP30kYejS0/pm19QmsG74AyYTsXhgttaL8kpA/chTXltva8FTPXX1nGYbJHCHEp4qYtgDwu2KlDxR39RMrRPRRAI8BGA7va3cC8c3WTwCchtfBv7MU5SsCql1gcwbxpUVKh5Sx7HxbCDFFCPEvQognhBCrhRDLhBC/EEK8DcAn/HgJAD8molzyGJJmmyUjukkEy44K1424m3hb0t+iK5l4biPC6mqiu6Akva01qbmVJJMuWqU7ihvmZ8aTc1ZEzk0K77xg8yboDFxV3FBoCSwlfIVEuPnCgboFCpbQJcVxQtNh6WaSSFAg2NbV6aukOL77SaLOdzchIOE4qEv44f6M6pTw3FekCbNUEHnnhCawBArKoBY2GGU2OlwHBk7D4d6jtYoxc/0f4bguXp79sYjyYeGy7yu/zBuiBoT7qik0lHsmCfQtaYTaTFdECZ6ZEZHdT5g4MlrNRIkTF1cEx4S1Ok/cvRgNSd1Ycd2I64Jzw3Tk90bVbKjvnOzsUrBKhqqUAEFzOdFcUdQ4ioJE/UaE7hMUdLKdhOIaoeyTI8/PdR/avlwtKrKfCONq+6o7oOqq4YTXoroXpFrJw7avX6t6b0IFRJC+ei5Byyv4dpNv+RJcG/kuh/o3Xs7tJN0ZQZ4iffjyh+G4yaBatNa3x/5Zd/jXLYJ7Ib+zXvZCK1fgZmFeq1wVJKjDpKSj1sXwLyn7aZV+ZN9km2Xu234Hr0EkL2G0ReF+sDqKnK/LkW2Tn4e8H0p9VPMI7ldw32LcTxz/fSQoK9yEq58gsJwifzUUpe44BFFXh2Xz9b5I+6bzmL3iFwD55zgJLJ77KbQmwoX1HOHi2je+h4RIBtetzWsG2X7GPRhg2YR3aEFdLp3EhD2vKjcz+l2LKI0QbXf149E2PNV3l91PahhyCr8xNUNJLTWIaBSA//V/vgTg0/7MsNZlXYUQzUT0MICPwrMy+FVpSlpQGpX9hgzit/P/Xso2IyHE6TTHf0hEM+Hdz4EA3glvAphs8khpkqQ1hsKbJwPQB8jU38I8hxAMiXm7wVhPIChpI1ckTwI8G05AemAACNV2wTrzUiARXhBRcB40QSRcYcRLiyBHK4jkyIw3POW6wh8Z080tA0FPvT9SkI7eOU0Z4o1+uUH+0nJDuqNIpYonmDvh/B+BzOoAvuWFd6WOf81uOI+o44SjPX7GToIAeHOZCN/awzNDDUcW5USrq6a+G7e8+K/BFfQ4dwij9i7B1qFX43SXAehxLjS66nt6N/qd3I6jPUdlYb0ZjWmfdiDDFHPUTRTNGqEGRpHY/US3QIuJEhNufB80xaFyMgFXbHpEO9UlB0sm3mVJUnc/CV1LHKUTacSR+4kw/0QitA4NV8UI3wW106UrObxOmBCyI0jBvrxYp6J7BZYOeGaxZROBQEkr4H2GyYgcWIVYMlDvpWzbrJ1x0toGIjWCMgGnn57T1IihKx7Rsjow4xYku/QAQbUaURsndRJQo56r5Q/+6NcT916Q5R6Tsp8KWxTNYIXMMpD2mSX1GSipCjWMYJwTWqIAACXCuDI4sNQIrDJkuyp/K227n0HgfoLQ/USueOa4BEoovwX57bh0pU1AJH0BxXXhJAhHL5uOXaPnY/i2RUHZx25+HlvGvw1H+4wBgXCm+2CsnnYPZq8KRenep/Zg2oZHsGryu8I6IGUQ3xLFuzR7g3Wgz3js7z0Og4+HU8LN3vI4NgybB9cJuxiaW3GubUbWaRShka2BdpthapVSu5/8FTx3iPUAbhZCZGK58Cq8Tvi04hWrqJxT9jNxKZFr+WbiqpILP4R3PwFvjo2slBrZIC0ePDyhSGiKAdkwSVNHVcmhmBlCEU40odo/TqqppG4mSyIU3gMBT44+uhQKg/5EZZ4PqVdAKder5reOEy4JG44ISYGFIN1UHMdTdlDCM8IVsjxK/ur1ScHfdcM8XUH+kq8CSV9ZkUx62hepxEgmobufJAVaW12Q41uSuC7cJIFcF0gKbyRPSAWICxG4r4RhjiPn4/AUG5pLCuApiITAviEzcbTnCPQ9uTO4llnrH8bWoVfixTmfxLue/xdt4Gvhsh/gVzf/h/dLlRK9K05Tm6LSqFU+tZ5JfrzUMc1OA6AKYizJ2GjbCg1ZZ1Lfg8BdIBIOs9KpRwJ6njmAbhePaWF7+06CqG8XpBF88/x/6qi6lq76Hst9qWww3U9I3zcVJtKtgQjhXDzkWYCp3zvTDUNaLwQ+9kXel8qGdHEDXUSK/ei5/nxEUhkRKCzCT5yMo94PWzqykEHzZ0sT0O4f+coFeb/D5+dFEP7+4BXPoOHSWajsu+a9wSo3EaWGr7wOw4WWQehaEgbrCs7oyil+JPUERelgrJaipg9Y92Uachl2oRzXz9G/3UK/lOBcM07kHCVe8NzM+IqyA8JQCvh/ZRtPxuonrr/6CYQLQf5vX2kBF3AhLTxc36LQP98fdBCOwKp5H8Pg3ctQ39IYXPtVr/0Aj9/5LbiOAxKEtdPeiZG7XkOvk7uD65u59mFsHzYXpzv3k8M3wYWQWiGVOxbeI8KyCXdi8OKvBUe7XTyGcXvfwMZh1wTnkXGzwqY1tNGIa2UzbcOD+Ep1Y2oLQYAooNyR0hua0SCiYQBmABgFYAC8gfqLAPbCW9lzRYb9+qJRarub6+F9t76dxYXv8P9eVpwiFRchRCMAOcHA4FRxyVuZRCo1Mp6QM0s2KvuDipQHANUlQ8CbCNMNwlzfLcU13ECiK6KI8Jjw9oXrwm313EikK4rXwTfScoWyGkq44kqr736SdGWYpwhItvrn+OXyfssyyC10e5F5JhUXmUA5oGz6aI2xcor/1/FHMqXSxHGAhCNXO1FXRAlNTz33EwosQhzyV0rxXVKkMEmJ0ORVigeO3/kIJgck2TmxdMD844JEIOgKLxGsnqqPFvc8sx+j9i3Hob7jcKKbPtdtz7MHMPDIBiVEhJu1YTGVHoYJq7/FDgkG8TJzP4nP2/a7ANISN6ZVT7buJ1o4EHOuHnbt2l9H3oRXLv+g7C0G76cWKdD4Qns/NKUEOUEnQVWKhBZcYSeXlKRI+W5oLiFS6UFhPKjnEMLvEEmT++Lvh+VNHRcZ7EfPVa7Jv98UHNfdClVXDXUFkzCOA9WlQLd+gRIfgTLd/6QbrjfhvXYcr1M89LXfaHXq2LircLHfMC8d5dmoWmjr8yOZp+KuAnWAwquhmrVJmCQC1xWtzoWd1jD99Pvk1z+ZoGxDtXtixDfLpJUtGqxfh/q6GWlaE5L3UNZ3PxG1XLI+ePfXdz8huTpZ6H6i/fZXyZGr68j7QARc6toHa2ffpxWpz7FtGLPlhaBMrlOHRfP+Aq5idl+XbMa85T8OFECqMi28GOMmKc97b9+JOCTn5fCZtfVJeLOZe3HMexSc7iu2Un1F2f2EkciJQgu5Mekhon3w+uO/A/BvAP4CwMcB/DWA/wKwGMApIvoDEd1crnKW2lJD9nLWZHGOnBy0Y2GLUlI2AZgHYBQR1aVY1nWccU4xKNknWSQFRFJq5f3GUsneWyEAQesmwjbSb0PlKJi07vAOCCWFYGRJCl5QzGSDyT290Q0iIAlFCBdukL/jBYQjjPAtL1xAJKTgJwBBvgue8F1CoK1a4rr6CJVnQaEKMfpIHYDAX9cfXFOuzvuf66ctLUJcV1pqyGt24TrkzT8STOjmwCFpzSH8VfOEr3hx4CYF/KlKvbxcAZdcf4QPcOHdG9cFfC+UcEUUIVe0Edg19Aqc6DEUvU7tCco9a/3D2DF0Dl646tO45+m/U2U83Lj8R3jgtu94Fy+HrJBZ586LZ4uWoYIhbTSbhBo/dpQ3NTCKxO4nebifAOnvnduKIUf1JTjPdOqH010HxnbCws5w6HLiWNxJALubiRce+k0k6jx7e9m5UuN4lgAAqS4nskPku5/IfbmKUt4ypNrZKvO+107ITi9JYwsdUv9oP8wo4T0zk/DbjqCjbFh7yPYlKKJSiN7blqLz0d1aevuuvQ+JRNhLzfQV1qJZToq7Rt0Kw5aYkU7G3xQ9nnlacN8A7flFRvyF8XjVPrhyv2WW0rbAdDmFeb6SqOuJMpDuJnI1FBlfTYcEeRODC39wCL7FpPAsMhN+ew/p7uXHcYXA5svfhZEbn0P3U+G42Izlv8DOkXPRVN8BEMDxvqOxcfzNmLTxiSDO0ANvYuS+Zdhx2ZWe9YQvC6hWG+pNCOq8L+Asn3An7njtP4IYvc4dxMiDq7Fj0Eyoz0m95qwxn0s2JxSKGmi3GSYHMhkE7wBv/ss7iWg1gA8JIdanOaeglFqpIT8H2UjBffy/Z1PGqmxeg6fU6ATPdGdZTLz5yv7rMXHyZYKyf7BIeQDwGu2kmwyUE4GPJnxhQ1Awh4aAUAQ0RQAKlBJB91s5pi/1qk5qJ8/1/L71icu8ZVv9ZUt95Ql8f3Jv7gjvZDmC4q0goo+mCUeASMAlgpPwZy533GCULJHwFBFCiMiIkWdZIaUXeX2hWXZ4/zwFCrnhyIPXiRCeYiPpT4rudxbchICTJLQmE3AcF8mEdz1O0kWy1UsHJJ+F669pK/xVUvy/UtlBnsDmwJvkNXCZ8RUc0rQZ5GDV1Lux8JVQmOl9ag+G7V+J3YNn4WjPEeinuKd0u3AEgw+vw/7+k3UpLh8KlQ6TNdWm0FCXWs32zLADqJ9vM2c3yfQ+mdFmbX0KCeFqYSvG36acYKTva0cDRaLUmML7PnpKX1XxEX4DA4sG+AoRx0tQtRwIR+x9SwO577ufhCPSiiuKb7vv+CsvyfKWyv0kdh8pVJbqJ8Xoo9vSk/dEvz6v60uODKcwDhlxgvCwDQjD5fMz8/LCHXkhFKqpFR0LLlv8oHZt5/uPwOlxc8I6oP9Pvw/KPdL25XXDqNvmCbArGmzXod1X5UJSv6+qKiI+zHQDcSL56tNUuq7iIhXcUOXa1Ocsr1HXhHgWWqo+RU6BIdNzvfZdBFNjCDiOA1cIr1l2EViiCGVODfhKDCchBznCPB3XhWhowMoFn8INf/z7oDgdLp3G9NW/xbI5HwIRwRUuVs5+H4bveh2dLp0K4s1d/lPsGzgdLXXtjbsY/hJyFRa1MgDYNWA6jncbgt5nQmXKrK1PYsfAGUYlkN8HeX8L33azSFDLUPoGN9v0mExYA2AlgA0A9sPzQHDh9WuHAJgOrw873o8/A8ByIrpDCPF8qQpZaqXGQXi+OGPg+d9kguzo7y5GgUrEIwD+wd//ECxKDfJ63x/wf54G8HKRyvJxZX9RkfIAgMDFRCoyNLcLX+AiZSI0KUBoigq/dYoITvKYL2gQKDL3gydQJCFNraVgknSTvtJCmnMKJFsRhHmCmkBSSAHT8cvpTd4pXEAkHH9meb+b5MeDfy6kRYb4/+z9d5wlx3Ufjn5PVXffO2HzIuecIwEikAAJkgJzEEVQEpNEUZFKlm1ZP9sf23p+tvz72U9+T5ZtKpAUJdMURYpBDACDSILBjCBIEASIDBB5F9g04Ybuqjrvj1NVXd33TtjFzOwuOGfRmL7V1d3V1dVV53xPqoPsKSUZYQgARwAGkTtMmVmEy3HK2AgD5FiECfZWImRVTP+mFEFpB1P5QKEkgg0RYI20SxQrchxWIqgKY6bgRN8DxUqsNRQJK+VEc8OB8fKcFBHhwZOvwp5Nx2HLvsfiK7r89o/gx8dfjs8/77fx5k/+XsNa48W3vBt//ao/SUqCdUubCxkVO9pCSd2JfgylldvXa13umVgZrIiFwmJS1TqtCh0YoDEOuBhjoTFOvornjx8vobw+1GT+L7m/yQsYleOOU65rAhD+XwAzgrCICOR6MAKJu5mqzdobYIUPAJq6lCjvcpG6qxFCeX39ILRHawKEdNdUC+scfo/ps9XeXwFqWAIuUCNQmFNppC3NdzwKKlB4dWPavrRlkKJ6lE8+cT+23fWNxvHHXvjmRvyUMU2Xn3E9Ci8uXDcANGntenynqX0Xamt9+2adWL7sd1ZXrNeQ0ZNjywNr0fqew35YMtJ4WvK3tegkjvhidTGKbMb+CDEktPAEKvwO3Zp5cEt5iygfHDSsdVrJb4byShIBOMQy1CW/AYaCY4edp16OR069Cic8UL/7c3/wD7j7vJdhZtNx0KxhutP4xlW/jJd88b/EOtO93bj8tg/iG5e/XRQXJNaqkQFBCATMvihZwJTCLWe9Ci/79rti0bG778NxT9+Dx44IRsgBJWp0VGOtXvSTTdbMxdbg+nKrsMiur9vr9BNIzHzpcuoR0dkAfhfAOyDZP/+eiM5h5lVVogdaa2eir0CmhDctpzIRbYcI4QzJlnJYEjN/GxLwFADeQURXjan2z1AjXH/CzFV6kIh+kYjYb3/YPpmILiDJLrMgEdGvQQYaADwJ4GP78Rj7TXU612TjZkwNdhzdVNjWZXCIFgRS38VzG2UhNoc/DkbzusnxEA+jHc8jlMVYHk7ibUidOm5GTCXrY2lIHI46LkcjdocTvMAypL4DrBUtjfNljhseGG1Fj0/d6lO5KkKmJbZGpmXT/neeAXlGyDMFrYFME/JctiwP9XyqVy1pX5WStK9aKWilav/c4OOt6wCBwYeXUINDqV8vdIbvXXRD490ftet+nPj497F30/HYsa05LDfNibWGPCgiM1j75NMIgziujxr12ueMU9OM8FIHLu2siIXCs4AxWrV0t4c4UZQ4w9Y+ngr3yd/wLVEAIJpCWQASiAhH7H0IU4M9jevef9xzYurH5nn+eo3YDapuR1KutY7fttZ1/B3lyymUawE3dKbld6aQ5Vp+Zwo67GuFLK+33JfnufLHNbLMp5vONLJ0y9dwfyW2XNJoh7k07mcSy0hnYV8jy7LGvKt9H2Ra6ja3+h557Kvk3Dh300hZPBbr+zSvmnDCV5qxNKqpzXjqilfG441NNbdojaPqlLGj+yHVuEp+q+Y1WtdVOilL7q+TNugltrD+aV2vhyENelwffd3Rto5uqtWemC53iS0+X6sP07VMrJ5U0pdJP/q+iu8t6cMwpkLf6IwkhbsmqFiu/TEdv1mtNZRW+P6LfgM2yT6incFzv/4eaZd3E3vo9Gvx6HEXN8bIhXd+Glt3PzgCNrTnnMacBQDMuOfEqzAzua1xvcvv+aTfa64V7UuH+VAtxgM0eKTlrMGrsD79ZC55hw6tdDyN9ZgaK0rMfBcz/waAF0ISZUwD+P21uv9av82/8H9fQURvX6wiER0P4EYA2yGhEP5isfqHAf0uJE1rBuBzRPQviehKIrqOiP4cwH/29e4B8McHcP3nALiLiD5PRP+UiH6KiC4loucS0duI6HMA/szXtQB+jZnnF77cM6cRMIJrMGFckFCxgqgBizR4KKegg3ULXsNaW2/O1mVJYNFGPWMlIKi/pjVWAolWFqaSY7ZKyo2DqdLNwlQOlWFUablxMKHMSCBSY1k2D4RYyw3AI3Uxqa1R6i24seQ5kGX1lueETkHodAhFQchzhTwnFLmSrRDmKC903LIgcGQ185TlgSkWQSQcS5k2Shk+74OvtMJ9p1+LfRuObrz/y27/CIgIX7j6t9ouyXjxLe8eHTCesxEmqXYDSpmbFbU6XKdnTIej+8mKXGcsZjZGABjXPX5ML94SwrW3f7BxOgP42sVvGQMCQqw0orWE8u4gAmYo8kCK9pZoXqDSAWDRtXClPHihPBAagg6HuUBFcFXVQmKmGoJYAFuV/xuCGYtQT9AZpDwBZg/K/gICbltYzny7Y/343O2/Naigx9xT+sAL8KoGmpWqBdpwrkp+pwK5vDuMlAdBWicCdTG/D0d++1ONUfXENTeAOxOJJcVi20Lfd5ibEevETaVACGKQU6XqdUOr2upHhePUDJKtdN2Ger/ul/CsKWgRfo+AB1TfM26qeb/RcwAdjlN9vA4+659N1dYloSzdVFzPavy+GRy2vcYnioXwvLoOChrHpwpAGTW+3VBGitDbfiLuec7rG2/uxAe/iWMf/V58VyDC16/5DRidxzqKHV7wjb/wa3Bt4Toyn8Vyig/nVIbvntmMEXjqk7c1XFLCRRpDK+2ExdaUZS43h9mytE7r9KwjZv46gH8L+WpfuVb3XVP3E2b+DhH9GYBfB/BukgipH06qXEhEFwC4HsDPQUxXGMAfM/N9a9nWlSZm/h4R/SyA9wPYCIke26Z7ALySmWfHHFsOaQAv8dtCtAvAO5j5Ewd4j2VTCmi0KZal7gAC9zdcUlJTw5TElzUxP6TabSVqEVDH8KhdUsQKJDXJZlUH3QyWCER1Ozi4n4DAynnf5uB+Ik1UDADiICttc8LsaAWwFzh0MKz03I9P5UYASEs6WfaMDnt/2vB4yp+mVc0QaIhwFSxAyInpsVFiCks2ZTolBghA0gekIMFTCQbkg5QraSM5wASfYwWCgyMCoKLfLzsnz+3bDZ3hexffgBd+9U/jOzrmqbtw7FM/wuNHnIMd207H0bvqT3jT3A6csPOHePSoCxBsgdm1TFUABPfdFE0PKXzTMTHquUKjhYTmeDvg+Arr7ieHKx3o+95vWsiGmkMwYhoZP+mYUs7ghKfubBzfM30M5qa2N+au2v0D8s1TWla7nAQgIxU+o/tJKgjqIEzVdUXQSgQ7L8hE9xPUxxFdTtB01QiySsPd8FAOMtt2ndifdqYgLPmpaJzLxpgzl32b5rUa+/7v0V//CHQ1jOVOZ9jxwjciBJxezj1Gr1+/UKLR9ydDg+uxkBwOa9jIN5gYHqXjBcF1CWG/2Sah+kMLU/6o/F3zGk23hKQJ7T6J8UskKLeCP07eElQnV+cYkiv+ptbvcX+1ruu2rTRlcQ1tC7FXEvcTH7Rc3E4ZzgdT5/DXK5B+9Ly34ZQ7Po9ur7b4uuKrf4ZPvOnP4EBgRZjdfDx+cPENuPS7deyVo5+6G2fe/2Xcc9p1SWekfcMja1d4jh+e8kJceefHMFHOxWOX3fMpfOby38BY95NlELUGeIMf5ORvnFuSyuvuJ88qYoHbVvR667RqFGJDLpr5cyVprWNqAJIGZgrAWwG83m9hivjfSb0w0t4H4F+tVeNWk5j5k0R0IcRq45WQF10CuA8C7vx3Zu4d4OVvhLiWXAUJ2HIUgG2QftwN4DYAnwHwPmZek6CrYnnRDHI3yrWlK1Goww2f1XgapYwE14tLssg0YnQksTlCDIgU9AB5kINrkASqrhNvxy4G2XNMCdDihQh2MZAXk6rBA+80WzM5qYZC/FUlaBlHN5QAaESmKTBS8E3zwkFksiC4iXPercUiCixWS0BRY3ywUkUS1NQSlK0zwwRAwVpJdcIGQAYfo8TBQYX0J4ItOGko+UhmRJIt5f4zrsNzbv1bbJgPGYyBS2//GJ548bn4wvN+C2/6xD9pMJwv/k6IrTEungYWYBzGAWTjqtWF8X03hpoHNA6QOVl3PxE6tAXT1aMlH5kWqDMGzKgP1eWX/+gTUK0Aobec+7oasE2v0xBuE2BD1fupK4rOdGxblut4jSyU+/3wDFmm47V1mJe89jucGwIJh/SgjCDEUr2PhbGe/aH0Giu/T83QF8s8eeSVUrt8eWjGQrX2e6qwBsd85cONol2XvQzV1qMCrN4CeFvNGdlJf4a1UY3UiU9BMhZieTLxU/qs7SEcf49cdAFqv6QxNG5pWaBDYzF7Syr2oIJfx8NgFmUNYp1UR0PJ9ePaP4rXNwCNBrDhLxLjcbKsVqwQgYwQhDwEoVWMOoV8DDzqYKc24vYXvgOX31gH8t68+2GcdceNuOuCV4kSxwE/uPQGnHbvl7Bp5olY76pb/gYPnnAFqmIC4Z2Cm8qAet2WByAi2HwCt51+Pa6886PxWmc/8g38n3PfgNmp7Uu+g/2i9Bpjh8AqLLLPgnV7ndZpjehV/m9/rW645qAGM1sAv0BEn4AEz1wo+MidAP4DM39wzRq3BsTMPwbwT/22P+e9DwLwLHR8J4D3+u2QoKAtCMg6hZXbgwghEFWNSFAiJAkHUS/6be6KaiAC7UMJp0TCIFHCPaWCQa1p9Iu0b2/UcBKBXa0JjRlRbB3gL2g1xQdd2uxYypzlqP1kR3BO+UwpwixlGQFQUIqR+SwqmUa9QGuAmKOwEMxVA1gCCKCR+S/ZeoDDECHzTJfRgLEEZRhWETgjWN9+rRllKbezllBVEnisKiEaNCegDTIARu7ryIEtQErBOCv95AicFbj9op/G1V//y/guTnrsVmzf8yB2bj4JO7edhqN23R+PbZrbgeN3+Ewo7N8pEkapxQw2x9b48kUpHUIJL3awmZRnYjFysOlwAzRWqq/HxAU8oDpAu478uOiBf2zUqXSBH538fAE1g4DRAjPCnNjIcpL6/Tdi5KCezwIgoWrrs/Hm/6jN4lX97mvrjRbYgibgJQJYXb72+03hsa0hX/QdpTtRgOXms6L53Evdc9w++fUpaNtj+fKaGWnTD7+Gzu4nGmVPvvhNjfeRpuoce30KwAM1BjO1n5vqFOYhDWgA34OQn67JYXlPnzVYfaT9EZuxZP/RyLtMfzOoYYnBXLuMhHaHtOv1b65TrFOStt3jjOG3c+F4sw0hqxvgs4WR30nHTzI/0Jhr1PUJxBKDK2QkAhjOAxtgid+liUDkwErDWifuZY7x8KWvwunf/Ti27KgtJS/65vvx4DkvwUB3QJrgqINvPf/XcP2NfxjrTPb34rIffAjfuPwXUSuauIEhEajOhlJrDPD9M67Hc+7+FHJbAhCXlsvuvQlfuvit/j2PT4W7UrSa1x4H7qzT2lGMhbGC11unAyciej+A50I8DR4FMA+Jo3E5gIsgM8ZNa9Weg2GpAQBg5o8A+AgRHQvgMgBHQizqdwH4HjPfv9j563QYkEPDTLHpLpCoNjwReTYr4eIa2ouUGllHYqFUJa4Zf/jFJ7htcJ0GNjDgDK5dUrxAkFpwBGGA4AEOJWlhAyjiPJPEYCinvHuKmIlCKzCL9QYzQXkti9YKzqdqdc4hzwgWBFLStoBrsArMITfcU4Ba+ymhLYTJCYyW0gJSuPgMAoxU8AwcGCgkvgcz4KwDoMBMMMZCZ8q7gxCQKR8BHd7yRrKkgB00e5cULRlR7jr7elxy699hYlAbA116+0fx2Wv/Kb5w1W/h5z/1e5ENIAAv/s578Dev/pOocZI71pzfQhlRlhRODpCrWdzyoNmulXI/WWeM1o4OJfcToBbsQmUiwlG778PkcF/jtPuOf26dkoFqhjqAGUASOwN17Izon6+SmBktN5Paf1+1ykXbLqAtPAgqDaiBDfkt858HgxsAR1N4Y/8AMvR57L7UW/n9Z07NK8naEY7QgvVGaaHBkV67vs5ypjHmBKQAcPTNf9c4PnfiOZg/+fykX1pAzZgGUFor1uFk7FJzHCfjgeIzMAJYTckNU9fKcK1WA+pxNKbNYX9/BEtG2pfNTm27nyhVAyzMiOlToQMoQsm45hHQJGRDYQTXVNTpXf1vnfQHM8fPO14jLDcEbxUqb1iTX3+CBQez8EMMEMl6DM+rAAymDLe/9Hdx7d/8drx+t78X53/3Q/jeVb8ovAppPH7qFXj4pMtx4o+/E+tdeMencNeZL8HeTcfH8RX72z/HSDYUAgbdTfjhqdfhkns/G691/kM345vnvh79YjoZN811fr+X7AZIlGTg4TEVVpjW1+2DRM3JZGWut07PhDQkq+lprfLw8X0WwO+sVWMOGqgRyKd5WfX4Dut0EIjRWk/azBw3yppajta1iJsTGQe5tXm9wFSleekpqIyAkYU5tQpgZigoAUWYoqDt4Lzw4JkFW1+XiADlxC0FDCYHcgSVhWdgcIyzISRBQQMjxB70kLRt2mu6oP0CbRCywtaMYMB8yAci89obxZ7hEiylttqwSIKjKVjnYCpK1nuCUwrG+rRwLBKKUwyyQHCvETNcJSexPLOkkeXIUHA+iR+e/xpcfsv741s57aFvYPPFT2DP1hOxc9vpOKoRW+NJHL/jh3jkqPOSMYHmu2nQaNn4astkZFrVFgcqeJn1lkmrpUlaQ1p3P1mowgK8UlsQTC0Z/P414wKEXvSmhhAZAAxQbSkGggTyDeVZHcEwuJyQInE58ft5lnmAV1xRKN1HvR+EWZ0ED6j3U1DD/4/r2BrPOjrQ4d4QtJZRPQVt08mCm3XqJUyuWzz1KDbd8X+Q0s7rfk7Ws0YLRtuRvsNwvQC6pUBL3E3GMFHtchLiZ4T6wT0pKQKl38iYLqmPLdZfieS/EI1ZCxb0o091LZx0NbdBkbTva/dJ55r1Ug+yUD9eO9lPrVQaFl6U/PbrvgAadX1RYgj/4Ci8BwVHHvx3hN2nXorHz3w+jr3na7E9Z3/3I7jn4tegN7VNgq6Twrev+XUc98j3oJ0BACi2eN4334NPv/Tf1YBBeH+BFfDAUg0wyYPdeuYrcNF9n49udLktcfF9n8M3zg3BS1dgAUwuMX4dWoVF9lmwbq/TOq0g/TGAOwBcDeBaAJOQr+TLAH6fmW9Zy8Y8W9mOdToEiJnhWIKFStDQdhmPKavTtLKrOQlmNMrrlLAubs6nYGXr4gbnwNbCJRs7B5dkSXHO1tcNWVDCMevgjGQ/kSwo/ngVMqSYZD9sBqayqCoLU1pUpUVVGpjS+H2HqrQoS+uzpDgMh/J7WFqUlUNlgLJiVJYls4pJ0sK6EGNUQCECQxEjU7LlmqE1o8gY3YIx0WF0cqDIgU4BTHQUJrqEolDodBXyXKHT1eh2JQ1jpyOZT4pcMqVonxpRKcmYojLl09HpKEiFFHGkCHec+wqU+UQcBwTGJT/8OIgIX3zeaCaU6779l7XWGZEbTrTQaJ2xgnzFISCPr1RGjoNBhxugsZrZT0bvJdTuocXS4CpT4rin726U7d54HPpT2+I3ElK6krfACNZkaZrlYKkRvleJp5OkffSZj1RGMRWr9ilbJQ2qZFHKciVppLPwt97qNJOoU3KGrBwaUXufZnQ4mPsrsUm8Ip+9g8bvL7QlRjUepMfo1ho7qdRPoMbEF60zKD2HceTNHwIlY8xMbMCu574sXi5uNLrFuE2tcUleQI5bmO+pzl4Ss4X4LWQm0bpd3spyopIMJeEc39dyLGnfyD77vm89R6OtiSuWqt9VvF94f+F+Wp5La2mr9s+aZsuJx3U47vtAA5kOGU7gv43abVTrOtMLUX1utEppv5NGhpZwTvjOVGyX9Jn/nWn/jftsRYV86z966TvhqDYHycwQF339fVBaSwYkpTC35VjcccnPNN79CY9/H6c+8i3/vusAwmGgNNx4wwAnYHb6SNx94tWNa118/+eQmUGjbDXcROplaRXWp/i9Hb7r9uFMDLXi2zodODHzLcz8H5j5FZA4jm+AABovAPAVIvqltWzP+ttcp1Wj4HoibgV1WtfllgWwwzE3AA12DLhW2lfnAYy4cQROnGuCJY00sh4IEXCjeT1nXF1uHawLQIiDdQ7WOjnXJGljw/HSwlUBGBFwxBgnIIipU8wGgMNaAWWslfSvVWVhbdp+xJSwDrU2KDAEyjOdgdHKI3MF5BlQ5IwiZ+ReGMlzhW4haV/z3Kch1AJoZJlCnmvPmNUCTxCOtJJ9EYIyATuUMFKkCWZyI+48t5nW7awHvozp3tPYs0WsNVLa7K01IpOQcNyRKVXUZP6S88fK1QcobC8mcB5IvUUpPsvhBQwcznRQ+tpLJI0AiZ7aLnlX3PUPIwFCv3P+62vBIRGigdrlBBDtbPittY4xMrJMwAwBLzL/3QqAEVM65+G7l28/pHjOE4Ajlvutkd7UC7Fpms1a+EmF+TH7YEmK4st4qfoHuP9Mt+W2MaV0LQsk1YJkxHEeD5p79gaMISZVTIXulQCy1AWgH3UdZnBZ4oivfazRhqeufg1sMdm8T3tD2AI0kszFiSWEgAOQ8axq4T26MFENYtUCeajDXsBPUtUmYEgKkOzfPjfK2/UCiNDYT+8XgBaq/0agIEnLG38rD+qpGsgLqYvD8TwjZFrSJsdvxAMHjRS9lAA5fr2OIFAECKU/dQs4DGmESWvvOubX7ZheWCMrMpCS73xw7Kn48XNe3Rgbp97+WWzZ9aBvm8wbt1/+85hPAnoCwJXfei8yVyGAqWOnUWoK+kTALWe9qlFlopzDBQ99OfkSDnipTi8BoD2XPoNrLvvW6+v2Ov3kENHSwUeYecjMH2XmFwF4I2Tx+EsietGqN9DTqoAaRHTDalw3uf7xRHT10jXX6WBSytDJ5saUjdnSf+PKEICQBjfmFzWOzFl6LkJZLK/PCWUuACK2xUxaVzOYARSxTgAXD4BYb+ERLT2c30xr86CFMew350EMh+FQ/srGqCpGOWSUVagrFhrGiEuJc4Tao9j7LXurjdxbahQZI9MCaHQLRrcjf4uckedAkRO6HYVuRyw3Mq+5LToKRUcsNzKtoEi0tTpTTd/7hiZTIfjz33HRT8PoIo4F7QwuvuOTIMKS1hpRU9iw9ZWa45iVtXM/Sest7/L7c+/DkVYE3DkMaTnvP2V6Reil5EfYbe5f8OAXG9codQf3nnINQEkGE0AsNLxwQZqitZTK5fuEkiwnIWZGXmTQWkFnhDz3IEemUBQZ8jxYaGUevBBwM8/Jb2rEQiP8DVr1ILiOaMqRyMVxq+ftELeHknJq1VmRfffM92mB/Xb95lrWBAzCvgtgBqiuGywPG+thAB5qkF7WUYyts/W7n0c+t6cxhp685oYmsN9YU5vgRnhVITYK+XGZWplE8CJYoXhBvbZ8SMEMSsAu5a0MmpYb7Y2ScZRu44h5/Jow7vxx1g/RekQvvmWZ3+I+IcvlO8gzQuG/lbS83jwQmAvwMXo8ASxSqxIPChJqIDNstRVSaH/zOrJW+32NCFrcf/2vwBRNK8qLv/wX0YKLlILrTuG71/xKoz83zu7EhXd8stGmJmiZgl5i0QEQdm85CQ8ec3HjWs+590YoZ7AiC2ByiXX3k58MYqIV39ZpWfR9Inrhcisz898D+L8gy8iaZTBdLUuNvyOi21ca3CCiE4noXZAUqC9ZyWuv08oTI2HSEleTZhmPliWuJXDcssAIriZiwSGWHLIxuGXVkQAPCeDQdlsRN5Vg/TFqASKghXdFSS0+wjV9mbUWzltgOFO7pET3k8pEd5RyaFANDSrvkhLdT4beeqMSl5RhaTEcCuBRlg7DIVBWslVG3FGM9c2HZ0i99iqAG7lm5BkE6NDijjLZYXQLCMjRASa6CpMThE5HYaKrxTWlozExoZEX4p6iM4W8kN/BJSWauIcAhJmYxpcbtuHec36qMR7OuedzmCjnsHfridi5rRlTaPPckzh+5w/9r8hNJ4KgjKiGcBhqL6A1WhYd8Hq2cgvh4WzG+hPvfrIIU53eK9Qf311SeNSu+zA5nGkcue/EK2uz7iBUKg9gJub02mtrCQStBLQgEmBDaw1SQFZob5pOKAqNItfQmtDpaBSFhs5IwMxCQWt4Ky7y1l4iHBEhapjrGBs0+uxcC/Eutbxz9Ras05yfS1PLtMa+W5n9YOGwYvss+8FyL+zLMcR719aAgLMct3oNYTgr9Y3/a5O2W9831t9XXBBH+9JaxpGtAKF7z7gM80edEvs0vXaw8nANZQMJMOPfYbRASUZqmIJrEIubbiFq/H66tZX9qZVKxIm4uY2W+/UeVNeBrIOebWj8jcDNElNA3fbE7YhaQAgBmfKblm8/U4RCE/JgweStJPOstgDJM0Q3FqLauiMoCVILFkLTjQZj9oGmVZRcI1hdeEstb5GVZQrlxu148Nq3NJ73mPu/haMf/p64oShxX3v4nOvw5HEXNOpd/P0PY2q4T0AV3XTnSYGYtB+hCLec/ZrGdTb2duGsR78ZB9Zq4OJ1M1ZhffKXPJzX7XVapwOg8wF8gYg+SUSXL/Ocb/i/z12lNo3QaoEa9wI4D8AHieghIvojIjpvqZPGERFNEdFbiOgmCJjxq5Boq/ctfuY6HWwKQEbgJiLYsERZzbWg1k613U/89VOOJwIeEeiQY2wXdj+JWwBGwtZ2ZQnXsDWYEcpCDA6ODGviupK4nwRrDWOkzBgLU3lXk+C6YizK0qEc2uiCYkNcjYpRGReZdWMZVQJqNNx4CNCaQUosNXLN6OSyCcgh4MZEIeBGngFFRpicUOh0FDqF9polsdgIpujax9IIVhtZpqFQ+/RrJWavIOCHl9wAl1is5WaI8+/8FECELz7/t0etNb71l00GmtDkeDxHJ0KeitqgBW1hsQylSqvCwpYHvMx6+0/rZqxrRyvd1w1z/QR0AMYDPjEOQaLNDALB8+74cFPQA/C1i9+ctLse98EHPriZkDcdD7EysixYYGjknQxFkex3MhQeyOh2BcQoCo1uR6HI/VZ495NMfmtvXi9m+UksAYhbQWox4KKVG2qhnVMhHQ1AQ0CBVDh3DSHcWST7PLLvkjoL7jPHuXSl9mWrwZh0vwYrknPTfQeYBc61pn6uRh0T9sXSr31u9+F7sOm+7zXG2+PX3JAARIjt4AQ4EnDDbwEocKkFCBI0A1GgDqBHFLKjpUVisUFNy4swsKNVSAAdHOBCvKiwjo4Bt2xSHuJLNcAxV58bQCcXxmIKcvgtfca0TeFv2E/jbmhFI+4pee7dRjLv/pkDed50XylyAT6yxEVFJ9druLho1fjdtIgKFjJj4pVkTVeVPJd5IvMuZkWh8fB1b8Fgw7bGOLnwC+8SgMaDnirLcOsL34k0oGpR9XHZLe/3FmPBaiyJr+EjiNZzrABkjx1xNp7Ydkbjfpff/SmENXUc0FuDZ2n8jsXn7uaaXFsX1QGWV2juDwD1+rp9UCikdF3JbZ2WRT+CfESvAPBNIvoyEb2NiDYuck7wQ1+zj2W1sp+cB0nh8n8BOBHAHwD4AyK6F8A3AXwHwPcA7ASwx28TALYC2ALgTEiO2+f6rYu6U24C8AfMHNS663SoUgAuGBgVCseXReEgFi50aVluuV2vUVhbLoihZW1f21iQCBEoCXVBySKpJIk9MeAg4c1VYrYWtKhMDEXC6bMiEBPAzgfzCxHLGYoVWCkoAlhZsJN8cGzZu3YwmMUOl9mJ+XhOcCzqHmYHrQmcycMqJVYbmgjQkrpV+XZK09hr0xiaAMcE6wjO+UBoWiw+SgtQKSbRRARjFYzhtJNgnYOyDgRhJjmTdLlknbfMETN5ENDbfAweOPM6nH73F2JXX3Dnp3Hb+a/D3q0nYee203DUrjpz8+a5J3HCjjvw6FHny/tiHuFj2mCCRI0fk4HDc9zNMbI0ELGw5UFzYB1mBgqrRuvZT/zvJObAUvVHtJkA4ByOf+pHjXN2bzwW5eSW6GYS07R6y4yomc38viafwUQAiLzIBUBJ9rOMUBSZt7gAikJHLXSe18ydVqhd25K2h+DNgkFzBDGCJtxFYFXKgdo1ImR4cByyMjTLQ1/U+8sDGFdSXlmK6vbKXBeE+9CO9n54lrDeEYkwHa+XNJ1Dx47cE0iWLv9/bkxnzMDRX/lw47zhhm3Yef51cW1L2xUMf2JskOQFUKjo7yGH67FAaFleoP4b5txQFprLcdc/cQDhQXEs1c/aLk8uhGb/NXuyvielN0e9jtRQd219Ec6rx2E43hpn8RtH42965WZrkrYmwElqNZICLSEdOyN8G/W3I3XDGkT+Pdb9VD+u54vC2peMUWYBQ6yexoMv+3Wc8+H/GNu7+cl7cNKdX8CPz/8pOEdwlrHvuLNw/3nX4/Q76rSsZ931efzovFfh6W2nQHkLmZD7RBKjUewKDjOIUrjlnNfg1V/743id7TOP4tQnv48Hj7lk5E2O68cDW7vbv8NYWjmFxDqtPUlo/JWb8FfyWs9yugjA7wP415AMJ8/323uI6FaITH8/gL0ApiGZUF4N+eDuWqtGrgqowcwGwH8loj8H8E4AvwkBN84EcAaAty7zUmG0WQD/AOC/MPO3Vri567RKFOJojAqovGhZU1vvmasx125LFkTk16sxAErrmrVHMbzwLxVcOJ+SRdJJGSdlLuFsUn9S9lHtlU/Tys4zRxQ0WEpSpZKLZpxKMawjsawwDlor2MzBOo0sE9DCWQWdOTirvUk4weaAcwrWEYrcp3F1FNg4ZCE4GxE0sQAdRMgUwxHBKkLGQEUEZEDhCANFyA0wrISJMgYgUsiywBwpsSYhwBqCcwyVAc5SBIdKJ6lxoYDbL3tjA9TolPM4757P4rYLXo8vXv3b+LlP/pNUr4PrvvNuvP/Vf1KPg/BOk/cSh0t8n/V7jkOCEl/rKGmMDI1nwOMscyEMQyxKB2OqHMbAwOHW7shoP9PrjE4/XngbD7CxF0TkZ1pHvpuL7vtH6JAr2tP3znl1HGbkwdJg1RHmk7Cvs5AFpQY2BAwVk/JMS6ycoDUWLXCIF1AHeQxpWhmAinOytCGa9zc035xovL1bgxdMbXwc9sIdx/04r3NdHvtjv/dDH9Xl6fWb76MtJO/fvrSXkucI5ZTs1/dvPyt5cL0W1pv1/XLZLGcBjahVn+M+oIfzOPo7n0ZKj1/5WlSkQLZGAdK+SFPuiuVQyHAS9qmu49gD9dK+FBhpvYaGooGT1xSAIJAMJBeBjKRf/bPGsRKn/Lq/Q/3Ruafu08b3hSY4Hp5T9oOLTF0vZKppHG+cl4658X89toc8qwEK6yQbSvhejJWA3s5byVQGyPIa5DBG7s1MCIFhY2+EMcBtkYzCf/LaZBmGxN9iODAyrbHz+a/FiV/5AKZ2PBjPPPdLf4HHzn0BbFYIT2IIP7j2l3HSPV9GXg381RlXfOPduOk1fwQHBUUMNpwiJ/X8FsaKZTxw3KXYtfE4bJt5LN7vsrs/hQePubQBXBFxk19bam0+GBiFv+dKrSXrtE6HA3m5/j8R0XshwMavAOhAPCcu81ubwhf6rrVq52pZagAAmHkewH8hoj8G8FOQaKjXATh5Gaf3AXwbwKcBfICZH1+tdq7T6lDNfKRMazw6oglpMrfhGu0doahdGle3pQllBqjmFj3w4Bm0cC4BjfWJpR7BAxXheqlpub94YKCUUk3hNTKIHvhwACtv2aDFjYKZ4BSLj21sr1hzAMJEOCVWFZkLjRSBhZm8O423HEmYVILXtvrnYI9vay1lSjO0Z7w0KVjPfFMhAd1AgLEhQBljWEq7jGEoEvcSowV4sdaBIM/uHCOzWsyvwZjdfgoePvVqnPjA12PbLrz9E/jhua/C3u0n4amtp+HI3Ym1xuwTOHbHHXjsyHN9/4xBIRbQ2qSa0rFVllG2MMDQHmvLAyIacNwCzNfhBgwczrSqTOhCl17k/TJExrvkvs82yq3KcNepL4ogRhQ2Ve3qFVK3Kq3Efz7THrjw8W/ykKVE4uDEIJ+5EvN5ImSZCLQgmS8abfNBGIMFFjOi60QaX6KOlVG7wblGVo56Xmto2aPwwqg1vNwqX2Qf4cJ139dzqPyKQlJjP6njb7vYfhOg8KtUAmrVaxySZ3Vj6gS5rzUnBCEp2Q8Pw+zi74asF59DAJVjvn0TsuF8fVlS+PFlPw1XMeJCF8ZQ6KhEqx52QvwIUgTlVw25DzWGcdp/aeNEyPaWLP5QMBQJYBfDC/qo+0mOc6N/HNfPJxYH9fipLRXqOmE/NCi8u2B5Ec4LQEV4JyHuRziuFDf6Sbka+JDzJYZIGAzBej1afQCASsaSz6Kq/fekPJChfB8qAljLddi/LpWcz0Bch1PLjRTYqYdUc5HRFO4p35giLd9h3sGDP/1PcP6f/W6sO7n3SZzx3Y/h3qvf5HkeB7P5SPzoijfhwq+9N9Y79vEf4KQffws/PulKOCdKGHacxPSiKPA7dr5DNG49+1X4qW//ebzO8U/fjaN2348dW09DCPLeGFv7ScsDGVYAAYmf0/q6fTBopV1G1t1P9o+YeQeA3yGiPwTwdgA3AHgO4kzXoCGAP2Lm9445tiq0qqBGIBZ1/Wf9BiI6DsDVAI4HcATE7WQA4Cm/3Q7gFmau1qJ967Q6NMLAjdDoojDK/48/v9aSNZGIRFkX2wAKRQl32L5Zqs1Pbs1gKA8kgNByU/HXpsCEsbiaMMDkG0h1HSKCZQvFBHJiSi7uGgw4b/WgFEgxVIj/YVhStGkHl4nu1DkJAOac16KSBoORKSB3BCoA45lTrYCMxe1EuC72zBdH7VOmGJYJxhIqpaAziyzTMIZRGoCG8PKDuKNUVR1UTnyJCdZ47SM7rzUGyAmjcvvlP9sANSb7e3DWvV/EHWe9FF+69nfwxo//LpLuxIu+/Re1tUZ7HBwIt7MftHz3k3WGBlg+uPNso4UeOVptKdWU96hdR6QrRUB3OIPNc082rvPI0ReAMt0IxBdAjBDMr07jmPk5QrKZkBIAo9PJfOYTCQZKJME+i0JFECPPKQq3hFoAbaYPlfI0NoMxHOtYW2fjMDYI9xLbQPblekFYCfsRp0hA4Gf+XmihJcNXwFiQYLlGIePaHp49WFUEwQ4NQKeuM6pdr9uz5PTGNTAT28aM47/+941qO89+HuY3Hglyzgvn4R1Lgyi+dtmXtUvWIyif3aWxPo7pSmr+DTiTgGDyrDHWExABsMX2g7AO1K5MAigt2TGtIdQEOdLnDhY1qSVKapkSgQ/yQAPV7iGAWDcxiQUEEaDiO04sPNC0hAll4flYI4KGwR1Fq9pKg71raHRPsQCpACL6wKiJe1dcP1sTUw2sBfDDSTsVY99FL8C+M56DTfd+N9Y/4+b34bHLX4NBd2MEce69+udw2g8+hamZnbHec7/+bjx60mVgpQEoMDkoR3ABrXEJyOCbdNdJ1+Cq2z+E6f6eeJ3n3Hsjbrzit9MeWuI9t54z8nf+Xkuevvx7rNM6rdPCxMy7AfwxgD8mog2QsBOnA9jkqzwC4GZmnlngEqtCawJqtImZHwPw4SUrrtOzgmTRrTU3qeZudBEeH0dh/GI9ukCJxqZV5prnR4YztcDwzDC3hA8x2QQCFxvqOc8YBe2XnACws7VlBiWm4n5xV0qJ4EAW5KSeI5bgX5bhlIPSBEcEpzVspqCMCDHa+GBzmYAa1se8MEZSs0psDHF5MZbQKSQyu1UKIAcGUHhQg+AzpMCKeToIuQIypWEdoSTAZUDHSnCzMif0BgSbE4rCQSmNzISMBuTdUxhWKwxcBU0ayjO4e48/D4+fcAmOfeR7sW8v+sFHceeZL8HebSfjqW2n4chdTWuN43bciceOOje+/zAo4tttcP9S2igZp+0ZV7jGPM6zzWT1cAM09q//azFpYWGhWT26nzCLXzt5f/P2PaOAqfC82z/UxlLxzYvf1AA/yKdzDZYaTYsN8gH+BOQoCgn2l+Uhk4kEJczz2jpDsi+g1lrDa8ZRu5M4W2fjqIMzyjdvTB0Q1JgAcvrj3tWkNpmHCDv+KSMw0OrH1d1P38H+7qfvvV5L0vs4rsdVo45zcb9RB+Pru6R+815pnWb51kd/iE1P3tto5wOX/TSMEd25CuA64GM+sRe6KQr6ymfUgQKUI3AEYvwzxjgTzX6tx00ytXLtbsSo3ZBS0AseJAvU2HcuCqg27T832k/tt0ShPRFwCd9vXSFaXEBAizpdKuq+SOooXcffIAK0C79lHIfguSq678g1Q3tqICV8ayGQLkWrDQaJO4oHUKx3RwmWlYaAysi3G4BBC4JjjuDHQoBYOk8554EbFgvUh37m93DR/11nQ8kHczjjy+/DPa/5PZQEMDFsdwJ3vOQ38NyP/r9ivY37nsC5d96EOy98LYyx0NBw4pAC6wQgAzOIJWguCOAsx21nvhzPu+0D8TpnPPptbDj/KcxMbo9l+7Ucp59r+L3a67m/x7NtLT9ciAkrmoaV11/hMyZmnoXEy/zmwW7LQQE11uknhBKuyDFAyarL8FYG6UpM43POjysTJqqlm6FQlgoj4WjifsL1NRr3ILRcUti3qdasBTeVYGYrQIjXBpFoZ8UqwzOPLAxScGWxbKFIRTcWVoFRk428BQQpBYaVe1EITFersZSqtTXM7M1KKWAvcEzRH5c1Q1UKBEauPKPtrTUUWLIXgKAY0MQwIGijUXn3ExBBVQrMhMoQDCmgy9AVw9oMprK+HRnIOOSWYY0FMyNDBmcZd1zxpgaosXF2B8546Ou477QX4OZrfxc3fOx3GtYa1337z/H+1/yJfyeUxDUhsQAJHLXXjIKb/MxYBm/s4GpXWVn3kzatM0EHl/an/0eBC8Kir7whXaXzUgqMBGGHoobxzEebYaL6nY3YfcSp8t154ILCfsx6ony6Vp9euchieta8kOxERaF8BgYlmRcySTOZZYiCbhACY+YLFzJKiADazPSBmGmDvVBqfbwG67M+pcFDo9adazcUgMd/m0kXjpNPxsoqy6nc3nfwAQ391t6H1AmuAB53WnK/cZ1E6NkfigE991MwO+k7H2/8nt98DJ445TIJ2gCJ/0RemGdyqIdhDWoQ6WTtqa8VhX9frwH7cPo3zryNGCvBVUmyqghQJtYJnATDlEUrppX1g9LVl6y7I4yjcX2UNi4cT8AK5mB9EeJgcVRAqOhWCh/nqnY/0X4tVRwAlZCFxLuOuJANSI4r5dd1IAbsVPAgSOhTJYUc+5ijpUbdhhqsUMkzMId36l1zvKlGauUS+qYxX5F3MWPhc1gRhmdchKcvfxm2f+czsdqJ/+dDeOyanwVvPhZBIfPYBS/Brm/9PbY9dkesd+G3P4D7zn4JOJsUK1NSYMVgzf49SVDzECCdQLj99Bfh8js+gsIMpa/Y4ZL7P4evXPTmOA6WO/zHBwhf8qxlXHl5l1hfy9dpnQ49Wgc11mn1iINLwhj2boEyROuLZMEYI0lwNKtIgBJu1mgSjRxjHi0bqcbeLDccCAuvamZTkVOdIMgMePtLeOdbD36QhLwlBryVBjnRvka/YW+6qZRocsQlhbwg4/vSeZeUTME55YUI0b4WuYLz8S0YokXq5D5ehxKzU00KOTvxsyWASMANj4lAA8jJodCE0iooChkSFIwBygpRBeWcgs0JlQnOzgA7sTCxxoFgYWDx9CmX4uljzsb2J+ogyBd//8O4//RrsXf7eGuNY3feicePPDfgPaMgGCM5sDK07n6yfKp92n8y+oKClLNonSbIOr7cAwpEOO6pO9Gpeo1r3H3aC2phS9eghm5YY2RivZUrFJ3MlylMTGRQSqEoCBMTkuUkz4BuRz4iRUCma8FQTNgpSXPJqKo6hWpVsU+ZCVSVpFtlJ+lIg7BqTe1+4mwdGLqxz2nWkMQNY4wlwjMwpFh1Gtfm9DsY2Q/4a9LehZ91/+exfDCH4+/8UqPs/kteHS0lgpUKUx38M8RocWgCGCN6Z6qF6RrYSF04mi4QIfCnpGWVdx9S0Aagy/los8GNKVwjup8kbiappU86/aZuiWmPhUgO8XfyvYZdRVIrgPUxXg0QU9GSQQQ6iACramsWpeR3TK0aUqk6b/moCcoFC4vawoNDkFGqW9R2T1EelGAtfZnpZvpZrevv1DqIZad3R7EuWHzwSL80Kcw9vv8IePwNv4Ott/4jlDXSDmtwxmf+J25/6x/F53dW4Y6X/Taufc+vxyt1BzO44NYP45Yrf7Ge63x8Lxl+zr8H/72AURYbcOcp1+Hie2sQ5fwHvoRvnvvTKPPJ+r3WKNbCT3JA685+IobrdAjSymY/OSgLyTqtGq2DGuu0JjR22hhVhUatexOsGF+PWotTrJHUHb84Bq1Ma3HjJl8Z3E+ClUBdBl/WrOf8DVMtLMUAZvVf52NbROEmuKEoMaklLb6pihSUYzgPKDitYLWCzhSUJSiroI2CNYzcZzaQjCQZjGFYK9rZqpKsKMYC1irkmmEUgEJicRRUu6RkxAAsWAG50siVZE7JtcKQNGwG2FyCiVZGmGBjgcJpaAWUpRIzYcvQWqEigIykiLvzyjfj2o/9m9hvW/c8jJMevgUPn3zFeGuNb70bH3jN/zdqPanxXjm+cK9za7w8av5cuHCteJxnIS91OIIZz8RkeBzmOt59jjxoS8mQa2sVZf+qH36k1T7gOxf9rBe4VCJs+YCgmYLKvJVGLr91pr1VhkKeKRQdjSwD8oxR5ApKiRtaCmYQM6wXjsS1BCiNABHGAmUpwqixDJPsW+PAjmGct8zwgmoIChoFVK4F3tAvYfyHlK4AGq6BC4EcC+4n/b+c+itBi98nqYO6PBzglXK7Qb3WnfzDLyDzmSkAwJHCA+e+FDYBmRVJSnH4dcTj0UAQ7n07lW+1WAYk+6ppoVRbaNTWOJIFRwAvxwxr6iCyacwVax3gNffSRr92Wlf3U7Lv7Hj3E/a5StvYVmhz+/tM8I0IzPgfHqQRgIeIojuK8kEzlD8W3FK0lphR4sJFPnuQ/FY+6LdSPggviQWGVmK5oDzIoQggXb+HAHjopH+Nqy0rjCPAu6MA4poiLqj+HRvvKmbl+nZBd5RmjxEAc/RJeOolb8JRn/2bWH7kdz+LLde/HfuOOQNkAGSEuTMuwePnvhDH3nlzrHfO9z+Guy58FfobjoIl6+cEyEjy0VidM/U3qIDvn/UyXHTvZyP/1jF9nP/gzbj1zFfEtsm82fy+kgPjHiwZAAsfXhHy91h3Pzk4tB4odJ0Wo3VQY51Wjxj7r1GrI4Am1xmzSo0DOgID00QmZGFNlp+wmLa1OhzRilDuoRNuMqMIC25gXEPkewrrHce2hAChjQUwMGTMPqioZ6JiyHQACgJyIPg3OzhmqKANI9EIBc2NuLASmBUAK3WVjlYcRBJgVGtpX8aANgpgLS4p7DzI46DI+fSwAGnCBDFy9qCFIRgiTHaBYaVgHGFYQpjYQjqgMhpVZcGW4bQCQMi0wxNnPg97t5+MzU8/FPv94u/9HR4+6bnYu/1k7Np2KrbveiAe2zLzKI54+n48te20hhYUvr/gA5E2XFJQa/1GuJsG6JFoihNhZNxp4wqXKyw1mJ4olCx2n8OHDkdLjZVgQhvfciIoNcYENeeWlFmPmlK2OPbpuxvX3rXlJJjOZO3nr5MsJ5lClmcCZHgLDa0VOl2NotDIMkJ3QqPICXmu0MnF1USEKsS5JYAZ4k4iwlBlGKaS+BiVAYxxMNbBGsAYK9Ya0f3EIQQCdd79RNwKXK2J9xYZQAJAjnyOfoFo481jtPMj+/BzQMPS4eDvj32m1SIinPqDGxtFj512FeYnNoOsq8edcmKRwH49YnjATTo1xoDyZiUSQ0JcKINbRnhA9s9WgxSIYFaIt1IHlPWbldga7MsZqMEwlrUnTr1hzERlgl9P97c/4+PUbiThPQXgggW9idYrwaqGNEGTiuu5UhRdUsCA1pLxw1npE2sIOpPA3QJ6MLS3viQI2JFpubcjscjItPApBO/1RIAmIM3UopT/jph8anZxfXEMUAYYohhPgzIBXrSu45k0ArA2OiYOH1lLAex87a9h21c/hqw3G4+f8qn/iTve+adQyn/zULj35e/E0Xd9FcqJa1NmSlz6rffj69f/MxALD6Odlhg6/v0ppROkyWF247G4/4TLcfoj3473uuTez+J7Z7wMDJW0r/7owziUyyS8QHtgLDlOVuDDDGzIOqCxTut0yNE6qLFOq0aelakXgZbwM04YWm7Z+Bu2F3B/Ppq4Crfqh936NpwcDibGCQfLGO9+QglQEgQ+r4kKgbnqBVH+Jx40cnOHmgkjVmLl4Y8Rk6R5ZdHgkCKQc9BOgVnStGlNyDIF5zSs175mmlAUwjpJejWFXBO6ueSYJxCGlqDZQZOF1hYKDK0Y5GNtaHLIYJGRQUdrlEYBlHnPGo1uIcAGkSQBnJgA8lzBGAdSBlXp4DoayhLued6b8dx/+I+x34/ceQ+O3/FDPHbMhfjKtb+Nn/7Y7zWsNV70rT/Dh175/2m95hZo0WJsRgTMwIi3x8VC42qstqdZuOwxOa7aYQ5m/KTSgsNlgQN1ce2zHwE5AM+55yYodo1zbr3g9dBax2CgWSauJSpTKIocWitkuUJnQvbzQmFyMsTTIExNiiBa5EC3qMFY7acSwxJvxzFQGtH4WssohwxjHKxjDIfe5cQyqsoDGi5o310UVJ33H7DGxjFtfVTIIOgSWi4nYf4MgskBygUHS6AY636SPlOYaNqAx/6C+2MozSQBAFuevg/bdzRBsXvPe7kAA15gRUhj6xAHZGwK1dcMcSaUomiBoLVsAiD5x/GCcoiXEawwnGMYY2XfylgK5WKdkbifwLuW+PFTx1sRUCNdn1NLy7HARgMQY8Sof7GrWr8TICc8f7DUALw7igEsWdRWGhStNJQPxk3koLRYwSgtwby1ho+B44EMW1tsGAtYlrgbIXZG7uOXaPKZVDQjcAxEoqhQ/rkZwf3E9zsD2tbuKJUFlLfUYCVttFRnVklYj2Q8+b8EuI1b8NQr345jPvzf6vF1+1ew9eEfYN8pF8JZAoFQHnsqHrnidTjpG7WF2al3fA73XPYG7N52iswFGUDOu515i6EYD8xJv3/v7Fc3QI2Nvadx5qPfxt0nXLnK6+PYxX2dDiNirKz7ycq6sqzTwaZ1UGOdVpcCszJmVV04+8nSZfsDdPA4k8WWpUfAFkYll6YALcw4xrqfjHVT8UWclDdcUjxDJRq0OmgohZR4WpgJUuKeEszQiQBlFVgrOOPgMg2rCFYTjHHQpYLpOGSZuIkYq5HnGs465DmhNCLcVLm4zeSakClAg8GKoZQV0AIOmgScykCw0OgUCoocTKahKUOlFTo5QRNQ5AozIFTaIc8VFIn2yFph1J646HrM3/weTO2rU1heeOuH8MRrL8Leo8/Cni0nYuueh+Ox7Xsewpa9P8buzSc2BJnRjCjN8ZVqeeABpaDZ5bHc8UEg38TD1Yz1cLLQCLQi7ifNCyK4Ro32R13G3OovIlx43+cbtY3O8cCp14g86tO2QkFcTvx3nxUKWaaRZRqdrricdDsKRYdQZArdAigyhtbikx8EKOtkPpLYGAKMVpXDYCjfpjEOw4HE0TDGohw6OHZwxsFU3jLDuaiNd86B434SOykKoh7U8HGP0swfjmu7uUYWkGew3+r20TrjgIbl7qevexluLiv1TIs+HxFOv/0zjeL5qe149IRLAWvFSs/HcXAIFhc1uCSXZZAXwokAnQVAQ/aVCvfyYAPLX+ctNJxzktrXMhw7D3p5qw1jIwCSup+E+BoCctSLqFvQ5aQeKwtlhlmMasupVllSHL9dqo833U/EglL5tVj5jGYB/JH1mKLbic7kHOlDcU8J2crEPUWUDc73cbCkElcf/y6Ci4oHpgBxSdWZNNJayYhiLIEyQFvAGKAS9gHWCNBhDUBJath2cHUBi+SdP/3St+KIz74f2czuePSEj/0J5v75e5FlSlxwKuChl/0qjrv1JmTDnu9DxsVffTe+csP/I8oZriRoaLAqrVy0hAEpsLPYceRZeHLbGTh6V52159J7bsTdx1+5xPtssXLtgrXALA7zdXud1unZTOugxjqtDaVeHYGW0rwsUhZBgga3MqauRyvGgiUpkxQE5Jbryoj867WLTeZA9kfcVICY9SS0hZmju0mMueEZEVBQNCVR2aE84CGWGi4JvhVdUpS0yXn3E8eA0wylFMAO7OTCYrkhcTTYAT1SsEzIM9+jrFAqBUCjgJiTExiKHBQsoAgGDMMKkzlgmMFQGFSi8eWuaJdLQ6AhwRoGFwqAQ6erUZUESwr3Pv/NuPjTfxy79NhHvoftO+/D00ecga9e+5t4zT/8Qa1FAvDib7wLH37Ff5IfDrXZeQgkF34vxM14ISe8soYry1jXpsYQSIRZGnPKM+CgotXO4ckY/aS6n7QumOzXYGWUpcK4SQQmEGFDbxc2zj/VuNTDx14KaAXSFAOC6kz7TSHLNYqOgJOdrkK3q9EpCBMThG6HUGig2xEwI/juC9ggQYhLQzF2RlUxhiWjLB2qykncHeNQVVZcT4wTwdRnOBHz89TlhKMLAYBojZG6nMSghUHV7PcJ1JjHFtz3wZaXt4/G973ka0vmgNXYT++zrGddxn6wbFFEIFPitHu+2LjXfWe/BA4K5BiOnHexqCGS4GYhQnMIPg1opZFpicmklfxVwUoBXAMaXGfCEcsMF4GuYMVTu574eCtJoFCO4BeitQeAaLEBjInDgub4Wepdjnsn7Tk/rK0hrGj9W0isMpTE9CaAvDLBWpk/lPZKBieLttY+mDiL64S2BKUZGYvywRoVwYgAWLicAFYR1Mgz/27g+QsA0BxdU8jH5gA7yWzm3coyLVliYtBSH0w0xCcXlxX5EhWLBUer9/zoAFx3Cjtf86s49v3/dzy64a5bsPWeb2HmvKtj31XbjsTDL/4FnHrju2K9Yx74Fo56+FY8eeIlcE6UJ845P8Y02EoQdeccSMta/L1zX42Xf/W/xmscvft+HLf7bjy+/exa+bBoMPgxBUsuxyuAeBzm6/bhTowVjqmBlbvWOh18Wgc11mlN6Jm4moxbPAJz3MihMk675hneJe+1gOvKyH193dQSYEE3Fd/2EHOjXgx9U/2a3Yy3kUTUJ4ILxxR5baeqNcNOGFMoMSsnRXDaQbO4pGAgTE6WSWwN65nHPBOXFEZIm6dQaEI3t+KSkgGlBbRy0LBQMNAklhtaWWSskJGDgUVGFhOZxrBS0JR7IU6j7CiUJdDryRM7R9DawRqHJy5/Nc6++a/Qna81Qhd+78P40kv/NXYdewH2bToWm/c9Ho8dues+bJ7dgb0bjk4ApbQvvQEh1QxalHAOhIlpnNYMktd4kev0E0ULycrpPNI0xkjKW8DG1bf/XUtfCnznuW+D1lpcTrI6y0mmNbJcozORIcskhsb0dI48I3Q6wMZpMWkvMsZE4eK9mAHrMyMMDcEaYFAC/YEIpoOhxXDovPuJgTXiclKWNsbNMJUIJwgadxdiaNRxEEJcDUDcT9pa9ijArpUWda3oGVh8pOTFXY/N1pXTtY1R958j4JQHvoHOcK5xnXvOud6fQwHLj2tfeCdK1zEk8kxAaJUBWa6iVUFwOQljKLiQ1NlxbHQ9MX7fWQdb2WgNYL0rSgwOigTU8Psp0FXHfmiWx/0DHDhtl52FLD6VBzWISDwkyDUAESJbg0KWEmsOglNSbirvpqIUtHYwOgT4ddCVuGNqDx5VBqiMi/E2Qpyb8DvE4JDlncVFJQAVMgzAiqGdKDOsE9AjV+KaEgOJOu+K4i05KKz5DLhWlzKAXS/+WWy/8X0odteWlMd+5L+hd+FV/nk1lCLsfNnbcNzXPozOzNOx3oVf+UvsfNu7kHmrUWUVTGUkyLm8UJCr+/yBE6/AzNQRDXD30rtvjKDGCH/3DEmAz7WYhNZpndaJiE70uzPMvHet7rsOaqzTqlGDWWlZSpC3SMByUNIxTOGCKPmCivcxK/gizI7UGV1ShVlkz2GMu3GqtRvTpsjsJupFb2IqOe0pghbBQgMkLiviupKYuivvw0sKyokJLGmCsxpWe02JVrDGwloJMOgsYHLl0zZmKAoRdjo5Y1gSmDMMcwUGkCmLjJQ46ypGR1VegydgR86EDAoZcnSURkYOE3kGTQWGRsHkQKYUikIeuTIS6Gyop/DQNT+Psz/zP2K3nHjv17DleU9g99TR+Po1v4mXf+pfN6w1XvT1/46Pv/yPwM55I41oPiHvJMlkQ9GapvXuxpSNL1wjOsz5q8PJQiPQarqfyHxByZAan/EEAE579DuNy/QmtmBm24kNlxOtNZTWyDribpLlCpOTEhR0okOYmFDIM8ZEzihyybCQKQaIxbXMiFBjDKE/YDFPrxx6fXEVKEuL4dB6TbtFObQ+XoaNLifWOQ9g1NlOAESrDIbzsTOExmnakQiqdXkN4jbM2w50P53QEzm2Lt1fBOKZ7C9NaW2XjMlgyTPukqkrxVl3fbZxvceOuwizG472sRO8m4kKwIQE/SQvFetMi+uEkhhMAcgIW7DwsT5+Azvn0/nWQIYx3g2lst4aQ8aNuCLJ+AouSc66uAY7WysjYuwPRtyPbpyh3MM8jFqRIVca41bk+yatN26OTV1NpArBJX0brX1IjjXBDfL9KAARINlQAMSsKOTj4eis6ZaSGR1jlmitUPiMZToDqkqhyAlZLhYYRS7fbqYF2Mi1fN9KyZMpMKBkfsnIuwMxoSIgJzmvMkBlCfAxPYxmDIc1x2UsYlrd0I8u72Dn69+J49/9b2P/TN5/O7Z8/0vYe+mLa7Zl4wY89tp34tT/9e9jva2P/QgnPfRNPHTylXVEVACVq0T54u8Ts9hkCred80pcc8v74jVOe+y72DT7JPZOH1W/oOT9jSzX7YJF1tQVW+YbY/PwWwMPd1qPqXHY0EOQr7Eior8G8J+Y+aHVvum63c06rSLxgpvwO8EkNGzjzln8OqN1F2iGG60atUWcADAjt+bGxgAQLCnCNlrNM//C4IVrR79zV/+Nxxx7d4pmGfuLs3OQ7ALJ9bwpeDD1dE584K2xsJWDMwxbefPy0qIqDYyxqCqLsnToDyz6fYdhxRiUYp4+P1QYlBkGJkdpNSpLqFwGywqS9I9B7JCxQQcluijRpSEKKjFZDDFZGGyYdJjsWHRyi4kuY6LD6HYVilzMnItc4YnnvwFVZyq+IgLjvFs/DJ1p7DjpUsxuSJgaAMfsvAsb5nYKwEPisxwZTsaItDluNIxlapZwP5Eqq4Q8HGaARmMct34fMnFKlqClmdCFnmOB8xoCVRu0FaGHRArxAg/hhCdvR2EGjcvcddZLYhwNrcXlJMs18kKjKDJ0JzJMTGSY6GaYmlSYmiRMTTCmJxiTHYdu7lBoB61kDrOOYRwwKAn9UlK09gYWvb7DcOgwGBj0BwZlaVEODIYDA1NZVGWFsrR+njCwxtZaeO9SICCp/A4pXp11sW69b8EunZ+CtQf7cuvBEvvM930by6Q51gABAABJREFUotuDa+9zTDu66vu8yL6r5/AYOJND4EyO4FEAktg5P/dzPG/Dvsdx3OM/aIyfu88OVhrJuPTjTWtvhaFVBDGyTALO5oW4NYWU4CGgrYAZwSVJ3JFkfMj6YSqLyo8ZKTcwlbx3U/r378+xxq9L3urHunr8OOsa+864xphhJ8Ba7Qol58Z958ehL3d+PKa/Q5/H+4Qt9LNrtcvWbQljmi3Xv41vdxVizsh3YiqHspTvxpQWprSohgbl0Po12KEaWgwHVr67UuoPB4zB0KGsJEjvoJRNrDlIwEjj07QmGU0UMXLNPuU6I88YncIh14wiYxQ5o5MzsswfzwlFh5DlPpaHDpY84jYbZq/d17wWw6NObIyvIz74J9Ak8bjyXMbQnhe8Dv0jm/XO+eJfIs9krAVgR2dawFogzm/BDepHZ7wEw3wyGbaMS+/7DEjy63ogSclvLOAOjBoMjKATYYEpewXWKQ5tPTyE4cNxnV6nZw0RgALALwO4m4jeQ0SnreYN19RSg4huAHAbM9+zlvddp4NP40z4BfVP/WHrshTQGKchHas1RSpMtA+Mq5sUek3FiDvLSLO9gW/a7jGNCWBE81nqqsxinQH2eqtU+4igXSPAOkktR+TjSUCAkkSTxMRgU1twMEuwTwAxcjs7hrHCFGitkOfkA7opMDIxZS8AlugZgMpRaIVOZkBwyJSGYQfNBAULxQYaBrlzyJHBqAyauxLgTDMmMo1BpTBDGoCGZY2iYFQloT8A+tiIR676GZx689/Evjnljs/jB1f+AuYnt+LbL/xNvPiT/7ZhrXHd1/8nPvHSPwRLYHoxa2UH8rFDap0sRWuNpEsXeKFjqKXtORwtElabUgZJPrnQac+eviJvOYXWo9UxM2qrqvqcuOcFRGG2VcJ0X3HnRxv3YRB+8Jyfi5lO8k6GLBdQY2IylxgaHY2NGzMUGWGiS9i8gZFpRqEdJgrR9TNL4EDLhGFFmB8QjGH0BsD8vIWxwHBgMRgYOMsYliKUsmNUpbifMHMUPiWGRm2dEYRqAC1XAlcDxal1m+PmfOr3Xfg2GRITY1zfp52ZWHakTPnYfcbYe67t/iLH4xhKn6muKX09av0hsRZkbj/zni8gpUFnWrTjqNcNRarpcqIIpIGsEGuBvFDodILlALzLidzTerClHNqY9ndY2hhPpSpNjJsRXE4CoB7mBefHRATsfdua46RePzkpH0u8/2+17kFK1oI6Glf4E7KONYqTbzoEKA0WG+3f0YKDJCCmswRSLqZ4JatgDcFm1mdHIVgjFpTax87JrYIx7EEnicNhLSHPGJkmdHLffs1QRJKdDBQDi4KAjBxYiSuKdRL42/hsLUaJS6kELIWPrSPj0DmZO4LVBuscO97w2zjxf/x+7IPuo/dh09dvxOy1r0aeicUlTXSw42d+Cye/61/Eeht33I9T7r4Zj1zwU7DGoSwrONYgK644xhiJGeQkkKjtTOLOM16CS+78RLzGuQ98GV8/9w0YdqYb73OxdTh+KYsI7W3ecL/5gnU6JIiJVjamxjp/t1r0FcjHNQHgYgi48XYAbwHQWa2brrX7yd8BYCLqAbgdwPeT7QfMPGifQEQ/C+DFAN7DzN9as5au0wrT6MRRu6Asp6x97jgBKkTyHs/aLNmmhfgptM1Zx2n3eeQuCy+VCRfrmdXAmKRNC3E1AMTgoiH1ntSRuBoSpKwJajgSYUQpyaDiXBD+BdQIfrY6E3CjyDXKkuCYkA8IzgLdnFDqDNQtUFqFzV1CTgYaCh22IBAyGGRgib1BFh0qUVCOARfoQkNP5OhkOZTqYDAk2DwEowOeePGbcNLXPghtSgCAthXO+f5H8d3n/wqeOP0q9Ka3Y2qu9tk97okfYHKwF/3uZjjL8b00ep792IjWNMEdoAaYFjVfXUtaxFT2YFNbuBgJtMvsgaNa8OQFHuhQAoWWMhlu45NBKGqfJ8AmMH5eq4VVr2AEQ/z24RyOfqqJ6e/adgq400WWKSitJX2rBzYkZatGkWtMFISpKUInc5jILTre5UT57ETGKQyNBOodVoT5PlCVwLC06PUtTCWZTYYDU7uclCZqxW2VWDYElxN20aKtYW3G9RhJAz02wIUEWGxMjowlx73gGByrI41LtNA1l9pfCWpd+0DHdrNrkm/LJZ8UJfv+tuQszrq3CWrcd/p1sLoQ18SwPhB7AVqkXp17Kw1NyAuNTIf4Gd5lgnzKVZbYC9Y4VIZRlWKpUFXOA2CSDccZB0bIeCJWhNY6SNzWFMiQOC31c6dAxhiwiptKjHTeWWh/tG+bxxy7kbrpb279ju4nrboBxAjZUGK5qv/WsTaUgBskAAcRQRsVlQxKizuKVhIYuMokk1FwDTIdFpeUQuLlmA6hsuKWIlnGfD8jZEmpjfJzJVYczrcl84FIM0MYGuEHLBNUCQxLwGeKhzHixgIAe698OY74xF9i4pF6rjriQ3+K2ateBspz6EzcYnrXvAL9T727Ue+sL/wldlz8ElitAULMfMYaESiFknnVAbj93Ffioh99Kqa3zu0QFz7wBXzn3NeiHSi0rSSSdR71Gr6oO8oov3hA5K95qLqfLLp2PwssNdbdTw4PYuYXhn0i6gC4EsALAVyzmvc9GDE1CMAU5AGvSModEd0LAThu83/vAHA0xHTldAAvWsuGrtPhSE1mKZY2GJvApDSkW4zjgMcGJE3Kw6nyO10/E+ar0br0XqNtr3ep2RRmQBHYBvNKWbxDhHvlw4cxkc/qony7FIgFuFBaQA7JiKLAjqGthlZyrcxp9AjodMRFBExwGWNe52BSKJ20nVFCQ0ORAXlAg+GgYMCokHEOBYOScnBuoYhgkUGTxrAUxpmhUB15NJ587qtx3NfrnPenf/8TuOPKN2FYTOGWa38NL7jxPzbe0HVf+++48fp/IzFGHDWYizqYnmSGSakdIb/Rr4u8hvgOV0MwPxz4i2CNMaaf2B+nNiOZSiVEq9d/B0ArzYQ2BB4gCohItMOUHD/vwS9Bs21c446LXhezneSFRp5nyAuNbjdDt5thckJjcoIwPUWY6jpM5haTHYtMyazETDBWeTBDoT9UGJSM/oAxHDqUpcNwaFCVzpvI164C1jo4E+IiuEaqVhskHAacs3F2dC3LjLb2nUJ5QHOieRqaYyPRvo/FI4LgT1RHNXym++OEnwPdj8Apj4mxFJ6rCYjFdYMS4YMQQYA6SLQfqy0Q5cRHb8V0b3fjHned9RKvtVfRQkMrHbPn5Hm9FZ3Muw+IEJ2CByGzibibWHGX8C4nYawEYMNZjpY9zOKa4bi2zggUrXtiOcf7SRDZBBALLx1ALE76ZrH99kBqHENznNZWZUmfp++M0NDeku/TELcppgcP33ewyODassspB610BD9IhfFDkhpVy/prEssN5zQyw1Ba0r92OxrOSeYUywzHSiwtffpXzhVUxmDyAUWJ4zDMCIBy0I6SQKLeWsIKeEGFVDaOBHjS9RrJrLDjht/Byf/1t2I/FDsewaabP4bZ69/on4OgOwpP//zv4oT//Jux3uSuR3HS9z6Nhy9/HZgBW2SSQclYCVruXHRDI0WYnz4S9510Nc586GvxGhfd+zncevarYJWGj6YeAa/0hY8sS+2C/Vxjl7VWxaF1aKxpC1JqSekStHSd1mmNiZmHAL7st1WltQY1zoWYoVwM4BIAFwE40h/TAM4GcBaAnx1z7mWr37x1OnxosQl69FhzoRq/II61CBljzREDeTYsLlqUWG40DicMcXrRerGuy1IwJQQeJeKomRDXk3BJ5605GFAKTA5kfLBR76sPBgxbOC3ao8xp0a4xUGYKee7gOIOxEiCuyIFuJ+SbF7/WQmXoKC0MkzawqoCCA7GDcgaEErnrIUeBkgpoPSVp3XKNycJgUCrs6wnzZ53G7tf8Eo79xsdAQUtT9nHO7Z/CnVe9BY+f/2L0b/6fmOjtib1y4qPfQ3cwi0Ex7aOqO0l16zMtoO6xwCWPvtFEahobDH1EGTRuPD0rlB7Lp6UYokWOHyqAxoHQQk0f53JCFMrlo1Re8KnN0wkX3X1T4zpWZXjonJeg6BTI8gx5rjE5VQioMaGxZbME853uMrZvNOIvry0mcgNmQuUUhlajsgq9IWHfPKEyjF7fYXbWwhrGcGjQ71fepcCgGhqA4d0IXC2U2tTlxGc58fF/ABEUY8jHFpgRKATyBQLYGH60QK9YZ5S4vb/Aufuzz6iBuRXbTwFr23qSAGq31wpftpiwRcncFean4GZ4TstKY+cRZ2LP9lNB5FO9klgB6Fz7bCYKRTeTWEYeKAvxFLSW7glghrWMoY//YK3FoFdJPAzHKAeVj3EBiW/h37NkOeFo4RP6BUkfxceN1hnyTAu5HtXLKmOhKvtFASBq3yD8agmy9fLs3yE5+bbjb/+dJ4Bm7R7q9y3EBTT5/p1WEeBQ1sFZsaQJcU+ssdAh65HRsJYFgNKEoiMuLGUuQUC7BWAdwToFrRyKDAAkcLDMQAwiseJyLC5GzonbinEEYwnaAJkWFzXjCMNSHtn5uB0zl16H+dMuxNT9dfyW7X//PzF77WuAbjfOd+UV16F/xoWYuLeud+rn342nr34N+uQzrxkLoxUqVHBWS384BioAGvjBBa9rgBrTgz048+Fv4EcnX4N6ADXBqNWgw3mtWpSeRc8l7icr9zzr7ifLIyL6ZWZ+98Fux1K0pqAGM98F4C4AHwxlRHQMBOC42P+9HMCJY06/dw2auE4/sTQ+doeYPatW0fhJcKybSvuC7LOcNBj7UcmaKNHqwTOHJGZ3UbtG3BCYvErYMzQ1wwUHaKfhyMFlDsoKI8WOAa/10VbBVATrHLRSsDZDt6NQVgR2hP5QwW7Q6OaMIXXAHYeSM2wsZtGBBcEhY4uMHbStwMRQJCliO7pCgRIFdzBBPluKzqAVYe7Ek7Dviuux+Zufic9++rc+jPuv/jlQkeO2F/4KrrzxP9f9AsYLvvEufO66PwBbB0UKDmJqLRrkBLSIYBHqvkiAKE4Z1f1EKFYE0BgHqBxqtAh6sywGMIB7hwjjsL8mw2PnBCSCEC+U8SQ8t/LjjJGbIbbte7RxnR3Hng9d5FCaUHREm54VClPTGt2ORrdD2DQNdDOHibxCN3NQxBCRUME6H9y3IgxKhfl5xmAoaTf78waVkUCN5UBiZljrYJKYCCEOQgzMyHXAyiCEjgMwRgTXpL+a/b3Mfl7mO3hG+wvcb6X208JoBbjQUGs3jNJ5PilOTpnq78XJj97SuMxdZ71EbkMCcEuwzxA3I4POBdjodDLkOfkgoeGqFIO9DocM6yR45bBvYH3sjKoUAMNWtUtSDPbKzmc7qQOchpZHSwkk44PbY6XpTtIoH1NnwRe7WN8CEtulXXfkN8b8rt/huDlsxP0kQTeJCI5cA9QI624ENrS3rFGAVUrAqEx7yw0HVVkUPgZKx2QYZoxuR1w3jSWURqHbATKtYJwHNlisMYPVRrDgIIa4wkHCfeeKkCmCqhQyny5eK6A3EBdeZkIJ4Mk3/i5O+0/viM+c796BjZ/9W+x99dtBBGjNIK2w5y3/FBP/7hdjvc7enTj5Wx/Bj1/wJjAYRgFZpkEArLOAUSDtKxtg1xFn4PGjz8OxT94Rr/Gcuz+Nu065Jhi4xNfSXNNbc067YDXW2MNh3QZiX7TnkXVapwOkPyWi2w/1MBAHPaUrMz8B4AkAN4YyIjoPwB9AAoqUAP4HgD85KA1cpwOmwOxQMrkGIm+OnJYuVjZCqzRLcxJw0qMEEEElvXG7QVSb047TAiWNXTjyABqLsVhdtBdwz6wFJphDvWDeKldWTB44qa9jHHv/akRlBzNLyldlwQw4TeCBRZYxdK48AyJB5ywDeaHgnEInc1BUgDoKhiyIh8hcBXIKmgFyFjkB1vv75zDQykFriz5ncLkENiw5hyPC3tf9UgPU6PT24uTbbsR9z3kdHrn4lbj4i3+G7mAmHj/5oW+hMAOUugtmB/K8tCKxUIlaQRJT34ZAVqs+vfkzIuMZOzsVLBKGfMXpcGCMFkFvYqDQxQCLRGg5FICNFTEZTi8xYrFBsUoM1EiikX3ODz8Oar302696K7IiQ9GRrTuRYWIyx9SExvQUsHGasaHrMJVXmCoqcTlhwDiNstKY9+4mvQGhN2DM9yyGQ4fh0GIwqHz6TeczH4mriUkzOjgX42YIoOGiJRiHQJ9BGA3AaqgTJ7LkG0nm+XSee6aWTStgrHHA1HiOxfaj4EWt+zPCyIugGsG7CZIIweEEGnWTC+vKWQ98JcYdAIAq6+CB018g2n5NyHJxOckyhbzIUHQk2Gy3m6MoxN0kdTkJriZVxT4jlrgolT5LlvWZS2IGEJ9VJGZpSV1L0iCyLRAsugem8yvCcBl9UYz2+0vW5JH99C0l48zXa/8OdRDaSKN9Hl2AkncSlQD+VnUdePcTWWvD0hxS6Eb3I0WxLoB4PUc+6Kh20NBwzgfzdA6Z1YBft51ldDoaYIm5IVYach1rfeBOSPwMzQxWBFLBakPGpiaGJsApCdarSAKNVoZgHCDBhilmWslBGFx4FebOuwLTd9RyzPaP/yX2vugG8NQU2A/64cVXonfhVZj8wTdivWM+/W7sfP7rYSe6KJVkhckKjcIWMGTrYLKQ8fSDC17bADW27/0xTth5Bx458nz/voKAXn95wTqoPYbq39gv2h/3k0OF2mM3OSBlYf8QWH9XggLotpLXW6dlUQfA3xPR5cz85P6cSETHeFl/1emQTOnKzHcw89sAvBMSMfV0Zn74IDdrnfaXgvDsEo15WtZghhcuc2imRW1rD1eW0gkuifAf7+sQLLLTspFpMdFKcfJvLKXMXNg49Fld2gjS19ames1Z/TukxHORIXXWwhoDU1WwlREBpzSohhbVoJKtNBgOKvTmKszNVpifrdDrWcz3LPbOMnbNKuyZyzBX5uiZDvZV05gxGzHnplCigCUNaNE+ZTDI3RBdM4eN5S5sc09hG/Zgk5rHdF5hy5TFkZsdNlx8NvoXX93okjO+/rfo5oQsV/jhte9oHFPscM3X3wWVKZCPRRC0YyGdGymVWLAkb2eJ9Uvk0pZGzgshjbL1dXBZFINIcv0tHWyK1k3LADhq5StFc+vwO72e34OKgRpl/CkKmScIZ9//5ca1y2ISu0+9BFmu0J0q0Olm6HY1tmzKsGGasGGCcdTGCpsmKkwWFSb1EBksHBN6JsfQZugNNPbMEub6jLl5i9m5Cv2BuJv0eyXKoXzPw0EJUxlJNzk0korSGBhj6tSWxibpVmurjUYa6SjIuihoIJmPOJ2v2nMXRrc4l485dvA3JM+R7o8+nwvrkRfSItUTeiwP56UWCPWalggo6TgEcPb9X2qMnwdOeR5Mdypq/bMsQ5ZlyIsMnYkceaExMZFJoNlCIc9DGk+GMRJrxRrGoF9h4NP7DgYlqqGBKQ3KfoVqWPl0pQamMj5dr4E1BuzjsdSpUm0zvbgbM4bcmLXcOXBM9ctIFtgafFhkn5O67FrH3Oh5I6nUrRNrjhZY01iLW+dwq36wfGJXpyxm6/uEJX2xtRKbJKagNbIZ61PC+n6vSgMzlFTLg36FYb/CcGAwP28wN1dhbs6g17OYm7OYmWHMzjH6A6A3AOYGGvOlxNexTsExIXInxFCKoZVDphlZ5iTtemExUUha6MkuMDUBTHWBTgYUBWHXm/5JY9xls3uw5dN/A+dC6l/hSfa+ZbTesV/635iczDA1nWFyqkBRZMg7GYqJHHknk5SvWiPLMzx6ypXYu/HYxjUuvvumhhUqqLkWp5aqCabsv5nF5/dxRw8F4P2ZkGSias4jANYZlnVaCfoWgOMgwMayDSKI6DkAvr1qrWrRIQlqBGLmPwPwGQCvIqJ3Huz2rNMzpLZMw8srG+vu4ZnHUQapZi5H+NMDIFkLuFXmRspCW9Kb0gK8cgRkGrxzm5ELz9QuTi/kfwdG0NbMFBwLUxWYzMhEOR+0ywcKNAZVVYnAUxqUg8BECSPV7xnMzRvs22cwO2cx32fM9Ah75zM8NZNhX7/AfJlj1kxgjqcwiw0YUBdOKTAUyBkoM0A+nEVWzmPSzmIT7cP2bA+2dWYwnQ+weXII++ZfaPTnxO7HcdLdN6M7kePR570eZWe6cfy0+78KbYeiBddiuguJbdoUQCOzM16QHfEOGjMGxoFRKyKfHw58xiLMUASNljon0dAeDGCj8f6otS11bks+jcx16w61GT38WPP1PcgxNfc0pnu7Gmc9duqVPnhjjjwnTE9nmJrSmJhgbN3I2DRl0NUDbMj7mMwrODAMi2Z1vk/YPacw1yfMz1vsmxHgsd8zmJ8rMRxUqErJdFKVBqYUANNWXriytfadfQwNx0nmk0RAa4MXoTtrQS/Mh+Pmq8W3tJ+Xs6U8+/7u7//GI/vt68VhlU727TUpEd5rwbqu3hxJ4/eP3HU/trZcl+4+66cAkqCTITZDXmjkhYAY3W6GolAoCoVOR0FrCTRpjIAa/b7BfK/CcGjR7w0x6JWohlbAjIGAGbaysJXxgUKbYycCFxGwqNe2hvIhGUONvksAjLR+CqItvY+R+7kWcNL+3QYpHEv2FrCX0j0o0Wifc00gw9r6Gwn38MddY90NgXhl31oLY0wENOo+lu/TVB5QKiuUwwrl0GAwqDDoV+jPl/K3V6I3V2F+rsR8r8Jcz2Bm3mLfLGOuD8z3CfMDJW5phlBZiaFhxRtGYqoohlaMjBwy7dDJHCYLh25mJbtShzHZZXQLwJx7MeYub8bo3/7pvwLN7oV1DONTxPbPuAi95zbrHXnT+zBtZtDtKExNakxOZeh0xZqo6OQSuLbQAszlGe648LWN80957FZsmnsSBBq73sS1HqgtLsNcDF50jj/glegQX7fXfoVdaxLecqW2Q1wMPpToDQB2ArgK4j2xJBHRGyCpXY9dqu5K0eHwNj8ImUbefrAbsk6HEC0AGABoalXGbFJpDLDwTJrDgalPwIikvGb6R5m+huVJ2p4xEkCb6a4ZQheBFRc2JAyc43hO0CSZkPUgghwOprQxUnllJGjccGBRDi2GA4tB32EwcJjrM+ZLsdiYq3IMjEbfZqhQwOoODHJYBpy1IGugqiFyM0DGQ3TQx4ash81FH1u6PUxlJTqXXghz1vmNPj3pi3+NPFPIMo0fPf9tjWOKHZ7/9b/wJr6ITH3Q6jReaQpmBNNgr0kfy6HwmAGxGpzC4cB9jOuLeGhpkKLRuwdJW7S0RcZCzzD+vAiSJdZARGI2Ttoz2V57Ho5f8YO/a9mAAXdc9w50urm4m0zmmJzU2LyBsHWasbFbYetEHxuLAbpZCUUWzmUYmBz7BjlmBzlm5xX2zDDmehbz82JZNRwYlAODYb9CVVYwVSVgRnQnqDXFQSCtNe2JMMYhzoYVLbQVwS9aq40RFKO2OhUmF9hc8teNKV9oH7z/+2OvdUACNCd9kM69CwEiYTKvQfD0/PS6qUXHCGIC4OwHbm78ntlwNHYed75YZ+Ra3E26OTrdDJ1ujm43R3dCLH+KvP4CrBULjcHAiBVPXyx5qqFFOahQlSWMEYueAGSYynggw8IZK9lx4phIrC3S/bDZAJZxCyxzI/0Z9tN+WnrfNa7R7udx/b6sLcScScEMZ2WLVkyJVUb63FwDHanFSvqNNcCPxMXHVr6/Sw8m+a0ayrdclbIWDwYGg4H/23fo9Sx6fYf+gDEYAr2BZEKqjEJlCJUD2Ltekt8yYmSKkWuGJocid5joCKCRa4dOwZjoAJ0CmHnr7zTikuj+HLZ9+q9hrRi6WCfveM+bW/V6czjmpr/CRFcjy4BuV2NiokCnk0NrQpZlksY201BK4f5zXoJhMZXMtYyL7vlsXOdl6vXWbzHjENWARgA/lKrn51B3WSD2MhblQ3Xd9m2nZP/ZSPUIXrltnZYmZn4MwBsBWAC/TES/ulh9Ivo3EPl9AsCO1W+h0OEAajzi/551UFuxTocWLTYPLXQsaHWCgI8mI7P8xWr0BqPyWs1kpfcIOoSRdsG3J/wLjFu6xYWqBZIEDWlw80mAjMhQBebeM6ch2FvQHAXzYmstqrISwahXYtAXrW9/UGJ2tsS+fZXXCjNm5xm7ZzSemi2wq9fBnJlADxPoZZswn21GL9uESk3AsQKRQ4ESHdfDhJvHlNmHLdUOHO2exNHqKWwv5kBvekujW6YfuxfHPPBNFJ0cj173VlTFROP46fd8EQVZ6Czz2nEFpTVIhb+jQVRH3x033t1y3E+iFWy0CtlP9f9PELU/qUPdvDdljOV3+1hzv3ZJ8edFjaJoz5Ufi6c+3LS+HExtBR93isTQmFDYsiXHpmnCximHYzb3sXWyj6m8xKQeQrOFdYR95STmhh3MDTSe2gvMzDtxOZkpMehVGPZLDHolyoFkOKmGBqZKNMLBPcDYaJ1hrWSviC4ozNHKKwju4PZc095HfNEpgBRSZYa5qznXLgA4r8L+gqD2Au90sf10QHC0TGnfw7Xu13YkGb1umPeBenYPpF2JMx/6P43xc+9ZL4bKBMzQmaRqnZgUzffkVIbpaY1uR6EoJG4CEaMsLXo+5kpv3qA3792TeiUqD3xVQxMFbGM8mBGs/oxrCvvsx4lNhPsYRJTjXwQriJYGYrTf8Az2a2AtrOWN360x2BzHbWqus/X7TJUJ8Wg93hpKBBe/MWlHy7IjrMOJBUzo7+CaYip5HxIPR/4O+0OUA1mTB/0K895io9+zmJursG/GYO+MxVzfYa4PzPYUZgcK/VKhNEpcUlwd84VIYm3kmQAZ3dxisrCY6jhMFA5TEw6bpoDuOWeif+0rGr207TP/C2pmd509xzH6J5yF+Wua9Tbd+H5sHD6NjRsydCc0JqYKTG/qYGpDB0VXXE86nQJFJwdPTOGec65vnH/uA19CYfpi9Ra26BeYvq8mtVeacev4yDmH+Pq0bHq2PMc6HVLEzF8B8C8gX9J/I6Kr2nWIqENEHwDwhxCM4fsArlirNq4pqEFEJxzAaUf4v9VKtmWdfsJoMd7F7zc1Zsm2LBq3iIyeHBjhsVVbW0OoCIxTQ3Mk10oj0De0R4kpbWRGQ5YD66LmLTJWptYOiZZXmKphv8RgvkS/V2HQF9/evfsMdu0x2DtnMd8D9vU0dvW72Dk/hT3DKcyZCcy7SfTVNPrZRlSqC1YaCkBhB+iU+zDRfwpFfw+myr3YjL044roLgRNPanTLyV/8a2zYoJF1NR58QRP00M7i8m+8B9pbc+hMUsWpqEFX8bWkGvVQVus1UuFi3KsZEc3HbO3jy6DDge84EPeTZIC3A5ctSxO2wjT6/lrHxx6m1t+mFq8WlPz5lHzbyThTWuOop+9FUc43rv7IRS9DnmtMTWpMT2WY6ALbNlhsnSzRpT42ZvOYyCpUDhjYDP0yw2wfeHpGY9+cQm/eYu9ei/k50bb356voalINJTZO6rfvrAUb+eajANiOYxC2Vn81BLrofkIN15Q4V6E1Zy1BawYDpm1hPyLGzK9LbdTwP2k/yeh++xKxvAFgI14r9KMEs5SyUx67Fd1yrvE4D5zzU9AeuA0m/EWhMDmVodvRyHNxO1FawVigrCQoaL9v0JsrxfKuX2HQG4r238fSCPEzwpoQALAAeI1a33BrPWqNBfCC3Rn6cNFhkp4w1q8o3KZZr712tu/RGg4t0GL0d7rGBqAjHQfy/K36jsWqxbpoEenCuhvX4mTfujrORlA0+L/VUFxDy6HBcCjuoYNeKd9+v8LcXIm5uRK9+Qrz8wazsxa791rMzAPzPcJ8T2F+QOiXhKFVKK2C8eGOiCCZUkg6Q5FDnjmJtZFZFNpgsuNgfvHXwaoWGfSghyNvel+MrWGMuDY9fcNvgZWO9Wg4wOa//wt0CoXpCY3JSYVuhzA9lWF6OsfEZAaVE/JOhrzIcc8lr4Wj+j5F1ce5D3xFAGJS9Zo0JmZWY7lpFbTXgQNeig7VdTu63Ty7ad1S4+ASM///IBYYBSS+xjHhGBEdBeDLAH4W8qV8FMDzmfmRMZdaFVprS42HiOhpIvpHIvovRPQmIjqXiBZrxxv83y+vRQPX6SebFtTu7RfAsRiFCXQJ1GSRauNNvxcwr0Wb0UQETKJlh0PULJnU/7fyGrvSSRaFGCHfoN83GA4sej3G/IDRHxLmBhq9qoM5M4l5M4GBKdB3BSrVhSu6cCqTRcQaqGqAbDCPTjWHzPXQ5QGmiwpTv/DzjW6Yuuu72PbI7Zjo5njkZb8Ck3cbx8+64zOAs6DE1F8lQUOVdzOJy9a4Y951QIVzl/EWFxeUlzlQDgfuYxHOb2FNZ0JNs5YVbtzyaFxWogO4yNif0bwZ5K0ygslzsBYCLv/+B0dcT378krdjcirH9FSOTRsJ2zY6bJoy2NLpYYOeR44KzA4VdzFvOtjT72Bvr8C+4HIyX6HfrzA/X2E4NNH/PghC1tjErN1Gf/6gZbchJkAAQhd0LcHYOSYAA+3y9n4DABizLQgkr9Q2hlJLjv12RWnMrfW1xiIXnsI5QP29iIJ5NKhfGDvBWkgphXNaAUKfOO4iDLYeiyzX6HR9gNmJHJNTBSa6GbpdhU5HMj85J2DGcGjR71sMY4wGsc4ohwJgB0HamXruD8Ez03HTdDNJ15rx608AA9JAoel1XAN4GO3LGrOQ/TSI50hA0uS9tIN9jryj1n1TRcAIcOPfXTvlsXPh+VruJ8HtKWyJUqHxO6zNaX8kioeQcjl1HQv7En/DehDTYjioUA7kHQ8GYpEzGDj0+ozewKE3ZPQrhdJm4pJiCcapBoADFmBDE0PBIVMhkCijyBzyU09GdV3bWuMDyOf2RGs1Ywn9I0/GzIte36g3edOHkO18DIUHNqYmNPIcyAuNTjdHp5tL0NBMo7/teDxyclOxe+HdN0kDCdG1RCVBm4NL6cjnt8j6tLC1ZeMCoyceyuv2GKAHwDNAcNZppYmIthPRvyCi/0NETxLRkIgeJ6Jvebl4xPrhEKR3APghgGMAfISIciK6BMB3AFwO+ZD+AzO/gZl7a9mwtU7pSgC2AngRgOuS8gER3Q4xU/k+gPsBTAH4GQiosQvAv1zLhq7TOgEivDbT0aF2Z1iCxiuxRQuXrjF1vZaagVrCM4/Xjo+6TMSTpd1R7UeRiRPTcAYxwfm/RAQFJcpaspERU5mKwVqtcdBaoeNq7dVwqNAtvGkrKzh00NUKEzrD5pyhNdDJNoBdBVUNoR2gbAlVDdHVDpoNsoKRKYXOay7HA3++HXbn0/Fpjv3MX2HwT/4HqlLhiet+Did87n3xmLYVLv/23+CWq38J5CR9prMWSnlm3Auboj6TLfYoiXYt9Eu06lji5YYxEbs6eY8/SbzDck11DwWT3v1J5VorAuU7j2kZU42g11gKiCYWQQ0rIeVBDgKOfeL2xvXnjzgJ+fYt2LKlwIZJYNOUwbGbBpjMKnRQYooGMC6DdTn2VNPoVxqzfYWn9gJl6dCbt5idrd0FBr1SgAov8ITsJeJagkYcCXhhDIDMBWE/EbjHzVERzPAHmOo+XdRtg4NVxML97eD26/0sSamJ+XLauB/7KcV51IPH8V5yUqNObE3jUmPt3+M9lVKY6u/FiU/c1qjywPnXQ+fau5oUyHLlXU4yKEXIMy+eMaMcOvT6EhupNy9BJp1lDPtVDBprKlPHODFtUCoBblCDUDWYmY4buW84Ep+O6z6sz0J9zbRPx/Z02j2j72UcsJpmlgEQM3knFZJjY+qiPp4CmKGNFP/nnzucg1DWfrcOdQpxAtiBmOK9mBjkxwoRga1c1Cn5G9ZqZkkPq5yCcgrsGEoRdK5hjYNzQJmJlU5lHIx1yHOFia6CdQTnCHmm0MkIk12HTCHqqokYwbgxaBmZGVpZGO/2Uf3yr4G/dKNYLAFQwx6Ouum92Pnmf+5BHrHY2PG6X8eGmz8OZcTAmkyFjX/7PzDzz/4TOgXQKRS6wwyKHABvUVRa9FUJEOOey38GJz1Yp4fdPPsETnniNvz4+EsF9AkpcknJuh7m7FheY6n1e2yD26MAxuganoy3mkGozzgEFvz2/DS2TYfAGrxStNLWFWtpqUFENwB4F4BtrUPH+O25AM4A8Lo1a1SLiOhfArgNwPeZ+fFxdZi5T0Q/DeAWiGvJjQCuhMjtAwC/xMwfXKMmN2itQY23A7gIwMUALoQAHIAEEnkuBOFpkwXwAQBnEtGAmX+8Bu1cp3USGgfUJ4tkg0bmxtHJUqLkj1+ERtYdHr1GQ6COJWiVBOaqBjICiCGtFiYqMkvw2mamhOlkQDHIEZidMFuemXVWAWBUpRKzZJvDGmHs+0Ogsgobu0ClM4AnYFgDSmESPWitkWcS4yO3ct1MOZDrIa8sjO5gy8+9HE//t/8Vn2f6lpux+al7MX/Mqdj9c7+F4774AShTxuNn3fYJ3Hbtr8AqhWpQgbQwOoExsz7sO6nA5EAyxQQhg1vgUWRQ28SNPyNHa7Rk4UopLbPaQaXlIjU1Z98cyF6oXWtgoylM+rLWt9MURjCm3FNSp74mR2CDwVBK1yBIYjV02sNfh7ZNz8knXnADpqczTHQZ2zZYbOyWmOB5bFRDKDhUTmPIBXpVjrk+sLuXoTcA+n1J41gOxV2gHHpT9dJEDa81tg7AaUXwiEEzgdrVxLe8FsKQjEVKwI6WkBrmqhSpWOh7WGRwN97P6JT4zKiBA7fny/24Ro1FRGq7U42rn1pjNOZlbj7o2E8iVCGAiXHWg1+BYhcPV/kEHjnrWhTdHHkumU6mpjLkhUKRE7SWk4eVQ1U6lJVDr2dQxcCgdVaTamiS4JU1iD3qRoLmeEjak5ZHAMuTS592PzTojb4Y1zetffIA/th6465Frfs713wZiZAsTZUJgZhHyuR6FIHAhRofbkl+hwOQAZKPKazFqp5nZM0lubfzygwNWZPJwRkC53KO8+AGHENlGtYoVKWFtRmKXMNUCmWlYa1GtyCUGcNaAk8QilzalZFkRSEK/AI87wBkPhVwftqJKK9/Jegzn4zPtuUzH8DMa9+OauNWVBVgHFBtPwZ7rv95bLvxb2K9iS98Ar2f/w3g+OORaQCFwtSUD+I5D2SaAcpBCnj65Euw54hTseWpB+L5F/7oU3j4xMvkPbj45pN5hqF8P7Kfn8L8HoDHpYgjz7VI3fQ7T8fjoUYJqPzsgTQOXyKitwH4KwhmuBMCbnwNwG4ARwM4DcCrcfBDLfxHBOmDaBc8wJFsdzGzZeb7iegtAD4BMVQgAE8AeC0z37L2zRZaU1CDmf86/e1jbASQI/w9Fc1vUAP4Lb+BiGYgZi8/CBszfwPrtE6rQOOEMWYeg/r7+mPQ/OWSMItNTpqoxY1xazFN2zSC2C8AlCRrtggqiRDDDqRIgghCzidWUIpglReMtDC8OtNQmbhsWFZgaFhWyDKCcgTXIWidQ+cafU0g1si5D6ssJjKHrCih2AJsoU2F3AzgQDj2pRdg919Nws3WVmtHfvq92Pnb/wGEDE+98PU46h9rEDirBjjvux/C7Ze9EaQVlGNYttEMU7SpvkMCI+RBGulSBkEhCHmBIRrpzGXT4nUbQlaU6xYXEA8aLfHcYxmmQ0Ar1AzuGKA8atVJ/1LEb8Y1n0LFFnBDPhiogGa1pYbONLIiw4W3fbRxHacUZq7/OWzeQNi+CdgyWWGLnsUWNYPCORjSGKoJzFdd7B52sWu+g5keYWbWYmbGYNi3GPRLDAY+9kFlYazx4CLXbiWtGAdisRHGd3OcB41mQ2gDkFp11YVI6nCcj1Kt+XLAirH1V4M8YLlQGxfdb4+XkfGzSLuDgE81qAyIKwrVxaPXSEBvIhrJevLjM65FtmETOp0MnW6G6ekC3S6h0yF0OwRrgcoIoNEfGPTmJS23xGOoJHisMdG1MAUzUveK8O79oyTzwELlyfBIrTrafctNoGkc6NSeCxvvxTX3F3oXab32NeI5oZ/boEjjYRARCde6Bju3MMi1AGIVLDjqw+Hj8yYS1q/tRLJGqRrYYEWAq+cipRRgrF+vGUorQBGUYzhLsFZirrCFj4kCZFqsNYpcMoblhYArWjmQYmhigDjinjIapU1aA1pb4Fd/BdXnbwRZCwBQwz62f+q9eOqtvw9GncH36df+KrZ84cNQw748s7OY+rs/w+Bf/EeQYjhH6BQEeLeRcgg4ywLEdBj3Xf4GXH7jf469d8Ljt2Hr3kexe+NxYGI4iCURkVfSRDBWGJy47hOi1Vg0J0INPo6uuU3wKr7jhT73Q23NDpRaGi20sB2GJKvXyj3LWrw+IjoHwF9AAI2vAng1M+8bU/VPiahYgyYtRgY1NrAdwIshoEWgkojuQA1yfAbAyyFWG69l5ifWrKVjaK0tNRrEEjzkEQCfCmVENAUBOMJ2MYDzAUz6KpsAPA/A1eEyOMjPsU4/WTQW6EACdMisGzW3rbMXu3LjigDALbtZChxx46zWfcYwkw2mslYZyT2jVOOfwwojRZ4xJMVgVmAYOCsAR5ZnwjiCYSuHbKhhuwxrAWcYgw6h29GorJKEhqpAV3XR4T42QEEpIC8MiA3IVEA1BMoedDXAJtXF0a+6Ao//7ZfiI3W/9Gmc8Gu/gn2bjsHOt/4Ojvji30M5E4+f862/xV1X/jxQEKy13py1AkP59+Ik6rtn7pS343DO1doer6WhxKw4vBVuWSy0QS3y/bks7GM8v3to0hKMUDzaHpOHGgO1RHOa5uOUlI/fVwEwQ6JVJYpZd3SuUcBi21P3Ne7TO/UCbNraweYJgxM39zCVD9F1Q0zRHKzNYGgKT7tN6JUZZvoKO3cDg6HDoG8xu28Ia5wEduyX0cVEXE68YGpsFDZrlxMRwGoQItG0hzHO9RBMGflUyI8CaAusWNBVYxlDoDE3rSLtt8tJatET5vbQB6Fv0v8vIEBHMCxeN7lDBNPqDE1EdSrKo/c8gK17m/HVHr74FZicLpDnGpNTGTZs1Mi0uJyE+Xs4tJidszDe5aQ3J2Ol7FeoKuMtekwjeHQaKyIAGhwsGCIQgQiQheeMQiKPPGCrbxHHIsI+WvsL0FLva1H3k3G/W22IFhNRxm0qDSL0sdA143XqNaL93usxUQM+BJV0mwO8O4qsLQImhE9V3FMI1gMpRKJ4kMxi3tXN1u4oNlPQVtxRsswi7+iYpaRfSKBO60QJ0ckYRUaY6jAy7S05W/hMsOEkMNQpx4Ff8UrYT34i1pn+9AcwuOEXMT+1XdrrCG7LNuz+qZ/H9k+9N9br/uMn0H/zO4Fjj0eWAUoBRQ50c43hUIATGWkKOy9/OYY3/zk6vVr2u/CuT+PLV/46SDM0A44CuBQay2J5M6KkGF3HxymmWsv8ovNSmLsOWWrMxTRadpgSM2HUveuZXW8N6E8BdAA8DeD1CwAavj1cLnRsjWgSwHkQ2TtsFwLY4o93AFwK4JLkHIZ4XvxXIroNYt1x20LuK6tJhxwYwMzzAL7uNwAAycxyJkatOo4ZvcI6rdPa0zhtz/LdVBYjbuwzt/yyW5qveP2WqWxcgIO2OZR59mnEJYVJzOiZAU5Mb9kvKjCeiXLICtGwOMcofUAzcAbrhDmRAGUKmwqLDnXg9AZYpcEZYcrOgjRBOQsmDXIidB3z6svw5Ee/Bjf0lnjWovjQX2HbO38X2N7B/POvx4av3BifsRjM4cw7b8KPzn4ZoLQw6GCQdTBsAFZQ5MBaGD/rRMvUBiM4YTMjAzr2rTRLm8xNE4jaL3oGp64GjRMclhImgnXAwQQ2UpBxOe4HEedLq1Ja7r+Z4HLCNbAh7icqCqY60xLg8YefhGr10e7XvQPbNhhsnhiii1lsoh5ybVHZHAPXxZzrYnZIeHq+wFwP6PUtZmdtDOhYDkIchMprNcP3xpJlIYmDEAE7H8wwtLuhCB/3DtNyrsc6pczfssbo8gayDJPlDvoWorKCGrsGpdPpAs8tWuDgQpDUT4VZX7Et4MfnCGOOIGb4BJCSwMVn31eDugAwt/lYzJx+CaY7GlPTkuWkWwSXE6AcMoYlS8rWnqTlLocG1aCCCVk1KhPHibUWYESXEwASc8iDN6klRgi6GR688bZ4zD43v8H2sbHnHiAd0DyT3rfhJ9N632i9Z2DBIZdabqQuSO3bLXjjBDyTecVbj0FcTALYkgKOmkVQZ8VwJOCU8jE3JOgrw2Ua1hiYKoOxDqbKUJaEykj8i4kuocgAZgECOt4dRZN3RfEPkoJ4+S+/A/bGTwPeWoOGA2z+2LtB7/gDwBEsS8ytXa/6RWz93AegyoHUswbF//5zzP/e/1ssQ8QzFcEtdwNrKEXYiwqVnsLDz30dzrj5r2MPnXHvl/Cdy9+KOZoAQ0Fplmglto57xEoB1nkdBdVgXPt9jXkrzOEZlx6YKTB3KK3ZgdqgyyGnaPgJISI6G2LtAAD/nZmfXqz+wSZmNvCgBID48RHRiWgCHRcDODk59VQApwB4Y3LObtTxOf75arY70FpnPzkgYqG7mflDzPyvmPmVzHwcgCMBXL/U+eu0TgeD0qBqcQNjnDC4PEpZpEQ6AVqm5olPdOsMN6aObM3MBgBqBpedZEhhB+ejt8f0dA4+cr5FVRnx4y4d+gOJvj4/YPQGhJm+wkw/Q69S6NkMQ9VFVUyj7GxAlU9KhpS8C1V0oAuNyW1TOOrllzWe3nzy0+jueRzTukT/nX8AbiVNOvdL70HeyZHnGZQmZJlozZWuc9tL5HSqXQa8wEoqyYiC/c+IItozJNtiEdUXoUOEOarb3/w9TlPaPtaudzBofwCN9nlBwKQ4Lurgn/HdelNvIoL28TRUppFlGbTWyPIMZ/7wpsa1Xd7BxItfiG1TFY7IZ7ENezDhemC2KLNJzNE0nh5O46nZCeyZU9i112F2tkKvX2K+N8Sw77+xoYE1PpuJlYwKzvHItx2tNbDA3OAZ/QCAIHz7Yc4K6V6bU80CxCNbvNyYewcrknb2iqX30dgfd9/lbQdGzZgso/P7ouc25gblBa56XgIISkvaysxVOP3BrzXOf+SSl2NyQwcbNhaYnMgwOemznACoDGMwlPgZs7Ml+vMl+r0S/fkhyrJCVVaohlUjfTdb9n99f9o6C05Av0benXPNsZJQXaf5F4xW7I0D7f3x75K5/V737z0va67i0TW2fcuo2IhlzXER+zWWj/82mn2YZkxpWtTE7yKNiWItrM9ilqaHLUuJqzLsGwz6xmdIMZibd5jv+SwpQ4VelWNgMpRWoXICckSDFEi4U4CQnXgCsle9qtFF2T98CBNzT2GiS+jkgFYAtm3H7hf/bKPe1D9+DPbxR2Gt9EWuBEjJc0KeK3S6Wczk8/jzb4BL0sNmZoiz7/0CdKahdbBSERBZJVZT9VqOxlq+2JtOjRkWXrvHjKlDZM0ONG4tblveHc50GKZ0vSHZ/3DYIaItRHQGEbWDhh6SxMwPM/MnmPnfM/PrmflUiOfECwD8LiReyPcBlKg/nm0Q15XfW6t2HhagxkLEzE8z8xcOdjvWaZ3G0QEFqFuUAnOU8pSei2oYatTMcl3m/45b1NLrtZktx3XKV8PgSiLkO2PhjGiMJa2c/C3LCoNehdnZCjMzFebnDObmLPbuA56aybBjtoO9w0nMuknMqa3Ymx+FmeIoDLrbUBUb4CamQUUHmoCTfuYKyTEXmjkYIvvY32FD1sfmIydRXvmCxmN05nbj1Ae+iu5kjonJDrJcI8s1dJ4hL3JkRe416gJsaK1jejiiRHBVlHA4YaMGg9DeIveE5iYM0iHG9awgHcpMUp3Od6E21sATtb6fuJ8cUMk4CWCXUkosjZSC1go619CZwqQqsWH3w427lRdchuO3DbB9eoCpToUp9KCMgTUaT5ut2F1txMywgx27CXv3ibAxO1Ni2KtQDSQ4qClNdDlxPigoWy+Q+rTMacpMxHki+YsgoNSFbTeTpDOWTcwhI1LQYi487hdisvfPTWQhgHYciJL+Xv4zjTZ84eKFLJgWfY4AmikPaCgNlWmc8vit6A7nGtfZeeWrMDmVY8N0hokJjTwXYc+xWGfsmzHo9S16vQq9+VLclIYmjhVrvZVGGCM+pSwzJwB2CmYgPs9SGt8o5C/juQ90WUzXvfHvtQnOR0B+f6XOhaeLpDGowUJvFZj+G2l7fIbFwK/WjZN68Ry/RoePOA3u6lwdJ8UlljnV0MD4sTDol+jND9GbLdGfrzAzW2HPXoM9Mxb75hz2zSvsndeY6WmUBnDsBT9v8u9cEASB4lfeIRFEQ+uHA0x86N3YNOmwcdJhwwTQyYE9P/1LcHmnrmcNpj74lxiWJMFKQZJRrZAsLdOTCls3Z9iyNUfnxGOx46IXI6Vzf/gp5FpcYLM8rxUSmW6k1A6AdLqWL76G+7U/ATNGh3oL6EfrGuu0TqN0pf+7D8CPiOjN3kVjN4B7ADxNRA8Q0b8joumD1soDIGaeZeavMvOfMvM7mPk5AKYh7ipvA/BfAXwJ8qxrQoc1qLFOhzaN08wtZEnwrKRxa9w4ZdJ+KQ+DODLKfMYaY7RJUTM7oi1KGMEYYDDRDCVB5KyzcFxnVhCNX/3XVBZmYFAOJV1gVVr05g1mZkrMzFYYDBx6A2BPP8eOuQns7E1gviowZycwrzZiPt+Kfr4ZNivAOkPnyE046oXnNZ5t7uOfw9bBYzgy3wX6F/+yTsfn6dyb/hRFkflAejm63VzACxKLDa0VdCZadhBBqSZDwv69jQpbSFWtydZ6z63f0tX7Ya2xzhcdMAVhglsg34FeB6iFCaJExlDew1zVFkAq0yKQaoW8k+Ocb39opAn0C7+ICcxjk9qHDboHA40eF5i3Xcz1FXbMdrBrLsdwaDwgWMGUBsOBaNqD5tVWRgSXIMDY5vcaI/Vx/PjrtqfCaTpxcP2si89H4zXl9aXGacwXp7UQBprAYlu7v9+T8Agxp2OFWsfa110A5PAWQUqrEdeTXac9B9lJJ2FiQqMogKKQuERlyej3JY7GoFdhbmaAciCCbNkv43gJlhlpal/2ABQS4T8FpuJ6UT/gmOdurePNbh7XU89gq6+Rjrelhs/C73o591rgEdrP5wGGFGxoWHME65a6Ua21GPE7aigrosYB8dtOLWbiepysycGKMoAapjIwpbivVQODqrQYDisBv+aGGAwM5uct9s447N7nMN9nzPWBub7G/FChNITKkXcn9X0OQB93PPJXv7rRNerjH0Zn3+Po5A6THYvJLkMfcQT2Xf/GRr2NX/go6MnHMTRAvwRKI0+b5+IOM9EBJjvAhqkMu1765sa507M7ccrD35Kg4Jms57Xrll+TwQjL7gigtpw1vH5NjYIFeVZK/q6v4atKq2ypcTQRHb/YdgBNPtf/fQgSW+P9EKE/pVMA/CGAbxDRsQdwj0OGWDKj/JCZ38/M/5yZX8zMR6zV/ddBjXVaPUoWbWqqWZIqLYBjHOjxLAJDau1p65nADT5mcRpdgUdNcDH+PmPApVFt1xjTWNTtFoDDm7w7b7nhmShhrhhVaWEqi7I0KEuH4cBiru/QHxB6Q0K/zDFXdbGvnETPdDCwOSrVgSvEDcVSBseME17XzPJsZ3soP/t5bJ6ocMTxk6CLL2kc7+55Ekc/9F3ojJDlGkprrz0XVxTSYpmhlfjuItXqaOVNVIOWRsVt/1TWyy5M3mLyr2H9sfzbHgw6lL7F+N5Cpy1kQdw6S46P52qjAU7rR9AIQikoLWCGzhSKIkNeaJx8x+cbd+GJSWx9zunYrvZgiuehYWCLCfTVNHZXk3i6N4l98xq79jnMzDoMBwb9XhU17WYoAR6jn7z/bp0XVOX36Pfe+LYTgTYKSkG4XdTNJAUw6jmgnotrkLUp0C89eA/G+EmtEcaB7QcEcCzzOw2PW5u4I8maI/FYpgd7cfwjtzbO23XN69DtakxNKkx0FBTJux8MGb2+weysQa9XYTAwGPRKAZW9MGutg7VN4Td1b3DpWHE1wJ26maSuFfV4WmzNYkgml+ZWD7/R/l9qX853sf/CeFvOGBq14FhM4TJuPV16XIyAc8lzShu40Yfj+JoATobvVtbYWvEQ3D9jfesE6PAuRHA+g0iYJxKAI7geCcghlhvl0GLQtxgOLPo9h0HPYW7OYdBn9AfAsMpR2gzWKlgWZFf5/mcA2Tt+GciS0HzDIbL//V5M5BZ5xugWjIkOoXfDL8PldVIHshU2fvTdMIZRGcA6kvieDHQKxmSX0e1IANzq7Isxc1JTuXHu7Z9AlmUeBPQWGgkoSIk7iryb/VjHx43lBV96cslDfK1ep2XRdyDJKxbb9pe2+r9nA/hNAHsB/DokfEIXwOUAgq/q+QA+TETrsvkB0nrHrdPBoQYj4hd455LlY1xZevqhI0ztDy2olWSgYb66bL66rjiq5UnuGwX1psC2YJsCMxY2z1gFhhiB+TJW/HiNhTPOM9OSPnDYr1AOvVaoL9rn3fsM9s4w9vUIu+Yy7JibwI7+FHabafRVF2VnGsOJLSgnt8B0N2Li9BOw7bJTG03b+8GbsGXwGI7DIzj2X/1S6zmBs//hv2DT5g663QxFR6Po5OhMFOh0O9CZaHcoC+aqOroRKC+gBuCD1MKmqtTyz60hiSYt2/2ExmyHAR3OJre1VTI1TJNT650Q6wCg2p3FC6FKe5cTb/acd3PknRxT1Rwm9zazmuVXX4ENeYVNdjeKcg7OMPa6rdjHmzFrJvDk3gx7Zxi9PmN2dohBr0QVrDQqA+s8aGgDcGjBzi4gmI0R1McByekcsQxtdzrn7i94sRAtVyh95rSAdcSIVnYEd1/m1cebn1Nyv8bY8m5vKt20gK9nPvAVqCRDjelMorzmZZicyFEUGhKrljEsHWb2Vej3rI+fUYqFhg8q64yDMaaOfxTT/dZWPbVw7cEqjL5jKa9jsyyfRgHyUN6+x4HsA/uTOWfhOiNYRBwH6fe0+Pq6FEVgA63vrq4R/x9rJveK+6EdCQAVv/0IXFlZq53ES5E1WsaAqWy02jClwbAv1hrzs0P05kvMzFXYM2OxZ5/DTA+Y6Sns62nMDDTKymdloYiJAscch+w1r208if3oR1DseRJTHYvJDmPjFGPqhCMxePkNjXqbvvD3wM4dGJaE4ZBRVvJwmhgTXcLUhMKG6QxTkzl2v/ytjXOPeux2HDXzEIpuLmu61sgyLVaZQTHg3bliTKQl1nCgBW1HY47UTXEZItPhyZoeNnQYxtSY8n87ACyAlzPznzPzU8w8ZOZbALwKNbBxNYDXr3ajnq20Dmqs08GjqAlabllzW0jzcjhS21JjROhYktouKc2+SC1ExmmLRvu09rdupP4L2j7H0Tc7WGxYa2CsmLuG6PqVZ5wGvRJVZVGWFnM9i117LHbttegPHPpDYLYssKvcgN12AwbUwUBPYFhsRDmxGce96YWNJ62e2ov5f/gcitmnMb2lg/ysJujRfeJBbH/yTkxvyDC9oUCW+xgauUJWZBJIVElA0CCckg8cCoIHORLTVHAUZmMRuGHamsBRz8z9ZByl11vnmBq0PC3tMsv9a5J36N8/xLw9Zh9Q8EFm67GjNCEvMmitUHQynPfN94+87W2//kZszmYlQ5BRGJgc86XGjvlJ7OpNoBwY7JupMDdbwVQWg4EAgyF+hq1EyxoDa0YQQ4TTaAk3AnAu1gGx+iIHg0BFSfnK0sEFxtJ7M5rPvfxnXWjtCQKqgDf+fkmcoDQgrfbpgE+790uNa+y59MXIN0xiokvIMoWyYvQHEkej3zeYmRliOBANfDkoa618SNsawQyW+CvpHB+tJ3zbXTJwGuWoX30jTAWP3ep5D62+bPfToTefEY37MJrjomnJsQyQY0z1dC2WLVmHo4UV4vtpW1SGeuFvWJPrNdpbVLKLwWGtMTDWB/YuDapKMuOUpViG9eZKDPsSm2XfrMPuGXFH6Q3gLSxJ0rb790sEZO/4paa1RlnCvO+vkGlGN7fo5gZFZmDf8nZwlsdqylTY8vF3o6og1hqWYKxkZHEWAAFFAUxPA8NrX4pqc9OC/axbP4qiyJAVWbSckxhHdSylttXjyDpOzfmnvX77EbHE7/07vE6HNF0O4IQltv2lQbL/YWb+ZrsCy2T8+0nRzx/AfVaEiOiGpWs9o+sfT0RXr9b110GNdVobGse4LrdsHI0BOepDTaH+cAA9FgxmuEyeadR8fvR6KbAxYvLa0OimghEn56EBcqRaYglSVpskO+NinA3r95vmrg6DHmPfHGF+QOhVGgPuYqA2YF5vwUBtwFBPwOST2HDpOdh0wUmNZ3n0b29GZ++TKHp7se233jTSEye87z+g2yFkGaHoZMg7ok3Psvqvzr3ZqlZ1tHSK3E9Do9ru3hiAMqlTm7gmVSndao3PfnE+ybuPZuCHCB3s76ntL11r4MZr44FUU7ec6/v3Cm/m7LNWaK2j2XNe5MiLDEUnQ3ciwzG3/WPzGhs34Mgzj0BHDaGKDGU2hb1uCjv7U9jby7FrH7BnxqHfs+jNVxj0qxjgz4XAvDZoZYOpOby2Fh58BNLvNlIb2Iw/xj1tWyitBd/VGnQHe/wsTcts3wJjqf7uvVVKqOfd3eDN5ZWPD3DU3GPY+tQDjWvMv+g1mJpS0JrgHGM4BPo9i9kZg/n5yrsqiZVG5bXw1hgYH8y57XJSj5cw3dc/mgJeDW6MBvpMx8m4NbZ2FQn9UO+vjJVPuNYzH0MH1obaIgrJ9zf+W2mv7wutxfUJFCo2vuGFs5fV1leNNT1kKouuR+zX5hCfx8GUBqbyIEdp0O8b9AcW8z2D+b7D7LxYkPWHhNJolE7DOAUr2aOhjz0G2ete13g+89GPgnfuQJE5TBYWk4VDdtSRGL68qYDe9I8fhnr6SUkva4HKSfwOEzToROgUhOmNHcy8rJlF5cQ7v4jJwV5kWebXdQ2oem5O42wEa41x63hjDU8yXdXAtq9cv70FRgRqi83DyIX08KM6cO1KbK0X9CQzP7rYdgANnk32b1qoEjPfAeAx//PyheqtAf0dEd2+0uAGEZ1IRO8CcB+Al6zktVNaBzXW6dCn/dHkpdzaQtqzQxjcaBAjsQDghfilEUqF6EXrjXFJCfdt7fj6zaJo+toKMOp8GjnjA9SZSoKH9n1U/n7foNevMDtnsWcf46m9GrvncswMOtgznMbT5Rbsslsxi60YZlOoOtM47m0/1WhL79HdmP3arZgaPIWjT5xEdnIzflPnwR9hy96HMD2lMTXdwYYNXUxPd33Mgww6Fw1PVmS1tYb27idZyJCSRFIfY7qajkuK/c6jdRpABqF16v7TIcQkHWz3kxHLlSUwI6LxldLnUMn7VjGKfsvlJAE0siKDzjUmpzrYOnwa+UwzDf3may/CZLkX2hnMZ1sxo7eg5yaxY18Xu2cIc33GzL4hBn1xOSkHFUyZuHW5xOWEa5eTpjDUBCbHuZykfxfsz5G5cXXf79q5nyxNC7miLBfYSN1MRuYKL+ioZFzFDDqZpADOCo3T7/1i45rVlqNgLroCeQZoYhjDmJk16A0sBkOD/nyJcuhTtnqXE1vZGFSyHS+itpQY73JSP/9iz7y8sbSS4MWCLeHlup+sBqXWSynAE8rGVF3wSm3nRU6ujHjhEZuBRkFqvYFmCtok9avzrqLOenfR0geWLQ0GA1mj52eH6M9XmJuVzCi79zFmesDcQGN2kGN+qFEaBecYioDiHb8kUT4DVRXMX70XWjl0M4upjsGGCQu87R3gxKpDVSW2f/I9cE6sNaoK4o5SitWGIqDIGJs2MPD6G8BJXA5tK5x1x40oCo0sF9e/olMkIKFkEqozmy2wji/ymtrg+JJDjbDkGrROz4wcaMW3VaY0DsdSoEioe+QqtWU5dC+A8wB8kIgeIqI/IqLzljppHBHRFBG9hYhugoAZvwpA+/1VoUMC1CCit/ltw8FuyzodJjRudWlyovU+84gLy+HgunKgLiltJnYhNKThktI6N03NOHI9FoY5RmNPthCUjK0wUqINktSv4tPrUA4r9OYr9HqlN311mO0Rdu5V2DmjMT8gzJcZZm0X+7AZc3ojNlx1ASZPPabR/oc/cSuQKeSZxYm/29QAEYAT3vvvccRGKwHHcoVOV6E7maM7kUscBC9c6FzHDCnB/SSYqIphBDeEE9EU+PtE95OwBSADo8YzsY/DEF3mYrrOHDUoHa8LWjgteO6YQkLrfbZcTjxDHDR7SilAQXy5SSHPNbrdHFmhcern/mKkRUf/wivhTIXKKPRMgaeGG/HUYBrDocXefQYzM6JVH/RLDIcVnLO1JjWkaYya16b5ORoCqt8WfFCMmQqa1hlNQW1t6GADYzW1hcoaBFhybUjmUZmnEdcoZm4gwoooWj+EeSgrMnQyjZPuaFr5zL/wVSgmclgDDErvcjIwmJ0pMegb73JSRfcka4zM394NIczVaM/rLnmm5bicjFjxhP5aJtL+E0GjLqALrb/jLDfa6z08GJHyK00eJqzPiMdSd5TobmSbWcxCxhTrlQ/BNcUMffpXY1FVFv2ewfxciXJgMOhbzMw57J5hzA/EamNQEcpKsuWoo49C9rqfbjyT+djH4XbsgPPWXpliTJxwJNwrmvU2f+FDyPbsBEOsNYYVoywZ1obnclBg6K3bMHjhKxrnnvSdf8BkV4klZgCdMx3nlLCWh+4O7l5xHUdz/km/W/nN8dz9XrfH0HL4t3V61tEdyb5esFbzuFmltiyHzgPwzwHsAnAigD8A8AMiuouI3kdEv0lEVxPR6US0jYiUBy9OIKILiegNRPT/ENGXAOwE8NcAXgogA/AZAJcw8wdWq/GHBKgB4H0A/grAMUvUW6d1OjAah8inQIenQwnYeOYuKSkg4UvS5xvHwzdOb4FA8FkXuI6YH81d2fnI7LJsu+jDHWIAQFxRrDBM1liUlcN8z6A/dD62BqHXz7C3X2Cu1BgYhYozuKwD292Ao996faN5c/ftQP+uR9DRDkdddAKKY7Y1jusffh+dvTsxOZVjYkIjzxTyTDTteaaRZRm0D9IXNfE+QrpoVOV3GkU9MkexaMxLGDeGxr6rJTSd6b8xWqVDgQ7G97Icl5PlXQiNmAbkY2WkKrngmgTyFhwqxGcR96Wso5F3MnQnM0xPZ9j8vZsbt8i2b8aG4zfDIsOc7WJXtQl7hxPYPauxe5+4EfTnKxFQS4tqaGAr5600vDDCtWDCKZiYaIQbryEVrlua2zbVgtHqupksRIfSfLswpYjk0lX+/+z9d7wtyXXfh36rqtOOJ948eTAJOYMAKZIACJDEACABkSKpyCSHZ1mWbNNyePbT87OfbVq09PRkBUukRIoEQBAEkQkCBEAkApwZYBAGmMEkTL75pB07VfmP6rj3Punme2ev++m7++xd3V1dXV1Va63fb60pg3v+d0FlE0inRIe5vovjOhw78QCNXh3lM3rzTyGEVR7DUDMYJAz6iaWcDCKiMEvXGcZF6taccpJWs5xUtxmZTQqDWTWjSWGIqdNMqsr7JZGqkl8xFpjJfl4xzFweW8vk+FOff+tGjhlSMTbl2yTdcBJ5MztzWWWrzM/FMRU6itEVOkpu3MhoKFFosy8NBpaOMhymDIeG3gBGY4gim7XEINFG4vzSNFoj+u3fBVRBwXIdg/Mrv1xHa0QhBz7+W0UQ3TQVxKk1cGhtXx8lBY4SjN/112tN5m+e5tgjX8L1HVzfQTkltbRI5S5mUEvlDnPG5JhUGLzLz3OikcLU85zL/uUqDBT6hcr+rbuUzQPEPbtjqYsoxpjEGPN/YNPM/gMsekQAtwN/A/inwBeB72GNFjGwhU1Zez/w+1ijyI8ADeyE8UHg9caYu40xD1zM+l8pRo25zOWSyqRFPpcrUXGsibHW/nOipDBxf6b0HFTPZ8qfK6eveokojR0F7aT0IuvUQueTJLWByjL0Rh4nIInSDGYfMRzEbG1F9PoJvaFmo284vaU41fM4O24wJGAoOwz8VRp3/wTekdXafT3zwa/ikOBHPW7722+u3zOw8n/9z6wuSQ6sOKyuuDRbiqCh8AIXv+nhNV0ct4y1kSuryDJTgeXnTmZDKRdJVVj5lD4zBSuu04N2jLMxCWW9AmGtl+N9mfJ27dous+No1KHF5b6sPBeZG7aqqVtdG2zWcRwaDY9m06MRKA73v4/sb9auvPTW15H6TcbuAmPR4ES/ydmeQ28k2NiKGQ5jwjAlHEUkcZqhmZIy4N9ElpNcSbEvYcnpL5S8AhVQNs2seyy/m1Xy0skVP95SVWLqfW8Swl58VvcnKSfZphwH5dg+5AYenu9y84P1NMDxrXfBrbeRpob+UDMaaUajlNEgtFlxopg4tGi3NCnjZhSKL3UFN69bta5T6L/a4yiNBhMtcm4NeQ5SNWBUq5GH66jVzZT3s9/58WJL6VTI9rfLiDXRtMV95D9POmem/q4fnRuC7HBRQXppbR0ROR0lC0isY21js2R0lCiMGQ0i+r2I4SChN0jY2NKWjjIQjEKHUewQJpL0wBHkRCaU+A8/SHJ6DYNESnCVoXXDQZx3vKNWrvup3yfonbapio0hSSCKIYoFcapIkRgpkHe9kPhFr6wde9NXPmDH4ZZPs+VbOmBu2HCdMmaWkhWkBoVRm8IoXm/P6bm7PlfvhY4y0ylx5Q95c7mw8hGs4g87ZDURQvwIkHvmvnixK7WbGGMGxpj/HWto+Uks8OBJdl6Z5tsY+DzwXwE3GmN+xhjzF5ei3s7uReYyl2tPpuaV3Oszq+yVtvCureOsErObl7rqxardzpRTIjNsiImgcQZMoYiX3uH8unnraa0RArQQCJPxtTPjhxAig6KSUVVM5k0xjMcarWOSxOApcDAMleL0MCCVDtI3OI5h6W+8k5O//ltFvdbue4zeo8fp3rDEwVcc4+HFFvHGoPhd3fsV2tFZhm4XaQxJR+Io6/WMIm1RG56LFClplvZOCgkKtNA2da0xWZtlgf5E5uHMLUXZgltk7VCNE1AsSPMfazLry5kFp2WyWOFZvUalcn/7RmRse0pTnsuYYnGb7SKktGUq9BOpZAFz9nwbSyNoSLptxcH3/Iupmh39pbcRygZreoG1tEU4TlnflAyGxmY5GdnUijo1pTEj86ZWIee5p1dUvNN5tU1VY8rbiqldZn1bwqkvsuY3OWZtI7Vne4X058IgMGMeyPvHZJsLY2z/sQMCUuRUJrKYPSAdm41JSWiphCPf/Xzt3KM3vp00NSSxJhxr+oOY0SgmjlKicZQFYbaGsBzJU2jN2vogc0RddiOlMb/6vWYbY0b1u6lC5yZ77AfV8mbi79r+5ClmzWd7kKkx5YL3vXr75W073aXy8YjyU2R9UEz0wex5iqKoKA/I/zLF487m7/x3gUYXc5jQAmEgIcERTmk4NSVdaghZnAuD0QoprZdbKIGrJI4yOH/zl+DDH7IpTADCkOjf/3vcv/f3UcIghUGgcX/5l0g/8lFIbTkZjln6yL9l7W/9Gmlq0FpgpL3eOMxaRtqnFL/7r+J+5+tFMyw8+nVW1h/n9OLNKGOpKGkiSTQgwSiN0QKjDVIKizMyongIRZOKjI4iRYY4nZ67q3NG+X7sYfysPpri+e18yFxmSxng88Kd72KKMeasEOLfAP8x8BYhxM8bY95XLZOFXvgnla/+1UWt1D7EWBjnn2QbQohj2LSz1wEHgGWsEeN0tn0buM8YE8884UWWOVJjLnOpyjaUlCsx5kYhuWKzi1eq7vXahpIC2y7o8sl/onmqlSjPW+VuZ161uvfZ7sdhTBxbr1CcaKLI0OvDIBSMYkmYuoxMky3dZpA28e/+CdRSt3blp97/56RRhB72ueFnXj150yz88/+JxWZK00sJHF1kRPF9B8dVJf0kCzCGIsuGIgrKQablljSFGRlR7Efm+alGUp9auVZhBZMQgz32sSukK16yd2JGE+6PclJ1Isz4teLByzPZQDVoKCilUDKjL3kOnqcIGg6tpkOnDc37v1w7p3d4Gd1eZDPt0ks7bIw81gYOw5HOspykRd/PDRppktYyF9QoJDnlpGLQKGQSip9TTopC+UtbGkh2hcPvJpXDSwPM7P0qaqA6XtXGrW3K18ff7fbP71Z2lu0GxMquqHh8cx4/IGWZHrpAaoiMvuRk8ViaPtc99mWccFicz0jJ6I1vJ0kMw7GmP7BxDUZDGxg0T8mpkyyldtYO1ewYNWqCtpTBYvCeUJqrD6E0lFUbdJ8L/1nPdId+sO22i+w50OwO15hJ0Zmc88/zVZmcAmbNxfZSExcR9c9qe5UGz53qPut7yj5gwGgympsuUrGnaWqNZrG2RrRsnIqilPFIMxrbdOzjSDAIJaNIEMUGDh3FffvdtXtN/+D96PW14s6kAPe6I6i76+VaH38vbu8M0jJA0UaQaLvFsbV/GG3gR96MWa4jNm/8yh/SbLh4vipQdMpRGa00CxaKxKo81UDfOZJCFu8viGlkZp5JZaaDa4dOMTnVzzrkCpnL53JR5f8FPJXt/3shxP9fCPFGIcSrhBC/CNwDvDz7/V8YY+69DHXckxhjnjXG/IEx5h8bY/5bY8x/ZIz5e8aY/9kY838ZY75yuQwaMDdqzGUudZmYtCYXTFeycWO/kNuZlBTKe64vRvP18Oz2KBZlWRkbXyNXykqYa5pBpdPYpnuNwoRwGBONLU98OMyyomxo1regN3JYH3icHbY4G3Xouass/Fx9MXT6Sw8yPL4BiebYG25Gtfz6jX72TzninOJot89CkNBpaJpNl1bbpdX28AKF4ypUloXAdd1KqldZpu+spH21CsoEHUWWykzZxvWFUYHumHQM7gHKuqNcJq/2pUIxTULkt2vHWVKroph4JrWNyid1ykCWclM6Mouy76JcRbvj0Wkpuo/djxgNa9ddfeurSRLD2ajL2rhFP/JY39QMBinj0AYGTSP7XuSZgvL0m7UAvBNK5pRBsqK8TN171asoLvzYlSuq9g+23Z9cxOf12jFuUPUzP+ekjWaiHsX4dwFFbKvMVL4XpaJUe98z46YUAiVVYTh1XNdmzvEdGi2f677xJ7Xzhi9/PaP2AaLYEIWafj9iPI6JotRmx8moSmmB0sgDg05mO5nWqWrPrCLVfnWhpNbfdugH53P+8x2Ddjze1PvWfubXiatMXHOby21n3KD8s6jHHq4z8/zVeTlPx67LfqSTcq6O45g4jIlGsaWkjGIGg5j+lp2newPNZg82+zAYS6JU4P7SL4OqxEMcj9G/93sVCpedO/2/XS8nxiMWP/G7uMrG0MjrGycwjiGMIU0N0nPhXfVskwf+4hMsqjHdro/vKRzfwQ1cvMDLMlbZ+V1KUR/blbBWlsqYX7JE6g6JSTrKec/Z5Ynnsg+xb8aFjKlxCepszGngJ7BZPxzg7wCfBe7D0jruzIr+FvCfXYIqXbMyN2pcYhE2V+8/EkI8KIQYCCHWhBD3CCH+SyFE8wJe5+eFEH8ihDguhBgLm5rn3wshfuBCXeOaF5PBvWdsO3lHLguyYxvP2E4epqrnrH4CprcsdgaZ16/YKp7AYmFdeJV1kRFFp2XUdZ1F6U+SpPAMxVHCeBgRjiLrJUo0o7Hh7KaxARVDTRhqxrFA/tRPIZpBeSPa8MzHv4X2AnAcrnvXRIrvNCX8jX9MEG6w5A9YCkICz6AUKCUIAhc/cFFKZgsZUBnNAGEXkdaBUyrStuWqHFuAnLpQgRnnTT9r9VNHEmeL2T2ucCaLXZl2tgsmNeVnn97cqdewAG0UK9nau5ob8fLnbBe8tm/kvGzlCJpNB9cRtPyE5T+YRosu/cLb6OsG0ThirSc5uyWIk5TBIGI0iEiTJEvFmZTpWzMlNUczYUyBHtOmmr2izG5Rel8n26T+RQmz3Uujlduu41s1S8Z2+5PtvxepGjb0DvuTw9dkHc9JCa1Uw1THyHr9Sk9+2R7VtimOkAIjDEhsjB7A9SxarDk8w9JDX62devTGdxBGml4/ZThKSOKU0TAkHmdjZpyg0yRTTNPK+GoK5MFkvWr1tRj8otHKsWebh7bH/rAdyqEWpDbfvVKVucn3aJf+te297zhOzRrAq89jYl7O9yf6e/06+XXzNUpe17yczjaTISantzS1cbDSfD8LIJokmQNinBk5opTxMKHXSxiNEqJIMw4NgxHER29A/mQ9S0ny++/DbG6AECRGoI1EXX8dztt+slYu+NDv0Yg3UdIgpb2VNIUktmNfnvpVv/NnMKpkz6toxKGvfhjPEzRaDr6fZzezqCjpZIYLaWNkVTg7dQCFtf7WngiFMcYU84Etu885uypzGso5S04/uZDbpam3eRCLxvg14C+ANSDCpnn9feBNxphfuZwoh2tB5kaNSyhCiLuBbwH/BdYy1wSWgNcA/zvwdSHELdufYU/XCIQQHwXeC7wVOAz4wI3AXwe+LIT478/nGs97mWXomEgZm2tSs40cl8jwMbEAm1oEkU/is+u46+l3W9hpakHrtDZ2wZRvWaT1JLZGjRy5MezHDIcJw6E1bAzGsNFT9EeCMDSIVpuld7+lVpeTn/kWyTBCeS43vv1lyMCt/T7++GfwN0/ijAcoYwgaDo2GwvckUlg2iVQS6WaUE8rgfrNoDoUpo1wDQW78mFJ+qm0ysdid9dD2IlfIQuhyoZZKBNE5XL96SFH/0jhV89blAWEFhcfPcRS+7xAEiqUFyVIzQX7r/tolghsPkS4epKdbnBi02OgLtnopmxsx4TjOlAObPjFJKoFBk5Q0yy5UZCcojIYVA2KtP81WgMqhqHzHa21goPru18aB6veTytlk3xV72N/uUey1/+z3GrsoobUysy43YXCstt/MOlc9ugLIsijZv/OxRCGlzcrgNVxcT9FoOdz00GcROi2vFzTov/pNDIcwHqcM+zGjQUgcJoTjiCSKs8DLpSFMp3ka7e3GYmtkLjqFqCq91Yeaa2wTbbeX/rDDuFZDQ1xAHWLP9JN9nXSP5SbveYbBYUdjT/Uc212ihrwhG+8q7/PUHD/rero8D2QZzKp9Iwsya+rGjTxLSpKklbk6IQpTwjBmNE4YjxP6g5TBUDMONXEqiBOF+MVftZNqLsMh6Xt+DxtZRqCNQZDS/KW/Vn93Bn3af/IHeC4oae8z1YYotWE60hQMAnPwMOZHf6zWVgc/+z4ansZzbVBnx1O14LxVRF6RDWXC2bDd/D313Hf+YvrnySJXyPw9l0srxgbf/EfGmB8wxqwYY3xjzPXGmJ83xnzuctfvYokQ4pLF75wbNS6RCCFeBrwfWAD6wH+HDbbyZuBfZ8XuAD4uhGifx6V+E3h7tv854KeB1wK/AjyGfeb/oxDiV8/jGs8fmelh3wvmfeLv2oJj8qeLbNzIr5PNpIXHwcxev1W9O5PK47RiUPcOUVkkaZ0W+2mcWu9inNotsZ9JGBOPIxtbYxwTjiIGvZDe5pitzZCtrZi1tZiTa5rn1h1O9AJ6aQP3r/08wi3HSROnPP2ph6DZQTgex976kvo9JQnh//kvCXrH6egNDi5LDq0oDq5IOm1JI1C4nsLzXFzPQeaxNjLDBlJMLMxn0R+26Rd5pLZdiszpJ3uT/RoypvjsVBQAAFMxRuUQ5OxfntpXKUtRchxJ0HJptRxageHoUsiBBz5j8xtWpPXOt3JKHGFTdzmxpjizFtPrJQx6Y8KB7e9RGJNGCSax70euRJR0AlMgn+oe2On7F1TeW6qKd1m2aIdcSac+FtVOu3fb5nnJ5eo/haK+7Q3OdqVagE/pua0dUUYcLIDNebwemwZY4rgOjqdotnzabY9u2+HwPR+vnSf6wTcTuT7ra2N6WxGjUcyoH2YZcmwKV52kGQouraTYLpVX2xHyfcCYit19eg6aaKC6wXBSKbuCFDJjzp9+csFkH8YQbXS9D25r3Jg+6a7OhNqWdwVTpFivZSvTZYDZqmHVJNrO01FKGiYkYUwSx0TjiPFgzLAXMuyH9LdCNtcjzp6NObOmWd8SnN6UbCzdgn7Tj9fqHb3nfbC1YYOAGokxEv/WG2m8+S/VyjX+8LdZ8QcstlJavkYJTRLDOIJhJBiGguEYwp/+q7Xj3BNPc9OTX2KxDe2OS6vj0+r6eJ6lnihHFZnMShoiuRVyqr0np/ft6Cc7PvZimTRhEMx/q9gR57I3uQpTuj6vRAhxRAjx40KIX8vYAd8Eepfq+vPsJ5dO/gkWmZEAbzXGfKXy22eFEI8Av45FcPznwP+43wtkKYHykf6jwLuMMbkL6F4hxEeArwE3AL8uhPiAMWbjHO5lLruJAYye1qj0jO8qh+xFznkRN+VwKGfXOhJhRk1yB9+UBzPT2cHC9bMvhZT2GAxCZEqjscG4jLDRxYUU4IAwlrZhUoNMLP/cpiY0JInGC1JcIVFAXwmODwLC7g007v4xhh/6ZFGf4x+7l+t++tWIeMzBN93FMx//BibVxe/9L32L9tufYmEVzOIKA8fFcVOStkQJGI4V4ThBKoGjJLiGJAadQadFBl8lC6w2s4nzhqgqBNiF93bHVNuyduxOMlnsebQ42i8Pv9Zv8zbL+qoASw3IlCMhygj4QtpsN8rJYMyOxG+6eK6iE2iOdELaekz6u78zUUFB+uYf5/igzakNQRQmbG6khCNLNQlHcQbptkY+Y0pUBpkXNddGin0qhorcKGHq9rL8x0LRq/xQU8D3o5ReS32qsCuKia8r498u91sYg4tBLz8+ewVF3peysc5oyIxiIHA9hd9wcR3J4oLDod4TuI99t3aN9TfcTW/LojJ6vYh4HJMmNr2m0Zo0SSqonYqxWZf9o2rUKrtBNQOHhgrsemb/2C7hybXUJy6VTL5zE227nXFtal4W1YF+GkEwOdYZUc3WUTWsVwrmWZ4MGCMs7UPYo7TWSGPTWutU20DaBmSO6Ii1zXKWOll8DoM2Lt1Ggvy5X6T1mU+W41d/QPK+30f96n+ABByhMUDzV/46oz/9Qnkfa2dpfPIPcN7xswhXkaaKKLaqSpJag4YxhsadL8O/9XbkYw8XhzY+9n5W/ps3EGvB2dTGwDKJaxEncZqhNARaCotsojqV5qgfUX8i2VhqqLRfOSyz05y947g7f4/mchWLECIAXgS8dGJbnizKJTSFz5Eal0CEEK8BfjT78zcnDBq5/AbwYLb/94QQ7owyu8l/lX2mwP+jYtAAwBhzBvgH2Z9LWPTGXC6EnCuioyoTiIep7byrONvrU3jmJhAYU+WY8P5MIDnqcGddHEPle13xJuoKr9cGELXw1nAUEY4jwlHMeBQz7IesbySsbWrWe5K1gc+pfofeX/6VWhungzEn/+QbNjCfguWXHa3fQ5zg3/tVji2PeUHnNDe1TnPI36LrDAgcbSkFDc+m6nTyAJGqyHohhF0kSVHCWSdacwZ8dUIh3VX2WO4KWSBdCoTRBZUqEqN4hmVAR6hmPJFZFH0Hx3cJGh7Npsvyss9KR7OUnOHGM/cSfvt7tUs41x3haX2UZ854nF6DE6cjhr0xo8GYcGi97XEUW/RSRsPKY2jkMWfybBVVqkkBw6B8PU1m4Kh2iCqSYMoTfIU9rsvdf/K2KZAJu9anVDOLdJh5gNDK93lQYKmUDRDqSPyGh99w6XR8Dh5usrTocOjeOkojWVzl2Rtew5mzEetnR4wHIcPBmGgUWmpSVA8oOxXbaMZYnD/4+nglyt5htukfV4HSdVHoJxdDJtpyW8eEqW/TaMkJmlP10Kk5uj731mkqlXNX+5DO0WJZH6tkQ8lja8RxQhwlBdpsNIwY9EP6/YjNrYSzawln1w3rq7eQ/siba3Uc/+77aIbrNLwYKTQpkvjOV+D8wGtr5eR7/h3Lco22MyJQCZ5nMwlpA2Fk6A1gMILoHfWAoeqeP6e18RyLiz4HVgMWOi5+I8uI4jko18nSciuEsvM5eYBvsc1zmexfU93tKuh/15BcrTE1rmYRQtwkhHinEOL/KYR4vxDiISz64h7g3wB/F6vjrlCCnPItBh66VHWdIzUujfx0Zf/fzipgjNFCiN8B/hesweFHgU/v9QIZZSWfQT5tjHlmm6IfBLaALvBurDFlLpdK9mHouBTO9ymvt9jLtSvu7m2+KpSwGj5TZ94jgZDW6ZTmXmUhQElI7eIqTWxQRptaTmG0ZjxSDIeKMAnYHMJW81aOve5HCb76uaIaz3zkPg7+5R9GdRa56ZckZ7/xuzZwaSbrH/0Sx37oBtSj30SoBRzVYezdimGVcOUocQxRlNDflIyGsfU8ZRxjEtBJPTiqRtrzS12kroXcuVN6fXIEQNY4uz2Wq0YuF33gvLIm1HQ7URo5cuVUlal8HU+hHIdG06XTdWk3JTccSrg+2CTYXGf0wY9j4prtGP22t/PUZoPTPZvRZ3M9JAqtMhqOIxsINPO4Y0wBBYeKIpLvlzdd3r2pvp176EtXcHe73NQBYUStKat/bn9QieqoZUfIYwjklDUhUK6D47k4rqLVCWh3PBa6ipuuEzQcg/9nf1w79bMvfyunziYMByHD/sgGkI01SWz7ik7zvlJRXCv7gurwMuPBm4r32FSKXaXr+iuKfnKxpfrsyObuyq3Xm8FUlDVT/92IaWRIdm6LRNQF9khIAUaQCoPQAintvCelRCtpA4omKcqROGPHxtsYxwwaiq2exNz9q1z/Z39aXmarR/y+97D8q79ALBwGaUCsXdQv/wrJV+8pyqXPncT5/KdZeevdSNchCBKiVDAKBb0hjMYarQXp697O9e1/iuhn6HZjaH/yA7T/zt9n1DH0h4ZnlULggpQ2JshIgojt+yQNpGCMtuCZapDviXlaUG+3aZTcXOZybYgQ4j+iRF68GOhMFtnmUAN8EvgU8HC2fd+Y6ur44srcqHFpJCcNDrD0j+3k85X9H2IfRg1s3Iw8l+XntytkjImEEF/FBhF9rRDCNfNou1ekTI0ak/yPiyFV40Rlwt4zYaYGycy9xRlqNk93akm+tkhGU0EYctVQSGGNBWiSKEWnBuVYJcHmro8IGgYnNaz95M9ztGLUiNd6nPjCIxx8x+sJ2h1W3nAXZ79UwrvTQcjGp/8CdWiRUXCQMFihuSgwnZhoZZWB6xG7Ake4eK4gSQ1xmCCk9RSl0nrQSQ1IgRQaLTQmLRtJIND5GC7KtsjNGrVWm2rCOf1kplTub38GDTFzd0oxFRQpOKWQKMeidRzXodn28QKXbkdybCnmQBBxkBM0+o/yzJfrDggjJN9/0y8z2oStrTHhMLbIjIxCoFONzukDaZ69xN5g1YNa3DOl4rYtzWSygeayZ9neQLZ9e846poiJIzLUjypRXl7g0mj6BIHL6rLL6pKi7WuaD34dc/JE7TxPvegtbK4NicIEnWgbP6MI5FhHX5jJvlIAebYfP6YMGmx7m1ecbIfI2AtS45oxfNTsnLmxYrt7q3NcbDMJakNGVQTWYCYrk0t2CpFN01qniAzgXdDmMBijisw72ljEYqrhyfYLWHjNm+je+9niMlu//UEWf/6d6GYXhwSHGP3KV5C89MWk33qgLPdb72flHXez7MW4Y8koAkdITCqJYwdjIHS79N78brof/u3yNj7+Idp/55dxAh+h4cCyIDEOUSJIHVEuQ1KN0NrWVQhkFQ1nQObGn4w6ei70k2KckEwZpa5kY/OVLIYyAdaFOt9cpuSfs/0kOMCyCh4AvpNt3wWeyH7/bWPM+y9BHWfKnH5yaeSu7PNRY0yyQ7nqCvmubUvtfI3J8+x0HQe4bZ/XmcvlkouxMJuJtpyAp87yHE+UnwxMNlFgNiUlD1RWjfBORkvRKWmqiwV9NLaKYRzFRGHCeBiztqU5efglDF/06trlnn3f59gQKwy8ZW78L39u6h6f+fQjbD1+nOT4CeSgR8MVLK343HhMcuMhzaElw0LL0GwIGk2XRtvHb3jW6+oqHNdBuWXgseomssCAOUVFSpkFmywpDnnshtpjENWtmip2olz1X/U81zr9ZAZ8e1ZWmuoBeSC4atmi/QGllIUfC4F0VEZbktaz7jl4gUez7dNseaweDDi8JFhRm9zcf4Drtr7DijcgfG6tdtXoxhdwduBx+kzKeBAThjHROCZNk4JaUqRmhUIxNXpCSZ2415l3OEEnmClX+IrtclMHqhSS7fpTQVES01thxJB5/7HjguM6eL5L0PRpNH3a3YBDR1ssLnosdmG1kyL++KO16/QP38LTwXWWejceE0dxZgRLK4EdqxSCGQaKqxy5s2cpOZBlW2y3Xasy1VV3mwS2N9JtR1miQmlhIsBokZ0pyemjNotZNE4Y9iOGw5h+P+axH6uznPXGFqf+4DOENNDSJXANTS+h+at/s1YuefxJos99kZYacaixwarfp+OOCXxN0JA4rn3n1n/8FzDVsbDXQ3z6E3QbCc3A4AeSdsdnebVBd8Gn0XTxgxxB5aCULDaRpXIXUmT7KnvHRX0eqY0DO8zZ1T/F9Pw9l/3LnH5ySaUP/HvgvwHeAdxijOkYY15rjPllY8xvGGM+aYx56vJWs5Q5UuMiSxZMZTX7cztKCADGmHUhxABoAdfv81LV8jteB3h64rjvbldwUoQQ1+1S5PBezzWXneVy+V6nJtvzqcTkTRjr56QawAwQhbEj40hrQGh0AkZmiy6traHDQJoYjHGIY4nzo3+Tl3znvuISydPHefIzD3Hdm+6ktXyEhZffwub9jxe/p8OYwHNoHwnQrRFJsIH0TmAcj6EI6AnFM7qJJzxi4xHFkMQp42HEeBSTGo3UEpNq0lQgEnsXRtpFoNY2OCrGBlqbxKnmC7Caf2fm2nvGl7s9i0u8hr/QC7Mq+mCmF13UP42Z1SS1VWT9Kyo0AWyaVoTIeNbW6OT6No6G33ToLAQ0G4pDK4LruyGt8ZjmqSdQ0XOc+e4aJqn7jJ59/c+w2dMMBpkxI0u9mceOKTzumDKrycV8aHsE/lwuuewL+1r/MJNfTBeq/lwYK61ioxyrADmOg+u7OI6i2W3Qbnu02g6HVh3aDYHrCga9Puazn6ld5YkXv5XxKK5li6Iw8tp+NtMItN9nfIX3iV2lOpYy/f7Xvrvc/esCymyE0AW4v0nUTj5Hg4VYmrzLZASMjHZpY+VqUmMwRmK0BGMItUEnDnGUkCaGuHUz17/wh1j97peKywz+7XsZvv0X6C5Iml6EEgb5I69jeNutpI88VpTr/Zvfo/Pm1+GpFAKLItHCBceQpoI4hfGRGxi8/Ido3//F8vzv/RCNd/xlXF/Sbimk69BoGoZDwbqXo0EFOtU281oUY4yx+NBUI1JBohProNA2kKoRutZGZTwXsdtEXm/fvTyHuczl8kquh7aAY8A/Mcbcf3mrtDeZIzUuvlS5SP09lB9kn/tN67qf6wwq+/u9ztO7bPdOHzKJk99OLtWovlt9zA7ldip/YWUm/WTf9dmp3PZfT3ovJ9OZbS8zTrhH52HVC1kNLKq1ztcRNiNKlBJHMWhNqg1nbnkN/RvqwKbod9/LehjQ101u/s9/Zup6Z79+gqXbj3Dg9gMcWYk5KM+wMHyaxuAEjeEZVsU6B4M+iy3wfUXgKxpNj2bLI/A9lFRlmk/XsV7/TClWedDJnNIgLHUlR2LI3LtT+Y7qNiX1Lyf1mtoTylPP7ni+C9HndzrnduX3BxPP78Nkq+pqXyzL1I4u+6zM4rZU0CwWQVN5HnmqTcd65BzXwc28d42mRxD4hUFjqZmy5PU5yElkmhBGgmc+XbcFGyH5/iveTn8rQqc22n4SJxgMaaor2Skmk8iJnUfFme/99t/vcCbqz3S7fnAu570Ysl09dupfE/dn7P5UDIEcFUUJEZ+2F1T6zkQ/y7/L+5FUEqQs0Fuu6+A3fVxX0el4LC86+J4hCATScRh97iuIQTlNGwSPvuBHMFqTRLHtL5lBo+Y5zytaDfio92IY28uzn3XMxZDzea7UYG2iup/FMal+d+712unv3crt55x7P25q/jVsYxTd6/i7Q10KJ0O1pJlYgmSIs6yo1oY0KVGWaaIz1FHMo2/8xdrpxfoa0Qf+iP5IEMfZGyUkwS9PoDUeeIjBV75FgkOCi3QcOi1NN0hoeCmBm+I7ho0fr6d31Q8/wuBrDxKaAM/3aLcELR+aASx0FQsLFknlugq/4eEFHo7jIGWGuMze4wKlIW0GrHwr+5qcmLNmoS2pfNbbfwq5se28vZf3ez/lrl6Zp3S9JHIrNgCoBt6IzZ75O0KIGy5vtXaXuVHj4ktQ2Y/2UD7MPhsX8TphZX+/1zkHyQeNWX6V7crtRfZqYJj8ruqqmlWfyYloOw/eZPlzrc92301eZhvv4Y712ancNteueSPZYaKdceysQtso6tP87gnlPf9OUATs1JlyaFLDeJzaLdI8+ea/VT/9o48Q3v9dTBCg7ryT5m11gNHoRI9kpHFcByeNcHtn8J59jObpxwl6J5DhAEcIWp2A5UWXTsch8CVuZsRwfQtflUohHRtMsqCgKIXMoKxCZQugCnw1XwzVlPBtoa2T8NYZ3jlh6s+noqxN0VS2fSD77fNZKVN9j7Z7p2aVge36fNkWdt9mI2Gbflhvp5ke9soCs8h4UqGc2ICgeZYTBy/PUtH1WFpwWAgSbmhtcDRYZ6ER02kZZLvD8LHjtXoPrruNUWxTuI5HCWlq48HoLK1wVbEusxmY2d73ifaYuid2j6dR9AEhat+U5Wc9p2oZmH5mk+Vnldn7wnn7e6/e03b7s8pP3F+WAlNkL0W1b5UayOy65/2pfGerBrMK5URao5hS1qjhBi5uli1nYalBs+XQaUmW2uAqQxSB+USdenLyhpez6S4RR4mlJ6VpQefLNcl6NouyvnXlaWYjU3veZvIZz2pLZpTZj0J04Z9rdRzcbkycopwV48Je6it2+JvK35PtslNb7nbOyTpsd86d5tW9XmPW/exk2MjMSdl/RZ8z+fhVFqw5JDQ2U0+qbVyYWHNi9Q5O3/4DtdOr9/028SBGC5fYeGgc3Lf+GOK6Y7VyW7/5XiLTwEgXoQSuAwvNmIVGTNNNcZVh9Kq/RHyoDm5O3/9+klQiMLS8hKVOQrdp8F2B6zo02x5+y8NxFI5SKNfJjJKyeJeVKmmk1QxZtSEVKs6EbJvqs0yMw9lnde6eMW8XDb5rv9mub07Knl6GuTzPxRhzyhjzHwCvwMZ2lMBfAx4SQvxvQoiFy1rBHWRu1Lj4Mq7se3sonwf7HF3E6/iV/f1e5/pdttdsf+heB9TzKXc+3+3nOnstd+7fnb9NfQ/1nlIES0WjxrHdNjLTOUySxpAHQ67yw6uexyLehtY2W0SW9jJNEpv6NUmIwpjxMGbQi3n6tr/E8EDdiDx87x+yli6w6R3iwH//n0xV43v/9ktoLyANQ+L1DeKnHoPnnsA//X1aw1MsiC1WuykrS4KVJcniokOr7eAFTpae0cPzXOvhUaLg5UpZoTOIjJ8rZM2QARRojarncbYhaVuNfvtnsN25Jk4x5cHe6ZyzSu1qLJn83u5XM3jUFNtaPfdy7smDJi+XtXUlBW81tknuWVd5LARHEQQOfmCf9VLX0PYiFuLTLI6foy1HuCuLnH28D0k968lTr31XRjnRJHlQ0Kz/UnmXTH7P5/WC76FtZvWBncpve84LVX5WFS9xXab6VtkPJ40DU/aW7Lgq5SQ3agglMiVIWYNG08MPHDpdl27XwfWUTUmpIT1zhsb9X66d+rE73kySxSUwFcNtrkxWx+SyguXOzjQmURtft22bmd+f23O9VH1sdvaT3f7e7Tp7OeZCXGN/59x+rN5vPfZXvjSiman5usgCliEq86xONmtZQpxlfBqNYr71+r9RO69aO8PwQx/j7DBgK/IZpi5aeTR+qV4u/ouv0f/GQ8TGQQiJp1La7oiOP2KxMabpJ3i+oP/2OlpD/tmnCZ87iTAaTyW0vJTFlmahA92OQ7vj0u341rgRODiuzXbluPY9Rgib+rVmzMgcElVHQfG5XfvuNH9Pjk+z5m1RFJvdB86lL169Mo+pcenEGPOAMeYngJ/ABgQNgP8SeEwI8feEEO5lreAMuVKMGi7gGWMevtwVuQjSq+zvherRyj73QlU51+u0Kvv7uo4x5pmdNuDErieZy55kaqidXEzUAntdQDHTm2Gv15lRZvJ82XdFLDdKj6TRpQJIliGijLButzTRpLEuPEZaG0ah5tEfrC9quP9+Nr71JAPdQLz4pTjX1cO9bH33WYbH14nHCUkYEw9iopEhThRuMqSdbrLgDAiclMDVtBvQaUmaTacIJua4CsexASZzpIWsBAOtUXemHuhkRgsmFPmi2AyZbYjasxTrsMszoZfxVPKUvhTtdR4nLQO6VQwXBfUngxEDpfctR4JIkS1oHVxX0W4pmoGg7SYckBu443Wc/gYqGkKjzfGP1ll2RkieevndxFFKFNpkUlVkUYEw0hq0zt6DaTj3tGyvsO76zGe8x1eiXM5godtTTioe/sKwSNmPKFE/BVpDKRzPRSlpDRodB981NHxB4AuSFMaRRvzpHyPSMl544vg8dsPrSOMUY2z6aKOzsb7wgFPSlybqnyuc9R/KrUR8nH97na/MmrvOZ7sY57yc/XEnmUU/KT739HxnDQjb9xv7dwWPMQnaKfon5XyttUVVauu4SOPUpkHXhjNHXsipm19Vu1zj/f+OjXXNKHYIY0mcgvuOn0QeWK2VG/2b37FZx4xGiRRXJDikKKlpuSkN3zB667vRfglYFmmC+9E/INUmi0lj6+p5knZL4PsKxxV4vsRruCjlFA4Jm9ZblHOKFHU6SjY+5HTG/UvVeLr3/na55uu5PL/FGPMp4OXAfwicBJaB3wC+J4T4uctYtSm5IowaxpjUGJPuXvLqE2PMGDiT/bljkE0hxBKlweHpncrOkGpw0N2CeVZxevu9zlwutxTWgIuz+Jo5ce55Lt2+oKHKbRf1RVm1XBXKSmm4SFNdZERJtY2rEUUJcZyQxilPvPjHGXfriyH9nvewHnfYSNq0/7P/YKpOj/32F0nGEfFGj7TXRw43cJM+gatpLihWllIOLwxZbIUEToIUGqkkfuDieSrj0mdIjCKWxiRPtvS+VBX42Y20jVFoly/3HTDuAnWd81UAqrSAmY6s7Y7aF7S8FFnxupWQ4gyxISWe7xA0HAJfsLoIK62YwAxpn30Cc/JZwn7IGouMHvx+7bxbx+6gHxriOCVJUpuKMzfITaE0MkWsBtkuy1HxqJvaZ10J2e2Zm8q/K1Vme9ovn9QpTBVjW045EbL8GwqDmMxQPq5nUwAHgUOrqTi4omg3Ja4rSY0kSQSNz32sds0nb3odoQwKdE89K1R1q6Atao90hrHjsj/7SQ14VhFzQTZzgc5TnVOvVMNGVUzGDynHlvqaYPsppmIomzndmJoToWjj7Py13wrvBJW+mTkjEou01Kk19MZRwgNvqKMwnLMnEZ/8KFsjxSiUmDTF8wSdX/wrtXLJ579A8sjjCKNxifFVTODEeCrFcSDwJP5Kl/Gb3lE7zv3YBzBJhJIC17FBeq0hQ7HQdei0HXzfQSmB8jIKilQVw/i0M8LADIDFLNroTnPa3sfxieLPe5nH1Lg8YozRxph/jc2Y+T9hUf43Ae8RQtxzOetWlSvCqPE8kAezzxcIIXbKOHPnjGP2KtWodXduW6r+ewI8us/rzOVKkm08TXm0/HOSGWP8LK8Y1vkxq1ITXq+sYM1zqKfK1RTAPF1cRkHRSWK32NJP0timj4vHMeEwYjyO6YeaR1/7s7WaqC99jlPffJZTmz69V7wJubRY+33j/icxUqG6HZxuQLOtaKsRi/osq+GzHO4/xJHw+9xgnuaQe5YVf0yzIQgaWTDJhoPnVbi42ac1dpRenhK2WmnjnYwbuzyPCyXnq/Scq0I6ed39KxHbwXm3KZ0tMnMlWkgb08UGfpNWIXUVnqvotBSdIGXFH3DUO8Wys4Uz7jHa6DNcG/DMpx6ApJ6Z+/HXWOpJHMakcWKNGjqHZFsPfEGnMhMKQ/VdLewZ5TtStNhemqjyjk16669EudgGjf3277yZpvnvdSVRWDdt4cG1GU8szaTZ9llYdGk1JUvthIVmhKsStvqG/kPfp/HYA7Vrfu+WHyaJ44JiZ3QJ5c+NX3UDsH2oJYInp2Iw89lfTKmO12V9deapn9g3uuyH5sKYW4y5ACrJNu9G9b6q9zY1VxXz3KWVSedD1Qlg5+fdWqbsR3UjBbW+U45TmeEkQ2FUKaI6TTFpThFNSbPPJEnsPB3aefqZA3dx8vqX1WrRfN+/5uypkLVNQ28giWJB62ffjuh2auWi3/odjBBoFKkWKClpuJp2kLDcGLHUDFE/U5//5doZ4s99gX6oGMUKpKLhC5Y7cHAx5dCyYXVR0OlY2onne7iBg+M6FsWnVEFBAVPE46kaLWqxNCZppBdKdqSfzGUul06MMQNjzP8A3A78DnakeHWlyOLlqFcuc6PGpZE8l1ULeNUO5X6ksv/lbUvNlnspA4T+yHaFhBAekEdsutcYs5fgpXO5gkVABmkvvU0CphZd57PwEjmyoqoo5Qvr2vf5AlxTLpooF0xVz46ueNty2okuvZLaZPE0Cu+lPU+O1rBcXgvtj8Yx8TjhkZfeTRyU7CthDPJ9/47RMCEaRbh/fQIpZwzPfORb+KtLtA4u01ju0Frw6Yo+C8Pn6K49gXv6WThxnGb/NEtssNBI8VyB54LnKTxfZZx5iZCl97aaOrQeHkIUbTq1SNmzkndt0E8u+nUERSyT6oJTVPjSylEoRxI0XYKmQ9M3HGoOWRTrLEQnWBw8heekJE6TTe8gvT/8k9o1tJA8dMsbiePY8siz9IBpkmaKatmHqSh3k573MjtKXc/K48/YrlGWqRsJzfQ5KfvFlYSGmJSLqRCeN50p57QzbfCQIqOcZP3HCxzaHY/Alyx0JAcWDYFKkSQkkQ1o7H76I7VLjBqLPHnopcRxXNBOSoRPvU+UzzSvS+4h16WHvPLsL4RMeuun9uvNVTRSMSdV982M7y/As7/g/ac6l1LRTysGmVlz7mWntOxpfp51YHWunjpJeW5sf9S5gaOgmpRzcZrF1zBZgOQ0tsYNnaakqXVC3P+qX6hd3T/zHN6ffoTxOGE41gxCiW60afzVetay6JOfwjzzLBpJikeKNSq23IhuENJUY/zbbyJ50ctrxzkf/gP6oUeUuqRa4ClDK4hZaCS03Jh2Q9NtSRoNF8exKZmdLGhoGai6nM/Leb0M+L1/mdNPzlW0ufDbXPYvxpjnjDG/iI2j+LnKT/9cCPEHQogXX456zY0al0Y+VNn/pVkFhB0d83xWG9Q7ya5ijOkBn8n+/DEhxHYUlHcD3Wz/j/ZzjblcwTJLaaksuMrF44Ufwevw+nxBNF2fenWmF3zFmqtiHKlDbO0iqoi1kWjSKKksmlL62uORl7+zdt3mn32M9SfOshm68Pa3I1r1hD+nv/QwLB/CPXodsrtAmhiGJ86y+Y0HOfMnX2D85S8SP/Qd4hMnSMYJzVaD5WWPTtclCBSua5EZru+gXKeMr1GN4zAJTa1C2/OyeSNNNdzMVq/9dbXST3K56Dp3dv58gYoQNvONo3B9G/g1CBRLiy4HuoZWssnyM1+n+fC9OFtnUJ023HQ7484B9KOP1U69dug24kQTjWKSKCGNNWmcoNO05m3P+6/J+/dUG8xuhFnBWGv0glkKi5l17JUnVyb9JN8Xtf1yyzIbORLlSJTrEDQ8GoFHp+Ny/TGbwrXZVHiewGgYjjTHT0Qs//nHa9d75OYfIk4NJjVZgFCdGSmmjV81b3qJ56l9Zn9cEKm+21WKx0y6xyypN+bu++cgF6TvTJ5jr+ecLDerXSrtc7ENG5NtUZ87q3Pz1JH14ybm6fxcNaMW+TRdOi1MriGmJdISAyYzbuhYkyQpzxx6EaeOvLB2zeU/+k3W1hI2R4rNKGBt1IKf/QVoVOZqrRn99nuItWKU+sSpg0hTGqbPKmdYddbpqgH6ne+qndv75j2MH32K3lAQRQZpQpacHkdaW6y2x3QCG2i01QlodgL8IA8aXSIwZYa2lBWHRN7Ktu3386TK4+yxc/rJfmROP7myxBhzvzHmzcBPAd/D2hXeDXxDCPE+IcRdl7I+c6PGJRBjzD3AF7M/f0UI8foZxf4LIH/4/z9jTFz9UQjxi0IIk23/cJtL/aPs0wH+TyGEmjjHKvC/ZX9uYPMQz+UalO3mwAu9rpoFh9z+EjNcRrlDqILW0MZU4Mvlp86NGdmWJAlJYmkoSZRaiOs44tsvejuJKhMAyTTB/8j7eHbD5eSwg3l3HaJqkpTH//BrpO0uqQpI8BhvhPSeXufsfY+yfv9jRA88hPvU4ywMjnO0ucmxlYTrDhgOrQgWuw6tlovnuwSBhxfkxo0s5aNSVgmSZdR0UVkkSVn5rpr6NZeZc+6VMRHvR6moKUkTveS8++WMalSzWRT0E2GybCeWHuR6Lp7n0Gopuh3J6mLK0fYmK2oTeepZ+g8+zNZTp9gQKxxffDFr9z6BSOvhn77zorcXtJM0TdE6rcPV8yB1VWTSxA3nakKdcrKHdjGz38ErpHvsKpeHfrK9QlFHyMwwHGaGSikljsoCy3oOjY7PwpLLQkdyaDHmQDfG9wwbA8mpTclm3yDv/wsa6/U0wA/d9EOZUVbXY7BoU7L2aq7EbWhI1X5wnk06hSy4FCiDc5QrzSi2m5TG+e0MVhdOZgUWrToUtkduTBjOdFm2SjeqUuny+brIgJJRUiapKEmckMQpX3tFHTHZOPMMzmc+wfHThqdPKZ4943BKryB+6qdr5UYf+gRm7SyxEWgjLVrDGJQICWTEgj+m+5Yfwiws1Y7zP/Je+iMYjARhCGkqkErTCmC5azi0LFldURxY9VheDWh3XKQjcT3XpvtWlTgblfnbojVsa+/36eytVAGpnMtcrmgxxnwUeAnwd7BxJCXws8C3hRC/d6nqMTdqXDr5z7CBVRzgU0KI/0YI8QNCiDcKIf4V8OtZuYexUWX3LcaYzwLvy/58J/BpIcQ7hRCvFkL8EvBVIM97+V8bY9bP9WbmcmXL1BxYWfjV0BHnuZA6dzjk9IIrr0/hqSwilmdcbJNnQckXhRrQGHQG9deQGgb+Io++8K210x/40odJNgecHLY48e7/FNx61uMTf/QlotQhGkSMzw4Y91KiASShxBgXt9Wm6aQs6jVW1RqLwZCu6rHUDFnqatodhesrlCtxXQfXd3GzoGNS5Lnuy1SQ5HDWYmEky0+RIzvklIEj19NFBeWxPYF3Qimr/ssXZTsdfqGlaqfJI8tXgqqe6zknDUFCiiIqvSyQMqCUzLxvEsdzrEGj4RA0Pdpth8OLKYfbIw6666yMnsAZbzIcCdZY5vioy/HkIMMP1j3tWigevvmHiaMk45XbvonJvJZFv66jk6bQFRMO75mUk22bQFzVnrwL7sGunG6WUjB9udkZT3JEjxTCKjVKohwH5Ti4rovjugQNj043oNHwWFp0OXLA0PYTfJWgk5TeyOHUmuDk6ZTDX/tk7apr3WMc79xYxiTIvd56UtGtGrwqiK6JPnQ+0PSqF75opLwfX+FyOeJZ7FtqVBUQe0G6XCzJDRQ50mt/B01sdeoo5P2oPldrnRntsrTFTx1+GacO3F67ws1/+u/YWIs5u5ay2dMMBwnjt/9lcMowdCaMGL33D1FopEiRGLR0SIWPVh5aubSXXNx31gOGtj77Ycx4CBgirRgkLrEOCI2PdAM6bYflBUWnCe2mpN22MbNkgcay6A2RZUdBijJmVmWu2S0byuT8PXvyrQ1g5Zy9a/DR54kYuKDpXK+C4eNqEWOTfvxz4AVYnTbE2hl+/lLVYW7UuERijLkf+DlgC5ty9f8LfAX4LJCnZXgYuDujkpyr/DLwiWz/jcCHsfE2fgu4Fev/+X8bY/7VeVxjLlebzIDElgEKr6xRvbo4zxf6hYcyX/hnf+scum1sQMYkSUiimG+8+KfQohzenHDIwqc/QH8I6yOP4Zt/qnZNMwo584l78JdatI50WTjWZvnWBa5/zRGuv6vFsesF1x9NuPnQkBc4T3Jb/BDX6WdYTs/S0GM816XdCWi2LFLDcbJYDZ6yCyIlizSiNpbDdJT0QikXFUWsoqjnSlZ9MTRNTdj278lDLsDCaL984MIYw36NKnvIeFJpm2p7SUfZdHyy3Hdch6DhEwQu3QWflQVFV4y4bvQo1299m1W1yeqKQ/cFN+CsHOC0dz1PbzTxHqvHbz5z4AUZL1eXfPKcd34eXthZlJNdmueqlIviaZ9out0MZ7mntfp+5f1TVhBUUogiGLByHbyGS9D0aHVcjh5tsLzk0mw6dBoGgWY0NjxzImV9I2WwNuDodz5Xu+5DN/1QEZ+Agm6iJ/rKNKqkJBKYWcXOS2qGjasAAXHVoDSulnpOSG5Uq49hk8byannK8rqkpOT7JjWFYeO+l9VjZrTPPs3K1z5Fr59wei3hzJZgq3M9vKXuoBi974O04g0CJ0EpQSI9hrJLJBtIpWg4MQd+4S21NleDLRpf+BNC7RKmHr2owUbUIsZDOYJOQ3P9asjRlYSldkrDE3iBR9D0LVrDsWgN5SiUsnNIjsSkcE7k7TE7E8rs+XsPMjHdTxk55jKXK0yMMT1jzH+NTUrxvt3KX0iZGzUuoWTwnJcC/xhrwBhiaSD3Af8AeIUx5ryykRhjRsaYu4G/BnwaOIUNIPo08B7gh4wx//B8rjGXq1S2UawuqKNoEqa6Lcy1vliqlqstoLKPMoI+BZKjlimgQklJk5SNYJXHb/mh2hWPfeH9rJ/sc+pMzCPv/HsYWR/+nvr9L6OXDyKvu4HG7TfSfdltLLziBSy/6DqWjrXoOAP8049jvvYFuP/PCR6+l+6p77GcnOZAK2JhwWVx0ae74NNq5zQUheu7OJ6LchWy8PZkhg0lS8VrhoEDKBdM+9Rz9yI1Re8czrnfRZXJr7PNYTv3xYnF4Ixz5PBga9iopG9VmTFJCFzPwXEVfkPR6rh025JDnZgltYU6+RTJt+/HnHgOllcZ3/VawhvuoE+L9GMfRug69eTbL7zb9sNEFzER0DrLEFDp18Ud1FQASg98WWi/7+Peva1XnlyMRflUewhAmLLb7EA5Kctn+7JwqxaKjOPa1K1B06Oz4LHQcTi4pDmwCI1AshW5nO059IawuT5m7eyYzre+iB/2a5d58Po3lIGRC3pScROVymx7o+dFOZk2uF2d/eiaUOxmGEEvOgJlu7l6qtBUVSv7mYGtgvAp/SamgtIo415pbZGVjx96OaeWb6md+wWf+21660M2NmJOr2ueWxOc+IlfrF9/c4vwgx/CZ4xrIrQWDLVLpF1SA66JWLquSeP1r6gd1/3k7yOlJExdtkKfjYHDYCxJE01Dhaz4WxxqDzm6FHFgWdBdcOl0fTqLAX7D0lGU6yBdVQYPFWUgUaAyRYmJjV3e0X1M7pM+jX3aSK52meGfO+9tLhdHjDFPGWP+KvC6S3XNS27UEELcJIT4y0KIfyCE+CdCiH8uhPhHQoi/K4T4QWGzc1yzYox50hjznxtj7jDGtIwxS8aY1xhjft0YM9zhuH9njBHZ9g/3cJ33GGPeaow5ZIzxjTE3GGP+mjHmKxf0huZy9cpFoqTYk5TbzjDXeuT16uKqulCq1jPnmQtEid7IFk9oCvj2/S9+V+1K/nCT1S99iH4vYmBceq/84drvyUaf43/xfaL2KvrgDYgj1+MdPoxsNEliw+j0FsMnnqP/4GNsPPQUG4+fYvzcabyt03TUiFZD0mhAq6lothyCpqWgSClswLEs6FiueNvFUPa3FEWKyALOKkSxJtpJzoeSUvP8zIK47nHhVAtYOOOYWoDU3e6lWjnK9qjVeZJyUmmrIjgrNjCoUnYRmiujeWDQZtNleUGyumRY8gcsDZ6G40+zdXyd9YFkTSyzvngLz3k3s2VarP5p3eGQCsUjN/2g5YznQUHTjF9O5X2Cog9X34PJBdV+KCf1VhJXqz4KXMDxJpPzoZzkB+Uw8/xTKZVB0a2RstkJCJo+Cwseh1Yli42UdpAgBQxCjzNbDs+dhihMGPVDrv9GnXryzIE72WyslIZabWpj29QDNeXYN0U5OZ/mq9JMrtI+dFXQT/YgAqYoPxd8Xp4lk3P1nq5THFAzjmQVLTZRKVujoxiNNnDvi99dO+vi2Sc4+O3PEYUJYajZ7MGJhdsYv6Y+V2/+9h9BGBXIOJMKSFNUGtstiVh+91tqx3iPPEDw6LcwGKIIwtigkwTSEJmG+DJCkuBIQ7dtWOjYQOC+pwiaLl7g27FAVhEbZWYUSxfdXzaUwhZSODL2b52YnL+fTwaOuVwdYoy571Jdy9m9yIUTIcTTwNFdio2FEH8M/JYx5hO7lJ3LXOZyrjJj8WKMASEuDix8pkxfow5ntXUUwla3+CRXAqVdM2XmWa01BhBacHrxRp687pXc+MzXi/Pd9ufv4/FX/TRbjuDBd/0ar73v84jKav7pf/YhxBvfQjNdo+VolD8ELyWJQ4anQnqPnGTriTOknS3M0Rj1ggWaxxyCIwEdmTIYwvqmQSeCcOyQNoUNkhYnBQw3V1y01gg0GBuBWxiDEaXabzKDgzHGKuk1DbhsqMpuRTHJd0T1y5ntPfurGV9WT1l8ZYrydi0ltz3nuciufTBvL1EGXC1QGtkCT2aLT+Uo/EaA5yuabZ+lRZ+FIOTG5ga3N09Au49yNsERDIXLmnMdp6MjbIwMz56Juf6Zh2qXPn3gNquDpKaEWBeGOV08rpLmxY6K474pJ7WD91f8SpELNs5MGr32ZDwTpUGwYswoKV+Z8VGpglPv+p7NdNJ0WTnYZGlB0W4mrC6EICSDoeL4aUGvb+j3E9bOjhEbaxx74t7a9b97ww+WEP2KdatUYKHaWWpGw/LLC6PAXAtIh6tNtmvz/PuJuTmfly+FTMVwmqhHPgdnJajOQPn7XJuTJqXo74bHj72as4vXs7LxdPHzi7/6u3z6zh8mSTVpCgjJs2/5W9x67xeKMvFzp9j4zF/Q+Mk3AwpXGmxUfIXGIRVNWm95PerwAdITp4vjOp94D+a/+B/px4pxLFAofMfFSINRAa6v8I1LYHxWD7g0W5peT2DSlJHnIISdz01k0KlEGtDSZGsIWRgJBaI0Tu5oL5ykU56D4WqioYWpG3VrY8Y18KrbVdOFu5ELea65XH651EiNY+zsAxRAA3gX8FEhxL3iMuW6nctcrjmZtSi6CN6fKVTGni9RXdBT80gWvPMsNWYO187h2zpTKnWRfSIl1Slfe9FP167Q2jrJ4fs/xbAfsi4X2Lj1FbXf0+MneebeZ1hLF+iZLrHjo4VEthu4i238gwu0jnToHmqztJCyItc4lDzHDdHD3Og+x03BSW5ob3KwE7O8qGg0HVotn2bLx2u4uL5N+eq4FsYuM5SGEJaKUtJQqvui8AYVcAR5GTwyOyEw9gyznZZ9eSBrymvp5qp6uQqURhbHRMgsfavr4HiSZsuj3VKsdDQHghGd4Qm6z36T5fA4ncNdnBe9FHP0Fnppi6dOKY5vOCx86WNIo2tV+eZdd5OmlaC1hbeyuoo1pYI9CZKZr6XOy6CxY7/JukNhh9sH5STPblLGY5FIR+F4Ll7Dpd316XRcVhclB5ah1ZKEiUNvKBiMDRsbMadOR2xuJYTjiOse+ixKJ8WlEuny8JHXZONbBa5Tq9M292Yq4+s5NN0UteEa6ITXBP1khlwK/Mnu1LXJtp0sb6bm69xIZ4yxSIq8z1UMv5aWkqKN4Z4X/eXaGVfOPM7qg19kNIjp90I21kOeOvBi+jfXVYG13/wD+pGH0BpfDgnkGKU0Wnn0RZux06H9s2+vHSM/80kWx6doOylSCFIchknARtRkLWwwMk2k67HQFhxZjDm8nHJsFZaXHJptB7/pErQ8PD+nk9q5XKqSkiKzTCm1rGaT8S927bLn0ad3mKOvhXfFcOGChBozT+l6rcmlNmp8A5tG9O9jU728EfgR4G3Afwj8S+BBylfyVcA9Qoi3zDrZXOYylwssF2DSm/KS7vmUe0MRgCjQ0kUg0dw7Dpm3xAYle271Lk4cuKN29F1/8V7iKCWODQ/89H81tUyL/49/wnAsGaYOqXTBU6imS/uGLisvPsihVx3h0MtWOPLSZa6/zeG67hqH9DMsjp+jOThBJzrLitNnwU8IAg/XV3i+QxDYtK+O5yAcC2l33AqUNVOmiswgWaaU4lPsLcI6sAsl5XJN4nXqxWzJDBMzKCfFAk1WKTz54pFKW4kCnWENGZZy4gUejaZHt+uwvOyx3EpY1SfpnH0cefIZTH8LtbiEvvF2tg7fSc9ZZqtvWFtPOPaFD9RqmUrFI9e91ho0tEFXdERjqHhct1ccJttg30FXc3zM5Xyk5ynnEztgksc+i+I0SWfaE+VEiIJqohwbVNYPPJotn0bDo9NxObiqWOxoum3wXMkw8VkfeJw4IxkOU/q9kMHWiDTVvOB7n6vV+7GjryD0mtSCgs5qgktCObn6qRvXCv1kUupd9+K84FNz9TZ9bqcz7PRnMVebikEtT1eswWh45NhrWeseqx31snveQxonhOOE0ShmNE556k1/vVZGP/Qwgy/eRxKl+DrCIUaalFQLYu2SaofOu38SHFUeFIZ4f/Ihml6E5wqUI9EohrHPIG4QJgpjoOElLLUiOl5I049Z7Ai6HR8/sCnAvcDF9cq07UrJwoguM6eEHWcyOko2QVXnLlF1TJT2+cp2uefruczl6pNLSj8xxrxyL+WEEHdiU6D+ChAAHxBC3GWMee5i1m8uc3neyyWEuW4ntctnONaah2FGHQ3Gwi6NwejsGGPVya+/+F287XP/a1F26ewTHPzeVzh1xxtI20fpHb2d7nMPl+d68gkGz5yhc8cS2j+EaLYR4wFia52g3aK51C49UekYs34cffY4DecJImeFkXcU6bp4zRVWPI8wTBkOEzCaJNF4votObbA0g82UIQC0QAiDTgGhK87+Cu+m0i47eV1mUVKEmKah1PWB/SkHJTVo//2larSYPr5UVmfFR5g+T6aoVpAuyrGeM+koPM/DdW1gx4VuQKcJh5cSblwe4J8NaQxOEJ88SbJ6Hf2DR9nsvoiNnuL4KGBzSxP2Q7on6vGbT67choUbp2SawHnz3/fVjhWlvAo3vhoVvPPxHu7H+7kfyokQNv2vdKRFaPgufuCyuNKks+DQbBoOLaW4rmEwlpzeUPQGkq1+wpkzIeEoJooSglNPcfj092r1ePC6H0RXYljUAjTm3DrmlJO5VORSzssTaKD9xUGa7prTR9cNmVoI7n3Ru/jxr/yz4rsDpx/h0GP3cPLW1yGEYDSQfP+mN3DTgetpni6pKuPfeQ/xD7yUPBW6MQqNxCAxGJzVFTpv+gF6n/pycUzy4Y/g/ewv0nYNWgtSI4g0JKHCV9B0EwI5JnBjXCMRRtEbKhptD+E4jIcJRmviyBpAjDYkZNQbBEZj6ShG2HVJbnjeaWjO3mtT/bto2zqZx0wWep7JhbbFXoVT5lx2kCsy+4kx5iFjzH8M/CjQw6ZA/bXLWqm5zGUu5yYVWOruGVFme7BneXRrUfvz8+s8+rrJaAGGxw6/nLML19WOtWiNhNEw5us/8fenok6M/um/5HiyynHnKBuN69jq3kS4ehPp4RuQh44gux2E75PGKeGZNfrfe5TNhx4jfvRRnOceY3F8kiPeOiuLcGBZcmBZ0e16tDsejms9PV7g4bgujuvYgJaOQmQenxKJoIqsHVXPdKGITW3soPBMojUmER/7WzTvBc5afWaTBhT7tyg+6y6riSqXF61dv7gPOeFtl6KIg6BcSdB0aQQO3TasdhOWnB6Hkqc4rE7T6jik3WWiYIGtsMlTg0WOjxfpxw6DQcShr35oinryjTvvLvtl5Z7yKha13INh5rxl+rFOyZWaIWW7/lPrN9vVfZt7nr1IrfetIqCeLD2ok5QToSxtyfUdgpZLs+3R7SqWlxTtlgMI4lgTRoaNrZRTZxI2eynROCYchSRRwgse+bNaLUZem8cPvQSKNK51qtLMPnKelJPppri2DBrXAqR+llyON3bWu7azodTU37cJVEbN2FvTRsvAoQbDQ9e9jo32odqZX37fe4nCiCiMGY9CRiPNI6/7uVoZ+bV7OPOtpzgTNuinDULjoZEokeKIBCmh+/PvqB2jn3yazne+zKI/ZCEY03BiFJoohiSFKBHEicQYg5KCVlOytCA5sCRY7DosL7t0uh6NllcEnnY8B+U6FrXhOAipQE3QSicQhbV5W4r6uz01L89RG3OZy17kijRq5GKM+XPgf8C+yXdf5urMZS7XvlzMBWIF0jo7I8okRMNMH1fAtXeiMpQLKa01Rgi+PhFb4/Dx77Dy9LfQqebk6h0MFuvxi53vfJP1kxEbyRJbusMgbTCQC4TeAmmjTWIU40HMcH3I4OyA/qk+o7NDxqGlvQRpn64zYrGZ0vZj2kFKpyVoNRV+4OI4Csex2TicDOaec/llZthQUpX0EWvJ4FwirE+0zMQ3YsIuMjt7yqx1bUH9mfh9uzVwCcnNI7XPKkShdE6mtS2oJdtRTvJMJ0rhODaGhus5BA2PZtuls+jRbUsO+j2O6BMsj46zGJ9hsSvxjx0lXL2ZnrvCet/h5Dr0+ppoHHPzvR+qVTGVDo8efbXNtpNTnbIAtcXavWzwss130VIuBMpiZhT8qhJ/ha2Lt8uMVA9WOH0vBfVmhpSH5oa7Mmhs3leqhowcMi6z99CmbXVwfQ+/4eP7Pu22z/KyS7ejWGgrWk1JYhwGocPZDRiOEnr9kK2NEXEcE0cJ8Tjijsc/X6vbQ9e9jlSounF3sk0mjbe5t/ccu8eUUfgac01ejeikvUhdr700L+1uqIxZR1ipeilMkdRsyrhRmZuL77XGSMW9L3xX7cyHTz3EkWe+SRqnJIlFOT5211sIW0u1cvHvvY9e1GIYB4xij1RLpEhxVYKSKcEPvAL31htqxyQf/CAdP8SXIYGMcEVSyd4siHGIjE8kPFLp0Wg6dDuKVkvQCASttkujYSkoOUXNUZZGKkQZzymPr1FFgJWG/HOT3ebqa11sWNYLu83l2pEr2qiRSY4bu27HUnOZy1zOXwpKwWW5eLFVs0hMlSoW6BOftX0KDdMYw/dueD295krtPC+69/3EcUKSpNz/xv+49psA3H/6v3Ny2Oa50RJn4gWGiUdqJNJxkJ0uTreL22rgOBLXg44XsuAOWGqOOXjAcN3BhFsXz3JDp8dqc0TLi22gyrZHs+3jN2zgypy/77jW0JEjDVBYL4/KvD3SfhapXysByPay1ZTbqbudRnBUF05y5rXkzN/r+9WAp3m/qi/EZtbV/rDt9YqFYoZuEUqiXKfIVOEGLq6n8BserY5Po+GwvCA5umxoyYj25tO4zzyE7vcIG4uMbn4p4+WjnGaV0xuKwdCwtZUQDccsnn681lonVm/DCFFbnJdxXSY8k/uQC5YFZMIwNLVRaedZKI9LuO1Uj1n1LREW7LCOn+xvxbfFfpkph8KQKKRAOU6G7nHwfQ/Pd+guBbS7Ps2m4vAKdJsaKaAfKjaHisEYzpyJGQ2sMWM8jEmTlAOnvsdi/2StZt+5/od2f4TVSptKvc+3e1wjMTSel3IZn9uEbbkm1fm3HoC2ckztgBpYI5+yMdrw4A1vYLN1oHb+V3z9fTZldpwSjmPGRvHIa+qBRf0vfJq1x85yqu/TGymSOMUlQpEiMGghaf+Vd9aOGX32y7ROf58Fp0cgQxypUY7ACEmKQ6w9hmmT1PgoqQg8OLCQcGwlZWVB0/DJEFw+fsNFObKS+lkVxtJt5+nJ72DmGD3bXrHzXL3rOmAuc7mG5WowauThi0eXtRZzmcvzSC70GurcM6JkxQsvY3lskRHF5FeoeH+qC61Uk6L4+p31SOg3PHkPnROPEYUJT9z4OkbNugcouOfznHh2yHpPcGbgczZqs2GW6HnLpI02LK/gHDlE44YjdG45RveGFVYOBqwGI1ai46yefYDFjUdYHX2fI+ZZDgV9jnRjWm1Fq+3S6fo0mh6Npp9l53BxPDdTzJ1C2VIVQ4cAG4is8DLXkRa1P4qNc1CIdtdIpz1FO28lzWSiPiLrH7PqmHvVKwu3TOO1Rg2ytlAZ0iULwCqlxAusUtpoKpYWJIutlIONDQ4Fm7gmJNocEo5S+mmD496NnPKuZ0iD3mbEoJcQRSk33z+d9eRrd9yd9ee6p73Kda7f3gVSSi+U7MXwcQVsE7avKdl5jJo4uHq/FaqSkMKmTs4z5SiB41oEld9waLR8Wi2HxQVFpy3xHYMUGm00m304eUazsaUJxzGjfkg4tgYNnaTc/uif1Wq01jrEiaWbEfsZ/LLqX6n0oStBni+Kmpkwmmo9bfA/72vMpJ9U/5ps68nyM+gos65j8mPL4KGpUNx3Z934cOzEdzj07APEcUwSJ0TjmAdf+DYSNyhrpFOS3/0d1rfgTE+xNXIYxg4xigQHbRSNn/pxRKM8hiSl/0efIBAxHXfMgj+m6SQELggpibRDP1KEiSQ1At9J6PghC42IAwspq4vCZkRpubQ6Ac2WhxfYGDyu46BcWRo3lEIqkWUvs+OOLAwb2by2DR1lb3PHfq3JV7doc+G3uVw7ckUYNYQQvyuEeFgI8TEhxL8UQvyGEOJfCSG+Dvz32NHvjy9zNecyl2tfLtICUUxOpnu+zIyCYuJzCq5d8QBVYh48cOubGHntWtmX3v8BtNYkacq33vC36pcxmqXf/HVGoSFODSM8hqpN1FgkbS6gm13k0ir+0cO0jh2ifXCB5mJAK9C0wrM0N54hOPM06uxJ5OY6nWSTthfTbrkEvsTzJc2mix9kvFxHoRyJ67lZ5gWnFindKl1lClhbyRzBsDslRRQGAlEodOez1tlT5ortfs6VzFzBrNxPUcfJAya8XPlxUlh0iMooPY7n2MCOjSwOQlux0kk41B6y4m2xyBk6sgeex8BdYk0c4Ey4yHO9Jmf7LuMwYTiMiKOE27/18VotEunw/etenVFOypustcOU/W42/aREE8x6CM+Pldb5ZT8p9qga2YSofV2jnFTfFyFslpw8c4FyHFzXwfU8vMAjaHh0uzbbSaft0G1JpBIkKWz1DINBQq+fsLE+ZjxOiKOYeByj0xTiiNue/PNafb97/RssW0mbwjs9o7PUaSmF41ucX5e4hhEa1yr9ZFIE1LLWCCEu+L1PzdPVfrinS20zz9fYKSW6rah+9tJ+58a/RK+xXDvFq77xftDYNLCpYaCaPPrSOht94bMfZHxqnTCEfuQxSAJC7TNOXRKjkJ0Orbe9sXbMxgc+hUk1UkHgatpBgu8kKFK0NiSJINEGYWIcEhoqxpMJDimthqHdUjQCF98TBIENJOxmaV5Vln1LSpkNQ/k8Lst5mHIs2u4xmqrheXLOfr7KhUznaoRt5LlcM3JFGDUABbwA+EngbwN/D/hV4OXZ738C/N3LUbG5zOV5JZeVfjJL8vqIya9qC7BqfAcK5EZezv6eKJ9v3v4TtbPf+tgXaG6cQCeah1/0NiKvWft96csf4/S64czQp5c0GDpd+o3DbLRvote5nrC9im4t4Swv4ywsIF0XE0bEJ08zfvgReOhbOM88jLdxAqkjGk2XA8uS1RXFQkfh+9Yz7AUuXsPF8R2kEhMoDZVBWbNFkij5uVVI6e6e74pyl7fNbl7yCyiTENjis0pRyb+fqI+Ne1BScHLPunTKVHqO46AcB891aLQ9fF/R7bqsLik6bsIBc4ojo8fomj5BU6EOHYPOEhtqhRP9Fv2Ry2Y/ZTTMvILDEUtr36/dw/HVO7JgtDMg1+fWKjABIabgV8xlZymNGLYrVVA8hdJQduIpyknW7ywqqjQoup6i2fItbakpObCiWGhbo1msHQahZBzB2bWEfi8mDDWjQUgSp6RZVqMbnvk6jahfq+13rnt90VfKT6hqfLWMJ5MK5RUzJs/lssnExHyxUSp5P9zPWFerUmHPraMn7ZeVzyy9capc7ruzHtjz+uPfZPXEg+g4JUkSdKr57st+Gi3KMVJFY5wPv5+1vqQfuvTjFhvjFsPYJ0kEipTFX6gbQpKTZxn++X24LjT8hAV/SMcd03AjpNEkWpFoRWochABHGho+BA2J6zu0Wh4rKy4LCx5+wzohPN/D9V0bpFqqwjlRxNiQcnquhR3pKLOe+cWeq+cyl6tVrpSV029gA4L+CZZmkr+inwdeZ4x5mzFm7XJVbi5zeV6JmYCQXohTXij6yXbfZfAMrSdjapBlQbHbN297K7Hyi8Ok0bz4mx8kTVLCKOLBV7yrdg2ZxKx+8F+xNRCcHvgcH7R5ZtjhbNplQyzT8w4xah8i6h5AewFauiRaEo8iwvU+g9ObJGtruBvHWRif4KA5wUpzxIFOxKHFlMWuZGnBwfct5D0IvCwzipsFC5VZnA3rUSZHbSg5BWmtbRUkKzMWRjNlFmBgh8P2wtE11TSyYhuaSY6mqdQz1+1LaC41r7v1smeGHpVBfZWwgVd9he8puh2XVkOy2Ig44PUIwh7i9HHc4TrCD+gdvIWt5ZsYiwbr6wnrW5pxCFGYEIUpt33zo8iJfvf1O+8uDX8VZbTWDJOL0H1DiJ8/sqc+tB+ayeTX+TW2o5xkfcjxLP3L9V2CpoffdGh3HDodh4YHvqtRyjAYw9l12OwZRsOYfi9kPIpsMMM4sdQTrbnzic/XqvPM8m1sNrN4AbX72c5FWxkzz6FbTMc4uHb71fOGfjLru4uNUplml+xyzRlrBzOxQYnW0Db7idHl9u2bfpRBsFg7xau+8X5SnZIm9j1b95Z54vYfrZU5+Jn3sXV6wOl1OL6mWO87bAxcBpFDlAiCF92G/5I7asds/f7HcURCIMY06dOUA9pqRMMNUSJFCjBIEqMYJS6JcXEch24TVhc1i23DyoJkacGlu+DhBg5+4OL7Hq7v2Dg9yhpM87m6iOGjdqejlGC0GX18H3P1tSRFMO4LuM3l2pErwqhhjLnPGPM/GWPeBqwAP4M1aPwI8AUhxC9f1grOZS7PF6kolhfGE52d9rzoJzMwsLvAYqcj/ttt5HV44NY31cre+b1P4w/WQRvuf9VfJVVu7ffDn/t9ohQGoWJj5LI1atILfYaRZJgoxjJAuw2McmxKuCghTjRxmGDSFOko3IZDxxuz6I1YaY5pO2MCGbLQTGkGWEOGJ23QUVfhOJkxw7Gp4awRQxVIjWzlU4G0ygkP9TQlpar+1bxAu3mDtgl2tq+4DPkibebirOwdVcRCcU+5R15m2VMQBXLFLhjzTCcuXuAQNHyaLZeFjuLgkma1GbEsN2iPjyN6m4wj6Mkum63rOCUOcTpZoD+CrV7MYGADx8ZRwh0P1BmPiXR54ugri/5Us6lV++AUHWo2/WSvci3D6/cyvtS7zAyaSf3n+oEF6meaciIyykmeJccLrEGj3fFptz26HYeFtiTwDUoYorFmPDb0BpqNjYjxOLXpJgcRSZKiE41OUrxxj5ufu79Wre9e/4Zd22H6VsT5U04qdIVrVa7l96Mql0Nn3f+8nReoWTCmSk2m+jaUY0GiXO67o46quOnZr7N6+jFrDEmtg+Lbr6gHDPX66yx96aP0BrDVF/THMIo0YSSItUQj6Uykdx1+6T7Sp57CMyGBCHFNjDQxnkjxXIOrDEoaUuOQ4JLgYITE9wXtQNNuanwvpdmERkOWmc08a8iQjrKBvqVEZbQUIStzdXXuZmKcyubdIvC2lMWxxRqNGXP1TvPw88XyMZfnrVxSo4YQYtfrGWNCY8wHjTFvAv4K9r3910KIN+1y6FzmMpfzlW1M2RfKuHEOFaqjVE1dEZqGtZaf5UHUPEFfu/1uUqGKK7hpxAu/8zHSNCVONQ/f8WO1GjjhkM4nf5/BSDMYCdYHDicHLc6MuwxMi1QF0GphVg4jDhzEWV7GbbXw2wGdtqTjhiyqASv+iMPeWW7U3+cG+SyHnbO0xBjXE3Q7Hp0Fn2bbxfNtBgbXd7OUr062GBJZdPWcciFKSkru7ZlB8ZhtkKigIvb6KMTEtt33k2WqHvMcZTFl9KhmUqns55STamyR/P4zeo6NpeHgNz0836XZclhc8mg3NAcaA25onmYxGNFRY4QwJFqyaZY4nhxmM21zduCy1bPojPEoJg4TCMcsrT1Vu/3nDtwxZSzbyxuxX09y3bAzmUEmf7bXOqpju4W5/W3q/vP2otJXqFNOCgUCbPrWjL7kei6Oq/CbHs2WR9BQrC67LHQVnq9wlCJOIErg9FrCVi9lNNb0t0LisYXDp3Fivc7GcNuTX8HRSVG1RDo8dPS12xpgYYc+cr6P+HmCYni+yuVAqVQvOX35cg7eac2wY70NfOuWNzH0O7WvX/XNP0Cn2r5vacrphRt45vpX1soc+8zvMuxHbA00p9cFa1sO/dAhSn2GSRPnrW9FdOtxtTZ//4+RJsU1CYGIaKgE30lpeQmBm6AkaASRdki0wiBwZUo3CDnYCVnppLQCg+c7dLoBrY6fzeHWWOq4dp+COimKwN9lhpQKlXSX8b3qmJCznBI7zcfXwHCgERd8m8u1I5caqfENIcSP7rWwMeYDwH+NfRX/24tUp7nM5fkrsxYXsxYiF56PMnubGdB9VkGy7Cf1r6sZUWyQ0DwtbGn86DWWeejGH6xd4SUP/jFyOMCkmj//gV+u8XUBbvnUb9LrpaxtxJxZi+kNNJtjxdmozWmzwhn3MENvkbB7iPTAMeTRY3g3XEdwcIH2UkDbDWkPT9A68T38k4/TPPsky/2nOKDWOeb36LYlnZbDQtel1XJpdzyb4tVVeL6b7TvFQsgGIlPIjJohpcgygMiCrjGJsNhGFyz1rIr3Z9YTmCVixjGmXqDyQ4VmIicXY6ZQWEsqCsV95JUtFHxZGjYcT+H4tq1abZdm06ETaA60Ijr0aQ+fYyE5i990iJeOMG4fYaQDTq07nNp0GY0F4SgqUnGmScLt3/ook1kqvpZ7DytfVxEmM++5Wv6crUcXZ2W6HdLkYuxvJzvTT6bve+Ypq8azoq9MU04QxsarUda4kadvdVyF3/DxfYdW26HTdWk0BE0fPBfGiWC9L+gNDKNhwtZmyKBv464kkf002majMFpz15NfrFXvsUMvZ+w2mcbgV9ppBkT/vI3IzxODxvOFfjIpk3F9LobTYRZttH6Z3dp+D1TWqpE424+lz9dv+8lasVufuZels98n1Zo0i1/zjZe+q1amtfYs7Xs+zfp6RL+fsNEznNlyOLHlsz526ctF/He8rXbM5h99hjRMSIUABa6T0vJCOqpPQ4UEKkSSEqeQaFtfJTSeTPFVSsdPWWrDgSVJqyXpdOz83ep4mXPCKZwTRXwoqZDSOlaKMVBl83ZmoKUw4M6YX2YaM56f78Fc5lKVS23UeDHwGSHER4UQr9njMV/JPl97keo0l7nMZTe5SBNmbVGGwYi9LM5m1GVS1zN15aG+Z7jvrnrquCDq88KHP40xkCqfJ2/6gdrv/mCDxfs/y3iUMhobRiGMU8lI+PRVl767wqixSugtEDcXYGkVtbyM323j+AqFRvQ2EGdPwoln0GtnSfoDGlGfppvQaUuaDYHnQbPp4AcOnu/geE4WwNDJ0r5aZILM4KyyAmktqSJympIyCcGXM+CtubFgBjJgpkeo0q65h2nWcVUPlKiUL9EI5QOsIhSqcNvcgJEbdGxbZLQBzyUIXJpNl3bLYWlBstI1LLt9VtOTtIZn8OIB0vVIlo6y2TrKWbHKxlCxvgVbfU0UpYRhTBwlaG2448FP1e4zkS5PHn55lrFiRq/agX5SpehcKJvEJJpj542Z+9XnfrH3t9vK5z4LkTHjvifRGRPQ7FrfLvq8yNIqKkTedzwny5JjY9g0Wi6ttk+75VkDY1PguTZGzziE/hDWNhJGo5TxKLKBQaOENNE2eGEWt6ezdZxjZx+p1fk7172+UAZzYyuFsRWqBlfbfUz2jM+zozxPaBnPF/rJpIgZgQEuejaUXHZAHU2eYebhOeek/mWJDMVw/y0/xtht1Yq8+oEPFogoozXPHn4Jp1dfUCtz8+d/l3AUMx5rwtCwNYLNkcsg9BhFEvnTdUNIurHFxqe/ilEuRiqkBF/FtNyIQEY4xDgiJSdvSKGRmQdGSgNS4HvQakraTYXvQyNQBL7CD9wCXamyuduOUxSxscTE/CuEtKgOJsawYlyrt2rN7DtrjJ0xb1/NMo+pMZed5FIbNR7EvntvA74qhPi8EOJvCiG6OxyTm1WvnbdyLnOZy7ay+2J+xqLfzDi2Omnl3qDs77XOUR479uraWV/23Y9ANEanKV/6wf8IMzHk3PXH/4ww0ozGKWs9WOsrNkce/bjBpl7gtDzKunOYobNC4jZx2m1UdwHhNzBGkPQGjJ87iX7mSZxTTxL0TuKpmHZHcXg54chKyoEFbIwNV9FoejSaHn4ji6bu5AENHZSrSkUuC3aIqhgPMsVwiuZRWSTVjA/bKKBVj9DUwilfnOW/5f9Vj5lQOGuZTir1KGgCojSq5NHibWA1VaTJU66NJu84Dl5gA7L5gUOn69FoCpY6mqOLYxYaMU3dw+mfJR1HDGSbM+2b6XvLnE1arPVgNNYMBjFhmKBTQxKnMB6ztPF07dk/e+BO9rGS31bqbct5zGp7QXPkm9xm/0rYdrqf8qddDTfVM1X7lSr7Xk7jkkrhupb77vkujaZFaXQXXTpdhecpPNemWUxT2OjpgnKyuRESjhKSOCUKE9I0waQ2loZONXc++aXaUxp6bR4/9NLZT3Cbce68jRlzed7KBe87E6crsvNU0SG7DInbVWkyG0r1NAKI3QZfu62erey2p77K0sYzQJbiVWu++ZKfrpVZfu4huo/cR6+fsNVLGA6hNxSc3nRZ67uMjt6C89o6bWX9fX+MFgohQJHimpCGGdISA5pyjCNSHGWDBSNyxJhNIe65As+TtJqCA8uSlSVFq6XwfIeg4RG0rOFUZenG7eaWcbKUjZ1VZEepBQ7dZtuJUrrDvH0tGTfmMpdZ4lzi670M+DXgvwOawA9l228KIb4O3A88BmwAbeCHgXdgx7uHLnFd5zKXueRizAWfEA2m7gkygLALpr0YNmyVJowYTBybUx6yK5nMVGG04d4738Gtz95XFG0P17jtsS/w0O1vZuB1OX74hRw98Z3i99b6czQevp/+LS9DSZdcSdQoxlqy6iX4NInFEiJIUa5DwzyH0ZLUNSRiSKohiWNwI/xwg4XwJO0QvJbD2CiaQmASl8AVHNeKOBF4qUJgiB2J1pZKU0DrU2HRAxIkgtQAWtt7zqH4OqtqFWUwIze7bbYMLpz9LMg9GdPP3y7tcrt4eZCo7Jvs79wrX54iK1ssEHMjiK2azOg/uSEEKFAkCDLEikWrBA2XoOHQ8AUrbUPHj+mKdRbVGr6jSXAJRYNh4nM67LAe+QwTSTiMGY5S4sSQJhbSbIzhhd/52BTRIU8zKISoeEMFpYGt4vHJyuzYg8tDn98iqI8BM36vfdZ+m16kl+++KChOJW9d1FBOXuDh+Q6NpqLd9mj6klYgcV1IjWE8hvFYMx5ptjYjwtAaM+IwJk0tOkOn2lJPjAGteeGEUeOho69FS2fPz3pqTNyHTHnpa53y2pXnqxGoMkxnX5gicOTFEjE5bxgwYqc+azBmAnk1o0sarStzAdmcJbj/lrfw6oc/gZ+M7PUxvPqBD/LpH/y7SCUxAh674fW8tnOIbu9kcb5bv/h73HfzK9FaYoQgTgVGSxIf0A4L7/xZuOfrRfnxNx5k9OBjNO68GYlBmhSMRhnwgIZ00AiMcOy0KiSxMWhjjaYNz+A6CcIIlABSMMYh1gYVS7JEJwzz+9QVZI0BYcAgSXVaGryNAHT2XoupdhOibgwq52omC87ev0rFGIGZsX45n/PN5dqRS4rUMMYkxpj/BbgV+GdAhH0XFfBq4G8D/yvwL4F/BLyzUsd/cSnrOpe5zKUiF2EynFoI7fkSk17eiT9rLp/JH0rP0PHlF/DMgbtqp3nFA38EaYrRmi/84H8y5T16xR//Y9JUE0WaODaMY+iPJb2Roh+pItJ6pBokfgsTtEldj0SoAt6qlMDzBEFT0fUGLHgDlp0N2rKHr0d0vJDANQQNB99zUI7AdR3cLCCmcjLEQoZeUEVWlDLeRq68yQryIYe2bo8SKBX0qsd8O3RHnc6w/e9VA4bVYmXt2QghoEjoUqIYyhS1oDLqiXQkrmu9Xp7v4gcuQcOl3XZY6EoWmxGHvU2WxTods0VDjTGNJiNvgQ2xzHrYYq3vc7YnGYWa8TghCmN0bNMF6kRz58N/WmuVWHk8fejFGeR5Z/rJfrxi23ndpp7NRdJLq3z5i72/p3pMIjKq8WB2ESEoodk5rUqUgXXzLDnKVbiBixd4BE2PRsuj1fZotxXttiTwQUpItSAMYbOnGQwSRqOY4SDKKCcJSZRTTgw61aANh88+zOLgVK1e37n+Dds+v4uV8cQ8DzKeVOV5Sz+Z+uIyKGe7XjIvYCa27c9hAJ0hOEKvyddvfWvt99uf+jLdrWczg4AhBb754p+qlTn2+F/QeO5hklgTjlNGY0sbHYcwDBXD1/4YYnW1dszm73/C0kRNijDGGjfQCKnxVEzgJnhOghIJAoM2ilw9cZSm4aW0/ITASQk8QzMQNAIP31O4rsLznGLuytO65nM02XiX01Eya2/2fZVaWh0X5cS2F8rfbs/ryhdtLvw2l2tHLktKV2PMSWPM3wWOYZEb91D6Eye3EPiHxpjfuhx1nctc5nJpZS8oDTFZzlSgsdVF0wyAici95AbuvbMeW2Np6zluevIv0Nqw3jnM2tKN9d9PPoJ34kkG/Zh+L2EwSBmODL0hnO4HnB632EjbjJ02cWeF0eqNRKs3YJYOIVptnKZPs+XQVDFN3aed9uiOT3Jg41GODL7PgeQ4TTMkcA2LXZfFRZdu18UPFI4r8XybHcXNKBiFEaOIGVDSPQoPdVVBrC562G0BlBstZm/V9tx+E0U61/zZ5s+uSo2xWU7s4ixP1yozuomUGR854yR7gYPnu7ieotXxaTQU3bbk4JKh6yd0zAaLvafwoh7CcRkvHSNsLLFpOpzc8ugNBf2BZjiIiaOUcJyQxJmSGo5Y2ny29swnDV/TMt0Y+/aWVma8vUCNL8QmqzSNi7y/120m+2Q/58iUhZySJZ2KMcxzLWXJd2i0fPxA0V3w6HY9gkDRbkpcxypK/YFhawBhaNjcjBiPE5IoJRxGJHGK1qagnOQw+rue/HLtka61DvPcws0ViH1dodu2j5yn4nExPfVzubLlynv2pSNhP9lQqn/ff9uPEzlB8bc0hld/58MF/cRow4O3vpHRRLaUF3zpvYxHMVGYMB4lbG0lrG9peiNBPw2I766nhN36yOeI+xEax64whEBKbdO7yoS2HNESIwIZokjQRmAQSGHwZEJDjVlqhCw1Y9oNTRBIFhYcFhY9Gi0Hx1M2dbvv4vqWCpc7KWwQUVnO3UrW6Jd12mY+pxaNVdt2m7vnMpdrWS6LUSMXY8yaMeY3jDE/ACwDbwD+JvCfZttPA4eMMf+fy1fLucxlLhfD6zcrsrq91O7XqgbWqx2fbbXgo1nE8npgKFvwiUMv4dTCDbXTvOqBD2LSFK01n3/d355Ca7zyE//IeoCilOEgYWsrYmMjYjhK6IeS9ajB6XSR4+kBtkSXobvEuHOYdPUo4vB1OAtt3KaHJ1O8/hm8U08hjz+JPP0czY1nWE7PcNg5w0IrpdOExa6k23XoLri4vsT1csXewfFV4eGxiyNVUDSEyDw/yiI4ikbKjQxyQokUMzTKHTSs7bzodThnZsxATJ3W1K5bP1+hEEuJdBQIUWSqkI7Eb7j4DRfPhaWuoNPULLhDDnobNBlhhkOIImKj2PRWOeMcYmAaDAYxG1sp47EmjhKiMEEnmlRrdKJ5yQMfmaae3PWObZqj9EJONUMB3aifbV9v0SwT/xW4GUy5X/1+D8fWjBnbiIHphbusLtqr39e9nghh07c6DtIReIFNk+w3FO2OTxDYAL2tpn0/4hjCSDMOUzY2I7a24sKYEY4jm3khTUlTa9gwxipVIgm545m/qNX7O9e/nmofmbqpHZzX5yzPQ63lylPkL41MdZmLlAFlf5XYwyGTx5iJOb+WDQVGXodv3FJPs37XE1+gs3XSxrPRmgiHB+6qZzW56aHP4p19jnGGshqNYobDhI2tlFNrhrU3/QxGliqQGY1Z++ifEQuXWDhoUTFsMMYzfTyGBIzwhA0gKkhRUttNGKTQuK6h3TCsdA2dtqDVFCx0Hbrdyvztu7iVuTufvwu0hZrhlJCyMgaC/c9UMZV2ni1EzG7vq1zmgULnspNcVqNGVYwxPWPMV40xv2uM+T+z7SPGmK3LXbe5zOV5Lxdh4SgmNZk9X6KqeG+jERTKQqZ4GDN7A+698x21Qw+tPc71z30DY+D4obvotQ/Ufj/y9DeRvXXSJCWOU6JQE44141AQxpJR6tBPmvR1h75YYEiLyPhov4tqdXGaLaTjYBJN2uuTnj2LPnUSvbVBMhoTJAMaTsJiW9NpaXwnoRmA70v8TClzXInjWlir49n4EjY6ulX6HeUUqStzT4+lrai691+W3qEpiOtEBom9arl5Wet5EoXSKSow22rg0DwQaGGcUQqphKWcqNzLbjO/eJ6L73v4gY2D0O26dFtwqBNxoDmk6/TpmA2k0YyNz6ZYZs2scjZa4NSwwWAIw4Fd3CaxJokT0iIugubORz5be9ax8nn24Ivq/WrGH1MLIyGKFpkM1nqlKJ7bGVv2u1+V8lmLbYLUzmiL3crVzg9yEn5dUQykFCUty7EBQV3PxfEc/MAnaHg0mj6tlke75bDQcWg1Ja4jQEjCBHoDw2CYMhomDPoR4chmxYmjhDRNi8CgRqcYbeket5z4Bo14UGuL7xx7w3SbF0ERZ2c8OW95Hq7Q5/ST/Itcib1Mxo19XHJm/SbPUdE673vBTxArr/hJGs2rv/the4i29/vtOybK6JTb7/tDkigliRLiUBOFmtHIoiu3WocJX/vDtSpsvvfjhKkkNR4GG8tK6BTXJPg6wtMR0sS4RDgyxZMaR6S24sJk4x64DjR86DSgFYDngR+oYv6WjrDBirO5O3dAFIGNmR4XEZRzMplRt2boqBh8d5y75zKXa1euGKPGXOYyl7nAtOdtWgc0xdq9NFDoyULl8btM5A9f9zrW24dr373m2x/ApClow1df+Tcmzmd45Z/8E6JxQhyllsIQpmz2UtZ6ho2+Yit0WQ8bnIxXOMNBNr0DxEEH0e0iVg5gFpYwjSZplBJt9jFrp3HXnqM1OEnDGbPYTDiyMODYwpDDSzHdZkrTF5b/3/Fptnz8IEtpGni4gYcbuEi3NAQoxykWSVLm0PwsUKJUdXhrbuDYVrmUdQNIJfji1PfVOB4iz2KSec+dkhqTxwLJ6QFFerssKrxynSxLhYPrebiehe222h6NwKXVlBxcliw0NAvOkMPmBF0GeC7oZpvUbTAwLU4MF9gKfbaGDlv9hCg2xKGlnBhtbCwNrZHxiMWt52rP+ulDL9yx7xQ9bIYCPgv7m5e5EPSR893khdqv9hvqyIldt23aaqbBbXKr0kxkmbJVOgqlHKSjrDHMUVnaVh+/4dDquHQ6Ln4gaTTAc6xCMo4s7SSKYHMjYThMiKKU0TiyfSTVpJHtM2iTGTTs+PPCp/683m9W7mCruTo1dm2HKni+og3mciGlmBQraIcLbNyY6KbG8j73nQ2l2t+rtNH8n/27lFGwwLduflPtPC984s9oD84Ufw+9Dg++oF7m9gf+GDncJI7TLC5OzGiUMholbPYMJ37k52rlk0e/z+a9jxAbhRYOWigQErRGmQTPRATEeCQ0VETgRLgywVUWMSGlxHOg4Rk6jZTVTszqgmapJWj6knYxf3u4vsrmbhe/4dnsZq4dr5SrShqdmhgH8zk3+02qMt3rzJgaE/Pz1S+W9nOhtrmh59qSa6GHz2Uuc7nYcik8PxXqSB2aPWvS0UyvnmZTUgqaS8XzU+xqgzaCe+6oozWOnnmYY8e/jU41j9z0him+7o2PfBETji00fRwzHkVEUco4NPSHhrObcHpd0B9CP3LY0h023INstI4R+gvEfoekuUDabKODBlqAcASeGdEZn2Rx+ASL6Sm6Zp0VucmB1phD3YhWUxA0JK2WQ6Pt0Wi5FrXhKBzXwctSxgkpQIJyrMc6T7+KEGXsDVVRFnNEhZxQOjOKipmljxYLJzIqQfZ9LWuoKOgDQmZKb36tbD/P0lJduEmVfwpLqVGipNy4kk5X0W5Jml7MSnNAR/aRo028pId0JOPGChv+YQaiydbAcGZLMgxtytbxKCFJNWm2GWOV1Jd++yNTy5v77nxnXTGtWy3Ibq3SJrmuvsP7sh+lf7/bvs7Pxdmvvny7SJVyVG0eZla56FQ1Q0dpVJFlv3EyOLcjbWBQ38HzFc2WSxCojHZiDWqpNiSJIYw0vUHK1lZCFCWMBiHjkTVoJHGSoTMMOs0+M4NGEPa45cQ3avfwneteb9+bizxsTiLPpqwozwN53hqEJu9bT2Dpjbno/W9mNpRd3vtZ9JPapimC3ZaGEsO9t91NIt3iMKVTXvXgR4oAzkZrvnHn29GiVGvceMRt3/goSWSN2HFs42v0e9bAcebW1xIeur5Wnf77PkI/9hkbhxRJYhRaKHK3iRQpnggJxBCXEb4IUSbJo4cghMFzEhpuRNONabkxC62U5QVoNRSNQNJqujSa+dxtUYiu5xaoRUdl6aczpIWS0hqS838Vo0UxT28zd29nR57LXK5FmRs15jKXuewu2Wy4W8CvCyKTMTFmGSumK8hMi/uMrywrpR6877vXv4HNZp1m8prvfNAu0DR87SXvrv0mTcrLv/hvSNKUJNUkiSaO7WY5+YZRCIPQYZw4xMIhctokwQJxe5kk6JAqH/wG0vPwPAffBd+HFgO6usdCeIZ2vI4X9WzwUEfTakqagcRzwXdlEVHdyTw7UlgjhnItBF/ILCNKRj2Z8uRUM0xkiuMU/UTWkReTC6ptEQA1NEceOFJmQUHL80thaTNCWOqAkwVBVa7dd9wswJqnaDQd2l2XdlOy3NGstGIWnSELZp0g6kGaEAmffuMAW84iZ+IOvaFDf6jpDzRRmBZUAp3aOBpaa7Qx3PHI52rPOHJ8jh+6q74Iz/eLVWJuwan3w3o2mOpi8mJrGaUmnRsCdkTfFEaF2fv1+zif/T2iRyqw6YplrDxX1m/ANn0eME86eVBQkfUZu1mqkmtpJy2XZtOh3XZoNiSea/tjkgqGI81goBkMUgaDiHCUKUFZGledpCQZokcbY1MrZ8rWHU9/FWXS4hEk0uF7R149rb1VDbaTXeF8u4XJUgjr7RFr16o8X+knu8rl0GD3eMlZgXO3O4fBZkPpBwt8+6Yfqf324sc/R2Owhs6Qmpvtgzx2w+tqZV74rQ9DHJLm83Rk3+ko0oQJnPrhn6mVTz/3WcZnByTaIzEeKZJUKJCOnSMxKBJ8E+KbCKljpIkQaIQgi7GR4quEhhvjOymu0gQ+NFuSoKlwPfB9S6d03CxmlJKoDGmJoEBcygKRISsUFTufVrft5u6pOfsqF80Fzn5yuW9oLhdU5kaNucxlLnuQ3AtURTtcAu5udvrdJ2OzbTkxsUqaZf4wyuGeO95e++76U9/lyKmH0EbzjdvfRqz82u93PPDH6Ngqx0mScXUHCaORZjSGwdBwtu9weuizFjUZqBb9YJXN9vX0F25ktHCUNGgjmw38to/vGPxkjBf28LdO0Tr5KEvrj7EyepaWHtByE1YWJKtLkqVFRasp8H1J0HRotDwaTRcvsBxdx7GIjTz9a45+UE41Q0oJY809RFVKSmF8qBkpKhHaK5HZ5eRveewOIaaoKMW+UgWEthoHQeWoE99GjHd8h0bDpm9tNByWug7tJiw0Io60N+l6YxoqRukYncJINzmtD9IzHXpRwEbPZrEIxynhyMbQSBNtM1cYm5JThUMWesdrz/eZgy+qrbnri8NKP6q4wapGjEmEwbkq+vvepKxcczbiYXtjwl7SAl64rWy+WXXK+2UOwRY1SLbMKFRFv1EKx3Vxfdf2n8AlaHl4vkOz5dDpuDQCh1ZDEPiglLUBjMaaOIZ+P2Y0sJQTm741o5xkNCUyY0ZubM0Hkxc+Xc968ujhVzB2mrWAxPWRykwbNM5H1zC1TnoeJ5rLtSZXZnco48jsORtK9nnPbXdbA0Mmjo551fc+ClC8m1+/q57RrDlc55YH/5Q4tsbsONZEUcJwENPrJTz1yrvRTokAEXHM8MOfZGia9NMmI9MiMi4aS0WRxuCYBDcdE6RDAj3CNQnKpLgiwRGJ/ZQRgRPTDhI6DU0rsEGtVxYkC12XoKEIMsRGs+2hPBvQ2MnQlvl8bako5VydGzgs2nLCiLHdfFChhl7tMg8UOped5Orv4XOZy1wurMxaCeXJvGuL8Qs/G8yEruYezr0cvR39pIbKLa9Sndi+e+NfotdYqh3+mgf+0JYXggduf0vtNycNeeF97ycOY+IwJkkSksTSGwb9iN5WzDhMGEWCzbHHqVGb44MOG3GDnm4wcJcJF44Sr1yHaLeRgY9wJGLUx2ycQZ8+Sbq+hto6RTc8xWp6ggV/RCdIWWxplrqSxQVB0FC4rsT3HeuVDiysVSrL0S0oKEIgEGU8i6qCncNbq8iNSuT1mTFBc5nYzxekMg94RvadyJ5FETyUQnHNqTI2poYoKDOu7+Bnxo1WW9FqKgIvZbUdseCN8aMtOmYDXyXEXpOBs8DIBGyNHE71GvRCRRglDPoJUWTpJkmcotMyJoJA8IoHPjSlV9774nfPvL/ib1H9uv7DBAo8a4NK+Yuwvzc5Ny2nqmRcyP2qwaeoX9VilEGqBSCybCZTho8sIG6e8lcqaalKnmPT/rY9gsDF9yTNpsBx7bJHa02caIZDzVbP9o/BIGTYt5STOIxJogSjQadpYQRD62JcWegd5+j6Y7W2euDY62t/V4ODZjsTjbtDw+9FsrZ7vq7NrwXv80WRS0A/mb7muRScmLcn5/t8vjaGXmOZB26sB/d86WOfoTHcKOLcnFi6macPvahW5iXf/CN0nFgqWZQQjW2q1zhK6ckOp19Wz66SfPCDrPUUg9ilH3uMtE+IgxbYOAzGIHWK1AnKJLgmIjBjHCJcEeOKBIVBopFC0/RTFpox3YZN97rYhsWOpNFQeL7K0GQujm/nQydLYV6gGbP05lMBvifGQjFBT9lx3p7LXK5BmRs15jKXuZybXITF5CSqYu8T8eyCOdx7Jm1mwlyfSIf7br+7dvxNJ77FwTOPYIzhz1/6V2teIoCX3P+HaG29/WliFeY4tt7eKE4ZjQ3jEMaxoB+69OOAXtpmqJtE2iXxWtBsI7oL4AcWahtGpFt90vU16G+h4xBfD2n6CUvNiG4jpOnGND1Nw5cEvksQ2FgTrqcyZc7FdZWFtDoVj48jS1qKU2aMyGNbVCGsskoRmUU/qcFcs+jtFcoJlawU1SwnUmRpNlU9Ha1QApVlOHE9u9DzPGukaTVd2k2HxY5gtatZ9EKWxTrdZB0/GSKFIWksMHa7rOku6+OAraFgY0swHKWEYcJ4bFEaOt+0JtUpxhhuf/zztecaOQEnV2/L4MYVmEOtc9n/KqaMErEhq9SJuvJ+sfZnIyG2o3DMCvyaBZKbERSWykL6wu6LEk49GRSvGhgvRxtV0BvKtcFApbJ8dMd1siwnFp3hN1xaLY9m06HVUrRbCs+z6A5jIIwNw5FhMNIMhgmDQUwcJoWRUicpaZKlb81RGroSw0IbXvhkHaUx8Dp8/8CLqx1kezlHhXM7CqCwP57bSa9imdNPtpHLYew5p0tuc1ABDK0jQ++5/e563Iw04pXf+3hBK8XA1ycymi1tPMN1378Xk5rsndYkqSaOUqIw4YnXvqtWXj33NOOvfJ1B5BImksi4pNIjFS5pZtgQxiCNRpoUZSIcEeET4ZoYZRIUKUoYXGVwVErTT+kGmpaf4juaRmAdEn7g4LgC11V4rofr25hYjuPgODa2hhCiFli7HOPrY2WZBUoW1NNZ6LirWeZIjbnsJM7lrsBc5jKXuWwrGTR798nYVJS4PZzUgBFTJhS+fdOP8tqHPkIrLDNJv+aBP+JjP/xrJFLyyI2v584nvlT8FoQ9bnrwT3nirh8jiRJ0KnG1g5ApIOhLQRwJ4sQqbEgHdIcARVe5lnfbEOiWix6NYNAjHR9Hx0NMNEIZQ9MkJJ0WDRo01UnGnksPD5W2gICo65EkiihMGQ5jxuPUckW1k3mmJHGSFreutUZoYVEKWbsWsPoMkSNyY1ClgUrloe5Vm3xGhmzfmFLBN6bwMJH9ntNihBRFWjs34xgrR1rqgKcIfMnSokOzYVhopBzpjmjoMa0kpBltoJVL5LbZ9A8xiD36YYuzfSeLa5LY+AiJLpRUrbVNzZndozvq0e2fqvWDp468tPZ39X7qIiqtUe1P4tJ5xWZXq3xMNaSJmPpqV5m89wu6L2tQlkkkh8EUC3MDlUU6BZpHKpvy1yKTFEHTw3EkQUPR6bg4jqDZFPieyO1QjENDHBn6/SSLtaIZDSLiMCmMk6nO4q0kaWlEMHmQYYvYeOEzX6k11YPHXodRLgJTua1tWvtC9I/JFfk1oLTM5cLJ1dAdBNQqaqzJYNuAoxvNA3z3+jfw4qfKefhlj/0p993xdsKgiwGeOPwyzixcz+rm00WZl37jAzx5w6vtuJEIkjCLq2QUJ4+8iP6hW2iffLworz/4Ac6+7A00PWnTtCpIpYciImCAI2KkMECKJA8cHJMKRSocElyUlAiToKQkNQYnSPGVwlMKjUeYugS+JgolPRFjDKSpIk0U4TgGHIyyBtU0Se04mM3T2mjQFPFEcvSYyJFhOTCsMm8LdRV0iLnM5TxkjtSYy1zmcm5yGeknsxZrk8E/p1yhuedHV7w/xddWwU0cn6/d9rbaYbc+9zVW1p4AA3/2ql9CT2gjr7nnd0hzSkOqieOUaJwQjmOSOCGKNcORZmNTs7aZMhhpxrGklwasOwc46x9lGCwz9hcIm8uk7WVMZwnhODi+g6cSmsPTtDafotV7lmBwlk50lhW1yaGgx0IjoREY2m1Bu+3Q7jj4gUS5As93cLOsIdKVGbVDFqgNoUokRu4JEjkqoRZ0rKQL5B7/QnHPYjoaTM24kXvXgcKAkQdAK9AglUBojufabCeutPE0lKTZUDRbDr5vWG6lLLYifDNgUa7TkCMSo4iMR2h8ekmD09ECm3HAeJSy1UsZj9PCI5emGqM1Js3oA5kB5+Xf/qPaEzXAvS+qBIadtQ7M2ic3+lT74yXbr36KzABVjYI/KyL+fiWHMFcoSCILZHfB9jMkRn4/Veh0juZB2kB6RZ/JMps4nlNQrLzAtUYxT9JsW4SP60qaTYXrqMx+YohTw3Cs6fU1YWQYDkNGg5A0TonCmDiKMZkxQ6epDVRcZGPQGDuAcOzsIywOT9ea67vXvT4bh8oHtC2S4HyHT7Od2vf8kmvB+3xRpGKAu2gBviebfnL6nTENT1VzBv1kcptEWH7l9nfU5mEvGfOKhz9Z3i/TaI0jJ7/LgRMPFdmM4sTSUaLIovi+/5o6WiP46mcZP3uS3lCwPvTZCAOGictY+4xNg1D4pDkyz6Q4aYhKQ5x80yHSxDgixhURvhjjiTG+jGh5MUstmxWl1RC0W5J2WxE0FI5j5z8/cHF9i2DM42wUlBRlkRtCVdAYBa1TFM6EyXn70lnaL55oIy74drlECPHrQghT2X70slXmGpG5UWMuc5nLuclFWExOYycqsssCKTdoTC7gphZyNQ22gj/MHNLfuPXNjLx27ZDXfvePMMYQuS2ePvyS2m/twRkOP/ftjM5gCnpDmqTEUVrLijIcG/pjySB2GBuXoWgx9hYYBKuM/QUi6ZP4TYTn4TV8PEfiSoObDmlEWzR6pwiGp3HHPbx0QKBSOi1oNyBwDb4HvifxfRffd6wBQ8kM2upkXF0HpWwaWFXZpCzjElS/K2gjqqSrWCNIHqwx23J4bEYnKfaVQgiJdFURNyNXRC1/2MFzbRwQ13fxAg8/sMEdm03FQluw3IVukLDk9FiRGzQY4YkQXJdINdiky3rcZSvyWB8oBiMIwyx9a2wzV6RxnorTolJyr9ft3/9C7XlGbpOzK7dORZXPDQSm1O8zg1CFgrOPfXk++6qMJ1HQNyqQ4x23SrDN7Tb7vNXUsUraWCxKqouyX6Wi5LBre11Z9Ju8f7meazPkeAov8PB8l6Dp0Gp5BIGi2ZK0WjbejFIWmZTEhtHIxtEYjhKGgygzQCaEYUya2r6SJAnamMIIlsdfyQcKA7zomTr15Ez7CMe7N1LXxnJaSGUMu4Dyf7P33+GSHOl5J/qLyMyqOqYdXMN0w3UDDe+BgR3vHUdDcjhDiUuKlJbS6koraXUprp69d0XtSiuttNJKu1eUxCU1MhSpmeF4bzDADDwa3nTDNFzDA+2PqarMiO/+EWkisqpOn+4+p49Bvv1Un6jIyMhIUxkRb3zv97m639nURiM/GYEltLGvRy+bG0WHPKKDH7BCU+yfPJWdm0PfNVc++wPa/SkKqcpTZ97I1NgJQZnLHv1aHsHIOilKEQHLWF685ENkSac6jDW0vvs1un3NTD9mJm0zk7bpZhE9Sch0glVJHklXUDYjsimRzdD535akJLZPy/Zo0aetU9pRRqINYy1hchwmxoR2SxjraDodJyWNYlWGZ0/aMTr3M+XLSf0+IOirg3d92G9HupnyLRcopS4H/tZSt2O1oZGfNGjQYFmjNEct7SkpV3Lngzr3MtQAvzDdVJBGbR7Y+hFufvLPys3nvXwfJ+zfzb4NZ3LrtX+J3/jW3wgWym+669/w1U3/2g3kIutWhRF6XYXJBGOc53TBckBpen1Nr9MmbsVgLJIkJO1x2jLB2n4PhSFuubUosQJpH/o99KEpxlprUO11ZGsVqtWB8T5rxzSzPcWeSKE1ZDamZWKy1LgJW98gKGIrzqw+086cVetywlaatOpiUGoRzSA5VDeAKWQmikpyUlhreKvu/mqSk5y4SWucRI5s0YrOeMsRMC3FurUJYx2Y7AinrEmZiHpMSpfJdI8jJJSmO3YCXdNmJhvn7Zkxuj2Y6VqmZwxZKmSZkPUNYnLCyeZamfwkOr1DTE6/HZzPS6dfMefqr/KkJYGy4wjTwTXMn/GgoBCO9xXl76D+/FdnNKS9qjDlzlfuRA3uVDuOLzlxt9U75pB2lYxgvfw80sVzVdTvVCnVM1TKlJSqovloRdLKyblE0xlPiKKIdjuXnESKTsdJTgr0+kKaCdMzhulpQ5oaZqZTet0sJyCzMsRvYdVj/clZaYEhRFmPba/cF1znJzbdOJLobSKeLA4aQsPDCn0OCkVadS8Hz6Mm7APgnvM/xYW77y4FgO1slsuf+QH3XvRZFGB0xEPnf4xbHvnjct9zX7yHNftfYWr9GVhVOP51+8+0Ouy+5IOc89C3y/JrfvQVXvvkb6F0CxVH9E1EJ4qhDYkWUAmRSkmyWWLJ0GJQSlBKiBCEDIvGKo0ojcK4kK+JzYmHiImWZqblHHxm4hyH9vsRMzMpaIWJI4xxoWiNVkTWfbfWorQNZHGFHKXoigMrGAEdhT7BViIWmqNbileIcmYzf4Cbg78JnHL8W7E60dB2DRo0ODocr95gmJJk3qa0gx7gi85+sL6qw3xoy4foJuPldoVw7Y5vICIcnDiZN084N9h/w76XWPv2C4gRbCbOOqBvMJlzIJr2DLMzfaYP9en1Mvp9mOoq3jrU4o2DbQ7MJEz3E6ZlkunJ05ldvwlZuwHGJqEzhohg+ynZwUNkMzOo2UNMdN9kQ+8V1qm9TEYzrGvNcOJEn5PXWtZMQLulGBuPGBuPGR+PabUrq42kFZVh41Sk0LHKQ8dV0hDlWwL4zsbyMHLF6FJr5SKn5D4zSm/svs+MmlNQF4ZT08rDzrZaEe2xhDhRjI1rJiYSWglsmBTWT2S01Szr9QEm1AxiDJgMQ8w0Y+xlA4eycbo9y/4pxWxXsMY5B81yfwimIG5K3wjunl/5yJcHpSeX/WIpqSnJmOLfKDLtWNgNVQ3ay2tM6M2+jCSjfHP7ah/8++N/CgdyWpdWHmhQUb67n1aUciT//pHvTy45cn5R6mkquZF2jmAL+cvh0irSQb5v5VNaZuTRAKLY5SUtZ3XUHktotRPi2MmUOp2IJFaMjWlaiS4tGbJM6PaEqSlDv2+ZnXW/xSw1pF3nGLRwIihZLjWxlnwZtnzXFXr2LW88QiebDR6BJ864nvrDUa5TF/MKzyrsmFAQQ8dYzWpAIz+ZJ45Tfx30rfM6pK0VHBINxdteyEv2rjmdp0+/Jqjp6me+T6s/DeJIycfOeR+9eKzcrhAuf+ybWCPOSXTu4Nv0Df0049nLQ8lKa98btO77GfsOWvYdhJkuTHUjDvTG2J+N07MJXWnRV236xFiK12pGlHXRWZfYdElMl8j0iCQlIqWje0zGs0wkM4xFPdZ0+myYdFFROm2VOzZO6IzpygF4O6HVjp0cJc4jpOTvShcWXZdyFIp+utZvrwL1yYAB0kJ8lgB/A7gW2An84ZK0YJWiITUaNGhwdDhOg8kBSUph+z/PveeTVT+XXjzOQ+eGIVy3vXQX6w++iljhp9f8VjAMU8DNd/xrZ9pqqwgbWWbJjCHNDFnmQkh2e5bZnqXfh9keTPdipvptZkyHHglpMoFMrsWuP4lsYi1Z1CKzmqyfIrMz6N40kenRtrNM6Fk26IPlhH9CdxlvGSbHNZMTmk4b2m1Fux05ScpYTKsVEcdOjtJKIpLcy7qKVOmkszRxzWUmA5KUIi/JZQpJWKYgSCJPcpIkCXEcl44dk8SFam13Ylq5XGZ8PGFiPGbtGsWGdbB2LOOEzjQntg8xHs0wxjSxWAwJ0zLBQXUCU2aCvb0OB2a0s9KYtfR6OZmUFhYaNr/NoWXAlufuCO5xrzXB/g1nlwSGb1lSRYUZYuarFiDtSS9GpguiqTBF9iQ/1Se/J3mZaj+XH8UxWhfEUi1d7BcXZfO0f/+956EgHuLEeen3w6qOKl9Px3k74yQun48yrauwxHES0+q08gF+zNhYi3YrZmw8ZnIyYawTMT7ufGjEueNZEWedMdu1zMzmf6dS+rMu6kG/m7poCP2MLE2x1mBsHr7Vj3RSWC7l0qWLXwqlJy+eeAGHxk7kcLO4OeV1R4LiGfbS70T4v+cGh8FS9NdHdcgRO/mLG+KsCu8+/9NBkU46zZXP/sAVU9BvjfPYlg8EZS7Y9VM6M/sQyftq65wCi7G8ddJW9p66LSh/0k+/7JxOd2FqVjHbV0z3E7pZhxkzTs+26JNg4xaiY3dsa9E2I8l6xKaPNimxTYklI5GUhD7jusdk0mUy6dGOU8ZbhvGOYnJc00kUnXYhI3WRzJL8XZkkcS4hjXIrx7gkf52/Ia/vrstL42bKt9RQSm0G/pf8618F+kvYnFWHRn7SoEGDFYn5rtDVyw2bWAyr6cGtH+HqXT+glXUB0AjX7PwWP77ut3njhC0cmNzI+qk3yvKnvfEkrUN76K05AaUUFudXQ0SIIslDSWbMzCiyVJGmAjrCCGjaTEcwGSckHUXU7hBPdlDjM+jOAXT6EjpLiXqzxKYLvQNIv4Xqwtghy7geY0LG0fpEtFbYtWP0M0U/1RyaVkzPOFN/YyDLDGnfOTRVkSLKJ/1xrjGWqAhZaREhl2yEMpRABZ3LCIoJRumDAkorgcLCoIhyEidupUlrRSd3ZJrEirVrY8baivG2ZePajImkz4TqscHsISZDacG0xujToUuHPb01zPYjZvqKqWlIUyFLXfQKa/IVd+O1X0ArjShhbGYPEzN7g3v+4uZryra7nXypiVSygZFaD0bIM/z0aGlHlR5VRg1cb3edi+KqTHsqmXJCU48uMqrtdZlLecz55PvtHXV+Xn6xCltKlaSKcoKCKK6InUJyEsWasbE4t/bRTIzHxLFyH8/Dfy+XIM12M6amnOXU7EzqnPhmxkU7ySOdGM93RrEa7E+Yi+s73j3IOW8+Fly6JzaF+v6RWKh5pf8MvoMtFRpCY/XBvSKrZ7oeDaW0akPx1rrNPH3aNZz/2vay/NXPfI+Htn6EtD2BIDx03ke58pnvEVkXASw2fS7Z+T22X/0FRIEWt0qSpQZrhacu/QQ3vP5UWd+GJ+/CvvwyhzadSWYUs63ImbdFMWkroa1arI0UUQwqitEmza0yMiIxWDEoHSESocQS6RirIozOiOjTilu0VQuFhjhhvBMx24MDhyJQilYSkWYRvW5Gv+8sKo0x2HyRxL2zLFZrZ9FZ9NdD+u04XvlTPk8xtGD1HWf8a2AS+A8iclvjHHRh0dB2DRo0ODpIfSVzkTysDxyXUj4wn8L1coVGvu5dvdCmFp/Z1iQPnxuu8lz4ws/z8J/C7Vf+erBNAe+++9+4AYbJV3uNc0hmjSXtZaS9wnGl0OsJh6YyDhzKmOkaepliKmvxtl3Pm+YkDqp1zMg4M/E60rWnkK3fiJ6cJBrrELdiWr0pkkNvEe17A3VoH8nMPtZlezhR3mZda4qxpM9ky7BuQli/xnlYT1qKdieiMx7TGYtJWs4yI0kiknb+PfGsAfzvUSEJKFbanePKOC6kDVRyljxMq/soksStniexpt2OieOIditibMytQo2NaSYnYtotxdoJy/oJQzvqsS6aYq2aAuNWvBDoRh0O6nUcshP0esL+mYjpWYUxLtpJmrqBXaE7xvNnUERoESVc9fCg9OSBKz7nBtT+RFF5CV1qUgYnk3PKM0ZINZQnyVDKaZ5LXxJRKQOK4thJSXyLjeATlZFkSudwNUdxUexFnfGci0ZefWUEHO151490aTWhcod1OnZRSJJW4qLoxM5Dv4pVmda5rCluxa58lDv61LraN687SZKyLa68Jmpp4pazIHHPpntuOmOxe4aSiPHxiE47IkkUrUSTxG62b0XIjLOKmp429HtCr5sxM9Unywz9fkra62Nt7hQ0nxwUFhoUH++VoPKH5MKX7yISU972VLd46tSr8B6ywY//kB0FBt+t71wio45GfjJPLFv5yeD+c0VDKUjHAndt+4Vg/046w5XP/MD9jgWmxjaw88ybgjKXPPV9dG8Wsdb5mDIGk7kQr7u2vpt+y5OeinDibV9mZiYtnX3vm4J9U4qZnmI6jThkxjlgJ+nSoqfbpLpNptulHEWJRdmUKOsRZ12SdJZWOk2SzRDbPmN0WZdMsy6ZZizusaaTsW7SsHZS02orOh3N2HjsoqMkTrbp5ChRaUlZREfx++mqT3BWmDpqpnxLCaXU54BPAnuB//cSN2dVYuXTdg0aNFgyKABrqwne8RhgHtEhRpuySjlTGbGngu1bPsKVu35EYpyFYCSGq3d8k59e+5d44fQrme6sY6J7oNzn7N33E/Vnse0JZyJrBVHOSWchm8lS41bTEaK+RimY6Sq3UgPMZC2iJGHKGlpaaGOJ4jGSTpd4zRq3ZiWCEgPdWVTfEHUMumOIojad9jjrOn2SRDPb1wgaiEmNRmlIM0uaClE+kc5yiYbJrCMnMovVbgRpjHNoVg4kC32zQO4NtfQZoHRx3XLrDMgnx85SI87NYyONkxK0nF643Y4ZG9OMd2DNuLBmzLC2NcsJ7Rkm1CztbJq27WN1RE+1mYnXM5ONcSAbY3+3zWxPMz1r6HXdqnyar7g5a5PiGZDST4S1Fq005zx/V3C/u+21TG3YjA5W549uIqB8eyA1eiBZTsgGjCbyDO2tTJZ+FEKnor5lyagJntLKW9mv8rVSZbbWOlgNLdJahfnFtSS3soiIynYVaVcm8qw/oiLbe0eE5WMVle0pwrcqrYhzAi2KVO6DRZEkmrGxhChSJAm021X4YCuQZZZ+X+h2hV7PMDub0Zt10Yh6vRTTd3KwLDX56qab2FQWSkOI2lyCculLPw+u7VOnXU3f879TTuqKP551yjFxEcFET6rr6KffYfCtwxocBp6FlPu6ONdsqMSqrtU8TA2DO43e/631Z/LU6dew7VXPWuPZ7/HweR+m35oEgQe2fYKLX6iiXI31DnHBs7fyxAUfR+V9mmiw1pLqNs9d+CEueOQbZfkz7vsmL3z0t+nGCpu4KCKRjpmKFGOJcwoaJ9DGkkgXIUMTgY7y/tISiYAYxBqsUmiJQQtojaLFWBQhkSN3Z/qazMZkEiFo+n2LIsqJVffuMlpAxWhlsUXUNcn7XnHEri7GOfk5RquA1BBRyAKGYa3Vderhfhci8vLRHEcptR74l/nXvysib81RvMFRoiE1GjRocHjM9aJfogHlfAZlqjD3H7rRTw4fiM101vHo2e/l6l0/LLMvfuF27r3oM8yMn8g9F32WDzz478ttWiw33PfvuePmv+Y8kRuLEoVERZx45zTUGsGkOpekCFM6Jk2h29MorbFaAevo0KLTGkOLIWnHyJiGLEX6PWTqENKbRboHSdqzqLEpNEK7peioiH7coati9qpxDugx0GOMG02aKmZ7wuysG+Rkuewkyyxp3xLFUpm0liFQqzmVtba8XqX8hEJyIp7kRALJSRTnE1StaLd17tvDWZCMtRWdluXktSkTccqY6nICe0gkQ5OhIk2mWqS02GfWMZsldLOIQ7M6j2oB/dQ4CUFBJnljYt/Bp9aasak3GJvdH9zuF89+FzrSg6uEo56dw8hMAjmOGi7PKOQXA2UUQ/dVyoUmLXx9iIgjooqmFvITG3IpvnPRin9098y/f5LrVpR/fC9fF5IXpdCKMl2UB6+9umiLV6aWrq4H6MKxHbgVxnz/JImJImfp0enEaK1IYuh0ivDCoPMoPdZCPxWMcWTG9EyGySzd2Yxe7j8j7TnpiTEGkzmLqiLMb/mvZhlRXN9TD7zAyYdeCR6FxzbfPOIhqV/7BURgSfTOndA3hMbRY7HJjepAzjKugPIkfe749XZRSeiGoN5XK+DubZ8JSI1OOsOVz/6Qey78c6AUe9Zu5vnTruCc1x4uy1zx5Ld54rwPY+PYvTCNO6hoYeeFHw1Ijc7UXtY/+BP2XPMR+rF2/SGCtYqZJMZOKogSpBWT0GGS3NpMKZTJiGwfMX20zVDFe9RmaJUS6z6JbhEpS0sbxlotZnVCpMaJo5ixdkSvr5iagZmus1AzmaXft/T7+VjCWIwFm1mMMeV1tJ5Vi1ghaSVHcOPekbh/HmWO9gfzvwOnAnfROAddNDSkRoMGDY4a/lzOZRyHVUNPShD6CBhS1PM5MAgVllPhgKmYpN1/3se5/PlbiW0GQGwzrtn5HW6/8td4bMuHuPnRP6XtRUK44Nnb+Pm7fhvJLRQ0LnKFIcNaZwqKEVDC7EyfNImIItAqAlHsn1J0U41eo5FIYVWbpH0yhgmSliLqTYFqQWpRRsDOusmtSel09yGHMtJYUMl6lI3ZgCFJDForDvXbJBHEESSRZnrG0usrJFaYWBNHTr6RGetWMARMVpAb7hrFRKXjTbcq7VaG3KTbzaR1lEfegFye4lbeWy0XlSKKNeNj2jkxTYS144aJtqUd9VkbTzEuM+isR0IPpRSpTphlglnG6aVwsNfiUE+TZZbZWej3LdaCNYI1vs2/UITqtd7zcsX9fzogPXn4ms+XZET92SkG2MFgu7CiqD9b3vdIRSVpoCOdT+rz/FwKE+nI5es83yMtrLWlnwx3fJX32kXI05xs0FXYVp2TECIuMk0Bl+/aV1po5GmKn21JoFQ/GqUKy408rRTWSpmW3EpHK40x1smQcrJOKRxJl+cPTefRc6wVotxDv1KqdPZZ+M3QWjuZSUujlbPciCJ3bYxxhIa1Qr9v6fUMaWqdDr2XkaaGtJ+S5cRXlmbOIiO30ChZO+uZHjn7Ks9SAy55MXQsu3/sJF46MXQsGDwHxaO4EK/EuWZ6DRrUMYQtGHgUjwMhJEgVRhpHcMztMLcQbXh1SO297PXVIsJbazfx1OnXsu3Vak561TPf46EtH6LXmkQQtp//8YDUWDf1Bue8dC+7zroBi0YwoCKUtexZfyavn3Yxp772RFl+8z1f5Y3LP+jeazNgrUIrnf+NyazAhKWtLRKNY7VCK2fpGIsiUpBIH43K3wuZS8cJiWQoDP2oh2UCVMz6luun9/fGSLQiUpo4UhxSCpvo0odQr2eJRWOtkGWKLK1eEyYnPIp3tV4FjkL9BZaFqm+xoZS6GfhLQAb8FWmcAS0aGlKjQYMGR42Bockyk58UE6uwC6kma3PWmReYGjuBx896N1c8f2u56bLnfsL9F36ambH1PHTeR7l+x9fKbbFNufqRL7H9ys/nsg0LorAoN3TKPEJAaVCWXk9AGaxodM8tPU/1Y4jb2FhoJRMk7ZhZZYjjDoqDRL0uUdRzzr+UQSmDmC46jYhn9qCSPpGawEaCjTVpa5woyeiniq5yJrSiNHECxkA/tUSxIoqEzEiuN3bWHFaqyZ2b4Oly7lfIUZzkRFBKl5NNF/VEozVEWtNqR8QxtFuasQ50WjA5Jkx2DJNxl/WtWcbVNJ1sijEzg1KQRm168QRdGedgOsGB/gQz/ZjprrM4yYyLcOGIl+Je51YjWhNFzrokiqPSZ8KZNenJ7Nh6Ztef7sQQpdlD8RB5z0hdwlF7bnyZgcIjC/JdVeI51dSFSEVQiQra7HYQYh1VdeuqokLeI0h53V0ZXdyUgPBzpEeeVgpRRT1eGaXcimqeP1imIFe8i1Ccp5v9kyivvao4O0F5EpUyLYJqRZUFjVLu5wC5TxBFpBWtVpTLmCgJDa3B+bxz5I01kBpHaMx2LVlq6XYzurOGtJ/R76WkfWeZkWVZ6T/DGhe21YrnINRWXgH8Zz7KUi569Z7gfj+++abR77yFHraOkp+8g9HIT44Mx5vQcMccPE54zw7XjvpLtqgk/H7ntk8HpIaz1vgBd1/4WRSK3SddxBsbzmHjvufLMlc98Q2ePfN6lOQWJBZEu9/7zos/HpAap7zwIK1Xn6N72jmODNaK2VmFsTlhEEVMxS2yCEiEqC20tSWmi7UztFUGKs7HAwYtrrPSqTg5SmTQsUEpS0+3HdGSxKBjuqlGKY3SCUpr0kzo94U41kSRs0zLMkMcabJIY3NrxcgW7zB3wZJ29X5uMBTXAq8vZIVKqRbw73BP6r8QkccOs0uDY0BDajRo0GBFYnAgO79B2rCx3OEiotx33ie49IXbSweBsU25+unv8PPL/jz3XPJZrnnqW6UlB8DlO77NfZd/DhSIUrl5v/PnUDglLMztIaarMozRpH0LxFhxFEg3aTPWilBRhJUxJGmTdNaSqEOMG+gQEeksr0eBzVCzU6j+LGPJAaJkDD1xClEMSSemL236mWaqlXCo2yKJE/pGk2VCP43o9oS0Va3wWOv8E9hidaSQduQDucJU30lOcjlEKTlxA78kcel2yzlzjCJhYhzGWtCKMzaMp4zHKW1mWMc+WjZFk6KUYFVCRsIhtY6utOnaFod6Cb2+yiexEqzSF9YPBaGict4oVo6YUcDEwVfozB4I7vXL591MnETlczU8kscQeQhuIl6ldVkmzB+UebgIH3hSjaL+Khypc+bprBgKOYbYQqrh3NnoqIiQUqVtQUbk5Qv/oyJOxuFWbR1pUL9/TloyKDMJIq748pOi7dbL92Um5b6+RCWsszi/gs/xnc8msSrTcVIQK6o0rS4IOZM/D7MzKdZY+j1Db7bvdPJ9Q5Y6R4AmM4ipwi4P86MBftq9H857/UE66Uzw3Dy+6cbDvm8WxEqjqKecyDWTeGjkJysBdR9AMKzvHg33cx9CjAR+fmDP2s3sPP1aLvCtNZ79AQ9u+Qj99iRKKbZv+wSfuOf/Lrdv3LuL019/nNdOv8xZH4qAuP76+TNv4PrOWjrdg2X5zfd+ncc/8tfL94IVaPUVIhGCwkpEO26RdjSiE9AJsXQY0wkoTaQELQaVpaish7J9NDZ/r2Zo0yeOerR0iyixtGNhPO7Ti2MORB2mY2i3WqQZzPYU3Z7zJ5QZS5pq0tTJSN370eZ9o1C8L9PuypefWBY2+okNv75+tD4z5sDfAy4EXgJ+b4HrblBDQ2o0aNBg4bCE8pN57+5NrII8z6S1ynM5BydO5snNNwZOAi979sdsP/+TzHbWseOsm7n0+dvKbe10hgue/hFPX/Bhl2HBGoMSjdXOUaVYyFKLmJQ4UlgNGYrZGYvJUmIdE7mWsnd2jK61KGA8S8lkHD12MhK1SGJLbHrkDARinM8NK0720unvJ44sSdsyE60nVpooaZOojDgaZypNkBjaiZtA9vrQ7YMiyp0uKrLMER3FNTM5y2Gtyv0Z5KtVmpLMiCI3OU5azgdCFCnabejEkCSWNWMZ44mhE3WZjGYYk1mirEssPTRCpjSpatPV46SZ5pDpMJ0mGCN0+86XBuKcgxbh6xTVpNeZ3FaWDNqCKM2l9/7xgPTksev/AlEclYvh2rPuCdOqGGVXFkAqtzKgeF4Kj6mh5YZWxYUaIs8Qm1sqOIlKYEHhhSgtiBqoWV+UIXQH80X8Mq7BUV6mIGWq+qmsPHJCRKnqJ+2HjC3yS5N2pfN85yTUSVQEXUhwyvzCHDoqZSyOMFLEcfEcFc+SItIEhEdBrpn83lsrdHvOH4xzEJqR9qzzm5FbZtjCf4a1ObFoKhIj9xnj2zWXSVUQQMIlu0PpyYsnXsCB8ZMYieJyL5T8ZMCEqEGDY8BxsvY5vKXG3CgsAcvytZ9A2Xcrxd3bfoFtr26neAN20hmuevb73H3RLwLwzOnXcmDiZNZNVz4ar3ryW3xr48Wu/ihCGcGi6OuIp7d9kMse+WpZ9uxHv8/j7/ktUjWOiHuPIprpXI4SaYU1ClTs+l9l6SiLqHFEQ4QhtmkuRbTEWR+FdeS7ybDKvd8jbRnTkKQp6LVoElRiiLVFaci0phUp2rHmUFchVpMlQj/TdHv5O0vi3FdW3jcqRW+6kZ8Mq2+xoJS6APgf869/XUSmF+9oDaAhNRo0aLCQON6rZnU5wLww1FTjsLh326e5+KU7yIUXtEyPq576Dnde9gVuu/zXuPj528ttANc/+iWe2vYhislIZemQy0/ErdpbNFla5Gl0ZNGRptt3Az+LJo6FKE6YzsawWMaUohWP04oFWn1Mvwu9LsxOozKDpH20mnUrQP2YKImJewdIYkOPNjHjKC0w1iJJNH2j6KcuQkkcO98F1jryIssijMGZ6EvhfCy//LlZq0ixmi55aE6ItDjJSa4NTmJhrC204oxOYphMMsaiLhPxDGPSJTEzdMyMk+joCBuNk+oxZmWcKTtJL0uY6UfM9pz5bZYJmSEfwDkLEdGCFk0Uk6/+O+uYwmeFIJzx7N3Bfe1Onkh2wqlUAVe9x6KwTKAYVOdUQOEUFe0Co5cWHEV+Xqae76V1YfmAoFRc/nS0T4TUfGLU00JIVgxLS5HOz6OwyCjIg+I+RpHnEFRTyouqqDZuglLM0QfIDanKFRKgqkxh5QGF35X6nMqRFi4j0pRym9izmJbcnNpYSkKj33eWGGlq6fUy+j1D1jekaUqaOkehWT+rHIJmhXVGaKFRPEclwVE0UmBydi/nvFWZogM8tjkMEzlUsnRMCJ3dNvKTQTTyk2PAirlmh2mnt/nt3LfGBa/eV+ZdteuHPLj1I/Tak1ileWDrx3j/I/+x3H7Oaw9xwv7d7NtwFlhBPKu6HRd8JCA12t2DnP7ET9l9xUdBKXq93HGzchZ2cRxhEtcorWKm+h2ySGFcIBR6icXYLhGztMQQ2R7izAwduWEMkXQhitFiiaxFxUJPtVHKupDZUUTfaLpphNYxKlKkBrIMkkwTx06OZ0UwRpf9tYjQbuQnxxt/C2gBzwHjSqnPDylziZd+v1Lq1Dz9rYYEOXI0pEaDBg2WN4aMaQqT1tIEVdTIsgPVzVHG99+kylVah/0Tp7Bj841cvPvOsswVu37Eg9s+wWx7Lc+fdiVbXnuw3DYxu4/Nux9g96arEaVAuUgoSinInUEaBUSQ5SvHxth88u0mnyZT9PvOHNa42CZ0Is2YbkOiIR4jjtpEaRfVmyVWbxGh0GkfLQbSWSQCtEVsjyQZp63bJMl64tYGWoliotUmNZpuFjHdT2i3IoyN8qgoin4GxroJqRVnEGJMsUovhfFBHiLWTdbjGLQSklhoJc5h2njL0k4ssTasac0yplNi22NNto8WfZRkxLaP6BhREbPJJH3p0M9aTKUdeiYis4o0c4RQcbOVdpFVjAXQ7qkQR6o4EqaYuAsTbz5PyzMnBnjlovfT6iTlvdf+RElVA9yhchJPtjEg4fCjhugqyklBMDj5SS1SiFdPJcmonGgWMo9CuuTyHdlgxQ2cFRVJQZ4eRl5U6YKY8KKsaI+wYJC8KBdNg32dlYazuigsNobnl2mqMkW0nOI36rif4hoKVtxz534nTmpirSVNXXQTYxy50ev28+hClqxvcv8ZUllpSB4hRywVieHxEMVv3pOfXLL7rnL1F6AXd3jqtKu9F8fg+6PMP8q5Y1lVcCPyvBUzIV1cNITG8scxy09yS66R22vb7tr2C2x79f7AWuPqZ3/A3Rc7a43Hz343N+z4KmP9qXKfq3Z8ix9f/98hWlPoFK2F/ZOn8vIZV7DplYfLslse+ibPX+IWK7RSWJO/L5QBFL1EkVqFEbAktCPFRCvCqhhpRbTUOK14BtBECCIZKsvQ6SzKpiixYDMwGdr0iKMuSdQiSVLakWEsSunrmBndZiZpM24gzRclepmmn2msKIzJLSzFLTpYC/3plT/lW0mWGkA7/3su8CfzKP//8dLnAA2pcYRY+U94gwYNlg+O1wriwNyhRkbMtesQ+UnlGZBy/FRJUvLvSnHPtk9z4e67AmuNq5/6Dj+/7PP8+Krf5NzvPFiWV8At27/IH59xlcuwgign2UDr3ORUEDGoqJJNuJCvbsKpdUSqFIdmNH1jnSl+C4gUB6I1pNJGKUVHOV8Gydh6YhXRNikaAzpCW4N0p5G0jx2DKM7oABEpSZQyE62jFWnaKqatW8yYhNm0hSRgRdHPHJGQGu2kGLjJpbGAVejIjQMj5SbYooRECUkCSjldcDt2prPjSUpH90l0yridomVnibNZJzkRZ/ZriElVh0w0M9JmRjoYsXTTmL5xVzfL3CS3mFAXkVeUFrQStChvQlxMxhUX3P7FAenJs+//DaJIl1IK3zohtDYojSzytHsKnORDV+TBCKlGWUY5vxaFtENr59it9JkxQEIUT5MqrRmcZUxFJpRpcouH3FKilAZBSFQURALVpKE+eVCe3EPraoufX6ZzyxPJS2lVVlwSJwWJkhsq5e0sSIzwvVENXB2xYHMLjcwIJnMERb/vCA1TSE76LjyrSZ30pJCcSEFmGIuILS00CiuMyiojJBJKgu8QIZ8AAJB3SURBVMIIl+6uZGcAO0+7jixql9/L949PPISX89hQXJBmAt9gobBU8hMZQnTMY6FhVL9el47uWXsGO8+4jgtfubcsc9WzP+CBrc63RhZ3eGTLB7l+x9fL7dtevIO7Lv0VZtachBJnoajEvaie2PaRgNQ45bUnWfvqMxw6/XxM5H7wvV7+nlSAaGbRiNVEGiTRiCTOYk5ZjBIMHdAWHWfEpufCv1pDlKYoLFosYvpEGZhEiIyhjaDpo5L1RETEUUqsU6aVYCJNFruFiZl+hOSOvNMM0qwirrtjh7tbDRqsbDSkRoMGDRYOx2nQPTQk3LwPPUdBNSINgLBvzalDrTW2n/9xZsY28OqJ53HGnmfKbesPvcaJe3ax58Qtzvmn0pW5uwWrnH8NmwkZxvl/yCfpad/50DC5o02tFLNdDSai08pJjzhiSgmZjkiiGOKMuJUSTUyibEYe5xRlDKQZkRVUawxlLVoJsYloYemTOFlKZIhjoZ0464zMQhpHZFaT5fPAwmmolWq1XVDEuvChICQRRNoQaUs7tiQqox316eiUlnTpmBna0iVKu8TprCNLdIToBBO16akWs0zSlxY9E9HLEqxVZEa5AWdJLii0FkRys1vr0kpVq/ASSzlh3fhMGL2iu24jsuFkWp7MxLewKMkNIY9WQlkG8se9lJzo/LtAni6sElRJCoThWUvJSSEtUfnAmIqsKODLM0bJNvz8QXmI8tKDVhgj5xgjfi7DfirDiobEkoSviPw+CqpcIRVb8QKF6bTz7WJzB7bi/Gfk4Vn7PRfhxFlqZGQFuWFMHu0m96EROAN1x/Hb6MtQqg1wxr5n2DD9ZnBOA9ITr/yCYpGXEVc6GvnJMWApr5kMEoGj76Gqdgq+D/8KcPe2X+CCV+4rrTXa2axnrSE8dO6HuOap7xDbFIDIGq58+nvcefVfqBoEIMILm69hevwEJmb2lvVvfeTbbN/4N51PrJwbVcqFVy1IW6UVM12FtQorCqVjkmSMTEd0tJMtJonFZl10OksrtugkRUyW60fcx0lQErTNiG1GJJZMt+jplCi2JJGiLxGpiWhFLVoJGGOdRC/WZNaR5gLMjtXcYq5AWFlgR6GL+IoVkd8AfmOuMkqpvw/8z/nX94nIbYvXotWPhtRo0KDByoc3UTxs0XmO5YatMAHcfcGnufDlu11INiAxPa55+rvccdkX+MnVv8Wv/fB3g0ne++77f/jyR/+RW5W2gmCxtYG4VcatrmgpJ7/kEVHiVKOISslFL9G0EhAijAhWxbTp0NITrGvFqKRFPNZCmxSV9lHdKVR3BpXOEvUFZVK0pAgZYnu0k0NkOqEfjTObrGEsGiOLWxiJSCWibxMyG2Eldp7HrSKTYkZcyC2EWIMSIdKGJBKUsrRUSksbtBjGmaYlPbRNaacHXbQYa9G2Dzoik4g0GSPVYxhadG2b1LawosmMzh2fuvsXRS6kp5PFaLS2pfNN5wvEiZOKFX6lYOylp4m7h4Jb+tY1H6HdicsoIIILPVtOxIfISRSFo83C0WdB7hSWEbXySpXORp1lhirbVMkzPKeehQxDCCQcIEH50kqjICry5y00RXG5gpMDVeRHnlbF1sIyREqLj5LY8ScgDEaGqaxZpCRO4MjSVdhBynsIjtQoPPgX/jOMKawznOPPLLX0u5krm1kyp0/CZi7SSWF1MTTKiZ8mNLQo5G2X1hyE7pk4lVc2bOG4IGhQM3GvoyE0Vh4OJ0ep387ifVdZloXkxrAFjj1rTh9prdFrTTLbWceTZ9/CZc9VYdov2fVj7r/ks/Rb4yhxv30rgqiIHed/kGse/lJZdsvOn/DATb9FNrHWhYWWyldFlmmM0c6SUVyEkrG2xojzj9WOY8biBNuOUComiVNiNYsoF65aTIoyGao3jTaZk6SkhshmiOkTZ10ynZC0JkhllvHWBJmK6EVtelGblBYWtxDRNzFGNIIjV7Kx9EhuVYMGKw4NqdGgQYOFw1KZSJcW5DLnAAnCleNBqLCcCgdNIsK+iVN5cvONXPJSNdm5YtcP2X7ex9izbjN715zBiYdeKbdt3PMsk9NvMz15sptAKV2a3YsVLBarVe4NAkxmEcnQuXWGwdLtKjKTlXIFpRQHZ6Bv8ol+kiLETMfrsCpBi6adToFKiEShJSIyGS46iEJnGTJ7CEl7MGaQKKYdp0TSJ2WcXrzGDYRUTF8npDohlZZroYLMRhhx7Y1wshGthQSTy08MiUrRytKyfVrSJbJ92tks2nTRJkWbtLxnhgSjEzI0XdWmJx0X1SLT9E0EIs5SBDeJt1REgLV+lA9VEgEoQQu5Izc458d/OCA9ee2jv0WrFeEIA01AGJTPSGUuUTwLRRlKSUhx7PwZUgXBkIfzrT1rodPPalDvW10UDEUpexlmpaFC44AibG3xbJGTB9YW+4n3E/UdUYo3QRxMQyUHqa6ev69/VQuSRKiICz/tQg66dticrKvqcZ+CyMhDCufkRpYasjwkctbP3LaskJu4fGstYnICwycxCge3kl8oqo+zWPEkJzmRk5heECISciuNUabwQyZsx4Zw1bghNhosGJboeRopRxnZFve+KIuX7/nie0FIhqZmd5//6UFrjWe+z10X/yIisH3rx7n0uZ9W29NZLn72xzx44afyCE15jUrYsfWDXPXIV6qFjHSWs3feynNXfArQpGn+7i3Y65yk1Rpa4lxQW3IfSi2F2BhkDBSMKyGmDdE6lECLGZTSaOdAyC1OiEBOdlhr0VFG2xoS06MvGbGOSXRCS4/R1eMYIogUaRTTNwk2p2inW71juHPLBDVjuoWor8HqQUNqNGjQYOGwlIPuIzx06NRvcMI4tL68wD3bfoGLdt/lWWv0ufaZ7/Lzy3+VW6/8b/iln/1vgbXGe+/9d3z7/X/PHdcKYEHnzh1Fl+QGys3YVe4cMssMEKEyi9KKfuomYe1WEeZSMdOPsNJmLNZoLegkYiZSZPEYUTpDIooEIZYeSmzVLjFIfxbEopI2Ns6IxBBjSCTDqphMxSS6hdEJRrcc0SEKidwgTVAoESzOp4Z2a0TEYogkIzJdYsmIsh5R1iWxqXOAlvVzEwMnOZG4TRa36UcTGNUmlYS+tBC0M9/FWTs4Sw2XjiKIBQr3CAWxUfliKAwVXHrDk3cFt7J30umw4QQSKksHCMOgKm9OWfinKMr4z8tImQc5JeKPt0c8p771Q90SokozkPZsNErLjFJXgm91UZUO4F2zQYKiqjYkQIafQ7WqOthWP18pKY9ZSAiKc3WSk9zixjjLDBEX/jjLnOPPIm2t86FhsgyxuAgnmcUROTaP2COlX426ZUZ1/hJep/zP+a/eT8t0y6IWxRObbhh66R3ft8DvP7+dDaExgEZ+cgxYLtdsoBmHa9cIQlEk+C3uWXsGO854Fxe9UkkOr9r1Ax7c+mF6nbXsX3sqz55+Nee9ur3cfsVT3+Ph8z6KxK2iUgQ4NHESL266inN2V2W3Pf5dnr30E1WrlMKk1nEwuD6818vlKeIcHc3EGms1NgFF4qwNo5iO6oJWxB3BmhZROkuscoI+07mMNHMWHNYS2RixGVoMSiwmamF0iyhOSZIUo2IMEZmK6SQJNifsJ5OZw1zb5Y88WMyC1tdg9aAhNRo0aHDU8Mf0S4qRjVic1u2f3DhgrXH5rh9z/3kfZ/cplzA1toE1s/vKbWe99ghxd5qsM+EyhNJRpFghM4ZI3IRYYlBGkaUZYiO3Ak2cLzALWSsiTTWCJrMKI4qxVsJMrMk6iizKMDqhHY2T0GVMEsZ0gk4iYpOCMaisD1mKEpfW1qCyFG1T4nSWJG4hOiKLEkw8ho1iJEpy6w2FVQmgXFQXASWO4kAMWlJicYMvnXZzmYlBp928TLFCHmOVwsQtsriN1Ql91aFPgiEitW4AiKoEElo7MkMpIHcaWkRkKRxk2vw6FpNvaxUTLzxG3A0die+94VO0kioIb8lf1B6ZkgTyLCeC7Wr0oqeCAeKjSBfwzarLfFWs9qk8vybVoKQr3LmKzSflhSUEuXVGnm+rdkrQgCoSCrncouIywjLFgqmUlh/VNR6WtlZGEjX1dGGZURzLGGeW43xo2DIvSw1iBGssaZo7ATU5+Sd5lBNjy+M7h6A5kVg8dwE5IwiDJEeBy14KpSfPn3wJU50NQTmpi7IX8qXo2903GEBDaBwZlkN/fazRUA5TeV6h+3P3tk9z4Sv3etYaXScVvfTzKGD7+Z8MSI01s3s5/8U72XnuewGcHyzc+/WJ8z8SkBonvb2LE17byZ7TLvAUYgop5Ch5ps0iTObe0yKWflvTS7Trt9B0k4iWjlnXijCqRSfqEdFjjASiBMl6rm/uzaDFLUYomyGS+8vKekQ6xkYJSdIhS1sQxY7YiNtYHYPSWBSH7IGFuc4NGixTNKRGgwYNjhoDQ5Ellp8c/YhtyHBv2AjQO79Ba40e1zzzHX5+6a9yx8W/zMe2/7tyN43wnge/yI9v+O/CyW2uC1A6KieUYoRMDOjcnNVqN5mzglIxNtJkyjLbVRhrUComVm41aEq3ySRBxiKILEYsxOuwUYzKIlQ2Dcaioj5KuzCwOje/RzIknQXTR9sMqzSRjrBRFxsn2LhTXhOrY4zSoKLcP4cTz2jTRwlOXmL7juzIUrfKZCWXryhERxgVuRWmKCHVHXq6gwVSiUlthBJxpE3uH6O4v4XcIypuh+QyHVV9LybI4Mqf+s3qXhS3ds+nfhMd+bmjH55KAjLkyZGqTf69LSQf/kqQ7zuiKD88LXk7vfLim2H7PigqOYf43i9zwsMVy2Ue4qXzMkXI23p+IZFC5SRGUT4oUzVJBDzr6zLaCnm6IJwKTXx5raRQg+TWEjbXsufyE5tZTC4jydJKZmKyzIVTFFvmFaFaKeQmtiCHfOKiIIM8C5RAtO+KnHDoVTbvfQofvoPQRY94UkcjP2lwjAienhUjP6ljftSMiLB3zens2HQ9F718d5l/1XM/4oGtH2F2bD2vnbiFl088n017ni63X7PzW+w4+xYXH5vihaZ46bTLOTh5Mmun3irLbnv8O9yx8fzq3LQFNGSOTNZxHsI9BVSGVlEeIUVxSIEohUiEiQQYc9aPWoi1RhJBTESHgygVE6FAaXTWdWS5M19zxIY26CzFZn100kF0RKI0JkowSTt/GVvG09Cn1EpEaDW4MPUtJUTk7wN/f2lbsXrQkBoNGjRYOKwg+clhdx4pP3GDKmetcROXvFSFe7xi14954LyPs/Ps9/C+R/4znbQy99z24p38+Lr/FpTO56eCinRp9m6NLVetIxXl5IYlisulfEwm9JUhsRFaWbSO6KfCtFK0beGfIWLGtBGgTYQohYoVaQKYjrOY6Dvz1lgsiiLchJTaXRdi1JEWKkqJTISkXecPRCn3V+vcP4gbwEWII0xsisqjrmib5pYc+Yq4jgCN1QkStzBxizQpHJO2SOk4AYtEZBKTu63IiR/QxcQ5l6DEUS4/ya9xfhrYMqyp+7PmsVB60t+4GbVmLQWnIYcZ2QwOpGQEMVBZGxSERmkW7YWYLeqs6vZlGDkZ4udb8Y5VryMnCarbWE64KzVFTphVBaprJrXzD5JV3dUxw7KF3UiV8q02PK5AVa4sBvI9h66F/ARPfuKsNizWGGd9Yyw2K4gPySUnlH40CuuMekQTkeI61CQ0Q87/spdux8dMa5JnN17BABZzUNzIT+ZEIz85BiyXa3bEzZjfDsUzcee2z3DBK/cGUtEbnvomt17x64Cz1th09z8v9zvx4CtsefVBntt8bUD8WKV58vwPcf2D/6Use+6zP+PeG3+LdGwtSqncSgxAHLeR2er9qqCXh7e24giKKNJYC50kRilNpBU2imirHqIUUaJQUURkelilcLyGquQombOILNoZiXUh3HXkHI/GMbGZBRUhAkl35ZMaDRrMhYbUaNCgwVFjfmsmxwGLtjrqrch6hyny7t72KS7afWcwYLruqW9x2xW/xvbzP8HNT3y53DeyGTc+8l+568o/j9LOwafNnVgaMejIORLTaKyxZECkBbEaEldHTwRrY0xmXTQS6+pIU00vVhiThz0VRTcZI9ExvcTJSLKoQzvqEUV9WtEUnfgQkrSITd/NWjOn2cU681YlGnASGDJVEhqluUROLlQzafdR1jhyRJypLEojCkRFoCOsTjCtDiYZw+iEXjROqsZIiejZhExiRDRpHgrP+fEgmDw6YiO/J45XCcboCkXhS2PyoZ+j+5VfBIB97/2l6k4GFhK1219O+Auywt9WWU5UaQGKsH7uuynbZrHGl2cU+YIx9XRdwuEcZVbpgl+T3PohJ0S8cLdGqvCp1kjp46OU5pREhW8NgveQSxXuTgTrmY2XxUoS5nCSE986qeYzpJCuGMkXRp2MBIroJ46ksDaPZoIjNTKTRzmxleSkcBSqxEm1EGcdVPjWqKw2vPPO769/byOTcqkXthngsU03Y6KE44pGfjInGkLj2DCMzF3s67nwznTnxv7JjTx25i1c/mJFUl72/E+5//yPMzVxMs+ddjlvr93ESQdfLrdf8+Q32HXG1ZUJnnU+rXZseR/XPvRficS9h+Ksx7k7fsKOy3+heLm6/tI656B9yYiiCJM4KzhrhSyJ6Keq9A3RaylmI42xLvxqN4lIdMxkrDFJTEePEekeHZVgozY26aJNhs66aNVzDrfdYKIMA+ucnCrIIqzOrUVQJN2p43bdFwurzVKjwcKiITUaNGhw1Fj18hMInK9XEVEc9o+fwuNn3sxlL/6s3O2y525l+3kf577zP8m7dnzdOccstj3zA+68/PNV2Apr3YpMpMvjFU5DFQpRAmIxxm2OFdjcxDXtF5KUiEg7icZsz4WSExQasFGEUh2sSjCqh2iIlMYmGqtjOjpGzLSThkQGnfVRWc+RG+AsJKzJk5UGw43p1OAAWKyTiniTYef8PUbiCIk7mLhNFrXIojH6UZtMxfRokZFgRdE3bnAn4giazKp8UlvFqB9GRHjz02pFHjjx6zXpiVK89bFfqyb6UpFL9QFTJQNxD0Il4agmxpRWG9WE2dVVkBtVvUV+ZaURTrAH0/l3G1xSipMLypfZEraxXqZob3AeVZ2Bz9GgPkrSQeVfnNm4d37edatbY5SXK68Hn4wJ2unO14p1f20lLTHGVDITT3Liopzkz1tu9RH4yii2ldxbeQOqtPc7P/+17YyloQ+WR858N0NRl58cA+a0GFqqd2uD1Ynid2w9Rvg4PF9DQ6XPcdjBJo36jYQFfcLrrvM/xcW773T+nYBIDDfs+Do/vPovA5r7t32Sj93/b8p9T9v7LJveeJJXTr2kWtSwMNPZwHNnvovzXqws/y7a8X2evORTWAon09b1wRm5bFFBpklJ0SomU46on83XBxQaG8PUrMKKGwe4gF/jGBWDniVCYyJn4YiJUCYjihIiFROls24RQVvXV1tTUc/GEtmq31amP/pCN2iwCtCQGg0aNFg4rCb5ybBNQ4rdve0XuPilO6vVG5ty3c5vcOtVv8kTZ7+HK577cVm2ZXpc9swPeeyCj7mxnLeS7UKh5IcRN2E0xqJxWgrnVNRFgYjySaNSkGWabteQJG6UJCjivrMq6CRR7oxdoyONlZiW6pHRRWKNjjViO84HRtojimIirUGcD4x8hkixrF+cfjlo8lfaS5JDI3l0EFEaohirY2zcwiYdUt0ibY2TRR1SWnQZI5UWfRPTNQmZiegbRWo0xiqMgcy4KCjGVvIEK2By3xlukSqnHrxJq80sY08/HNyv2c3nY6J2KelwxIOfJr8nFaFRkQeVhUMoYfCJimLinzvALKUPXp3lDL+K9hHIMPx6VL1dVXup1SlD8gfSYUX5+Q3Z7pWpX4/KYomcnMjJoZLw8Ekc972eDspYR/YopRyJUcwjiqglgBhHakAuP8mlKKX1BUW60uFUhIlvoTF4bvWJ1eU16ckLJ17AvsmNDMUCERqD9dYqbgiNATTykwXAUl+7ozx8PXpZ/TT8Z+LQ2Ik8fPb7uOa5H5V5F7/4c+4//xPsW3M6T226nhuf+ArrZt4ut1+z4xu8vPFizzrNvUOeOP/DAamxYf9uNr76OG9uuqwiyIt3mRHA9aEZEVEkCBYreWh17SzLWon7rrRCiGhFChGFVgoVaxKV0lYREsdInBCZPlE6S6JjiBO0zSBL0XmEFMGtAJRc1bFd6mUFC5UF4QLV12D1oCE1jiOUUuPAXwN+GdgKtIDdwHeAfyUiLx1j/e8FfjrP4r+XO6hp0OCocZhFlsXDkIP6fgnKYqJKomBBMOSED46dyKNnv5crn/9JmXfpC7dz//mf4LZLf5XLnr+1lKcAvOuJr/Loto+Wk15nOWrQWiO2sn6QTNCRdpOxWMC4SV6cRFiry1VnKxmtJCJLlQt/mpu1tluKbqQYzyJMB1LRjMURsU7oRAlp1CKNOrSiPjrOiKMu7WyGKOkRm9RZXJgMbfIoKdY4uYmn4dXeZBLtPKwXjkBFF74zEqyOSOMxbB4edjaeIFNtMomYtmNkkpAZxUyaYK2L6tJNnbWGsdBPKQeMqZvX5tIEN9gs0sVz4AY9ig0/+wa6sDrJ8foH/jxpmltRqMLioZKEBJYQ+U2X0h+GeARDYfEgFBYPRT3GFAPKXEoRSE5UkC+5bKKo0y8vZbqSkBTnXtZTECh5PYXhgP87KMtL8QCHFhqBpURAWbh9pDQLqW0rjhPIXwblJ4GVgZcOfYkUZE51Payfts4hqLPasaV+vXICKqXkhMK6pSSAXB2BmsO3sPDSJxx6jTP3hA5CHznrPdVp167twLkuBETwr3aD4WgIjWPDcnjG6v32YJ99FC30Cd4c9573SS578We0TA9wzrtvfPKrfPu6v4ZREdvP+zgfeOQ/luXPfuMxTtmzizdP3JK3wvk2evnki9i35jQ2HHqtLHvhju/x+mnOqkNrt4BA5s4tyqN4xUrR62XERhNlOeFtXDSzfl/lIaw1/RTiSJGZmNRqeonrs8fjmL5u0Vcd4iijpWZo2VlarR5aDDrrEWc9Z22JoKxF2cxFO8v9cIhayMHQ0mAgJPcC1Ndg9aAhNY4TlFJbcOTFttqmC/LPX1JK/aqIfPe4N65Bg6PEUPkJwxcvF33wOeSghen84Y99bMO7u8/7JJe8+LNSalKat1732zxz+jVse+W+sux47yBbXrqXXWe+q1xF1zry2u/M6ZWq8sQIVgxRHDmTeywmA6SIiOLIhH7flJYBsdYgim7PrfoYUegOZBqsdLC4sG/jWqMxxHGCiVq0TBexs65uXPQSnUdEKaBFwBoM4nxlOONbRMeIEkTH2KgFSmGiNmnUxmpNGo27kK2qRVfa9G1MmsX0bEzfKDKj6WcRmQFjFKlRGCPuex4NwxjJCY58ciuVhUNBSkg+UT/pe/8puE9Wx7x27aegbynCpDqY3NmnmxTbQp6hfOlHTmjkE86AFChDphakR0Fy+FYX+SOWky455+FIidz/hztW4f+hrL1cThI8S5Fiop6TYxUH4e0r3tC+/G0KpUMSaoO60pSiZihQkgM5J+GV8SUnI4eHgWlHiNB5akEmVdfAd/jpSI3CYkbKfWzhHJQwvzxn8c5nKKtRnejlL90W5My0Jnlm45X51ur6+LsuxrtNFW1tJu0NFgnL4smS+tf59tlHVu90ey0PnPshbnjm22XeBa/cy70HPsVb687k8bPfzQ07v8Z4r3Kmec3Ob/HdG//7qioFKMXj532IWx6sCJBzX7ibO6f3kk6eSG6LUb6Pi9PI0hSl4px8V9B327RxFpaz3bzJylklTgGZuAgskXb9dyYRJH200qRak+kYS0JkMnQ0hom6JNGMk6NgUSZDm8wtUCgwrbFju6YNGixzNKTGcYBSahL4NhWh8QfAnwKzwPuA/xFYB3xZKXWDiDy6AIf9TeD+Oba/uQDHaNBgOCQY8R+XQw51PjbvQ8+z4LBiSjE9fgKPnPN+rtn1gzL7opfu4L4LPsVPrvh1zn/lvmDXmx/+Y3ZtfpdXp++jQZUr3zZ3UKZEocR5MLfGIqJBuZm0NpZ+H+LYOSdTCvqpRrAkiZOjCLlpq8S0YksWZ1hJEKXJSIhVRkv1aakE02qRMYa2Bi0pUZwS2cxZa4gFsWgLCuecsbRo0JE7loqwcexCtqoEG7fIiOkrF+GkT0TPtMkkpm8iulnkVqUy6BnnMC1Noe/8QDq/Gpm7PiYnNxBHblip8isZRm6pkfYZfzlccT947mUYUdjUBuXd3yIUbLHY702IGSxTEFJl+aKMDfN9/xID0hL8KCeUMoxih3Ie7kc8sT55UBEYVQsoJ/5+G4pHrZrbD9txjpWrEVYKJR94FAtehdPAkowoeaXiWhYhWnPSxPed4RMfJZEzuIpXWHH493uQjHV/dJZyyXwchB7FuR4VGkJjTjTyk5WPgX57MW6lctXev/VjXPn8T+hks+Wmm5/8Cl+/8W+TRW0e3PrRwLn3eS/fx/pDr7F/7Wk+r8uOc97LDQ//CXGxiGEzLnjmVh694pdcGVuRM6UEJdMY7ZjrwqdRphQiGXGkS/5SxFlquAgpAJokclaYzkGVJtaGRKeO1NAtotgQS49EtzCtDto6y0ptU5fOzdayVugnaCUiIKgXqL4GqwcNqXF88Hdw1hgAvyMi/9TbdrdS6qfAz4Bx4P8E3r8Ax3xeRB5fgHoaNDgiFHOclYdQc69UcSbKLzJ4cvlo5L5tn+LyF35Kkjvj0gg3PPlVvveuv8buky7kzLd3lLusm36TU9/cyeunXIDChYJTWrtBjXL7GjFo0ShRaNFYLJIKURyhRVDKkRhpT5AkwppKRmAlwxhNmipMpslazi9F2oI40rSSmLQNPavpxDGxEpKozVjUdwSHzoi0RWFo6R5aLJFJUZFCiUXnXtBU7mROcNYZLlJJ5HxooElVTKYSrET0TEJGTGYjuqkzrTVW0+1HZNY5OJ3tO6sLY4VeLx8fWiHNKkIhy9xNsrYKb+oiYJR3EWuFzT/8j/mKVYXn3vvr9HpZuQ/4JMSgDKPM96QM1aDKI3S8fSsZiKom3hTyk8LzfxUpZLB8KRDJJ/qhtKOUahTERzEYhkr+kecXEWAGJ+EyYjAXylKwxcDae/DLuovrlE9MyraoYLU1sCgZkh44rlTXzDlbrQgOKfxr+KSN5zlWbEXyBGW8c/JsVAaMNs5//YF5OwgtCJnFwsp9jx4/NITGseGd9IwJ0GtNcP/Wj3HLzq+W+Vtef5jT9j7Layds5ZFzP8C1T32LduaiZSmEq3d+ix9f85fdc5arN7qtCZ456wYufL5yEH7hUz/g4Us/g5LIyT0AUlCRQqyCBLJ+hkTaLTAkEVYgtoLRhfWh68d0pJw/qUyT9hVJDP1WRK+l6WaKRCe04phOktGLY2IUsUpp6ZSEHpEGJYaEFJWlqFihrDDbqcicBg1WIxpSY5GhlEqA/z7/ugP4P+plRORupdQfAr8NvE8pdbWIPHAcm9mgwYJhqCRlqQae8x61FbMbP0yny5lX00WYbq3hgS0f5vqnPfPWl+/l/gs+zY+u+ov85g9/J3DY9b4H/oj/8tF/4gbmuliizlthrYuIkjetiIiiI52nASOIGIgjFyVCCVnmLBASFaHzCCs9rLNoACKt8ygiGivQsQraFq0siXVOOltxho0ylHL5qeoQ65Q4zqoVbSwaZ9ZqiFE4va7JY88a0aQkztLCJvSsRmxE30b0Mo2xEf0sop87AU0zRWpyS4xM8rTzTWFyyYnN5ScFmSHFdSn/VnkCbLzra8EtMkmbN867Aemb8pEs6oF8Py+/uPfWSDlJD6QSnsxBvOesblVRTJhteaBaPYHFREViVJYiXhtHWVfULDbKXI9o8R3eFXkDKJsowfeh8LbZShNzTAidm9qK2Mmf3/KaF/n5PuG9KNmRIctwhT+R4odG8H644sXbgtIjHYSqXPu/iGjkJw0WG8vyyVoMpsWr84EtH+aq537ERL+Smdz0xFf48s2/SzeZ4JFzP8h1Xh9+0Qs/5+6Lf4mZ8ROgJLrhsa0fCkiNdYfe4IyXH+KVzVeDxUlQFGirXYTXzCKxI3qdg+98u3Ymev2++7lrpdDWrW44v08aI5CJiwQmKFJtSW1CJhHjEhMpi1YxqU7o6BilLUoJkTLEUYpGsJGmm6yCkK42dJy9EPU1WD1oSI3Fx3uB9Xn6P4iM/Al9EUdqAHwWaEiNBqsDKyoiihqRnk994sxbn/sJ7dy8VeXWGt+64W/y1rozOeVA5Qv45AMvseHAbvav3zx0tVFEKJ0vaDeJKiQpOhd/gEZZIUuNGwghCBqVahBDFCmS3GRVKTfJi2NoWWfeKoCRiFhrWpHFJJpMIjKJ0fmgKNGWWLXQyqKVmyUrZdFUJgDOjUSEzX13WIkxokitS2dG0zcaIxGpgV7qIpukBvqpG7xlhtKBpzGQZjaXlrgoMCIqdwjqztz51nATdGOria21QjS9n/G3dwfX860t15LlXkZ9SUbhcBJCQsInIewwEkLCdFU+b1duMRGGi/XJgmKk7Vlz+ARJwHV4Fgj+pDx4YLz6h8hB6r46gm3ztsGtrvH8yqojSFdtqZMbBWcTSk7C0LjDzqfMLXmOGinkHfqEQ69x5t6ng3pKB6HDTu14oCE05kQjP1mFWCz5Sf6MpHGHe87/JB94/E/KzWe99SRnvvkEuzdezANbP8JVz/6gkpaI4eqnv8PPrvg1kMJZs+K1E7by9vozOWl/1adfvPMHvHzGVdU5qJBELsO1i0LFzl8UyriIY4VRqIIoUgi6lM1EsaKVT+YF5awtI8EYTWY0cWSJtSXVMWmUoLUlwhJpQ6xsbnUqdGl8ajRY3WhIjcXHLV769jnKbQemgQng5kVtUYMGi4iBacqKXW0csmRUX8mmGiwh0E0m2L7lI9z01NfL7ee9up1T9uziR1f+RX71tt8LrDU+eP8f8OUP/gOwFqU0okAJoPOIFdqZ6ivr9lICRCCiSgfxIoJEEdq6MK46LkxZnbVGYdlgjKtTp4p+Cu22s5BotRSRhkRHdNoQR5ZWrNEKtLK0YmexEWuDJoKS3AClcgehIjlJ4kxtM1FY0WQmJzaspp8pJzMx7viZdYO6NLVk1oXy7PcrM9w0LaQetvSpIeKsUSC3zvDlJ55MYcuP/ii4cwI8ectv0O9noQ8H8nmuJ1OopCgFM5CnPYmK5IUrh58hQRFKKcj5CiktAwJ5RiEnyVcBK6sKn+AIZSHi7etxI6FFhtR8edQiA/lX5/CcRkhE+Ofnb/MnmNUxyZ8VGZkuqlL5ftWphr4wBqxjqBE+tfLlfS3bOoz4cd8vr1lpTLfW8PSpV5WnX7eGWajJdN1qp7x+LNOV9GWEhtA4NqyeZ6wuHQX/zOrvvYfPeh/XPvsD1nb3lnk3P/kV/svJFzHdXsfjZ93CFc/fWm67dNet3HvhZ+i311DEl1IKHt36Qd6//Y/Kcme/vJ3xqbeYmTwJJRpjcglpEeIcwXWhbkEhyt9pVltEIkdaWMp+2xgnt4wjRZooWokmyyCOFXGkaLeglUGsI+LIkkRCEitirV2fHVm0StHKWVMeSlc+qeG91hesvgarBw2psfi40EvvHFVIRDKl1C7gsto+R4t/pJQ6EzgFR5a8ANwG/L6IPD3HfnNCKbXpMEVOPdq6G6wODAySVuygc452e2brdYJje27e6mvzb37iS/zZLb/L/omNbJh+o8w/fc8zTE69xdTkyUDlVwEp/BQUJfMJnVbl5NhiEevCvmrtIpw4vxK5bw6tsCiy1A3qEgGtKcuKOMsMUGitMBFkAq04wlhBIyit6RshjoRES3muBeGhlTOL1bjBQWYVCmetkRqw4ogM5xNDOZlJ5qwsUmPJMrAGMmPIMk9yUspN3HmbPAKGn+c7iSzlKPkgcdOjPwpuV7+zhj2nnIfk8hx/ElyM7Av5SZEur7w/6bTFJD6cWPsYJlEJBt2erV7hJV+8OkdaUtTyC8nHIJFRpfNEuGvAT/iT/pGFGG76UewrwX518oV8b9+4w/czIt5vqbpcNaLCvz614/vER0FC+WcRkBkhB1NWE5k+l7wcOgh9fNNNWB1X51g7/YWeTJcOTHM/NY38ZH5oiI2jx7CrVicAjvu1rb9u5n14XzpaEA/VgoMPEyXcte3TfPSRL5Z5p+/bxZbXH2LXaVex/fyPc9nzP82tEaFlelzxzA+575JfrNhXFE+dfTM3P/zHtLI8TKxYLnzmJ2y/4lewImjPv1AhRXTRwQQMFOSI308rIkTnVnuFn6h8YcA6PQrGaEwMxiqkHZEqIYo0SQRt0Wjt6okjIdaxO4bAbNaa921o0GAloiE1Fh+b87/TIrL/MGV340iNk5VSbRHpHcNxb/DS64Er8s/fUEr9L8DvyfxtjuttbNDgnY1hypR8ANVPxrnvvE/wnie/VG47+60nOPPNJ7j1il/js3f+s9BaY/v/wzfe9/fCysrV/WKgpnAu1XVOblBEUQXJ/T5YkMi6YZhSIAYdKSQSHNGRrw5p50nd2gg38bREWhFFkCTKST+MCyMXaYg1RBFoJbgFJ2dBUqTL/8VZbDirCzeISjOFFReetZ9VFiNpVshMnEVGtSplkdxRqDFuwu+2GQr5iS8zKSUkXn5nzyt0pvYEl/OV827EZH7EE2/wbm055i19aRCu4AwnKry0NwgvrUAK64khK/F1kkLEK++TFFWlQ60sSmInmMj7E/ziPOqExEBVNeuLeqG5uopR5WRorj9rCeQ4XtK/+NZTbI70RVI/3lzNHfLb3fba/B2ELhbKZvmTyGayPidGWx81OCrUr6UqXmyL+BwOGEOKk1r6iwVlW+Zf0eGKP7H5Zt717HfZMF0FArzpyT9j16lXcGDiFJ7a9C4ufPmectuVz/6AB7Z9HJOMUXCc/WScp866mUt3/aQsd9EzP2L7Jb+IxLHzgyXakRgaInHERHF+AhhchDNiUEaRYZ2lRkFGKzCRIhbB4qSkUWTJjCI2jgONIkWsFWkMqRG0hki5RYxIO+JEKWGmX4vitAJhJSTIF6K+BqsHDamx+FiT/52Phx5/VDUJHA2p8RrwVeAO4DkgA84EPgX8GpAA/zPQAv7eiDoaNDhqDAyBjtdq45BDDDO7V0WotMM2aZ6DuSHFHjznA1z13A9Z091f5t38xJf4L+/9+0x1NrCmu6/MP+uNx2jPHKA7tjasxOZESb66g1ZI7v9BiQvRWlhzFM5GJScWxILEgjYKG+WkgRUSG5FphckUtuXIkDjR+eDHWVJEkSKJnfWG1pDEjtCItMqJDIWOKO+rk00UPiW0O5Y44iQzQmYUkkctKSQwqbFYU0QzsaUD0Cx1fhKstWTGjRytWGwuOXHe4auV9yoEa0VqXPizfz8gPXnk+v+GLDNhBJEyNGtpBzDCaVjlcHOUJYJrqHL3yc8X/+HIrUlU3bdF0Y6K7PDrKSQZQYukdNmBx4DV7CtCy5/A8GLoWeb/H9UgT0qLimFWI4OGHxLml20PZTeDVjXipb18z5IjkKWAf6GGGpwAXPHSbcH3oQ5CR+y7kFjk6eOqRGOlsXAY9vwdb2Ohsn/2GlXPmmdNc241OuLObZ/hkw/+uzLvlIO7ueDle9m5+Qbu2/bJgNQY609x6XO38dD5H60qsfDolg8EpMbkzF7O3n0fz599AxhxTkI90lZ77zYpQrkW8hTriHKlFVHhQ8q6vtfEmjgWTCbEseun41iTZZooEiLtfG9EkQsJq4A4yq0zlXu3Tnc1Kx2N/KTBXGhIjcVHJ//bn0dZn8Q4GvHb/cBZIpLW8h8Evq6U+rfAD4F1wO8qpb4kIg8f4TE2H2b7qXk7GrxDsazkJ8NWpAt/EIcdJs2z3cW8zZvEZUmHuy74DB95+ItlsdP2PcfWV+/nZ5f8Cp/Y/m+83YX3PfiHfO/Gv1kNKnOrinyK50Z1kjspKybh+QTcalv6Y3Bmro6x0eKsJPAcYWrtPKtnkUL6uYNNxMlPtAsjF8eOHFG5ZUaW5RYbcWE94NqltfPibkylYc6MCzVbhF4VwOQyExFnjZFmlaTE+GnjnKBaK4iR0vlnJS/Jv5dSE1tJTqSSn5zxTCgjmJ04gUPjJyGlk9Daar9PVgjhxLwwHfYmzQNGD761gZ9PVXeQ7xExtQ15/vB6StLBn/iX5esEjbdv9WXwuAs0oKscc3rXtk6QSFg+ID/ytMVWRIytypZkxlBZkO9Hw78fQ86zTiQBpxx4ic17nwnOZ6iD0ONFaDSSkyNCIz9ZOCzLq3iUjZrPc7Fz0/W865nvcPKhV8q8m5/8Ck+fcS1vrT2T5zZezrlvPFJuu/rp7/DIlg+UsjSAtzacw2snbOW0vc+WeZc+9X2eO+tdpaWLyt9L1rr3G6qKjlI4AcfkbdbO5waZBhG0cpG9MvL3GyCiMMZZRLp+NV+YMG4RIlPu0FGEC++a+zaa7S3LO9ygwYJh5dN2CwSlVKyUkgX4/Eat6m7+dz5itraXPuKA0iIyPYTQ8LffB/y1/Kvy0kdyjJfn+gCvH2mdDRosFg5PXBxm/yPYPRhAifD4mbewdyJc7b35ya/w9ObrmW1NBvnnvbKdOHOvCjdoKVbq/Um3lBYR5UTeusmfZI4IEJPrPkSwmbNwcESBxRpnCZFmliy1ZMaSZZZ+v/qkqdDrWbpdQ7dr6fWEbv6ZnhFmZoXZrvs+2xVmukKvL3S77nuvDzOzNk8Ls7OunjR1dfZ6hix1f/t9Q5YZev2MNE+nvYysb0hTQ9bPMJkrn6V5Ov8YYzCZzdMWYyzWGNa/tpNWLzSKe+689+a+OCzW2JIYCdIFeSI2/24xxmCNu3ZiwvLBR6QcsBYfY0xZjzXVx2QGKdtR+/j3VZwsyG0rngNbPBzB8Qt7XBf6lKEf/3kJjnEs/7zzHmz73J+iTbaIbFLLD9o5ov5g+ZMaGeRZdBTnGZIqFQFy9Qs/Dp6Xqfa6ykHoccRQ+UmDBkuMlfo4Hq7dCoUozR0X/mKQv37mLS5/7ieAcN+2Twbb1szuZdtLd4X8pgiPnPfhoNzmNx7nhH27q/d1/rewuiv7db/vtuKkl6lgMyn7NdfnFf21S6ep+/T7ll7P0usbl+5bZvP+ut/P++keZX/c7a98s4RgcWMhPo2pxqpCQ2osPopg2JNzlnKY8NKLFVD6vwIH8vSQ5agGDY4NA13Eiu00Dj+RyosNhVHRwIDpxEOvcdGLP+fuC/5ckK/F8p6H/mM52xLyybbYcqJNMNGtPhVpYcuQpyYz1Se1mLQgB0xJGqR9Ryz0+45k6HYzer2MXkloGGa7hm7XMDNr6fYss11Lt2vp9sSRF7PCbNcy07X5d8PsrGV21idGbF63CQmUnqXfc+1w7clcJJScrCjbmxlHwqT5eaX5JzNY72NSy2V3/IcB6cnDV30uIBYGPh7xIEY8YiIs4wZBNiAvHOFhEWMQa8p7Qj4Zx5+Ql/nFffSJASnrLyfxVgICqyRegjpzIiZ/bvxt9XIlaSPHng4JiupTEAWhFY1P2oRpymsQEjtlfdaGNzP4beIdI88tEvUZzYjfaKc/xYWv3BvkPXzWe9xKrEcILbSVxuB7Zc5mNpgDjZXGwmHY87fk3fdRH3/u50Lyip899UpeOWFrsO2Gp75J0p/l5RO38fKJ5wfbrtv5TVSNaH1m07uYaYfy0Uue+p73bq/6Zr+/MaYg6PNP/j3Lv2d5P532HcmfpoZ+r/r0upkjNbomX0DIPz3DTL6gMDtrXB896/ruBg1WMxpSI4eIZLioI8f6+Vqt6pfzvxNKqfWHaUYh7XhLjs1J6Ejk51lEPzljMY7R4J2NUfKT+iB+5TDklmKGU0ykAnjyk4DzEOGp06/hjXVnBcVv2PE1Hj3r3fTiTpB/4Yt3ICZ19XjRPeor7VWeN6nLV6ILqwJjLFaktFAwxSS9+J5ZstQRAVlWkCCSEwxue9qvVoPS1JSrQ72e+zhywg2cijK9ns1Xkqp0v2/o91xY1jS1pP1q4OYIDJsTFZU1g7Mwyc8jKwaBprQ88c+ntNTIMk7f/VBwTQ+uPZ3ZZKK0uigHkYUVRp3Y8AmOOoHhWW4M7ltFZimtQqzNSYkqXRIhBUlVWlh40hsrjijxLDCK+259wsNWkVxKYoPh6eDZKa07jiXtEQ/Fr0OE3B46P46Xzn8PpQTG2oG0CIFlSmW5gcsr76p49flEynzIEB/CZS/9nMRWxo1GRTx85nvzrd5vcLEgXsQTPPlJg3lj5fQjyx/Lkh46BvnJ0EUIvCxxB7j9ol8JNo/3D3HtM98F4L7zQ2uNE6Ze5/yX7wkIz0zHPHbu+4NyFzz/M5LudEXceqS4b9lXWq35fZBHqhf7OFJfyj4yS43zWZWZajEgrRYAiv46zfvdft/ST1c+qeF3QQv1abB60JAaHkRk5wJ8DtSqfdJLXzDq2EqpGNiSf92x0OdWP9wi19+gQYXaai611cnlj8P8XLxxk3im+W5Xzc8u+qWg+NrZvVz+wk95YOvHgvzYZtzy2H+tjjpitXlghdzPs9Ugv7LkqMxbnYVDMSEXF0o1LQZFhixzg6Rez9D3B0Z9txrU7xXERmHh4UtYnB+Nft+VzzJXrhhw9fOVpiyzpdykXJHKiQmTZZjMVtYmJXFQEAqhjMQYU5IE5+78MZEN1XePX/LJAWIgIInqlgyexCQkk0IrgiDf1u6HR1ZIfu1LiYg3zvb9hARWFSP+1a0mhso25kgv5Me3IPGfQ/+ZnWsFvR52tqoH72/x3FckhvgkTVGkVi6sc2QTUGK56sWfBnk7T7uG6c660TstFpqIJw2WKVbm4+jeDqEllE+LSvlXEF4+YSvPnHplUMO1u77PRHc/z228nDfWnRlse9fOb4DYYGTw2JYPYFU1pWplPS58/rZam6jIkByVpV2+zes3iqhgjsyQvK+uFgOy1JD2TE5iGNJUSklKsQDR75nye9pf+aRGgwZzoSE1Fh93eOn3zFHuGir5yZ1zlDsm5ORJYU/36mIdp0EDHwNzi6UkNY7p0HPsLLUPbvDywsmX8NJJIZ/5rqe+yfZzP0yqwxBrl+/6kVulh0H/B/5kz5us+qs5hRm/LUgC46Uz40iMzJCmWSlFKWQeaT8j7WfOtLWQpXQz97df6HdNKRkprDWqv7lJbM/kGt+sNJ118hKbfy+ObUuSpfCPkWW+fMZZaTgrDDeoK8iY0ieGkdLfxaUP/1lwLa2KePyCj1TWD/lqWEU4FNeqko2ERIf1yAhbuw81ciOwGBjlY8J6+9iS/BqQddjhaX/QO4pwGZX2iYECYYQiv+yRpWVeaY8QCZ7r6rcjwaSj4Dfqud5pFPegMOc4rOSkmugAbHnjUdbNhqF/HzwnXG09HvT/SqJ3lyMa+cnCYdizeNy76vrP2CMpgz7wCBGcR72vFrj9wl/CpykS0+fGHV8Dpbhn2y8EdZ108BW2vvpAUOeh8RPZdcY1QblLn/6BkyWW775CTjrE4q9mSWjsoDTFGovpu37b5H6n0nzBwElSMvfpOxmp68Orfrm/GkiNwTWyY/o0L+DVhYbUWHzcRuXD4tfV6B74N7z01xaxPZ8HCvHf7Yt4nAYNSiyriCjHdOgji4ji0oqfXRhaa4z3p7ju2e/y6DnvDfITk3LDk3+W+2KoJsH+KnQ+Nas6ZarJoS9/qJu1Fs4ri08pwcgq0iDLCilFJfsoiI9igJVlhjSzpYSksrqw9Gs+MJyprFtRsqbw7WGdnw9TERomMx5ZYao2BCa5lVWGNW5wWGxPZg6yYd9LwbV8beNFCFHo/yKvR4K8Sjbi+ywJ9yO4dv6+g/kheVKRFgTpgrQoJCGl008Znh4gVAp5B1T+OgTPemRIemBQV9RPNcCfI10+c971mFdaZO60hERNMOIsCZL8xkr1xz3+3jWYA8X5Fid1zfM/Cp+XdWfx6rotQ8nJxUQjOTk2SHPtFgyjerfQ4uH4QokKyfz838IeBPauOZ3Hznp3kH3pi7dzwsFXeOb0q3l7TajWvn7H14N3FCI8tDV0GLrh0Gtsfu2RkJCpyVECwsP/7vl4Kvs8Y8p+zxR9TUmKmFxKmvevhUTF91FlzMJetyVAKPNcmE+D1YOG1FhkiEgf+Ff51wuBv1Mvo5S6Afit/OvtIjIQElUpdbYXYeW2Ids3KKXeO1dblFLXAf9X0TTg38xRvEGDBkeLvJ8sOMzXhpi3Xv3s93lgy0cwKgrzn/mem9B6xE+xau2+FANMqcgN601y88FTNWH3fC+Uco5iEu75gDCFP47K10aWW0oUZq5p4bAzt7QoHHn2c2sMU0RWKUiOMl9I0wzjyUZKmYkx1d8sC3TFQdoW/kFM6Ty1mBBf8dCfDgzI77vy86GVwBDLF0cShddtmFVMYBkzl1RkWP2jPrX2cJi0x2IFz5a/kknZ7sOlvTxXGV7Fo9NFe7wLM6+0VGlq+aO2VY2r/pZNLrMGr0ewy1AoTjnwImft2RnkPnj2B1zkZM+a4/B1LRAaa4MGyxG190X1W115mE80lDu3fYY0qgIVarHc8sSXEIG7t306KH/KgRc597UHg9foqydfwNvrNgflLn/6+2EfQvUSE3ziF0cE59aHWCpiI7dQNFn+KdOFTDMPiW6qfjvz03l/bleBT40GDeZCQ2ocH/xTKuec/7tS6t8qpd6nlLpeKfU/Aj8EYlwY1795lMdYB/xUKfWIUur3lFKfVkpdq5S6Sin1GaXUH+KkMOvz8v9MRLYf9Rk1aHAEGBgGLeXq2jEd+sh29idHP7volwPNbWJTbtj5DR47O1wdapke1zz1rYHJbGHSX672B9IIW1t9qDm8rJu2FqFQvTCpWSlPKRyOeeFVMxcKNs01vannb6McNJVSlor4qAZdWWBiW0lJCisRF0XErTyJS9fJjUJu4llFFFYV5z17W3ANu60JXt94YWkNUK721ywrHCFUERaBzGMEGTFXRJBiX+URCBLUNWTVc8RvYS7ZxnwkHEFdxedISJchn4WGUtVko3rUh5xfwef4pIrIwEylbGNR58D1cBuufe6HQe5Uey07Tr9uRCOP/vzqbRt2LVfmFHH5oJGfLB4GfvP++2apcJTHn7Pd+btzemwD288NrS3Oe/0hNr+9g6fOuI49k6cF2wrfGhVhoXh4y4eCMme/+jBrD71W9Q9FfzPUys9zFJqT9yMlKcb1184yIyv737SUk3q+NvIwsP1s5ZMaA7z8AnwarB40pMZxgIgcAj4BPJNn/bfArcDdwD/ChXs9CHxORB4+xsNdBvx/gW8A9wEP4OQsvwkkgAH+PvB3j/E4DRrMG8tKflJg1ILwnCjafZidh5ze3rVn8OhZ7wnyLnnpDh7bfAtGha/i6576FpKZYHJdDijrk+5ilYeC4BA32UeweM41i4gTxcTY9yWRW3WY1I/wIS7KSG7SWhASpYNPY0ppSUFUZJ72N8sqCwuTVYRLZaFRRDCpHJcWgzvjeYivx5Qv/WlY57Byw1u7GOseDK7frrNuCC0qBvxQSHWdagPMIozu0BCmhVSjkIccUUQQl67kGR6xUrbNv9/5fS7vL2V5vDbjnc8oMsZV7GtJ8tH1EaZDcmYhPj4x4z3jFI5U3bna2nUtChWSk6HXrPwZhr/Tydl9XPhqaAz54Nnvx0QJZfHFhDQRTxYSi0G2NXBYlv32MTXBfxcMqVPgvq2fYLq1Jtj8vsf/FAHurVlrnLbvOc564zFyVgQRYceZN9FNxr2qhUufKaRuUln0VUxtma73NWWkFPGlknn/VC4EVJLRIAx5EUnMC/FuVwGp0aDBXGhIjeMEEXkWuBJHJmwH9gMzwFPAvwAuE5FvH8MhXgV+GfjnOIuM54FDQAq8jXM++g+BrSLye9KMBBq8EzBSJDw4+ZvfbCYfhAxMHIcUo24SL9yx7TP0o7bXPOHmnV9j5+Ybgt3b2SxX7vrBPNpTVO2v/kpp1upHQwFCnw9CaRlh8zCwIuRkg2dJYW25OlSULXxlVIMmJzlxJrIuX8owdCYPSefIEF8HHGiG634uvEgkocVCSFZc9+AfB7dZgHsu/5WAwKlPer1bSbFKJ/6AcygxUNwzNdTyYVREkOD+eJ/696K99XG38k0Zyr9H86lDHUW6eP6P3lHo6E9BWLhPKa/xblf9uo6SnFTSHH8XV+CqF24lkkpbnuoWD5/13iHXZ5HRRDxpsAKxEh/Von+v95NVgeKP0Es63LntM8H+Gw+8yCW772LHpuvZN3FKsO36nV8v30kKyOIOT5z9nqDMxc/dRpTOVq/u/JhFf1OSuUV/lL8MfbK6JGut5BaLed9cWyQoP6V/DRMsTKx0LByhPtCdNFgFaEiN4wgRmRaR/11ErhWRDSIyISIXiMjfFpEXD7PvCyKi8s97h2zvi8hXROR/EJFbRORcEVkrIi0ROVlEbhaR/0lEXlis82vQYBQG+o0l7kmk3iIZ0sYjqA2GrxjW82baa7nvvI8Heee8+RhPnXZtIE0BuGHH1waPMmwyWJdUBB+bD4LCSCHikRaFaastSIpSMuINhoIBku/gs9peOjLL6lYYlVVIWaZ0YGkDi4OKsCisStyZ+xPlynBAwBo2vfZocJ32rzmV2c764Pr4A8Tgg2DEBHnlpJrKh4St7VNg1PTfn9CHGD4jqMaz4bECAscnrY7wYa0GcOG1PFJioronR0qIjIIaLOdMF0LipziJoecm3n5Dftt5LkCSdbnypduCLY9vupHZZE11fscBzTh64dDITxYPw/rtJZ8EHtXx6zuNWIjIP4+c+R7enjw92Hzzk18hthn3nv+pIP+MPc9w5huPB3U+suWDiPde66TTbHvhDkr56LC+urAQ9Eh+hKCvrqKamZK4KCWdRT+chURH5vXTWWOp0WCVoyE1GjRosOhYbmasauhE6uhrG5rlLwh5A6jtWz7KVHt9UPymnV/l6dPCcHCddIZLdv04WFIQ728w6RywMHCyAd+CwFoblsvlHqXGVzyiQSqLjsKxaCELKVeB8vwqdKyLnmIK6UpW1WeMUEQQKWQmIlKazbr2eeRD3qbCsqQib7y2Ipy/6zZimwXX7dHzPxYMFpE86kh5PbxrZsV51x8iIUGktMYYKSHxV3sK0qCQpZTkS2gtUBEUPllQfZS7CIDkP5N6On+s8gnG/FaiiucmOI0jS/ucxgIhIGvq173IgyCySVG+TrQEkhPxW1q1+NLdd9JJZ4I23HfOB48roQGN5GQhMYxMbrAwWG79tmvD4lciUcRtF38uyFvT3cc1z3yXJzffyIGxk4JtNz75Z+X7B4QDkxt5/tTLgzKXP/PDqs9AgneO6zcYkBOWIWDFk6D4/XlNohLIUwrn354V5OEiRK0E2HxMs5CfBqsHDanRoEGDBscI5/AwNIUvVoyl+Jd3nmnc5o4L/1yw/8YDL/HSyRdga4Otm574ymEmkmrk+KyY9Pqra75finKSbwsZSEU0hCFMbW5pUREF1aDJlNuNyZyPClMNvgqrjiokXeUrowjLWjn99HxoiFCXmQyzHrjiiW8G52xUxKPnfai65jWphPWcuoVmwCX/EJBDxYVTSg3mF+RRmfbqDCLX1EipwibDSw/QBepw1g9V4wesT4Z+CpLAP4Q6sjSLi+AqeNfeb4dPaAxeMk9ygkfm5NA247rnvh8c85mNl7Nv8tSFPpX5YTlMEBs0OEKslsf2cOfx/CmX8cLJFwd51z7zHTrdg9y9LbTWOH3fLs5+4xGgenXVHYaefOAlznjLi7hUe5WX44WAhK5IjmrxwSPUiz7Z80dVfs8lKmJNbqlpPeJl5cKNTRb202D1oCE1GjRosOgY6EqXmB0fMFE/puYUK+BD6hwyZxURHj/zFt6qx71/+ts8V1vdGe8f4sIXfl5OxMvjSG3Q40/+ayatBRHgr9b4fyvHoNXKTuHss/LBIYETsmKQVJnFCr6/DWcGa7ztxvORUREX+O2WKj+QmQST/yo/7k1z4oHdwfV69eQLEB1Vq/clsUNQnztmZbFRQHn3cEB6UZUK0lW1wwmF+aC6peG+c0Y8Keb9R/Jbmu+EJG9QIIU5hvThrk1wneZzPvM65bDQha/ex7rZvUHe/ed+xCVWyUTtnYhGfrJ4GNZvH/euu357g3f7ILk5PxzmPAREKX56yeeDhYaW6XPLzq/yxOab2D9+crDLTU9+FbGmbOALGy9h38TGoMzlz/wgaHOdKC+sJH1fUr6j78BJtg0XBer9eOmk20jga6NBg9WMhtRo0KDBomOUGWt9gnO8TIkXXX5ymGKiNLfXzFvXzu7lrbWbkFp9737sT6A0J5DagE4KpQK+WWsZMaNczaEml/DyCFeAyoHSCBNWn+goyQ7rBmNFFJTK4sMbmBVmtP5EvVamascQksCXn1jhuke+PHDl7770l4Lr4JMYxSi2tASAyudIOYis6h8lISmvsc8siOVYooYU9RTfy8gfzJEuEkoNH9OPOtg8PgVJc+QalRHpev35tiLyTpBfNv/w74KqjM9aDStouf7Z7wZZL2/Yyu4Tzq92XwTMSW4d99nh6sTx6jPeiThcv72k8Pu8I/4BH6bPzje/vWYzj515S7Dpkpfu4JQDL3HXtl8I8k/d/zznvv6wV0c0YK2x9ZX7mZjekxPqo6NrldfXcxQ64BPKs5oM8mQYuVF9Vjr8/ndBPov18m+wJGhIjQYNGhx/eJPMckKz1IOkY8CA/GQYyjmoK/f8KZfx4kkXBkWu3vUjXjrpgiBvoneQi5+/bY6DD36vImaEB/dXt+qDA4TQiVlpwupWh/AkKUGkEnHlbOYGZGW4uXzAUJRBqMoXK04iYT3eClW5aiUyOKATYdvzPwtOu5tM8NrJFw4duOD9LZ67kkijPvkurqMfnYIaC+E+JbExcCPmEzXE/4S3aiGkIf40f9gx57KwKK7REbdjRLqOUduG7V9/RkdKTnyCqDZQPe/1hzlp6rUg756tHz++tvT+Ow9Wjx1/g3cO6uTkcui3j/Lwc/78iqEJwh0XfJZ+1Kn2Q/jAY3/Mk5uuH7DEuOnJrwa/8R1n30LqRTvTYrls149d3VIcIe+Py/6o6g/Kvlq8/iYnOPD7y6Bf9t7lQ0KiN2iwmtGQGg0aNFgSuD7d62Rrk83FPbbUM46tNplnu/1ySnHbJZ8PLDNapsdsMjFgrXHL4/91aCPLa+hPyL3Vq8CqoPh4fjXcAMmGKz513xY1r+xDP8FxqomoH5Y1IDQ8fxm+LCSYite++lYXJ+x7nrHeweBaPLP5XcE5kl+boXfFzxQ1sCkfQoYT6nmgNuZ3n8DD5jwmsiPDEPv3cJ7WEcV+hznMkcYsWSgopeYvH5Ahv9thhQayhBue/U6Q9eaaTew6+bJh/MfioJlMLBoa+ckion5t68/xEj3XR7q6PviISI0AHfIiyLOm2+u46/xBHxoXvXIvd13wC0H+KQdeZMsrD5R1d5MJdpx1U1DmkuduJTJp3pdRjQm8ftNJUPxIYCFxIdazbKwTG75MVMK+drX41LAL+Gl8aqwuNKRGgwYNlgRL6Vl9QH4Cw8c38xoDBME8R+80JHrlm+vO4tGz3h3kXfDadl4+YWuQN96f4tJdP6mOMWS1zA1aBjW5waqNP2gqCYtwcFTX6RbWGqWfDc+s1be0COQqPqFRG3iNdgAqw/P9laf8780P/ueBq37npZ+rVregkjKUg0Vqx2GAkKnIn2K0U9xPPz2CvPBIl8BL/dxPBXNW6N/nop48XR5jRDq4Bt51WU4ICCOfz/IH4QUxRBFmd371Fjjr7R2cduCFYPvdWz4WPCvHDcvwHqx0LMfn+h2DJSKUgv77KJrgWz5UfcPo8g+c+yH2TZwS5L37iS/x7MYr2DN5WpB/4w7nW6PoZx8694PB9oneQbbuvqdoyPB+fERfyIh83+dG0Jd7Drj9fqFBg9WKhtRo0KDBssJSrrwNyBbmtxfVZLciDYYVUwye388v+Cy9eCzIi01/IBLKzU98uRqAMXpuV6wSFZN1v7Cb+OZ5VCO5csDkD4xqBEhwfrk8xWa2kqkEoVr9ifUgsVJMVKvB5RD5SU2KUliSYDI2v/lEcM77J0+l214bno93XqUlSEBYeZPpoYzWXPYLtXYXn7L0kUUNCY4+YnBbH3kvpBxkqTF4rgQPeND2kacx5NqIcPPT3whK7Rs/hZ218MnHDcv4HjRosCJxxAsPI0rMUcTohFsv+dUgb7J3gOuf+faAb42TD+5m2yv35XUq9qzbzO6TQ5npVU9/ryScq3f/6BMp+hbfosMnZfxyJSmM14d6ffRKx0jy5xg+DVYPGlKjQYMGS4KBrqQ2IT3eGBhUyNwDjWE1DNRYOxeRauBRFJ9pr+XubZ8Oyp124EXeWHdWkDeWTnPlM98vGlYNbupz8Zz4qFQctYmi52yzXAX3V6xq8pMir7RqmMe/AgOmr2W7K/uFQJ5RPxcIaxS4Zse30DXS6L4LPh2U8W+J3x5/ABnmDofPJQS8QtnGESPhwIxkRCVDiAqW6NkPMOxeLNbHP+YxN7Tyr1HgnLceZ9O+Z4O97t3yURchp+EXVgWWM1m36rFc+uqFqPEwVe7aeDm7Nl4W5F3z7A94c92ZA5HMbn7yKyiTlf3/Q1s+HGzfuP8FznhrZ0hWD3k/hv1mQVSEcpT6AoAv8wwIjlqv16DBakRDajRo0GBJsJTyk2FY+IgogxUEKyneKsH2cz7I3prTscnZvQPWGjfu+KoTglaMhWcl4JEo/mS5zPKGNnnaDoSQG+XIMhw8+U5Dh35kLpnJiPxAZlLJYyqyxv25/NkfBtck1Qk7zn63R8x4ZE1+L4oxo08kKFeIWnaNvBg8F1usmg277UMqKceo9WsStFcWXipyhARDcQ+Cc12gdP1TdwwbtHmeJ1VdYsmvmbt+7jXiNt7y1NeDvfePncRjm26a57GOHiNXAJcDabXK0Ky0LiGWg/wERpOlR1DjfDb/9OJfxaiozI7E8N4n/pQ7LvhsUHzD9Jtc+sLtrmkCz552Fftr8pWrn/7uQHuHWqxB1bfLYJmq3x4hP/FJj1XgU8PKwn8arB40pEaDBg2WFVbHypscUUQUiRJuu+TzwaY1/YPsrel1O9ksVz37vbnrKiZ5ftonOHySwB80EQ6mggnoEC/rdZlKQST4zkH9CbObiA6Rn3hpfzXJ/1sc44S9zzMxuy847V2nX40oNTBA9CUIxSR3SKHaxTh2OYlAEE2kXI1j7udhIaQiR2Jya2sEVnGyCxXx5Giinxzu4gaEU+1ehnUqtr7xyIAvjTvP+6SblNSIskWDd+/zRi7yARs0eGei3n8dKeYTDWXv5Ea2nxtaXWx541FAeHXDliD/hp1fJ856rmVK8eDW2n6vPcj6Q6+VPd6c5FzQj1L1TWW/6hG8Mqw/99IrHHMuphzlp8HqQUNqNGjQYEkw0JXUJ+DHGVJv0TE2Y96DiHwwsmvjFbxw8sXBpnVTbwxYa9yw4+uIsd7ErtbmcnAjpQXASIuLnFDA4vnCdOQDki9j5N9t4YR0YDLsPpUjMqlMZPPyLs8jOQYIj7D9Qz/Aux/+4wEHoT+//Av5QK74yCCpkJcODuVPkMu2zHOy7e/sX+shxRdlGutfF8vAdSoGtnNhqLPc44wjin4S4DC/K7Hc/PTXg6y9Ext5/Iwbag04ikMfBqth4rCSsDpI8BUKf5K9hBNnKToA7/tc7RgeDWVEp1MVAYG7z/sUU+11waYPPPZfuKsmIZ3sHeDKZ39Ydg+Pnfluusl4UOaqp79X9rnuGLX+ZAj5PChHCTuysu8eWDyoEawNGqxCNKRGgwYNlgTvRPnJnMWU4tZLfhWrqtdygmGqsz7YpZ11ue6pb+aDnCK3NhAbMi4bKQOwVdjW0KS1nh4iU6lJTgryw0qNWJhDZmJ96wgG21gSJFmfzW89GVyL/ZOncqhzYrVqlX8qaUkx6C5IoOI65BepPO6IafIc5MUwucWCDBxHkDr161dFPJFaxBP3d76RQpYS85sEjZhkMJpA2PbaA2w8uDvIu+O8TyEqOizZs2DwJyoNFg0NibSEqL8blwgLRdBWhP3o0+knY/z04tCqcm13L2e+tYPnT7kkyL/u6e/Q6U8BkCUdHjnn/cH2i1/8GZ3eoYqkkCGyPa+/rLr36vvQfnhUP70KfisjuuRj+jRYPWhIjQYNGiwrrI6Vt/nLTxTVavWetWfw8NnvC4qs7e4bsNa4/ulvgc2gJAH8Tjqf3Jb/GDq5DSZ33oQfBts9UKeUNXtH8VaEqFaKKsuRqr5ApoCq6vAm7/6IQ0R4145vDjoIPf+TRQMZmPgG0hJq10rK5o1mNKpNPkFjvVHQQkYXOZxcZPD05iH7WAU/pfBRCC/CsGsemZT37PyzIO+tydPZcdp1bp9R1jgLhIE2rYr3WYMGrKhnee738aht/nt09N47Tn8XL550UZB3zXM/5NEzbwnyOtkM1z39nfL7w1s+FPjkiG3KZc/92H0Rd/x6u8Pv4aJFQWD7/XJhpVdZq0jwr0GD1YyG1GjQoMHywFwTuiVpzxyf+ewu1aCi+AwbJ9UnrXds+yzTrTVBmTRqBd8T0+d9j/1JbaJXfYJJcEFADCxRQGneSnWdq+te8RIUq/7+p1wJyssVZrGeY07//vlkSHFMYLgUZcgq9xW7fhRcg0wnPHHWu4urWLumtclw+XfIzasb1QxZwhmQkxztMzniearOe+jprFqE8pPD/djmd1GueuFWNsy8FeTdcd4vIIUF1CJJTgbeVytoAriSsTpI8FWCJeqrh03Wj23cIHOfilL88NJfI9NxmaXFcs1zP2LHGdcFRa/c9UMmZ/ciAlOdDezcfH2w/Ypnf0RkekWja6+/kOAXIbSoZNCSoy4nddsHurQVCyuCtQv4WQ0XpUGJhtRo0KDBskE5Yaz1wEtpNhlMWI5gtaNcJfFJAgbPJTAjFaGbjHPbRZ8LyrRNb8Ba44rnf0JiukOOPMwz/DCiyJs0epPryuQ194dR+tWoTdqKctYGfjuK41F3xiUMtKF00jVkxFXKQqyw6fXHGesdDLY/vek60IowgkkxGK3aDFQDF6WquzdA8uT75Mc+JjlJjbAoznV09BNWiMOyUcTD0X3857C6BVJe/+o3ZGttGI5Of4obn/l2kLd7w1aeOvWqYz7zeWGATWN1zCSWMVaDSf2qwXKKhlL8ParH4/DnsXdiI/du/XiQd8beZ3lr7ebAGiOxKbc88eWyOdu3fDTYZ6J3gG0v3T3w3vPll6PkKOWihAzm2SAaiuujm1AfDVY7GlKjQYMGyxf5gHV1rMbNU5ICPLH5JnafcH5t7xCRWD76wB8w/6XnuqSkqrRuvloesLAiqOdZj9rxB46Sr5oVk9PCGsMjgwakFB6vEjTKa++7H/uTAQeht136hbzYMJkJQftCuUvYbIs3kfYmo8cSgSSwfvFu3Lwjgizjx10EbLn6J4dJz/2Bqlx9BjJa2jP64tz09DfpZDNB3q0Xfo7S0miRMOezsireXQ0arDwERPsRYj4/23u2fpJ942Go1muf/T5PbgodEl+8+0427n0ORHhr/Vm8eHJNuvL0d0BMfty55Cdzfxe/Mx3Rd694HKZPOdJPQzqvLjSkRoMGDZYNhnYvvnXAccaAVcYxNmP+chrFjy77tcBpaIRga6/s81/ZztjM3tri8JBVcWd+UMv2rCWKTzEhrZm4Bqs+/orRMAegvkMyb2AVhnmtGjxg+yJhotM9wCn7XwjO+431Z9PtrAvPuxzIDVxK/wYMrKQrb4cjnn7WL7N33strMDnkmTgqywpXmxtHy0B6KFs1rDXBTZIR+UeGE6Ze58oXbwvynjjtOl5bf+68/fYeLRrJydJhdRDeqwQjycvj3IyizyubdaTtqBOtw1/iJkr40aV/IcgbS6dpp9P04k6Q/77H/kvZhu1bPxZsO/HQq2x99cHB4/nEhNdnV31YfTtln+0vVAQSlRUOsQv/abB60JAaDRo0WDYYGhFlCQetSxIRJS/69tpNbN8SxrbX2Fox4ZP3/+tjW60YFfK1lh4gOrClRYIfwWRA8+sPpkoioxijCXgyj/CYjgh5z6ODYVx/dsmvVAROeSwCfWzFjUh4XK89Yo9iRFMMHOtyEs83yOJbXRw5GTFgolyL3HK4dBGady6yYr6OU4ttIrIwzlat8OHH/hNRvtoJkOmY2y/4xaOrb54YmCisgknDSsNqmKitJiio3ulL1oaF6bfnEw3lhVMuZefp1wZ557/+EM/UJG+b9j7N+a9uB+D5jZfx5trNwfbrnvpm3pfNLTcZKkfxJaBI8Jou++fB5YMGDVYdGlKjQYMGywYDA9RiNX1VrMbNX36i8n93bfsMhzobgm113xqb9zzFiQfC8JVHIkkZMGflMNFP8oGUkmrfYhBZXyEKxlCeEUMwQvQmuANjLrGc//J9QdZsaw27T7kY33KgqHgumcnAcYec5+FQDhqH7X8cH9GQIzo8cTWMiJhP9JT5yj6OFkqpBZmUXvzKXZy1Z2eQd//ZH+Rg58RjrnteaCbWS4KG0FhijHp/LnF/Pey5OLoxRNWLzLX7jy/588wmE0He2W8+wYGx8P3znif+K5FJQSnu3fapYNup+57nzDcep/6enVNuUvbLxRs+t97wFxNk4ULeLgc4o1JZwM9Sn1GDhURDajRo0GD5YNjIob4aehwxsLJxjM0IJ5nuMzIiCkIadbj1kl8NtulaqxTwye2/7+07rKFDGh6Ys4bfQxPX0Lx14Fw8s1ckD5lp6/vX1om8pa/AcoLqcIhw1TPfJ7Zp0OwHt3y4MNAIz+wwEUyOeOJZM3gYKi1ZFMzH+mLUfV55OFbCcqx/iPc/+aUg70DnBO7a+snjIzlxXxpiY4mwOgjv1YPgV7BEv4mBZ8Lrn472/T3Xqcy01/GTi8N+erJ/gP0TJwd562fe4qpdPwQRnj79WvZNbAy2X/fUt+pHDccLA+dR62NtbTFhAc67QYOVhIbUaNCgwbLBXPKTpdCEDl3hGJxfDt93KD/jdqpW0YuxiQyWywckT516Nc+dfMmc7Tzp4Muc+eYTeZspJ/3hXCvU2vrnM6ckJWhTjYzwTF9DAoMB+UIgM/H2xw8yUtbhpA71QZ5REfec/4n5yUy8NvsykzmfIanaNUpasrAYJCyq0xgtB3Hl5hcRZDnjmH7P+SV735NfZjydCjb98OI/T1rTtC8aRJZ8ZfqdioWy9GmwcAh+Ccvkd+H3p74scv4YtPurjw2eOON6dp1yaZB31ts7eWvNGUHe9U99k7HuAazS3HteGD3lzLd3cNrbTwd9QDheCOUo/rmFVpE+6+/LU1a+A4n5WCYe6WexoZS6Sin195RS31NK7VZK9ZRSU0qpp5VSX1RK3bLojXiHoCE1GjRosHwxpMNZCnJjoA0+OTBysjsPmYkqPnNHT/jxpX+BNGoFNfuHVMDHHvi3A60caFyw6DNMYZvLSfz2+MRGMcCyNiA7LB5R4dUayjNGyEzK8WLY1i2vPsB4/1DQuqdPvwZ0PD+ZiQxvx7Br7Q92h7d9YJcFg09ghFY8g+04ntKQ44FjmZQKwtlvPcalL98Z5O889Wp2bbx8IZo3JxoLgaXHUvcDDVYGhi1OHNnvtyAQvK5F1Z49pfjhZb8+4CB0rB8Sru1sllue/DIK2LH5pgF5qSPyRzPow+UnXt/lkTaVn43lMW56J0IpdTvwAPAPgY8Cm4AWMAGcB/w68DOl1H9USrVGVtRgXmhIjQYNGixv1KwAytX4JeqgAyJjYEJ6hHXNc9/9Exu5Y9ufC/LqQ7I13f1c8/R3qlV973INhs2sLCIGzeiHrP6U98A7vkccqMLKgqL6ucmo8jZSWVN4JQG45dE/CfcHfnLZr5V1hRXVzuFIUD/0cbDGqFbfqgb490GGXI/ViqMlB8Z7B/nEI38U5HXjMX580RcWollDMXSFryE3lhQNubSMsUQr44dv19EQYkIeABzfesLHobETuf3CzwV5k70D7J0Iw75e9tLPOf3tp8mihO3nhZFQtrz+MCftf6lmrVG1obQ0qY1DEAblJ8VeR+MQe5nCWlnwzyKjMNV5FfiXwC8B1wE3AH8beCXf/mvAFxe7MasdDanRoEGDlYXlGBHlmKOiHB7bt3yYV9efG+TVu+Obn/wzoqyL1GodfrmqhvsrPQOmunOYufp+JkpuIeCePPmGLzPxSBV/oOjqhJP2vsiG6TeC1r584ja6nbUeeXIMMhNq57dgZMYw8qK6FoEcZ8AiAy+98q0w5oMjnlgUl8wKH3/k3zPZOxhsvn3bZ5nqrF+o5s3RDgnJ1gZLgkZ+svwRREPx+5KlxFG/Ug//Xn74rPfw0onbgrwTpt8k1UmQ96FH/wPKGh496z3MtCaDbe/KZZcD/Xa9g6V2LVVVrMyWfMyyKIT98ceQ9a1j/iwydgK/ApwpIn9TRP5MRO4XkXtE5F8AVwBP52W/0EhRjg0NqdGgQYMViaVaoRsm2oCja49Sat4RUVAR37/itzAqqrJqRWLJ+MT2fzvM2HZIad9k1X1kgA4hWNUKVoioJhVSEBO1dFBNIDOpty3c9IFHvjgQxvXHV/yGt4e/SuYTA/OUmSwokTF4jGoMHx5g7vu8esmLUTjSSWlBY131wo/Z+tZjwbZnT76Mh85878I2cC40FgJLDhFpLDVWAuaI4LFUONY21PvtcrFDab53+W/Si9pBeVHhdOvkgy9z9XM/oh93ePDcMHT7tlfu46SDLzMQnWxIk4c5RS37Ys+qI5CoNDhuEJFPisiXRLx44+H2t4H/wcv6pePTstWJhtRo0KDByoJUHfayQLl4cuTtGe5LYXRElLfXns7d5396zjrPe/1BTqiFeK2OU1uhKAZAviQFO3guUi9WOSxz21VFEBSGFzhDjNIaNlgWqQqF7RHGZ/Zy+t5ng8PvnTyNt9ec7llnVEtS4pmPzvseLOijE1plOHgXIUg3qOOwk4vas3fa3l28b+dXgiJT7XV857K/uGhEw4Cp+TKYlDVosBKwLN98RX9de7ccURVD+u0CByZO4Se1qGUt0xvwt3HTjq8xMf02D57zgWCbQrjpyT8b2m/XTyQgLsq+tjrPwrJt9Vhq5GOPhfosj3HkbV56y1I1YjWgITUaNGiwsrAcI6IUOMzAYX4RUSrHXsPqv2fLx3lz7eY52gefue//GmpfaYeQKOFxPKsJb2VnVBSYMioI3qmr2oBvqMxEeU3zV5XgIw/+PwNH++kln6+uVU1mEpz7XNYZeVt9EuTIBnn1AWxFZLhjVOTFO0U+cqwI/blUn/C3UKXXzbzFLz7wfxPbLKjn25f9JrPtNYvd2EZysszQyE+WP0YR9EvZiAGJ5VFYMQz024Tn9dimm3n61KuCfdpZN/jeMl0+8MSf0GtNsH3rR4Nt5732ABv37vL6F7/N1SJA1cdWn4HzaUjY5Q7fQejqcYCyBGhIjQYNGqwsDBkQLRcHZAMOvAYwv8HFXJIUG8V87/LfxKrRr+8Tpt/gohd/VjUjH+zUjIAZMG8t2p4n3VeppCO13QdNX31rhfoFGJSZ1J2ajc/u55w3Hw/2mmqv4/lTrwhrmofMpCRsas04lqgmdWlJ+Mg1A8cjxeh7V3yhvH/tdJpfvv9fMlGLiHPvOR/mhZMvXsRWemgmB8sKjfxk+WNYN7jU92zOhYmjrbPeHyrFDy77Daba64Jy9X5726vbOeeNR9l+7kcGfGvcvOPPakcJO+eRIx6/7z7C81juEBHsAn6Ww7gReI+X3rlkrVgFaEiNBg0arDwss4gowMiV5qOq6jD7vrH+bO7b8tGR2wE++Oh/ApMGVhDDjjEgSxnUmlBESZnrM0xaMpfMpCBZ/NIfefiPULWW/vTiXxmwzpjPdS2NUfD+HjFCiwwGWvwOk5aMsqZYwE9xHN+iJkl7fPaBf81J068HzXnupIu5bdsvHp9zbybPDRocMQZ+NaN+80uJBWhC/VwUitn2Gr53xW8F5bRYbO2qfPiRLwJw39aPB/nnvPk4Z7y1o/zuRzSrPn7jD993N5gTpyqlNs31WegDKqU08Lte1pcW+hjvJDSkRoMGDZY35juZWE6TjuMQEeXO8z/DW2vOGLm9Zfp89OEv5tWNri8wby0JiAEKZMjHUkkuQmmJfx4V31ERT8NKd7oHOff1R4KjTrfWsnPzjQNtPl4yk+raVC1e8dIS/xYiwb2fK12u/HnXeODWj0oPPjrVPfJ5Ie8+Fde505/iV+7/55y196ngNN5ccwZfv/KvIDpicVAj65oJwbJDIz9ZoVg10VAOX8nzp1zKA2d/IMjTtQ5p7exe3vf4n/DQOR8YsOy4ZcefVddrxBGDNYWhCCOMrWQsqD+N/OPhfmD3YT4Ljb+FC/EK8DUR2b4Ix3jHoCE1GjRosPKRT4BWQ0QUt9/h9zVRwreu/itkOh5Z5pLdd3DygRePgGMZJkkp8gfLVuWG117NByWcsA65XB8eYqVx+8W/XO0zJzEzZMB3jDKTUb5GVgNK1bXP+3hj3mHpUlZVxyiOZx6BXpRSc+4z2d3Pr97zT9m0f1eQf6i9ji9f89/TT8bmOMixobAoWvnTgNWLRn6y8uAM3pZfNJRjxaD8pEreftHn5vSDBXDZSz9j856d3HP+p4L8TXue5qw3HxvxHvLZYJmD3Fj513c1Qin1HuAf51/fBP7qEjZnVaAhNRo0aLDyscTykwGNrmeifzSoO/OsLa+XeHvNJn560efnaBf80t3/HDGmWnWuf4Ycd0CSMo/TGFr1CJlJGK9VGJs9wNbXHgrqm2lN8vjmm4O2DR7T85txxNYZw69vJTOZVyXLC96pzC0VYviHWnqEFcXxGCOf++aj/Pqd/yunTL0S5M8mE3zlmr/BobETFr8RSo1cJW3QoMGRY5QcZUlx+K728FUM7bMdsqjFN67+7wain9QP8ZGH/z07T7+WA2MnBvnvfvIrYM3AtbKeJaQE7/wj67tXEhbZUuNaYPNhPgsCpdTFwNeAGOgBnxORNxaq/ncqGlKjQYMGqwPLdbXnMAOkeUdEGTFAeejs9/PsxitG1j/ZO8CHHv1PAFjr6WuLpg0lNqhNggfbUJUp8ooyQ47B8MFssRL+iQd+f8Ak9+cXhuHai1WwAZmJ1/6AXBr6OITkRf08w0HpMkMwXh4uFRH8e8ZwAuNIsMg/qWGTmU5/io8/8kd8bvu/Yk1vf7DtYGcD//n6v8sb685a3IZVDVy+75UGjfxkNWApfl8jDhm8Rw/zshz0kV3vs8F/4e6bPJXvXR7616g3Y013P+974k+5a9tngvyNB17kkpfuAJX3cIdhK0oHmBL2dasBVhb+4+F1EXl5rs9CnINS6hzgh8AGwABfEJHbF6LudzoaUqNBgwYrH0ssPxmGYlBUDpBGTiqPJCLK8A3fu/w3mWqvH7nv5S/+1MlQ/Kghxadead00GPCX60tCIY88VhIBZZF5nE8+whIRTjiwm7PeejLYPNOa5NGz3zvQtqEyk8MSGQOHXd7kxWFQkEXuizdYrZ+OLI6X/4VEcX+TrMemvU/ziUf+kP/XrX+Hy165a6Ds3vGN/Ocbfpc9a04/3s1ssEzRyE9WHoa9cVfmPZy7ze6UwjJPn34N95/74Tn3u/jlu+klHfZMnhbkv/vJL9PqT4cLBSOYiuCowYLDnIducByglDod+DFwOu7u/KaIfG1pW7V6MFqM3aBBgwYrBcUkecimJRswSf2rZ1FwFG1yE3E1lNiYba/hO1f+JX7lnn82dN9ChvL7H/4XoLVXX7U93MELv0q+YO23BRBbFbP+9lGnVrcIyf9+evvvD9T9o8t+vbarBDsFk5mhZiDDjjS0GcsP4idlaH5hhaGUGjSFKdKL9diLpZPOMNafYjydYqw/RSedITE9EtPP//ZIsj6tIm16RDZDi0WJoMSixaLFMNk7wGTvwJyHfO6ki/n25b/FTHvtIp1Ufmr1h0OpFfDANGiwcjBUflIvs9Qkx2H7lHlUkb836qdy+4W/zGn7nmPTvmdH7vuRh7/IrRf/Kp94+A/KvIn+IW7a+TV+eumfD5rpjjHCp1XZFnc6q+FVVi2qLFx9xwtKqZOAHwHn5ll/XUT+43FrwDsADanRoEGD1YFhnVNunrwUg6Shq+SLGBHlxZMv5t4tH+Ndu743dHshQ/nRFSFhEAwqPYlHYNUx5Pop79rOzSk4E/5gTp772Tj79Uc56VDoM2Hf+Ck8fca14WBjYK45H5lJcS71/OUH/3qPJDJqGHkNjvIZi0zKmu4+1nT3sba716Vn9zHZO8B4/xBjOYEx1p8akAotFnpxh59c+Cs8uunm42umvhpG/+8AqCV8vzdYIAwhEpf8nh7FoYfJUUJO1BWwOuabV/9Vfv1nv8dE/+DQusbSaa584Sc8u/Fytr7xSJl/1fM/4bGz3sPbazeVB51PU5tfx9JDKbUO+AFwUZ71uyLy/1vCJq1KNKRGgwYNVh6OYMCzbAa8fsSHwxUdWSQ0Ia3KucTPL/gsm/c8xen7nxu69+Uv/pSHz3kvb83hk6CgA8qVpjkaddhzKSxorEU8PXCx18ce/sMBK43vXPPf5sdVlWznqFD4nFAsSzLDl8Ioz/9FvcwCPb7aZqybeZsNM2+xYeZN1s+8xfqZt1mTExgT/UMLc6AFgFERO0+7htu3fZaDNad5i46G0FgxWPLJb4NFwZLf09IwsOgDi857rp3m369PjZ3AV6/7G3zhrn9MbLOhZU/f/xyPn3EDmY7LMlos73/sj/nSjb8TLhTMo69eLRiMTHbs9S02lFLjwHeAq/Ksfygi/2TRD/wORENqNGjQYPUit0JY8kESBAOlw7dn2Hap/S3GMpUkxeqYr1/7/+LXfv4PWNPdP7TWz931T/n9j/yf2GGhYAuPYjX5yVytOhxcE/MoEl69N+746oDs4NUNW3h9w9Z8v7psZP4TmLp1xpJOfkbJSfxtUju/o5WQiGXd7B5OmnqNE6deY8P0m6yfeZMNM2+xdnbPcbOwOFq8PXEqj226icc23bToUpMCjeSkQYNlhGXaZ6OO1UeRIFL11a9t2MJ3rvzL/MIDvz9yj0teuZunT72K819/sMw76+0dnP/q/Tx9xnUDfWopRxnZhOa9dryhlGrhopzclGf9SxH5n5awSasaDanRoEGD1YvlMDDyseDNGaxwqrOBr1371/nVO/+3oatA4/0pfuWOf8yfvHv+/WohFwmGRMXkrzAXLsp6rfLT/iB1vLufG575dngMFN+4+q8O+M+oDne4i1c3azg2HyYLhdLa5DAGI4eX1HibxbJ+5i1OmnqVEw+9xklTr7r01Osktr8QzZ4X+lGb2dYk3WScftQmjdqkUSv/2yaNXboftTE6xqoIUQqrNKI0FkW3Ncn+8ZPZP34SWdQ+bm0fQDPgX3Fo5CerEKv2Xg6e11OnX8fPpt/k3Tv/bOReZ7/5OFPtdcECwPue+FOeP+VS+rUQsQVGWh+sgnecWLAL6VPDLlhVo/AnQOEd9lbgD5VSl8xRvi8iTy96q1YpGlKjQYMGDRYDQ8ZmxQC8knbMx6z1yPH6+nP5/uV/kU8+9AdDt2/a9yzvefxPuP2SLwxsm9cEIfdPqXJiY5RLh1E1/eI9/ye6Npp45MxbmBrPpQYLIjlZQtmJLy3x845UTiLC2u5eTjm4m1MOvcyJh151VhjTr400Wz5W9KI2h8ZO4GDnBA51NjDVWc90ay2zrUlmWpPMtiaZTdzfLGotShuOP1b+YP+diIbQaLBYEOSY+ufhj2UlHy2237P1E2yYep1LX75zaD0t26fHeJC3dnYvH3jsj/n+VX/pyBu2wrEC5Sef9dLvBx49TPkXgbMXrTWrHA2p0aBBg9WLmpRiyTGgPjhWa4LRs+QnN93IyQdfHuk49NpdP+CV9Vt55oxrjvzY9fAnR4ALdt/DxgMvBHndeJwfXvbrR+FToi7FqfLDCc8COqcY3YTDO/mcowmRSTlp6jVOObTbkRgHd3PKod2MpTML1lSAmWSSfROn5NYRJ3Ng7EQOdTZwqLOBg50T6CdjC3q85YjBgewy9bvSoME7DZ71X4Eld/Q96tVwRM0K5aOVdFTxg8t/g7XdvZz19o6he67p7acXj9HOZsu8S3ffwfMbL+OpM647kkY0aLCq0ZAaDRo0WL1YToQGxz8iys8u/CVOOvQKW94cXBxQwKcf/H3+cP3/xoHJjXMf5TDRT+aLVn+Gjz78RwMikW9d/dug9JADD6tlfpFNwnYt3nNQEhlHMCce6x/ilIMvs/HgS5xy6GVOOfgSJ069TiRmQdrUjcd5e81p7J04lX3jp7Bv4hT2jZ/M/vFT6CXjh6/gOGHJV9pXgTn2OxmN/GSVouYNe7nc44AMPayPjfn7zbI65qvX/g1++Z5/zqZ9zwwt3c5msUoHFo4ffuSLvHrCuRwaO2kerV8dELvAIV0XsK6h9Yss/YP7DkJDajRo0GDVwx+MlGFIl8EgaWFQj4hSyS9Eab511W/zF+74h5w09erAnpFY/sLP/gH/OncceqTX5EjLf+HOfzTg8+GlEy/g+VMuO6J6KpkJFKvsx9UoR/I2lOnhE3Qllg3Tb9asL15mbXffgjRjpjXJ25Onl589k6fx9prTmW6tXXaE3jAs7W+wITRWOpbLZLfBMWAwFuqyfHcFcpQFqtEnNtK4w1fe9bf45Xv/D87Yt2voHnXJZied4eMP/AFfuunvIsMWBRo0eIehITUaNGiwemEHJRLLbrh0TMqIYmJmqVsvFKfdT8b50vV/hy/c/Y/ZMP3mQA3j6TT/zc/+AV+85e8jOh8Y+atQC3TB3v34n3LKwZeDvEzHfO2avz6PvUfJTEDE5iRVUe44yEyGrPC3TY+TD72ckxcvc8qh3Zx86GVa5tgdd3bjMd5cu5m31pwRkBiz7TXHXPc7BY3kpEGDFYhlQnIMEBoy30hmcyF8//STDl9519/mc3f/U06rSTRH4cw9T3HtM9/lvvM+uQwHNwuPlWap0eD4oiE1GjRosDow38HFMhggBViQ5swttZga28Cf3PB3+cJd/4QNM4PExikHd/Obt/9PfPE9/wCjIxRqQFbhLltY9+FWSouJ5Ka3n+K6Xd8PtwHfvOqv0G8dXg6xrGQmVlg3uye3vni59H2xYeatBTnOvvGTeXPNJt5cu9l91mzmwNiJy++5XQAsyUp7IzlZNWjkJ+8ALNd7qxamtwnJVkUvGefL1/8P/Mrd/5SNB1+aVx037/war60/h5dOvsi1ableswYNFhkNqdGgQYMGxwvziIgCoETBAluTTo2dwJ/e+Dt84a5/wvohE/CTpl7jL9/6u/zhe/5XsiQMFSe1mKTFJML9FaxUprl1M911U2/wuXv+2cCpP3HGjTx72tVHeBbHd0IaZ31OOvQKJ3vSkVMO7qbjOWw7WqQ64e01Z/BGTlw4AmPTO8JRZ4FmMtrgWNAQGu8c1C2tlvq+S2FBUkQyW8A+u9ua5E9v+B0+s/3/5qw9Ow9bPhLDZ+/7V3zp+r/DqydudW3yu2zltXmFw+bjjYWsr8HqQUNqNGjQ4J2FZWLOWmJInyrOtvUYIqIMx6GxE/nTG36Hz9/1T1g/+/bA9nWze/jtW3+HP3zfP6LbmhxZZTk4KppnvbQ3iBqf3c9fvP1/Hgg/emDsRL57xW8d9Xks9GQmMiknTL/OSYde5aRDr/z/27v3OMnK+s7j3193z/RlenqYG8xwUVe5GxcBMY7ggm5EIjFqNBA0ZmUNhrCb6Lq6xLC7xH2pLyOY3WyyGFHEuHJ5bVyiiYLBqCjITVyMUVFAFAeGoZkb0z3Tl+mu3/5Rp7pPVZ2qrsupc6vPu1/nVedUnTr1VNXpOs/5nef3PNo49ZQ2Te/Q+oOTdXnMnZgeXrfU+qISxNiz5gj5wGAMpc83TkwBNBSRQpqJ43fUSGYdH7PrNzq3ekx/87L36DXf/6xetP2uFZ+5enFOb77/v+vmbZdrcuI5Vdl1XirObyzpJ2iGoAaA/pKxg3v8I6KU1TZrlcpvff/YJt388st10d0f0bqZ3XXPWzM/pd/72n/Sded8UNOjGxqXMXgNU3Wnq5X51fMH9Y5v/metXpyres6iDepzZ10hDTS/rNV6yknrhhbntGE6CF5M79DGqR3aNP2UDjswqYEYrtiUbEC712xZanXx9MRzNDlxtA4Or+t620WUeECjAFcqsYz0kwJa6bvMyHddd0yMqVjh4/aiDem2Uy7W3rHD9a9+csuKzx05dFC/ee/VuunM92vP+NblomXkMwN6jaAGABRedQea+8c26YYz/1iv/+41kT2tDy/M6NKvvU/3Pf883XnimxoGIBoFOw7f93NddPefanhxtur+kkw3bbtcB0bWNylnuGLX/sgmQ4tzOuzAM1p/YFLrD05q/YFJHXbgaa0/OKmJmb2ymJqbzg6NaXIiaH0RpI/sGj9Si4OrYtl+P+h1ZbuuuXWouTjyj4BGH8pIS8v4R0Np9Dqme49/nZ5ds1nnfe/TWlU61HT9NfNTuvCeq/TF0y/Tjg3H9rx8SXP3WNNoipCSg2UENQD0l+AgFnUoy0wFuSeDeFS/4+nR9brp5ZfrnB99Xi/52e11aw94Sdt+eqtOe/zr+tKLL9FPt57W0quc9tPb9aof3VzX8sEl3XLGH2rHxuMal3ClkU28HHBZO7NHEzO7NTG7VxMzu4PlPVp/YFJr5/a1VM5WuUx7xw5fCmBU0kj2j2zIROU673p+YuqemRMhxI/ARp/JyHedREBjmeuho35ZT697jl774HU6ct9jTddeO7tXb/32h/XA88/VnSe8UQtDwwmVE0gXQQ0A/Sl8Bp2RitKSXo1KWpOSsmhD+vov/Zae2HCczn/w2sirQMMLs/qNB/5C+8Y2684T3qiHt5yu0tDqpe1VTiiO2/GAXvWjmzUxs7uu+C7pSy++RI9teXFkuVYtzGlsfr9GZ/drbH6/xub2a2x+qjzN7dea+SmtndmrtbN7NLwwG7mNODw7ulG7xrcuDZm6e3yrnll7lA4Njaz8ZLQtsRPSrP1/Ixa1HSwDaYr7V6b8+7hcVdm9ZqtuOPP9+uVHb9OZP/mCBtW4vyeT64zH/kEn7PiOvnLKxfrFphNjLl06vOQq0acGGiCoAaC4GpzM1DWESPNKbjsjolj0+p2pfAqmh498iZ6ZOFpvvu/PIocmNUnrDz6jX3/wWrkk14BmV41pemSdRuenNXroQF1noMuvYvrFxhN07OQ/6eQd92n1woxWL8xqeGF2ab7Rc3vBZdo3tkm7l4IXW7Vr/CjtHt9C8CJhvQhohP9nloImnPgWEq00+lBWWl3VFKE3o6HUN9ks2aDuPf51euyIU/SrD35KR0xtb7qFidk9uuC+j8klPTUwoPu6LRKQYQQ1EmBm45JOk/TSYDpD0vOChx939+dFP7Or19wm6TJJr5C0RdJeSf8k6TPufnPcrwfkSV2VKAuVpLCoEVEsqCzFFtUIhmANrgbtHT9C15/zQZ3+6Fe07ZEvabVH5+6WwyAljR2a1tih6RZexVsali5uUyPrtXfscO1dE5pGN2vP+BFaGCg3x+WkKH09+w7cy3s4AY3CoqPQPmTLx63yYkb2gdrUSYtjNJTGLza57hj99dlX6rid39NZP75Fm6d3NH2GSXWdducRo5+gGYIayfh7Seck9WJm9l8lXanqOPGWYHqNmb1F0gXu3rt23AA6lky+bviKdvn20MCQ7j3+dfruC87VqT/7R73iJ1/UkCfXiqId08PrtH9kg6ZGN2j/6AZNja7XvtHN2rvmcO1bs1kLg/V5xO5eVflMvSLc53oZ0ABQQDX/256Rlhu9OGbXvq3adBRpQI9sPU2PbDlVx+78nl75w5u1fqa+pSXQLwhqJCP807RX0gOStkkaj/2FzH5X0geCxZ9K+rCkf5Z0pKR3SXqlpNdJ+pSk34779YE8yFT6SQYdGhzWd477NX33Befp5T++RS997KuJBDcWBoZ0cPWEDg6v1cHVa3VgeEIHVwfzI+u0f3Sj9o9s0PTIYa2PMuKVm+qARiau7vW5uD7/RiknPelvF5nC/3DBRXy/ufi/jqWQ1Rswq95o+Xev3HbykS2n6tEtL9amqSf1S9vv1klP3KPx+Wez/zm1qdzvc5yjn8S2KWQAQY1k3CjpWkn3u/ujkmRmP1fMQQ0zO0zSVcHiLyS9zN13hR7/kqS/VTmo8VYzu9bdvxVnGYA8yHz6SWrCn4OrNDCou06+QHed/JtatTCn507+UCftuE9bnv2Zxmef1WBpQaWBQR0aWK25VaPaN7ZZi4PDWhwYUMkGVRoY1KINaX7ViOYGRzQ/NKr5oWHNDVXmRzU/NKLZVaM6uHpC80Mj8XwXNcGLqoeCk15OhrKh0+BSZMW2knJSKkmW7PgESAfByf5T9W1n/bsPj07es41XlkzPrD1ad7zwQt3xwgu1ZmaPXrT9Lh2x73Ftmt6hudlnpMVelCM57iV5qXEHqZ1sD8VBUCMB7n5tQi91iaTDgvnLwwGNoByLZnaZpNdKGpT0PkkENQAEfKnRyvI5Y/lq0KGhYT165Ol69MjTl9ducEJROeGsNJdNmkd2SiLJuLKbJbGdkNYGOPiOgf6QlVaWtakicplb1bHIZF0GN1Z+cvijODC6Qfce/+tLy3Mzk9JX3thNAYBMI6hRLG8IbvdLuiVqBXd/wsz+UdJrJL3azMbdfeXe/oAi88jTYEkpnQRHvWQ4jWJpNWu8fqcvbfXtZqsDHJWKU+WE1CsXxiO2FV+5OuJB5bLryiR6Ia6ARi6ao6MnCFL2nzz8vy+NVlbh5c5D42w/Vr/ru9zLx+SqFw51Cp53pZiHdI1zW0hf1wMOIRvMbLXKI6tI0j3uPt9k9W8Gt8Mqj8QC9L2lZuvlpM20i9OYL08e/PVeqeqF3csfVankQUUp/Hh4PkGhz6WyvBTQyPDX2c/cva2KdmX92ucwykn/KsKJGtoTlX4S/m3I5D6RWBSm/hhcTrFI4ZgMJIyWGsVxnJa/z5XGTww/fpKkb/SkREDecNVPUbWvqCtC1Y+HV0jnM6wK7gSz5vG3ZEFGkHICICqA0Te/BY3eZ20Ho8X5POIOWmUyAIaOEdQojmNC80+ssO72Bs9bkZkdvcIqW9rZHpAVeRgRZanlwfIdCZ2wtxLoSMFKI5tkoYxoqJXKNiOboJkinbChM5n8LagtUE36aC9SR4F+R1CjONaG5lfqI+NAaL7dEVi2r7wKkD95GBElMh+39kJDJaW2x8WvnGymeVLhyzXF8g0jm+RKo32o5ZFNMhh4RLIY/QSRXVBldb+oHKusJriBlnjJ5TH2gxHntpA+ghrFMRKab9afhiTNheZHe1AWAAmK7GOgDytLmazEojvN0kz4vgFE4FhQTAQ10AxBjYCZDUk6FMOmLnb3z8SwnXbNhuZXr7DucGh+ps3XWSldZYuk77S5TSB1eUg/iRKVklLb8XovpFZpXCnlBLlTyZO2UKd/pJmgFfzPIy+/EVXH6rwUGsgRghrFMRWaXymlZE1ovq3hXN29aX8dVDCQV3lIP4lS13w1oWInmn5S1QdodDCD355kLX3/Wv46WpmP2o5J9aklpJmgBQQzkZf0k7pjtVc9SKCjBa6SSl6KdXsoDoIaAXdfMLOTYtjUUzFsoxPhYMNKnXmGW1vQRwaATIsa2WRphJOMVVz7TVVHnuH7G8yr2f2NUkv4jgG0IS/HhaXfz6W4bT7KDWQRQY0Qd19pKNQse1jSoqRBSSeusG748Yd6ViIgz9wbnoxlqcKU1ogoqXwGHnq/2fkKCiepYe74CtGtLP0WIxuifr+yuJ/UHrtpqLEyL8XbD0aMjT6QAQNpFwDxcPd5SfcHi9vMrFm/GmcHt3OSHuhpwYAcW2oG717fYWFGNBwRJTxJjS+Xdyju8eLrX0CR5TdZ7O+ln1S+t2ZTsGL1vt9oPoayAJ1i/0GtpZS10G9UFveTyHSU2uMegJYR1CiWLwS3E5J+I2oFMzta0q8Ei19z96mo9QAEMniFpxWRJ6o54qG/ulyGfH4l2ROu+NdOEukgAAohiy01ouT9uN1rldFP4pxQHAQ1csLMnmdmHkx3NFjtU5KeDeY/YmYba7YxKOkalVNUJOnqnhQWKIi6w11OKhl1iTMecV+XEuucs7bY+aibZkpkJTkD+zIdvKJb7D+oFXXczkOAIPK4nYNyJ6mVlobtTigO+tRIgJkdK+msmrsrI5SMm9nbax77irvvbPd13H2PmV0u6a8kPVfSfWb2IUn/LOlISe+W9Mpg9Zvc/RvtvgbQTxgRpbGejX7SrLfJfHz8mVBXWcvg8KiJjqCDQsriKBdIF8dtoD8R1EjGWZKub/DYxojHXimp7aCGJLn7J8zsSEn/RdILJH06YrVbJf3bTrYPAL1S3ZJA1fNU8DoXGn4VAPpNXgNfeS13r5RKJZVK8fXuGee2kD7STwrI3a9UOZByo8pDts5LmpT0VUlvcffz3X02xSICuZDX9JM6tR2QVaYujuc9TR0g5aQjjTr8zOpeS/oJusX+g1p5TT+pU0k/ofNQoCW01EiAu39G0me63MbP1UbV3t3vlnR3N68J9Lu8NmNtpKpiZ8HknZ0YxJo6QMpJxyIr6+7LI/eYLY8GkLH9l/QTdIv0E9QqynHbvTzk61JYuovjdVG4x9u5Zy6DXWiIoAYA9LEsVJCWKm0ENLpTW0FjxBIAyMRxrl1Rw7Xn8X0ASSGoAQAN1J1XZ/Bqd6tcXl1JCt5cp1c6u6pcVQ3C0eBKST4/5kSEP7Ol7y+DHYGuhAo6usU+hFpRx21XDveV2uJ6xHE8Z2+pW+4lucfXD0ac20L6CGoAQANFacYqRV/1War9+dJKLesodWCpQYaTH9ymPKeZNEL6CbpF+glqNTpu5/33hnQUoDmCGgDQ55Y7lQwqSC3Ukcyso3zUuoBG3poXZAFpJgDQoqVmictLOfydjE5HSaEgKfJSzH1qxLgtpI+gBgA0UKT0kygul3n1+2nnataK65Bm0pVGrTOKIo8nFsgW9iGsqOTVx5lCpaNEtUxJpjipKMUciCD7pFAIagBAAys1Yy3fld8aRGRKSkULKSkNm36TZtKxpoGMcFCtAAE2UgfQLfYhtK0g+0tkOopWOK4DBUZQAwBaVTm5tOqmrOW7ilGRqHRE1kpKSrP3TJpJDLzmCmPB0kwqKUxF+d8BkA9F+M3px+BFyUsqxdi5Z5zbQvoIagBAG1ySBR0zlu/Id55unciGAkFKSm0lqqpJb/36DdfFykJBpSIrxP8MUsP+g7blNf2kVkQ6SvnGq+5bep8FP5YABDUAoA0mFe6KeVhURa+umWsUKkwda9rhagHSTBqhlQa6xT6EthV9f6k5nHjQp0gnHXtnDR2FopmBtAsAAEVQ5Ip10/dWWyegjtAdd1V9iAXfr4pQ0UY62HfQqSIfr+v00VtFf6OlBgC0IXJEFBUo/aQdXnMrUYHqRuUkrVSsDkGb6bv/GcSK/QdtK0r6SR9yL8lL8fWD4fSpUSgENQCgDY1GROlHNP3uTktXmgv8+bL/oBt0NIuOsL/kFuknaIb0EwCIQT9WrPvxPfdEH6WchJF+gm6w76BTHLuA4qGlBgC0gfQTxGF5yNz+SzkJ438G3WD/QdtIP8kt91KsKSOknxQLLTUAoA2R6Sd9WjniSmmP9Mn+xP6DbtDSBx3pk99XoN/QUgMA2lDXUiPQj1d9+vE990wffpb0iYBusO+gU+w3+VQqSaUY+8GIsc9RZAAtNQCgG+7l5qxcMUQ3+nT/4eQCQKI4XiMFZvYcM7vazB4yswNmtsfM7jez95rZWNrlKwJaagBAGxj9ZBlXStEN9h90g5Y+6Aj7S36V4h3SNammGmZ2vqQbJK0L3T0m6Yxg+l0ze627P5ZIgQqKlhoA0IZG13f6sWLdj++5Z/rws2T/QTcIaKBT7Df55O5Lw7rGMiXQYsfMTpH0f1QOaExLukLSyyX9a0mfDFY7QdKXzWy85wUqMFpqAEAb6qpCjH6COPTRiCcAkBpGP0Gy/ofKrTIWJJ3r7veEHvu6mT0i6aOSTpT0Hkn/LfESFgQtNQCgG4x+AnSE/QfdYPQTdKRPj9dFUBnSNc6pl8zsDEnnBIvX1QQ0Kj4m6aFg/t1mtqqnhSowghoA0AbST5b143vumT78LNl/0A3ST9Ap9hsk5A2h+eujVvByZOWzweJ6LQdB0CbSTwCgDaSfoCdIPwGA3iP9JLcqfWHEub0ee0Vwe0DSd5us983Q/FmSvtqzEhUYLTUAoBuknwAdYf9BN0g/QUf69HiNVJwU3D7q7gtN1vtxxHPQJlpqIG6DlZn52d1plgPomqumZUaTIQS56oN2LJ2McVIGdITGTWhJ7YHcrC+P1zV18sFG62XZ3MyuWId0nZ/bE17cstJ+4e5PtLptMxuRtClYbPo8d99rZgckrZF0TKuvgWoENRC3zZWZ73/799MsBwAAAIBqmyU9nnYh2vX9uy7t5ea/08I67UTD1obmp1tYvxLUYFjXDpF+grgdnnYBAAAAAESirt57I6H5+RbWnwtuR3tQlr5ASw3ELZwX9jJJT6ZVEAA9s0XLVzXOkLQzxbIgn9iH0A32H6A9R0m6N5j/cbMVM2anep+SsUXSM5IWY9zmbGh+dQvrDwe3MzGWoa8Q1EDcwtHIJ9vJPwOQDzV5pzv5P0e72IfQDfYfoD01/zOttBzIhKCDzV7/f/di+1Oh+VZSStYEt62kqiAC6ScAAAAAAMTA3Wcl7QoWj262rpmt13JQY3svy1VkBDUAAAAAAIjPQ8HtsWbWLDvixIjnoE0ENQAAAAAAiM9dwe0aSac3We/s0Py3e1ecYiOoAQAAAABAfL4Qmr84agUzG5D0O8HiPknf6G2RiougBgAAAAAAMXH3+yXdGSy+w8y2Raz2HyWdFMz/ubsfSqRwBcToJwAAAAAAxOtdKqeUjEq63cw+rHJrjFFJvyXpncF6D0v6WColLAiCGgAAAAAAxMjdHzSzCyV9TtKEpA9HrPawpPPdfSriMbTI3D3tMgAAAAAAUDhm9lyVW22cr/IQr/OSHpX0N5L+0t0Ppli8QiCoAQAAAAAAcomOQgEAAAAAQC4R1AAAAAAAALlEUAMAAAAAAOQSQQ0AAAAAAJBLBDUAAAAAAEAuEdQAAAAAAAC5RFADAAAAAADkEkENAAAAAACQSwQ10DEzO8fMvME0Y2ZPmNltZnaZmY2nXV4AnVvh/73R9Pa0y410mdm4mT0e7A+7zGxzC8+5KrQPXZpEOZE9Eb85U2Y21sLzRs3s2ZrnntP7EgPZwTEb/YagBnplRNJRks6T9L8k/cDMTkm3SACAJLn7tKRKYGKjpD9vtr6ZvUTSfwgWvyXpE70rHXJmXNIbWljv9ZImelsUAECWDKVdABTGxyVdE1reJOkESe+RdLyk50q6zcxOcPepFMoHID61/++NPNHrgiD73P02M7tB0lslXWRmN7j7l2vXM7NVkq6TNChpVtIl7u7JlhYZNavyxZK3SbpxhXXfVvMcoN9xzEbhEdRAXCbd/Qc1991hZtdLuk3SqyRtlfROSR9LunAAYhX1/w40825J50raLOnjZvbCiAD3H0n6l8H8B9z94QTLh2z7O0kXSHq1mW1x951RK5nZ4SrvZ5L0RUkXJlQ+IMs4ZqPwSD9BT7n7vKQ/Cd316pSKAgBIibvvUjmwIUnHSPpI+HEzO0nSFcHig5KuTqxwyIPbJe1UuRXPRU3Wu0jlC3ZPS/pqAuUCAGQAQQ0k4f+F5o9JrRQAgNS4+42Sbg0Wf9/MzpIkMxtQOe1kWNKCpHe4+0I6pURGLUq6KZh/W5P1fie4vTF4DgCgDxDUQBLCFQsqqgDQvy6VNCXJJH3SzIYl/YGkbcHjV7v7g2kVDpn2v4PbU83shbUPmtnJkk6rWRcA0AcIaiAJJ4fmf55WIQAA6XL37ZLeHyyeqHIHdh8Klh+W9IE0yoXsC4JdlX4BolprVO77IYExAOgvBDWQhPeG5j+fWikAAFlwjaRvB/MXS1ojyVUe7WQ2tVIhDyotMN4apC1JkszMVB5dJ7wOAKBPENRAT5jZRjM7y8xu1XKnXvdIujnFYgEAUhYM03qJyoGMik+4+7dSKhLy4wZJJUlHSzo7dP85KvfZVQrWAQD0EYIaiMuVZuaVSdIuSXdK+lWV+9H4nKTz3P1QmoUEAGTCmSr3q1GxI62CID/c/UlJ3wgWwykolfk73P2JZEsFAEgbQQ0k4WFJH3X3/WkXBACQLjPbKumqmruvMLPj0ygPcuezwe2bzWzUzEYlvSm4j9QTAOhDBDUQl49LelEwnSrpfEmfkHRI5Y5C7zCzE9IrHgAgI66RdJjK6SfvUzllYFjStUHfCEAzt0g6KGmtpNdLeoOkCUkzkv5vesUCAKSFoAbiMunuPwim77n7re5+qaQ3qlxh3SDpRjMbTLeYAIC0mNmbVT4Jlcr9aFwt6S+D5bMlvSONciE/3H1a0t8Gi2/TcurJF9x9Kp1SAQDSRFADPeXuX5b0V8HiaZLenl5pAABpMbP1kv4iWHxS0uXB/BWSfhHMf9TMjki6bMidSgrKuZJeHcyTegIAfYqgBpLwAUkHgvkrzWx1moUBAKTizyRtCeb/XaWfpeDK+2XB/esl/c8UyoZ8+ZqkpyQNBdPTkm5PtUQAgNQQ1EDPufukyv1rSOUh1/5NisUBACTMzH5Fyy31Pu/uXww/HrTqqwz5fYGZ/VqCxUPOuPuiyi0z5oLpc8F9AIA+RFADSblK0mww/0f0rQEA/cHM1ki6NljcK+kPGqz6Lkl7gvlrzGy812VDfrn75e4+EkzvTbs8AID0ENRAItx9p6TrgsXnS3pLisUBACTng5L+RTD/3uB4UCdo1Vc5OT1G0ocSKBsAAMg5ghpI0p9Kmg/m/9jM2P8AoMDM7KWS/jBY/Lq7f7rZ+u5+vcr9JUjSvw+eDwAA0BAnlUiMu2+X9NfB4omS3pRicQAAPWRmq1RuoTcgaUbSO1t86u8F6w9I+qSZDfWmhAAAoAjM3dMuAwAAAAAAQNtoqQEAAAAAAHKJoAYAAAAAAMglghoAAAAAACCXCGoAAAAAAIBcIqgBAAAAAAByiaAGAAAAAADIJYIaAAAAAAAglwhqAAAAAACAXCKoAQAAAAAAcomgBgAAAAAAyCWCGgAAAAAAIJcIagAAAAAAgFwiqAEAAAAAAHKJoAYAAAAAAMglghoAAAAAACCXCGoAAAAAAIBcIqgBAAAAAAByiaAGAAAAAADIJYIaAAAAAAAglwhqAAAAAACAXCKoAQAAAAAAcomgBgAAAAAAyCWCGgAAAAAAIJcIagAAAAAAgFwiqAEAAAAAAHLp/wNGgn0J0QJPPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "if kslice:\n", + " fig, ax = plt.subplots(1, figsize=(3,3), dpi=200)\n", + "\n", + " pcb.plot_kslice(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], tb_config,\n", + " tb=config['tb'], alatt=config['alatt'], quarter=0, **plot_config)\n", + "\n", + "else:\n", + " fig, ax = plt.subplots(1, figsize=(6,3), dpi=200)\n", + "\n", + " pcb.plot_bands(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], dft_mu=0.,\n", + " tb=config['tb'], alatt=config['alatt'], qp_bands=config['qp_bands'], **plot_config)\n", + "\n", + " ax.set_ylim(-1.25,1.75)" + ] + }, + { + "cell_type": "markdown", + "id": "186cf322", + "metadata": {}, + "source": [ + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_11_3.png b/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_11_3.png new file mode 100644 index 00000000..0419de1f Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_11_3.png differ diff --git a/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_13_1.png b/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_13_1.png new file mode 100644 index 00000000..ed116c48 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_13_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_17_0.png b/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_17_0.png new file mode 100644 index 00000000..7a65c3f6 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_Ce2O3_csc_w90_tutorial_17_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_18_0.png b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_18_0.png new file mode 100644 index 00000000..265f747a Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_18_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_20_0.png b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_20_0.png new file mode 100644 index 00000000..38a17109 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_20_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_33_0.png b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_33_0.png new file mode 100644 index 00000000..5a4d976b Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_33_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_8_0.png b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_8_0.png new file mode 100644 index 00000000..4d4de5ed Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_NNO_os_plo_mag_tutorial_8_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png new file mode 100644 index 00000000..e1118927 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png new file mode 100644 index 00000000..871c2d05 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png new file mode 100644 index 00000000..1fda9779 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png new file mode 100644 index 00000000..76986938 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png b/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png new file mode 100644 index 00000000..722e173a Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png differ diff --git a/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png b/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png new file mode 100644 index 00000000..dcb778b1 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png differ diff --git a/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png b/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png new file mode 100644 index 00000000..535e3db6 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png differ diff --git a/.doctrees/tutorials.doctree b/.doctrees/tutorials.doctree new file mode 100644 index 00000000..54150541 Binary files /dev/null and b/.doctrees/tutorials.doctree differ diff --git a/.doctrees/tutorials/Ce2O3_csc_w90/tutorial.doctree b/.doctrees/tutorials/Ce2O3_csc_w90/tutorial.doctree new file mode 100644 index 00000000..afaa8865 Binary files /dev/null and b/.doctrees/tutorials/Ce2O3_csc_w90/tutorial.doctree differ diff --git a/.doctrees/tutorials/NNO_os_plo_mag/tutorial.doctree b/.doctrees/tutorials/NNO_os_plo_mag/tutorial.doctree new file mode 100644 index 00000000..0e7313c3 Binary files /dev/null and b/.doctrees/tutorials/NNO_os_plo_mag/tutorial.doctree differ diff --git a/.doctrees/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.doctree b/.doctrees/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.doctree new file mode 100644 index 00000000..3a2783a2 Binary files /dev/null and b/.doctrees/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.doctree differ diff --git a/.doctrees/tutorials/SVO_os_qe/tutorial.doctree b/.doctrees/tutorials/SVO_os_qe/tutorial.doctree new file mode 100644 index 00000000..33c4bb7a Binary files /dev/null and b/.doctrees/tutorials/SVO_os_qe/tutorial.doctree differ diff --git a/.doctrees/tutorials/correlated_bandstructure/plot_correlated_bands.doctree b/.doctrees/tutorials/correlated_bandstructure/plot_correlated_bands.doctree new file mode 100644 index 00000000..f4edbc02 Binary files /dev/null and b/.doctrees/tutorials/correlated_bandstructure/plot_correlated_bands.doctree differ diff --git a/.github/ISSUE_TEMPLATE/bug.md b/.github/ISSUE_TEMPLATE/bug.md new file mode 100644 index 00000000..7e2b5c01 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug.md @@ -0,0 +1,45 @@ +--- +name: Bug report +about: Create a report to help us improve +title: Bug report +labels: bug + +--- + +### Prerequisites + +* Please check that a similar issue isn't already filed: https://github.com/issues?q=is%3Aissue+user%3Atriqs + +### Description + +[Description of the issue] + +### Steps to Reproduce + +1. [First Step] +2. [Second Step] +3. [and so on...] + +or paste a minimal code example to reproduce the issue. + +**Expected behavior:** [What you expect to happen] + +**Actual behavior:** [What actually happens] + +### Versions + +Please provide the application version that you used. + +You can get this information from copy and pasting the output of +```bash +python -c "from solid_dmft.version import *; show_version(); show_git_hash();" +``` +from the command line. Also, please include the OS you are running and its version. + +### Formatting + +Please use markdown in your issue message. A useful summary of commands can be found [here](https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf). + +### Additional Information + +Any additional information, configuration or data that might be necessary to reproduce the issue. diff --git a/.github/ISSUE_TEMPLATE/feature.md b/.github/ISSUE_TEMPLATE/feature.md new file mode 100644 index 00000000..0ca4d25b --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature.md @@ -0,0 +1,23 @@ +--- +name: Feature request +about: Suggest an idea for this project +title: Feature request +labels: feature + +--- + +### Summary + +One paragraph explanation of the feature. + +### Motivation + +Why is this feature of general interest? + +### Implementation + +What user interface do you suggest? + +### Formatting + +Please use markdown in your issue message. A useful summary of commands can be found [here](https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf). diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml new file mode 100644 index 00000000..88e9157c --- /dev/null +++ b/.github/workflows/build.yml @@ -0,0 +1,94 @@ +name: build + +on: + push: + branches: [ unstable ] + pull_request: + branches: [ unstable ] + +jobs: + build: + + strategy: + fail-fast: false + matrix: + include: + - {os: ubuntu-20.04, cc: gcc-10, cxx: g++-10} + - {os: ubuntu-20.04, cc: clang-12, cxx: clang++-12} + + runs-on: ${{ matrix.os }} + + steps: + - uses: actions/checkout@v2 + + - name: Install ubuntu dependencies + if: matrix.os == 'ubuntu-20.04' + run: > + sudo apt-get update && + sudo apt-get install lsb-release wget software-properties-common && + wget -O /tmp/llvm.sh https://apt.llvm.org/llvm.sh && sudo chmod +x /tmp/llvm.sh && sudo /tmp/llvm.sh 12 && + curl -L https://users.flatironinstitute.org/~ccq/triqs3/focal/public.gpg | sudo apt-key add - && + sudo add-apt-repository "deb https://users.flatironinstitute.org/~ccq/triqs3/focal/ /" && + sudo apt-get update && + sudo apt-get install + clang-12 + g++-10 + gfortran + hdf5-tools + libblas-dev + libboost-dev + libclang-12-dev + libc++-12-dev + libc++abi-12-dev + libfftw3-dev + libgfortran5 + libgmp-dev + libhdf5-dev + liblapack-dev + libopenmpi-dev + openmpi-bin + openmpi-common + openmpi-doc + python3-clang-12 + python3-dev + python3-mako + python3-matplotlib + python3-mpi4py + python3-numpy + python3-pip + python3-scipy + python3-sphinx + python3-nbsphinx + triqs + triqs_dft_tools + triqs_cthyb + triqs_maxent + + - name: Build & Install HubbardI + env: + CPLUS_INCLUDE_PATH: /usr/include/openmpi:/usr/include/hdf5/serial/:$CPLUS_INCLUDE_PATH + CC: ${{ matrix.cc }} + CXX: ${{ matrix.cxx }} + run: | + git clone https://github.com/TRIQS/hubbardI hubbardI.src + mkdir hubbardI.build && cd hubbardI.build + cmake ../hubbardI.src -DBuild_Tests=OFF + sudo make -j1 install VERBOSE=1 + cd ../ + + - name: Build solid_dmft + env: + CPLUS_INCLUDE_PATH: /usr/include/openmpi:/usr/include/hdf5/serial/:$CPLUS_INCLUDE_PATH + CC: ${{ matrix.cc }} + CXX: ${{ matrix.cxx }} + LIBRARY_PATH: /usr/local/opt/llvm/lib + run: | + mkdir build && cd build && cmake .. + make -j2 || make -j1 VERBOSE=1 + + - name: Test solid_dmft + env: + DYLD_FALLBACK_LIBRARY_PATH: /usr/local/opt/llvm/lib + run: | + cd build + ctest --output-on-failure diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/ChangeLog.html b/ChangeLog.html new file mode 100644 index 00000000..803e1ff5 --- /dev/null +++ b/ChangeLog.html @@ -0,0 +1,744 @@ + + + + + + + Changelog — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Changelog

+
+

Version 3.3.0

+

solid_dmft 3.3.0 is a major release, compatible with TRIQS 3.3, updated to the latest app4triqs skeleton, and bringing major changes to the code:

+
    +
  • the input parser is switched to a general toml parser, i.e. strings have to be passed in quotes, boolean parameters given without capitalization, and lists passed with brackets. Check below separate section for detailed changes.

  • +
  • the new input parser allows to define for each impurity problem a different solver if wanted, i.e. d-shell with cthyb and p-shell with Hartree-Fock. See new text NiO-cthyb

  • +
  • docker images are automatically build on each push for all major releases to ghcr.io

  • +
  • switch from old ctseg to new ctseg_j solver

  • +
  • allow CRM Dyson solver for both cthyb and ctseg to obtain Sigma_imp +from G_tau: “crm_dyson_solver=true” and dlr_wmax and dlr_eps (see https://triqs.github.io/triqs/unstable/documentation/python_api/triqs.gf.dlr_crm_dyson_solver.html#module-triqs.gf.dlr_crm_dyson_solver for details)

  • +
  • add new DC schemes ‘crpa_static’, ‘crpa_static_qp’, ‘crpa_dynamic’

  • +
  • use cRPA calculated Uijkl as interaction via ‘crpa’, +‘crpa_density_density’, ‘dyn_density_density’, ‘dyn_full’ hint types

  • +
  • read interaction tensor from AIMBES h5

  • +
  • new experimental gw_embedding module. See gw_embedding/gw_flow.py for details allowing to run solid_dmft on top of AIMBES

  • +
  • allow to use Pade for AC in post-processing

  • +
+

We thank all contributors: Sophie Beck, Thomas Hahn, Alexander Hampel, Henri Menke, Maximilian Merkel, and Nils Wentzell

+

Find below an itemized list of changes in this release.

+
+

General

+
    +
  • merge dev GW embedding (includes other fixes as well) (#78)

  • +
  • pass gw params to all methods

  • +
  • multiple solvers and toml input parser (#74)

  • +
  • added toml to docker images

  • +
  • Restore Python 3.8 compatibility for dictionary merge (#63)

  • +
  • Allow mathematical expression to be passed for random_seed (#61)

  • +
  • allow PCB to read from TRIQS TB object

  • +
  • respack fit slater for p shell

  • +
  • add Pade Sigma analytic continuation and refine tests

  • +
  • add simple_intra interaction, for intro orbital only interaction

  • +
  • add dc_orb_shift param to allow orbital dependent shift in impurity levels

  • +
  • allow 0.0 mixing to perform stat sampling

  • +
  • switch all pytest to unit tests

  • +
+
+
+

new toml input parser

+
    +
  • The following input parameters can now be a list per impurity:

    +
      +
    • general_params: U, J, U_prime, ratio_F4_F2, h_int_type, enforce_off_diag, dc_type

    • +
    • advanced_params: dc_U, dc_J, dc_fixed_occ, map_solver_struct, pick_solver_struct, mapped_solver_struct_degeneracies

    • +
    +
  • +
  • Multiple solvers can be used, which only solve the impurity problems specified in idx_impurities

    +
      +
    • general parameter solver_type moved to solver section and renamed to type

    • +
    • general parameter n_l moved to solver section

    • +
    • general parameter measure_chi moved to solver section

    • +
    • general parameter delta_interface moved to solver section

    • +
    +
  • +
  • All possible input parameters are defined in the python/solid_dmft/io_tools/default.toml

  • +
  • according to toml format the config file is now called .toml (instead of .ini), and boolean are not capitalized, strings are given with quotes and lists are given with brackets.

  • +
  • Documentation of the input is now generated from python/solid_dmft/io_tools/documentation.txt

  • +
  • For an example, refer to the new integration test (see below)

  • +
  • Updated interface to python scripts wrapping solid_dmft: new routine main.run_dmft that expects the params as python dictionaries, which are then supplemented with the defaults etc equivalent to what happens when reading in a toml file

  • +
  • the existence of the parameter general_params['beta'] now determines if a imaginary- or real-frequency grid is used within solid_dmft

  • +
  • Bug fix: Slater interaction for p orbitals can now be constructed

  • +
  • Renaming of solver parameters for the different solvers is now moved to solver.py. The idea is that every other part of solid_dmft should care as little as possible what solvers are used, with the details abstracted by the SolverStructure class

    +
      +
    • In solver.py, all solver parameters that are passed to the triqs solver are transferred to a dict triqs_solver_params. When adding new triqs solver parameter to solid_dmft in the future, they also need to be added within solver.py.

    • +
    +
  • +
  • In the determination of the block structure, the largely unused parameter general_params['block_suppress_orbital_symm'] removed. Its behavior can be replaced by using advanced_params['mapped_solver_struct_degeneracies']

  • +
  • Integration tests: previously existing tests updated, new tests added. One with ftps solver (requires installation of ftps, otherwise just passes without doing anything) and one with a combination of CT-HYB and Hartree solver

  • +
  • Unit tests: added test for toml-related functionality

  • +
  • read_config.py removed and the functionality for dealing with the dicts from reading a toml file moved to postproc_toml_dict.py

  • +
  • io_tools/verify_input_params.py contains all checks of the input params that the code performs before starting the DMFT calculations

  • +
  • Updated the documentation of the input parameters

  • +
+
+
+

doc

+
    +
  • add comment that proj in postprocessing is only correct for diag A(k,w)

  • +
  • update NNO magnetic tutorial

  • +
  • fix Vasp CSC tutorial for PNO after CSC fixes

  • +
+
+
+

build

+
    +
  • add new tests for CRM Dyson solver (requires triqs 3.3)

  • +
  • add new GW embedding tests that run optionally with -DTest_GW_embedding=ON

  • +
  • modify basic SVO test to do crm test instead of gl

  • +
  • add useful apt packages to openmpi image

  • +
  • use ghcr.io images when testing PR

  • +
  • ci: build and cache base image separately (#70)

  • +
  • use new auto build ghcr.io docker images

  • +
  • add GitHub Actions workflow for Docker images (#66)

  • +
  • simplify dockerfile for github ci

  • +
  • trigger pypi build on tags

  • +
  • add pypi workflow

  • +
  • update Vasp patches for ver 6.4

  • +
  • Cleaned up VASP diff files for CSC

  • +
  • use cmake variable to determine max number of mpi ranks during testing

  • +
+
+
+

other fixes

+
    +
  • Added warning for matrix-valued selfenergy continuation

  • +
  • draw colorbar only once in kslices

  • +
  • PCB bug aprx Sigma as diagonal if interpolation is used

  • +
  • broken FS: np.shape -> len

  • +
  • fix small FTPS problems and introduce a different eta for FTPS

  • +
  • maxent test precision fix and test dependency

  • +
  • use of origin in Fermi surface

  • +
  • fix calculation of Akw for off-diag Sigma

  • +
+
+
+
+

Version 3.2.3

+

solid_dmft version 3.2.3 and 3.2.2 are minor releases that fixes bugs in the post-processing routines and brings small new improvements:

+
    +
  • allow 0.0 mixing to perform stat sampling

  • +
  • allow mathematical expression to be passed for random_seed

  • +
  • fix broken FS plot in PCB: np.shape -> len

  • +
  • fix PCB bug aprx Sigma as diagonal if interpolation is used

  • +
  • fix PCB to draw coloarbar only once in kslices

  • +
+

We thank all contributors: Alexander Hampel, Henri Menke

+
+
+

Version 3.2.1

+

solid_dmft version 3.2.1 is a minor release that automatizes the pypi packaging release

+
+
+

Version 3.2.0

+

solid_dmft version 3.2.0 is a release that

+
    +
  • adds Jenkins CI support via flatiron-jenkins

  • +
  • includes several fixes to match the latest triqs 3.2.x release

  • +
  • changes the Z estimate to a correct linear fit of the first two Matsubara frequencies

  • +
  • fixes for QE and Vasp CSC

  • +
  • add option to add a magnetic field in DMFT

  • +
  • add solid_dmft JOSS paper reference (doi.org/10.21105/joss.04623)

  • +
  • add simple Ntot interaction

  • +
  • allow Uprime!=U-2J in Kanamori

  • +
  • updates the tutorials

  • +
  • introduces input output documentation

  • +
  • add support for the TRIQS Hartree Solver

  • +
  • add RESPACK support

  • +
+

We thank all contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel, Harrison LaBollita, Nils Wentzell

+

Find below an itemized list of changes in this release.

+
+
+

General

+
    +
  • fix SzSz measurement in triqs unstable

  • +
  • Updated mpich VASP5 docker file to include HF solver

  • +
  • add hartree solver

  • +
  • feat: add regular kmesh option to pcb postproc

  • +
  • Fix to charge-self-consistency with Vasp (#48)

  • +
  • removed QE fix files which are now in official release

  • +
  • Modified dockerfile to add pmi support for cray supercomputing environments

  • +
  • add RESPACK postprocessing routines (#38)

  • +
  • Added correction to energy calculation

  • +
  • add triqs logos to skeleton and include ico in install directive of doc

  • +
  • change name of dft_mu to mu_initial_guess

  • +
  • support different DFT cubic basis conventions (#36)

  • +
  • allow magnetic calculation for CSC (output den correction is always averaged)

  • +
  • fix sym bug in hubbardI postprocessing

  • +
  • always calculate dft_mu at start of calculation

  • +
  • add h_field_it to remove magnetic field after x iterations

  • +
  • Write solid_dmft hash to h5

  • +
  • fix delta interface of cthyb for multiple sites with different block structures

  • +
  • correctly use tail fitted Sigma from cthyb not via double dyson equation

  • +
  • add paper ref to toml

  • +
  • minor addition of post-processing script: add_local Hamiltonian, separate from add_lambda. We might remove add_lambda

  • +
  • update doc with JOSS references

  • +
  • Bug fix for changes in sumk mesh definition in maxent_gf_latt

  • +
  • adapt vasp patch files for ver6.3.2

  • +
  • function to det n_orb_solver, fix test

  • +
  • apply block picker before block mapping

  • +
  • fix header writing for obs file

  • +
  • add pick solver struct option to select specific blocks for the impurity problem

  • +
  • fix print for failing comparison test

  • +
  • allow different interaction Hamiltonians per impurity

  • +
  • enforce PEP standard in interaction Hamiltonian

  • +
  • print optimal alpha in other maxent scripts

  • +
  • final corrections for PCB functions

  • +
  • add proj_on_orb functionality to Akw

  • +
  • fix bug in max_G_diff function ignoring norm_temp

  • +
  • change Sigma_imp_iw / _w to Sigma_imp (DFTTools unstable)

  • +
  • fix load Sigma with new gf_struct in triqs 3.1.x

  • +
  • adapt to sumk mesh changes in dfttools

  • +
  • Made the way mesh is stored in maxent_gf_latt consistent with maxent_gf_imp

  • +
+
+
+

fix

+
    +
  • fix deg shells in magnetic calculations

  • +
  • fix parameter n_orb in hint construction

  • +
  • doc strings of cRPA avering for Slater

  • +
  • critical bug in hubbardI interface

  • +
  • PCB fermi surface plot

  • +
  • updates from triqs unstable

  • +
  • simple Z estimate as linear fit

  • +
  • PCB: removing “linearize” function, changing the model

  • +
  • delta_interface with SOC and store solver options

  • +
  • convert warmup cycles to int automatically

  • +
  • problem with ish vs icrsh in PCB Thanks @HenryScottx for reporting!

  • +
  • h_int uses now n_orb instead of orb_names

  • +
+
+
+

build

+
    +
  • adapt jenkins CI files

  • +
  • simplify docker image

  • +
  • update openmpi docker file with clang-15

  • +
  • update CI dockerfile

  • +
  • Updated docker file to ubuntu 22

  • +
+
+
+

feat

+
    +
  • enable MPI for maxent_gf_imp post-processing routines

  • +
  • add possibility to specify Uprime in Kanamori interaction

  • +
  • add loc_n_min / max arg for cthyb

  • +
  • add additional support for hartree when computing DC from the solver

  • +
  • add Ntot interaction

  • +
+
+
+

doc

+
    +
  • Added observables documentation for DMFT output

  • +
  • Updated tutorial svo one-shot

  • +
+
+
+

test

+
    +
  • fix tests after Hartree additions

  • +
  • add Hartree Solver test

  • +
  • Integration test for maxent gf imp and latt, bug fixes to both scripts (#30)

  • +
  • add new test for pcb get_dmft_bands function

  • +
+
+
+

Version 3.1.5

+

solid_dmft version 3.1.5 is a patch-release that improves / fixes the following issues:

+
    +
  • fix to charge-self-consistency with Vasp and QE

  • +
  • feat add loc_n_min / max arg for cthyb

  • +
  • fix simple Z estimate as linear fit

  • +
  • adapt docker images for ubuntu 22.04

  • +
+

Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel:

+
+
+

Version 3.1.4

+

solid_dmft version 3.1.4 is a patch-release that improves / fixes the following issues:

+
    +
  • fix and improve rootfinder in PCB for quasiparticle dispersion

  • +
  • fix pypi package version.py module

  • +
+

Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel:

+
+
+

Version 3.1.3

+

solid_dmft version 3.1.3 is a patch-release that improves / fixes the following issues:

+
    +
  • fix delta interface of cthyb for multiple sites with different block structures

  • +
  • correctly use tail fitted Sigma from cthyb not via double dyson equation

  • +
  • magnetic param not available in CSC crash PM calc

  • +
  • improve PCB script from unstable branch

  • +
  • convert warmup cycles to int automatically

  • +
  • fix function calls in gap finder

  • +
  • fix delta_interface with SOC and store solver options

  • +
  • fix: update svo example for PCB test from unstable

  • +
+

Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel

+
+
+

Version 3.1.2

+

solid_dmft version 3.1.1 is a patch-release that improves / fixes the following issues:

+
    +
  • fix deg shells in magnetic calculations

  • +
  • fix bug in max_G_diff function ignoring norm_temp

  • +
  • fix load Sigma with new gf_struct in triqs 3.1.x

  • +
  • Made the way mesh is stored in maxent_gf_latt consistent with maxent_gf_imp

  • +
  • adapt vasp patch files for ver6.3.2

  • +
  • update README.md for Joss publication

  • +
  • print optimal alpha in other maxent scripts

  • +
  • update postprocessing routines for plotting spectral functions

  • +
  • add new test for pcb get_dmft_bands function

  • +
  • DOC: extend install instructions & improve readme for #21 #22

  • +
  • DOC: update support & contribute section, bump ver to 3.1.1

  • +
  • add proj_on_orb functionality to Akw

  • +
  • Added observables documentation for DMFT output

  • +
  • Added input documentation

  • +
  • Added ETH logo to website, small fixes to documentation

  • +
  • rename examples to debbuging_examples

  • +
  • pip package build files

  • +
+

Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel

+
+
+

Version 3.1.1

+

solid_dmft version 3.1.1 is a patch-release that improves / fixes the following issues:

+
    +
  • delete obsolete make_spaghetti.py

  • +
  • SOC self energies can be continued in maxent

  • +
  • run hubbardI solver on all nodes due to slow bcast performance of atomdiag object

  • +
  • fix DFT energy read when running CSC QE

  • +
  • updated documentation, small fixes to tutorials

  • +
  • exposed params of maxent_gf_imp

  • +
  • fix the way dft_mu is loaded in PCB

  • +
  • fix executable in SVO tutorial

  • +
  • fix shift in sigma continuator to remove dft_mu

  • +
  • fix chemical potential in plot Akw and minor fixes

  • +
  • correct plotlabels in postprocessing

  • +
  • tiny modification of printing H_loc in postprocessing

  • +
+

Contributors: Sophie Beck, Alberto Carta, Max Merkel

+
+
+

Version 3.1.0

+

solid_dmft version 3.1.0 is a major release that provides tutorials in the documentation, changes to app4triqs skeleton, allows CSC calculations with QE, improves postprocessing routines, and add functionality for SOC calculations.

+
    +
  • all new tutorials

  • +
  • generalize measure_chi functionality

  • +
  • CSC with Vasp 6.3.0 works, examples updated

  • +
  • fix two bugs in w90 interface in vasp

  • +
  • Renamed files

  • +
  • fix Fermi level print in mlwf.F LPRJ_WRITE call

  • +
  • Automatic patching of vasp 6.3.0 with Docker

  • +
  • Updated tutorial

  • +
  • Added check on all mpi ranks if dmft_config exists at beginning of run

  • +
  • fix small bug in convergence.py thanks @merkelm

  • +
  • Rework convergence metrics

  • +
  • remove gf_struct_flatten from solver in accordance with latest dfttools version

  • +
  • Renaming to solid_dmft

  • +
  • Update of maxent_gf_latt.py: more parameters exposed and spin averaging is not default anymore

  • +
  • fix bug in afm calculation when measuring density matrix

  • +
  • Add w90_tolerance flag for CSC

  • +
  • use sphinx autosummary for module reference

  • +
  • small changes in IO, additional mpi barriers in csc flow for better stability

  • +
  • With SOC now program prints real and imag part of matrices

  • +
  • Fixed creation of Kanamori Hamiltonian with SOC

  • +
  • Improvements in plot_correlated_bands.py and updated tutorial

  • +
  • change output name of MaxEnt Sigma to Sigma_maxent

  • +
  • change to develop version of w90 because of mpi bug in openmpi dockerfile

  • +
  • bugfix in plot_correlated_bands and cleaning up

  • +
  • update OpenMPI Dockerfile to latest Ubuntu

  • +
  • Tutorial to explore correlated bands using the postprocessing script

  • +
  • check in CSC with QE if optional files are presesnt, otherwise skip calculation

  • +
  • Updated maxent_sigma: mpi parallelization, continuator types, bug fixes, parameters exposed

  • +
  • update installation instructions

  • +
  • add workflow and code structure images

  • +
  • Updated maxent sigma script

  • +
  • W90 runs in parallel

  • +
  • Fixing a bug related to measure_pert_order and measure_chi_SzSz for afm_order

  • +
  • add vasp crpa scripts and tutorials

  • +
  • add delta interface for cthyb

  • +
  • fix get_dmft_bands and pass eta to alatt_k_w correctly

  • +
  • allows to recompute rotation matrix even if W90 is used

  • +
  • bugfix in initial_self_energies.py in case dc = False

  • +
  • flatten gf_struct for triqs solvers to remove depracted warning

  • +
  • add example files for SVO and LNO

  • +
  • bump triqs and package version to 3.1

  • +
+

Contributors: Sophie Beck, Alberto Carta, Max Merkel

+
+
+

Version 3.0.0

+

solid_dmft version 3.0.0 is a compatibility +release for TRIQS version 3.0.0 that

+
    +
  • introduces compatibility with Python 3 (Python 2 no longer supported)

  • +
  • adds a cmake-based dependency management

  • +
  • fixes several application issues

  • +
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_images/A_func_J=0.0_U=4.jpg b/_images/A_func_J=0.0_U=4.jpg new file mode 100644 index 00000000..13d7b78c Binary files /dev/null and b/_images/A_func_J=0.0_U=4.jpg differ diff --git a/_images/A_func_transition.jpg b/_images/A_func_transition.jpg new file mode 100644 index 00000000..9bf09985 Binary files /dev/null and b/_images/A_func_transition.jpg differ diff --git a/_images/MIT_coarse.jpg b/_images/MIT_coarse.jpg new file mode 100644 index 00000000..c7408b39 Binary files /dev/null and b/_images/MIT_coarse.jpg differ diff --git a/_images/MIT_fine.jpg b/_images/MIT_fine.jpg new file mode 100644 index 00000000..5469b4a0 Binary files /dev/null and b/_images/MIT_fine.jpg differ diff --git a/_images/bnd_structure.png b/_images/bnd_structure.png new file mode 100644 index 00000000..a6907c46 Binary files /dev/null and b/_images/bnd_structure.png differ diff --git a/_images/code_structure.png b/_images/code_structure.png new file mode 100644 index 00000000..cf4cdc8c Binary files /dev/null and b/_images/code_structure.png differ diff --git a/_images/eth_logo_kurz_pos.png b/_images/eth_logo_kurz_pos.png new file mode 100644 index 00000000..787a2873 Binary files /dev/null and b/_images/eth_logo_kurz_pos.png differ diff --git a/_images/flatiron.png b/_images/flatiron.png new file mode 100644 index 00000000..f3c7659d Binary files /dev/null and b/_images/flatiron.png differ diff --git a/_images/group_structure.png b/_images/group_structure.png new file mode 100644 index 00000000..1561bf02 Binary files /dev/null and b/_images/group_structure.png differ diff --git a/_images/logo_github.png b/_images/logo_github.png new file mode 100644 index 00000000..54bca717 Binary files /dev/null and b/_images/logo_github.png differ diff --git a/_images/tenergy_ce2o3.png b/_images/tenergy_ce2o3.png new file mode 100644 index 00000000..c03d989b Binary files /dev/null and b/_images/tenergy_ce2o3.png differ diff --git a/_images/tutorials_Ce2O3_csc_w90_tutorial_11_3.png b/_images/tutorials_Ce2O3_csc_w90_tutorial_11_3.png new file mode 100644 index 00000000..0419de1f Binary files /dev/null and b/_images/tutorials_Ce2O3_csc_w90_tutorial_11_3.png differ diff --git a/_images/tutorials_Ce2O3_csc_w90_tutorial_13_1.png b/_images/tutorials_Ce2O3_csc_w90_tutorial_13_1.png new file mode 100644 index 00000000..ed116c48 Binary files /dev/null and b/_images/tutorials_Ce2O3_csc_w90_tutorial_13_1.png differ diff --git a/_images/tutorials_Ce2O3_csc_w90_tutorial_17_0.png b/_images/tutorials_Ce2O3_csc_w90_tutorial_17_0.png new file mode 100644 index 00000000..7a65c3f6 Binary files /dev/null and b/_images/tutorials_Ce2O3_csc_w90_tutorial_17_0.png differ diff --git a/_images/tutorials_NNO_os_plo_mag_tutorial_18_0.png b/_images/tutorials_NNO_os_plo_mag_tutorial_18_0.png new file mode 100644 index 00000000..265f747a Binary files /dev/null and b/_images/tutorials_NNO_os_plo_mag_tutorial_18_0.png differ diff --git a/_images/tutorials_NNO_os_plo_mag_tutorial_20_0.png b/_images/tutorials_NNO_os_plo_mag_tutorial_20_0.png new file mode 100644 index 00000000..38a17109 Binary files /dev/null and b/_images/tutorials_NNO_os_plo_mag_tutorial_20_0.png differ diff --git a/_images/tutorials_NNO_os_plo_mag_tutorial_33_0.png b/_images/tutorials_NNO_os_plo_mag_tutorial_33_0.png new file mode 100644 index 00000000..5a4d976b Binary files /dev/null and b/_images/tutorials_NNO_os_plo_mag_tutorial_33_0.png differ diff --git a/_images/tutorials_NNO_os_plo_mag_tutorial_8_0.png b/_images/tutorials_NNO_os_plo_mag_tutorial_8_0.png new file mode 100644 index 00000000..4d4de5ed Binary files /dev/null and b/_images/tutorials_NNO_os_plo_mag_tutorial_8_0.png differ diff --git a/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png new file mode 100644 index 00000000..e1118927 Binary files /dev/null and b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png differ diff --git a/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png new file mode 100644 index 00000000..871c2d05 Binary files /dev/null and b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png differ diff --git a/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png new file mode 100644 index 00000000..1fda9779 Binary files /dev/null and b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png differ diff --git a/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png new file mode 100644 index 00000000..76986938 Binary files /dev/null and b/_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png differ diff --git a/_images/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png b/_images/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png new file mode 100644 index 00000000..722e173a Binary files /dev/null and b/_images/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png differ diff --git a/_images/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png b/_images/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png new file mode 100644 index 00000000..dcb778b1 Binary files /dev/null and b/_images/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png differ diff --git a/_images/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png b/_images/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png new file mode 100644 index 00000000..535e3db6 Binary files /dev/null and b/_images/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png differ diff --git a/_images/workflow.png b/_images/workflow.png new file mode 100644 index 00000000..e934d6f1 Binary files /dev/null and b/_images/workflow.png differ diff --git a/_modules/csc_flow.html b/_modules/csc_flow.html new file mode 100644 index 00000000..07925ec4 --- /dev/null +++ b/_modules/csc_flow.html @@ -0,0 +1,698 @@ + + + + + + csc_flow — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for csc_flow

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+contains the charge self-consistency flow control functions
+"""
+
+from timeit import default_timer as timer
+import subprocess
+import shlex
+import os
+import numpy as np
+
+# triqs
+from h5 import HDFArchive
+import triqs.utility.mpi as mpi
+
+from triqs_dft_tools.converters.wannier90 import Wannier90Converter
+from triqs_dft_tools.converters.vasp import VaspConverter
+from triqs_dft_tools.converters.plovasp.vaspio import VaspData
+import triqs_dft_tools.converters.plovasp.converter as plo_converter
+
+from solid_dmft.dmft_cycle import dmft_cycle
+from solid_dmft.dft_managers import vasp_manager as vasp
+from solid_dmft.dft_managers import qe_manager as qe
+
+def _run_plo_converter(general_params, dft_params):
+    if not mpi.is_master_node():
+        return
+
+    # Checks for plo file for projectors
+    if not os.path.exists(dft_params['plo_cfg']):
+        print('*** Input PLO config file not found! '
+              + 'I was looking for {} ***'.format(dft_params['plo_cfg']))
+        mpi.MPI.COMM_WORLD.Abort(1)
+
+    # Runs plo converter
+    plo_converter.generate_and_output_as_text(dft_params['plo_cfg'], vasp_dir='./')
+    # Writes new H(k) to h5 archive
+    converter = VaspConverter(filename=general_params['seedname'])
+    converter.convert_dft_input()
+
+def _run_wannier90(general_params, dft_params):
+    if not mpi.is_master_node():
+        return
+
+    if not os.path.exists(general_params['seedname'] + '.win'):
+        print('*** Wannier input file not found! '
+              + 'I was looking for {0}.win ***'.format(general_params['seedname']))
+        mpi.MPI.COMM_WORLD.Abort(1)
+
+    # Runs wannier90 twice:
+    # First preprocessing to write nnkp file, then normal run
+    command = shlex.split(dft_params['w90_exec'])
+    subprocess.check_call(command + ['-pp', general_params['seedname']], shell=False)
+    subprocess.check_call(command + [general_params['seedname']], shell=False)
+
+def _run_w90converter(seedname, tolerance):
+    if (not os.path.exists(seedname + '.win')
+        or not os.path.exists(seedname + '.inp')):
+        print('*** Wannier input/converter config file not found! '
+              + 'I was looking for {0}.win and {0}.inp ***'.format(seedname))
+        mpi.MPI.COMM_WORLD.Abort(1)
+
+    #TODO: choose rot_mat_type with general_params['set_rot']
+    converter = Wannier90Converter(seedname, rot_mat_type='hloc_diag', bloch_basis=True, w90zero=tolerance)
+    converter.convert_dft_input()
+    mpi.barrier()
+
+    # Checks if creating of rot_mat succeeded
+    if mpi.is_master_node():
+        with HDFArchive(seedname+'.h5', 'r') as archive:
+            assert archive['dft_input']['use_rotations'], 'Creation of rot_mat failed in W90 converter'
+    mpi.barrier()
+
+def _full_qe_run(seedname, dft_params, mode):
+    assert mode in ('initial', 'restart', 'update')
+
+    # runs a full iteration of DFT
+    qe_wrapper = lambda calc_type: qe.run(dft_params['n_cores'], calc_type, dft_params['dft_exec'],
+                                          dft_params['mpi_env'], seedname)
+
+    # Initially run an scf calculation
+    if mode == 'initial':
+        qe_wrapper('scf')
+    # For charge update, use mode scf
+    elif mode == 'update':
+        qe_wrapper('mod_scf')
+
+    # Rest is executed regardless of mode
+    # Optionally does bnd, bands, proj if files are present
+    for nscf in ['bnd', 'bands', 'proj']:
+        if os.path.isfile(f'{seedname}.{nscf}.in'):
+            qe_wrapper(nscf)
+
+    # nscf
+    qe_wrapper('nscf')
+    # w90 parts
+    qe_wrapper('win_pp')
+    qe_wrapper('pw2wan')
+    qe_wrapper('win')
+    _run_w90converter(seedname, dft_params['w90_tolerance'])
+
+
+def _store_dft_eigvals(path_to_h5, iteration, projector_type):
+    """
+    save the eigenvalues from LOCPROJ/wannier90 file to h5 archive
+    """
+    with HDFArchive(path_to_h5, 'a') as archive:
+        if 'dft_eigvals' not in archive:
+            archive.create_group('dft_eigvals')
+
+        if projector_type == 'plo':
+            vasp_data = VaspData('./')
+            eigenvals = np.array(vasp_data.plocar.eigs[:, :, 0]) - vasp_data.plocar.efermi
+        elif projector_type == 'w90':
+            with open('LOCPROJ') as locproj_file:
+                fermi_energy = float(locproj_file.readline().split()[4])
+            n_k = archive['dft_input']['n_k']
+            num_ks_bands = archive['dft_input']['n_orbitals'][0, 0]
+            eigenvals = np.loadtxt('wannier90.eig', usecols=2)
+            eigenvals = eigenvals.reshape((n_k, num_ks_bands)) - fermi_energy
+
+        archive['dft_eigvals']['it_'+str(iteration)] = eigenvals
+
+def _full_vasp_run(general_params, dft_params, initial_run, n_iter_dft=1, sum_k=None):
+    """
+    Performs a complete DFT cycle in Vasp and the correct converter. If
+    initial_run, Vasp is starting and performing a normal scf calculation
+    followed by a converter run. Otherwise, it performs n_iter_dft runs of DFT,
+    generating the projectors with the converter, and recalculating the charge
+    density correction with the new projectors.
+
+    Parameters
+    ----------
+    general_params : dict
+        general parameters as a dict
+    dft_params : dict
+        dft parameters as a dict
+    initial_run : bool
+        True when VASP is called for the first time. initial_run = True requires
+        n_iter_dft = 1.
+    n_iter_dft : int, optional
+        Number of DFT iterations to perform. The default is 1.
+    sum_k : SumkDFT, optional
+        The SumkDFT object required to recalculate the charge-density correction
+        if n_iter_dft > 1. The default is None.
+
+    Returns
+    -------
+    vasp_process_id : int
+        The process ID of the forked VASP process.
+    irred_indices : np.array
+        Integer indices of kpts in the irreducible Brillouin zone. Only needed
+        for Wannier projectors, which are normally run with symmetries.
+    """
+
+
+    if initial_run:
+        assert n_iter_dft == 1
+    else:
+        assert n_iter_dft == 1 or sum_k is not None, 'Sumk object needed to run multiple DFT iterations'
+
+    for i in range(n_iter_dft):
+        if initial_run:
+            vasp_process_id = vasp.run_initial_scf(dft_params['n_cores'], dft_params['dft_exec'],
+                                                   dft_params['mpi_env'])
+        else:
+            vasp_process_id = None
+            vasp.run_charge_update()
+
+        if dft_params['projector_type'] == 'plo':
+            _run_plo_converter(general_params, dft_params)
+            irred_indices = None
+        elif dft_params['projector_type'] == 'w90':
+            _run_wannier90(general_params, dft_params)
+            mpi.barrier()
+            _run_w90converter(general_params['seedname'], dft_params['w90_tolerance'])
+            mpi.barrier()
+            kpts = None
+            if mpi.is_master_node():
+                with HDFArchive(general_params['seedname']+'.h5', 'r') as archive:
+                    kpts = archive['dft_input/kpts']
+            irred_indices = vasp.read_irred_kpoints(kpts)
+
+        # No need for recalculation of density correction if we run DMFT next
+        if i == n_iter_dft - 1:
+            break
+
+        # Recalculates the density correction
+        # Reads in new projectors and hopping and updates chemical potential
+        # rot_mat is not updated since it's more closely related to the local problem than DFT
+        # New fermi weights are directly read in calc_density_correction
+        mpi.barrier()
+        if mpi.is_master_node():
+            with HDFArchive(general_params['seedname']+'.h5', 'r') as archive:
+                sum_k.proj_mat = archive['dft_input/proj_mat']
+                sum_k.hopping = archive['dft_input/hopping']
+        sum_k.proj_mat = mpi.bcast(sum_k.proj_mat)
+        sum_k.hopping = mpi.bcast(sum_k.hopping)
+        sum_k.calc_mu(precision=general_params['prec_mu'])
+
+        # Writes out GAMMA file
+        sum_k.calc_density_correction(dm_type='vasp',  kpts_to_write=irred_indices)
+
+    return vasp_process_id, irred_indices
+
+
+# Main CSC flow method
+
+[docs] +def csc_flow_control(general_params, solver_params, dft_params, gw_params, advanced_params): + """ + Function to run the csc cycle. It writes and removes the vasp.lock file to + start and stop Vasp, run the converter, run the dmft cycle and abort the job + if all iterations are finished. + + Parameters + ---------- + general_params : dict + general parameters as a dict + solver_params : dict + solver parameters as a dict + dft_params : dict + dft parameters as a dict + gw_params : dict + gw parameters as a dict + advanced_params : dict + advanced parameters as a dict + """ + + # Removes legacy file vasp.suppress_projs if present + vasp.remove_legacy_projections_suppressed() + + # if GAMMA file already exists, load it by doing extra DFT iterations + if dft_params['dft_code'] == 'vasp' and os.path.exists('GAMMA'): + # TODO: implement + raise NotImplementedError('GAMMA file found but restarting from updated ' + + 'charge density not yet implemented for Vasp.') + + # Reads in iteration offset if restarting + iteration_offset = 0 + if mpi.is_master_node() and os.path.isfile(general_params['seedname']+'.h5'): + with HDFArchive(general_params['seedname']+'.h5', 'r') as archive: + if 'DMFT_results' in archive and 'iteration_count' in archive['DMFT_results']: + iteration_offset = archive['DMFT_results']['iteration_count'] + iteration_offset = mpi.bcast(iteration_offset) + + iter_dmft = iteration_offset+1 + + # Runs DFT once and converter + mpi.barrier() + irred_indices = None + start_time_dft = timer() + mpi.report(' solid_dmft: Running {}...'.format(dft_params['dft_code'].upper())) + + if dft_params['dft_code'] == 'qe': + if iteration_offset == 0: + _full_qe_run(general_params['seedname'], dft_params, 'initial') + else: + _full_qe_run(general_params['seedname'], dft_params, 'restart') + elif dft_params['dft_code'] == 'vasp': + vasp_process_id, irred_indices = _full_vasp_run(general_params, dft_params, True) + + mpi.barrier() + end_time_dft = timer() + mpi.report(' solid_dmft: DFT cycle took {:10.3f} seconds'.format(end_time_dft-start_time_dft)) + + # Now that everything is ready, starts DFT+DMFT loop + while True: + dft_energy = None + if mpi.is_master_node(): + # Writes eigenvals to archive if requested + if dft_params['store_eigenvals']: + if dft_params['dft_code'] == 'qe': + # TODO: implement + raise NotImplementedError('store_eigenvals not yet compatible with dft_code = qe') + _store_dft_eigvals(path_to_h5=general_params['seedname']+'.h5', + iteration=iter_dmft, + projector_type=dft_params['projector_type']) + + # Reads the DFT energy + if dft_params['dft_code'] == 'vasp': + dft_energy = vasp.read_dft_energy() + elif dft_params['dft_code'] == 'qe': + dft_energy = qe.read_dft_energy(general_params['seedname'], iter_dmft) + dft_energy = mpi.bcast(dft_energy) + + mpi.report('', '#'*80, 'Calling dmft_cycle') + + if mpi.is_master_node(): + start_time_dmft = timer() + + # Determines number of DMFT steps + if iter_dmft == 1: + iter_one_shot = general_params['n_iter_dmft_first'] + elif iteration_offset > 0 and iter_dmft == iteration_offset + 1: + iter_one_shot = general_params['n_iter_dmft_per'] - (iter_dmft - 1 + - general_params['n_iter_dmft_first'])%general_params['n_iter_dmft_per'] + else: + iter_one_shot = general_params['n_iter_dmft_per'] + # Maximum total number of iterations is n_iter_dmft+iteration_offset + iter_one_shot = min(iter_one_shot, + general_params['n_iter_dmft'] + iteration_offset - iter_dmft + 1) + + ############################################################ + # run the dmft_cycle + is_converged, sum_k = dmft_cycle(general_params, solver_params, advanced_params, dft_params, + gw_params, iter_one_shot, irred_indices, dft_energy) + ############################################################ + + iter_dmft += iter_one_shot + + if mpi.is_master_node(): + end_time_dmft = timer() + print('\n' + '='*80) + print('DMFT cycle took {:10.3f} seconds'.format(end_time_dmft-start_time_dmft)) + print('='*80 + '\n') + + # If all steps are executed or calculation is converged, finish DFT+DMFT loop + if is_converged or iter_dmft > general_params['n_iter_dmft'] + iteration_offset: + break + + # Restarts DFT + mpi.barrier() + start_time_dft = timer() + mpi.report(' solid_dmft: Running {}...'.format(dft_params['dft_code'].upper())) + + # Runs DFT and converter + if dft_params['dft_code'] == 'qe': + _full_qe_run(general_params['seedname'], dft_params, 'update') + elif dft_params['dft_code'] == 'vasp': + # Determines number of DFT steps + if iter_dmft == general_params['n_iter_dmft_first'] + 1: + n_iter_dft = dft_params['n_iter_first'] + else: + n_iter_dft = dft_params['n_iter'] + _, irred_indices = _full_vasp_run(general_params, dft_params, False, n_iter_dft, sum_k) + + mpi.barrier() + end_time_dft = timer() + mpi.report(' solid_dmft: DFT cycle took {:10.3f} seconds'.format(end_time_dft-start_time_dft)) + + # Kills background VASP process for clean end + if mpi.is_master_node() and dft_params['dft_code'] == 'vasp': + print(' solid_dmft: Stopping VASP\n', flush=True) + vasp.kill(vasp_process_id)
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dft_managers/mpi_helpers.html b/_modules/dft_managers/mpi_helpers.html new file mode 100644 index 00000000..d7155f27 --- /dev/null +++ b/_modules/dft_managers/mpi_helpers.html @@ -0,0 +1,504 @@ + + + + + + dft_managers.mpi_helpers — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dft_managers.mpi_helpers

+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+"""
+Contains the handling of the QE process. It can start QE, reactivate it,
+check if the lock file is there and finally kill QE. Needed for CSC calculations.
+"""
+
+import os
+import socket
+from collections import defaultdict
+import shlex
+import time
+
+import triqs.utility.mpi as mpi
+
+
+
+[docs] +def create_hostfile(number_cores, cluster_name): + """ + Writes a host file for the mpirun. This tells mpi which nodes to ssh into + and start VASP on. The format of the hist file depends on the type of MPI + that is used. + + Parameters + ---------- + number_cores: int, the number of cores that vasp runs on + cluster_name: string, the name of the server + + Returns + ------- + string: name of the hostfile if not run locally and if called by master node + """ + + if cluster_name == 'default': + return None + + hostnames = mpi.world.gather(socket.gethostname(), root=0) + if mpi.is_master_node(): + # create hostfile based on first number_cores ranks + hosts = defaultdict(int) + for hostname in hostnames[:number_cores]: + hosts[hostname] += 1 + + mask_hostfile = {'openmpi': '{} slots={}', # OpenMPI format + 'openmpi-intra': '{} slots={}', # OpenMPI format + 'mpich': '{}:{}', # MPICH format + }[cluster_name] + + hostfile = 'dft.hostfile' + with open(hostfile, 'w') as file: + file.write('\n'.join(mask_hostfile.format(*i) for i in hosts.items())) + return hostfile + + return None
+ + + +
+[docs] +def find_path_to_mpi_command(env_vars, mpi_exe): + """ + Finds the complete path for the mpi executable by scanning the directories + of $PATH. + + Parameters + ---------- + env_vars: dict of string, environment variables containing PATH + mpi_exe: string, mpi command + + Returns + ------- + string: absolute path to mpi command + """ + + for path_directory in env_vars.get('PATH').split(os.pathsep): + if path_directory: + potential_path = os.path.join(path_directory, mpi_exe) + if os.access(potential_path, os.F_OK | os.X_OK): + return potential_path + + return None
+ + + +
+[docs] +def get_mpi_arguments(mpi_profile, mpi_exe, number_cores, dft_exe, hostfile): + """ + Depending on the settings of the cluster and the type of MPI used, + the arguments to the mpi call have to be different. The most technical part + of the vasp handler. + + Parameters + ---------- + cluster_name: string, name of the cluster so that settings can be tailored to it + mpi_exe: string, mpi command + number_cores: int, the number of cores that vasp runs on + dft_exe: string, the command to start the DFT code + hostfile: string, name of the hostfile + + Returns + ------- + list of string: arguments to start mpi with + """ + + if mpi_profile == 'default': + return [mpi_exe, '-np', str(number_cores)] + shlex.split(dft_exe) + + # For the second node, mpirun starts DFT by using ssh + # Therefore we need to handover the env variables with -x + if mpi_profile == 'openmpi': + return [mpi_exe, '-hostfile', hostfile, '-np', str(number_cores), + '-mca', 'mtl', '^psm,psm2,ofi', + '-mca', 'btl', '^vader,openib,usnix', + '-x', 'LD_LIBRARY_PATH', + '-x', 'PATH', '-x', 'OMP_NUM_THREADS'] + shlex.split(dft_exe) + # Run mpi with intra-node communication among ranks (on a single node). + if mpi_profile == 'openmpi-intra': + return [mpi_exe, '-np', str(number_cores), + '--mca', 'pml', 'ob1', '--mca', 'btl', 'self,vader', + '-x', 'LD_LIBRARY_PATH', + '-x', 'PATH', '-x', 'OMP_NUM_THREADS'] + shlex.split(dft_exe) + + if mpi_profile == 'mpich': + return [mpi_exe, '-launcher', 'ssh', '-hostfile', hostfile, + '-np', str(number_cores), '-envlist', 'PATH'] + shlex.split(dft_exe) + + return None
+ + + +
+[docs] +def poll_barrier(comm, poll_interval=0.1): + """ + Use asynchronous synchronization, otherwise mpi.barrier uses up all the CPU time during + the run of subprocess. + + Parameters + ---------- + comm: MPI communicator + poll_interval: float, time step for pinging the status of the sleeping ranks + """ + + req = comm.Ibarrier() + while not req.Test(): + time.sleep(poll_interval)
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dft_managers/qe_manager.html b/_modules/dft_managers/qe_manager.html new file mode 100644 index 00000000..f7bcc526 --- /dev/null +++ b/_modules/dft_managers/qe_manager.html @@ -0,0 +1,523 @@ + + + + + + dft_managers.qe_manager — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dft_managers.qe_manager

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+"""
+Contains the function to run a QuantumEspresso iteration. Needed for CSC calculations.
+"""
+
+import os
+import subprocess
+import sys
+
+import triqs.utility.mpi as mpi
+
+from solid_dmft.dft_managers import mpi_helpers
+
+
+def _start_with_piping(mpi_exe, mpi_arguments, qe_file_ext, env_vars, seedname):
+    """
+    Handles the piping of the output when starting QE.
+
+    Parameters
+    ----------
+    mpi_exe: string, mpi command
+    mpi_arguments: list of string, arguments to start mpi with
+    qe_file_ext : string, file name for QE
+    env_vars: dict of string, environment variables containing PATH
+    seedname: string, QE input file
+
+    Returns
+    -------
+    int: id of the VASP child process
+    """
+
+    if qe_file_ext in ['scf', 'nscf', 'pw2wan', 'mod_scf', 'bnd', 'bands', 'proj']:
+
+        inp = open(f'{seedname}.{qe_file_ext}.in', 'r')
+        out = open(f'{seedname}.{qe_file_ext}.out', 'w')
+        err = open(f'{seedname}.{qe_file_ext}.err', 'w')
+
+        print('  solid_dmft: Starting {} calculation...'.format(qe_file_ext))
+
+        # start subprocess
+        qe_result = subprocess.run(mpi_arguments, stdin=inp, env=env_vars, capture_output=True,
+                                   text=True, shell=False)
+
+        # write output and error file
+        output = qe_result.stdout
+        error = qe_result.stderr
+        out.writelines(output)
+        err.writelines(error)
+
+        if qe_result.returncode != 0:
+            mpi.report('QE calculation failed. Exiting programm.')
+            sys.exit(1)
+
+    elif 'win' in qe_file_ext:
+        print('  solid_dmft: Starting Wannier90 {}...'.format(qe_file_ext))
+        # don't need any piping for Wannier90
+        subprocess.check_call(mpi_arguments + [seedname], env=env_vars, shell=False)
+
+
+
+[docs] +def run(number_cores, qe_file_ext, qe_exec, mpi_profile, seedname): + """ + Starts the VASP child process. Takes care of initializing a clean + environment for the child process. This is needed so that VASP does not + get confused with all the standard slurm environment variables. + + Parameters + ---------- + number_cores: int, the number of cores that vasp runs on + qe_file_ext: string, qe executable + qe_exec: string, path to qe executables + mpi_profile: string, name of the cluster so that settings can be tailored to it + """ + + # get MPI env + hostfile = mpi_helpers.create_hostfile(number_cores, mpi_profile) + qe_exec_path = qe_exec.strip(qe_exec.rsplit('/')[-1]) + qe_exec = qe_exec_path + + if mpi.is_master_node(): + # clean environment + env_vars = {} + for var_name in ['PATH', 'LD_LIBRARY_PATH', 'SHELL', 'PWD', 'HOME', + 'OMP_NUM_THREADS', 'OMPI_MCA_btl_vader_single_copy_mechanism']: + var = os.getenv(var_name) + if var: + env_vars[var_name] = var + + # assuming that mpirun points to the correct mpi env + mpi_exe = mpi_helpers.find_path_to_mpi_command(env_vars, 'mpirun') + + if qe_file_ext in ['scf', 'nscf', 'mod_scf', 'bnd']: + qe_exec += f'pw.x -nk {number_cores}' + elif qe_file_ext in ['pw2wan']: + qe_exec += 'pw2wannier90.x -nk 1 -pd .true.' + elif qe_file_ext in ['bands']: + qe_exec += f'bands.x -nk {number_cores}' + elif qe_file_ext in ['proj']: + qe_exec += f'projwfc.x -nk {number_cores}' + elif qe_file_ext in ['win_pp']: + qe_exec += 'wannier90.x -pp' + elif qe_file_ext in ['win']: + qe_exec += 'wannier90.x' + + arguments = mpi_helpers.get_mpi_arguments(mpi_profile, mpi_exe, number_cores, qe_exec, hostfile) + _start_with_piping(mpi_exe, arguments, qe_file_ext, env_vars, seedname) + + mpi_helpers.poll_barrier(mpi.MPI.COMM_WORLD)
+ + + +
+[docs] +def read_dft_energy(seedname, iter_dmft): + """ + Reads DFT energy from quantum espresso's out files + + 1. At the first iteration, the DFT energy is read from the scf file. + + 2. After the first iteration the band energy computed in the mod_scf calculation is wrong, + and needs to be subtracted from the reported total energy. The correct band energy + is computed in the nscf calculation. + + """ + dft_energy = 0.0 + RYDBERG = 13.605693123 # eV + + if iter_dmft == 1: + with open(f'{seedname}.scf.out', 'r') as file: + dft_output = file.readlines() + for line in dft_output: + if '!' in line: + print("\nReading total energy from the scf calculation \n") + dft_energy = float(line.split()[-2]) * RYDBERG + print(f"The DFT energy is: {dft_energy} eV") + break + if line =="": + raise EOFError("Did not find scf total energy") + else: + with open(f'{seedname}.mod_scf.out', 'r') as file: + dft_output = file.readlines() + for line in dft_output: + #if 'eband, Ef (eV)' in line: + if "(sum(wg*et))" in line: + print("\nReading band energy from the mod_scf calculation \n") + #band_energy = float(line.split()) + band_energy_modscf = float(line.split()[-2])*RYDBERG + print(f"The mod_scf band energy is: {band_energy_modscf} eV") + if 'total energy' in line: + print("\nReading total energy from the mod_scf calculation \n") + dft_energy = float(line.split()[-2]) * RYDBERG + print(f"The uncorrected DFT energy is: {dft_energy} eV") + dft_energy -= band_energy_modscf + print(f"The DFT energy without kinetic part is: {dft_energy} eV") + + with open(f'{seedname}.nscf.out', 'r') as file: + dft_output = file.readlines() + for line in dft_output: + if 'The nscf band energy' in line: + print("\nReading band energy from the nscf calculation\n") + band_energy_nscf = float(line.split()[-2]) * RYDBERG + dft_energy += band_energy_nscf + print(f"The nscf band energy is: {band_energy_nscf} eV") + print(f"The corrected DFT energy is: {dft_energy} eV") + break + return dft_energy
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dft_managers/vasp_manager.html b/_modules/dft_managers/vasp_manager.html new file mode 100644 index 00000000..42eaeb25 --- /dev/null +++ b/_modules/dft_managers/vasp_manager.html @@ -0,0 +1,596 @@ + + + + + + dft_managers.vasp_manager — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dft_managers.vasp_manager

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+"""
+Contains the handling of the VASP process. It can start VASP, reactivate it,
+check if the lock file is there and finally kill VASP. Needed for CSC calculations.
+
+This functionality is contained in the simpler public functions.
+"""
+
+import os
+import signal
+import time
+import numpy as np
+
+import triqs.utility.mpi as mpi
+from h5 import HDFArchive
+
+from solid_dmft.dft_managers import mpi_helpers
+
+
+def _fork_and_start_vasp(mpi_exe, arguments, env_vars):
+    """
+    Forks a process from the master process that then calls mpi to start vasp.
+    The child process running VASP never leaves this function whereas the main
+    process returns the child's process id and continues. We use explicitly
+    os.fork as os.execve here because subprocess does not return, and as VASP
+    needs to keep running throughout the whole DFT+DMFT calculation that is
+    not a viable solution here.
+
+    Parameters
+    ----------
+    mpi_exe: string, mpi command
+    arguments: list of string, arguments to start mpi with
+    env_vars: dict of string, environment variables containing PATH
+
+    Returns
+    -------
+    int: id of the VASP child process
+    """
+
+    # fork process
+    vasp_process_id = os.fork()
+    if vasp_process_id == 0:
+        # close file descriptors, if rank0 had open files
+        for fd in range(3, 256):
+            try:
+                os.close(fd)
+            except OSError:
+                pass
+        print('\n Starting VASP now\n')
+        os.execve(mpi_exe, arguments, env_vars)
+        print('\n VASP exec failed\n')
+        os._exit(127)
+
+    return vasp_process_id
+
+
+def _is_lock_file_present():
+    """
+    Checks if the lock file 'vasp.lock' is there, i.e. if VASP is still working.
+    """
+
+    res_bool = False
+    if mpi.is_master_node():
+        res_bool = os.path.isfile('./vasp.lock')
+    res_bool = mpi.bcast(res_bool)
+    return res_bool
+
+
+
+[docs] +def remove_legacy_projections_suppressed(): + """ Removes legacy file vasp.suppress_projs if present. """ + if mpi.is_master_node(): + if os.path.isfile('./vasp.suppress_projs'): + print(' solid_dmft: Removing legacy file vasp.suppress_projs', flush=True) + os.remove('./vasp.suppress_projs') + mpi.barrier()
+ + + +
+[docs] +def run_initial_scf(number_cores, vasp_command, cluster_name): + """ + Starts the VASP child process. Takes care of initializing a clean + environment for the child process. This is needed so that VASP does not + get confused with all the standard slurm environment variables. Returns when + VASP has completed its initial scf cycle. + + Parameters + ---------- + number_cores: int, the number of cores that vasp runs on + vasp_command: string, the command to start vasp + cluster_name: string, name of the cluster so that settings can be tailored to it + """ + + # Removes STOPCAR + if mpi.is_master_node() and os.path.isfile('STOPCAR'): + os.remove('STOPCAR') + mpi.barrier() + + # get MPI env + vasp_process_id = 0 + + hostfile = mpi_helpers.create_hostfile(number_cores, cluster_name) + + if mpi.is_master_node(): + # clean environment + env_vars = {} + for var_name in ['PATH', 'LD_LIBRARY_PATH', 'SHELL', 'PWD', 'HOME', + 'OMP_NUM_THREADS', 'OMPI_MCA_btl_vader_single_copy_mechanism']: + var = os.getenv(var_name) + if var: + env_vars[var_name] = var + + # assuming that mpirun points to the correct mpi env + mpi_exe = mpi_helpers.find_path_to_mpi_command(env_vars, 'mpirun') + + arguments = mpi_helpers.get_mpi_arguments(cluster_name, mpi_exe, number_cores, vasp_command, hostfile) + vasp_process_id = _fork_and_start_vasp(mpi_exe, arguments, env_vars) + + mpi_helpers.poll_barrier(mpi.MPI.COMM_WORLD) + vasp_process_id = mpi.bcast(vasp_process_id) + + # Waits for VASP to start + while not _is_lock_file_present(): + time.sleep(1) + mpi.barrier() + + # Waits for VASP to finish + while _is_lock_file_present(): + time.sleep(1) + mpi.barrier() + + return vasp_process_id
+ + + +
+[docs] +def run_charge_update(): + """ + Performs one step of the charge update with VASP by creating the vasp.lock + file and then waiting until it gets delete by VASP when it has finished. + """ + if mpi.is_master_node(): + open('./vasp.lock', 'a').close() + mpi.barrier() + + # Waits for VASP to finish + while _is_lock_file_present(): + time.sleep(1) + mpi.barrier()
+ + + +
+[docs] +def read_dft_energy(): + """ + Reads DFT energy from the last line of Vasp's vasptriqs.h5 or from OSZICAR. + """ + if os.path.isfile('vasptriqs.h5'): + with HDFArchive('vasptriqs.h5', 'r') as h5: + dft_energy = h5['triqs/etotal'] + else: + with open('OSZICAR', 'r') as file: + nextline = file.readline() + while nextline.strip(): + line = nextline + nextline = file.readline() + dft_energy = float(line.split()[2]) + + return dft_energy
+ + + +
+[docs] +def read_irred_kpoints(kpts): + """ Reads the indices of the irreducible k-points from the OUTCAR. """ + + def read_outcar(file): + has_started_reading = False + for line in file: + if 'IBZKPT_HF' in line: + has_started_reading = True + continue + + if not has_started_reading: + continue + + if 't-inv' in line: + yield line + continue + + if '-'*10 in line: + break + + irred_indices = None + if mpi.is_master_node(): + with open('OUTCAR', 'r') as file: + outcar_data_raw = np.loadtxt(read_outcar(file), usecols=[0, 1, 2, 4]) + outcar_kpoints = outcar_data_raw[:, :3] + outcar_indices = (outcar_data_raw[:, 3]-.5).astype(int) + assert np.allclose(outcar_kpoints, kpts) + + symmetry_mapping = np.full(outcar_kpoints.shape[0], -1, dtype=int) + + for i, (kpt_outcar, outcar_index) in enumerate(zip(outcar_kpoints, outcar_indices)): + for j, kpt in enumerate(kpts): + if np.allclose(kpt_outcar, kpt): + # Symmetry-irreducible k points + if i == outcar_index: + symmetry_mapping[j] = outcar_index + # Symmetry-reducible + else: + symmetry_mapping[j] = outcar_index + break + + # Asserts that loop left through break, i.e. a pair was found + assert np.allclose(kpt_outcar, kpt) + + irreds, irred_indices = np.unique(symmetry_mapping, return_index=True) + assert np.all(np.diff(irreds) == 1) + assert np.all(symmetry_mapping >= 0) + + return mpi.bcast(irred_indices)
+ + + +
+[docs] +def kill(vasp_process_id): + """ Kills the VASP process. """ + # TODO: if we kill the process in the next step, does it make a difference if we write the STOPCAR + with open('STOPCAR', 'wt') as f_stop: + f_stop.write('LABORT = .TRUE.\n') + os.kill(vasp_process_id, signal.SIGTERM) + mpi.MPI.COMM_WORLD.Abort(1)
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_cycle.html b/_modules/dmft_cycle.html new file mode 100644 index 00000000..9e50d5a4 --- /dev/null +++ b/_modules/dmft_cycle.html @@ -0,0 +1,1200 @@ + + + + + + dmft_cycle — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_cycle

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+main DMFT cycle, DMFT step, and helper functions
+"""
+
+
+# system
+from copy import deepcopy
+from timeit import default_timer as timer
+import numpy as np
+
+# triqs
+from triqs.operators.util.observables import S_op, N_op
+from triqs.version import git_hash as triqs_hash
+from triqs.version import version as triqs_version
+from h5 import HDFArchive
+import triqs.utility.mpi as mpi
+from triqs.operators import c_dag, c, Operator
+from triqs.gf import make_hermitian, fit_hermitian_tail, MeshReFreq, MeshImFreq, make_gf_from_fourier, iOmega_n
+from triqs.gf.tools import inverse, make_zero_tail
+from triqs_dft_tools.sumk_dft import SumkDFT
+
+# own modules
+from solid_dmft.version import solid_dmft_hash
+from solid_dmft.version import version as solid_dmft_version
+from solid_dmft.dmft_tools.observables import (calc_dft_kin_en, add_dmft_observables, calc_bandcorr_man, write_obs,
+                                         add_dft_values_as_zeroth_iteration, write_header_to_file, prep_observables)
+from solid_dmft.dmft_tools.solver import SolverStructure
+from solid_dmft.dmft_tools import convergence
+from solid_dmft.dmft_tools import formatter
+from solid_dmft.dmft_tools import interaction_hamiltonian
+from solid_dmft.dmft_tools import results_to_archive
+from solid_dmft.dmft_tools import afm_mapping
+from solid_dmft.dmft_tools import manipulate_chemical_potential as manipulate_mu
+from solid_dmft.dmft_tools import initial_self_energies as initial_sigma
+from solid_dmft.dmft_tools import greens_functions_mixer as gf_mixer
+from solid_dmft.io_tools import verify_input_params, dict_to_h5
+
+def _extract_quantity_per_inequiv(param_name, n_inequiv_shells, general_params):
+    """
+    For quantities that can be different for each inequivalent shell, this
+    function checks if the quantity is a single value or a list of the correct
+    length. If just a single value is given, this value is applied to each shell.
+
+    Parameters
+    ----------
+    param_name : str
+        name of the parameter to be checked
+    n_inequiv_shells : int
+        number of inequivalent shells
+    general_params : dict
+        general parameters as a dict
+
+    Returns
+    -------
+    general_params : dict
+        updated general parameters as a dict
+
+    """
+
+
+    def formatter(value):
+        if isinstance(value, float):
+            return '{:.2f}'.format(value)
+        return str(value)
+
+    param = general_params[param_name]
+    if not isinstance(param, list):
+        mpi.report('Assuming {} = '.format(param_name)
+                + '{} for all correlated shells'.format(formatter(param)))
+        general_params[param_name] = [param] * n_inequiv_shells
+    elif len(param) == n_inequiv_shells:
+        mpi.report(f'{param_name} list for correlated shells: '
+                   + ', '.join([formatter(p) for p in param]))
+    else:
+        raise IndexError(f'{param_name} must be list of length '
+                         f'n_inequiv_shells={n_inequiv_shells} '
+                         'or single value but is ' + str(general_params[param_name]))
+
+    return general_params
+
+def _determine_block_structure(sum_k, general_params, advanced_params, solver_type_per_imp, dens_mat):
+    """
+    Determines block structrure and degenerate deg_shells
+    computes first DFT density matrix to determine block structure and changes
+    the density matrix according to needs i.e. magnetic calculations, or keep
+    off-diag elements
+
+    Parameters
+    ----------
+    sum_k : SumK Object instances
+
+    Returns
+    -------
+    sum_k : SumK Object instances
+        updated sum_k Object
+    """
+    mpi.report('\n *** Determination of block structure ***')
+
+    # Adds spin degeneracies if not spin-orbit coupled
+    if sum_k.SO == 0:
+        sum_k.block_structure.deg_shells = [[['up_0', 'down_0']] for _ in range(sum_k.n_inequiv_shells)]
+
+    # Evaluates degeneracies for ftps
+    imp_ftps = [i for i, s in enumerate(solver_type_per_imp) if s == 'ftps']
+    if imp_ftps:
+        mock_sumk = deepcopy(sum_k)
+        mock_sumk.analyse_block_structure(dm=dens_mat, threshold=general_params['block_threshold'], include_shells=imp_ftps)
+        deg_orbs_ftps = [mock_sumk.deg_shells[icrsh] if icrsh in imp_ftps else None
+                         for icrsh in range(sum_k.n_inequiv_shells)]
+        mpi.report('Block structure written to "deg_orbs_ftps":')
+        mpi.report(deg_orbs_ftps)
+    else:
+        deg_orbs_ftps = None
+
+    # Only removes the off-diagonal terms for the selected impurities
+    imp_to_analyze = [i for i, offdiag in enumerate(general_params['enforce_off_diag']) if not offdiag]
+    mpi.report('using 1-particle density matrix and Hloc (atomic levels) to determine the block structure')
+    sum_k.analyse_block_structure(dm=dens_mat, threshold=general_params['block_threshold'], include_shells=imp_to_analyze)
+
+    # Applies manual selection of the solver struct
+    if any(s is not None for s in advanced_params['pick_solver_struct']):
+        mpi.report('selecting subset of orbital space for gf_struct_solver from input:')
+        mpi.report(advanced_params['pick_solver_struct'][icrsh])
+        sum_k.block_structure.pick_gf_struct_solver(advanced_params['pick_solver_struct'])
+
+    # Applies the manual mapping to each inequivalent shell
+    if any(s is not None for s in advanced_params['map_solver_struct']):
+        sum_k.block_structure.map_gf_struct_solver(advanced_params['map_solver_struct'])
+        if any(s is not None for s in advanced_params['mapped_solver_struct_degeneracies']):
+            sum_k.block_structure.deg_shells = advanced_params['mapped_solver_struct_degeneracies']
+
+    # if we want to do a magnetic calculation we need to lift up/down degeneracy
+    if general_params['magnetic'] and sum_k.SO == 0:
+        mpi.report('Magnetic calculation: removing the spin degeneracy from the block structure')
+        for icrsh, deg_shells_site in enumerate(sum_k.block_structure.deg_shells):
+            deg_shell_mag = []
+            # find degenerate orbitals that do not simply connect different spin channels
+            for deg_orbs in deg_shells_site:
+                for spin in ['up', 'down']:
+                    # create a list of all up / down orbitals
+                    deg = [orb for orb in deg_orbs if spin in orb]
+                    # if longer than one than we have two deg orbitals also in a magnetic calculation
+                    if len(deg) > 1:
+                        deg_shell_mag.append(deg)
+            sum_k.block_structure.deg_shells[icrsh] = deg_shell_mag
+    # for SOC we remove all degeneracies
+    elif sum_k.SO == 1:
+        sum_k.block_structure.deg_shells = [[] for _ in range(sum_k.n_inequiv_shells)]
+
+    return sum_k, deg_orbs_ftps
+
+
+def _calculate_rotation_matrix(general_params, sum_k):
+    """
+    Applies rotation matrix to make the DMFT calculations easier for the solver.
+    Possible are rotations diagonalizing either the local Hamiltonian or the
+    density. Diagonalizing the density has not proven really helpful but
+    diagonalizing the local Hamiltonian has.
+    Note that the interaction Hamiltonian has to be rotated if it is not fully
+    orbital-gauge invariant (only the Kanamori fulfills that).
+
+    Parameters
+    ----------
+    general_params : dict
+        general parameters as a dict
+    sum_k : SumkDFT object
+        Sumk Object
+
+    Returns
+    -------
+    sum_k : SumkDFT Object
+        updated Sumk object with the new rotation matrices
+    """
+
+    # Extracts new rotation matrices from density_mat or local Hamiltonian
+    if general_params['set_rot'] == 'hloc':
+        q_diag = sum_k.eff_atomic_levels()
+    elif general_params['set_rot'] == 'den':
+        q_diag = sum_k.density_matrix(method='using_gf')
+    else:
+        raise ValueError('Parameter set_rot set to wrong value.')
+
+    chnl = sum_k.spin_block_names[sum_k.SO][0]
+
+    rot_mat = []
+    for icrsh in range(sum_k.n_corr_shells):
+        ish = sum_k.corr_to_inequiv[icrsh]
+        eigvec = np.array(np.linalg.eigh(np.real(q_diag[ish][chnl]))[1], dtype=complex)
+        if sum_k.use_rotations:
+            rot_mat.append( np.dot(sum_k.rot_mat[icrsh], eigvec) )
+        else:
+            rot_mat.append( eigvec )
+
+    sum_k.rot_mat = rot_mat
+    # in case sum_k.use_rotations == False before:
+    sum_k.use_rotations = True
+    # sum_k.eff_atomic_levels() needs to be recomputed if rot_mat were changed
+    if hasattr(sum_k, "Hsumk"): delattr(sum_k, "Hsumk")
+    mpi.report('Updating rotation matrices using dft {} eigenbasis to maximise sign'.format(general_params['set_rot']))
+
+    # Prints matrices
+    mpi.report('\nNew rotation matrices')
+    formatter.print_rotation_matrix(sum_k)
+
+    return sum_k
+
+
+def _chi_setup(sum_k, solver_params, map_imp_solver):
+    """
+
+    Parameters
+    ----------
+    sum_k : SumkDFT object
+        Sumk object with the information about the correct block structure
+    solver_params: solver params dict
+
+    Returns
+    -------
+    ops_chi_measurement : list of one-particle operators to measure per impurity
+    """
+
+    ops_chi_measure = [None] * sum_k.n_inequiv_shells
+
+    for icrsh in range(sum_k.n_inequiv_shells):
+        isolv = map_imp_solver[icrsh]
+        if 'measure_chi' not in solver_params[isolv] or solver_params[isolv]['measure_chi'] is None:
+            continue
+
+        n_orb = sum_k.corr_shells[icrsh]['dim']
+        if solver_params[isolv]['measure_chi'] == 'SzSz':
+            mpi.report(f'\nImp {icrsh} with solver #{isolv}: Setting up Chi(S_z(tau),S_z(0)) measurement')
+
+            ops_chi_measure[icrsh] = S_op('z', spin_names=sum_k.spin_block_names[sum_k.SO],
+                                          n_orb=n_orb, map_operator_structure=sum_k.sumk_to_solver[icrsh])
+        elif solver_params[isolv]['measure_chi'] == 'NN':
+            mpi.report(f'\nImp {icrsh} with solver #{isolv}: Setting up Chi(n(tau),n(0)) measurement')
+
+            ops_chi_measure[icrsh] = N_op(spin_names=sum_k.spin_block_names[sum_k.SO],
+                                          n_orb=n_orb, map_operator_structure=sum_k.sumk_to_solver[icrsh])
+
+    return ops_chi_measure
+
+
+
+[docs] +def dmft_cycle(general_params, solver_params, advanced_params, dft_params, + gw_params, n_iter, dft_irred_kpt_indices=None, dft_energy=None): + """ + main dmft cycle that works for one shot and CSC equally + + Parameters + ---------- + general_params : dict + general parameters as a dict + solver_params : dict + solver parameters as a dict + advanced_params : dict + advanced parameters as a dict + dft_params : dict + dft parameters as a dict + gw_params : dict + gw parameters as a dict + n_iter : int + number of iterations to be executed + dft_irred_kpt_indices: iterable of int + If given, writes density correction for csc calculations only for + irreducible kpoints + + Returns + --------- + observables : dict + updated observable array for calculation + """ + + # Creates real- or imaginary-frequency mesh to store Green functions on + if general_params['beta'] is not None: + mpi.report('Running solid_dmft on imag-freq grid because "general.beta" specified') + sumk_mesh = MeshImFreq(beta=general_params['beta'], + S='Fermion', + n_iw=general_params['n_iw']) + broadening = None + else: + mpi.report('Running solid_dmft on real-freq grid because "general.beta" not specified') + sumk_mesh = MeshReFreq(window=general_params['w_range'], + n_w=general_params['n_w']) + broadening = general_params['eta'] + + # Creates SumkDFT object + sum_k = SumkDFT(hdf_file=general_params['jobname']+'/'+general_params['seedname']+'.h5', + mesh=sumk_mesh, use_dft_blocks=False, h_field=general_params['h_field']) + + iteration_offset = 0 + + # determine chemical potential for bare DFT sum_k object + if mpi.is_master_node(): + archive = HDFArchive(general_params['jobname']+'/'+general_params['seedname']+'.h5', 'a') + if 'DMFT_results' not in archive: + archive.create_group('DMFT_results') + if 'last_iter' not in archive['DMFT_results']: + archive['DMFT_results'].create_group('last_iter') + if 'DMFT_input' not in archive: + archive.create_group('DMFT_input') + archive['DMFT_input']['program'] = 'solid_dmft' + archive['DMFT_input'].create_group('solver') + archive['DMFT_input'].create_group('version') + archive['DMFT_input']['version']['triqs_hash'] = triqs_hash + archive['DMFT_input']['version']['triqs_version'] = triqs_version + archive['DMFT_input']['version']['solid_dmft_hash'] = solid_dmft_hash + archive['DMFT_input']['version']['solid_dmft_version'] = solid_dmft_version + + if 'iteration_count' in archive['DMFT_results']: + iteration_offset = archive['DMFT_results/iteration_count'] + sum_k.chemical_potential = archive['DMFT_results/last_iter/chemical_potential_post'] + print(f'RESTARTING DMFT RUN at iteration {iteration_offset+1} using last self-energy') + else: + print('INITIAL DMFT RUN') + print('#'*80, '\n') + else: + archive = None + + iteration_offset = mpi.bcast(iteration_offset) + sum_k.chemical_potential = mpi.bcast(sum_k.chemical_potential) + + # Checks the general parameters that are impurity-dependent and ensures they are a list + mpi.report('Checking parameters that are impurity-dependent') + for key in ['U', 'J', 'U_prime', 'ratio_F4_F2', 'h_int_type', 'enforce_off_diag', 'dc_type']: + general_params = _extract_quantity_per_inequiv(key, sum_k.n_inequiv_shells, general_params) + # Same for advanced params + for key in ['dc_U', 'dc_J', 'dc_fixed_occ', 'map_solver_struct', 'pick_solver_struct', 'mapped_solver_struct_degeneracies']: + advanced_params = _extract_quantity_per_inequiv(key, sum_k.n_inequiv_shells, advanced_params) + + # Checks that all impurities have an associated solver + # and creates a map between impurity index and solver index + if len(solver_params) == 1 and solver_params[0]['idx_impurities'] is None: + map_imp_solver = [0] * sum_k.n_inequiv_shells + else: + all_idx_imp = [i for entry in solver_params for i in entry['idx_impurities']] + if sorted(all_idx_imp) != list(range(sum_k.n_inequiv_shells)): + raise ValueError('All impurities must be listed exactly once in solver.idx_impurities' + f'but instead got {all_idx_imp}') + + map_imp_solver = [] + for iineq in range(sum_k.n_inequiv_shells): + for isolver, entry in enumerate(solver_params): + if iineq in entry['idx_impurities']: + map_imp_solver.append(isolver) + break + solver_type_per_imp = [solver_params[map_imp_solver[iineq]]['type'] for iineq in range(sum_k.n_inequiv_shells)] + mpi.report(f'\nSolver type per impurity: {solver_type_per_imp}') + + # Checks all parameters that need to be checked against info in SumkDFT object + verify_input_params.verify_h5_dependent(sum_k, solver_type_per_imp, general_params) + + # Initializes chemical potential with mu_initial_guess if this is the first iteration + if general_params['mu_initial_guess'] is not None and iteration_offset == 0: + sum_k.chemical_potential = general_params['mu_initial_guess'] + mpi.report('\nInitial chemical potential set to {:.3f} eV\n'.format(sum_k.chemical_potential)) + + dft_mu = sum_k.calc_mu(precision=general_params['prec_mu'], method=general_params['calc_mu_method'], + broadening=broadening) + + # calculate E_kin_dft for one shot calculations + if not general_params['csc'] and general_params['calc_energies']: + E_kin_dft = calc_dft_kin_en(general_params, sum_k, dft_mu) + else: + E_kin_dft = None + + # check for previous broyden data oterhwise initialize it: + if mpi.is_master_node() and general_params['g0_mix_type'] == 'broyden': + if not 'broyler' in archive['DMFT_results']: + archive['DMFT_results']['broyler'] = [{'mu' : [],'V': [], 'dV': [], 'F': [], 'dF': []} + for _ in range(sum_k.n_inequiv_shells)] + + # Generates a rotation matrix to change the basis + if general_params['set_rot'] is not None: + # calculate new rotation matrices + sum_k = _calculate_rotation_matrix(general_params, sum_k) + # Saves rotation matrix to h5 archive: + if mpi.is_master_node() and iteration_offset == 0: + archive['DMFT_input']['rot_mat'] = sum_k.rot_mat + mpi.barrier() + + # Calculates density in default block structure + local_gf_dft_corr = sum_k.extract_G_loc(broadening=broadening, transform_to_solver_blocks=False, with_Sigma=False) + dens_mat_dft = [gf.density() for gf in local_gf_dft_corr] + + for iineq, gf in enumerate(local_gf_dft_corr): + mpi.report(f'Total density for imp {iineq} from DFT: ' + '{:10.6f}'.format(np.real(gf.total_density()))) + + # determine block structure for solver + det_blocks = None + # load previous block_structure if possible + if mpi.is_master_node(): + det_blocks = 'block_structure' not in archive['DMFT_input'] + det_blocks = mpi.bcast(det_blocks) + + # Previous rot_mat only not None if the rot_mat changed from load_sigma or previous run + previous_rot_mat = None + deg_orbs_ftps = None + # determine block structure for GF and Hyb function + if det_blocks and not general_params['load_sigma']: + sum_k, deg_orbs_ftps = _determine_block_structure(sum_k, general_params, advanced_params, solver_type_per_imp, dens_mat_dft) + # if load sigma we need to load everything from this h5 archive + elif general_params['load_sigma']: + #loading block_struc and rot_mat and deg_shells + if mpi.is_master_node(): + with HDFArchive(general_params['path_to_sigma'], 'r') as old_calc: + sum_k.block_structure = old_calc['DMFT_input/block_structure'] + sum_k.deg_shells = old_calc['DMFT_input/deg_shells'] + previous_rot_mat = old_calc['DMFT_input/rot_mat'] + if deg_orbs_ftps is not None: + deg_orbs_ftps = old_calc['DMFT_input/solver_struct_ftps'] + + if not all(np.allclose(x, y) for x, y in zip(sum_k.rot_mat, previous_rot_mat)): + print('WARNING: rot_mat in current run is different from loaded_sigma run.') + else: + previous_rot_mat = None + + sum_k.block_structure = mpi.bcast(sum_k.block_structure) + sum_k.deg_shells = mpi.bcast(sum_k.deg_shells) + previous_rot_mat = mpi.bcast(previous_rot_mat) + deg_orbs_ftps = mpi.bcast(deg_orbs_ftps) + + # In a magnetic calculation, no shells are degenerate + if general_params['magnetic'] and sum_k.SO == 0: + sum_k.deg_shells = [[] for _ in range(sum_k.n_inequiv_shells)] + else: + # Master node checks if rot_mat stayed the same + if mpi.is_master_node(): + sum_k.block_structure = archive['DMFT_input']['block_structure'] + sum_k.deg_shells = archive['DMFT_input/deg_shells'] + previous_rot_mat = archive['DMFT_input']['rot_mat'] + if not all(np.allclose(x, y) for x, y in zip(sum_k.rot_mat, previous_rot_mat)): + print('WARNING: rot_mat in current step is different from previous step.') + archive['DMFT_input']['rot_mat'] = sum_k.rot_mat + else: + previous_rot_mat = None + if 'solver_struct_ftps' in archive['DMFT_input']: + deg_orbs_ftps = archive['DMFT_input/solver_struct_ftps'] + + sum_k.block_structure = mpi.bcast(sum_k.block_structure) + sum_k.deg_shells = mpi.bcast(sum_k.deg_shells) + previous_rot_mat = mpi.bcast(previous_rot_mat) + deg_orbs_ftps = mpi.bcast(deg_orbs_ftps) + + # Compatibility with h5 archives from the triqs2 version + # Sumk doesn't hold corr_to_inequiv anymore, which is in block_structure now + if sum_k.block_structure.corr_to_inequiv is None: + if mpi.is_master_node(): + sum_k.block_structure.corr_to_inequiv = archive['dft_input/corr_to_inequiv'] + sum_k.block_structure = mpi.bcast(sum_k.block_structure) + + # Determination of shell_multiplicity + shell_multiplicity = [sum_k.corr_to_inequiv.count(icrsh) for icrsh in range(sum_k.n_inequiv_shells)] + + # print block structure and DFT input quantitites! + formatter.print_block_sym(sum_k, dens_mat_dft, general_params) + + if general_params['magnetic']: + sum_k.SP = 1 + if general_params['afm_order']: + general_params = afm_mapping.determine(general_params, archive, sum_k.n_inequiv_shells) + + # Constructs interaction Hamiltonian and writes it to the h5 archive + h_int, gw_params = interaction_hamiltonian.construct(sum_k, general_params, solver_type_per_imp, gw_params) + if mpi.is_master_node(): + archive['DMFT_input']['h_int'] = h_int + + # If new calculation, writes input parameters and sum_k <-> solver mapping to archive + if iteration_offset == 0: + if mpi.is_master_node(): + archive['DMFT_input']['general_params'] = dict_to_h5.prep_params_for_h5(general_params) + archive['DMFT_input']['solver_params'] = dict_to_h5.prep_params_for_h5(solver_params) + archive['DMFT_input']['dft_params'] = dict_to_h5.prep_params_for_h5(dft_params) + archive['DMFT_input']['advanced_params'] = dict_to_h5.prep_params_for_h5(advanced_params) + + archive['DMFT_input']['block_structure'] = sum_k.block_structure + archive['DMFT_input']['deg_shells'] = sum_k.deg_shells + archive['DMFT_input']['shell_multiplicity'] = shell_multiplicity + if deg_orbs_ftps is not None: + archive['DMFT_input']['solver_struct_ftps'] = deg_orbs_ftps + mpi.barrier() + + solvers = [None] * sum_k.n_inequiv_shells + for icrsh in range(sum_k.n_inequiv_shells): + # Construct the Solver instances + solvers[icrsh] = SolverStructure(general_params, solver_params[map_imp_solver[icrsh]], + gw_params, advanced_params, sum_k, icrsh, h_int[icrsh], + iteration_offset, deg_orbs_ftps) + + # store solver hash to archive + if mpi.is_master_node(): + if 'version' not in archive['DMFT_input']: + archive['DMFT_input'].create_group('version') + for iineq, solver in enumerate(solvers): + if f'solver {iineq}' not in archive['DMFT_input']['version']: + archive['DMFT_input']['version'].create_group(f'solver {iineq}') + archive['DMFT_input']['version'][f'solver {iineq}']['name'] = solver.solver_params['type'] + archive['DMFT_input']['version'][f'solver {iineq}']['hash'] = solver.git_hash + archive['DMFT_input']['version'][f'solver {iineq}']['version'] = solver.version + + # Extracts local GF per *inequivalent* shell + local_gf_dft = sum_k.extract_G_loc(broadening=broadening, with_Sigma=False, mu=dft_mu) + + # Determines initial Sigma and DC + sum_k, solvers = initial_sigma.determine_dc_and_initial_sigma(general_params, gw_params, advanced_params, sum_k, + archive, iteration_offset, local_gf_dft, solvers, + solver_type_per_imp) + + sum_k = manipulate_mu.set_initial_mu(general_params, sum_k, iteration_offset, archive, broadening) + + + # setup of measurement of chi(SzSz(tau) if requested + ops_chi_measure = _chi_setup(sum_k, solver_params, map_imp_solver) + + mpi.report('\n {} DMFT cycles requested. Starting with iteration {}.\n'.format(n_iter, iteration_offset+1)) + + # Prepares observable and conv dicts + observables = None + conv_obs = None + if mpi.is_master_node(): + observables = prep_observables(archive, sum_k) + conv_obs = convergence.prep_conv_obs(archive) + observables = mpi.bcast(observables) + conv_obs = mpi.bcast(conv_obs) + + if mpi.is_master_node() and iteration_offset == 0: + write_header_to_file(general_params, sum_k) + observables = add_dft_values_as_zeroth_iteration(observables, general_params, solver_type_per_imp, dft_mu, dft_energy, sum_k, + local_gf_dft, shell_multiplicity) + write_obs(observables, sum_k, general_params) + # write convergence file + convergence.prep_conv_file(general_params, sum_k) + + # The infamous DMFT self consistency cycle + is_converged = False + for it in range(iteration_offset + 1, iteration_offset + n_iter + 1): + + # remove h_field when number of iterations is reached + if sum_k.h_field != 0.0 and general_params['h_field_it'] != 0 and it > general_params['h_field_it']: + mpi.report('\nRemoving magnetic field now.\n') + sum_k.h_field = 0.0 + # enforce recomputation of eff_atomic_levels + delattr(sum_k, 'Hsumk') + + mpi.report('#'*80) + mpi.report('Running iteration: {} / {}'.format(it, iteration_offset + n_iter)) + (sum_k, solvers, + observables, is_converged) = _dmft_step(sum_k, solvers, it, general_params, solver_params, gw_params, + advanced_params, dft_params, map_imp_solver, solver_type_per_imp, + h_int, archive, shell_multiplicity, E_kin_dft, + observables, conv_obs, ops_chi_measure, dft_irred_kpt_indices, dft_energy, broadening, + is_converged, is_sampling=False) + + if is_converged: + break + + if is_converged: + mpi.report('*** Required convergence reached ***') + else: + mpi.report('** All requested iterations finished ***') + mpi.report('#'*80) + + # Starts the sampling dmft iterations if requested + if is_converged and general_params['sampling_iterations'] > 0: + mpi.report('*** Sampling now for {} iterations ***'.format(general_params['sampling_iterations'])) + iteration_offset = it + + for it in range(iteration_offset + 1, + iteration_offset + 1 + general_params['sampling_iterations']): + mpi.report('#'*80) + mpi.report('Running iteration: {} / {}'.format(it, iteration_offset+general_params['sampling_iterations'])) + sum_k, solvers, observables, _ = _dmft_step(sum_k, solvers, it, general_params, solver_params, gw_params, + advanced_params, dft_params, map_imp_solver, solver_type_per_imp, + h_int, archive, shell_multiplicity, E_kin_dft, + observables, conv_obs, ops_chi_measure, dft_irred_kpt_indices, dft_energy, broadening, + is_converged=True, is_sampling=True) + + mpi.report('** Sampling finished ***') + mpi.report('#'*80) + + mpi.barrier() + + # close the h5 archive + if mpi.is_master_node(): + del archive + + return is_converged, sum_k
+ + + +def _dmft_step(sum_k, solvers, it, general_params, solver_params, gw_params, + advanced_params, dft_params, map_imp_solver, solver_type_per_imp, h_int, + archive, shell_multiplicity, E_kin_dft, observables, conv_obs, + ops_chi_measure, dft_irred_kpt_indices, dft_energy, broadening, + is_converged, is_sampling): + """ + Contains the actual dmft steps when all the preparation is done + """ + + # init local density matrices for observables + density_tot = 0.0 + density_shell = np.zeros(sum_k.n_inequiv_shells) + density_mat = [None] * sum_k.n_inequiv_shells + density_mat_unsym = [None] * sum_k.n_inequiv_shells + density_shell_pre = np.zeros(sum_k.n_inequiv_shells) + density_mat_pre = [None] * sum_k.n_inequiv_shells + + mpi.barrier() + + if sum_k.SO: + printed = ((np.real, 'real'), (np.imag, 'imaginary')) + else: + printed = ((np.real, 'real'), ) + + # Extracts G local + G_loc_all = sum_k.extract_G_loc(broadening=broadening) + + # Copies Sigma and G0 before Solver run for mixing later + Sigma_freq_previous = [solvers[iineq].Sigma_freq.copy() for iineq in range(sum_k.n_inequiv_shells)] + G0_freq_previous = [solvers[iineq].G0_freq.copy() for iineq in range(sum_k.n_inequiv_shells)] + + # looping over inequiv shells and solving for each site seperately + for icrsh in range(sum_k.n_inequiv_shells): + # copy the block of G_loc into the corresponding instance of the impurity solver + # TODO: why do we set solvers.G_freq? Isn't that simply an output of the solver? + solvers[icrsh].G_freq << G_loc_all[icrsh] + + density_shell_pre[icrsh] = np.real(solvers[icrsh].G_freq.total_density()) + mpi.report('\n *** Correlated Shell type #{:3d} : '.format(icrsh) + + 'Estimated total charge of impurity problem = {:.6f}'.format(density_shell_pre[icrsh])) + density_mat_pre[icrsh] = solvers[icrsh].G_freq.density() + mpi.report('Estimated density matrix:') + for key, value in sorted(density_mat_pre[icrsh].items()): + for func, name in printed: + mpi.report('{}, {} part'.format(key, name)) + mpi.report(func(value)) + + # dyson equation to extract G0_freq, using Hermitian symmetry + solvers[icrsh].G0_freq << inverse(solvers[icrsh].Sigma_freq + inverse(solvers[icrsh].G_freq)) + + # mixing of G0 if wanted from the second iteration on + if it > 1: + solvers[icrsh] = gf_mixer.mix_g0(solvers[icrsh], general_params, icrsh, archive, + G0_freq_previous[icrsh], it, sum_k.deg_shells[icrsh]) + + if isinstance(sum_k.mesh, MeshImFreq): + solvers[icrsh].G0_freq << make_hermitian(solvers[icrsh].G0_freq) + sum_k.symm_deg_gf(solvers[icrsh].G0_freq, ish=icrsh) + + if ((solver_type_per_imp[icrsh] == 'cthyb' and solvers[icrsh].solver_params['delta_interface']) + or solver_type_per_imp[icrsh] == 'ctseg'): + mpi.report('\n Using the delta interface for passing Delta(tau) and Hloc0 directly to the solver.') + # prepare solver input + sumk_eal = sum_k.eff_atomic_levels()[icrsh] + solver_eal = sum_k.block_structure.convert_matrix(sumk_eal, space_from='sumk', ish_from=sum_k.inequiv_to_corr[icrsh]) + # fill Delta_time from Delta_freq sum_k to solver + # for name, g0 in self.G0_freq: + for name, g0 in solvers[icrsh].G0_freq: + solvers[icrsh].Delta_freq[name] << iOmega_n - inverse(g0) - solver_eal[name] + known_moments = make_zero_tail(solvers[icrsh].Delta_freq[name], 1) + tail, err = fit_hermitian_tail(solvers[icrsh].Delta_freq[name], known_moments) + # without SOC delta_tau needs to be real + if not sum_k.SO == 1: + solvers[icrsh].Delta_time[name] << make_gf_from_fourier(solvers[icrsh].Delta_freq[name], + solvers[icrsh].Delta_time.mesh, tail).real + else: + solvers[icrsh].Delta_time[name] << make_gf_from_fourier(solvers[icrsh].Delta_freq[name], + solvers[icrsh].Delta_time.mesh, tail) + + if solvers[icrsh].solver_params['diag_delta']: + for o1 in range(g0.target_shape[0]): + for o2 in range(g0.target_shape[0]): + if o1 != o2: + solvers[icrsh].Delta_time[name].data[:, o1, o2] = 0.0 + 0.0j + + # Make non-interacting operator for Hloc0 + Hloc_0 = Operator() + for spin, spin_block in solver_eal.items(): + for o1 in range(spin_block.shape[0]): + for o2 in range(spin_block.shape[1]): + # check if off-diag element is larger than threshold + if o1 != o2 and abs(spin_block[o1,o2]) < solvers[icrsh].solver_params['off_diag_threshold']: + continue + else: + # TODO: adapt for SOC calculations, which should keep the imag part + Hloc_0 += spin_block[o1,o2].real/2 * (c_dag(spin,o1) * c(spin,o2) + c_dag(spin,o2) * c(spin,o1)) + solvers[icrsh].Hloc_0 = Hloc_0 + + # store solver to h5 archive + if general_params['store_solver'] and mpi.is_master_node(): + if 'solver' not in archive['DMFT_input']: + archive['DMFT_input'].create_group('solver') + archive['DMFT_input/solver'].create_group('it_'+str(it)) + archive['DMFT_input/solver/it_'+str(it)]['S_'+str(icrsh)] = solvers[icrsh].triqs_solver + + # store DMFT input directly in last_iter + if mpi.is_master_node(): + archive['DMFT_results/last_iter']['G0_freq_{}'.format(icrsh)] = solvers[icrsh].G0_freq + if solver_type_per_imp[icrsh] == 'cthyb' and solvers[icrsh].solver_params['delta_interface']: + archive['DMFT_results/last_iter']['Delta_time_{}'.format(icrsh)] = solvers[icrsh].Delta_time + + # setup of measurement of chi(SzSz(tau) if requested + # TODO: move this into solver class? + if ops_chi_measure[icrsh] is not None: + solvers[icrsh].solver_params['measure_O_tau'] = (ops_chi_measure[icrsh], ops_chi_measure[icrsh]) + + if (general_params['magnetic'] and general_params['afm_order'] and general_params['afm_mapping'][icrsh][0]): + # If we do a AFM calculation we can use the init magnetic moments to + # copy the self energy instead of solving it explicitly + solvers = afm_mapping.apply(general_params, icrsh, sum_k.gf_struct_solver[icrsh], solvers) + else: + # Solve the impurity problem for this shell + mpi.report('\nSolving the impurity problem for shell {} ...'.format(icrsh)) + mpi.barrier() + start_time = timer() + solvers[icrsh].solve(it=it) + mpi.barrier() + mpi.report('Actual time for solver: {:.2f} s'.format(timer() - start_time)) + + # some printout of the obtained density matrices and some basic checks from the unsymmetrized solver output + if ((solver_type_per_imp[icrsh] == 'cthyb' and solvers[icrsh].solver_params['measure_density_matrix']) or + solver_type_per_imp[icrsh] == 'ctseg' or + (solver_type_per_imp[icrsh] == 'hubbardI' and solvers[icrsh].solver_params['measure_density_matrix'])): + mpi.report('\nExtracting impurity occupations from measured density matrix.') + for block, occ_mat in solvers[icrsh].orbital_occupations.items(): + density_shell[icrsh] += np.trace(occ_mat) + density_tot += density_shell[icrsh]*shell_multiplicity[icrsh] + density_mat_unsym[icrsh] = solvers[icrsh].orbital_occupations + density_mat[icrsh] = density_mat_unsym[icrsh].copy() + sum_k.symm_deg_gf(density_mat[icrsh], ish=icrsh) + else: + density_shell[icrsh] = np.real(solvers[icrsh].G_freq_unsym.total_density()) + density_tot += density_shell[icrsh]*shell_multiplicity[icrsh] + density_mat_unsym[icrsh] = solvers[icrsh].G_freq_unsym.density() + density_mat[icrsh] = solvers[icrsh].G_freq.density() + formatter.print_local_density(density_shell[icrsh], density_shell_pre[icrsh], + density_mat_unsym[icrsh], sum_k.SO) + + # update solver in h5 archive + if general_params['store_solver'] and mpi.is_master_node(): + archive['DMFT_input/solver/it_'+str(it)]['S_'+str(icrsh)] = solvers[icrsh].triqs_solver + + # Done with loop over impurities + + if mpi.is_master_node(): + # Done. Now do post-processing: + print('\n *** Post-processing the solver output ***') + print('Total charge of all correlated shells : {:.6f}\n'.format(density_tot)) + + solvers = gf_mixer.mix_sigma(general_params, sum_k.n_inequiv_shells, solvers, Sigma_freq_previous) + + # calculate new DC + # for the hartree solver the DC potential will be formally set to zero as it is already present in the Sigma + if general_params['dc'] and general_params['dc_dmft']: + sum_k = initial_sigma.calculate_double_counting(sum_k, density_mat, general_params, + gw_params, advanced_params, + solver_type_per_imp) + + #The hartree solver computes the DC energy internally, set it in sum_k + for icrsh in range(sum_k.n_corr_shells): + iineq = sum_k.corr_to_inequiv[icrsh] + if solver_type_per_imp[iineq] == 'hartree': + sum_k.dc_energ[icrsh] = solvers[iineq].DC_energy + + # symmetrize Sigma over degenerate blocks + for icrsh in range(sum_k.n_inequiv_shells): + sum_k.symm_deg_gf(solvers[icrsh].Sigma_freq, ish=icrsh) + # doing the dmft loop and set new sigma into sumk + sum_k.put_Sigma([solvers[icrsh].Sigma_freq for icrsh in range(sum_k.n_inequiv_shells)]) + + # saving previous mu for writing to observables file + previous_mu = sum_k.chemical_potential + sum_k = manipulate_mu.update_mu(general_params, sum_k, it, archive, broadening) + + # if we do a CSC calculation we need always an updated GAMMA file + E_bandcorr = 0.0 + deltaN = None + dens = None + if general_params['csc']: + # handling the density correction for fcsc calculations + assert dft_irred_kpt_indices is None or dft_params['dft_code'] == 'vasp' + deltaN, dens, E_bandcorr = sum_k.calc_density_correction(dm_type=dft_params['dft_code'], + kpts_to_write=dft_irred_kpt_indices) + elif general_params['calc_energies']: + # for a one shot calculation we are using our own method + E_bandcorr = calc_bandcorr_man(general_params, sum_k, E_kin_dft) + + # Writes results to h5 archive + results_to_archive.write(archive, sum_k, general_params, solver_params, solvers, map_imp_solver, solver_type_per_imp, it, + is_sampling, previous_mu, density_mat_pre, density_mat, deltaN, dens) + + mpi.barrier() + + # calculate observables and write them to file + if mpi.is_master_node(): + print('\n *** calculation of observables ***') + observables = add_dmft_observables(observables, + general_params, + solver_params, + map_imp_solver, + solver_type_per_imp, + dft_energy, + it, + solvers, + h_int, + previous_mu, + sum_k, + density_mat, + shell_multiplicity, + E_bandcorr) + + write_obs(observables, sum_k, general_params) + + # write the new observable array to h5 archive + archive['DMFT_results']['observables'] = observables + + # Computes convergence quantities and writes them to file + if mpi.is_master_node(): + conv_obs = convergence.calc_convergence_quantities(sum_k, general_params, conv_obs, observables, + solvers, G0_freq_previous, G_loc_all, Sigma_freq_previous) + convergence.write_conv(conv_obs, sum_k, general_params) + archive['DMFT_results']['convergence_obs'] = conv_obs + conv_obs = mpi.bcast(conv_obs) + + mpi.report('*** iteration finished ***') + + # Checks for convergence + is_now_converged = convergence.check_convergence(sum_k.n_inequiv_shells, general_params, conv_obs) + if is_now_converged is None: + is_converged = False + else: + # if convergency criteria was already reached don't overwrite it! + is_converged = is_converged or is_now_converged + + # Final prints + formatter.print_summary_observables(observables, sum_k.n_inequiv_shells, + sum_k.spin_block_names[sum_k.SO]) + if general_params['calc_energies']: + formatter.print_summary_energetics(observables) + if general_params['magnetic'] and sum_k.SO == 0: + # if a magnetic calculation is done print out a summary of up/down occ + formatter.print_summary_magnetic_occ(observables, sum_k.n_inequiv_shells) + formatter.print_summary_convergence(conv_obs, general_params, sum_k.n_inequiv_shells) + + return sum_k, solvers, observables, is_converged +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/afm_mapping.html b/_modules/dmft_tools/afm_mapping.html new file mode 100644 index 00000000..5151cd1c --- /dev/null +++ b/_modules/dmft_tools/afm_mapping.html @@ -0,0 +1,459 @@ + + + + + + dmft_tools.afm_mapping — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.afm_mapping

+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+import numpy as np
+import triqs.utility.mpi as mpi
+
+
+[docs] +def determine(general_params, archive, n_inequiv_shells): + """ + Determines the symmetries that are used in AFM calculations. These + symmetries can then be used to copy the self-energies from one impurity to + another by exchanging up/down channels for speedup and accuracy. + """ + + afm_mapping = None + if mpi.is_master_node(): + # Reads mapping from h5 archive if it exists already from a previous run + if 'afm_mapping' in archive['DMFT_input']: + afm_mapping = archive['DMFT_input']['afm_mapping'] + elif len(general_params['magmom']) == n_inequiv_shells: + # find equal or opposite spin imps, where we use the magmom array to + # identity those with equal numbers or opposite + # [copy Yes/False, from where, switch up/down channel] + afm_mapping = [None] * n_inequiv_shells + abs_moms = np.abs(general_params['magmom']) + + for icrsh in range(n_inequiv_shells): + # if the moment was seen before ... + previous_occurences = np.nonzero(np.isclose(abs_moms[:icrsh], abs_moms[icrsh]))[0] + if previous_occurences.size > 0: + # find the source imp to copy from + source = np.min(previous_occurences) + # determine if we need to switch up and down channel + switch = np.isclose(general_params['magmom'][icrsh], -general_params['magmom'][source]) + + afm_mapping[icrsh] = [True, source, switch] + else: + afm_mapping[icrsh] = [False, icrsh, False] + + + print('AFM calculation selected, mapping self energies as follows:') + print('imp [copy sigma, source imp, switch up/down]') + print('---------------------------------------------') + for i, elem in enumerate(afm_mapping): + print('{}: {}'.format(i, elem)) + print('') + + archive['DMFT_input']['afm_mapping'] = afm_mapping + + # if anything did not work set afm_order false + else: + print('WARNING: couldn\'t determine afm mapping. No mapping used.') + general_params['afm_order'] = False + + general_params['afm_order'] = mpi.bcast(general_params['afm_order']) + if general_params['afm_order']: + general_params['afm_mapping'] = mpi.bcast(afm_mapping) + + return general_params
+ + + +def apply(general_params, icrsh, gf_struct_solver, solvers): + imp_source = general_params['afm_mapping'][icrsh][1] + invert_spin = general_params['afm_mapping'][icrsh][2] + mpi.report('\ncopying the self-energy for shell {} from shell {}'.format(icrsh, imp_source)) + mpi.report('inverting spin channels: '+str(invert_spin)) + + if invert_spin: + for spin_channel in gf_struct_solver.keys(): + if 'up' in spin_channel: + target_channel = spin_channel.replace('up', 'down') + else: + target_channel = spin_channel.replace('down', 'up') + + solvers[icrsh].Sigma_freq[spin_channel] << solvers[imp_source].Sigma_freq[target_channel] + solvers[icrsh].G_freq[spin_channel] << solvers[imp_source].G_freq[target_channel] + solvers[icrsh].G_freq_unsym[spin_channel] << solvers[imp_source].G_freq_unsym[target_channel] + solvers[icrsh].G0_freq[spin_channel] << solvers[imp_source].G0_freq[target_channel] + solvers[icrsh].G_time[spin_channel] << solvers[imp_source].G_time[target_channel] + + if solvers[icrsh].solver_params['measure_pert_order']: + if not hasattr(solvers[icrsh], 'perturbation_order'): + solvers[icrsh].perturbation_order = {} + solvers[icrsh].perturbation_order[spin_channel] = solvers[imp_source].perturbation_order[target_channel] + solvers[icrsh].perturbation_order_total = solvers[imp_source].perturbation_order_total + + else: + solvers[icrsh].Sigma_freq << solvers[imp_source].Sigma_freq + solvers[icrsh].G_freq << solvers[imp_source].G_freq + solvers[icrsh].G_freq_unsym << solvers[imp_source].G_freq_unsym + solvers[icrsh].G0_freq << solvers[imp_source].G0_freq + solvers[icrsh].G_time << solvers[imp_source].G_time + + if solvers[icrsh].solver_params['measure_pert_order']: + solvers[icrsh].perturbation_order = solvers[imp_source].perturbation_order + solvers[icrsh].perturbation_order_total = solvers[imp_source].perturbation_order_total + + if solvers[icrsh].solver_params['measure_density_matrix']: + solvers[icrsh].density_matrix = solvers[imp_source].density_matrix + solvers[icrsh].h_loc_diagonalization = solvers[imp_source].h_loc_diagonalization + + if 'measure_chi' in solvers[icrsh].solver_params and solvers[icrsh].solver_params['measure_chi'] is not None: + solvers[icrsh].O_time = solvers[imp_source].O_time + + return solvers +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/convergence.html b/_modules/dmft_tools/convergence.html new file mode 100644 index 00000000..581f6930 --- /dev/null +++ b/_modules/dmft_tools/convergence.html @@ -0,0 +1,700 @@ + + + + + + dmft_tools.convergence — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.convergence

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+'''
+contain helper functions to check convergence
+'''
+# system
+import os.path
+import numpy as np
+
+# triqs
+from triqs.gf import MeshImFreq, MeshImTime, MeshReFreq, BlockGf
+from solid_dmft.dmft_tools import solver
+
+def _generate_header(general_params, sum_k):
+    """
+    Generates the headers that are used in write_header_to_file.
+    Returns a dict with {file_name: header_string}
+    """
+
+    n_orb = solver.get_n_orbitals(sum_k)
+
+    header_energy_mask = '| {:>11} '
+    header_energy = header_energy_mask.format('δE_tot')
+
+    headers = {}
+    for iineq in range(sum_k.n_inequiv_shells):
+        number_spaces = max(13*n_orb[iineq]['up']-1, 21)
+        header_basic_mask = '{{:>3}} | {{:>11}} | {{:>{0}}} | {{:>11}} | {{:>11}} | {{:>11}} | {{:>11}} '.format(number_spaces)
+
+        file_name = 'conv_imp{}.dat'.format(iineq)
+        headers[file_name] = header_basic_mask.format('it', 'δμ','δocc orb','δimp occ','δGimp', 'δG0','δΣ')
+
+        if general_params['calc_energies']:
+            headers[file_name] += header_energy
+
+
+    return headers
+
+
+[docs] +def write_conv(conv_obs, sum_k, general_params): + """ + writes the last entries of the conv arrays to the files + + Parameters + ---------- + conv_obs : list of dicts + convergence observable arrays/dicts + + sum_k : SumK Object instances + + general_params : dict + + __Returns:__ + + nothing + + """ + + n_orb = solver.get_n_orbitals(sum_k) + + for icrsh in range(sum_k.n_inequiv_shells): + line = '{:3d} | '.format(conv_obs['iteration'][-1]) + line += '{:10.5e} | '.format(conv_obs['d_mu'][-1]) + + # Adds spaces for header to fit in properly + if n_orb[icrsh]['up'] == 1: + line += ' '*11 + # Adds up the spin channels + for iorb in range(n_orb[icrsh]['up']): + line += '{:10.5e} '.format(conv_obs['d_orb_occ'][icrsh][-1][iorb]) + line = line[:-3] + ' | ' + + # imp occupation change + line += '{:10.5e} | '.format(conv_obs['d_imp_occ'][icrsh][-1]) + # Gimp change + line += '{:10.5e} | '.format(conv_obs['d_Gimp'][icrsh][-1]) + # G0 change + line += '{:10.5e} | '.format(conv_obs['d_G0'][icrsh][-1]) + # Σ change + line += '{:10.5e}'.format(conv_obs['d_Sigma'][icrsh][-1]) + + if general_params['calc_energies']: + line += ' | {:10.5e}'.format(conv_obs['d_Etot'][-1]) + + file_name = '{}/conv_imp{}.dat'.format(general_params['jobname'], icrsh) + with open(file_name, 'a') as obs_file: + obs_file.write(line + '\n')
+ + +
+[docs] +def max_G_diff(G1, G2, norm_temp = True): + """ + calculates difference between two block Gfs + uses numpy linalg norm on the last two indices first + and then the norm along the mesh axis. The result is divided + by sqrt(beta) for MeshImFreq and by sqrt(beta/#taupoints) for + MeshImTime. + + 1/ (2* sqrt(beta)) sqrt( sum_n sum_ij [abs(G1 - G2)_ij(w_n)]^2 ) + + this is only done for MeshImFreq Gf objects, for all other + meshes the weights are set to 1 + + Parameters + ---------- + G1 : Gf or BlockGf to compare + + G2 : Gf or BlockGf to compare + + norm_temp: bool, default = True + divide by an additional sqrt(beta) to account for temperature scaling + only correct for uniformly distributed error. + + __Returns:__ + + diff : float + difference between the two Gfs + """ + + if isinstance(G1, BlockGf): + diff = 0.0 + for block, gf in G1: + diff += max_G_diff(G1[block], G2[block], norm_temp) + return diff + + assert G1.mesh == G2.mesh, 'mesh of two input Gfs does not match' + assert G1.target_shape == G2.target_shape, 'can only compare Gfs with same shape' + + # subtract largest real value to make sure that G1-G2 falls off to 0 + if type(G1.mesh) is MeshImFreq: + offset = np.diag(np.diag(G1.data[-1,:,:].real - G2.data[-1,:,:].real)) + else: + offset = 0.0 + + # calculate norm over all axis but the first one which are frequencies + norm_grid = abs(np.linalg.norm(G1.data - G2.data - offset, axis=tuple(range(1, G1.data.ndim)))) + # now calculate Frobenius norm over grid points + norm = np.linalg.norm(norm_grid, axis=0) + + if type(G1.mesh) is MeshImFreq: + norm = np.linalg.norm(norm_grid, axis=0) / np.sqrt(G1.mesh.beta) + elif type(G1.mesh) is MeshImTime: + norm = np.linalg.norm(norm_grid, axis=0) * np.sqrt(G1.mesh.beta/len(G1.mesh)) + elif type(G1.mesh) is MeshReFreq: + norm = np.linalg.norm(norm_grid, axis=0) / np.sqrt(len(G1.mesh)) + else: + raise ValueError('MeshReTime is not implemented') + + if type(G1.mesh) in (MeshImFreq, MeshImTime) and norm_temp: + norm = norm / np.sqrt(G1.mesh.beta) + + return norm
+ + +
+[docs] +def prep_conv_obs(h5_archive): + """ + prepares the conv arrays and files for the DMFT calculation + + Parameters + ---------- + h5_archive: hdf archive instance + hdf archive for calculation + + __Returns:__ + conv_obs : dict + conv array for calculation + """ + + # determine number of impurities + n_inequiv_shells = h5_archive['dft_input']['n_inequiv_shells'] + + # check for previous iterations + conv_prev = [] + if 'convergence_obs' in h5_archive['DMFT_results']: + conv_prev = h5_archive['DMFT_results']['convergence_obs'] + + # prepare observable dicts + if len(conv_prev) > 0: + conv_obs = conv_prev + else: + conv_obs = dict() + conv_obs['iteration'] = [] + conv_obs['d_mu'] = [] + conv_obs['d_Etot'] = [] + conv_obs['d_orb_occ'] = [[] for i in range(n_inequiv_shells)] + conv_obs['d_imp_occ'] = [[] for i in range(n_inequiv_shells)] + + conv_obs['d_Gimp'] = [[] for i in range(n_inequiv_shells)] + conv_obs['d_G0'] = [[] for i in range(n_inequiv_shells)] + conv_obs['d_Sigma'] = [[] for i in range(n_inequiv_shells)] + + return conv_obs
+ + +
+[docs] +def prep_conv_file(general_params, sum_k): + """ + Writes the header to the conv files + + Parameters + ---------- + general_params : dict + general parameters as a dict + n_inequiv_shells : int + number of impurities for calculations + + + __Returns:__ + nothing + """ + + headers = _generate_header(general_params, sum_k) + + for file_name, header in headers.items(): + path = os.path.join(general_params['jobname'], file_name) + with open(path, 'w') as conv_file: + conv_file.write(header + '\n')
+ + + +
+[docs] +def calc_convergence_quantities(sum_k, general_params, conv_obs, observables, + solvers, G0_old, G_loc_all, Sigma_freq_previous): + """ + Calculations convergence quantities, i.e. the difference in observables + between the last and second to last iteration. + + Parameters + ---------- + sum_k : SumK Object instances + + general_params : dict + general parameters as a dict + + conv_obs : list of dicts + convergence observable arrays + + observables : list of dicts + observable arrays + + solvers : solver objects + + G0_old : list of block Gf object + last G0_freq + + G_loc_all : list of block Gf objects + G_loc extracted from before imp solver + + Sigma_freq_previous : list of block Gf objects + previous impurity sigma to compare with + + Returns + ------- + conv_obs : list of dicts + updated convergence observable arrays + + """ + + conv_obs['iteration'].append(observables['iteration'][-1]) + conv_obs['d_mu'].append(abs(observables['mu'][-1] - observables['mu'][-2] )) + for icrsh in range(sum_k.n_inequiv_shells): + if not sum_k.corr_shells[icrsh]['SO']: + # difference in imp occupation + conv_obs['d_imp_occ'][icrsh].append(abs((observables['imp_occ'][icrsh]['up'][-1]+ + observables['imp_occ'][icrsh]['down'][-1])- + (observables['imp_occ'][icrsh]['up'][-2]+ + observables['imp_occ'][icrsh]['down'][-2]))) + # difference in orb occ spin absolute + conv_obs['d_orb_occ'][icrsh].append(abs(observables['orb_occ'][icrsh]['up'][-1]- + observables['orb_occ'][icrsh]['up'][-2])+ + abs(observables['orb_occ'][icrsh]['down'][-1]- + observables['orb_occ'][icrsh]['down'][-2])) + else: + conv_obs['d_imp_occ'][icrsh].append(abs(observables['imp_occ'][icrsh]['ud'][-1]- + observables['imp_occ'][icrsh]['ud'][-2])) + conv_obs['d_orb_occ'][icrsh].append(abs(observables['orb_occ'][icrsh]['ud'][-1]+ + observables['imp_occ'][icrsh]['ud'][-2])) + + conv_obs['d_Gimp'][icrsh].append(max_G_diff(solvers[icrsh].G_freq, G_loc_all[icrsh])) + conv_obs['d_G0'][icrsh].append(max_G_diff(solvers[icrsh].G0_freq, G0_old[icrsh])) + conv_obs['d_Sigma'][icrsh].append(max_G_diff(solvers[icrsh].Sigma_freq, Sigma_freq_previous[icrsh])) + + if general_params['calc_energies']: + conv_obs['d_Etot'].append(abs(observables['E_tot'][-1]-observables['E_tot'][-2])) + + return conv_obs
+ + + +
+[docs] +def check_convergence(n_inequiv_shells, general_params, conv_obs): + """ + check last iteration for convergence + + Parameters + ---------- + n_inequiv_shells : int + Number of inequivalent shells as saved in SumkDFT object + + general_params : dict + general parameters as a dict + + conv_obs : list of dicts + convergence observable arrays + + Returns + ------- + is_converged : bool + true if desired accuracy is reached. None if no convergence criterion + is set + + """ + + # If no convergence criterion is set, convergence is undefined and returns None + if (general_params['occ_conv_crit'] <= 0.0 and general_params['gimp_conv_crit'] <= 0.0 + and general_params['g0_conv_crit'] <= 0.0 and general_params['sigma_conv_crit'] <= 0.0): + return None + + # Checks convergence criteria + for icrsh in range(n_inequiv_shells): + # Checks imp occ + if (conv_obs['d_imp_occ'][icrsh][-1] > general_params['occ_conv_crit'] + and general_params['occ_conv_crit'] > 0.0): + return False + + # Checks Gimp + if (conv_obs['d_Gimp'][icrsh][-1] > general_params['gimp_conv_crit'] + and general_params['gimp_conv_crit'] > 0.0): + return False + + # Checks G0 + if (conv_obs['d_G0'][icrsh][-1] > general_params['g0_conv_crit'] + and general_params['g0_conv_crit'] > 0.0): + return False + + # Checks Sigma + if (conv_obs['d_Sigma'][icrsh][-1] > general_params['sigma_conv_crit'] + and general_params['sigma_conv_crit'] > 0.0): + return False + + return True
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/formatter.html b/_modules/dmft_tools/formatter.html new file mode 100644 index 00000000..7248336c --- /dev/null +++ b/_modules/dmft_tools/formatter.html @@ -0,0 +1,542 @@ + + + + + + dmft_tools.formatter — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.formatter

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Contains formatters for things that need to be printed in DMFT calculations.
+"""
+
+import numpy as np
+import triqs.utility.mpi as mpi
+
+
+
+
+
+
+
+
+
+def print_local_density(density, density_pre, density_mat, spin_orbit=False):
+    if not mpi.is_master_node():
+        return
+
+    if spin_orbit:
+        printed = ((np.real, 'real'), (np.imag, 'imaginary'))
+    else:
+        printed = ((np.real, 'real'), )
+
+    print('\nTotal charge of impurity problem: {:7.5f}'.format(density))
+    print('Total charge convergency of impurity problem: {:7.5f}'.format(density-density_pre))
+    print('\nDensity matrix:')
+    for key, value in sorted(density_mat.items()):
+        for func, name in printed:
+            print('{}, {} part'.format(key, name))
+            print(func(value))
+        eigenvalues = np.linalg.eigvalsh(value)
+        print('eigenvalues: {}'.format(eigenvalues))
+        # check for large off-diagonal elements and write out a warning
+        if np.max(np.abs(value - np.diag(np.diag(value)))) >= 0.1:
+            print('\n!!! WARNING !!!')
+            print('!!! large off diagonal elements in density matrix detected! I hope you know what you are doing !!!')
+            print('!!! WARNING !!!\n')
+
+
+def print_summary_energetics(observables):
+    if not mpi.is_master_node():
+        return
+
+    print('\n' + '='*60)
+    print('summary of energetics:')
+    print('total energy: ', observables['E_tot'][-1])
+    print('DFT energy: ', observables['E_dft'][-1])
+    print('correlation energy: ', observables['E_corr_en'][-1])
+    print('DFT band correction: ', observables['E_bandcorr'][-1])
+    print('='*60 + '\n')
+
+
+def print_summary_observables(observables, n_inequiv_shells, spin_block_names):
+    if not mpi.is_master_node():
+        return
+
+    print('='*60)
+    print('summary of impurity observables:')
+    for icrsh in range(n_inequiv_shells):
+        total_occ = np.sum([observables['imp_occ'][icrsh][spin][-1] for spin in spin_block_names])
+        print('total occupany of impurity {}: {:7.4f}'.format(icrsh, total_occ))
+    for icrsh in range(n_inequiv_shells):
+        total_gb2 = np.sum([observables['imp_gb2'][icrsh][spin][-1] for spin in spin_block_names])
+        print('G(beta/2) occ of impurity {}: {:8.4f}'.format(icrsh, total_gb2))
+    for icrsh in range(n_inequiv_shells):
+        print('Z (simple estimate) of impurity {} per orb:'.format(icrsh))
+        for spin in spin_block_names:
+            Z_spin = observables['orb_Z'][icrsh][spin][-1]
+            print('{:>5}: '.format(spin) + ' '.join("{:6.3f}".format(Z_orb) for Z_orb in Z_spin))
+    print('='*60 + '\n')
+
+
+def print_summary_magnetic_occ(observables, n_inequiv_shells):
+    if not mpi.is_master_node():
+        return
+
+    occ = {'up': 0.0, 'down': 0.0}
+    print('\n' + '='*60)
+    print('\n *** summary of magnetic occupations: ***')
+    for icrsh in range(n_inequiv_shells):
+        for spin in ['up', 'down']:
+            temp = observables['imp_occ'][icrsh][spin][-1]
+            print('imp '+str(icrsh)+' spin '+spin+': {:6.4f}'.format(temp))
+            occ[spin] += temp
+
+    print('total spin up   occ: '+'{:6.4f}'.format(occ['up']))
+    print('total spin down occ: '+'{:6.4f}'.format(occ['down']))
+    print('='*60 + '\n')
+
+
+def print_summary_convergence(conv_obs, general_params, n_inequiv_shells):
+    if not mpi.is_master_node():
+        return
+
+    print('='*60)
+    print('convergence:')
+    print('δμ:      {:.4e}'.format(conv_obs['d_mu'][-1]))
+    # if calc energies calc /print also the diff in Etot
+    if general_params['calc_energies']:
+        print('δE_tot:  {:.4e}'.format(conv_obs['d_Etot'][-1]))
+        print("---")
+    for icrsh in range(n_inequiv_shells):
+        print('Impurity '+str(icrsh)+':')
+        print('δn imp : {:.4e}'.format(conv_obs['d_imp_occ'][icrsh][-1]))
+        print('δn orb : '+'  '.join("{:.4e}".format(orb) for orb in conv_obs['d_orb_occ'][icrsh][-1]))
+        print('δ Gimp : {:.4e}'.format(conv_obs['d_Gimp'][icrsh][-1]))
+        print('δ G0   : {:.4e}'.format(conv_obs['d_G0'][icrsh][-1]))
+        print('δ Σ    : {:.4e}'.format(conv_obs['d_Sigma'][icrsh][-1]))
+
+    print('='*60)
+    print('\n')
+
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/initial_self_energies.html b/_modules/dmft_tools/initial_self_energies.html new file mode 100644 index 00000000..672bf074 --- /dev/null +++ b/_modules/dmft_tools/initial_self_energies.html @@ -0,0 +1,934 @@ + + + + + + dmft_tools.initial_self_energies — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for dmft_tools.initial_self_energies

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+"""
+Contains all functions related to determining the double counting and the
+initial self-energy.
+"""
+
+# system
+from copy import deepcopy
+import numpy as np
+
+# triqs
+from h5 import HDFArchive
+import triqs.utility.mpi as mpi
+from triqs.gf import BlockGf, Gf, make_gf_imfreq, MeshDLRImFreq, make_gf_dlr, MeshReFreq
+import itertools
+
+
+[docs] +def calculate_double_counting(sum_k, density_matrix, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all=None): + """ + Calculates the double counting, including all manipulations from advanced_params. + + Parameters + ---------- + sum_k : SumkDFT object + density_matrix : list of gf_struct_solver like + List of density matrices for all inequivalent shells + general_params : dict + general parameters as a dict + gw_params : dict + GW parameters as a dict + advanced_params : dict + advanced parameters as a dict + solver_type_per_imp : list of str + List of solver types for each impurity + G_loc_all : list of BlockGf (Green's function) objects, optional + List of local Green's functions for all shells + + Returns + -------- + sum_k : SumKDFT object + The SumKDFT object containing the updated double counting + """ + + mpi.report('\n*** DC determination ***') + + # copy the density matrix to not change it + density_matrix_DC = deepcopy(density_matrix) + + # TODO: suppress print when reseting DC to zero + # and add a final print of the DC pot/energy at the end of the whole function + icrsh_hartree = [icrsh for icrsh, type in enumerate(solver_type_per_imp) if type == 'hartree'] + icrsh_not_hartree = [icrsh for icrsh, type in enumerate(solver_type_per_imp) if type != 'hartree'] + if icrsh_hartree: + mpi.report(f'\nSOLID_DMFT: Hartree solver for impurities {icrsh_hartree} detected. ' + 'Zeroing out the DC correction there, which gets computed at the solver level.') + for icrsh in icrsh_hartree: + sum_k.calc_dc(density_matrix_DC[icrsh], orb=icrsh, + use_dc_value=0.0) + + # Sets the DC and exits the function if advanced_params['dc_fixed_value'] is specified + if advanced_params['dc_fixed_value'] is not None: + for icrsh in icrsh_not_hartree: + sum_k.calc_dc(density_matrix_DC[icrsh], orb=icrsh, + use_dc_value=advanced_params['dc_fixed_value']) + return sum_k + + for icrsh in icrsh_not_hartree: + if advanced_params['dc_fixed_occ'][icrsh] is not None: + mpi.report(f'Fixing occupation for DC for imp {icrsh} to n={advanced_params["dc_fixed_occ"][icrsh]:.4f}') + n_orb = sum_k.corr_shells[icrsh]['dim'] + # we need to handover a matrix to calc_dc so calc occ per orb per spin channel + orb_occ = advanced_params['dc_fixed_occ'][icrsh]/(n_orb*2) + # setting occ of each diag orb element to calc value + for inner in density_matrix_DC[icrsh].values(): + np.fill_diagonal(inner, orb_occ+0.0j) + + # The regular way: calculates the DC based on U, J and the dc_type + for icrsh in icrsh_not_hartree: + if general_params['dc_type'][icrsh] == 3: + # this is FLL for eg orbitals only as done in Seth PRB 96 205139 2017 eq 10 + # this setting for U and J is reasonable as it is in the spirit of F0 and Javg + # for the 5 orb case + mpi.report('Doing FLL DC for eg orbitals only with Uavg=U-J and Javg=2*J') + Uavg = advanced_params['dc_U'][icrsh] - advanced_params['dc_J'][icrsh] + Javg = 2*advanced_params['dc_J'][icrsh] + sum_k.calc_dc(density_matrix_DC[icrsh], U_interact=Uavg, J_hund=Javg, + orb=icrsh, use_dc_formula=0) + # DC calculated for dynamic interaction from AIMBES + elif general_params['dc_type'][icrsh] in ('crpa_static', 'crpa_static_qp', 'crpa_dynamic'): + from solid_dmft.gw_embedding.bdft_converter import calc_Sigma_DC_gw, calc_W_from_Gloc, convert_gw_output + mpi.report('\n*** Using dynamic interactions to calculate DC ***') + + # lad GW input from h5 file + if 'Uloc_dlr' not in gw_params: + if mpi.is_master_node(): + gw_data, ir_kernel = convert_gw_output( + general_params['jobname'] + '/' + general_params['seedname'] + '.h5', + gw_params['h5_file'], + it_1e = gw_params['it_1e'], + it_2e = gw_params['it_2e'], + ha_ev_conv = True + ) + gw_params.update(gw_data) + gw_params = mpi.bcast(gw_params) + + mesh = MeshDLRImFreq(sum_k.mesh.beta, 'Fermion', + sum_k.mesh(sum_k.mesh.last_index()).value.imag, + gw_params['Uloc_dlr'][icrsh].mesh.eps, + symmetrize=True) + Gloc_dlr_iw = sum_k.block_structure.create_gf(ish=icrsh, space='sumk', mesh=mesh) + + G_loc_sumk = sum_k.block_structure.convert_gf(G_loc_all[icrsh], ish_from=icrsh, space_from='solver', space_to='sumk') + for block, gf in Gloc_dlr_iw: + for iw in gf.mesh: + gf[iw] = G_loc_sumk[block](iw) + Gloc_dlr = make_gf_dlr(Gloc_dlr_iw) + + U_matrix_rot = {'up' : gw_params['U_matrix_rot'][icrsh], 'down' : gw_params['U_matrix_rot'][icrsh]} + + # there are two options here evaluate DC from Wloc_GW and Uloc + # or Wloc_GG and Uloc (here GG means Wloc calculated via Gloc*Gloc) + Wloc_dlr = calc_W_from_Gloc(Gloc_dlr, U_matrix_rot) + Sig_DC_dlr, Sig_DC_hartree, Sig_DC_exchange = calc_Sigma_DC_gw(Wloc_dlr, + Gloc_dlr, + U_matrix_rot) + Sig_DC_iw = make_gf_imfreq(Sig_DC_dlr, n_iw=len(sum_k.mesh)//2) + Sig_DC_iw_dyn = Sig_DC_iw.copy() + for block, gf in Sig_DC_iw: + for iorb, jorb in itertools.product(range(gf.target_shape[0]), repeat=2): + # create full freq dependent DC + gf[iorb, jorb] += Sig_DC_hartree[block][iorb, jorb].real + Sig_DC_exchange[block][iorb, jorb].real + + # dynamic interaction but static DC + if general_params['dc_type'][icrsh] == 'crpa_static': + # for the static DC form we follow doi.org/10.1103/PhysRevB.95.155104 Eq 31 + # Sig_DC = Sig_DC_hartree + Sig_DC_exchange + for block, gf in Sig_DC_iw: + Sig_DC_hartree[block] += Sig_DC_exchange[block] + + mpi.report(f'DC for imp {icrsh} block {block} via Σ_dc_HF + Σ_dc_ex:') + mpi.report(Sig_DC_hartree[block].real) + # transform dc to sumk blocks + sum_k.dc_imp[icrsh] = Sig_DC_hartree + + elif general_params['dc_type'][icrsh] == 'crpa_static_qp': + # for the static DC on top of GW we follow doi.org/10.1103/PhysRevB.95.155104 Eq 31 + # Sig_DC = Sig_DC_hartree + Sig_DC_exchange + Sig_DC_iw(0) + mesh_w = MeshReFreq(window=(-0.5,0.5), n_w=101) + Sig_DC_w = sum_k.block_structure.create_gf(ish=icrsh, space='sumk', mesh=mesh_w) + for block, gf in Sig_DC_w: + gf.set_from_pade(Sig_DC_iw[block], n_points=len(sum_k.mesh)//10, freq_offset=0.0001) + Sig_DC_hartree[block] = 0.5*(Sig_DC_w[block](0.0) + Sig_DC_w[block](0.0).conj().T).real + mpi.report(f'DC for imp {icrsh} block {block} via Σ_dc_HF + Σ_dc_ex:') + mpi.report(Sig_DC_hartree[block].real) + # transform dc to sumk blocks + sum_k.dc_imp[icrsh] = Sig_DC_hartree + + elif general_params['dc_type'][icrsh] == 'crpa_dynamic': + for block, gf in Sig_DC_iw: + mpi.report(f'Full dynamic DC from cRPA for imp {icrsh} block {block} at iw_n=0:') + mpi.report(gf(0).real) + mpi.report(f'Full dynamic DC from cRPA for imp {icrsh} block {block} at iw_n=n:') + mpi.report(gf.data[-1,:,:].real) + Sig_DC_hartree[block] += Sig_DC_exchange[block] + + # sum_k.dc_imp stores the sumk block structure version + sum_k.dc_imp[icrsh] = Sig_DC_hartree + + # the dynamic part of DC is stored in different object + sum_k.dc_imp_dyn[icrsh] = Sig_DC_iw_dyn + + else: + mpi.report(f'\nCalculating standard DC for impurity {icrsh} with U={advanced_params["dc_U"][icrsh]} and J={advanced_params["dc_J"][icrsh]}') + sum_k.calc_dc(density_matrix_DC[icrsh], U_interact=advanced_params['dc_U'][icrsh], + J_hund=advanced_params['dc_J'][icrsh], orb=icrsh, + use_dc_formula=general_params['dc_type'][icrsh]) + + # for the fixed DC according to https://doi.org/10.1103/PhysRevB.90.075136 + # dc_imp is calculated with fixed occ but dc_energ is calculated with given n + if advanced_params['dc_nominal']: + if 'Hartree' in solver_type_per_imp: + raise NotImplementedError('dc_nominal not implemented in presence of Hartree solver') + mpi.report('\ncalculating DC energy with fixed DC potential from above\n' + + ' for the original density matrix doi.org/10.1103/PhysRevB.90.075136\n' + + ' aka nominal DC') + dc_imp = deepcopy(sum_k.dc_imp) + dc_new_en = deepcopy(sum_k.dc_energ) + for ish in range(sum_k.n_corr_shells): + n_DC = 0.0 + for value in density_matrix[sum_k.corr_to_inequiv[ish]].values(): + n_DC += np.trace(value.real) + + # calculate new DC_energ as n*V_DC + # average over blocks in case blocks have different imp + dc_new_en[ish] = 0.0 + for spin, dc_per_spin in dc_imp[ish].items(): + # assuming that the DC potential is the same for all orbitals + # dc_per_spin is a list for each block containing on the diag + # elements the DC potential for the self-energy correction + dc_new_en[ish] += n_DC * dc_per_spin[0][0] + dc_new_en[ish] = dc_new_en[ish] / len(dc_imp[ish]) + sum_k.set_dc(dc_imp, dc_new_en) + + # Print new DC values + mpi.report('\nFixed occ, new DC values:') + for icrsh, (dc_per_shell, energy_per_shell) in enumerate(zip(dc_imp, dc_new_en)): + for spin, dc_per_spin in dc_per_shell.items(): + mpi.report('DC for shell {} and block {} = {}'.format(icrsh, spin, dc_per_spin[0][0])) + mpi.report('DC energy for shell {} = {}'.format(icrsh, energy_per_shell)) + + # Rescales DC if advanced_params['dc_factor'] is given + if advanced_params['dc_factor'] is not None: + # Here, no check for Hartree since its DC is 0 and the scaling doesn't change that + rescaled_dc_imp = [{spin: advanced_params['dc_factor'] * dc_per_spin + for spin, dc_per_spin in dc_per_shell.items()} + for dc_per_shell in sum_k.dc_imp] + rescaled_dc_energy = [advanced_params['dc_factor'] * energy_per_shell + for energy_per_shell in sum_k.dc_energ] + sum_k.set_dc(rescaled_dc_imp, rescaled_dc_energy) + + # Print new DC values + mpi.report('\nRescaled DC, new DC values:') + for icrsh, (dc_per_shell, energy_per_shell) in enumerate(zip(rescaled_dc_imp, rescaled_dc_energy)): + for spin, dc_per_spin in dc_per_shell.items(): + mpi.report('DC for shell {} and block {} = {}'.format(icrsh, spin, dc_per_spin[0][0])) + mpi.report('DC energy for shell {} = {}'.format(icrsh, energy_per_shell)) + + if advanced_params['dc_orb_shift'] is not None: + if 'Hartree' in solver_type_per_imp: + raise NotImplementedError('dc_orb_shift not implemented in presence of Hartree solver') + mpi.report('adding an extra orbital dependent shift per impurity') + tot_norb = 0 + dc_orb_shift = [] + dc_orb_shift_orig = deepcopy(advanced_params['dc_orb_shift']) + for icrsh in range(sum_k.n_inequiv_shells): + tot_norb += sum_k.corr_shells[icrsh]['dim'] + dc_orb_shift.append(dc_orb_shift_orig[:sum_k.corr_shells[icrsh]['dim']]) + del dc_orb_shift_orig[:sum_k.corr_shells[icrsh]['dim']] + + dc_orb_shift = np.array(dc_orb_shift) + dc = [] + for icrsh in range(sum_k.n_inequiv_shells): + mpi.report(f'shift on imp {icrsh}: {dc_orb_shift[icrsh,:]}') + dc.append({}) + for spin, dc_per_spin in sum_k.dc_imp[sum_k.inequiv_to_corr[icrsh]].items(): + dc[icrsh][spin] = dc_per_spin + np.diag(dc_orb_shift[icrsh,:]) + + for ish in range(sum_k.n_corr_shells): + sum_k.dc_imp[ish] = dc[sum_k.corr_to_inequiv[ish]] + + return sum_k
+ + + +def _load_sigma_from_h5(h5_archive, iteration): + """ + Reads impurity self-energy for all impurities from file and returns them as a list + + Parameters + ---------- + h5_archive : HDFArchive + HDFArchive to read from + iteration : int + at which iteration will sigma be loaded + + Returns + -------- + self_energies : list of green functions + + dc_imp : numpy array + DC potentials + dc_energy : numpy array + DC energies per impurity + density_matrix : numpy arrays + Density matrix from the previous self-energy + """ + + internal_path = 'DMFT_results/' + internal_path += 'last_iter' if iteration == -1 else 'it_{}'.format(iteration) + + n_inequiv_shells = h5_archive['dft_input']['n_inequiv_shells'] + + # Loads previous self-energies and DC + self_energies = [h5_archive[internal_path]['Sigma_freq_{}'.format(iineq)] + for iineq in range(n_inequiv_shells)] + last_g0 = [h5_archive[internal_path]['G0_freq_{}'.format(iineq)] + for iineq in range(n_inequiv_shells)] + dc_imp = h5_archive[internal_path]['DC_pot'] + dc_energy = h5_archive[internal_path]['DC_energ'] + + # Loads density_matrix to recalculate DC if dc_dmft + density_matrix = h5_archive[internal_path]['dens_mat_post'] + + print('Loaded Sigma_imp0...imp{} '.format(n_inequiv_shells-1) + + ('at last it ' if iteration == -1 else 'at it {} '.format(iteration))) + + return self_energies, dc_imp, dc_energy, last_g0, density_matrix + + +def _sumk_sigma_to_solver_struct(sum_k, start_sigma): + """ + Extracts the local Sigma. Copied from SumkDFT.extract_G_loc, version 2.1.x. + + Parameters + ---------- + sum_k : SumkDFT object + Sumk object with the information about the correct block structure + start_sigma : list of BlockGf (Green's function) objects + List of Sigmas in sum_k block structure that are to be converted. + + Returns + ------- + Sigma_inequiv : list of BlockGf (Green's function) objects + List of Sigmas that can be used to initialize the solver + """ + + Sigma_local = [start_sigma[icrsh].copy() for icrsh in range(sum_k.n_corr_shells)] + Sigma_inequiv = [BlockGf(name_block_generator=[(block, Gf(mesh=Sigma_local[0].mesh, target_shape=(dim, dim))) + for block, dim in sum_k.gf_struct_solver[ish].items()], + make_copies=False) for ish in range(sum_k.n_inequiv_shells)] + + # G_loc is rotated to the local coordinate system + if sum_k.use_rotations: + for icrsh in range(sum_k.n_corr_shells): + for bname, gf in Sigma_local[icrsh]: + Sigma_local[icrsh][bname] << sum_k.rotloc( + icrsh, gf, direction='toLocal') + + # transform to CTQMC blocks + for ish in range(sum_k.n_inequiv_shells): + for block, dim in sum_k.gf_struct_solver[ish].items(): + for ind1 in range(dim): + for ind2 in range(dim): + block_sumk, ind1_sumk = sum_k.solver_to_sumk[ish][(block, ind1)] + block_sumk, ind2_sumk = sum_k.solver_to_sumk[ish][(block, ind2)] + Sigma_inequiv[ish][block][ind1, ind2] << Sigma_local[ + sum_k.inequiv_to_corr[ish]][block_sumk][ind1_sumk, ind2_sumk] + + # return only the inequivalent shells + return Sigma_inequiv + + +def _set_loaded_sigma(sum_k, loaded_sigma, loaded_dc_imp, general_params): + """ + Adjusts for the Hartree shift when loading a self energy Sigma_freq from a + previous calculation that was run with a different U, J or double counting. + + Parameters + ---------- + sum_k : SumkDFT object + Sumk object with the information about the correct block structure + loaded_sigma : list of BlockGf (Green's function) objects + List of Sigmas loaded from the previous calculation + loaded_dc_imp : list of dicts + List of dicts containing the loaded DC. Used to adjust the Hartree shift. + general_params : dict + general parameters as a dict + + Raises + ------ + ValueError + Raised if the block structure between the loaded and the Sumk DC_imp + does not agree. + + Returns + ------- + start_sigma : list of BlockGf (Green's function) objects + List of Sigmas, loaded Sigma adjusted for the new Hartree term + + """ + # Compares loaded and new double counting + if len(loaded_dc_imp) != len(sum_k.dc_imp): + raise ValueError('Loaded double counting has a different number of ' + + 'correlated shells than current calculation.') + + has_double_counting_changed = False + for loaded_dc_shell, calc_dc_shell in zip(loaded_dc_imp, sum_k.dc_imp): + if sorted(loaded_dc_shell.keys()) != sorted(calc_dc_shell.keys()): + raise ValueError('Loaded double counting has a different block ' + + 'structure than current calculation.') + + for channel in loaded_dc_shell.keys(): + if not np.allclose(loaded_dc_shell[channel], calc_dc_shell[channel], + atol=1e-4, rtol=0): + has_double_counting_changed = True + break + + # Sets initial Sigma + start_sigma = loaded_sigma + + if not has_double_counting_changed: + print('DC remained the same. Using loaded Sigma as initial Sigma.') + return start_sigma + + # Uses the SumkDFT add_dc routine to correctly substract the DC shift + sum_k.put_Sigma(start_sigma) + calculated_dc_imp = sum_k.dc_imp + sum_k.dc_imp = [{channel: np.array(loaded_dc_shell[channel]) - np.array(calc_dc_shell[channel]) + for channel in loaded_dc_shell} + for calc_dc_shell, loaded_dc_shell in zip(sum_k.dc_imp, loaded_dc_imp)] + start_sigma = sum_k.add_dc() + start_sigma = _sumk_sigma_to_solver_struct(sum_k, start_sigma) + + # Prints information on correction of Hartree shift + first_block = sorted(key for key, _ in loaded_sigma[0])[0] + print('DC changed, initial Sigma is the loaded Sigma with corrected Hartree shift:') + print(' Sigma for imp0, block "{}", orbital 0 '.format(first_block) + + 'shifted from {:.3f} eV '.format(loaded_sigma[0][first_block].data[0, 0, 0].real) + + 'to {:.3f} eV'.format(start_sigma[0][first_block].data[0, 0, 0].real)) + + # Cleans up + sum_k.dc_imp = calculated_dc_imp + [sigma_freq.zero() for sigma_freq in sum_k.Sigma_imp] + + return start_sigma + + +
+[docs] +def determine_dc_and_initial_sigma(general_params, gw_params, advanced_params, sum_k, + archive, iteration_offset, G_loc_all, solvers, + solver_type_per_imp): + """ + Determines the double counting (DC) and the initial Sigma. This can happen + in five different ways: + * Calculation resumed: use the previous DC and the Sigma of the last complete calculation. + + * Calculation initialized with load_sigma: use the DC and Sigma from the previous file. + If the DC changed (and therefore the Hartree shift), the initial Sigma is adjusted by that. + + * New calculation, with DC: calculate the DC, then initialize the Sigma as the DC, + effectively starting the calculation from the DFT Green's function. + Also breaks magnetic symmetry if calculation is magnetic. + + * New calculation, without DC: Sigma is initialized as 0, + starting the calculation from the DFT Green's function. + + Parameters + ---------- + general_params : dict + general parameters as a dict + gw_params : dict + GW parameters as a dict + advanced_params : dict + advanced parameters as a dict + sum_k : SumkDFT object + Sumk object with the information about the correct block structure + archive : HDFArchive + the archive of the current calculation + iteration_offset : int + the iterations done before this calculation + G_loc_all : Gf + local Green function for all shells + solvers : list + list of Solver instances + + Returns + ------- + sum_k : SumkDFT object + the SumkDFT object, updated by the initial Sigma and the DC + solvers : list + list of Solver instances, updated by the initial Sigma + + """ + start_sigma = None + last_g0 = None + density_mat_dft = [G_loc_all[iineq].density() for iineq in range(sum_k.n_inequiv_shells)] + if mpi.is_master_node(): + # Resumes previous calculation + if iteration_offset > 0: + print('\nFrom previous calculation:', end=' ') + start_sigma, sum_k.dc_imp, sum_k.dc_energ, last_g0, _ = _load_sigma_from_h5(archive, -1) + if general_params['csc'] and not general_params['dc_dmft']: + sum_k = calculate_double_counting(sum_k, density_mat_dft, general_params, gw_params, + advanced_params, solver_type_per_imp, G_loc_all) + # Loads Sigma from different calculation + elif general_params['load_sigma']: + print('\nFrom {}:'.format(general_params['path_to_sigma']), end=' ') + with HDFArchive(general_params['path_to_sigma'], 'r') as sigma_archive: + (loaded_sigma, loaded_dc_imp, _, + _, loaded_density_matrix) = _load_sigma_from_h5(sigma_archive, general_params['load_sigma_iter']) + + # Recalculate double counting in case U, J or DC formula changed + if general_params['dc']: + if general_params['dc_dmft']: + sum_k = calculate_double_counting(sum_k, loaded_density_matrix, general_params, gw_params, + advanced_params, solver_type_per_imp, G_loc_all) + else: + sum_k = calculate_double_counting(sum_k, density_mat_dft, general_params, gw_params, + advanced_params, solver_type_per_imp, G_loc_all) + + start_sigma = _set_loaded_sigma(sum_k, loaded_sigma, loaded_dc_imp, general_params) + + # Sets DC as Sigma because no initial Sigma given + elif general_params['dc']: + sum_k = calculate_double_counting(sum_k, density_mat_dft, general_params, gw_params, + advanced_params, solver_type_per_imp, G_loc_all) + + # initialize Sigma from sum_k + start_sigma = [sum_k.block_structure.create_gf(ish=iineq, gf_function=Gf, space='solver', + mesh=sum_k.mesh) + for iineq in range(sum_k.n_inequiv_shells)] + for icrsh in range(sum_k.n_inequiv_shells): + dc_pot = sum_k.block_structure.convert_matrix(sum_k.dc_imp[sum_k.inequiv_to_corr[icrsh]], + ish_from=sum_k.inequiv_to_corr[icrsh], + space_from='sumk', space_to='solver') + + if (general_params['magnetic'] and general_params['magmom'] and sum_k.SO == 0): + # if we are doing a magnetic calculation and initial magnetic moments + # are set, manipulate the initial sigma accordingly + fac = general_params['magmom'][icrsh] + + # init self energy according to factors in magmoms + # if magmom positive the up channel will be favored + for spin_channel in sum_k.gf_struct_solver[icrsh].keys(): + if 'up' in spin_channel: + start_sigma[icrsh][spin_channel] << -fac + dc_pot[spin_channel] + else: + start_sigma[icrsh][spin_channel] << fac + dc_pot[spin_channel] + else: + for spin_channel in sum_k.gf_struct_solver[icrsh].keys(): + start_sigma[icrsh][spin_channel] << dc_pot[spin_channel] + + # Sets Sigma to zero because neither initial Sigma nor DC given + elif (not general_params['dc'] and general_params['magnetic']): + start_sigma = [sum_k.block_structure.create_gf(ish=iineq, gf_function=Gf, space='solver', mesh=sum_k.mesh) + for iineq in range(sum_k.n_inequiv_shells)] + for icrsh in range(sum_k.n_inequiv_shells): + if (general_params['magnetic'] and general_params['magmom'] and sum_k.SO == 0): + mpi.report(f'\n*** Adding magnetic bias to initial sigma for impurity {icrsh} ***') + # if we are doing a magnetic calculation and initial magnetic moments + # are set, manipulate the initial sigma accordingly + fac = general_params['magmom'][icrsh] + + # if magmom positive the up channel will be favored + for spin_channel in sum_k.gf_struct_solver[icrsh].keys(): + if 'up' in spin_channel: + start_sigma[icrsh][spin_channel] << -fac + else: + start_sigma[icrsh][spin_channel] << fac + else: + start_sigma = [sum_k.block_structure.create_gf(ish=iineq, gf_function=Gf, space='solver', mesh=sum_k.mesh) + for iineq in range(sum_k.n_inequiv_shells)] + + # Adds random, frequency-independent noise in zeroth iteration to break symmetries + if not np.isclose(general_params['noise_level_initial_sigma'], 0) and iteration_offset == 0: + if mpi.is_master_node(): + for start_sigma_per_imp in start_sigma: + for _, block in start_sigma_per_imp: + noise = np.random.normal(scale=general_params['noise_level_initial_sigma'], + size=block.data.shape[1:]) + # Makes the noise hermitian + noise = np.broadcast_to(.5 * (noise + noise.T), block.data.shape) + block += Gf(indices=block.indices, mesh=block.mesh, data=noise) + + # bcast everything to other nodes + sum_k.dc_imp = mpi.bcast(sum_k.dc_imp) + sum_k.dc_energ = mpi.bcast(sum_k.dc_energ) + start_sigma = mpi.bcast(start_sigma) + last_g0 = mpi.bcast(last_g0) + # Loads everything now to the solver + for icrsh in range(sum_k.n_inequiv_shells): + solvers[icrsh].Sigma_freq = start_sigma[icrsh] + if last_g0: + solvers[icrsh].G0_freq = last_g0[icrsh] + + # Updates the sum_k object with the Matsubara self-energy + sum_k.put_Sigma([solvers[icrsh].Sigma_freq for icrsh in range(sum_k.n_inequiv_shells)]) + + # load sigma as first guess in the hartree solver if applicable + for icrsh in range(sum_k.n_inequiv_shells): + # TODO: + # should this be moved to before the solve() call? Having it only here means there is a mismatch + # between the mixing at the level of the solver and the sumk (solver mixes always 100%) + if solver_type_per_imp[icrsh] == 'hartree': + mpi.report(f"SOLID_DMFT: setting first guess hartree solver for impurity {icrsh}") + solvers[icrsh].triqs_solver.reinitialize_sigma(start_sigma[icrsh]) + + return sum_k, solvers
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/interaction_hamiltonian.html b/_modules/dmft_tools/interaction_hamiltonian.html new file mode 100644 index 00000000..7a1a2b81 --- /dev/null +++ b/_modules/dmft_tools/interaction_hamiltonian.html @@ -0,0 +1,957 @@ + + + + + + dmft_tools.interaction_hamiltonian — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for dmft_tools.interaction_hamiltonian

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Contains all functions related to constructing the interaction Hamiltonian.
+"""
+
+# system
+import os
+import numpy as np
+from itertools import product
+
+# triqs
+from h5 import HDFArchive
+import triqs.utility.mpi as mpi
+from triqs.gf import make_gf_imfreq
+from triqs.operators import util, n, c, c_dag, Operator
+from solid_dmft.dmft_tools import solver
+
+
+try:
+    import forktps as ftps
+except ImportError:
+    pass
+
+def _load_crpa_interaction_matrix(sum_k, general_params, gw_params, filename='UIJKL'):
+    """
+    Loads  dynamic interaction data to use as an interaction Hamiltonian.
+    """
+    def _round_to_int(data):
+        return (np.array(data) + .5).astype(int)
+
+    if gw_params['code'] == 'Vasp':
+    # Loads data from VASP cRPA file
+        print('Loading Vasp cRPA matrix from file: '+str(filename))
+        data = np.loadtxt(filename, unpack=True)
+        u_matrix_four_indices = np.zeros(_round_to_int(np.max(data[:4], axis=1)), dtype=complex)
+        for entry in data.T:
+            # VASP switches the order of the indices, ijkl -> ikjl
+            i, k, j, l = _round_to_int(entry[:4])-1
+            u_matrix_four_indices[i, j, k, l] = entry[4] + 1j * entry[5]
+
+        # Slices up the four index U-matrix, separating shells
+        u_matrix_four_indices_per_shell = [None] * sum_k.n_inequiv_shells
+        first_index_shell = 0
+        for ish in range(sum_k.n_corr_shells):
+            icrsh = sum_k.corr_to_inequiv[ish]
+            n_orb = solver.get_n_orbitals(sum_k)[icrsh]['up']
+            u_matrix_temp = u_matrix_four_indices[first_index_shell:first_index_shell+n_orb,
+                                                  first_index_shell:first_index_shell+n_orb,
+                                                  first_index_shell:first_index_shell+n_orb,
+                                                  first_index_shell:first_index_shell+n_orb]
+            # I think for now we should stick with real interactions make real
+            u_matrix_temp.imag = 0.0
+
+            if ish == icrsh:
+                u_matrix_four_indices_per_shell[icrsh] = u_matrix_temp
+            elif not np.allclose(u_matrix_four_indices_per_shell[icrsh], u_matrix_temp, atol=1e-6, rtol=0):
+                # TODO: for some reason, some entries in the matrices differ by a sign. Check that
+                # mpi.report(np.allclose(np.abs(u_matrix_four_indices_per_shell[icrsh]), np.abs(u_matrix_temp),
+                # atol=1e-6, rtol=0))
+                mpi.report('Warning: cRPA matrix for impurity {} '.format(icrsh)
+                           + 'differs for shells {} and {}'.format(sum_k.inequiv_to_corr[icrsh], ish))
+
+            first_index_shell += n_orb
+
+        if not np.allclose(u_matrix_four_indices.shape, first_index_shell):
+            print('Warning: different number of orbitals in cRPA matrix than in calculation.')
+
+    elif gw_params['code'] == 'aimbes':
+        from solid_dmft.gw_embedding.bdft_converter import convert_gw_output
+        u_matrix_four_indices_per_shell = []
+        # lad GW input from h5 file
+        if mpi.is_master_node():
+            if 'Uloc_dlr' not in gw_params:
+                gw_data, ir_kernel = convert_gw_output(
+                    general_params['jobname'] + '/' + general_params['seedname'] + '.h5',
+                    gw_params['h5_file'],
+                    it_1e = gw_params['it_1e'],
+                    it_2e = gw_params['it_2e'],
+                    ha_ev_conv = True
+                )
+                gw_params.update(gw_data)
+            for icrsh in range(sum_k.n_inequiv_shells):
+                # for now we assume that up / down are equal
+                if general_params['h_int_type'][icrsh] in  ('crpa', 'crpa_density_density'):
+                    Uloc_0 = make_gf_imfreq(gw_params['Uloc_dlr'][icrsh]['up'],1)
+                    u_matrix_four_indices_per_shell.append(Uloc_0.data[0,:,:,:,:] + gw_params['Vloc'][icrsh]['up'])
+                else:
+                    u_matrix_four_indices_per_shell.append(gw_params['Vloc'][icrsh]['up'])
+
+                u_matrix_four_indices_per_shell[icrsh] = u_matrix_four_indices_per_shell[icrsh]
+        mpi.barrier()
+        u_matrix_four_indices_per_shell = mpi.bcast(u_matrix_four_indices_per_shell)
+        gw_params = mpi.bcast(gw_params)
+    else:
+        raise ValueError('Unknown code for reading cRPA results: {}'.format(gw_params['code']))
+
+    return u_matrix_four_indices_per_shell, gw_params
+
+
+# def _adapt_U_2index_for_SO(Umat, Upmat):
+#     """
+#     Changes the two-index U matrices such that for a system consisting of a
+#     single block 'ud' with the entries (1, up), (1, down), (2, up), (2, down),
+#     ... the matrices are consistent with the case without spin-orbit coupling.
+
+#     Parameters
+#     ----------
+#     Umat : numpy array
+#         The two-index interaction matrix for parallel spins without SO.
+#     Upmat : numpy array
+#         The two-index interaction matrix for antiparallel spins without SO.
+
+#     Returns
+#     -------
+#     Umat_SO : numpy array
+#         The two-index interaction matrix for parallel spins. Because in SO all
+#         entries have nominal spin 'ud', this matrix now contains the original
+#         Umat and Upmat.
+#     Upmat_SO : numpy array
+#         The two-index interaction matrix for antiparallel spins. Unused because
+#         in SO, all spins have the same nominal spin 'ud'.
+#     """
+
+#     Umat_SO = np.zeros(np.array(Umat.shape)*2, dtype=Umat.dtype)
+#     Umat_SO[::2, ::2] = Umat_SO[1::2, 1::2] = Umat
+#     Umat_SO[::2, 1::2] = Umat_SO[1::2, ::2] = Upmat
+#     Upmat_SO = None
+
+#     return Umat_SO, Upmat_SO
+
+
+def _adapt_U_4index_for_SO(Umat_full):
+    """
+    Changes the four-index U matrix such that for a system consisting of a
+    single block 'ud' with the entries (1, up), (1, down), (2, up), (2, down),
+    ... the matrix is consistent with the case without spin-orbit coupling.
+    This can be derived directly from the definition of the Slater Hamiltonian.
+
+    Parameters
+    ----------
+    Umat_full : numpy array
+       The four-index interaction matrix without SO.
+
+    Returns
+    -------
+    Umat_full_SO : numpy array
+        The four-index interaction matrix with SO. For a matrix U_ijkl, the
+        indices i, k correspond to spin sigma, and indices j, l to sigma'.
+    """
+
+    Umat_full_SO = np.zeros(np.array(Umat_full.shape)*2, dtype=Umat_full.dtype)
+    for spin, spin_prime in ((0, 0), (0, 1), (1, 0), (1, 1)):
+        Umat_full_SO[spin::2, spin_prime::2, spin::2, spin_prime::2] = Umat_full
+
+    return Umat_full_SO
+
+
+def _construct_kanamori(sum_k, general_params, solver_type_per_imp, icrsh, den_den=False):
+    """
+    Constructs the Kanamori interaction Hamiltonian. Only Kanamori does not
+    need the full four-index matrix. Therefore, we can construct it directly
+    from the parameters U and J.
+    """
+
+    n_orb = solver.get_n_orbitals(sum_k)[icrsh]['up']
+    if sum_k.SO == 1:
+        assert n_orb % 2 == 0
+        n_orb = n_orb // 2
+
+    if n_orb not in (2, 3):
+        mpi.report('warning: are you sure you want to use the kanamori hamiltonian '
+                   + 'outside the t2g or eg manifold?')
+
+    # check if Uprime has been specified manually
+    if general_params['U_prime'][icrsh] is None:
+        U_prime = general_params['U'][icrsh] - 2.0 * general_params['J'][icrsh]
+    else:
+        U_prime = general_params['U_prime'][icrsh]
+    mpi.report('U = {:.2f}, U\' = {:.2f}, J = {:.2f}\n'.format(general_params['U'][icrsh], U_prime, general_params['J'][icrsh]))
+
+    if solver_type_per_imp[icrsh] == 'ftps':
+        # 1-band modell requires J and U' equals zero
+        if n_orb == 1:
+            up, j = 0.0, 0.0
+        else:
+            up = U_prime
+            j = general_params['J'][icrsh]
+        h_int = ftps.solver_core.HInt(u=general_params['U'][icrsh], j=j, up=up, dd=den_den)
+    elif sum_k.SO == 0:
+        # Constructs U matrix
+        Umat, Upmat = util.U_matrix_kanamori(n_orb=n_orb, U_int=general_params['U'][icrsh],
+                                             J_hund=general_params['J'][icrsh],
+                                             Up_int=U_prime)
+        if den_den:
+            h_int = util.h_int_density(sum_k.spin_block_names[sum_k.SO], n_orb,
+                                       map_operator_structure=sum_k.sumk_to_solver[icrsh],
+                                       U=Umat, Uprime=Upmat,
+                                       H_dump=os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt'))
+        else:
+            h_int = util.h_int_kanamori(sum_k.spin_block_names[sum_k.SO], n_orb,
+                                        map_operator_structure=sum_k.sumk_to_solver[icrsh],
+                                        U=Umat, Uprime=Upmat, J_hund=general_params['J'][icrsh],
+                                        H_dump=os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt'))
+    else:
+        h_int = _construct_kanamori_soc(general_params['U'][icrsh], general_params['J'][icrsh],
+                                        n_orb, sum_k.sumk_to_solver[icrsh],
+                                        os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt'))
+    return h_int
+
+
+def _construct_kanamori_soc(U_int, J_hund, n_orb, map_operator_structure, H_dump=None):
+    r"""
+    Adapted from triqs.operators.util.hamiltonians.h_int_kanamori. Assumes
+    that spin_names == ['ud'] and that map_operator_structure is given.
+    """
+
+    orb_names = list(range(n_orb))
+
+    if H_dump:
+        H_dump_file = open(H_dump, 'w')
+        H_dump_file.write("Kanamori Hamiltonian:" + '\n')
+
+    H = Operator()
+    mkind = util.op_struct.get_mkind(None, map_operator_structure)
+
+    s = 'ud'
+
+    # density terms:
+    # TODO: reformulate in terms of Umat and Upmat for consistency with triqs?
+    if H_dump:
+        H_dump_file.write("Density-density terms:" + '\n')
+    for a1, a2 in product(orb_names, orb_names):
+        if a1 == a2:  # same spin and orbital
+            continue
+
+        if a1 // 2 == a2 // 2:  # same orbital (, different spins)
+            U_val = U_int
+        elif a1 % 2 != a2 % 2:  # different spins (, different orbitals)
+            U_val = U_int - 2*J_hund
+        else:  # same spins (, different orbitals)
+            U_val = U_int - 3*J_hund
+
+        H_term = 0.5 * U_val * n(*mkind(s, a1)) * n(*mkind(s, a2))
+        H += H_term
+
+        # Dump terms of H
+        if H_dump and not H_term.is_zero():
+            H_dump_file.write('%s' % (mkind(s, a1), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a2), ) + '\t')
+            H_dump_file.write(str(U_val) + '\n')
+
+    # spin-flip terms:
+    if H_dump:
+        H_dump_file.write("Spin-flip terms:" + '\n')
+    for a1, a2, a3, a4 in product(orb_names, orb_names, orb_names, orb_names):
+        if a1 == a2 or a1 == a3 or a1 == a4 or a2 == a3 or a2 == a4 or a3 == a4:
+            continue
+
+        if not (a1//2 == a2//2 and a3//2 == a4//2 and a1//2 != a3//2 and a1 % 2 != a3 % 2):
+            continue
+
+        H_term = -0.5 * J_hund * c_dag(*mkind(s, a1)) * c(*mkind(s, a2)) * c_dag(*mkind(s, a3)) * c(*mkind(s, a4))
+        H += H_term
+
+        # Dump terms of H
+        if H_dump and not H_term.is_zero():
+            H_dump_file.write('%s' % (mkind(s, a1), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a2), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a3), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a4), ) + '\t')
+            H_dump_file.write(str(-J_hund) + '\n')
+
+    # pair-hopping terms:
+    if H_dump:
+        H_dump_file.write("Pair-hopping terms:" + '\n')
+    for a1, a2, a3, a4 in product(orb_names, orb_names, orb_names, orb_names):
+        if a1 == a2 or a1 == a3 or a1 == a4 or a2 == a3 or a2 == a4 or a3 == a4:
+            continue
+
+        if not (a1//2 == a2//2 and a3//2 == a4//2 and a1//2 != a3//2 and a1 % 2 != a3 % 2):
+            continue
+
+        H_term = 0.5 * J_hund * c_dag(*mkind(s, a1)) * c_dag(*mkind(s, a2)) * c(*mkind(s, a4)) * c(*mkind(s, a3))
+        H += H_term
+
+        # Dump terms of H
+        if H_dump and not H_term.is_zero():
+            H_dump_file.write('%s' % (mkind(s, a1), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a2), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a3), ) + '\t')
+            H_dump_file.write('%s' % (mkind(s, a4), ) + '\t')
+            H_dump_file.write(str(-J_hund) + '\n')
+
+    return H
+
+
+def _construct_dynamic(sum_k, general_params, icrsh):
+    """
+    Constructs the interaction Hamiltonian for a frequency-dependent interaction.
+    Works only without spin-orbit coupling and only for one orbital.
+    """
+
+    mpi.report('###### Dynamic U calculation ######, load parameters from input archive.')
+    U_onsite = None
+    if mpi.is_master_node():
+        with HDFArchive(general_params['jobname']+'/'+general_params['seedname']+'.h5', 'r') as archive:
+            U_onsite = archive['dynamic_U']['U_scr']
+    U_onsite = mpi.bcast(U_onsite)
+
+    n_orb = solver.get_n_orbitals(sum_k)[icrsh]['up']
+    if sum_k.SO == 1:
+        raise ValueError('dynamic U not implemented for SO!=0')
+    if n_orb > 1:
+        raise ValueError('dynamic U not implemented for more than one orbital')
+
+    mpi.report('onsite interaction value for imp {}: {:.3f}'.format(icrsh, U_onsite[icrsh]))
+    h_int = util.h_int_density(sum_k.spin_block_names[sum_k.SO], n_orb,
+                               map_operator_structure=sum_k.sumk_to_solver[icrsh],
+                               U=np.array([[0]]), Uprime=np.array([[U_onsite[icrsh]]]), H_dump=os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt'))
+
+    return h_int
+
+
+def _generate_four_index_u_matrix(sum_k, general_params, icrsh):
+    """
+    Generates the four-index interaction matrix per impurity with the interaction
+    parameters U and J (and ratio_F4_F2 for the d shell).
+    """
+
+    # ish points to the shell representative of the current group
+    ish = sum_k.inequiv_to_corr[icrsh]
+    n_orb = solver.get_n_orbitals(sum_k)[icrsh]['up']
+    if sum_k.SO == 1:
+        assert n_orb % 2 == 0
+        n_orb = n_orb // 2
+
+    l = sum_k.corr_shells[ish]['l']
+    if l != 2:
+        slater_integrals = util.U_J_to_radial_integrals(l=l, U_int=general_params['U'][icrsh],
+                                                        J_hund=general_params['J'][icrsh])
+    else:
+        # Implements parameter R=F4/F2. For R=0.63 equivalent to util.U_J_to_radial_integrals
+        U = general_params['U'][icrsh]
+        J = general_params['J'][icrsh]
+        R = general_params['ratio_F4_F2'][icrsh]
+        R = 0.63 if R is None else R
+        slater_integrals = np.array([U, 14*J/(1+R), 14*J*R/(1+R)])
+
+    mpi.report('\nImpurity {}: The corresponding slater integrals are'.format(icrsh))
+    formatted_slater_integrals = [y for x in list(zip([2*x for x in range(len(slater_integrals))], slater_integrals)) for y in x]
+    mpi.report(('F{:d} = {:.2f}, '*len(slater_integrals)).format(*formatted_slater_integrals))
+
+    # Constructs U matrix
+    # construct full spherical symmetric U matrix and transform to cubic basis
+    # the order for the cubic orbitals is given by the convention. The TRIQS
+    # convention is as follows ("xy","yz","z^2","xz","x^2-y^2")
+    # this is consistent with the order of orbitals in the VASP interface
+    # but not necessarily with wannier90, qe, and wien2k!
+    # This is also true for the f-shell.
+    Umat_full = util.U_matrix_slater(l=l,
+                              radial_integrals=slater_integrals, basis='spherical')
+    Umat_full = util.transform_U_matrix(Umat_full,
+                                        util.spherical_to_cubic(l=l, convention=general_params['h_int_basis']))
+
+    if l == 2 and n_orb == 2:
+        Umat_full = util.eg_submatrix(Umat_full)
+        mpi.report('Using eg subspace of interaction Hamiltonian')
+    elif l == 2 and n_orb == 3:
+        Umat_full = util.t2g_submatrix(Umat_full)
+        mpi.report('Using t2g subspace of interaction Hamiltonian')
+    elif n_orb != 2*l+1:
+        raise ValueError(f'Imp {icrsh}: for the Slater Hamiltonian, please use either '
+                         f'the full shell with 2l+1={2*l+1} orbitals '
+                         'or the t2g or eg subspace of the d shell with 3 or 2 orbitals.')
+
+    return Umat_full
+
+
+def _rotate_four_index_matrix(sum_k, general_params, Umat_full, icrsh):
+    """ Rotates the four index matrix into the local frame. """
+
+    ish = sum_k.inequiv_to_corr[icrsh]
+    # Transposes rotation matrix here because TRIQS has a slightly different definition
+    Umat_full_rotated = util.transform_U_matrix(Umat_full, sum_k.rot_mat[ish].T)
+
+    if general_params['h_int_type'][icrsh] in ('density_density', 'crpa_density_density', 'dyn_density_density'):
+        if not np.allclose(Umat_full_rotated, Umat_full):
+            mpi.report('WARNING: applying a rotation matrix changes the dens-dens Hamiltonian.\n'
+                       + 'This changes the definition of the ignored spin flip and pair hopping.')
+    elif general_params['h_int_type'][icrsh] in ('full_slater', 'crpa', 'dyn_full'):
+        if not np.allclose(Umat_full_rotated, Umat_full):
+            mpi.report('WARNING: applying a rotation matrix changes the interaction Hamiltonian.\n'
+                       + 'Please ensure that the rotation is correct!')
+
+    return Umat_full_rotated
+
+
+def _construct_density_density(sum_k, general_params, Umat_full_rotated, icrsh):
+    """
+    Constructs the density-density Slater-Hamiltonian from the four-index
+    interaction matrix.
+    """
+
+    # Constructs Hamiltonian from Umat_full_rotated
+    n_orb = solver.get_n_orbitals(sum_k)[icrsh]['up']
+
+    Umat, Upmat = util.reduce_4index_to_2index(Umat_full_rotated)
+    h_int = util.h_int_density(sum_k.spin_block_names[sum_k.SO], n_orb,
+                               map_operator_structure=sum_k.sumk_to_solver[icrsh],
+                               U=Umat, Uprime=Upmat, H_dump=os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt'))
+
+    return h_int
+
+
+def _construct_slater(sum_k, general_params, Umat_full_rotated, icrsh):
+    """
+    Constructs the full Slater-Hamiltonian from the four-index interaction
+    matrix.
+    """
+
+    n_orb = solver.get_n_orbitals(sum_k)[icrsh]['up']
+
+    h_int = util.h_int_slater(sum_k.spin_block_names[sum_k.SO], n_orb,
+                              map_operator_structure=sum_k.sumk_to_solver[icrsh],
+                              U_matrix=Umat_full_rotated,
+                              H_dump=os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt'))
+
+    return h_int
+
+
+[docs] +def h_int_simple_intra(spin_names,n_orb,U,off_diag=None,map_operator_structure=None,H_dump=None): + r""" + Create a simple intra orbital density-density Hamiltonian. + (no inter orbital terms) + + .. math:: + H = \frac{1}{2} \sum_{i \sigma \neq \sigma')} U_{i i}^{\sigma \sigma'} n_{i \sigma} n_{i \sigma'}. + + Parameters + ---------- + spin_names : list of strings + Names of the spins, e.g. ['up','down']. + n_orb : int + Number of orbitals. + U : float + U value + off_diag : boolean + Do we have (orbital) off-diagonal elements? + If yes, the operators and blocks are denoted by ('spin', 'orbital'), + otherwise by ('spin_orbital',0). + map_operator_structure : dict + Mapping of names of GF blocks names from one convention to another, + e.g. {('up', 0): ('up_0', 0), ('down', 0): ('down_0',0)}. + If provided, the operators and blocks are denoted by the mapping of ``('spin', 'orbital')``. + H_dump : string + Name of the file to which the Hamiltonian should be written. + + Returns + ------- + H : Operator + The Hamiltonian. + + """ + from triqs.operators.util.op_struct import get_mkind + + if H_dump: + H_dump_file = open(H_dump,'w') + H_dump_file.write("Density-density Hamiltonian:" + '\n') + + H = Operator() + mkind = get_mkind(off_diag,map_operator_structure) + if H_dump: H_dump_file.write("Density-density terms:" + '\n') + for s1, s2 in product(spin_names,spin_names): + if (s1 is not s2): + for a1 in range(n_orb): + H_term = 0.5 * U * n(*mkind(s1,a1)) * n(*mkind(s2,a1)) + H += H_term + + # Dump terms of H + if H_dump and not H_term.is_zero(): + H_dump_file.write('%s'%(mkind(s1,a1),) + '\t') + H_dump_file.write('%s'%(mkind(s2,a1),) + '\t') + H_dump_file.write(str(U) + '\n') + + return H
+ + + +
+[docs] +def construct(sum_k, general_params, solver_type_per_imp, gw_params=None): + """ + Constructs the interaction Hamiltonian. Currently implemented are the + Kanamori Hamiltonian (usually for 2 or 3 orbitals), the density-density and + the full Slater Hamiltonian (for 2, 3, or 5 orbitals). + If sum_k.rot_mat is non-identity, we have to consider rotating the interaction + Hamiltonian: the Kanamori Hamiltonian does not change because it is invariant + under orbital mixing but all the other Hamiltonians are at most invariant + under rotations in space. Therefore, sum_k.rot_mat has to be correct before + calling this method. + + The parameters U and J will be interpreted differently depending on the + type of the interaction Hamiltonian: it is either the Kanamori parameters + for the Kanamori Hamiltonian or the orbital-averaged parameters (consistent + with DFT+U, https://cms.mpi.univie.ac.at/wiki/index.php/LDAUTYPE ) for all + other Hamiltonians. + + Note also that for all Hamiltonians except Kanamori, the order of the + orbitals matters. The correct order is specified here: + triqs.github.io/triqs/unstable/documentation/python_api/triqs.operators.util.U_matrix.spherical_to_cubic.html + """ + + # Extracts U and J + mpi.report('*** interaction parameters ***') + + # Constructs the interaction Hamiltonian. Needs to come after setting sum_k.rot_mat + mpi.report('\nConstructing the interaction Hamiltonians') + h_int = [None] * sum_k.n_inequiv_shells + for icrsh in range(sum_k.n_inequiv_shells): + mpi.report('\nImpurity {}: constructing a {} type interaction Hamiltonian'.format(icrsh, general_params['h_int_type'][icrsh])) + + # Kanamori + if general_params['h_int_type'][icrsh] == 'kanamori': + h_int[icrsh] = _construct_kanamori(sum_k, general_params, solver_type_per_imp, icrsh, den_den=False) + continue + + if general_params['h_int_type'][icrsh] == 'kanamori_den_den': + h_int[icrsh] = _construct_kanamori(sum_k, general_params, solver_type_per_imp, icrsh, den_den=True) + continue + + # for density density or full slater get full four-index U matrix + if general_params['h_int_type'][icrsh] in ('density_density', 'full_slater'): + mpi.report('\nNote: The input parameters U and J here are orbital-averaged parameters.') + mpi.report('Note: The order of the orbitals is important. See also the doc string of this method.') + # Checks that all entries are l == 2 or R is None + if (sum_k.corr_shells[sum_k.inequiv_to_corr[icrsh]]['l'] != 2 + and general_params['ratio_F4_F2'][icrsh] is not None): + raise ValueError('Ratio F4/F2 only implemented for d-shells ' + + 'but set in impurity {}'.format(icrsh)) + + if general_params['h_int_type'][icrsh] == 'density_density' and solver_type_per_imp[icrsh] == 'ftps': + # TODO: implement + raise NotImplementedError('Note: Density-density not implemented for ftps.') + + Umat_full = _generate_four_index_u_matrix(sum_k, general_params, icrsh) + + if sum_k.SO == 1: + Umat_full = [_adapt_U_4index_for_SO(Umat_full_per_imp) + for Umat_full_per_imp in Umat_full] + + # Rotates the interaction matrix + Umat_full_rotated = _rotate_four_index_matrix(sum_k, general_params, Umat_full, icrsh) + + # construct slater / density density from U tensor + if general_params['h_int_type'][icrsh] == 'full_slater': + h_int[icrsh] = _construct_slater(sum_k, general_params, Umat_full_rotated, icrsh) + else: + h_int[icrsh] = _construct_density_density(sum_k, general_params, Umat_full_rotated, icrsh) + + continue + + # simple total impurity occupation interation: U/2 (Ntot^2 - Ntot) + if general_params['h_int_type'][icrsh] == 'ntot': + n_tot_op = Operator() + for block, n_orb in sum_k.gf_struct_solver[icrsh].items(): + n_tot_op += sum(n(block, orb) for orb in range(n_orb)) + h_int[icrsh] = general_params['U'][icrsh]/2.0 * (n_tot_op*n_tot_op - n_tot_op) + continue + + if general_params['h_int_type'][icrsh] == 'simple_intra': + h_int[icrsh] = h_int_simple_intra(sum_k.spin_block_names[sum_k.SO], + solver.get_n_orbitals(sum_k)[icrsh]['up'], + map_operator_structure=sum_k.sumk_to_solver[icrsh], + U=general_params['U'][icrsh], + H_dump=os.path.join(general_params['jobname'], f'H_imp{icrsh}.txt')) + continue + + + # read from file options + if general_params['h_int_type'][icrsh] in ('crpa', 'crpa_density_density', 'dyn_density_density', 'dyn_full'): + Umat_full, gw_params = _load_crpa_interaction_matrix(sum_k, general_params, gw_params) + + if sum_k.SO == 1: + Umat_full[icrsh] = _adapt_U_4index_for_SO(Umat_full[icrsh]) + + # Rotates the interaction matrix + if sum_k.use_rotations: + Umat_full[icrsh] = _rotate_four_index_matrix(sum_k, general_params, Umat_full[icrsh], icrsh) + Umat_full[icrsh][np.abs(Umat_full[icrsh]) < general_params['U_crpa_threshold']] = 0.0 + + gw_params['U_matrix_rot']= Umat_full + # construct slater / density density from U tensor + if general_params['h_int_type'][icrsh] in ('crpa', 'dyn_full'): + h_int[icrsh] = _construct_slater(sum_k, general_params, Umat_full[icrsh].real, icrsh) + else: + h_int[icrsh] = _construct_density_density(sum_k, general_params, Umat_full[icrsh].real, icrsh) + continue + + raise NotImplementedError('Error when constructing the interaction Hamiltonian.') + + return h_int, gw_params
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/legendre_filter.html b/_modules/dmft_tools/legendre_filter.html new file mode 100644 index 00000000..d0535a96 --- /dev/null +++ b/_modules/dmft_tools/legendre_filter.html @@ -0,0 +1,395 @@ + + + + + + dmft_tools.legendre_filter — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.legendre_filter

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+import numpy as np
+
+# triqs
+from triqs.gf import BlockGf
+from triqs.gf.tools import fit_legendre
+
+
+
+[docs] +def apply(G_tau, order=100, G_l_cut=1e-19): + """ Filter binned imaginary time Green's function + using a Legendre filter of given order and coefficient threshold. + + Parameters + ---------- + G_tau : TRIQS imaginary time Block Green's function + auto : determines automatically the cut-off nl + order : int + Legendre expansion order in the filter + G_l_cut : float + Legendre coefficient cut-off + + Returns + ------- + G_l : TRIQS Legendre Block Green's function + Fitted Green's function on a Legendre mesh + """ + + l_g_l = [] + + for _, g in G_tau: + + g_l = fit_legendre(g, order=order) + g_l.data[:] *= (np.abs(g_l.data) > G_l_cut) + g_l.enforce_discontinuity(np.identity(g.target_shape[0])) + + l_g_l.append(g_l) + + G_l = BlockGf(name_list=list(G_tau.indices), block_list=l_g_l) + + return G_l
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/manipulate_chemical_potential.html b/_modules/dmft_tools/manipulate_chemical_potential.html new file mode 100644 index 00000000..336f009f --- /dev/null +++ b/_modules/dmft_tools/manipulate_chemical_potential.html @@ -0,0 +1,757 @@ + + + + + + dmft_tools.manipulate_chemical_potential — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for dmft_tools.manipulate_chemical_potential

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Contains all the functions related to setting the chemical potential in the
+next iteration.
+"""
+
+import numpy as np
+
+import triqs.utility.mpi as mpi
+from triqs.gf import BlockGf, GfImFreq, GfImTime, Fourier, MeshImFreq
+try:
+    if mpi.is_master_node():
+        from solid_dmft.postprocessing import maxent_gf_latt
+    imported_maxent = True
+except ImportError:
+    imported_maxent = False
+
+def _mix_chemical_potential(general_params, density_tot, density_required,
+                            previous_mu, predicted_mu):
+    """
+    Mixes the previous chemical potential and the predicted potential with linear
+    mixing:
+    new_mu = factor * predicted_mu + (1-factor) * previous_mu, with
+    factor = mu_mix_per_occupation_offset * |density_tot - density_required| + mu_mix_const
+    under the constrain of 0 <= factor <= 1.
+
+    Parameters
+    ----------
+    general_params : dict
+        general parameters as a dict
+    density_tot : float
+        total occupation of the correlated system
+    density_required : float
+        required density for the impurity problem
+    previous_mu : float
+        the chemical potential from the previous iteration
+    predicted_mu : float
+        the chemical potential predicted by methods like the SumkDFT dichotomy
+
+    Returns
+    -------
+    new_mu : float
+        the chemical potential that results from the mixing
+
+    """
+    mu_mixing = general_params['mu_mix_per_occupation_offset'] * abs(density_tot - density_required)
+    mu_mixing += general_params['mu_mix_const']
+    mu_mixing = max(min(mu_mixing, 1), 0)
+    new_mu = mu_mixing * predicted_mu + (1-mu_mixing) * previous_mu
+
+    mpi.report('Mixing dichotomy mu with previous iteration by factor {:.3f}'.format(mu_mixing))
+    mpi.report('New chemical potential: {:.3f}'.format(new_mu))
+    return new_mu
+
+
+
+def _initialize_lattice_gf(sum_k, general_params):
+    """
+    Creates lattice Green's function (GF) that is averaged over orbitals,
+    blocks and spins. Returns lattice GF as input for an analytical
+    continuation as well as G_lattice(tau=beta/2) (proxy for the spectral
+    weight) and G_lattice(beta) (proxy for the total occupation).
+
+    Parameters
+    ----------
+    sum_k : SumkDFT object
+        Sumk object to generate the lattice GF from.
+    general_params : dict
+        general parameters as dict.
+
+    Returns
+    -------
+    gf_lattice_iw : triqs.gf.BlockGf
+        trace of the lattice GF over all blocks, orbitals and spins in
+        Matsubara frequency.
+    g_betahalf : complex
+        the Fourier transform of gf_lattice_iw evaluated at tau=beta/2.
+    occupation : complex
+        the total density from gf_lattice_iw
+    """
+
+    # Initializes lattice GF to zero for each process
+    mesh = sum_k.Sigma_imp[0].mesh
+    trace_gf_latt = GfImFreq(mesh=mesh, data=np.zeros((len(mesh), 1, 1), dtype=complex))
+    occupation = 0
+
+    # Takes trace over orbitals and spins
+    ikarray = np.arange(sum_k.n_k)
+    for ik in mpi.slice_array(ikarray):
+        gf_latt = sum_k.lattice_gf(ik)*sum_k.bz_weights[ik]
+        trace_gf_latt.data[:] += np.trace(sum(g.data for _, g in gf_latt), axis1=1, axis2=2).reshape(-1, 1, 1)
+        occupation += gf_latt.total_density()
+
+    trace_gf_latt << mpi.all_reduce(trace_gf_latt)
+    occupation = mpi.all_reduce(occupation)
+
+    # Lattice GF as BlockGf, required for compatibility with MaxEnt functions
+    gf_lattice_iw = BlockGf(name_list=['total'], block_list=[trace_gf_latt])
+
+    # Fourier transforms the lattice GF
+    gf_tau = GfImTime(beta=general_params['beta'], n_points=general_params['n_tau'], indices=[0])
+    gf_tau << Fourier(gf_lattice_iw['total'])
+
+    tau_mesh = np.array([float(m) for m in gf_tau.mesh])
+    middle_index = np.argmin(np.abs(tau_mesh-general_params['beta']/2))
+    samp = 10
+
+    # Extracts G_latt(tau) at beta/2
+    g_betahalf = np.mean(gf_tau.data[middle_index-samp:middle_index+samp, 0, 0])
+    mpi.report('Lattice Gf: occupation = {:.5f}'.format(occupation))
+    mpi.report('            G(beta/2)  = {:.5f}'.format(g_betahalf))
+
+    return gf_lattice_iw, g_betahalf, occupation
+
+def _determine_band_edge(mesh, spectral_function, spectral_func_threshold, valence_band, edge_threshold=.2):
+    """
+    Finds the band edge of a spectral function. This is done in two steps:
+    starting from the Fermi energy, looks for the first peak
+    (>spectral_func_threshold and local maximum on discrete grid). Then moves
+    back towards Fermi energy until the spectral function is smaller than the
+    fraction edge_threshold of the peak value.
+
+    Parameters
+    ----------
+    mesh : numpy.ndarray of float
+        the real frequencies grid.
+    spectral_function : numpy.ndarray of float
+        the values of the spectral function on the grid.
+    spectral_func_threshold : float
+        Threshold for spectral function to cross before looking for peaks.
+    valence_band : bool
+        Determines if looking for valence band (i.e. the upper band edge) or
+        the conduction band (i.e. the lower band edge).
+    edge_threshold : float
+        Fraction of the peak value that defines the band edge value.
+
+    Returns
+    -------
+    float
+        The frequency value of the band edge.
+    """
+    # Determines direction to move away from Fermi energy to find band edge
+    direction = 1 if valence_band else -1
+
+    # Starts closest to the Fermi energy
+    starting_index = np.argmin(np.abs(mesh))
+    print('Starting at index {} with A(omega={:.3f})={:.3f}'.format(starting_index, mesh[starting_index], spectral_function[starting_index]))
+    assert spectral_function[starting_index] < spectral_func_threshold
+
+    # Finds peak
+    peak_index = None
+    for i in range(starting_index+direction, mesh.shape[0] if valence_band else -1, direction):
+        # If A(omega) low, go further
+        if spectral_function[i] < spectral_func_threshold:
+            continue
+
+        # If spectral function still increasing, go further
+        if spectral_function[i-direction] < spectral_function[i]:
+            continue
+
+        peak_index = i-direction
+        break
+
+    assert peak_index is not None, 'Band peak not found. Check frequency range of MaxEnt'
+    print('Peak at index {} with A(omega={:.3f})={:.3f}'.format(peak_index, mesh[peak_index], spectral_function[peak_index]))
+
+    # Finds band edge
+    edge_index = starting_index
+    for i in range(peak_index-direction, starting_index-direction, -direction):
+        # If above ratio edge_threshold of peak height, go further back to starting index
+        if spectral_function[i] > edge_threshold * spectral_function[peak_index]:
+            continue
+
+        edge_index = i
+        break
+
+    print('Band edge at index {} with A(omega={:.3f})={:.3f}'.format(edge_index, mesh[edge_index], spectral_function[edge_index]))
+    return mesh[edge_index]
+
+def _set_mu_to_gap_middle_with_maxent(general_params, sum_k, gf_lattice_iw, archive=None):
+    """
+    Bundles running maxent on the total lattice GF, analyzing the spectral
+    function and determining the new chemical potential.
+
+    Parameters
+    ----------
+    general_params : dict
+        general parameters as dict.
+    sum_k : SumkDFT object
+        SumkDFT object needed for original chemical potential and frequency
+        range of MaxEnt continuation.
+    gf_lattice_iw : BlockGf
+        trace of the lattice GF over all blocks, orbitals and spins in
+        Matsubara frequency.
+    archive : HDFArchive, optional
+        If given, writes spectral function (i.e. MaxEnt result) to archive.
+
+    Returns
+    -------
+    float
+        new chemical potential located in the middle of the gap from MaxEnt.
+        None if not master node or if something went wrong.
+    """
+
+
+    if not mpi.is_master_node():
+        return None
+
+    if not imported_maxent:
+        mpi.report('WARNING: cannot find gap with MaxEnt, MaxEnt not found')
+        return None
+
+    # Runs MaxEnt using the Chi2Curvature analyzer
+    maxent_results, mesh = maxent_gf_latt._run_maxent(gf_lattice_iw, sum_k, .02, None, None, 200, 30)
+    mesh = np.array(mesh)
+    spectral_function = maxent_results['total'].get_A_out('Chi2CurvatureAnalyzer')
+
+    # Writes spectral function to archive
+    if archive is not None:
+        unpacked_results = maxent_gf_latt._unpack_maxent_results(maxent_results, mesh)
+        archive['DMFT_results/last_iter']['Alatt_w'] = unpacked_results
+
+    # Checks if spectral function at Fermi energy below threshold
+    spectral_func_threshold = general_params['beta']/np.pi * general_params['mu_gap_gb2_threshold']
+    if spectral_function[np.argmin(np.abs(mesh))] > spectral_func_threshold:
+        mpi.report('WARNING: cannot find gap with MaxEnt, spectral function not gapped at Fermi energy')
+        return None
+
+    # Determines band edges for conduction and valence band
+    edge_threshold = 0.2
+    conduction_edge = _determine_band_edge(mesh, spectral_function, spectral_func_threshold, False, edge_threshold)
+    valence_edge = _determine_band_edge(mesh, spectral_function, spectral_func_threshold, True, edge_threshold)
+
+    return sum_k.chemical_potential + (valence_edge + conduction_edge) / 2
+
+
+[docs] +def set_initial_mu(general_params, sum_k, iteration_offset, archive, broadening): + """ + Handles the different ways of setting the initial chemical potential mu: + * Chemical potential set to fixed value: uses this value + + * New calculation: determines mu from dichotomy method + + * Resuming calculation and chemical potential not updated this iteration: + loads calculation before previous iteration. + + * Resuming calculation and chemical potential is updated: + checks if the system is gapped and potentially run MaxEnt to find gap + middle. Otherwise, gets mu from dichotomy and applies mu mixing to result. + + + Parameters + ---------- + general_params : dict + general parameters as dict. + sum_k : SumkDFT object + contains system information necessary to determine the initial mu. + iteration_offset : int + the number of iterations executed in previous calculations. + archive : HDFArchive + needed to potentially load previous results and write MaxEnt results to. + + Returns + ------- + sum_k : SumkDFT object + the altered SumkDFT object with the initial mu set correctly. + """ + + # Uses fixed_mu_value as chemical potential if parameter is given + if general_params['fixed_mu_value'] is not None: + sum_k.set_mu(general_params['fixed_mu_value']) + mpi.report('+++ Keeping the chemical potential fixed at {:.3f} eV +++'.format(general_params['fixed_mu_value'])) + return sum_k + + # In first iteration, determines mu and returns + if iteration_offset == 0: + sum_k.calc_mu(precision=general_params['prec_mu'], method=general_params['calc_mu_method'], + broadening=broadening) + return sum_k + + # If continuing calculation and not updating mu, loads sold value + if iteration_offset % general_params['mu_update_freq'] != 0: + if mpi.is_master_node(): + sum_k.chemical_potential = archive['DMFT_results/last_iter/chemical_potential_pre'] + sum_k.chemical_potential = mpi.bcast(sum_k.chemical_potential) + mpi.report('Chemical potential not updated this step, ' + + 'reusing loaded one of {:.3f} eV'.format(sum_k.chemical_potential)) + return sum_k + + # If continuing calculation and updating mu, reads in occupation and + # chemical_potential_pre from the last run + previous_mu = None + if mpi.is_master_node(): + previous_mu = archive['DMFT_results/last_iter/chemical_potential_pre'] + previous_mu = mpi.bcast(previous_mu) + + # Runs maxent if spectral weight too low and occupation is close to desired one + if isinstance(sum_k.mesh, MeshImFreq) and general_params['mu_gap_gb2_threshold'] is not None: + sum_k.chemical_potential = previous_mu + gf_lattice_iw, g_betahalf, occupation = _initialize_lattice_gf(sum_k, general_params) + fulfills_occupation_crit = (general_params['mu_gap_occ_deviation'] is None + or np.abs(occupation - sum_k.density_required) < general_params['mu_gap_occ_deviation']) + + if -np.real(g_betahalf) < general_params['mu_gap_gb2_threshold'] and fulfills_occupation_crit: + new_mu = _set_mu_to_gap_middle_with_maxent(general_params, sum_k, gf_lattice_iw, archive) + new_mu = mpi.bcast(new_mu) + if new_mu is not None: + sum_k.chemical_potential = new_mu + mpi.report('New chemical potential in the gap: {:.3f} eV'.format(new_mu)) + return sum_k + # Calculates occupation for mu mixing below + elif np.isclose(general_params['mu_mix_per_occupation_offset'], 0): + occupation = 0 # The occupation does not matter in this case + else: + _, _, occupation = _initialize_lattice_gf(sum_k, general_params) + + # If system not gapped, gets chemical potential from dichotomy method + sum_k.calc_mu(precision=general_params['prec_mu'], method=general_params['calc_mu_method'], + broadening=broadening) + + # Applies mu mixing to dichotomy result + sum_k.chemical_potential = _mix_chemical_potential(general_params, occupation, + sum_k.density_required, + previous_mu, sum_k.chemical_potential) + + return sum_k
+ + +
+[docs] +def update_mu(general_params, sum_k, it, archive, broadening): + """ + Handles the different ways of updating the chemical potential mu: + * Chemical potential set to fixed value: uses this value + + * Chemical potential not updated this iteration: nothing happens. + + * Chemical potential is updated: checks if the system is gapped and + potentially run MaxEnt to find gap middle. Otherwise, gets mu from + dichotomy and applies mu mixing to result. + + Parameters + ---------- + general_params : dict + general parameters as dict. + sum_k : SumkDFT object + contains system information necessary to update mu. + it : int + the number of the current iteration. + archive : HDFArchive + needed to potentially write MaxEnt results to. + + Returns + ------- + sum_k : SumkDFT object + the altered SumkDFT object with the updated mu. + """ + + # Uses fixed_mu_value as chemical potential if parameter is given + if general_params['fixed_mu_value'] is not None: + sum_k.set_mu(general_params['fixed_mu_value']) + mpi.report('+++ Keeping the chemical potential fixed at {:.3f} eV +++'.format(general_params['fixed_mu_value'])) + return sum_k + + # If mu won't be updated this step, don't update it... + if it % general_params['mu_update_freq'] != 0: + mpi.report('Chemical potential not updated this step, ' + + 'reusing previous one of {:.3f} eV'.format(sum_k.chemical_potential)) + return sum_k + + # Runs maxent if spectral weight too low and occupation is close to desired one + # TODO: which solvers work? + if isinstance(sum_k.mesh, MeshImFreq) and general_params['mu_gap_gb2_threshold'] is not None: + gf_lattice_iw, g_betahalf, occupation = _initialize_lattice_gf(sum_k, general_params) + fulfills_occupation_crit = (general_params['mu_gap_occ_deviation'] is None + or np.abs(occupation - sum_k.density_required) < general_params['mu_gap_occ_deviation']) + + if -np.real(g_betahalf) < general_params['mu_gap_gb2_threshold'] and fulfills_occupation_crit: + new_mu = _set_mu_to_gap_middle_with_maxent(general_params, sum_k, gf_lattice_iw, archive) + new_mu = mpi.bcast(new_mu) + if new_mu is not None: + sum_k.chemical_potential = new_mu + mpi.report('New chemical potential in the gap: {:.3f} eV'.format(new_mu)) + return sum_k + # Calculates occupation for mu mixing below + elif np.isclose(general_params['mu_mix_per_occupation_offset'], 0): + occupation = 0 # The occupation does not matter in this case + else: + _, _, occupation = _initialize_lattice_gf(sum_k, general_params) + + # If system not gapped, gets chemical potential from dichotomy method + previous_mu = sum_k.chemical_potential + sum_k.calc_mu(precision=general_params['prec_mu'], method=general_params['calc_mu_method'], + broadening=broadening) + + # Applies mu mixing to dichotomy result + sum_k.chemical_potential = _mix_chemical_potential(general_params, occupation, + sum_k.density_required, + previous_mu, sum_k.chemical_potential) + mpi.barrier() + return sum_k
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/matheval.html b/_modules/dmft_tools/matheval.html new file mode 100644 index 00000000..527004d9 --- /dev/null +++ b/_modules/dmft_tools/matheval.html @@ -0,0 +1,395 @@ + + + + + + dmft_tools.matheval — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.matheval

+# https://stackoverflow.com/a/30516254
+
+import ast
+import math
+
+
+
+[docs] +class MathExpr(object): + allowed_nodes = ( + ast.Module, + ast.Expr, + ast.Load, + ast.Expression, + ast.Add, + ast.Sub, + ast.UnaryOp, + ast.Num, + ast.BinOp, + ast.Mult, + ast.Div, + ast.Pow, + ast.BitOr, + ast.BitAnd, + ast.BitXor, + ast.USub, + ast.UAdd, + ast.FloorDiv, + ast.Mod, + ast.LShift, + ast.RShift, + ast.Invert, + ast.Call, + ast.Name, + ) + + functions = { + "abs": abs, + "complex": complex, + "min": min, + "max": max, + "pow": pow, + "round": round, + } + functions.update( + {key: value for (key, value) in vars(math).items() if not key.startswith("_")} + ) + +
+[docs] + def __init__(self, expr): + if any(elem in expr for elem in "\n#"): + raise ValueError(expr) + + node = ast.parse(expr.strip(), mode="eval") + for curr in ast.walk(node): + if not isinstance(curr, self.allowed_nodes): + raise ValueError(curr) + + self.code = compile(node, "<string>", "eval")
+ + + def __call__(self, **kwargs): + return eval(self.code, {"__builtins__": None}, {**self.functions, **kwargs})
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/observables.html b/_modules/dmft_tools/observables.html new file mode 100644 index 00000000..b2a23c3e --- /dev/null +++ b/_modules/dmft_tools/observables.html @@ -0,0 +1,970 @@ + + + + + + dmft_tools.observables — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.observables

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Contains all functions related to the observables.
+"""
+
+# system
+import os.path
+import numpy as np
+
+# triqs
+import triqs.utility.mpi as mpi
+from triqs.gf import Gf, MeshImTime
+from triqs.atom_diag import trace_rho_op
+from triqs.gf.descriptors import Fourier
+from solid_dmft.dmft_tools import solver
+
+
+[docs] +def prep_observables(h5_archive, sum_k): + """ + prepares the observable arrays and files for the DMFT calculation + + Parameters + ---------- + h5_archive: hdf archive instance + hdf archive for calculation + sum_k : SumK Object instances + + Returns + ------- + observables : dict + observable array for calculation + """ + + # determine number of impurities + n_inequiv_shells = h5_archive['dft_input']['n_inequiv_shells'] + + # check for previous iterations + obs_prev = [] + if 'observables' in h5_archive['DMFT_results']: + obs_prev = h5_archive['DMFT_results']['observables'] + + # prepare observable dicts + if len(obs_prev) > 0: + observables = obs_prev + else: + observables = dict() + observables['iteration'] = [] + observables['mu'] = [] + observables['E_tot'] = [] + observables['E_bandcorr'] = [] + observables['E_int'] = [[] for _ in range(n_inequiv_shells)] + observables['E_corr_en'] = [] + observables['E_dft'] = [] + observables['E_DC'] = [[] for _ in range(n_inequiv_shells)] + observables['orb_gb2'] = [{spin: [] for spin in sum_k.spin_block_names[sum_k.SO]} + for _ in range(n_inequiv_shells)] + observables['imp_gb2'] = [{spin: [] for spin in sum_k.spin_block_names[sum_k.SO]} + for _ in range(n_inequiv_shells)] + observables['orb_occ'] = [{spin: [] for spin in sum_k.spin_block_names[sum_k.SO]} + for _ in range(n_inequiv_shells)] + observables['orb_Z'] = [{spin: [] for spin in sum_k.spin_block_names[sum_k.SO]} + for _ in range(n_inequiv_shells)] + observables['imp_occ'] = [{spin: [] for spin in sum_k.spin_block_names[sum_k.SO]} + for _ in range(n_inequiv_shells)] + + return observables
+ + +def _generate_header(general_params, sum_k): + """ + Generates the headers that are used in write_header_to_file. + Returns a dict with {file_name: header_string} + """ + n_orb = solver.get_n_orbitals(sum_k) + + header_energy_mask = ' | {:>10} | {:>10} {:>10} {:>10} {:>10}' + header_energy = header_energy_mask.format('E_tot', 'E_DFT', 'E_bandcorr', 'E_int_imp', 'E_DC') + + headers = {} + for iineq in range(sum_k.n_inequiv_shells): + number_spaces = max(10*n_orb[iineq]['up'] + 3*(n_orb[iineq]['up']-1), 21) + header_basic_mask = '{{:>3}} | {{:>10}} | {{:>{0}}} | {{:>{0}}} | {{:>17}}'.format(number_spaces) + + # If magnetic calculation is done create two obs files per imp + if general_params['magnetic'] and sum_k.SO == 0: + for spin in ('up', 'down'): + file_name = 'observables_imp{}_{}.dat'.format(iineq, spin) + headers[file_name] = header_basic_mask.format('it', 'mu', 'G(beta/2) per orbital', + 'orbital occs '+spin, 'impurity occ '+spin) + + if general_params['calc_energies']: + headers[file_name] += header_energy + else: + file_name = 'observables_imp{}.dat'.format(iineq) + headers[file_name] = header_basic_mask.format('it', 'mu', 'G(beta/2) per orbital', + 'orbital occs up+down', 'impurity occ') + + if general_params['calc_energies']: + headers[file_name] += header_energy + + return headers + + +
+[docs] +def write_header_to_file(general_params, sum_k): + """ + Writes the header to the observable files + + Parameters + ---------- + general_params : dict + general parameters as a dict + n_inequiv_shells : int + number of impurities for calculations + + + Returns + ------- + nothing + """ + + headers = _generate_header(general_params, sum_k) + + for file_name, header in headers.items(): + path = os.path.join(general_params['jobname'], file_name) + with open(path, 'w') as obs_file: + obs_file.write(header + '\n')
+ + + +
+[docs] +def add_dft_values_as_zeroth_iteration(observables, general_params, solver_type_per_imp, dft_mu, dft_energy, + sum_k, G_loc_all_dft, shell_multiplicity): + """ + Calculates the DFT observables that should be written as the zeroth iteration. + + Parameters + ---------- + observables : observable arrays/dicts + + general_params : general parameters as a dict + + solver_type_per_imp : list of strings + list of solver types for each impurity + + dft_mu : dft chemical potential + + sum_k : SumK Object instances + + G_loc_all_dft : Gloc from DFT for G(beta/2) + + shell_multiplicity : degeneracy of impurities + + Returns + ------- + + observables: list of dicts + """ + dft_energy = 0.0 if dft_energy is None else dft_energy + density_mat_dft = [G_loc_all_dft[iineq].density() for iineq in range(sum_k.n_inequiv_shells)] + observables['iteration'].append(0) + observables['mu'].append(float(dft_mu)) + + if general_params['calc_energies']: + observables['E_bandcorr'].append(0.0) + observables['E_corr_en'].append(0.0) + observables['E_dft'].append(dft_energy) + else: + observables['E_bandcorr'].append('none') + observables['E_corr_en'].append('none') + observables['E_dft'].append('none') + + for iineq in range(sum_k.n_inequiv_shells): + if general_params['calc_energies']: + observables['E_int'][iineq].append(0.0) + double_counting_energy = shell_multiplicity[iineq]*sum_k.dc_energ[sum_k.inequiv_to_corr[iineq]] if general_params['dc'] else 0.0 + observables['E_DC'][iineq].append(double_counting_energy) + else: + observables['E_int'][iineq].append('none') + observables['E_DC'][iineq].append('none') + + # Collect all occupation and G(beta/2) for spin up and down separately + for spin in sum_k.spin_block_names[sum_k.SO]: + g_beta_half_per_impurity = 0.0 + g_beta_half_per_orbital = [] + occupation_per_impurity = 0.0 + occupation_per_orbital = [] + Z_per_orbital = [] + + # iterate over all spin channels and add the to up or down + # we need only the keys of the blocks, but sorted! Otherwise + # orbitals will be mixed up_0 to down_0 etc. + for spin_channel in sorted(sum_k.gf_struct_solver[iineq].keys()): + if not spin in spin_channel: + continue + + if solver_type_per_imp[iineq] == 'ftps': + freq_mesh = np.array([w.value for w in G_loc_all_dft[iineq][spin_channel].mesh]) + fermi_idx = abs(freq_mesh).argmin() + gb2_averaged = G_loc_all_dft[iineq][spin_channel].data[fermi_idx].imag + + # Z is not defined without Sigma, adding 1 + Z_per_orbital.extend( [1.0] * G_loc_all_dft[iineq][spin_channel].target_shape[0] ) + else: + # G(beta/2) + mesh = MeshImTime(beta=general_params['beta'], S="Fermion", + n_max=general_params['n_tau']) + G_time = Gf(mesh=mesh, indices=G_loc_all_dft[iineq][spin_channel].indices) + G_time << Fourier(G_loc_all_dft[iineq][spin_channel]) + + # since G(tau) has always 10001 values we are sampling +-10 values + # hard coded around beta/2, for beta=40 this corresponds to approx +-0.05 + mesh_mid = len(G_time.data) // 2 + samp = 10 + gg = G_time.data[mesh_mid-samp:mesh_mid+samp] + gb2_averaged = np.mean(np.real(gg), axis=0) + + # Z is not defined without Sigma, adding 1 + Z_per_orbital.extend( [1.0] * G_time.target_shape[0] ) + + g_beta_half_per_orbital.extend(np.diag(gb2_averaged)) + g_beta_half_per_impurity += np.trace(gb2_averaged) + + # occupation per orbital + den_mat = np.real(density_mat_dft[iineq][spin_channel]) + occupation_per_orbital.extend(np.diag(den_mat)) + occupation_per_impurity += np.trace(den_mat) + + # adding those values to the observable object + observables['orb_gb2'][iineq][spin].append(np.array(g_beta_half_per_orbital)) + observables['imp_gb2'][iineq][spin].append(g_beta_half_per_impurity) + observables['orb_occ'][iineq][spin].append(np.array(occupation_per_orbital)) + observables['imp_occ'][iineq][spin].append(occupation_per_impurity) + observables['orb_Z'][iineq][spin].append(np.array(Z_per_orbital)) + + # for it 0 we just subtract E_DC from E_DFT + if general_params['calc_energies']: + observables['E_tot'].append(dft_energy - sum([dc_per_imp[0] for dc_per_imp in observables['E_DC']])) + else: + observables['E_tot'].append('none') + + return observables
+ + + +
+[docs] +def add_dmft_observables(observables, general_params, solver_params, map_imp_solver, solver_type_per_imp, dft_energy, it, solvers, h_int, + previous_mu, sum_k, density_mat, shell_multiplicity, E_bandcorr): + """ + calculates the observables for given Input, I decided to calculate the observables + not adhoc since it should be done only once by the master_node + + Parameters + ---------- + observables : observable arrays/dicts + + general_params : general parameters as a dict + + solver_params : solver parameters as a dict + + it : iteration counter + + solvers : Solver instances + + h_int : interaction hamiltonian + + previous_mu : dmft chemical potential for which the calculation was just done + + sum_k : SumK Object instances + + density_mat : DMFT occupations + + shell_multiplicity : degeneracy of impurities + + E_bandcorr : E_kin_dmft - E_kin_dft, either calculated man or from sum_k method if CSC + + Returns + ------- + observables: list of dicts + """ + + # init energy values + E_corr_en = 0.0 + # Read energy from OSZICAR + dft_energy = 0.0 if dft_energy is None else dft_energy + + # now the normal output from each iteration + observables['iteration'].append(it) + observables['mu'].append(float(previous_mu)) + observables['E_bandcorr'].append(E_bandcorr) + observables['E_dft'].append(dft_energy) + + if general_params['calc_energies']: + mpi.report('\nCalculating interaction energies') + for icrsh in range(sum_k.n_inequiv_shells): + if (solver_type_per_imp[icrsh] in ['cthyb', 'hubbardI'] + and solver_params[map_imp_solver[icrsh]]["measure_density_matrix"]): + mpi.report(f' Imp {icrsh}: from impurity density matrix') + # Extract accumulated density matrix + density_matrix = solvers[icrsh].density_matrix + # Object containing eigensystem of the local Hamiltonian + diag_local_ham = solvers[icrsh].h_loc_diagonalization + E_int = trace_rho_op(density_matrix, h_int[icrsh], diag_local_ham) + elif solver_type_per_imp[icrsh] == 'hartree': + mpi.report(f' Imp {icrsh}: from Hartree') + E_int = solvers[icrsh].interaction_energy + else: + mpi.report(f' Imp {icrsh}: from Migdal formula. ' + 'WARNING: less stable than measuring density matrix and using trace_rho_op!') + # calc energy for given S and G + # dmft interaction energy with E_int = 0.5 * Tr[Sigma * G] + E_int = 0.5 * np.real((solvers[icrsh].G_freq * solvers[icrsh].Sigma_freq).total_density()) + + observables['E_int'][icrsh].append(shell_multiplicity[icrsh]*E_int.real) + E_corr_en += shell_multiplicity[icrsh] * (E_int.real - sum_k.dc_energ[sum_k.inequiv_to_corr[icrsh]]) + + observables['E_corr_en'].append(E_corr_en) + + # calc total energy + E_tot = dft_energy + E_bandcorr + E_corr_en + observables['E_tot'].append(E_tot) + + for icrsh in range(sum_k.n_inequiv_shells): + if general_params['dc']: + observables['E_DC'][icrsh].append(shell_multiplicity[icrsh]*sum_k.dc_energ[sum_k.inequiv_to_corr[icrsh]]) + else: + observables['E_DC'][icrsh].append(0.0) + + if solver_type_per_imp[icrsh] != 'ftps': + if solvers[icrsh].G_time: + G_time = solvers[icrsh].G_time + else: + G_time = solvers[icrsh].G_time_orig + + # Collect all occupation and G(beta/2) for spin up and down separately + for spin in sum_k.spin_block_names[sum_k.SO]: + g_beta_half_per_impurity = 0.0 + g_beta_half_per_orbital = [] + occupation_per_impurity = 0.0 + occupation_per_orbital = [] + Z_per_orbital = [] + + # iterate over all spin channels and add the to up or down + for spin_channel in sorted(sum_k.gf_struct_solver[icrsh].keys()): + if not spin in spin_channel: + continue + if solver_type_per_imp[icrsh] == 'ftps': + freq_mesh = np.array([w.value for w in solvers[icrsh].G_freq[spin_channel].mesh]) + fermi_idx = abs(freq_mesh).argmin() + gb2_averaged = solvers[icrsh].G_freq[spin_channel].data[fermi_idx].imag + + # Z is not defined without Sigma, adding 1 + Z_per_orbital.extend( [1.0] * solvers[icrsh].G_freq[spin_channel].target_shape[0] ) + else: + # G(beta/2) + # since G(tau) has always 10001 values we are sampling +-10 values + # hard coded around beta/2, for beta=40 this corresponds to approx +-0.05 + mesh_mid = len(G_time[spin_channel].data) // 2 + samp = 10 + gg = G_time[spin_channel].data[mesh_mid-samp:mesh_mid+samp] + gb2_averaged = np.mean(np.real(gg), axis=0) + + # get Z + Z_per_orbital.extend( calc_Z(Sigma= solvers[icrsh].Sigma_freq[spin_channel]) ) + + g_beta_half_per_orbital.extend(np.diag(gb2_averaged)) + g_beta_half_per_impurity += np.trace(gb2_averaged) + + # occupation per orbital and impurity + den_mat = np.real(density_mat[icrsh][spin_channel]) + occupation_per_orbital.extend(np.diag(den_mat)) + occupation_per_impurity += np.trace(den_mat) + + # adding those values to the observable object + observables['orb_gb2'][icrsh][spin].append(np.array(g_beta_half_per_orbital)) + observables['imp_gb2'][icrsh][spin].append(g_beta_half_per_impurity) + observables['orb_occ'][icrsh][spin].append(np.array(occupation_per_orbital)) + observables['imp_occ'][icrsh][spin].append(occupation_per_impurity) + observables['orb_Z'][icrsh][spin].append(np.array(Z_per_orbital)) + + return observables
+ + +
+[docs] +def write_obs(observables, sum_k, general_params): + """ + writes the last entries of the observable arrays to the files + + Parameters + ---------- + observables : list of dicts + observable arrays/dicts + + sum_k : SumK Object instances + + general_params : dict + + Returns + ------- + nothing + + """ + + n_orb = solver.get_n_orbitals(sum_k) + + for icrsh in range(sum_k.n_inequiv_shells): + if general_params['magnetic'] and sum_k.SO == 0: + for spin in ('up', 'down'): + line = '{:3d} | '.format(observables['iteration'][-1]) + line += '{:10.5f} | '.format(observables['mu'][-1]) + + if n_orb[icrsh][spin] == 1: + line += ' '*11 + for item in observables['orb_gb2'][icrsh][spin][-1]: + line += '{:10.5f} '.format(item) + line = line[:-3] + ' | ' + + if n_orb[icrsh][spin] == 1: + line += ' '*11 + for item in observables['orb_occ'][icrsh][spin][-1]: + line += '{:10.5f} '.format(item) + line = line[:-3] + ' | ' + + line += '{:17.5f}'.format(observables['imp_occ'][icrsh][spin][-1]) + + if general_params['calc_energies']: + line += ' | {:10.5f}'.format(observables['E_tot'][-1]) + line += ' | {:10.5f}'.format(observables['E_dft'][-1]) + line += ' {:10.5f}'.format(observables['E_bandcorr'][-1]) + line += ' {:10.5f}'.format(observables['E_int'][icrsh][-1]) + line += ' {:10.5f}'.format(observables['E_DC'][icrsh][-1]) + + file_name = '{}/observables_imp{}_{}.dat'.format(general_params['jobname'], icrsh, spin) + with open(file_name, 'a') as obs_file: + obs_file.write(line + '\n') + else: + line = '{:3d} | '.format(observables['iteration'][-1]) + line += '{:10.5f} | '.format(observables['mu'][-1]) + + # Adds spaces for header to fit in properly + if n_orb[icrsh]['up'] == 1: + line += ' '*11 + # Adds up the spin channels + for iorb in range(n_orb[icrsh]['up']): + val = np.sum([observables['orb_gb2'][icrsh][spin][-1][iorb] for spin in sum_k.spin_block_names[sum_k.SO]]) + line += '{:10.5f} '.format(val) + line = line[:-3] + ' | ' + + # Adds spaces for header to fit in properly + if n_orb[icrsh]['up'] == 1: + line += ' '*11 + # Adds up the spin channels + for iorb in range(n_orb[icrsh]['up']): + val = np.sum([observables['orb_occ'][icrsh][spin][-1][iorb] for spin in sum_k.spin_block_names[sum_k.SO]]) + line += '{:10.5f} '.format(val) + line = line[:-3] + ' | ' + + # Adds up the spin channels + val = np.sum([observables['imp_occ'][icrsh][spin][-1] for spin in sum_k.spin_block_names[sum_k.SO]]) + line += '{:17.5f}'.format(val) + + if general_params['calc_energies']: + line += ' | {:10.5f}'.format(observables['E_tot'][-1]) + line += ' | {:10.5f}'.format(observables['E_dft'][-1]) + line += ' {:10.5f}'.format(observables['E_bandcorr'][-1]) + line += ' {:10.5f}'.format(observables['E_int'][icrsh][-1]) + line += ' {:10.5f}'.format(observables['E_DC'][icrsh][-1]) + + file_name = '{}/observables_imp{}.dat'.format(general_params['jobname'], icrsh) + with open(file_name, 'a') as obs_file: + obs_file.write(line + '\n')
+ + + +
+[docs] +def calc_dft_kin_en(general_params, sum_k, dft_mu): + """ + Calculates the kinetic energy from DFT for target states + + Parameters + ---------- + general_params : dict + general parameters as a dict + + sum_k : SumK Object instances + + dft_mu: float + DFT fermi energy + + + Returns + ------- + E_kin_dft: float + kinetic energy from DFT + + """ + + H_ks = sum_k.hopping + num_kpts = sum_k.n_k + E_kin = 0.0 + ikarray = np.array(list(range(sum_k.n_k))) + for ik in mpi.slice_array(ikarray): + nb = int(sum_k.n_orbitals[ik]) + # calculate lattice greens function need here to set sigma other n_iw is assumend to be 1025! + # TODO: implement here version for FTPS! + G_freq_lat = sum_k.lattice_gf(ik, with_Sigma=True, mu=dft_mu).copy() + # # calculate G(beta) via the function density, which is the same as fourier trafo G(w) and taking G(b) + G_freq_lat_beta = G_freq_lat.density() + for spin in sum_k.spin_block_names[sum_k.SO]: + E_kin += np.trace(np.dot(H_ks[ik, 0, :nb, :nb], G_freq_lat_beta[spin][:, :])) + E_kin = np.real(E_kin) + # collect data and put into E_kin_dft + E_kin_dft = mpi.all_reduce(E_kin) + mpi.barrier() + # E_kin should be divided by the number of k-points + E_kin_dft = E_kin_dft/num_kpts + + mpi.report(f'Kinetic energy contribution dft part: {E_kin_dft:.8f}') + + return E_kin_dft
+ + +
+[docs] +def calc_bandcorr_man(general_params, sum_k, E_kin_dft): + """ + Calculates the correlated kinetic energy from DMFT for target states + and then determines the band correction energy + + Parameters + ---------- + general_params : dict + general parameters as a dict + + sum_k : SumK Object instances + + E_kin_dft: float + kinetic energy from DFT + + + Returns + ------- + E_bandcorr: float + band energy correction E_kin_dmft - E_kin_dft + + """ + E_kin_dmft = 0.0j + E_kin = 0.0j + H_ks = sum_k.hopping + num_kpts = sum_k.n_k + + # kinetic energy from dmft lattice Greens functions + ikarray = np.array(list(range(sum_k.n_k))) + for ik in mpi.slice_array(ikarray): + nb = int(sum_k.n_orbitals[ik]) + # calculate lattice greens function + G_freq_lat = sum_k.lattice_gf(ik, with_Sigma=True, with_dc=True).copy() + # calculate G(beta) via the function density, which is the same as fourier trafo G(w) and taking G(b) + G_freq_lat_beta = G_freq_lat.density() + for spin in sum_k.spin_block_names[sum_k.SO]: + E_kin += np.trace(np.dot(H_ks[ik, 0, :nb, :nb], G_freq_lat_beta[spin][:, :])) + E_kin = np.real(E_kin) + + # collect data and put into E_kin_dmft + E_kin_dmft = mpi.all_reduce(E_kin) + mpi.barrier() + # E_kin should be divided by the number of k-points + E_kin_dmft = E_kin_dmft/num_kpts + + if mpi.is_master_node(): + print('Kinetic energy contribution dmft part: '+str(E_kin_dmft)) + + E_bandcorr = E_kin_dmft - E_kin_dft + + return E_bandcorr
+ + +
+[docs] +def calc_Z(Sigma): + """ + calculates the inverse mass enhancement from the impurity + self-energy by a simple linear fit estimate: + [ 1 - ((Im S_iw[n_iw0+1]-S_iw[n_iw0])/(iw[n_iw0+1]-iw[n_iw0])) ]^-1 + + Parameters + ---------- + Sigma: Gf on MeshImFreq + self-energy on Matsubara mesh + + + Returns + ------- + orb_Z: 1d numpy array + list of Z values per orbital in Sigma + + """ + orb_Z = [] + + iw = [np.imag(n) for n in Sigma.mesh] + # find smallest iw_n + n_iw0 = int(0.5*len(iw)) + + for orb in range(0,Sigma.target_shape[0]): + Im_S_iw = Sigma[orb,orb].data.imag + # simple extraction from linear fit to first two Matsubara freq of Sigma + # assuming Fermi liquid like self energy + Z = 1/(1 - (Im_S_iw[n_iw0+1]-Im_S_iw[n_iw0]) / (iw[n_iw0+1]-iw[n_iw0]) ) + orb_Z.append(abs(Z)) + + return np.array(orb_Z)
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/results_to_archive.html b/_modules/dmft_tools/results_to_archive.html new file mode 100644 index 00000000..afe5a0ad --- /dev/null +++ b/_modules/dmft_tools/results_to_archive.html @@ -0,0 +1,508 @@ + + + + + + dmft_tools.results_to_archive — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for dmft_tools.results_to_archive

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+import os
+import triqs.utility.mpi as mpi
+
+
+def _compile_information(sum_k, general_params, solver_params, solvers, map_imp_solver, solver_type_per_imp,
+                         previous_mu, density_mat_pre, density_mat, deltaN, dens):
+    """ Collects all results in a dictonary. """
+
+    write_to_h5 = {'chemical_potential_post': sum_k.chemical_potential,
+                   'chemical_potential_pre': previous_mu,
+                   'DC_pot': sum_k.dc_imp,
+                   'DC_energ': sum_k.dc_energ,
+                   'dens_mat_pre': density_mat_pre,
+                   'dens_mat_post': density_mat,
+                  }
+
+    if deltaN is not None:
+        write_to_h5['deltaN'] = deltaN
+    if dens is not None:
+        write_to_h5['deltaN_trace'] = dens
+
+    if any(str(entry) in ('crpa_dynamic') for entry in general_params['dc_type']):
+        write_to_h5['DC_pot_dyn'] = sum_k.dc_imp_dyn
+
+    for icrsh in range(sum_k.n_inequiv_shells):
+        isolvsec = map_imp_solver[icrsh]
+        if solver_type_per_imp[icrsh] in ['cthyb', 'hubbardI']:
+            write_to_h5['Delta_time_{}'.format(icrsh)] = solvers[icrsh].Delta_time
+
+            # Write the full density matrix to last_iter only - it is large
+            if solver_params[isolvsec]['measure_density_matrix']:
+                write_to_h5['full_dens_mat_{}'.format(icrsh)] = solvers[icrsh].density_matrix
+                write_to_h5['h_loc_diag_{}'.format(icrsh)] = solvers[icrsh].h_loc_diagonalization
+                if solver_type_per_imp[icrsh] in ('cthyb','hubbardI'):
+                    write_to_h5['Sigma_moments_{}'.format(icrsh)] = solvers[icrsh].Sigma_moments
+                    write_to_h5['G_moments_{}'.format(icrsh)] = solvers[icrsh].G_moments
+                    write_to_h5['Sigma_Hartree_{}'.format(icrsh)] = solvers[icrsh].Sigma_Hartree
+                    write_to_h5['orbital_occupations_{}'.format(icrsh)] = solvers[icrsh].orbital_occupations
+
+
+        elif solver_type_per_imp[icrsh] == 'ftps':
+            write_to_h5['Delta_freq_{}'.format(icrsh)] = solvers[icrsh].Delta_freq
+
+        write_to_h5['Gimp_time_{}'.format(icrsh)] = solvers[icrsh].G_time
+        write_to_h5['G0_freq_{}'.format(icrsh)] = solvers[icrsh].G0_freq
+        write_to_h5['Gimp_freq_{}'.format(icrsh)] = solvers[icrsh].G_freq
+        write_to_h5['Sigma_freq_{}'.format(icrsh)] = solvers[icrsh].Sigma_freq
+
+        if solver_type_per_imp[icrsh] == 'cthyb':
+            if solver_params[isolvsec]['measure_pert_order']:
+                write_to_h5['pert_order_imp_{}'.format(icrsh)] = solvers[icrsh].perturbation_order
+                write_to_h5['pert_order_total_imp_{}'.format(icrsh)] = solvers[icrsh].perturbation_order_total
+
+            if solver_params[isolvsec]['measure_chi'] is not None:
+                write_to_h5['O_{}_time_{}'.format(solver_params[isolvsec]['measure_chi'], icrsh)] = solvers[icrsh].O_time
+
+            # if legendre was set, that we have both now!
+            if (solver_params[isolvsec]['measure_G_l']
+                or not solver_params[isolvsec]['perform_tail_fit'] and solver_params[isolvsec]['legendre_fit']):
+                write_to_h5['G_time_orig_{}'.format(icrsh)] = solvers[icrsh].G_time_orig
+                write_to_h5['Gimp_l_{}'.format(icrsh)] = solvers[icrsh].G_l
+
+            if solver_params[isolvsec]['crm_dyson_solver']:
+                write_to_h5['G_time_dlr_{}'.format(icrsh)] = solvers[icrsh].G_time_dlr
+                write_to_h5['Sigma_dlr_{}'.format(icrsh)] = solvers[icrsh].Sigma_dlr
+
+        if solver_type_per_imp[icrsh] == 'ctint' and solver_params[isolvsec]['measure_histogram']:
+            write_to_h5['pert_order_imp_{}'.format(icrsh)] = solvers[icrsh].perturbation_order
+
+        if solver_type_per_imp[icrsh] == 'hubbardI':
+            write_to_h5['G0_Refreq_{}'.format(icrsh)] = solvers[icrsh].G0_Refreq
+            write_to_h5['Gimp_Refreq_{}'.format(icrsh)] = solvers[icrsh].G_Refreq
+            write_to_h5['Sigma_Refreq_{}'.format(icrsh)] = solvers[icrsh].Sigma_Refreq
+
+            if solver_params[isolvsec]['measure_G_l']:
+                write_to_h5['Gimp_l_{}'.format(icrsh)] = solvers[icrsh].G_l
+
+        if solver_type_per_imp[icrsh] == 'hartree':
+            write_to_h5['Sigma_Refreq_{}'.format(icrsh)] = solvers[icrsh].Sigma_Refreq
+
+        if solver_type_per_imp[icrsh] == 'ctseg':
+            # if legendre was set, that we have both now!
+            write_to_h5['orbital_occupations_{}'.format(icrsh)] = solvers[icrsh].orbital_occupations
+            write_to_h5['Sigma_Hartree_{}'.format(icrsh)] = solvers[icrsh].Sigma_Hartree
+            write_to_h5['Sigma_moments_{}'.format(icrsh)] = solvers[icrsh].Sigma_moments
+            if (solver_params[isolvsec]['legendre_fit']):
+                write_to_h5['G_time_orig_{}'.format(icrsh)] = solvers[icrsh].G_time_orig
+                write_to_h5['Gimp_l_{}'.format(icrsh)] = solvers[icrsh].G_l
+            if solver_params[isolvsec]['improved_estimator']:
+                write_to_h5['F_freq_{}'.format(icrsh)] = solvers[icrsh].F_freq
+                write_to_h5['F_time_{}'.format(icrsh)] = solvers[icrsh].F_time
+            if solver_params[isolvsec]['measure_pert_order']:
+                write_to_h5['pert_order_histo_imp_{}'.format(icrsh)] = solvers[icrsh].perturbation_order_histo
+                write_to_h5['avg_order_imp_{}.format(icrsh)'] = solvers[icrsh].avg_pert_order
+            if solver_params[isolvsec]['measure_nn_tau']:
+                write_to_h5['O_NN_{}'.format(icrsh)] = solvers[icrsh].triqs_solver.results.nn_tau
+            if solver_params[isolvsec]['measure_state_hist']:
+                write_to_h5['state_hist_{}'.format(icrsh)] = solvers[icrsh].state_histogram
+            if solver_params[isolvsec]['crm_dyson_solver']:
+                write_to_h5['G_time_dlr_{}'.format(icrsh)] = solvers[icrsh].G_time_dlr
+                write_to_h5['Sigma_dlr_{}'.format(icrsh)] = solvers[icrsh].Sigma_dlr
+            if general_params['h_int_type'][icrsh] == 'dyn_density_density':
+                write_to_h5['D0_time_{}'.format(icrsh)] = solvers[icrsh].triqs_solver.D0_tau
+                write_to_h5['Jperp_time_{}'.format(icrsh)] = solvers[icrsh].triqs_solver.Jperp_tau
+
+    return write_to_h5
+
+
+[docs] +def write(archive, sum_k, general_params, solver_params, solvers, map_imp_solver, solver_type_per_imp, it, is_sampling, + previous_mu, density_mat_pre, density_mat, deltaN=None, dens=None): + """ + Collects and writes results to archive. + """ + + if not mpi.is_master_node(): + return + + write_to_h5 = _compile_information(sum_k, general_params, solver_params, solvers, map_imp_solver, solver_type_per_imp, + previous_mu, density_mat_pre, density_mat, deltaN, dens) + + # Saves the results to last_iter + archive['DMFT_results']['iteration_count'] = it + for key, value in write_to_h5.items(): + archive['DMFT_results/last_iter'][key] = value + + # Permanently saves to h5 archive every h5_save_freq iterations + if ((not is_sampling and it % general_params['h5_save_freq'] == 0) + or (is_sampling and it % general_params['sampling_h5_save_freq'] == 0)): + + archive['DMFT_results'].create_group('it_{}'.format(it)) + for key, value in write_to_h5.items(): + # Full density matrix only written to last_iter - it is large + if 'full_dens_mat_' not in key and 'h_loc_diag_' not in key: + archive['DMFT_results/it_{}'.format(it)][key] = value + + # Saves CSC input + if general_params['csc']: + for dft_var in ['dft_update', 'dft_input', 'dft_misc_input']: + if dft_var in archive: + archive['DMFT_results/it_{}'.format(it)].create_group(dft_var) + for key, value in archive[dft_var].items(): + # do only store changing elements + if key not in ['symm_kpath', 'kpts_cart']: + archive['DMFT_results/it_{}'.format(it)][dft_var][key] = value + for band_elem in ['_bands.dat', '_bands.dat.gnu', '_bands.projwfc_up', '_band.dat']: + if os.path.isfile('./{}{}'.format(general_params['seedname'], band_elem)): + os.rename('./{}{}'.format(general_params['seedname'], band_elem), + './{}{}_it{}'.format(general_params['seedname'], band_elem, it)) + for w90_elem in ['_hr.dat', '.wout']: + if os.path.isfile('./{}{}'.format(general_params['seedname'], w90_elem)): + os.rename('./{}{}'.format(general_params['seedname'], w90_elem), + './{}_it{}{}'.format(general_params['seedname'], it, w90_elem))
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dmft_tools/solver.html b/_modules/dmft_tools/solver.html new file mode 100644 index 00000000..1cbf1a97 --- /dev/null +++ b/_modules/dmft_tools/solver.html @@ -0,0 +1,1948 @@ + + + + + + dmft_tools.solver — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dmft_tools.solver

+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+# pyright: reportUnusedExpression=false
+import numpy as np
+from itertools import product
+
+from triqs.gf import MeshImTime, MeshReTime, MeshDLRImFreq, MeshReFreq, MeshLegendre, Gf, BlockGf, make_gf_imfreq, make_hermitian, Omega, iOmega_n, make_gf_from_fourier, make_gf_dlr, fit_gf_dlr, make_gf_dlr_imtime, make_gf_imtime
+from triqs.gf.tools import inverse, make_zero_tail
+from triqs.gf.descriptors import Fourier
+from triqs.operators import c_dag, c, Operator, util
+from triqs.operators.util.U_matrix import reduce_4index_to_2index
+from triqs.operators.util.extractors import block_matrix_from_op
+import triqs.utility.mpi as mpi
+import itertools
+from h5 import HDFArchive
+
+from solid_dmft.io_tools.dict_to_h5 import prep_params_for_h5
+
+from . import legendre_filter
+from .matheval import MathExpr
+
+
+[docs] +def get_n_orbitals(sum_k): + """ + determines the number of orbitals within the + solver block structure. + + Parameters + ---------- + sum_k : dft_tools sumk object + + Returns + ------- + n_orb : dict of int + number of orbitals for up / down as dict for SOC calculation + without up / down block up holds the number of orbitals + """ + n_orbitals = [{'up': 0, 'down': 0} for i in range(sum_k.n_inequiv_shells)] + for icrsh in range(sum_k.n_inequiv_shells): + for block, n_orb in sum_k.gf_struct_solver[icrsh].items(): + if 'down' in block: + n_orbitals[icrsh]['down'] += sum_k.gf_struct_solver[icrsh][block] + else: + n_orbitals[icrsh]['up'] += sum_k.gf_struct_solver[icrsh][block] + + return n_orbitals
+ + +def _gf_fit_tail_fraction(Gf, fraction=0.4, replace=None, known_moments=[]): + """ + fits the tail of Gf object by making a polynomial + fit of the Gf on the given fraction of the Gf mesh + and replacing that part of the Gf by the fit + + 0.4 fits the last 40% of the Gf and replaces the + part with the tail + + Parameters + ---------- + Gf : BlockGf (Green's function) object + fraction: float, optional default 0.4 + fraction of the Gf to fit + replace: float, optional default fraction + fraction of the Gf to replace + known_moments: np.array + known moments as numpy array + Returns + ------- + Gf_fit : BlockGf (Green's function) object + fitted Gf + """ + + Gf_fit = Gf.copy() + # if no replace factor is given use the same fraction + if not replace: + replace = fraction + + for i, bl in enumerate(Gf_fit.indices): + Gf_fit[bl].mesh.set_tail_fit_parameters(tail_fraction=fraction) + if known_moments == []: + tail = Gf_fit[bl].fit_hermitian_tail() + else: + tail = Gf_fit[bl].fit_hermitian_tail(known_moments[i]) + nmax_frac = int(len(Gf_fit[bl].mesh)/2 * (1-replace)) + Gf_fit[bl].replace_by_tail(tail[0],n_min=nmax_frac) + + return Gf_fit + +def _fit_tail_window( + Sigma_iw, + fit_min_n=None, fit_max_n=None, + fit_min_w=None, fit_max_w=None, + fit_max_moment=None, fit_known_moments=None + ): + """ + Fit a high frequency 1/(iw)^n expansion of Sigma_iw + and replace the high frequency part with the fitted high frequency expansion. + + Either give frequency window to fit on in terms of matsubara frequencies index + (fit_min_n/fit_max_n) or value (fit_min_w/fit_max_w). + + Parameters + ---------- + Sigma_iw : Gf + Self-energy. + fit_min_n : int, optional, default=int(0.8*len(Sigma_iw.mesh)) + Matsubara frequency index from which tail fitting should start. + fit_max_n : int, optional, default=int(len(Sigma_iw.mesh)) + Matsubara frequency index at which tail fitting should end. + fit_min_w : float, optional + Matsubara frequency from which tail fitting should start. + fit_max_w : float, optional + Matsubara frequency at which tail fitting should end. + fit_max_moment : int, optional + Highest moment to fit in the tail of Sigma_iw. + fit_known_moments : ``ndarray.shape[order, Sigma_iw[0].target_shape]``, optional, default = None + Known moments of Sigma_iw, given as an numpy ndarray + + Returns + ------- + tail_barr : dict of arr + fitted tail of Sigma_iw + """ + from triqs.gf.gf_fnt import fit_hermitian_tail_on_window, replace_by_tail + + # Define default tail quantities + if fit_min_w is not None: + fit_min_n = int(0.5*(fit_min_w*Sigma_iw.mesh.beta/np.pi - 1.0)) + if fit_max_w is not None: + fit_max_n = int(0.5*(fit_max_w*Sigma_iw.mesh.beta/np.pi - 1.0)) + if fit_min_n is None: + fit_min_n = int(0.8*len(Sigma_iw.mesh)/2) + if fit_max_n is None: + fit_max_n = int(len(Sigma_iw.mesh)/2) + if fit_max_moment is None: + fit_max_moment = 3 + + if fit_known_moments is None: + fit_known_moments = {} + for name, sig in Sigma_iw: + shape = [0] + list(sig.target_shape) + fit_known_moments[name] = np.zeros(shape, dtype=complex) # no known moments + + # Now fit the tails of Sigma_iw and replace the high frequency part with the tail expansion + tail_barr = {} + Sigma_fit = Sigma_iw.copy() + for name, sig in Sigma_fit: + + tail, err = fit_hermitian_tail_on_window( + sig, + n_min = fit_min_n, + n_max = fit_max_n, + known_moments = fit_known_moments[name], + # set max number of pts used in fit larger than mesh size, to use all data in fit + n_tail_max = 10 * len(sig.mesh), + expansion_order = fit_max_moment + ) + tail_barr[name] = tail + replace_by_tail(sig, tail, n_min=fit_min_n) + + return Sigma_fit, tail_barr + +
+[docs] +class SolverStructure: + + r''' + Handles all solid_dmft solver objects and contains TRIQS solver instance. + + Attributes + ---------- + + Methods + ------- + solve(self, **kwargs) + solve impurity problem + ''' + +
+[docs] + def __init__(self, general_params, solver_params, gw_params, advanced_params, sum_k, + icrsh, h_int, iteration_offset=None, deg_orbs_ftps=None): + r''' + Initialisation of the solver instance with h_int for impurity "icrsh" based on soliDMFT parameters. + + Parameters + ---------- + general_paramuters: dict + general parameters as dict + solver_params: dict + solver-specific parameters as dict + sum_k: triqs.dft_tools.sumk object + SumkDFT instance + icrsh: int + correlated shell index + h_int: triqs.operator object + interaction Hamiltonian of correlated shell + iteration_offset: int + number of iterations this run is based on + ''' + + self.general_params = general_params + self.solver_params = solver_params + self.gw_params = gw_params + self.advanced_params = advanced_params + self.sum_k = sum_k + self.icrsh = icrsh + self.h_int = h_int + self.iteration_offset = iteration_offset + self.deg_orbs_ftps = deg_orbs_ftps + + # Stores random_seed as MathExpr object to evaluate it at runtime + if self.solver_params.get('random_seed') is None: + self.random_seed_generator = None + else: + self.random_seed_generator = MathExpr(self.solver_params['random_seed']) + + # initialize solver object, options are cthyb + if self.solver_params['type'] == 'cthyb': + from triqs_cthyb.version import triqs_cthyb_hash, version + + # sets up necessary GF objects on ImFreq + self._init_ImFreq_objects() + # sets up solver + self.triqs_solver = self._create_cthyb_solver() + self.git_hash = triqs_cthyb_hash + self.version = version + + elif self.solver_params['type'] == 'ctint': + from triqs_ctint.version import triqs_ctint_hash, version + + # sets up necessary GF objects on ImFreq + self._init_ImFreq_objects() + # sets up solver + self.triqs_solver = self._create_ctint_solver() + self.solver_params['measure_histogram'] = self.solver_params.pop('measure_pert_order') + self.solver_params['use_double_insertion'] = self.solver_params.pop('move_double') + self.git_hash = triqs_ctint_hash + self.version = version + + elif self.solver_params['type'] == 'hubbardI': + from triqs_hubbardI.version import triqs_hubbardI_hash, version + + # sets up necessary GF objects on ImFreq + self._init_ImFreq_objects() + self._init_ReFreq_hubbardI() + # sets up solver + self.triqs_solver = self._create_hubbardI_solver() + self.git_hash = triqs_hubbardI_hash + self.version = version + + elif self.solver_params['type'] == 'hartree': + from triqs_hartree_fock.version import triqs_hartree_fock_hash, version + + # sets up necessary GF objects on ImFreq + self._init_ImFreq_objects() + self._init_ReFreq_hartree() + # sets up solver + self.triqs_solver = self._create_hartree_solver() + self.git_hash = triqs_hartree_fock_hash + self.version = version + + elif self.solver_params['type'] == 'ftps': + from forktps.version import forktps_hash, version + + # additional parameters + self.bathfit_adjusted = self.iteration_offset != 0 + self.path_to_gs_accepted = bool(self.solver_params['path_to_gs']) + self.convert_ftps = {'up': 'up', 'down': 'dn', 'ud': 'ud', 'ud_0': 'ud_0', 'ud_1': 'ud_1'} + self.gf_struct = self.sum_k.gf_struct_solver_list[self.icrsh] + for ct, block in enumerate(self.gf_struct): + spin = block[0].split('_')[0] if not self.sum_k.corr_shells[self.icrsh]['SO'] else block[0] + # FTPS solver does not know a more complicated gf_struct list of indices, so make sure the order is correct! + indices = block[1] if not self.sum_k.corr_shells[self.icrsh]['SO'] else list(range(3)) + self.gf_struct[ct] = (self.convert_ftps[spin], indices) + # sets up necessary GF objects on ReFreq + self._init_ReFreq_objects() + self.bathfit_adjusted = self.iteration_offset != 0 + self.path_to_gs_accepted = bool(self.solver_params['path_to_gs']) + # sets up solver + self.triqs_solver, self.sector_params, self.dmrg_params, self.tevo_params, self.calc_me, self.calc_mapping = self._create_ftps_solver() + self.git_hash = forktps_hash + self.version = version + + elif self.solver_params['type'] == 'inchworm': + + # sets up necessary GF objects on ImFreq + self._init_ImFreq_objects() + # sets up solver + self.triqs_solver = self._create_inchworm_solver() + # self.git_hash = inchworm_hash + + elif self.solver_params['type'] == 'ctseg': + from triqs_ctseg.version import triqs_ctseg_hash, version + + # sets up necessary GF objects on ImFreq + self._init_ImFreq_objects() + # sets up solver + self.triqs_solver = self._create_ctseg_solver() + self.git_hash = triqs_ctseg_hash + self.version = version
+ + + # ******************************************************************** + # initialize Freq and Time objects + # ******************************************************************** + + def _init_ImFreq_objects(self): + r''' + Initialize all ImFreq objects + ''' + + # create all ImFreq instances + self.n_iw = self.general_params['n_iw'] + self.G_freq = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=self.sum_k.mesh) + # copy + self.Sigma_freq = self.G_freq.copy() + self.G0_freq = self.G_freq.copy() + self.G_freq_unsym = self.G_freq.copy() + self.Delta_freq = self.G_freq.copy() + + # create all ImTime instances + self.n_tau = self.general_params['n_tau'] + self.G_time = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=MeshImTime(beta=self.sum_k.mesh.beta, + S='Fermion', n_tau=self.n_tau) + ) + # copy + self.Delta_time = self.G_time.copy() + + # create all Legendre instances + if (self.solver_params['type'] in ['cthyb'] + and (self.solver_params['measure_G_l'] or self.solver_params['legendre_fit']) + or self.solver_params['type'] == 'ctseg' and self.solver_params['legendre_fit'] + or self.solver_params['type'] == 'hubbardI' and self.solver_params['measure_G_l']): + + self.n_l = self.solver_params['n_l'] + self.G_l = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=MeshLegendre(beta=self.general_params['beta'], + max_n=self.n_l, S='Fermion') + ) + # move original G_freq to G_freq_orig + self.G_time_orig = self.G_time.copy() + + if self.solver_params['type'] in ['cthyb', 'ctseg'] and self.solver_params['crm_dyson_solver']: + self.G_time_dlr = None + self.Sigma_dlr = None + + if self.solver_params['type'] in ['cthyb', 'hubbardI'] and self.solver_params['measure_density_matrix']: + self.density_matrix = None + self.h_loc_diagonalization = None + + if self.solver_params['type'] == 'cthyb' and self.solver_params['measure_chi'] is not None: + self.O_time = None + + if self.solver_params['type'] in ['cthyb'] and self.solver_params['delta_interface']: + self.Hloc_0 = Operator() + + def _init_ReFreq_objects(self): + r''' + Initialize all ReFreq objects + ''' + + # create all ReFreq instances + self.n_w = self.general_params['n_w'] + self.G_freq = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=self.sum_k.mesh) + # copy + self.Sigma_freq = self.G_freq.copy() + self.G0_freq = self.G_freq.copy() + self.Delta_freq = self.G_freq.copy() + self.G_freq_unsym = self.G_freq.copy() + + # create another Delta_freq for the solver, which uses different spin indices + n_orb = self.sum_k.corr_shells[self.icrsh]['dim'] + n_orb = n_orb//2 if self.sum_k.corr_shells[self.icrsh]['SO'] else n_orb + gf = Gf(target_shape = (n_orb, n_orb), mesh=MeshReFreq(n_w=self.n_w, window=self.general_params['w_range'])) + + self.Delta_freq_solver = BlockGf(name_list =tuple([block[0] for block in self.gf_struct]), block_list = (gf, gf), make_copies = True) + + # create all ReTime instances + # FIXME: dummy G_time, since time_steps will be recalculated during run + #time_steps = int(2 * self.solver_params['time_steps'] * self.solver_params['refine_factor']) if self.solver_params['n_bath'] != 0 else int(2 * self.solver_params['time_steps']) + time_steps = int(2 * 1 * self.solver_params['refine_factor']) if self.solver_params['n_bath'] != 0 else int(2 * 1) + self.G_time = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=MeshReTime(n_t=time_steps+1, + window=[0,time_steps*self.solver_params['dt']]) + ) + + def _init_ReFreq_hubbardI(self): + r''' + Initialize all ReFreq objects + ''' + + # create all ReFreq instances + self.n_w = self.general_params['n_w'] + self.G_Refreq = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=MeshReFreq(n_w=self.n_w, window=self.general_params['w_range']) + ) + # copy + self.Sigma_Refreq = self.G_Refreq.copy() + self.G0_Refreq = self.G_Refreq.copy() + + def _init_ReFreq_hartree(self): + r''' + Initialize all ReFreq objects + ''' + + # create all ReFreq instances + self.n_w = self.general_params['n_w'] + self.Sigma_Refreq = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=MeshReFreq(n_w=self.n_w, window=self.general_params['w_range']) + ) + + # ******************************************************************** + # solver-specific solve() command + # ******************************************************************** + +
+[docs] + def solve(self, **kwargs): + r''' + solve impurity problem with current solver + ''' + + if self.random_seed_generator is not None: + self.triqs_solver_params['random_seed'] = int(self.random_seed_generator(it=kwargs["it"], rank=mpi.rank)) + else: + assert 'random_seed' not in self.triqs_solver_params + + if self.solver_params['type'] == 'cthyb': + + if self.solver_params['delta_interface']: + self.triqs_solver.Delta_tau << self.Delta_time + self.triqs_solver_params['h_loc0'] = self.Hloc_0 + else: + # fill G0_freq from sum_k to solver + self.triqs_solver.G0_iw << make_hermitian(self.G0_freq) + + # update solver in h5 archive one last time for debugging if solve command crashes + if self.general_params['store_solver'] and mpi.is_master_node(): + with HDFArchive(self.general_params['jobname']+'/'+self.general_params['seedname']+'.h5', 'a') as archive: + if not 'it_-1' in archive['DMFT_input/solver']: + archive['DMFT_input/solver'].create_group('it_-1') + archive['DMFT_input/solver/it_-1'][f'S_{self.icrsh}'] = self.triqs_solver + if self.solver_params['delta_interface']: + archive['DMFT_input/solver/it_-1'][f'Delta_time_{self.icrsh}'] = self.triqs_solver.Delta_tau + else: + archive['DMFT_input/solver/it_-1'][f'G0_freq_{self.icrsh}'] = self.triqs_solver.G0_iw + # archive['DMFT_input/solver/it_-1'][f'Delta_freq_{self.icrsh}'] = self.Delta_freq + archive['DMFT_input/solver/it_-1'][f'solve_params_{self.icrsh}'] = prep_params_for_h5(self.solver_params) + archive['DMFT_input/solver/it_-1'][f'triqs_solver_params_{self.icrsh}'] = prep_params_for_h5(self.triqs_solver_params) + archive['DMFT_input/solver/it_-1']['mpi_size'] = mpi.size + mpi.barrier() + + # Solve the impurity problem for icrsh shell + # ************************************* + self.triqs_solver.solve(h_int=self.h_int, **self.triqs_solver_params) + # ************************************* + + # dump Delta_tau constructed internally from cthyb when delta_interface = False + if self.general_params['store_solver'] and mpi.is_master_node(): + with HDFArchive(self.general_params['jobname'] + '/' + self.general_params['seedname'] + '.h5', + 'a') as archive: + if not self.solver_params['delta_interface']: + archive['DMFT_input/solver/it_-1'][f'Delta_time_{self.icrsh}'] = self.triqs_solver.Delta_tau + mpi.barrier() + + # call postprocessing + self._cthyb_postprocessing() + + elif self.solver_params['type'] == 'ctint': + # fill G0_freq from sum_k to solver + self.triqs_solver.G0_iw << self.G0_freq + + if self.general_params['h_int_type'][self.icrsh] == 'dynamic': + for b1, b2 in product(self.sum_k.gf_struct_solver_dict[self.icrsh].keys(), repeat=2): + self.triqs_solver.D0_iw[b1,b2] << self.U_iw[self.icrsh] + + # Solve the impurity problem for icrsh shell + # ************************************* + self.triqs_solver.solve(h_int=self.h_int, **self.triqs_solver_params) + # ************************************* + + # call postprocessing + self._ctint_postprocessing() + + elif self.solver_params['type'] == 'hubbardI': + # fill G0_freq from sum_k to solver + self.triqs_solver.G0_iw << self.G0_freq + + # Solve the impurity problem for icrsh shell + # ************************************* + # this is done on every node due to very slow bcast of the AtomDiag object as of now + self.triqs_solver.solve(h_int=self.h_int, **self.triqs_solver_params) + # if density matrix is measured, get this too. Needs to be done here, + # because solver property 'dm' is not initialized/broadcastable + if self.solver_params['measure_density_matrix']: + self.density_matrix = self.triqs_solver.dm + self.h_loc_diagonalization = self.triqs_solver.ad + # get moments + from triqs_cthyb.tail_fit import sigma_high_frequency_moments, green_high_frequency_moments + from triqs_cthyb.util import orbital_occupations + self.Sigma_moments = sigma_high_frequency_moments(self.density_matrix, + self.h_loc_diagonalization, + self.sum_k.gf_struct_solver_list[self.icrsh], + self.h_int + ) + self.Sigma_Hartree = {bl: sigma_bl[0] for bl, sigma_bl in self.Sigma_moments.items()} + self.G_moments = green_high_frequency_moments(self.density_matrix, + self.h_loc_diagonalization, + self.sum_k.gf_struct_solver_list[self.icrsh], + self.h_int + ) + self.orbital_occupations = orbital_occupations(self.density_matrix, + self.sum_k.gf_struct_solver_list[self.icrsh], + self.h_loc_diagonalization + ) + + # ************************************* + + # call postprocessing + self._hubbardI_postprocessing() + + elif self.solver_params['type'] == 'hartree': + # fill G0_freq from sum_k to solver + self.triqs_solver.G0_iw << self.G0_freq + + # Solve the impurity problem for icrsh shell + # ************************************* + # this is done on every node due to very slow bcast of the AtomDiag object as of now + self.triqs_solver.solve(h_int=self.h_int, **self.triqs_solver_params) + + # call postprocessing + self._hartree_postprocessing() + + elif self.solver_params['type'] == 'ftps': + import forktps as ftps + from forktps.DiscreteBath import DiscretizeBath, TimeStepEstimation + from forktps.BathFitting import BathFitter + from forktps.Helpers import MakeGFstruct + # from . import OffDiagFitter as off_fitter + + def make_positive_definite(G): + # ensure that Delta is positive definite + for name, gf in G: + for orb, w in product(range(gf.target_shape[0]), gf.mesh): + if gf[orb,orb][w].imag > 0.0: + gf[orb,orb][w] = gf[orb,orb][w].real + 0.0j + return G + + # create h_loc solver object + h_loc = ftps.solver_core.Hloc(MakeGFstruct(self.Delta_freq_solver), SO=bool(self.sum_k.corr_shells[self.icrsh]['SO'])) + # need eff_atomic_levels + sumk_eal = self.sum_k.eff_atomic_levels()[self.icrsh] + + # fill Delta_time from Delta_freq sum_k to solver + for name, g0 in self.G0_freq: + spin = name.split('_')[0] if not self.sum_k.corr_shells[self.icrsh]['SO'] else name + ftps_name = self.convert_ftps[spin] + solver_eal = self.sum_k.block_structure.convert_matrix(sumk_eal, space_from='sumk', ish_from=self.sum_k.inequiv_to_corr[self.icrsh])[name] + self.Delta_freq[name] << Omega + 1j * self.general_params['eta'] - inverse(g0) - solver_eal + # solver Delta is symmetrized by just using 'up_0' channel + self.Delta_freq_solver[ftps_name] << Omega + 1j * self.general_params['eta'] - inverse(g0) - solver_eal + + # ensure that Delta is positive definite + self.Delta_freq_solver = make_positive_definite(self.Delta_freq_solver) + + if self.general_params['store_solver'] and mpi.is_master_node(): + archive = HDFArchive(self.general_params['jobname']+'/'+self.general_params['seedname']+'.h5', 'a') + if not 'it_-1' in archive['DMFT_input/solver']: + archive['DMFT_input/solver'].create_group('it_-1') + archive['DMFT_input/solver/it_-1']['Delta_orig'] = self.Delta_freq_solver + + # remove off-diagonal terms + if self.solver_params['diag_delta']: + for name, delta in self.Delta_freq_solver: + for i_orb, j_orb in product(range(delta.target_shape[0]),range(delta.target_shape[1])): + if i_orb != j_orb: + delta[i_orb,j_orb] << 0.0 + 0.0j + + # option to increase bath sites, but run with previous eta to get increased accuracy + if self.solver_params['n_bath'] != 0 and self.solver_params['refine_factor'] != 1: + if not self.bathfit_adjusted or self.bathfit_adjusted and self.iteration_offset > 0: + mpi.report('Rescaling "n_bath" with a factor of {}'.format(self.solver_params['refine_factor'])) + self.solver_params['n_bath'] = int(self.solver_params['refine_factor']*self.solver_params['n_bath']) + + if self.solver_params['bath_fit']: + + # bathfitter + # FIXME: this is temporary, since off-diagonal Bathfitter is not yet integrated in FTPS + if self.sum_k.corr_shells[self.icrsh]['SO']: + fitter = off_fitter.OffDiagBathFitter(Nb=self.solver_params['n_bath']) if (self.solver_params['refine_factor'] != 1 and self.solver_params['n_bath'] != 0) else off_fitter.OffDiagBathFitter(Nb=None) + Delta_discrete = fitter.FitBath(Delta=self.Delta_freq_solver, eta=self.general_params['eta'], ignoreWeight=self.solver_params['ignore_weight'], + SO=bool(self.sum_k.corr_shells[self.icrsh]['SO'])) + else: + fitter = BathFitter(Nb=self.solver_params['n_bath']) if self.solver_params['n_bath'] != 0 else BathFitter(Nb=None) + Delta_discrete = fitter.FitBath(Delta=self.Delta_freq_solver, eta=self.general_params['eta'], ignoreWeight=self.solver_params['ignore_weight']) + else: + # discretizebath + gap_interval = self.solver_params['enforce_gap'] if self.solver_params['enforce_gap'] is not None else None + Delta_discrete = DiscretizeBath(Delta=self.Delta_freq_solver, Nb=self.solver_params['n_bath'], gap=gap_interval, + SO=bool(self.sum_k.corr_shells[self.icrsh]['SO'])) + + # should be done only once after the first iteration + if self.solver_params['n_bath'] != 0 and self.solver_params['refine_factor'] != 1: + if not self.bathfit_adjusted or self.bathfit_adjusted and self.iteration_offset > 0: + mpi.report('Rescaling "1/eta" with a factor of {}'.format(self.solver_params['refine_factor'])) + # rescaling eta + self.general_params['eta'] /= self.solver_params['refine_factor'] + + if not self.bathfit_adjusted: + self.bathfit_adjusted = True + + self.triqs_solver.b = Delta_discrete + # calculate time_steps + time_steps = TimeStepEstimation(self.triqs_solver.b, eta=self.general_params['eta'], dt=self.solver_params['dt']) + mpi.report('TimeStepEstimation returned {} with given bath, "eta" = {} and "dt" = {}'.format(time_steps, self.general_params['eta'], + self.solver_params['dt'])) + # need to update tevo_params and G_time + self.tevo_params.time_steps = time_steps + self.G_time = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, space='solver', + mesh=MeshReTime(n_t=2*time_steps+1, + window=[0,2*time_steps*self.solver_params['dt']]) + ) + + + # fill Hloc FTPS object + # get hloc_dft from effective atomic levels + for name, gf in self.Delta_freq: + solver_eal = self.sum_k.block_structure.convert_matrix(sumk_eal, space_from='sumk', ish_from=self.sum_k.inequiv_to_corr[self.icrsh])[name] + if not self.sum_k.corr_shells[self.icrsh]['SO']: + name = self.convert_ftps[name.split('_')[0]] + solver_eal = solver_eal.real + # remove off-diagonal terms + if self.solver_params['diag_delta']: + solver_eal = np.diag(np.diag(solver_eal)) + h_loc.Fill(name, solver_eal) + + # fill solver h_loc + self.triqs_solver.e0 = h_loc + + # FIXME: unfortunately, in the current implementation the solver initializations aren't included yet in dmft_cycle, + # so for debugging it is done here again + # store solver to h5 archive + if self.general_params['store_solver'] and mpi.is_master_node(): + with HDFArchive(self.general_params['jobname']+'/'+self.general_params['seedname']+'.h5', 'a') as archive: + if not 'it_-1' in archive['DMFT_input/solver']: + archive['DMFT_input/solver'].create_group('it_-1') + archive['DMFT_input/solver'].create_group('it_-1') + archive['DMFT_input/solver/it_-1']['Delta'] = self.Delta_freq_solver + archive['DMFT_input/solver/it_-1']['S_'+str(self.icrsh)] = self.triqs_solver + + # Solve the impurity problem for icrsh shell + # ************************************* + path_to_gs = self.solver_params['path_to_gs'] if self.solver_params['path_to_gs'] is not None and self.path_to_gs_accepted else None + # fix to make sure this is only done in iteration 1 + if self.path_to_gs_accepted: + self.path_to_gs_accepted = False + if path_to_gs != 'postprocess': + self.triqs_solver.solve(h_int=self.h_int, params_GS=self.dmrg_params, params_partSector=self.sector_params, + tevo=self.tevo_params, eta=self.general_params['eta'], calc_me = self.calc_me, + state_storage=self.solver_params['state_storage'],path_to_gs=path_to_gs) + else: + self.triqs_solver.post_process(h_int=self.h_int, params_GS=self.dmrg_params, params_partSector=self.dmrg_params, + tevo=self.tevo_params, eta=self.general_params['eta'], calc_me = self.calc_me, + state_storage=self.solver_params['state_storage']) + # ************************************* + + # call postprocessing + self._ftps_postprocessing() + + elif self.solver_params['type'] == 'inchworm': + # fill Delta_time from Delta_freq sum_k to solver + self.triqs_solver.Delta_tau << make_gf_from_fourier(self.Delta_freq).real + + # Solve the impurity problem for icrsh shell + # ************************************* + self.triqs_solver.solve(h_int=self.h_int, **self.triqs_solver_params) + # ************************************* + + # call postprocessing + self._inchworm_postprocessing() + + if self.solver_params['type'] == 'ctseg': + # fill G0_freq from sum_k to solver + self.triqs_solver.Delta_tau << self.Delta_time + + if self.general_params['h_int_type'][self.icrsh] == 'dyn_density_density': + mpi.report('add dynamic interaction from AIMBES') + # convert 4 idx tensor to two index tensor + ish = self.sum_k.inequiv_to_corr[self.icrsh] + # prepare dynamic 2 idx parts + Uloc_dlr = self.gw_params['Uloc_dlr'][self.icrsh]['up'] + Uloc_dlr_2idx = Gf(mesh=Uloc_dlr.mesh, target_shape=[Uloc_dlr.target_shape[0],Uloc_dlr.target_shape[1]]) + Uloc_dlr_2idx_prime = Gf(mesh=Uloc_dlr.mesh, target_shape=[Uloc_dlr.target_shape[0],Uloc_dlr.target_shape[1]]) + + for coeff in Uloc_dlr.mesh: + # Transposes rotation matrix here because TRIQS has a slightly different definition + if self.sum_k.use_rotations: + Uloc_dlr_idx = util.transform_U_matrix(Uloc_dlr[coeff], self.sum_k.rot_mat[ish].T) + else: + Uloc_dlr_idx = Uloc_dlr[coeff] + U, Uprime = reduce_4index_to_2index(Uloc_dlr_idx) + # apply rot mat here + Uloc_dlr_2idx[coeff] = U + Uloc_dlr_2idx_prime[coeff] = Uprime + + # create full frequency objects + Uloc_tau_2idx = make_gf_imtime(Uloc_dlr_2idx, n_tau=self.solver_params['n_tau_bosonic']) + Uloc_tau_2idx_prime = make_gf_imtime(Uloc_dlr_2idx_prime, n_tau=self.solver_params['n_tau_bosonic']) + + Uloc_tau_2idx_sumk = BlockGf(name_list=['up', 'down'], block_list=[Uloc_tau_2idx, Uloc_tau_2idx]) + Uloc_tau_2idx_prime_sumk = BlockGf(name_list=['up', 'down'], block_list=[Uloc_tau_2idx_prime, Uloc_tau_2idx_prime]) + Uloc_tau_2idx_solver = self.sum_k.block_structure.convert_gf(Uloc_tau_2idx_sumk, + ish_from=self.icrsh, + space_from='sumk', + space_to='solver') + Uloc_tau_2idx_prime_solver = self.sum_k.block_structure.convert_gf(Uloc_tau_2idx_prime_sumk, + ish_from=self.icrsh, + space_from='sumk', + space_to='solver') + + + # fill D0_tau from Uloc_tau_2idx and Uloc_tau_2idx_prime + for iblock, Uloc_i in Uloc_tau_2idx_solver: + for jblock, Uloc_j in Uloc_tau_2idx_solver: + # same spin interaction + if iblock == jblock: + self.triqs_solver.D0_tau[iblock, jblock] << Uloc_tau_2idx_solver[iblock] + # opposite spin interaction + else: + self.triqs_solver.D0_tau[iblock, jblock] << Uloc_tau_2idx_prime_solver[iblock] + + # TODO: add Jerp_Iw to the solver + + # self.triqs_solver. Jperp_iw << make_gf_imfreq(Uloc_dlr_2idx, n_iw=self.general_params['n_w_b_nn']) + V + mpi.report('\nLocal interaction Hamiltonian is:',self.h_int) + + # update solver in h5 archive one last time for debugging if solve command crashes + if self.general_params['store_solver'] and mpi.is_master_node(): + with HDFArchive(self.general_params['jobname']+'/'+self.general_params['seedname']+'.h5', 'a') as archive: + if 'it_-1' not in archive['DMFT_input/solver']: + archive['DMFT_input/solver'].create_group('it_-1') + archive['DMFT_input/solver/it_-1'][f'S_{self.icrsh}'] = self.triqs_solver + archive['DMFT_input/solver/it_-1'][f'Delta_time_{self.icrsh}'] = self.triqs_solver.Delta_tau + archive['DMFT_input/solver/it_-1'][f'solve_params_{self.icrsh}'] = prep_params_for_h5(self.solver_params) + archive['DMFT_input/solver/it_-1'][f'triqs_solver_params_{self.icrsh}'] = prep_params_for_h5(self.triqs_solver_params) + archive['DMFT_input/solver/it_-1']['mpi_size'] = mpi.size + if self.general_params['h_int_type'][self.icrsh] == 'dyn_density_density': + archive['DMFT_input/solver/it_-1'][f'Uloc_dlr_2idx_{self.icrsh}'] = Uloc_dlr_2idx + archive['DMFT_input/solver/it_-1'][f'Uloc_dlr_2idx_prime_{self.icrsh}'] = Uloc_dlr_2idx_prime + mpi.barrier() + + # turn of problematic move in ctseg until fixed! + self.triqs_solver_params['move_move_segment'] = False + # Solve the impurity problem for icrsh shell + # ************************************* + self.triqs_solver.solve(h_int=self.h_int, h_loc0=self.Hloc_0, **self.triqs_solver_params) + # ************************************* + + # call postprocessing + self._ctseg_postprocessing() + + return
+ + + # ******************************************************************** + # create solvers objects + # ******************************************************************** + + def _create_cthyb_solver(self): + r''' + Initialize cthyb solver instance + ''' + from triqs_cthyb.solver import Solver as cthyb_solver + + # Separately stores all params that go into solve() call of solver + self.triqs_solver_params = {} + keys_to_pass = ('imag_threshold', 'length_cycle', 'max_time', 'measure_density_matrix', + 'measure_G_l', 'measure_pert_order', 'move_double', 'move_shift', + 'off_diag_threshold', 'perform_tail_fit') + for key in keys_to_pass: + self.triqs_solver_params[key] = self.solver_params[key] + + # Calculates number of sweeps per rank + self.triqs_solver_params['n_cycles'] = int(self.solver_params['n_cycles_tot'] / mpi.size) + # cast warmup cycles to int in case given in scientific notation + self.triqs_solver_params['n_warmup_cycles'] = int(self.solver_params['n_warmup_cycles']) + + # Renames measure chi param + self.triqs_solver_params['measure_O_tau_min_ins'] = self.solver_params['measure_chi_insertions'] + + # use_norm_as_weight also required to measure the density matrix + self.triqs_solver_params['use_norm_as_weight'] = self.triqs_solver_params['measure_density_matrix'] + + if self.triqs_solver_params['perform_tail_fit']: + for key in ('fit_max_moment', 'fit_max_n', 'fit_max_w', 'fit_min_n', 'fit_min_w'): + self.triqs_solver_params[key] = self.solver_params[key] + + # set loc_n_min and loc_n_max + if self.solver_params['loc_n_min'] is not None: + self.triqs_solver_params['loc_n_min'] = self.solver_params['loc_n_min'] + if self.solver_params['loc_n_max'] is not None: + self.triqs_solver_params['loc_n_max'] = self.solver_params['loc_n_max'] + + gf_struct = self.sum_k.gf_struct_solver_list[self.icrsh] + # Construct the triqs_solver instances + if self.solver_params['measure_G_l']: + triqs_solver = cthyb_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], n_tau=self.general_params['n_tau'], + n_l=self.solver_params['n_l'], delta_interface=self.solver_params['delta_interface']) + else: + triqs_solver = cthyb_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], n_tau=self.general_params['n_tau'], + delta_interface=self.solver_params['delta_interface']) + + return triqs_solver + + def _create_ctint_solver(self): + r''' + Initialize ctint solver instance + ''' + from triqs_ctint import Solver as ctint_solver + + # Separately stores all params that go into solve() call of solver + self.triqs_solver_params = {} + keys_to_pass = ('length_cycle', 'max_time', 'measure_pert_order', 'move_double', 'n_warmup_cycles') + for key in keys_to_pass: + self.triqs_solver_params[key] = self.solver_params[key] + + # Calculates number of sweeps per rank + self.triqs_solver_params['n_cycles'] = int(self.solver_params['n_cycles_tot'] / mpi.size) + + gf_struct = self.sum_k.gf_struct_solver_list[self.icrsh] + + if self.general_params['h_int_type'][self.icrsh] == 'dyn_density_density': + self.U_iw = None + if mpi.is_master_node(): + with HDFArchive(self.general_params['jobname']+'/'+self.general_params['seedname']+'.h5', 'r') as archive: + self.U_iw = archive['dynamic_U']['U_iw'] + self.U_iw = mpi.bcast(self.U_iw) + n_iw_dyn = self.U_iw[self.icrsh].mesh.last_index()+1 + # Construct the triqs_solver instances + triqs_solver = ctint_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], n_tau=self.general_params['n_tau'], use_D=True, use_Jperp=False, + n_iw_dynamical_interactions=n_iw_dyn,n_tau_dynamical_interactions=(int(n_iw_dyn*2.5))) + else: + # Construct the triqs_solver instances + triqs_solver = ctint_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], n_tau=self.general_params['n_tau'], use_D=False, use_Jperp=False) + + return triqs_solver + + def _create_hubbardI_solver(self): + r''' + Initialize hubbardI solver instance + ''' + from triqs_hubbardI import Solver as hubbardI_solver + + # Separately stores all params that go into solve() call of solver + # All params need to be renamed + self.triqs_solver_params = {} + self.triqs_solver_params['calc_gtau'] = self.solver_params['measure_G_tau'] + self.triqs_solver_params['calc_gw'] = True + self.triqs_solver_params['calc_gl'] = self.solver_params['measure_G_l'] + self.triqs_solver_params['calc_dm'] = self.solver_params['measure_density_matrix'] + + gf_struct = self.sum_k.gf_struct_solver_list[self.icrsh] + # Construct the triqs_solver instances + if self.solver_params['measure_G_l']: + triqs_solver = hubbardI_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], n_tau=self.general_params['n_tau'], + n_l=self.solver_params['n_l'], n_w=self.general_params['n_w'], + w_min=self.general_params['w_range'][0], w_max=self.general_params['w_range'][1], + idelta=self.general_params['eta']) + else: + triqs_solver = hubbardI_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], n_tau=self.general_params['n_tau'], + n_w=self.general_params['n_w'], idelta=self.general_params['eta'], + w_min=self.general_params['w_range'][0], w_max=self.general_params['w_range'][1]) + + return triqs_solver + + def _make_spin_equal(self, Sigma): + + # if not SOC than average up and down + if not self.general_params['magnetic'] and not self.sum_k.SO == 1: + Sigma['up_0'] = 0.5*(Sigma['up_0'] + Sigma['down_0']) + Sigma['down_0'] = Sigma['up_0'] + + return Sigma + + def _create_hartree_solver(self): + r''' + Initialize hartree_fock solver instance + ''' + from triqs_hartree_fock import ImpuritySolver as hartree_solver + + # Separately stores all params that go into solve() call of solver + self.triqs_solver_params = {} + keys_to_pass = ('method', 'one_shot', 'tol', 'with_fock') + for key in keys_to_pass: + self.triqs_solver_params[key] = self.solver_params[key] + + gf_struct = self.sum_k.gf_struct_solver_list[self.icrsh] + # Construct the triqs_solver instances + # Always initialize the solver with dc_U and dc_J equal to U and J and let the _interface_hartree_dc function + # take care of changing the parameters + triqs_solver = hartree_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_iw=self.general_params['n_iw'], force_real=self.solver_params['force_real'], + symmetries=[self._make_spin_equal], + dc_U= self.general_params['U'][self.icrsh], + dc_J= self.general_params['J'][self.icrsh] + ) + + def _interface_hartree_dc(hartree_instance, general_params, advanced_params, icrsh): + """ Modifies in-place class attributes to infercace with options in solid_dmft + for the moment supports only DC-relevant parameters + + Parameters + ---------- + general_params : dict + solid_dmft general parameter dictionary + advanced_params : dict + solid_dmft advanced parameter dictionary + icrsh : int + correlated shell number + """ + setattr(hartree_instance, 'dc', general_params['dc']) + if general_params['dc_type'][icrsh] is not None: + setattr(hartree_instance, 'dc_type', general_params['dc_type'][icrsh]) + + for key in ['dc_factor', 'dc_fixed_value']: + if key in advanced_params and advanced_params[key] is not None: + setattr(hartree_instance, key, advanced_params[key]) + + #list valued keys + for key in ['dc_U', 'dc_J', 'dc_fixed_occ']: + if key in advanced_params and advanced_params[key][icrsh] is not None: + setattr(hartree_instance, key, advanced_params[key][icrsh]) + + # Handle special cases + if 'dc_dmft' in general_params: + if general_params['dc_dmft'] == False: + mpi.report('HARTREE SOLVER: Warning dft occupation in the DC calculations are meaningless for the hartree solver, reverting to dmft occupations') + + if hartree_instance.dc_type == 0 and not self.general_params['magnetic']: + mpi.report(f"HARTREE SOLVER: Detected dc_type = {hartree_instance.dc_type}, changing to 'cFLL'") + hartree_instance.dc_type = 'cFLL' + elif hartree_instance.dc_type == 0 and self.general_params['magnetic']: + mpi.report(f"HARTREE SOLVER: Detected dc_type = {hartree_instance.dc_type}, changing to 'sFLL'") + hartree_instance.dc_type = 'sFLL' + elif hartree_instance.dc_type == 1: + mpi.report(f"HARTREE SOLVER: Detected dc_type = {hartree_instance.dc_type}, changing to 'cHeld'") + hartree_instance.dc_type = 'cHeld' + elif hartree_instance.dc_type == 2 and not self.general_params['magnetic']: + mpi.report(f"HARTREE SOLVER: Detected dc_type = {hartree_instance.dc_type}, changing to 'cAMF'") + hartree_instance.dc_type = 'cAMF' + elif hartree_instance.dc_type == 2 and self.general_params['magnetic']: + mpi.report(f"HARTREE SOLVER: Detected dc_type = {hartree_instance.dc_type}, changing to 'sAMF'") + hartree_instance.dc_type = 'sAMF' + + # Give dc information to the solver in order to customize DC calculation + _interface_hartree_dc(triqs_solver, self.general_params, self.advanced_params, self.icrsh) + + return triqs_solver + + def _create_inchworm_solver(self): + r''' + Initialize inchworm solver instance + ''' + + return triqs_solver + + def _create_ctseg_solver(self): + r''' + Initialize cthyb solver instance + ''' + from triqs_ctseg import Solver as ctseg_solver + + # Separately stores all params that go into solve() call of solver + self.triqs_solver_params = {} + keys_to_pass = ('length_cycle', 'max_time', 'measure_state_hist', 'measure_nn_tau', 'measure_G_tau', + 'measure_pert_order',) + for key in keys_to_pass: + self.triqs_solver_params[key] = self.solver_params[key] + + # Calculates number of sweeps per rank + self.triqs_solver_params['n_cycles'] = int(self.solver_params['n_cycles_tot'] / mpi.size) + # cast warmup cycles to int in case given in scientific notation + self.triqs_solver_params['n_warmup_cycles'] = int(self.solver_params['n_warmup_cycles']) + + # Makes sure measure_gw is true if improved estimators are used + if self.solver_params['improved_estimator']: + self.triqs_solver_params['measure_G_tau'] = True + self.triqs_solver_params['measure_F_tau'] = True + else: + self.triqs_solver_params['measure_F_tau'] = False + + + gf_struct = self.sum_k.gf_struct_solver_list[self.icrsh] + # Construct the triqs_solver instances + triqs_solver = ctseg_solver(beta=self.general_params['beta'], gf_struct=gf_struct, + n_tau=self.general_params['n_tau'], + n_tau_bosonic=int(self.solver_params['n_tau_bosonic'])) + return triqs_solver + + def _create_ftps_solver(self): + r''' + Initialize ftps solver instance + ''' + import forktps as ftps + + # TODO: add triqs_solver_params for ftps as well to make it analogous to other similars + # Not necessary but nicer. For now, just keep an empty dummy dict + self.triqs_solver_params = {} + + # convert self.deg_orbs_ftps to mapping and solver-friendly list + if not self.sum_k.corr_shells[self.icrsh]['SO']: + # mapping dictionary + calc_mapping = {self.deg_orbs_ftps[self.icrsh][deg_shell][0]: + self.deg_orbs_ftps[self.icrsh][deg_shell][1:] for deg_shell in range(len(self.deg_orbs_ftps[self.icrsh]))} + # make solver-friendly list from mapping keys + calc_me = [[item.split('_')[0], int(item.split('_')[1])] for item in calc_mapping.keys()] + # replace 'down' with 'dn' + calc_me = [[item[0].replace('down','dn'),item[1]] for item in calc_me] + else: + # for SOC we just end up calculating everything for now + # TODO: perhaps skip down channel + calc_mapping = None + calc_me = [[f'ud_{i}',j] for i,j in product(range(2), range(3))] + + # create solver + triqs_solver = ftps.Solver(gf_struct=self.gf_struct, nw=self.general_params['n_w'], + wmin=self.general_params['w_range'][0], wmax=self.general_params['w_range'][1]) + + + # create partSector params + sector_params = ftps.solver.DMRGParams(maxmI=50, maxmIB=50, maxmB=50, tw=1e-10, nmax=5, sweeps=5) + + # for now prep_imagTevo, prep_method and nmax hard-coded + # create DMRG params + dmrg_params = ftps.solver.DMRGParams(maxmI=self.solver_params['dmrg_maxmI'], maxmIB=self.solver_params['dmrg_maxmIB'], + maxmB=self.solver_params['dmrg_maxmB'], tw=self.solver_params['dmrg_tw'], + prep_imagTevo=True, prep_method='TEBD', sweeps=self.solver_params['sweeps'], nmax=2, + prep_time_steps=5, napph=2 + ) + + # create TEVO params + tevo_params = ftps.solver.TevoParams(dt=self.solver_params['dt'], time_steps=1, #dummy, will be updated during the run + maxmI=self.solver_params['maxmI'], maxmIB=self.solver_params['maxmIB'], + maxmB=self.solver_params['maxmB'], tw=self.solver_params['tw']) + + return triqs_solver, sector_params, dmrg_params, tevo_params, calc_me, calc_mapping + + # ******************************************************************** + # post-processing of solver output + # ******************************************************************** + + def _cthyb_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from cthyb solver + ''' + + def set_Gs_from_G_l(): + + # create new G_freq and G_time + for i, g in self.G_l: + g.enforce_discontinuity(np.identity(g.target_shape[0])) + # set G_freq from Legendre and Fouriertransform to get G_time + self.G_freq[i].set_from_legendre(g) + self.G_time[i].set_from_legendre(g) + + # Symmetrize + self.G_freq << make_hermitian(self.G_freq) + self.G_freq_unsym << self.G_freq + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + self.sum_k.symm_deg_gf(self.G_time, ish=self.icrsh) + # Dyson equation to get Sigma_freq + self.Sigma_freq << inverse(self.G0_freq) - inverse(self.G_freq) + + return + + # get Delta_time from solver + self.Delta_time << self.triqs_solver.Delta_tau + + # if measured in Legendre basis, get G_l from solver too + if self.solver_params['measure_G_l']: + # store original G_time into G_time_orig + self.G_time_orig << self.triqs_solver.G_tau + self.G_l << self.triqs_solver.G_l + # get G_time, G_freq, Sigma_freq from G_l + set_Gs_from_G_l() + + else: + self.G_freq << make_hermitian(self.triqs_solver.G_iw) + self.G_freq_unsym << self.G_freq + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + # set G_time + self.G_time << self.triqs_solver.G_tau + self.sum_k.symm_deg_gf(self.G_time, ish=self.icrsh) + + if self.solver_params['legendre_fit']: + self.G_time_orig << self.triqs_solver.G_tau + # run the filter + self.G_l << legendre_filter.apply(self.G_time, self.solver_params['n_l']) + # get G_time, G_freq, Sigma_freq from G_l + set_Gs_from_G_l() + elif self.solver_params['perform_tail_fit'] and not self.solver_params['legendre_fit']: + # if tailfit has been used replace Sigma with the tail fitted Sigma from cthyb + self.Sigma_freq << self.triqs_solver.Sigma_iw + elif self.solver_params['crm_dyson_solver']: + from triqs.gf.dlr_crm_dyson_solver import minimize_dyson + + mpi.report('\nCRM Dyson solver to extract Σ impurity\n') + # fit QMC G_tau to DLR + if mpi.is_master_node(): + if self.solver_params['crm_dlr_wmax'] is not None: + dlr_wmax = self.solver_params['crm_dlr_wmax'] + else: + dlr_wmax = self.general_params['dlr_wmax'] + if self.solver_params['crm_dlr_eps'] is not None: + dlr_eps = self.solver_params['crm_dlr_eps'] + else: + dlr_eps = self.general_params['dlr_eps'] + mpi.report(f"crm_dyson_solver with (wmax, eps) = ({dlr_wmax}, {dlr_eps}). ") + G_dlr = fit_gf_dlr(self.triqs_solver.G_tau, w_max=dlr_wmax, eps=dlr_eps) + self.G_time_dlr = make_gf_dlr_imtime(G_dlr) + + # assume little error on G0_iw and use to get G0_dlr + mesh_dlr_iw = MeshDLRImFreq(G_dlr.mesh) + G0_dlr_iw = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, mesh=mesh_dlr_iw, space='solver') + for block, gf in G0_dlr_iw: + for iwn in mesh_dlr_iw: + gf[iwn] = self.G0_freq[block](iwn) + self.sum_k.symm_deg_gf(G0_dlr_iw, ish=self.icrsh) + + # average moments + self.sum_k.symm_deg_gf(self.triqs_solver.Sigma_Hartree, ish=self.icrsh) + first_mom = {} + for block, mom in self.triqs_solver.Sigma_moments.items(): + first_mom[block] = mom[1] + self.sum_k.symm_deg_gf(first_mom, ish=self.icrsh) + + for block, mom in self.triqs_solver.Sigma_moments.items(): + mom[0] = self.triqs_solver.Sigma_Hartree[block] + mom[1] = first_mom[block] + + # minimize dyson for the first entry of each deg shell + self.Sigma_dlr = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, mesh=mesh_dlr_iw, space='solver') + # without any degenerate shells we run the minimization for all blocks + if self.sum_k.deg_shells[self.icrsh] == []: + for block, gf in self.Sigma_dlr: + np.random.seed(85281) + print('Minimizing Dyson via CRM for Σ[block]:', block) + gf, _, _ = minimize_dyson(G0_dlr=G0_dlr_iw[block], + G_dlr=G_dlr[block], + Sigma_moments=self.triqs_solver.Sigma_moments[block] + ) + else: + for deg_shell in self.sum_k.deg_shells[self.icrsh]: + for i, block in enumerate(deg_shell): + if i == 0: + np.random.seed(85281) + print('Minimizing Dyson via CRM for Σ[block]:', block) + self.Sigma_dlr[block], _, _ = minimize_dyson(G0_dlr=G0_dlr_iw[block], + G_dlr=G_dlr[block], + Sigma_moments=self.triqs_solver.Sigma_moments[block] + ) + sol_block = block + else: + self.Sigma_dlr[block] << self.Sigma_dlr[sol_block] + + print(f'Copying result from first block of deg list to {block}') + print('\n') + + self.Sigma_freq = make_gf_imfreq(self.Sigma_dlr, n_iw=self.general_params['n_iw']) + for block, gf in self.Sigma_freq: + gf += self.triqs_solver.Sigma_moments[block][0] + + mpi.barrier() + self.Sigma_freq = mpi.bcast(self.Sigma_freq) + self.Sigma_dlr = mpi.bcast(self.Sigma_dlr) + self.G_time = mpi.bcast(self.G_time) + self.G_time_dlr = mpi.bcast(self.G_time_dlr) + else: + # obtain Sigma via dyson from symmetrized G_freq + self.Sigma_freq << inverse(self.G0_freq) - inverse(self.G_freq) + + # if density matrix is measured, get this too + if self.solver_params['measure_density_matrix']: + self.density_matrix = self.triqs_solver.density_matrix + self.h_loc_diagonalization = self.triqs_solver.h_loc_diagonalization + self.Sigma_moments = self.triqs_solver.Sigma_moments + self.Sigma_Hartree = self.triqs_solver.Sigma_Hartree + self.G_moments = self.triqs_solver.G_moments + self.orbital_occupations = self.triqs_solver.orbital_occupations + + if self.solver_params['measure_pert_order']: + self.perturbation_order = self.triqs_solver.perturbation_order + self.perturbation_order_total = self.triqs_solver.perturbation_order_total + + if self.solver_params['measure_chi'] is not None: + self.O_time = self.triqs_solver.O_tau + + return + + def _ctint_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from cthyb solver + ''' + #TODO + + # def set_Gs_from_G_l(): + + # # create new G_freq and G_time + # for i, g in self.G_l: + # g.enforce_discontinuity(np.identity(g.target_shape[0])) + # # set G_freq from Legendre and Fouriertransform to get G_time + # self.G_freq[i].set_from_legendre(g) + # self.G_time[i] << Fourier(self.G_freq[i]) + # # Symmetrize + # self.G_freq << make_hermitian(self.G_freq) + # # Dyson equation to get Sigma_freq + # self.Sigma_freq << inverse(self.G0_freq) - inverse(self.G_freq) + + # return + + self.G_freq << make_hermitian(self.triqs_solver.G_iw) + self.G_freq_unsym << self.G_freq + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + self.Sigma_freq << inverse(self.G0_freq) - inverse(self.G_freq) + self.G_time << Fourier(self.G_freq) + + # TODO: probably not needed/sensible + # if self.solver_params['legendre_fit']: + # self.G_freq_orig << self.triqs_solver.G_iw + # # run the filter + # self.G_l << legendre_filter.apply(self.G_time, self.solver_params['n_l']) + # # get G_time, G_freq, Sigma_freq from G_l + # set_Gs_from_G_l() + + if self.solver_params['measure_histogram']: + self.perturbation_order = self.triqs_solver.histogram + + return + + def _hubbardI_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from hubbardI solver + ''' + + # get everything from solver + self.Sigma_freq << self.triqs_solver.Sigma_iw + self.G0_freq << self.triqs_solver.G0_iw + self.G0_Refreq << self.triqs_solver.G0_w + self.G_freq << make_hermitian(self.triqs_solver.G_iw) + self.G_freq_unsym << self.triqs_solver.G_iw + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + self.G_freq << self.G_freq + self.G_Refreq << self.triqs_solver.G_w + self.Sigma_Refreq << self.triqs_solver.Sigma_w + + # if measured in Legendre basis, get G_l from solver too + if self.solver_params['measure_G_l']: + self.G_l << self.triqs_solver.G_l + + if self.solver_params['measure_G_tau']: + self.G_time << self.triqs_solver.G_tau + + return + + def _hartree_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from hartree solver + ''' + + # get everything from solver + self.G0_freq << self.triqs_solver.G0_iw + self.G_freq_unsym << self.triqs_solver.G_iw + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + self.G_freq << self.G_freq + for bl, gf in self.Sigma_freq: + self.Sigma_freq[bl] << self.triqs_solver.Sigma_HF[bl] + self.Sigma_Refreq[bl] << self.triqs_solver.Sigma_HF[bl] + self.G_time << Fourier(self.G_freq) + self.interaction_energy = self.triqs_solver.interaction_energy() + self.DC_energy = self.triqs_solver.DC_energy() + + return + + def _inchworm_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from inchworm solver + ''' + + return + + def _ftps_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from ftps solver + ''' + from forktps.DiscreteBath import SigmaDyson + + # symmetrization of reduced solver G + def symmetrize_opt(G_in, soc): + G = G_in.copy() + if soc: + def swap_2(): + for i in range(2): + G['ud_1'][i,2] = -G['ud_1'][i,2] + G['ud_1'][2,i] = -G['ud_1'][2,i] + swap_2() + G['ud_0'] = 0.5*(G['ud_0'] + G['ud_1']) + G['ud_1'] = G['ud_0'] + for name , g in G: + g[1,1] = 0.5*(g[1,1]+g[2,2]) + g[2,2] = g[1,1] + swap_2() + else: + switch = lambda spin: 'dn' if spin == 'down' else 'up' + for key, mapto in self.calc_mapping.items(): + spin, block = key.split('_') + for deg_item in mapto: + map_spin, map_block = deg_item.split('_') + mpi.report(f'mapping {spin}-{block} to {map_spin}-{map_block}...') + G[switch(map_spin)].data[:,int(map_block),int(map_block)] = G[switch(spin)].data[:,int(block),int(block)] + # particle-hole symmetry: enforce mirror/point symmetry of G(w) + if self.solver_params['ph_symm']: + for block, gf in G: + gf.data.real = 0.5 * ( gf.data[::1].real - gf.data[::-1].real ) + gf.data.imag = 0.5 * ( gf.data[::1].imag + gf.data[::-1].imag ) + return G + + def symmetrize(G): + return symmetrize_opt(G, soc=self.sum_k.corr_shells[self.icrsh]['SO']) + + def make_positive_definite(G): + # ensure that Delta is positive definite + for name, gf in G: + for orb, w in product(range(gf.target_shape[0]), gf.mesh): + if gf[orb,orb][w].imag > 0.0: + gf[orb,orb][w] = gf[orb,orb][w].real + 0.0j + return G + + G_w = symmetrize(self.triqs_solver.G_w) + if not self.sum_k.corr_shells[self.icrsh]['SO']: + G_w = make_positive_definite(G_w) + + # calculate Sigma_freq via Dyson + # do not use Dyson equation directly, as G0 might have wrong eta + Sigma_w_symm = SigmaDyson(Gret=self.triqs_solver.G_ret, bath=self.triqs_solver.b, + hloc=self.triqs_solver.e0, mesh=self.Delta_freq_solver.mesh, + eta=self.general_params['eta'], symmG=symmetrize) + + # convert everything to solver objects + for block, gf in G_w: + if not self.sum_k.corr_shells[self.icrsh]['SO']: + reverse_convert = dict(map(reversed, self.convert_ftps.items())) + sumk_name = reverse_convert[block.split('_')[0]] + '_0' + else: + sumk_name = block + self.G_freq[sumk_name] << gf + # in FTPS the unsym result is not calculated. Symmetries are used by construction + self.G_freq_unsym[sumk_name] << gf + self.Sigma_freq[sumk_name] << Sigma_w_symm[block] + self.G_time[sumk_name] << self.triqs_solver.G_ret[block] + + return + + + def _ctseg_postprocessing(self): + r''' + Organize G_freq, G_time, Sigma_freq and G_l from ctseg solver + ''' + from triqs.operators.util.extractors import extract_U_dict2, dict_to_matrix + from solid_dmft.postprocessing.eval_U_cRPA_RESPACK import construct_Uijkl + + def set_Gs_from_G_l(): + + if self.solver_params['improved_estimator'] and mpi.is_master_node(): + print('\n !!!!WARNING!!!! \n you enabled both improved estimators and legendre based filtering / sampling. Sigma will be overwritten by legendre result. \n !!!!WARNING!!!!\n') + + # create new G_freq and G_time + for i, g in self.G_l: + g.enforce_discontinuity(np.identity(g.target_shape[0])) + # set G_freq from Legendre and Fouriertransform to get G_time + self.G_freq[i].set_from_legendre(g) + self.G_time[i].set_from_legendre(g) + # Symmetrize + self.G_freq << make_hermitian(self.G_freq) + self.G_freq_unsym << self.G_freq + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + self.sum_k.symm_deg_gf(self.G_time, ish=self.icrsh) + # Dyson equation to get Sigma_freq + self.Sigma_freq << inverse(self.G0_freq) - inverse(self.G_freq) + + return + + # first print average sign + if mpi.is_master_node(): + print('\nAverage sign: {}'.format(self.triqs_solver.results.average_sign)) + + # get Delta_time from solver + self.Delta_time << self.triqs_solver.Delta_tau + + self.G_time << self.triqs_solver.results.G_tau + self.sum_k.symm_deg_gf(self.G_time, ish=self.icrsh) + + # get occupation matrix + self.orbital_occupations = {bl: np.zeros((bl_size,bl_size)) for bl, bl_size in self.sum_k.gf_struct_solver_list[self.icrsh]} + for block, norb in self.sum_k.gf_struct_solver[self.icrsh].items(): + self.orbital_occupations[block] = np.zeros((norb,norb)) + for iorb in range(norb): + self.orbital_occupations[block][iorb, iorb] = self.triqs_solver.results.densities[block][iorb] + + self.orbital_occupations_sumk = self.sum_k.block_structure.convert_matrix(self.orbital_occupations, ish_from=self.icrsh, space_from='solver', space_to='sumk') + self.Sigma_Hartree = {} + self.Sigma_Hartree_sumk = {} + self.Sigma_moments = {} + if mpi.is_master_node(): + # get density density U tensor from solver + U_dict = extract_U_dict2(self.h_int) + norb = get_n_orbitals(self.sum_k)[self.icrsh]['up'] + U_dd = dict_to_matrix(U_dict, gf_struct=self.sum_k.gf_struct_solver_list[self.icrsh]) + # extract Uijij and Uijji terms + Uijij = U_dd[0:norb, norb:2*norb] + Uijji = Uijij - U_dd[0:norb, 0:norb] + # and construct full Uijkl tensor + Uijkl = construct_Uijkl(Uijij, Uijji) + + # now calculated Hartree shift via + # \Sigma^0_{\alpha \beta} = \sum_{i j} n_{i j} \left( 2 U_{\alpha i \beta j} - U_{\alpha i j \beta} \right) + for block, norb in self.sum_k.gf_struct_sumk[self.icrsh]: + self.Sigma_Hartree_sumk[block] = np.zeros((norb, norb),dtype=float) + for iorb, jorb in product(range(norb), repeat=2): + for inner in range(norb): + self.Sigma_Hartree_sumk[block][iorb,jorb] += self.orbital_occupations_sumk[block][inner, inner].real * ( 2*Uijkl[iorb, inner, jorb, inner].real - Uijkl[iorb, inner, inner, jorb].real ) + + # convert to solver block structure + self.Sigma_Hartree = self.sum_k.block_structure.convert_matrix(self.Sigma_Hartree_sumk, ish_from=self.icrsh, space_from='sumk', space_to='solver') + + # use degenerate shell information to symmetrize + self.sum_k.symm_deg_gf(self.Sigma_Hartree, ish=self.icrsh) + + # create moments array from this + for block, hf_val in self.Sigma_Hartree.items(): + self.Sigma_moments[block] = np.array([hf_val]) + + self.Sigma_Hartree = mpi.bcast(self.Sigma_Hartree) + self.Sigma_moments = mpi.bcast(self.Sigma_moments) + self.Sigma_Hartree_sumk = mpi.bcast(self.Sigma_Hartree_sumk) + + if mpi.is_master_node(): + # create empty moment container (list of np.arrays) + Gf_known_moments = make_zero_tail(self.G_freq,n_moments=2) + for i, bl in enumerate(self.G_freq.indices): + # 0 moment is 0, dont touch it, but first moment is 1 for the Gf + Gf_known_moments[i][1] = np.eye(self.G_freq[bl].target_shape[0]) + self.G_freq[bl] << Fourier(self.G_time[bl], Gf_known_moments[i]) + self.G_freq << mpi.bcast(self.G_freq) + + self.G_freq << make_hermitian(self.G_freq) + self.G_freq_unsym << self.G_freq + self.sum_k.symm_deg_gf(self.G_freq, ish=self.icrsh) + + # if measured in Legendre basis, get G_l from solver too + if self.solver_params['legendre_fit']: + self.G_time_orig << self.triqs_solver.results.G_tau + self.G_l << legendre_filter.apply(self.G_time, self.solver_params['n_l']) + # get G_time, G_freq, Sigma_freq from G_l + set_Gs_from_G_l() + elif self.solver_params['perform_tail_fit']: + self.Sigma_freq = inverse(self.G0_freq) - inverse(self.G_freq) + # without any degenerate shells we run the minimization for all blocks + self.Sigma_freq, tail = _fit_tail_window(self.Sigma_freq, + fit_min_n=self.solver_params['fit_min_n'], + fit_max_n=self.solver_params['fit_max_n'], + fit_min_w=self.solver_params['fit_min_w'], + fit_max_w=self.solver_params['fit_max_w'], + fit_max_moment=self.solver_params['fit_max_moment'], + fit_known_moments=self.Sigma_moments) + + # recompute G_freq from Sigma with fitted tail + self.G_freq = inverse(inverse(self.G0_freq) - self.Sigma_freq) + + # if improved estimators are turned on calc Sigma from F_tau, otherwise: + elif self.solver_params['improved_estimator']: + self.F_freq = self.G_freq.copy() + self.F_freq << 0.0 + self.F_time = self.G_time.copy() + self.F_time << self.triqs_solver.results.F_tau + F_known_moments = make_zero_tail(self.F_freq, n_moments=1) + if mpi.is_master_node(): + for i, bl in enumerate(self.F_freq.indices): + self.F_freq[bl] << Fourier(self.triqs_solver.results.F_tau[bl], F_known_moments[i]) + # fit tail of improved estimator and G_freq + self.F_freq << _gf_fit_tail_fraction(self.F_freq, fraction=0.9, replace=0.5, known_moments=F_known_moments) + self.G_freq << _gf_fit_tail_fraction(self.G_freq ,fraction=0.9, replace=0.5, known_moments=Gf_known_moments) + + self.F_freq << mpi.bcast(self.F_freq) + self.G_freq << mpi.bcast(self.G_freq) + for block, fw in self.F_freq: + for iw in fw.mesh: + self.Sigma_freq[block][iw] = self.F_freq[block][iw] / self.G_freq[block][iw] + + elif self.solver_params['crm_dyson_solver']: + from triqs.gf.dlr_crm_dyson_solver import minimize_dyson + + mpi.report('\nCRM Dyson solver to extract Σ impurity\n') + # fit QMC G_tau to DLR + if mpi.is_master_node(): + if self.solver_params['crm_dlr_wmax'] is not None: + dlr_wmax = self.solver_params['crm_dlr_wmax'] + else: + dlr_wmax = self.general_params['dlr_wmax'] + if self.solver_params['crm_dlr_eps'] is not None: + dlr_eps = self.solver_params['crm_dlr_eps'] + else: + dlr_eps = self.general_params['dlr_eps'] + mpi.report(f"crm_dyson_solver with (wmax, eps) = ({dlr_wmax}, {dlr_eps}). ") + G_dlr = fit_gf_dlr(self.triqs_solver.results.G_tau, w_max=dlr_wmax, eps=dlr_eps) + self.G_time_dlr = make_gf_dlr_imtime(G_dlr) + self.G_freq = make_gf_imfreq(G_dlr, n_iw=self.general_params['n_iw']) + + # assume little error on G0_iw and use to get G0_dlr + mesh_dlr_iw = MeshDLRImFreq(G_dlr.mesh) + G0_dlr_iw = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, mesh=mesh_dlr_iw, space='solver') + for block, gf in G0_dlr_iw: + for iwn in mesh_dlr_iw: + gf[iwn] = self.G0_freq[block](iwn) + self.sum_k.symm_deg_gf(G0_dlr_iw, ish=self.icrsh) + G0_dlr = make_gf_dlr(G0_dlr_iw) + + # get Hartree shift for optimizer + G0_iw = make_gf_imfreq(G0_dlr, n_iw=self.general_params['n_iw']) + G_iw = make_gf_imfreq(G_dlr, n_iw=self.general_params['n_iw']) + Sigma_iw = inverse(G0_iw) - inverse(G_iw) + + # minimize dyson for the first entry of each deg shell + self.Sigma_dlr = self.sum_k.block_structure.create_gf(ish=self.icrsh, gf_function=Gf, mesh=mesh_dlr_iw, space='solver') + # without any degenerate shells we run the minimization for all blocks + if self.sum_k.deg_shells[self.icrsh] == []: + for block, gf in self.Sigma_dlr: + np.random.seed(85281) + print('Minimizing Dyson via CRM for Σ[block]:', block) + gf, _, _ = minimize_dyson(G0_dlr=G0_dlr_iw[block], + G_dlr=G_dlr[block], + Sigma_moments=self.Sigma_moments[block] + ) + else: + for deg_shell in self.sum_k.deg_shells[self.icrsh]: + for i, block in enumerate(deg_shell): + if i == 0: + np.random.seed(85281) + print('Minimizing Dyson via CRM for Σ[block]:', block) + self.Sigma_dlr[block], _, _ = minimize_dyson(G0_dlr=G0_dlr_iw[block], + G_dlr=G_dlr[block], + Sigma_moments=self.Sigma_moments[block] + ) + sol_block = block + else: + print(f'Copying result from first block of deg list to {block}') + self.Sigma_dlr[block] << self.Sigma_dlr[sol_block] + + self.Sigma_freq[block] = make_gf_imfreq(self.Sigma_dlr[block], n_iw=self.general_params['n_iw']) + self.Sigma_freq[block] += self.Sigma_moments[block][0] + + self.G_freq = inverse(inverse(self.G0_freq) - self.Sigma_freq) + print('\n') + + + mpi.barrier() + self.Sigma_freq = mpi.bcast(self.Sigma_freq) + self.Sigma_dlr = mpi.bcast(self.Sigma_dlr) + self.G_time_dlr = mpi.bcast(self.G_time_dlr) + self.G_freq = mpi.bcast(self.G_freq) + else: + mpi.report('\n!!!! WARNING !!!! tail of solver output not handled! Turn on either measure_ft, legendre_fit\n') + self.Sigma_freq << inverse(self.G0_freq) - inverse(self.G_freq) + + + if self.solver_params['measure_state_hist']: + self.state_histogram = self.triqs_solver.results.state_hist + + if self.solver_params['measure_pert_order']: + self.perturbation_order_histo = self.triqs_solver.results.pert_order_Delta + bin_vec = np.arange(0, self.perturbation_order_histo.data.shape[0]) + self.avg_pert_order = np.sum(bin_vec * self.perturbation_order_histo.data[:]) + if mpi.is_master_node(): + print(f'Average perturbation order: {self.avg_pert_order}') + + return
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/gw_embedding/bdft_converter.html b/_modules/gw_embedding/bdft_converter.html new file mode 100644 index 00000000..467d262c --- /dev/null +++ b/_modules/gw_embedding/bdft_converter.html @@ -0,0 +1,851 @@ + + + + + + gw_embedding.bdft_converter — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for gw_embedding.bdft_converter

+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+converter from bdft output to edmft input for solid_dmft
+"""
+
+import numpy as np
+from scipy.constants import physical_constants
+
+
+from h5 import HDFArchive
+from triqs.utility import mpi
+from triqs.gf import (
+    Gf,
+    BlockGf,
+    make_gf_dlr_imtime,
+    make_gf_dlr,
+    make_gf_dlr_imfreq,
+)
+from triqs.gf.meshes import MeshDLRImFreq, MeshDLRImTime
+import itertools
+
+from solid_dmft.gw_embedding.iaft import IAFT
+
+HARTREE_EV = physical_constants['Hartree energy in eV'][0]
+
+def _get_dlr_from_IR(Gf_ir, ir_kernel, mesh_dlr_iw, dim=2):
+    r"""
+    Interpolate a given Gf from IR mesh to DLR mesh
+
+    Parameters
+    ----------
+    Gf_ir : np.ndarray
+        Green's function on IR mesh
+    ir_kernel : sparse_ir
+        IR kernel object
+    mesh_dlr_iw : MeshDLRImFreq
+        DLR mesh
+    dim : int, optional
+        dimension of the Green's function, defaults to 2
+
+    Returns
+    -------
+    Gf_dlr : BlockGf or Gf
+        Green's function on DLR mesh
+    """
+
+    n_orb = Gf_ir.shape[-1]
+    stats = 'f' if mesh_dlr_iw.statistic == 'Fermion' else 'b'
+
+    if stats == 'b':
+        Gf_ir_pos = Gf_ir.copy()
+        Gf_ir = np.zeros([Gf_ir_pos.shape[0] * 2 - 1] + [n_orb] * dim, dtype=complex)
+        Gf_ir[: Gf_ir_pos.shape[0]] = Gf_ir_pos[::-1]
+        Gf_ir[Gf_ir_pos.shape[0] :] = Gf_ir_pos[1:]
+
+    Gf_dlr_iw = Gf(mesh=mesh_dlr_iw, target_shape=[n_orb] * dim)
+
+    # prepare idx array for spare ir
+    if stats == 'f':
+        mesh_dlr_iw_idx = np.array([iwn.index for iwn in mesh_dlr_iw])
+    else:
+        mesh_dlr_iw_idx = np.array([iwn.index for iwn in mesh_dlr_iw])
+
+    Gf_dlr_iw.data[:] = ir_kernel.w_interpolate(Gf_ir, mesh_dlr_iw_idx, stats=stats, ir_notation=False)
+
+    Gf_dlr = make_gf_dlr(Gf_dlr_iw)
+    return Gf_dlr
+
+
+def check_iaft_accuracy(Aw, ir_kernel, stats,
+                        beta, dlr_wmax, dlr_prec, data_name):
+    mpi.report('============== DLR mesh check ==============\n')
+    mpi.report(f'Estimating accuracy of the user-defined (wmax, eps) = '
+               f'({dlr_wmax}, {dlr_prec}) for the DLR mesh\n')
+    ir_imp_kernel = IAFT(beta=beta, lmbda=beta * dlr_wmax, prec=dlr_prec)
+    Aw_imp = ir_kernel.w_interpolate(Aw, ir_imp_kernel.wn_mesh('f'), 'f')
+
+    ir_imp_kernel.check_leakage(Aw_imp, stats, data_name, w_input=True)
+    mpi.report('=================== done ===================\n')
+
+
+
+[docs] +def calc_Sigma_DC_gw(Wloc_dlr, Gloc_dlr, Vloc, verbose=False): + r""" + Calculate the double counting part of the self-energy from the screened Coulomb interaction + + Parameters + ---------- + Wloc_dlr : BlockGf or Gf with MeshDLR + screened Coulomb interaction + Gloc_dlr : BlockGf or Gf with MeshDLR + local Green's function + Vloc : np.ndarray + local Coulomb interaction + verbose : bool, optional + print additional information, defaults to False + + Returns + ------- + Sig_DC_dlr : BlockGf or Gf + double counting part of the self-energy + Sig_DC_hartree : np.ndarray + static Hartree part of the self-energy + Sig_DC_exchange : np.ndarray + static exchange part of the self-energy + """ + + if isinstance(Gloc_dlr, BlockGf): + Sig_DC_dlr_list = [] + Sig_DC_hartree_list = {} + Sig_DC_exchange_list = {} + for block, gloc in Gloc_dlr: + res = calc_Sigma_DC_gw(Wloc_dlr[block], gloc, Vloc[block], verbose) + Sig_DC_dlr_list.append(res[0]) + Sig_DC_hartree_list[block] = res[1] + Sig_DC_exchange_list[block] = res[2] + + return ( + BlockGf(name_list=list(Gloc_dlr.indices), block_list=Sig_DC_dlr_list), + Sig_DC_hartree_list, + Sig_DC_exchange_list, + ) + + n_orb = Gloc_dlr.target_shape[0] + + # dynamic part + Gloc_dlr_t = make_gf_dlr_imtime(Gloc_dlr) + Sig_dlr_t = Gf(mesh=Gloc_dlr_t.mesh, target_shape=Gloc_dlr_t.target_shape) + + Wloc_dlr_t = make_gf_dlr_imtime(Wloc_dlr) + + for tau in Gloc_dlr_t.mesh: + # Wloc_dlr is bosonic and the mesh has a different hash, use call to get value at tau point + Sig_dlr_t[tau] = -1 * np.einsum('ijkl, jk -> li', Wloc_dlr_t[tau], Gloc_dlr_t[tau]) + + Sig_DC_dlr = make_gf_dlr(Sig_dlr_t) + + # static hartree Part + Sig_DC_hartree = np.zeros((n_orb, n_orb)) + Sig_DC_hartree = 2 * np.einsum('ijkl, lj -> ik', Vloc, Gloc_dlr.density()) + # symmetrize + Sig_DC_hartree = 0.5 * (Sig_DC_hartree + Sig_DC_hartree.conj().T) + + if verbose: + print('static Hartree part of DC') + print(Sig_DC_hartree.real) + if np.any(np.imag(Sig_DC_hartree) > 1e-3): + print('Im:') + print(np.imag(Sig_DC_hartree)) + + # static exchange part + Sig_DC_exchange = np.zeros((n_orb, n_orb)) + Sig_DC_exchange = -1 * np.einsum('ijkl, jk -> li', Vloc, Gloc_dlr.density()) + # symmetrize + Sig_DC_exchange = 0.5 * (Sig_DC_exchange + Sig_DC_exchange.conj().T) + + if verbose: + print('static exchange part of DC') + print(Sig_DC_exchange.real) + if np.any(np.imag(Sig_DC_exchange) > 1e-3): + print('Im:') + print(np.imag(Sig_DC_exchange)) + return Sig_DC_dlr, Sig_DC_hartree, Sig_DC_exchange
+ + + +
+[docs] +def calc_W_from_Gloc(Gloc_dlr, U): + r""" + Calculate Wijkl from given constant U tensor and Gf on DLRMesh + triqs notation for Uijkl: + + phi*_i(r) phi*_j(r') U(r,r') phi_l'(r') phi_k(r) = Uijkl c^+_i c^+_j' c_l' c_k + + where the ' denotes a spin index different from the other without ' + + the according diagram is (left and right have same spin):: + + j (phi) k' (phi) + \ / + < < + \__________/ + / \ + > > + / \ + i (phi*) l' + + we now have to move to a product basis form to combine two indices + i.e. go from nb,nb,nb,nb to nb**2,nb**2 tensors:: + + Uji,kl = phi*_i(r) phi_j(r) U(r,r') phi*_k(r') phi_l(r') + = Psi*_ji(r) U(r,r') Psi_kl(r') + + So we have to transform the triqs notation of Uijkl -> Uki,jl, i.e. + swap col/rows as (2,0,1,3) to go to the basis and the in the end + swap W_ki,jl back in reverse. + + Then we compute pubble polarizability as + + Pi_ab,kl(tau) = -2 G_bl(tau) G_ka(beta - tau) + + So that:: + + [ U Pi(iwn) ]_ji,kl = sum_ab U_ji,ab Pi_ab,kl(iwn) + + i.e.:: + + j' a ___ + \ / \ k + < < \ + \__________/ \ + / \ / + > > / + / \___/ l + i' b + + then the screened Coulomb interaction in product basis is:: + + W_ji,kl(iwn) = [1 - U Pi(iwn) ]^-1_ji,kl Uji,kl - Uji,kl + + (subtract static shift here), and finally convert back to triqs notation. + + + Parameters + ---------- + Gloc_dlr : BlockGf or Gf with MeshDLR + local Green's function + + U : np.ndarray of with shape [Gloc_dlr.target_shape]*4 or dict of np.ndarray + constant U tensor + + Returns + ------- + W_dlr : BlockGf or Gf + screened Coulomb interaction + """ + + if isinstance(Gloc_dlr, BlockGf): + Wloc_list = [] + for block, gloc in Gloc_dlr: + if isinstance(U, np.ndarray): + Wloc_list.append(calc_W_from_Gloc(gloc, U)) + else: + Wloc_list.append(calc_W_from_Gloc(gloc, U[block])) + + return BlockGf(name_list=list(Gloc_dlr.indices), block_list=Wloc_list) + + nb = Gloc_dlr.target_shape[0] + Gloc_dlr_t = make_gf_dlr_imtime(Gloc_dlr) + mesh_bos = MeshDLRImTime( + beta=Gloc_dlr.mesh.beta, + statistic='Boson', + w_max=Gloc_dlr.mesh.w_max, + eps=Gloc_dlr.mesh.eps, + symmetrize=True + ) + + PI_dlr_t = Gf(mesh=mesh_bos, target_shape=[nb] * 4) + for tau in Gloc_dlr_t.mesh: + PI_dlr_t[tau] = -2 * np.einsum('bl, ka -> abkl', Gloc_dlr_t[tau], Gloc_dlr(Gloc_dlr_t.mesh.beta - tau)) + + PI_dlr = make_gf_dlr(PI_dlr_t) + PI_dlr_w = make_gf_dlr_imfreq(PI_dlr) + + # need to swap indices and go into product basis + U_prod = np.transpose(U, (2, 0, 1, 3)).reshape(nb**2, nb**2) + + W_dlr_w = Gf(mesh=PI_dlr_w.mesh, target_shape=[nb] * 4) + + ones = np.eye(nb**2) + for w in PI_dlr_w.mesh: + eps = ones - U_prod @ PI_dlr_w[w].reshape(nb**2, nb**2) + # in product basis W_ji,kl + W_dlr_w[w] = (np.linalg.inv(eps) @ U_prod - U_prod).reshape(nb, nb, nb, nb) + + # swap indices back + W_dlr_w[w] = np.transpose(W_dlr_w[w], (1, 2, 0, 3)) + W_dlr = make_gf_dlr(W_dlr_w) + + return W_dlr
+ + + +
+[docs] +def convert_gw_output(job_h5, gw_h5, dlr_wmax=None, dlr_eps=None, + it_1e=0, it_2e=0, ha_ev_conv = False): + """ + read bdft output and convert to triqs Gf DLR objects + + Parameters + ---------- + job_h5: string + path to solid_dmft job file + gw_h5: string + path to GW checkpoint file for AIMBES code + dlr_wmax: float + wmax for dlr mesh, defaults to the wmax from the IR basis + dlr_eps: float + precision for dlr mesh, defaults to the precision from the IR basis + it_1e: int, optional + iteration to read from gw_h5 calculation for 1e downfolding, defaults to last iteration + it_2e: int, optional + iteration to read from gw_h5 calculation for 2e downfolding, defaults to last iteration + ha_ev_conv: bool, optional + convert energies from Hartree to eV, defaults to False + + Returns + ------- + gw_data: dict + dictionary holding all read objects: mu_emb, beta, lam, w_max, prec, mesh_dlr_iw_b, + mesh_dlr_iw_f, n_orb, G0_dlr, Gloc_dlr, Sigma_imp_dlr, Sigma_imp_DC_dlr, Uloc_dlr, + Vloc, Hloc0, Vhf_dc, Vhf + ir_kernel: sparse_ir kernel object + IR kernel with AIMBES paramaters + """ + + mpi.report('reading output from aimbes code') + + gw_data = {} + + if ha_ev_conv: + conv_fac = HARTREE_EV + else: + conv_fac = 1.0 + + with HDFArchive(gw_h5, 'r') as ar: + if not it_1e or not it_2e: + it_1e = ar['downfold_1e/final_iter'] + it_2e = ar['downfold_2e/final_iter'] + + mpi.report(f'Reading results from downfold_1e iter {it_1e} and downfold_2e iter {it_2e} from given AIMBES chkpt file.') + + # auxilary quantities + gw_data['it_1e'] = it_1e + gw_data['it_2e'] = it_2e + gw_data['mu_emb'] = ar[f'downfold_1e/iter{it_1e}']['mu'] + gw_data['beta'] = ar['imaginary_fourier_transform']['beta'] + gw_data['lam'] = ar['imaginary_fourier_transform']['lambda'] + gw_data['gw_wmax'] = gw_data['lam'] / gw_data['beta'] + gw_data['gw_dlr_wmax'] = gw_data['gw_wmax'] if dlr_wmax is None else dlr_wmax + gw_data['number_of_spins'] = ar['system/number_of_spins'] + assert gw_data['number_of_spins'] == 1, 'spin calculations not yet supported in converter' + + prec = ar['imaginary_fourier_transform']['prec'] + if prec == 'high': + # set to highest DLR precision possible + gw_data['gw_ir_prec'] = 1e-15 + gw_data['gw_dlr_prec'] = 1e-13 if dlr_eps is None else dlr_eps + elif prec == 'mid': + gw_data['gw_ir_prec'] = 1e-10 + gw_data['gw_dlr_prec'] = 1e-10 if dlr_eps is None else dlr_eps + elif prec == 'low': + gw_data['gw_ir_prec'] = 1e-6 + gw_data['gw_dlr_prec'] = 1e-6 if dlr_eps is None else dlr_eps + + # 1 particle properties + g_weiss_wsIab = ar[f'downfold_1e/iter{it_1e}']['g_weiss_wsIab'] + delta_wsIab = ar[f'downfold_1e/iter{it_1e}']['delta_wsIab'] + Sigma_dc_wsIab = ar[f'downfold_1e/iter{it_1e}']['Sigma_dc_wsIab'] + Gloc = ar[f'downfold_1e/iter{it_1e}']['Gloc_wsIab'] + gw_data['n_inequiv_shells'] = Gloc.shape[2] + + # 2 particle properties + # TODO: discuss how the site index is used right now in bDFT + Vloc_jk = ar[f'downfold_2e/iter{it_2e}']['Vloc_abcd'] + Uloc_ir_jk = ar[f'downfold_2e/iter{it_2e}']['Uloc_wabcd'][:, ...] + # switch inner two indices to match triqs notation + Vloc = np.zeros(Vloc_jk.shape, dtype=complex) + Uloc_ir = np.zeros(Uloc_ir_jk.shape, dtype=complex) + n_orb = Vloc.shape[0] + for or1, or2, or3, or4 in itertools.product(range(n_orb), repeat=4): + Vloc[or1, or2, or3, or4] = Vloc_jk[or1, or3, or2, or4] + for ir_w in range(Uloc_ir_jk.shape[0]): + Uloc_ir[ir_w, or1, or2, or3, or4] = Uloc_ir_jk[ir_w, or1, or3, or2, or4] + + # get Hloc_0 + Vhf_dc_sIab = ar[f'downfold_1e/iter{it_1e}']['Vhf_dc_sIab'][0, 0] + Vhf_sIab = ar[f'downfold_1e/iter{it_1e}']['Vhf_gw_sIab'][0, 0] + H0_loc = ar[f'downfold_1e/iter{it_1e}']['H0_sIab'] + + if 'Vcorr_gw_sIab' in ar[f'downfold_1e/iter{it_1e}']: + mpi.report('Found Vcorr_sIab in the bdft checkpoint file, ' + 'i.e. Embedding on top of an effective QP Hamiltonian.') + Vcorr_sIab = ar[f'downfold_1e/iter{it_1e}/Vcorr_gw_sIab'][0, 0] + Vcorr_dc_sIab = ar[f'downfold_1e/iter{it_1e}/Vcorr_dc_sIab'][0, 0] + Hloc0 = -1*(np.eye(n_orb) * gw_data['mu_emb'] - H0_loc[0,0] - Vhf_sIab - Vcorr_sIab + Vhf_dc_sIab + Vcorr_dc_sIab) + qp_emb = True + else: + Sigma_wsIab = ar[f'downfold_1e/iter{it_1e}']['Sigma_gw_wsIab'] + qp_emb = False + Hloc0 = -1*(np.eye(n_orb) * gw_data['mu_emb'] - H0_loc[0,0] - (Vhf_sIab-Vhf_dc_sIab)) + + # get IR object + mpi.report('create IR kernel and convert to DLR') + # create IR kernel + mpi.report("") + ir_kernel = IAFT(beta=gw_data['beta'], lmbda=gw_data['lam'], prec=gw_data['gw_ir_prec']) + + if dlr_wmax is not None or dlr_eps is not None: + # check user-defined dlr_wmax and dlr_eps for the impurity + check_iaft_accuracy(g_weiss_wsIab, ir_kernel, 'f', + gw_data['beta'], gw_data['gw_dlr_wmax'], gw_data['gw_dlr_prec'], + "fermionic Weiss field g") + + gw_data['mesh_dlr_iw_b'] = MeshDLRImFreq( + beta=gw_data['beta']/conv_fac, + statistic='Boson', + w_max=gw_data['gw_dlr_wmax']*conv_fac, + eps=gw_data['gw_dlr_prec'], + symmetrize=True + ) + gw_data['mesh_dlr_iw_f'] = MeshDLRImFreq( + beta=gw_data['beta']/conv_fac, + statistic='Fermion', + w_max=gw_data['gw_dlr_wmax']*conv_fac, + eps=gw_data['gw_dlr_prec'], + symmetrize=True + ) + + ( + U_dlr_list, + G0_dlr_list, + delta_dlr_list, + Gloc_dlr_list, + Sigma_dlr_list, + Sigma_DC_dlr_list, + V_list, + Hloc_list, + Vhf_list, + Vhf_dc_list, + n_orb_list, + ) = [], [], [], [], [], [], [], [], [], [], [] + for ish in range(gw_data['n_inequiv_shells']): + # fit IR Uloc on DLR iw mesh + temp = _get_dlr_from_IR(Uloc_ir*conv_fac, ir_kernel, gw_data['mesh_dlr_iw_b'], dim=4) + Uloc_dlr = BlockGf(name_list=['up', 'down'], block_list=[temp, temp], make_copies=True) + + U_dlr_list.append(Uloc_dlr) + V_list.append({'up': Vloc.copy()*conv_fac, 'down': Vloc*conv_fac}) + Hloc_list.append({'up': Hloc0.copy()*conv_fac, 'down': Hloc0*conv_fac}) + Vhf_list.append({'up': Vhf_sIab.copy()*conv_fac, 'down': Vhf_sIab*conv_fac}) + Vhf_dc_list.append({'up': Vhf_dc_sIab.copy()*conv_fac, 'down': Vhf_dc_sIab*conv_fac}) + n_orb_list.append(n_orb) + + temp = _get_dlr_from_IR(g_weiss_wsIab[:, 0, ish, :, :]/conv_fac, ir_kernel, gw_data['mesh_dlr_iw_f'], dim=2) + G0_dlr = BlockGf(name_list=['up', 'down'], block_list=[temp, temp], make_copies=True) + G0_dlr_list.append(G0_dlr) + + temp = _get_dlr_from_IR(delta_wsIab[:, 0, ish, :, :]/conv_fac, ir_kernel, gw_data['mesh_dlr_iw_f'], dim=2) + delta_dlr = BlockGf(name_list=['up', 'down'], block_list=[temp, temp], make_copies=True) + delta_dlr_list.append(delta_dlr) + + temp = _get_dlr_from_IR(Gloc[:, 0, ish, :, :]/conv_fac, ir_kernel, gw_data['mesh_dlr_iw_f'], dim=2) + Gloc_dlr = BlockGf(name_list=['up', 'down'], block_list=[temp, temp], make_copies=True) + Gloc_dlr_list.append(Gloc_dlr) + + # since Sigma can have a static shift we return DLR Imfreq mesh + if not qp_emb: + temp = _get_dlr_from_IR(Sigma_wsIab[:, 0, ish, :, :]*conv_fac, ir_kernel, gw_data['mesh_dlr_iw_f'], dim=2) + Sigma_dlr = BlockGf(name_list=['up', 'down'], block_list=[temp, temp], make_copies=True) + Sigma_dlr_list.append(Sigma_dlr) + + temp = _get_dlr_from_IR(Sigma_dc_wsIab[:, 0, ish, :, :]*conv_fac, ir_kernel, gw_data['mesh_dlr_iw_f'], dim=2) + Sigma_DC_dlr = BlockGf(name_list=['up', 'down'], block_list=[temp, temp], make_copies=True) + Sigma_DC_dlr_list.append(Sigma_DC_dlr) + + gw_data['G0_dlr'] = G0_dlr_list + gw_data['delta_dlr'] = delta_dlr_list + gw_data['Gloc_dlr'] = Gloc_dlr_list + gw_data['Sigma_imp_dlr'] = Sigma_dlr_list + gw_data['Sigma_imp_DC_dlr'] = Sigma_DC_dlr_list + gw_data['Uloc_dlr'] = U_dlr_list + gw_data['Vloc'] = V_list + gw_data['Hloc0'] = Hloc_list + gw_data['Vhf_dc'] = Vhf_dc_list + gw_data['Vhf'] = Vhf_list + gw_data['n_orb'] = n_orb_list + + # write Uloc / Wloc back to h5 archive + mpi.report(f'writing results in {job_h5}/DMFT_input') + + with HDFArchive(job_h5, 'a') as ar: + if 'DMFT_input' not in ar: + ar.create_group('DMFT_input') + if f'iter{it_1e}' not in ar['DMFT_input']: + ar['DMFT_input'].create_group(f'iter{it_1e}') + + for key, value in gw_data.items(): + ar[f'DMFT_input/iter{it_1e}'][key] = value + + mpi.report(f'finished writing results in {job_h5}/DMFT_input') + return gw_data, ir_kernel
+ + + +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/gw_embedding/gw_flow.html b/_modules/gw_embedding/gw_flow.html new file mode 100644 index 00000000..9345b12a --- /dev/null +++ b/_modules/gw_embedding/gw_flow.html @@ -0,0 +1,862 @@ + + + + + + gw_embedding.gw_flow — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for gw_embedding.gw_flow

+# -*- coding: utf-8 -*-
+################################################################################
+#
+# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
+#              utilizing the TRIQS software library
+#
+# Copyright (C) 2018-2020, ETH Zurich
+# Copyright (C) 2021, The Simons Foundation
+#      authors: A. Hampel, M. Merkel, and S. Beck
+#
+# solid_dmft is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+# PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+# You should have received a copy of the GNU General Public License along with
+# solid_dmft (in the file COPYING.txt in this directory). If not, see
+# <http://www.gnu.org/licenses/>.
+#
+################################################################################
+# pyright: reportUnusedExpression=false
+"""
+Module for gw flow
+"""
+
+from timeit import default_timer as timer
+import numpy as np
+
+from h5 import HDFArchive
+from triqs.utility import mpi
+from triqs.gf import (
+    iOmega_n,
+    inverse,
+    fit_hermitian_tail,
+    Gf,
+    BlockGf,
+    make_hermitian,
+    make_gf_dlr,
+    make_gf_imfreq,
+    make_gf_imtime,
+    make_gf_dlr_imfreq,
+)
+from triqs.version import git_hash as triqs_hash
+from triqs.version import version as triqs_version
+from triqs.gf.meshes import MeshImFreq
+from triqs.operators import c_dag, c, Operator
+from triqs_dft_tools.block_structure import BlockStructure
+
+from solid_dmft.version import solid_dmft_hash
+from solid_dmft.version import version as solid_dmft_version
+from solid_dmft.dmft_tools import formatter
+from solid_dmft.dmft_tools import results_to_archive
+from solid_dmft.dmft_tools.solver import SolverStructure
+from solid_dmft.dmft_tools import interaction_hamiltonian
+from solid_dmft.dmft_cycle import _extract_quantity_per_inequiv
+from solid_dmft.gw_embedding.bdft_converter import convert_gw_output
+
+
+
+[docs] +class dummy_sumk(object): + """ + create dummy sumk helper object + """ + +
+[docs] + def __init__(self, n_inequiv_shells, n_orb_list, enforce_off_diag, use_rot, magnetic): + self.n_inequiv_shells = n_inequiv_shells + self.SO = 0 + self.use_rotations = use_rot + if self.use_rotations: + raise ValueError('rotations not implemented yet for GW embedding') + self.gf_struct_solver = [] + self.gf_struct_sumk = [] + self.spin_block_names = [] + self.inequiv_to_corr = [] + self.corr_to_inequiv = [] + self.deg_shells = [] + self.dc_energ = [0.0 for ish in range(self.n_inequiv_shells)] + self.sumk_to_solver = [{} for ish in range(self.n_inequiv_shells)] + self.solver_to_sumk = [{} for ish in range(self.n_inequiv_shells)] + self.solver_to_sumk_block = [{} for ish in range(self.n_inequiv_shells)] + for ish in range(self.n_inequiv_shells): + self.inequiv_to_corr.append(ish) + self.corr_to_inequiv.append(ish) + self.spin_block_names.append(['up', 'down']) + self.gf_struct_sumk.append([('up', n_orb_list[ish]), ('down', n_orb_list[ish])]) + + # use full off-diagonal block structure in impurity solver + if enforce_off_diag: + self.gf_struct_solver.append({'up_0': n_orb_list[ish], 'down_0': n_orb_list[ish]}) + if not magnetic: + self.deg_shells.append([['up_0', 'down_0']]) + # setup standard mapping between sumk and solver + for block, inner_dim in self.gf_struct_sumk[ish]: + self.solver_to_sumk_block[ish][f'{block}_0'] = block + for iorb in range(inner_dim): + self.sumk_to_solver[ish][(block, iorb)] = (block + '_0', iorb) + self.solver_to_sumk[ish][(block + '_0', iorb)] = (block, iorb) + else: + self.gf_struct_solver.append({}) + self.deg_shells.append([]) + for block, inner_dim in self.gf_struct_sumk[ish]: + for iorb in range(inner_dim): + self.gf_struct_solver[ish][f'{block}_{iorb}'] = 1 + if not magnetic and block == 'up': + self.deg_shells[ish].append([f'up_{iorb}', f'down_{iorb}']) + # setup standard mapping between sumk and solver + self.solver_to_sumk_block[ish][f'{block}_{iorb}'] = block + self.sumk_to_solver[ish][(block, iorb)] = (f'{block}_{iorb}', 0) + self.solver_to_sumk[ish][(f'{block}_{iorb}', 0)] = (block, iorb) + + + self.gf_struct_solver_list = [sorted([(k, v) for k, v in list(gfs.items())], key=lambda x: x[0]) for gfs in self.gf_struct_solver] + + # creat block_structure object for solver + self.block_structure = BlockStructure( + gf_struct_sumk=self.gf_struct_sumk, + gf_struct_solver=self.gf_struct_solver, + solver_to_sumk=self.solver_to_sumk, + sumk_to_solver=self.sumk_to_solver, + solver_to_sumk_block=self.solver_to_sumk_block, + deg_shells=self.deg_shells, + corr_to_inequiv = self.corr_to_inequiv, + transformation=None, + )
+ + +
+[docs] + def symm_deg_gf(self, gf_to_symm, ish=0): + r""" + Averages a GF or a dict of np.ndarrays over degenerate shells. + + Degenerate shells of an inequivalent correlated shell are defined by + `self.deg_shells`. This function enforces corresponding degeneracies + in the input GF. + + Parameters + ---------- + gf_to_symm : gf_struct_solver like + Input and output GF (i.e., it gets overwritten) + or dict of np.ndarrays. + ish : int + Index of an inequivalent shell. (default value 0) + + """ + + # when reading block_structures written with older versions from + # an h5 file, self.deg_shells might be None + if self.deg_shells is None: + return + + if not isinstance(gf_to_symm, BlockGf) and isinstance(gf_to_symm[list(gf_to_symm.keys())[0]], np.ndarray): + blockgf = False + elif isinstance(gf_to_symm, BlockGf): + blockgf = True + else: + raise ValueError("gf_to_symm should be either a BlockGf or a dict of numpy arrays") + + for degsh in self.deg_shells[ish]: + # ss will hold the averaged orbitals in the basis where the + # blocks are all equal + # i.e. maybe_conjugate(v^dagger gf v) + ss = None + n_deg = len(degsh) + for key in degsh: + if ss is None: + if blockgf: + ss = gf_to_symm[key].copy() + ss.zero() + helper = ss.copy() + else: + ss = np.zeros_like(gf_to_symm[key]) + helper = np.zeros_like(gf_to_symm[key]) + + # get the transformation matrix + if isinstance(degsh, dict): + v, C = degsh[key] + else: + # for backward compatibility, allow degsh to be a list + if blockgf: + v = np.eye(*ss.target_shape) + else: + v = np.eye(*ss.shape) + C = False + # the helper is in the basis where the blocks are all equal + if blockgf: + helper.from_L_G_R(v.conjugate().transpose(), gf_to_symm[key], v) + else: + helper = np.dot(v.conjugate().transpose(), np.dot(gf_to_symm[key], v)) + + if C: + helper << helper.transpose() + # average over all shells + ss += helper / (1.0 * n_deg) + # now put back the averaged gf to all shells + for key in degsh: + if isinstance(degsh, dict): + v, C = degsh[key] + else: + # for backward compatibility, allow degsh to be a list + if blockgf: + v = np.eye(*ss.target_shape) + else: + v = np.eye(*ss.shape) + C = False + if blockgf and C: + gf_to_symm[key].from_L_G_R(v, ss.transpose().copy(), v.conjugate().transpose()) + elif blockgf and not C: + gf_to_symm[key].from_L_G_R(v, ss, v.conjugate().transpose()) + elif not blockgf and C: + gf_to_symm[key] = np.dot(v, np.dot(ss.transpose().copy(), v.conjugate().transpose())) + elif not blockgf and not C: + gf_to_symm[key] = np.dot(v, np.dot(ss, v.conjugate().transpose()))
+
+ + +
+[docs] +def embedding_driver(general_params, solver_params, gw_params, advanced_params): + """ + Function to run the gw embedding cycle. + + Parameters + ---------- + general_params : dict + general parameters as a dict + solver_params : dict + solver parameters as a dict + gw_params : dict + dft parameters as a dict + advanced_params : dict + advanced parameters as a dict + """ + + assert gw_params['code'] == 'aimbes', 'Only AIMBES is currently supported as gw code' + + # prepare output h5 archive + if mpi.is_master_node(): + with HDFArchive(general_params['jobname'] + '/' + general_params['seedname'] + '.h5', 'a') as ar: + if 'DMFT_results' not in ar: + ar.create_group('DMFT_results') + if 'last_iter' not in ar['DMFT_results']: + ar['DMFT_results'].create_group('last_iter') + if 'DMFT_input' not in ar: + ar.create_group('DMFT_input') + ar['DMFT_input']['program'] = 'solid_dmft' + ar['DMFT_input'].create_group('solver') + ar['DMFT_input'].create_group('version') + ar['DMFT_input']['version']['triqs_hash'] = triqs_hash + ar['DMFT_input']['version']['triqs_version'] = triqs_version + ar['DMFT_input']['version']['solid_dmft_hash'] = solid_dmft_hash + ar['DMFT_input']['version']['solid_dmft_version'] = solid_dmft_version + + # make sure each iteration is saved to h5 file + general_params['h5_save_freq'] = 1 + + # lad GW input from h5 file + if mpi.is_master_node(): + gw_data, ir_kernel = convert_gw_output( + general_params['jobname'] + '/' + general_params['seedname'] + '.h5', + gw_params['h5_file'], + general_params['dlr_wmax'], general_params['dlr_eps'], + it_1e = gw_params['it_1e'], + it_2e = gw_params['it_2e'], + ) + gw_params.update(gw_data) + mpi.barrier() + gw_params = mpi.bcast(gw_params) + iteration = gw_params['it_1e'] + + # if GW calculation was performed with spin never average spin channels + if gw_params['number_of_spins'] == 2: + general_params['magnetic'] = True + + # dummy helper class for sumk + sumk = dummy_sumk(gw_params['n_inequiv_shells'], gw_params['n_orb'], + general_params['enforce_off_diag'], gw_params['use_rot'], + general_params['magnetic']) + + sumk.mesh = MeshImFreq(beta=gw_params['beta'], statistic='Fermion', n_iw=general_params['n_iw']) + sumk.chemical_potential = gw_params['mu_emb'] + sumk.dc_imp = gw_params['Vhf_dc'] + general_params['beta'] = gw_params['beta'] + + # create h_int + general_params = _extract_quantity_per_inequiv('h_int_type', sumk.n_inequiv_shells, general_params) + general_params = _extract_quantity_per_inequiv('dc_type', sumk.n_inequiv_shells, general_params) + + h_int, gw_params = interaction_hamiltonian.construct(sumk, general_params, advanced_params, gw_params) + + if len(solver_params) == 1 and solver_params[0]['idx_impurities'] is None: + map_imp_solver = [0] * sumk.n_inequiv_shells + else: + all_idx_imp = [i for entry in solver_params for i in entry['idx_impurities']] + if sorted(all_idx_imp) != list(range(sumk.n_inequiv_shells)): + raise ValueError('All impurities must be listed exactly once in solver.idx_impurities' + f'but instead got {all_idx_imp}') + + map_imp_solver = [] + for iineq in range(sumk.n_inequiv_shells): + for isolver, entry in enumerate(solver_params): + if iineq in entry['idx_impurities']: + map_imp_solver.append(isolver) + break + solver_type_per_imp = [solver_params[map_imp_solver[iineq]]['type'] for iineq in range(sumk.n_inequiv_shells)] + mpi.report(f'\nSolver type per impurity: {solver_type_per_imp}') + + # create solver objects + solvers = [None] * sumk.n_inequiv_shells + if mpi.is_master_node(): + Sigma_dlr = [None] * sumk.n_inequiv_shells + Sigma_dlr_iw = [None] * sumk.n_inequiv_shells + ir_mesh_idx = ir_kernel.wn_mesh(stats='f',ir_notation=False) + ir_mesh = (2*ir_mesh_idx+1)*np.pi/gw_params['beta'] + Sigma_ir = np.zeros((len(ir_mesh_idx), + gw_params['number_of_spins'], + sumk.n_inequiv_shells,max(gw_params['n_orb']),max(gw_params['n_orb'])), + dtype=complex) + Vhf_imp_sIab = np.zeros((gw_params['number_of_spins'], + sumk.n_inequiv_shells, + max(gw_params['n_orb']),max(gw_params['n_orb'])),dtype=complex) + + for ish in range(sumk.n_inequiv_shells): + # Construct the Solver instances + solvers[ish] = SolverStructure(general_params, solver_params[map_imp_solver[ish]], + gw_params, advanced_params, sumk, ish, h_int[ish]) + + # init local density matrices for observables + density_tot = 0.0 + density_shell = np.zeros(sumk.n_inequiv_shells) + density_mat = [None] * sumk.n_inequiv_shells + density_mat_unsym = [None] * sumk.n_inequiv_shells + density_shell_pre = np.zeros(sumk.n_inequiv_shells) + density_mat_pre = [None] * sumk.n_inequiv_shells + + if sumk.SO: + printed = ((np.real, 'real'), (np.imag, 'imaginary')) + else: + printed = ((np.real, 'real'),) + + for ish in range(sumk.n_inequiv_shells): + density_shell_pre[ish] = np.real(gw_params['Gloc_dlr'][ish].total_density()) + mpi.report( + '\n *** Correlated Shell type #{:3d} : '.format(ish) + + 'Estimated total charge of impurity problem = {:.6f}'.format(density_shell_pre[ish]) + ) + density_mat_pre[ish] = gw_params['Gloc_dlr'][ish].density() + mpi.report('Estimated density matrix:') + for key, value in sorted(density_mat_pre[ish].items()): + for func, name in printed: + mpi.report('{}, {} part'.format(key, name)) + mpi.report(func(value)) + + if not general_params['enforce_off_diag']: + mpi.report('\n*** WARNING: off-diagonal elements are neglected in the impurity solver ***') + + # convert G0 to solver basis + G0_dlr = sumk.block_structure.convert_gf(gw_params['G0_dlr'][ish], ish_from=ish, space_from='sumk', space_to='solver') + # dyson equation to extract G0_freq, using Hermitian symmetry (always needed in solver postprocessing) + solvers[ish].G0_freq << make_hermitian(make_gf_imfreq(G0_dlr, n_iw=general_params['n_iw'])) + + if ((solver_type_per_imp[ish] == 'cthyb' and solvers[ish].solver_params['delta_interface']) + or solver_type_per_imp[ish] == 'ctseg'): + mpi.report('\n Using the delta interface for passing Delta(tau) and Hloc0 directly to the solver.\n') + + # prepare solver input + imp_eal = sumk.block_structure.convert_matrix(gw_params['Hloc0'][ish], ish_from=ish, space_from='sumk', space_to='solver') + for name, g0 in G0_dlr: + # Estimate the HF shift + G0_iw = solvers[ish].G0_freq[name] + Delta_iw = Gf(mesh=G0_iw.mesh, target_shape=G0_iw.target_shape) + Delta_iw << iOmega_n - inverse(G0_iw) + tail, err = fit_hermitian_tail(Delta_iw) + # overwrite H0 using estimation from high-frequency tail + imp_eal[name] = tail[0] + mpi.report(f"Tail fitting for extracting the HF shift in g_weiss with error {err}") + + if mpi.is_master_node(): + print('H_loc0[{:2d}] block: {}'.format(ish, name)) + fmt = '{:11.7f}' * imp_eal[name].shape[0] + for block in imp_eal[name]: + print((' '*11 + fmt).format(*block.real)) + + G0_dlr_iw = make_gf_dlr_imfreq(g0) + Delta_dlr_iw = Gf(mesh=G0_dlr_iw.mesh, target_shape=g0.target_shape) + for iw in G0_dlr_iw.mesh: + Delta_dlr_iw[iw] = iw.value - inverse(G0_dlr_iw[iw]) - imp_eal[name] + Delta_dlr = make_gf_dlr(Delta_dlr_iw) + # create now full delta(tau) + Delta_tau = make_hermitian(make_gf_imtime(Delta_dlr, n_tau=general_params['n_tau'])) + + # without SOC delta_tau needs to be real + if not sumk.SO == 1: + solvers[ish].Delta_time[name] << Delta_tau.real + else: + solvers[ish].Delta_time[name] << Delta_tau + + if solvers[ish].solver_params['diag_delta']: + for o1 in range(imp_eal[name].shape[0]): + for o2 in range(imp_eal[name].shape[0]): + if o1 != o2: + solvers[ish].Delta_time[name].data[:, o1, o2] = 0.0 + 0.0j + + # Make non-interacting operator for Hloc0 + Hloc_0 = Operator() + for spin, spin_block in imp_eal.items(): + for o1 in range(spin_block.shape[0]): + for o2 in range(spin_block.shape[1]): + # check if off-diag element is larger than threshold + if o1 != o2 and abs(spin_block[o1, o2]) < solvers[ish].solver_params['off_diag_threshold']: + continue + else: + # TODO: adapt for SOC calculations, which should keep the imag part + Hloc_0 += spin_block[o1, o2].real / 2 * (c_dag(spin, o1) * c(spin, o2) + c_dag(spin, o2) * c(spin, o1)) + solvers[ish].Hloc_0 = Hloc_0 + + mpi.report('\nSolving the impurity problem for shell {} ...'.format(ish)) + mpi.barrier() + start_time = timer() + solvers[ish].solve() + mpi.barrier() + mpi.report('Actual time for solver: {:.2f} s'.format(timer() - start_time)) + + # some printout of the obtained density matrices and some basic checks from the unsymmetrized solver output + if solvers[ish].solver_params['type'] == 'ctseg': + for block, occ_mat in solvers[ish].orbital_occupations.items(): + density_shell[ish] += np.trace(occ_mat) + density_tot += density_shell[ish] + density_mat_unsym[ish] = solvers[ish].orbital_occupations + density_mat[ish] = density_mat_unsym[ish] + else: + density_shell[ish] = np.real(solvers[ish].G_freq_unsym.total_density()) + density_tot += density_shell[ish] + density_mat_unsym[ish] = solvers[ish].G_freq_unsym.density() + density_mat[ish] = solvers[ish].G_freq.density() + formatter.print_local_density(density_shell[ish], density_shell_pre[ish], density_mat_unsym[ish], sumk.SO) + mpi.report('') + + # post-processing for GW + if mpi.is_master_node(): + if not hasattr(solvers[ish], 'Sigma_Hartree'): + print('Moments of Sigma not measured using tail fit to extract static Hartree shift for DLR fit.') + solvers[ish].Sigma_Hartree = {} + for block, gf in solvers[ish].Sigma_freq: + tail, err = gf.fit_hermitian_tail() + solvers[ish].Sigma_Hartree[block] = tail[0] + + if solvers[ish].solver_params['type'] in ('cthyb', 'ctseg') and solvers[ish].solver_params['crm_dyson_solver']: + Sigma_dlr[ish] = make_gf_dlr(solvers[ish].Sigma_dlr) + else: + Sigma_dlr_iw[ish] = sumk.block_structure.create_gf(ish=ish, + gf_function=Gf, + space='solver', + mesh=gw_params['mesh_dlr_iw_f']) + for w in Sigma_dlr_iw[ish].mesh: + for block, gf in Sigma_dlr_iw[ish]: + gf[w] = solvers[ish].Sigma_freq[block](w)-solvers[ish].Sigma_Hartree[block] + + sumk.symm_deg_gf(Sigma_dlr_iw[ish],ish=ish) + Sigma_dlr[ish] = make_gf_dlr(Sigma_dlr_iw[ish]) + + for i, (block, gf) in enumerate(Sigma_dlr[ish]): + # print Hartree shift + print('Σ_HF {}'.format(block)) + fmt = '{:11.7f}' * solvers[ish].Sigma_Hartree[block].shape[0] + for vhf in solvers[ish].Sigma_Hartree[block]: + print((' '*11 + fmt).format(*vhf.real)) + + # average Hartree shift if not magnetic + if not general_params['magnetic']: + if general_params['enforce_off_diag']: + solvers[ish].Sigma_Hartree['up_0'] = 0.5*(solvers[ish].Sigma_Hartree['up_0']+ + solvers[ish].Sigma_Hartree['down_0']) + solvers[ish].Sigma_Hartree['down_0'] = solvers[ish].Sigma_Hartree['up_0'] + else: + for iorb in range(gw_params['n_orb'][ish]): + solvers[ish].Sigma_Hartree[f'up_{iorb}'] = 0.5*(solvers[ish].Sigma_Hartree[f'up_{iorb}']+ + solvers[ish].Sigma_Hartree[f'down_{iorb}']) + solvers[ish].Sigma_Hartree[f'down_{iorb}'] = solvers[ish].Sigma_Hartree[f'up_{iorb}'] + + iw_mesh = solvers[ish].Sigma_freq.mesh + # convert Sigma to sumk basis + Sigma_dlr_sumk = sumk.block_structure.convert_gf(Sigma_dlr[ish], ish_from=ish, space_from='solver', space_to='sumk') + Sigma_Hartree_sumk = sumk.block_structure.convert_matrix(solvers[ish].Sigma_Hartree, ish_from=ish, space_from='solver', space_to='sumk') + # store Sigma and V_HF in sumk basis on IR mesh + ir_nw_half = len(ir_mesh_idx)//2 + for i, (block, gf) in enumerate(Sigma_dlr_sumk): + Vhf_imp_sIab[i,ish] = Sigma_Hartree_sumk[block] + # Make sure sigma_ir[iw].conj() = sigma_ir[-iw] + for n in range(ir_nw_half): + iw_pos = ir_nw_half+n + iw_neg = ir_nw_half-1-n + Sigma_ir[iw_pos,i,ish] = gf(iw_mesh(ir_mesh_idx[iw_pos])) + Sigma_ir[iw_neg,i,ish] = gf(iw_mesh(ir_mesh_idx[iw_pos])).conj() + + if not general_params['magnetic']: + break + if mpi.is_master_node(): + print("\nChecking impurity self-energy on the IR mesh...") + ir_kernel.check_leakage(Sigma_ir, stats='f', name="impurity self-energy", w_input=True) + + # Writes results to h5 archive + if mpi.is_master_node(): + with HDFArchive(general_params['jobname'] + '/' + general_params['seedname'] + '.h5', 'a') as ar: + results_to_archive.write(ar, sumk, general_params, solver_params, solvers, + map_imp_solver, solver_type_per_imp, iteration, + False, gw_params['mu_emb'], density_mat_pre, density_mat) + + # store also IR / DLR Sigma + ar['DMFT_results/it_{}'.format(iteration)]['ir_mesh'] = ir_mesh + ar['DMFT_results/it_{}'.format(iteration)]['Sigma_imp_wsIab'] = Sigma_ir + ar['DMFT_results/it_{}'.format(iteration)]['Vhf_imp_sIab'] = Vhf_imp_sIab + for ish in range(sumk.n_inequiv_shells): + ar['DMFT_results/it_{}'.format(iteration)][f'Sigma_dlr_{ish}'] = Sigma_dlr[ish] + + # write results to GW h5_file + with HDFArchive(gw_params['h5_file'],'a') as ar: + ar[f'downfold_1e/iter{iteration}']['Sigma_imp_wsIab'] = Sigma_ir + ar[f'downfold_1e/iter{iteration}']['Vhf_imp_sIab'] = Vhf_imp_sIab + + mpi.report('*** iteration finished ***') + mpi.report('#'*80) + mpi.barrier() + return
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/gw_embedding/iaft.html b/_modules/gw_embedding/iaft.html new file mode 100644 index 00000000..95a78eda --- /dev/null +++ b/_modules/gw_embedding/iaft.html @@ -0,0 +1,661 @@ + + + + + + gw_embedding.iaft — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for gw_embedding.iaft

+import sys
+import numpy as np
+import sparse_ir
+
+"""
+Fourier transform on the imaginary axis based on IR basis and the sparse sampling technique.  
+"""
+
+
+
+[docs] +class IAFT(object): + """ + Driver for FT on the imaginary axis. + Given inverse temperature, lambda and precision, the IAFT class evaluate the corresponding + IR basis and sparse sampling points on-the-fly. + + Dependency: + sparse-ir with xprec supports (https://sparse-ir.readthedocs.io/en/latest/) + To install sparse-ir with xprec supports: "pip install sparse-ir[xprex]". + + Attributes: + beta: float + Inverse temperature (a.u.) + lmbda: float + Dimensionless lambda parameter for constructing the IR basis + prec: float + Precision for IR basis + bases: sparse-ir.FiniteTempBasisSet + IR basis instance + tau_mesh_f: numpy.ndarray(dim=1) + Fermionic tau sampling points + tau_mesh_b: numpy.ndarray(dim=1) + Bosonic tau sampling points + wn_mesh_f: numpy.ndarray(dim=1) + Fermionic Matsubara "indices" sampling points. NOT PHYSICAL FREQUENCIES. + Physical Matsubara frequencies are wn_mesh_f * numpy.pi / beta + wn_mesh_b: numpy.ndarray(dim=1) + Bosonic Matsubara "indices" sampling points. NOT PHYSICAL FREQUENCIES. + Physical Matsubara frequencies are wn_mesh_f * numpy.pi / beta + nt_f: int + Number of fermionic tau sampling points + nt_b: int + Number of bosonic tau sampling points + nw_f: int + Number of fermionic frequency sampling points + nw_b: int + Number of bosonic frequency sampling points + """ +
+[docs] + def __init__(self, beta: float, lmbda: float, prec: float = 1e-15): + """ + :param beta: float + Inverse temperature (a.u.) + :param lmbda: float + Lambda parameter for constructing IR basis. + :param prec: float + Precision for IR basis + """ + self.beta = beta + self.lmbda = lmbda + self.prec = prec + self.wmax = lmbda / beta + self.statisics = {'f', 'b'} + + self.bases = sparse_ir.FiniteTempBasisSet(beta=beta, wmax=self.wmax, eps=prec) + self.tau_mesh_f = self.bases.smpl_tau_f.sampling_points + self.tau_mesh_b = self.bases.smpl_tau_b.sampling_points + self._wn_mesh_f = self.bases.smpl_wn_f.sampling_points + self._wn_mesh_b = self.bases.smpl_wn_b.sampling_points + self.nt_f, self.nw_f = self.tau_mesh_f.shape[0], self._wn_mesh_f.shape[0] + self.nt_b, self.nw_b = self.tau_mesh_b.shape[0], self._wn_mesh_b.shape[0] + + Ttl_ff = self.bases.basis_f.u(self.tau_mesh_f).T + Twl_ff = self.bases.basis_f.uhat(self._wn_mesh_f).T + Ttl_bb = self.bases.basis_b.u(self.tau_mesh_b).T + Twl_bb = self.bases.basis_b.uhat(self._wn_mesh_b).T + + self.Tlt_ff = np.linalg.pinv(Ttl_ff) + self.Tlt_bb = np.linalg.pinv(Ttl_bb) + self.Tlw_ff = np.linalg.pinv(Twl_ff) + self.Tlw_bb = np.linalg.pinv(Twl_bb) + + # Ttw_ff = Ttl_ff * [Twl_ff]^{-1} + self.Ttw_ff = np.dot(Ttl_ff, self.Tlw_ff) + self.Twt_ff = np.dot(Twl_ff, self.Tlt_ff) + self.Ttw_bb = np.dot(Ttl_bb, self.Tlw_bb) + self.Twt_bb = np.dot(Twl_bb, self.Tlt_bb) + + print(self) + sys.stdout.flush()
+ + + def __str__(self): + return "*******************************\n" \ + "Imaginary-Axis Fourier Transform based on IR basis and sparse-sampling:\n" \ + "*******************************\n" \ + " - precision = {}\n" \ + " - beta = {}\n" \ + " - lambda = {}\n" \ + " - nt_f, nw_f = {}, {}\n" \ + " - nt_b, nw_b = {}, {}\n" \ + "*******************************\n".format(self.prec, self.beta, self.lmbda, self.nt_f, self.nw_f, + self.nt_b, self.nw_b) + +
+[docs] + def wn_mesh(self, stats: str, ir_notation: bool = True): + """ + Return Matsubara frequency indices. + :param stats: str + statistics: 'f' for fermions and 'b' for bosons + :param ir_notation: bool + Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. + Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons. + + :return: numpy.ndarray(dim=1) + Matsubara frequency indices + """ + if stats not in self.statisics: + raise ValueError("Unknown statistics '{}'. " + "Acceptable options are 'f' for fermion and 'b' for bosons.".format(stats)) + wn_mesh = np.array(self._wn_mesh_f, dtype=int) if stats == 'f' else np.array(self._wn_mesh_b, dtype=int) + if not ir_notation: + wn_mesh = (wn_mesh-1)//2 if stats == 'f' else wn_mesh//2 + return wn_mesh
+ + +
+[docs] + def tau_to_w(self, Ot, stats: str): + """ + Fourier transform from imaginary-time axis to Matsubara-frequency axis + :param Ot: numpy.ndarray + imaginary-time object with dimensions (nts, ...) + :param stats: str + statistics: 'f' for fermions and 'b' for bosons + + :return: numpy.ndarray + Matsubara-frequency object with dimensions (nw, ...) + """ + if stats not in self.statisics: + raise ValueError("Unknown statistics '{}'. " + "Acceptable options are 'f' for fermion and 'b' for bosons.".format(stats)) + Twt = self.Twt_ff if stats == 'f' else self.Twt_bb + if Ot.shape[0] != Twt.shape[1]: + raise ValueError( + "tau_to_w: Number of tau points are inconsistent: {} and {}".format(Ot.shape[0], Twt.shape[1])) + + Ot_shape = Ot.shape + Ot = Ot.reshape(Ot.shape[0], -1) + Ow = np.dot(Twt, Ot) + + Ot = Ot.reshape(Ot_shape) + Ow = Ow.reshape((Twt.shape[0],) + Ot_shape[1:]) + return Ow
+ + +
+[docs] + def w_to_tau(self, Ow, stats): + """ + Fourier transform from Matsubara-frequency axis to imaginary-time axis. + + :param Ow: numpy.ndarray + Matsubara-frequency object with dimensions (nw, ...) + :param stats: str + statistics, 'f' for fermions and 'b' for bosons + + :return: numpy.ndarray + Imaginary-time object with dimensions (nt, ...) + """ + if stats not in self.statisics: + raise ValueError("Unknown statistics '{}'. " + "Acceptable options are 'f' for fermion and 'b' for bosons.".format(stats)) + Ttw = self.Ttw_ff if stats == 'f' else self.Ttw_bb + if Ow.shape[0] != Ttw.shape[1]: + raise ValueError( + "w_to_tau: Number of w points are inconsistent: {} and {}".format(Ow.shape[0], Ttw.shape[1])) + + Ow_shape = Ow.shape + Ow = Ow.reshape(Ow.shape[0], -1) + Ot = np.dot(Ttw, Ow) + + Ow = Ow.reshape(Ow_shape) + Ot = Ot.reshape((Ttw.shape[0],) + Ow_shape[1:]) + return Ot
+ + +
+[docs] + def w_interpolate(self, Ow, wn_mesh_interp, stats: str, ir_notation: bool = True): + """ + Interpolate a dynamic object to arbitrary points on the Matsubara axis. + + :param Ow: numpy.ndarray + Dynamic object on the Matsubara sampling points, self.wn_mesh. + :param wn_mesh_interp: numpy.ndarray(dim=1, dtype=int) + Target frequencies "INDICES". + The physical Matsubara frequencies are wn_mesh_interp * pi/beta. + :param stats: str + Statistics, 'f' for fermions and 'b' for bosons. + :param ir_notation: bool + Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. + Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons. + + :return: numpy.ndarray + Matsubara-frequency object with dimensions (nw_interp, ...) + """ + if stats not in self.statisics: + raise ValueError("Unknown statistics '{}'. " + "Acceptable options are 'f' for fermion and 'b' for bosons.".format(stats)) + if ir_notation: + wn_indices = np.asarray(wn_mesh_interp) + else: + wn_indices = np.array([2*n+1 if stats == 'f' else 2*n for n in wn_mesh_interp], dtype=int) + Tlw = self.Tlw_ff if stats == 'f' else self.Tlw_bb + if Ow.shape[0] != Tlw.shape[1]: + raise ValueError( + "w_interpolate: Number of w points are inconsistent: {} and {}".format(Ow.shape[0], Tlw.shape[1])) + + Twl_interp = self.bases.basis_f.uhat(wn_indices).T if stats == 'f' else self.bases.basis_b.uhat(wn_indices).T + Tww = np.dot(Twl_interp, Tlw) + + Ow_shape = Ow.shape + Ow = Ow.reshape(Ow.shape[0], -1) + Ow_interp = np.dot(Tww, Ow) + + Ow = Ow.reshape(Ow_shape) + Ow_interp = Ow_interp.reshape((wn_indices.shape[0],) + Ow_shape[1:]) + return Ow_interp
+ + +
+[docs] + def tau_interpolate(self, Ot, tau_mesh_interp, stats: str): + """ + Interpolate a dynamic object to arbitrary points on the imaginary-time axis. + + :param Ot: numpy.ndarray + Dynamic object on the imaginary-time sampling points, self.tau_mesh. + :param tau_mesh_interp: numpy.ndarray(dim=1, dtype=float) + Target tau points. + :param stats: str + Statistics, 'f' for fermions and 'b' for bosons + + :return: numpy.ndarray + Imaginary-time object with dimensions (nt_interp, ...) + """ + if stats not in self.statisics: + raise ValueError("Unknown statistics '{}'. " + "Acceptable options are 'f' for fermion and 'b' for bosons.".format(stats)) + Tlt = self.Tlt_ff if stats == 'f' else self.Tlt_bb + if Ot.shape[0] != Tlt.shape[1]: + raise ValueError( + "t_interpolate: Number of tau points are inconsistent: {} and {}".format(Ot.shape[0], Tlt.shape[1])) + + Ttl_interp = self.bases.basis_f.u(tau_mesh_interp).T if stats == 'f' else self.bases.basis_b.u(tau_mesh_interp).T + Ttt = np.dot(Ttl_interp, Tlt) + + Ot_shape = Ot.shape + Ot = Ot.reshape(Ot.shape[0], -1) + Ot_interp = np.dot(Ttt, Ot) + + Ot = Ot.reshape(Ot_shape) + Ot_interp = Ot_interp.reshape((np.shape(tau_mesh_interp)[0],) + Ot_shape[1:]) + return Ot_interp
+ + +
+[docs] + def check_leakage(self, Ot, stats: str, name: str = "", w_input: bool = False): + if w_input: + Ot_ = self.w_to_tau(Ot, stats) + self.check_leakage(Ot_, stats, name, w_input=False) + return + + if stats not in self.statisics: + raise ValueError("Unknown statistics '{}'. " + "Acceptable options are 'f' for fermion and 'b' for bosons.".format(stats)) + nts = self.nt_f if stats == 'f' else self.nt_b + Tlt = self.Tlt_ff if stats == 'f' else self.Tlt_bb + if nts != Ot.shape[0]: + raise ValueError("Inconsistency between nts = {} and Ot.shape[0] = {}".format(nts, Ot.shape[0])) + + # coeff_first + O_l0_i = np.einsum('t,ti->i', Tlt[0], Ot.reshape(nts, -1)) + coeff_first = np.max(np.abs(O_l0_i)) + + # coeff_last + O_lm2_t = np.einsum('lt,ti->li', Tlt[-2:], Ot.reshape(nts, -1)) + coeff_last = np.max(np.abs(O_lm2_t)) + + leakage = coeff_last/coeff_first + print("IAFT leakage of {}: {}".format(name, leakage)) + if leakage >= 1e-8: + print("[WARNING] check_leakage: coeff_last/coeff_first = {} >= 1e-8; " + "coeff_last = {}, coeff_first = {}".format(leakage, coeff_last, coeff_first)) + sys.stdout.flush()
+
+ + + +if __name__ == '__main__': + # Initialize IAFT object for given inverse temperature, lambda and precision + ft = IAFT(1000, 1e4, 1e-6) + + print(ft.wn_mesh('f', True)) + + Gt = np.zeros((ft.nt_f, 2, 2, 2)) + Gw = ft.tau_to_w(Gt, 'f') + print(Gw.shape) + + # Interpolate to arbitrary tau point + tau_interp = np.array([0.0, ft.beta]) + Gt_interp = ft.tau_interpolate(Gt, tau_interp, 'f') + print(Gt_interp.shape) + + # wn in spare_ir notation + w_interp = np.array([-1,1,3,5], dtype=int) + Gw_interp = ft.w_interpolate(Gw, w_interp, 'f', True) + print(Gw_interp.shape) + + # wn in physical notation + w_interp = np.array([-1,0,1,2,3,4], dtype=int) + Gw_interp = ft.w_interpolate(Gw, w_interp, 'f', False) + print(Gw_interp.shape) + + Gt2 = ft.w_to_tau(Gw, 'f') + print(Gt2.shape) +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/gw_embedding/qp_evs_to_eig.html b/_modules/gw_embedding/qp_evs_to_eig.html new file mode 100644 index 00000000..f9b11a21 --- /dev/null +++ b/_modules/gw_embedding/qp_evs_to_eig.html @@ -0,0 +1,384 @@ + + + + + + gw_embedding.qp_evs_to_eig — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for gw_embedding.qp_evs_to_eig

+import sys
+
+from h5 import HDFArchive
+from scipy.constants import physical_constants
+
+
+
+[docs] +def extract_qp_eig(): + r""" + This script read bdft output and dump g0w0 eigenvalues to si.eig for wannier90 interpolation + """ + + # first arg is the h5 to use + if len(sys.argv) < 2: + print('Usage: python qp_evs_to_eig.py <h5>') + quit() + print('h5 archive:', str(sys.argv[1])) + bdft_output = str(sys.argv[1]) + + Hartree_eV = physical_constants['Hartree energy in eV'][0] + + ###### params ###### + # bdft output is defined by "ouptut" in "evgw0" block. + # number of bands used in wannier90. + # It should be consistent with "num_bands" in si.win + nbnd_pp = 3 + # number of bands to include in the beginning + excl = 20 + # iteration of evGW0 + it = None + # seed for w90 + seed = 'svo' + + ############ + ############ + + # Read evGW0 eigenvalues + with HDFArchive(bdft_output, 'r') as ar: + if not it: + it = ar['scf']['final_iter'] + eig = ar[f'scf/iter{it}/E_ska'].real * Hartree_eV + + # Write eigenvalues in the format of Quantum Espresso .eig file + ns, nkpts, nbnd_gw = eig.shape + with open(f'{seed}.eig', 'w') as f: + for k in range(1, nkpts + 1): + for i in range(excl + 1, excl + nbnd_pp + 1): + f.write(' {} {} {}\n'.format(i - excl, k, eig[0, k - 1, i - 1]))
+ + + +if __name__ == '__main__': + extract_qp_eig() +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 00000000..795d17d1 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,360 @@ + + + + + + Overview: module code — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
+
+ + + + \ No newline at end of file diff --git a/_modules/io_tools/dict_to_h5.html b/_modules/io_tools/dict_to_h5.html new file mode 100644 index 00000000..6d190259 --- /dev/null +++ b/_modules/io_tools/dict_to_h5.html @@ -0,0 +1,361 @@ + + + + + + io_tools.dict_to_h5 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for io_tools.dict_to_h5

+from copy import deepcopy
+
+def _iteratively_replace_none(to_write, replace_from, replace_with):
+    """ Limitation: can only replace None with a string, or a string with None. """
+    # First two checks needed because comparison to triqs many-body operator fails
+    if (isinstance(to_write, str) or to_write is None) and to_write == replace_from:
+        return replace_with
+
+    if isinstance(to_write, dict):
+        for key, value in to_write.items():
+            to_write[key] = _iteratively_replace_none(value, replace_from, replace_with)
+    elif isinstance(to_write, list):
+        for i, value in enumerate(to_write):
+            to_write[i] = _iteratively_replace_none(value, replace_from, replace_with)
+
+    return to_write
+
+
+[docs] +def prep_params_for_h5(dict_to_write): + """ Replace all NoneType with a string 'none' to be able to write to h5. """ + return _iteratively_replace_none(deepcopy(dict_to_write), None, 'none')
+ + +# Not sure if the reverse route is actually needed +
+[docs] +def prep_params_from_h5(dict_to_read): + """ Replace all 'none' strings with NoneType to parse the dict coming from h5. """ + return _iteratively_replace_none(deepcopy(dict_to_read), 'none', None)
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/io_tools/postproc_toml_dict.html b/_modules/io_tools/postproc_toml_dict.html new file mode 100644 index 00000000..b278569e --- /dev/null +++ b/_modules/io_tools/postproc_toml_dict.html @@ -0,0 +1,521 @@ + + + + + + io_tools.postproc_toml_dict — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for io_tools.postproc_toml_dict

+from typing import Any, Dict, List, Union
+import copy
+
+ParamDict = Dict[str, Any]
+FullConfig = Dict[str, Union[ParamDict, List[ParamDict]]]
+
+def _verify_dict_is_param_dict(d: Any) -> None:
+    """ Checks that the input is of type ParamDict. """
+    if not isinstance(d, dict):
+        raise ValueError(f'Expected a dict, but got {d} of type {type(d)}.')
+    for key in d:
+        if not isinstance(key, str):
+            raise ValueError(f'Expected a string as key, but got {key} of type {type(key)}.')
+
+def _verify_dict_is_full_config(d: Dict[str, Any]) -> None:
+    """ Checks that dict is of type FullConfig. """
+    # Checks that no keys outside a section
+    # This is, that d is of type Dict[str, Union[Dict, List]]
+    for section_name, section in d.items():
+        if not isinstance(section, (dict, list)):
+            raise ValueError(f'Key "{section_name}" found outside of a section.')
+
+    # Checks that entries are ParamDicts or List[ParamDict]
+    for section in d.values():
+        if isinstance(section, list):
+            for entry in section:
+                _verify_dict_is_param_dict(entry)
+        else:
+            _verify_dict_is_param_dict(section)
+
+def _verify_restrictions_on_default_and_config(cfg_inp: Dict[str, Any], cfg_def: Dict[str, Any], match_key: Dict[str, str]) -> None:
+    """ Checks that the restrictions described in the docstring of merge_config_with_default are met. """
+    # Checks that type of cfg_def dict is FullConfig
+    _verify_dict_is_full_config(cfg_def)
+
+    # Checks that keys listed in match_key are lists and all other are dicts
+    for section_name, section in cfg_def.items():
+        if section_name in match_key and not isinstance(section, list):
+            raise ValueError(f'"{section_name}" is in match_key so it should be a list in the default config.')
+        if section_name not in match_key and not isinstance(section, dict):
+            raise ValueError(f'"{section_name}" is not in match_key so it should be a dict in the default config.')
+
+    # Checks that no sections in config that are not in default
+    unknown_sections = set(cfg_inp.keys()) - set(cfg_def.keys())
+    if unknown_sections:
+        raise ValueError('Unknown sections were found in the config file: ' + str(unknown_sections)
+                         + '. Please refer to the default config file for valid keys.')
+
+    # Checks that all sections listed in match_key are in default and config
+    unmatched_sections = set(match_key.keys()) - set(cfg_def.keys())
+    if unmatched_sections:
+        raise ValueError('Sections ' + str(unmatched_sections) + ' found in match_key '
+                            + 'that are not in the default config.')
+
+    unmatched_sections = set(match_key.keys()) - set(cfg_inp.keys())
+    if unmatched_sections:
+        raise ValueError('Sections ' + str(unmatched_sections) + ' found in match_key '
+                            + 'that are not in the config.')
+
+    # Checks type of config dict
+    _verify_dict_is_full_config(cfg_inp)
+
+def _apply_default_values(cfg_inp: FullConfig, cfg_def: FullConfig, match_key: Dict[str, str]) -> FullConfig:
+    """ Fills in the default values where the input config does not specify a value. """
+    output: FullConfig = {}
+    for section_name, section in cfg_def.items():
+        if isinstance(section, list):
+            key = match_key[section_name]
+            output[section_name] = []
+            for entry in cfg_inp[section_name]:
+                # Finds matching section through match_key in cfg_def
+                for default_entry in section:
+                    if default_entry[key] == entry[key]:
+                        output[section_name].append(copy.deepcopy(default_entry))
+                        break
+                else:
+                    raise ValueError(f'No matching section with same "{section_name}.{key}"="{entry[key]}" found in defaults.')
+                # Updates config values in output
+                unknown_keys = set(entry.keys()) - set(output[section_name][-1].keys())
+                if unknown_keys:
+                    raise ValueError(f'Unknown keys {unknown_keys} found in section "{section_name}". '
+                                     'All valid keys have to be in the default config.')
+                output[section_name][-1].update(entry)
+        else:
+            entry = cfg_inp.get(section_name, {})
+            output[section_name] = copy.deepcopy(section)
+            unknown_keys = set(entry.keys()) - set(output[section_name].keys())
+            if unknown_keys:
+                raise ValueError(f'Unknown keys {unknown_keys} found in section "{section_name}". '
+                                 'All valid keys have to be in the default config.')
+            output[section_name].update(entry)
+
+    return output
+
+def _replace_none(d: ParamDict) -> None:
+    """ Replace '<none>' by None in a ParamDict. This also works inside lists. """
+    for key, value in d.items():
+        if value == '<none>':
+            d[key] = None
+        elif isinstance(value, list):
+            for i, v in enumerate(value):
+                if v == '<none>':
+                    value[i] = None
+
+def _verify_all_mandatory_fields_present(d: ParamDict, section_name: str) -> None:
+    """ Verifies that all fields with "<no default>" have been replaced after reading in the config. """
+    for key, value in d.items():
+        if value == '<no default>':
+            raise ValueError(f'"{key}" in section "{section_name}" is mandatory and was left empty.')
+
+def _resolve_references(d: ParamDict, section_name: str, output: FullConfig) -> None:
+    """ Resolve all references of type "<section.key>" in a ParamDict. """
+    for key, value in d.items():
+        if isinstance(value, str) and value.startswith('<') and value.endswith('>'):
+            ref_key = value[1:-1].split('.')
+            if len(ref_key) != 2:
+                raise ValueError(f'Invalid reference "{value}" in section "{section_name}".')
+            if isinstance(output[ref_key[0]], list):
+                raise ValueError(f'Invalid reference "{value}" to listed section "{section_name}".')
+
+            referenced_val = output[ref_key[0]][ref_key[1]]
+            if isinstance(referenced_val, str) and referenced_val.startswith('<') and referenced_val.endswith('>'):
+                raise ValueError(f'"{ref_key[1]}" in section "{ref_key[0]}" is a reference itself.')
+            d[key] = referenced_val
+
+# type hints currently not supported by sphinx autodoc
+# def merge_config_with_default(cfg_inp: Dict[str, Any], cfg_def: Dict[str, Any],
+#                               match_key: Dict[str, str] = {}) -> FullConfig:
+
+[docs] +def merge_config_with_default(cfg_inp, cfg_def, match_key={}): + """ + Merge a TOML config dict with a default TOML dict. + The default dict dictates the structure of the input: + + - Only sections and keys in the default are allowed in the input + - All sections listed in match_key must be lists of dicts in the default + and can be lists of dicts or dicts in the config + + The dicts allows for the following extensions: + + - Mandatory inputs for all calculations indicated by "<no default>" + - None indicated by "<none>". Also works inside lists + - References within the dictionary indicated by "<section.key>" + + Parameters + ---------- + cfg_inp : dict + The input config dict + cfg_def : dict + The default config dict + match_key : dict, optional + A dictionary that contains section/key pairs to map entries in listed sections + between the input and default config. + + Returns + ------- + dict + The merged config dict + """ + + # Check restrictions and makes sure that config and default are of type FullConfig + _verify_restrictions_on_default_and_config(cfg_inp, cfg_def, match_key) + + # Checks that keys not listed in match_key are dicts + # The others can be lists or dicts. This differs from cfg_def + # to allow users to use multiple sections or not + for section_name, section in cfg_inp.items(): + if section_name in match_key and not isinstance(section, list): + cfg_inp[section_name] = [section] + if section_name not in match_key and not isinstance(section, dict): + raise ValueError(f'"{section_name}" should be a dict and not a list in the config.') + + # Merges config with default + output = _apply_default_values(cfg_inp, cfg_def, match_key) + + # Converts "<none>" to None, checks that no mandatory fields were left empty + # and resolves referencing defaults + for section_name, section in output.items(): + if isinstance(section, dict): + _replace_none(section) + _verify_all_mandatory_fields_present(section, section_name) + _resolve_references(section, section_name, output) + else: + for entry in section: + _replace_none(entry) + _verify_all_mandatory_fields_present(entry, section_name) + _resolve_references(entry, section_name, output) + + return output
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/io_tools/verify_input_params.html b/_modules/io_tools/verify_input_params.html new file mode 100644 index 00000000..0d374723 --- /dev/null +++ b/_modules/io_tools/verify_input_params.html @@ -0,0 +1,499 @@ + + + + + + io_tools.verify_input_params — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for io_tools.verify_input_params

+from typing import Any, Dict, List, Union
+import numpy as np
+
+ParamDict = Dict[str, Any]
+FullConfig = Dict[str, Union[ParamDict, List[ParamDict]]]
+
+
+def _verify_input_params_general(params: FullConfig) -> None:
+    # Checks that grid parameters are specified completely
+    if (
+        params['general']['beta'] is not None
+        and not params['general']['gw_embedding']
+        and (params['general']['n_iw'] is None or params['general']['n_tau'] is None)
+    ):
+        raise ValueError('Imaginary-frequency grid chosen, specify "n_iw" and "n_tau".')
+
+    if (
+        params['general']['beta'] is None
+        and not params['general']['gw_embedding']
+        and (params['general']['eta'] is None or params['general']['n_w'] is None or params['general']['w_range'] is None)
+    ):
+        raise ValueError('Real-frequency grid chosen, specify "eta", "n_w", and "w_range".')
+
+    # warning if sigma mixing is used, remove in future versions
+    if params['general']['sigma_mix'] < 1.0 and params['general']['g0_mix'] < 1.0:
+        raise ValueError('You shall not use Sigma and G0 mixing together!')
+
+    if params['general']['calc_energies'] and any(entry['type'] == 'ftps' for entry in params['solver']):
+        raise ValueError('"calc_energies" is not valid for solver of type = "ftps"')
+
+    # Checks validity of other general params
+    h_int_type_options = (
+        'density_density',
+        'kanamori',
+        'kanamori_den_den',
+        'full_slater',
+        'crpa',
+        'crpa_density_density',
+        'dyn_density_density',
+        'dyn_full',
+        'ntot',
+        'simple_intra',
+    )
+    if isinstance(params['general']['h_int_type'], str):
+        if params['general']['h_int_type'] not in h_int_type_options:
+            raise ValueError(f'Invalid "h_int_type" = {params["general"]["h_int_type"]}.')
+    elif isinstance(params['general']['h_int_type'], list):
+        if any(entry not in h_int_type_options for entry in params['general']['h_int_type']):
+            raise ValueError('Invalid "h_int_type" in input list.')
+    else:
+        raise ValueError('Invalid "h_int_type" input type. String or list expected.')
+
+    if params['general']['g0_mix_type'] not in ('linear', 'broyden'):
+        raise ValueError(f'Invalid "g0_mix_type" = {params["general"]["g0_mix_type"]}.')
+
+    if params['general']['calc_mu_method'] not in ('dichotomy', 'newton', 'brent'):
+        raise ValueError(f'Invalid "calc_mu_method" = {params["general"]["calc_mu_method"]}.')
+
+    if params['general']['set_rot'] not in (None, 'den', 'hloc'):
+        raise ValueError(f'Invalid "set_rot" = {params["general"]["set_rot"]}.')
+
+    if params['general']['h_int_basis'] not in ('triqs', 'wien2k', 'wannier90', 'qe', 'vasp'):
+        raise ValueError(f'Invalid "h_int_basis" = {params["general"]["h_int_basis"]}.')
+
+
+def _verify_input_params_dft(params: FullConfig) -> None:
+    if params['dft']['dft_code'] not in ('vasp', 'qe', None):
+        raise ValueError(f'Invalid "dft.dft_code" = {params["dft"]["dft_code"]}.')
+
+    if params['dft']['mpi_env'] not in ('default', 'openmpi', 'openmpi-intra', 'mpich'):
+        raise ValueError(f'Invalid "dft.mpi_env" = {params["dft"]["mpi_env"]}.')
+
+    if params['dft']['projector_type'] not in ('w90', 'plo'):
+        raise ValueError(f'Invalid "dft.projector_type" = {params["dft"]["projector_type"]}.')
+
+
+def _verify_input_params_solver(params: FullConfig) -> None:
+    solver_params = params['solver']
+
+    # Checks that the solver impurities index are all lists if there are multiple solvers
+    if len(solver_params) > 1 or solver_params[0]['idx_impurities'] is not None:
+        if any(not isinstance(entry['idx_impurities'], list) for entry in solver_params):
+            raise ValueError(
+                'All "solver.idx_impurities" need to specify the impurities ' 'as a list of ints when there are multiple solvers.'
+            )
+        for entry in solver_params:
+            if any(not isinstance(imp, int) for imp in entry['idx_impurities']):
+                raise ValueError(
+                    'All "solver.idx_impurities" need to specify the impurities ' 'as a list of ints when there are multiple solvers.'
+                )
+
+    # Checks that all solvers support the specified grid
+    # TODO: add real-frequency support for solvers that do both (e.g., hartree)
+    supported_grids = {'real': ['ftps'], 'imag': ['cthyb', 'ctint', 'ctseg', 'hubbardI', 'hartree']}
+    if params['general']['beta'] is not None:
+        for entry in solver_params:
+            if entry['type'] not in supported_grids['imag']:
+                raise ValueError(f'Solver {entry["type"]} does not support real-frequency grid.')
+    elif not params['general']['gw_embedding']:
+        for entry in solver_params:
+            if entry['type'] not in supported_grids['real']:
+                raise ValueError(f'Solver {entry["type"]} does not support imaginary-frequency grid.')
+
+    for entry in solver_params:
+        if entry['type'] == 'cthyb' and entry['crm_dyson_solver'] and not entry['measure_density_matrix']:
+            raise ValueError(
+                'Solver "cthyb" when using "crm_dyson_solver" must also measure the density matrix: "measure_density_matrix" = True'
+            )
+        if entry['type'] == 'ctseg':
+            tail_op = [entry['crm_dyson_solver'],
+                       entry['legendre_fit'],
+                       entry['improved_estimator'],
+                       entry['perform_tail_fit']]
+            if sum(tail_op) > 1:
+                raise ValueError('Only one of the options "crm_dyson_solver", "legendre_fit", "improved_estimator", and "perform_tail_fit" can be set to True.')
+        if entry['type'] == 'cthyb':
+            tail_op = [entry['crm_dyson_solver'],
+                       entry['legendre_fit'],
+                       entry['measure_G_l'],
+                       entry['perform_tail_fit']]
+            if sum(tail_op) > 1:
+                raise ValueError('Only one of the options "crm_dyson_solver", "legendre_fit", "improved_estimator", and "perform_tail_fit" can be set to True.')
+
+
+def _verify_input_params_gw(params: FullConfig) -> None:
+    pass
+
+def _verify_input_params_advanced(params: FullConfig) -> None:
+    pass
+
+
+
+[docs] +def verify_before_dmft_cycle(params): + """All checks of params that can be done before dmft_cycle is called.""" + _verify_input_params_general(params) + _verify_input_params_dft(params) + _verify_input_params_solver(params) + _verify_input_params_gw(params) + _verify_input_params_advanced(params)
+ + + +
+[docs] +def verify_h5_dependent(sum_k, solver_type_per_imp, general_params): + """All checks of params that depend on the h5 file content that is stored in the SumkDFT object.""" + # Incompatabilities for SO coupling + if sum_k.SO == 1 and general_params['magnetic'] and general_params['afm_order']: + raise ValueError('AFM order not supported with SO coupling') + + # Checks that enforce_off_diag true for ftps and hartree + if any(s in ['ftps', 'hartree'] and not e for s, e in zip(solver_type_per_imp, general_params['enforce_off_diag'])): + raise ValueError('enforce_off_diag must be True for a impurities solver by ftps or hartree solvers') + + # Checks that the interaction Hamiltonian and the parameters match + if any( + h not in ['density_density', 'slater'] and r is not None + for h, r in zip(general_params['h_int_type'], general_params['ratio_F4_F2']) + ): + raise ValueError( + '"ratio_F4_F2" only considered for interaction Hamiltonians "density_density" and "slater". ' + 'Please set to None for all other Hamiltonians.' + ) + if any(h not in ('kanamori', 'kanmori_den_den') and up is not None for h, up in zip(general_params['h_int_type'], general_params['U_prime'])): + raise ValueError( + '"U_prime" only considered for interaction Hamiltonian "kanamori". ' 'Please set to None for all other Hamiltonians.' + )
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/eval_U_cRPA_RESPACK.html b/_modules/postprocessing/eval_U_cRPA_RESPACK.html new file mode 100644 index 00000000..7adcff84 --- /dev/null +++ b/_modules/postprocessing/eval_U_cRPA_RESPACK.html @@ -0,0 +1,653 @@ + + + + + + postprocessing.eval_U_cRPA_RESPACK — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for postprocessing.eval_U_cRPA_RESPACK

+#!@TRIQS_PYTHON_EXECUTABLE@
+
+import numpy as np
+from itertools import product
+
+
+
+[docs] +class respack_data: + ''' + respack data class + ''' + +
+[docs] + def __init__(self, path, seed): + self.path = path + self.seed = seed + self.freq = None + self.n_orb = None + # Uijij + self.U_R = None + # Vijij + self.V_R = None + # Uijji = Uiijj + self.J_R = None + # Vijji = Viijj + self.X_R = None + + # full Uijkl reconstructed + self.Uijkl = None + self.Vijkl = None + + # freq dependent direction Coulomb + self.Uij_w = None + self.Jij_w = None + self.w_mesh = None
+
+ + + +def _read_R_file(file): + ''' + read respack Wmat, Jmat, Vmat, Xmat file format + + Parameters: + ----------- + file: string + string to file + + Returns: + -------- + U_R: dict of np.ndarray + keys are tuples of 3d integers representing the R vectors + values are n_orb x n_orb np.ndarray complex + n_orb: int + number of orbitals + ''' + # read X_R from file + with open(file, 'r') as fd: + # eliminate header + fd.readline() + fd.readline() + fd.readline() + + # get number of R vectors + r_vec_max = [abs(int(i)) for i in fd.readline().strip().split()] + assert len(r_vec_max) == 3 + + # determine number of orbitals + while True: + line = fd.readline().strip().split() + if not line: + break + else: + n_orb = int(line[0]) + + # open again and read whole file + U_R = {} + with open(file, 'r') as fd: + # eliminate header + fd.readline() + fd.readline() + fd.readline() + + for x, y, z in product(range(-r_vec_max[0], r_vec_max[0]+1), + range(-r_vec_max[1], r_vec_max[1]+1), + range(-r_vec_max[2], r_vec_max[2]+1) + ): + fd.readline() # remove rvec line + U_R[tuple([x, y, z])] = np.zeros((n_orb, n_orb), dtype=complex) + for i, j in product(range(n_orb), range(n_orb)): + line = fd.readline().strip().split() + U_R[tuple([x, y, z])][i, j] = float(line[2])+1j*float(line[3]) + fd.readline() # remove empty line before next block + + return U_R, n_orb + + +def _read_freq_int(path, n_orb, U_or_J, w_or_iw='w'): + ''' + read frequency dependent files from disk + + Parameters: + ----------- + path: string + path to respack calculations + n_orb: int + number of orbitals + U_or_J: string + pass either U or J for reading U or reading J + w_or_iw: string, optional default='w' + read either real frequency axis or Matsubara axis results + + Returns: + -------- + Uij_w: np.ndarray, dtype=complex shape=(n_w, n_orb, n_orb) + direct freq dependent Coulomb integrals between orbitals + w_mesh: np.ndarry, shape=(n_w) + frequency mesh of Uij_w tensor + ''' + + assert U_or_J == 'U' or U_or_J == 'J' + + if U_or_J == 'U': + file = path+'/dir-intW/dat.UvsE.' + else: + file = path+'/dir-intJ/dat.JvsE.' + + # read first w_mesh + if w_or_iw == 'w': + w_mesh = np.loadtxt(file+'001-001')[:, 0] + else: + w_mesh = np.loadtxt(file+'001-001')[:, 1] + + Uij_w = np.zeros((w_mesh.shape[0], n_orb, n_orb), dtype=complex) + + for i in range(0, n_orb): + for j in range(i, n_orb): # only the upper triangle part is calculated by RESPACK + temp_u = np.loadtxt(file+str(i+1).zfill(3)+'-'+str(j+1).zfill(3)) + Uij_w[:, i, j] = temp_u[:, 2] + 1j*temp_u[:, 3] + if not i == j: # set the lower triangle with the complex conj + Uij_w[:, j, i] = temp_u[:, 2] + - 1j*temp_u[:, 3] + + return Uij_w, w_mesh + + +
+[docs] +def read_interaction(seed, path='./'): + ''' + Parameters: + ----------- + seed: string + seed of QE / w90 file names + path: string + path to respack calculations + + Returns: + -------- + res: respack data class + ''' + + res = respack_data(seed, path) + + # read w3d.out file for frequency info + with open(path+'/'+seed+'.w3d.out', 'r') as w3d: + lines = w3d.readlines() + for line in lines: + if 'CALC_IFREQ=' in line: + res.freq = int(line.replace(' ', '').strip().split('=')[1].split(',')[0]) + break + + # read R dependent matrices and IFREQ + res.U_R, res.n_orb = _read_R_file(file=path+'/dir-intW/dat.Wmat') + res.V_R, _ = _read_R_file(file=path+'/dir-intW/dat.Vmat') + res.J_R, _ = _read_R_file(file=path+'/dir-intJ/dat.Jmat') + res.X_R, _ = _read_R_file(file=path+'/dir-intJ/dat.Xmat') + + # create R=0 matrices for user convenience + res.Uijij = res.U_R[(0, 0, 0)] + res.Uijji = res.J_R[(0, 0, 0)] + res.Vijij = res.V_R[(0, 0, 0)] + res.Vijji = res.X_R[(0, 0, 0)] + + # reconstruct full Uijkl tensor assuming Uijji == Uiijj + res.Uijkl = construct_Uijkl(res.U_R[(0, 0, 0)], res.J_R[(0, 0, 0)]) + res.Vijkl = construct_Uijkl(res.V_R[(0, 0, 0)], res.X_R[(0, 0, 0)]) + + # read freq dependent results + res.Uij_w, res.w_mesh = _read_freq_int(path, res.n_orb, U_or_J='U') + res.Jij_w, res.w_mesh = _read_freq_int(path, res.n_orb, U_or_J='J') + + return res
+ + + +
+[docs] +def construct_Uijkl(Uijij, Uiijj): + ''' + construct full 4 index Uijkl tensor from respack data + assuming Uijji = Uiijj + + Parameters: + ----------- + Uijij: np.ndarray + Uijij matrix + Uiijj: np.ndarray + Uiijj matrix + + Returns: + ------- + uijkl : numpy array + uijkl Coulomb tensor + + ''' + + n_orb = Uijij.shape[0] + orb_range = range(0, n_orb) + Uijkl = np.zeros((n_orb, n_orb, n_orb, n_orb), dtype=complex) + + for i, j, k, l in product(orb_range, orb_range, orb_range, orb_range): + if i == j == k == l: # Uiiii + Uijkl[i, j, k, l] = Uijij[i, j] + elif i == k and j == l: # Uijij + Uijkl[i, j, k, l] = Uijij[i, j] + elif i == l and j == k: # Uijji + Uijkl[i, j, k, l] = Uiijj[i, j] + elif i == j and k == l: # Uiijj + Uijkl[i, j, k, l] = Uiijj[i, k] + return Uijkl
+ + + +
+[docs] +def fit_slater(u_ijij_crpa, u_ijji_crpa, U_init, J_init, fixed_F4_F2=True): + ''' + finds best Slater parameters U, J for given Uijij and Uijji matrices + using the triqs U_matrix operator routine assumes F4/F2=0.625 + + Parameters: + ----------- + u_ijij_crpa: np.ndarray of shape (3,3) or (5, 5) + Uijij matrix + u_ijji_crpa: np.ndarray of shape (3,3) or (5, 5) + Uijji matrix + U_init: float + inital value of U for optimization + J_init: float + inital value of J for optimization + fixed_F4_F2: bool, optional default=True + fix F4/F2 ratio to 0.625 + + Returns: + -------- + U_int: float + averaged U value + J_hund: float + averaged J value + ''' + + from triqs.operators.util.U_matrix import U_matrix_slater, spherical_to_cubic, reduce_4index_to_2index, transform_U_matrix + from scipy.optimize import minimize + + # input checks + if u_ijij_crpa.shape == (3,3): + l=1 + # for p shell there are only 2 parameters + fixed_F4_F2 = True + elif u_ijij_crpa.shape == (5,5): + l=2 + else: + raise ValueError('fit slater only implemented for full p or d shell') + + def minimizer(parameters): + U_int, J_hund = parameters + Umat_full = U_matrix_slater(l=l, U_int=U_int, J_hund=J_hund, basis='spherical') + Umat_full = transform_U_matrix(Umat_full, T) + + Umat, u_ijij_slater = reduce_4index_to_2index(Umat_full) + u_iijj_slater = u_ijij_slater - Umat + return np.sum((u_ijji_crpa - u_iijj_slater)**2 + (u_ijij_crpa - u_ijij_slater)**2) + + def minimizer_radial(parameters): + Umat_full = U_matrix_slater(l=l, radial_integrals=parameters, basis='spherical') + Umat_full = transform_U_matrix(Umat_full, T) + + Umat, u_ijij_slater = reduce_4index_to_2index(Umat_full) + u_iijj_slater = u_ijij_slater - Umat + return np.sum((u_ijji_crpa - u_iijj_slater)**2 + (u_ijij_crpa - u_ijij_slater)**2) + + # transformation matrix from spherical to w90 basis + T = spherical_to_cubic(l=l, convention='wannier90') + + if fixed_F4_F2: + result = minimize(minimizer, (U_init, J_init)) + + U_int, J_hund = result.x + print('Final results from fit: U = {:.3f} eV, J = {:.3f} eV'.format(U_int, J_hund)) + print('optimize error', result.fun) + else: + # start with 0.63 as guess + F0 = U_init + F2 = J_init * 14.0 / (1.0 + 0.63) + F4 = 0.630 * F2 + + initial_guess = [F0, F2, F4] + + print('Initial guess: F0 = {0[0]:.3f} eV, F2 = {0[1]:.3f} eV, F4 = {0[2]:.3f} eV'.format(initial_guess)) + + result = minimize(minimizer_radial, initial_guess) + F0, F2, F4 = result.x + print('Final results from fit: F0 = {:.3f} eV, F2 = {:.3f} eV, F4 = {:.3f} eV'.format(F0, F2, F4)) + print('(F2+F4)/14 = {:.3f} eV'.format((F2+F4)/14)) + print('F4/F2 = {:.3f} eV'.format(F4/F2)) + print('optimize error', result.fun) + U_int = F0 + J_hund = (F2+F4)/14 + + return U_int, J_hund
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/eval_U_cRPA_Vasp.html b/_modules/postprocessing/eval_U_cRPA_Vasp.html new file mode 100644 index 00000000..a21f5c1a --- /dev/null +++ b/_modules/postprocessing/eval_U_cRPA_Vasp.html @@ -0,0 +1,875 @@ + + + + + + postprocessing.eval_U_cRPA_Vasp — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for postprocessing.eval_U_cRPA_Vasp

+#!@TRIQS_PYTHON_EXECUTABLE@
+
+import numpy as np
+import collections
+from itertools import product
+
+'''
+python functions for reading Uijkl from a VASP cRPA run and the evaluating the matrix
+elements for different basis sets.
+
+Copyright (C) 2020, A. Hampel and M. Merkel from Materials Theory Group
+at ETH Zurich
+'''
+
+
+
+[docs] +def read_uijkl(path_to_uijkl, n_sites, n_orb): + ''' + reads the VASP UIJKL files or the vijkl file if wanted + + Parameters + ---------- + path_to_uijkl : string + path to Uijkl like file + n_sites: int + number of different atoms (Wannier centers) + n_orb : int + number of orbitals per atom + + Returns + ------- + uijkl : numpy array + uijkl Coulomb tensor + + ''' + dim = n_sites*n_orb + uijkl = np.zeros((dim, dim, dim, dim), dtype=complex) + data = np.loadtxt(path_to_uijkl) + + for line in range(0, len(data[:, 0])): + i = int(data[line, 0])-1 + j = int(data[line, 1])-1 + k = int(data[line, 2])-1 + l = int(data[line, 3])-1 + uijkl[i, j, k, l] = data[line, 4]+1j*data[line, 5] + + return uijkl
+ + + +
+[docs] +def construct_U_kan(n_orb, U, J, Up=None, Jc=None): + ''' + construct Kanamori Uijkl tensor for given U, J, Up, and Jc + + Parameters + ---------- + n_orb : int + number of orbitals + U : float + U value for elements Uiiii + J : float + Hunds coupling J for tensor elements Uijji + Up : float, optional, default=U-2J + inter orbital exchange term Uijij + Jc : float, optional, default=J + Uiijj term, is the same as J for real valued wave functions + + Returns + ------- + uijkl : numpy array + uijkl Coulomb tensor + + ''' + + orb_range = range(0, n_orb) + U_kan = np.zeros((n_orb, n_orb, n_orb, n_orb)) + + if not Up: + Up = U-2*J + if not Jc: + Jc = J + + for i, j, k, l in product(orb_range, orb_range, orb_range, orb_range): + if i == j == k == l: # Uiiii + U_kan[i, j, k, l] = U + elif i == k and j == l: # Uijij + U_kan[i, j, k, l] = Up + elif i == l and j == k: # Uijji + U_kan[i, j, k, l] = J + elif i == j and k == l: # Uiijj + U_kan[i, j, k, l] = Jc + return U_kan
+ + + +
+[docs] +def red_to_2ind(uijkl, n_sites, n_orb, out=False): + ''' + reduces the 4index coulomb matrix to a 2index matrix and + follows the procedure given in PRB96 seth,peil,georges: + U_antipar = U_mm'^oo' = U_mm'mm' (Coulomb Int) + U_par = U_mm'^oo = U_mm'mm' - U_mm'm'm (for intersite interaction) + U_ijij (Hunds coupling) + the indices in VASP are switched: U_ijkl ---VASP--> U_ikjl + + Parameters + ---------- + uijkl : numpy array + 4d numpy array of Coulomb tensor + n_sites: int + number of different atoms (Wannier centers) + n_orb : int + number of orbitals per atom + out : bool + verbose mode + + Returns + ------- + Uij_anti : numpy array + red 2 index matrix U_mm'mm' + Uiijj : numpy array + red 2 index matrix U_iijj + Uijji : numpy array + red 2 index matrix Uijji + Uij_par : numpy array + red 2 index matrix U_mm\'mm\' - U_mm\'m\'m + ''' + dim = n_sites*n_orb + + # create 2 index matrix + Uij_anti = np.zeros((dim, dim)) + Uij_par = np.zeros((dim, dim)) + Uiijj = np.zeros((dim, dim)) + Uijji = np.zeros((dim, dim)) + + for i in range(0, dim): + for j in range(0, dim): + # the indices in VASP are switched: U_ijkl ---VASP--> U_ikjl + Uij_anti[i, j] = uijkl[i, i, j, j] + Uij_par[i, j] = uijkl[i, i, j, j]-uijkl[i, j, j, i] + Uiijj[i, j] = uijkl[i, j, i, j] + Uijji[i, j] = uijkl[i, j, j, i] + + np.set_printoptions(precision=3, suppress=True) + + if out: + print('reduced U anti-parallel = U_mm\'\^oo\' = U_mm\'mm\' matrix : \n', Uij_anti) + print('reduced U parallel = U_mm\'\^oo = U_mm\'mm\' - U_mm\'m\'m matrix : \n', Uij_par) + print('reduced Uijji : \n', Uijji) + print('reduced Uiijj : \n', Uiijj) + + return Uij_anti, Uiijj, Uijji, Uij_par
+ + + +
+[docs] +def calc_kan_params(uijkl, n_sites, n_orb, out=False): + ''' + calculates the kanamori interaction parameters from a + given Uijkl matrix. Follows the procedure given in + PHYSICAL REVIEW B 86, 165105 (2012) Vaugier,Biermann + formula 30,31,32 + + Parameters + ---------- + uijkl : numpy array + 4d numpy array of Coulomb tensor + n_sites: int + number of different atoms (Wannier centers) + n_orb : int + number of orbitals per atom + out : bool + verbose mode + + Returns + ------- + int_params : direct + kanamori parameters + ''' + + int_params = collections.OrderedDict() + + # calculate intra-orbital U + U = 0.0 + for i in range(0, n_orb): + U += uijkl[i, i, i, i] + U = U/(n_orb) + int_params['U'] = U + + # calculate the U' + Uprime = 0.0 + for i in range(0, n_orb): + for j in range(0, n_orb): + if i != j: + Uprime += uijkl[i, i, j, j] + Uprime = Uprime / (n_orb*(n_orb-1)) + int_params['Uprime'] = Uprime + + # calculate J + J = 0.0 + for i in range(0, n_orb): + for j in range(0, n_orb): + if i != j: + J += uijkl[i, j, i, j] + J = J / (n_orb*(n_orb-1)) + int_params['J'] = J + + if out: + print('U= ', "{:.4f}".format(U)) + print('U\'= ', "{:.4f}".format(Uprime)) + print('J= ', "{:.4f}".format(J)) + + return int_params
+ + + +
+[docs] +def fit_kanamori(uijkl, n_orb, switch_jk=False, fit_2=True, fit_3=False, fit_4=True): + ''' + Fit Kanamori Hamiltonian with scipy to 2,3, and / or 4 parameters + + Parameters + ----------- + uijkl: np.array (n_orb x n_orb x n_orb x n_orb) + input four index tensor + n_orb: int + number of orbitals + switch_jk: bool, default=False + flip two inner indices in input U tensor (for Vasp) + fit_2: bool, default=True + fit two parameter form + fit_3: bool, default=False + fit three parameter form (U,Up,J=Jc) + fit_4: bool, default=True + fit four parameter form + + Returns + ------- + Uijkl_fit: np.array (n_orb x n_orb x n_orb x n_orb) + fitted Uijkl tensor + ''' + from scipy.optimize import minimize + + def minimizer_2params(parameters): + U, J = parameters + + Uijkl_fit = construct_U_kan(n_orb, U, J) + + return np.sum((uijkl - Uijkl_fit)**2) + + def minimizer_3params(parameters): + U, J, Up = parameters + + Uijkl_fit = construct_U_kan(n_orb, U, J, Up) + + return np.sum((uijkl - Uijkl_fit)**2) + + def minimizer_4params(parameters): + U, J, Up, Jc = parameters + + Uijkl_fit = construct_U_kan(n_orb, U, J, Up, Jc) + + return np.sum((uijkl - Uijkl_fit)**2) + + # check if J = JC (Hunds exchange and pair hopping have same amplitude) + # true for real values wave functions + if np.max(uijkl.imag) > 0.0: + print(f"Largest imaginary part of Uijkl: {np.max(uijkl.imag)}. Kanamori Hint assumed to be real valued. Neglecting imag part") + uijkl = uijkl.real + + if switch_jk: + uijkl = np.moveaxis(uijkl, 1, 2) + + # fit U, J + if fit_2: + initial_guess = (4, 1) + result = minimize(minimizer_2params, initial_guess) + U, J = result.x + Uijkl_fit = construct_U_kan(n_orb, U, J) + print('Result 2 parameter fit: \nU = {:.4f} eV, J = {:.4f} eV'.format(U, J)) + print(f'optimize error {result.fun:.3e}') + max_ind = np.unravel_index(np.argmax(np.abs(Uijkl_fit-uijkl), axis=None), Uijkl_fit.shape) + print(f'U max diff: U{max_ind}= {np.abs(Uijkl_fit-uijkl)[max_ind]:.4e}') + + print('\n-------------------------\n') + + # fit U, J, Up + if fit_3: + initial_guess = (4, 1, 2) + result = minimize(minimizer_3params, initial_guess) + U, J, Up = result.x + Uijkl_fit = construct_U_kan(n_orb, U, J, Up) + print('Result 3 parameter fit: \nU = {:.4f} eV, U\' = {:.4f} eV J = {:.4f} eV'.format(U, Up, J)) + print(f'optimize error {result.fun:.3e}') + max_ind = np.unravel_index(np.argmax(np.abs(Uijkl_fit-uijkl), axis=None), Uijkl_fit.shape) + print(f'U max diff: U{max_ind}= {np.abs(Uijkl_fit-uijkl)[max_ind]:.4e}') + print(f'U=U\'-2J deviation: {U-Up-2*J:.4f}') + + print('\n-------------------------\n') + + if fit_4: + # fit U, J, Up, Jc + initial_guess = (4, 1, 2, 1) + result = minimize(minimizer_4params, initial_guess) + U, J, Up, Jc = result.x + Uijkl_fit = construct_U_kan(n_orb, U, Up, J, Jc) + print('Result 4 parameter fit: \nU = {:.4f} eV, U\' = {:.4f} eV, J = {:.4f} eV, Jc = {:.4f} eV'.format(U, Up, J, Jc)) + print(f'optimize error {result.fun:.3e}') + print(f'U max diff: U{max_ind}= {np.abs(Uijkl_fit-uijkl)[max_ind]:.4e}') + max_ind = np.unravel_index(np.argmax(np.abs(Uijkl_fit-uijkl), axis=None), Uijkl_fit.shape) + print(f'U=U\'-2J deviation: {U-Up-2*J:.4f}') + print(f'J=Jc deviation: {J-Jc:.4f}') + + return Uijkl_fit
+ + + +
+[docs] +def calc_u_avg_fulld(uijkl, n_sites, n_orb, out=False): + ''' + calculates the coulomb integrals from a + given Uijkl matrix for full d shells. Follows the procedure given + in Pavarini - 2014 - arXiv - 1411 6906 - julich school U matrix + page 8 or as done in + PHYSICAL REVIEW B 86, 165105 (2012) Vaugier,Biermann + formula 23, 25 + works atm only for full d shell (l=2) + + Returns F0=U, and J=(F2+F4)/14 + + Parameters + ---------- + uijkl : numpy array + 4d numpy array of Coulomb tensor + n_sites: int + number of different atoms (Wannier centers) + n_orb : int + number of orbitals per atom + out : bool + verbose mode + + Returns + ------- + int_params : direct + Slater parameters + ''' + + int_params = collections.OrderedDict() + Uij_anti, Uiijj, Uijji, Uij_par = red_to_2ind(uijkl, n_sites, n_orb, out=out) + # U_antipar = U_mm'^oo' = U_mm'mm' (Coulomb Int) + # U_par = U_mm'^oo = U_mm'mm' - U_mm'm'm (for intersite interaction) + # here we assume cubic harmonics (real harmonics) as basis functions in the order + # dz2 dxz dyz dx2-y2 dxy + # triqs basis: basis ordered as (xy,yz,z^2,xz,x^2-y^2) + + # calculate J + J_cubic = 0.0 + for i in range(0, n_orb): + for j in range(0, n_orb): + if i != j: + J_cubic += Uijji[i, j] + J_cubic = J_cubic/(20.0) + # 20 for 2l(2l+1) + int_params['J_cubic'] = J_cubic + + # conversion from cubic to spherical: + J = 7.0 * J_cubic / 5.0 + + int_params['J'] = J + + # calculate intra-orbital U + U_0 = 0.0 + for i in range(0, n_orb): + U_0 += Uij_anti[i, i] + U_0 = U_0 / float(n_orb) + int_params['U_0'] = U_0 + + # now conversion from cubic to spherical + U = U_0 - (8.0*J_cubic/5.0) + + int_params['U'] = U + + if out: + print('cubic U_0= ', "{:.4f}".format(U_0)) + print('cubic J_cubic= ', "{:.4f}".format(J_cubic)) + print('spherical F0=U= ', "{:.4f}".format(U)) + print('spherical J=(F2+f4)/14 = ', "{:.4f}".format(J)) + + return int_params
+ + + +
+[docs] +def calculate_interaction_from_averaging(uijkl, n_sites, n_orb, out=False): + ''' + calculates U,J by averaging directly the Uijkl matrix + ignoring if tensor is given in spherical or cubic basis. + The assumption here is that the averaging gives indepentendly + of the choosen basis (cubic or spherical harmonics) the same results + if Uijkl is a true Slater matrix. + + Returns F0=U, and J=(F2+F4)/14 + + Parameters + ---------- + uijkl : numpy array + 4d numpy array of Coulomb tensor + n_sites: int + number of different atoms (Wannier centers) + n_orb : int + number of orbitals per atom + out : bool + verbose mode + + Returns + ------- + U, J: tuple + Slater parameters + ''' + + l = 2 + + Uij_anti, Uiijj, Uijji, Uij_par = red_to_2ind(uijkl, n_sites, n_orb, out=out) + + # Calculates Slater-averaged parameters directly + U = [None] * n_sites + J = [None] * n_sites + for impurity in range(n_sites): + u_ijij_imp = Uij_anti[impurity*n_orb:(impurity+1)*n_orb, impurity*n_orb:(impurity+1)*n_orb] + U[impurity] = np.mean(u_ijij_imp) + + u_iijj_imp = Uiijj[impurity*n_orb:(impurity+1)*n_orb, impurity*n_orb:(impurity+1)*n_orb] + J[impurity] = np.sum(u_iijj_imp) / (2*l*(2*l+1)) - U[impurity] / (2*l) + U = np.mean(U) + J = np.mean(J) + + if out: + print('spherical F0=U= ', "{:.4f}".format(U)) + print('spherical J=(F2+f4)/14 = ', "{:.4f}".format(J)) + + return U, J
+ + + +
+[docs] +def fit_slater_fulld(uijkl, n_sites, U_init, J_init, fixed_F4_F2=True): + ''' + finds best Slater parameters U, J for given Uijkl tensor + using the triqs U_matrix operator routine + assumes F4/F2=0.625 + ''' + + from triqs.operators.util.U_matrix import U_matrix_slater, reduce_4index_to_2index + from scipy.optimize import minimize + # transform U matrix orbital basis ijkl to nmop, note the last two indices need to be switched in the T matrices + + def transformU(U_matrix, T): + return np.einsum("im,jn,ijkl,lo,kp->mnpo", np.conj(T), np.conj(T), U_matrix, T, T) + + def minimizer(parameters): + U_int, J_hund = parameters + Umat_full = U_matrix_slater(l=2, U_int=U_int, J_hund=J_hund, basis='cubic') + Umat_full = transformU(Umat_full, rot_def_to_w90) + + Umat, Upmat = reduce_4index_to_2index(Umat_full) + u_iijj_crpa = Uiijj[:5, :5] + u_iijj_slater = Upmat - Umat + u_ijij_crpa = Uij_anti[:5, :5] + u_ijij_slater = Upmat + return np.sum((u_iijj_crpa - u_iijj_slater)**2 + (u_ijij_crpa - u_ijij_slater)**2) + + def minimizer_radial(parameters): + F0, F2, F4 = parameters + Umat_full = U_matrix_slater(l=2, radial_integrals=[F0, F2, F4], basis='cubic') + Umat_full = transformU(Umat_full, rot_def_to_w90) + + Umat, Upmat = reduce_4index_to_2index(Umat_full) + u_iijj_crpa = Uiijj[:5, :5] + u_iijj_slater = Upmat - Umat + u_ijij_crpa = Uij_anti[:5, :5] + u_ijij_slater = Upmat + return np.sum((u_iijj_crpa - u_iijj_slater)**2 + (u_ijij_crpa - u_ijij_slater)**2) + + # rot triqs d basis to w90 default basis! + # check your order of orbitals assuming: + # dz2, dxz, dyz, dx2-y2, dxy + rot_def_to_w90 = np.array([[0, 0, 0, 0, 1], + [0, 0, 1, 0, 0], + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 0, 1, 0]]) + + Uij_anti, Uiijj, Uijji, Uij_par = red_to_2ind(uijkl, n_sites, n_orb=5, out=False) + + if fixed_F4_F2: + result = minimize(minimizer, (U_init, J_init)) + + U_int, J_hund = result.x + print('Final results from fit: U = {:.3f} eV, J = {:.3f} eV'.format(U_int, J_hund)) + print('optimize error', result.fun) + else: + # start with 0.63 as guess + F0 = U_init + F2 = J_init * 14.0 / (1.0 + 0.63) + F4 = 0.630 * F2 + + initial_guess = (F0, F2, F4) + + print('Initial guess: F0 = {0[0]:.3f} eV, F2 = {0[1]:.3f} eV, F4 = {0[2]:.3f} eV'.format(initial_guess)) + + result = minimize(minimizer_radial, initial_guess) + F0, F2, F4 = result.x + print('Final results from fit: F0 = {:.3f} eV, F2 = {:.3f} eV, F4 = {:.3f} eV'.format(F0, F2, F4)) + print('(F2+F4)/14 = {:.3f} eV'.format((F2+F4)/14)) + print('F4/F2 = {:.3f} eV'.format(F4/F2)) + print('optimize error', result.fun) + U_int = F0 + J_hund = (F2+F4)/14 + + return U_int, J_hund
+ + +# example for a five orbital model +# uijkl=read_uijkl('UIJKL',1,5) +# calc_u_avg_fulld(uijkl,n_sites=1,n_orb=5,out=True) +# print('now via fitting with fixed F4/F2=0.63 ratio') +# fit_slater_fulld(uijkl,1,3,1, fixed_F4_F2 = True) +# print('now directly fitting F0,F2,F4') +# fit_slater_fulld(uijkl,1,3,1, fixed_F4_F2 = False) + +# calculate_interaction_from_averaging(uijkl, 1, 5, out=True) + + +# example for 3 orbital kanamori +# uijkl=read_uijkl('UIJKL',1,3) +# calc_kan_params(uijkl,1,3,out=True) +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/maxent_gf_imp.html b/_modules/postprocessing/maxent_gf_imp.html new file mode 100644 index 00000000..a175cc55 --- /dev/null +++ b/_modules/postprocessing/maxent_gf_imp.html @@ -0,0 +1,629 @@ + + + + + + postprocessing.maxent_gf_imp — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for postprocessing.maxent_gf_imp

+################################################################################
+#
+# TRIQS: a Toolbox for Research in Interacting Quantum Systems
+#
+# Copyright (C) 2016-2018, N. Wentzell
+# Copyright (C) 2018-2019, Simons Foundation
+#   author: N. Wentzell
+#
+# TRIQS is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details.
+#
+# You should have received a copy of the GNU General Public License along with
+# TRIQS. If not, see <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Analytic continuation of the impurity Green's function to the impurity spectral
+function using maxent.
+
+Reads G_imp(i omega) from the h5 archive and writes A_imp(omega) back. See
+the docstring of main() for more information.
+
+Not mpi parallelized.
+
+Author: Maximilian Merkel, Materials Theory Group, ETH Zurich, 2020 - 2022
+"""
+
+import sys
+import time
+import numpy as np
+
+from triqs_maxent.elementwise_maxent import PoormanMaxEnt
+from triqs_maxent.omega_meshes import HyperbolicOmegaMesh
+from triqs_maxent.alpha_meshes import LogAlphaMesh
+from triqs_maxent.logtaker import VerbosityFlags
+from h5 import HDFArchive
+from triqs.utility import mpi
+from triqs.gf import BlockGf
+
+
+def _read_h5(external_path, iteration):
+    """
+    Reads the h5 archive to get the impurity Green's functions.
+
+    Parameters
+    ----------
+    external_path : string
+        path to h5 archive
+    iteration : int
+        The iteration that is being read from, None corresponds to 'last_iter'
+
+    Returns
+    -------
+    gf_imp_tau : list
+        Impurity Green's function as block Green's function for each impurity
+    """
+
+    """Reads the block Green's function G(tau) from h5 archive."""
+
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'r') as archive:
+        impurity_paths = [key for key in archive[h5_internal_path].keys()
+                          if 'Gimp_time_' in key and 'orig' not in key]
+        # Sorts impurity paths by their indices, not sure if necessary
+        impurity_indices = [int(s[s.rfind('_')+1:]) for s in impurity_paths]
+        impurity_paths = [impurity_paths[i] for i in np.argsort(impurity_indices)]
+
+        gf_imp_tau = [archive[h5_internal_path][p] for p in impurity_paths]
+    return gf_imp_tau
+
+
+def _sum_greens_functions(block_gf, sum_spins):
+    """
+    Sums over spin channels if sum_spins. It combines "up" and "down" into one
+    block "total", or for SOC, simply renames the blocks ud into "total".
+    """
+
+    if not sum_spins:
+        return block_gf
+
+    for ind in block_gf.indices:
+        if ind.startswith('up_'):
+            assert ind.replace('up', 'down') in block_gf.indices
+        elif ind.startswith('down_'):
+            assert ind.replace('down', 'up') in block_gf.indices
+        elif not ind.startswith('ud_'):
+            raise ValueError(f'Block {ind} in G(tau) has unknown spin type. '
+                             + 'Check G(tau) or turn off sum_spins.')
+
+    summed_gf_imp = {}
+
+    for block_name, block in sorted(block_gf):
+        if block_name.startswith('up_'):
+            new_block_name = block_name.replace('up', 'total')
+            opp_spin_block_name = block_name.replace('up', 'down')
+            summed_gf_imp[new_block_name] = block + block_gf[opp_spin_block_name]
+        elif block_name.startswith('ud_'):
+            summed_gf_imp[block_name.replace('ud', 'total')] = block
+
+    return BlockGf(name_list=summed_gf_imp.keys(), block_list=summed_gf_imp.values())
+
+
+def _run_maxent(gf_imp_list, maxent_error, n_points_maxent, n_points_alpha,
+                omega_min, omega_max, analyzer='LineFitAnalyzer'):
+    """
+    Runs maxent to get the spectral functions from the list of block GFs.
+    """
+
+    omega_mesh = HyperbolicOmegaMesh(omega_min=omega_min, omega_max=omega_max,
+                                     n_points=n_points_maxent)
+
+    mpi.report(f'Continuing impurities with blocks: ')
+    imps_blocks = []
+    for i, block_gf in enumerate(gf_imp_list):
+        blocks = list(block_gf.indices)
+        mpi.report('- Imp {}: {}'.format(i, blocks))
+        for block in blocks:
+            imps_blocks.append((i, block))
+    mpi.report('-'*50)
+    imps_blocks_indices = np.arange(len(imps_blocks))
+
+    # Initialize collective results
+    data_linefit = [0] * len(imps_blocks)
+    data_chi2 =  [0] * len(imps_blocks)
+
+    mpi.barrier()
+    for i in mpi.slice_array(imps_blocks_indices):
+        imp, block = imps_blocks[i]
+        print(f"\nRank {mpi.rank}: solving impurity {imp+1} block '{block}'")
+
+        solver = PoormanMaxEnt(use_complex=True)
+        solver.set_G_tau(gf_imp_list[imp][block])
+        solver.set_error(maxent_error)
+        solver.omega = omega_mesh
+        solver.alpha_mesh = LogAlphaMesh(alpha_min=1e-6, alpha_max=1e2,
+                                         n_points=n_points_alpha)
+        # silence output
+        solver.maxent_diagonal.logtaker.verbose = VerbosityFlags.Quiet
+        solver.maxent_offdiagonal.logtaker.verbose = VerbosityFlags.Quiet
+        results = solver.run()
+
+        n_orb = gf_imp_list[imp][block].target_shape[0]
+        opt_alpha = np.zeros((n_orb, n_orb, 2), dtype=int)
+        opt_alpha[:, :, :] = -1  # set results to -1 to distinguish them from 0
+        for i_orb in range(n_orb):
+            for j_orb in range(n_orb):
+                for l_com in range(2):  # loop over complex numbers
+                    if results.analyzer_results[i_orb][j_orb][l_com] == {}:
+                        continue
+                    opt_alpha[i_orb, j_orb,
+                              l_com] = results.analyzer_results[i_orb][j_orb][l_com][analyzer]['alpha_index']
+
+        print(
+            f"Optimal alphas , Imp {imp+1} block '{block}': \n--- Real part ---\n", opt_alpha[:, :, 0])
+        if np.any(opt_alpha[:, :, 1] != -1):
+            print('Imp {i+1} block {block} Imag part ---\n', opt_alpha[:, :, 1])
+        if np.any(opt_alpha[:, :, 0] == -1):
+            print('(a -1 indicates that maxent did not run for this block due to symmetry)')
+
+        # store unpacked data in flatted list / maxent res object not bcastable
+        data_linefit[i] = results.get_A_out('LineFitAnalyzer')
+        data_chi2[i] = results.get_A_out('Chi2CurvatureAnalyzer')
+
+    # slow barrier to reduce CPU load of waiting ranks
+    mpi.barrier(1000)
+    # Synchronizes information between ranks
+    for i in imps_blocks_indices:
+        data_linefit[i] = mpi.all_reduce(data_linefit[i])
+        data_chi2[i] = mpi.all_reduce(data_chi2[i])
+
+    # final result list
+    unpacked_results = [{'mesh': np.array(omega_mesh),
+                         'Aimp_w_line_fit': {},
+                         'Aimp_w_chi2_curvature': {}
+                         } for _ in range(len(gf_imp_list))]
+
+    for i in imps_blocks_indices:
+        imp, block = imps_blocks[i]
+        unpacked_results[imp]['Aimp_w_line_fit'][block] = data_linefit[i]
+        unpacked_results[imp]['Aimp_w_chi2_curvature'][block] = data_chi2[i]
+
+    return unpacked_results
+
+
+def _write_spectral_function_to_h5(unpacked_results, external_path, iteration):
+    """ Writes the mesh and the maxent result for each analyzer to h5 archive. """
+
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'a') as archive:
+        for i, res in enumerate(unpacked_results):
+            archive[h5_internal_path][f'Aimp_maxent_{i}'] = res
+
+
+
+[docs] +def main(external_path, iteration=None, sum_spins=False, maxent_error=0.02, + n_points_maxent=200, n_points_alpha=50, omega_min=-20, omega_max=20): + """ + Main function that reads the impurity Greens (GF) function from h5, + analytically continues it, writes the result back to the h5 archive and + also returns the results. + + Parameters + ---------- + external_path : string + Path to the h5 archive to read from and write to. + iteration : int/string + Iteration to read from and write to. Defaults to last_iter. + sum_spins : bool + Whether to sum over the spins or continue the impurity GF + for the up and down spin separately, for example for magnetized results. + maxent_error : float + The error that is used for the analyzers. + n_points_maxent : int + Number of omega points on the hyperbolic mesh used in the continuation. + n_points_alpha : int + Number of points that the MaxEnt alpha parameter is varied on logarithmically. + omega_min : float + Lower end of range where the GF is being continued. Range has to comprise + all features of the impurity GF for correct normalization. + omega_max : float + Upper end of range where the GF is being continued. See omega_min. + + Returns + ------- + maxent_results : list + The omega mesh and impurity spectral function from two different analyzers + in a dict for each impurity + """ + + gf_imp_tau = [] + if mpi.is_master_node(): + start_time = time.time() + + gf_imp_tau = _read_h5(external_path, iteration) + for i, gf in enumerate(gf_imp_tau): + gf_imp_tau[i] = _sum_greens_functions(gf, sum_spins) + gf_imp_tau = mpi.bcast(gf_imp_tau) + + maxent_results = _run_maxent(gf_imp_tau, maxent_error, n_points_maxent, + n_points_alpha, omega_min, omega_max) + + if mpi.is_master_node(): + _write_spectral_function_to_h5(maxent_results, external_path, iteration) + + total_time = time.time() - start_time + mpi.report('-'*80, 'DONE') + mpi.report(f'Total run time: {total_time:.0f} s.') + + return maxent_results
+ + + +def _strtobool(val): + """Convert a string representation of truth to true (1) or false (0). + True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values + are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if + 'val' is anything else. + Copied from distutils.util in python 3.10. + """ + val = val.lower() + if val in ('y', 'yes', 't', 'true', 'on', '1'): + return 1 + elif val in ('n', 'no', 'f', 'false', 'off', '0'): + return 0 + else: + raise ValueError("invalid truth value {!r}".format(val)) + + +if __name__ == '__main__': + # Casts input parameters + if len(sys.argv) > 2: + if sys.argv[2].lower() == 'none': + sys.argv[2] = None + if len(sys.argv) > 3: + sys.argv[3] = _strtobool(sys.argv[3]) + if len(sys.argv) > 4: + sys.argv[4] = float(sys.argv[4]) + if len(sys.argv) > 5: + sys.argv[5] = int(sys.argv[5]) + if len(sys.argv) > 6: + sys.argv[6] = int(sys.argv[6]) + if len(sys.argv) > 7: + sys.argv[7] = float(sys.argv[7]) + if len(sys.argv) > 8: + sys.argv[8] = float(sys.argv[8]) + + main(*sys.argv[1:]) +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/maxent_gf_latt.html b/_modules/postprocessing/maxent_gf_latt.html new file mode 100644 index 00000000..a1a5e130 --- /dev/null +++ b/_modules/postprocessing/maxent_gf_latt.html @@ -0,0 +1,642 @@ + + + + + + postprocessing.maxent_gf_latt — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for postprocessing.maxent_gf_latt

+################################################################################
+#
+# TRIQS: a Toolbox for Research in Interacting Quantum Systems
+#
+# Copyright (C) 2016-2018, N. Wentzell
+# Copyright (C) 2018-2019, Simons Foundation
+#   author: N. Wentzell
+#
+# TRIQS is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details.
+#
+# You should have received a copy of the GNU General Public License along with
+# TRIQS. If not, see <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Analytic continuation of the lattice Green's function to the lattice spectral
+function using maxent.
+
+Reads G_latt(i omega) from the h5 archive and writes A_latt(omega) back. See
+the docstring of main() for more information.
+
+mpi parallelized for the generation of the imaginary-frequency lattice GF over
+k points.
+
+Author: Maximilian Merkel, Materials Theory Group, ETH Zurich, 2020 - 2022
+"""
+
+import sys
+import time
+import numpy as np
+
+from triqs_maxent.tau_maxent import TauMaxEnt
+from triqs_maxent.omega_meshes import HyperbolicOmegaMesh
+from triqs_maxent.alpha_meshes import LogAlphaMesh
+from triqs_dft_tools.sumk_dft import SumkDFT
+from h5 import HDFArchive
+from triqs.utility import mpi
+from triqs.gf import Gf, BlockGf
+
+
+def _read_h5(external_path, iteration):
+    """
+    Reads the h5 archive to get the Matsubara self energy, the double-counting potential,
+    the chemical potential and the block structure.
+
+    Parameters
+    ----------
+    external_path : string
+        path to h5 archive
+    iteration : int
+        The iteration that is being read from, None corresponds to 'last_iter'
+
+    Returns
+    -------
+    sigma_iw : list
+        Self energy as block Green's function for each impurity
+    chemical_potential : float
+        The chemical potential of the problem. Should be approximately real
+    dc_potential : list
+        Double counting for each impurity
+    block_structure : triqs_dft_tools.BlockStructure
+        Block structure mapping from the DMFT calculation
+
+    """
+
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'r') as archive:
+        impurity_paths = [key for key in archive[h5_internal_path].keys() if 'Sigma_freq_' in key]
+        # Sorts impurity paths by their indices, not sure if necessary
+        impurity_indices = [int(s[s.rfind('_')+1:]) for s in impurity_paths]
+        impurity_paths = [impurity_paths[i] for i in np.argsort(impurity_indices)]
+
+        sigma_iw = [archive[h5_internal_path][p] for p in impurity_paths]
+
+        block_structure = archive['DMFT_input']['block_structure']
+        # Fix for archives from triqs 2 when corr_to_inequiv was in SumkDFT, not in BlockStructure
+        if block_structure.corr_to_inequiv is None:
+            block_structure.corr_to_inequiv = archive['dft_input/corr_to_inequiv']
+
+        dc_potential = archive[h5_internal_path]['DC_pot']
+
+        if 'chemical_potential_post' in archive[h5_internal_path]:
+            chemical_potential = archive[h5_internal_path]['chemical_potential_post']
+        else:
+            # Old name for chemical_potential_post
+            chemical_potential = archive[h5_internal_path]['chemical_potential']
+
+    return sigma_iw, chemical_potential, dc_potential, block_structure
+
+
+def _generate_lattice_gf(sum_k, sum_spins):
+    """
+    Generates the lattice GF from the SumkDFT object. If sum_spins, it
+    has one block "total". Otherwise, the block names are the spins.
+    """
+    # Initializes lattice GF to zero for each process
+    spin_blocks = ['total'] if sum_spins else sum_k.spin_block_names[sum_k.SO]
+    mesh = sum_k.Sigma_imp[0].mesh
+    trace_gf_latt = {key: Gf(mesh=mesh, data=np.zeros((len(mesh), 1, 1), dtype=complex))
+                     for key in spin_blocks}
+
+    # Takes trace over orbitals (and spins). Individual entries do not make sense
+    # because the KS Hamiltonian ususally has the bands sorted by energy
+    for ik in mpi.slice_array(np.arange(sum_k.n_k)):
+        gf_latt = sum_k.lattice_gf(ik) * sum_k.bz_weights[ik]
+        if sum_spins:
+            trace_gf_latt['total'].data[:] += np.trace(sum(g.data for _, g in gf_latt),
+                                                       axis1=1, axis2=2).reshape(-1, 1, 1)
+        else:
+            for s in spin_blocks:
+                trace_gf_latt[s].data[:] += np.trace(gf_latt[s].data,
+                                                     axis1=1, axis2=2).reshape(-1, 1, 1)
+
+    for s in spin_blocks:
+        trace_gf_latt[s] << mpi.all_reduce(trace_gf_latt[s])
+
+    # Lattice GF as BlockGf, required for compatibility with MaxEnt functions
+    gf_lattice_iw = BlockGf(name_list=trace_gf_latt.keys(),
+                            block_list=trace_gf_latt.values())
+    return gf_lattice_iw
+
+
+def _run_maxent(gf_lattice_iw, sum_k, error, omega_min, omega_max,
+                n_points_maxent, n_points_alpha, analyzer='LineFitAnalyzer'):
+    """
+    Runs maxent to get the spectral function from the block GF.
+    """
+
+    # Automatic determination of energy range from hopping matrix
+    if omega_max is None:
+        num_ks_orbitals = sum_k.hopping.shape[2]
+        hopping_diagonal = sum_k.hopping[:, :, np.arange(num_ks_orbitals), np.arange(num_ks_orbitals)]
+        hopping_min = np.min(hopping_diagonal)
+        hopping_max = np.max(hopping_diagonal)
+        omega_min = min(-20, hopping_min - sum_k.chemical_potential)
+        omega_max = max(20, hopping_max - sum_k.chemical_potential)
+        mpi.report('Set omega range to {:.3f}...{:.3f} eV'.format(omega_min, omega_max))
+
+    omega_mesh = HyperbolicOmegaMesh(omega_min=omega_min, omega_max=omega_max,
+                                     n_points=n_points_maxent)
+
+    # Prints information on the blocks found
+    mpi.report('Found blocks {}'.format(list(gf_lattice_iw.indices)))
+
+    # Initializes and runs the maxent solver
+    # TODO: parallelization over blocks
+    results = {}
+    for block, gf in gf_lattice_iw:
+        mpi.report('-'*80, f'Running MaxEnt on block "{block}" now', '-'*80)
+        solver = TauMaxEnt()
+        solver.set_G_iw(gf)
+        solver.set_error(error)
+        solver.omega = omega_mesh
+        solver.alpha_mesh = LogAlphaMesh(alpha_min=1e-6, alpha_max=1e2, n_points=n_points_alpha)
+        results[block] = solver.run()
+
+        opt_alpha = results[block].analyzer_results[analyzer]['alpha_index']
+        mpi.report(f'Optimal alpha, block "{block}" from {analyzer}: {opt_alpha}')
+
+    return results, omega_mesh
+
+
+def _unpack_maxent_results(results, omega_mesh):
+    """
+    Converts maxent result to dict with mesh and spectral function from each
+    analyzer.
+    """
+    data_linefit = {}
+    data_chi2 = {}
+    for key, result in results.items():
+        data_linefit[key] = result.get_A_out('LineFitAnalyzer')
+        data_chi2[key] = result.get_A_out('Chi2CurvatureAnalyzer')
+
+    data = {'mesh': np.array(omega_mesh), 'Alatt_w_line_fit': data_linefit,
+            'Alatt_w_chi2_curvature': data_chi2}
+    return data
+
+
+def _write_spectral_function_to_h5(unpacked_results, external_path, iteration):
+    """ Writes the mesh and the maxent result for each analyzer to h5 archive. """
+
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'a') as archive:
+        archive[h5_internal_path]['Alatt_maxent'] = unpacked_results
+
+
+
+[docs] +def main(external_path, iteration=None, sum_spins=False, maxent_error=.02, + n_points_maxent=200, n_points_alpha=50, omega_min=None, omega_max=None): + """ + Main function that reads the lattice Green's function (GF) from h5, + analytically continues it, writes the result back to the h5 archive and + also returns the results. + Only the trace can be used because the Kohn-Sham energies ("hopping") are not + sorted by "orbital" but by energy, leading to crossovers. + + Parameters + ---------- + external_path: string + Path to the h5 archive to read from and write to. + iteration: int/string + Iteration to read from and write to. Defaults to last_iter. + sum_spins: bool + Whether to sum over the spins or continue the lattice GF + for the up and down spin separately, for example for magnetized results. + maxent_error : float + The error that is used for the analyzers. + n_points_maxent : int + Number of omega points on the hyperbolic mesh used in the continuation. + n_points_alpha : int + Number of points that the MaxEnt alpha parameter is varied on logarithmically. + omega_min : float + Lower end of range where the GF is being continued. Range has to comprise + all features of the lattice GF for correct normalization. + If omega_min and omega_max are None, they are chosen automatically based + on the diagonal entries in the hopping matrix but at least to -20...20 eV. + omega_max : float + Upper end of range where the GF is being continued. See omega_min. + + Returns + ------- + unpacked_results : dict + The omega mesh and lattice spectral function from two different analyzers + """ + + if (omega_max is None and omega_min is not None + or omega_max is not None and omega_min is None): + raise ValueError('Both or neither of omega_max and omega_min have to be None') + + start_time = time.time() + + # Sets up the SumkDFT object + h5_content = None + if mpi.is_master_node(): + h5_content = _read_h5(external_path, iteration) + sigma_iw, chemical_potential, dc_potential, block_structure = mpi.bcast(h5_content) + sum_k = SumkDFT(external_path, mesh=sigma_iw[0].mesh, use_dft_blocks=False) + sum_k.block_structure = block_structure + sum_k.put_Sigma(sigma_iw) + sum_k.set_mu(chemical_potential) + sum_k.set_dc(dc_potential, None) + + # Generates the lattice GF + gf_lattice_iw = _generate_lattice_gf(sum_k, sum_spins) + mpi.report('Generated the lattice GF.') + + # Runs MaxEnt + unpacked_results = None + if mpi.is_master_node(): + maxent_results, omega_mesh = _run_maxent(gf_lattice_iw, sum_k, maxent_error, + omega_min, omega_max, n_points_maxent, + n_points_alpha) + unpacked_results = _unpack_maxent_results(maxent_results, omega_mesh) + _write_spectral_function_to_h5(unpacked_results, external_path, iteration) + unpacked_results = mpi.bcast(unpacked_results) + + total_time = time.time() - start_time + mpi.report('-'*80, 'DONE') + mpi.report(f'Total run time: {total_time:.0f} s.') + + return unpacked_results
+ + + +def _strtobool(val): + """Convert a string representation of truth to true (1) or false (0). + True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values + are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if + 'val' is anything else. + Copied from distutils.util in python 3.10. + """ + val = val.lower() + if val in ('y', 'yes', 't', 'true', 'on', '1'): + return 1 + elif val in ('n', 'no', 'f', 'false', 'off', '0'): + return 0 + else: + raise ValueError("invalid truth value {!r}".format(val)) + + +if __name__ == '__main__': + # Casts input parameters + if len(sys.argv) > 2: + if sys.argv[2].lower() == 'none': + sys.argv[2] = None + if len(sys.argv) > 3: + sys.argv[3] = _strtobool(sys.argv[3]) + if len(sys.argv) > 4: + sys.argv[4] = float(sys.argv[4]) + if len(sys.argv) > 5: + sys.argv[5] = int(sys.argv[5]) + if len(sys.argv) > 6: + sys.argv[6] = int(sys.argv[6]) + if len(sys.argv) > 7: + sys.argv[7] = float(sys.argv[7]) + if len(sys.argv) > 8: + sys.argv[8] = float(sys.argv[8]) + + main(*sys.argv[1:]) +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/maxent_sigma.html b/_modules/postprocessing/maxent_sigma.html new file mode 100644 index 00000000..6a096ec2 --- /dev/null +++ b/_modules/postprocessing/maxent_sigma.html @@ -0,0 +1,725 @@ + + + + + + postprocessing.maxent_sigma — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for postprocessing.maxent_sigma

+################################################################################
+#
+# TRIQS: a Toolbox for Research in Interacting Quantum Systems
+#
+# Copyright (C) 2016-2018, N. Wentzell
+# Copyright (C) 2018-2019, Simons Foundation
+#   author: N. Wentzell
+#
+# TRIQS is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details.
+#
+# You should have received a copy of the GNU General Public License along with
+# TRIQS. If not, see <http://www.gnu.org/licenses/>.
+#
+################################################################################
+"""
+Analytic continuation of the self-energy using maxent on an auxiliary Green's
+function.
+
+Reads Sigma(i omega) from the h5 archive and writes Sigma(omega) back. See
+the docstring of main() for more information.
+
+mpi parallelized for the maxent routine over all blocks and for the continuator
+extraction over omega points.
+
+Author: Maximilian Merkel, Materials Theory Group, ETH Zurich, 2020 - 2022
+
+Warnings:
+    * When using this on self-energies with SOC, please check that the formalism
+      is correct, in particular the Kramers-Kronig relation.
+"""
+
+import time
+import sys
+import numpy as np
+import warnings
+
+from triqs.utility import mpi
+from triqs_maxent.sigma_continuator import InversionSigmaContinuator, DirectSigmaContinuator
+from triqs_maxent.elementwise_maxent import PoormanMaxEnt
+from triqs_maxent.omega_meshes import HyperbolicOmegaMesh
+from triqs_maxent.alpha_meshes import LogAlphaMesh
+from triqs_maxent.logtaker import VerbosityFlags
+from h5 import HDFArchive
+
+
+def _read_h5(external_path, iteration):
+    """
+    Reads the h5 archive to get the Matsubara self energy, the double-counting potential
+    and the chemical potential.
+
+    Parameters:
+    -----------
+    external_path : string
+        path to h5 archive
+    iteration : int
+        The iteration that is being read from, None corresponds to 'last_iter'
+
+    Returns:
+    --------
+    sigma_iw : list
+        Self energy as block Green's function for each impurity
+    dc_potential : list
+        Double counting for each impurity
+    chemical_potential : float
+        The chemical potential of the problem. Should be approximately real
+    chemical_potential_zero : float
+        The chemical potential at 0 iteration. Should be approximately real
+    """
+
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'r') as archive:
+        impurity_paths = [key for key in archive[h5_internal_path].keys() if 'Sigma_freq_' in key]
+        # Sorts impurity paths by their indices, not sure if necessary
+        impurity_indices = [int(s[s.rfind('_')+1:]) for s in impurity_paths]
+        impurity_paths = [impurity_paths[i] for i in np.argsort(impurity_indices)]
+        sigma_iw = [archive[h5_internal_path][p] for p in impurity_paths]
+
+        inequiv_to_corr = archive['dft_input']['inequiv_to_corr']
+        dc_potential = [archive[h5_internal_path]['DC_pot'][icrsh]
+                        for icrsh in inequiv_to_corr]
+
+        if 'chemical_potential_post' in archive[h5_internal_path]:
+            chemical_potential = archive[h5_internal_path]['chemical_potential_post']
+        else:
+            # Old name for chemical_potential_post
+            chemical_potential = archive[h5_internal_path]['chemical_potential']
+        chemical_potential_zero = archive['DMFT_results/observables']['mu'][0]
+
+    return sigma_iw, dc_potential, chemical_potential, chemical_potential_zero
+
+
+def _create_sigma_continuator(sigma_iw, dc_potential, chemical_potential, chemical_potential_zero, continuator_type):
+    """
+    Initializes the inversion and direct sigma continuator. Returns a list of
+    continuators. Types of supported auxiliary Green's functions:
+    * 'inversion_dc': inversion continuator, constant C = dc_potential for the impurity
+    * 'inversion_sigmainf': inversion continuator, constant C = Sigma(i infinity) + chemical potential
+    * 'direct': direct continuator
+    """
+
+    for sigma_imp in sigma_iw:
+        for _, sigma_block in sigma_imp:
+            if sigma_block.data.shape[1] > 1:
+                warnings.warn('Continuation of matrix-valued selfenergies '
+                              + 'with nonzero offdiagonal components can be '
+                              + 'unstable since MaxEnt matrix continuation '
+                              + 'does not guarantee a positive semi-definite, '
+                              + 'Hermitian output.')
+
+    n_inequiv_shells = len(sigma_iw)
+
+    if continuator_type == 'inversion_dc':
+        shifts = [None] * n_inequiv_shells
+        for iineq in range(n_inequiv_shells):
+            for dc_block in dc_potential[iineq].values():
+                # Reads first element from matrix for shift
+                if shifts[iineq] is None:
+                    shifts[iineq] = dc_block[0, 0]
+                # Checks that matrix for up and down is unit matrix * shift
+                if not np.allclose(dc_block, np.eye(dc_block.shape[0])*shifts[iineq]):
+                    raise NotImplementedError('Only scalar dc per impurity supported')
+
+        continuators = [InversionSigmaContinuator(sigma_imp, shift)
+                        for sigma_imp, shift in zip(sigma_iw, shifts)]
+    elif continuator_type == 'inversion_sigmainf':
+        shifts = [{key: sigma_block.data[-1].real + (chemical_potential - chemical_potential_zero)
+                   for key, sigma_block in sigma_imp} for sigma_imp in sigma_iw]
+        continuators = [InversionSigmaContinuator(sigma_imp, shift)
+                        for sigma_imp, shift in zip(sigma_iw, shifts)]
+    elif continuator_type == 'direct':
+        for sigma_imp in sigma_iw:
+            for _, sigma_block in sigma_imp:
+                if sigma_block.data.shape[1] > 1:
+                    # TODO: implement making input diagonal if it is not
+                    raise NotImplementedError('Continuing only diagonal elements of non-diagonal '
+                                              'matrix not implemented yet')
+        continuators = [DirectSigmaContinuator(sigma_imp) for sigma_imp in sigma_iw]
+    else:
+        raise NotImplementedError
+
+    mpi.report(f'Created sigma continuator of type "{continuator_type}"')
+
+    return continuators
+
+
+def _run_maxent(continuators, error, omega_min, omega_max, n_points_maxent,
+                n_points_alpha, analyzer):
+    """
+    Uses maxent to continue the auxiliary Green's function obtained from the
+    continuator. The range for alpha is set to 1e-6 to 1e2.
+    Returns the real-frequency auxiliary Green's function
+    """
+
+    # Finds blocks of impurities and prints summary
+    mpi.report('Continuing impurities with blocks:')
+    imps_blocks = []
+    for i, continuator in enumerate(continuators):
+        blocks = list(continuator.Gaux_iw.indices)
+        mpi.report('- Imp {}: {}'.format(i, blocks))
+        for block in blocks:
+            imps_blocks.append((i, block))
+
+    # Initializes arrays to save results in
+    spectral_funcs = [np.zeros(1)] * len(imps_blocks)
+    opt_alphas = [np.zeros(1, dtype=int)] * len(imps_blocks)
+    omega_mesh = HyperbolicOmegaMesh(omega_min=omega_min, omega_max=omega_max, n_points=n_points_maxent)
+
+    # Runs MaxEnt while parallelizing over impurities and blocks
+    imps_blocks_indices = np.arange(len(imps_blocks))
+    for i in mpi.slice_array(imps_blocks_indices):
+        imp, block = imps_blocks[i]
+        g_aux_block = continuators[imp].Gaux_iw[block]
+        solver = PoormanMaxEnt(use_complex=True)
+        solver.set_G_iw(g_aux_block)
+        solver.set_error(error)
+        solver.omega = omega_mesh
+        solver.alpha_mesh = LogAlphaMesh(alpha_min=1e-6, alpha_max=1e2, n_points=n_points_alpha)
+        # Turns off MaxEnt output, it's far too messy in the parallel mode
+        # For some reason, MaxEnt still prints "appending"
+        solver.maxent_diagonal.logtaker.verbose = VerbosityFlags.Quiet
+        solver.maxent_offdiagonal.logtaker.verbose = VerbosityFlags.Quiet
+        result = solver.run()
+
+        spectral_funcs[i] = result.get_A_out(analyzer)
+
+        opt_alphas[i] = np.full(g_aux_block.data.shape[1:] + (2, ), -1, dtype=int)
+        for j in range(opt_alphas[i].shape[0]):
+            for k in range(j+1):
+                for l in range(2): # loop over complex numbers
+                    if result.analyzer_results[k][j][l] == {}:
+                        continue
+                    opt_alphas[i][k, j, l] = result.analyzer_results[k][j][l][analyzer]['alpha_index']
+
+    mpi.barrier(1000)
+    # Synchronizes information between ranks
+    for i in imps_blocks_indices:
+        spectral_funcs[i] = mpi.all_reduce(spectral_funcs[i])
+        opt_alphas[i] = mpi.all_reduce(opt_alphas[i])
+
+    for i, block_index in enumerate(imps_blocks):
+        mpi.report(f'Optimal alphas, block {block_index}:')
+        mpi.report('--- Real part ---', opt_alphas[i][:, :, 0])
+        if np.any(opt_alphas[i][:, :, 1] != -1):
+            mpi.report('--- Imag part ---', opt_alphas[i][:, :, 1])
+
+    # Sorts results into original order of impurities and blocks
+    # and adds information from Hermitian conjugate of off-diagonal elements
+    sorted_spectral_funcs = [{} for _ in range(len(continuators))]
+    for (imp, block), val in zip(imps_blocks, spectral_funcs):
+        for i in range(val.shape[0]):
+            for j in range(i):
+                val[i, j] = val[j, i].conj()
+        if not np.allclose(val.imag, 0):
+            mpi.report('The result is complex. This might be correct but comes '
+                       + 'without guarantuee of formal correctness.')
+        sorted_spectral_funcs[imp][block] = val
+
+    return sorted_spectral_funcs, omega_mesh
+
+
+def _get_sigma_omega_from_aux(continuators, aux_spectral_funcs, aux_omega_mesh,
+                              omega_min, omega_max, n_points_interp, n_points_final):
+    """ Extracts the real-frequency self energy from the auxiliary Green's function. """
+    for cont_imp, spec_imp in zip(continuators, aux_spectral_funcs):
+        cont_imp.set_Gaux_w_from_Aaux_w(spec_imp, aux_omega_mesh, np_interp_A=n_points_interp,
+                                        np_omega=n_points_final, w_min=omega_min, w_max=omega_max)
+
+    g_aux_w = [continuator.Gaux_w for continuator in continuators]
+    sigma_w = [continuator.S_w for continuator in continuators]
+    return g_aux_w, sigma_w
+
+
+def _write_sigma_omega_to_h5(g_aux_w, sigma_w, external_path, iteration):
+    """ Writes real-frequency self energy to h5 archive. """
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'a') as archive:
+        for i, (g_aux_imp, sigma_imp) in enumerate(zip(g_aux_w, sigma_w)):
+            archive[h5_internal_path][f'Sigma_maxent_{i}'] = sigma_imp
+            archive[h5_internal_path][f'G_aux_for_Sigma_maxent_{i}'] = g_aux_imp
+
+
+
+[docs] +def main(external_path, iteration=None, continuator_type='inversion_sigmainf', maxent_error=.02, + omega_min=-12., omega_max=12., n_points_maxent=400, n_points_alpha=50, + analyzer='LineFitAnalyzer', n_points_interp=2000, n_points_final=1000): + """ + Main function that reads the Matsubara self-energy from h5, analytically continues it, + writes the results back to the h5 archive and also returns the results. + + Function parallelizes using MPI over impurities and blocks. + + Parameters + ---------- + external_path : string + Path to the h5 archive to read from and write to + iteration : int/string + Iteration to read from and write to. Default to last_iter + continuator_type : string + Type of continuator to use, one of 'inversion_sigmainf', 'inversion_dc', 'direct' + maxent_error : float + The error that is used for the analyzers. + omega_min : float + Lower end of range where Sigma is being continued. Range has to comprise + all features of the self-energy because the real part of it comes from + the Kramers-Kronig relation applied to the auxiliary spectral function. + For example, if the real-frequency self-energy bends at omega_min or + omega_max, there are neglegcted features and the range should be extended. + omega_max : float + Upper end of range where Sigma is being continued. See omega_min. + n_points_maxent : int + Number of omega points on the hyperbolic mesh used in analytically + continuing the auxiliary GF + n_points_alpha : int + Number of points that the MaxEnt alpha parameter is varied on logarithmically + analyzer : string + Analyzer used int MaxEnt, one of 'LineFitAnalyzer', 'Chi2CurvatureAnalyzer', + 'ClassicAnalyzer', 'EntropyAnalyzer', 'BryanAnalyzer' + n_points_interp : int + Number of points where auxiliary GF is interpolated to integrate over + it for the Kramers-Kronig relation + n_points_final : int + Number of omega points the complex auxiliary GF and therefore the + continued self-energy has on a linear grid between omega_min and omega_max + + Returns + ------- + sigma_w : list of triqs.gf.BlockGf + Sigma(omega) per inequivalent shell + g_aux_w : list of triqs.gf.BlockGf + G_aux(omega) per inequivalent shell + + Raises + ------ + NotImplementedError + -- When a wrong continuator type or maxent analyzer is chosen + -- For direct continuator: when the self energy contains blocks larger + than 1x1 (no off-diagonal continuation possible) + -- For inversion_dc continuator: when the DC is not a diagonal matrix with + the same entry for all blocks of an impurity. Otherwise, issues like + the global frame violating the block structure would come up. + """ + # Checks on input parameters + if continuator_type not in ('inversion_sigmainf', 'inversion_dc', 'direct'): + raise NotImplementedError('Unsupported type of continuator chosen') + + if analyzer not in ('LineFitAnalyzer', 'Chi2CurvatureAnalyzer', 'ClassicAnalyzer', + 'EntropyAnalyzer', 'BryanAnalyzer'): + raise NotImplementedError('Unsupported type of analyzer chosen') + + assert omega_min < omega_max + + # Reads in data and initializes continuator object + start_time = time.time() + continuators = None + if mpi.is_master_node(): + sigma_iw, dc_potential, chemical_potential, chemical_potential_zero = _read_h5(external_path, iteration) + mpi.report('Finished reading h5 archive. Found {} impurities.'.format(len(sigma_iw))) + continuators = _create_sigma_continuator(sigma_iw, dc_potential, + chemical_potential, chemical_potential_zero, continuator_type) + continuators = mpi.bcast(continuators) + init_end_time = time.time() + + # Runs MaxEnt + mpi.report('Starting run of maxent now.') + aux_spectral_funcs, aux_omega_mesh = _run_maxent(continuators, maxent_error, + omega_min, omega_max, + n_points_maxent, n_points_alpha, + analyzer) + maxent_end_time = time.time() + + # Extracts Sigma(omega) + mpi.report(f'Extracting Σ(ω) now with {mpi.size} process(es).') + g_aux_w, sigma_w = _get_sigma_omega_from_aux(continuators, aux_spectral_funcs, + aux_omega_mesh, omega_min, omega_max, + n_points_interp, n_points_final) + extract_end_time = time.time() + + # Writes results into h5 archive + mpi.report('Writing results to h5 archive now.') + if mpi.is_master_node(): + _write_sigma_omega_to_h5(g_aux_w, sigma_w, external_path, iteration) + mpi.report('Finished writing Σ(ω) to archive.') + + all_end_time = time.time() + + # Prints timing summary + run_time_report = '\n{:<8} | {:<10}\n'.format('Task', 'Duration (s)') + length_table = len(run_time_report) - 2 + run_time_report += '-'*length_table + '\n' + run_time_report += '{:<8} | {:10.4f}\n'.format('Reading', init_end_time - start_time) + run_time_report += '{:<8} | {:10.4f}\n'.format('MaxEnt', maxent_end_time - init_end_time) + run_time_report += '{:<8} | {:10.4f}\n'.format('Extract.', extract_end_time - maxent_end_time) + run_time_report += '{:<8} | {:10.4f}\n'.format('Writing', all_end_time - extract_end_time) + run_time_report += '-'*length_table + '\n' + run_time_report += '{:<8} | {:10.4f}\n'.format('Total', all_end_time - start_time) + + mpi.report(run_time_report) + return sigma_w, g_aux_w
+ + + +if __name__ == '__main__': + # Casts input parameters + if len(sys.argv) > 2: + if sys.argv[2].lower() == 'none': + sys.argv[2] = None + if len(sys.argv) > 4: + sys.argv[4] = float(sys.argv[4]) + if len(sys.argv) > 5: + sys.argv[5] = float(sys.argv[5]) + if len(sys.argv) > 6: + sys.argv[6] = float(sys.argv[6]) + if len(sys.argv) > 7: + sys.argv[7] = int(sys.argv[7]) + if len(sys.argv) > 8: + sys.argv[8] = int(sys.argv[8]) + if len(sys.argv) > 10: + sys.argv[10] = int(sys.argv[10]) + if len(sys.argv) > 11: + sys.argv[11] = int(sys.argv[11]) + + main(*sys.argv[1:]) +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/pade_sigma.html b/_modules/postprocessing/pade_sigma.html new file mode 100644 index 00000000..c36a174e --- /dev/null +++ b/_modules/postprocessing/pade_sigma.html @@ -0,0 +1,439 @@ + + + + + + postprocessing.pade_sigma — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for postprocessing.pade_sigma

+# pyright: reportUnusedExpression=false
+
+import numpy as np
+
+from triqs.utility import mpi
+from h5 import HDFArchive
+from triqs.gf import Gf, MeshReFreq, BlockGf
+
+from solid_dmft.postprocessing.maxent_sigma import _read_h5
+
+def _write_sigma_omega_to_h5(sigma_w, external_path, iteration):
+    """ Writes real-frequency self energy to h5 archive. """
+    h5_internal_path = 'DMFT_results/' + ('last_iter' if iteration is None
+                                          else f'it_{iteration}')
+
+    with HDFArchive(external_path, 'a') as archive:
+        for i, sigma_imp in enumerate(sigma_w):
+            archive[h5_internal_path][f'Sigma_Refreq_{i}'] = sigma_imp
+
+def _run_pade(sigma_iw_list, n_w, w_min, w_max, n_iw, eta):
+    """
+    Run pade in parallel. Call via main function.
+    """
+    mpi.report('Continuing impurities with blocks:')
+
+    imps_blocks = []
+    sigma_iw_flat_list = []
+
+    # create flattened list of self-energies
+    for i, sigma_iw in enumerate(sigma_iw_list):
+        blocks = list(sigma_iw.indices)
+        mpi.report('- Imp {}: {}'.format(i, blocks))
+        for block in blocks:
+            imps_blocks.append((i, block))
+            sigma_iw_flat_list.append(sigma_iw[block])
+
+    sigma_w_flat_list = []
+    wmesh = MeshReFreq(w_min=w_min,w_max=w_max,n_w=n_w)
+    imps_blocks_indices = np.arange(len(imps_blocks))
+    for i in imps_blocks_indices:
+        sigma_w_flat_list.append(Gf(mesh=wmesh, target_shape=sigma_iw_flat_list[i].target_shape))
+
+    # Runs Pade while parallelizing over impurities and blocks
+    for i in mpi.slice_array(imps_blocks_indices):
+        print(f'Rank {mpi.rank} continuing Σ {i}/{len(imps_blocks)}')
+        sigma_w_flat_list[i].set_from_pade(sigma_iw_flat_list[i],n_points=n_iw, freq_offset=eta)
+
+    # sync Pade data
+    for i in imps_blocks_indices:
+        sigma_w_flat_list[i] = mpi.all_reduce(sigma_w_flat_list[i])
+
+    # Create list of BlockGf
+    sigma_w_list = []
+    for i, sigma_iw in enumerate(sigma_iw_list):
+        block_list = []
+        for block in sigma_iw.indices:
+            block_list.append(sigma_w_flat_list.pop(0))
+        sigma_w_list.append(BlockGf(name_list=list(sigma_iw.indices), block_list=block_list, make_copies=True))
+
+    return sigma_w_list
+
+
+[docs] +def main(external_path, n_w, w_min, w_max, n_iw, iteration=None, eta=0.0): + """ + Main function that reads the Matsubara self-energy from h5, analytically continues it, + writes the results back to the h5 archive and also returns the results. + + Function parallelizes using MPI over impurities and blocks. + + Parameters + ---------- + external_path : string + Path to the h5 archive to read from and write to + n_w : int + number of real frequencies of the final self-energies returned + w_min : float + Lower end of range where Sigma is being continued. + w_max : float + Upper end of range where Sigma is being continued. + n_iw : int + number of Matsubara frequencies to consider for the Pade approximant + iteration : int/string + Iteration to read from and write to. Default to last_iter + eta : float + frequency offset within Pade + + Returns + ------- + sigma_w : list of triqs.gf.BlockGf + Sigma(omega) per inequivalent shell + """ + + sigma_iw = None + if mpi.is_master_node(): + sigma_iw, _, _, _ = _read_h5(external_path, iteration) + sigma_iw = mpi.bcast(sigma_iw) + + # run pade in parallel + sigma_w = _run_pade(sigma_iw, n_w, w_min, w_max, n_iw, eta) + + mpi.report('Writing results to h5 archive now.') + if mpi.is_master_node(): + _write_sigma_omega_to_h5(sigma_w, external_path, iteration) + mpi.report('Finished writing Σ(ω) to archive.') + + return sigma_w
+ + +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/postprocessing/plot_correlated_bands.html b/_modules/postprocessing/plot_correlated_bands.html new file mode 100644 index 00000000..e44f7f28 --- /dev/null +++ b/_modules/postprocessing/plot_correlated_bands.html @@ -0,0 +1,1267 @@ + + + + + + postprocessing.plot_correlated_bands — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for postprocessing.plot_correlated_bands

+#!/usr/bin/env python3
+################################################################################
+#
+# TRIQS: a Toolbox for Research in Interacting Quantum Systems
+#
+# Copyright (C) 2016-2018, N. Wentzell
+# Copyright (C) 2018-2019, Simons Foundation
+#   author: N. Wentzell
+#
+# TRIQS is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details.
+#
+# You should have received a copy of the GNU General Public License along with
+# TRIQS. If not, see <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+"""
+Reads DMFT_ouput observables such as real-frequency Sigma and a Wannier90
+TB Hamiltonian to compute spectral properties. It runs in two modes,
+either calculating the bandstructure or Fermi slice.
+
+Written by Sophie Beck, 2021-2022
+
+TODO:
+- extend to multi impurity systems
+- make proper use of rot_mat from DFT_Tools (atm it assumed that wannier_hr and Sigma are written in the same basis)
+"""
+
+import matplotlib.pyplot as plt
+from matplotlib.ticker import MaxNLocator
+from matplotlib.colors import Normalize
+from matplotlib import cm
+from scipy.optimize import brentq
+from scipy.interpolate import interp1d
+from scipy.signal import argrelextrema
+import numpy as np
+import itertools
+import skimage.measure
+from warnings import warn
+
+from h5 import HDFArchive
+from triqs.gf import BlockGf, MeshReFreq, Gf
+from triqs.lattice.utils import TB_from_wannier90, k_space_path
+from triqs_dft_tools.sumk_dft import SumkDFT
+
+
+def lambda_matrix_w90_t2g(add_lambda):
+
+    lambda_x, lambda_y, lambda_z = add_lambda
+
+    lambda_matrix = np.zeros((6, 6), dtype=complex)
+    lambda_matrix[0, 1] = +1j*lambda_z/2.0
+    lambda_matrix[0, 5] = -1j*lambda_x/2.0
+    lambda_matrix[1, 5] =    -lambda_y/2.0
+    lambda_matrix[2, 3] = +1j*lambda_x/2.0
+    lambda_matrix[2, 4] =    +lambda_y/2.0
+    lambda_matrix[3, 4] = -1j*lambda_z/2.0
+    lambda_matrix += np.transpose(np.conjugate(lambda_matrix))
+
+    return lambda_matrix
+
+
+def change_basis(n_orb, orbital_order_to, orbital_order_from):
+
+    change_of_basis = np.eye(n_orb)
+    for ct, orb in enumerate(orbital_order_to):
+        orb_idx = orbital_order_from.index(orb)
+        change_of_basis[orb_idx, :] = np.roll(np.eye(n_orb, 1), ct)[:, 0]
+
+    return change_of_basis
+
+
+def print_matrix(matrix, n_orb, text):
+
+    print('{}:'.format(text))
+
+    if np.any(matrix.imag > 1e-4):
+        fmt = '{:16.4f}' * n_orb
+    else:
+        fmt = '{:8.4f}' * n_orb
+        matrix = matrix.real
+
+    for row in matrix:
+        print((' '*4 + fmt).format(*row))
+
+
+def _sigma_from_dmft(n_orb, orbital_order, with_sigma, spin, orbital_order_dmft=None, **specs):
+
+    if orbital_order_dmft is None:
+        orbital_order_dmft = orbital_order
+
+    if with_sigma == 'calc':
+        print('Setting Sigma from {}'.format(specs['dmft_path']))
+
+        sigma_imp_list = []
+        dc_imp_list = []
+        with HDFArchive(specs['dmft_path'], 'r') as ar:
+            for icrsh in range(ar['dft_input']['n_inequiv_shells']):
+                try:
+                    sigma = ar['DMFT_results'][specs['it']][f'Sigma_freq_{icrsh}']
+                    assert isinstance(sigma.mesh, MeshReFreq), 'Imported Greens function must be real frequency'
+                except(KeyError, AssertionError):
+                    try:
+                        sigma = ar['DMFT_results'][specs['it']][f'Sigma_maxent_{icrsh}']
+                    except KeyError:
+                        try:
+                            sigma = ar['DMFT_results'][specs['it']][f'Sigma_Refreq_{icrsh}']
+                        except KeyError:
+                            raise KeyError('Provide either "Sigma_freq_0" in real frequency, "Sigma_Refreq_0" or "Sigma_maxent_0".')
+                sigma_imp_list.append(sigma)
+
+            for ish in range(ar['dft_input']['n_corr_shells']):
+                dc_imp_list.append(ar['DMFT_results'][specs['it']]['DC_pot'][ish])
+
+            mu_dmft = ar['DMFT_results'][specs['it']]['chemical_potential_post']
+
+            sum_k = SumkDFT(specs['dmft_path'], mesh=sigma.mesh)
+            sum_k.block_structure = ar['DMFT_input/block_structure']
+            sum_k.deg_shells = ar['DMFT_input/deg_shells']
+            sum_k.set_mu(mu_dmft)
+            # set Sigma and DC into sum_k
+            sum_k.dc_imp = dc_imp_list
+            sum_k.set_Sigma(sigma_imp_list)
+
+            # use add_dc function to rotate to sumk block structure and subtract the DC
+            sigma_sumk = sum_k.add_dc()
+
+            assert np.allclose(sum_k.proj_mat[0], sum_k.proj_mat[-1]), 'upfolding works only when proj_mat is the same for all kpoints (wannier mode)'
+
+            # now upfold with proj_mat to band basis, this only works for the
+            # case where proj_mat is equal for all k points (wannier mode)
+            sigma = Gf(mesh=sigma.mesh, target_shape=[n_orb, n_orb])
+            for ish in range(ar['dft_input']['n_corr_shells']):
+                sigma += sum_k.upfold(ik=0, ish=ish,
+                                      bname=spin, gf_to_upfold=sigma_sumk[ish][spin],
+                                      gf_inp=sigma)
+
+        # already subtracted
+        dc = 0.0
+
+    else:
+        print('Setting Sigma from memory')
+
+        sigma = with_sigma[spin]
+        dc = specs['dc'][0][spin][0, 0]
+        mu_dmft = specs['mu_dmft']
+
+    SOC = (spin == 'ud')
+    w_mesh_dmft = np.linspace(sigma.mesh.w_min, sigma.mesh.w_max, len(sigma.mesh))
+    assert sigma.target_shape[0] == n_orb, f'Number of Wannier orbitals: {n_orb} and self-energy target_shape {sigma.target_shape} does not match'
+
+    sigma_mat = sigma.data.real - np.eye(n_orb) * dc + 1j * sigma.data.imag
+
+    # rotate sigma from orbital_order_dmft to orbital_order
+    change_of_basis = change_basis(n_orb, orbital_order, orbital_order_dmft)
+    sigma_mat = np.einsum('ij, kjl -> kil', np.linalg.inv(change_of_basis), np.einsum('ijk, kl -> ijl', sigma_mat, change_of_basis))
+
+    # set up mesh
+    if 'w_mesh' in specs:
+        freq_dict = specs['w_mesh']
+        w_mesh = np.linspace(*freq_dict['window'], freq_dict['n_w'])
+        freq_dict.update({'w_mesh': w_mesh})
+    else:
+        w_mesh = w_mesh_dmft
+        freq_dict = {'w_mesh': w_mesh_dmft, 'n_w': len(sigma.mesh), 'window': [sigma.mesh.w_min, sigma.mesh.w_max]}
+
+    sigma_interpolated = np.zeros((n_orb, n_orb, freq_dict['n_w']), dtype=complex)
+
+    # interpolate sigma
+    def interpolate_sigma(w_mesh, w_mesh_dmft, orb1, orb2): return np.interp(w_mesh, w_mesh_dmft, sigma_mat[:, orb1, orb2])
+
+    for ct1, ct2 in itertools.product(range(n_orb), range(n_orb)):
+        sigma_interpolated[ct1, ct2] = interpolate_sigma(w_mesh, w_mesh_dmft, ct1, ct2)
+
+    return sigma_interpolated, mu_dmft, freq_dict
+
+
+def sigma_FL(n_orb, orbital_order, Sigma_0, Sigma_Z, freq_dict, eta=0.0, mu_dmft=None):
+
+    print('Setting Re[Sigma] with Fermi liquid approximation')
+
+    if np.any(Sigma_0) and mu_dmft == None:
+        raise ValueError('Sigma_0 does not preserve electron count. Please provide "mu_dmft".')
+    elif not np.any(Sigma_0) and mu_dmft == None:
+        mu_dmft = 0.
+
+    eta = eta * 1j
+
+    # set up mesh
+    w_mesh = np.linspace(*freq_dict['window'], freq_dict['n_w'])
+    freq_dict.update({'w_mesh': w_mesh})
+
+    # setting up sigma
+    sigma_array = np.zeros((n_orb, n_orb, freq_dict['n_w']), dtype=complex)
+    def approximate_sigma(orb): return (1-1/Sigma_Z[orb]) * freq_dict['w_mesh'] + Sigma_0[orb] - mu_dmft
+    for ct, orb in enumerate(orbital_order):
+        sigma_array[ct, ct] = approximate_sigma(ct) + 1j * eta
+
+    return sigma_array, freq_dict
+
+
+def _calc_alatt(n_orb, mu, eta, e_mat, sigma, qp_bands=False, e_vecs=None,
+                proj_nuk=None, trace=True, **freq_dict):
+    '''
+    calculate slice of lattice spectral function for given TB dispersion / e_mat and self-energy
+
+    Parameters
+    ----------
+    n_orb : int
+          number of Wannier orbitals
+    proj_nuk : optinal, 2D numpy array (n_orb, n_k)
+          projections to be applied on A(k,w) in band basis. Only works when band_basis=True
+
+    Returns
+    -------
+    alatt_k_w : numpy array, either (n_k, n_w) or if trace=False (n_k, n_w, n_orb)
+            Lattice Green's function on specified k-path / mesh
+
+    '''
+
+    # adjust to system size
+    def upscale(quantity, n_orb): return quantity * np.identity(n_orb)
+    mu = upscale(mu, n_orb)
+    eta = upscale(eta, n_orb)
+    if isinstance(e_vecs, np.ndarray):
+        sigma_rot = np.zeros(sigma.shape, dtype=complex)
+
+    w_vec = np.array([upscale(freq_dict['w_mesh'][w], n_orb) for w in range(freq_dict['n_w'])])
+    n_k = e_mat.shape[2]
+
+    if not qp_bands:
+        if trace:
+            alatt_k_w = np.zeros((n_k, freq_dict['n_w']))
+        else:
+            alatt_k_w = np.zeros((n_k, freq_dict['n_w'], n_orb))
+
+        def invert_and_trace(w, eta, mu, e_mat, sigma, trace, proj=None):
+            # inversion is automatically vectorized over first axis of 3D array (omega first index now)
+            Glatt = np.linalg.inv(w + eta[None, ...] + mu[None, ...] - e_mat[None, ...] - sigma.transpose(2, 0, 1))
+            A_w_nu = -1.0/(2.0 * np.pi)* np.diagonal(Glatt - Glatt.transpose(0,2,1).conj(), axis1=1, axis2=2).imag
+            if isinstance(proj, np.ndarray):
+                A_w_nu = A_w_nu * proj[None, :]
+            if trace:
+                return np.sum(A_w_nu, axis=1)
+            else:
+                return A_w_nu
+
+        for ik in range(n_k):
+            # if evecs are given transform sigma into band basis
+            if isinstance(e_vecs, np.ndarray):
+                sigma_rot = np.einsum('ij,jkw->ikw', e_vecs[:, :, ik].conjugate().transpose(), np.einsum('ijw,jk->ikw', sigma, e_vecs[:, :, ik]))
+                if isinstance(proj_nuk, np.ndarray):
+                    alatt_k_w[ik, :] = invert_and_trace(w_vec, eta, mu, e_mat[:, :, ik], sigma_rot, trace, proj_nuk[:, ik])
+                else:
+                    alatt_k_w[ik, :] = invert_and_trace(w_vec, eta, mu, e_mat[:, :, ik], sigma_rot, trace)
+            else:
+                alatt_k_w[ik, :] = invert_and_trace(w_vec, eta, mu, e_mat[:, :, ik], sigma, trace)
+
+    else:
+        alatt_k_w = np.zeros((n_k, n_orb))
+        kslice = np.zeros((freq_dict['n_w'], n_orb))
+        def kslice_interp(orb): return interp1d(freq_dict['w_mesh'], kslice[:, orb])
+
+        for ik in range(n_k):
+            for iw, w in enumerate(freq_dict['w_mesh']):
+                np.fill_diagonal(sigma[:, :, iw], np.diag(sigma[:, :, iw]).real)
+                #sigma[:,:,iw] = sigma[:,:,iw].real
+                kslice[iw], _ = np.linalg.eigh(upscale(w, n_orb) + eta + mu - e_mat[:, :, ik] - sigma[:, :, iw])
+
+            for orb in range(n_orb):
+                w_min, w_max = freq_dict['window']
+                try:
+                    x0 = brentq(kslice_interp(orb), w_min, w_max)
+                    w_bin = int((x0 - w_min) / ((w_max - w_min) / freq_dict['n_w']))
+                    alatt_k_w[ik, orb] = freq_dict['w_mesh'][w_bin]
+                except ValueError:
+                    pass
+
+    return alatt_k_w
+
+
+def _calc_kslice(n_orb, mu, eta, e_mat, sigma, qp_bands, e_vecs=None, proj_nuk=None, **freq_dict):
+    '''
+    calculate lattice spectral function for given TB dispersion / e_mat and self-energy
+
+    Parameters
+    ----------
+    n_orb : int
+          number of Wannier orbitals
+    proj_nuk : optinal, 2D numpy array (n_orb, n_k)
+          projections to be applied on A(k,w) in band basis. Only works when band_basis=True
+
+    Returns
+    -------
+    alatt_k_w : numpy array, either (n_k, n_w) or if trace=False (n_k, n_w, n_orb)
+            Lattice Green's function on specified k-path / mesh
+
+    '''
+
+    # adjust to system size
+    def upscale(quantity, n_orb): return quantity * np.identity(n_orb)
+    mu = upscale(mu, n_orb)
+    eta = upscale(eta, n_orb)
+
+    iw0 = np.where(np.sign(freq_dict['w_mesh']) == True)[0][0]-1
+    print_matrix(sigma[:, :, iw0], n_orb, 'Zero-frequency Sigma')
+
+    if isinstance(e_vecs, np.ndarray):
+        sigma_rot = np.zeros(sigma.shape, dtype=complex)
+
+    n_kx, n_ky = e_mat.shape[2:4]
+
+    if not qp_bands:
+        alatt_k_w = np.zeros((n_kx, n_ky))
+
+        def invert_and_trace(w, eta, mu, e_mat, sigma, proj=None):
+            # inversion is automatically vectorized over first axis of 3D array (omega first index now)
+            Glatt = np.linalg.inv(w + eta + mu - e_mat - sigma)
+            A_nu = -1.0/(2.0 * np.pi)* np.diagonal(Glatt - Glatt.transpose().conj()).imag
+            if isinstance(proj, np.ndarray):
+                A_nu = A_nu * proj
+            return np.sum(A_nu)
+
+        for ikx, iky in itertools.product(range(n_kx), range(n_ky)):
+            if isinstance(e_vecs, np.ndarray):
+                sigma_rot = np.einsum('ij,jk->ik',
+                                      e_vecs[:, :, ikx, iky].conjugate().transpose(),
+                                      np.einsum('ij,jk->ik', sigma[:, :, iw0], e_vecs[:, :, ikx, iky]))
+            else:
+                sigma_rot = sigma[:, :, iw0]
+
+            if isinstance(proj_nuk, np.ndarray):
+                alatt_k_w[ikx, iky] = invert_and_trace(upscale(freq_dict['w_mesh'][iw0], n_orb), eta, mu,
+                                                       e_mat[:, :, ikx, iky], sigma_rot, proj_nuk[:, ikx, iky])
+            else:
+                alatt_k_w[ikx, iky] = invert_and_trace(upscale(freq_dict['w_mesh'][iw0], n_orb), eta, mu, e_mat[:, :, ikx, iky], sigma_rot)
+
+    else:
+        assert n_kx == n_ky, 'Not implemented for N_kx != N_ky'
+
+        def search_for_extrema(data):
+            # return None for no extrema, [] if ends of interval are the only extrema,
+            # list of indices if local extrema are present
+            answer = np.all(data > 0) or np.all(data < 0)
+            if answer:
+                return
+            else:
+                roots = []
+                roots.append(list(argrelextrema(data, np.greater)[0]))
+                roots.append(list(argrelextrema(data, np.less)[0]))
+                roots = sorted([item for sublist in roots for item in sublist])
+            return roots
+
+        alatt_k_w = np.zeros((n_kx, n_ky, n_orb))
+        # go through grid horizontally, then vertically
+        for it in range(2):
+            kslice = np.zeros((n_kx, n_ky, n_orb))
+
+            for ik1 in range(n_kx):
+                e_temp = e_mat[:, :, :, ik1] if it == 0 else e_mat[:, :, ik1, :]
+                for ik2 in range(n_kx):
+                    e_val, _ = np.linalg.eigh(eta + mu - e_temp[:, :, ik2] - sigma[:, :, iw0])
+                    k1, k2 = [ik2, ik1] if it == 0 else [ik1, ik2]
+                    kslice[k1, k2] = e_val
+
+                for orb in range(n_orb):
+                    temp_kslice = kslice[:,ik1,orb] if it == 0 else kslice[ik1,:,orb]
+                    roots = search_for_extrema(temp_kslice)
+                    # iterate through sections between extrema
+                    if roots is not None:
+                        idx_1 = 0
+                        for root_ct in range(len(roots) + 1):
+                            idx_2 = roots[root_ct] if root_ct < len(roots) else n_kx
+                            root_section = temp_kslice[idx_1:idx_2+1]
+                            try:
+                                x0 = brentq(interp1d(np.linspace(idx_1, idx_2, len(root_section)), root_section), idx_1, idx_2)
+                                k1, k2 = [int(np.floor(x0)), ik1] if it == 0 else [ik1, int(np.floor(x0))]
+                                alatt_k_w[k1, k2, orb] += 1
+                            except(ValueError):
+                                pass
+                            idx_1 = idx_2
+
+        alatt_k_w[np.where(alatt_k_w > 1)] = 1
+
+    return alatt_k_w
+
+
+
+[docs] +def get_tb_bands(e_mat, proj_on_orb=[None], **specs): + ''' + calculate eigenvalues and eigenvectors for given list of e_mat on kmesh + + Parameters + ---------- + e_mat : numpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk) + + Returns + ------- + e_val : numpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk) + eigenvalues as matrix + e_vec : numpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk) + eigenvectors as matrix + ''' + + e_val = np.zeros((e_mat.shape), dtype=complex) + e_vec = np.zeros((e_mat.shape), dtype=complex) + n_orb = e_mat.shape[0] + + for ikx in range(e_mat.shape[2]): + # if we have a 2d kmesh e_mat is dim=4 + if len(e_mat.shape) == 4: + for iky in range(e_mat.shape[3]): + e_val[range(n_orb), range(n_orb), ikx, iky], e_vec[:, :, ikx, iky] = np.linalg.eigh(e_mat[:, :, ikx, iky]) + else: + e_val[range(n_orb), range(n_orb), ikx], e_vec[:, :, ikx] = np.linalg.eigh(e_mat[:, :, ikx]) + + if proj_on_orb[0] is not None: + print(f'calculating projection on orbitals {proj_on_orb}') + total_proj = np.zeros(np.shape(e_vec[0])) + for band in range(n_orb): + for orb in proj_on_orb: + total_proj[band] += np.real(e_vec[orb, band] * e_vec[orb, band].conjugate()) + else: + total_proj = None + + return e_val, e_vec, total_proj
+ + + +def get_tb_kslice(tb, mu_tb, **specs): + + w90_paths = list(map(lambda section: (np.array(specs[section[0]]), np.array(specs[section[1]])), specs['bands_path'])) + upper_left = w90_paths[0][0] + lower_right = w90_paths[1][-1] + origin = w90_paths[0][1] + assert np.allclose(origin, w90_paths[1][0]), '"bands_path" coordinates for origin of Fermi surface needs to be consistent' + if 'kz' in specs and specs['kz'] != 0.: + assert 'Z' in specs, 'Please provide Z point coordinate in tb_data_dict as input coordinate' + Z = np.array(specs['Z']) + kz = specs['kz'] + else: + kz = 0. + Z = np.zeros((3)) + + # calculate FS at the mu_tb value + FS_kx_ky, band_char = get_kx_ky_FS(lower_right, upper_left, origin, Z, tb, N_kxy=specs['n_k'], kz=kz, fermi=mu_tb) + + return FS_kx_ky, band_char + + +def _fract_ind_to_val(x, ind): + ind[ind == len(x)-1] = len(x)-1-1e-6 + int_ind = [int(indi) for indi in ind] + int_ind_p1 = [int(indi)+1 for indi in ind] + return x[int_ind] + (x[int_ind_p1] - x[int_ind])*(np.array(ind)-np.array(int_ind)) + + +def get_kx_ky_FS(lower_right, upper_left, origin, Z, tb, select=None, N_kxy=10, kz=0.0, fermi=0.0): + + # create mesh + kx = np.linspace(0, 0.5, N_kxy) + ky = np.linspace(0, 0.5, N_kxy) + + if select is None: + select = np.array(range(tb.n_orbitals)) + + # go in horizontal arrays from bottom to top + E_FS = np.zeros((tb.n_orbitals, N_kxy, N_kxy)) + for kyi in range(N_kxy): + path_FS = [((upper_left - origin)/(N_kxy-1)*kyi+kz*Z+origin, origin+(lower_right-origin)+(upper_left-origin)/(N_kxy-1)*kyi+kz*Z)] + k_vec, dst, tks = k_space_path(path_FS, num=N_kxy) + E_FS[:, :, kyi] = tb.dispersion(k_vec).transpose() - fermi + + contours = {} + FS_kx_ky = {} + FS_kx_ky_prim = {} + band_char = {} + # contour for each sheet + for sheet in range(tb.n_orbitals): + contours[sheet] = skimage.measure.find_contours(E_FS[sheet, :, :], 0.0) + + sheet_ct = 0 + for sheet in contours.keys(): + for sec_per_sheet in range(len(contours[sheet])): + # once on 2D cubic mesh + FS_kx_ky[sheet_ct] = np.vstack([_fract_ind_to_val(kx, contours[sheet][sec_per_sheet][:, 0]), + _fract_ind_to_val(ky, contours[sheet][sec_per_sheet][:, 1]), + kz*np.ones(len(contours[sheet][sec_per_sheet][:, 0]))]).T.reshape(-1, 3) + # repeat on actual mesh for computing the weights + ks_skimage = contours[sheet][sec_per_sheet]/(N_kxy-1) + FS_kx_ky_prim[sheet_ct] = (+ np.einsum('i,j->ij', ks_skimage[:, 0], lower_right) + + np.einsum('i,j->ij', ks_skimage[:, 1], upper_left) + + np.einsum('i,j->ij', kz * np.ones(ks_skimage.shape[0]), Z)) + band_char[sheet_ct] = {} + # compute the weight aka band character + for ct_k, k_on_sheet in enumerate(FS_kx_ky_prim[sheet_ct]): + E_mat = tb.fourier(k_on_sheet) + e_val, e_vec = np.linalg.eigh(E_mat[select[:, np.newaxis], select]) + orb_on_FS = np.argmin(np.abs(e_val)) + + band_char[sheet_ct][ct_k] = [np.round(np.real(e_vec[orb, orb_on_FS]*np.conjugate(e_vec[orb, orb_on_FS])), 4) for orb in range(len(select))] + sheet_ct += 1 + + return FS_kx_ky, band_char + + +def _setup_plot_bands(ax, special_k, k_points_labels, freq_dict): + + ax.axhline(y=0, c='gray', ls='--', lw=0.8, zorder=0) + ax.set_ylabel(r'$\epsilon - \mu$ (eV)') +# ax.set_ylim(*freq_dict['window']) + for ik in special_k: + ax.axvline(x=ik, linewidth=0.7, color='k', zorder=0.5) + ax.set_xticks(special_k) + ax.set_xlim(special_k[0], special_k[-1]) + k_points_labels = [r'$\Gamma$' if k == 'G' else k for k in k_points_labels] + ax.set_xticklabels(k_points_labels) + + +def setup_plot_kslice(ax): + + ax.set_aspect(1) + # ax.set_xlim(0,1) + # ax.set_ylim(0,1) + ax.xaxis.set_major_locator(MaxNLocator(integer=True)) + ax.yaxis.set_major_locator(MaxNLocator(integer=True)) + ax.set_xlabel(r'$k_x\pi/a$') + ax.set_ylabel(r'$k_y\pi/b$') + + +def plot_bands(fig, ax, alatt_k_w, tb_data, freq_dict, n_orb, tb=True, alatt=False, qp_bands=False, **plot_dict): + + assert tb_data['special_k'] is not None, 'a regular k point mesh has been used, please call plot_dos' + + proj_on_orb = tb_data['proj_on_orb'] + total_proj = tb_data['proj_nuk'] + + if alatt: + if alatt_k_w is None: + raise ValueError('A(k,w) unknown. Specify "with_sigma = True"') + if qp_bands: + for orb in range(n_orb): + ax.scatter(tb_data['k_mesh'], alatt_k_w[:, orb].T, c=np.array([eval('cm.'+plot_dict['colorscheme_qpbands'])(1.0)]), zorder=2., s=1.) + else: + kw_x, kw_y = np.meshgrid(tb_data['k_mesh'], freq_dict['w_mesh']) + + vmax = plot_dict['vmax'] if 'vmax' in plot_dict else np.max(alatt_k_w) + vmin = plot_dict['vmin'] if 'vmin' in plot_dict else 0.0 + + graph = ax.pcolormesh(kw_x, kw_y, alatt_k_w.T, cmap=plot_dict['colorscheme_alatt'], + norm=Normalize(vmin=vmin, vmax=vmax), shading='gouraud') + + if 'colorbar' not in plot_dict or plot_dict['colorbar']: + colorbar = plt.colorbar(graph) + colorbar.set_label(r'$A(k, \omega)$') + + if tb: + # if projection is requested, _get_tb_bands() ran already + if proj_on_orb[0] is not None: + eps_nuk = tb_data['e_mat'] + evec_nuk = tb_data['e_vecs'] + else: + eps_nuk, evec_nuk, _ = get_tb_bands(**tb_data) + for band in range(n_orb): + if not proj_on_orb[0] is not None: + if isinstance(plot_dict['colorscheme_bands'], str): + color = eval('cm.'+plot_dict['colorscheme_bands'])(1.0) + else: + color = plot_dict['colorscheme_bands'] + ax.plot(tb_data['k_mesh'], eps_nuk[band, band].real - tb_data['mu_tb'], c=color, label=r'tight-binding', zorder=1., lw=1) + else: + color = eval('cm.'+plot_dict['colorscheme_bands'])(total_proj[band]) + ax.scatter(tb_data['k_mesh'], eps_nuk[band, band].real - tb_data['mu_tb'], c=color, s=1, label=r'tight-binding', zorder=1.) + + _setup_plot_bands(ax, tb_data['special_k'], tb_data['k_points_labels'], freq_dict) + + +def plot_dos(fig, ax, alatt_k_w, tb_data, freq_dict, tb=False, alatt=True, label=None, color=None): + + assert tb == False, 'plotting TB DOS is not supported yet.' + + assert len(alatt_k_w.shape) == 2, 'input Akw should only have a k and omega index' + + if not label: + label = '' + + if not color: + ax.plot(freq_dict['w_mesh'], np.sum(alatt_k_w, axis=0)/alatt_k_w.shape[0], label=label) + else: + ax.plot(freq_dict['w_mesh'], np.sum(alatt_k_w, axis=0) / + alatt_k_w.shape[0], label=label, color=color) + + ax.axvline(x=0, c='gray', ls='--', zorder=0) + ax.set_xlabel(r'$\epsilon - \mu$ (eV)') + ax.set_ylabel(r'A($\omega$)') + + ax.set_xlim(*freq_dict['window']) + + return + +def plot_kslice(fig, ax, alatt_k_w, tb_data, freq_dict, n_orb, tb_dict, tb=True, alatt=False, quarter=0, **plot_dict): + + proj_on_orb = tb_data['proj_on_orb'] + if quarter: + assert isinstance(quarter, int) or all(isinstance(x, int) for x in quarter), 'quarter should be'\ + f'an integer or list of integers, but is {type(quarter)}.' + + if isinstance(quarter, int): + quarter = [quarter] + + sign = [1, -1] + quarters = np.array([sign, sign]) + four_quarters = list(itertools.product(*quarters)) + used_quarters = [four_quarters[x] for x in quarter] + + vmax = plot_dict['vmax'] if 'vmax' in plot_dict else np.max(alatt_k_w) + vmin = plot_dict['vmin'] if 'vmin' in plot_dict else 0.0 + assert vmax > vmin, 'vmax needs to be larger than vmin' + + if alatt: + if alatt_k_w is None: + raise ValueError('A(k,w) unknown. Specify "with_sigma = True"') + n_kx, n_ky = tb_data['e_mat'].shape[2:4] + kx, ky = np.meshgrid(range(n_kx), range(n_ky)) + draw_colorbar = True + for (qx, qy) in used_quarters: + if len(alatt_k_w.shape) > 2: + for orb in range(n_orb): + ax.contour(qx * kx/(n_kx-1), qy * ky/(n_ky-1), alatt_k_w[:, :, orb].T, + colors=np.array([eval('cm.'+plot_dict['colorscheme_qpbands'])(0.7)]), levels=1, zorder=2) + else: + graph = ax.pcolormesh(qx * kx/(n_kx-1), qy * ky/(n_ky-1), alatt_k_w.T, + cmap=plot_dict['colorscheme_kslice'], + norm=Normalize(vmin=vmin, vmax=vmax), + shading='gouraud') + + if draw_colorbar and ('colorbar' not in plot_dict or plot_dict['colorbar']): + colorbar = plt.colorbar(graph) + colorbar.set_label(r'$A(k, 0$)') + draw_colorbar = False + + if tb: + FS_kx_ky, band_char = get_tb_kslice(tb_data['tb'], tb_data['mu_tb'], **tb_dict) + for sheet in FS_kx_ky.keys(): + for k_on_sheet in range(FS_kx_ky[sheet].shape[0]): + if not proj_on_orb[0] is not None: + if isinstance(plot_dict['colorscheme_bands'], str): + color = eval('cm.'+plot_dict['colorscheme_bands'])(1.0) + else: + color = plot_dict['colorscheme_bands'] + else: + total_proj = 0 + for orb in proj_on_orb: + total_proj += band_char[sheet][k_on_sheet][orb] + color = eval('cm.'+plot_dict['colorscheme_bands'])(total_proj) + for (qx, qy) in used_quarters: + ax.plot(2*qx * FS_kx_ky[sheet][k_on_sheet:k_on_sheet+2, 0], 2*qy * FS_kx_ky[sheet][k_on_sheet:k_on_sheet+2, 1], '-', + solid_capstyle='round', c=color, zorder=1., label=plot_dict['label'] if 'label' in plot_dict else '') + + setup_plot_kslice(ax) + + return ax + + +
+[docs] +def get_dmft_bands(n_orb, mu_tb, w90_path=None, w90_seed=None, TB_obj=None, add_spin=False, add_lambda=None, add_local=None, + with_sigma=None, fermi_slice=False, qp_bands=False, orbital_order_to=None, + add_mu_tb=False, band_basis=False, proj_on_orb=None, trace=True, eta=0.0, + mu_shift=0.0, proj_nuk=None, **specs): + ''' + Extract tight-binding from given w90 seed_hr.dat and seed.wout files or alternatively given TB_obj, and then extract from + given solid_dmft calculation the self-energy and construct the spectral function A(k,w) on + given k-path. + + Parameters + ---------- + n_orb : int + Number of Wannier orbitals in seed_hr.dat + mu_tb : float + Chemical potential of tight-binding calculation + w90_path : string + Path to w90 files + w90_seed : string + Seed of wannier90 calculation, i.e. seed_hr.dat and seed.wout + TB_obj : TB object + Tight-binding object from TB_from_wannier90 + add_spin : bool, default=False + Extend w90 Hamiltonian by spin indices + add_lambda : float, default=None + Add SOC term with strength add_lambda (works only for t2g shells) + add_local : numpy array, default=None + Add local term of dimension (n_orb x n_orb) + with_sigma : str, or BlockGf, default=None + Add self-energy to spectral function? Can be either directly take + a triqs BlockGf object or can be either 'calc' or 'model' + 'calc' reads results from h5 archive (solid_dmft) + in case 'calc' or 'model' are specified a extra kwargs dict has + to be given sigma_dict containing information about the self-energy + add_mu_tb : bool, default=False + Add the TB specified chemical potential to the lattice Green function + set to True if DMFT calculation was performed with DFT fermi subtracted. + proj_on_orb : int or list of int, default=None + orbital projections to be made for the spectral function and TB bands + the integer refer to the orbitals read + trace : bool, default=True + Return trace over orbitals for spectral function. For special + post-processing purposes this can be set to False giving the returned + alatt_k_w an extra dimension n_orb + eta : float, default=0.0 + Broadening of spectral function, finitie shift on imaginary axis + if with_sigma=None it has to be provided !=0.0 + mu_shift : float, default=0.0 + Manual extra shift when calculating the spectral function + proj_nuk : numpy array, default [None] + Extra projections to be applied to the final spectral function + per orbital and k-point. Has to match shape of final lattice Green + function. Will be applied together with proj_on_orb if specified. + + Returns + ------- + tb_data : dict + tight binding dict containing the kpoint mesh, dispersion / emat, and eigenvectors + + alatt_k_w : numpy array (float) of dim n_k x n_w ( x n_orb if trace=False) + lattice spectral function data on the kpoint mesh defined in tb_data and frequency + mesh defined in freq_dict + + freq_dict : dict + frequency mesh information on which alatt_k_w is evaluated + ''' + + # set default ordering + if 'orbital_order_w90' in specs: + orbital_order_w90 = specs['orbital_order_w90'] + else: + orbital_order_w90 = list(range(n_orb)) + + if orbital_order_to is None: + orbital_order_to = orbital_order_w90 + + # checks + assert len(set(orbital_order_to)) == len(orbital_order_to), 'Please provide a unique identifier for each orbital.' + + assert set(orbital_order_w90) == set(orbital_order_to), f'Identifiers of orbital_order_to and orbital_order_w90'\ + f'do not match! orbital_order_to is {orbital_order_to}, but orbital_order_w90 is {orbital_order_w90}.' + + assert with_sigma or eta != 0.0, 'if no Sigma is provided eta has to be different from 0.0' + + # proj_on_orb + assert isinstance(proj_on_orb, (int, type(None))) or all(isinstance(x, (int, type(None))) for x in proj_on_orb), 'proj_on_orb should be '\ + f'an integer or list of integers, but is {type(specs["proj_on_orb"])}.' + + if isinstance(proj_on_orb, (int, type(None))): + proj_on_orb = [proj_on_orb] + else: + proj_on_orb = proj_on_orb + + # if projection is requested we have to use band_basis + if proj_on_orb[0] is not None: + band_basis = True + + # if proj_nuk is given we need to use the band_basis + if isinstance(proj_nuk, np.ndarray) and not band_basis: + band_basis = True + + if TB_obj is None: + assert w90_path is not None and w90_seed is not None, 'Please provide either a TB object or a path to the wannier90 files' + # set up Wannier Hamiltonian + n_orb = 2 * n_orb if add_spin else n_orb + change_of_basis = change_basis(n_orb, orbital_order_to, orbital_order_w90) + H_add_loc = np.zeros((n_orb, n_orb), dtype=complex) + if not isinstance(add_local, type(None)): + assert np.shape(add_local) == (n_orb, n_orb), 'add_local must have dimension (n_orb, n_orb), but has '\ + f'dimension {np.shape(add_local)}' + H_add_loc += add_local + if add_spin and add_lambda: + H_add_loc += lambda_matrix_w90_t2g(add_lambda) + + tb = TB_from_wannier90(path=w90_path, seed=w90_seed, extend_to_spin=add_spin, add_local=H_add_loc) + else: + assert not add_spin, 'add_spin is only valid when reading from wannier90 files' + change_of_basis = change_basis(n_orb, orbital_order_to, orbital_order_w90) + tb = TB_obj + + eta = eta * 1j + + # print local H(R) + h_of_r = np.einsum('ij, jk -> ik', np.linalg.inv(change_of_basis), np.einsum('ij, jk -> ik', tb.hoppings[(0, 0, 0)], change_of_basis)) + if n_orb <= 12: + print_matrix(h_of_r, n_orb, 'H(R=0)') + + # kmesh prep + if ('bands_path' in specs and 'kmesh' in specs) or ('bands_path' not in specs and 'kmesh' not in specs): + raise ValueError('choose either a bands_path or kmesh!') + elif 'bands_path' in specs: + w90_paths = list(map(lambda section: ( + np.array(specs[section[0]]), np.array(specs[section[1]])), specs['bands_path'])) + k_points_labels = [k[0] for k in specs['bands_path']] + [specs['bands_path'][-1][1]] + n_k = specs['n_k'] + k_vec, k_1d, special_k = k_space_path(w90_paths, bz=tb.bz, num=n_k) + elif 'kmesh' in specs: + assert 'reg' in specs['kmesh'], 'only regular kmesh is implemented' + + special_k = k_points_labels = None + + # read kmesh size + if 'n_k' in specs: + k_dim = specs['n_k'] + elif 'k_dim' in specs: + k_dim = specs['k_dim'] + else: + raise ValueError('please specify either n_k or k_dim') + + # create regular kmesh + if isinstance(k_dim, int): + k_spacing = np.linspace(0, 1, k_dim, endpoint=False) + k_vec = np.array(np.meshgrid(k_spacing, k_spacing, k_spacing)).T.reshape(-1, 3) + n_k = k_dim**3 + k_1d = (k_dim, k_dim, k_dim) + elif all(isinstance(x, int) for x in k_dim) and len(k_dim) == 3: + k_x = np.linspace(0, 1, k_dim[0], endpoint=False) + k_y = np.linspace(0, 1, k_dim[1], endpoint=False) + k_z = np.linspace(0, 1, k_dim[2], endpoint=False) + k_vec = np.array(np.meshgrid(k_x, k_y, k_z)).T.reshape(-1, 3) + n_k = k_dim[0]*k_dim[1]*k_dim[2] + k_1d = k_dim + else: + raise ValueError( + 'k_dim / n_k needs to be either an int or a list / tuple of int length 3') + + # calculate tight-binding eigenvalues for non slices + if not fermi_slice: + # Fourier trafo on input grid / path + e_mat = tb.fourier(k_vec).transpose(1, 2, 0) + e_mat = np.einsum('ij, jkl -> ikl', np.linalg.inv(change_of_basis), + np.einsum('ijk, jm -> imk', e_mat, change_of_basis)) + else: + if 'kz' in specs and specs['kz'] != 0.: + assert 'Z' in specs, 'Please provide Z point coordinate in tb_data_dict as input coordinate' + Z = np.array(specs['Z']) + kz = specs['kz'] + else: + kz = 0. + Z = np.zeros((3)) + + k_vec = np.zeros((n_k*n_k, 3)) + e_mat = np.zeros((n_orb, n_orb, n_k, n_k), dtype=complex) + + upper_left = w90_paths[0][0] + lower_right = w90_paths[1][-1] + origin = w90_paths[0][1] + for ik_y in range(n_k): + path_along_x = [((upper_left - origin)/(n_k-1)*ik_y+kz*Z+origin, origin+(lower_right-origin)+(upper_left-origin)/(n_k-1)*ik_y+kz*Z)] + k_vec[ik_y*n_k:ik_y*n_k+n_k, :], k_1d, special_k = k_space_path(path_along_x, bz=tb.bz, num=n_k) + e_mat[:, :, :, ik_y] = tb.fourier(k_vec[ik_y*n_k:ik_y*n_k+n_k, :]).transpose(1, 2, 0) + #if add_spin: + # e_mat = e_mat[2:5, 2:5] + e_mat = np.einsum('ij, jklm -> iklm', np.linalg.inv(change_of_basis), np.einsum('ijkl, jm -> imkl', e_mat, change_of_basis)) + + if band_basis: + e_mat, e_vecs, orb_proj = get_tb_bands(e_mat, proj_on_orb) + else: + e_vecs = total_proj = orb_proj = None + + # now we merge proj_nuk and orb_proj (has reverse shape) + if isinstance(proj_nuk, np.ndarray) and isinstance(orb_proj, np.ndarray): + proj_nuk = proj_nuk * orb_proj + elif not isinstance(proj_nuk, np.ndarray) and isinstance(orb_proj, np.ndarray): + proj_nuk = orb_proj + + # dmft output + if with_sigma: + sigma_types = ['calc', 'model'] + if isinstance(with_sigma, str): + if with_sigma not in sigma_types: + raise ValueError('Invalid sigma type. Expected one of: {}'.format(sigma_types)) + elif not isinstance(with_sigma, BlockGf): + raise ValueError('Invalid sigma type. Expected BlockGf.') + + # get sigma + if with_sigma == 'model': + mu_dmft = None if 'mu_dmft' not in specs else specs['mu_dmft'] + delta_sigma, freq_dict = sigma_FL(n_orb, orbital_order_to, specs['Sigma_0'], specs['Sigma_Z'], specs['w_mesh'], eta=eta, mu_dmft=mu_dmft) + mu = mu_tb + mu_shift + # else is from dmft or memory: + else: + delta_sigma, mu_dmft, freq_dict = _sigma_from_dmft(n_orb, orbital_order_to, with_sigma, **specs) + mu = mu_dmft + mu_shift + + freq_dict['sigma_upfolded'] = delta_sigma + if add_mu_tb: + print('Adding mu_tb to DMFT μ; assuming DMFT was run with subtracted dft μ.') + mu += mu_tb + + print('μ={:2.4f} eV set for calculating A(k,ω)'.format(mu)) + + assert n_orb == delta_sigma.shape[0] and n_orb == delta_sigma.shape[ + 1], f'Number of orbitals n_orb={n_orb} and shape of sigma: {delta_sigma.shape} does not match' + if isinstance(proj_nuk, np.ndarray): + assert n_orb == proj_nuk.shape[0], f'Number of orbitals n_orb={n_orb} does not match shape of proj_nuk: {proj_nuk.shape[0]}' + if not fermi_slice: + assert proj_nuk.shape[-1] == e_vecs.shape[ + 2], f'Number of kpoints in proj_nuk : {proj_nuk.shape[-1]} does not match number of kpoints in e_vecs: {e_vecs.shape[2]}' + else: + assert proj_nuk.shape == tuple([n_orb, e_vecs.shape[2], e_vecs.shape[3]] + ), f'shape of projectors {proj_nuk.shape} does not match expected shape of [{n_orb},{e_vecs.shape[2]},{e_vecs.shape[3]}]' + + # calculate alatt + if not fermi_slice: + alatt_k_w = _calc_alatt(n_orb, mu, eta, e_mat, delta_sigma, qp_bands, e_vecs=e_vecs, + trace=trace, proj_nuk=proj_nuk, **freq_dict) + else: + alatt_k_w = _calc_kslice(n_orb, mu, eta, e_mat, delta_sigma, qp_bands, e_vecs=e_vecs, + proj_nuk=proj_nuk, **freq_dict) + else: + freq_dict = {} + freq_dict['w_mesh'] = None + freq_dict['window'] = None + alatt_k_w = None + + tb_data = {'k_mesh': k_1d, 'special_k': special_k, 'k_points': k_vec, + 'k_points_labels': k_points_labels, 'e_mat': e_mat, + 'e_vecs': e_vecs, 'tb': tb, 'mu_tb': mu_tb, + 'proj_on_orb': proj_on_orb, 'proj_nuk': proj_nuk} + + return tb_data, alatt_k_w, freq_dict
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/util/write_kslice_to_h5.html b/_modules/util/write_kslice_to_h5.html new file mode 100644 index 00000000..f0d1b261 --- /dev/null +++ b/_modules/util/write_kslice_to_h5.html @@ -0,0 +1,453 @@ + + + + + + util.write_kslice_to_h5 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for util.write_kslice_to_h5

+#!/usr/bin/env python3
+################################################################################
+#
+# TRIQS: a Toolbox for Research in Interacting Quantum Systems
+#
+# Copyright (C) 2016-2018, N. Wentzell
+# Copyright (C) 2018-2019, Simons Foundation
+#   author: N. Wentzell
+#
+# TRIQS is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+#
+# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details.
+#
+# You should have received a copy of the GNU General Public License along with
+# TRIQS. If not, see <http://www.gnu.org/licenses/>.
+#
+################################################################################
+
+"""
+Reads the -kslice-bands.dat and the -kslice-coord.dat file (as Wannier90 writes them).
+The -kslice-bands.dat contains the band energies corresponding to the slices through
+k-space given in _kslice-coords.dat. The latter has the list of k points in 2D direct
+coordinates.
+
+This only works for k independent projectors as from a TB model or from Wannier90.
+
+Writes all the information back into the h5 archive in the group 'dft_bands_input',
+which is needed for plotting DMFT bands with SumkDFTTools spaghettis.
+
+Adapted from "write_bands_to_h5.py" by Sophie Beck, 2021
+"""
+
+import sys
+import numpy as np
+from h5 import HDFArchive
+
+
+def _read_bands(seedname):
+    """ Reads the -kslice-bands.dat and the -kslice-coord.dat file. """
+
+    print('Reading {0}-kslice-bands.dat and {0}-kslice-coord.dat'.format(seedname))
+
+    kpoints = np.loadtxt('{}-kslice-coord.dat'.format(seedname), skiprows=0, usecols=(0, 1))
+    # to avoid issues with scientific notation of decimals
+    kpoints = np.around(kpoints, decimals=10)
+    band_energies = np.loadtxt('{}-kslice-bands.dat'.format(seedname), skiprows=0, usecols=(0))
+
+    # reshape to band indices
+    sub_bands = band_energies.size//len(kpoints)
+    band_energies = band_energies.reshape((len(kpoints), sub_bands))
+
+    # blow up to mimic using projectors
+    band_energies = np.array([np.diag(e) for e in band_energies], dtype=complex)
+    # add dummy spin components
+    band_energies = band_energies.reshape((kpoints.shape[0], 1, band_energies.shape[1], band_energies.shape[1]))
+    kpoints = np.append(kpoints, np.zeros((kpoints.shape[0], 1)),axis=1)
+
+    return kpoints, band_energies
+
+
+def _read_h5_dft_input_proj_mat(archive_name):
+    """
+    Reads the projection matrix from the h5. In the following,
+    it is assumed to be k independent.
+    """
+    with HDFArchive(archive_name, 'r') as archive:
+        return archive['dft_input/proj_mat']
+
+
+def _write_dft_bands_input_to_h5(archive_name, data):
+    """Writes all the information back to the h5 archive. data is a dict. """
+    with HDFArchive(archive_name, 'a') as archive:
+        if 'dft_bands_input' in archive:
+            del archive['dft_bands_input']
+        archive.create_group('dft_bands_input')
+        for key in data:
+            archive['dft_bands_input'][key] = data[key]
+    print('Written results to {}'.format(archive_name))
+
+
+
+[docs] +def main(seedname, filename_archive=None): + """ + Executes the program on the band data from the files <seedname>_bands.dat and + <seedname>_bands.kpt. If no seedname_archive is specified, <seedname>.h5 is used. + """ + + if filename_archive is None: + filename_archive = seedname + '.h5' + print('Using the archive "{}"'.format(filename_archive)) + + kpoints, band_energies = _read_bands(seedname) + dft_proj_mat = _read_h5_dft_input_proj_mat(filename_archive) + + data = {'n_k': kpoints.shape[0], + 'n_orbitals': np.ones((kpoints.shape[0], 1), dtype=int) * 3, # The 1 in here only works for SO == 0 + 'proj_mat': np.broadcast_to(dft_proj_mat[0], + (kpoints.shape[0], ) + dft_proj_mat.shape[1:]), + 'hopping': band_energies, + # Quantities are not used for unprojected spaghetti + 'n_parproj': 'none', + 'proj_mat_all': 'none', + # Quantity that SumkDFTTools does not need but that is nice for plots + 'kpoints': kpoints} + + _write_dft_bands_input_to_h5(filename_archive, data)
+ + +if __name__ == '__main__': + if len(sys.argv) == 2: + main(sys.argv[1]) + elif len(sys.argv) == 3: + main(sys.argv[1], sys.argv[2]) + else: + print('Please give a seedname (and optionally an archive to write to). Exiting.') + sys.exit(2) +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/csc_flow.html b/_ref/csc_flow.html new file mode 100644 index 00000000..ee9ad253 --- /dev/null +++ b/_ref/csc_flow.html @@ -0,0 +1,388 @@ + + + + + + + csc_flow — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

csc_flow

+

contains the charge self-consistency flow control functions

+
+
+csc_flow.csc_flow_control(general_params, solver_params, dft_params, gw_params, advanced_params)[source]
+

Function to run the csc cycle. It writes and removes the vasp.lock file to +start and stop Vasp, run the converter, run the dmft cycle and abort the job +if all iterations are finished.

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
solver_paramsdict

solver parameters as a dict

+
+
dft_paramsdict

dft parameters as a dict

+
+
gw_paramsdict

gw parameters as a dict

+
+
advanced_paramsdict

advanced parameters as a dict

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dft_managers.html b/_ref/dft_managers.html new file mode 100644 index 00000000..eca34c7e --- /dev/null +++ b/_ref/dft_managers.html @@ -0,0 +1,378 @@ + + + + + + + dft_managers — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dft_managers

+

DFT code driver modules

+

Modules

+ + + + + + + + + + + + +

dft_managers.mpi_helpers

Contains the handling of the QE process.

dft_managers.qe_manager

Contains the function to run a QuantumEspresso iteration.

dft_managers.vasp_manager

Contains the handling of the VASP process.

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dft_managers.mpi_helpers.html b/_ref/dft_managers.mpi_helpers.html new file mode 100644 index 00000000..e1bb178e --- /dev/null +++ b/_ref/dft_managers.mpi_helpers.html @@ -0,0 +1,446 @@ + + + + + + + dft_managers.mpi_helpers — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dft_managers.mpi_helpers

+

Contains the handling of the QE process. It can start QE, reactivate it, +check if the lock file is there and finally kill QE. Needed for CSC calculations.

+
+
+dft_managers.mpi_helpers.create_hostfile(number_cores, cluster_name)[source]
+

Writes a host file for the mpirun. This tells mpi which nodes to ssh into +and start VASP on. The format of the hist file depends on the type of MPI +that is used.

+
+
Parameters:
+
+
number_cores: int, the number of cores that vasp runs on
+
cluster_name: string, the name of the server
+
+
+
Returns:
+
+
string: name of the hostfile if not run locally and if called by master node
+
+
+
+
+ +
+
+dft_managers.mpi_helpers.find_path_to_mpi_command(env_vars, mpi_exe)[source]
+

Finds the complete path for the mpi executable by scanning the directories +of $PATH.

+
+
Parameters:
+
+
env_vars: dict of string, environment variables containing PATH
+
mpi_exe: string, mpi command
+
+
+
Returns:
+
+
string: absolute path to mpi command
+
+
+
+
+ +
+
+dft_managers.mpi_helpers.get_mpi_arguments(mpi_profile, mpi_exe, number_cores, dft_exe, hostfile)[source]
+

Depending on the settings of the cluster and the type of MPI used, +the arguments to the mpi call have to be different. The most technical part +of the vasp handler.

+
+
Parameters:
+
+
cluster_name: string, name of the cluster so that settings can be tailored to it
+
mpi_exe: string, mpi command
+
number_cores: int, the number of cores that vasp runs on
+
dft_exe: string, the command to start the DFT code
+
hostfile: string, name of the hostfile
+
+
+
Returns:
+
+
list of string: arguments to start mpi with
+
+
+
+
+ +
+
+dft_managers.mpi_helpers.poll_barrier(comm, poll_interval=0.1)[source]
+

Use asynchronous synchronization, otherwise mpi.barrier uses up all the CPU time during +the run of subprocess.

+
+
Parameters:
+
+
comm: MPI communicator
+
poll_interval: float, time step for pinging the status of the sleeping ranks
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dft_managers.qe_manager.html b/_ref/dft_managers.qe_manager.html new file mode 100644 index 00000000..96bb9fe2 --- /dev/null +++ b/_ref/dft_managers.qe_manager.html @@ -0,0 +1,395 @@ + + + + + + + dft_managers.qe_manager — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dft_managers.qe_manager

+

Contains the function to run a QuantumEspresso iteration. Needed for CSC calculations.

+
+
+dft_managers.qe_manager.read_dft_energy(seedname, iter_dmft)[source]
+

Reads DFT energy from quantum espresso’s out files

+
    +
  1. At the first iteration, the DFT energy is read from the scf file.

  2. +
  3. After the first iteration the band energy computed in the mod_scf calculation is wrong, +and needs to be subtracted from the reported total energy. The correct band energy +is computed in the nscf calculation.

  4. +
+
+ +
+
+dft_managers.qe_manager.run(number_cores, qe_file_ext, qe_exec, mpi_profile, seedname)[source]
+

Starts the VASP child process. Takes care of initializing a clean +environment for the child process. This is needed so that VASP does not +get confused with all the standard slurm environment variables.

+
+
Parameters:
+
+
number_cores: int, the number of cores that vasp runs on
+
qe_file_ext: string, qe executable
+
qe_exec: string, path to qe executables
+
mpi_profile: string, name of the cluster so that settings can be tailored to it
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dft_managers.vasp_manager.html b/_ref/dft_managers.vasp_manager.html new file mode 100644 index 00000000..e2954d41 --- /dev/null +++ b/_ref/dft_managers.vasp_manager.html @@ -0,0 +1,416 @@ + + + + + + + dft_managers.vasp_manager — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dft_managers.vasp_manager

+

Contains the handling of the VASP process. It can start VASP, reactivate it, +check if the lock file is there and finally kill VASP. Needed for CSC calculations.

+

This functionality is contained in the simpler public functions.

+
+
+dft_managers.vasp_manager.kill(vasp_process_id)[source]
+

Kills the VASP process.

+
+ +
+
+dft_managers.vasp_manager.read_dft_energy()[source]
+

Reads DFT energy from the last line of Vasp’s vasptriqs.h5 or from OSZICAR.

+
+ +
+
+dft_managers.vasp_manager.read_irred_kpoints(kpts)[source]
+

Reads the indices of the irreducible k-points from the OUTCAR.

+
+ +
+
+dft_managers.vasp_manager.remove_legacy_projections_suppressed()[source]
+

Removes legacy file vasp.suppress_projs if present.

+
+ +
+
+dft_managers.vasp_manager.run_charge_update()[source]
+

Performs one step of the charge update with VASP by creating the vasp.lock +file and then waiting until it gets delete by VASP when it has finished.

+
+ +
+
+dft_managers.vasp_manager.run_initial_scf(number_cores, vasp_command, cluster_name)[source]
+

Starts the VASP child process. Takes care of initializing a clean +environment for the child process. This is needed so that VASP does not +get confused with all the standard slurm environment variables. Returns when +VASP has completed its initial scf cycle.

+
+
Parameters:
+
+
number_cores: int, the number of cores that vasp runs on
+
vasp_command: string, the command to start vasp
+
cluster_name: string, name of the cluster so that settings can be tailored to it
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_cycle.html b/_ref/dmft_cycle.html new file mode 100644 index 00000000..4b2ed99b --- /dev/null +++ b/_ref/dmft_cycle.html @@ -0,0 +1,397 @@ + + + + + + + dmft_cycle — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_cycle

+

main DMFT cycle, DMFT step, and helper functions

+
+
+dmft_cycle.dmft_cycle(general_params, solver_params, advanced_params, dft_params, gw_params, n_iter, dft_irred_kpt_indices=None, dft_energy=None)[source]
+

main dmft cycle that works for one shot and CSC equally

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
solver_paramsdict

solver parameters as a dict

+
+
advanced_paramsdict

advanced parameters as a dict

+
+
dft_paramsdict

dft parameters as a dict

+
+
gw_paramsdict

gw parameters as a dict

+
+
n_iterint

number of iterations to be executed

+
+
dft_irred_kpt_indices: iterable of int

If given, writes density correction for csc calculations only for +irreducible kpoints

+
+
+
+
Returns:
+
+
observablesdict

updated observable array for calculation

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.afm_mapping.html b/_ref/dmft_tools.afm_mapping.html new file mode 100644 index 00000000..adf90c71 --- /dev/null +++ b/_ref/dmft_tools.afm_mapping.html @@ -0,0 +1,372 @@ + + + + + + + dmft_tools.afm_mapping — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.afm_mapping

+
+
+dmft_tools.afm_mapping.determine(general_params, archive, n_inequiv_shells)[source]
+

Determines the symmetries that are used in AFM calculations. These +symmetries can then be used to copy the self-energies from one impurity to +another by exchanging up/down channels for speedup and accuracy.

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.convergence.html b/_ref/dmft_tools.convergence.html new file mode 100644 index 00000000..d8e7ca61 --- /dev/null +++ b/_ref/dmft_tools.convergence.html @@ -0,0 +1,503 @@ + + + + + + + dmft_tools.convergence — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.convergence

+

contain helper functions to check convergence

+
+
+dmft_tools.convergence.calc_convergence_quantities(sum_k, general_params, conv_obs, observables, solvers, G0_old, G_loc_all, Sigma_freq_previous)[source]
+

Calculations convergence quantities, i.e. the difference in observables +between the last and second to last iteration.

+
+
Parameters:
+
+
sum_kSumK Object instances
+
general_paramsdict

general parameters as a dict

+
+
conv_obslist of dicts

convergence observable arrays

+
+
observableslist of dicts

observable arrays

+
+
solverssolver objects
+
G0_oldlist of block Gf object

last G0_freq

+
+
G_loc_alllist of block Gf objects

G_loc extracted from before imp solver

+
+
Sigma_freq_previouslist of block Gf objects

previous impurity sigma to compare with

+
+
+
+
Returns:
+
+
conv_obslist of dicts

updated convergence observable arrays

+
+
+
+
+
+ +
+
+dmft_tools.convergence.check_convergence(n_inequiv_shells, general_params, conv_obs)[source]
+

check last iteration for convergence

+
+
Parameters:
+
+
n_inequiv_shellsint

Number of inequivalent shells as saved in SumkDFT object

+
+
general_paramsdict

general parameters as a dict

+
+
conv_obslist of dicts

convergence observable arrays

+
+
+
+
Returns:
+
+
is_convergedbool

true if desired accuracy is reached. None if no convergence criterion +is set

+
+
+
+
+
+ +
+
+dmft_tools.convergence.max_G_diff(G1, G2, norm_temp=True)[source]
+

calculates difference between two block Gfs +uses numpy linalg norm on the last two indices first +and then the norm along the mesh axis. The result is divided +by sqrt(beta) for MeshImFreq and by sqrt(beta/#taupoints) for +MeshImTime.

+

1/ (2* sqrt(beta)) sqrt( sum_n sum_ij [abs(G1 - G2)_ij(w_n)]^2 )

+

this is only done for MeshImFreq Gf objects, for all other +meshes the weights are set to 1

+
+
Parameters:
+
+
G1Gf or BlockGf to compare
+
G2Gf or BlockGf to compare
+
norm_temp: bool, default = True

divide by an additional sqrt(beta) to account for temperature scaling +only correct for uniformly distributed error.

+
+
__Returns:__
+
difffloat

difference between the two Gfs

+
+
+
+
+
+ +
+
+dmft_tools.convergence.prep_conv_file(general_params, sum_k)[source]
+

Writes the header to the conv files

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
n_inequiv_shellsint

number of impurities for calculations

+
+
__Returns:__
+
nothing
+
+
+
+
+ +
+
+dmft_tools.convergence.prep_conv_obs(h5_archive)[source]
+

prepares the conv arrays and files for the DMFT calculation

+
+
Parameters:
+
+
h5_archive: hdf archive instance

hdf archive for calculation

+
+
__Returns:__
+
conv_obsdict

conv array for calculation

+
+
+
+
+
+ +
+
+dmft_tools.convergence.write_conv(conv_obs, sum_k, general_params)[source]
+

writes the last entries of the conv arrays to the files

+
+
Parameters:
+
+
conv_obslist of dicts

convergence observable arrays/dicts

+
+
sum_kSumK Object instances
+
general_paramsdict
+
__Returns:__
+
nothing
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.formatter.html b/_ref/dmft_tools.formatter.html new file mode 100644 index 00000000..32d5ff0e --- /dev/null +++ b/_ref/dmft_tools.formatter.html @@ -0,0 +1,378 @@ + + + + + + + dmft_tools.formatter — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.formatter

+

Contains formatters for things that need to be printed in DMFT calculations.

+
+
+dmft_tools.formatter.print_block_sym(sum_k, dm, general_params)[source]
+

Prints a summary of block structure finder, determination of +shell_multiplicity, local Hamiltonian, DFT density matrix.

+
+ +
+
+dmft_tools.formatter.print_rotation_matrix(sum_k)[source]
+

Prints the rotation matrix, real and imaginary part separately.

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.greens_functions_mixer.html b/_ref/dmft_tools.greens_functions_mixer.html new file mode 100644 index 00000000..79c1db79 --- /dev/null +++ b/_ref/dmft_tools.greens_functions_mixer.html @@ -0,0 +1,364 @@ + + + + + + + dmft_tools.greens_functions_mixer — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.greens_functions_mixer

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.html b/_ref/dmft_tools.html new file mode 100644 index 00000000..0d3cb9f2 --- /dev/null +++ b/_ref/dmft_tools.html @@ -0,0 +1,405 @@ + + + + + + + dmft_tools — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools

+

DMFT routine helper functions used during solid_dmft run

+

Modules

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

dmft_tools.afm_mapping

dmft_tools.convergence

contain helper functions to check convergence

dmft_tools.formatter

Contains formatters for things that need to be printed in DMFT calculations.

dmft_tools.greens_functions_mixer

dmft_tools.initial_self_energies

Contains all functions related to determining the double counting and the initial self-energy.

dmft_tools.interaction_hamiltonian

Contains all functions related to constructing the interaction Hamiltonian.

dmft_tools.legendre_filter

dmft_tools.manipulate_chemical_potential

Contains all the functions related to setting the chemical potential in the next iteration.

dmft_tools.matheval

dmft_tools.observables

Contains all functions related to the observables.

dmft_tools.results_to_archive

dmft_tools.solver

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.initial_self_energies.html b/_ref/dmft_tools.initial_self_energies.html new file mode 100644 index 00000000..4c955c71 --- /dev/null +++ b/_ref/dmft_tools.initial_self_energies.html @@ -0,0 +1,444 @@ + + + + + + + dmft_tools.initial_self_energies — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.initial_self_energies

+

Contains all functions related to determining the double counting and the +initial self-energy.

+
+
+dmft_tools.initial_self_energies.calculate_double_counting(sum_k, density_matrix, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all=None)[source]
+

Calculates the double counting, including all manipulations from advanced_params.

+
+
Parameters:
+
+
sum_kSumkDFT object
+
density_matrixlist of gf_struct_solver like

List of density matrices for all inequivalent shells

+
+
general_paramsdict

general parameters as a dict

+
+
gw_paramsdict

GW parameters as a dict

+
+
advanced_paramsdict

advanced parameters as a dict

+
+
solver_type_per_implist of str

List of solver types for each impurity

+
+
G_loc_alllist of BlockGf (Green’s function) objects, optional

List of local Green’s functions for all shells

+
+
+
+
Returns:
+
+
sum_kSumKDFT object

The SumKDFT object containing the updated double counting

+
+
+
+
+
+ +
+
+dmft_tools.initial_self_energies.determine_dc_and_initial_sigma(general_params, gw_params, advanced_params, sum_k, archive, iteration_offset, G_loc_all, solvers, solver_type_per_imp)[source]
+

Determines the double counting (DC) and the initial Sigma. This can happen +in five different ways: +* Calculation resumed: use the previous DC and the Sigma of the last complete calculation.

+
    +
  • Calculation initialized with load_sigma: use the DC and Sigma from the previous file. +If the DC changed (and therefore the Hartree shift), the initial Sigma is adjusted by that.

  • +
  • New calculation, with DC: calculate the DC, then initialize the Sigma as the DC, +effectively starting the calculation from the DFT Green’s function. +Also breaks magnetic symmetry if calculation is magnetic.

  • +
  • New calculation, without DC: Sigma is initialized as 0, +starting the calculation from the DFT Green’s function.

  • +
+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
gw_paramsdict

GW parameters as a dict

+
+
advanced_paramsdict

advanced parameters as a dict

+
+
sum_kSumkDFT object

Sumk object with the information about the correct block structure

+
+
archiveHDFArchive

the archive of the current calculation

+
+
iteration_offsetint

the iterations done before this calculation

+
+
G_loc_allGf

local Green function for all shells

+
+
solverslist

list of Solver instances

+
+
+
+
Returns:
+
+
sum_kSumkDFT object

the SumkDFT object, updated by the initial Sigma and the DC

+
+
solverslist

list of Solver instances, updated by the initial Sigma

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.interaction_hamiltonian.html b/_ref/dmft_tools.interaction_hamiltonian.html new file mode 100644 index 00000000..0f3a883d --- /dev/null +++ b/_ref/dmft_tools.interaction_hamiltonian.html @@ -0,0 +1,425 @@ + + + + + + + dmft_tools.interaction_hamiltonian — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.interaction_hamiltonian

+

Contains all functions related to constructing the interaction Hamiltonian.

+
+
+dmft_tools.interaction_hamiltonian.construct(sum_k, general_params, solver_type_per_imp, gw_params=None)[source]
+

Constructs the interaction Hamiltonian. Currently implemented are the +Kanamori Hamiltonian (usually for 2 or 3 orbitals), the density-density and +the full Slater Hamiltonian (for 2, 3, or 5 orbitals). +If sum_k.rot_mat is non-identity, we have to consider rotating the interaction +Hamiltonian: the Kanamori Hamiltonian does not change because it is invariant +under orbital mixing but all the other Hamiltonians are at most invariant +under rotations in space. Therefore, sum_k.rot_mat has to be correct before +calling this method.

+

The parameters U and J will be interpreted differently depending on the +type of the interaction Hamiltonian: it is either the Kanamori parameters +for the Kanamori Hamiltonian or the orbital-averaged parameters (consistent +with DFT+U, https://cms.mpi.univie.ac.at/wiki/index.php/LDAUTYPE ) for all +other Hamiltonians.

+

Note also that for all Hamiltonians except Kanamori, the order of the +orbitals matters. The correct order is specified here: +triqs.github.io/triqs/unstable/documentation/python_api/triqs.operators.util.U_matrix.spherical_to_cubic.html

+
+ +
+
+dmft_tools.interaction_hamiltonian.h_int_simple_intra(spin_names, n_orb, U, off_diag=None, map_operator_structure=None, H_dump=None)[source]
+

Create a simple intra orbital density-density Hamiltonian. +(no inter orbital terms)

+
+\[H = \frac{1}{2} \sum_{i \sigma \neq \sigma')} U_{i i}^{\sigma \sigma'} n_{i \sigma} n_{i \sigma'}.\]
+
+
Parameters:
+
+
spin_nameslist of strings

Names of the spins, e.g. [‘up’,’down’].

+
+
n_orbint

Number of orbitals.

+
+
Ufloat

U value

+
+
off_diagboolean

Do we have (orbital) off-diagonal elements? +If yes, the operators and blocks are denoted by (‘spin’, ‘orbital’), +otherwise by (‘spin_orbital’,0).

+
+
map_operator_structuredict

Mapping of names of GF blocks names from one convention to another, +e.g. {(‘up’, 0): (‘up_0’, 0), (‘down’, 0): (‘down_0’,0)}. +If provided, the operators and blocks are denoted by the mapping of ('spin', 'orbital').

+
+
H_dumpstring

Name of the file to which the Hamiltonian should be written.

+
+
+
+
Returns:
+
+
HOperator

The Hamiltonian.

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.legendre_filter.html b/_ref/dmft_tools.legendre_filter.html new file mode 100644 index 00000000..3cfda697 --- /dev/null +++ b/_ref/dmft_tools.legendre_filter.html @@ -0,0 +1,389 @@ + + + + + + + dmft_tools.legendre_filter — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.legendre_filter

+
+
+dmft_tools.legendre_filter.apply(G_tau, order=100, G_l_cut=1e-19)[source]
+

Filter binned imaginary time Green’s function +using a Legendre filter of given order and coefficient threshold.

+
+
Parameters:
+
+
G_tauTRIQS imaginary time Block Green’s function
+
autodetermines automatically the cut-off nl
+
orderint

Legendre expansion order in the filter

+
+
G_l_cutfloat

Legendre coefficient cut-off

+
+
+
+
Returns:
+
+
G_lTRIQS Legendre Block Green’s function

Fitted Green’s function on a Legendre mesh

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.manipulate_chemical_potential.html b/_ref/dmft_tools.manipulate_chemical_potential.html new file mode 100644 index 00000000..3d4d9cbe --- /dev/null +++ b/_ref/dmft_tools.manipulate_chemical_potential.html @@ -0,0 +1,443 @@ + + + + + + + dmft_tools.manipulate_chemical_potential — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.manipulate_chemical_potential

+

Contains all the functions related to setting the chemical potential in the +next iteration.

+
+
+dmft_tools.manipulate_chemical_potential.set_initial_mu(general_params, sum_k, iteration_offset, archive, broadening)[source]
+

Handles the different ways of setting the initial chemical potential mu: +* Chemical potential set to fixed value: uses this value

+
    +
  • New calculation: determines mu from dichotomy method

  • +
  • +
    Resuming calculation and chemical potential not updated this iteration:

    loads calculation before previous iteration.

    +
    +
    +
  • +
  • +
    Resuming calculation and chemical potential is updated:

    checks if the system is gapped and potentially run MaxEnt to find gap +middle. Otherwise, gets mu from dichotomy and applies mu mixing to result.

    +
    +
    +
  • +
+
+
Parameters:
+
+
general_paramsdict

general parameters as dict.

+
+
sum_kSumkDFT object

contains system information necessary to determine the initial mu.

+
+
iteration_offsetint

the number of iterations executed in previous calculations.

+
+
archiveHDFArchive

needed to potentially load previous results and write MaxEnt results to.

+
+
+
+
Returns:
+
+
sum_kSumkDFT object

the altered SumkDFT object with the initial mu set correctly.

+
+
+
+
+
+ +
+
+dmft_tools.manipulate_chemical_potential.update_mu(general_params, sum_k, it, archive, broadening)[source]
+

Handles the different ways of updating the chemical potential mu: +* Chemical potential set to fixed value: uses this value

+
    +
  • Chemical potential not updated this iteration: nothing happens.

  • +
  • +
    Chemical potential is updated: checks if the system is gapped and

    potentially run MaxEnt to find gap middle. Otherwise, gets mu from +dichotomy and applies mu mixing to result.

    +
    +
    +
  • +
+
+
Parameters:
+
+
general_paramsdict

general parameters as dict.

+
+
sum_kSumkDFT object

contains system information necessary to update mu.

+
+
itint

the number of the current iteration.

+
+
archiveHDFArchive

needed to potentially write MaxEnt results to.

+
+
+
+
Returns:
+
+
sum_kSumkDFT object

the altered SumkDFT object with the updated mu.

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.matheval.MathExpr.__init__.html b/_ref/dmft_tools.matheval.MathExpr.__init__.html new file mode 100644 index 00000000..9ea9a6cf --- /dev/null +++ b/_ref/dmft_tools.matheval.MathExpr.__init__.html @@ -0,0 +1,371 @@ + + + + + + + dmft_tools.matheval.MathExpr.__init__ — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.matheval.MathExpr.__init__

+
+
+MathExpr.__init__(expr)[source]
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.html b/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.html new file mode 100644 index 00000000..9d6aff3b --- /dev/null +++ b/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.html @@ -0,0 +1,371 @@ + + + + + + + dmft_tools.matheval.MathExpr.allowed_nodes — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.matheval.MathExpr.allowed_nodes

+
+
+MathExpr.allowed_nodes = (<class 'ast.Module'>, <class 'ast.Expr'>, <class 'ast.Load'>, <class 'ast.Expression'>, <class 'ast.Add'>, <class 'ast.Sub'>, <class 'ast.UnaryOp'>, <class 'ast.Num'>, <class 'ast.BinOp'>, <class 'ast.Mult'>, <class 'ast.Div'>, <class 'ast.Pow'>, <class 'ast.BitOr'>, <class 'ast.BitAnd'>, <class 'ast.BitXor'>, <class 'ast.USub'>, <class 'ast.UAdd'>, <class 'ast.FloorDiv'>, <class 'ast.Mod'>, <class 'ast.LShift'>, <class 'ast.RShift'>, <class 'ast.Invert'>, <class 'ast.Call'>, <class 'ast.Name'>)
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.matheval.MathExpr.functions.html b/_ref/dmft_tools.matheval.MathExpr.functions.html new file mode 100644 index 00000000..34c63818 --- /dev/null +++ b/_ref/dmft_tools.matheval.MathExpr.functions.html @@ -0,0 +1,371 @@ + + + + + + + dmft_tools.matheval.MathExpr.functions — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.matheval.MathExpr.functions

+
+
+MathExpr.functions = {'abs': <built-in function abs>, 'acos': <built-in function acos>, 'acosh': <built-in function acosh>, 'asin': <built-in function asin>, 'asinh': <built-in function asinh>, 'atan': <built-in function atan>, 'atan2': <built-in function atan2>, 'atanh': <built-in function atanh>, 'cbrt': <built-in function cbrt>, 'ceil': <built-in function ceil>, 'comb': <built-in function comb>, 'complex': <class 'complex'>, 'copysign': <built-in function copysign>, 'cos': <built-in function cos>, 'cosh': <built-in function cosh>, 'degrees': <built-in function degrees>, 'dist': <built-in function dist>, 'e': 2.718281828459045, 'erf': <built-in function erf>, 'erfc': <built-in function erfc>, 'exp': <built-in function exp>, 'exp2': <built-in function exp2>, 'expm1': <built-in function expm1>, 'fabs': <built-in function fabs>, 'factorial': <built-in function factorial>, 'floor': <built-in function floor>, 'fmod': <built-in function fmod>, 'frexp': <built-in function frexp>, 'fsum': <built-in function fsum>, 'gamma': <built-in function gamma>, 'gcd': <built-in function gcd>, 'hypot': <built-in function hypot>, 'inf': inf, 'isclose': <built-in function isclose>, 'isfinite': <built-in function isfinite>, 'isinf': <built-in function isinf>, 'isnan': <built-in function isnan>, 'isqrt': <built-in function isqrt>, 'lcm': <built-in function lcm>, 'ldexp': <built-in function ldexp>, 'lgamma': <built-in function lgamma>, 'log': <built-in function log>, 'log10': <built-in function log10>, 'log1p': <built-in function log1p>, 'log2': <built-in function log2>, 'max': <built-in function max>, 'min': <built-in function min>, 'modf': <built-in function modf>, 'nan': nan, 'nextafter': <built-in function nextafter>, 'perm': <built-in function perm>, 'pi': 3.141592653589793, 'pow': <built-in function pow>, 'prod': <built-in function prod>, 'radians': <built-in function radians>, 'remainder': <built-in function remainder>, 'round': <built-in function round>, 'sin': <built-in function sin>, 'sinh': <built-in function sinh>, 'sqrt': <built-in function sqrt>, 'sumprod': <built-in function sumprod>, 'tan': <built-in function tan>, 'tanh': <built-in function tanh>, 'tau': 6.283185307179586, 'trunc': <built-in function trunc>, 'ulp': <built-in function ulp>}
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.matheval.MathExpr.html b/_ref/dmft_tools.matheval.MathExpr.html new file mode 100644 index 00000000..96d8814e --- /dev/null +++ b/_ref/dmft_tools.matheval.MathExpr.html @@ -0,0 +1,402 @@ + + + + + + + dmft_tools.matheval.MathExpr — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.matheval.MathExpr

+
+
+class dmft_tools.matheval.MathExpr(expr)[source]
+

Bases: object

+

Methods

+ + + + + + +

__call__(**kwargs)

Call self as a function.

+
+
+__init__(expr)[source]
+
+ +
+ + + + + + + +

__init__(expr)

+

Attributes

+ + + + + + + + + +

allowed_nodes

functions

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.matheval.html b/_ref/dmft_tools.matheval.html new file mode 100644 index 00000000..ab19b1c1 --- /dev/null +++ b/_ref/dmft_tools.matheval.html @@ -0,0 +1,373 @@ + + + + + + + dmft_tools.matheval — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.matheval

+

Classes

+ + + + + + +

MathExpr(expr)

Methods

+

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.observables.html b/_ref/dmft_tools.observables.html new file mode 100644 index 00000000..6a170659 --- /dev/null +++ b/_ref/dmft_tools.observables.html @@ -0,0 +1,551 @@ + + + + + + + dmft_tools.observables — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.observables

+

Contains all functions related to the observables.

+
+
+dmft_tools.observables.add_dft_values_as_zeroth_iteration(observables, general_params, solver_type_per_imp, dft_mu, dft_energy, sum_k, G_loc_all_dft, shell_multiplicity)[source]
+

Calculates the DFT observables that should be written as the zeroth iteration.

+
+
Parameters:
+
+
observablesobservable arrays/dicts
+
general_paramsgeneral parameters as a dict
+
solver_type_per_implist of strings

list of solver types for each impurity

+
+
dft_mudft chemical potential
+
sum_kSumK Object instances
+
G_loc_all_dftGloc from DFT for G(beta/2)
+
shell_multiplicitydegeneracy of impurities
+
+
+
Returns:
+
+
observables: list of dicts
+
+
+
+
+ +
+
+dmft_tools.observables.add_dmft_observables(observables, general_params, solver_params, map_imp_solver, solver_type_per_imp, dft_energy, it, solvers, h_int, previous_mu, sum_k, density_mat, shell_multiplicity, E_bandcorr)[source]
+

calculates the observables for given Input, I decided to calculate the observables +not adhoc since it should be done only once by the master_node

+
+
Parameters:
+
+
observablesobservable arrays/dicts
+
general_paramsgeneral parameters as a dict
+
solver_paramssolver parameters as a dict
+
ititeration counter
+
solversSolver instances
+
h_intinteraction hamiltonian
+
previous_mudmft chemical potential for which the calculation was just done
+
sum_kSumK Object instances
+
density_matDMFT occupations
+
shell_multiplicitydegeneracy of impurities
+
E_bandcorrE_kin_dmft - E_kin_dft, either calculated man or from sum_k method if CSC
+
+
+
Returns:
+
+
observables: list of dicts
+
+
+
+
+ +
+
+dmft_tools.observables.calc_Z(Sigma)[source]
+

calculates the inverse mass enhancement from the impurity +self-energy by a simple linear fit estimate: +[ 1 - ((Im S_iw[n_iw0+1]-S_iw[n_iw0])/(iw[n_iw0+1]-iw[n_iw0])) ]^-1

+
+
Parameters:
+
+
Sigma: Gf on MeshImFreq

self-energy on Matsubara mesh

+
+
+
+
Returns:
+
+
orb_Z: 1d numpy array

list of Z values per orbital in Sigma

+
+
+
+
+
+ +
+
+dmft_tools.observables.calc_bandcorr_man(general_params, sum_k, E_kin_dft)[source]
+

Calculates the correlated kinetic energy from DMFT for target states +and then determines the band correction energy

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
sum_kSumK Object instances
+
E_kin_dft: float

kinetic energy from DFT

+
+
+
+
Returns:
+
+
E_bandcorr: float

band energy correction E_kin_dmft - E_kin_dft

+
+
+
+
+
+ +
+
+dmft_tools.observables.calc_dft_kin_en(general_params, sum_k, dft_mu)[source]
+

Calculates the kinetic energy from DFT for target states

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
sum_kSumK Object instances
+
dft_mu: float

DFT fermi energy

+
+
+
+
Returns:
+
+
E_kin_dft: float

kinetic energy from DFT

+
+
+
+
+
+ +
+
+dmft_tools.observables.prep_observables(h5_archive, sum_k)[source]
+

prepares the observable arrays and files for the DMFT calculation

+
+
Parameters:
+
+
h5_archive: hdf archive instance

hdf archive for calculation

+
+
sum_kSumK Object instances
+
+
+
Returns:
+
+
observablesdict

observable array for calculation

+
+
+
+
+
+ +
+
+dmft_tools.observables.write_header_to_file(general_params, sum_k)[source]
+

Writes the header to the observable files

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
n_inequiv_shellsint

number of impurities for calculations

+
+
+
+
Returns:
+
+
nothing
+
+
+
+
+ +
+
+dmft_tools.observables.write_obs(observables, sum_k, general_params)[source]
+

writes the last entries of the observable arrays to the files

+
+
Parameters:
+
+
observableslist of dicts

observable arrays/dicts

+
+
sum_kSumK Object instances
+
general_paramsdict
+
+
+
Returns:
+
+
nothing
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.results_to_archive.html b/_ref/dmft_tools.results_to_archive.html new file mode 100644 index 00000000..fcc261c7 --- /dev/null +++ b/_ref/dmft_tools.results_to_archive.html @@ -0,0 +1,370 @@ + + + + + + + dmft_tools.results_to_archive — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.results_to_archive

+
+
+dmft_tools.results_to_archive.write(archive, sum_k, general_params, solver_params, solvers, map_imp_solver, solver_type_per_imp, it, is_sampling, previous_mu, density_mat_pre, density_mat, deltaN=None, dens=None)[source]
+

Collects and writes results to archive.

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.solver.SolverStructure.__init__.html b/_ref/dmft_tools.solver.SolverStructure.__init__.html new file mode 100644 index 00000000..75612f21 --- /dev/null +++ b/_ref/dmft_tools.solver.SolverStructure.__init__.html @@ -0,0 +1,390 @@ + + + + + + + dmft_tools.solver.SolverStructure.__init__ — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.solver.SolverStructure.__init__

+
+
+SolverStructure.__init__(general_params, solver_params, gw_params, advanced_params, sum_k, icrsh, h_int, iteration_offset=None, deg_orbs_ftps=None)[source]
+

Initialisation of the solver instance with h_int for impurity “icrsh” based on soliDMFT parameters.

+
+
Parameters:
+
+
general_paramuters: dict

general parameters as dict

+
+
solver_params: dict

solver-specific parameters as dict

+
+
sum_k: triqs.dft_tools.sumk object

SumkDFT instance

+
+
icrsh: int

correlated shell index

+
+
h_int: triqs.operator object

interaction Hamiltonian of correlated shell

+
+
iteration_offset: int

number of iterations this run is based on

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.solver.SolverStructure.html b/_ref/dmft_tools.solver.SolverStructure.html new file mode 100644 index 00000000..7ddded22 --- /dev/null +++ b/_ref/dmft_tools.solver.SolverStructure.html @@ -0,0 +1,426 @@ + + + + + + + dmft_tools.solver.SolverStructure — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.solver.SolverStructure

+
+
+class dmft_tools.solver.SolverStructure(general_params, solver_params, gw_params, advanced_params, sum_k, icrsh, h_int, iteration_offset=None, deg_orbs_ftps=None)[source]
+

Bases: object

+

Handles all solid_dmft solver objects and contains TRIQS solver instance.

+
+
Attributes:
+
+
+
+
+

Methods

+ + + + + + +

solve(self, **kwargs)

solve impurity problem

+
+
+__init__(general_params, solver_params, gw_params, advanced_params, sum_k, icrsh, h_int, iteration_offset=None, deg_orbs_ftps=None)[source]
+

Initialisation of the solver instance with h_int for impurity “icrsh” based on soliDMFT parameters.

+
+
Parameters:
+
+
general_paramuters: dict

general parameters as dict

+
+
solver_params: dict

solver-specific parameters as dict

+
+
sum_k: triqs.dft_tools.sumk object

SumkDFT instance

+
+
icrsh: int

correlated shell index

+
+
h_int: triqs.operator object

interaction Hamiltonian of correlated shell

+
+
iteration_offset: int

number of iterations this run is based on

+
+
+
+
+
+ +
+
+solve(**kwargs)[source]
+

solve impurity problem with current solver

+
+ +
+ + + + + + + + + + +

__init__(general_params, solver_params, ...)

Initialisation of the solver instance with h_int for impurity "icrsh" based on soliDMFT parameters.

solve(**kwargs)

solve impurity problem with current solver

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.solver.SolverStructure.solve.html b/_ref/dmft_tools.solver.SolverStructure.solve.html new file mode 100644 index 00000000..61373fa3 --- /dev/null +++ b/_ref/dmft_tools.solver.SolverStructure.solve.html @@ -0,0 +1,372 @@ + + + + + + + dmft_tools.solver.SolverStructure.solve — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.solver.SolverStructure.solve

+
+
+SolverStructure.solve(**kwargs)[source]
+

solve impurity problem with current solver

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/dmft_tools.solver.html b/_ref/dmft_tools.solver.html new file mode 100644 index 00000000..e152fc98 --- /dev/null +++ b/_ref/dmft_tools.solver.html @@ -0,0 +1,419 @@ + + + + + + + dmft_tools.solver — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

dmft_tools.solver

+
+
+class dmft_tools.solver.SolverStructure(general_params, solver_params, gw_params, advanced_params, sum_k, icrsh, h_int, iteration_offset=None, deg_orbs_ftps=None)[source]
+

Handles all solid_dmft solver objects and contains TRIQS solver instance.

+
+
Attributes:
+
+
+
+
+

Methods

+ + + + + + +

solve(self, **kwargs)

solve impurity problem

+
+
+solve(**kwargs)[source]
+

solve impurity problem with current solver

+
+ +
+ +
+
+dmft_tools.solver.get_n_orbitals(sum_k)[source]
+

determines the number of orbitals within the +solver block structure.

+
+
Parameters:
+
+
sum_kdft_tools sumk object
+
+
+
Returns:
+
+
n_orbdict of int

number of orbitals for up / down as dict for SOC calculation +without up / down block up holds the number of orbitals

+
+
+
+
+
+ +

Classes

+ + + + + + +

SolverStructure(general_params, ...[, ...])

Handles all solid_dmft solver objects and contains TRIQS solver instance.

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.bdft_converter.html b/_ref/gw_embedding.bdft_converter.html new file mode 100644 index 00000000..b52fe6b8 --- /dev/null +++ b/_ref/gw_embedding.bdft_converter.html @@ -0,0 +1,498 @@ + + + + + + + gw_embedding.bdft_converter — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.bdft_converter

+

converter from bdft output to edmft input for solid_dmft

+
+
+gw_embedding.bdft_converter.calc_Sigma_DC_gw(Wloc_dlr, Gloc_dlr, Vloc, verbose=False)[source]
+

Calculate the double counting part of the self-energy from the screened Coulomb interaction

+
+
Parameters:
+
+
Wloc_dlrBlockGf or Gf with MeshDLR

screened Coulomb interaction

+
+
Gloc_dlrBlockGf or Gf with MeshDLR

local Green’s function

+
+
Vlocnp.ndarray

local Coulomb interaction

+
+
verbosebool, optional

print additional information, defaults to False

+
+
+
+
Returns:
+
+
Sig_DC_dlrBlockGf or Gf

double counting part of the self-energy

+
+
Sig_DC_hartreenp.ndarray

static Hartree part of the self-energy

+
+
Sig_DC_exchangenp.ndarray

static exchange part of the self-energy

+
+
+
+
+
+ +
+
+gw_embedding.bdft_converter.calc_W_from_Gloc(Gloc_dlr, U)[source]
+

Calculate Wijkl from given constant U tensor and Gf on DLRMesh +triqs notation for Uijkl:

+

phi*_i(r) phi*_j(r’) U(r,r’) phi_l’(r’) phi_k(r) = Uijkl c^+_i c^+_j’ c_l’ c_k

+

where the ‘ denotes a spin index different from the other without ‘

+

the according diagram is (left and right have same spin):

+
j (phi)         k' (phi)
+  \              /
+   <            <
+    \__________/
+    /          \
+   >            >
+  /              \
+i (phi*)          l'
+
+
+

we now have to move to a product basis form to combine two indices +i.e. go from nb,nb,nb,nb to nb**2,nb**2 tensors:

+
Uji,kl = phi*_i(r) phi_j(r) U(r,r') phi*_k(r') phi_l(r')
+       = Psi*_ji(r) U(r,r') Psi_kl(r')
+
+
+

So we have to transform the triqs notation of Uijkl -> Uki,jl, i.e. +swap col/rows as (2,0,1,3) to go to the basis and the in the end +swap W_ki,jl back in reverse.

+

Then we compute pubble polarizability as

+

Pi_ab,kl(tau) = -2 G_bl(tau) G_ka(beta - tau)

+

So that:

+
[ U Pi(iwn) ]_ji,kl = sum_ab U_ji,ab Pi_ab,kl(iwn)
+
+
+

i.e.:

+
j'              a ___
+  \              /   \ k
+   <            <     \
+    \__________/       \
+    /          \       /
+   >            >     /
+  /              \___/ l
+i'               b
+
+
+

then the screened Coulomb interaction in product basis is:

+
W_ji,kl(iwn) = [1 - U Pi(iwn) ]^-1_ji,kl Uji,kl - Uji,kl
+
+
+

(subtract static shift here), and finally convert back to triqs notation.

+
+
Parameters:
+
+
Gloc_dlrBlockGf or Gf with MeshDLR

local Green’s function

+
+
Unp.ndarray of with shape [Gloc_dlr.target_shape]*4 or dict of np.ndarray

constant U tensor

+
+
+
+
Returns:
+
+
W_dlrBlockGf or Gf

screened Coulomb interaction

+
+
+
+
+
+ +
+
+gw_embedding.bdft_converter.convert_gw_output(job_h5, gw_h5, dlr_wmax=None, dlr_eps=None, it_1e=0, it_2e=0, ha_ev_conv=False)[source]
+

read bdft output and convert to triqs Gf DLR objects

+
+
Parameters:
+
+
job_h5: string

path to solid_dmft job file

+
+
gw_h5: string

path to GW checkpoint file for AIMBES code

+
+
dlr_wmax: float

wmax for dlr mesh, defaults to the wmax from the IR basis

+
+
dlr_eps: float

precision for dlr mesh, defaults to the precision from the IR basis

+
+
it_1e: int, optional

iteration to read from gw_h5 calculation for 1e downfolding, defaults to last iteration

+
+
it_2e: int, optional

iteration to read from gw_h5 calculation for 2e downfolding, defaults to last iteration

+
+
ha_ev_conv: bool, optional

convert energies from Hartree to eV, defaults to False

+
+
+
+
Returns:
+
+
gw_data: dict

dictionary holding all read objects: mu_emb, beta, lam, w_max, prec, mesh_dlr_iw_b, +mesh_dlr_iw_f, n_orb, G0_dlr, Gloc_dlr, Sigma_imp_dlr, Sigma_imp_DC_dlr, Uloc_dlr, +Vloc, Hloc0, Vhf_dc, Vhf

+
+
ir_kernel: sparse_ir kernel object

IR kernel with AIMBES paramaters

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.html b/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.html new file mode 100644 index 00000000..ba5695fd --- /dev/null +++ b/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.html @@ -0,0 +1,371 @@ + + + + + + + gw_embedding.gw_flow.dummy_sumk.__init__ — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.gw_flow.dummy_sumk.__init__

+
+
+dummy_sumk.__init__(n_inequiv_shells, n_orb_list, enforce_off_diag, use_rot, magnetic)[source]
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.gw_flow.dummy_sumk.html b/_ref/gw_embedding.gw_flow.dummy_sumk.html new file mode 100644 index 00000000..3c3b7244 --- /dev/null +++ b/_ref/gw_embedding.gw_flow.dummy_sumk.html @@ -0,0 +1,415 @@ + + + + + + + gw_embedding.gw_flow.dummy_sumk — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.gw_flow.dummy_sumk

+
+
+class gw_embedding.gw_flow.dummy_sumk(n_inequiv_shells, n_orb_list, enforce_off_diag, use_rot, magnetic)[source]
+

Bases: object

+

create dummy sumk helper object

+

Methods

+ + + + + + +

symm_deg_gf(gf_to_symm[, ish])

Averages a GF or a dict of np.ndarrays over degenerate shells.

+
+
+__init__(n_inequiv_shells, n_orb_list, enforce_off_diag, use_rot, magnetic)[source]
+
+ +
+
+symm_deg_gf(gf_to_symm, ish=0)[source]
+

Averages a GF or a dict of np.ndarrays over degenerate shells.

+

Degenerate shells of an inequivalent correlated shell are defined by +self.deg_shells. This function enforces corresponding degeneracies +in the input GF.

+
+
Parameters:
+
+
gf_to_symmgf_struct_solver like

Input and output GF (i.e., it gets overwritten) +or dict of np.ndarrays.

+
+
ishint

Index of an inequivalent shell. (default value 0)

+
+
+
+
+
+ +
+ + + + + + + + + + +

__init__(n_inequiv_shells, n_orb_list, ...)

symm_deg_gf(gf_to_symm[, ish])

Averages a GF or a dict of np.ndarrays over degenerate shells.

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.html b/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.html new file mode 100644 index 00000000..d3fa2b02 --- /dev/null +++ b/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.html @@ -0,0 +1,385 @@ + + + + + + + gw_embedding.gw_flow.dummy_sumk.symm_deg_gf — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.gw_flow.dummy_sumk.symm_deg_gf

+
+
+dummy_sumk.symm_deg_gf(gf_to_symm, ish=0)[source]
+

Averages a GF or a dict of np.ndarrays over degenerate shells.

+

Degenerate shells of an inequivalent correlated shell are defined by +self.deg_shells. This function enforces corresponding degeneracies +in the input GF.

+
+
Parameters:
+
+
gf_to_symmgf_struct_solver like

Input and output GF (i.e., it gets overwritten) +or dict of np.ndarrays.

+
+
ishint

Index of an inequivalent shell. (default value 0)

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.gw_flow.html b/_ref/gw_embedding.gw_flow.html new file mode 100644 index 00000000..d7097e1b --- /dev/null +++ b/_ref/gw_embedding.gw_flow.html @@ -0,0 +1,427 @@ + + + + + + + gw_embedding.gw_flow — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.gw_flow

+

Module for gw flow

+
+
+class gw_embedding.gw_flow.dummy_sumk(n_inequiv_shells, n_orb_list, enforce_off_diag, use_rot, magnetic)[source]
+

create dummy sumk helper object

+

Methods

+ + + + + + +

symm_deg_gf(gf_to_symm[, ish])

Averages a GF or a dict of np.ndarrays over degenerate shells.

+
+
+symm_deg_gf(gf_to_symm, ish=0)[source]
+

Averages a GF or a dict of np.ndarrays over degenerate shells.

+

Degenerate shells of an inequivalent correlated shell are defined by +self.deg_shells. This function enforces corresponding degeneracies +in the input GF.

+
+
Parameters:
+
+
gf_to_symmgf_struct_solver like

Input and output GF (i.e., it gets overwritten) +or dict of np.ndarrays.

+
+
ishint

Index of an inequivalent shell. (default value 0)

+
+
+
+
+
+ +
+ +
+
+gw_embedding.gw_flow.embedding_driver(general_params, solver_params, gw_params, advanced_params)[source]
+

Function to run the gw embedding cycle.

+
+
Parameters:
+
+
general_paramsdict

general parameters as a dict

+
+
solver_paramsdict

solver parameters as a dict

+
+
gw_paramsdict

dft parameters as a dict

+
+
advanced_paramsdict

advanced parameters as a dict

+
+
+
+
+
+ +

Classes

+ + + + + + +

dummy_sumk(n_inequiv_shells, n_orb_list, ...)

create dummy sumk helper object

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.html b/_ref/gw_embedding.html new file mode 100644 index 00000000..6165224d --- /dev/null +++ b/_ref/gw_embedding.html @@ -0,0 +1,381 @@ + + + + + + + gw_embedding — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding

+

GW embedding tools

+

Modules

+ + + + + + + + + + + + + + + +

gw_embedding.bdft_converter

converter from bdft output to edmft input for solid_dmft

gw_embedding.gw_flow

Module for gw flow

gw_embedding.iaft

gw_embedding.qp_evs_to_eig

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.__init__.html b/_ref/gw_embedding.iaft.IAFT.__init__.html new file mode 100644 index 00000000..9dada90d --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.__init__.html @@ -0,0 +1,383 @@ + + + + + + + gw_embedding.iaft.IAFT.__init__ — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.__init__

+
+
+IAFT.__init__(beta: float, lmbda: float, prec: float = 1e-15)[source]
+
+
Parameters:
+
    +
  • beta – float +Inverse temperature (a.u.)

  • +
  • lmbda – float +Lambda parameter for constructing IR basis.

  • +
  • prec – float +Precision for IR basis

  • +
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.check_leakage.html b/_ref/gw_embedding.iaft.IAFT.check_leakage.html new file mode 100644 index 00000000..3965ca6d --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.check_leakage.html @@ -0,0 +1,371 @@ + + + + + + + gw_embedding.iaft.IAFT.check_leakage — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.check_leakage

+
+
+IAFT.check_leakage(Ot, stats: str, name: str = '', w_input: bool = False)[source]
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.html b/_ref/gw_embedding.iaft.IAFT.html new file mode 100644 index 00000000..948adf1e --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.html @@ -0,0 +1,595 @@ + + + + + + + gw_embedding.iaft.IAFT — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT

+
+
+class gw_embedding.iaft.IAFT(beta: float, lmbda: float, prec: float = 1e-15)[source]
+

Bases: object

+

Driver for FT on the imaginary axis. +Given inverse temperature, lambda and precision, the IAFT class evaluate the corresponding +IR basis and sparse sampling points on-the-fly.

+
+
Dependency:

sparse-ir with xprec supports (https://sparse-ir.readthedocs.io/en/latest/) +To install sparse-ir with xprec supports: “pip install sparse-ir[xprex]”.

+
+
+

Attributes: +beta: float

+
+

Inverse temperature (a.u.)

+
+
+
lmbda: float

Dimensionless lambda parameter for constructing the IR basis

+
+
prec: float

Precision for IR basis

+
+
bases: sparse-ir.FiniteTempBasisSet

IR basis instance

+
+
tau_mesh_f: numpy.ndarray(dim=1)

Fermionic tau sampling points

+
+
tau_mesh_b: numpy.ndarray(dim=1)

Bosonic tau sampling points

+
+
wn_mesh_f: numpy.ndarray(dim=1)

Fermionic Matsubara “indices” sampling points. NOT PHYSICAL FREQUENCIES. +Physical Matsubara frequencies are wn_mesh_f * numpy.pi / beta

+
+
wn_mesh_b: numpy.ndarray(dim=1)

Bosonic Matsubara “indices” sampling points. NOT PHYSICAL FREQUENCIES. +Physical Matsubara frequencies are wn_mesh_f * numpy.pi / beta

+
+
nt_f: int

Number of fermionic tau sampling points

+
+
nt_b: int

Number of bosonic tau sampling points

+
+
nw_f: int

Number of fermionic frequency sampling points

+
+
nw_b: int

Number of bosonic frequency sampling points

+
+
+

Methods

+ + + + + + + + + + + + + + + + + + +

tau_interpolate(Ot, tau_mesh_interp, stats)

Interpolate a dynamic object to arbitrary points on the imaginary-time axis.

tau_to_w(Ot, stats)

Fourier transform from imaginary-time axis to Matsubara-frequency axis :param Ot: numpy.ndarray imaginary-time object with dimensions (nts, ...) :param stats: str statistics: 'f' for fermions and 'b' for bosons

w_interpolate(Ow, wn_mesh_interp, stats[, ...])

Interpolate a dynamic object to arbitrary points on the Matsubara axis.

w_to_tau(Ow, stats)

Fourier transform from Matsubara-frequency axis to imaginary-time axis.

wn_mesh(stats[, ir_notation])

Return Matsubara frequency indices. :param stats: str statistics: 'f' for fermions and 'b' for bosons :param ir_notation: bool Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

+ + + + + + +

check_leakage

+
+
+__init__(beta: float, lmbda: float, prec: float = 1e-15)[source]
+
+
Parameters:
+
    +
  • beta – float +Inverse temperature (a.u.)

  • +
  • lmbda – float +Lambda parameter for constructing IR basis.

  • +
  • prec – float +Precision for IR basis

  • +
+
+
+
+ +
+
+tau_interpolate(Ot, tau_mesh_interp, stats: str)[source]
+
+

Interpolate a dynamic object to arbitrary points on the imaginary-time axis.

+
+
+
Parameters:
+
    +
  • Ot – numpy.ndarray +Dynamic object on the imaginary-time sampling points, self.tau_mesh.

  • +
  • tau_mesh_interp – numpy.ndarray(dim=1, dtype=float) +Target tau points.

  • +
  • stats – str +Statistics, ‘f’ for fermions and ‘b’ for bosons

  • +
+
+
Returns:
+

numpy.ndarray +Imaginary-time object with dimensions (nt_interp, …)

+
+
+
+ +
+
+tau_to_w(Ot, stats: str)[source]
+

Fourier transform from imaginary-time axis to Matsubara-frequency axis +:param Ot: numpy.ndarray

+
+

imaginary-time object with dimensions (nts, …)

+
+
+
Parameters:
+

stats – str +statistics: ‘f’ for fermions and ‘b’ for bosons

+
+
Returns:
+

numpy.ndarray +Matsubara-frequency object with dimensions (nw, …)

+
+
+
+ +
+
+w_interpolate(Ow, wn_mesh_interp, stats: str, ir_notation: bool = True)[source]
+

Interpolate a dynamic object to arbitrary points on the Matsubara axis.

+
+
Parameters:
+
    +
  • Ow – numpy.ndarray +Dynamic object on the Matsubara sampling points, self.wn_mesh.

  • +
  • wn_mesh_interp – numpy.ndarray(dim=1, dtype=int) +Target frequencies “INDICES”. +The physical Matsubara frequencies are wn_mesh_interp * pi/beta.

  • +
  • stats – str +Statistics, ‘f’ for fermions and ‘b’ for bosons.

  • +
  • ir_notation – bool +Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. +Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

  • +
+
+
Returns:
+

numpy.ndarray +Matsubara-frequency object with dimensions (nw_interp, …)

+
+
+
+ +
+
+w_to_tau(Ow, stats)[source]
+

Fourier transform from Matsubara-frequency axis to imaginary-time axis.

+
+
Parameters:
+
    +
  • Ow – numpy.ndarray +Matsubara-frequency object with dimensions (nw, …)

  • +
  • stats – str +statistics, ‘f’ for fermions and ‘b’ for bosons

  • +
+
+
Returns:
+

numpy.ndarray +Imaginary-time object with dimensions (nt, …)

+
+
+
+ +
+
+wn_mesh(stats: str, ir_notation: bool = True)[source]
+

Return Matsubara frequency indices. +:param stats: str

+
+

statistics: ‘f’ for fermions and ‘b’ for bosons

+
+
+
Parameters:
+

ir_notation – bool +Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. +Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

+
+
Returns:
+

numpy.ndarray(dim=1) +Matsubara frequency indices

+
+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +

__init__(beta, lmbda[, prec])

+
param beta:
+

float

+
+
+

check_leakage(Ot, stats[, name, w_input])

tau_interpolate(Ot, tau_mesh_interp, stats)

Interpolate a dynamic object to arbitrary points on the imaginary-time axis.

tau_to_w(Ot, stats)

Fourier transform from imaginary-time axis to Matsubara-frequency axis :param Ot: numpy.ndarray imaginary-time object with dimensions (nts, ...) :param stats: str statistics: 'f' for fermions and 'b' for bosons

w_interpolate(Ow, wn_mesh_interp, stats[, ...])

Interpolate a dynamic object to arbitrary points on the Matsubara axis.

w_to_tau(Ow, stats)

Fourier transform from Matsubara-frequency axis to imaginary-time axis.

wn_mesh(stats[, ir_notation])

Return Matsubara frequency indices. :param stats: str statistics: 'f' for fermions and 'b' for bosons :param ir_notation: bool Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.tau_interpolate.html b/_ref/gw_embedding.iaft.IAFT.tau_interpolate.html new file mode 100644 index 00000000..6e72702f --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.tau_interpolate.html @@ -0,0 +1,389 @@ + + + + + + + gw_embedding.iaft.IAFT.tau_interpolate — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.tau_interpolate

+
+
+IAFT.tau_interpolate(Ot, tau_mesh_interp, stats: str)[source]
+
+

Interpolate a dynamic object to arbitrary points on the imaginary-time axis.

+
+
+
Parameters:
+
    +
  • Ot – numpy.ndarray +Dynamic object on the imaginary-time sampling points, self.tau_mesh.

  • +
  • tau_mesh_interp – numpy.ndarray(dim=1, dtype=float) +Target tau points.

  • +
  • stats – str +Statistics, ‘f’ for fermions and ‘b’ for bosons

  • +
+
+
Returns:
+

numpy.ndarray +Imaginary-time object with dimensions (nt_interp, …)

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.tau_to_w.html b/_ref/gw_embedding.iaft.IAFT.tau_to_w.html new file mode 100644 index 00000000..a534e72e --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.tau_to_w.html @@ -0,0 +1,385 @@ + + + + + + + gw_embedding.iaft.IAFT.tau_to_w — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.tau_to_w

+
+
+IAFT.tau_to_w(Ot, stats: str)[source]
+

Fourier transform from imaginary-time axis to Matsubara-frequency axis +:param Ot: numpy.ndarray

+
+

imaginary-time object with dimensions (nts, …)

+
+
+
Parameters:
+

stats – str +statistics: ‘f’ for fermions and ‘b’ for bosons

+
+
Returns:
+

numpy.ndarray +Matsubara-frequency object with dimensions (nw, …)

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.w_interpolate.html b/_ref/gw_embedding.iaft.IAFT.w_interpolate.html new file mode 100644 index 00000000..95a90a9a --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.w_interpolate.html @@ -0,0 +1,391 @@ + + + + + + + gw_embedding.iaft.IAFT.w_interpolate — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.w_interpolate

+
+
+IAFT.w_interpolate(Ow, wn_mesh_interp, stats: str, ir_notation: bool = True)[source]
+

Interpolate a dynamic object to arbitrary points on the Matsubara axis.

+
+
Parameters:
+
    +
  • Ow – numpy.ndarray +Dynamic object on the Matsubara sampling points, self.wn_mesh.

  • +
  • wn_mesh_interp – numpy.ndarray(dim=1, dtype=int) +Target frequencies “INDICES”. +The physical Matsubara frequencies are wn_mesh_interp * pi/beta.

  • +
  • stats – str +Statistics, ‘f’ for fermions and ‘b’ for bosons.

  • +
  • ir_notation – bool +Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. +Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

  • +
+
+
Returns:
+

numpy.ndarray +Matsubara-frequency object with dimensions (nw_interp, …)

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.w_to_tau.html b/_ref/gw_embedding.iaft.IAFT.w_to_tau.html new file mode 100644 index 00000000..2132ac0b --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.w_to_tau.html @@ -0,0 +1,385 @@ + + + + + + + gw_embedding.iaft.IAFT.w_to_tau — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.w_to_tau

+
+
+IAFT.w_to_tau(Ow, stats)[source]
+

Fourier transform from Matsubara-frequency axis to imaginary-time axis.

+
+
Parameters:
+
    +
  • Ow – numpy.ndarray +Matsubara-frequency object with dimensions (nw, …)

  • +
  • stats – str +statistics, ‘f’ for fermions and ‘b’ for bosons

  • +
+
+
Returns:
+

numpy.ndarray +Imaginary-time object with dimensions (nt, …)

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.IAFT.wn_mesh.html b/_ref/gw_embedding.iaft.IAFT.wn_mesh.html new file mode 100644 index 00000000..24c7f385 --- /dev/null +++ b/_ref/gw_embedding.iaft.IAFT.wn_mesh.html @@ -0,0 +1,386 @@ + + + + + + + gw_embedding.iaft.IAFT.wn_mesh — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft.IAFT.wn_mesh

+
+
+IAFT.wn_mesh(stats: str, ir_notation: bool = True)[source]
+

Return Matsubara frequency indices. +:param stats: str

+
+

statistics: ‘f’ for fermions and ‘b’ for bosons

+
+
+
Parameters:
+

ir_notation – bool +Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. +Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

+
+
Returns:
+

numpy.ndarray(dim=1) +Matsubara frequency indices

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.iaft.html b/_ref/gw_embedding.iaft.html new file mode 100644 index 00000000..49831625 --- /dev/null +++ b/_ref/gw_embedding.iaft.html @@ -0,0 +1,554 @@ + + + + + + + gw_embedding.iaft — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.iaft

+
+
+class gw_embedding.iaft.IAFT(beta: float, lmbda: float, prec: float = 1e-15)[source]
+

Driver for FT on the imaginary axis. +Given inverse temperature, lambda and precision, the IAFT class evaluate the corresponding +IR basis and sparse sampling points on-the-fly.

+
+
Dependency:

sparse-ir with xprec supports (https://sparse-ir.readthedocs.io/en/latest/) +To install sparse-ir with xprec supports: “pip install sparse-ir[xprex]”.

+
+
+

Attributes: +beta: float

+
+

Inverse temperature (a.u.)

+
+
+
lmbda: float

Dimensionless lambda parameter for constructing the IR basis

+
+
prec: float

Precision for IR basis

+
+
bases: sparse-ir.FiniteTempBasisSet

IR basis instance

+
+
tau_mesh_f: numpy.ndarray(dim=1)

Fermionic tau sampling points

+
+
tau_mesh_b: numpy.ndarray(dim=1)

Bosonic tau sampling points

+
+
wn_mesh_f: numpy.ndarray(dim=1)

Fermionic Matsubara “indices” sampling points. NOT PHYSICAL FREQUENCIES. +Physical Matsubara frequencies are wn_mesh_f * numpy.pi / beta

+
+
wn_mesh_b: numpy.ndarray(dim=1)

Bosonic Matsubara “indices” sampling points. NOT PHYSICAL FREQUENCIES. +Physical Matsubara frequencies are wn_mesh_f * numpy.pi / beta

+
+
nt_f: int

Number of fermionic tau sampling points

+
+
nt_b: int

Number of bosonic tau sampling points

+
+
nw_f: int

Number of fermionic frequency sampling points

+
+
nw_b: int

Number of bosonic frequency sampling points

+
+
+

Methods

+ + + + + + + + + + + + + + + + + + +

tau_interpolate(Ot, tau_mesh_interp, stats)

Interpolate a dynamic object to arbitrary points on the imaginary-time axis.

tau_to_w(Ot, stats)

Fourier transform from imaginary-time axis to Matsubara-frequency axis :param Ot: numpy.ndarray imaginary-time object with dimensions (nts, ...) :param stats: str statistics: 'f' for fermions and 'b' for bosons

w_interpolate(Ow, wn_mesh_interp, stats[, ...])

Interpolate a dynamic object to arbitrary points on the Matsubara axis.

w_to_tau(Ow, stats)

Fourier transform from Matsubara-frequency axis to imaginary-time axis.

wn_mesh(stats[, ir_notation])

Return Matsubara frequency indices. :param stats: str statistics: 'f' for fermions and 'b' for bosons :param ir_notation: bool Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

+ + + + + + +

check_leakage

+
+
+tau_interpolate(Ot, tau_mesh_interp, stats: str)[source]
+
+

Interpolate a dynamic object to arbitrary points on the imaginary-time axis.

+
+
+
Parameters:
+
    +
  • Ot – numpy.ndarray +Dynamic object on the imaginary-time sampling points, self.tau_mesh.

  • +
  • tau_mesh_interp – numpy.ndarray(dim=1, dtype=float) +Target tau points.

  • +
  • stats – str +Statistics, ‘f’ for fermions and ‘b’ for bosons

  • +
+
+
Returns:
+

numpy.ndarray +Imaginary-time object with dimensions (nt_interp, …)

+
+
+
+ +
+
+tau_to_w(Ot, stats: str)[source]
+

Fourier transform from imaginary-time axis to Matsubara-frequency axis +:param Ot: numpy.ndarray

+
+

imaginary-time object with dimensions (nts, …)

+
+
+
Parameters:
+

stats – str +statistics: ‘f’ for fermions and ‘b’ for bosons

+
+
Returns:
+

numpy.ndarray +Matsubara-frequency object with dimensions (nw, …)

+
+
+
+ +
+
+w_interpolate(Ow, wn_mesh_interp, stats: str, ir_notation: bool = True)[source]
+

Interpolate a dynamic object to arbitrary points on the Matsubara axis.

+
+
Parameters:
+
    +
  • Ow – numpy.ndarray +Dynamic object on the Matsubara sampling points, self.wn_mesh.

  • +
  • wn_mesh_interp – numpy.ndarray(dim=1, dtype=int) +Target frequencies “INDICES”. +The physical Matsubara frequencies are wn_mesh_interp * pi/beta.

  • +
  • stats – str +Statistics, ‘f’ for fermions and ‘b’ for bosons.

  • +
  • ir_notation – bool +Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. +Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

  • +
+
+
Returns:
+

numpy.ndarray +Matsubara-frequency object with dimensions (nw_interp, …)

+
+
+
+ +
+
+w_to_tau(Ow, stats)[source]
+

Fourier transform from Matsubara-frequency axis to imaginary-time axis.

+
+
Parameters:
+
    +
  • Ow – numpy.ndarray +Matsubara-frequency object with dimensions (nw, …)

  • +
  • stats – str +statistics, ‘f’ for fermions and ‘b’ for bosons

  • +
+
+
Returns:
+

numpy.ndarray +Imaginary-time object with dimensions (nt, …)

+
+
+
+ +
+
+wn_mesh(stats: str, ir_notation: bool = True)[source]
+

Return Matsubara frequency indices. +:param stats: str

+
+

statistics: ‘f’ for fermions and ‘b’ for bosons

+
+
+
Parameters:
+

ir_notation – bool +Whether wn_mesh_interp is in sparse_ir notation where iwn = n*pi/beta for both fermions and bosons. +Otherwise, iwn = (2n+1)*pi/beta for fermions and 2n*pi/beta for bosons.

+
+
Returns:
+

numpy.ndarray(dim=1) +Matsubara frequency indices

+
+
+
+ +
+ +

Classes

+ + + + + + +

IAFT(beta, lmbda[, prec])

Driver for FT on the imaginary axis.

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/gw_embedding.qp_evs_to_eig.html b/_ref/gw_embedding.qp_evs_to_eig.html new file mode 100644 index 00000000..994e61b6 --- /dev/null +++ b/_ref/gw_embedding.qp_evs_to_eig.html @@ -0,0 +1,370 @@ + + + + + + + gw_embedding.qp_evs_to_eig — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

gw_embedding.qp_evs_to_eig

+
+
+gw_embedding.qp_evs_to_eig.extract_qp_eig()[source]
+

This script read bdft output and dump g0w0 eigenvalues to si.eig for wannier90 interpolation

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/io_tools.dict_to_h5.html b/_ref/io_tools.dict_to_h5.html new file mode 100644 index 00000000..b9bbb8a6 --- /dev/null +++ b/_ref/io_tools.dict_to_h5.html @@ -0,0 +1,376 @@ + + + + + + + io_tools.dict_to_h5 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

io_tools.dict_to_h5

+
+
+io_tools.dict_to_h5.prep_params_for_h5(dict_to_write)[source]
+

Replace all NoneType with a string ‘none’ to be able to write to h5.

+
+ +
+
+io_tools.dict_to_h5.prep_params_from_h5(dict_to_read)[source]
+

Replace all ‘none’ strings with NoneType to parse the dict coming from h5.

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/io_tools.html b/_ref/io_tools.html new file mode 100644 index 00000000..712511a3 --- /dev/null +++ b/_ref/io_tools.html @@ -0,0 +1,378 @@ + + + + + + + io_tools — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

io_tools

+

IO tools

+

Modules

+ + + + + + + + + + + + +

io_tools.dict_to_h5

io_tools.postproc_toml_dict

io_tools.verify_input_params

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/io_tools.postproc_toml_dict.html b/_ref/io_tools.postproc_toml_dict.html new file mode 100644 index 00000000..61ff1571 --- /dev/null +++ b/_ref/io_tools.postproc_toml_dict.html @@ -0,0 +1,401 @@ + + + + + + + io_tools.postproc_toml_dict — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

io_tools.postproc_toml_dict

+
+
+io_tools.postproc_toml_dict.merge_config_with_default(cfg_inp, cfg_def, match_key={})[source]
+

Merge a TOML config dict with a default TOML dict. +The default dict dictates the structure of the input:

+
    +
  • Only sections and keys in the default are allowed in the input

  • +
  • All sections listed in match_key must be lists of dicts in the default +and can be lists of dicts or dicts in the config

  • +
+

The dicts allows for the following extensions:

+
    +
  • Mandatory inputs for all calculations indicated by “<no default>”

  • +
  • None indicated by “<none>”. Also works inside lists

  • +
  • References within the dictionary indicated by “<section.key>”

  • +
+
+
Parameters:
+
+
cfg_inpdict

The input config dict

+
+
cfg_defdict

The default config dict

+
+
match_keydict, optional

A dictionary that contains section/key pairs to map entries in listed sections +between the input and default config.

+
+
+
+
Returns:
+
+
dict

The merged config dict

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/io_tools.verify_input_params.html b/_ref/io_tools.verify_input_params.html new file mode 100644 index 00000000..dfd4b549 --- /dev/null +++ b/_ref/io_tools.verify_input_params.html @@ -0,0 +1,376 @@ + + + + + + + io_tools.verify_input_params — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

io_tools.verify_input_params

+
+
+io_tools.verify_input_params.verify_before_dmft_cycle(params)[source]
+

All checks of params that can be done before dmft_cycle is called.

+
+ +
+
+io_tools.verify_input_params.verify_h5_dependent(sum_k, solver_type_per_imp, general_params)[source]
+

All checks of params that depend on the h5 file content that is stored in the SumkDFT object.

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.eval_U_cRPA_RESPACK.html b/_ref/postprocessing.eval_U_cRPA_RESPACK.html new file mode 100644 index 00000000..37ee18c9 --- /dev/null +++ b/_ref/postprocessing.eval_U_cRPA_RESPACK.html @@ -0,0 +1,397 @@ + + + + + + + postprocessing.eval_U_cRPA_RESPACK — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.eval_U_cRPA_RESPACK

+
+
+postprocessing.eval_U_cRPA_RESPACK.construct_Uijkl(Uijij, Uiijj)[source]
+

construct full 4 index Uijkl tensor from respack data +assuming Uijji = Uiijj

+
+ +
+
+postprocessing.eval_U_cRPA_RESPACK.fit_slater(u_ijij_crpa, u_ijji_crpa, U_init, J_init, fixed_F4_F2=True)[source]
+

finds best Slater parameters U, J for given Uijij and Uijji matrices +using the triqs U_matrix operator routine assumes F4/F2=0.625

+
+ +
+
+postprocessing.eval_U_cRPA_RESPACK.read_interaction(seed, path='./')[source]
+
+ +
+
+class postprocessing.eval_U_cRPA_RESPACK.respack_data(path, seed)[source]
+

respack data class

+
+ +

Classes

+ + + + + + +

respack_data(path, seed)

respack data class

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.html b/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.html new file mode 100644 index 00000000..f544954d --- /dev/null +++ b/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.html @@ -0,0 +1,371 @@ + + + + + + + postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__ — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__

+
+
+respack_data.__init__(path, seed)[source]
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.html b/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.html new file mode 100644 index 00000000..2de77b21 --- /dev/null +++ b/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.html @@ -0,0 +1,384 @@ + + + + + + + postprocessing.eval_U_cRPA_RESPACK.respack_data — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.eval_U_cRPA_RESPACK.respack_data

+
+
+class postprocessing.eval_U_cRPA_RESPACK.respack_data(path, seed)[source]
+

Bases: object

+

respack data class

+
+
+__init__(path, seed)[source]
+
+ +
+ + + + + + + +

__init__(path, seed)

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.eval_U_cRPA_Vasp.html b/_ref/postprocessing.eval_U_cRPA_Vasp.html new file mode 100644 index 00000000..5c831b0d --- /dev/null +++ b/_ref/postprocessing.eval_U_cRPA_Vasp.html @@ -0,0 +1,584 @@ + + + + + + + postprocessing.eval_U_cRPA_Vasp — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.eval_U_cRPA_Vasp

+
+
+postprocessing.eval_U_cRPA_Vasp.calc_kan_params(uijkl, n_sites, n_orb, out=False)[source]
+

calculates the kanamori interaction parameters from a +given Uijkl matrix. Follows the procedure given in +PHYSICAL REVIEW B 86, 165105 (2012) Vaugier,Biermann +formula 30,31,32

+
+
Parameters:
+
+
uijklnumpy array

4d numpy array of Coulomb tensor

+
+
n_sites: int

number of different atoms (Wannier centers)

+
+
n_orbint

number of orbitals per atom

+
+
outbool

verbose mode

+
+
+
+
Returns:
+
+
int_paramsdirect

kanamori parameters

+
+
+
+
+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.calc_u_avg_fulld(uijkl, n_sites, n_orb, out=False)[source]
+

calculates the coulomb integrals from a +given Uijkl matrix for full d shells. Follows the procedure given +in Pavarini - 2014 - arXiv - 1411 6906 - julich school U matrix +page 8 or as done in +PHYSICAL REVIEW B 86, 165105 (2012) Vaugier,Biermann +formula 23, 25 +works atm only for full d shell (l=2)

+

Returns F0=U, and J=(F2+F4)/14

+
+
Parameters:
+
+
uijklnumpy array

4d numpy array of Coulomb tensor

+
+
n_sites: int

number of different atoms (Wannier centers)

+
+
n_orbint

number of orbitals per atom

+
+
outbool

verbose mode

+
+
+
+
Returns:
+
+
int_paramsdirect

Slater parameters

+
+
+
+
+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.calculate_interaction_from_averaging(uijkl, n_sites, n_orb, out=False)[source]
+

calculates U,J by averaging directly the Uijkl matrix +ignoring if tensor is given in spherical or cubic basis. +The assumption here is that the averaging gives indepentendly +of the choosen basis (cubic or spherical harmonics) the same results +if Uijkl is a true Slater matrix.

+

Returns F0=U, and J=(F2+F4)/14

+
+
Parameters:
+
+
uijklnumpy array

4d numpy array of Coulomb tensor

+
+
n_sites: int

number of different atoms (Wannier centers)

+
+
n_orbint

number of orbitals per atom

+
+
outbool

verbose mode

+
+
+
+
Returns:
+
+
U, J: tuple

Slater parameters

+
+
+
+
+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.construct_U_kan(n_orb, U, J, Up=None, Jc=None)[source]
+

construct Kanamori Uijkl tensor for given U, J, Up, and Jc

+
+
Parameters:
+
+
n_orbint

number of orbitals

+
+
Ufloat

U value for elements Uiiii

+
+
Jfloat

Hunds coupling J for tensor elements Uijji

+
+
Upfloat, optional, default=U-2J

inter orbital exchange term Uijij

+
+
Jcfloat, optional, default=J

Uiijj term, is the same as J for real valued wave functions

+
+
+
+
Returns:
+
+
uijklnumpy array

uijkl Coulomb tensor

+
+
+
+
+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.fit_kanamori(uijkl, n_orb, switch_jk=False, fit_2=True, fit_3=False, fit_4=True)[source]
+

Fit Kanamori Hamiltonian with scipy to 2,3, and / or 4 parameters

+
+
Parameters:
+
+
uijkl: np.array (n_orb x n_orb x n_orb x n_orb)

input four index tensor

+
+
n_orb: int

number of orbitals

+
+
switch_jk: bool, default=False

flip two inner indices in input U tensor (for Vasp)

+
+
fit_2: bool, default=True

fit two parameter form

+
+
fit_3: bool, default=False

fit three parameter form (U,Up,J=Jc)

+
+
fit_4: bool, default=True

fit four parameter form

+
+
+
+
Returns:
+
+
Uijkl_fit: np.array (n_orb x n_orb x n_orb x n_orb)

fitted Uijkl tensor

+
+
+
+
+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.fit_slater_fulld(uijkl, n_sites, U_init, J_init, fixed_F4_F2=True)[source]
+

finds best Slater parameters U, J for given Uijkl tensor +using the triqs U_matrix operator routine +assumes F4/F2=0.625

+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.read_uijkl(path_to_uijkl, n_sites, n_orb)[source]
+

reads the VASP UIJKL files or the vijkl file if wanted

+
+
Parameters:
+
+
path_to_uijklstring

path to Uijkl like file

+
+
n_sites: int

number of different atoms (Wannier centers)

+
+
n_orbint

number of orbitals per atom

+
+
+
+
Returns:
+
+
uijklnumpy array

uijkl Coulomb tensor

+
+
+
+
+
+ +
+
+postprocessing.eval_U_cRPA_Vasp.red_to_2ind(uijkl, n_sites, n_orb, out=False)[source]
+

reduces the 4index coulomb matrix to a 2index matrix and +follows the procedure given in PRB96 seth,peil,georges: +U_antipar = U_mm’^oo’ = U_mm’mm’ (Coulomb Int) +U_par = U_mm’^oo = U_mm’mm’ - U_mm’m’m (for intersite interaction) +U_ijij (Hunds coupling) +the indices in VASP are switched: U_ijkl —VASP–> U_ikjl

+
+
Parameters:
+
+
uijklnumpy array

4d numpy array of Coulomb tensor

+
+
n_sites: int

number of different atoms (Wannier centers)

+
+
n_orbint

number of orbitals per atom

+
+
outbool

verbose mode

+
+
+
+
Returns:
+
+
Uij_antinumpy array

red 2 index matrix U_mm’mm’

+
+
Uiijjnumpy array

red 2 index matrix U_iijj

+
+
Uijjinumpy array

red 2 index matrix Uijji

+
+
Uij_parnumpy array

red 2 index matrix U_mm’mm’ - U_mm’m’m

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.html b/_ref/postprocessing.html new file mode 100644 index 00000000..f8a749aa --- /dev/null +++ b/_ref/postprocessing.html @@ -0,0 +1,390 @@ + + + + + + + postprocessing — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing

+

Postprocessing tools

+

Modules

+ + + + + + + + + + + + + + + + + + + + + + + + +

postprocessing.eval_U_cRPA_RESPACK

postprocessing.eval_U_cRPA_Vasp

postprocessing.maxent_gf_imp

Analytic continuation of the impurity Green's function to the impurity spectral function using maxent.

postprocessing.maxent_gf_latt

Analytic continuation of the lattice Green's function to the lattice spectral function using maxent.

postprocessing.maxent_sigma

Analytic continuation of the self-energy using maxent on an auxiliary Green's function.

postprocessing.pade_sigma

postprocessing.plot_correlated_bands

Reads DMFT_ouput observables such as real-frequency Sigma and a Wannier90 TB Hamiltonian to compute spectral properties.

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.maxent_gf_imp.html b/_ref/postprocessing.maxent_gf_imp.html new file mode 100644 index 00000000..ed1d2294 --- /dev/null +++ b/_ref/postprocessing.maxent_gf_imp.html @@ -0,0 +1,409 @@ + + + + + + + postprocessing.maxent_gf_imp — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.maxent_gf_imp

+

Analytic continuation of the impurity Green’s function to the impurity spectral +function using maxent.

+

Reads G_imp(i omega) from the h5 archive and writes A_imp(omega) back. See +the docstring of main() for more information.

+

Not mpi parallelized.

+

Author: Maximilian Merkel, Materials Theory Group, ETH Zurich, 2020 - 2022

+
+
+postprocessing.maxent_gf_imp.main(external_path, iteration=None, sum_spins=False, maxent_error=0.02, n_points_maxent=200, n_points_alpha=50, omega_min=-20, omega_max=20)[source]
+

Main function that reads the impurity Greens (GF) function from h5, +analytically continues it, writes the result back to the h5 archive and +also returns the results.

+
+
Parameters:
+
+
external_pathstring

Path to the h5 archive to read from and write to.

+
+
iterationint/string

Iteration to read from and write to. Defaults to last_iter.

+
+
sum_spinsbool

Whether to sum over the spins or continue the impurity GF +for the up and down spin separately, for example for magnetized results.

+
+
maxent_errorfloat

The error that is used for the analyzers.

+
+
n_points_maxentint

Number of omega points on the hyperbolic mesh used in the continuation.

+
+
n_points_alphaint

Number of points that the MaxEnt alpha parameter is varied on logarithmically.

+
+
omega_minfloat

Lower end of range where the GF is being continued. Range has to comprise +all features of the impurity GF for correct normalization.

+
+
omega_maxfloat

Upper end of range where the GF is being continued. See omega_min.

+
+
+
+
Returns:
+
+
maxent_resultslist

The omega mesh and impurity spectral function from two different analyzers +in a dict for each impurity

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.maxent_gf_latt.html b/_ref/postprocessing.maxent_gf_latt.html new file mode 100644 index 00000000..5c428cb2 --- /dev/null +++ b/_ref/postprocessing.maxent_gf_latt.html @@ -0,0 +1,413 @@ + + + + + + + postprocessing.maxent_gf_latt — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.maxent_gf_latt

+

Analytic continuation of the lattice Green’s function to the lattice spectral +function using maxent.

+

Reads G_latt(i omega) from the h5 archive and writes A_latt(omega) back. See +the docstring of main() for more information.

+

mpi parallelized for the generation of the imaginary-frequency lattice GF over +k points.

+

Author: Maximilian Merkel, Materials Theory Group, ETH Zurich, 2020 - 2022

+
+
+postprocessing.maxent_gf_latt.main(external_path, iteration=None, sum_spins=False, maxent_error=0.02, n_points_maxent=200, n_points_alpha=50, omega_min=None, omega_max=None)[source]
+

Main function that reads the lattice Green’s function (GF) from h5, +analytically continues it, writes the result back to the h5 archive and +also returns the results. +Only the trace can be used because the Kohn-Sham energies (“hopping”) are not +sorted by “orbital” but by energy, leading to crossovers.

+
+
Parameters:
+
+
external_path: string

Path to the h5 archive to read from and write to.

+
+
iteration: int/string

Iteration to read from and write to. Defaults to last_iter.

+
+
sum_spins: bool

Whether to sum over the spins or continue the lattice GF +for the up and down spin separately, for example for magnetized results.

+
+
maxent_errorfloat

The error that is used for the analyzers.

+
+
n_points_maxentint

Number of omega points on the hyperbolic mesh used in the continuation.

+
+
n_points_alphaint

Number of points that the MaxEnt alpha parameter is varied on logarithmically.

+
+
omega_minfloat

Lower end of range where the GF is being continued. Range has to comprise +all features of the lattice GF for correct normalization. +If omega_min and omega_max are None, they are chosen automatically based +on the diagonal entries in the hopping matrix but at least to -20…20 eV.

+
+
omega_maxfloat

Upper end of range where the GF is being continued. See omega_min.

+
+
+
+
Returns:
+
+
unpacked_resultsdict

The omega mesh and lattice spectral function from two different analyzers

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.maxent_sigma.html b/_ref/postprocessing.maxent_sigma.html new file mode 100644 index 00000000..128db7b9 --- /dev/null +++ b/_ref/postprocessing.maxent_sigma.html @@ -0,0 +1,441 @@ + + + + + + + postprocessing.maxent_sigma — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.maxent_sigma

+

Analytic continuation of the self-energy using maxent on an auxiliary Green’s +function.

+

Reads Sigma(i omega) from the h5 archive and writes Sigma(omega) back. See +the docstring of main() for more information.

+

mpi parallelized for the maxent routine over all blocks and for the continuator +extraction over omega points.

+

Author: Maximilian Merkel, Materials Theory Group, ETH Zurich, 2020 - 2022

+
+
Warnings:
    +
  • When using this on self-energies with SOC, please check that the formalism +is correct, in particular the Kramers-Kronig relation.

  • +
+
+
+
+
+postprocessing.maxent_sigma.main(external_path, iteration=None, continuator_type='inversion_sigmainf', maxent_error=0.02, omega_min=-12.0, omega_max=12.0, n_points_maxent=400, n_points_alpha=50, analyzer='LineFitAnalyzer', n_points_interp=2000, n_points_final=1000)[source]
+

Main function that reads the Matsubara self-energy from h5, analytically continues it, +writes the results back to the h5 archive and also returns the results.

+

Function parallelizes using MPI over impurities and blocks.

+
+
Parameters:
+
+
external_pathstring

Path to the h5 archive to read from and write to

+
+
iterationint/string

Iteration to read from and write to. Default to last_iter

+
+
continuator_typestring

Type of continuator to use, one of ‘inversion_sigmainf’, ‘inversion_dc’, ‘direct’

+
+
maxent_errorfloat

The error that is used for the analyzers.

+
+
omega_minfloat

Lower end of range where Sigma is being continued. Range has to comprise +all features of the self-energy because the real part of it comes from +the Kramers-Kronig relation applied to the auxiliary spectral function. +For example, if the real-frequency self-energy bends at omega_min or +omega_max, there are neglegcted features and the range should be extended.

+
+
omega_maxfloat

Upper end of range where Sigma is being continued. See omega_min.

+
+
n_points_maxentint

Number of omega points on the hyperbolic mesh used in analytically +continuing the auxiliary GF

+
+
n_points_alphaint

Number of points that the MaxEnt alpha parameter is varied on logarithmically

+
+
analyzerstring

Analyzer used int MaxEnt, one of ‘LineFitAnalyzer’, ‘Chi2CurvatureAnalyzer’, +‘ClassicAnalyzer’, ‘EntropyAnalyzer’, ‘BryanAnalyzer’

+
+
n_points_interpint

Number of points where auxiliary GF is interpolated to integrate over +it for the Kramers-Kronig relation

+
+
n_points_finalint

Number of omega points the complex auxiliary GF and therefore the +continued self-energy has on a linear grid between omega_min and omega_max

+
+
+
+
Returns:
+
+
sigma_wlist of triqs.gf.BlockGf

Sigma(omega) per inequivalent shell

+
+
g_aux_wlist of triqs.gf.BlockGf

G_aux(omega) per inequivalent shell

+
+
+
+
Raises:
+
+
NotImplementedError

– When a wrong continuator type or maxent analyzer is chosen +– For direct continuator: when the self energy contains blocks larger +than 1x1 (no off-diagonal continuation possible) +– For inversion_dc continuator: when the DC is not a diagonal matrix with +the same entry for all blocks of an impurity. Otherwise, issues like +the global frame violating the block structure would come up.

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.pade_sigma.html b/_ref/postprocessing.pade_sigma.html new file mode 100644 index 00000000..40bb4ca3 --- /dev/null +++ b/_ref/postprocessing.pade_sigma.html @@ -0,0 +1,398 @@ + + + + + + + postprocessing.pade_sigma — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.pade_sigma

+
+
+postprocessing.pade_sigma.main(external_path, n_w, w_min, w_max, n_iw, iteration=None, eta=0.0)[source]
+

Main function that reads the Matsubara self-energy from h5, analytically continues it, +writes the results back to the h5 archive and also returns the results.

+

Function parallelizes using MPI over impurities and blocks.

+
+
Parameters:
+
+
external_pathstring

Path to the h5 archive to read from and write to

+
+
n_wint

number of real frequencies of the final self-energies returned

+
+
w_minfloat

Lower end of range where Sigma is being continued.

+
+
w_maxfloat

Upper end of range where Sigma is being continued.

+
+
n_iwint

number of Matsubara frequencies to consider for the Pade approximant

+
+
iterationint/string

Iteration to read from and write to. Default to last_iter

+
+
etafloat

frequency offset within Pade

+
+
+
+
Returns:
+
+
sigma_wlist of triqs.gf.BlockGf

Sigma(omega) per inequivalent shell

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/postprocessing.plot_correlated_bands.html b/_ref/postprocessing.plot_correlated_bands.html new file mode 100644 index 00000000..09c198df --- /dev/null +++ b/_ref/postprocessing.plot_correlated_bands.html @@ -0,0 +1,458 @@ + + + + + + + postprocessing.plot_correlated_bands — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

postprocessing.plot_correlated_bands

+

Reads DMFT_ouput observables such as real-frequency Sigma and a Wannier90 +TB Hamiltonian to compute spectral properties. It runs in two modes, +either calculating the bandstructure or Fermi slice.

+

Written by Sophie Beck, 2021-2022

+

TODO: +- extend to multi impurity systems +- make proper use of rot_mat from DFT_Tools (atm it assumed that wannier_hr and Sigma are written in the same basis)

+
+
+postprocessing.plot_correlated_bands.get_dmft_bands(n_orb, mu_tb, w90_path=None, w90_seed=None, TB_obj=None, add_spin=False, add_lambda=None, add_local=None, with_sigma=None, fermi_slice=False, qp_bands=False, orbital_order_to=None, add_mu_tb=False, band_basis=False, proj_on_orb=None, trace=True, eta=0.0, mu_shift=0.0, proj_nuk=None, **specs)[source]
+

Extract tight-binding from given w90 seed_hr.dat and seed.wout files or alternatively given TB_obj, and then extract from +given solid_dmft calculation the self-energy and construct the spectral function A(k,w) on +given k-path.

+
+
Parameters:
+
+
n_orbint

Number of Wannier orbitals in seed_hr.dat

+
+
mu_tbfloat

Chemical potential of tight-binding calculation

+
+
w90_pathstring

Path to w90 files

+
+
w90_seedstring

Seed of wannier90 calculation, i.e. seed_hr.dat and seed.wout

+
+
TB_objTB object

Tight-binding object from TB_from_wannier90

+
+
add_spinbool, default=False

Extend w90 Hamiltonian by spin indices

+
+
add_lambdafloat, default=None

Add SOC term with strength add_lambda (works only for t2g shells)

+
+
add_localnumpy array, default=None

Add local term of dimension (n_orb x n_orb)

+
+
with_sigmastr, or BlockGf, default=None

Add self-energy to spectral function? Can be either directly take +a triqs BlockGf object or can be either ‘calc’ or ‘model’ +‘calc’ reads results from h5 archive (solid_dmft) +in case ‘calc’ or ‘model’ are specified a extra kwargs dict has +to be given sigma_dict containing information about the self-energy

+
+
add_mu_tbbool, default=False

Add the TB specified chemical potential to the lattice Green function +set to True if DMFT calculation was performed with DFT fermi subtracted.

+
+
proj_on_orbint or list of int, default=None

orbital projections to be made for the spectral function and TB bands +the integer refer to the orbitals read

+
+
tracebool, default=True

Return trace over orbitals for spectral function. For special +post-processing purposes this can be set to False giving the returned +alatt_k_w an extra dimension n_orb

+
+
etafloat, default=0.0

Broadening of spectral function, finitie shift on imaginary axis +if with_sigma=None it has to be provided !=0.0

+
+
mu_shiftfloat, default=0.0

Manual extra shift when calculating the spectral function

+
+
proj_nuknumpy array, default [None]

Extra projections to be applied to the final spectral function +per orbital and k-point. Has to match shape of final lattice Green +function. Will be applied together with proj_on_orb if specified.

+
+
+
+
Returns:
+
+
tb_datadict

tight binding dict containing the kpoint mesh, dispersion / emat, and eigenvectors

+
+
alatt_k_wnumpy array (float) of dim n_k x n_w ( x n_orb if trace=False)

lattice spectral function data on the kpoint mesh defined in tb_data and frequency +mesh defined in freq_dict

+
+
freq_dictdict

frequency mesh information on which alatt_k_w is evaluated

+
+
+
+
+
+ +
+
+postprocessing.plot_correlated_bands.get_tb_bands(e_mat, proj_on_orb=[None], **specs)[source]
+

calculate eigenvalues and eigenvectors for given list of e_mat on kmesh

+
+
Parameters:
+
+
e_matnumpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk)
+
+
+
Returns:
+
+
e_valnumpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk)

eigenvalues as matrix

+
+
e_vecnumpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk)

eigenvectors as matrix

+
+
+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/util.html b/_ref/util.html new file mode 100644 index 00000000..c6e86bae --- /dev/null +++ b/_ref/util.html @@ -0,0 +1,375 @@ + + + + + + + util — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

util

+

external helper functions, not used by any DMFT routine

+

Modules

+ + + + + + + + + +

util.symmetrize_gamma_file

util.write_kslice_to_h5

Reads the -kslice-bands.dat and the -kslice-coord.dat file (as Wannier90 writes them).

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/util.symmetrize_gamma_file.html b/_ref/util.symmetrize_gamma_file.html new file mode 100644 index 00000000..40c04e11 --- /dev/null +++ b/_ref/util.symmetrize_gamma_file.html @@ -0,0 +1,364 @@ + + + + + + + util.symmetrize_gamma_file — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

util.symmetrize_gamma_file

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_ref/util.write_kslice_to_h5.html b/_ref/util.write_kslice_to_h5.html new file mode 100644 index 00000000..e10a6f2f --- /dev/null +++ b/_ref/util.write_kslice_to_h5.html @@ -0,0 +1,379 @@ + + + + + + + util.write_kslice_to_h5 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

util.write_kslice_to_h5

+

Reads the -kslice-bands.dat and the -kslice-coord.dat file (as Wannier90 writes them). +The -kslice-bands.dat contains the band energies corresponding to the slices through +k-space given in _kslice-coords.dat. The latter has the list of k points in 2D direct +coordinates.

+

This only works for k independent projectors as from a TB model or from Wannier90.

+

Writes all the information back into the h5 archive in the group ‘dft_bands_input’, +which is needed for plotting DMFT bands with SumkDFTTools spaghettis.

+

Adapted from “write_bands_to_h5.py” by Sophie Beck, 2021

+
+
+util.write_kslice_to_h5.main(seedname, filename_archive=None)[source]
+

Executes the program on the band data from the files <seedname>_bands.dat and +<seedname>_bands.kpt. If no seedname_archive is specified, <seedname>.h5 is used.

+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/_sources/ChangeLog.md.txt b/_sources/ChangeLog.md.txt new file mode 100644 index 00000000..57c4fc7e --- /dev/null +++ b/_sources/ChangeLog.md.txt @@ -0,0 +1,353 @@ +(changelog)= + +# Changelog + +## Version 3.3.0 + +solid_dmft 3.3.0 is a major release, compatible with TRIQS 3.3, updated to the latest app4triqs skeleton, and bringing major changes to the code: + +* the input parser is switched to a general toml parser, i.e. strings have to be passed in quotes, boolean parameters given without capitalization, and lists passed with brackets. Check below separate section for detailed changes. +* the new input parser allows to define for each impurity problem a different solver if wanted, i.e. d-shell with cthyb and p-shell with Hartree-Fock. See new text NiO-cthyb +* docker images are automatically build on each push for all major releases to ghcr.io +* switch from old ctseg to new ctseg_j solver +* allow CRM Dyson solver for both cthyb and ctseg to obtain Sigma_imp + from G_tau: "crm_dyson_solver=true" and dlr_wmax and dlr_eps (see https://triqs.github.io/triqs/unstable/documentation/python_api/triqs.gf.dlr_crm_dyson_solver.html#module-triqs.gf.dlr_crm_dyson_solver for details) +* add new DC schemes 'crpa_static', 'crpa_static_qp', 'crpa_dynamic' +* use cRPA calculated Uijkl as interaction via 'crpa', + 'crpa_density_density', 'dyn_density_density', 'dyn_full' hint types +* read interaction tensor from AIMBES h5 +* new experimental gw_embedding module. See gw_embedding/gw_flow.py for details allowing to run solid_dmft on top of AIMBES +* allow to use Pade for AC in post-processing + +We thank all contributors: Sophie Beck, Thomas Hahn, Alexander Hampel, Henri Menke, Maximilian Merkel, and Nils Wentzell + +Find below an itemized list of changes in this release. + +### General +* merge dev GW embedding (includes other fixes as well) (#78) +* pass gw params to all methods +* multiple solvers and toml input parser (#74) +* added toml to docker images +* Restore Python 3.8 compatibility for dictionary merge (#63) +* Allow mathematical expression to be passed for random_seed (#61) +* allow PCB to read from TRIQS TB object +* respack fit slater for p shell +* add Pade Sigma analytic continuation and refine tests +* add simple_intra interaction, for intro orbital only interaction +* add dc_orb_shift param to allow orbital dependent shift in impurity levels +* allow 0.0 mixing to perform stat sampling +* switch all pytest to unit tests + +### new toml input parser +* The following input parameters can now be a list per impurity: + * `general_params`: U, J, U_prime, ratio_F4_F2, h_int_type, enforce_off_diag, dc_type + * `advanced_params`: dc_U, dc_J, dc_fixed_occ, map_solver_struct, pick_solver_struct, mapped_solver_struct_degeneracies +* Multiple solvers can be used, which only solve the impurity problems specified in `idx_impurities` + * general parameter `solver_type` moved to solver section and renamed to `type` + * general parameter `n_l` moved to solver section + * general parameter `measure_chi` moved to solver section + * general parameter `delta_interface` moved to solver section +* All possible input parameters are defined in the `python/solid_dmft/io_tools/default.toml` +* according to toml format the config file is now called .toml (instead of .ini), and boolean are not capitalized, strings are given with quotes and lists are given with brackets. +* Documentation of the input is now generated from `python/solid_dmft/io_tools/documentation.txt` +* For an example, refer to the new integration test (see below) +* Updated interface to python scripts wrapping solid_dmft: new routine `main.run_dmft` that expects the params as python dictionaries, which are then supplemented with the defaults etc equivalent to what happens when reading in a toml file + +* the existence of the parameter `general_params['beta']` now determines if a imaginary- or real-frequency grid is used within solid_dmft +* Bug fix: Slater interaction for p orbitals can now be constructed +* Renaming of solver parameters for the different solvers is now moved to `solver.py`. The idea is that every other part of solid_dmft should care as little as possible what solvers are used, with the details abstracted by the SolverStructure class + * In `solver.py`, all solver parameters that are passed to the triqs solver are transferred to a dict `triqs_solver_params`. When adding new triqs solver parameter to solid_dmft in the future, they also need to be added within solver.py. +* In the determination of the block structure, the largely unused parameter `general_params['block_suppress_orbital_symm']` removed. Its behavior can be replaced by using `advanced_params['mapped_solver_struct_degeneracies']` +* Integration tests: previously existing tests updated, new tests added. One with ftps solver (requires installation of ftps, otherwise just passes without doing anything) and one with a combination of CT-HYB and Hartree solver +* Unit tests: added test for toml-related functionality +* `read_config.py` removed and the functionality for dealing with the dicts from reading a toml file moved to `postproc_toml_dict.py` +* `io_tools/verify_input_params.py` contains all checks of the input params that the code performs before starting the DMFT calculations +* Updated the documentation of the input parameters + +### doc +* add comment that proj in postprocessing is only correct for diag A(k,w) +* update NNO magnetic tutorial +* fix Vasp CSC tutorial for PNO after CSC fixes + +### build +* add new tests for CRM Dyson solver (requires triqs 3.3) +* add new GW embedding tests that run optionally with -DTest_GW_embedding=ON +* modify basic SVO test to do crm test instead of gl +* add useful apt packages to openmpi image +* use ghcr.io images when testing PR +* ci: build and cache base image separately (#70) +* use new auto build ghcr.io docker images +* add GitHub Actions workflow for Docker images (#66) +* simplify dockerfile for github ci +* trigger pypi build on tags +* add pypi workflow +* update Vasp patches for ver 6.4 +* Cleaned up VASP diff files for CSC +* use cmake variable to determine max number of mpi ranks during testing + +### other fixes +* Added warning for matrix-valued selfenergy continuation +* draw colorbar only once in kslices +* PCB bug aprx Sigma as diagonal if interpolation is used +* broken FS: np.shape -> len +* fix small FTPS problems and introduce a different eta for FTPS +* maxent test precision fix and test dependency +* use of origin in Fermi surface +* fix calculation of Akw for off-diag Sigma + + +## Version 3.2.3 +solid_dmft version 3.2.3 and 3.2.2 are minor releases that fixes bugs in the post-processing routines and brings small new improvements: + +* allow 0.0 mixing to perform stat sampling +* allow mathematical expression to be passed for random_seed +* fix broken FS plot in PCB: np.shape -> len +* fix PCB bug aprx Sigma as diagonal if interpolation is used +* fix PCB to draw coloarbar only once in kslices + +We thank all contributors: Alexander Hampel, Henri Menke + +## Version 3.2.1 +solid_dmft version 3.2.1 is a minor release that automatizes the pypi packaging release + +## Version 3.2.0 + +solid_dmft version 3.2.0 is a release that +* adds Jenkins CI support via flatiron-jenkins +* includes several fixes to match the latest triqs 3.2.x release +* changes the Z estimate to a correct linear fit of the first two Matsubara frequencies +* fixes for QE and Vasp CSC +* add option to add a magnetic field in DMFT +* add solid_dmft JOSS paper reference (doi.org/10.21105/joss.04623) +* add simple Ntot interaction +* allow Uprime!=U-2J in Kanamori +* updates the tutorials +* introduces input output documentation +* add support for the TRIQS Hartree Solver +* add RESPACK support + +We thank all contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel, Harrison LaBollita, Nils Wentzell + +Find below an itemized list of changes in this release. + +General +------- +* fix SzSz measurement in triqs unstable +* Updated mpich VASP5 docker file to include HF solver +* add hartree solver +* feat: add regular kmesh option to pcb postproc +* Fix to charge-self-consistency with Vasp (#48) +* removed QE fix files which are now in official release +* Modified dockerfile to add pmi support for cray supercomputing environments +* add RESPACK postprocessing routines (#38) +* Added correction to energy calculation +* add triqs logos to skeleton and include ico in install directive of doc +* change name of dft_mu to mu_initial_guess +* support different DFT cubic basis conventions (#36) +* allow magnetic calculation for CSC (output den correction is always averaged) +* fix sym bug in hubbardI postprocessing +* always calculate dft_mu at start of calculation +* add h_field_it to remove magnetic field after x iterations +* Write solid_dmft hash to h5 +* fix delta interface of cthyb for multiple sites with different block structures +* correctly use tail fitted Sigma from cthyb not via double dyson equation +* add paper ref to toml +* minor addition of post-processing script: add_local Hamiltonian, separate from add_lambda. We might remove add_lambda +* update doc with JOSS references +* Bug fix for changes in sumk mesh definition in maxent_gf_latt +* adapt vasp patch files for ver6.3.2 +* function to det n_orb_solver, fix test +* apply block picker before block mapping +* fix header writing for obs file +* add pick solver struct option to select specific blocks for the impurity problem +* fix print for failing comparison test +* allow different interaction Hamiltonians per impurity +* enforce PEP standard in interaction Hamiltonian +* print optimal alpha in other maxent scripts +* final corrections for PCB functions +* add proj_on_orb functionality to Akw +* fix bug in max_G_diff function ignoring norm_temp +* change Sigma_imp_iw / _w to Sigma_imp (DFTTools unstable) +* fix load Sigma with new gf_struct in triqs 3.1.x +* adapt to sumk mesh changes in dfttools +* Made the way mesh is stored in maxent_gf_latt consistent with maxent_gf_imp + +fix +--- +* fix deg shells in magnetic calculations +* fix parameter n_orb in hint construction +* doc strings of cRPA avering for Slater +* critical bug in hubbardI interface +* PCB fermi surface plot +* updates from triqs unstable +* simple Z estimate as linear fit +* PCB: removing "linearize" function, changing the model +* delta_interface with SOC and store solver options +* convert warmup cycles to int automatically +* problem with ish vs icrsh in PCB Thanks @HenryScottx for reporting! +* h_int uses now n_orb instead of orb_names + +build +----- +* adapt jenkins CI files +* simplify docker image +* update openmpi docker file with clang-15 +* update CI dockerfile +* Updated docker file to ubuntu 22 + +feat +---- +* enable MPI for maxent_gf_imp post-processing routines +* add possibility to specify Uprime in Kanamori interaction +* add loc_n_min / max arg for cthyb +* add additional support for hartree when computing DC from the solver +* add Ntot interaction + +doc +--- +* Added observables documentation for DMFT output +* Updated tutorial svo one-shot + +test +---- +* fix tests after Hartree additions +* add Hartree Solver test +* Integration test for maxent gf imp and latt, bug fixes to both scripts (#30) +* add new test for pcb get_dmft_bands function + + +## Version 3.1.5 + +solid_dmft version 3.1.5 is a patch-release that improves / fixes the following issues: + +* fix to charge-self-consistency with Vasp and QE +* feat add loc_n_min / max arg for cthyb +* fix simple Z estimate as linear fit +* adapt docker images for ubuntu 22.04 + +Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel: + +## Version 3.1.4 + +solid_dmft version 3.1.4 is a patch-release that improves / fixes the following issues: + +* fix and improve rootfinder in PCB for quasiparticle dispersion +* fix pypi package version.py module + +Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel: + +## Version 3.1.3 + +solid_dmft version 3.1.3 is a patch-release that improves / fixes the following issues: + +* fix delta interface of cthyb for multiple sites with different block structures +* correctly use tail fitted Sigma from cthyb not via double dyson equation +* magnetic param not available in CSC crash PM calc +* improve PCB script from unstable branch +* convert warmup cycles to int automatically +* fix function calls in gap finder +* fix delta_interface with SOC and store solver options +* fix: update svo example for PCB test from unstable + +Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel + +## Version 3.1.2 + +solid_dmft version 3.1.1 is a patch-release that improves / fixes the following issues: + +* fix deg shells in magnetic calculations +* fix bug in max_G_diff function ignoring norm_temp +* fix load Sigma with new gf_struct in triqs 3.1.x +* Made the way mesh is stored in maxent_gf_latt consistent with maxent_gf_imp +* adapt vasp patch files for ver6.3.2 +* update README.md for Joss publication +* print optimal alpha in other maxent scripts +* update postprocessing routines for plotting spectral functions +* add new test for pcb get_dmft_bands function +* DOC: extend install instructions & improve readme for #21 #22 +* DOC: update support & contribute section, bump ver to 3.1.1 +* add proj_on_orb functionality to Akw +* Added observables documentation for DMFT output +* Added input documentation +* Added ETH logo to website, small fixes to documentation +* rename examples to debbuging_examples +* pip package build files + +Contributors: Sophie Beck, Alberto Carta, Alexander Hampel, Max Merkel + + +## Version 3.1.1 + +solid_dmft version 3.1.1 is a patch-release that improves / fixes the following issues: + +* delete obsolete make_spaghetti.py +* SOC self energies can be continued in maxent +* run hubbardI solver on all nodes due to slow bcast performance of atomdiag object +* fix DFT energy read when running CSC QE +* updated documentation, small fixes to tutorials +* exposed params of maxent_gf_imp +* fix the way dft_mu is loaded in PCB +* fix executable in SVO tutorial +* fix shift in sigma continuator to remove dft_mu +* fix chemical potential in plot Akw and minor fixes +* correct plotlabels in postprocessing +* tiny modification of printing H_loc in postprocessing + +Contributors: Sophie Beck, Alberto Carta, Max Merkel + +## Version 3.1.0 + +solid_dmft version 3.1.0 is a major release that provides tutorials in the documentation, changes to app4triqs skeleton, allows CSC calculations with QE, improves postprocessing routines, and add functionality for SOC calculations. + +* all new tutorials +* generalize measure_chi functionality +* CSC with Vasp 6.3.0 works, examples updated +* fix two bugs in w90 interface in vasp +* Renamed files +* fix Fermi level print in mlwf.F LPRJ_WRITE call +* Automatic patching of vasp 6.3.0 with Docker +* Updated tutorial +* Added check on all mpi ranks if dmft_config exists at beginning of run +* fix small bug in convergence.py thanks @merkelm +* Rework convergence metrics +* remove gf_struct_flatten from solver in accordance with latest dfttools version +* Renaming to solid_dmft +* Update of maxent_gf_latt.py: more parameters exposed and spin averaging is not default anymore +* fix bug in afm calculation when measuring density matrix +* Add w90_tolerance flag for CSC +* use sphinx autosummary for module reference +* small changes in IO, additional mpi barriers in csc flow for better stability +* With SOC now program prints real and imag part of matrices +* Fixed creation of Kanamori Hamiltonian with SOC +* Improvements in plot_correlated_bands.py and updated tutorial +* change output name of MaxEnt Sigma to Sigma_maxent +* change to develop version of w90 because of mpi bug in openmpi dockerfile +* bugfix in plot_correlated_bands and cleaning up +* update OpenMPI Dockerfile to latest Ubuntu +* Tutorial to explore correlated bands using the postprocessing script +* check in CSC with QE if optional files are presesnt, otherwise skip calculation +* Updated maxent_sigma: mpi parallelization, continuator types, bug fixes, parameters exposed +* update installation instructions +* add workflow and code structure images +* Updated maxent sigma script +* W90 runs in parallel +* Fixing a bug related to measure_pert_order and measure_chi_SzSz for afm_order +* add vasp crpa scripts and tutorials +* add delta interface for cthyb +* fix get_dmft_bands and pass eta to alatt_k_w correctly +* allows to recompute rotation matrix even if W90 is used +* bugfix in initial_self_energies.py in case dc = False +* flatten gf_struct for triqs solvers to remove depracted warning +* add example files for SVO and LNO +* bump triqs and package version to 3.1 + +Contributors: Sophie Beck, Alberto Carta, Max Merkel + +## Version 3.0.0 + +solid_dmft version 3.0.0 is a compatibility +release for TRIQS version 3.0.0 that +* introduces compatibility with Python 3 (Python 2 no longer supported) +* adds a cmake-based dependency management +* fixes several application issues + diff --git a/_sources/_ref/csc_flow.rst.txt b/_sources/_ref/csc_flow.rst.txt new file mode 100644 index 00000000..a77add57 --- /dev/null +++ b/_sources/_ref/csc_flow.rst.txt @@ -0,0 +1,21 @@ +csc\_flow +========= + +.. automodule:: csc_flow + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dft_managers.mpi_helpers.rst.txt b/_sources/_ref/dft_managers.mpi_helpers.rst.txt new file mode 100644 index 00000000..5295cf57 --- /dev/null +++ b/_sources/_ref/dft_managers.mpi_helpers.rst.txt @@ -0,0 +1,21 @@ +dft\_managers.mpi\_helpers +========================== + +.. automodule:: dft_managers.mpi_helpers + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dft_managers.qe_manager.rst.txt b/_sources/_ref/dft_managers.qe_manager.rst.txt new file mode 100644 index 00000000..9aaff904 --- /dev/null +++ b/_sources/_ref/dft_managers.qe_manager.rst.txt @@ -0,0 +1,21 @@ +dft\_managers.qe\_manager +========================= + +.. automodule:: dft_managers.qe_manager + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dft_managers.rst.txt b/_sources/_ref/dft_managers.rst.txt new file mode 100644 index 00000000..5b5c2b40 --- /dev/null +++ b/_sources/_ref/dft_managers.rst.txt @@ -0,0 +1,33 @@ +dft\_managers +============= + +.. automodule:: dft_managers + :members: + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: autosummary_module_template.rst + :recursive: + + + dft_managers.mpi_helpers + dft_managers.qe_manager + dft_managers.vasp_manager + + diff --git a/_sources/_ref/dft_managers.vasp_manager.rst.txt b/_sources/_ref/dft_managers.vasp_manager.rst.txt new file mode 100644 index 00000000..920c4ed0 --- /dev/null +++ b/_sources/_ref/dft_managers.vasp_manager.rst.txt @@ -0,0 +1,21 @@ +dft\_managers.vasp\_manager +=========================== + +.. automodule:: dft_managers.vasp_manager + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_cycle.rst.txt b/_sources/_ref/dmft_cycle.rst.txt new file mode 100644 index 00000000..975b3616 --- /dev/null +++ b/_sources/_ref/dmft_cycle.rst.txt @@ -0,0 +1,21 @@ +dmft\_cycle +=========== + +.. automodule:: dmft_cycle + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.afm_mapping.rst.txt b/_sources/_ref/dmft_tools.afm_mapping.rst.txt new file mode 100644 index 00000000..1b5c6f10 --- /dev/null +++ b/_sources/_ref/dmft_tools.afm_mapping.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.afm\_mapping +======================== + +.. automodule:: dmft_tools.afm_mapping + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.convergence.rst.txt b/_sources/_ref/dmft_tools.convergence.rst.txt new file mode 100644 index 00000000..dda5dd76 --- /dev/null +++ b/_sources/_ref/dmft_tools.convergence.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.convergence +======================= + +.. automodule:: dmft_tools.convergence + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.formatter.rst.txt b/_sources/_ref/dmft_tools.formatter.rst.txt new file mode 100644 index 00000000..4afba5a8 --- /dev/null +++ b/_sources/_ref/dmft_tools.formatter.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.formatter +===================== + +.. automodule:: dmft_tools.formatter + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.greens_functions_mixer.rst.txt b/_sources/_ref/dmft_tools.greens_functions_mixer.rst.txt new file mode 100644 index 00000000..dba5fe56 --- /dev/null +++ b/_sources/_ref/dmft_tools.greens_functions_mixer.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.greens\_functions\_mixer +==================================== + +.. automodule:: dmft_tools.greens_functions_mixer + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.initial_self_energies.rst.txt b/_sources/_ref/dmft_tools.initial_self_energies.rst.txt new file mode 100644 index 00000000..d404c380 --- /dev/null +++ b/_sources/_ref/dmft_tools.initial_self_energies.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.initial\_self\_energies +=================================== + +.. automodule:: dmft_tools.initial_self_energies + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.interaction_hamiltonian.rst.txt b/_sources/_ref/dmft_tools.interaction_hamiltonian.rst.txt new file mode 100644 index 00000000..0772c2d3 --- /dev/null +++ b/_sources/_ref/dmft_tools.interaction_hamiltonian.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.interaction\_hamiltonian +==================================== + +.. automodule:: dmft_tools.interaction_hamiltonian + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.legendre_filter.rst.txt b/_sources/_ref/dmft_tools.legendre_filter.rst.txt new file mode 100644 index 00000000..dfd4d27d --- /dev/null +++ b/_sources/_ref/dmft_tools.legendre_filter.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.legendre\_filter +============================ + +.. automodule:: dmft_tools.legendre_filter + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.manipulate_chemical_potential.rst.txt b/_sources/_ref/dmft_tools.manipulate_chemical_potential.rst.txt new file mode 100644 index 00000000..778f7976 --- /dev/null +++ b/_sources/_ref/dmft_tools.manipulate_chemical_potential.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.manipulate\_chemical\_potential +=========================================== + +.. automodule:: dmft_tools.manipulate_chemical_potential + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.matheval.MathExpr.__init__.rst.txt b/_sources/_ref/dmft_tools.matheval.MathExpr.__init__.rst.txt new file mode 100644 index 00000000..6558404f --- /dev/null +++ b/_sources/_ref/dmft_tools.matheval.MathExpr.__init__.rst.txt @@ -0,0 +1,6 @@ +dmft\_tools.matheval.MathExpr.\_\_init\_\_ +========================================== + +.. currentmodule:: dmft_tools.matheval + +.. automethod:: MathExpr.__init__ \ No newline at end of file diff --git a/_sources/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.rst.txt b/_sources/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.rst.txt new file mode 100644 index 00000000..3e297bb9 --- /dev/null +++ b/_sources/_ref/dmft_tools.matheval.MathExpr.allowed_nodes.rst.txt @@ -0,0 +1,6 @@ +dmft\_tools.matheval.MathExpr.allowed\_nodes +============================================ + +.. currentmodule:: dmft_tools.matheval + +.. autoattribute:: MathExpr.allowed_nodes \ No newline at end of file diff --git a/_sources/_ref/dmft_tools.matheval.MathExpr.functions.rst.txt b/_sources/_ref/dmft_tools.matheval.MathExpr.functions.rst.txt new file mode 100644 index 00000000..c6e7828f --- /dev/null +++ b/_sources/_ref/dmft_tools.matheval.MathExpr.functions.rst.txt @@ -0,0 +1,6 @@ +dmft\_tools.matheval.MathExpr.functions +======================================= + +.. currentmodule:: dmft_tools.matheval + +.. autoattribute:: MathExpr.functions \ No newline at end of file diff --git a/_sources/_ref/dmft_tools.matheval.MathExpr.rst.txt b/_sources/_ref/dmft_tools.matheval.MathExpr.rst.txt new file mode 100644 index 00000000..f5622e1f --- /dev/null +++ b/_sources/_ref/dmft_tools.matheval.MathExpr.rst.txt @@ -0,0 +1,31 @@ +dmft\_tools.matheval.MathExpr +============================= + +.. currentmodule:: dmft_tools.matheval + +.. autoclass:: MathExpr + :members: + :show-inheritance: + :inherited-members: + :special-members: __init__ + :noindex: + + + +.. autosummary:: + :toctree: + + ~MathExpr.__init__ + + + + + +.. rubric:: Attributes + +.. autosummary:: + :toctree: + + ~MathExpr.allowed_nodes + ~MathExpr.functions + diff --git a/_sources/_ref/dmft_tools.matheval.rst.txt b/_sources/_ref/dmft_tools.matheval.rst.txt new file mode 100644 index 00000000..f0d34aa8 --- /dev/null +++ b/_sources/_ref/dmft_tools.matheval.rst.txt @@ -0,0 +1,29 @@ +dmft\_tools.matheval +==================== + +.. automodule:: dmft_tools.matheval + :members: + + + + + + + +.. rubric:: Classes + +.. autosummary:: + :toctree: + :template: autosummary_class_template.rst + + MathExpr + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.observables.rst.txt b/_sources/_ref/dmft_tools.observables.rst.txt new file mode 100644 index 00000000..48a1c135 --- /dev/null +++ b/_sources/_ref/dmft_tools.observables.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.observables +======================= + +.. automodule:: dmft_tools.observables + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.results_to_archive.rst.txt b/_sources/_ref/dmft_tools.results_to_archive.rst.txt new file mode 100644 index 00000000..109c43cf --- /dev/null +++ b/_sources/_ref/dmft_tools.results_to_archive.rst.txt @@ -0,0 +1,21 @@ +dmft\_tools.results\_to\_archive +================================ + +.. automodule:: dmft_tools.results_to_archive + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/dmft_tools.rst.txt b/_sources/_ref/dmft_tools.rst.txt new file mode 100644 index 00000000..2e7598d7 --- /dev/null +++ b/_sources/_ref/dmft_tools.rst.txt @@ -0,0 +1,42 @@ +dmft\_tools +=========== + +.. automodule:: dmft_tools + :members: + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: autosummary_module_template.rst + :recursive: + + + dmft_tools.afm_mapping + dmft_tools.convergence + dmft_tools.formatter + dmft_tools.greens_functions_mixer + dmft_tools.initial_self_energies + dmft_tools.interaction_hamiltonian + dmft_tools.legendre_filter + dmft_tools.manipulate_chemical_potential + dmft_tools.matheval + dmft_tools.observables + dmft_tools.results_to_archive + dmft_tools.solver + + diff --git a/_sources/_ref/dmft_tools.solver.SolverStructure.__init__.rst.txt b/_sources/_ref/dmft_tools.solver.SolverStructure.__init__.rst.txt new file mode 100644 index 00000000..4e097961 --- /dev/null +++ b/_sources/_ref/dmft_tools.solver.SolverStructure.__init__.rst.txt @@ -0,0 +1,6 @@ +dmft\_tools.solver.SolverStructure.\_\_init\_\_ +=============================================== + +.. currentmodule:: dmft_tools.solver + +.. automethod:: SolverStructure.__init__ \ No newline at end of file diff --git a/_sources/_ref/dmft_tools.solver.SolverStructure.rst.txt b/_sources/_ref/dmft_tools.solver.SolverStructure.rst.txt new file mode 100644 index 00000000..1f641c58 --- /dev/null +++ b/_sources/_ref/dmft_tools.solver.SolverStructure.rst.txt @@ -0,0 +1,24 @@ +dmft\_tools.solver.SolverStructure +================================== + +.. currentmodule:: dmft_tools.solver + +.. autoclass:: SolverStructure + :members: + :show-inheritance: + :inherited-members: + :special-members: __init__ + :noindex: + + + +.. autosummary:: + :toctree: + + ~SolverStructure.__init__ + ~SolverStructure.solve + + + + + diff --git a/_sources/_ref/dmft_tools.solver.SolverStructure.solve.rst.txt b/_sources/_ref/dmft_tools.solver.SolverStructure.solve.rst.txt new file mode 100644 index 00000000..7d3ee9a7 --- /dev/null +++ b/_sources/_ref/dmft_tools.solver.SolverStructure.solve.rst.txt @@ -0,0 +1,6 @@ +dmft\_tools.solver.SolverStructure.solve +======================================== + +.. currentmodule:: dmft_tools.solver + +.. automethod:: SolverStructure.solve \ No newline at end of file diff --git a/_sources/_ref/dmft_tools.solver.rst.txt b/_sources/_ref/dmft_tools.solver.rst.txt new file mode 100644 index 00000000..e977c714 --- /dev/null +++ b/_sources/_ref/dmft_tools.solver.rst.txt @@ -0,0 +1,29 @@ +dmft\_tools.solver +================== + +.. automodule:: dmft_tools.solver + :members: + + + + + + + +.. rubric:: Classes + +.. autosummary:: + :toctree: + :template: autosummary_class_template.rst + + SolverStructure + + + + + + + + + + diff --git a/_sources/_ref/gw_embedding.bdft_converter.rst.txt b/_sources/_ref/gw_embedding.bdft_converter.rst.txt new file mode 100644 index 00000000..c277223e --- /dev/null +++ b/_sources/_ref/gw_embedding.bdft_converter.rst.txt @@ -0,0 +1,21 @@ +gw\_embedding.bdft\_converter +============================= + +.. automodule:: gw_embedding.bdft_converter + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.rst.txt b/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.rst.txt new file mode 100644 index 00000000..613b7b53 --- /dev/null +++ b/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.__init__.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.gw\_flow.dummy\_sumk.\_\_init\_\_ +=============================================== + +.. currentmodule:: gw_embedding.gw_flow + +.. automethod:: dummy_sumk.__init__ \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.rst.txt b/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.rst.txt new file mode 100644 index 00000000..94c948b9 --- /dev/null +++ b/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.rst.txt @@ -0,0 +1,24 @@ +gw\_embedding.gw\_flow.dummy\_sumk +================================== + +.. currentmodule:: gw_embedding.gw_flow + +.. autoclass:: dummy_sumk + :members: + :show-inheritance: + :inherited-members: + :special-members: __init__ + :noindex: + + + +.. autosummary:: + :toctree: + + ~dummy_sumk.__init__ + ~dummy_sumk.symm_deg_gf + + + + + diff --git a/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.rst.txt b/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.rst.txt new file mode 100644 index 00000000..a1987a4c --- /dev/null +++ b/_sources/_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.gw\_flow.dummy\_sumk.symm\_deg\_gf +================================================ + +.. currentmodule:: gw_embedding.gw_flow + +.. automethod:: dummy_sumk.symm_deg_gf \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.gw_flow.rst.txt b/_sources/_ref/gw_embedding.gw_flow.rst.txt new file mode 100644 index 00000000..a335a516 --- /dev/null +++ b/_sources/_ref/gw_embedding.gw_flow.rst.txt @@ -0,0 +1,29 @@ +gw\_embedding.gw\_flow +====================== + +.. automodule:: gw_embedding.gw_flow + :members: + + + + + + + +.. rubric:: Classes + +.. autosummary:: + :toctree: + :template: autosummary_class_template.rst + + dummy_sumk + + + + + + + + + + diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.__init__.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.__init__.rst.txt new file mode 100644 index 00000000..d4dce5ae --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.__init__.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.\_\_init\_\_ +==================================== + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.__init__ \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.check_leakage.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.check_leakage.rst.txt new file mode 100644 index 00000000..0a0cbd28 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.check_leakage.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.check\_leakage +====================================== + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.check_leakage \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.rst.txt new file mode 100644 index 00000000..e4ee06d6 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.rst.txt @@ -0,0 +1,29 @@ +gw\_embedding.iaft.IAFT +======================= + +.. currentmodule:: gw_embedding.iaft + +.. autoclass:: IAFT + :members: + :show-inheritance: + :inherited-members: + :special-members: __init__ + :noindex: + + + +.. autosummary:: + :toctree: + + ~IAFT.__init__ + ~IAFT.check_leakage + ~IAFT.tau_interpolate + ~IAFT.tau_to_w + ~IAFT.w_interpolate + ~IAFT.w_to_tau + ~IAFT.wn_mesh + + + + + diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.tau_interpolate.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.tau_interpolate.rst.txt new file mode 100644 index 00000000..365c86d8 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.tau_interpolate.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.tau\_interpolate +======================================== + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.tau_interpolate \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.tau_to_w.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.tau_to_w.rst.txt new file mode 100644 index 00000000..0cefead3 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.tau_to_w.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.tau\_to\_w +================================== + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.tau_to_w \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.w_interpolate.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.w_interpolate.rst.txt new file mode 100644 index 00000000..effe7a14 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.w_interpolate.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.w\_interpolate +====================================== + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.w_interpolate \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.w_to_tau.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.w_to_tau.rst.txt new file mode 100644 index 00000000..d3165381 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.w_to_tau.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.w\_to\_tau +================================== + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.w_to_tau \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.IAFT.wn_mesh.rst.txt b/_sources/_ref/gw_embedding.iaft.IAFT.wn_mesh.rst.txt new file mode 100644 index 00000000..31578c5d --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.IAFT.wn_mesh.rst.txt @@ -0,0 +1,6 @@ +gw\_embedding.iaft.IAFT.wn\_mesh +================================ + +.. currentmodule:: gw_embedding.iaft + +.. automethod:: IAFT.wn_mesh \ No newline at end of file diff --git a/_sources/_ref/gw_embedding.iaft.rst.txt b/_sources/_ref/gw_embedding.iaft.rst.txt new file mode 100644 index 00000000..96660d32 --- /dev/null +++ b/_sources/_ref/gw_embedding.iaft.rst.txt @@ -0,0 +1,29 @@ +gw\_embedding.iaft +================== + +.. automodule:: gw_embedding.iaft + :members: + + + + + + + +.. rubric:: Classes + +.. autosummary:: + :toctree: + :template: autosummary_class_template.rst + + IAFT + + + + + + + + + + diff --git a/_sources/_ref/gw_embedding.qp_evs_to_eig.rst.txt b/_sources/_ref/gw_embedding.qp_evs_to_eig.rst.txt new file mode 100644 index 00000000..788f637f --- /dev/null +++ b/_sources/_ref/gw_embedding.qp_evs_to_eig.rst.txt @@ -0,0 +1,21 @@ +gw\_embedding.qp\_evs\_to\_eig +============================== + +.. automodule:: gw_embedding.qp_evs_to_eig + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/gw_embedding.rst.txt b/_sources/_ref/gw_embedding.rst.txt new file mode 100644 index 00000000..1a606718 --- /dev/null +++ b/_sources/_ref/gw_embedding.rst.txt @@ -0,0 +1,34 @@ +gw\_embedding +============= + +.. automodule:: gw_embedding + :members: + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: autosummary_module_template.rst + :recursive: + + + gw_embedding.bdft_converter + gw_embedding.gw_flow + gw_embedding.iaft + gw_embedding.qp_evs_to_eig + + diff --git a/_sources/_ref/io_tools.dict_to_h5.rst.txt b/_sources/_ref/io_tools.dict_to_h5.rst.txt new file mode 100644 index 00000000..379812c3 --- /dev/null +++ b/_sources/_ref/io_tools.dict_to_h5.rst.txt @@ -0,0 +1,21 @@ +io\_tools.dict\_to\_h5 +====================== + +.. automodule:: io_tools.dict_to_h5 + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/io_tools.postproc_toml_dict.rst.txt b/_sources/_ref/io_tools.postproc_toml_dict.rst.txt new file mode 100644 index 00000000..409375dc --- /dev/null +++ b/_sources/_ref/io_tools.postproc_toml_dict.rst.txt @@ -0,0 +1,21 @@ +io\_tools.postproc\_toml\_dict +============================== + +.. automodule:: io_tools.postproc_toml_dict + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/io_tools.rst.txt b/_sources/_ref/io_tools.rst.txt new file mode 100644 index 00000000..ba51d0e4 --- /dev/null +++ b/_sources/_ref/io_tools.rst.txt @@ -0,0 +1,33 @@ +io\_tools +========= + +.. automodule:: io_tools + :members: + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: autosummary_module_template.rst + :recursive: + + + io_tools.dict_to_h5 + io_tools.postproc_toml_dict + io_tools.verify_input_params + + diff --git a/_sources/_ref/io_tools.verify_input_params.rst.txt b/_sources/_ref/io_tools.verify_input_params.rst.txt new file mode 100644 index 00000000..bd358a8f --- /dev/null +++ b/_sources/_ref/io_tools.verify_input_params.rst.txt @@ -0,0 +1,21 @@ +io\_tools.verify\_input\_params +=============================== + +.. automodule:: io_tools.verify_input_params + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.rst.txt b/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.rst.txt new file mode 100644 index 00000000..855b070b --- /dev/null +++ b/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.rst.txt @@ -0,0 +1,6 @@ +postprocessing.eval\_U\_cRPA\_RESPACK.respack\_data.\_\_init\_\_ +================================================================ + +.. currentmodule:: postprocessing.eval_U_cRPA_RESPACK + +.. automethod:: respack_data.__init__ \ No newline at end of file diff --git a/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.rst.txt b/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.rst.txt new file mode 100644 index 00000000..c6843a98 --- /dev/null +++ b/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.rst.txt @@ -0,0 +1,23 @@ +postprocessing.eval\_U\_cRPA\_RESPACK.respack\_data +=================================================== + +.. currentmodule:: postprocessing.eval_U_cRPA_RESPACK + +.. autoclass:: respack_data + :members: + :show-inheritance: + :inherited-members: + :special-members: __init__ + :noindex: + + + +.. autosummary:: + :toctree: + + ~respack_data.__init__ + + + + + diff --git a/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.rst.txt b/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.rst.txt new file mode 100644 index 00000000..6b2f03cc --- /dev/null +++ b/_sources/_ref/postprocessing.eval_U_cRPA_RESPACK.rst.txt @@ -0,0 +1,29 @@ +postprocessing.eval\_U\_cRPA\_RESPACK +===================================== + +.. automodule:: postprocessing.eval_U_cRPA_RESPACK + :members: + + + + + + + +.. rubric:: Classes + +.. autosummary:: + :toctree: + :template: autosummary_class_template.rst + + respack_data + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.eval_U_cRPA_Vasp.rst.txt b/_sources/_ref/postprocessing.eval_U_cRPA_Vasp.rst.txt new file mode 100644 index 00000000..5c8b998b --- /dev/null +++ b/_sources/_ref/postprocessing.eval_U_cRPA_Vasp.rst.txt @@ -0,0 +1,21 @@ +postprocessing.eval\_U\_cRPA\_Vasp +================================== + +.. automodule:: postprocessing.eval_U_cRPA_Vasp + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.maxent_gf_imp.rst.txt b/_sources/_ref/postprocessing.maxent_gf_imp.rst.txt new file mode 100644 index 00000000..91100ec5 --- /dev/null +++ b/_sources/_ref/postprocessing.maxent_gf_imp.rst.txt @@ -0,0 +1,21 @@ +postprocessing.maxent\_gf\_imp +============================== + +.. automodule:: postprocessing.maxent_gf_imp + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.maxent_gf_latt.rst.txt b/_sources/_ref/postprocessing.maxent_gf_latt.rst.txt new file mode 100644 index 00000000..df7153a9 --- /dev/null +++ b/_sources/_ref/postprocessing.maxent_gf_latt.rst.txt @@ -0,0 +1,21 @@ +postprocessing.maxent\_gf\_latt +=============================== + +.. automodule:: postprocessing.maxent_gf_latt + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.maxent_sigma.rst.txt b/_sources/_ref/postprocessing.maxent_sigma.rst.txt new file mode 100644 index 00000000..f7babca8 --- /dev/null +++ b/_sources/_ref/postprocessing.maxent_sigma.rst.txt @@ -0,0 +1,21 @@ +postprocessing.maxent\_sigma +============================ + +.. automodule:: postprocessing.maxent_sigma + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.pade_sigma.rst.txt b/_sources/_ref/postprocessing.pade_sigma.rst.txt new file mode 100644 index 00000000..a0856d9d --- /dev/null +++ b/_sources/_ref/postprocessing.pade_sigma.rst.txt @@ -0,0 +1,21 @@ +postprocessing.pade\_sigma +========================== + +.. automodule:: postprocessing.pade_sigma + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.plot_correlated_bands.rst.txt b/_sources/_ref/postprocessing.plot_correlated_bands.rst.txt new file mode 100644 index 00000000..fb89bb5f --- /dev/null +++ b/_sources/_ref/postprocessing.plot_correlated_bands.rst.txt @@ -0,0 +1,21 @@ +postprocessing.plot\_correlated\_bands +====================================== + +.. automodule:: postprocessing.plot_correlated_bands + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/postprocessing.rst.txt b/_sources/_ref/postprocessing.rst.txt new file mode 100644 index 00000000..55a45bc7 --- /dev/null +++ b/_sources/_ref/postprocessing.rst.txt @@ -0,0 +1,37 @@ +postprocessing +============== + +.. automodule:: postprocessing + :members: + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: autosummary_module_template.rst + :recursive: + + + postprocessing.eval_U_cRPA_RESPACK + postprocessing.eval_U_cRPA_Vasp + postprocessing.maxent_gf_imp + postprocessing.maxent_gf_latt + postprocessing.maxent_sigma + postprocessing.pade_sigma + postprocessing.plot_correlated_bands + + diff --git a/_sources/_ref/util.rst.txt b/_sources/_ref/util.rst.txt new file mode 100644 index 00000000..fb0cd3b1 --- /dev/null +++ b/_sources/_ref/util.rst.txt @@ -0,0 +1,32 @@ +util +==== + +.. automodule:: util + :members: + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: autosummary_module_template.rst + :recursive: + + + util.symmetrize_gamma_file + util.write_kslice_to_h5 + + diff --git a/_sources/_ref/util.symmetrize_gamma_file.rst.txt b/_sources/_ref/util.symmetrize_gamma_file.rst.txt new file mode 100644 index 00000000..f70df010 --- /dev/null +++ b/_sources/_ref/util.symmetrize_gamma_file.rst.txt @@ -0,0 +1,21 @@ +util.symmetrize\_gamma\_file +============================ + +.. automodule:: util.symmetrize_gamma_file + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/_ref/util.write_kslice_to_h5.rst.txt b/_sources/_ref/util.write_kslice_to_h5.rst.txt new file mode 100644 index 00000000..a2cfb44b --- /dev/null +++ b/_sources/_ref/util.write_kslice_to_h5.rst.txt @@ -0,0 +1,21 @@ +util.write\_kslice\_to\_h5 +========================== + +.. automodule:: util.write_kslice_to_h5 + :members: + + + + + + + + + + + + + + + + diff --git a/_sources/cRPA_VASP/README.md.txt b/_sources/cRPA_VASP/README.md.txt new file mode 100644 index 00000000..7cfe70a1 --- /dev/null +++ b/_sources/cRPA_VASP/README.md.txt @@ -0,0 +1,106 @@ +# How to do cRPA calculations with VASP + +This is just a small tutorial and help on how to do cRPA calculations within +VASP (https://cms.mpi.univie.ac.at/wiki/index.php/CRPA_of_SrVO3) . Moreover, the +python script `eval_U.py` contains helper functions to extract the full +$U$ matrix tensor from the `Uijkl` or `Vijkl` file from a VASP cRPA run. There +are also some general remarks on the notation in VASP for the Coulomb tensor in +the pdf included in this folder. Moreover, there is a small collection of +examples for SrVO3 and LuNiO3. For more details please take a look at the PhD +thesis of Merzuk Kaltak (http://othes.univie.ac.at/38099/). + +## file description + * `eval_U.py` extraction of Coulomb tensor, calculation of reduced two-index matrices, and calculation / fitting of Kanamori or Slater parameters + * `ext_eps.sh` a small bash script that can extract $\epsilon^-1(|q+G|)=[1-VP^r]^-1$ from a given vasprun.xml file + +## Workflow: +1. DFT NM normal like: + * SYSTEM = SrVO3 + * ISMEAR = 0 + * SIGMA = 0.05 + * EDIFF = 1E-8 +2. optical part (larger nbands) and optical properties for generating the linear response integrals needed for cRPA or GW + 1. nbands: ~100 bands per atoms, but not larger than number of plane waves generated from ENCUT + 2. example: + * SYSTEM = SrVO3 + * ISMEAR = 0 + * ENCUT = high value! + * SIGMA = 0.05 + * EDIFF = 1E-8 + * ALGO = Exact ; NELM=1 + * LOPTICS = .TRUE. + * LWAVE = .TRUE. + * NBANDS =96 + * LMAXMIX=4 +3. if needed generate wannier functions with ALGO=none (read wavecar and chgcar additionally) and do 0 steps to get the wannier functions correct - this step is not needed, if one has already a wannier90.win file +4. ALGO=CRPA to make vasp calculate U matrices (bare, screened etc. ) + 1. omegamax=0 (default) for frequency depend U matrix + 2. NCRPA_BANDS for selecting bands in a non-disentagled workflow (vasp.at/wiki/index.php/NCRPA_BANDS) + 3. or set NTARGET STATES= # of target states for using the KUBO formalism for disentanglement. Works directly with the wannier functions as basis. The states not listet will be included in screening. + 4. example file: + * SYSTEM = SrVO3 + * ISMEAR = 0 + * ENCUT = high value! + * VCUTOFF = reasonable high value! + * SIGMA = 0.05 + * EDIFF = 1E-8 + * NBANDS =96 + * ALGO = CRPA + * NTARGET_STATES = 1 2 3 + * LWAVE = .FALSE. + * NCSHMEM=1 + * LMAXMIX=4 + +## important flags: +if you get sigsevs while calculating the polarization make sure your local stack +size is large enough by setting: +``` +ulimit -s unlimited +``` + +* ALGO=CRPA (automatically calls wannier90 and calculates the U matrix) +* NTARGET_STATES= # number of target Wannier funcitons if more target states than basis functions for U matrix one specify the one to exclude from screening as integer list: `1 2 3`. This would build the U matrix for the first 3 Wannier functions in wannier90.win, where 5 Wannier functions are specified there in total and the last 2 are included for the calculation of screening. +* for the disentanglement with `NTARGET_STATES` there are 3 options in cRPA: + * LPROJECTED (default): Kubo method by Merzuk (http://othes.univie.ac.at/38099/) + * LDISENTANGLED: disentanglement of Miyake (doi.org/10.1103/PhysRevB.80.155134) + * LWEIGHTED: weighted method of Friedrich and Shih +* LOPTICS= TRUE for calculating the necessary response integrals withing the Kohn-Sham Basis W000x.tmp +* NCSHMEM=1 nodody knows, but it is needed! +* VCUTOFF cuttoff for bare interaction V. This tests your convergency +and is written in the OUTCAR as two sets of bare interaction, where for one of them +it says: low cutoff result for V_ijkl. Here ENCUT was used and for the one above 1.1*ENCUT or VCUTOFF was used. +* usually a converged ENCUT gives also a reasonably high VCUTOFF, so that explicitly setting VCUTOFF is not necessary. Moreover, the effect of the VCUTOFF convergence is included by subtracting the constant shift between LOW and HIGH VCUTOFF test output in the OUTCAR + +## convergency tests: +$`E_{corr}^{RPA}`$ converges for NBANDS,ENCUT to $`\infty`$, where the asymptotic +behavior goes like $`1/N_{bands} \approx ENCUT^{-3/2} `$. The ENCUT for the GW part +is set automatically by VASP with the ratio: $`ENCUTGW = 2/3 \ ENCUT`$. Moreover, +it is crucial to first converge the bare interaction V that does not depend on the +polarization. To do these tests set in the INCAR file: +* ALGO = 2E4W # calculates only the V +* LWPOT = .FALSE # avoid errors +* VCUTOFF # vary the cut-off until convergency is reached, default is 1.1*ENCUT +* NBANDS # minor effect on V then on W, but nevertheless a reasonable amount of +bands must be used. A good choice is 3*NELECT (# of electrons in the systems). + +The procedure is then to first convergence KPOINTS and ENCUT, where KPOINTS dependency of the results seems to be weak. Then increase NBANDS until U does not change anymore. + +## Parameterization of U and J from cRPA calculations +`eval_u.py` provides four different methods: +- Kanamori: `calc_kan_params(...)` for extracting Kanamori parameters for a cubic system +- Slater 1: `calc_u_avg_fulld(...)` using averaging and symmetries: $`U_\mathrm{cubic} = \frac1{2l+1} \sum_i (U_{iiii})`$, $`J_\mathrm{cubic} = \frac1{2l(2l+1)} \sum_{i, j\neq i} U_{ijji}`$. Then, the interaction parameters follow from the conversion $`U = U_\mathrm{cubic} - \frac85 J_\mathrm{cubic}, J = \frac75 J_\mathrm{cubic}`$. +- Slater 2: `calculate_interaction_from_averaging(...)` using direct averaging: $`U = \frac1{(2l+1)^2} \sum_{i, j} U_{iijj}`$ and $`J = U - \frac1{2l(2l+1)} \sum_{i, j} U_{ijij}`$. This is more straight forward that Slater 1, but ignores the basis in which the cRPA Uijkl matrix is written. For a perfect Slater matrix this gives the same results if applied in cubic or spherical harmonics basis. +- Slater 3: `fit_slater_fulld(...) `using an least-square fit (summed over the matrix elements) of the two-index matrices $`U_{iijj}`$ and $`U_{ijij}`$ to the Slater Hamiltonian. + +These three methods give the same results if the cRPA matrix is of the Slater type already. Be aware of the order of your basis functions and the basis in which the $U$ tensor is written! + +## general sidemarks: +* careful with the averaged U,u,J values in the end of the OUTCAR, because they sum all off-diagonal elements! Also inter-site, if the unit cell contains more than one target atom +* in VASP the two inner indices are exchanged compared to the notation in PRB 86, 165105 (2012): U_ijkl = U_ikjl^VASP +* when specifying bands, always start with 1 not 0. +* GW pseudopotentials can be more accurate, since they provide higher cut-offs e.g. , test this... +* NCRPA_BANDS and NTARGET_STATES gives the same result in non-entangled bands + +## version and compilation: +* supported vasp version 6 or higher +* wannier90 upto v3.1 works, if no features exclusively to wannier90 v3 are used diff --git a/_sources/documentation.rst.txt b/_sources/documentation.rst.txt new file mode 100644 index 00000000..02d02b57 --- /dev/null +++ b/_sources/documentation.rst.txt @@ -0,0 +1,67 @@ +.. _documentation: + +*************** +Documentation +*************** + +Code structure +============== + +.. image:: _static/code_structure.png + :width: 100% + :align: center + +more details in the reference manual below. + +To get started with the code after a successful :ref:`installation`, take a look at the :ref:`tutorials` section. Here we provide further special information and a reference manual for all available functions. + + + +DFT interface notes +=================== + +.. toctree:: + :maxdepth: 1 + + md_notes/w90_interface.md + md_notes/vasp_csc.md + cRPA_VASP/README.md + +Input/Output +=================== +.. toctree:: + :maxdepth: 1 + + input_output/DMFT_input/input + input_output/DMFT_output/results + +Further details for running +=========================== + +.. toctree:: + :maxdepth: 1 + + md_notes/docker.md + md_notes/run_locally.md + md_notes/run_cluster.md + +Module reference manual +======================= + +.. autosummary:: + :toctree: _ref + :template: autosummary_module_template.rst + :recursive: + + csc_flow + dft_managers + dmft_cycle + dmft_tools + gw_embedding + io_tools + postprocessing + util + + + + diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 00000000..e520f1aa --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,64 @@ +.. index:: solid_dmft + +.. module:: solid_dmft + +solid_dmft +********** + +.. sidebar:: solid_dmft |PROJECT_VERSION| + + This is the homepage of solid_dmft |PROJECT_VERSION|. + For changes see the :ref:`changelog page `. + visit us on: + + .. image:: _static/logo_github.png + :width: 60% + :align: center + :target: https://github.com/flatironinstitute/solid_dmft + + +This program allows to perform DFT+DMFT ''one-shot'' and charge self-consistent +(CSC) calculations from h5 archives or VASP/Quantum Espresso input files for +multiband systems using the `TRIQS software library `_, and the DFT code interface +`TRIQS/DFTTools `_. Works with triqs >3.x.x. +solid_dmft takes advantage of various +`impurity solvers available `_ +in triqs: cthyb, HubbardI, ForkTPS, ctint, and ctseg. Postprocessing scripts are available to +perform analytic continuation and calculate spectral functions. + +For installation use the same branch / tag as your triqs installation. More +information under :ref:`installation`. + +Learn how to use solid_dmft in the :ref:`documentation` and the :ref:`tutorials`. + +For more technical information about the implementation check also the `solid_dmft publication `_ in the JOSS journal. If you are using this code for your research, please cite the paper using this `bib file `_. + +Workflow of DFT+DMFT calculations with solid_dmft +================================================= + +.. image:: _static/workflow.png + :width: 100% + :align: center + +------------ + +.. toctree:: + :maxdepth: 2 + :hidden: + + install + documentation + tutorials + issues + ChangeLog.md + + +.. image:: logos/flatiron.png + :width: 300 + :align: left + :target: https://www.simonsfoundation.org/flatiron/center-for-computational-quantum-physics +.. image:: logos/eth_logo_kurz_pos.png + :width: 300 + :align: right + :target: https://theory.mat.ethz.ch + diff --git a/_sources/input_output/DMFT_input/advanced.rst.txt b/_sources/input_output/DMFT_input/advanced.rst.txt new file mode 100644 index 00000000..63a61cfb --- /dev/null +++ b/_sources/input_output/DMFT_input/advanced.rst.txt @@ -0,0 +1,85 @@ +[advanced]: Advanced inputs +--------------------------- + +Advanced parameters, do not modify the default value unless you know what you are doing. + + + + + +.. admonition:: dc_factor + :class: intag + + **type** = float; **default** = None + + If given, scales the dc energy by multiplying with this factor, usually < 1. + If None, the dc is left unchanged, which is equivalent to dc_factor=1. + +.. admonition:: dc_fixed_occ + :class: intag + + **type** = list of float; **default** = None + + If given, the occupation for the DC for each impurity is set to the provided value. + Still uses the same kind of DC! + +.. admonition:: dc_fixed_value + :class: intag + + **type** = float; **default** = None + + If given, it sets the DC (energy/imp) to this fixed value. Overwrites EVERY other DC configuration parameter if DC is turned on + +.. admonition:: dc_nominal + :class: intag + + **type** = bool; **default** = False + + TODO: write + +.. admonition:: dc_orb_shift + :class: intag + + **type** = list of float; **default** = None + + extra potential shift per orbital per impurity added to the DC + +.. admonition:: dc_J + :class: intag + + **type** = float or list of float; **default** = general.J + + J values for DC determination. If only one value is given, the same J is assumed for all impurities + +.. admonition:: dc_U + :class: intag + + **type** = float or list of float; **default** = general.U + + U values for DC determination. If only one value is given, the same U is assumed for all impurities + +.. admonition:: map_solver_struct + :class: intag + + **type** = list of dict; **default** = None + + Additional manual mapping of the solver block structure, applied + after the block structure finder for each impurity. + Give exactly one dict per ineq impurity. + see also triqs.github.io/dft_tools/latest/_python_api/triqs_dft_tools.block_structure.BlockStructure.map_gf_struct_solver.html + +.. admonition:: mapped_solver_struct_degeneracies + :class: intag + + **type** = list; **default** = None + + Degeneracies applied when using map_solver_struct, for each impurity. + If not given and map_solver_struct is used, no symmetrization will happen. + +.. admonition:: pick_solver_struct + :class: intag + + **type** = list of dict; **default** = None + + input a solver dictionary for each ineq impurity to reduce dimensionality of + solver block structure. Similar to to map_solver_struct, but with simpler syntax. diff --git a/_sources/input_output/DMFT_input/dft.rst.txt b/_sources/input_output/DMFT_input/dft.rst.txt new file mode 100644 index 00000000..f83c57d1 --- /dev/null +++ b/_sources/input_output/DMFT_input/dft.rst.txt @@ -0,0 +1,103 @@ + +[dft]: DFT related inputs +------------------------- + +List of parameters for the DFT calculation in charge-self-consistent calculations. +The parameters are ignored in one-shot calculations. + + + + + +.. admonition:: dft_code + :class: intag + + **type** = string + + choose the DFT code interface, for now Quantum Espresso and Vasp are available. + Possible values: + + * 'vasp' + * 'qe' + +.. admonition:: dft_exec + :class: intag + + **type** = string; **default** = 'vasp_std' + + command for the DFT executable + +.. admonition:: mpi_env + :class: intag + + **type** = string; **default** ' + + selection for mpi env for DFT / VASP in default this will only call VASP as mpirun -np n_cores_dft dft_exec + Possible values: + + * 'default' + * 'openmpi' + * 'openmpi-intra' + * 'mpich' + +.. admonition:: n_cores + :class: intag + + **type** = int, None + + number of cores for the DFT code (VASP). Mandatory for charge-self-consistent calculations + +.. admonition:: n_iter + :class: intag + + **type** = int; **default** = 4 + + only needed for VASP. Number of DFT iterations to feed the DMFT + charge density into DFT, which generally takes multiple Davidson steps. + For every DFT iterations, the charge-density correction is recalculated + using newly generated projectors and hoppings from the previous DFT run + +.. admonition:: n_iter_first + :class: intag + + **type** = int; **default** = dft.n_iter + + number of DFT iterations in the first charge correction because this + first charge correction usually changes the DFT wave functions the most. + +.. admonition:: plo_cfg + :class: intag + + **type** = str; **default** = 'plo.cfg' + + config file for PLOs for the converter + +.. admonition:: projector_type + :class: intag + + **type** = string; **default** = 'w90' + + plo: uses VASP's PLO formalism, requires LOCPROJ in the INCAR + w90: uses Wannier90 (for VASP and QuantumEspresso) + +.. admonition:: store_eigenvals + :class: intag + + **type** = bool; **default** = False + + stores the dft eigenvals from LOCPROJ (projector_type=plo) or + wannier90.eig (projector_type=w90) file in h5 archive + +.. admonition:: w90_exec + :class: intag + + **type** = string; **default** ='wannier90.x' + + the command to start a single-core wannier run + +.. admonition:: w90_tolerance + :class: intag + + **type** = float; **default** = 1e-6 + + threshold for mapping of shells and checks of the Hamiltonian diff --git a/_sources/input_output/DMFT_input/general.rst.txt b/_sources/input_output/DMFT_input/general.rst.txt new file mode 100644 index 00000000..e6330232 --- /dev/null +++ b/_sources/input_output/DMFT_input/general.rst.txt @@ -0,0 +1,505 @@ +[general]: General parameters +----------------------------- + +Frequently used parameters that apply to the whole simulation. + + + + + + +.. admonition:: afm_order + :class: intag + + **type** = bool; **default** = False + + copy self energies instead of solving explicitly for afm order + +.. admonition:: beta + :class: intag + + **type** = float; **default** = None + + inverse temperature. If set, solid_dmft stores all Greens functions etc on an imaginary-frequency grid + and also n_iw and n_tau have to be specified. + If not set, it uses a real-frequency grid and eta, n_w and w_range have to be set + +.. admonition:: block_threshold + :class: intag + + **type** = float; **default** = 1e-5 + + threshold for finding block structures in the input data (off-diag yes or no) + +.. admonition:: broy_max_it + :class: intag + + **type** = int; **default** = -1 + + maximum number of iteration to be considered for broyden mixing. + Only used if general.g0_mix_type='broyden'. + 1 corresponds to simple linear mixing + +.. admonition:: calc_energies + :class: intag + + **type** = bool; **default** = False + + Calculate the energies explicitly within the dmft loop and write them to the observables file. + Not compatible with 'ftps' solver + +.. admonition:: calc_mu_method + :class: intag + + **type** = string; **default** = 'dichotomy' + + optimization method used for finding the chemical potential: + + * 'dichotomy': usual method from TRIQS, should always converge but may be slow + * 'newton': scipy Newton root finder, much faster but might be unstable + * 'brent': scipy hyperbolic Brent root finder preconditioned with dichotomy to find edge, a compromise between speed and stability + +.. admonition:: csc + :class: intag + + **type** = bool; **default** = False + + are we doing a CSC calculation? + +.. admonition:: dc + :class: intag + + **type** = bool; **default** = True + + is the double-counting correction on? + +.. admonition:: dc_dmft + :class: intag + + **type** = bool; **default** = None + + Calculate the double-counting (DC) correction from DMFT or DFT occupations. + Needs to be set if general.dc = True. + + * True: DC with DMFT occupation in each iteration + * False: DC with DFT occupations after each DFT cycle + +.. admonition:: dc_type + :class: intag + + **type** = int or list of int; **default** = None + + Type of double counting correction considered. + Can be a list per impurity to have different types for different impurities. + Needs to be set if general.dc = True. + + * 0: FLL + * 1: Held formula, needs to be used with slater-kanamori h_int_type=2 + * 2: AMF + * 3: FLL for eg orbitals only with U,J for Kanamori + + for cRPA interactions this can be also a string to determine the type of DC from the full interaction + * crpa_static + * crpa_static_qp + * crpa_dynamic + +.. admonition:: dlr_eps + :class: intag + + **type** = float; **default** = None + + precision for DLR basis set if needed, see also triqs.gf.meshes.MeshDLR + +.. admonition:: dlr_wmax + :class: intag + + **type** = float; **default** = None + + spectral width (one-side) for DLR basis set if needed, see also triqs.gf.meshes.MeshDLR + +.. admonition:: enforce_off_diag + :class: intag + + **type** = bool or list of bool; **default** = True + + only if False, the block structure can be reduced to ignore off-diagonal elements + if they are below the general.block_threshold of the block structure finder + +.. admonition:: eta + :class: intag + + **type** = float; **default** = None + + broadening of Green's function. Used when Green's functions are stored on real-frequency grid, + i.e., general.beta is None, and for the real-frequency solvers + +.. admonition:: fixed_mu_value + :class: intag + + **type** = float; **default** = None + + If given, the chemical potential remains fixed in calculations + +.. admonition:: g0_conv_crit + :class: intag + + **type** = float; **default** = -1.0 + + stop the calculation if sum_w 1/(w^0.6) ||G0-G0_prev|| is smaller than threshold + +.. admonition:: g0_mix + :class: intag + + **type** = float; **default** = 1.0 + + Mixing the weiss field G0 with previous iteration G0 for better convergency. 1.0 means no mixing. + Setting g0_mix to 0.0 with linear mixing can be used for statistic sampling when + restarting a calculation + +.. admonition:: g0_mix_type + :class: intag + + **type** = string; **default** = 'linear' + + which type of mixing is used. Possible values are: + linear: linear mixing + broyden: broyden mixing + +.. admonition:: gimp_conv_crit + :class: intag + + **type** = float; **default** = -1.0 + + stop the calculation if sum_w 1/(w^0.6) ||Gimp-Gloc|| is smaller than threshold + +.. admonition:: gw_embedding + :class: intag + + **type** = bool; **default** = False + + use GW embedding workflow module (gw_flow.py) instead of dmft_cycle for aimbes GW embedding, see section gw + +.. admonition:: h_field + :class: intag + + **type** = float; **default** = 0.0 + + magnetic field + +.. admonition:: h_field_it + :class: intag + + **type** = int; **default** = 0 + + number of iterations the magnetic field is kept on + +.. admonition:: h_int_basis + :class: intag + + **type** = string; **default** = 'triqs' + + cubic basis convention to compute the interaction U matrix + + * 'triqs' + * 'vasp' (equivalent to 'triqs') + * 'wien2k' + * 'wannier90' + * 'qe' (equivalent to 'wannier90') + +.. admonition:: h_int_type + :class: intag + + **type** = string; **mandatory** + + interaction type: + + * density_density: used for full d-shell or eg- or t2g-subset (with U=F0, J=(F2+F4)/14) + * kanamori: only physical for the t2g or the eg subset + * kanamori_den_den: density density form of Kanamori, but with Kanamori U and J + * full_slater: used for full d-shell or eg- or t2g-subset + * ntot: U/2 (Ntot^2 - Ntot) interaction + * simple_intra: density-density like but only intra orbital with given U value (no rotations applied) + * crpa: use the cRPA matrix as interaction Hamiltonian + * crpa_density_density: use the density-density terms of the cRPA matrix + * dyn_full: use dynamic U from h5 archive + * dyn_density_density: use dynamic U from h5 archive but only the density-density terms + + +.. admonition:: h5_save_freq + :class: intag + + **type** = int; **default** = 5 + + how often is the output saved to the h5 archive + +.. admonition:: J + :class: intag + + **type** = float or list of float; **mandatory** + + J interaction value. If it is a float, the same J is assumed for all impurities, + otherwise as a list a different J can be specified per impurity. + +.. admonition:: jobname + :class: intag + + **type** = str; **default** = 'dmft_dir' + + the output directory for one-shot calculations + +.. admonition:: load_sigma + :class: intag + + **type** = bool; **default** = False + + load a old sigma from h5 file + +.. admonition:: load_sigma_iter + :class: intag + + **type** = int; **default** = -1 + + load the sigma from a specific iteration if wanted. + If it is -1, loads from the last iteration. + +.. admonition:: magmom + :class: intag + + **type** = list of float; **default** = None + + Initialize magnetic moments if magnetic is on. length must be #imps. + List composed of energetic shifts written in electronvolts. + This will initialize the spin blocks of the sigma with a diagonal shift + With -shift for the up block, and +shift for the down block + (positive shift favours the up spin component, not compatible with spin-orbit coupling) + +.. admonition:: magnetic + :class: intag + + **type** = bool; **default** = False + + are we doing a magnetic calculations? If yes put magnetic to True. + Not implemented for CSC calculations + +.. admonition:: mu_gap_gb2_threshold + :class: intag + + **type** = float; **default** = None + + Threshold of the absolute of the lattice GF at tau=beta/2 for use + of MaxEnt's lattice spectral function to put the chemical potential + into the middle of the gap. Does not work if system completely full + or empty, mu mixing is not applied to it. Recommended value 0.01. + +.. admonition:: mu_gap_occ_deviation + :class: intag + + **type** = float; **default** = None + + Only used if mu_gap_gb2_threshold != None. Sets additional criterion + for finding the middle of the gap through occupation deviation to + avoid getting stuck in an insulating state with wrong occupation. + +.. admonition:: mu_initial_guess + :class: intag + + **type** = float; **default** = None + + The chemical potential of the DFT calculation. + If not given, mu will be calculated from the DFT bands + +.. admonition:: mu_mix_const + :class: intag + + **type** = float; **default** = 1.0 + + Constant term of the mixing of the chemical potential. See mu_mix_per_occupation_offset. + +.. admonition:: mu_mix_per_occupation_offset + :class: intag + + **type** = float; **default** = 0.0 + + Mu mixing proportional to the occupation offset. + Mixing between the dichotomy result and the previous mui, + + mu_next = factor * mu_dichotomy + (1-factor) * mu_previous, with + factor = mu_mix_per_occupation_offset * abs(n - n\_target) + mu_mix_const. + + The program ensures that 0 <= factor <= 1. + mu_mix_const = 1.0 and mu_mix_per_occupation_offset = 0.0 means no mixing. + +.. admonition:: mu_update_freq + :class: intag + + **type** = int; **default** = 1 + + The chemical potential will be updated every # iteration + +.. admonition:: n_iter_dmft + :class: intag + + **type** = int; **mandatory** + + number of iterations per dmft cycle after first cycle + +.. admonition:: n_iter_dmft_first + :class: intag + + **type** = int; **default** = 10 + + number of iterations in first dmft cycle to converge dmft solution + +.. admonition:: n_iter_dmft_per + :class: intag + + **type** = int; **default** = 2 + + number of iterations per dmft step in CSC calculations + +.. admonition:: n_iw + :class: intag + + **type** = int; **default** = 1025 + + number of Matsubara frequencies for the imaginary-frequency grid + +.. admonition:: n_tau + :class: intag + + **type** = int; **default** = 10001 + + number of imaginary time points for the imaginary-time grid + +.. admonition:: n_w + :class: intag + + **type** = int; **default** = 5001 + + number of real frequency points for the real-frequency grid + +.. admonition:: noise_level_initial_sigma + :class: intag + + **type** = float; **default** = 0.0 + + spread of Gaussian noise applied to the initial Sigma + +.. admonition:: occ_conv_crit + :class: intag + + **type** = float; **default** = -1.0 + + stop the calculation if a certain threshold for the imp occ change is reached + +.. admonition:: path_to_sigma + :class: intag + + **type** = str; **default** = None + + path to h5 file from which the sigma should be loaded. + Needed if load_sigma is true + +.. admonition:: prec_mu + :class: intag + + **type** = float; **default** = 1e-4 + + general precision for determining the chemical potential at any time calc_mu is called + +.. admonition:: ratio_F4_F2 + :class: intag + + **type** = float or list of float; **default** = None + + Ratio between the Slater integrals F_4 and F_2. Only used for the + interaction Hamiltonians 'density_density' and 'full_slater' and + only for d-shell impurities; **default** is 0.63. + +.. admonition:: sampling_h5_save_freq + :class: intag + + **type** = int; **default** = 5 + + overwrites h5_save_freq when sampling has started + +.. admonition:: sampling_iterations + :class: intag + + **type** = int; **default** = 0 + + for how many iterations should the solution sampled after the CSC loop is converged + +.. admonition:: seedname + :class: intag + + **type** = str; **mandatory** + + seedname for h5 archive with DMFT input and output + +.. admonition:: set_rot + :class: intag + + **type** = string; **default** = None + + Local orbital rotations added by solid_dmft + + * None: keep the rotations stored in the h5 archive + * 'den' use the DFT occupations density_mat_dft for diagonalization + * 'hloc': use the DFT local Hamiltonian hloc_dft for diagonalization + +.. admonition:: sigma_conv_crit + :class: intag + + **type** = float; **default** = -1.0 + + stop the calculation if sum_w 1/(w^0.6) ||Sigma-Sigma_prev|| is smaller than threshold + +.. admonition:: sigma_mix + :class: intag + + **type** = float; **default** = 1.0 + + careful: Sigma mixing can break orbital symmetries, use G0 mixing. + mixing sigma with previous iteration sigma for better convergency. 1.0 means no mixing + +.. admonition:: store_solver + :class: intag + + **type** = bool; **default** = False + + whether to store the whole solver object under DMFT_input in h5 archive + +.. admonition:: U + :class: intag + + **type** = float or list of float; **mandatory** + + U interaction value. If it is a float, the same U is assumed for all impurities, + otherwise as a list a different U can be specified per impurity. + +.. admonition:: U_crpa_threshold + :class: intag + + **type** = float; **default** = 0.0 + + threshold for the cRPA interaction matrix. If the absolute value of the + elements is below this threshold, they are set to zero. + +.. admonition:: U_prime + :class: intag + + **type** = float or list of floats; **default** = None + + U prime interaction value. + Only used for impurities where general.h_int_type is kanamori. + If it is a float, the same U prime is assumed for all impurities, + otherwise as a list a different U prime can be specified per impurity. + For None; **default** of U prime = U-2J is used. + +.. admonition:: w_range + :class: intag + + **type** = list of int; **default** = [-10, 10] + + Minimal and maximal range of the real-frequency grid diff --git a/_sources/input_output/DMFT_input/gw.rst.txt b/_sources/input_output/DMFT_input/gw.rst.txt new file mode 100644 index 00000000..d3d5f0e3 --- /dev/null +++ b/_sources/input_output/DMFT_input/gw.rst.txt @@ -0,0 +1,44 @@ + +[GW]: GW embedding inputs +------------------------- + +List of parameters for the GW embedding calculation. The parameters are ignored unless gw_embedding=true, or interactions are read from cRPA. + + + + + +.. admonition:: code + :class: intag + + **type** = str; **default** = None + + GW embedding code: aimbes or Vasp to load screened interaction + +.. admonition:: h5_file + :class: intag + + **type** = str; **default** = None + + path to h5 file in which the aimbes results are stored (checkpoint file) + +.. admonition:: use_rot + :class: intag + + **type** = bool; **default** = False + + use rotations of sum_k object to rotate 2 particle objects + +.. admonition:: it_1 + :class: intag + + **type** = int; **default** = 0 + + iteration to load 1 particle objects from aimbes + +.. admonition:: it_2 + :class: intag + + **type** = int; **default** = 0 + + iteration to load 2 particle objects from aimbes diff --git a/_sources/input_output/DMFT_input/input.rst.txt b/_sources/input_output/DMFT_input/input.rst.txt new file mode 100644 index 00000000..4a132b61 --- /dev/null +++ b/_sources/input_output/DMFT_input/input.rst.txt @@ -0,0 +1,36 @@ +Input +------- + +The aim of this section is to provide a comprehensive listing of all the input flags available for the `dmft_config.ini` input file. We begin by listing the possible sections and follow with the input parameters. + +.. toctree:: + :maxdepth: 1 + + general + solver + dft + gw + advanced + +Below an exhaustive list containing all the parameters marked by section. + +**[general]** + +afm_order; beta; block_threshold; broy_max_it; calc_energies; calc_mu_method; csc; dc; dc_dmft; dc_type; dlr_eps; dlr_wmax; enforce_off_diag; eta; fixed_mu_value; g0_conv_crit; g0_mix; g0_mix_type; gimp_conv_crit; gw_embedding; h_field; h_field_it; h_int_basis; h_int_type; h5_save_freq; J; jobname; load_sigma; load_sigma_iter; magmom; magnetic; mu_gap_gb2_threshold; mu_gap_occ_deviation; mu_initial_guess; mu_mix_const; mu_mix_per_occupation_offset; mu_update_freq; n_iter_dmft; n_iter_dmft_first; n_iter_dmft_per; n_iw; n_tau; n_w; noise_level_initial_sigma; occ_conv_crit; path_to_sigma; prec_mu; ratio_F4_F2; sampling_h5_save_freq; sampling_iterations; seedname; set_rot; sigma_conv_crit; sigma_mix; store_solver; U; U_crpa_threshold; U_prime; w_range; + +**[solver]** + + +type; idx_impurities; crm_dyson_solver; delta_interface; diag_delta; fit_max_moment; fit_max_n; fit_max_w; fit_min_n; fit_min_w; imag_threshold; legendre_fit; length_cycle; loc_n_max; loc_n_min; max_time; measure_chi_insertions; measure_chi; measure_density_matrix; measure_G_l; measure_pert_order; move_double; move_shift; n_cycles_tot; n_l; n_warmup_cycles; off_diag_threshold; perform_tail_fit; random_seed; length_cycle; max_time; measure_pert_order; move_double; n_cycles_tot; n_warmup_cycles; random_seed; crm_dyson_solver; diag_delta; fit_max_moment; fit_max_n; fit_max_w; fit_min_n; fit_min_w; improved_estimator; legendre_fit; length_cycle; max_time; measure_G_tau; measure_nnt; measure_pert_order; measure_statehist; n_cycles_tot; n_l; n_tau_k; n_warmup_cycles; off_diag_threshold; perform_tail_fit; random_seed; legendre_fit; measure_density_matrix; measure_G_l; measure_G_tau; n_l; bath_fit; calc_me; diag_delta; dmrg_maxm; dmrg_maxmB; dmrg_maxmI; dmrg_maxmIB; dmrg_tw; dt; enforce_gap; ignore_weight; maxm; maxmB; maxmI; maxmIB; n_bath; path_to_gs; ph_symm; refine_factor; state_storage; sweeps; tw; force_real; method; one_shot; tol; with_fock; + +**[dft]** + +dft_code; dft_exec; mpi_env; n_cores; n_iter; n_iter_first; plo_cfg; projector_type; store_eigenvals; w90_exec; w90_tolerance; + +**[gw]** + +code; h5_file; use_rot; it_1; it_2; + +**[advanced]** + +dc_factor; dc_fixed_occ; dc_fixed_value; dc_nominal; dc_orb_shift; dc_J; dc_U; map_solver_struct; mapped_solver_struct_degeneracies; pick_solver_struct; \ No newline at end of file diff --git a/_sources/input_output/DMFT_input/solver.rst.txt b/_sources/input_output/DMFT_input/solver.rst.txt new file mode 100644 index 00000000..21e8dcbe --- /dev/null +++ b/_sources/input_output/DMFT_input/solver.rst.txt @@ -0,0 +1,714 @@ +[solver]: solver specific parameters +------------------------------------ + +Here are the parameters that are uniquely dependent on the solver chosen. Some parameters are used within solid_dmft and some are passed directly into the triqs solver. +To see which parameters were passed to the solver for a given calculation, look at the triqs_solver_params in DMFT_input/solver in the h5 archive. +Solver-specific parameters are listed in the respective sections. + + + + + +.. admonition:: type + :class: intag + + **type** = str; **mandatory** + + type of solver chosen for the calculation, currently supports: + + * 'cthyb' + * 'ctint' + * 'ctseg' + * 'hubbardI' + * 'ftps' + * 'hartree' + +.. admonition:: idx_impurities + :class: intag + + **type** = list of int; **default** = None + + list of impurities this solver is supposed to solve + +cthyb +===== + +.. admonition:: crm_dyson_solver + :class: intag + + **type** = bool; **default** = False + + use CRM Dyson solver to extract Sigma_imp from G(tau) (conflict with legendre_fit and tail_fit) + set dlr_wmax and dlr_eps parameters in general section to use +crm_dlr_wmax: float; **default** = None + customized dlr_wmax for the crm_dyson_solver. Only used if crm_dyson_solver = True. + Set to dlr_wmax if crm_dlr_wmax = None. +crm_dlr_eps: float; **default** = None + customized dlr_eps for the crm_dyson_solver. Only used if crm_dyson_solver = True. + Set to dlr_eps if crm_dlr_eps = None. + +.. admonition:: delta_interface + :class: intag + + **type** = bool; **default** = False + + use delta interface in cthyb instead of input G0 + +.. admonition:: diag_delta + :class: intag + + **type** = bool; **default** = False + + approximate the hybridization function as diagonal when using the delta interface + +.. admonition:: fit_max_moment + :class: intag + + **type** = int; **default** = None + + max moment to be fitted. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_max_n + :class: intag + + **type** = int; **default** = None + + number of highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_max_w + :class: intag + + **type** = float; **default** = None + + highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_min_n + :class: intag + + **type** = int; **default** = None + + number of start matsubara frequency to start with. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_min_w + :class: intag + + **type** = float; **default** = None + + start matsubara frequency to start with. Only used if solver.perform_tail_fit = True + +.. admonition:: imag_threshold + :class: intag + + **type** = float; **default** = 1e-14 + + threshold for imag part of G0_tau. be warned if symmetries are off in projection scheme imag parts can occur in G0_tau + +.. admonition:: legendre_fit + :class: intag + + **type** = bool; **default** = False + + filter noise of G(tau) with G_l, cutoff is taken from n_l + +.. admonition:: length_cycle + :class: intag + + **type** = int; **mandatory** + + length of each cycle; number of sweeps before measurement is taken + +.. admonition:: loc_n_max + :class: intag + + **type** = int; **default** = None + + Restrict local Hilbert space to states with at most this number of particles + +.. admonition:: loc_n_min + :class: intag + + **type** = int; **default** = None + + Restrict local Hilbert space to states with at least this number of particles + +.. admonition:: max_time + :class: intag + + **type** = int; **default** = -1 + + maximum amount the solver is allowed to spend in each iteration + +.. admonition:: measure_chi_insertions + :class: intag + + **type** = int; **default** = 100 + + number of insertation for measurement of chi + +.. admonition:: measure_chi + :class: intag + + **type** = str; **default** = None + + measure the dynamic suszeptibility of an operator O, chi(O,O(tau)) + triqs.github.io/cthyb/unstable/guide/dynamic_susceptibility_notebook.html + Possible values for this flag are: + + * 'SzSz': spin susceptibility + * 'NN': occupation susceptibility + +.. admonition:: measure_density_matrix + :class: intag + + **type** = bool; **default** = False + + measures the impurity density matrix and sets also + use_norm_as_weight to true + +.. admonition:: measure_G_l + :class: intag + + **type** = bool; **default** = False + + measure Legendre Greens function + +.. admonition:: measure_pert_order + :class: intag + + **type** = bool; **default** = False + + measure perturbation order histograms: triqs.github.io/cthyb/latest/guide/perturbation_order_notebook.html. + The result is stored in the h5 archive under 'DMFT_results' at every iteration + in the subgroups 'pert_order_imp_X' and 'pert_order_total_imp_X' + +.. admonition:: move_double + :class: intag + + **type** = bool; **default** = True + + double moves in solver + +.. admonition:: move_shift + :class: intag + + **type** = bool; **default** = False + + shift moves in solver + +.. admonition:: n_cycles_tot + :class: intag + + **type** = int; **mandatory** + + total number of sweeps + +.. admonition:: n_l + :class: intag + + **type** = int; **default** = None + + number of Legendre coefficients. + Needed if measure_G_l=True or legendre_fit=True + +.. admonition:: n_warmup_cycles + :class: intag + + **type** = int; **mandatory** + + number of warmup cycles before real measurement sets in + +.. admonition:: off_diag_threshold + :class: intag + + **type** = float; **default** = 0.0 + + threshold for off-diag elements in Hloc0 + +.. admonition:: perform_tail_fit + :class: intag + + **type** = bool; **default** = False + + tail fitting if legendre is off? + +.. admonition:: random_seed + :class: intag + + **type** = str; **default** = None + + if None; **default** seed by triqs. + If specified the int will be used for random seeds. Careful, this will give the same random + numbers on all mpi ranks. + You can also pass a string that will convert the keywords it or rank on runtime, e.g., + 34788 * it + 928374 * rank will convert each iteration the variables it and rank for the random + seed + +ctint +===== + +.. admonition:: length_cycle + :class: intag + + **type** = int; **mandatory** + + length of each cycle; number of sweeps before measurement is taken + +.. admonition:: max_time + :class: intag + + **type** = int; **default** = -1 + + maximum amount the solver is allowed to spend in each iteration + +.. admonition:: measure_pert_order + :class: intag + + **type** = bool; **default** = False + + measure perturbation order histograms: triqs.github.io/cthyb/latest/guide/perturbation_order_notebook.html. + The result is stored in the h5 archive under 'DMFT_results' at every iteration + in the subgroups 'pert_order_imp_X' and 'pert_order_total_imp_X' + +.. admonition:: move_double + :class: intag + + **type** = bool; **default** = True + + double moves in solver + +.. admonition:: n_cycles_tot + :class: intag + + **type** = int; **mandatory** + + total number of sweeps + +.. admonition:: n_warmup_cycles + :class: intag + + **type** = int; **mandatory** + + number of warmup cycles before real measurement sets in + +.. admonition:: random_seed + :class: intag + + **type** = str; **default** = None + + if None; **default** seed by triqs. + If specified the int will be used for random seeds. Careful, this will give the same random + numbers on all mpi ranks. + You can also pass a string that will convert the keywords it or rank on runtime, e.g., + 34788 * it + 928374 * rank will convert each iteration the variables it and rank for the random + seed + +ctseg +===== + +.. admonition:: crm_dyson_solver + :class: intag + + **type** = bool; **default** = False + + use CRM Dyson solver to extract Sigma_imp from G(tau) (conflict with legendre_fit and tail_fit) + set dlr_wmax and dlr_eps parameters in general section to use +crm_dlr_wmax: float; **default** = None + customized dlr_wmax for the crm_dyson_solver. Only used if crm_dyson_solver = True. + Set to dlr_wmax if crm_dlr_wmax = None. +crm_dlr_eps: float; **default** = None + customized dlr_eps for the crm_dyson_solver. Only used if crm_dyson_solver = True. + Set to dlr_eps if crm_dlr_eps = None. + +.. admonition:: diag_delta + :class: intag + + **type** = bool; **default** = False + + approximate the hybridization function as diagonal when using the delta interface + +.. admonition:: fit_max_moment + :class: intag + + **type** = int; **default** = None + + max moment to be fitted. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_max_n + :class: intag + + **type** = int; **default** = None + + number of highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_max_w + :class: intag + + **type** = float; **default** = None + + highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_min_n + :class: intag + + **type** = int; **default** = None + + number of start matsubara frequency to start with. Only used if solver.perform_tail_fit = True + +.. admonition:: fit_min_w + :class: intag + + **type** = float; **default** = None + + start matsubara frequency to start with. Only used if solver.perform_tail_fit = True + +.. admonition:: improved_estimator + :class: intag + + **type** = bool; **default** = False + + measure improved estimators + Sigma_iw will automatically be calculated via + http://dx.doi.org/10.1103/PhysRevB.85.205106 + +.. admonition:: legendre_fit + :class: intag + + **type** = bool; **default** = False + + filter noise of G(tau) with G_l, cutoff is taken from n_l + +.. admonition:: length_cycle + :class: intag + + **type** = int; **mandatory** + + length of each cycle; number of sweeps before measurement is taken + +.. admonition:: max_time + :class: intag + + **type** = int; **default** = -1 + + maximum amount the solver is allowed to spend in each iteration + +.. admonition:: measure_G_tau + :class: intag + + **type** = bool; **default** = True + + should the solver measure G(tau)? + +.. admonition:: measure_nnt + :class: intag + + **type** = boold; **default** = False + + measure two particle density-density correlation function (suszeptibility) + +.. admonition:: measure_pert_order + :class: intag + + **type** = bool; **default** = False + + measure perturbation order histograms: triqs.github.io/cthyb/latest/guide/perturbation_order_notebook.html. + The result is stored in the h5 archive under 'DMFT_results' at every iteration + in the subgroups 'pert_order_imp_X' and 'pert_order_total_imp_X' + +.. admonition:: measure_statehist + :class: intag + + **type** = bool; **default** = False + + measure state histogram, i.e. diagonal components of many body density matrix + +.. admonition:: n_cycles_tot + :class: intag + + **type** = int; **mandatory** + + total number of sweeps + +.. admonition:: n_l + :class: intag + + **type** = int; **default** = None + + number of Legendre coefficients. + Needed if measure_G_l=True or legendre_fit=True + +.. admonition:: n_tau_k + :class: intag + + **type** = int; **default** = 10001 + + number imaginary time points for dynamic interactions + +.. admonition:: n_warmup_cycles + :class: intag + + **type** = int; **mandatory** + + number of warmup cycles before real measurement sets in + +.. admonition:: off_diag_threshold + :class: intag + + **type** = float; **default** = 0.0 + + threshold for off-diag elements in Hloc0 + +.. admonition:: perform_tail_fit + :class: intag + + **type** = bool; **default** = False + + tail fitting if legendre is off? + +.. admonition:: random_seed + :class: intag + + **type** = str; **default** = None + + if None; **default** seed by triqs. + If specified the int will be used for random seeds. Careful, this will give the same random + numbers on all mpi ranks. + You can also pass a string that will convert the keywords it or rank on runtime, e.g., + 34788 * it + 928374 * rank will convert each iteration the variables it and rank for the random + seed + +hubbardI +======== + +.. admonition:: legendre_fit + :class: intag + + **type** = bool; **default** = False + + filter noise of G(tau) with G_l, cutoff is taken from n_l + +.. admonition:: measure_density_matrix + :class: intag + + **type** = bool; **default** = False + + measures the impurity density matrix and sets also + use_norm_as_weight to true + +.. admonition:: measure_G_l + :class: intag + + **type** = bool; **default** = False + + measure Legendre Greens function + +.. admonition:: measure_G_tau + :class: intag + + **type** = bool; **default** = True + + should the solver measure G(tau)? + +.. admonition:: n_l + :class: intag + + **type** = int; **default** = None + + number of Legendre coefficients. + needed if measure_G_l=True or legendre_fit=True + +ftps parameters +=============== + +.. admonition:: bath_fit + :class: intag + + **type** = bool; **mandatory** + + DiscretizeBath vs BathFitter + +.. admonition:: calc_me + :class: intag + + **type** = bool; **default** = True + + calculate only symmetry-inequivalent spins/orbitals, symmetrized afterwards + +.. admonition:: diag_delta + :class: intag + + **type** = bool; **default** = False + + option to remove off-diagonal terms in the hybridization function + available for ftps + +.. admonition:: dmrg_maxm + :class: intag + + **type** = int; **default** = 100 + + TODO: add description + +.. admonition:: dmrg_maxmB + :class: intag + + **type** = int; **default** = 100 + + maximal bath-bath bond dimensions + +.. admonition:: dmrg_maxmI + :class: intag + + **type** = int; **default** = 100 + + maximal imp-imp bond dimensions + +.. admonition:: dmrg_maxmIB + :class: intag + + **type** = int; **default** = 100 + + maximal imp-bath bond dimensions + +.. admonition:: dmrg_tw + :class: intag + + **type** = float; **default** 1e-9 + + truncated weight for every link + +.. admonition:: dt + :class: intag + + **type** = float; **mandatory** + + time step + +.. admonition:: enforce_gap + :class: intag + + **type** = list of float; **default** = None + + enforce gap in DiscretizeBath between interval + +.. admonition:: ignore_weight + :class: intag + + **type** = float; **default** = 0.0 + + ignore weight of peaks for bath fitter + +.. admonition:: maxm + :class: intag + + **type** = int; **default** = 100 + + TODO: write description + +.. admonition:: maxmB + :class: intag + + **type** = int; **default** = 100 + + maximal bath-bath bond dimensions + +.. admonition:: maxmI + :class: intag + + **type** = int; **default** = 100 + + maximal imp-imp bond dimensions + +.. admonition:: maxmIB + :class: intag + + **type** = int; **default** = 100 + + maximal imp-bath bond dimensions + +.. admonition:: n_bath + :class: intag + + **type** = int; **default** = 0 + + number of bath sites + +.. admonition:: path_to_gs + :class: intag + + **type** = string; **default** = None + + location of GS if already present. Use 'postprocess' to skip solver and go directly to post-processing + of previously terminated time-evolved state + +.. admonition:: ph_symm + :class: intag + + **type** = bool; **default** = False + + particle-hole symmetric problem + +.. admonition:: refine_factor + :class: intag + + **type** = int; **default** = 1 + + rerun ftps cycle with increased accuracy + +.. admonition:: state_storage + :class: intag + + **type** = string; **default** = './' + + location of large MPS states + +.. admonition:: sweeps + :class: intag + + **type** = int; **default** = 10 + + Number of DMRG sweeps + +.. admonition:: tw + :class: intag + + **type** = float; **default** 1e-9 + + truncated weight for every link + +hartree +================ + +.. admonition:: force_real + :class: intag + + **type** = bool; **default** = True + + force the self energy from Hartree fock to be real + +.. admonition:: method + :class: intag + + **type** = str; **default** = "krylov" + + method for root finder. Only used if one_shot=False, see scipy.optimize.root for options. + +.. admonition:: one_shot + :class: intag + + **type** = bool; **default** = False + + Perform a one-shot or self-consitent root finding in each DMFT step of the Hartree solver. + +.. admonition:: tol + :class: intag + + **type** = float; **default** = 1e-5 + + tolerance for root finder if one_shot=False. + +.. admonition:: with_fock + :class: intag + + **type** = bool; **default** = False + + include Fock exchange terms in the self-energy diff --git a/_sources/input_output/DMFT_output/iterations.rst.txt b/_sources/input_output/DMFT_output/iterations.rst.txt new file mode 100644 index 00000000..8b36ac3d --- /dev/null +++ b/_sources/input_output/DMFT_output/iterations.rst.txt @@ -0,0 +1,150 @@ + +Iterations +---------- + +List of the main outputs for solid_dmft for every iteration. + +.. warning:: + + According to the symmetries found by the solver, the resulting indexing of the triqs.Gf objects might vary. + In order to retrieve the indices call the Gf.indices method. + + +Legend: + +* iiter = iteration number: range(0, n_dmft_iter) +* ish = shell number: range(0, n_shells) +* icrsh = correlated shell number: range(0, n_corr_shells) +* iineq = inequivalent correlated shell number: range(0, n_inequiv_shells) +* iorb = orbital number: range(0, n_orbitals) +* sp = spin label +* ikpt = k-point label, the order is the same as given in the wannier90 input: range(0, n_kpt) +* iband = band label before downfolding, n_bands = number of bands included in the disentanglement window during the wannierization: range(0, n_bands) + + +[observables] +============= + +.. admonition:: chemical_potential_pre: + :class: intag + **type=** float; + + Chemical potential before the solver iteration. + +.. admonition:: chemical_potential_post: + :class: intag + **type=** float; + + Chemical potential after the solver iteration. + +.. admonition:: DC_energ: + :class: intag + **type=** arr(float); + + **indices=** [iorb] + + Double counting correction. + +.. admonition:: DC_pot: + :class: intag + + **type=** arr(float); + + **indices=** [iiter] + + Double counting potential.**what exactly is the indexing here?** + +.. admonition:: Delta_time_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + Imaginary time hybridization function. + +.. admonition:: G0_freq_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + Imaginary frequency Weiss field. + +.. admonition:: G0_time_orig_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + ?? + +.. admonition:: G_imp_freq_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + Imaginary frequency impurity green function. + +.. admonition:: G_imp_l_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + Legendre representation of the impurity green function. + +.. admonition:: G_imp_time_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + Imaginary time representation of the impurity green function. + +.. admonition:: Sigma_freq_{iimp}: + :class: intag + + **type=** triqs.gf.block_gf.BlockGf + + + Imaginary frequency self-energy obtained from the Dyson equation. + +.. admonition:: deltaN: + :class: intag + + **type=** dict(arr(float)) + + **indices=** [ispin][ikpt][iband, iband] + + + Correction to the DFT occupation of a particular band: + +.. admonition:: deltaN_trace: + :class: intag + + **type=** dict + + **indices=** [ispin] + + + Total sum of the charge correction for an impurity. + +.. admonition:: dens_mat_pre: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][*same as block structure Gf*] + + Density matrix before the solver iteration. + +.. admonition:: dens_mat_post: + :class: intag + + **type=** arr(dict) + + **indices=** [ispin][iimp] + + Density matrix after the solver iteration. + diff --git a/_sources/input_output/DMFT_output/observables.rst.txt b/_sources/input_output/DMFT_output/observables.rst.txt new file mode 100644 index 00000000..3cfeaa80 --- /dev/null +++ b/_sources/input_output/DMFT_output/observables.rst.txt @@ -0,0 +1,230 @@ + +Observables/convergence_obs +--------------------------- + +List of the single-particle observables obtained in a single DMFT iteration + + +Legend: + +* iiter = iteration number: range(0, n_dmft_iter) +* iimp = impurity number: range(0, n_imp) +* iorb = orbital number: range(0, n_orbitals) +* ispin = spin label, 'up' or 'down' in collinear calculations + + +[observables] +============= + +.. admonition:: iteration: + :class: intag + + **type=** arr(int); + + **indices=** [iiter] + + Number of the iteration. + +.. admonition:: mu: + :class: intag + + **type=** arr(float); + + **indices=** [iiter] + + Chemical potential fed to the solver at the present iteration (pre-dichotomy adjustment). + +.. admonition:: orb_gb2: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter, iorb] + + Orbital resolved G(beta/2), proxy for projected density of states at the Fermi level. Low value of orb_gb2 correlate with the presence of a gap. + +.. admonition:: imp_gb2: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter] + + Site G(beta/2), proxy for total density of states at the Fermi level. Low values correlate with the presence of a gap. + +.. admonition:: orb_Z: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter, iorb] + + Orbital resolved quasiparticle weight (eff_mass/renormalized_mass). As obtained by linearizing the self-energy around :math:`\omega = 0` + + .. math:: + + Z = \bigg( 1- \frac{\partial Re[\Sigma]}{\partial \omega} \bigg|_{\omega \rightarrow 0} \bigg)^{-1} \\ + + +.. admonition:: orb_occ: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter, iorb] + + Orbital resolved mean site occupation. + +.. admonition:: imp_occ: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter] + + Total mean site occupation. + + +.. admonition:: E_tot: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + Total energy, computed as: + + .. math:: + + E_{tot} = E_{DFT} + E_{corr} + E_{int} -E_{DC} + + +.. admonition:: E_dft: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + :math:`E_{DFT}` in the total energy expression. System energy as computed by the DFT code at every csc iteration. + + + +.. admonition:: E_bandcorr: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + :math:`E_{corr}` in the total energy expression. DMFT correction to the kinetic energy. + +.. admonition:: E_corr_en: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + Sum of the E_DC and E_int_imp terms. + +.. admonition:: E_int_imp: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + :math:`E_{int}` in the total energy expression. Energy contribution from the electronic interactions within the single impurity. + + +.. admonition:: E_DC: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + :math:`E_{DC}` in the total energy expression. Double counting energy contribution. + + + + +[convergence_obs] +================= + +.. admonition:: iteration: + :class: intag + + **type=** arr(int); + + **indices=** [iiter] + + Number of the iteration. + +.. admonition:: d_mu: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + Chemical potential stepwise difference. + + +.. admonition:: d_orb_occ: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter,iorb] + + Orbital occupation stepwise difference. + +.. admonition:: d_imp_occ: + :class: intag + + **type=** arr(dict) + + **indices=** [iimp][ispin][iiter] + + Impurity occupation stepwise difference. + +.. admonition:: d_Gimp: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + DMFT self-consistency condition | Gloc - Gimp | difference of current iteration. + +.. admonition:: d_G0: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + Weiss field stepwise difference. + +.. admonition:: d_Sigma: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + Impurity self-energy stepwise difference. + + +.. admonition:: d_Etot: + :class: intag + + **type=** arr(float) + + **indices=** [iiter] + + Total energy stepwise difference. + + diff --git a/_sources/input_output/DMFT_output/results.rst.txt b/_sources/input_output/DMFT_output/results.rst.txt new file mode 100644 index 00000000..c1568797 --- /dev/null +++ b/_sources/input_output/DMFT_output/results.rst.txt @@ -0,0 +1,28 @@ + +************************************* +Output / results +************************************* +The *DMFT_results* group contains the output of the DMFT iterations. The subgroups contained here fall under two main categories: + +* **Iterations**: relevant quantities for the DMFT solutions, such as Weiss field, Green function, extracted self-energy, etc. + Normally these are solver dependent. + +* **Observables**: Single-particles quantities that can be measured with the aid of the green function. Includes chemical potential, estimate of the quasiparticle weight, impurity occupation, total energy, energy contributions, etc. The convergence_obs subgroup lists the stepwise difference in the observables' value as the calculation progresses and can be used as a proxy for convergence. + +Group structure +=============== + +.. image:: ./group_structure.png + :width: 100% + :align: center + + +Subgroups +=================== +.. toctree:: + :maxdepth: 1 + + iterations + observables + + diff --git a/_sources/install.rst.txt b/_sources/install.rst.txt new file mode 100644 index 00000000..ef7acb9a --- /dev/null +++ b/_sources/install.rst.txt @@ -0,0 +1,109 @@ +.. highlight:: bash +.. _installation: + +Installation +############# + +Prerequisites +------------- + +#. The :ref:`TRIQS ` library, see `TRIQS installation instruction `_. + In the following, we assume that :ref:`TRIQS `, `triqs/dft_tools `_, and at least one of the impurity solvers `available in TRIQS `_, e.g. cthyb, HubbardI, ctseg, FTPS, or ctint is installed in the directory ``path_to_triqs``. + +#. Make sure to install besides the triqs requirements also the python packages:: + + $ pip3 install --user scipy argparse pytest + +#. To build the documentation the following extra python packages are needed:: + + $ pip3 install --user sphinx sphinx-autobuild pandoc nbsphinx linkify-it-py sphinx_rtd_theme myst-parser + + +Installation via pip +-------------------- + +You can install the latest solid_dmft release simply via pip (PyPi): +``` +pip install solid_dmft +``` +However, please make sure that you have a valid TRIQS and TRIQS/DFTTools installation matching the version of solid_dmft. Furthermore, you need at least one of the supported DMFT impurity solvers installed to use solid_dmft. + +Manual installation via CMake +----------------------------- + +We provide hereafter the build instructions in the form of a documented bash script. Please change the variable INSTALL_PREFIX to point to your TRIQS installation directory:: + + INSTALL_PREFIX=/path/to/triqs + # source the triqsvars.sh file from your TRIQS installation to load the TRIQS environment + source $(INSTALL_PREFIX)/share/triqs/triqsvars.sh + + # clone the flatironinstitute/solid_dmft repository from GitHub + git clone https://github.com/flatironinstitute/solid_dmft solid_dmft.src + + # checkout the branch of solid_dmft matching your triqs version. + # For example if you use the 3.1.x branch of triqs, dfttools. and cthyb + git checkout 3.1.x + + # Create and move to a new directory where you will compile the code + mkdir solid_dmft.build && cd solid_dmft.build + + # In the build directory call cmake, including any additional custom CMake options, see below + cmake ../solid_dmft.src + + # Compile the code, run the tests, and install the application + make test + make install + +This installs solid_dmft into your TRIQS installation folder. + +To build ``solid_dmft`` with documentation you should run:: + + $ cmake path/to/solid_dmft.src -DBuild_Documentation=ON + $ make + $ sphinx-autobuild path/to/solid_dmft.src/doc ./doc/html -c ./doc/ + +The last line will automatically search for changes in your src dir, rebuild the documentation, +and serve it locally as under `127.0.0.1:8000`. + +Docker files & images +--------------------- + +We `provide docker files `_ to build solid_dmft inside a docker container with all dependencies and instructions on how to integrate the connected DFT codes as well. Additionally, we host a most recent unstable version of the docker image used for the github CI `on dockerhub `_. To use this version, which includes the cthyb solver, the hubbardI solver, dfttools, and the maxent package, pull the following image:: + + $ docker pull materialstheory/solid_dmft_ci + + +Version compatibility +--------------------- + +Keep in mind that the version of ``solid_dmft`` must be compatible with your TRIQS library version, +see :ref:`TRIQS website `. +In particular the Major Version numbers have to be the same. +To use a particular version, go into the directory with the sources, and look at all available branches:: + + $ cd solid_dmft.src && git branch -vv + +Checkout the version of the code that you want:: + + $ git checkout 3.1.x + +and follow steps 3 to 6 above to compile the code. + +Custom CMake options +-------------------- + +The compilation of ``solid_dmft`` can be configured using CMake-options:: + + cmake ../solid_dmft.src -DOPTION1=value1 -DOPTION2=value2 ... + ++-----------------------------------------------------------------+-----------------------------------------------+ +| Options | Syntax | ++=================================================================+===============================================+ +| Specify an installation path other than path_to_triqs | -DCMAKE_INSTALL_PREFIX=path_to_solid_dmft | ++-----------------------------------------------------------------+-----------------------------------------------+ +| Build in Debugging Mode | -DCMAKE_BUILD_TYPE=Debug | ++-----------------------------------------------------------------+-----------------------------------------------+ +| Disable testing (not recommended) | -DBuild_Tests=OFF | ++-----------------------------------------------------------------+-----------------------------------------------+ +| Build the documentation | -DBuild_Documentation=ON | ++-----------------------------------------------------------------+-----------------------------------------------+ diff --git a/_sources/issues.rst.txt b/_sources/issues.rst.txt new file mode 100644 index 00000000..b7036f85 --- /dev/null +++ b/_sources/issues.rst.txt @@ -0,0 +1,52 @@ +.. _issues: + +******************** +Support & contribute +******************** + +Seeking help +============ + +If you have any questions please ask them on the solid_dmft github discussion page: +``_. However, note +that solid_dmft is targeted at experienced users of DMFT, and we can only provide +technial support for the code itself not for theory questions about the utilized methods. + +Also make sure to ask only questions relevant for solid_dmft. For questions +regarding other parts of TRIQS use the discussions page of the respective TRIQS +application. + +Take also a look at the :ref:`tutorials` section of the documentation for examples, and +the official `TRIQS tutorial page `_ for even more +tutorials. + + +Improving solid_dmft +==================== + +Please post suggestions for new features on the `github discussion page +`_ or create +directly a pull request with new features or helpful postprocessing scripts +via github. + +Reporting issues +**************** + +Please report all problems and bugs directly at the github issue page +``_. In order to make +it easier for us to solve the issue please follow these guidelines: + +#. In all cases specify which version of the application you are using. You can + find the version number in the file :file:`CMakeLists.txt` at the root of the + application sources. + +#. If you have a problem during the installation, give us information about + your operating system and the compiler you are using. Include the outputs of + the ``cmake`` and ``make`` commands as well as the ``CMakeCache.txt`` file + which is in the build directory. Please include these outputs in a + `gist `_ file referenced in the issue. + +#. If you are experiencing a problem during the execution of the application, provide + a script which allows to quickly reproduce the problem. + +Thanks! diff --git a/_sources/md_notes/docker.md.txt b/_sources/md_notes/docker.md.txt new file mode 100644 index 00000000..b9c00950 --- /dev/null +++ b/_sources/md_notes/docker.md.txt @@ -0,0 +1,75 @@ + +# Docker + +There are Dockerfiles for images based on Ubuntu 20 ("focal") with OpenMPI (for non-Cray clusters) or MPICH (for Cray clusters like Daint), IntelMKL, VASP, wannier90 2.1, triqs 3.x.x, and Triqs MaxEnt included. + +## Building the docker image +The Dockerfile is built with this command, where `` could be `3.0.0`: +``` +docker build -t triqs_mpich: -f mpich_dockerfile ./ +docker build -t triqs_openmpi: -f openmpi_dockerfile ./ +``` +Note that you need a working, modified vasp version as archive (csc_vasp.tar.gz) in this directory to make the CSC calculation work. + +## Pulling a docker image +Alternatively, you can pull an already-compiled image from the ETH gitlab container registry. +First [log in with a personal access token](https://gitlab.ethz.ch/help/user/packages/container_registry/index#authenticating-to-the-gitlab-container-registry). +This token you can save into a file and then log in into the registry with +``` +cat | docker login registry.ethz.ch -u --password-stdin +``` +and then run +``` +docker pull registry.ethz.ch/d-matl-theory/uni-dmft/: +``` +Just make sure that the version is the one that you want to have, it might not yet contain recent changes or bug fixes. Alternatively, there is the [official triqs docker image](https://hub.docker.com/r/flatironinstitute/triqs/), which however is not optimized for use on Daint. + +## Getting docker images onto CSCS daint +First, you load the desired docker images with [sarus on daint](https://user.cscs.ch/tools/containers/sarus/). +Then there are two ways of getting the image on daint: + +(1) For gitlab images (don't forget that you need the personal access token) or other, public image this can be done via: +``` +sarus pull registry.ethz.ch/d-matl-theory/uni-dmft/: +sarus pull materialstheory/triqs +``` +Pulling from the gitlab didn't work on daint when I tried, which leaves you with the second option. + +(2) If you wish to use your locally saved docker image, you first have to save it +``` +docker save --output=docker-triqs.tar : +``` +and then upload the tar to daint and then load it via: +``` +sarus load docker-triqs.tar : +``` +then you can run it as shown in the example files. + +### Running a docker container + +You can start a docker container with either of these commands +``` +docker run --rm -it -u $(id -u) -v ~$PWD:/work : bash +docker run --rm -it --shm-size=4g -e USER_ID=`id -u` -e GROUP_ID=`id -g` -p 8378:8378 -v $PWD:/work : bash +``` +where the second command adds some important flags. +- The -e flags will translate your current user and group id into the container and make sure writing permissions are correct for the mounted volumes. +- The option --shm-size, which increases shared memory size. +This is hard coded in Docker to 64m and is often not sufficient and will produce SIBUS 7 errors when starting programs with mpirun! (see also https://github.com/moby/moby/issues/2606). +- The '-v' flags mounts a host directory as the docker directory given after the colon. +This way docker can permanently save data; otherwise, it will restart with clean directories each time. +Make sure you mount all the directories you need (where you save your data, where your uni-dmft directory is, ...)! +- All the flags are explained in 'docker run --help'. + +Inside the docker, you can normally execute program. To run uni-dmft, for example, use +``` +mpirun -n 4 python /run_dmft.py +``` +To start a jupyter-lab server from the current path, use +``` +jupyter.sh +``` +All these commands you can execute directly by just adding them to the `docker run ... bash` command with the `-c` flag, e.g. +``` +docker run --rm -it --shm-size=4g -e USER_ID=`id -u` -e GROUP_ID=`id -g` -p 8378:8378 -v $PWD:/work : bash -c 'cd /work && mpirun -n 4 python /run_dmft.py' +``` diff --git a/_sources/md_notes/run_cluster.md.txt b/_sources/md_notes/run_cluster.md.txt new file mode 100644 index 00000000..f17a69bf --- /dev/null +++ b/_sources/md_notes/run_cluster.md.txt @@ -0,0 +1,70 @@ +# Running solid_dmft on a cluster + +## Running on CSCS daint + +in some directories one can also find example job files to run everything on +daint. Note, that one has to first load the desired docker images with sarus +on daint: https://user.cscs.ch/tools/containers/sarus/, see the README.md in the `/Docker` folder. + +## one shot job on daint + +one shot is quite straight forward. Just get the newest version of these +scripts, go to a working directory and then create job file that looks like +this: +``` +#!/bin/bash +#SBATCH --job-name="svo-test" +#SBATCH --time=1:00:00 +#SBATCH --nodes=2 +#SBATCH --ntasks-per-node=36 +#SBATCH --account=eth3 +#SBATCH --ntasks-per-core=1 +#SBATCH --constraint=mc +#SBATCH --partition=normal +#SBATCH --output=out.%j +#SBATCH --error=err.%j + +#======START===== + +srun sarus run --mpi --mount=type=bind,source=$SCRATCH,destination=$SCRATCH --mount=type=bind,source=/apps,destination=/apps load/library/triqs-2.1-vasp bash -c "cd $PWD ; python /apps/ethz/eth3/dmatl-theory-git/solid_dmft/solid_dmft.py" +``` +thats it. This line automatically runs the docker image and executes the +`solid_dmft.py` script. Unfortunately the new sarus container enginge does not mounts automatically user directories. Therefore, one needs to specify with `--mount` to mount the scratch and apps folder manually. Then, one executes in the container bash to first go into the current dir and then executes python and the dmft script. + +## CSC calculations on daint + +CSC calculations need the parameter `csc = True` and the mandatory parameters from the group `dft`. +Then, solid_dmft automatically starts VASP on as many cores as specified. +Note that VASP runs on cores that are already used by solid_dmft. +This minimizes the time that cores are idle while not harming the performance because these two processes are never active at the same time. + +For the latest version in the Dockerfile_MPICH, we need the sarus version >= 1.3.2, which can be loaded from the daint modules as `sarus/1.3.2` but isn't the default version. +The reason for this is that only from this sarus version on, having more than one version of libgfortran in the docker image is supported, which comes from Vasp requiring the use of gfortran7 and everything else using gfortran9. + +A slurm job script should look like this: +``` +#!/bin/bash +#SBATCH --job-name="svo-csc-test" +#SBATCH --time=4:00:00 +#SBATCH --nodes=4 +#SBATCH --ntasks-per-node=36 +#SBATCH --account=eth3 +#SBATCH --ntasks-per-core=1 +#SBATCH --constraint=mc +#SBATCH --partition=normal +#SBATCH --output=out.%j +#SBATCH --error=err.%j + +# path to solid_dmft.py script +SCRIPTDIR=/apps/ethz/eth3/dmatl-theory-git/solid_dmft/solid_dmft.py +# Sarus image that is utilized +IMAGE=load/library/triqs_mpich + +srun --cpu-bind=none --mpi=pmi2 sarus run --mount=type=bind,source=/apps,destination=/apps --mount=type=bind,source=$SCRATCH,destination=$SCRATCH --workdir=$PWD $IMAGE python3 $SCRIPTDIR +``` +Note that here the mpi option is given to the `srun` command and not the sarus command, as for one-shot calculations. +This is important for the python to be able to start VASP. + +In general I found 1 node for Vasp is in most cases enough, which means that we set `n_cores` in the dmft\_config.ini to 36 here. +Using more than one node results in a lot of MPI communication, which in turn slows down the calculation significantly. +For a 80 atom unit cell 2 nodes are useful, but for a 20 atom unit cell not at all! diff --git a/_sources/md_notes/run_locally.md.txt b/_sources/md_notes/run_locally.md.txt new file mode 100644 index 00000000..8eeaccc2 --- /dev/null +++ b/_sources/md_notes/run_locally.md.txt @@ -0,0 +1,25 @@ +# Run on your machine + +## CSC calculations locally + +Here one needs a special docker image with vasp included. This can be done by +building the Dockerfile in `/Docker`. +Then start this docker image as done above and go to the directory with all +necessary input files (start with `svo-csc` example). You need a pre-converged +CHGCAR and preferably a WAVECAR, a set of INCAR, POSCAR, KPOINTS and POTCAR +files, the PLO cfg file `plo.cfg` and the usual DMFT input file +`dmft_config.ini`, which specifies the number of ranks for the DFT code and the DFT code executable in the `[dft]` section. + +The whole machinery is started by calling `solid_dmft.py` as for one-shot calculations. Importantly the flag `csc = True` has to be set in the general section in the config file. Then: +``` +mpirun -n 12 /work/solid_dmft.py +``` +The programm will then run the `csc_flow_control` routine, which starts VASP accordingly by spawning a new child process. After VASP is finished it will run the converter, run the dmft_cycle, and then VASP again until the given +limit of DMFT iterations is reached. This should also work on most HPC systems (tested on slurm with OpenMPI), as the the child mpirun call is performed without the slurm environment variables. This tricks slrum into starting more ranks than it has available. Note, that maybe a slight adaption of the environment variables is needed to make sure VASP is found on the second node. The variables are stored `args` in the function `start_vasp_from_master_node` of the module `csc_flow.py` + +One remark regarding the number of iterations per DFT cycle. Since VASP uses a +block Davidson scheme for minimizing the energy functional not all eigenvalues +of the Hamiltonian are updated simultaneously therefore one has to make several +iterations before the changes from DMFT in the charge density are completely +considered. The default value are __6__ DFT iterations, which is very +conservative, and can be changed by changing the config parameter `n_iter` in the `[dft]` section. In general one should use `IALGO=90` in VASP, which performs an exact diagonalization rather than a partial diagonalization scheme, but this is very slow for larger systems. diff --git a/_sources/md_notes/vasp_csc.md.txt b/_sources/md_notes/vasp_csc.md.txt new file mode 100644 index 00000000..9b950e93 --- /dev/null +++ b/_sources/md_notes/vasp_csc.md.txt @@ -0,0 +1,107 @@ +# Interface to VASP + + +## General remarks + +One can use the official Vasp 5.4.4 patch 1 version with a few modifications: + +- there is a bug in `fileio.F` around line 1710 where the code tries print out something like "reading the density matrix from Gamma", but this should be done only by the master node. Adding a `IF (IO%IU0>=0) THEN ... ENDIF` around it fixes this +- in the current version of the dft_tools interface the file `LOCPROJ` should contain the fermi energy in the header. Therefore one should replace the following line in `locproj.F`: +``` +WRITE(99,'(4I6," # of spin, # of k-points, # of bands, # of proj" )') NS,NK,NB,NF +``` +by +``` +WRITE(99,'(4I6,F12.7," # of spin, # of k-points, # of bands, # of proj, Efermi" )') W%WDES%NCDIJ,NK,NB,NF,EFERMI +``` +and add the variable `EFERMI` accordingly in the function call. +- Vasp gets sometimes stuck and does not write the `OSZICAR` file correctly due to a stuck buffer. Adding a flush to the buffer to have a correctly written `OSZICAR` to extract the DFT energy helps, by adding in `electron.F` around line 580 after +``` +CALL STOP_TIMING("G",IO%IU6,"DOS") +``` +two lines: +``` +flush(17) +print *, ' ' +``` +- this one is __essential__ for the current version of the DMFT code. Vasp spends a very long time in the function `LPRJ_LDApU` and this function is not needed! It is used for some basic checks and a manual LDA+U implementation. Removing the call to this function in `electron.F` in line 644 speeds up the calculation by up to 30%! If this is not done, Vasp will create a GAMMA file each iteration which needs to be removed manually to not overwrite the DMFT GAMMA file! +- make sure that mixing in VASP stays turned on. Don't set IMIX or the DFT steps won't converge! + +## LOCPROJ bug for individual projections: + + +Example use of LOCPROJ for t2g manifold of SrVO3 (the order of the orbitals seems to be mixed up... this example leads to x^2 -y^2, z^2, yz... ) +In the current version there is some mix up in the mapping between selected orbitals in the INCAR and actual selected in the LOCPROJ. This is +what the software does (left side is INCAR, right side is resulting in the LOCPROJ) + +* xy -> x2-y2 +* yz -> z2 +* xz -> yz +* x2-y2 -> xz +* z2 -> xy + +``` +LOCPROJ = 2 : dxz : Pr 1 +LOCPROJ = 2 : dx2-y2 : Pr 1 +LOCPROJ = 2 : dz2 : Pr 1 +``` +However, if the complete d manifold is chosen, the usual VASP order (xy, yz, z2, xz, x2-y2) is obtained in the LOCPROJ. This is done as shown below +``` +LOCPROJ = 2 : d : Pr 1 +``` + +## convergence of projectors with Vasp + + +for a good convergence of the projectors it is important to convergence the wavefunctions to high accuracy. Otherwise this often leads to off-diagonal elements in the the local Green's function. To check convergence pay attention to the rms and rms(c) values in the Vasp output. The former specifies the convergence of the KS wavefunction and the latter is difference of the input and out charge density. Note, this does not necessarily coincide with good convergence of the total energy in DFT! Here an example of two calculations for the same system, both converged down to `EDIFF= 1E-10` and Vasp stopped. First run: + +``` + N E dE d eps ncg rms rms(c) +... +DAV: 25 -0.394708006287E+02 -0.65893E-09 -0.11730E-10 134994 0.197E-06 0.992E-05 +... +``` +second run with different smearing: +``` +... +DAV: 31 -0.394760088659E+02 0.39472E-09 0.35516E-13 132366 0.110E-10 0.245E-10 +... +``` +The total energy is lower as well. But more importantly the second calculation produces well converged projectors preserving symmetries way better, with less off-diagonal elements in Gloc, making it way easier for the solver. Always pay attention to rms. + +## Enabling CSC calculations with Wannier90 projectors + + +You basically only need to add two things to have W90 run in Vasp's CSC mode, all in `electron.F`: + +- the line `USE mlwf` at the top of the `SUBROUTINE ELMIN` together with all the other `USE ...` statements. +- right below where you removed the call to `LPRJ_LDApU` (see above, around line 650), there is the line `CALL LPRJ_DEALLOC_COVL`. Just add the following block right below, inside the same "if" as the `CALL LPRJ_DEALLOC_COVL`: +``` +IF (WANNIER90()) THEN + CALL KPAR_SYNC_ALL(WDES,W) + CALL MLWF_WANNIER90(WDES,W,P,CQIJ,T_INFO,LATT_CUR,INFO,IO) +ENDIF +``` +Then, the only problem you'll have is the order of compilation in the `.objects` file. It has to change because now electron.F references mlwf. For that move the entries `twoelectron4o.o` and `mlwf.o` (in this order) up right behind `linear_optics.o`. Then, move the lines from `electron.o` to `stm.o` behind the new position of `mlwf.o`. + +Remarks: + +- W90-CSC requires Wannier90 v3, in v2 the tag write_u_matrices does not work correctly. Until now, linking W90 v3 to Vasp with the `DVASP2WANNIER90v2` has worked without any problems even though it is not officially supported +- symmetries in Vasp should remain turned on, otherwise the determination of rotation matrices in dft_tools' wannier converter will most likely fail + +## Speeding up by not writing projectors at every step + + +This is very important for CSC calculations with W90 but also speeds up the PLO-based ones. + +Writing the Wannier projectors is a time consuming step (and to a lesser extent, the PLO projectors) and basically needs only to be done in the DFT iteration right before a DMFT iteration. Therefore, solid_dmft writes the file `vasp.suppress_projs` that tells Vasp when __not__ to compute/write the projectors. This requires two small changes in `electron.F` in the Vasp source code: + +- adding the definition of a logical variable where all other variables are defined for `SUBROUTINE ELMIN`, e.g. around line 150, by inserting `LOGICAL :: LSUPPRESS_PROJS_EXISTS` +- go to the place where you removed the call to `LPRJ_LDApU` (see above, around line 650). This is inside a `IF (MOD(INFO%ICHARG,10)==5) THEN ... ENDIF` block. This whole block has to be disabled when the file `vasp.suppress_projs` exists. So, right under this block's "IF", add the lines +``` +INQUIRE(FILE='vasp.suppress_projs',& + EXIST=LSUPPRESS_PROJS_EXISTS) + +IF (.NOT. LSUPPRESS_PROJS_EXISTS) THEN +``` +and right before this block's "ENDIF", add another `ENDIF`. diff --git a/_sources/md_notes/w90_interface.md.txt b/_sources/md_notes/w90_interface.md.txt new file mode 100644 index 00000000..52675070 --- /dev/null +++ b/_sources/md_notes/w90_interface.md.txt @@ -0,0 +1,38 @@ +# Wannier90 interface + +## orbital order in the W90 converter + +Some interaction Hamiltonians are sensitive to the order of orbitals (i.e. density-density or Slater Hamiltonian), others are invariant under rotations in orbital space (i.e. the Kanamori Hamiltonian). +For the former class and W90-based DMFT calculations, we need to be careful because the order of W90 (z^2, xz, yz, x^2-y^2, xy) is different from the order expected by TRIQS (xy, yz, z^2, xz, x^2-y^2). +Therefore, we need to specify the order of orbitals in the projections block (example for Pbnm or P21/n cell, full d shell): +``` +begin projections +# site 0 +f=0.5,0.0,0.0:dxy +f=0.5,0.0,0.0:dyz +f=0.5,0.0,0.0:dz2 +f=0.5,0.0,0.0:dxz +f=0.5,0.0,0.0:dx2-y2 +# site 1 +f=0.5,0.0,0.5:dxy +f=0.5,0.0,0.5:dyz +f=0.5,0.0,0.5:dz2 +f=0.5,0.0,0.5:dxz +f=0.5,0.0,0.5:dx2-y2 +# site 2 +f=0.0,0.5,0.0:dxy +f=0.0,0.5,0.0:dyz +f=0.0,0.5,0.0:dz2 +f=0.0,0.5,0.0:dxz +f=0.0,0.5,0.0:dx2-y2 +# site 3 +f=0.0,0.5,0.5:dxy +f=0.0,0.5,0.5:dyz +f=0.0,0.5,0.5:dz2 +f=0.0,0.5,0.5:dxz +f=0.0,0.5,0.5:dx2-y2 +end projections +``` +Warning: simply using `Fe:dxy,dyz,dz2,dxz,dx2-y2` does not work, VASP/W90 brings the d orbitals back to W90 standard order. + +The 45-degree rotation for the sqrt2 x sqrt2 x 2 cell can be ignored because the interaction Hamiltonian is invariant under swapping x^2-y^2 and xy. diff --git a/_sources/tutorials.rst.txt b/_sources/tutorials.rst.txt new file mode 100644 index 00000000..e0862429 --- /dev/null +++ b/_sources/tutorials.rst.txt @@ -0,0 +1,28 @@ +.. _tutorials: + +Tutorials +========== + +These tutorials provide an overview about typical workflows to perform DFT+DMFT calculations with solid_dmft. The tutorials are sorted by complexity and introduce one after another more available features. + +.. note:: + The tutorials are run with the 3.1.x branch of triqs. Please use the 3.1.x branch for triqs and all applications to reproduce the results shown here. + +Short description of the tutorials linked below: + +1. Typical one-shot (OS) DMFT calculation based on prepared hdf5 archive for SrVO3 +2. Full charge self-consistent (CSC) DFT+DMFT calculation using the PLO formalism with Vasp for PrNiO3 +3. Full CSC DFT+DMFT calculation using w90 in combination with Quantum Espresso utilizing the lighter HubbardI solver +4. OS magnetic DMFT calculation for NdNiO2 in a large energy window for 5 d orbitals +5. Postprocessing: plot the spectral function after a DFT+DMFT calculation + +---- + +.. toctree:: + :maxdepth: 2 + + tutorials/SVO_os_qe/tutorial + tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial + tutorials/Ce2O3_csc_w90/tutorial + tutorials/NNO_os_plo_mag/tutorial + tutorials/correlated_bandstructure/plot_correlated_bands diff --git a/_sources/tutorials/Ce2O3_csc_w90/tutorial.ipynb.txt b/_sources/tutorials/Ce2O3_csc_w90/tutorial.ipynb.txt new file mode 100644 index 00000000..6e154533 --- /dev/null +++ b/_sources/tutorials/Ce2O3_csc_w90/tutorial.ipynb.txt @@ -0,0 +1,530 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "1cc005bd", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as ticker\n", + "\n", + "from triqs.gf import *\n", + "from h5 import HDFArchive" + ] + }, + { + "cell_type": "markdown", + "id": "f93f161b", + "metadata": {}, + "source": [ + "# 3. CSC with QE/W90 and HubbardI: total energy in Ce2O3" + ] + }, + { + "cell_type": "markdown", + "id": "c1dbd052", + "metadata": {}, + "source": [ + "Disclaimer:\n", + "\n", + "* These can be heavy calculations. Current parameters won't give converged solutions, but are simplified to deliver results on 10 cores in 10 minutes.\n", + "* The interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!\n", + "\n", + "The goal of this tutorial is to demonstrate how to perform fully charge self-consistent DFT+DMFT calculations in solid_dmft using [Quantum Espresso](https://www.quantum-espresso.org/) (QE) and [Wannier90](http://www.wannier.org/) (W90) for the DFT electronic structure using the [HubbardI solver](https://triqs.github.io/hubbardI/latest/index.html).\n", + "\n", + "We will use Ce$_2$O$_3$ as an example and compute the total energy for the $s=0\\%$ experimental ground state structure. To find the equilibrium structure in DFT+DMFT one then repeats these calculations variing the strain in DFT as was done in Fig. 7 of [arxiv:2111.10289 (2021)](https://arxiv.org/abs/2111.10289.pdf):\n", + "\n", + "\"drawing\"\n", + "\n", + "In the case of Ce$_2$O$_3$ it turns out that in fact DFT+DMFT predicts the same ground state as is found experimentally, while DFT underestimates, and DFT+DMFT in the one-shot approximation overestimates the lattice parameter, respectively.\n", + "\n", + "The tutorial will guide you through the following steps: \n", + "\n", + "* perpare the input for the DFT and DMFT calculations using Quantum Espresso and Wannier90 and TRIQS\n", + "* run a charge self-consistent calculation for Ce$_2$O$_3$\n", + "* analyse the change in the non-interacting part of the charge density using TRIQS\n", + "* analyse the convergence of the total energy and the DMFT self-consistency\n", + "\n", + "We set `path` variables to the reference files:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8681be23", + "metadata": {}, + "outputs": [], + "source": [ + "path = './ref/'" + ] + }, + { + "cell_type": "markdown", + "id": "10d286f9", + "metadata": {}, + "source": [ + "## 1. Input file preparation\n", + "\n", + "The primitive cell of Ce$_2$O$_3$ contains 2 Ce atoms with 7 $f$-electrons each, so 14 in total. They are relatively flat, so there is no entanglement with any other band.\n", + "We start from relaxed structure as usual. All files corresponding to this structure should be prepared and stored in a separate directory (`save/` in this case). For details please look at Section III in [arxiv:2111.10289 (2021)](https://arxiv.org/abs/2111.10289.pdf).\n", + "\n", + "### DFT files\n", + "\n", + "All input files are of the same kind as usual, unless stated otherwise:\n", + "\n", + "Quantum Espresso:\n", + "\n", + "1. [ce2o3.scf.in](./dft_input/ce2o3.scf.in)\n", + "2. [ce2o3.nscf.in](./dft_input/ce2o3.nscf.in)\n", + "\n", + " - explicit k-mesh\n", + " ```\n", + " &system\n", + " nosym = .true.\n", + " dmft = .true.\n", + " ```\n", + "3. [ce2o3.mod_scf.in](./dft_input/ce2o3.mod_scf.in): new!\n", + "\n", + " - explicit k-mesh\n", + " ```\n", + " &system\n", + " nosym = .true.\n", + " dmft = .true.\n", + " dmft_prefix = seedname\n", + " &electrons\n", + " electron_maxstep = 1\n", + " mixing_beta = 0.3\n", + " ```\n", + "\n", + "Optionally:\n", + "\n", + "- `seedname.bnd.in`\n", + "- `seedname.bands.in`\n", + "- `seedname.proj.in`\n", + "\n", + "Wannier90:\n", + "\n", + "1. [ce2o3.win](./dft_input/ce2o3.win)\n", + "\n", + " ```\n", + " write_u_matrices = .true.\n", + " ```\n", + "2. [ce2o3.pw2wan.in](./dft_input/ce2o3.pw2wan.in)\n", + "\n", + "### DMFT\n", + "\n", + "1. Wannier90Converter: [ce2o3.inp](./dft_input/ce2o3.inp)\n", + "2. solid_dmft: [dmft_config.toml](./dmft_config.toml)\n", + "\n", + "Here we'll discuss the most important input flags for solid_dmft:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "165c087b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[general]\n", + "seedname = \"ce2o3\"\n", + "jobname = \"b10-U6.46-J0.46\"\n", + "csc = true\n", + "\n", + "eta = 0.5\n", + "n_iw = 100\n", + "n_tau = 5001\n", + "\n", + "n_iter_dmft_first = 2\n", + "n_iter_dmft_per = 1\n", + "n_iter_dmft = 5\n", + "\n", + "block_threshold = 1e-03\n", + "\n", + "h_int_type = \"density_density\"\n", + "U = 6.46\n", + "J = 0.46\n", + "beta = 10\n", + "prec_mu = 0.1\n", + "\n", + "sigma_mix = 1.0\n", + "g0_mix = 1.0\n", + "dc_type = 0\n", + "dc = true\n", + "dc_dmft = true\n", + "calc_energies = true\n", + "\n", + "h5_save_freq = 1\n", + "\n", + "[solver]\n", + "type = \"hubbardI\"\n", + "n_l = 15\n", + "store_solver = false\n", + "measure_G_l = false\n", + "measure_density_matrix = true\n", + "\n", + "[dft]\n", + "dft_code = \"qe\"\n", + "n_cores = 10\n", + "mpi_env = \"default\"\n", + "projector_type = \"w90\"\n", + "dft_exec = \"pw.x\"\n", + "w90_tolerance = 1.e-1\n" + ] + } + ], + "source": [ + "!cat ./dmft_config.toml" + ] + }, + { + "cell_type": "markdown", + "id": "7f970c47", + "metadata": {}, + "source": [ + "Of course you'll have to switch `csc` on to perform the charge self-consistent calculations. Then we choose the HubbardI Solver, set the number of Legendre polynomials, Matsubara frequencies $i\\omega_n$ and imaginary time grid points $\\tau$. In this calculation we perform five iterations in total, of which the two first ones are one-shot DMFT iterations, followed by three DFT and three DMFT steps.\n", + "For the interaction Hamiltonian we use `density_density`. Note that you unlike the Kanamori Hamiltonian, this one is not rotationally invariant, so the correct order of the orbitals must be set (inspect the projections card in `ce2o3.win`). We must also use `dc_dmft` and `calc_energies`, since we are interested in total energies.\n", + "Finally, we will specify some details for the DFT manager, i.e. to use QE, W90 and the tolerance for the mapping of shells. Note that this value should in general be $1e-6$, but for demonstration purposes we reduce it here. If `dft_exec` is empty, it will assume that `pw.x` and other QE executables are available." + ] + }, + { + "cell_type": "markdown", + "id": "47bb27d5", + "metadata": {}, + "source": [ + "## 2. Running DFT+DMFT\n", + "\n", + "Now that everything is set up, copy all files from `./dft_input` and start the calculation:\n", + "```\n", + "cp dft_input/* .\n", + "mpirun solid_dmft > dmft.out &\n", + "```\n", + "\n", + "You will note that for each DFT step solid_dmft will append the filenames of the DFT Ouput with a unique identifier `_itXY`, where `XY` is the total iteration number. This allows the user to keep track of the changes within DFT. For the W90 `seedname.wout` and `seedname_hr.dat` files the seedname will be renamed to `seedname_itXY`. If the QE `seedname_bands.dat`, and `seedname_bands.proj` are present, they will be saved, too.\n", + "\n", + "You can check the output of the calculations while they are running, but since this might take a few minutes, we'll analyse the results of the reference data in `/ref/ce2o3.h5`. You should check if the current calculation reproduces these results." + ] + }, + { + "cell_type": "markdown", + "id": "c74f73cb", + "metadata": {}, + "source": [ + "## 3. Non-interacting Hamiltonian and convergence analysis\n", + "### Tight-binding Hamiltonian" + ] + }, + { + "cell_type": "markdown", + "id": "f7f6d9a1", + "metadata": {}, + "source": [ + "Disclaimer: the bands shown here are only the non-interacting part of the charge density. Only the first iteration corresponds to a physical charge density, namely the Kohn-Sham ground state charge density.\n", + "\n", + "The first thing to check is whether the DFT Hamiltonian obtained from Wannier90 is correct. For this we use the tools available in `triqs.lattice.utils`.\n", + "Let us first get the number of iterations and Fermi levels from DFT:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1f204686", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fermi levels: [14.3557, 14.42, 14.4619, 14.495]\n", + "iteration counts: [1, 3, 4, 5]\n" + ] + } + ], + "source": [ + "e_fermi_run = !grep \"DFT Fermi energy\" triqs.out\n", + "e_fermi_run = [float(x.split('DFT Fermi energy')[1].split('eV')[0]) for x in e_fermi_run]\n", + "n_iter_run = !ls ce2o3_it*_hr.dat\n", + "n_iter_run = sorted([int(x.split('_it')[-1].split('_')[0]) for x in n_iter_run])\n", + "print(f'Fermi levels: {e_fermi_run}')\n", + "print(f'iteration counts: {n_iter_run}')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7fa4150b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2022-03-25 12:42:36.663824\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAGQCAYAAAB1UpekAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wcd5n48c/MbO9a9d4l95pip/eQhBKSQAJHh4MDfsBRjjuuQTj6cdzR4aihd3IJIT1ximvcuy1LVu+r7X1n5vfHSrJlrWTJlmwp+b5fr/XuamdnZte7s/N8y/NIuq4jCIIgCIIgCIIgCIuZfLF3QBAEQRAEQRAEQRDOlwhuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8GtIAiCIAiCIAiCsOiJ4FYQBEEQBEEQBEFY9ERwKwiCIAiCIAiCICx6IrgVBEEQBEEQBEEQFj0R3AqCIAiCIAiCIAiLnghuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8GtIAiCIAiCIAiCsOiJ4FYQBEEQBEEQBEFY9ERwKwiCIAiCIAiCICx6IrgVBEEQBEEQBEEQFj0R3AqCIAiCIAiCIAiLnghuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8HtBSBJUpUkSV+VJOmIJElRSZJGJEnaIUnSJyRJss3RNpZJkvRNSZIOSJIUkiQpJUnSkCRJz0qS9FFJkpxzsR1BEARBEARBEISFSNJ1/WLvw8uaJEl3AL8E3FMscgy4Xdf1tvPYxseBLwGGaRbrAF6r6/r+c92OIAiCIAiCIAjCQiWC23kkSdJqYAtgAyLAF4FnAStwH/C3o4seBS7VdT1yDtt4I/Db0bsp4NvAU8AwUA98ALhq9PE+YKmu68FzeT2CIAiCIAiCIAgLlQhu55EkSc8C1wEZ4Bpd17ee8fg/AF8ZvftpXdc/ew7bOACsGL37al3XH8mxzB+Bu0bvflzX9a/NdjuCIAiCIAiCIAgLmQhu54kkSZcCO0bvfl/X9b/LsYwMHASWAn6gWNf19Cy24QLGemF367q+forlVgH7Ru/+Udf1e2a6DUEQBEEQBEEQhMVAJJSaP3eedvsnuRbQdV0DfjZ6N49sL+9smE67Pd2c3dbTbptnuQ1BEARBEARBEIQFTwS38+fq0esosGua5Z477fZVUy6Vg67rw8DI6N26aRatP+328dlsQxAEQRAEQRAEYTEQwe38WTp6fULX9cw0yx3N8ZzZ+N/R63WSJN02xTL/NnqtAj88h20IgiAIgiAIgiAsaNOVjhHOkSRJFqBg9G73dMvquu6XJCkK2IHKc9jc54FLgJuAP0uS9C3gabLZkuuA9wPXkg1sP6zr+pHZbkCSpIqzLGIClgCDwNDotgRBEARBEARBeOVRgMLR2wd0XU9eqA2L4HZ+OE+7PZPyPmPBrWO2G9J1PTLaY/sO4J+Aj49eTvcn4Cu6rm+f7fpHdZ3j8wRBEARBEARBeOW6FNh5oTYmgtv5YTntdmoGy4+1ZljPcXuXAG9i6nm3NwEDkiQd0XU9dI7bEARBEARBEARBWLBEcDs/EqfdNk251CljGYzjs92QJEn3AL8YXcd+4NPA80CY7DDne8nOuX0/cI0kSTfput4/y82cbbh0ObAN4Mknn6S6unqWqxcWu2Qyyfbt2YEBl19+OWazSMqdi3ifhLkkPk/TE++PAOJzMFPifRLmUkdHBzfffPPY3aELuW0R3M6P8Gm3ZzLU2D56PZMhzOMkSSoGfko2sD0EXKHrevS0RdqAL0qStAN4ElgOfBN4w2y2o+v6tPOGJUkav11dXU1jY+NsVi+8DMTjcVpbsxWn6uvrsVrPdRDCy5t4n4S5JD5P0xPvjwDiczBT4n0S5tEFzcUjsiXPA13XE2QTOgFMm4xJkqQ8TgW3s53bet9pz/3CGYHt6fvzNNkkUwB3jW5TEARBEARBEAThZUMEt/NnLCtxgyRJ0/WQL8nxnJk6vXTQ7rMsO1ZrVwaaZrkdQRAEQRAEQRCEBU0Et/PnxdFrO7B+muWuPe325llu4/T6uWcbYm6c4nmCIAiCIAiCIAiLnghu58+Dp91+Z64FJEmSgbeN3g0Az85yGydPu331WZa9ZvRaB9pnuR1BEARBEARBEIQFTQS380TX9R3AC6N33y1J0sYci32cU0OLv67revr0ByVJeockSfro5TM5nv8I2WAV4F8kSSrPtS+SJL2XbLkggG26rvtm8VIEQRAEQRAEQRAWPJEteX59hOxQYyvwhCRJXyDbO2slmwzqvaPLHQf+a7Yr13X9qCRJPwHeRbYczx5Jkv6HbFA9VgroPuDNo09RgX8+1xcjCIIgCIIgCIKwUIngdh7pur5HkqR7ydahdQFfyLHYceAOXdfDOR6biQ+Qndd7L1AIfH6K5aLAe3Vd33SO2xEEQRAEQRAEQViwRHA7z3Rdf1iSpFVke3HvIFsaKAWcAH4PfEvX9dh5rD8J3CdJ0veBdwAbyPbimoEQcAx4Cvjfs9WrFQRBEARBEIT5ous60WiUUChEIpFAVS9oCVThHBgMBpxOJx6PB4Nh4YeOC38PXwZ0Xe8APjZ6mc3zfgr8dIbLPsvsE1IJgiAIgiAIwrzTNI3Ozk7i8fjF3hVhFjKZDIlEguHhYWpqarBYLBd7l6YlgltBEARBEARBEOaNruuTAltJklAU5SLulXA2uq6P967ruk53dze1tbUL+v9NBLeCIAiCIAiCIMybaDQ6HtgqikJJSQkOhwNZFoVbFrp0Ok1PTw/xeJx0Ok04HMbj8Vzs3ZqS+EQJgiAIgiAIgjBvQqHQ+O2SkhJcLpcIbBcJo9FIUVHR+P1oNHoR9+bsxKdKEARBEARBEIR5k0gkgOxQZIfDcZH3Rpgtq9WKJEnAqf/LhUoEt4IgCIIgCIIgzJuxeZuKooge20Xo9PnRmqZd5L2Znvh0CYIgCIIgCIIgCIueCG4FQRAEQRAEQRCERU8Et4IgCIIgCIIgCMKiJ4JbQRAEQRAEQRAEYdETwa0gCIIgCIIgCMICUlNTgyRJbNq06WLvyqJiuNg7IAiCIAiCIAiCIExv06ZNbNq0iTVr1nDnnXfmXEbTNB5//HF27tzJSy+9xM6dO+nr6wNgz549rFmz5sLt8EUggltBEARBEARBEIQFpL6+HovFgs1mG//bpk2buP/++3n7298+ZXAbCoW4/fbbL9BeLjwiuBUEQRAEQRAEQVhAnn766XN6nizLrFmzhksuuWTC5ZVCBLeCIAiCIAiCIAgvAy6Xiz179lzs3bhoREIpQRAEQRAEQRCEBeTMhFKSJHH//fcD8MADDyBJ0vilpqbm4u3oAiN6bgVBEARBEARBuCh0TSPpC1zs3ZgT5nwPkjw/fYdXXnklnZ2ddHV1UVRURGNj4/hjpaWl87LNxUgEt4IgCIIgCIIgXBRJX4A/FW282LsxJ+4a3Iql0Dsv637xxRf5zGc+w/33389tt93GT3/603nZzmInhiULgiAIgiAIgiAIi54IbgVBEARBEARBEIRFTwS3giAIgiAIgiAIwqIn5twKgiAIgiAIgnBRmPM93DW4dc7Wp6oasViKaDRNNJZCzWhztu7pGI0KAdWAO57GYjEgSdIF2a4wkQhuBUEQBEEQBEG4KCRZPq8kTLquk0hkiERSRKIp4nENMIDBgOSyXrBgRwdG/AlG/AkMBhmn04zTYcJmMyHLItC9UERwKwiCIAiCIAjCopJMZQgGEgRDCdLpc+udlWUJg1HBYJx+pqaa0UinVTRVn9F6MxkNvz+O3x9HliVcTjNerxWLxXhO+zlG9AafnQhuBUEQBEEQBEFY8FRVIxRKEgwmiMXTM36eYpAxmQ0YjDIGo4LRpGAwKsjK7IJFTdVJp1QyaXX8OpVU0dSpg2tN0wkEEwSCCex2E16vFYfddE6BqtVqBSAej8/6ua8UIrgVBEEQBEEQBGFB0nWdaDRFIJgkHE6i62fvPZUkCbPVgMVqxGIzYjAqMBZL6iCTQdZTyJkMsp5BQs2OK865MtCR0SQjmmzAYDGgWc2n7SCkkhni0RTxaJpMWp1yv6LRFNFoCpNJId9rw+22zGrIcn19PQA7duwgGo1it9tn/NxXChHcCoIgCIIgLHIjIzGOHh/m+PFhWttGSCQy6Dro6KCDroOm68iSRGmJg/r6fBrqvdTXebHbTRd79wVhkkxGIxBM4PfHSU8TMI4xGBUstmwwa7YYkEaDRkVLo6hxFD2dDWT1DLPqMx0PeuOgjv1JQpMMoxcjstmCyWLDnQ+ZlEo8miYeTZFKZnKuMpVS6esPMzgUJS/PijfPgsGgnHVXbrnlFgoKCmhvb6eyspLm5mbMZjMlJSX85je/GV/uda97HZs3b570/Ouvvx5FObWd4eHhGb8Ni4UIbgVBEARBEBaReCLNtu1dHDo8yPHjwxw9PszwcOyc11da6qSh3ktDfT6XX1bBujVlGAyiWqRw4em6TjyewR+IEwqdvZdWViRsDjN2pxmjORu0SbqGQUugpJMYtCQS0wwZzuioSRUtrTF11y3IBhnFrCCPzs2V0FH0NIqeBuKY1RCqZCQjW5ANFgx5Fpx5FtSMRjSUJBJK5Jyvq6oaw8NRRkZieL028r1WFGXq757T6eSpp57i05/+NFu3buWll15CVVWqq6snLBcMBvH5fJOeHwgEplz3y4UIbgVBEARBEBa4TEbjpZ3dPPp4C89saiMWm/l8w7Pp6wvT1xfmhRc7+MkDu3G7zFx7TS03XF/H5ZdWYDaL00VhfmmaRjCUxO+Pk0jk7u08ndVuwuY0YbEZkSQJWc9gyESyQa0++buhpXUyiQxqUkVNaWip7PUMRjhPIEmgmLKBrmKSkc0KBosB2SBlg101jVkNo0kGMrKZjGxF8VpxeizEIinCwQSZ1OReaE3TGR6O4vfHKSyw4fFYaW9vz7kPq1ev5sEHH5x2Pzdt2jS7F/YyIo5WgiAIgiAIC5Cu6xw5OsSjj7fw+BMtDPvOvXd2NoKhJA/95SgP/eUoNpuRq66o5obr67jmqhosFnHqKMydRCKNP5AgGEygadNHmkaTgt1pxuY0ISsykq5j0OIY1TiKnpqwrK5DJpYhHUmTjmZQzzGb8pl0HTJJjUxy4voMFgWT04jJYUQ2ych6BpOawaRGUSUjacWO5LRid5pJxNNEggkSORqoVFWjfyCCbyROUaEdl8ssMiTPkjhCCYIgCIIgLCDpjMpfHz3Oz3+5l7aT/hk/z2hWKKv2UFaTh9NjAUlCItvbNHY7k9EY6A7S3xVkuDd81oAiFkvzxFMneOKpE7hdZl77mqXcc9dyKivc5/UahVeusYzH/sAMemklsNnNONxmTGYDSKBoSYzpOAYtgXTaUGItrZOKpEhHM2RimVn3yp6PTEIlk1CJDSUwmGWMo4GuYlayPbqZACbC2SDXasNic5JOqYQDCWLh5KT1pdMqPb0hfCMGioocOMS8+BkTwa0gCIIgCMICkEqpPPSXI/zkZ3vo6wtPu6wkS9QtLaSyIZ/y2jzKa/MoKHEgTzNf70zplMpQb4i+zgB9HUFOHBigu21kyuWDoSQ//+Vefv7LvVyxsYo33rOCKzdWTTtHUBDGpFIqqgotJ3xnbVRRDDIOlwW7a6yXVsWoRjCqMWRODevVNZ1UKEUymCaTOHvSKQDZoKBYzSgWM4rFgmI1I5tNo61AWdLEf9DSadR4EjWRRI0nsreTqVyrH+3ZTRIfTqKYZMweE2a3CVlWMashTGqYtGJDMtrxFtlxeiwEfXESscnrSyQydHYGcDhMFBc5xBSBGRDvkCAIgiAIwkWUSGT48/8d5oGf72FwKDrtshV1XtZdU82aK6tx5VnH/65oSRzJLpzJPhzJAUxqONurpeujvVs6kq6jSQoxUwFRUxFRUxGWyiLKavLG1zMyFOXg9i4ObO+m/ejQlL1fW7Z2smVrJ6WlTu55/XJef+cyPG7LXLwdwsuEpukcODTA88+fpKgwRWGBlbw8O7IydWBrsRlxuCxYbMbRXtoUpnQUg5aYsFwmliEZTJEKp8/aQ2t02DC6nRgcNhSLGdk4+/BHNhow2KwT/qZrGmoiSSYaJ+UPkQ5FJj1PTWnEBhPEfUksHhOWPDOSAiY1ikmNkpatSEYnBaUOkvEMQV8sZ4blSCRFNDqC12ujIN8mGpSmIYJbQRAEQRCEiyCZzPC7PxzkZ7/Yg28kPuVy3iI7666uYd01NRSVuwAwZcIUBnbgSnbjTPZhTY/MuLxJXqJj/LYOJBUXUXMRfmstZs8SvK9ewjWvXkI4EOfQSz3s29JJy4GBnOvq6wvzze9s4wc/2slrXt3Mm+9bTXWVZ4Z7IrzcxBNpduzo5rkX2nn+hXZG/NnP9Yc/0DzlcxRFxu4yY3OaMRjH5tLGMKlRZP1UoKdldJKBJMlQCi09dUQrKTJGlxOTx4nR5TinYHYmJFnGYLNisFmxFHrRMhlS/lDOQFdXdeK+JImRJGa3CYvXjGyUMWpxDKlEdriyxYG53EU8liLoi0+ql6vr4PPFCAYTFBXZcbssYj5uDiK4FQRBEOZEOJIkFEoSi6WJxdPEY2niiTSxWJp4PE08nkFRJCwWIxaLAbNZGb9ttRiwmA3k59tEAg3hZU/XdZ56ppWvf3MrvdMMP65uKuCme5azZG1pNiOslqYgfJDi8H7y4m3IOUqXhHvi+A75iA0l0FUdTdXRNX38tmyQcFXacdc6cdU4MZgVLGoISyxEfuwE9b4nCZtLGbIvZdi+BOfNDWy4uYGhvjBbn2jhpWfaiEcnJ8JJJDP8/o+H+MOfDnH1VTW85U2rWb+uTHyXX8Y0TaevP0xb2witJ/3s29fH9h3dJKao7Xomi92Ew2ke76WVtQzGTBijGp8wlzYdzZD0J0lFp16vbFAweT2YPNkeWkm+8D2bssGApdCbDXTTGVKByYGurkMikCIRSGF2GbF4zShmBdPokOukwQk2G1abiWg4SXAkjqZOTF6VyWj09obx+xOUFDuwWo0X+qUuaCK4FQRBEGZE13VGRuJ0dQfp7gnS1RXKXncH6e4OEQgmzr6SGbBYDBQXOSgudlBcZKe4yEFRkYPSEge1tV5KSxzihFlYtA4fGeSr/72Zvfv6plymfnkRN92znIYVxUiShDveQUl4P4XRIxi0U8lnkmGVoX0+fIdHGDkWYORYkPQ0AcCZJBnsJTbctU48dU6K1xVQuMqLK9mHK9lH3cgzRE1FDDqWYyxcw2vfvo5X3beKvS92sPnxFnraJie70nV4frTXbklzAW++bzW33NSAyaTM7o0SLihN00kkNNIZnb6+MJKcIJ1SSaVVkimVdEolFk/T2Rmg7aSf1rYRTrb7Z1S253SSDG6vFZvTjGKQQdcxanGMamxCxmNdg2QwSTKQQk1NnenY6HJgLsjD5HFelIB2KrLxVKCbiSdI9A2RHAlOWCYZSpMMpTG7jVgLLMgGsGSCmKQoScWJ3WXB5jAR8scJBxOTyvDG42lOtvvxeCwUFdoxGMR3DERwKwiCIEwhkchw+Mgg+/b3s+9AP/v3989ZAHu27XZ0BujoDOR83GE3UV/vpbEhn4b6fBpGbzud5nnfN0E4V4ODEb713e385a/HplymaXUJN9+zgtqlhQDkR49RM/I8zlT/+DJaRqf7hT7aHu1iYNcw+nlUONE1iPTGiPTG6Nk8wKGfn8CcZ6LiqhIqry6haF0+jtQgjpFBakaeZ8ixlB73pVx2Yz2X3lBHZ4uPzY8eZ++WTjR1ci/y0WPD/Pv9T/O1r2/mda9Zyt2vX0ZFuciyfDpd1wmHkwz7Yvh8cUb8MaLRiaNfVDU7d3osB5PBIGMyKhhN2WuTScFgGLuW0TQdXddRVZ10WiUSSRGJJIlEU0QiKcLhZPZvo/cjkRTRWGp87urXvvGHOX2NxRUu8kscOPMsmC1GnHnWKXtp1bROwpcgFUpNOZdWNhowF+RhLshDMS/8LMIGqwVHXSXWsiLi/cMkff4JgWoymCYVTmP1mjF7zchksGb8qKqJpMGFO9+G3Wkm4IvlLB8UCCQIhZIUFtjJ81qRX+GNvyK4FQRBEADwB+Ls3tPL/v397N3fz5GjQ2Qyc1MbcC5FoqlswL2/f8LfS0ocrF1dyto1ZaxfV0ZNtUf08AoXXTyR5ue/2MtPf75nyl6u2iWFvPpta6huKgByB7Whrjgn/q+N9id7SIUmn+DmIptNKGZTNomOxYxiNqHrOtH2HvRM7n1J+lO0PtxJ68OdmFxGyq8opuqGMkovLaQ4cpDiyEFC5lJ6XZcgN6yg+iNXcMdb1rD5seNsfeJEziHLgUCCB36+h5/9Yg8bN1TxhruWc9WV1a+opDihUIKW1hFaW0fo7ArQ3ROiuztIT2+IZHJmWX4XC0mWqF1SyPJLy1l+STkFpU5sgT4MaMio2FLDKPppnxMdUpEMSX+CdHzq98LkdmAu9GJ0OxflsV2xmHHUlGMtLSQxMExyyI8+GsHrGsSGkySDKayFVkxOI4qewpYeJi3bSBqdFJQ6SUTTBHxRMmfU7dU0nYHBCP5AnJJiJw7Hwg/654sIbgVBEF6hdF3n5Ek/z7+YHUK4/+DAWcszzIQkgclswGQxYLaMXRsxmpVs2YakSjqVyV4nM6RS2eszf6xnq78/wqP9LTz6eAsAeXlW1q0pZd3aMtavLaO+3vuKOpkWLi5N03nsiRa++e2tDAzmzoDsLbJzx1vXsGpDJZIkkR89Ts3IcxOC2s7n+jnyqxP4jwdzrmOMe1kDBVeuo/Cq9RReuQ5HbcWUwzTVVIrIiU6Ch0+MXloJHjpB8FALp3eXpUJpTj7WzcnHunGU22i8s4a62ypw0Ydr6GHqfE/R51pPt/tSbv+bNdx413J2bjrJ848cw9c/OXOsrp/KslxS7OA1r17CzTfWU1/nXZTBylT8/jiHDg9y8PAAhw8PcrzFd9Ys2IuZ1W6kuNJNcYWb2iWFLF1fhn10JI0xE6EgtBstCZJiRTY4xwNbLQOJkTjJYGrKEQiSLGEuyMNSlI9ieXmMzlHMJuxVZVhLCon3D5EYPFV+S03rRHpjGK0KtiIrikXBqMUwpBLZ+bh2G8U2N5FAkpA/Ph4cj0mlVDq7AjidZoqL7JhMr7xQ75X3ii8CSZKqgA8DdwBVQBI4AfwO+I6u67E53NZNwFuAq4BSIAMMAPuBp4Gf67o++RdHEBYZXdfHAzFdzwZUInA5u3RaZfeeXp5/oZ0XNnfQ3ROa9ToUg0x+sYP8YgcFpQ7yi53klzgoKHHg8towmZVzOlHNpFWCI3GCvhgBX+y06ziB4RjD/eGcQ7Km4vfHefrZNp5+tg0At8vMNVfXcP21dWy4vBKLRfwECvNj34F+/uu/N3PwUO4Mw2argZvuXs5VtzdjNCm44p00+J7AlTw1D7d32xD7f3iUQGvu76jJ66H2ba+j5MaNFFyxFrPXM+P9U0wm3MsacC9rmPD3eP8Q3X9+ks4/PsHgph3o6qletEhPjD3fPsyBHx+j5tYKGu+swV0N1YEXqQhuZcCxkm7PRq68rYmNtzRweFcvL/z1GK0HB3PuQ/9AhB/8aCc/+NFOqqs83HB9HTdeX8fSJYWLKtCNxdIcOTbEoUMDHDo8yKHDg9MmCVtsZEVCUWQMRhmDUSGv0E5ZTR7FFS6KK92UVLpxeiZm7bWlhsn376QgegxXsgcJaLVeR1rJlopKRVQSvvi0dWllkxFLkRdzQR6y4eV5rJZNRuxVZZgLvcQ6eklHToUD6bhKsCOC2W3EVmhFUjQsmSBGNUbC4MaZZ8HmNBH0xYlFkpPWPTb0PN9rpaDAhryA5iPPt5fnp2UBkSTpDuCXwOmTTGzApaOX90iSdLuu623nuZ084CfA63I87AIagbuBrcDe89mWIFwI8Xiajs4A7e0BTnb46eoKMjwcxR9IMOKPEwjEJ83HsdmM5Hms5OVZyMuzUlXpob7OS32dl7raPOz2V+YwnUQiw+atHTz9TBsvbu4gEs1deD4XSZYorXJTs6SQmuYCqpsKyCuwIY82JEh6Bks6iDXjx5LuxRSLIEczyFoaRc8g6xlkPY2sZW/rkkJGNqPKptHr0duSmYxiJc/tJlHgIa0UTdoXXdcJDMfo6wzQ3xmkryNAf2eAgZ5Qzvl+ZwqGkjz8yDEefuQYFouBKzdWcf11dVx9ZbWYryvMid6+MN/89lYef/JEzsclWeLyG+u49d6VOD1WTJkQ9QNPUxQ5OF7GZ+hgkL3fO4Tv0ORkTQDeS1bQ9MG/oere2zFY57aurLWkkMb3v5nG97+ZxPAIPQ89Q+cfHmfgqa1o6WzDUiaucuLBDk482EHx+gKa76mlbEMRZeG9lIb34rM10uXZyIrLqllxWQWDPSG2PtHCzk0ncw5ZBujoDPCTB3bzkwd2U1bq5Ibrsw1QK5YV4XItnNq5qZRKy4lhDh0e4tDhQQ4fGeRku39ORrxAtgfU4bZgc5gxWRTMFiMms5I93kqMf0bUjEYmo6GmNTIZlUxaI51SiYQSxCMpkonMjI6JM6GpOpqaTSgFaSLBBJIEngIbDpeZfEcKR7wXW2oYe2oIT6ITW9o3YR06CumEnK3fqmWIRKfuYzE6bJiL8jHluRZVI8f5MFgtOJtrSY0EiXX3o6VPTRlIBtOkIxlsRRZMLhOKnsaeHial2EgpTrzFdhxuM/7hKOnkmaWDdIZ9MQLBBIWFdjzuV0bpIBHcziNJklaT7Z21ARHgi8CzgBW4D/hboBl4RJKkS8+1R1WSJDfwJLB+9E+PAL8h2zusANVkA+l7zvnFCMI8SmdU2tr8HDg4wKHD2dbvtpOzP2GIxbJlZ3p6x3o6OiY83lDvzQ5RXVfGujVl5Ofb5ugVLDzxRJrNmzt58pkTvLi5g3h8ZhktjWaF2uZCapYUULOkkKqGfCw2I4qWxJXowZnci83nw5L2Y0kHMKvhGdfWnI2MZCRh9JAweMavo6YCTN5S8grLWba+/NSyaZXBnhAdx320HR6k9fAgoWlqhkI24B/r1TUYZC5ZX87NN9Zzy00Nr9hGEOHchUIJHvjFXn71m31Tzp9sXFnMa96+lrKaPCQ9Q6V/M1X+FzCMDtEMtMfZ8639DOwanvRc2Wyi+r47aPzAmym4bNW8vpYxlgIv9e+6h/p33UNieITWH/6Blm//klj3qSHTA7uGGdg1jLvOyZJ766i+oYyCWAsFsRZC5jK63ZcjlS3lde9cz21vXs3eFzvY8sQJultHptxub1+YX/xqH7/41T4Aaqo9rFhezMoVxaxYXkxDgxfjBcgKG44ksyVu2vwcOz7M4SODHG8ZJn0e0ycUg0xRuYviChcFJdkRL/nFDjyFdpxuC8ZzyCg9Mhhh25Mn2P50G9HQ5B68uabr0HHcR8dxH4/9ej/F7jRXL41x1dIol9THsRizv9saVnwnNU784SBdT56g9KtLsDdZMOX42ZUkCVO+G0thPga7dd5fw0IkSRLmfA9Gj5N47yCJgVMNBJqqE+mLYwylsRdbkY0yJjWGUU2QNLjAYqW43D1aOig2qWEjk9Ho6wvj88UoLLC/7MvtSWeO1RbmjiRJzwLXkR0afI2u61vPePwfgK+M3v20ruufPcft/Ax46+h23qLr+m+nWE4CFF3XZ5e3/ezbrwC6AI4fP05jY+Ncrl5YBOLxOE888QQAt9xyC1br1D9Ouq7T2xfm4MEBDh4e5NChAY4eG55xXby5tKS5kOuuqeG6a2ppbMyf94P9bN6ncxGJpNiyrZOnn2nlhc0dMy7R4M63seySMpatL6dhRTFGk4I15cOV7Mad6MaV6MaeGpqQ0XKMmtaID8aJDmQvyWAKLaOjZzS0jIaW0cevdVXDYDVgchoxuUyYnEbMTiMmlxGT04Qlz4TBOn2bqw6kFCdhcwkRc+nodQlJw6nBMbquMzIYpe3wYPZyZCjn/L9crFYDt97cyJ2vXcrK0TIsC9V8f54Wuwvx/sTjaX792/088Iu9hMO5A4uCUieveftalq0vG59XW+97Els6G+ClYxp7vn2Qtke7JpX6kE1Gmj/yNpZ+8j1YCrxzvv+zpaXTdP35SY59/WcMb9kz6XFbkYWme2qpf3UVxtHvclJx0OdaS69rHSmDC4CuEz52v9DO/m3dBH2zm5llMimUljgpKXFQUuygpMQ5fl2QbxutoT1aR9tsIJ1O8uSTTwLZz4HJZCaVVgkFk/gDcfz+OCP+OH19YXp6Q/T0hOjqDk45T3qmjGaFilovlY1eKuu9lFbnUVjqzJa/OZOuYVIjmDOR8XqnipZC0VMoWgpZVwEtewwenYfT3qPxq4fivLR/6qzCF5rZqLOhMs4lXTuQtuyb8Hku//onsTdVYyvIp5hsXVbFbMRcmI+5wPOyHXp8rjLxBLHOXtLhid8PSQJrvhmL1zLela9KJhIGN5psQFN1Qv44kWkqG5jNBooK7Tgcpln9xrW0tJDJZDAYDGc9129paaGpqWnsbqWu690z3tB5EsHtPJEk6VJgx+jd7+u6/nc5lpGBg8BSwA8U67o+8wll2XVcBbwwevczuq7ff+57fW5eTsGtruvEYml8vlg2Lf9IjFAoicViwGE3YT/9YjPidJpF7T5yn0Tquk4gmKCzK0jnaFmX48eHOXh4kEBg/svJzFZZqZObbqzn1psbWdJcMC9BzVyfbOu6TkdngBc3d/DC5g727O2bcXbjygYvy9aXs+yScspqPBi1OPmxE+RHW/DE2zFpE39Q474EvsPZOpqR3ijRgTixwTiJkeR5lSI5kyXfjKvCjqPCjrPCjrPSjrPCgbPchpzrpHBUSrERsFTjt9YSsNYQN+VPeHxkMMKhl3o4sL2bk0eH0GcwKqC+zsudr13KHbc343EvnKGRY0RwO735fH9SKZU/PXiIH/54FyP+3KMErHYjN79hBVfc2ojBmG0wavA9QX7s1JDlk0/0sufbB3NmP66851bWfOkTOOur5my/55Jv5wGOfePndP7mr+NDlscYHQYaX1dD4+urseZnvzsaMsP2ZnrclxK0VgPZY1jXiRH2b+vkwLZufANznxJEliWU0Z9pTSNbVmcetlFS5aaqMZ/K+nwqG7wUV7on5YEwZiI4UgPYU0NY0yNY0yPY0iOYM6GcjYe59I4Y+N6TXh7d40TXp/+dcuVZqVtaiLfYgctrxZ2XrS8ryxKSlB0mL8kSsnTqfjyaJuSPj1/C/jhBf5ywP4F/KDo6PPns6v2tbOh9idJodt756cFtpTsPc1E+RpeoWT4dXddJ+vzEuvrR1Yk/tIpZxl5iw2A5dQ6aUuykFCe6JJFOqQSGYyTjU4cVVquRwkI7jhmOVhLB7SucJEmfB/559O4GXde3T7HcP5Edrgxwi67rT85yO78B7iU77Ln0YiSLWqzB7cBAhL37+9i3v5+jx4YZHo4y7IvNqiC5JEFVpYempnyaGgtobiyguamAggLby/KA7ffHOX7CRyAQJxRKEgxla6uNjERpbe0mHteQDTYi4RTBUOK8hm9B9v31FNopKnNRVO4kr8COw23B4TZjd5oxmE4lLtJ1nVg4RSSUIBJMEvTFGOgO0t8VxNcfmdUQ56pKN7fe3MitNzdQVzd3vSVzcbKdSqns2t2TDWi3dNDdPbOEUJIsUbeskFUbqlhxWTlurw1baoj86HHyYy24E93jJ1dqSmXkeBDf4QC+IwF8h/3EBi9ug4QkS7iq7OQvyyN/qYf85V7c1XYkOff3LGFw4bfWELDW4rfWjPcYAUSCCQ7vzAa6x/f3o56lQcBolLnhujruuWs569aWLZjvtghupzcf7086o/LXR4/z/R++RP8UowFkWWLjrQ3c8saV2J1mFC1Jtf8FKgLbkcl+1sJ9KbZ/YSfDByfPq/VesoJ1//0piq665Lz390KI9Qxw9L9/yonv/YZMdGKjmGyQqLy2lMbX11CwPG/87xFTEQPOlQzal5E0eoDRUT3tAQ5s66LlwAA9J0fOO4P6fCksc1JZ76WyIZ/Kei9ltXmYzBN7Hg1qDFeiB1eyB2eiF0eqH7M6fW+wpkqkEzLpBGQSGpm4SjqmoqkQS8n8+mABfz3hJaNNfQyqX17E6iuqaFhRTGFZ7pI5kq4i6RqgI+nZHmEJDXQdVTajycac686kVVoPDXJkVy+HdvXgn0HvdnWwkw29O7jqf/4Wx9I6rF4PTc3NZ32eADU1NXR0dPDUE09waXUj6dDkY47ZbcJWZEUabUfRkUkaXKQVK+iQiKcJjsRJTzM6zmYzkpdnxenINnxMRQS3r3CSJD0PXA1EAc9UQ4ElSdoIbBm9+1ld1z89i22YgCBgAX6v6/obR/9uAMrJDgjp13V95tljzsFiCG51XaflhI+9+/rZt7+Pvfv76ZvHbIZ5eVaWNBdw+aUVXLGxalGWOUhnVFpafOw/OMCBg/0cODgw40DqXBWUOKhsyM+2fjfkU1bjmXTCMEbWUih6+rQfaVDlbFKiSa8lpdJz0p+dj3lokPajQyRn2IjRUO/llpsbuOWmRqoq3Wd/wjRmO3y7rz9Ca6uP1rYRTrSO0No2wsl2P6kZtpxLskTD8iJWbqhk5eUVON0W3IlOCqNHyY8ex5oJjC8baAvRu22Qvm2D+I4E0DJn/20welzYK0uwVZZiG7025bmQFCVbgkSSRnsGsrcBUiNBEgPDxPuHSfQPkRjwZYvaD/rQtdmdyBosCnnNbvKXeihcVUjR2nyMlsnfMx2ImooYsi9lyLGUmKlw/LFEPM3RPX3seaGdI7t6z9oIsnRJIW/7mzXceEM9hml6ki8EEdxOby7fn6HhKH9+8DB/fPAwQ9OUdFlzRRW33LuSovJsY0pxeD91vqcxq9mTUlWVOPijoxz9XSv6GT2ItooSVn/xY9S8+TVTlvBZyJIjAY5/+5cc//rPSPoCkx73NrtpvKuGquvLUIzZ16cDYXMZQ46lEwJdyAZSfR0BOlp8dLb46Dw+zPAMpxfMFVmRKCx1UlzppqIuO7y4ot6L9YyeLklXsScHcCV7xgNaa3okZz6CTEoi0p8m2BbAf3SIUGeESF+M+FCCdDT371Kru4anam4gbHbmfNxiM3LJtbVsuKWBktHfKaMaxRPvwB3vwJoJYM6EMGfCGLT4tHkSdLLDXFMGJynFTnL0OqU4iRu9+K01qIoFXdcZ6A5xZFcPh3f10n5seNoRMf/6T6uoq3Vjt1sW5HniQjQW3D777LNce+21JIf9PPHnh3hx5w5WNjVz+3U3AtnPqa3EhsmRPV/q6e3nR7/4A9v3HOLY0WP4fMPEolHc7jyWLl3JnXfey6tum5x/1qDIeDwWPHlWTMbJoxJFcPsKJ0nSEFAA7NN1fc00y+UBY5kVxgPUGW7j9KHPHwN+TbYX+A2AffTvCbJJrD6n6/qWSSuZAws1uNV1nSNHh3jy6VaefOrERU3NX1RoZ8PllVyxsYrLL63AvQCHOOq6zvEWHy+82M6WbV0cOTo4r4Xl7S4zVQ35VDbmU9WQbQG3n5Gx1pQJY08NYk8NYUsNYU37MasRTJkwip7K+QOtI5GRLSQNDuLGfGLGAqKmAiLmkvGgRs1onDw6xKGXujm4owf/DOsPLltayK03N3LzTfWUFOc+yRijqhojI3H6ByIMDkboH4jQ2xtg/4E2ojEVr9eLwWBAlgBJQpal8dvBYIK2thGisyh7M0YxyNQvK2LVxkpWXFaBw2XOBrSRwxRGj546yU6pDOz20bttkN5tg8QGpk7AZMpzk79hNQWXr8Z7yQoctRXYKkswOh2z3r+paKpKvHeQwIHjBA8cw7//GIH9xwkdbUPPzKwhQpIlvEs9lF1eROUN1TjLjORqU4oaCxl0LGXIsWxCoBscibFz00l2PN121uGRJSUO3nzfal7/2qUXLQGVCG6nd77vj67r7N7bx+/+cIBnnz1JRp268WXpujJe9aZVlNdmeycdiV4ahx/HnTx1Pte/L8KOz28nNnTGKAhJovnDb2XV5/4eo8POYpeJxmj98R858tUfE+vsnfS42WOi/tVV1L6qAmf5qdd7eqDrt9YRMRUx3h01KhpKMtgTIuCL4h+KERiO4R+OEhiOERiOTpmNeSqSLGFzmHC4zHgKbHiLHHiL7HiLHBRVuCgsdWLIcZJvTgcmBLKOZD9Kjj6MTAr8JyIM7OzDfzyI/0Ro2mPtmaIGG89WX8PR/Nw9nWaLgWtft5RrXt2MxWrElAlTGtpLYfQw9tTgvCT705AJWirx2RsZsTWMH0OjoSSbH2/hxUeOEYtM7lP58Aeaqap0UlDgoKmpSZRim4Ebb7yRnp4efvazn3HZZZcB8O//+m/8x+c/x313vJZvfebzE5Y32g04Su088sRTvPbedwGQ7/VSXFqKLMt0dXYSDAZH130b//W1H2A05u6ldzrM5OVZsNtPzcsVwe0rmCRJFmDs6PWIruuvPsvyEbLB6DZd1zfOYjtvB346evefyQa4BVMsrgEf13X9f2a6/tO2U3GWRUqAlwAOHDhAfX39bDcxZ7I9tCM8s6mdZ549SU/vuQe0ZqsBp8eKzWEinVJJxtMk4mkSsfR5pdiXZYmlSwq4cmMlV15RSX1d3kXr1U0mM+za3cfmrV1s2drF4NCclVweN1YTtaDUOWEol7fIPuF1S7qKI9mPK3EqiZFFnb6nWE1raCmNTFJFS6koFgNGq4Jizj0POiVbCVkqCVirGLHVEzMVjQ+F27elk72bOxiZYRKRuloPJcUOiorsFBTYiEbTDA1FGRyMMjAUZXg4Ni9zu3Jx5VlZsq6UpevKaFxVgsViyBnQpsJpul/sp/vFfgZ2+1Bz1RiUZTyrmsm7bCXeS1eSd9kqHA1VF+0zqiZTRI63EzxwnJHt+xh+YRfhozOrnGZyGSm5pJDq25soXuXCYJz8escC3QHnKhLGbGCiaTqthwbY/lQrB7Z3Tzts2W438rrXNPOGu5ZRVHRhA5NEIsHzzz8PwDXXXIPFsvAazS6mc31/+vsjbN7axYMPHaXtZGDaZeuWFXLbm1dTuyR7gm/KhKgd2URJeP/4MP9kTGbb53bQt3VyzVtHUw3rvvcZ8jesmfkLWyS0dJqePz9F67d+iX/nwZzL5DW5qLq+jKrryrCXTGx8yEhGwpZyQuYKgpZyQpYKMsr0Ge41TSeTVkknVdKpDOmUOn4BMBhkFKOCwShjtZmwOkzTDsOEU42szmTfeDBrmmJ4cXQ4w9CeQYYO+Bg+6CfUET7nnAStnloeq72JuHHya1YMMlfc2siNdy3D4bbgibVRHtpFfvT4+ND38fdE1YgPJ4kPJ4gNJbJJ/9Iauqqjqdnr7G0dXdMxWA1YPCbMoxeLx4zZY8LkyB0ExQ0efLYGfPYm/NY6EokM2544wXMPHyV8Wn6NseA2L8+O2VKI12ulIN921vdfmOj+++/ns5/9LG954718/R//bVJvuSRBR6CH3UcPcPMNV1NZUYaORFqxE9Mt/OLnP+Oj/++DqKrKP3zyM7zjHe+fdntGo4LTmc0z09fXSSaTQVEUqqqmzwXQ2trKypUrx+6K4HaxkySpEBirWv5bXdfvO8vyA0ARcFDX9ZXTLXvG8z4KfG30bhIwA38BPkM2UZWbbG3bL5GtdasDd+i6/uiMX0x2OzP+kPzwhz+koGCq+Hr+RCIqew/E2Lsvhm9k5nNmLTYj1U0F1C4poKgiW4g8e7FinqJVUdd1MmmNRDyNfyhKX3uAnnY/ve1++toDMx7uOsbtUmhqtNDUYKGm2ozBML8H+pGRDCfaErS2JWlrT5KZwfDT0xnNCnkFdmxOEzaHGZvDNH6xnnHf5sy2hp+ZVAOy85GyQWwX7kQ3zmRvzpZvgMDJMEP7RwicCGaz8vZnkxmpydxnDZIiYXaZcJTbcJTZcJbbcdc5yV/qGU9uAqf/KDfjt9agI9F1YoS9mzvYu6XzrOVkLhZJgqrGfJasLWPp+jLKa/NQ9Ax58ZPjc2jHAtpkMEXP5gE6N/UxuGc493BjqxllbTOGy5ahrGtGci3s3iPNH0Y72Ip6sBX1QCt67+TSKWeSZInidflU391MxXoPZzZW64DfWkeP+xJ8tsbxHqNoOMmuTSd58dHj0zZ8yDKsWGblyg1OiopynwQKC1M8rtHekT0etp1MMOI/+4iV6qYCbnnjCppWlyBJEoqaoCqwmYrgjvHjmKbBkb/0cfg7eycfq2QZ413XYXzjjUiml//nRT3WQfrhF1G3HMi+MTnkL/VQdX0pldeXYSuY3BChA3FjPlFTAUmDm8Rpl6TRTVo59+OWQY1jzoSwpv1YMn6saT+21DCO1CBGLffvQCap4Tsewrd/mOFDfnyHAySD5zgLzGZB8rqQPA5Ut5tNchO7kiU5F21YUcw977uUglIn7ngHtSPP4kl0jT+uZTSGD/oZ3OdjcO8IvsN+1NT5z12WjTL2EivF6wsovaSQonX54xmxx0SNBXR6rmDAuZJ0WmfHM208++BhAsOxScEtgKJIuF0KFsviG4Z/sXzpS1/iy1/+Mm9605v49te/gT7oR49PztSumGXsZQ4MplPnlNn5uA4+9Pf/yI/+9/tcctllPPzXZ4mEEqRmcO6aTAwRDkcJBuN0dg1SVmqcsnFieHiY97znPWN3RXC72EmSVAl0jt79ua7rbzvL8p1AJdCq63rDLLbzr8B/nPanh4E7dX1iO+FoRuXngLHszKv0WfzHL9TgVtN02k4m2b03yrGWxFS/lxPkFdqpXVpITXMBtUsKKa50T9tqqKgJTGoUTVJQZROqZEKXpx5Ko2k6IwMRuk/6OXGgn6N7+ggMz7w31GiUqKk2UVluprLCRFmpEZPp/A76yaTGyfYkJ9qyJ27+wOyGGheWOaluKqCqMZ/qpgJKqiZngDwboxrFlhrGlhrGlezBnejGmvblHDKlZnRGjgUZ2jvM0EE/vkN+UuHZD8+diq3YSv4yD8Vr8ym9rAh7cba3ICVbGbY3M+RYht9ai6ZLnDw6xN7NHezf2nVB6gfmYrEZKa3yUFLlpqTSTUmVh9IqNzanGVMmRH60hYLYcTzx9vGT6mQwRfcL/XQ918fAHt+kuX0AUoEH5bJlKJcuQ1lRh2RcvEPENF8Qdf8J1B2HUXcfheT0nxfFJFN6XQW1dzdT0mBGkSe+PwnFSZ9rLX2uteOJqDRV48CObp576CidLb5cqx3X1Gjhyg0OqirN0y4nzD9d18lkIBpTiUQ0olGVSFQjEs3e7+tP0duXnlEpFaNJYd3VNWy8tYGK0URzkp6hPPgS1f7NE4KgwR6Nl/7lRcIdk0cPybVlmD70BpS68kmPvdxpQwEyj20l/fg2iEzReCiBq9pBwfK87GVVPq7ys9ckVyUjadmCJhvRJCOqZECTjaiSEU3KHt9kPTN6UTFoCYxqDKMam9TbmUt4IMHwPh++QyMMHwoQPBmeUdb1cbKEVFaIXFOKXFWCXJaPVFKAXJqPNFrbdXg4zR8e9DMwOPkYZnWYeM3b1nLp9bU4UoPUjTyNN9Y6/jsa7IjQ9tcu2p/oJhmY11Qr2ZdjkChYnkfJpYWUXFqIt+lUToq4wU2XZyN9zrVkNJndL7RTYQpTWmSbENyOsVhk3C4FRRG9uKdbtWoVXV1dPPzww1x11VXk5eVNuWxlaRl7Hnp80t/NeWasBRZOn8b/je89wN9/8t9Ytnw5W3fvBbK5SaLBJNFIcsrPdTIxhN8fpbMrzDe+cwyzWaKywoTLqWC3Kzjs8vh1Munnk/8wXihGBLeL3QXsuf0E8J+n/WmJruvHplj298A9o3dX6bp+YBbbWVDDkgcHozzyWAsPP3KcgYGzDyHNL3aw+opKVm+soqx28hBgcyaIO96JPTWIORPGrIYxZ8KYMiEMOSozaUjZH07ZRNLgImoqImIqImouJmIqmjBsStd1hnrDHNvbx9E9fbQdHpxxGn0ARZZoaPCyYnkRK5YXUlRox2434XSYsNuN2GxGFEVG13WCwSTdPaHRS5junhBdXSFaTvhmNTw2v9jBskvKaFpdSnVjPjbn5BN0RU1g1OIY1DhGLY5RjWPQ4hjVBAYtNnodx6jGsKVHpmz5BkgndHyHAvTv7Gf4oJ+RY0G0C5gh01XloPTyQiquKaFwRfaENSXbGLY3M+hYRsBag6rBiQMD7NvSyf5tXSRmMRdWMci4vVbc+TY8+TY8BTZceVYkWULXdHRdR9fJ3iZ7bTDKFFdkg1mX1zr+mbWkR3AkB3Am+/HGTuBI9Y+f2IwlhOrdOojvcCDnj5OtuoyKN7yK8rtuwb26edElOZuJTCzO4JNb6X3oafr/+hzp4PRzZ412A81vXU/da6qx2SYeTzQkfLYmet3r8duyxzVd12k/NsxzDx3l0Evd0wZFq1YU8ZY3r2Ljhop5GXp3MYYl67pOOJyibyBCX2+YYChJNJoiFksTH235l0dLiygGCZfTjMtlxu0y4/Vayc+3YbebsFoMZDIakUiKcCRFOJwkEkmduh9JEYlk/xYOZ9efTKmkprhkVA1N09E1UDUNXWdWGdKnU1Di4IpbG7nk+jpsDtPYG0Fx5AA1I5uwZoLjy6qSnQM/aeXoA7smrUcyGljyqffR9PF3IE8xz+2VIhOL0//Ic3T//jEGntiMlpr+mGp2m8hf5qFgRR7uOjfOcifWQhPGeejxS0U0In0x/MdGCLSGCLSFCbSGpkz2NBV7fSXey1Zlp3dcsgLX8gYU69Tf0U3Pt/O5L75APD55Oysuq+Du916C26VQO7KJ8uAO5NFh773bBznyyxMMHZiceXuMuSgf96pm3KuacDRUo9gsyCYjssmUzTiv6ySTSQ4dOIgeilBl85DqGyLeM0Csq4949wBaYvoGXovXTMNrqmh8fQ1md/Z7klQcdLsvp9e9HlPAhx5PYbWYMJsLJz1fliUKCmzkeSwvy9+mc1FXV0dHRwdPP/001113Hddccw2dnZ10dXVRVFQ0Yd5rcVERP/7CV8lEJneoSBLYK9yYbBKgc987PsDv/vQX3v6W+/ju//4vadkynvRR105VnjjzfPXM4HY6qZSfQ3v/deyuCG4Xuws45/Z9wPdG757Udb1ummXfA/xg9O67dV3/8Uy3M4P9mPeEUpmMxuYtHfzp/w6zeUvnWU9a8grtrL6ikjVXVFN+xpxWS3oET7wDT6ITd7wTSyYwZ0kXdCClOIiYSwhYqxmx1hM1F48/nk6ptB0e5PCuHg7v7J1xIqPp2G1GJEkiEj23llpJlqhpLmDZ+jKWXVJOUblrwvulqInTEmd040r0Thusnk0yIjF0YIS+rd0MHRgh1BFhhuX9cDRU42ysxtlQjaO+EktxAUaXA5PbgcFhR0unUeNJ1HiCdDBMtLOPaEcv0fZugodbibR2Trt+a4GZiqtLqby2hMKVXiRZIqXYGLYvYdC+jAGpnD2bO9n5zElGhiJEw6kJ8zFlWcLhtpBXaKO40kN1Uz61zQUUlDqRz+zt1nXGXvjp9Q11XUPR0tjT2SFxjtQA9uQA9tTghMYWNa0xsHs4m+F46yDRKZKUWIoLqHrjbVS/6Q4KNqx5RZ00qKkUA89so+tPT9L9pydyZnA9XcGaYtZ9/GryKlNI+sQf9bCphM68KxiyLxs/CRjqC/PCX47x0rNt0zZaNdR7edtb1nLLTQ1zWhd7PhJKBYNxDhwc5NCRQVrbfPT1RfCNxAiHkyQSmQs2j/xiszlNNK0q4dLr62hcVTLeOCFrKUrC+ykP7sCePtWDr8tGhk46eeGDvyMdnRwE5K1ZyoYHvkTeqiUX7DUsFqlAiK4/P0nHb/7KwNNb0dWZNwAb7QZsxVbsJVbsxTZMTiMGi4JillHMCgarEYPNiGyWQQc9raEmMmSSGVLhNEl/ioQ/STKYItofJ9IbJROffSJFo8tB/uWrKdiwmvwNa8i/bCWWgpmVkdM0ne/+7w5+9JPJDSIGk8Jr376Wjbc0kB9roWn4MSyjjSn9O4c48NMWfIdyB7UFV6yl8u5bqbzzJhx1lWfdj+mOJ7qukxz2EzzUQs/Dz9L15yeJnswdqxgsCnV3VLLkjXXYirLrSMsWjjruQDO6MRuNmM2FE6dw6TqKnv0Ns1oMlJQ4MeZI5LUoGG1I0tw0upyeLfm6664D4DOf+Qz3338/b3/72/npT386YXld10kO+oj1DExq4I4nEnQP9/OLv/6Jb//gJ5SWFLHlqQeprqpARyal2EkrNvRTNYVIJTPEo2mS8TSpZEYEt690Fyhb8u3AI6N3X9B1/Zpplr0VeGz07qd0Xf/STLczg/2Yt+C2tzfEgw8d4f/+cnTa8guQHTK2+soqLr+xnprmggkn8c5EL0WRgxRGjpw1SZGOjCbZSMcVYiMZ4kPx7F8VkBSQRy+SDCa7hM0LimHqnsak4sBvrcNvq2XEWkfakM0wq+s6/V1BDu/s4ciuXjqOD89oaNxccHosNK0qoXltKUvWlE7onVXUBN54G3mxVtyJbmzp4VkH/5pmQM0opKIaoc4Iw3v78B0cINAWJjEy8+G9zsYaim+4nJIbN1J03eVYCs+v5mxyJMDIzoP4duxn4NntDL24a8oeA0uemYqri6m4ppSh/DIe2uXm8X1OYsnZ/2iZjFCUB4VulSJnCq8tSSIlEY7LhBMK4bhMJJG9hOMKaVXCYtSwmTWsJh2rScMsqRhSSZRkElMkgrOnh4LgAIWxYUzaxNdgdDupvPsWat70aoquuwzZsHiHHM8VNZmi+/+eovUHv6f/qekTx1sKbKz/55spX29B1ib2/MaMXro8G+l3rkaXsidf0VCSFx89zuZHj+fMEjrG47Zw26uauPO1S2lsyD/v1zTb4FbXdXy+GEePD9PS4qO9I0Bvb5D+gSj+QJx4fGbDc1+ODCaFuiWFNK4qpmlVCaU1eRN6283pAOXBlygN78WoTcx2nKCGzZ96iqFtk0/2JEVh+b/8Hcv/5e9QTBcnq/Zikhj00fmHx+h7/EWGt+whOTx1b+TFIikKnpVN4xnk8y9fjau59pzKN4XDSf7l35/kxS2TG15Lqtz8zd9fQUWFlcahRymOHEACgu1hdn/zEAO7J0+PsFWU0PiBN1P79juxlRVPenw6sy1VFzx4nK4Hn6L7wafx7z40aRnZIFF9YzlL3lSPu9pBq/U6UuYiFKuHspoGouFsPXpN01G0GI1D35jV/i5U0hWfRTLNTSWB2Qa3Y9REkmh7D+lIjJV33Ejf4OD4Y4qi8O43v5l/+7ePUV4y+XcoLVtJK3bUM2oda6pOz8lWAsE4HZ0hvvq1yf/npxPB7cvQBapzWw20j97douv6ldMse3og/A+6rn91ptuZwX6MB7e/+NUmLlm/DKfDjMNhwm43zWp+pq7rdHYF2be/n8eeaGH7jq6znmyV1XjYcHMDa6+qnlB7zpryURw5SFHkILb0SM7n6rKZeMzF8JEww3v7GdrdTuBwz6yzG1q8Ztw1Dty1TvKa8slrzsNVYUY+o+FRByKmEnz2Rny2RsKWU3OuIsEELQf66Tjmo/3YML3t/jkbVqcYZGqXFNK8poTmNaWUVnsmBP/WlI/82HHyoy24E11Tzj9KJYyEetJE+xPEfTHigxFivQFigxFSoRTJYIp0JDO7eUinsVWUUHzjRopv2EDx9Zdjryw9p/XMVCYaY2DTDnoffZ7uPz9JvHdwwuM9jlJeqLiCbtfZRuZfXJ5EgKLkCA3VbtbetJKr33IdRaWei71bC1bkZBetP/4jbT/+46T/89NJisyqv7+JhtdWYtT6JzyWVJx0eS6n17UeTR4dghdPs+OZNp57+OhZ59ovW1rIna9dyq03N+LMMfR/Kum0SjicJBxJ0dcX4LHHNhMMa1RU1KBpEqlUhmgsTTCYGB/qGwwliEbTM66P/HKlGOQJSQOdbgsur5XapYXUNhdgzFFT2x3voCK4g/zosfFhoGM0WwVH/jDIgf/8c87tuZc3svGBL+Fdv2JeXs/Lna7rhI+fZGjLHoY372Zo825CM8yUPlckRcHVXIt7ZRP5l6wg//LVeNcvx2A7/1ES3T1BPvzRR2jvCEx67JLra7n7PZeQr/ezdODPWDMBMgmVQz9r4djv2yYlBiy8aj3NH3kbFXfedM6NmeczEiTa2UvXn5/k+Ld+SeREx8QHJSi/opjCz/495BVjtLioriolaXChahJBX4xE0C+C2xzONbiF7PcnMeDjDW++j+GREcLRCB29PURjMcqKivn4u9/HB//+7zDZJdAmN/KrkpG0Yicjm8d7c3tOtpFIpUki0ae5aT00yHBfmHAwQSSQmHAdDg6J4PblRpKkLwCfGr27Qdf17VMs909ka9MC3Krr+hOz3E4HUAUM6LqeO7VedrkPAWNHjjfruv7r2WznLPswHtwuX/M5TKaJE94NBhm320J1lZvGhgIqK1xUVLipKHfh9do43jLM/gP97D8wwMGDAwSCiVybmcBsMbD26mouv7GeinrveKBmUOMUh/dTEt4/YT7iqZ01kDGW4D+Zpv2vRzn5+x1o6dnNo5kpxaJQuNJL8bp8Si8vwVM7OZNjUrEzYmvAZ2tixFY3fpIMkExk6Drho+PYMO3Hh+nvDBKPpkhO07uiGGS8RXbyS5wUlDgoKMmW36lZUjgh+7OspfDEO8iLt5EfO5Ez+Nc0hcgQDO330ft8K8OHRkj65zZJhbkgLxvIjl6cDdUXbdisrmkMbdlN5+8fY8eD23naspSTnpqLsi/nS5Jg7Zoybrqxnhuvr6OwYGFnP75YtEyGvsde4MQPfkfvXzahT5OVruHNV7DiXcuwKH0T/p6WrXS7L6XHfRkZJXsymEmr7NncwaYHjzDQPf1IEbNZ4cbr61mzuoRIND0akCYJh7PzUIPBBCP+OKFwkng8gzpNrVVhapKcHd1jsWYzudvdZlx5VvIKbBRXuimt8lBU7sKkqHji7XhjbXjjrbkbRl01DLTa2fKBH+TsWZRkmaWffA8rP/MhFLPorZ1LSZ+f4OFWoh09o1NORq9H72vJ2f9GGRw2zIVe7FVlOOorcdRV4qivwr20HteSunn5P9x/oJ+P/sOj+P0Tp5PIisRr37GOK2+tpyawmWr/88jo9O0YZOfXDk6afpJ/+WpWf/6jlNw44xltU5qLaQ5aJkPn7x/j0Oe/R/BQy4THKr7+SVyr67EX5dNQ4RnN3OskrdhIhQJ4D37hvF/DQrBQgtsxajJFrLOPVDCMqqr89pGH+JevfYVwNMLnPvpJPviud+OoKkQxZEDNff6tSkYysoX2rgHiqQxJJEL2InpO+hkZjBDyJ/D1h/ENRAmOxIiGkgRHBti385/HViGC25cDSZIuA8YC2u/ruv53OZYZy168FAgARbqeI4PR9Nv5GvDR0btX6rqec7ydJEnPAteN3p3TD9nZgtu5VNmQz4ab61lzRRVm66khE85EN2WhXRRFDucoJyORNpTSsyPM0R9vJ3Do5Lzt33TMbhNFa/MpWV9A2cZirPkTe2s0FIKWCoKWSkLWSoLmClRlcvIJTdNJJTIkYinisWzdXTWjkVdon7LsDrqOI9k3Oty4DXeiG5nJvTixgEzPi310PtHK8KHcSYnOh9HtpOiaS8aDWc+KpnMayjVfAsEE//ONLTz0l6NTLiPJEs2rS1i5oZL8Ygd5hXbcXivRUJKhvjDDfWEGe0L0dQbo7wxOqPN3MUgSrFldys031nPj9fUUFopAN5fwiQ6OfPVHtP30z9OeINfcdRlrPrQeC12cPlk8Ixnpc62jy7PhVIZlTefIrh6ee/gYbYen7iFeqCT5VIKR818ZuDwWTBYjikFGlrJ1thOxNMlEBvUCJpGbiqJARaFOU0mcppI4zWVJ1tbGsZr07AvIX47fV8Lez/6GgWdztlfjXb+cy77/WdFbexHomoYaT5CJJUav46jxJDF/gB0vZk+NLr3yCmwuB7LZhMnjwlzoxTBNkqf58OTTJ/j3+58mmZz4G2x3mXnbJ66iudnBsoE/4Y2fJJNQ2fu9I5z4v4m9oe4VTaz+wkcpf/X1c9YgPJdz+HVNo/uhZzj0+e8yMlrjuPzrn8TeVI2tMJ/6EhcmV7bRQJVMJHQF2y4R3J5pLoJbyPbipgNhop29aOkMf3z8r7zvX/8Rh93O0cefw2I2Y3TYsJZ6MZhUyEweeaSq0NITIBSM0tkb4yv/fQx1mlKSF3NYspiINU90Xd8hSdILZIcmv1uSpAd0Xd96xmIfJxvYAnz9zMBWkqR3AD8ZvXu/ruufybGp/wHeD1iAb0iSdK2u6xMmp0qS9BZOBbaPXMgP2Fyw2o2su6aGy2+sp6zmVOCsaEmKwwcoDe3GmRqY9DzdUoC/187B722l98m/zGqbkixjr63AtaQOZ0MViiX3sMF0KEK4tYvIiQ6i7T3T9vwkgym6NvXRtakPOICnwUXZhiLKNhSRv9SDLKvkJTrIS3RAIHvaHDUVErJUErRUZjMxy1YyigXZZsZiM+KZ9KI1LGk/lrQfayaAJe3Hlh7BHe/AlCMJlKZJ+NtStD92gp4X+4hNkZRoxiQJY54LS34e5oI8LEVe3CsayVuzlLy1y3DUViyoYHaMrus8+ngL//U/mye1pI9x59vYeHM9l1xfhyffhi01lH2vM12YQ2HSioV4rZdEYx5xYzXa6HyVcCDOYE+YkD9GcCROaCROLJLCbDVgsZmw2oxY7SYs9uy11WbEYFRIJTOkEhmSiex1NplDhmQ8zXBfmN6OAIPdobMOXdd12LO3jz17+/jPr73I6lWl3HFbE6++vRlzjmGYr1TOhmou+95nWfmZD3HsGz+n5Tu/Ih2cXMal/U87aP/TDqrvvoK1H74Ui34SdBWDnqYyuJ3y4E76nSvp8lxB3JTP8ksrWH5pBcN9YV56to2XNp1cMPWTFYOM0aRgMMrIskQmrU2YM3wuQa3ZYqCw3EXRGZeCEgeGaRLE6LpOOJCgs8VHd9sIA11BfAMRQv448Wh6QuK2+aKq0NEv0dFv40myWe8NBlhVb6BZCuF5/s/Y2o/nzEFgcNhY/fmP0vjBv0FWFmkinEVOkmUMdhsG+8SyQdZ4HCU8BGSTLM1F4rVz9bNf7OF/vnnmqSCUVrl516eupdIVYnn3D7FmgviOBtj2hb2Eu06d0hmcdlZ99sM0/b+3LOhcCpIsU3nnTVS87kb6n9zMoc9/79SDOkT64hiDKWxFVhRzCpuuk1r7cVKKnXg0RdAXJ1fnm81mpLTEgbKQv2PGs5etutAkScKU58LgshPvHeTWq68DIBKN0trZzvLGZtKRGOmWGAabBWtpPooZIuE4kYRMLCWTzkAyJRNNyESj+rSB7cW2cL8ZLw8fATYDVuCJ0aHKz47evw947+hyx4H/OpcN6LreKUnSvwNfAdYDOyRJ+grZHmE3cBcw1msc4lQv76KQV2hj2SXlNK4swZOfPWA4kv3ZXtrwQQz6GT0sspGUqYG2R3s49PU/5Tw5PZNsNlF8wwaKrlqfDWaba3E2VM96KJKaShHt6CVyooPQ8XZ82/cz+NyOKef0BU6ECJwIcfgXJzC7TZReVkjJJQUUrsrHXmJFAhypIRypIcpCuyc8V0Mmo1jIyNZsXT/JgCUTxJwJTVuvT9ch5oPebf10P9vO8MGZF3eXFAXPqmbyL1+Fo64Sc74Hc0Ee5nwPusPGlv17wG7l1ttedVFPHmaruyfIF778PNu2d+V83OmxcMPrl7HxlgbsRCiO7Kakcz+29NS1TnUkEgYPUVMhUVMRsap8UrV2UoqXlMFBRragaEkMWhKDlshe1BgGbQSDlkDWVVTJgCqbxstOqbIRVbKiyiYShiVospF0SmWgO0jvST+9HQF62wP0tI1MzEJ5+n7psHdfH3v39fG9/93Bm+5dxRvuXjGrOZ8vd9aSQtZ84WMs/6f3cuJ/f8vR//5pzu9wxx+30PHHLVS/4VrWfuRyLGoLaClkVMrCeykN72PIvpSOvCsJG4tJp1Xc+TbqlhbScmBgTusmS1K2l1WSJGRZQpIljEYFk0XBaDZgNhswW40YzQqyrhMNJxjsDROLZs4raDRbDVTUeals8FJZn09FvRdvkX3mPUmaijERwqyGsBChXI6xojGJoT6BrKVIKw4ShjJSBgcx7HR0q7S2hultDzLcH8kOfwtnp2po85TFOZOB3ccy7MYGRbfhKr6RmpFW6oZOUBPswKCrVN51C+u//i/YKqacGSS8wmmazte/uYWf/2rfpMea15Ty1o9dSbV6mKaev6LoGY78ppX9Pzw2oUZ59X13sPa//nHWiaIuJkmSKL3lKkpvuYqDW3eQjJ7qEUzHVEIdESx5Ziz5ZsyyhoEkkseD0eFmZCBKKjnxtyycgHh3mopyKzbbK3PI//n01MuKgr2ylPhpbQPqGZ0ysYTKSG+EhGxGX6Rh4uLc60VC1/U9kiTdC/wCcAG5xlwcB+7Qdf3sUdjU2/lPSZK8wD8Cy4Cf5lhsELhT1/WWHI/NmeJyJ5m0mXg0TWYOhpn5h2JsfrSFzY+2IElQWwaX1gRYXxfHWKVSmB39h27Ow9/n4cB3t9H31INnXa+lpJDyV19H+auvo/jGjRgd5z9UUzGZcDXW4Gqsoey2a7P7petET3Yz+PxL2csLuyYnWyDbq9v+ZA/tT/Zk9y/fTOGKPApWeilc4cXT4EI+rbi5jIZJjWFSp09ao+sSiRAM7h2me1MHA7uHSYVmNvLdWlpIwca14xkhveuXT2oRHxOPx5Haj89ovQtFOqPyy1/t4/s/3EkyOTkYNFsN3HjXcq68rYl8BqkZ/gP5sYm9NmpKJT6UIOFPYbApWAssmF0mJHSsGT/WjJ+C2Ny/LxoScWM+EXMx0bxiIsVFRK5tJGVwkU6pHN/Xx76tXRx6qZtkjpqJAL6RON/67nZ+8sBu7r5rOX9z32oxZPk0RpeDpZ94N00ffivtP/8/Dn7uu0TbeyYt1/H75+j4/XPU3HcTy9+5AoelE0lLEk3A/v0dPHfEx4vHnITPv+rXBJIEDo+FvDwLeV4juqqRyahkUirJpEo4lCbsT5Geo9Z1g0mhvMZDZX1+NphtyM+WuDpL/V6DlsKeHsaW6MOW9mHOhDBnQlgyIYxqZFKSpulsVIAm0JsgbvAQMZUQNRURN3pJKVYiaTP+kI7PrxKLqaRTGsmkRiyWYXgghn8oRtAXJRxIEoskzykzdEg3sT9vKfvzlmJVNK5dk8/y91+PtXzxBBzChZXOqHz2c8/yyKOTfws23NzA69+9jsbAM1QGt5GOpNny5X30vHhqNJq1tJDLf/T58fOKxcpckIfsdiBrOlKS8Rrv8ZEkqXAae4kVgw3sqWESBjdF5S6CI3HCgYkjXTIZjfaOACXFDvLyrBctT8fFMtZ5EI+f+wigB/+azS9rs9poamgkIykkTFYSBivqeRTHVAwydqcZl9eC2Wrl0N5zXtV5EcHtPNN1/WFJklaR7cW9A6gAUsAJ4PfAt3Rdnz5Cmdl2PiVJ0kNkhyhfDZQCCbLB80PAN3VdD06zijkx0BPGZJqfj5WuQ1sPtPV4+O1mDwAFbokaaxz7gf0U+bopiQ4wVR+UtbyYunfeReWdN5G3dtkFGR4rSVI2OUVdJXXvuAuAWHc/fY+/QO9jL9D/5JacvcsJX5Ku5/rpei6bodVgUXDVOjG7TZjdRswu0+htM9ZiBwabkWhfhHB7gOhAnGh/9pIYScw487OkKBRetZ6yO66l7PZrcS9reNn+aBw8NMB/fGETLSdy976uuKyCO9+9ngp7gBr/H8iPtSABmXiG3u1DdD/fR/+uUw0Fis2CmkyDqqJYFGyFFpyVdpwVDlyVdhxlNixeM5Y883hxe4BMUiUdSZOOZkhF0qQjaVKRDFpKRTbKyEYFxSSPXhRkk4zBomTrOjKMPT0MnErHn5KthCwVVDQvZdW6tSTUy84a6EZjaX72i738+rf7efXtzbztLWuprvLM5du9qCkmE/XvfgM1b30dbT/+Iwc/913iPZOnQbT/5in2/mkH7cUN9C1bw7GQk8w8JifWdQj7E4T9CTrnOIGsLEuUVLmpbMinsj4byJZUulEMUx8zZT2Trcuc6MGeGsKWyn4+jWp0zuqIj5EAWyaALROAWI758Y7Ry2n0ldka5Amjh6ghn6ihiM6gixf2Smx9ph1ff2Tyes4irso8tsvPY+/5E2XlLl5zezN33NZERbn7XF6W8DIUj6f5x39+PGepnzvespobXlPPssE/Uhg7hr81xOZP7yLSc+qUsPpNr+aSb/0bZq/nAu71/JEkCcVsxN1QRbSzj3Qo+71T0xqhrihWrxlrgRlrxk9atiF5XVhsBkYGopOS6fUPRIjHM5SWOpAX4HSn+VJfXw/Ajh07iEaj2O2TG6U/8YlPcP3113PTTTdhNp86K04kEvz85z/nIx/5CADveOd7SBRW5WzgnwlvsYOrX1VPY52JivwUxaYAjvQgjlQXvp52/vDjc1rteRMJpYTzdiETSs1EnhbFE/XhiY3gSQapW17B+jfdyJo33YjFtrCGX2qZDL7t++h97AX6Hn2ekV3T1w2ba5biAspuu4ay26+h5OYrMXlc57SeuUxEMZ8ikRTf/t52fveHAzl7bdxeK69/zyWsXeeh3vfUeF3BkeNBjv2+je4X+lGT2R9YR0M1Fa+7kfI7rqXwqvXoqoZ/7xF8O/aPXg4QbmmftA3ZIGGwGcjEVbRzHN0gyeAos+Ouc+KuceKpc+KudeIot4/38GvI+G11DNmXMmxvJq6aOLa3jy2PtXB8f//U65bglpsa+NAHN1JW6jyn/Xs5UxNJWr7/Gw5/4ftEh/z0OMpod1fTVtTEsOHcvj8Xk8VmpLTKQ2mNh7JqD6XV2etcZXHG6Tr2jB9nvBNXohtXshdbanBWvbDTkhQw2MBoHb22gWIBxQSyAWQjyEYk2UgmrRHvHSbhC5EaCZIOREgFI6ipNGoyTXAkAKk0ZklCTybQ06lsvXJDttGo+PJS9A1X8GxPPU8/H+Hgju7znt+7enUpb3rjSq6/rhajYQHPDXyFuFi/T5FIig9/7BH27puYYV2WJd74gcu54qp8Vvb9Fmeqn45netnxlX3jvy9Gj4vLvnc/1ffefkH2Feb/fWppaSGTyWAwGGhsbETXdVL+ELGuvglVKwwWBXupDcUko0kG4gYPGV3BNxAlGZ888sxsNlBR4cI8Tx0rF1OuhFLhcJi6ujqGh4fJy8ujubkZs9lMSUkJv/nNbwBYs2YN+/btw2g0Ul9fj8fjIRaL0dLSMt7je/sdr+fzn/8GplnU304mhvD7o/iCKQKagZtqTmLa/hzxDh+ZeIZMXCUTz6BmJAbiGe54aLwAjMiWLCwuMwlujWYFi9WIyWLAbMnO/zJbjQx0BfEPTT1er7wuD7PFQOeJETLnWaNRksDtseJ2mXG7LXhGL263BbfLjMNhxmYzYrcbsdlMOEav7bbstc1mPOsQvPOV9PkZ2ryboRd2MvjCLkZ2HULPzF2pInO+h6LrLqf4+uzFtbR+TnpnF0Nw++xzbXz5P19gMMfnTZLgilc1ctt9q6jL7KN25FmMWpK+l4Y4+ptWBnZne3hls4mqe26l4b33Unj1JWd971L+IL6dBwnsO0q0s4/wyS4GDregh6I4CryY89wYPU5MHhcmjxOj24nJ40QyGkn5g6T82RP21EiAlD9EciRIcthPOpC7vIxikvE2uym/uoTKa0qxF2f/H7KBbi1D9mUMOpbTeTLMMw8e5sD27imTBpnNCm998xre8bZ12GzGnMu8EnV1B9m6rYsXX2zjpZ09JNMz/w1VDPKUgZMkS5jMCiazAZPZgNGsYDQZMJmzCZ+ioRTBkRiRYOKchtM6PRa8RQ68RXYKy5yU1eRRWu2Z0RxZsxrFlejOBrPJXhzJPgyzS+x/iskJ5jyw5IHZg2T2jN/G5MwGs4ppTo9Lekbl6hWrUYf8RDt6CR8/SfBQK5GTXYRbu7DYVepur6Tk9Ws46b6UR3Y52fTo1Im/XHlWQlMknjtdfoGNN9y1gntevwyvd+ElmXmluBi/T8Fggg9+5GEOHxma8HejSeFtn7iK9SuMrOr9FRY1xIEfH+PQz0+ML5N/2Squ/O1/46i5sPXVL3RwO0bLqMR7B0gMniq7JUlgK7Ji9ozWEFdcpBR7zmHKkG0wKC9zvezyR+QKbgH27dvHpz/9abZu3YrP50NVVaqrq2lvbwfgiSee4JFHHmHLli10d3fj8/kwGo2UlpazfMUaXvfaN7Jh4zWz2hdJkkinh8lkEphSPuRffIcTD3UQ92mYC/NwVJfjbKrGs2oJzoYqBvQU626/eezpIrgVFpfTg9tP/ufDlNVUYXOasTvN2J0mbA7zlMPZMmmV7U+38dQfDk5ZMqW4QOFd764mZi3h2LEIrYcG6DoxQiJ2jidX58FiMWCzjwW8RpxOM0WFdooL7RQWOSguslNUaKeoyIE3z5q7LM8sZKIxhrfvY+iFXfj3HCbWO0i8d5BE/zC6OnWwLxuNWEoKsJYWYqsqpfCq9RRff/m8ld5ZyMHtwECEr/zXCzz7XO4SUKVVbu75u8tYUZWkaeivOFP9DO7zse9/j+I7HACyc56a//7t1L/7Hsz55z4yYa7ep1jPAL6XDuDbsZ+Rlw7ge+lAzuHt3iVuKq8tpfKaUhxl2ZPrlGylx30pPe5L6R9U2fTQUXZuaptyjnxBgY0PfWADd9zWPO+NOwuRzxdj7/4+duzsYcvWTnp6pq9bezrFIFPdlE8ykaGnbXI91LFlrr6jmZvuWobFfvYWdDWjEQ4mCPpihPxxgiNxoqEkikHGYJQxGBVMJgW724LDZcbhtuBwWybUuZ6OQU/hTA7girXjTPbgSvZiUmc7YVgCaz7YSsBegmQvBnsJWIuQlMkNJZqqkhgYJjnsH23MCZIca9QZCZL0BUgHw6iJJGo8iRpPjN/OxBNoiSRaOoOu6eiqiq5p6KqGrmlomQwzHR8uKRJlG4uofU0d0Stv5btPeNn8eGvOxgSn28TSdeWcPDbMUO/0KTMMRpmbbmzgb+5dyfJlYm7uhXahf59GRmK8/0MPT5r2YnWYePenrmV1VZQV/b9DikXZ9sW9dD9/aiTNko+9k9Vf/BjKLHrT5srFCm7HpMMRIid70FKnzu1MDgP2EhuSIpGRLSQMHmLRNCND0ZwNswUFdgoLbC/bKVXnIpNR8Y3E8fvjZ62ukIskSbjyLHjsGt2dncSHfIQOtNH9oS9P+zwfaT7M+HmXCG6FxeX04PY32w9QWFp+1ueY0mEc6QEMagKfvZF4WmHzo8d55sEjxE8rRTFGluFdN4zw5lshYq8mYCqj1e/hWIdO5wk/XSd89LYHLki5iJkyGhWqqj001ntprM+nvt5LfZ2X0pKzJ2E5G01VSQ6NEB8NdtOhCOZCL9bSQqylhZi8ngt6cF+Iwa2qavz+T4f41ne2EcvREGIwKdzyhhXceHs1jaFNlIb2EGwNsu8HR+nbnm1tdy2pY+k/vJuav3ntrLNn5zJf75OuaYRPdODbsZ/BTTvo+tOTpPwTp9h7GlxUXVdK3W2VWLxmVMlIn3MNXZ4NDEXMvPjXY2x5/MSUjUbLlhbyiY9exZrVpXOyzwuRpumcbPezd18fe/b1sXd/P72zCGYhW6ty6boylq0rBn8ff/htF7FY7uPS8kvKufvNdWwwbSc/dpyoqYiwuZSwuYywuZSoqTA7Bn2eWLQojuQAjngnjmQ/juQAZjU0yzmyUjZwdVUjuarBUQ62IiTl1PdF1zQiJ7uJtHYS7ewj2tFDtKOX2OjtWPfAnI5QmQveZjer/+Vqtubdzo8e6Kevc3LKClmGd9xto2h5I89vi7F3cwex8NQ1kgGWLy/mXW9fy7VX174iG4suhgv5+zQ4GOHvPvQQ7e2BCX93eiy899+vZ6W3n6WDfyY1HOH5T72EvyV7fDG6HGx44MtU3nnTvO3b2Vzs4BayU7WiHb2k/KeOu7JBwl5iw2g3jA5TziOVkRjuj5BJT264cjhMlJe5zrtzYbFTVY2h4Rh+f+6ySmMURZ40n3mM2WKgsMCAOeYnORKnOxonNuwjeryDno98Zdrti+BWWNRyBre6jpE0Ri2JSY1iSQ5iT/bhSA5gTw1OqLmqSkaG7Evpd62iTyvnuYeP8vxfjpHKUc6kxhLkgzX7aGpSyGtyYypyEjGXEjKXMaKUcmzAQc8gDPeH8fVHGO6P4BsIEwnOXdmN82WxGGhoyGfd6lLWrill9epSPO4LW0R+ri204PZ4yzCf++ImDh7KXYapaVUJd733ElbYWqnzPY024mf/D49x8tEudA1cS+tZdf+HqLz71jnt6b5Q75OaStH/xGbaf/0Xev7vGTKnlV+QjTI1t5Sz5I11uKocaMgMOZbR6dnIYCqPJ353gK2Pn5iyhfeWmxr4yIc2Ulqy+OfjBoIJDh0e5NDhAfYdHODAgX4iZwlOcqmo89K8poSVq92sL/ehDLTw7V8m2Hw49xC5ogoXr3/bCm6tbqE8uANFz92zqEoGIqZiIuZiksY8kqZ8kkYPScVBUrKinSXwldAx6ilMWhxr2o8lOYg1OYQt7cOeGsConcNx0eQ8Fcg6q8FZiWTIvk5d10n0DxE42ELgwHGCB48TONhC8NAJ1NjCqO07JUnC2ViNZ1UzeauXYK8p59jXH6CgNkbR/3stP9q9hEf/2JJzeswVhT7+4d4o8WUbefxoEc893kX7seFpN1dZ6eYdb13LHbc1YzKJebnz6UIdd3v7wrzvg/83aXSHO9/G3336elbZW2gafpRQe4jn/uml8bryruZarn7w27iX1M/Lfs3UQghuIXscSfkCRDv70E8rU2MtMGPNt4yX2ktLZvxD0Qm1uceYTAqVFe5XZC13Xdfx++MMDUdRpymRZrYYyKTVnMtIkoTbayHfEifV5ycVzjZ6D5AWwa3wynB6cHvkT/9Abb4RgxY/pwyZcYObAecqDsSbeeC7B2k/OvkEwYjKDW3PsGL4MNY8M3lNLrxNbvKa3OQ1urGUOEgY8ogbs5eEMY+RtItuv5lARCIUhVg4RSySIhZJEh29nYylSSbSJOMZEvE0yfjclDOaieoaD+tWl7F2TSnr15UtusBhoQS3kUiK7//wJX7zu/05D9h2l5nXvWMdV11mocn3GK5oBy1/7uDgA8dJRzI4G2tY8ekPUn3fHcjzUCT+YrxPmVicnr88S8evH6H3r8+dGvIlQfkVxSy5r47CFV50wGdrpC3/RtoGTDz8wG6O7c2deMpqNfD+917GfW9chWGaDLoLSSyW5sixIQ4dGmD/4UEOHx6kv+/cKrA53GaaV5fSvLqIS5szVBu7yIu1kTrcwkNPG/lJ5zJimcmfH6vdyK33ruCuy0M0hF7ApGUbHTTJgiypoM18qoUOZGQrCYOLtGJD1lUkXUXWMyh6GqMaw6Alzi9TsWQAZ8WpYNZVnZ0nOzoqJBUIMbx9H8Nb9zK8dS8jOw+SGgmczxbnlWK1YKsswV5Vhq2yBFtlKfbqMtwrmvCsaMRgm/h91DIZWr7zK1q+8T1Wvn8Z7Wtfz3d+laDlwORs2VX2NPd1/oHVry7Gdc9NbI+t5LFnQux9sWPa35H8fBt/86ZV3P365TgdL6/5ggvFhTjudnYGeN//e4iBgYlZt71Fdt736RtYY9pH3cgzDO7x8eK/7yQdyTbel91xHVf88quY3Bf/N3+hBLdj1GSKSFsXmeiphjGj3YCjNDtMOaXYSSpOIsEkAd/koiOyLFFR7sLxCvle6bpOJJpiYCBCapocNVaHCasJ/P5UzikXJouBogID5sgI8eEE1opSjC4HaDon2lpJJ5NIaZXCpI4aS5D0BYh29hLr6ifW2Ut09Lp3eFAEt8LidXpw2/G791BROIuDtMkNihHUJKip7DWQkYwc99zEr56x8MTvDubsRVrjinFndA9qZxfx3kHGvqWyUcZeYsVeYsNRasVeasNeYsNeYsXsMmFwGJGcDlSjjYxiJS1byShWVNlERjKhymZU2YQqm0iqRiIphVhKIZqUiSVkYkmIJSXiCYiFkwRH4gR9sez1SHYenDZNa9lMVNd4uGpjNVddUcXaNWULvmX/Yge3uq7z2BMtfO3rW/Dl+JEDuPT6Wl73lmUsT2+jPPgSg7sG2f2tQ4TaI1hKCll1/4eoe9fdyIb5a+m92O9TKhDixP/+lqP//QCJ/lOJTgpW5LHk3joqripBQ6bPtY6T3ms5sC/Aww/sYXCKoblLmgv4109dx7KlRRfqJcyYzxdj774+Xtrdy+59vbSe8M24LNaZzBYD1U0F1K8oYu1yMysKBylInEQ6dojh3QMM7PFx8kCMv5ZcT4uzJuc61l5VzTvu87Am9Rz29DDR4TSxaD5y6Rrcl12P0WkF/3H04YMwfAgyc1wY96xksBeBowLJWQmuGnCUIsnZ74OuaYSOtjG8dc94MBs80so5ZbeaiiRhynNj8roxe7PX2dsejG4HBpsVxWpBsZpRLOYJt2WTEUmWkRQZZBlJUUilUmx7aQeSLHP93a/DXV5yTtM1Yj0D7Pr7z8PQPur/8Ta+uX89j/9pcsn4vDwLH6jxoTz8Z8ousVP+1ivoKr+Sv2y3sPmJNoJTHJsAbDYjb7xnBW998xry8i7+tI6Xk/k+7ra1jfC+//fQpN+ewjIn7/v0DaxlG9WBzXQ83cP2L+8fz5K//J//jlX/8ZELUpZwJhZacAvZ3/Z431D2HG+UYpSwl9kxWBRUyZTtxEho+AbCOc+9iooc5Htf3vVwE4kM/QMRYrGpRx7ZnGa8LoiH4vjCkz9zZ/bWSkYbtspSZOOpc6LZ/B8ePXCApatWjd0Vwa2wuMwquLUVg7sOyVOXvbbkEW7tpPP3j9H5u0fx7z2MYlYwu02sfGcTztdfzxPBK/nZt/cxnKOXpbLSzX99+VXUVjqJdw8Q7ewl2tE7Pqdr7BLr7J2QpAAJDFYDJocBo8OIyWHEYFFQLAqG0YtiVjBYR68thlOPj/5dNhtQ8lxIRfloTi8pg5OkwUlccjAUs9I5bKKjV6O/O0R/Z5D+zgDx6OyTYJktBtavK+PqK6q56spqyssWXrmRixm0HTg4wNe/tYXde/pyPl5Y5uTu917KxpphGoafJN09wN7vHqH7hX4MDhtLP/keln7snRjs85/N9GIHt2PURJKTP3uQw1/5IZHWU/UX3TUOVr9vKWUbikjLZjryrqbTfgmbn2jjid8fnGI+vMS996zg/e+7HIfjwidBGdPdE2Tn7l5e2t3Dvn299PbMvm7pGE+BjZrmAmqb81leD0sLA+SlelDajuDf0c7gHh+De0dQdTP5l66ktWo1v2i1EI5Nbi23u8y88T2reEPdPgx7ttLzYj/dL/QTbD9t/ySJvLXLqHnTHVS/+dVYSwog1D4a6B6ERO56zOdMMoCjdDSQLQdHRTbx02nzZNOhyGiv7Ggwu23flFm6Z8roceGoKcdeXYatugx7VRn26uzFVlWGuSBvTkdMzPX3reevz7Hvk59j+fuaeMx7Nz/+fgvp5MT/c4NR5lMfv5LVoRMc//YvMaR6qLtvOZkbb+GRoxU89XA7fR2BKbdhNhu4567lvP2taynIFxmW58J8HnePHhviAx9+mMAZCTFLq9y899+vZ236OSpCL3H8TyfZ/a3DoINsMnL5jz5P7VteN2f7MRcWYnA7Jh2JEmnrQktle7yz2ZQtmD1mdGTixjySqgFff5h0jl5Lt8tCaen55ztZaDIZjcGhyKTP3+msdhP5HglzMkT/iExUm5zUz2g2UFxgwBQdIeFLYqsozVkacjb/hy0tLTQ1NY3dFcGtsLicHty2//HDVFZWZOdlGR1gciKZnGArAlcNksmBrmn49xym99Hn6X7wqWlru5ZuKGLNJy+npeZOfvKHKNufap20jNli4F//8VruuL15yvXomkZi0EfKHyIdjpIJRUifcRnLvKnGE9mMnInkqdunZedUx5ZJpEiHIuiqimKWsXiz80EsXjPWAguOMhvOujyMTTWoxZVEjQX0xDwc7zNzojXOyaNDdB735TwQT6emNo/rr6nhmqtrWbGsaEEkTbgYQVt7h59vfWcbz2zKnQXZYJS5/s5l3HFHMctCT+Lyt3DkVyc4+ts2NE2m4X33svLfP4ilKH/e93XMQglux2iqStcfH+fwl36Af8/h8b8Xry9g7fuX4ql3ETPk0ZZ/Ix16HY/+ah/bnpz8HQQoKrTzyU9czQ3X1V2Qfc9kNPbu6+OZ59t44YU2enrOrafTYFKoqM2jssFLXZ2NVTUp6uyDGHtOkNx3hOARHyPHQ4Q641hrG8i/bCX5l64k/7JVZPKL+OJXX+DpZ9pyrnv1FVW8601ulvc+zL4vbRlPVDYtSaLkxo3UvPV1VL7+JgwOOyQDkPBD0g8JP/robS0+ghbzYZDGjiFytg6sYho//mJygMmFZC3IZjC2FoA5D0k+FUSqyRTBQy2M7D6Mb8f+bK/soZZz7pU12G24lzfgXtGIZ0UTnpVNuFc0YikuWPSJ7tKRKNve+Sm8xb103vEuvvqdIfyDkz977373ej7wt5cxsvMALd/9NYNPPkXda6twvvkOnhxYyuOP9NB6MHdOAMjOGbzzzqW8663rKCpynPd+v5LN13H3wMEB/t/fP0z4jHn6FXVe/vZfr2Fd4glKw/s58JNjHPpZttSPOd/D1X/+NkVXXzIn+zCXFnJwC6ClM0ROdpMOnWoYNLuM2IqtSLJEwuAmJVkZGYwSj05uiLVYDFRWuDEaF/ZIuJnQdZ1AMMHAQGTK/BhGs4LXa8SphYkNRBhWPKTUycdfm8NEiTtNus+HZHJgqyyZcgSbCG6FV4zTg9vjx4/n/MAnfX76nthM76PP0//4iyQGZ94TYbQbWPOBZdjuvYM/t63i19/bnbMH6e67lvMPH73qgg7h1TWNlD9IvH+YxMAwiQHf+HXkZDeho22Ej51EVlScVQ7c1Q7ctU5ca6uQVyzHb6ni4ICHw606J48O03Z4MGdyhKm4PRauuqKa666pYcNlldhnUEpkPlzIoK21bYSf/WIPjzx6fMqD+pJ1Zbz+HStZb95HVWArXc90se/7R4gNJqi851ZWf+FjuBpr5m0fp7LQgtsxuq7T/+RmDv7Hdxh6cReQTdJb+6pKVr6rCWu+hYClipaCV3HopMzvv/8SA12Ts8cCXHdNLZ/8xFWUFM/9HLJgMMGLWzp4+tlj7Hipj1iOntLpyLJESZWbyoZ8amttLK3M0JTvx9R7kszBo0QO9hDqTaMpBVhranEvrce1tB730nps1WUTehWffqaVz335OYI5WsztLjNveNcq7mk8SOyPj7LnW4fI33DZeMbgmVKsFipefxO1b3ktxTdunFQeJPt5ehwZjZtuvgWr7exBUCaeILD/GP7dhxjZfZiR3YcJHjiOlj630mqyyYh3/QoKNq6hYOMavOuWY68pXxBDLectO7muc/iL38f/7O9wfeqd/McvrLTmSF53zxtW8E8fuxpZlkj6/LR87ze0/fDXlG90UPSu29iWWc9fHvVxcHvXlO0IBqPMa1+9hHe9fT1lpRd/XuZiNB+fg117evnIxx6ZlIm/prmA93zqKtZFHqEwfJhd3zzEiQc7AHA21XDdI/+Ls6H6vLc/HxZ6cAtjw5QHifeeaihUzDKOMhuKSSEt20gYXIQDCYI56lQbFJmKChc228UbZXS+kskMvX1h4vHcx2xFkfF4zXiMMdIDAZJY8Uk2Mjmqibi9FgpMERK9YazlZZg80x9jRHArvGKcHtxu//WfKZZNxHsGifUMEO8dJHyig5GdB2fcC2ApyqfynltxLanj5M8ezD4XKLm0gFX/fA07i+7iO99spbttZNJzlywt5KtffNWCOgnQNY1YVx/B0UA3ePgEvpcOEjp8DE+tg4IVeXhXl2C+bCWRwgb29hWx61CaY3v76Drhm3HniaJIrFhZwtVXVHHFhiqaGgsu2BCc+f5R1HWdnbt6+dkv97B5y9TBQV6RnTvfuY7rmv3UjzxN/HgPu795iKF9IxRddxlrvvhxCjasmdN9m42FGtyO0XWd7v97mr2f/E/CLe0AGCwKS+6rY8m99cgWAz3uy2lxXc2mR7JDlXNlj7VaDXzgfZdz7xtWnnfCKX8gzmOPH+WRvxzk6Ikw2izmzZotBqqbC6hv9rCyTmOZ24ep8wSpgy2ovhSqIR9DfiWOhlqcjdW4mmvP2rsYCCb40n8+zxNPnsj5+MoNlbz7b7ys7H+YfV/eTKBT5rIffo6yW68GID4wnB3mu3kXQ1v2MLLz4MQpE1OQZBlbVSmOusrxi6mymAMD3cgFHq695lqMkoSWzI4oSQyOjDe0Rdt7CJ/oINLaRbSz97zmydoqSkYD2bUUbFxD3tplc1Imaz7M9/et56/PcfjfPk3T/XfwtZdW8MJjk0eR3PqqJv7j324Y/x6oiSQnf/EQx/7nx+RVpKj8uxs45LmaPz0aZffz7VM22CmKxO23N/Oed6ynssI9p6/j5W6uPwfbtnfx0X94lGRyYkWH+hVFvOeTV7Au+GfyQi1s++I+Op/pBaBg41quffi751Unfb4thuB2TCoYJnqyG220hrUkg6PUhtFhRJWMxI15xGIaI4ORSfVwJQlKSpzkeRbW7+/ZaJrOsC+GzxfNeQiXJAmnx0y+PYU+7CedlNG8BfSPpCaVApIkiYJCC86Mn5Q/jb2uCsU0ebjymURwK7xinB7cfoNa8jn7F+RM5kIvlXffQvUbb6Pwmksn9JCM7D7Eie//lvZfPgx6inUfXUXirrfwnT8Z2ZbjBNPpNPO5z9zI1VfVnPNruhAysTgjuw4xvG0vvm3ZuW2KHKXkkkIKrqrBuPFSegx1bGuxc2jfCEf39hENzbx0hyfPyobLK7lqYxWrVhZTXuaatyGB8/WjeLLdz2NPtPDYEy10TdFTCNlhNTfdvZybr3OwNPQUpq4WDvz4GO1PdONZs5w1X/wYJTdfedETSiz04HaMmkrR8t1fc/D+b4/Xy7UWmFn9t0uouaWChMFFS8GrOBYu408/2MnxfbmzKp9rwqlwJMljD+/lkceOcvB4dMYBrd1lpn5ZEU2NNlZWxqlOdKK0dyKFNYylS3AuXYqrqRZrWdE59Sw++1wbn/vic/j9k3sEbA4Td797NW9oOkTywUfZ881DVL7hdaz9r3+aNhOqmkwx9OIu2n/5EJ1/eJxM+EInkpqabDKSt245BRvXUDga0NoqSi72bs3Yhfi+hVra2f6WD9P8nnp+k7mD3z5wfNKJ55VXVfPVL9w6oSyJrmn0PLKJo//1YwzJDmr/33W0VNzIHx9PsvO5k1PWbJdliVtvbeRv37memuqFGygtJHP5OXju+ZN88p8fJ31GBuzmNaW86xOXsd73exyBk2z+9C76dmR7F8tfewNX/vprk7JxLzSLKbiF3NmUrfmj5YIkmbjRSyIj4+sP58xY7s2zUlTsQF4Eiaai0RS9U8wnhuy82sI8HSXoJxXKYCkpJoqR/oHJuScUg0xxkQlTYAhNNc1qpI0IboVXjHMNbp2NNZTedjUVr7mBousuO2uW2nQ4Qvuv/sKRr/6YgroMNf92D79qXc/vf7g35xf+Dfes4KMfugKLZXHUOdN1nWh7N/1Pb6P/qS0MPrsVRxEUX1ZE3o2rSS5Zw66+EnYeSHFoZ++Uw0Kn4nSZWbasiFXLi1ixrJjly4rweucmYclc/SgODUfZt6+ffQf62bGzm5aW6YevG00K17y6mdtvL2JpYjOewQMc/XUrx/7Qhq26itWf+/s5r1V7PhZLcDsm5Q9y8HPf5fg3fzE+bLVwtZf1H1mBp9b5/9l77/g47jr//zlle19Jq14syZIsS+41jh3bcXonCRAIEGqA4+B+x3EHXIHjuAPyPe6Ao/cQAqQ30qvtxN2WuyzJ6nXVtvfdmd8fK7lEki3bsi07ej4e45ndHe3Mjqd8Xp/P+/16M2isoDHjOrbv8PLM7/aMW09aFAU++P5aPveZZacMm/d4I7z+xBZe3tzBvqYoyeTknk35sxzULsxgaXGY8ngHOk8YfWYJlpr5WOeUjQnlPRt8vijf+/5mXnp5rEMuwNyl+XzqI1nMG/gr+7/3Np42gWW/+g/yrl9zRttJhiN0P/cmrQ89Q+9Lm1FTZxZ2fa6Yy4txLqomY/n8dIjxwmok/aVbRuNCXW+JQJDtn/gaWRVeXq/4GL/9RdMY19b5C3P58fdvGvcaGNy+j0P/+TOS3fsp+5s1tFVcx+OvJNj+esuEIlcQYMPV5Xzmk0soK3Wel991uTBV58FLLzfxr//+2pgyczXLCrjviwtYNPgI+sEONn19J4MHPQCUf+YDLPnJv51XF/6p4lITtzASGdfVR7T/eCTfaLkgJIGYbEuH5bqDxMYJ4zUZteTnW6dtSbtkUsHdH8TnG98wSpJFMjK0WFI+ogNhdBmZ6LIc9A+Gx60codXJ5GYJKL39yFbnGfsgzIjbGd4zTFbcSgY92etXkHfDGnKvX42lrOistpcMR9j3z/9Lz5NPsPi/rmZ77l387EcN47opl8xy8L1vX8vs8gtnGjRVqIqCZ98R+l7bQt+rW/Dt34er1oZrXRnaq1bSlCxly2GZQ7vdtNQPTNgIOhUOp4HMTBNZmUZcWSZcmSayskxkZpowGjSIIoiiiCgJSKKAODKpalqMpyeIRKJs374dVYWlS5eh0WpBVVEUUEmvoyoqyaRCJJogHE4QiSQYGo7Q2xugu9dPd0+AwYHJjVoZzVquuH42V29wUatsx9lXR9NTrTQ81oJkcVL7zb+l9L47pl2D4lITt6MEmjvY+0//TecTLwMgSAIVd86i5r7ZCEYDbc6raJQW8vzD+8c1fQNwuUx89R/WsGZ1CV1dPhqaBjm4p5ND+9to7Yvj8U9OyMlaidm12Syaq2dxxhB5cT+2/EoyrrgC2aCfst8M6YbFU88c5me/3DGuG6XBrOXO+2r5wJzDRJ98kbqfHJ7UaO1kiA4M0/7IC7Q99AxDO/af03eNQRCwVpXiXFSNY9Hc9Hxh9bSotTmVXMjrTVVVDnzzRwj9m9mz9n5+8uOWMSH7FVWZ/PxHt2K3jX+eevbWc+i/fk6kYQdln1tFV+0NPPGawtbXxn7XiVy9vozPfXoppTMid1ym4jx48unD/Od33xozKr/wymI+8tkaFg38Cam3k7f+cQe+lnRbpPbf/5aaf/2bix4xNFkuRXE7SmzYS6it+1gIsqQZycPVH8/D9Q1FCIwjEjUaicIC27QaCFFVFZ8/htsdGNOZMorFpiPTFCfZN4xktKIfiUjq6Q2MK4aNZi051jjxbg/6/Lyzut/PiNsZ3jOcKG5/oq+isLAIQ54LQ74LY54LQ3429poKsq5cPKWjAP2bdrL9U1+j/CYHkXs+yQ//GOfA9rHXjkYj8sUvrORDH5h3yTxkxiMZjtC/cQc9L26m9+VN6HV+clblY7l+Bb68uexos7PvYIiGvb0M9Z19GZTpTGaOmdU3VbJ+hYay2G5s7oM0PdFM4xNtSGY7Vf/wSWZ/7p4pFzlTxaUqbkdxv7WdXV/4j7STLmDI1LPw83MoWpdHUJtNY+b17Gsz8PgvduDuGr9sjFYWiE9yVHYUjVZi7uIcVlYLLHX4cFmdZK1cjcZ6fspiqarKW5ta+cH/bZ0wHH7O4jw+c6+TWvdf2fe9Lfj7tCz9+TfPeLR2MsS9foItnQSbO9Lzli4CzR0EmjsId/Ty7rhtUaNB50r3yutdTgx5LizlxVjKizCXFWGpKEFjNk35fk43Lsb11viTh/Fv+TOtd32B//1RJ9F3GQ4VFtv59U9vIytz4uPvq2/m0Hd+QWD3ZsruX07/kpt5/E2RLa8cJR5Njvs3ggDXXjObz356KcVF9qn8SZc853oe/PFPe/mfH24Z8/6y9aV8+JMVLHT/CaWtkze/sp1QbwRBFFn6i29R/qm7p2T/LxSXsriFtFle8GgHqVjalFMQwJRjQGvVHquHGwom8AyMzVkVRYG8XAtW68VvO8TjacOod5uVjaLVyWRlSGgDwyTDYCjMRTboURSFrm4/wXFMSa0OPVmaANH+MKaSwrNuI82I2xneM0zGLfl8kQiG2PtP/0143+vM+q8P8ceGeTzzhwPjhikvW17Af35jAxmXSe3AwNF2el7aTO+Lm/Dt34trroXMtbORr1zO0WQJOxq01O8fpL1x8IxydacbFrueBauKWHxFHoty3RT4d5E63MDRZ9ppf60bfX4B1f/4KWZ99PZpa2wzyqUubgGURILGHz/M/m/86Fh+aPbiTBZ/cS6WIjP95hoabOt59fkuXn384Li5TpNBkkXmLMhmxVyJKwsSzKqdh2XW+b+37D/Qx/d/tIUD+8fPI9YbNdx5Xw0fmnMQ359e5MBvmij91D3M+48vXXDBGIlEePmFF1H9IdZtuBqTw4ak1027iIWLxcW63tofeYGeP/4Qz/1f4Ds/7B9z/80rsPKbn95G9mkcxQPNHRz+7i8Z3vwa5Z9awvCqW3h8o5a3X2oiFplA5IoCN15fwf2fWkJB/ozxFJz9eaCqKr/8zS5+8audYz5bfVMF77+nmIV9DxNt7OKtf9xBdDiGZNCz6pH/peCW9VP6Gy4El7q4BVCSKUJtXcS9xyP59A4txiw9iiAT1TiIxAWG+oKkUmOfTaORbBdjIERRVYaGwgwOTmwYZXfqcMgh4v0BdK5stI60l0oyqdDR5SU6zn3BmanHnvKSCCiYZhWc0/NhRtzO8J7hYorbUfpe28Ler3yTyk9UcmjuB/n5L9rpafOOWc9q0/E39y/n9tvmoJEv/VpnoyQjUfo37aT3xU30vLQJWRkme1k2tg2LYE4V7dEcDnfpaG6N0XF0iK6WYRKxC5vPN1n0Rg1FszMoqcpi9hw7SwuHyQnXY+5voHdLN83PdTB40INr7TIqPv8hCt537UkGZNOZy0HcjhLp7afuH/8fbX98FgBRI1K8Po/Smwqx1eTwRugKXqkzsvPNViKhyZWZkTUiZXMyWVmrYe0cPVXLl6G1XhjTnI5OHz/48Vbeemv8mrUA1Uvy+cyHzFR3Pkfdd7aTIIvlv/42GUvnXZB9fDeX0/l0PriYx6f31Xc4+sA3Sf39/Xzrx0G8gyfnv+XkWfjNz24nN+f0oYGhjh7q/99vcL/0POUfX0Bg/W08/o6BTX9tGjMyPIokCdx8YyWf/uTSaVU94GJwNueBqqr84EdbeOhP+8Z8tuGuudx5eybz+/6Mb28Xm76+k0QwidZpZ+3zv7iojvznwuUgbiH9fxftGyDcfbw8l8YgYcozIsgSMdlGVNUx1BckHhsrBs1mLfl5ViTpwuXhhsNxenoDxCc0jNKQZVNhcAhRZ0af6zrW7oknUnR0eMf8rSBAZpYBc2QQJaXFWJR3zqJ9RtzO8J5hOohbgIQ/yMH//CmRQ6+T8Y8f5ucbc9n41/ENYFxZej732ZXcfEPlBb2BTQWqqpIKR0iGIiRDYZKhCEo8gWwyIJtNaCwmIu5B+l55h56XNjOwZTdGq4Kzyo5tQQH6JXNJFJVx1JdBr0dmyC/i8aUIeCL4hyP4vRH8nijJRApVUVEUNT1X1WOvBUFAEICRufCuOYKAQHoUAThWkkiURHR6Ga1eRqeXMZi0OLJMOLKMODMN5GepVGT6sMd7sMS6obWV3q29dL/jZmD/MLLZTOl9d1B+/wexzSm7aP8HZ8ulLkbiXj+++mb8I5OvvoVox1G01hTh+fNot5dzYMjGoaNxQoHJCVqtTmJ2lY0NSw2sW55HbvV8NPKFGYFXFJW6vT08+Ww9r7zSNGFuU0GpkzvvKeYG1276f/sK9Y90UP21zzPnyx9H1Jy5O/xUcamfT+ebi318hnbu5+A//AP6r32Mf/1ZisF3pYu4csz89me3k5c3ufD6SG8/9d//HT1PPU3ZR2oIX38Hj242sun5xglHcmVZ5LZbq/jUfUvIzj59HeTLkTM9D1Iphe88sIknnz485rObPrKA2681Udv3F/q3dPLON3eTiimYivNZ+9KvsFVdes+lUS4XcTtK3Bcg2NqFOlIuSJQFzHlGZINMXDIRFS14B8OEAmMj2y5UHm4qlTaMGs/TAdI1a50ZWsxxL8lgCkNB7kkhxdFogvZO3xjPFVEUcGXr0Hv7EXRW9DlZUzIaPSNuZ3jPMF3E7Sih9m4Offt/sVXG2VZ6F7/9xVECE9w4cjM1fHidi7s+ew1a8/kJV07F4ySDYZKBEInReSBEMhhOzwMhksGx77173WNTOHKsTqUgCkg6EUEUSEaSqCfc3ySjAY3FhNZpw1iQg6TXkgiECLZ2Ee3pwzbLjCnbiCFDhz7bgqbIhZyXhejKAocTNBpUUUQQRVRBQhUEVMR0d6AKAiqgIKhqellVEFARUGDkvZOWVQUYXVYBFTEVQ/QOow4OkuofJjIQxnvUj+eoH2+zn7g/gS7DTv5tV1P4vmvJuXrljHvreUZVVaLuwbR4Pdx8TMwGj7ag1Uexl9tIzZ1Nu7OKo2EnjV0ira3hCUeQzoQ5VVncdEMFV68rO68N8Z4eP888f4Rnn2/APY4R3SgOl4lb31/OnVWNKK+/zoFfHUFfXM3SX3wL6+yS87Z/k+VSOJ8uJtPh+PiONLPn/r/F+k938/VfyQz0nHy+ZbpM/Pbnt59RCHF0cJiGHzxI518eo+wjNfivvZPHN2rY/OLEObmyRuR9t8/lk/ctOmW+7+XImZwHiWSKb37rDV58lzO6IMAdn1rCzVfCXPfjdLzYyo7/PoCaUrHPr2LtC7/EmJd9Xn/H+eZyE7cwUi6ouYNkON0GFAQwuvTo7DqSgpaoxkHAF8c7jrOwIKTzcG0TGMCdC6qq4g/E6JsgPBrAbNORaYyRcnvRZh0PQR4lGIzT1e0bUxtbkkRysjVI/W40jix0mVMX/TQjbmd4zzDdxO0ow3sO0f6rH5K8Yz0/elbPoZ09E65bmC2zTttOua8Xm92MLsOOLsOBNsOO1m5BTaZIRWOkYnGUWJxUNIYSi5OMxI4L1wkEqxKfuNEvG2V0Vg1aqwadVYvGbkDKzyTszMFnzMQjWfEoJoajWrxhgUgcojE1PUUVotEU0UiSVErFaJIxm2TMJhGTXsWsVTDLCSxqGNdgO5a63aSa+lEVFUGrwZifjS7DjmQ0oCYSRHoHCHf0oo5XVFRIC2lBFBCkE3r/Ru8f6ti3JnrjxJeqop70twD6nCwyl88jY9k8MlctImvVossmh3A6NLZPJBWN4Tt8FM/eejx7j+DZW4/vYBMCERxlVmyzbcg1ZXQ6ZtPgz6ChU6S5NYpncGyd19MhySJ5JQ56O7yndH4dpaYmmw3rSrl6fRn5kxzZOhWRSIJX32jmqefq2VfXe8p1DWYt194xmw8v68W4/VUO/vIQkYCR2m99kVkfuW3aGNNNt/NpujFdjk+4q48dH/sstv/vZr72Wz393SebrWVkGfnNT2+n6AyNoGJDHur/32/oevRxyj+1kOG17+OxN0S2vHx0wnqYWq3EXXfW8ImPLpyyUnDTncmeB6FQnK987WW2be886X1RFPjAF5Zzw8IQVf3PcOThRvb/ugGA7PUrWP3kjy8Lp/HLUdxCuvJEqKOH2KD32Hs6mwajy4AqykQ0DiIxGHIHx5TwAnA6jWS7TFN234/HU/T2BQiFxho/QdpAMStDQuMdonr1Wjq6unjzzTdZu3btsXU83nSliXcjayTyXCJqTz+63LNzRD4Vl4q4vTxajDPMMA7ORXNx/PQX9L74Ov9ctZG6dWt49Olh2hvH1k7tdCf5A/kIQj4FNgNzdApV0T4Kt7xD8kgXqWgqXfZGUVFTaUGmKioIoDHKaIwysknGZNKgccnIBh0akxnZpEFyWBEdNgSrhajeil8wM5wyMRjV0+2TGfDCkEdh2JPAOxwj0BB5V09cbGQ6NQFfnIBvvJulFpgNttk4r9NRlCtRYAiT5+/EePgQyR0taKMRjC4n+beuxzqnFEOuC12GnVR0RLyHIiPzcLoHdFShCsKImUGSru70fauosAhZIx/7/MS5kI5dHnkPZIMefW5W2lU7z4WppABDnmvaiIfLiWQkyvDugwxt339MzPqPtKC3yzgrbTgq7RR/oIKez6/h8JCDTR0izS1Rep8LjJRXOLO6ygBZuWbmzTWwvCLGquJeMoVWWsRqnq0vZMvmgXGvxVEOHnRz8KCbH/zfVioqMrn26jLWrS0lP8+KVnvqHGuvL8rRo0M0Hh3iSOMgTc1DtLYMEz9Nnrkki6y+oYyPXh0it/5RDn1hH74ekZp/+RKln7hzSmrmzvDew1iQw4o//4bt997Pd794DV//vY2+E1y4hwbCfPz+p/jNz2+npHjyoyy6DAcLvvsPVP7dx9LGU/f+M5/97Aru/N5tPPaqytZXj44xdIvHU/zpz/t44slD3PPBWj724YXnZWTqUmNwKMwX/7+/cqRh8KT3JVnk3v/vCq6rcjO7/yXqfnyQxifaACj+4E2s+P13p72R4XsdQRQxlxQgm02E23tQVZWYL0EqpmDOM2JkCElrQy6wjZuHOzwcJhpNUJBvRT4HrxZVVRkajjAwEGK8gUVBELA5dDjEAMnBOLr8fIR3+YmoqspTT7/E66+9QVXVXK7ecOOxz7R6mTynQrJ7AGNREbLp5M4JRVG44oor2L59OwC/+93vuO+++87690xnZsTtDJc1giCQd+MGclLrcL61kaXXuXn72lIef85PT7t3zPqqCp2dETo74RUciOLVFMyzkuHUYDSIGA0CRoOIyQAmPei0EE2IxJIi0bhALAGxkXkwlCIQSBFqiBH0Rwn5YyO96SoQHJkuLMNDMYaHYC8AhSAVwryRUB29iCmQQvd2BF3wKKIAWK2oJhOKTo8imUgoAvF4asyNWQUSlCII4AybsdsM2O16Mp1GqioyqJ7jonSWc9oWSj/fxAIhBlr76GropuWtRuIxheyEk/nXLMRgOz/ht+FuN4Nb9jCwpY7BLXV46urRmAQyqu04Ku3kfLoUb+ENHPRmsr1DS3NrnI5HPCNGY4On/f7xsDr0zJ5tZV4BVHjr0bz1CImmKMlIih2RJFqLhtl3tPClDfnct2A224PzeXN7gt0b2/B7Jh4NbmwcpLFxkB//LP1Q1molTGYtZrMWs1mH2azFYtERCMRoaRlmaHBsiNmpyC6wsnxtITcsDFDa9RJHvraLloYk1V/9DFfd/8FLOhR+humB3pXBir/8mu33fo7v3L+arz9so7f9uMD1DEf4+P1P8euf3kZZ6ZnVZTfkZLH4B/9M6Muf4NB//gzfL77G57+wivc9cBuPvZRg++vNY3LyYrEkv3+wjkcfO8hH713Ahz4wH7P5vSnS2ju8/M2XnqPnXSHjGp3EfV9ZzTXFzRT1vs7W7+6j4410BFj1P32a+f/19wjie/OZdimiz3QgG/UEmztJxeIkoyn87UFMeUb0Ri+iaETKs+IZCo9xOA+HE7S0eijIt2I0nvl1Eokk6On1E5ugg1Vv1JBlUxAG+xGdWZjL0iHIZWVl6PV6jEYjiqLS0+vn9dfe4Kc//W9uu/0Dx8StwaQl1xoj3uvHVFoybofLD37wg2PC9nJnRtzO8J5AlCRcV6/HxXpKU0lurH2bZ3daeOwF75gcqBNRFJWOZh8dzRdwZy8CqgqhiEIIATCCZiRcLQyElZGFyeEdHh73fa1GpDBbx2ybQrngo0QZRhsJHQvzTkVjCIKAqNchjUxahxVDbla6bnJuFoa8bAy56RyS6dqoaN/Xwtt/3UNju4cun0K3HwY8qRPCsdP5bo8cOID4/QNk2iRyrCr5FolZ+TaqF5VQvXoO9ozJhxOpqkqgsRX3m9vp37iTgS11hDt6sBSYyKxxMGt9NqVf+TD1qRI2txtoaldof947kot+dkJWp5eZVW6nak4WtTV5LF2QS0HOyeHDce+X6P7rm3Q+8Qq9L20m1OdnxwP7OfDbBirubGXDzUdYfVUB7Tcv5+2WDOre6eTwru7TuivH4yniwxE8w2ceHj2KwaRh4ZVFbFgusSKjidS239P+rXY27w1R9ZVPs/KFDyMbZ8J8Z5g6dE47K//yK7bd+zm++4nlfP0vTrpbvcc+93mifOL+p/nZ/91CdZXrjL/fVJjLsp9/i2DLpznwrZ8Q+slX+OLfraXrgVt4/MUIO95oGRN2GQ4n+Pkvd/Knv+zn4x9dyPvvrsWgv3gmaReaXbu7+crXXsbnO9mXw2TV8cmvXcVaZx25XZvZ/G+7ce8eRBBFlvz4X5n9uQ9dpD2e4VyQjQas1WWE2rqJe/woKZVAZwhDpg6DEyQ1gZjpQKuT8QyGTkqbSiYV2tq9ZDiNZGWZjhllnopkUqF/IITXO/6zSpREMpwaTFEvBHXoZ806qfrD66+/fux72ju8RCJjn40Wuw6XNkTMHcFcNgtRM1baNTc386//+q8sWbKEvr4+urouWITwRWFG3M7wnkOUZFwL1vKpBfCBu3p55OkDvP6Ol5YGz4R5ShcDWRaxZ+jJcOrIyNSTmWHAYtFgNGgwGTWYjNr06JVJhyyJeLwhPN4wHm8Unz+Gz5/A70/Q2xehuyMwpuf+QhNPKDR3RWjuAtAjCHlkZ2rItItkZKtkmJLYtXEsYhQTUSyEMMV7kTsPEt0foD+QIOqNExmMEvUmEQ1WDPk5GPOzMRZkYyzIwVCQc3w5z3VBwkjbD3XwyiNb2dfio3FAZdA7+XNIUaDfk6LfA/tR4OAgvDwI39lFYabAHFOExXk6llw5m4x5szGXFSFKEqqqEmzpxP3mdtxvbqP/rR1E+/qxl1nJmp/BvM+VEam+g73DubzdpqGhKUrXRg9KygN4zvg3iqJAQYmNiqosaubmsHheDpWlztOGaGntVmbdexuz7r2NRDBEx2Mv0fjjh/HsOcS+Xxzh0ENHKbu5iMq72pidk8XNH6zC/bF57DpqZP/2Hg7s6CQcGD8v6WwQRIHK+TmsXmXj2ooezPV/pesPR9n6RjdaVyGzPnYPS5+4B43lvekqO8P5R2M1s/Ivv2T7R77Adz5Uyz8/kU1n8/FrMuCP8ZnPP8NPfngL82tzzmob5tJCVv7+u/iONHPgmz8m+sMv83dfvpq2793E488H2b2xbSTV4Dh+f4wf/ngbD/1pH5/42CLed/vc8+4Ue7F5/MmDfO+/N49xSc/INvPpf17NldJb2Ft38cZXd+Bp9CMZDVz5yP+Sf/O6i7PDM0wJoiRhLi0k1j9EqKsPVIgMxkiGU5hyDRjVQUSzHY3WypA7OKbtNDQcJhCMkZ9nxWAYvyNIUVSGh8MMDoXHGD6NYrZqydDHUL1BtHk5J7kgn0g8nqS9w0ciMbZtcayGrRcs5bMQxqn+oaoqn/rUp4jH4/zqV7/i9ttvP/UBugyYMZSa4ZyZroZSZ4ovGGT37la27+5l34Fhmhu9500QarQizgwjGZlGXC4zrmwL2S4zuTlm8rPN5GWbcTrPrZB4JJrgjTdbeGtzG1u3dRCeZK3R6YYgCpitOmx2HQ6nBpdTJNuhkGtP4NIEyFKHMHvcJLvdRN1BIkNRIoMxIkNRknEZQWdJG4Rlpg3CRpd1GXa0Ths6Z3o+uixbTm0cERr2s/mZXWx6p5X9vUl6Bs9/h4heJ1BuDFLUcoC5phiGITf+3gGE8lykpXNIzCohYMliMGLA7ZNpaQ6eMiLhdGRlm5hdlUXN3GwW1eZQMycLo2FqOgpUVWVo+z4af/IwHY++iBJPIMoCRevyKLgqB9f8DESLEa9hFv36cna0O9m9c5CD27smdD0fD0kWyS6wkltkp7BQT2luirm5fvKH9tL/1320v9ZNQrFScs9NFH/oZuy1lZdcrvd0MUyarkzn45OKxtj+ib/Ddkc5//JswZj8c51e5offv4llS/LPeVue/Uc48G8/IlS/i/J/vI6m8ht44lkPe99pH2sAOILDYeBj9y7g7jtrJmzAXyq8+zyQNVr++3/e4bEnDo5Zt6DUyWf+aTkro88iNx9m4z/tINgdRu/K4Kq//vyi1bS+EFyuhlKnIhEME2zpPGb8KUoCplwDGpOGmGQhKhgZ6gsSm8CFPCPDSFbm8VHcURdktztIcoL2o6yVyHJIaH3DyLaMMS7IJ1JcXExHRwe/+/2TLFu2irnVEztyFxcX09bWNub9X/ziF3z2s5/lK1/5Cg888AAlJSW0t7efVc7tpWIoNSNuZzhnLhdx+27CkTg76no40jREIBgnFIwTDMYIheKEQnHCoTjxWAqdXkanS096/fHJaNCQ4TDgdBjJdBrIyDDisBtwOPSYTdrz1pBuaBzkiacO8cJLjYSnoDzLpYBGK+HIMuHM1JHllMjOEMhxJMmzxcgzB3EmhhD6+0l0DxAdiqTF73CUmC9B3Bcn5o8T88VJhJIIopQWuw4rWqcdrcOGx5zBgYCORslJs1dDPHH29029UYOsEQn6Tm8SNhE6rUAsPjX3bpNZS3llJrU12SysyWF+TfYFc1GN9g/R/JvHafrZnwl3ph2MBRHs5VayF2biWpBB5jwnMXsBg8Zy3FEHgahIICIQikAwIhAKK4TCKqFwCkmE4lyYnROl3OHFEu0j2dRKsMGNt9nP0BEfQbdK0d03UPyhm8m6YtG0DW+fDNNZvE0HpvvxURIJdn76H7Fe7+LfXimn+dDASZ9rtBL//b3rWX1F8ZRsb3DHfvb/6w9J9hyi9Gu3cDBnA08+5ebgjonbnDabno98eD4fuKsWk+nSzMk98TzIy1/AD3+yk8OH+8esV70kn49/vppl3scJ7jjCO9/cTdyfwFJRwroXf425tPBC7/oF5WKKW1VVSUwwwnm+UZJJwp19JHzHfVD0Di16p46kpCMq2Qj64wS8kTHVHSB9nebmWFBVlf6BEPFokvFad4IgYLNrsRFASMnoc7JOCkE+kdH6t0uX1NDT03lM3N577y309XbT29tNVkYG5WXlx8KQc3Nzeeyxx076nq6uLubOnUtmZiYHDhzAaDS+J8Tt5R1zMsMM54DRoGXtFSWsvaLkYu/KaQmHE7z8ahOPPXWII/UDp/8DQGeQyS22gwqplIqSUkamFIlYEs9QdMJe/elGIp6iv9tPfzccGedzSc7AnlGII9NIRqYG17z06K/TnMJpTpJvTmDRRBFiUZL+AAlvkMM9Jt7qdrC/TWSo/cRe29MfFL1RQ2GZg8J8HcU5AuX5GvJyjTgcero7OlBUyMzMpbk9QGtfiq4B6OlL4O4OMNgXGLccwYmcrbAVRYGSMic1NdksqM1hYU02RUX2izZiqXdlMPdr9zPnK5+k5/m36H5+I549h/AeaMTT2MKRR1oQJAFnpY3shRm48k3kSAKCLCLK6bJUojSyrBdJxVL4tgTwNvs5fNSPvzOEIS8H56JqHIuuYt5nFpC9bjmi5tIeiZrh8kDUaFj6m/9mzxf/jW9fdZh/19RwZK/72OeJeIovf+VF/uvb17BhXdk5by9z2TzWv/wb3G9uY+9Xv49VeYFvfP197L5lDU890UXD3rElsny+KD/+6XZ+/1Ad994zn7vvrMFhn16dBJPB60vy+pt+Dh5+ftzP199Rzd13OJnX/xBdzxxm9w8PoiRVslYtYs0zP0WXMXW1QmcYS0JRebvnzB35pwydBVzv8rk4Fvw04jlimvi50T0cSi/IAi4YI26NZi0ZpiSiz4suJ3vCEGRIl6Tq7vWPcToHeOTRF/jdrx/gO999gOuvvY4//OnhU/6s+++/H7/fz+OPP47R+N4o/QUz4naGGS5p2ju8/PFPe3nhpUYikfHDZk4kt8hG1cJcFs+VWZLTi1R/kEjbAOG2IUJdgyQjMoaSSpwr5yOVzaY1IdHgjtPUHqK5JUh/b+iSEbwnkkoqDLmDDLmDHD3lmgJgHZkAlJHp1BhMGsqrM6kuFamU3eQNtqGNdeGoXobrqmUYcrKAdM943aG02+aiKxZSOd+Aqqr4DjXR9/Ir+LTtpJaY6MidS12PmUP7PfS0ec/6d+v0MpXVLhbMz2XZwjwW1OZgNE4/YSfKMgW3baDgtg0ApOJx/IebGd5ziOE9h/HsOUzDk/WkIieHJQuiiKjTImo1iFoNGpsFx4IqnOvnMusfqnEumos+y3kxftIMM0wKUZJY/ONvs/+fH+Abi3fzHc1S9u88LjKTSYWvfv0VvvFv67nlhsop2Wb2uhVcu+1Rup56lX1f+x9cruf49lfvZutty3j+mU4a9vaN+ZtgIM7Pf7mTX/92N2tWl3DbzVWsXFF03h3wFUVl2BOhvz9If38Id3+Q4eEIwVCcYDAdRZVejhEMxYlGkySTCqmUOjJXSCaViUNENSLv//xybpo3RFn3H9j/0wPHSv2UfPgWlv/6P2fc0mc4a7R6mQybiDbgRRYcaEuKJuxMVhQFd38IzwSVA/RGDbn2JKo/LbZF7amf5X/84x954YUXuPfee7nmmmvO7YdcYsyI2xlmuATZd6CP3z9Ux6ZNracUm4IAFfNzWbAsh5WVEYqTTURef5C+B1qoqxvGsaCWrCsXkXvrHWQsn48x/+R8jkrg+hNe+wIxDjf1MdjvZ9iTbmR4vFG8vhgeT4xINIUkiSOTMGZSFJVYXCGWgGhUxd3lI3oGodM6vYTFqkeSBKLRJAF/7LSjnOcLo1lLXrGN6hory6sV5jq6cSbdiIN9BIQAvrYA/Y9so+k7flKSA/viRThWLkBRQggOCwObduDduJnwkT3oTTEc5VZyF1nRFukp1ngwZ+gwGrM4YNTQ3jhIKnnq36nVSZhNEg6DSmWBhffds4R5S0svyfJLklaLY8EcHAvmUPaJ9HtKMknc40fUyMcF7QQhXTPMcCkhCALz/+ufqH/g53y14m2+r13N7nd6jn2uKCrf+ObrdPcGuP/ji6ck0kIQBArfdy35t66n5fdPsf/+/6Ok+km+/fd3s+N9y/nrM53U7+4Z83fJpMIbb7bwxpstZGQYufmGCm69ZQ6zSs5+ZDOVUuju9tPa5jk2dXb6cPeHGBgMTShMz5XMXAsf/ttlXG3fgb1+Kxu/XcfA/mEEUWTBA1+h6u8/fsnl4c8wPRAlAadThynqQ0oY0BUWnTIFJhyO090TGNc0CsBi1ZJviRDrDaNx2k+7/f7+fv7u7/6OjIwM/vd///dsf8Yly4y4nWGGSwRFUdn8dhu/e6iO/fvH9qyfiM1pYNn6Uq5dCeW+XfiefpCe/+7hnQYfmSsWUvSBT7Hs0evHiNnTYbPoWLlobP7XmebqqEqKSEc9XQfrOBpxcmDITv2RMA17e4mdYgQ6Fk0Ri4ZOes9q0WCz6TBZ9Chqun5jJJIkHEoQDsUndCo8V8LBOEcPDXD00ADPkh4ByCkqo3DWQkoLRKrWxJhz1zCVqhtjfBAlFiA6/Bp2TwylS8VWbCbvWgOBW1bRlczl7W479R0yLZtDtDUMEg2fWXpKPJZiOJZiGGjuHmbTgdeY60qyJE/DNe9fReGKuRe9oaYkkyRDEVLhCKlIjGQ4QioSPbasxBNobBZ0mQ70WU60ThuinH5MibI8Mwo7w2XNnH/8LEd/9Rf+3vUaP153LVvfPPke8Mtf7KC1zcO3/3U9Gs3UdOyIskz5p+6m5MO30Ph/D1H3oV9SuORxvvXlO9n1vhU8/0zXhDm5Q0NhHvzjXh78414qKzIpL3OSn2+lIN9GYUF67nQaUFXweCK4+4P0uYO43el5X1+AljYPHR1eEuOEYJ4v9EYN195dw9VXZ1Az/ByhV+t4+bv7iPniaB02Vj3yv+Res+qC7c8Mlx9KSmV4MIpqt6fNQU8QtqqqkkopxGKpdHslmhxTimqU0Ue2OeElPhTHPHvWpDp1v/CFLzA0NMSDDz5IZmbmlPymS4kZcTvDDNOcRDLFCy828rs/1NHR4Z1wPUEUmLMoj9XrclhX0oX4+p9o+9sDvLN3COeSGoo/eT+r774eU/G5u2+eK4IoYSypoaKkhgpgTcNBhqxv4r3Wzp5QMTv2Rji0s2tSpkv+QAJ/IAEET7vu+SSZUOhqHqareZitI++JooCroJD8klpyXDIuu4orM4FOo9DQqaNxU5KOo8MM9XkB75TuTzCssL1NZHtbip9u3USpaxPzHAnWrp7NktuWo890TrnYTfiDhNq7CbX3pKeOnuPLQ4OEVQVBKyHoNYg6GUGrQdBKI2HFEkgS+uEB5KFh4p44UW8MZGPa3TrTgT47E2vlLGw1s7HPnY21qnQmZHCGy4ryT3+Q9kctfO7Qs+iuu4W3Xu446fNXX26it9fP//33TdhsE+ftnSmyQU/1P36a8k+/n8Pf+xW77/g5BVc+wTf//n3UvW8FLz7fy/7tXSQnKJfX0DhIQ+PYmtkGg0wyqVxQ8Xo6UskUUtcByg820vrYIY482gIqOBZWc+VjP8RSVnSxd/E9h0YUuDLPdrF3YwyqohDtGyA86COsMxERTv+8GX2qKioMeSIMeSJYrTokSSQWSxKLJceUnxrzHYKAzalDEkfWk02Yy4sn9cx+7rnneOyxx9iwYQMf/ehHT7v+5ciMuJ1hhmlKLJbkmefq+e0f6uh3Tyzc9EYNV1xbzo1XyZQHdjP4x19x8PkOElGBWR+9jSUP3Yu9pmLCv58OmCtrMFfWUKSqFO/byxr/bsIrnRxWytm2P8HBHT0MneIYTCU2pwFXlhazMe3I6/cn8XljRM7CeVpRVPo6fPR1TI1RRnGpgyWL8jGZtdQ3DNBydIihgfBp/05VodkNzW4NTx1pQ/dgO9lWlWxdnDxdkgK7jorqPMoXl+EoLwRRQE0pqKnUmHnc4yfc0UOgrZv+5j7cHQP4/EECspaw2UrEbCckmwiqOvxxB/6wA79cSdzxrsZtCoiMTO9CNovYCnQ4HDIOq0iGRcGhS+CUQ+QEuwg+9gaN/zWIvz2EPj8fe00Ftrnl2Gsr0uH1hbkXfZR6hhnOluL330TPyxbue/V3ZH7o/Tzx55PTTw7ud3PPfY/x0x/cTEnx1BodaR02Fnz3H6j4249w4N9/zI5bfkLhuif55y/dQu+HlvHGHomdb7bSeXTo9F8Gk/KCuNAk4gpPva7w3GtFLO3pZ5nQwfx//Di13/riBamNPsNYBEFAK02ve7aqqoRjCj5VR1CfjhqaKLBYZ9Ck87sn6Pzx+ydfHUGrk3FlSmiDQ6gjIljnnLzx4+7duwHYsWMHOTlja2UPDKRNR7/0pS/x1a9+lZqaGl577bVJ79+lwIy4nWGGaUYkkuCJpw7x+z/uZXhoYuFiyzBy1U2zuXV5GMfuv9L299t5Z+cAxqJ85vzz31H2iTvROqZfT+ipEAQB+4KF2BcsBKCksZErQq8TmSfQoZ/FgU4Djc0x2hoHcXeem2DUGzXkldgpLjZSnpei0pWkujKbrMJyRJNrzIMkEIzR2xugp8dPR7eflnYvra0eOjs8eD2Tr796JuRlG1iyrJgrVhaxdFE+DsfYcO9hb5Q9Bzo4sL+dhtYQrc2B09a4jcVVOgahAy0w0pjb40b8k5sMi4AspsOhBEFNz0m/FgVIKCKBaHpkWFGcwEiocIK0UD1m1p0amc6cZEJhaCDC0BjjbwkoRtbMIq/WxKwbNZRmRCjGjaZnL96fPsWev/GgyhYyViwgc8V8MpbPJ2NJDbLpveMUOcOlT951a9BYLVz70/8k/wsf56e/7CIRO3499fUE+MgnnuD737thSmrhvhtjfjbLf/kfzPnyx9n3Lz9g600/xbXwET74wfnc8w/XUue/knfeHmT3xtZzKmt2MUkKMlvzV9Bcs4aCa9fNuKjPAKSNnTzDITzeGPHTRBwYTFpsdi1GOY4iaAnGZIK+6Bl5iRxDAJtDT6YhSry3n6TOfKzMz0mrTVLk+v1+/H7/aT8fTwBf6syI2xlmmCYEg3EeefwAf/zTvgnzLwByimysv6WcG+f2o33tDzR9eA9HGv1kr1/B6qf+nbyb1l42RjuWigosI3XSylMJVtTXEXS1EF6ZxG/IpC9motevo2dIYGBYIR5XSMRSxOMpUkkFrU7CYJQx6AVMBoEcR4o8a4JCu0K2Q0dGXgE6ZzGCznqaPQGLWYe5XEuO4qew+SgVR/cw8PZuAo1tRCQdA8YsPGWzGcqbRY9qxz2cOiNnaVkjUJItUpzsxdXRgL2+AVMshPyGEeNNV+G/81rMN16Fxmw66e+cdj0bVlewYXX6OEVCwxw8dJSN24epOxSm6dDAhL3J70ZRYMB3up2++OGFyYRCR2uAjlbYCIAVQViKK3cdVffpmJcfJjvSSHD7E7T96pf420PY5laQuXIBWauX4Fq9BGPB5fdAn+HyImvlQox5PyTxD1/mW1+6g+/8Oox/+HioQygY52++9Cyf+cwy7vvQginLwz0Ra2Upqx/7EZ699Rx+4Nfs/PqL6L77DqU3FrL8w+sZvHUZO9od9HUFGeoLMtAbwN3pw+eJoJ4HvwOtXsaRacRs12O26jFZdZitOkwjywajBlkrIcsisiwiadLL0UiCzc83ULe5fYwPQ78nzle+9jJLl+Tzt59fQc3cM/OimO4oqRTxYR+xgWFigx4SgRBKPAaJCKTCkIpBKkEyHiGzsx1Fhb7BHjQWB6LejGi0IhnNyGYjsimdJqKxmi+76JhYNMHgoJ9ASDmtV4fRosNhFTFKEaRUACWcQtKK6CQZa5aRsGIh4IsTDsRRJ2gICIKArBHRaGU0WhGLUUUX9hBpC2MoyEPnHH9wYtTTJBIZ31X5m9/8Jt/85jcn3PdzqXN7qTAjbmeY4SLj80X58yP7+dMj+wkG4xOuV1KZyXW3z2JDYQvxx/+Ppq8dItgTJv+WdSx96PNkLpt3Aff6wiNKGsw1yzDXLDvpfTUZJeVzkxjoQkklUZUUiqqgqio6qw2tPQNBawKNCTSTfyCrqkrUPYh3fwOevfUMbqljYEsdsYFhACStiKPCRt49ZVhXziExp5b93mz2t8j4jvgQ/YOkziDPLJVUiWitxGpKsLzvCpYV9GPYvYWBV+rpeeFVOh59EVGnJfe6Kyl837XkXnflsRJDJ2IwOVm6bBlLl0EiHqGvp41N23vYcTDGwb0DePpD42z90kdVwd0TxN0THBG8hWTmVDHnDiPzS2KUKK1o6nbT9J2X2PZRL4bCfFxrluJavZis1UuwzC657BprM1z6mIrzWfK737D3i1/lgY/P4T+etNPd6j32eSqp8rOfbufZ5+r5+leuYuXywvOyH44Fc1j1p+8z/z//jiP/+yBNv36MI3/6JdlLnqJqzRxUbTk9fVbaj0I0dm6i1mzTkZVnJSvXgtNlwpltJiPbjDPbjNmqS1+nqoJGiaBJRZBTYTRKFE1qGEmJIaopBFKIqoKgphDVFCmtzOz759F5dw1vPHWYnW+2jhHfO3d189FPPMHqVcV89jPLmFM19v46XUn4g/jqm/EdPkrwaBvJ4W6IDCERRGtMoc/Qoct1kMjIIqS1ExQM+BUd/rhMJK4lntITS1qJO3ORRJXmVApzJIFV7cec6sEciWLsD2NIBGDIQ9ztIxkVSCV1KKIJdFZEcyayMwdjQR6mknxMRXnIxulbE1lVVaLhKH5/mFBEJRo79fNaEARMFg0Os4I25iM1FCMSSZGMJlGVtEOy1qJBa4tj18uY7XqiDhOBgEI8lkQQQKOVkLUSOllFJ6WQ1ASiEkYJx4j3xogpGiyVZUi6icPjy8rSNa937NhBKBTCZDJNuO57FWGiHoUZZpgsgiAUAJ0AjY2NzJ49+yLv0aXB8HCYh/60j0cfP0gkMnEIy+zabG64vZirnAcJ/uE5Gh9tJOaJU3jnddT8y+dwLJhzAfd6fM7ULXm6kYrG8NU3493fkBaz+47g3d9wTMgC6DN0ZM51kDE/C+PKWvx5VdR12znYItDc4KGzeXhKyxKJosCs6iwWLbRyVZWf3M49DL24h54tboLd6XB1e20FOdesIufaVbhWLzllQ0JRUvg93TS3uWlqC9Dem6SrL0lfb5j+Lj8B79mHVhvMWsxWHRabHqtVg80m47BpcNi1ZDr1ZGSYyMqy43I5MRm1CIAogoB4LNxZFASSSQX3YIje/iC97gD9/X4GB4IMDoYZGorQ1xPCMzR+b/VkyMwxM6/GxPLyMHOjh4ls3sfAnkE8TT50WZlkrV48IniXYKutmPYREJf6dXe+uZyOj6ooHPqvH0GWhwf2zePgbve4662+qoSv/v1qcnMs521fvL4o77xxhFcffoe9rWH88tk1rh1ZJnIKbbgKrLjyrWTnW8nKt2Ky6BCVOIaEB33Siz7hHZn7MCS96JI+ZCXKmXZFqYDHUEq3bSkHBrJ4+rd7aDncP+H6q68s5p73z2PZ0gJEcXp0fKmqSqTbzfDug3jqDhHtOIIYdaOzpjDOziGUV0qvkEWnx0DXsEzvgMrgcAq/P0HAGz1lNYLJYjBrsTn02GwanHYJhxWyrCkyrQmyzTEyRS+OkBulq4+EN05SMaDKVuLrrkfKyERnMVNWXIKo1SLKF+4eq6oqqVgUvy9MKKYSiakkT1NiD0CWRSwWGYucQIolUBQhfe6lc3dGv5yEL0Aykg7Rl7QiOpsWrUWDqtWRErUIqoqoJhCScZLhJMlIkmQkRSqWQtRq0WU50WdnnNTJOjrK+uabb7J27VoAAoEApaWlDA4O4nA4qKysRKfTkZOTw1/+8pfT/p5zGbltamoimUwiy/Jp2/pNTU1UVBzzeylUVfXMSkCcAzPidoZzZkbcnhn9/UEe/GMdTzx9mHhs4nDRqkV53HhbIavN+/D85mmaHmsmEU5R/IEbmfvPn51WJlHTvRGpqiqxIQ/B5k6CLZ0EmzuOLQeaO4h0n9xQNGUbsJdbcZRbMdcWINfMoUsuZk+7icPNKVqODNLfNXEuy/kgr8TO/MWZXFUToSpxhNBbu3Dv6GNg3zCJUBJRqyHrysXkXLOK7HXLsc+rRDac2k1VVVXisQDhoIf+IS9H2wP0DcRRlHRDcHSuKul1FVVAlgScdplMp4GsDCNZmVZMZis6nRGtJJ330c9BT4T99f0cqnfT2NBPa4uH3q7AGYWAQ7p0U1mVk8VzZa4oHiK7dQ/D77TQu6OfYHcYjc1C1qpFuNYsIWv1EpxLaqad2cx0v+4uNpfj8el47Hl8B57jIflmXnu+Y9x1tDqJ++5bzCfuXYhWe+7iweeLcqRhgF17eti2vZPD9f1ndL1Jskh2gZW8WQ7ySxzklTjILbZjNGvRJIMYE4OY4oMYE4MY40MY44PoUv6TxGsqoRDpjxAeiBIejBIPJEgEEyRCSRKhBPFgep6MpFBS6ogBnoqSVFFTKoIkkLMkk6K1eWTWOPDrcjnq3MCmvSLPPViH7xT+FkWFNt5/Vw0331iJ1Tp1DtWTIRWL46k7zODW3USO7oNgF9o8E8NFc2gnl6MDBjr6wN2fZLA/dFJe9sVEFAWsTgPOTD0ZThmXU+CqlVk4bAaMJiMl2U7EVAI1kQRVQEUCUUKQNAiyjCDJCLKMqJERZAlBFCf1bFFVBTURR43HSMYTxJIKsZRAIgXRuHDa0dkT0RtlrAYwyyAbjCgqIAioCCNzAAFVVVFVFUEUIJkk5Q+Q9PpJhdMdxhqjjKQTURU1LWbjCoIooLGY0djMaKzmCV3/xxO3APv27eMb3/gGW7duZWhoiFQqRXFxMW1tbaf9XTPi9nxtVBAygXwgC8jguA3JANCiqurFT+qaYdLMiNvJ0dHh5fd/rOOvLzSQPEW4au3yAm66NY8V2j0M/vJZjj7VSiqmUvLhW5j79fuxVpZewL2eHBerEZmKx4l7/Ol8okEPkZ5+wt1uIj39REbmo69TkbEjkzq7FkuBCUuhCdssC+baYqTqCnrUXA71mmnqFGlvC9HVPIzfc+YjhoIAJbMcLFyQR+XsDDKdOpqb96GRBTKy5nDg8CB79/fRcnTotKUBTsSeaaRynouFVSLLSzzY2w/i3XiA/l0DDB32oCRVBEnCVl2Gc3ENjsVzcS6qxrFgzrQOEztbIpEEBxsH2LG7m7q6buoPDpyxu7Ujy0TtfDtrauMs1jUQ2VRH3/Z++uuGSEZTSHodWWuWknfjGvJvWoulfGy95wvN5SjeppLL9fgM1x2m7SffpveG9/GLxxN0tXjGXc/uNFBd7WJuVRbVVS4qKzLIdk2cmqEoKoODIY40DnLkyAANjYPUNwzQ13fmTvUFpU4q5udQMT+HkspMZI2EIT6EOe7GHOvDEuvFHO9DmzouKmP+OP6OIP72IP6OEKG+MGF3hHB/NF0WbIqaq8YsPWW3FFF+RwkB11zqzWt5/c1h3ny6ntApXG0lSWDpkgI2rC9j7ZoSnM6pN6kLd7sZ3rGLSMMe4kPteE0W+uwltEedNPfJdHQn6esJkUpees3kL36+kqJCCw6HCZ0+CwSQJBFJEpBlAVkCSVSRxLSZoSiAiIKoqogoCCN6RSEtMBUEFDUtMhU1vZxICcQTKomEelY17kfzYCUxfT0oyuj8bL4rXaJRFAREETSSil5NoImGkQURUacdKYOnQdJpkYz6Y3Xdpysz4vbEjQiCBbgNWAusBspPsXoI2AZsBp5XVXXPed/BGc6JGXF7ag7X9/PbB/fw5lstE/Z2C6LAgiuKuOlmF0vUHfT/4q80P9uOkhQo/djtVH/t/mlRey8VixMb8pAMhkmFoyRDYZKhCGGPj73bd6DGk8ytrkYz6jo58oOP3WfeNT/+fnpZTSZJRWKkojFSkSipaPz4ciRG3JsWsvFh37H9OBWCCDqHDqPLgCnHgLXAhLnAhGF2PuKsIsImF60eG60DOpq7BTpag3S1DJ91iK4oCpRXZLB4YR7LFuezcH7uST39EzW2I9EEhw/3s2dfL7vqetlb10NikiZQkB7VrarNYHFFiiXZfWgO7ye4txVvkw/PUT+BrhCoIIgi1qpSLJWzMBXnpaei9NxYlIcu03FZ5J2mUgqHGwZ5Z2cne/Z0c/igm3Bw8mJXb9Qwd6GLK+bBmuIetPv30L+li56tbgKd6Zxly+wS8m5cQ96NV+Fas/Si1Nu9XMXbVHE5H5/owDCHvvkAhpIIL5uv54nHuwmfwrNhFItVR1lZBrIkEArFCYUThENxwuEE4bNxeB3B5jSMiNlcZtdmY7HKWKNdOCJt2CIdWOJ9yEpaOCpJBW9LgOEGL96jfvztQXwdQWKe0+8/gCDLaB1WNDYLWrsFrf34smQyIGo0iLKEIEuIGg0pVaGpsQmlvg31cCtKPP07NSaZ2bcXU3F3Ob78BTQYlvPa617eeqb+tMdSFAVKy5wsmJfDwvm51NZkk5drPaPw5bjXi2/3DgINB+ga8NKlWuhSnXT59HT0KfT1RE4Z3XWpMUbcvofRakX0WjAQRxMOkQrHUVIqkkGHxmxENpuQLcZpFy00I24BQRAWA18C7gRGW3iTufJP3KkG4CfA71VVvTydUC5xZsTtWFRVZfuOLn77hz3s2tU94XqiJLB4TQm33JjB/NhWen/6PK0vdKIiUfbJu6j+p09jKj51mQdVVUlFoqiKAoqKqijHJlRG3ldQRz7j2OcqqXCEuC9Awhck4QuQ8AWIjyzHBj1E+4eIDYzOh0n4L0yt2dMhGyR0Vi1amwatRYvOqkFn12HM0mN06dHnWJEKciAri5jWxlDMQrvHSHu/hg439PeEcHf5GHIHzylPVquTqJrjYvGCPJYszGX+vFyMxonLSUy2sR2JJNi6vZNX32phyzvtBM6gRp4kixSWOykotlJaIFCRG6XCMoCmvYVwXRPehmECXSEiA1EiQ1GUE3KOJKMBY0E2WrsV2WJCYzEdm2sspnT4lFGPIEkIkjgyl9INyRNeH18WR0LMRMSR1xq7FX12BnpXxgXrpVYUlfqGAd54u42tW9tprB+cdE+8JItU1LpYukDP1VWDZHfvwf16M52b+/AeTYemS0YDOVevoPB911JwxzVobecv3/FELmfxNhW8F47P4I79HP2fB9DfsYzf7C9ly+sdZxyifzZotBJlc13HBG12vgVrvA97pBVHpBVbtBNJTed3+juCDB3xMnzEx/ARL56jfpRTRC9JBj2WihLMpYWYinIxFuVhKso91gmnz3IiiBNVHB3LiefB+iuuxPtOHe1/eo7OJ19FTaWQ9BIl1+RTflsJydolNOqX89b2OFteasR9BuknsiyQlWUgL8dAVqYeo15ErxPQyipqLEIoECUSTRJNqPgiIsNBAY83hc8bP6uRwUuNGXE7PoIgoNNLmHQKxlQE1R8kGUlXW5C0mrRLtcWEbDIg6XVndO5PNe9pcTsiar8NXDv61si8F9gJ7Ab6gWHAAxhIF0t0ABXAUmAeMNpKVEfW/X/AD1VVvaSKqgmCUAR8EbgJKAJiwFHgUeCnqqqeevjp7LaZC9QDo17iG1VVXTvV2xnZ1kURt6qqEu7sxVN3mOG6ejx1h/HubyAZCCEZ9COT7thcNhowlxWRd8NqstetOC8jLYlEildfb+YPD++lsXFwwvUkWWTZ+lJuvd5Gtf9tun7yIofe8OAxZmG7YT2W9asJC1o8vghDfT6G3V6CoRgaQUEnKmiFJDoSaJU4WiWGXo1jiXixBAYx9fci+72koilS0VT6Jnm2D04hnS+iMWvQmGS0Zs2x/BFJJyFp03NRIyJp06/T6SjCsb+Hd70WTujhGimimv5YQJSF49+rlZB0IqJOQjToEPQ6RLsVrFYUvZmEaCSKHm9Mz3BYy1BIQ79Xon8YhoYTeAZCeAbDeAfDxKPnbqIBYLHpmFebw+KFeSxekEdVVSaaMzDEOJvGdjKpsHdfL6+91cJbm1rpP4sQQUEUcOVZyCuxU1Igk5+RItOcwGWK4BS9aIaHSPYOkGjvI9rnP2ZykYyl56loOk8oGU2hJhUEWUSUBURZRJSE9GtJQJAFBK0MRgNRo4OQ1kxYYyYkGwkJesLoiSUFYkmBeFIgrkokVCk9V0SSqoDJoMXpspGZ58BpN+CwG7BZddhsepwOA7NmOc655EkgGGPz1g42bWln5/bOSZtUiaLA7HnZXLncyDWVbjK799L3Ziudm/sYOuwBFUSdlrwbr6LknpvIu3ndafOez4X3gng7F94rx0dVFFr/+AzeTY/Sd8Od/OqpFO1NQ1O6DVkjkltsp7wmm4r5OcyqysKqDuOItGIPt2GPtqNR0hEvge4Q/XVDuPcM4t47NOGIrGw2Yp9XiW1OGdaRyTanFFNx/pQ24Cc6D8Ldbpp+/meO/uKRY+aBWbUOym4vwb5hIW7HQrZ05LD5lXYO7+4+ZTrRxcBk0aIzyETDyUmN2k+EVitiNGkwmWR0OkgmVQKBFD5ffEpNEi9ncSsIwoQlf84UnUHGYgATEVR/iEQocawTWhAEJKMe2WRIi13jiOC9QBFX71lxKwjC74CPAKN3pj3Aw8ATqqqO734w/vdogTXAh4A7SIs0FegAPqKq6ttTud/nC0EQbiL9+8cvWJUemb5RVdWWKd7u46RHzEe55MWtqigM7TxA93NvMLhtH566euLD3mOfG116Muc6MGTq0Zg1yCYZOcOOmpGFX5+BO2VFjcaQ+9wIbT3YTDZcq1aTd9M6DNmZ57RvHm+EJ548xCOPH2ToFMYUOoPMsvWlLKxQSTXs5+Dr3bT6LQwaMggrUzeKpdVJ2J06HA4tTruIzSxgNylY9SlsugR2KYpNjGCUY8iSgEYrIGvSuSajIkXU61B0OmKKlpiiIZqSiac0xFJSOq8lJZBIMJLjAokUJJPC8XwYdcR0YSQnRlVJjyQDcPJ7o02GZEognoRYnJG8mZF5PEUiniISjBMKxAgHYoSCcSLn8EA/HXqDTPnsTKqrsqid46K62kVJsf2cHiLn2thWVZXmlmG2bOvgne1d7N/XS2wKhLvBpMHiMGC1G7DaNMiygCSO5D9JIIkgiyqSqKKq6VIf0ZhKNKoQjaWIRRVi0RSxWIpwKEE0FD9vo0darURVVRYL5+Uwb14O82pyyMg4+9w3VVVpah7itY2tbNzUStORiTulTkTWSsxdnMeaZVrWl/Zg791P92uttL3chbc5kF7HbKTg9g0U33MzuddcgaiZeFT/bLjY4i0VjZHwB0kEQiSDYZKhcNrIR1GOpR5IRgOyUY9sNKQbZUYDkkE35cdiPC728TlblFSKqHuQcJebSLeb2KCHuNdPwhtIp2acsCzptBgKcjAV5qLLcuDZtQfL7BTuxes53GfmaLdAd5uPnjYv0UmGHeuNGvJK7OTPcpA/y0n+LAeuPDNm1Yct2oEj0oY90oYule5oC3aHGDzkwV03hLtuiLB7bGeRZNDjXFSNc0nNsclaMeuCjEKd7jxIxeL0PP8WbQ8/R/df30SJJ5ANEnkrXOSvL0K+ei3d+kq2HtGxf0cf9Xt6pqzDdDLo9DK5Li3ZmRKiXsuQX6Cz1UckdGZh5BmZesrL7VRVuSgtyaKk0EZhoR3bSHmldx8nnU6PPxBjaCiMeyBE/2CQvj4/XV3DdPcE6O0NMTgYnbQAns7iVpJFZElAGnn2yZKAJI3OBWQpnYc70j8PaVupNKqanoTRPGBOmlIKJJIq4UiKaCR1RiJYZ5CxGAXMUgwhFCIZPm6aNoogishGPaJeh6TXIul0iHotkk475dfXe1ncKkAceBD4vqqqjVPwnTrgbuDrQBXwTVVVv3Wu33u+EQRhPrAFMAJB4DvAm6RHqj8IfHpk1SPAUlVVpyTmUxCEW4BnSY+Ou0beviTFbSoao++NbXQ/8zrdz71BpHfg2GeWQhNZ85y45jmxLplFML+KPT3ZtLkl+gYU3ANxBvtCDLmDEz6INFoRo0HCoBfIdsjMrcln0dIyqiqzyM05fU3U5pZhHv7LPl54sZH4KXIkdXqZjBwzqUiY/v7z1/CfCkRJQJRElJQypb220xm700BxsZ3qqixq5riYU5VFUaF9yss/THVjO5FIceCgm3e2d7BtRxcN9QPvifC2d5Ofb2XBvBzmz8tlzZXFuFzms/6ugYEQr77VwmtvtnBgb8+kjL4MJg3zVhSwfpnEVblHEQ/U0fZSB+2v9xDzpjtgdBl2ij54E7M+ejsZS2unpKf9fIs3JZkk2NKJv74Z/5EW/A2thDv70kZtPf0kvGfvGC7IcjrU/VjOpBmt3ZpetltOzqe0W9HazOn5yHuy1XzaUk3TUdwmgiEi3e600V23m3B3/7teu4n2DaKmxn+eiLKAzq5D79Sit+tQVYj54sR9caK+OKlo+u9EjUjG3Aycc2xYV85BnFdNp5JHfa+J7gEBWSOhM0joDRr0Bhm9QcIwMuVYIphTw2nn4sQghsQQatBDIAjxuIqnJchQo5/howGGWoJE/Un0yRj2mPdYg1/rsJG9bjnZ61fgWrME65yyi2aWcybnQdzrp/PJV+h+9g3cG3eS8PqR9BJZNQ4yF7gwrFtKuHw+B9126lsU2hqHaWsYIBw4945Wk1VHdqaWLG2cjMgwxbYgjopMWoRcdtcrNNcPTfqZLAhQWmZj4aI8Vi4tYUFtDg7Hqc//s40s6nMH6Oj009oxTHvHIF1dPnp7Q/T1hYlFj5/HF1PcimK6A18ji2hkAY1GRKsR0WkltNoRd2bh/He0KIpCKBQjGIoTCifPKKdaq5Mx6EWMegUDMdRwhFQ4QSKcPCm96EQkrQZRP2JcJY86UEvpuSwjaKT0dSkIk3omvZfF7U+A75yPHyGkj/zdgKSq6p+n+vunGkEQ3iRtopUE1qiquvVdn38FeGDk5TemQrALgmAGDgOFwEeBP4x8dMmI24Q/SPdf36TzqVfpfWnzMdMgSS+RtzyLgjW5ZCzJJ5JbSUMwn22NRg4c8HP0gHtKRrFGMZs1zK7IorI8A0VRCYXjhEKJY/NgMEZHh2/KtjfD+UUQBXJzLRQX2ymd5aR8loNZJQ5Kiu0XrLzD+W5sB4Nx9u7r4XDDIPWNAzQ1DdHb7Z/WnSlTjSDAvNocrrm6jKvXlZGdffZCNxCIsemddl55o5nt2zqJx05/f8nKs3DFunxuWhSgIrUP39sNtL7cRc+2/mN5htbKWcz66O2U3HsrpqK8s96/qT6fIu5BBjbvYmj7Pga37WN496FxXcYhLZ4MTl06ZcEoIZs0yAYJURQQRiaAVDwd0p6KnTAfWU5EkiSCyVPmX54K2WI6ZiYkG/XpsiEaOW0opJFRBIGB4SGQRXLz8pBHG3GieLwxJ47Mj73Psc9Pek8QYLQciTDy+8b5LoBkMDx2lNUXID7kPbVvgQB6pw5zrhFzvhFzrhFjoQ25KI+UM5MhMYP+uJkerwa3R2LAo5JKqei1oNepGLQqellBJyTRESczOoB94xsMbGpD43Bir8jElJHEnKtBa5SR9RKyQR6ZJASthDusp6VHoq1PpmNIR3fYQm/MiC92emGq10Bpto75tTksWzeH2tqc8+IofKac7XWipFJ499bT9/pWhnYcwF/fTKCpHdQklgITpiIbxkUVyHMr8Vtz6Y8bcAc19PsE/EGFeFwhHlOIx9KpQToNaDWgk8AgpjDHA2h6ejC4+zB3tZKZ6sd1bRU981ezczCLun1h3N2T70Cy2XUsW57PhrWzWbGsAIv5zFKvpvp+oqoqXm+Uji4vrR1eTPoAJqOM2azHZM4mlVRJKerZp02NIAgCogSSmHZd1sjiMfGq1crodJq058M0NEtMJhUCoRgBf4xQKDH5UV0BdDoZvV7EpFMwSHGIxVGicZS4kr7vxs5sgEIQxfR9bWQuiOLI/XFkyBqB7rCfqM9PrGeA6MMvHbsXnnwPTb/XG/Tz/hd/P/r1l7a4nSGNIAhLgR0jL3+hqupnx1lHBA4Cc0jnHmerqnr2doXp7/wR8LfAm6qqrhcEYfQ/eFqL27gvQPdzb9Dx2Ev0vvw2SizdCzoqaAvX5pKxqox+Ry1vt+ex+0CMhn19DPQEpvS3XGw0Wgl7phGjWYvBpMVo1mI0yViMKmadQjyhpENBowqRqEIsqhCNpggFE3g9MYK+SyodfUoxGDVkZprIyTGTm2MhL9dCfq6FnBwLuTkWsrKMZ5Qfez64GCNJ4XCCpuYhjjQMcKhhgJYWD0NDYTzD4QvixKnVSRjNWsyWdE6XwSCh1YrodCJarZDuPdcJaLXpsPhgVMIfFgiGUkQCcULBGOFAnHDw7M7v2tpsrrm6nA3rS8nJPnujp0gkwZsbW3nupQZ27eg67YiuKAlUL85n7WoLG0o6cLr30fVaG20vdzHcMNIpJghkr1vOrI/eTuH7rkFjOTMhfq7nk5JKMbzrID3Pv0XPCxsZ3n3opM81JhlriQVbsRlLsQVNZREBez79goP+qIk+r4w/JBCMQDCsEg4rJJMKyaRKMpVutB4r8yELaEbKfcgyaCTQacGgUzFoFAxSCp2YwCDE0aVi6FJRtLEQ2mgITciPxu9D8vtRgzGS4XRN00QoLY4ToQSp+PTKhxwPSS+lTe+y9BizDBhdegwuA7o8B3JRLtGMPNqDNjqGDXQOyPQMKPT3xRgeCOH3RM5KBGh1MrPLjcxx+Cls3IXmjR045s7BuayGiMVJkzvBka4ILREtXQkDCXVqR69c2SYWLczng3fVUFuTfVEExlTed5VEIl0rvbUrXYbO4yPu8ZMMRdLGepr0iJhk1GPIyUKfk4lsMuA7fBT369voeWEjscF06SZBEsiqdWK+eQX12YvY0WrgwD7PGY0CF8+ycuWqWVyztoyaudnnFG10vp9PE436KYpKMqWQSiqklHSI77G0JdI1ZNMpTSqiIIyEEEtIkoAoilMeYXWxSCkKgWAcvy96ZkJ3BFkjIWtEtBoBjayik1W0YhIpGUeNJ1CTKdRUuu7zaC1oZeS1qowc49Ns0k2C8OAQocZ2ur/0wCnXHSLBF2kdfTkjbi8HBEH4T9Jh1AArVFXdPsF6XyUdrgxwraqqr57DNpcBW0mPFM9TVbVhOovb2JCHnhc2Hhe0I/b8JwrazCtmMeScy5beIt7eEWX/ts5T1qE7FbKc7o06kxIr5wtBFMjMMZNbZCen2E5BgYHynCilliE0w30I/hBSCvRGG8aS2RiKKxEMGQjixL3nqqoSjiXp6QvQ6/bT5/bT1xdkaDiM1xvF543i88Xwe2ME/HGS51gnT9aIaEZuphpZQiWFJAnodLpjD5u0X5TAiSZTIx186ffh2GfCSM07nU5Cp5PTk1ZCr5PR62X0OhmrWYvDYcBu02O367HZ9NhHDIfO1WToQjCdwiRVVSUYijM4GGZwMIx7IEhff4hhb4RUalSgKOnlkdeplIIggMGgwWDQYDRqMBpkjEYtRoMGk0mDxaTDYdenJ5seg37yuZWqqqBGPcTaGwgcPUw06CGlEcBpBUcm7qST/Z0Wjh4N0t4wSEfT0BlFa8yrzebG6yu57ppybLazH633+qK88tpR/vpSIwf39512favTwLK1xdywLMl8w2E4coi2l7toe7Wb6FD6fibpdWRvuIKCW9eTf/NaDLmu03zr2Z1PsSEPva+8Q88LG+l9afOxhjakUz1c8504azIRF1RzRC2lvtdASzd0dsVwd/kvuqmOKArpcFqdhE4vYtAJ6HUCBn16rtMK6LUgSyAKChIqIioCKqKQXhZHqmSmP1PQiim0wshEEg0JNGoCrZo27dMoMbSpOHIyjpyMoUTj6SqbooAgnTDCIaZN8WSrCdFmQrCYSRpMxHVGYpKBsKLHHdTT79cy6BcZ8gkMe1P4vTE8A+GzqqV9puj0EoVZMOxTGPZf2PZfRWUGH7lnAdduKL+g9+uLcd8NHG2n+7k36f7rm/Rv2oWaTN+nNGaZnFX5JK+5ijpms7MejtYPT7purSyL1M7PYu1V5Vy9ZhZ5udYp2+eLJW5nGIsyInR9vhihUPyczKoEUUCS0p0AosgJc5AEFXF0YBY1be450qlwjBO23T/YTygYxu8LcnhPK+pobrFC2l9FhdSISPb6PDzwwy+P/umlL25HRg//oKrqrin/8ksEQRA2ka7pGwLsqqqO2wITBGEl6bxcgG+pqvqNs9yeDOwC5gP/oarqv428P23EbTIUpv/t3bhf30rf69vw1B0+bjpygqDNuqIYj7OaXUOz2Lgzwb6tnXgHJ28oXVzioLDIRmGBjaJCGyWFNooK7biyTEiSSCyWxOOPMTTsZajPjbu9lwFPlFavlvaOON2tw2ds1HAqREkgp9BGQamT/FInRaVWZmeHyVTdGAOdpA42kHSHkF2VWJetx75g3nnv3R4VNtFIckS4jIiYpEIqpZJMppAkEa1GQqOV0GoktFoJzbG5eNI+TifRNp2ZOU5nRzISZXjnXnzbXkP1NGBeUERq9hyGtcXUDzo4ejRMa/0A9Xt6JmWaI8sia64s5uYbq1h1RdE5NbR7+wK88HIjTz93hO7O06cplNdkc+XabK6rclMQ3od3ewutL3XR/Y77pNFH59LatNC9ZT32eZXj3hMmcz6pqopnbz09L2yk54WNDG3blzZ8Ih1a7FrgJHdlNqa1i6iLz2bnUT31jVE6jnom3eB+LyGKArJWQpLFkY464Vgo9minXjKRIhFLEY+fg1P9JcDobxYEzqjTw+7QcecdNXzwrtpzMoObLBfivquqKr6DjbQ/+iKdj7+M/8hxj1BrsRnXNRX0LljNzqFs9uyP0Nc5+XBjq03L0uUFbFg7m9Uri05Zbu5cmBG30xNFUQiHkyN5uvEpTb87U2LRATyeEB2dAX7004ZTrhuPezi0919GX14W4lYhLfsbSOd8PqyqaueUb2gaIwjCAJAJ7FNVdcEp1nOQLnME8Jiqqu8/y+2NjgA3AzWqqkZH3j9ncTsiXk9FDukST+zfv5+iTBfR3oFjU6i1i4FNuxjevg81cfyilA0SucvSgta1shBvRjX7AqVs3K1S907npEOOrTYdS5bks2p5PsuX5p/WNGEiokMeXn/wOV4+lGJPK6hn0K6TZBGb04A904jNacSeacSRZaJwlo3y3DhOxY011oPc00poVwNBt4qQUY558RVkrlmObLq0RU40GmXTpk0ArFmzBr3+wuSwXmrMHKdzR1VVfHuP0P/iS6Q663CUyNhXVRLMmE2PtpKdTTr2b+vi4I6uSQldq1XHNVeXcsN15VRVZpx1x5Kqquw/0M/Tzzew8a02YqcJ+TaYtSxeXcyGVVqW2ZuwDR7Gvb2Xnq1uerb1E/cf33dDYS4ZK+ZjKMrFWJiLsTgPY1EuosvJlt07gfT5pNPpSPqD+OubGd62j+Ht+xnaupdY//GyMIZMPXkrXWSvyiexeDkbO/LZdlDlcF3/pN10Z7h46PQSmVkmMl1msrNN6PUaotEE4XCcaCRBJBxnaCiC1xMjGjm7RrDJqiMrz0JWroWsPCvZ2TqKshLk2aLopCSSoCALqfQouJpCQKHbb+RQl57G1iQdTcN0tQyf1lFYlgXWrS3m059YQn7e+asNfb7uu6qq4j/YRPeTr9L91KsEG9uAkU6jhZmYblzKkaxFbG8xcGCf94yizgqKLKxcWcS61cXUVrsuSOjt+X4+dXR0kEql0Gg0lJWVTel3v5dIpRTCkSShcPq6vxDpRaPMiNs06gnzjaQdlJ9QVTU05RudRgiCoAdG44ueV1X15tOsHwRMwDZVVVeexfZKSefuGoDrVFV95YTPpkLcTvok+ZGmgowJ2keiRiSz2k72okyyF2Viq87EY6mgPjabN+tk6rZ00t3iGf+P30V+oYGKUg3lpTpyczTnNNLp8SSp2xdm38EIfv/pGwOCAAVlGVQuyKFiXjb5WQIZpigGJYgu6R+ZAmjjwyQPH2X4wACD3Uk8Qgbx4hLEmlJE50SVoWaYYYbJoqoqSlsvytYD2AZaKKw1krOhnED+fHr1Vexs1LFvWyeHdnRNKhojM1Nmfo2ReTVGrNazH82NxRQOHo5QdyBGd9fpQ00LSp0sX1vImpoY5bpWHIEmfAf66N7qpvsdN4HOUzwyrSYEuwVCEVRfEJInN3QEETKqHeStcOFaVUi4YhGvH81l084E9XW9ZxVmLGtEHE49Nkc6l1qvFzHoRfS6tCOpJIIkCQiCSkoRUJT0bqUUlVQKUikVJQWJZNpwJxFXiMUVYrH061g0NTIlL+ooxcXC5tCRkanD6ZBx2kXsFhW7TcRmlTAYxDHPu1RKpbk1xqHDYY40xoifQ/6xKAmUVGZSVWVmYXmSpZkdWPsOE2jxMnjQQ9gdIRFJkoykSIZH5tEkOpsWW4kFS7kT3cIqKCunJZHD9iMaNr5y6ugrSRJYssjMlStNmM3TP71E6XST3LSX5Dv7UHvSpcP0GTpy1xQSX7eGPclSdh6GpsNDk45+kGSR8goL5aV6yovBbrs4ztLnk4yMDAwGA0ajkdzc3Iu9O5cNiqKOpBGl77PJpEoqqZJMKlNuJvleF7frgXtJ11kd7Y4b3VAYeAp4CHhNvQyTfgVByCJdhgfgEVVVP3ia9d2kS/YcVFW19iy29yqwYbxtXXBxyyyyDXoMGXoMGTr0GXrMuUZcC5w4a7MI2woZ0pVwaCibvQ0qB3b20Fo/cPovBlzZOuZW6aipNuB0nNuNP5FQOdIYYc++CG1t47uBnojVYaBiQQ6V83NYWCVSKHVh9Tej7DtAuNtHdChGZChKJKQSS2mIoiOqtSBUzEKsnRGzM8xwvlFVFaW5i9TGPWT42yle4SRrbTk+Vy09+ip2NmjYvamdQzu7TivoBAFmFeuYV2tkTqUerfbsTXbc/Qnq9kfYfzBMJHz6HvbCcic1S/JYMU+k1tFJVriJZFs3g4c9hPsihNzpKTwyf7fTsMYsYy+1klnjIKvWiX1eLsOZ1WxszWfTrgQHd3YTm+SIniBAboGZ3Dw92VkyWU6VTLuAyTRWYJ0vVCCREoknRRIpgURSIJZI19iOJ1WScYVEQiU+Io5jsRTxeNooZbTcrqKox+aKCqqippcVUFIqiYRyfIorx+pqT6YM1JliNGuwWjVYrBosFgmzScBsFLAYVZx2CYdDRqM5/bFVVZXWthgHD0c40hglEjk/IeSyVqJktpO5lToWl4ap0beT3LWf4b39DBzw4GsLnJSehyhAhg3BakZj1eLM05Bx+0p26Jfy8uteWg73T7gtrVZkxRIjK1dY0OvPf1mWM0FNJEltOUDipa0o9W0AGLMN5N9YiXvFerb3u9i9N3RG4cZmi4bKOVbKZmkoLRDQ6abXb55qZsTthUVVT+hMHMmNVVUhff9TR++N6fvhmDudetJs1CyZUMCNzx+mzx3isWe70/m6I54pgiggjnqoiBAODfPEHz8/+o2Xvrg99uXpEczbgY8A1wCjimR0o73Aw8BDqqoePG87coERBKEQ6Bh5+ZCqqh89zfodpEv3NKuqWn6G2/oo6RFxP1Clqmrvuz6/oGHJRx/8OMVFGcRkM3HJTFy2ENE4OBrMYVeThsYDgzQdcE86PMeVbebaq2dx7YZSykqdZ7P7J9HYNMRzzzfy8msthIKndiTUaCXmrSjkirW5rCgawOptJrmrjuFdXQzsHyapcZF7y9VkXLkYY0EO+pxMJP2ZWe9fLsyE206OmeN0YVASCfrf2E7XY88juA9ScGUWGavLGcyYT6tYzbZdIXZtbKXtyOBpv0uvl1m7ppgbry9n4YLcsw4PjMWSbHq7nWeeb6JuT+/p/wDIyDYzd2k+ixaYWFAYwEwAfdJ3bNIm/cSHo0Q8MXQWDVq7FlVvIqDLpU8oZnubjT37o+zf3jXpe+6scieLF+exdGEOC2uzMZm0Z/V7pwPner2lUmmxHI0licZTRKPH56mUMiKQ1RHxnC7Lo6qg00ppozW9jEE/Ukd2xBhPls9NwHi8UZ5/oZGnn2ugt/cUZYVOQKOVKChzUjLbQXVxknKHh7qjGrbuTXD0iPeM8oK1epny6izmzdWxojxMhbaD+O4DDNW56ds1gOeo/ySxq7FbcCyuQWfXYplrprN2Nc/v0rHn7Y4JO5mMRokP3jGbD39kKXr9uY9gnst5EGzppO03j9P+0LPEBz0YMnXkX19O/6preLsvmx07/WfkCZJfZGHFikLWry6htjoLSZo+gnYmLHmG09Hc3EwikUCSJIqKik67bm3tsfG6y0fcnrQhQXABHyI9orvohI9Gd2AfaZH2Z1VVJ+7auwS4UCO3giBkAvWkc3v/VlXVH4+zzgU1lPr3Hz+HKmXi90TwD0fweyIMuYMM908+Et3hMHDNhnJuvG72lJQOaO/w8ubGVl56pYnGxtM3ZgvKnCxbP4urF6Uo8OzG++gbdL3VjfeoH11WBrM+ciulH78TW/UZ9UNc1swYJU2OmeN04UkEgnQ+9Rqdjz2HNtlOwdoczKtq6bct4GCohB1vu9m9sXVS96jsbDM3Xl/BzTdWMqvEcdb71N3j5+ln63n6uXqGJtkwFgSw2A04sow4Mk3Ys0w4s4y4nOAwK3iDIgNe8A5FaW8cpKV+YFIhkZIssmBRHuuvmsXVa2bhcp19XeDpxuVyvamqyt59fTz2xEFef7OZxCQiD0rnuqhZWkBVmZaaTDfZ8WYsgVYG6/rp2dpP3B9HNkiEnLnsM9VS53VS354glTyzNqE900hFbTYLqjVcWe4l21ePf/MB+nYO0rdrgJj35E5kQ56LnPXlJK9bzdMteWx+pW1CkWuzSHzinrl88GMrz6mM25meB0oySfdf36LpZ3+m75W30dm1FFxXyuDqDbwzkMf2XQE8A5O7biVJYG5tFqvXlHHt2lIK86dvFNeModTUo6oqkUiScDiOysioJsdHN0crR4iigMGgOefOr/PNmfwfNjU1UVFRMfry8hS3J21UEOYAHyUtdgtH3h7dkRTwCmkjqmdUVb3kCndeqJxbQRD+QHpUfBewXFXHWiBdaHE7d8G30WrPvNFnMmlZv66UG6+bzeJF+ed0gSuKyuH6fl5/q4U3N7bS0e497d8IQtrgJSNTj8uewhwahC43Stsg+miQ+YsLWf2ZG8m/YQ2i5vw4FV7KXC6NyPPNzHG6uEQHh+l68lV6nnsRvdRL4fp8pBXL6DXXsqvTya6NHezb2jEpY6Wqqkxuu3kO1107G/tZlhVKpRS2buvkuRcb2LKlg1Bo8vUtzwVBgNr5udx03WyuvfrcyiJNZy716y0STfDX5xt49PGDNLcMn3b9kspMFqwqZvliE7PlRlyhw0iDffRsddO9tZ++nQMkIyeHxjsWzSX/pqvIu/EqtNWV7Nrbx5YdndTt6aatxXNGOXuiJFA6x0XtogxWV0eYY+6A/fsY2NZF784BBg96UE8I9TaXOTH9y6d54kg22zd2TDiC7HLKfPqeudxx7xVnFTkx2fMg3O2m+dePcfRXjxLtdZO9JAvh7ut4K1zFOztCDE9S0JqtWpYsy+fqq8q56opizOZLI/phRtxOHcmkgs8XxeONED+D8pMmkxarVYfFrJuWQndG3E52BwRhLWmBdicwWrBrdKf8wKOkQ3vfvuA7dw6cb7dkQRDygO6Rlw8AdROs+ueReT3wrZHl1onq7p4NZytuc3ItrFhWwJpVJVyxsgit9sx7ZlPRGP6OXhr2tLP/yAD1nSH2tkfxBabePS4zy8TqK4u5em0pSxbln9X+Xq5c6o3IC8XMcZo+RNyDdD7xMu6XXsZkGiDv2nIS81fQqZvL1v2we2MrDfv6ThuyKYkwr1Di6morV15TTd6iSmTDmYvFRCLFnroe3tjYylubWhk4g2iXyVJRlcWN183mhmtmk5VlmvLvn25cqtdbIBjjsccP8sc/78PrPbUnRG6xnUVrSli2zEGVvgVX8CCagU463+ql4/VuBg95TnL+F2SZnGuuoOjOa8m9YQ3GvOyJ9yMQY8fubrbu6mLPnh7amk8vsE/EVWBl7uJcltVILM3vw+E5gn9bI+6dA/TuGCDUlx4DsNbkIHz5MzxeZ2bftu4Jv6/QJXH/B+dyw4dWnVFE16nOA1VR6HttC00//wvdz76BxiSS/4H5HKy+llfrtBw9MjmTy9x8M1eunsU1a0tZOC93WoUbT5YZcXtuqKpKOJzA440QCMTO2czJPCp0Lbppcz7NiNsz5BT5uQCKqqqXlHXc+a5zKwhCCdB6lrv3oKqq953l3463L5MSt1arjqVLC1i5rJBlS/MpmER4jqqqxAaG8Te0EmhsxdvQxtG2YdpFM12Cla6Inq6BJMkzDKU6V/QGmWXLClm/poSr15Vd0nlpU8Gl2oi80Mwcp+lJuMdN97Nv4Nu5Bb2mh8yrKwlWruBAoJTXXu7h4PYuAqcRGaNkOUSKTFEKkkPkJ/1UlrgouKKG7KuWYSyYnImKqqo0NA6ycVMrb2xspalp6PR/NA6SJDC3JpsrVxZz7YZyigqnb0jk+eBSu96Gh8M8/Jf9PPr4wVOO4ssakfkri1h17SyW5vaQGzyA2d9G71Y3ba9207u9H+WEZ6IgirjWLaf4gzdReMcGdBlnF1I/PBxmy45O3tnWyc6dXQyfQa6p0aJlzsI85i+0sarcT4HagnT0EAO73PTvG2Jg7zD68lyin/8kj26RaNznnvC7ZucKvH+BmSvXVWKrLkefdWo/jvHOg+jgMC2/e5Kjv3iEYHMHthIz5o+s5zVhCW9sDhCZRBRFTp6ZdevLuPW6Sipmn30ZsenCjLg9O5JJBa83gscbJZGY2oGVazYsoaenk7888hw33HANFrP2op5nl4q4nTaCcaQu61+AvwiCMHdkuZq0SdeleMd4m7S4NQGLgYlGSq86Yfmd871T5xtXtpniohyyskxkZ5rIyjKRmWmirNTJ7PKMU4YUxb1+PPuO4Nlbj3ffEbwHm4gEPQxX19CVWU5z2EJLl41w6MQRh4tTlzEaSbJpYyubNrby//73He75wDzu/eA8rNbLM7xvhhkuZ9REkghxWvMraAnNpfEFHS2/7sfnPfNn8YBHYcCjZTe5QC4MQkZLP2UvP0VZoJX85noyTCaci6rJXrecnGtXobWeXONTEASqKrOoqszi/k8vIxCM0dsToLcvPfX0pqeuHh/dXV7C4RR2hwGXy0y2y0R+npUli/JYurjgkgmJfC/T2xfgoYf38uTTh08ZwpiRY2blNeWsXmWnggPkBB7Ct7GXppc66Xirl0Tw5D70rCsXU3zPTRTeeR2G7EwgHerc3uHFatFht+vPqKHsdBq5+fpKbr6+Mu3W3Ophy/ZONm/tYO+e7lPmAocDcXZvamP3JnhQFimtzmHuogWsuD3F7I/2URttR206yuD+Ryk2Wqj/3O08/lqUjnE6dpp6Vf6zN0D+th0savof5vraccyZhbWqFHNpIbLZiGzUIxkNyEY9KUkkdagVpW+IfS/uxrf3CJ49h1ESCbLmOxG/93Ge7ihhz6seVOXUHUnZuSbWri/j1uurqLoMBO0MZ080lmR4OIzPFz3tKK2sEdFoZVQ1bTrHyFwlvZxMKJxqsDESSdDV5UOWRQ4f3sme3VtZtGgRt99++7jrt7W1MWvWrFPu0/Lly9m2bdupd/wSZdqIW0EQdMCtpEdur2Ma7dtZ8jTwtZHljzOOuBUEQSSdewzgBd6c7JerqtrGJET/hci5PZFf/N+Np+3NURIJAkc78B1qYnjPYYa278N7sAk16se6pIj+RavYZ6vicEEl7t4ISqc6Mi48+V7i8bDY9bgKrJjMOoxmDSaThMUkYDGCyQDRuEAwDMEIhMIK4VCCSChBX4f3lGYzoWCcX/9mFw//aR933VXDxz40H6fTeE77OsMMM5xflGSSlr++yqu7u3irTc/RphCqKgEKxy0Tpoah4QRDw7CDWWCYhdWiZV4K5r26Gee/f4dkqwet04GlvBjHomqy163AtXYZGlP6PmIx67BU6KioyDzpey+1kckZTmZwKMxvfrebJ546RPIU5l+VC3JYc3MlK8oCFAZ2YR04Sucb3bzxVBuexpNLz+gy7My6733k3Xs7Q1o7Da0eXnysiZbW7bS2euju8R9riOt0EtkuM9nZZnKyLeRkm8nNtbBsaQF5uZZx9uQ4giBQWuqktNTJvffMJxJJsHV7J29uauXtd9rxnSLSIZVUaNrvpmm/m6cBR5aJ2fNqqZx7FYvvjlGs7ebWyBGuy47z3MASHntmCHfX2BI73R6R7sw1bCoRWB46yOzfPYshdWqblhYAAXKWufDddTu/OZhD4xM+jmeHjcVk0XL1NWXcfetcqquyZgTtexhVVQmF4gwNR07vkSCA0aTFZNFi1iYRSaGOjNepwsh8pBmfRCYcUYgE40TDiWNCt7CwGJ1Oh16fvrcnkwqvvvIGP/3pf3PX3fdw7bU3YjBoTnlOrlq1atz3586de8a//1LhogtIQRDWkBa0d3E853b0f8kLPEbaRfmSQlXVHYIgbCY9evtJQRAeVFV167tW+zIwZ2T5h6qqnjQMKQjCfcDvRl7+u6qq3zyPuzxlxANBIl19hDr7iPb2E+5y4z3QgL+hjXBnL/FhH6IEtlkWMpbmEb3hCnYsvob9jSn63WHUTSrpaO5zRxAFXLlmaucaWJXXz+zAHmSfDyUcR0joEWMWpLgNWbGjJiKokQAkQiDHIVtEtJoQ7yrjcKKMtw/rOLB7kI6mwXF76SKRBA89VMcjj+7n9lur+fhHFpKdffk4j84ww+VAoL2LVx97lTfbNezcFyIeS3GhI0D8vjhv18Hb5IPxAziv0jOvQuYKWxv6A2+z8+G/EO6LIOq06F0ZmMuLMc/Kx5CbhbEgB2NRHuZZBUg5GRd0v2eYGvz+KA/+cS9/fmQ/0ej4NYcFAWpXFLLhtgqWZrZS4HsC9VAvR5/poPn5jjEuxNnrlpP1kbtoMBXz87fa2PO5N1BOky8ei6Xo6PTR0ekbs+2li/O59ZY5rFs7C4P+9CaKBoOG9WtLWb+2FEVROXS4n7c2t/LWpjZaT2OG5RkIseP1Fna83sJDQG6RjfLaJZRW2qksS/Jf3zSzcZfCc0+24Rmno9kXVHmFuby1soZl5l7K+o+Q6+1B9vqJ+eLHTKysRWbyNhTQMPdqfrzLQdtjAcA35vtGqV3g4o7ba7lhfRk63UVvLs9wEVEUFZ8vytBQiPhp3coFRElAEiEVj+Pvj+JTVERVQSMqaEUFjaSikxVkTdqITa+TMGq1JDP1xAUL4bBCOBjnt79/grFFaNMkEgpt7V50Ohmnw4DNph83OvLtty8py6Ip4aJcrYIgVJIWtB8GRgsljf6PJEm7JT8IPHspuiWfwJdIhxobgFcEQfgv0qOzBuCDwGdG1msEvn9R9nCKeaniOjI4+UEoakQcs60ULHdh+uQy6g1zeavJwaGGKAOtYZSjKmnvsKlHVVTc3QHc3QFeA/T6WtZdmcV9f3Mls8tdp/37ZCTK0PY6Cre8xIcCTZjvrMadWcumBhs7d3k5sqdnzN/EYykefewATz51iFtvncP9n1xCVublb94ywwzTFSWVYtcTL/Pi7iHePpxkqD/C2YzOCqMNh5HeLfXYP+fG8GCUtwbhLTIRxJvIucLIsnkaVud0U9Czj4EtHbhf2EfMGycZHSdsVRR5Rv5nEAUEUUSQJSS9HtlkQGM1oct0YikrxDZ3NvaFc8hYWos8U2P5ghMOJ/jzo/t58KE6ghPUWRclgcVrSthwWzkLTQ0U+B4i8E4Pex5poWtz30luw7LZSO5976dn/pU8ecDLjl91kUqde1qbqsKOXd3s2NWNyaTl2g3l3HpLFfMmWZpPFAVqa7Kprcnmbz+3gp7eAJs2t/Lmpjbq6npOOUoN0Nvho7fDx+bn06+NZi0FZU4WrCwkHErQtL9v3GiqeFzl7eEc3pZzIBNyqiXmFqeY5xpmttXDtkA5//OOBu/BOBAYd9s6vcz6a0r5+IcXUT7r1Lm8M1yeqKpKbKSedSQUIxqJE0uoTLYctKqqpJIqx+/Uo2ZQElGFdHBQEoiBoKpIagpZSWGUI9gsYcwWGaNOS9KgJ46VUDhFyB8jHhu/IywWS9LbF6B/IITTacDpmInguZB1bjOBe0iL2sWjb5+wymid2z9d6nVuT0QQhFuAP3J8VPrdNAI3qap6dJy/vY9zHLm90KWAdv/7XRSV55Ky2BhW7PTHzHQEbGyrl2k4EsQzGD5nB7mporrKzD1313Dd9QsmZbmuKgoDW/bgfvF5GDyI/coyDrnW8ejLCfZt7ZzQVVWrk7j7rho++bHFZ10yZLozEx45OWaO04VFVVXefuRlfv/mEHV7Jx6hGQ+NTiK/xEHV/EwWlidZlDOAXk6gCBpSggZFHJkLGpKChu1tNl57voOGvb2MLcp29siySGGplZpKHcWuJPmWAHnGIC7Bg+gZJDEYIDIYJRlJkkoopGIKyWiSyGCUuD9BPJAg6okR7o+inDDiIBn1GPJc2GsqyLvxKko+fDOy8fJKp5gu11sikeKJpw/zq9/swuMZv1NF1ogs31DGhptnUas5QL5vJ979PRz6w1H6dg6ctK4uJ4vUPfeyRclj666e09a9nSqKi+18+IPzue2WKjSas6sWEArF2ba9k7c2t/LO1g68nskZtb0bUUyPjk1UI/dMsTn13Hl3DR+9ex5Wy+X5nD4d70VDKVVVicdThMMJIpH0FE+kLlo7VVBVDKkoVk0ck0WkcuVa2ju7eOmlv7J45XqybBPfo/PyCnn1tV2IokDA38+yZTUAp8zlPVNmDKU4lkd7G2lBe+0J2xsVtb3An0i79x48n/tysVBV9TlBEOaRHsW9CSgA4sBR0iHXP1ZV9dySSacRX962mvhbBiKh0TC/FKfKZTkXNDoJm9OI1WHA5jTgtAtkmuIMDCscaYzQ2+E75Q3q8JEg//of2/ifH+/hxtUZfPQzG8jKmjjPSBBFXFcuwXXlElRFoX/zLlwP/5Z/W2ig+abrePRVhd2b2lFSJ280Hkvx8MP7ePLJw3z4Q/P46IcWzpi8zDDDeWbni+/w62fa2LX31PeBUQRRoGZZPpXzXNTOSlJt78Pc30Bg0xO4Xxpg/95BQEDv0KKz69A7tejtOnR2LYYMPR9Y6uKmT9RwKLWAV7ak2PbqUfzD5567m0wqtDZ6aW088V0tgpCN2VaM02UkM1OPTicgmQQ0MmhlsCxUsBlS2IxJMk1xym1BXOIw4qCbSMcw/fuGGTrspf/1jXQ9/Ro7PvOvaDPsOJfUUPbJuyi88zpEcXqUn7hUUVWVV147yk9+tp2u7vGjk0RRYOm6Uq5/Xxnz5TryfL9maE8vm//QRP/ek82NzFWlBO/8ME92aql/ZxA4dVtREAUyss1kF1jJLrCRXWglO99GRo6ZaDiBdyiMdzCMdzCUXh4I01Lff8Lz+2Ta27381/c28psHd/OZTyzh5psq0chnJnJNJi1Xry/j6vVlqKrK0eZhduzsYtvOLvbU9RCZRI1pSIeJni7sejJkZOpZoXYw78Bb2Pw51G8pw1pVinVOGY4FczDmT1wqaYapYzTs90JsJxpLEIkkCYcTRKPJKTmPTsRs1p5VPWYAVRAIywbCqgGNJ0FqxPVcDPlxCsOsXLmczs5uurq6yMjIoqj4uGlUVmb6XFUUFa/v+LPnb/7mCzQ1NSIIAiUlJVx33XXcfvvtl/X9/byM3AqCcBXH82hH1cLo/3QEeAb4A/CKqk5lH/cMF4OzrXP7bnQGGY1GJOifOEl/NGTr+htymOPowxwfQGluwf/2Ifq39TBwYBgloWCd7US7YSkdefNoCNk50pKgu/XUBek1WpFrl5v52//vBlz5k89lG959kLZf/RxbFfQsuJFH3pDY/norqQlCr8wWLfd9dBH33F2LwXD6XKZLgekyQjLdmTlO55/97+zjF386yLbd/kn1WGt1Eiuvm83NVxupTu0muX0P/du66ds1iK91/NDF8RA1Ivmrsim7uQjrigo6jIt4vTGLTa+003xw4mAknV4ilVKnbATqlPsoCdgzjGTnmykp1FCZG6U6x88stZ1gXTOdb/XSv2eIqCeGoJFxLJxD+Wc+SOnH33dJNoQu5vW2a3c3P/jxVg4fnvj/fsEVRVz//jksMh2iyLuVge1dHPpDE4MHT66tal1cw+BtH+aZ/VHaO7yn3K5GK1G9JJ8Fq4qoXJDL/8/eWcfJUZ9//D2zsy63d7fn7pJLcnEXCEGCBoproUJ/bam7F+qlQoG2FEqhWIt7gsTdLnLu7rLuu/P7Y5OQkL3kLrmEQPN+vfa1crMzs3O7M9/P93mez6NSSwhyEL1/AIOvF4OvD72/H1kQCYpaAgotAYWOgBi5HxKT2VXhZufaZhr29x73mpmcYuRzd87g0hXjF7nRCARDVFf3s2NnFxX7eqiu6cduPz2VaQaTmpUXKPmUei2OuhGG6qxYG+24etxHtVHSpiYSP2sy8bOnkLBwBvFzpqJQfzInpz/KyO3IiIdlFz8+yjs/Xjz99HXExGj5cAZ/MBgm6A8RDIRO6I58iEOtgJ599FmWzy5Hb5b41UMP8fPf/Imbb7mJP/zlUZw2L94PTQp1dbVz4fJZo663vLycl1566YSOyh/mfz1yu5ZIJdKhf60MbCQiaP8ry/LYRwzn+MSiN6rIK4xj+rQ02putrFvXjM8TvaZApZGYe0EelyyPoVzYiWf1U3Ss6aSyYgi/PfKjFpVKUi5eQuLSOcjBICGPjwS7lameXmSLH+vUONY609i4zY7LcewFM+AP8+ZGO+9uf54LZ2n54pcvIikn+YSfI25GGXEzHoyYZv3t73w100XfL6/g6dUKdqxtOWZW0Onw8+BD23jyqQpuvamcG66d/D/fJ/cc5zhV6iubefCRbWzZaRvTTLzOqGLJZcWsWKygwLqJnofXsemlVgKuyDlIVCqxzJtGwqIZJC6eRfysyQTsTlytXThbu3C1duJq6448b+7A091Px7oeOtb1YEg9QO6lO7hjRS5X/980Ng/N4sXn22nYf2zvTt/BGtrSSYmkZ5mprx+gvcV6TAbIRBAOyQz3uxjud1FTAW8ffF2rz6Rg0nSmXCEw9ysjFAZq6F1VS8uqZnZ85gfs/MJPSFm+gPLffAtz2dmRTni20tA4xAMPbWXzlvZRlymensolN5QxK76FrJEncGzsYP0/ahnYd3SWk6Ywl56r7+DflV763ugddX0KSaR4WgrlC7IonZGKRiMS527EYnsLo68HnX8QkcjkiWfYy3CtjaA3hEIlolCJ6FQKxIOP81P1TM3O4PIvT6LOez5bNw+yc20zQ73OY7bb2+Pg579Yx6OP7+Fzd81gxcVFYyrxGQ2lpGDqlBSmTon0g5ZlmZ4eB9U1A1TX9lNV3U917QCuUeqVx4PT7uPfL/nYWnIRF8yTuOSmPhLlLsSAG1e3G0enC0eHC0eHE0drBXUbN7HvBz4UGjWWeeUkLp1NysWLiZ9ZhvAxnPg5x+kjQeMkVhs47IR8yB05LEgHy1o0hIVDk5ohgv4wHrf/GIF6JF5JTb8iFtOQHe9IZPyqCPqIV4xgStDjCplwWL24D/42FAqJC5ZfypVXXEtR8SQSEpKxWofZsX0d99//C/bu3cuFF17I7t27MZlGq5r8+HK6IreHpqCbiAjafx9sXXOOTyBjjdxqdEqKShNYviyfC5fk4veHeOKpCl5+pXpUgwmdUcXCFUVculiiyLON4Zc2Uf98M86uSCa3oFCQvHw+WdevIP2qC1CZj/8j9VvtNL6xijVdId7bJ9PeZB11WbVGwUXTldz9ufNJLsk+8YE4iL2+heaH/4Y+3UnH9Mt55q0QFZvaRp0BNxhU3HTjVG6+fgpGo3rM2zmbOBeRHBvnjtPEMzzs4Pe/eYt3Nw4TGoMgjEvUs+SKEi6eEyRnYD1dT26m/sUWAq4gCYtmknzBPBIXzSR+zlQk3dj+P7IsM1JRTfPjL9H6zBv4h60AiJJA6vwkCq/JJTx/Mau6JvHKc810Hsc9trDQwq03TiU+Uc87a5vZurWN/m7HGa0BM8VpmTE7nvMnOZilraH/tf3Uv9SKd9iHNjWR0u9/noIv3HTWR3PP5O+tq9vOI4/u5I236kb9X2UVxnPpLeXMyRwkZ3gtgYY29j9aR9fmoyc9tGlJBO78HE9VMmo6M0B8koElVxQzbWEWWp0Ss7eNREclCa4alGEvIX+I4XobQzXWyK3airvv+KnyoiSQMDWetPlJpM5PIphdRJ++lE0tCax6sZGW2oFR35uRGcM9X5jL+eflnrZ2ObIsMzTsobvbTk+Pg7a6HlorW+npHWHALeAMSgTCAoEgBINj/9GoNRLZxRaMJjUmo0CsQcZsCBGnC2DR+7DoPFjCA8iNbdirurE22BmqGSEU0pF66RLSLjuP5OXzURo/vh0SzkVuJ4YXfjOX2Bg1gggIAsLB+nCFVoFSK6HQKEAUD4pdiZCojGRRBMFl9+Fy+AiHImPiQ5Hbx//1ErNnR1r6/P2BX/HA3/7EDZdewSO/+w2aODUKnQq/Qo8nrMFui6xjNLPDtrYWrr/uQhwOO/feey8//OEPx/zZPi6R29Mlbv8GPCnL8pYJX/k5zjo+LG4NRgtJyUayss0U5MeTnx3LpOJE0tNNNDWPsG59C2vWN1NXNzjqOrV6JUuvLOGqxWFyBjbS/exWGl5pO9z+IG5mGfmfvY70q5ejsZyco6GtqYkNa3bxZrXErm39o0Z7NFoFF08VuOv2haRNLx3z+p2tnbT87W9oU100lqzg2dc9HNg++m9bq1Ny4/VTuPXGqcR8zIynzom2sXHuOE0cwWCIx//2Dv9+teu4pQyH0OqVXHLjFC6b6yejbz1dT22j7oWIqE25aCGTf/plLHPLT3m/Qj4/Xa+voflfL9Pz9gbkcGSQkjTDwqS7SvDNWsprDfm8/p8GBntGT2JKSNRzyw1TWXllKWqNgvZ2K3VNw9Q1DFJbN0hLywhD/c7TLnp1BhVzFiRy1fRBCgZ2Uv/vKro296HQasn/3PVM+eXXzlrn5TPxexsYcPHo47t4+dWaUSdpE1KNrLhpKgunBMgbXoPU0cyBf9XTurrrKCNCVWwMlns+x0vWJDZt7Rh1m6nZZs67qpQp8zIwhoZItu8l0VmNJmQnHAzTs32Alnc66d7af5SJmCEvk6Tz5pC4dDb6zFQUGhUKjRpRo0Zx8OYfsTGwcRf9G3bRv34nksJO2rwk0s7LwD1tMe92FPLmC8201Y9+/S4uSeCrX5rH7JnpJ3FER8c7OIytshZ3bQX+kQ4GtEY6NWm0Ok209Ah0dXoY6nOOmgE2ERhi1JjjtMTHS6TGy6SbvCR4e4lpqSO8oxZVajGply4l7bLzMORmnLb9OB2cE7cTw6oXrsdsVCGHQgdvYcL+AAG7k5DPjyCAQq1A0iqQtBKSVoEgRcoE/Ao9IUHC6wrgtPtYvGDqMeL2oQd/x8MP/57rLruKh39yLwCSVoE2To1kUBFQ6PDIOhx2P067L6rZ6R/+cC+PPfogZWVT2L17DyrV2MoK/qfF7Tn+tzhS3N5y+6MUFuYSH6cjLl5HXKwWrUZi5+4u1q5roav7+C1/VBqJRZcWcfUyBXm979P26Gaa3+4g5ItcoFMvXUrJt+4icfGsCZsZDoVCbH/jHZ5a72b71v5RXY+1OolLyoLcevUMss6bM+b1u7v6aH3076hT3BzIWM7zrzuo2X1sC6FDqDUSl19WzG03TSU9LWbcn+ej4JxoGxvnjtPEsP79ffzhb3vpaB9bP+wZS7K57vo0pjlW0f3kJuqebybgDJJ8wXwm/+zLJMyfflr209PTT8tTr9H4t+dwNkfESsrcRCbdNQn7tGW8UJHGqhfqsI/ioAug0yu5+spSJpUkYrP7sDu82O0+bDYfw8Mumpp78HpldDotoihGogQCkWalQsRcxOcL4nIFTjmdMyUzhgsW6bg6t4aR/0Qi3qEA5Ny+kpkP/uisE7mn8/c2YvXwryf28J8XKvH7o7RnAoxmDcuvLWPZQj0FtrXo+mqpebqJxldaCfmPdK7WknPP7WxPnsHTL9SMur6ckgTOX1lK8bQUYnxdZI5sJt5djwAM1VppfaeL9jXd+GyR/7MuPZmkZfNIOn8uSefNQZ+RMu7P6Wrron/jLnrf24Kndjv512QjnL+M1e1FvPFiC+0NQ6O+d8asNL7+pfmUFCeMeXuyLOPt7cPVUIu7tYYhq50en5LekJ7+gJ4+p4qu3hBdnS48E5CePJHojUoy0zVkxnhJdnSR1ttB8YKZZF2/AmN+1ke9eyfkoxS3JzKUirTnCeJwBnA6vfh94/MoUKpE1FolGpWARgqhkEMoRAVBhZrefveo69MblMRrvQQH7ISDApLJgKTXIum1iEpl1HHoaP1mAUJeHwG7k4DNQcDhOjzeVBkkNPEaJI2CkBCJwgZFDWWFeXS0t0cVt1dedT1//tmv0fudhxOgJY2IJk6D0qgkKOrwCnrs9gAOm/eose2aNav48pduR6fTs2t3M+YYLfHxWlSq41ernhO35/ifYSIMpSSlyLwLC7j6Ej3Fg2tof2QdTW92EA6EEZVKsm+5nOJv3Il50umr9wqHw2xbvZ4nVg+za1vfqBERvUHikmIv111QTN5Vy8cssr39Q7Q9/ghSvJOqtPN54S0XlTtG/60LIixalM2nb5l2uAbpbOWcaBsb547TqdHaPsSvf/0OO3aPnHhhICndxDWfKWd5chXiO2+y+4/7cfd5SDpvcGTKcgABAABJREFUDpN/dg+Ji2ae5j2OEA4EaHnyFQ78/GHc7ZGJrbSFSZR8ZgoDpct5ZY+FdW82MdR3bF3j6UIUBdRqBYFAaFzpmxAx4Vq0LIVbZnah37SW/Y/U4nOEyP/89cz44/cRpdPaiGHMnI7fm9Xm5dnn9vPUs/vweKLXyKk0EkuvKOaiS5Ipdm8kbvAADS82U/Ns0+GabgBBksj73PUMLrucB584QG+UulaArEILl91aTk5JAnGuBjKtW4jxthP0BGl+o52mNzuwt0Xeq9Bpybz2YnI/fTWJi2ZOaD2ob9hK06PP0/vaS2QtjUF1xUWsai/mtRda6WoZ/TdZXp5AUoIWo0HEpJYxKIMYFH50og+ny8uwG6xeBXa/ArtXxO4WsNpDDPZ78Z7GKOyZwGRSkpskkyNYmZFpZuGnL8J0lgrds7EVkN8fwmbzYrV5xtXySiGJaLRKtFoRnTKEFA4iSUoUOgOCqCAclhkYdDI0FH1iUSGJJMSJqO3DBJwhNMkJqOPNE/p7ksNhAk43Aasd36AVORxGqZPQxKlR6iXCKMgtm0t7ewcvvvI2pcUzCIflo8TtL3/5AEpCmDxWpPAHk2IKlYg2Xo3SqCKo0OIV9NhsQZw2L7Iss3HjGu7+/I2o1Rr2VLQdfp/JpMYSr0OjiW52+nERtx/JFUgQBBFYCswDkgEd8ENZlnuOWEZ1cP9CsiyfHru8c3zkaA0qyhdkcuWKWCY71tP1m3dZ93o7IX8YSa+j6Gs3UfSV29Clnn47flEUmX/Jecy9KMy2tdt4/NVu9uzoP0bkupxBXtglsaqujUve+SOXlSVQdNMVqGKPH2XVJMZT9J3v4R+xEf7no/yoZID6y5bxwtte9m/rOGY7chg2rG9lw/pWSkoTuP3maZy/NPeUDDvOcY6PI26Pnz/9YTWvruomMEpU60iUagXLP1XGyvNFctufpeqbW2hf003stFLmPfddkpaOPfNiIhCVSvLuupbsW6+k+bEXqLzvr3Rt6qNr87tkLKnks58u4/qfLmVVQzHvv9F63JTPiSIclvGcpHDw+0K8/1Yna96GybNu5OZ/OCmvfpf9f3mRpn88T9E9tzL1198862tyx4osy+zb38sLL1Xx3pqmUSOrklJk/kUFXHhFNmWh7ST3vELrm21sfbIB79DRw5ismy4j59tf4IH/NvPOb7ZGXZ/RrOHSW8qZviiLZHc1mR0vY/D34bX6OPBiK42vtuF3RAS2Zf408u68hszrLjltdZ/qODOl3/4sxV//NI3Pv8uen71EcuJ6br9gMZvbs9i9tRdnFHfjvXtHr9M9ncTGaUlMMpCQoCPkH0GlhPSMLMKyyEBrF3trrQyOjP4bUKkVaHUqXA7fqCnnJ8JuD7DXDnsx8HJ9EOO2VRQnBJmWquKy288jfWr+yX68TyzBYBi7w4fV6sHrHeM5SuCgmJXQqcOoCSASRNIZEZVHG3a63QG6e+yjZ1yYVMSJDoI9bhSJFnRZsafFNEwQRVQmAyqTAW1KIt7eAbwDwzg6XUgaBZo4NcLBwlmtFpIyYhjudx4TUAmgYFgbjwkvGlckOzLkD+Ps8aAY9KGJ92MwedCYtJhiDNhtARobawFISjo6cGK3+7DbfRj0KuItOnTa6NHps50zLm4FQbgUeADI/tCf7ifS9/YQdwEPAk5BEFJlWR5b/tk5znrMFh1ls9OZMjOJWZkjJAzuoedPq9nwahshbwhRpaTwnpuZ9P270SZZzvj+iaLI/GXzmXe+zNaNu3jsv21U7Dy2nYPTEeD5PRper3Ezd++zLFF3M/OS80i5aNFxIxeq2BgKvvENAg4nwuP/4ntZrbSsWM5/VwfYt6Ujau1vTfUA3/3BOyQmG7j5+imsvKL0XK/cc3zikWWZ51/Yyd//WcnI8Nh6IE6amca1txcyR9iA45n3ef+haoI+gfJff4Pib9z5kUYVFSoVBV+4iZw7rqbx789R/atHIg7L63tInbuPT91SzOX3LOKd9mm8v7qH+v29o5qCnA3IMuzf0cP+HZCafRE3/PpS5g++R+WfnqX+wacp+fZnKPvxFz+2Itfp9PPWqnpeeKmSxqbRTcBEhcDs8/O4eGUekxV7SbM+QvfaNlY/Vo+j8+ihS+qKJUz9xdeoDxi58wfv0z9w7NBGFAUWrihk+bVlJIu95Hc/htHfi7PHza7/NtNysFRH0uso+upN5H/+emKK8ybkM4dCYYaG3PT0OenucdDZNUJ31zA9vQ4Gh7zY7H4c9gB+fxiYBoNAtRdoO8GaTw9qjYLMrBhy8y0UFVgoyY8nLdVEYoLhcB3h0RHJmYcjkuFQiC1/fZbNbQ7e2qfCYTtamPt9IUQxwNe/NptLlpfS1++ks9dBZ4+Dji47He3DdHfZ6etxjWnSDcDhDLHTKbCzJcA/trxDftoa5mSrueLmReRPz53AI/PxIhyWcTp9jFg9uEbps/xhRFFAo1Oh04nopUAkOqtRIWoMUQVZOBymr9/JyEj0a4mkVJAQI6MY6keMjcNUmnbGnLBFpYQuIwVNsgVPzyC+gWGc3W7CBydVNEE7OpwoUozExEU6rPq8H0SdZcCGhkCcDpPPgeyKnFdCgTCuXg/eoYjINZo8hMQwzz//BAALFiyNuj9Olx+ny49Wq8QSr8NgUH2sRO4ZTUsWBOEzwN/5oEXQIGAh8n+ZLMty9RHLqoiIXTNwuyzLT52xHT3HuDgyLfkLP3geQTThtHqxDXsY7HHgdQcQRAFJKSIqBAiFCIdkgsEwsgyWoIPM/gZy7B0svHIG03/+JfRZaR/xp/oAWZbZvHkvjz7TxP7do/csBMjK0LDI0s/8mDBFN1+NeXLRCU8IQbeHtieeIuCoon/mcl7erGLb+y3HNcXQ6pSsvLKUm2+YQkqycdTlzhTn0m3HxrnjNHb27Ovk179dS2Pj2DrHafVKVt41g8sm95Nc9zZ7freL3p2DJCyayZxH78NUOL5+fqcbvz9Exc5WVj3yLhXVgzhFLW5BiU9WHNFC4mg0WomEVBOJ6Sb0RjVavQqdQYVGpyQsy4SDMqFQmIA/hM8TwOsJ4HUHcNl9OG1e7FYvDquX4BgH4ieDSq2grFTLbHUDyjc2oxqwM+0nX6D0G3edtm2Oxnh+b06nn84uG52ddjq7bDQ1D7NmXfNxo9uCANMXZXPxpwop11STbttK/8Z2Kp+sZ6T+aH8Jy/xplP/qG8TMmcaDf93O08/ui7rOvLJEVt41k6xkyBt6jwRXNc5OF5VP1NO+pgc5LKNOiKPonlsp+L+bUMeZx39gAI83QGurleaWYeqbhmhqHqS1dYS+XveYXMfPJKIoEBuvITFRS0qaifT0OIoLLEwqSiAtxTRqfeMhTvQ98I/Y2PXr+3nOX8qmLdEnMebOT+EXP7mYWPOx36FQKExzp40DlZ3U1PbQ0GSnudGG0za+pMOMZCWzcrVccf1cJs/JO+Ni4kynJcuyjNsdwGr14HD6x9TCTSGJaPUq9FrQiX4UMpHorOr4nSacLh/dPY5R+4mbYpSYAzYUKj2axDgExan3bT4VQv4A3p4BSubNoqOnm7eefIKLLl+KLCl57vV13HLTTaSlZ/LKK+vQ6fRHvVehEPjlvd9i+aw5nD9zDmrVB4GQps5WvvrLn7J1524MBj2bt+8m1pwSMZ46jh4UhEgZi9vVh9frRxAUFBYVYDSMftz/J2puBUHIB6qIRIvXAl+SZbn2YNugY8Ttwfc8AnwGeEqW5dvOyI6eY9wcKW63v/Vn7P5EXl/rY+tO97hrudRqBTOmp7FgXibz5maQlWk+a2aLZFlm45YDPPrvOiorjp9mpVIrmFUsMincQak6QMbc2SQtm3/c9OqQz0/7cy/hqV9H4IKlvFqVzLq3W7EOukd9jygKnHdeLp++dRqlJYkn/dlOlXOibWycO04npm/AyW9/9w7rNvSO2Qm4cGoyt36uhLmB1fQ/tY4D/6wHSc20336L/M/fcFb0oQyHZerqB9m+o4OtOzvZt68Hv+/kRGZyooIrz1eyfI6AThlCkEMgCIQFBTLiwfYSaoIHbwGFjoBCj1+hx6fQM+xQMNTnZKjXefDeEbnvc457QD4WVATRBr3EJcVgSLGgUikiN2XkXnnwXhAi0WBZlg/eA8iEwwefI4P8oWWQkcNHPz+0TDAUpL9/AGSwWCyIonhwmQ+WPyRqrdaxZQZAZIA9ZW4Gy68uYrqpnsyRLQxsaqHyiQZG6m1HLRtTVsjUX36NtMvOo6FhiB/89D2aokSBtQYVK++awYz5qWTZtpJh3ULQ5qbqyQYaX20jHJQx5GZQ8s07ybnjaiTt2My7HA4fza0jNDcP09gyQmPzEG2tw/T3jX5dOZMolSKx8Ros8WpMRgmzSUVcvAFLspmMjHhyMsykpxhQKU8+42Ks593WZ19hc30r/9plZqj/2ONjjlXzkx+dx5IFJ46wBoJBamqb2bG7nf3VDqqr7Qz3jz0BMSFOYm6RnqtvnMuU2aevtdKRnClxK4oKzOYUbDYvwTFMpIiigM6gwqAT0Ak+FIKIZIhBUJz4OxEKhenptWMfxVFfqVKQYAii9AbQpiQhqqLXmn5UZGdl09bexit/+yeL58xGn6zFG/aRN3URg4NDxJjNZGfloVKpsVgS+P39jwBw9crzqaurQqlUkpuZhUGrY9g6QktnxNjQbDLx9N/+wsWXnne4JtfuiNTkHq/Hus87wMiIi/YOBw88XEdaqpHMTDMKUYjM9nHQy1AQsFn7+Ndjdx566ydW3D4I/B9QCcyUZdl/8PXjidtbgSeASlmWp5yRHT3HuDlS3F5z+b00951ca55oJCUbmD83k/lzM5g9K/24s0RnClmWWbe5msefqqZq78CYBuBpaRpKk7wUhnqYFCOROnsW5inFGPKzED80QyjLMj2r1jK85nmkpVNYM1LK6rd76Wgc3ZUSYPKUZG67aSpLF+egUJzZwfw50TY2zh2n0fH7gzzyzy08/WwtvjHWWSnVCi6/bRpXzXORXvsqu+7bQf/eIVIuWczsv/0MfWbqad7r4zMw6GLzlnY2bW1j584uHI6JFY4mrcxFM9xcMd9HUXYMIiEIByAcPHgfgFAAwkcP7IKCEq8yFo8yFq8UuY88NjPk1dHT6aC3zUpPu5WeNhu9HdbT2l7l40J8soG5y/OZtziFfKGWDOs2hjY3Ufmveobrjha1+uw0ptz7FbJuvIzePhevvlHLv57cE9UUp3BKMtd/cQ756lbyht5F6bHS8HIrVf9uIOAMElOaT9mPv0jGNRdGTauXZZnhYQ8trSM0t4zQ1DJMY/Mwra0jjAwfv6/tqaKQRPQmNTqDCrVaQqURUatENBoRjUogEIZ9Owfwuo+fajplSjKfvXMm8+dmTLiQG89519XRw57f/J7/auayeWP0SeyrVhbyna8tRa0eu+D2eaxUVjawcccAFTU+avf1jzmVOSFOybxSA1ffNI/J07NOm9A9ndengUEXVZU1iKKM0ahDrTm+g7YggEanwqAXMSj8SIKIZIxBEMceUbXZPPT2OaNnIghgNkmY/A7UFgtKg/7YZc4CsrOzaWtrY/WrrzMrM49wMIQ6RkVDXzM//fWf2LqzguGhIUKhEKmpGbz73i4A3n77FTZtXEtNzX6GhgawWkfQabTkZGRwwbyF3HntjSRZLCiUIiqzGqVJRUihxifocLhkXHYfodCx56oPi9vj4fePULX3cA/dT6y4rQEKgc/KsvzPI14/nridD2wC7LIsm8/Ijp5j3EyEW/JYEEWBsrIkFsyNRHVLihPOuIg7ElmWqWvp5fkX97F2bQ/WUVz3PowgQGqqhpTYMMlKF8miizRVgOyMRBInl2EszEGXnowoSQzvrqTrP/9EVRbPvth5vPmuk8odnccV1MkpBm66YSorLy9Brz8zdbnnRNvYOHecjiUclnn5zUoeeWQXA/1jH4hnF1m4+f+mslCxHs8ba9j5hwOg0DLzLz8k+5YrP5KMj2AwTGVVHxs3t7FxSxuNx2mTMhbUGgmdUY3fF8QVxajnEKIcJlW2kyS6SVF4yVD7MBjUSAYdkkGP0mxAk2BAHadFHaNGZRARRR/4bMg+O7LPDiEfsgxhRDxSDB4pInY9UgxuRQyDDiXD/S6G+pwM9zkZ7ncyMnB2RP9OJ4IoUDwthbnL85ldEiLDVUG8rZK+Ld1UP9PEcI31qOV1mamUfuczmFdeyppNHax+p4F9+3ujrltSilx6SzlLL0yjeOhtEly1dKzvYd8jtTi73egyUpj8sy+Tc9tViAoFXm+Qzi4b7R2RW1u7laaWYdparRM+cSIpRcwWPbEWHbHxaiwxEK/xY8SDPuBE6xzB4HOhDcuolVokpRaCAQiHIRSK9HcOhwiM9KCcmcom9RzWbLDTVn/830R+QTx33T6dC87Pm7Dr+3jPu+FgkMr7/sROfRyPrwrjjtJyKD3TyG9/cQnFheP3BQkFffR2NLBmQxtbKgMc2DMYdRvRSIhXMr/MxDU3zWPS1ImdCJjo65PbHeDdd2p56cUKKhucfPkLRWRmGImN1Y8qbtVaCYNewqAKokRGOcYI7ZEEAiG6e2y4XNEn5FRqBRaNH41ShdoSd9ZkB56IcCCIq70b/4gdhVJAn6xDoVPiVxjxClpGBtx4XNG/RyajGhkI+YMEfAHCYZmwICAL4/uNnRO3H96QIDgBLTBLluU9R7x+PHE7FagAgrIsn3PPOUsZi7iVJJHkDCNpWSayck2kZejRqAWcXoGaagd1e3vpbBoacxoigClGzZxZGcyfm8H8uZkkJHx0M28ef4DV71fy6pvNHNjdP6bakWgYTRIWs4IYXRizKoRZFSBWHcasCGKwdhGfo8IxZRGrdirZua4V/3EiXFqdxFVXlnLz9VNJTTm9dbnnRNvYOHecPkCWZdZuauaBv2ymvW3sLXAUksjFN0xm5TKJgo5XOHD/dlrf7SJh0Uzm//u3Z7xef8TqYfOWNtZvamPb9o5x9ZIVBEjLiSN/chLZOXpi9DIxhjBmbRCN6KOx1srevQ6qm4JYHeDzBMZ1jjzH+JFUCuSwTGgUd1ylEEYRCqAOeNEF3AdvHmJjVOQtm0ni7Mms39zOjp2dx70OpGabuekr85kc20nBwCqcjX2s+1Mjbc0hfLGJGC+7ELGsjMERL53dDto7rAyMI611LAgCxCUaSEwzkZKmJSNBJk3jIN43gKa3G19tG57qLhSaWEwlhcRMysdYmI0xPwt9TvqYU6MHd+yn6c9/IaZcR0vZRby5VcGeje3HjeampZu45YapXHxhATExp9Y/+WTPu52vv0/N+tU8bp1B7YFjRbkkiXzuczO489aZJ6z7HY1w0I+1p571m5vZVA0Vu4ePW4p0JIkWFXMLNVxx+VSmnVd2yiJtIq5PwWCYzesbeOG5XeysseMPfPAbuOf/ootbSaXAYFBiVIdQC2EkvQlRGn96sCzLDA25GBzyRP3tCYKA2SQSI/vQJCWeNS3LxoMsy3iGbDi6BgjKgE4NKiVhQSQsqgiGwOcNnDYjwnPi9sMbEgQHkZY/s2VZ3n3E68cTtxcA7wDDsiyfedvcc4yJk4ncalVhyrM9zMjzMLVEhaUgk/ZQFrsa1NTsH6B+by/2kfGlU+XmxrFgbgbz52VSPjVlXClDE4Usy7R2DfPS6/up2DtIY+3IcQXoySIIoNNLIIh43cGo6SNHEmtWkpasIyPdSE5uPDnZCWRlx5OYoEejUaJUiqd0YTwn2sbGueMUYdfeLv745w3UVI+tX+0hEtNN3HrPLJYYdyJtfo/tv9yLe8DP5J99mdLvfu6YFP/TRVu7lXUbWlizvoXKyj7kcUxmWZINFExJpmSSiZm5TjIVnZg9rWiCdnpGJDbW6NlQrWN3s5ZA6KOvFT4TqLUSMXFazPF6dEYVWr0KpVqBgACHS7kEIqXTQuS5IHDwZQTh6Nei/T0YDOF2+HE5fLgdPlx2Hy6HH4fVM6rJzOnCaNZEzt9eF35fCI9HxhsSYRQjsVNFVAhYUowkpZlITtOTmQyZJhfJvh6E+iac22qw7ekgJBiInz2Z2PISzJMLMU8ujFo6c7L0b9xFwx/+gmWKgsDFl/FyRQJr3mjCNjS6mJMkkQXzs7jysmIWzM9EqRz/vpzKedfZ0sHub/+InXMu57+vDET9rkyemsBv7r2Y5KRTm0SWw0Hs3bVs2d7M+mqBXTuGx1yna4lTMi1D5Pw5GSy9cTFq3fgnBE72OAUCITa+tY/Vq6rYXufG7oqebn2kuNXpk9AZlBi1MloxhFJnQFSefNmZ1xugq9uObxQfA41WIl7pRW82I+l1J72dM0U4LOP3B/H5Qnh9Qfz+EH5/iEAgdNLBk4ngROJWZ1BhtuiIidchKV08+cAth/70iRW3dUA+cIssy88e8frxxO29wA+APbIszzwjO3qOcTMRaclxah+LStwsnuqjsCwed0wulUPJVFQHqNvXQ0tN9IvKaBwyppo/N4N5czPJzvpojKmc3gA79rSwbUc7+w8M01w/clqdSk8WQQCVSkSpFFCrRFRKIXJTiagPvvbBTYFSKaKQRCSFgKRUIAoyDocNhSSQkpqMVqdFqZTQajUkp1lITjKRlKj/SCYczib+18VtffMQ9/9xHTt39I37vXOX53PTDclMGX6F5n9sp+aZJvQ5Gcx/5n4ss0+vJUMoFGb/gT7Wbmhh3YYWOjtsJ37TQTQ6JQVTkpk0NY5ZBT4K9N0RMesbwtbsYNd2P2trTOzzJNMnTZxfwccdUXHw/KNWoNNLaNSRjo9yGMLyIROpDx6HZZlwODIoDIdBDsuHHweDYXzes++8O9FIKgWJqUaS0mNISjOQmQw5Fi+p4X5obsFTUYdtZzPWJjsyKuJnTSZ+9pTDN21a0mm/TsqyTN/7W6m7/0ESJ4Pi6it4tTqd915vYaD7+M7oJpOai5YXcNmKIiaVJo45Wnqq592Q18eeb97HQG48D29LoLvt2N+/Tq/ke99ZwqUXFUZZw/iRwyEcXdVs2nZQ6O4aYWSMQlenFSlNhqnJSpYuL6V4+QwUqhMnP47nOPU1dvHW01vYUjtCVVcIr+/EWuKrXy4mN9dMnFlLbloSKq0WUXVq18BQKEx/v50Rmz9qtFIUBeJMAjEqEVVc7FmXghyWZfy+ED5f8OAtImYDgbPzfHUucvvhDQnCP4j0rn1TluXLj3g9qrgVBMECVAPxwP2yLH/7jOzoOcbNRNfcKoUQUxKsnD/Dx/wZElJqDj2KXHa1GKg5METd3l76u+wnXtERJCYZWDA3g3lzMpkxPZXY2DMvKmRZxurysauilcamQdrabXR1e+jrdTPc5/pIZ+POFDEmJXl5JkpLkplSlkZpadJpT5k+m/hfFbfV9QM88ug2Nm7oGDWtVqlSRDVY0RpUXHf3bFYUd5BQ+Rbb7t3FcI2V3DuvYcafvo/SaDgt+xwIhNixs5N31zSxfmMrtnG46aZkxlA8LZXpZRKz0gZI9Dehc3YxUmdlYP8wlfuDbOlPpNqQz7D2oxe0ggCiQkShECI9aYUPop/AURHQI98DEAyE8XuD/xPnr7MFU6wWS4oBS4qRhBQDGckiuYk+0tVDCG1t+CobcOxuxFZvxd7mREZB7NSio4SssSjnjGU6REOWZXpWb6T+j38lsSSI5obLebsln1WvtdHVfOKMDqNJzeSyJKZPTWHqlGRKSxPRaqKnsk7Uebfl36/Q9t4rvJ17Ne+9Hd374vxlOfzke+djNE6c+aUsh3F0VLNpSwPrawR27baOq949KU5BbkyAfF2QqYUJlC0uxVSYhTr+aLEX7TiFQyHcHT30V7VQtbuVyjYbe4cUNPVFJo5OhCgKFE5NZuFsHfNKdKgMJlQaHQUFBeM+Dh/GZnPR1+8hOEoJgV4vEa8KoLNYEKWPtrUPRIS41xfE5w3i9QYjj33BM15qIogCJrMWlUZCFAUEEQ7NEx36Ohxx+iccBp8/cp4f6u9geNhJW9s5cRvZkCDMArYTEbKfkWX58YOvHyNuD4qll4CZQBAolWW58Yzs6DnGzek2lMrU2FhY4OSCRTLpBQlYDQXUu9LYWxOkbl8vDft7T+jE+GFycmKZNSONWTPSmD7toxG7hwjJMja3n+bmPppb++nvdTA45GHEGsBqD2KzBQ73pxytDuzjTFqankULc1m6OIdpU1NOKu3s48L/kriVZZnNOzp47PHt7DtO6yy9UUXA68cf5SecW5rIbf83hfnhd3C8uYldfziAoNIz+5Gfk/mpiyd8nz3eAFu2tvPemmY2bmrFPcbzilKloHBKMmXTLcwv8pCvaSPO3YyndYCenQP07hygvjpAtSGf2rhCBvTHdwr9KFGpFeQUxTFrYQplUy0YTEqEI8YJsiAQFqQjbsqIUUkwjM8TxOWI9NR12X3YRjyM9LsYHnAx0G1noNtOaJzt4T4qJEkgPcdEbkEMmXlxJGbFERKUBAIyAV8It9OHw+rFPuKhq2WEvk4btiHPKZ+jFZKI0azBFKuN3OK0xMRpSUzSkGEJkRnnJlYYQeztIlDfint/E9baIayNdtz9kQkYY0E2cbPKIpHZOVOJLS8Zc33smUaWZXrf3Uzd/Q9jyfMSc8slvNdfxob1Q1Tt7BxzxpZCIVBQaKGsJJH4eB3mGE3kZtag0Qjs27cdtUpk+fJlGI16JOnkSnGsB+rY/aXvMHTb9fz1RV/UlOo4i5Z7f3wB8+ZkjHv9J0KWwzg6a9m8tZ51lTI7d9vGXKN7CI1GJNkskKTykiS4SJS9mIQwZqMKm2MApyOIXxtPj2SkO6Sn26VkcGR8kcSM/Djmz4vl/EIvxQWZGLKm0NjUfFSf25PF5w/Q02PH7Y6+TwpJxGKQiYkxIOk+mmtsKBTG4w3i9QQi994JjsYKIEkKJKWIpFQgiAJyWI60ODvcGk1GDsv4owhoQYBEc4hYfQhhDAW6gbCIw6ukq2+AwSEX7e3nxO0HGxOEh4G7iYjZl4DngecOPr/54P2FwA3AoTPxb2VZ/t4Z28lzjJsz5ZYMYBR9zEwY4oI5AWbO0uCPz6Vfnc/ezpjDUd3xGlMB5OTGMnt6GjNnpDF9emrURu0fFbIsE5RlvIEQDqeboSErQz0jDA3Ysdm82JxB7M4gDk8Yp0fG5ZFxOYO4nX7sVg9e1/iE/0eJTi9x8YWFXHd1GYUn4UJ5tvO/IG6DwTBvvlvPE0/uprV59PRdnUFFcjw0tx1rwCSKAhdeV8anLlJR2PUqlX/aQfNbHSQsmM78Z+6f0BY/Hk+ADRtbWfVeI1u3tY+596wpVkvpzFSmT9UzP2eI1EAD6qF2+vdExGzPzkG6R5Q0xOVTH1dAjyF5wvb5w8ycY2HBNAGnX4Pdp6ShJUBjVf+E9KyNj1exoMzPFWXdTE5382EDWxmO6K2rjPTUFSN9dX2S8XCbIY8yDrcYw3C/m/bGIap2ddHZMMTIoGtMEaCPGkmCkmyYnWtnWq6fLpuWDTV6dtcIY0rJ1OiUTJ2fSUqWOdLjVyOhVEuoVArUKhmtMkSCMUCcxoM27EATtKPyWwn3DeBv6cZV04m9xYG12YG9zUn4oOjTJCdgmTOFuEMpxjPLUMXGnOajMfHIskzfmm3U/u4h4lJtJF6/gM646by338DODV201B6/t/zJoNZI6PUqjAYVRqOauFgtiQl6EhP0WCx6UlONZKTHkJRoOCoF2m9zsP3O7yDOiOPxgZns2dIddf3XXDOJb9yzAI3m9JTjyLKMd6SNLZuqWV8ZYM8+F92t1tOyrRMhCJBZEE95eQyLioPMKE3GlDkVQfFBNP1Qn9uTFbfhcJiBfjvD1gCjaReTUcKiE1DHnrlStFAojNcbPErMTpSQVUgiSpUCpUqBpFQgSSKSJKCSwohypMe5KAeJdPgWI+7Hgnj4sYyIxy8w1OeMOvFmlALEKdxwsD84RMo9QrKAX1bglyW8ohpfMHIsz6UlR9uYICiAfwK3cnwvr0PfyH8Bd8lncifPMW6OFLd33P139u0Z3X49GAhPWPqaiEyW1sHsLBuL5gnkliXiNOXREUyjok6gbl8vdft6sZ9En7/cvDhmTU9j5ozUSGT3LBK7xyMcCmGvaWJ49x5c7U143CM0Fc7h7d1Kqnb3HNf4JjVZzaJyLYkWFd4gBMIC/tCHbkEBf1AmFIJQSP7gFj7icYiDtzA+TwDbsGfckXWA4pIErrt6EisuLkKl+mREcz/J4tbp9PP8a1U89+ze47b0UWkk5s40Urd3gD7nsYO+2EQ9t9wzh/MtezFUvM/Wn+/B3u5i0vc+z+SffXlCHC59viBbtrXz9uoGNm5uG3Nf3ZTMGCbNSmXOZJEZiV0keBoJNHfStaWP7q39DFaOMKSKoSE2n/r4Qvp0px6hVUgiokDU/qh6o5r/u0HJp7L3EPaHUeoix8anMNISt4Qabz6r/lPJ7vWtp7wfEGkPk5chsSyjh4UpXSSYgkgaBUqdhFIvoTjB7zSMiE+K+UDsKuNwKeNpG9ZR3+ilq2WE3g4bQ71OXHYvgUAI+WMgfEdDEKBgSjKzzsth7hQFGb5KjL5eFLIPKexDDHgJDjnxDnvwDHlxdrtxdrpwdLlxdrlw9XmQj+jRqTQZIiL2kJCdNfmM1MmeSWRZpn/DThr+9izBjgoyL8pAvXwxVYFi1uyQ2bOhlcHesburTwSSUiQlxUhuThyF+fEU5MWTnxeL4+n/MLjpTWqv+QJPPdONJ8pEclqGid/ceyGlJYmndR9lWSZg76aysp5N+1zsrQtSVzmIZxzu7eMlkrGSyMwyDYsmKykuykIbn4MgRj9Hn4q4ddhc9A54op4HIeKzYjHIGONjT2u6/ekSskeJWJUClVJEJclIQghRDiAeFLGCfHSkVQ7JhAIRAwJBFBAUAqJC+CCnGAgJSlxiDIP9XnyeY7+jSjmE1u8iqFASlFQEUIwq0M6J2+NtVBCuAb4HTB9lkWrgPlmWnztze3WOk+VIcVv/+KepM1zEQ88G6Os8ti5WoYCpU2PoHRaOO8MoHXTvHWuTcwClKFNkdjAnz86smUpS85NwmbKoHkqgojpI/b5eWusGT8q9uKQkgfOX5nLekhxycz76GrmxEg6FaHvmNfrfe4nAVRfxZl0SW9Z24DhO/eD8BZl87UvzycuN/jnlcBg5FEIOhQkHg8ihMG6Hk3Xvr0EOBpk/fSaiP4jf4cI9PIDHMYTdH2QorKIbMy0jGtrb3HQ0D4/pwpuQqOezn57BlZeXfOxTlj9p4jYcltmxp5PnXz7Apg3tBPyjKxG9Uc3y80woGhp5td5MMHTstWfawixuviOXGY7X6X1+O3sfrkZpjmXeU78jZfmCU9rXQDDEjh2dvP1OA+s2tOAeY0ZDVqGFKbNTWDwlQKm+FbOjAdv+bro2RwStvdPFoDaehth8GhKLGBhj5opaKxHwhwhHOQ6H/p6UrKO9Jbq/QPnsRH58WQvqqgPsvP8Azm43CpWIKdvApFsKSF+UjFOVSFXiSla9M8wb/957zORWXKwCtUFHb5dzXI7Ph4gxSeQJw+Qe2ExaXxNqSUYTq0JtVqOJVaFL0KBP1mFI1aFP0WFI0aGOiW5sExKUuJXxuFXxuJWWg/fxDAVMDA/6sA65cYxE0oDtVg/2YQ/2g88dVs+ox/GjwBSnZfb5uSw6L4UidSPJjv3ILS20vdfFUI0Vz5AP75APn803qnjXJFkwTy0mdkoh5imRelljQTaC+L/hoA3gHRym9anXaH/2JcypXjKuLMVXvoAmdwr7W9W01NtoqRugp9X6kdR86w0q8tO0xNXsoHhlMe80WmiqOjbCrFAI3PnpmXz20zOQpDPz/wsH3NgGO9i5r4uKWg91LX5aGmzHdaY+EaIokJBmIjffxNzJSpbMSSA1LRdJO7Zz3smIW5/XT0+fY9QU5EOGUXFmPdIEX09lWcbnC+J2B3AfErITYAiqVCkOZ20o1SIa5REiNhxElIOIRE4Mckgm5A8TDoQIB8KEAjLhYJhwIHIbTcIJIhGhKwooDUo08Vq8UgxDNvm4478TcU7cjmXjgpBKpK42EVAAQ0CFLMtNH9lOnWPcHClu/x5TxLK7J2O6dDYP75rKWy+1RD0ZTMsOctWVZl7ZbqRiW8+o6zbEaMgqiKe/235CJ8UPIwqQFR9kapaH6cV+sooSEBKz2N8bT1W9n6aqflpqBwiMMQ3xEJmZZpYtzWHpktxxOTZ+lIR8fhr/8R+G17yI+dMXscZexqo3Okc17hBEgRWXFPKFz8wiNdV0wvWPVbQ5WzvpWb0Ra90+ghYdXdlT2d1poKpigM7m4eNuIzHJwOfunMkVlxWfsQHCRPNJEbfdPXaef7Wat9+qpb/v+IOl+CQ9ly3RUNZbwX+6S9jVeKzjp0ojsfIzM7hsmpXs9jfZ/ZvddG7oJWnZPOY/9Tu0yScXAZVlmeqafl57o47V7zZgt584TVcUBfImJTJlVjJLyjwUKJswjdTTv72brk19dG/vx+EUaI/JoMWcQ4slD4cwtnpGnUFFbmkiPW0jDPVFdz7Vm9TMW5xM474eWjuOnfzRGVR8+mYL1ydtpPLhfTS/1RF1PQlT4ij/QgkxpUlUJ65kS72ep/645ZgsijRHF7cb9uC/8hJ22FPYX+nEOjj+bBdBgKR4JQW+TrL3bCRxpCtqYxulXooI3VQdxjQ9xgw9xnQ9xjQ9mrhjTXhkwCuZ8SrNeKUYvFIMPikGn2QgoNDjV+jxizp8Pjli1OIO4PMECAXDhEIy4VAYrzvAYK+DgR4HA90OBnscpzTAG+vxyE0XKVX2klRZgaGqAUk+9lqjjDFiKs7FVJyLeXIhsVOLiZlciDbpk1eWcbLIsszQ9n00Pfo8w5vXYSk1YJkSh35WCb7kfPpIZX+XgcZGDyMDblwO3wc3uw+3039Skzcng8mswmEPRN1eXn48P/n+UsomJZ2RfTmScCiI19FHc1svtU02mju8dHQH6OrxYhv24rB5j+rkoDOqSMuKITNdQ26miuI8A8V5ccSaY1HpLIiK8WfQHBK3CoWCwsLju0qHQiH6em3YHKMbLhkMEgkGEY05ZkKyF0KhMB5PRMi63UE83uj/x7EiCKBUSajUEkq1ArUK1FIYiYMCNhxAJBRxdveHCQXChP0hQocfhyds0k6hEtElacFgZMSrZXjAPWpq9/HweQcYHnHRcRxxq5BEUjLNxFiCPPXgrYde/t8Rt+f4ZHCkuH2AHOJRYimLZdrXyqnJvoz7H3PS0XiscIkxSHyxsIq4i+bwr3c1VO7qHXUbxZNiWHxZEb29Aap3d9NSO3BSxh0xRpGiDJnS7CA5ORoseRk02y1U13tPSuxaLDouW1HEtdeUkZJ89rv+Bpwu6v78BNYNr5L85RW8PTKd155vYagvepqXQiFw6aVFfO7TM48rck9GtAXdHtqfX0XnSy+jmZKIc94SVlfq2b627bip5Pn58Xz/24spn5pywm2cbXycxa3T6ef9Dc288loV+/f2nbCuPTPPzBVzw0zr2kNP7oX84ZUehqP8X9Nz47jtnhkslNYjbN/E1vv24hnwMfnn95x079qBARdvvl3HK2/U0t5mPeHyoihQMCWJaXOTWVLiJFdswDDUSO+Wbjo29NK9Y4A+wUxLTBatKcV0Ki2Ex9iTVGdUUTY7neLyFFr2t7PpveiO0UazhosvzyDTU8df31Dg9h67UNnMFL5z9RDGrWvY9adKvEPHF+uCCJPvLKLk5gKa4pexw1rM33++FteHRH6au5fru95FpxRQmlRoV0ylNn02m2sUNNfbTirtTlKKZCRJlDibSdu8hhjXiR1wlXopInQP3Q4KX0O6HpU+uhMuRARwWFASFNWERDVBUYWMIlJzJoiEBCV+hQG/ZMCvMOCTjNh8GjoHoKMrSHebje7WEbrbrKctjVMlCeSaw8yM97NsVjLJU/IwFeWgSbJ8otKKTzdBt4fBLRX0b9hJ//qdeNrriS8ykDA5DtOMHBRpyYTUBgIKbaT+W6HDhxabT40vKBIICoTC4A8KePwCTo+AywsuV/iwQZh92INt2M1Qr3PMJQtjRRBg5cpJfOWLczEaJs5R+WQJh4IE/C58PjeDQzb2H2hAkmD+vBmYY5MQxYnLlmppacHrjUwq5efno1Qe+5uWZZmhATtDVj+hUYSdUqUgwQAxlliED5sAjINwWMbtCeBy+nG6/Ph8p/C/PixkFajUEhoVqKUQCjmAQg5E6mLDYUK+MCF/KCJm/aHI81Pssy0qJUSlhCBJiJICQXnwXpIQJQlZDuPtGyLo8qA2KVEmGLGGDIwM+8YlnmU5jM83wOCgi6YmG/94vAmlSkFqtpm03DjSc2LJytKQkxTEiA1rZwMLL/rsobefE7fn+HhxpLh9SFuC2RMZCAmiQMHKLBK/fAUPbCxgzevHGl4LAlxeJnJ98nZaZ17Kv98WqN0bvQemKMIViwWuvtKC05DB/jYttQeGaTjQS3fLyEnbqScmKMnLkijIVZOZH4tDSqS+0TMusSuKAksWZ3PjdVOYMT31rB+s+IZGqP7NI3jr1hP7pWt4qTGft19qPGbQewiFQmDFiiI+f2d0kXuqos1W3UjdA0/gadtD3BevZou7hHff7qK5enQTkUsvKeSrX55PfPzZ35D9EB83cdvX5+Dd9S2sWdvIgX19ow42DiEqBCZNS+Ty0hHymipJXnkrz+3x8u9n9kVdfumVxVy3Mo7JA6/Q/MRuKv/VgDY1ifnP3k/iwvG1Nvd6g6zf0MIrb9Swc2fXCdMUBQFyShKZPj+V88tc5It16Psb6N7SQ/v6Hqoqw7RrU+hMKaRTl4wzNPZIhdGsoWxOOlPmpDMt10vLtir+8ZyLYeuxgxhBgPkXZHNbSTMvv2RndZf5mHOZpBS54bY8bk9dT/XvN9Kx/oOJQCE9EeXKpSy89Vo0Bx1x/cM2bDVN2GuaaHvuLRInqZj97Sn0Jcxig3sBf/vZmmN+67NmpvHAHy49qhe1LMt4B5rZuHobaxo07N7rHDXifCL0BiUl6QJT2ncRv3M7smt86ZEqoxJNvBptnBqtRYM2XhN5Hq9Ba1GjMqpR6iWUOglJIyKMMaMmjIhXacajjMMlxdLlNNHQraK5Ezq7ffR12OjvdkyoU71areC8ZXlcv3ISUyYnn/XXi7OZkNfH0I79EbG7YRfOlk6CDisK/KhiVGjMKtQxKtRmFQqVeLAmUUSQBBRqBUqthKRToNCpUFjiEOLjEGLNBPVmPFIM/W4jncMq2vtFujo99LRb6WmznrJZW4xZw43XT2Hl5SUkJOgn6GicGqf7+jQ4OMjAQOSartVqSUxMRKvVHv7+O2xO+ga9+EcpbxFFAbNRxBKnR9KM3/37UJqx0+XH6Qzg8YxuTHVcjhSyKgUaFWiUocMiVgwHCPtCH4jXQ48D49uWIAiIaiWiSoWoUkZE7KF7pRJRFRG0o50/ZFnG5w/h8QTweiM3vz98wut49HWFCQYdhMNehkY8jDgDGLQe8uPsmEKDaAMjaAIjSPIHk4OdAw6yrnv00NOPt7gVBOFaWZafn9CVHr3+dCBTluUtp2sb5xgfR4rb6t0ViJv2U//Q0zjqWwEwZRmYee9i3tFczqP/aIl6USgpjucO7T5ycoaoLryEJ1/101wzGHV7Rp3IzcU9rJjUh7owA09CHp3BVHY3qqmtsdFWN0hPu+2k00mUKpG8XB0F+Vqy8824FLHUVo5QubNzTOZUeXlx3HDtZFZcXIhWO3q04WzA3dVH1X0PIjgPoPrMjTyzI4F1bzSOWpd8SOTeflM5OTkf9MibqIuiq62Lql/+Hev2NWR+/xq2aebz+ovtozpl6g0qvvGVBVx5efHHYoB4totbWZZpbhlm1ftNrN/QRGP9iaNtAEnpJpbO0zE/eABjv4usO+7Ebk7mez98h9q6Y3/HRrOGG780l+WZDSQ1vsv2X+6hb88QqZedx7x//Qp1/Ngd15tbhnn+pSreeLMOl+vEUbfMgnimzU9nabmfYmU9MUN1dG7qYvv7bvZ2m+hMLqRDacEdGN/3KTZBT9nsNKbOTmZGhpUETwPeqmp++6qFHV3RszqSM2P4zM3xxL71PP/0LKOq3nrMMvHJBr7xOTNFu//L7vv34rdH0orjZkwi/xt3UqkJIIjiqN8nd1cf6y+/G1xdLLpvJtbcuaz3LORvPzs2gnvekhx+88uLRk37l0M+2nZv5r2dg6zfL9NQazspDwOVRsH0YjUzencSt78aldGAu6OXgHV8/cuPhyCCKImISvHgvRD1uaRRoNQrURoklHolKoOE0qBEZVSiitcjZaQQSkqlzR1HY5+GjTt91NZGapTVOiUarRKNToVaq0SSRHzeIG31g2OuzcvMNnP1laVccWkx5pizs13Px5GQz49vcATfwDD2zh52rdmA7PNTnFeAQpYJ+/yEfH7C/kDk3uvDb3XgH7HhH7YRsNsQQ05UBtAlatAn6dDlJ6EszIbMTLoCCRxo11LbHKStYZjO5pGTmgARRYHZc9P51JWTWDg/6yM1Tzzd16dgMEhjY+NRgvLQdftEoiviECyclKFgMBgmGAwTCo1eo3o8BBFEUUQUBURRRiEAhCPGTuFwpAVPmMiYMyxHtjGW7QhEauhFAUE82JpKjEzMCaJ4lCnUWAiHI+ae4VA4ch+Wx7Yfo+3eof7noowshxCRkf1OZK+d+IZ3CXb34h3y4R324XcGCLiCh+8DrgA9Njd39lQdWt3HXtyGgSrg5xMpcgVByCRiQvVp4JeyLP98otZ9jlPjKEOp+noKCgqQw2F6399K/V/+TdfraxGVIpM/U4zv+hv47VMS9fuPjc7qDCq+cWM+Ke/+k+QLEnhHfSHPPtczqgFCUUkCP/3uYjKUw/jaqwhZWwlJIQKxFoZViRzo1FPTItDcaKOt/uRdAwUBMnNMTC43E5MUR3ePj8odnSesATYYVNxy01RuubEcne7sFrn2+haq7n0AbUwvnk/dyH82aNnybvNRNTgfJsasZsrUFGbPSGfKpHiaGnciCMKEXBSdrZ3s+8Ef8HfsIf1HN7PePY2Xnqqjtz16a5m5czL48Q+Wkpx0dqeGn43idmDAxdadHWze3s7ePd0M9I8toqbRKZk1N4Fl2QOkVmzHNGkhWTdfhSo2htfeqOW392/E4zlW+JRMT+WWu0uZ7Xkbz/qdbP/1PgIumfLffpOir9w+pkmKQCDE2vUt/OeFSioqorfhOJK4RD0zlmSzbJbAZH0jwfYGNq/1sKclhmZ/LF1uFb5xGnorJJHckgSKp6dSXqamxNxHrLWOcFUDPm8MWx1F/G1DAIfj2POOpFJwyTX53JC4m50v9vIvVxnWkWNrQCfPTuWHK3sZ+fOLNL7WDkDi0tlM+t7nSV6+AK/XO6bvU8DpYsvN38S6Yyvn/3Eu9oJ5rPcu5q8/PTaCe/mlxfzkh+eNyUsg4Oxn75advF/hZfs+L51t449wmuM0XDLFR+6b/0Uj6Em9ZDEIAiMVNdhrmnB3jl6ucibxmmN4p2gF9fLorrcxWkgxBikrkMicls7+DjW1B0boahk+4aBakkSWX5jP5++cRWbGx6+Vz9nMqZx3Aw4nnp4B3J29uFq7cLZ04mxux9/XhegfRJ+qQT+ziHBJMQ2BNCrb1TQ0eWiq6sMd5bd/PDRaibnzMrhkeSEL52ei1ZzZccOZuD55vV46OzsJBAL4fQHsDh+B40Q0lSoRg1pAo9eOWeyFwzJeX6S3rM8XHJ/AEyLndkmpQCmBSpJRCCHEcBDZH4yYOQXlw/fH+2ELohiJrEqKw2nChx8rFKdkDhcOy/j9IXz+iFtz8DjmUuNGAK1GRK8Mgs9PKBAi7AsSsLsIefwM/v0FXFuiZ2MdyRAB7qHl0NOPvbitAwqIfJ06gGeAp2VZrjruG6OvSw+sJNIDdxkR06kwcLssy89M2E6f45SIJm6PpOvNdez47A/x9AyQNMNC6c8u5ZGG2bz+34ao+f5XXFnC9YlD2N54DMuXLuexXfm8/0Zz1GbuCoXAzTeVc/dnZh3VS04OeMDdh+zqw+0cxuby0jigoLpDor5dprXZRVfryHHF22jExGooK48nKSuWrk4PFZvajhu9iI3T8vm7ZrHyqhKU0tnt9ju8p4rqX/wJY5YX92Wf4r+btGx+t2VMx0mrVZCVpSU5ORalSkJ5sCebUhIPNhtXoFJJGA1qDHoVBl2kv6Bef/CmU2IwqDAY1IcH1gObd7Pn678gLjeA/ut38fyuRFb9pxJfFNGk0yn56pfncdUVpWet4dTZIG5HrB627+xky44O9uzupLtr7G01FJJIwSQLS8tlpvZuRRpRknnj9VjmTUMQBBwOH7/49Xreee/YEgSFJHLZreVctThMYe/rVP+tgroXWtBnp7PwP38kftaUE26/t8/Biy9X89Kr1YycIItCrZGYMi+D8qkGEoLt9LTZqGwSaegUsNpPzvHSbNFRPC2VsqkxzM5xkhxoRdXVgRA2IKWUYpy2CEdQ4pe/2cD7a6L7IhZOTebua9Vo//Uo7xov5+V9vmOyTESFwMob8rgzZR0V33sXa5OdxCWzmfqrr5Mwb9rh5cbzfQqHQuy+5z66X3yZ8/80F0fBXN5zRCK4HzaZuumGKXzjqwvGnQ3hcQyyY+s+Vm+2UrHfRX+Pc8wDLoUkMm9ODBcPr8H16m7SLltG+a++gdJkwFbdiKOh9aCw6MTZ3IG7sxdvzwAh76n38gVQaDVoUxM/uKUkoEmyoIo1salXwWNrR3BHOe+MRqxeYIV9M0uWGgjPn8NeRwqbdvqo3t193JR5URRYfmE+d981i6xM8wR8snOcrvOuLMt4evqx1zRjPVCH7UA14eEWlPEK1Itn0hZTxJ5WLVUHbDRV9Y/L0VmlVjBrdhoXLy9k6cJs9ProLuMTyZm6PnW29/LiSztweAQSLGrUUaLVKrWCtDiB5IzEMUVr/f4QQ0NuBofdEePAsR5qITJRqzeqiNELGDUBVGEvstNJ0HkwIukMEvQee80QRBFJp0Gh1aDQaZB02g8eazUIEzjec7sD2Bw+bDYPTqcfX5T9mWhUQoh41xBGNYRcHrwHGnGs34W3vm1M7/+kiVsJuAf4LmDhg69YA7AN2AlUAP3AyMGbFogDYoFCYBYw++BNwwd9b98GviPLcuWE7vQ5TokTiVsA/4iN3V/9JS1PvoLKpGTG92ezv/R6/vJIL8P9x9ZwZWWb+ekXpjD083vJXKymd9HVPPKyQOXOrqj7kJJq4sffW8Kc2RnH3Vc55Ad3PwHXAFaHk5pWF5VNfmqbgzQ0uujvGp8js6QUKZ6SiD5WT1NVH4M9owuFtHQTX7p7DsuX5Z/1DsvDFdU0PvwEktiO71Of4r9bjWMWuaeKIIDBoMRgVGIyKjEalWhlH9JwP8nZWsLp+eze66DxQPTa7Iw0I//3hbln5XE+0+LW5wtSVz/A3sp+9lX2UFfTPy4xC5EL/6RyC/OKg5Ra9yEeaCVm7kXk3HwFqtgPIkx7Krr50U/foydKD8rEdBO33jObxcadmGo2sPXeCobrbGRedwmzH7kXVczoEfdwWGbrtnaefbaCrTu7jy+WBEhKjyHOoiXs89Ld6cJhH3+P5UOYLTpySxMpLDZRnhugQNeLwW1Db05BkzcdwZCKcIThyvtrmvjFb9ZjjeLEqzOquO62IlaIa9n3p528XnYz+2uiGO3Fafnq3QmUVTzH7t/uIRwSKf/1Nyn6ym3HzPSP9/skh8Ps+PyP6X39Dc7741zshQt4e3A2/7hv3TG/7f/7/Gw+c+f46p4/zPBQP++v2c+qNYNU19ijTkodgwAzZsVxnWEX9r+uRpuTy/Tff5fkZfOO/TyyTMDuxNPTj3/ETsBqx29zErQ7I2mpbg911dUQkimeWoY21oyk1yIZdAfv9ShNerQpiShNhmPE/MCAi5/8Yg3btkZ3pB4LhfFhFq57mjS9i6xPTSJ4xWW8VZvI5nU9DB2nX6sgClywLI/P3zXzY9V+7mzkTJ93gx4vw7sqGdi4E2dNBWJsiOCy89nUl8auHUM0VPaNK5ooKUWmz0jhogsKWbYkB5Pp9KSvn+7jNDRk4y9/XM2qDSP4R/Ey0eqVXLlIx2duX0hcbtZx19fcMsyadc28t7aZ+ijlL6MRn2SgcGoyk0s1zM6xkeprxrd9LwM7exisGsHaaCd8MJgiSBKmohzMkwsxleZhzMtEn5OOISf9tJnBud0BKqv72FHRzd59XdTVDOJynvx1TKtX4vMGRzWPyi1NoK1+aNSsm7lzM/jW1xaSkx0pFwr5/QTsToJ2F36bg6DTTcjrI+TxHrz3EfL6aG1v58JffufQaj7e4vbwiiNR1/8DvghkHnx5nMkBAISAV4HfybK8feL28BwTxVjE7SG63ljLjs/9CE/PADmXZhD79Rv43euJVGw59juvUin46pfnUrxvDcPvvcik75/P6uD5PP1Ux6gpwZdcXMg3v7qA2NjxnZTlcIiwe5Dunj627+1nX6WN2mYvbS2OqBHjaBhi1OQUJ+C0+2ipGd0IqajIwle/NO+EQvxswNM7QOPfn8bbtoPgNVfy/O5Y9mzpwj4y/lYhZ5r0eJFlJXqKZ+RSMr+YtIxYFKfgrDgRnM7BQygUpqV1hH2Vfeyt7KW6qo/2VutJmUfExGmZOiOeeTlO8tq2E6wfwTznPDKuvhB9VtpRyzqcPv7y0DZeeCl6cs7c5XnccFMG5dZXGXp7Lzv/UIkcVjD9T98n/3PXHzU4CLrcOBrasNe10FXZwruVTjaNGBjyHH8AIYoCMvKoPUPHSnySgdzSBEoKVEzL8ZMX5yfOqEdjTEQwpYM6Nupgxmrz8uvfbeCdd4+NWAOUzU7ni9cKCA//nX3OMp4JFmKLkoZcNDWJH15nxfGnZ2l+swPz5ELmP/17zJOLoq73ZL5P4VCIbXd8l/5332XZn+YyVLyMN1pL+NdvNx4z+PnONxdx/bWTT7jOsRAMhti4qYbnXqqhYs/QmM6rk8vjuDm3Ds8DLxMK6yn51mco+urtiGNM5zvZ35ssy7z2Zi2/u39D1P6aRrOGeRcVMNzvpKfNSl+H7bifR6EQuKBQYvLrjyPah0lfmkryZy5gj3IGqzcHOLC9c9T3CwKcd34eX/zc7MODy3OMj486Y8Y7MMyBn/6FgXffJO32BXTMvJSnXrBTv3/8KfeiQmBqeRIXX1DE8mV5E1qnfbqOU2tbH4/9fT3vb7HiHWWCS6VWcOF8A3euLCF7zvSoy4TDMlXV/axZ18z765rp7IhepvRhRFEgpzSB8pmJzC/xUqjpILyngqGtLfTtGWS4zoYcktEkJxA7rQTz5MLIbUoRpqJcFOrTFzWXZZmubjt7D/Sye28P+/f30NZy8n2bTbFaMnMM5KUJxIWGeW9HkI5RdH9Suombb81guWUfB/ylPPGSi6pRAkgKhcDtt07js3fOPMp08Hg0NDQc2fLpkyFuD29AEERgOXAdcB6QPYa3eYAdwJvAM7Isn7io6hwfGeMRt3B0FNeYoWfaLy7ged9FPPdkY1Rn4nkLsvjKBbHUfeVH5CwzoLttJY9syuD9VxuizjSZTGq+9fWFrLi48JRn1ZxuH2tf3czGnb3sbfAx2D82UZeYbkRAoK9zdIOUxYuy+fbXF46pj+xHTcjro/WZ1xjZ/CaqeUUMJBZS2W+iuiFAc83gqK2EziYkSSApTiLVoiQrI4biqTnkFSSRmWHGbNacEUOqiRo8yLJMd4+D/QeFbFV1H00NQyedqqTRKckvjWdyoYLJpkEse7cS6AsTv/h8MlZeiDYlep3h+g0t/PK3GxgYODb7QmtQcd3ds7mopI+srlXs/fNeWt7uxFSSy7TffQcEAUd9C/a6Fhz1rTjqW3F19tKXkktV+TIO2PQEg6fv+qTRKcnIjyMvV09xjsiUPImMBA0mfQySKQ1UY+uduHZ9M/f9aj0jUSZ8dAYV195RypW69Rz4zivsWf5/vFbhOib6LIgCl12Ty2ezNrHvu29ja3ZQ/PVPM/UXX0OhGb1dyMl+n8LBIJtv/DrW7Zu44C/z6cq5mFcq03j2ga3H7Nt9P7uAFRcfvyflePH5grz+diWPP7mPnq4Tuy8XlsZyW3kX4l//i7XNS9aNlzLjD99DZT7+ufNkjk/Dvjbu+/X7HGiO3gd3+qIs7r4GEiveRrTEIaYk49HG0zpsoKFH4v11Npqqo48mY+M03DRZQewzj+Ht6iOuxEzezZNxLriIpzfHsOmd1lFLXARR4NIVRXzxc7NJSjKc8HOc4wM+anF7CFt1I3u++Rvse3ZS/Nvr2KA7jxeebjyhf8doiAqB8vIkVlxUzAXn5Z5yRHeij9OOHQ089q+d7K6wjSrWFJLI0nkm7rw4g5ILFh3zd5fLz/adnWzc3MbGzW0Mj+LB8mEklYKiqclMmxHLkmI7yUOVWFdtp3dbP4OVw4R8YUzFuSQsmknCwhkkLpyBPif9tI8DBofcVFX1sbeqj8qqPupqB3COszb7EJJKQVaemcIciQKdlUx3J2a7DaU+mTptHn9+dwiX69jziVorccmnCrmlrAHPyxsxnXcz/votqApUrBeX8Nwz7XS3WqNuMyleyfe/uoBFF5aecP8+0eL2mA0KQhowH0gHEoikI3uBgYO3A8AuWZZPPgZ/jjPKeMXtITpfX8POz/8Y38Agk+4qZXDlbfz+MTc9UfpSxsRq+OHX5qJ+/B+49m9h2k8WsstyOY8+2U9rbfSBxJLF2fzwu0snrFVMOBRi+6tbWLupkX3d0NTuPWGPMIVSRKNVjtpiR6VScNcdM7jtlvIxz4Z9lMiyjKu1k5F9ddgrqwgMtyIn6hlJzqHOn0TXiIJAEIJBmVAYQkGZUAiCIZlQUCYQCOPzBvF6Avg8h+4DY0tXPI1otQqSE9WkpZnIyo4nOzuBnEwzWZlm4uK0E3bBO9nBw/Cwm8rqfvZW9nKgso/6ugEc9pPvx6lUK8gttjC5WMWU+GFS2/bi2dmElFhM4tL5pFyyGI1l9FTIoSE3v71/I+++H72uNLc0gVu/OI254feRDuxk688rsLc7UZpNBJ1u5GAQUSmiSzfgm1TCYFoevcoE9nSq6eqemBrKI1FpJFIyY8jM1FGcr2FKoY6i7BhijLFI+gQExfhn5m02L7+5fyOrVjdE/fukWWncfZMe8wuPseelIVYvuoPqKG7IpjgtX/5sAlP2PEvFHypQxlmY98RvoqbhfphTGYyG/H7WX3Y3ga4qlt4/l5b0y3h+i4mXH9t91HIKhcD9v72ExQuzx7zu8bD3QC9/fWwbO7d1nzC3K7vAzO0LrBiefI6+7f3ETiul9LufJevaS6IuP9bjEw6F6Hh7I489V8GqFk3USRWjWcPNny5gmecdvG0a4heeh7d/CHdXH77+XmTHAPht6At0bEhewdP/HRjVXX/23HQ+U+ij98F/Yq9tRpegoeSuMjyXXMkzm2PZuKpl1P6qSpWC6z5VxmfumEHMOXflMXG2iFuIXENbn36NXV/8OakL44n7wWd4dncqq5+vGlPbwdFQKASmzUjm0ouKOX9p7kn10J2I4xQMhnnjzT089Vw1zc2jT3qLosD82THcvjSe6VddePgaG3HsH2HTljbWb2rlwIG+MZvUafVKSmakMXO6kUV5g5gadzO0qoKuTX3YWhyYpxaTfMF8EhbOIGHBdDQJpy/dPxyW6e6x09A4RF3DENV1A9TWDDAYZSJ4rMTE68gtMFGcKVOg6CO5swZ1UEvs7IUknT8PbXICwWCYPz+0maefORB1HdMXZXHX5SFi3nwBTeFFZH/6hsO95L0Dg/T+9xECBXG80lHGG/+txxGlxAZgXnaYr9wylYLLFo46PvqfErfn+ORxsuIWwDdsZfdXf0nrv18lsTye3Ps+xZ+3F7NxdWvU5a9aWcrVxh5qvvdrJt+Zh/GmS3lyXzGvP1N9jCkKRKK43/v2Yi5aPvZ9Ggshv5+6V9bzylvV7LQbaOs68YBcUoqjpp6lpZn47rcWs2BeZtS/n+3Y+wd57/GnoX+YSSVFKEUBORSCUJBwKAgHb6GAn3DQTygcIiyECSMjKwRCoohXkHCjwokat0KHS1bjDClx+hU4fQIOt4zNHsJu9WEf9uA+Sffr8aLWKEhJ0ZOSYiA5xUxGWgzpKSZSU4wkJxmIjR27+B3L4MHl8lNd08++qj72V/ZRV9s/ZgfjaAgCJKaZyM4zUZgJhSYrqb01uDbsQ9RnEr9gPsnLF2Aqzj3h55BlmdffrOP+P23G4Tj2O69UK1hx01RWLFUxaeBVOl48QO3zzWjTzQQnlzCclEO3aKHDoaajN0x3p2vMaf9jJSZeR3qmgcwUiYIsDZPKkijIScQQY0GSxj/gi8b6DS3c+6t1DEcRL1qDimvumMSnUnfT+L3nqNLN4AXlFBxRJriKy5P4/jXD2H73DG3vdZN53SXM+utPUceZx7QfpzoY9dscvLfoJnR6Kwvum0ldytU8sxpWPXf0wEilUvDQA5czY1rquNY/Hjq6bPzhoc1sWNN6QhOqtCwTty7zkb3hNdpebSQcUpC0bC7Zt1xJxjUXolBGXGaPd3xCXh+OhlbaX1jNlh0NvCJOoX8w+pz6tAUZfOECGwldQ6Rcd+dxa8TdXX00P/AnhDIDT7aVs+btjqiDc51eyde/Np9ZoW6qf/UIQzv2Y0jVUfrZybiWXc6zW2LZsKol6nXt0Ptvv3Uat9w49Yy76n7cOJvE7SGcrZ1sve072Cv3M/kH59E672aeeraPyh3Rx/9KlYJQKHzCCXWIOG/PmJnCiouLOG9RLgbD2CbvTuU4NTYN8cZbFbzxdhvDQ6OPhwQBZkw3c+tcHQtvuQIEIZKWu6+X3RXdbNnWzkAUH5bRMMVpKZuVzuxyFfPSe1Hu2cbA6iq6tvThd4kkL59P6oolpK5Ygi4taczrHSuyLDM46Ka9w0p94xC1DUM0NA7S2jIyagr2WBAVAmnZseQX6ChN9ZMXaEOzZw+yW4t51jxSLlxITNnR2Yl9vXa++uUXqWs/9rpkSTZwx51ZlNe9TMiWQNG3vjxq5kvAbqP3lccZyEjn6S2xrH+jPmrk3aBXcLmhhRULcrHMmYqpKAdNcsLhfTonbs/xseZUxO0hOl97nx2f/wlhl5Xy789nU/a1PPZYe9SIZ1pGDN+/KZf+r/8AY6KPad+fT2XSpTz2nIP926Ibfyw7P5fvf3vJuGtxx4Ktpol1f36BtX0K9jpjsJ/IwEZg1AjF0qU5fOtrC0lJPrtb2nyYiRw8yOEwvmEr3r4hums6aKvppLNlkJ6OEQY6h3CLEn5DDB6NHr9STUBUEkSBP6zA65dPafb7ZFCqRCwJOhITDSSnmEhNNpKWYiQ1yUhiop7EBMPhwcWHj5MkqWhoHGLfgV72VfVTXd1LV4f9lCz9YxP0ZOaZKchWUJTgIsvTBrv34ajsRWHJJW7WdBKXzMIyZyqicmyD4uFhN2vfPMCrb9ZS2RJ94FE4NZkrby7BZK1loH2Y1j4V3VaJnv4g/T3uMff9HCsKSSQpzUhGqpJ0g48U3wDZBpmCeTNIO2/BmD/beLDbvfz2D5t46+36qH8vnZnGZ2+NI3Pr02y/dzvbLvo8G5qPFTaiKHDldTncHreGvd9/F59TZOZDPyb75ivGlSUwEb87V0cP78y5luSpamZ9ZxoHkq7liRecbHij7qjl9HoVjzx8JSXFCePexnjo7rHzwCPbeXdV4wl7lZtiNSxbbOQiUyXOp95nYO8QIX8YTZIFfU46KkssAyEvgslAekwcgb4h3J29uDt7CdisSFOzeadkJTurok+UmWK13HxTGissPSSffx0KzdiPr62qgc4nH2Bw1gz+tlpP3f7oPgzTpyVw388uJlxRwYGfPsjQ9n2Ysg1M+twUnItX8NTGWNa91TTqec0cp+XGayfzqZWTTsv17ZPA2ShuIZIxUPO7x9j/oz+TMtdC5n13sGpwKi8+foCRUSJ8cXFKYhKMdDTbCAZOfE6VlCKzZ6ex4qIili7KOW5bwvEcJ1mWqakd4I3VVWxY30Z39/EnYFVqiQWzDFxZpiRu5gL2Vfaza28PBw70Mjw0Pg+PhFQjZbPSmF8uMs3cRnjjZvrebaB7Wz+atHRSVywh7dKlJCyaOSH1srIsMzTsob3dSnuHlbYOGy3tVjo6bHR32UfNshgPepOarII4ivNUlCY7ybbV41u3C3dPGEPJVJKXLyDpvDmoYmMOR1oP7184zGv3v8L9b/Th9B57zpwyN50vLe4j9NpuSr7/bUxFuWPap5DbTfc7z1EhpfPYsyN0NA5FXa4kV8WicA0Je7YR6nejS0tBl5GMzaTm6hf+dmixc+L2HB8vJkLcwsEo7ld+QetTr5F1YRr6b9zG7182Ub3nWNMFhSTw6ZsnU/TmvxnZuJkZX5mE7opl/LepnP8+diCqKDabNfzgO0tYdn7eSe3fifCP2Kh/9AVWv7Sb/SmTqOoVxzTL+mFUKgW33zqNO26dhlb78ZiRP5nBg98foq/fSW+vk55eB729jsh9n5OeHgd9fU58Z8Cd+Uyg1UrEWXTEx+sQRS+SAqw2Ba3NIwTH2Rf0SHRGFZn58eRlqyhO85Mn9KCpOYB1Yw0+hxrjpMmHU7BiJhWMqa+ed2CYkf117N1Yx9aqYfaPSHQ4pFEzRpUqBckZMbgcXoZPIcJ8PCSVgoycGHJTIE0YIWGgDe2evXj3tqA0Gcj77HUUfulmDNnpp2X7ABs3tXLvr9YxOHjsZ9Tqlay8YwrXFVTR89vn2LZZZvWcm+iNUqNvtuj46mdjyX3331Q+Ukn8vBnMe/I3J7XvEzVoH66o5r1FN1N4VQqTPlvG3qQb+ce/etm1tuWo5WLNGh57ZCXZWaff2Kivz8GDj+7k7TfrxnQezS2KZcYkBdPj+khp3Il9ZzveYR/ekUifRlO2EWFKAW1Jk6jzJlDbDu1trqjrFkSBpRdmsFK7h4EH30IOSSg0qkibD40ahUaNZNChNBlQmvRIRv3Bx5GbKtaEOj4WVVwMrqZmnNXvsDX9fB5/dijqtUmrk/jinVO44ebZ9L6ziQM/+QtDO/YTW2ii9PPl9M+8lCff1bL1/eZRj4VSKXL+Bfncev0USktG78X7v8jZKm4PMby7ki23fAtPRzuTvzEX11W38exqmXWv1Yz6/85LCJE7JYEeu5ravX1jyoBRqkRmz8ng0gsLmTM7nVjz0cfhRMfJ4wlQXdvPqvfqWb+hdUweJMYYNYXpArEaFX0BHfV1g5Hes+NAIYnkFCdQWp7A3NIgxWI93nc20bOmlYEqG5YFs0m7NBKdNeYf32F5NGRZZmTEQ3uHjbZ2K63tERHb0WGju9uOZ5QMipNBUookpseQmW2kNE+gPNVG0kA9nq37Gdjdy0iDnYAzOOrknqhUotCqQavFoY9jf1wBGxV5x0yKKySRlTcXcXHf6/S+XIdCp0cOBgkHQ8jB0OHH4UAQORhEDoYO/i14+F4OhhAUkPGlC9iUczmvvNg6ahmZKArk5OopywhQSgdixUY+9c6aQ38+J27P8fFiosTtIQ5FccWwgyk/X85L8oU8/3RL1MhPQVE8d6YNM/zbB0hfksTUb81lf9wK/vGMjQOjRHEvWp7Pd761eEJdBo8kHArR8cJqttz3KLszprE7mIzNNv4TY5xZzT1fns9lK4rPupY2H8blcvPSS6uwO0KUl89AFCX8gTBeTwCrzYvt4G1w2E1Pj5PePgdDQ+6Jazr+P4BSrSAjL47sHD3FGSEKdQOY2+twbtqPrd6GlJiDZfYU4ueWY5lbfsIUrIDDia2qEWtlAz1762nuHKFXoaFVSqRmUI3d+RFNLAiQnBFDVkE8BdkKJidaSWjcRc9j6xiptR5ezJCfRdFXbiP39qtQGk+fwc6I1cMf/7yFN96qi/r34ump3Hl7MpOaXmTnD9eyKe0C1oSzog5Ky2Ym890V3fT+9Fn69lqZcu9XKPnWXcfMxI+ViRy0d721ng2X3820L5WQe00Ru5Nu5q8PNh+TJpmUZODxf6wkOenMZJcMDLr462M7ef21GkJjNBhTqhRYkvWYzUpiYxQIyDQ0eejvPrHxXVZBLJ9b5iZr79sE7V5C/jAhf5iwP3T4ccgfIuQNEXAFCXiCBF1BAu4gQU9wVMduQ7qR1O9fxd/rStm9NbpLbk6GhmWFKi49Px/RYaf61/9gaMd+LGWxlHxxFk0FF/PkmzJ7N7cf9zMU5Bq56drJrLhi8lnfW/1McLaLW4Cg20PFt39Hw0NPk1geT9F9K9lpWM6zTzTSVNU/6vvitSEWF/kxlOaypw5q9429RjUjM4Zp01KZNjmZxAQ9RqOC/fu24/PJZGZPprvHTVPrCK3tVro6rAwNjj3CqlRFyrBO9hp/qKd4eZmGuTkjGJv3Y393Fz3bevE6NYdTjZOXzUPSj89XJRQK09Zupa5+kOraAaprB2hsHIpaOnImUEgieqMao0mJ0ShhMorEGARMujAxqgAmpR/8fnpsEn1Wkb4Rmf6hEMPW4KjHNzZBzxc/m0LG83/Fur8HRAFRISAoBESFiHDosSR+8LokIBz824eXFRUCgkqBbd5y/rErhf07Tuz0LWNn747vHXp6Ttye4+PFRItbOBjFvec+Wp95nfyVuXjuupP7/x2ks3nkmGUlpchNF6aR9uCvUIpu5v6gnNDcJTzfUMYL/9yHO4oTXWyclh99dylLl+Sc8r6ORjgYpPWZN9j3s4eoNudwIHc29e3jrxPNTlTxra8tYN75JadhL8eHy+Wnrn6Q9g4r7R022ttttHdG0nN8Zzgd+IwjgN6gQlIpCAXDuB3+k7brPxGiQiAly0xWXgxFmVAcZyNluBHP1v1Yd3cQkM3EzijHMiciZs1lBaOm4QY9Xuy1zYxU1tO6p4m2ASc9sop+wUB/QEfvSPikJl8mGlOslvOuLOKyOV7SQs0om6poebGGllUdBJwfzBQnnT+X4q/dQeqKJWOKRJ8s4bDMK6/V8MBDW7FHGfRodEquvKOc6yc34f7nf9n4ry7eXfJpmgePHVgqVQquuymLq0NvsefHa1EnpTP/6d8TN33SKe3jRA/aa//4Lyq++Svm/Wg6yefnsSPhFh78fRWNlUf3lM5Ij+Eff72SxMQz59o7POzm70/s4eUXKye8ThsitYB6kxqdUY1SpUBSiEhKAUmK3JRH3itArQKNCrRqOXJThtGpw2jFAGoCaPChDnlRBz2o/B6UXic4XKh0sC3hAh77jwOHLbpZi1YnMbtQZF6giYShEQKDNkb2VmMpMVB0z3z2Jizn6Vec1O09/gBTqxHJShDJNoUpiJOYUpJIzrQ8jPlZKE3/O47LHwdxe4juVRvYefdP8fb2MOmuUrR33cjq1jxef6aavuO0vhEEyNV7KM0XUWRnUdsG9fv7Tip77KNAb4q0UswrMjO7OECR1IJ/wzYG1jUyVOPCPH0aScvmkbJ8/jG1psfjUGeBPRXd7D3QS03tIM3NQ6P22f0kYLboKJ0Sj14TRiWBJEW+H8gfVMTJsnDEYwiHiZiAhiOPw2EIhSLXwQ9elw++LjMy7KOnzXrcc7HfP0LV3h8eenpO3J7j48XpELeH6Hz1PXZ8/icolR6Kf3E5j3fNZfVrrVHTNQoK47i8cTWKHVuZdFs+uXfMYKf2Eh7/d/+oJg0rLink219feNqaogOEAwGan3iFyp8/RJdPom7pFezq04zbbKA8OcQdF2cx54YlqGNjTtPeHk1/v5OKfT3s29/L3n091DcMnTZBNxqiKBATr8Ns0WGK1aIzqtAb1OgMKlQaCVEhIkkigigQ8AXxeYP4PAGG+pw0HOjDGiWN9BDHM/kaC2nJSjLSVMQm6lFoNVidIkNDfqwDLmzjML1KSDWSmRdLQbZEcbKbbH8b4T2VjGypx94ZwFhUgmVeOZZ55cTPmRrVcCjk92OtbaFpWy0N9T102Xz0+yUG/EoGXQoGhwMEToMo+DCiKGBJ0pGSoiMhXkt7m5P6+uFRlzdbdJx/VTFXzLSR79zC0MZGGl5upXf34FG16WmXn8ekH/4fltlTTvtnqK0b4Je/WU/lKBGTovIU7rgzi+lDr7H/p++xbjib99MW4Y3Siik9N5Zv3Syj+ucTNL3SSuEXb6H8N99E0p36AHuiB+2yLLPjsz+k5cmXWPrb2Zhm5LA17mYe+OVuOhqP/h9mpMfwyMNXnvG2NFabl6f+s4+XXq7GOoob8dmKpBTR6lVo9SrUGhHbsBd7lH7HR5KTb2JRoZ8UTw8Wjw0qW1B4e8n7yvlUGBbwxroAFZujm1ZFI8akJDMBkpQe4hU+EpSQGqsnpzQdS0k2xvwsVGfo+nKm+DiJW4j0+z7w84eovf9xYnL0lH1lFq5Fl/P6vgRW/afyuNe0QyhEGUuMiMqkxekG6+DZlSmVkGokpySBgnwd5dlecqQuQvuqsG2upn/PEMrEXJIumE/yBfOInz0FhWpstbOyLNPSOsKeih52VXSxp6LnlByKz3HynBO35/hYczrFLYBvaIRd99xH+3NvUnxbCR1X3MFDT9qj9oZTqkSuyPKT9fTDJE02M+cH0xnJX8gLtYW89M+9eKKIjfh4HT/+/lIWnaZWF4cI+fw0/uO/VP78IZwjLtovvoJdqjw6Osc3QDPqRQotYcpS1Cy+aApTL5p+0mmNhwgGw3R22WhpHaGlZYSGxiH2Huilr/f0969VayViE/TEWvSYE3TEWvTEJugwW/TEJuiJM4EubEcdtKEOOlCG3CjDbpQhD2I4gEgQUQ4hyGFCooqgqCYoqvEo4xnS5tE+rKFqRyfvvVgV1XlUoxVZsDwbtdFIZ/MwXS0jDJ3E5xYFSDf4KVL1UZbqo6TMgCo1kWEplqGQgQGnigGbyJBVxuMJk5KkoDTdT57Ug6q2GvumKoYrhxAMSVjmlmOZNw3LvHJMJXlH/X/9vgCNO+qo3d1Ma+cQPbYgfS6BATsMjgTGnLo5EUgqBWlZJnJSRAozNMxaMpWyknRCQZkn/l3Bk09XjBrRj0vUs2xlMZfNcJDn2MzI1kYOPFbHcN3R0YmMay6i7IdfILb89GcuOJw+/vr3Hfz3hcqokzhqrcQVt0/j2mndqN95ifd/W8s75ddT6zh2ckwQBS66Ios7UzdT88O3CYb1zHn0PlIvWTJh+3s6Bu0hv5+1y+9kZHcF5/95HuribDYZb+TPP9t6TN/u9HQT/3j4qo+k72o4LLNtZyfPvnCAbVvaxyzuPu6oNRLxCVoscQoSDSHSY33kFRnZ3h7Lhve7Rm0/NBYMBon4GJE4bYh4dYhELaTE6ckpTKVgdiGWgozTmi1xuvi4idtDjOyvZefdP2VwawXJMy0Uf2U+A1NW8M5+ExvfaqCzafRJw7OJ+GQDqdmxpGcZyUuDyWkO4oYb8W3fz8iONmwdATRZhYczkRIXzRhXqUl3j4MtW9vYsr2DPRU92EfJiJgIBFFAZ1BhMKnRmzQYTUpMBgGTJoQiHCQUlAkGZcKIhGWBECIhBIJBcDgCOOwBHA4/Trv/Ex09hnPi9hwfc063uD1ExyvvsfPun6DWesm772oebZrG2reit43IzdCzZM3jJAcGmP3NKcRfMIltykt4/F8d1Ozujrr+yy8t4ptfW4jRODHtQkbDb3NQ9cu/UfenJwj5A1hnzaJy8nnsrgucVBTRaJQoSJOwxKgwxxqJT7MQnxJLXIwWc4wGpVLE6QrgcvlxOn04XAGcTh9Op5+OLjutrSN0d9lPydjoEJJKgUqtQFIqUEgiSpUCneFgpNWoQm/SEGvRYU7QE2vREWvREaPxoQnaUQdsaII2NEErmqANddCGJmBDkiMTEkFPEPegF5/Nj8/qx2fzE3QHI/VwgTDhoIykVaDUSyj1SowZeuKLzXgkMwOGEvbLM3n5ySr2bYlerzY/286Xb9WgTk+jL5DA3jYtdfUumqsH6GwaHnfEWhAgJVYkHQeJHfXEWdtJMvhIipfRGiXsHU6cfSFM06ZimDUV3dRSNEWF+CUVQwMOWuu66O0cpH/Yw4gjyIgzjNURwuEcvc7mVBBFAa1Bidd9fIE8ZXYqcyaLFBn6MVbsJNQrUH7/L9AkxhMOy7z5dh1/eXhbVOMliAx0LrimlEum2slzbMK1t4X9j9bSv++DgZogimTesIJJ378b86TTcz45ElmWeXt1A3/48+ao7X0Aps7P5LqbspnleZumP7zLa9VprE2ZGzVaG5ug5547TGS+8QS1/64l57aVTP/j90ZtvXCynK5Bu3dwmNWzryVkH2D5g/ORM3NYp72Oh+/dTH/XsQL37w9d+ZE6vPt8QfYd6GXT9g62buugpfHMZ5h81FgSNJTmq9EY1dS2BGlvmHjho9criI9RYDGKJMaqSE+LI7csi9z8JNLSTOj1p+5Mezr4uIpbiJybOl95j/0/+jO26gYyz0sl99ZyXNOWsrU3h3Wr2qna1TXhbvQng0ojkZhmIjXLTGaGmsK0IIUWO/rBdvyVDTj3NuNocxNSJWIunxIRs3OmYizIHpdLfCAQomJfD5s2t7FpSzutrceWq50qGp2S5MwYUjLNpKdryEsJkBfvJCY0QrirD299J84D7dgO9BASTMTNLCdhwXQs86cTU1YwpoCD2+NnaDjiRTI47GZoxMPQsIuRYRcjI56DXiU+7DYfoZCMTi8xPOTF7fzoy4jGwjlxe46PNWdK3EIkirvn67+m9alXKbipmM4r7+Dhf9sZjBJpExUCC6Vupm96kcIVqUz70mS6khbyYmUWL/+zImoULzFRz49/cB7z557+frOOpnb2fvt3dLwUuegGUxLpuf56tnTH0NF6bFT6bEFUCCSkmkhIMWJJMR6+t6QYiDOBgiCiHImminIQZciDMuRGCntQhdwR0XpQuKqDdkQiF+WAO4irz4Orxx257/Xg6nUfvveP1mJJEFDFxqAyG0GI9NeVQ2E83f2oTRIpcxLIWJJC/IJcGi0XsaHezIuP7Iya2qUNeblgaAuLLT3E5pswTctEKp+CLTaHvZ0mqhqCNNcM0t4weNLpzKIY6Q8XCoHPHyZ4BiOtEDGmSkoxkJqqJjNVTU6mDrcLXn6tg+6e0dPdymanc8OlKia3vUn1X3Yy0uCk/Lffouie2xAEgX0HevnN7zdSWxu95YlGp2T5tWVctShAgX0DvpoW9j9WT8+2I1J/BYGcW69k0g/uxlR4+urhj2RPRTcP/nUbe/dFr1+0pBi5+q5pLM9swrTnbVb/so5XMq+g2Rl9Emz24jTumVFL249fwOvSMPsf95G2YuKitUdyOgft1qoG3pl3PbpYgWUPzMOblMtG7ad4+GcbjhG4iQl6HvzzZeTnxU/Y9k+FcFjGZvfS3T3Cu+9uwuOHKZMno9NqUEgCClFEoRCQJBEZCPjD+PxB/IEwvkDwqOf+g/eBQAi/P0QgEMYfCOH1BvB6g7jdATwePz5vEI8ngNcTxOcL4vUEP7J6R1EUyMzSk5KsQmdS094VpKPZOmrP3IkixqQkNVlLVnY8eYVJFOTGkZMVS2qKEYXio4v4fpzF7SHCoRBtz73JgZ8+iLOxjbjiGPKvyUdz2TJ6tcXsatFTuWeAmj3do7YRmih0BhVJ6TEkphlJT1WSlRQi1+IhKdhHuK0D7/4G7NV9eD1alAmZmEoLMU8uxFxWgLEoZ8wpxkfS1+dk89Z2Nm1uY/vOTjyeifsuq7US2UUWsooSyMmQKEj2kW0YROfqIVhZh62ig8GqEYZqrPgdYWJnTCJh/rSImJ1Xjjbl9LqT9/ba+cXPX2Xz7ujjQkkpsmxpBrGJZvz+EH5/mEAwRMAfipy3jmgZJQgCwgdPIo8FkBQioiigkCLnxsPnSEXEcEpSiCgUB/926HVRRJKEg6+LSIqD7xcjfx8Y6OLzdy0/tLVz4vaThiAImcA9wKVAJuADGoH/Ag/LsnzS/TMEQTABK4BlwAwgF9ABNqAKeAN4VJZl6yl8hBPtwxkTt4fofX8rO+7+CXgGyL/3Kh5tncH61e1RI1oJZolle1+mVNvPvB9NQyopZJt0EU/8s5naip6o6195ZQlf/8qCMzIT3bd+B3u+9itGKqoBMGYaUN/zKdbaC9i81YbT9tE4+B1Co1OSXWQhpziB7KJ4ijPDmMURNIEPoqwRoWpFkqNfcALuIH67H6/Vj7vfg6vPg/uQgD342O+I/l5dejKGvEyM+Znos9PQZaSgS09Gm5aINsmCMsYYNVXO1dFD49+eo/GR/+AbHCF5loUZ95ThKyxnn+4C/vNEA3s2tEbd5uQ8E59daCDONYi7vQdvbxeirw9NvIB2/mQCBZOosiawrwEaqwdpqx86q9Ii1VqJhGQDSYkqUhIk0lPVZKcbyMuKIy09EZUuDlFU0No2wu//sIktoziLA0yamcZVVyWxRFpP0x/fo+mNdkxFuSx49g/ElpcwPOzmgYe28dobtVHfL4gC85bns/KqBKb516JoquXAY3W0r+s5qqY2dcUSyn/9DcyTiyb6cESlpnaAh/+2nc1bo0fyJZWCC64u5YoLdZQMvEXTo9v4z4FM1pum4vcf+7/Wm9R8+pZEZlU8Q9XDe8m+5Sqm/2Hio7VHcroH7YcclOOKTZx3/1zssQVs1lzJX3+2/hiBazSq+MPvVjBjWuqE7sOp8FGLmkAghMcTwO0J4HYHcDr9jNh9WO1eRmxebHYvNpsbu81DVeUAfT0TL0p0eiU3XD+Ja1ck0tkzwr6aERpa3PQPBhgcCjA86InanmgiUSpF0jNM5BUkUFQQT2mBhYICC/Fx2nFF7E6Wj/p7MJGEQyF639tCy79epuPld5HUMimzEkiclYR+yXRcKSX0+C20D0h09sv0d7uwj3jwH/Si8HqCBP1BQmGZcEgmFAoT9IfweYP4D/ZrFQSIidcRn2QgPslAYoJEqkUmLc5PhtGJwd5HqLEVz4FmXJ1OQkIMoikFQ142xoIsYiYVEDMp/5Rc7APBEPv397JpSzubtrTRNIEp2KZYLTklCeQUxzMpV6A0YYj/Z+88w+O4zrN9z+xs78Aueu+NvVMkRYpUb5ZkybJky7binjhOPsdpLnHixOmxk9ixE/cqq/dGihIpUuwNJArRe9+G7X2+HwtQpAiQIAmQhMT7uuaamcXs7tnB7sx5znnf502P9iH1tOI5NoCjyY2z0Y2n04cqzYp97RJsE0v68gUoNHMb3Xc6j/9uL9/7UT2RyNT9i8ULzXzjr2+huPjqGFg8nba2NioqKiZ3r4nb9xOCINwO/BaYzqGhBbhNluXOi3jtW4FngfP90kaAj8qy/NaFvscM23HZxS2kXGAb/+GHNP3LTyj5UAkDH/4UP/pdAMfQ1KNbSzRO1h94ilWfLqH8vjI6rdfzzNEsnv/FkSnrdmVlGfjWN25g5fK5q505STKRoOuXz1L/V/9BeDRVKDtndQYVf7qOt6NLeXWfxImDUwvx2URvUpOZZyIj10xOoZmaUgUVdi/m2DDGyCD66CjhYR/B0dBEDckIYVeEkCu1jniixCOJVJhwLEkikiTqj5E8xyynQqNGX5R7ajGWF2EszcdQVoihJB9Je2lmX4lwhLYfPcaxv/x3SMapfrCEikfq6My+la2NVp7+34NTGj9Jksidt1fxsYcWUVyUqus56Tw83thGoL0F2d+HkGMmUlpGSyyX+g6R9iYXve1zL3a1eiW2SQFrE8m1KyjKN1BWkk52Vjpqgw1Rmvrc+fwRfvLTQ/zu8eMkppldql6aw20fLmOj5TDJbW9w+D+OExwLU/FHKUMkQa3mmeea+O//2Yd/GuOsikVZ3PuxKq7THyR95AhNv26l9enuM74PaSsWsORfvkrmxlWXflJmQFe3mx/93wG2be+Y9pjqpTnc98kaVkl7UOzdwWv/NcBzhXfR65061Gz5uhz+aHUXI3//BH6nklU//vas5tZOx+XotDf/x885+pV/InuVnfV/vxyHuZZ9qlv537/bcVYOrkql4B/+bgubN81NLfELZT6JGlmWOXKin+dfqGfXO6OMu6bPG9QblFQUSIiSSEtPfEYDoAajioc/upiPPbjw1KCtLMvEw16cLid9Ay76+r30DwYZdsYYdSZxOKO4HSF8nrnJYTSa1BSXpFFemk5VRToVZTZKS9LQ6Wa3vvt8+h5cCFGPl94nXmVo6zs4D54g2DuIMU+PpcyELkOLLkuPuiQH0WYFtRqUSmSVGkGSkJMpl1wZUuFEKhUJhZJwUokqEUYxOky8q59Iax8RT4KkaETQ2VFlZKcGm8uLMFUUocvPnrU87LGxAO/s7eWdPT3sO9BHIDA7s7NavZLyBVlULs5gSXmSMsMolkgvyv52HIeHGD3qZPSok8BICHNt+UR4cUrMGssKL8sAzHsJhWN87S+eYse+qUOus3INfPa+fD708KbL3LKZc03cvk8RBGERsIfUTKof+EfgLUALPAh8ZuLQk8AKWZYvyMVGEISPAb8GksA24DWgHvAAecDDwEcmDg8C18myfOyiP9D07bgi4nYST2MbBz77DYLtzZR98w5+N76WrS/1ThkSZtQruL53F5tsPaz6y4WEs8rYI97Ib37cSuvxqcMSH/hwHX/8h2tm/YY7FVGPlxPf+m9av/9b5EQCUSlScV8RlZ+sY2f4On7ydJTuFseUzxUEsGfr0Zu0hIMxQsEYIX+URCKJWqtEo1Oi0SpP25YwmtXkZkkUZCYpzoiQofahibuRPGMk+/rxd3vw9frx9vrx9gXw9QdITJFjeDoKrQalUY9k1J+1VlmM6Ivy0BflYpgQs5pM22W5eXga29jz0FfwHG/BmK9n5VcXIqxazQFpM0/+opkT+6e/7q5bW8iDH1nAwrosDIazZ/Nj/gDu+mZ6jxyhzRGiNZrGiV7o7wtesGmEIAooVQpMFg22TC22NIk0I6QbZexGyExTkV9gJa8wB5U+HUFlnPH5SyZlXnjpJP/9P/twu6fOLS2sSOfuTyxmbWYn2T3bOf6fR+h5YwBtbiarf/6PZN94HQ2NI3znX96eNgQ5I9fEXY8sZEtxL0We3fS92kH9j1sIu97thBtKC1j0nT+l4P5bL8v/f3DIx//95CAvvdIybT6m1a7n7k8tZXPlGIWDWzn2g3p+P7KI/WLhlIMA5jQtn/mYldrdv6P5pyco+vg9LP33v5zT2drTuRyddlmW2f/pr9H5s6fJ35jNmq8vYdiyhKPam/jZP75NT+uZ1yNBgC98diWPfnLZFa/PPV9FTSwW4+23DvDy9kH2H/QQmqaTX12h5xbnTgw1ObSm1XK0Q6TjpPucA2tGk5qPP7yYhx5YeN57WjIRIxby4Ha56O4cprffx5AzxqgHxjwyY44Y7rEg3mmuJRdLZraR0pI0KitsVJalU16WTn6eGUm6OBE1X78HF0poeAznwRP4WruJOD1EXR4iTg9xfxBBSlUWECQJUaVEMuhS92WDDoVaBYJALB6nrb0NQath2S2bSasoRl+Yc8F1ZGdKOBzn6LFB9u3vY8++Pjo6Z2d2VhAgrzSdqiXZLKzVsSTbgT3aiXakjbGDQ4weczJyxEFgOELa8joyNizHvn459uuWTlmJ4HLT0tjDn33tDQaGpilBt9nMFz63GZP96putPZ0PjLgVBKGIVOhsGZANqEiJrl7gMHBQluULLwR6lSIIwlvARiAObJBlee97/v5V4F8mdv9GluW/u8DX/wiwCfiOLMtTxtYJgvAl4L8mdt+UZXnzhbzHDNtxRcUtgJxM0v5/j3Psr/4D+yIDsS8+yg+el+htn3rUq9iS4Kam57jzT3KxLc+mI20zzxyw8uKvjp4KzTmdnBwj3/jrTaxaMfezuACehlYOfenbjO44AIAmXc2SL1STdstiHu9eyZOPD+AcmXosJDNDw+dvUrMow0c0FkJOJpHDIeRQEDkYmtgOIcQiJPwhIo4QIVeEkDNC1JsgEpQRBAmlxYTaZkVjt6K2p01sp9ZKs/EM4RpXKth1YD9oVdx8661XbechEY5w7K//g5bv/gJBhPJ7iqj+3FK6c27mrTYbz/70MO7Rc4cGZucYKStLx2hUEwjGCASj+HwR+ns9BObA6CE7x0hNdQZ1NRnUVGVQVWXDaJh5WFQikeREwwhv7ejkzZ1dDLwnnHQSk1XL7R9bxA3LklS4tuLcdpzD/9VIxB2l8KN3sOIH3yQoqvnvH+zluReap0wBUGslbn5gAXdugCrPGwRPdHL4v5twNXvePcZmpe5v/oiyzz5wUblXF0pj0whPPNXAa1vbpi2FZLRo2HxfLZs2mKnxvE5wx0F+/bjEtrTVjPunfs66zXl8tvIEPd96BlmbyYoffovM61fO5Uc5i8vVaU9Eo7y55VOM7TpE8a15rPrzRQyYltFovJHffm8vjYcGznrO+nWFfPtvNs9pmbXzMd9FjSzLDLQe5z9+3srOnY4pS+CJCoEVCw2sHdlDgasZ+0PraTQu5JV9EvX7p4/2MVs0/OHnV3HPXdUXlQ8rJ+MkxocY72rFNTpKjzNBv19Nv1dF/yiMDEcYG/TOuBza+VAqRQoKrZSVpVNZlkZ+npncHBO5OabzmkDO9+/B5WKuz5Msy3R0uti7r4+9+/s4cnSQ6CwZYam1EtVLc6hblsXKigiFim7Sgp2EmroZ2jfK4L5RPF0B0lctIWPDcjI2rCB99SKUBv2svP9s8dgPX+Y/H+ufclB89YYcHl0tsvy+u65Ayy6cD4S4FQShDzhfMk4YeBX4mSzLr8x9q+YOQRBWAAcmdv9XluXPT3GMCDQA1YAbyJTlaZIWL60tB4HlpGZ4M2RZds7y619xcTtJeNTJsb/6d3ofe46KL1/Htuy7efrpwSkFqygKrJIGeTjnKCs/U4bbWM4ebuDXP2qks2nq+pZ33VHFn/7xWszmue+wybJM7xOvcvTP/plgf2pWOWNxOku/XIu/cjW/OFzKa0+3TWsSsnZtAX/xlfXk550dEZ+IRomN+5GTSRQaNQq1ClGlvOjwovnWeRh5ax/7P/11/J19GHJ0LP1SLfrrl9BouolnX3Dw9kstV1UO7XvJzTVRUmyltCSN4iIrxUVWigqtp2aVI5E4Bw8N8NbOTna83T3tLC2AQhLZcEclt9+VS23gLbSdRzn6/SYG3hlBaTGx4offIvuem3nymUZ+8rNDeKfJz1uyrpD7PlrEisQOdP2N1P/fSbq3DZzKqxVEkfI/fJiFf/ulOa+jGYnE2fpGO0881UDjNL9lSIWrbfpQDZtuzKIquBtr/2Fe/v4gvxc20DUuTfmc9EwDX3hQQ95zv6Tr5T7qvv6HVH3lU5dFqL+Xy/m7izjdbF3zIL62bsrvLWLZl2oZMdTSmH4nT//kKPvfODvMOy/XxL/+0y1UVtjmrF3nYr5dl6ZDlpMc2LWXf/9JD+0tnmmPq6oxs9nYQ/a2F6j6WDVdi27nV69LnDgwdYUAgOISK1/9k3WsXpU/K21NRsP4G4/g72gkFA3gEjT0JNPpdOroHpQZ6Asw3OchNotlUPQGFdnZRnJyTGRnGjDoVeh1SnQ6FTqdhEIh09x8HJVSYNPGdVitBnR6FTqtEpXq0srovZ+Yi7rZnV1uDh8Z5PDRAQ4fGZzWjf5iMFo01K7IZfEyG6uLXWRHWzE42hg9NMLgvlGGDoyhySkk66Z1ZN24loz1y2elvvhcEPT6+eZfPcmbh84+P2qtxCc+bOejty7AXFp2BVp3cXxQxO1Me4qTDToCfEqW5YY5atKcIgjCPwB/PbG7Wpbl/dMc95ekwpUBbpJledsctOVfgT+b2F0hy/KhWX79q0bcTuLYd4yDf/h3yON9WL/5CP+zN4fGIyNTHms2KLgteojPfE5EW5BOS9otPLtbxSu/rZ/SXj8tTctf/Nl6ttxQelnCKWP+AI3f+V9O/vvPSEZjiJJA+b3FVD1ax0nTBn7+qpq92zqmHNVXKhU88rHFPPrJpWg1cxdWPR87kfFAkPqvfZeW//o1yDKZS9NZ9IUawkuup55VvLVtkL3b2qesjXyhGC0aCkotFOUrKc9NkKGP0OE20tor0NvlZaDbQ3wWRrDtdj25OUZaWp0zcpOsWZ7L3Y8sYJn6GDlj79D2+1aafttOIpIk66Z1LP/x3/NWvYcf/fggI9NECmTkmbjv0SVszmsjz7mLtifaafxVG/HQu5/Hvm4Zy7//TayLqi75M56LgUEvTz7dwPMvnmT8HLUOVRqJ9bdXsvn2QqpiB8ka28fxx7v5RccCDoQzpwxbFhUCm2/J4+PWd2j/9quYl61gxQ/+BkPJ7IiCi+Fy/+587T1sXfMRIg43VR8pYfHnq3FqS2nI/DDbX2jn1ceOn3UdkiSRP/jUMh79xFKUyssrJObjdelcJGJhfv/ELn7ym75z5uTm5Bu5uTbE0o5tlN+WzxHzJn77apLGg2fPsE+ydm0Bf/Yn11FUaJ31dscDQTyHDhI4eYho2Eki3cKoKZdOr4XOIYne/ihDvR4cw/4p72NziSSJaLQSWq0Sq1VLRoaBrEwD2RkGMjMNZGbosdsNZNj1aDRTD3i9X7jU30syKdPe4eTI0UEOHxnkyNFB3LOcr52eaaBuVR5Ll5pYkTNCZqgF1WAnA+8M0b9rhPEByNy8luwb15K1Ze2cOxnPBife2MvXf9hMX//Z5yq7wMxX7laz8aP3zKi80NXEB0XcHgEOkXLw7QccpGYS9UA+sAS4ntQs5iRh4O65EHxzjSAIbwPrgQBgkWX57KnD1HFrSOXlAvydLMt/Mwdt+S/gSxO7y2RZPjLLr3/ViVtImTR1/N/j1H/je+RtyaHlpo/zy6d9U5aAASi3JflC5TE23GViVF/NO/EN/O5Hx+maJq/w+vVF/NWfbyAj4+IdAS8Eb1s3h7/8Dwy9+jYAWpuGxV+oJv2WRWwPrOfXvxmk++TU+bj2DD1/8kdruOWm8jkR5PO5Ezn2zmEO/dG3cR9rRhCh6MY8qj9eQaR8Md3qhWzdL3LgrU6GejwzKu2h1kpk5VsoKtRQW5SgWj+Mpb2BWI8LwZpPV0JFMs1KhRwjMdiEKs+AuKSOHiGfxgEd7T1x+jvdDHZ75mz2ODPPxJ2fWMKGMhclzu243mnnyPcb8Q8EkQw6Fv3TV+ivWcMPfnRg2hqCKo3ETffXcecmBdXurQSOdHDouycY735XBGuy7Cz5tz+n6KE752wgaMwRYPc7Pbz5Vid79k3tmD6JQhJZe3MZW+6uoFo4Tr7nHXpf7+R3b1jZrl+CPzD1AEPFAjtfuHEcfvhbXK0xlv3n18j/8C1XxGjkdK7E725s71G2b3qEZCRK+YcKWfblOsbVeZzIfpDmxnF+8709U7rvlpak8c2vbWJBXeact3GS+XxdOhfjbjf/+cO3efnV4XPWN9UZVdTUmFhSGGFNTYReinj8BT/NR6aeyVUoBO67t5ZPf2o5tvS5ybOE1Iyev7MP9769hDuPk4yMoSiwES8poztip21YQ/cgDPb6GOr1zJmh1YViNKmx2fVk2PVkTgjgrEwDmRkG7HY9er0SnTY1YzxdfnAikSQaTRCZcCiORBNEInGCoVQt+mAghj8QJRCI4POntieXQCBKMBglGIyjlETUagVqlYRWK5GTZSQvz0xeromCAgv5eeYLynn3OBzUH23l6OF2ZFFgyYoFlFcUk5U1fRknpzNIQ+MIJxpHaGgYobF5jEBg9jMLTVYti9YWsHqVmRWZfWQEW6C3m4Fdw/TvGiahzSP39o3k3rEJ65KaK35dninxcJhf/NNv+NmOJOEpTE3XbsjiLx4qJn/JkivQukvnAyFuZ4ogCFXAl4E/ACTAB1TLsjx9XM1ViCAIY4ANqJdlefE5jrMCk1n0T8qy/MActKUeWEgq9zddluWpk+4u/vWvSnE7Sdjhov6v/oO+J5+n+M9u5BlhI1tfGZxSOIiiwLr8AH/9kX6MGSaa02/jlT0iL//m2JSOynq9ij/6wiruu6f2os0uLgRZlhl46S2O/Ml38HemyrdkLk1nyR/XEa5Zye+banj+dyen7QzU1Gbw53+6joULsma1XfO9EynLMoMv76Dh2/+D88BxAKwVZgo2ZZN5Sw2BwiV4hDS6RtV0Dsj0DcSQk0m0atCpkuhUCTItMUo0TqwjHYSPtBAPa1Dm1pC+egX265aiyUif8jwFB0cYfOVtRrfvIDHSgqXKgu66hcRKq2gdt9Hcr6any09/h5uh3osXvEqVAkmlQBQFLGYFRRY/OUon8WO9cHIAc2SciusXov/SF/m/J9vOGc67cE0+932snBXyLoz9x6j/32a6X393VkiQJCq//AgLvvmHKE2zO/gjyzLNJ8fY9U4Pb+/qpnmawafTsdh0rLmpjJU3FFMhnqTI9Taew9387nGRbcZVjI5PfU4t6Toe+bCJhfufoP03DZR8+kEW/t2XUZmNs/qZLpYr9bvrfeo1dt//ZQBKbstnxVcWEFal0ZD1AAN+A7/6t930tp2d/SII8KG7qvn0o8vJzpr7czjfr0vnY3TEyS9+u5+XXh3E7z2/qMjMNVJba0BrMXBwzwij/VN3BQSg0K5kUbbIihyB8kITGosJyaBDkBSIkoQgKVLmRJLijMfe/ds5Hpsi/SXm8+M8eAL3wYPE+psRomNoa3NR1ZbjVOfSMmakY0hBf3+U0UEvrtEAXlfwnINZV5LJep+iQkAUBZJJmVgsQeIy1TU3GtUsWZzNkkXZLFyQRVqaFoNehdGoxuHyc/hgC8eO9dHaFaJ/MMK4e+p0E1EhkJ6uITvbSF6elewMA929HhoaRqaN5pkNtHolC1cXsGKtjevyh8gKNEFPJ31vDjKw34W2bDG5d2wk57br0WbZ56wdc0X7G2/zz491cLjh7DBkpVrBI/dl8LnP3YKkmb/XrGvidgoEQVhLKv/WAPyXLMt/eoWbNGMEQdAAk9/Yl2VZvuM8x/tJzWDvk2V5zSy35XZStW5n1JZpXuN8LkpZwEGAEydOUFp6dZSBeC+eYyc58Rf/Sny4Hc1ffoL/22On9cTUM506nYKHV3l49MYRHJbFHGQdT/70OM2Hpx5jKSu18idfWs2SxbMrGqcjEY7Q9r1f0fqvPyURCiNKAhX3FVP5qTraLNfzi9fV7H61fVpX2C1bSvjiZ5eROUuzzuFwmLffTs0ob9iwAY3mypnIXAqyLDP25j46fvQ4zj1HiLm9IIClxIQ+S4varEJtVqEyq0lE4oQcYULOMPG4Csmej3npEtLXLsG6vA5Jf/ZN6XznKRGJ4tx9mOHXdjGybTcqhRdbnRXL6jKUS+vwmYtoHrXQNaxgZNDPaL+XkQEvzmHfZenkldRkcMfDC1ib2UGhYyfdL7Rz4qctZ9Qotm9axcJ/+3NM1bNzHYjHk/T2jdPR6ebI0SH27OvHMU30xXupWJjF2lvKWbDYQl6gnlzvYaKdAzz1iyAvKtfQ55l6hF8hidxyew73a3fR+c/bMC5cSt0/fwVTVcmsfKbZ4kr+7jp++BjHv/LPABRuyWHVXy4iKalpybiLIXUlW584wY7nT055DVIqRe66o5JHPrZwTmcI3y/XpfMRCkV59oWjPPV8NyODM/ttQMqZHThvKLDJpKSuWEFlWhAFSRKyQDwpkJAhkRQmFkjIAomknPpbcuJvp15aQBBIzaoJIApCyhleTKIRk6iFBFoxgUaU0ShktJKAPhJBOeZA6R5FJbrRmeOYa7NRVhUhZGfjF630e/X0u9UMuxSMjMUJ+iKEQ7FUXdeJ2q6ntk+r5XqNy4dCEmc0KCspRWpX5LHiuizWlbrIizShHmynb8cA/fs8aOtWkXv3FmzXr0g5PM9D4r4Az//P7/nxOxp8UwxIZeYa+ItP5rPqxtVXoHWzS0dHBwsWLJjcvSZuJxEE4cvAd4F2WZYrznf81YIgCHZgctrjcVmWHzzP8SNABtAgy/KCcx17ge1II5W7XAgkSOXbHr2I15nxl+QnP/kJNtuVMQ+ZCbIsk9jXQPQXL5O3Ip22Ox7h188FGJ/G5CAnU8lX7xpheVWSZvudvH1U4NmfHp626H1ttZYbbzBhNl+e3JzkmJvoz18isecEkApVXvLFatJvWshb4Q38+nfDdDRMPQOnVIqsWWVg7So9avXczzrPJ2RZJhZNwoiDRGsfcscAYiiMoFGCUkJQSghWE2JBJmJhFpgNcxIKlRwYI3G4mfihkySbutDbVNjq0rBWWdEvLaNbV8KTu9TsOTjzDu3FIClF7DlGctPj5KkdmCJufO90QZ8TfTSAIeZHb1ajefR2FGsWXNS5SCRk/IEEo2NxRkdjjI7FGBmN4XDGSVxAOrJGp2TFpmLW3FROsS1I3vgBMvyN+NpdbHvaxzPJ62hzT//7rF2awefWjhD+998w5pRQfeoOpGVzmys8X4k+/gaxx1Izo1kr7Fz3N0uQ9Ep6LdfRlbaJgS43T/zwAANdU4e2SxLUVGlZulhPQb5q3oQTXq3Iskx3X4I9B4K0t05d730+olSKGEwqjAYRk1bAqE5iUEQxiRFMiiBpiiDpmgCZ1jjmdAm1WYdk1CLo9MgaDQlBRUJMLVFZRSgu4Y9IBGMSwYhIICLiD4u4veB0Jxl3BRl3hvC4gnhdoWlNG68xNTqDClEhzKj+MkBhhY3lGwvZtDhGWaIBw9hJBt8eoGe3A6c+F+mGFYgVBQgX4ep9VdHQzJuDmeyawjQKYNUaOzeuU6C4zN4Ec4XD4eDTn/705O41cTuJIAjLSTkOh2VZnrvh3VlGEIR8UuWNAH4ty/Ij5zm+l1TecYcsy7NihSYIgoLUjO0tEw/9rSzL37rI13rfiNtJ5Fic2Iu7kV/aQcFn1/GSfgtbXxsiPk2pkKW1Kr56axeasoWcUF7HC785waG3uqY8VpIE1q01sHaVEaXy8nTWEvVtRH78PHJ/SshmLk1n6ZfrCFct5/nuBTz92zacw1OHEOl0Ctau0rNimR6Vap7fPGaILMv4A0mczjhOV2rxeJP4fEl8vjg+X5zke74KarVAVoaSrCwl2Vkq8nNVpKVdPoMRORgmUd9G/OBJOlt9HNBX02MuuGzvfz4EAfQ6Ea1WRJIEJElAObGWpNTvQiEJxGMy4XCScGRiPbEdi138vUijU1K5OJua5TnUrcglL9FO7vgBzOE+BveOsPtZN6+ab6DBO/1tJLfIwsduEyl65Xd0vtaH8oEtSLesQZDeHx2NuUCWZaI/f4n4C7sAMBUZ2PCdFRiydXg0+bTY78QvWtn54km2PdlwzvzQtDQFi+p0lJdpyMpUXhO6l4hnPEnvUJKurgitrX6CgQ/WjKWoEFAqRSTpvdcjUComFglUkoxKklFLSXQqGb0miV4vYTApSbMqSLer0GiVjMc0jHmVjI4rcHrA5Y4z7gwy7gricQYJ+i4t11SlkSbq0EtT1KRXotYp0WhEdFoRtUogLotEYiLxWIKAN0Jfu5ORAS/+8fCMvCGmQhDAYFIhKkT83uiMZltFhYBGq0zNziaSMz4PFpuOZRuKWLfWzGJDG/bx47j2ddP1xhDDMSvinRtRlOW9L64D8riPQHMvvziRhXPs7JQxvVHFA3dYKCieO9PPK8E1cTsNgiB8C/gm4JZl+equVnwaV8PMrSAI/wt8dmL3ZVLGXBdlx/p+CUueivCIk+a/+wFjW1/H/NUH+HVHOUf3T+2qLIoCN62V+MyNTsZK7+RYu4Lnf3aYod7xKY/PzjLwmUeXsmVz8UXVEbxQkrEYnT/6Pc1//yPivkDKVfmeIqo/UU1/xlp+tz+LrU+fnHYU2mzW8LGH6rj37uoLdoW8GsP/EokkDmeQoWE/w8N++ge89PR56e3zMtDvnZGb8PmorEhnyw3FbLmhhIyM89fLu5TzFInE2f5WF08+3UzrFPmMk4gKgfIFmehNGrR6JVqdCo1eiVavQqNTolJLjA16Ob63j95250V3hK40tiwDNctzqV6WQ0l1Bpb4ELZAK5m+eiS/m67X+3nztSi7Cm6gxauZNmw7PdPAg3fqWdLwPJ2/OEbeQ/dQ9bXPo063XNbPczFcDb87WZY5+sW/o+eXzwKgtqhY9+1l2OvSSAgSXWmb6DevwusJ8+YzTezd1n7eTnOaVcuqlbksWphJZUU6xUWWi3JavhrOz9VAIpGk8aSD3fu6OXR4kI628WkHcq8xNWqNggy7imyrTJ4+SJ7aQ5nBTXa+HtGeTsJgJJRUE0pKhOJKwrFUnm0ywURovoxKCSpJQKUEpZhALUdRJiIoExGEaBQ5FEYOhUkGJ9b+EMlAaiEWRZSTCKKALCnoF9NooJTjHjutPYlpa3hfTWj1SupW5rH8uhyuKxwhJ3AcOtroerWPsXaBoi8+St59NyPMM1fg6UjG43T+5rf8rkPD1t1T54cvWJzO176ymvz8q9/V+UL5QIclC4LwG2Al0ErKRTlAKs92BbBo4rDHZFn+2JVp4YVzpXNuBUH4R+AvJ3Z3kyoxNHvFxc5+v6vaUGomjDe1c+yv/p1IbwP+z3+Kn7+pZqB7atGq1ih4YHOSW262MWhfx57tfbz2++PTlowpKrTw6UeXc/ONZZdF5IaGxzj2F/9G16+eA0BlUlL3iQoK7q3muPp6fv0K7Htj6tJBAFarlkc/sYR776mdUfmgcDjO8Iib117bQSQis2rVSvR6LQqFMDFqLiIpxFPbSlXK4VGpSj1+ISOzsiwTjsQJBlLOku7xMG5XCLcnhMMRZGDIy8Cgj6EhH6OjfuKXqVatIMCSxTncclM5WzaXYpmmDvLFGNz09Y/z1DONvPBiM+PThMMDqDUSq28sY8PtpZRoh1DHfUjJEMpEEGUihDIZJDge4tmdAk+9rSEYmV8j4uZ0HdkFZsoWZFKzLJesbC3WUBfpgVbSg22oE378AwHaXuzlzQMa9pVtmrZWLaTKM91zZxqbRl+n4wfvYL9hIwu//WXMVfNncO5qMUxKJhLsf/SvT11zRKXIki9WU/6hIgA8mnxa7bcRVGXgHgvwxtONHNrRNWNzNKVSpLQkjfw8Mzk5JnJzjGRmGLBatVgsGixmLTqd8ix32Kvl/FxtJJMyDmeAo0+8Sf3zO/EZLfj1VjyCjj4HuBwzcycWRLBY1KTbtal6spKAQkzNkioUqUVSpHJskWXkpIxMKsdXlmWSSYhEkoQiSSLhJKFIgkg4STgcJxyMn3Om/2rBaFRSlCVQpA5SGhun0q5GEY8gx6LICO8Wt0Q4414nKCYNtlLGXGcYb02IOzkeR04kiYRitA4EafaItMcN9PglwtH5MSip1krUrchj8do8VpcHyAk3YXY0MfhWL12v9qEsWET1V/+AjA0r3heztJMMv7WDV3Y28Ov9uinLdqk1Ep/6WCmf/oNNiFMYrL0f+EAbSgmC8BjwEU67BEz+aeKx14GPybLseu9zr2aulFuyIAh/AfzTxO4R4AZZlqdWabPE+0HcTjK66xBH/+Jf0WZEqN/0EE++7Js2b8RiVfHJW2Ms2lJHr1DOa78/zr5p6s1CSuR+5g+Wc9OWyyNyx/Yc4fAf/z2uw40AmAoMLPp8FabrF7IztI4nn3HQeGj6uocAKpUCrVaJTjdZ4kCJWi3h90fxjIfweMKEL8GgQxBS76FUKlCqFCgUInJSJjnREUqtmegIyYTD8WlNsq4WFAqRNavz2XR9MYsXZVNUaDl1055pZzuRSLJ7Ty9PPt3Anr29Ux4zicGsZv1tlay7sYCyxAnyxvejTqRC0EOuMJ7eELtOqNneZedYIJMEU3/3BAEWrSlg84drMafpCPoiBHwRgv7ou9u+KH5vGK87jNcdwusO4feEZ/V/otZKZBdYyCqwkF1gJqvQQnaBBZ1BhTrmwRrqwhZoxRrqQiHHcLeN0797mN7doxxOlHCofAOD3uk7SRqdkttuy+R2YRd9330DQ81iFn3nT0lfsXDWPsPl4moSb3IyyaE/+jvafvjYqcdyVmew8s8XorGqkREYNi6g27qRiNKMfzzMoZ1dHNjeyejA7Bj4S5KIUimimrieKCWRaDSMUilQW5NHVVUG5WXplJelk5U5N3ny843ouI/6v/6P1P9NltHaNFj+6HZaMpdytENNW5Nz2vJ5kwgCrLuukNtvrWTd2kJ0uksPr0wmk3jHvYyOuhkbG2fMGcDhCOJ0hXB7Yoz74oz7Eox74/h8MQK+6GWvkTsVkiRQlKOkNl/D+s0LWbWxCr3+wsyPvN4wx44Pc+TYIIePDtHSMnbBM+0KSaSozMLCCpHaojgJvR2/yk4wpqTl2BBtJ0YYG/TOSeSOSiNRuzyXRWsLWFEZJy/ahG28EfehPrq3DzC410nefbdR9ZVHsdTO3/7iVAS6e9n329/xs458mhun7nqXVVj4+2/dQEXp5TEgvZz4fBHa2p20d7jYt7+B7/7bRyf/9IETt8tJ5YWuBTYAOlKi9m3gq7IsH7qCzbtorkSdW0EQvgj8YGK3Gdggy/LUdsCzyPtJ3EJKSPU/u43j3/wPTJuL2Gq7ia1bx6YdRc7N1fCJ22Vyr19Hx5CS5352mM6m6cuTFBVZ+Myjy9lyQ+lFhdpdCHIySddvXqD+r/6d0OBEPu4yG4u/UE1ywRJ2uJfx3HPD09Y9fL+jVCmwZRuxZxuxZRswp+tJsyhIt4BBJxIXlCQEFTGUjA0HGOhyM9DporvFMa2p2HuxmDXU1mQgCOAZDzE05CYaS2Iy6tHqlGjUSjQaCY0mVa9QrZI4fGSQoeFzG8LYsgxcf1c1a9bZKQ4dJsd7CEUsRO/2Qdqe66F1WMVxYyXN6VUEldPnmgoCLFpbwJYP11GYJZPv2Yc64SUuqkmIGuKiemLREBc1xBRaogojEclIUlSRTCQJ+CJ4XSG8njCRUIxYNEEsmiAeSxCPJc/YV6kVaHQqtHpVKmx6Ilx6ct9g1qCQY+ijoxiio+gjIxiiI+ijYyiTqXwyR4OL/t0jDOwexuGQaapYw/GsRTj909/PNDolm7Zkcm9aPSP//gKitYDF//gVsrasndH/8WrkahK3kLp2HvvLf6P5X35y6jG1VcWqP19EzupU2F1CUDBoWk6fZQ1RyZgyQTrpoH5PLyePDuKYxhtgtjEYVJSXpVNZYeOGjSUsW5rzgRa7Y3uPcvAL38JTfxIAY76euk/XoLv5Ok6Eq9jfpmXvtk4Guz3nfB2VSsHaNQXcuLmU9dcVYTBcHlfbSDSCc9TFuDdIOBIjGo0RjiSIxuIEgzEGh0aIJwR0OiOxeJJIJEE0Jk+sk0QiSYKhBIFAnEAwtR53RwhcYi6tIEBhjoq6ChsltQVkZxrJyDCgUon4fFF8/gjj4xF6+zy0dbjo7HIxNhq4qPfJLbZSW61hgdlF6Ug9ifomvL1+HKZMhooqaIpmcqJfSzI5e99zo0VDYYWNsroMLDY9RouG0pw4+ZFmMvwNhJp66N42QO+bgyTiSsq/8FEq/vjj6HIuX73ry0E8FKb5xz/iyREbr77lJ5E4ezBCIYl89CNlfOmLm1C+D7wcYrEEe/b2crxhZELQOhk+7fodjbppPPb1yd0Plrg9HUEQ1MDtwB8BG4Ew8EeyLP/sSrbrYhAE4TvAX03srpZlef80x/0l8I8TuzfLsrz1It/v48AvSc14dwLrL1dt4PebuJ0kGYvR8dOnOPlvP0L38HqeDS5l767haXP3Sku0PHyPHsvK9Zw44mDrEw3TuoRCKq/s9tsq+dBd1RQXWefoU6SIB4I0/etPaf6Xn5AIhRFEKNycS80j5UQrlrB1ZCFPPNZLf8e8CpCYEUqVAmuGnjS7Hlu2kcwsLXmZMoW2KDkGH4aEG23MhegaRfZ6SQaixEJxFEoRrU2TmnUSRfzqLDzaIjyaQpyqfNqaPRzb3cPxfX2X1U1zsrzN0kU6Cr37yPLVQyRCw4tD7HnRQ0c4jSZbFaP6c+fwCAIsvq6QzffVUpwZp8Czm0xfAyIzmyGQgYSoJjIhdCcFb0JUkxAkkoJEUpRICkqSgnTqMYUcQ0pGkJJhpEQ4tT5t0UZdaONuJrtfIUcYd4cXT7sXd4eX0aNOwp4oA6Y8GhZs4mQynfg5Zh+MFg233GzjVu1hRr7/GrGElYX/8Kfk33vTvBczV5u4hZTAbfyHH3L8G/95xuOFm3NY/MVatGkpsZNExKGvZNC0DI+u+NRxjiEfJ48O0dk8ykCXe1ojvNmmIN/Mh+6u4c7bKkmfw/JEVzPJRIKuXzxD/df/k/BwaoA2rdLMos9WYV1ewKBxCTsHinnr9X4aD/aft/yYUimyelU+GzcUs3BBFkWFlssStfReLvZ3kkwm8fvGGRwYo6fXQVubk+7BCAMjcfp6/ZdsInWpZOaZqKyxsLQ0SnWkldi2vYjaIqhcwNtbm6gfjNNtKiB0jsHN2UKvE7lpeZQPr3CQmxil540Bet4YxNvrR5eXReWffIKyzzww63XPrzTJRIL+J5/krS43v9ylweOcOgOwui6Nr//VDVSXzf/c2s4uF8+/0MyLr7Tg8UyfwvCBELeCIIiyLM84rkIQhA+TEmsa4EZZlt+cs8bNAYIgrAQmBe3/yrL8+SmOEYEGoBrwABmyLF9wL1kQhHuBJwAFqbzl9bIsd19cyy+c96u4nSTmD3DyP35O9y9/C5+9j8fa8zl5fHpDn7oaHR/+cDb6umU0HR46r8gFWLwom3vurmbLDaVotXPnmBfsH6b+a9+l81fP4dCm02MpZLS4nA4yiMQvrdMhiCnXRJBJJGQS8STJpDynoWJKtQKDSYPBrEZv0mBJ15GWoceeriArHXItYTK1XnTxlIAVRoYId48QGAjiGwjgHwjgGwjiHwgQD009My8oBPSZWjKX2chZlUHmMhtoNTgM1QwbF+GQ8jl5dIgju7ppOjxIfA7yxJRqBRWLsliyrpCqrCDa4RM4e4boHJBobEzS7dbgk2bWaZCUIgvXFLD53hpK7GEK3buxB5pBlhncO8bJ37fhGwgiKgSEiUVUiKe2VXoJrV2DNl2D1ja5qNHZNGjSNSiUF/Y9SiZkYv4YUX+MqC+GfyCAu/1dMRtxv9uBDCtUNBcu43j+MsZC5x75tmUZuOMWC5si79D3gzeJyxbqvv4Fij52F6J0+Vyu55KrUdxO0vWb59n/6a+TjLz7/1OoRaofKqfm4XJExbvXhaAynRFDHU59OX519hmvEwpEGehyM9LvxTXqxzUawDXqx+cJE/BGZpy3O1MkhciG9UXc86EaVq/MuyJi7EoT8wdo/pef0PxvPyMRSnVe7YvSqHqghOy12YwaajkWXcjWNz0c2N4548E9nU5JTXUGC2ozqKvLpK42E7vt/EZ8l8pc/E6iYT8nG9s4dLifpu4orZ0RBnrG5+x+JwiQXWihpCqNuhKZZZkODPX7GX7lBDF1EeHrb6ZDn8f+I8OcbLn4gD1BAIVSkUoLusj7d5HKz8ZDz1JWbqP6q39A4YO3IyrfX07AcjLJwLNPs79jkCea7LQ1e6Y8zpKm4Q+/uJR7bl84r3NrQ6EY27Z38NzzTRw7Pjyj53xQxO1x4I9lWd5xAc/5EvCfwJuyLG+Zq7bNFaeFJsdJhQjvfc/fvwr8y8TuWaV6BEH4JPDz6f4+ccxNwIuAipRD8wZZlltm71Ocn/e7uJ0kNOKg4dv/w+gbrzP+6Uf43X49g73T54qtWGbg3nuykSqW0HhoiK1PnDhvSJdep+SGTSUsW5rL0iXZ5OaYZmV2KZmUaWt3cvjIAIePDnL4YB/eOSoNIQgp0y21WkKjk0izqbFlaEmz6Uiz68jMN6LWqIglIB5LlYCJxxPEYjKynHq+IIogCIhCEhEZhZBAJIFGSqJXJzGo4xjUMQxiEFXch3piEf1u4oNjhIb9hMbCEwJ2QsgOBkmE3xWekkGHsaIYY3khpooitDmpEVU5kSQZj+Nr7ca5vx53fQty/N1zpVCJZK/KoPjWPLJXZhBRWxk2LmTEuBBP3MCBNzo4sruH0f5xopGrxxAlVUuwmEVrC8iSRilw7yY92EYyLtP1ci8nn+zEP3Dp9XIVKhGFRoFCpUChFlGoFUhqBQp1aj8RThD1x0+J2XgofrbjwmkkEegx59NSsYYWKYvYeU5pXrGVD92sZfXIdjp/uAdZY6Pu61+g8KN3vG9E7SRXs7gFcB48ztv3/BGhgTMd6LU2DYv/eAUF69MQOPM6FFYYcenL8WgK8WpyCCvTpn19WZaJhuMEfBGikQSJWIJ4PEk8lkyFxMdT66AvylCvh6Ge1DJTMZadbeSeu6u5566aD+Rs7uRg6KRRGKS8GyrvL6bwplz8piLaVMvZfkzN8X39tJ8YueD8e71BRWaGgcwMPVmZRjIz9GRmGsiw69HplGg0StTqifuJOpW+ISlFkEGWJ/wYZBnk1H1u8rHU46ntUCjMW2++BcD6DdejUatTfg4yp0yuJp/LxOud/bd3X3tyP56QU9+xeJJYJMxQTzdNrU66R2QGhqO4RgIX7UcgqRQUlKVTUpVOXYnM0jwn1tEWPFuPMLRnmFE5F9eaLbQrMznc4CAQmPkssqgQyC60kF+aTn5ZGln5ZvQmNTqDGs17jNlkWYZEHDmZRE4mcLsiHHirl4NvdeI7x6ydQiHw0EOL+MKnV15w9YWrGTmZZOiF59jX1s8TTTZamzxTHicqBO68s4T/96VNGC9TaP5c0HxyjGeea+S119sIzPC6qZBEMnJNmNLi/P5/PzH58PtW3CZJdWFeIZVbenAGz5msc+uXZdk0x02cdQRBWAK8A2gBP/Ad4K2J/Qd5t1RPK7BclmXfe57/Sc4hbgVBWA1sJ5WnHAM+CRw/T7P6ZVn2XMznmY4PiridxNvWzfGvfRdf53F6P/JJntoFzpGpc2QEAVavMHDnh3JRli2m8dAgO184SdfJ6XNyTyfDrmfpkhyWLslmyeIcsrOMaLXStII3kUjicAQZGvYxOORjcMhLY+MoR+uH8M4wR/RykGtPsig/wOKiENdVBsi0vKtYkgmZRDRBIpIgGU0SjyRIRJMkIgligThRb5SINyWMQo4wwbEwwZEQwdEQsfcIdlGtwlhWiLG8EGNFEcbyIkwVRRjLC9Fk2Wc0cBAPhhjbfZjOnz9D3zNbSUbfvcBrbWqKbsqDleXsH7OxvSmNjoGrJ9TVnK5j+fVFLLu+mNwsBZm+E2T56jFER4kGkrQ80Ub7871Exq9seN17kYEBQw4tRUtotZRxvn6bQhJZvCqHO1ZHKT3xOh0/OYjCkk3t17+QmjV4n5SWeC9Xu7iFlHv7rnu/hGPv0bP+prZoWfntO8hZLCHEpx4ojIlafOpsAio7IaWVkNJKWLISkUwkxQufDZJlGY8jyFCPh4EuN0ff6WG0/9yGVpIkcsPGEu7/cB1LF2fP+3D2C8V1uIFjf/1dhrfuPvWY2qqi/O7ClCN2WhoOfSVdchl7GkRO7Bug9fjwrM+qv99QSCIqjYTOoCI900B+aRp5eVqKMyJUpHtID3cSPXCc4T2DnNzvp0tTgrt2Oe1JE31DFzYQacs2UrU4m4rFWZTV2EgTXRgiwxgjQ+hiztNSRCKIcgxBTiKQ5L3f9ISgwK0tZVBTzdvNBvZs76G1fvqZvMwsPX/95xtZf13hRZyhqwdZlhl++QX2t/TweKOdlsbpo/GqatL4+l9vpqbcfhlbOHvE40ne2tnJY78/PqNZ2qIqG8VVdrInzB/tOUYkpYKxoQEeXPU+LwUkCEIjqfDbyTfcDfwUeE6W5SnvLIIgfBP4FhCQZdl4Odo52wiCcCfwG2A6cd4K3C7LcvsUz/0k5xa33wIu1IDqU7Is/+ICn3NOPmjidhLnoRMc//r3iMdHaLzpIZ57M+UiOxXvitx8VOWLGB30ceDNDg6+1TVjY6JJFAoBvV6FQa/CYFBhMKgRBRge8TM8cvHlbwQB8krTqViURcXCLCSliHPEj3PYf8ba6579qlKZCQ+lY62UuTuw+0bPuqGeC1WaBV1+Frr8bIyl+WeIWG1e1qwKm4jTTdevn6fth48x1DVGU3oVjbYqnDrbrL3HpSCKArZsI/llaSy7vpiyGhv2SAdZ3nrSg22IJPF0hWh7po3urQMkomd/VwRRRFeYgybThjYzHU2mDc1pa1EpERp2EBocJTQ0llpPbIdHHJw3EW+qdquUKK1mXLZ8TuYu5FjChtt3/sgCW5aB6zfZuaOsj+RTr9D5XAea3AJqv/FFCu6/5X0raieZD+IWIBGJ0vB3P6Dpn3+MnDh76l1p0rPsbx+gYHM+orcFYjPLs00ISqIKHTGFnrioJikoSYgqEoISWRBTCyIJUU1QmUZQmU5QZSMpvjuTIssy3S0O9r/RQf2e3vOWnyktSePD99Zy+62Vl80s6WrBfayZpn/9Cb2Pv3rq/6hQixRszCF/UzZZy2zE1UYc+kp6KGdPk0TjoUF6287vuHwNUKkV5GSrybfGSHoDOEci+EMCAYUWd/TCrmVqjURZXSaVS7KpXJRFocWHNdSNNdSJOdyHYmqPU6L+GPFgnHg4QTycIBFOEI8kiIdSA85yIokxz4C51Iio0+DSldIYKOO1fbD/rZ5pZ3M3XF/I1766Ebt97sPQZ5NEKMzQi09zdNDF7xvsNJ+Y3pfEkqbhi19cwX131M3LAbDx8TDPvtDME0+eYHjk3Ndgg1nN8o0lrLyhhIzc98gbOYk25sbX18zNm+6afPR9K24l4KvA13jXERkgSapkzVGgg1TuqYGUc/KdpAySjsiyvOKyNHQOEAShEPgyKbOsPCAKtANPAt+XZXnKq/41cTs/GN11iOPf+B6iPc6BJffw4hs+QtNMNQkCrF1p4N7bTSgrlhCU9TQfHmT/9g5ajg1djC64JKwZeioWpsRseZ2dbOUI6cF20gPtqBJ+ogo9UYWe2MQ6KunxxvR0OrR0jygYHgwy0u9ldMCLc9g/KyVh0pJ+Fno7WKoYw25WorIYUVlMKM0GNFl29PlZ6Apy0OVnoc/PRtJfvnDBUDjGjp1dvPRyC/sP9DEb6VWSUsRg1mC0aDFaNBgtGlRqiVAwSsgfJRSIEvSntoOBKLFIAlGRErFZeWYy881k5pnIzDdjzzYiSSL66AhZvhNk+k+gSgSIBmQ6X+6m89VevN1T37QkvY7Sz9xP5ZcfwVCUd1GfJRmPE/cHiQdDJIJh4oHQadtB4sEwkk6DympGZTUhmU20j0TZsa+f7W91MnCeGTRIhXstWJHLretElkcOMPjzXfTtHCJt2QJq/uIz5H1oSyqs/QPAfBG3kzgPnWDfJ/6S8aazxnIBUJqNFH/8Lio/tR69JQjj3eDrheTsGbbJQERhJKRKJ6C049SX4daWgCASCkQ5squH/W+0nzeFRK1WsHJFHtevL2b9usLLkjt6tRDoGeDkd39B+4+fJBF8d7BTZVKSty6L/I3ZZC5NJ67U49KV4dXk0h+00dynoKfNTV+7k74O12U14vsgkFNkoWpJNhWLsqkuEbHHerCEurGGulEm3/0/jXf7cLd58XR68XT48A8EiHijxINxZuyMI4AhR4e1zISlzIypIo3IolX89FAR21/unrLEkFYn8fnPreSh+xde9bnsvrZWera/yFveDLYfFentnL6ipsWq5qGHF/LxB5agVs+/EOzOLhe/f+IEL73Scs7SjoIAlYuzWbW5lOplOUhKBWIyii3QiiE6jC7qRBdzoom5EUnSP+aj8IFTzvnvT3F76g0FIZOUwP0MoJ54eLpGTNa6/cx8dEz+oPBBF7cwEbLyxh7qv/EfqGot7Cy8ha1vuomEpr5QCAKsXKrlwc0JLLV1OHXluB0hGg7009k8RmfT6AXP6M6E9EwDpbUZlNRkUFKbQaZVJi3YQXqwDWuoE2UyQtQfY2j/KN4eP4IkolCKiJKAqBQRJRFJJ2HM02PM15M0WAiqbASUNsaFdIa8WoJRBcGoSDgq4PaLjI2GcQ77cQz7GexxE7uAPNSlS3O470M1bN5Uikp1ZWbhkkmZo/VDvPTySd7Y3jGjvBO9SU1ZXSZ5pWnkFVvJmXDDDgWjRIKpUjk6oxqjRYNGp0QQBMRk7JRjsCgnzii/w2mjwPFYAkEUUChE1PFx9NEx9NHR1Doyii7mQCHHSSZgcL+Djhe7GD4wNq0xiDbbTuWXH6Hssx9BZTXPzkk7B/F4kqPHhtj+Vgdv7ujEMcMZnfyyNFautnFr7RjGd7bR8VgjrmYPObddT/Wff5qMDSvm5Wj5pTDfxC2kZnFP/O33OflvPyMZm/63lL56MUUP30nurevQ2wXwDyGHRiE4CsExiLghOTu+AVGFnlF9NaPGOryafGRZpq/Dxd7X2zj6Tu+MTOJqqu1sWFfE9RuKqShP/0B8FyNON20/fIy2//kdoaEzU21UJiV567PIvS4TW40VtVlFQlDgV2Xh0+TgUebQPW5mxKPA7YrhcQbxOIKMO4N4nEF8nhCxSKqE2NVQ21wQBYSJNUwYLylS90SFInU9FhWp7dRjIuLE4wqFSDQST9UFHw/P2iC2zqiiclE2lYuzqV1golA1hDXUhSXUhTaeEmPJeBJXyzhjJ1yMHXfhaHAT9c1sUEGTkYahojiVylNWiLGsAENpAYlwJBW1MzRGeGiM0NBEFM/QKOb8KMFHH+WHz0L3NMZWZeUWvv3Nm6isuDoiniZJxmIMv/YsR7odbO21cWC/h2hk+muMyaLm4YcX8PEHlqDRzC/DrEQiye53enj8qQb27e8757GmNC2rt5Sy8oYSLDY9ghwnPdBOhr+B9GDbtFEAHyhxe+qNBSEN+BRwP7CMlNPve4kA35Fl+duXs23XuDCuidt3kWWZgRff5MS3vodmVQ47sjaz9S3PtCIXoLZayyMb3ZQuKsBhrMGvykRGYGzQR2fTKJ1No3Q0jTHunHlYl6QUsdr1WO160rMMFFfaKanNIN2qwBzqmQhP6kIfTYUAB0ZCDOwZYeCdEcbqnSTjM7guCKCzaTAVGjAWGDAVGNBnalHqJZQ6CaVeQmVVI+tMBJVphJRpeKQsmsfSaO5M0nVyjJb6YUL+8+d7msxq7rq9ins/VENR4dyWTZqkp9fDy6+08MprrQwOnbvmLIDFpmPBqjzqVuZTVq7DFu3BFB7EGBnAEBlBFsSJGXAdCVGNIhlBmQgjJUNIyfC0N4jJkjuxCaEbFzWIchxdzIEy+e4ASDIhEHQmcbe5GTkwQO+OIaLe6Tsx5roKqv/sUQo/ejsK1dyGV0ajCfYf6GP7jk527Oyacf53Zp6JZWtzuHFRkIrgMYaf3EvXq31EPHEKP3o7NX/+aSwLKue07Vcz81HcTuLv7ufEt75P96+fR06ee7rIWFFEzq0bsK1ZgnVpDcbSgpS6SIQh6oOIN7UdD0MiklrkBLFohM6OdiQhQWGWBUVsPCWKY9PXEQ1JFkYNtYwY6wiqMgj6Ihza0cWere04ZnAdANBoJLKyDGRlGsnOMpKdZSAry0BGhgG1WkIhCoinLQqFmFqLAqJCQBTFU9sKUUCtltBNDIJdjSQTCcbePkjP46/Q9/RWIo6z8xENOTrSa6yk11hIr7ZgLTMhSuJpJcVMRCQjYclERDIRVRgmSolJRBMSkbhAJCYSjonEEgKCICMgIwogICOIE2tAFGQEIbUGUAgyCDIiqeeJk8fLMqKYes6pxwU5NdgopByrJl9LmHCwEpABGUGWUchRFMnYxDqKKMdQJFPbp/6WjCImIkTHIwTHk/jHZYZdSjqiGXRG0mkbU9LVEz5nH2ESlUaiqNJGWV0mFbVp1GV7SY+ceS+PheI4G90TYtaNs9lNInIRqUqSAuuCStKW1Z5aLAsqUWjU53yaY98x6v/yn7GuNvF28T089UQ/wSnu8aJC4KEH6/jDz625orOdyUQCz+E99DfWs33EyhuHkwz1nvt3bjKrefChOj7xkaVzWt1iLnC7Qzz3QjNPPdvI0HmuZwXl6ay/vYKFqwtQKMAa6iLD34A90IKUPMc9XFSBxkqvK0HxrV+bfPSDIW7PaIQgGIFaoAyYnDroA3ZMl497jauHa+L2bORkkt4nX6Phb7+LblMpb2VsZtubbiLnCPkoLNDwyEY3N1ePEdTnMa4pYFybj1edS0KQCAVihAJRwsHYxJLaDgVjJOJJzGnaU4LWYNYgigLq+DjaqAtLuAdrqAtjeBCRJHJSxnnSw/CBMQb2jOBum5ufmSCCLkOLqcCAqdBAeo2FjIXpSDYT45p8RtVlHOi3UX/UTcP+flwzKF6/dGkO999Ty6aNJbM+m+sZD/P61jZefrWVhsaR8x6v1kosWlPAsuuLqSjXkhFqxR5oxhLqOaNebHA0RDIhI2kVKHUSCpWCyHiUsDtCxBMl7IkQdkeJTKwTkQRKgxKVQYnKqERtUqFJ16G2alCZVCSiSTwdHtwnnYx3+Rjv9hEYDp3TdRhAoVGTe/dmSj51L9k3rZvTznIwGOOdvT1sf6uT3e/0EJxhCKLVrmfJdflsWpZkqb6V0NbddL3UzchRJ5JOR+mnP0zVn34SfWHunLV9vjCfxe0k403tHP/Gf9L37LYZ52srTQYsCyrQl+RjKMpFX5SLNtuOKs2CKi0V8q7QqIkmEmx7600EQTjj/MiJCIQ9EHYhe7vB2Qz+M/tdMuBXZTFsWsSIoY6ooKW9YYS9r7fReHDgss8mqlQK0tN0pKdrSUvTkZ6WWufmGKmuyqCkxIpSuvI55sl4nJE396WE7jPbiHmmvrcoVCLmYiO6TC06uwadXYsu4921Jk2NKF1doauJ6Gl5qJNLKH5qHXZFCLsihFwRws6JtSt1jZ+MnFEY9URWr2OgaCHNEQMtHR5isQsTn/YcIwXlaZQXq6kpjFGZ7kHr7CfW0o63foDAYJCQM0zYEyXijhLxRpHPUQt8pgiShKWunPTVi8i6YTUZm1ahsZ3tZi7LMj2Pv0Lrv/8Xhs/dyq9aSzmwc+rZwewcPX/z9c2sXHZxqTAXQ9zrZnTXa5zo83HYaeJYq0xnm2fKUOrTsVjV3P9ALZ/86LJ5J2obGkd44qkGtr7RTvQckSiiQmDh6nzW315JYYUNXdRBtvcImf4GVIn39M8EBVhKEawVoLWDxppaJB2CINDW1kZFRcXk0R88cXuN+c01cTs9yXic7t+8QMPf/xfGm6t4076ZN3ZMH64MYLOruXtthAcXdWHVJ0giTriFZpAQ1SnDFFFJQlBNmKeokIVUiKo2lqrnqo250cQ9Z8wGhlxhhg+MMXRgjOHDjiln9SSjnrwPbaHwI7dhXVxNMholEY6SCEdIRlLrqMeHt6kdz4lWPCda8bZ0nVEqZyYY8/VkLkknZ20mGUttBA15jOqq2DeUy77dY9Tv6SEUOLcYMps13HFrBTffVE5tTcZFCzW/P8re/b28+lobu/f0nNeQSxAFyhdksnxjMQuWZ5GT6CDLdxxrsANxQl06GtwMHRzDddKDq2X8irsRZ1y/kuKP30X+h29BZZ47bz7PeJi3d3Xz5o5O9u7vO685zyT2HCMLVuWxdrHECns36sYD9DzfSs8bA0S9MfRFuVT+8SOUPHrfnLZ/vvF+ELeT+Lv66PjpU3T+7OmzQlwvGUmBOt2Kxp6G2mZBbbOeWjSZNiy1ZViqc1ExjOxsBncLxN/NUUyiwKkvZ9i4CKeujKA/xsmjQzQdGuDksaGrIndUrVZQUW6jpjqD2ho7NVUZFBZarmhuYyIaZWz3YRx7j+HcX49jXz2RsekNed6LIAqpcmKnlRVTqFKhwJNle+TkRLmaiTI9nL4/UbJnsmwQp5UK4j3Pk5PvOY7Tjk/VFJp5PuqpDyBgqixGrltIb1Y5zUkLJ1rH8c1yypGkUpCVZyarwExOrobirCTZlijZpjBWVQBV3I8YD0MkjBAOQTSauleJMqKcmtUWSM1QI8sQjRHzh4kHYsQCcWKBGDF//NR2cCyMrz+Ary+ArriUzBtWk7l5DRkblqM0vJt7Hg+FafneLxnd+RKjD32Knz0bYGxw6tnCO24v46v/73qMhnPPDF8MyUgIX/MR+k62sH9IyZE+NQ0Nfnzj05cymkQUBRYvtnH/A0vYvL4E6SobcDkXfn+UbdvbefrZRpqaz31N1RlVrN5SxtpbykmzKrEHmsj2HsUc7jvT4FNtgbRqSKsiFDThPt5BoGeQqNNDxOEmctq6f2iIzw7tm3zmNXF7jfnFNXF7fhLRKJ0/fYrG7/wAy+017C3Ywms7Aue8uEpKkZXVIh9bMcCKch8Xot2ivhjeHj/ePj/j3X5GjjjwdHinnNlT6LTk3rmJwo/cRs6tG84bdnTWZ4tEGatv5p3fP0NyyEmBPRM5ECI27ifYP8x4Uztx3/Qzskq9RM6aDPI3ZpO9KpNxYym9mjp2NhnZ+0Y37Q3nn0HNyjJw05Yy1qwuoKrChtmsmfbYYDBGR6eLw0cGeGdvL8fqh0kkzt9rycwzsXxjMUvXF5Gvd5LlO47d34QyGUZOyowccdC/a5j+d0YIO6982SVTZTFFH7+boofvvGiDqJkQiyV4e3c3L73cwu49PSRmOEOQW2xlwao81ixWsMjUhXn4BENbW+neNoCr2QNAxsaVVH75E+Teuel973x8MbyfxO0kyXicwZd30PfMNgZfffuCxNClos3NxLKwEuviSjKXZmHJTaCS+xGizlPHRBR6HPpq3NpiPNpCwkkVXc1jNB0eoOnQIM7zuIxeTswmNRvWF7Hp+hJWrcpDe4XzAmVZJtDVj2PfMRz763EfaSLYN0xwYOSCB0ivFhRaDZosG9psO4aSfAylBYh5uXQkzRwbhQNHhhgauHIBiBqdEpNVi1avRKNTotGpUKkVKCQRUUzlBZ8KhZcmwuMVE+HyooxClFEqkihEGUlMIglJTNoENkMMuy6EVTGONDZGtHuIUNsQgmhAnV2MOr8UQ0Ul5tpyktEYx7/5PaImH6+m3cLWl3qmnCW1pqn5i69ez+brSy5qUEaWZRLeUcabjtLRNUq7U6bLo6ZnTKSvP8LooG/G+c7pNg233lrOQ/cvISvTcMFtuVLIsszRY0M8/2Iz27Z3nNMgCiCvJI21t5Sz5LoCLDjI8R4lw3/ijJQnTIVE5FxcXQlGD/bgPtKM+1jzlOkHp+Mkxh/TNbl7TdxeY35xTdzOnHgoTMdPnqT5X/8P67pcji+9ixd3xXAMnzscNzdD4jpFJyuDh9FrUiFdCtXEKLZKRBAE/ENBvL1+vL1+Iu5zzxRKRj25t28k754t5N6+8ZIdh8/VyZZlmWDfEJ6GNhzvHGH4zX24Dp6YsiSI2qyicEsOxTfnYajMZMS4kKOBKnbsdHFox8zLJmVlGagst50ROuQPROnsdM0of3YSg1nNknWFLLu+mJI8kazACbJ8x9HFUh1ud7uX7q399GwfJOw6d9sEheLMzywIKLQaFBo1Co1qYq1G1KiR43HCI07Co87zhmoKCgWGklQJJFNlMcaKItJXLMC6pGbOwo5lWab55BgvvtzCa1vbGJ/BCLggQGGljQWr8lmzUKRG30mauxHHzna6tw0wfHCMZFxGVKsoeugOKr/8CayLquak/e8X3o/i9nTkZBLXkUYGX30bx95juA83pn4TlxlTkZnCG4vIXm3HWqQ6ZSokI+BXZeLWFePWFuFR5+N2x3GNBvA4grgdk+sg7rEAPneIRCJJMpmaKZxcX45umFotsXZNPpuuL2b9dUXnHAC83MjJJOFRJ8H+YYL9IwT7hwkPj50VNZRaosixGIgigiimjJ4UipRDuihMPDaxPfF4IplkcGgQBIG8ggKUatVZx0++DpPboohCp0Uy6FAadEiTiz61Vhr1aDLTkQx6RkcDHK0f5ODRQY7VD9Pd6bqg/6koCmQXWcjOM1CYBaX2IOpkEK8/gWssxshwgg6Hkp7hJPGZ+GFcZtQaCYNFg9GswWhSYjGJWI0yVn0CixTCLAewCGHMyRByRycjKzfxvy8J9LZPPXClVIrk5OooytdRUqintFBPRZGRPJueuNfN+JiT0TEvY+MxHAFwh0TcIRGnX0HfUJzB/sBFRVMoJJFlS9J58KMr2LCmEFG8OnPcp2J01M9Lr7Tw/Isn6euf3tkZJurCry1g7S3lFJcayAw0ke09gjEydGqWNiZbcHYIdL7UzuAbx4kHLryU1zVxe415zTVxe+EkIlG6fvUcDf/4IyzVWrpvup9n96no6/Sc83kqlUiFKUJZ20EK24+glGfuPKy2p5F392by772RzBvWoFDPnonQhXayY14/Izv20/fMNvqf3z5lXpa13ETpnQUUbMklaC2hR7uEt5qM7N3WSUfj6Ky1/b1IKgV1y3NZen0R1QvSyYq0kOU7jiXUjQAEHeGUoN02wPg0ZXUAjOVFZN24lqwta8ncuBKV1UwwGGTra6+DLHPTrbeg0517UCEZjxNxuAkPOwiNOAgPOwgPjyFIUkrMVhRhKMlHVF6eGRmHM8grr7bw4sstdHSef0ZNVAiU1WVStzKP1QsVlCvbsfma8B7qovuNAfrfHiYWSI0s64tyKfvcg5Q+eh+ajPS5/ijvC97v4va9yLJMaHAU15FG/O29+Lv7CXQPEOgeIOJwE3V7SYTOP9ByKahMSjKX2rAUGzEXGzEVGTDm6hFEgSQiAVUGUclATKEjJuqIKXQTtXh1KefzMz/R5AcjkRRIyCIJWSQuiySSIglEErKCQFSBdzyOfzyMzxPGNx7G5wnhc4cZ6vFc8GyxQiGwYnket91SwQ0bS9Dp5lf+4IUym7+TaDRBZ5eLEw0jHDw6yPHjw4xexGy9LdtI5QI7S6sEVhc5yaMHyTXEWL2D0WNOHE0evF0+4uF37/EJQWRUZ8dVvpCxgir6ohpGXFc25eVCkZQiKrWEpFKQiCcJ+iIzHghQayRESZyRCeVMsWdoWLrIzqYttaxbmYdON39qV8diCd7e1c3zLzazZ1/feX0ALDYda28uZ+UNJWSrnWR7j5Dhb0KSU+cz7JMY2Ofi5G/r8fVcerTBNXF7jXnNNXF78STjcXoee4nGf/gRWlsU3/338XpPFof2j5E4T+6nWiVSoQtQ1rqfwp4GpPcIXVWahbSlNaQtqyXn9o3Y1i6Zs9DOS+k8JKJRRrbvpef3r9D71Otn1E0EkHQShZtzKLuzAH1VNsPGxRz1V7B3j5tje3pn7GB6LhSSSEmNncXXFbJoVQ45Qj8Z/iZsgZNIcpRYKEHfjkG6tw4wWu+c1rhJk2Wn6KE7KP743VgWVZ01czpfxUhT8yi/fayerW+0nzfsWFIpqFqczYJVeayoEyiS28gINBNu66d7az+92wcJjk0IEEEg57brKf/iQ2TfvO5a6PEFMl+/T3NJPBQm5vGSiEQJev28s3MnciTG0opqZF+AyJgrlRPmcBMZc+Pv6me8sY1k9OLzZhUqEWOBAXOREVO+HlGVCvcUFCLCRNjn5PrdHM53c0LlZCqyQdJKSFoFklZCqVNM7EuorSqSGiMRKeUoHJlwFI5IJnzqbBwRE/2dLvraXfR1uOjvdOGZYYktjUbiho0l3HZrBatW5F319Ucvhov5nYTDcfr6x+npcdPV66Gtw0Vbu5P+Xs+MUy9OR2dQUb4gk4U1GtaUeanQ9aJxdOOoH2P0mIvRo07Gu7xn5fUKkoR1STW2NYuxX7cU+9ql6PKyTv19fDzMyVYHHR1OWjtctHc46R/w4vXM7SDPfEWlUlBdYWTtdcVs2VxNcaHlSjfpgmnvcPL8iyd5+dUWPOf5PwuiQFGljboVudQty6BA0UtJ7ASW2CCiHCM4EqJ/9zBdr/fjuQhjUaXZiLm2DE1GesrHIN2CKj3lazAcCbLuC49MHnpN3F5jfnFN3F46yUSC/me20vQvPyE20oX10c3s1q7kjV0BXGPn76Ro1CKldpGaDAUr6jJYcesSTMW5sx6WKssyHk8YhzOIyxXE6QrhdAYZGfXS2NhJKCJjt9tQqZQoRAFJEtFplWi1SnRaJXq9EqtVS5pVm1qnaUmz6k65Hse8fnoef4WOnz2Nc9+xs94/rcpM2V2F5G/KJWApYkRfQ70zl8P7U2WFhns9xGfgPCmIArYsA2ULMqlakkNFTRqZDGDzN2MPtKBMptyNhw6M0r1tgMF3RkhEp35dhU5L/r03Uvzxu8ncvOacAm0+iZFkUmbX7m5+/bt6jhwdPO/xxdV2lm8sZs1SNUXJFuz+Jhgepmf7IN3bBlI53xOo7WmUfvp+yj77wJzmA7/fmU/fp8tB2OVh6NW3cew7RmTERcjhwtk3gByOYjAZUUhSSkWmnHMmBGaSZDxBfNxHzBcgEYqckf8paRQoDRJKvTJV5sygRLJbSCQEwmNBwqN+QmNBkpE4yYlCMZKcYDavvIIIWrsWQ44OY64OQ64eQ44eU4EeU4GBuKTBp87Fq8nFq87Fq8lj1JWk8UD/qdrp09W5Pp30dB233lzOLTeVU11lv2pLD82UeDyJ1xtmZHScN97YRSwus2jREkRRIhZL4vdH8HgjjHvDeLwRxsYCjI0FcIwFGL9EcaiQRIqqbNTUmllVEWGJfQCjqx33kUFG652MHnPi6ThbzGpzM7GtWYxt9WJsqxdhXVqLpL3wEPJIJM7IaICRET8uVxB/IIrfH8XnjxAKx0kkkiTiSeIJmUQitY5EYoyMjJJMgtliRZYF4vFkakkkSSSSxGJJvONhPO7Qec0XrzQ6vURutpaiPB2V1bksWFzAgir7vKtJC+DzRXh9WxvPvXCSpuZLi1wTRAGtXonOoEJvUKI3SNisEhkWmQx9hAzJhz3iQO0YJtY9SLh3jLAzQtgRJuSKkJzoYwmShNJqQqnXIiqlibB+YeK6ITAaCfBo+47Jt70mbq8xv7gmbmcPWZYZe+cwLd/9JcNbd5B3dyXd6+7glWN6musdMy4/oVIpqKjJYNnibJYuzCIn24TdpsNoVM+owxKLJxgY8NLV7aa720Nnt5vObje9PR4CgdkPg9LrVVisGuw2Pfl5ZgryzaQlAsR37iT03EtIPs8Zxyv1Evkbsym8IQf7YhsefQkuXQluRRYdTgN93T6cw/4zwp1EUcCebSSrwExWpgqL4MYc6iEt1Ikp3IdCTpCIyQwfGKV/1zADe0emrxMrCGRtXkPxI3eTd8+NZzhEnov5IEZCoRgvvtzCb39fT1/fuXN3rHY9yzcWs2pdFrX6LrJ89WjG++nfNZya5T7qOKPzZl+3jPIvfJT8+26e1bD4Dyrz4fs0VySTSQZf3kn3r59jbO9RwiNO5NiEKBU4VWtbqVci6SUUShGFUkRUpnwKJrclrYTaokJlN6PIskFaGl6NFVfCiCOsZcwn4fAKOD0yLk8CjyuK1xMiFkmQPC1v9nR0BiUFuXqKcg1U5JuoLrFQXmnHYDGQTCRIRmNnLTGvn+DACKHT8k6D/cME+4YJjzimPQ8qoxLbAisZi9KxL0zDWm5GUAgEVBk49JU49FWMRKw0HR6gYX8/LceHic/AxTw3x8jmG0rZckPpJbnRzyXJpEx//zht7U6a2xy0tDoYHQvgHQ/j9UYIXUYXa61eSVGlnfIKPQuLYyzOcpDmbcd3qIPRY05G65142s8Us6JaRdqy2pSQnRC0p8/KXm4u5HoiyzJ+fxSnK4jLFcLhDDLiCDDmDOJwBnC5ArhdQdyuMN7xCNFpBocvBYVCwGRWYTIoMBskzEYl+TkG6paUsGhxHlkZhqvyeztTJs2hnn6uie1vdpyzhM9coNZKpGcaSLPryLBLZKUL5KTFydaHyBRcKN1jJAaGiQ+OEfeFSUZOL5UVZ8gb4iNHD06+3DVxe435xTVxOzf4u/po+a9f0/HTJ7HVGNA9sImD0kJ2H0vS3uyc0Uj8e1EqRaxpOtJtOmw2PUqliN8XxR+IEPDHCASiBALRy9opmAl6jYgl5sM81o/dP4ot5MAedKCPBdGmqynYmE32qgzSqy0oDSqCShtBVRpJQUJGRBZEQEYb86CLOVEmAqSqHsiMd/kZOepgrN7F8KEx4qHpbyDmmjKKP/Ehih6+C11u5gV/jqtZjHjGw/z2sXqeeKoBn296cyylSsGitQUs31jE8iIfOf56bIFWXE0OOl/uo/etwTPOoWTUU/zxuyn//INYFlRejo/ygeFq/j7NBaHhMZr/9af0PbuNQM8gJJNorGpy12ViW2xDW1NEIjsfhzIXT0SDP6LEF1EQjAjEYjLRaPK0dZJoVCYYTOB2xxh3Rxh3BfF5wudNCbkYBAGyc00sW5rLrVvKWL4sd8ZlRcJjLlyHG3AdbsR1qAHXoQaC/cNTHivpJOx1VjKX28hfn4U+S0dIMp8SuqNk03R4kMM7u2mtH57RgGlWloEtN5Sy+YZSaqszrkg5lGg0QVu7g4bGUZpaxmhtd9Ld6SYSuTIuy+mZBgor0qkqU7G4KESNdRjNUDveo72MNbhxNLjwtPvOuE/ri3KxrVmCbfUi0lcvxrq4CoXq6hnkm8vrSTAYw+EM4PSECIXjBENxguEYQW8Qv8dH0BfEPephT2OQsZHQOV+rrNzMn315AyuW581r8TodXm+Yl15p4clnG+np9lzp5kyL0aIhPdOAOV2HRiuhVotoNSIajYBaLRIJOvjWVx6YPPyauL3G/OKauJ1bouM+On76FB3/9zjBvj5yN+agvOsG9kQq2X0kRtdJ52Vx27waMRAh29NPrneAHN8QmaFRrAU6bLVWzIWG1KzNRO6aQikScoQJjIQIjoYIDIdwnvQQ85+7c6S2WSl86A5KHvkQ1qW1l3QzvRrFiM8X4TeP1fPbx+oJnmNQw2TVct0t5Vy/yU653ECm7ziC20n3tgE6X+5jvOvM3GfLoirKv/BRih66A6Vx/pRSmE9cjd+n2cbb1k3TP/+YwZfeIjziRKmXKLwxl6ybKojXLOS4v5jDLSKdbV5GB3yMu4IzSk240hhNajZeX8wtW8pYvjwXpXRh+eah4TGc++sZ2voOg6++TaBr6n6jtcJE3vps8jdkYSowEBV1OAxVjBjq6I9kcHR3D0fe7qF/BgZxADqdkoULsliyKJvFi7Kpq804w5V+NohGE3R1u2lsGuFE0yiNTaN0dbnnZNDhfJjTtNhyjNizDBTmKqjIjlKd6cXGCInmFtz1IzgaU2I2OPpuKLNCpyV9xQJsqxdhW7OY9FWL0GbZL3v7L4Sr4XoSHvfx5Pef4fUuFU0npi81Iwhw45Yi/t8fbyAjY/7fX2RZ5viJYZ58ppE3ts/uLK1KnTLvuphc8UshGnXTeOzrk7vXxO015hfXxO3lQZZlHHuP0vHTp+h9/FWU2gT5NxYi334D9cECjndKtLX6GOm/PDX1dEYVRos2Zf9v0WAwa9CbUjVyk4kkyYRMPJ4kGomnlnCccCCG3xvG743gHw9PWevuUlATp8TVSZmzjeLxHlTJi5uBlox6cm7dQNHDd5Jz64ZZcyO+GjoPkwQCUR574ji/+s0x/Odwn8wpsrDhjirWL1dQ7D+ALXCSsSNjdL7SR9/bw6fybwBElZKCB26l/IsPYVu9+H05qn41cTV9n2YTx/56mv/1pwxv30vM40WXpaXsnhJMt6/mGAvZcUSg+dgYY4O+GadqXM0YjSmhe8etlSxflnPBvxtZlvG1dTP02i4GX32b0R0HSITPjr4wFRnI35BF/vXZWEpMhBUmRo21jBpqaR/VceTtbur39uIcnrn7r0IhUFVpp7Ymg6xMAzabnowMPRl2PRl2wxlOzLKcuieEI3EikQTBQJT+QS+9vR66ejx093ro7RtndMR/UZFJ50KtkVBpJBRSqp6rQiGi1kpo9Sp0ehVavRKLWcRmBrs5QaYpSoHFT5roRnQMEm0fwNvlxd3uxdPuZbzL964PgyBgqigifdWiU7OylgUViJI0q59hrrmarifOI43sfvIl3hYr2LvHMW1pH5Va5KEH6/jMp1bN+iDL5cDnj/DyKy08+UwjXV3nrhs7FZJKQWlVOlUlCtKNMSxSGG1oHLVrDKl3gERDJ8GWUWKhJLrFdWhXL0VRV0tIVDHU0s9Y1wBBhQKv3oozrmXElcTjjs7KhMk1cXuNec01cXv5ifkD9D7xKh0/fQrHnqNobWqyltlJX19CbPESjrqyOd6loq3Nz9iQj6Dv4vJkjRYN9hwTGbkmMnIN5GWKFGbEyTKG0QpBVPEAqkQAZWJinUyZX02GAidRkBRVJAQlCVFJXNRMlMbQExV1uMMaXAEJl1/C4xNwOGM4R/w4hlM5s25H8KI7OQqSlI53s3jwKPm+/vMavOgLc8m5bQO5d28mc+OqOckJvRo6D6FwjCeebOCXvzl6TqfF6qU5bLijktXFLgrG96P39dCzbYCWp7rwvqcEkqEkn7LPP0jJp+5FY0ub649wjQmuhu/TbJBMJul57CXaf/wErgMnSITCpNdYKP1IDfE1a9k5XMzbe3x0NI4SjVzevLPTEQQwWrVk5JrIz1NTnh0nVxhF6O4hMexGTgooM824c0vpDlrpHISBvgCOId+MO4u5eSY+/KEa7ry9irS0i6s/Hg+FGdm+l76nt9L//Hai7rNz501FBgo25VCwKRtTvoGA0saooZZRfSXtgyqO7+2lfm/fJbvR63RKJEkkEk0QiybmZDBCb1KTU2Qhp8BEXqaAxZDErE1g0cax6qJY1GF0igiKZBRRjiPICQSSCJEQss9H0uMj4QkQdoUJjoUJjoYJjYXwDwbx9QdOlSsDUGjUmBdUkLakBuviKiyLq7EurLzkWvFXA1fb9SSZSND6w9/R336cIyWbeO310WldwC1WFX/4+dV86M6aq97xW5ZlGhpHefKZBra+0X7B17ScIgs1dVZWVoRYaekm/OZ+BncN4m4bJ+R4d1DLsqiKrM1ryLxhNemrFuI63Mjo69sI951Au7iQ0fw6WoM22voVDAxGGOkfxz8+fUrShXJN3F5jXnNN3F5ZvC2dqXqxz72B88BxEMBSaiJruQ3b2iJUVcVEDekMBQ2M+rWM+lQ4vBIuLyRkAZ1WRK8V0GkF9BrQa0GvkckyR7GpxtFFnWhjTrQxDyIJErEkEXeEsCdKxDO5jhJ2R4j5YwiKlFHLpGGLQjVh4qIUUeok1GYVaosKjUWF2qxC0r47uh0X1YQkKyFlGiGlFZ9gpX9cS79TyfBogqFeD8O9HoZ6x4mGZ55rlRb3sXjgMLVjzRjNWjSZ6WhzMlJmHhM5UNrsjLn495zBlew8xGIJnn62kZ/8/DAu19Q5TYIAi68r5KZ7K1hs6iRv/ACCY5j253toe76HiPvdQRJBFMm9cxNlX/go2TdehyBe3R2K9yNXW2f0Qoh6vLT816/oefxVvCc7UagE8jZkkXv/cnrzVvBmo4kDex2M9I9f1WkXKo1EYXk6ZRVGFhRGKY/3kNh9AO/+VvQ5ejI2V8LiBbT4sjjYaeDwAQf9HecPAZYkkes3FHHfh2pZuSIPUby4KIhkLMbIjgP0Pf06/c++QXjUedYxljIThTekhK4+S0dQmYZDV8GYroLWURP1+/o4sa/vskUFTYcggD3HRF5pGgX5GspyElRk+clTO9CMDxBu6sHb4yXiiRLxxoiOR4l4392OhxIkYgmScRk5niQZn/6LpbanYSjJx1hRhLG8EGN5EdaFlRgriubdjOxMuVqvJ8HBEY786T+QKNbypm0TW1/sJTLN/b+wyMhn/2AVN20uu+pErt8f5dXXW3nimUY62s/+HZ6LqqU5XLfKwNoSFwWhkzjfOE7/ziFGjjiRJyLgjOVFZG5eTdYNq8nYtApRqWTk9a342o4wqtHTrS2iZUxHe3eUvk7PBfWhLoZr4vYa85pr4vbqITg4wsALb9L//HZG3tx3qnaj0iBhzDdgytdjzDdgzNNjzNej1ChSJVsnay9CqiMpy0TGowSGgviHQgSGgwSGQwSGgoSc4bPKF1wKCrWI2qJGY1GhtWvQZ+nQZ2kxZOkw5usx5OgQJZG4oCKgysCvzsQrZdDpsdDUJdDd6qS7xcHIeZx9AQwGFQ99ZCEPPbgQk+nCyytcKlei85BMymx7o53v/3A/A4PTd04Xrs7nlvsrWWE8Sd74PkLdDlqe6qL79f4zyiBpMtIp/ewDlH32I+jzs+e8/deYnqu1MzoV8XCY7t++RN9Tr+E6eIKI04M+U0vpfWUob1zLvkA1Ow9GaTkxRugcYfLTIQhgtmjJyzNRXWmjMN+CQa+gtbURpVJg0eKlyLJIOBwnEokTDscJheK4PCEGhnwMDvkYGfZdcgkYURTILUmjus7M0sIwJe4mgq++gzzuI2dtJtZbV9As1/Bmg4Ej+0bom0EnNzvbyAMfruOeu6ov6bqVTCQY232Yvqe30vfMVkIDI2cdYyk1krM6k5w1KYO+mNKAQ1eOU19Jf9hOe5ufrpNjdJ0cY6DTPadh4emZBvJL0ygsMVCZF6cue5xMYRjlcBf+5mHcbeOnwoT9Q8Gz6o8rLSbUNivKNDPeZAy0KnILC1BqU6VLlEY9KqsJldWMympCk21Hl5uJNifzA+nmfrVfT0Z27Of4N/8d8Z41PDtWzt63+qaN7MrM0vKJjy3lnrtqUauv7GBEU/MoTz7TyOtb2whfgKBUSCLL1hdy72aRFeIBHK/V07djiJGjKUGrsprJ2rKG7JvXkXXTOvT52QT7Bhjd+TJtzjCNERuN/SpaW7z4ZqnusSCA2arFZtNjs+nIsOuxpevQapRo1Qq0WiVqtYRarcDhGOTBBzZMPvWauL3G/OKauL06iXn9DG3dzdieo7gONeA+0kQ8cP6auedDodNiKMlHX5iDviAbfWEOymw7J4Z6Eawm1m9Yj0ohIccTJGMx5Fic5MQSD4aIjfuIeXxEPV6iHh8xj5fouI+o20t4xElocDRV+mLi2iQoBAw5OkyFBiwlJqzlJqxlJvRZOuKCEp8ml3FNAZ3hXPadkGk82E97w+g5zUd0eiUfvX8BDz+0GIv58oncy915OHCon+/9915Onhyb9pia5bnc+kAVq6xt5Hv24m0cpPHX7QzuGz2js2iqLqXq/32K4o/dhUKjntN2X2NmXK2d0Xg0yujOgwy9soOx3UfwtfUQG/ehtqrIXZeF/fYl9GYuYmd7Ggf2uxjpu/DZWUkpUlKaxvXrithwXSEVFbazTJku5vyEQjGGhn0MDvpo63DSeHKMllYHgxc5g6xUKSiptrOgRsvCdBeZ7YdRD3aSsSgNxcplNIYreatezf4dPYyeZ2ZUrZG447ZKHvrIQoqLrBfemNOQk0mcB47T9/Tr9D69dUpDKrVZRfYqOzlrMshabkdpUBJSpp+qpztGFk09CrpbnDhH/HhdIcZdQcZdoWlzJN+LRqfEnmPEnm3Elm0kN0OgwBajKC1ApjiC3t9HsLEXZ7MbZ5MHZ5P7DOMmpdlI2tIarEtrSVtag7muHE2mDXWa+ZRXwtX6O7namA/nSU4m6f7tC7T96GeEH72f3+3T0np8+rqvZrOKBx+o46EHl2A0XL77VjAYOzVL29Y6fSmvqdDolKy9qZR7N8SoDuyh77HDtD7dTdQfJ33lInJuXU/2zetIW7EABIHx44c4dqiR+lGJxiE1LS2+SwovliSRnDwTxcVplJakUV5sJTvLSEaGnvR03YzN79ra2qioqJjcvSZurzG/uCZu5wfJRAJvcweuQw04D57AdbiRiMNNIhwhGY4QD0VIhMKnRKVCo8ZUXYq5tgxzbTnm2jIsteXoi3LPCkGd7ZtiMh4nPOzA39WPv7MPf0cvvvZexhta8Z7sIhmLoTarsNVZsS9Mw77AirXCQkxlxKGvoJcyth+EPa+3MzowfYdRp1fyyMOLefjBRej1cz9Sf7k6D61tDv7z+3vZu69v2mMqF2dxywM1rM3oIN+zF1/DAA2/aGPowJlCOPOG1VR95VFybll/LfT4KuNKdUaT8Ti+jl58Ld24j5/Ed7ITf1c/wf5hwqMukuEISr2EtcJM1sYipOULaJNKONxjpP64j8FuD7GLcAO1pmlZv76Ie+6ooq4287xhh7N5foLBGG0dTk6eHONE0yj1x4cYuIgwXYNZTUWdnYXlIgs1/eQHW7DnwXjuEnaNlPPWTjf1e/vOW4t29ap8Hn5wIWtWF1x0yPIksizjPtZM39OvM/TaLlxHmnivkhdEAVOhgbQKM9YKM2kVZixlJgStGp86m4hkTnkpKPTEFHp8cQ2jXgnneKoMm1opo5ESqBUJNMoEWimORhHHrPCij7vQRR0Io8P4uscZ7/bh7fbhahnH0+E9FT4sqpSkLa/Dft1S0lcswLq0FkNJ/nkNuOaDaLsamE/nKR4McfK7v2D47Tfof+ARHn/l3GaaWq2CD91VwccfXk5WpnHO2tXS6uCJpxt4bWvbBZdUtNh0XH9bGXev9FHk2EX37+ppe7YbJC113/gipY/eh8pqJh7ycuj1XRxo9tAwIHKyNXjRYtaeoaOiKoOaKjuVpemUlaSRk2OalXJf18TtNeY1p4vbX1RvIduajqTTotBrkfQ6lEY92twM9PnZKC0mVBZjKgzIYkRpMaE0ze9C2+8nZFkm0DPA2O7DqZlV1zgRh4eIw31qibrHkeMJZFkGWUZOysjJJJFI6uKqNehRaNQo1CoUWjWqdCtqmwW1zYomIz0141uUi6EoD022HVFxYSUwEtEovtZu3EebGHvnCGO7jzDe2IbKpCRnTQZ512WRtcJOzJDGgHEpu/ry2fl6Lw0Hpr+ums0a/uCTS7n/vro5DWGa687D0LCP//nf/bzyauu0s0yFFTbueLiO9bk95Hv24G/oP0vUCpJE4Udupeorj5K2pGZW23iNcyPLMnF/gPCoi/Cok/CIk/DwGBGnh6hrnOhE5EPM6yc67sM9MgrRGDqtDkHg1Gz7qXv7aV+Edx879ci7q4m/yZx5jBxPkIhESUZjyPFUBAayjCgJqC0qtHYt5lIjppocFGUFjBrz6Ylk0DmqorU9xECPF6/74kLiBFGgpDSNO26t4KbNZWRnXVindK5/b253iKP1Qxw8OsjRowN0tLsuuNyGPcdIVa2VxUVRVmYNkWWL0ynW8tpRHfve6GKo99zpFgUFZj76wELuvL3qDGfiSyHi8jDy1n6G39jDyPZ9+Nq6pzxOEAVMBXqsFWZ0dg0qowqVSYnalFqrTCrURiVyUibqjxELxIkFUuvJ/cBwaELM+omMnxmOrkqzYL9uCfbrlmJft4y0ZXUXFTUyn0TblWQ+nqfQ8BjHv/mfhOIjnFxzN6+86T9vWauaagu33lLNLTdWkp5+6UZgwWCMrdvbefzpBlqap4+Smg6lWsGN99Xw0fVecgd30vnbE7Q/30MSJdVf+RSVf/oJ2jr72LmzleOdUU62hS5KzOr0EuUV6dTWZbN0YTaLajNn5fNPxzVxe415zenidsc3/gC7pCTuCxL3BIh7gkQ9IaLjMWL+2Ls3OH/sVB6fQqNGm5Nx1qLLzURfnIexrBC1zXpNAM8RwcERRnceZHTHAUZ27MfX2o3KpERr06CxqicWFZo0Neo0LUq7GUGtBElCUCkRlAoESQJJAoUI8QRyIgGxOHI0RtIXIOnxE/eFifpihJxhQs4IIUeYiC+JKjMPU1U5lgUVmBdUYFlQgTY744L+3xGXh+Fte+h7dhuDL+9AjoXJ35hN2R2FWBfYGDPUste3iJefH6B+b++0ws9u1/O5T6/gzjsqL7ju5EyYq86D0xnkp784zNPPNhKbpsanPcfIbQ8t5MbqMYrcuwg09J4lahUaNaWfeYDqr/7BtXzaOUKWZSJjLrwtXXhbuvC1dOJr6yE4OEpkQtAmQu+KQUknoTYrUeqVaK1q1FYVGqsapVWD0m5FSLOQ0OlJIqQSouDUWkacWAOikNoQhImVgCxP/E0AEJHld19CnthICBIRhYYQGgJo8MU1jEfUOL0CDleC0bEobmcY/3iYcDB2yeZPeoOKFSvyuPv2SlauyEOruXjBdrk766FQjPrjw+ze18v+A710drgv6HyICoGiChuL6rSsqQySn6/h0FAO27cOc3xf3znzW/V6FffcXc2D9y8gJ8c0C5/mXQK9gwxv34v7aDPjjW2MN7anUkdmEV1eVsp5eHEV1kVVWBZVYSwtmJVokfko2q4E8/k8eRpaafqn/yUUHGLo9g/z4l6ZthNn55SfjiDAwgVp3HpLNTdtqbygFKV4PMmBQ/288PJJdu7sJhK5OHOmRWsLeOiBDJYHXqPrJ3tpe76HWFJC8/8+Ta81n8aOEG2dQfzeC/chsKapqVtgY9WqEtYsz6OowHJZ+9HXxO015jWni9sFS/4BrSEdSalAqRRRqiSUagV6owqbTY3ZJGLUgVErY9AkMEhxjGIQc9yPLuQCh5P4gINI/xiRER+B4RDB0RCCSouxtABDWcHEuhBzTSnmmjJUltm9kb/fSUSijLy5N2U69dZ+Eu5hrBVmzAtz0C6pIJhTxEDMijuoxBtS4AuK+ELgD8gEgknCwRiJeIJkQiaRkEkmUzVtkwkZWZYRFSKScmKRFBPbCiRJQCXJ6LQCOg1o1TJ6dRKjOo5OjKCNB1CHfSjHPSh9XrSCgEZnRl9YhmnhEkzV5TNyqUyEIwxt3U3HT55k4KUdmIsMlN1VQNGtBbjSF7AvuJSXnh/k2Ds903Y88/LM/OHnVnLjlrJLDvk7ndnuPHi9YX71m2P87vHj0xpVGC0abnpgAbetilI2voNIYycnftbC0P7TRK1WQ/kXPkr1nz16WVyjPyjEA0Gchxpw7juGp7EdX0sX3tZuYh4vSr2EIVePMVeHvsCCMs+OIt1M3GzFrzHjE/W4E0Y6R1X0DsTx+xOEQglCwQSR8ETt6EiCWCTBfL6PCwIUlaRx841l3Ly5jIJ886x1wK50Z90zHmb/wX527+3m0KF+RoYvzPPAlKalemE6S+vU2PLTeWefn31vtJ+ztJsoCmxYX8TDDy5k6ZILr5k7UyJON+ON7Smx29RBeMxF3B9MLYHJdYi4P4hCo0KdkY7Gnobanobabj21bSwrxLq4CnX6peUQn4sr/T2YL7wfzlOgd5CT3/slrvoD+B68nxcb9BzfP3DeQSaFQmDRwjRqa7IoLc6gsMhKYYHlDMEryzInWxy89GoLr21twz1N1YGZkJln4r5P1XFrdj0jT+1g9wkT/RkVdIcN9PSGph2kPhcWq5raSiOr1pawfm05BXmmKzopdE3cXmNec7q4rV3896hUF3+T0hpUGExqDCYNRpOSNKsCu0XGro+RrghgibowuIZIdPUTONGLr9eHLBkxV5edmRu6oAKl0TBbH3HeEw8EGXxtF33Pvk6w+QjG9RW4KpcwJNroH9cwMJJkZDiMY8hLKHBheSJziVorodFIaLQKtBoRrRo0KhGdVoFOr0Jn1KLTqdHoNGh1GrRaFTqNEr1WQq9TYYz48D33MoO/fAoxGaTi3iLK7ilmPHMBu/3LeP6pPhoPDUz7/kVFVj73B8vZsrl0VsoKzFbnIRSK8djjx/nFr4/in8ZZVq2R2Hh3NXdu0VId2InQ1sKJn7XQ9/bwqZBTSa+j/A8fovorj6LJSL+otlwjhSzL+Nq6ceyrx7H3KM599XhOtKLPVGOtNGOsykYsK8RjzWVESGMooGXQITLiSOIYi+AbDxP0RYhfRKdmPiEIkJltZPnyPLZcX8SK5Zc2O3surrbOev/AOHv29bF7bxfHjg7j98/8WiuKAoWV6VTVphGTJRoODDB8Hof48vJ0Pv7QYm6+sQylcvYjUeYLV9v34EojyzJOV4juHjftPW4czhBeb5jx8RDDw04kSaC6Op/igjSK883k55lJT9fN6kDvXBN1j9P2o9/T9+LLJD52J68N5HB4z+CMjc4mMRok8vIMFOSncbLFQU/vpZXDUqkV1CzPJc2QYLh3nL6BCD7vxfW5LGlqqos1LKmzc8PtyykuuLoiHK+J22vMa2ZT3M7s/cBk1WLLMpCZoSTHBtn6IBlxF2muXuSTHXiP95NUWDFWVqQKrS9KhTrp8rOvqh//XBJ2uBh6dSdju3bg0ykYyKuhLZhGa0+cnva5r3H2/9n76/BIsvTA//1GJKMypUwxMxYzQzNO45BnxuMZM61xDb+7a1/f9XoNd9fPGtb2ejwznvFgMxZ0MYMKxMycKCVT/P6Qqrq6W1xSlVQVn+fJJyOVkRGRoYjI88Y55z0riVqjwGJWkSwFsAUdlKWNs/uAiHVdFadca3nzx5101M+ccTEnN4lf+LlNPPZo8V01V77bQlYoFOPNtxv5l29dxe2e/q6xQimy/dFinn02lXXx02g662j4ThvdhwduD5ugNBko+42vUPafvobWlrzo7/Ow8/cMMPjBKQY/OMXYmVoUYghreRKWrcWMF1fTJWbSNqKhozfO6LAfjyMw49AVD6okq5bi4hQ2b8pi09oMKivS0GrvzdAcKzmoSSQkmlvGOH2+h/MXumhscBKbZdzVTzNZtGTmW/BPRBjodM1aM2W3G/ji59fw0ucqMZkevkznK/k4WG6SJNHb66G2bphrdcM0NQ7T3ztOOLSwhG4qlYg9TU96homy0lT278pn7Zr0Zem+s5Ti4Qjd33uL9v/7H2j2l9Oet5ULrQrqrwytujKQJVlLWb6a6iwle/fXULWjckWXZ+XgVraq3evgdi5JyTps6QbSU1VkWOKkqX3YgqOY+zuRWgcQ1VZMFZPBrnVdBeaKogdiTLtbGS8Hj52gy+unXbTROWGkrSvE6MDE/d68FUmjESnJV1JcoidmTOfapREGOt0zzm9PNfClV2t48XNViyokLraQ5fYE+clr9fzwx3V4ZhivThAFNu8r4Jnns9iovIy5t5bG77XR8W4vianaQJXFTPl/+hplv/EV1NakBW//wy4eieA4W8vg+ycZfP8UMdcAabtziezaTqcqj9YxHZ09Ufq6xxc1VutqJIhgMGqwJutISzNSVmKjqtxOUUEyuTlJ93WMydUU1ASDUS5e7uf4qXYuXOxnbHT+TR5FhYDZqsPnDc1a86/Tqfjcc+V8+Qtrl7xf7kq2mo6DpTDhC3PqXC/HT3dy5VI/457FDwszG51eyboNmezZmc/enXnLmoX4bkmShLu2gb7XjzBy4hSq/dW0ZG3iYjM01A7PmZ38fsjINlKcKVBqibK2wMqGp/egT1s9Lazk4Fa2qt0Z3H7xZ/8vCqWVUChKaKpfWDgcY8IbvutEI0shKUVPWrqODLuCdGOE1ISbZFc/yV4XKqWZpIoKrOsqsKwtWxU1Wv6+YbrOX+VG2xCt42o6nCq6On133bRYoRRJTtZhNGkwTT3MZg1JJg1JZg0ajRKlQkShFFEpBBLxGE3NjQiCQFlZJYKgIBKJEY7Epx4xwuE4gVAMfyBCIBDF74/g90cI+COEglGCgRiR+/wDI4hgTzcR8EdmzUao1Sp57plyXvxcJaUltnkvf6GFrL5+L9/7wQ3efqeJcHjmfbN2Ry7PvJjHNn0t1v6rtPy4nbbXu4lN3Z1XJ1uo+J2vU/KrX0adtHILICtRxDNO/5tH6X/7GI4zF7CWG1E/uo12axXXBw00NPpwDPmWdRsUShGNVoFKpUCtUaLRKNHqlOi0SmKxIBqNiM2WjEJUTCaHEkCYzBKFeEeOKUEQ7nhvclq89ebHTwjirc8IKBQi1iQtJqMao0GN2aQhxarFYtFjSZq8NqzU2oPVGtRIkkR3j5vjp7s4c6aD+gbXgpqrK5TirON8i6LAwf2FfOXL66iuSluKTV7RVutxMF+SJNHZ7ebwyS7Onu2iuWGMxAKzdi+FnLwktm3L5YmDxaxbk75irwuSJOFtbKfvtUOMnDqLa30lJ8PFtHSGcTsC96WsqlIryCswUpwap1TnozpVT/G+7SRVl67Y/TgXObiVrWrzGec2Go3T0eWmvnmUplYHbW0Oujtd884AJ4iTxbHZskXeDYVSxJZunKrtlbArfKTF3KQTJEVnxFxUiKm0EHNp/n1LYBULh+k4d5MbNzppHY3Q7RLpHYziGFlYkpI7Jdu05OQkkZuXTGGelaJ8K/l5FjLSTQvqY7pUhYdYLEEgEMHni+D1hfGMhxmfCOAZHcM97GLC6yMQiBGISIRiApGESCQhEo5AJAqRSIJIVCISjhMKRmdNvDIvdwytMpOSUhsvPlfBE4+VkDRHtsX57qe6+hG+/b1rnDjROesPbfmGTJ59pYhdlpsk91+i9UdttL3RTSw4GdRq7MlU/O7PUfLLX5T7oC9AzB+g/53j9P7wPTxXLmF7uor+qh3cdNuoawnT3+lZ1gJQZraJmrXpbFqfzdYNmWRlTp8Y5EEvtN+tB2X/BENRLlzq58SpVi5eHGB0dHFDK01n/boMvvKldezZnb+q+lQuxINyHNwpHI5x9nI/x091cOliP2PD/gUvQ6kSSUk3kZyiwWgQMeoF9DrwB2HUmcAxGsQ16l9UrWZGlonnn63ghWcqsNsNC/78corFEty4OcSx092cOdtDX4/nnq4/Jc1ATraW3JQ42UoP2UyQrddh27gJ+46NixruaiW6n8Ht/WsvJHuoqFQKykttlJd+XMslSRKdXW4Onejg1Kku2podMxYYpcTt0RdJzzVTWaTAJngY6Aoz7FfjDCnwjC++1i8eSzDSP85IP9y4/VcDYEBnVJPS6CPZ0kCKoZ5kdRibKopNEyc9SUtKchJmux19RiraDDuaZMuihy9IxOOMdgzQfLOdnn43Q84wIxMw6pUYHo3gdiw+O59KJVJYnERNdTobN+SyaW3Gso5xthhKpYjZrMVs1pL5iXdKPzNvxDOO+1ojrtoGxhsaCPZ3kphwoktWo03Vo1ljQ5GbgdechlO00ufW0TWipHcwzlC/D49jHjcF5hHAtLU6+B9/fZq//p9nWLM2gwN7C9i3p4CsBTT7GxnxcbN+mJt1I1ypHaClZfZhNkrWpPHkS8XsT2smpe9fafvXVs7fEdRq0+1U/v43Kf6FV1EaVtb/eKWKh8IMfnianh++x9jJMyQfLKJr10HO5+/n5nU34esxYPahJT5jHjdHAGypevbuL2L7pmw2rs2Y8yaJ7OGi06rYv6eA/XsKkCSJnl4Px091cOpUG/UNngWPrXuna9eHuHZ9iNzcJH7mi2t5+qmyZUvwJbs7QyM+Dp/s4OyZTm5eHyUyS2ueTzNZtOQVJVGWL1Ka7CMtOoLVO4xiPIioMiOoDSTUetr7h1HGwuQmayA5QGKrgXFTCmMaO6MRE12jKuoa/Ax2e2bf1oEJ/s//ucQ//fMlNm3O5uXnK9m3p+C+JTZzOgOcv9THsVNdXLrUT2AB3UZS0gysXWOiJj+KSowTiQlcuh7myo3gnP3kFUqRogobGyqgUtFHhn8Yk9qMrnAtyZvWo89dvozmDzO55lZ21+ZTczsfTqefI6e6OH6yi+tXB4nOcbdQZ1CxZ386r64fQnP0CE2vd9PvVCPt20d04yYckpqBwQmGBv24XcvT5+QWjVaJ3qjCYFBi1IsYtaBVgShONgsUhckhYAUBFAJE4hCIQDAMgbBEMJQgGEwQCEQJLCCD5mysKRrKS5NYuzaDzZsKqS5PXbYflpVyZzwWDDHe2I77RjOemy2TzzdaiI6PY8o2YCkyYyk2Y67OYqKwkhuOVOq61bR0hOltdy1pU66MLDOVlanUVKWxtioVk0lDOBzm7NmzBIMJ1Pp8GpudNDSM4JpHoC0qBNbtzOPRp7LYZmkhpf8C7T9qpvWNHmKBycQYxsIcKn7/mxR+7YUH5u7vcpISCcbOXKXzO28w9N5RTNuz6NrwKBeHk6m76Z3zGnQnvUFJil2LPyDhGp27FiXJqmXf/kKef7KMtTWLa8K3Us67leph2D8+X4STJ9v54K1arrf6CATvLtt2UpKWV1+u5vMvV5Oc/GDcGFutx0EsFudq3TDHTkzW2Pd2zT9Tr0IpUlyRzOYqBRvMA6R0NEBIhSa3BuvmTSRVlXymFdpM+ykejuDvGcDX2Yuv8SbhkSZ8pSVcixZwtVmguW5sXjkGTGYNTzxewkvPVVJaOv/uPAuVSEh0dLq4dmOIK9cHqasbYWRo/nlHRIVAQbmNjdVq9hWPkd52keFjXQxdHuMGuZzI2c24cuaWUPZME2Vr09lUIbE7s4fEsVO4+y2s+es/f6i6BcnNkmWr2lIFt3cKBqO8d6SdN95qoGmWLLYwVejfmskr+yKU956g+0d1DJ4fQZedSemvfomib75CQmegt89LW5eDzs4Rurs99A/4GBz0E/Cvrox501EoBHLzDFQUG9i4KYctW8vISr93CYNWcuFBkiSCAyO4ahtwXq7DeakO1+U6ol4vliIz9rUp2NfbkdbVcMWVw5V2LfVNwTnvTN8rGp2SbY8W8+RBE2sU19G1X6P9zS463u29HdRa1pRR+Qe/QO4rT8xrLOCH3URHL13ffZOeH76NJk9N15bHOT9qo6FhYta+indSqURKcpSUlGhxxwxcv+ZhfI5xD/UGFbv2FvDcE2Vs3ZR118NLreTzbiV42PZPNBrno29/xKHDTdR7NDjHFx/oqlQizzxVxs98aR0F+fc3SeTdWk3Hgdsb4qNTbZw+08W12tF5d90CMFu1rF1rZku+j3LnTRQDXrTFm0l/bP+8+m4uZD/5uvsZeOMDAi3nUJWn0525ngudRi5fdDI2OHcgWVySwgvPVfDU46V31VJFkiSGR3y0tjloaB7j2s1hmhpGCCww74jBrKFiXTqbq0V25wyguXSOwY+6GTw/QtQfw51RwIniR+gIT3/DR6tXceCFSnZuVFOla8M23sDw4TaaX+un7A9+h8KfffGhq6GVg1vZqrYcwe2dunvc/OjNRj78oAWve/a+RgXlNp45qOcR83VGvneazg/6kSQl+T/zHGW//jNYaso+Mb8kSbg9Qdo7nbS3D9HV7aS3b4KBwQCjIyFi8yzo3ktKlUh2tp7CLBUVRUbWbS6iqroIre7+1dStpsIDTNbYeRvbGTlxidHjFxk9eYmwy0NSgYnUtSnYNqQRWbOWy2NZXG1X09C0/EmDPk2rV7F2ezbPH1SxRXeD0LnrtL7RzdCFUaSpw9K+ayOVf/iLZD6556H74Vyo6LiP3p98QNd330CKDjPyyJOc82RSe903r+Z9ggDZdiVlBg/bqmNEiyr48IJI3eXBOWv816xL5wuvrOHAngLU6qVrPbHazrt77WHeP64bTXz0Z9/hQm+YTnsJvU4W3U98+8Y0vv6NbWzcsDqbUK7k4yCRSNDUNsZHx5s5f3GIthb3vFsQCQLkFSWxsVLBRn0vac3XEfS5JO/aR/ojOxdcS7jY/RToH6bv9UOMXz6OvtpCW/E+Dl1Wcf38AOE5httRKkX27Mnnhecq2bYle8YbfomExPhEmO5uNy1tDprbnLS1O+nuci04kL0lM99CzfoUdlSEWWfsJnz6EkMn+hi6OEYsnCBlcw3B7Xs4HkzlzA3ntOePIMDWR4p46XOpbIx+hDHQT/fhARq/347KnsfOH/7/MZcVLmr7Vjs5uJWtassd3N4SiyU4caabH71ez9WLs58jyakGHnk0lZcquoi+dYS217vwDwVJ3beFst/4KlnPHUBUzF7IjMcT9Pd76Ogcon/AxcDgOMPDfkYdYRyuKG5XeNkyEgrCZLNFu01FWrJIerKCbLuamjU5VG2qRq1dOT/OsLILD/MhJRJ46lsZPXGJkeMXGT15mYjHi6XQROp6G/ZNGXjK1nFpKI3aNiXNTRN456ilW0panYJ0q4JUZYhk3xiFdi27vrSf8ie23bNtWI3ikQhDH56m+z/eJdh1nYnHDnA+UsTF2iC+8bm7KoiiQFGWinJ/Jweze7G9uIt32vM4ftzJ6MDsTQQNRhVPPFnGl1+pIT9veWq+Vvt5t9zk/QPjbd00/Y9/oe4/DtOZW01vyTpaXeoFjal7S2G6yKsvVvPMK1vR61dPv9yVdhwkEgmuXO/h0JEWzl0YYWRw/smgtDoV1TUmNuX4qXRcR+vwoy/dTPpje7Cuq1h0vg9Ymv3kqWuh7e//DcHXjPbVxzk2VsypMx46G8fm/GyKTc+uHXmEQjE84yG83jDj4yEmJsL4fJG7HiNco1VSXJ3Khhotu8s8pPXfwHWsjqGLY7hbPKiTrWQ8vou0J3bTnVzED95uo/ba0IzLK6xM5cWvVbLHdJWMiev0HO2n7lst+IeClP2nr7HuL373gRhmcrHk4Fa2qt2r4PZOXT1uvv396xz6sHXWWhetXsWOfVl8focb+9WPaPthE2M3XBjysij51S9R9I2X0SRbFrUN8XgCl2sCp8ON0zmOyzmBc2wCtzuIdzxCKJwgLkEiLpGQIJGAuCSRSIBKCXqNgEEjYNSJGHUiJr0Sk1FNdq6NopoS9GbrqrlLvtIKD3crEY/judnCyPGLU8HuJeL+ANZSM2nrbaRszsRTsIYbngzqe7V0docZHRhnYoYxaJeL0awmM1NPXpaOwnwTZWUZVNXkY7PqV82xs9SkRILR01fo/v7bjNeeI/7YNi6pqzlzLYpjHhlFFQqB0jwtpd4OdqrrKHmhikbrZt45p+Lq2YE5++EWl9n4wkvVPPV4KVrt8jYRf9DOu6Um75+P+fuGaPrrf6XjX35CMBxnoHI9nZVbqOtXLjjQ1agFdlYqefWVjWw+uH7FX2tWwnEQjcU5d6GZw8c6uXjJiWts/qMcpGcZWV+hYK26n/z+JjTJRdj27iF1zyZUxqXLRLyU+yk4PEbbP3wf1/H3yHihiqGaA3xwVc+lU/14nYsf4WEhrHYD+WUpVBQpWZsXpFTTT/T8VUZP9zJ0eYywN0rKljVkPrmHjCf3YFpTzqGjnXz3+9fonGW8e6vdwDNfXcfjlWMUuo4T6Bjl6t/WM3bDhcaezLZv/wVZT+29J99xJZODW9mqdj+C21u83hA/eK2en/y0HvcsF0xBFFizOYOXDiTYOHGOru/X0ntsCEGpnrHJsmz+VkLhYTklYjFctY2MHr/AyPGLjJ2pJeYPYMzUk1JhIak6DWV5IT3aPGqHLbT3g9ebwOeLEQxECQWjJBISUkKaHM5qmS+7lhQd+TlaCtOgOAXKM3RkZGRgKshDm2Gfs9XCaiNJEu7ahslMx8ePotpXxTXbFk7fhJ4Oz5yfF0WBsiI9FROdbPRfoezRTLyb9vJevZ2zpx2M9Hln/bxareDAI0V8+dU1VFWkLtG3mtuDft7dLXn/fFZo1Enz//oObX//faLjPhImHeMHd1BnreZqq0AsurCLU0aqikfWKXnl1c1k11Qv01bfnft1HMTiMc6ea+DdQ11cvuJifI5uVbcolCLlFSbWZQao8jSRGoekTTvIeHQX+uz0Zdve5dhPUX+Aq//0Jhd+cARXTiYjKYV0DYu4HKElHdpRq1eRkWshp8BEdaHE+hwvqZ52ghfqcdwYxVHnxjcYQGNPJuPxXWQ+uYf0x3aitFhobhnjwsU+fvp6A6NjM98A1eiU7H++gqceS6J6/DA6Vw91354cfk+KS2Q9d4At/+dP0WXcu9+AlUwObmWr2v0Mbm+JxuIcOtLOd75/nY4256zz5pWk8MyjRp6w38TxozO0v91L2BMhbf9WSn/jq2Q9u/+BK/wvt4etEBmPRrlx9AbnT7bQMhSg2w3DztiimvrdKylpBvJy9RTYYhRox8nHgzkG2vQCzGWFmErz0aamrPhamFvCLg/DR84x+MFJfPVX0W0vprFgJ6eaNTTXOedVcMrL0VMtDbJh5Bzlm3Ron9nHR0OFHD8XouX68JzLyMpJ4pWXqnjhmQpMpnvf5/1hO+8WSt4/M4t4xmn9++/T8j+/TdjpQVAI2Pfk4NyxhRNj+dQ2xIlG559zQhAFykv0bCsVeHJfAUU7diCIK+N39F4eB4lEgqamDt54t4VT55zzai0CkGTVsLZczRrlAOUT/VgKq0l/dPddNzVeiLvdT5Ik0T8wTlPzGHVNozS3OGhrdTDuXdoWTQazBlu6kcJCAzWlIhUZfjLjQ8Rb2hi/3oOz3oWz0UNkIoohPwv7zg3Yd27AtmMD5qoS2jpcXLk6wOWrA9ReG8Lvnz1plzlZx+6ny9i9P52K8Hkyx2vpOdLP9f/TRMgVRpeZyqb//f8h+4VHV83v570gB7eyVW0lBLe3SJJE7fVB/u171zl/tmfWBBpWu4FHHkvjlZpupEPHaftpB56OiSVpsvywWa2FyEQ0SnTcN/mY8E9NTz7Hpv4e9k7gkiQ6olq6Ahp63Ap6BsMPRJZte6aJ/AIDhalx8hUOMl1daIadoEpGn1uAuawAU1kBppJ8lLr7O/ZqIh7HdbWBoQ9PMfLRGZRKJ8Jju7mpLuNyq4KWeue8hu6x2TSsM3nYFqxl7QYR9e5tXPbmceKagqtnB+Yc0kKhENixK58vv1rD5o1Z97Uws1rPu3tF3j9zi/kDtP/Lj2n6q38lODg5MkH6Zhu5L5Vw07CGDxtsXLvpJ77AG3f5BUa2Vog8sjmZdQf3oNDMPHTKcrsXx8HQwABvvFfPsdMuOltnbtJ6J1uqjk1FCdZFuyg2aEjfv4fUPZvv29jkC91PkiTR1eXm4tV+Ll4Z4Mb1Ibz3uGuOggQpUS827zD2iBtzRgraglw0OZmos9KRNDqi0ckbNaNjPq7WDjI+j3wLAGnZZvY9X8GOrSYKfBdJ891kotNzuwkygkDJr3yJtf/ttx6qIX7mSw5uZavaSgpu79Tb5+G7P7jJ++83EwrOHIhodEp27M/mCzu8ZLadpPMnzfSfHkZUayj4yvOU/vrPYKkunfHzspVZiIyHwky0deNt6mC8qRNfZx+hUSehESehUScRpweBGBqLGo1FjTrdgrIwG09KNqMaO/0xC11OJd09ASY8yztO8t3S6hSo1Qp8E9G7auoliAJpWWbyCvQUZ0oUal1kujqIXakn6kqAPg1DUT7GwhyMBdmTj8IcVOalLbjGwxG8DW24rzXiutaE52YjkncAy7Z8HBt3ccWVxtWbQfo65leINBpVrEsPsUvZxLYdSoJVmzndZefizThN14YITMw93EZqupHnnqnglRcqsduWrp/b3ViJ591KIu+f+YuHI3R9900a/+Kf8XX2AZBcnkTFF4tI2pLN+10lvF9rprHOteBuFamZBtaUathULLJ/bwm2omoExb1LSLVcx4HHOcr7R+o5esZJ3TXnvIYRy8jUsSE7zPpYH+WFuWQ9+wjmssJpb5KFQjF6+zz09npxugI43QEcziBub4h4LEE8IZFITK7TYFBjMmowmdQkmbVkZ5jIyjSTmWHCatXN6ybcXPvpVjB74cpkMHvzxiDeu/xtVKpEUtJN2NKNpKZqCQQTdDSO4Ri+t6MT3Kmw0s6+5yvYXJEgf/wCNn8L3g4vzT/ppOfoIFJcIqm6lK3/8mfYtq27b9u50snBrWxVW6nB7S0TE2F+9EYDP/pxHc5Z+lMIokDVhnSe3atgr/4aQz+5RMc7fYTcYVL3bqH4l75AzguPPtTZ72ayEgqRYZeHsdNXGDlxCcfZK8SdfWizTOgK09HmpxK12fCqkhlXGHFHdbhDStw+Ebc3gdsbxzUWxDXiu+t+QEnJOjJyk7Db1VjNIlYzWM6F5/MAAGTKSURBVIwJFAoBSRKQBAEQploV3LGuO67FDq9IR3+C/q5xhno98x57FaCk0ECuXQSFQOdQnL7+ILEFNC/8NFEUSMtJIr/AQEmORLHZS1ZkEEVnJ4GGHvz9PkJ+JQqTDWNBDvqcDLRpKWjTbGhTkyef02xo7FYUajWSJBH1ThAacRAadU0+T91wCPQO4W1sQhFxYC5OQr+tirGMMponUmjoEmisc+NxzC8ZiVotsq5Y5GDuKNv2mBgQsjnVbObajQna60fntU81WiX79hXy0nMVbFifiSiurCZnK+G8W8nk/bNwiViMnh+9T+N//2e8DW0AmHIMlL9aSN5jWXTH83i9oYDjZycYG1x4ACIqBApLklhbrGRrpY4de6rRpeQgiMuXfG0pjwP/hJOjH9Vx6LSTa1edhGe5cX5LapqWrVkBNokOqnesJ/OJPWhSPplB3esNUd8wQl3DCPWNo3R1uxkemlj08E130miV5OQmUVCYQllJChUlNirL7Z8ZX3a6/RSNxblaO8jh4x2cPdPN2OjikkFp9SqyCqxk5ZnISRPIsUXJSw6SpXehHBsm3ttPeMCDPseCuH4t7dECLnebaW7209EwimNo7rFz70Zqlpni6jQ27s1nQ5aLHM85kkJ9DF8eo+XHnQxfcQCg0Gqo/q+/RsXvfB1RtXoyht8PcnArW9VWenB7SyyW4PCxyX65bc2OWedNzTbzyMEUXqjqQfjoJO1vdOGod6OxWSn8uZco/oXPYyrKXdbtDYaidHe7ae1w0dLhYmh4AqVSRKtVotMq0elUkw+tEpNJw5oKO4X5yfelAH6/CpH+3kF6XzuEu/UGXnsy7uRsRgULw+MqRhwJxj0RJjxBxj0hInOMt7cYJouWomITpTlQbA2Qr/FijflRhEFQ6kGpA5UWQaEhEYsR8fvpbG2GRIKCwgKUGh2iSomgVCGoVIjKyen4uIPoaAcJnUQ0PZ1+dRYtowba+6Gr1cNA19w1lslWNV94pZpXXl5HX7+Da9e7aWgYpbVjgr6+APG7HMYqOdVARo6Z7EwVBRkJCu1BshlBOTRAwuEiPuoi6g0THo8SmYgQ9kaJhSUUSlCbVZM15mY16hQ9ygwbYqqNiC2d1nAmdT0aWjrCdLc48c+zCRlMDqFVXWlg20YNpmQjHcMaOruC9LY5FzR0U/XadF58toLHDhav6CFP5OBtdvL+WTwpkaD/7WM0/Ld/xHWlHgCNRU3J83kUfy6PREoaJ101fHhFy9UzfYQCi7u+arRK8ovMlOUrqM5Xs21LDhn5hSi0liX7Lnd7HIT9Lk6fbeSDE2Ncuuya1zXJYFSxqSDOdtUY2x7dQtZT+1BoP+6X7/YEuXJ1gEuX+7l0ZYC+OZLWLQd7qp6SUhtVlWmsrUqjMN/ExYunCIcTaAylnDzTw6WLAwseR9Zg1pBdaCU3z0hxdoKKzACZkX4Sza34b3bjHwrgHw7iHwkSHAuhsSVjKsnDUJiDp66FYE8nWdvTyNyRhnlHGV5LKR3hXK53aRnsmbzhO9TjmfeNzunY0o0UVadRXJ1KcaWNLL0bS7CXtIk6tIERej8aoPknXXg7J4NqQakk7/NPUvOnv7HsZb8HhRzcyla11RLc3iJJEtdvDvOt713j3JmeWcdO0+pVbN2bxYvb/ZS6LtD3Wj1dh/qJ+mKkP7KD4l/6AtnPHbjrO3ixWILa64OcOtdLW4eTnm43YyO+Bd+11RtUlJTbqFmTwaa1GWyoScdoXP5EN/eyEBlyuGl460NuDPrpipjoHBXp7RxfUBC0GFqdkrx8A8U5KspzldQUGSkpzkKTWYSonF9/1MXsp0Q8jq+tm/G664T7m4grQ/RlVnK0xcrFsyNz/sDrdAoe22jhF359Pxn5k1kcI5E4LW0Ort3so75hmNZWF/19/ruutRZEgWS7AXOyjqRkHVarihSLSEqShD0pjt0UxRdWMuJVMuZR4PAkcLmieJwBvM4g7jH/gmqpAdQaBdm5RlLSdMRQM9jjZbTfu+BzJ7/QyoF9hXzumXKys5IW9uH7RA7eZifvn7snSRLDR8/R+N//iZHjFwFQqEXyHs2i7JVCDPnJ9GjX8n5zFqdPjMxrPNO5pGWbKCnUUZQpUpyno6oyjaysdJSG1EXV8C70OIhHQwwPdHH8TC8Xbvipr/PMK9OxUiWyplDJVp2DPTvKKHzxUVQm49Q2RKm9PsSly/1cvNRHW7tzSWpll5rVqmZ8IrqgPtZJKXqKq+zUlCpZnzNOuqeD6M1mJuoH8LSP4+2aAIUGc3kB5ooiTKX5mEryMZfkYSzO+0x/1fHWLrr/4116/uNdAn19pG+0kbUzjbRt6STScpjQpOPTZDAcS6FzWMNAr4+hXg+jAxOAhFKpQKESUaoUKJXi5LRSgVqjIDPfSnGVjTyjm6RQD5ZgD0mhfhRSlMBYiJ6jA7S+3kXQMVmeUFnMlPzi5yn9tZ9Z1kzVDyI5uJWtaqstuL1T/4CX7/zHDd57r4VQcPa7kwUVdh7Zreepwi6iR07T+U4Pjno32nQ7Rd94ieKffxVDXta81x2Nxbl8ZYAPjrRz+nQX496lD84EAXLyk9i2PZcnHyllTWXqsiTAWe5CZDQa5eRrJzhX56CuD7raPSTusuZxNkaTiswsPaXFZqrKUli/NovComyUyrvL/rlU+ynscDH64ZsEIiPc1Jbx0XUVNy4OEZ6ldlqhFNiWB5/fmU7NgTWozEZUSUaUhskxcYOhKE0tDm40DFNfP0hbq5OB/oXfYLkXRIUAEncVjCuUImvWZnBwbwH79hSQmbH6EoLIwdvs5P2ztNzXm2j+n9+m5wfvkYhGQYCMLXbKXi4gbZMdt66AK4EaDp9LcPlE15LecDRZtGRkG8jJUJGXriDDriYz00R2honk5CS0WjOi1jxt8DvTcSBJCeIhL/5xN519Dq7ddNLQEaK9K8RAl2de1xdBgNJ8DZtMbg7UZFDxpSfR2pKJxuI0NIxy8XI/ly73U1c/QmyBN+5usdj0WG0GDGYNxiQtRpMStVJCFEAUEiBJBEISgUCCQCDOhDeEZyyA2+Fflt/JpBQ9JVU2qksUrE93k9LXiO/ENZw3R/GNJEiqLCGpsghzZTFJFYUkVRajz8lYcNZnSZJwXa2n+/vv0PPD9wkNj2FI15FSYSGl0kpKhQVLiYWQMRWfOgO/2o4kCAiShEACQUogICFICSCBKMUxRkYwh/oR41E8XRM46t046l046tz4Rz5u3WMszKHsP32Nwq+/uKRjCT9M5OD2AScIQi7wG8DTQC4QBtqBHwP/IEnSkoxoLQjCF4CvA2sAKzAMnAb+XpKkC0uxjhnWu2qD21v8/ghvvtfMD39cx8AczYO0ehWbd2Xy/NYAleMXGXirgd5jgwSdYTKe2E3JL32BzKf2Iio/+yMbicS5cKmPD462c+Z0N/45MrMutWSbju07c3n8YCnbNmahVC7NEAPLUYiMxxOcPHydQ8fauNIYwO2Yf7PS2Wh1SiwWDdZkLSkpemw2I3a7ibRUA8V5VvLzLJjNy5MZeDn2U9jhwHH0DVxSmLP+PA6fCtLdMnOze0GAqkyJzV2nSb5+DVEUUZqNqJNMqMwGBJWK0NAowWEHEUHJqDmdsfwKxmw5DAlmHOOJFRnwzofBqGb79lwe2VfIjm25GI2ru/+8HLzNTt4/yyM4NErr33+ftn/8IRGXB5jsl1v8fB4Fj2eTsKTQq9/AkbZ0zh8foPXG3MNq3Q2VRoElRY8lWUOSSYFaJaBRC3c8g1JMkEhAJC4SCksEQxJj7hhjIyFcowtvMZKXpWGzdZz95Sms+8qTKFOSaWwapfbaELXXBqm9PkRwjhvmn6ZUK8gusJJbmkJOnon81ChFKT5SRAe6qBtNbILE2BjBfhcRb4SYP0Y0ECMWiiMoBBQqEUEpIiaZUGSmkbCl4lQm0zthpmNETfdggoG+AMO9ngXnYcguTGb9hiS253jI6K5l/Ng1PO0+dDnFJG+qJnljFcmbqjEV5y3L0EWJeBzH2VqGPzrP8NFzOC/eRIrHEVUiliITKZVWLIWmyX2gEEAQEEQmb+YLAoICSIC3a4KxejfORjfRaUY8sO1YT8Xv/BxZzx+Uh4S8S3Jw+wATBOFp4PvATO3cWoCnJEnqvIt1aIGfAM/MMEsC+BNJkv5sseuYY/2rPri9RZIkLlzq599/dJOL52YfSgggu8jKhrUGNud5KXVfx/X+DfpODqMwJ1P0cy+RdnA7hppyLt5w8MHRNs6f6yUYWNgPXnKqgfRsExmpCkQBQmGJcEQiHEkQDk8+XGNBvM6F3SMxmtRs2prJY4+UsW97Llrt4ptWL1UhMpGQOHe+g3ffus6lunE8roUNK6BWi6Sn68nKNpGTk0xGehKpNj1pdsNkEGvTo9Pdvz6Uy13YDo+NMnb2Xa74Tbx+TkH9leFZ58/O0fFE2QTrOo/jrZ1sQnZnM32NVY0hVYc+TYc+VYchTYc6w4TLmEKXmE+Tw0rnkILevjDeBf6vlptCIVBQlEJVZSrra9KorkojP8+64pJC3Q05eJudvH+WVywQpOvf36Llb7/LeFMHAEqtgrxHsyj5XB7mQisOQxnNiUpOXBW4crKLwW7P/d3ou5CWqmazPcC+YhNrP/8Y7c7EZDB7fZC6+hEi8xiK7E4qjYLCCjvFNelUlumpTPOQEu0jKdSHenwET5sXZ4sHV7MXb9cEvqEA8dDH61AlmdBl2NGm2VBo1ZN5G1RKkCRivgDRCT+xCT9xnxelOowp24ChyI5iXTmD5iLa/VY6BkS6uwMM9niI3bH9CqVIUZWdzWvUbNL3oT5xikBnAFPNeuw7N5C8qRpzacE9G4P306ITPkZPXWH4o/OMfHQez82WBS9DZTGTvLGKlE3VJG+qJmVzzYJa38lmJwe3DyhBENYC5wA94AP+O3Ac0AFfAH5+atZmYLMkSYvKfS4IwveBL029PA78LTAI1AB/BBRNvffzkiT938WsY471PzDB7Z0GB8f53o9v8v77rfMahFyhFMkvNFFdEKci0YWry0utVERdn4JwZH53SbMKrFRWJ1GQHqc4NUiuOISiox3fjW68HeMkIglElYigFFAoJ59FpYgm00Kgeh3tyjwaB7W0dETp7/bO+260WqNg/YZUDj5SzmN7CzCbFlZzeTeFyERC4vyVPt59s5aLtU487vk1ZVMoRYoK9FSWW1m3Lpf16/LJzjKv6EHU71VhW5IkQv11XKxt46fnVVw8PTjrsWBM0vDIPjMvrx0ipfcGGpMSdYaVmM5KWGkirDARVpoJK02MhC009Yj0dIzT2+agt90159iwy0kQBZKTdaSmGcnMNLOmMpU1NemUldjQapcvA+tKIAdvs5P3z70hSRKjJy/R9o8/oO/1I0ixyRox+9pkip/NJXt3OlGdlRHTGq64Czl3zsW10z2Mu5emNc5yUSpFSrIVlOn95NktiMVFdDtiNDaN0d7hIh5fWO2nKArklqRQsiadsqpk1uaMkxrpIjnQiTrgwFHvZqTWwXCtE3eL9/aNRo09mZSta7GuLcOypgxLTRmGvEyU+vkfz/FwhODQKIH+Yfxd/Uy09eDr6CHuGUDURlDWlDCWUUJ/PBmNGKfY3Yx4rQVNajH2PVtJ3bMZXbp9Qd/3XgqNOnFeriPiGZ8co/7WuPVTAX503E8iEsFcVkDyphqSN1VjLMxZ0eWF1U4Obh9QgiAcB/YBMWCPJEnnP/X+7wF/OfXyv0qS9P9dxDr2AiemXr4DvCBJUvyO923AVSabQ7uBQkmSPAtdzxzb8EAGt7dEo3GOnezix280cP3qwJI3ycwpTmHTZguPVHrI7L6E46NG3G1ePB3jRH1xkmpKse9Yj237OjT25MmMuiol4u2HiqjPz3hjB576VsL9HSgSTpSlGQzkrOGyI5VL14M4hmceBulOCoVARaWVXbuL2Lopl6oy+5zNlxdaiAyHY1y42sd7b9/g0jUH4575BUe2VC3ry9Ts3ZnDnke2YDStrsLq/ShsJ0Jumm5e4/uH/Zz4aJjQLC0HFEqRtVszMZi1BINxgv4IoUD09iMYiMxrTNj5Uqknx+dVqSaTfajVCtRq5dTz5EOjmfybRqNAp1WRkWYkM91IRrqZ9HQjdpthyZrXrzZy8DY7ef/ce8GhUdr/709o/6cfERwYAUBlVJJ3MIvCJ7OxllnwanMYNKzlYp+dm1dGqLvYf1eZb5eKXq/AZpQwizE0okhcZ2RoQmJkdH6/ndPJyLNQUpNGcXUaa4riZNJLcqADc6if4LCPwQujDF4YZfSak/jUTXC1NYn0R3eQtm8Lqfu2Yi6ffhzcpSJJEqFRJ476Vi68/SGiTs2BX/pZrPnZy7ZO2YNPDm4fQIIgbAYuTb38J0mSfmmaeUSgHqhgMvBMkyRpQW1WBUF4D3gKiAP50x08U31xfzD18nclSfqbhaxjHtvwQAe3dxocHOfHbzby7rvNuBbYDPhO+eU2Nm1O5mClh8zeywy/c52+k0NEJhKk7t2CfdcG7Ds2kLJlMvHPYoTGXHjqWnCevUB0pJ6RvGKuRAq4eDNGf/f4vJej1ijIzzVQVmxh07Yitm3OxZ7yyQQLsxUiJUnC6QrQ0DLG+VNN3Ghw0tnlIzrPPj9pGXq2VSl4YpudzU89gqhYGbVxsWCI0PAYwaExQsMOIm4vEa+PqHeC6LiPRDhCIhqbekSRojGi4Qijg0OQSGCz21GqVQgKxeRDFKamRRBFSCSQJAkSElIigZRIgDQ5REciGiMeDE0+QpGp5zDxYJh4KIwgCAhKxe2bH4JSgVKnwvTcBs4b13D0fBDHyOILbPNlTtJSXJJCRamNijIbZaV2UlMNaNRKVCpRvmt+l+TgbXby/rl/ErEYA+8cp/2ff8TQoTO3x/G2FJkoeCKH/EezUFp0uHWFjOrLuTGaxo0rY9Rd6mdkCYbFEQRQCJOXUlGY/IMggHBrbPGphHSxBMQSS3MdEgRIz0mioDKVwgo7FeUGclUDJAc7sAa6UEb9OBvcDJwfYejCKN7ujxvrJVUWk/XsfjKf3odt+7ppc3Ysh54+Lxdq+7h+rY/GRgcD/T60WgUbN6Xz4ovr2L0l54HqyiG7d+Tg9gEkCMJ/Y7JJMMA2SZIuzjDfHzDZXBngMUmSjixgHUbAAWiADyVJenKG+dTAGGAGzkmStHO+65jndjw0we0t8XiCcxf6OHm+h2vXh+jucM06pJAgQGFlKls3GthX6iFt6AZj79+g98QQQVeUjMd2kfvqk2Q/dwC1xbws2xx2eRg5dhZ/w1lGNRquUsz5JpHOFveCa6M1WgUGgwqjQYHZoMCoV6ASo6hVAiq1jmAoQSAcwz0eZ2gkhN+3sH7G6dlGtlWJHCwT2PLsk6jMyQvbwCUiSRK+jl5ctQ2MN3cy0dbDRGs3E209RNz3flzC2Si0CjQmFWqzGm2yBp1Ngy5Zi86mQZusRWvTokxPQUpJJSAZOdGZytvHQ3S2Ls33sFp1VFWlUVOZSnmZjbJSG3a7QQ5gl5EcvM1O3j8rg79viK7vvknnt17D19kHgKgSSd9sI3dfJlk7UlEYNLh1BYwZK2gaz6Kx3ktn4yidjaNMeFZWf/5bRIVAdmEyhZV2CipSKSnRk6UYmhpepgdDZIyIN8LQ5TGGLowydGmMyMTHv4XJG6vIeelxcl58FHNZ4T3Z5lAoxtkLnXx0uIGrdW7GRmfft9ZkLfv2ZfPqy5soK7o/v8Oy1el+BrcrowrkwbR76tnPZLPgmZy8Y3oXMO/gFtjCZGD76eV8giRJEUEQLgCPAVsEQVAttIZ4vqLRKJHIwpstKhQKFDNkpotGoyz2JsxyLVcURXbvzGP3zjzC4RjvHGrlJ6/X097imEw9/6ny/OTQJXE8E3E63XoM2UVoy4bRd/kJBsdBpyGhVjDbDeRYLEYisbihBERRRJNsIfflp+HlpymXJNa3dPKC7Qgja5xcjWVxqUtLS+P8+unGojG8nhgeNyQ+s9FTg54LErdyTcwn6WB6lpEt1Up2ZvjYsHctlrK1084Xj8eJxxeWuONOavX0GXITiQRBrxfHueuMnbmK60o97uvNRL2freUWVSIquw6lTolCq0CpVaJRTyZTUU39TVQIk1UGAiSmamYRpo4F7txnk8fg7UNRAkEEUSlOrkcBCpVw+7WoFFHqFaiNakSTGpVJidqoAo2GqEJPVNQTVpoJKi2EVUmMxU0MuNQMOgScfUEcl8YZG5xgqM9JKDDd0EHSnP8vrUZBaamdqspUKivsVFakkpY6GcgqlUrEGZKMLObacMtqvEYoZ6h9udtzeTUtVxAEVDOMA3435/J8lhuJRG4vPxKJzPh//rTZrhGx2MzDbc1FpVJNe7NnuZYrSRLR6OJ/6mc6lxe6XFVaCqW/9w1KfufrjJ2rpec7b9H/kw8ZPDfK4LlRRJVIxhY7Ofv6yNnaQr5eze7ydDzr83FrK+lyW+locdHd4qCreQyvc/q+uokESNL0P6IKUfrkZXcBJg99AXuWmewCK9mFyWQWWCnM12CL9WIO9mIJnUc34kSKS7jbvHRcdzF8eQxXs+fjG9+CgG3PJrKfP0jWcwcw5Wffk3PZ5fLz3o/PcvLKCA1tvk9kSp7rlBj3Bnn7rTbefquN3Dwjj+zN5ZXPb8Nm/eSNotV6jVgs+RoxaamuEUtNrrldJoIgjAE24IYkSetmmc8KuKZe/kSSpFcXsI5fBf5u6uULkiS9Ocu8f8vkcEQAVZIkNS5gPXN1vEgHLgN897vfJT194QNdFxUVkZGRMe17Fy9eXPRJkpubS25u7rTv1dbWEggsrmlxeno6nnE9b3/YztkzvZ/ox5iTFUKvn/2iqVAIpGaayc0SydW5ibd14+3wIHW4KS0qJu9nniP14DaEO355mpubcThmHuJlNklJSdTU1Ez7XkdHB4P9A4QHegm4RxmM6BiaUON0xwjMUeMaiYh09UxfG5KSHMGWMvPnBcBs0ZBphzxjBFtaCurULJj6Qdq6deu0nxsaGqKjo2PW7ZrNrl27bk9L8TiuSzcZ/vAMPVdvMiiFQZIQFAIa82QtqMasRp2kQqVXotQpUemViGoREJAEBRIiCUFkU74ShVJFQlCSEJVIiEiCiDcg0TwQnJr/VmB7q3Hcx3+Tpv6OcMd7CJQWpaLRqJGEqXUiEhM1TEREWloGCUYFghGRSDhBJBwjEooR8EcI+iIEfJEZx77t7dcSDH62ZKNQSBQXzn5emM0aMtKNUw8TOt3HBany8nJsNtu0nztz5sysy53NartGZGRkUFRUNO17dXV1eL2LqzG32WyUl5cDEAqFOHXqFAB79uyhu7t72a4RQ0NDi1quXq9nw4YN077X29tLb2/vopY7n2tELBajp6cHgLy8vBkDiU+78xpxJ4fDQXNz86K2F2DLli3TFoq9Xi91dXWLXu769esxGD47Fqff7+fatWuLXm5NTQ1JSZ8d6CESiXDp0qVpPjE/5eXlJKk0DL59jP6ffMjY8UtIU4GG6+AajFl6TNkGjBl61EYVCUTCShMhpYWQyoIvrsM/EcM/Ef74MR6mu1vA7Z7+f1xcGEChmL28KwiTQ/1p9Sq0OhV6owaDWYMtN5eC8lysjGEKD91+6KIurgyocY1G8Q0H8A8F8A8HSdwRPAoKEX1eFqbSfIyl+SiN+tvvLdc1IiUlBXNYwZEjDZxti9LcEbg93m1megiTaXFBXSCgoG9Ai0Ipsq7GzJN7snn02Q0olYpVe41YLPkaMWm2a8Tbb7/NV7/61Vt/kpslr3ZTQ/PcurX4niRJMw3Rc2t+H2AALkiStH0B6/kL4D9PvdwsSdKVWeb9XeCvpl4+IUnSoQWsZ94HyZ//+Z9jtVrnO/ttZrN52hMPYGRkZNF3BI1GIyaTadr3xsbGFnUnzOGK09wm0tg4/W6ZT3B7J5VaQXq2iYIMiQqDA+uJ8/QeHcDnV6DcvxHlgY2IWam43W5CocU1z1Kr1aSkpEz7ntfr/UwBXohG0AQmf1i9CT3usBqHFzyuyCcyRC4kuBUVAkaTGrtVxKYLY1EGSKh1RLSf7VMsiiJpaWnTLtfv9zM+Pv8+w5+WbkkmfrWJ2OUm4rUtCP4ASYVmNBsy8RZno03RoEw2E1PqiIlaYgotwbiaYExJOCoSjolEYgLxuEQiISElJBLxBHFNHvG4QCyaIBZLABKSBGIihFoaQUK6VUn7CdInJj6uxY3HEyTiEm5fMuGISDQSJxpJEIvECAaiRAIBcrIW32/2boLbTzMYlFgsCpJMIpkZyaSk6Ke9S7zYwg+srmsETBbYpvvRB3A6nYuuxdZqtTNeY+/lNWK+lEoldvv0WVYnJibw+RY1SMCyXiNmuokSDAbxeDyLXm5qauq0tcfhcBiXyzXNJ+bHZrNNW0MVjUYXfbMDIDk5GY1G85m/x+NxRkdHF71ci8XyybwMHh+xczeJnb7OWNonz0W1SYUxU48hQ48xQ49CLSIBMVF7u6VKVKEnojBgyC4FXSqhQJRwMEooGCUcjE0mwxtrgUQcQRQQFQKiIKBQTSW00yhQqhVoVKCSwigTIZSJMKp4EFXcT5E5QLF5AgFIxBN4OydwNnsYu+GiMZZESPhUQK1WImTYEbNtiOkpMMNNlSW9RkRjxEddTMRU9I2buXRNJB7/7A/OdMGtWqMgOVlNiknCqgjgiWvpGYEJ7yfXfyu4vZM1RcuWcgV5qROQpOAzzdbmQb5GfOxBuka0tLTwR390q3em3Cz5QXDn1Xk+Z6WfyeB2oZmDFrKeO0vBi8tQ9BCTJBhzxujrj+HzRfF4lHzcIvyTRFEgI12NSRlhbFyBZzw+XUxzWzQSp6/TQ18nHCeJ3LJf5dF/DLLDW8vYm5fp/S/nCNrSiT+5GQozQLX8p62kUhNKmvyx0TBZNZ9tD6MOhYgkFLcfMUnFpjVJTIQUjAcEAiEJrUZAr5UwqP2olX6MqhhGRRi1IkFMJRBWGQAlIaYPVJZFPE5iyEGid4TAj05hTteQu8lG6u9VYNpSTCClkGankf5OH26fiL8r+nGm4KBvXgPet3eOE49/9oddp4uTm734PmNdPREikc82+1GrFxfMfXY5AunJCjLMMbJMYZJStQxEdTjdcXzj8ytc+f0x/P4YA8DR4w4CIRVJFjUWi4oks4IkE1jMImpVHJVKQCFOtl5QKATu0zCJMplshRAsRlRP7UD11A6UHV1IfSMkBsaQHF4iE1FcLV5cLV4QQJcylUfAqkFr0WC0qlGoJi8iRSOXSU8SiYsaYmotca2aWIqWmKihVh0kFpem2swkECQJUYohSjEUiRhiIIrIJ4O+eDRB2B1hrM7FRMcw7lYvrrbxT4w1G91sAIMSTHrEDBtilh3BbllUkLdQkteHNOrCp9QzEjUy4tQTj0tMTISJx2cezk8QwJKsJS1ZIFXlRxebIKzUIZlNoEwiJRIlQxojmqGmP5xE72CUSHj6G/ZuZ4hDZyEtNUpxUYJMQxizOobCbpnK5CWT3XtycLs87ryqzKd0eGtgz4Vmu1jIeu4cPHSh68mZ4/3bzZKzs7MfqGbJiYREW4eLG3Uj+GYZAkUQoKgimYPrY6S7axmtGyHkDJOdYUdTlE8gOZXRgMDwiA+POzhjAqfARJhj73Zy7F1IzSpjy/ZdPP4NL9nd56k93c5QSyeGwjyS1pRhyM+a9w/ocjc5DIVCnD51EgVxduzeh1anv+/NiaRYDF97H+PNHfjaetBalJhzjez53nOMZ1dzbSiFd3pUdL49QU+rAzExSGbG/MbYXY0MehVmswazSU1Skpav/kwl5WXZpKYaEEWBRCyGp7aR3rc/QtPbTqVFQFmTg0trZ3RCjcsVxeMKzqtPdjwm4XKEcTk+uT/LSj57vglMDkGk/NRDpbo1rUClFHF5TZjNKaSnGcnKMpGVaSYlWYcoCnKzZORmyXeSmyVPWsnNkmftulBTBUA8FMbf1Y+/ow9fRy9xf5CgI0TQ8cmbhSqjEq1VA6ogAWMMtVGFyqhEbZh8NhpVGHwmYglhsrVNfKrFTSRBNBwnFI4TCyeI+WNE/FGivigRX5RYYDKg03WPoO/+ZE21JjUF+77NGLeWo8xNQ5U0feuP2Sz0GiHFE/i7+wl09uCOx+lX2Bh0pUyNPDD79U+pVlBZZWVNvoeMpBiWtDSUpk8mr7x9vqhVZGzZjlKppCAaI9DTTp87QYdTz9Ao09/slcDhCONwgEqtITMQJUcXJj3FjLEoF3GWm/Jys+SPPUjXCL9/+UdkmIncLHkZCIJgB25dCX8kSdIX5ph/BEgF6iVJmr50Mf3n/h74lamXFZIkzXhGCYLwy8A/TL18WZKk1+a7nnlsx+1syQ0NDRQXFy94GSstWUw4HOOt95r5/g9v4Bj9bOFWkiYTKaWkGTmwP4WnS3tRHTlG64/bmBiLkPPy41T+wS+QVPHZHy6XK8DR4518eLSdlqaxaZf7aTnFyWzbauKRUgfmm+cZ/KAFz6BI7itPU/Azz2EsnL5wfstyJ4uZLivp/UgEEQ+FGT56jr7XDzN86BTWYh0Zu7PR7N9GfTCX2g4tTY0T9LQ6PxOk3ZkAazEmN2m6mw1zJ2i62+Vq1CLWZD1Wiw6rRUtqqpGcbDPZWWayMpPIyDCh1X7y/z9bIohIJILrSj29P/2QgXeOkJQhkfZIGaqdm2jyZ3GjW01r8zg9zWOEP3VHf9akLnP0eZvNdMtVqxWkZ5jIzjKSnWUmPzeJmup0CgusKBTz+2eu5oRSnz7vVCqVnFDqjuUGg0E++ugjAA4ePDjvbMlysphJy5UsZjFJ56REAs+NZgYPncF56Saea02ExpyfmEeIJxBmGLUgoVr8RVihUGCpKCZl6xrsO9Zj37kRQ0E2giAs+zUiFgwxfPQ8g+8ewT0xzM2CHZxr1zA6MnNroFvlCKVKpLrGwp4qJY/tLSSjet1kd5cZzuU5z5d4lL4TH/HOFQ/HbkJ/78cNBkXxs4k0AWzperaWCGxWDFNcUkzmU3vRWD8ZDMkJpT72IF0jmpqaqKqquvUnuc/taveg9bmdx3Y8MEMBBQJRfvhaHd/7/g087ukzMgKkZpv53NPJPJ95g9EfnKHtzR6ivji5X3iK6j/+ZZIq5xfgDwyO896Hrbx/qJXebs+c8wsC5Jfb2b7ZwIGiEQwXTtP/TjMJQz75X3qWnJceR2u/9+n67+eQG/FwhOEjZ+n50fsMHz6BvcpAxoFC4jt2cHYgiws34zTWDhPwLT5T7y2iKGA2azCZNOh0KlRKcbLPlkqBSjU1rVSgVIooFLd+SCafBQESiTj9AwMIQFZWFqrbd7OF2wUDQZhcj0ajRK1WoJ161miUaDSTz3q9mpRkHclWHVarDp1u+h/wpSAlEoydraXnR+/T99ohNPow9rUpJO8qQVi/jgZ/Ftfa1bQ0j9PVPEY4uPgf4KWiN6ipqUlj0/pMNq7PpLIiFbX6Lu4wrFDyUDezk/fPg0uSJIKDo7hqG3DXNuK6Wo+rtpHgwMiil6mymDEV5WAsysVYlEtSVTHWteWYywoQZwiSlkPU52fw/ZP0/fQQvv4merbt44wri8Zm/5zD9omiQEWVhf1brTz73HrsM/Q5nc5CzpdYJMD5d4/x1jkv5676Z8i8/0kllVa25wRY427Bakolfd827Ds3oDTo5/ysbPWRx7l9AN2jbMm/BvzvqZfLli15Htux6oPbiYkw3/3hTX7045v4xmdumppVYOWFpy08lXKVge+cpePtHuIRibwvPUP1//PLdzVWXVu7k3c+bOHQoTbGRuduziEIUFBuZ/tmPfvzhtGcOcnIsS6E5BJyX3mS7BceRZNsWfT2LMS9LkTGIxFGPjpPz48+YOzESdJqDKQ+XoWnYgsn2lO4cj1IW93IvPrK3kmjVZKba6GoMJnCPAvp6UbSUk2kpRpISdGj109/93O+VnthW0ok8NS1MnLsAsPHLjB68hL6ZIHUtclYdpag3LgGl8rOgEfHkEfFiEtkzBXHNRbAPebH4/Dfl+BXpVZQUWFn88YsDuwtpLzM9kCMv7vaj6flJu+fh08iHifqGSfs8hJxeQk7PfiGx6g7fxESCSpqatCajYgaNWqLGY09Ga3disaejMp4D/NAfErEM87AO8foe+0wvqZrcHADp/WbOHU1SnCOwFEQoLjMwoHdqTz3zAYy0hd3g3ux54vf4+T1n5zlvdNeWlsm5pxfoRQpr05hc16Isv5a1J1jJG/eRNr+rdi2r0epm7m/sGz1kMe5fTA1MTnWbbEgCEpJkma6OpV/6jMLcWeAWj7jXJ98Pwa0L3A9D6zhkQm++8ObvPVmI8HAzE0z8stsvPi0iUcNl+j91jlOvtdLIi6Q/zPPUfVHv4i5tOCut6WkOIXf/rUd/NavbufGzWHe+qCF48c6GPdOH2xLEnQ2jdHZBP8hQF7pM2z8goHdRR5izSe5+NI/QFIJ2S88SebTe9HaVvcA7FGfn6EPTtH3xhEmrl/CvsZExpMbiHz+tznUZOLaRS+933MiSfPry6hQCBQWp7CmOo31a9KpqU4nK9OMKCfBmJEgiljXlmNdW075b/0siVgM15V6Ro5doO/wBRz/9R+AGIZ0HeUZejZm6DFkGtGUZaB8NBMxPY242kggppp8hJUEogqCUQWB8OSQRsGoSDAMoYhAOCwRDHN7iCP/eBjnqA/XyPySfN0SjcS5eWOYmzeG+ddvXcVmN7Bndz6P7i9kw4ZMVMoHr1ZXJnsYiQoFmhQrmpSPM4oHg0GaUyZrXgtX0E2OkMNF/5sf0ffaITxXa0ndn0Pblsc4ZNpO+9UJPm4AOD17uoED+zN5+XNrKcpPvTcbPQ2DJYWv/PxzfOXnoautm5+8fp2PzroZG5l+++OxBA3Xx2i4DqJYSnHVdraaYc3JD4n/3h+SEKxY11WSvLEK64YqLGvK5IBXtiBycLt8zjAZ3BqAjcDFGebbe8f02QWu4zKTiaTUU8v5i+lmEgRBDWy79RlJku6+feYqd7N+mG997zpnTnaRmKGPDkBJTSqvPKljl3iRnn87z/EP+5ESAgVf/RxVf/RLmIrzlnzbBEFg3doM1q3N4I9/dw8XL/fx1getnD3dPWMALknQ3eKgu8XBa4A9cytr9z/JzvIgqc6r3PjFfyYaTcayZQeZT+3Dur5yVdRchcZcDLz9Ef1vH0VytJC6LZ2ML29j5MU9/LBJw403HDiGxoCxOZcFkJNnYeuWbHZuzWHThiwMhun7zcjmR1QqsW1bh23bOqr+6JdIRKP4uvoZb+liorWb8ZYuBuu6Gf/pdULDRwAQRAGVQTn1mEz4YjUoSTOoUBlVt99TT00rDSoUyXoUZj1iSjIJqx2/wsJQwEyfS8uAQ8GwM4Fj2E9fuwvnyNwJ6h1jfl5/vYHXX2/AYFSzbXsuj+4vZNf2PPT6e9f8UCaTPVyCQ6P0vXGEvtcO4zx3hfTtdnhiH5c3HODUeT+Bt6LAzLWfWp2Krbsy+NyzVezenDdj3+X7paAkn9//z/n8niRx8UITr7/dxNkLzhlrnxMJidY6B611IAhpFNT8CuurtKxJGkNsPU3XP/5v3G3jmEoKsW6owrquHHNFEUkVRehzMlZFOUZ278nB7fJ5E/jDqemvM01wKwiCCNwa4dgDHF/ICiRJmhAE4SPgSeARQRCyZ6j2fxG4lRbvjYWs40ESiyU4fKyD7/7HdVqbZg+GKjdk8IXHBTZOnKHzH69y/MQQCAoKv/YiVX/0SxgL50ogvTSUSpGd2/PYuT2PcDjG2Qu9fHCknbNnugnN0rxzbHCCo4MTHH0P9KZ8Sqs3s7ZMwcY0B+Khf6Ltz3tQpFVi37sb+86N6LPm3y9nOSXicdy1DQwfOYfz/Fk04gi2R6sw/OoeznQ+z7WGKK1/NUI4ODiv5SkUAtVrM3hkbwH79xSQmWme+0OyRRNVKsylBdO2ZIiO+5ho7yE47CA86iQ04iA06iI06iQ06sIz4iBcPzktzZLoQ2VUYsw0YMrSU5ZlYFPWZO2w+kAmkS/m0xXM5VqPgca2KF1NYwz3eWftp+b3RfjoSDsfHWlHpVaweWsOTz9Wwr7d+cval1kmkz0c/D0D9L1+hL7XDjF2/hr2GisZz1bR9+Lv83eXVLS/5mGyCDg9QYDyGjtPPVnCc09UYtKv/JuygiCwbXsl27ZXEgpFOXzkJm9/0MbNG56pceA/a7I1moPOJngNMFk2U/74U2z4TcjXD6C5cpnB/zhNXZOHqC+G0qDHXF6AubKYpIqiqaC3cDI78zwzo8seTPJ/f5lIknRJEITTTNbefkMQhO9IknT+U7P9DlAxNf23kiR9olpOEISfBf5t6uWfSpL0J9Os6q+ZDG6VwN8LgvCiJEm3S4aCINiA/zH10gP830V/qVVqdMzHj99s5K23GnGOzTyshyDA2m1ZfPmRKMUdh2j/s5scr3UiatQUfeNVKv/wFzDmZ9/DLf8kjUbJgb2FHNhbOBnonu/lvSNtnD/TQyg0c6AbmIhw/fwA18/DdwCrfSNlVY+yrlRinaIf//ePEG4ZRNBnoCteQ8q2jVjXV6CYIRvgUkpEo7ivNzF2rpaJm7VI3i7Ma9JQblzPWMnLXGxWU3/SxfC/e4H5NTfW6pRs3prDY/sK2b0zD7NZbs60EqjMRpI3VM05n5RIEHF7bwe+4VEnwZHJZ3/PIOMtXYw3deBu/ezQNHq7lpRqKweqrby0NgPxyTKGpBxqe83caE1Qf3UY5/DMNbvRSJxzp7s5d7obtVrBlu25PP1YCXt25aHTyoGuTCabn/G2bvpeO0zfa4dwXanHlGMg7/FcjL/yK7zdksXps24CE7Pn1jAlaTjwWAFffHkdpfmrt1uRVqviuWc38tyzGxmfCHH0WDOHP2rn2jUH0cjM3UsmPCEun+rj8qnJ8llW4aNUvfAq638/xjr9IGL9TcbPt+C6dILeH7xNIjZ5F1NUqTCV5GGuKMJcUUjSVPBrKiuQmzc/JOTgdnn9JpNNjXXAYUEQ/pzJ2lkd8AXgF6bmawX+ZjErkCTpmCAIP5xa3nPAEUEQ/hcwCNQAfwzcGifmDyRJci/uq6wusViCE2e7+fHr9dReGpi16bFKo2Dbnixe3eEl7dJrtP6nJs52jKOxJ1PzJ79OyS9/EW1qyj3c+rlpNEoO7CvkwL7JQPfilX6OHO/k7NkePK7Z++m4x/xcOOHnwonJ10kpa8kp2EthrooKe4Ti3nOMnvw20ogXVEkoLemoMwowFBViKspFm25fcFOgRDxOeNTJeGs3443NhHpbkTwDiNoImrWljJcU0pzyKPVdStpaJ+g/5CIeG5j38pNtenbtyuPRvYVs3pT9QGbGfVgIoni7z9x0Q2nBZKbU0PAY482djDd34m3qZLypA+eVevqOD9F3fAhoRKk9QXKFhXVVVh5Zl4rq99ZT5y/gVL2W61ed9He4pl0+QCQS58zJLs6c7EKjVbB1ex5PPVbC3p15aDTyT6dMJvtYIh7Heekmg++eYOCdY3jqWlGbVeQdyKT0117iVGw93zsr0fa3DmD2jM6Va1P53OeqefaRYjTqB+taYzZpefH5dbz4/DqCwSjHTnVy+EgTly6PEA7N3GJHkqC/w0V/h4tDgFIlkle2l7Jdn2P91xNsSh1F1d6E/1Ij7kY3zqZB+l77VHoZQSCpqgT7jvXYph6m4jy5afMDSM6WvMwEQXgW+B4fNwv+tFbgaUmSPpPkaZ41twiCoAN+Cjw1wzoSwJ/N9Pm7tZKyJfcNePnB6w0cer8Zt2vmceAAklL0PHIwhRdLu4i+eZTOd3oIjIVIqiym/Ld/lvwvP4dCq7lHW740EgmJxqZRjpzo5NTpLnq6PItajsWmJz0nCbtdRXqKQEZynAx9gFRc6N2jEAghRaIIsQREY0hRCa/PT0ISSbaYEaUECSkOSpD0agSTASnZilttoz+cRL9TxcAo9PUHGehyE5hYeDfwguJkdu3I47H9hVRWpK6KHyg5e+vykhIJvE0dOM5dY+xsLY5z15ho6779vkKrIG1dCunbUrHur6bPVMWJpiSuXPPR3jBKIj7376FWp2TrjtzJQHdH/n29kSIfT7OT948Mlu84iI77GDpyloF3jjP4/knCYy4UGpHMbalkP1XMYMVu3q5N5tyZMfyzjMIAYDRreOTxYr708hqK862zzrtc7uf5cqvb1YnTHVy6NMDoyMyt7Kaj1iopKLdTWpXM+pIE1WkOTK4uwrWNuBscOJs8uFo8RMY/mbdEY7Ni27F+MuDduQHb1rX3dNinB5k8FNADThCEPCZrcZ8GsplMAtUO/AT4O0mSpj2L5xvc3jH/l4CfBdYCFiZvD56eWsenm0Qvmfsd3I6M+XnnUAtHj7bS2jRzTcwtucVWnjugYU/8AkM/uMTAmWESMYn0x3ZR/ltfI+Px3asiUJqPwcFxzl7s4+zFPq7XDsyYeXkhtHoVOqMajVaJWjP10CrRaERUKoFYTCIWk4hGE0RCMXzeEL7xMIGJ8Jxj9M1Gb1CzaXMWe3flsXtHPraU1Tc2nlzYvvdCo04c568xevoqw0fP4bnRfPs9c66RjK127HuKmKjazEetds5dDdFeNzpra49bdHoVW3dk8/Tj5ezZnotKdW8DXfl4mp28f2SwdMdBIh7Hc7OFkeMXGfrwNKMnLpGIRlFoRDK2ppJzIAtpx3Y+6Mjlo7NBulvnLo9Urknj5RereOpgMer7XEu7ks6X3j4vp851c/psNzdvDM9aqzsdnUFFUVUaxZUprCuFypQxLOE+aGpk7PIQw1cdjN5wEf/UclVJJjKf2kv28wfJeGI36iTTUn6th4oc3MpWtfsR3DpdAd4+1MLRo200NzjmDJrUWiWbtqXyzPpxcq8eovMnzYz3+NBlpVH0cy9R+PUXMRbcmyRR94skSbS1Ozl3qY/zl/qpuzE0a1Kq+00QJ4fq2bk9h30786muSkOpXFmZIRdqJRUeHlbBEQfDR88xfPgsw0fOEhyaTC6n1CvJ2GwjY18ewS07Od6TydkrIdobHUjzCHT1BhUbN6ezZ3cRB3cXYkla/r5d8vE0O3n/yGDxx0F0wofragPOy3U4ztYyeuoKEfdk7ofbAe3+TAz7NnLBU8oHF0SunR8kMksODACjSc1jT5byxZdqKLpPtbTTWannSyQS59qNQU6f7+PylX7a2xxICxvCHmOShuKqNMrXprKtMkq+sgfLeCuB610MX3UwfNWBu8X7iWu9oFSStm8LWc8fJPvZ/Rjyspb4mz3Y5OBWtqrdi+A2kUjQ1O7gxMlWLlwapKneOa+alZxCC4/tVLErcQ3vm+cYOjdCIi6S/dwBCr/xMhmP70JUPJz9M+PxBD29HuoaRrnZOEJT8yidbS4ikYXdIV0qOr2KopIUNqzLYMuGLNZUp2M0rvyskAuxUgsPDytJkvA2tjN8+CxDR84yeuIS8WAIQRSwVVnI2JtDdM9uTo3kcOZqlM6muW+kAYiiQEm5lW1bs3jkQDmVJbZlaQ0iH0+zk/ePDGY/DhLxOOExF8GBkcmcELf68de34W3q4M4TXp+qJWOLnbTNqZh3V1MXreTwdQNXzg8zNjjz8D23VNak8cqL1Tz5SPGKzAuxWs6XCV+Y2tpBzl/u5/KVAbo6564hv5MgQG6JjcpNmWxca6AqeRBbsAPdWCfD54foOznE0KUxEp8aS926roK8Lz1D/pefRZ+5MkaYWMnk4Fa2qi1XcOv0BDhxuplzF/q5fs2J2zl7oqRbtHoV27dbeTxvgKSjh+k/0kvYGyFlyxpyX3mC/K88jy7NtiTb+KCJxRJ097hpaBqlp99L/8AEg0PjjAxN4HIG7qpZ8S1anZKMLDM52Unk5VqoKrdTWW4nK9P8wDQHn8lqKTw8rOLhCI5ztQwdOcfw4TO4ahtBkjBlG8jYlUni4G7O+Ys5Uxuls3n+BaoUu54NG21sWJfO1s1F5GVZluRYl4+n2cn758EgSRKxCT8Rt5eIe5yId4LYhJ+oL0Bswk/MFyA64SPmCxALhEhEop94RIMhxoaGkGJxLEYTxOIkQmHCDvesQ4/p7VpsNcnYqq3YN6QilVVS583jVKOeKxcdDHTNnZ8zyaLl8SdLefVzlRSu8IzHq/V8cbuDXK0d5MLlPi5dGaC/b34jK9ySnGqgclMW1RtS2ZLnITPUiMnZwvC5QfpODjN0cZT4HVmdBVEk7eB2Cr76PDkvPIrSsPq6SN0LcnArW9WWIriNRGM0t/Ry7eYAjS1u2ton6O0cn1ftLIBGq2TdBgu78r0Ut5xi5O16fAMBUratI/eVJ8h96TG5ScldikbjDA37GBnx4feHCQRj+AIRAsEo4xMh2jt6iMchJzsTvV6NWq1Ep1Vis+qw2QwkW3WkJOuwWnUPfBA7k9VaeHhYhRwuRj66wPCRswwdPkugbwi1SUX69jR4bA+XpHLOXE/Q3bawJPRWm47SMjM1lVY2rstibU0BWs3CWynIx9Ps5P2zstwKUoMjU2Ndj7qIuDyTAat7/HbwGnZ5b09H3V4inolZx76+WyqDEn2qjqR8I0kFJpIKTViKrSRy8xkRcrnab+VKE9RfGcYxy1BitwiiwOat2bz8fCV7d+ejUq68WtrpPCjny+ioj8tXB7g4VbM7MjL3/+wWg1nD2h25bN6RzqasUdL8jRhdHQxfGKb3xBCD50c/UaOrNOjJeekxCr76OVL3bXloWwJORw5uZavafIPbRDxGKDDOwJCD3j4PvYM+evoDtLb76e4cJxSITvu5majUCtauTWJHpovC+hM4j7QQckexbV9HzkuPkfPS4xhyMu76+8nm9qD8KC43eT+tXpIkMdHadbtWd+T4RRKhIPa1KQhP7qLOUMXVTjXNjV5i0YUVxDVaJTkFJjIzdGRnaMnP1lOQa6GwwI7ZYkOhmD57p3w8zU7eP/eOlEgQmhqLOtA7iL9n6tE7SGjYQWjESWjEQTw0/6SGokpEqVOgMihR6ZUodZPPCq0ChVqBQiNOPqtFFGoRUa1AoRIRlAKiUkS841lQiIgqAVEx9XeViNaqQWvTIZmSCCmT8KnsdPtSaBnU0dqToL3JRW+7c15Z1AEyMk0892wFLz5bgd1uWOyuvG8e1PNlYHCcS5f7OXO+lwsX+ggG51fWtKYa2LArjy07Uqmx9pPqa0A31knvsUG6PuzD1fzJGmJ9djqFX3/xocjhMh9ycCtb1e4Mbv/yb/4dvT6FYDhBMBQnFJYIBBM4XDHGxkK4xgLE7qJPpyVZy5oKDdX6UfKuncB9oh1tRiYZj+0k4/FdpO7bKme3uw8e1B/FpSbvpwdHIhrFcfHGVH/dc7iu1KMxK7DsLqKvZjc3g2lcawjjmWNIstkIooDVpic1XYfZqECnFdFpRfRaEb1uclogjFoNVosZpVJEFAQUooioEBAVoBBFVEowaBXotAqMOgGdRoVarUZUKlEo1CiVahRKDSi0oFAjiA9G7YN8vi29iNuLt7mTiZau2/1Tx5s78XUPkAjPPqSbUqtAZ9eis2nR27RoUzRoktRozGrUZhUasxqVWYXSYkBMMiOptcRFFXFBTWLqefK1CklQEJVEYgkF0YSCWEIgGp98jschFod4Yuo5DrEEROMKogmRWEIkmlDg8Io43QncziDOER9DPZ4F32RPsup45EARzzxRwpqa9FXdKulhOF8ikThXagc4dbqbE6e6GB31z+tzmfkW1u/OZ+f2JMoUzaRP3CDUMUTnB/30HBkg5P7kTZv0R3ZQ9M1XyP7cIygW0SrnQSAHt7JV7c7gtmrd/w+1eumy/ymUIqUlBqptPooHb6A6dgFJYcK2fT3pB7eR/tguTEW5S7Y+2eI8DD+KS0HeTw+uWCCI60o9Y+eu4Tg3OcauUhslcnAnrak1tLp0tHeFCPoXVnheLkq1ArVGgUarwmDSYExSkWRWYjWLpFok0o0R0rVB7OIE2gkfYlhA1KeiSsvFWFyAMT9rxY8HKZ9vi5eIxRhv7sR9rRH39Wbc1xrxNrQTGnXO+BlRKWDI0GPKMmDM0mPKNmDMMqC3a1GnmkkkpRBWmgkrzbhjRoa8WjwBFZ6AyHhAYNwHE74Efl+UoD9KJBQjEp56hGJEInEioRjRSJxEPLEkOSAWI9mmZ9fOPJ44WMymjVmrPov/LQ/b+SJJEm1tTk6d6eb4yS6amsfm/IyoEKjalMXWg4VsL/GR6buBdaKFkYsjdH3Yz8C5EaQ7avrVyRYKvvIcRd94GUtN2XJ+nRXnfga393dQLZnsU8xJagqyFeRrfWS6u0m+dAmzkE2KbR22Fz+H7S//BH12+v3eTJlMJvsEpV5H6p7NpO7ZDHzcjHns3DVyz11jY10z/p5uQmsrGCqooVOy0T4IjrHF1+zejVgkTiwSJzARwT02c+2FqBBIy84mK89MQY6SMuMEJTffQ/jOdUJdHmKCDUNpFSmba0jeWI02NeUefgvZUkjE43gb2nBeuIHzSj3u601461pnbEIsiAKmXAOWQjOWIhOWQjPmHAPqjCRCOjsBlQ2vkEy700jPqJJhJ7i6IngcAdxjfjwOP0H//PtB3m8KhUBpmZ3t23I4uLeQ8rLlyX4uu7cEQaC01EZpqY1v/twmevu8HDrcxnsfttLb65n2M4m4RN3Ffuou9vOa3cCWA5Xs2Luf8mfa2LD3OptGBuk61E/n+31M9PuJuDy0/O13afnb75KyZQ1F33yFvC88hcpkvLdf9iEj19zK7tpiam6VKhFbsooUE2Rq/GS6e8l0DJJmTyGpqoikiiLMFUUkVRWjUD+cTTpWk4ftju9iyfvp4SYlEvi6+vHUteKtb8VT18pw3zCDqZk4LRk4BTOjARWjrjjj4yujhnc6SrWCvNIUyiuS2FQWo1psJ3TsHKNn+wj4jKTu20HGoztI278Nlfn+FeLk8216waFRHBdv4rx4A8eF67gu1xPzB6adV1SJWIvNJFdYsBabsRSZMeebiBhs+NTpeJTptDnNdA4r6R+MMtLnZaTfi3PYN++EkCuN0aSmqDiFNVVpbN2czbo1Gej1K7uVwlKQz5dJkiTR3OLgg0OtfHi4DYdj+nPjFkEUqNiQybZHithSHiXbfx27vwnntRE63uul/9TwJ7ItKw16cj//JEXfeBnb9vUP7I0SueZW9sBIt6uwmFSoFRIahYRaiKMW4piFMMmJILZEiDSdgvRcO4ZMC7oMO6aSfEzFuSu+iZtMJpPdDUEUMRXlYirKJedzj9z+ezwSITQ0hr9viED/CIG+IRzdbgacAYYFNS5RTwglIZSEEwrCkoJwXCAUEwhHIRwFKSGRkCaH5UwkpNvPicTkEF9LeR87FonTUT9KR/0o7wHmZCM1m3+WHf9ZwTZ7D/EjJ2j774c586ob++7N5L36JNkvPIrWvrKHQnkQSZLERHsPY6cuM3r6KqOnLuPvmqGMKYAp20BKhYWUCgvJ5RYsRWai2iS8ulzG1Rlc8lhp7lPSc2Gcvg4nA10DRMO99/ZLLYAggEIhIoqTrRDUaiVKpQKFQsCcpCU9zUhmuonMdCN5uVbKymykpxkf2IBDNjdBEKgot1NRbuc3f207tdeGePf9Zg4fbScc/mzOGCkh0XhlgMYrA7yWrGPzgUJ27NtNxcF21my+xgbnAD1HB+h4rw9v5wQxf4DOb71G57dew1xRRNE3X6HgK8/L18clJNfcyu7anTW31w8fp6SiHIVOg0KrQdRq5NToDwH5ju/8yPtJdrcS8TjxYIh4IITP5eb00WNIkSjbt21Ho9VM+xlJkojGJILhOKFwnFAkTjAcJxhJ4AvGcHqCuMZDuMYjOMejjLkijLoiBAILT/5nturYsi+XJ7fFqYjfxPXmOTrf7mFiIEjqvi0UfPVz5L78OEr98h/7D+P5lojH8da1Mnr6CqOnLjN2+iqhEce084oqkeSyJOxTY7naqq2ozWpCSiseXS6jQjY3Bs20toXoah6jt8255H3G9QY1ZrMGs1lLUpKGpCQtVosWS5IWg16NXqdCq1Wi0ynR6VRoNUq0WiVKpTj5UIgfT99+KFAqRRQKAYVCfCiPg8WQ99PsJnxhPjzUxmtvNNLaNv05dYsgQOnaDLY9WsTWygS5wevYfY14GsfoeLeP3uODxIIfX19FlYrMp/eS/+VnyXx6H0qddrm/zrKTa25lDwx9fpbcJ1Ymk8mWiahQIBoNqIwGJJMeMScNAMv6iiUvjI6Ph+jodNHQ4qCpZYzm5lG6O92z1gKPu4McfaOFo29ASU0B+x7ZzpNf60J17iSdb7Rx8ef+gKu//mfkffFpir7xMsmbauRasrsQj0RwXaln9NQVxk5fYexsLVHvxLTzqgxK7DXJ2NckY6uxklyahKhWEFDZ8OjyuBHL5FqPgdZWH93NY/R3thGPJaZd1nzZUg3kZCeRkW4iK8NERrqJjAwTGWlGUlONaLVyMVS2OpiMGl55qZqXX6yiqXmM195o5MPDbdMOLSRJ0HJ9iJbrQ7xu0bJ5fyHb9++iancnlWuvsf5XB+g9NkjHe724mr0kolH63zxK/5tHUZmN5Lz4GHlfeoa0A9vkCqJFkK8qMplMJpPJPsNs1rJ+XSbr12Xe/tvERJirtQOcvzLA+Qu99Pd6Z/x8W90IbXUjvJFuZN/TP8tzf+mksu80nf9+g85v/4T2f/oRyRurKPmVL5H3hafvSW3uahed8OE4f53R01cYO3MV54UbMyZ+UptU2NckY1+bTOraFCxFZgSFiE+dhkeXy5V4Fte6dbQ0euloGGGop2nRzdftqQYKC5MpnnoUFiRTkG/FaJRzZsgeLIIgUFmRSmVFKr/9mzs4fLSd195spLFxdNr5Jzwhjr3RyLE3GilZk8bWR55g+xqB3C9e58CzDfjanXS810fP0QEiE1Gi4z46v/06nd9+HW26nbzPP0n+l5+VbwQugBzcymQymUwmmxeTScO+vYXs21sIQGeXiyPHOjlyrIPO9umHiXEM+/jpv97gfZOaPU8/w8t/eJBHf/40vT+4TtubLVz8xh9T+zv/g8Kvv0jJL38Rc0n+PfxGK1twxDFZI3vmKqOnr+K53oSUmL42VZOkngpkk7GvTcFSYEISFUxoMvDq8miTsrjeraW10U1H/SgD3fVIi0j6ZLFqqaxIpaYylarKNKoqU7Fa5RsTsoePwaDmhecreeH5SlpaHbz+ZiPvf9iK3z/9mM9tN0douznCG2YNm/YVsOPAdqq39lBaUcu6Xx5k+NIY3R8NMHhuhHg4QWh47Ha2ZX12OpnP7CPr2QOkH9iGYoZuKDK5z61sCdzZ57a1tZWSkpL7vEWye03uqzM/8n6SLaWVdjy1tjl47Vbhzjd94Q5AZ1Cx++lSXtodpWT8DAM/vUbLT7sIOSdrINMf20Xpr3yRzGf231WTvJW2f+ZyO/nTmatTAW0tE23dM86vsapJXZvyiWA2LigZ12Th1eUxImRxs1tDW6OT9vpR+jtcC85gLIoCJSUpbFiXwbq1GVRXpa26hEur7Ti4X+T9tDSCwShHPurg9TcbuVk3POf8hZWpbHukiK3r1eREGkmdaEAx4aL/zDA9RwcYuer8zE0ohV5HxqM7yHp2P5nP7EeXZluur7Nocp9bmUwmk8lkq1ppiY0//L09/Nav7+DosXa+8/0bdExTmxv0Rzn84wZOvati15P7ePHn9nLgi+cYe+caTT/oYPjwGYYPn0Gfm0nJL36ewm+8vCILb3crOuHDfa0J55V6HOevMXamltDw2IzzG7P0H/eZrbZizjESE9R4tTm4dLk0kU19r5r2iw46Gkboa7+64D6zao2C6uo0Nq7LYP3aTGqq0zAY5KbFMtl86XQqnnumnOeeKaej08Xrbzby7vstTExM332gs3GUzsZRXterqN6azYZdr7KxOERGWgM7n2gi7vDSe2KQ/tMjjNW5kOIS8UCQ/rc+ov+tj0AQSN5UPTnO+u6N2HZuQGt7uDMvy8GtTCaTyWSyJaPVKnnmqXKefrKMy1cH+Pa/X+PChb7PzBcKRDn6WiOn31Oy88mdvPDqHnZ/7jyeQ1dp/I8OvJ2D3Pjj/0ndn/wdOS8/TuHXXyRt/1ZE5eorukQnfHjqWnFdqcd5pR7XlXrGmzuZqZOrIApYis3Ya6yT/Wark9Ema4iKOjzaXEZ1udSRRUO3go4LY3Q0jNLXcXHBwaxKNRnMbt2UxaaNWVRXpaFWywlsZLKlUFSYzO/99i5+41e38dHxTl5/s4Haa0PTzhsKRLlyvIsrx7swW3Ws25nLhl1bWVPhJD2ngcKX2kiMBxi6NMrghVGGLo4RmYiCJOG6XIfrch3Nf/MtAMwVRdh3bcS+ayOpuzZiKMheVa0t7tbq+4WQyWQymUy24gmCwJZN2WzZlE1rq4N/+tYVjh/v/Mx84VCMY280cuYDJTse38znntvFjqcv4Dt+ldafdjFS66TnB+/S84N30aamkPvqk+R94SlStq1bcZlEwy4P400deBs78Da2423sYLyxnUD/7M0TlVoFKZUWbNXJ2GuspFRZUemUhBVGvNpcenW5jJJNYzd0nB+lo2GU3vazJOILa2asVIpUV6WxeVMWmzdmUVOdhkYjFwVlsuWk0Sh56olSnnqilK5uN2++1cg777fg8YSmnX/cHeTUuy2cercFe6aJ9bvLWLN5HxUlLmxZ7ax/vJWtYQ+OejeD5yeD3fEe38efb+pgvKmDjn/58eT6bVaSKotJqiomqaqEpMoikqpK0NiTH8igV76iyWQymUwmW1alpTb+5i+eoL3DyT//6xU+OtbxmUrLSCjGibeaOPuBgu2Pr+X5x3ay7sBFpPqbtP20i56PBgmNOmn9u+/R+nffQ2Uxk35gG+mPbCd17xZMJXmIKtWybH8iFiPi8hJ2egg73AT6h/H3DBLoHcTfM4i/d4hA7yDRcd+cyxJVIpZCE9bSJJJLk7CWJmEpMoFCgV+dhlebTZs2h6F4Gm1dUTobb9XMdiw4mFUoJjO73gpm16xJR6ddnn0kk8nmVpBv5bd+cye/+svbOH6ykzfebOTy1YEZM5WPDU5w+Ed1HP5RHRabnsqNWVRuWsuaYki3d1CwpY21vzRA2BPGUe/GUe9mrM6Fu9VLIja50LDDzeipy4yeuvyJZWtSLCRVlWDIz0KXmYouKw391LMuMxVdum3ZrqnLSQ5uZTKZTCaT3RPFRSn85Z8/Tmeni3/5tyscOdrxmSRH0UicU++0cO6Qgu2PVvLsEztYW3OJdb/SRO+xQbo+6MPV4iXqGafv9cP0vT6ZBEdUqTCXF5BUVYI2w46g1xIdGgCdmq7+CVQKBVI8QSIWQ4onkOJxpGiMWCBIzB8kHgjdMR0k4pm4HcxGPeOL+r76VC3mPCPmXCOWQjPWUjNJ+SYEpUhIaWVCk45Hk0GPJoN2p5mutnF6Whx0t/Yy2l+34KF5RFGgssLOpo1ZbNyQxfq1Gej1q69wKpM96NRqBY8/WsLjj5YwOurj0JF23v+wlZZWx4yf8TgCnDvUxrlDbag0CkrXpFO5cS81ay3kpo1hzuuj4GAfa8JDJMJRXM2TtbvOJg/jPT58g4FPJKcKOz2TAe+ngt7bBAGNzYoqyYTKbERlMqAyG1CaDFPTRhR6HaJKiahUICiVCEoFolJJv3Pm77Hc5OBWJpPJZDLZPVVYmMx//7PH+MVvuvmXb13l0OG2zwS5sUic0++1cv6wyNZHSnjs8V3UfK2FvS/eJNQxTP+ZEYYujuJs9CAlJBLRKJ66Vjx1rZ9Z33VeW5bvISgEdDYthlQt+jQdhjQ95lwD5jwjplwjKp2SuKAkqErBr7bj1KTTrU6n22Omt8fPQKebgS43fe3XCMySYXomokKgqiKVTRsy2bgxi7U16XICKJlslUlNNfKVL6/jK19eR2eXiw8PtfHB4TYGBma+qRYNx2m4PEDD5QF+AqSkGckvs5FfvofCUgvFeT6sGQOkbu+jODyAKh4gEYkz0efH2+NjvGcCb7eP8V4fgeEgsVD8syuRJMJjLsJjrgV/JyfRBX9mqcjBrUwmk8lksvsiP8/Kf/vTR/jFb27mX//tKu990PLZIDea4OwHbZz9oI2SNWlsPfgiezYGyaxupeSr7eD1MnLNiafDi6djAk/HOEFH6HaTvHkRQKFRoNQoUGgnn1VGJRqzGnWSavLZrEZjVqE2q9HbtOjTtGiTtYgKgQQiYaWJsDKJgCoFl9pGvyqFsYiZvhGR0e4Jhvs8DHS5Gey6StC/uIKfQiFQVZnKxg1ZbNqQydo1cs2sTPYgKSxI5ld+aSu//ItbqKsf4cPDbZw81cXQ8OxdHpwjPpwjPq6e6gYmh1zLK7WRX15DTtFeMjPUZJl8GDId6Dc4yIo4KIk40MTHEYCoP0rQGZ56hAg6QoRcYUKuMBF/jFggRjQw9RycfI6HF5bA7l6Rg1uZTCaTyWT3VW5OEn/6Xw7w89/YyLe+Xcs77zUTn6Z/advNEdpujvC6ST3Z92zjejaWJcjM7SU9MkxxeARtzIMAxEJxor4o0UAMhMkmu4JCQBDveCgFlFoFimkyBCcQiSl0REUdUYWO2NRzVNThUZoYViYREEyM+dSMuQU8I0E8Y37GBicYHRhndHAQ//j0w3/Ml1qtoKLMzoYNmXIwK5M9RARBYE1NOmtq0vm9395FR6eL02d6OHm6m7r64Tm7LAT9UZqvDdF8R3ZmtVZJaqaZ1GwzaVnZpGabycjUkW6JYVQE0BT4UMd8qOMTpEw9q+N+lIkwikQYUYpxZ/qpRFwiHo4jxSUS8QRSXJqalugfm4Df7FqenTMHObiVyWQymUy2ImRnJfFf/ng/3/z6Rr713VrefqeZ2DTD2wQmIlw50cWVE118XymSV5pCVkExmQWbyMnRk2qJY9LG0RBGkYiAABIiICAJIhICkiAgoSCGglBUQSgqEo4JhKIC4YhAMAQBX5iAL0LAFyE4Ne2fiDDumsDjHGHCHfxMTfPdsNv0rF2TwZo16aypTqO8zC4PzSOTPeQEQaC4KIXiohS+/rUNuD1Bzp7r5fTZbs6d78Pvn1+XhkgoRn+ni/7OzzYz1upVmCxaTBYdZqsRs9V++7VWr0KtVaLRiOg0oNck0KkTGDUJ1Io4gpRAIDH1LCFICUaGh4H/WOI9MT9ycCuTyWQymWxFycw08//8wT6++fWNfPd713n3/RZ8M/RJjccSdDaO0dk49pn3NDolGp0KJEgkEkgSJBLSZB/dhEQ8lljw2LBLJSlJS0W5nYoyG2Vldmqq00hPMz6QQ3PIZLKlY7XoeOapMp55qox4PEF7h4vrN4a4cXOY6zeHGJ6jCfN0QoEooUCUscGJBX1OEAVEUUBU3HoWEUWBaMS94G1YKnJwK5PJZDKZbEVKTzPx+7+zm9/41e0cO9HJG281crV2cN6fDwdjhIOxZdzCuSkUAjnZSeTnWSkpSaGizE55uY20VDmQlclkd0ehECkrtVFWauPzr9QAMDLi4/rNyWC3rn6Ezi43weDyJHiSEhLxhET8U5fZSOTuumTcDTm4lclkMplMtqJptUqeeqKUp54oZWBwnNNnujl5upurtYPTNlu+19RqBal2A2mpRrKzzeTnWcnPs5CfbyUz04RKKTctlslk90ZamvH2MEMAkiQxOuqnq9v98aPLTVePG5creJ+3dunJwa1MJpPJZLJVIyvTzBdeXcMXXl2D3x/hytUBmlsdtEw9hoYW1qxuOqJCQK9TYUnSYk7SkmTWkGTWYp56tibrSE81kpZmJC3VgNWqk2thZTLZiiQIwuS1Ks3Itq05n3jP54vgcPpxOgM4HAHGnIGpaT8OZwCXO0gwECUQjBIMRgne55Yw8yEHtzKZTCaTyVYlg0HN3j0F7N1TcPtvoVCMiYkwY45xjh07TTgssXHTRnQ6LYqpLMmKqX5iSqWIVqNEo1VOPmuUaLQKuaZVJpM9FIxGNUajmvw867zmj8cThEIxAsEogUCUcChGPCGRSCSITWVKjscT9PR08fJLy7zxM5CDW5lMJpPJZA8MrVaJVqvEaBTJydYAsHVzFjqd7j5vmUwmk61uCoWIwaDGYFDPOl+SOXCPtuizxPu2ZplMJpPJZDKZTCaTyZaIHNzKZDKZTCaTyWQymWzVk4NbmUwmk8lkMplMJpOtenJwK5PJZDKZTCaTyWSyVU8ObmUymUwmk8lkMplMturJwa1MJpPJZDKZTCaTyVY9ObiVyWQymUwmk8lkMtmqJwe3MplMJpPJZDKZTCZb9eTgViaTyWQymUwmk8lkq54c3C4zQRD0giD8niAIlwRBcAmC4BMEoUkQhL8WBCF3CZavFAThUUEQ/koQhNOCIIwJghAVBMEjCELt1HqKluK7yGQymUwmk8lkMtlKpbzfG/Agmwoq3wPKPvVW+dTjm4IgfEmSpPcXuXw70ASkTPN2ErB+6vHrgiD8viRJf7uY9chkMplMJpPJZDLZSifX3C4TQRCMwLt8HNj+C3AQ2AH8MeBjMgD9iSAIaxa5Gg0fB7bXgT8FngI2AgeAvwJCgBr4X4Ig/MIi1yOTyWQymUwmk8lkK5pcc7t8fpfJ2lmA35ck6a/ueO+8IAjHgVOAHvhfTAajCyUBR4D/IknShWnePy4IwmvAcUAH/KUgCD+QJGliEeuSyWQymUwmk8lkshVLrrldBoIgqIDfnHrZBPzNp+eRJOk88K9TL/cLgrBxoeuRJGlAkqTHZghsb81zEfiHqZdJwCMLXY9MJpPJZDKZTCaTrXRycLs89gGWqenvSJKUmGG+b98x/eIybs/xO6bl5FIymUwmk8lkMpnsgSMHt8tj9x3TJ2eZ7wrgn5retXybg+aO6ZkCbZlMJpPJZDKZTCZbteTgdnlU3DHdPNNMkiTFgI5pPrPU9s5ne2QymUwmk8lkMplstZITSi2PnKlnvyRJnjnm7QPWAHZBEDSSJIWXckMEQcgAvj710sEnmyjPdxnZc8ySdWuip6dnoYuXPQDC4TAOhwOAjo4ONBrNHJ94OMn7SbaU5ONpdvL+kYF8HMyXvJ9kS+lT8YDiXq5bDm6Xh2nq2TePef13TBuBJQtuBUEQgP9zx/b8mSRJwUUsqm++Mz766KOLWLxMJpPJZDKZTCZ7ANmBe1b7JTdLXh7aqefIPOa9M5jVLfF2/BHw3NT0ceDvlnj5MplMJpPJZDKZTDaT1Hu5soe65lYQBCUQXYJFfV2SpG/f8To09ayex2fvbPexmFrVaQmC8GXgz6ZedgNfmiVr81xy5ng/Fzg7Nb0NGFjkemSrVzpweWp6MzB8H7dlJZP3k2wpycfT7OT9IwP5OJgveT/JllIWcGuo0nua7+ehDm6X0cTUs3Ee8xrumJ5PM+Y5CYLwNPBvgACMAI9KkrToi5QkSf1zrO/OlwNzzS978HzqGBiWj4HpyftJtpTk42l28v6RgXwczJe8n2RL6VPH03xasi6Zhzq4lSQpJgjCUmQpHvrU635gK2AQBMEyR1KpW7WiY0uRTEoQhH3ATwEV4AYekySp/W6XK5PJZDKZTCaTyWQr2UMd3AJIkrQcVeWNwEtT0+V8XC3/CVPNooumXjbd7UoFQdgCvMNkn18f8KQkSTfvdrkymUwmk8lkMplMttLJCaWWx5k7pvfOOBds4uNmyWdnmW9OgiCsAT5ksil0CHhWkqSLd7NMmUwmk8lkMplMJlst5OB2eZwAvFPTXxM+1fD8Dj97x/Qbi12ZIAilwGHAymSCrJckSTqx2OXJ/t/27i9GrqoO4Pj3Fwi2KIRI0tJYq8SCQSAVY2KMRKrYGn2gjVIIbaqoiaYqYhAwJiaWBxLxTwwNsYkEDdJCo/JHkzYRFVvBB6KJRpHwUB8KaAEfREookJSfD/eMOx23u7M7O3vnzHw/yc3MOffcnV+nk9/ub+6590iSJEmqjcXtEGTmq8CO0jwPuL53TES8F/hMaR7IzD9MM+atEZFl2z/da0XEKuDXwHLgGM1dkfcN/q+QJEmSpHpM/DW3Q/Rt4ErgXOBbEbEa2EOz3M8HaNagPbm0vzyfF4iIM2kK285Nqb4LPBERF8xw2L8z06V6JEmSJI0Vi9shycwjZUmefcA5wGfL1u0FYEtm/nmeL3Nh+dkdN5ZtJndy/HRoSZIkSaqexe0QZebBiLgI+AKwCVgNnAI8RVP03pqZh1oMcUGUtdBOdF2xJoCfgf74Pmkh+Xmame+PwM9Bv3yftJDa/DxFZrbxupIkSZIkLRhvKCVJkiRJqp7FrSRJkiSpeha3kiRJkqTqWdxKkiRJkqpncStJkiRJqp7FrSRJkiSpeha3kiRJkqTqWdxKkiRJkqpncas5i4i1EZFz3K5uO24NZpr/9yMRcWofxy2NiP/0HLt2+BG3r+c92z7L2OUR8VjX+J0REYsUqiph/u1fRFzc8z68v+2YtDjmknsnzXzem4jYPmm/vzWYNvOvxa2k+XoDsLGPcRuA04cbSt0iYgWwHzi/dN2amdsyM9uLSqreJ2ZpS5KGo7X8e/JivZDG1k7g+32Me3rYgWhRvQwsAbYCd88ydmvPMeoSESuBh4BzStd3MvOGFkNSPcy/JxARrwM2leaLNF/GbYqIazLzaHuRSdJ4azv/WtxqUM9l5mNtB6FF9wvgCmBdRJyVmc9MNygilgHrS/PnwJWLFF8VIuItwG+Bs0vXzZn59RZDUl3Mvye2ATijPL8WuINmBskGYE9LMUnSJGg1/zotWdJ8PAg8A5wEXDXDuKtovkR7FvjVIsRVjYh4G/A7pgrb7Ra20oL5ZHl8PDN/CDxe2k5NlqThajX/WtxKmo9jwD3l+dYZxnUS2d3lGAERcS5wAFhVur6WmTe1GJI0NnpmjOwqj7vL4/qIWL74UUnS+BuF/GtxK2m+7iqPF0XE+b07I+IdwLt6xk68iDiPprB9U+m6LjO/2WJI0rjZQjNjJJn6o2p3aZ9U9kuSFl7r+dfiVtK8ZOafgM71ftOdve30/a2MnXgRcSHNXZHPokn012Tm91oNSho/nSlxD2fmkwCZeQh4pPQ7NVmShqP1/GtxK2kQnTOyWyLif/mkrM+6pWfMpFtDc/OoZTSF7ecy87Z2Q5LGS/kCaU1p7urZ3WmvKeOkSbcsIi6YbaP5vSXNaFTyr8WtpEHsBl4DVgKXdPWvBd5c9u3+/8Mm0kbgzPL885l5e4uxSOOqc9bgFeCnPft+Uvq7x0mTbBvw1z62bW0FqKqMRP61uJU0b5n5D5qzkXD81OTO8/2ZOXFrbJ5Adj2/LCJOaS0SaQxFxEnA5tLcm5nPd+8v7X2lubmMlyQNaJTyr8WtpEH9uDxeHhFLI2Ip8PHS55TkKTuZuh3+R4B7IsK1xqWFsx5YUZ73Tomjp38F8KGhRySNtpsyM2bbAO/mr9mMTP61uJU0qPuAl4DTaBbo3kizWPdR4N72who5/6JJ5gdL+2PAnd3XKksaSOdGJc8De08wZm/Z3z1ekjSYkcm//lElaSCZ+SJwf2luZWpK8gOZeaSdqEZTZh4GPggcKl2bgdvLDbgkzVNEnE7z5RrAGcArEZG9G/By2Q+wMSJOW/xoJWl8jFr+tbiVtBA6U5PXA+vKc6ckTyMznwIuBf5Zuj4N7GgvImksXAEsneMxpwKXDyEWSZokI5V/vd5L0kL4DXCYqestngUebC+c0ZaZf4+IS4EDNEssfDEijmbmjS2HJtWqM8XtMHBdH+NvAVaV4340rKAkaQKMVP61uJU0sMw8FhF3AdeWrl2ZeazNmEZdZj4REeto7jb9RuCGiHgpM7e3G5lUl4g4G7i4NO/NzD19HPNu4CvAJRGxKjOfHGaMkjSORjH/Oi1Z0oLIzK9m5pKyXd92PDXIzL8AHwZeKF3fiAjP3kpzsxXoXLf+sz6P6YwLjl/GTJLUv5HLv565laQWZeYfI+KjwC+B1wO3lDO4t7UcmlSLzh9HzwEP93nMo8DTwMpy/M1DiEuj4Z0RcXUf4x7JzIOzD5PUZeTyr8WtJLUsM38fEZfR3CZ/CbCjXIN7R8uhSSMtIt4HrC7N+zPztX6Oy8yMiPuALwFvj4j3ZOajw4pTrdrA1J1cZ/IpppZqkzSLUc2/TkuWpBGQmQ/RrH37Ks1UnR9ExJZ2o5JGXvdaiXNdV7t7vGveStLcjGT+jcxcyJ8nSZIkSdKi88ytJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6/wVdYdFqHXH58AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import cm\n", + "from triqs.lattice.utils import TB_from_wannier90, k_space_path\n", + "\n", + "# define a path in BZ\n", + "G = np.array([ 0.00, 0.00, 0.00])\n", + "M = np.array([ 0.50, 0.00, 0.00])\n", + "K = np.array([ 0.33, 0.33, 0.00])\n", + "A = np.array([ 0.00, 0.00, 0.50])\n", + "L = np.array([ 0.50, 0.00, 0.50])\n", + "H = np.array([ 0.33, 0.33, 0.50])\n", + "k_path = [(G, M), (M, K), (K, G), (G, A), (A, L), (L, H), (H, A)]\n", + "n_bnd = 14\n", + "n_k = 20\n", + "\n", + "fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)\n", + "\n", + "for (fermi, n_iter, cycle) in [(e_fermi_run, n_iter_run, cm.RdYlBu)]:\n", + "\n", + " col_it = np.linspace(0, 1, len(n_iter))\n", + " for ct, it in enumerate(n_iter):\n", + "\n", + " # compute TB model\n", + " h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0\n", + " tb = TB_from_wannier90(path='./', seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)\n", + "\n", + " # compute dispersion on specified path\n", + " k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)\n", + " e_val = tb.dispersion(k_vec)\n", + "\n", + " # plot\n", + " for band in range(n_bnd):\n", + " ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it}' if band == 0 else '')\n", + "\n", + " \n", + "ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')\n", + "ax.set_ylim(-0.2,0.8)\n", + "ax.grid(zorder=0)\n", + "ax.set_xticks(special_k)\n", + "ax.set_xticklabels([r'$\\Gamma$', 'M', 'K', r'$\\Gamma$', 'A', 'L', 'H', 'A'])\n", + "ax.set_xlim([special_k.min(), special_k.max()])\n", + "ax.set_ylabel(r'$\\omega$ (eV)')\n", + "ax.legend(fontsize='small')" + ] + }, + { + "cell_type": "markdown", + "id": "45062ca5", + "metadata": {}, + "source": [ + "Note that since this is an isolated set of bands, we don't have to worry about the disentanglement window here. Pay attention if you do need to use disentanglement though, and make sure that the configuration of Wannier90 works throughout the calculation!\n", + "\n", + "You see that one of the effects of charge self-consistency is the modificiation of the non-interacting bandstructure. The current results are far from converged, so make sure to carefully go through convergence tests as usual if you want reliable results. The figure below shows the difference to the reference data, which is quite substantial already at the DFT level." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a3d760e5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAGQCAYAAAB1UpekAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOyddZgcRf6H3x6fdXdNstmNu3sIECIkQIK7ywEHHByHu9yhh7u7BYhBgLi7J+vubuPTvz9mN5dkZjYrs5Zfvc8zT3dPV3fV9k5316fqK5IsywgEAoFAIBAIBAKBQNCbUXR3AwQCgUAgEAgEAoFAIOgoQtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8RtFyBJUpwkSS9IknRYkqQGSZIqJUnaJknSPyRJ8vJQHQMlSXpNkqT9kiTVSpJkliSpTJKk1ZIk3SVJkq8n6hEIBAKBQCAQCASCnogky3J3t+G0RpKkucAXgL+bIkeBObIsZ3agjnuA5wBVC8VygHNlWd7X3noEAoFAIBAIBAKBoKcixG0nIknSMGAT4AXUA88CqwE9cDFwQ1PRI8AYWZbr21HHhcA3TZtm4A3gD6Ac6AvcCkxu2l8EDJBluaY9f49AIBAIBAKBQCAQ9FSEuO1EJElaDUwHrMBUWZY3n7T/XuDfTZuPyrL8RDvq2A8MbtqcJ8vyMhdlfgDOb9q8R5bll9paj0AgEAgEAoFAIBD0ZIS47SQkSRoDbGvafEeW5ZtdlFEAB4ABQBUQLsuypQ11+AHNs7C7ZFke5abcUGBv0+YPsiwvam0dAoFAIBAIBAKBQNAbEAGlOo+Fx61/5KqALMt24NOmzUAcs7xtQXPceks+uxnHrWvbWIdAIBAIBAKBQCAQ9HiEuO08pjQtG4CdLZRbe9z6ZLelXCDLcjlQ2bTZp4WifY9bT21LHQKBQCAQCAQCgUDQGxDitvMY0LRMl2XZ2kK5Iy6OaQvvNi1HSpJ0jpsyDzctbcD77ahDIBAIBAKBQCAQCHo0LaWOEbQTSZJ0QEjTZn5LZWVZrpIkqQHwBmLbUd3TwGhgFvCTJEmvA3/iiJbcB7gFmIZD2N4hy/LhtlYgSVLMKYpogBSgFChrqksgEAgEAoFAIBD8/0MJhDat75dl2dRVFQtx2zn4HrfemvQ+zeLWp60VybJc3zRjezVwP3BP0+d4fgT+Lcvy1raev4m8dh4nEAgEAoFAIBAI/v8yBtjRVZUJcds56I5bN7eifPNohr6d9Y0GLsG93+0soESSpMOyLNe2sw6BQCAQCAQCgUAg6LEIcds5GI9b17gt9T+aIxgb2lqRJEmLgM+bzrEPeBRYB9ThMHO+CIfP7S3AVEmSZsmyXNzGak5lLh0NbAFYtWoV8fHxbTy9oLdjMpnYutVhGDBu3Di0WhGU2xXiOgk8ifg9tYy4PgIQv4PWIq6TwJPk5ORw5plnNm+WdWXdQtx2DnXHrbfG1Ni7adkaE+ZjSJIUDnyMQ9geBCbKstxwXJFM4FlJkrYBq4BBwGvA4rbUI8tyi37DkiQdW4+PjycpKaktpxecBhgMBjIyHBmn+vbti17fXiOE0xtxnQSeRPyeWkZcHwGI30FrEddJ0Il0aSweES25E5Bl2YgjoBNAi8GYJEkK5H/itq2+rRcfd+wzJwnb49vzJ44gUwDnN9UpEAgEAoFAIBAIBKcNQtx2Hs1RiftJktTSDHmKi2Nay/Gpg3adomxzrl0F0L+N9QgEAoFAIBAIBAJBj0aI285jQ9PSGxjVQrlpx61vbGMdx+fPPZWJudrNcQKBQCAQCAQCgUDQ6xHitvNYctz6Na4KSJKkAK5s2qwGVrexjqzj1qecouzUpqUMZLexHoFAIBAIBAKBQCDo0Qhx20nIsrwNWN+0eZ0kSRNcFLuH/5kWvyrLsuX4nZIkXS1Jktz0eczF8ctwiFWAByVJinbVFkmSbsSRLghgiyzLFW34UwQCgUAgEAgEAoGgxyOiJXcud+IwNdYDv0uS9AyO2Vk9jmBQNzaVSwVebOvJZVk+IknSR8C1ONLx7JYk6RUcoro5FdDFwKVNh9iAB9r7xwgEAoFAIBAIBAJBT0WI205EluXdkiRdhCMPrR/wjItiqcBcWZbrXOxrDbfi8Ou9CAgFnnZTrgG4UZblNe2sRyAQCAQCgUAgEAh6LMIsuZORZflXYCjwMg4h24jDv3YH8E9ghCzL6R04v0mW5YuBmcCnTXU04AgaVQlsBp4EUmRZ/rL9f4lAIBAIBAKBQCAQ9FzEzG0XIMtyDnB306ctx30MfNzKsqtpe0AqgUAgEAgEAoFAIDgtEDO3AoFAIBAIBAKBQCDo9YiZW4FAIBAIBAKBQPD/ElmWMVlsmC02zNampcV6bNtksaHXqIgN98fXS9vdzRWcAiFuBQKBQCAQCAQCwWmNxWoju6iao7nlHM0tJzW3gqN55aTmllNVZ2zVOQJ8dMSF+xMX7k9M0zIuPIAB8SEMSAhFkqRO/isEp0KIW4FAIBAIBAKBQHBakV9Wy9pdWazZnc2OIwVkFFRisdo7dM7qeiPV9Ub2ZZQ47YsI8mHGqETOGNWHGaP6EBXi26G6BO1DiFuBQCAQCAQCgUDQq6moaWTtnmzW7spm9e4s0vIqurT+4sp6vlq1n69W7QdgQHyoQ+yO7sO04Ql46zVd2p7/rwhxKxAIBAKBQCAQCHoVsiyzN72Yn9cfYcXmNPZlFCPLnq1DkkCjUmKy2Np87OGcMg7nlPHmj9vw0Wu45MwhXD9/FEP7RXi2kYITEOJWIBAIBAKBQCAQ9HhsNjtbDuXz87rD/Lz+CLklNW0+R2iAF/3jQkiODaF/XDDJcSEkRgWi16rRqpVo1Eo0KiVajQqlQkKSJIxmK/mlNeSW1JBbXENuSTW5JTXkldaQll9JUXldi3XWG8y898tO3vtlJ2MHRnPD/NFcMGMgeq26vZdC4AYhbgUCgUAgEAgEAkGPxGyxsXZ3Fr9sOMqvG45QUtXQ6mMDfHRMHZHA9BEJjOgfSf/YEIL89G1ug06jol9MMP1igp32ybJMRkElf+7I5K9dWazdlUVNg8ntubYdKmDboQLufeM3Lp89jOvnjyI5LqTNbRK4RohbgUAgEAgEAoFA0GNoNFpYtT2Dn9cfZvmm1BbF4vF46dRMGhLHtBEJzBiZyLB+ESiVik5tqyRJx4TvTQvHYLXZ2XW0kL92ZvLnjkw2HcjDbne2l66uN/L691t5/futnDW2L49eO4ORyVGd2tb/DwhxKxAIBAKBQCAQ9BCq6gyk5lWQlltBRmElFTWNVNUZqaozUFPvSFmjVCpQSBJqlYJAXz2hAd4E+zuWCZEBJEYGkhAZiJeu95i9VtcbWbE5lSXrj7BqWzoGk7VVxyVGBbJgSgpzJ/Rn7MAYNGplJ7e0ZVRKBWMHxjB2YAz3XzGVvNIaPl62mw+X7aK4ot7lMb9vy+D3bRmcN20Aj147Q8zkdgAhbgUCgUAgEAgEgm7AarOzL72YDfty2bg/l20H8ymudC2A2kNkiC8pcY4crAMTQhnQ9An0bbtprqex2ezsTitize5s1uzKYu3ubKy21qXqGdwnjAVTUlgwZQCD+4T16PyysWH+PHzNdO6/YgrLN6fx/i87+GNHpsuyP611+BJfftYwHrhqKvERAV3a1tMBIW4FAoFAIBAIeiFmi42MgkqO5JRzNLeMo7kVHM0pJ72gArPFdmx2T6mQjq2rVAriIwIYlBDGwMRQBvcJY2BiGKEB3t395/y/od5g5vdt6SxZd5jftqZT20qT2/ZQVF5HUXkdq3dlnfB9RLBPk9gNY2BCKIkRvjQYbXjrOm/W026XOZRdyppd2azdncX6vTmtNjcGGDswmgVTBrBgSgp9o4M6rZ2dhVqlbBLkKWQWVPLB0l18umIP5TWNJ5Sz22U+XbmHr//cz/XzR3HfZZMJD/Lpplb3PoS4FQgEAoFAIOgF2O0yWw/l8+uGI/y2NZ2jueXYXPjyHcNN+pLiinq2Hsw/4buwQG8GJYYxbUQC8yYlMzAhtEfPhvU2rDY7Kzan8fnve/l9azpGc+tMbjuL4op6iivq+WvniaJXq1IQ9FkGoQHeRAb7Eh3mR1igNyH+XoQEeBMa4HVsPcTfy6UJsNVmJ6+khvT8CjIKqkgvqCQjv4KdRwspq250Ku8OpUJi6vAEzp2cwvzJyUSH+nX47+4p9IkO4umbZvHAlVN5a8l2XvpqI1V1xhPKmC023vxxG58s383dF0/k7ksmodMI6XYqxBUSCASnJUazlbLqBsqrGymvbqDBaMHXS4Oft44AHx1BfnqC/b26u5kCgUDQIiazlTW7s/h1w1GWbjzapkixbaG0qoHSqixW78risQ9WkxgVyLyJ/Zk/KZkJQ+JQdXJQntOVzIJKPl6+m89+2+vW39IVKqWCPlGB9I8NJjLEl0BfPYF+evy9tSgkCZtdxma3YzLbqKxtpKLGQFlNA4XldeQUVbfbtNlktVNUUU9RRT37MkpOWd7fW+sQugFe+Og15JbUkF1UhcXaOvPik9Gqlcwa05cFU1KYM6H/af+e9tZr+Mclk7h+/ihe+WYTr32/lUaj5YQyDUYLT368li9X7eelO2Zz1th+3dTa3oEQtwKBoNdjs9nZm17sCK9/OJ9thwrIKKg85XGRIb6M7B/JiP6RjEqOYurwhF4VfKOnYLPZKSivI7e4mup6IwaTFaPZgsFkxWCyYDRbaTQ6lgqFhFatRKtWoVYrj607cguqCPDREuinJ6ipIxfoqxedasH/O2RZZvOBPN79eQfLN6dS12ju8jZkFVbx2vdbee37rQT76Zk9PolLzxrK9BGJKBRiRrclZFlm3Z5s/vvdFpZvTmvVMUmxwUweGsfkofGMSomiT1QgalX7TYQbDGayiqpIzavgSHYZh7LLOJxdRmpeRav9WltDTYOJmgZTq9657kiJD2Ha8ASmjUhk1pg++HppPda+3kKAj47HrpvJLeeN5d9fbOD9X3diPsnyIqOgkgX//JKFUwfw79vOIjbMv5ta27MR4lYgEPRKZNlhnvftnwf5cc3Bds1mFJXXsay8jmWbUgFHCoHZ45JYOHUA50xIwkev8XSzey3NQU+O5paTU1xNdlG1Y1lcTX5prUc7Syfj560l0FdPsJ+e6DA/4sIDiAv3/98nIoBgP70woRT0eixWGz+sOcTrP2xl55HCVh8XGeJLcmwwyfGhpMSFkBwXjL+P7tjsnt0uOz6yTIPBzJHccg5mlnIoq4zDOWWnNJGtqDXwxe/7+OL3fSRGBXLN3BFcMXs4EcIP8AQsVhvfrz7If7/bwp604hbLKhUS00cmOqL8TkwmKsTXo23x1msY3CecwX3CYRoczS3nkff/4lB2mUfraQ8JkQFMH5HItBEJTBuRQGSwZ//23kx4kA8v3j6bOxaP59lP1/HZb3ud0ggtWXeYVdvSeeCqady+aFyHBkFOR4S4FQgEvYrKWgPv/bKDj5fvJruo2qPnbjRa+HHtIX5cewi9VsXFs4Zw2wXjGJQY5tF6egMGk4XthwvY2BTBc+vBfOoNXT97BFDbYKK2wUROcTW7UotclvHSqUmMDGR4UgQjk6MYmRzJ0L4RYiZe0CuorDXwwdKdvP3TdgrL605ZfmBCKPMnJ3PW2H4MSgzD30fXpvrOmdD/2LrNZiezsIoDmaWs25vN0o1HyS+tdXtsVmEVj7z3F098uIZ5k5K5bt5IZo7q8/96NtdotvLJ8t289PUmcktqWiw7dmA0V88ZwYIpAwjy6/yIxfUGM89+uo7Xvt9ySlPhED81erUSg1Wiss7oMjdrW/D31tI3Jph+0UH0jQ4kKTaYCYNjSYgM7NB5/z8QHxHA2/edyy3nj+XOV5Y7+cg3GC08+M4ffPHbXl658xymDE/onob2QIS4FQgEvYLsoir++91WPlmx28kfpSUUCokQf4cvUIPBTHW9EZObICvHYzBZ+WjZbj5atpsZIxP526JxzB6XdNp24Gw2O+v35vDHjgw27stl59HCdvtMdQeNRgsHs0o5mFXKF7/vAxwzIwMSQhnZP4oR/SMZNyiG4UkRYoZX0GMoKKvlP19s4NOVe1rM6SlJMG5gDPMnp3Du5GT6xQR7rA1KpYKk2GCSYoM5b9oAXrp9NnvTi1m68ShLN6ayN931DKTVZmfJusMsWXeY+IgArp07givOGf7/ahautsHE+7/u5L/fbm7ReijAR8dlZw/jmrkjumywVJZlflhziH+++bvbAROVUsF50wYwd2IyY5LD2b9zEwBnnXUWWq2OsuoGCspqyS+rpaCsloOZpfy68Silp7CU8tKqeOrGWdy0cDQKhXAr6QjD+kXw13+v4bOVe3jwnT+oqDWcsP9Qdhln3fUpV8wexrM3n3na+yi3BiFuBQJBj6agrJbHP1zNF7/vO+Uocr+YIMY1JU4fnRJFfEQAgb56J0FqNFvJLqpid2oRu1KL2HmkkK2H8t2ef/UuR5CVEUmRPHrddM4a2++0EEiyLLP9cAHf/nWQH1Yf7HBuRb1WRVigD15aNXqtCp1WhV6rRq9Rodep0WlU2O0yJosNs9WG2WzFZLFhsjiWRpOV6nojVXWGNg1guMNmlzmQWcqBzFI+XbkHgKgQ32MCYcqweGHOJegWymsaeeHLDbz90/YWB9viIwK45bwxXDRrSJeZAEuSxPCkSIYnRfLQ1dPJKa7mlw1H+GT5Hg5mlbo8Jqe4mkc/WM0TH61hzsT+XDdvJLNG90V5mvrLl1U38MYPW3lnyQ6q641uy/WJCuRvi8ZxxezhXermUl1v5LYXlvLj2kMu9/t5a7lu3khuOX/sMb9Ng8HA/uPKKBQS4UE+hAf5MDI56tj3r/59Dhv25fDDmkP8vP6IS6HbaLJy92sr2bAvl9funtslM9SnMwqFxFVzRjBvUjKPvPcXHy7b5VTms5V7Wbkljf/8bTYXzhx0WvRR2oskyx0zORAIJEmKAfIAUlNTSUpK6uYWCboag8HA77//DjhGfPX6jr/IGgxmXvl2My99valFodM/NpgLzxjM4hmD6B8X0u76yqob+HXDUZasO8zqXVkt+pBOHBLL49fNZPKw+DbV0RnXqT0czi7j278O8M2fB8gqrGrTsX2iAukXE0R8RABxEQHEhweQEBlAfEQAoQFeHnuhGs1WquoMVNcZqawzUFVroKSyntySmqZPNXmljtmE9prOBfjomD0+iXMnp3Dm2L69zse6p/yeeio98frUNpj473ebefXbLS2a+U8cEsvti8Yzb1Jyjwmo1hzn4MOlu/h+9cEWZ5oBYsP9uWbOCK48Z3i3pnDx5O8gt6SGV77ZzMfLd7X4948dGM3dF09i3sT+XS7wNx/I4+qnfnRpHq1WKbhj8Xjuu2wKft4nBm1qz3Wy2ezHhO6SdYddpvmJCvHlg38tZPrIxHb+RYKT2Xoon7+/stytX/fscf149a65xIV3X8CptLQ0+vc/5v4QK8tyfkvlPYkQt4IOI8StwJOdB7td5svf9/HIB39R5MaUSqmQWDxzMH9bNI6R/SM9PkJZVFHH+7/s5L1fdrSYk2/+5GSevfnMVieT787Odk29kU9X7uHzlXtbld4BHKPFw/pGMHFoHJOGxDFxSGyPSyRvtdkpKKslt7iaA1ml7DpaxO7UIg7nlLVJ9GrVSs4en8QtC8cwbURCrxj17onirSfRk66PwWTh7SXbefHLjU5mhc2olAoWzRjE3xaNY9RxM2U9kep6I1+v2s+HS3exP7Pl54kkwZRh8SyeMZiF0wYQ0sVmk574HRzOLuOlrzfx9R/7Wxz4nDkqkfsum8zU4V3/DLHZ7Pz7iw08/clal7mPzxjdh5dun+12ELij16mu0cS9r//GJyv2OO2TJLjzwgk8du0MtCJPq0ew2ey8+8sOHn3/L5fR1L116qboy2O6xYJCiFtBr+Z0ELcNBjPlNY1U1DRSWWugotZAZa1jvcFgJqQ5mXmoL1EhvkSF+IlANcfhqU7kuj3Z3P/mKnanuQ4a5K1Tc+28kfxt0fguGZE0mq18++cBXvxqI6l5FS7LqFUKbrtgHPdfPuWUQV26o7N9NLect37azucr99DQClPf4UkRnD2uH5OGxDFuUKzT6H5vocFgZm96scP0/GgRWw7mkdnKWeqBCaHcct5YLjlzCN49eDa3J4m3nkhPuD52u8xXq/bx6AerKShzHaRJpVRw3byR/OOyycR04wxne5BlmR1HCvlw6S6+/evAKd0JlAqJmaP6sHjmIOZPTiGgjYGw2kN7fwc2m51V2zN4/9edxyLqu2P+5GTuvXQyYwZEd7i97aGu0cQ1T//ksp1Bfnpe/fscLpg+sEXB7an7Zcm6w9z24lIqXQziDOsXwUcPnseAhNB2nVvgTH5ZLXe9uoKlG4+63D86JYq37p3viJrdhQhxK+jV9EZxW1JZz/q9Oazfk8O6vdkcySlv8zkCfHTEhvkzblAMU4bHM2VY/P+rQBrH09GXYnp+BQ+88we/bnD9cFYoJK6ZM4KHr5neLTOHVpudr1bt46mP17qNhBka4MWj187g6jkj3I6SdlVn226X+W1rGm/+uI0/dmSesnzf6CAuOmMwF54xmOQOmHb3ZGRZ5mhuOb+sP8IvG4+2Ks1KgI+Oq+YM5+aFY3pkdM+eIN56Mt19fdbuzuL+t1a5NR2UJLhk1lAeunoaiVE97/fVVmobTHzz534++HWX2yBUx6NRK5kyLJ6Jg2OZOCSOMQOiO2Uwqa2/g7zSGr78fR8fLt3VYuRjlVLBxbOGcM8lE0mJ7z6xll1UxaIHv3HpDz1lWDwfPnheqwZNPHm/FJTVcuPzP/PXziynfT56Dd88eSEzR/Vp9/kFJyLLMkvWHeHu/65wGTtDpVRw+6JxPHDVtC5zvxHiVtCr6Q3itq7RxMot6azfm826PTkczW27mG0NSbHBTB0Wz5ThCUwd/v9H7Lb3pVhZa+DZz9bx9k/b3Zp6nTG6D8/dcmaXjzq6wmR2RFB+5tO1bs2Vh/QJ59+3neXSv6izO9s19UY+W7mXt5dsJ6OgssWykSG+LJo+kItmDekU0+6eTn5ZLUs3HOXXjUdYtyenRVNDSYK5E/pzx+LxPSrdQneLt55Od12fo7nlPPjOHy3O9s2fnMxj185g4GmYZkyWZXalFvHhr7v4bvUBlyaTrlAqJIb1i2DCkDgmDI4lOS6YuPCADluPnOp3IMsyR3LK+WXDEX5Zf8RturFm9FoVV88ZyZ0Xjic+IqBDbesoG/blcMkj31Fec+L7SKmQeOjqadx76eRWm6R6+n6x22Ve/2ErD7/3J+aTgqapVQo+fOA8Fs0Y1KE6BCdSXW/koXf+4IOlzgGnAKJD/fj3bWdx3tQBnf7OF+JW0KvpqeJWlmW2HMznk+W7+X71wVaZZHqa0SlRLJg6gPOmDmi1X2ZvpK0vRZPZynu/7OSZT9dSVec60mRKfAjP3XJmj4xMXFNv5LnP1/PGD1vdpsuZNymZR6+dfoIo76zOdmpuOW8t2c7nK/e2GKRGqZA4d0oKN8wfxdThCadtJNO2UlVn4Js/DvDWT9vcmp83M2VYPA9fPa1HiFwhblumq69PWXUDT3+yjvd/2eHS5xFg+ogEnrjhjG4zX+1qDCYLv21N5/vVB1m+OfWUQahcEeirIy48gNhwf+LC/YkJ88PPS4u3XoNP88fLsdRpVCgUCpQKCaVSgUKSsJhNrF2zBpPVztCRYzGYZUqrG9iXXsyuo0XsOlro1g/6eAJ8dNx83hhuPX8soQHe7bkcHuXbvw5w/bNLnN5BwX56vnx8MVPb+IzqrPtlf0YJVz/1I4eyy074XpLghb/N5tbzx3qkHsH/2LA3h1tfXEqam/fZrNF9ePnOczyaUuxkhLgV9Gp6mrgtqazny1X7+GT5njbP0KqUCoL89Md9vPDWqSmtaqCwvI7C8tpWj0KfzJA+4SycmsKCqQMYmBDa4wRbR2jtS9FktvLpyj38+4sN5Je69j8L8ffi4Wumc+28kT0mSqg7Mgoquf+tVW59XSQJLpg+iIeunkZyXIjHA2/9vi2dN3/cxqrtGS2WDfLTc+28kdxw7uhujZ7Y07HbZf7amcmbP25j5dY0Wno9ThuRwENXT2Py0LZFzPYkQty2TFddn3qDmf9+u5lXvt3s9v2QEh/Cszefydnjet5gXVdRbzCzfHMq3/11kN+3pTvN5vVUhidFcN28UVw0azC+Xj0jBsEbP2zlH6//5vT9gPhQfnjm4naZuXfm/WIwWbjhuZ/5YY1zaqJ/Xj6ZR6+d0a33hWy3Y21oRLbLYLcjyzLIctMSkGVUPl6ovHrPM9ZotvL85+t58auNLgfhNWold188kfsum4xe6/kYMkLcCno1PUHcyrLMxn25vPbDVpZvSm3RxLAZXy8Nk4bEMXmYw182OS4EP2/tKR+wdY0misrrKCirZW9GCev3ZLNhXy61DaZWtzcpNpiFU1JYOHUAI04Dk9BTvRSbZ8Ze/HqjW1GrUSv52wXjuO+yyacMzNTTWL0zk/ve/J0Dma5zQCoUEvMmJTNvfF9U9Tl4aZUnXCeL1UZpVUPTp54GowUvrRovnRp909JLq0avUyMB368+yFs/ndr0eEifcG49fywXzRrcKS+v05mMgkreXrKdT1fsafHenjEykQevnsakIXFd2DoHQty2TGdfH7PFxgdLd/LcZ+td5voEhy/+w9dM55q5PX+wriuprjfy185MNh/IY/OBPPakFrmd7e4OAn11LJgygOvmj2RUclSPeUfLsszjH67m+c83OO2bPa4fnzx8QbvNuDv7frHZ7Nzz+m+8s2S7076r54zgtbvndvo9YrfZqM/Mo/ZwBjWHMqg5lE7toXRqDmdiazz17L13QjT+g5LwH9QP/4H9HMsBfVF5d20E8LaQllfBXf9dwZ9u4m/ERwTwn9vOZt6k/h79nQtxK+jVdKe4tdns/LrxKC99vYnthwtaLNscpXHGqESmDItneFKkxx6kNpudvenFrNubw4a9Oazfm9NqsRsX7s+CJqE7flAsCkXPeIm2BVcvxao6A6u2Z/Ddnwf4bVu6W/NdgAumD+SpG8/okUF7WovVZufjZbt5/MPVTv5Px6NUSKREeRMYFEh5jYHSqgaXUSXbi0Ihce7kFG47fyyThsb1mE5Zb6XeYOazlXt48atNbqPdgiMFyENXT2fC4Ngua5sQty3TWdfHbpf55s8DPPHRarKLql2W0WlU3LF4PPdcMqnXRhzvShoMZnYcKWDzgTw27c9jX3oxJW4GDDqLyBBfzp2UzIIpKUweFo9apezS+k+FzWbnjpeX8+EyZ3/KW84by39uO6tDriZd8TyRZZl/f7GBxz5Y7bRv3sT+fPrIBR4diLUajJSs3krh0tWUbdxF7dEs7Kb2Wd+1hHdCNMFjhhB7wdlEzZ2G2qf7zdaPR5Zlflx7mPve+I1CNykWR6dE8fA10zlzTF+P9BuEuBX0arpD3BrNVr74bS+vfLuZ9PyWZ6/6Rgdx1ZzhXHbWMKJCuibAk8VqY92ebJasO8IvG464HdU/mYggH2aPT2LKsHgmDY3r9mAVAI1GCyWV9RRX1lNSWU9ZdQMNRgtGkwWDyYrBZKG+0UhGVi6NJhtGtOSV1FLTCnE/eWgcj18/k4ndMOvVWdTUG3n9h63897stbZrN7yhBfnqumTuCG84d3SN+N6cbJrOVT1Y4TOpbErmzRvfhwaunMX5Q54tcIW5bxtPXx2az88uGozz32Tq3uaKbIyA/et0M4QLQQQwmC3klNeQe+1STW1JDSWU99QYzDQZL09JMvcGM0dw6f94AHx2Bfnriw/0ZmRzFyOQoRiVHEh8R0GMHA602O9c/u4Rv/jzgtO/x62Zw72WTO9z2rnyefLh0F7e/vMwpF/nEIbF8//TFBPq2v+7GwhIKl62lYOlqiv/Y3KoZWU+i1OuImjONuMWze5zQrWs08cyn63jtuy1uLSXGDozm4aunc8boPh36TQlxK+jVdKW4raoz8N7PO3jzx20tjurqtSrOnzaQq+eM6PbZK5vNzuYDeSxZf4Sf1x92a5bripgwP4fp9FCH2E2KDfao2U6j0UJeaQ25xdXkldYe6zzkldRQUtVAcUVdu32MW2Ly0DgeunpatyS67yqq6gy8+u1m3vhhW4tBnjrKkD7h3HL+GC46Y4jIvdwFNEfM/veXGyhyMwIOcOaYvjx09TTGDozptLYIcdsynro+dY0mPlm+hzd+3Op2phZgzoQkHr9+Zo+I7P7/EavNjslsxWaXsdnt2O0yNrtMQ2Mjq1evQaNSsHDebHx6kNhoDRarjWue/snJX1WhkHj97rlcM3ekR+rp6ufJLxuOcOUTP2A6yfd6aN9wlr94BcH+rTf1rTmSQc7XyylcuprKnQc93dR2c7zQjZ43vceYLx/MKuXvryxnw75ct2UmDI7l4aunMX1kYrv6aULcCno1XSFu80preO27LXy4dFeLUY/jwv25Y/F4Lj97WI/022xOeP/z+sMsWXfklD6TJ6NUSESF+hEb5kdsmD+x4f7EhvkTEeyDQpKwyzKy7DCbk5Gx2+VjM68lTf6cJZX1x/w7PWkOeyq0aiWzxydx88IxTBtx+ora46lrNPHuzzv4ZMVu0vMrWwxQ1B68dWqeuGEmNy4YI/z5uhij2cqHS3fxny83UFzhnFewmbPH9ePBq6Z1SnRcIW5bpqPXJ7ekhrd+2saHS3e1aIUxYXAsT954Rrf4XQtOTW++T8wWG1c99SNL1h0+4XutWsmnj1zAuZNTPFZXd1ynDXtzWPTg106WXsOTIlj2whUE+blvg9VgJPe7lWS89y1lG3a2qV5taBD+A/vhN6CPw3d2YD98+sSgUKsd5hcSjj6KJCEpHO9WQ2Ep1QfTqD2UQc3BNKoPplOfkUtrX+zqAD+S77iC5DuvRBsU0Kb2dgay7HCvePKjNWQWVrktN3loHNfOG8W0EQltsn4U4lbQq+lMcXsgs4SXv97Mt38daDFI1LB+Edx18UQumD6w13TyZVnmQGYpS9Yd5uf1R1wmYO/tqJQKpo9I4MIzBnPu5JQeOeDQGWQUVPLWT9v5dMXuTpn5Pplh/SJ4+c5zutTfU+DAaLbywa87eeHLjRRXuhe5s8f14+8XTfCotUJv7bSXVNZzJKecgrJayqrrKa82UFVnwGi2YrLYsFhtWG12VEoFGrUSjUrpWKpVaNVKtGolXlo13noN3noNvl5NH28dfl5afL0cKWFsVgvr1q5BrZKYe87sFq+PyWwlvaCS1NwKUvPK2ZVaxLKNR1sMcjQwIZQnbpjJnAmeDcQi8Cy99T4xma1c/sQPTtH4dRoV3z11EbPG9PVofd11nQ5kljD/vi+cBglH9o9k2YtXEHBSv6Fq7xHS3/uW7M9/wVLj3nqmGUmhIGTiCKLnTSdkwgj8BvRFF+qZ1IxWg5G6o1lUbN9P3g+/UfzHZmRby1HAVT5eJN16KSl3X4M+PMQj7egIVpudr1bt45lP17VomQLQPzaYaSMSmDrc8QkLdG8FIcStoFfjaXFrtthYuzurKR1HeotlZ45K5O6LJzJzVMd8A3oCaXkVrNiSxsb9uWzcm9OqvHtdiV6rIiLYl7BAb3z1GnRaNXqtCr1GjVoJxUUF6NQKpowbTv+4UOIjAogJ80ej7llBOTqT3alFPPvZOpZuPOrxWdrWcOXs4Tx54xktvnAEnYPBZOH9X3fy4pcbW3SZSI4L4YZzR3HZ2cOcOm1trtNgYNnylVTUm5k5fTpBAb546zVoVAoUiu4Z5Cutqmf7oQL2Z5ZwJKecnOJqiirqqaxtxGCytiqSfWehVinQaVT46DX4++gI9vdCrVSQU1JDTnG1k/+fO0YmR3HnheO5YNrAHpkrWpZlGvOLsdTUYTeZsRlN2IxmbCYzdqMJu8WKV2wE/gP7oQnw6+7mdjq9UdwazVYuffQ7VmxJO+F7vVbFD09fzIxRfTxeZ3dep+yiKs78+ydOblujU6JY+p/L8ZbsZH+1jPR3v6Fy+/5Tnk/t70vk7ClEz5tO5Owp6EI8I2ZPhamiivwlf5Dz7UpK/mxZ6Cp1WvrecCED7r0O79jILmlfS1isNr74bR/Pfb6enOLqVh0zKDGMof3CaTCYKalsoLymkZp6Iw1GM4baSoybX2wuKsStoHdxvLjVjr8bnW8Q3noNQX56woN8iAn1IzEqkCF9wxnWL4LEyECniMDV9UZWbklj2aZUft+W3qIJmEIhccH0gdx10URG9O/+B0JnIMsyR3LK2bgvlw37ctiwL7fFIDYdJdhPT1x4ADHhfsSFBxAb5kd0qB8RQT6EN318vTRuBxB6Y+fBk2w7lM9zn6136oicjEqpoG+4noEx3owYOhCFQukwJbfL2GWHf5jdLqNQSI6gJ756An11BBy3tFhtPPr+X3y1yvULPsBHx2PXzeCGc0f3ysjbvZ1GY5PI/Wpji4HkvHRqLj5jCDcsGMXwpBOfY7IsU1FrILuoiuwihx98eXUDxZX15BRVU1RRR0WtgQaD2e3MoiQ5fm8alRKdRoWXTo2vlxZ/H13Tb0tHsL83IQFehAf5EBnkTVSoHxFBvmhUCpRKBQqFhMVio7y2kYpaA1U1jWQXV5NRUNUkWusor26kut5Ig8GM2WrrlkGdrkCSYP7kFO5YPJ6Jg2N71GCqzWymavdhyjbspGzjLso37sJYWtGqY/VRYQ7zzIF9j6U2CR49BKXu9Inw3NveTwaThYse/tYpf7m3Ts1Pz17ClOEJnVNvN1+nzIJKzvz7JydE8w00NnC5qZAxWYexVLc8S6sNDSLh0nnELDiD0MmjHCbG3YixvJL8JX+S++0KildtdFtOoVaTeNVCBj1wEz6J3W99ZbbY+GzlHp7/YgN5JTXtPo9srMG05aXmTSFuBb2Lk8WtpGs5QqROo6J/XDBjB8QQE+bHml1ZbNiXe8oRfb1WxVVzRnDn4vG9OmVMe2ju7OaV1DQFgHIs80odwZ/KaxqRJAkJh/iXJAmFJCFJoFWrCAv0JjzI58RloDeRIb7Ehvnjrdd0qH3d/VLsLnanFvH4h6v5rQULA0mCeZOSuXL2cMakhLNlw1qg49dpw94c/v7qCrfm7LPH9eOjh87v8OygoH00Gi28+8sOXvpqI2XV7lNDgSM65eiUaHKLq8kqqiarqIrGFmILCLoWtUrBpCFxzJ2YzIxRiQxMCO12cVubmkXWZz9Ttm4HFdv2YTN6LjK7yteb6HkziL3gLKLOmYrKq3c/z3vT+6nRaGHxQ1/z186sE7730WtY8vylnerX3ROuU3p+BWf+/RO8M7OYlX+EUWV5KGlBp0gSEWdOot8Ni4k+dyZKTcf6Mp1F9cE0Dj37DjlfLUO2u+7rKrQaBt53PQPvv7Hb77miijp+WnOI93/dSXpBZYupHN0hxK2gV9NWcdtWgv303HL+WG5aOIaQNkTPE3QdPeGl2JUczS3niQ/X8OPaQ27L+HtruXruCG5eOObYYIynr5PFauOtn7bz1MdrXPr29o0O4psnL2RQYliH6hG0nwaDmU9W7OHdn3dwNLe8u5sj8ABhgd6cMboPF0wfyJlj+nWZ64XdZqNw6WpS3/iyxZkgT9Ic7TX2grOInjsdtZ9Pl9TrSXrL+6nBYOb8B75i3Z6cE77389by8/OXdnp6se6+TnaLhdwffmfvv9+nYbf7dys4LA76XHsBfa9bhE9C50Wk9zR16Tkceu5dMj9Zgmx1nbrKOyGaUa88QPS5Z3TpIFpGQSU/r3ekr9x2KL/DVjhC3Ap6NZ0lboP89MwYmci9l05iaL+Ibh8pF7inu1+KXUVOcTXPfLKOz3/f69Y/L8TfizsvmsBNC0bj63WiaV9nXafC8joeeHuVyxyI3jo1b993LotmDPJIXYL2Icsya3dn858vN7JmVxZ28e49LQj01XHe1IFceMYgJg+N7xQfXGNZJRnvf0fa21/TmFvYpmMVWg1KrQalTotCp0Wp1SDLMg3ZBW471y2dK27R2STfeSXBY4a26djupDe8n+oaTZz3r6/YeFJqlgAfHb/8+7JOibZ+Mt11nQzFZaS/9y3p73yDocB1/uhm8hP6csELd5G4YAYKlapL2tcZNOQWcvg/H5D+3rfYTa6DTkaeM5XR/30I337xndaOtLwKvvlzPz+vP8KBTM8GNRXiVtCrOV7cjrn8OarMGqrqjBiMVo914CJDfJk2PIHpIxKYPjKR+IgAj5xX4Bl6Q+ehIxRX1vPvzzfw/q873JrnhAd6c9fFE7l+/ii3Zt6dfZ3+2pnJ1U/96NIM9u6LJ/L49TN7TTTx04V6g5k/d2Ty29Y0ftuafoI/WXtRKRX46DWEBnjho7IQE6ylX9++yEhYbHYaDBZqGozU1hupM5hpMJhpNFowmKwYzVYsVhsWmx2bzd6UNuz/D2qVgvAgn2PxBLIKqziUXeaRc0eG+LJo+kAuOXOoR+JB1KXnsP+JN8j9Zjl286nN1P0H9iNk0khCJ48idNJIfBJjjqUxORmb2Ux9ei41h9KbPhnUHEyn5mBaq1KbhEwYQf87riDugrO63bfxVPT091Ntg4kF//yCLQdP7PsH+upY9sIVXRZbpCuvkyzLlG3cSdobX5L3w+/YLe5/3yaFkg0RffkzJpkSLz9mjkrkh2cuQafpveK2GUNRKQefe5e0N750GXxKoVEz4L7rGfSvmzxmqmy3y/y2NY23ftru5NfdVvy8tEweFodeq6bRZKGksoHCslqKK+uFuD3dkSQpDrgDmAvEASYgHfgWeFOW5ZYdstpW1yzgcmAyEAlYgRJgH/An8Jksy+7zVbSvzk41S3ZFXLg/YwfGMDI5ktHJUQzvH+k0SyboOnp656G9VNUZePnrTbzx4za3PpCBvjruvmQStywcc0rf5a64TnmlNVzy6HfsPOI8wzNzVCKfPHyBMO/vZIoq6li+KZVlm1L5a2cmJkvLqSH+P6JSOkRmkK+eAF8dgX56An3+t/T30aHTqFCrlE0fBWqVI0CWWqVEqZCOifLmfkxzd6Z522gysXPnTiQJZp8xlYSoEAJ99U6B1lJzy/lhzSG+X32wRaGrUipaHe157MBobl44hvOnDUTbxk64uaqG/U++SdrrX7TY6dcEBZB45QIizphAyMQRHsmdaSguI/+nVeT+8Dula7adMq2JPjqc/rdeSt8bLvRYehVP05PfT9X1Rubf+zk7TnpeB/vpWfbiFQzrF9FlbemK62RtaCT7i19JfeMLqvcdbbGsV1wU/pcu4MY99eQbT7zv5kxI4qvHLzxtsjFUH0hlx21PULpuu8v93vHRjH79YaLnzWh/HfVGPl2xh3eWbG8xr21raI4Yf97UAahVzv8Ds8XGlh17mTZxVPNXQtyeTkiSNBf4AnCn+I4Cc2RZzuxgPYHAR8CCUxQdIcvyno7U5aLuLhe3zm2AlLhQRiZHMiwpgr7RQSRGBpIQGYBe27NHlU8HenLnoT3UG8y8+cNWXvp6k1Ny+Wa8dWpuXzyeOy+c0OqgTV11nYxmK3e9uoKPl+922hcX7s/XT1x42kYa7w5kWeZgVinLNqWydONRp47q/0e8dWriwgOIi/AnLtyf2HB/x3a4YzsiyKfT0+i05347lFXKD2sO8dHy3RS5mWVvNhHdfrjglOcLDfDi2nkjuW7+KGLDWn432i0W0t76iv2Pv4G5stptuaDRg+l/22XEXTQHlb7zAsYZyysp+OUvcr//jZI/NrcotBVaDX2uOZ8B/7gO376dF/SoPfTU91NlrYH5937OrtSiE74PDfBi+YtXMLhPeJe2p7Ouk2y3U755NzlfLyfrs59PmZs2dNJIkv9+FTELZ6FQqdiXXsw593xG5UnpEc+fNpBPHj7/tLFGkmWZnK+Wsuue5zEWux5kS7xyIaNeeQBNYOv72Yezy3j7p+188fteGk4RqNBbp8Zgcm112Rwc847F45k0JO6UroIiz+1piiRJw4BNgBdQDzwLrAb0wMXADU1FjwBj2jujKkmSP45Z2eYhkmXA1zhmh5VAPDAGWATM7+nidkjfcBZMSSGjoJI1u7PddjBaS2SIL4mRASRGBhIV4kugn55gPy8CffUE+esJ8tUT5KfHR69Br1WL9CntoKd2HtpKc67SF750n8ZFo1Zy44LR3Hvp5Dbnk+1qs68Pft3F3a+tcDKl1mlUvHf/gnb74VoNRhrzimjMK6Yxr4iG49atDQaQZWS7HdkuH1vHbkeWQePvgy48BF1ECLrwEPQRJ693fyTa1pBTXM26Pdms25PD2j3ZbUqZEB3ii9lqO2UU5Z6KRq08FnU9OtTvmGA9XrwG+em7/f/YkfutrtHE4x+u4a2ftrn0rw/20/PY9TOprjfy3Z8H2JfRsq+gUiExb1Iyf7tgHJOGntgxlGWZgqWr2f2P56lLzXZ5vEKrIf7iuSTdeikhY7ve39VYXknG+9+T9sYXNOYXuy0nKRTEXTSHgf+8gcBhKV3YQvf0xPdTeU0j8/7xOXvTT7yW4YHerHjpSgYkhHZ5mzx5nY4J2m9XkPfD76f0pVXqtMRfOo/+t15K0KjBTvt3HS3knHs+c0oTeemZQ3nv/gWnVb/NUlvP/sdf5+irn7q0nNBHhTH2vaeInjOtxfPsTi3iqY/XsHxzyykKg/z0nDM+id2pRS4tVyQJrp07kr9fNIF+McGt/juEuD1NkSRpNTAdh2nwVFmWN5+0/17g302bj8qy/EQ76/kUuKKpnstlWf7GTTkJUMqy3LYoEqeu/5i4Pf/ut+jXt09TqhkfwoK8CQ3wRqGQMJgsGE1WGk0O369Go5m3ftzO7rQip3P6eWt55c45XDxrMOn5lazZncXa3dms25Pd6R1CrVqJl06NTqvGq+mj16nQN69r1ei1jryRXjo1fk25I/29dfj5aAnw0eHnrSXQV09EkE+bTdJ6Iz2x89AWTGYrHy3bzb+/3OB2MEWpkLhi9nD+deVU4sLbN4DTHddpy8E8Lnn0O4ornMfOHrlmOvdfMcWtCJFlmca8Isq37KF8y14qtu6l7mgWporqTmuv2s8H/8FJBAxNJnBoMv5D+hMwJBmNv2+n1dka8stqWdf0DFq7J5vsoupWH6tUSEweFs8545NoNFp44csNNJpcP4ZVSgUp8SEM6RvOkL7hDO0bzsDEMCxWOyWV9RRX1FNcWUdJZT35pdUcOJpNrcGKv78/Cjf+ladCp1HhrXMM7nnrm595arx1any8tIQH+hAZ/L+c14G+um4Xrq3BE/fb7tQi/vbSMnYddT0b//eLJvDE9TNJz6/k278O8NnKvafMST5hcCz3XTaZs8f1oy49h+23PEbJn5tdllVo1CTfeSUD7rseXUj3m/3aLRbyflrF0Vc/pXyTs2XI8USeM5VB999I6JTR3fp76Wnvp7LqBubc85lTAJ+IYB9WvnQlyXEh3dKujl6nZkGb+91Kcr//7ZSCFsCnTyxJt15Kn2vOP6VZ/eYDecy/93On2ccbzh3Fq3+f0yueSW2h+kAqO/72JKVrt7nc3+ea8xn58gNO78b9GSU8+fEaft3Qstn30L7h3LxwDFX1Bp78aC1Gs/M7qV9MEO/cdy4T25GCSojb0xBJksYAzb/Id2RZvtlFGQVwABgAVAHhsiy3KbmhJEmTgfVNm4/Jsvx4+1vdPo4Xt6mpqSQlJbX6WLPFxlMfr+GFrza6jGFx0RmDefMf8/HSOUyL7XaZQ9mlbD9cwM4jhew8WsiBzNJW+0F1B4G+OiKCfAkP8iYi2JeIYB+iQ/xIjAqgT1TQaWE63dM6D63FYrXx6Yo9PPf5evJL3XdIF80YxMNXT6N/Bzsd3XWdiirquOyx79l8IM9p30VnDObt+85Fp1FhbTRQsX0/FceJWUORZ4LtdBTv+GgChvYndNJIwmaMJ2jkwE6Jlmmx2kjNq2B/RgkHMks4kFnKvoySNluQ+HlrOWtsP+ZNSuassX2x22Vue3EpP68/4lRWpVRw/xVTmDcpmZS4kFYPiPXW+66r8NT1sdnsvPPzDh774C+XKbcmDY3j04cvICrEF6vNztKNR3l7yXbW7s52e06F3c6Vhnym7N0KZtfRUmMXnc3w5/7R48x8m6nYsZ+j//2M3K+Xt2iyHDJhBCl3X33MzLSr6Un3SUllPXPu+cxphiwqxJffXr6yTTNjnqYt10m226lLz6Fy50EqdxxwfHYdxFrfiskHSSLqnKkk3XYZUbOnuA165oo1u7I4719fOQmx2xeN4/lbzzrtBK4sy2R+9AO77noWS63zALVXTARj33+KqLOncCirlKc/WddiikKlQuLcKSncev5Y+kYHcdWTP7J+b45TOUmC2y4Yx+PXzTzW/24rQtyehkiS9DTwQNPmeFmWt7opdz8Oc2WAs2RZXtXGer4GLsJh9hzp6WBRrWxDu8VtMxv25XDdM0vIdWHaNzwpgm+fusitv5LRbGVfejE7jxay62gRafkVZBdWUeLGrLQncrzpdP/YYAYmhjEoMYz4iIBeYW7TkzoPrcFqs/PVqn088+m6FmfgZo/rx2PXz/RYUI/uvE5mi41/vL6S937ZecL3fiYDC3WNXKBtpGrNVmxG1z7GPQ2VrzdhU0YTPmMc4TPGETB8AApl64KLyLJMWXUjWUVVZBZUkV1URXp+JQezSjmcU4a5nQGgYsP9mTuxP/MnJTN5aPyxYCerd2Zy3XM/uxTISbHBfPzgeYxMjmpzfb3tvutqPH19Cspquee1lS4HKMIDvfn0kQuYOjzh2HeHskp5Z8kOJ1+36Poqrjm6hcS6Spf1BI0ezMiX/0XY5NEdam9X0VhQwpGXPyb97a+xNrgXN15xUfT/22X0u35xm3wGO0pPuU9yS2qYd+/npOVVHPtOabcxxFvizasnEWg3Yywuw1hSgaWuAVuDAWtDI9ZGIwCSQgJJQlIqUfv5oAnwRR3ghybAF02A3wnr2pBAtKFBKLUtBzlsxmY2U1dawerlK8FgYszQYSjMVqx1DVjqGhzL2npMlTVU7zlM5c6DLsVWS/gP7Efs4tkkXrGgQwM2v21NY/FD3zi529x/xRQevbb9AZd6Mg15RWy9/iGKf9/gcn/eqDE875WIQelaiAb76blu/iiuP9fh+7/tUD4XP/qdy3dSYlQg7953LpOHdSwFkRC3pyGSJK0DpgANQIA7U2BJkibg8MsFeEKW5UfbUIcGqAF0wHeyLF/Y9L0KiAZkoFiWZdfDwh7CE+IWoKbeyD2vreSL3/c57QsP9Oabpy5i3MDWJ+uuN5jJLqoiq7CazMJKsoqqqahppKrOQGWNgco6A5W1jS5H4nsKXjo1KfGhDEwIZWBiKIMSwxiQEEpMqF+PGqHsKZ2HU2EyW/ni9328/M0m0vNddyzBEVX44WumM35QrEfr7+7rJMsyb/6wlVf+8x1Dy/IYXp5P37qKUx/oBnWAH96xEXjFRuLVtNQE+iEplY7ReElCUkjH1gHMlTUYS8oxFJcf68gZissxlVY4fHPb2xZ/X8KmjSHm3JlELzgDhb8/uSXVZBZWkVVY5RCyhVVkF1aTVVRFvaHj932wn57Jw+KZNiKBacMTGJBwor+w1Wbn8Q9X88KXG10ef928kTx/61mnjLLtju7+PfV0OuP6yLLMe7/s5N43fnMaBFEoJB67bgb3XDzphEHJmnojn63cy+tfb2DYjs3MzT2ISnb+rdfovfG+9WoufuYWNJreZ81jqqwm9Y0vSH310xZdF5ReevpctZD+d1yBf0rfTm9XT7hPDh/J45a/vYk2L5+Y+moiDLWEGeoINjWi6MR+uMrHC21wIEq9FqVeh1KvRZIkLMeL1roGt7lWO0qzoI1bPJuAQe3rG7ri5/VHuOyx77Cd5A//xPUzufeyyR6rpychyzIZH3zPrrufxVrnPHlTofXio+TxHA76X7DIID89f79oArecNxafpvfMpyv2cPvLy1wO4t583hieuuGMdr+TjkeI29MQSZLKgBBgryzLw1soFwg097KPCdRW1nG86fPdwFc4ZoEXA82Rbow4glg9JcvyJqeTeABPidtmflhziNte+NUpSq1WreTNf8zn0rM8G0zDYrU58vKaLDQaLU0+wRYMRguNJqtjvWmfwWxt+t7hN9xgMFPTYKSm3khtg4nqpmVNvdHpoetJ/Ly1DsGbEMbARIf4HZAYRnigd7eI3p7QeWiJmnoj7/26kze+30pxpfvR5slD43j02hkdHrF0R3ddJ1mWqdp9iJyvlpL34yrqM53Nk1tCE+hP8PhhhIwbRtDowfgkxuAVG4Ha18djbbTbbBgKS6nen0rN/qNU7TtK9b5Uao9kIlvbFibALkmk+oexMySWXaGxVGs9k/oowEfnELPDE5g2IoFBiWFuLSuKKurcmnwF++l5695zmT85uUPt6en3XXfTmddnx5ECLn3se5eBxOZO7M8H/1qI/3FR1Cu272PzNQ9Qe9A5uIsd+DM6mZ8Sh2FSqekTFciDV03jojMGd3pE6c7A2tBIxoc/cPiFD2nMbTlyeMSsicRfOo/Y885EE+DXKe3p6vvEbrFQvT+Viq17Kd+yl4L1OzFm5dH7/pPto7ME7cl8/cd+rn3mJyeXtudvPYs7Fo/vtHq7m8q0XH4+7w60Bw+73L86Konfh4zn5kunctsF4/DzdqTJtFht3PvG77yzxDndUEyYH+/fv4BpIxI91k4hbk8zJEnSAc0xy5fJsjzvFOXrcYjRLbIsT2hDPVcBHzdtPoBD4LpzCrQD98iy/Eprz39cPaeaLo0AtgPs37+fvn07PhKbll/JZY//SHqBcy6uOxaN5eGrpvTol74sy9TUmyiuqqeksoHSqgaKK+sdy4oGcktryCmuprTKs8GxAn11pMSFkBIfTEp8CClxISTHBRMa4NWpotdoNLJu3ToApk6dik7n2fQUdouFmr1HqU/PoT4jj4bMPBqy8rHU1GGtbRqBrm9EoVY5Rqh1OpTeOmyBgeTIanbXWClU6snzCaTAOwDbST4+YwZE8cAVk5k67NTh7TtCZ1+nk6lLzSb/2xXkf7eS+jRnkeUKOxK2hFj6nzWeoDFDCBw7FJ9+nXtdWsJmMlN3NIvsTfvIXbMD4459qAudg9C1RIZfyDGhW6ZvXWCq6FBfBieGMSix2XIihKTooFY9dzbsy+X65391eX/PGJnAG3efQ0RQxwcGuvr31Nvo7OtTWWvg5heW8ceOLKd9yXHBfP3Y+cQEenHk6bdJfeljcGGZUKT346OU8WT4O0fHTYoN4p+XTmLhlORe4Z5yMnaLhYKf/iDj9S+o2nGgxbIKjZrwsycTs3g2EXOmovLynADt7N+BoaCEyu37qdq+n8pt+6nedQibwejROnoq2rBgAkYOJHDkQAJGDiJwxAB0kV0X6fmz3/Zx56u/OX3/7E0zuWnBKBdH9F5kWebnDak89uFacourmVaYxoUZu9HZnQd/dXGRjH7nCUKnjQEcQcyueeYXNh1w1pdThsbxwb/mE+LvmUHgZjIyMhgyZEjzphC3vR1JkkKB5jB438iyfPEpypcAYcABWZaHtFT2pOPuAl5q2jQBWmAp8BiOQFX+wAXAc4AfDjPlubIsr2j1H+Oop9U/kvfff5+QEM9E+qs3Wvnv8hz25TrPtI1M9ONvs+Pw0vbuBN5Gs43SWjMl1WZKa80UVZkoqDSSV2Gk3tg+vz9X6DUKwv01hPlriQjQEO6vJTxAQ6ifhkBvNRpVzxookG127NmF2PdnYNuXju1QFhg9YzZlVijJ8wkkyzeYqsQ4RswdztCUkB5l5t0R7GXVWDfswbZ+D/bM1uVbNShVHAiKYk9wDPuDo2hQa5k6IJDrz4jplt9GVYOFzJJGMksMjmWpgZrG/73A/UwGUqpLSK4uIaW6hAhD64M9HfEPY31kP3aGxmJXqwnz1xDmpyE8QENUoJb4ED2xITp8dG0PfGOXZX7ZXso3m4udZhOUColLJ0dyzogQFKfJb03g+J8v2VbKd5uLOflFOdBcwx3Z21AXljofqFCgOm8aR8aP44ddFaQWuR/ojA3WsXhCOGP6+vfa55TtaA6WXzdg27Tfpcg/AZ0G5ZiBqEaloBiQgBQW2GP+btloxp6ehy01D3tqLva0POSK1qcBc4uXDinIDynABynAF8lHDxo1kk4DWo3DrUOWHdfOZkduNEKDEbnBgNxghAYDcnUdcm0DWD3XdzglIQGoxg9CNW4QioGJSK2Me+BJVu4p4+M1zu+6a2ZEc/aw7ok87WkyShr5dG0hRwtPNEcOMdRz9dEtDKh2HZlaNWciBWdP44VVRVTWOwd9O2dECJdPiULZCYNn5eXlXH/99c2bQtz2diRJigVymzY/k2X5ylOUzwVigQxZlvu1oZ6HgCeP++pXYKEsn+jM0xRReS3QHJ15qNyGf3x3iVsAm13m83WFrNhT7rQvJljHvecmEO6v9Vh9PQVZlqlptJJXYSSv3Eh+5f+WBrPnI0PrNQoCvNUEeKmOLb11SvQaJTq1Ar1GgU6jRK9WoNMoUCkVKBUSSgVNy6aPJKFUgkohoVBIre7Ey7KMnF+KrVnMHsiAesOpD/QESgWK5HiUI5JRjR+EIja8a+r1IHJNPdaN+7Cu34P9cHarjpFCAlCOHYg8MoUPijWsT3cRWCJMz93zEgj167j/jTtqG61kljaS0SxkSxqpamibGXKAqZEBVcUML89nSGUhWvupO3eylw7VtJFozh6HIiHylOVPRb3Ryhsrc9md7XwdQ3zV3DknnqTItuVFFvQe9ufW8d8VOdQZbCjtNublHGRuzgGUTpIXFIlRaG5fjLJPNOB4/u3LqePbzcVklLh/7iWE6lk8IYKRib49Ruy1FXtZNdaVm7H8tqXVz3gp0BfFgASUKQkoUuJR9IlGUnW+iJIbjdhzi7HnFGPPKHCI2dySU4tzN9iRqPL3J3hQHOqESBRRwUgRISgig5G82zdTLVus2Dbtx7JsI/bU3FMf0Jn4eqEaPQDVtBEohiV16W/0152lfLHe2aLn+pkxzBrafRGoO0plvYWvNxax7rCzFWMzU1MCuNSQi/rrlWByFrBleh8+TB5PasD/+jZqpcQNs2KYOqDz0osJcXua0YUzt/8A/nPcVymyLLtMbCVJ0nfAoqbNobIs729DPV1ulnwyn6zcy71v/OGU8ifIT8/HD5zL5KE9M1WCp5FlmYKyOg7nlHM4p5wjTcvUvAoMbvJmdicqpYIgPx2BvnqC/fQENX989YSY6gnOykJ/+CjsPYCtzH2Ap67Ed2Bfos87k+gLzsIvpY9Hz+1J8zhLbT1Fv64m/9uVlP61xWWy95Pxio8iZvFsos8/C/9hycc6H7Is8+LXW3jmM+dIjEF+ej68fz5Th3fcD7m6zsie9GL2pJWwO62YPWnF5LWQgqm1BPjoSIkPpn9sMH2CvIjLz8Z71x6M67ZibUVEz8BRg4i/5nxiFs9G7dt2AbortYhrnvnF5d8ya3Qib/9jLkF+nvfzE2bJLdPV1ye3pIbb73iHmatXEFfv3BmV1CpS/nUT/e+5GoXaOWCULMv8ti2DZz/byP5MF7O9TYxKjuRfV0xixoiEXityrY0GipetJf+7lZT8vhG7ufVZEBVaDV7xUXjFReEVF9m07ljqIkKPBU5SeulQqFQufweyLGOprsNUVun4lFbQkF1AQ2Y+jdn51Kfl0JjbNveHkynR+5LpF0yGXwhZviEMmTmSdx46H10rU321hN1iIefTnzn63HutyierDQvGf2gy/kP749Mv3nFtNGoUGo0jCrMsYzKZOLj/AHJtPXFeAZiLyjAUlNCYV4QhvwR7GyLpB4wcSPK91xM5f3qbUv10hFe+3coTH69z+v7lO87iqtnDuqQNnqLRaOG1H7bx2vfbaXQhWAHGD4rm6RtmMqK/I5tDfWYeu256lIqNu1yWXxPZjx/6DCcwKoTPHlrI8CTPZIFwhzBLPs3oQp/bm4C3mzazZFl22xOXJOl64L2mzetkWf6wtfW0oh0eDSjljg17c7jk0e8orznRfEulVPDKnedw3fzTy7+iLdhsdnKKqzmUXcbh7LJjy6O55S4Tc3c5skygyUBSTSkDqotJqSohzNj2rFUlel9K9L6U6n0p0/tQq9ZhUKkxqNQYlWqUdjsauw2N3YbeaibI1EicZGaoj4Lg6kqM2W17tgYOH0DCFQuIv3gOXlEdn9HtaGATY1klpWu2kvPNCgqXrWlV2h5deAhxF55D/CVzCRk/vMXO8M/rj3D9s0ucIgkrFBLP3DSLOxaPb3Vnuq7RxJ7UInamFrGrKU1XRkHHBjACfHRNAdQcUcMHxIe0GEjNZjZT8tcW8n5cRf6Pv7cYwRUc6YWSbr6Y5L9f1ar/t81m5+VvN/PEh6ud0lIoFBKPXDOdey+d3Gn+kiKgVMt05fWxmc0c/vf77H/iDWSL8zM31yeQwmuu5D8v3HjKPMZ2u8wvG47w1MdrOZjlXuROHBLLI9dM92gQmO7AXF1L3k+ryPl6OSV/bm7VQF1rkVQqlF46bE36SiWD3WTBZjLj5DvQAdR+PviMHMRfjSrWGtRk+QZTr/nfYMot543lP7ed1eFYIXabjZyvl7H/0deoz2h5pjZk4ghiLzib2IWz8Olz6sj/Ld0vsixjKq+i5mAaBb+uJu+nVTRknfp96j8oiUEP3ETched0SY7j5z9fz2MfrHb6/u1753PVnBGdXn9HsdtlvvlzPw+9+yeFbnKrx0cE8MzNszhv6gCn955st3Pg5U/Yc/+LKK3Ootig92LMqw8y5PoLOn1gTASUOg3pomjJc4BlTZvrZVme2kLZs4GVTZv/kmX5udbW04p2dIm4BcguqmLRg9+4fOHffN4Y/nPb2ag6+PKw1NVTezSL2iOZ1B7NojGv2G2KEqVGjXdCND794vHtF4dvv/hOi/jYHmw2O/lltWQWVJJZWEVG0zKzoIrMwsoTci92BJXNho/VhI/lxE+IsZ64+ipi66vws7Q9f2qx3pcjAeEcDozgSED4CZ2FlvDWqZk9PomLzhjCOROSjv0mTJXVVO44QMW2fZSs3krZhp2tmjGQFArCz5hAwuXnEnverHZHCW5LZ1uWZepSsyjbsJOyjbso27CLurTsVtWj9vcl9oKzSLhkHmHTx7apU3Ekp4yLHv6W1DznFEEXzhzMW/fOP5bUXZZlymsayS2pIa/EESRtX3oJO48WkppX3qG+o6+XhhH9IxmZHMXI/lGMSo4kMar9vnc2k5n8n/8g473vKP6j5cDxCo2axCsWMODe6/BLdj1mmFFQyfXPLmHLQef3dVigN588dD7TR3au6BDitmW66vqUrtvOtpsfpfZwhtM+GxLL4gezNH4QNoWSiUNi+ebJi1oVvMVul/l+zUGe/nity/uxmWkjEnjkmulMHNL7LZiMpRXkfr+Sot82UL5pN6Zy9+aY3YWkVBIwpP+xCPLB44ax36zkiid/pLjixEFbSXJE7719Ucej95Zt3Mn2256geq9znuVmvGIiSLr1UhKvWtjmAdm2vp9qDqSSt+QP8pf8SdWugy2e26dvHAPvv5HEKxeg1HSemwvA05+s5amP157wnSTBu/ct4PIePIO7+UAe977xGzuPuI6V4eul4b7Lp/C3C8a5nf0vqqhj8UPfkLfrCNce2UJSbZnLchGzJjL6zUfxS0rwVPOdEOL2NKSL8tzGA9lNm5tkWZ7UQtnjhfC9siy/0Np6WtGOLhO34JgRuubpn1i2KdVp38xRiXz+6CICfVvXiTFX11L02wZK122n9nAGtUezMLgK/tEGtMEB+PSNwy+lD6GTRhI6dTR+yX16nPmYLMvUNZoprqijpLKe4soGSirrKamqp6SynpoGE/WNJuoazZhqGvAtyiesqJDQ6nJ8TAa8LeZjItZVtL72UKn14nBABIcDwzkSEE6VrvUmopEhvswYkcjCqQOYNaYPeu2p80RaGxopWbONwhXryP9pVav+90q9jpiFs0i4/Fwiz5zo0rzweBqNFtLyyinOLqbwYDpHNm5HqqkjJT6KuGBfQny1SDYbdovV4T9lttCQmUfZxl1t6tgp9Tqiz51JwiVziZw9FaW2/R2Imnoj1z+7hKUu7rHkuBBiw/wcgra0xiPm8F46NcP6RTAy2SFiRyVH0S8muNNmPOuz8sj48AcyP/yh5f+5JBGzcBYD/3kDIeMcnSJZlnn35x088M4fNLoYHJo0NI5PH76AqJDWRWXuCF0pbhsLiilZu53aI5k0ZBdgKCjBWFqBtb4Rm8GEzWRyDBTJjmvUPLKhUKmQVEoUGjVKnRa1vw+aoAD04cF4xUcRODSZ4LFD8UlKQOFh88XOvj6miip23/cfMj/8weV+a2w0z4YPJdvnRL+2xKhAfnr2EpLjWhefwmqz8+2fB3j6k7VkFrp/Jpw5pi8PXzOdMQOiW/039GSODfBt2k35xl2UbdxF7ZHMLm2DpFTil5yI/5D+BI8eTPC4YQSNGnQsmrMsy7zxwzb+9fYqJ7cpvVbFRw+ez4IpKR1qg7Gskj33/YfMj390WyZ08iiS77ySmIWz2j1D2pH7pSG3kLyfVpH6+hfUp7uPzO8VE8Hgh2+l7/WLO9Vc+YkPV/PsZ+tP+E6S4IN/LeSSMz2bTrKj5BRX89C7f/L9atcDBAqFxDVzRvDwNdMJbyHK/r70Yi548Gvym9xjJNnOmflHWZi112UcCoVWw6AHbmLgP2/sUH/BHULcnoZIkvQM8K+mzfGyLG91U+5+HLlpAc6WZfn3NtaTA8QBJbIsuzWglyTpduC/TZuXyrL8VVvqOUUbulTcgmNE+9EP/uKFLzc67esbHcQ3T17IoMQwl8fWpmZRsHQNBb/+Rdn6nR41gXKHNjSIsKljCJs6mrCpY/Af0h9FN0QVbA2yLFOXlk355j3H8vRV7zvaKdepUacnIySKfT4hHPALo1Tv63gDtYBGrSQ2zJ+4cH8GJIQyblAM4wfFEhvm16EBBNlup2zTLnK/W0nedysxFLke8TwebWgQ8RfPJeHyc/GKDqcuM5+D2w6SsSuVqvRczAUl6KqrCDI2oLN53jxcUqmInD2FhEvmEn3uTNQ+ngtYZLfLPPL+n7z4lWfTY2vVSoYeJ2RHJkeRHBfSYYuL9mC3WilauZ70976lcOkatxYaAGHTxhJ2y2U8sL2MP3c6p36RJLjnkkk8eu2MLvtbPC3e6nMKKVu3jfJt+6k9lE5DTgHG0kqs9Y0eNeF0h0KrQe3ngy4sCK+4KPxS+hA0ajChk0fiE992wdZZ4laWZbI++5nd9zzncgBKUigYcN/1DHnsdn7blc2VT/zgZCUT4KPjy8cWMWNU6/36LVYbX/y2j2c/W0eui/y6zcyZkMTD10xneFLHA6X1NEwVVdQcyqAhp4CGnEKHn2xO4bFtu6ntUfVVPl5oQ4PwjovCp28sPn1i8ekbh/+Avvil9HHb8c8vq+W2F37l923OM/ax4f589fhiRiVHtbk9zciyTMb737Hnny9grnL9/w4eN4xhT99FxBmt9mhziyfuF7vVSu53Kzn49NvUuMjp3Ezw+OGMfesxAocPaHd7W0KWZR59/y/+c1IfUaGQePOeeT3CRLm63sh/vtjAGz9sxWRx3b+aMTKR5289iyF9W56FX745laue/NHJpcjfW8unN01B+96nFPzqbK4N4JecyOg3HvXIb+h4hLg9DZEkaSzQLGjfkWX5ZhdlmqMXDwCqgTBZlttkJypJ0kvAXU2bk2RZdtkTlSRpNTC9adOjP7LuELfNfLVqH7f851enB4NGreRfV0zhnksmoVYpqdx9iKzPfqZw6ZpWm3Z2JuoAPyLPnEjkOVOJPHuyR/w5O4K1oZGS1VspWLaGwuXraMxtXQqZtqL29yVs6mjCZ44nfOZ4Agb3R1IokGWZ2gYTNQ0mGo1m6g3mY7NiGrUSjUqJVqMiyE9PeKBPp+d8tNtslK7ZRvbnv5D7/UpH576HoPL2ImTiCOIWnU3sBWehDQ7s8DllWaagvI69aUXsaQr0tCet6NgIcLvbqlQwpE84I5tE7MjkSAYlhqHugkinbaUuPYfDL3xA5sc/tdhBTvML5afEYRwN/N892ycqkPfuX9DlZqFt7YxajUYqtu+ncscBqvenUp+eS2NeEabyKqwNhi4RsO1GklB66dAGBeAVG4Fvvzh8+sXjP7AvQSMG4pUQ4zTz62lxK9vtlK7fwYHHX6dktcvxaoJGDWLsO08QNGrwse/2pRdz/gNfU1B24v2kUip49e9zuHbeyDa1w2yx8fHy3Tz/+Xq3fnkA505J4Y7F45k4OLbHWQ51BrLdjs1gxNpobFoasBlMNFZVs22Do2s0ZtJEvPx8UGg1aAL80IYGodK3LdCYLMt8tnIv973xGzUNzu42Z4zuw8cPnd+hvKGNBSVsvf5Bilaud7nff3B/hj1zF9HzZnjsf+vJ+0W228n/5S8OPv0WlW5yHEsKBf3vvJKhj9/eblefFtsgyzz07p+89LVzt/jft3nGVLw9mC023vtlB89+uo6KWtcRw5Nig3n25lnMmdC/xf+vLMu8/sNW7n9rFXb7ic/vhMgAfnr2ElLiQ5Flmfwlf7Dj9ifdBiALnTyKQQ/cROTsqR75TQlxe5pynGmyFZgqy/Lmk/bfC/y7afNxWZYfO2n/1cBH7vY3lYkDjgI6YCcwTZblhpPKXA581rR5ygBXbeV4cbvhnU8ZPG0S2qAA1P4+ne5bAbDtUD4XPfwtxZUn+rpobFbOp4r5NXkY9x1u0zklhQLvxBj8Uvrg2y8Opc51uiFLbT11GXnUp+fQkF3Q4sxPSwQMTSZy9hSiZk8hZNLITr9usixTn5FL4Yp1FC5bQ8mabe0a8XZCklAH+qELDkQbEoguLAj/wUkEDh9A4IiB+CTGdFnkRE9hbTRQ8Otqsj7/haKV65GtXRugq1qjJy80Et3IwQycO5UzLppBUED7OwJ2u0xmYeUxAbu3ScyeHKitLSgVEtGhfsSF+9M3OuiYkB3cJ9wjkUG7EkNxGUf/+xlpb36Jpca9cDgcEM5PicOYdeU5PHXTLHz0nf+sA8e9azMYMVfVUpmew5bvf8FeVkViZDRYbY5OfV0DxrJKLFW1mGvqMFfVYK1r7BIrlW5FIaFQqRxRYNUqUCgw22xIKgW+EWHoI0LwigrHOy4Kr4QotEEBaIMD8O2fgC7cda5rWZap3nuE7C9+Iefr5TTmF7usWuXjxbCn7yLptstcWuUUVdSx6IGv2ZXqHIH3rosm8NSNs9o8aGc0W/ng153854sNlFQ1uC03IimSW88fy+KZg04ZzOp0xJOi7UhOGfe/tYrftqa73P/Pyyfz8NXT2x04SpZlcr5ayvbbnsBS7Ty4qPL1ZugTd9D/b5d7PEBTZ1g6yLJM8aqNHHz6bUrXbXdZRh8dzqhXHyT2/LM8PggjyzL3v7WK/363xWnfQ1dP44ErPSPkWtuWn9Yd5pH3/nIbXDHQV8cDV07jxgWj0ahbHgQ2W2zc89pK3v91p9O+CYNj+ebJCwkNONGay1JXz75HXyP11U/d9lcDhw9g0AM3EXP+Wae0MLRbLBhLKjBVVGMqr8JQVErt4UzqMnLJOprGlXuavSGFuD1tkCRpBLAR0AP1wDPA6qbti4Ebm4qmAqNlWa476firOYW4bSp3vEg+1LR+APAHzgduBpRAbVM97m1F2sHx4va/JBLM/3wQJaUSpZcOfUQoIROGEzAsBf+BffEflIRXTITHHir5ZbVc+OA37E4rIqqhmmmF6UwszsTLduqJcIVWQ/jM8YRNHuUQs8mJ+PaLb7MPgs1spiGnkPr0HGpTs6nYuo/Stdva7MOr1OsIHjeUsCmjCZ0ympAJwz1ibtqQU0DJ6q3HPo15bUtzICmVBAxNJnjcUHz6xKINDkAbEog2OADZx4tN+3aDt56zz5l92gW2MZmt/LV6D3tf/ITAtevxNbcvB68MmDQaDHovLLICi9WGhIwkyyiaPkrZjixJ1Gj0lOp8qNB50aDW0aDW0KjSYNBoiegfj29SHJEh/kQF+xAZ4ktksC8RwT5EBPtS32giv7SWvNKaE5b5pbVkFVU5mS51lMhgH16+c06Hfct6EtmZhXxxx4sErPqTwBb+35HnTGXYk3eeMFPXUUyV1VTvO0r1vqNU7jlM1c6DDrFaW4/NYGp3nk2PoFCg1GlQ+XijCfBDE+jbtO6L2s8HhUYNSiUKhQK73Y6t0YC1vhFrfSOW2nrMlTVYauux1DdgazD2GMGt8vHCf2A//JpMUf2SE6k5mEb2l0tdBoo6ntjzz2LUqw/iFdNyao0Gg5lrn13CL+udAwLNn5zMRw+ch3c7BkkajRbe+Xk7L321qcVBqrBAb66bN5Lrzx3dJT7hPQVPiLb8slqe/ngtn67c4zRDBhAR7MNb/5jP7PHtt1yz1Naz7aZHyPl6mcv98RfPZcSL/+w0S6/O9lEvWrWRHbc94dZ6LvKcqYx5/ZFWRXZuC+5MlAH+tmgc/77V86L6ZLYczOP+t1ax1UUAQnBYcdxw7mgevGoqwa2Y8S+rbuCyx75n/V5n/+ZLzhzCW/+Y3+JAVuXuQ2y76REqt7vPCurbP4GB/7yBhMvPRVIqqc/IpeZgOtUHUqnec4TK3YdozC1Etrl+H1Vg4Q6OufAIcXs6IUnSfOBzwF0I3VRgrizLTsOArRW3TWWfBf4JuLtDS4GFJ88ee4KWxG1LqP188BvYj+DRgwmZNJLQiSPwjmuff4q1oZH0r5az/vkP8U5vuSMCoIsIJXredKLnTSf8jAke9VU8HlmWacjKp3Tddsdn/c4Wgy24QlIqCRwxgNApo/FP6YM+KuzYRxsadMLImt1iwVBcjqGoDGNRKYaiMiq276dk9dZWhe0/HkVIEIpByVj69aU+Pp6qiEiqrTJ1DWbMVhsWqw2rzY7FZsdstlBU7BDxSYkxRIT4EervRUSwL8OTIhiUGNbhFAhdTVWdgZVb0ln/7R/ol/3O0OJs1HI3ioqTaFSqyfYNJssviCzfELJ9g6nS6k/ps9xWtGolg/uGMyIpkpT4ED5Zvof9ma7NmuZPTualO84hJrTnRAxvKxU1jbzw1Ube+nEbJosNpd3GhJIs5uUcINTofnYsZuEs+l63iNDJo1odMV2WZRpzCynbvIfqvUeOCVp3s4NdhaRSovb3RR8Rik/fWAKG9CdkwgjH3+bvWVFkNRqp2nWIih0HqDmYTl1aNoaCEkyllVjqGnqM+HWFV1wUY954hOh5M1p9TEu+7COSIvn+mYvbLTzrGk289eM2Xvl2M1V1RrflVEoF8yYlc960AZwzPglfL9eWSacLHRFth7JK+WDpLj5custtWr1LzxzKC7ef3epAlq6o3H2IDYvvdJneRx8ZyrgPnibqnGntPn9r6IoAdTajiUP/fo+Dz7zj0lpMqdMy9Mk7Sbn7Go9bef3nyw088t5fTt9fdc5w3rhnXqf0UfalF/P0p+tcDmg1s2BKCk/deAb9YoJbdc79GSUsfugbcoqrnfY9cs107r9iSqvEut1mI+O9bzn4zDstTnaoA/ywNjS6THHWEkLcnuY0RTW+E5gLxABmIB34DnhdlmWXQ61tEbdN5ScAt+AwhY4EjDjE8y/Aa7Isu49A0QHaK25d4RUT4RC6TR+/AX3d+sPIskzFtn1kfPA9OV8vw1rnvuMJUKnRszGyL6YxIznz4jNYPGtoh3xi2ktjfjFFv62ncOV6ildtatH08VRISiX6yFDUfj4YSys6lDbBLklkBoazKyCS/cFRFHr5e0wo+eg1jE6JYvzgWM4Y3Yfxg2K7JYBQS8iyzNHcclZuTee3zalUrd7CWTkHSal2LeSOx6RUobbbUHTz87RaoyPLN4Q0/1B2hMVRoWub+bKft5Zh/SIYlhTB8H4RDO8f6RTsyWK18d/vtvD0J2tdRkr29dLw8DXTueW8sT3uf9wS9QYzr3+/hZe/2UytCz86pd3GOTV5nF94BLnMfVoWJInAEQMJnz6WsGljCJsyGk2gP+Cw7qjac8QR+XXTLso37e5wdPb2otBqUAf4og8PwadPLAHDUggZP4yQSaPQ+HbOYF97MNc1UL55NxVb9zr8hDPyMBSWYKmpw2b0bK7S1uLTL54+V59Hyt+vQuXdvnfIJ8t387eXljlF2I0K8eWHZy7uUDComnojHy/fzVs/bXfZAT4erVrJmWP6snDqAOZM7N8hgdZTaatoq6w18Mv6I3y0fBfbDhW4LRcR5MPr98xl7sTkdrdNlmXS3/manX9/xqXYi79kHqNffxhtUEC762gtXRl9vS49h+23PUHx7xtc7g+fOZ4Jn/4br2jPzlK/+/MO/v7qcqfHxnnTBvDxg+ef0hS4texLL+aZT9fxcwuiduzAaJ69+cw2xWr4ef0RrnvmJ6cAdTqNinf/uYDFMwe1ua02s5nsL37l8PPvUXvUOVhiexHiVtCr8aS4dYVXbCS+SfH49k/ANykB36R46tJyyPzge2oOufZ7acYOHAiKYm1UP/YFRWM/biRQpVRw9rh+XHLmUOZO7N8tvoF2q5WKrXspXLmeohXrqNzZcq44T1Oj1rE/OIr9QVEcDIzEoO4av8EAHx2zxvRl9rh+nDWun5NfSFfRYDCzdk82v21JZ+XWNPKKqxlZlsf8nP3ENlS3eGyVrz/28aMZfMk5TLn0bCRZpmrPYSq27Wv67O/24GVpfiFsC0tgR1gctZoTOyphgd4MT4pgWJOIHd4vgoTIwFb7/WUVVnHHy8v4Y4fr1ByD+4Tx8p3nMHlofIf/js6kqKKOz3/byxvfb3Xrt6jXqvjbBeO46+KJ+KkVpL3zNYeeeQdjaQsitxlJInBYCiofLyp3HMBmbHu+59bUIamUSAoFklKBpFKi0utR+TrMhXXhwfil9CFgWArB44bh2y/e42l3ugtzXQPVe4/QkFNAY34xxqIyjGWV2AxGLAYjZUUlYDCht8lYqmqx1NYjWzs+G6zQqImaO52Ey+YTPXe627gMLbF2dxYXP/Id1fUnzrJ669R88vD5HRJN4MhzvnxzGm/+uJU1u7NPWV6lVDBjZCJThsczsn8kw5MiW2Ui2dNpSbQ1GMxkF1dzNLecDXtz2bA3x61lSjNeOjV3LB7P3y+cgL9P24JRHY+10cDWGx4i58ulTvvUAX6Mfftx4i+a0+7zt5WuzpstyzK5365g113PuMxOoAn0Z+x7TxJ3wdkerferVfu54bkl2E4yLz9rbF++evzCY3nc20NrRG1iVCBP3nAG508b0GpzaFmWee6z9Tzx0RqnfVEhvnz31EWM7EBk7uYgmof+8wElf27ucGwRpU5Lra+GG8uO+QMLcSvoXRwvbvdv3kaYVaL2SCZ1abnUZ+VReziDmgMedfM9JbrwEPpetwj77Jnc/uV2t0mxm/H31jJuUAwRQb6EB3kTEexLeJAPEcE+hPh7YbbYaDRZMBgtNJosNBotGEwW6g1mR5TfeuOxaL+1DUZqGkwYjJZjZrtWm/2YGa/VakelVKDXqfHWqdFr1Xjp1Hhp1fjZLMSVFxFemIdvZiaqzGzwoFlenUrL0YAwjgSGcyQggiIvP4+bsbYVSYJRyVHMHp/EWWP7MaJ/ZKfN+JnMVvakF7P5QB5/bs9g/d4cR6RtWWZ4RT4LsvYT1+B+9tuqVGIZP4bhd17ByEVnnPLFZK6qoWLHAUfnO7eIuqw8Sg6lIdc24BMShDbQH3WAr8N3McAXtb8vmgBfJLUac1UN5qpazJU1mCurMVfVYqyoprG0ErmuvsV6T0aWJIwDU9CcOY3Ic2cycEgfIoN9OuxnJMsy3/x5gPve+I2yate+fpeeOZSnb55FRAv5+boaq83Oyi1pfLJ8Nyu2pDl1cppRKRVcN28k/7xiCpHBJ5qKWhsaSX3jCw49/z7myupOb7MuMhSvmAh8EmPx7R+P/4C+aJPi2ZqdiqRRd0lntLfR3FmXrTamDB6GrayKhpxC6lKzqDmYQX1WHnUZeVg7YD0DDheb2AvOIuHS+YTNGNemNG+pueWc96+vnPLXShI8d8tZ3L5onEf8AQ9klvDWj9v5ctU+t+a1roiPCGBE/0hGJEUwtF8EkSG+hAZ4Exrg5fGo5zabHYPZisFkwWCyYjRZMJqtGMyOdYPJ6vjebMVobt62NG079lksNmx2O3ZZxmaTsdntWCxW8gsLsdpkfP2DMFlsNBgs5JfVuH1uuaL5eXD/lVM7/DxryClg3cLbqNrjHOwyeOxQJn3zMj4JMR2qo610tbhtxlxTx76HXyX19c9dWmL0ufYCRr36oEfdx5ZtOsplj33vlGljaN9wXrxjdpsHZVsjaoP89Nx/xRRuPHd0mwK7NRjM3Pj8L/y49pDTvrEDo/nmyYva/Xss27SLrE+WkL/kj9YN1p6MUoFSp0MbGohPfDS+/eMJGJqCb784SmQzI+ec2VxSiFtB76I1qYAMRaXkfLuCnK+WUbF1b+c0RKEg8uzJ9L1uEdHzZxyLOGy12Xnjh628+NXGNr3IegIam5U+teX0ryklrq6KALOBIIsRX1NjiyawVklBjUZHjUZPpc6bNP9QjgSEU+AdgNzKjlKgrw4/bx0BPjr8vLX4++jw99bi661Fp1GhUipQKxUOISrbycxIRwaCw2OoqjdTVt1Aal4FWYVtM5X21qkZNyiGSUPiGDMgmuT4UGJC/docSbTBYOZQdhmHsko5kFXKrqOF7DxS6PQyG1BVzAWZu0mscx29EEAOCiDp9isZdvulHUq946nOQ2NBCRXb91OxbR+V2/dTsX1/q83bFRo1MQvOYMC91xE8xjPJ7CtrDTz4zh98vHy3y/1+3loeuWY6Ny0c062myun5FXyyYg+fr9zrFF39ZC46YzCPXDOdPtFBLZaz1NaT9s7XFC5bS/mWPZ6JOt6ELiyYxKsW0ufaC/BP6eu0v7s6o57GbrNhLCnHVF7VNJhTg6l5UKeyBlNFdZMZsgmbwYTNYDy2bjUYsRtN2C1WZLuMbLMh2+3INjuy3Y7dagUPzNS2Fl1EKAmXzaffTRfhl5TQqmPKaxq5+JFv2bjP2d/yhnNH8eLtsz0mJCtrDfy8/jA/rT3M6l1ZTmbRbSHQV0dogDdhgd74eWtRKBQoFRJKhQKlsmmpkLBY7TSaLA6B2iRCjSZL03dNYtZsxewm12d3ExHkw2VnD+W6eaNIjOp46rWStdvYsOgOl25EKXdfw7Bn7+6STBMn093Pk5I1W9l85T9d+n/69I1j4hcvEDJumMfqW7Mri0UPfu1k4gsOM+VnbppFQqT7/7fdLvP7tnTeXrLdbfRscNwndywezy3njW3zTH92URUXP/Ide9Od4zBcMXsYr901t80R0GW7nYKlqzn0/HuUb3L9zvYEwixZ0Ktpa57b+sw8cr5eRvaXS1tM8t0eVD5eeMdH4x0fhVdc5LF17/gotNERbMyr4avVh/h1w9E2jV73NCTZjq/ZRIDZQICpEb3NQp3aIWartXoaVJpTzshGhfgyICGUuHB/YsP8Hcum9agQ3zY9MFt6KZZU1rP1UD5bDuTx545M9mWc2of1ZPRaFf1jQ4gO9SXAR+8Q2j4OM0CT2YrZasdgtFBcWUdhueNT2kJqDICY+ioWZexmSJX7QAo+yYkMuu96Ei47t83Rs13RWZ0H2W6nLj2Him37KF2zjbwfV2GuOrWLffgZExh0/42EnzHBI7NDm/bncterK9z+j4f0CeelO9s+Kt5eZFkmLa+C37al88v6I2xwIR5O5pzxSTx23QyG9nMf+VaWZRrzix0DC01m6I0FJUgqFbLN5hBddQ2Ya+raHNlYUiiInD2FvtcvJnredBRq9yZy3d0ZbS2y3U59Vj71Gbk05BbRkFNAQ04hjU3rjfklXZ5iq90oJEfY81b0nSLOmkz/Wy8hat6MU87mmsxWbn1hKV+u2ue0b9boPnz+6KIOmcC6oqrOwPJNqSxZd5hV2zOcBv7+P6PXqjhjVB+uPGcEs8f389jgQtpbX7Ljjqedfu9qPx/Gf/I8sQtneaSe9tATnifmqhq23fwoud+ucNonKZUMeexvDPzXTW2yjmiJbYfyWXj/ly4DsGnUSm5fNI77LpuCn/f/3A5q6o18unIP7yzZ4TalD3RM1AJ8/cd+7nxluVMMCIVC4tmbz2yzVYfNbCbny6Uc/s8Hp3Tp8wRC3Ap6NW0Vt83IskzJ6i0cev59t0EFOgOlXofK1xujSkOlVabULGNUqjEplVgUKiwKBRaFCrNSiUXh+JgVx60fV86oVFOn1lKr0WFTeNZEy5MoFBJhAd6kxIcwcWgc8yclM6yf51IxteWlmF9Wy+9bHT6uf+3IdDlq2pkEGRtYmLWXCSVZuJtDrAwIZs+EKVQMGYqvjw4/Ly1BfvpjKXeOpd4J8mlTAIr2dh7MFhuF5bXkljhS+lisNny8tPh5afD11uLnpXVse2vx1WvAZqX4941kf7WUgp//wtrQssVC0KhBDLz/RmLOO7PDnQarzc57v+zg8Q9WU+MiMBPAqJQorp83isUzB7Ur9UlLNBotrNuTzcqt6fy+Lb1VlgNeOjUXTB/IdfNHMW7giaaAsixjLK2get/RE/ypjcXOPmIdwadPLH2uOZ8+V59/ypQyzfSEzujxyLKMsbiM6gNpVO9PpeZAKtUH0qg5mI6tsX3ps7oMScI3KZ6AockEDkvBOyGaIy9/QtUu13EQfJLi0QUHUr517ymFrldcFEk3XUSf6xahDw9xW06WZf79xQYe+2C1077+scF8/cSFDEgIbdvf1UrqGk2s3JLOxn057EotYn9GSa8eAG4rEUE+DO4TxtThCUweFs+o5CiPBRcCh3XC7nue4+irnzrt80tOZMqSN1xaZ3QlPeV5IssyWZ/9zI7bHsda7/zuCp85nolfvtjivdQWDmaVcvnj33Mkp9zl/rBAbx69dgZjB0bz7s87+PL3fS32WzoqausaTdz16gq++N15oMvfW8tnj1zAmWP7tfp8lrp60t/9liMvf4yhoO2TC+1FiFtBr6a94vZ4Kncf4tDz75H33Uq3iaV7Ola9Hpu/HwT4owwORBUWgiI+BnV8DOrEWDThwahVSlRKBVabnUaj9Zgfb4PRTKPJQoPBTGWtgdKqBjILqsgrraGmwdgpAUFD/L0YlRLF+EExTBgcy+iU6HYLjfa+FE1mKxv357JySxq/b8vgaK7rl4sn8LKYmJN7iFn5R9ym9CnW+/JLwhC2hcUjS60znw0N8CIy2Je4cH/6RAfRNzqIvtGB9I0OIibM/wQz3JauU22DiUPZpRzKKiM9v4K8pvy0uSU1FFfUtek3EBXieyzq8ZDoQGKzUjH8tpbC5Wuxm92/lH37JzDwvutJuHxBh2eqSyrreejdP/n8N/duCH7eWi45cyjXzx/J4D7ti4pZ22BiX3oxO48W8tfOTNbtyWl1p3zMgGiunjOCRTMG4atX05BTQM3hTGoPZzhiBRzOoPZwZqtmwduDd2IMcYtnE7d4NkGjBrd5sKm7O6Pm6lrKt+6lfPMeyjfvoXLHgS7xP24vSr0Or9gIvOOi8IqNwCs2Eu/4KPwH9ydgcBIqrxOvn91qJe3NL9n70Csuo/FrAv0Z9dpDGIvLyf7iV6p2O/vEHY9CrSbuwtkM+Md1BA4f4Lbc96sPcv2zS5xmUr11at755wIumD6wDX91+7BYbRzJKWd3ahG7UovYnVpIdlE15TWNLvO8dhYKhYReo0KvVaPTOpZ6jQqtRoW+aVun+d9Sq3bkWFYoJJQKCYVCQrbbyM7ORq2UGDwwBX8fL7x0akIDvEiMCiQuPKBDQYROhaWuno2X/oPCpc6DFlFzpzPxixc8nmKrPXT38+Rk6jPz2HT5vZRvdjad1UeGMumbVwibMtojdVmsNt7/dSdPfbyWytr2DcR1VNQC7DhSwNVP/eRyRrh/bDDfP30xSbGtSxlkqW/gyEsfceTlT7BU17otpwnyx9pgcOlSowsLZvSbjxJ51qRjLiFWg/F/7iGNRkwV1TTkFtKYV0xjbiENTcvC8lIhbgW9F0+I22aK/tzEvgdepmL7/hNGw3XhwXjFRjZ9IlDpdSeYtxkKS7slJURbUPv54Juc6IhaOjiJ4HHDCB49+FgqCVmW2XGkkO9XH+THtYfIL3X/MOoMVEoFQ/tFMGFwLBMGxzJuUAzRIb6t6nB76qVYWtXApv25bNqfy4Z9uRzNKafR1LGZXZXNxszCVOblHMDb6tofslqj4+eEoWyI6HtCRO2OolIqSIgMoG90EH2igogL86G6OAtfvYqQmCTSCqo5mFnKwewy8ko6R0A14+etZVSMP9OLMohevw6pqtptWe/4aIY9dw/xF83p8Oz+xv253PXKilNGIB0/KIbr549iZNOMiVqlRKNWojluWdtoYm9aEbvTitmTWsSetOIWzcKckGUStXDRgGBmRujxqaqkLi2HurQc6jNysRnc5wb1JJJaReDwAUTOnkLopJGEjB/ers5tV3ZGZbud2iOZlG/efUzM1hzO8OxzV5LQBPqjCfJHG+RYOtYDUPv7oPLSo9TrUOq1KHXaE9YVGvWxaNEoFEhKJWazmS3btyEpFMy4YAH+0e2zVmksKGHn358m7/vfnJusUDDs2bsZcO/11B7JJPPD78n48MdTivyIWRNJ+ce1RJ412WWbth7K58KHvnHpXnHnheN56sZZ3eK/brPZqawzUFbVQFl1A6VVjZRW1dNotGCz27HZZWy2pmXTtlqpOCZOvbTq/wlVjRovnQpdk2DVa9XHBGvzukqp6PAzqDtFW2N+MWvm3UT1XudAQ4MeuJmhT97p8Xyu7aWniVtwDDAdfPptDjzxhtPEh6RUMvy5e0i551qPWaFV1Rl45tN1vP3T9lb7ow/uE8Yt543l4llD2j1IYrfLvPzNJh77YLXLei87aygv33lOq3JS2y0WMt7/jv2Pv4GxxP2Egd+AvkhqFTX7jrrcH3/pPEa9+iC6kJbjTrjjyP79DBh6LK6HELeC3kVHxW1dRi65360k99sVbke+vWIi6Hv9Yvpet8ilyZ7NbMaQX0JDbiENOYXHRG/zpzG3sMUZq+5CUirxGtCX4tBI1hjVbLbpKdX7njLok16rYtKQOGaM6sOMkYkM6RtOYXkdR3PKOJJbTmpuBUdyyjiaW96hIFoRQT6MTI5kZHIUo5KjGJkcRVigc8TC9r4UaxtMpOdXkF5QSXpeBWn5laTlV5CRX+mUHqOtKOx2JpZksiB7P0Em19fAqFSxInYgv8cOwKzs+lRQ3YXKZmNiSSazcw8RbnQfWCl43DBGvnQ/oRNHdqg+q83Ouz/v4KWvN1FQ1jWDNnqLmdiGKuLqq0i21NPfUodPZQV4MBWPOsCP4DFDCB47BP/B/UGWsRlNGApKyPr059angmrKjZtwyVziL52HV1TrZrE7szNqqa1vmpVtErNb9rY4+t8a1AF++CQ0xUSIj8I7LupYTASvuCi0IYEe86UDz1+fguVr2XHb4zRkO+c+jbvwHMZ/+Awqby+sBiO5364g9Y0vqNy+v8VzBgzpT8o91xJ/yVynIEI5xdVc/Mi37ElzDiYzZVg8nz1yAeE9KAp5T6W7RFv1gVRWz77eyRRUoVEz7oOnSbx8QZe0o7X0RHHbTNmmXWy86C4a853vhZiFsxj/0bNoAvzafX6zxUZuSTWF5XUUlNWyJ72Yn9cdcZsnWqmQOHdKCreeN5ZJQ+M6JK4Ly+u4/tklrN7lnGPW10vDf++ay8WzhpzyPLIsk//TKvb860XqUrPdlgubOoa4i+Zw+MUPacjMc9qviwhl7NuPEbOgY/7faWlp9O/fv3lTiFtB76Kt4la226nafYjCFevIX/JHm3K7SgoFUfOm0++mi4maPaXVI56y3Y6xtAJzVS2WugastfVYTvo0R960NZtcGE3/Wz8uOqetuYzR7MiZ6MFUPQB1ai2HAyI4GBTB4cAIKnSOzsvgPmHMndifmaP6MG5gTKsCPsmyTGF5HbuOFrHzaEHTsrDdZjcAseH+JEYGEBboQ1igN+GB3gT4aMjPSsVPr2TU6DEoVepj6ZOq64xU1RmorjdSVtVw7OVRWF5HeU0nRK+WZUZX5LEoZz+hddWuiyiVyHNmobj8QtQhgcdmQKw2O1abDYvVjsFkobbRRF2DidoGE2XVjRRV1Dk+5XXdEnzFW6d2mNDp1dQ3mo+1r97Qvgi9kmxnVFkec3IPEl/v3je1IGUQZRcsJCg5gdAAb7x0Grz1jvRVXjo13noN3jo1XjoNOo0KtUqBRuWYfT0+yrXVZue3rWm8/8tOftuW7rFJP53VQv+aUhLqKoitdwjaEGPLAcXailKnJWD4AILHDmkStEPx7Rd/wjNIlmXS3/2G3f943qWvWKuQJCLOmEDCFQuIPW8Wal/34sVTnVGbyUzNwTQqdx2iYts+x6zswbR2z8qqvL3wH9QP/8FJBAzuT8CQ/vgPTkIXHuKxGZbW0BmddUt9A1uu/hd5PzjP4gYM6c/UJW/i0yf22HcV2/eR9tZX5Hy1rMUcx/qoMFLuvoZ+N110QsoTg8nC319Zwacr9zgdExniy1ePL3byExecSHeIttJ121m74FanASFtcABTfnrDY+a0nqQni1sAY1klmy77B8WrNjrt8+kbx5Tv/9uiuf/xyLLMgcxS/tqZyepdWazfm0NjK+N/+Hlreeiqadx6/liUHbCeqKw18OaPW3njh20uB/PHDIjmk4fOb1WE7tINO9hz3wsuTbgBkCRiFpzBwH/e4LiOl97j8h2VeOVCRr78L7RBAW39c5wQ4lbQq2mNuDVVVFH0+0YKV6yj+LcN7cundRLB44Yx/uNnuzUIg2y3Y66qwVBcjrGkHGNJxbFlfVa+I9/v0awWOzWnwhIeRuSsiQw4/wzCZ47v0OgkOB7qOcXVbD9cyJaDeWw5kMfe9GK3uT57IpIEceEB9I12+EvFhTuiPYdlZWB4+1Pq9zrnDmwmdtHZDHvm7lan6TiZ2gYTaXnl7M0oYV9aMUdyy8kpqqaowrOC19dLQ1y4PwPiQxmVEs20EQkM7Rvu8mVqs9lpMDrEeFWtgUPZZexNK2JfRgl704pPPYggywyqKmZezn7617gOlGSRFPwVnczS+EE0qk9tGtWMQiE1CV2H4NXr1PjqtahVCmobTe0aKNDYrPSrKSOlupgBVSXE11ei9NC7TB3gh/+AvvgN6NO07Iv/gL54xUe1OKvYkFPA1usfoviPTS73R8yaeCxicGtR6nXEnDeLxMvPJfyMCU4ze+3pjFoNRqr3HaVq10Eqdx2ictchavanYre0z7JFoVETNGowIROGEzJhOEEjB+GdEN0jTC07LTq5LHPo2XfY+9ArTgMAmkB/Jn3zMpFnTjrhe1NFFWlvf03qa5+3aCqoDQ4g+a6r6f+3y4+ZqsuyzIdLd3H3ayud0uWoVQoeu24mdy4e36GOdmdRWWsgp7ia/NJaCspqyS+roaCsjvzSGkqaTK61TW4H6qalVq1Eq1EREeRDdKgfMWF+xIT6Na37t9n0s6tFW96Pv7Px0nucfBh9+ycwfdm7+PbrmmjxbaWni1twBOY68OSbHHjiDad7T6nTMvqNR+h77SKXx+aX1bJ6ZyZ/7shkza6sY7+/9jIwIZTHr5/J3In92zRoV1RRx3+/28J7P+9wGZhKkuC+yybz4FXTThmluzYtmz33/pv8n/90WyZqzjSGP3cP/oP7u31u6SJCGff+U0TPnd7qv+NUCHEr6NUcL263fvUT4QoNhoJSGgtKMBSWUpeeQ+WOA62eBdCFBRO76Gz8UvqQ9ekSx7FuUOq0DH36LpLvvNKj5myepKSijq+++Is/l2xAzisgqqGGhLpKYuurUNK2+09SKgmZMJzI2VOIOmcqgcMHeKQTWW8ws+NwAZsP5LH5QB7bDuW7jXTblWjVSpJig0mOC3F84h3LpJjgEzo45Vv2sPfBlyn5a4vbc4VNH8vwZ+8hZPzwFuuUZZniynqyi6rJLqomp7iK7KJqMgoqSc+vPGV+1M7E10vDkL7hDO0XwdCm5cCEUPRa95295tn7venF7EsvZm96CYezHUGrnAY0ZJkR5fksytxNhMF13tx6lYYliUNZE5XU6qBbHUVht9OnrpyBlcUMrCmhT205yg4EnlPqdfj2i8OnXzy+SfH4JiXgmxSPX3Jim2cXZVkm471v2fWP510GHfKKiWDs+08RdfYUAAwl5Q4z3407Kdu0m8odB1rlMiEpFHjFReLTJ/bYRxMbzv6SfBQhAUybOg21JGE3OSxKjKWVxwbaGrILqEvPoT4jj4bcwg75yXrFRDQJ2RGETBhO4IiBHkmT1Rl0dme9YPlaNl16j1OOaUmhYPTrD5N0y6VOx9iMJrI+/4UjL35I7ZFMt+dW+/vS//bLSb7zymM+b9sPF3DJo9+5NO0fOzCad+47l5T4zomm3FpyS2rYuC+HDXtzWb8vh7S8jg9kn0ygr46YUH+iQ32JCfMnJsyP6BCHCA4P8sHHS4OP3vFRq5RufweyLFNvMFPbZJ1T22iitt5IbaOZ+kYTJosNq82OxWrDZpfRqpXoNCrHR6smyFdHsL8XQf5ehPh7odOoSH3jC3bc/qTTPRYyYQTTfn2rQ3nSO5veIG6bKVy5js2X34upotppX9/rFpH03H3sy61k59FCdh4tZNfRIrcmxh1l/KAYnrzxjFOmuMsprualrzbxyYrdbgd0o0P9+OiBhUwZntDiuawNjRx85h0Ov/CB2/dH0JghjPj3vYRPH4e10cCWax8g95vlLstNXfJGq91hWosQt4JezfHi9r8kEkzbHeq1oUHEXnAW8ReeQ+jUMScI1cpdB0l/5xuyv/jVbUqT0MmjGP/Rsz1mRNRul1m9K5MPlu5i6cajWKzOHXGNzUp8XSV9astJaawipbESTW3bfNp04SHHhG7kWZPQBPp7rP0ZBce/GArZk1bcarOdtiBJEB8RQFJMMH1jgkiKCSYpJoik2GBiw/zdzkbIskzxqo0cfPYdStdsc3v+wJGDGP7s3UScOQlJkpBlmYpaA3klNQ4BW1xFTlE12cXNYra601Jg+Og1hPkp8dUpqTIqyfVAECmlQqJ/bAhD+/1P9A5MDCMy2KdFkWYyW0nNq+BQdhmHskqPLbOLq5GsVmYUpnFu9n63QbhyfQL5PGkMGf6d05n2tpgYVFnEsIoCBlcW4uOmHS2hUKvxH5xE4PAUAocPwH9wEn79E9FHhXlkUKg2LZttNz7s9vfX97pFjHjx/haDRdlMZso27CT7i1/I/f43lwK5u1Bo1ASOHETIhOGENgna1qYp6gl0RWe9Ni2b9Qtvc5k3csjjtzP44dtc3oey3U7BsjUceeFDStdtd3t+lbcXSbdcTMo916KPCKWsuoErn/iBNbuzncpq1UoevmY6d144ocuCTZVU1rNicxrr9+awYV+OR55pnkSjVuKtU6PEhiRJqNQaLFY7JouVBqPFc5GfZZnLig4xM3WP0y6vGRMY9fF/iI4JOcFNo6fRm8QtQENuIRsu/DsVW50j8mf5BvHmoKlU6pxjhLSEn7eW6BA/okJ9T1j6+Wh59+cdbGwhV/qIpEiC/fV4NbnpeOs0eOnU+Og1ZBVV8e2fB1q0kFs8cxCv3DmHID/3173Zr3bn35+hMa/IZRmfvnEMe+Yu4hafgyRJNOQVsW7hbS7TmiVcfi5j330Sld6zObRBiFtBL6e94tY3KYHIc6YQM38mYdPHolC17ENqqasn+8ulHH7hQ+rTc5z2K730DH/+H/S/9dJuM4krqqjjsxV7+Gj5brKLqlssq1IqmD3u/9g76/g27vuNv0/MlpmZHYccZmqgTZm7wopbtw466OC3dszQUbeV1q3M3CYNNMwMDtiOmdmSxXS/P2S7SSzZsmMnTpfn9brXnXSn08k++D4feJ4svrBsIlfMykYhl2KtqqPp0100rd9B8/odAaOSwSBIJETOnEjC5fP9Wd3JBSP6d/B6fZysaaO4ooXmDgstnRZaOq20dFppau+mtqkDq8OLUinvKzFTyqWE69QY9SqMehWRBg0JUfq+KSkmjPSEcFQh9A/3HYfTRe07azn5p+cG7tdOSsB047VUZuTQ0GGlsb2bhrbR75eVyyRkJPjJeS9Jz06KJDs5Er1Kwrp16wD/4MHpFSgub+7JqjZztLyZY1Ut/UoPhwONSk5mQgSZSRFkJUWQmdAzT4ogxqgNGjTweH20dPr/Xo2VjbQ/+RKyj9YgBOkt35OYxWvpEzHJzvHhKIokWk1M6KhnQns9WaY2JEOobHALEpqi41GPzyFv8TSmXjGHsIKMfqW8IwGf282JPz7H0Z89EdA+QZMUx/RnfkHCivlD2q/HZqf+w41Uvvg+jZ9sHfF+/sGgy0oloqiAyBkT/SXGkwuQqkIvQR9rOF+DdXe3xd+H+87afuuyH7qdqX97dMB7cdvuwxz71b+o/7C/VUwvpColmQ/cTP4j96FMiOVnz23kT69uD5iEn5qXwNPfv2bUPHGrGjt5f+tJPth2kp3FtWPdqGDUIfX5uKt0N3Ob+mfiN8Vn8XL2NHwSCSqFjLR4I+nx4aTFh5Oe4F/OSPC/Hk07olAwlsmt0+WhuqmLkpp2Tta0UlLdxsmaNsqrmrn86G4uq++v+NstU/JUwRxORMQH3W9qnJElUzJYPDWD+ZNSiTYGJ8OiKLJm9yl+/MyGQdX/Q4VEInDz4kK++4U5jEuPGXBbc2kl+77+S5rWbgu4XhkVTuGPHyLry7f0Pfdadxxg6/Vf798KIQhM/v0jI6o0fTYukdtLuKgRKrmVqlXELp7pzzKumIc+M2VY3+ex2Tn8oz/7zdADnL+xi2Yw7amfD7uncqjwen2s31fOcx8f5OPtJYP2ruanRnP3ysncetn4gMrDvRB9PjoPn6Rp/Q6a1u2gdeu+IfXuqmIiiVs+l4QV84iZP21UMy52u501a9bg9oosXrwEpUqF1+vDJ4r4fGLf3HvasiiKuD1enG4vTpcHl8eLq2fZ6fa/b3O4sNhdWGwuHDX1aD7dTOSuXSiswbNbHQo1H6RNYHtcxoja+pyO3mxzVmIEWb3kNSmCrKRIUmKDZ5tDGTy4PV5Kato42kN6j5Y3c+RU84iKb0kkAhF6NZFhGqKMGiLDNET3LBv1amQ9PpESQUAQQNrcgvKF15DuCJyhdCmVHJgxj10Z42i3OGk323C6BidmepeDgs5GCjqbKOhsCqpqHQheBCoNkZw0xnIyPI5Thijcpylex4ZrWTk7l6vm5rKwKH1IAZSB0LbnCHseeJSuIPYJoWRrQ4GjtYPq11dR9eL7tO85ck776gdBwJCXQURRAeFF4/zzyQVjwmtzJHFerZJEkaM//bu/F/AspNxyBbNe+N2ggZbOQyc49usnqXlrTdDScYlcTvrd1zHuB1/iiFXky7//gFN1/e2wFHIpP7xzHl++dhrh+nP73aIocrS8mQ+3l/DB1pMcKR/awF4iEYiP1PvLiE8rJ06I0iOTSnC6vbjd3s+eAW4PVrurT3ywrtXfr9vZfX6suoYCpcfNg8e3MaGjod+699Im8GFqof+BEQLiInR+8pvgJ7zp8eGk9czjInSjnvW9kOTW5xNp6bJS1dhJZYO/HaiyoYvKxk4qGzupbzUPGESZ3lzF3SW7UPrOfO74EHgnfSKrUwr8qvR6FQuL0llclMGSqRkhiTUFOtY3NhTzs+c2DprECAa5TMKdyyfxndtmk5E4sNWOx2qj+FdPcvKPzwXURhBkMvIevovCxx5CbvhMgLDmrU/Ycccj/QKwcoOO2a8+TuIVC4Z17KHiErm9hIsap5Pbf6jySE5OQZ0QgzoxBk1CDOrEWIyFOUTPnTKiWYCWLXvZefcPsFb2v14EmYzsB2+l8McPoYoenkfXYKhvNfNCT5Z2MI9SlULGjYvGce+VRcwclzSsSJnHZqdl8x4aVm+lYfWWgNnrgaBJSSB69mSi5hQRPXsyxgm5SGQyPF4fNocbq8OFzeHuW+402+kw2+no7pmb7LSbbXRZHFjsLqx2F1aHG5vdhdXhwmp3D7GDeHBE2i0UtdVS1FZLlqmVgahql0LNmuR8NiZkn0FyhguFXEpKbBhpcUbS4sNJizf2ZWGHmm3uxXAHD719s36i6++bPVrRzKm69vOaNcntbOb2sr0k2gKf77VaI29nTKJDqcEjkeKWSPFIJLglUtyCFAki2aZWP6HtaCLFGlyhORA6o2M4GhbHAXUEZWExOGShZTp0agXLpmdxzfw8rp6bN6z/ndti5cijf6H07y/181sEvzfwtCd/OuRsbShwdZmxVNRiKa/xzyvq6C6vobu8BltNI5x1PBK5HGVMBKrYKFQxEagTYtBnpfr7jDNT0OeknaHI+3nFhRisB+u5jFs6h3nv/D2kv7vpRDnHfvMU1a98FDR7L0ilpH7hSjK/cx+Pb6/m72/tCngvUMilrJydwx3LJ7J0WuagAjW96Oy28+m+CtbtKWft3lM0tYeuNRBhUDNnQgpzxqcwd2IqEzJjQ/7egWCxu6jvIbp9AlUtZurb/PO6FtM5aUVoVXL0WiVhWhU6jQJlj9+2XOoP9rncXhwuD06XF4vDhbOlnbt2rCa9+8zggg+BF3KmszUh61x/ch9UChnpPdnetPjwvuXeLPBIZH1H83qxO93UtZipae6ittlMbYvJPzWbqGk2UddqPueKpURLF189tiWgXoRv1jQK//lzxo9PO2fhNVEUcbm9dHY7+M+qAzzx1u6QHShUChn3XlnEt26dTVL0wOKgoihS+85aDnzrN0FLkGMXzWDqEz8mrODMc63kby+w/+Ff97sP6XPSmP/+P8+LEOslcnsJFzXO1ef2XOC2WDn0/T9S9s9XAq6XG3QU/OBL5D78xRHpKei1MvnPxwdZvats0H6dwowY7r2yiFsvGx9S9NxkcdDQ1k1TezeN7ZYe6xkLTe3dtHRasTvdOF1eHG4P6rY20uqryGqsIbu9EYVvaA8Gh1RGjT6SZpWOFrWOFrWeVrWOFpUeu/z8C8QIokiMvZsMcxvp3e1km1pJGcCephfNaj2fJBewIy4djyT0AZQg+MUbTievaXFGUuP9rxMi9SMeKR/pwYPF7uJYZQtHesqaj5Q3UVzRMiq90b2Q+nwsri/hmqojqL2j05vcC5dEyvHwOI5EJHA0MpEOlZbFU9K5fkEBWrWCfScb2HuijkNlTSEPjCIMam5fNoH7rppCbkrUoNuLokjDx5vY+9DPsdX0z84IEgk537iTCb/45nknjHa7nTWrViOarSy6bAna8DCkKuWgLR7/K7hQmajq11ex887v9cuyRE6fwIKPn+oTiBoM3eU1HP/t01Q+/15wNWtBIPW2lXi/cCNfe/3AgAJOMeFabl5SyO3LJpAcE9YnptRtc/Ytl9W2s3bPKfacqA+5H1WnVrB0eiYLJ6czd0IKeanRF6y31OP1YbW7+gKwFruLDpOFLdt3AzBj+hQMWg0ymRSdWoFBq8SgVaLXKIfUp9xdXsPGFff3CzKLCgWNX76fk/Gp1LWaqR0h4jYY4iJ1fsLbQ3ozEiJITwgnPSGc2HBtSAH1cwm+tveoYtc0+UlrTbN/Xtczb+0aBdu/06BVyclNiWJigoGZq95Htmd/v20MuenMe/cfhOUHJnZmq5O6FlNfpcBnCt89lQNmOzane0R6tQ1aJREGNREGDVFh/nmEQU1UmH8ebupC8uRzuHYdCPh5dUIMRY//kJSbLz/jfyv6fBz6wR858Yd/9/tM/PK5zHn18RHTZhkMl8jtJVzUuJDkthdN63ew674fBRx8gr8HbsIvHyb9zmuG1Yda3dTF86sO8vzqQzS0BVaR7fsulZybFxdyz8rJTMtP7PdQ8flE6lrNlFS3UlLTTklNW9/UMkxpernXQ46phfHtDYzvaAiqdBsqumVKuhVKHFI5Tqnss0kiwyWV4RMEBFHk7MelgEhv+lboWTh9G+G0+40AqLxujE47Rpcdo9PWr6RoIJw0xrIxIZv90clnqPYKAn0lt/FReuIj9af1+foFIuIj9cRH6kYkmzAUnI/Bts8n0tje3afufKqunfKGTsrrOiiv7xgxsawwp52bKg4wq7lqRPbXi3alhiORiRyOTOSkMTZoFj41zsiXrpnKFy+fhE6t4NCpJlbvLOXDbSUcrwpsZ3Q25k1M5b6rpnDtvLyAvtHNG3dx5LG/0ro98ADDOCGXGc/+kshpE0L/gSOIsdwjNxZwIf8+jeu2s/W6r/UTQTTkZbB43X+G1CZirWngxB/+zaln3gjY4w3+TG7KndewJmsSf9pQOnJCSUEQFaZh5ewcrpmXx6IpGSNW9j8aGOnzoGN/MZuu+FI/S0NFhJGFHz/VT5Hf5/Mr8Fc2dlLV0ElFg7/UtrLBr8Q/2gr8WpW8j+j2ljtnJISTkRhBSmxY33NwIFXplk6rn7w2m/pIbE1zF9VNJqqbu0Y1oHo6osI05KZGkdfjnuCfR5MUbegLqIg+H8d/+3RAyxuZVkPuXx6ls6iIE9WtnKjyTyer20a09We4UHg9XFldzPLaE8jE/hVCXkHCocIiyhYswhBlJNKgITJMjUGnQoWI9p/PIN3c347OcPOVxD72TWQKOVKJgEQiIJVIkEoEpFL/XBA+Wz59nUQQzthO2tO2NBgukdtLuKgxFsgtgNtsofhX/6Lkry8EHQCEjcsm5ZbLSbxykd9GZ4BoptvjZdXOMp77aD/r9pYPWv45KTuOe68s4pYl4zFo/eXXTpeHY5UtHO4pJT1c1khxRQsW+9CVX/sgiih8XpReT98kFX19BNQhlaN32SnsbKSwo5FsU2tQxduLDR6Vis6ZM7BftghFZmofiY0M80c8I8M0GHWqMen3CBeejPh8Is2dFlo7rbSbbLSabLR12WjvmbearJgsDn9PdM/2PtHfH+3zicgcdiK7Oom3mYgydxLW0Ya+oQGZydQv0BEqZDoNMQtnEL90NrGXzaZBbWDVrjJW7Shl9/G6QQfpKoWMW5YU8uB105iU7RcOOVXXzofbS/hwWwm7jg0ueBNpUHPHioncf9UUspIiad2+nyOP/ZXmjbsDbi9VKSn8ydfI/849SOQXTgTmQp9PFxp2p5uSmjZOVLVS2+z3T61vM9PY1o3V4cZqd2G22HB7fUil0r7zoPd06B3/9L3f+/q07xhsm7PXg18sUCGXkmnp4IE9a9C6ziyVtRjC2HXXvciS4tFrlH3Zw7gInX+K1BMXqcOoU53xjLI3tnDiT/+h7F+v4rUFLoOUyOXob7qCt+Jyeedo6BUNoSA1zsiVc3K5Zm4us8annDdF5nPFSF4nDWu2su3Gb+CxnEmEtKmJLPzkmWGVe1rtLqqbuk4jvV3+3tMeAjyaAohSiUBybBjp8eGkxOpxd7fi84mowmKpb7P0EdrRchA4G3KZhNQ4Y18WOq2n9Do9IZy0OCNhutAq8ERR5Nhb6zj6wP8hmvoH+z9NyOGNrKIhVXuNKkSRKW213HJqP5FBtCdOGGN5OXsajdr+mVe1x8VDxVvI7+rfD/9O+kQ+ThkXcu93qPAT5F5tDqFv94IgIABeh4muTb/r3fwSub2Eiwtjhdz2wlpdz+FH/0LVSx8MuJ06MZbElQtJuHIhcUtmIdP4H3iVDZ385+MDvPjJ4UEjqjq1gluWFHLvlUXkpkRx+FQTB0sbOVjayOFTTZysbkN0u1F5Pai8bpReDyrPacted8/kQeXpfe+s9R4Pyp5tlF4PCp9nwN7TXjglUhxSORaZgk6VvwdS5XUTZbcS5Rw7diODQRlpJPGaJSRfv4y4JbMuqbeOMkRRxNHchvlEOabj5ZhOlGPumeyNoWVEB4IglRI5fQJxS2cTt3Q2UTMmBiWIbSYba3aVsWpnGev2nqLbNnCQZua4JB64eirXzs/v60Fr7rCwamcpb244xsYDlQN+Pr27nS+Zyok5VRZ0m/MtWDcQLobzaaRgd7o5UNrInuN17DleT3FFMxUNnaOeoTxXxFlNfPvIhn4D1g6Fmj9NXEJTgIFqL5RyKXE9lSdZSRFkJUaQmRRJmkaC7+2PqPzXK0Gto6QqJSkP3ELxtFm8tKuSPcfrh3zsKoWM+ZNSWTY9i2XTs8hKihg1ZdXRxEhdJ+X/fpM9X/5Jvz5o48Q8Fq56esR9QuGzShx/1vczgaWKBn8WuHmY1V4XCuF6FckxYSTH9kwxPVOsgeSYMOIidEMKTtsc7r5AQHl9JyXVbRyvauFkdRtdFgeRdgsPHdtCaoAWpwp9JE8WzKVdrQuw56FBLpP0ZcAF6LtOei8XUSRoUiPWZub2sr2M62wKuL5Toeb1rCL2RqcGJKhGp42Hj2wk2dp1xvteBJ7PncH2+NHvrw0E0WHCuevx3peXyO0lXFwYa+S2Fx0HjnHwkd/TvGHXoNtKVErEhDga3VDnELHIFFjkSqxyJTaZAonoQ+7zIvP558nhGtKitKgRMbWZsLSbcHdbe0hoLyH1k1N5gNKSCw65DFlMNFKjAblOjeDx4m5tx1HX1E+c5nxDFRdN1IwJRE6f4Be/mlP0uekhHGtkxOtwYjp+is5DJ+g8dJLOQycwFZfh6hwlr0qplNhFM8j9+h0krFx4hp/1YHC4PLy5oZh/vbOXg2WBxTV6EaZVcutl47nnyiImZn1W/lle38FzHx3gxU8O9fWACaJIlqmV5bUnmNwe/NmrTU1k/M+/4W9tGCMD/LF2Po0kLHYXO47WsOVQFZsPVnGorAmPdwzeS0NAuMPGt498SoLtTB9zk1zF4xMXU6cbumIrQLpOxrVNpRQc3ockSE+uTKsh9+G7UNxyLa/vqeSVdUfPEEAUBH+QVq/x952G6ZRML0hi2bRM5k5MRa28sPY0I4FzvU5EUeToT/5G8S/+2W9d7OKZzHvniQumNG61u6hq6qLytKxvZUOHn/w2dY16r+/pkAgCUUZNjzK2gdQ4f0Y4OymS1HgjSTEG9JrBg9OiKGJzuOnottPV7aCzV9TSbKe2xeQv527qCpncy70ebi/bx7ym8n7rrDIFz+bP5khkYt970UYNidEGkqINJEYbSIzxL8eEa9Goejxs1QrUSjlalRyNSh5Si5Pb4+37He1mG21NnZifeRnpux8HtNrzCgLrkvP5MKUwqHhivNXEtwIEzxwSGf8aN4/iyIRBj2u0cIncXsJFjbFKbqFHDGb1Fg597w+YjgXPxlyC3zooavZkDPkZqONjUEYa8TqceCw2PFZ7z9yGx+b4rAavpxzF4/FQV++/byUnpyCTy/rWnz4XBOG090CmVqGKj/araifEoE1LQp0QM2bIw0jjQpIRj91Bx/5i2ncf6SOz5pMViJ6RKzdTJ8biaGwNqCZ8NrSpiWR/5VYy7rsxZIEd8F/Te07U8+S7e3l70zHcnoG/qygnnrtXTubmxYV9JW0Op5sPXljDoaffIv7o4aBlYABWrZ7or97Jlb94EJlybFUNfJ7IrdfrY39JA+v3lrN+XwV7jtcNaqt2MUHvcvDtwxv6KYRbZQoen7CYKkPksPdtcNq5ouYYCxvKggZT5WF68r97L9lfv5M2l4ggCOg1CrQqxQUTfzpfOJfrxOtyseeBx6h84b1+61JvXcnM//4WqfL8CzCejV4f+j3H6zhY6m9/Kq5oHrTa5XxBp1ag1yrRnBYsEUWxX3m/w+mho9s+KqR8TmM5d5TtDSi+qbjzRib87BukJEaOev94SCrIi2cy9Ykfo8/NwGR10G6y0W6202Gy0d7jXOHYfZD4fz6FzHGmRZZNpeHNJVdTrY/E6fLgcHnweH14fT68PrHPpnG06d8lcnsJFzXGMrnthc/rpWXTHuo/3EjFO+tw1wYWnrpYIchkI0pSwB/xDy8qIHL6BCKnjSdy2ni06YFtjD5Pg+zRgMdmx9HSjrm2kZ1rPwWnm1lXX05M0bi+cviRhq2+mbYdB2jdcZC2HQfpPHgiuOLqECBIpeizUjAUZBGWn4khP4Ow/Ez0uenIdVocrR3Uf/ApNW+vpXn9zkG/U6JUkHrLFWQ/dDtR04cmzNTUYeE/Hx3gmQ/30ziI0JtaKeML42NZbG5AvnUn3Sf6R/FPh0muYlXqODbFZ+ORSpmQGct3vjCHGxYUjJme7ov9uqttMfnJ7N4KNh6oGJaPqSBAWnw4WYkRJMX4My3xkXrCdCpkgo/io4eQSyXMnDkDpVLZ1xt+dtlg3+sz9j3wNoHWi6Lfz9vV49t6un+rva0T5/d+jqT0zHPPrVCy4bpbOKqKoKmje9h+ruEOK1dWFzO3qRxZkLGdMtJIwQ++RPZXvzBq956xhuFeJy5TN9tu/AZN6/sL9BR8/wEm/vrbwxKoHAm0dlnZe6K+r0x/38n6MUNkxxI0Kjl5KVHkp0WTlxZNjrsbz0//iKOytt+2MQumM+e1x1HHRY/a8ZhLKtj39V/StG57wPXqxFiKHv8BKTddPmCQv+L5d9l9/6P9xn367DQWffIsuozkQY+l917l9fpJr0/8bPlsIuzz9V/n61nu1eg4XX9AFEVqaqq46fJ5vV93idxewsWFsU5uzVYnu4/VsuFAJe9sOk5NUxdxNjMT2+uZ0F5PtqkV6Yg7tAaHTKtBptMg02uR67XIdBr/XK9F3vN+73u962V6nX+dToNMq/5sH1o1UrUKQSLB63L5s6vdVty9824rtpoGuorLMBWX0VVchqNp+H2TMr0WTXIcCoMeiUqBVKlAolKCQkZTezuCUk5GYT6ayHDkRgPyMD0SqQSvy43P6cJjc+DuMuPq6sbdZcZtseFzuvA6nHgdTgRBQKJSIu2ZFOEG1PHRft/k+GjUCbGo46NRRoVfsEHFYLDWNtK6/QBdR0r6pmDRWQQBXUYyxsJswgqzCSvMwTguC31uOlJF6NkAURTpLq2keeNuWjbvpXXHwaDK4aFCqlZhyE3HkJ9JWEGmf56fiS4rJeRjc3WZqf9oI7Vvr6Xxk614HQN7UEZMLST1liuImDKO8MkFKIwD+wD2wu3x8uH2Ev778UHW7/OLv0l8PuLsZlK7O0ixdJJlaiWjO7hNSi+sCiUfJxWwMTEHVwCl5szECL5z22y+sHRCQIXl84mLjdxa7S62Hq5m/b4K1u8tp6SmbUifl0gECtNjmF6QxNS8BAozY8lLiUKrDnw+jsW/j9tsYdOVX6Z1674z3pdq1Cx4/5/EXTYbh8tDc4ffCq6p3S/qU17fQVltO6fqO6hrMQfZux9R9m6uripmVnMlkiDPNkVsFBN+8jWy7r/xgoqinQ8M5zyw1TWx6YoH6Dpaesb7gkTC1CceI/srXxiVYw2GhrZuNh+sZNOBKrYdqaaiYWge4YEQE64lOzmSrMQIUuOMxEWoaaouxesTiU7KprHD6ldDbuqiuqmLxvbu8+qrPhTEhmtJjTeSkxxFXmoUBWnR5KdFkxJr7FeZ4DZb2HXf/1H71pp++1FGRzDj2V+SdPWSET0+j9VG8S//xck//SdgwFeQycj79t0UPvbVAS3lBiqRj5wxkQUfPTmkSqjRxCW15Eu4qDHWyG1DWzc7jtaw42gtO47WcLSieUDREY3bSXp3OwaXA63bhc7jROd2onU70budqLxuvIIEt0SKRyLBI0j9y1IpujAt4THhRMdHkpASQ0paHJpwfRDiqkWqVQ+pz3A04GjtwHSsjK4jJbTuOEjr1n3YG1ou6DENFYJMhjouCnVSHJrEWDRJsWiS4vyve5cTYoZEEIcLe3MbTeu2+4nlpj1YKvpHhIcKQSbDkJPWQ3izMRbmEDYuC11mChKpFFEUsVTU0rxxN80bd9Gyac85/Q91WamET8ojfFI+4RPzCBuXhTY1cUQDCG6LlZo3P6H0iZfpPHAstOPKSCa8qICIonGEFxVgHJcNgoDP5cLrdOHrCZr4XG68ThfWqnqqtx6gausBJFW1KIbgwyumJJFz3w3kfOULvLKtlD+/vvOM3sSzER+l5+GbZ3HvlUXogpCr0cZYJG+nw+cTOVrRzLq95Xy6t5wdxbVDKjeUyyRMzUtkweQ05k1MZXpB0pD+1mP17+Ox2dly7UP9sjcShZw5r/+F5GsvG/DzdqebioZOSmvaOXzKL2B4oKSxn5VJnNXENVVHmd5aHWRP0GkwcuqyZaiXzCUzOarPIiYp2jBmKhTOFUM9DzqPnGTTFV/CXn+m8qxUo2bu638m8cpFo3asvegw29lyqIpNB6vYdKByyIGg02HUqSjMiKEwM5bxGbEUpEeTmxJFuP7Mv8NgfyeX20tdi4nGDgtN7RaaOyw0tXfT1NG7bKGl04rZ5hwxayBBgHC9GqNORbhBTVyEjrT4cNLjjaTF+5WUU+OMQQNcwSCKIqV/f5ED3/ldwKq3zPtupOjPP0SuPzexKVEUqXlzNQe/+/vgJchLZjH1748F9d/thdfpYvf9Pwoolpp8/TJmvfj7MVWNcYncXsJFjfNJbr1eH+1mO43t3dT2moS3mKltMVHb7DcOH8yHdjiQSgTy06Ipyklgck48k3PjGZ8R26fIerHB63TRvGEnrdsP0LbrMO27j+CxXFyqi6FAHqZHGRWOMtKIMiocRaSxb1kZaUQREYYywj/vXZbpBza8d1usdB0+SeOabTSs2kzH/tCI2khAqlJiyMvA2d4VPBs8AASJhLDxOUROLSR8cgHhk/IwTsg95wf4UCCKIu27D1P6j5epeWM1Ptf58UcMhHalht0xaeyOTaNOawRBIDclitnjk5men0SH2cYLnxyipCZ4xjfCoOah66fz4HXTiTCc34HFWCRvJouD9fsqWL2zlPV7y4es5pqfGs1l0zK4bFomc8anDHnQejrG4t+nF16Hk223PEz9BxvOeF+QSJjx71+Rcff1Q9qfKIqcqGrj/W0n2Ha4huKK5j7f9CRLJ9dWHhlQMK1KF8HbGZM4HuG301LIpaTFGclMjCA9IZzMxAiykiKYmpd43s/zc8VQzoO6Dz5lxx2P9FOhVsVEsuCjJ0fN09rr9bGvpIHVO0tZu7ucQ6cah5UlTYkNY1p+IhOz4xifEUthZiyJUfqQdCxG8nrxeH1Y7C7MVifdNidmqxOLzYnV4e6zjRH4rKzfPwkoZFLCDWoi9GqMehVhWtWo9oS37TrEtpsfDvg81aYnMeuF3xEzd+qw9t264wAHv/t72nYeDLhenRjLlD//kOQbVwz6/3F2dLH1uq/RsmVvv3V537mXyb9/ZMxVs10it5dwUWOkyK3J4vAr4DX6Pd5qW8y0dlpp7bLS0jNvM9lG3fpBKhEoSIvxk9geIjshM/aiV430ulw0rd9JzeurqHtvPW7z6BrHX6wQpFI/2Q03oIgwoowIQx5uwNnSgflkObbawHL9Ie1bLgO9BmRSxNaufgbzIw15mJ6oWZOImj2Z6NlFRE4ff16J7GBwtLRT/u+3KPvXq8Mi68NBt1zJvugUdsWkUR4WjTjIoCLGqCEtIdzvodoavBxUrZSRGG1Aq1KgVsrQqhVoVHK0Peqaeq2SaKOWGKOW6HAN0UYt0eH+18Mtbx4r5K2ivoNVO8tYtbOUrYerh6RqHGFQs3hKBpdNzWDJtEySokMrRQ8FY+XvEww+t5sdd36PmtdX9VtX9Ocfkvfw3UE/a7G72HO8jgOljRzqsZ47Vdcx4Pelm9u4tvIIhZ3Br7XjxjjeyphE9QACV7kpUcwqTGbmuCRmFiaTkxw5pkUAQzkPRJ+P4l/+k6M/+Xu/dfqcNBatDq2PcSgwW52s31fO6p1lrNld1qfgHio0KjlTchOYXpDI9IIkpuUnEh85fNXmsX69jBYcbR3suf9R6t7/tP9KQaDg+w8w/mdfD7kSrLu8hkM/+GPAsmfwV2blf+cexj36lQFLkHthqahl0xUPYC4508pOkEiY8vdHyfnq7SEd1/nGhSS3nw9/jUu4aNBtc1Ja205pTRslNW2U1XZQ1eiXde8wBzalH23kJEcyvSCJKbkJFOXGM/5zQGR74fN4aN6wi5o3VlP7zrpzsniR6TTIdFoEqQTR48XrcvlLQp3ufr5/w9q/Ro1xcj7GCbmo46Lw2p042zqxN7Rgb2zF3tCCo6V91Amh6PXibO3A2TrwQHEgKMLDiJwxgfCJ/syocUIumuR4PHIp69atA2Dx3Hm4q3r7oUv982OnzonkqeOjiVk0g9gF04maU0RYfuaYi+aeDlVMJON++GXyH7mPho83Uf/xZjoPHKPraOmIZXQ1yfFEFBUQXlRA1MxJiBPHId1dQdPWE1QdrBqUiLV02WgJYdBpd3oGJRfBYNAqSYo2kJUcSU7PlJXkn0eGaYa1z9GEKIrsL2ng3c0nWLWzlJPVoZdMyqQSZoxL4rKp/uzs5Oz4z03561AhkcuZ/fIfkeu1lD/75hnrDnzrNzjbu5jw828iCAJWu4udxbVsOVTFlsPV7D/ZMGRrpEpDFH+euJjcziZurDgUsAe9oKuJHx/4hL3RKbybPpFmTf9gQ0nP8/u/q/wZqQiDmlmFySyYnMaionTGpV9civfubgs7v/gD6t5d129d9Jwi5r//T5SRw7NrOhu9gaDVu/yBoMHU3k9HmFbJvElpLJycxpwJKRRmxCL7H712RhKqqAjmvfsPKv7zNvu/+Ss8ltPu96LI8d8+TcPqLcx+6Q8YC3OC7sfZ0UXxL/5J2T9eCSqkGHfZbKb8/VHC8kLznm3etJttNz/cbzwi02qY8/qfSVy5MKT9/K/hUub2Es4Zp2du31mzDZU+hjaTldZOf6a1pctKRX0n5fUdfWVSFwp6jYLpBUlMz09kxrgkpuYljsnB47nCVt9M2ZOvUv70G35CGCLUibFEzZhI5MyJhOVnooqNRBUbhTI6AplaFfRzVrOZdR98jOhwsWDBAlQaNQjgbO2kY38xHfuKadt9JOReS01yPKm3XE7KLVcQUTSuj6D5PB4cze3YG1uw1zdjq2/GVtfsX65r8k+1TXjtw1MbHQkIMhlhhdlEzZxI7MIZxCyY1qe+GCgyLooipuOnqH//U+o+2ED77sND/k5tWiLpd15D9tfvQB09fEuRsQKvy4X5eDkdB47RceA4nQeO03noRL//qyCRIFEqkCjkSBRy5GF6wifl9fXoRhSNQxUdXFyjs9vO6p1lvLf1BJ/uqxixPrGRhFGnIj0hnIQoPTHhWn/2N1xLTLgOo07GqWOHMGrlXHvV5aOeaSmtaeP1T4t5/dNiyutDJ/IZCeEsnZbJkqmZLJichkF7fiyVLpZMlCiKHPrBHznx+2f7retatIA382ewr6RxRHx+dWoFUomAyeKgqK2W6ysOE28PXJHgRWBrfCYfpo2nSxn6czImXNtHdBcVpZMWPzLEcLgY6DzoPHSC7bd9G/PJin6fS7v9KmY8+yukquGfr26Pl13FtazaVcbqnWVD6p1VK2XMGZ/CgqJ0Fk5OG/VA0MVyvYwmLBW17Pzi92ndtr/fOkEiQRUfjSomsm9spIqJQBUbhcdq4+Sfn8fdFfha0mWmMOl33yX5+mUhBX58bjdHfvJ3jv/26X4BfXV8NAs+fpqIyQXD+5HnCZfKki/hosbp5FY589sIqrALfETBIQgwe3wKV8zKYeXsnDFfTjUUiKJI286DlPztRWrfXju4NZAgEDVzEtFzi4iaOYnIGRPRJMYO67tDfSja6pupfWcttW+toWXrvpCysKqYSOKWzyV++VziFs9EHR8z4PaiKOLuMmNraMHZ1omrvQtnexfOts4z5o7mNhyNrTg7TH7SNIr3Qn1OGjELphM+ayLHfFaEcD1F2iha12yn/oMNWMprRuR7BJmMhMvnkXrblSSsmIcifOxei0OFz+PB1WlGIpd9RmhHUJzN7fFy+FRTnxDdjqO1tHZdXH3oggBSiQSFXEpUmIaMxHAmZsazeGo6l03NQDKMLL7D5eHdzSd49sN97DgamliaQi5lwaQ0Lp+VzfLpWWQkXhj1zottsL7tR3+l5tf9VVB3xaTxXN4svCH8/2RSCQVp0UzMjiM7OZLEKAMJUXrio/QkROnRa5R4vD42H6zkzQ3H+GDTMQrLT3B11REiXIGrp1xSKfvzJvF2TA6d4tDPobR4I4uLMlhYlM7CojSijYOXYo4kAgYVfT5O/Ok5jvzoL/2ybIJEwqTfP0Let+8Z1vig3WRj7Z5yVu8qZd2ecrosoQdbC9Ki+66b6QVJ51WR/WK7XkYLPq+Xk3/8N0ce+9s52+cpIowU/virZH/ltiGVNe/4wndo33Ok3zrj+BwWfPw02uT4czqu84FL5PYSLmpcTOT2bGQmRnDFrGxWzs5h9vgU5LILq2Q8HHgdTqpfX0XJ314MKTMaNWsyKbdcTsqNK4ZNZs/GcB6K9sYWqt9YTfWrHw8pW6mOjya8aBzhk/Mx5KT57YF6rIKkKiUIAoJEQPT6cLZ14ugpMbbVNmI6UYHp+CnMJ8qxVtUP+/eeM2RS8AyvlFuQSBB9g2dwBKmUqNmTSVy5gIQrFhBWmHPBAzk+jweP1Y7XZsdrd+Kx2fHaHX3LPpe7TwRMFR2BIiIMiez8ds8cLW/mpTWHeW3dkZDKkS8WSASBxGgDcyYkc+/KIuZNShtw+/pWM/94ezcvrD5EewgtIzHhWlbMyOaK2TksnpKOXnN+srMDYawP1q12F1sOVbF2bznr95Zzqq6D+Q2nuLN0N2dTyKPh8Tw1bi522WcDZJlUwqTsOIpyEpiYHcek7DgK0mNQDYEQOV0e1u4p5601B7G/8QFLK46i9QT2S3UolNhXLsd75TJ215jYeax2UH/pQBifEcvCIn9md86E1FHP5J99Hrjrmtn74E9o3rCr37aK8DDmvP5n4pfOCXn/LreX3cdqWb+vgk/3V3CgpCHkWKlCLmX+xFQun5XD5TOzSU+4cFnusX69nG90HjrBjju/h6m4dPCNz4JEISf3G3cy7v8e7Asyn+6B7XR7euZe3B4vHq8PlUJG13trOPnIb/Fa+j974lfMY+7rf0FuGDu6GQPhErm9hIsaFzO5PR3xUXoeu3sBd62YdFH0gLktVsr+9Son//jcoKXHvf6hKTetQJuaOOLHcq4Pxe7yGqpf+5jqVz7CdPzUiB/fcKGMCidu2Rzil88jctp4pGolUqUCQSrFVt+MuaQS88kKzCfK6ThwHMup4JYbQ4FMq0Gfm44+MxldZgq6zJS+ZXViLJ0HjlH54gdUv/ZxyL3BmpQEEq6YT8IVC4iaNQllZPiIk1232YK1uh5rdYN/qmnoW7ZV12NvahtyhlwRHoYyOtxPeGOjMOSm++2RxmVjyMs4p5LBXnSY7byy9ggvrz3MobKhC4YJcB6dskcGaqWMORNS+PYts1k0JaPv/bLadh5/bQcvrz08aD9gekI4Ny4sYOWcXKblJY6qqulwMNYG66IocrTcb420fgBrpKkt1TxwYgcy8cy/f6PGwObrbmHSgsnMn5TGzMLkEbWhMludPPPKZkr+8Cyzy4tR+AIH4JxSGc4lC7jij9+CmBh2HK1hy6EqNuyvpLqpa0jfKQh+gaqpeYlMzUtgan4i4zNiUchHLtBst9tZ89HHeHcWoz9wirbN/RVnAcInFzD3zb+iz0wZcH+iKFJS08b6vRVs2F/BlkNVWIfQ0hAbrmXFzGwunzV2AkEw9q6XsQCvw8mRx/5Cyd9fwucMHPQ5G4ql82m77hpOeeVUNnRQ0dBJbbMJm9Md9PGn9ri4vXQvs1qq+q3zCBK2TJ5Nw4IFpMQZSYkNI7VnnhJnJCFKPyYTM5fI7SVc1BgKuRUEUCtkqJVyVEo5KoUMg0aJXqvAoFVh0Cgx6JT+uVaJgMD2o9Vs2F+JwzW4Z6VEIpASG4bXJ+LuiYi5PN6+CFkoKEiL5ldfvozlM7IueKYrEFymbkqfeImSP/8XZ3tX0O2kahXpd11DztfuGFAEYSQwUg9FURTpOlpC9asfU/PmJyNWrhsqerOd8T1l0Kf3+4YCl6mbhlWbqXlzNW07D+FoGoI3oUTAkJdB2u1Xk/ONO1GEoKLoc7tpXLudqpc+oO699XgdzpC/Tm40oM9O7ZnS+ua6tEToyXyLXm+/uavTjO000tpHZmsag/YbjRYEiQRdVkqfD7BxfI6/vD45PqRrt6XTyt/e3MlT7+3DYh944CKXSRifGUd6vJH0hHDS48PJSAgnPSGcxGgDxypb+MvrO3lzQzHeARTdU2LDKMyIRSLxiwR125xY7C4cLg9Otxeny4PT5cHh8gy4n5GE/74sJ0ynpKnDMmD8ISZcy02LC7llSSFT8xLG5D2yF2NhsF7bYmLzgSo2Hqhkw4EKmtpDU6kf19HAQ8VbUJ5FMBXhYcx94y/EXTZ7NA4X8PvovvDiBkp/8ySTKk4gDRK68QoC7ZMnM/cXX2fqFf7jqWzoZOOBSjYeqGTzwcohKwCDP5s5ITOWcekxZCZFkJ0USWZiOClaGd4evYW+NpOeVpPe9hN3t/UM72uf04XX5cLdbQ1eLSMIFHzvfsb//Bv9SkdFUaS500pxeTP7Ttaz90Q9+042DFk/ZHJ2PJfPyubyWdkU5SSMuUAQjI3rZSzCXFJB1csfYjp+CrfF1ld95LE5sJksOLpteJ0uOuUq1iXmsiUhC1EIbdwgiCI5Xc3cU7KbaEf/e0OTWs/TBXOo1gfX0pBIBJJjwhifEcP4zFjGZ8YxPjOGjISIC3qeXSK3l3BR43Ryu3bLHnJzcpBIBKQSAalEgkQioJRLUSvlISv77T1Rz59f38H7W08Oav2TkRDOkqkZLJ6SwYLJaf2MyXthc7jZdLCSVTtKWbWrbNByqgWT0/j1ly+jKDchpGMebbg6TZz86wuU/PWFAUmENi2RnK/dQea9N5y3nsvReih2n6qmcc02GtdspXnTnn7eg+cKqVpF5LTxfXY5MQumowgbmpWCo7WD1q37aFy3naZ1O0aEkMuNBhKvWkTKDcuIWzZ3QDGvXrjNFmrfWUv1G6tp3rAr5Cjz5xHq+GgiZ04iauZEImdMJHJqITLtZ4I4je3d/Pm1HTz74X7szoGDZlPzErhj+URuWlwYkr9nTbOJf7y9m+c+OhCUMEskAvdcMZlH71lIXETwEjOv1+cnvG4/0fX5RLw+X89cxGazsXrdJsx2D6mZ+ZhsbtpMNiobOjlZ3UZ9qxmz1YlvBJ7zCyencf/VU7lqTu6IZtVGExdisN5msrH5YBWbDlSy6WDlkBW0o8I0XDYtk6XTMpkiWii+8zv9qjMEqZSix39AztfvHNXggtvj5Y3/rqXkl0+QVz1wRU1jajoZ1y9lwV0rCZ+QgyCR4POJHKtsYcP+CjYdqGTbkZoBg0gSn48oh5U4u5kYWzdRDgtRDitRDguRDisa78gLvikSYon77Q9gwjiaO600d1ho7rBQ32ruc3YwWUMPGvZCrZSxeEoGl8/MZsXMbBJH0OJqtHCJ3H4GV5eZmjdWU/Hfd4P61AaDSa7iYFQSB6JTOGmM7dcrr3U7GdfRSGFHA4UdjYS5A/dkb43L5NWsKThlw3Pv0KjkjEuPYUJmLOMzY5mcc37dQC6R20u4qDFSPrcAO4tr+fXzm1m/r79y4emYlB3HlNwEYiN0eH0+mjt6HkqdViQCJMWEkRxjIDk2jOSYsL55tFGDIAiIosjB0kZW7yrj4+2lHCwLbr9yy5JCfnb/YlLjjMP+XecCR1sHJx//L6VPvDQguYtdPJPcb95FwsqFIyq0EwrOx0NR9PnoLqvqUc89RueRUuz1zdgbWga0OBIkkp6S1kj0OekY8jMIy88krCCLsHFZSOSh3+hFUaS7tJLW7Qf807b9dJdWDe2HSAS/160pNKIu02pIWLmA5BuWkXDFgpB88Tw2O80bd/fZ69hqGoZ2jOcRUpUSqUaNVK1EIpfh6uoe8QywIJViHJ+DalIBW70anquy0SwNHjBIiNLzhWUTuH3ZBPJSo4f1nV0WB89+uJ9/vL07aLZOq5LzrVtn882bZw2rvNRut/Pxqk8w2z3MX7AAtUqFRCIgCAISQUAQAFFkZ3Etb248xq5jddS3mkOuDJdIBO5YPoHv3DqHnJSoIR/fhcZo35d8Pn956u5jdew6Vsvu43VDskUCf9/szHFJLJ2WyWXTMpmUHX9GtsVaXc/ma75K1+GT/T6b+cDNTH3isZCFalxuL3uO11Fc0YJWLSc+Ut8nNmXUqYISZZ9P5P3nV3Pst8+QWho8k9sLUacjfuE0EhbPJGbBNL8NmsWKo8vCkWPVHDpcybETNdRXNhJpMRFn6ybOZibW3t2vFHu00C1Tsj0+g49TxmGTj0xZ8OTseJZMy2DJlAxmFiYPqfd5NOHzenF1mPwWd22d/uy2y90z+bPcPrcHp9XGyeJjIBEomDwJTYQRmVaNTKtBqlX3LSujwpEbdGO6amM48Hm9NK3fQeXz71H37rohVUIFg1Wm4FBkIsURCcTZzRS2N5De3d6vp/502KRyns+dwb6Y1HP+/rMhlQgUpMUwKSeOyTnxTM6JZ0JmHBrVyBPeS+T2Ei5qnE5uwxZ8j6SkZP8DM1JPQrT/4ZmdFMnknHhig2Qpth2u5tcvbGHjgcqA68Hf16ZSyrE7hx+9jTSo+3ziFhal96klf7qvnB899SmHTwXut9Oo5Pz6y5fxpWumnrcbur2plZN/eo7Sf76K1xZc0CXxqkWMe/SrRE2fcF6OKxAudMTXY3fgbGn3l876fH2CS8pII4rwsGF5vYqiiKO5ja4jJXQeOkHbjoO07jg4LP9bQ34mcUtnEzF/GkfcXQhqFTNTsmj9eDO1b6+l89CJkPYjUSqIXz6X5OuXEb98bp/F0GC/w3T8FA2rNtPw8Wbadh4cMQ/ZYFDFRaNNiUebmoA2NQFNaqJ/OSUBZaTR37usViFVKQP+b3xu92fK1j0DMmdbJ9bqBrqOncJUXHrOgmCtKh2lYTGUGqMpC4uhVWvgugUF3LNyMgsnp5/Rd1/Xambv8Xo6zDY6uu10mu10djv6lru6Hbi9XpJjwkiPDyctwUh6fE/JcpSBdzYf51fPbw5ayhgXoePL104lMkyDSiFDqZChlMtQKaSoFDKkUgnNHVbqWkzUtpipazFR12qmtrmLls7RF71SyKXEhmsx6tSoVTI0SjnqnkmjkqNWylApZD3LvZN/O9UZy6d9ViVH0/N5pVw6KvfVkbwveb0+Khs7OVbZSnFFM3uO17HneP2QlHB7kRZvZOm0TJZOywrJGsltsbLriz+g9p21/dZFz5vK3Nf/HFBFXhRFTlS18un+Cjbsq2Dr4eqgvaEqhYz4KD3JMQaWTc/i7ismB7TJ2/3pATY99ndid+8O2pM7llGrNbI2KY89sWl4JOcWBE6MNnDZ1AwWT81gUVH6eVeBPh1uswXTiXJMx0/RXVaNtaq+Z6obltbBYJCqVajiolDHRffMo1DFR6OOi0aTHIc2LRFtSgIyzdjO/rq6zLRu20/zxt1Uv74Ke33zBT0e48xJZP7tp4gxUdidHuxON3anmzaTnZrmLmqbTdQ0m6hpMlHT3DWkXu9gkEgEspMiGZceQ2FGDAU98/T48HMqa75Ebi/hosZQem7jo/QU9USLJufEIyDw25e2sOf4hVGujYvUsXByOgsmpbFgcho7jtbw0+c2UtcSOHO0ZGoG/3rkKpJjRq/c11bfzPHfP0P5028MGDlMvmE5hY9+hfBJ+aN2LKHiQpPbc4XX4cR0opyuIyV+Mnv4JF1HSoZFZAGU0RHEXTabuKWziV86B01SHBD872SpqKXm7TXUvr12SMrRxvE5xC2dQ9yyOcTMmxrSQMLn8WCracRcVkV3WTXdffNqrJV1iN6BB6yCTOYfvPSQ1V4Cq01NRJOagDY5fkREngaDu9viV78uLqWruAxTcRkd+4oHzOIPBHl0BHELphEzfxox86biSUnivW0lvPFpMduOnFupeaRBTVq8EREoLm/BNUyl7M8rJBIBrUqOVqVArZKjVflJr1alQBNwWY5Gpejb7sxl/7ZymQS3y8W2bVuRCHD58qVEGvVBxQK9Xh+dFgcdJhttJhvtJjun6ts5XtnK8coWTlS3DlrCHgwRBjXze4Kqi6dkkJUUMWQyL/p8HP35Pyj+2RP91sl0Ggp//BC537wLqULBzuJanvvoAJ/urxiWmjH4ye4tSwp58LppTMrubztSU1bLB9/7K4pV69C5Lpyv+HDgESSUhUVzICqZnbHp2OWDZ77VShkTsuKYmpfItPxEpuUlkJ4w8qJ8g0EURez1zX7/+APH6dh/jK7DJ7HVDV0I73xAGR3hJ7o9zwhtasIZr4faBnSucLZ30rJ1Py2b99Cyea8/sBwCDzLJVRyJTMQpleETBP+Efy5IpUg8bgo7Gkm2dg3ruHRZqWQ/eCu537wrZIcAURTpMNupburiRFUrRyuaOVrun4bT6342NCo5+WnRjEuLITUujMRoA0kxhp552IDVRqIocvxkCYUFfePTS+T2Ei4ufF7UkgGykyNZODkdu9PN+1tP0m3rTy7DtEr+9PUVfGHZhBF9sFmr6zn+u2co//dbwTNrgkDqLVcw7kcPjrpI1FAw1smtKIo42zuxlNdiqajFUl7Tt9xdXnPO0VqpRk307MnELZ1N3NI5hE/MC5iRDOXvZKtrovbdddS+vZbWrftCsv0Bv/VA9NwpxC2dQ+yiGRgn5IbUq3s6fG43zrZOv52SVIoglfSbS2SyYWXCzwdEUaS7rIrmbQfZ9sZ62nYdIs7UMWgZZSDYZHJOGaIpNcZQGhZDlT4C7zlmei7hwkMqEZDLpMikEqRSCQLgdHtwOD0jpnitVcmZOzGVBZP9djcTMuNGTNil5s3V7PziD/ze3GdBkZbEhqnz+U/byBKuWYXJfOW66Vw7P6+fKqulq5t3f/VfTr6/gZjamoCiOGMZTomUXXEZ7M4qxJ2USFykjtgI/5SREE5eShQ5KVEkx4RdEHEer9NF58HjtO44SNuOg7TtPIi9oeW8H8doQW40nBkgTY5DFR2BMjqizxJOGRWOTK8NabwlimKf9Z+1tglbbWPP1ITpWBldR0O39fEIAsfD49gflUJpWDQ+iRSPRIJbIsUnk+EUBXxnPQtjrCamttUypbWWNMsAwXGVkoQlM0m4fAHxK+YNqtA9VDR1WCgub+ZIeTNHTjVxqKyJ0tq2EU3gK+VS1Co5MokEn+jXhPB4fbi9XtxuH157F85dj/du/vknt4IgRAGJQDQQCdiB1p6pQhTPU9PFJYwILgS51ajkJETpiY3QEROu9T+MwrXEhPt7cGub/eV7tS0maptN1Leah6w8KpMKRBu1NAbpl7tqbi5PfPtKYsLPrRSpu7yG4795iorn30P0BM4MCFIpabdfxbj/+zKG3IyA21xIXChy63W5cHWa/f1EbZ3YG1qw9fTh9vbj9r4ONBgcLtTx0UTNKSJ67hSi5xQRPjEvpN7dof6dHC3t1L23npq319K8YVfQ8yMQBKmUsIJMIqYUEj5lHBFFBYRPyh/zZWLnAlEUeW/LSR575lPK6/0DC4XXQ2p3B1nmVrJMreSYWtEE8fEcCC6JlNKwGI5GJnAkIpEWzfnNOFzC2EVSjIGZ45KZUZDEjHFJTMyKG1XRrY6Dx9lyzVex1QbWijgSkcBrWVNo1gQWMRqf4fc3b2zvps0UeoYnNlxLYWYsSadncHqyOBqVnM0HK3n7za107zpITlczuV0txNo/yxyLgA8BAXHAnsMLhZj500i742pSblx+3sQYz4atvpn23Ydp2+lvg+nYf+x/WhywFxKFHGVUONJAAVtRRBRFf99wS/uot92cDh8CbokEj0SKVPSh8HqRDBAm8wHdchXNaj2e6Cjypuczdf5EjFkphBcVoIwwjtqxdtucHClv5mBJIwdL/VNJbdugoq3Dhegwfb7JrSAIeuAaYCEwD8gaYHMrsAvYCnwsiuKBUT/ASzgnnE5uH/nTazgEHQ1t3bR2WWk32WnptNBtG/7NWSoRKMyIZVp+ItML/CVBOclRQ4qier0+appNbDtSzaYDVWw6WEnDMMu1TkdUmIaHb5nFFbNyyEuNGlIm11xSwbFfP0XVyx8GLQUVZDIyvngtBT/88ohH9oYDr9OFs70Tj8WG1+bAY/XL4ts6TRzavQfR5WFcQQHyXqLXc3/pu8+cNf/sff+y6PHgtTvxOpx47Q68Dtdny3Ynri4/kXV1mPqOY7Qh02oIG59D+KQ8oucUET2nCG1a0rCy9ucSBHB1mqj7YAN1762necMu3OahZ0gEiQRDXgb63PTPouU9pcWalASUUee/zG6ksOtYLT/81zp2HQv8/JRJJdx31RQeuW02mqZGWrbso2b9Tuo+3Y3SMvR7gSM6Guek8UhmTEE/cxKCQkF1UxeVDV1UNnZS2dg5JPGmwSCXSdCpFUSGaYgxaomL1BMfqcHe2UiMQcGM6VORKRT4fH4v1dU7y9hZXEOwcYtEEBiXHsO0ggQiwzS4XH7bNGevhZrbS32LmUOnmga1SeqFtEfMyuvzjXSL35hElFFDbkoU49L8ljWZieFkJUWS3EP2RhOO1g62f+PXNL/2YcD1HkFgS3wWRyMSsGVlMmdWfr/eUFEU6ei2c6qug/L6DiobOtlyqIrtR2rOyYYq3GElr6uZ/M5mcruaiHKO7H3aIwjYZArsMgU2mdy/LPXPXVIZXkGCt6d01CuR4BUkCKJItqmV3K5m5IPkTyRyOQlXzCf5hmXELp6FJjF2RI+/Fy5TNx37imnfc6RvOl9ZWZlWgyE/A0N+JvqsFFSxUUjC9ByuLAO3h3EJKXhaOvzB4fpmbPXN2OqahmZvdwlDRti4bKLnTSFm3lSi501Fm9y/JWAkIIoilQ2d7DxWx6YDFRwpb6a6qQuT5dxFtPq+4/NKbgVBmAJ8E7gB6A23hDJyOv2gSoB/AP8VRXFkfUAuYURwPjK3+anRLJuRyfLpWcwen4LyHFUIRVHkVF0Hmw5W9tk2tJuDizaFgpTYMFbMyGb5zCwWTEpDG6QfoetYGcd++S+qX18VtNdDopCTed+NFHz/AbSpiYP+Fq/d4S9f9Yl9gkqiz+cnjT4f+HyIPevoWy/itdlxmbpxmyy4Td24Td24epadbZ04WtpxtvbOO4ZFqC4m6DKSMU7IxTghl/CJeRgn5KLLSB6xMtyRynD73G7a9xyhcd0OmtZtp333kUF7ZUOBVKNGkxSLwmhAptci12v75nK9FrlBh1SjOqtUWYpEdubrM8qZZTJ/OXPPa7nRgCo2ElVMZMi9RQOhvL6Dx575lHc3BxflunpeHr98YAnZyX6vQIfLw9/e2MnvXt6Gze4ixm4hx9RCtqmFnK4WYoZYWinVqIlbMpPk65eRdN3Svj6y8oYOXv7kCKt2llJc0XzefGsv4cLDqFMRH6knPkrXM9cTF6HDqFOh0ygxaBToNEr0PXOdWoFU4le5lpxmoycRBNrNtj5bmtLadspq2ymtbaeivoOUrlZuK9tHZnf7gMdjioqhIT6Rmsh4SsOiqPXJ6bI6R+ScDHPayTE1k9fZTH5X8xnZ2uHAKZHSrDbQqtbRodTQodLSrtTSrtLSodLQLVchDjMIp/S4KehsYkZLFUWttSG1LOhz0ohdPJOIKYWE9RDCoWTYPHYHlopazCcr6C6pxHSinI59xZhPDuwKMVKQqpRETC0kcsZEomZMIGLaeLSpif0CmaE8n7wuF9bKuj6dhj7NhlPVWKsbRly46n8d2tREoudNIXruFKJmTByywwP4kzulte0cKvNnaw+VNXH4VBPmYVhcDQWfO3LbQ2p/CSzrfatn3gjsBfYDLUAH0AmogQggHMgBpgETgN7/oNiz7R+Av4qiOLr/kRGGIAgpwDeAlUAK4AROAW8A/xRFccTTT4IgxAMngF6muVkUxYUj/T0933Vey5K1KjkLi9JZNi2ThUl6NPV1dBw8QefB43QdKcHTbfUrsapVn6myqpXINGp0mSkkXD6P2EUzzxC98Xp9HDrVxPq95azfW86uY3V4vMOvjlfKpcwsTCYzIYKUOL8NUWxzA+5X3qHjk81BPydVKcn68i3kP3I/msRYRFHEWl1Px75iTMdP+Ylma8dnCrKtHTjbuvC5z18ZzsUMQSZDm5qALiMZXWYy+swUdJkpfa9Dsdk5F4xW+bbL1E3Lpt00rttB84Zd/kHTRTDI8Fs0RfnJbmwUqrgojIXZRM2ejCEnfcCgQpvJxm9e2MIzH+zD7Ql8rU7LT+Q3X1nKnPH+qgdRFFm1s5Tv/WMtFQ2dAT8jk0q4MjeKq8JE0tob6dxxEFNx6H1agkKBdcI4thiTec+pxi0dG3Yg/wvoVWxWyqXIZFIkgMNhRyJAeJgBhUKGQiZFJpMglUiQSf1erC6PB5vDjcXmosvioNPiGLVSvdGAIIrMbK7kxoqDGEMUd7JJ5bSqdbSqdLSq9bT0LLepdTglMjw9pZZuiQRR8F+HMq+XBJuJZEsnSdYukixdJFq7gvp0DgaHVEat1kijJoxGbRiNGgONmjDaVdphk9ehwOi0sbChjAUNZRjcQxtWKqMjUEVHoIgIQxFuQKbTIno8+DxefG4Pnm4rjqZW7E1tuE3nXiU2VIQXjSO+RwMiek5RSCJ/5/p88jpdfh2LAGKFwUro/1cgSKUjE4BWKTFOyidy2ngipxUSMW18v2dlU4elR829jt3H6jhQ2ohtBFSVexGhVxFt1BKmU6FWypHJJIii3zLM5/Ph8fpwebyYO1s48vqPej92cZNbQRD+A9wJfS0VB4CXgbdFUQxZclIQBAUwH/gCcB1+kiYCNcCdoihuG8njHi0IgrAS/+8PxvhKgCtEURzREJ4gCG/hz5j3YkyRW0GAwnS/sXRnt51TPSVRAxFKQRRJ625nUlsdGeZ2Uiwd6IbROwf+kpy4pbNJvGoRCSsXoo4908PRbHWy5VAV6/eWs/VwNSeqW4fHFUSRwo5GLq85Rp4peLmRT6HAvmwx2uUL0HWbkVVU4S0px15cgmeY6q//a5DptajjolEnxqBOiEGTGIs64cxlTXL8iGQLh4vz1ZvstljpPHSCzh41zY79xzCfKA9ZnGosQBEeRuTMiUTPnkzUrMlETh+PXK/D4fLwj7d384eXt2EKEnlOTwjn5/cv5oaFBX3ZibLadh75xxrW7D4V8DNGnYof3DmP25dPJOosCxRne6ffN3jVZhpWbcHRHFppnkMq42BUErtj0jgeHo/3LLIeFaZh8ZQMLpuagdnmZMvhao6eaqKu1RyUsI8lyLxe1F43Kq8bpdeD0utBIooIiAg990uXVIpLIsMtkyHTqpCp1ch1atQalV/dWClHq1b0qRyrlXK0ar8islrpf0+r7l0+00Ko14pIo5T3WSadjuFebz6fSGe3ndoWU1/Jbu+8vL4jqKXTSEEQfYS5HIQ7bRiddvRuJ2qPC03f5EbjcaH2uPBIpHQqNXQoNZjlSnJMrUxqr0M2gmM7jyDgEaQofAP3Ew4El1RGrT6CCm04VfpIqvQRNGsMg5LYcJ2KxBgD8ZF6tGo5Hq+I1+sfQPdObo8Xj9eH1yt+9p7X+9k2Hi9WuwOXR8Tp7n9dyXxeJrTXM7O5ignt9YOWLY82JAp/XmcovaOapDjils3xq+cvmYUqOmLI3zuazyeP3YGlvAZrVT32xla/LkZDC/bGlr5lR3P7iDyjJColPo2adp+UTl9vCfuZ5eu9r2UGHfPm5DNtag6v7zjFuv2VfSrI4mmqyCq1gm/dPJM7l4wjXCXzt0s5Xfic7p65C0EmRdbj2d4777W8QxB67OzqsVTWc2DrEfZvPYyztolIp5U4m3nY1loSrQZnSjLNGgMnPTJOeuQ0a/S0qPR4pMPr/U+JDSM/LZr8tGjyUqJIjTOSGO3vsw+15eJzZQUkCIIPcAHPA38SRTH0kHfwfSqBm4D/A/KAn4qi+PNz3e9oQxCEicAOQANYgN8AG/Fnqm8FHujZ9CQwTRTFEan5FAThKuAD/NnxXvO7C0puIwxqZhemMHtCMtPyE5mcHd+vbNfj9VHd1MWpunZO1XWw+3gdm3eXEltTxaS2Oia112N0nVvpcJAfQOT0CSRfv5T0u64N6B3aZXGw93gdu4/XseuYPyI2UB+xxOdjamsNl9ccJ8UaOEMEYJfKOBYej0MqJ9fUclEpTQpSKTKtGqlGjVSjwuZ1IyjkhIWHI5FI/KSiZ9zSV/502rz/eyCRyfwPBJUSiUqJTK1ColL0zJUowvT+SHlEGMqIMBQRxh4vW8OQS3UuBC6kqrTHZqfz8ElMR0uxVjdgra7HWtOItboBe33ziESVRxOCRIKYlsxWZSQbNLHU6MI/O3d6EGFQ84M75/Glq6f2tS54vD5+99JWfvfS1oCEURDg3pVF/OS+RSH5VIo+H017i9n57/dpWbsVXXV1SOI43TIl+2JTMc+eyeQr57J0RjaTs+MDageIokhNs4k9x+vYsL+CA6WNVDV2DbuMLNqoQSaTIpdKkMukyGX+rKVc6s9iyqQS5LKedVL/a5lMikIQ0ZtNhHe0o+9oQ9vWitLUhdxkRtrVhcQ6/KIjQSbzl7ob9SiMBuRhOhRGg3/ZqEcepkfRu85oQBGm88973pMZdEgGGbiN1vVmtjpPI7ztlNd3cqqunfL6jkEtOJQeN0aXnXCnrY+8hrt65k4bRqeNMJdjWArfZ8MtSJAgIr0AVRyK8DBiF80gdvFMYuZPxZCfiUQmw+ny0GVxYLI4OF7VystrDrN6V1lI5dFp8UaumpPL1XPzmJafGHJ70unnwWWXLcUnSDFZnVQ3dVFe18GpunZOVLex+1gtltYuprTVMqmtjhxTC9phBtBDhUQhRx0f7bf4aWhBDNEmTJBIiJo1iYQrF5F45ULCxmWfs17ChXY98Hk8eKz2Hr0N51n6G/7XgkToGx9I+yYFUpUSqwde2lrCE+/tp741sJ0j+O/5S6Zk8MUrJrNyVg5PfbCPnzy7AZc78N/+liWF/PLLl5EUHVig7VxwoKSB3760lVVbjpPW3UG2qYVsUyvZptZzPvd8QIdSS7NGT4dSS7dcSbdC5Z/LVZgVKhSRRjIK0ijISaAgPYb8tGhyU6LQa87dzu/zRm7/AfxmNH6E4L9ybwKkoii+OtL7H2kIgrARv4iWB5gviuLOs9Y/Avy+5+VPRoKwC4KgA44DycBdwAs9q84LuY1c/EMmjsumMD2WgvRoxmXEMC49hnB96DdJt9lC/UcbqX13HY2fbD0vokG9EKRSEq9aROZ9NxK/Yl7QLJ/X62PvyXp+9NR6dhyt7Xtf5XEzt6mcy+pKBiSqLomUbrmSMKeNC1m06ANccgVOuQKXQolbqcStVOFWqvBo1Li0Ojw6HR69Dq9ej2gwIBp0iBoNyKQIgr8vzOv1UF9Xh0QiMKEgh9hIA5FhGmLDtUzMjhvS///zjAs9eAgGn8eDvaHFT3QbW/B0W3F3W3GbLact++deuwPR60X0+vxzj/fM1z1z31mvRa8P0e3G1Wkekeh8i0rH/ugU9kan0BgRzUM3zOCR2+eeca5VN3Vxz6/eZWdxbcB9zByXxOPfuJzJOYOLdnR22/lkVxkfbCth3Z5TWHvKvHQuB4UdjUxtrWF8RwOyELI+htx00u+6lrQ7rkabkhDiL4bWLmufrcPhU00cLGmgvL4TEb+YU05yFOMzYynMjCE3JYrspEjSE8JRhUoCmtto3brPr9a66zAd+4+NqMr4SEOm1/YQYz0yjQqJXIYglyGRy5HI/X6UrR3tIJMQn5CATCbzB9Ykks8CbD0iWJ+9T9/6M94TBOgL2gkIEiHgvlxuL6a2LiwtndjaTTi7zHjN3WCxIbPZULguTFeVN8wAeh2SThOCdeQzz3apjNKwGE6Gx1EaGc+1X1zO/929MKRBclOHhVfXHeHF1Yc5Ud0a0vcp5FIm9vnOJjAtP5HMxMD+waHed0VRpLy+g13FdWw4UMHaXaXoGhrI72wi3dxOvM1MrL07pGs8ENQJMehz0lGE6/FY7Fgq/JZ0oUJu0BG/Yh6JVy0ifsU8VFFDz84OhLH6fBoMXRYHf3l9B/96d++AAcCYcC33XzWFuy6fRGqckbpWMw/85j02HawKuP3k7Hj++PXlzB4/+mKeH2w7ycN/Xd3nSy2IIglWE9mmFnLNrYz3dKNuH7iv/lwgSKWntfGpkKmV/sRFT7Kh7z7Xc987497X7x7qf6/RYubm1f/t/YqLm9xegh+CIEwD9vS8fEoUxQcDbCMBioF8/L3HsaIonlNhvCAIfwO+DmwURXGxIPQWh50fcltaWkp2dvaQ9+EydVP/4QZq3vyExjXbhiR9b5UpqNWFU9MzdSg1yH1eFD6vf+71z7P0ciZZWlCeCq0fUZ0QQ8bd15Nx7w1BlYpFUeSNDcf4wx/fYvzRA8xtKkftDW7X4oNhWSBYZAqq9RG0K7V0K5RY5L3RN38EziZX4BX8BWOiICAiIAp+mXr/68/e9/W+xq8keT56m/JTo5lZmMTswhSumJ1DhOHieGiONC7WwcNIwuf14mrvwtHchr2pDUdzG47mdhzNbVjKa2nbdWjIiqHKpHjSb7mclJtWEDnd7z/9zubjPPTHj+iy9CdncZE6fv3ly7j1svEDZju6LA4+2HqSNzcUs/FA5aDZJY3bSVFbLfM768hobUAY7D4jCMQumkH6XdeSfP1S5HpdSL+3F3a7nQ8+Wk2XzcPN115OeNjQ7Il8Xi8d+4pp+HgTDas207H/2JA+fwkXJyKnTSBieiHKqAi8Nkef93d3eQ2e7sGJry4zBd24bGo1YXzS4maHRaBVrev3LImP0vO7ryzjxkUFA15nvRBFkX0nG3jxk0O8t+XEoFnwsxGuVzE+M5aoMC0RBjXhehXhBjU6lYzqUyfRqaQsXTyPuCgjEQY1auXA1T4er49dxbV8uL2EtzYeo6GtG6nPR5TDQrTdgsbjQttTKq70epAr5RQVJDNjQiphkQbUcdGo4qKQadWYjp+i+dNdNKza7PcSDxH67DQSr/JnZ6PnThnVCqWL7flkc7j557t7ePzV7XR2Bw/CZSdH8vDNs/jCsgl9gb63Nx3n649/FPBzMeFafnbfYu5cMbFfq8NowmRx8Ngzn/LMB/sDrte6naR1d5DW3U66uZ207nbCR6OacYTQjptvUNn78hK5/TxAEIRf4S+jBpgpiuLuINv9AH+5MsAyURTXncN3Tgd24s8UTxBFsWQsk1tneycNqzZ/RmhD7C8x5GWQeNUiImZMpN4QycZ6C2v2lLPvZH1IfbE6l4ObdS7m2FqQHToaUmZYl5GMPjcdw2mTPjed7pJKTv7leeo/3DhiAj42uZJqQyQVWiPVOn9vUrtK268E82KFQi7lytm53HX5RC6bmnleHx4XGhfb4OFCQBRFDm8v5vnHX6drzxEyzW2kWDpC7iHUpCdxMjOff5lVtJzl8ymVCHzz5ln84M55QTNKFruLj3eU8taGYtbuLQ9aqnY2CjNiuGpOLlfNzWNSdhyO5jZq3lhN1asf077r0KCfl6qUxF42m6SrF5N45ULU8TGDfmY455OzvZPGtdtpWLWZxk+2DmmgPRAEiQSpVu2vdumJ3Dudblw2B4oBAn6XEBweQcCkUGNSqLHKFdilCpwKJTkFKcyZlU94XAQemwNbbSO22iastY3Y65qwN7WF/DxSJ8QQu2QWcUtmEbt4Jgqj/rNeQocTd7cVV0cXrk4z7m4rEqkUZ3snttombHVN2GobaS+vw2y20SVVYOkJuHYreuZyJXGTcvnWL+5lQu7Ayv+nw+v1sfNYLR9sPckH20qobuoa5l8xOKKNGsZn+rU/JmbFMaswmbT48KDHs+VQFS+vPcJ7W070VW4Egkoh40tTE7lGYcO+ZRctW/aF7FEuyGTEzJvSV25syEkf1m8bDi6W55Pb4+U/Hx/kNy9uoak9eIXcrMJkvnXLbFbOzulr/zBbnXzn75/w0prD/bYXBPjq9TN47O4FhOkC+OmOEnw+kWOVLWe4dwx0fp0Oo9NGancH4xUe8qRuYm1mFK2teFpGL8sbKj535LYne/iCKIr7RnznFwkEQdiC39PXChhFUQx4ZxMEYRb+vlyAn4ui+JNhfp8M2AdMBH4hiuKPe94fM+TWY7XRsm0/zZ/upOnTXXQePB7aA1gQiJo1iaRrlpB0zRIMuRkBN2s32Vi7p5wPt59k7e5TId0cjEop9yQrmdlag33dFry28x8FkyjkRM+dQvzyucQvn4dxQi6C0FPeZvX3JnV2++ddFgdd3Q66et7v6va/Z7Y6sDnc/snpxupwY3e4sTpc2J1jd2CZEKXn6zfN5MvXTB00iv55wMUyeLhQqG7q4pf/3cwr646coVYr93pI6+5gYns9szrrMVpCE1kr10eyKzadPTGpRKXG8d9Hr2dGQVK/7ZwuD5/sPsWbG4pZtbM0pGtGEGD2+BQ/oZ2TS0Zi8BJBS0UtlS+9T+UL72MpD01XMWLaeD/RvWpx3z3hbIRyPomiSOehEz1iWJtp33V4yGXhqphIDHkZGPIy0GUmo06MRR0fjTo+BmWkEZlOg1StCpqd236kmu/9+SNKyhpQeD0ofF6UXg8qrxt1jziSxuNC63WTE6FmXlY0arfL72vd5bcoc/csj/Xe8FAhD9P7he4SY3vmMXRrdPxrSzn72hx0KdVnWN5IJQJfvHwyP7hrHskxA4s2el0uzMfLqX7tY6pe/hBbXVPIx6VN93t4u80W3GbLkESNBoJZrqJ7ymRWfP+LFF69YEj2aqLo927+YNtJPtxWwpHy5hE5pkCYmBXHNfPyuGZeHvlp0QHP6W6bk1fWHuHJ9/Zysrqt9yBJtHYxrbWGKa01JNiC93yeDUWEkYQr5pN45SLil89FYRz53s5QMNafTz6fyOufFvOL/26iMojavSDA1XPzePiWWcwcl3zGup3Ftdz763epauzq97nEaAPP/d+1zJ+UNgpH3h8+n8iuY7W8s/kE72w+3leOHCqiw7VcNy+f+ZPTmDshhdiIM6t+3N0Wuk/V9ClWO5r9do6O1g6cLe04Wv1uG6N5P/08klsffmXjEvw9ny+Lohh6Y8HnAIIgtAJRwGFRFCcNsF04fpsjgDdFUbx5mN/XmwEuBwpFUXT0vH/O5LaHvA6EOPwWTxw5coSUqBgcja19k7WyjtYt++jYfRjRHWL0Ui4jZvFMEq5ZQtzl81HFRg7pmO1ON5sPVfPRjjI+2V1ORwgetuPjdDwU6SZq525MB0a3PE9ITiDjqgXELJlF1PxpyLSj9xDx+UTsLjd2p9/uwupwY3f6ibDT7cXj8cu2uz1+1Um314fb3TM/7X2Xx4fH63/tE0VE0T/oEEURt8dDfX0DHq+ISmfEZHXRZrJT02zC4Rr8fx4fqeM7t87kjmUTUMiHp+53McDhcLBlyxYA5s+fj0p1/qLDYxkNbd387a09/HfVYVxBBFUSo/V8//Y53LK4AOvRUurfXUf9u+uwhtCz5hMkRF82i/TbryR+5cK+6624ooWX1h7lzY3HByxr64VSLmVRURpXzMpm+fSMkASoTocoinTsOkTNyx9R//Ya3KbQBOTUyfFEzpyIOiUeTXI8mtQENCnxSGIi2LF/L+A/n5RKJR6zBfOJcjp2HaZj9xHadx7COYQovkynIWLmRMKnjidi+njCp4xDOQzl1UCoauziO0+sY/OhKgbTD8pJjuBHd83jqjl9giR+T2+rvc+T2096/XOvw4Xo9uDzePC5PYhuDy67naryCvD6SE5ORiqR0HPjQvT1zP0eFj3L+H3ARdHvGd63rd8zvG8ZsW+bz/bx2fZSjdovlBWmRxamQx72mUCWMjYKdUIMMp3mjN/17EcH+cm/Nwe8X84oSORvD68gO2no/wfR56N9+wFqX1tF/bvrcHedf1uas+EOCyPjlhWk33YFET1tBEOB2erkQGkjB0qb2F/SyP6SBlo6R16bY1x6NA9dP5Xr5+cHfC75fD42vbOVXU++hfHgYeLtoRNafUEm8VcsIO7yef6/wTBVbUcSY/n59On+Sn763GaOVQbvyb56bg7/d+dccpLPHC96vD7+8OoO/vTaroAWX9cvyOOPX12KUT+6v9fnE9lX0sB7W0t4f2sJjQNknUPBgkkp/PM7K4mPHFo7Sy9Enw93VzfO9i68NjtehxOf3YnH5sDncPgFvexOvE7nmffMnvslIn3LvetOX1/f3sbVT/+29+s+N+QW6JP7E4HN+BWU3xZFcXR19C8wBEFQAb1s6mNRFK8cZHsLoAV2iaI4axjfl4G/d1cNLBdFce1p60aC3IZ8kvxNnkPkcAO9MinSSdlIZ09ANr0A4bSH/7nA6xMpabCyo6SLnaVdWJ0DR6qi9HJuTYIp1aX4Nh8E67lnc5vUek4aYykxxlJqjKFLqWFmdhh3LUgkQvf5zVh6vD4qW+yUNto4UWfhUHU3Hm/w0ynaoOCu+QlMyxpdr+RLGBtoM7t4f18LG491BD0v9Cop106PZemESBSyM7M9oihiK61n/6vbSSwpJc4ewsBdIactO4NNYUl8Ko3CNYgPrUwqMDlNz6wcI0XpBlSKkRmEii433j3H8Wzaj/dAqZ9gDQcGLYJRD1Y7oskCIaqtng4hORbZlFykU/KQ5KUhyEdX5s7q9PDfTQ3sLOnCMwjLVcokTM00cNuceKIMigG3vRjRYXHz1LpaDlf3P3elErhpZhxXT40JqKo9VIhuD979J/HuPY73UBli+4W3mRPiIpFftwDZ4qnDPu9EUaS9282pZhvt3W4sDg9WhxeLw4vF4cHi9C9bHd5Bn/+BEKGTc/nkKJYURqJRSvHVNuPZcgjP9sOIDaHZgrkFCaURcXgn5TL+minoUgZvO7gEaOhw8OKWBg5WBb+3T0jRceuceDJi+48Z27pd/H11DSUN/WmHWiHh3kVJzM0znrPS9ECobLGx7WQXu8q6aO8OfYCcGKFkXJKOnAQtaw61UdbUP4CjV0l5cFkyUzLG3pipra2N+++/v/fl54LcLgbuwO+z2qtw0ftFNuBd4EVgvfg5bPoVBCEavw0PwOuiKN46yPbN+C17ikVRHD+M71sHXBbou847uSWdSIZA1hRypBOykM6ZgGxaAYJudMtgXB4f+8pNbD7eyZHq7oBmC4IoktfZxKK2SiY11yAdStmGXoMkMgwhwoAQE44kP40D6iie3m8O+FBVySXcNCuOFZOikI7A4GWsw+LwsL2ki83HO6hoDh40mJ4Vxj2LEgnXfn6J//8yWkxO3tvbwubjnUFFmlRyCSuLollZFI1GGZhQVrXY+fPHVTSbXCCKpHZ3MLu5kuktVRjcg6vSOiQyDkUlsi86laMRCX2egBIBxqfomZ1rZFpmWNDvHymI3Ta8B07i2XsC74ESsI2yQnHvfXdKHtKiXCSxI6u6Gio8Ph9v72rmk0Nt2F2Dk3ujRsakND1XTY0hMWLsZJWGi91lXTzzaR0WR/9nQ2KEkq+tSCE9ZmSCvACi3eEPqOw+hvdgKdhHQblZIkBkGIJBh6iQ0d1mQd8aAgEMN6C4dj6yZTMQ1OduQxIMPp+I1enFbPdQ2+6gutVOTZuD0kYr3fbgz3qZz8ucrjqu7arCUBPaGN0kV3EkMpHDkYkcD4/DKfM/z9QK/73tisnB723/67A4PLy9u5m1h9vwBrk1ZMdpuHVOPOOSA2cu95WbeHJdbcDrKzdBy0PLU4gJG52AmdXhZXtJJxuKO6hqDS1BEmNQMC5Z1zedPv7xeEXe3t3Ee3taAo5bl02M5I55Cf0CwBcSnzty27dzfwbzWuBOYCn0uZ70fmkj8DLwoiiKxaN2IOcZgiAkA72NVS+KonjXINvX4LfuKRdFMWuI33UX/oy4GcgTRbHxrPXntSx5MHIrSKWETyskeuEMYhZNJ3z6BKTKCxONr2/r5o1Pj/Hq+mJO1XcSZe9mTlMFc5oqiHQOXuJkGJ9D4nWXETl3CpqkOFRxUX6z7gBo6rDwrb+tZc2e8oDrx6VH88eHljKjIHTBjbGE4ZQz7TvZwK9e2MbmQ9UB1xu0Sn5+30LuXD6wou3FhLFc9nU+UF7fyeOv7+KNDceCklqFTMo9Kyfx7VtmBC37FUWRF9cc5fv/Wo8zgODTV6+ezJdT5DS8vpr69zcguAZXX7dLZTRkZBO/bDaL7r+ahNzUof24EYLP5aZt+wGaPt5E48ebsVU3jMh+tZnJxC2fS+zyeUTNmxL0XnWh8Pqnx/jNS9uoaQ6ttFOnlpObEsXc8clcvyCP8Zmx/bYZq9eb2ebkh09+yqvrA7e/fOnqIn5yz/wR0SHw2Ow0f7KVurfW0vTJVnyO82tFJDfq0U7Mp7zVgruqjrhBelGlRgPZD32BzK/chiJiZLJRoZwHXq+PXcfr+XB7KR/tKKOhpwcy2t7NgoYy5jZVoA8hYKZOiiPhustQLJ7DMyUmXlx3DE8QdhZhUPOtm2dw35WTQ7brGk2MhevF4/XxwieH+fWL24O2k+WnRvHoF+exYkZmwLGB0+3hp89t4an3+6sOy6QSvn/7bB6+acaIi1mKosiO4jpeWnOE97eVhtSSlZMcyXXzc7lmXi55KVGDbr/9aC1f/sPHfefn6chOiuBvD68YM+PI8vJyxo/vy9d9fsjtGV8kCDHAF/BndItOW9V7AIfxk7RXRVEcmg/EGMP5ytwKghAFnMDf2/t1URSfCLDNeRWUOp3cKiONqBNiUMXHEDYui7gls4iZP3XIdhejBZ/bTcfBE7Ru3cfRV1bhOXB08A+FG8m793oy772BsIIhxSEQRZGX1hzmB/9aF/SmffcVk/nll5YQGTZy0frzgXMRothyqIqfPLuBXccC3/dWzMji6R9cM+T+xrGIsS7YMVrYX9LAX9/YydubjgfseQK/ivbdl0/m27fNJjXOGHRfNoebb/5lVUC1y0iDmn//37VMzUvkmQ/28eS7ezG1djG5rZaZzVXkdzYhDRj37o+wwhzil80hbtkcYuZNRaY5//8rURQxHSujZfNeLJV1WKvrsVY3YK2qx9naEfyDgoBxfA5RsyYRNbuI6DlFQe3MxhoOljbynb9/wu5jdfiGMD6RCAIalZwIg5rEaD3hejVqhZTO9hbUCikzi8aRkRRFfIQOjVqBRilHrZKjVyswaJXnLYC27Ug19/36PWqa+5cEx0XqeOb713DZtMxz+g6vy0Xj6i1Uv76a+g824LGG1o+qjAonbukcNEmxyLQaZFo1Uo3Kv6xR4erqpvPwSboOn6Tz8MmQbIPOhl2np0WUYXA7BrQxkWjV5H7lNvK+fU9IyuEDfucQ77sel5uPHn+F0n+9SlJN5YDbAmhSEki5cflnVmSniWVVNXby6xe28PLaI0HvfYnRBn70xfncuWISsgvoHnChn08b91fwyD/WcqwyMAWIi9Dxs/sXc/uyCUGJaXl9B3f+7G0OljX2W5caZ+SFx65negBRwXNBa5eV51cf4vlVBzlVN8B9uQe5KVHcsLCAGxYWUJA+9HO7w2znq3/8kPe3nuy3ThDgazfM4Kf3LUajOj+Vb26PF2uvoKnDhc3hxmx1suvAUR6596rezT6f5PaMLxWEfOAu/GS3V86s90C8wFr8QlTvi6J4YRzPzwHnq+dWEIQX8GfF9wEzRLG/s/j5Jrd7Xn+P/OlTUMdFj6nMgCiKuDpNtO8+TOv2A7RuO0D7niN47YOX/3kEgcORSWyPy6A4IoHZk9P509dXBMwUhII2k41Hn1rP86sPBVwfYVDz/Tvm8eVrpqIcA9HcUHCuD0VRFHltfTGPPPEJ7QGIf1ykjv/+6DoWTD5/tgijgQs9eDif8PlEPtldxl/f2MmWINl58Ntm3HtlEd++dTaJ0QOrhJbVtnPbT94MOPiZXpDIr760hDc3HOfFNYcCKh7rXA6K2mqZ0VpDblfz4D60PZAoFUTPnULk9AmEjcvCOC4bfW46MvWFywR6bHY6SivZ+u5HYLZSNG82huR4VDGRKGMiL+ixjQQcLg9/fGUbz310kMb20RVBUitlJMeEkRht6Jn0JEWHkRoXxsTseGLCzz2w5nJ7+fl/NvL4azsCmgRctyCfv39r5TkFNs2llZQ/+yYV/3134ODHaQgvGkfiygUkXLGAiGnjkYQobCT6fFgq6+g6fJKO/cdo3rSb9t1Hhqy+6pDIUPmCZ7hEuYz4265m+k++ii4jOeh2AyHU+66tvpnyZ9/k1DNvYK8fWJHZJFexKzaN8sw8HvnF3VwzL3/A7Utr2vjV81t4c2NxUJOI7ORIfnzPQq5fUDAiPdZDxYV6PpXXd/CDf63jo+0lAdcr5FK+cdNMvnf73KAWbgCvf1rM1x//iG5b/0qd6xbk88/vXoVxBC1+TlS18sRbu3ll3ZFBs7RJMQbuWD6RGxeNoyCICvdQIIoi//n4IN994pOAz7rMxAie/N5VzJ1wbhVIXq+PulYztS0mapvN1LWYepZN1LaYqW7qwmIPXBklOkw4dz3e+/LzT27POABBWIifoN0A9I5seg/KDLyBv7R323k/uHPAaKslC4KQANT3vPw9cDDIpq/2zE8AP+9ZrgzmuzscDNfndiTgdTix1Tdjr2/2e+7VN+NoavPLnbd24Gjpnbfjcw5emng6rMZwNunj2ZKQRZtaf8Y6iUTggaun8uN7FhJhGN4DYMfRGr75l1UUVwSOUibHhvGTexZy62Xjx7wX7Eg9FFu7rHzvH2t5bX3/LLogwPdun8ujdy+8oNHtc8H/Arl1uDy8uu4If31jFyU1wXvtNCo5D1w9hYdvmU1cxODVHG9vOs5X/vBBwIHLLUsKsdhdrNpZOqC7WG5KFPdeWcRtS8ejc9qpfXsNNa+vpmXrviH7VAsSCdqMJMLyMzHkZRA2LhvjhFwMeRnnjVj+L5xP4A9q/Pn1HXyyq+ycFUaHg4QoPZNz4pmUHdczjychSh/SANXp8vDGhmIef23HZ7Yxp8GgVfLnb1zObUuH137hdTipfXcdp55+nZZNewbdXpDJiFs6m5QblhF/+Xw0CcML0gaC22yhedNumtbvpGn9DswnArfhDAc+QcAxewbTf/o1Jlw2bUifHeg6EX0+mtbvoOzJ16j/YMOg5PyEMZZNCdkcjErCK/ksEPCFpRP449eXE64f+Bo8VtnCz57byIfbAhM5gEnZcfzs/sUsnRa47Ha0cL7vJ2ark9++uIV/vLMnqJ/4NfPy+M2DS0lPCOw/DP5qnu8+8Qn/+bj/MFgpl/KHry3n/qumjMjfUhRFPt1Xwd/e3MW6vQOf33KZhCvn5HLPFZNZPCVjVMZxJ6tbeeC377PvZP/2FUGAB6+dzi8eWIxWPXj7X2e3neLyZo5WtHC0vJmjFc0cr2wZtp3k/zS57cUA/bkAPlEUL44UVg9G2+dWEIQ0YPB6mcB4XhTFu4f52UDHMmrkVhRFnK0dmEsq6S6txFxaRXdpFZbKOuz1zTjbAnudjTRqtUb2RaewLzqFJu1nfUARBjW/eGAJ96ycPKwbp9vj5Z/v7OGX/90cNPo1Lj2GXzywmBUzs8ds7+lIPxQ/2VXGg7//gObO/mVvcyak8Pyj1w+a5RuL+DyTkZZOK//+cD9PvreXlgD/t15oVXIevG4a37hpVkgZMZvDzff/uZZnP+zfP6VVy5mYFc/O4poBuenCyWl88+ZZLJueFTAjYmtopv6DDTSt20HTpztxm84tUyjTqlHFRqHNSMJYkE3E9EJiF0xHkxR/Tvs9G5/n8ykYOrvtPPnuHtbtreBkdWtIFk6jgYQoPctnZLFiZjaLitL7ZZQ6zHae/WAf/3pvL01BCPncCSk8+8NrByzDDwZLRS0lT7xE5fPv4eroGnBbQSIhZtEMUm9dSfJ1l6GMDE4URhK2+maa1u/omXbiaApu4zIUnErOQDKjiMQpBYxbMJmJU3IGrHIKdJ042jqo+M87nHrq9UG9p+VGAxl3X0f6/TfzZlknP3tuY8DzLinGwAuP3cCswsEzzHuO1/HjZzew+WBV0G3mTkjh5w8sCWl/I4HzdT/xen288MkhfvrvjUGfFeMzYvnD15YNWq11vLKFO3/+Nser+p9buSlRvPjjG4ZdZXc6eoO2T7y1O+B3nf29d6+czBeWTiBCJaW7tAprTQOq2CiMhdkj3uLi8fr46xs7+cV/NgXUoEiLN/Ld2+YAYLG7sNpdWB1urHYXFruLdpONY1Wt1AZolTgXXCK3Z0EQhHHAa0ABIACiKIoXlaScIAi/Bn7Y83JmsEzpaf60cJaNzyD7T+NzRm5dXWY6D5+k89AJug6fpKu4jO7SqnMeaI406rRh7I9OYW90Ko09RHfxlHT++d2rhjVIAahrNfP9f6zlnc3Hg24zZ0IKP79/MbPHj73eudF4KDZ3WHjgt+8HjI5GGzU893/XnXNv2vnG542MiKLIrmN1PP3+Pt7ZfDxo9B38peVfvX469181ZdDsRi8On2ri7l++EzDjFWFQY7Y6gloIyaQSblo8jm/cNJNJ2QOTSmtNA3UfbKBjXzHt+4r9GafhWvMMAEEqRRFpRJeRTERRAbGLZhC3bA4Kg37wDwfA5+18Gg5cLg/r9lWw72Q9J6taqWzqoqXDitPtwe3x4nS58frEoIqrIwG5TMK8iaksn5HN1LwE3thwjBc/OYTNEdj2Qy6T8JN7F/HwzbOGnM1p33eUE3/4N7Vvrenx3A2O6LlTSL1tJck3LEcdO7hYzWhCFEVMx0/RtG47Tet30rJpT8i9wIPBIldiiohCkpKIPjMFtVGHJkyHNkyHNlyPSqukrKIUWWsnyR4J5kMn6TxwHJ97YFuWyBkTyf7KbaTcfPkZ1RhNHRa+9qeP+HhHab/PSCUCP71/Md++ZfagpcWiKLLxQCWPPbOBAyXBheNWzs7hJ/cuGhGSNhDOx/1k2+FqHvnHGg6VNQVcH23U8JN7F3H3FZMHvDYGK8u9c8VE/vyNy0PKWA6ELouDp97byz/e3k1rV/DzVSt4uSMvmisS1USbOzGfOIXpeDnWyrozrlNBIkGfk0b4pHyME/MIn5hL+KR8VHHnXqpcUtPGl3//AbuD6Jecb1wit4AgCErgavyZ2+V8lrm9WMntdKCX0D4liuKDAbaR4PenzQe6gBhRFIfrEhvsOM5rz20o5NbndtN9qgbTsTI6DhynffdhuorLcLa0j8bhjSoaNAY2J2SzJT4LhU7Drx+8jPuunDLsfpldx2p59OlP2X4keCR5zoQUvnvbHJbPyBozmdzReij6fCJ/fXMnP35mQz/FSUGAH9wxjx99ccGYL9vuxeeFjFjtLl7/tJin39/H4VOBBym9KEiL5uFbZnHz4sKQe8h9PpF/vLObR5/+NCBhlkmFoKQ2TKvkvqum8JXrp5M0QHbf5/HQsGozp556nYbVW4ZcljySkCgVqGIi0GelEl5UQOyimcQsnI5cO3D/5eflfBotnP73WbLkMjptHmqbTdQ0m6hq7KSivpNP91cEVB4dLYzPiOWZH17DxKy4kD8jiiKNa7Zy4vfP0rxx4I4iZaSR9LuvJ/P+GwnLG7vBP6/LRce+Ylq37qNl635atx/A3RWaUvZowiNX0D6lCPvSxYRPzichykBClJ6EKD3xkfq+Z7soiry85gjffeITTNb+0jDLZ2TxTIhCiKIo8v7Wk/zsuY0BA3m9uHpeHj+4Yx6Tc0a2AqQXo3k/Ka1p46fPbeTdzScCrpdJJTx0w3R+eOd8wgbpizVbnXzt8Y94c0N/tXGtSs7fv72S25ZOOKfjbeqw8Pc3d/HMB/sCtsIAxNjMzLE0s9jTiebUuQVEVTGRxF8+n8x7byB63tRhj+28Xh//eGcPP/33hmGXEw8VBo2C3JQoMhIiyEmJJCspksykCLB3MHXy51wtOegBCMJ8/IT2Rj7rue39r3YBb+LPNO7o/+mxjdNKkz3AfFEUd561/hH8/bIAPxNF8adnrb8b+E+w9SEew3knt6lx8djrmrDWNuFobMFW10zX0RLMJVXYahtxdZgu6EASQG7QoU1NQJOaiDYlHk1iLO5uK/bGVuwNLX2TqzO0Mg2zXMna5Hw2JuQwc1o2/3rkKtLih1f6JYoin+wq48fPbgjajwtQmBHDt2+dzY2LxiGXXdjYz2gPsveeqOeOn70VUGF0weQ0/vvo9SH1bV5oXOxkpLSmjac/2M9LnxwKOKA7HYunpPPNm2cNuW+sucPCl373PmuD2GYFg0Gr5Nu3zuar108fUHTEWttI+bNvUv7vtwYVjbnQ8JPeSHRZqejSE1HHR6NJikOTkoAuPQlpXCSfbtkMXJzn02gjlOtNFEX2nqjnzY3HeGvjsaAlxL2QSSVBrV0GwryJqTx8yyxWzMgOOfjp83iofvUjTvzh33Qd7Z8lPB2xi2aQ+aVbSL5u6QWz1zsXiD4fXcWltG7bT+vW/bTuOIitZmRssEJBnTaMTQk57IxNxyELrDKrlEtJiw8nIyGcjMQI8lKiiDZq+PvbuwMGpBOjDbzy0xtDVuf1eH28svYIv3x+84AloitmZPG9O+aNeLnyaDyfQlGLXjk7h988uJTs5MhB97e/pIG7fv42FQ39W9ImZsXx4o9vCGk/wVDZ0MmfX9/BC6sP9SvxFUQfGeZ2JrXVMd3cRJQpNNG2oUKXmULGPdeTfte1aJOHFsiwO93sLK7lnU3Hef3T4qDtbsEgl0mIDNPQYbYPWIklCLBkSgb3XFnElbNzUcj7j0HLysrIycnpffn5J7eCIOTiJ7S3A701lr13ew9+teTngQ8uRrXkXgiCMBnYDqgBC/BrYGPP61uBL/VsWgpMFUWx+6zP381FRm4H87k9r5AIyA16lBFhKKMjUMdFYZycT/pd16JPD+2h4LE7aN99mNq311L79hrsjQP3WlhlCtYn5bIzo5AffX0lD1w9ddhZXK/Xx2vrj/Kz/2wa8EGXHBvGN2+ayRevmIzuHEtwhovzQdo6u+186bfv81GAUrDYcC3/ffR6FhaNbTXli5HcWuwu3tl0nOdXH2TH0doBt1XKpdy4aBxfv2nmkDJTvVizu4wv/e6DAXt2z4ZCLuXBa6fxvdvnBlWa9Xm9fVnaxtVbBi3nBEAioIw0IggSnO1dfUIzMr0WdXwMmqRYNEmxqJPi0CTFo4qJAFGkY/8xuorLsFTU4Ghqw222IHqGpiA7ZEgkSGRSkAgIEgmCTIpUpUKmVSM3aFFGRaDPTPaLXk3OJ3LaeGRjxPN1NDHU683r9bHjaE0f0R2on1evVdI9SICnF/FROmaOS2ZyTjwrZmQPWl4qiiK176zlyI/+jLkkePeRTKch8/6byP7KbRhyxva9bziwN7XSzxWycAABAABJREFUvueIf9p9hLY9R/CYR05QzC1I2BeTwqaEbE4Zov0j9mFCr1EEzPAp5FIe//oK7r2yKOQgn9Pl4ZkP9vP7l7cOWAo7c1wS37p1Nitn5YxI9dJIPp/qW838/qVt/GfVAdyewPfb/NRofv/QspDai0RR5Im3d/Ojp9YH3N+D103jNw8uHbZf8LHKFv74ynbe3FD8mQe7KBJj7ybb1EpuVwvjO+oxhOB1HAiq2CgcLe1DS+wIAnFL55B57w0kXbMkoAOJKIocLG3k0/0VbNxfyY6jNQH7bk+HTCqQFh/O+MxYUuOM6NQKkmMMnKhq5aU1h2kzBbfoio/S88XLJ/HFyycNmsD5nyC3PZ6st+EntVN63z5tk16f21cudp/b0yEIwlXAS3yWlT4bpcBKURRPBfjs3VwitwBINWp0aYloUhPQpsT3+d6Zy6roOlyC+cQpxBCj6RKFnISVC0m/61oSrpiPVBEaIRR9Plp3HKDmzU+ofXvtgFkfu1TGhsQcbFcs54mff+GcxI8cLg/PfLCPv7y+c8DyOb1Gwa2XjeeelUWjVrYUDOeLtImiyF/f3MVjT3/aL3sikQj8313z+d7tcy94JjsYLhZyK4oiO4treWH1Id7aeAxrkN7BXqTFG3ng6qncdfkkooZhZWKyOPjpcxt58t29IX9GIhG4fdkEHr17ISmxYQG36S3nPPS9Pwya+ZJqVGhTEvBYbdjqW4ZVYqZNTST9i9eS8cXrzrAtcZnMfrGqDbvoPHgcS3ktro6ukO9ZowGpRoU6IQZjYQ4JVywg7fYrkWkuLn/twXAu11u3zcmT7+7lL2/sDOpLPlzMKkzmweumce28/H4Zj6ZPd3Loh3+iY29w33VVXDS537yL7C/fgiI88LkfKkRRxOdy43O68Dr8A3dldMSYaXk5HaLPh+lEOVUvf0jFc2/jaA5ewns6vIKADwGHVE6LWkeTxkCDNoxyQxQtagNmhRJRGN3WlpsXj+OJ71w5YFXJ2ei2OXnird387c1ddFmCB1qykiJ46PoZfGHZBAza4VswjsTzqaXTyh9f2cbT7+8LSrIiDGoeu3sh9189JSTng9YuKw/+/gNW7Szrt86oU/Hk967mmnl5Qz5WgN3H6/jDy9v4eEcpUp+PZEsn2aYWsk2tZJlaCXMPQbBOENBlJhNWkOVX0S/IIqzAr6Yv12nxWG10FZf16cr4PaNLQuo9V4SHkXnfDeR+84uoE2PZe6KedzYf553NJ85JCGpqXgKLp2TwwupDNHUEDxxdMSube68sYvmM7JDdKj635Lanj/Ya/IR2GWf20QI0Aq/gLzsuHrUDucAQBCEV+CawEkgCXMAp/CXXT4iiGPDM/l8itzKdBk1yPIbcdLTpSWhT4tGmJqJNTUCbmoAiwoggCPg8Huo/3EjVKx/S8PHmkHxqB4IiwkjqLZeTfte1RM6YGPIDXfT5aNm6j+O/e4bG1VuCbueUSNmdls+KP36ba6+bc07H6nJ7eW39UR5/bceAFisARTnx3LOyiJuXFJ7Twy5UnG/StutYLXf87G3qW/v3aBVmxPD3b69k5rjzozA5FIx1ctvQ1s0r647wwupDlNUO3AMvCLBiRjZfvnYqS6cFViEeDL2qmT95dsOAGYqzceXsHH52/2IK0mOCbtNx4BgHv/cHmj/dGXQbAE1KPK5OM57u0LPFoSBmwXQy7rme5BuWIdcF7ruzVNfTsHoLrVv2YTpWhrWm0S+gd4HaNhSRRiKmFpJ5340k37AcieTi6GUPhpG43kaT5MaGa7n3yiLuu2oKqupqDv/wcZrWB+/AMuRlkP/de0m745ohlR6LPh9dR0po3ri7L8DisdrxOZx9hPZ0qOKiiZk/lZgF04iZP42wgiyEMXYu+Nxu6j/cyKmnX6dx7fZzu2YkEkRjGJ7oSGzRMXSFR9KsM1Km0HPKAY3t3UGzj0OBTCrhmnl53L5sApdNyww5CGu2Onnq/b387Y1dtJmC3yd1agVfWDqBL107lXED3BuD4Vyul7Ladv790X6e/WB/0GCoRiXnoeun8/Ats0O2UFy/t5wHfvt+QOI1vSCRFx67YchCnr12Pn/+7wYatx0g29RKtqmVDHPbgJ7LgSBVq5Ao5J8JnwoCcr0WeZgeuUGHPEyH3KBDYTRgnJBL/Ip5hE/K7xtrij4f3eU11L23nor/vDOofZZPKuVIchbvRGVRrxva7x4Orpqby2N3LxyWmNnnjtwKgrCAz/poe2Uge0c+duB94AVgrSiKFy50fQkjglDIrUSpQBlhRJMchyE3HeOkfMIKMv0ENiUe2SDCKR6rjfLn3ubkn/+LtXJ0ro/hDhw69hdT/Mt/Uffe+qDbuAUJ7TNncOdzPyE679zKx3w+kY93lPKn17YPqoqnVcm5aXEhtywpZO7E1FHzh70QpK3dZOP+37zHJ7v7FT0AcN+VRfziS0tCVuY9HxiL5NZkcfDBtpO8tv4omw5WBe2L6kVUmIYvXjGJ+6+aMuy+coDtR2t45O9rOFjWGPJnxqXH8JeHLx/QmN5SVceRR/9C1csfBt1GptdiHJ+DuaQKV/vo2onJdBpSblpBxj03ED13cK9FURQxl1bStHY7bTsP0lVchr2+Ga/dgc/lPm/ZXkEuI3xyPllfupWMe66/KInuSF5vvST3T6/twHRWFi0pxkB2UiQ5yZGkxhupbuxif0kDR8ubBy0RjLWZuaHyMFNag4sIRkwZR+GPHyLxykUhkcxeZeLmDbto3ribls17B7ULGgjKSCPR8/xkN+Xmy0fUG3ckYKmspfzfb1Hxn3ewN4xs4Z86IYaIqeNRjM/FnplJY1QcFW0WSmvbOVHVSklN27B6sKPCNNywsIBbLhvPzHFJIQXWrXYXz364n7+/tTtgYPd0TC9I5PZlE7lx0biQieRQrxebw817W07wn48PsG0AEUylXMqXrpnKd78wNyT7N/CXZv/42Q387c1dAdd/57bZ/OTeRUOq0rI2tLD6mQ/Z+9Z6wqqqSLZ0ImXoHEiQSs7pPqyKiyZ++VziV8wjftkclBFGwH/dtu8+TMV/3qH6tY9xD1KCfyQigU+S8ykxxp5RUi+RCEzJTWDxlHQWFaUzNS+RTQcree6jA3yy+9Sgz3jw93U/ds9CinIThv07P4/k1geIfEZoRWAbfkL7xtm9pZdwceN0crsw+0Zc+mjMKi0WlQanQokokyGRCAj4LzqJICBIBATBv6yQS1HIpMhlEv+857VCLiXC6yL34F6S9uxCbhs4syPIZSSsmEfMwhmIHg9euxOv3YHH7sBrd+JobqNxzTZ8zoEb7NUJMeQ+/EWyvnQLirDQLTq6jpZw7NdPUf3G6qAljT5BIPy65cz7zcPn3CMliiLbj9bwl9d3snpXWUik5Oq5eVw7P4+FRekjWrp7oUibzyfy+Os7+OmzGz7rkzkNvcq5X71++pjwxR0r5Nbp8rBmzyleW3+UVTtKBx2ASyQCK2Zkcdflk7l8ZnZA8YhQUdNs4tGn1wdUugwGpVzK/901n4dvmR30u50dXRz71ZOUPvESPlfgzIGhIJPwCXk0b9w9eEmjTIa8IBvJ+AK843JxpKVh7zTjqmvE19iC2NSCpLUNWXs7qvZ2VN2DP9aqjdF8kltESWQCoiAgiiKi6L+WRQj6+gyIIiqPiyiHlSh7N0aHFaPLSaJRRVqUjuRwDWESEVeHCVeXGbepG1enGbfZEvTvMhgEuYz4pXOY9LtHMBaOnI/5aGOkrjeL3cW7m4/z4ieH2Xq4+ox1uclRrJiVxbLpWcwZn3KGIrjb4+VEVSsHSho5UNrAh9tK+jJQ4Q4bV1cfYU5jRdABtj4njYm/+hbJNywPifzYm9uoevF9yp97e9AM0HAhyGSk3LSC3G/eRdSMiaPyHcOFKIp0HS2h+rVVNK7Zhqm4dNjnfDBIVUqiZk0iZuF04lfMRz8xn/KGTg6famLfyQb2lzT8P3tnHR7HeXXx3yyTVszMkgWWZWZKYju2ww5zw/0CDTXQNg010ECbNNg02LDDdmIHzIySbTEz80qrxfn+WFmxol1pBXagPs+zz6yGdzTzznvee+85ZBfV02t2PwIYFezFBYtTufCUNJIi/Ydd32K1sXpjLv/8aOewavVymYRlMxM4e14yS6bHDTnY6+7zkl1czxtrDvDB94eHFBaUSSVcvTyTuy+dM6L3b35FE1c+8pnT3xbgreW1e87k1Glxw+7H2mOkcfMeKtduofiLDUiqRydQJshliJbjozwsSCT4TEsnZOlcoi5ZiUdcJLXNXXz49T4O/Odzog4dJLl9aOHDcp0PBydOJfTcJSyaGsu8jCi8XChOr91RwB3Pr6OifuhU5rAAPZctmcjlbtTWusJvldwClOAgtO+Iolg+7gc6iV8EjiW3yhm3I6jGVgMEjtHs06rymF1finyI4L4NgVyfIPb6R3LALxzBQ4ufp4ZgPw+CfHQE+3kQ3DcN8tERqBSQbttN7Ydradq6b8hzkOt1xN94EYm3Xt5f4+sOOgvLOPjQi1S9twaJi3MXBYHI85eRev8NeKUlur1vV6hq7ODtb7J48+uDVDcOb6fg7aFi+axEzpybxNyJkcNK7w+Hn5u07cmt5v+eXsvhUucvgaOep1evyGRmSvjPZh30c14nq83O9kMVfPRDDp9tyR1SLOco4sN9uXxZBhefmk6I3+i8WI/CYDTzz4928vT720dkUbBgUhTP376cuDDnCph2m42CF97j0F/+ic2FJ3avh5668Ej8y0vR9bhOPy709CfXO5hCT3/K9H6YpW6Kk4giEYY25tSXML2hHJ116AG0Qk9/PoueSKHX8YmA+XtpuHTJRP7vvBkD/m92u52u/FJHKvTWfbQfKaKnun7YAb9joQ4JYMJ91xN/48W/+GjuWJ43u11ka3Y576zL5vMtecPWnYMj7XLBpCjOW5jCBYvTBqXqmy02Pl+zlwMPv0By1j6X77ZWhZpvEzOJu+pcrj93OokRrj1q7RYLtV9vpuT1T6hdu7lf+OxEwHdaOgm3XEbEqqVua1eMN3pqGmjeeZDmXdm07MqiLSt/3Pxz3YEqwJeQ5fMJXbGQoFNnIffQYbHaOFhYx9bsCtbtKmLH4Srsbva1M+KDuOCUNM5flDpsmyuKIpsOlPHyF/tYs71g2AFuqURgVloEy2bGMzM1nIlxQaiVP2baOXteLFYbhVUtHCpu4HBJPZsOlA+bbXNUD+G+y+eNiBiJosh/vjrA3S+ud/qOWDI9jlfuPoNAF84IoijScaSQuvXbqFu/jYYt+xDNI1MLBkcWny42gq6iCroKXQu6jTskAqXJabzmEU2D6sffGNDTyWnV+cyuL0Vhd/18eyREkXL/jURdvAKJbOC7q7i6hQde28inm3NHfFoLJkVx7oIUTpse51Lfwhl+i+T2ZeDtX6N9z0mMHONJbn17DZxRfphZ9WVIhkgXKfPwYUtwHAf8wjEoRk7MvD1UpKhhen0pMXlHUDW5VkGWKOREX34WyXdejT4xxu1jdJVV8cX/PYH9mx+QDUHQw846hZT7b8B3SprLddyFzWbnu70lvL72AF/vKHQazfwpJBKBjLgg5mZEMi8jillpES5H/Vzh5ya34CBv//pkNw+/sYmeITqiAd5aVsxK5Iy5icydGIVGdeLUvU/0dbLa7GzNKufTzXl8sTXPrbpWnVrBOfMncMXpGcxMDR+TsIzZYuP7fSV8+P0R1uwoGPL/8lP46tU8fuNpXLIkHUEQaGzrprCymYr69r5PB91ZOUxav5bgNufPb49Uzq7AKJLaGggxuh70OewdzJdR6ZR6uiYR7kJmtzGxuYbZ9SWktdYN2Y7legXxeXQ6JZ7DR2tGA7lMwllzk7notHR89GoUMilKhQyNUo6HRoFOrUAhl9KZV0LJ66upW7+NzrxStwiSTKsm7roLSP/bH36xyssjfd4q6tvZklXOlqwKNh4oGzb1cygsmBTFv+89q99r2WLopuCfb5P35Gsu0w27ZQrWRqSwITQByzEDKwszo7n41HRWzEnsb5sNZVUUvfgeZW9/4VBhdQO62AgCF04nYME0tBEhSFUKpColEpUSad/H3Nbh8J7dso/GzXvprqgZdr+qIH/ib7yQ2GtWHdeU5d7mVjpyimndn0PLriyad2bRUz105NIdaKPDiL78LOQ6DZ35pXTkldBxpGjYtNCfQiKXE7BgGqErFhC6YmG/qFx+RRMXPfDxkB62P4VUInD2/An833nTme6GlVBVYwdvrDnAG2sPDikMdCxkUgmpMQGkxQYS7OuBt05BXWUx7T1WrAof8spbyC1vHDaz5yj8PDVcsiSda1ZOdjkY6QrNHT3c9NRXfLWtYNAypVzK3244lRvPnjrofWTrNVH/w06qP/+e2q83jzgtXZRK8Z2cQuC8KfjPmYxEoSD/mTeGrH0/CnVIAP6zM/GbNQn/2ZmoAnwxd3Rh6TRg6TD0TbuwdHTRXVlH3bfbMRRXDLtfGwLbg2NYE5lKyzEk18PcyypDFTNKc5AaXA/S6mIjSLn/BkLOP51DFS28t/4Qr6894DJ9PiLQk/pWw5DWP0eRHOnPkhlxLJkWx6y0iCGzuH5z5PYk/rcwHuTWw9zLioojzK8tGjJSm+0TwrqICRR6BoxJtn8ARJHU1lqWVeWRNFT6hyAQuGIhE++7Hr8ZGW7vPndvPm9e8xDJR7JQDjHqFrx0Lin330DAnCkjOHnXqG3u4t1vs/lsU96I6holEoGJsUFMmxBKYqQfiRGOT4ifh0ui80sgt0dR2dDBPS99y+db8obVGJHLJExJCmXuxEjmToxkRmr4cbVTOhHXyWqzsyWrnE835fLltny3CK1cJmHJtDjOX5zG8lkJYyL8drvI9kMVfPjDET7bkjcqEZ4z5iRy+sxEyupaOVTcQFZxPXXHKIVrLSbOKc1iXl0xzmKHVkHCluBYBFFkvot1AHK8g/gi6viRS0+TkRkNZSyoLSKg13WH85BPCJ9HpVOhH70/41ghEQQkEgGZADMay5lbVUh4exPS4WQxpFJ8zl3GtBf/go/v8G2/0WShw9BLW1cvnT29dBhMdBp66TKa6eox0200YzCa6TFZkCAgSEAqkSCXSfD2UOPtocbPU4Ovl4ZAbx2B3lo8XIjmuXreTGYrTR09NLV1c7ikgS1Z5WzNrnDqo+0M3h4qBEEY9t729lDxr1uWklpwmCMPv+gyFV5UKtgRn877ntEY5a7bH7lMwrnhGk4pO4Jk665hByE0YUEELp5J4KIZBC6cPmLPTIDuihoat+6j/vudVH70zZAijoJUSujKhcRddz5Bp81BIh15+YIoivQ2NNNVVEFHThEdOcX9U3dJ/GgRunIhU1/8K5qwIIfQT1F5nxXRYZq2H6AtK29EwlXeGclErFpKxPnLkIWHcM+L3/Hql0NnjDnD1ORQ/u+86Zw9L3nYciKL1cb3e0t499tDrNle4DYxHS0EAU6ZEsuVyye59DsdDp9vyePWf3zt1AIuOdKft/58zgBBI1NLGzVrN1PzxQ/Urd82oki9USqjISiUmNNmMe+SpQTMnIhMo6b1QA6H/vIctWs3udxWGxlKyPL5+M/OxH92JpqIkBEP/nYVV3Dg3a/JX/0dyrwCFDbXWUxWQcLW4FgOZM5g+RkzWbUoldSYAGzGXkrf+JT8Z97AUOranq9ZpWNtxAS2B8Vgkwz+v4T66/nzlfO5ZMlEOrtNfPjDYd76OmvYVPej0KkVLMiMZtHkaCICPQny9SDQx9Emy2XSk+T2JH7dGAm5DfXXk5EQzKT4IFKjA1BYTPS88wmmD7+EXucvTbtUSsvkyZTOnE2D3oduo5mObhOtnUZaO3vcSq90F9GdzSytzCWzucplhxigPjSC9mWnEXDaXNLiAkmNCXTpsQmOF85jz31FwT/fZlFNAeohGrSAeVNJvvsaQpbNGzeFyrLaNj7fmsdnm/PYmzf8SLwzeGgUJET4kRDuS4C3Fr1GiYdWiV6jRCkXKMw7gkouYcaM6aiUyv5GXxBAEBw114Ig9I9JuDNPpZDhoVHioVGO+KVZVNXCv1bv5p31WW6nwcqkEjITg/vJ7szUiHFVmz5e5LbXbGXD/lK+2lbAmu0FQypqHovZ6RFcuDiNs+cnD3n/DgVRFKlu6mR/fi07DlfyyabcIS2rhoJcJkEuldDj4v8liCKz6ktZVXoQDxd+g3v8I8n2DeWs8kP4uyCUeV6BfBGVTpGX63IDjUqORil3TFVyNCoFGqXsmO9ytGo5aqUcrcoxVSpkqBQylHLpwO8SMH29gc5/v4utznVkweOMU/G74zpqrBK2H65ka3YFOWVDe2sfV9jtLKwt4tTqfAJ6DQzVjbMKApuC4/kwbjL2nyFdWRBAInHcP3KZBKlEgkQiYLNaHMukcswWGyaLdVTKtxKJwOy0CFYtSmHlnER8dGoOFtfz3Z5i1u8uZn9B7QDeI4gi0xrLObvM9X0oyGTEXX8BqX+6EWWAHxv2l/Ly53v5emfhQA4liiS1N7CsMpfUtqEHKqUadZ+A2TkEzJ0yrirHptZ2Sl77mMIX3qOncuj6RU1ECLHXnEfs1eehCXUQE5vZjLmlHVNzG71NrfQ2ttJTUYOhvIbusmq6y2vorqh1quA8UqgC/fDOSMJrYhLa5BhyOpqwt3YS3mmhZfM+2g46T8+Ue+mZ9vKDRF5w+qBl5rYOGrfuo2HjburWbaUzv9Tt8/GeNIGI85eRHxHHje/uceqJOxxC/Dy44eypXL080632ut3Qy2ebc1mzvYAN+8tGVAc8HEL99VyxLIPLl2WMWK34KFo6evjDc9+41F+4/qypPHbDKaiVcrqr6qj6ZD3Vn/9A07b9bqff2xAo1fuR4xuMbs40zrt2BcvmJPX3T4wNzWTf8zSlb37qch+a8GBS/3wTMVeejUQ+uoHf+lYDH35/mPe/O9xPHmU2GwkdjUxsqWFOXYlLpWaJQk7Mtefjd9PltErk1LcYqG8xUNfUgWXTTgK/+xbvBteEtEWp4ZuIFLYGxWKVSvH2UHHnxXO48eypA9LSjyKrqI5/f7mf1Rty6OwZ3bOolEuR2bpp2fDY0Vm/fXIrCIIEWADMBIIADfAnURTrjllHgcM6yCaK4thbupM4bhhN5FZmt3FKbSErq3JRmZyTU5lWQ/zvLybx1suHTHWy2ey0GXpp7eihpdNIY1s39S1d1LV0ORqAvmltc5fbnX53a36rtZ5sCElgb0AkXsF+pMUG9qX5BJEeG0hihN+AuqutWeXc9OCHJGft49TqfLRD1OZ5Togj6Y6riLrkjBGpNw+HqsYOvtiSz5fb8tmdW+1WKsovAUq5FH9vLaH+esL89YT660mK9GNyYggTogNcKkE3d/Tw+lf7Wb0x12VNritIJAIZ8cHMnRjB3ImRzE6PHHHK9rEYT3Lb1mVk3a5ivtyWz3d7it2qCQRHTdc5CyZw/qLUUXVKWjuN7M+vYX9BrUNAJb/W7TQ4iSCAgFtqjT9FmKGNSwv3Et/pnOzVaDz5PGEy09trmVKe73QdW0wU0huuRD0tA63aQV7Vqh/JqVbtIK0qhWxU1kbDwWY2U/qf1Rx55CWX6XMmmZzPI9P4ITQR2y+optXb2M1FJfvIaKlBOkS/wSJI+D4skdXRGfALOv/xhkQi4OOhxtdTg5+XBp1GgdFo4WBhHdFVpZxTlk14d7vL7SMvXkH6Q7fiERsxaFlFfTv//nIfb605QGRJIcuqcojuah3yfKr8guiZP5fES1cyd1YS4QFj175wBbvVSvUXP1D43Ds0bhnam1qQSNBGhWJqaf/RLmWcIffS4zc9Hb+Zk/Cdlob3pAmog37MxnDW7jZu28f+W/9G2wHnxCry4hVMfeEBFF6uhZC6iiuoWbuJ2jWbaNy8F7vFvTZYk5rIOoUfa+V+NKsH1o/6e2kwGM1DDsiqlTIuPjWd/ztvulsCVOBQNt6wv5RvdhaxO7ea3PLGEbknhfrrSY8NJC02kDnpESyaHDMm7Yovt+VzyzNraXASrfXz1PDy3StZFOND5er1VH6wlqbtB9zed5NKS453MEd8QmiPi+WiM2dwxemTBtSL2i0WCl98j8N/ec5l+rk62J+U+28k9ppVo+qDFVe3sHZHId/sKmJrdsWQ7z2duZdlVbksri1C7iL4YZApeDd+KnsCIgdmLooi6S01rKw4QkyX6+yGdqWa3rOWc/lzd+IX4E1LRw/rdxezK6eKuhYDjW0GGtu6aWzrHlEJkSuIvR2Ydj1z9M/fNrkVBGE58BwQ9ZNFaaIo5h6z3o3AvwADECKK4viaEJ7EuGFE5FYUyWyuYlXJQZdpehKFnLgbLiTlvhtQB469Bu5YGE0Wqhs7qWrsoKqhg8qGDqoaO6iob6esrp3qxo4BDb7eZOSUmgIW1hSisbl+2C2ChCy/MHYExXDEO7g/cuGhUTA5MYSpyaFMTQ5j6oRQlHIpNz+zlrXfZ7OgtpDTqvKHNApXBfqReMtlxN1wYb9k/HjBaLKwN6+mv85sT271cU9jOh5QK2VkxAezaLKjNi0m1MfpeqU1rXyxLZ8vt+azN6/GrZrkYyEIkB4bxJyJkczrq1EeCdkdK7mtqG/nm51FfLU9ny1ZFW5bUEyKD+bsBcmcM38CsS6uzU/R1N5NQWUzBRXNjmllM/kVzW6nbh6LiXFB9Jgsw3rnOoPKauGM8kOcUl3gXFVWpcTv/64gJDWOonv/jrFuMPmVKBWkP3gzSXdcPUho4+eA1dhL8SsfcPjRl7E0O7ciqtXoeS9+KnneQSf47IaGzGbl3NIs5tcVD1lmYZJIWRc+gS8jU3/TJLcfokhieyNnl2W7HIABaIhLQHfTFSQunEJylD/+XoOtUURRpG7dFg7e8zQdhwbXIB5Fr0TGlpA4NgfHUa8d+N6NCfFmVloEmYnBZCaGkB4b6DRKMxpYDN0YSqowlFTSsGUv9eu20lVSiWg9/u8OiVKBPikG32np+M3MwG9GBvrE6CEj1K7aXdFup/TNT8m+9xmnKc+a8GBmf/gs/jMnDXtelk4Ddd9tp3bNJmrWbsLUNPRgxFGUePiyNyCSvQGRtCsd0VhPnZKVs5PYnFVO1TDt7dLpcdy8agYLM6NHlCLb1WMiq7CO/YV1VNZ30NBqoK65k4raJpRyCTPSY5nUd98Ml5k2ErR09HDH8+v48IcjTpefnRHGH8Kk1H6yDsPugwhuvKPtCBR7+nHQL5xs31CatHqWzojn6hWZLJkeP2jgu2HjLvbd/AgdOUVO96cK8GXCPdcRd8OFyNTuv9+tNjs7D1eydmch3+wsonAU7zu9ycjplTksGKJEb79fOP9NmEqn4if9B1Ekpa2OM8oPE9fpur7b5qlnX9pU3pb60yuMn2vGT/E/Q24FQbgGeIUfLYKaAT8cVkE/JbcKoA7wAq4QRfG/J+xET2JEOJbc3vuPj6hsh5yyJsrq2jCZf3zZRXS1ckHxfpI6nEcs7AjsCIrm4PQ5nHvBAi5bMtGlKt7xgslspbKhg9LaVkpr2yirbaOkppXykjrCD+zllMo8fMxD11m1K1TsDohmR1A01VqvQbXB4YGeTEkMQSqVsHZHAbaeXubWFbO0MnfIfUs1amJ/dx5Jt13RL1Qx3ug1W9mbW83OI1XkVTRT2Edq3I0K/lIwIyWMi09LZ9WiVJfks6vHxM4jVWzNrmBrdgX782tH7Fd4NLK7YFIUCyY5xLi0Q9TsjpTcWqw2dh6pYt2uItbtKiavwv0U1cyEYM5eMIFz5iU7Jfs2m53ali6HOFNdO+X17ZTXtVNS00phZTMto6iVPRapMQGcOjWWoupW1m4vGLGboK+HipViGzO2/oC8w3kHL/zcJaQ/dAs5j79K+TtfOF3Hf+4Upr/2yJitt8YLoiiy/VAlz63exbdbclhYXcDyihyXg2d7/SP4KDaTVtWPJEirkpMY6UdGbAAetJMWoePslctQqdTY7HYKKpv5fm8JP+wr5ft9g1Mnbzt/BktnxGMwWjAYTXQYHLWvHQYT7d3G/r+7ekyOOtheM8ZeC71mK2arDYvVjs1qZXnFEU6vzB2S5PZKZXwRmca3EROGvTZHSxikffW/4OgcIIJdFLHbRbdVZ08YRJH01lpOrzhC/BAdyiK9H5/GZAxSyPb30pAU6c+E6ABmpIQx0dpFzeMv0bh5j8t9dclVfB+awMbQBLrl7pVNSCUCE6ICyEwMZlKCg/CmxQaiUrge7OltbKH9cCHthwtoP1xIV0EZXSVV9NYf/1R5iVyOR2I0nilxeKbE4ZUSj2dKHLrYiBEPUA3X7prbOth704NUfLB20LaCTEbm038k4ebL3CaPdpuNpi17qfx4HZWr17tFdO1Asac/ewIi2e8fQadCzeVLM5ibEcnraw6w84jr2kpwtLe3rJrB+YtSB9hRjQTHUxPCarPzxdZ87njum0HRWrXVzPT2OhZ31xNUUYrEhZXisTBJpOR6B3PQL4xs31AMChUZ8UGsmJ3IZUsznKr69lTXc+DOJ6j88Gun+5R5aEm57wYSb74UmdY1me/sNlHd6AiMVDd2Ut3UyaHiejZnldNtHJ++kpeph+UVR5hXV+JUkLRLpuTdhCns9R8YxfXRq5mWFMI8DIR99y2Wg84HEQA65UrWhyezMSQBk2z8hTX/J8itIAhxQA6OVOONwP+Joph/jCfuAHLbt82rwDXAf0VRvPyEnOhJjBjHktvCwkLi4x0+iHa7SFldG59/vp3qJ15hclWRyzrW/X7hfBY9kbpjRp9lUgnnLUzh7kvmkBx1fARfRgKT2UpxeSN5r39K9zurkdcOL9LUqlCT5x3U/zk6MusMMruN6Q3lLKnKI7TH9WitIJEQfu5pJN35O/ympY/qt4wEdrtITXMnhX2Ru5KaNjq7e+nsMWHoMdPZ4xCEaW7rpNdiRyqVOrw6cXTkgSG9PDlm3njDS6firkvmcNM504bsxAF0G83synGQ3S1ZFezLrxlxbZ5cJmHahDAH2c2MZlpy2IBa4eE6D6IoUtPcxab9ZXyzq4gf9pUM6SN4LCQSgZmp4ZwxJ4nTpsWiUsioOyYtv76li/pWR3p+eV07lQ3to6o9dAVPrZLJSSHMSAlnbkYkn2/O4z9rXCs0/hRJkX4smR7HnPRI4iUmah54lvrvnCtW6mLCmfKvPyP39GDHJXfSXT64jlym0zDpybuIu/7Cca07HC3MFhufbMrh+Y93DxJ405uNnFuaxZx65zV8ZomUpnlzCV0yl6lnzycuIQxBENzqjL7wyW7u/Nf6QfNfvmslV5w+fERqKNjtdtq6jOy/52maX/8IhvIU1WmRXHcZPhesxEOjxFPr+Hh5qNGo5COKOlksNpo7uqlv7aa5vYem9m5aOntobndoMLR3GTFZbPSazdTVN2K3iwQF+qNWKVHIJMjlUuQSCYIgYLXbsVjtWKy2vo/ju9lqo9dkdQhddTuI/rGDfIJoZ2pjJadX5gyZflyt9eTT6AyyfUOHFEEM6u7gnLJsJje7JjG6mHCS77wav1XLWXewki+35bM1q3zUA1EyqYSU6AAy4wPJ1AnEGFrRVVfTlVtMx+HC4yrgpPDxROnnjSYsCG1UKLroMLRRoX3fw1EH+4/bc+suaSt/7yv23vSg0/TpiPOXMf21R5B7jGzA3W610rhlL5UffUPVJ99icpGpMWAbBPK9AtkTEEltUjJ/v+dc/L21vPDJHlZvzBmyTQ301nL9WVO5ekXmiIMD401uTX1aEJ9vyWfNjoIBAmwKm5WM5mqmNVaQ2lo7ZPnXUfRI5Rz0C+eAfxi53sGo9FoWT4lh6fR4Tp0WS7Cvc+skm8lM/jNvcOSRl7D1OH9Woi8/i4zH70AdHIDVZqeqoYOSmlaKq1sprmmltKa1P9Ov08138njAp7ebVSUHmNZU6XR5a3o63ddeQXhCBNMmhBIb6tPflpbWtHL//z1H3KYNQ3rldsmUbAhLYGtQHG2qgX1UtVKGn5cWnUqBWiVHrXSo7av6phqVHIVchlQiIBHAbLVhNFnpNVlprK9l/Uu3HN3Vb5bc/gu4CTgCTBFF0dw3fyhyexnwFnBEFMXj34s/iVHhWHJ7eMce/M0infmldBaU0ZlfStOWfS7V7Ir0fnwYN5kyvev0Y0GAs+dN4J7L5g5QzPs5Idrt1H6zhdI3PqXmqw1uG8XXavTkeQdR6BlAlc6bRrUOUfjJC7xPvXlpVd6w5t3+c6eQfOfVhK5Y+LN24MfzpXgs+TWarXR2mzD0mGg39FLfaqCmqZOapk7Kats5WFRHWe3wnYWwAD1/vXohF56S5nadUE+vhT251f2R3dGkbGtUcmalhjM/M5opiSFEBurI3rsdQRBYsHAxlU3dHCqu51BJA4dLGjhUXD+ijqpEIuCrV6PXKpHLpHT3OpRoj/fLVymXMjE+iClJoX2fEGJDfejsMfHM+9t54dM9w9bsqBQy5k+KYun0eJbOiCMq2BursZfcx14h94l/O32mJAo5E+69nqQ7riL/6TfIefhFRCej/MHL5jHt5QfRRoSM228eLTq7TbzyxV5e+mzvAMVnZ4jpaOaSor1EGVxHegSJBK+MZPznZOI1LY3D5g4kPp5DPnf/+Ggn97703YB5MqmEr568hAWZ4xPRtlutHLjjCYpffn/I9lDh60XK/TeQeOsVx90nd7w76zabnY6WDkr++yUVz72FeQibnBa1jk8j09kdGDm4jT8GerORs8uymVNX6tI2qsnTB8sFZ7Pij5eTFDMwTd1uF8kpa2RLVjmbs8rZll0xrMiip8lIdFcz0Z0tRHe1EN3ZMmTZzfGAJjyY1L/8npgrzhq1SI+7GMl90F1Vx87L7nYaOdcnRjPnk+fxSokf1XnYrVYaN++l4sOvqfrkW8yt7cNuYxUEcr2DkSyczXVP3ITC04NXPt/La1/tH1KtWyaVsHR6HJcty2Dp9Hi3BBnH43npNpr5dk8JX2zN45tdRQPeRTKbjbTWWqY1ljOxpWbIjI+j6JXIyPILY09AJLm+wSTFhnDa9FiWTo9nekrYsOrRNV9vZv+tj7q04NGkJGC+/gqy5J7kVzRTXNNKeV3buA78ugOlXEqwnwdBPjqCfD0I8tUR0jcN8tGh3r2PugefxdLSPnhbP2+mvvgAEauWAY6+03/XZ3P7c+swGB26LnHtjaysODKkIJ0oEZBOn4zfhSuJPGMRQQGe6NSKUdsB/k+oJQuCkAckANeKovj6MfOHIrezgG1ApyiKXifkRE9ixDiW3D5HNL4M/6Jq0+j4MGrioJSK4bBidiL3XjaXzMSfv9N6FKbWdio+WEvZW5/TsufQiLY1S6TUajyp0XpRrfOiRutFvdqDNqUGu0RCRFcrS6rymNpY4bzesA/6xGjibriQyAuXDxDSOFH4Oa2Amjt62J9fw/rdJXy84ciQomGxoT5cvSKTy5ZOdFrr5gw2mx2TxUZHdy97cmvYcbiSXTlVZBfVj6o+WSYRUMgFjGb7cYlWjycUcinxYb59dlC+JET4kRzlz4Qo/wGdip5eCy98uptn3t9Bu2HojvXyWQn8bkUm8ydF91sOiaJI7dpN7LvlEbrLnL//gpfMYfLzf0YilbLj0rto3nlw0DpyTw+mPP8noi49c0z+vOMBo8nCK1/s46l3t41owEIQ7cyrL+HCyiMojO4J4An+3uhDApGplEjkMqQqJXK9DrmnDrmnB0pfLzaVt/HOnkraFWpalRoMckfUdPMLV5MQMX7aBlaTif23PErp66uHrMGU6TTE/9+lpD3w++Pmkzte7ZLdaqVhwy7K3/2Kqk+/xWpw/X/RRIQw4Y/XEHP1eTR0mSiubqGoqpUt2eWs3pjT/8xL7HYW1hZyVtkhl8SyRanhi6h0dgRF9xPkzMQQLjoljVWLUpxG5ux2kSOlDWw7VMmBglqO5FRgyi0kquNHMutrct86ZShowoLQxUXgERuB0t8H0W5HtNkRbbb+qaG0irp1W13uQxcTTsr9NxB92ZnHjeSO9D6wW60c+stz5D72yqBlUo2aaa8+RPQlZ4zpnOwWC/Xf76Diw2+o/uw7tzx1LRIJvelpzL31IsJWLOLDHUU8v3r3sFoG/l4azpiTxPJZCSycHOMyi2mk16mrx0ROWSM5pY0c6Zvuy68ZIIalsFlJba1lclMlGS01qIZwijgKs0TKIZ8QyhInoJs/g8z0KKYkhpCREIyHxr00fENpFftve5SarzY6XW5SqVkTP4lvfIYefBoPeGgUJEb4ERXs3U9Wg309CPb9kch66VTDvrN6G1vYe9ODVH0yOBMHHCJo8U/8kT+8toVPNztXA4/paOa8ujwS651Hgo9CFeRPzJVnE/u78/CIi3Tvh/4E/yvk1gCogamiKB44Zv5Q5HYicBCwiqJ4/MwnT2JMGBG5FQT0yTEEnbGYgzYV/9xbS6moQBxhR3TJ9Dj+dOV8piSFjuXUxx0deSWUvf055e9+RU+V+96yP4UdgTalmhaVlhallm6ZnGBjF/EdTSiGGu2USPCaO5XEK84i4tzTkOtPTM3yL8Xn1myx8e2eYt5el+XUDP4oFHIpp02LQ6OU0917jLdmr6V/2mOyYDJbRyw69WuDWikjMsiLqCAvIoO9iQr2IiHcQWijgryGjHRbrDbeWHuQx97ZQn3L0J0zT62Sf92xgvMWpgyY35aVx4E7n6Dhh53Ozy80kMn/uI+wc06j4t0v2fv7h7B2DdYX9J87hVnvPIk28udtEyxWG29/k8Xf3t7itiWSwmYlqKeT4J4O5vnImK6XYC+tpKuoHNyoPxsNjFIZTSoPery9WXb+AoKnpOCVnog+IWpcSIa1p4fd1/2FivfXDv0bJBJ8JqeQcv8NhJ95ypiPeyzG0i6JokjrvsOUv/sVFR987dKj9ij0STFMuPd6oi5a7vL6bc0q59KHPsG7tJSLi/cS1u28/MQgU7A2MpUNIQlYXXjFSiUCp0yN5aJT0zlrbhJKhQyb2UzH4UJa9h7u92ftyC0ekTfrT3F0ALZa50WtxpN6jZ5GtQfNKi2ePnomxjucASbGBzMxLpD4MN9BbUbznkMc/ss/qVu/zeVxtNFhpNx3w3GJ5I72Pqj+agM7L/8jlvbOQcvibriQyf+4f1ycDGy9JurWb6Xiw2+o+XKDW76tokyG79wpRJ25iKKQKF7cWcGmg+XDbqdVyVk0JYb5GQ6NiLTYwH7BJVfXyWK1UVjVwpHSRnJKGxyEtqyJivp2p8dQWi2kt9YwuamKdDcjtDaJhKa4BKQLZpN4wRImZ8a5PQB9LKw9RnIff5XcJ1/DbhrsRmEHNofE81n0RLfr1d2FUi4lKcqPjLhgkqP8+z9h/vpxG2wVRZHKj75h3+8fxOQkitum8eClxJmDvNsjg7y46FSHj31mQghtB46Q88hLVH/xw7DHDFw4ndAzFxMwZzJeE5Pcrnn/XyG3XTgsf6aJorj/mPlDkdtTgG+BVlEUx1c29yTGDaOJ3B4Ls0bDYY0vhV4Bfem6Xv0jaYIw9Ht51aIUHvzdIqJDvEd9/scDoijSWVBK/fc7afhhJw0bdx83GwRXsEqlNCZNQJwzHe+4CAKjggmNDSEiOhhfT824RrZOFLk1W2w0tXf3ydUbaGrroaFPvv7o/Ka2H5f/xnnpsFArZY6R4b6R4iBfHUG+OiICvYgM8iQq2JtAb+2I7wW7XeSjDUd46I1NbqWFnzo1lpfuWkmo/4+2Gj01DRz60z8ofeszpw+5IJWSeNsVpD3we0S7yN4bHnAu+CKVkvbgzUy45zokLojAiYDdLvLxxhwefmMTJTVDCMiIIoHGLuI6mojpbCa2s5nQ7g6XKaknGhK5HH1yDF5pCXilJ+KVnojv1DSUvqNrY01tHey+6l6qv9wwLMmSqBR4JsUStHQucdech0fs6CIGRzGSdqm3qZW2g7m0Hsil7WAuLXsOOa3l/il8JqeQct8NhJ11yrClIT3V9ey45VEaP/vW6XKLVIb24rOoXbSILUVNbMuucFlzL4giAcYuojtbSLF0MlnoQV1V7bRD7y7aFSrKPPyo0nlT3ZdN5LR0ZgiolTJSYwKZGBfExLgg0vt84DUqOY1b93HoT/8Y0j5IGxlKyn3XE33l2UgV4xPTGMv7yVBWxdbzbnVqGeQzJZW5nzw/ruUP1h4jtWs3UfHh11R+tRHBzZInj4RoFHOm8oPEizcqejBY3GtPdGoFU5JCSIryJzbYk86GMnotdlTeYRRWt5FT1khBZfOwabq+RgPJ7Q1MbKkmtbVu6EH4PogSCdqZmSRefiaxq5ag8B69fZUoilR/9h37/vA3jJXOAwslej/ejZ9ChYfvqI/zU3jpVJw1L5nzF6UwLyNqTPZII4GxoZm9N/6V6s++G7TMhsCXUWmsjUxBFCRctXwST/5+CTonYpdt2fkUvfQe5e+tcTpo/FPItBp8Z0zEf3Ym/nMm4zdjoss69P8VclsAxAGXiqL4/jHzhyK3DwP3AwdEUZxyQk70JEaMsZLbn6JHKu8nunneQVTpvJHJpS4bV7lMwvVnTeWeS+eOm1z9eMNutdJ6ILef6LZn5x9XsY6hYBUEeuRKTGoNdo0GtBqkOi0yvRalpwdqH0+0vp5ovXSo9To0nlo0eh06bx0qDw1StQqJXIYglSJIJUhkMkxmM5u3bgWZhFNXLkerd+0NaLeL9JqtGE2OKGm7wSEA4xCC6aXN4FBrbe/qpam9p997ram9e9hast8aJBIBvUaJXvvjx1Or6p96aBX9f+u1Kjx1SvQaJX5eGoJ8PfDUKsd1EEMURdbtKuKB1za65RmsVsp47IZTue7MKf3nYTF0k/fka+Q99To2o/P/p/+cyUx98QG80hJp2XuIbRf8wWm6si42glnvPX1ChNVcYbhrIrPZiOtsIr6ziZgOB5kdyt/6lwqPhCj8ZmTgN2MivjMy8EpLGJFqbW9rO/tu/CtVn3yLaHMvnV+QSpDptKgCfFGHBaL09ULh7YnCxxOZVg19olCCIPxILAUBJALYRSxmE4UFhQAkJieh0KgBAVuPEYuhB2tXN90VNbQdzKOnut7t3yJIJAQunknynVcTdOrsYZ8xq7GXgn++Tc4jL7mMyu0MjGJ1zCSsXl48f/tyLjwlDZvNzoHCOj7ecIR1a3ajq6oiuquFqHGok5XpNPhOTcN3Wnr/x+zpyeGSBrKLG8gurudQcT255U0jVpH/KQQBYkJ8SIkJIDXKn6S2ehTvfkz3Qeces+BI706+4yqiLj1jzBZ4Yx18tfWa2H/boxS/8uGgZUpfL2Z/8CxBp8wa0zk6g6XLQM57X7P9+Q/wyM1zqprrFBo1hrhYDqm82WRRU+7hg00yvgN/erORpLYGktvrSWprcGntOAiCQMC8qUReeDrh5y5B5e+eNd1QaM8t4dsr78O6N8vp8g65itWxk9gZGO00S1CjkiOTStzWqlArZSyflcj5i1I5bVrsqNWpxwpRFNnzwgfk3vEYSvPgcy/1CWLCyw9zzqp5w+7LYuim8qNvKHlttdOSH1cQJBL0ybGoAn0dInE+Xo72WaemprWFpc/85eiqv1ly+2/gd8BaURRXHjPfKbkVBMEPyAV8gadFUbz7hJzoSYwY401uf4ouuZI8ryDy/YIpCQijWnCeSuKpVXLnJXP4/TnTxs3P73jipzYL7YcL6cwtcSsl6ZcOi1SGSa6gV6mkWedFndaTao0n5UoPKlT6Eaeh/xIhCKCUy1ApZCjlUhR9U6VchrLvu9Vmp6fXjMFooafXTFePid4+eyyFTEpcmA8Z8cFMTQ4lJtT7GNLqUJIdi5jDeGNLVjl//c/GYS0pjmJKUgiv33c28eGOUXK7zUbpG59y6M//dGklog4NZOLfbif6sjMByH/2TbLveRq7ZXAnPubqc5n8j/tGrF46njhS2sDdL3zLxgNl/fMEUSTc0EZKWx3JbfXDlxL8SiHVqPGdmobfzAz8Z2fiN2uSWyTEajRy4M4nKXvrM2zdY7ObOtHwmZxC1CVnEHnh6aiDA4ZdX7TbKX/vK7Lve9ZlmUq1hzf/jZ1CkZdjf4JoJ8Bo4NJ4L84KU9OdV0zrviMYa51b6LkDQSbDe2LiACLrkRjtVqaDyWwlr6KJQ8UNZBXVc6jEQXq7esY4QCOKZHY1ck5VDsFNrkt4JEoF4eeeRtw1qwiYP21UwonjlVlU9s7n7Ln+gUGDcoJEQvqjf2DCH689bu113uEy3vjTK8i27iKpvR7ZCPruZomUaq0XlTpvKj18qNI6xCwNcuWwmieCaMent4cAYxcBvQZCujtIaq93mVLvFBIJgQumEXHeEsLOPnXcdEG6Wjr47LqHED77GqkT4m9D4IewRL6MSsMoc0QtvT1UhAd6ggiVDR3DakQchVIu5ZSpsZy3MIUVsxOdRkFPNDbuL+Xiv65G2tzMNXk7SOgY/F6Ve+mZ/upD/WJT7qD9SCElr31M2TtfuiV65gotWLiF/nfjb5bcTgV24yCy14ii+Ebf/EHkto8sfQpMAazABFEUi0/IiZ7EiDFqcjtczrELNOs8yfMJJtsjgHyvQIzygY1MqL+eh69dzIWnpP5iiIG7EEURU0sbPRW1dPd9DOU1lGcXUX6oGHW3Ab25d0hxqV86uuRKcryDOeITTI5P8GAj8uMAbw8VEkEYVthnanIoqxalkB4biFop7yepxxLWo1OZVDLg/ursNrEvv4ZdR6rYlVPNntxqt218AOLDfVk0OYbFk2OYPykKvXZ864FGi22HKnjkzc1sdqOeCxzR5vsvn8fdl85FJpVgt1gof/crch57ha5C5/uQaTVMuOdakm6/CplGTW9zK7uuvJfatZsGravw9mTaqw8Rcd7S0f+oMaK5o4eHX9/Ea2v2Y7eL+BoNpLTVMaHNEcXwsI5CrVoQUIcGIJHJMNY1jSm99OeC54Q4fKak4jUxCe/0RPTJsUj6BhoFQUC0i9jNFuxmM3azhdr1Wyl+9SM6c0vGVBd6PKGLCSfqkpVEXrwCz6RYt7er37CTg3f93Wk6Kzg6nUm3X4khJJTXXl6LvKaGMEM7od3tbtUoDnlstQflHr6UefgiT03kkpvO4KzFE8ctZdJuFymvayOrL7qbXVRPdknDsGrgTiGKpLTVs7L80JA+wQCSsGACL1xJ2g0X4BsT6vb7fTzLZtoPF7D13Fsc9fA/QdjZpzLzzcePq9bF/oJaXvtgC4WfbySxvpK0llo8LaPLaDpad9+mVNMjV9AtU9IjU6Cxmh1k1tiFX2+3+xHjYyGVErh4JpGrlhJ25uJxidAeRXN7N+/f+yLyN99D3+s8GJDnFcj7cVOo0Tk0JCKDvOjs7uVAYZ3bSshalZylM+I5c24yS2fEuS1mdSLw2pf7ue2fX/drggiineUVOZxRcRipk7Y0eNk8NKGBSJQKpColUqUCiUrhmCrk2IwmrN09WA19n24j5o4uuitq6K1vwdLR5XbGzVH8T5BbAEEQXgRuwEFmPwU+Bj7o+/uSvulpwIXAUfnEJ0VRvPeEneRJjBjjEbkVZFIkcrnLNEVXsCNQpvclp89HtkTv159+MzM1nKdvXsqkhOARn88vER2GXv7w3Dd88O0htBYTXmYjnuZe9GYjwT2dzFdb8Kqtcatu4pcCO5DjHczWkDiyfMOwuTkqL5UI+HtpCfDW4u/tmAZ4a/H30hLorcPfW0OAt65/nkIuRRRF6lsNZBc5zNZf+GS3y5fcadNiue38mUydEOZ0hLan18Lh0gayCus4WFjHgYI6jpQ1jFv/XCoRWDQ5hlWLUjhjThKeuuOjJjsUduVU8fAbm9iwv2z4lfsQ5KPj7T+fw9yMKGy9JkpeX03ek/+h24VliiCREHvNKtIevLl/NL9x6z62X3Q7xprBKb7+szOZ9d7TP5vFj8Vq4+XP9/LYm5vwqa1hYks1Gc01Q/pSu4I6JAC/mZPwTIlFtIs0/LBrROlg7kCm1yFVKbF0dmHvHQVZlkiOmlSP63n9mqDw88Z7YhL+szPxSo3HMzUBj7gIl6JH7TlFZN39d2q/3ux6nz6eWHt6sfeO3bJL6u9DnV8QO0wKSnQ+lHv40ONEKCcuzIfbL5zFxaemH7c0ysY2h7VZdt/nUHEDhVXN7t0+okhyewNnlB9yGoE6FnYEKjx9qQ4MpSUyGmNcLB4B3vh5atBrlX3ZNDIUfQOTEsFOYX4ecqnA1CmZ6HUalHIpXh5qAn10+HlqkEjcHwg3d3Sx64o/OhXj0SdGM/ezF/BMdn8gZDTo6jGxemMOb319kIZdh0hvqSG9tYboriHq/Y8zJN6eBC+aQdjy+YSduXjM6eQ/RVltG//+5yeo/v02cW3Oy2JaFWo+ip9Me8YkdFolVQ0dQzoo/BReOhXLZyVw1rxkFk+J+cVlAVptdu556TteXL0TD7OjH+hl6kFvMRGtlbIyWIlx864hFd1PFP6XyK0UeB24DIYMPR1tZd4EfieeyJM8iRHjuKQlSyRIFPIRv/x7JTIKvALI9Qkm1zuIOq0nV6+YzAO/Wzgq5b1fIj7acIRbn/3aaTpNSoQv/7pgEv71tbTsPkT9hl0u/d0ArLHRdMXF0WMTMXcYsBm6obsHSU8PEosFqdWKwmZFYbc5PjarW2bro4FBpaYgKY3KGbNQBPrj7aHCR692kFQfLQF9ZDbAR4ePh3pEnRFnyCtv4sanvmJ3ztDtbYifB/HhvsilEupbDdQ1d43I2mWsUMilLJkex6qFqSyfldBvn3O8sDevhkfe3MS3e0pGtN38SVG8+adz8FUIFL/yIXlPve4y/RgcI8mT/n53v2ek3WYj97FXOPzA84O9awWBlHuvJ+3Bm0dU5zme+OaHbN546A38C/JJb63Fw+J+22RHoMk/kKQlMwlPjMRutdCZX0bL7my3RItO4pcFQS5D6ePVZ3ljw251WN9gt2MzmYbu3YwBUg8tftPSf6yVnZqGOjQQQRCoaerk5c/38p+v9g+pTRDkq+OWVTP43YrJJyQ7pNtoJq+iaYBdTE5ZI41tLgZhRZGEjkYW1hQxqbnKrfeNHajSeVPoGUCp3o92pZouuYouuZJuuWJYQSypRMDfW0tEoCexoT7EhfoQE+pDUqQfSZH+Tq1zRLud3MdfJftP/xg0+CPTaZjxxmMnLLukrcvI3jxH1lDWnnxsWUcIrKkktq2R8O7243ZciVZD4IJpBC+eSeDiGXilJowqbXw4FFQ28/dX1sPbH7KgutCp+J5VkLA5Lo1tyZOp7BxZvzE21IdlM+NZNiOeOemRbnkCH0/YrVaMdU10V9TQXVFLT0UtPdX1dFbWk7u/AKG1Dc9fQQbf/wy57T+oIJwL3AtkulglF3hEFMUPTtxZncRocbxrbseCNoWaXO8gyoMjWPF/53Htlaf0y97/mlHV2MG1j3/hNFVUJpVw3+XzuPPi2UgFqHjvKw795TmXnWhBJiP2mvNI/fNNaEICByyz2ex099njGHpMjml3L3aro0Nns1qxW230dhvJzsoCq5XkqBikZgt2Qw9icyuSqhqoqMJWWoG1dngRIolSQdz1F5Byz3Vu1bWNBXa7yCtf7OWv/9notpjESBEWoGf6hDDSYgOJCPCgsSIfpVwCnhFsza5m08EyWt0ky1qVnOWzElm1KIVTpsa69CscDbYfruTp97bzza6iEW/7x0vncNfydEr//SEF/3h7yDod74xkMp68i+BTZ/fPM9Y1suPSu2jYsGvQ+qoAX2b+9+8D1j9R6G1qZd9/PmP3q5/gX142ovS8erUHpXpfetVaZiUEEtrRQtvBXOxuqp+exP82OuQqh2qxzotqrRelej96fHx54JpF3HDWVJcpxt1GM++sy+a51buGVDL31Cq5ekUmN54zjfCA0avUjhaNbd3kljVSWNVCYVULRVXNFFa1UFHf3s8VdeZeZjSUM6+ueFTZEeAYWDLIFXTJVfTK5FgECVaJFKukbypIsEokWCRSjFJ5f3put1xBp1xFl0qDf0woCQmhpMYEkBIdSGpMAJFBXkgkAnXfbmP7RXc4bfOS7riajMduP27+vUNBFEXaDb3UldXRtPcwloISzPklGHOLMFdUD+lB7QwyDy0ecZHoYsPxzkgmcNEMfKekHtffVlDZzONvbKT53c9YWXYYnQshvsM+wbwfN4UGjWshy2Mhk0qYkx7B0hnxnD4zoV8X4kTB2mOku7KWnsq6vvKzGror6/rL0Xqq60ecAvxLxP8cue0/uCCE4KirDQCkQAtwUBTFkYUMTuJnxVDkVhsdRsjSuagCfGnPKaJ1f45T1dMThWYvHyIXzyD9rAUEzJ2CJiLkV1eXexR2u8hzq3fxwGsbMFsGN4SZiSG8ds+ZJEf5YzOZKf73R+Q8/KJLlWapWkXiLZcx4Y/XjliS392aJkN5NXXrt1G3biv13+8YMnVGqlI6SO79N45rvY4ztBt6efXzvfzrk900tY8+nUcuk5ARH8yMlDBmpIYzfULYAPsbZ9fJZrOTVVzPhn2l/LC/lJ1Hqpz+P38KnVrRVw+UxNIZ8aMSuLDbRdbuKOSZD7aza4gItlQiOPX79fVQ8dJpMXhv2071p985FX46Cr+Zk0i5/wZCTp8/4Jmr+3YbOy+72+l9Gbh4JrP++/dxEyBxB8b6Jqo/+46SD76hZeteBDffkQaZgkqdNz0yBSqbhbDudrzMY1f3lnvpiVi1FN/pE2nPzqfq0+8w1riv7Purg0SCVKVEplUj02mQe2iR96VXSxRyJH01YhKFHGnfVJDLkMhkCBIBjionCwJWq5WyinIAoiIikYpgt1ixWyyIFit2ixVLp4GemgZ6KmrobTzxKZ1yTw/0STHokxz2S94Tk1AnxvDwF9m88Mlup9tMTgrhxTtWkB4X5HK/Vpudzzbn8fT728kudn2/yKQSzl0wgVvPn/mLKOHpNVspqWmluLqVqoYOKhvaqWrowHQ4n8iD+0irKkFlt57w8+qRymlRaWlW6WhWaenUe6GMiSBwYiKJYd74Pv8SlrzB0jB+syYx+4Nn0Yb//Nf2KOxWKz3V9RhKqzCUVmNqbMHc1kFPUxvVBUWgVBA/eyreybHoYiPwiItE6ed9wvpKhZXNPPb2FvI/Xs+qov0EGZ3XcjepdLwfN5ls39BhhbHCAz1ZPDmGU6bGcsqUmONa6mPrNdFdUeO4vmXVdJdVYyir6Y/Empp+vtTxn0IilzmyP6RSLB1dDu/cEfBCQSLBKyMZhZcHUrUKqVqJVK1CplbRYDJwxlvPHl31f4fcnsRvA+5EbuVeejKfupuYq8/D3NZB24FcWvYepuil912qSJ4IKHw88c6cQODC6QTMn4Y+Pgqlv8+vivAeKW3gmse+cNqBUcqlPHjNIm4+bwYSiYDF0E3BP98m78nXsHQ6l+6Xe+mZcPc1JN5yGTKte9ZKoxHssPYYqfx4HSX//oim7Qdcrif30pP21/8j4aaLj/sIeE+vhTe/Psi/v9xHQeXQtWKCAIkRfkxKCGZSQjCTE0PITAwZMprqznUyGM2s3VHI6g1HWL+n2C3xC6VcyqlTYzlzbjKnz0rARz/09TeZrXzw/WGe/XAnBZWuRVzkMonT43uYe7nQ3syChlJ6y4ZWTw5cPJPU+28gYMH0Ac+V3WLh0F+eI/fxVwdtI0gkpD10ywnzrjXWN1G5ej1Vq9c7PDjdfC+2y1V0y5XI7Vb8ersZr5wQiUJO6MpFRF2ykoD5Uyl7+3PynnrdaR3ymI8ldxBEu1RCe68VKwIiAkqbBaXdNvoyBEFAqnHch7YxKsALUim6mHB0cRGOaXQY2qhQ1MH+fZ8ApKrBKbbuPG+2XhPGukaMtY10V9XTVVBGV3EFXSVVGEorMbd0IFrHSKYEAW1kSD+J7f8kRqMK9HP5vlmzvYDfP73GaQqvVCJwy6oZ/OnKBUOWKoiiyPd7S3jq/e1syXJdogIwd2Ikt54/g2UzEsZc9nG80NXWSfH6HTRs2UfnroNYjxTAEINqJwK9EhkNag+UdqtTIqbw9WLWO08Ssmz+z3B27uNE+dU7g90uklfRxBP/3crur7azqmg/E9qdD8qYJVLWRqSwPjwZi9T5+9ZTq2R+ZjSLJ8ewaHI0saHj168T7XaMtY395NVQVo2htMpBYkurxqRsPlIIUimqID/UQX4o/X1Q+nmj9PdB1TdV+nljM5kpePZNWvYcGpdjKrz1BC6eSejKRYQsn4/KhQf6/4TP7Un8dnEsuX1BnYyX0XXUKXjpXKa9+nD/KKbV2Ev+06+T89ir2Hqcp2bKvTywdHbDT+vwjhOkaiUe8VHoE6PRxUXiEReB79Q0PFPij0s9yXjAbLHx+DtbePLdbU4jbDNTw3n5rpUkRPgBYGppI/eJf1P4/H+xuahrVgX6Ef/7i4m/4aJhI6djfSl25BZT8NzblL7+qcvonz4phsx/3EfIkrkj2vdoYTRZKK1to6iqhZKaVkQg2EdHsJ8HQT46IoK8RhwtHel1ausy8uXWfD7emMPGA2XYnfxvfwqZVEJKdAC+nmq8PdT46jX49H9XU9vSxUuf7R1S2VSlkGGyWAdwPKndTlJ7A3PripncWoNkmLSp0JULSbnvBvxmZAxa1l1Zy/aLbqd5x2ABJU1YELPef5qAOcfX2txi6Kb6s+8o++9XNHy/Y3CdrxPYAVEiQXo82iJBIGD+VKIvPYPwc5eg8NLTsGk3Oy//45ADgEJYAPKzFzDnslWo1I5ohLm1g468EjrzSqj44Gt6GwYOYAgyGTPeepyoi1YM6PB98P1hrnr0swHrRnireX9eEK2fr6d1f86YhEpkWjVStQqrsXfcbYBkWg1yLw8Unh7IPT0cKs1SCS3t7SAR8NHpsff0Yu02YjV09017RixiOBIIchlBi2YSd/35hK5cNKp68dZOI/e/8j1vfu1cbCwq2Iu/XLWAVYtShy252ZNbzdMf7OCrbflDjt9Eh3hz1fJJXL40g0Cfn89qyx3Yek207DlE45a9NG7Zh6GsGlNTK5aOUSg3H2eUJ6XQfupifKamERHoRXiAnoggL0L99b+IcqnjTW5tNjtVjR2U1LRSUtPWN/3xo+nu5qyybObUl7gcKNznH8FHMZNoUQ+8L3VqBdNTwpiTHsGiyTFkJoaM+ZpaOg20H3HYNHYcKaKrqNwRiS2vOSHlJTaZjCa5mhaVlhallnalhnalGs+IIP5y5znETIxD6e/j1gCwKIo0bNhFzqMv0bDReUbIaCDIZMh0GmRqJRKVEplahUSlRKpS0CxauGTnp0dX/XWTW0EQVomi+PG47nTg/sOACFEUdxyvY5zEyHAsuc3dfxDJtkMUvvCuS9sPuV5H5jP3EHP1ef0dq57aBrLve5aytz5zuo0uNoK0v/4fos1OW3Y+XYXlGEoqMZRWnbAaNoW3J36zMwmYN4WAuVPwzpyAVPHze50di715NVz7+BdOo3FKuZT7r5jPbRfMRC5zNIY9NQ0ceegFSv6z2mWNh0SpIPrSM0i87Qq8UhOcrjNeL8Xuihpy/vYKJa9/4jJaErJiIZlP/xF9QvSojvFzYizXqaHVwOdb8vh4Yw47DlceFwFbD40Cm02kx+R4pmR2GxPa6pncVElGc7XLmqejkCgVRJy/jOQ7r8Y7PcnpOtVffM+uq+7D3Da4hi5kxUJmvvkYShcjwWOF3WKh7rsdlP/3S6q/+MHlgNp4Qunrhe+MDDwnxFK3fhvthwoGraMO9mfWe08TuGA6ADaTmUN//gd5T73uMorsMzmFuDuu5ojKgiCRuLyfemoa2LzyBtoO5g6YL0ilzP3kOcLOPGXA/LtfWM/zqwd2fuakR/D105chl0nprqqj5N8fUbNmEx15JWNS/JWoFKgC/ZDrdfRU1WNp7xz1vn7pUAX5E3XJSmJ/d96olHS3ZVfw+6fXUFjlvKwkOsSbOy6cxaVLJg6rhlxc3cK/PtnDO+uy6Ol1/f6UyySsnJ3ENSszmT8p+hcbzXUGm8mMqbkNU1MrndV17NuwBdFkJik2HqkoYjeZsZkcllQ2kxl7rwlzexfmtg7MrR2YWtox1jcdFy/mEr0fP4QmkO0bRq9MjkQiEOLnQUSgJ+EBnoQHeg76fiJsaMbjPW612amsb/+RwNa2UlLtIK9ldW1OM4FUVgunVeWxpCrPZcp5mYcPH8ROprjPDzrQW8us9AhmpUYwKy2c9LigUZNZURTpKiqndX8O7Yf7yOzhQpcq/+MFhY8X2ohgtJEhaCJD0EaEoI0MoVvvyW3v72VLWdugdOvTZ8bz5p/Ocet+6G1soS07n44jRZia2zC3d2Lp6MJQVk1nXgnmtuPb3v6mam77fGtzgIfGk+QKghCBQ4TqKuBvoig+NF77Pomx4VhyW1hYSHx8PKLdTv0POyl8/h1qvtrodLvgpXOZ/u9H0IT9WDfUsu8wB/7wGE3b9g8+jkxG+sO3knzX7/pHquw2G8aaBrK3ZPHma+voLqvCx9SDp6kXT7MRL7MR7TAd8tFCqlbhNzODsLNOIfLC5ce9LtRdGE0W/vqfjTy/epfTfvHEuCBeumvlgPqqzsIyDv3lOSo//HrIfQedOpvE264gZOncAVHs8R7xNZRXk33/s1S8t8bpcolcTuKtl5Hyp5tQeHqMaN+iKFJU1cLBonryyhvJLW8iv6KZlo4eBBx+nIIAfp5aFk+NYeXsRGalRYzLyPp4XaeGVgNrthfw+ZY8Nh0sx2obv0iiwmYlrbWWzKZKJrbUoLYNn5LpOSGOuOsvIOrSM1zaP9hMZrL++HcK/vn2oGUSuZyMJ+8k8dYrxrUkwGLopiO3hPZDBdSu3UT9DzuPq1WWIJXiNTEJvxkT8ZuZgd+MDHSxEf11xc5qrYKXzmXm20/2tx/tRwrZceldtGfnOz1GwIJppNx7PUGnzqa3t9et+8li6GbHJXdS8+WGAfMlCjnzvniRkKXz+udZbXaW3/nOoBTWG8+exjO3DFZ/NZRXU/rW59St20JnbrEjy2Y0kErwTI4lZNk8EATaDubRmVdCT/Vvr7449IxFTLjnOvxnThrRdiazlb+/t40n393mslwhxM+D2y6Yye9WTB5WWb2108hrX+7jpc/2Ut/qvEzlKGJDfbhq+SQuOjWdEL+Rtbk/N8bS7lq6DBjrmuiprqe7vAZDaTVN+WW05pdiLq1EMobIv1UQKPYM4LBPMId9QqjRermsHQ3y0TEh2p8J0QGkRAUwOSmElOiAcR1wGM11EkWRQyUNrN9VxLrdxezLr3HbR1Zms7GgtogVlUdcqs+3KjV8Ep1By5TJzEqLYFZaBLPTI4gJGX0NsN1qpe1gLk3bDtC4dR9N2/YflzpYpa8X2ugwRxlFdBi6qFA0kaFoI0PQRgQj9xicFbH9cCWXPPAxDU5KEf5wwUwevnbxIDE5u81GV1E57dkFtGXl0ZadT3tWHsa6oS21jjd+a+S2AIjHIYZfBbwHvCuKonMn86H3pQXOxuGBuxiH6JQduEIUxffG7aRPYkxwRm6PRc3aTey59k9OHzS5pweZz95LzJXn9DdUoihS9tZn7Lv5YacpcAELpjHrnb8PIMXgqNn48IcjPPTGRsrr2n88hs2Kp7kXL1MPfuZuYiRWpM0thPZ0EGDswsNiGnOtnCCVErx0LlGXnkHYGYuQaU5crYorbMuu4Ponv6TUiWKmVCLwhwtncd/l8wb4uLUeyCH7/mepW7d1yH0rfLzwnpiIV3oiXhOT0CRGs7umFEEhH9d0pqbt+9l/66O07nfefCh8vIi95jzib7gQXXS403VEUaSwqoUtWeVsyapgW3bFsB25n8LbQ8XyWYncev4MUmMCh9/ABY5H2ldbl5Fvdhbx2ZY8vt9bQq95hPWBokhQTycT2ur7PnUo7cMLWklVSiIuOJ24687Hb+akITsanQWlbL/4TtoODP4/aqPDmPPhs/hOTR/ZeR8Dc1sHXSWVdOaV0H6kiI6cYjpyio6rzY5JKkMSE0nC/Ex8JyXjPTEJ70kTBjz7dpuNww88R86jLw/aXpBKmfi3P5B85+8QJBJEu52C598h649PYTcNHpALmD+NiY/dPoAQjeR+stts7L/lEYpeHPjqlKqULPj6VQIXzuif19Tezazr/01148CR/X//8UwuXTpxyOtiMXRT+dE3VH+5gdb9RzDWNo24pESm0xB21ilkPHYHcr2Ojtzi/pRAQ6mjrq2nup7euiaXZRUjhVStQh0S8OMn2B9VoB9KH08UPp4ovD2x9RipXL2e+u93YOk2og70QxXgqGtT+Hih8PEERDqOFNHww64hBdYA/OdOYcI91xGybN6IOur5FU383zNr2X6o0uU6fp4abjx7KuctTOkvR3EFk9nKxxtyeO7jXRwuHbquWxBgTnokqxalcNa85F+Fxd7xSrcVRRFjXSOdeaW0ZudTuT2Ltqw87OVVCKMoXWhVqDniE8IR3xByvIPplQ09OOGpVTIzNZxZ6REsmBRNZkKwSxVtd+DudersNrFhfynrdxezfk/xkCUuziCIdmbVl3Fm+SF8Tc7LHMwyOc1LTyP25suZNSVuTOnxdquV5p1Z1P+wk6Zt+2nZlY11jDoA4Ggz+olrdBi6mPAfv0eHIde7f86iKPLqF/u481/rBw1Wq5UyXr77DM5flNq/bldxBfXfbqfu2200bNx93AZtpSolutgI7GYLlo4uLJ0Gt9vc3xq5lQG3APcAfvzo+FYE7AL2AgeBRqCt76MGfABvIAGYCkzr+6j40ff2G+CPoigeGdeTPokxYThyC47O5/7b/kbZ25873UfwsnlMf/XhAYS1q7iCHZfc6bQIXuHtyfT/PEr42acOPpbFxutrDvD4O1ucjn4dhUoho9dsRRBFAoxdpLfUkNFURVxnM7Ix+IfJPLREnLuEqEvPIHDh9J+1Tren18JDb2zk+dW7ndZrxoX58Nxtp7NwcsyA+a0Hcyn459tUvLdm2A5aPyQShGBfPAP8HSqmMimCTIYgk/Z/lyoVjvqMPhVUmYf2x+86DQovPaoAX4cQgr83UoUC0W6n9K3PyL73mUG1g/0QBEJOn0/05WcSMH8a5UaRLVnlbM12kNmh7oORQBBg1cJU/nzVfOLCRm4fcLw6WTabnR/2l/LvL/ezblfRsJFcvdlIcj+ZrcfHRQfDGXwmpxB95TlEX7JyWFVtURQp+c9q9t/6qNMU4IjzlzHt1YeHjb6LokhvY4uD4JRU0VVcMWA6lPXQWGERJDSqPajX6KnRelLv6cu8c+Zx221n4+PpumNvamljxyV3Urd+26BlmvBgZn/wDP6zHG54PTUN7LrqXuq/2z5oXYlCTsbjd5J46+WD2pKR3k+i3c6e6/9CyWsDk6pkWg2LfngTv+k/EtcDBbUsuvkNTMcodyvlUjY8fxWZiSFDHmfAMUWRph0HqfhgLY2b92AorhxRnatXRhKZT91D0OKZTvdt6TRgrGvE3NaJpb0Tc4cBa6fBkZbaY6QgNxdsIkkTU1F7e/WrMDumWuR6LergAOR6nUuC2bw7m7yn/kP1p9+5VZstSKVEXXoGHglRVH/+Pa17Dw/9G9MSSP7jtURecLrbdbmiKLJmeyFPvLuV/fm1Q66bHOnPGXMTOXNuMhnxQS5/pyiK7M6t5j9fHWD1xpxhB8qkEoGFmdGsWpTKGXOT8DqOCrRjwYkWSrIae2ndd4Smrfuo27SHxq37YISDMFZBQq53EPv9w8nyDcOgGP7aenuoWNAnojQxPoiEcL8ReRkPdZ16ei18vOEIH3x/mO2HK92Ozg6AKDKpuZqzy7JdWjuJgkDEpWcy+fHbB1kTjgS9Ta3UfrOF2rWbqPt2+6hLHgSZDH1iNF5pCegnxOIRG9FPYIcSgxvRuZqt3Prs17y9LmvQsugQbz586HwSfdU0bNhF3bfbqFu/7YT4owcunknaQ7cSMGtghonNbMbSacDa2Y25o8uhXdBrwmbs7ZuasPWaKK+s5LS//fHoZr9uctu/Y0fU9Sbg90BE3+yRHOzoHWMDvgD+Lori+FVBn8S4wR1yexQ1azay57o/ux3FtVssHH7wX+T87RWntWdJt19FxuN3OFXRNRjNvPDJbp75YMeQHqYCA29Mhc1KUls9k9rrmdXbjKzZeY2TO9AnxZD0hyuJuuxMZOqf78W/N6+GG//+FTllzlX8zpqXzOM3nkpkkNeA+cb6Jopeep+il97/WeTrj6b1aKNCUYcEYCiupP67HcMS7lqNngKvQEr1flTovKnXeGIbx0EGqUTgsqUZ/OnK+QOsfobDeHeyKurbeWddFm99kzUoynYsvEw9xHU0Ed/RRGJ7A+Hd7e4fRBDwnzWJ8HOXEH7OqWgjQ93azNTazp5r/0zVp98OWiZVKcn8x33EXXfBgM6BtbuHrqIKOgvK6Cwso6uwnM4Cx/R4CsTYgTalpp/E1qv11Gsc31tUWkRBgiDAuQtSeOiaRUSHDF0T3Howl63n/J/TDkjoGYuY8cZj/enblavXsee6vzitQfZKS2DWu0/hlZbo9DijuZ/sNhu7rryH8v9+OWC+0t+HJbs+QhfzYwbEu+uzuebxLwasFxagZ8cr144pYmesb6L0jU+oeP9rOnKL3fJ0VAX5kXzXNSTedgUSN5/lsTxvot1OzZqN5D31Ok1b97m93bGQaTUk3XEVoSsWULl6PSX//tjp//kodLERpP7pRqIuPWNEJHfD/lKe+O82tmYPrYYMEBHoyco5SSzMjCI1JpCIQE+nHfS2LiPvfXuI/3x1gLyK4dMbZVIJM1PDOXVqLKdMjWViXNAvpkb351QBBgfROvzX5yl6+YNRCWPaESjwCmC/fzgH/cJpV7rnYgAQ7OdBYrgviRF+JET4kRjhS1KkPyF+HoP+786uU3F1C69+sY931mXTbnB/UMpTqyQ2zJfIQE9aO7oxbt/LKQUHie1y3Z8KXrmISX/7g0ttj6Eg2u20Hsih9uvN1K7dTMvewyOytAFHXbz3pGS80hIcn/RE9IkxSJXHT1uluLqFKx75jAMFAweoJHY754epuDFSSfvm3bTsPjQq71upWoXnhFis3UY6C8tHdf8FLppB0h1XE7xkzojcC37TasmCIEiAU4HzgYVAlBubGYE9wFrgPVEUhx6WPImfFSMhtzB8FDfk9PlMe/VhNKE/jto1btnLjsvupqdy8K3gP2cysz981uUoX0tHD0+9v51Xv9g3pHiGU4gi87Q2bvS2IG7aPmorDqW/D/E3XUzCTRejCjixhuFHYbbYeOq9bTz+363ORR0UMu64aBa3Xzh7UK2WrddE+XtfUfCPt2g/XHiiTtk15PIR2T9YBAlVOm8qj348fLCEhzEhMZTkKH8mRAUQGeSJRBCwiyIWq53dudWs2V5AVpHrmj+NSs4fLpjJHy6YhdYN5eTx6GSZLTbW7ijkza8P8N3ekkHvb0EUCenuIK6jkfjOJuI6mvDvHVnkWpBICFgwjfBzTyP87FNRBweMaPuGTbvZceldTp8XfXIMk/7+RxAEugrL+slrV2H5ca+v7JArqdJ5U6P1pkmto1Gto0mlo1WlxSpx/tJWyqVcviyDW8+fSWzo8HX1pW9/zt7r/zIodUuQyZj05F0k3uaoK7Z0Gth3yyMuRfSSbr+KiY/+wanFzVGM9n6yW61sv+h2qlavHzBfnxjNqTs+GFA3fftz63jpsz0D1puTHsHapy5DIR+7TZPdbqfyo28o+Mebjg7pMIrgEpWSyIuWM/mZe1F4DT2wNJrr09vUStk7X1D8ygcuRRFHCqW/D2kP/B+RF6+g7M3PyHt6aFun0ZBcgB2HK3ny3W2s3z3Yb9UV9FolqTEBpMUEkhITwIToAEJ8PfDz0vSrwe84UsUbaw7w5bZ8unrc07Dw99KweIrDUzQzMQS9Voleq0SrUoyK9IqiiNVmx2qz9zsCHKuRIAiCy797e4189913wM9Dbo+iI7eYA3c+Qd03W8a0n2K9H/v8I9gTEEWHcnS/JchXx5SkUKYlhzI1OZTMxBDkEjvffvstdruI3TOGN785xPf7St3aX3SIN0unx7NkeixTkkKxWG28sHoXu179lEWFB4k0DC6POgqvWZlMferuEdegmzu6qP9uO7VrN1P7zRbXmV0uoE+KwX/uFPznTCZgzmS00WEnzAbSbnekId//6vf9/VJfo4GUtjpSWuuY1NOMdISCh+pgf7wy+kpkMpLxnBBL0/YDHH7wBXrrnQ9QeaUnkvbgLTRu3kPxqx8NKbKojQol7roLiLn6XNSBQ5c6wG+c3A46oCCEArOAMMAfRzpyL9DU9zkM7BNF8ec1LjsJtzFScnsU1V9tYO/1f3EZxZ38j/uIvuLs/sbG3N7JnhsecCp6pArwZfYHzwyoG/spWjuN/GfN/mFtUFzh9Bmx3JPhj7hxG5Ufrx9VKqREqSD6sjNJuv2qUSlmjgdyyxq54e9fsTfPeVpLeKAnj994KmfPSx7U0IuiSHd5NW3ZBbRn5zuECw4VYChxXft1vCHyY5rHSCBIpeiTY/GelIxP5gS8J03AOyN5UIpsZUMH76zL4rmPd7nMAAj28+Ch3y3i4tPSh+y4jYXcFlY28+bXB3n320MDfC+1FhMxnc3EdLYQ09lMdFfLqETU1CEBBJ0yi6BTZhK8bB4qv5ELpNktFg498LzDu9bJu0Xupcdq6Bm7b+gI0KTWsTMgml2BUTRo3I+ye+lUXH/WFG48e5pb9V42s5kDtz9O0QvvDlqmCvJnzsf/6Lc3aty2j52X3e00sqsODWTmW084TcP9KcZyP9nMZjavuGFQKnTA/GksXP+f/miFxWpj2R3vDKrvvGzpRF65+4xx7QxajUaHWvprH9NbP0xHVRDwnjSBCfdcS+SqZU5Xcff62G026r/bTslrq6n5csOQmSEyDy1x111AyNK59Da20FPTgLG2EWPftHV/jsuaNF1cJBMfvY3QMxdT+f5acp/4N535rsnDaEluVlEdr685wFfbCkasL3AsFHIpvp4a/D01+Hpq0GkUtHQYqW7soKap06ntnDvQqRXotcp+xdejpNVitWHr+94/r2/qjg2aOziW+KqV8n7S7aFR4u+lIdBHR6CPjiAfHeGBnsSEeBMV7D2kf7m7MJmtlNe1kf/GZxj+/iKCEyJhlMqQ2+3I3PCXtiOQ5x3IrsBoDviFD1ujOxQEARLCffHX2Miv6aa5a+guuFwmYe7ESJZMj2fZjHjiwhw+shX17Tz77lZy3/qCU0sOuUw/BtCkxDPtqbsJXjLXrXZEFEU680qoWbuJ2q8307TtwIjeJV4Tkwg6ZRb+cybjPzvzZxMBrWrs4IYnv2TH7kIS2xv6Ca0zj+ShoAryJ/i02QQvmUPgohmog/wBx+Bl2TtfcOThF+kuc84nlX7eTHz0D8T87rz+aGxvcyuFz71DwfP/HTKNW5DJCD/7FOJuuJDAhTNc/u/+p8jtSfz2MFpyC47Uxf23/Y3yd75wujxk+QKmvfJQfxRXFEWKX/2Q/bc8MsgCSJBISH/4Vibcc92Qda5mi43VG3P450c7OVQyskisVCJw9YpM7r1oFrY9Byh84T3qvx1cU+cOQk6fT9IdVw3ZOBwv2Gx23vz6IA+8toGWTucjdfMyIrn3snnMnxQ17Pl1Njbz/RvvIja0kZKcjFwiwW61IVpt2K1WRKsN0WrF1mvGaujG0tWN1dAzcNrVjam1A1Nz26hSZ2wIiILgVqdgKOhiI/oIbwrek5LxnjQBdaAfLR09/OOjnbz46R6XGQCT4oN54qZTmZsR5XT5SMlIT6+Fzzbn8sbXB9l+qBKp3U6YoY3YzmYHoe1qIXCEL8SjkOk0BC6c7iC0p85GHRfJjsNVFFa1oFbK8NAo8dQq8dAq0WuU6HUq9BolaqVsgPibsaaBjtxi2rLzKXr5fbpLj9/7S5BJEaRSp4JLx8Ku92CnXwQbvcIo8/B1qUDqDKH+em5ZNYOrlk9y236jp7aBbatuderb6zdrEnM+/ieakEBsZjNHHnyB3MdfdVq7GXH+Mqa+9FeXitM/xVgzAcwdXXw/9+JB2RhRl6xk5jt/7/8/N7QamH3Da9Q0DezwPHTtIu66eM6IjukuGrft48Btj9G6f3iJDalKSeDiGURdeibh556GtK9MZajrY+s10VVUTuXq9ZS+8emQXsLgGHRIuu0KYq89f8ga8Z6aBg4/8Bylb3zqsj7XZ2oak568i4B5U6n5agM5f3vFqbbEUehiI0j4/SVEXrzCrYjJUdjtInvyqvliaz5fbs13Ki54EsNDECDET09ypB8pfVHuCdEBhPh54Oup6VfSt1htVDd2UtnQTmVDBxX1jmllQwdltW1UNXb0j/n5Gg1ck7+DhI7Bg/smQcKegCjUNgtprbVuCfyZJVKyfEPZFRjNEZ9gbC4yUcaK06bFcuXpmZwyNaa/faxvNbB+VxFfb8ul47P1LC3PIaDX9aCKLDyEaU/eSeT5y4bVJOltaqVhwy7qv99B/Xc7RmTPI9NqCDp1FiGnzyfk9PkDsgF/DthtNt574Qu+eXE1sfV9+i4j6K9IlAoC5k0leMkcgk+bjWdqwoC+md1mo+L9NRx+8AUMxc5LFASZjMRbLiP1zze5zHyxdBkofuVD8p95Y1jFZY/4KGKvOQ/faenoE6NRBfn3n9NJcnsSv2qMhdweRfWXP7Dn+gecpk7IvfSOKO7lZ/U/NC37DrPtvFudNnQhKxYy863Hh+0giqLI5oPl/POjnazfUzyi8gytSs5dl8zh5vNmYCmrpPD5dyh96/NR+WZ6ZySTdMdVDjERJ7XDxxNtXUYefmMzr36x1+Uo/KT4YG67cCbnzJ/g0g5ntJ3sbqOZffk17Dhcxc4jVezOrabL0IvWYsLDYsK3txu/XgN+vd0EGjuJ7WjG0zJ03Y/o40XgkrkojEbaDuaNi1edOiQA70kT8MmcgBAXzZuFHby8o8xlBuUZc5P42/WnDEpjdfc6ZRXV8ebag6xds5uA+hpiOpuJ7WwmqqsVhRsdHWeQe3rgN2sS/rMzCZg/Fb/pEzGLAj/sK+GLrfms3VFIq4uBDkQRb1MPYd3tRJi6SBR7CTV2om9uQtI7eisMpxAEtBEheCRE4ZEQhTYqlK6CMqo+/x5zs+vOuSCRYJ8xhbfxZbvMa0Q11pI+YZxLTpvIeQsn9PtAu4PGLXvZdsEfnLZd8b+/hMxn7kGqUNCRX8LOS+9yqvwt1+uY8sJfiLpkZJHQ8Uhz766q49vpqwZ1YtIeuoW0P/++/++DhXWccuubgwZ23vvrKs6enzzi47oLY30T+295lKrPv0O0uBGlEUAV6Ic2OgyFnzdNtl4EvY4wTx8sDS30VNc7lJYbWtyqyfNKTyT5zquJuOD0Efmad+QWk3XPUy6t8MAxeJvx+B14psRTt34rh//6L1p2Z7v+aVIpwcvmEXPl2YSuWDiiWkBRFDlS2siX2/LZdKCMI6WNI6qhPAnnEACdRoFCLqOtyziiCLMg2llamcdZ5dnInNyL+V6BfBCTib/JQGZTFRNbatDYhk9qNCpV7PINZ0dgDKX6kQ3uOYOPXs3lyzK4duVkYkJ9sNtFDhbV8c3OQr7ZVUxFdiHzaouZU1+Cl9n1PaWICifzr78n6uIVLvs6FkM3TVv3Uf+Dg9C6skRzBY+EKEJOn0/o8gX4z51yXOtlj4Vot2Pp6KK3uc3hKdvSjqm5DWN9Mx05RbQcLqIttxjZCMqpwPF7AuZPI+jUWQQunI7C23NQ3atot1P58ToO//X5ITNBQpYvIPPpP6JPjHG5zrGw9Zooe+cLCl98j/asPLe2kWrVaCNC0IQH0aFXcs7qfqeAk+T2JH5dGA9yC31R3FsfHSR0chQhKxYy7ZUH+2trTa3t7Lz8j9Su3TRoXV1MOHM//RfeE5PcOnZNUyerN+bw4fdHOFg09Aj+sfD2UHHpkonMTI1gUogHxi+/pfBf/x2Vkp06NJDEWy4j7trzh1WhHW8cKW3gjufXDfK2PBaRQV7cfN50rjh9Un8t1lG428mube5i55Gq/k92Ud3IUttEkQCjgcSuZhZ11RJRXe5y1ajLziTz6XsQJAJtWfm0Hsih7WAebQdz6SwoG7HYxE8h8dDRqPOkwK6kTqunTqOnTuNJk0qHXSJBJpVw2dKJ/PHSuf1CXUNdp7bWLj59/Wv2froJZUkJsR3N+JlGr/KsjQrFf3ZmfwqWZ0o8gkRCV4+J9buL+WJrPut2FWEwDoyC6sy9hHa3E9rd0Td1fHenUzUSKHy80CdG45EQhT4hCo/EaPQJUejiIpGpVZg7uij8138pePZNTC3tLvdjU6vInzCRj7RhVEtGJtqWER/EhaeksWpR6oi9O0W7nby/v0b2fc8OitBJVUqmvvIQMZef5cg2efl9DtzxhFOVYP+5U5j59hPoosJGdHwYP6Gc1oO5fD/3kkH2GHNWP0fEuUv6//5qWwEX/OXDAY+OWilj/bNXMDXZPaGx0cJutXLkkZcofP4dzK2uUx3HE4JchlSjRqZWIVUpkKpVSFVKpCqlQ+Vdr0Oud6i+O747PgpvPUpfbxQ+nhhKKsl98jWXismCREL0FWeR/tCtqEMDHST3geeHjOSCwzEg8qLlRF28Au/MlBELFoqiSHVTJ0dKGjhS1siRkkaOlDZQXNOK2TK6AbSTGB0iu1q4Jm8HIT2DU0FFmQzNFatIuOsaQvw96dl1gIoP1lL92XdOrRJ/CqOfH1v8IvnBM4wW9cjsdLRqOeEBnkQGeqJVO7J2rDY7mw+W09DSSXpLLQtqi0htrR3STlGdHEfmX39P+LlLBhAzURTpqaqjZXc2zbsP0bIri5Y9h913aMChJh+wYDqhyx3RWY+4yBH9xpHAZjbTXV5DV3ElhuIKukoqMRRX0lVcQXdZzYjOeyyQyOVI1cr+9shusWCsdS4WCiD38kATGohMp0W0Wvuz6o5+t1usiH0ZdvZj5h+d545CvDP8pqyATuJ/D+NFbo9i2CjuP+8n+rIzEQQB0W4n9/FXOfTnfw7uYKpVTH/tEaIuXjmi4+dXNPHhD0f48IcjlI0wjSvEz4NpSSHM7azF78s1WMtH/ixLNWoiVi0l9nfn4T9n8glLWRZFkc+25HHPS99R1eC68+jtoeKc+RPIiA8mLS6Q1OgAJNgGdbJtNjt5FU3sPFLVH5mtqG8f1bl5apVMTwljVloEM1PDmZwYglatoPVADrlP/Juq1eudNsAShZzgpXOJOH8ZYWcs6jdNtxi6aT9UQOuBXNoO5tJ2IJeOnOJxeTlZBQmNah2Nag+aVTraNDpSZ6ZxwSULCU+NZuOenQiCwNzUDAwH8zi0ZhuVm/aiqaoadVRWqlbhMyUVv+np+M7IwG9GxoAULFEU2Xmkipc/38uXW/MxWWyorBZCfkJgQ7vbh42MjxQ9UjnVOi8avf0xh4diCw9DDA1B5eeFh1aJh1rRN1WiVcvpbWnH/slalF9/i6THdeetQe3B96GJ7AiKGVGtWXigJxcuTuXCU9KYED0yoayjMLW2s/OKe6hdMzgqp40KZe6n/8Jn0gS6K2vZfe2fnZYuCDIZ6Q/fSvJdvxuRAuWxGE8V2JqvN7Nl5Q0DniOpWsWp297DJzOlf96zH+7gvpe/H7Ctn6eG75+7ksRh/FTHC7XfbOHwwy/QuucQ4jC2V78UCDIZiKJLxVOpSknwsnn4zZiI7/SJmFvbyX3838OSXOjTD0iKwTsjqV87wDsjCaXv0KreziCKIgajmZaOHpo7emhu7+n/3tltGlAfa7WJWG22/ppYuUyKVCpBKhGQSR0DfIIA9S0GSqpbKatvp2EMNcC/Ffjq1USHeBMT4kNMqDcxId5Eequxv/oOta9/7HQbXWwE6Y/c1p/Ka+0xUv3lBsrf/Yq6dVvdqj1ti47hG10I2z1DRl2f62XqYW5dCfPqioe1kPPITGHSX/+P0BULEQQBc3snrQdyaNl9qJ/QuhI6GgqasCBC+shs0OKZyLTuq0e7C7vFQvuhApp3ZdO8K4uW3YcwlFSOmuj9L+IkuT2JXzXGm9xCXxT3lkcof/crp8t/GsWt/2En2y+63aldTeJtVzDpybtGnPJ71PPvwx+O8MnGHJraR2b6LbHbmd5YztmVR/DtGV1dpEdCFLHXrCL68rNGVGs1FhhNFt7+xiGg5E6NliBAXKgPfho7AXoFEo0PxdVtFFW3DOuT6ApRwV7MTA3v/0yIChgk1GQ19jpSf1rbacvKI/eJ1+jMda0SKlHIUYcGovTzRunr5fj4eaPw9ULl543cS4/dasPU1IqhpNIR5c3OH1Wq+VCwKZUIGgWSttFb23gkROE3c1I/mfVKjXd6f/earXz09QE+fns9hrxSQrvbCenpIMzQPqao8FBoUWjYHhRDud6Xap0XLUqtW2lxOnMvp1XnsbimEJXN9X2T5xXIt2FJHPYNRXRjv1KJwNTkUBZNjmHxlBhmpISPyaKkZe8htq26zWm6e/CSOcx672kU3p6U/Gc1B25/DGvX4OusT4ph1rtPDSCNo8F4W5zkP/smB25/bMA8dWggS/eu7lfMFkWR3z+9hjfWDqwvDgvQs/FfVxM2AmusscJqNlPw7JuUvvEphtIq99KWfyUQpFI8U+PRRARjbumgLSsXW8/IBp5UQf54xEXgEReJR3wkuqPf4yKR60cWxRsv9JqtVNS3U1bbRmltG4VVLRRWNlNY1TKopvu3BKlEYHJiCGfPT+a8Rakun5PadVvYe8NfXZbTeKUnkv7wrYSuXNQ/8N3b3ErVx+sof/crmrYfGP5klArqomP5RurDAe8QjDLXqbsKm5XYzmaS2upJbG8kprMZ6TCunt6zMom77AykGhUdOcW0Hy6k43DhqNXwZVoNAfOnErh4JsGnzhpUazoeMNY30bT9AC27smjelU3rviMuheFOwj2cJLcn8avG8SC3R1H9xfeOKK4TiXe5XkfG43cQd/2FCBIJPTUNbD3vFlp2ZQ1aN2D+NOZ89I9R2/BYrDY27C/lg++P8PmWvBGRNqndzqz6UlZWHMZ3mJFOVxBkMkJXLCDqkpUEnTJrWAuM8YDNZufLbQU8++EOl8rK4wGpRGBifDCz0n4ks8G+Hg7P05JKDCVVdBVXYCippKeqnp6qOnqqG4b0ixwrJAo5mvBgNOFByD0dfoA2owlTSxtdJZVY2k5cJ0yq0+A/IwO/mY6P7/SJTuvJbWYzXYXldOQUU7n7MLmb9tNbWIZvdxeSEVmMD3UuWkS1ErsLz+N14cl8Gj1xRGImSquF06rzWVqVOySpzfINZU1kKmX64Qd5wgP0rJidyOIpMcydGIVe654w1FAQRZGiF9/jwO2PDRKzQxBIe/BmUu+/kZ7qenZf86dBKsRHkfB/l5LxxJ3INGO3IxlvciuKInuu/RMl/1k9YL7vtHQWb3qnP/XVYrVx9r3v88NPbEKSIv34/p9X4us5/pEUd9Cy9zAlb35K844DmJvbsXQZsHQbwWZHkEoc4jUOuVwEBETE/vS8XzoEuQyvtATsJjMdOe5b/biC0t/HCel1TE90WcxRGIxmiqpaKKxqobSmlbqWLuqau6htMVDX0kVDq2HcVJNHA0FwZCn4e2nx0Coxma10G830mCw0tHZjHUEWQWZiCOfMT+bcBROICh4YYbd293D4oRfIf/oNl5F+74xkYn53HlEXLR8QoTeUVVH+7leUvf0FXUXlw56HRZBQ4BVIuYcPVTpvqrVeeJqNJLU3kNTeQHRnC3I3RI8kCjnqsCAQRXoq60blyXoUgkyG3/R0AvvU+32npY+o3t0d2MxmmnccpG79NurWbaXNzZrS0UAEumUKuuRKlN56osP9kQk4rpHdjmizY7fasPWasBl7sfeasBod38daPnXCIZEgSARAoEU0c7Otv606SW5P4teF40luAUwtbey75REq3lvjdLnfzElMe/UhvFITsJnM7L/1EYpf+XDQepqwIOZ88jx+09LHdD7dRjNfbsvn2Q93cLjEdZ3DTyGz25hXW8zKisPoLc5HBN2xtbELAi2hYTTHJ9KVPAF7TASqPu/AoxYHx363iyImiw2T2YrJbKPXbMVksWIyW/u+9y2zOJb1mq2YLdb+7848cceCoynGMyeEMi1IS5zMhq2uge7yGgeRLXHUswyn0vdzQh0WiDo4ALmHFlG0Y+kw0FNVh6lp7GqkXb5++M3MIG3FXAJmZ6JPjh2Qtmq32TCUVNJxpIj2nCI6jhTRkVNMZ0EponV8auWkKiX6CXF4pcbjmRqPV2o8UrWKA3c8TtuB3EHrKwN88X30bqrDoimra6Oivp3y+nbK69qpbe50+n6W2u3MrSvmjPLDQ6ZC7/MLZ01kKlUeQ9s26DVKLlk6kdsvmEVYwPgO/li6DOy57i9UfLB20DJVgC+z3nuawEUzKHntYw7c8bjTaK06JIDprz1CyLL543Ze401uwdHp23jq1TRu2TtgfuRFK5j17lP9EROD0czS299mf/5A7/GpyaGsfepSt5WmjydGYgVk7zU5Ope95v5Opq1vnr3XjLWv0+lYZsJi6MHSacDSacDaN7V0GjB3GLC0dWBqacfc2nFc0hjlnh54xEdiaml36DuMcz9OFeCLPikGfXJM3zQWz6QYNOHBw6rbHk/YbHYa27tpauums8dEZ7eJDoOJzu5eOrtNdPaY6Om1YLXasdhsWKyOFOpek5ma2noEAUJDglEp5cilUuQyCTKZFIVMglwm7bco8tSq8NA61OL1WiWeOhV6rRIfDzVSV6KKJgu7jlSx8UAZGw6UDXouhkJmYgjnLpjAuQsm9OszALQdymfvDX+leedgFfajkMjlhK5cSMiKBQ7F2qQYJFIpoijSsjubsrc/p+KDr4/rYPBYIffS4zstvT8TKWDu5P4SovGEoayKunVbqVu/jfofdrpVszwaGKUySvV+FOv9KfH0p1TvS3BEIA9ft9ipxaIriKKI3Wz5sT0y9mIx9FD00vuOPu4wbYsqwBfvySn4TE5BExaERCZFkMkQZFIk/VPHPIl84HxBJutb1jdPLvtx3Z8s799eKh3w206qJZ/ErxrHm9weRdXn37P3BudRXEEmI/mu35H655uQqVWU/Odj9t704KAIi0QhZ+qLDxD7u1VjPh9RFPloQw73vPjtiLwE1VYzyytyOKU63+WIaK9EhsruXjShQ64ixyeYcg8farVe1Go86VCoxqyQ6C4kdjsqmwWlzYrKZkVls6CyWn78brPgIxOI99WQ7qdG39VJd0UNPRW1J0yA4URAkErRxUWijQhG4eWBoJDTYzBSeqQUS00DXr09gyKoPVI5ZXpfavyDCZw1ictvX0VKWgxWYy+G0ioMRyPXJZX937vLx0+4QpBK8UiIOobEJuCZGo8uNqKfUB+NWB6860mngkghp89nxhuPucyKMJmtVDU6bDEq6jto7zIibt2F9yefo2p0PjhkFwSqklPZPmEye3oEunpcW/8E+3lwx4WzuHpFJmrl+KuNt+w7zM5L73KIkP0E/nOnMPuDZxAtVkdtrYtobcyV55D57L3jnnFxPMgtONIc109bNcgjMf2R20i9/8b+v5s7ejjlljcpqBzYJs9ICeOLJy4Zl4j5WHC8ro+7EO12LJ0GTC3tmFra6a1rpDO/lI7cEjpyi+nMKx0k4jVS6GIjiLrsDFR+PrRl59N2MJf2w4XD2mWNBlKNGq/UeLwmJuGVnoh3eiJe6YknJJNoLPg57oPa5i6+3lHImh0FbDxQ5rZI1+SkEM6Z/yPRFUWR6s+/59Cf/0lHTtGw28t0God9XbA/Sl8vFL5etPTa2LtuF9LScoJ6OocUfzrekMjleE1MxHf6RAeZnT4Rj/jh7QZHA1EU6ThSSOXq9VStXk/HEGVLY0GzWkeRhx/Fnv4Ue/pTo/VEFBxX2d9Lw72Xz+N3KyajkI/Nnqm7ooYdl91N09Z9g5bJtBoCFkzDp4/M+kxORR0ScMJtJo/FSXJ7Er9qnChyC44o7oHbH6fs7c+dLtfFRjDtlYcIWjyTlr2H2HrOzU7rPOKuv4DJ//zTuMjEdxh6efjNzbz02R6nKVMyqYRZaeEE+XpQUtNKQUUzBqMZf2MXq0oOMrm5yul+rQjUaj0JMnaNWGioW6agVuNJrdaTBrUHPTIFRpkco0xBj0yOUer4bhcEZHZbn2m8DZndjtxuQ2a3obOa0Zl78eiz5dFZfvzuIK8OAjtaEaRxgyCg8PZE4eUBgoBosyHa7BhrG12mRqkC/Qhe5jCONzW3YWppx1jXRE9V/binKLYrNVRqvWhS6TDK5NgEAbsg0CuVY0fA09KLl9mIp9mIp6kXX5sJbe/4jygLwYEET57wI5FNS0CfGDPkM9BT08Cuq+9zKogkUcjJePIuEm+53O0XaOPWfRy8++9OSwccJykQuOp0dqRN4aU91bR1uY7ohvrruevi2Vxx+iRUCplbxx8J7FYrOX97mSMPv+T0nki++xrSHrqFklc+JPv+Z51GAdQhAUz79yOEnj5+0dpjcTw77e05RXw784JBUei5nzxP+Dmn9f9d2dDBopvfGFQvOSUphK/+fileupGp+I4nfm5yOxxEu52e6nrasvLIe+p1p51WdxEwbyqTn/8T3ulJ2K1WugrL6Soqp6tPzbVf1bWidtwjvZqIELwnJuIzJRXfqWn4TElD5T90psWJxM99H3T1mPh2TwlrthewbleR2xZMk5McEd1z5k8g3N+Dig/Wcviv/3LpYfpLgzYqFK+0BDxTE/BKS8ArNR6PxOhxTzE+FqIo0paVR9Xq9VSuXkdXYfm47l+Qy7DHRpOt8GS7TU2J3p8O5eD7SaOSc+uqGdx2waxxGeQr/2Ate294AEvHYK0Ov1mTmPXfv6OLDh/zccYTJ8ntbxyCIEQAtwDLgQjABBQDHwEviqI46p6sIAh64HRgMTAZiAE0QAeQA6wBXhNFsX0MP2G4czhh5PYo6n/YyZ4bHnDZyEdetIJJT92NRCZj2wW30bhpz6B1fGdkMHf1c+Nm7H2ouJ5b//E1u3KcP79Bvjoeve4ULlicSruhl6rGDqoaOqndsAvZa2+jrnK+XYtCw2HfEPx6DSS2N7pV//JbgiYsCF1sBB5xEWijQh21sGFBqEMDUAf6OWpinaTKdVfVUfzyBxS/+iEmJ/6oEqWCjCfuJPHmy/q3t9ts9DY0011RS09lHd2VjqmhvIbO/FIMJZW/+BqYVqWGGq0njXofomems+zCRaQvmoxcpx3Rfso/WMu+mx50ms6mT4ph9vvP4J3hnr+pobyaA7c/TvVn37lcRzd/Bt+nz+DNvJYhU+EjAj25+5I5XLpkIsrjQGoBOgvL2HnZ3U6VauVeema+9TjqkAD23vCAU99agJirziHzmfGP1h6L491pd6qgrFE7FJQnTeifl1/RxKm3vkVzx8BX2aT4YNY8dSk++p+HVP7cpGYkEEWRunVbyL7v2VHX/wkSCfE3XUz6Q7e4rJu1mcwYyqr6yW6/rUlRBd3lNeOWRq2NDO0ju6n4TkvHZ2raiNug8cIv6T6wWG1sySrns815fL4ljxZX3uI/QWZiCMtnxrNseiyB5aWUvfU5VZ99d1wi9COBRZDQoPGgQa2nQe1Bg8YDe3gYN9x2DuedfuLcHtqy8ih/fw1Vq9djKHUeMBgNlP4++M+ahCQ1iU29Cl7Lb6Oh23XmlFQicNXyTO67Yh7BviOzl3MGS6eBfbc8Qtlbnw1aJkgkpP7l96TcfwMS2fF5F44FJ8ntbxiCICwH3gVcKTQUAKeLoujaedn1vpcBnwHDDQs1ABeJoujaTX4M+DnILTjUcnMefYncJ15zGlmR6TSk/fVm4m+6iOz7/0HBs28OWkcV6Mecj/9JwNwp43JOdrvIO+uy+NOrPwzq6B3FtAmhPH3zUqYk/egLabfZKHvrM7LvfYbexhan2wmTJ2K54kLMDS2Iew+iyDqM3EVa568JZokUu78fwSkx+CZE4hEfhUdsOLq4SHQx4SP2b/wpbL0mil5+n6x7nnbaEfCfM5np/3kUfUL0sPuyGnsdaYU5RbQeKqR812E684pRNjv/nx1PdMhV1Go9qdF69X08Mfj7M3VKAqdMjeXCU9LwHEXUzNTazr7fP+S0vhRGJohkNfaS9/fXyH3sVZfKk9LkeL5Jmc6HzUO/izLig7hl1UzOWzgBuWxs6V2uMFwKts+UVKa/9iglr31M4QvvOh3oUIcGMv3fD49rba0rnIhOe94zb3DwjscHzFOHBrJk98cDBgZzyxo5/Y53aGgbGOlNjQng08cuIjzgxIsU/ZJIjbsQ7XYqP17HoT//c0hBIKlaic3o/JlS+nkz8W+3E3P1uSOymbKZzXSXVTvauLxSOvNL6cwroTO/FEvn2Cx8BIkEr/RE/GZNwm9mBv6zMtFGh50Q8vNLvQ8cnrFlfLopjy+2uk90Q/31nDo1lrlxfsSXFtC78wCNu7Ix1YxOjXg4KP280UaGoI0KQxsZgi4mnFKUvLS3mu/KO1yq1s9ICePJ3y85bh7YxoZmKt5bQ+mbn9J+qGBc9umZEo//7Ex8Z2bQERHJt9UGvtpRxIGCoWuo5TIJZ8+bwH1XzBs3S7SGTbvZdeW9TpWztVGhzHr3KfxnZY7LsY4HTpLb3ygEQZgI7MARSTUAjwEbATVwIXBt36r5wFRRFEf09hAE4VLgHcAOfAesA7KBdiAMuAS4oG/1HmC2KIpZo/5Brs/jZyG3R9GeU8Se6/5M8w7nogv65Fim/OvP9NY3s/uaPw3qtAoyGZlP/5GEmy8btxdtu6GXR9/azMuf7XWpoHjB4lQeuHoh0SE/Kh2a2zs5/NfnKfzXu05TagWZjKTbLif1z79HrtfRVVxB7bqttO49TEdOER15peNuXTNSSNUq5B5aZH2fbiTUGW1UdproREqzSkeLSkuzSkezSktnX32wTCrholPTuPuSOcSFjU7Veii05xSx4+I7nL4EpSolaQ/dQtIfrnQ5AiqKIvkVzWzJKneIhuwv7a8FVVothHW3E25o6/+EdbejHGPKdrtCRZPKg0a1jia1B00qHU1qHQ1qDwwKh8jJnPQI5mZEMT8jivTYQJeCJ+6g7ttt7LrqXqeG8OrQQGa88RjBp84edj+iKFLz1Qb23/a3QXWbR2EPDmRNQiZf4D1kffjyWQncsmoGcydGHteO8FAp2IJUSsp91+ORFEPWnU+4FDuLufpcMp++54TVIJ6ITrsoiuy+5n5KX/9kwHyviUmcuvXdAcIvhZXNLL3jHeqaB6bOBfnqWP3ohUxODBn38xsKv1RS4w7sFgulb33OkQf/NaSFikSpcBm985mcwtSXH8R3StqYzkUURYx1jQ5bl+x82g4V0H6ogM7ckjHV/6sCfB0q8LMm4TdzEj5TUsc8mOkMv4b74GhE95NNuXy5Nd9togsO7/m2rl70JiPRXS0EGrvQWUxoLSZ0VjNKmwVBJiM61IfYCH+UGhUyncbxntZpHKUpgoDFaqWouAhBrWLy0sX4JESjjQxx6SMriiKbDpTxyFub2XHYdbT0gsWpPHTtYiICxz7AZTOZqVmzkdI3P6Pumy1jU2WWSvGZkkrAvCn4z52Cz4wMDtR18dW2Ar7aXkCZG1aIof56rj1jMlecPokgn/ERwbIae8m+7xkK/vGW0+VRl6xkygsPoPAce2T4eOJ/htwKghCFI3U2DggGFDhIVyWwH9griuLPm2MxjhAEYSOwALAC80RR3PmT5XcBT/b9+YAoig+NcP8XAAuBv4miWOlinZuB5/r+3CCK4uKRHMPN8/hZyS04RruLX/2QrHufwdLu3KYl4vxlxP7uPPbc8IDTDnfUZWcy7eUHx8Wi4yjyK5q4+4Vv+W5vidPlcpmEa8+Ywj2XzcXf68eUrfYjhey7+WGn6dTg8C+c9Pe7iLrkjAEdftFup7uylo6cYjpyi+nIKcZY24ilowtLR5dDybOjy2lUChx1lBKlAqlSgdxLj9LPG5W/N0p/n77vjqnc06OfwMo9tFjlUrbu2Q1qBUuWLXPaeeg2mvlowxFe/WIfWUWuO2tSicBlSzO457K5A5QjxwO2XhNZ9z3jNIoPoE+MZsJ9NxB18QoEqZSCyma2ZFWwJaucrdkVNLYN7w2rtFqI6WohqbOJGaZWfJvqEYbx35Qo5OgSohAT46kKi6BW44XFzxdUKofyNQ4FbIngUMH29dQwOz2CjLigMZHZozC3d3Lwricpee1jp8sjL1rB1Bf+4pZFSGdROftvfZS6b7Y4XW7z0LEmOp21XhEuLYNUChmXLpnIzedNJ2GcRsFdQRRFyt/7iv03P+I0BdsjIYqMx++k+NUPqVu31ek+9MmxTH3prwTOn3Zcz/WnOFGddpvZzIZTrhpUExq8dC7zv3p5wIBQSU0rS29/m+rGge2wWinj9fvO5qx57qWyjwd+DaRmONhMZkrf+IScv71CT1XdiLcXJBISbr2c9IduGfe0YJvZTFdBGW3Z+bTuz6F172FaD+S6fL8Me64yGd6Tkvsju34zMxwKzWMc1Pq13QcWq43NB8v5dHMuX2zNp3UERPenUMikrJyTwHVnTiUhwg9/T41rxedRXqejJPehNza5LMtSKWTcev4M7rho9qiU1Nuy8ih+7WMq3vsK8yit+CQKOX4zJxEwbwoB86biNTWNouYeduVUsfNIFd/tKXGZcfdTLJ4Sw/VnTmXZzHhk4/AOPoqWvYfYefkf6cwfnMwp1+uY8uIDRF9yxrgd73jif4LcCoJQBQw3bNsLfAO8Lori18f/rI4fBEGYChxlJq+IoniDk3UkwBEgGWgDAkVRHHf5WEEQ9gJTcER4A0RRHNccyl8CuT2K3sYWsu59elCU4ShkWg0Jt15O697DTpVNvdITmbP6OfTxUeN2TqIo8s2uIu5+4VtKapz7g3poFPzhglncvGoGOrWif7vKj77h4J1PuBy595+dyZR//cXt2sejsJnNWDoMiHY7UpUSqVKBRCEftc3DSF6KoiiyN6+GFz/dw+qNOdhc+BbKZRKuXjGZey+bS+A4jYgeRcPGXey+5k8ua3O6vX34LnIC21R+tP0/e+cd30Z9/vH3aW9Ltrxn4hE7e5NNSELYo2WvMgoUWgpt6aAT2lLaXxfQQWmBQktb9g4BAtl7L9vxjPeWLVvWXvf7Q7ZJiGzL2wG/X9HrNO6k80W6+36+z/N8HqWm18iiIIqY3XbS7FayOlqYam8l2daKMJS6NUEgZuFMki45l+RLVmKaM3VEI5Y1b3/Cga8/EjYaKTcaWPC3R8i4/pJ+38fvcFLw2N858fvnzuwDC4iCwJaUKbyZNh2nPPzgJs6k5Z4rF3DXFfMxj0KvVOuxIg5+89Ez2t50k3n3tSii9BT/6cWw0TGpSsn0n32D3AdvH1GTlN4YzUG7p9XKhsXXn5Eqm3XP9Sx46pHTvqOVDVYu/8H/KK0581Lzk9vO5aGblw/LpEx/nG2ipi8CHi8nX3gzJHKrI28z040mLYkFf3tkxMzNugn6/dhOlNN6IJ+2/cdp3XcM69HiQRv1qZPju3p8zyF2yRxMc6YO2AjybP4e+PwBdhytYv2eUtbvKuFkBNHEvhAEMOnVqJVyNCo5GqUcmUzS1YJQpKOjA5lEIDkxDp1GhaZrPbVS1rO+2aglOVZPcqyB5FgDRp0KQRAQRZG3txXx43980mvUM96k5d4vL+TKFXn9pu/6HU6qXllP8ZP/HnTasXFGDglrl5Fw/hLUc2dwqKqVPQW17MmvYd+JOmyO8Kn94TDpVdx8wSzuunw+2anDm10W9PnI/+VTFDz297DR6LhzF7LohV+jy0gZ1s8dSb4o4jbS0V73Dh0CbhdFMX+EdmlEEQThV8CPuh4uEkVxby/rPUQoXRlgrSiKvTuuDH5ffgd8t+vhAlEUB2/JGP79x4247cay5wj7v/ELrIfCm72oUxOJmT89rMGNTK9l8Qu/Oc0RdDjweP385Y29/Pa/O3o9ocabtDx0ywpuu+RTB1if3UHBY3+n6A//DCsaBImErK9dx8xHv4Uy2jis+xwpgx08VDZYeeLVPfxr/WHc3vCDH51awfduXMo3r1k0rK1eGuss7Pj2b/C8vg6hj/Ngu0JNucFMq0qLLBhylFYE/cS7OklydAw59bg/1ImxJF18LkmXrCRhzeJh6//narJw8Ju/pPq1D8O+nrB2GYv++Vi/hmuiKFLz+occ+s5vep2EKYmK5b/ZC6jVmcK+PjUjlvuvWcR1a2aMiPPxZ/FaOzj2sz9R+tT/whroqJPiSL/hEir/uw53Y/gU5MQLl7Pgrw+jmzx2DpWjPWjvLKtiw+LrzjBom/WrbzPtR6fP37bZXNz4yGtsPVx5xvssmZHKP3/0pWHPzPgsZ7Oo6Y2A10vFC29R8Njfw9bi9UfadRcz74kfoU6IHYG9C4/f6aLtQD6W3Ydp2XUYy+4jeFrCT/T2h0SpIHruNKKmZxOVl9nTi1ebltTr5Ozn4Xtgc3j49weH+csbe6lqHF89azUqOUnmLrFrNhAfreVkvZWP95fjdPcer8lNN3PlijyuXJHHzMz4ngky6/FiCh/7+6AMs1TxZgwrFuCZPo361AyKHUHKalsprWmlosE6YD/I1PgoLl0yhcuXTWHpzLQR8XtoLyhl91d+EHa8KlUpmfXr74S6Eoxhj+nB8EURt4eAA4QcfGsBC6FIohZIBeYA5xKKYnbjBq4YCcE30giCsA1YDjgAoyiKYUfugiAsJlSXC/ALURQfHoF9+RPwza6H80RRPDTM7z/uxC2ETJrK//EKR3/8RK8NzA25k3HUNBBwnJn2k/ud25n9mweRyIe3d2Zrh5Pf/ncHT7+9v9fedwkxOh64djF3XjavJ5LbX7qnMsbIzF99m8w7rxmQichwMNTBQ7PVwZOv7uZvb+3D5QkvclPiDPziztVct3o6EsnAIpmBQJCiagt78mtCs7YFNZTVhgZXWR3N3FR6gDT70GbE+0Ofk0H04jk0GORI4kykO0SaN+zsdQImHBKFnLgVC0i65FwSL1yOYcrkAUd1RVGk4t9vc+jbvw77u5DpNMz+v++Sfe+N/b53R2EZB+5/lKaNu8O+3q5Q8WrmXPbGZYSNfq+eP5kHrlnEmgWZo2IsIwaDlP/zDY7+8A9hHbQB4lcvxmNpo/1o+EiBOjGWeU/+mNSrLxzTHoIwNoP2lt2H2XjeV84YdM7/68/I+fpNpz3n9QV44In1vLD+TD8Eg1bJEw9czA3nD60etC8+D6KmNwJeLzVvbODkC2+FspAGMJaTqBRMuvkK4lYuRJ+Zhi4zDaXZNGrfZ1EUsZ+swbLrEJbdR2jZdZiO4yVDcmqWatQYpkxCl5mKwmhAYdSHymei9KBWkl9RhqBUsGDxItR6HRKFHLlB11NmM9a/5d4oqGjmmXcO8N8Nx7C7RrZqTxoMEOuy45bJaVeOfObMqUwzKbnJXUfi/v0ELQOb+GhPSqYqPZP82BT2eOQ4exlDRMqMyfFctmwKly2bwqyshBH7bgS8Xk789lnyf/lU2MBF9PzpLP73b4nKyxyRzx9pvhDiNlIEQcgFHgC+CsiATiBPFMWB5+GMIYIgtABm4KgoirP7WM8EdP+SXxNF8doR2JejwExCtb8xoigOrmCh9/cfl+K2G7eljaM//CPlz73e6wBAbtTjaz+zf1js0rksfeWJYWsXdCpVje388vkt/O/jY72OS6INar7+5YXc+6WFRBvUIaOedZs59K3Hek2pNc2dxvy//JTYxXOGfZ97Y7gGkY1tdn7/v5088+6BXoX/vNwkfnPv+SybmR72dZ8/wInKFo6UNnK4tIGjpY0cK2vE0ccMMqLIzNY6LqvKZ3Ln0LP2BZmM6LlTiV02L3RbOhdVXEzY4+Ssb6J+/Tbq399C48e78Dsi7wymSUsi6cLlJF6wjPjVi3s1mBCDQZx1TdjLqij4zTNhTZMAEi9awcKnf442re8KEp/NzvFf/JXiJ/8dNt3QLwhsTM7l3YwZuGWnTw7JZRKuXzODb169iBmZw/+76g3L3qMcuO8XtB0InwykSUlAk56EZWf4uT9BKiX7Gzcy8xcPjBsjj7ESb9Wvf8iOax444/nFL/6WSTdfcdpzoijyxKu7+ck/NobtA37+gkx+c+/5TJ0UN+z7+XkWt6firG2k4sV3OPn8m306LPeFTK8NCd3JqSiio5AbdMijdF1LPYooPTKdBkEmRSKTIcikCDIZEpn0tOc+fa2P58JEoHyddlr3H8fSFdm17D7S66T0cCNIpShjjChijCjNptAtxogqLgZVfAzKuBjU8TGo4s0o46JRRhtHNIrWZnPx6sZ8XvzwCIdK+q6zjtIqufnC2czKikchl6GUS/H4Apysa6O0tpWSmlZqmzpo6XCe/vsTRRKdNvKsjaTb20izW0lydCDrajVYrTVxIC6NA7FpNGmG3yBPGgySaWthems9C1qqiXXbiVRCegQp+TFJHItJ5lh0ErYwfWYHQkaikUXTUlk0LYULzskiIzF8htFwYtl7lL13/oSO/JIzXhNkMqb/9F6m/fBrwx5cGU0mxG0YBEFYQqj+Vgf8SRTFb4/xLkWMIAgqoDsU+L4oipf2s76dUAR7jyiKi4d5Xy4h1Os2on3p5T36S/JPAPYDHD9+nMzM8TnL1H6kiOM/+B2W7QfDvi5IJYhhnI2VcdEseOE3xK4cGbOYgopmfvHCdj7e33s3KJ1azu0Xz+aeK+eTGKMLtbd54t+U/O65Xs070m6+jGm/eABVwsga8gC43W62bQtFlFesWIFKNTTHy9oWG79+cScvb8zvVfhfuiSby5fmYLW7ae1wUW/pJP9kM4WVFrz+QaYKiyJrZU5W1RdjrqlGsPdvIAWgiDFinJ1LzJK5xCyZg2n+dGTaMy+4/R2ngMdL646DNH64ncYPt+Moj7xfnyCVEn3OTOLWLEGmU+M4WYvjZA2OyjqclXVhZ4ZP3f8Zv/0eqddf3OcstSiK1L6ynvwfPdFrum6hMYH/Zc+nQXu6+ZRJr+KOi2fz1cuGz1UyEqwHCyj54/PUv/VJ2NclKgWmudNoO1iA2EsKXPz5S5n+fw9iyJ08krs6YIb7dzcQyv/2Esce/L/TnhOkUhb+7/ckXXbeGevvLazjnt+/HzalUiIRuPXCmfzwlmXDWms9lsdnLBBFkba9R6l+8V3q3v4E3yCNd0YcQegRulKdGrk+JKJlPWJah0yvBUGCr6MTd0MLjpM1OKvqx0WfcUEmQxFjRKZTI9WokWlUSLVqpGo1Mq0KqUZ9Rl3waWNtUUQMioj+AGLAj+gP4PP4aGzpoL65g9Y2OwERRAQCgkBQkOCUybHLlXQqVNjkKlSZaVxx4yquuWBWT3ZXXwQCQZqqm6hct5WObfvw7DuCGGFquCMpicap06mekkezxkCT1UG9pZOW9sgnYgUxSIKzkyntTUxvayC3vRF1IPIIq0Mq50BsGodi0ygyxePvxYywP+QyCbOy4lmYl8w5U5NZkJc0qtcjv91J4c//QvlTL4X9LuvzJjPvmUcxzZ0aZuuzi/LycmbM6MnMmRC33QiC8ADwOFAmimJOf+uPFwRBiAW6e2m8Iori9f2s3wTEAfmiKA5bjpYgCNGEapfTgQChetvw/XL6fp+IvyTPPvssZvPIi6nBIooigT35eF94H7FpAKkvgoD86vOQX3c+wgj12CystfPG3iYKanrvCCURYO4kA+dNj2F2hh6htR3v8+sI7DoefgONCsX1a5BdvHTE9nu4CAZFvP4gHn8Qrz90v7TByfuHWqhpHZz7Zn8oZRKyEjTkJGnISdSSnahBpwrVfIrBIGKDhUBxNcGyWnB5QCkHuQxBLkMwGZCkxSNJT4Ao3YikLgXrWggcPIH/QBHBwgoYrGjvA+nyWSi/egWCsfcLvGh34d9XgH/DXoJFVWHXaVVqeCVzHgdjU09LQU4wKrh4TiwrpppQyUfnOyiKIsFjZXjf2EzwWFmv6wlp8YitHeAI//0SUuJQ3H4psnm5I7WrZzXeVz7B99KG05+USVE+9BVk8880uXN6ArywpY5tJ8KnhCvlEs6dauKCWWaSoz/fQnSkEQNBghX1BI6VEjhaRrDg5IicP8YEmTR0A/D5oZd2e597ZFIkqfFIJicjnZWFdH4egubT340oiohNbQQOFOHfVxD6DgzxWEkyEpFMz0RijiJgMmDX6LAq1VikKizuIG2dPtrbXcjqm9E2NGNubSHNbiXFbh2wP0VI0KayKzGTcoMZUYg8Wq6SS0g0KUk0KkPLrvupZhUK2djUrvoPFuF9+k3ElvYzX5QIyC9fgfzGtQiKszdaeyoWi4U777yz++GEuO1GEIT5hByH3aIojm4BwBAQBCGVUHsjgBdFUfxKP+tXE6o7LhdFMWuY9kFKKGJ7YddTPxdF8ZFBvtfnRtx2I/r8+N7bge+1jSHREiGSnDSU37kBScLw92HtprTBwdv7mzl4su9Zd5NWxrlTo1k5LZrYqmo8z7yDWHtmf1LoGqTfdgnSeblDb6vgDWDp9GGxeWm1+2jt9PY8trn8iGLIFa773NL9mM8+DwQC3YJW7NU1eTiJNSjISdSQk6QlJ1FDmlmNdID1u2OF6HQTOFpK4EARgSMlIVE2FIx6FPd+Cfk508N/nt2Ff38hgZ1HCRwp7XVg7BMkfJSax/vp0/FKPzWDyk3WcuncWOZOMgy4RnqwiIEggb35+N7YTLC8D7Mdox4CAejsJfKgU6O4/nxkFy4e95NCY4koinifX4f/3c+0SJJJUX77BmRLZ4bdbk9pO//aUofV0XvkZla6nvOmRzMrXY9aMfF/MFREj49gUSW+j/cR2H38iysIP8/IZUjn5CDJyyB4sp5gYcXQrxORIgihCVKNCrGxddDfL49EyrHoJD5Mm0pjdOwpTs6hMYNSLkGnlKJTy9CrpOhUMnQqKXp1aGnWK0g0KTFpZeOmjlrssOP553sEtoaPLUkmJaH4xtVIs84eJ+RImBC3vSAIwiPAzwCrKIojpyaGmfEQuRUE4e/A3V0P3ydkzDWoadvPS1pyONxNrZz4xV+p/NfbEKGZhUyvZdYTPyLthv7bowyFgopmnnh1H29tLwpbq3Yqy2emccnCSUw9fgjrUy/i7wyfThu3ehHTf/0gUdMjq4sOBkWKa1rZW1jH/hN17Cusp3yIrQhGi/SEKGZmxjMrK54Zk+OYmRk37C2FBspwpUmKokhnYTlNn+yi+ZNdWHYcGrCrJIBUo0KXmYYuOx1ddga67HTEQID6tzfS9MkuxH768x6LTuKlrHk0d9VkCQJcsWwK9121gLk5iYP62waDt91G3RsbKH3y3zjKwrb8BkCqDqUPensxkxKkUibddQ25P74HZYxxhPZ2+BgPabeiKHL467+g6l9vnf6CRMLcvz1M+i1XhN3O4fbyp9f38Zc39vdqIgehPp3LZ6Vx0aJMFk1LISc1JuK+kuPh+IxHnNX1HP32b2jsxZxQER1F1Ow8ZFo1Ppsdv82Bz9ZJwOFGDAYI+gOhlFp/KKU26A9EfP2cYHyhSoojduVCjHPyUOdOIt/aRLCqkbhKC03vbcHTPKydI3ulXm3gvYzp7I9LPy1Cu2b+JP7v3tVMGoU62OEm6PdT+ezrFP7yqbAlAhKVkrwf30PW/Tef1bW1vfGFTksWBOE/wEKghJCLsoNQne0CYFbXai+Jonjz2OzhwBnrmltBEH4NPNT1cAehFkOD7wLe/+eNa0OpSOgoLOPID/9A3bubIt4m46bLWPDUI8gNIyuYyuva+ONLu3h54/E+bfW7maSC2xoKSTkafpZQkEjIvPMaZv7yAVRxn84ZdTo9lNe1UVbbRnG1hX2FtewtqKVjAH3gxgMZCUae+u6lnDdvfNVHwsgZ3PidLpq27KP0r/+lZech/HZn2F55w0WLSsdLWfM4GpMcStmXSbj5gll85/olZKWMzjykt91G7TsbqX7tQxo37CTo66Om2GRAqlHjqmvqdZ3Uqy9g5i8fICr37JmcGy+GScFAgL13/IiKf799xmvz/vxTptzX++W7tsXGI89u4uVPjkeUvaFRyZmVlcDMrAQyEo2kxxtJT4giIUaPUadCrfw0YjNejs94RBRFat74iIP3Pxq2xzWEDObm/O77GKf1f00Xg0HEQLfw/VT0in5/KEW65zl/lzAOEPD68Hc68HV04rPZ8XZ0hu532PFaO3A3t+FubsXd1Iq7yTKoCbzRQJ2SgC4jGU16Mi6tlqamdpqa2mlss2O1hy95CAoCAUHStQzV1YoSCenJ0UzPTCRvUiwqqRA6dl5f6Hi0tOFpseKsaejVULI/JEoFCWuWkHjhchLWLD7Ncf+zvxelQkHLjoNUv/oBNW9swN1kGdwB6oP4i1ZgOf98XrcE+WhfGT7/mZMkKoWM79+0jO9cvwTlKLSKGw6atuzl4P2P0n78TMMogLiVC1n4j19iyM4Y3R0bRb7QhlKCILwEXMen/W17Xup67iPgZlEUB9cUbYwYK7dkQRB+APym6+EhYJUoiiOal/J5ELfdNG8/wOHv/47WPUciWl87KYUl//39qDgT2xweXtuUzwvrD3OgqH/z8MyOFm4sPUCGPfxPJ6BSUrlyFdsnTaWksZMma2TmSaOJRiUn1qgl1qjpWmoxGzXEmrTUtdh45p0DeMK4KkskAt+8+hx+dvt5aFSnz4iKwSDO2kY6SyrpLK3EVlJJZ2kV3rYOBImAIJUiSCUooo1Ez5+OedEsoudPR67TDvnvGanBduPG3Rx56Pe9OgEPBz5BQn50Evvj0jhoTsMvlaJVyfnqZfO4/5pFJMcOv6PmZxmIoAVQJcQiUcpDRjS9kLBmCbMe+zYxC8Kn0I5nxpN4E4NBDtz3C0r/9tIZr2V/4ybmPf7DPqMT1U0dPPPuAf657hBttsHPxSrkUow6FUqFDJlEwON2IZMKGKMMKOQy5DIpcpkktJRKUCpkGLRKonQqorRKDFoVRp0Kg1ZJjEFNcqyBpFjDqPRfHgu8HZ0c/dEfQ/9vYcaDgkRC5t3XMvPn9582GTraiKKIv9PRJXYtIeHbZAkJ31MEsM9mJ+jxEvB4u5Y+Ah4PAZdnVKLLHomUQlMiR2OSORqT3K+Tr1wm4dzZGVy2LJcrV+QRZ+r7OiMGgzRv20/5P9+g5s0NYdsY9oYhdxIzH/02qV9eGzZlt6/zSTAQoGXHQRo/3omjugFXbSPO2iactY29mlr2hkQuJ+Pmy8h98I7TJk5Ka1r51pPr2XSwIux2WSnRPPHARayeP34nIB1VdRz+3m977R8vNxqY+/vvM/mOq8dN2nRfdNjd1Fs6sXa6aLe7ae9099y3drpp73ThcPvw+wP4AkF8/gA+f2jZaW3h4P+642xfPHE7n1Bd6BJgBaAhJGq3Ad8TRfHAGO7eoBmLPreCIHwd+GvXwxPAClEUh3+q7czP/dyIW+hyhH3rY4788A90llT2v4EgMOWBrzDr0W8h045OaXj+ySZeWH+Elz4+1udAUBBFFjVVcNXJI5i84ddrU6hZlz6dHYmZBAbgQBhn0pISayAlPorEaC1OawMmrYy5c2ajVCoRBAFBAIGupUDoOeh5TSaVoFbKu26yM+73l35Y1djOL/65hZc++Uw7JVHE4HMzWwMPLEknyWOns7QKW0kl9rIqAu6BRaMFiQTTnDwybrmCSbdcgTLaOKDtuxluMdJ2qIAjD/0h1OcyQjRpSXjb2vHb+3e6PFXQHo1J6WnrY9KrelpUxQyju+2piMEgnaWVtB0soO1QIW0H87HsPNyvoAXQTU5FFEUcFb1fS6PnT2f2rx8kYc2S4dztUWU8iVsInTuPPPR7Tvz22TNei1u5kGWvPYnKHN3ne7g8Pl75JJ/XtxSw9XAl/nFSG2qO0pAcayA5Vk9yrIH0BCN5GbHkpceSFh+FNMJU6fFKy+7D7L/3EdqPFoV9XabXMu1H9zDlga8gU59d6d3dvxMxEGT1ueeilEgJuD2hm8tDwOXG73TjbbfhtdrwtrXjam6jtbwWW0Ut7rpGxCYLwiCyYU7qY3qEbo3OBIJArFHDqnmTuWTJFNYuzCRK1/fxFEWR9mPFVP73Xapeeh9nbeNgDwUAxlm5TH3obtKuuRCJ9NNr/mDOJ53l1dS8sYG697fQuvdon9F1uUFH9r03kHP/LWiSwreBE0WR1zcX8v2nPqKxNby55hXLc/nNveePSsueSPG73Jz47bMU/uYfvY4v0q67mHmP/xB14vC3PRssPn+A8ro2KuqtVDV2UNlopbKhnequ+9bOwZt5iu4OPHv+2P3wiyVuT0UQBCVwCXAfsBJwA/eJovjPsdyvwSAIwmPAD7seLhJFcW8v6z0E/Lrr4QWiKG4It14En3cL8C9CEe+TwPLR6g38eRO33QR9Psqfe53jj/wlonQcbUYyC//+CxLXLhuFvQvh9vpZt7OYDfvK2HK4kpqm8EF6RcDPhdWFXFhT2KtjYYtKxzsZM9gTn3GGK2FafFSoD9z0FBZNSyU33Yxa+WkUZiwG2X6nC2dNA86aRgr3FfLO69sR6xqId3US7+xEE+hfBA0GiVJB6pfXknXXNcStPGdAs6/DdZw6y6o4+pMnqH5lfZ/rqRJiiVk4g5iFM4lZMIPo+dNRRhsRRRFXQzOdxRWhyHVJJc3HS6k9dIKAzY5FpaVWE4VNoUYT8GHwujF4XZj8XoxqGeZJyehS4lEnxqJOigvdEmNRJ8WjjDEi04ZaZEgU8l6PTzAQwNc9mLR24LXacNU303a4EOuhQqxHTkQkwLuRKOQYZ+XiaW3H0UfKnmHKJGb+qvfoxdnEeBO3EBqcFvzqbxz76ZNnvKbNSGb5m38hek5kbS467G427Cvn/V3F7M6vobqX89tYo1LImJJmJjfdTF5GLNMnxzEvN3lUW4wMB8FAgIoX3uToT57stdWXKi6GnPtvIfveGwY9yTfSiKJIh8NDc5udZquD2mYr23cfxOMPkpmZDYIEfyCI0+PD4fJid3npdHqxdrpo7XBiaXfS1uk6zetCGgyQ6LSRYm8n1WElw9ZKps2CXIx88sUfayb+8tXMue0KYpfM6bdXrr2ylqr/raPyv+/RUdi763s3EqWClMtXEbNwJvXrt9K0ZV+frZN0WelM/cFdTLrlCqRKRUTnE7/TRfPWfdR/sJ2GD7dH1FdZk5LAlG/dStZd10ZcxmVzePjF81v421v7wnqOKOVSHrh2Md+7aVlErZBGimAgQPUr6zn6o8dxVIU3MTTOnMK8P/2E+HNHpp1kpHi8fgoqmjlS2sjhkgYOlzaQX94UNvttOPhCiFtBECSiGPlZQBCEqwmJNRVwviiKkRdDjgMEQVgIdAvav4uieE+YdSRAPpAHtANxoigOeEQuCMKXgVcBKaG65eWiKFYObs8HzudV3Hbjszso+uPznPjdcxENtid95Urm/vEhlDGjO6soiiKVDe1sPVzJ1iOhW4Ol87R1TG4nX6o4wtKm8Gk/AC16I0XnrkK3dgWLZ6ZzztSUflNOBzvIFoPBUPpY1yy6r9OBt70zJHrabfjaO0Oz6e2deK0duOqacNY04qhuwNvWHtFnjCTGGTlM+datZNx4GVKVst/1hypGHNX1FP7mH5Q98xqiP7wJjz4ng2k/vpeEVYtQJ8f3K+AcLi9//uu7lP/5PyyuK0U1gN6D/SFIJEg1KmRaTWipVuF3uvBabfg6Ovt/g36QKOQkXrAMTUoCzdv201HQ+wBQl5nG9J/cS8bNlyORfT5STMejuO2m4j/vsPfOn5wRyZHI5Uz76b1Me+juAZuoNFsdHC6p51BxA+V1bVQ1tlPV1EFdi61f072xIDnWwNwpicyfksS83CTm5CQRbRg//0e94bM7OPHbZznx+3/2mnIq02rIvPNqcr99G9r05FHew0/pdHrYk1/DjmPV7M6voaLBSrPVgXeEBuynIgsGyLC1ktPRzIy2erI6LEjOqLALjyreTOIFy0hYu5TE85eiiI7CVd+Mo7IO67Fiql5ah2VXBJ0bBYH4lQvJuPlyUq+6AEWUvuclV2MLVS+/T9EfX8BZ09DrW6iT4ki//hLiLlnBgY4mBImE89esIdjURntBKR0FZXR0LwvLIq59Ns7IIe97XyX9+ksGbZh0tKyR+x9/n32F4YVjQoyOR+9azQ3nzxw1V34IjV2qX/+Q44/8BduJ8rDrKKKNzHr0ATLvunZMrjl1LTa2Hq5k+9EqDpc0UFDRPKqZMF8UcXsMuF8UxS0D2OabwJPAJlEU14zUvo0Up6Qm+wmlCO/+zOvfA37b9fCMVj2CINwGPN/b613rrAXeAxSEHJpXiKJYPHx/Rf983sVtN64mC/m/fIqyv7/Sq7DoRhkXzfw//ZS0ay8as+iQKIqU17VR2dBOh8ODzeEOLe1ufCdKiX/rHaLLexcDmrQkDFMmoU1PQpuR3LPUJMfjszlwNTTjamjBVd+MvaaBqqMFiJ0OjHoDQlD81FwkEPzUVMTr+zQdzO0ZU4MQmU6DPmcS+ux0DDkZqJNCqULd5iedJZW07j2K9Whx///fsdFk33sD2ffegDohttf1BitGrMeKOPG756h6eX2v+6JOimPGI99k8u1fjuhCGgyKvPTXt8j/7bNMqz0Z8aBsrJEo5CReuJyUy1fjaWun9Kn/4ajsve2PPieD6T+5l/QbLv3ciNpuxrO4BWjdf4xtX7ovrJGXae40Fr/wa4wzpgz5c/yBIO12Nx12d8/S4/XjcLo5ePgwgYBI3rRpCIIMX+DTmjBfIIjH66fD7qbD7qHD4cbm8IQeOzw0tdmxu4b3HDU5ycS83CTmTkli/pQkZuckjmnkqS+ctY0c/fHjYY3CuhGkUtKuu4ip37sT0+wzexsPN202FzuOVbHjaBU7j1VzpKxxzCY2BAEyk6OZOimO6ZPimBWnJbW6HMfm3dR/uL3XrgVh30sqHZAJoHFGDhm3XEHGDZeiSUnoc92A10vV/9ZR+H/PYCs62fd+mPQIJj3UtxIcYPlO6A1CYjvvB3eRuHbZsIx/gkGR598/xMPPbqK1lzKs+blJ/P6bF3LO1JFtpyMGg9S+/QnHHv4zHfnhzaIEiYSse29g5i/uH9XshjabKxTcOFzB5kMVlNQMn9O1Tq3AqFdh0qkx6lWn3ddrFChkUmTdfgbS0LK1uZ4f3Hl591t8bsVtkFAt7XpCtaX7I9imu8+tXRTFkXcrGWYEQZgD7ATUgB14DNjc9fh6Pm3VUwLMF0Wx8zPb30Yf4lYQhEXARkJ1yj7gNuBYP7tVK4pi+2D+nt74oojbbmyllRz78eO9GgacSvyqRcz57feInhe+l+hY07R5D0d//ASW3RHMEJ+F+CQSmlV6mjR6mtQGmtSh+/6EeH7+/au4auXUfi++fqeLlh0HOfn8m9S8uYGgt/fkColCTvoNl5L7rVvDDvQGIkZEUaRp0x5O/O5ZGj7a0et6cqOBaQ/dRc43b0Gm6V/ciMEgnzz1Okce+wfJDYNz3BxN1ElxmOZOI3ruVKLnTsU4cwoV/36Hkj+/iKe1vdftDLmTmfaTe0NRA+nns0/qeBe3EIoebf/yN8OeYyRyOdnfuJFpP/zaiJgVDcfxsTk81LXYqG3uoK6lkzqLjZqmDkpqWimqahlSTRqEzO9y08zMnZLEvK4I74zM+HFlYNV2MJ8jP3qcxg29n4cgVMuZft3FpF93MbrJqcP2+a0dTt7bUcybWwvZfKhiVKNPCrk0VGtt1jM5KZrMZBOTk6PJSokmJ9V8hmFhNwGvl5ZtB6h9bxN1727qcwIuUjRpSWTceCkZN146qEmhbmFW8NjTtB0sGPL+9IY8Ss/0n36dnG/ejFQxfBM31k4Xj/17G0+/tb/X78D1a2bw09vOZXJy37X9A0UURere28Txh/+M9ciJXteLO3ch8/70Y0wzc4f188MRCATZXVDD+l0lbD5UwdGyxr6y0Psk1qghPcFIRqKJ9IQoMhJMZCQayUg0khoXNSiX6i+EW7IgCAWE0m+7P3AH8BzwtiiKZzaACm3zM+ARwCGKoj7cOuMdQRAuA/4D9CbOS4BLRFE8I4QWgbh9BBioAdXtoii+MMBt+uSLJm67aT1wnGM/eaJP4dFN2vUXM+vRb6PPTBuFPRsYoihSv34rx37yRJ8n7fGKItqIJjUBTWoi+sxU9DkZ6LMzMORk0CJTcf+TH/Lx/vBpQ1csz+WJb10ccW2cp9VKxYvvUPq3l/o1GzMvnkPKFatIvnw1htxQu4VIBttBv5/q1z/ixO+ew3qo9wGIVKUk55s3M/WhuyOaHfa0Wjn099c59vi/0FvC19MBiIKAOi0JbWIs6vgYVPFmVKcsJXIZrkYLrvpPI/fd991Nlj5rvHpDopCjMEWhiI7CkDuZ6LlTewRtdyTcUVXHiT8+T/mzrxNw9m6iFjU1i2k//foZZimfR84GcQsQ8HjJ/8VfKfy/Z8JGp2Q6Dbnfvo3cB+84La1yqIz08RFFkWarg6KqFoqqLJyoslBwsokjpY1DivjKZRKmT4rvivAmMndKEtkpMb0KqdHCeuQEhb97lupXPug3yhg9fzrp111M2rUXoU1LGvBnDZeg1WsUxBo1yEQvaoWUxIQ4FAo5UomARilHp1agVSvQqRWY9GpiojSYo9RER2lIMusxR2mGHH0URZH2o0Wc/Pfb1Lz24YAMoSQKOTELZ5J197Wk33jZkM9pjpoGmrbspep/62jeui/kIj1C6DLTmPO775Ny5ZphzWArqmrh+3/d0Ot1XSaVcMuFs/jBzctJTzAO6bMCbg/Vb3xE8eMv9DkhYJyVy4xHvknKFatHNFvP6fax8cBJ1u0sZv3uEiwdkftSdJOVEs3s7ERmZycwJyeR2dmJI1Iu8UURtzLge8CP+dQRGSBIqGXNYaCcUO2pjpBz8mWEDJIOiaK4YFR2dAQQBCEdeICQWVYK4AXKgNeAv4iiGPbbOSFuzw6atx/g2E+eoHlb38kIgkxK9j03MP2nXx/Tlgq94aht4NhPn6T6lQ8GbO0/nEhVSuRGAwqjvmepMBqQR+lQJcSiTU1Ak5aEJjUBbWpivw7Voijy34+O8b2/fkR7mJ6D0QY1v7/vAq5fMyPii5IYDFL/wTaKn/gXjZ/s6nd93eRUlHExBNweOqxWCATRyBWhvo8+P0Gvj6DPh9h1X+yjZYVUrWLyHVcx7aG7+09H83ipW7eZ0hfeouGDbUj6GJD65HISb76SJT+7B13G4FK7gn4/frsTv9NFwOnG73Cdct+J3+lGplGFhKzJ0LOUqlVhj70oirTsPEjxk/+m9s2P+zwuMQtnMvUHd4UGUv0YtXxeOFvEbTetB46z59aHejXHkUfpmXTLFWTdfe2wpCuP1fEJBIKU1rZysKieA8X1HCyq51hZ45CNW9Lio8hJjSE71UxOagw5aTFMSTOTZNaPavmLo6qOosdfoOyZ1/qcaOomet40zEvmYl40C/Oi2WgnpYTd38EKWrlMwtwpSSybmcaCvBSSzHriTFriTFrUSvnYGB663LQfK8Z6uJC2Q4W0bD/Qb0pwfyjNJuJWLCDu3AXELJyJcUZOn9c/URRxVNbSvO0AzVv30bx1/6D74w6FuHMXMvfxH0ZsJBcJoijy4Z5Svv/UBspqw7c7lMsk3HHJXL5307IBt6rrLK+m7O8vc/Kfb/SZIRQ1LZsZP/8mqV86f8SuOy3tDj7YXcp7O4rYePAkLk/kvhhRWiXLZ2ewbGYac3MSmZmV0K8793DxhRC3PR8oCPGEBO5dQLcDS2870d3r9q6z0TH5i8IXXdxC6ETb+Mkujvzoj1j76TUqVauY+oO7yP76jahihzd1ZqC4m1upeeMjql75ICTOh3I+0KgQYgyYkhKQ67TIdBpkei2a5Hi06ck9UT+ZWoVEpUCqUiJVq0JLlRKpShEyHorAmGkwNLR2cv/j61m3M3xJ+kWLsvnTdy4hZYAXwfbjxRQ/+W8q/vPuiNYQK80mcr55c+h700c7FVEUsew+TMW/36b61Q/xWvt2mO1Ua4m77WoufvTr48b9NODxUvXKeoqf/Hef0WuApIvPJe/7dxK3YsFZ7348UM42cQuh/9vjP/8LRb//Z59tnWIWzSbjpstIvvjcQae4jqfj4/MHKKho5mBRyBDrYHE9+SebCAxDvahJr2LqpDimZcQxdVIs0ybFMXVS3IibV3larZT+7SVKn/ofrobes0E+izI2ukfoStJT2d/iYl2JhQ+Lm/FFoGdVChmLp6eybGYaS7sEbV9R7eH+HoiiSMDpwtVoCfXabbTgqGnAXl5DZ1kV9vJq7GXVfU7GDQuCgC4zDeOMHNQJZhSmKORGPUGPl9Z9x7DsOYqnJbzwiwRVXDS6nEkYcjLQZ6Wjz0pDl5lGwO0JZe00tOBuaDnNf6P9WC+WL4LA5Fu/xMxffavXNkCDwesL8NRb+/j1v7dhc4SPQivlUu68fD7fvXFpn1laQb+funVbKP3bS/2m4BvyMpnxyH2kXX3hiIjaNpuLd7cX8fqWAjYfqoi4rlytlLFkRhor505i5ZwM5mQnjlmbsi+UuO35YEGIBm4HrgHmEXL6/Swe4DFRFH85mvs2wcCYELef0l2XcfTHj9ORX9rnuoJcRtpVF5B197UDbikzFFwNzdS+s5GaNzbQtHnvgEwshoLcoCNqejZxKxYQv2oRsUvnRlQjOpx099D7zp8+CJvOY9Aq+c2953PbxXMG/P/hbm6l9OmXKH3qpYhaR0WKNiOZ3O9+lczbv3zG8fK227AVV9BZUtG1rKT1QH6f/V27adCbMNx6DV/5v6+jHOX/h95wNVkoe/plSv/W9zEUpFLSb7iEqd+/c1gifGcr40m8DRR7ZS3HH/kLlS++068I0OdkkHTRCsyL52CaOxV9ZlpEA8rxfnxcHh/Hyps4WBSK7h4srqekxjKkOcZTSTLrmZuTyJzu25SkEWlPFAwEaNm2n6pX1lPzxgY8Fuug3scvCHQo1LQpNXQoNbilMvyCBJ9EiiiXk54WS15OMrmZCShlEsRgMGRYGAzd6DIyDD0Woet5n8dLZUUFiCJpKalIBeGMdT77PkG/P5RxYnfiszsJOEJLf9dtuK6bMp2G2GXzUMXF4G5uxd3chrO6ftDHcNiQSTHNmEL0vGk9N+OMKf1OPlv2HOHQd37Tq4+HTKth2o/vIffB24e1Hrel3cEfXtrJ398+gNvbi+miUsZXL5vH166YT1ZKKHtODAZpO1RA7TsbOfn8m2HN705Fn5PBjIfvI+26i4e97MXm8LBuZzGvby7gkwPl+PyRTY7MmBzPxUuyWT1vMgunpgyqPnYk+EKK29N2QhD0wDQgC4jqeroG2NJbPe4E44cJcXsmYjBI9WsfcvTHf8Re3n8akD4ng6y7r2PSrVf2GZUbLJ3l1dS+9TE1b32MZfeRoUVohwmJQo55yRxSrlxD2lUX9JtiO5y0tDt48M8f8tqm8FHB8+ZO4qnvXjqoJvF+l5vyf7xC5UvvYz1yYliiuYJEgjI2GlWCGXWCGb/Dha24YsCz8l6JlKPmFExXX8w3HrubmKi+U7pHA1EUad17lJKn/kf1K+v7NOwaL+1HxgvjXbxFQkdhGcd++iQ1b30c8XlJbtBhnJGDdnIquoxktBnJqBNjUUQbUUR3pbqrlHgDAT7evAlBEM6a42NzeDhS2sCBonoOFYcEb2VD+7C9f0KM7nTBm5NEknn46pyDfj9Nm/aEhO6bH+NrnxjCnYpMryV22TziVy4kbuU5RM+deoaLuyiKdJZW0rx1P83b9tO8dX+frXxGC0Emwzg9m5hFs0hYtYi4884JO14RRZGqV9Zz5Ae/x1ldH/a9oqbncM6zj2I+Z9aw7mNDaye/++9Onlt3sNd2UIqAnxtjYFXAivTAYdwRZB3Er1pE9j3Xk/Kl84fVdd/h8rJ+dymvbyngoz2lEZUuSCUCS2emcdnSXC5dmjOoccpo8IUXtxOc3UyI294J+v1U/uddjv70CVy1fc8IwqdtTmKXzsW8aDbR86b1W1P6WURRxFpSxbGPdlO5/RCB3QdQ14W/wHwWl1TGYXMq++PSqdaZkAWDyIMB5MFAz32N30uis4MURzsp9nYSXDakw3AeMS+eQ9o1F5J+46Wo481Dfr9IeHdHEQ88vp7GNvsZr2lVcn5592q+dsWCiPrndZwop+LFd6j873u9XtDHiqKoOHYnTMJ8ySp+8a3LyE4d+5pvv8NJ5f/WUfrU//o1MtNmJDPl/q8w+Y6rhtVw6Gzn8yBuu7FX1FD+3Ouc/OcbA0pxjQiZFGWMCVVsNEqzEaXZ1HNTxZsxTsvCOHPKqPcmjxSHy0tZXRsl1a2U1FgoqW6ltCZ03+HufTIoUhKidZ+ay+QkMinRRHKsAZM+fC18b4iiSL2lk+JqC0VVFkrKG2nZdRDfsSIyOlqYbLNg8I2cgdG4QxAwTJmEac5UoudNI27FfExzzhSzveHrtNO67zgtuw7R+Mlu2vYfH1M/jHCYZucRv2oR8asXE7diPnKdtuc1v8tN8RP/ouCxp/Hbw1jLCAI5993MrF99C7l+eDMKalts/PY/23lh/WECXj8JLhtT2puZ2VpHnrURudh/VFRuNDD5ti+Rfc/1GKZMHrZ9c3v9fLS3jNc3F7B+dwnOCH7DGpWctQuzuGzpFC5clD3m/bJFUcRZ24j1yAkcVfV4W9vxWKx4TlnWNjRwd8Oe7k0mxO0EZxcT4rZ/Al4vJ597nWMP/3lA0TZBKsU4cwrmRbOIWTgThckQaq4nCKFBhyAQCAapKKmlascRHMeLUdbUoPJGPoDwSKQcjUlhX1w6x6OT8A8w1UYWDJDgtJHsaCfe1Yna7+u6eTF5nCQ5O1AHIjdAEGQyki85l8l3XEXSxeeOeG/SNpuLHzy1gf98dDTs60tmpPL09y4PKwjdza1UvrSOyhffGdHWCoOhQW1gd8Ik9sRlkDQtk99+Yy0r504a692i40Q5pX97iYp/vYXPduakwqnErVzIlAduJfmy8z73zseD4fMkbrsJ+v3Uv7+Fmjc/pv6DbUOqGRwo6uR4jDOnYJqVi3HmFKKmZqFOikMZYxx0XZ0oigQ9XvwOJwGXB0EuQ6qQI+m6CTIZ/kCQTqcXnVqBQh759zwYFKlp7qCgopmCimYKK1ooONlMcY2l16jVQFArZaE2OLEGks0GYqLU+AMi/lN7BfuD+AIBapttFFdbeq177DoYmN12Mm0WJttaSbO3Ee12YvI6h2WCdCyQqlWhjJrEWHSTU9FlpoVc+7Mz+jV8OhUxGMRWXIFlzxEsu4/QuucI7fmlo5plJVEpCcql0DlwB14IXbtjFs4gZsEMoqZmYZiaSdTULIJeH8d++iTlz70e9u/RpCay4KmHSb70vKH+CSEjr+MlWA8XYj1cSOO+fDqOFyPtp1f9qZgWzGDK128k7bqLkamHx3zJ6wuw8UA5r28u5L2dRXQ6+8/okkklTEo0khpvJDFGR6xJS7ReTbRBjcmgJsagxqQPOXvHRmlGLB1ZDAbpLK2k7fCJ0HE9VIj1yIl+U+db8XE/Fd0PJ8TtBGcXE+I2cvwuN+XPvkbBr/8eUSrMSOGSyjgWk8whcyrHYpLxSkdQQIoi0R4nyY52sjpayGtvIsPWirRXH7lPUSXEknnn1WR/7foRT1v+aG8p3/jD+9S1nJlGp1LI+NkdK/nm1YvA66X2nY1UvvgODR/tiLj2SpBKT19XEE4x1FL0GGtJVEpEvx93Uyvu5tZ+BzdBQaBZpaNJradRY6BJY6BCH0O1zkR8tI6Hv3oeX7lw9piZSkBocqf27U8o/dtLNG/Z1+e6EqWCjBsvZcoDt2KaNfK9As9mPo/i9lS66+HqP9iGZfcRrAcLQr+JUUYil4cETFIc6sRY1ImxCHIZAYcr5AjucHY5g7sJdN/vej7gdPdbU+zrqittV6rpUGlx6PS4DFH4jEYC0SYUKYlMXTaTZXMnMysrAVk/v2WfP0BpTStHShs5VNLAkdIGjg6xPdFwE2fSsnr+ZC44J5uLzslEbrfjrG3EWduEs7YRd2MLAbeXgNtD0BNahm5eRJ8PJBIEiQRBIiBIpaHJB4nQ9VzX/a7nA8Eg9Q31IAikpKUhVyrOWL/7fei+L5Eg1aiR6TTIdZqQQaJOg0wbWsr1WlTxMch02kH5ZXitHVj2HsWy5yite45g2Xts0CncMp0G05ypPZMyhtxQlLH7uAX9gZ6/CYkEiVyGXK9Fptci77rJdBo8fj8bNmxAdLqZF5OEPb+MtoP5WA8WYCupHLTQVsWbiZqaicJswrLrcK91rWnXXsS8J3/c0/6tGzEYDHUV8PnwWKyftqDrNrSqb8bV0IyjuoHO4opBGXk1qvUci0lmd/wkWmPjWb0gk0sW53DBOVnED7JOvaqxnc0HK9h8qIKP95cNuSd2X0gkApOTTORlxJKXHktueix5GWampJlRKwfWQszvdGHZfSSUEr9tP2378/E7Bj7hMSFuJzirmRC3Ayfg8VLx77fJf+xpnMPQ3D0SbHIlR8wpHDSnUmRKQK5WYtSrkUoEJIKA5JSlIAh4fQHcHh9Ojw+n2zcsrp7dqPw+prQ3Ma+lhtmttWj9/Qy6pBISLzmPvPtvIX7VohEz37I5PPz475/w7HsHT3teEEWyO5q51NnI9PqTiOFSrD6DPjuDhPOXkLBmCfErF6IwReF0Otnw4Ucgiqy96EI0mr5n9YN+Px6LFXejBVeXK6e7sYXGdhcvFbbwcaMbi0pH4DNRJaVcyv3XLOJ7Ny1DrxkZ9+lIcFTXU/aPVyh/9vV+Tba0Gclkfe16Mu+4aly2yhqPfN7F7WcRRRFXfTNthwqwl1Vjr6zFUVmHo7IOj8WK12obd2mbw4VHIqVaZ6LeFItiajbpK+ax8PwFLJieFtHgNRAIUlbXxqHikNg93CV6I4kgDQcKuZQl01NZvSCT8xdkMmNyfETlHsPBWP9OgoEAHQWltO45imX3ESx7jgypLZA2PRnzkjnELp1L7NK5RM3IGZbMlr6Ok6/TjvXwCSx7jtC0eS/N2w5E1AZqwHRN+gqCQNDvR/T5R8R1OiBIKImK5VhMMkdjkmnS9N4lYX5uEhcvzmH57HSi9Wr0WiUGjRKdWnHapHFLu4MthyrZcqiCzYcrqKgfY1MwQol+kxJNTM+MZ35uEvOnJDF3StJp7YB8NjstOw921XgfoHX/ccQBRLp7Y0LcTnBWMyFuB0/Q76fqpXUU/OppbMUV/W8wAOwyBS3meIKZk5AsmkfMojmkJBpJiTOQGhdFtEE9IJHo8wdwefw4PT58/gBeX9fNH6DT7mTnrt34gyIzZ81FkEjx+gPYnV6arHaa2hw0tnZS1dhOaU0rHaekrkmDAfKsjSxsrmJ+SzXKYN+RUCE1mZnf+grZXx25+ssthyq49/fv4SyvYXFTBYubKoh1951CC6FIc8aNlzLpliswzso94/gOdZDV2Gbn589t5l8fHO51Ev3q86bx6N2rh9y8frCIwSANG3ZQ+reXqF+3pe+BiSCQdPG5ZH/9RhIvWDaRejxAxnrQPh7xu9z42m0EPF6cNjs7t25F9PiYm5OH2OnA09IWqgmzWPG0WLFX1NJRUNqnkdl4xS2RUR1lRpg/i3NuvZQ1161GJhtYWnN5XRuHu8Tu4ZIGiqssNFntQ+wKJ2dKqpkp6WZy083Mykpg+ax0tOrhc8cdCKP9O3G3tNG691Mh27rvWPia0wgQZDJMc/IwL54dErNL5o5YFtNAjlPA66V17zGaNu2hceNuWvcc7bO113hAk5JA3LkLSL5sFQlrl3KkoZO/v72fN7YUDjqNX6uSo9coUcilVDf13XZvtFH7vUyytZJub0PvdaPx+9D4vWj8HuKCPvR+D3KvB8E/+BIGeZSeqGlZqOJiQj4GMUYUMSFfg0aPk2X3fqV71QlxO8HZxYS4HTw2h4d9hbXsPlZF3dsfk7F9G2kdfUe4/IKARyrHI5X1JPYGBAkd0WbInkzs/GlMWbWAectnYtSPzmB3IBdFURRptjooqbZwuLSRA0V1HCiqp6LeisrvY2FzFcsay8m09X0cAnIFhstWs+hbtxC3bO6wRXNdjS3Uvv0J5f96m7Y9R/pdX6pRk/rl85l0yxXEr17cp0Ab7CDL5fHx59f28Lv/7ew1tXB+bhK//cYFLJ4+uJ6gQ8VtaePkP9+g7O+vYD/Zt0O4MjaazDuvIevua9FlpIzSHn7+mBC3p+Nua6fhg21Y9hzB09SGy9JGa00dotuLzqBHKpP1eBaAGPoXDBL0B/B3dOLrdBBweYYlajEWdKo0BObOZO5NFzP3hgtRmKL63ygMXl+AhtZO6lps1LV0UmexUdtsw+ZwI5dKkcskyGShpVwqQS6TYtSrmJIWSoNMjYsatahsJIzk78TvctORX0LrvuM99bL28upBv586OR7z4tmYF83GvGgWprnThq3usz+Gcpz8DifNOw5i2X0EW2EZHYXldJZUjo3gFQQMORmhVO05eaHl7DxUseE7UTRbHbz44RHe21nMvsLaMWsmoVMriNKpiNIqT1sadSokEgntdhdWm4tWmwtrp4u2rqUogiAGSXJ0kGlrZbLNwmSbhURnByNZjCTIZMhNBuRaNRK5rCutv8sPBoFmj4M7yrZ0rz6q4nZ8NEOaYIIvAN2z5AeK6tmTX8OeghryK5pPac6thtlryepoYW1tEXMstUjC1KXKRBGZ34s64MM+fRrxN1zO0ruuJM48uIHMaCMIAvHROuKjdSyfndHzfLPVwdbDoZSelw5X4C05yXn1pSxurEAVPHOwKfV5cbz5ARvf/ABvbCzpN1/OnK9+iaipWQNz+AwG6Sgope79rdS+/Qmte8MbS51KEDhhSmB3/CT8i+bz2+9eQeK04ReVoijy2uYCfvqPjb3OCifHGvjlXau5bvX0UR9QiqKIZfdhSp/6H9Wvfdhv9Ct22Tyy772B1KsuQKocmyjOBJ8PgsEg9e9vpfLFt2nZfRh3Uyuir3dR2knzsO9DAGhTaanXRFGjM9Gq0uGRSvFKZHikn968EileqYyk5Bgy4qJINqlJMKhIMKiJ0yuJ1SnRigHs1Q3Yqhtw1Tbirm/C32hBbLEgaY8sIqR3O2HXHk7u2kPZfQ8j5uUw69YryLz+IrRpSRH/XQq5lPQE45hlf4xX3JY22o8UYT1yInQ7fAJb0clBp81KlAqi500LCdkuQTuaLfGGE5lWQ9IFy0m6YHnPc0Gfj87yamyF5XR0CV5HVR1eqw1vWwfeto5BiV+JUnFK/XvXsuuxPicD48wpp7k290ecScuDNyzlwRuW0mx1sGFvGev3lPDJ/vIRS9uPMahZODWFc6alsDAvmXm5yRi0AyshCvp8VL32ESXPvU7bniOII5Em3gei34+3pQ1vL/YxdsYukj8RuZ1gyExEbs9EFEWqGts5WNzAoeJQv8LDJQ2npeP2h9llZ3VdMSsaylD14zasiosh9eoLSLlyDXHnLhjW5uiRMBIz4yfr2li3q4SPNh1D2LSNlbXFJDn7N9wQowwkrTqHpFWL0E1ODbX7MJuQatWh+tUmC+6mVjoKy2jdc5TWfcf6de3tpkFnZEdcBnviJ9GuPL1e9isXzubhr57XZ8/IgRynfYW1fP+pDewtCD/ZqVHJ+e4NS3ng2sVoVAMzjBgqvk47lf99j9K/vUT7seI+15XptUy65Qqy77ke44wpo7SHXwy+aJFbV2MLJ373HDVvfYyjqh5GoBZvKHSb0hw1p8DMqczOSWJ2dgJzcxKZmZVwWp3bQHC3tNF2MJ+aHYep3HoQV34xivb2Ab2HYe40Jl97IalXXYA+K31Q+3G2EunvRBRFfB2dOGsbQ+ZEpZV0llbRWVKJ7UQ5ztrGIe2HNiMZ8+I5oe4Hi2Zjmp076tfqvhjt84koigScLjxdQrdl50GOP/KXXh3SU65ay+zfPIg+M33EfDdOxesLsPNYFev3lPLxvnJqmjsiatsTjoRoHZctm8KiaamcMy2FyUmmQf8N7uZWyv7xCqV/ewlX/fBP2g0XEzW3E5zVfNHFrd3lpbCimfyT3bcmCiqaabMNfhZtcpKJxdNTWTw9lYVpJqSfbOHkM69GVJcrN+hIuvhckq9YTdJFK0alL6jL5eKjDz8El4fV55+PxqAPpakMsn3GZ2ntcPLu9hNsfn4d5u07mNNSE5Hb8nCgNJtIv/FSJn/lStzpafz47xt5+ZPjYdfVqOTcf80ivn3dkrCzsJEMHmqaO/jpPzbyysb8sJ8hCHDzBbN45Kur+hTSI0H78eJQG58X3+m3hsw4K5fse28g48ZLh72H4QQhvgji1lZaSeH/PUP9us24m0bfKXmwaFITybjpMjJuvhzjtOG/JroaWzi5aR97//0+nl0HiOqMvN7POHMKqVetJfWqCwac6TLeCfp8eNo6Pq2rtlix1zdTsHc/uL2kp6Qi6WrP5LM58La147Xa8LR14KpvHjaTJKlGTcyCGZgXzcK8eDYx58w6wwV4vDEezic+u4PjD/+Z4if/HbYTgTLGyIxf3E/W3deNeJvAz+Ly+HhnexH//egomw6epD+PTYkgkJ5gZE5OAjOzE4gzaomJ0hATpcHctTTpVBF3Mmg7mE/xn16k6uX3h8UjwKXVUas3cVKmQeX3k+i0Ee+yETVMvagnxO0EZzVfBHEbDIrUWWyU17ZRVttGWV0rZbVtnKhsoaLBOqQaDblMwpycxC4xm8aiaSlhree7U0DLn3ud6lc+iMiaXSKXE7dyIeYlc4hZEOo/N1gnWlEUcTe2YCs6iaOqvutWh6O6IeRaWt0An0kLFCQSBLkMiUwW6u+oUqIw6pEbDSiidKGlUY/CaEBuNKCMMaJOjkeTFIc6OR6l+czZzeqmDl57dRulL7xJ9ol8El2Da5/QFzK9lqSLVpBx02UkXbQCifz0yOj2I5V868kPKKwMn48Ta9Tww6+s4I5L5p7We66vwYOlw8kfXtrJ02/tx+0NH6lfNjON337jAubkJA71T4wYURRp+Gg7RX94nsZPdvW5rkQhJ+3ai8j++o2YF83+XA2axyMjPRgVRRGbw0OrzUlrh4u2Dif+YBCNUo5SIUOrlpNsjsJsjKyXZ6RY9h7lxO+eo3Hj7kG1RwkIAh6JDJ9EikcaWgqISINBpGIQWTCIPBhAHgygEEc++tuRkIhl3jzcSxdhTEvsGeDGRKkxR2kwG7UDGuR+FlEUObjxIJv//ib27fuY1FKPoh9jvm4MUyaRetUFpF61FtOcqWfNb1YURZy1jVgPFdB2sIC2Q6G+pmMSyeqq8Yw5Z1ZPVNY4I2fUxddQGQ/itpu2w4Xs+9rPaNsffiLZkDuZOb/7PkmXrBzR76zN4WHTwZN8sLuUt7ef6LuP8yAQBEK9ag1qNEo5KqUMtVKOWiFDpZSjkUJK8QmSd+5AV1U16M8JIlCtM1EWFUtpVCxuqYzsjhbmWGpJdg7NCCsA+CRSfBIpfokUv0RCQJDQKvp4zH2se7UJcTvB2cXnQdy6PL4u84yQgUZtc0ePkUZVYzvldW24PMNjMhJv0jI/L5lFXZHZuTmJA+5D5rM7qH71A8qfex3LrsMD2laTmkjMghlEL5iBYcokpGrlp/1W1V29VhVyHBW1tBeU0VFQSkd+KR0FZXito+sGKFUp0U1ORTs5FX1maqieZsYUjDNykEfpOVLawNvPrqPtjQ/IqaskxjM4R0oItVdIungFyVesJn7lOf3WhPr8AZ56cx+/+tfWXutykmMNfO/Gpdx28RyUClnYwYPN4eFPr+3mT6/t6fV9JiWZeOxra7hi+ZkOzCNFwOOl8r/vUvTHF+goKO1zXd3kVLLuuZ7Jt38ZlTm8accEw89wDEbdXj/7C2vZd6KO/JNNlNW2UW/pxNrpGtA5TyoRUCpkaJRyDFolRr2KWKOWxBg9KXEGMhKNZCQYiTZoiDNpMelDJinBYBCHy0v5f96l/JnXcB8vQvBGXucWQMCi0lIWFUuxMY7j0UnYlJGLbbXfS5Kjg2RHB0mOdpKcoftG7/DXrwURKIhOYHtiFkdiUk5r4SUIEK1Xh6I6xtOjO+ZT7vc8NmrQqRVnnA98/gAbdhTy3p9fR7JrH3MsEbRa60I7KYXUL68l+dKVmBfPGVd18d6OTix7jtCy4yBt+4/Tdqiw1/TVkUSqUhI1I4foOVMxzc7FODsP08wpyLTDO8EzFowncQuhFkqlf3uJoz/6I/5OR9h14lcvZu4fHhq2nuiiKHK8vImP9pWxYW8Zewpq8QdGv/whxW5leUM5SxpPogkMLkpbrTVxwhRPkSmBcn0MGfY25lhqmW2pxTSI81uHXEWjxkCDxtC1jKJBY6BNpUUMMy4R3R149vyx++GEuJ3g7GIsxa0oinh9AVxePy6PD7fHj93lpdPpwe7yYnN4sDu9dLo8dDo8tHW6ae1w9twsXUvHIOso+iPGoGZebqiv2NycJOZOSSTJrB9WgWIrPknNmx+HzJD2Het/g88JmpQEoudNI3bZPKIXz2G/X8Grr26nYdNecqyNpNrb0fvc6Hwe5KdEZxwyBW6tFn1qAjmrFpK6cgHmRbNQJ8YNaj8aWjt59PmtvPDB4VPMwU4nOdbAt65dzFUrcti3exsAy1acx78+yucPL+3sNYXdoFXy0C3L+fqXFp4WAR5JPK1WSp9+mZK//Bd3Yy9OEYSi8smXnUfWvTeQeP7SYUtBnyByIh2M1lts7DxWzaGSBooqW6hsbKe5zYHN6RmTgRuAyudlTV0RC5urB+TqKRL6DReaEtmWmMkJYzyMwHdP6/OQ1dHClPZmcjqaSO+0hjX4GywdchW7EiazPTGzzx6bfaGQSzFHaYg36YiL1hJn6r7piDNpcbi8rN9xgpoNu5jdVMUcSy1Rvsj6AEvVKmKXzydh9SIS1izBNDtv1H7joijirGmgZcdBWnYeomXHQdqPlzCaNrbK2Gh0k0MTqvrsdPTZGZhmTkGfk3HWRWQjZbyJ226c9U0cfOBX1Lz+UfgVBIHJt32JmY9+C01S/IDfv6U9ZGb58b5yNuwvo7E1Mg+O4Ubt83JOcyXLG8rJsA984qZRreeEKYEiYzxFxngCEgkzWuuZ3VrLjNb6AYlkj0RKWVQsJVFxlEbFUqsz4ZAPzPBqQtxOcFZzqri98OtPYjQndrUHCLULkEklaJRyJBKBoCgSCIgERRExKBIIBvH5g3j9n/ZM9X3mvs/X9fopz3u9/h5BOx6+whKJQHZKDNMnxzEjM55pk0LLtPioUU3zctY3UffuJmrf2UjTpj1nZe/GwSJVKYk7dwG685ezWWXmue3lIYdhUUQV8KMI+HHIFQQkn7bqUcilXLE8lzsumcuK2RlDchs+UdnCT5/ZyPu7SnpdR6WQsSBTT1qMio2FNhrbws9Gy6QS7rhkLj+5/VxijZG7Pg4FR3U9J373HOXPvU7A1fsAWBUXQ+bd15J193VoU0cvPXq4CQSCWO3urtYKTto73TjcPlxuHy6vD5cndH4J3fx4vH78gSD+QJBA17nLHwgSCITuB0URQRCQCAKCEKq3kkgEBLqWYZ7rWbfrPl3bhx5zyjoC/kAQj8+P1xfA5wvg8QVwebzU1jfiCwRRqvW4vQGcHh9Od+jWvc/j4BSJLODnnOZKFrRUk2FrQ+f3EOmvTQTaFWqOxiSzPm0qreoza83lMgl6jZJYo5bkWD3mKC1alZTW5nrUCikzpuWh16hQKKQoZFIUMhkSqYDPH8Tj9ePuniA97X4Ad9dzvk47+opKTBUniauuJK65IeL974+iqDi2JWVx0JyGf4R6PQuE2oVkdbQwr6WGuS3VRA8geqOINhK/ciHG2bkYp2UTNS0LXWbakIVe0O/HVlyB9cgJ2o8WYT1SRPvRItzNQ6+vlhsNKM0m5NFR2II+UCtITk9Drg61LpHrtShMBhSmKBQmA6rEWDTJ8aiT4sdV1Hq0GK/itpumLXs59OD/YT1UEPZ1qUZN3oO3M+WBr6CMMfX6PjaHhx3HqthyqIIthyo5frJp0Pskl0lYPiudixfnkJUSTYfDQ4fd/enS7qa9a9lqc/UEVrqztAQxyJT2ZpY2nmR+S3XE5QTQPcmXQH50IgWmRKwqLUaPk9mWWuZYasltb0IWYdmFS66gNjaJhqRUWlLTsCenoNaqUClkaFRy1IpQynTovgx113MalRyFXIpUIgmN8YOh65THG6Cmuoqf33dV90dMiNsJzi5OFbfKRd9BUJ0dLWkGg1YlJyslhszkaLJSoslOiWHa5Dhy080DTi0eaXw2Ow0bdtCy6zBtB/KxHiqMqE63P6QadShVOD0JbVoi2vQk5ImxHG+oRjAZWL5iOQqpDNEfIOjzIfr8BLtufqcLX0cnvvZOvO02vO2d+NpteDs68VptuJtacdU3426yDGmWXpBIMC+bi2vxIl4VTLyzv7LfCFVmcjQ3nD+Da86bRk6aedCfveNoFb94fgvbjw68PkYQ4Po1M/jJrecyOXl00nvtFTUU/uYZTj7/Zp9tGQx5meR+53Ym3Xw5UtXAZnBHk2BQpLHNTnVTO9VNHVQ3dVDT2EFNcwfN7Q6stlB/wHZ7ZBGsCQaOJOhnSnszM1vryba1EO/sRB3wDUgMikCLSsf+2DQ+Ss3DoQg5DUslAtEGNZOSTMzOTuDc2ZM4f0Em+kEauA0WV5OFhg+2UbduCw0fbe/XYC0SOmVKtidmsiU5m1bVyJqwCaLIJFsr8yzVzGupIdY98GiVRCHHkDuZqKlZ6CanItNrkek0yLRq5DoNUm3ovt/hwtPShqelDXf3srkNV30zHYVlBD2Db7cij9ITPXcqprnTiJ47lajp2ajizSijo3q8Esa7aBsvnA3HSQwGqfzvuxz90eO9uldLNWoy77iK3O/chm5SKg2tnRwtbWR3fg1bDldwsKieQH9uUH1g0qu4cFE2Fy/O4fwFmQN2QReDQeq3HaDsf+toevtj/BGm14uAPT2djrw8bHm5uNLTESQS1E2NRB/Px3j8OMqKyoj3Q5+TQcqVa0i5YjUx58xCMswTa6WlpeTk5HQ/nBC3E5xdfJ7EbZRWSXKsgeRYAylxoWWy2UBmsonMlBgSY3RnjeHGZwkGAthOlNN2IJ/W/cdpO1iAx2Il4PYQdHvwuzyhiF3XOUGqUmLIyyRqWhZRXTP1xmnZaDOSz0hPG+6LYtDvx91owV5Ri/1kDfbyajrLqunIL8FWVDGg3nhyg4746y/lUM4Mnj3cSHld/xeSWVkJXL1qGpcsziE33Tyo//NtRyr51b+2su1IZCL38uW5/Oz2lUybNLj06IHSWVZFwWNPU/Hvd8K6UnYTv2oRuQ/eQdKFy8dV6rHXF6C42kL+ySaOlzeRf7KZ8ro2altseH2Rz35P8ClqpQyTXk2SWU9mcjQzMuOZMTkOs1GL2agl1qhBJpFgd7hoLarEWlhGw/58rCdO4qtpQGhtQ263Iw34BxXV9AsCNVoTexInszctF0O0jrQ4I7kZZubkJHLhomxS4yK/vozWYD3g8dKy/QB16zZT995m7CdrhvR+okTAOWsmNYuWUBGf0hPxsXTdhv37LYqk2a3Ma6lmelsDafa2iNPERxOJQk70/OnELp1LzIIZmOZOQzc5td/z83gWbaIo4vGFstICwSDBoEggKCLryn5TyKTIZdJR6WE+no/TZ/E7XRQ9/gKFv/5Hr5P2QUEgP2kSbyfkUKUfnJHmqVyzahp3Xz6fRdNTkQ3Q/E0URayHCqh6+X2qXvkAZ01DxNvKo/RM/+nXybzjKhSmKIKBAJbdh6l9eyO172zEXhb5RHrMotmkXLGalCtXE5WbOaC/YaBMiNsJzmpOFbc/0MxGLdPglcrwSGR4pTLcUhlWpQarUoNTpsApU+CQK3DJ5DhlClxSeShkNWz7Azq1Ap1GiUGjRKdR9CxNOjUxUerTzDpiojTEGNQkmvXoNeM3IjUaiKKIo6qOlh0HQ5HVtg48lvbT2ip4rR2I/gCiKEJXerkYDOLxhFwE1TptyJxKqUCqVqKIMaE0G0P9ZuNiQhHfjGR0GSmoEmMHPFsY8HrpLKnEeriwqx7rUL+GR90kXXIu/huu4j8VDt7adiKiQWJafBQXnJPF6vmZzMtNInkANdPNVgf/fP8QL35whJP11vD7ZNbzy7tXc+P5MyN6z6HSUVROwa+epup/6xB76RMqyGSkX3cRuQ/eQfScqaOyX33hdPvYV1jLweL6nnZbRVWWMasXHVG60uj1PjcGb/fNhc7vQePzovF70fh9qAI+VAE/yoAfRdAPIp8RlKFru3DKw1BqNEgFCVKp0DN4VnallQmA2J3E3L3wBwh4vAS9PkR/KANjWGtBNGrks6ZivPFKsr68hvQEI5JhmkQZi8G6KIrYik5St24z9eu20LLzUJ+TR/1hmDKJ7G/cxORbv4TcoEMURewuL60dTlranbS0O2huc9BstdNkddBsDd1v7ro/mJZ0Wp+H3PYm8qyN5FkbSXB1Dnr/h4Ii2kjs0jnELp0b8laYN31QWSOj4Spud3mxdP1/WDqcZ9xvt7uxd3mB9NycoWUk5zGtSk6UTkWUVkWUTkl8tI4ks4FEs45ks4HJySZyUs1EGwb/t413cevx+mlss1PT1EFNs43alg6ay2oxvvUO6UcPI+njvHTCGM+HqVPJj04MO94UhN5PazMz4/nD/ReybObA+0O355eEBO3L67GXVw9oW4laRd6Dt5P33a8iUchp/GQXtW9/Qt17myM2U5Mo5MSvXhwStJevGrS3yGCYELcTnNWcKm7/xCRiGFh6rlcipV2hpl2p7lpqeh5bVDqkqUnMmJPJkpnpZCSaQvVScikqRZdlujJkma7ueqxSyEZllvPzgrO+ieat+2neso+mLXvpLKkctc+WKBVETc3COCMH44wcorqW6sS4AUVLPW3tNH68i5q3Pqb+/S39pggmXXoeaQ9+lfctAZ5fd5gTVb0bJ32WOJOWOTmJ5KTGdE2MaDAZ1Lg9PlptLtpsTmqbbewtrKWsNnJTiIVTk/naFQv48sqpqEbAPKo9v4T8R/9G9asf9HoVl6qUZN51LXnf++qY1tNaO13szq9hx9Eqdh6v5lBxw4gK2e6IpV6jRK389LwSas0Quq9WyJFKQ6JQJpUglQhIJaGlTCpBEAREMSQNg0ERUQx5C7S0OymutlDZYKXe0okYFNH7PCQ4baGby0a8s5MorwuD143e50Y5gLqrsw2JQo4+J4PE85eSede1ROWNXPRgPAzWPW3tNHy0g7r3NlP/wbZBtTaCUAZK5l3XMuWbN6NNT454O58/0CN0u0VvY6udyoZ2KhqsVDRYqW5s77NnZ7TbQZ61kTS7lWRHO0mOjoiNqSKlU6ujIz4RT2oKQmYGmrws9FlpGA0hZ+0onQqTXoVRr8aoUw0ocjbQ74HPH6DT2T2B8KlAtbQ7aDnlvqVrgsHS7sAzTrJFYo0actLMzMpKYH5uEvNzk8lMjo5oTDQcvxe7y0u73U2nw0OHo3vpodMZWjpd3h7/FF8giK/HXyXYZQ7qw+Hy0un0hpaurqXTg8/f+zUg2d7ORdUFLGyuQtqHy0CzSseh2FSOJmYQPX8GnS4vBRXhr//RBjWPfPU87rhk7oDadNlKKqh6ZT3VL6+no7As4u26EWQysu6+lvSbLqP9yAkaN+yk4eNdEfdglkfpSbrkXFKvXEPiBcuRG8amz/yEuJ3grGao4jYSXFIZLWo9brOZ+GmZzFw+i5zls4mamoXCODinyS8qAY+Xpk27Q6ZTm0dXzEaKMsYYErozpxA9dxrR86ZhyJ0ckXlJwO2hYcMOyp99jbp1W/qMMiVdeh4zHv4GZRoTr27M543NBTRZw5s8jRYxBjW3XjyH2y6eQ3bq0FOprEdOkP/o36h5oxenSULOqNn33kDed+8Y1ZndbhwuL5sPVbDx4El2Hq0mv6JpyMFBhVxKSqyBtPgo0uKNpCVEkRijJ9qgJsagxmRQ9/QXHO56+ROVLby5tZB3Pz6Ku6CYTJuFJEcHCU4b8a7OiFuznPUIAsoYI4a8TOJXLiT12oswTc/pf7thYjyI21MJ+ny07DxE7bubqHtn46DSlwWphJQvryXvO7djXjR7WPbL5w9Q22yjsLKZXz6/laNl4WsZT41uaX2eHqGb5OxA7/WgDPhQBvwog6GMAmXAjyrgxyeRYpOr6FQo6ZQrsctVdMqVdCpUNKv1VA/CiVUhl6JRylGr5GiUcrSq0H1FVwqvAAhdhm3BYJC21lYEQSA21oxMKkUQBNzeUHcFR1cktXs5XoTqcGHUqVg2K51V8yaxat5kclJjwk4eR/p7CQSCVDd1UFxtobjaQkl1K8U1FkqqLbS0D732fChEux2cX1vEivoyVMG+W5m1q7QciEnhYGwqpVGxiEJIwEokAnddPp+f3b4y4ki4vbKW6lc/oOrl9VgPFw5u5wWB2KVzUSfH07rnKI6quog31aQkkHzFalKvXEPsivlIFWNviDYhbic4qxkNcdsXqqQ4jFOzTq8NnZGDXD82s1XjEb/DSf2H26l5cwP167bgs42N1f1QkKqUGGflEj1vWo+BSNS0rD5P4vaKGkqffpnyZ1/H29be63rJl53HjIfvI2r2VLYfreL1zQV8uLeMupbBRVn6IsmkJN6o4Hi1o99o5MKpydy0dhZXnzdtwOlmrQeOk//Lp6h7d1Ov68i0GrK/cSN5D96BKm7oQro//H4/7e3tdHZ2Yne6abE6aG4PpU721kapP9RKGfqusgOduivyqpCNWuukbuwuL80NrXQ2W5E6nWj8PpQDNFE6WxGkEiQyGRKlAplWjcJkQBljQqYb296fwWCQlpZQVCY2NnbY0p2HC7/dibu5FXdTK95BRHRlWjW6zDTUibHDWg/fYOmkuMaCxxte5GnVClISYrB7obzBTm1LJ3UtNuotndS32Giy2sdFF4MJwpNk1nPJkhwuX5bLitkZKOSh0qDexK3PH2B3fg3rdhaz5VAlJTWWcT0BYI7SMD81ihW1JcRv2wZ9XPu76ZCrOGJOQTFlMjfcupaZ585Gk5YUtmzKZ3dgPVRI675jXbfjEQtRQSoNW6YgUSkIugc26WmckdMjaE1zp407P5gJcTvBWc2p4vbZjGXEBCQE3F6CHi8Bry/khDgG3zNdVjqmWbmhRuuzcjHNykWTmjjuTgAjhdvSRsMH26h56xMaPtzeZ3uXzyI36EKuk7HRKM2m026K6CgkilCdtNDVvsTr9XLw4EEA5syYiUyQEPR48dsdeFq7anZbrLgamnFU1mGvrBuSQ2Y3EoUc44ycHqdM0+w8jDNykGlPH1T77A5K//YSJ377LB5L+NpXgOTLVzHj4fuInjsNURQpqGjmo71lbDxwkkPF9XQ4PAPeR61KzsKpKZw3bxJr52dQeSJ0nGbMW8LLGwt5dt0hGix917Qp5FIuXpzDTWtnsnZhVs9gJBwtuw+T/8unaPhgW6/ryPRaptx/C1O+dSsq8+i4MjudLgqLS7HZ3fgD3a1zBvYeoZIE2agbrfSG3+vD1ekk4PIgDfiHtQ9q7whdvz1AEEKfKAi9C7d+D0/vK/T8/0hCadeCRIIglSDIZAgyKRK5bFyZjH0WURRxuUKpfGq1elyf+8VAIGTq53QRcHsGeM0UkKqVyPQhv4Ph+DuDQRGbw4PN6YFTvteiGHrN6fFhjtKQnhRLenraad8/ry9AQ2tI8Na1dFJvsfXcr+u632DpHJJj7XhFKZf2mK91+3qYjVqi9Sr0WmXID0StRK9RdHmDhJZKhQyJICCVSpAIAoFgKE3XHwji9vpDab1dLWasNhcNrZ00WOzUW2xUN3Vwst4acemGNBggzmUnydlBhs/BdJOSDL2caEmAtpo6UMhJmDmNRpWew7YAG+sdnBQVuGRjHw0E0KjkpMQaSI2PIqXL/DM1LoqUOAM5aWZSYg09v4GAx0vlf97hxB+ex3aifECfI5HL0U1OQZeVjj47HX+ng9Z9x+goKOvVryIc6uR4lGYT7UeLBvT5n0WQSIhdNo/kK1aTcsVq9JlpQ3q/kWZC3E5wVnOquC0pKSE7O/u014OBAPby6lAPu6NFWI8WYz1yAlcvNu4jicIUhXHWFEyz87qEbx6GvMzPRU87URSxHjlB/ftbqF+/DcueIxEPkORReuJWzCdu5TmhXoazcgdk9DTQ9D8xGMTdZMFWdJL24yU9t4780qG3KxIEdJlpmGblYpyZg3FmLqZZU9BmpOB3OCl96n+c+N1zEYvcboJBkYoGK4eKGzhW3khjqz3Us87mpM3mQq2QEx0VSnM1R2mYkmZmyYw0ZmTG99SHhTtOPn+A93eV8I93DrD5UEW/f545SsM1q6Zz0wUzmZuT2FPr2bRpDwW//jtNG3f3uq3caCD3W7cy5f5bUJhG3tVcFEWOlTfxxqbjpESJxOiVpMZHIZVIupRT34NwqVRAJpF01bpKxkUUNOgPEPD6EP0BhJG8fkoEBKkUiVSCIJUiSCWEmw3w+0Opd7Ih9hv9vHK2Hp+g3x9qo+YP0GdB7GcRCE06yGVD7kELofOeu6tfcgix57ricHux2lykJpqZMyN3QKI6EAjS3O4IZW9YHbS0O2iyfvrY0u7AanfT3ummvdOF1e4eExd0jUpOrFGL2aghtkuomruEa2yY+zq1YkwmUXz+AJUN7T0O8geK6jlYVE9jaycxbgfZHS1k2VrI7mgmwWlDNohzV6dMSYtaR5U+moPmVIqN8QT7mNzSquQYdCoMmpCYj9Kp0KoVKOVS5NKQd4pCJkUmk/TcV8ql6DTK04S/Xq1Aq1ag1yiJNoSusQM5xodLGvj6797FeriQuS01zGupIdE1/FlZpyJRyJHpNAQ8XgKOgZu6daOKN5Nw/hISzl9K0kUrUMWOzmT0cDAhbic4q+lP3PaG19pBy+4jNHywjfoPtkXsJOcXJLilMtR+X5/GAZEiyGRE5U3GeIrgNc6aMmoRraHgrG3EsvswDRt2Ur9+K6765oi3NS+ZQ8qVa0hYvXjAYvazDFdtmxgM4qiso/14MdZjxVgPn8B6qHBAtSe9IdNriZ43jZgFMzDOmEJHYRllz7yKt7W9123Cidyh0N9xKq628Ox7B3nlk+MR1S7lpZm5I9pP+tbNdPZR56OINpL34O1kf+MmFFH6of0REVBRb+XVTfm8/MlxiqosLJ8Wz61rsshMjkauUIJCD5LTv28CfOpsrlagUSnGhTFc0B/A227D3dZBoNMxYlkoMq26q0eoBplOg1TRf3lHMBjEZgsN0gwGw7hLux1rPg/HRxTFUH/w9lAv8IA78uwRQSpBYTSgMBmQG3RDirK3d7qoabbh9QdCv4GAF3x2HC4PNc026m0C37hmGRrVyJUluTw+rJ1ubA43Lo8fh9uLy+3D6fHjdHtxun14fCEnf1EMOX+LIni9XoqLixGB7OwcZDIZQVFEpZCh6xJOuq5b932NSk6MQTOif89I4Xc4ady0h/r3t1Lz/hY8IxRIcMiV1GRNwbd4AbHnLWLK5HhyUs2YjRr0GuWA2+UMN063j0df2MKfXttzepaAKJLk7OA8ZzNrPC0EyyrHbB8/i1StIm7FfBLOX0ri2qVETc8Z1xknfTEhbic4qxmsuP0sttJKGj7cTv0H22jevDeii3i11khpVBxOmZwEVyfJjnbinZ3DInrVyfGh6N+sXKKmZqLPmYQhJ2PMDKwCXi/WI0VYdh/Gsuswlt1HBtQrTZBKiVu5kLSr1pJ8xWo0SfHDtm8jbdzitrR1Cd0C2g4W0HaocMC2+uFQpySgiouhs6SiT4fl4RK5kR4nnz/Ax/vL+e9Hx1i3q/iMiIU0GGBRUyUX1hSS5Ox9BloZG03ed+8g+94bRrwGvanNzhtbCnll43H2FZ4+GXH3RVM4d0Yi6QlGUEaBNDRglEklRGmVGLQqDNqxHwx1IwYCeDs68bR24LN1MlLZxnKDtkd8SOQDH0R/HsTbSPJ5PD4Bjxdvuy3Uo9w1AKErkaAw6pEbDcijdIOazPQHgtRbOmlp7zLd83vA28nJ+jY2Hqlna4GFv3znElbPH9n+mQNlvBmLjQS20krq12+lfv02mrfsJeiNvBf8cCA3Gki5fBWpV19A4tplY54Nt+ngSe774/tUhGnBJwjwtSsX8Is7V6HXKLGVVlL79idYDxXSWVZFZ2kVvo7RaX+lNJuIXjCDmAUziDt3AbFL5g6q3dV4ZELcTnBWM1zi9lT8Thd16zZT8eK7NHy4HdHft+udU65kR/wktiRl06rUkuxsJ9VuJdUeWqY5rKj9w3OyV8ZGY8jJQJ+TgT4rHXVyPOrEWNSJsagSY1FGGwc9Qy4Gg7jqm0Mn2LJq7F3LzrIqOosrBjRrDyDVqElYs5iUK9eQcvkqlDGmQe1Xf4zF4MHbbsN6uJC2Q4W0HSoIXZhKKgdUC3MGEgn0sX386sXkfvs2ki5aMaj/48EcJ2unize3FPKfj45y5GgFyxrLWVtzghhP72Lco9cT89XrWfvze1CNYBsAm8PDu9uLeGXjcTYdqujVFOqXX5nL1PRo4k06lFHxmPRqorRKtGOUwhcOMRjE12HH09aOt70z4ghtEAGkEiTBYL/bCIKA3KBDbjKgMOqHnDb6eRRvw8nn/fgEvD7cjS14LFbEAaQuC4KAPEqHwhSFPEqPRDYwoWt3eqhu6sDl8YGrlaY2OwVVrfzsxcMA3Hj+TP7vG2sxR42toVg3n0dx67PZadqyl8aPd1H/4XbsZVUDfg+JOZpqpY6TQTkOmQKnLFRXq/Z7iXXZiXPbifPYMbmdAyrBUMZGk/ONm8i+94ZRMSo8ldYOJw/97WP+89HRsK9PzYjlr9+9lEXTUk973l5Z25NF2LhxT8RtdwaEVEL03GnEn3cOMV2CVpOWNG6ugcPNhLid4KxmJMTtqbhb2qh+9QMq/vMurXuO9Lv+CWM8m5JzOBKT8mk9iCgS43aQ4Wznwjg5c2VefCUncVQM/29NIpejio9BaTYhUSmRKhVIlAqkKkXP/aDPj89mx9/pwGez4+t0hO532An6hibCdZNTSbpkJUmXnEv8uQtHZRZwvAwe/C43tsIyrEeLaD9WHFoeLcZr7RjWz9HnZJDzzVuYdNNlA6pdHcxxEkWR1n3HKH/mVSr+t45gH8ZgzSodH6ZNZWf8ZPxSKXEmLVetnMZ1a6azMC95WC6iHq+fD/eW8crG43ywuxS3t++JJ4A/f30x09LNmKI05E6ZMuR9GC5EUcRvd+JpteJts0U8MeKVSBFkUuTBIPQz8QYg12lQmk3IjYYBC4m++LyLt6HyRTk+YjCIp7Udd5OFwAAdVwVBQKbXojAZUBgNSOSRTbgEgyJNbXbqa6tosXZSVtfO957b3/N6jEHNb79xATecP2PMB+/j5fo0FIKBAG0H8mnYsIPGj3dh2X2k30n/U1HGGIldNo/YZfPwZWfy1wMNvLizNKI5PFkwwFyTnNvnJDFH6qHhnU9oO5Df73YSpYJJt1xB7rdvI2pqVsT7OhhEUeS1zQV8988fhi3pUcilPHTzch68YSkKuZSA20Pztv3Uf7idhg+2YSs6OfgPFwRUcTFIFHKcdU1hJ8hTvryWRf98bFTKgsYLE+J2grOakRa3p9JZVkXFv9+m/LnX+60vbVVq2JScw/bErDN66EkkAteums73rpiD2WoJiaAjJ0LL4yXD4uQ7Wsij9JgXzQoZDlxyLoYpk0d9MDGeBw+iKOKqa6LtUAGt+4/Tuu84bfuPD4vglSjkJF++iklfuZKkC5f3m1o6kOPkbbdR+d/3KPvHK7QfK+7zfWu0RtanTeNAbFqvBh8ZiUauXTWd61ZPZ+qkgfWyDQSCbD9axSsb83lra2FErtExBjVXrZzGtWumE6fy4Pf7kclkI3p+iJSA2xNy8W5tjyh9TwTcMjlBmQy1ICJxu/tNVZbIZShjjCjNphGbYPqiiLfB8kU7PqIo4ut04G6y4OsYXLs3ebfQjTBVvri4hAZLB/kVltPEbTer50/mz9++hElJI5M1FAnj+frUF/bKWho37KTh4500bdwzoGuWIJMRu3QuSRevIOmiFURNz8HS4eRX/9rGP9cdxOcfXIZTQrSOb1x9DrfOScLy/mZq3tiAZffhfrdLvHA5ud+5nYQ1S4Z9fFLd1MEDj7/Ph3vLwr6+ZEYqf33wUlICbuq7orNNm/cOKDqrjDESd+5CtJNS0CTHo06OQ5OSgCY5HolCzv57H6H2nY1nbCfVqJn/l58y+bYvj/kkz2gzIW4nOKsZTXHbTdDvp+69zZQ+/TKNG3b0ua5XImV3/CQ2JudQpzv9AisIcPV50/jhLSvIy4jtee/OkkqsXWK3I78UW0kljorasP3JRhtDXibmxbOJXTIH8+I5GHInj3k7jrNt8CAGg3QUltG0ZR/Nm/fSvHUfnj6MpSJBqlFhXjyH+JULiV02D31WOnKjHplW03NRczqdbHh/PXh9rFi0BLkIAZcbv9P96dLhpH79NqpeWd9v+6bYZfPIfPCr7NfH8dLHx/l4f3lE/WJzUmM4b+4kVs6dxIrZGWF76IqiyKGSBl755DivbS6gsbX/wbJWJeeyZblct3o6q+dPRt4VpSwtLR1zcRsMBPC2deCxWPFH6F7pksrxymSoZRKUHjeiv//fv8KoD0Vph2jgEwlfNPE2UL7Ix8fvdOFutOBpG/wknlyvQWGK6lPolpaW4vP5abI6ueHXn4Sd+FIrZfzktpXcf82iMamrP1uuTz6bnabNe2j4eBeNG3bSWVo5oO1VCbEhMXvxuSSsWdITJfQHgjzz7gF+8c8ttNvDX1PkMgmXLc0hN9pLQ7uHjYV2qpt6/+7Em7R8/+blfPXSuQSaLdS8uYHq1z6kZcfBPvcxanoOed+9g4wbLx2Uz8CpBAJBnn57Pw8/uwmH+/RJSkEMkhN08cA0Ezk2C5Zdh3BUDsCYUhCIWTCDxItCkwPR86efUacuiiJVL7/PoW89hru59Yy3MM3OY+nLf8QwZfKg/r6znQlxO8FZzViI21PpLK+m7B+vcPKfb/TZ3gWgyBjPJ8lTOGJORhQ+vcgKAnxpxVR++JXlTJ8c3mgp4PXiqKils7QKW0klnSUVOCrrcDW04GpowdPSNmx/k0yrQZeVhj4rHX1WWqjPWmYqxlm5KKONw/Y5w8XZMnjoDTEYpD2/hOYt+2javJfmrfuHLZVZkEqR6bUEvb6QWB3iOVeQSkm+7DxyH7yduGXzT3utobWTVzfm8+qmAg4V10f2fgLMyU5k5dxJnDd3EolmPW9tLeSVjfmU1fb/nZZJJVxwThbXrp7OJYtz0KrPNBIZK3ErBoP4bHY8rZHX0bqlMlwyOUqZFI3fCxFkcUiVilAf6BhjqAf0KPFFFm+RMHF8QlkKrkYL3tZ2hjLe6y2ie+pvWxedwIN//pC3tp4I+x6zshJ46ruXMndK0qD3YzCM1+uTKIpYDxdS9/4WGjfsDKUaD2ACXSKXY146h8S1y0i8YBmm2XlnTKjtOFbFd578kPXu1KAAAIDLSURBVOMnm8K+h06t4P5rFnHPlxagU0p6jtOq1Wv4YF8Ff3xpF0fLendbTo2P4ie3nsuNa2cik0poP15M0eMvUPnf9/rMitGkJpL33TvI/OrVZ/Slj4SCimbu/d177D8REqwan4c0u5WsjhayOlrIdbYh9wzMo0RpNpF4wTISL1pB4tplfbbdsVfUsP/eR2j4KHxwZcq3bmX2b7475sZaY8mEuJ3grGasxW03AY+X6tc+oPhPL9K2/3if61qUWjYl57AjMfOMlOUrlufyo6+sYGZWwoA+P+jz4W5qxdXQjKuhBV9HJwGPj4DbQ9DjPW0pkcuRG7TI9NqQwYxBh1wfeqxJSUAVbz6rUljG6+BhsAQDAdqPFdO0eW+X2N2Hv9MxpvskUSrQTU7FNCcPbXoySrMJVawJZWw0qtholF03mVoFQGlNK69uyueVjfmU1pw5qzxUls1M47rVM/jSuXnE9GMcM5ritruO1m2x4rXa+jQI68YnkeCQKRGkEvSiH0kExm2CREBhikJpNiHTacbk9zoh3vpm4vh8SsDrDUVyB2g+FY5PhW4U5ZUVZ/y21+0s5oEn1lNvOdNxViIRuO+qc/jZ7SvDToSNBOPp+uR3uWnauJu69zZTt27zgNr3AURNzQr1PV27jLgV85HrtGHX63R6+NHTn/Dse+EjqUq5lLuvmM/3blpGrDH0HuGOkyiKbDxwkj+8tJMthyt73a+c1Bh+dsd5fGlFHhKJgKuxhdKn/kfpU//rMytKGWMk54GvkPONmyKauHe5PDz++JtseGkjSbY2Uhwh09C+DBZ7RRCIWTiTpItWkHjRCqLnTevXRTzo91P0+Ascf/jPYTOrlLHRLHrhNyRffO7A9+dzxoS4neCsZryI21Ox7D1K8Z/+TfWrH/ZpuuCRSNnTS8rypUun8KOvrGBOTuJI7+5Zz3gaPIwEQb+ftkOFNG/eQ9PmvbTsOITfMYiL6Sgg02pQJ8WhzUhGm56ENj0Zi0rLtgYHbxZZKHEETstaGAizshK4dvV0rlk1jdS4yI20RlrciqJIwOnC2WLFZ7VBBNGPoCDglMkJSqRoBBGZxxNRZFemVaM0m1CYoobVHOqzZGRkUFVVxebNm1m5cmXYdSbE25msW7eO//u//+PIkSPY7aFU+m3btrF06dKJ4wMEfX7cTRbcLW2IgSE4y3fRLAvi83pRajVMmTa153mbw8PPnt3EP97ZH/ZnlRYfxZ+/cwlrF46s0RCM/fXJWd9E/ftbqXtvE42f7O633ORUlGYTCWuWkLB2KYnnL0WT0v+k+/Yjldz923epbGgP+/q1q6bzy7tXkxZ/+jm8v+N0oKiOX72wtdfaVoDZ2Qn8/M5VPf+vfqeLihffofjxF7AVV/S6nUyrIetr15H51avxO5yhjLj65p7MOFdDCy1lNThLK5EHIjfS+izK2GgSL1hG0kUrSFi7FJW59+jsZ2ndf4x9d/8M65HwmQnJl69i4dM/R504ME+LzysT4naCs5rxKG67cdY3Ufb3Vyh7+uWwNRGncsIYz8YwKcsXL87moVtWsCAveaR396xlrAcPo03Q78d6rJimTXuw7DlC28ECnNUNEUUJx5qARIJFraNBpadRY6BRbaBRY6BJo8cmV4XylMOQHGvg4sXZrJo3mQV5ySSZ9RFHK0dC3AZ8fpxtHXjaO8HhRIjg2IuARyojKEhQCkGkvsgGSRK5DGV0FIoYIzLN6Hy3exO3W7ZsYcuWLcyePZvLL788rLgNBoN89NFHHDhwgP3793PgwAEaGkI9sQ8fPszs2bNH5W8YbTZt2sSaNWsQRZFJkyaRlJSE3+/nqaeeYvbs2RPi9hSC/gCellbcTa0EI6gl740mfDgtrThLqvC+sTnUdu6K1egmh1qt7Cmo4Ru/X0dhZUvY7a9dNZ3H7llDcuzI9Y8fi+uT29JGzesfUfXS+zRvPxBxOYpEISd26VwS1i4jce3SsKnGveHy+PjZs5v46xt7w37c9Mlx/PGbF7J8dkb47SM8TjuPV/Pws5vYeaz3XvPnL8jk1/eez7Qu80IxGKR+/VYKf/MPWnYeiujvGQ60GcnELp1L7NK5mJfMxTgjZ8BeCJ5WK8d/8VdK//LfsI766qQ45v/5p6R86fyzKuNupBlLcTu0JnsTTDDO0STFM/Pn9zPtR/dQ/er6UMpyLxb2ee1N5LU3nZGyvH53Ket3l7JsZhrfvn4JF56TjUQycQL7PBD0+UKtmLraMYXuh5b+7ue7bu6WNtyNFtyNFlwNLcPeXmi0kAaDxDtsxDts0Hq6wYZTKg8JXo2BJrX+tPt1LTaeefcgz7wbSnOLM2mZnZ3A7OxEZmcnMicngfQE44hc3EVRxOcP4Oyw94hZWVfLrEg+zS+REBAkyMUgqghn/QWJBEW0AWW0EZleO+qDlszMTFQqFRrN6SnfW7Zs4ec//zm33norl19+edhtbTYbF1988Wjs5rjiqaeeQhRF7rvvPv785z+fFtme4HQkMinqxDhUcTG4LVbcjRaCfUz2CBIJiGKvdbsi0LxtP83b9nPoO7/GOCOHlCvXkHPlGnb9/S4ef2UXv35xO17f6UL61U35rNtVzPdvWsb91yxCrRy9mvXhxtdpp/adjVS99D4NG3ZG3KpHl5lG8qUrSbxgGXErFgyqBnVfYS13/eYdSsKUoGhVcn5+5yq+duWCYTH0WjojjY+fuJVP9pfz8LObOVzacMY6H+8vZ+PBk9x+0Wy+f9F0FA0N2E/WYJyVS8Djo6OghIBrYDWx/SFRyDHOyg2J2SVzMC+diyYpvIdKJNhKKih+4l+cfOGt8NF2QSD76zcy61ff/kK1+DkbmBC3E3whkCoVTLrlSjJuvoLWvUcp/tOLVL8WPmXZ7HFw7cnDXFF5jN3xk9iUPIU6nZEdx6rZcaya3HQz37p2MdevmYFSMfETGq8E3B46SyvpOFGO7cRJ7CdrcDeHIhXu5la8re0EIqitHK+IgoCoUhIUQeLxIBmGLBxNwMfkzlYmd54+QAoCbUotTRo9jWoDFrWOlhYdJ6pr2LZLj1sWGpAadSryMmJJiNERH60joeuWHStBq5QikUrxdUWJRFFEFEOD4u4BczAo4vUH8Hj8+F1ugi43gteL1OdDEfAjEPlFq/toCIAsGERGBFF1ARQGPYoYIwqjfkxdyDduPLOtRKRIJBJmz57N/PnzT7t93iksLAT4Qgr7wSJIpajjzahio0O9chtbCHjONALqjlgJUgkShZygx9tn7W778RLaj5eQ/8un0KQkcN6Fy1n5pVk8eqyNjUWnmxs53T4eeW4z/1x3iMfuOZ8vn5t31kTAAm4P9R9so+qlddS9tzmia4ogkWBeOpfky84j+bLzhtS+z+P186t/beUPL+8K65S/dGYa//j+5UxOjjz9NhIEQeD8hVmsWZDJW9tO8It/bqGptJoUu5Ukp40kRwdJzg4St77Cju/1325toDg0WuLnTSN10QyMs3IxzcrFMGXSkB2YRVGkedt+iv74PHXvbe414h41PYdznvkl5kWzh/R5E4wMEyPzCb5QCIKAedFszItmM+f336fs6Zcp+/srYVOWlcEAKxvKWNlQRlFUHFuTsjkUm0pRlYV7fvcej/xzM1//8kLuuGRuv4Y6E4w8nrZ2WrYfCLX32bqf9qNFYVOIPi8IoojgciMBvIKEwugkiozx1Guj0Pk9xLgdxLgdmHuWduTi4I6HhNCkj9njYJr1TOdMu0yBRaWjRa2j7YgGm0LFMYWaHXIlNoWa79y/hozUGMwmPcfKm5CIIlIxiFQUkQaDSMUgElFEJgZQBALIgwGGGr+JdKgoSCXIDXoURj3yKB0S2dl/WTQYDBw+3H/vyc8bLleoxdPnvSxiJBAkkpAxndmEt60DV2NL2MiaGAgScHkQBAG5QYvg7IR+avidtY2UP/sa8Bo3SaVcn5PJRwEdB3RxVOlNPWVA1U0d3Pzz11k6M43f33cBs7PHp99FwOOlYcMOql9ZT+27myIyG5QbdCRetILky84j6cLlKGOG3vf3SGkDd/3mHfJPnmlKpZRL+fmdq7jvqnOQjkD7JVdDM20HC2g7WED0gXx+djAfd0P41PPhxKLWoV2+kIvuv56ElYOLcocj6PNR/dqHFP3xedoOFvS6nlSlZPrD95H34O1DFtITjBwTNbcTDJnxXHMbCQGPN5Sy/OS/+zypAXTKlexIyGRrUhYt6lAaikIu5fJludx+yRxWzpn0hUxZHquaW0d1PTVvbKD69Q+x7D4y5DY7g0Iuw6XRYZHIsUiUdChU2BRq3FIZXqkUn0RKQJAgFcWQaAsGkAaDBAWBgESCXwilzHanzgYECTqfm1RHO2l2Kyl2K8pg5DVxXomU49FJHIhN41hMck9UVS4RWJioZ2G0jKnyAKleB0J9PZ3FlXSWVRGMoOXNYEl+8vtoc9JRm2NIGLJsHTpSlQJFlB650YBMqx7zPtHhCFdz21d0Jz09ncrKyl5f7952LGtub7vtNv71r3/x8MMP881vfpNHH32Ud999l9raWhYvXsyWLVt61i0qKuKPf/wjGzdupL6+HoVCwfTp07ntttu44447kJ7iatp9rMJxww038NRTT/XUJDscDp566ineeOMNioqKcLvdpKamcskll/CDH/yAxMQzBdWp/xcxMTH86le/YuvWrTQ3N/PTn/6URx55pGfdjz76iKeffpo9e/bQ2tpKVFQUixYt4tvf/jarVq06470feeSRnjTzZ599lscff5x//etflJeXo9VqWblyJY8++ii5ubm9HtcNGzbwj3/8gz179tDS0kJUVBSTJk3ikksu4a677jrjb4rkGIiiiK+9E1dDM35n7wZITfjw2O2ILg/e1zZR996mflvynYpTJqfMEEtpVCwlUXFU6mPwS6UIAty0dhbfu3EpOWnmiN8vHMNxfQr6fDR+souqVz6g9u1P8HWc6QT9WaQqJcmXnUf6DZeSdNEKpCplv9tEgtNq46//+JCXX9mG3u1A7/MgDQZ7Jg2TzXq+dOEcktMTkOu1yI16NElxaFISkBsNvZ5HejtOQb8f6+FCmrbso2XHQdoO5A/Y5bkvXBotrhgz7phoAuWVpHZG9v2RyOXELJpFwprFJKxeTMzCmREJTlEUcdY20nYgn7YD+bQeyKdt//E+S40EmYz06y5ixs/vR5+ZFvHf9kVmouZ2ggnGkFNTli17jlDy5//0mrKs93m4qKaQi2oKKTAlsDUpmyMxKby+uYDXNxeQnmDkKxfO4paLZg/ITXaCyPG0Wqn873tU/vc9WvcdG743FoRP2zJ13UKtmkLtmhSmKNSJsSjjzZTaA3xQ0sLbxxto8tGrCdOw7JYYJM5lJ83eRqrdymRbK9kdzch6EfKKYIB5lhrmWWoIyGQE5s4i5eoLWHj7FRjMxrDbBAMBnNX12IorsBVX0FlSGVoWV+Cs7b3H4YD/lnCfHRSxOkdOWANIFDJkWg0yjTrUc1ilwAcQAGyuYfucGINmRCe3li5dSnV1NTU1NcTFxZGdnY2/6zyVkpIyYp873LS0tDBv3jxqamrIy8tj6tSpKJWfDvyff/55vva1r+Hz+dBqteTk5NDe3s7u3bvZtWsX7733Hm+++Sayrij7ggULSElJ4cCBA3g8HqZPn05UVOj8m5mZ2fO+J0+e5KKLLqKkpASpVEpaWho6nY6SkhKefPJJXnrpJT7++GNmzpwZdr+3b9/OY489hiAITJ06FaPx0xrzYDDIPffcwzPPPANATEwM06dPp7q6mnXr1rFu3Tp+/etf89BDD4V9b5/Px8UXX8zHH39MTk4OWVlZFBcX88Ybb7Bp0yYOHDjA5MmTT9smEAhw55138sILLwBgNBqZOXMm7e3tHDlyhH379pGWlsZtt902qGOgMBmQG/X4Oh24G1rw9RKhDLg9OEqr6Nx1iKk/+hpRuZk0btxN7dufYC/v3XQIQOP3MbOtnpltob7cPkFCpT6G0qhYTjRVc8Hb21m8dgHfu3n0Oxe4W9po/HgnDR/toG7dFrxt7f1uI8hkJK5dSvoNl5ByxWrket2gP18URRwVtbTsPkz7sWLajxVjOXwCX5OFZODB3jashLoDO6kL85JUrUKTmoA+Kx19djr67IyuZTqS2FA0WQwEaNt/nI49R3sE7VBb4bklMho1Bhq0IRPDZrWeJo2eZrUel+yUllDzphLvtHFOUyXnNFeS4Op9EiHo89Gy/QAt2w9w/OE/I9Np0E1ODbVV7Gqv2N1iUW7QIQYCWA+foO1Afr8Go93IjQayv3YdOffdHJFT9QTjg4nI7QRD5myP3IbDWd9E2dMvU/r0y3ha2vpct12hYkdCJtuSsmhVhS5kggBr5mdy9XnTuHhJDuZBpC37XW7aDuZj2XUYy67DtBeUEXR7CPr8BH1+RL+/574gEdBnZxA1Lev/27vv8Diqc/Hj37N9V1r1Xm3L3dhgg40NxtgGDKb3ACGEkHJDbhKSkHLh/tLLJR2S3NyEBAIkhNBbaKYa29jGuODem3rv23fO749dyZK9klayZEn2+3mefbbNzhyNpNl557znPSSfNoGUaRNIPm0CiSVFfc7bNhiGuufWCIepWraSfQ8/S/lL7/Q6OfzRXAU5JE0pIWnSWJx5WTiy03FkZ0Smc0lxd37xWRJ6n6vU6w/y+Bub+f0za2IW7eiNyaRIctlx2i0oI4jVrLA7EwiGDXyBEIFACF8ghD8YJhRjeg6lwKQUJpPCpBSZZoNz26qZXraf7MMHMMWRfm122Mm95DyKbriE1JlTIwF8cs8/txEM4q2spXXPQRo2bKNpyx7a9h7GU1FNoL6JkMcLcc6X2dFz68pIJ/uontv6Nj+n//CVuNYz0h1+/u7OOSOPV0/Vkrv29D388MNxTwU0knpuzWYzs2bN4sknn2Ts2LFA5BjidDpZvnw5ixcvxmq18tvf/pbPf/7znUHshg0buPnmm9m9ezff//73u/WYwrH7rGtBKZvNxpw5c9i2bRs33HAD999/P3l5eQC0trbyta99jYcffpgJEyawbds2rF16gDrWazabue2223jggQdwu93d2v3jH/+Y733ve4wZM4YHH3yQiy66qPPzTz75JJ/73Odob2/n7bffZtGiRZ3vdfw+rVYrY8aM4dlnn2X69OkAHD58mEsuuYQdO3Zw66238ve//73bz/vf//3f/OxnP8PlcvHHP/6RW2+9tbNH2+/388wzz1BcXMz8+fMB8Pl8nHXWWQPaBxCZ1sVXXU+goblznHxHteT23Ycov+sXQCSAGnPL5Yy/82YsTgeVb6yk4vUV1Cz/cEAZIn6TmfKEFIwxRZy1dB6zLp5D4tgCnPnZmG19z5Ubz/dTRyBZ9+Fm6j/cTO3762jYsD2+bCClyDp/NsU3XUbhdUv6Nb3M0dpLK6l8YyU1yz+k5r0PB/XiYl9MNis6MwVd3wy+gV1wtLgTSDltIslTS0iaOp46dyq/XXOY1/c1ovt5ETgz2clPFo1l6oHdHH7yVXxVQ5/23CFxXCGTvvZpxn3m2h7nEha9k57bk5xSqgj4KnAZUAT4gb3AU8AftdaDMmGmUuom4DPADCAVqAJWAP+rtV4zGNs4Vbjyspnxo7uY9t93Uvr8m+z907+oWf5hzGVTAj4uP7yNSw9vY2taHu/lTWBLWh5vrtvHm+v2YTIpzju9mCvnT+aK+ZN67NENNLVQ9dYH1EaD2cYN2zGC8QVxGmjetofmbXvgqdc6XzfZbSRPm0DO4rPJWTKfzPlnYnE6+r0/hkvr3kPs/9tz7H/0ebzl1X0ub3bYyTh3Flnnzyb7/DmkzpxyXFfOAWoa2/nzC+t48MWPqGvu+1+1MDuZhTPHMHNiLuPz0yjJT6MwOxmrxRzXSVY4bBAKG52BrMmkeg26/fWNlL34Noefeo2qt9f0WKEz7PNT9sJblL3wVrfXlcmEJSkxkqablICyWvFV1uCtqhueNG9x0rNYLDz33HPdeps7/he+853vYBgGv/nNb7jzzju7fW7WrFk88cQTnHXWWdx///3cc8893Xp8e/PII4+wbds25s2bxz//+c/OgBnA7Xbz4IMPsmnTJjZs2MCzzz7LTTfddMw6pk2bxl/+8pduKdFOp5OGhgbuu+8+rFYrzz///DEXDz7xiU9QWVnJ17/+dX7+8593C247BINBHnvssc7AFqCoqIif/vSnXHvttfz73//utnx1dTW//vWvgUhP94033tjtfbvdzic/+clB3QcWl5PEsQUY+dmR6vG1DRA69jsq7PWx76Fn2PfQM6SffToT7ryZBc//AYhUVK58YyWVr6+gZef+Yz4bi90IR4rcbamnactG3vnFHyNvKIUjOwNXYQ4Jhbk4C7Jx5mRiSXBidjmxuByYXU7CZkV4+wEwDKrC72MKhQm2tOM5XEHb/lLa9pfRuvsA/vqmuNrTIXP+mRR94lKKrr8YZ05mvz7bQRsGdWs2RebB/fe7NG3eNaD1DAYjEITy+ANIS6KLtFnTSDvrNNLOjNy7xxcfM8xj/uc0/161m589tpxNe/oO1i1mE3deM5t7P30+KYmR85VZv/4Odas2UPX2aqre+oD6tZvRccxn3l8Z58xkyt13kH/VBSekY0AMDQluh5hS6jLgcaBrROMCZkdvn1NKXaq1ju8oH3sbDuBp4PKj3iqO3m5RSv1Aa/3jgW7jVGW22xhz02WMuekymnfuY++DT3Hgkedjjs0wQWd6VYPNycrcEnak5nDQnc7yjQdZvvEgd//+dc6cnMeV507igtklTMtKpPKVdzn81GtUvrGyXz2S8TD8ARo3bKNxwzZ2/OphzA47WefP7pxDL3nahBFXlTLU7uHws8vY//CzPV5Q6MqWmkzB1RdQdMMlZC+eh9ne95X8eOw6XMfvnlrD48s+xh/s+UtUKVg0ayzXnj+VxWeOY0zu8U2HYzab+lUAxJ6eSskd11Nyx/X4G5ooe+GtPgPdrrRhEGxqIdg0dFOmmGxWTFYrymLGluhGmc2REyCTwuEcvLRgMTpceOGFMdOoy8rKWLt2LXa7nc985jMxPztr1qzO8cXr16/nnHPOiWubzz33HEC3nuCuzGYzV155JRs2bOCdd96JGdx+6lOf6hbYdnj11VfxeDwsWLCgx17xa665hq9//eu8//77hMPhY9Zz+umnM3fu3GM+1/FaU1MT9fX1pKenA/DKK6/g9/spKSk5JrDtyTPPPAMc3z6AyP+zKz8SSNbu3NnrOMf6tR9Tv/ZjPvrKjxlz8+WMu+M6Zv3mHtRv78VTXk3tyvWdt8aPd/bvgprW+Kpq8VXV0rBuS1wfWR3/2mNKn3sGxZ9YStENS3HlD2yaGSMYpGb5Og4/+wZlL7w94B5Jn9WGuzCH1MIczA4bymrFZLWA1oTaPARb2wm1tuOva4w7Dbc3SZPHkbVwDpnnziLtrNNImjg2rnoFSilmT83n1otPZ+bE3Ei2UjCMPxjGHwzhj2Yu+fwh8jOT+OYt53LO9O7jWk1mM1kLZpO1YDYzfvhVgq1t1Lz/EVVvr6b67dUDuihgTUki7cxppJ91GmlnnUb67OkkFOf3ez1i5JHgdggppU4n0jvrAtqA/wHeBZzATcDngUnAK0qp2VrrtgFu6iGOBLbvAg8AFcB04F6gBPiRUqpSa/3XAW7jlJc8uYQzf3MPp//065Q+8zp7//xkj5ORpwW8XHloK1ce2koYRXliCvvd6exPyuBgWxOvLP+AmtpDTG+oxNqPYkHHK+zzR66av7GSjUQmH89dMp+cJeeSc+E5ODIHd7qAeGmtqV/7Mfv/9hwHn/h3n+N7THYbhddcxNhPX03OBfMGrWqh1pr3Nx3kgafW8NqaPb0uO21sFrdecjo3LJpGfmbSoGz/eNnTUo4NdJ9+naq3Vsc95+JAOHIySRiTT+KYfBK63BLH5OMqyuNAWSmhUAiLxYJ7fHG3z3qajm8slxh9pkyZEvP1jz/+GIhMZdQ1rfdo9fWRE/Wysviz3DrWff/99/PQQw/FXKa6urrX9fbV7t27d3emAB+tI43X6/VSX19PVlZWt/d7Gs6TnX0kgGpra+sMbrdtixQ/jBUQ92Qw9kFXHdMCOfOysCe6MN+4lNLn3ox5rAm1trP3wSfZ++CTJE8dz7g7rmPsp66i+BOXUvyJyNRNgeZW6lZvpHbleurXbqZx8y78gxCUHQ9LgovsxWeTe/F55F++cMDBT9gfoOrNVZQ+t4yyF9+Ja/xuhxarnf1JGZQlpFCamEpFYgo33rKI733x4rjnBQ77A3gra/CUVdF+oIzWPYeit4O07D4Y8zs3aUoJ2QvnkLVwDlkLZve7d9rrD/Lyql38c9lm3ly3L+ZURUfbvK+a1VtL+d4dC/n8lWf1OC+v1Z1I/mULyb9sIQC+mnrq120h0NQSmaO+Y976aIAfbGnHCARImjSWtLOmk3bWaSSOKxxxF/fF4JDgdmjdTySwDQFLtNZdLxq+o5TaA/wCmAx8A/hRfzeglDofuCX69GXgGq11R7S0Tin1ErCeSDr0L5RSz2itmwbws4goi9PB2E9dzdhPXU3T1t3s/fOTHHjsBYItsa9NmNEUtTVS1NbIwsq9/dqWMplInj4xMiH5vDOwZ6ZhslhQVgumzpuVYFs7Ldv30bR1D81bd9O8bW9cV2q9FTXsf+Q59j8S6dVInTWN3CXnknvxfDLmzRy0XtBYjHCYulUbKH1uGaXPv4XncEWfn0k7cxoln72e4psuw5Y6eAW7gqEwz763nd89tSbmhPRdXTS7hLtunMviMwc+N+GJ0FOgW7tqQ7+Kg5gddpwFObgKsnHlZ+MqyCFhbEG34PV4Ut3Tk1wcfr7H0iijSnrSyTsl2GuvvcZPf/rTY16fOXMmv//97/u1roSE2GPYmpqagEgAuGrVqj7X4/HEP6KnY92bN/ddhK6n9fbV7qqqKqqq+k67jLX+ntbddRx11xopHWOJU1Pjn1JmMPZBT2xpKcx/8n68lTXs/evT7P3zkz0OJWnevpeN3/w5m/7r1+RduoDimy+n4IpF2JLd5F2ygLxLFnQu662uo2b9dt5+6l12Ll9PWm0NWd5WHMbQXKzzu1w05hfQlFdAQ9EYGouLwGxF1YF6dA0mpVAq0hupFCgi9yaTwmo2Y4lm3lgtJmwBP8k7dpD08WZcH2/B5Ou56nRXOjGBTe5MtiZmsislm0pXUmfRwrF5qTz6nSuZP6O4j7V0Z7bbSBxTQOKYApjffc5rrTW+mnrqtu5m7cuvoxw2Fn/xdlLH9L9InWFoPth6mH8u28yz722npb3/c8k3tfn4xu9e5+F/b+C3X13K/NP7/lkdWemdga4QEtwOEaXUbGBh9OlDRwW2HX5NZIzsFOBrSqn/0Vr3Ny/129H7MPClLoEtAFrrOqXUd4AniIzD/Wx0u2IQpJw2kbN+/13OuO9uDj35Knv//ORxVfANKhO7U7LYk5zFgZRMUmZP5/xzprD4zHEUTMnHaul5DEjWUV9YvtoGmrbsomb5OiqXraLhw819zvvakcK8/b4HMVmtJE+fGBlLM2sqaWdOI2X6pAFPZ2CEwzR9vJOa99dRs3wdNe9/FNfVa3t6CmNuvZJxd1xH6oyep8MYiOqGNh55dSN/eWk95bU9p+XarGZuumA6X71xLtPGRnpcQl4fvqpavJW1+KrqCDQ2E2huI9jcSrClDcMf6Cz4ZQSD6GCIoD+Ar6ISDIMP/u8lLDZrJEXXbEaZVPSxCUwmMIzIyayh0YYR+d3pSBqxEQwR9voiN18geu8n7PUT9kXmoFQWc+fFjyOPLSRNGot70lgy555ByhlTsLoTOtscaG7F8Adw5GRGA9lsbGnHl2bdF5NJDVoRJjF0qqurYwacsdJbByoxMTI+ftKkSezcuXPQ1tux7o6Ky/3p7Yx33QD/8R//wZ/+9KdBXXdPkpIi2SIdAWs8hnIfdHDmZjH9u//JtHv+g/KX32Xvg09S+cbKmOnGOhSi/KV3KH/pHcwuJwVXXUDxTZeSe/F5nRdWndkZFF+6gDsuXUAwFOb593fw7LvbWPnBdlwtLaT5PaT62knze0j3t+MKBrAZYWzhUOe9PXpvKIXfbOm8NducnfNz1zgSqUhIps6ReKT6fakfSnvP4Dlamq+d0+vLmFlXxoSmGixxzi1e7krm4/R8Nqfnsy8pAyNGuu/EonSWnj2BzXurqWlsJyctkdx0NznpiXH34MailMKW7MbidETSjC1mzK74LlhqrSmtaWHttjLWbi/jlQ92cbCyacBt6Wrr/hou+tqj3Lj4NH72xQtHTIaUGPkkuB06V3d5/LdYC2itDaXUY0TSlVOJBMNvxrsBpVQicEH06Zu9VCJ7DmgBkoBrkeB20FkSXJ29ZA0bt3Pg0eepWbGepo939ln0IKRMbEvNYV1WMZvSC/Bau/SW7qll5Z5afvro+7hdNs4/YwyLzxrHBWeOY0Jheq9BhyMzjZzF88hZPI8ZP/wq/oYmqt9ZQ+WyyNQGffWUGsFgZ7C7L/qaslhInjaehKJcbGkp2NNTsKUloxJdhMoOgtNBebtC+YOEWtvxVtXR2jG9TH/mUlWK3IvnU3LHdeRfecGg9iBrrflgayl/efEjnlu+nWCo55OP1EQ7X5pXzBXZNkzlh2n+3gre2H2Q1j2Hep0TLx7VDF/hkIaPtnLo8ZcBSCwpInvxXLIXzyXnwnNwZh/fnJJiaA1XtsDtt9/ebUqZodBRTOnAgQO0tbV1Bo2Dte4VK1awefPmQQ/sOtodT4/oYDnttNMAWL06/lGkQ7kPjmayWCi85iIKr7mI9tJKDjz2Avsffpa2/aUxlw97vBx64t8ceuLfWFOSKLz2Igqvu5jshXOwuCLFxqwWMzcuPo0bF5+GxxfkzXX7eGnFTl5dvZumtvh6RQeb0gZFrY2c3lDOGXVlFLfFP8fvwcQ01mcWsj6ziGpX34Hb7sP17D4cOyMrLclJfkYS+Zlu8jOTyMuI3He9JSVELkwb4TDNW/dQu2p9pHjlxh207DrQ7Vzl1V/9k5wLz6HwmgvJv/KCziFL/kCITXurWLO1lLXby1i7rYyKur7n/AVIcFi59JyJpLmdhA2NYWjChtH5uLapnTfX7Tvmc0+9s5VXPtjFf922gK9cdzZ2m4QuonfyFzJ0zovetxNJC+7J8i6P59OP4BaYA3R0oy3vaSGtdUAptQZYAsxRSlkH0EMcl2AwSCDQ/xLyZrM5ZqGOjnUOdMqqoVqvyWTqscciafpEpv7kLrJWbaT0xbepeOkdfDV1Pa5Lm82oBAdhqwUsPRdn8Pj8vLFmF2+siQRFeZlJLJ41lvNnjmXBzOJeUyJNJhP2tBSKrr+EousvQWtN6+4DVC5bRfmbq6hZ8RGh9njS0DQN2/fQsH1Px1NMoe7Be0cJKG02oY+e89Pae/XBhHFFjP3kFYy59UpSxhbGXCYcDhMeQJXEPaX1PPPuNp58dwcHKo49AVFK4wqHGN9Sx5nhZmab/Ti3lhF8o5WYpUqO+llUMBxzHletFLqX32tfVCiMivFnqhXoXnry+16vgdKatn2Hadt3mH1/eQqApGkTyLliIUXXXUzy9In9DqYsFkuvU9IYcUxbFLO9queq0QNd53CtV2sd97HHMIxu7XA4Ij0qXu+xhbjiWe/R6xvs9sbS09/D0esdM2YMs2bNYsOGDTzwwAPcc889A15vx8/Zsf5rr72WFStW8Ic//IFPfepTvVZZ7mu9R7v00ktxOp2sXr2aFStWcO6558b8fF/7uK+/t66/u6VLl+JwONi3bx9PP/00N9xwQ8x1dt2/119/fdz7oLf2Hr3ejrb39N1vzU5n4rc+y4S7P0PtBxs49OiLlD39OmHvsQGpYTXjb29n799fYO/fX8DssJN53lnkXhwpgpg4LlJoyGKCpWePY+nZ4wiGLmbV5sO8tnYvuw43UFbbQllNM17/kdRli0nHPD7HI6zB0KrjhyXb28qkpmqmNlYxubWGhPCR0ymjl+84A9iflMGmjAI2ZRRQZ0sgrGO3ymzS9Odbo7XNw842DzsPVmEAYePIepU2KGpr5Iy2Ok7z1JHXUI3t6N+VCTAdabthhClbtoKyZSswvvQDKrNy2ZJZxApnFjW2Y881zEoTa4pvpWDBGWP4xAXTueyciSQ4j71QrZTqnHZq5ceH+MbvXmfL/khKu0lpzAoCgQA/+utb/OO1DfzPFy/igrPGHbOe3tZ7tIGeR3Sw9TAFlWEYnXOPD4TVao09Nd8QrVdrTTDOWTli6en7/njXe7wkuB06HZUn9mqte/uL7Jp7FbtaRd/bOHo9PW1nCZHf+QRge7wbic5j25vOma3Xr19PeXmsqcN7V1JSQm5u7Ana165dO+B/kqKiIoqKimK+t2HDhn6PK+qQm5tLSUnJMa8HGpp59/8eoXz9FgxfdKzJhKzIrRf5wPU0cXNjOfVeO/925fFxchZaHTloTEiHjG7Zmy3s2fExe3Z8zF//CVmpCRRnJ1Ock0xBVhK2LoFPcnJytykmAKxFuRR97nqCi2YSKivHW15F+/5S2veXx1290dzuI2Vd7LQtb2EG3jF9V5O0Z6XjnjQG96Rx2LPSqAWaDu3j7JzYPYiVlZXs23fs1d2jGYamvK6V/RWN7K9opLYp8rs+UNH9S7+kpY7p9RVMNreRUpyESom814qiNSV2gB1L6qrtqBhVlUPJLlrO6PuLuCfJ63ZjiTFuKeyy0zx7YoxPxCdp036sMYo5Ne3ez4E1DlavWYMtLZmkqSW4p47HnhHf2L7JkyeTkdH9d9cRZIRCIdraBlY3z26393ii0t7ePuDgy2az9Xii4vF4BhzgWq3WHoMHr9fb54lV1wJEXfdZYWHkb/LDDz+ktfVIj0lHcNHXCZDH44n5OzCbzT3OT+33+wd8DDaZTLhckZPhjp+pazB0dED0ox/9iKuuuorvf//7+Hw+vvjFL3bOKQuR3/U777zD66+/zqOPPhpzm8FgkLa2tm4nWDfffDMPPvggW7Zs4ZJLLuFXv/oVkyZN6vyM1ppNmzbx9NNPc8stt8Ts2ezp79flcnH33Xfzk5/8hKuvvppf//rXXHXVVd0urFZXV7Ns2TIaGxu59957u223t3V31d7e3rmMy+Xiy1/+Mr/61a+444478Hq93Hzzzd3muX366afJzs5m3rx5ANx000386U9/imsfXHPNNSxYsCDmxWHDMDq/O0OhED6fD7/fz+HDh3ttf4fJP/ky039+NxUvvUPZ069T++6Hnb2GjedOPWb5Ok8jO55/GZ5/GWtaMoklhTjzs3HkZGJLjYxHVcBXrpjSeR6htaapzUd5bSsHKupZt/p9DMMgJSUFk8nULUtaa42GyLCPyAtEn0IggLXBi2tvJc79+3HtO4Cly++pafYEGhN6TuE1lMKTkkpbWjrNaekELFYyDM0iw+BQg8GHB7yEYxRampoFyQMsZVDXBo2HW5jSWBW5NVWTEIr8n7VOK6K9ZDz9LePnAuY3VXDpB6s4lJjKhoxCNmYUUp6QDEoxJhVyu3Q+pyc5OW1cFlPHZOJ22YB6PvowdpaBy+Vi1qxZAJw5MYu3H7iVR17dxE//vpJki4+ilK5LN/CbvzzJS6+lsXjWmM6pgmKxWq2cffbZMd+L9zyiJz0VjqurqzuuIRVz5syJ+X3U3NzMli3xVQSPZebMmTHH9be3t7Nx48YBr3f69OkkJx9b/yQQCLB+fW/9ekNLgtshEJ2ap+PsrteSg1rrRqVUO5AAxH8mHdF1+b5KG3bNBSqkH8HtUZ/tVVlZGe3t/a9+Wltb22NBjerq6gGfYFZXV/d4oKmtrR3wlbCjD4y6pZ3gyysI/nsVLZPyMFIGlk6nQiHG7t7PV9hBKNnNvomTeDOtmI3+vr/lahrbqWlsZ93OCpSCtEQrWUk2spJsZKclUFkZu1BSc3PzkSC/MAMKM7AGQuimFnRjK0ZDK7qxBVoHZTpmcLswZaagMlNRmakYCQ6agebWRmiN9KiaTCaam2On/ba3t3cWU+kqEDJobAvS0B6koS1IXWuQUPjYkwZ7KMiMhnJOryvntIZK3KFI4OjPTKaNAYzpMZvAYcdUUoDJbkO5HCiXHaxWsJgwnDZMGYlgUqBM0XsF6MilfK0jj3X0zEpHH0evslpzsrGE9ZHPKcBsxuSwYU6xg9kcaYPZFB2vGz0Z7ei10hoMI3qvwR/EqGmEPZXQR6XiQEMzdSs3ULdyAyQnYirKxlSYjXL3nCVQX19/TJCUnp6O0+nE4XDgi7OoytGCweCQZGEEg8Ee23Q86w0EAvj9sYuphEKhPo9pHdsNBALd2nfOOeeQnp7OwYMHGTNmDBMmTMBms5GVlcWDDz7Yud7bbruNdevWHbPeyy+/vNt+3LFjBxD5n+spgI2nvT1RSnUeZzvW7/f7aWlpidl7Mnv2bP7whz/wjW98g5/85Cf84he/oKSkBKfTSVNTE4cOHSIcDpObm3vMcaCjjV6v95jfqVKKf/zjH9x22228//77zJkzh8LCQjIzM/H5fBw6dKjzu+vCCy/stu7e1tvhy1/+MrW1tfz5z3/mM5/5DG63m3HjIkXnampqqKiIDAO54YYbuq27428kHA73+b/h9/u7LfONb3yD0tJSnnzyST796U9z1113MXbsWFpaWigtLSUQCPDAAw8wc+bMzs/Euw/OP/98Wltb++yV6ehR8ng8cQcLnceIbCd8+Rqct15E6IPNhFZs6vOzwYZmGhuaaVy3NfKC1YJKcaPS3FS53STk56CSE1CJLpQtcjHMDkzIcUV/jzF6l4MhtC+AbvdCmxfd5kW3tqOb2sDjw3mwGtfBmrh+NgBsFlRuJqaCDKw56dgtFlI5csLmDxl8fLCVmkZftx7WDtMKE7jqDBdGKEgwpAmEDfxBA1/QwBsI4wsa+AIGvmCYcPTf0mKEyfS2ke1tJae0gtyP+1e8soPHbMURDvbaa1zc1khxWyPXHNxMtdPNhowC6hPHk56cTrrbRnaKjdQEK+CjprKUvvacxWKhrq57dluRHX55y3heWXeY+sZjv+/3ljWwv7yBSXkJTMpLwByj23gg5xHx6qljxOv19msc/NFaW1tjfs/5/X4aGhoGvN7m5uaYF4eDweAx+74/GhsbY17EDYfD/apmP9gkuB0a7i6P4+mm6Ahu+xsR9Wc7Xc9iB28g0ylOt7QTfPF9gq+sAl8f6dguB6b8TFReBnj9GIer0dUNPc7rZ2luZdK6j5jERxgTijg05gwOpaZS2Rb5cuu1XRrqW4PUtwbZUd5Oi78Jr25kYl4Ck/JcTMxNICWhlwIUNgsqKw2VlXbkSy4UQje2oZvb0IEgBIKY2nyYsaBbPeg2L3j9YLeiXA5MhRmo/HRUohPldqHcCagkFxzH+FmtNW2+EPWtQdp8IVq80ZsnhCfQ8z4xGwZZ3lby25u55YPV2Ps7/ZLdhkp1R38OF7hdkSDWaQdr5DDqyMqKHXz5/ZiP40vJmpHR45eSqY8vpZ7S8EwTCnFefj6WigaMLXsJb9lLeNuByO+vJ81tGFvaMLbsg0Qnpqw0VHYapqxUcAxdVW3RXWJiIs8//zz33Xcf69atY8OGDYTD4c4e3Q6tra0xT4Z6OtkbSa699lpmz57NQw89xHvvvcfhw4cJh8OdvZALFy7ksssu6/d6CwoKeP311/nXv/7FSy+9xPbt29myZQupqamMHz+eWbNmsXTp0h7TinujlOJHP/oRV155JY8++ihr1qxh165dWK1WcnNzWbp0KZdccgmXXnppv9fdE7PZzO9+9zuuvvpqHnvsMdavX8/WrVtJTU1lxowZXHTRRSxevLjbZ+LdB/HOHzwYVEoi1kvPwXrpOVj2HUCXVmOU16Lrmvue9zYYQtc2omsbCe6pwFfeZUyq3RoJct0ugrPGoa2WyIW+sBG5+OcPgj8Queh3vNwuTLkZke/4zJQjRamOUlbvY9PBVvwxaj24bCY+dX4eC6em0dDQQCDQeyK1bm4jVF5HuLIOU30zKrqvbKH4hoa1W2w02F002l0025y02hyETCYs4TDZ3lZyPc1keVux9PI7yPa2srR0B+2OZnyhXEwFWZgsmeBMI2aecj8kuSxcPiuT0ioLmw610tDW/eKboWFHeTuHar3MKHaTnzbwqv3i5KKOZxyNiE0pVQh05Of8XWt9Wx/LHyZyUW+f1np8P7bzEHBH9GmJ1np/L8veQWQ+XIBPaa3/0Y/txJOWvA7gscceIycnp4/FjzXa0pIzXImEnl/O/j/9i3B797FvLWeMJRjtuXXkZpI4cQzuCcXYs9KPWU/Y66N11wFad+yn/WA5tpom3Ntip3a1TisimJuGe9JYKBlDhdnBweoWSqubCYZ7D3abfbClqvsXzdjcFM6anMvkLBPpzjCZKQnR9KH4daQT+Xw+3n//fQAWLFiAw+Hg8OHDcaepdaW1xhMwcKSP4UBlEwcrm9hf0cjBqshjtyVAybG78hgmwyDb20peezPZ3pbOL+j092Kn9vgzk2mbVgQmE868LFxFuThyM3HmZmFJ6ruabzzpRKFQiEOHDgFQXFwcV6XZE5VOZIRCNG3YzuGX3ubjfbsJNsefPmzLTCVhTD6u4nxOX3AOeeO7p2F3BCdKKfLzBzZP5KmWltwTi8XSOe7WMIzONNXExMS40pJ7ciLSko8WKy05XkqpHrN9gsEgfr8frXVnz6jdbo97/HhPhaw6UnAHyuVyxewJDYfDMcdQx8vpdMa8sDZU6+2allxeXo7X68Xv98c95CDW0IUOK1eu7Hwc9vlpP1BG+75S2vYdPua79mgJeypwdA1uu2g4d0okuB2AWD239qx0MhfOpunsyViKsrEmu3v4dERjq4831+3jYNWRi0uVLbCvIfI3uWT2OH7zlSXkZUTWs2XLlmMuROmwQfvBMtr2HKJt72FCPUw/aKttjnkeYS7Mo/H8mbTkZ+JJTKZdmfAGQgSCYUJhg2AojNfnx6QgJSmBBIeNBKuJxJYmnNU12HfsJ2nNjpjbbJ+Qhy//yBezyWEjcXwx7oljSSgpxNTLvu+alny0jvMIrSPVk5d/fAiPL/axqDgnmQvOHEtGcuR4I2nJRwxHWvJLL73Ebbd1hj+FvRS9HXQS3A4BpVQmdGZiPKm1vqmP5auBLGCr1np6b8se9bn/Bb4UfTpFa93jf5RS6k7gj9Gn12utn413O3G0o4Bo6vK2bdsYPz7u+LzTaCko5attYNcDj7L3T0+ie5gr1LCYKbz+Yqb+1xdInnLsuNwe113XSNmzb3D40RdoWL8txnpN3a4GOwtyGHPL5eTfeBm7gmaWbzrE+5sOsmFXBaGjgt2jC0x01bUQRIrbweTiTKaOyaQkP428aNXFvIwkslJcmI+aUL2jYIPX62XZsmUALFmyBKfT2WPBBl8gRGVdK+W1zZTXtlJW20J5bQsVda0crGziUHVT5Mu2h/Z2FJiIxRI2mNpUyazaUmY0lOMIH3uib4oxLjb5tInkXHoemYvmknH2DCwJ/Z+vNJ5CEF6vl7fffhuACy64oMdgIp71DmUhiEAgQMNHWzn8zOuUPbcMb2V8Y7ABVNjAkZ5K0sQxuCeNJWnSWMLnTMeU5MLmcFAygOMDnLoFpXpbr2EYnal1SUlJKKUGZb2D2V6Iv6DUYK/XMIzOcclut7vXQmf9We9AxVugaTStd9++fZ1DBsaOHRvXensrOtfTxQ5tGDR9vJOKN1ZS/+FmmjbuwFfbPZBVYQPVQy9sb4We+mI2m0mZMp70s2eQec5MMs89k4SxBSil+jyP8AdC/P6ZtfzmX6sIHPXdY2hISnTyqy9fws0XTe+2rzuGAoS8PqreWk35i29R8er7BFviqEysNaaQgSMnk5wL55FzwTyyL5hHQmFur0MM+vx+MgwaV2+i9Pm3KHv+TTxlR+Z0NsymHntqzQ47ORfOI++KC8i7dAH2o+ao70/hp+Z2H794fCV/ffGjmGOVLWYTd1xxJt+65VzSklxSUKqP9Q7lecSOHTuYNm1ax0sS3I520TG3HZcYX9FaX97H8m1E0pLXaK3n9WM79wHfiT6drbX+qJdlvwn8Mvr0Eq31G/FuJ452dAa3u3fvZsKECYO16hHDW1XLjl8+xJ7/eyJmhUcAZTJRdNOlnPbfd5I8dWAn8B2atuxi/yPPc/AfL+GriX0luqvM+Wcy5pNXUHjdxYQSE1m1+RDvbjjAexsOsnlfVZ+ZXfEwmxS5GW7yMtwkuew4HVacNisuhxWrGaoqyrBaTBQWFWNoRSBk4PUFaWzz0tjipanN1zkueDBZjDBTGyqZU3uIM+rKcYb7PlArs5nsxXMpvOZC8i49n4TigfUm9lesiwAjnTYMaldt4NCTr1L6zBv4qvs/Pif/gW+TMLEYV0Y6uVYnJqsFZYnMu2uymFFWCyaL5ah7c2TORdGjo4PbeIO3U4Xsn6G3Z88eQqEQFovlhH73a63xVtTQsGEbjRu207B+Kw0btuMtrx7wOq0pSbhLCkksKSKxpIjkaeNJPX0ySZPGYuohSOqtfS+t3MU9f3ozZnV+gCvmT+KBr11Kbnr3Xt9gWzsVry6n9Jk3qHj1/ThnMgCTzUrW+XPIu3QBuUvmkzSlpF/V7vvz/aS1pmH9Vsqef4vS59+kZUd8vaDKbCbtrNPIXnQ22YvOJvPcWQO6mLztQA13//51lm88GPP9tCQn3719IZ+78kwsZvm/Hw579uxh4sTOopcS3J4MlFK1RIpKfay1PqOX5VKBjoFRT2utb+zHNr4M/D769Bqt9Qu9LPsA8NXo02la6/4UlOqrHSdtcOutrGH7L/7K3j/9i7Av9nhEZTJRfMvlnPb/7iRp0sCr4sZiBINUvL6C/X97jvKX30X3ceWuI2gr/sRSCq65CHtaCi3tfj7cXsaabaWs3lrKh9vLafMOLBVwpHCa4Xzdypy6wxTs2YU5jtQ7ZTKRvXguRTcupeCaC3FkpJ2AlnY3GoPbrrRh0LRlN9XvrKHqnTXULP+QUA8ZDF11DW6zif8kUZlN0QC4SzDssGF22DE77Jhssa9GnyokeOud7J+hN1zBbU+McJhgUwv+hmYCDc3465toq6ply+q1YBhMmT4dR1IiJrsNW0oS9sw0HJmp2DPTsCb2PfwkHlv3V/OtP7zBez0EXnkZbn7z1aVcOX9S5/Er0NRC+cvvUPrsMirfWNnj+cbRXIW55F26gLxLzyd78dzj+hmO5/upZdf+zh7d+g/jn+/ZZLWSPmc6WdFgN2PeTCzO+MbOaq159r3t/Nf/vUl5beziUFOKM/n5ly7iojnH1+Eg+k+C25OQUup9InPdtgMpPU0HpJSaB3wQffojrfX3+7GNxcDb0af3aK3v62XZN4hMBRQCErTWgxbdnIzBbdOWXez87SMcfPxljEDsnkBlNjPm1iuZdu9/kDQxvnSs4+GrbeDQE/9m/9+eo3FT7HEv3dpnsZC75FyKblxK3mXndwZzobDBtgM1rNlaypZ91Ww9UMP2AzW0ekZWwJvotFGSn8bYvFRK8lMZl+oi78AezGs+ountDwj2MN6oK2UykXX+bIpuXErhtUtwxBj3fCKN9uD2aEYoRMNHWzuD3bpVG2KelA00uO2LMqkjgW703pLowmwbvG2MZBK89U72z9AbacFtLCfquHuoqomfPrqcx5dtxoiRMmsyKf7z2jl89zMLcbvs+OoaKHvhbUqffYPqt9dgxJkemj73DAqvvoC8yxaSPG3CoF3gG6z95CmrouzFtyl9/k1q3jsyzVM8TFYryadNIG3WVNLOnEbqrGmkzJjUa8Db7g3wi8dX8sBTq/HHGHYEsHTuBO678yImFsUe6y0GnwS3JyGl1M+Ajhno52qt1/aw3H8B/xN9erHWelk/tuEG6gAb8LrWemkPy9mAWiAJWK21HtQyiCdLcKu1pvKNFez8zSNUvbmqx+WU2czY265i2r1fxD2++AS28IjGTTvY/8hzHHz8Zfx1sVOeulGKjLlndF7hTZ05tdsXotaaw9XNbN1fzdb9NWw/UEtZdExsRV0LwRiVHY9XUoKdgswkCrOTKchMoiAriaLsFMblpzIuL43MFBf+ukbKX3qb0uffouqtDzD8cQTgSpF13lkUfSIS0DpzMge97QN1sgW3RzOCQdoOlNGy6wCtuw923jtuXoKjOHfQg9uemGxWrIkuLIkuLAkuzC7HSdnDK8Fb72T/DD0JbqGqoY2f/2MFD728vsfvynmnFfKbr17CpEQzpc+/SemzyyKBXxzj+pXJROZ5Z1F43RIKr7kIV0H/i3bGYyj2k7+hifJ/v0fZ829GeqR7GNbVG2U2kzy1hNRZ00g9YzJJU0pInlKCqzC323H9YGUj//3nt3lueezERIvZxBeuOot7blvQWXRKDB0Jbk9CSqk5QEdA+2et9RdjLGMCtgJTgCYgS2vdr5HdSqlXgaVEemTHxvrjUUrdBDwRffptrfUvj17meIz24Dbk9XHw8ZfZ9dtHaN7e89xwymJh3KevZtq9XyRxXH+nJB4a4UCAilff59C/XqH85XcJe+KrjOnMzSR36QJyL55P5rln4srP7nFZw9DUNrVTUddKeW0LlfWttPuC+PxBPL4g3kCI1nYv+w+WEgwZFBbk4XLYsVnN2KwW0twOUtxOUt1O0pOd0UA2maSEYyvJGuEwjRu2UfXmB1S8voK6VRvi+vKHyLjjohuXUnjdElx5Pf88J5phaCrrW2lp91Pb2MJ7K1YTDBmcM3c2aSlu3E4biS47bpcNt8t+Uo4P2rNnD8FAAIvZwpjcPHQwhBEMYYRC6GCIcDBEKBCEUBiOo8hHT5TJhCXBicXtwupOxJLgPCnG80rw1jvZP0PvVA5uD1Q08sDTa3jstY14/bGHDBVkJfGTq2cwo/IQZc8to/aDjX1Pb0TkfCN78VyKrltCwdUXnpCso6G+CBDyeKldtYHqd9dS/e5aGtZt6Vev7tEsCS6SJo8laep4kqeURIPecXzcBt/+81ts2lMV83NJCXbuvukcvnz9XFyOUyPLZzhIcHuS6pKaHAIWaK1XH/X+t4BfRJ/+UGv9g6Pevx34W0/vR5fpmpr8EnCt1jrc5f0MYD1QRCSAHqe1jqOrL36jNbht/Hgn+/76NAf+8RLBpp4n8zbZbYz79DVMvecLJI7pa1ak4RNq91D+ynscfvI1yl95L75ezihXYS4Z886I3maSOnMK5h6qAcYy0C9FIxikcdMOaj/YSO3K9VS/s5ZAQ1Pc282YN5OiGy+h6PpLhuxqdn9orfl4bxUrPj7Etv01bD1Qw46DtT1OXRCLw2YhJdFBTnpiZ6Xq3PRE8jKSyMt0k5vupiAriVT36On17XoCXFA0Bo8/iNcXjN6HCHW5gKEAk9aYtYFJG5iNI48t2sAaDmM1DEwcRxVYkwlrUgLWpESs0fF3o7FnV4K33sn+GXqnYnC7flcF9z+5mueWb4+ZfgwwJuzlP7M14/bvpmnDsbMfxGKyWclZMp+i6y8m/4pF2NNSjqud/XWiM4uCrW3dgt3G9dvivpjdG5PVSuKEIppS03mvLsgek4tKVxJVriSC5iNTEuVmuPnu7efzqUvOOCkvKg+34QxuBzbpl4jXXcAqwAksi6Yqvxt9fhPwhehyu4FfD2QDWut3lFL/iq7vSuBNpdT9QAUwHfhvIoEtwH8NdmA72gSaWzn0xL/Z99enY06305U9M42J//lJJtx5c+dVU48vSEOrl4ZmD42tXoIhg+KcFMbkpmC1DHyqgcFgSXBRfOOlFN94KcHWNspeeofDT71G1Vur++zR9ZRWcri0ksNPvQZEAvqU0yZE5qkbX4R7fDGJ44twlxThyMnsdyBghMP4a+pp2X2Q5q17aNq6m+Ytu2nYsL1faUrKYiF70dkUXnMh+VddMCJ6aL3+IMs+3Mfra/bw+to9VNXHPz9sLL5AiKqGNqoa2nq88gyQnGCnOCeF4twUxuSkMCY3lTHRx8U5KSQ4+zdn8WDTWnOwsol1O8txGq24nRbcCU62H+x9WiENhJUirMyAGXr4t7IYBhYjjNUIY+tyb4rjgq02DAJNrQSaItNqmGzWzkDXmpSAKY75h4UQp47mNh9Pvr2Vv72yIeZxWWmDcS31zGyqZKG/HmdFBRDpUeiN2eUkb+kCCq9bQv5lC7EmxZ5j+WRkdSeSd8kC8i5ZAECwpY2Gjdu7Vb9u2bk/rp7uroxgkJbt+zCxj8XA4o7XgYqEZPYmZbIvOZO9ngy+9MuX+f3Ta/nR5xdz2TkTR+VFTnEs+QYfQlrrjUqpTwD/IDLe9WcxFtsNXKa1jmPysh7dEV3/pcCi6K0rA/ix1vrPx7GNUcsIBql+dy0H//lvDj/1Wp/BVPLU8RR88RZ2jJ/CA5sO8/E9T1PfEpnOxheInXpkNimKc1IYX5BGSX464wvSmFKcwbkzirEdx/x6A2V1JzL2k1cy9pNXEvb5qXl/HRWvLqf8leW07T3U5+cNf4CG9dtiXgAwu5zY01OwJLqwuhOwJLpQTge+1iaUzcpH/3oPAiFCHi+Bpla85dV4K2oGnH7U8eVfcM2F5F+2EFtK0oDWM5i01mzYXcmjr27kqbe30tweX2XLwdTc7mfzvmo274s99UVmiit64eVI0DsmN/I8L8ON0z546Vht3gAHKxs5UNHEpj2VfLSznPU7K6hviVxU+eVnZzOhIAV3H+vpj5DJRMhkwtdlDK8CrEYYeziEPRzEHg5hjaMnwAgE8dc1do5ft7gckUA3ORFLguukSGEWQvRPmzfAsg/38tKKnby0cucxqceOUJBpjZWcXlfO9IZykoLxfQ9Y3AnkX7GIousuJveS87C4Rk8WzlCyJiWSff4css+f0/lasK2dpo930rAhEvQ2b99L8459cVXpP5oJKGhvpqC9mYWVkSForVY7e7dm8vCK9/jnzGn85723cu6swZ31Qpx4EtwOMa31y0qpGUR6cS8DCoAAsBd4GviD1jq+Scx63oYXuEwpdQtwO3A6kAJUAyui21jd4wpOQuFAgOp31nD46dcpe+HtuFJdneecxYG55/Anj52Pnt+H1vHN2wYQNjT7KxrZX9EIHPlcSqKDK+dP5rpFU1k0a+yw9O6aHXZyl8wnd8l8zrz/v2nZc5CKV5dT+foK6lZvItjcv+sqYY8XTy89waXH22AgadJYci46l9yL55N9wby4pwYYah5fkH8u28yfX1zH1v01/f68y27FZtZYLSYwWWjzBnocq3W8aps81DZ5+GhnRcz3UxId5Ka7yUlPJCc9sfNxZkoC5l6CueY2HwerGjlY2cTBqiYOVTZR13xchzAgUuzDZbdis5ixWEyYzSYsR91MShE2DIIhg1DYIBQKEwxHHgdDYTy+IAEgYDLTao2M6TZrA3s4hCMcwhEKYjP6vsgS8vgIeXx4q+pQJhW5iBPt2TU77HJ1X4iTUChssHlvFau3lvLO+v28/dH+btV3lTYobGticlM1pzVUMKmpBouOL43WlppMwVUXUHjdEnIuOhezfXgza0YLa2ICmeeeSea5Z3a+1jHHccuOfZ3BbsuO/bTs2Ievpr5f63cH/cysL2NmfRns38SOF55i+YSJzPns1Sz4/DXYkgfzkqw4UWTMrThuI2XMbajdQ/V7H1L6zBuUvfg2gcbmPj9jy83k4IxZPBpKYW94aK/1pCU5ueq8yVy/aBoLzhgzIsZ4aMOgZed+6lZvpG71JupWb+q1qNZQSZpSQuY5M8k4dxY5F8wjoSjvhLehN1UNbTz4wjoefPGjzt7I3ozNS+W8GcVMG5fFtLGZTBmTRVZqAsGA/5gxTeGwQZs3QKs3QJvHT6snQEOLh4q6VirrWqmI3irrI/c1jf2/Yj3cOnpuM1Lc4EzDZjHjclhx2q247FacDgs2i/m4g0atNf5AiFZvgFaPnzZPgGC4+8mnWRs4Q0Ec4SDOUBBzP78DTVZLlxTmREzW4btGLGNKeyf7Z+j1Z8yt1hp/MIwvEMIXCOGPZkIppVAqek9kypxYj5VSkecxHisFJqViPvb5fCxbtoxQ2GDe/PMJaTOtHj+HqprYV97AvvJGdh6q5aMd5bR3qY/gCAUpbm1gTGs9E5prmdhcQ0Io/loWjqx0Cq65kMLrLiZ74RxM1pFdvOhkqObvb2iKBr37okFvJPBtP1Te73UZJhMJZ5/B1Fsuo+CKRSQU5w9Bi09eUlBKjGrDFdxqw6Bp8y4ql62kctkqald81OOctF0pi4WkC87lveyx/Kk0QEj3/4RaKUhzO9FAQxzBztGyUxP40rVz+I+rZ5OcODJ6JTsEmlpo+GgrrXsO0rr3MK17D9G29zCt+w73q0hVLCablaQpJaRMn0jKaRNImTGJ9LNPP+GFM+K17UANv3tqDf96ewuBHubPg8jfw3mnF3PpvIksnTuBCYXpMQO1wTh5CATDlNU0c7CqKdJ7WtkY6UGN9qJWj7DgNzPFxS8/O4fibDfJbhfjx48/YRkMWmt8gRCtngDNbT5aPf5jylDZjDCOUBBnOIgjFKS/RwOL0xFJX06KVGE2mU9cdoYEb72T/TP09uzZg8frp80XYkdVmKqGVirr2qhqaKWqvo3KhjbavQF8gVCvx9ChpiBmCTqlDdwBP6kBD9meVnI9LeR4mslvbybX00x//2KSp44n7/KF5F+xiIx5M0/o8eB4nQzBbU9C7R4aP94ZuYj/wUZqV23AV13Xr3WknjGF4lsuZ8wnrxgR9T5GOgluxah2ooJbbRi07D5A3epNVL+9mqo3P+hXCkr6nBno8+by92Ayz22OnarZldNuYeHMsVxw1jjGF6SRluQiLclJWpKT5AQHJlPkNLix1cu+8gb2ljV03u86VMfGPZV9biM5wc4Xr5nNl6+fO+LnXdOGgae8mvaD5QRb2wm1tRNqbSfY5sHX2MyeLdvQgSBjJ03E4U7E7LRjSXThzMvGVZCNqyAHR1b6iB+/qLXm7Y/288BTq3nro/29Lluck8Jtl5zOJy8+neKclD7XfSJOHjy+IIeqjgS9ByujgW/0cVNb/+cZjFdOeiLj89M4a0o+Z03O56zJeRRlJ7N3794RUVHVHwhR1+yhvtlzTI8ugNIaeziEKxwkkTCmOC6WHc3icnTOr2tJdGGyWYcsjVmCt97J/hlcoVAYrz8UqXLuD0YeN1VT19TKnrImvvXQuqHZsNY4wiESQn5cwUDnhShHdLiBPRzsvLeFw1i0gcUwMOtwpPCcNjBH7yOvG1iNMO6gH3fAh/k4Kq+brFayFs4h//KF5F++aMRMEzgQJ3NwezStNe0Hy6j9YCPVK9az+/UPsBw6HNdnlclE9gXzGHvbVRRecxGWhJF97jZcpFqyEDEEGpupW/sxdWs+pn7NJurWbu51yp5Y0ueeQdENl1A9dRo/eW07q9YfBnru2ZpSnMlFc0pYMqeEc2cU47D1/S+S6nZGT+S7p6yU1jTz/PIdPPPuNtbtiJ0S09zu5+f/WMnvn1nLZy+fxdc+cQ55GSNzjIcymUgozCWhMPeY97xeL4eiX4qnjdIvRY8vyBNvbuZ/n/2QHYd6r+i7ZE4JX77ubC44q6TzIsdI4XJYmTImkyljMmO+39zmo6qhjcq6Virr26I9La2dr/WVieCwWSjqKE7VpUhVUXbyoBapGgp2m4X8zCRy0900t/uoa/LQ4jlSBEYrhc9ixWex0gBYHZBtN+EyQoRa2+PKDOkYrwsNQCSNORLsOjE7HVicDpTVIuN2xYgXDIVp9URS/Fs9/m7jTwckGqQmBbwkBX24A34SQn4SggFcoQAJoeh91+fRx8cTgA62xPHFZC+cQ+4l55F70bmnVIXjk4VSisSxhSSOLWTsJ69kLtCwv4xn7nuM8pfeYVxNOdYexlNrw6DqzVVUvbmKdQkuCq9bwtjbriZr4ZxR1VN/MpPgVgy7QFNLZGzE9r00R4sCNG/fS/vB/o+RUGYzGfPOoPC6JRRedzEedxL3/ukt/vHz13v8jMth5Y7LZ/Gla+YwNi/1eH6UbgqzkvnqDXP56g1zOVTVxLPvbefZd7exYfexPboeX5DfP7OWP7/4EZ9eegb3fvp8ctLkC/NEKKtt4cEX1vHQvzf0GtjZrGZuuWgGX7n+bKaOzTqBLRxcyYkOkhMdTCrKGO6mDBuTSZHqdpLqduILhKhraqeuyUP4qEymoIYyn4HVbCGnMJ80hyWSrdDcRrC1Pa45GY1giEBjC4HGIxfmTBYzZqcds9Nx5OawoczHP+5YiIEKGwbt3gAt7ZGA1uPvX+ZCkt9Lur+ddF/05m8nzechOeAlKeAjKeiLq6DbSKIslsjwmdmnkTn/TLLOnxPzAq8Y/dLGFfCFB+/F87tv8dcnV/D6H59l7KF9nF5fTmIPY61D7R4OPPYCBx57AVdBDuM+cy3jPnMtiWNHbw/+yUDSksVx65qWvHPrNsbmFxD2+gj7/IS9fkIeL77qeryVtXgra/BW1OCrrMVTUYOntApfVe+9ZH1JLCkid0mksm7WwrOxJbsxDM3fXtnAd//yNo2tsdMwU90OvnTtHL54zZwTmhK8cXclv3h8JS+u2NHj9G0JDivfvOVcvnrDPFyOkd0bBqMznenD7WX84dm1PL98B6EYKaodMpJdfOGqs/jCVWeRfZwXHEbjfhoM/Sk6M1yCoTBV9W3UNrf3+H/psFoozE4mKcGONgxC7V6CLW0EW9oIebyxB/X1gzIpTDYrJquV6Rcs4HB5GW889wILFy2KBL4mE5gUymRCmUxoNC1tbSilJO02BklL7lsobNDc5qOpzUdLux+jj3NCs9ZYjXDnHNPtwTY8dQ14dx2k4q6fn6BWDz5lMuEqziNp8jiSJo0ladJYUs+YQsrpk0dMtf6hdqp+P/XE4wvy4Esfcf/jK0g9dJB51Qc4s/YwznDfMxzkXHgOJZ+7gYKrLzxlK2NLWrI4aSw77XLSGdpgzJmXRca8meRcMJecJfNxlxR1e3/z3iq+ev+rrN0W+/8oL8PNXTfO447LZ5HoPPEHnZkTc3nihzew81Atv3x8FU++vYWw0f2Eot0X5IcPv8dfXlrPjz63mJsvmjHi0l9Ho2AozAvv7+QPz67hw+29ZwZMKsrgK9efzS1LZoz4dFtx/KwWM4XZyWSlJlBZH0nPPvo03xcMsaesnvQkF/mZbqzuBKzuBMjPRocNQh4voTZP5NbuwQj1r5dKG5qwL0DYF+jsFfbWNNC698hYsJXr17Fq/TqmT5zEpQsv6Hy9qUuPr2EYvLN6FZt2bGPjtq1s3LGN6rrIRcT3Hn+G6ZMmd99wZ8CsIBo4d31sslowWSwoqwWTzYrZbouMJZZgcVQKBMM0tfl6LLIGoHRkzmibEcJmhLGFQ1iN8DHVxX1ozNpAnaC0YWUyYU1J6pxjvet865ZEFxaXE1P077PjZpgUew/sB4uFqTOm43AnoKwWbKnJOHMzceZmYs9Mk5RS0Y3LYeVrN87j81ecycOvbOAPz6zl8Yp6zqgr45zq/UxrqMLUw9991VsfUPXWB9jSUhj7qSsp+ez1pEyfdIJ/glOXBLdiRDM77KSdOY30uWeQMfd0MuaegasgJ+aybd4AP/7be/zvs2uPCRYB3C4b379jEZ+/8ixs1uH/EptcnMlD917N/7v9fH775Ac8+tqmY6pJVtS18rn7XuR/n/2Qn3/pIs47Y8zwNHaUa2jx8vArG/jT8+sor+193PZIHk8rhp7dZmFMbipZqYlU1LXQ3O4/Zpn6Fg8t7T7ys5JIczsjU46YTUeCXSIFSwx/gGA02A17fYS9PnSMY1MsY/ILsdtsuBzde41WrV/HL//yf9x02ZXdgtuuWVgtba184q47Y65Xa80xGVthje4le6EnZrsNs8OOOcGJJcEZCSyGcWok0TOfP0hTtIe263Q3EKkkbA2HsRtB7OEw1nAkoB3Ko58lwYUjOx1begq21GRsqUnRW/JR90nY01I6X7O4E/qdut+1JsRY6ZEU/ZTgtPGV6+dy5zVzeOH9Hdz/1Gru3zmGZL+Xs2siPbpFbY0xPxtoaGLXA4+x64HHSJ8zg5LP3UDxTZdidcuws6Ek30JiRFAWC+4JxSRPKSFpaknkfkoJydPGY7b13bu6asthPn/fixyoiH2AuX7RNH7+pSUjsljT2LxUfvf1y/jOrefx47+9x2OvbzomLXLjnkqWfP0xrpg/ifu+eBHj8tOGp7GjzOHqZn739Br+9soGPL6ex4+5HFZuXXI6X7puzik9FlUc4XJYGV+QTpvHT1ltyzEBQTBscLCyiYZmL0XZydiPKj6nlIoEfg47ZETG8ncEvGGvn7DXR8jrizz2HRtAP/9/fx1w203KxPSJkzl9yjTOmDqVM6ZM48Lbbhrw+noS9gcI+wPQ3Nr5mtlh65wD2OJOkN6wYaK1xuMP0tQa6aH1Bo6kUloMA5sRwh4+chusQFZZLLgKc0goziOhOJ+Eolyc+dk4sjNwZKfjjN5LhVkx2ljMJq5fNI3rFk5l1ZbDPPDUGl75wMmywikUtjZwXtU+5lYf7HEu5PoPN1P/4WY2fP1/KPrEUko+ez0Z82ZKnYUhIMGtGHImmxV7egqO3CyceVmRNKCO+9xM3BPG4B5fNKAJzv2BED98+F3uf2p1zHFyJflp3H/XUi6cXTIIP8nQys9M4k/fvpIvXTuHe/70Ju+sP3DMMi+v3MUba/fy1Rvm8p1bzxuWtOrRYNuBGn7zxAc89c7WXsfT5mcmcec1s/nMZbNIS5Kr+eJYiS47k4oyqGv2UF7bckxWSIvHz/aDteSmu8lKS8DUy4lKt4A3NanzdW0YGMEQRiCIEQxG7gNBjECo87k2DIiz19edmMi7jz89sB/4OEXSqhvw1USqRVvdCdjSkrGlJEmv7hALGwatngAt7T6a2/wEomnxViOMu2PKnFAISw9VYPvD7Ij02pu8rdjTU3HOTWV22fs4cjLkgoY4qSmlmD+jmPkzitlTWs8fnlnLP5Z9zD/daTw9biaz6ko5r3IfU5qqY34+1O5h/8PPsv/hZ0maUkLJ525g7KeuwpEpnRaDRQpKiePWtaDUpmXvMmHK5EglUIcdk8M+ZF90H++t4rM/e4FtB2qOec9mNfOtW87lm7fMj2s6n5FGa80ba/dyz5/eZOeh2BON56Qn8tMvXMhNF04f9vTZkVKIYtWWw/zmiVW8unpPr8vNnVbAf153NledNxmr5cSdiI2U/XSijYaCUvEIBMOU1jT3OFewy26lOCdlUIrAjRkzhkOHDvHuu++ycOFCgF6v8BcXFbF3+84e37cmRnrK1n2wmjNmnN7lHY02oqnKhoGO3jB05HE4Enjr4JFAu79jiTt89ac/4J8vPMv3vvs9vnrXV/nJT37CSy+9RFlZGfPmzeO9997j4MGDjB07NtKyHs5Pbr/9dh599FG+//3v84Mf/KDz9ffee49FixZRXFzMwYMHeeaZZ/j1r3/Ntm3bMAyDmTNncu+997J06dIBtX+k0VrjC4RoaffT0u6nzRtAa401Ov9rx9yvR4+T7Q+TzYLF6cTscmBxOTA57Jjtts7x1qPhf/tUPe72l+yngWv1+Hn23e088trGznovmd5W5lfuY37VflICvU+xZ7JaybvsfMZ88gryLlt4UhQxk4JS4qThGpPf45jYwRIKG/zmiVX85NHlBEPHXoGed1ohf/72lUwoTB/SdgwlpRSXzJ3AhbNL+NsrG/jx396jtsnTbZmq+jY++z8v8OcX1/Hrr1xyzDy7p4qOCwE//8cK1vRQRAzAbFJct3AaX77+bGZPOTX3lTg+NquZkvw0mlq9lNa0dPaMdfD4g+w8HOnFzUlLHPR0s3PPPZfDhw9TWlpKVlYWEyZMIBSKpJsWFBRgSej7ZNTidMS1XG+MUCiSXu3zE/L4CLd7CXm8fY4nNoKR1O6ynbuZdfoZlFVWMGXKFKZOnYrdbj+uNh3tBz/4AT/84Q/Jzc1l3Lhx7N+/n5UrV3LZZZfxzDPPcO211w7q9k4Ew9B4/UHavQHafUHavAGCwRB2I4w9HCQzHMIeCvVY5KYvZpsVc4ILS4IDiysyL7P0tgvRN7fLzu2XzeT2y2ay81Atj722iceXbeZ5p5sXx8xgekMF51XuY0Z9ecw5m41gkLIX3qLshbdQiS4Kr1lCyaeuJHvxXMmEGAA5aolRZW9ZPZ+778WYlZBtVjPf+8xCvnbjPMzmk6OKp8Vs4vNXnsWNi0/jZ4+9zx+f+/CYNNsPt5dz3p0PcevFp/P9zy6iIDOph7WdfN7fdJDv/fWdHitjAzjtFm6/dBZ33TiX4pyUE9c4ERdtGPjrm4a7Gf3iAMYlmKmq91Lf4uk8VTGnJIHJREVdK81tPopzUga10vbKlSs7g7alS5fy8MMPd5vq5kQxWSLVky0JLuzRa4haa8IeL8GW9sjUSG2eHnteH33uaWZMmsLz//sXSiaMx56VhuHoObg1DE0wHCYUMgiGDHzR8aOtHj+lNc0YhsYwdGexuIqKCn75y19y/x8f4oIllwIQDAa45+4v88arL/OVr97FaWedh9lsxqQUZrMJiyl6bzZhNpswm1TnY4vJdEKzY7TWhMIG/mAYfyCEJxrQev0hMAzs4RCOcJC04xgvq0ymSBGwRFfkPsE5oKFBQojuJhdn8rMvXsQPP7eY19fs5dHXNrLsQwsfZxSQ7PdyTtV+zqvaR7a3NebndZuHw39/gcN/f4GA241p0blMuO1qJl10NqnRAoYnimFoWjx+Gpo91Ld4aWz1Ut/spaHFE3nc4qXNE8AfDOEPhgkEIvf+YIjm+mOzKk8UCW7FqKC15sEXP+LeP78VszDQ9HHZPHTv1UwvyR6G1g295EQHP//SEu64fBbf/t83WPbhvmOW+ccbH/PMu9v4yvVnc/fN55KcOPrTWnry0c5yfvDQu7z90f4el0lLcvLFq2dz57Undh5j0T/++iaey5o33M0YFCUfPI8lLQWITOe181AduelustP6X+F1tFFKYUlwYUlw4czNRIfDBJrbCDQ2E2xu7darazGbefQXvyUvO4eQx0foYAXKbCKclkJLU1vncrsP1+EPhgmGwt36Otq9kYItrZ4ANY3tna+3RV8PBoP8x1e/xfzFl+DvyO5RFr5x74955803qCgvY/3GTUycPC3un88cDYLNZoXFdCToNZsV5m73Jkwqsj9UdL9EfvWRe8PQhA2NYRiEuzzuDGaDIQKBMOHohQGzNnCEIunFydEqxgNhslq6TZtjdjpO+r9JIYaT1WLmivmTuGL+JFra/by5bh+vfLCL19ek8lrRVCY217Cgci9n1pb2+H9ta22Fl17nwEuvs97uYntWIVUTJhGaMY283DQKspIoyEwmPdmF3WbGZjFjtUbubdF7q8VEIBimzRvA4wvS7gvQ5g3i8QVo9wZp8/ppaPHS2OqjoSUaxLZ4o695Y84+Eg/taz6e3XdcJLgVI155bQtf/MVLvBUjkDGZFHffdA7//enzj6lWejKaVJTBC/fdwutr9vDtPy5jb1lDt/d9gRC//Ocq/vbKRu65bQGfu+LMETHt0WDZdqCGHz78Li+v3NXjMgVZSdx1wzxuv2ymFNwSJ9TRoYKhNeV1LTS1eRmTk4LjFJovWZnN2NOSsaclo8MGgeZWTLbIz79gzlzysrsPX9Fhg0BtA+GKI/NPt3kDA5499bpP3HrMa+kZmeTmF3D44H5KDx3sV3Ab1ppwKAyhvpc9HlYjjDPaM2sPh7AaAyv+ZLbbIr2ybhfWxARMdpsEs0IMk6QEO9ctnMp1C6cSChus2VrKvz/YxSsf7ObxA1WcWXeYudUHmdRUTU95h2l+D/NLd0HpLvzvvcL21FyWZ+SzOT2fFpuMj+7q5I8GxKiltebJt7fy9Qdei1nAZVxeKn+952rmnVY4DK0bPkopls6byAVnlfCHZ9dy39/fp9XTvfR8XbOHu3//On987kN+9PnFXLNgyqg+sdlX3sBPHlnOk29viVkVG2BMbgr33raAmy6cfkKLRAnRYXx+GpVhU2fabId2X5Ad0V7crNSEYS8Ad6IpswnlTsCIztk7dvxEQsrUZ9Xe/LYmWm122qx2wir+oSYpqWm4k5Jjvpeekcnhg/vxetpjvn8imbSOTskTjk7JM/DiTxanHYs7AUtitGfWdupcSBFiNLGYTcw/vZj5pxdz351L2H24jhUfH+KjnRWsWL+LlPXrmVN1kDFtDT2uw26EmVlfxsz6MgzgoDudPclZ7E7JZG9SJm22kzdzLx4S3IoRqb7Zw1d/+yrPLd8e8/0vXHkWP/vihSScwj1zNquZb9x0DrdefDo/e3Q5f315/THpI/vKG/jkD57h9PE53H3zuVx7/pRRNR65rLaF+x57n0de3dhjakxOeiL3fGoBt18686TqpRajj8tpY0p6ChV1bdQ0tnXrdezoxW1o8VCYnYzbNbgFlIbaa6+9xk9/+tNjXp85cya///3vj3ndMDRt3si0NC3tfryBUGfasE5IojwxBWcogDvoxxmKPQe1RRuk+r2k+L14LDbabXbCdgeW6DHMabeQkeTCZFKYTKpz+IE7MZExOSlorfF6I1VKOyq/doyBTkl0kJfhjqQJhw1ChkE4HBnrGo6mCQ80HS+WSCAbxhYOYTdC2I6jV1Yphdnl6EwxtiS6MFnkdE6I0WhiUQYTizL47BVnAlfQ7g2wcU8lG9/6iIYX3yR9w3rS2lp6/LwJGNdaz7jWei4u2wFAhSuJPclZ7EnOZE9yJnWORDjODg6b1UxakpM0tzNyn+wize0kKcGOw2bBbjVji97brRaa6ir5zprfHNc2B0qOhmJEMQzNP5dt5v89+BbVjcdeWc/NcPPnb13BRXPGD0PrRqas1ATu/9qlfOnaOXz3r+/w0opjpwP5eG8Vt/34WX7wUCpf/8Q53HrJ6SN6iqSaxnZ+9c+VPPjiR/iDsceipCc5ufuWc/ni1bMHtWiPOLHs6SlcW7N6uJsxKOzpKSiTiYKsJFIS7RyqasYX7N6L6w2E2F1aT3qSk/zMpFGTZVBdXc2qVauOed3SJajyR6elaW730eYJdI4bjUUDHosNj8UWmYc16Ccx6O+WYaK17hy7mhAKkBAKYAp4wBsZl5uS6KA4N6Vz+fRocGsyKdKTXRiGQQuRwDkpyYnJZOrc38mJDnLT3b3+zB2FncJG9L4zCI4EwpEgOHIfjgbHRiiEORzGEgphNUJYwmGs4TDm45hbVplMkfGyia5I72yCs3MqHiHEySXBaeucR5dvXIfWmrqPd7HrqTeoevU9Apt30GMKW1Sep4U8TwvnV+4FoNVqpyoxhbqUNBrTMmnLyMSTk4M5NZkEl52URAdpSU7Sk12kRoPX9CQnqUlO0pJcpCc5cTms/coA3LNnD985rj0xcCP37FacctZsK+Wbf3iD9TsrYr7/iQtO47d3LSXVLWMLYplYlMGTP7qRVVsOc++f3uTD7eXHLLO/opGv/PYVfvrocr58/dl8/sqzSEoYOT1I5bUt/PbJ1Tz87/WRyqAxuF027rpxHl+5fu6IarsYGGUynZST1ye67Ewek0FFXSu1je3HjB2tb/HS3OYnL9NNRrIr7pOG4RpecPvtt3P77bd3e80wDNq8AUprmmlp9x+Tjt0Xs0mR4LDhclhJcNhw2sz4E4/8T9fU15OdkdF9m6Ewe/dETth8VXW07j2MNSkBizshMj/vIFJKYbWYsRIJdHUojBEKoZXGMEIY4ei8v4EA4UDksQ4ffxs6iz8lurAkJmB2SfEnIU5VSikyz5hM5hmT4Wd34attoOLV5ZS//C6Vb6wg1Obpcx3uoB93YzUTGqvhwI7O1+3pKSRPm0DCmHyceVk4dTYuVxZOVzbOLCfOnIxRWUVdglsx7MprW/juX97miTe3xHw/LcnJA1+7lOsXxV/841R27vQi3vvDHTz//g5+8NC77CmtP2aZqoY2/t+Db/OLx1dy7flTuenC05g/o3jYUpb3lNbzh2fW8shrGwn00FPrsFm485rZ3H3zuZ09NEKMZGaTicKsZNLcTg5XN+Pxd0+/DRkGh6ubqW/2UJSdjMvR9zCLjvTajnTbE80XCHWmGrd6Ahj9GCPaEaAlJ9iZUpyJ0245JmgrmDSe1NRUGhsb2Xx4H0syM7tNKbRu8ya27okUlNNaE2hqIdAUSdlr3XMo8nooTHtpJZhMGMEAmBT+QBjFkbl2A82teKtqQWu0oSOBsWGgw0bncx0OHwloByFojb1TInMPm13OzoBWij8JIXriyExj3KevYdynryHsD1C7cj01Kz6idsVH1K35mLAn/u8Gf30TNe+vg/fXxV5AKewZqViT3ViTErG6EzovJkYeJ2J2OTFZLZgsZpTFgrKYMVkslNXXDdJP3H8S3Iph4/UHeeCp1fzyn6tiTu8DcOm8Cfzh7sv7TB8T3SmluPb8qVw1fzIvrdzFr/65kg27K49ZrqXdzyOvbuSRVzeSl+HmhsXTuOnC6Zw+PmfIT67CYYPX1uzhTy+s63VKH4vZxGcvn8W3bz2PvAz5OxCjT4LTxuTiDGqbPFTUtRwzlrNj2qDkRAeZKQm4XT0HuSUlJQB8+OGHtLcPfVGkYChMqydAq8dPq8ff4zCBWBTgclhJSnCQnGAnLSkSmCc4I721Pbnsssv4xz/+wU9/fz/nvPwymc5EAvVNbN68mf/84f/DarEQDB3bS9yxV7Vh4KvuflHPQxMAYV9k3G+goRlPWXXcP8tgsTjtmBOcWFzOSEDrckiKsRBiQMx2GzkXzCPngsh0ekYwSOOmHdSsWE/tysjNX9tzYao+aY2/tmFA66gn9nn9iSDBrTjhdh6q5ZFXN/LPZZupbYqdTjGxMJ2ff2kJl8ydcIJbd3Ixm01cc/4Url4wmXc3HOBX/1zFuxsOxFy2oq6VB55awwNPrWFSUQbXnD+FudMKOGty/qD1lBqGZu32Ml54fwfPLd9OWU3PRRIsZhO3XDSDe247jzG5qYOyfSGGi1KKrNQEUtwOymtaaGjtfnVdA01tPprafDjtFoweihktWbKEjIwMDh48SHFxMePHj8dms5Gfn8+TTz7ZudxVV10Vc4zsokWLMJuPjPOtq+t+dT0UCtPqDdDqCdDmiRSC6g+r2URSgp2kBDtul31AY4p/+MMf8sorr7B161bGT5zI5MmTCQQC7Nq1i0XnLWDWaTN45tWX+73eE0Uphclhw+ywY3baMTsckXu7TQJZIcSQMVmtpM+eQfrsGUz5xmfQWtO2v5Tmrbtp3r6P5m17aN62l5ad+wn7/MPd3CEjwa04Idq8AZ55ZxuPvLaRtdvKelwuOcHOvZ8+ny9ePVsq3w4ipRSLzxzH4jPH8dHOcn79xAe8uGJHjzUJdh2u476/r+h8Pr4gjTlTCpgzNZ/ZU/IZm5dKcoKjzylNgqEw2w/Wsn5nBR/tLOf1tXuprGvt9TM2q5lPLz2Du28+l+KclP7+qEKMaDaLmbF5qaS3uyitaY45TtXrDxGKpsHWNrUTCIawWSNf1263m7feeovvf//7rF69mg0bNhAOhykuLu62jubmZurrjx2S0NTU1O25xxeg3RfE4w3S7gv0O5hVRHpiOwJal71/RUdiGTduHB988AHf/e53eeedd9i9ezdjx47lZz/7Gd/85jf5/Oc/D4AtxY09LZlgaztGcIgnoO1CmUyRNDy7FZPNislmw2zreBy5SRArhBhuSincJUW4S4oouOrCzteNcJj2A2U0b9tDy+6DeMur8VbU4K2owRN9bASGr+f1eCk9wDnVhOiglCoASoHISci4Ekqrm9lf0cD+ikY+2lHBs+9to72H1OPIOuCOy2bxvTsWkZWacKKafkorrWnmqbe38uRbW9myv//peSaTIjXRQVqyi+QEG2F/G06rGVdSKs3tAZrafJRWxz55jyUtycmnl57Bf153NvmZSf1uz2jg9XpZtmwZEOmB6xg/ebLbs2cPoVAIi8XChAmSjdHBMDTVjW1UN7T1Ou2MAhJdNhw2Kw6bBYfNjMNmwWxStLZGLhYlJSVhihFQaa0Jhgz8wRCBYJhAMIw3EMTrD+EPhI4pdBUPq8VEssuBOxrQWkbA9GJGKETY6yfs9RH2ByJjZcNhQv4AGAZmS3R8rwJQkS8dBQqFMpvApFAmUyQoNZlQJoUym6PjxyJjyUzR5xK4HjEa/rdP1eNuf8l+Eh201gQamvCUV+OvaSDY0kawtZ1gSxuh6H3H87DHhw6HMUJhdCgUvQ9T2drEbRv+3bHKQq11zz1bg0x6bsWguvRbT1DVZursdYjHollj+Z87L+L08TlD2DJxtMKsZO6++Vzuvvlcth2o4cm3tvDk21s5XN0c1+cNQ1Pf4qW+5ejiBU39asesibl88ZrZXL9omkzpI04pJpMiN91NVmoC9c1eapvaY14M0hAd9xro9rpZKSxmhdWsaGhvQhM5KQl3zN0avR3vJWyzSZHotOF2RVKNYxWCGm4miwWT24LVfeTiqGEYtLREhj64ewj+hRBCdKeUwp6eij194EPC9uzZAxP/3feCQ0CCWzGoSqubUY7kPpfLTk3gkxefzqeXnsHEoow+lxdDa9rYLH70+Qv4wWcXs2ZbKS+v2sWH28vYsKuy39N7xGNKcSZXL5jM1QumML0ke8SdKAtxIplNJrJSE8hMcdHi8VPb2E5ze9/jocJaEw5p/CHAH3+hpz7boxQJncGsrd/zGwohhBDDRYJbccKYTYpL5k7g00tncsnc8QMqNCKGlsmkOGd6EedMLwIiY2a37q/hw+1lfLi9nA93lLG3rP9V88blpTJrUh5nTs5j6dwJTJILGkIcQylFcoKD5AQHPn+QmiYPDc0ewkM8fMhhteByWklwWHE5bLjs1j7H0wshhBAjkQS3YsgkJ9gZl5fG2LxUzpycx00XTpepXEYZq8XMzIm5zJyYy39cPRuITOFU1+yhocVLYzQtubqumQ83bsEXMDhj+mSy0pJIcTvITHYxbVx25xQgQoj4OOxWirKTyctw0+rx4wtExsj6orfexujGYlIKm9WM3WrGbrXgtFtw2K04bZZhm99aCCGEGGwS3IpB9YsvXci8s2YwLi+VtCSnpLKdhJx2K4VZyRRmHUk/93q95FtrAFiy5GwpRCHEILGYTaS6u/8/dRSJ8voDNLW0EQprHHY7JpMpMg2NSWExm47cLCasZpMcj4UQQpz0JLgVg2rp3PFMmJA/3M0QQoiTlor2wlrMdnQoMjY3KcktBZOEEEKc8uSbUAghhBBCCCHEqCfBrRBCCCGEEEKIUU+CWyGEEEIIIYQQo54Et0IIIYZUx1jQcDiMHuJpbYQQJ4ZhGITDkfmVzWaZ2k8IMTJIcCuEEGJIORwOIFLl1+v1DnNrhBCDoa2trfNilVTIF0KMFBLcCiGEGFIJCQmdj2tqaggEAsPYGiHE8TAMg5aWFqqqqjpfc7tlDnshxMggUwEJIYQYUm63m7q6OoLBIF6vl3379mE2m2Xe1UEQCoUAqK2tHeaWjEyyfwbf0cMLnE5ntwtYQggxnCS4FUIIMaTMZjMFBQUcPHiw86S4Y6yeGLiuad5Op1MuFhxF9s/QczqdFBUVyb4VQowYEtwKIYQYcg6Hg/Hjx9PU1ERra2tnj5oYOMMwOoO3xMTEzsJdIkL2z9Awm804nU7cbjcJCQkS2AohRhQJboeYUsoF/CdwAzAesAGlwCvA77TWh49z/RZgEbAEmAtMBlKAdmA/8A7wf1rrfcezHSGEOF4Wi4WMjAwyMjKGuyknBa/Xy86dOwE488wzpajPUWT/CCHEqUeC2yGklCohEsROOuqtydHb55RSt2itXx3g+jOBHUB6jLeTgZnR21eUUt/WWj8wkO0IIYQQQgghxEgnOTpDRCmVCPybI4HtX4ALgHOA/wbaiASgTyulZgxwM3aOBLabgB8ClwJnAouBXwI+Ir3F9yulvjDA7QghhBBCCCHEiCY9t0Pnm0R6ZwG+rbX+ZZf3Viul3gXeB1zA/USC0f7SwJvA97TWa2K8/65S6lngXcAJ/EIp9YTWunUA2xJCCCGEEEKIEUt6boeAUsoK3BV9ugP49dHLaK1XAw9Fny5SSp3Z3+1orcu11kt6CGw7llkL/DH6NBm4sL/bEUIIIYQQQoiRToLbobGQSFEngEe11kYPyz3S5fG1Q9ied7s8LhnC7QghhBBCCCHEsJDgdmic1+Xx8l6W+4hIVWOA+UPXHOxdHvcUaAshhBBCCCHEqCXB7dCY0uXxzp4W0lqHgI4peqb0tNwgOD+e9gghhBBCCCHEaCUFpYZGYfS+XWvd1MeypcAMIFMpZdda+wezIUqpXOAz0ad1dE9RjncdBX0skt/x4NChQ/1dvTgJ+P1+6urqANi3bx92u72PT5yaZD+JwSR/T72T/SNA/g7iJftJDKaj4gHzidy2BLdDwx29b4tj2fYujxOBQQtulVIK+FOX9vxYa+0dwKpK413woosuGsDqhRBCCCGEECehTOCE9X5JWvLQcETvA3Es2zWYdQ5yO+4Frow+fhf4wyCvXwghhBBCCCF6knUiN3ZK99wqpSxAcBBW9Rmt9SNdnvui97Y4Pts172MgvaoxKaU+Cfw4+vQgcEsvVZv7UtjH+0XAqujjuUD5ALcjRq8cYF308WygahjbMpLJfhKDSf6eeif7R4D8HcRL9pMYTPlAx1SlJ7Tezykd3A6h1uh9YhzLJnR5HE8ac5+UUpcBfwMUUA1cpLUe8EFKa13Wx/a6Pi3va3lx8jnqb6BK/gZik/0kBpP8PfVO9o8A+TuIl+wnMZiO+nuKJ5N10JzSwa3WOqSUGowqxZVHPS8DzgYSlFIpfRSV6ugVrR2MYlJKqYXAM4AVaASWaK33Hu96hRBCCCGEEGIkO6WDWwCt9VB0lW8Hros+nsyRbvluomnRJdGnO453o0qpOcDLRMb8tgFLtdabj3e9QgghhBBCCDHSSUGpobGyy+Pze1wKzuJIWvKqXpbrk1JqBvA6kVRoH3CF1nrt8axTCCGEEEIIIUYLCW6HxntAc/Txp9VRiedd3N7l8fMD3ZhSaiKwDEglUiDrOq31ewNdnxBCCCGEEEKMNhLcDgGtdQD4XfTpFOCbRy+jlJoHfDb6dLnWel2MZcYopXT09l6sbSmlioC3gGwgTKQq8qvH/1MIIYQQQgghxOhxyo+5HUK/BD4BTAR+oZQaD/yLyHQ/i4jMQWuJPv/aQDaglEonEth2FKX6NbBTKXVaLx9r1FrLVD1CCCGEEEKIk4oEt0NEa90anZLnVWAC8IXorasW4JNa600D3Mz06Lo7fDt6682jdE+HFkIIIYQQQohRT4LbIaS13quUmgn8J3ADMB6wAaVEgt4HtNaHhrGJgyI6F1pP44rFKUD+BuIj+0kMJvl76p3sHwHydxAv2U9iMA3n35PSWg/HdoUQQgghhBBCiEEjBaWEEEIIIYQQQox6EtwKIYQQQgghhBj1JLgVQgghhBBCCDHqSXArhBBCCCGEEGLUk+BWCCGEEEIIIcSoJ8GtEEIIIYQQQohRT4JbIYQQQgghhBCjngS3QgghhBBCCCFGPQluRb8ppRYqpXQ/b7cPd7vF8Ynxe29VSrni+JxTKdV81GcXDn2Lh99R++wHfSybrZTa2mX5/1NKqRPUVDFKyPE3fkqp+UfthwXD3SZxYvTn2HuqGci+UUr94FT7/hbHZziPvxLcCiEGKhG4Oo7lrgKShrYpo5tSKhd4D5gWfekBrfWdWms9fK0SYtS7rY/nQgghhsawHX8tJ2pD4qT1f8Af41iubKgbIk4oH+AAPgX8s49lP3XUZ0QXSqkC4B1gQvSlX2mtvzWMTRKjhxx/e6CUsgM3RJ+2EbkYd4NS6itaa+/wtUwIIU5uw338leBWHK8arfXW4W6EOOFeAm4ELlJK5Witq2ItpJTKApZEn74IfOIEtW9UUEoVA+8CY6Mv/VRr/f+GsUlidJHjb8+uAlKij+8CHiKSQXIV8K9hapMQQpwKhvX4K2nJQoiBWAZUAWbg5l6Wu5nIRbRq4M0T0K5RQylVArzPkcD2BxLYCjFoPh293661fhjYHn0uqclCCDG0hvX4K8GtEGIgwsAT0cef6mW5jgPZP6OfEYBSaiKwHCiKvnSP1vqHw9gkIU4aR2WM/CN6/3j0folSKvvEt0oIIU5+I+H4K8GtEGKg/h69n6mUmnb0m0qpqcCso5Y95SmlphAJbPOjL31Da33fMDZJiJPNJ4lkjGiOnFQ9Hn1ujr4vhBBi8A378VeCWyHEgGitNwId4/1i9d52vLYtuuwpTyk1nUhV5BwiB/qvaK1/O6yNEuLk05ESt0JrfRhAa30IWBl9XVKThRBiaAz78VeCWyHE8ejokf2kUqrzeBKdn/WTRy1zqjudSPGoLCKB7X9orf8wvE0S4uQSvYB0evTpP456u+P56dHlhDjVZSmlTuvrRuR7S4hejZTjrwS3Qojj8ThgAAXA+V1eXwgURt97/NiPnZKuBtKjj7+ktf7LMLZFiJNVR6+BH3j6qPeeir7edTkhTmV3AlviuN05XA0Uo8qIOP5KcCuEGDCtdTmR3kjonprc8fg9rfUpN8dmD3SXx1cqpWzD1hIhTkJKKTNwS/TpK1rrpq7vR5+/Gn16S3R5IYQQx2kkHX8luBVCHK/HovfXK6WcSikncF30NUlJPuL/OFIOfynwhFJK5hoXYvAsAXKjj49OieOo13OBC4e8RUKMbD/UWqu+boBU8xd9GTHHXwluhRDH6znAA7iJTNB9NZHJur3As8PXrBGnlsjBfG/0+bXAo13HKgshjktHoZIm4JUelnkl+n7X5YUQQhyfEXP8lZMqIcRx0Vq3Ac9Hn36KIynJL2itW4enVSOT1roSWAwcir50C/CXaAEuIcQAKaWSiFxcA0gB/EopffQN8EXfB7haKeU+8a0VQoiTx0g7/kpwK4QYDB2pyUuAi6KPJSU5Bq11KXABUBF96Q7gd8PXIiFOCjcCzn5+xgVcPwRtEUKIU8mIOv7KeC8hxGB4G6jkyHiLamDZ8DVnZNNa71NKXQAsJzLFwpeVUl6t9beHuWlCjFYdKW6VwDfiWP7nQFH0c38bqkYJIcQpYEQdfyW4FUIcN611WCn1d+Cu6Ev/0FqHh7NNI53WeqdS6iIi1abTgG8ppTxa6x8Mb8uEGF2UUmOB+dGnz2qt/xXHZ84C7gbOV0oVaa0PD2UbhRDiZDQSj7+SliyEGBRa6+9orR3R2zeHuz2jgdZ6M3Ax0BJ96ftKKem9FaJ/PgV0jFt/Js7PdCyn6D6NmRBCiPiNuOOv9NwKIcQw0lp/pJS6FHgDSAB+Hu3B/cMwN02I0aLj5KgGWBHnZ9YCZUBB9PM/HYJ2iZHhDKXU7XEst1JrvbfvxYQQXYy4468Et0IIMcy01quUUlcSKZPvAH4XHYP70DA3TYgRTSl1LjA++vR5rbURz+e01lop9RzwVWCSUupsrfXaoWqnGFZXcaSSa28+w5Gp2oQQfRipx19JSxZCiBFAa/0OkblvA0RSdR5USn1yeFslxIjXda7E/s6r3XV5mfNWCCH6Z0Qef5XWejDXJ4QQQgghhBBCnHDScyuEEEIIIYQQYtST4FYIIYQQQgghxKgnwa0QQgghhBBCiFFPglshhBBCCCGEEKOeBLdCCCGEEEIIIUY9CW6FEEIIIYQQQox6EtwKIYQQQgghhBj1JLgVQgghhBBCCDHqSXArhBBCCCGEEGLUk+BWCCGEEEIIIcSoJ8GtEEIIIYQQQohRT4JbIYQQQgghhBCjngS3QgghhBBCCCFGPQluhRBCCCGEEEKMehLcCiGEEEIIIYQY9SS4FUIIIYQQQggx6klwK4QQQgghhBBi1JPgVgghhBBCCCHEqCfBrRBCCCGEEEKIUU+CWyGEEEIIIYQQo54Et0IIIYQQQgghRj0JboUQQgghhBBCjHoS3AohhBBCCCGEGPUkuBVCCCGEEEIIMepJcCuEEEIIIYQQYtT7/3AMBeTFU8ZpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)\n", + "\n", + "e_fermi_ref = [14.7437]\n", + "for (fermi, n_iter, path_w90, cycle, label) in [(e_fermi_ref, [1], path, cm.GnBu_r, 'reference'), (e_fermi_run, [1], './', cm.RdYlBu, 'run')]:\n", + "\n", + " col_it = np.linspace(0, 1, len(n_iter))\n", + " for ct, it in enumerate(n_iter):\n", + "\n", + " # compute TB model\n", + " h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0\n", + " tb = TB_from_wannier90(path=path_w90, seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)\n", + "\n", + " # compute dispersion on specified path\n", + " k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)\n", + " e_val = tb.dispersion(k_vec)\n", + "\n", + " # plot\n", + " for band in range(n_bnd):\n", + " ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it} - {label}' if band == 0 else '')\n", + "\n", + " \n", + "ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')\n", + "ax.set_ylim(-0.2,0.8)\n", + "ax.grid(zorder=0)\n", + "ax.set_xticks(special_k)\n", + "ax.set_xticklabels([r'$\\Gamma$', 'M', 'K', r'$\\Gamma$', 'A', 'L', 'H', 'A'])\n", + "ax.set_xlim([special_k.min(), special_k.max()])\n", + "ax.set_ylabel(r'$\\omega$ (eV)')\n", + "ax.legend(fontsize='small')" + ] + }, + { + "cell_type": "markdown", + "id": "fcc962ef", + "metadata": {}, + "source": [ + "### Convergence" + ] + }, + { + "cell_type": "markdown", + "id": "192ebb20", + "metadata": {}, + "source": [ + "To check the convergence of the impurity Green's function and total energy you can look into the hdf5 Archive:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "57fbd7ae", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive('./ce2o3.h5','r') as h5:\n", + " observables = h5['DMFT_results']['observables']\n", + " convergence = h5['DMFT_results']['convergence_obs']\n", + " \n", + "with HDFArchive(path + 'ce2o3.h5','r') as h5:\n", + " ref_observables = h5['DMFT_results']['observables']\n", + " ref_convergence = h5['DMFT_results']['convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fae94579", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWYAAAGsCAYAAABejH5GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AADGPElEQVR4nOzdeXxU1f3/8ddnskMSQLYgqyCKa7WKiguiuH1dqtYFa9VitXX5trW0/aq17U+0WrXVutVqxYVatXVrtVWrIoiIoqLVqqhsCogSdgiB7HN+f9yZZGYySWbCzJ1J5v18POYxc++ce89JJsrNO+d+jjnnEBERERERERERERH/BDI9ABEREREREREREZFco2BWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGf5mR6ApJ+ZFQF7hTbXAk0ZHI6IiIh0P3lA/9DrD51zdZkcjOQmXfOKiIhImqX8mlfBbG7YC5if6UGIiIhIThgLvJPpQUhO0jWviIiI+CUl17wqZSAiIiIiIiIiIiLiM82YzQ1rwy/efvttBg0alNKT19TUMGfOHADGjx9PSUlJSs8v2UOfdW7Q55w79FnnBj8+51WrVnHAAQeEN9e211YkjXTNK2mlnwHRz4DoZyC3peOaV8FsbmiurzVo0CCGDBmS0pPX1NTQr18/AIYMGaL/MXVj+qxzgz7n3KHPOjdk4HNWXU/JFF3zSlrpZ0D0MyD6GZAIKbnmVSkDEREREREREREREZ8pmBURERERERERERHxmYJZEREREWD+sg2+HiciWWz5PH+PExERkZykYFZERCQHpDt09CPUTGcft85YxBn3zOPu2UuTOvfds5dyxj3zuHXGopSNZXuOU7gskgKv3AAPHgdzb03uuLm3ese9ckN6xiUiIiLdjoJZERGRDnT1MC3doaMfoWY6+5i/bAO3z1wMwE0vfJpwH3fPXspNL3wKwO0zF3f4eXSHz0Gk21s+D1690Xv98tTEw9m5t3rtwTteM2dFREQkAQpmRUQkrRRqZjZMS3fo6Eeome4+xo7YgSuOG9O8nUgfkecGuOK4MYwdsUPGvga/wmWRbm/4ODhqast2IuFsZCgL3vHDx6V+bCIiItLtKJgVEclhCjW7f6iZ7tDRj1DTjz4umTAq4T7infuSCaPaHU93+BxEcsahUxIPZ+OFsodOSd/YREREpFtRMCsikqMUauZGqAnpDx3Tff5s6qOz5/bja/DjeySSM+KEs/lv3hndRqGsiIiIbKf8TA9ARETaNn/Zhk7NYOvouNhQE0golIkNNQ8d3a/D0DHcPpF+OhNqpuv8YeHzJdJPZ8O0dJ6/vX4aGhoYnsbzx34d2xsGZrqPVISZ6f4a0v05i+SUcMgaCl8LXr2enXc8kyUDTiB/7s3w+s0tbRXKikgX5pxj69atVFVVUVtbS1NTU6aHlLWCwSB9+/YFYMWKFQQCmu/YFeXl5VFcXEx5eTk9e/bEzDI2FgWzIiJZ6tYZi7h95uKkQ5Nw6HLZxNFMOXqXuG0UamZX6OhH4Bivn9/PXMpJw4yjBjumzV3O72e2zK68/NhdufCwnahtaCLoHE1BRzAITc7RGAw2vw4GvfeanOOo3QawdkstD7y+rLmfLzdt4+R9BvOP/6zk0be/aD7/pP2Hsufgcl5dtJagc+Ag6Bwu/Iz3S4K3DQ5H0MGOvYs5ce9BPPvBquY+Pli5icNG9+eVhauZ8fGa5j4OHtWXqtoGrnv2YxqagjQEHQ2NQRqDjvqmII1NQRqanPde6HVjU5D6JkffnoWs31rf3MdvX/gUF/G9HFBWxIsLKnnl0zUU5gcozA9QkGcU5udRmBegMN8ozAtQkBeIeD9AUX6AnkV5HLdHBS8sqGw+/9K11Zy8z448/8Eq/jq/5fv03UN24ujdB7J8/Vby8wIUBIz8vAD5eUZ+wMgPeP1GXkwm8zkrlBXpQEw4u8dXj7P7V48T9eubQlkR6cKCwSArVqygpqYm00PpEpxzlJSUANDU1EQwGMzwiKQzGhsbqaurY/PmzZSUlDBs2LCMhezmnOu4lXRpZjYE+ALgiy++YMiQISk9f01NDS+99BIAxxxzTPP/pKT70WcdLV2zWcNtzrinZUXnRMOT2PDuiYvHtdtXvLBv8oE7tvqctzcU7Oj4bD+/c46GJscfZy/htpcXN+8/b9xwTt5nMH//z0oeeWtF8/6zxg7lhL0HtYSMoedg83bL66AjtO14+eM1PPfhqubzHLdHBYeO7scrC9cw85OWwHHcyL7sPaRXc6jYGAxS3xj9ujEYChsbHQ2h141NXiC5vrqOzTWNkV8hkLm/Esv2ywt4QW1BRGhb2xCkuq7lczYcLuJzTmUou3LlSoYOHRreHOqcW5mSE4skIa3XvC9fC3Nvab1foWxO0bWwdLefAeccy5cvjwplzYy8vLwMjir7NTZ611f5+Zrr2FU1NTURmYeWlJQwfPjwDmfOpuOaVz9FIiKdkM7ZrJDZGa3puO05Xj+NTUG+c8gI7n/tM26fuaS57aUTRnHS1wbxxYZt3izNUGjZFKR55qZz3mxN77Xj68N6c9bYofwtNNPQm4G4haN3r+DZD77iX/9tCTsP2bkvm2rqufqZj6htCFLT0ERtQ1Pzc+S+2oYmauqbqG0M0hRs/YfMh+Yt56F5y1vt/9v8L5rHsj1eWFDZPKsy0rzP1jPvs/Xbff4WCmW7uqbQzOW6xrZnbaQrlBXJCUf8HDf3luj/WxaVK5QVkS5t69atzaFsXl4eFRUVlJaW6vb8dgSDQaqqqgAoLy/X96qLCgaDVFdXU1lZSVNTEzU1NWzdupXS0lLfx6JgVkQkSX7UZ408p9+36Sdy23NtQxNbahvZUttAVeh5S8RzVU14f8R7dQ30LilgU00DALfMWMQtcRYQ++PspfwxyQXJ4nny3S958t0vW+1/fcl6Xl+SylBTpGvpUZinUFYkWfP+0PpPWHVV3gJgCmdFpIsKB4wAFRUVlJeXZ3A0Iv4JBALNP+9ffun9zrhlyxYFsyIiXYFfs1kjz5nq2qO1DU1srmmgqqaBzTUN7FpRGlW3818r8vj3F45G1xKQ9ulRwH2vfcatMxZR36RaStK2vIBBaFZzrJKCPHoW5WFmGBAww6zlufl16D1C2wEDI9zG215fXU9lVW2rPkb178mo/qUU5Hs1WQvyAlGv8/MCFOZ5tVoL8rwarQWh1/l5Xm3YVxau4Zn3v2o+Z2lRflRZgBP2GsT4XfpR3xikrtGrT1vf6JWMqG8KUt8Y8Rze3xj9XkNTkMrNtayrrm/1NeQHvK+1oSn1Jae21Tdx9+ylCmdFEjX31uYas62E9yucFZEuqLbWu44ys4wEUiKZVlpaipnhnMtYnWUFsyLSbaWzBqxfs1nb6ss5x7cPHM7dry7hnlc/a277P3tWkBeA3734KVU1jV74WtsQEcI2UlXbQH07tzuHNbrouUEbtzUkPOZcVVIQoEdhfnNw2BwomhEIeMFiwKLDyNhgMmDGui11rGojcBw9oCwmZLTmBabCNUYjX8e2LcwL8PInq3nqPy2ziYvzHLVNLZ/3dw8ZwbcOGEZewMgLeGNs9Tr0NbXeZ61+5nv3KGBT6OenpqGJH00cvd2hYHt9LF27ldP3G9rpPu6evTQqlA3/NxvZ53MfrmLPwb226+to72toDDquOG4MFx8+kqagozH8CC9SFvRqBjc0eWU2wvvCC5g1Bh1Pv/clT7zbUvaqMOCoD3qfczKz/UVyWnuhbJjCWRHpopqamgCvjIFuyZdcFAgEyMvLo7Gxsfm/B78pmBWRbindNWCh87NZLz58JLUNTVTVNlBVE3H7f0QZgHjb/UsLWRuaWffbFxfy2xcXthrTvz+q5N8fta5J2l2Y0Rz+BcKvQ9t5oX019U1srW/9j+rQPiWMGlBKcX4eJYV5FBfkUVwQoKTAe11SkEdxYR7F+QFKCvOa9ze/V+Dt/+tbK7hjVktN3OjQMciPJo5MW1i3vYFj+PyRoexJw5o4arBjeY9dm8tWPPD6MvqXFXeqn7b+EBG5f3tDwXT20d4fUpL5g0yqv4b8JNfguHv20qhQNt7nrHBWpAMxoWzTwL3IW/1hy/tDD4Iv3vReK5wVERGRTlAwKyLdjl81YCPPGxmkvLNsAzv168nbn2/ggy83N7ftrqUACvMDlBfnU1ZcQFlxPmXF+ZQ3v45+nrd0Pf94ryUULC/Op6q25fbwHx25MxccNrI5ZA3PKA1vd7RKZnuh5hcbazj7wOHbHWpGhrKpDh3THWrGnv8nE0cxfJsX8H/v0OEUFBRsVz9+hJrp7COR2e2p+DrS/X1K9+cskhNiZ8oeNZXglnXRwWz5jnDU1JZ2CmdFREQkSQpmRaTbSXcN2G31jSxaXc3CyioWVlazcHUVPQrz2BaapTnz0zVxj8vWUgA9C/MoLymgsSnYPCMXIN9cVDmDU/bZkdP3G9ocvobD1uKCxKby3T17aVQoGy90vGPWEkoK87tEqJnuMM2P808+cEdeeqll5vX29ONHqJnOPpIpOZLN36d0f84iOSFOKMuhU3Bzbo9uV72mJYRVOCsiIiKdoGBWRLqlVNSAbWwKsmz9Vj6t3MLCyi18WrmFRau3sGLDNuKsaZRRJQUBBpYXU15SQK+SAspLCigvDr/O955D2+H3e5V4wWpBXqDV9yDebc9Pv/8Vu1aUK9TEnzDNj/PHK3DfmX78CDXT2cf8ZRuSrgMdr4/9R/Rpd5Z9ur9P6f6cRXLC8nlxQ1kAeg6Iblu92nuOF84OPQiGj0vfOEVERKRbUDArIhmRzoW5wjpTA3bCLv1ZtHoL/3P7ayxdU+1LyYHiggBlxQVR5QC8YLWlJEB5SQFvf76BZz9Y1XxcZBmAmoYgk8YO63K3t4d1xVAznmwMNdMdOvoRaqa7j7EjduCyiaOTrksd2cdlE0e3+/+m7vA5iOSE4ePg8Cvh1RujQ1nAlbYRzEJ0OHv4lQplRUQi+PG7X3cQDAa57bbbuP/++1m6dCl1dXX06tWLTZs2ZXpokkYKZkXEd34szBUWL3hYuXEbYyrK+Pt/vuS9LzZFtZ+9aG3C40nUkWP6c+weFaGQ1ZvBGhnEFuZ3vALq3bOXRoWyqbpNPxtub9+efhRqdhympTt09CPU9KOPKUfvklBd6Xh9JBJmdofPQSRnHPFzGDmhVbjqYmfM1lVB/TYo7OFtHzpFM2VFRGL4+btfV3fttddyzTXXEAgE2H333enVqxdlZWWZHpakmYJZEfGVnwtzba5pYMFXm8kLwG6Dyvhk1RYAHnlrxfZ8CQAEDEb07cmuFWXsMrCM5eu38vT7XzW/H7no1KxP1zJ2RF8mjR3Wqb7SdZt+um97VqiZPWFaukPHdJ/frz46G0omelx3+BxEckaccLXVjFmArWugcES7x4mI5Co/f/fr6pxz3HXXXQA8/vjjnHbaaRkekfhFwayI+CpdC3Nt3FrPR19t5sMvN7Pgyyo++mozy9dvS8mYB5QVsWtFGWNCIeyYinJGDyxtXvTq7tlLo0LZVC46la7b9BVq5laoCekPHdN9fr/6SLfu8DmI5KzCMhqtkHzXslAmW1ZDnxEZG5KISDZL96LM3cnatWtZt24dAMcff3yGRyN+UjArIr7b3oW5Tt9vCK8sXMOCL70g9qMvq/hyU+tZnskqLcpnl4Gl7FpRzpiKMnatKGPXgWX06VnY5jHpXHQqnbfpK9TMvVBTRES2kxl1Bb3Ir48oexRZZ1ZERFrZ3t/9cmVh0si7FktKSjI4EvFbx4UNRUTS4JIJo7jiuDHN2ze98Cl3z14a1ebu2Uui/mHeuX9P/vzGMsZe/zLnPzifm19axIsLVm93KHva1wcz94oj+HDqMfz90kO44Zt78Z2DR3DQyL6dDmWT+Trj6eyM1ti+5i/b0Gb7KUfvwhMXj0v6YueSCaN44uJxCdd6UqgpIiLdRV1Br+gdCmZFRDqU2O9+XSOUHTlyJH369GHu3Ll8+OGHnHXWWQwaNIi8vDymTp3a3O7FF1/k1FNPZdCgQRQWFtK/f39OOukkZs2aFXW+ZcuWYWaMGDGieZ+ZNT+mT58e1f6LL75gypQp7LbbbvTs2ZPS0lL2228/br75Zmpra1uNN3x+MwPgmWeeYeLEifTt2xczY/bs2c1tGxoauPfee5kwYQJ9+/alqKiI4cOHc8EFF7BkyZK4348JEyY0j3PdunX84Ac/YNiwYRQVFTFs2DAuu+yydhcva2hoYNq0aUycOJF+/fpRVFTE0KFDOeaYY7jnnnuoq6trdUyy34NspxmzIpIx8f56unRtNYN6FfPcB6v4bN3WqPZL1m5tdY6OFOYF2LWijIDBf1dubt4fWQP2qf98yc4DyrZ70axULjrl14xWhZoiIiKJq83vHb1DwayIdFPBoGPjtvqOGybozP2HsK2+kTtneQHfTS98yrb6RiYfPILpbyxr3g/wwyN35sz9h7C+unUo11l9ehQSCFjKzjdv3jzOOOMMzIzdd9+d3r17Y2YEg0Euvvhipk2bBkDfvn3Zc889WbFiBc8++yzPPvssN9xwA1deeSUAxcXFHHLIIdTV1fHOO+8AcMghhzT3M3DgwObX//73vznzzDOprq6muLiYkSNHUldXx/vvv89//vMfnnzySV566SXKy8vjjvl3v/sdl19+Of369WPUqFFRM3PXrVvHiSeeyFtvvYWZMXjwYIYNG8bixYt54IEHeOyxx5pD3XhWrlzJvvvuy+rVq9ljjz0oKCjg888/54477uCNN97gjTfeoKCgIOqY1atXc+KJJzZ/3YMHD2bkyJGsWrWKmTNnMmPGDI477rio0Hp7vwfZSMGsiMQ1f9mGToVvyR538j478t6Kjbz0sfeLzZPvrky6z7Ci/AC7DSpnz8Hl7DW4F3vs2ItdBpZx/9zP44aona0B60d9VtBCPiIiItlGM2ZFJFds3FbPfte9nNY+7py1JCqQ7Wj/9nj3l0fRt7QoZee76aabOPfcc7njjjsoKysDvHIE119/PdOmTWPEiBHce++9HH300c3HPPbYY1x44YVcddVVHHjggRxxxBFUVFQwd+5cli1bxk477QTA3LlzW/W3cOFCzjjjDLZt28a1117Lz372s+ZgdenSpZxzzjm8+eab/OhHP2o1yzbsl7/8JXfeeSeXXnopgUAA5xz19V74ftZZZ/HWW29xxBFHcPfdd7PrrrsCUF9fz7XXXsv111/PpEmTWLhwIX379m117muvvZZjjz2WBx54gP79+wPw6quvcsIJJ/DOO+/w0EMPccEFFzS3d85x+umn88477zBq1CgeeughDj744Ob3165dy/Tp0+nZs2dKvwfZSKUMRKSVW2cs4ox75iV0y32ku2cv5Yx75nHrjEVttmkKOt5dvpGbX1zI/9z+GgffOKs5lE1GSUEe+w/vw+SDR/C70/fmhR8fxoJrjuXp/z2E607Zi0ljh7Hn4F5thrLQ+TID4dmssefrSGR/icxmDffVGQplRUREUq+2VTC7JjMDERGRjBozZgz33ntvcygLXjB74403UlBQwD/+8Y+oUBZg0qRJ/PrXv8Y5x0033ZRUf1dffTVbt27lZz/7Gb/61a+iZruOGjWKJ554gp49e/Lwww/z5Zdfxj3H9773PX7wgx8QCHhRoJlRVFTECy+8wMyZMxk5ciTPPPNMcygLUFhYyHXXXcfJJ5/M+vXrm2cCx+rTpw+PPPJIcygLcPjhhzeHsc8++2xU+2eeeYa5c+fSo0cPZsyYERXKAvTv35//+7//izpfKr4H2UgzZkUkyvxlG7h95mIguVmkkbNPb5+5OGqmZ1VtA3MWrWXWp2uYvXAtG7Ymd0tMaVE+e+xYzp6DezXPht2pXyl5HdyKkmgNWEh+gS7NZhUREck9KmUgIiLghax5eXlR+55//nm2bdvG+PHj2WeffeIed+qppzJlyhTmzJlDU1NTq3PEU19fzz//+U8ALr744rhthgwZwtixY5k9ezavvvoqZ599dqs2kydPjnvsk08+CcA555wTFTTHjvuZZ55h1qxZzWUYIn3rW9+KWz7goIMO4o477mhVo/bvf/874M3UDc8Ubk+qvgfZSMGsiEQZO2IHrjhuTFJBZbwAtG/PQu577TNmfrKG+cs20Bh0nRrP9w8byZX/MybpekDprgELms0qIiKSa1qVMtiiYFZEJBftskvrhZD/+9//ArBo0SIOPfTQuMc55/1eXFNTw/r16xkwYECHfS1evJiamhrMjPPOO6/NdosWeXeurlwZvzzgbrvtFnd/eNyPPfYYM2fOjNsmvIBXW+cePXp03P3hGrnV1dVR+xcsWADAuHHj4h4XK1Xfg2ykYFZEWmkrqJx84I6t2sYGoPsP78Nj81dE7etIcX6A2sZg83bkwlz3vvYZfXoWJrUwl181YEVERCS3tApmt66BYBACqhAnIt1Lnx6FvPvLo1J+3tiFvnqVFLC5pqF5+4dH7szkg0ekvN8+PQpTer7I2qdh4fCysrKSysrKDs+xbdu2hPoKn9c5x+uvv97p88Ybc+T5Fy5cyMKFC1N67nDZhHAgHVZVVQV4JRASkarvQTZSMCsiccULKhsaGhge0ebmFxfyh1eib0l4Z/nGhM6/y8BSjhgzgC21jTz61orm/du7MBe01IC9febipGvAhvtLtAasiIiI5I5WpQyCjVCzEXq2XghFRKQrCwQspYtlgTepJzKUjfe7352zltCjMD+piTnZorS0FICLLrqIe+65J+XnLSoqora2NmXnjT3/X//6V84666yUnz+ecNmDcODakXR/DzJJf9oVkTbFLo71+5lLeepz48WVxhG3vt4qlG1PYV6A8bv055pv7MFrlx/BS1MOp3dJYdxQNl7fiS7MFTbl6F144uJxSf+DfsmEUTxx8TimHN361hQRERHJbXUFrevnUd3xrCgRkVzXXqm57f3dL1vstddeAHzwwQcpPe8uu+xCUVERdXV1zbfqp1K6xt2ePffcE4A33ngjofbp/h5kkoJZEWnXJRNGMeWolnoxcyrzeP6LPCqr6jo8dkBZEWeNHcq95+7He//vaB767gF85+ARDN2hR8ILc23PP9CqASsiIiKp5CyfuvyYhVG0AJiISLv8+N0vG5x44omUlJQwb968hG63T1RJSQknnHACADfffHPKzht2xhlnAPDggw+yYcOGlJ8/ntNOOw3w6touW7asw/bp/h5kkq/BrJnlmdl+ZnaymV1oZleY2Y/M7FtmdpSZDfRzPCLSvmXrtnLtvz7mvrmfJ3zM14b0YspRu/CvHxzKmz+fyI2n7c0xe1TQs6ilckqyC3N19X+gRUREpPtoVc6gek1GxiEi0hXk0u9+AwYM4KqrrgLg5JNP5vHHH6epqSmqTWVlJffccw/XX399Uue+7rrrKC0tZdq0aVx22WWsW7cu6v36+npefPFFzjzzzFZ9duSkk07iqKOOorKykokTJ/L222+3avPJJ59w9dVX8/TTTyd17vb6POyww9i6dSvHHnss8+bNi3p/3bp13Hzzzaxdu7Z5Xzq/B5mU9hqzZjYamARMAA4CSjpovxR4DXgOeNY5V5/uMYpIi2DQ8eritTz0xjJmL1pLTI3uVnoW5nHY6P4cOWYAE8b0Z0BZcbvttTCXiIiIdGV1Bb2g9ouWHVtUykBEJJ5c/N3vF7/4BRs2bODWW29l0qRJlJeXM3r0aAKBAKtWrWLlypUAfPvb307qvLvtthvPPPMMZ555JnfccQd33XUXu+yyC7169WLTpk0sXbqUhgZvEbVHH3006XE//vjjnHbaabzyyisceOCBDBo0iKFDh9LQ0MCyZcvYuNFbS2batGlJnzseM+OJJ57ghBNO4N133+Xggw9m6NChVFRUUFlZyZdffkkwGOT000+nf//+vnwPMiVtwayZnQZcBhwS3pXgoTsDo4DJwGYzux+40zm3ot2jRHLI/GUbOvUPU3vHVdU28MQ7K/nLvGUsW5/4CoYXTxjFD48c3XHDEC3MJSIiIl1ZXX6v6B2aMSsiElcu/u5nZvz+97/nzDPP5O677+a1115jwYIFFBYWMnjwYE455RROPPFEvvGNbyR97iOPPJJPPvmEu+66i+eee45Fixbx2WefUVFRwYEHHsiRRx7JKaecQn5+8lFfnz59ePnll3niiSf4y1/+wrvvvst7771Hr169GDZsGKeccgonn3wyxxxzTNLnbsvAgQN54403uO+++/jb3/7Ghx9+yOrVqxk4cCBHHXUUp512GjvuuGPUMen8HmRKykdqZqcCvwZ2oyWMrQXeB94G3gXWABuAjXgzaHcA+gC7AGOBA4ChQG/gJ8APzewB4BrnnIo4SU67dcaipP9hg5ZbSC6bODpqYatFq7fw0Lxl/P0/X7KtPrHp/j3yHdsavf+8b3lpEfmBQFJjmXL0Lhw6ul/S/8BeMmFUl/prqYiISKaZ2QC8a+sD8K6zxwJ9Q2//2Tk3OUX9TAWuTrD5Ec652anoNxNqC3pH71CNWRGRNnW33/0+++wzqqqqOmx30EEHcdBBByV83hEjRuA6ul0V6N+/P1OnTmXq1KkpPS9AIBBg0qRJTJo0KaH2ALNnz273/QkTJrTbf2FhIZdeeimXXnppwn0m+z3IdikNZs1sFnA4XiBbCzwPPAI8l2xJAjPbGTgb+BawK3ARcLaZneOcezaV4xbpKuYv28DtMxcDLbd2JBKIRtb1uX3mYsaN3IFNNY08NG8Zbyxd3+6xRfkB6hqDzdsnDWviqMGO5T125fczlyY9ljAtzCUiIuILpYYpVlsQO2NW32IRkfbodz+RtqV6xuwEYB1wK3CXc67jPyO0wTm3BLgWuNbMDgV+BRwNfB1QMCs5aeyIHbjiuDFR9Xag/UA0ttj64bv056dPfMCXm2ra7WvXgWWM6NeTFxe01E37ycRRDN+2EIDvHTqcgoKCpMYiIiIiGfUF8AmQuvsQ49urg/cTX1U0C7UuZaBgVkRERDon1cHsFXiBbOIFKhPgnJsLHGtmY4F+qTy3SFcTrxh65P5IsaFsXsB4ddHaVu0i3z92j4GcN24E763YyE0vLGx+74rjxjD5wB156aWWfcmMRUREJFeZ2SjgfLw7y0YD4WRvM7AYmI1XVmBJGrq/FpgPzHfOrTazEaQ5GHXOfZTO82eaShmIiIhIqqQ0mHXO/S6V54tz/vnpPL9IV5FIIPqHWYu5+aVFUcc1BePXdunbs5BvHTCMsw8cxo69S0KBbnQoe8mEUdTUtJ5lq3BWRESkbWZ2JXANUBDatQ74MvS6HG+h3EOAy83saufcjans3zmXaN1XSVBdbCmD2s3QUAMFJZkZkIiIiHRZXWeZMhGJ0lYgetrXBzPl8fd5fUn7tWMB9h7Si++MG8EJew+iuCAP8OrYRs6yTWSRsXhjycZC7SIiIn4ys28BvwEW4C2O+5JzblNMm97AsXhlu643s2XOub/5PFRJQm1sKQOA6jXQZ7j/gxEREZEuLeXBrJn9E3gI+GeyC36JSHLiBaKRoWo8BXnGiXvvyHnjhrPvsD6t3h87Ygcumzia22cuTiiUjTeWyyaOVigrIiICPwY+Aw5yzm2N1yAU1D5mZs8D7wNTAAWzWawxrwcuvxhrrG3ZqWBWREREOiEdM2ZPBE4ANpvZ48BfnHOvp6EfEQEuPnwkH325mec+XNVuu4HlRXz7wOF864Bh9C8rarftlKN34dDR/ZIOVy+ZMEozZUVERFrsAfyxrVA2knNui5n9Hbgk/cNKLzObgbdgbxmwCfgYeAH4k3Nu43acd0gHTSrCL2pqauKWYNoetbW14YEQ7NGPvKqVze/VbVhBsN+eKe1Psk/zz0DMa8kd3e1nIBgM4pxrfi0di/w+6XvWfTjnCAaDHV47pPraAtJXysCA3sD3gO+Z2ed4s2gfds59lqY+RXLO2i11XPWPD5nxcduLThwwYgfOO3g4x+5RQUFeIOFzdzZcVSgrIiLSrJ6Whb4SUR46pqs7KuJ1f7xFzw4HrjCzyc65Zzp53i8SbThnzhz69UvfmsGbG4uIvOL5dP6rLFumKnG5ZM6cOZkegmRYd/gZ6Nu3LyUlJZgZVVVVmR5Ol1NdXZ3pIUgKNDY2Nv9B99NP278Ded26dSnvP/GUJnE74y1wsAQvoDVgJ+BqYLGZvWZmF5pZMhepIhLjuQ9Wccytr7Ybyk4+eASPXzyOE/feMalQVkRERFLiTeAsM9u7o4Zm9jXgW8C8tI8qfT7Eq6V7ErAfcBDwHeCl0Pu9gafM7H8yMroUqi3oHbVd1Lg5MwMRERGRLi3lf9YNzYi9BrjGzA4CzgUmQfMflQ8OPe4ws2fxZtL+2znXlOqxiHRHG7fW8//+uYB//feruO8X5BkNTd7tKNPfWMbA8uKE68SKiIhISl0NvAa8aWaPADOAxUA4xesFjAaOAc7GmzRxdQbGmQq3Oeemxtn/FvCQmV0E3APkAfeZ2c7OuWTvBxzawfsVwHyA8ePHM2RIR5UPklNbW9s8Q26HYbvBh+82v7fzwFKGH3NMSvuT7BP5MzB+/HiKi4szPCLxW3f7GVixYgVNTU3k5+dTXl6e6eF0CcFgsHmmbGlpKYGAJkB1dWvXrqWkpITS0lL222+/dtuuXLmy3fc7I6332zjn3sS7EP0xcDxeSHsCUAQUA6eFHuvM7FG8erT/SeeYRLqymZ+s5sq/f8jaLXVx3z9138HcOmkf7p69NGpBMEDhrIiIiM+cc/PN7DjgPuAC4LttNDW8RcIudM6949f4Uim0iFl77//JzPYHLgR2BL4JPJJkH+3+NmRmza9LSkooKSlJ5vRJyes1KGo7v2Y9+WnsT7JPcXFxWn/GJPt1h5+BQCDQXCdVAWPyAoGAvm/dhJkRCAQ6/G86Hf/N+1IIyTnXADwDPGNmvYEz8ULaQ0JN+gM/An5kZp8AfwYecc7FnxIokmOqahv49b8+5ol32/595IdH7sxPj9kVaAlhFc6KiIhklnNutpntChwJTMCbIRsu6bUZbwbtq8DMHLiD7E94wSx4NWeTCmazies5MHpHddulpURERETa4nuF+tBf0+8F7jWznfAC2m/jXaQC7AbcCPzGzF4B/uyc67IXbSLba+7idVz+5H/5anPbq35ecdyuXDJh56h9CmdFRESyQyhwnRF65LKPI14PztgoUsCVDojeoWBWREREOiGjc66dc5875651zu0KjAPuBjbg3c6Vh7ei60MZHKJIxmyta+RXT3/EOfe/1UEoO6ZVKBt2yYRRXHHcmObtm174lLtnL035WEVERHKJmeWZWWGmx9EFWcdNugbXs3/0juo1ELodWERERCRRWVMMwzn3lnPuf/Fq0C4AXIaHJBkyf9kGX4/LRvOXbeD4O17jL28ub7edF8q2PwM2Xjjbnb5XIiIiGfAjoNrM3jezM2LfNLNSM9vHzHy/Oy3L7R7xukuXLGtVyiDYALWbMjIWERER6bqyIpg1sx3N7P/M7ANgHtEXbfrTcw65dcYizrhnXtKzOu+evZQz7pnHrTMWddjWj+C3s328vmQd1z/3MWf+aR7L129r9f7Bo/py/iEjgMRC2bDIcPayiaMZO2KHTo1PREQk14XC1ivwSoI1Av+M02w48B+88PZdM7vPzC41s3Fm1sPH4WabiyJev5qxUaRCz36t922p9H8cIiIiSZo8eTJmxtSpUzM9FCEDNWbDzKwncBpejdkJtITE4VucPgX+EnpIDpi/bAO3z1wMJFcP9e7ZS5vb3z5zMYeO7tdm8HjrjEXcPnNxUqFmZB+XTRzNlKN3abdtZ/v4f898xEPz4s+QLSnI4+fHj+GcA4cTCBjH7zUo6XD1kgmj2H9EH4WyIiIi2+cYYADe3V2XOefq2mlbCOwTepwf2hc0s8XAfODC0CK5Wc3MJgMPhjavcc5NjXl/L6DGObeknXNcBFwQ2qwE/pH6kfoorxBKdoCaiD/GV6+Ggbu3fYyISK5aPg+Gj/PvOOmUZcuWMX36dHr37s2Pf/zjTA8nZ/gazJqZ4V3MngucApSE3wo9rwcew1vwa76fY5PMGztiB644bkxSi1VFhrLgzSJtK3j0I/jtTB/1jUEmP/g2byxdH/f9/Yb34eYzvsZO/Xo27+tsuKpQVkREZLudEHqe55x7vYO2DvgCGBaxLw8YA+wKzAWmpXyEEczsUCCyGH3kVM+dQ6FrM+fc9E50sx9wX2jh3n8DH+Jd1+fjfa3nAEeH2jYBFznntnain+xSVhETzK7J3FhERLLVKzfAqzfCUVPh0CmJHzf3Vnh5Khx+JRzx83SNTiIsW7aMa665huHDhyuY9ZEvwayZ7YMXxn4LCBdkCoexDcDzwJ+B57rCrAFJn3CImUg4Gy+UbS8ETXfw25k+PllVxXkPvM3aLa0n2xTmB/jZMbtwwaEjyQt0m7UyREREurr98ALXfyXS2Dk3wsx60zJzdh/gUGAkMIU0B7PAhcB32njvkNAj0vRO9hNeuPeodtqsBy5wzsUr/9D1lA6ANR+3bFerlIGISJTl87xQFryQFRILZ8OhLHjHj5ygmbPSbaUtmDWzwcC38QLZ8D09kenSfOAh4K/OuYyuRGRmw/AWcTgBb0ZDHbAEeBz4o3OudbHPzvd1FN6sgUOBQXi1yVYDHwAzgb8456pT1V9XlEg4m2wom8y5/eijsSnIn+Z8xi0vLSQYZ5m7vQb34vdnfo3RA8s67E9ERER8tVPo+b+JHuCc2wTMDj0ws53xynbtamZ7OOcWpHaIvnser0zBOGBfvIkYffGu/Tfgfa9eAKY756oyNciUK41ZAEwzZkVEog0f582UDYesiYSzkaEseMcrlJVuLOWLf5nZd8zsZWA5cANeKGuhxxfAjcBuzrkDnXN3ZUEoewJeKPpTvFutegB9gLHA74D/mNnIFPTTx8yeBmbgzVoYFeqrHBiNV2/3j0TfapazIherAi/cDC8I1tnANJFzh6WzjyVrqjntnnn87sXWoWx+wPjJ0bvw90sPVigrIiKSnXqFnjudwoVqsc4JbZ643SNqv6/JzjlL9NHGOaZHtJka5/01zrkHnHPfc87t75wb6pzr4Zwrcc4Nds4d75y7o1uFshAnmF2dmXGIiGSzQ6d44WrYy1O98DWeeKFsMuUPfDBy5Ej69OnD3Llz+fDDDznrrLMYNGgQeXl5UYtpvfjii5x66qkMGjSIwsJC+vfvz0knncSsWbPaPPcTTzzBMcccQ//+/SkoKGCHHXZgzJgxnHfeebz44otRbadOnYqZMXny5DbPZ2aYGcuWLevw65owYQJHHHEEAMuXL28+NplzSOekY8bsg3i3d4Uv7LYCf8ebHTvLORdnfmBmmNnX8GbF9gCq8YLkV/Bq354FfA+v/tdzZja2szNZzawXXiC7X2jXc8Df8Gbl5uGt3DsWOL3TX0w3FG/m6e9nLKShqeVHaJ+hvflqUw1XP/MRgYCRZ0ZewPsfR14A8iz8Orzf21eQZxw5ZgCzPl3TfO7/frGJI8cMYPbCNTz/UcutaCfvsyMj+vbgxQWVBELnNfP6CpgRCBDabwTMex0w47DR/VhdNYLpbyxr7mP+svW8vmQ9dY3BVl/vrgPLuOXMr7Hn4F6t3hMREZGsUQ8UAD07aBNu15YX8RbA3a+dNpLNYoPZLSplICISVzhcbW/mbBcIZSPNmzePM844AzNj9913p3fv3pgZwWCQiy++mGnTvEpFffv2Zc8992TFihU8++yzPPvss9xwww1ceeWVUef7xS9+wW9+8xsABgwYwNe+9jW2bdvGypUr+ctf/kJVVRXHHnts2r6evfbai/Xr1/PRRx9RVFTE/vvvH/V+cXFx2vrOdekqZeDwAs4/A0+lshRAit2GF8o2Asc45+ZFvDcrtGLub/Fm0v4EuLaT/dyJd9HdCJzjnHss5v3XgUfN7Cd4Qa2EXDJhFJtr6rnn1c8AokJZgPe/2MT7X2xKSV8vLKjkhQWtL6ifef8rnnn/q5T0MevTta32Gd7XedlRoynK18cvIiKS5dbjhbKD22rgnFtsZqW0lPOK54PQ814pHJv4SaUMRKQ7CwajFzjcXvueC/XbYM5vve2Xp3rbB14Eb/2pZT/A+Mu99lvXpa7/kh0gkLqbxm+66SbOPfdc7rjjDsrKvLtda2pquP7665k2bRojRozg3nvv5eijj24+5rHHHuPCCy/kqquu4sADD2yeobpu3Tpuuukm8vPzefTRRzn99NMxa7mJ5c0332Tp0ui7fFPtzjvvZPbs2RxxxBFUVFQwd+7ctPYnLdIRzF4FPOycW5mGc6eMmY3Fm6UAcH9MKBt2C3A+sBvwYzO7IdnFyUIr4Z4b2rwuTijbLDSbuDGZ8+eCIX16ZHoIabNDjwLumzyWrw/rk+mhiIiISGI+wFuT4Gi8O6Dics410hK+xhNO8fqnbmjiqzKVMhCRbqxmA/wu8XJ+nTLnt9GBbEf7t8f/LYWe/VJ2ujFjxnDvvfdSUNByc0xNTQ033ngjBQUF/OMf/2CfffaJOmbSpEmsWrWKKVOmcNNNNzUHs0uWLKGpqYl99tmHM844o1VfBx10EAcddFDKxi7ZJeU1Zp1zN2Z7KBtySsTrB+M1cM4F8UowgFd3dkIn+vlB6LkaL+iVJD33QWpmq2abovwAr185UaGsiIhI1zIb74aXb5rZ9hSED9c1UlH5rip2xmztJmiozchQRETEX5MmTSIvL/qO1+eff55t27Yxbty4VqFs2KmnngrAnDlzaGpqAmD48OEALFq0iP/85z/pG7RkpXSVMmiTmQXwAs5xQAVeKYFfOudWRbQpDI2tyTlXl6ahHBZ63gq82067VyNeH4pXKzYhoa/j5NDmv8M1as0sH+/2NwdUOufqEz1nrrl79lLmfdb27RNfH9ab3XcspykIwaCjyTmCzoVe0/I66AiGtr3Xrvn1yo01rNxY0+rc/UsL6dOzsPm4YOgcTUGHc+G+CO13of1EjCHUn/P2x6prDDL9jWVJLSomIiIiGfcX4Hq8BVxvAy7o5HkqQs/ZWvJLOlI6oPW+rWug9zD/xyIiIr7aZZddWu3773//C3gB66GHHhr3uPCySzU1Naxfv54BAwYwaNAgzj33XP7yl7+w//77N5c5OPjggxk/fjzl5eXp+0Ik43wNZs3sBOAOYETMW7cAqyK2LwD+AFSb2Y7Oua1pGM5uoecloVvN2vJpnGMS9TUgXCF5nplV4C0wdgYtC0bUmtkreGUO3kjy/ACY2ZAOmoQv/KmpqaGmpnUIuT1qa2vjvt5e0+Yu5/czW9dRGb9zX+YsWQ/Af1ZsYsLovnzv0OGd7yMi+O1Vks/mGu/HYW11PeceOLTT547qI+LriOzjphc+paGhYbv78Eu6PmvJLvqcc4c+69zgx+ec6muLbOacW2dmf8Rbf2CymS1wzv2+E6cK/8bWPW8NygXFvSGvCJoi5pFUK5gVEckFPXu2XgN006ZNAFRWVlJZ2fGCkNu2tfxt9v7772fPPfdk2rRpvPnmm7z55psAFBYWcsYZZ3DzzTdTUVHR1qmkC/MtmDWzC4E/4d36BbAO6Ic3azTW/cB1QG/gVODhFI+lONQ3QLtlF5xzG81sK16QOjTJriIXfCgGPozoN3L//wDHmtlPnXO3JdkHwBeJNpwzZw79+qWurkq886fCy18a/1oRfyGsnWwNvYbR/P7vZy5l8eJFHDU43o9S4n2cNKyJowY3Ru3v7Ln97CNTUvVZS3bT55w79FnnhnR9zuvWpXBxjq7hl8DxeAvE/s7MhgI/d84llHyHSiB8F+86+PW0jVLSy8wrZ7B5Rcu+LR3/Ii4i0iWU7ODVZU212IW+int7pWDCxl/uLQiWaiU7pP6cMUpLSwG46KKLuOeee5I6tqCggMsvv5zLL7+cFStWMHfuXGbOnMkTTzzBI488wscff8xbb73VXNM2vDiYi3d7LrB1azrmN0o6pLzGbDxmtjNwV2hzFrC7cy7OvT+e0K39T+GFuMekYUiRtbyqE2gf/okuTbKfyP/yr8YLZZ8F9scLZAcClwJVeJ/F783sf5Lso9uJDTPzLPp/NL0KHUcNdpw0rKl5379W5PHyl0ai4gemXj/be24/+xARERH/hQLYY4AleNerPwI+NrNzzayovWPNrCfeomHhAqWPpHOskmax5Qy0AJiIdBeBgLdYViof7/0lOpQ9aipcudx7DpvzW69dqvsOpD/+2muvvQD44IP21v7s2LBhwzj77LO5//77ee+99ygqKuK9997jrbfeam4TnrG7enX8f3cWL16cdL/hsFf85deM2R8DBcBHwPEJ1lR9DbgQ2CcN4ymOeJ3IWML3J5Uk2U/k3PYi4F/AKaFFxcBbjfduM/sQr5ZtAPitmb3g2vqzR3wdzeStAOYDjB8/niFDOqp8kJza2trmGTjjx4+nuLi4gyPaNm3ucv61ouWvcpcePoI/vrosqs03jjqMwb1LOAYYHVEm4F8r8hg9elSHZQFi+/jJxNbHdPbcfvaRCan8rCV76XPOHfqsc4Mfn/PKlV1h3dfUcs6tNLPDgZl4M2eHA9OB28zs33gzYT8B1gMNeNdj44HvATvizZZ92Tn3auuzS5dRFnNbafWazIxDRCTbzb0VXp7asn3UVDh0ivc6/Bx+P/wc3t9FnHjiiZSUlDBv3jxef/11DjnkkO0+56hRo6ioqGD58uV89VVL9aPRo0cD8P7771NfX09hYWHUcXfffXfSfZWUeJFXLpWoygZ+BbMT8S4+b0tioatwqpWOIk2Rt5kVttmqRXjmQ7I/nbG3s/1fRCjbzDk318z+DpwO7Bl6fJhoJ865dn8bivyrR0lJSfN/bOlQXFzc6fPPX7YhqhbrFceN4Ygx/VsFs8P696Yw3/tr14+OHkNBQQE3veCVAv79zKWMGz2AsSPi36Zw9+ylrfpoa/GteOcuKCjocLEuP/rIBtvzWUvXoc85d+izzg3p+pxz9WfHObfKzPbDK23wU7zryj7At0KPthiwCPh22gcp6dVqxqxKGYiItNJeKBvWDcLZAQMGcNVVV/GrX/2Kk08+mT/+8Y+cdtpp5OW13ElbWVnJ008/zfr16/nFL34BwMsvv8xzzz3Hd77zHfbZZ5/mtk1NTdx3330sX74cM+PrX/9683tHHHEEPXr0YPXq1Vx55ZXcfPPNBAIBgsEgf/rTn3jooYeSHv/IkSMBWLNmDQsWLGCPPfbo5HdCkuFLKQNaZnS+n8Qx4fIBPVI7FAC2RLxOpDxBeOZrImUP2urnc+fcwnbavhjxemyS/XQLY0fswGUTvb/6hMPMVZujs+1+pUXNoWzYJRNGccVxYwC4bOLoNkPZ+cs2NAegkX20J/Lc4C3WNX/Zhjbb+9GHiIiIZA/nXI1z7hfAXnjrItTiBa9tPRzwKHCQcy7nivN2O6UDo7c1Y1ZEJFoioWzYoVOiyxq8PNU7vgv5xS9+wZQpU1i/fj2TJk1ihx12YP/99+eAAw5g6NChDBo0iEsuuYRPPvmk+Zjq6mpuu+029t13X/r06cPXv/519t9/fwYOHMjFF18MwDXXXMPOO+/cfEx5eTnXXXcdALfeeiv9+/dn7NixVFRU8IMf/IC77rqLZPXr149jjz0WgP3224/999+fCRMmMGHChIQWM5PO8WvGbPi2/GQKVvQPPVeleCw452rNLLz4WLv39ZtZH1qC2YQX2YrTvqN7/CLbtll/t7ubcvQuHDq6X3O4WhkTzA7qFf/2y0smjGL/EX3aDGWhJfi9febihALTyHODF5i2F/z61YeIiIhkH+fcYuA8M7sEOAI4EBiNN4O2CVgLvAs865z7LGMDldRqFcyqxqyISLPl8xIPZcPizZwdehAMH5f68aWBmfH73/+eM888k7vvvpvXXnuNBQsWUFhYyODBgznllFM48cQT+cY3vtF8zGGHHcZdd93FzJkz+eCDD1iyZAk1NTUMGDCAb37zm1x66aVMnDixVV9Tpkyhf//+3HbbbSxYsIDFixez//778/Of/5yJEydywQUXJD3+hx9+mF/+8pe88MILfPDBBzQ0NABeaSxJD7+C2a+AnYFd8C5IE3F46HlZOgaEV/PrMGBnM8t3zjW20W5MzDHJWBDxOq/NVq3fb2ssOSEylIydMVvRRjAbe1xbYoPfRCUS/PrZh4iIiGQn59xWvMVen830WMQHscHsFgWzIiLNho+Dw6+EV29MLJQNiwxnD78yq0LZzz77jKqqjucPHnTQQRx00EEJnbNv375ceumlXHrppUmP55xzzuGcc86J+15bSxdNnz6d6dOnx32vX79+3HPPPUmPQzrPr2B2Dt6MgbOBv3bU2Mz6ARfhzbSdlaYxzcULZnsC+wFvtdHu8IjXryfTgXNuuZmtwKuT29HUycj3v0ymn+6scnN0Wd+2Zswmo7PBZzLH+dGHiIiIiGRYvBmzzoFWthYR8Rzxcxg5Iflw9dApXWqmrEhn+VVj9t7Q8/Fmdn57Dc1sCPA8XpmBpohjU+3piNdxx2RmAeC80OYm4JVO9PNU6HmgmR3cTrtvRrx+rRP9dEvJzJgVEREREfFVWUwwG2yAmo2ZGYuISLbqbLiqUFZygC/BrHNuPnAPXo3Z+8zsCTM7M6LJ3mY2yczuBxbizWB1wC3OuSVpGtPbtASgF5hZvP/ifwrsFnp9u3OuIfJNM5tsZi70mNpGV7fhLQIBcIeZ9YxtYGbnABNCm8855zqqR5szEq0xKyIiIiLiu579W+9TnVkRERFJkF+lDAB+iFc24Fy82aHfpGVRsEci2oXv+5kOXJXmMV2GV56gBHjJzH6DNyu2BDgL+H6o3SLgls504JxbYWb/D/gtXuD8tpn9FvgI6IX3fbg41LwKSLDoSm6IDWYryksyNBIRERERkRj5RVDSJ3qWbPVqGLBb28eIiIiIhPgWzDrnmoDvmNk/gZ8DX2+j6cfAdc65v/kwpvfMbBLwMFAO/CZOs0XACc65LdvRz+/MbAfgCmB3vNA51hrglNCKvgJsqW1gS130OmiaMSsiIiIiWaW0IiaYXZO5sYiIiEiX4ueMWQCcc08BT5nZjsD+wAAgD1gPvOecW+rzeP5lZnvjzZ49ARgC1ANLgCeAPzjntqWgn5+HQulL8BYdG4RX4mAR8E/gTufc5u3tpztZXVXbap9qzIqIiIhIVikdAGs/adneUpm5sYiIiEiX4nswG+ac+wovkMw459xy4CehRzLHTSf+7Ne22s8D5iXTRy6LXfirT48CigvyMjQaEREREZE4SmMWAFONWREREUmQL4t/iXRGbDBb0Uv1ZUVEREQky5TFBrMqZSAiIiKJUTArWSt24S/VlxURERGRrNNqxqxKGYiIiEhiUhrMmtn/mVmPVJ4z5vwHmNnx6Tq/ZJfWM2YVzIqIiIhIlmkVzGrGrIh0DXl5XqnApqYmgsFghkcj4r9gMEhTUxPQ8t+D31I9Y/Ym4PNQQFuaqpOa2cFm9m+8+qz7p+q8kt0qN9dEbQ8qVzArIiIi2c3MAmZ2pJn9wszuNLP7zWxQTJtCM+thZkWZGqekkGrMikgXVVzs/Y7tnKO6ujrDoxHxX3V1Nc45AEpKMlM+M9XB7GygP3AjUGlmj5rZCWaWdOxsZiPN7Jdm9gnwGnAssAV4J5UDluylGbMiIiLSlZjZCcBiYAZwLXApMBnoE9P0Arzr2jVm1tPPMUoaxAazNRuhsS4zYxERSUJ5eXnz68rKSqqqqjRzVnJCMBikqqqKysqW8kNlZWUZGUt+Kk/mnDvSzL4JXAeMASaFHlvN7D/AfOA9YA2wMfQoAXbAu2DdBRgLHAAMC53WgHrgfuAa55zuDcoRlVWxNWa1+JeIiIhkJzO7EPgT3rUrwDqgH+DiNL8f73q5N3Aq8LAPQ5R0KR3Qel/1Gug91P+xiIgkoWfPnpSUlFBTU0NTUxNffvklZpaxW7q7isbGRgDWrl2b4ZFIZzU1NTXPlAVvtmzPnpn5W3lKg1kA59zfzewfwOnAj4FxQCkwHjgswdOEL2g3AQ8AtzvnvkjtSCWb1dQ3sWlbQ9Q+zZgVERGRbGRmOwN3hTZnAT9wzn1qZnGnHTnn6s3sKeBC4BgUzHZtJX0grxCa6lv2KZgVkS7AzBg2bBgrVqygpsYrJeicaw4epTXnXPP3qqSkBDPr4AjJdiUlJQwbNixjn2XKg1kA58XOTwBPmNmuwJnAEcCBeDNk2/MZXumC54B/Oed0H1AOip0tCwpmRUREJGv9GCgAPgKOd87Vt98c8K53LwT2Sd+wxBdmXjmDzRHzSKor224vIpJFAoEAw4cPZ+vWrWzZsqV59qzEFwwGm4PZ0tJSAoFUVwgVP+Tl5VFSUkJZWRk9e/bMaMCelmA2knNuIfBr4Ndmlg/sCwzBq0W7A1ALrA09PnTOrUr3mCT7rYpZ+KusOJ/SorT/uIqIiIh0xkS8kgW3JRjKAiwNPQ9rt5V0DaUDYoJZLQAmIl2HmVFaWkppacrWcO+2ampq+PTTTwHYb7/9MrZglHQfviZdzrlGvDqz8/3sV7qeytiFv8o1W1ZERESyVvie9feTOGZr6LlHaociGVFaEb1drWUxREREpGOacy1ZaVVsMKsyBiIiIpK9wqtHJHMfXP/Qc1WKxyKZELsA2BaVMhAREZGOKZiVrBQ7Y3aQglkRERHJXl+FnndJ4pjDQ8/LUjsUyYjSgdHbmjErIiIiCVAwK1mp9YxZ1W0RERGRrDUHb7bs2Yk0NrN+wEV4M21npXFc4pey2GBWNWZFRESkYwpmJSutrtKMWREREeky7g09H29m57fX0MyGAM8D/YCmiGOlK2s1Y1bBrIiIiHRMwaxkJdWYFRERka7COTcfuAdv1ux9ZvaEmZ0Z0WRvM5tkZvcDC4H98GbL3uKcW+L/iCXl4gWzzsVvKyIiIhKSn+kBiMSqbwyyrrouap9mzIqIiEiW+yHQEzgX+GboEU7mHoloF14gbDpwlV+DkzSLDWab6qF2E5T0ychwREREpGvQjFnJOrFlDAAGlavGrIiIiGQv51yTc+47wBnAe3gBbLzHx8DZzrnvOqcpld1G6YDW+7aonIGIiIi0TzNmJetUxgSzJQV5lJfoR1VERESyn3PuKeApM9sR2B8YAOQB64H3nHNLMzk+SZP8Iiju7c2SDateDQPGZGpEIiIi0gUo7ZKsE1tfdlCvYsysjdYiIiIi2cc59xXwz0yPQ3xUVhETzK7J2FBERESka1ApA8k6lZtrora18JeIiIiIZL3YcgbVlZkZh4iIiHQZvsyYNbODnHNv+tGXdH2xM2YVzIqIiEg2M7MyYEpo817nXLuJnJkNAr4X2vydc66mvfbSRcQuAFatGrMiIiLSPr9mzL5hZgvM7KdmFqcyvkiLyjilDERERESy2CnAVODbHYWyIZXAt4GrgZPSNyzxVatgVqUMREREpH1+ljIYA/wW+MLM/m5mJ5mZSilIK61nzJZkaCQiIiIiCfkm4IDHE2nsnHPA3wADzkjjuMRPscHsFpUyEBERkfb5FYxeBryPd/FZAJwMPA2sNLMbzGwXn8YhXUCrGbPlmjErIiIiWW1M6PmNJI6ZF3rePcVjkUzRjFkRERFJki/BrHPuTufcfsA+wJ3AeryQtgK4HPjEzOaa2flm1tOPMUl2amwKsmaLasyKiIhIlzIk9LwqiWPC0ykHp3gskillqjErIiIiyfG1lIBz7gPn3GV4F6CnA88BQbyQdhxwH7DKzO4zs0P8HJtkh7XVdQRd9D7VmBUREZEsFww990jimHBbXxbjFR/Ezpit2QCN9ZkZi4iIiHQJGanx6pxrcM793Tl3EjAU+DmwEC+gLQXOB+aY2Sdm9n9mNrCd00k3EltftjAvwA49CzM0GhEREZGEhGfK7p/EMeG2KkTaXcQGswBbVc5ARERE2pbxxbecc5XOuZucc7sDh+DNmq3GC2l3BW7EWzDsaTM7LoNDFR/E1pet6FWMmWVoNCIiIiIJeQ3v2vVSMyvoqHGozaV4C4bNTfPYxC8lfSAQ8/GrnIGIiIi0I+PBbIxCoAjIw7tQBe8iNx84CXjOzN4zs4MyND5Js9gZs6ovKyIiIl3Ag6Hn0cCjZtZmSYPQe38FwovfPthWW+lizFrPmt2iYFZERETalvGaVmY2DPgOMBkYEd4NNAH/Bv4C7BVqMxT4GjDbzA53zr3l93glvSo310Rtq76siIiIZDvn3Btm9jfgLOCbwIFmNg2Yg1fmwAE7AuOBC/EWC3PAk865VzMzakmL0gFQtbJlWzNmRUREpB0ZCWbNrBjvovV84Ai8IDZ8v/pnwAPAg865cL2uJ8xsKt7F7m1AP+Ba4Fj/Ri1+0IxZERER6aK+i3eNehTeQrdT22gXvuadgTfxQLqTsoro7WrVmBUREZG2+RrMmtmBeGHsJKA8vBuoA54G7nPOzYx3rHMuiHdrWAB4CNgv7QMW38XWmB1UrmBWREREsp9zrtbMjgV+BPwML5yN5wvgd8BdzjnXRhvpqkoHRG9Xa203ERERaZsvwayZ/R9eILtreFfoeQHeYl9/cc5tSPB080PPfVI3QskWrWfMlmRoJCIiIiLJCQWtt5vZHcA+wL54s2gB1gH/Af6rQLYbi60xqxmzIiIi0g6/ZszehFdHy4CtwGN4s2Pf7MS5GlM5MMkewaBjdVXMjFmVMhAREZEuJhS8vhd6SC5pFcyqxqyIiIi0zc9SBu/gzY79q3OuurMncc4tBQIpG5VkjXVb62gMRk8gUTArIiIiIl1GbDC7RcGsiIiItM2vYPZrzrkPfepLuqjY+rL5AaNvaVGGRiMiIiIikqR4M2adA7P47UVERCSn+RLMKpSVRMTWlx1YXkxeQBexIiIi0rWYWRmwE1AG5HXU3jk3J+2DEn+UxQSzTXVQuxlKemdkOCIiIpLd/CxlINKu2BmzFSpjICIiIl2ImX0PuBTYO4nDHGm8JjezAcABocfY0KNv6O0/O+cmp6HPs/AW/t0bb8HeSuA14K5OrjHRdfQc0Hpf9WoFsyIiIhKXL8GsmY3vxGEOqAU2A8ucc/WpHZVkm9gZswpmRUREpCswszzgKeCk8K4MDieWb0VOzawYeAI4Meat4aHH2WY21Tn3a7/G5LuCYiju5c2SDateDf13zdyYREREJGv5NWN2Nl7Q2lmNZvY+MB24zznXkIIxSZap3FwTtT2oXMGsiIiIdAkXA98IvV4NPAi8C2wAgpkaVBxfAJ8Ax6Tp/PfTEsq+AtwOfAXsBVwFjAKuNbNVzrn70jSGzCutiAlm12RuLCIiIpLV/CxlsD0zBwrwbrvaH7jEzE50zq1IzbAkW2jGrIiIiHRR54WePwYOc85tzORgYlwLzAfmO+dWm9kI4PNUd2JmhwNnhzb/BZzqnGsKbc83s3/ihdXDgN+a2ZPOuU2pHkdWKB0A6xa2bG+pzNxYREREJKv5FcwegReu/ho4EO8v508A7wBrQ2364wWvZwA7Am8BVwMlwJ7ApNDznsDzZraPc67Rp/GLDyqrooPZQb1KMjQSERERkaTshnd32K+zLJTFOXe1T11dHnpuAi6NCGXD41hnZlcAf8WrO3sBcItPY/NXacwCYNW+VZMQERGRLibgRyfOuVeBH+EtOnAnMMo5N8U594hz7qXQ4xHn3BS8W5zuwgtwf+yce8Y5d71zbm/g+tApd8NbUEC6CeecZsyKiIhIV7ew4ybdj5mVAhNDmzOccyvbaPp3oCr0+ptpH1imtApmVcpARERE4vMlmDWz8/HqTT3vnLvMOVfXVlvnXJ1z7ofA88CxZvb9iPd+BbyKVxah+17M5aCN2xqob4wuwTZIwayIiIh0DYtDzztkdBSZcwBQFHr9aluNQov5vhk+xswK0j2wjCiLDWZVykBERETi8yWYBb6Ld3vXvUkc8ye8APY7Mfunh56/tv3DkmyxKmbhr4BB/7KiNlqLiIiIZJW/4V23nthRw25qt4jXn3bQNvx+PjA6PcPJMM2YFRERkQT5VWM2fLHW1m1N8YTbjonZ/0noOVdnJHRLlTFlDPqXFVGQ59ffDURERES2yx3At/EWqf2Hc+61TA/IZ0MjXnd0vf9FzHEfJ9qJmQ3poElF+EVNTQ01NTXttU1abW1t3NexAgW9iZxe4LZUUpvisUhmJPozIN2XfgZEPwO5LdXXFuBfMBu+J30o8F6Cx4QvvGKnTTaEnnV10420qi9brjIGIiIi0jU45+rM7Bi8GqozzOwO4FHgU+dcLvzWVhbxurqDtlsjXpcm2c8XHTfxzJkzh379+iV5+sTNmTOnzffKalZyZMS21WxgxgvP4wJ+/eolfmjvZ0Byg34GRD8DuWfdunUpP6dfUxI/Cz1/L4ljLgo9L43Zv2Poee12jUiyyuoqLfwlIiIiXZOZNQGrgHFAIfBT4F1gq5k1dfBozOTYUyTywq2+g7aRa02UpGEsGVdX0KvVvqLGqjgtRUREJNf59WfbJ4E9gePN7Dbg8lDx/1bMrBD4HXA8Xl3aJ2KaHBJ6XpKeoUomxM6YHdSrW16ni4iISPdkHWx3d5EXcoUdtI28Gy7ZO+CGdvB+BTAfYPz48QwZ0lHlg+TU1tY2z44aP348xcVtTCRwQdyCy7BgS+Z++H5jcIP2Sel4xH8J/wxIt6WfAdHPQG5buTKZCq2J8SuYvRk4FxgF/BA4zcwex5tJEK6GPwDYHziDllmxS4FbwicxszzgbLzA9kVfRi6+iK0xqxmzIiIi0oVck+kBZNiWiNcdlSfoGfG6o7IHUZxz7f42ZNaSh5eUlFBSkr4/9BcXF7d//tKBUPVlS/uGTZDG8Yj/OvwZkG5PPwOin4Hck47P25dg1jm3zcyOBJ4H9gAGAz9uo3n4iuoj4ATnXORf0ocAD4ZeP5mGoUqGrNocPWFikIJZERER6SKcc7kezEYGpkOAd9ppGznrNeGasV1O6YCoYJbq1Zkbi4iIiGQt35a9d859AXwdr+bWQrwANt5jUajNfqFjIs+x3Dl3TejxJSliZsPM7GYz+8TMtprZBjN728x+ZmY9UtVPTJ+DzGyTmbnQY3Y6+ukKnHNa/EtERESk6/o44vWYDtqG32+kO5cmKx0YvV29Jn47ERERyWm+Lg3qnGsAbgVuNbMd8erO9gm9vRFYkMrANRFmdgLwCBBZpb8HMDb0uNDMjnfOfRbv+O1wZ0yfOWtLXSPb6pui9qnGrIiIiEiXMR9v0a9C4HDgxniNQmtJHBQ+pq01J7qF2GB2S2VmxiEiIiJZzZdg1sz+X+jlW865FwGcc18BX/nRf1vM7GvA43hBbDVwA/AK3gqxZwHfA3YFnjOzsc65pOpgtdPvScBpePV1B6TinF1ZbH1ZgAHlRXFaioiIiGQ3MwsAE4BxeItR9QB+6ZxbFdGmEO86vMk5V5eJcaaSc26Lmc0E/gc4ysyGtFEP9ptAeej1P3wbYCa0mjGrUgYiIiLSml+lDKYCVxO9Cms2uA3vYrkROMY59xvn3Dzn3Czn3PeBy0PtxgA/SUWHZlYK3BXa/FkqztnVxZYx6NuzkOKCvAyNRkRERKRzQndiLQZmANcClwKTablDLOwCvAWz1phZT7KcmU2OKL81tY1mN4ee84G7Qov2Rp6jH3BTaHMTcF86xpo1SmPmXqiUgYiIiMThVzC7PvS8wqf+OmRmY/FmMwDc75ybF6fZLcAnodc/NrOCFHT9G7xFD15xzv0lBefr8ipjFv6q0MJfIiIi0sWY2YXAP4Gd8NZNWE/Lorax7scLJ0uBU9M8rkNDwepkM5sMnB7x9s6R74Xe7xTn3Czgb6HNbwAzzOwbZra/mZ0PvAkMC71/pXNuY2f76hLKKqK3q1XKQERERFrzq8bsEuAAvNu5ssUpEa8fjNfAORc0s4fwShz0wQtyZ3S2QzM7APhfvBpcl3T2PN1N7IzZQQpmRUREpAsxs51puSNqFvAD59ynZhaM1945V29mTwEXAscAD6dxeBcC32njvUNCj0jTt6Ov7+KVKjgeOCL0iBQEfu2c+9N29NE1xFv8yzmwtrJ6ERERyUV+zZh9DG/GwJk+9ZeIw0LPW4F322n3asTrQzvbmZnlA/fifc9vcs4t7Oy5upvYGrOaMSsiIiJdzI+BAmABcLxz7tMEjnkt9LxPmsbkO+dcjXPuBODbeJMZ1uBNSPgCeBQ41Dk3NXMj9FFsKYPGWqirysxYREREJGv5NWP2j3h/qT/PzF51zv3Zp37bs1voeYlzrrGddpEX1ru12apjPwO+BizFK2eQMmY2pIMmzTOVa2pqqKmpaa9t0mpra+O+TtSXG7dGbffrkZ/yMUpqbO9nLV2DPufcoc86N/jxOevfbSYCDrjNOVef4DFLQ8/D2m21nZxzk/Hq3G7POaaTxExa59yjeEFs7oqdMQuwZTUU9/J/LCIiIpK1/ApmK/Buo7ofeMDMvo13sfYBsBFoau9g51xKa9OaWTHQL7QZb8XYyL43mtlWoCdebdjO9DcS+H+hzUudc6n+reiLRBvOmTOHfv36ddywk+bMmZP0MUu+zCOyBNvaFYt56aVFKRyVpENnPmvpevQ55w591rkhXZ/zunXr0nLeLiR8jfh+EseE/zLdI7VDkaxQUAJFvaBuc8u+6tXQf5fMjUlERESyjl/B7DK8WQTgJXATQ49EOFI/zrKI19UJtA8Hs6Wd7O9PQAnwmHPupU6eo9vaFDOvpHdhZsYhIiIi0kmR17mJ6h961v3t3VXpgNbBrIiIiEgEv4JZiL5QzXTV+8giponcblYXei5JtiMzOw84Cu+ie0qyxyeoo5m8FcB8gPHjxzNkSEeVD5JTW1vbPANn/PjxFBcnXiN2a30jNfOiZ++ccOQh7NRXk0ey0fZ81tJ16HPOHfqsc4Mfn/PKle3egJQLvgJ2Bnah/bULIh0eel6WjgFJFiirgPWLW7YVzIqIiEgMv4LZ833qJ1GRpQQSmZ9ZFHpOqoCamfUDbglt/sI5tyqZ4xPlnGv3tyGLWP21pKSEkpKk8+WEFRcXJ3X+r6pbT1geMaAXJYV+/s1AOiPZz1q6Jn3OuUOfdW5I1+esnx3mAKOBs4G/dtQ4dI14Ed5M21npHZpkTOwCYApmRUREJIYv6VeWLPYVaUvE60TKE/QMPSdS9iDS7/Fq2b6DtwCaxKjcHF1ut1dJAT0UyoqIiEjXci9wAXC8mZ3vnHuwrYahRVv/jneN2Bg6Vrqj2AXAqtdkZhwiIiKStXIyAXPO1ZrZOrwL4nbv6zezPrQEswkvsmVmOwLnhjZnAWdGzlyNY4CZnRV6/blz7q1E++rKVsUEs4N66TbarLF8Hgwf599xIiIiXZRzbr6Z3QNcDNxnZscDT0Q02dvM9gKOAc7CK6vlgFucc0t8H7D4IzaY3VKZmXGIiIhI1srJYDbkE+AwYGczy3fONbbRbkzMMYmKLJFweQLtd6Pl1rc/AzkRzFZujq4OUaFgNjHpDk1fuQFevRGOmgqHJlEaee6t8PJUOPxKOOLnyY9PRESk6/oh3h/zzwW+GXqEFwV7JKJd+C/104Gr/BqcZIBmzIqIiEgHAn53aGYBMzvSzH5hZnea2f1mNiimTaGZ9TCzorbOkwJzQ889gf3aaXd4xOvX0zec3KQZs53wyg3w4HFeCJqMubd6x71yQ/vtls/zQlnwQtZE+wmHsuAdv3xecuMTERHpwpxzTc657wBnAO/hBbDxHh8DZzvnvuucc22dT7oB1ZgVERGRDvgazJrZCcBiYAZwLXApMBnoE9P0Arw6sGvMrCfp8XTE67iLk5lZADgvtLkJeCXRkzvnljnnrKNHxCGvRuyfnNyX0nXF1pitKO8mi4d0NpTs6Dg/QtPh47yZsmGJ9BN5fvCOVzkDERHJQc65p5xz++OVyzoF+D5wCXAmMNo5t6dz7m8ZHKL4pawienvbOmhqyMxYREREJCv5Fsya2YXAP4Gd8GYLrKflVq5Y9+MFoaXAqekYj3PubeC10OYFZhYvRfopXokBgNudc1FXUmY22cxc6DE1HePs7rrljNl0zmj1KzQ9dEri/cQ7fzLlD0RERLoh59xXzrl/Oufuc879yTn3pHNuaabHJT6KLWUAsHWt/+MQERGRrOVLMGtmOwN3hTZnAbs75wa01d45Vw88hRfcHpPGoV0G1ODV2n3JzH5uZgeZ2RFm9ifgt6F2i4Bb0jiOnFVZFTNjtqsHs37MaPUrNI3TT/6bd6bu/CIiIiLdWckOEIhZ0kPlDERERCSCX4t//RgoAD4Cjg8Frx15DbgQ2Cddg3LOvWdmk4CHgXLgN3GaLQJOcM5tSdc4clVtQxMbtkb/KHT5GbPhGa3hsDL83F5Y2dkZrZHnj9fP9oamwSCMvRBqt8Bc7+8SBa9ez759DmFt+Z4UPP88fBhxJ6ZCWREREZEWgQD0HABbvmrZt0XBrIiIiLTwK5idiLcq7W0JhrIA4Vu9hqVnSB7n3L/MbG+82bMn4NUDqweWAE8Af3DObUvnGHLV6pjZsuDTjNnl8zpX/zTR4xIJTcO2d0ZrbD/OwX6T4fXb4fXbWtrudQb06Adv3g111VC/Beq2hF5Xe6/rq73t8Ov66rjdDtv4OsM2xqyDp1BWRERymJl15nrVAbXA5iSuj6WrKY0JZjVjVkRERCL4FcwODT2/n8QxW0PPPVI7lNacc8uBn4QeyRw3HZi+nX23VWe324utL1talE9ZcUF6g9NXbvBKBSQbJIYD1MOvhCN+3nH7VM9ord8KWyqheo13QR9+bFkNfXeG9Uu8djOv8R6xPnzCe6SDQlkREZHPt+dgM1sJvAlMd879OzVDkqwQW2e2ek1mxiEiIiJZya9g1oWekwkh+4eeq1I8FskSlZvj1JdNZ3AaW/8VEusjtv7ryAnbP3M2NpTd5xzo2R9eu8W7YI8NYduYvZpxJX0UyoqIiCR3jRvPULy7tk43s5eBs5xzG7d/WJJxZbHBbGVmxiEiIiJZya9g9itgZ2AX4N0Ejzk89LwsHQOSzIudMXt48ZL0Bqd+1X8Na2qA3b4B6xbD+4+09Dnz1+Caotu+/7D3yGaW13rcNRu975HCWRERyW3nh54vBg7EK1HwIvAOsDb0Xn9gf+BYoAh4G7gXb52DPYGTgX7AUcDTtFwLS1fWasasShmIiIhIC7+C2TnAaOBs4K8dNTazfsBFeDNtZ6V3aJIplZtrorar+u8Pe09Nb3Ca6vqvjfWwaQVsWAobPvMe60OvN61oHWRC/H3pklcIPfpCYSkUlYaey7xH874y77m9fe88CLOubT5tfV5PCptC1UaSCdFFRES6Iefcn83sHuAA4BngIudc3HvWzWwAXiB7ErDAOXdhaP8PgXuA84BDzWySc+4xX74ASR+VMhAREZF2+BXM3gtcABxvZuc75x5sq6GZDQH+jjdjoDF0rHRDsTNmB/Uq9mfhrM7Ufx33A+i/G8z7Y3QIu2kFuGDHfaZKQQ/vAr+swltMorQC1i+GpRF/vyjuBbWbvddN9XDgRdsXms69NSqUXbDjmSwZeCLHly+k4NXrvZ0KZ0VEJIeZ2SnA94E3gG8651xbbZ1za8zsVGAucL6ZveSce9w5V2tm38WbPbsvcBagYLariw1mt6iUgYiIiLTwJZh1zs0PzSK4GLjPzI4HIlci2tvM9gKOwbsILcabLXuLc26JH2MU/1VWxdaYLfFepHrhrFjOwYEXQ0MNvHpTSx+bV8LOR3mzQxe/GHGAwbw/eI+0MK++bOlArw5Z6cCW0LV0QCiEDe0vKo0+dO6t8PafWrbD34fI78/2hKYx3+eGw3/BkqpdAWg86IcUFBSkph8REZGu7VK8a9fb2wtlw5xzzsxuwwtevw88HtofNLNpwN14ZQ+kq4s3Y9Y5sJxd/1dEREQi+DVjFuCHQE/gXOCboUf4wvWRiHbhq5TpwFV+DU78F3fGbFi8cHbdEhh2IHz6b1j0fEvboQfChs/hqe9BYw001EJjrRe8NtRE7AtvR/fbbP593qOVDn+/al9+idd3WEEPaNjWsn3kr2D8T5M/b3vhdDIzj5M4f+N+F8NLL7XsS0U/IiIiXd/eoedkJhSE2+4Vs/+D0HPf7RqRZIfSAdHbjTVQtwWKyzMzHhEREckqvgWzzrkm4Dtm9k/g58DX22j6MXCdc+5vfo1N/FffGGRddV3UvorIYBZah35tLZD1xVveI5N69IUdRoYeo1peL36xZVYuxJ/ROutaCAS2OzRtdfz2hKZtnb+mpnVbhbMiIiLhlK1/EseE25bF7A//Y9uwXSOS7BA7Yxa8BcAUzIqIiAj+zpgFwDn3FPCUme2Id4vWACAPWA+855xb6veYxH9rttQSe6PfoNhgFrxw76v/wsf/8Gdg7enRD/pGhK7Nj52gpE/r9nNvjR/KQnpC03g608/yecmXiYjXz9CD2l+ITUREpPv4AtgZ+DbwUgdtw84NPa+I2R+eYrk2BeOSTCvsAUXlUFfVsq96NfQbnbkxiYiISNbwPZgNc859BfwzU/1LZq2OqS9bXBCgV0lB/MY9M3Qn36gjYd9zWgLY4l6JH5uuGa1+hKbDx8HhV8KrNyZXuzeyn8OvVCgrIiK55J/AT4FzzOw959xt7TU2syl4Ia6j9fXwgaHn5akepGRI6YDWwayIiIgIGQxmJbe1ri9bgrW1CMLCF+Lv7z8GKvaGgmKvjmvzc+iRXxzxOvb90Ot3H4ye1VrSB2o2eq+XzoKdxsOepyX3xaVzRqtfoekRP4eRE5IPVw+dopmyIiKSi24EvoNXF/YWM/s28BDwLrAm1GYA3t1i59JS0mtt6NhIZ+EFtjPSPGbxS2kFrI8oP1y9pu22IiIiklMUzEpGVMYEswPLi+I3fO33ULUy/ntrP4WvndX5WqZtlRqIDFaTrZfqx4xWv0LTzoarCmVFRCTHOOfWm9nRwAvAQLzgta31FMBb7LYSOM45t6F5p9lI4O3Q46n0jVh8FbsA2JbKzIxDREREso7vwayZfQ04DBiJt9hBXgeHOOfcBWkfmPgq3ozZVubeCjOvab1//OUw57fe684uNNXerNbtqf/q14xWhaYiIiJZxTn3XzPbDbgGOA9oqwbSZrzZtFOdcxtjzvEZcH5aByr+i10ATDNmRUREJMS3YNbMdgUeAA5K5jC8W7kUzHYzsTNmK2IX/ooNTsPKB8ORv/AWUujsrNZ01X8NUxkAERGRnOSc2wRcZmaXA/sBewLhFUI3AguAd5xzdZkZoWREWWwwqxqzIiIi4vElmDWzwcAcoB9e2ApQjXeBGvRjDJJdVm2uidoeFBnMthXKAgz6mvfc2eA0nfVfI2lGq4iISM4ws/NCLxc6594KBa9vhB6S61rNmFUwKyIiIh6/Zsz+AuiPN/v1PuBm59win/qWLNRqxmx5KJiNDU57j4BNy1q2w8EsJB+c+lH/VURERHLRdLzr3G8Bb2V2KJJ1YmvMKpgVERGRkIBP/RyHd7H6kHPu+wplc1tT0LF6S/QdfIN6lbQOTideDTUbog+ODGbBC06Pijjm5aneeeIJ13+F5Ou/hvtIpP6riIiI5JrNoefFGR2FZKfSiujtreugqTEzYxEREZGs4lcwu2Po+SGf+pMstq66jqagi9pX0au4dXC6xylQVxV9cMXerU+YTHB6xM/h/BeSXyzs0CnecUf8PLnjREREJBd8Hnru024ryU2xpQxwsHVtRoYiIiIi2cWvUgYbgQHAJp/6kyy2KqaMQUGe0bdnobcRuXDWgn9EH9ijH5TvSFzJLJyl+q8iIiKSWv8A9gFOAmZldiiSdXr0BcsD19Syr3o1lA/K3JhEREQkK/g1Y/ad0PMuPvUnWawyZuGvgeXFBALWsiMcgK76b/SBg74GZrRJwamIiIhkxu3AcuASMzsy04ORLBMIxKkzuyYzYxEREZGs4lcwewdgwPd96k+yWOyM2UG9ittoGCeYFREREckyzrkq4GjgU+BFM7vXzCaY2Q5m7f1VWXJGq2C2MjPjEBERkaziSzDrnJsB/BY4wszuNrMCP/qV7FQZE8xW9Cpp3cg5WPVB9D4FsyIiIpKFzKwJWAjsBeQBFwAzgbVAo5k1tfPQKlC5ILbObPXqzIxDREREsoovNWbN7DzgY+ANvFmzJ5nZk3izCrZ1dLxzTouGdSMJzZit+gq2rYveNyjOwl8iIiIimRc7K1azZCVaq2BWpQxERETEv8W/pgMuYnsQ8MMEj3WAgtlupNWM2fI4wWxsGYOiXtBnpzSOSkRERKTTrsn0ACTLxQazW1TKQERERPwLZkEzByRkVVX04l9xZ8y2qi+7d/sLf4mIiIhkiHNOway0TzNmRUREJA6/gllNdRQAgkHH6s11UfsqEgpmVV9WRERERLqoMtWYFRERkdZ8CWadc8v96Eey34Zt9dQ3BaP2DYq3+FelFv4SERERkW4i3uJfzumOMBERkRznZykDkVb1ZfMCRv+youhG1Wuh6svofRVa+EtERESyn5kFgAnAOKAC6AH80jm3KqJNId51eJNzri7eeaSbKR0Qvd2wDeqroagsM+MRERGRrKBgVny1KiaYHVBWRF4gZqZAZUwZg/wS6Dc6zSMTERER2T5mdgJwBzAi5q1bgFUR2xcAfwCqzWxH59xWf0YoGRM7Yxa8OrMKZkVERHJawO8OzWxnM7vWzGaY2YdmtsTMdo5ps6eZHW9mh/s9Pkmvys3RC38lVF+2Yi8I5KVxVCIiIiLbx8wuBP6Jt7aCAetpe/Hb+4FNQClwqh/jkwwr7AmFMSHslsrMjEVERESyhm/BrJkFzOx3wCfAL4CJwB54F6+FMc2HAs8CM8xssF9jlPSLnTE7SAt/iYiISBcXmmRwV2hzFrC7c25AW+2dc/XAU3jB7THpH6FkhdhyBloATEREJOf5OWP2T8BPgDzgK+DJtho65/4NfBZqe7ovoxNfxNaYrSiPs/DXKi38JSIiIl3Kj4ECYAFwvHPu0wSOeS30vE+axiTZpqwiert6TWbGISIiIlnDl2DWzCbg1dIC+A0wwjl3ZgeHPYE3i+CI9I1M/NbhjNmaTbDx8+h9g7Twl4iIiGS1iYADbgvNhk3E0tDzsPQMSbJOqxmzKmUgIiKS6/xa/Ovi0PPzzrlfJnjM26HnPdIwHsmQyqqYGbOxwWzlh9HbgQLov1uaRyUiIiKyXYaGnt9P4pjwgl89UjsUyVqxC4BpxqyIiEjO86uUwTi8WQT3J3HMytBzRbutpMtwzrEqZvGvVjNmY+vLDtwd8mNLEIuIiIhkFRd6bmuxr3j6h56rUjwWyVatglnVmBUREcl1fgWz4ft2Pm+3VbTG0HNBisciGbK5poHahmDUvlYzZrXwl4iIiHQ9X4Wed0nimMNDz8tSOxTJWrHB7BYFsyIiIrnOr2A2PE0ymVu1wvW2NqZ4LJIhsfVlzWBAWWwpAy38JSIiIl3OHLzZsmcn0tjM+gEX4c20nZXGcUk20YxZERERieFXMBueKbtvEsecGHr+OMVjkQypjAlm+5UWUZgf8SNYvxXWLYo+qELBrIiIiGS9e0PPx5vZ+e01NLMhwPNAP6Ap4ljp7spigtlt6yDYlJmxiIiISFbwK5h9CW8WwffNrMM+zWw/4Fy8WQQvpHls4pPYGbOt6suuXgAuotSBBWCg1n4TERGR7Oacmw/cg3e9e5+ZPWFmZ0Y02dvMJpnZ/cBCYD+869xbnHNL/B+xZETsjFkXhK1rMzMWERERyQp+BbN/wCtnsBcwzczarBtrZqfhhbGFeIshaBZBN1EZs/BXRXkH9WX77QqFWqhYREREuoQfAn/BC2e/CfyVlkXBHgEeBSYDJaE2fwau8n2Ukjk9+noTDyKpnIGIiEhO8yWYdc59CfwI7yJ0MvCZmf0xoskFZna3mS0GHgf64l3Ift85t9mPMUr6dThjdtX70duqLysiIiJdhHOuyTn3HeAM4D286954j4+Bs51z33XOubbOJ91QIA96DojeV70mM2MRERGRrJDvV0fOufvNzAF3AINpWfAA4MehZws91wEXO+ee8Gt8kn6VVdHBbEWvkugGq7Twl4iIiHRtzrmngKfMbEdgf2AAkAesB95zzi3N5Pgkw0oHQHVly/aWyrbbioiISLfnWzAL4Jx7wMxewgtivwHsHNPkS+CfwO+cc8v8HJukX7szZhvrYM0n0QcM2tuHUYmIiIiknnPuK7zrWpEWsXVmVcpAREQkp/kazAI451YCPwN+ZmblRMwicM6t83s84p/Vm2NnzEYEs2s+gWBD9AEVe/kwKhERERERn5TFBrMqZSAiIpLLfA9mIznnqvAW+JJubkttA1vqGqP2Rc2YjV34a4eRUNzLh5GJiIiIbB8z+1/gMU0ykA61mjGrUgYiIiK5zJfFv0RWx9SXBRhY3k4wq/qyIiIi0nXcCXxlZs+Z2dlm1iPTA4rHzIaZ2c1m9omZbTWzDWb2tpn9bHvHbGZTzcwl+JiQmq+oC2oVzGrGrIiISC7L6IxZyR2x9WV36FlIcUFey45KLfwlIiIiXVo+cFzosc3MngEeAV5yzjVldGSAmZ0QGk/kLUk9gLGhx4Vmdrxz7rNMjC9nqMasiIiIRFAwK76IDWajZss2NULlR9EHVGjhLxEREekyDgTOBiYBFUBP4Fuhxzozewx41Dn3ZiYGZ2ZfAx7HC2KrgRuAV4AS4Czge8CuwHNmNtY5V72dXXa0UMDn23n+ris2mN2iYFZERCSXKZgVX1TGBLNR9WXXL4bGmugDNGNWREREugjn3Hxgvpn9FDgS+DZwKlAO9Af+F/hfM1sGPAz81Tn3qY9DvA0vlG0EjnHOzYt4b5aZLQZ+C4wBfgJcuz2dOec+6rhVjiodEL3dsBXqqqGoNDPjERERkYxSjVnxReyM2Yr2Fv4qHwI9+/kwKhEREZHUcc4FnXMvO+fOBwYCZwLPAA2AATsBvwQWmNk7ZvZjMxuUzjGZ2VhgQmjz/phQNuwW4JPQ6x+bWUE6x5TTYmfMgsoZiIiI5DAFs+KLys3RM2IHaeEvERER6cacc3XOuSedc6filTf4PjAbcHgh7dfxAtHlaR7KKRGvH4zXwDkXBB4KbfahJciVVCsqhcKY2bEKZkVERHKWglnxRfszZrXwl4iIiHRfzrlNzrn7nHNHAsOBK4BNeAFtXnvHpsBhoeetwLvttHs14vWh6RuOtCpnoGBWREQkZymYBcxsmJndbGafmNlWM9tgZm+b2c/MrMd2nrvczM4ys2lm9h8z22Rm9Wa21sxmh/ronaIvJWtVVsXWmC3xXgSDUBkbzGrhLxEREel+zGxP4Ad4NWd7+dTtbqHnJc65xnbaRda83a3NVgkwsxlmtj50zbsmdM17pZn12Z7zdhulFdHb1WsyMw4RERHJuJxf/MvMTgAeIfriuAcwNvS40MyOd8591olz/w/wD6Aoztv9gMNDj5+Z2becc68k20dXUFPfxKZtDVH7mmfMbvwc6qqiD9CMWREREekmzGwY8C28BcH2CO8OPW/Dq0Gbrr6L8a45AVa219Y5t9HMtgI9gaHb2fVREa/703LNe4WZTXbOdeprNrMhHTRpTjxramqoqalpr23Samtr475OVkFJ36hfwho2rqQxxWOV9EjVz4B0XfoZEP0M5LZUX1tAjgezZvY14HG8ILYauAF4BSgBzgK+B+wKPGdmY51z1Ul20RcvlA0CM4AXgP/i3bo2BO8CfRLe4hDPmtkhzrn3t++ryj6xs2UhIpiNrS/bsz+UpXUNDBEREZG0MrMdgDPwrvUOxgtiw2FsE/Ay8DDwtHNuaxqHUhbxOpHr2HAwW9pRwzZ8CDwNvA18BRTgXUt/GzgG6A08ZWYnOef+3Ynzf5Fowzlz5tCvX/oWk50zZ06nj91rQy0jI7a/WvQe79e9tP2DEl9tz8+AdA/6GRD9DOSedevWpfycOR3MArfhhbKNwDExq9TOMrPFwG+BMcBPgGuTPH8D8CfgN865FTHvvQf8y8xeB+4IjeMWYGKyX0S2WxWz8FdZcT6lRaEfvXgLf5khIiIi0pWYWQlwMnA2cCwt19nhC5u38e7S+ptzbq1Pw4oo6k99Au3rQs8lnejrNufc1Dj73wIeMrOLgHvwaureZ2Y7O+dycppobX7vqO3ixs2ZGYiIiIhkXEqDWTOblcrzhTjnXMrDSjMbS8uKs/fHhLJhtwDn49XZ+rGZ3eCca4jTLi7n3GPAYx20udPMzgP2ByaYWV/n3PpE++gKKjfH1peN+B2hVX1ZlTEQERGRrsXMHgJOwZttCi1h7GLgUeAR59ySDAwt8iKsMIH24fJbSQemzrlNHbz/JzPbH7gQ2BH4Jl5QnYyOSixUAPMBxo8fz5AhHVU+SE5tbW3z7Kjx48dTXFzcwRHx5X2wHlY90bzdvzjIMccck5IxSnql6mdAui79DIh+BnLbypXtVobqlFTPmJ0AOFouRrdH+DwuBeeK55SI1w/GHYBzwdCF9g1AH7yvb0YaxjIbL5gNADsB3SqYXRUTzFaEF/5yrvWM2Qot/CUiIiJdzjkRr9fg/WH+Yefc/AyNJ2xLxOtEyhOEg+Vky3cl6k94wSx4NWeTCmadc+3+NmQRd12VlJRQUtKZib+JKS4u7vz5d4jOlwPb1qZ1rJIe2/UzIN2CfgZEPwO5Jx2fd6qD2TmkL0hNtcNCz1uBd9tp92rE60NJTzAbuThYMA3nz6hWM2bLQ39RqvoStsVk0JoxKyIiIl3PVrwFXx8BZjjnsuJ6zjlXa2br8BYAa3f6qJn1oSWYTbiWa5I+jng9OE19ZL/SgdHbW9dCsAkCeZkZj4iIiGRMSoNZ59yEVJ4vzXYLPS9xzjW20+7TOMek2uGh50YgE7e5pVXrGbNtLPxV1Av6jPBnUCIiIiKpMyCL66V+gjchYWczy2/nundMzDHpoIUEoHUw64KwdR2UDYzfXkRERLqtnFz8y8yK8WYOALR7S5RzbqOZhVeo7aiuVWfGcgIQvn//RedcVSfO0VEBrYrwi5qaGmpqUvt7Q21tbdzXYV9t2ha13bdHHjU1NeSveIeCiP1NA/ekPs7xkj06+qyle9Dn3KKpqYmtW7dSU1NDfX09znWVm0IS09TURN++fQH4/PPPycvTbK3uKNnPORAIUFJSQmlpKUVFRe22DUv1tUVXk8WhLMBcvGC2J7Af3mJc8Rwe8fr1NI1l94jXX6Wpj+zXsx9YwAtkw6pXK5gVERHJQTkZzAJlEa8TqaEVDmYTqc2VMDPbAbgrtNkE/KqTp0r4drM5c+bQr1+/jht2UrgIdqQV6/KInCDx1eIFvLTuIw5Y+gqDItp9XlvOgpdeStvYJLXifdbS/eTy55yfn0+vXr3Iy8sjEAiQl5cXVb+wuwjXScr1YK27S+Zzds6xfv16nHNUVVUl9AeadevWbfcYuxMzK8NbN6AM6PAvHs65dP7P9mng56HX5xMnmDWzAHBeaHMT8EqaxnJRxOtX22zV3QXyoGd/L4wNq16TufGIiIhIxuRqMBu5bF59Au3rQs8pq/JrZnl4dciGh3Zd55x7L1XnzxaNQahuiA4yehV5M8561yyL2r+5ZDgiItkgEAjQp08f8vLyKCkpIRAINO/vjuGsSJhzjmAwiHOOuro6ysvLaWxspLGxvapPEmZm3wMupeVuqEQ40nhN7px728xew5s1e4GZ/dk5Ny+m2U9pKdl1u3OuIfJNM5tMy2K51zjnpsa8vxdQ45xrsySXmV0EXBDarMSryZu7SgfEBLOVmRuLiIiIZEzGgtlQMNkHL+xs97dc59yKFHcfOfWjMIH24fv4Ujmd6I/AcaHXzwG/3o5zdVRioQKYDzB+/HiGDOmo8kFyamtrm2fVjR8/nuLiltx75cYaeCv62v+bxx1BedMmSt7bGLV/j6POZvd+u6R0bJJa7X3W0n3oc4aNGzeyceNGzIySkhIGDBhAcXFxtwtlg8Eg1dXejSOlpaXNAbR0L8l+zk1NTaxevZqqqiqccwwdOrS5FEJbVq5stzJUtxe6rn0KOCm8K4PDiecyvPIEJcBLZvYbvFmxJcBZwPdD7RYBt3Ti/PsB95nZK8C/gQ+B9Xi/a4wBzgGODrVtAi5yzm3t3JfSTZQOxPs2hUSGtCIiIpIzfA1mzawf8EPgFLwaU4n8BpiOWQRbIl4nUp4gvEJtImUPOmRmN9ByATwXOMM519TZ8znn2v1tKDJIKCkpab6dMR2Ki4ujzr+xMjrL7lGYx4DeZdiSt6MPLOhB8eA9tRptFxL7WUv3lKufc2VlZXN4NWTIEAoKCjo4ousLBAIKZnNAIp9zIBBg0KBBbNmyBTOjvr6+w/8P5OL/J2JcDHwj9Ho13uzSd4ENQLCtg/zinHvPzCYBDwPlwG/iNFsEnOCc2xLnvUTkAUeFHm1ZD1zgnPtnJ/voPkorordVykBERCQn+RbMmtnBwN+B/mR4FoFzrtbM1uEtANbu9FEz60NLMJtwLdd2zncFcGVo8z/AiVm+YMR2WbU5+kur6BWacbbq/eiGFXsplBWRrBG+bTsvLy8nQlmRWHl5eeTn59PY2EhTU6f/dpxLwvVZPwYOc85tbK9xJjjn/mVme+PNnj0B7xq4HlgCPAH8wTm3rZ1TtOd5vDIF44B9gYFAX7xr/g3Af4EXgOmdWei2WyodEL29RaUMREREcpEvwayZ9QWewbtAqwbuw1tYYCrejNgL8coa7A+cjFcD9nXg/jQO6xO8Wls7m1m+c66t4mljYo7pNDO7FLgx4lzHOuc2b885s13l5ugFQwb1Ct0SXflBdMNBX/NpRCIiietupQtEJG12w7um/XU2hrJhzrnlwE9Cj2SOmw5Mb+f9NcADoYckonRg9LZmzIqIiOQkv2bM/gAvlK0DxjnnFpjZHnjBLM658GICmFkF8ChwODDPOXdFmsY0Fy+Y7YlXF6vVCrUhh0e8fr2znZnZucAfQpufAUc557r9EsarYoLZivLQrY6r/hvdsCKZNTJEREREstLCTA9Auoiy2GBWNWZFRERykV/F5P4HbxbBA865Be01dM5V4t1etRT4mZkdmaYxPR3x+vx4DcwsQMutaZvwFklImpl9E6/WmAErgYnOua86c66uJu6M2ZqNsHFZdEPNmBUREZGua3HoeYeMjkK6jlYzZhXMioiI5CK/gtmdQ88vR+xz4RehlWxb3vBqrt6KF2RenI4BOefeBl4LbV5gZuPiNPsp3q1pALc75xoi3zSzyWbmQo+p8foxs2OAv+ItiLAGb6bsshR8CV3CqqqYGbO9iqHyw+hGeYXQfwwiIiIiXdTf8K5bT8z0QKSLiA1m66uhLiXrDIuIiEgX4lcpg/LQ8/KIfZGJXRnejNRI74SeD0zTmMBb/OB1oAR4ycx+gzcrtgQ4C/h+qN0i4JZkT25mBwH/AAqBBmAKUGBme7Zz2Ern3KZk+8pWlTGLfw3qVdy6jMGA3SG/0MdRiYiIiKTUHcC3gUvM7B/Oudc6OkByXGwwC7B1DRSV+j8WERERyRi/ZsyG//wbGQRviHg9Is4xoVWiGBDnvZRwzr0HTAKqgFLgN8A8YBbRoewJzrktnejiOKBH6HUB8AjwYQePUzrRT1ZqaAqyZktd1L6KXsWwSgt/iYiEzV+2oeNGKTyuKwoGg/z+979njz32oLi4GDOjd+/emR6WSDPnXB1wDPAuMMPMfmtm+5hZcQeHSq4qKoWCntH7tqicgYiISK7xK5hdEnoeFt4RmhVaGdo8Is4xB4eet6ZvWOCc+xewN17phEXANrzZu+8AVwD7OueWtHkCadPaLXU4F71vUK+S1jNmB2nhLxHJTbfOWMQZ98zj7tlLkzru7tlLOeOeedw6Y1GaRpZdrr32Wn7605/y6aefMnr0aA455BDGjYtXgUgkM8ysCVgFjMO7U+qneCHtVjNr6uDRmMmxSwaVxsw/UZ1ZERGRnONXKYO3gP2AscCTEftfACYDl5vZc865RQBmdgBwOV4d2vnpHpxzbjnwk9AjmeOmA9PbeX8qMLXzI+vaVsUs/FWYH6BPfj2siwkSBu3j36BERLLE/GUbuH2mt17QTS98CsAlE0Z1eNzds5c2t7995mIOHd2PsSO673pDzjnuuusuAB5//HFOO+20DI9IJC7rYFuktbIK2Ph5y3b1msyNRURERDLCr2D2ReB/gW/izUIN+z1wDl65go/M7L94t/7vgrdYlgNu92mMkmKVMcHsoF7F2OoFRKz7BpYHA/fwd2AiIllg7IgduOK4Mc0hayLhbGQoC3DFcWO6dSgLsHbtWtatWwfA8ccfn+HRiLTpmkwPQLqgVjNmK+O3ExERkW7Lz2D2ISDPzHZyzn0O4Jz7yMwuAe4OjWW/mOOmOude8GmMkmKrYhb+qiiPs/BX/12hoMTHUYmIZI9wCJtIOBsvlE1khm1XV1PT8m9JSYn+vZDs5JxTMCvJi10ATKUMREREco4vNWadcw3OucnOuXPDoWzEe/cDewE3Ac/ilTe4EzjAOfdrP8Yn6RFvxiyVsfVltfCXiOS2SyaM4orjxjRv3/TCp61qznaFUHbEiBGYGbNnz+bDDz/krLPOYtCgQeTl5TF16tTmdi+++CKnnnoqgwYNorCwkP79+3PSSScxa9asqPMtW7YMM2PEiBHN+8ys+TF9+vSo9l988QVTpkxht912o2fPnpSWlrLffvtx8803U1sb/e9R5PnNvDvOn3nmGSZOnEjfvn2bv46whoYG7r33XiZMmEDfvn0pKipi+PDhXHDBBSxZEr8M/YQJE5rHuW7dOn7wgx8wbNgwioqKGDZsGJdddhmbNm1q8/vZ0NDAtGnTmDhxIv369aOoqIihQ4dyzDHHcM8991BXV9fqmLa+B7fcckvc74GIZFirYFalDERERHKNXzNm2+WcWwj8PNPjkNSqrIr+JbCiVwksjwlmK7Twl4h0LcGgY+O2+pSe88z9h7CtvpE7Z3kh300vfMq2+kYmHzyC6W8sa94P8MMjd+bM/Yewvrp1MJesYDBInnMELHXlMF977TV+85vfYGbsvvvu9O7dGzMjGAxy8cUXM23aNAD69u3LnnvuyYoVK3j22Wd59tlnueGGG7jyyisBKC4u5pBDDqGuro533nkHgEMOOaS5n4EDWwKNf//735x55plUV1dTXFzMyJEjqaur4/333+c///kPTz75JC+99BLl5eVxx/y73/2Oyy+/nH79+jFq1Kiombnr1q3jxBNP5K233sLMGDx4MMOGDWPx4sU88MADPPbYY82hbjwrV65k3333ZfXq1eyxxx4UFBTw+eefc8cdd/DGG2/wxhtvUFBQEHXM6tWrOfHEE5u/7sGDBzNy5EhWrVrFzJkzmTFjBscdd1xUaN3R9+Dxxx/nqaeeavN7ICIZEBvMblEpAxERkVyTFcGsdE+xM2YHlwVgzSfRjTRjVkS6mI3b6tnvupfT3s+ds5ZEBbId7e+sWT86gB16FHTcMEHXXHMN5513HrfffjtlZWWAV47g+uuvZ9q0aYwYMYJ7772Xo48+uvmYxx57jAsvvJCrrrqKAw88kCOOOIKKigrmzp3LsmXL2GmnnQCYO3duq/4WLlzIGWecwbZt27j22mv52c9+1hysLl26lHPOOYc333yTH/3oR61m2Yb98pe/5M477+TSSy8lEAjgnKO+3gvfzzrrLN566y2OOOII7r77bnbddVcA6uvrufbaa7n++uuZNGkSCxcupG/fvq3Ofe2113LsscfywAMP0L9/fwBeffVVTjjhBN555x0eeughLrjggub2zjlOP/103nnnHUaNGsVDDz3EwQcf3Pz+2rVrmT59Oj179kz6e3DllVfy8MMPd/AJSqqY2UBgTyBcCHoD8JFzTveri0czZkVERHKeL6UMzCxoZo1mtnsSx4wKH5fOsUn6rIoJZndmBQRjPs6KvXwckYiIpNsee+zBtGnTmkNZ8ILZG2+8kYKCAv7xj39EhbIAkyZN4te//jXOOW666aak+rv66qvZunUrP/vZz/jVr34VNdt11KhRPPHEE/Ts2ZOHH36YL7/8Mu45vve97/GDH/yAQMC7LDIzioqKeOGFF5g5cyYjR47kmWeeaQ5lAQoLC7nuuus4+eSTWb9+ffNM4Fh9+vThkUceaQ5lAQ4//PDmMPbZZ5+Nav/MM88wd+5cevTowYwZM6JCWYD+/fvzf//3f1Hn6+h78Nhjj9GzZ08ef/zxNr8HkhrmucjMPgS+Al4C/hZ6vAR8ZWYfmtn3zVI4VV26prKYYHbrWgg2ZWYsIiIikhG+BLMhnb341EVrFxQMOlbHlDIYWrs4utEOo6BYt1SKiHQn5557Lnl5eVH7nn/+ebZt28a4cePYZ5994h536qmnAjBnzhyamhILJurr6/nnP/8JwMUXXxy3zZAhQxg7dixNTU28+uqrcdtMnjw57v4nn3wSgHPOOScqaI437tgauWHf+ta34pYPOOiggwBa1aj9+9//DngzdcMzhduT6Pdg3333bfd7INvPzPoArwF/BHbHu4aN99gdb+HbOWbWOyODlewQO2PWNcG29ZkZi4iIiGRENpcyCAeyLqOjkE5Zt7WOxmD0R7fDlk+jG6mMgYhIt7Pbbru12vff/3r1xRctWsShhx4a9zjnvH8zampqWL9+PQMGDOiwr8WLF1NTU4OZcd5557XZbtGiRYBX7zXRMUeO+7HHHmPmzJlx24QX8Grr3KNHj467P1wjt7q6Omr/ggULABg3blzc42Il+j1YuHAhgGbMpklo9uszQHiK83rgceAtoBLvunYgcABwJtAv1PYZ4HC/xytZokc/vB+NiGvm6tVQ2vH//0RERKR7yOZgNlyobWtGRyGdEltfNj9glKz7KLrRIC38JSJdT58ehbz7y6PScu7Yhb56lRSwuaahefuHR+7M5INHpKy/YDBIXlNtxw2TEFn7NCwcXlZWVlJZ2fHiNtu2bUuor/B5nXO8/vrrnT5vvDFHnn/hwoXNwWaqzh0umxAOpMOqqqoArwRCIlL1PZDtdjZwKF7C9ihwqXNuS5x2D5nZlcBdwLnAoWb2LefcX/0bqmSNvHzo2R+2RtSWrV4NqNSXiIhIrvA7mE1o9quZ9QR+GNpcmr7hSLrE1pfdsawAWx0bzGrGrIh0PYGA0be0KOXnvXv20qhQ9orjxnDJhFHcPXspN73g3XFw56wl9CjM55IJo1LSZzAYpKqqLiXnak9paSkAF110Effcc0/Kz1tUVERtbWoD5sjz//Wvf+Wss85K+fnjCZc9CAeuHUnke+B9zlVR55eUOzv0/Kpz7tz2GjrnqoHvmNkwvNmy5wAKZnNV6cDoYHaL1oYTERHJJWmpMWtmn0U+It56Kfa9OI8vgU3At/CC3H+lY4ySXrEzZr9euhYaY35hrFAwKyICRIWv0BLKAlwyYRRXHDem+b2bXviUu2d3rb9Z7rWXN/vrgw8+SOl5d9llF4qKiqirq2suV5BK6Rp3e/bcc08A3njjjYTap/t7IAn7Ot516x+SOObO0PO+qR+OdBmxZQuqFcyKiIjkknQt/jUi5gFeAaXBcd6LfQwC8kLt3wJ+m6YxShrFzpjdt2B5dINeQ6FnX0REcl17oWxYVw9nTzzxREpKSpg3b15Ct9snqqSkhBNOOAGAm2++OWXnDTvjjDMAePDBB9mwYUPKzx/PaaedBnh1bZctW9Zh+3R/DyRhO4SeP0/imHDbHdptJd1bWUX0dvWa+O1ERESkW0pXMPvnmAd4swieifNe5GM6cA9wNXA0cIhzTjVmu6DKzTVR22OCMb+nqIyBiEhCoWxYVw5nBwwYwFVXXQXAySefzOOPP05TU1NUm8rKSu655x6uv/76pM593XXXUVpayrRp07jssstYt25d1Pv19fW8+OKLnHnmma367MhJJ53EUUcdRWVlJRMnTuTtt99u1eaTTz7h6quv5umnn07q3O31edhhh7F161aOPfZY5s2bF/X+unXruPnmm1m7dm3zvkS+BzNnzuT8889P+nsgCdscet4xiWPCbatSPBbpSlrNmO24DreIiIh0H2mpMeucOz9y28y+E3r5C+fcx+noU7JL7IzZYfWLoxtUaOEvEclt85dtSDiUDQu/Hz7uphc+Zf8RfRg7Ivsn3P3iF79gw4YN3HrrrUyaNIny8nJGjx5NIBBg1apVrFy5EoBvf/vbSZ13t91245lnnuHMM8/kjjvu4K677mKXXXahV69ebNq0iaVLl9LQ4C2g9uijjyY97scff5zTTjuNV155hQMPPJBBgwYxdOhQGhoaWLZsGRs3bgRg2rRpSZ87HjPjiSee4IQTTuDdd9/l4IMPZujQoVRUVFBZWcmXX35JMBjk9NNP///t3Xl8VNX9//H3hySsAdnC4gLIoihYNxCwyFIVbV2qVsWvVarWunXxS9sv+tWfit3U1orW+hWl7rV1aSu17oKCosFiXVoXFpcgKDuGLSGQ5Pz+uHcyS2YmM8nMnWTm9Xw85jF3Ofeec5kZ5pPPnHuOysrK0v43iJ1sDBnznrzxYs+X9HSKx1wQcSwKVWnf6HV6zAIAUFCy1WM21vWSfiaJSKNArN0aTsya6tV7e8xs1vSYBVDgRg/qqcuPHiYptaRsSGTP2cuPHtYmkrKSl3C85ZZbVF5ermnTpqlXr156//33tWzZMnXt2lWnnHKK/vCHP2jWrFlpn/trX/taQ8/VQw89VJ9//rnefvttVVdXa8yYMbr22mv11ltvqbg4/d+je/TooXnz5umRRx7RCSecIOec3n77ba1atUoDBgzQ+eefr7lz56adUE6mb9++ev3113XHHXfoqKOO0rZt2/Tuu+9Kko455hjddddd2nPP6I6ZTf0bzJgxQwsXLmzWvwFS8hd5w3CdamYzzcwSFTTPTEmnyruj7PFgmohWqVFiljFmAQAoJIFE586564OoB62Dcy6qx+xAW6eS2pgRKUjMAoCmH7ufxg/rnXZy9dJJQ1pdT9lUxkOVpLFjx2rs2LEpn3fQoEEp9fIsKyvTzJkzNXPmzIyeV5LatWunqVOnaurUqSmVl6QFCxYk3T9p0qSk9bdv316XXXaZLrvsspTrTPRvUF9fr61buVs+y+ZI+oGk4ZKukfQtM7tf3nwJ6+QlYPtJGiPpO5JG+Mct9Y9FoYpNzG4jMQsAQCHJWbcJvyfBYIUnPNgs6VPnXH2u2oTM+LJqt3bVhl/GkVYRXaBLn8YTHQBAgWpucrU1JWWBQuec221mX5f0kqR9JR2o5BPYmqRPJH3dOVcbQBPRWsUmZndtk3btkNp3yU17AABAoIIayqCBmR1nZv+QN9HBckmL/cdySVvM7EkzmxJ0u5A5a2Im/hrZriK6QP+DpcR3+AEAALQ5zrmVkr4i6bfyJgOzBI8tkm6WdIhz7rPctBatRte+jbcxziwAAAUjsB6zZtZe0gOSzgxtilOsi6QTJJ1gZo9KOs85tyugJiJD1sZM/HVoyWfeDXwh/Zn4CwAA5B/n3A5J/2NmV0s6XNJIRd8d9p6kfxHfokH7Uqmks7S7Krxt+zqp5765axMAAAhMkEMZ/EneJAcmqVbSi/LG3Vrrb+sr6QhJx0oqkTTVb9+Z8U6G1mtNVGLW6QB9Gl2A8WUBAEAe8xOv5f4DSMxMKu0jfVkR3sYEYAAAFIxAErNmdoKk0+T1m3xZ0gX+7V7xyg6QdK+kr8mbOOEbzrlngmgnMiOyx+ye2qRuLmbCERKzAAAAgKe0X0xilqEMAAAoFEGNMXue//yupOMTJWUlyR9r6+uS3vE3nZ/VliHjInvMjmwX01u24x5S94EBtwgAACB7zKyrmV3rP5qc4dTM+keU7xREG9GKlfaJXt+2NjftAAAAgQsqMTtWXm/Z3zrndjdV2C9zs7whDsZmuW3IsLVbw5N/jWgXk4Nn4i8AAJB/TpE0U9K3nXOpZNXWSvq2pOsknZS9ZqFNKI2ZAIyhDAAAKBhBJWbL/OcP0jhmqf/cO8NtQZZF9pgdYTE9Zvsx8RcAAMg7oSG7HkulsHPOSXpEXieEM7LYLrQFXWMTswxlAABAoQgqMbvDf+6VxjGhGWyrkpZCq+KcixpjdmS7iugC/Q8JtD0AAAABGO4/v57GMaGJwQ7McFvQ1jTqMctQBgAAFIqgErPL/OepaRxzVsyxaAO21dSqaledJKlMlepnX0YXYOIvAACQf/b2n9ekcUwo+7ZXhtuCtqZRYpYeswAAFIqgErNPyrtV63wzO6+pwn6Z8+XdEjY3mw1DZq3dWtOwPCK2t2xJF6nXkGAbBAAAkH31/nPnNI4JlS3OcFvQ1sRLzNbXxy8LAADySlCJ2dvl9SAwSfeY2dNm9i0z29vMSvzH3v62ZyTd45f9QtLvA2ojMmBdRGL2QKuI3tnvIKldUbANAgAAyL5QT9lRaRwTKst964UuNjHr6qSqTblpCwAACFQgiVnn3A5JJ0qqlJdwPV7e5AgrJe30Hyv9bcf5Zb6UdKJzjjFm25DIHrONx5dl4i8AAJCXXpUXv15mZiVNFfbLXCbv7rBFWW4bWrsuZfLePhG2r8tJUwAAQLCC6jEr59zbkg6S9Fd5t3tZgke9pL9I+opz7t2g2ofMWLc1YuIv+zR6J+PLAgCA/HSf/zxM0p/MLOGQBv6+P0vaL+ZYFKqiYqlL7+htJGYBACgIgY5p5Zz7QtIZZtZP0mRJIyX19HdvlvSepAXOuXQmTkArEuox203bNaDdhuidJGYBAEAecs69bmaPyJu89jRJY8xsjqRX5A1z4CTtKWmCpAvlTRbmJP3FObcwN61Gq1LaV9oRETuTmAUAoCDkZLIB59xaeT0FkGdCY8yOaLcyekdRe6lseA5aBABAas477zw98MADuu666zRz5sxcNwdtzwWSeks6RtJekmYmKBe6Z/1FSd/JfrPQJpT2kSJzsSRmAQAoCIEMZWBmE/xHpzSO6Rg6LpttQ2aFesyOiJ34q+8IqajJIdcAoPCsLA/2OKStoqJCM2fO1K233prrpqAVc87tlDdXwnR5E9gmGrZrlaQfSTrePwaQSvtFr29fn5t2AACAQAU1xuwCSS9J2jeNY/aKOA5tRKjH7Mh2MePL9mPiLwBo5OUbpPuOlxbNSu+4RbO8416+ITvtQpSKigpdf/31JGbRJOe5TdIASYfLG7bgSv9xoaTDJA1yzv3eOedy11K0OqV9ote3rc1NOwAAQKCCHMrAmi6S0eMQsJ110raaWknSyNges4wvCwDRVpZLC2/0lufN9J7HT2/6uEWzwuUX3igNniQNHJeFBgJoLj/p+rb/AJpW2jd6nR6zAAAUhKB6zDZHqG11OW0FUrZll/fcWTs12GLmb+t/SODtAYBWbeA46ZiZ4fV5M5vuORuZlJW840nKAkDb1zU2McsYswAAFILWnJgd5D9vyWUjkLrKGq9z8wG2Uu0s4u48K5L6HpijVgFAKzZ+eurJ2XhJ2VR62AZk0KBBMjMtWLBA//nPf3TWWWepf//+KioqippI6/nnn9epp56q/v37q3379iorK9NJJ52kl15KPHLR448/rilTpqisrEwlJSXq2bOnhg8frmnTpun555+PKjtz5kyZmc4777yE5zMzmZkqKiqavK5JkyZp8uTJkqSVK1c2HJvOOQCgSY16zJKYBQCgEGRlKAMzG5BgV38z297E4R0kDZH0c0lO0vuZbBuyJ9RjdkS7iugdZcOlkpTnfQOAwhJKroaSrvGGNWjlSdlIr776qn71q1/JzHTggQeqe/fuMjPV19frkksu0Zw5cyRJvXr10siRI/XZZ5/pqaee0lNPPaUbbrhBV155ZdT5rr76av3qV7+SJPXp00cHH3ywqqqqtHr1aj300EPaunWrjjvuuKxdz0EHHaRNmzbpvffeU4cOHTRq1Kio/R07dsxa3QAKSGxitmartKtKat85N+0BAACByNYYs5/G2WaSXmjGuR5sYVsQkEo/Mdt4fFkm/gKQR+rrperNmT3noed6f4C/8mtvfd5Mb33MxdIbd4W3S9KEGV75HRtbXm99veSKJcvcDTTXX3+9pk2bpttuu01du3aVJFVXV+uXv/yl5syZo0GDBunuu+/Wscce23DMo48+qgsvvFBXXXWVxowZ09BDdePGjbrppptUXFysP/3pTzr99NNlFh56fvHixfr4448z1vZ4br/9di1YsECTJ09Wv379tGjRoqzWB6B1WFKxWaMH9QzsuEaJWUnasV5qPyj9cwEAgDYjW4nZRBN2pTOR105Jv3PO3ZuB9iAAlbu8l3dkbI9ZJv4CkE+qN0u/GZL9el75dXRCtqntzdBOkl30llznXhk5nySNGDFCc+bMUVFRUcO26upq3XjjjSopKdETTzyhQw45JOqYqVOnas2aNZo+fbpuuummhsTsRx99pLq6Oh1yyCE644wzGtU1duxYjR07NmNtBwBJmvXict02f4WuOH64Lp2U+v/3dy74WDc9t1SXHz1M04/dL71KO3SVijtJtdXhbdvWST0GpXceAADQpmQrMXt+zPp98oYluEbS50mOc/ISsmskve2ca2rYA7QilbukDtqlYbY6egeJWQAoGOeee25UUlaSnnnmGVVVVWnChAmNkrIhp556qqZPn65XXnlFdXV1Kioq0sCBAyVJy5cv11tvvaXDDjss280HUOCWVGzWbfNXSJJuem6pJKWUnA0lZSXptvkrNH5Y7/R6zppJpX2kypXhbYwzCwBA3stKYtY590Dkupnd5y/Odc59kI06kXuVNab9bLVKrC56R7+DctMgAEDgDjjggEbb3n33XUlegnX8+PFxj3POmzSyurpamzZtUp8+fdS/f3+de+65euihhzRq1KiGYQ6OPPJITZgwQd26dcvehQAoSKMH9dQVxw9vSLKmkpyNTMpK0hXHD2/ecAZd+5GYBQCgwGSrx2ysyf5zvLFnkScqd0lHxQ5j0Guod2sWAKAgdOnSpdG2yspKSdLatWu1du3aJs9RVVXVsHzPPfdo5MiRmjNnjhYvXqzFixdLktq3b68zzjhDN998s/r165eZxgOAwknY2OTseWP2bFQ2XlI2neEPopT2iV4nMQsAQN4LJDHrnFsYRD3Ind310o5a08jimNx7Pyb+ApBnOvWU/idLE07FTvTVsbu0szK8PmGGNyFYhtTX18vVZj8UKC0tlSRdfPHFmj17dlrHlpSUaMaMGZoxY4Y+++wzLVq0SPPnz9fjjz+uhx9+WB988IHeeOMNlZSUSFLD5GChHrixduzY0YIrAVAo4iVnd+/erQHOG3VAynBSVmo8ARiJWQAA8l5QPWaR57bs8p6Z+AtA3mvXTurSO/PnXTQrOil7zExp/HRv+7yZ3rZXfi217+xtz4T6emnr1sycK4mDDvKGtPn3v//dovMMGDBAZ599ts4++2xdddVVGjFihN5++2298cYbDUMkhHrsrlsXP6GxYsWKtOsNJXsBFJbY5Owt8z9Wt5IifWvfeq1cVKFb5n/SULbFSVlJKo3p/b99fcvOBwAAWr12uW4A8kNljVSsWh1gn0XvIDELAE2LTL5K4aSs5D0fE7Fv3kyvfBty4oknqlOnTiovL9drr72WkXMOGTKkYQiDL774omH7sGHDJEnvvPOOdu3a1ei4O++8M+26OnXqJMkb/xZAYbl00hBdcfzwhvWtu033LS/KfFJWajyUwbamh34BAABtG4lZZETlLtMQ+0IdbHf0DhKzAJBcsqRsSBtPzvbp00dXXXWVJOmb3/ymHnvsMdXVRU8UuXbtWs2ePVu//OUvG7bNmzdP06dP1zvvvBNVtq6uTnfddZdWrlwpM9Nhhx3WsG/y5Mnq3Lmz1q1bpyuvvFL19fWSvGEb7rzzTj344INpt3/w4MGSpPXr1+v9999P+3gAbdulk4bou+P3jbtvYK/OOnJIr8xU1GgoA3rMAgCQ70jMIiMqd0kjrCJ64x4DpM7NmJEWAApFKknZkDaenL366qs1ffp0bdq0SVOnTlXPnj01atQoHXHEEdpnn33Uv39/XXrppfrwww8bjtm+fbtuvfVWHXrooerRo4cOO+wwjRo1Sn379tUll1wiSbr++us1dOjQhmO6deumX/ziF5KkWbNmqaysTKNHj1a/fv30gx/8QHfccUfabe/du7eOO+44SdLhhx+uUaNGadKkSZo0aVJKk5kBaPuK28Uf0mTlpip9847XdOkf/6WP1m9vWSVdYxKzO9Z7Q84AAIC8RWIWGVG5y+KML8vEXwCQ0Mry1JOyIfGSsyvLM9+2LDAz3XLLLSovL9e0adPUq1cvvf/++1q2bJm6du2qU045RX/4wx80a1Y42XzUUUfpjjvu0GmnnabevXvro48+0rvvvqsOHTrotNNO07x583TNNdc0qmv69Ol66KGHdPjhh6uqqkorVqzQV77yFb3wwgu64IILmtX+P/7xj7r44ovVr18//fvf/9bChQu1cOFC7dy5s9n/JgDaju6dS5Luf/a9tZoya6Gu+Mu/9UVlM4c9ie0xW18rVW9u3rkAAECbwORfyIjKGmkEE38BQOoGjpMmXiktvDG1pGxIqNy8md7xA8dlq4VpqaioSKnc2LFjNXbs2JTK9urVS5dddpkuu+yytNtzzjnn6Jxzzom7zzkXd/v999+v+++/P+6+3r17a/bs2Wm3A0Dbd+eCj3XTc8sa1tu3c9pV37gHbb2THn1zlZ5453N9Z9xAXTZpqHp0aZ/85CvLw/+PdymTZJIi/o/avi7+hJORxwEAgDaLHrPIiC01rvFQBiRmASC5yf8rnf9c6knZkPHTveMm/2922gUAkBRKyi5tWD9pQJ1+M6ZOP5ocf8xZSdpVW685r36qCb9+WbfPX6EdNbXxC758g3Tf8eFhaYpKpM4x49VuX9f4uEWzvONeviHdy8mu5t7Bke5xQdUDAEAASMxKMrMBZnazmX1oZjvMbLOZ/dPMfmpmnTNYz1lm9ryZrTGznWZWYWYPmVlqXYdasT12r1OpxdzOSWIWAJrW3B5P9JQCkCZi3vTEJmV/fPQQHbOX15v10gn76orjhyc9fltNrX774nJN/M3LeuD1Cu2qjRgvdmW5d8eEFD1meOxwBttiErORY5MvvDH1ZGO2k5mxSeZUpZtkDqoeAAACUvCJWTM7QdK/Jf1E0nBJnSX1kDRa0m8kvWVmg1tYR0cz+4ekP0uaIqmfpA6SBko6R9JrZtZ4kLxW6MM3nm+0bVddvQbWVURtq+3cR+raL+lxAAAACAYxb3pik7JXHD9c3xs/MKrMpZOGNErOxpsjbOP2Xbruyfd19C0LNPftz1Vf77wf1+JN6FjaJ/rgyB6z8SaMTOVHumwnMxMlmVM5fzpJ5qDq8S2paN74vukel0/15NO1UE/zjsuna6Ge5h2XT9cSlIJOzJrZwZIek7SHpO2SrpZ0pKSjJc3xi+0v6WkzK21BVfdIOtFfflnSKZKOkPRdSR/Lex1+ZmYXtqCOrCu/56c64NkzVf5gdDy9YVuNRrZbGbXN9TsofNyD13jH3fPTQNoJAACAMGLe9MRLyl46aUjcsrHJ2XonHdi/a9yyqzZX678ffUff+N2remnpOs2q/oZu3H1WuMC8mY0n+9q+3nuOScreuPsszao+oemLCSKZOXCcXh34g/B6KvXEXM+rA3/QdJI5qHokzXpxuc6YXa47F3zcZNlIdy74WGfMLtesF5enVD6f6smna6Ge5tWTT9dCPc2rJ5+uJUgFnZiVdKu83gK1kqY4537lnCt3zr3knLtI0gy/3HBJP25OBWY2UdLZ/uo/JB3rnPu7c26Jc+5eSWMlfebv/7WZdW/epWTXh288r3GrvLh93Ce/i0rOrttaoxH2aVT54r0OleQlZcd98jvvuFVz6DkLAAAQvFtFzJuSJRWbU07KhsQmZz9Ys02/Pv0gTd6/LG75pWu36YL739Rt8z/S7LqTo5Oza96NLrx9bdyk7Oy6k3Xb/BVN9vxZ4vZvnPxNM5l54+6ztMTtn7iOis06d9mRqdcT5/znLjuy6WsJsJ7b5q+QJN303NKU//CPTOin9NrkUT35dC3U07x68ulaqKd59eTTtQStYBOzZjZa0iR/9R7nXLyfgX8r6UN/+b/NrKQZVYUC3TpJlznn6iJ3Ouc2SrrCX+0hr0dBq3PAmONUPvhHDeuRydm1W3ZqZLuKqPLW/+CopKwklQ/+kQ4Yc1wg7QUAAAAxb7pGD+qpy48eJim1pGxIZHL28qOH6cxRA3Tf+Ufo0YvG6vCBPZIe2yg5G+nTV6OSizftnqrZdSc3tG/0oJ5NXs8ex85oUTJzj2NnJK1n9KCeuuL44Y2vI149CZLMqV5LkPWEpPKHf7xe1oVUTz5dC/U0r558uhbqaV49+XQtQSvOdQNy6JSI5fviFXDO1ZvZg5JukBdATpL0YqoV+LeCHe2vvuicW52g6N8kbZXUTdJp8oLjVmfctJ+r/EGFe8B+8juVPyjt6HW0etj2qLJvlc/XuFX3N6yXD/6Rxk37eZDNBQAAADFv2qYfu5/GD+ud9h9tl04aolGDekQdN2ZwL/3lknGa/+F6/eb5ZVq2blvcY0PJ1itLHonesWN91OpPix/TBcXPyUr7qveqfaQn+nrj0pb28SYOi3zu2F0y06WThuhOzdCNL0acP5S0HD89fPIESdlUktOhMjc9p+jrmDdTqtkmHXqu9Oa90uvhTht31Z6g5+tH64YJHfVfI+ulDaFbS53/5BqtX3qA1HN7ke577RCV1Vbqu8XPhevZtlY65GzpnYelN+6Kuo5QUjadRLt3PUujns8bs2ejsukMfZFqPfGOb+315NO1JKuH90BhXEuyengPFMa1BKmQE7NH+c87JP0rSbmFEcvjlUaQKm9MrQ5xzhPFObfLzBbLmyThCDMrcc7tTqOewMRLzu78/L2oMjVqr8NIygIAALQGxLzN0NyeNPGOMzMdc2BfTR7eR0+++7l++8Jyrf6yulG52XUnax9br28Xv5Tw/EXmVKYt0o4t0sdNjJFX1F7q4iVtLy3tqw8GdNRrqw/UV4s+8PbPmylVbZYOmyYtmROVzHyydpzGjNxPkzvNk179u7S7Wtpd5T9HLlc1LF+6u0rTum1XXc0O1TlTkfkJ1Vd/6z1iXFz8tC4uflr6p7xHiqZKmtohzo43ZnuPCM1JyobE+8N/9+7dipwCLhN/8KeSYGgr9eTTtSSqh/dA7uvIdT28B3JfR5D1BMFcwy+RhcXMNkjqLeld59whScr1kBQafOJx59yZadTxfUm/91dPdc7NTVL2NkmhsQJGOOc+SLWeFNqxt6RVkrRq1SrtvffeLT5n7DAFCcuRlM0r1dXVeuGFFyRJU6ZMUadOnXLcImQDr7O0YsUK1dbWqri4WMOGDct1c7Kmvr5eW7dulSR169ZN7doV7AhHea25r3M6n4PVq1drn332Ca3uk6THJAJGzJs5mfp+rKmt05/f+Ey3v/SRNu3YFbWvg3bpww7nq50V5t9omRRKyk7ar0xjh/RKWC7Rn8PO76n7xiebtHD5xobtw7vXa2g3p8qSMi36ODxG4cT9emvM4MT1NCW2non79dbYwb21+JNNWrh8Q8P2SfuV6cihXj0m854t+lzmb7CGdTWsL/poo+Z9GO6JfeyBfTRhWJleWbFBL37QeHujk4fOmeA6zKRXlm/Q8++va9h23Ii+mrBfWaPtUw70tjd6CWJeFJdg16srNkRdyzEH9NH4ob0bXWNoe3PFnm9kj3rtv4fT5vZ99PLyTVmr5+iI65kfZ7uU+P0bKbbIax9t1EtLw+f72vA++urQ3o22h+oJv4+i328N74E477fY1/r4Ef00cf8yLVy2Qc+9vzZq+4T94o/H7bU9/gWGrvuV5Rv0wgfR76mj/PfaixHbj/Xfa4krSv4PGfv5GNmjXsO7O21u31cvLQt/bpv7uZESf3Ym7tdHC5dv0PMx/24T9y+LOl9klaaolUZteHnpej3zXvh83ziov742vI9eWrpez/xnTXj7yH6aPLyPpMbvo9gNsa/VgmUb9Ox70W2etH+ZFsR5D0xKMCZ7KhKdL3Z7ppKy2Yh5CzIxa2YdJYV+pn7aOXdiE+W3S+oiabFzrulpPMPH3ajwWFqjnXNvJin7U0m/8VePd86lPEuWH4Qm00/SEklavnx5xoLUtx75ub668o6E+18b+H0ddtY1Cfej7dm5c6deeeUVSdKECRPUsWPHHLcI2cDr7H3h7t69W2amYcOG5W3Csr6+Xtu3e0PRlJaW5u11FrrmvM7OOa1YsUL19fUqLi6ODEDjWr16tfbbb7/QKonZVoKYN7OJ2Ux/P+6oqdUDi1fp3tc/045d3pC8lxQ92Xg4A0n1TmqX7C96RNnuOmpkzb25bgYAoBX48dFD9L3xA5sumIJsxLyFOpRB14jl7QlLhe2QF6SWZrGeHRHL6dazKtWCr7zyinr3bv6veFF6jtHfN27UN3c82mjX37tMlXqOaehVgPwT+sME+a1QX+euXbuqS5cu6tKli9avX6/OnTvnuklZF0rcIb+l+jrX1NSotrZWO3bsUFVVlT788MOk5Tdu3Jh0P3KGmDdLMvX9OFTSVV+RXvy8nQ7c8JRmFIeTsl+60oZ5HNqZdPvuU/Rs/RHqbVtUpi0qs0qVmf+sLd52q1R325Ggtrav3nnZ6fDosyaTCw+b4Cu1nbqk6MmGsXsBAIXppAF1Gli1TC+8sCwj58tGzFuoidnIn7d3JSwVVuM/p3u/Ujr11EQst5n7hosHfVV6Pzoxu9V1lvY7IUctAoCWq6mpUadOnVRbW6svv/xSktSpU6eGW7iAfFZbW6stW7aovr5e9fX12rUrlVAJrRQxbxtQWiL9T6cnNaL4sYZtodvwI3vQ/rBkrnbs7thksrG9dqu3n7j1krVbVKZwEre3bdEQfaGe7Rrn0Le5jtrk9lC12munOqjatVe1OsRdr3Ydwvucv80vc2LRYp1fHO4MXem6RCWMf7P7TN1dd2JUgjX0HLst2c2/sT2MI5PZoe0kZwGgMHUocjpmr9Y/SkChJmZ3Riy3T6F8aHj5xqP0Z66eyCHs060n+f2FEbd1TZgwIaO3db3z0JWNtnWzKvXe/AbDGOQhbnEvDLzO3m3ca9as0c6dO2Vmqqys1JYtW1RUVJRXyVnnnOrqvNtn8+3aEJbO6+ycU21tbUPZnj176qCDDlJRUVHSOlavZuSCVoqYN4Oy9f1YvPh2lbzdOCkrhZOKoSTjlSWPaMSeXTW/53+p3vlj+jk1LDvnDZXotKecv32DnDZElPn6lkc1ekv4Nv8vXRf18JOmXW2nnt7jbD3V1RtiOPF/F/F3tDPpzK2PauqWcFI2XpL5f0oe04DepXq629SE/y5Njbh3wtZHddbWcFI2Xj1XljyiQb066+luU5NcS/LxUkM+21ytTzZWNSozuHdnDeiZud8YEtUzqFdn7dOjk0L9hUP/Pg2JbH9DeD36+Nj9X1Tu1OrKnYq1V/eO6r9Hx6hjUhVbfO3WGn2xpXEde+7RUf26dUj+msTsTDSWpiSt2bJTq75sXM8+PTppr+6Zi2M/r9ypVXEm7msL9cT7t/68cqc+25y8nkTvq9j3nWL2h8qsS/Ae6N+tg/p26+C3rXHj4r01kr1f1m6t0edNvJ8zYc2WnSnX05JhQxNdz557dFTfbh2izp1oDOZ47Ygtu2F7jdZva/x7ap+u7dWna+NZFmNfglT+dtiwrUZrttY02t6/Wwf16RZvJsfmWb+1cT01daaVnffP2DAGUnZi3kJNzG6LWE7lFqou/nO693mmU0+XiOW06mlqTIvID0unTp0yNpFP+YPXaNwX9zesV7pSdfd/of7qyjtU/ngRE3/lsY4dOxbkpFCFppBf53333VefffaZqqvDAWsouZUvnHMN10eP4PyV7usc2t+uXTsNHDgwpeRTof4/0QYQ82ZJxr4fF82SFv6yYTUyKdu9c4kqq3Y3Ss6etGGOTjp4L2n89ObVNy+clL1x91l6pMO3dFbNXxvOf9bWe3XWEQMydv7ZdSere+cSza6Kvo6pW+7V1NHZr6dF1+O7c8HHWrA8PLN352Knqlrv/fbJxiqdMWpARiaVia0n9B6QpIpNVZo6OnP1RM5UHlnP55U7dc7YQS2uJ1kdX2zZqXPHtbyOpupZ9WW1zh4zMCv1RL4HsllPUNeTjXqS1bFma42mHblvm3k/x6sn8j2QzXpy8dlZv22Xzv/q4Lx4D9wy/2OVlJRkpB4pOzFvQc7y4ZzbKSk0METSn9L9GWpDAWTK41r5IoPHpn6yj+wBkG49gSt/8BqN++R3Det/7zJVCw/7P7028PsN28Z98juVP0ivWQBtUygptc8++6h79+7q0KGDiouL8+pRVFSk6upqVVdXq6ioKOft4dE6XueOHTuqrKxMQ4cOLcge8/mEmLeVWzRLmjezYTUyKXvF8cP1zrVTdMXxwyV5PWdv3H1W+Nh5M73jW1jfHsfO0DvXTtEex87Iyvln150cdS3Zuo6s1OOL/YP/pAF1umF0nX58dPiP/JueW6o7F3zcrPMnqif2PdCW6smna4lXD++B1lFHLuvhPdA66giynmwq1B6zkvShpKMkDTWzYudcbYJyw2OOSccHCc6TrJ5aSR+lWU+gYpOyrw38vtRzjCTpsLOu8XrK+vu95KzoOQugTTIzlZaWqrQ03flp2obq6motXeoFMocffji9HvMUr3PBI+ZtjVaWJ03Khnr2hJ5vem5po56zmjdT2mesNHBc0/UlSMpG1nOnZujGF2POL6XW0zRJsrTxtajxdbS2enyxf/D/+OghGljlTSDzvfEDVVJS0rA/9NycXlnxEgvx3gNtoZ58upZ49fAeaB115LIe3gOto44g68m2guwx61vkP3eRdHiSchMjll9Ls44lCk+AMDFRITNrL2ls6BjnXKudZSM2KVs++EeNxpIdN+3nKh/8o/A6PWcBAAByhZi3NRo4Tpp4paTESdmQSycNid9zduKVGUnKRtbTrJ6zCZLMya4lbo/WleWtox5fvD/4Y8cpjHxtpOb1ykqWWGhr9eTTtSSqh/dA7uvIdT28B3JfR5D1BKGQE7NzI5bPj1fAzNpJmuavVkp6OZ0KnHPbJM33V48xs0S3dp0mqZu//EQ6dQQpXlI2UU9YkrMAAACtwtyIZWLeVuROO1On11ybNCkbEpucPb3mWt1pZzZdSZxkZrykbGQ9cZOzyZKZA8dpycCLGs6fKFkaey2RSdMlAy9qOskcVD1K7Q/+2HpC0vnDP5/qyadroR7eA9TDeyBIBZuYdc79U9Kr/up3zSzeN/RPJB3gL9/mnNsdudPMzjMz5z9mJqjqZv+5WNIdZhY1rbGZ9ZZ0k79aKekPaV1IQD584/mUk7Ih8ZKzH77xfJIjAAAAkEnEvK3TkorNuum5pXrTeX8sJvujMiTyj8s33XDd9NxSLanYnLwet79urT1NUtNJ2ch6IpOzt9aepiVu/6TXcsaySQ1J5nSuJZRkPmPZpKavJcB6Uv2DP7aekJRemzyqJ5+uhXqaV08+XQv1NK+efLqWoBVsYtZ3uaRqeQHkC2b2v2Y21swmm9ldkn7tl1su6bfNqcA595KkR/zVkyW9aGYnm9koMztf0mJJA/z9VzrnvmzuxWTTAWOOU/k+35OUWlI2JDI5W77P93TAmOOy1kYAAADERczbyowe1FOXHz1MUmp/VIZE/nF5+dHDNHpQzybrcRP/V6fXXJtSUjaynj2OnaHTa66Vm/i/SesJXcubbnizruVNNzzlawmyHin7r02+1JNP10I9zasnn66FeppXTz5dS+CccwX9kHSSpC2SXILHMklDExx7XkS5mUnq6CTp6SR11CU7PgPXuHeorlWrVrmW+GDxc422VVVVublz57q5c+e6qqqqlI9D25PKa422j9e5cPBaF4YgXudVq1ZFxjV7u1YQ4/FoFA8S87ZQNj5L//x0UyDHBVFPPl1LovKpvAfa0vVk+rh8upZE5XkP5L6OXNfDeyD3dQRZT6xsxLyF3mNWzrl/SPqKpFnyeglUybu96k1JV0g61DnXohljnXPVzrkTJH1b0ouS1subIGGVpD9JGu+cm9mSOoLS3B6v9JQFAADIHWLe1qm5PXbSPS6IevLpWqinecfl07VQT/OOy6droZ7mHZdP1xKU4lw3oDVwzq2U9GP/kc5x90u6P43yf5IXlAatYYyvNWvWZPzk1dXV2rhxoyRp9erV6tSpU8brQOvAa10YeJ0LB691YQjidY6JL4oSlUNuEfO2DP9ngvcAeA+A90Bhy0bMa8677Qd5zMxGSVqS63YAAICCMNo592auG4HCQ8wLAAAClJGYt+CHMgAAAAAAAACAoNFjtgCYWQdJB/mrG+RNvJBJ/RTunTBa0toMnx+tB691YeB1Lhy81oUhiNe5SFKZv/wf51xNFuoAkiLmRQB4D4D3AHgPFLaMx7yMMVsA/DdK1m4pNLPI1bXOudXZqgu5xWtdGHidCwevdWEI8HVemaXzAikh5kW28R4A7wHwHoAyHPMylAEAAAAAAAAABIzELAAAAAAAAAAEjMQsAAAAAAAAAASMxCwAAAAAAAAABIzELAAAAAAAAAAEjMQsAAAAAAAAAASMxCwAAAAAAAAABMycc7luAwAAAAAAAAAUFHrMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMyiRcxsgJndbGYfmtkOM9tsZv80s5+aWedctw8tY2YuxceCXLcViZlZHzM70cx+ZmbPmtnGiNfu/mac73gz+5uZrTazGv/5b2Z2fBaajxRl4nU2s/PS+Nyfl90rQiJmdpiZXeW/zqv8z+F2M1tuZveb2VFpno/PNNAEYt7CRCyc34iRQfyM1qA41w1A22VmJ0h6WNIeEZs7SxrtPy40s2845z7JRfsANFiXiZOYmUmaLemimF17STpV0qlmdrekS5xzLhN1Ii0ZeZ3RupnZQkkT4uxqL2mY//iOmT0k6ULn3K4k5+IzDaSAmBfIW8TIIH5GzpGYRbOY2cGSHpMXlG6XdIOklyV1knSWpO9J2l/S02Y22jm3PVdtRUbcKen/kuzfEVRD0GKrJH0oaUozjv2FwgHn25J+LeljSUMkzZB0qL9/g6T/1+KWoiVa8jqHHCfpiyT7V7fg3Gi+vfznLyQ9LulVSZ9JKpI0TtJP/DLnyovzzk5yLj7TQBOIeeEjFs5/xMggfkZOkJhFc90qL0CtlTTFOVcese8lM1sh7wtpuKQfS/pZ4C1EJq13zr2X60ag2X4maYmkJc65dWY2SNKn6ZzAzIbKCywl6U1JE5xz1f76EjN7UtJCSaMkXWFm9znnPs5I65GqFr/OMZY75yoy0TBk1FJJV0n6q3OuLmbfYr+n7GuS9pP0X2Z2p3Pu1diT8JkGUnariHlBLJyviJFB/IycY4xZpM3MRkua5K/eExOghvxW3q9NkvTfZlYSRNsANOacu84595RzriW36kxX+Me8H0YEnKE6qiT90F8tlvTfLagLzZCh1xmtnHPuROfcY3GSsqH9G+X1mg05PcGp+EwDTSDmBfIbMTKIn9EakJhFc5wSsXxfvALOuXpJD/qrPRQOagG0Mf64Wd/0V5c65xbHK+dvX+avnuIfByB4CyKWh8Tu5DMNpOyUiGViXgBR+D4FkAkkZtEcodmed0j6V5JyCyOWx2evOQCybF+Fx7VcmKxgxP69JQ3KVoMAJNU+Yrk+zn4+00BqiHkBJMP3KYAWIzGL5jjAf/7IOVebpNzSOMegbTrDzJaZWbWZbTOzFWb2gJlNznXDEIjIz+/ShKUa7+dz37bdb2brzGyXmW00s8Vm9gsz26vpQ5FjEyOW431m+UwDqSHmRQixMOLh+xSxiJ+RNhKzSIuZdZTU219NOqOgc+5LhWco3Seb7ULWHShvIpmOkkolDZU0Td6kF0+Y2R65bByyLvLz29RMoqsSHIe2Z6KkPpJKJPWSNEbS1ZI+MrOLc9kwJGZm7SRdGbHpsTjF+EwDTSDmRQxiYcTD9yliET8jbcVNFwGidI1Y3p5C+R2SusgLYND2VEl6UtJ8eb/ybpdUJu8L5xJ5XzanSPq7mR3rnNudo3Yiu9L53O+IWOZz3zZ9IulvksoV/iNisKRvyZtIqqOk2WbmnHN356aJSGK6pCP85Secc2/GKcNnGmgaMS8kYmEkx/cpQoif0WwkZpGujhHLu1IoX+M/d8pCW5B9eznnKuNsf9HMbpf0rKRD5QWnl0r6XYBtQ3DS+dzXRCzzuW97npD0gHPOxWxfIulRMztRXtBZImmWmT3pnFsbdCMRn5lNlHSjv7pe3v/L8fCZBppGzAuJWBjJ8X0KifgZLcRQBkjXzojl9glLhXXwn6uz0BZkWYJANLRvnbxf/0JByA+DaBNyIp3PfYeIZT73bYxzbkucoDJy/1OSrvdXO0v6biANQ5PMbIS8PwyK5f3xd6b//3Q8fKaBphHzglgYTeH7FMTPaDESs0jXtojlVG7B6OI/p3ILGNoY59wnkl70V4ea2Z65bA+yJp3PfZeIZT73+WmOpFDwOTFZQQTDzPaV9IKkHpLqJP2Xcy7Z7NB8poGmEfOiScTCBY/vU6SK+BkJkZhFWpxzOyVt9Ff3TlbWzHoo/AW0KllZtGkfRCwz22R+ipzMIOnnXtGTGfC5z0POufUKfw/wmc8xPwkwT9Ke8gL+C5xzTzRxGJ9poAnEvEgDsXDh4vsUKSF+RjIkZtEcH/rPQ80s2TjFw+Mcg/xjuW4Asi7yD47hCUs13s/nPn/xuW8FzKy3vJ5ag/1NP3TOPZjCoXymgdQQ8yIVfCcWLr5PkQ7+r0BcJGbRHIv85y6SDk9SLrKL/mvZaw5y7MCI5S9y1gpk06cKv7ZN3XozwX/+XFJFthqE3DGzPvJmoZb4zOeMme0h6XmF/w++0jl3R4qH85kGUkPMi1QQCxcuvk+REuJnJENiFs0xN2L5/HgFzKydpGn+aqWkl7PbJOSCmQ2WdKy/+olz7vNctgfZ4Q9m/3d/dbiZjY1Xzt8e6g3w92SD4KNNu0jhX/yTjWOKLDGzzpKelnSYv+mXzrmbUj2ezzSQsrkRy8S8aIRYuLDxfYo0ED8jIRKzSJtz7p+SXvVXv2tm4+IU+4mkA/zl25xzuwNpHDLGzE5KdtuemfWV9BdJJf6mVHtqoW26VVKtv3y7mXWK3Omv3+6v1vrl0YaY2SAzO7SJMidKusZf3Snpvqw3DFHMrL2kJyR91d90m3Pu/zXjVLeKzzSQFDFvYSMWRopuFd+nBYv4GZmQbKwkIJnL5d2q1UnSC2b2K3k9BDpJOkveL0KStFzSb3PSQrTU7ZJKzOyvksrl3XJTLam3pEmSLlH4doxFIhhttcxsvKShEZt6RywPNbPzIss75+6PPYdzbrmZ3SzpSkmjJL1mZjdJ+ljSEElXSAoFJb9xzq3I2AUgJRl4nQdJetnMyiX9Q9I7ktbL+3V/sKTT/Ufo1/6f0jMoJ/4saYq//JKke8xsZJLyu5xzy2M38pkGUkbMW7iIhfMcMTKIn9EaGL3o0VxmdpKkP0rqlqDIckknOOc+Cq5VyBQzq5A0MIWif5V0oXOuMqsNQrOZ2f2SvpNqeedc3IHp/ds150i6IMnh90i6yDlXn04b0XItfZ3NbJJSuwW3StJ059zdaTQPGWJm6QZuK51zgxKci880kAJi3sJELJz/iJFB/IzWgB6zaDbn3D/M7CvyehKcIGlvSbskfSTpcUm/d85V5bCJaJnvyBvEfpy8X/t6y/uDZLukVZJel/SAc648Zy1EoPxA8rt+z5GLJI2W977YKGmJpLucc8/msIlomX9JOkfeZ36UpP7yXt9iSV9Kel/SfEl/cM6tz1UjkTl8poHUEPMWLGJhpITv04JG/IwWo8csAAAAAAAAAASMyb8AAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmASAHzGySmTn/MSnX7WnNzGxQxL/VebluDwAAAFJDzJs6Yl6gMJGYBYAYZjbCD4hqzaw0YnuRmW3z943LZRsBAACAliDmBYDcIzELAI2N95/fcc5tj9h+qKRSSTsl/SubDTCzmaFfzLNZTy5F9AiYmeu2AAAAFCBi3gAQ8wJIpjjXDQCAVigUpL4as32C//xP59yullTgnFsgyVpyjkLhnKsQ/1YAAACZRszbihDzAoWJHrMA0FgoSF0Us/2oBNsBAACAtoaYFwByjMQsAEQwsz0lDfJXY4PRRMErAAAA0GYQ8wJA60BiFgCihQLRFc65daGNZnaApN6S6iW93tJKEs1Qa2bn+WNsXRexzcV5DIpzTjOz083sr2a2ysx2mtmXZvZPM7vGzLonac/9/nkr/PX+ZnaTmb0fMflDZDt7mNn5ZvZHM/vAzLab2S4zW2tmz5vZRWbWPkFdFTHjiF0X5/rujyif0gy1ZtbezC4zs5fNbENEe54xs3PMLOF3Xpzr725mP/Ovf4eZVZrZK2b27UTnAAAAaEOIeUXMS8wL5B5jzAIoWH7Ac1+C3cNiAqmQdpIqzaKGf9rXHxMqZ8ysTNITkr4as6uDpNH+4/tm9k3n3BtNnGuspH/IC8oTeVvSwDjb+0qa4j8uMbNvOOfWpnYVzWdmAyU9K+mAOO35uv+42L/+zU2ca7h/rkExu46SdJSZjXPO/SAjDQcAAMgyYt6E5yLmJeYFco7ELAC0LnMlvSnpMkmX+tsOilPu89CCmXWRtFBegLZLXuD9jKRVkrrIm8Dhx/ICtmfN7FDn3MoE9ZdK+qukjpJ+KelFSVV+G9ZElCuS9Iakp+QFrOsktZe0r6RzJB0vb0bfRyRNiqljil/2P/76nZL+L6bMlwna14iZlUp6SdJgf9NcSfdK+sJvzw8kTZTXM+QpMzvKOVeX4HSdJT0pqZekX0iaJ2m7fy3XSdpbXrD/D+fc86m2EQAAAFHmiphXIuYFCh6JWQCF7AlJiyPWe0p6zV+eIi/IC1koqY+k78sLiCJ9rgxxzlXK652wPmLbe00cdqO8AHWLpGOcc2/G7F9kZg9LKpfUX17wdW6Cc/WSF5SNd869G7F9SUy5rznnVsQ5/nVJD5vZ+fICxYlmdrRzbn7E9SyXpIgeGOtTuMZkrlM4QP2Fc+6aiH3/MrO/SnpI0rcljZN0kbzAOJ4ySSWSxjnn3o85zwJ5gXVHeX9EEKQCAIC2gJi3MWJeYl6gVWCMWQAFyzm3xTm3NPSQF6BJXtD0YsT2bfICVEn6W+Qx/mN3Ti5Akpn1lnShv3ptnABVkuT3Fvi5vzrVzDonOe2vYwLUeOeLF6BG7r9PXq8CSTolWdmWMLMOCl//B5JmxmmLkxdUbvI3NXVL1rUxAWroPB/J65kghWcrBgAAaNWIeRMi5iXmBXKOxCwAhIUCj9ditofGsPo4iLGj0nScvF+zJemxJsq+4j+XSDo8SbmH02mAPwFDPzPbz8xGhh7ybquSpIPTOV+aDpfU3V++P9HtWs65rQr/+xxoZv0TnM9J+lOS+v7lP/dINrEEAABAK0bM6yHmTYyYFwgIQxkAQFhodtpFMduPTLC9NRgVsbwmZoKGZPol2L7dOfdJKicwsxPkjQk2QVLXJEWTTajQUiMjlpNO8ODvD41hNlLR44eFbHTObYqzPSRyEoWukiqbaiAAAEArQ8xLzEvMC7QSJGYBQJKZdVT4F/XYYDTUeyC2V0Fr0KfpInEluq2rsqkDzYuE50j6bop1dUqxXHP0jFhe10TZyJ4fPROUqWriHPURy0VNlAUAAGhViHkbVDZ1IDFvA2JeIItIzAIoSGZWIWlggt1vJPgV/m4zuzti/QHn3HkZblq6QoHSLiW/VSvW6gTbE83cGukChQPUdyTdKu+X+c8lVYVurTKzB+VNuJByl4YWck3sD6odAAAArQIxLzEvgNaNxCwAtG2hW5DaS9rknIt3q1Kmfc9//ljSkc656gTlegTQlsjbrPpJWp6kbN8ExwEAAKB1I+YNI+YF8giTfwEoVFMkHRTxKPe3/yZm+4P+9mdith8k6eostq+pX8JD3o5YnpKNhsQxwn/+e6IA1b/167AA2vJexPKYJsoekeA4AACAfEXM23zEvACyjh6zAAqSc67hV2YzayfpQH/1CefcexH7hvmLz0ZuD8DOiDZ0cM7VJCj3rKTd8madnW5mDzvnarPcttB3R6IxuyTpZEl7NnGenfJm1+3Qgrb8S94YYd0lfcfMbok3S62ZdZV0pr/6QUC9LAAAAHKKmLdFiHkBZB09ZgFAOkTSHpKqJb0Z2mhmnRSeAfaVgNsUGUQNSVTIOfe5pPv81YMl3WVmCX90M7M+ZnZhC9u2wn8+ycwa3bplZkMk/V8K5wldY8Lra4ofvP/BXx0h6bo47TFJv1d4ptzfN7c+AACANuwQEfOmg5gXQNaRmAUAaYL/vNg5tzti+zh5v8pvlvSfgNv0esTyLDObYGbDzGyo/4gMRH+i8G1KF0h618wuN7PxZnaImU0ys++b2ROSVkm6pIVtC93qtpek183sfDM7wm/jTHm/6PeU9FaK13iymV1sZiMjri+dmXd/JukTf/kaM/ubmZ1oZoeZ2bckvSRpmr+/XNLd8U4CAACQ54h500PMCyDrGMoAAKSJ/nNsD4FQ8LrIOZfq+FcZ4Zz7yMwek3cr0hQ1HktrX0kVftntZjZR0sOSjpd3i9qtSU6/tYXNu03SsX6bhku6N2Z/tbyg8AQlH3PrZkmny7uta3bMvgcknZdKY5xz28zsaHm3uA2XdKr/iPWapJPj3fYFAABQAIh500PMCyDr6DELoKD5t/yM91djg9SjEmwPyjmSZkj6p6QtkuoTFXTObXbOfV3S0fJu81ohabukWnm9H5ZIukPSN+QFmM3m97A4QdKP5N0GVyUvMP1IXrB5mHPu8RTO8468Hhp/lvSZpERjiqXSpgp5t7X9QNJCeTP37pa0TtJzks6VNME5x8y0AACg4BDzpo+YF0AQLOAfxAAAAAAAAACg4NFjFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAvb/AU6bFe764KKWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,2, figsize=(8, 2), dpi=200)\n", + "\n", + "ax[0].plot(ref_observables['E_tot']-np.min(ref_observables['E_tot']), 'x-', label='reference')\n", + "ax[0].plot(observables['E_tot']-np.min(observables['E_tot']), 'x-', label='result')\n", + "\n", + "ax[1].plot(ref_convergence['d_G0'][0], 'x-', label='reference')\n", + "ax[1].plot(convergence['d_G0'][0], 'x-', label='result')\n", + "\n", + "ax[0].set_ylabel('total energy (eV)')\n", + "ax[1].set_ylabel(r'convergence $G_0$')\n", + "\n", + "for it in range(2):\n", + " ax[it].set_xlabel('# iteration')\n", + " ax[it].xaxis.set_major_locator(ticker.MultipleLocator(5))\n", + " ax[it].grid()\n", + " ax[it].legend(fontsize='small')\n", + "\n", + "fig.subplots_adjust(wspace=0.3)" + ] + }, + { + "cell_type": "markdown", + "id": "4952537b", + "metadata": {}, + "source": [ + "Note that the total energy jumps quite a bit in the first iteration and is constant for the first two (three) one-shot iterations in this run (the reference data) as expected. Since the HubbardI solver essentially yields DMFT-convergence after one iteration (you may try to confirm this), the total number of iterations necessary to achieve convergence is relatively low." + ] + }, + { + "cell_type": "markdown", + "id": "9afd381d", + "metadata": {}, + "source": [ + "This concludes the tutorial. The following is a list of things you can try next:\n", + "\n", + "* improve the accuracy of the results by tuning the parameters until the results agree with the reference \n", + "* try to fnd the equilibrium lattice paramter by repeating the above calculation of the total energy for different cell volumes" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/NNO_os_plo_mag/tutorial.ipynb.txt b/_sources/tutorials/NNO_os_plo_mag/tutorial.ipynb.txt new file mode 100644 index 00000000..1d3cd1f9 --- /dev/null +++ b/_sources/tutorials/NNO_os_plo_mag/tutorial.ipynb.txt @@ -0,0 +1,846 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "40ad917b-d7a1-4950-8593-abb9b4934e8a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2023-11-24 09:49:44.156139\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "np.set_printoptions(precision=6,suppress=True)\n", + "from triqs.plot.mpl_interface import plt,oplot\n", + "\n", + "from h5 import HDFArchive\n", + "\n", + "from triqs_dft_tools.converters.vasp import VaspConverter \n", + "import triqs_dft_tools.converters.plovasp.converter as plo_converter\n", + "\n", + "import pymatgen.io.vasp.outputs as vio\n", + "from pymatgen.electronic_structure.dos import CompleteDos\n", + "from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType\n", + "\n", + "import warnings \n", + "warnings.filterwarnings(\"ignore\") #ignore some matplotlib warnings" + ] + }, + { + "cell_type": "markdown", + "id": "c24d5aa3-8bf2-471e-868d-32a0d4bb99f7", + "metadata": {}, + "source": [ + "# 4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2" + ] + }, + { + "cell_type": "markdown", + "id": "aed6468d-cb0b-4eee-93b4-665f4f80ac2d", + "metadata": {}, + "source": [ + "In this tutorial we will take a look at a magnetic DMFT calculation for NdNiO2 in the antiferromagnetic phase. NdNiO2 shows a clear AFM phase at lower temperatures in DFT+DMFT calculation. The calculations will be performed for a large energy window with all Ni-$d$ orbitals treated as interacting with a density-density type interaction. \n", + "\n", + "Disclaimer: the interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!\n", + "\n", + "This tutorial will guide you through the following steps: \n", + "\n", + "* run a non-magnetic Vasp calculation for NdNiO2 with a two atom supercell allowing magnetic order\n", + "* create projectors in a large energy window for all Ni-$d$ orbitals and all O-$p$ orbitals\n", + "* create the hdf5 input via the Vasp converter for solid_dmft\n", + "* run a AFM DMFT one-shot calculation\n", + "* take a look at the output and analyse the multiplets of the Ni-d states\n", + "\n", + "Warning: the DMFT calculations here are very heavy requiring ~2500 core hours for the DMFT job.\n", + "\n", + "We set a `path` variable here to the reference files, which should be changed when doing the actual calculations do the work directory:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6dde4dcd-c06a-45e0-9c06-ca11be265713", + "metadata": {}, + "outputs": [], + "source": [ + "path = './ref/'" + ] + }, + { + "cell_type": "markdown", + "id": "b1356ed1-b4a6-48d2-8058-863b9e70a0be", + "metadata": {}, + "source": [ + "## 1. Run DFT \n", + "\n", + "We start by running Vasp to create the raw projectors. The [INCAR](INCAR), [POSCAR](POSCAR), and [KPOINTS](KPOINTS) file are kept relatively simple. For the POTCAR the `PBE Nd_3`, `PBE Ni_pv` and `PBE O` pseudo potentials are used. Here we make sure that the Kohn-Sham eigenstates are well converged (rms), by performing a few extra SCF steps by setting `NELMIN=30`. Then, the INCAR flag `LOCPROJ = LOCPROJ = 3 4 : d : Pr` instructs Vasp to create projectors for the Ni-$d$ shell of the two Ni sties. More information can be found on the [DFTTools webpage of the Vasp converter](https://triqs.github.io/dft_tools/unstable/guide/conv_vasp.html).\n", + "\n", + "Next, run Vasp with \n", + "```\n", + "mpirun vasp_std 1>out.vasp 2>err.vasp &\n", + "```\n", + "and monitor the output. After Vasp is finished the result should look like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bf1b811e-af03-4714-a644-ad7a7b57c42b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DAV: 25 -0.569483098581E+02 -0.31832E-09 0.42131E-12 29952 0.148E-06 0.488E-07\n", + "DAV: 26 -0.569483098574E+02 0.75124E-09 0.25243E-12 30528 0.511E-07 0.226E-07\n", + "DAV: 27 -0.569483098574E+02 -0.12733E-10 0.17328E-12 28448 0.285E-07 0.826E-08\n", + "DAV: 28 -0.569483098578E+02 -0.41837E-09 0.17366E-12 29536 0.151E-07 0.370E-08\n", + "DAV: 29 -0.569483098576E+02 0.22192E-09 0.19300E-12 29280 0.689E-08 0.124E-08\n", + "DAV: 30 -0.569483098572E+02 0.38563E-09 0.27026E-12 28576 0.388E-08 0.598E-09\n", + "DAV: 31 -0.569483098573E+02 -0.92768E-10 0.34212E-12 29024 0.218E-08\n", + " LOCPROJ mode\n", + " Computing AMN (projections onto localized orbitals)\n", + " 1 F= -.56948310E+02 E0= -.56941742E+02 d E =-.131358E-01\n" + ] + } + ], + "source": [ + "!tail -n 10 ref/out.vasp" + ] + }, + { + "cell_type": "markdown", + "id": "3364605b-c105-4ad8-9350-6569b506df07", + "metadata": {}, + "source": [ + "let us take a look at the density of states from Vasp:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3529d644-40f5-4b6b-98f0-2d3a6acdb524", + "metadata": {}, + "outputs": [], + "source": [ + "vasprun = vio.Vasprun(path+'/vasprun.xml')\n", + "dos = vasprun.complete_dos\n", + "Ni_spd_dos = dos.get_element_spd_dos(\"Ni\")\n", + "O_spd_dos = dos.get_element_spd_dos(\"O\")\n", + "Nd_spd_dos = dos.get_element_spd_dos(\"Nd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5fec0ad8-7ab4-4a02-bd72-b679f6ce6ed4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAIyCAYAAAAzNWwJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9foH8M9JR9qme5eWJauILFERRUVxIYgo4gIUFb3oHSg/r6hXvSpuQRFxe70O9KosEcGtIMgSEGSPMkqhdM+0TdLk/P4oaXO+J0kzTrryeb9evCQn55ycYtvkOc/zfR5JlmUZRERERERERK1A19oXQERERERERMGLQSkRERERERG1GgalRERERERE1GoYlBIREREREVGrYVBKRERERERErYZBKREREREREbUaBqVERERERETUahiUEhERERERUathUEpERERERESthkEpERERERERtRoGpURERERERNRqGJQSERERERFRq2FQSkRERERERK2GQSkRERERERG1mnYZlNbU1ODLL7/EnXfeiQEDBiA2NhYGgwEDBw7EU089herqapfHfvTRRzjnnHMQHR2NxMREXHXVVVi3bp1P12Gz2TB37lz0798fkZGRSElJwYQJE7B7925fvzQiIiIiIqKgIsmyLLf2RXjrvffew1133QUA6NevH04//XRUVlZi3bp1qKqqQnZ2NlavXo3U1FTFcTNmzMArr7yCyMhIXH755airq8NPP/0EWZaxcOFCXHvttR5fgyzLuOGGG7Bo0SLEx8dj5MiRKC4uxq+//oqIiAj88ssvGDp0qKZfNxERERERUUfTLoPSjz76CBs2bMD999+PXr16NW7Pz8/H6NGj8ccff+Dmm2/Gp59+2vjczz//jJEjRyIpKQnr169vPG79+vUYMWIEIiMjcfjwYSQkJHh0De+//z7uvPNO9OrVC2vWrEFaWhoAYPHixbj++uvRo0cP7N27F6GhoRp+5URERERERB1LuyzfvfXWW/HGG28oAlIAyMjIwOuvvw4AWLJkCcxmc+Nzc+bMAQA8+uijiuOGDRuGadOmoaKiAu+//77H12A/34svvtgYkALA+PHjMXbsWOTk5GDZsmXef3FERERERERBpF0Gpe4MHDgQAGAymVBSUgIAjWW6AHD99derjrFvW758uUevcfjwYezevRuRkZEYPXq03+cjIiIiIiIKVh0uKD106BAAICwsDImJiQCAvXv3wmQyISUlBVlZWapjzjzzTADAn3/+6dFrbN++HQBwxhlnICwszOX57PsRERERERGRcx1uweOrr74KALjyyiuh1+sBALm5uQDgNCAFAIPBgPj4eJSVlaGqqgoxMTFuX6O589m32/drTr9+/Zxu37dvHyIjI9GlSxePzkNERERERNTScnNzYTAYcPLkSZ+O71CZ0pUrV+I///kPwsLCMGvWrMbt9hExUVFRLo81GAyKfd1p7nzenMsdWZZhsVj8OgcREZGvbDYbdu/ejd27d8Nms7X25RARURtlsVhgNBp9Pr7DZEr37NmDSZMmQZZlvPTSS41rS4GG4A4AJElyebw3TYg9OZ83du3a5XS7PYPq6nkiIqJAMhqNiI6OBgBs3ry58aYrERGRI1eVn57qEJnSvLw8XHnllSgrK8OMGTMwffp0xfP2clx30XtNTQ0ANL75utPc+ezbPTkXERERERFRMGv3QWlxcTEuu+wy5Obm4vbbb8fs2bNV+9jXZObl5Tk9h9FoRHl5OeLj45tdT+rJ+ezbuRaUiIiIiIjIvXYdlFZVVWHUqFHYu3cvrrvuOrz77rtOS2r79OkDvV6PoqIip4Hk1q1bAQADBgzw6HXtpcE7d+50uubT2/MREREREREFq3YblJpMJlxzzTXYvHkzrrjiCvzvf/9DSEiI030jIyNxySWXAAAWLVqket6+bcyYMR69dvfu3dG3b1/U1tZixYoVfp+PiIiIiIgoWLXLoNRqteLmm2/GL7/8ggsuuABLlixBeHi422NmzJgBAHj66adx4MCBxu3r16/H22+/jdjYWNx5552KYzZt2oTs7GyMHDnS5fkefPBBFBYWNm5fsmQJvvrqK3Tv3h3jxo3z9UskIiIiIiIKCu2y++78+fOxdOlSAEBycjLuvfdep/vNnj0bycnJAIBLL70U06dPx6uvvopBgwbhsssug9lsxg8//ACbzYZPPvkEiYmJiuNramqwb98+1NXVqc59xx13YOXKlVi6dGlj4FpcXIzVq1cjIiICCxYsQFhYmMZfORERERERUcfSLoPSsrKyxr/bg1NnnnjiicagFADmzp2LQYMGYf78+fjhhx8QFhaGkSNH4tFHH8Xw4cO9ugadToeFCxfi1Vdfxfvvv4+vv/4aBoMB1157LZ566im/2yITERERUccky7JX4wiJWookSZqNvfTqdWX+RLRZnFNKREStyXFOaXV1NeeUEvnBZrOhoqICZWVlMJlMrX05RC6FhoYiJiYGcXFxiIyM9OgYf+OWdpkpJSIiIiJqL2RZxsmTJ1FRUdHal0LUrPr6epSVlaGsrAyZmZmIjY0N+GsyKCUiIiIiCqCqqqrGgDQ1NRWxsbEup0YQtSabzYa6ujqUlZWhuroax48fR1hYmMcZU18xKCUiIiIiCqDKykoAQGJiIpKSklr5aohc0+l0iI6OhsFgQF5eHqqrq1FRURHwoLRdjoQhIiIiImovampqAAAxMTGtfCVEnpEkCQkJCQAaMv2BxqCUiIiIiChAZFmG1WoFAOj1+la+GiLPRUREAGhYYxro3rgMSomIiIiIAsTxw3xrjNog8pVO1xQqMiglIiIiIiKiDotBKREREREREbUaBqVERERERETUahiUEhERERERUathUEpEREREROTEqlWrIEkSpkyZ4vExI0aMgCRJjX9CQkKQkJCAnj17Yvz48Xj99ddRUVHR7HksFgvefPNNXHzxxUhNTYVer0dmZibGjx+Pr7/+2u2x5eXleOyxxzBo0CAYDAZERkaiS5cuuPDCC/Gvf/0L27Zt8/jraQmhrX0BREREREQUXI4cOYLu3bvjoosuwqpVqzQ556pVq3DxxRfjtttuwwcffKDJOf1xxRVXID09HUDDrM9jx45h+fLlWLJkCR5++GHMmzfPZbB79OhRXHXVVdi9ezciIyMxfPhwJCUl4ejRo/jyyy+xZMkSjB8/HgsWLGgc3eJ47IUXXojc3FzExMTgvPPOQ2pqKoqLi7F582asWbMGJSUleOuttwL9T+AxBqVEREREREQae+ihhzBixAjFtoqKCrzyyit4+umncfvtt8NiseCuu+5S7TNixAgcOXIEN954I958800kJCQ0Pr93717cdNNNWLx4MWw2G5YsWaI4/m9/+xtyc3MxZswYLFiwAHFxcY3P1dfX44cffkBBQYH2X7AfWL5LRERERETUAuLi4vDEE080ZnL/8Y9/qALEmTNn4siRI7j88svx6aefKgJSAMjOzsaPP/6I9PR0LF26FJ9//nnjc7W1tfj2228BAHPnzlUEpAAQGhqKUaNGeVWO3BIYlBIRERERUYt54okn0L17dwDA6tWrFesvxWBp9+7dmDhxIjIyMhAeHo7MzEzceuut2Ldvn2K/KVOm4OKLLwYAfPjhh4pzPvHEE437rVixAnfccQf69u2L2NhYGAwGDBw4EM8++yxMJlNAv25HkyZNwvDhw1FXV4d33323cXtJSQk+/PBDAA1BpU7nPFxLTk7G448/DgCYM2dO4/aysjLU19cDAFJSUgJ1+Zpj+S4RERERUSuw2WSU1Zhb+zJ8khAVDp1O8unYQYMGYfz48Vi8eDHS0tJw5ZVXNj43fPjwxr//9NNPuPrqq1FbW4szzzwTI0aMwN69e/Hxxx9j6dKlWLlyJS644ILG406ePInvvvsOPXr0UJxn0KBBjX+/8847YTQa0a9fP/Tv3x+VlZXYtGkT/vWvf+Gnn37C999/j5CQEJ++Lm/ddNNNWLt2LX755Rc8+uijAIBffvkFdXV1GDRoEPr27dvs8X/961/x+++/o6SkBElJSUhOTkZERATq6urw1ltv4cEHH2yJL8VvDEqJiIiIiFpBWY0ZQ57+sbUvwydbHr0USdF6n44dN24cBg0ahMWLFyM7O9tpUyKj0YiJEyeitrYWb775JqZNm9b43CuvvIIZM2bglltuwcGDB6HX6zF16lT07NkT3333HYYPH+6y0dFbb72Fyy67DAaDoXFbVVUVbrnlFnz99df45JNPcOutt/r0dXnLHizv2bOncZu9K+6QIUOaPT4hIQGnnXYacnJysG3bNowcORLh4eGYPHky3n33XcycORMLFy7EVVddhWHDhmHYsGGqct62guW7RERERETUpnzxxRcoKCjABRdcoAhIAeD+++/HkCFDkJeXh6VLl3p13nHjxikCUgCIiYnBK6+8AgBYtmyZfxfuheTkZAANJbd2JSUlAIDU1FSPzmEv0S0uLm7cNnfuXEyePBmSJGHz5s146qmnMGrUKCQlJeHiiy/G999/r9WXoBlmSomIiIiIqE1Zs2YNAGDixIlOn580aRK2bNmCNWvW4KabbvLq3AcOHMDKlStx8OBBGI1G2Gw2yLLc+FxLsb+mJEmqbfb/+nKOqKgofPTRR/jXv/6FRYsWYe3atY0lvqtWrcKqVaswZ84czJgxQ6svxW8MSomIiIiIqE05ceIEAKBbt25On7dvt+/nCVmW8cADD+CVV15xGfRVVVV5dZ3+sGc3ExMTG7fZs6eFhYUenaOoqAgAkJSUpHquT58++Ne//gUAsNlsWL9+PR5++GGsWbMGM2fOxPjx49G1a1e/vgatMCglIiIiImoFCVHh2PLopa19GT5JiApvkddxzAD68ryjzz//HC+//DKysrIwd+5cDBs2DCkpKQgLC4PZbIZer/c4Q6kF+/rR008/vXHbwIEDAQBbtmxp9vjS0lIcPnxYcZwrOp0O559/Pr799ltkZ2fj2LFj+O6773D33Xf7ePXaYlBKRERERNQKdDrJ52ZBHV2nTp0AoDHoEh09ehQAkJGR4fE57etP33zzTYwZM0bx3KFDh3y5TL989tlnANA4ygYALrnkEuj1emzfvh27d+9WBKzOjpdlGWeddVZjhrU5UVFROOecc3Ds2DHFOtTWxkZHRERERETUosLDGzKt9pmaIvuol08++cTp8/bt9v08Oae9oVDnzp1Vz33xxReeXLZmFixYgN9++w1RUVGYOnVq4/akpKTG7r/3338/bDab0+OLi4sxa9YsAPB6bWhOTg6ApsC/LWBQSkRERERELSo5ORlhYWHIycmB1WpVPX/DDTcgLS0Na9aswTvvvKN4bt68efj999+RlZWFa6+9tnG7Pcjat2+f09fs3bs3AOCdd95RlOmuWbMGL730kt9fkycqKirw5JNPYsqUKQCA+fPnN3bQtXvhhRfQpUsXfP/997jlllsU3XmBhq/v0ksvxcmTJzF27FjcfPPNjc+Vl5dj6NChWLp0KSwWi+I4i8WCp59+Gtu2bUNkZKRiPmxrY/kuERERERG1qPDwcFx55ZVYvnw5Bg4ciDPPPBPh4eE4//zzcfvtt8NgMOCTTz7B1Vdfjb/85S9455130Lt3b+zduxd//PEHDAYDPv30U+j1TeXP3bp1w4ABA7B582acc8456NevH0JCQjB27FiMHTsW//jHP/DBBx/gjTfewKpVqzBgwAAcP34ca9euxf/93/9h9uzZmn6Nzz//fOO81OrqauTl5eGPP/6A2WxGbGws5s+fj8mTJ6uOS0hIwKpVq3DVVVfh888/x1dffYULLrgASUlJOHr0KDZs2ACbzYZx48bh008/VR2/adMmXHfddYiNjcWQIUOQnp6O8vJybNu2Dfn5+QgJCcGbb76J9PR0Tb9efzAoJSIiIiKiFvfee+/hgQcewA8//IBPP/0UVqsV9fX1uP322wEAI0eOxO+//45nnnkGP//8M/78808kJydj0qRJePTRR9GnTx/VORcvXox//vOfWLNmDbZs2QKbzYasrCyMHTsWvXv3xu+//46ZM2di48aN+Oqrr9CnTx+8/fbbuOuuuzQPSr/77jsADU2GYmJikJSUhDFjxmDkyJGYNGkSYmNjXR7bvXt3bN++He+99x6++OILbNmyBZWVlUhOTsbYsWNx++23Y+zYsarj4uLisG7dOnz77bdYtWoVDh06hN9++w0hISHo0qULRo8ejb///e8YMGCApl+rvyS5JVtMkVf69esHANi1a1crXwkREQUjo9GI6OhoAA13+cWB80TUPJvN1lhO2qdPH+h0XD1H7YM337v+xi38qSAiIiIiIqJWw6CUiIiIiIiIWg2DUiIiIiIiImo1DEqJiIiIiIio1TAoJSIiIiIiolbDoJSIiIiIiIhaDYNSIiIiIiIiajUMSomIiIiIiKjVMCglIiIiIiKiVsOglIiIiIiIiFoNg1IiIiIiIiJqNQxKiYiIiIiIqNUwKCUiIiIiIqJWw6CUiIiIiIhanCRJkCQJCQkJKC8vd7rPE088AUmS8Pzzzzvd/sEHH2h2PSNGjIAkSThy5Ihm5yTPtNugdMuWLXj++edx3XXXITMzE5IkISIiwuX+9m96d38uueQSj19/ypQpbs/11ltvafFlEhERERF1aOXl5XjllVda+zKoFYW29gX4atasWVi2bJnH+992220un1uxYgWKi4txwQUXeH0dV1xxBdLT01Xb+/Tp4/W5iIiIiIiCiU6nQ2hoKObOnYv77rsPCQkJHh33t7/9DTfddBMyMjICfIXUEtptUDps2DAMHDgQZ599Ns4++2yngaEjV6n98vJyfPbZZwCASZMmeX0dDz30EEaMGOH1cUREREREwS4sLAx33nkn3njjDbz88suYNWuWR8clJycjOTk5wFdHLaXdlu/OnDkTTz75JMaMGYO0tDSfz7Nw4UKYTCace+656NWrl4ZXSEREREREzXnkkUeg1+vx6quvorS01KNj/FlT+s4776B///6IiIhAZmYm/v73v6OiosLr85B22m2mVCsLFiwAAEyePLmVr4SIiIiIgorNBtR6FoS1OZGJgE6b/FZmZibuuusuzJ8/H3PmzMEzzzyjyXmdeeCBBzBnzhzo9XpccskliIqKwieffILffvsNer0+YK9L7gV1UJqbm4s1a9YgLCwMN954o0/nWLJkCRYvXgyr1Yru3bvj6quvRnZ2tsZXSkREREQdTm0p8FKP1r4K3/wzBzBoVz778MMP47333sNrr72GGTNmICkpSbNz261btw5z5sxBYmIifv31V/Tr1w8AUFJSgksuuQQbNmzQ/DXJM0EdlH7yySeQZRmjRo3y+Rv/tddeUzyeOXMm7rnnHrz66qsIDfXsn9f+AyHKyclBjx7t9BcVEREREZGHOnXqhLvvvhvz5s3D7Nmz8dxzz2n+GvbpGP/3f/+n+PydlJSEl156CVdccYXmr0meabdrSrXgT+nu4MGD8dZbb2H//v2oqanBoUOH8PrrryM+Ph5vvPEG/vnPf2p9uUREREREHdZDDz2EiIgIzJ8/H8XFxZqff+3atQCAG264QfXc5ZdfjsTERM1fkzwTtJnSrVu3Yvfu3YiPj8fVV1/t9fHTp09XPO7evTvuvfdeXHjhhRgyZEhj6UHnzp2bPdeuXbucbneVQSUiIiIi6mgyMjIwbdo0zJ07Fy+99BJeeOEFr45/7733GgNPu+TkZMyePRsAcOLECUiS5PLzeZcuXTxutETaCtqg1J4lnTBhgqaLms844wyMHTsWixYtwo8//ojbb79ds3MTERERUQcSmdiwNrM9igxMVnHmzJl4++238frrr+OBBx7w6ti1a9fiww8/VGzr2rVrY1BKbVdQBqVWq9Wv2aTNsY+Wyc/P1/zcRERERNRB6HSaNgvqCNLT03HPPffg5ZdfxosvvgiDweDxsR988IHbETEZGRk4cuQIjh07hp49e6qez83N9eWSSQNBuab0p59+Qn5+Prp27YoLLrhA8/OXlZUBAKKjozU/NxERERFRRzZz5kxERUXhjTfeQEFBgWbnHT58OABg4cKFqud++OEHlu62oqAMSu2lu5MmTYIkSZqe22QyYcWKFQCAIUOGaHpuIiIiIqKOLjU1Fffeey9qampU5bj++Mtf/gIAePnll7Fnz57G7aWlpXjwwQc1ex3yXtAFpTU1NVi6dCmA5kt3N23ahOzsbIwcOVKxfd++fVi2bBmsVqtie1FREW666SYcO3YMAwcOxHnnnaftxRMRERERBYEHH3wQBoMBtbW1mp1z+PDhuO+++1BcXIzBgwdjzJgxmDBhQuPSu3PPPVez1yLvtNs1pStWrMCsWbMU28xms+Kb6bHHHsPo0aMV+3z55Zeorq7G2WefjezsbLevUVNTg3379qGurk6xPT8/H+PGjUNSUhKys7ORmZmJwsJCbNmyBVVVVcjKysIXX3yheRaWiIiIiCgYpKSk4K9//StefPFFTc/78ssvo0+fPpg/fz5++OEHJCUl4YYbbsBzzz2HcePGafpa5Ll2G5QWFRVh48aNim2yLCu2FRUVqY5zLN31Ve/evXHfffdhw4YNyMnJwaZNm6DX69G7d29cffXVmD59OhISEnw+PxERERFRRyfLstvnX3jhBZdjYZ544gk88cQTXr+mJEmYNm0apk2bpnpu1apVXp+PtCHJzX03UKuxzyl1NceUiIgokIxGY2PTvurqaq+6YBJRA5vNhn379gEA+vTpA50u6FbPUTvlzfeuv3FLu82UEhERtRfrcorx2aZjyEyIxNTh3ZEUrd18bCIiovaOQSkREVEA/X6kFBPf2wh7XdLaA8VYfM95CA9ltoSIiAgIwu67RERELem1nw/CcaHMjuMV+HbXyda7ICIiojaGQSkREVGAlFSb8NvBYtX2n/ZoNwyeiIiovWNQSkREFCCbj5bBalP3E/wzr6IVroaIiKhtYlBKREQUILtOVDrdfrTEiDqLtYWvhoiIqG1iUEpERBQgu084z4jaZCCnqLqFr4aIiKhtYlBKREQUIPsKqlw+d6CAQSkRERHAoJSIiCggLFYbTpTXuXw+r6ymBa+GiIio7WJQSkREFAD55XVOmxzZHXcTsBIREQUTBqVEREQBkFvqPhOaX1HbQldCRETUtjEoJSIiCoBjzZTn5jNTSkREBIBBKRERUUCImdLYiFDF4xPMlBIREQFgUEpERBQQx4SgdOhpSYrHVXX1MJrqW/KSiIjapOLiYjz22GMYPHgw4uPjERUVhZ49e+Luu+/Gzp07W/vyqAUwKCUiIgqAY2XKTOigzvGqfUqN5ha6GiKitunHH39Er1698PTTT+P48eO46KKLMGbMGISFheHdd9/FoEGD8Pzzz7f2ZVKAhTa/CxEREXmrsFK5ZrRPWgzCQ3QwW22N20qMZnROjGrpSyMiahN+//13jB49GhaLBc899xweeOABhIY2hScrV67EpEmT8PDDDyMqKgr/+Mc/WvFqKZCYKSUiItKYzSajqMqk2JYWG4FEQ7hiW0m1ch8iomAhyzJuu+02mM1mPPXUU3jooYcUASkAXHXVVfjyyy8hSRJmzpyJo0ePttLVUqAxU0pERKSx0hoz6oUZpamxeiRFh+OkQwa1hOW7REHNJttQbipv7cvwSbw+HjrJ9/zWN998gz179iAzMxMzZ850ud+FF16ICRMm4IsvvsDrr7+OF1980aPzjxgxAqtXr8bhw4exdu1avPLKK9izZw+io6MxatQoPPvss8jMzPT5+klbDEqJiIg0ViCU7uokIMkQ7iRTyqCUKJiVm8px0ecXtfZl+GT1jauRGJHo8/ErV64EAEyYMAFhYWFu973lllvwxRdf4JtvvvE4KLWbPXs23njjDVxwwQW45pprsGHDBnz00Uf4+eefsX79emRlZfn8NZB2WL5LRESkscJKZVluUrQeoSE6JEfrFdtLjSzfJaLgtG3bNgDAkCFDmt3Xvs/u3bthsVi8ep23334bX3/9NVavXo3//e9/2L9/PyZOnIi8vDyuUW1DGJQSERFpTMyUpsU2BKPMlBIRNSgpKQEApKamNrtvSkoKAMBms6G0tNSr17nhhhtw1VVXNT4OCwvDq6++CoPBgGXLluH48eNenY8Cg0EpERGRxgrFJkcxEQCApGghKOWaUiIKUrIsK/7ryb4AIEmSV69z0003qbYlJSXhsssug81mw7p167w6HwUG15QSERFpTMyUpp7KlCYblOW7JSzfJQpq8fp4rL5xdWtfhk/i9fF+HZ+cnIx9+/ahsLCw2X2LiooANASkCQkJKC4uxgMPPKDab+rUqRg+fLhiW9euXZ2es1u3bgCAEydOeHnlFAgMSomIiDRWIKwpTT2VKRXLd0tZvksU1HSSzq9mQe3ZwIED8dtvv2HLli2YPHmy2323bNkCAOjXrx/CwsJQXV2NDz/8ULXfiBEjVEGpK55kaKnlsHyXiIhIY2IGNDnm1JpSlu8SEQEARo0aBQBYtGhRs82LPv30UwDAlVdeCaAhyynLsurPlClTVMe6mm2am5sLAOjUqZOvXwJpiEEpERGRxsqEYDPpVIY0PlI59sBUb0Odxdpi10VE1FZcddVV6NOnD44fP44XXnjB5X6//vorFi1ahPDwcPz1r3/1+nU+//xz1bbS0lJ8//33kCQJw4YN8/qcpD0GpURERBoTM6D2st24SPUsvopa78YbEBF1BDqdDh988AHCwsLw+OOP44UXXoDVqrxJ980332DcuHGQZRnPP/984zpQb3zxxRf47rvvGh/X19fj/vvvh9FoxNixYzmntI3gmlIiIiINWaw2VNXVK7Y1F5SmxUa0yLUREbUl5557Lr766ivcdNNNeOihh/Dyyy9j2LBh0Ov12LFjB/bs2QOdTodZs2bh/vvv9+k17r77bowaNQoXXnghOnXqhA0bNuDw4cPo1KkT5s2bp/FXRL5ippSIiEhDYuku0BSUhoboEK1X3g9mppSIgtmVV16JAwcO4F//+hcyMjLw888/46uvvkJdXR2mTp2KP/74A48++qjP53/ggQfw3//+FxUVFVi6dCkqKysxefJkbNy4EV26dNHwKyF/MFNKRESkodIaZVAqScq1pHGRYag2NWVSK2oYlBJRcEtJScHTTz+Np59+OiDnv+2223DbbbcF5NykDWZKiYiINCSOeYmLDENoSNPbbaxQwlvOTCkREQU5BqVEREQaEjOl4mxSsQMvy3eJiCjYMSglIiLSUKnYeTdKGZSKzY4YlBIRUbDjmlIiIiINqYJSg/ugtJJBKRGR5latWtXal0BeYKaUiIhIQ2JQmhQtBKVRwprSGnW3XiIiomDCoJSIiEhDJUJQmsDyXSIiIrcYlBIREWlInFPaXPkug1IiIgp2DEqJiIg01Gz5LoNSIiIiBQalREREGhKDUpbvEhERuceglIiISCOyLKO8RhlkelK+K8tywK+NiIiorWq3QemWLVvw/PPP47rrrkNmZiYkSUJERITL/Z944glIkuTyz0MPPeT1NdhsNsydOxf9+/dHZGQkUlJSMGHCBOzevdufL42IiNqpOosNZqtNsS0+UhmUxgvddy1WGbUWa8CvjYiIqK1qt3NKZ82ahWXLlnl93Pnnn4+ePXuqtg8ZMsSr88iyjBtvvBGLFi1CfHw8Ro8ejeLiYixevBgrVqzAL7/8gqFDh3p9fURE1H45K8WNjVS+1YqZUvtxUeHt9i2ZiIjIL+32HXDYsGEYOHAgzj77bJx99tlIT0/36LipU6diypQpfr/+f//7XyxatAi9evXCmjVrkJaWBgBYvHgxrr/+ekycOBF79+5FaGi7/ScmIiIvVdapg9KYiDDVY0kCHCt2y2ssyIiLDPTlERERtUnttnx35syZePLJJzFmzJjGgLAlzZkzBwDw4osvKl5//PjxGDt2LHJycnzK5BIRUfslZkpj9KEI0UmKbSE6CdF65Q1LNjsiomBkX0aXkJCA8vJyp/vYl+A9//zzHp/3yJEjkCQJI0aM0OZCHa7jgw8+0Oyc1KTdBqWt6fDhw9i9ezciIyMxevRo1fPXX389AGD58uUtfWlERNSKKoXgMtZJqS6gLuEVjyMiCibl5eV45ZVXWvsyqBUFXW3pzz//jG3btqGurg5ZWVkYNWqU1+tJt2/fDgA444wzEBam/sBx5plnKvYjIqLgIGY83QWleWW1Lo8jIgoWOp0OoaGhmDt3Lu677z4kJCS09iVRKwi6TOnHH3+MV199FW+//TYee+wxnHXWWbj++utRXV3t8Tlyc3MBAFlZWU6ft2+370dERMFBDC7jIp3f+42N4KxSIiIACAsLw9SpU1FZWYmXX365tS+HWknQBKU9e/bE7NmzsWvXLlRXV+PYsWP45JNPkJmZicWLF2Py5Mken8sewEZFRTl93mAwKPZrTr9+/Zz+ycnJ8fiaiIio9VXW1isei8Gnnap8t67e6X5ERMHgkUcegV6vx6uvvorS0lKPjysuLsZf/vIXpKenIyoqCoMHD8ZHH33k17WsXr0aI0aMQHR0NJKSknDttddi7969fp2Tmhc05buTJk1SPDYYDLjllltw8cUXo3///vjyyy+xbt06nHfeec2eyz7kXJKkZvYkIqJgos6Uck0pEbkm22ywumjw09aFxMdD0mmT38rMzMRdd92F+fPnY86cOXjmmWeaPaakpATnn38+9u/fj6ysLIwdOxYnT57E7bffjmnTpvl0HcuWLcP48eNhtVpx3nnnoUuXLti0aROGDh2Kq6++2qdzkmeCJih1JSMjA7fffjtmz56N7777zqOgNCYmBgBgNBqdPm/fHh0d7dE17Nq1y+n2fv36eXQ8ERG1DeJIGJdrSqNYvktEgLW8HAfOO7+1L8Mnvdb9htDERM3O9/DDD+O9997Da6+9hhkzZiApKcnt/o888gj279+Pa665Bp9//jn0ej0A4JtvvsHYsWO9fv2qqipMnToVVqsVn376KW6++WYAQH19PaZOnYoPP/zQ+y+KPBY05bvu9OrVCwCQn5/v0f5dunQBAOTl5Tl93r7dvh8REQUHTzOlsREcCUNE5KhTp064++67UVVVhdmzZ7vdt7q6Gh9//DFCQ0Mxb968xoAUAEaNGoUJEyZ4/foLFy5EcXExLrvsssaAFABCQ0PxyiuveJxsIt8wKAVQVlYGwPPM5sCBAwEAO3fuhMWi/iCxdetWAMCAAQM0ukIiImoPVN13I5wXJLF8l4hI7aGHHkJERATmz5+P4uJil/tt3boVtbW1GDp0qNMkkGNQ6am1a9cCAG644QbVcwkJCbj88su9Pid5LuiDUlmWsXTpUgDweDRM9+7d0bdvX9TW1mLFihWq5xctWgQAGDNmjHYXSkREbZ4YXIplunZiWS8zpUREDcvqpk2bhurqarz00ksu9ztx4gQA11WJzravXbsWU6ZMUf2xB7++nJO0ExRrSouLi7Fy5UrceOONivR+dXU1HnjgAWzcuBHp6em49tprFcdt2rQJt956KzIzM/HTTz8pnpsxYwbuuusuPPjggzjvvPOQmpoKAFiyZAm++uordO/eHePGjQv410ZERG2HGJR62n2XQSlRcAqJj0evdb+19mX4JCQ+PiDnnTlzJt5++228/vrreOCBB5zu40vT0YMHDzpdF/rEE08gOTmZjUxbWbsNSlesWIFZs2YptpnNZpx77rmNjx977DGMHj0a1dXVuO222/D3v/8dffv2RZcuXVBeXo6tW7eipKQE8fHxWLRokWrES01NDfbt24e6ujrV699xxx1YuXIlli5diuzsbIwcORLFxcVYvXo1IiIisGDBAoSFOf8wQkREHZM42sXlmlIGpUQEQNLpNG0W1BGkp6fjnnvuwcsvv4wXX3yxcdSio06dOgEAjh496vQcubm5qm32zKgrvpyTtNNuy3eLioqwcePGxj9Aw10Tx21FRUUAgKSkJMycORODBw9GXl4evvrqK/z2229IT0/H//3f/2Hnzp04/3zvOp/pdDosXLgQc+bMQadOnfD1119jx44duPbaa7F582aPuvgSEVHHUW+1odokzCn1cCSMqd6GOos1YNdGRNSezJw5E1FRUXjjjTdQUFCgen7IkCGIiIjAxo0bcezYMdXzn332mdevOXz4cAANDY9E5eXl+P77770+J3mu3QalU6ZMgSzLbv/Y74bExMTg+eefx6pVq5CXl4e6ujoYjUbs3LkTs2fPRmZmptPXGDFiBGRZxpEjR5w+HxISghkzZmDnzp2ora1FcXExFi9ezFEuRERBqErIkgKezykF1ONkiIiCVWpqKu69917U1NQ4LbmNjo7GxIkTUV9fj+nTp8NkMjU+9/333+OLL77w+jUnTJiAxMRE1fFWqxX/93//h+rqat++GPJIuw1KiYiI2hJnJbiuR8I4CUpZwktE1OjBBx+EwWBAbW2t0+eff/559OzZE0uXLkWvXr1w880345JLLsGoUaNw1113ef16sbGxeOedd6DT6XDjjTdi+PDhuOWWW9CnTx8sWrQIEydO9PdLIjcYlBIREWlAzHSGhUjQhzp/mw0P1SEyLESxjetKiYiapKSk4K9//avL55OTk/Hbb79h6tSpMJlM+PLLL1FSUoJ3330XDz74oE+vOX78ePzwww+44IIL8Mcff+Cbb77B6aefjvXr16Nnz56+finkAUm2t5qiNsdeBrxr165WvhIiImrOupxi3PLuxsbHCVFh+ONx13Ptzn32J5ysbGqk998pZ+Pi7NSAXqO3jEZj4wzv6upqpw1HiMg9m82Gffv2AQD69OkDnY45IWofvPne9Tdu4U8FERGRBowmZaMig959g3uOhSEiImrAoJSIiEgDNWZlo6NoBqVEREQeYVBKRESkAXEcTFR4iIs9G8RGKoNWBqVERBSsGJQSERFpwCgEpc2V74ozTNl9l4iIghWDUiIiIg2Ia0pZvktEROQZBqVEREQaEDOlUeEMSomIiDzBoJSIiEgDRlWjo2bWlEYI5bt1DEqJOiJJkhr/brPZWvFKiLxjtTZVADl+HwcCg1IiIiIN+D8Spt7FnkTUnkmShPDwcAANs3+J2ovKykoAgF6vD3hQ6v4dk4iIiDzittGRzQqUHgKiU4GIOADqoJSNjog6rpiYGJSUlKCgoAAAYDAYoNMxN0RtjyzLMJlMqKqqQmlpKQAgISEh4K/LoJSIiEgD4kgYg30kTOlhYMF1DUFpeDQw7g3g9GsQF8U1pUTBIikpCUajEXV1dThx4kRrXw6Rx+Lj4xEXFxfw1+EtGiIiIg3UmF2U7y7/R0NACgDmamDpPUB1kWpNabWpHvVWrjcj6ohCQkLQpUsXJCUlNZbyErVVISEhiI2NRWZmJtLT01skq89MKRERkQaclu+W5ACHf1XuaDECOxchru/tqnNU1dUjwcAPrEQdUUhICFJTU5GamgpZliHLcmtfEpGKJEkBXz/qDINSIiIiDajKd/WhwK6lznc+vAZxZ96t2lxRa2FQShQEWuuDP1FbxfJdIiIiDYjlu9H6ECB3vfOdj/6GiFAgPET5Nsx1pUREFIwYlBIREflJlmXVnNKoMB2Q97vzA+rKIZUfRWyksmCJs0qJiCgYMSglIiLyU43ZCnF5WHztMaCuwvVBxQcRq5pVyqCUiIiCD4NSIiIiP4lZUgCIrjrk/qCSA6pZpQxKiYgoGDEoJSIi8pPRZFVti6g46P6gYgalREREAINSIiIiv4njYEJ1EkJLD7g/qDRHNau0sladcSUiIuroGJQSERH5ydmMUql4v3KnzCHKxxXHmSklIiICg1IiIiK/iWtKDWE6oFjIlPa4RPm48jjiIoTuuwxKiYgoCDEoJSIi8lO1sKY0K7waMFUqdzrtYuXj+jqkhhoVm5gpJSKiYMSglIiIyE81Qvlut9AS5Q66MCDrLEBSvu2moVjxmHNKiYgoGDEoJSIi8lO1EJR21hUpd4jLAkL1QHS6YnOyTRmUMlNKRETBiEEpERGRn8SRMJ0gBKXxnRv+G5uh3GwtVTxmUEpERMGIQSkREZGfaoRGR+k2MVPapeG/hlTF5ph6ZVBaWWuBLMuaXx8REVFbxqCUiIjIT2L5brK1QLlD/KmgNDpFsTnSrAxKbbL6XERERB0dg1IiIiI/iXNKE+vFoPRU+a6QKY0wCw2RwBJeIiIKPgxKiYiI/GQ0O64plRFnOqncIe5UUBqtDEpDa4qhk5S7MiglIqJgw6CUiIjIT46Z0lgYEW6rVe4Ql9XwXyEolYyFiI0MU2yrrGX5LhERBRcGpURERH5yDEpTpAr1DjGnuu4K5buoLkScEJSW15i1vjwiIqI2jUEpERGRnxzLd1OlcuWTEXFAWETD34VMKcxVSItUdtstq2H5LhERBRcGpURERH5yzJSmokz5ZHR6098Nyu67ANBVb1Q8LmOmlIiIggyDUiIiIj85jnFRZUpj0pr+HhEHhIQrns4Mq1I8LjMyKCUiouDCoJSIiMgPsiyjxqF8V7WmNNohKJUk1brS9NBqxeNSZkqJiCjIMCglIiLyg6neBqutaV1oqiSW76YpH0clKB6mhCiDUmZKiYgo2DAoJSIi8oNj6S4ApKJcuUNMuvJxVJLiYaKkXFNaykZHREQUZBiUEhER+aHGZFU8Vq0pjRaC0shExcM4uVLxmJlSIiIKNu02KN2yZQuef/55XHfddcjMzIQkSYiIiHC6r81mw5o1a/Dggw9i6NChSE1NhV6vR48ePTBt2jQcPnzY69efMmUKJEly+eett97y90skIqJ2QMyUprhrdASoMqXRNiEo5ZpSIiIKMqGtfQG+mjVrFpYtW+bRvocOHcKFF14IAMjMzMR5550HnU6HTZs24e2338ann36KlStXYvjw4V5fxxVXXIH09HTV9j59+nh9LiIian+M5qagVA8z4qQa5Q6qNaXKoDSqvlzxuKquHharDWEh7fa+MRERkVfabVA6bNgwDBw4EGeffTbOPvtsp4GhnSRJuOKKK/DII480BqcAYDKZMG3aNHzwwQeYOHEiDh48iLCwMK+u46GHHsKIESN8/TKIiKidc5xRqsqSAk6CUmX5rt4idOtFQ7Y0NcZ59Q8REVFH026D0pkzZ3q8b48ePfDtt9+qtuv1erz55ptYunQpcnNzsW7dOlx00UVaXiYREXVwRoc1paomR6ERDbNJHQmZ0tA6oVsvgDKjhUEpEREFjaCvDYqIiEDv3r0BACdOnGjlqyEiovbGMVOaJCnXh8KQ2jCb1FGkciSMVFuCuEhllQ7XlRIRUTBpt5lSrVitVhw9ehQA3JYAu7JkyRIsXrwYVqsV3bt3x9VXX43s7GytL5OIiNooxzWlCVKV8kmhVLdhmzJTippSJESGoqK2aRQMO/ASEVEwCfqg9LPPPkNhYSFSUlJw3nnneX38a6+9png8c+ZM3HPPPXj11VcRGurZP2+/fv2cbs/JyUGPHj28viYiImo5jpnSBFQrnxQDUEAdqMpWZEZZcKS0aVMpM6VERBREgrp899ixY7jvvvsAAE899RT0er3Hxw4ePBhvvfUW9u/fj5qaGhw6dAivv/464uPj8cYbb+Cf//xngK6aiIjakmqHNaU+ZUoBdNbXKR4zU0pERMEkaDOlRqMR1157LYqLizFu3DhMmzbNq+OnT5+ueNy9e3fce++9uPDCCzFkyBC89tprmDFjBjp37tzsuXbt2uV0u6sMKhERtR01Zi8zpWFRQIgesJoaN3UKrwEQ2/i41GhRH0dERNRBBWWm1GKxYPz48diyZQuGDx+OTz/9VLNzn3HGGRg7diysVit+/PFHzc5LRERtU7XJzZrSSCeZUklSBatpYcrZpuUs3yUioiASdEGpzWbDpEmT8N1332HgwIFYvnw5IiMjNX2NXr16AQDy8/M1PS8REbU9RndBqbPyXSfbk3XK47imlIiIgomm5btHjhzBmjVrsH37dhQVFaGiogJxcXFISUnBoEGDcMEFF6Br165avqTX7r33XnzxxRfo3bs3vv/+e8THx2v+GmVlDTPnoqOjNT83ERG1LTVmhzWlqvJdz4LSRCiDUq4pJSKiYOJ3UFpWVoYPP/wQ7777Lvbu3QsAkGVZtZ90ak5b3759cdddd+HWW29FQkKCar9AeuSRR/D222+jS5cu+OGHH5Camqr5a5hMJqxYsQIAMGTIEM3PT0REbYtj+W68JASlzsp3AVX5bqwQzDJTSkREwcTnoLSmpgYvvvgi5syZA6PRiMjISAwfPhznnHMOsrOzkZiYiNjYWFRUVKCsrAx79uzBpk2bsHnzZtx///149NFH8cADD+CBBx6AwWDQ8mty6uWXX8Zzzz2H9PR0/Pjjj+jSpUuzx2zatAm33norMjMz8dNPPzVu37dvH/bu3YsxY8YgJCSkcXtRURHuvvtuHDt2DAMHDvRpxAwREbUv9vJdCTYkQCzfddLoCFAFqzG2CsXjcjY6IiKiIOJzUNqjRw8UFBTgiiuuwKRJkzBu3DiPgkuj0YglS5ZgwYIFePLJJ/H222/jxIkTXr/+ihUrMGvWLMU2s9mMc889t/HxY489htGjR2Pbtm144IEHADR0yX3mmWecnnPq1KkYPnx44+Oamhrs27cPdXXKVv35+fkYN24ckpKSkJ2djczMTBQWFmLLli2oqqpCVlYWvvjii8bsMBERdVzGUyNhYlCDEEmoFHJZvqsMVqPqlUFplake5nobwkODrvUDEREFIZ+D0qFDh+Lf//43Bg8e7NVxBoMBkydPxuTJk7F161ZVYOmpoqIibNy4UbFNlmXFtqKiIgBAeXl5Y0nx+vXrsX79eqfnHDFihCIodaV379647777sGHDBuTk5GDTpk3Q6/Xo3bs3rr76akyfPr3FS5OJiKh1GE+NhEkUmxwBbsp3ldv15nLVLuU1ZqTGRvh7eURERG2ez0Hpl19+6feLn3nmmVi6dKlPx06ZMgVTpkzxaN8RI0Y4Xefq63GdOnXCK6+84vX5iIio47GX76qaHIVGAuFRzg8SMqWhpjJIEuD4llNiZFBKRETBwee6oOrq6uZ3IiIi6sDM9TZYrA2RpKrJkavSXUCVQZVqSxEXGabYVsZmR0REFCR8DkrT0tIwceJErFy5EjabTctrIiIiahccZ5SKY13cBqXiczUlSBSC0vIaNjsiIqLg4HNQWltbi//973+4+uqr0alTJ9x3333YvHmzltdGRB2Mud6Gz3/PxTu/5qCcWSDqAJTjYISg1NV6UkDdlddWj05R9YpNpZxVSkREQcLnoPTIkSN45pln0LdvXxQWFmLevHkYOnQosrOz8eyzz+LIkSMaXiYRtXeyLGPqR5sxc/EOPLtyL0bPW8vAlNq9GrO18e8J3pTvOnkuS1+reFzGoJSIiIKEz0Fply5d8PDDD2Pnzp34448/MGPGDHTq1An79+/HY489hh49euCiiy7Cu+++i/Lycg0vmYjao98OluDX/UWNj4+X1+Kj9Udb8YqI/OeYKY1BjfLJiDjXB4ZHAyHhik0Z4crjS3nThoiIgoQmA9AGDhyI2bNnIzc3Fz/++CNuu+02xMTEYM2aNZg2bRoyMjJw/fXX48svv4TFwjUyRMFo9f5C1baf9qq3EbUnjmtKYyRlphP6WNcHSpKqvDc91Kh4zEwpEREFC02nckuShEsuuQTvv/8+CgoK8Pnnn2PMmDGQZRlLlizB+PHjkZ6ejnvuuUfLlyWidmBPvnqG4978StRb2SiN2q8as7tMqZugFFCtK00OUZb/lrLRERERBQlNg1JHer0eEyZMwLJly5Cfn4/XX38diYmJKCsrwzvvvBOolyWiNupgoXqMlKnehiMlRid7E7UP1aamNaWxkhCU6t2U7wKqdaWJEjOlREQUnEID/QJ//vknPvnkE/zvf/9DaWkpACAkJCTQL0tEbUi91YbCqjqnz+06UYmeqTEtfEVE2lCU70Io3202U6oMSuPkSsVjziklIqJgEZCg9NixY/j000/xySefYNeuXZDlhsHiAwYMwOTJkzFx4sRAvCwRtVHF1WbYZOfPHS5mppTaL6O78l13a0oBVflutE0ISpkpJSKiIKFZUFpRUYGFCxdiwYIFWLt2LWRZhizL6NSpE2655RZMnjwZ/fv31+rliKgdKah0niUFgLyyWpfPEbV1ykZH/q0pjaovV57bbEWdxYqIMFYXERFRx+ZXUGo2m/H111/jk08+wcqVK2E2myHLMqKjo3Httddi8uTJGDlyJCRJ0up6iagdOuk2KK1x+RxRW2dsXFMqI1os320uUyp039Wby1W7lNdYkB7HoJSIiDo2n4PSu+66C4sXL0ZFRQVkWUZISAguu+wyTJ48Gddeey2ioqK0vE4iaseYKaWOyp4pjYIJoZLQSVrfzFppIVMaaiqDToKi1L3UaEZ6XIQWl0pERNRm+RyU/uc//wHQMKN08uTJuOWWW5Cenq7ZhRFRx1FYaXL5XH5FHeqtNoSGBKwZOFHA2NeUqtaTAkCEd913pZpSxEeFo9RhLSmbHRERUTDwOSj95z//icmTJ+OMM87Q8nqIqAMqr3X9wdpqk3Gysg5ZCayuoPbHPhJGtZ4U8CBTqgxKUVuKhMhQBqVERBR0fA5KX3jhBS2vg4g6sIraerfP55XVMiildqnmVPlurJgpDYsCQsLcHyyU78JqRkakFTkOm9iBl4iIgoHm9XLffPMNxo0bh8zMTOj1etx5552K52bMmIETJ05o/bJE1IaVN5PtOVbKZkfUPlWfCkpjJC+bHAGqRkcA0DlCeZ5So8XnayMiImovNA1K7733XowZMwZfffUVqqurYbFYGmeUAkB8fDzmzp2Lzz77TMuXJaI2rqLW/Qfr/ArXjZCI2rIa86nyXTFT2tw4GKChvFenzKZmhCuDUpbvEhFRMNAsKH3//ffx1ltv4ZxzzsG2bdtQUVGh2mfYsGHIzMzE8uXLtXpZInKw83gF/r1sJ+b/fAC1ZmvzB7SQ8hplUJoSo1c8PlHODrzUPtm770b7kimVJNW60rRQo+JxKct3iYgoCPg1p9TR22+/jcTERHz99ddISkpyuV/Pnj1x6NAhrV6WiE7Zd7IKE95aj1pLQzC6/lAJFtw5tE3MCRbLd0/PiMXqqqLGx8cZlFI71Vi+60umFGhYV1pd0PgwJaQaQGrjY2ZKiYgoGGiWKd21axeGDRvmNiAFgPT0dBQWFmr1skR0yqs/7W8MSAHgt4Ml2HCotBWvqIHVJqOyTtno6PROyg/szJRSe1RvtcFU3zCbVNV915NMKaBqdpSAKsVjBqVERBQMNAtKdTodbDZbs/udOHECBoNBq5clIjQEfr/uL1ZtX7W/9W8AVTpZT9o3QwxK6xTrz4naA6NDiXwMhBsrnmZKIxMUD+NkIShloyMiIgoCmgWl2dnZ2Lx5M2pqXHfRLCkpwbZt2zBgwACtXpaIAOQUVTeWETraeVy9trulVdY5CUrTlfMbay1W1bpTorbO6PAzF6tRpjRarlQ85ppSIiIKBpoFpRMnTkRRURH++te/or5e/eFYlmX84x//QHV1NSZPnqzVyxIRgMPFRqfbdx6vbPUMpNGkbLikk4CuSQaIS11PVLCEl9qXGnPTe516TWmcZycRgtIoS7nica3FijpL22laRkREFAiaBaX33nsvhg8fjg8//BB9+/bF3/72NwDAn3/+iQceeAB9+/bF//73P1x88cW47bbbtHpZIgJwtMR5UFpRa2n1JkKOH9wBICo8FOGhOqTFRCi2nyjnWBhqX6pNbsp3Pc6UKrvv6i3q6gZnJfBEREQdiWZBaVhYGL799ltMmzYNubm5eOONNwAAW7duxcsvv4ycnBzceeedWL58OXQ6TcejEgW9IyWuy+Zz3TzXEmqE0TRR4SEAgE7xYlDKTCm1L47lu6pGR95033UQWqduTuasBJ6IiKgj0WwkDABERUXhjTfewJNPPonVq1fjyJEjsFqtyMrKwsUXX4xOnTpp+XJEdIqrTCkA5JbW4LwWvBaR66A0Eltzyxu3Myil9qaqzk35rqeZ0khlplSqLUVUeIji56aCmVIiIurgfA5K161bh2HDhjmdgZiSkoLrr7/erwsjIs/luyl9PVra2plSdfkuAGTGRyq2t3aZMZG3ApEpRU0J4iJCFUFpZa26TwMREVFH4nMd7fDhw5GWlobbb78dS5YsQXV1tZbXRUReKKo2uXwut9WDUteZUkfMlFJ709TxWvZ9TalBCEqtZqRHKDOjLN8lIqKOzuegdNasWejRowc++ugjTJgwASkpKRg1ahTeeOMN5ObmanmNRORGncWqKCMU5bV6UKq8tkgXQWleGYNSal/sQWkEzAiThA65nmZKDamqTV3ClTd5Wb5LREQdnc9B6b/+9S+sX78e+fn5eOedd3D55ZdjzZo1+Nvf/obu3btj0KBBePzxx7Fp0yYtr5eIBMVusqRA65fFiplSw6ny3c6JyqC0sMrkdNYqUVtl/35VrScFAL2HI2HCo4DwaMWmTmFVisfsvktERB2d321wU1NTceedd2LZsmUoKSnBV199halTp6K4uBhPP/00hg0bhoyMDNx9991Yvnw5amuZDSHSUnG1udnna82tN+fQVflutyQDdMKS9ENFXAZA7Uf1qQqFWHE9KeB5phQADCmKh2khlYrHzJQSEVFHp+lsFr1ejzFjxuDtt99GXl4efv/9d/zrX/9CRkYG3nvvPYwbNw5JSUm4+uqr8e6776KoqEjLlycKSsVVykxpXGSYap/WzJaqGh3pG4LSiLAQdE6MUjyXw6CU2pGmTKnw8xUaCYSofw5dilaW8KZIyqCUjY6IiKijC+jA0CFDhuCpp57C1q1bkZubi9deew0XXnghfvzxR0ybNg1vvvlmIF+eKCiITY66JEYhIUr5gbh1g1IxU9rU9LtHirJs8WAhg1JqPxqDUl8779oJmdIkuVzxmJlSIiLq6AIalDrKysrCvffei2+//RbFxcVYuHAhhg0b1lIvT9RhiZnSlBg9MhOEcSut2ESoxuS8fBcAeqYqg9KcQtfzVonaGnv5rs8zSu2ETGm8EJSy+y4REXV0Ps8p9YfBYMB1113XGi9N1OGIjY6So8MRFiJh5/GmEsDj5a3XgbfG4joo7ZFiUDy3r6AKVpuMX/cXoaLWgstOT4NB3yq/poiaZTTbM6XiOJgY704kdOCNqS9TPGamlIiIOroW/7T3/vvvIy8vD48//nhLvzRRhyQ2OkqO1iNaryzfbc1xKzVCR13H8t3TM5QdSg8XG3H1a2uxO78hoM6Ii8DHd56DnqlefsgnagEuM6Xelu9GK8t3DZZSxWNmSomIqKNrsfJdu3fffRdPPvlkS78sUYclZkqTottY+a6L7rsA0DcjBtFCJtQekAJAfkUd/rV0Z2AvkMhHVa7WlHpbvitkSiPMJYrHFTUMSomIqGNr8aCUiLQllvYlRIUhSwxK21L3XYegNDREhyFdE9wev/FwKY6WcK0ptT3GU0FprN+ZUmVQGl5XrHhcZaqHzSZ7fX1ERETthc/lu4WFhT4dZ7Hwji+RlsSgNC4yDGmxEYptBZV1sFhtCAtp+ftQ7rrvAsDoARlYvd/9eKhfDxRjcpLB7T5ELclqkxu/t9VrSuOcHOGG0H1XV1+LKNShBg0/x7LcEJg6G/dERETUEfgclKanp0OSJK+Pk2XZp+OIyDlnQamYKbXJwMmKOtVc0JZQ66Z8FwDGDuyE2d/tQ6HQRdjR7hMVAbk2Il9VO6yV9n9NaapqU7JUgVy56eZSZa2FQSkREXVYfqdNunTp4tWf8PBwLa4bW7ZswfPPP4/rrrsOmZmZkCQJERERzR730Ucf4ZxzzkF0dDQSExNx1VVXYd26dT5dg81mw9y5c9G/f39ERkYiJSUFEyZMwO7du306H5G3LFabKhMZFxmGuMgwGITg71hZy3fglWW5sUOpnZgpjQgLwWs3D0ZKjB4AEB6iQ7qQ6d2dXxXYCyXyktFdUOrtmtLwaCBUeSMpTVepeMwOvERE1JH5nCnt3r07jhw5grVr1yIzM9Pj44YNG4ZNmzb5+rKNZs2ahWXLlnl1zIwZM/DKK68gMjISl19+Oerq6vDDDz/g+++/x8KFC3Httdd6fC5ZlnHjjTdi0aJFiI+Px+jRo1FcXIzFixdjxYoV+OWXXzB06FBvvywirzj7oBoXGQZJkpCZEIn9BdWN21uj2ZGp3gZxKZyYKQWAoaclYdUDI3C0pAYpMXrsPVmJyf9p+j2xN78SVpuMEB2rLKhtUGRKxUZH3mZKJamhA295buOmzuFV+N3hR7aSQSkREXVgPmdKzznnHADA5s2bNbsYbwwbNgyPP/44li9fjpMnTza7/88//4xXXnkFSUlJ2L59O7788kt8++23+PXXXxESEoLbb78dZWVlzZ7H7r///S8WLVqEXr16Ye/evVi0aBFWrVqFhQsXora2FhMnTkR9fX3zJyLyg7OgNPZUiV9mfOs3OxKzuAAQpVcHpQBg0Ifi9E6xSInRo0+6cgSMqd6Ggsq6gFwjkS+U5bvimlIvg1JA1YG3U6iyOqDaxPcTIiLquHwOSocOHQpZlrFx40avjpNlbToIzpw5E08++STGjBmDtLS0ZvefM2cOAODRRx9Fr169GrcPGzYM06ZNQ0VFBd5//32PX99+vhdffFHx+uPHj8fYsWORk5PjdSaXyFtiUBoRpkNEWEPQl5WgXD/aGplSsfMuoC7fdSYlWo+IMOWvp9actUokss8oBTTIlAKqdaVpIcqgVCyDJyIi6kh8DkqvuuoqTJ8+XRHgeeLNN9/Ezz//7OvL+qSurg4//fQTAOD6669XPW/ftnz5co/Od/jwYezevRuRkZEYPXq03+cj8pWzJkd2qlmlbSRTGhnmPFPqSJIkJ5nell8TS+RKU+ZS9n9NKaDqwJsqKZt7VZvUP0tEREQdhc9rSnv37o1XXnnF6+MGDx7s60v6bO/evTCZTEhJSUFWVpbq+TPPPBMA8Oeff3p0vu3btwMAzjjjDISFqbsh2s9n348oUMR1ZoqgVAjqWiPTKAalEWE6j9eFZiZEIaeoaT5pXikzpdR22INSPSwIl4SAMcLLkTCAKlOaJAaldcyUEhFRx+VzUNqe5OY2NI9wFpACgMFgQHx8PMrKylBVVYWYmBin+3l6Pvt2+37N6devn9PtOTk56NGjh0fnoODkTaY0v6IWNpsMXQs2CxLLdz0p3bUTx9q0RqaXyBV7kBgrZkkBTdaUJtjKFY+NXFNKREQdmN8jYdqD6uqGDqRRUa5nNBoMBsW+/pzPm3MR+aOixnVQmiVkSi1W2e0s0ECoMbmfUeqOmOk9yUZH1IbYM6XRkpObJT6tKVWW78YJQSkbHRERUUfmc6Z07969yM7O9vsCtDqPO/bmSpLkOkPkTQMmT87njV27djnd7iqDSmQnZkpjHYLS5Gg9wkN1MNfbGrcdL69Belzz83y1UmPxPShNjlbONC41mjW5JiIt2EvnVetJQ/RAqN77E0YrG/bF1JcqHjMoJSKijsznTOkZZ5yBiRMnYufOnT4dv23bNtx0003o37+/r5fgMXs5rtFodLlPTU3DB4vo6Gi/z2ff7sm5iPzhrnxXp1M3C2rpdaU1Jt/LdxMNyg/2JdUMSqntsP/sadJ5F1AFpXpbDSLRVB3A8l0iIurIfA5KH3vsMSxfvhwDBw7EmWeeiTlz5mDz5s2wWJwP+DaZTNiwYQOee+459O/fH0OGDMHKlSvx+OOP+3zxnurSpQsAIC8vz+nzRqMR5eXliI+Pb3Y9qSfns2+370cUKO6CUqD1mx2JjY68yZQmCZnS4mqTZiOliPxVWWfPlGowoxRQNToCgGSHZkfMlBIRUUfmc/nuv//9b9xzzz145pln8NFHH+Gf//wnJElCWFgYunXrhoSEBMTExKCyshKlpaU4evQo6uvrIcsy4uLiMH36dDz88MNISUlp/sX81KdPH+j1ehQVFSEvL0/VoGjr1q0AgAEDBnh0voEDBwIAdu7cCYvFourA6+35iHzVXFDaOVEZlOYUtew6Z38aHSULmVJTvQ1GsxXR+qDoz0ZtXGVtw/e2ZpnS8GggLAqwNJ0vBRU4hoYMKoNSIiLqyPxqdJSamopXX30VJ06cwH//+19cd911SExMxP79+7Fx40b8+OOP2LRpEw4ePIikpCRcf/31+OCDD5Cfn4+XX365RQJSAIiMjMQll1wCAFi0aJHqefu2MWPGeHS+7t27o2/fvqitrcWKFSv8Ph+Rr5oLSvukKTP/u09UBvyaHGmZKQWAkuqWbdRE5Io9U6rqvutrplSSVNnSFKm88e8s3yUioo5Mk+67kZGRuO2227Bw4UKcOHECBQUF2LFjB9auXYsdO3agoKAAJ06cwOeff45bb70VEREt12jFbsaMGQCAp59+GgcOHGjcvn79erz99tuIjY3FnXfeqThm06ZNyM7OxsiRI12e78EHH0RhYWHj9iVLluCrr75C9+7dMW7cuAB8JURNmgtK+2Uq5yUeKKxGndB8KJD8CUqjwkMQEab8FVXMdaXURmi+phRQrStNcSzf5ZxSIiLqwAJSB5eSkhLwLOiKFSswa9YsxTaz2Yxzzz238fFjjz2G0aNHAwAuvfRSTJ8+Ha+++ioGDRqEyy67DGazGT/88ANsNhs++eQTJCYmKs5XU1ODffv2oa5OPYrijjvuwMqVK7F06dLGwLW4uBirV69GREQEFixYoCrrJdJac0Fp34xYSBJgX4pptcnYX1CFAVnxLXJ9/pTvSpKEJINeMZ+UHXiprWjqviuuKY1zsreHDMr3TcdMKct3iYioI2u3i7OKioqwceNGxTZZlhXbioqKFM/PnTsXgwYNwvz58/HDDz8gLCwMI0eOxKOPPorhw4d79fo6nQ4LFy7Eq6++ivfffx9ff/01DAYDrr32Wjz11FMc50IBZ7HaVJnI+ChlUBqtD0W3JAMOFzd1it51orIFg1LfM6VAQwmvY1DK8l1qC2w2GVWngkTVSBgtM6Uob/y70WyFLMuajSIjIiJqS9ptUDplyhRMmTIloMeNGDHCbbfPkJAQzJgxo7GUl6gliVlSQDmn1O70TrGKoPTPvArcfE5AL62RKijVexmUGpTrSkuYKaU2oNpc31h9oCrf9XVNKeC2fNdqk1FnsSHSyxs7RERE7YEma0qJqOU5C0rF8l0AGJilLCf8M688UJekoirfDfM2U6rswFtUxUwptb5Kh589VaZU3/xYMZdUjY4qFI9ZwktERB0Vg1KidkoMSiPCdNCHqoM+sVR378mqFmt2pM6UeleckShkSp0F4kQtzfH7MEYS1pRqWL6bLASl7MBLREQdFYNSonaquSZHdv0z46BzWIZmtcnY1UKjYfxdUyp+TZUMSqkNsM8oBZxlSrULSlNRDqBpCQkzpURE1FExKCVqp8QAzVVQatCHomdqtGLb9mPlgboshRrhQ7TBi+67ABAbodyfmVJqC+wzSgGtR8Ioy3fDpXrEomk9OINSIiLqqBiUErVTnmZKAWCgUMLbUutKa4QyYW+btIiNmxyDAaLW4nhDKFbLkTBCUAoo15WyfJeIiDqqgAelBw8exIYNG5CbmxvolyIKKhU1ngelAzrHKx5vz6twvqPG/C3fFYNSZkqpLbB/H4bDAr0kfE/6kykN1QMR8YpNqZxVSkREQcDnoLSgoABffPEF1q1b5/T53377DdnZ2ejTpw/OP/98dO/eHWeffTZ27tzp88USURMxQHM2DsZukJApPVxsDPgH3HqrDeZ6m2JblJflu+o1pfxQTq2vss7FjFLAvzWlgJNZpU03kBiUEhFRR+VzUPrxxx/j5ptvxr59+1TPHThwAFdeeSUOHDgAWZaRmJgIANiyZQtGjhyJ4uJi36+YiAB4V77bKy0akqTcdsRhdmkgiKW7gA+Z0gjl11RrsaoCXaKWZi/fVa0nBfzLlAJOxsKUN/6d5btERNRR+RyUrl69GhEREbjhhhtUzz3xxBMwGo3o0qULduzYgaKiIpSUlGDs2LEoLi7GvHnz/LpoIvIuKI0IC0GnuEjFtiMlAQ5KTeqg1NtGR86+Jq4rpdZm/x6MEdeT6sKA0Aj/Tu5mVmm1k58pIiKijsDnoHTv3r0YMmQIDAaDYrvFYsGXX34JSZIwe/Zs9OvXDwAQHx+PDz74AAaDAd9++61/V01EKBeC0ng3QSkAdEuOUjwOeKbUrM7qeN/oSB3EciwMtTaXmdKIWKhKErwllu86ZEprnfxMERERdQQ+B6WFhYXo0qWLavvmzZtRW1uLyMhIjBkzRvFcfHw8zjnnHBw4cMDXlyWiU1QjYaLcB6Xdk5U3kA4XOyk91JDY5CgsREJ4qHe/cvShIYgIUx7DZkfU2spONRmLFdeUCk2KfCJmSlHe+HejmZlSIiLqmHwOSk0mEyorK1XbN2zYAAA488wzodfrVc+npaWhpiawH4aJgoE35bsA0CVRmSk9WVnrYk9tiEFpZJh3WVI7cV2pvckMUWspM5oBALGSUG0Q4cc4GDshU5osNb3P1jIoJSKiDsrnoDQrKwvbt2+HzaZsOvLTTz9BkiQMGzbM6XEVFRVITk729WWJ6BRvg9K0WOVat/yKOs2vyZFYvmvQe7ee1E78upgppdZWWnMqKFVlSrUISl03OnJWEk9ERNQR+ByUXnzxxcjLy8Ozzz7buG3Dhg347rvvAEBVumv3xx9/ICsry9eXJSIAFqtNlYlsLijNEBodnayogyzLml+bnSpT6uV6Ujtx1A3XlFJrqrfaGm+MOF1T6i8hU5qISujQcPNX/JkiIiLqKHwOSv/5z39Cr9fj3//+N7p164azzjoLF110EaxWK8455xxccMEFqmM2bNiA/Px8nHvuuX5dNFGwc5YtdDenFAAy4pSZ0hqzNaClsOIHaG/HwdgxU0ptSXmtBfZ7OYHJlCqD0hBJRhIaSnhZvktERB2Vz0Fp7969sXjxYiQlJSE3Nxdbt26FxWJB37598b///c/pMXPnzgUAXHnllb6+LBHBeWDWXKY0NVa9xvtkAEt4xVLDKC/HwdjFRiiP40gYak329aRAgNaURiUBkvKt2V7Cy0ZHRETUUfn2KfGUUaNGITc3F2vXrkVRURGysrJw/vnnQ6dzHutOnDgRN998M0aOHOnPyxIFPTEojQjTQR/qPhOpDw1BkiEcJQ4fqk9W1qFPekxArjFQmVKW71JrKnUMSgORKdWFAFHJgLGwcVOqVI7dMkfCEBFRx+VXUAoAERERuPTSSz3a9+qrr/b35YgIQEWNOKM03KPjkqP1iqC01GjS9Loc1ZiERke+ZkpVQSk/mFPrKatxzJQGYCQM0NDsyCEoTUAVAK4pJSKijsvvoFRktVpRWloKSZKQkJCAkBDfsiNE5Fp5rVnxOL6ZGaV2SdHhQEHT45Jqs+ud/aRVoyNVppTlu9SKSo1N33+xCED5LgBEJigeJkoNQSnXlBKRp2RZxn/WHsaSrceRHheBf199OromGZo/kKiV+Lym1NGxY8fw0EMPYeDAgYiIiEB6ejrS0tKg1+sxcOBAPPTQQ8jNzdXipYgIQLmYKfU4KFWuKy0OZFBqUX6ANvjafTeCjY6o7XCsLlBnSjUKSqOSFA/jpWoAgNFcH9CO2UTUcXy57TieXrEHu/Mr8fPeQkz6z0aY6nlji9ouv4PS+fPnIzs7Gy+99BJ27NgBq9UKWZYhyzJsNht27NiBl156CX369MG8efO0uGaioFfmY/lukkG5X0uW70ZqVL7LoJRakzJTGqigNFHx0F6+a5MBU73N2RFERAoLNiiTQcdKa/Hj7kIXexO1Pr+C0hdeeAHTp09HXV0dJkyYgC+//BLHjh1DXV0damtrkZubi6VLl2L8+PEwm824//778dxzz2l17URBq6LGt/Ld5GhlUNqS5bu+NjoSu+9WBXCMDVFz7GtKdbAhRqpVPqlZ+a4QlJ4q3wVYwktEzTPVW7Ejr0K1/df9Ra1wNUSe8XlN6a5du/Doo48iISEBS5cudTqXNCsrC1lZWbjmmmvw66+/Yty4cXj88cdx9dVX44wzzvDrwomCWXmtWL7rWaY00SCU7xrbQVAqZEqr6iyQZRmSJPl8bUS+snffjRazpEDAyncTUN349xqLFQni/kREDvbmV8FsVVdV7DiuDlSJ2gqfM6Xz5s2DzWbDggULnAakogsvvBCffPIJrFYr5s+f7+vLEhH8WVMqZkoDWL6r0ZzSGCFTarHKqLOwhJFahz1TqlpPCgSufFeRKWWlABG5t/OE8+Bzf0EV6iystqC2yeeg9Oeff0Z2djauvPJKj48ZNWoU+vbtix9//NHXlyUiAOVi+W6kZ0FporCmVBwtoyUxU2rQa9PoCGjIlhK1BnvJe5yYKZVCgLAobV5EzJRKTZlSo4kfKInIvWOltU6319tkHCiodvocUWvzOSg9ceIE+vfv7/Vx/fv3R35+vq8vS0RwVr7rWVAqjlepMtXDagtMN0/VSJgw34LS6Ah1hpVjYag1yLLcWL4bKzkZB6NVSbm4phTVABp+TjmrlIiac6LceVAKAIdLjC6fI2pNPgel4eHhMJm8L/0zmUwIC/PsAzQROacu3/VsTakYlAJAZYC62Yrluwa9b+W7YSE61XrUSjY7olZQbapH7anSt4B13gWAKOWqUb1kQRQa3m9rLfzeJyL3jrsJSo8UMyiltsnnoLR79+5Yv349bDbP13bZbDasX78ep512mq8vSxT0rDZZlSn0NVMKBG7EiipT6mOjI0C9rjRQgTSRO4VVjjNKnWRKtSKU7wJNY2GYKSWi5hwvcxOUMlNKbZTPQeno0aNRVFSEOXPmeHzM7NmzUVRUhDFjxvj6skRBr7LWAlmouPV0TmlEWAjCQ5U/9oEISm02uTGjZGfwsdERoF5XyrEw1BoKKusa/x7QTKk+FtApf17iT60rZVBKRO5YrDYUVNW5fP5oiZMmbURtgM9B6X333YfY2Fg8/PDDeO6552C1un6jtFqtePbZZ/Hwww8jLi4O06dP9/VliYKeuJ4U8DxTCqizpYEISuvqrarA2deRMICTTCnXlFIrKHLIlMZJQrMQLYNSSVKtK0081YG3xsQbMkTkWqnRrHr/dXSUmVJqo3xOXSQlJWHhwoUYM2YMHn30Ubz55puYMGEChgwZgtTUVMiyjMLCQmzZsgWLFi3C8ePHERoais8++wxJSerSJCLyjNh5NyJMhwgvmgjFRYYpPlw7C3L95Syb40/5rnpWKT+YU8srrGz6uXGcHQpANcbFb1GJgLFQ9Xo1HOdARG4UNzPqrbjajKo6C2KcdLYnak2+19MBuPTSS7FmzRrcdttt2Lt3L+bOnavaRz51u6ZPnz744IMPMHToUH9ekijoqTrveli6a9cSmdIaJ2Mr/CnfFd88uaaUWoNj+W6CmCmN1DgoFTvwnsqU1rJ8l4jcsI+tsouJCEW1qV6RPT1aUoMzMjWs7iDSgF9BKQCcffbZ2L17N7755husXLkS27ZtQ0lJCWRZRnJyMgYOHIhRo0bhqquugqRVu3yiICbOFvWmdBdQB6WBCPBqhA6hktSQ0fVVrFC+y0wptQbHRkfxpxoPNQpEptSBPSjlmlIicqfEqMyUdoqLRLWpXtGRl0EptUV+B6V2o0aNwqhRo7Q6HRG5UCaU7/oblAYiU2o0qWeU+nNTSpUp5ZpSagWFVS2YKRWC0niw0RERNU/MlCZFhyPREK4MSku5rpTaHt9TF0TUKsqMQlDqb/luTSDWlGozo9QuNpKZUmp9jmtK48WgVOtMqdA4KUZq6Jgp/mwRETkqET4jJBrC0TUpSrEtlx14qQ3SLFO6bt06/PLLL9izZw/KysogSRISExNx+umn4+KLL+ZaUiKNFAtvOMkx3gWlYtOgwGRKlR+co/0MSrmmlFqbLMuKTIOq0ZHWmVIhKLWPoGGmlIjcKREaHSVH65EWG6HYxrEw1Bb5HZT++eefuOOOO/DHH38AaGpsZGcv2TvnnHPwn//8B6effrq/L0kU1MQ3nESD3qvjW6J8t1oo3zXofe+8C3BNKbW+4mozTPU2AIAeZkRJQodLzTOl8YqHsacypWx0RETulAnVTwlR6kwpx8JQW+RXUPr777/jkksugdFohMFgwKhRozBo0CAkJydDlmUUFxdj27Zt+Pbbb7Fx40YMGzYMq1atwuDBg7W6fqKgUypmSqP9K98NxEgYMVPqT+ddAIjlmlJqZXllTZmFODj5QBfwTGnDa7J8l4jcESuJ4iJD0SVRGZTmV9bBVG+FPtS/G8ZEWvL5k6LVasXEiRNhNBpx5513Ys6cOYiNjXW6b2VlJWbMmIH3338ft9xyC3bt2gWdjstZiXyhamLgZaZUnXUMRKZU2/Jdriml1naszKF0VxI670ICIuO1fUExKLVnSi02bV+HiDqUSuH9MTYyTJUplWXgWGkteqZGt+SlEbnlc2S4bNkyHDx4EDfeeCPeffddlwEpAMTGxuK9997DhAkTsH//fixfvtzXlyUKeuJg7ESDf2tKAxHgqTKlGq8prTbVw2qTXexN5L1dJyow4a116P3oNxj3+m/4M69c8bxjplTVeTciDtBpnHEQGx3BXr7LGzJE5JqYKY2NCENMRJjqs0IuO/BSG+NzULp8+XLodDo8++yzHh/z3HPPAWgIaInIe+Z6m+ouqLfluzFOMqXiWnB/aR2UiuW7AFDNbClp5HCxETe9vQG/HymDud6GbcfKcdM7G3CgoCkjmueQKY0XmxxpvZ4UcJIprYUONtRauKaUiFxTle+eGhunXlfKZkfUtvgclG7ZsgV9+vRB9+7dPT7mtNNOQ3Z2NrZs2eLry/ps1apVkCSp2T9PPfWUR+fr1q2b2/Ps3bs3wF8RBSNxPSkAJEV7W76rDPBsMmDUuHmK2Ogo2s9GR2IgDXBdKWnnyeW7UCXcSKkxW/H4sl2NN2zy3JXvar2eFAD06uqjaNSw+y4RuWS1yarfZfb3/K6JDEqpbfM5fZGfn4/hw4d7fVzv3r2xdu1aX1/WZ+np6bjtttucPme1WrFgwQIAwAUXXODVeV2dMy4uzul2In+UGJWluzoJiI9UZxHdcZZ1rKqz+L3u05GYKY3ys9FRVHgIQnSSomSXQSlp4UBBFVbtK3L63PpDJfgzrwIDO8fjcHFTdlQ1DqYFMqVAw7rSk+YY7V+LqA0xmurxwMLt+HV/EbomGTDv5sFc++ghZxVE9p4MXZIMiu2Hilm+S22Lz58UKyoqfAq8YmNjUVlZ6evL+iw7OxsffPCB0+e++eYbLFiwAJ07d8ZFF13k1XldnZMoEMQmR4mGcOh0klfniHaWdaytR4aG91GMZm0bHUmShJiIUJQ7tLqvrGX5Lvlv4ZY8t89/9vsx9EqLVpbvimtKA5EpDTcAUgggN2VG41CDPJsMi9WGsBA2C6SOafb3+/DNzpMAgN35lbj748344f6LEOLle10wcnaz1n4jupcQ2O/Jb/nP4kTu+PyuVl9f71MHXZ1Oh/r6tvVh0p4lnThxIrsCU5smZkq97bwLACE6CYZwZTmt1h14xe67/q4pBdQZ3kB0DabgYrPJWPrHcbf7fLXtOHYer4TjsmtV+W4gMqWS5GRdqX0sDEt4qWOqt9qwSLhRdKjIiM1HSlvpitoXce54iE5C1Kn3+36dlEsCiqpMKKyqa7FrI2pO0EdgRqOxsfHSpEmTWvlqiNwrrFQGpckx3jU5sgt0B151oyP/O5OK60rFhk9E3tp5ogJFVcqfqY/uOAeOCRmj2Yr5vxxU7NMpvFbxOCCZUsDJrNKGNWB1bHZEHdTu/Eqn70cbDzMo9YSYKY2NCIUkNfxC65ZkaAxQ7XadYLaU2g6/0hcffvghPvzwQ62upVUsWbIERqMRgwcPRr9+/bw+/qWXXkJOTg70ej369euHa6+9FikpKQG4UiLgZKXyrmZabIRP54mJCEV+RdNjrddnGlWNjpgpJd/YbDKOl9ciJUaPiDBtx66sFtaSnpZswIW9U3B+z2SsOVDcuP3X/cr9MkKrAMdvcUOSptfViJlSCjL7ToozgN1vJyVxWYvjDWidTkLfjFhsOVrWuG33iUpc3Ce1xa6PyB2/Pin6OkbCftemLbCX7k6ePNmn4x988EHF4/vvvx/z5s3DnXfe6fE5XAXDOTk56NGjh0/XRR2TmCn1PShVBnhaZx0DUb6rypRyTWmHd6y0BlP+uwk5RUYkR4fjhfEDMLJvmmbnXy0Emxf2briheO3gTEVQKkpGhXKDIUAf6lxkSms4q5Q6qINF1U637znJjJ4n1JlS5Xv96UJQ6vh3otbmc/muzWbz+Y/V2jbu8p48eRI//fQTQkJCcPPNN3t17NixY7FkyRIcPXoUNTU12LlzJ2bMmAGTyYSpU6fiyy+/DMxFU1ATM6XpPgalsU5mlWpFlmVV+a4mmVJVyTEzpR2ZLMv426dbkVPUkB0srjbjr59uxYny2maO9Eyt2Yptx8oV2y7q0xCUXtEvHZEus7IyouuFUsLolglKYySW71LHllPovCPskWIjv+89IM4otXfetTurW4Li8YZDJTDX2wJ+XUSe0G4GRDv06aefwmq14sorr0R6erpXx86bN0/xuF+/fpgzZw769OmDv/zlL5g5cybGjRvn0bl27drldLsv5cTUsRWoyne9b3QEOMmUaph1NNXbUG9TVlEEJFPKoLRD23G8AtvzlBnJOosNr/9yEM9c29/v82/PK1d8n+ok4JxuDWtDDfpQXN4vDcu2nVAdl6a3QGdVVizAEKAlGxHKxiRNmVJ+OKeO6VCx80ypTW6YFczRMO6pglLhvX54z2RIEhobt9WYrVhzoEjTChQiXwV1oyN/S3edmTp1KlJTU7F//34cPnxYs/MSybKsYflu4DKlYpYU0KbRkfjmyvLdjk1cx2m3eGseKmr8/34Vy9b6ZsQqbp5MHNrV6XETsp3cCApYpjRe8TBWYlBKHZcsy8gvd90N9rhGVRIdmbgUJ06oMEqK1mNQ53jFtv9tyg30ZRF5JGiD0j179uCPP/5AdHS0xxlNT+h0usZ1oPn5+Zqdl6isxgKzVVlm42tQGsjuu2KTI0Cb8l1VIG0KfKa0ss6CtQeKUVjJtvktbcfxCqfb6yw2LN6ah1KjGe/8moPHvtyJ9TklXp9/qxCUDumqLGs7p3siruynrKAJD9Hhpr5Cx+vw6IaZooGgWlPaUNrIMkbqiKpM9ah1872dV1bTglfTPqnLd8NU+4w/M0vx+Mc9hfgjl2tLqfUFbVD68ccfAwCuu+46REVFaXrusrKGH+7oaJaZkHZOVigDI0kCUmJ8Ld8NXCmseK4QneRmfZ7nxDfXQGdKtx0rx/nP/4xJ/9mIEbNXYcnWvOYPIs3syHMelALAqz8dwNj5a/Hsyr34eMNR3PzuBqzc4flNQFmWsSXXfVAKAC9NGIDrh2RBH6pDt6QovHfbWcgKE8oLA1W6CzjpvstMKXVcYiWQ6HgZM6XNcTYSRnTNoE6Ij1K+nz7/zV6fm5cSaSUog1JZlvHpp58C0LZ0F2hYH7pv3z5ERUUhOztb03NTcBPXkyZH6xEW4tuPsLimVMtMqbs5af4IZHMmUb3Vhvs++6Px36XGbMVDi3ewfKyFlNeYcaLCdXa6otaCPOED6hNf7YLF6lnDjkPFRpQLJcBndlEHpTERYZg9YSD2PT0KvzwwoqE7r1EoKw5U6S7gsvtuLYNS6oCaq0gRf+ZJzd1IGLuYiDD8dURPxbaNh0uxap/zJRNELSUog9I1a9bg6NGj6NSpEy655BKX+82fPx/Z2dl4+OGHFdu/++47bNmyRbX/n3/+iQkTJkCWZUydOhXh4eGqfYh8JZYuZcT5VroLBDbA86R8yBeqNaUaj7Fx9MPuAhwpUf57m602LNnCbGlLyC1V/tvrJKBbkvuKlsIqEzYc8qyMV1xPmhqjR1ZCpNtjGm+sVBcqnwhkpjRcWW1jQMOHcncljkTtVWGV+0yp2H2e1JobCWM3eVhXdBI+Q7y5Kidg10XkiaAMSu0NjiZOnAidzvU/QXFxMfbt26daG7p+/XqcddZZ6NatG0aOHImbbroJQ4cOxZAhQ7Bnzx5cdNFFeO655wL6NVDwOSoESV0SfS87D2TToAohKBUbLfhKnd21BKzc6Mc9hU63rz3oenYlaedYqTIj0ik+ElPO69bscb8f8Wxd1J955YrHZ3ZJ8DybbxS+NwKZKdXHKF9Kavh34ZxS6ojEaiBRcTNBKzU/EsYuIiwE91/WW7Ft05FSHCysCti1ETUn6IJSk8mERYsWAQAmTZrk0zmuuOIK3HHHHYiNjcX27duxePFiHDx4EMOHD8e7776Ln376SfN1qkRHhexR12YyR+4EsvtuoIJS8c3VYpVRZ9F+vposy/jNRfD5R245SydbgJgp7ZwQhZvO6YLTM2JdHNFADDZd2X2iUvF4QOc4F3s6UXVS+Tg6gKMU9MpMaTQaPrTXmjlXkDqeAmFNaWa8snqhuUwqqSuIXGVKAeCaQZlIjlb2pfj6TzbopNYTdHNK9Xo9SktLm98RwBNPPIEnnnhCtX3YsGEYNmyYxldG5N6xUg0zpUKgaDRbUW+1IdTHNaqOxKBUq/JdMVMKNATTkeH+N1FydLy81mWZmNlqw76CKlVLfdLWsTL193pEWAgWTB2Kp7/ejU1HStEtyYAzMuPw1uqmkrPtx8ohy7LbrKfVJmNPvjIb0Fywq1B5XPk4NtPzY70VrsyU6iULwlCPWgszpdTxFFYpf++ekRmrWMdfbapHjbkeUeFB99HVI/VWG6pNza8ptQsP1WHswE54/7em8YXf7SrAfZf2dnkMUSAFXaaUqD2SZVmVPeqS6PsYCjFTCkD1ZuYrVaMFN3dqveHsmrXsGmy376T78qUDBSxvCjSxy6Z9vWeiIRwv3zgIa2deggVTh+Kmszsr9iursaCsmRmmR0qMqjWZ/Tp5kSmtPKF8HNvJ82O9JZTvAg3rSpmtp45I7L57hpOfyyJmS11y1rCwufffK/opKz325Fei1GjW9LqIPMWglKgdKKo2qcZAdPGjfNfZG5VWHXgDVb4bFqJTjZYJRLOjvc0EpQcLq90+T/4TP3i6mseblRCJUJ0yK3q0xOj23LuE0t2UGL3no5UsdUCN0EwpkJlSvXqsWLRUx5Ew1CEVVyt/7rslG1S/8xmUuubsJq2rNaV2Z3ZNUP0bbz7iWTUhkdYYlBK1A7lCk6PwEB3SXXxQ90RUeAhChA/zYjDpq0AFpYD6DVZs6qCF/c1kQpt7nvwnfjh1FTSGhuiQKXTNFSsKROJ60n6dvCjdrTqh3hbITGmYAYDy5zQatey+Sx1SufD7PNEQrvrZ57pS18QqpbCQ5meEh4XocGbXeMW23xmUUithUErUDuwTAqGuSVGqoNIbkiQhWi82OwpMprS5O7XeCOR8VTuxfFdcP9pc0EP+sdlklAjlY2IzDkfi2mrxBo5o14kKxWPv1pMKQWl4DBDhxfHe0umcjoVh+S51NDabjPIa5c99fFQYUoWglJlS15yNg/Gkq/hZXRMVjzd52MWcSGsMSonagb1CY5Zsbz5IuyAGi1p14C0xKj80JBm0m9crzlfVek1pvdWGnCJlee6lfZUjP46X1wZsFA01ZEusNuW/b3KM6+8hsQu12CTJkSzLTjKlbXQ9qZ3YgZflu9QBVdXVQ/ixR0KUs0wpZ5W64uuM8LO7KYPSPfmVqLeywze1PAalRO3A3pPKD9LZ6eoGKN6K0QuzSjXKOpZUe57l8lagM6X5FXWwWJWfjC7qrQxK6yw2NoIIIGeZkCSD6++hjDhl+a44VsJRcbVZlYU93ZvyXVXn3ZYISoVZpahFHct3qYMpq1H/TmWm1DvqTKlnVUriEgZzvQ2Hi92vzScKBAalRG2cud6GHceVJYd9MzQISgMwq7TGXK/K4iRpGJSKd361XlOaJ3R9NYSHoG9GjKpU2nFMAWlLXE8aHxWG8FDXb1ViE6QCF+N8AKiy4PpQnXejlSrylI8D2eTITizflWqZKaUORwxKw0MbGtulCj/fXFPqmqrzvYeZ0gRDuKpHxe78Shd7EwUOg1KiNm7niQrUWZSlNIM7J/h9XvENS4uso5glBYCkaO3Kd9WBtLaZUrH0MyshCqFOmkqJI0tIO2JQ2lym3ZtMihiUdk82eLc2u/Sw8nFCV8+P9ZWQKY1BLWrMnFNKHUu5MMopIaphPWRKNDOlnnK2ptRT4o3u5rrQEwUCg1KiNm7dwWLF495p0UjQYJ2mGOBpkXUUA4rwUB1i9No1OhLfZMVujf4SM6X2+Zid4pVB6Uk32Tjyj/ihU/xQKkqNVT5fYjTD4mI9VE6hsiStR6p65IpbpYeUjxNP8+54XwhBqQF1qptURO2dmClNiGp4j0uJdd9992iJEeNe/w19Hv0Gd3zwOyqamVPckfnTZFDsU7GHmVJqBQxKidowWZbx9Z/5im3DTkvS5NxigBeITGmyIdyj7n+eSjQor7lM47WdeapMaUNQmhrDErKWUix+DzUzQ1T8fwO4zqaImdIeKaeCUlkGNv8XeKU/8EwnYPFUoLpIebDVApTnKrcldHd7bZpwUr5rttrYiIQ6lDIhmIyPavhdL96UKqk2NTZCs9lk/OXjLdh2rBymeht+3luIR5ftbJkLboNUjY68yJSKfSoOFHAeN7U8BqVEbdh3u06qymhG9c/Q5NxiE4Qqk/93mIuETKmW60kBIFFoeKN1wyExU9r51HpDsQMkS8gCR12+674qICEqDGEhyhsfrm4aqINSQ8Nf1swBvr4PqMgFLEZgx0Lgg6sAk8P+FccAWVjLmdgCQamT8l0AnFVKHYo4DsaeKRUrIWxyU4f3zUfLVO+PK3fkq84VLMRmhZ6uKQUcbtCdcqKCDdWo5TEoJWqjft1fhOmfbVNsy4yPVLVv95XYyVZskuALca2l2ITGX2KmVOugVLx+e6aUA9xbjri2LDHKfVAqSZI6k+2kvLrWbFU1qOqREg0U7AJ+eVZ94uL9wM9PNz0WS3cj4oEobX4W3dKLmdKGr42zSqkjEct340/93CcZ9BCXfRee6rC9VljaAgBWm4yNh0sDc5FtnK8jYYCG9fWOZJkzuanlMSglaoM2HCrB1I82w1SvLNH7x8ie3jVmcSMQ3XfF8tfOiZEu9vSNs0ypVjNDrTZZtVY0M74hU8qxBC1H1azDgw9Wntw0OFxshPitclqKAfj1JXUG1G7LB0DNqQ+4YpOjlsiSAqry3ehTmVJ24KWORCzfTThVvhuik1QVN/bfv1uPljk9lziLOFj4OhIGAAz6UNX73KEijoWhlsWglKiNKa8x495PtsIsBKSj+2dgwpDOmr1OILrvHhPLXxO8GLfhgSShwZPZaoNRow/nJcamtUp2aadKx9Tlu2x0FCji3f44D4JS8cOUs0ypOHevU1wEokwlwO6vXJ+4vhbY/H7D34v2Kp9riSZHAKBXNiCJlli+Sx2Pq/JdAKru5ycr62Czyfgj13lQGqxNetSNjjzPlALqbOmREgal1LIYlBK1Ma/9fFBVlnrNoE549aZB0GmUJQWcdN/VIFN6rFTMlGoblDrrOlzqZAyNL+wlYXY6qWlNrFgeWmI0s9FMgKhL0Jq/2y+uOyty8j1xotzJeuGdi5RZ0jAD0OsK5YFbPgRstoYyX8WLnt7sdWlCLN9FQ8DNTCl1JGVG542OAPUykJMVdcgrq3V5Q3LPyeAMSlVzSr1odASog9LDzJRSC2NQStSG1Jjr8fnvxxTbRvRJwcs3DEJoiLY/rqo1pX5mSivrLKqySfuaTK0YwkMQHqr8d7A3vfCXsyZN9lJpMVMqy9qvZ6UG4t1+TzKl4ixTsVkSANV60syESODPL5Q79b0aGDFTuKBc4Miv6qA0vX+z16UJodGRvXyXTUioI3GbKY1T/nwXVNbhYJHrOZrHy2pdjoXqqMz1NlX1hCe/Ox2pglJmSqmFMSglakO+/jMf1aam4FAnAbOuOUOzdaSOxPUm5nqbXx90/zxWoXgcHqJrWLOnIUmSVCW8YoMMXxUJmVLHktBEQ7jq/wGbHWnP4qQc25MPVuKaM0+C0j6RVUD+NuVOA28EOp0JpPZTbv/pKcAkZF/Szmj2ujThZCQMwEwpdSyqNaUOTe3SYtTlu+5GltjkhmxqMHFW6eTNnFIA6CJUNomN/4gCjUEpURuydOtxxeOLeqdoXgJrJ2ZKAd/Xldaarfhpb4Fi2+mdYqEPDfHpfO4kCN1YxdmovioU1ok6BqUhOnUwLO5P/nP2/edJCVpKdPPfE+IHrEHmrcodIuKAbhcCkgQMnigcvEX5ODoNiO3U7HVpwsVImBqz/2vAidqCOotVleWLd/g9nxanLt89UOh+jqY43qujE5c9AN6X72YKlU0nK+u4TIVaFINSojaiss6C348oW9nfcJZ2jY1E4ppSwPsOvDXmejy85E8MfPJ7/Pe3I4rnBneJ9+PqXEuKDkymVMx8iutIxRLeYo2CYWoilu4CnjXr8CRTeqJC+SH1tIp1yh1OuxgIOfUzMeBGQOcmy9D1/IbgtSUIQWmEZEEo6lm+Sx2Gs597d42OCqtMHgSlwTXORPw31IfqEBHm3U3hzHhlUGq1yShgRRC1IAalRG3EbweKUe/Q/TU8RIcLe6cE7PUiwtTrM73NlN7/+Tb8b9MxmJ3cTb24T6pf1+dKopCxLNFobafY6EgMQsV1i1plaKmJrx+sxP83NWarIpNoNNUr5p+GwIrEk0JQ2vPSpr8bkoHeV7p+wW7Dm70mzQjlu0BDsyOW71JHId5YlCRl2X66kCktNZqxRxj7EhaivEkUdJlS4b3b2867QMN7a0SY8jMBS3ipJTEoJWojVu0rUjweeloiDHrv1oR4S1xX6k0H3t+PlOK7XQVOnzs9IxbDeyartu8q2YVpP0zDLStuwfKc5d5d7Cli+a5m3XfF8l2ho6uYoXWWjSP/+Dr8PTla3ZXZ8aaB2Hl3gHQIIWZhjahjUAoAgyc7f7GQcOD0cR5dlyb0zoNSjoShjkLsvBsbEaZYwy923wWguhF6kXADt8DJWKiOzJdRWiJJktBJyJYeLw+ujDO1LgalRG2EWLorvskGgriu1JtM6YINR51uz06PwZuTzlSNrzlpPIm7vr8Lv534DTuKd+CRtY9g2cFlXl9zoBodqct3m8uUMijVmi+ddwEgWh+qyvo7dlPOE4LSiyIOKk+Qkg3EZii39bxU3fAIaAhIDUkeXZcmwtTNwgxSHWqZKaUOQt15V/lzHxsRCkO464qJGH0oBmTFK7YFWyM61YxSJ8tzPCGW8J4oD67gnloXg1KiNqC42oRDxcr260O7B/6Dr/jG5emaUovVhp/3Fiq2TRzaBT/930VY8Y8L0DVJ/UH6832fo8qsbOP/1va3YJO9a6SQKDa10aB8V5ZlFFWJ5bvKu/NiMKxV2TA1ETP1nn6wkiQJKW7Kq8VM6bCw/coTdD1PfdKQUGD8e0BkYtO2+C7AZU95dE2aCQkFQpUfFFm+Sx2J2Hk3TqiGkSTJ6XuKXa+0aNVNxGBrRCf+7vQlUwqox7gFWxk0ta7A1gYSkUe2HC1TPI4KD0HfjBgXe2tHNau01rNM6dajZaqs6t8v6aVa++No7fG1qm151XnYUrAFZ6ef7dHrAkBiALrvVtbVw1SvDI6by5Sy0ZH2fM2UAg3l1Y5jXxzLqx3XRUmwoV/9HuXBXYY5P2na6cC9G4D93zQEhn1GARGxHl+TZvTRQH3T12CQalm+Sx1Gea37TCnQMENzd36lajsA9E6LUS23KKgM8kypj0GpmCkVR2kRBRIzpURtwGahdHdwl3iEhgT+x1PswOtppnTbsXLF474ZsW4D0pLaEuwt3ev0udXHVnv0mnZiA6KiKhNkWXaxt2eKnNxVF1+Ha0oDz5+g1F15teMHqx7SCUTbhA+3Xc51feKYNGDIlIYZpq0RkAJAuDJLFA2W71LHUS7OKI1SrxHvmuR6NFqvtBhVt/SSahOsNv/eF9oT8Yayr5lScSzM8SDrYkyti0EpkYdKjWasyykOyJ3DzUKmdEjXRBd7akucYyZ28HNle1654vGZzYx/cRWQAsDGkxs9ek07selFrcWKKpN/MxvFzruxEaGqrq9i0FNqNMMWRB96WoL4wcqbu/1is6NiF+W7Z+mE0t3YrIay3LYsXFk1EYU6zimlDkNcU+osoOqW7Lp8t4+TTKlNDq51/6omcV7OKLXLjFcG/8fLa/2+6UvkKZbvEnlg4eZjePTLnTDV26CTgPsu7Y1/jOylybktVht2HVdmbs7qmqDJuZsjZko97b67/ViF4vFAocmE6FDFIZfP7S3di9K6UiRGeBaIixlMACisrPP5TRhw0uTISbdHMVNqtcmoqLUgwaC+q0++8aeDpDirtMhF+e4ASfhe7HyOF1fYSoQOvAapDiUWDrWnjsGTTKmr9xidBAzsHIeo8FDopIZg1K6wyuT0d3lHpNWa0k7xyn+vOosNFbUWxDv5f0KkNWZKiZqx72QVHlqyo3HNoU0GXv5hP77dma/J+Q8WVqva2w/IitPk3M3xpftuUZVJlS0e2Dne7THuglIA2HRyU7OvaxcRFoJ4Yc2Rv+uHVONgnAS+SQb1thKj89e1WG3YX1CFihrPR+yQs0ZH/pfv1lttOOkwHqKf7ojywE6DvbvI1qAq361FLTOl1EGIQan4+x0AeqVGO218dkZmHGJOjZARfwcEU7Mj9Tgt33JOYhk0EHzrc6n1MCglasbbv+Y4XZvy9Io9mqxZ2S0MAc+Mj2yxu5LiG5cna0r3nVR20I0MC0HPVPUsRUeHKw67fX7zyc3Nvq6jdOHu98kK/z58iOW7zoLS8FCd6kNRUZW62dHBwipcPHsVLn/lVwx97kcs2pLn17UFE//WlDov3z1ZWdeYPQlFPbKlXOWBGQO9v9CWFq78+YqSOKeUOg6x0ZGzoFSnkzD0NHVH+gt6Nc3DFkt4xd/rgVJUZcLuE5WtuoZVPRLGt0xpeKhO1Wn+ZJDNfKXWw6CUyI0acz2+/tN5RjSvrBY/7inw+zV2CUFpv04t10zFl+67h0uUo2t6pBoUg86dOVF9QvF4QMoAxePfT/7e7Os6EkuyCvy8I15U3Xz5LuAkGydkSm02GX/79I/GNvp1FhtmLv4TBwuVgTw5508HSVeZUsc5e72k49BLwvd4hvJ7sU0SynejORKGOhBxJIyrm7J3Du+ueK8xhIdg4tCujY/ThCxfS8wqXb79BM57/idcNW8NRs9boxot1lLEfhD2G3o2oxE1v/8Oc26us8OcEvs2FPh505fIUwxKidzYeKgU5nrXa7dWuAhYvbHrhHJ95uktGpQKmVJT85nSw0XKoLSbm/lxAGC1WVFYo5xpOva0sYrHhyoOoaS2pNnXtksTZ9L5W77rQaYUUK8rFcfRbDxcir1CJtlqk/Hx+qN+XV+w8KcETQxKy2ossFhtOF7e1D3yDJ2QsY/vCkS2zPptvwiZUgO771IHIcuyaplDvIubUeeeloT5Nw/GWV0TMLR7Ij684xx0chhhosqUBrh8t6rOgkeW7IDF2pAh3XuyCvN+OhDQ13RGlmWnN/TMecdx6JpxODr5VuRcfgWK337Ho/OlqcbrMCillsGglMiNtQeL3T7/y75CWKy+NxyRZVk1e61fp5ZZTwqoS3w8WVN6RMiUnuamKyIAlNSVwCorP0CP6DwCUaHKLn+bCzwv4VXdyfXzTVP88OKsmRLgfuwIAHy366TT477afsKv75NgIMuyy7v9nhBvGAANHZIdM6X9pCPKHdpD6S6gDkpZvksdRI3Zquqp4KzRkd2o/hlYdM95+Pwvw3BWN2VzvBQxUxrg8t31OSWqzu9f/3mixbuy15itqtLhuMgwFM6ZDUte0/KRorlzUbdvv3i4ijjejeW71FIYlBK5sSNPmcW8+Rzl6Iiqunr8LswY9UZeWa0qEGzZ8l1xTWl9s+3fDxcLmdJmgtICo7LEOVQXipSoFAxOUzaYsZfwyrKMVcdWYdb6WViwewFq69UjeLS+kyuWebkKSsXAp0jIlP66v8jpcWU1FlWZNilVm+pVH6y8WReVEBUOsYq8uNrUWEoNAH0kYX1veyjdBdTdd1HL8l3qEMpr1dU5cU7WlHpCrHApCHAp7fpD6uqeshoLDhVXB/R11a+p7m0QDQuqf/5FuVGWUbFkcbPnU9/0ZaMjahkMSolckGUZe04qA4lL+6aif6Yyk7nuoOdlpyIxwIuJCEVGXMu1sBczUVab7PbDrsVqw7FS5TDtZoPSGmVQmhaVBp2kw9lpZyu2b8zfCFmW8dhvj+HvP/8dX+z/Ai/8/gLu+PYOmKzu13z686ZZZ7Gqbgw460AIqDvwOmZKK2osOCT8/3S00ckHGGribEauNx9OQ3QSEg3qZkeOM0p76JRrm5HS17uLbC1OMqXmelurNlYh0kKZURlQhegkp112PSEGU4UBzvBtzS13uv1AQQsHpUZlYB+qkxCyZRNkk/p90bhufbPn07oSichTDEqJXDhers5i9s2IxXCHbn8AsOVomc+vcVQohe2ebIAkuW8apCUxUwq4L+HNK6tFvfBBuLnyXWdBKQCck66cD3mk8gieXP8kluUsU2zfWbITC3YvUJ5D/PBRVefzgG9nJV7i2iQ7scNricMHqj+Pl7t9nd+P+P59EgzEdWU6CYgO9+7DqVheXewwvigWRqRK5cIBvb2+zlbhZE0pAJbwUrvnrOO2r++BYlf2wipTwEppZVnG4SLnwafYDDDQxIZ7CYZw1O3c5XRf04EDqC9yXtFjp+puz6CUWgiDUiIX9uYrG9bEnspiDumibIyy7Vg56n1cL3ikRJl17NpM06DmLN6/GDd/fTPu+fEe7C7Z3ez+0Xr1h35xVqSjI0ImMD4qrNnxNWL5rj0o7ZfcDxmGDMVziw84Ly1aenCpIugU3zQtVhmlRnUJkyfE9aQRYTrEOPl3AdyvKd1xvELcXWFPPst33RG/72IiwqBrpquzSBWUVpsaM6WnSUJTMl0okNjd+wttDary3Ybv2RrOKqV2Tiw9dTYOxlPisg6rTVbcONRSWY3FaXUHoH6fDDTx3zAxKhym/a7Xjtbu3On2fOJN2eJqk8+fcYi8waCUyAUxiOibEQtJknBmV2VQWmuxYk++byM/xExpt6QoF3s274t9X+CJ9U9gZ8lOrD2+FlO+nYIjFUfcHhMaooMhPESxTeyA6kgsN+7eTJYUAE7WKJv/pBkaglKdpMOY08Y0ezwAHK08igPlTV0Nk6PV6wfzfWxbL64nTYuNcHmnPkkV9DR9GMgpVP7bDBG+T46X16qyAtTEnxmlduKa35yi6sZy9J6648qdE7oDIb5/AG5R4cqfM4N0auSQmR8UqX0r97DzrieSovWq8WSOpad1Fite/mE/Rrz0Cyb/ZyMOFPg+qkt8L3R0pLjG5XOBUCqU7yYa3Aelpr173Z5PvOkry+qxaUSBwKCUyAVxfWCf9BgADb/wxZLVbcd8K80UM6XNjVdxxWw14/Vtryu21dbX4u0/32722AQn6/BcUQWlHlyvOA4mNSq18e/X9LwGOsmzX0Ob8jc1/j00RKda9+lrUCqul3E1DgZQBz3VpnrUnSqhFJtbXHZ6GsJClB+Q9p3kvFJXtAhKxUzpHw5rvnpI4nrSPl6fv9WExygeGtDwAbHGwkwptW/lQpbPXefd5oToJKREux4L8+iXOzHvpwM4UlKDNQeKcdM7G3yeKyreUHZ0rKxlg1JxXW5qmA2W48dd7A3U7d3n9nyJhnDVexebHVFLYFBK5ILY0MextHZAlrLZ0W4fMqVWm4xcMShN9i1TurlgM0rr1F2Avz38Lcrryt0eK3aadXdHVBwH01yTIwCq60qObFqT2zW2Kyb3naw6pm9iX4zqNkqxbUfxDsXjTvHKoNSxoY03xEypqyZHAJBsUAesJUYzZFnGoSL1TYweKcqyS5bwuubPjFI78abBgcKmGwWqoDS5l9fnbzVC+W6UZIIONs4qpXZPzJT62nnXTizhPVnR8Pv9UFE1Fm1Rdt8uMZrxn7XC7GIPubsJWhTAtazOlAqBfabZ/VKS5jKlkiSp3gdP+njTl8gbDEqJXBDvdnZOaBrS3TdDObZFnDXqifyKWtV8Nl/XlK47vs7p9nq5HutOOH/OTryzXOzmzrEYeHlSvisGpQkRyrLW6UOm4+bsmxEqhSJECsGV3a7EO5e9g7PSz1LsJwalGQ5D0wHgRIVvQakqU+qiyRHQECiJd5CLq0woMZpVmb4eydE4Xfg+2XuSQakrYlCqRabUkToobSdNjgBVoyOgYV0pg1Jq78SRMP5kSgFnndkbfr+v+DPf2e74dOPRxmoXb7jr7Ftvk1WBYiCVCtVNGTXux9SZc3NhM7pf9yrOKmUHXmoJDEqJnKizWFXlKp0Tm7KYpwuzRPedrPR6PMNRIUsarQ9FksG3N+RNJze5fG7N8TVuj032MFNaZ7GqAr/mgtJ6Wz0qTMq7tokRyoHnYbowPDL0EWyauAnrbl6Hly56CfER8Tgj+QzFfseqjsFoaXoj7SS8aeaX+/amKZZvucuUSpKkHgtjNKmC9fBQHTITItE7XVl2mVPUsg0w2hOxaUjjjFJTFbB7GZC3GbC5X0Mp3mCxk2BDZ0lZRo6knj5fa4sLV/+cRaGOs0qp3RPLd/1ZUwqoM6X28t3vdxc42x2VdfVYta/Q6XPuNFfO2pJBnBgAJ1Urg1J9nz5AiEPvCFmG6eBBt+cU15UyKKWWEFRB6YgRIyBJkss/3377rVfnKy8vx3333YeuXbtCr9eja9eumD59OsrLywPzBVCLOe6kFNQxKBUzpXUWm9vGB86IpbBdk6J8aoVfb6vHwXLXbzBrj6+F1eb6w6v4Qd7VGptjpTUQp640V75bbipXbRODUruwkDBEhTX9G/eI76Fab3q4oqnUKiNOmSnN9zFTKo6EET/UiMQS0eJqMw4JowG6JxkQopNUa4Rbuitje+J0TenxLcAr/YAvbgXeGwl8MRmwum4WJf6/sUtFOcIl4Wcgvqvf19xi9DGqTdFSLUfCUJtls8nIKapGlZtu7oCTRkc+3pi1UwdTJhhN9dh1wnVJ67JtJ1w+50pBlfsgzdmosUAR15TGVRYrHoef1h3hXZW/70wHDsAdsWLI37EwNpuMn/cW4H+bcvk+SC75NqG4nRs/fjyio9XlUJmZmR6fo6SkBMOGDcOBAwdw2mmnYdy4cdi1axfmzZuHlStXYsOGDUhKStLysqkFietJE6LCFONTkqP1SI3RK9Yj7smvRM9U9feVK2Km1NcmR0crj8Jic/3GX24qx96yveiX1M/p8+Ka0mIXmVKx8VNKjN7pSBlHzta5xuvj3R5jpw/RIys6C7lVuU3XUHGoMYOqXlPqY6OjKrHRketMKaDuwFtSbUapMCfutJSG/5diJrmwquEDkqGZf7dgJAalsREhwJf3AnUOHyb3fg38/DRw2ZNOz+Hq/12mpPyQhhA9YEjx63pbVEhYwzVbm77PWL5LbVVhVR3u+nAztudVQJKAKed1w2OjT3c64kk1EsbPTKlYvnuyog5/5lXAXSHTT3sLUVlnaarO8EBzQWdLZhbFf0NDmXIOaVinToBNhvnQocZtzQWlWmZKq+osuPODzdh0pOHzQKhOwksTBuDawVk+n5M6pqDKlNrNnj0bH3zwgepP//79PT7H/fffjwMHDuC6667Dvn378Pnnn2Pnzp34+9//joMHD2LGjBkB/Aoo0I6VKbNujllSO7GE19t1peLdwq4+joPZV6rspJcalYpusd0U2zbmb3R5vKrRkYtMqXi9nqwnLatTdiWO08chVOd5QHZa/GmKxznlOY1/FzOlBZV1XpdQm+qtqjv17taUAg3jaBwVV6vLd+1BqbP/p2KGnBqIa0r7Vm8Aipw05NjwBlB+zOk5UmP0iAhTv61lScKw+PjOgK6dvf2pxsLUMVNKbY7NJuPuj7Zge17DzSRZBv772xF8uinX6f6qTKnfjY6UwVRhVR225irfhzonRip6A5jrbfhup3J0mTuyLKvmW4vr2cUGeoFis8koE/4NwyvLFY/D0tKg76Vs7FbnZmQMoF5T6k+jo38v29UYkAINa24fXrIDeS3cpZjavnb2rtw2nDx5Ep988gnCwsLwxhtvIDS06UP2Sy+9hJSUFHzyyScoKHC+hoHavuNCUJqVEKnaR9Xs6ISXQalqRqlvmdL9Zco3lz4JfTA0Y6hi24YTG1weL76ZFlWZIIt1uvBtHIyqyZE+wcWeznWP6654fKyqKRjJEDKl9TbZZZbXFWd3u9OayZSK/14l1SZVFvm05IaMeURYiGrta0vPsGsvxEzpaaUu1kJbzcDq550+pXNSMg0AWWKmNK6zT9fYqoQOvAauKaU2aMWOfGw7Vq7a/tbqHNQLjf2sThoCiWv2vSVm+Iqrzdh4WPk+dHGfVFzUO1Wx7avtnpfwltVYYLEq3yP7ZihL7EuNLdPoqMRoVt2MDSlXfr2hycmqoNR0wP2aUjG493UkzM7jFVjyh3o8TZ3FhrdW5zg5goIZg1IffPPNN7DZbLjwwguRlpameE6v1+Pqq6+G1WrFN99800pXSP4Ss4XpseqgVOys6k2m1GaT1eW7HmQenRGD0t4JvXFuxrmKbVsLt8Jkdf6mIs7lNNXbUG1Szz8Ug1JfxsG4Wk/qSla0srwnr6qppX+yQa/qhOvtWBjxbnZ4qK7ZUSRiM6r8ijrkCuXePRzKuMV/J2ZKnROD0tRi19l9bPsUKHJ+p99ZUKoq343v4vX1tTrVrNJa1Jo5p5Talo/XH3W6Pa+sFhsOKd8PymrMqj4FyTH+rSnNdHID+df9ykqJM7sk4JpBnRTbfjtYjGXbjuP5b/birdU5bm9wiqWskgT0SQtMUNrQdLHO6Y1iZ9eikwCUlii2hSQnQ99bGZRai4tRX+q6S2+GcDO12lTf7PpgZz5Yd8Tlc19tO+FT52PquIIyKP3Pf/6De++9F3/7298wb9485OY6LytxZfv27QCAM8880+nz9u32/aj9ETvQiiWugLp8t6jK5LZNvKOCqjqY6pV3jbv5WL7rmD0EGhoEnZ1+NiQ0BWwmqwnbC51/Pzobo+HsrqgqU+pD+a6/Qenx6qY7rjqdpCoxcjc7zpkioQQrLVbfbLMpcU3ppiOlqjvV9vJdQB2Uuhu6HswqHT7wJKMCUdXOP9wCAGQb8OO/ofpEC+c3S5yW77Y3qvJdE8t3qU3JK6tRlGmKfhG63IqBnyQBiX6OhInWh7odDQUAg7vE49K+aTCEN3WktcnA9M+24a3VOXj+m724cu6vLhvyiDczkwzhqmUf4jpPX6zckY+znv4RQ5/9Cde9uQ4lTgJl8QZ6pwgJtmpl473Q5BSEd+kCKVz5b+suWypmSgHv319rzVaXo3iAhs7H63NKXD5PwScog9Knn34ab775Jl5//XVMnz4dPXv2xKxZszw+3h7EZmU5X6Rt3+5psNuvXz+nf3JyWNrQWsRf9M6C0u5JBsWbGgDs8rCEVyzhjAwLcfoazbHarMirVg4E7xzTGXH6OJyedLpi+28nfnN6jsjwECQI63jEtR7VpnrVG7EvM0q9DUozY5TNxyrNlag0N/0bi+tKvc2UHheaIzVXuguoGyyJcVFqjF7RMEMs/XbW2TnYmeqtqLM03aTpoxN+d4ZGAsPvV27btxJ48zzgp1lAbdPNj0Gd41XnV2VK49phplRVvlvL8l1qU5Zvdx2AAOqMZYkwXzMhKhyhIf5/LHV3gzfJEI4uiVGIDA/BFf3SXe5XXG3Gg4v+dJqhVM22jolAojgqrNq/oLSwqg7/98X2xqqlP3LL8eTy3c1ey2mh6sA1NCUZUkgIwnv2UGx31+woIizEaVWQN37ZV6i4caaT1P9vVgvfExTcgioovfDCC/Hxxx8jJycHNTU12LdvH5555hmEhobi8ccfx6uvvurReapP3YWKinL+i89gMCj2o/ZHzKA5Cxh1OkmVLd153HXbeUditszXcTAFNQWotylL+DrHNGSBxBLe7458B5vsfM5jF6GRk1iOelho5CNJnjVmEjOlCRHerSnNMGQoMr4AcLyqKVuqmlXq5Zum2GXZ2dphUecE91+32IE5M14MnDnvTVRZq/wezpaERkap2cD59wGRwk2Nwt3AmtnA2xcBlQ0fiIf1SIKyyafcQcp3ld9X0Wx0RG3Mz3uVfTSyhTnNB4uqFRURYqbU1zndoq5u+h2c2TWh8b327otOQ7ibIHjTkVJsPlqm2i5WRKXG6pFoUN7Y9TdT+tW2E6qf7xU78lX/ZmJVU1cob3pKej10p6ZNRKjWlTbTgVfV7Mi7G6pilvS8HskYf6YymfPbQeF3MwW1oApKn3rqKUyaNAmnnXYaIiMj0bt3bzzyyCP48ssvAQD//ve/UVvb/A+d/c6ZqyDCVe2/K7t27XL6p0ePHs0fTJqrt9pQIqwHEWd52vXrFKd4vNPNLDRHRzQaByOW7kaGRjZmIy/vdrniuePVx/FH4R9OzyN2F84Vri9HmMOZlRCJiDBlltgZVaMjL4PS8JBwpEYpG1I4lvBmCAGft7NK8zzosizKiItAiJPRBnZiUOosU2rzsktwRyeuJ+0jBqVp/YDIeGDcGwCc/NuXHwW++juAhvmm5/dMbnwqCZWIlIQPiO2yfFf5fRXFkTDUhlTUWrA1t1yx7f7LeivW/csysDOv6T2yWMgmupoz7C3H5ROiIV2b3oOy02Px6k2DEBXu+r1syVZ1kx6xaigtJgIJQtlxqdHs9WdBRyt3qLPOVpuMdUK5qzjSrJOsfE8LTU5u/KyqbnbkPigV15V6c0PVZpOx5oAyC3pV/wwM75Ws2HagsFr1+5+CV1AFpa5cfvnlOOuss1BRUYENG1x3KbWLiWm4+2c0Ol9vUFPT8IHe2SxUavsa3kyU21yV1p6RKQSlxz0r31VlSpO1WU/aOaZz4xtQ38S+OC1OOVLlw10fOj2PmPU8KmQQDwlBaY8Uz763xaA0KcL72b2Z0coSXsegVMyUiuW4zRHLlJvLggJAaIhO1eHRkfhvkxmvPKe53oZio2+dDDsq8UNJjxChc3lK34b/9hkF3PQpEJOhPsnBH4D8PwEA/7769Mby8l4RQqZDF+r8+LaO5bvUhq07WKxYWx8eqsOFvVJUXeq3K4JS5e/B5taCemqwkxJ+O8egFABG9c/AbzMvwad3DcWiacMw47Leiud/3lugCi7Fktm0WL2qa7Cp3ubzz6ep3oodLqqu1ucoM4tiB/kUi7ietCkIdBaUugucxeUx3oyF2V9Yhco6ZQXMxdkp6NcpDuGhytBju5NuzRScGJSe0uvUD2t+vvs1EQDQpUtD6VdeXp7T5+3b7ftR+yLeBQ3RSUh0UVZ0RqbyDfd4eS3KPOi6p+pkq1Gm1F66CzRk8q/peY3i+V+O/YJ1J9apziOW74plrTkuRp40p8zkX/kuAGTFuG521EnMlHqxXlOWZXX5bmLz5btAw5w7V8RMaWqMukuwOHIo2FUKXR07S8qGKEjo1vT37KuA+3YAExcBkcL30x8fAwB6psbgm+kX4If7L8SH1wrrxmIzAV3zWf42h+W71Iat2qfMig3tnojI8BAMzIpXbHcMQMTGPVoFpQM6x8NZMUtUeAj6CzeSASDBEI7zeiTjrG6JGD1AecOqoNKker8WS2ZTYiOQIJTvAr534N2bX6UaOWO3+YjyPVWcl5pkUgalIY5BaW9lwG2rqkL9SdfzWVWNBD1s5AgAvwtjeLISIpERF4nwUJ3q/8EfQoadgheD0lPKyhp+0D3Jbg4cOBAAsHXrVqfP27cPGDBAo6ujliR23k0yhLss1+yZEg29cNevuWZHsuxkHIyPQanjiBRAGZQCwA29b0C8Pl6x7ekNT6OuXvnmoirfLa1R3EHNKRQypanNX6/FZkGFSXm319tGR0DDulJHJ41Nb6LindyiahPM9c7XzYrKaiwwCneyPcmUAg1lX66ImQGdTlJdJ5sdKVU6ZErDYUEyhOymuAY0JAzodRlwzl+U2w983/jXiLAQ9EqLgb5aKL9rj+tJAVX3XZbvUlshy7KqYc1FvVMAAAOyXC9xEct3kzUq343WhzoNPi8/Pa3ZZSenJRtUY9LWH1KWzIqNENNi9IjWh6puPvoalP7ppjfFoWKjYoyKmLWNqVUe65gpDU1Pb1xfale3d6/L1xLLd71ZU7pJCJ7P6db03i9msrfmqtftUnBiUAqgqKgIa9Y0DGp3NebF0ZVXXgmdToc1a9agsFB5R99kMmH58uXQ6XQYNWpUQK6XAsuTzrt2oSE6ZKvKk8qbPb+Y4eimYfmuo+jwaPx98N9Vx7y7413FNrExRI3Z2ng32GaTVXeKPcmUigEp4Fum1F1Q6qwTrvgm7YqYJQ3RSao3YVf6dXIelHZPNjjNqovNjpgpVXIs382QSqCDkCVwFUj2vVr5uOwIUCJ0LS8XOvm216BUr2waEy3VoYZzSqkN2F9QjZPC790RfRqCUnGJS15ZbePPu5gpFcdt+WPSuV1V2yY62SaSJAlDT1MuM3FsYGizyarsZFpsBCRJXVFV6mOzo4MFVS6fs9pkHChouElcZ7GqKruiql0HpZIkISI7W/F87VbnfSYAJ5lSD5fHyLKsypSe3b0pKB3UJV7x3I7jFX6tv6WOI2iC0g0bNuCXX35RfeMfOXIE1157LYxGI8aOHasY8zJ//nxkZ2fj4YcfVhyTkZGBm2++GWazGffeey/q65s+GDz44IMoKirCLbfcgvR01+3Gqe3yJigFgEHCneC1B9x3kxObHOlDdR6NIhHJsqzKlIqlrgBwfe/rMTDl/9k77/A2qqyNv6MuWe69O7ZTbKf33huQQCD0HghLX1hKaLvA0r+lLL1sgAChhEBCIBAS0nuvThw7dtx7t2WrS/P9IRfdO6Nmyy2e3/PwkLkzGo1taeaee97znhHE2OqM1Wg2tQeakX4KqOUS4pjWB3FJvY7TUzXJiZFEK3Q9KQBO1tYd6KC0rLldYu+vlEJJrXy768BLB9pRAQq32xHQE61WRlEP21bohu5CppSkQdselHJ6iir8bSZHfISnAepwcqzoMHVyyjTJvw+aHAEc+a4PdEQbHQGBnmL3BXJxPjpA2VZbnxSq5mQQM8tsaiJaBust+S4ALB0dg3tnJEIiYqCWS/D8olSMS3BPqTOMKsuxVz/VaY0caW1rj1KO2ZGDtjBWK4uaJgPMFv7vb66D/qitnG/5/RXXaTn+F/LGemJbEkoaCynHjCG2tcePO3yfKErhozGYodG7NiUqrtNxFinsf/e0pLu22Sg8EwUA9KOgNDMzE7Nnz0Z0dDRmzpyJG2+8EVOnTkVKSgr279+PtLQ0rFxJZo+qq6uRlZXFW2f67rvvIikpCevWrcOQIUNw4403YtiwYXj//feRlJSE//73v931owl4GU5Q6uJBOXVgKLF9rKDWaQYjn6cdjMiJm6sjGgwN0JjIFVU6UwoAIkaE5yc9DzHTHrzpzDpsK9jWfoyI4WT/WiVEF6hVW1+5xK2eqnRQGiAPgEQkcXC0YyLU5OJOvaEeWpMtsGcYBpFUttRdB97WB3srg8J8HRzJZVC4L2/7gpmDw3iO5msLIzyA7bHPlMbSQamzzCbDALHjybHSU+R2PRWU9kXnXYBHvmsQMqUCvQJaujt9UGib4Z5MIkIydW89X9YIs8XKyTi6q1RxB5GIwTOXpeDCK5fh1PPzcNfUAW6/dijlqp9ZroGpJYCkA2mGaQ+mafdgvrYw2RUazHlnN8a8sg2z3t6FMzzKKrpchiaj5dlFt24LUcvA1pCL4vaZUgBQjSWDUn16Oqx6/oVcOlMKuKdEOkJlSYN8ZMRCdkygEgFUb/T0YseSZYH+Q78JSidMmID7778fkZGRyMjIwLp163D27FmMHDkSb7/9No4ePYqwMP4JJR8hISE4evQoHn74YRiNRvzyyy9oaGjAQw89hCNHjiCEuhEI9B08zZROTAyCxC6oNFlYHMipcXg8t0epd0yOJIyEk1VsZVDgIEyJnkKM7SzaSWzTtT/pLQ9L2gUwJdLPrZ6qne1R2kqEiqs4KNfaSXj96YDPvUxpBhWU0rWgzhCLGNw2iZSCRQcoMT81nPd4OiilW9H0d+yDUk6mNMCF5C6SVAGg7HT7v1n2EpLv0kZHOsHoSKDHaTaYcTSPvNe3SndbSaXurRlljajQGEB3xqKN67yBSMS4rYBphe4/bjRbkdMSKNItWIJ9ZJC2nJ+vLYw9LMvi4R9Otql0imp1uHf1caJGVGs0o5RS+1w2lHwGtj67aG+KuEAlzNXOg1LlqFGAqP33wZpMDrOlCqkYgVTw6M7z9Wg+GZSOtesNC9gWk+maX2d1tAL9h34TlKakpODjjz/G8ePHUVlZCZPJhPr6ehw8eBCPPfYYlEruzfDFF18Ey7L46quveM8ZGBiI999/H4WFhTAYDCgsLMQHH3yAoCDPzVwEeg+eBqW+CilGx5EB10/HixwczdejtGP1pMVNpHQ3wifCaSZyXvw8Yvt4xXFY2Xb50DBKUnOm2FbnQa9gDovhl67S0JnSjpgcAYBKquLIfsub7M2OPM+UWq0sx5CKDkotVgs+T/8c1228Djf/cTP2FO8h9j84KxnLpw5ATKAS4xOC8OWd4xyaaHBcgj2w1u8P2AelUQy1oOMqiIwcRW6XnwGsLZM8fT1gpOqz+qx8l8w2+UAPvckq9LwV6FEOXqyB0U6GKhExmJxE1mSmRNKZUg3HNEcuEXECoJ4iQCXj9JdufV5UUPdu+2wip6aUCkpPFzcgs5y8H5U16LHlXPvzjC4rYRhb2xp7sso1vIaJyT4MWCP5nuIQcoFArFZDkZZGjGm2bYMjIvzpZ5fr5ysdlI4fwH3200HpWSEoFUA/CkoFBNyFdt8Nc6Pec9EI8qHxV0YFjhfwO8rlV3snU+rKeZdmXMQ4YrveUI/c+ty27RFUsFnTbMS50kbOCiadUXWEt4JSwHldaSRHGus64Dtb2sCZMNA/14enPsR7J95DZm0m0qvT8dD2h4h2OlKxCP9clIp9T83G2vsmYXCEY/kvLTFu0JkE6aUd9XZBaSjqyZ2+Lmrz6UypSQtUtzSFp7OkYGwtYfoiPPJdBlYhWyrQo9DS3THxgfBVkMElnSnNqtCgqJYMbiL9FW4pcLoLzjWX24JSekExwq/9+UMHpTXUM2bzWf72K3+mt49frKK8DvyVHLfaBp0J5Y16jnw3ScLtfy0J4fYG9507l9jWbNsG1spf30qrfOi/G01Nk4HzM/DV8tLP29ZFcIH+jRCUCghQeJopBYAlo6LhI2vPkrEssPzro8im6jFZlutk2+F2ME2uTY7siVZHI8KHkgHVZrT9Oy5Ixem/+e2hAs7vg89qnw9vBqX0ddsHpVFuZkotVhZvbcnCjDd34soP9xP7EkN8iLY4xZpifHXuK+IYFizeO/FeRy6ft1ZKyJa2Y98SJpShVsxpIyMadSg30Kw4a/s/XU/qFwVIvNN2otuh5LsihoUSRiEoFehR9uWQctHpg0I5x9AqFKPZir2UISDdNsuq06H50CEYixyrjrqSIdQiY2uGs5yTKW2fH9BBKd2z/Egef1nPnuyqNtOj3CqynjQx1AcxgUqOEWFmmYbjTxEH8tkn8vWFSMF99vjOI1VTlqpqNB84yHtttJKLfk+ao1QrGJVMzOtWTyuzGnQmlwGvwKWPEJQKCNihNZrRZCAzWO4EpX4KKR6cnUyM1WlNuPnzw0SQVN6oh5bqLehOz08+3HHepRkSRNrBX6i90PZvhmEwL4UM/tYcJScEfgqJ20F0ra5nMqWOgr3XNp3HhztzOJInAJhB1UD9fOFnmK3cTGZGTQayarPcvu5WVDIJ/JVk9sBde/3+gL18N4QOSn24k1wOYankdmXLYgudKe2r0l2AI98FbA68Qq9SgZ6iuE7LWWSdPpD7fQ30kXEW5v48SxpI2i+I6rMuIPeqJSi8cxkuzl+Ami9XefGq3WNwBJ0ptQWlZZTRj30w7Uy+a7GyOF/G3+pFa7Qgq2UBm84yJoWqwTAMJ0g+WVTPUV1FWclnG11P2oo8cQDkgwcTY3VrfuA9Np4KSvmen/bQ0t3RcYG8Nb1R/gqOWeCZknqn5xa49BGCUgEBO+isIOBeUAoA90xLxNRk8iFQpTHg6XXpbbKUi5XkQ0QlEyPCr2OOg5ygVO06KB0cSD6IsurIAGueA6OeVqYPCnXbKbjO4B2jI8BFr1JqslPbbCSMIwAgp7IJX+7P4z23iAFumdBupsOyLDbnb3Z4LTuKdrh93fZ0pPa1v9AalIphQRCoiZurTCkAhFNBaUVLUFqXT44HJnTo+noFMu5ikA+jFzKlAj3GfipLGqiSOuzhTGdL6cXZxJYWMizLovTpp2EqbFlQYllUvvkm9JmZXrpq96DLMSo1BtQ2G7k1pX6Oa0rt5bt51c1Ov6ut5T60826ra+0Qqi73t1MlhFEUwwDhZnJ+4SgoBYCAG64ntpt27ISpnCsvpsuL8muancps6aDUURsehmE4/hSCA6+AEJQKCNhBB6VKqZiQ5TpDKhbhs9vGYDTVq3L3hSocyrXdqHMqyQl36yqop5gsJsKBFnAvUzo4iAxKc+pziO3xA4I4NST2zElx36Haq/JdtWP5Lp0pBbgtV9afKOb0c2vl6cuGIDmsXRqZ25CLkqYSh9dyvNxxXzdncINSIVMK2KR8rRPUIDRCxFB/KLUbnzlHmdJLKSiVyAHKyMwHXOWFgEB3QUtwJyeHOFy0pGs0aQaE2IIffXo6DOfPkztZFvXr13f8QjtAQrAKMgk5Rc4sb+QsJtobHQX7kAvYDTpTWysZurUazfGCOlitLHKrqaC05dk0hMrccg0TfSCqI5+5Yp560lb8r7wSjMouC2q1on7tT5zjaGWURm9GvZa/V2mzwcwxEByX4Hgxmi4Fop3+BfofQlAqIGAHXz2pJ0Gjj1yCVXeORxiVXV2512YoREtz7IMhTyhrLiOccwH3gtIBfmSvtmpddVvPT8DW6uRuB/3cAlVSLEhzYTpjR1caHZU3l7f9/Gq5BH4KcrJOB3yb0kmpWLifHCsWDsavD07B36YnEfuOVzgPOk9VnYLJ4rqBOA1XZixkSgFSuhtGS3cZEaByPLFqfyEVlNYXAAYNT1Dqor1Mb4ZhABnVFgZ6wTBLoEewWlkcuEjWSNJKIXtctdxKbAlKm/bs5d2v2bqtW41wJGIRBlLP55OF9WjUk983Z+67QHuvUley1+MFdSht0EFvIp/ryS0ZZNrBmCYl0penHYzj0gexWg3/xYuJsfpffgFrIRe5ogIURMs7wHFd6YnCOljs0rcSEYNRcZ4FpYKbeP9GCEoFBOygnXfdle7a46+S4uE5A4mx3ReqUKnR42IVvzTHU2jprp/MD34y1302+QJX2jDp1onxvKva985IgkrmuOWMPSaLCRqqFYc3g1KT1UQEvXTLFftMaXmDnrOqvPL2sXhgZjJGUK6GAHCs4hixPT1mOrFtsBiQ25ALT+EaMgmZUsBFPakqBBC5oVQIGQQw1HGV523BqT19OVMKAHJyYqpi9BypuoBAd5BR1shxMHcWlDqS9QKATCxCXEvtYvP+/bzHmMvK2iW93QSdndydVcU5xl6+y9fSpvV3RDvl0s+e4jpdm6KqFV+5pG0OkhblD5mTfqtj44Nc9iilCaQkvOayMjQfPESeQyzitMehF9dbOZpHXv/QaH8onSjNhlNmRxq9mQh4i2q1WHusCAcv1gjOvP0EISgVELCDzpTSGU93uWZUNFR2N2OLlcWGkyUcaUtSaMcypZ4677aikCgQpiTlkEUa0sxIJhHhq2XjMG1gCBgGkIoZ3Dk5AfdMS3T7+uh6UqBzNaUhyhBOD9ayJjsJr5OA7whV4+KrkCAtit9BmGVZTqZ0VuwsTlCcXZ/t/sW3wOn3JhgdAaCCUtDOu27KxaUKIJjMeOPiTsBM/Y77elBK1ZWqoRPkuwI9Au26Gx+sIhzMaeKDVZyFuVaGxfhDLhGDNZuhP3fO4Tl0p0937GI7CG0uRD9L/JVS+Ni54krEIgRQgWltky0oLaKC0rlDwjilQT9T/c2TwtrLexRSMUbyLKK2MiHR86BUkZoKeUoKMdawfh3nuIHhdJ/ZRs4xANd5l68/qT3hfnLOwv/BXFv2/aOdOZjx5k6s+PkMblp5CH9bfVxYgOsHCEGpgIAdHWkHw4ePXIKFQ0mp6ztbLxATcACcQn936YjJUduxVABb1Mi13A/zU2D13RNw8l/zcPxf8/DilWkQu2lwBHCluyJGBH9Zx37W1teHq0jDG+cOvO2Z0tNF9cS+sfGBDn+WSm0lKrWVxNjo8NEYGEhmvrPrPA9K6QlZqSDfBQA06NqzLaFMPbnT3aAU4Ep4s/4gt8VyQO2+/LxXQsl3fRi94L4r0CPQJkfOsqSAzdhmioNjxsTbFiwNublgjUbeYwBAd+qUZxfZSZz1ngaAhBCu0smR2RGdKU0I8eFkS+lMKb1oPTmZv5QhRC3HkAg/mKvJTK4k1PnfBAACrrmG2NZs3wGrlrxWWjmVUcoNSo1mK04WkUGpI5OjVhiGwaRE8mfacb4Sv54qwZtbsggjp60ZFfjPZs+d7wX6FkJQKiBgRyUdlKo7FpQCwLWjyeCPrhUJUcucmgo5o6OZUgCI9SXbYtCZUnsCVDL4KbiSJFfQQWmAPABid2SYTnDWFoYT8NllIVut/Fuh+6PZQ7sRqyQqJPglYGBA54NSOnDW6Lnth/ojztvBeBCUhqeR22VUViUgDhD18Uce1avUB4L7rkD3ozdZcISSak4b6DoAunJkFO9462s5Bkf0+2Z2b1BCZ0ppBgRzM8N0m5PaZiPMFitKKPO9uCAVRlGmiDQDw8nv+9LRMeCzuFg6Jhoi1gpLDfk3kYS6bqflt+gKQGzXY91gQPNBsmcpLb3OKGvkyGnTSxo4c5yx8a7VUbR54vbMSjy2lj8j/s3BfE7GWeDSoo8/oQUEvIu3MqUAMDEx2GnQOSImoEPOu0DHepS24klQ2lG8aXLUirO2MHTjdftMaWY5uarrbKJB9yAdHDQYIkbEzZR2RL7L0/qnXMiWosHOyTGUDko9ypSmON8fOtj5/r4AnSkV3HcFeoBTRfUwmNsDEBEDTEp0HZROTQ7hZAeHRPhiclJLUJpDusHTi0iGixe7tbYw1FfOWyfairuZ0rIGPWEABNiC0tFOTIAAYDilpIoNUuHyYeRzUCUT4/ZJCbDU1gJWMih0Jd8FAElgIFRjxhBjmh1k27NUKiht0Jk4QfbBi2TmfHC4LwJ5jJ9oZgwKBS1con9XrZitLH465v35ikDvQQhKBQTs8GZQKhIxWDo62uH+mYNdr2LywbIsJ5D0RL5LB6XO2p90lFpdFwSlaseZ0sgAqqa0JVNa3WRAdRMpB3MmyaIzpa19XemgtLy5HM0mfrMHRyhlYs4ERzA7Ahp07dniDteUAlz5Lme/i6C1L8CR7+oE+a5At3OMqq1MifSDv5PgrRWGYfDxLaMxLiEQIgaYMCAIX945rq2cwlhMLrb6zp1LbFsbGmCu4poNdRUMwzh9XgxwIyitbTZwpLu+cgkCVFKnNaKAzSiI5vVrhuGa0dGQiUVIDPXBqjvHITpAyaknhUgEcZB7z1317FnEdtPOXYQLb3SAkuNwf7KwnthurQVtZVKSG67psKmxpg10fy607kSJYHp0CSMEpQICLVitLKq94L5rz3VjYzmrgK3MSQnn3+GCRmMjmkyki68nmVI6uKvQVnj9Jk9nSjtjctSKc/kuJY01mKHRmzjSXblExOm7Zg9fphQA4v3iwYD8Q9LZanfgZHQFsyPUO60p9eA7EjgAkDiRw18KQakg3xXoBdCGNq5qB+2JDlDip/smI+fVy/HjvZMI53RTEXlPVU0YD0ZJfqeNdDa1i3FkigdwW5oA3KC0rtnECUpjg1RgGAbBarnD/q0Dw9S8pTN+CineuX4ksl5ZiO2PzcCElppMOlgXBweBEbtXMuM7ezaxbamtJQynGIbBaEqKax+EGswWHKM+ExMT3QtKAeD+mUm848lhavx83yRirKReh+zKJt7jBfo+QlAqINBCvc4EMyUb6WxQGhukwg3jYjnjs4eEcdqYuEteQx6xLWEkiPBx38CFNgwyWAyoN9R36FocUaUjH5AhStcyIlc4k+9G8Lg6ljXokUkFpYPCfR2aHBktRhRqyJYDrZlSuViOMBWZtaOPdQfaJVgwO3JVU+qBmkAkAsKGON4fluZ4X1+Bct8VjI4EuhuLlcWJAs9cVvkQ8dyHTVSmVBYXB3ki6fpuyLno8Xt1BkcGToEqqYNMKTlnqOHJlMbZuRTPTeVfeJvnYLwVhmGI8h9zlfs9SmlkcXGQDSD7k2uPHiW2J1OZzz0XqtoWs/fnVBNyboYBJia6/5mYmBiM5VR/9BC1HJ/cMhpj4gM5ZVC7skgzQoFLByEoFRBogZbuArYbY2d5emEKYRQQF6TCv6/s+ASZDkpj/WIhFblvRhSqCuVk/Sq0FR2+Hj7o89EBXUegg9JafS30LS0/FFIxx2CitF6HTMq63pkUq7CxEFaWrMkZ4N/+oIzziyP2daQWl5YZlwvyXdS31JRKYEYQQ62Ae5IpBYC4SfzjqmBbL9O+joz8/KqFmlKBbiazvBEayqDNHUMbV1iammCpryfGpNExkCcnE2OcutMuZkJiEG9/0NFxgbyeEHxGR5yg1M4gacnIKF7zIrp21BV0ptQd5117VBPGE9vNR44Q21OTySC3uE6HUy3O9n+mlxP7RscFIkDlup7UnueuSMGnt47G9WNj8PfZyfjzkWkYGO4LhmEwfRD53rt4+sUKXBoIQamAQAuVGjJACPKRQeqkWbW7+Kuk2PDgFHx66xi8d+NIbHpkmtN+bq7IbcglthP93e8fCgBSkRShSvImb5919AZVWvKh4Y2glC8bTJgdBXAdeLMqyEypM5Oj/MZ8YjtUGQq1XQ0fXYtb2NiRTCm54lsqBKVtLROCwdP7zpOaUgBInsM/Hj+l7zvvAhz5rgp66EyCg3NfRKM34adjRfjtdGmfynbTMs34YBXCeEzcPIXOkgKANDoK8oFUUHqxezOlKpkEC4Zynz2LR/A7CXNrSo0cx1j7539iqBp3TSGzhNeMjuatJ3UGt0epZ54VqnHjiG3d8RNgze33lpRIX05mePXBAuhNFmw9Ty5CX8bz+3IFwzBYODQS/7l2BB6bP5hQqdH+G8cL6mCyWOlTCFwCSFwfIiDQP+CYHHkhS9qKVCzi9C3tKJ0NSgEg3Ccclbp2CUxFs3czpXSvT1oy3BFUUhX85f5oMLRLPMuay5DgnwDAVqt0tqQ9sMmrbsIFTlDKX78DcIPS1vO2QgeljmpKjRYjPj39KXYX74afzA+PjH4EI8NGAuDKd8vqBflubbPte8eR7jJiQOmhLDB+CiD3BwzUuQYt6MQV9iI48l3B6KgvUqUxYMlH+9scTFMj/bD2vklQy3v/lOwoZXI0Nr7zJnYANyiVhIdDJJdDlkTWGxpycsCybIed6zvCigWDcSi3pm2OMDU5xGFQSqurapqNnO9oHLUo/c8rUpAS6YcDOdUYHuOPWyfGe3yN3Exp54JSa1MT9OczoRw2FIAtaLx6VDTe2Xqh7ZgNp0rAol3t0oq35jqtTKDk4QazFRmljRwnZ4G+zyWwdCwg4B286bzbleTWk0GpvcTUXeisY7nWe5lSrUnLMWLyRqYUcF5XSjca336+ktM3zZl8N78hn9hO8EsgtuN8Sfmuo5rSfx/8N1amr8SFugs4VnEMd225CycrT9qun8qUCvJdoLbFHZljcuQT6nl2U6oEpv2DHAtKAoZe2/EL7E1Q7ruCfLdv8taWLKKlRkZZIz7e2b2y1I7AsiwnKB2X0HnpLgAYKZMjaYzNvE8+kHQ+724HXsCW2fzzkWn4v6XD8NHNownHYBra34BlgWbqOxpPBaUMw+DaMTF454aRuHPKAEg6oNDiZko9k+9Kw8K4daXHjxHbt06Mh1Labp5kZYFfTpLu/VOTQxAT2HElGB8BKhmSQskFueNUXbPApYEQlAoItNAXglK9Wc9p4ZIY0IFMKZW59KZ8l68+1VtBKR1M2zvw0kFpbjXZsiXUV+70b0pnSuP9yNVqOlNa3lwOo4VsN3Oy8iR+u/gbMWaymvDSwZdgZa2cTGmrS3B/RW+ytE3YuD1KO9YyCZMfAea9DMROAIYuBW7/FZB2Xl7YK5CTiyoqRg+94L7bp6htNmL9Sa7K4ufjxbA66M/YW6hoNKCikXxOjvXAedcZHJOjlqBUGhXl1IGXtVpRt+ZHFD/8MKre/wBWXdeoT0LUctwwLg5XDI+ETOJ46hyokjrdLxYxiA7smMmhM8zVnaspBQDVWLJfqf5MOrEd5CPDQ7NJOTXNfTP4nXQ7yxiqbvl4oRCUXooIQamAQAuVfSAoLWgsAAty4jLAr/OZUm8aHdHSXV+ZL5TOWnV4gLO2MElhavpwgrQox9JdgBuU0hloOihlwaK4iZxI/ZD5A++5c+pzsLtot0OX4P5KndauHQynR2kHJd8iETDl78DdfwHXfgkEcN2v+yyUfFfIlPY99mZXwWThBp+VGgPSSxp4XtF7OFdKXp+vXIJEHgfajmAsJo3jWjOljEjE48DbHpRWvPoayl98EZqt21D98ccovHMZUQvZ3TAMw1l8tCc6QOkVrwoajvuuh/JdAFAMHUZs686e5Rzzt+mJDh2JrxkdjakDO++0zwcdlNIO0AKXBkJQKiDQAm10FNYLg9KL9aTJQ5RPFFRSz6UyXZkp7Yp60lacBqWhzidHjvrBAUCdvo6oVQW48l21TI0gBZkVsK8r1Zl12FW0y+F7bMzdyOsS3J+D0pqm9qCU2w7GO9n1SwoZ3adUB61BMDrqS+zNrnayr3e7ip4rJc3IUqL8eFu7dARTMakAksa2997mOvDanoOG7GzUffcdsU93+jQ0f/3llWvqKOFOjJ/ig70rbQUAS1MzWC1ppuSpfBcAlMPJoNRUWAhzHRn8ScUirLx9LG6w68HOMMANY2Px2tXk673J6DgyKC1r0KNMaKl2ydH7q+oFBLqJvpApzazNJLaTAjomleFkSpsrvGYeQWddaaffzuCsptRXIUW4n5wjL2sl1UmmlM6SSkQSRKm5RhaxvrGo1bfXVNk78J6uOg2d2fFDcnfRbujMOkT4K9ocZ4H+bXZUa/d74NSUeuq82x+g3HfFDAvW1H8/P32Rk05kh6eL+1am1JX6xF1YlnUo3wXAdeBtyZTWfrOa93x1P6yB3+WXe+XaOoKzTGlXBKXmCu6isiTM8/unPDkZjFwO1tD+DNWfPQv1tGnEcUqZGP937XA8Pn8QCmu1iA5UcvwSvE1SqBq+cgnRjuhsSWOXv69A9yJkSgUEWqikghlnq509RUZtBrGdEpzSofPQQanRakSdwTtyGLp/J19w11Ho6y5pKoHZ2v6QGhTu2MgoLcqxxT5tchTnGweJiLtmR5sdFTQWtP37ZMVJzrFipt0Uwmg14kTFCaEtjB32QWkI3RJGCEq5yLgSdcbUzHMgP2uOFGLhu3sw5Y0d+GTXRbBs765hvNQwWawoqNE63H+qqL5X/03oTKmze6onmKuqiEAIAKSx7bJ7GU+vUtZshmbrVt7zaY8fh0Wj4d3XHcQ4qRmND/KO3NkeU2kZsS0ODIRI6XmwxkilUKSmEmO69HQHRwNhfgqMTQjqlsBQJGKQFk0ugvR2ubuA5whBqYAAAK3RjCZKBtfb5Lssy+J8zXliLDUo1cHRzglRhkDEkF9/b7WFoYPSOL84B0d6Dl3nabaaifcb58B0I8JPgQQnK9SuTI5aoX8WIiitJIPSmbEzMSyElDMdKD2AKKqfank/liDZZ4w58t2O1pReyvAEpWJzs1uBzJZz5Xh6fToyyzUoqdfh/zZn4qsD+V1wkQKOKKhphtmJmVGVxsAx3OstNGhNKK4j71XeypTSWVJGJiNqImn5rrWxEY1//AFLfT3/Ca1WaI8e9cq1dYSBYY4XRxNdlJl0BFNZKbEtjYx0cKRrFC0tYFrRp3PrSnuKodQiyDkhKPUqDVoTNp4uxdH82h5bHBOCUgEBcLOkALzSENyblDSVoNFIrlSnBncsKJWIJAhRkjUn3qortZe0AlyDoM7gL/fn1HXa922dlBTM+7qpA0OcSpPtg0uA26PU0XhrMGu2mnG66jSxb1TYKEyOmkyMHSg9wDE76s81pa09SgEHLWEESKRKsNRikg/0nNZHNBYri5d/z+CMv7stu1e7P9c0GfD6n+ex9JMDeP3P832+J2tOJdkqK0QtJ1ps8B3Dh95kwQ9HCvHSxgx8tT+Ps6DaFZwrIwMAmUSEZBfmcu5CB6XS6Ggwdu2gpFFREKnIRcXK995zek7t0WNO93clzn4vQ6O9k122x1RGZkolUR0PSpVDqaD0/HkHR3Y/w2LI352QKfUexwvqMPOtnXj4h5O47tODeOKnMz3iBi4EpQICACoaycDARybudY3M06tJGU2APIAjZ/WECJX3e5UaLAaO0REtee0sdB2tfd/WkbEBvLXAVwxz/pDmBKWUyVErtNNxWXMZdGYdLtRdgNZMyvJGho3EpKhJxFhOfQ4C1eTEuj8Hpa1GRzKYEMBQMlQhU8qFYcBKyUyLD3RoNjoPSg7n1XCyXADQoDPhr3Pec972JiaLFXesOoLPdufieEEdPtudi8fWnurpy+oUdMA5MEzNyZxluwhKq5sMWPLRfjyzPh1f7s/DixszcPl7e1Fc51gW7A0yKOnu4HBfr7nIGumg1K6eFLA58CqoYMlMSVbpnsb6DO4iTHeRFKoG3xpoqK+8S8qC6N+FNLLjJTOKFLIkyFxeDnNtrYOjuxdaLl6pMaCysf8+P72F2WLFEz+dRp22fYFy3YlibDxT6uRVXYMQlAoIgGty1NuypABwrJxc+R0eOrxTxkThPuSk3xvy3Zz6HE7LGm9mSgEg0Z9sD2CfKZWKRXh64RBi/7SBIZg52HHWzWK1cLK7juS7fD9LYWMhR7ob7xePEGUI0oLTIBVJiX16Jp/YLqvX9eo6sq6k9XsXTNeTAkJNqQMYyuxIzeih0TsPSjell3VoX0/yw5FCnC0hPxd/ni3H6aL6nrkgL0AHpclhagyksmrOMqUsy+IfP55CZjlZL1lYq8X9356A2eI8Y94ZuPWk3pHuAoCpiDI5io3hHKMcMcLpOUIfeYTY1p8/32P3VaVMjORQbrZ0eBdkSQHAVE4uKHdGvisbMACMnFzY1Wf0jmxpYogPfGSksoD+XAp4zh/pZcir5noTfL43r9uvRQhKBQTQN5x3j1aQNTLjwsd16nyctjBeyJRm1pDuwHG+cR1qWeMMOiil2+QsHRODL+8ci5snxOHpy4Zg5e1jnQbv5dpyGK1GYsxRUKqSqjjZ6bzGPE5QOipsFABAKpYiJYhcea42kdfbbLSg0UVQcanSqlDg1JOKJIAioPsvqA/AyMl6NRX0aNQ5l+AeuFjjcN/B3BqYujCY6Qgsyzqsd914uvtX771FThU3KKWlns6C0q0ZFQ5byqSXNGDtsWLefd6gq5x3AT75Lk9QOmqUw9fLEhLgv3gRMWZtbISppMTBK7qe2UO4i2oL0jqubHIGLd+VdkK+y0gkkA8ZTIzpz/dc1tkekYjhuOgLEt7O82c6/9wvvaQB+TzBalciBKUCAuj9PUqrddXIayBXrcZFdC4opYOrsqbOZ0zO15IrqkOChjg4suMkBpBBaX5jPqwsOamePSQcr109DPfNSIKCqtmiKWggpbtqqRrBCv7aVIAr7c1vyOc477YGpQCQFpJGvl8zd9W5vJ9KeFvb93DrScM4cjyBFmSUfNdFprRKY0BuleOJhdZo6XUTuzPFDQ6veev53ik3doXVyuJiJfkz8QalVfxBKcuy+HBnjtP3WLk3t0vqwPQmCy5Sfw9nLbY8xZV8FwB8Jk0Eo+BXMPnOmwdJZCTEgWQvS/25ngum7p46ACHq9p7UKZF+uHKk95zoW2EtFpjpoLQTmVKAK+E1eKGu1HDxIirffhsV//cfNO3e3eEsNi3hPdvL7l09QbPBjF9PlWDz2XIYzJ7V3RvNVuzLcdw72dm+rkB46gsIoPe3g9lZtJPY9pH6YHDQYAdHu0e0OprYLmvufFB6vOI4sd3RljXOSPIna0p1Zh1KmzqePaGddxP8EpxmVuks6oHSA6jUkXW09kEp7cB7ruYsgu0mKwBQ2g8deE0WK2pajI64zruCyZFDKAdeNXROzYqO5ZP1YD4yMaeO8VCu40xqT7Ajs9LhvoIaLdFKqK9Q2qCDzkROGJNCuUFplcaABi3373m8oA5nqD6mS0eTwVtedTO2O/nddZTMcg0sdsEuwwBDIrzUo9RohJmSn/LJd0VKJdTTp3NPIBIh4IbrwTAMp51JT9aVhvkpsOHBKXh83iD884oUrL13ossF0o5gKisHayI/L9LoaAdHu4cihf49di4orf9lA3KvWoKalZ+jdtUqFN17Hypefa1DgemwaCEotae22YjL3tuLR9acwn3fHsfNKw9Db3I/MD2WX+vUKO3ARSEoFRDodnp7pnRL/hZie2r0VN4+mp4QqSZXUyu0FTBZO+7EWdJUgpx6ciW/s9lcPkKUIfCTkROirNqsDp+PNjmK9+eX7rZCt6WhpbuB8kAimzo0hDToqNZVIyyADELL6vtfprS6yYDWOUkoqImFj1BP6hA5+dlXQ4dGJ0HpESooHZMQhKnJpPP2odzeYWTSiqvV+TPF9d1zIV6EzjSq5RKE+8kRH+wDiYhcBMup4vbYXHeClKLGB6vwf0uHYUgEKedef8L7El5aujsgxAc+XjICNJWWAlRwwpcpBYDge5ZzFBT+Vy+BrOV4RSqV4csky0m6m5hAFR6eMxDLpyXCVyF1/YIOYMzPJ7ZFvr4QBztW+rgD/Xs0FhTA0tQxGaf2xAmU/fOfgJkMfOq+/RaNv/3m8flo9+LSBj3qtX1vkcpbvL89G4W17SZnxwvq8M3BfLdff9DFgiS9ENbVCEGpgAC4mdIwv94TlFY0V+BoOVlPuiBhQafPG+VDSomsrJXjnOsKk8WEny78hMd2PYZrf7uW2BcgD8DQ4KEOXtlxGIbh1GmeqznX4fNxglIH9aStDAwY6HT/yLCRRKY13i8evlJy4qj2JX/P/bFXqb1kmSPf9RWcdx2iICdlfozWqXyXNgIZGx+ICQPISeuJgjoiE9aTNOpNOOXCzCi9mydK3oCuFU0KU4NhGEjFIiSE+Dg9Vm+y4HfKCfP6sbGQiEW4fVICMb49s9LpIkVH4Jocec+wx1hMBtsif3+I/fizsMphwxD97n8hiYgAJBL4L1mCiH/+s22/fDBZLqLvpqDUqtXCVFraI8ZKxoJ8YluW4Fzp4w7yQYMAsV1Wl2VhyPL8d8maTCh/4QXAwp+5q3rvfbBGzwLKxFAfyCjX5/Nl3EWc/oDOaMG649xFqJ95xhxB32unDyJVSsV1um4N+oWgVKDfw7IsSuvJoKA3yXe/OvcVUTOplCgxNXpqp88bIA+AUqIkxjyRwTabmnHnljvx0sGXsLVgK5pM5ERqQcICiEXelysB3P6sGbUdl2nxyXddvTcDxw/9MeFjiG0RI8LAQDKQFStIuVppP6wprbBbCAqjg1J11xiCXBLQQSm0Do2OWJbFeR7X1HEDyNq7JoMZmeW9w8Xy4MUaIkCWiUW4YSzpeu2o7rI3w3HetXNnpR14syvIYw/l1hALDwwDLBllk2heNjQCUnH7/chotmKrl9v8dKnzbnERsS1zIT31mz8fA3ftxJDTpxD1xusQKdufYYoUMig1V1R0eTuTxq1bkT1jJnJmz0HelVdxTIe6GmM+uagqS0jo9DlFcjnkSWSZTEckvPU//wxDtuM6aFNpKTQ7d3l0TqlYhIHh5PflfFnvuHd1N0fza6Hhkd5eqGhCmRsL3VYrywlKrxsTA5mEDA270+FYCEoF+j0NOhOaqabsMQHedYztKIfLDuOHzB+IscWJiznBZEdgGAaRPqSE15O60pcOvoQzVWd498lEMtw19K5OXZ8z6KD0fE3H7P8NFgMnEHeVKVXL1BwHYHvo3qQAOEGpUUy+pzsPkEsNe8k8J1Mq9Ch1jDKA2PRjmh26NxfX6TiTltQoP4T5KpAQTN7jjub1Dgnv3uwqYnvcgEAMjSaDIGcOtb2VizztYFrhBKXUsXSN7ajYAEQH2J4BgT4yTB8Y6vT4zmC2WJFZ1pVBKWVyFOteCzFGzF3wlCUkcMyQulLCa6qsROmKp2DV2DJ1huxslP3zX132fnzQ8l1ZgvPnl7vQZkd6D82OWLMZNZ9/QYzJU1OgGEZ6LNSvX+fxtaVEkp+/3rKg1t0cK6hzuM+RS7c9eTXNHJXN2IRApFAlAd1ZtysEpQL9HrqpPMMAEf49myllWRY/ZP6A+7bdBwvbHjBLRVLcOfROr71PlJqU8JY0uWehf6ryFDblbeLdJxVJ8dKUlzjn9iZ0UFqrr0WF1vPswMX6i5y+qq6CUoCbDW0lTBnGK+8dFDiI2G6wkH1RS+r6X1BaZi/fpWtKhR6ljuHJlDqS79Ir3IEqKSJaVCBjE4KIfUedTHC6k33UZGpqciiSqJ6PuVXNXeIy25XwtYNp+3c4OQnMrmiXI7Isywky56SQizbzUsntPReqvNbmJ7e6GQYzeS6vyncLyUypNKbjJj2MWGyTntqhP991QWnDhl/B6sh7d/P+/TAWFDh4hfcx5pGu/LL4BK+cl64r9TQo1WzdymnJE77iKQTedBMxpj1w0ON6VbqOur/Kd084uWefcyOQpHs+h/vJEemvRBpVtytkSgUEupESWrrrq+DIF7oTo8WIFXtW4LXDr8FsJSeb9wy/B7G+7q0kuwNdV+puW5jVGauJbZVEhUdHP4rXp72OLUu34IrEK7x2jXzE+sZy6jQ7UldKGyTF+sbCR+rj4Oh25iXM4x2/PPFy3noeOlNaYygG0P63LarTwWjuXb0iu5p2cwaWK9/1FeS7DuHUlDY7rCHMoDJcqVF+bZ/PcQmkhPdYfm2Ha+JYlkVWuQZFdoYbHaGoVov8GvIc0waGIInKJOpMFpQ19h3Je22zkeMYbB+UDqLkiKUN+jZH5ezKJs7CKd0Dcxa1rTGYcSzfO4sMGdSENNJfgSAfmYOjPcdYSC7QyeI7l+lTDKZ6bHagFtJdmnbt4h1vPnCgy97THotGw8k0ywYkeOXctJOxITsbVg/qPxt+JU2MFCOGQzVhPHznzwMk7SZZrMmE5gP7Pbq2VCpTeqFCA3Mv67XcHVyocByMuxNIZpaTrx8WHQCAG/Rf7MZyCSEoFej30Fmq6MDOS2M7itlqxlN7nsLm/M2cfXPi5uBvw/7m1fejHXhLm13XlNbqa7GjaAcx9sDIB3D3sLuxKHERQlVd386DYRhOu5mz1Wc9Ps+FugvENp3RdMTY8LGcxQEJI8H1g67nPT45IJnYtrAWiOTtMkWLlUVhbfc2qe5pCluCDx/ooWJIozEhU+oE3kypg6CUmpik2LXxGEdlSisaDZzgxx1K6nW47L29WPDuHkz7z04s//oYdEbPeuW1QkvOgnxkSI30Q5ivHEqqnUZxJwLgBq0JPxwpxJojhV43BeKDlhvLxCLE2j1nBoT4gDLgbXPrpbOkUf4KzqQx3E/BkdTuzPKOhJd23vWmdJdlWW5QGte5oFRO1ZUauihTamlqgu7UKd59zYcOd8l70nCyl1Ip5AOdG/G5i5yS78JshiE7263Xmuvq0LRvHzEWeONNYBgGYrUaqnFjiX1NHtaVDqGCUoPZivya/vX81BktqNQYHO4/X9boUk2SRQWlrfeVZEqZcrGqqduUKUJQKtDvoTOlrbU6fHS1u94HJz/AtsJtnPG7ht6Ft2e87XXjIDpT6o7R0Z95fxIZXLlYjiXJS7x6Xe5A9/90VN/qDDooHRzoXu9XiUiCN6e/iUC5LdskE8nwwuQXEOvHn8X2lflyftcB/qQVe05l/3qoFrRMIjj1pIBQU+oMD9x3aQOQVLuAYkCID4KpjJenPemMZiuWf32MWHHfdr4Cr23qWF/DXVQgNSU5BCIRA4ZhOIuF9H3bXc6XNWLOO7vwzPp0PL0+HXPe3t22QNJV0EHpgBAfSOwcROUSMRKCSYVGq4R3x3nydzJrSBivGoPOnu65UMU5piPQGZdUL0p3LdXVYLXk714WH9epcyqGUG1hcnNhNTievHcUw4VswMqfndOdPMk77ilWrRaVb7+D/FtuRdmLL8JUQZao0H1Y5QOTIZJ5J4stVqshjSP/FgY3JbyaLX8RLWAYuRy+8+a2bfvOmkUc37xvn0dzqyAfGcKpDgn9TcJbVOf8ntVsdK0moYPSwa1BKaVM0ZusHb7feooQlAr0e9zJlJ6pOoM7/rwDI1ePxIwfZ+Cd4+9Ab/aufOxY+TGsOruKGFNJVPhg9gf4x5h/dImTbbQvWb9T1lTmslfpzqKdxPbc+Lnwl3tvouIuw0OHE9tnq8/CYnU/Q8OyLLLqSPnuoCD3MqUAkBaShs1LN+PLBV9i89LNLgNzWsLr708GAN0pkelp6rXGNnOeMNSTO2W+gMy1hLrfwsmUNkOj4066G7QmzkTCPihlGAYTk8jWMNtaAiCr1eZIXtfsXK63/kQxr/Plt4cLkFft2SKL0WzFfqo/6Uy79gT0YmFHsrp6kwX3rj6O6qb2n6tKY8Dzv3musvAEjvMuNenjG8upbEKD1oTjhaQMd04Kv4pgBtXKIbNcw+m/7Sksy3ap8y6dJWVkMkjCO7cgJR80yGYM0YrFYgsgWzebmmFp7HyNnOGiY1dZc2UlzHWdk0+zLIvihx5CzcqV0B0/jvo1P6Lg9tthaWr/LOnPkUGpMi2tU+9JwzE7ctOBt/H334lt9axZEKvbP9/q6dOJ/eaqKuJv5A5DIsjPYX9z4KUX0kLUcqip3sF5VY7vwQ1aE8qpoLU1KA31lcNXQZ6ru+YnQlAq0O+hV5zoyc/xiuO4c/OdOFF5AlbWilp9LVadXYV7t94Lo8U7/ZtMFhNeOPACYbojFUnx4ZwPMTN2plfeg48B/gOIbTNrRlFjkYOjgSZjE45XHCfG5sXx11d2NXRQqjVrcbHhotuvz2vMQ4OBlKYNCRri4Gh+VFIVxkWMc0uyzG0LQ65696egtMDugRrKCCZHHkEFpWKGhUXP/ezQ9aQysYhjGDSHyq7tvlCFNUcKMeOtnZj8xg6Menkr7vuW/L63wrIsvjqQ72Af8NMxx/cRPo7l13Jc0GcMbv9exdCZ0g4EpV8fyCcazbeyK6uKI1P1JrTJEV0jC4DT5iK7sgm7s6uI9jhyiQiTEkN432NEbABnUkoH+Z5SUq9DA9VuyKtBaQEZlErjYsGIOjctFat9IKMyfLrTp2E1GlH+8iu4MGECLoyfgPwbboSBMgnyBGOO46AUgMdBFk3T7t1oPnCQGDMVFKLq/ffbtvXp6cR+ug60s3TEgddUVgbtsWPEmP8i0mNCGh8PKdX6p3m/Z3WlXAfe/pUpLaDuY/HBKgyg+h3nVTueU2RR9ahSMdP2eoZhOM+K7nI87zdBqVarxYYNG3D33Xdj+PDh8PPzg4+PD0aMGIGXXnoJTU2e/cITWhoUO/ovs5uaNgt0DquVRS61mmT/xdab9Xh679O82cMTlSfw9rG3vXIdP2T+gEIN+YD++6i/Y1zEOK+c3xF+Mj+EKMlJTm5DrsPjD5YdJKS7UpEUE6Mmdtn1OSNEGYJoNflg80TCe6LiBLEdpgrjSGy9SVIA2fdNB9KZkO5NeClj/0AV2sF4iIKrSmD0DRz5Gx2UDgxXQ0o1nZ89JIxoRG80W/H0+nQU1bYHfLuz+GWgh3JrnU4Efz1V6pEkj66BHBHjjxB1u0Svs/Jds8XqMIgGgC1e7u1pj7N2MK0MDKMdRRuxi6onnZQUDKWMXzEjFYswicp8773QuaCUzpL6K6VOy1s8xVhI9djsZD1pK8rRo4lt7eFDKHvun6j77jvAYlv40J0+jcJld3U4o2nIcb4AasjKcrrfFXXfrOYdr//pZ1jq62GqqOS0g1EMHcb7mo6iSCODXH1mJliLczVS4ybSlV/k6wsfKjPKMAx8pkwhxpqpGlRXpERyvy/9iUKqhjY+iBuU5jpRq2RRbXSSQsnnA32PEjKlXub777/H1VdfjS+//BJWqxULFy7EtGnTkJeXhxdeeAHjxo1DZaXnxgB33HEH73/+/t0vZxTwnNIGHXQm8iZr/2Vcm7UW5c3lDl//feb3OF/TsfqpVjRGDT478xkxNjx0OG5Lva1T53UXuuems6B0T/EeYnts+Fi33Gq7iuEhZLbUk6D0QCnpkDgmbAxvrZa3oFvFNJorAVG77DKrXNNvHHjtJ+lc510hKHWKzBcsyM+pGlo06si6UtrkiHasBIAAlQyXD+uY0/HXTgI8wBY0OpsU2cOyLDafI++zMwaTWVyufNezOtC/MiqINkQ02zK6JihtNpg5ATRtJAKQ0mrA1jJp/Uly4YquG6WZNpBcYNyXU90pHwQ+6a4375EmjslR5+pJW/GZOIHY1mzdhsaNGznHmcvLicyjJxioTCkjlRLbdMDoCZbGRjQfOcK7j9XpUPfTT9AePkSMi3x9OW1cOgudKWV1Opftbhp+/4PY9l0wn7fOlQ5KtceOwap3X25OZ0rLGvSo13pHudYXoBUfsTxBqbMSCjpTOpgyT+MEpd3kedFvglKZTIb7778fFy5cwNmzZ7F27Vps3rwZWVlZGDVqFDIzM/Hoo496fN6vvvqK97/IyEjXLxbocWhJgq9cgjBf2+o8y7JYl002dlaIFRAz5Er1Byc/6NQ1rLuwDo1G8uG/YtyKLqkh5cPdoNTKWrG3eC8xNiN2RpddlzvQEl53g1KNUcMJsLs645vgn8D57Ihk7RNho8WK7Mr+IUGyz+KF0jWlQqbUOSIRoCAnZH5oRk0zWVdKZw7oSVwrD85KdrsF1pE8mzlXcZ0Wf2WQQeTzi1I55iPumu2cLKonsrMAMJ/qvRkTqCK2S+v1HjlCfrU/3+n+8+WNLp14d2ZV4vlfz+KD7dmobnLPPIdW4jAMkBjKXchLDlVz6rhoZg12HpROTSaD0kqNARc6ocDI6ELnXQAw5lOZ0k6aHLWimjiJrCt1Qv1PP8NU6trgzx6LRgMzZTqknjOH2KbrZT2h+cABwiiIpv6HNWj86y9iTDV+PBixd+cMkpAQSELJ0hRndaWGnByOGZL/okW8x/pMmmi7l7XAGo3QHuMvFeBjQIgPofIA+pfZEZ98l76vOA1KHZgctUIvnNElCF1FvwlKb7/9dnz88ccYSNllR0ZG4qOPPgIArF+/HkYP+jAJ9A0a9Sb8dKwIv50uhZ7KitJBaVKYum0lOKMmgxOgfTz3Yzw48kFibG/JXuTUOa8vcYTJasJ3md8RY3Pj5mJE6IgOna8jJAaQQenFen5ZUmZtJmr0pGPs9OjpvMd2F3RQerHhIifAb4VlWfx28Tcs27wMk3+YDIOlfVIpYSSYEzeH93XeQi6WI86PnHSFBpHSsbNuNLy+FLAPmCKYWnKnEJS6hOFx4LXvg2k0cxc4UqP8gPoi4OgXQOYfgMmWlRgY7os3rx1OTPD8FBI8uWAw/Kgg6ZXfz8NksWL1wQLYx4M+MjGuGxuDaQPJCay7QekGKiOYGOLDCYDomlKjxYoqNwPDsyUNOJJPfs7+c+1wSMXtgQvLcpvJ2/O/PRexbNVRfHOwAG9vvYBF7+9zK1ubU0X+HWIDVVBIucGDSMRgVFwgZ7yVgWFqxAapHO4HbBN1OqO8N7vjLrxniumg1H0FGGs0ouG331D57rto2LgRLBVksWYzDBfJZ40sIaHD12qPNDzMFvS4g9mM2q+/9uj8dJYUEgnHvIcvKGVZFjVffInsadORPWs26tau5T2/9shRYltEKe9MpaVo2radGPOdNdO9i/cQeSpdV5rh4Eig4Q8ySyoJDYVqHH8JktjPD8rh5PPbEwmvVCzi1GH3FwmvxcqimFrEiw9WcRy8i2q1vOqr1r7S9gwOJ4NSuu6dr9dyV9BvglJnjBhhCwAMBgNqampcHC3QlzhTXI9Zb+7Ckz+fwd9/OIl5/92NXLsVn4vUKra9ZIHuFRqtjsaY8DG4JeWWtlYgrazJWtOh69tZuJMjD75z6J0dOldHoXtoZtdlQ2viTrb2l5BGBPF+8Q5boHQXQ4KGQCoiZVN8/UpZlsWrh1/Fc/uew7GKY5z9s+JmdYuDMP27Dggg7zfp/SAorWs2Es6pUQx1z/WP6eYr6oNQQak/mlFjN2G4WNUEk4XMIg7THgE+HAv88Riw5mbgy/mArh4AcNXIaGx/fAbeuX4E3rpuBPaumI0HZyXj8flki6Tsyia8u+0Cvj1EZriuGxsLX4UU0ykH2KP5dYRRDx9NBjPWnyCD0sUjojgy0VC1nJMZcdeBl5Yah/rKsWRkNCfIOlFQz/v6jNJGvPEn6RNR3qjHYz+edimPdcd5txXaQdeeq0a6rndnGIYj4aV7v7pLRaOe0wdxeIx790hzVRXyrr8BpSueQs2nn6H0yRUoXH4PrLr2v5exoAAs1apFPsQzozlnBN5+O+94wE03IvDWW4mxupY6TXehg1JZfDzkyaRngKmkBKyJzLzXff89Kt98E+aqKpjLylD+/Ato/PNPzvm1p8iWMsF33w2FM2ddsZiTqfUWtHmS7gR/uxuWZdFISXf9Lr/cafaWU1fqodkR7cCbWd4/gtKKRj2MFjLYjA3iBqVWlr/2vrxR3+Z+3wqdKY0NVHLut91RVyoEpQByc23ZMKlUiqCgIBdHk7z55pu477778Mgjj+B///sfqqq80xtMoPPoTRbct/o4MVkrqtURzd1pMxB7x7GDpaTz3eUDLoeIEUElVeHaQdcS+zZe3MgbyLnirwJSgjM8dHi3ZkkBIC04jZCVWlgLztWc4xy3r4RcxZwSNYVzTHcjE8uQEkyu5PJJePeV7MOPWT/ynkMuluPhUQ93yfXR0HWlIjkpATvuYFJ8KUFmrFhE0plSP9K8SoAHJbkoFsA0EavYdD3pIH8rfP54ALBvY1V2Gtj5attmbJAK14yOwbVjYuCvsi303DIhjjNZ+WjnRcIlV8QAt0+yGdRMHEA+P5sMZpfZi7VHi9BkaJ8giRjg2jHchQmRiEFUgIIYcydTWa814tfTpDzz1gnxkElEGBkbQIxnVfBf6+d7c8EXWx/Jr8WOTOdeFHRGgs7u2OOovlcsYrBklHvfi6lUUHo4rwYGs/utslqhs6S+cgln0ssHa7Gg5B+PwUCZPWoPHULF//1f27ae2i8JC4Mk0HGm2FN8Z85E4C23EGM+kycj/KmnEHTnnYBdsMRqtaj9/nu3z22kTI7kSUmQxVMmTRYLTCXtiy1WoxE1n5LeEQBQ9d77YO36nVqbm2HIJE2SVKNHIfC2W+mXtuE7d65Xf3fke5OmUbrTp3kDeN3JUzAVkY7bfg6ku634TCXnEIbsbJgq3Pd24Zod9Q/5bgHVDkYpFSNULYe/SopAFblIn1/DlfDSBnVquYSjsJCIRUgIIZUZtGFbVyAEpQDee+89AMDChQshl8tdHE2yYsUKfPbZZ3j//fdx7733IiEhAV988YVH50hLS+P97+JF5+5uAs5Ze6wIpTzGFrnVzfhwZzb0JgunZqZ1JbhWX8vpYTk1emrbv68ffD1ETPvXR2vWcjKrrjBajJwazauTr/boHN5AJVVhUCDZn/N01WliW2PUcIK9KdE9H5QC7pkdfXTqI97XBimC8M7MdzitcbqK5EAyU6qxkg/xzPLGS96s4XBuexDqj2aoGEqCKWRKXaMiXVaDmEYiKKUDwQdU2wEdFfwDwLFVgMaxkZtELMILi52bp1w1MhqJLYt5YX4KjtnG4Tye921Bozfho51k1mlOSrhDmSrtwFta79oY5ZeTJYSETSpmcNMEm8JjCBVw87kJ600W/JFe5vD8zhx9Ae5EOSXCcV1mpL8Sc1O48vXrx8ZyamodMSUphCin1JusOF7AdZht1Jvw6e6LeGztKaw+mM8JXNOL64ntodH+EIlc12k2bNjAaQnSSv2aH6HPugAAnMBLPmQw30s6Rfg/n0P0B+8j+J57EP3B+4hd+T+IFArIYqLhd/nlxLF1q79122iHzpTKk5Mh9veHmJLZ2kt4m/fvh5knaWHMz0fzwfYFcN2ZM4BdkAqJBIqhQ+G/aBHkA5M5rwfDIPiee9y67o6gGjcOjMJuMchqRRNPRrPhl/XEtiw+HoqhzvumKocNg8iX/A7aZ0uN+fmo37ABTXv2wMpTWkebt2VVaGC2cOWqlxqFtWSgGRekalOWxFELRwU8daUXqPvcoHA1r4EZX+/krqbfB6WbNm3CF198AalUipdfftnt11155ZVYv349CgoKoNVqcfbsWTz22GMwGAxYvnw5NmzY0HUXLeAW644XO9y3cm8eNqWXERI3hrH1egOAI2Wk851KosKw0Ha79QifCE49JW2K5IpDZYegNbeveDFgurQnqTNGho0ktul2KUfKjsDMkq1gxoaP7Y5LcwmdWT5TfYaQ1GXWZnIyv7ek3IKvF36Nbddtw/SY7quLpeW7DcZaKOTt8hqWdT6J7+uwLIstdi6rHOkuGMCv69ryXDKoyGxYIDSoabLLlNoFpQysmKXdwn8eqwk4u55/Xwuj4hyrh+QSER6dS2b/xyeQx7eaI/Hx6e6LhJIFAP42PdHB0VwH3lIXbWFYlsWPR8mFnwVpEQjztU2y6SxwfnUzx3cgvaQBBieu2Huzq1HAk40AbIEfLZ+j35Pm5SVpSLIzLBkRG4CnL3Nf1hroI8OwaDI4oiW85Q16LHp/H974MxPrT5TgX7+ew80rD0NrbL/HnynhX7B1htVgQNUHHzo9puYzW7aQzpQqBns/KGUYBn7z5iHs8cfgN28eISUNvvsu4lhLXR3qf3bvGU7XwrZKd6UJZLbU3sjJkewVADRbt7b9W3uSPE6RmgqRQgFGIkHUm29C5EcGYqGPPgqli+CvM4gUCqgmjCevdzN5P7HqdGjcRMqQ/a++2qVTMyORwGciWfvb+McfsBqNKPvXv3Bx4WUoe/oZFP3tXuQuvAy6c+RznDZvM5qtbjt+92Vo59244PYFq4RgcvEqv4arJuGaHPEvlNG9SgX5bhdz/vx53HrrrWBZFm+++WZbbak7vP/++7j66qsRFxcHpVKJtLQ0vP322/j4448BAE899ZTb5zp37hzvf0lJSa5fLMBLRaMep4sd1+cZzVY8tpbMBg4O921rPn6yknwwjAkfw6ldvGbgNcT2maozyK5zv2H2jsIdxPbIsJGcnqHdxaiwUcT2obJDaDK234D2lJBOtaPDR0MldW/lvquhzY4aDA1Ez9fNeWQGO1wVjifHPonR4aM5f9OuJtY3FjIRaY8/JI6ctB7KvXTq2uu1Rhy8WIMjebWo1OixP6eGmKRH0kGpOhwQd+/fpE9CZUqDGQ1qW9x3WZYlMqWjmBz4G5y4i55zHpQ6Qixi8NZ1IxBPrcyPH0AHpbW8dZdlDTp8vjePGJubEo5xCY6D4CgqKHXVq/RMcQMn+3nDuPY6+EGUuYeV5WYDjlCLRImhPvBXkp/R7w/zO63SGQmJiNuUnibSX4lNj0zDt3dPwNp7J2HdfZM47+cK2oV3n11QyrIsHv3xJGdie7ygrq1u1mplOaZPw9wISuu++x7mcjLzrqTmVY1//glDbh50dPCV4jwj720UQ4bAZ9o0YqzitddQcOcylP7zn2g+dIj3dRaNhvMzypJti410n1X7TKnu1CmH19K0fUebhFd3kjxONWokcc2JG35B0B23w/+qqxDz0YcIufdvDs/rLXxnzSK2NTt2EDLbht9/h7XZLhgUieC/5Cr3zj2XrIVt3r8fF8aOQ/1PPxPjptJSFN51NyGJDvSRIdKflPTTpQuXIrR8N95OWULfj+nvOcDTDsZBSQF9r+oOB95+G5QWFxdj4cKFqKurw2OPPYZHHnnEK+ddvnw5wsLCcOHCBeTl5bl+gUCXsP08WZfgq5C01T05Yqad3f75WtLWnM4kAsC0mGkIVZLGFOuz3ZvgWawW7CzaSYx1tfurM6ZET4FE1O60abKa2q7PZDVheyHp9DctmnyY9ySRPpGcYN5ewru/lJQaXZF4Rbe126GRiCQct+PIEFJad/Bi3wxKrVYW9VojCmu0+PVUCe7+6ijGvrINN608hOs/O4jxr27HrV8cJl4z3Jd6yPkL9aRuQQWlgYymLeNY3qhHnbbdYGW62EWbpJLjgI4r7+Tj+cWpmJcajtsmxmP9/ZOxeAQ3q00HpXVaE6/s6+2/LhAZSLGIcZkRpINSV5nSnym1THSAElOS2u8VPnIJ4iipMJ1FOEa59k5LDsHS0aTE/KfjxZwMKwCcp86VGOrjVvsduUSMqQNDMH5AECRiz6dptAvy2dIG1LV8PnZlVeFQLr8a49tDBcirbkZmuYb4DAHAiJgAp+9paWxsy4K2oho/HrH/+wwiH7uJMsui9KmnYG0iPxPKsd2vvAm+Zzk5YLVCe+gQGn5eh8I7l6Hijf/jLKhwnHfFYshbXIPpPqvGQlumlDWboTvLNeBrxVxVBX16OlirlRO8KkeRC8bSqCiEP/MMov7vDfh2kbkRjd8VV4BR2n33LBbUfmkrU2NNJk6trM/kyZBGuNf/2HfBAk72l3XQBcPa0ICy518gxmgJb39w4PUsU0pmjs0WK7Kp+7GjTCkt3y2u0/He57xJvwxKq6urMW/ePBQWFmLZsmV46623vHZukUjUluEsK3NchyLQtezLIWs3Zg4Ow+PzByPYh9vEuZUFabZaHitrRWYtKS1KCeKu4kpEEixJXkKMbczdSLQaccSZ6jOo1ZMTg1mxsxwc3fX4yfwwOWoyMfbzhZ/BsiyOlh1Fg4HMOs+Nn9udl+cUhmE4daWtNbFV2irO37I75bp80BJeqYpcQMks16DGzVYXvYEmgxkv/nYOI1/6CyNf2orpb+7EI2tOYXtmJcwunFfnRlN9IQWTI/fwoWpKoWmrKaUnZdPFlGnZuHsAiV12gbUC+e61YrhpfBxW3j4WLy8Z2lbqQBMTqEQUlb2gJek5lU1Yd4IMGG8cF+vUmRYAYuhMqRP3XauVlIoDttpMui6SltPaZxGsVhbHqHrMcQOCcPMEMviobTbiz7Pc5/0J6rX0BLqrGB0fAKVd2xmWBfZfrIbVyuL/Nmc6fJ2VBT7Yno39OaTcNz5Y5bIdTfWnn8HSQD4nwh5/DGJ/fwTceAMxrk9PJ7ZlCQmQhjnvwdoV+IwfD/8lSxzur/3qK9Sv/YkYM9JtbOLjwchs8woZLd8tsAWl+qwssDrysyqmjIk0O3fCcOECrBpyIUM5cqTLn6OrEfv6wn/RFcRY7TerUbv6W1T8500iewkAQXfc4fa5RQoFgu7gd0rmo3n/fiKLnUq1jqLNKy9FOEEpkSklv6dFtVrCAT2/htsmxlFJAd33lGWd9z71Bv0uKNVoNLjsssuQmZmJa665BitXrnSpe/eUujrbg0itdv6AFeg6aGv/aQND4K+U4skF/HUrw6L925wYCxoLoDOTDxDa4bUV2piowdCATbmbXF7f9gIy85gckMzpYdndLExYSGyfqDyBg2UH8XM2KaMZHjIc0ereFTzQEt70atukh86SqqVqzrHdDR2U1puKoJKRmduDfUTCqzNacMvKQ/jqQD7HYt4VQ6P9kKqkMnT+PdtiqM/gxOjI3lhHDS1GMFRJwaCFQBzVwzF3l9cujWEYXgmvPR/syIZ9AkolE+MRqjaVDzpTqjGY0ag38R57pqSB09Jk0YhIznF0fz57uW9WhQYa6nM9Nj4IyWFqTE4i/wbfHuJKeI8VkD/3GCfSZG8il4gxIZF8rx3nK7HxTClHzhzuR5o7/nq6FN8dJlv+TE5yXlZiLCpC3erVxJjvvHlt0t2g228HpI4lyD7Te055E/nSv21Bs4N5YOWbb8LS2B7oGLK5Jket0JlSU7GtLQyd/ZTGx8H/GnLu0LRrN7RHSYMoaWys2xnHriZ4+XIw9n9DlkXFq69y/u7KkSM5rrouz33XXZAPGsQZl0RGIn71N5BQCxbVH7YbF9J1pRmljS7bNPVlGnQm1FMqBnvJLi3fNVlYQlFygZLuhqjlCHKQrFHJuK68XW121K+CUoPBgKuuugrHjh3DggUL8MMPP0DspIdSRzh37hyysrKgUqkwxIs9twTcp7Reh/JG0kVvdEtT8uvGxnImE2IRg+cXp7YtTpyvIaW7Ycowh7WesX6xmBAxgRj78NSHaDY5Xk1iWRY7ish60p6U7rayMGEhInzIB+C9W+/F1oKtxNhlAy7rzstyCzrQvFB7ATqzjtNbdWLkxG6vI6UZGEhOvi825GDcAHLVnM5U9Fbe3XbBae12K3JKsjgqLgBf3jEOotpc8sCg7nFB7vNQRkcBaEaNRgeLlcVZO4Oa8aJMiGG3Ki6SAvGTgMSZ5Pm8GJQCwPgB5D3Wvq40p7IJv1EtWpZNSWgzH3JGZAD3GEcS3r+oLGliqA9vPSedJbCvA6Wlu7FBSkS0ZIFvnUhmxY4X1OGUXR1mRaMeRVSD+7HxXdO2g4/plIR3/ckSPL2OzFAOClfjj79PIxbFLFaWY44yJZn8e9rDsiwqXn2N7MkplSLsicfbN8PD4X/lYofn8HfROqQrYWQyRL74IpK3bUXUm28i8PbbiP3WpibUr13btq2/QLkG2welLTLeNiwWGIuKuXWiI0dx6jQNmZlo2LiRPK4HJM2OkMXHI/SRvzs/SCJB+HPPeZzoESmViFv1JfyuuAKQSsEoFPC7cjEGrPsZqnHjEPLAA8Tx2mPH2lycafVBTbMRVZq+ozTylCIqSypiSAO4YB9ZmzdKK/Y1qPSiFO1ATkNnS7va7KjfBKUWiwU33XQTdu7ciWnTpmH9+vWQyRxLOQHgww8/xJAhQ/DMM88Q41u2bMHx48c5x585cwbXXXcdWJbF8uXLXZ5foGs4WVhPbPsrpUhsaVMgFjH4/I6xeGBmEpJCfTAxMQjf3DWeMNeg60kdZUlbuT2NlJ5Uaivx0PaHUKnl77eVXZ+NIg3pCDk7brbT9+gOpGIp/jbcuWmCUqLElclXdtMVuU9acBrRosfMmnG2+iwOlB4gjrNv69NTJAWQBmaNxkaMjCdvxftzen+mtLrJgFX783n3qWRizBocireuG4H0F+fj/EsLsfvJmfhq2Tj8/vBUrL9/MsJ85UAtVXcf5Nh5VcAOKlMqYlj4WDWo1OiJ+99UEVXHFjsBkPlwg9KaHKCBlOB1BjpTWm4XoL2/ncySquUSLJ/q3t9dLhEj1JfM7DmS8G47T/YAnp/Kn3GiJ2XljXo0tGQijuZT0l2758S81HDbZ9iO1zadbwu+acMyX7mEY6zUlSweEQUZVY+qo+rBnlwwBCFqOW5z4regkIowfVCow/0Nv2xA065dxFjQzTdz+naG3Hsv2VqkBeXo0VAMG8YZ726k0dHwX7wIEc8+C98FC4h9td+sBms2g2VZp61sxP7+EAeT301j7kWeOtGRUI4cCRHVQkZ/hqz/7k1BKQAE3X23U6ltxPP/gnLY0A6dWxIcjOi338KQM6cx5NRJRP/nP5AE2b5vAddcDXEIuRBXt+YHADbpqg+lNDp3CUt4aZOjSH8lUafOMAxHwltg10KGNl9z5Qbe3W1h+k1Q+uGHH+KXX34BAISEhOCBBx7AnXfeyfmvuro9Q1FdXY2srCxObejBgwcxduxYJCQkYM6cObjxxhsxYcIEjBkzBufPn8eMGTPw+uuvd+vPJ9DOiUJyIjEyNoCoI1LJJFixcAi2Pz4Ta/42CVMop0I6UzokyHnGe1r0NEyIJLOlxyqOYdEvi/B5+uewsqR+n3bdjfSJ5K1Z9ZimKmD9vcCH44AfbgKqLnh8imuSr8G4iHEO99+Zdif8ZN1TF+UJfL1Wv834Fo1G8uHUG3qrRvpEQiUhHxoRofXEdmGtlrMi2ttYe6wIRruecFIxg+/vmYBz/16Ac/9egFXLxuPaMTHwVUghEjGID/bBzMFhGBrtb1tJ19YAVK0yggXHcbdQcWWgQYwGxwvqCJXIFDoobQ1GI4YDCspNNZ/smdwZkkJ9OPX7h/NqkFOpwcYzZJb0zskJCHRS60/jjtlRlcaACxXk5GleKn/NYkKIDyd4yyy3SQCPUplS+6BUKhbh7qlkZv9IXm2bo/Dms2SmdmxCIMRu9Pn0FqG+cl4jqlYmJgZhbortd3LPtEQopPzTwcuHRcJPwa8uMVVUoIKa64hDQhBy/32cY2VxcYh8+WVA1P4+Il9fRL70b6+XUHWW4OV3E9vmyko07d0Lc1UVLHXk/EJBKeLkieQCS/ORIzAVk/XTypEjwUgkUE937m9At2LpaRiGQfgzzyDmow+hHD3a9rdkGCiGD0fs558j8PrrvfIenDGZDAHXLiXGGn/9DVatFiIRgyH9yOyogOpRSgegfGP2gSzXedd5UEqrS2gjOG8jcX3IpUGd3Y2kNTjl48UXX0RIiPP6iQULFqCoqAhHjx7F6dOn0dDQAD8/P0ydOhW33HILli1b5nVZsID7nKSC0lbprjuwLIuM2gxizFWmlGEYvDDxBdyy6RbUGdrfW2fW4b0T7yG7LhuvT3u9LZNHO9nOjpvd+YeyxQx8ew1Q3rLSWn0BKDkBPHCQdwLrCLFIjDemvYE7/rwDxU3kg3R4yHDcPexuB6/seYaHDCdMjWiJ9MDAgRx5ck8gYkRIDkjGmer2VXE9U4Ign+i2ukAAOHCxGjcE9WydsTP+OEMu1l05Itpl7RkBLd0VSQG/GP5jBUgkckDuBxjaJ19B0OD30+1/k1DUYbCI6tXcGpSKxEDCNCDz9/Z9eXuAETd65fJa60r/tAvMdl2owu4LVdws6TTPJNsxAUqiXUkxT1B6mOqNqpZLHLrHSsUiJIb6ELK2CxUaRAcqUdZAloGMSyCfJXdMTsA3BwuI1jSvbjqP8kY9J1O7cGj333vun5mEjWdKOcYmEhGD5xeltT13QtRyPDx7IN7cQmYBZRIRHppF1sC3wrIsyv/9EseYJ/LfL0IcEMD7Gv/FiyAfmAzN9u1gjSYEXHcdZDG9y58AAJTDhkExYjj0p9vv0Q3r14ORkFNmkUoFaQx5z5IlJkJ79Kjd637hvEY+0FbC4Tt7FhopyW4r8tQUyGJ65/3Qd84c+M6ZA9ZoBAtA1A2qwMDrr0fN/1YCLa1zrFotNDt2wn/RFUiN9MNxO1OxS7ktDL1YTbuHA9y60vwWcyK9ycJx43WVKaVrdi9WNUFntEAp65oYp99kSl988UWwLOvyvwS7moDW13z11VfEuSZNmoQvvvgCZ86cQXV1NUwmE2pqarBz504sX75cCEh7EIPZgrMl5A1pVFyA268vaSqBxkg+ZFODUl2+LtYvFp/M/QTBCm7tzaa8TfjwpK2heF5DHscN1iv1pGd+bA9IW2kqB3a84vGpwlRh+P6K77F04FL4Sn0RpAjCDYNvwGfzPoNcLHd9gh7ClYHR9Oiedd21h64rPV+TgUlUrXNvlvAW12lxjnrwXzvGwwlUDeliicAEQNxv1kk7D7XYFMI0YLNdHeUUEeW6K/cDouzaSwygvg95ewAvGoTQCpQ/zpThd2ohY9mUBASoPJvQRlF1paX1es4xdFulcQmBTlur0BLezHINjlHS3UCVlJM1UEjFeO2aYRyPnC/25cFkaf9dSsUM5jmQD3clyWFqvHHNMNgnaMUiBv+5djjHtfS+GUm4elR7gCgVM3j96mFIdNBXtWn7djTtIBf+/K5c7LJNiWLIEIQ++CDC/vForwxIWwm4hszMaXbuQvM+0qVaPmgQGBH5uZInkZlSuvWNYvhwMC1zRPXs2RwX3lb8Lut93g00jEzWLQEpYGuF4zOZ7BDQ+LttUY1jdnQpZ0op+W4cT6aUbgvT+prsiibiFs8wwEAHPUpbSYn0Je5vVtamJOkq+k1QKtA/OFfaSEgKGQYY6UFQSteTBsgD3M6upYWkYcNVG7B04FKivhEAVqavxJ7iPdicv5kYD1YEY3TYaLevzyFHV/KPn/oe0NV7fLpARSBenPwiDtx8ALtv2I1/Tvwn1LLe7SbtMijt4VYw9gwLIWuoTlWdIvonArZMaW91ETxATfoDVVJOFsklNZQrrFBP6hm+pDQzkiGlplPFlHQ3YRoZ9NNBaUMRUOe93tqXD4uExIlc1Vch4chf3YF2g+ST79L1nBMTHRv1ANw+fVnlGo50d2xCEK+iZcagUDw2l+scas91Y2MdOlx2NdeMjsHGh6fib9MTcd+MJGx8aCquGc1dQBKLGPz3hpH47aEp+OSW0dizYhaWOlhoYs1mVL79Dvn6oCCEU/4bfRm/Ky4na2DNZtR+/Q1xjCKVq6KSDXB+H1OOHNH2b5Fczts+Rezvj8AbvaNauJTwo9rSNO3bB3NdHWeBJa+62aErd1+HDkrjg3w4x8RRYwW1zWBZliPdjQtSQSVzvhCskknaPFlaoRekvYkQlApcUtAmR8mhaof1MHzQ9aQpQSkeSWsDFAF4cfKL+HD2hxAzZMb8qT1P4dPTnxJjCxIWQCzqZGa9oQQoPcm/z6wDzq3v3Pn7CAl+CQ5b1YSrwjEidATvvp6Avpay5jIMjiZNSKqbjLhY1bU9wTrK4Vxywj4pKdhpJoqXcipoCnU+sReg8KODUvtAjHVcT9pK6BDAhzKwySadtjtDkI8M81t6P/Px4Kxkj7OkALemlDY6qtToOd8bV0EpnSnNKtdw2tg4W3R5aHYynpjP//kNUcvx6BzX7W66krQofzx7eQqevmwIZwJPMzwmAJcNi0Skv9LhMY1//AFjHrmAEf7MM5A4yPr1RcRqNfwowyMa1Tiu/4LCzviI9zWjRhHbwcvvhnp2u9EhI5Ui4uWXIPbtPlOsvoLv3Llg5HZqLbMZms2bkRLpS9SFsyxwipoLXgoYzVaUNZD3Oz75bkIIOaY3WVGpMSCLynC6a7yWFkX6D5wrde2431GEoFTgkoI2OfKknhTw3HnXEdNipuHJcU8SY02mJo7p0eWJl3fo/AQ525zvz/yj8+/RB2AYBtcOupZ339JBSzsf/HuRxIBE+ErJB0KVKYvTM9C+dq43cSSfzERNGOB80s9LOdmeAhG9Z9GgT+BPLsDYB6VJTCknc8oJShkGSKKklhm/evECgUfmDOI190kOU+POyQkdOicdlFZo9DDZqWPoBRO1XII0F4HYkEjyu6gxmJFNuUyOddJjlGEYPDR7IL69ewIG2cnhUiL98N3yCQjzc93upq/Asiw3Y5iWBr8rvPAs62X4L73G6X6+oFQSGgpptANZslgM5ZgxxBAjkSDmow8R8/FHiHz1FST+vhF+8+d3+JovZcRqNdSzyVY6jVv+glwixtBo8jtOzwUvBUrqdbBS4ik++W64r4LThi2/utnjdjCtcH63BfVuva4jCEGpwCXFyQIqKI0PcPu1LMsio8YzkyNn3DzkZsyLn+dw//DQ4Rge4lxy6hZlp5zvz90N6C/dGgt7rh98PUKVZPYnWh2NW1Nu7aEr4kfEiDA8jPzbHy4/zDFjOV1c330X5SZlDTpO/0W6BYhLmqsBDenCioiebwvRp6BMoeyDUE4rGN8oIIQnW5dKtXcq2G/LYBccBM6stZmldUJCPjjCF68sGUrUNEYHKLHy9rFQSDu2SBQTSAalLAuU2xkS0SZHrupJASDCT4EIJ4GjUirGUCpbwMfUgSHY8uh07HtqFg4+Mxub/j7VpZFIX0N38hT0GeRzMuSB+zm1lZcCqnHjII3nN5tTjhgBiQNTTOXIkbzjitRUiNXcMhiGYeA7ezYCli7ltNIRIPG7nFz80B49CktDAycBcbzg0gtKaZMif6UU/kquEtDmdk8Gq/k1zZxFbroW1xFj4snne1aFBvVao4OjO8eldxcR6LeUN+hRSrkljvIgU1qlq0Ktnlxld8fkyBEMw+Dfk/+NGDV/Xc6jox/1jhV+GWVwNO1xm5NpK1YTcJF0/L1U8ZP54dN5n2J02Gj4Sn0xKmwUVs5bCV9Z75sYToyYSGzvLd6LEbHkxLc3ZkrPFJPSHV+FxKWtPAfalEuiAIL5XT4FHOAkUzpdRP1+E2eC48YD2DKlSmpB4dMpwKqFwPp7gJWzgNVXd+oybxofh98fnoYn5g/C/y0dhi3/mI4BIdw6KHfxV0qhopwf7R0pj+aRk9EJLqS7gO1e7WwBc/yAIKIXoKtzxQSqEOmv7HWtTrxBw8bfiG1pTAzUM2f2zMV0MQzDOGxzEnAdvyoHANQz+P0LfOc5XqQWcA/1lCmkhNdiQdOePRgdT871ThXVw0qnFfs4eVRZgrP7aALlwPvXuQo06s3E2IjYALfed1i0P6dlFG0EBwDrjhc77BvtLkJQKnDJQLeC8ZVLkOzAOZAPup7UR+qDGN/OWbL7ynzxzsx3EKQgJ37/GPMPp/1A3cZqASool834KcCAaeSYF2vFejuDAgfh68u+xoGbD+Cby75BrF9sT18SL9NiyL9RhbYCYUHkZzijrBF6quF9T0ObHAyN8if6ALtFyQlyOyxVcN71FKqmNBx1EMMCGUyYJCIzWUh24IgqVQDjXLR5KjrsfL/FBKT/DGx+Bjj8P0BbyzkkNcoPD80eiBvGxUEt79zfmWEYzoTrYpVNaluvNXLMPMY5kd3aM97JcVOTPWh1dAnDms3QbPmLGAu4dmmbm+ylSOCtt0KRlkaMyQcNgt+VVzp4BeA7fz7E/lRmXSqF/5KruuIS+xUilQo+kyYRY5odOziZUo3ezLkX9HVyq8mSgsRQx0EpXTu+PbOS2A5RyxHl715ZgUwiwkgqgKUVKQCwM6sSWmPn5itCUCpwybAvp5rYHhkX4NFkme5POiRoCMdFtyOkBKdg/ZXr8fT4p3Hv8Hvx46IfcdfQuzp9XgBAdbbNzMieyBHAoIXkWPZfbf29BHoHif6JiPIhA4ti02EioWWysL2uEXgGZXLgql6Pl/y95HbM2E5cUT+Fku+KGRZhqMcY0QWoGIPdHgZIJOuwCCY/DPi7uXBDS3mbqoDP5wLr7gYOfQz8+STw0QSuiZWXSQojFxtbjY3o1XuFVIRh0a5ltwAwP82xy3pP9BjtjTQfPgxLLbnoQMspLzVEcjnivvgcgTffBEVaGgJuvAFxX37htBWKSKFA+HPPEuqEsEcfhTQsrDsu+ZKHritt3rMXYUoRR9q/N7uqOy+ry8mrJjOltCuuPa7KDUbGBnik5BhP+UZsO19JdAewWllOK66OIASlApcELMti9wXyBuTp6jannjSo4/WkNMHKYNyScgseGvUQUoM7LgnmQMsgfaMAnxAgeS453lzluvZUoFthGAYzY2cSY1sL/0QStfp58LjewgAAifZJREFUtqTrnO46Ap0pTYv2MCg16YFCKvuWMI3/WAHH+IQAVN/gQYo6PBBTQB4XNRLwcSJhVfgDN6+19Yl1xdmf2/9tNgDfX8+9rzRXAj/cCBi6LktBK2ByWkyJjlBtXEbFBrotu40KUPLWRk9NDkEsj8Nlf0SzeQuxrRg6FLI4/prLSwlxQAAinn8eA9b9jMgXX3RYS2qP/5VXYsD6dQh//l+I/+F7BN/tpYVoAfjOmkUE/NbmZmgPH8G0gaSfxJ4L1fRL+zRc+a5jJeCwGFdBqXuLda3MTSEXVPKqm9vuu4CtzrSmufN1pkJQKnBJkFfdjGJKyz59UKiDo/mhg1KvBo9dRdlpcjuyxTwnOIlbo9ePJLx9hUWJi4jtIk0RYiIqiLGMst4jQaptNqKMqtum7eJdcnEHld1ngISpnb+4/gbDcALJrxf7Y5qIuickzYZLwlOBh44Bt/8KXPcV8Gg68OhZbr3pln8CjS0GVZufAUpPcE4FwNbzdO87/Pu8QDInU9oSlNJtXDw04Hr6siGQitsnu3KJCCsWOm/x0V9gWRZN+/cRY36XLXRwtAAAKFJSEHTzzZw2MAKdQxIaCuVw0ihQs2M7ZgwiFwuO5NdC10k5aW9BZ7RwPFOc1ZSG+yk4Zkf2TB3o2fx4WLQ/xwxu45mytn/vz/HOAoAQlApcEmw8XUZsh/nK3ba7BoAqbRUqtaTmPi0kzcHRvQhOUGrXVmMgZSufTdYCCfQ8Q0OGIsEvgRhrlh8gtnuTfJfuT6aQipxKiHg5s4bcjp8MqDx07xWwEUapOS78xW21Q7d9cYRYajNESrsaCIgDAmKBxe+Rxxgagd8eBk6sBo594fx8R1Z2PltacgL47jrg7RRg7R1AfREAICmM/MyVNehR0ajnqAqc1YnyMTouEL8+OBXXjYnBVSOjsPbeSRhOOWL3V4x5+TCXks9Z9YwZPXQ1Av0d9Rzyvta0cxcmJQUTLaiMZisO5XZeUtobaF14s8eVYdx0B4FnkI8Mw90sa2iFYRgsoPpO/3CkEEazrSxsb7YQlAoIAAD0JgvWHC0kxuanhXukl6ezpCqJihMs9DpYlivfjbBbPaSD0pLjtlYcAr0GhmGwJHkJMZarPQCI2ldEs8o1sPQSF8GzJWSAPCTCz2W7DYLK88D5jeRY6pLOX1h/JYxSc2RRPYmVQUDshI6fP/VKII3q1ZizDfjtIXJMogSu+xqwr8E3aoBT33f8vYuOAqsusy2maUqBjA3AV1cA+kYMCPEBbRewck8uzHbfE5lY5FFLsFZSo/zw5nUj8N6No9x2p+wPNO/fT2xLwsMhS0rqoasR6O/4UnWl5vJyyAvzMDougBjflE4upPRV6AXh+GAVlDLnBmOOauGvHBHluTkhgBvGkVL9Ko0B604Uo7bZ6LVMqWB3KNDn0OhN+DO9HOklDahuMuBsaQNHUnjdGM8cV/n6k3rD5KhLqS8E9FS9YaRdUBo/GZD6AKbWOgTWNqEccWO3XaKAa65KvgofnvwQZtZm12606iH1OwVTva1ljM5kQUFNMxI9cJLuKugHY5vJkdloW/SovQg0VQBNlUBjCVCZafucimWAMhDQ1gCsneGWTA0M52+5IOAGdKaUJmVR512NF7wC4Gvnxyx6B0hbAqT/BGT+3j5+bBUw4V7P39NssJknmcn7OuoLgL1vQz7v3xgc4UeoCD7fl0ccOn5AEFQyYYrjLeig1GfKlEuy5Y1A30CWlARpTAxMxcVtY007d2FB2jwctTM823yuHK9cPRRySdc7RB8vqMWnu3PRpDfj6lHRuG5sjNe+Ixm0l4MbBoOTk4IxJj6Q6Nkql4iwfNqADl1DapQfxicEEbX7/9mciQsVGmJBsDP08lm3gICtlqWu2YgThXV48bdzmPDadqxYdwarDxXgz7PlKKola0knJgZhuIsib5pzNWRblbTgPiDdpbOkigDSRVMit8nx7BEkvL2OEGUIZsSSMjhl8DFiO7O8d9SVch+M/kDmH8C7w2y9LX99ENj+EnD4U1tGtCYbsBhsWbOGQrsFkhYm3AsoA7rvB7jUcJUFTfFCCwqli17Pkx8GRt5s+/f4v5H7qs5zW1a5w7EvbQEo775VgEmPMS6yoDMHe1YzJeAY1mhE85EjxJjPlMk9dDUCAjaVES0fb9q9G1cMjyTGNHpztxgeHc6twQ2fHcLWjAoczK3BinVn8MGOHK+dn2Mw6IaXA8MweP+mURgUblvQDveT4/2bRiEmsOPGbQ/PIb1K6rQmrNqf3+Hz0QjLiAK9Er3Jgq8O5GPz2XJcqNC43ftILhHh+UVpHq1OsSyLM1VkgNc3TI6ooDRyOOFIBwAYNJ+U9OVsByxmoSdkL2PpwKXYXri9bZuVFUMkL4HVEA3AVld6+bBIRy/vFpoNZuTVkEHlZON+YM39ADqwSho+FJj+pHcuro/AsiyOVRzD8YrjsLAWDA4cjGkx0yCnXHTdxjccCB8GVKRz9/nFcBelOovcF2BbapsYMTDtMWDms+37E6YBftG2LHkr6T8B4R4s8lkttvYyjjA0ABc2Y0z8WHx7qNDhYTMHC+03vIX21CmwWm37AMPAZ7IQlAr0LOqZM1D33Xdt27rTpxFj1XOyeb+dLsW81HC+U3gFq5XF0+vTOdnC/267gLkp4ZyeoR05P+0t4e45owOU2PzIdJQ16hGilnU6YzxtYCguGxqBP8+Wd+o8jhBmpgK9jsIaLe786ghyKftrV/gqJHj/xlEe3wAu1l9EnYHsbzcybKRH5+gRnNWTtpI8j9zW19t6RCY56Vso0O1MjpqMCJ8IlDe33+ilAUdhqGgPSnua82WNRJvKMFEj4vc/hQ4FpEmzgWtWAlKl62MvEap11VixZwWOlh8lxv1kflg6cCluGnITItUdWHgYfBl/UDr+Hu8vPj14BKg8ZpPXxk2ymSHZIxIBQ5cCB95vH0tfB8x+3rbPHS5stkm+ifNKAaupfTt7K2bMuxwSEcMrGxsR489x6BXoOM37SfM1RWoqJIEuMugCAl2Mavx4MEolWF2LWs5qRfPevVg8YjgRlG7LqIDWaO4yOf/u7CpOD1HAZvvx4c5sfHzLmE6d/3x5I5qpxIwn/cFFIgbRAd571r6yZCjOljZwVIoA4K/s3O9YkO8K9Cpqmgy49YvDLgNSsYjB3JRwPDw7Gc9cNgT/vWEE9jw5C7OGeL46frSCnCRG+kQiWh3t8Xm6HU6mdAT3GP9oIHIkOWbfa1CgVyAWiXF18tXEmNT/FMDY+n6d7wVtYWhn0yfUW8HQNc2BCbaFkJG3AFMeBRa/D9y1xfbfDd8BS78A7j8I3PaLrc9mP0Fj1OCuLXdxAlIAaDQ2YtW5Vbhs/WX4x85/YE/xHpitZvdPPv4eW69Re0IGAxPu6+RV86AMAFKvstUB0wFpK8OuI7cbCoHiI/zH8nH4U3I7ciQw/xVyLG83glRSh22/bp5w6ffO7E746kkFBHoakVwOn0mTiLGmXbtx2bBIwghNZ7Jg+/lKdBW/n3ZspvTn2XKin2dHoE2EEoJVCPNVODi66wlWy7Hmb5M4RnCLR0QhtJPXJWRKBXoNLMvi2V/SUVir5d0vYoBIfyXmp4Xj7qkDOqWLt4eeKI4NH+uV83YpzdU2R0p7+DKlgC1zYd/gPmMjcMU7tppTgV7DkuQl+PT0p2BbMo+MWA+JXzrMDWNQUq9Dg9YEf5W0x64v3c551w9NuNK8iTwgdYmtx6VgfkLAsixeOPAC8hrynB5nYS3YVrgN2wq3IUwVhodGPoQlyUtclyKow2xB/oYHgKosmwpi0X8BaQ9NWiKG2YLi6qz2sTNrgbiJrl9bnQPk7SHHJtzHXXBrKALq8vHo3IHYfaGKcKdOi/LD0tEx/Oe3WoGjK201q41ltmua+4Jn8mIvYWlqgvbYMUiCgqAYNqzXmgaZ6+qgP0fWBQvSXYHegnrGDDTt2NG23bRvH6IUYkxJDiHalGxKL8PiEVFef3+WZbEvp8rJfmDV/jy8evWwDr/Hvhyyrc2U5J5f0I0OUGLDA5NxorAehbXNSIvyx6BwX6S94vq1zhAypQK9hr8yKrDlXAUxNihcjS/uGIu9K2Yh65XLsP/p2XhhcZrXAlKjxYgDpaQ0aWxEHwhK6f6kEiUQMpD/2KFUSwdDg82FV6BXEaWOwuRocrIn9TvZ9u+MHpbw2mdKrxAfhsJqJ91hRMCc54WAlIffLv6GrQVbibEgRRCGhzpYRAJQqa3E8weex7/2/wsWqxv19NFjgAcOAc/X2gLUwIROXnUnYBhutvTsOpvk1xUnKJdfZZDt/hWWAqioiVj+XgyPCcBHN4+Gv9K2WDM+IQif3TaGv00Ry9qMuP5cAVRl2u6D2VuAL+YD5Wc9+AE7T/OhQ8iZOQvF992P/OtvQMnf/w6rwY3fTw+gPXQI9rp9RqmEcvSoHrwiAYF21DNJsyNrYyN0J0/iCsqDYUdmJZoMHihQ3CSnsgkVjeR3dz5Vv7ruRDHqmo0dOn+TwYwjeWRQOrUXBKWAzUhpTHwgrh4Vg0Hhvl45pxCUCvQKzBYr/m9zJjEW5CPDt3dPwJyUcMQGqSD1pB9iCwaLAV+e/RLLNi/D3Vvuxtfnvobers3AwdKDaLZzBGXAYFr0tI7/IN0FXU8angaIHBSw+8cAcdTKdvpPXXNdAp2ClvCKffIAke2B15NBqc5oQXZlu4T4KjG5kIPBlwPBQs9CGq1Ji3dPvEuM+cv98cMVP+C7y7/DxiUbcdOQm6CU8Nf7/HrxV7xx5A333oxh3K/b7GroNj/6eiDrT+evMRuAU9+RYyNvtik6GAZImEruKzkOwNaL79Tz85D58kKsvW+S4wXLQx8Dp3n6phqbgPV/sxksdQOm0lIUP/x3WJvaJX2ardtQ8drr3fL+ntJ8gPyuq8aNhUgm66GrERAgkYaHQ55CtsZq2r0bC9IiILHT8BrMVmw/X0G/vNPQ0tpIfwVeumoo8d56kxXfH3FsyuaMzWfLoTe1t1ETixhMSgru2MX2AXrJE0ygv/PT8WJOHekLi1MR5tdxCVqzqRnLNi/Df4//F8cqjuFI+RG8dewt3PTHTShrstUAbMojJYgjw0YiVNUHWgnQmdJIx1kXAMCwa8ntrM2AoefrFAVIpkZPhUTUXlXBMBZIfLIBcHuEdifnyxvRqpAMQx3GM+QCEobf0P0X1Qf4PP1zVOvIScu/J/8bUWqbjCzBPwHPTngW26/bjn9N/BeGBg/lnGNN1hrsKd7DGe/VBMbbnHjtoQNOmszfbX1s7RlzZ/u/oymzkNJ2FQHDMFBInbhK1lwEtr7geH/lOeDcL86vz0tUf/IprBruvbf+p59gyPFeCwlvwLIsmuh6UkG6K9DLUM+YTmw37d6NQB8ZR+b6xxnHtZ8d5VRRPbE9OSkEEf4KTmuabw7mQ2/ybOGLZVl8QfVfnjEoFAGqS3dRSAhKBXocndGCd7ddIMaGx/jjyk7q/1859ArSq7mulDn1Obhl0y3YnL8Zf+WTfTvnxs3t1Ht2G3RQ6qietJXUJYBdsAOzDsjc5PDwLsGkA/a/D3yzBFhzC3B2PSELEwB8pD4YE05OvsU+tto8ukdod2Iv3Z0hPg0RY/d3k/sBA+f3wFX1bsqayvBNxjfE2JToKZgTN4dzrK/MF9cPvh4/LPoB/535X0hFZO3wq4dehcli4ryuVzPiJnI7eytQdYH/WAA4/hW5nTCNLEmIoiSjFRmASQ+32PYi6d7rzvt3Aea6OtRv2MC/02pF3Q9ruvwaPMGYnw9zKTmRVwsmRwK9DN+ZM4ltQ3YOjMUlWEQFhrsuVEGj9+59NJ0yABwZFwAAuHvqAGK8otGAz/fmenTuHZmVHOf968Y4qJe/RBCCUoEeZ9WBPI4m/6mFQzpl/JBdl43fc393uL9KV4Undz8JM9teY6AQK7A4aXGH37Pb0NYCtdTNLWqk89f4BNvacNjTnRJeQxPw1RXA1n8BuTttWZGflwG/3AeYO1ZrcakyPZpc9ZWoswCwyK5s8nil1VukF7c/eGeKTpE7k2b1nKlOL+b9k+/DYGm/r4kZMZ4c67ov69z4uXhuwnPEWGlzKX7J6Z5MntdIvYpyBWaBff/lP7b0FNfgyD5LCnDNjqwmW4bTFUVHgfO/kWMTHwCu/ZIcy9/LbUXjZTRbtwImx5Piht9/d7u21KLRoG7tWlT8503UfLkKxuIS1y9qQZ+ZiZrPP0f5K6+i6v0PoEvnr6lt2r2b2JaEhUGWnOz2+wgIdAeKYcMgploUNe3ehfmpEZCK2+eRRrMVWzO8J+FtMpiRS7WCGdrSqmV4TAAmUzLbD3fmoLCG38iThmVZfLCDVE4khfpgflpEJ6649yMEpQI9Sl2zEZ/sukiMTRsY0ml3sS/OfkFsixgRghRBTl+zdNBSBCr6QO81O9kaAEAsB8K5sj8OtPnIxR02F9/uYMszbTVgBGfWAOvuBizeNyDoq0yLIWWPImkjRPIKWKwssis6Zy3fUVpXg8WwYJqImsAm9xF1QTdyvuY8Z1HsukHXISnAvbrbawZeg1FhZGZw1dlVsLJWB6/ohcjVwNi7ybHT3wNFPO1h9rxJbquCgSGLyDGFHxBMmbnR90I+DrxHbisDgRkrgMFXcFvppHdtu6zGTWRdrSKNdP21NjRAs821CV3D738gZ85clD//Amq//BKV//kPLi5YgPJXX4NVx+0dCABWgwH1GzYg7/obkLfkalS+9Tbqvv0W1R9/jPzrrkPp089wXqv5izTo8pk6tde6BAvwozVpUa+vB3sJq5IYsRjq6eRzs2n3bvirpJg2kCzH+vUU1bWgE2SUkr27xSIGKZHt/UOfvTyF8P7Tm6x45pczbv0tDl6s4UiDH5yVDLHo0v7+CUGpQI/y4c4caPRkQPLUwiGdOmeRpgh/5pEP//uG34fflvyG8RHjeV8TrY7GQyMf6tT7dhulJ8jtyOGA2I1WIYMvt7n0tsJagIwNXr00XirOASdWO95//jfg1wds7RoEkOCXwOmT2yrh7Ym60ka9CRcqbDVwo5hs+DHUSq8QlBKwLIu3j79NjKmlatw/8n63z8EwDOd+VNxUjEOlh7xyjd3GhPsAqQ859tMyMiNZeMimnLBn0oP82XdawlviIiitywcy/yDHpj5mC0ylCiCNNBZDNhmEeRNTZSW0hw8TY8F/+xtUk8hWOY0bHSt8AKD2m9UofeIJWBspOb/FgrrVq5G39Foi82nIzkbF//0HOTNnoezpZ6A/Q5nktdCwYQOKHnigLVNrqqiE7iT5+/WdP8/ptQn0Hoo0RXhw+4OY9MMkTPtxGq769Spsyd/S05fVZagpCa/20GFYtVpOGdi+nGpUN3nH6Zru3T0wTE3Utg+N9setE+KJY/bn1OCnY8Uuz/3JbjJZExuk7HRJW19ACEoFeoz04gZ8dSCfGLtqZBSGRvvzv8BN6IyCUqLEzSk3w1/uj0/nfYo70+6EhGmvr0wJSsHK+Suhlqk79b7dRgkVlEaNdu91cjUw+DJyrIszAwBasiAuVgbP/Aj88Q+hxhS2gGRKFFm3JVG3mh11f13p8fy6NpOjGWLa9Xko4HfpPyg9YV/JPhwuI4OPu4fd7VKpQTMuYhwGBQ4ixtZeWNvp6+tWfMOBmU+RY43FwKfTbPXleXuBdfeQ+xUBwDhqrBU6KLXvv8zHkZWAfXZZ5kvKggdfTh5fdBjQ1Ts/Z1UW8O21wCvhwDtpwO433VJ6aLb8RdzfRCoV1DOmw//Kq4jjmvbtg7mujvccTfv2o+IN527Mxtxc5F9/PfJvvgUXL7scuYuvRO2qVbA4OKc92oOHUPbMM2CtVtT//BN5vWq1YHLURyhsLMStm27FnuI9bXOhvIY8PLH7Cbx44EWirOBSwWfKFEDcHhCyRiMaN2/BvNRwKO0CRYuVxcbT7dnSZoMZlY36DmWS6aB0GM/cdcXCwYj0JxfYXvkjA5Uax/XwGaWNRI9VAPjb9CT+VleXGJf+TyjQ4xjNVqw5UohH1pzEY2tP4fO9udiZWYn7vj1OND2Xihk8Pm9wp96rUluJDTkbiLEbBt8Af7ntZiEVSfH42Mex/frt+GzuZ/hx0Y9Ys2gNYn1jO/W+3QbLcmWwtCulM2gJb+FBoNF7chYOzTXAeWrlf+YzwJ1/ABIqE3L8K1sPwb5m6NIF0P1Kxco8gDHgTEn3Z0oP59W2/ZtTT5rMNe3pz1isFrxz/B1iLFwVjltTbvX4XAzD4PpBZGuVXUW7UKOr4X9Bb2XiA0AsmQ2Evt5WX/71IqCBquOc/oRNqssHHZRWngeMDmq0LGbgDBXEj76dPHfCNFv5QyusxVbz7ojqHOCLeUDOVsCstwXYO18B1t/jUunRuIk0llPPnQORQgHfeXPByO2uwWyGZvNmzuuNhYUoefxxzvsoRgwnXw8ALAvdiRMw5pHOnfZIIiLgt2gRRD5kJrtx05+ofPtt1K0hTZd8588XWsH0AViWxfMHnketvpZ3/7rsdbj9z9tRpCnq5iuzZW/fPPombv/zdtzz1z346NRHqNRWeuXcYj8/+Ewhn5v1P/0EH7kE89PIvqHfHCyA1mjGvzeew5hXtmL8a9sx481d2JftWTkTbXI0LIYblPoqpHj1arK8qlFvxsc7L3KObWXdCTKTGqKWXfIGR60IQalAl1LXbMTSTw7g6fXp+PVUKdafKMErf5zHsq+OoqSerF95aNZAxAU76DHnJt+c+wYmO5dFqUiK21Nv5xwXpAjC5OjJSA1OhYjpQ1+DunygiSrU9yQoTZ4DyKkb57kNnb0qx6SvJV0vxXJgwr22noM3fAdQLqM48j/gs+lAIZlp6m9MiJhAZPMZkQVin1xklDZ0u9nRwVxbEBSCBgwT5ZM7kwU5nz0/X/gZOfWkOcXDox6Ggl6AcZMrEq8gephaWAu2FbiuOexViKXAjd8BIW4sOMZOsAWxjogYBtjfr1kLUMFv0oO8XUAzNeEdu4zclqmABMpNNtvB79dqBX65F9DzLAydW8+ti7XDVFrKkcL6XXY5UF8EseYi1DPIergGSsJr1WpR/NDDsDaQ7x3y0EMY8OOPGPDLek59qiNUkyYi+oP3kbxtK6LfehNx33zNCUxrv/gSlipygh50m+cLKwLdz++5v+N4BY9/gx0ZNRm4fP3lmPnjTExdMxUTv5+Iq3+9Gu8ce6etXZ43YVkWn57+FIt/WYxvMr7BycqTOFR2qG3s5ws/e6XmNeBasvWd7uRJGLKzcS0V0OVVNyP1+S1YtT+/rQdoYa0Wd311FKepOk5HaI1mXKwiPR4cqfxmDwnHVSNJRdHaY0Wo13JNHq1WltO65qbxcc5bXl1C9KHZuEBfw2plcd+3xzmrSXyMiA3A/TPdMwFxRLWumiNvW5K8pG/0HXUXehVfFQIEJbr/eokcGHIFOdZV/flYlltLmrLYVs8FAAPnAtd9BTDUzbYyA/hyvs2Zt6mqa66tl6OWqTEijHQblfhcgMnCuv3Q9AaVjfq295suotoQydS2IEIAgE2l8e6Jd4mxwYGDsShxEf8L3EAtU2NmzExibEtBH6wL8wkBlm8F0q5xfExYGnD9akDkZPIlV3ODW0dmR6d/JLejRpMtZlqh2xnlbOMvI8jcCJQcc3xte/4DlDmo16SCTJGPEuozTwDvDgU+mw5/PVlGoTtxAsZiW7aEZVmUPvccDBfIdjq+8+cj5EFbAC9PTETCmh8Q8veHIVJzy1DEoSEIvmc5EjdtQvyqVfCbNw+MxLbopUxLQ/S7/wVEjqeDqokToUhJcfyzC/QKGgwNeOvYW8RYlE8Unhr3FLG41UqNvgYNhgY0m5qRU5+DVedWYfGGxVh1dhUsVu8sfurNejy550l8dOojWFjuObVmLf598N94ZOcjqNO7lpg7w3fWLIhDSJPMmi9XYWpyCK+0lsZoseLZX9LdCpAzStt7dwM2k6PUSAcKDwBPLhhMmBRpjRbe2tLjhXUobySlvYv7QS1pK0JQKtBlfH+kkJD+OSIp1Adf3DEWMknnPo7/O/M/6Mzt2VcRI8KyocucvKIPcpEKShNnOp1M8EKbexQfAeq7QMpTdopo2WA1M6jJDUfB7Xeg4PY7UP3JJ7DEzACu+R83MAWA0z8An07tt1lTbl2pbVJ6rKBzD25P2Hq+PSs/U0wFpYkzAYkg52vljSNvoMlErpyvGLcCYmdBlhssSFhAbB8rP4YqbR9crFH4A9etAu7eCgy91ragBgC+kcCkh4C7NttqUF1BS3hLT3GPMTRxzZOG38B/Pjrb31RuM2drQXv0KIofeRR59z+PsqP+MDY5+HtazTbDNqr8gGVZNPxGtqTxC68GU5fdtq0O10IsI2W5jb/brr/m88+h+ZOU88oHJiPq9dcIJ1xGKkXoAw8geddOxHz0IcJWrEDEiy8g4aefMHDXLoQ9/jjkiWTvxLb3nzYN4f98jncfI5UiwsE+gd7FByc/4Mh2n53wLG5NvRXfX/49EvwSXJ7DYDHgnePv4B+7/gGtyb32JY4obSrFHZvvcMtgaWfRTly54Uq8fextbM7fjIyaDDQZPXObZ6RSBFy7lBhr+O03mEpK8cgcngUpHs6VNmJnlmtJMZ1soU2OaGICVbh8GNk3lZbpAuBkSQeFqzEo3Nfl9VwqCEGpgMe0ygue+yUdr206z2nuCwB6kwUfUj2Wgn1kuGZ0NOJbJLohahnunjoAGx6cghC1nHMOTzhQcgBrMskamMWJi/tOrag7mI1AHtk3DkmzPD9P4kybmYg9XeHCe/Lbtn+a9SLk74xE5Ze/QHvkCLRHjqDqvfeRu/hK6JgUWxYlYhj3HE3lwNeLbe1r+hlTosmgVCSrASOtwaHc7qsp/P207QEpghXTROnkTsF1t42NFzdiawHp3HpV0lUYH8nv9u0JU2OmQiVpL2tgwXLeq08ROx649gtgxUXghXrg8UxgwauO60hpOEEpT6Y083fAfkLNiIGhDrK0wUlAAOmQiRybhLdu7VoU3HY7NFu2QF9hRP1FH+RtCYWuWgpcsxKYTvWdLU8HDrxPDOnPZcB4kawf808gS1cYMeAbR47Vr/0JjX/+iap3yN6uIj8/xHz4IUdy24pYrYbvnDkIvmsZAm+8EcphQ8GIXS+MBN18M8JWrAAk7WUDIh8fRL/3LuRCb9Jez7nqc1ibRSrFZsXOwozYGQCA5MBk/HDFD1iSvIQoDXHEzqKdWP7XcmiMGo+vhWVZbC/Yjht+vwEZNRnEPhEjwvWDrudVkNQb6vHVua/w5O4nccPvN2DSD5Mw48cZWP7XcmzK3QSz1bWhWNDtt4NR2JVLWCyo/ugjzE0Nx+2T4jnHJ4Zwv0c/HnW9SE8Hpe4YdN40jpyPZpZrkGFnXmixsvgjnQxKrxjWf7KkAOD6kykgYIfRbMUD353ANrsMyud7c/HSVUNx68T2L/zaY0UcCcJ7N47C1IG21XGrlYXIzX5LZqsZZc1lKGosQoGmAFm1WThfe75tRdBqtaJSR65sSUVSPDjywQ79jL2WnK3ceqbEDgSlEhmQsogIGnF2PTD54c5dnz0mPZD+E4AWb6YDgTDwxFLm8nIU3HYbYj74AOp7dtlqSne9DhjsFjosBuCHm4A7NtomtP2EIUFDEKQIIla+JeoLOJwbimaDGT7yrr19Z5Vr2upJRzI5CGSoVeuBQj0pAGTVZuHlQy8TY4HyQDwx9gmvnF8ulmNW3Cz8kdve2mRL/hbcnHKzV87fo3Sk5yUdlFZn2TKjcjvZ6hlKups0G1CHOb6G5LnAMbve1jnboA+9DOUvvcw53GoSoWhfCBL/NQ2S1CW2ljOVdhPvXf8HDFkMhNqck+u++454vdTHDGUot5bMP16H+pz2CbKptBQl/3iMc63Rb70JWTx3cu0Ngu9aBr+FC9B88CAgEkM9YzokQZ65Rgt0P2arGS8degmsncu9QqzA0+OfJo5Ty9R4ecrLWDFuBbLrsmG0GiFhJLCyVmzJ34KfLvxEnCO9Oh1/3/F3fDrvU8jFrhMHFqsFu4p24euMr3GykrtYpJaq8faMt9uM/C4bcBn+tf9fDk2ZAKBWX4vDZYdxuOwwPjn9CV6c/CLGhDv20ZAEBSHwhhtQ+/XXbWMNGzYg8NZb8O8r05Aa6Yc/0sugM1owJyUcd05OwC8nS/DsL+2LrtvPV6KmyYBgJ8mSM8WunXdpJiYGI8pfgdKG9rnxLyeLkRqVCgA4ml+LKg3pjHzFcDK7SsNaLNCnp8NcXw9FSiqk4Q7uc30EIVMq4BFv/5VFBKQAYGWBf/16tk3yoDdZOM5ikxKD2wJSAE4DUpZlcajsEF488CIW/7IY474dh8vXX457t92L1w6/hnXZ65BRk4Hy5nKUN5dzAlIAeGjUQ4hUO/8y9zlOk5lgxE0C/KP5j3UFXdtVesJmouQtsv5oC6Drsn2grXR8c2d1OhTdfz8at24HJj0APHTMls21x6wHfrwN0FTwnuNSRMSIMDmKcuH1uQCjxYp9OZ65BHaEj3a2Kx1miU+RO0NTAP/+4QbojGJNMe7fdj9RNgAAz058FgG0GqETLExYSGyfqDyBiub+810giBhKyv1Zqy1D2YqmHMjdRb5mxI3Oz0ll/dn8Qyh77jnAzJ+ZsegZlD3/b7BiKXDlh6T5ksUA/PYwYLXCWFyCho0bidf6J+hssbhEYaupfzQd8I+FMsQIZYjzVh2hj/0D6unTnf8snUQaFYWApUsRcPWSTgek9fp6VOuqiRZtAt7n63NfczKS9464F1Fq/iybr8wXo8NHY2LkRIyNGIvxkePxr0n/wufzP4efjFQsHKs4hhW7VzitMdWatFiTuQZXbrgSj+56lDcgTfBLwHeXf0c4y0+PmY6fF/+M2bGz3fo58xvzsWzzMnye/rnTus/g5XdDpLIzzWRZVL7xfwCAG8fHYfXdE/Dz/ZNx/8wkKGViLBoRCbld+ZjZymJTumPDpyYD1+RoOI/zLo1IxGDJKHLO9uup0rYuFL+fITshDInwRXKY41aF+sxM5F55FfJvvAnF992PnFmzUP7Kq2BNfbeDgRCUCrjNqaJ6/G9vLu8+lgX+8eMplDfo8f3hQk6W9JG57un5ixqLcNeWu3DPX/dgXfY65Dfmw8y6lmzYMyduDu5Mu9Oj1zhEWwuc+gHY91/g/EbA3EP9vWpzuU3gh1/Pf6w7DJgOKKkJhzddeE98AwCwGBlUnSXrIcRBQZDTphkmE0oeewzV/1sJqzwQuGWdre7MnqZy4Kc7+lXLGDoolaguAjDjTycPTG/wx5ky/NbWy43F5SKqrnegIN09UnYEt/15G6p0ZH3ndYOu4wSRnWVy1GSopeTkxJ06rd6O/vx5lL/6GooeeBDlL70Ezc6dYB0Egm1IlUBYKjlWate7Of0nqjepmtuPlGbANMIJvO6CFPqz55y8AGjavRv1a38CYsZwHYOLDoHd+y7Kn3+eCGwZsRWBA5ttG0s+AZu6BHp1GHDjd2DEEoSPbgQj4p9s+19zDYKXL4ferHdLxthTWKwW/JL9C67acBWm/TgNs9bOwuy1s/G/M//r1dfdVzlTdQYfn/qYGEv0T8QdqXd4fK7xkeOx+vLVCFYEE+M7inbg9SOvcwJBk9WE1RmrMX/dfLx6+FUUaqj2Ti3Mjp2N76/4HokBXFPGUFUo3pv9HtZfuR73DLsHEyMnIsonCgz4ExcsWLx34j28eexNh4GpJDQUwX/7GzGmPXoUmm38ztp+Cinmp0UQY7SM1p704gbCC00qZpDixOTInmtGk0FppcaA/TnVMFus+DO9nNjnzODIkJuLgjvuJEsDrFbUffstSh5/AqyLFlW9FUG+K+A2b/+VxWtK2Eq91oS7vz6K4joyazApMRgTE4MdvKqd7QXb8cy+ZzhZB3dRSpS4I+0O3Dv83s63eWFZ4PCnwI5XAPtie99I4PK3bPLX7sJqBTY9aWt/0IpUBaQu6fg5xVKbE+6JdokLzv4MTH204+dspTy9LVNRk6mG1Uj+LaLfeQeq0aNQ+syzaPzDLtC2WlH1zjuo+fRTyAcNgjw5CYrmUVDLTkOqbLnBFh4EdrwMzHup89fZB6CDUkZshFiVj01nZfhnk6HTtdh8bEovwz9+PNW2PYQpQpKIekCnXOX19+0rWKwW/C/9f/j09KecDNDosNFYMW6F199TJpZhdtxs/Hax3TDnj7w/cHsat91VX4C1WlH133dR8/nnhNNt3fc/QBIRgYDrr0PANdcAjAiGnGwYc/PAGvSQhIdDNW4cpFEjgQq77Gj+fmDSgwDLwnLoW5jqbVMbmdoM0YjFttYvzpD7AnETgfy9MDWLUXWGnGDKfM2Im1mNvL9CYTG0Z2kr/u//4DNxAmSznrPVsdblw9gkhqZEgYY/P4ahgWx5FZCkhURhRdaUB/BF7SHs+eE/aDY1I1wVjnnD5mB5+lZETapD6eEAsOb2+6bk1qX4fJYEO3+ajWpdNSSMBEOChmBR0iJcM/AaXmfVnqBaV42n9z6Nw2XkIlaNvgYfnPwAB0sP4oPZH0Atc5z96WmqtFU4XnkcVqsVsb6xSA1OdWhWVqOrweqM1ThYdhBmqxnjI8Zj2dBlCFN5R0JZ3lyO33N/R5GmCBE+EZgdOxuDg9rdpwsbC/HIzkdgtLbLwUWMCC9NeQlSsZTvlC5J9E/Ep/M+xbLNywjjth+zfkSQIgj3j7gfALC3ZC/eOvYW8hoc98KN8InAP0b/A5cNuIww5eJjYOBADAxsT14YLUaUNJXgbPVZrM5YjfO154njV2esRpgyDHcOvZP3fEF33oG6tT/CXNr+7Kp88y2oZ8zg7be7aHgkNp5uz1QezqtFpUaPMF9uO6/TxfXE9pAIP7dbtiSH+WJYtD9Rk/rLyRJYWRY1zaSs/4ph/Go/1mhE8cN/57SIakXz11+o+eILhNxzj1vX1JtgWG80BxLoEtJa+o6dO+d8xbY7OJpfi+s+PUiMPblgMM6WNODPs+UOXmXj5/smYWyCcxnQ9+e/xxtH3iDqGWh8pb6I84tDgn8CUoJSMMB/QFvwqZQokRqc6p2HM8sCf66w1Tc6YvoKYNazHauJchdDE1B4CDi6ErhANVOf/DAw/5XOnT93F/ANFVws3w7EjO3cedfeDmT8CrNOhJzfw8Ba2idXvvPmIeYDmxEIa7Gg/JVXUP/DGkdnsiECApOaETa8ESJpy+fjph+Bwd7NRvVWrt94PfFANtWPhr7setwyIQ6vXs1jDtVBWJbFqv35ePmPDGLx6VnJd/ibxG7xwD/WJjnsys++m7BWKwxZWbA2NUE+eDDEfm6a5XQQR5NuwDap+mrhVxz5m7fYX7If9227jxj79apfebMP3qS5uRnqljYjTU1N8HFgsOMJ5a+9hrpvVrs+kA+Ggc+IJAT6HoY60gDWCugaAtAc9xCadu+AISff7lgW6gkjEfLYs1AOHw4AMFlMOF55HBfrL0IlUWFi5ERbqceBD8Bu/icKdwVzyg3iZlfDJ8yIplI5ivaQC6yy+HiE//M56PdvgubXtdDX8TtSSxQWDLi8EquGTcZHplLe9hgBLIPnqqowp1qPphIF9CyDX6aPx0plgUPFULAiGI+PfRyLEhe5nPh3JYfLDuOpPU+hRu/ciG1CxAR8PPdjyMS9w7nbylqRU5+D3UW7sbNoJ9KrSUO3CJ8ILB+6HEsHLYVE1J7HOVZ+DE/sfoLz8/rL/fHh7A8xMmyk0/fVm/WQiWUOF9DXZq3Ff47+BwYLqc6aEzcHy4ctR6OxEc/tew7VOrKUY1naMjw2lqpF7gBHy4/i3q33En3fAWBM+BiYLCacqeZvfwQAKUEpuD3tdixIWAAp3Yu8A1isFqw6twrvn3ifmCMyYPDZvM8wKWoS7+sa/vgDpY+Ttf1hTzyO4OXLOcfqTRaMeXkrmo3t38uXrkrD7ZMSOMc+8N1xbLLLanr6LP5iXx5e/r1dbq2UijExMQg7s9pVN8Oi/bHx4am8r6/5/HNUvvW28zeRSJDw4xoo3exfrDVpcbziOCq0FQiQB2Bs+NgOlaB0Nm4RgtJeTG8KSm/5/BD257TffEN95djz5CwYzVZc9t4eonDbnvmp4fjf7Y6DHIvVgrePv43VGdwJSpRPFG4achNGhY9CvG88/OX+3fPQ3fs2sN2NTNzIW4HF79qyjt5CW2trhZK5CSg6ZGszQKMOBx483N7vs6NYzMB7I4BGO1vyoUuBa7/s+DlztgHf2izZy4/5o87OuAMiERI3/gZ5Uns/WpZlUf3BB6j++BOXp5aqzYidXgO5n8X2s9+7Fwi4hNyVHbDq7Cq8c/ydtm3WKkVT9rOAVYkbx8ViQVoE0qL8EOor7/D3Q2e04LkN6Vh/ooQYV8CAEz5/h8pi58A4+e/AfK4BTHfTtG8/yl9+CaYCm2SMkckQdPddCH3oIbfcRj2BZVlsL9yOVw+/ypkEAjan5DemvuHVOlIas9WMeT/PI95/+bDleGT0I132noD3g9KG3/9A6RPeMYGCiAVYAKyLzz3DwP/apTh8VTI+zv8WzVVlmHaWxdRzVsRWAxJGBFlQMFBfAYuBDBL8BzQjakJLRiIgDvlVl0O37jeeN3Hy9mIWUTNr8H9jB+A3kWsl0ESdDqP0Rqz1VaNG4t5neUr0FLww8YVu91KwWC1Ymb4Sn5z+xO3a0SuTrsQrU15xeL/KbcjFrqJd0Bg1SApIwuzY2VBJXWS73cRoMWJH0Q6crjyNjJoMZNVlodnU7PJ1yQHJeG7CcxgVNgrfnv8W/z3+X96FBcBWs/nVwq8wKHAQMW62mvH9+e+x9sJaFDQWQCFWYGr0VCwfthxpIbb5Hsuy+OjUR/jszGce/2wTIyfik7mfEMFzZ9icvxlP7n7S9YEtTI+ZjttTb8f4iPFdMlfbeHEjnt33LDEWqgzFz1f+jCAFN/HBsiwKbroZulOn2sYYmQwDfllPzENaeXTNSWw41Z4tHT8gCGvvJQNelmUx5Y0dxJz3P9cOx/Vj3Z+LVGkMmPj69rZaUj4cBcSmigrkXnY5rNp2d/G8cODnqSI8vs5K1GTKkpMwYN06iOSOFVVGixHfnv8W3xz7H6BpglECaJSARCzFjYNvxMOjHvbouycEpZcwvSUoPZZfi2upLOkLi1OxbIqt59nh3Brc8vlhmKkvWKBKij/+Pg1RAfzZy7KmMvz74L+xv3Q/Z9+VSVfiuQnPee1B5DbpPwPr7uaOBw4A6nhkKslzgeu+Jp0fO4C1MhdNnz8L3bFDMDbYHB7FMiukPhYoAk1QBhshVVvAiCXAreuBxBmder829v0X2Pai3QAD3LeXvz2LMwwaW83rphWAoQGGRjFy/wwjJov+S69B1Kuv8r5cd/o0Kt/5L7SHnfckFcstiJtZA0WgGYgeY3PklXU+cwPAJpPO3QFc+AtoLAHkfkDcBFugLu+5PmHVumrM+2kekSkxVM+GsWo+cVywjwxDIn0xJMIPaVF+GB7jjwEhaqJhN8uyKKnXIaeyCSX1OtRrTajSGLA1owIl9dzJ8geJh7G49D1y8OETtjYaPQTLsqj+8CNUf/wx+OoJ/K++GpGvveqVSZHJYsLRiqP46uxXOFh2kLNfzIjx8KiHsWzoss6XDLjBm0ffxDcZ37RtR/pEYvPSzV363t4MSk3l5ci98ipYG+3ctSUSBFy9BPrMLOjT0x2/2As0y4GyICChApC4ET9JVGYkLqyCWGb7nP008XZ8WH4Ez33eiFg3vcakPmYET67HM6NisF/ctTWVKokKj455FDcMvqFbPo8X6y/i+QPP40wVN2sWZjbj+epaqFgWT4SFoJZaKFoxbgVuS72NGNOZdXj98OvYkLOByIgFK4LxzIRnOD17Adv9IK8hD+XN5QhSBmFQ4CCHP/vm/M14+9jbKG92ru5yhlKidKvEKFwVjjWL1iBEaTN41Jq0eHLPk9hTvIf3+MWJi3FL6i34/vz3hEzfXVKCUrBy/kr4y10b7njCmsw1ePUw/3O7lbTgNDw9/mmX2WFv8Hn653jvBPlMmhkzE+/Pfp/3nq87fRr5N95EPCtkyUmIfPllGHNzoT+XAdZshnLECBxNHIt7fmy/BzEMcOiZOQj3a5fwFtZoMf1Nsl/81n9Mx0APe4ku//oYxzS07frEIhx5bg4CVFw1QckTT7b1MAYAK4Dn7hDjYhSDG3ZbsPQA+UwMWrYM4U9xS0qMxcW4+N1K5Oz6DeFlevja5ZXqVcDRQQx+Hy+CX/IQfDTnI4T7uNFDGkJQeknTW4LS2744jL3Z7U/gMF859qyYRWjod2RW4PG1p1GntUk9YgKV+OSWMUiL9sVfBX/hj9w/kF2XDStrhUqigkwsQ1ZdFu/K6gMjH8B9w+/rfilS4SFbT0yLva6fAZZ+bgtMjn5uk/XS1xw5ErjlJ8ctB5xgqS5F9QsPon7PeVhNzn9ekYyFMi0FiokzoRw2DMphwyAJDfX4PQm0tcC7w8i62bhJwJ1/AA7qaADYbvDFx4CsTUDeHluvwJZVY5YFivYEobms/UbOyGRI2rIZ0kjnq/jmqiroMzJgyLkIXXo6mnbuBGsg5UsiqRWx02qhCjParvX61YC6E78Hq9X2c+x6g6xTa0XhD0z9BzDpIe9mxT3gid1PEMY2rFUKbd7DsBqdf+ZUMjGGRvkjOVyNZoMZR/NqHaoaaJ6dHoJ70m8Ao6trH0yaA9y2vkM/gzew6nQoe+6faNy0yelxES+/hMDrruvQe2hNWuwo2oFdRbuwv2Q/UVdlT5gqDG9OfxOjw0d36H06QmZtJq7bSP5cX8z/wiv9UB3hTlDKsiwaDA3QW/QIVYby1uCxVisK774b2oOHiPHI119HwNVLAAD1p49j74f/ROzBfMhb4je9FCgOAZrlDAaWsVB1k9ccI2IRN6sGqpb2LZ+FReFDH1sGKqCJxfPfWxDjSKmqlsM/xgTf0CoYByjxaEI8TpnqiEMYMLhn+D2YFj0N32R847L3rJRlcWuDBoubmlEpEWO1ny/2q/gXfEeHjcaLk1/EAP8Bnv3QblKtq8Znpz/DTxd+4s0WTtPq8GpVDQJbzFYyZFIsiwyHVtQeLIogwqfzPm2TXlY0V+DvOx5GBlU7aM8Ng2/AU+OeglQsBcuy2FuyF++eeBfZddltx4SrwvHAyAewJHlJW3Bqspjw1rG38H3m9279fEqJEv5yf7eD1zHhY8CyLE5UniDGh4cMx5cLv4TGqMGD2x/kOOS6y5SoKThXcw71hnre/eMixuG9We/BV9Y1i6fbC7fj5YMvc6TKkT6ReHDkg1ictLhbFkEAm9z6ge0PYH8Jmcx4evzTuCXlFt7XVLz+BtEixhGS2Fj8Pe1mnFe0zydeXJyKO6e0f49+PFqIp9a1zxNC1DIcfW4uGIaBpakZupMnYK6pgTQiEsphQx32Ez5eUIuln3AXOgHg5glxeI1HDqw9ehQFt5E+AttHMPjsctv9Vmxh8erXFiTaxboswyD+66/gM972jDBXV6P6k09R++MaMGbHjsoAYBIDa6aLcHRmBD5buBKJ/q5LRYSg9BKmNwSlu7Iqceeqo8TY84tScddU7sNOazTjTHEDrCyL8QlBaDDW4fHdj+N4xXG33ksikuDFSS/iquQeMFGpPA98dQWgpWYZ818FJj/Uvp25Cfj5Llh0emgrZTA1SyASs1BEKSFfeC+YtCuBkEHOAzrY6ik1/3sBFSt/hlnb8eBbEhkJRUoKJKGhEAcFQhIQAJG/P2RxcVCkpTmVbbSx+z/ATmoldMJ9wMI3uHWDJj1wcjVw4AOgvoD3dLUXfFBxglytDb5nOcIef9yTHw0AYCwo+P/27ju+ifp/4PjrkibpLp20tEBLGQWk7L0KKEsUZAiIWsSBIiCIoPgDBTciOBC3oCgggogCKl9FhghlCLJnh1BKgdK9Mz6/P0IiIemi0Ej5PB+PPAr3ubu8c7kk977P4uzkpyk8YvtjrqgFoZ3S8QotAo9A6DkDmt9nnoPVEZMRzv4FZ3ZC7gXzjQdFZW4enbDFPNdhWWo2g4EL7OdJrAIJmQnc8+M9NjdxTAZPis7fhSG7GddzIHUPrZp3Bjfgjn0T4Z9ttoVjNpgHhKlihrQ0cn7byKVFi9CfdjzC45UUNzfqrV2LNqz8UyZlFWWx6NAiVhxfUWZzvq6hXXm1y6v4ulayCX0FCSEY/ONgTmX+O11PTO0YFvRccMOes7SkNDErkW+Pf8v6hPVkFJmTLjcXNzrX6szIqJG0DW5rvbmY/uWXnH/9DZt9ew8YQOhbcwE4kXGC5/54jpMZJ3ExCPyzwaCGdG/zhRWArljQ6ajgjr0m6l+ZLygCV189HsFFeAQX4e5fjKnJMI6k1sGwaDmuFRyw28XdQK0OmXgEmRPSxT5ezPezfa91xYK7d5roeFTglwPpXnCkjsKOKIWjdRTa1upAbc9abDyz2XpsLNxc3Hiz25vE1I4BzO/rhn828OauN+1GcwaIyctnWnoGta+6iPzd3Y1X/H256GLfXFOr0vJEiyeIbRp7Xfr1gbl10xeHv+C7k9/Z9XUEUAvBhIxMHsrK+fcbSa0FYzEb3d2YVNP25qG3xpMP7/gYvbGYKb9P4FIJN4CudJtfE/pHDmDzmc3sSt1V4notg1oyu9NstGotz259lv0X95e63xCPELqHdadHnR60rdkWjVrD7tTdvLn7TY6lHytxu8ebP87j0Y+jN+l57NfH7KZDaeTbiMyiTM7nV3wKJ5WiYkaHGQxrOIyc4hxWHF/BiuMrrMlyuHc49ze+n6ENh5Y4GNP1kq/PZ0PSBk5mnkSr0tIiqAWda3W+5gGVKiOtII0hPw6xncNb5cLX/b62NoO+kqmwkMShQyk+FW9XdrV8Tx/Gd3iCc57mGu624b6sfPzfAQef+mYfP1zRxHdAdAgLRrTg0uefc+mjjzHlXfHbodHg3rw57p064tGxI27NmqFc8VmdvOJvvt9n22XGx03D/yZ3s6mdBfPgRgmDB9u8hjwdPDVWTbaHQiPfRjQLbEbcnyt5Y7ER7RVfFaaaAYTPeYv8XTu5tPgLREHFBhP9s7HCsiH+LOj7kcPjeyWZlFZjzk5KM/KKuev9bTaj6fp7ann1PliX+APHM47jqnalVc1W3NvwXpuT9VTGKcb/Pp6zuWcd7dqOn6sfb8e8XaW1DlZJf8K3D9gnpG0fMY+0e0ViZioqIu2NmaSv/BFhsE3YXNyMeNYqxKsuuDeujSowHPwiwK8e+EVebvKoULzjB1Lf/pi8f+wnUL+eFI0Gt9at8ezWDc/u3dDWq+e49rk4Dz7oAJm2F/ui8WCKm01An5aL4UIqxoO/YTy+FVNeHiaDylqzq9aZcHE1odKaKM52ITPeHa4Yzl0dEEDkT+uveRAaY24uyU+MI3/3brsy34a5BN6WY25e5xEErWOhVey/fU2zU+DvpbBnsblJbmUpauj6NHSbCi7Xf+Tb0rwS9worjq+wWy6Ka1J4sQeG7Ggqm5y2C/djfoc8wrY9b5+oNxkI9y5xvOENoE9JIWP5cnL/2EbRsRIuCtVqgp55Bk1oLc5OtO1b6dG9G7U/+qjMFhcFhgKWHl3KokPmGo3SBLgFMK3tNPqG93XaoDJLjy7ljV22yV15BjwSQnAk/QjbkrdxNvcsHhoPmgc1p3OtzqXWsFydlOrcdGw+s5lvjn/jcMCnK7UIbMGElhNodkFH0v0PwBXz57kEB1PvhzXk6ARLjixh8eHFDqcMGdxgMA80foA3dr9h83ye+YJHM70Zee4EWi8Das0VlzJqLVuHvM+UvW/hnlHAA7+b6HzU9lJH0ekQ3dvznv9eUjUF+OQLvPMh0wPuqu3DsBTz7+7X3t7M8a9hF1f3sO5kFGU4bLpaGh+dDx/0+oDowGi7sjx9HqtOrGJP6h7yDHnUdvGm//kk2p/6w/H4AkC2SmG+ny/feTnuQtIsoBlzus2htte1979PyEpg0cFFrE9YX+KAS3X1el6+eImWRZbfNcV8s7DLZDj5P1g9lg/dBB/41ijXc7qbTNQv1nPA9cZ8z7YMakmnWp1o7NeYJh61CMxJg4vHIOecuTWUdy0IaoIxpCXfxq/mo/0f2SRBkT6RPN/+edoFtTTf1M5JJUOlMPLvuZzNK33KLh+dDzM6zOBszlk+O/iZw9YY7i7uvNb1NXrV6WWzXAjBxYKLqBU1fq5+Th3cypn+SP6DcRttp2IK9Qxlaf+l+LvZz/agT0nhn/sfQJ+SYld2tVM+oUzuPgHD5b65cdN7Eezjit5oou2rv5GZ/+/32Gt3NabbqgXk/PxLSbuzUnl64tWrF/5jx6KrF0F+sYGnvvmbX4+Yb1gEeGr5+IHWtK5r3z/24vsLSXv/fZtli+5Q8UsbFbU8arFiwApquNbgw78/5PQn7/Pg79d3SpjDdeCDe7144873S22ZI5PSaswZSanBaOKf9HyOncthwe8nOZZ6xUWaKp+WrX/mVK59cgDmO/bjmo8jMSuRl+JeKtfgAe4u7twdeTdPtnjyhg4SYkcI89x2exabk5arm+TWvwNGfgPqf+9qFSUmcvbpKRQdLbl5kYXiYsLdX4+LhwGNuxGNuxFFLchLdSUryc3xwByKwL2eP27d+qGuGYYxPYOikycpOHAA46XSRzQsD5eQEHT166OrF4E2IgJtuPmvS1AgypldiEX9KMpQyEt1JfecjoI0LcJU+R+8sA8W4tWzfJNjl8RUWMjZp6eQ+/vvdmUqrQn/Rrn4Nsiz9v3Cv4F5cvoLh+3f2zII/4YYat2O8Z8jiMQ/UdQCjYfR9qI3qAkM+sC+1tRkMidzmafBUAjuAeb+ua6VH5G1wFBA7M+xdkPjWwTqwmjmPoK8jKYcOptlN1fwlbxcXQj39yDAU4uvu5ZAbx13+aXQ9OSHKKccNCP0CoGxW6+piXpFGTIyuPTJp2QsXYooLvnGjcrDg9B33saza1cAzr3wIpnffmuzTujb8/Hu18/h9rnFuXx74lu+OvKVw8GLrtTUvykD6g1gSMMh5R7hW5hMFB46RO4ff1B06hSmrGwUnQ6XoCB0kfVwa9Ua1yaNUVQVu5GQr8/njlV3kF38b7/M3nV7My+m5NEYD148yPy/5rPn/B67Mq1KS486Pbir3l10Cu1krVXTG/VkFGVwJu0MbeqaB6ubtmEqR5N3Yrh0iRp5ghp5UCMPfPIENXLBowgueUF8iMLJWgpnA6DeOZjxnYJHrm0y89fzd7GtVja7z+22mdLCwt3FnVmdZtEvwvz+5enzuG/9fSRk/TtXtoLCR2lZdMrJtNl2XcfRzDy/1SaBCswU9E8LZUTY3XhHNMCjUyfUnp7sSd3Do78+apMQqxU18xrFcuzSET66aNvcGOD59s8zMmokYL4B+9XRr1gbv9ZupNKrBbkF8fEdH1Pft36p69nJT4ekbZCRBAUZ5u4WRbnm75qz5pZIca46ZgX4c1ZjX2vqofEgtkksjf0b809WEkfP7eJ4+lHOFWfhqXalkU8k3evfRc86Pa19IAGOXjrKp/s/5Lczm0scGV9nMhGblcMjWdm4WS4nNR4w+BPbqdMuHMX09RCedi1io0fpY0XU0etZcP4iEXoD6zzdecnfj8IyPic6VBRR9ne9VqVlRugd3FMkzMnkxWOQW0otpmsNaNgXQ9OBHPIOIl2fTbBHMI0LC1H2fQWHvze/J5eddHXngZCa5OG4aWSoZygf3v6htWl1WkEaH/z9AesS1lFgKMBFcSGmdgxPtXqKcJ/wMl/PrWz+X/NZfGixzbKGvg35vPfnDq8nDZcucfHd98j++WdMOTmoAwNwb90G/enTdq2xVtaPYdFt5vPX0jrQUcvB31Rx6FevqlDcikZDzf97nhrDh6MoCv9cyuNsRgHNa9fAQ2f/+c35fRPJTz5p0y82IRimx6pxcdGypN8Sbgu4DTDftHh1x8s0fnE5Tc6UHkexGjY1V/Do0oX7ej+Da1AwxvR00pctI+Orr+3GbEjxg7dGuPJQn+kMaTDEpnbelJfHhY2/0P7BWDxD68qktLwKCwt5/fXXWb58OadPn8bPz4++ffvy0ksvERYWVqF9ZWZmMmvWLL7//ntSU1MJDg5m0KBBzJ49mxo1alQ61qpKSjPzi1n1VzI/H0rlcEoWhXr7L3ZFk4Zfva8oVlW8CQqYh1Uf13wc/m7+5BbnUmgsJMg9iFZBrW78YEZCmAcpSvnbPIdm6gHzv/NLuBANa2fuN3fF4DZZP/5I6qzZNiOeXU8ekZ4EvzIXbcsYuzIhBIZz5yg4cJDCQwcv/z103WJReXigCQ3FcC4ZY871fX0B48cTOP7J67IvYTBwbuYLZH3/vcNylcY8Mb1fwzxcXCuYiBohrzCS7NzG5B5Iwngp3W4dtdaIq78e94Bi3IOKcQsworQaCeHdIP8SImkbxhPbKb6Qh6FQBQJULgIXd9A2bo6qxVCIvrdSoybnFOcwdctUh4ODWYxqPIopbaaQmWfi0NksDiRncTo9H0+dmvpBnnSI8KO+5iJK2gnzRW5GEpzZZb5J44ibLzzw/Q1vtmwqKCD9q6+59OmnmHJKr7F0a96ckDdeRxfxbzcCY3Y28XfeifHiv59rdUAAkevXofbxQQjBiYwTxJ2LY3vKdv46/5fDJohgbjbXMaQjt9e9nW5h3co976AhI4O8bX+S+8dW8rb9iTHd/jy6kktgIF69e+Pdtw9urVqVe9Tg9/a+x6cHP7Vd1uM9etTpYbMsrSCNd/56hx/ifyh5Z0IQnAEeheDu4oaLlw+p6lwuqHPxLIDQZCPfvmGuqf6jaUP8DeVPoovV4GK0r7//vqPC8piSX2sD3wbM6z7Prk/ksfRj3Lf+Ppvkz9vFg6VZRsIvnEC4+/N1dD/ePG8/mEyX0C7M6z7P4e/ND6d+YMafM8r1mqa2mepwfti0gjSWHV3GiuMrbG4YWPSq04sZHWbYJH3Xxek4+OU5SNlHvqLwvq8PX3t7WZs8V4QKaOEVQQOvuhxLP8b+wpL7VLoIwV25eTyRkUWI8YoErEZdGP41hNjXBJN1lvylQ3hKlUacm+ObO53zC5ijCsan0yRwqwH7V3Ds+BqmBPlzWmPfVLSmwcBT6ZncmZfPDjdXXgkMIrmEUytM5cq81PM0yXM8v2OZXH0gOBqykh0PfHjZAZ2WSUGBXLxq5OS2wW15s9ubDs8By00gb603ri72c2NK9vQmPWN+GcPfF/+2WR7mGcb09tPpEtrFYV9XIQSiqAiVq/k4G3NzSRoxwqZprAmF57o8zsGASFrVqcHqcZ15+tu/bUaofzxjHwO3LLXbvyYsDH1qKhhKH9isxr33EjxzBoqD8xpA6PWkf72UC/Pn27QyMSnwfKyahBDF5gaZhdFkZOaacfR8ayuhDn6CTApsaabwXVcNj94xneGNhtvVuOf+sY3kp55CXHWdme0GX/VUEd82hH41e9AiEXy2H8Zl10FUxQbuSkxAV7++TErLo7CwkF69erF9+3ZCQkLo2rUrSUlJ7Nq1i8DAQHbs2EGkg2GiHbl06RIdO3bk5MmT1KtXjzZt2nD48GEOHz5M/fr1iYuLw9/fvglBRdzopNRoEizd+Q9zNxwnp7DkD4/a8xjuod+AqnwDpFytWUAz3uv53vX/MS6N0QDJu8wjwh7/GdLL7ksAQGRP88A5l0fTNebkkPrSy2SvXWu/rkqFW3Q0hvNn0Z+z7wdUHi4eUHPCQ3jFTq1QMxxhNFKckEDBgYMUJ5/BmJ6BMSMDY1YWhrQ0ihMSHI5MWlUUrZbASZPwe2j0dW1eJIQgY+kyLsydazcAkvW51QLvuvl41ylE62FACDAUqDEUqjBqayFcgzGZVAiDEaE3oc9TyDtxEVNexfpZqFxMuPrqUetMGItVFGW5YCwq4WpIEei8DbgFGXFv3Qr3QePQtOjleN0yCCH4/czvfPD3B5zIOOFwnTY12zC3+1zzZ85QbL4RczoOTu8w96vNK+f5GtIChnwOARWs2akAY2YmWT/+yKVPP8NwseS4CrTwdz2Fzc0Uitvdxl3176ZbaDdCvUKtFx7Zv2zg7KRJtvu/ozM/PdCA305v5FwZzeoA+ob3ZXzL8dT1rlvmuoa0NAr+/pv8ffso2PMXBQcPmmvLr4E6MADvO3rj3a9vmQlqZmEmA9YMIKvo34trD40Hb3R9g86hnYnPjGdd/DpWnlhJvsH2okIxCYKyIOqMoFmS+eFbSqOWfJOJNifN59meBg1xr2DN7tUO1lV4dYQKk8r+e0GlqBjddDTjWoxDp3bcbPPLw1/y1p63bJb5u/ozssFQ/krbz45z9jWbd9W7i9mdZ5fat/Ldve/y2cHPSo39qVZP8Ugz+zkOr5Svz+fPlD85ePEg2cXmWrWY2jFE+UWVul2lmIywdwlsnA0FGezXafm/QH/+KeFitzJ0JhNDcvKIzc6m1tUDpUQNgLsXgHsp85IXZKL/YTyfpG5liY+XdfCjGkYjDxVriO30f6hvGwpXnmfn9lP8vxf4Pm0Pm93dSHVRE2ww0icvn755+bhe8VuXryh8UsObFd4+5F7ehVbAPTk5PJWeiVcV/S5mqVSs9PLkkIc37jWb0a3Zg/SO6PtvkpR7AdITzN/Faq15tHfPIPAKvn4jyt8CzuedJ/aXWIddxQLcAuge1p3e4b1pF9yu1KlyCo8dI2nYvYgrkr/zbr6M6zmFfI0rC0a2ZMq3+yk2mr/fW1w4wWtxn6Fc8X2v6HSEfbAQz86dMeXlkb9nD3nbd5C3YwdFJxz/Vnt07kzoO2+j9vq3EsRUWEjmd9+R/vkih82Nl8ao+KGjin7h/ZjTbY7Da6xCQyFT142j3rdxdD0s8CgyDxq3u4HC6s4qDHWCmdNtDq1rti75mBw9yumxYzFeKP/1rUxKK+CFF17g5ZdfpmPHjvzvf/+z9pOZP38+U6ZMoVu3bmzZsqVc+3rwwQf56quvGDx4MCtWrMDlcufliRMnsmDBAh588EG+LMdoX6W5kUnpgeRMZqw5xIHkq+8YmlDU+SguuSiadDTef6Pxse8z4+/qz9jmY8kuymbp0aV2AzlY3B15NzM7zLxxd/5Mxn+bMhVkwLn95mZOJ36BgtJrKWy4uEHMs9DpKVCpMKSnk/X991z67HOMGfavTVs/ktB583FtZJ6HrCghgdzffyfn1w0UHDhcZkKouCj43tmFgP+bi9r7+g7hDuZkOn/XLnK3bCV361YMqdc+BL5aa8TF3YSLzoTKLwB1eEtUQRGoPD1BCAyXLmFMT8eYk4PKzQ3XxlH4DB6MtoItDyqiKCGRi++8Q87//nfDnuNGc/FS4xrVELcOvdA1boI2PBxt7bAS75pezSRMbD6zmY/2f+SwSW+giyfzVMG0TIgDfQVrwD0Cods0aPtwmYN2lRpjXh6GixfRX7iA4eJF8+OC5a95WfGZMzZ3ga9kUMHGFgrbmqo4FQJGtf2Pr5uLG7U8alHLsxahHrWIeX8Hfn8l2Kzze7TC8u4qsjyv2l4INAZwK4bONVoRGzGMCE0IpoICTPkFmAryEdZ/F2DKz8eYnk7x6dMUnz6NMa2c84JUkDowAO/efUqtQV19cjUvbn+x9P0YBY2SzYlnWBqEpAtCMkFTgZlJrmdSeqQ2vDFMTaHuqv74igt9I/ryaLNHy+wbaxImpmyewm+nfyvXc97f+H6mtp1a5uigJmFi6pap/O8f++8UlaLiuXbP2dVI/Ofkp5sT07++JF+B1/19WVNCX9OK8jSZGJmdw6isHPyvvPGiqCCiO3R+CiJ7lLyDq539i6Jj64jPOIla50O9+v3RNOxj02XGTtI2+Hs5xP8OOaX3DSxS4KRGiwDq6fV4lHWpq9KAf/1/p7u6FA8Xy+6qY+VZE/LSrKPQ2/EIMtce6wsg7STkXSh5X1ov84jyGg/z2AVuNaDmbVC7PUR0K98UdEY9XDgCZ/eamygX5YJdy5DLn0ONq/k73/oI+Pff7v6V+g2oCsk5yYz+ZXSpg0n56nzpVbcXd0feTYvAFg4TuUufL+LC3Lk2y34Pa8Xc1iNtxhapnXOe+Vvfx1NveyO71ltv4dbvDoqMRagVtU2rDP2FC+ZuKV9/bfe8ugYNqPXWXFTu7mSvX0/6V1+X2GVrU7TCR/1V1PWJ4JsB3+ChKfkGhsFk4NMDn/L1oSUo2TnkuIHaRcvdkXczufXkck0fpE9N5czYxyk6Xo7BIJFJabnp9XqCgoLIzMxk7969tGxp2xStefPmHDhwgD179tC6dcl3DgBSU1MJDQ1FrVZz5swZatb8d/6eoqIiateuTXp6OmfPnrUpq6gbkZSezy7krQ3HWbU3GaEUoXZLQu2egNo1FZU2DUWTgaKUfqc/yi+KBT0XEOwRDJj7+iw9upQlR5ZY79xH+EQwNnos/SP6l11TZtSb7xrmpJoHGypIN/8tzLrqkW3+W5RtHpynOA+umC9MmMBkUDDpVRj1ivnfBhXCoCCEeYh/RQFUoCgCRQWKTyjUj8EU3gd9eh5FCYkU7N1LwaFDJTa98BkymOAZM1CV0PzIcOkSeXFx6JPPok89hyHlHPpz5xCF+bgE18SzWwzed92NpuaN758H5pq1opMnKTp+guLERIqTEilKTKI4MRFRaF/7rQkLw6NLZzzbtcQ9WKAmx/yjGNbWfBf3P6Tw+HHSPvjQnJxe768ylco8GEoFR6qrFLUabViYOUGNMPf5dW0cha5hQ2tTo6sJIVhzag2vxL1M8VV92tRCMDI7h8czs/EpTw2eRxB0nghtxiA07ojCQmuCJgryMVxKx3DhPIYLF9Cfv2BOLC9cwJSbg9AbEIbLD6MBkZdfqSbm25oorOim4rxvxWra/bME8z8z4uagO2q2GxRpQGMErR60hvLNV1kZ2nr18OjcGU1wMKbCAvTJZynYu5fifxyPXn01SxNfr149cY1ujtrTfBEihGD6tumsT1hvs75PrqBFgqBVvKB5YuWnUCkpKVX7+uISEIA6wB+XgEBc/P1ReXhQFB9Pwf79GM79Wytd7ObCli41WNNBQaXV4qnxpJZnLcJ9wokOiKZzaOmDLdnFpM9n9C+jS+xfbTGh5QQebfZouVtr6E16Pj3wKUuPLrU2wY0OiGZS60m0DW5b7vic7uxfsP4ZSNnLca2G5V5e7HfVkqtS4Wc00rhYT2PFjQiPWlzIP88WkccWdzcKHNxw8DcYGZWTxwjfaLxC25gHAHL1MXdvcfM196+/Dn3mK6woB7LPQW4qnD8Mfy8ztwgpD0VlnmM8tA0ENoKgxuYBCa8eSTYrGY6ug8OrzS1MruZTG1o9CNHDwbcu5F2CuIXm0emNJfeHrxS1Fup2hoZ9oHY783e2SW++KX/xOJw7YH7/Uw+YxzWoNMWcmF6drNr9P8Bc06v1NA/KZSgEQ5HtX0Vljt9FZ/6rqM014oranPgqalC5XP53xb73U/NSeWbLM2WOsgzmUYt71OlBI99GeGo8cXNxw0vrhafaneLx0yneYzuC8g/1uvDpbXdhVKlpmpbAzF1f4lNs27zk5N3RfNXVxPH049b+1+4u7gS5BxHkHkSgeyDB7sE0+vsSdd/9AaW4YkOCm4C17RWW9VAR7FmLz/t8Xu7BywoNhdYRpBv6NjQny0KYP0M558w3U/QF5pvXlr+Kyvz5dvfHqPLk3JyPydm4qdTnMSrQ90wCPnVlUlqmTZs20bNnTyIjIzl16pRd+csvv8wLL7zAiy++yKxZs0rd1+LFixkzZgy9evXit9/s79Y+/PDDLFq0iMWLFzN69OhrjtmSlO7dsxuDSY8wCAxCjzAYMJqMGE1GTEYDRqPJ/NdkxHT5YTQaEUYDeoOR9NwC4tPS2Xc2mSMXkzBpz4PuAormEmohUJnMF2Yq0+X+PyZQC/Nddp0edHpw1YNbEUQrAcSoa6EqKMSUV4AwgcpVi8rdFaF1IVdtwkWjwVMoiMJ8REE+oqgIoddj0hsQxQaE3nB58BkjikkPxkIUxXwaCqGAMH9ehMnyb8X8iVQuf0+pBJjAeHkEWJP+8t8K9HW6FiovL0Jmz8K7f/8b+jxVRZhMGFJTKUpMxJB6HnUNH3T166OpU+emG9GvKCGBS598Sta6dWX24yiNW8uWePXpjWf37mjr1kVRqTAVFqJPOUfR8WPk791H/s6dJTbFAfMgBi4hISgaDcasTIxplR+kCpUKXZ1QXBvVR9eoAWofL1SKHsWQi7iUhOnMQc5eSOJXFw+UIgXPQvAoALdiYU7ADOBlELgahLWPn6JSQO2ColYjVC6g1iBUWiguhoJCKKyiCSGv8neEwvIYFWl1vJnYciL96/XndPZpNiRtYF3CujIHJQJofdLE1O9MqJzw66a4uuLRoQMe3bri2a1biS0GiuLjyd6wgZwN/yv3XWhUKnSNGuHesgXaiHoIbw+WnVxB4pmDhKUJGp8RhJdSAVMqnQ4hTHYXSwUuLrQ+fAiAlB9+IKBNG1wCA8us0defP09xfDwqT090jRqVb3qqCsgpzuGZLc+wPWW7XZm/qz+zO82me+3u17Rvo8lISl4Kbi5uVdvt5HoSwtxc//D3cP4IFOeAVy1zItPgDnPNm6KY1zt/mMKjP7I94Wd2F52nAIGP2o2WvlF0jhqCpmFfcyL6XyYEnNoIW990nEACeIeZR2hvMQp8yj9dFACZZy5PKXbe3Ly2VivzMXTUciDtFPw81Vyje8tRoIRBsSq2G5V5sEIXV9C4Xf7rbq7VtSzTuJlbuWlcQa3DKATri87yeX4CCcayB9p0JCBLMM/BTc00d3eydB5EZtg3ZY1rpPD2Papy9+NucFYwbZURn3Lesz1RC5b2UHO0jkKU1o93fdtTy2CwrbQpslTa5JiTfp23uUbdcnxc3ABhrvDJvwS5F6Ecg5FeKeecJ5eOe1NwRcO7Yg2cqK1wrJEaJVLDoleP4OYXKZPSsrzzzjtMnjyZYcOG8e1VIzQCrF+/ngEDBjBo0CC+L2EgFYtJkybx7rvvMnXqVN5880278oULFzJ+/HgmTZrE22+/fc0xN23alKJTp1gbUfaEtdKN5dmjB8Ez/g9NaAV/yKQqpb9wgazvviN38xYKjhyxNgtVeXuba3V8fVF5eqDS6lB0OhSt1tzkuEljPLp0QVPOlg2GixfJ37cPffJZjDnZqD090dSpg2uDBmjCwmzmIjPm5lF04jgFcX+Qv3k9+cdPYyq6uZL+G61YDXvrK6xvq+J4bYW7I+/m6dZP2w3tbzAZiDsXx4/xPxKXElditwGAjkdNPLHeVOE5KitK5e6Oa/No3Fq0wL11G9zbtqlwAlaUkEjOhl/I/mVD+RPUSlL7+ODerh0enTri0amT9WaUqbgYU1YWxuxsVO7uFHl64nV5Oqer5yl1NiEEW5O38nPSz5zJOYOP1oeY2jHcWe/OUpu1SdWYEJC41dzHNu24uVluzabmKa0ie1ZdU1Qh4OSvsOUN6wjJdlxczc1+henfUZWl6yLJxYXfPdz4n4c7hyv4fdz2hImnV5tQlyM7OhkCs0epKdZU7Dc9KEPw3EojYaXcs/47QmFNR4UjdRR8TCYeyM5hTGY2VT8zrC1jkYK+QI2igNbLwJU9I5p+kAuBUdeclJbSeL96OX15wvWSRti1LD9djonZr+e+4N8a0asdO3YMtRDclZjgsFy6wRQFtacnah8flK1boHf5+htL/yGWwVTycs2Pf5KcGg4AQoUoyETkZWEqKkYYFYRJcea4VDecUMCosn2YVIr138UuIPaAbp+OALcA1risYQ1rytyvURgpNhZjMBkwmAzoTXqMl/t0rVG58LNJjWtOsXkEwfI0X1YUFEVlPm8Ulbk2WaUyL7/8F5UKRaP591FUCLt2mR98UrkDBQiTEVNuLqacXEzF16e2WqXTobi5odJqUbRacy1nbg78vtH8KIXpiuPWpk0bVJUc6OhG28IWZjPb2WFI/ykXgNKbHt5QxiBzs0iTwVwDqHL5twmrdeqYGiC8zeuYDObxMoTA3CxMf7lZZQEVroVUa8y1ZCqXkpvEmvs+mZ/TZDT/u6S+sTeVTAD0QK5KRY5Khb4ctZkngTVF4JdT+rEu1MKlbAVRetf+Ep/jbgHe+eZBiFSXv2ZNChToINdVQZ8DrvsFXiYTRpOJ94D3Kv5UVSo+3YSmoHy5jyO3TFKam2u+A+Xu7nj6EcvdX8t6VbWv0iiKgs7dHV2dOpXajzPEx5tHuy3vaMZS5clj7sANboZ8TcdcUVA8fVE8fe2mypDKduUxVyvqsucNvckqzBSNBrWvL2rfa5866HpSqVToLtc0/NcT0upEfp9XvRt2zNXaywloGSx9LsuzbjVRFee5BvC9/KiQMhpO6YBKN2p3EJQbUMr41ZV2I4+5puB0pVrT3DJJqaWVckl95SrSivl67gtu/DykzlBVc6xK/5LHvOrJY1715DGvevKYVz15zKuePOZVTx7zqvdfPua3zG1Pr8tzAOXlOe7Ym395lEjLNDFVtS9JkiRJkiRJkqRb2S2TlNa53AQ2OTnZYblleZ1yNJW9nvuSJEmSJEmSJEm6ld0ySWnz5s0B2Lt3r8Nyy/Lo6Ogq3ZckSZIkSZIkSdKt7JZJSjt37oyPjw/x8fHs27fPrnzVqlUADBgwoMx99e3bF5VKxR9//MGFC7aTwhUVFbF27VpUKhX9+vW7PsFLkiRJkiRJkiRVU7dMUqrVahk/fjwA48ePt+kPOn/+fA4cOECXLl1o27atdfn7779PVFQU06dPt9lXSEgII0eOpLi4mHHjxmEwGKxl06ZN4+LFi9x3330EBwff4FclSZIkSZIkSZJ0c1NERYeKvYkVFhYSExPDzp07CQkJoWvXrvzzzz/s3LkTf39/4uLiqF+/vnX9WbNmMXv2bGJjY/niiy9s9pWWlkaHDh2Ij48nMjKSNm3acPjwYQ4dOkRkZCRxcXEEBARU8SuUJEmSJEmSJEm6udwyNaUArq6ubNq0iZkzZ+Lu7s6aNWtISkoiNjaWffv22SSkZQkICGD37t1MmDCB4uJivv/+e7Kyshg/fjy7du2SCakkSZIkSZIkSVI53FI1pZIkSZIkSZIkSdJ/yy1VUypJkiRJkiRJkiT9t8ikVJIkSZIkSZIkSXIamZRKkiRJkiRJkiRJTiOTUkmSJEmSJEmSJMlpZFIqSZIkSZIkSZIkOY1MSiVJkiRJkiRJkiSnkUmpVGUKCwt57bXXaN68OR4eHri6utKgQQMmTpxIamqqs8Or1latWkXv3r0JCAjA1dWVOnXqMHjwYLZt2+bs0Kq9l156CUVRUBSFb775xtnhVDvHjh1jzpw59OrVizp16qDT6QgODmbw4MH88ccfzg7vplZYWMiLL75Iw4YNcXV1pVatWowZM4bk5GRnh1bt5Ofns2bNGh5++GGio6Px9vbGw8OD5s2b89JLL5Gbm+vsEKu99PR0goKCUBSFqKgoZ4dT7aWmpjJ58mQaNmyIm5sbfn5+tG7dmmnTpjk7tGopLi6OIUOGEBwcjEajwc/Pj169erFq1Spnh2Yl5ymVqkRhYSHdu3dn165d+Pn50bFjR7RaLbt27eLs2bMEBwezY8cOwsPDnR1qtWI0GnnwwQdZtmwZHh4edOnShRo1anD69Gn++usvZs6cyYwZM5wdZrV1/PhxmjdvTnFxMUIIli9fzogRI5wdVrUSFhbG2bNn8fb2pn379vj6+nLkyBEOHTqEoijMnz+fSZMmOTvMm05hYSG9evVi+/bthISE0LVrV5KSkti1axeBgYHs2LGDyMhIZ4dZbXz22Wc8+uijADRt2pQmTZqQnZ3N9u3bycnJISoqii1bthAUFOTkSKuv0aNHs2TJEoQQNGrUiGPHjjk7pGprx44d9O/fn8zMTJo0acJtt91GTk4OR44cITk5GYPB4OwQq5WVK1cyYsQITCYTbdq0ITIykpSUFP78809MJhPPPvssb7zxhrPDBCFJVeDdd98VgGjfvr3IysqyLi8sLBTDhg0TgHjwwQedGGH1NG3aNAGI/v37i0uXLtmUpaenixMnTjgpsurPZDKJbt26iZo1a4qBAwcKQCxfvtzZYVU7d9xxh1i2bJkoKiqyWf7RRx8JQKjVanH48GEnRXfzmjlzpgBEx44dRU5OjnX5vHnzBCC6devmxOiqny+//FI88cQTdt/JKSkpomXLlgIQI0eOdFJ01d9vv/0mAPHYY48JQDRq1MjZIVVbZ8+eFTVq1BBubm5i9erVduU7d+50QlTVl16vF4GBgQIQ33zzjU3Z9u3bhaurq1AURZw6dcpJEf5LJqVSlRgyZIjDD4QQQuzbt08AonHjxk6IrPo6ceKEUKvVok6dOiIvL8/Z4dxyPvnkEwGIr7/+WsTGxsqk1Al69+4tADFr1ixnh3JTKS4uFjVq1BCA2Lt3r115dHS0AMSePXucEN2tZ/v27QIQOp3O7uaLVHn5+fmifv36okmTJuLEiRMyKb3BHnjgAQGIBQsWODuUW8LBgwcFIKKiohyWW26ar1ixooojsyf7lEpVQqfTlbmOn59fFURy6/jss88wGo08/vjjuLu7OzucW0pqairTpk2jV69ejBo1ytnh3LKaN28OQEpKipMjubls27aNzMxMIiMjadmypV350KFDAVi7dm1Vh3ZLspzHRUVFXLp0ycnRVD+zZ88mPj6eDz/8EI1G4+xwqrWMjAy+/fZbfHx8eOSRR5wdzi2hPNff8N+4BpdJqVQl7rjjDgDeeecdsrOzrcuLi4t57bXXAIiNjXVKbNXVxo0bAfOxT0xM5LXXXmPs2LFMnz6d3377zcnRVW8TJ06koKCADz/80Nmh3NISEhIACA4OdnIkN5f9+/cD0KpVK4flluWW9aQby3IeWwYnka6fAwcOMG/ePB566CG6devm7HCqvT///JOioiK6dOmCRqNh1apVTJo0iSeffJIFCxZw/vx5Z4dY7dSrV4969epx7Ngxvv32W5uyHTt2sGHDBiIiIv4T57+LswOQbg0PPPAAP/30EytXriQiIoJOnTqh0WjYtWsXOTk5vPrqq9ZBHqTr4/DhwwDs3LmTKVOmUFRUZC174403uP322/nuu+/w9vZ2VojV0rp161i5ciWzZ8+mQYMGzg7nlhUfH8+6desAuPvuu50czc3l9OnTgHkQKUcsyy3rSTfWu+++C0Dfvn3LXeshlc1kMvHoo49So0YN3nzzTWeHc0uwXJfUrFmTrl27smPHDpvy6dOns3jxYoYNG+aM8KoltVrNF198wV133cXw4cOZO3cukZGRnDt3jm3bttGuXTu++uortFqts0OVNaVS1VCr1SxfvpxnnnmG9PR01q1bx/fff8/Zs2dp0aIFXbp0cXaI1UphYSGFhYUATJo0ie7du3PgwAGys7P59ddfiYiI4LfffuOxxx5zcqTVS25uLuPGjaNhw4Y8++yzzg7nlmUwGBg9ejRFRUUMHz6c1q1bOzukm4pl+pGSmv17eHjYrCfdOD/99BOff/45Go2Gl19+2dnhVCsLFixg165dzJ07F39/f2eHc0vIyMgAYMmSJRw4cIDPP/+cixcvkpiYyNNPP01eXh73338/Bw4ccHKk1UvXrl3ZsmULERER7NmzhxUrVrB161Y8PDy4/fbbqVWrlrNDBGRNqVROQ4cO5dChQxXaZsmSJbRr1w4wfxHdc8897N69m3fffZchQ4bg7u7O1q1bmTBhAr169WLlypUMGjToBkR/c6rMMTcajdZloaGhrF271noX7Pbbb+eHH36gRYsWfPvtt7z88suyRu+yyp7nzz//PGfOnGHjxo2yRqOcKnvMHZkwYQLbtm2jXr16fPDBB5UN8ZYjLs8UpyhKqeXSjXX06FHuv/9+hBDMnTvX2rdUqrwzZ84wY8YMunfvzujRo50dzi3Dcm1iMBhYuHAhY8aMASAgIIB58+Zx+vRpVq1axZtvvsnXX3/tzFCrleXLl/PQQw/RoUMHvvnmG5o2bUpKSgpvvfUWr7zyChs3bmTLli1O71Mtk1KpXJKSkjh+/HiFtsnPz7f+e/LkyWzZsoV33nmHiRMnWpcPHDiQ0NBQ2rdvz1NPPcWAAQNwcZGnJVTumHt4eKBSqTCZTNx///12zTKaNWtGmzZt2LVrF1u2bJFJ6WWVOea7du1i4cKFPPDAA/Ts2fNGhFctVfa75WovvfQSH330ETVr1mTDhg2yD9418PLyAiAvL89hueX4e3p6VllMt5rk5GT69u1LRkYGTz/9NE899ZSzQ6pWxo0bR3Fxsez3X8Us3y0qlcrhOCJjxoxh1apVbN68uYojq75OnjxJbGwsNWvWZP369daWLg0aNODjjz/m3LlzrF27lsWLFzu99Zy8+pfKZc+ePde8rdFoZPny5cC/ozZeqU2bNkRERBAfH09CQgINGza85ueqTipzzAHq1q1LYmIidevWdVgeHh7Orl27uHDhQqWepzqpzDH/6aefMJlMHDx4kJiYGJsyyyTsloRp6NChjB8/vjKhVhuVPc+vtHDhQl588UV8fHz45ZdfqF+//nXb962kTp06gDkxcsSy3LKedH2lpaVxxx13cPr0aR566CHeeustZ4dU7axbt44aNWrwxBNP2Cy3dHs5ffq09Xt83bp18gbMdRIeHg6YB59z1JrIUi6vS66fb775Br1eT9++fa0J6ZXuvfde1q5dy+bNm2VSKlV/Fy5coLi4GKDEQXUsy9PT06ssruquZcuWJCYmlnhMLVMLyB/b6+vvv/8usezo0aMcPXqUFi1aVFk8t4qlS5cyYcIE3N3dWb9+vTzGlWBpJrp3716H5Zbl0dHRVRbTrSInJ4d+/fpx7NgxBg8ezKefflpiM2qpcjIzM9myZYvDsoKCAmuZwWCoyrCqNcsUUxkZGQgh7M5teV1y/VluIt4M199yoCPphvPz87M2H3VUK5KdnW1tvldSrZ5UcZYRRzdt2mRXlpOTY72wLGnaB6liZs2ahRDC4cPSTGn58uUIIXjnnXecG2w189NPPzF69Gg0Gg3ff/89nTt3dnZIN7XOnTvj4+NDfHw8+/btsytftWoVAAMGDKjq0Kq1oqIiBg4cyJ49e+jTpw/Lly9HrVY7O6xqqaTv6sTERAAaNWpkXVajRg3nBluNNGvWjIiICAoKCti5c6dduaXZrrwuuX4sU6KV1Cpp9+7dwL+11M4kk1LphtPpdPTt2xeAp59+mnPnzlnLCgsLGTduHPn5+XTu3JmQkBBnhVntjBgxgvDwcDZs2MCXX35pXW4wGHjqqafIyMjgtttukxfw0k3tzz//tHYLWLFiBb1793ZyRDc/rVZrbV4+fvx4m76l8+fP58CBA3Tp0oW2bds6K8Rqx2g0MnLkSDZt2kTXrl1ZvXr1f2KKBkm63iwj00+cOJG0tDTr8r/++ot58+YB8Pjjjzsltupo4MCBAGzdutWuD3VcXBxvv/024Lh7XVVThBxGT6oC8fHxdO7cmfPnz+Pl5UXHjh1xc3Nj9+7dpKSk4Ofnx5YtW7jtttucHWq1EhcXx+23305eXh6tWrUiPDycvXv3kpSUhL+/P5s2baJZs2bODrPaGz16NF9++SXLly9nxIgRzg6nWvH19SUzM7PUyb+7dOnCI488UsWR3dwKCwuJiYlh586dhISE0LVrV/755x927tyJv78/cXFxss/udfTuu+8yadIkAO65554Sm9q99dZbBAQEVGFkt5akpCQiIiJo1KiRdSwA6foymUyMGDGClStX4ufnR6dOncjNzWX79u0UFxfz6KOP8sknnzg7zGpl6tSp1r7pTZs2pUmTJqSkpLBjxw5MJhOPPfYYH3/8sZOjBIQkVZHU1FQxefJkERUVJVxdXYVOpxP169cXTz75pDhz5oyzw6u2Tpw4IUaNGiVq1qwpNBqNCAsLE48++qj4559/nB3aLSM2NlYAYvny5c4OpdoBynzExsY6O8ybUn5+vpg5c6aIjIwUWq1W1KxZU8TGxorTp087O7Rq58UXXyzXuZyYmOjsUKu1xMREAYhGjRo5O5RqzWg0ioULF4qWLVsKd3d34eHhITp16iSWLFni7NCqrdWrV4vevXsLf39/4eLiInx9fUWPHj3E0qVLnR2alawplSRJkiRJkiRJkpxG9imVJEmSJEmSJEmSnEYmpZIkSZIkSZIkSZLTyKRUkiRJkiRJkiRJchqZlEqSJEmSJEmSJElOI5NSSZIkSZIkSZIkyWlkUipJkiRJkiRJkiQ5jUxKJUmSJEmSJEmSJKeRSakkSZIkSZIkSZLkNDIplSRJkiRJkiRJkpxGJqWSJEmSJEmSJEmS08ikVJIkSZIkSZIkSXIamZRKkiRdpihKmY/Ro0c7O8xbRkxMDIqikJSUdMOfS1EUwsPDb/jz/JeFh4eXeu7fbMenKs8f6V89e/akbt26FBcXX9P2GRkZuLq6olKpOH36dJnrjxkzBkVR+L//+z8A9u3bh6IozJ0795qeX5Ik53BxdgCSJEn/NbGxsSWWdenSpQojka6HzZs306NHD2JjY/niiy+cHU65zZo1i9mzZ7N48eIqvRkyZMgQPD097ZYHBARUWQzSzWn9+vVs2rSJDz/8EK1We0378PX15c4772T16tUsW7aM5557rsR1CwsLWb16NQD3338/AC1btuTuu+/mtdde4+GHH8bPz++a4pAkqWrJpFSSJOkqN1PiIl0fR48eRaPRODuM/4S33nrrpqsVdWTJkiXk5+cTGhrq7FBuGc8//zxBQUGMGTOmUvt54IEHWL16NV9//XWpSenatWvJysqidevWNG7c2Lp8+vTp/Pjjj8yZM4c5c+ZUKhZJkqqGbL4rSZIk3fKioqKIjIx0dhjSdVSnTh2ioqLkzYYq8ueff3LgwAFGjBhxzbWkFv3798ff35/Dhw+zf//+EtdbunQpYE5ir9ShQwfq16/PokWLrrkZsSRJVUsmpZIkSZVg6WtnNBp58803adiwITqdjtq1a/Pss89SVFTkcLvc3FxeeuklmjVrhru7O97e3nTv3p01a9bYrZuUlISiKMTExJCdnc2UKVOIiIhAo9EwadIk63r79u2jX79++Pj44OPjQ58+fdi9ezdffPEFiqIwa9Ys67q33XYbiqJw4sQJh/ElJSWhUqlo0KABQogyj8OV/feWLVtGhw4d8PLyokaNGtZ1hBB8+eWXdOvWjRo1auDm5kZ0dDRvvfUWer2+zOew+OOPPxg/fjzR0dH4+vri5uZGVFQUzz33HJmZmTbrjh49mh49egDw5Zdf2vSRvPJ4XN1n8rvvvkNRFEaMGFFiHOPGjUNRFD799FOb5RV5b0sSHh7O7NmzAXjooYds4t68ebPNul999RVdunTB29sbd3d3oqOjef311yksLCz3812LpKQkxo4dS3h4ODqdjsDAQIYOHcqBAwfs1r3yHDxx4gQjRoygZs2aqFQq1qxZY3OO5+Xl8fTTT1O7dm3c3Nxo1aoVa9eute5r5cqVtGvXDg8PD2rWrMnEiRMpKCiwe85r7VO6bds27rnnHoKCgtDpdISHhzNx4kQuXrxot+7o0aOt78nWrVvp2bMnXl5eeHt7c+edd3LkyJESn2ft2rX06dMHf39/XF1dadiwITNnziQ3N7fU11LS5ys3N5dnnnnGetyaNGnCe++9hxDC7vyeO3euTT9MR3r06IGiKGzbtq1cx+2zzz4DYNSoUSWuc/DgQUaNGkVoaCg6nY5atWrx0EMP2b1HWq2We++9F4Cvv/7a4b7S09P5+eefUavVDj+nI0eOJC0tje+//75c8UuS5GRCkiRJEkIIAYiKfi0Com7dumL48OHCw8ND9OjRQwwYMED4+PgIQIwaNcpum9TUVNGkSRMBiNDQUHH33XeL22+/XXh4eAhAvP766zbrJyYmCkC0a9dOtGjRQvj6+opBgwaJwYMHi1mzZgkhhPjzzz+Fm5ubAETLli3FiBEjRHR0tNBqtWLs2LECEC+++KJ1n++9954AxNSpUx2+rhkzZghAvPHGG+U6Dt27dxeAeOyxx4RKpRJdu3YVI0aMEJ07dxZCCGE0GsWwYcMEILy9vUWvXr3EwIEDRXBwsABE//79hdFodLjPxMREm+Xt27cXOp1OtG7dWgwePFjceeedIiQkRACiadOmIicnx7rup59+Kvr06SMAERkZKWJjY62P77//3rqe5X20KCwsFD4+PsLNzc1mfxZ6vV4EBAQIrVYr0tPTrcsr+t6WZMqUKaJ58+YCEJ07d7aJ++jRo9b1HnvsMQEIV1dX0b9/fzF06FAREBAgANGxY0eRn59frucTQoi6des6PN6O/PHHH8Lb29t6zIcOHSo6duwoFEURbm5u4vfff7dZf/HixQIQI0aMEN7e3iIiIkIMHz5c9O7dW6xbt856jnfs2FG0b99eBAQEiAEDBoiYmBihUqmEWq0Wv/76q5g/f75wcXERHTt2FIMGDRL+/v4CEPfdd59djCWdP6V59913haIoQq1Wi44dO4qhQ4eKqKgoAYiIiAiRkpJis35sbKwAxNNPPy3UarVo3ry5GDJkiGjYsKEAhL+/vzh37pzd8zz99NPW961bt25i8ODB1uPfunVrkZub6/C1lPT5KigoEO3atROACAwMFEOHDhV9+/YVWq1WTJw40e78vnjxotDpdCIkJETo9Xq7+E6ePCkURRFRUVHlPnZBQUHCw8PD7nNssWrVKqHVaq2vcejQoaJly5bW43To0CGb9bdv3279HDna50cffSQA0a9fP4fPt3HjRgGIBx54oNyvQZIk55FJqSRJ0mXXmpQConHjxjYXvwkJCcLX11cA4tSpUzbb9OvXTwBi2rRpori42Lo8Pj5eREZGCrVaLfbv329dbrlgt1y0Z2Rk2OzPaDRaL4LffPNNm7KXXnrJuu2VSWlmZqZwd3cXQUFBNjEIIYTBYBChoaHCxcVFpKamlus4WC6aXV1dxebNm+3K58yZIwBxxx13iAsXLliX5+bmirvuuksA4v3333e4z6uTivXr19skgkKYk0hLgjZ79mybsk2bNglAxMbGlhj/1RftQggxZswYAYglS5bYrb9+/XoBiEGDBtksr+h7W5oXX3xRAGLx4sUOy1etWmW9aD958qR1eVZWlujSpUupNx0cKW9SmpWVJYKDg4VGoxErV660Kfv111+FVqsVoaGhoqioyLrckpQCYvz48cJgMNhsd+U5HhMTY/P+WratX7++8PPzE1u3brWWnT17VgQFBQlAxMfH2+yzoknpjh07hEqlEnXr1rV5j0wmk/VzNHToUJttLEmpSqUSy5Ytsy43GAxiyJAhAhAzZ8602WbFihXWm0dXxlZcXGw9h5955hmHr6Wkz9fLL79s/X7IysqyLt+/f7/1e+jq8/u+++4TgFizZo3d/p599lkBiHnz5pV8wK5w9OhRAYhu3bo5LE9ISBDu7u7Cx8dHbNmyxabsyy+/FIBo27at3Xb169cXgNi4caNdmeUcX7p0qcPnzM7OFiqVSoSHh5frNUiS5FwyKZUkSbrMclFc2uPK2rUrt/ntt9/s9jdhwgS7pGLfvn0CEJ06dRImk8lumzVr1ghATJgwwbrsygv23bt3223z66+/CkBERUXZ7dNgMIiIiAi7pFQIIR566CEBiFWrVtksX7t2rQDE4MGDSzpUdiwXzU8++aRdmaVW0cvLS1y8eNGuPDU1Veh0OtGsWTOH+yxvUpGfny9cXFxEq1atbJZfa1JqqWnp06eP3fqjRo0SgE1Sdi3vbWnKSkq7desmAPH555/blR04cEAoiiK8vLxsksPSWJLSkh779u0TQgjx9ttvC0BMnz7d4X4mTZokAPHdd99Zl1kSy8DAQJGXl2e3jeUcV6vVNgm2EOabLoGBgQIQL7zwgt22kydPdnicKnr+DBw4UABiw4YNdmUmk0m0bNlSqFQqm3PYkpTef//9dtv89ddfAhDdu3e3WW6pAT927JjdNgUFBSI4OFjUqFHDpnawtM+XEEKEhYUJQOzYscOu7IUXXnB4fm/ZskUAYsCAATbL9Xq9CA4OFlqt1uHn1RFLov3oo486LH/qqacEID7++GOH5YMGDRKA+Ouvv2yWz5o1SwBizJgxNsuTkpKEoijC09PT4flkERoaKgCbRF2SpP8m2adUkiTpKrGxsSU+6tSpY7e+RqMhJibGbnnDhg0BOHfunHXZr7/+CsDAgQNRFMVuG8uUM7t377YrCwkJoU2bNnbLt2/fDsDQoUPt9qlWqxk8eLDD1/n4448D2PWJtPz/0Ucfdbhdae6++267Zfv27SMtLY0uXbo4nFakZs2aNGjQgEOHDjnsG+jI2bNn+eijj5g0aRJjxoxh9OjRPPHEE2i1Wk6ePFnhuB2JiYkhNDSU3377jQsXLliX5+fn88MPP+Dt7c2AAQOsyyvz3laUXq8nLi4ORVG477777MqbNWtGdHQ0OTk5pQ4U48iQIUMcnvuWqTUsr3PQoEEOty/tdd5+++24u7uX+Nzh4eHUr1/fZplKpaJu3boA3HHHHXbbWAaouvJzVlEmk4mNGzfi5eVFr1697MoVRaFz586YTCb++usvu/LevXvbLXP0+b9w4QL79++ncePGNGrUyG4bV1dX2rRpQ2ZmpsPz2NHn6/Tp0yQnJxMWFkaHDh3syocNG2a3DKBbt240adKEn3/+mbNnz1qXr127ltTUVO65555yTwNk+Xz4+vo6LL/ys+FISeeMZQCj7777zqaP9NKlSxFCMHjw4FLPJ8s566g/sCRJ/y1yShhJkqSrVHRKmJCQENRqtd1yy1yPVw52ZBnQ49lnn+XZZ58tcZ9paWl2yxwlxAApKSkA1K5d22F5Sdu1a9eOli1b8uuvv/LPP/9Qt25dzp07x08//USdOnUcXmiXxdFzWV7zzz//7DBZu1J6enqZU3jMnz+f6dOn3/BRNVUqFSNGjGDevHmsWLGCCRMmAPDjjz+Sm5vLQw89hKurq3X9yry3FXXp0iWKi4sJDg62ieFK4eHh7N+/33p+lFdZU8JYXmf79u1L3U9FzmGLkt57Dw+PEsstZSUNKlYely5dsg4w5OJS+qWRo9cVFhZmt8zR5/+ff/4BzFMQlfVZSEtLs0tcHR2/a/38Azz22GNMmjSJRYsWMXPmTODabkplZWUB4OXl5bDccs4EBweXup+rj229evXo1KkT27dvZ926dQwdOhQoedTdq3l7e9vEJ0nSf5dMSiVJkiqprIvLKxmNRgC6du1KvXr1SlzPUQ1FSclHWXGIUkbPHTt2LI8//jiLFi1i9uzZLF68GIPBwMMPP4xKVfHGNI5itLzmBg0a0KlTp1K31+l0pZbHxcUxZcoUfHx8+OSTT4iJiSE4ONi6Xa1atSpVY3a1UaNGMW/ePJYtW2ZNSpctW2Ytu1Jl3ttrVZ5zryLnZ3lYXuewYcNKraVylLRe6zlc3vJrZXlNXl5eJbYssLDU2l5LXJbnCQkJKfOmj7+/v92y0o7ftRyb2NhYpk+fzqJFi5gxYwbJycls2LCBevXq0bNnz3Lvx8fHB4Ds7GyH5UajEUVRePDBB0vdT9OmTe2WPfDAA2zfvp2vv/6aoUOHsm/fPo4cOUKtWrXKjNGSjFrikyTpv0smpZIkSVXIUqMydOhQJk6ceF32GRISApib8Tly5syZErcdNWoUU6dOtdaUfP7556hUKsaMGXNdYoN/X/Ntt91W4Vroq1mmd3jllVeIjY21KSsoKCA1NbVS+79ay5Ytady4MXFxcSQkJODr68uGDRsICQmxTjVjcSPe25L4+/uj1WpJTU2loKAANzc3u3UstXKW8+N6CQsL4/jx48yYMYPo6Ojrum9nCQgIQKfTodFoKn2OlsZyjgQHB1+35ynr81/ScoAaNWowfPhwvvjiC3799Vd27NiByWTikUceqVCSGxQUBJhbOjgSFhZGfHw87733nrX2sryGDx/OU089xc8//0xGRoa1lvS+++4r88ZZRkYGAIGBgRV6TkmSqp7sUypJklSFbr/9doAKzVlZFkvt43fffWdXK2oymUqdp8/T05P77ruP5ORkpk6dSkJCAv369XPYHPFatW3bFh8fHzZt2lRiTUp5WS4yHTVVXLlypcNaYa1WC4DBYLim57TUiC5btoyVK1dSXFzMyJEj7S6Ir/d7W1rcGo2GDh06IIRg+fLlduWHDh1i//79eHl50bx58+sSj8WNOIedzcXFhZiYGNLT09m6desNe56wsDAaNWrEgQMHSExMvC77rFu3LrVq1SI5OZmdO3fala9atarU7ceOHQvAxx9/zKJFi3BxcWH06NEVisFyjh07dsxheWXOGV9fX+68806Ki4v55ptvrOf7/fffX+p22dnZpKSkEBERUeFEWJKkqieTUkmSpCrUoUMHevXqxaZNm5g8ebK1H5uFyWTif//7X7knrAfo2bMn9evX5+jRo7z99ts2ZW+88QYJCQmlbm8Z8Oidd94Brm2Ao9LodDqeeeYZMjMzGTJkiLUG70oHDhxgxYoVZe7LMnjM559/jl6vty4/cuRIif04a9WqBcDx48evJXzrQEJLly4tsekuXP/3tqy4Lc2JX3zxRZv3OCcnh/HjxyOEYOzYsdbk9noZO3YsgYGBvPbaayxevNjuRkBeXh5LliwhOTn5uj7vjfb888+jUqmIjY11+B6lpKSwcOHCSj/PjBkzMBqNDBkyhEOHDtmVx8fHs2jRogrt05JYTpkyhZycHOvyQ4cOsWDBglK37dChA82bN2f16tWcPn2aAQMGVLh2vVGjRgQFBbF3716HN1GmTJmCm5sbkydPZu3atXbl6enpfPDBByUOdGbpOzpz5kxSUlJo1qxZmTdbdu/ejRCCrl27Vui1SJLkJM4b+FeSJOm/hctTX8TGxpb4uHrOQRxMtWBhmQbj6qlYUlNTRXR0tACEn5+f6Nmzpxg+fLjo0qWLdeqLt99+27q+ZbqMq6eWuNIff/whXF1dBSBatWolRo4cKZo3by60Wq149NFHBSBeffXVErdv166dAERISIjQ6/VlHSo7ZU2/YTQaxciRIwUgdDqd6Nixoxg+fLjo1auXdcqagQMHlrnPtLQ0ERwcLAAREREh7r33XnH77bcLjUYjhg0bZp3W5GqW4922bVsxevRo8fDDD4sffvjBWl7a+yiEEJ06dbKeH1FRUSWuV9H3tjRnz54Vrq6uQq1Wi759+4oxY8aIhx9+2GYqEcu8lm5ubuLOO+8Uw4YNsz5Phw4dSp0u42rlnadUCCG2bdsm/Pz8rMftzjvvFIMHDxZt2rQRHh4eNlPICFHyZ8GirHO8tPOrpH1XdEoYIYRYsGCBUKvVAhDR0dFiyJAh4s477xS33XabUKvVwsfHx2Z9y5QwmzZtcri/ks6radOmWafAadOmjRg2bJjo06ePiIqKEoBo3rx5hV5Lfn6+aNOmjXXanWHDhol+/foJnU4nxo8fLwDRoEGDEl/3Bx98YD2/169fX8oRKtno0aMFILZt2+aw/LvvvhNubm4CEI0aNRKDBg0SAwcOFC1atBBarVYAdnMwWxQVFVnPN0DMmTOnzHhmzJghAPHNN99c0+uRJKlqyaRUkiTpMssFT2mPqy8WryUpFcJ8ETl//nzRvn174eXlJXQ6nQgPDxe9e/cWCxcutJkfsDxJqRBC7NmzR/Tp00d4eXkJLy8v0atXL7Fjxw7xyiuvCEB89NFHJW47ffp0AYjnn3++1OcoSXkTgFWrVom+ffuKgIAAodFoREhIiOjQoYOYNWuW3byNJe3zzJkz4r777hOhoaHC1dVVNG7cWLz++uvCYDCUmJSePHlSDBo0SPj7+wuVSmX3vpSVlC5cuNB6Drz00kulvsaKvLdl2bBhg+jcubPw9PS0Pv/VCdCSJUtEp06dhKenp3B1dRVNmzYVr776qsjPzy/38whRsaRUCHPSPGXKFBEVFSXc3NyEp6enaNiwoRg+fLhYsWKFzfyoN0tSKoT5czRq1ChRu3ZtodFohJ+fn4iOjhZPPvmk2Lx5s82615qUCmGeB/eee+4RwcHBQqPRiKCgINGqVSsxdepUu/k6y/NasrKyxOTJk0VoaKjQarWiUaNGYt68eeLMmTPWmxQlOX78uABEWFiYMBgMJa5Xmj///FMAYty4cSWuc+LECTF27FhRr149odPphI+Pj2jcuLF46KGHxLp16xzO72vx+OOPC0CoVCpx5syZMuOJjIwUAQEB5Z6nV5Ik51KEKGVYRkmSJOmm169fP3755Rfi4uIcjogqhCAqKoqTJ09y6tSpUkeOlSTp5rJixQpGjBjB448/zocffuhwnddee43/+7//48UXX2TWrFnX/FwtW7YkOTmZ5OTkMkfSvpF27NhBp06dmDZtGnPmzHFaHJIklZ/sUypJklQNpKen2/XVFEKwYMECfvnlF+rXr0+7du0cbrtq1SpOnDhB//79ZUIqSTepv//+G5PJZLPs4MGDTJs2Dfi3b/TVsrOzef/999FqtTz22GOViuHVV18lLS2Nzz//vFL7qaw33niDGjVqWF+7JEn/fbKmVJIkqRqIi4ujU6dOREdHU69ePYxGI4cOHSIhIQE3Nzd++uknYmJibLZ55JFHyMzMZN26dRgMBnbt2kWrVq2c8wIkSaqUqKgosrOzadasGb6+viQlJbFnzx6MRqPDWtLFixezZcsWtm7dSmJiIpMnT2b+/PmVjqNnz56cOnWKU6dOXfdBtspj3759tGrVijlz5sikVJJuIjIplSRJqgYuXLjArFmz2LRpEykpKRQUFBAUFET37t157rnnaNasmd02iqLg4uJCw4YNefnllxk8eLATIpck6XpYuHAh33zzDSdOnCAjIwN3d3eio6N5+OGH7eb0BRg9ejRffvklgYGBjBgxgrlz5zq1ya0kSbc2mZRKkiRJkiRJkiRJTiP7lEqSJEmSJEmSJElOI5NSSZIkSZIkSZIkyWlkUipJkiRJkiRJkiQ5jUxKJUmSJEmSJEmSJKeRSakkSZIkSZIkSZLkNDIplSRJkiRJkiRJkpxGJqWSJEmSJEmSJEmS08ikVJIkSZIkSZIkSXIamZRKkiRJkiRJkiRJTiOTUkmSJEmSJEmSJMlpZFIqSZIkSZIkSZIkOY1MSiVJkiRJkiRJkiSnkUmpJEmSJEmSJEmS5DT/D/U0LNbB8mAeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,dpi=150,figsize=(7,4))\n", + "\n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , vasprun.tdos.densities[Spin.up], label=r'total DOS', lw = 2) \n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , Ni_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Ni-d', lw = 2) \n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , O_spd_dos[OrbitalType.p].densities[Spin.up], label=r'O-p', lw = 2)\n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , Nd_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Nd-d', lw = 2)\n", + "\n", + "ax.axvline(0, c='k', lw=1)\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.set_xlim(-9,8.5)\n", + "ax.set_ylim(0,20)\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7d42627e-84c4-4386-92bd-f1193e9fd8fd", + "metadata": {}, + "source": [ + "We see that the Ni-$d$ states are entangled / hybridizing with O-$p$ states and Nd-$d$ states in the energy range between -9 and 9 eV. Hence, we orthonormalize our projectors considering all states in this energy window to create well localized real-space states. These projectors will be indeed quite similar to the internal DFT+$U$ projectors used in VASP due to the large energy window. " + ] + }, + { + "cell_type": "markdown", + "id": "19285c12-c23a-4739-b5b1-56aa724bfb7f", + "metadata": {}, + "source": [ + "## 2. Creating the hdf5 archive / DMFT input\n", + "\n", + "Next we run the [Vasp converter](https://triqs.github.io/dft_tools/unstable/guide/conv_vasp.html) to create an input h5 archive for solid_dmft. The [plo.cfg](plo.cfg) looks like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "825c6168-97a7-4d2d-9699-b1d1e9af95dd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[General]\n", + "BASENAME = nno\n", + "\n", + "[Group 1]\n", + "SHELLS = 1\n", + "NORMALIZE = True\n", + "NORMION = False\n", + "EWINDOW = -10 10\n", + "\n", + "[Shell 1]\n", + "LSHELL = 2\n", + "IONS = 3 4\n", + "TRANSFORM = 0.0 0.0 0.0 0.0 1.0\n", + " 0.0 1.0 0.0 0.0 0.0\n", + " 0.0 0.0 1.0 0.0 0.0\n", + " 0.0 0.0 0.0 1.0 0.0\n", + " 1.0 0.0 0.0 0.0 0.0\n" + ] + } + ], + "source": [ + "!cat plo.cfg" + ] + }, + { + "cell_type": "markdown", + "id": "2c3f2892-bb0a-4b8d-99af-76cff53b194b", + "metadata": {}, + "source": [ + "we create $d$ like projectors within a large energy window from -10 to 10 eV for very localized states for both Ni sites. Important: the sites are markes as non equivalent, so that we can later have different spin orientations on them. The flag `TRANSFORM` swaps the $d_{xy}$ and $d_{x^2 - y^2}$ orbitals, since the orientation in the unit cell of the oxygen bonds is rotated by 45 degreee. Vasp always performs projections in a global cartesian coordinate frame, so one has to rotate the orbitals manually with the octahedra orientation. \n", + "\n", + "Let's run the converter:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "8c687309-93f0-48b0-8862-85eca6c572e5", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Read parameters: LOCPROJ\n", + "0 -> {'label': 'dxy', 'isite': 3, 'l': 2, 'm': 0}\n", + "1 -> {'label': 'dyz', 'isite': 3, 'l': 2, 'm': 1}\n", + "2 -> {'label': 'dz2', 'isite': 3, 'l': 2, 'm': 2}\n", + "3 -> {'label': 'dxz', 'isite': 3, 'l': 2, 'm': 3}\n", + "4 -> {'label': 'dx2-y2', 'isite': 3, 'l': 2, 'm': 4}\n", + "5 -> {'label': 'dxy', 'isite': 4, 'l': 2, 'm': 0}\n", + "6 -> {'label': 'dyz', 'isite': 4, 'l': 2, 'm': 1}\n", + "7 -> {'label': 'dz2', 'isite': 4, 'l': 2, 'm': 2}\n", + "8 -> {'label': 'dxz', 'isite': 4, 'l': 2, 'm': 3}\n", + "9 -> {'label': 'dx2-y2', 'isite': 4, 'l': 2, 'm': 4}\n", + " Found POSCAR, title line: NdNiO2 SC\n", + " Total number of ions: 8\n", + " Number of types: 3\n", + " Number of ions for each type: [2, 2, 4]\n", + "\n", + " Total number of k-points: 405\n", + " No tetrahedron data found in IBZKPT. Skipping...\n", + "[WARNING]: Error reading from EIGENVAL, trying LOCPROJ...\n", + "[WARNING]: Error reading Efermi from DOSCAR, trying LOCPROJ...\n", + "eigvals from LOCPROJ\n", + "\n", + " Unorthonormalized density matrices and overlaps:\n", + " Spin: 1\n", + " Site: 3\n", + " Density matrix Overlap\n", + " 1.1544881 0.0000000 -0.0000000 0.0000000 -0.0000000 0.9626619 -0.0000000 0.0000000 0.0000002 -0.0000000\n", + " 0.0000000 1.7591058 -0.0000000 0.0000000 -0.0000000 -0.0000000 0.9464342 -0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 1.5114185 0.0000000 -0.0000000 0.0000000 -0.0000000 0.9548582 -0.0000000 0.0000000\n", + " 0.0000000 0.0000000 0.0000000 1.7591058 -0.0000000 0.0000002 0.0000000 -0.0000000 0.9464339 0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -0.0000000 1.8114830 -0.0000000 -0.0000000 0.0000000 0.0000000 0.9495307\n", + " Site: 4\n", + " Density matrix Overlap\n", + " 1.1544881 -0.0000000 0.0000000 0.0000000 0.0000000 0.9626621 0.0000000 -0.0000000 -0.0000001 -0.0000000\n", + " -0.0000000 1.7591058 -0.0000000 -0.0000000 0.0000000 0.0000000 0.9464343 -0.0000000 -0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 1.5114185 -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.9548582 0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 -0.0000000 1.7591058 0.0000000 -0.0000001 -0.0000000 0.0000000 0.9464344 0.0000000\n", + " 0.0000000 0.0000000 -0.0000000 0.0000000 1.8114830 -0.0000000 0.0000000 0.0000000 0.0000000 0.9495307\n", + "\n", + " Generating 1 shell...\n", + "\n", + " Shell : 1\n", + " Orbital l : 2\n", + " Number of ions: 2\n", + " Dimension : 5\n", + " Correlated : True\n", + " Ion sort : [3, 4]\n", + "Density matrix:\n", + " Shell 1\n", + "Site diag : True\n", + " Site 1\n", + " 1.9468082 -0.0000000 -0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 1.8880488 -0.0000000 0.0000000 0.0000000\n", + " -0.0000000 -0.0000000 1.5912192 0.0000000 0.0000000\n", + " 0.0000000 0.0000000 0.0000000 1.8880488 0.0000000\n", + " -0.0000000 0.0000000 0.0000000 0.0000000 1.1979419\n", + " trace: 8.512066911392091\n", + " Site 2\n", + " 1.9468082 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 1.8880488 -0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 1.5912192 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 1.8880488 -0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -0.0000000 1.1979419\n", + " trace: 8.512066911289741\n", + "\n", + " Impurity density: 17.024133822681833\n", + "\n", + "Overlap:\n", + " Site 1\n", + "[[ 1. -0. -0. -0. -0.]\n", + " [-0. 1. -0. -0. -0.]\n", + " [-0. -0. 1. -0. -0.]\n", + " [-0. -0. -0. 1. 0.]\n", + " [-0. -0. -0. 0. 1.]]\n", + "\n", + "Local Hamiltonian:\n", + " Shell 1\n", + " Site 1 (real | complex part)\n", + " -1.5179223 0.0000000 0.0000000 -0.0000000 0.0000000 | -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 -1.2888643 0.0000000 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 0.0000000 -0.9927644 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -1.2888643 0.0000000 | 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 -0.0000000 0.0000000 -1.0828254 | 0.0000000 0.0000000 -0.0000000 -0.0000000 0.0000000\n", + " Site 2 (real | complex part)\n", + " -1.5179223 -0.0000000 -0.0000000 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -1.2888643 0.0000000 -0.0000000 0.0000000 | -0.0000000 -0.0000000 0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 0.0000000 -0.9927644 0.0000000 0.0000000 | 0.0000000 -0.0000000 0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 0.0000000 -1.2888643 0.0000000 | 0.0000000 -0.0000000 0.0000000 -0.0000000 0.0000000\n", + " -0.0000000 0.0000000 0.0000000 0.0000000 -1.0828254 | 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000\n", + " Storing ctrl-file...\n", + " Storing PLO-group file 'nno.pg1'...\n", + " Density within window: 42.00000000005771\n", + "Reading input from nno.ctrl...\n", + "{\n", + " \"ngroups\": 1,\n", + " \"nk\": 405,\n", + " \"ns\": 1,\n", + " \"kvec1\": [\n", + " 0.1803844533789928,\n", + " 0.0,\n", + " 0.0\n", + " ],\n", + " \"kvec2\": [\n", + " 0.0,\n", + " 0.1803844533789928,\n", + " 0.0\n", + " ],\n", + " \"kvec3\": [\n", + " 0.0,\n", + " 0.0,\n", + " 0.30211493941280826\n", + " ],\n", + " \"nc_flag\": 0\n", + "}\n", + "\n", + " No. of inequivalent shells: 2\n" + ] + } + ], + "source": [ + "# Generate and store PLOs\n", + "plo_converter.generate_and_output_as_text('plo.cfg', vasp_dir=path)\n", + "\n", + "# run the archive creat routine\n", + "conv = VaspConverter('nno')\n", + "conv.convert_dft_input()" + ] + }, + { + "cell_type": "markdown", + "id": "bee3bf4f-0b75-445c-b3d3-7402f778fff4", + "metadata": {}, + "source": [ + "We can here cross check the quality of our projectors by making sure that there are not imaginary elements in both the local Hamiltonian and the density matrix. Furthermore, we see that the occupation of the Ni-$d$ shell is roughly 8.5 electrons which is a bit different from the nominal charge of $d^9$ for the system due to the large hybridization with the other states. For mor physical insights into the systems and a discussion on the appropriate choice of projectors see this research article [PRB 103 195101 2021](https://doi.org/10.1103/PhysRevB.103.195101)" + ] + }, + { + "cell_type": "markdown", + "id": "18739e80-3c9e-4bea-9e0b-677421ec99aa", + "metadata": {}, + "source": [ + "## 3. Running the AFM calculation\n", + "\n", + "now we run the calculation at around 290 K, which should be below the ordering temperature of NdNiO2 in DMFT. The config file [config.toml](config.toml) for solid_dmft looks like this: \n", + "\n", + " [general]\n", + " seedname = \"nno\"\n", + " jobname = \"NNO_lowT\"\n", + "\n", + " enforce_off_diag = false\n", + " block_threshold = 0.001\n", + "\n", + " \n", + " n_iw = 2001\n", + " n_tau = 20001\n", + "\n", + " prec_mu = 0.001\n", + "\n", + " h_int_type = \"density_density\"\n", + " U = 8.0\n", + " J = 1.0\n", + "\n", + " # temperature ~290 K\n", + " beta = 40\n", + "\n", + " magnetic = true\n", + " magmom = -0.3, 0.3\n", + " afm_order = true\n", + "\n", + " n_iter_dmft = 14\n", + "\n", + " g0_mix = 0.9\n", + "\n", + " dc_type = 0\n", + " dc = true\n", + " dc_dmft = false\n", + "\n", + " [solver]\n", + " type = \"cthyb\"\n", + " length_cycle = 2000\n", + " n_warmup_cycles = 5e+3\n", + " n_cycles_tot = 1e+7\n", + " imag_threshold = 1e-5\n", + "\n", + " perform_tail_fit = true\n", + " fit_max_moment = 6\n", + " fit_min_w = 10\n", + " fit_max_w = 16\n", + " measure_density_matrix = true" + ] + }, + { + "cell_type": "markdown", + "id": "26910f2d-fd3d-4d72-adc5-99e79f72452d", + "metadata": {}, + "source": [ + "Let's go through some special options we set in the config file: \n", + "\n", + "* we changed `n_iw=2000` because the large energy window of the calculation requires more Matsubara frequencies\n", + "* `h_int_type` is set to `density_density` to reduce complexity of the problem\n", + "* `beta=40` here we set the temperature to ~290K\n", + "* `magnetic=true` lift spin degeneracy\n", + "* `magmom` here we specify the magnetic order. Here, we say that both Ni sites have the same spin, which should average to 0 at this high temperature. The magnetic moment is specified as an potential in eV splitting up / down channel of the initial self-energy\n", + "* `afm_order=true` tells solid_dmft to not solve impurities with the same `magmom` but rather copy the self-energy and if necessary flip the spin accordingly\n", + "* `length_cycle=2000` is the length between two Green's function measurements in cthyb. This number has to be choosen carefully to give an autocorrelation time ~1 for all orbitals\n", + "* `perform_tail_fit=true` : here we use tail fitting to get good high frequency self-energy behavior\n", + "* `measure_density_matrix = true ` measures the impurity many-body density matrix in the Fock basis for a multiplet analysis\n", + "\n", + "By setting the flag magmom to a small value with a flipped sign on both sites we tell solid_dmft that both sites are related by flipping the down and up channel. Now we run solid_dmft simply by executing `mpirun solid_dmft config.toml`. \n", + "\n", + "Caution: this is a very heavy job, which should be submitted on a cluster. \n", + "\n", + "In the beginning of the calculation we find the following lines:\n", + "\n", + " AFM calculation selected, mapping self energies as follows:\n", + " imp [copy sigma, source imp, switch up/down]\n", + " ---------------------------------------------\n", + " 0: [False, 0, False]\n", + " 1: [True, 0, True]\n", + "\n", + "this tells us that solid_dmft detected correctly how we want to orientate the spin moments. This also reflects itself during the iterations when the second impurity problem is not solved, but instead all properties of the first impurity are copied and the spin channels are flipped: \n", + "\n", + " ...\n", + " copying the self-energy for shell 1 from shell 0\n", + " inverting spin channels: False\n", + " ...\n", + "\n", + "After the calculation is running or is finished we can take a look at the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f42d62cc-f8b4-4fc7-af76-cdf7ba13e8ea", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(path+'/nno.h5','r') as ar:\n", + " Sigma_iw = ar['DMFT_results/last_iter/Sigma_freq_0']\n", + " obs = ar['DMFT_results/observables']\n", + " conv_obs = ar['DMFT_results/convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "65dba97b-a64c-4d88-b7cc-3607605a9aa3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7oAAAQACAYAAADP8iXwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeViU5f7H8ffMMOyLgCjgiqiRa2ppVpZmHT25lGnZ0U62Wtm+Wv1atNM5Vm5Zltmm7ZZbZdpyKtfE3bTcUlLRA6igIDszzPz+GEAQUJaBGcbP67rmgrmf+3nu7+MgzHfuzWC32+2IiIiIiIiIeAijqwMQERERERERcSYluiIiIiIiIuJRlOiKiIiIiIiIR1GiKyIiIiIiIh5Fia6IiIiIiIh4FCW6IiIiIiIi4lGU6IqIiIiIiIhHUaIrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOieZt26dQwfPpzIyEjMZjNhYWH079+fBQsW1Oh6+/bt46677qJ169b4+voSERHBJZdcwuTJkyusb7PZeO211+jcuTN+fn5ERERwww03sHPnztrcloiIiIiIyDnDYLfb7a4Owl3Mnz+fm266CZvNxoUXXkhsbCxJSUn8+uuv2Gw2xo8fz8svv1zl6y1evJhRo0aRn59Pt27daN++PWlpafz+++8EBASwb9++MvXtdjs33ngjCxYsoFGjRvTv35/U1FRWrVqFr68vy5cvp1evXs6+bREREREREY+iRLeI1WolOjqaY8eOMW/ePEaOHFlyLD4+niuvvJL8/Hz27t1LbGzsWa+3bds2evbsSVBQEF999RWXXXZZyTGbzcaWLVu48MILy5zzwQcfcMcdd9CuXTtWr15N06ZNAVi4cCEjRowgNjaW3bt34+Xl5aS7FhERERER8Twaulxk9+7dHDt2jLi4uDJJLkDv3r0ZMGAAdrudzZs3V+l6DzzwAAUFBcydO7dMkgtgNBrLJbkAU6dOBeDVV18tSXIBhg8fztChQ0lISODrr7+u7q2JiIiIiIicU5ToFvHx8alSvbCwsLPW2bVrF6tXr6Z9+/YMHjy4Stfdv38/O3fuxM/Pj0GDBpU7PmLECACWLFlSpeuJiIiIiIicqzQGtkibNm1o06YNu3fv5ssvv+TGG28sORYfH88PP/xATEwMl19++Vmv9fPPPwNw9dVXk5eXxxdffMGmTZswGAx06dKFG2+8keDg4DLnbNu2DYBOnTphNpvLXbN79+5l6omIiIiIiEjFlOgWMZlMzJ07lyFDhjBy5EgmT55MbGwsycnJrFmzhp49e/Lxxx/j7e191mvt2LEDAD8/Py644AL27NlT5vjTTz/NwoULyyTNiYmJADRv3rzCaxaXF9erio4dO1ZYvmfPHvz8/GjZsmWVryUiIiIiIlKfEhMTCQgIICUlpdrnauhyKX369GHlypXExMSwadMmvvjiC1atWkVAQABXXXUV0dHRVbrOiRMnAHjttdc4fvw4ixYtIj09nT179jBq1ChSU1O57rrrSE5OLjknKysLAH9//wqvGRAQUKZebdjtdiwWS62vIyIiIiIiUlcsFgvZ2dk1Olc9uqV8/vnn3HbbbVx88cXMmzePjh07kpSUxJQpU3jppZf4+eefWblyZYVDi0srLCwEHCs5f/LJJ/ztb38DICQkhE8//ZS9e/eyceNG3nzzTV566SXAkXwCGAwGp91Pcc/y6Yp7eis7LiIiIiIi4mqVjVCtCvXoFtm7dy9jxowhIiKCpUuX0rNnTwICAmjXrh2zZ89myJAhxMfHM2fOnLNeKygoCIBmzZqVJLml3XbbbQCsWLGi3DmVfWJRXB4YGFit+xIRERERETnXKNEtMm/ePCwWCwMHDiwZJlxa8eJUpZPTyrRu3RqAVq1anfH40aNHS8qK58sePny4wnOKyzWvVkRERERE5MyU6BYpTiRPXw25WHH58ePHz3qtbt26nbFuWloaULZ3tmvXrgD88ccfFc6f3bJlCwBdunQ5a/siIiIiIiLnMiW6RSIjIwHYtGlThcc3btwInOqNPZP+/fsTEBBAQkIChw4dKne8uFe4eMsggJiYGM4//3xyc3NZunRpuXMWLFgAUOV9eUVERERERM5VSnSLXHvttQCsWrWKWbNmlTm2bt06pk+fDsCIESNKymfOnElcXBxPP/10mfr+/v488MADWCwW7r333jLzbr///ns+/PBDDAYDY8eOLXPeo48+CsCTTz5ZZljzokWL+Oabb4iJieG6666r/c2KiIiIiIh4MK26XKR79+48/vjjTJkyhXHjxvHmm2/SoUMHkpKSiI+Px2azMXbsWK666qqSc1JTU9mzZ0+ZbYKKvfDCC6xevZqlS5fSrl07evXqxdGjR1m3bh02m41///vf9OzZs8w5t99+O8uWLWPx4sXExcXRv39/UlNTWblyJb6+vnzyySdnXfFZRERERETkXKce3VImT57MokWL+Nvf/kZKSgqLFy9m586dXHHFFXz66afMnj27ytfy9fXll19+4d///jeNGjXiu+++Y8eOHfTr149vv/2WZ555ptw5RqOR+fPnM3XqVKKjo/n222/5/fffGTZsGJs2beKSSy5x5u2KiIiIiIh4JIO9eANXOWdoH10REREREXF3tclb1KMrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOiKiIiIiIiIR1GiKyIiIiIiIh5Fia6IiIiIiIh4FCW6IiIiIiIi4lGU6IqIiIiIiIhHUaIrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIexcvVAVTF/v37Wb16NcnJyeTn51dYx2Aw8Nxzz9VzZCIiIiIiIuJu3DrRLSgo4M477+TTTz8FwG63V1pXia64i9SUQ+z9/k0Ck9fjXZhDgcmf7KjetB14L40jW7g6PBERERERj+fWie7zzz/PJ598QmhoKDfffDPt27cnMDDQ1WGJVCgvJ4vt791Dt7Rl9DYUnjpgBQ5swTLrbdaHD6LrXW/j6xfgsjhFRERERDydWye6n332GY0aNWLLli20atXK1eGIVCovJ4uE1wbSs+B3MFRcx2wopNfxb9gxfT+xD3+Pr78+tBERERERqQtuvRjV0aNH6dOnj5JccXvb37uHjgW/c4bR9QDY7dCx4He2vXdv/QQmIiIiInIOcutEt1WrVmRnZ7s6DJEzSk1JpFvaMgAMlfTmFis+3j1tKakph+o4MhERERGRc5NbJ7p33HEHGzZs4NAhJQTivvZ+/xbm0nNyq8BsKGTf97PqKCIRERERkXObWye6jz/+OIMGDeLvf/87K1asOOOqyyKuEpi8vkbnBSTHOzkSEREREREBN1+Mqm3btgAcPHiQ/v37YzabiYqKwlDB+FCDwUBCQkJ9hyiCd2FOjc4LshwjPy8HH19/J0ckIiIiInJuc+tE98CBA2WeFxQUcPDgQdcEI1KJApO/YwuhamptO0TepJb84duRzMiLCe3QnzYXXI63j6/zgxQREREROYe4daJrs9lcHYLIWWVF9YIDW2p0rq/BQqf83+Dgb3DwbXKW+bDbrxPZUb0J69if2K6X4WX2dmq8IiIiIiKezmDXxNdzTseOHQHYsWOHiyPxDKkpiTSa1RUvQ9U/mLHZIR8zfgbLGetl2f1I8O9MbnRvwjtdRZvOl2DycuvPp0REREREnKI2eYveMYvU0v92rSeMqn1eZLc7thjaGD6UC8bOZudvq8jYtZzg5Hja5u/E57TEN9CQS9fcDZCwARJmcPJrf/7y70pes0uI6HwVMR17YTSZ6uK2REREREQarAbRo/vHH3/w1ltvsXr1apKSkjAYDERFRXH55Zdz77330qlTJ1eH2KCoR9d5dm/8iVbf/gM/Q0GVz9nh3ZnYR37A1y+gTHlebjYJW1ZwcvcvhKSso23BLrzPsm1ROoHsD7iA/OaX0rRLf1rFXajEV0REREQ8Qm3yFrdPdGfMmMETTzxBYWFhhdsLeXl5MXnyZB566CEXRNcwKdF1jgO7NhH6xVBCyAYgy+7Ln4EX0TlrbYX76lrsJraED6LrXW+XS3Irkpudyb7Nv5C15xdCj6wn1vLnWffrPUEw+wMvwNLiMiK7Xk3L9hdgMLr1LmIiIiIiIhXy2ET3v//9LwMGDMDf35977rmHf/7zn7Ru3RqDwcCBAwf4+OOPefvtt8nJyeHHH3+kf//+rg65QVCiW3spiXsxfvA3mnAcgAK7F39ePYdOlw0lNeUQ+76fRUByPN6FORSY/MmO6k3bgffSOLJFjdvMzkwnYfPPZO9ZQfixdcRa9mIynPm/byqNOBjUHWvLy4ju9jeat+lY7cQ3NeUQe79/k8Dk9U69HxERERGRM/HYRPfvf/87P//8MytWrOCSSy6psE58fDyXX345V199NcuWLavnCBsmJbq1c+JYMpmz+tPS9j8AbHYDv/V+je4Db63XODIzjvPX5h/J3bOCxqkbaGP9C+NZEt+jhJEY3B1bqz406zaA6NbnVZr45uVksf29e+iWtswpPdQiIiIiItXhsYlueHg43bt357///e8Z61199dVs2bKFtLS0eoqsYVOiW3PZmen8b8bVtLf+WVK2vuNz9LrhcRdG5ZBx/Bh/bfqB/H0raZK6gTa2A2c9J4UIDoX0gJg+tOg+gMiW7QBHkpvw2kA6Fvx+1mvs8O5M7MPf4+sfWNtbEBEREREp4bGrLufk5BAREXHWehEREeTk5NRDRHIuK8jPI+HN6+lSKsmNb3UPvd0gyQUICYug299uhr/dDEB6agr7N/9Awd6VND2+kda2xHLnRHKMyIzv4bfv4bf/43+GpvwvpAcBOYfpWPB7ySrRlbHboWPB76x/7156PfhxXd2aiIiIiEi1uHWPbvv27bFYLOzbtw9TJSvJWq1W2rVrh9ls5s8//6ywjpSlHt3qsxUWsvW1EfTI/KWkbH3j4fQc916DWewp7chhDmz+AWvCKqJObCwZeu0MFruJjHu3ac6uiIiIiDhNbfIWt36Hfu2113Lw4EHuvPNOTp48We74yZMnueuuu0hMTOS6665zSpvr1q1j+PDhREZGYjabCQsLo3///ixYsKBa1yleNKuyx+7du8udc+utt57xnLffftsp9yjVY7fZ2DjrrjJJ7uagK7no3ncbTJILEN60OT2uuYNeD3xIy+d3cmzsNjb1eJUNYUM4bIiq1bXNhkL2LpmG3WZzUrR1KzXlEPFzn+L3Sf3Y81Ivfp/Uj3VznyE15ZCrQxMRERERJ3DrHt3jx49z0UUXceDAAYKDg7nmmmtKEsj9+/ezdOlSTp48SZs2bdi4cSOhoaG1am/+/PncdNNN2Gw2LrzwQmJjY0lKSuLXX3/FZrMxfvx4Xn755Spdq3Xr1hw8eJAxY8ZUeHzSpElERZVNLm699VY+/PBDBgwYQGRkZLlzxowZQ79+/ap/Y6dRj271xM8ZT++Dpz5k2O7bg7hHluHt4+vCqJwv5dA+Dm35kdZbXyWCEzW6Rq7dmzRjGCfNEeT4NMEaEAnBUZgbRRMQ3oLgpq1oHNXKZf92WmBLREREpOHw2MWoAJKSkrj77rtZunRphccHDRrE7NmziY6OrlU7VquV6Ohojh07xrx58xg5cmTJsfj4eK688kry8/PZu3cvsbGxZ71ecaJbnX/e4kR3+fLl9O3btya3USVKdKtu/fwp9Nrxr5Lnf3q1p9lD/yUgqJHrgqpje17qxXnW8iMOnOk4wZwwNSbLuzH5fk0pDIzCFBKNT1hzgiJaEtq0JY3Cmzq1x1wLbImIiIg0LB67GBVAdHQ0S5YsYf/+/axZs4akpKSS8ssuu4yYmBintLN7926OHTtGXFxcmSQXoHfv3gwYMICvv/6azZs3VynRlYZvy/dzufCPl6BoMaZEYzMaj/3Ko5NcgAKTP1jrto0wThJWeBJy/4JcKNqOuIx8u5k0YxgZXo3J8W2CxT8SgiLxCm2Gf3gLQpq0IjyqZZV7Xre/dw89tcBWg6I9nEVExN3ob1PD4faJbrGYmBinJbUV8fHxqVK9sLCwOotB3Mcfvy6hU/xjmIr2pT1KGOYxiwlr0szFkdW9rKhecGBLtc+Lb3YbTS6+iaxjieSf+B+FGUmYspLxyT1CYMExwgrTCKX8XPvK+BgsRNuPEG05ApYdkAkcKV/vBEGkG8PJ9I4gz68JhYFRGIOj8Q1vRkB4C0IjW2GzWumWtgwMZ05y4dTx7mlLSU05pD9aLlB6iHnv0kPMrcCBLVhmvc16DTEXEZF6pL9NDU+DSXTrWps2bWjTpg27d+/myy+/5MYbbyw5Fh8fzw8//EBMTAyXX355ta47efJkEhIS8PHxoWPHjgwbNuysWyYtWrSIhQsXUlhYSExMDEOGDCEuLq5G9yXVt2/bGlr/eBfeBke3ZgYB5IycT+tW57k4svrRbuA4LLPeqXAOa2UsdhPthjxWlBReXGm9/Lwc0lIOcfLIQbLTDmE58T/ITMErOwX//KMEW47R2JaGr8FS5bZDySTUlgl5ByAPKppebLUb8DJUb5aG2VDIvu9n0fjW/1TrPKmd4iHmPQt+LxlNcTqzoZBex79hx/T9GmIuIiJ1Tn+bGia3mqP70UcfATBs2DCCgoJKnlfVLbfcUqv2V69ezZAhQ8jIyChZjCo5OZk1a9bQs2dPPv74Y9q2bVulaxXP0T2dv78/r7/+OnfccUe5Y8VzdE9nMBi49957mTFjBl5eVf9sonhM++kSEhKIjY3VHN0KHNr3OwGfXENYUc9jrt2bg4M/J+6iq1wcWf3a8PrN9Dy+pErDfA0GWB821GnDfO02GydPHOP4kUQyjyaSf/ww1owkjFnJ+OQ4eocbFaYRZs/AWM3ktboOGyJJ6nI/fuEtHQtpRbd226HrnjKUypU/eyIiIhXR3ybX8ZjFqIxGIwaDgV27dtG+ffuS52djt9sxGAwUFla9B6oy27ZtY9iwYezfv7+kLCgoiIceeoinn34af3//Kl3nwQcfpF+/fvTo0YOIiAj++usvPvjgA2bMmEFhYSGLFy8utyXSjBkz8PX15corr6R58+akpKTw3Xff8eyzz3LixAkefvhhpk+fXuV7UaJbPalJByl49yqi7UcBsNqN7LhiNl2vvPEsZ3qeai/c9MgP9T5Mx1KQT1pKIulHDpKTdpiCE//DfjIJc3YKfnlHCbakEm5Lw9+Q79R2T+LPcWNjTnpHkOfblMKgaEwhzfAJb0Fwk5aERbUhuFF4vW095UkrSaemJBIy64JqjyZoSHs4e8oHEtKw6OdOpObOhb9N7sxjEt0JEyZgMBh44IEHCAsLK3leVS+88EKt2v/888+57bbbuPjii3n11Vfp2LEjSUlJTJkyhXfeeYfevXuzcuVKzGZzjdt45513uPvuu2nfvj179uyp0jl//PEHPXr0oLCwkP3799OiRe3+02jV5fIyTqSS9kZ/2tgOlJRt7DaJi64d57qgXCwvJ4tt791L97SlDTaBsttsZJ48QdLMQcRZd9Vbuzl2H9KM4Y5tlvyaYg2IwhjSDJ+wFgQ2aUloZGtCG0dhNJlq1U5DX0naUpBPVsZxsjPSyM06wYkVb9EzfVm1rxPfciy9b59cBxE6jyd9ICENhyf/3Cl5l/oSP/cpeh+YVe3z1rW+j4s1/anWPCbRdaW9e/fSsWNHmjZtyu7duwkIKPsLf+jQoSxZsoTZs2czduzYGrdjs9mIiori6NGj/PXXX1VeYOuGG25gwYIFfPDBB9x22201bh+U6J4uLyeLv6YPoIPlj5Kyde0e4+LRz7swKveRmnKIfd/PIiA5vsG+majpH6n9xlbkmwJoZDlGuP14tT7NPZsCu4lUYzgZXhHk+DbFEhAFwdF4hzXHv3ELQiNbE960BV5m70qv4cqhVFZLAdknT5CVcZzczOPkZ6VTkH0Ca04GhbkZ2PMyMORlYCzIxMuSiZc1C19rJr62bPxt2QTYc/AzFDglFoBsuy8ZxhCyTCHkmkMp8Amj0DcMAhpjDGyMd3AT/EKaEBgWRUjjSAICQ+q1170hfyAhDZOn/tx5cvLuiRrSBxKFVitpRw6RfuQgWccOUXD8EPaTybRN/oYI0qt9vb+MrSi4ZjqNo9sS1rR5rT/cPld59PZC9WXevHlYLBYGDhxYLskFuPHGG1myZAkrVqyoVaJrNBqJjY3l6NGjJCcnVznRbdeuHQDJyck1blvKs1oK2DXzBrqVSnLjo2+ht5LcEo0jWzT4BZlqusBW0NilxBT9IbYVFpJ67H+cSD5A1rFECo4fwpaRhDk7Cb+8I4RUcyEtb0Mh0fajRFuOnlpVOqVsnUK7gaOGUE54RZDt05SCgEgIjsarUTNMZv8aryQd2jiKrMx0R09q5gnys05QkJ2ONSedwtwMbLnpGPJOYihKUs2WLLytWfjZsvCzZRNoz8bfkE8IEFLlf9HTg6rpiRULMOQRYM8D6xHHCpi5Z66fbzeTbggm09SIHHMjCrxDsfqGYfcPxxgQgTm4CX6NmhAQ2pSQ8CiCGjWu8ZsUT9/aqiG9ka0qT7gnT/y504JADYe7rVCck5VBWvIBMo4mkpd2GMuJwxgzk/HOPUJA/lEaWVMJt5+gicFOEye12cZ2EL69HnD8zTlqjCDdO5Jc/2gKQ1pgDmtFQNM2hEbHEhHVGlM11uFxNk/4nVcRt050TSYTt956K++///4Z6911113MmTMHq7Xmm38ePnwYgODg4AqPF5cfP17Bhp/VdOKEY1nYwMCq//KtyTlyZnabjS1vjqFnztqSsg2NruHiO2e4MCqpC40jW7Ih/Jpq9X5uCR9Er1K/3I0mE40jW9I4smXl59pspB8/SlryAbKOHSAv7TC2jP/hlZWMb24KwZZUGhceI8CQV6W4TQY7TThOE+txsO6BbOBoqQrVTBbNhkKCZl2AyWB1qyS10G4g2+CPt72gWitu14aPwUJT0mhamAaFOFbsPsPuV1a7kROGIDKNIWR7NSLfOxSLbzg2v3CMgY3xCorAJziCgNCmBIVH0Sg8Ei+zN6kpiR67tZW7vZF1Bk+5J0/9ufPE5L00T0k26vMDCbvNxonUZI4nHyAr9RD5xw9jL1rA0jfvCMEFxwizpRFMNv7AGf8Vnfy3rTQfg4UW9iRa5CdB/hbHDhEHTh232E0cMTbmhDmSHP9orMEtMIW2JKBJUSLcLAazd9W2Qq0OT/mdVxm3TnTtdjtVHVld2xHYkZGRAGzatKnC4xs3bgQcqynXxo4dO9izZw/+/v5V3jIoPz+fpUuXAtCjR49atS+nrHv3IXqXmg+41f8Sut/3Yb0NZ5T61eXOt9nx2oGzDuMzGBzD+Lre9Xa12zAYjTRqHEmjxpGcaZulzIzjHE/az8mjB8lLO4Q1/X+YspLwyT1CUP5RwmypNCKr2u1XhY+h5h8IVibT7ke2IYBcYwB5pgAKvIKwmIMoNAdi8wkGn2CMfiGY/Bth9m+ET0AjfIJC8QsKJSA4jIDAEIJNphoPMY+P+idNeo8iJ/0I+RlHsWYew56dijE3De/84/gUpBNQmE6wLYMQe1aNVuv2MtgIJ4NwWwYUJEIBnO0lyiAAE4ZqD3lvCFtbeWLPWkO6p+KpA9knTzimDmRnFI3KcEwd8PvrexrX4Ocud/bf+M2vFTaDF3ajF3aDFzajGbvJDAYv7CYzdqMXGM1gMmMwmsHkBSZvDCYzBpOj3GgyY/AyYzB5Y/RyPDeavTF5eWM0mTGZvTF5mTF6+eBlNmPy8sbL2wcvL29MZm/MZm+8zN6YTF4lf5M9NXkHz0s2nPWBREF+HqnJBx1bEqYmYkn/H5xMxpyTgn/eEUKsqTS2HSfMYCXMifGfJIA0Y2MyvSPI822Cf85hOhVsr/Z1jhGKNwWEkH3WumZDIdH2I0QXHIGCbZAOJJ46Xmg3kGII54S5Kdl+0ViCmmMKa4VfRGsaRbelSfNYfHyrtmBusYb0O6+m3HqOrtFo5NZbb+WDDz44Y70bb7yRb7/9lpycnBq3tWXLlpIk8q233uLee+8tObZu3TquuuoqsrOz+e9//8tVVzm2mpk5cyYzZ85k2LBhTJo0qaT+Dz/8QOPGjcslpdu3b+emm25i165dPPjgg8yYcarncM+ePezevZvBgwdjKjU87tixY4wdO5avvvqKrl27snXr1mot0FURzdGFdZ9O5OK900qe7zR3os0jPzS4/8BSPQ1pga3c7ExSkw+QceQAuamHsKYXDbPKSSEw/yitrfudMmc42+5LtsGfHGMAecZA8r0CsZqDsHoHYfMOwuATgsEvBJNfCF4BjfAOaIRvYCh+QY0ICGlMYFAjp807qo+VLa2WAjKOHyXzeArZx4+Ql3EUa+ZRbNlpGHNS8co/jk/BCQIs6QTZ0gmxZzp1bnZVFdhNHDM2Js8YQL4pgAJTAFZzIIXmAOzmQOw+QRh8gzH6BuHlF4zZPwRv/xB8AxvhGxiCf1AoAYEhdTYnzBO32qiPe7LbbORknyxKUE+Qm3WCgqx0LDknKcxNx5Z3EnveSQz5mSXz283WLHwKs0vmt/vbc52+mrw7K7CbsOKFEVuNRnxs8b8Ue6cbMPsH4x3YCL+ARvgFh+Ef1Khe5+pXxtPmUtfk97jVbmRj1CiMlsySbQTDCo+VbPXoLIV2A2mGUNK9GpPl0xSLf1NsQdGYG0UXbSPYksZRrfELCKr1PZX+25SZcZzUw3vJSNlP/rH92NMP4Z11iMC8FBpbU5x2n8cI5bhXU7L8oikIbI4xtCW+Ea1pFBVLkxbtyt1XQ/k97lFzdBMTE8s8z8rKKldWzGq1smfPHn788UdiY2Nr1W737t15/PHHmTJlCuPGjePNN9+kQ4cOJCUlER8fj81mY+zYsSVJLkBqaip79uwpN282Pj6eiRMn0qpVK2JjY4mIiGD//v1s2bIFq9XKFVdcUSYxBsfc2+uuu47w8HDi4uJo1qwZR48eZfPmzWRmZtK8eXO+/PLLWie5Ahu/fqtMkvuXsTXNxn3t1n84xDl8/QPp9eDHZ1xgq5ebfPLvFxBEi7adadG2c4XHf5/Uj875W6p93T1ecQSN/pCAkHACg0MJ8PLCXfoHnDHE/Gy8zN6EN21OeNPmVapvt9nISE/jZFoS2SeOkpt+BEvmMQqzjmHIScMrNw3vghP4W04QWJhBI3uGU4ZfexsKaWY/4hhWXfze6izzjiuSZfcjx+BHrtGffKM/+aYALF6BFHoFYPMOLPowIwiDbxAm32C8/EMw+4fgExCCb0CI4wON4FB8fPw8umetJvfUI+1bNix+A4PBiC3vJLa8DChKUE0FWZitmXhbs/AtzMHPlo0/OQTYcwgw2Gv3f+4cexvgbSjEm5p/2NQ951fY8GuFx2x2A5kGP3LwJ7foQ6X8og+VrOYg7N5BJR8qmYo+8PMOCMEnoBG+QaH4BTYiMCSszP+P6nLn4dh2mw2LpYC83GwK8rIpyM3BkpdNQX4O1qJHYX4uhQU5FBbkYrfk4vvXj9UeTeBlsNE75ZNaxVp+t4NIjMHRmEObExjhWOAxrElzmnh5VXsObm3/NgWFhBEU0gs69qo49qwMjh1OICP5L3KP7ceWnoh35mECcpMJt6YQwYkqxRnBCSKsJyBzt2Pdj9OW9TlOMGleTcn0jaLAJ5SL0pZ61O/xirhdj27pvXOL98c9G7vdzmuvvcaDDz5Y6/YXL17M22+/zebNm8nIyCAoKIgLLriAO++8k1GjRpWpO2HCBCZOnMiYMWOYO3duSXl8fDzvvfceGzduJCkpiYyMDIKDg+nSpQujR4/mtttuK9NrC5CUlMTkyZNZt24dBw4cIC0tDR8fH9q3b8+QIUN46KGHCA0NrfX9wbndo7vtl3l0XHkvXgYbAEmGpnjf9V8aR7dycWQi1eOp2x00hD2czyYnK4P01BSyjqdgXPowbQv/cnVItVZgN5Fj8COnaC514xqsQLrT3JGT4ReA3VbyMGA/9Rw7BrvN8U6x9LFS5QZsju+xO54XHy+pYzv1fanyMmXF1yl1PKTweJXfTLqb4lEZucYAxwgAr0Ca5e0lnIxqX+ugoTnJ7W6CQgsUWrHbLI7vbRYMNiuGQgvYHV+NNgsGuxWDzYrRbsVos2K0WzDaCzHZLBjtVkx2KyYKHV+LvvfCiheFeNmteGHF2wUjJpytwG5yjIwx+JNXNIXD4hWI1SuQwqLRMfgEOaZw+AY7Rsf4h1BotRD3063V7in8300/4RsY7Eg683Kx5GeXSTptBbmOhyUXuyUPLLlgzcVgzcdYmIfRmoexMB+TLQ+vwny8bPl42fPxtuVjthfgQwE+9nx8KMBUg6kezpZGCCdMjcnyjiDfvym2wChMjZrhF9acoCYtCYuKISg4tE575135tykvN5tj//uL9KS/yD32F4UnEjGfPIR/bjJhlhQi7Gn19jq54j2ER20v1Ldv35LkduXKlTRt2rTSuaze3t5ER0czdOhQhg0bVp9hNmjnaqK7e8N/abV0VMmWJmmEkHvzMpq37eTiyESqz5M3sG9IQ8zPpqYfSKwPuxb/C4ZhzT2JJedkmSGtBks2JksWXpYsvAuz8S7McQxrtecQYM/Fp54W9JLaKbB7kVUqOco3BVLgFYDVHIStaH67wSeoaOpA8Kn57YEh+AWF4RcUSmBQowpXam1IH4TZbTYKC61YLQVYLAUUWgqwWguwFuRTaC3AarFgs+ZTsPgBzrPuqfb1MwjgmCkSX1sO/vZs/R9xU+kEsrvpEAiOwhzanIDwFgQ3bUV4ZItqzz2tK+76t8lSkM+x/+3nRFIC2UcdibDXyUP45yTRyJJCE1uq06bg/O7Tnc5PL3fKtarKoxLd0qo6R1eq51xMdA/s2kToF0NLFgTIsvuRcv1C2na91MWRidRcQ5lfU1OesIezKz6QKMjPIycznZzMdHKz0snPdswBteRmUJhzEnv+ScjLhIIsxzxQaxZe1my8rY6E2deWgz85BNpza7Rw17kk1+7NQe+2RcNdg7CaA0sNd3UkqF7+jTD7B+MTGIpf0fz2wJCwOn3z7okfhDkzec/PyyH75AlyTp4gLzudvKwTWLIzsOZkFH2olIk9PwNjQRamAsc8ae+iudLFw9AD7Tlu0dtZ3/LsZvIN3uTjQ4HBG4vBB4vRB2vRo3nenzWac+qKBKqmGtrfpkKrldSUgxz/3z6yj+zHcvwA7Q98VqNRH3u84jjv2fV1EGXlPGqObmn79+/XdjpSa8kH9+D/xQ0lSW6B3YsDf3uXTkpypYGrj5WkXckT9nCuj3nHp/P28cXbp3j175qz22zk5GSSczKdnKwT5GVlUJCTgd8vzxNr21/t6x0hnAONrwAM2A1Gx80ajDgmiRmxG0yO+acG46lH0TEMBgwGE/aicwzF55a6jqH0eQbDqedGx3UMBqNjaGNRmQEDGEwYjAZCNrxWo3va59vJLd+cu+Lnrq7VdD/0tgPvLVfu4+uPj68/YU2a1Tie4v8f2SdPkJPp+EApP+sElpwMCnMyKCyzsNhJvCxZeFmz8LE6Fhbzs2UTbj9Rq2TZYjeRjzf5Bm8K8MZiLEo8DT5YTT4UGn0oNPlQaPLFZvLF7uV44OWHweyLweyHweyH0dsPo7c/Xt5+mHz8Mfv6Y/bxw+wTgLdfgOPfq+irr9GI7xliqukHEtlRvWv871DfGtrfJpOXF02bx9K0+an1jH6ftJ7wGqzzUWByj971qnLrRLdVK82blNo5fvR/WOdeRxSO/Y8L7QZ2XDKNbpcOcXFkIrXn6x9I7MPfs94Nh1LJKQ31AwmD0Yh/YAj+gSHAqb/H8fvWEluDN7L7W9/ktvPD41N21+ie3PnNeUP9uauMuyXvZf9/1ExNFxX8w7srcU/8hNnsjRlwpy4hZ34gIXUnK6oXHKj+z547/86riFsPXS6Wk5PD8uXL2bt3L5mZmRXumWswGHjuuedcEF3Dc64MXc46eYLk16+mnXVvSdn6js/T64bHXBiVSN1oaEOpzjXuOrerJjxxWKwn3hN41s8deMZidaU1pLnU1eHp02o8QUP6neexc3QB5s6dyyOPPMLJk6fG+5++GnPx88LChr9yX304FxLd/Lwc/px+DZ3zt5aUxbe+l963vuzCqETkXOcpH0h44htZT7ynYp7ycweelbw3pGSjOjztAwlP1VB+53lsovvTTz8xYMAAQkJCuO+++1i+fDnx8fG8/fbbJCQksHjxYvbu3cv9999Pjx49GDNmjKtDbhA8PdG1FRay9bXh9Mg8NW9qfcQIet77rss3hhcR8QSe+EbWE+/Jk3lK8t5Qko3q8qQPJDxVQ/md57GJ7t///nf++9//snnzZrp27cptt93GRx99VNJzW1hYyBNPPME777zDunXr6NRJ28RUhScnunabjQ1v3Umv1IUlZZuC+tP94fkYT9u7WEREas4T38h64j2Je2soyUZNecoHEp6qIfzO89hEt3HjxsTFxbFmzRqAcokugM1mo23btnTr1o2FCxdWdikpxZMT3fg54+l98NSCGtt9exD3yDK8fc60RqCIiNSUJ76R9cR7EvfVEJIN8Wzu/DvPY7cXysrKomXLliXPfX0dyUpmZiZBQUGAY6/dXr168fPPP7skRnEf67+cXCbJ/dOrPbH3LVKSKyJShxraVhtV4Yn3JO7L1z+QXg9+fMZkw523fpKGz1N/57l1ohsZGUlqamqZ5wB//vknPXr0KCk/fvw4ubm59R6fuI8t383hoh3/duzBCBw0Nifi7m8ICGrk0rhEREREqsJTkw0RV3HrlXni4uL4888/S55fcskl2O12XnnllZIthtauXcsvv/zCeeed56owxcX+WPMNndY9jrFo0/UjhONz61eERkS5ODIREREREXEFt050Bw0aRGJiIuvWrQOgf//+dOnShYULF9KsWTN69OhBv379sNlsPPzww64NVlxi72+rifnvXXgbrABkEEDeyPlEtmzn4shERERERMRV3DrRveWWW/juu++IinL0zBmNRpYuXcrVV1/N0aNH2bp1K/7+/rz00kvcfPPNLo5W6tuhfb8T/tUoAgx5AOTYfUge9BGtzu9xljNFRERERMSTufUc3ZCQEAYMGFCmrFmzZnz//ffk5OSQkZFBkyZNMGnbmHPOsaQDmD69njBOAo4VCff2fZOuF13l4shERERERMTV3DrRPRN/f3/8/f1dHYa4QMbxY2S9N5QY+9GSsm09/sOF/W5wYVQiIiIiIuIuGkyim5yczNq1a0lKSgIgOjqa3r17Ex0d7eLIpD7l5WSRNOtazrcdLClb1/5xLh56jwujEhERERERd+L2iW5SUhIPPvggX3/9NTabrcwxg8HAtddey4wZM2jevLmLIpT6YrUUsHvmCC6wnNowOj56DL1HPefCqERERERExN24daKblJRE7969OXToEAEBAVx99dW0bt0au91OYmIiP/74I4sXL2bjxo2sW7dOvbsezG6zsfXNW7goJ76kbEPoIC6+8zXXBSUiIiIiIm7JrRPdZ555hkOHDjF69GhmzJhBWFhYmeMnTpzg4Ycf5uOPP+b//u//mDNnjosilbq27t0H6J3+Xcnzrf6X0n3cXAxGt144XEREREREXMBgt9vtrg6iMk2bNiUwMJA///yz0pWVCwsLad++PZmZmRw9erTCOlJWx44dAdixY8dZarqHdZ+8wMX7Xit5vsO7M7GP/ICvX4DrghIRERERkTpVm7zFrbvDsrKyuPjii8+4fZDJZOLiiy8mOzu7HiOT+rLxqzfLJLkJphhajPtaSa6IiIiIiFTKrRPd888/v2SV5TNJSkoiLi6uHiKS+rTtl3l02/psyfP/GZoSctc3BDcKd2FUIiIiIiLi7tx6ju7DDz/MmDFj+OGHHxgwYECFdX788UdWrVrF3Llz6zc4cYrUlEPs/f5NApPX412YQ4HJn+yo3vg070Tc6ofwMjhW2k6lEfxzMY0jW7o2YBERERERcXtunehefvnljBs3jqFDhzJy5EhGjhxJq1atADh48CBffPEFX375Jffddx9XXHEFiYmJZc5v2VJJkbvKy8li+3v30C1tGb0NhacOWIEDW7DvB4PBUZRp9yP9+s9o26ajS2IVEREREZGGxa0XozIajRgMBux2O4birOc0lR0zGAxYrda6DrFBcvViVHk5WSS8NpCOBb+fta7NbuD3vu/Ttd/weohMRERERETcRW3yFrfv0a0swZWGa/t799Cz4Hfs9lO9thWx28FosJP3+1egRFdERERERKrIrRPdFStWuDoEcbLUlES6pS0Dw5mTXDh1vHvaUlJTDtE4skXdBygiIiIiIg2eW6+6LJ5n7/dvYS49J7cKzIZC9n0/q44iEhERERERT6NEV+pVYPL6Gp0XkBzv5EhERERERMRTufXQ5RdffLHKdQ0GA88991wdRiPO4F2YU6/niYiIiIjIucetE90JEyaUrLpckeKFqopXXlai6/4KTP6OLYRqcp6IiIiIiEgVuHWiO2fOnArLbTYbhw4d4ocffiA+Pp777ruPCy+8sJ6jk5rIiuoFB7ZU+7zsqN51EI2IiIiIiHgit95HtyomTZrEv//9b+Lj4+ncubOrw2kQXLmPbmpKIiGzLqjWglQWu4mMe7dp1WURERERkXNIbfKWBr8Y1dNPP03z5s155plnXB2KVEHjyJZsDb8GcOyTeybFx7eED1KSKyIiIiIiVdbgE12Azp07s2bNGleHIVXU5c632eHduUr76O7w7kzXu96un8BERERERMQjeESim5CQgNVagxWOxCV8/QOJffh71ocNxWI3VVjHYjexPmwosY/8gK9fQD1HKCIiIiIiDVmDTnTT09N57LHH+O233+jZs6dTrrlu3TqGDx9OZGQkZrOZsLAw+vfvz4IFC6p1ndatW2MwGCp97N69u8LzbDYbr732Gp07d8bPz4+IiAhuuOEGdu7c6Yzbcxu+/oH0evBjMu7dxrrW9/G7T3f2eMXxu0931rW+j4x7t9HrwY+V5IqIiIiISLW59arLbdq0qfRYVlYWaWlp2O12/Pz8mDRpUq3bmz9/PjfddBM2m40LL7yQvn37kpSUxIoVK/jll18YP348L7/8crWuOWbMmArLQ0JCypXZ7XZGjhzJggULaNSoEYMGDSI1NZWFCxeydOlSli9fTq9evWp0b+6qcWQLGt/6H1eHISIiIiIiHsStV102GivvcDabzURFRXHFFVcwfvx4OnToUKu2rFYr0dHRHDt2jHnz5jFy5MiSY/Hx8Vx55ZXk5+ezd+9eYmNjz3q91q1bc/DgwUr3AK7IBx98wB133EG7du1YvXo1TZs2BWDhwoWMGDGC2NhYdu/ejZdX7T6fcOWqyyIiIiIiIlXhsasu22y2Sh/5+fkcOHCADz/8sNZJLsDu3bs5duwYcXFxZZJcgN69ezNgwADsdjubN2+udVuVmTp1KgCvvvpqSZILMHz4cIYOHUpCQgJff/11nbUvIiIiIiLiCdw60a1PPj4+VaoXFhZWJ+3v37+fnTt34ufnx6BBg8odHzFiBABLliypk/ZFREREREQ8hVvP0a1Pbdq0oU2bNuzevZsvv/ySG2+8seRYfHw8P/zwAzExMVx++eXVuu7kyZNJSEjAx8eHjh07MmzYMCIiIsrV27ZtGwCdOnXCbDaXO969e/cy9URERERERKRibt2j+/rrr2MymVi2bFmldb777jtMJhNvvfVWrdoymUzMnTuXkJAQRo4cyUUXXcRNN93EFVdcwWWXXcYFF1zAjz/+iLe3d7Wu++STTzJ79mxef/117r77blq3bs37779frl5iYiIAzZs3r/A6xeXF9URERERERKRibt2ju3DhQqKjo7nmmmsqrTNw4ECioqJYsGAB48aNq1V7ffr0YeXKlQwbNoxNmzaxadMmAIKCgrjqqquIjo6u8rWGDh1Kv3796NGjBxEREfz111988MEHzJgxgzvvvJPw8HCuu+66kvpZWVkA+Pv7V3i9gICAMvWqonjy9ukSEhKqtKCWiIiIiIhIQ+TWPbp79uyhU6dOZ6xjMBjo3LlzpfvSVsfnn39Or169aNmyJevXrycrK4s///yTf/zjH7z00ktcddVVWCyWKl3r9ddfZ9iwYbRs2RI/Pz86duzI1KlTS3qex48fX6Z+8erMBoOh1vchIiIiIiJyLnPrHt309PQqLf4UGhrK8ePHa9XW3r17GTNmDE2bNmXp0qUlPajt2rVj9uzZJCcns2TJEubMmcPYsWNr3M6dd97Jc889x59//sn+/fuJiYkBHL3GANnZ2RWeV1weGBhY5bYqW4a7sp5eERERERERT+DWPbqRkZH8/vvvZ633xx9/0Lhx41q1NW/ePCwWCwMHDixJcksrXpxqxYoVtWrHaDSWDBtOTk4uKW/ZsiUAhw8frvC84vLieiIiIiIiIlIxt050+/Xrx44dO1i4cGGldRYtWsQff/xBv379atVWcSIZHBxc4fHi8tr2HAOcOHECKNs727VrV8CRtFc0PHrLli0AdOnSpdbti4iIiIiIeDK3TnSffPJJvL29GT16NA8//DA7d+4kLy+P/Px8du7cycMPP8yoUaPw9vbmySefrFVbkZGRACULUJ1u48aNALRu3bpW7ezYsYM9e/bg7+9PXFxcSXlMTAznn38+ubm5LF26tNx5CxYsAGDw4MG1al9ERERERMTTuXWie/755/PRRx9hNBp544036Ny5MwEBAQQEBNC5c2def/11jEYjc+fOpXPnzrVq69prrwVg1apVzJo1q8yxdevWMX36dABGjBhRUj5z5kzi4uJ4+umny9T/4Ycf2Lx5c7k2tm/fzg033IDdbufOO+8st1XRo48+CjgS/KNHj5aUL1q0iG+++YaYmJgyKzWLiIiIiIhIeW69GBXADTfcQLdu3Zg2bRo///wzhw4dAqBFixZcddVVPPzww7Rr167W7XTv3p3HH3+cKVOmMG7cON588006dOhAUlIS8fHx2Gw2xo4dy1VXXVVyTmpqKnv27Ckz1xYgPj6eiRMn0qpVK2JjY4mIiGD//v1s2bIFq9XKFVdcwaRJk8rFcPvtt7Ns2TIWL15MXFwc/fv3JzU1lZUrV+Lr68snn3yC2Wyu9b2KiIiIiIh4MrdPdAHatm1bsi1PXZo8eTKXXHIJb7/9Nps3b2bPnj0EBQVxxRVXcOeddzJq1KgqXWfAgAEcOnSIjRs3sm3bNjIyMggODuayyy5j9OjR3HbbbZhMpnLnGY1G5s+fz4wZM/jggw/49ttvCQgIYNiwYbz44otaLVlERERERKQKDPbiDVzlnFGcMFe2/ZCIiIiIiIir1SZvces5umvXruX2228nPj7+rHXWr19fj5GJiIiIiIiIu3LrRPfNN9/kiy++4Pzzz6+0zvnnn8+8efPqZWiziIiIiIiIuD+3TnTXrVtHt27daNSoUaV1QkND6d69O7/++mv9BSYiIiIiIiJuy60T3aSkJFq2bHnWei1btiy38rGIiIiIiIicm9w60Q0ICCA1NfWs9VJTU8vtSSsiIiIiIiLnJrdOdLt27cqaNWs4fPhwpXUOHz7M6tWr6dKlSz1GJiIiIiIiIu7KrRPd22+/nby8PIYMGcLWrVvLHd+6dStDhw6loKCA22+/3QURioiIiIiIiLvxcnUAZzJ69Gi++uorFi5cyEUXXUT37t2JjY3FYDCwb98+tmzZgs1mY9iwYYwZM8bV4YqIiIiIiIgbcOtEF+CLL77gP//5D9OmTWPTpk1s2rSp5FijRo145JFHeOaZZ1wYoYiIiIiIiLgTg91ut7s6iKqwWCxs2rSJQ4cOAdCiRQsuvPBCzGaziyNreDp27AjAjh07XByJiIiIiIhIxWqTt7h9j24xs9lM79696d27t6tDERERERERETfWYBJdq9XKtm3bSEpKwmAwEBUVRdeuXfHyajC30ODZ7XYayACAc4LBYMBgMLg6DBERERERt+P2WWJ+fj4vvPACb7/9NpmZmWWOBQUFcc899zBhwgR8fX1dFKFnKywsJC0tjczMTAoKClwdjpzG29uboKAgwsPDMZlMrg5HRERERMQtuHWim5+fT//+/YmPjwegS5cutG7dGoCDBw+ybds2Jk+ezJo1a/j555/x8fFxYbSep7CwkMTERPLy8lwdilSioKCAtLQ0srOzadmypZJdERERERHcPNGdPn06a9eu5bLLLuOtt96iU6dOZY7/8ccf3H///axevZrXXnuN8ePHuyhSz5SWlkZeXh4mk4mmTZsSEBCA0ejWWy+fU2w2G9nZ2Rw5coS8vDzS0tJo0qSJq8MSEREREXE5t151uWvXrqSkpJCQkEBgYGCFdbKysoiNjaVp06Zs3769niNsmKq6ellCQgIFBQVER0cTEhJSH6FJDWRkZJCUlIS3tzexsbGuDkdERERExClqs+qyW3fP7du3j759+1aa5AIEBgbSt29fEhIS6jEyz2e320vm5AYEBLg4GjmT4tenoKBAi4WJiIiIiODmia6Xlxc5OTlnrZeTk6PVl52sdMKk4crurfTro0RXRERERMTNE93OnTvzyy+/sH///krr7N+/n19++YUuXbrUY2QiIiIiIiLirtw60b377rvJzc2lb9++fPjhh2W2t8nPz2fu3Ln07duXvLw87rnnHhdGKiIiIiIiIu7Crcf7/vOf/2TNmjW8++673H777dxxxx00bdoUg8FASkoKdrsdu93O3XffzejRo10droiIiIiIiLgBt+7RBZg9ezbz58/nsssuw8vLi+TkZJKSkvDy8qJPnz7Mnz+fWbNmuTpMERERERERcRNu3aNbbPjw4QwfPhyr1UpaWhoA4eHhWoBKREREREREymlQmaKXlxdNmzZ1dRgiIiIiIiLixtx+6LKIOzIYDBgMBkJDQ0lPT6+wzoQJEzAYDLz88svlzm3dunXdBykiIiIico5qUD264rmOZebzxcZE1u8/Tla+lUAfLy5uE86NF7YgIsjH1eFVKj09nenTpzNx4kRXhyIiIiIiIkWU6IpL5VkKmbhkBws2H8ZSaC9zbPXeVF776U9G9GjBC0M64Gs2uSjKihmNRry8vHjttdd4+OGHCQ0NrdJ5u3btwmw213F0IiIiIiLnLg1dFpfJsxQy5oMNfL7hULkkt5il0M7nGxIZ88EG8iyF9RzhmZnNZu68805OnjzJtGnTqnxeXFwcsbGxdRiZiIiIiMi5TYmuuMzEJTtYv/94lequ33+ciUt21nFE1ffMM8/g4+PDjBkzOH68aveiOboiIiIiInVLia64xNHMPBZsPlytcxZsPsSxzPw6iqhmmjVrxl133UVmZiZTp051dTgiIiIiIoISXakFu91ORq6lRo+P1h6sdLhyZSyFdj6KP1DjNjNyLdjt1WuzKp5++ml8fX154403SvZ5FhERERER19FiVFJjJ/OsdJ34Y722+cYv+3jjl301Pn/bC38jxM+5C0FFR0czduxYXn/9daZMmcKkSZOcen0REREREameBt+je/XVV9OmTRst7iMu9dRTT+Hr68vMmTNJTU11dTgiIiIiIue0Bp/oHj58mAMHDnDgwAFXhyLnsKioKO655x6ysrKYPHlyja7x448/0qNHD3x9fWnWrBnPPvsshYXutdK0iIiIiEhD0OCHLn/00Ufk5OS4OoxzUrCvF9te+FuNzn131V/MXF79IcgPXNmWO/u0qVGb4Ii5rowfP57Zs2fz5ptv8vjjj1fr3K1btzJ48GDuu+8+PvnkE3bu3Mkdd9yB1Wrl5ZdfrqOIRUREREQ8U4NPdC+66CJXh3DOMhgMNZ7vesslrZi9KqFaC1KZTQZu6d3a6XNsnSUyMpJ7772XadOm8eqrrxIQEFDlc6dMmULnzp2ZPn06AOeffz7/+9//eOqpp3j22WcJDAysq7BFRERERDxOgx+6LA1TkyBfRvRoXq1zRvRoQUSQTx1F5Bzjx4/H39+ft956iyNHjlT5vF9//ZVrrrmmTNmgQYPIzc1l8+bNzg5TRERERMSjNZhE12KxsHnzZpYsWcKSJUvYvHkzFovF6e2sW7eO4cOHExkZidlsJiwsjP79+7NgwYJaXXfv3r34+flhMBgYOHBghXVuvfVWDAZDpY+33367VjG4mxeGdKRXTFiV6vaKCeOFIR3qOKLaa9KkCePGjSMnJ4cPP/ywyuclJycTFRVVpiwyMhKApKQkp8YoIiIiIuLp3H7ocnZ2Ni+88ALvv/8+J0+eLHMsKCiIO+64gwkTJhAUFFTrtubPn89NN92EzWbjwgsvpG/fviQlJbFixQp++eUXxo8fX+P5knfffTf5+flVqjtgwICSJKe08847r0Ztuytfs4kPb+/JxCU7WbD5UIXDmM0mAyN6tOCFIR3wNZtcEGX1Pfnkk8yaNYvs7OxaXcdgMJT5KiIiIiIiVePWiW5GRgZ9+/Zl+/btAHTt2pXWrVtjt9tJTEzkt99+47XXXuOnn35i1apVhISE1Lgtq9XKfffdh81mY968eYwcObLkWHx8PFdeeSWvvvoqd911V7W3Mnr//fdZvnw5Y8eO5Z133jlr/aeeeoq+fftW9xYaJF+ziUnXd+bRq9vz5aZDrPsrjax8K4E+XlzcJpwbL3T/4cqni4iI4L777uPVV1+t8jlRUVEkJyeXKSt+fnpPr4iIiIiInJlbD11+/vnn2bZtG/369WPHjh1s2bKFRYsWsXjxYjZv3syOHTu48sor+eOPP3j++edr1dbu3bs5duwYcXFxZZJcgN69ezNgwADsdnu150sePXqUJ554gquuuop//OMftYrRk0UE+XBfv7Z8fEcvFo+7lI/v6MV9/dq6bZJrt9vJy8ur9Pgrr7yC3W7Hbrfz1FNPlTv39O2wLr30Ur777rsyZcuWLcPPz48ePXo4LW4RERERkXOBWye6CxcuJDIykm+++Ya4uLhyx+Pi4vj6669p2rQpCxcurFVbPj5VS6jCwqo2p7TYgw8+SG5uLrNmzapJWHKOeOyxx9i+fTuPPfYYu3btYtGiRTz//PM8+OCDWnFZRERERKSa3DrRTUtL44orrsDf37/SOv7+/lx++eUcP368Vm21adOGNm3asHv3br788ssyx+Lj4/nhhx+IiYnh8ssvr/I1ly1bxhdffMEzzzxD27Ztq3zeokWLeOCBBxg3bhyTJ09m9+7dVT5XGqbu3buzZMkSli9fzgUXXMD999/PuHHj+Pe//+3q0EREREREGhy3nqPbpk0bTpw4cdZ6GRkZxMTE1Kotk8nE3LlzGTJkCCNHjmTy5MnExsaSnJzMmjVr6NmzJx9//DHe3t5Vul52djbjxo3jvPPOY/z48dWK5Y033ijzfPz48dx7773MmDEDL6+qv2QdO3assDwhIaHa84yl7g0YMIABAwa4OgwRERERkQbPrXt0x44dy4oVK/jtt98qrfPbb7/xyy+/cOedd9a6vT59+rBy5UpiYmLYtGkTX3zxBatWrSIgIICrrrqK6OjoKl/r2Wef5eDBg8yaNavKyXG3bt14++23+fPPP8nJyeGvv/7izTffpFGjRrz11ls88cQTNb01ERERERGRc4Zb9+g+9NBD7Nu3j379+vHAAw8wcuRIWrVqBcDBgwf54osvmDlzJnfffTePPPJIrdv7/PPPue2227j44ouZN28eHTt2JCkpiSlTpvDSSy/x888/s3LlSsxm8xmvs2nTJt544w1uueUW+vXrV+X2H3rooTLPY2JiGDduHJdffjk9evTgjTfe4NFHH6VFixZVut6OHTsqLK+sp1dERERERMQTGOx2e/nNS92EyeTYN9Vut1e6l2hlxwwGA1artcpt7d27l44dO9K0aVN2795NQEBAmeNDhw5lyZIlzJ49m7Fjx1Z6HavVykUXXURiYiK7d+8mIiKi5NiKFSvo168fAwYM4Pvvv69ybAA33HADCxYs4IMPPuC2226r1rmnK050K0uEAWw2G3v27AEc+/cajW7d+X9O02slIiIiIp6oKnlLZdy6R7dFixaVJrjONm/ePCwWCwMHDiyX5ALceOONLFmyhBUrVpwx0T18+DC//fYbkZGR3HDDDWWOpaenA7Bhwwb69u1LYGAg3377bZXia9euHUC5vVZFRERERESkLLdOdE/fa7QuHT58GIDg4OAKjxeXV3V155SUFFJSUio8duLECVauXElISEiV4ytelEtbzYiIiIiIiJyZxjgWiYyMBBzzayuyceNGAFq3bn3G67Ru3Rq73V7hY/ny5YBjdV273V7Sw3s2+fn5LF26FIAePXpU6RwREREREZFzlRLdItdeey0Aq1atYtasWWWOrVu3junTpwMwYsSIkvKZM2cSFxfH008/Xev29+zZw9dff01hYWGZ8mPHjnHTTTdx6NAhunbtyiWXXFLrtkRERERERDyZWw9dLnbgwAFWrVpFcnIy+fn5FdYxGAw899xzNW6je/fuPP7440yZMoVx48bx5ptv0qFDB5KSkoiPj8dmszF27FiuuuqqknNSU1PZs2ePU+bNJicnc9111xEeHk5cXBzNmjXj6NGjbN68mczMTJo3b86XX35Zb3OWRUREREREGiq3TnTz8vK46667+OyzzwDHCsuVqW2iCzB58mQuueQS3n77bTZv3syePXsICgriiiuu4M4772TUqFG1uv6ZtG/fnocffph169aRkJDAhg0b8PHxoX379gwZMoSHHnqI0NDQOmtfRERERETEU7j19kIPPfQQb7zxBk2aNGH06NHExsZWuCJysTFjxtRjdA2XthfyLHqtRERERMQTeez2Ql988QWNGzcu2a5HRERERERE5GzcuusnKyuLPn36KMkVERERERGRKnPrRLdjx44cOXLE1WGIiIiIiIhIA+LWie7jjz/Ohg0bWLt2ratDERERERERkQbCrRPdG264gVdeeYVrr72WF198kbVr13Lw4EESExMrfIjUF4PBgMFgIDQ0lPT09ArrTJgwAYPBwMsvv1zu3NatW9d9kCIiIiIi5yi3XowKoEuXLoSGhjJx4kQmTpxYaT2DwYDVaq3HyMSpso7Clg/hwK9QkAXegdD6Muh+CwQ2cXV0lUpPT2f69Oln/NkUEREREZH65daJ7rfffsv111+P1WolIiKCVq1anXF7IWmALLnw3Xj47TOwWcoe+2s5rHgZuo2Gga+A2dc1MVbCaDTi5eXFa6+9xsMPP1zlfY537dqF2Wyu4+hERERERM5dbp3ovvDCC9jtdubMmcMtt9yCwWBwdUjiTJZc+GQEHFxTeR2bBTbPhdR9cPMCMPvVW3hnYzabueOOO3jrrbeYNm0a//rXv6p0XlxcXB1HJiIiIiJybnPrObq7du3i8ssvZ8yYMUpyPdF348+c5JZ2cA18/1TdxlMDzzzzDD4+PsyYMYPjx49X6RzN0RURERERqVtuneg2btyYwMBAV4chdSHziGO4cnVs/dQxl9eNNGvWjLvuuovMzEymTp3q6nBERERERAQ3T3RHjBjBunXrOHnypKtDkYrY7ZCbXrPHhnfKz8k9G5vFcV5N28xNd8TsZE8//TS+vr688cYbpKWlOf36IiIiIiJSPW49R/ell14iPj6e66+/nnfffZeYmBhXhySl5WXAK63qt81Vkx2Pmhp/EPwaOS0cgOjoaMaOHcvrr7/OlClTmDRpklOvLyIiIiIi1ePWie7gwYMxmUwsX76c8847j9atW9OsWbMK5+saDAZ+/vlnF0QpAk899RTvvPMOM2fO5LHHHqNx48auDklERERE5Jzl1onuihUrSr63Wq3s27ePffv2VVhXi1WJK0VFRXHPPffw2muvMXnyZF555ZVqnb9q1SqmTp3Kb7/9RmJiIi+88AITJkyom2BFRERERDycWye6+/fvd3UIcia+IY6hwDWx9g1YPaX6513+BPS+v2ZtgiPmOjJ+/Hhmz57Nm2++yeOPP16tc7OysujQoQOjRo3i4YcfrpsARURERETOEW6d6LZqVc/zP6V6DIaaz3ftORZ+nVG9BamMZsd5Tp5j6yyRkZHce++9TJs2jVdffZWAgIAqn3vNNddwzTXXAI6EWUREREREas6tV10WDxbUFC4YVb1zuo2GwCZ1E4+TjB8/Hn9/f9566y2OHDni6nBERERERM5JSnTFdf7+CrS6rGp1W10GA6s379UVmjRpwrhx48jJyeHDDz90dTgiIiIiIuckt0p0TSZTjR9eXm49ClsqYvaDmxdAj1sdw5IrYjQ7jt+8EMy+9RldjT355JMEBASQm5vr6lBERERERM5JbpUd2u12l5wrLmT2gyEzoN//wZaP4MAaKMgC70BofRl0v8XthyufLiIigvvuu49XX33V1aGIiIiIiJyT3CrRtdlsrg5BXCWwCVz+uOPRAJztg5VXXnml0i2G9KGMiIiIiEjdcqtEV+RclZWVVbJHdEFBASkpKfz22294e3vToUMHF0cnIiIiItKwKNEVcQObNm2iX79+Jc9nz57N7NmzadWqFQcOHHBdYCIiIiIiDZASXRE30LdvXw1pFhERERFxErdadVlERERERESktpToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOhKhQwGQ8n3Wg3YvZV+fUq/biIiIiIi5yolulIhg8GAyWQCID8/38XRyJkUvz4mk0mJroiIiIgISnTlDPz9/QHIzMx0cSRyJsWvT0BAgIsjERERERFxD16uDkDcV3BwMJmZmRw/fhwvLy+Cg4NLennF9QoLCzl58iTHjx8HICgoyMURiYiIiIi4ByW6UqmgoCBCQkLIyMjg6NGjHD161NUhSSUaNWqkRFdEREREpIgSXamUwWAgMjISPz8/Tpw4obm6bsjHx4fQ0FBCQkI0P1dEREREpIgSXTkjo9FIaGgooaGh2O12rcDsRgwGg5JbEREREZEKKNGVKlNiJSIiIiIiDYFWXT7NunXrGD58OJGRkZjNZsLCwujfvz8LFiyo1XX37t2Ln58fBoOBgQMHVlrPZrPx2muv0blzZ/z8/IiIiOCGG25g586dtWpfRERERETkXKFEt5T58+dz6aWXsmjRIlq0aMHw4cPp1KkTK1as4IYbbuCpp56q8bXvvvvus85xtdvtjBw5kkceeYTDhw8zaNAgOnbsyMKFC7nwwgtZv359jdsXERERERE5VyjRLWK1Wrnvvvuw2WzMmzePjRs3Mm/ePFatWsWaNWvw9fXl1VdfJSEhodrXfv/991m+fDl33XXXGevNmTOHBQsW0K5dO3bv3s2CBQtYsWIF8+fPJzc3l9GjR2O1Wmt6iyIiIiIiIucEJbpFdu/ezbFjx4iLi2PkyJFljvXu3ZsBAwZgt9vZvHlzta579OhRnnjiCa666ir+8Y9/nLHu1KlTAXj11Vdp2rRpSfnw4cMZOnQoCQkJfP3119VqX0RERERE5FyjRLeIj49PleqFhYVV67oPPvggubm5zJo164z19u/fz86dO/Hz82PQoEHljo8YMQKAJUuWVKt9ERERERGRc40S3SJt2rShTZs27N69my+//LLMsfj4eH744QdiYmK4/PLLq3zNZcuW8cUXX/DMM8/Qtm3bM9bdtm0bAJ06dcJsNpc73r179zL1REREREREpGLaXqiIyWRi7ty5DBkyhJEjRzJ58mRiY2NJTk5mzZo19OzZk48//hhvb+8qXS87O5tx48Zx3nnnMX78+LPWT0xMBKB58+YVHi8uL65XFR07dqywfPfu3ZjN5kqPi4iIiIiIuFpCQkKFnYBVoUS3lD59+rBy5UqGDRvGpk2b2LRpEwBBQUFcddVVREdHV/lazz77LAcPHuSXX36pUnKclZUFgL+/f4XHAwICytSrDYPBUOMfmLpSvMhXbGysiyNxHk+7J0+7H9A9NRS6p4ZB9+T+PO1+QPfUUOieGgZ3vCez2VySB1WXEt1SPv/8c2677TYuvvhi5s2bR8eOHUlKSmLKlCm89NJL/Pzzz6xcufKsSeKmTZt44403uOWWW+jXr1+V2rbb7YAjCXWWHTt2OO1ada24d7khxXw2nnZPnnY/oHtqKHRPDYPuyf152v2A7qmh0D01DJ52T5qjW2Tv3r2MGTOGiIgIli5dSs+ePQkICKBdu3bMnj2bIUOGEB8fz5w5c854HavVyl133UVISAhTpkypcvtBQUGAY8hzRYrLAwMDq3xNERERERGRc5F6dIvMmzcPi8XCwIEDK+wev/HGG1myZAkrVqxg7NixlV7n8OHD/Pbbb0RGRnLDDTeUOZaeng7Ahg0b6Nu3L4GBgXz77bcAtGzZsuT8yq5bup6IiIiIiIhUTIlukeJEMjg4uMLjxeXHjx+v0vVSUlJISUmp8NiJEydYuXIlISEhJWVdu3YF4I8//sBisZQbHr1lyxYAunTpUqX2RUREREREzlUaulwkMjISoGQBqtNt3LgRgNatW5/xOq1bt8Zut1f4WL58OQADBgzAbreX9PACxMTEcP7555Obm8vSpUvLXXfBggUADB48uLq3JiIiIiIick5Rolvk2muvBWDVqlXMmjWrzLF169Yxffp0AEaMGFFSPnPmTOLi4nj66aedEsOjjz4KwJNPPsnRo0dLyhctWsQ333xDTEwM1113nVPaEhERERER8VQGe/Fyv8ITTzxRsoBUx44d6dChA0lJScTHx2Oz2Rg7diyzZ88uqT9hwgQmTpzImDFjmDt37lmvv2LFCvr168eAAQP4/vvvyx232WyMGDGCxYsXExoaSv/+/UlNTWXlypX4+Pjw888/c8kllzjtfkVERERERDyRenRLmTx5MosWLeJvf/sbKSkpLF68mJ07d3LFFVfw6aeflkly64LRaGT+/PlMnTqV6Ohovv32W37//feSfX2V5IqIiIiIiJydenRFRERERETEo6hHV0RERERERDyKEl0RERERERHxKEp0RURERERExKMo0RURERERERGPokRXREREREREPIoSXREREREREfEoSnRFRERERETEoyjRFREREREREY+iRFdEREREREQ8ihJdERERERER8Sherg5A6l9kZCTZ2dm0bNnS1aGIiIiIiIhUKDExkYCAAFJSUqp9rnp0z0HZ2dlYLBZXhyEiIiIiIlIpi8VCdnZ2jc5Vj+45qLgnd8eOHS6OREREREREpGIdO3as8bnq0RURERERERGPoh5dERERERGRc1XWUdjyIRz4FQqywDsQWl8G3W+BwCaujq7GlOiKiIiIeDJPfBPriffkifQ6uTdLLnw3Hn77DGynrd/z13JY8TJ0Gw0DXwGzr2tirAWD3W63uzoId5KXl8ekSZP4/PPPSUxMJCwsjIEDB/Liiy/SvHnzKl+ndevWHDx4sNLju3btIi4urly5zWbj9ddf5/3332ffvn0EBgbSt29fJk6cSIcOHWp0T6crHuuuOboiIiIe7ExvYgGM5ob3JtYT78kT6XVyf5Zc+GQEHFxz9rqtLoObF4DZr+7jOk1t8hb16JaSl5dH//79Wbt2LVFRUVx77bUcOHCAOXPm8O233xIfH09sbGy1rjlmzJgKy0NCQsqV2e12Ro4cyYIFC2jUqBGDBg0iNTWVhQsXsnTpUpYvX06vXr1qdG8iIiJyDqnKm1ibBTbPhdR9LnsTWy2eeE+eyNNfJ0/ppf5ufNWSXHDU+/4pGDKjbmNyMvXolvL888/zr3/9i969e/Pjjz8SGBgIwLRp03jssce4/PLLWblyZZWuVdyjW51/3g8++IA77riDdu3asXr1apo2bQrAwoULGTFiBLGxsezevRsvr9p9PqEeXREREQ/3zYOON+NV1eNW938T64n3VJqnJFCe+jp5Ui915hGY3rHi+6iM0QyP7qz3n8Xa5C1KdItYLBaaNGlCeno6W7ZsoVu3bmWOd+3ale3bt7Np0yZ69Ohx1uvVJNHt2LEjO3fuZPHixVx33XVljl177bV88803LFiwgOHDh1f5mpW1A0p0RUREKtTQE44G9Ca2yjzxnoopgXL/16mBDPM9K7vdcS+rJsOaadU//8rn4PLHnR/XGWjoshOsWbOG9PR0YmNjyyW5ACNGjGD79u0sWbKkSolude3fv5+dO3fi5+fHoEGDKmz/m2++YcmSJbVOdEVERKQCnrIwy9aPqpdogKP+j8/C+UPBXgi2QrDbHA9bYamyUsdOL7fbwGarZd3C8uV2GxzfX7N7WvYEdP0H+IY4Hn6NHF/N/mAwVO96daEhD/O12SD/JORlnPq6+cOavU5f3QvtBoCXD3j5VuGrL3h5O74aver+tazPYb52O1hyoCAHLNlFX3OgINvxKP6+zNeq1C06Ri36OA+sqfdEtzaU6BbZtm0bAN27d6/weHF5cb2qmjx5MgkJCfj4+NCxY0eGDRtGREREpe136tQJs9nstPZFRESkCtw94bDbHclE7gnITS/6egLySn1fXH6gim/IT7f9C8fDk+z8yvE4ndHrVPJb8mhUcZlfBeVevs5Jrlw5T9KSVzZJLX6UPD9ZwfFSZfknnRMHwL6fHI+aMBirlhybvEslyVVNqL0dCeJvn1Yvpi0fQ3hbMJjKJ6AVJqZZp7635NTs36E+FGS5OoJqUaJbJDExEaDSlZWLy4vrVdWTTz5Z5vkjjzzC66+/zh133FHn7Rd39Z8uISGh2otqiYiIeLT6SjisBZUnqGcsz3D0bopz2KyQk+Z41ITJ+wzJcUgFyfFpz718HMN8f/useu1u/RT6/R/4Nz6VbFaYlJ50/CydKXEtLKjZvbsbu839EkR7oWOEhKfxDnR1BNWiRLdIVpbjEwp/f/8KjwcEBJSpdzZDhw6lX79+9OjRg4iICP766y8++OADZsyYwZ133kl4eHiZebjObl9ERESqqKYJR7cxYDRWnpwWJ6ilj1my6+AGnMQcAGFtHD2VRpOjN6rMV2P55+XKKqhbpo6xgrrF5RUdKzp33Sw4trv69+QTDEFRp3okrbnO+bcqLIDsY45HTXj5Oe6rJsN8p3cqSlLdaJkd70BHAl/Tn/GAxhDdHax5jg+DrHlgza/ga64jsT2XmP0dD29/x/9R7+LngaW+D6igzhnqbngXVr1a/VhaX+b8+6tDSnSLFC8aZahkGEp11+x6/fXXyzzv2LEjU6dO5bzzzuPuu+9m/PjxZRLds7VfE5VN2q6sp1dERKTaGvrCTQAb36tZwvFev7qJ52xKhtSGFj1Kfe/bCA6th93fVv+6fR513/l32cfgl5eqf96lD5W9J2v+qZ7NvPRTvZ6lH7kVlBXXd1YvaG0S7sJ858RQrHgYt09w0c9W0VefkNOen3681FdTUUqxanLNXqde91b9Z6/QWjYBLsyvJCmu7GsV6xYWJdzpiTV73X2CHAtTeVeUeAZUkqCeVtfLz/EhkLNddCesmV79RcO63+L8WOqQEt0iQUFBAGRnV/wpVE6OYzhE8ZZDNXXnnXfy3HPP8eeff7J//35iYmKq1H5xeW3bFxERcQp3XrjJZnMkJVlHi3rdjkLWsVPfZ6cWHSv63hVDHk3eZZPTypLW08t9Qxw9gWeSeQT+/MGz3sR2uwVWvFL7e/LygcAIx6MmLLkVJ8HFvfcVJceln9usNWv3TLwDK09Ci5+XlDUqX8fs57zFnJz1Op2JyQtMgeBTT++JP7rO8TutuppdCKPmOT0cpwhqCheMqt42UN1GN5wPL4so0S3SsmVLAA4fPlzh8eLy4no1ZTQaiY2N5ejRoyQnJ5ckuvXVvoiISK25YuGmQosjKS2XtB4rel7q+5zUukkoKuITXCoJbVQqMT1L0lqXq/564ptYd7kns5/jERRZ/XOLV9MtTnq/GgdJW6p/neYXwvXvle9NdQfu8jo5U+tLa5bouvsw37+/AmkJVd8yaeArdR+Tk7nR/wzX6tq1KwBbtlT8C6e4vEuXLrVu68SJE0DZ3tni9v/44w8sFku5lZed2b6IiEitOGvhpoLsop7V4gS21PenJ7C5J5x7D87Qpi/c8rWro6iYJ76Jbej3ZDAUDU0NgOBoiLumZolu+79DWIzz43OWhv46na4+eqldwezn+BDy+6ccaw409D2cK6BEt8ill15KSEgICQkJbN26tdxeugsWLABg8ODBtWpnx44d7NmzB39/f+Li4krKY2JiOP/889m1axdLly4tM3/Xme2LiIjUSk0WbtrykWPrjIKsogS2KHmt6yHDRjMEFA1TDYiAgCYVf//7Qvh1evWv37qP82N2Fk98E+tp96QEqmG8Tp7YS13M7Of4ELLf/zl+Tx9Y03DXWqiAwV7dVZY82LPPPsu///1vLrnkEn788ceSlY6nTZvGY489xmWXXcbq1atL6s+cOZOZM2cybNgwJk2aVFL+ww8/0LhxY3r06FHm+tu3b+emm25i165dPPjgg8yYUfbT7ffee4+77rqLdu3asWbNGpo0cfxgLVq0iOHDhxMTE8OePXsq3Ge3OooXo6pssSoREakjDXHhJrvdMcyyeE7rxvdgx2LXxeMdWJSoRjj+zQIaFyWtpb4vTm59G1VteHDmEZjesfoJx6M73fd1Ky3rqOe9ifWUe/rmweolUD1udd4+uvXBU16nqkzXKNbqMrh5ofsn8A1EbfIWJbql5OXl0bdvX9avX09UVBR9+vTh4MGDrF+/nvDwcNatW0fbtm1L6k+YMIGJEycyZswY5s6dW668VatWxMbGEhERwf79+9myZQtWq5UrrriCZcuWldtKyGazMWLECBYvXkxoaCj9+/cnNTWVlStX4uPjw88//8wll1xS6/tUoisiUs/OtHATuKZ3Iz/r1HDhrCNFX4u+zz5WtszZq7yezi+sKFGtLIGNOPXwrngbvlrz9IRD3JMSqIbDkus5vdQNSG3ylnobulxYWIjFYsHX131feF9fX5YvX86kSZP47LPP+OqrrwgNDWXMmDH861//okWLFlW6zoABAzh06BAbN25k27ZtZGRkEBwczGWXXcbo0aO57bbbMJnKr5hoNBqZP38+M2bM4IMPPuDbb78lICCAYcOG8eKLL2pbIBGRhqg+F26y5JVKXkslsNmnJ7NH638/18BIuOT+05LZCPBv7B6L6XjavEJpGDxtmK8n8/Bhvp6oXnp0v/nmG0aNGkV+fj4PPPAA06ZNY82aNXz77bdERkYyZswYQkND6zoMKaIeXRFpEBriMN+K1LansNByal5rSY9r6US2VO9rfobTwy9h9HL0sOafdLwe1dWmH9zyldPDcir12IgrecowXxEncvuhyxdccAFhYWEMGjSIWbNmccstt/DSSy/h4+NDdnY2rVq1YtOmTYSHh9d1KIISXRFxc+44zLemajL302CAFhdDbrojoc1Jq7PwwOAYIhzYtKiHtWiocPHz4u8Dmji2xTEaYdVk+OWl6jd15XNw+ePOv4W6oIRDRMQtuH2iGxAQwPr16+nUqRObNm3i4osv5umnn+Zf//oXSUlJXHvttVx99dX85z//qetQBCW6IuLGqj1fzQn7s1aX3e7YFicvw9G7mXey1PelvuadhEPr4cgf9RsfOJLSMslr6cS1VJl/ePWHDXv6wk0iIuI23H6Obm5ubskKwj169MBoNDJy5EgAoqOjeemll3jssceU6IqInOuctT9rZex2sOY5ktCShPS05LRc8nrSMSS45Hgm2Atrdn+14RNcqoc1oih5Lf5aqiwgAry86y4OT95qQ0REPEa9r/5gMBjw8fEps+Jwhw4dSExMrO9QRETEndRkf9atn0CzCx3Dfc+YnJZKXqvTE+kqjVrBwEmlhhI3qf+e6zPRwk0iIuLm6i3RnTBhApdffjkXXXQRBoMBQ6l97by9vcnOrufVH0VExH0UWmDt69VPQm1W+Ob+uompKrz8wDfY0dvqGwy+Iae+9wmG3UvhxP7qXzesDcQNcn68zqKVYkVExM3VS6I7evRoli9fzuzZswGw2+3ceuut9O7dmwsvvJBmzZrVRxgiIp7LnVcottsh5zhkHIKMw3Dyf6e+zzgMGf+DzGSgnrd1N5pLJakhp30fUnnyWvr42YYI+zWq2cJNrS+r0S3VK221ISIibqxeFqMqlpmZyaZNm9iwYQMbN25k48aNHDp0yBGIwUBhoQvmPJ2DtBiViAdxhxWKLbmOZPVMiaw1t27aBkfCFd29koS1dG9ro7IJq9nPMeS5LmnhJhERkRpz+8WoigUFBdGvXz/69etXUnb06FE2bNjApk2b6jMUEZGGryorFNsssHkupO6r2QrFtkLHHq3lEtnDp57X6fY3VdDiYvfdn1ULN4mIiLiE0xPd+Ph4unTpQkBAQJXqN2nShMGDBzN48GBnhyIi4tmcsUJxXsapXtfSvbDFvbInkxzzYJ3BHAAhzSt/bP8SVkyq/nXdfZivFm4SERGpd05PdC+99FKMRiOxsbFccMEFZR5RUVEl9caOHUuPHj24++67nR2CiIjnq8kKxVs+Akueowe2uFc2/6Rz4jGYICjqzImsb6MzDxXucRusmlL9Yb7db6l1+HVKCzeJiIjUO6fP0R09ejTbtm1jz549JXNui1dYbty4MRdccAGxsbHMnz8fLy8vkpOTndm8VIHm6Ip4gJWTYXkNFjmqKb9QCD5DEhsYCSYnfHb6zYPVG+bb49bq7aPrallHtXCTiIhIFdUmb6mzxajy8/P5/fff+e2330oeGzduxGKxYDAYsNvttGjRgoMHD9ZF83IGSnTlnOfOKxQXy88qtajT/0oNKS76enw/Tlul2OTtSFaDm0FIi1IJbNHz4GbgE+icts6mKvOOi7W6DG5eqB5QERERD+WWiW5FMjIymDNnDv/3f/9H586d+eijj2jfvn19NS9FlOjKOcsdVigGx56xmcll58aeLJXMZhyGvPS6aTuwKVz6cFES29yRyPo3BqOxbtqrCUuuhvmKiIhIw1l1OSQkhIcffpjY2Fiuu+46fv/9dyW6IlI/6mOFYijaMzat/KJOJUntYchKAbutxrdSK006QO9xrmm7qrQ/q4iIiNRSvfboltahQwf8/PzYvHmzK5o/p6lHV85Jzpr7WZBdQS/saVvvWPOcE7PRC4KjT5sbWzSceO9PsPGd6l/zyufg8sedE5+IiIhIHWowPbqltWnThl9++cVVzYvIuaRGKxR/DP4RjiHEpefG5p5wXlwBEUXzYk9b2Kk4sQ1sAkZTxedGXQCb53jeCsUiIiIiTuD0RPehhx6iW7dudOvWjY4dO+LlVXETCQkJREZGOrt5EXG2hrBw09ls+qB6CSGAvRBWT655m2X2jC21qFNJMtusdvNLg5rCBaOq10vdbXTDec1EREREasHpie4bb7xRsp2Q2WymY8eOJYlvp06d8PHx4ZNPPuHPP/9k1qxZzm5eRJzlTAs3/bUcVrzsugWB7HZHz2r2sVOPrGNln5cuL8h0bvsGU1HS2qzUasVFCzsVl51tz1hn+PsrkJZQ9RWKB75St/GIiIiIuAmnJ7qLFi1i69at5R6G097wtW3blrS0NL7//nu6d+9OkybqZRBxG/W1cFNp1nzIToXso0Vfjzl6k7OPlSovSlxzUsFmrV17VeHbCLqMLNsrG9LcsXJxZUOK65PZz/FvrxWKRURERMqo88WoUlNTyyW9+/btw2azlUl+o6Ki6NGjB19//XVdhiNoMSqpAmcs3GS3Q15G2SS1sp7XrGOQn+HUW3CKNv3glq9cHUXVZB3VCsUiIiLiURrMPrrFsrOz2bZtW5nkd8eOHVgsFgoLC+s7nHOOEt061tDntGYegekdqzen1WCE8691DBEu6YE9BoUFdRcnOFYlDog49QhsAgGNi543KfraGHYsgl8rWEH5bLRCsYiIiIjLNLhVlwMCArjkkku45JJLSsqsVqsSL2nY3HlO65lY84uGCB919Kxu/bgGCzfZYOdi58TjE1yUrBYlrYFNyiazJUltRNXnwQZFQfxbWqFYRERE5Bzhsu2FTufl5UXXrl1dHYZIzbhiTuvZ4ime35p1pNT3pRLa4q91PWTYYCrVy1pZz2up43XxIYBWKBYRERE5p7hNoivSoH03vmor34Kj3vdPlZ/Tejb5WaclqWdIXp29ynBVBEXBZY+U6o0tSlz9QsForP94TqcVikVERETOGUp0RWor84hjuHJ1bP0U+j7j6L08a+JaVG7JqZv4i/mGOBLU7GOQl1798yPioNfdTg/LabRCsYiIiMg5Q4muSG1t/aj6c1ptFpjeoe63yPELdSSvxfNcA5s65raWKSv66uXjOGfVZPjlpeq31foy58ZeF8x+jp70fv+nFYpFREREPJgSXZHaOvBrzc6rUZJrAP/w05LUJpUnryZz9ZvodguseMWzF24KbOJYTVkrKouIiIh4JCW6IrVVkFW780sWayqdsFaUuDZxJLmmOv5vq4WbRERERKSBU6IrUlvegTU7r3lP+Mfn4BfmHos1laaFm0RERESkAauzRDcnJ4dNmzaRnJxMfn5+pfVuuaUBDXcUqUjrSx375FZX+wGOnlx3pIWbRERERKQBM9jtdruzL/r8888zffp0cnIqXyXWbrdjMBgoLCx0dvNyFh07dgRgx44dLo7EQ2QegWnng70aP8tGMzy6s2EM9806qoWbRERERKTe1SZvcXqP7quvvspLL72El5cXgwcPpn379gQG1nBopwvk5eUxadIkPv/8cxITEwkLC2PgwIG8+OKLNG/evErXSE9PZ9myZXz77bf89ttvHDx4EKPRSIcOHRg1ahTjxo3DbC6/SNCtt97Khx9WPi9y1qxZ3HPPPTW+N6kjKdvBbqveOQ1pTqsWbhIRERGRBsbpie67776Ln58fq1evpnv37s6+fJ3Ky8ujf//+rF27lqioKK699loOHDjAnDlz+Pbbb4mPjyc2Nvas15kyZQr//ve/MRqNdOvWjSFDhnDs2DF+/fVXNmzYwIIFC/jhhx/w9/ev8PwBAwYQGRlZrvy8886r9T2Kkx3eDF/eAlRjYITmtIqIiIiI1CmnJ7qHDh3iyiuvbHBJLsB//vMf1q5dS+/evfnxxx9LeqKnTZvGY489xu23387KlSvPep3AwECeeeYZxo0bR7NmzUrK9+7dy1VXXcWaNWt46aWX+M9//lPh+U899RR9+/Z1yj1JHUrdB5/dAJaiIfrmAIi9Ev78XnNaRURERERcyOmJbkU9kQ2BxWLhjTfeAODNN98sM9z60Ucf5cMPP2TVqlVs3ryZHj16nPFaTz31VIXl7dq14+WXX2bUqFF8/vnnlSa60gBkpsAnwyAnzfHcaIabPoXYfprTKiIiIiLiYk5PdG+66Sbee+89Tpw4QWhoqLMvX2fWrFlDeno6sbGxdOvWrdzxESNGsH37dpYsWXLWRPdMunbtCkBSUlKNryEulpcBn4yA9MRTZcPediS5oDmtIiIiIiIu5vREd8KECaxdu5brr7+e9957r0pzWt3Btm3bACodcl1cXlyvpv766y/gzD3fixYtYuHChRQWFhITE8OQIUOIi4urVbviJJY8mDcajvx+qmzAJOg8wnUxiYiIiIhIGU5PdK+55hpsNhu//vorcXFxtG7dmubNm2MwGMrVNRgM/Pzzz84OoUYSEx29c5WtrFxcXlyvpmbMmAHAtddeW2md4iHUxcaPH8+9997LjBkz8PKq+ktWvBz36RISEhrMBxBuxVYIi8fCgdWnyi59CHqPc11MIiIiIiJSjtMT3RUrVpR8X1hYSEJCAgkJCRXWrSj5dZWsrCyASldCDggIKFOvJt5++21++uknGjVqVOE83m7dutG7d2+uvPJKmjdvTkpKCt999x3PPvssb731Ft7e3kyfPr3G7Ust2O3w3XjY+fWpsq7/gKsmui4mERERERGpkNMT3f379zv7kvXCbndsD1NZ8l18vKZWrlzJQw89hMFg4IMPPiA6OrpcnYceeqjM85iYGMaNG8fll19Ojx49eOONN3j00Udp0aJFldqsbGPlynp65QxWT4GN75563vZqGPoGuNGHNSIiIiIi4uD0RLdVq1bOvmS9CAoKAiA7O7vC4zk5ji1kSq/GXFXbt2/nuuuuo6CggNdff51hw4ZV6/xOnToxdOhQFixYwE8//cRtt91W7RikFrZ8BL+8dOp5dHe48UMwmV0Xk4iIiIiIVMro6gDcRcuWLQE4fPhwhceLy4vrVVVCQgIDBgwgPT2dCRMm8MADD9Qovnbt2gGQnJxco/OlhvZ8B0tK9bSHxcLo+eAd4LqYRERERETkjJzeo1vahg0bWL16NUlJSRgMBqKioujTpw89e/asy2ZrpHjbny1btlR4vLi8S5cuVb5mUlISV199NSkpKTz00EO88MILNY7vxIkTQM16lKWGDm2A+beB3eZ4HtgU/rkIAhq7Ni4RERERETmjOkl0//zzT2655RY2btwIlJ//2rNnTz766KOSXkp3cOmllxISEkJCQgJbt24tt5fuggULABg8eHCVrnfixAkGDBjA/v37ue2222q1iFR+fj5Lly4FqNUevlINx/bAZzeCNdfx3CcYbl4Ioa1dGpaIiIiIiJyd04cuJycnc8UVV7BhwwaioqJ48MEHmT59OtOnT+ehhx4iOjqa9evX07dvX7cahuvt7c39998PwP33319mru60adPYvn07l112GRdddFFJ+cyZM4mLi+Ppp58uc62cnByuueYa/vjjD2688Ubefffds64wvWfPHr7++msKCwvLlB87doybbrqJQ4cO0bVrVy655JLa3qqcTcb/4OPrIdfRi47JG276DCI7uzYuERERERGpEqf36L700kscOXKERx55hEmTJuHt7V3m+CuvvMLTTz/NtGnT+M9//lNuz1hXevbZZ/npp59Yu3Yt7dq1o0+fPhw8eJD169cTHh7OnDlzytRPTU1lz5495RL2//u//2PdunWYTCa8vLy44447Kmxv7ty5Jd8nJydz3XXXER4eTlxcHM2aNePo0aNs3ryZzMxMmjdvzpdffulWWzJ5pNwT8MlwOFk8V9sA178LMX1cGpaIiIiIiFSdwV7bfXNOExMTg6+vL7t27aq0jt1up0OHDuTl5bnddkS5ublMmjSJzz77jEOHDhEaGsrAgQP517/+VW5bnwkTJjBx4kTGjBlTJmm99dZb+fDDD8/aVul/+qSkJCZPnsy6des4cOAAaWlp+Pj40L59e4YMGcJDDz1EaGioU+6xeHuhyrYfOmdZcuHjYZAYf6rsminQ8y7XxSQiIiIico6qTd7i9ETX19eX4cOH8+mnn56x3ujRo1m4cCF5eXnObF6qQIluBQqtMH8M7P72VFmfx6H/c66LSURERERqxG634+Q0R2rBYDDUaGRqbfIWpw9dDg4O5tChQ2etd+jQIYKDg53dvEj12e2w7LGySW63f8KVz7ouJhERERGplsLCQtLS0sjMzKSgoMDV4chpvL29CQoKIjw8HJPJVOftOX0xqt69e7N27Vq+++67SussW7aMX3/9VQsriXtY8TJsnnvqefuBMPg10HxoERERkQahsLCQxMRE0tLSlOS6qYKCAtLS0khMTCy3AG9dcHqP7lNPPcWyZcu47rrrGDVqFKNGjaJ169YYDAb279/Pp59+yueff47JZOKpp55ydvMi1bPxfVj58qnnzXvCiDlgqtMtpkVERETEidLS0sjLy8NkMtG0aVMCAgIwGp3epyc1ZLPZyM7O5siRI+Tl5ZGWlkaTJk3qtE2nv5vv3bs3c+bM4e677+bDDz/ko48+KnPcbrfj5+fHO++8w8UXX+zs5kWqbtcSWPb4qeeNz4NRX4C3v+tiEhEREZFqy8zMBKBp06aEhIS4OBo5ndFoLHldkpKSyMzMbHiJLsDNN99M3759effdd1mzZg1JSUkAREdH06dPH+64445yKxiL1KuDa2HBHWC3OZ4HRcPNC8E/zLVxiYiIiEi12O32kuHKAQEBLo5GzqT49SkoKMBut9fp1ql1Nj6zefPmTJw4sa4uL1JzR3bC5zdBYb7juW+II8ltpA9fRERERBqa0qsra7iyeyv9+tR1oqufBDm3pB+CT4ZDXobjuckH/jEPmnZwbVwiIiIiIuI0te7RbdOmDQaDgZ9++omYmBjatGlT5XMNBgMJCQm1DUGkanKOwyfXQ6ZjKD0GI4z4AFpp9W8REREREU9S60T3wIEDAFgsljLPRdxKQQ58diOk/nmqbNA0OH+w62ISEREREZE6UetE12aznfG5iMsVWmHBbXB446myvk/Dhbe5LiYREREREakzmqMrns1uh28fgj+/P1XW4za4YrzrYhIRERERkTqlRFc82y//gq2fnHoeNxgGTYU6XOFNRERERERcy+mJ7u23384HH3xw1npz587l9ttvd3bzIqesfwdWTz31vOUlMPw9MJpcF5OIiIiISD0yGAwYDAZCQ0NJT0+vsM6ECRMwGAy8/PLL5c5t3bp13QdZB5ye6M6dO5c1a9actd6vv/7Khx9+6OzmRRx2LIbvnjz1vEkH+MdnYPZzXUwiIiIi0uAdy8xn5i97+ef76xn21q/88/31vLl8H8cy810d2hmlp6czffp0V4dRb2q9GFVNFRQUYDKpZ03qwP5VsGgsULR5eHBzGL0A/EJdGpaIiIiINFx5lkImLtnBgs2HsRTayxxbvTeV1376kxE9WvDCkA74mt0rzzEajXh5efHaa6/x8MMPExpatffFu3btwmw213F0dcMlc3TtdjtbtmwhIiLCFc2LJ0v5HeaNhsICx3O/UPjnIghp5tq4RERERKTByrMUMuaDDXy+4VC5JLeYpdDO5xsSGfPBBvIshfUc4ZmZzWbuvPNOTp48ybRp06p8XlxcHLGxsXUYWd1xSo/ulVdeWeb5999/X66smNVqJSEhgZSUFP75z386o3kRhxMH4JPhkH/S8dzLD0Z9CRHnuTQsEREREWnYJi7Zwfr9x6tUd/3+40xcspNJ13eu46iq55lnnuH9999nxowZPPLII4SFhZ31HIPBQKtWrThw4EDdB+hkTkl0V6xYUfK9wWAgJSWFlJSUSuubzWYGDx7MlClTnNG8CGSnwsfXQ9YRx3ODCW6YCy16ujQsEREREWnYjmbmsWDz4Wqds2DzIR69uj0RQT51FFX1NWvWjLvuuouZM2cydepU/v3vf7s6pDrllER3//79gGNIcps2bRgxYgSTJ0+usK63tzeNGzdusGO9xQ3lZ8GnN8DxhFNlQ1+H8wa6LiYRERERcRt2u52TedYanfvR2oOVDleujKXQzkfxB7izT5satQkQ7OuFwclbYj799NO89957vPHGGzz66KOEh4c79fruxCmJbqtWrUq+f+GFF+jWrVuZMpE6U2iBL2+BpC2nyq58Drrd7LqYRERERMStnMyz0nXij/Xa5hu/7OONX/bV+PxtL/yNED/ndg5GR0czduxYXn/9daZMmcKkSZOcen134vTFqF544QWGDh3q7MuKlGezwdf3Q8LPp8ouugv6POa6mERERERE3NhTTz2Fr68vM2fOJDU11dXh1Jk6WXXZbrfzySefcMMNN3DBBRcQGxtLmzZtyj0a6gpe4iZ+ngDb55163uFa+Psr4OQhHiIiIiIiniIqKop77rmHrKysSqebns2PP/5Ijx498PX1pVmzZjz77LMUFrrXStNO30e3oKCAQYMG8csvv2C3VzyW3WAwVHpMpEri34JfZ5x63roPDHsHjO61Z5mIiIiIuF6wrxfbXvhbjc59d9VfzFxe/SHID1zZttZzdOvK+PHjmT17Nm+++SaPP/54tc7dunUrgwcP5r777uOTTz5h586d3HHHHVitVl5++eU6irj6nN6jO3XqVH7++WcGDx7M3r17+ec//4nBYCA/P59du3YxYcIEAgICeOKJJ7DZbM5uXs4Fvy+AH54+9bxpZ7jpUzD7ui4mEREREXFbBoOBED9zjR63XNIKs6l6IwbNJgO39G5d4zZD/MxOX4iqtMjISO69916ys7N59dVXq3XulClT6Ny5M9OnT+f8889n+PDhvPjii7z++utkZWXVUcTV5/RE94svviAsLIzPPvuM2NhYjEZHE2azmfPOO4/nn3+epUuXMnXqVD744ANnNy+eLuEXWHzPqeeNWsLNC8A3xHUxiYiIiIjHahLky4gezat1zogeLdxqa6GKjB8/Hn9/f9566y2OHDlS5fN+/fVXrrnmmjJlgwYNIjc3l82bNzs7zBpzeqK7b98+evbsSUBAgKOBokS39JjtPn36cOmll/LWW285u3nxZElb4Yt/gs3ieO4fDjcvhqBI18YlIiIiIh7thSEd6RUTVqW6vWLCeGFIhzqOqPaaNGnCuHHjyMnJ4cMPP6zyecnJyURFRZUpi4x0vB9PSkpyaoy14fRE12QyERwcXPK8OOE9duxYmXrNmjVjz549zm5ePNXxvxx75RYUDYcw+8Oo+dC4rWvjEhERERGP52s28eHtPflHz5aVDmM2mwz8o2dLPry9J77mhrFuzJNPPklAQAC5ubm1uk7xMOu6HG5dXU6f4dysWTMSExNLnrdt60hE1q1bx3XXXVdSvn37dgIDA53dvHiirKPw8TDILvqwxOgFN34MzXu4Ni4REREROWf4mk1Mur4zj17dni83HWLdX2lk5VsJ9PHi4jbh3Hih+w9XPl1ERAT33XdftebpRkVFkZycXKas+PnpPb2u5PRE9+KLL2bhwoXk5ubi5+fHNddcwyOPPMJDDz2Ej48PzZs355133mHXrl0MGTLE2c2Lp8nPhE9HwIkDp8qGzoR2V7ksJBERERE5d0UE+XBfv7bc169hjCw82243r7zyCq+88kqVz7300kv57rvv+Ne//lVStmzZMvz8/OjRw306opw+dHn48OH4+/vz3//+F3D06D788MMcOnSIwYMHc8EFF/Dmm2/i7+9f6T+oCADWAvjiZkjedqrsqolwwT9cF5OIiIiIyDnsscceY/v27Tz22GPs2rWLRYsW8fzzz/Pggw+61Yhdp/foDho0qFxX9tSpU7nooov46quvOHHiBO3bt+fBBx+kXbt2zm5ePIXNBl/dC3+tOFV28Ti49CGXhSQiIiIicq7r3r07S5Ys4emnn2bmzJmEh4czbtw4XnzxRVeHVkbd7UJ8mptuuombbrqpvpqrsby8PCZNmsTnn39OYmIiYWFhDBw4kBdffJHmzau3rHh6ejoTJkxg8eLFpKSkEBkZyXXXXcfEiRNp1KhRhefYbDZef/113n//ffbt20dgYCB9+/Zl4sSJdOjg/qu3VVdqyiH2fv8mgcnr8S7MocDkT3bUxXQJysT/jwWnKnYaAX/7N7jRBHcRERERkXPRgAEDGDBggKvDOCOD/WyDts8heXl59O/fn7Vr1xIVFUWfPn04cOAAGzZsICIigvj4eGJjY6t0rbS0NHr37s3evXtp06YNF154ITt27GDHjh20bduWdevWER4eXuYcu93OjTfeyIIFC2jUqBH9+/cnNTWVVatW4evry/Lly+nVq1et77Njx44A7Nixo9bXqqm8nCy2v3cP3dKWYTYUnrlym76OFZa9vOslNhERERFpOGw2W8luLuedd17J9qbifqr7WtUmb3H6T4HRaMTb25tp06adsd5tt92Gl1e9dShXyX/+8x/Wrl1L7969+fPPP/niiy9Yv349U6dO5dixY9x+++1VvtYjjzzC3r17uf7669mzZw9ffPEFf/zxBw888AD79u3j0UcfLXfOnDlzWLBgAe3atWP37t0sWLCAFStWMH/+fHJzcxk9ejRWq9WZt+wSeTlZJLw2kJ7Hl5w1yc3Fl7whs5XkioiIiIhIldXJxx1Wq5UnnniC2267DYvFUmk9d+pMtlgsvPHGGwC8+eabZSZSP/roo3Tp0oVVq1axefPms14rJSWFTz/9FLPZzFtvvVUmoZ88eTIRERF8+umnHDlypMx5U6dOBeDVV1+ladOmJeXDhw9n6NChJCQk8PXXX9fqPt3B9vfuoWPB75zt5bfbwY88tn38RP0EJiIiIiIiHqFOEt2BAwfSs2dPPvzwQ/r27cvRo0frohmnWrNmDenp6cTGxtKtW7dyx0eMGAHAkiVLznqt7777DpvNxuWXX14mYQXw8fFhyJAhFBYW8t1335WU79+/n507d+Ln58egQYNq1b47S01JpFvaMuDs022Lj3dPW0pqyqE6jkxERERERDxFnSS6kZGRrFixgtGjRxMfH0/Pnj357bff6qIpp9m2zbGFTffu3Ss8XlxeXM/Z1yr+vlOnTpjN5lq17872fv/W2efknsZsKGTf97PqKCIREREREfE0dTZJ1sfHh48//phOnTrxf//3f1x22WXMnTu3pGfS3SQmJgJUurJycXlxPWdfy5ntFyuevH26hISEKi+q5WyByetrdF5AcryTIxEREREREU9V50uSjR8/nq+++gqj0cjIkSOZMGFCXTdZI1lZWQD4+/tXeDwgIKBMPWdfy5ntuzPvwpx6PU9ERERERM499bLs8eDBg1m3bh1DhgzhX//6F7///rvbLftdvDCWoZKJo9VZOKsm1zrbOTVR2TLclfX01ocCkz/UYOHoAlPFHwCIiIiIiIicrt729+nQoQObNm1i+PDhLF682KkJnTMEBQUBkJ2dXeHxnBxHj2Lp1Zidea2znVNcXpX23VlWVC84sKXa52VH9a6DaERERERExBM5vVu1ZcuWNG7cuMJjoaGh/Pe//+Wee+5xq62FwBE3wOHDhys8XlxeXM/Z13Jm++6s3cBxWOymap1jsZtoO/DeOopIREREREQ8jdMT3QMHDvDqq69WetxkMvHWW2+RmJjIX3/95ezma6xr164AbNlScW9jcXmXLl3q5FrF5/zxxx8V7j1cnfbdWePIlmwNvwagSvvoAqxvdA2NI1vUcWQiIiIiIuIpXDZRtnnz5rRq1cpVzZdz6aWXEhISQkJCAlu3bi13fMGCBYBjvvHZDBw4EKPRyOrVq8vtIZyfn8+SJUswGo38/e9/LymPiYnh/PPPJzc3l6VLl9aqfXfX5c632eHduUr76K6znc+EgptJzcqvn+BERERERKTBc68VoVzI29ub+++/H4D777+/zFzZadOmsX37di677DIuuuiikvKZM2cSFxfH008/XeZaUVFR/OMf/6CgoIBx48ZhtZ5afenJJ5/k2LFjjBo1isjIyDLnPfrooyV1SifIixYt4ptvviEmJobrrrvOaffsKr7+gcQ+/D3rw4ZWOoy5wG7iM+uVjCkYz74Thdw+dyPZ+TVYxUpERERERM45tV6Mqk2bNhgMBn766SdiYmJo06ZNlc81GAwkJCTUNgSnefbZZ/npp59Yu3Yt7dq1o0+fPhw8eJD169cTHh7OnDlzytRPTU1lz549JCcnl7vWa6+9xrp161i4cCFxcXFceOGF7Nixgz/++IPY2FimT59e7pzbb7+dZcuWsXjxYuLi4ujfvz+pqamsXLkSX19fPvnkE8xmc53df33y9Q+k14Mfk5pyiH3fzyIgOR7vwhwKTP5kR/Wm7cB7ObErn/wf9gCw/XAG93yymffHXIS3lz6fERERERGRytU6Yzhw4AD79+8vmVd64MCBKj/2799f6xtwJl9fX5YvX85zzz2Hv78/X331FQcOHGDMmDFs3bqVtm3bVvlajRs3ZuPGjTzwwAMUFBSwePFiMjIyuP/++9mwYUOFC3YZjUbmz5/P1KlTiY6O5ttvv+X3339n2LBhbNq0iUsuucSZt+sWGke24OJb/0Pnp5dz3rPr6fz0ci6+9T80jmzBuL6x3HrJ/7N33+FRVfkbwN+ZyUwmZVJIhQRI6BJqQjWAAiIuRRBYRFFQlLVg3/UHKy5NiiDgsroWRAEVkI6CykqRDgmhRYqUQAiQRkJ6Mpn6+2Myk06mJTNz836eJ09m7px77/eaROadc+45Eaa2h69m4f+2nINO51wTmREREREROSuRSASRSAR/f3/k5ubW2GbOnDkQiUT48MMPq+0bERFR/0XWA5He2aY/pnpnXEe3tnV2nYlOp8frP5zBz4nlveZT+0di5vCODqyKiIiIiJyFTqfD5cuGUYDt27eHWFzPo/8KM4HTa4Hko4CqEJB5AxH9gOhJgHdw/Z7bChWXdZ01axbmzp1brc2cOXMwd+5cLFq0CDNmzKi0b8uWLZGcnGyXWiz9WdmSWxpsHV0ia4jFIiwf3xU5RSocS8oGAHx1+AaCFXJMHWD+MHkiIiIiIpuoS4BfpwNn1wO6KqukXP8dOPAh0H0i8NhiQCp3TI21EIvFcHNzw7///W+89dZb8Pf3N2u/S5cuueytk3b/uGPKlCn45ptv6my3Zs0aTJkyxd6nJwFyd5Pgy2dj0LGpj2nbgl8uYceZOw6sioiIiIgaDXUJ8P04Q09u1ZBrpFMDp9YA3481tHciUqkUL774IvLz87F8+XKz9+vQoQNat25dj5XVH7sH3TVr1uDIkSN1tjt69CjWrl1r79OTQCnkUqyZ0hPNm3iYtv1j8zkcunLXgVURERERUaPw63TgZt0ZB4Ch3e4ZdbdrYO+99x7c3d2xYsUK3Lt3z6x9XPkeXYdNX6tSqSCR1Ly0DFFNghVyfDulNwK8ZAAAjU6Pl78/hcTbuY4tjIiIiIiEqyDDMFzZEmfWGe7ldSJhYWGYOnUqCgoKsGzZMkeXU+8cEnT1ej1Onz6NoKAgR5yeXFhkoBdWP98TnjLDhyTFKi2eX30SN7KK6tiTiIiIiBotvR4oybXuK35l7cOVa6NTG/az9pwluYaa7eyf//wn5HI5PvnkE2RnZ9v9+M7ELpNRDRo0qNLz3bt3V9tmpNFokJSUhPT0dDz77LP2OD01Ml3C/fDFMzGYsuYkNDo9sotUmPRNHLa+8iCCFc514z8REREROQFlHrC4ZcOe89BHhi9rTb8JePjZrRwAaNasGf72t7/hP//5D5YuXYpFixbZ9fjOxC5B98CBA6bHIpEI6enpSE9Pr7W9VCrFiBEjsHTpUnucnhqhAe2CsPSvXfHWxrMAgFv3SvDcNyex8aU+UMhdc2Y4IiIiIqL6NmPGDKxcuRKffvop/v73vyMwMNDRJdULuwxdvnHjBm7cuIHr169Dr9dj3Lhxpm1Vv+7cuYPCwkL8+OOPgv2PSg1jdPcwzBz2gOn5xbR8vPTdKZRqtA6sioiIiIjIeTVt2hQvv/wyCgsL8dFHlvc4Hzp0CKNGjULLli0hEokwZ84c+xdpB3bp0W3ZsnwYwOzZs9G9e/dK24jqy9QBrZCRr8SqIzcAAMeSsvHOpnP4ZEJ3iMWiOvYmIiIiokZB7msYCmyNY58Ah60YiTrgXaDva9adEzDUXE+mT5+OL7/8Ev/973/xj3/8w6J9CwsL0bFjRzz99NN466236qdAO7BL0K1o9uzZ9j4k0X29N+wBZBWWYsfZVADAz4lpCPJ2x+yRHSESMewSERERNXoikfX3u/b6G3B0hWUTUomlhv3sfI+tvYSGhuKVV17B8uXLsWTJEnh5eZm977BhwzBs2DAAhsDsrOpt1mWNRoMdO3Zg5syZeOmll/DNN9+YXktNTUViYiI0Gk19nZ4aEbFYhCXjuqJ/2/Kh8GuOJePzg0kOrIqIiIiIBEERAnR72rJ9uk8EvIPrpx47mT59Ojw9PfHZZ58hIyPD0eXYXb0E3YMHD6JVq1YYO3YsFi1ahFWrVuHIkfIFlvft24fu3bvjxx9/rI/TUyMkcxPj82di0DmsfIjHkt2XsTnhlgOrIiIiIiJB+MtioGU/89q27Ac8trh+67GD4OBgvPrqqyguLsbatWsdXY7d2T3o/vHHHxg2bBgyMzPx5ptvYvPmzdBXWQNq7Nix8PT0xNatW+19emrEvN3dsPr5nogI8DRtm7HtD/z+p3Mt1k1ERERELkbqATyzBYh5zjAsuSZiqeH1Z7YCUtdY8vL//u//4OXlhZKSEkeXYnd2v0d33rx5KC0txW+//VbrWrqenp544IEHcObMGXufnhq5QG93fDulN8Z8fgxZhaXQ6vR4dd1prJ/aG91b+Du6PCIiIiJyVVIPYOQKYOBM4PS3QPIRQFUIyLyBiH5A9CSnH65cVVBQEKZNm4YlS5Y4uhS7s3vQPXjwIPr06VNryDVq0aIF9uzZY+/TE6FFgCfWPN8TE1aeQGGpBiVqLaasOYktrzyI1kHeji6PiIiIiFyZdzAw4B+GLxdQdXRtVYsXL8bixTUPta5rX2dm96HL+fn5CAsLq7NdaWkptFqud0r1o1OYL1Y+GwOpxDDrck6xGpO+jkdGvtLBlRERERERua7CwkKcPXsWZ8+ehUqlQnp6Os6ePYuLFy86urRK7B50mzZtikuXLtXZ7vz581xrl+rVg20CsXx8NxhXGLqTW4LJ38Qjr8SCqeGJiIiIiMgkISEB3bt3R/fu3ZGWloYvv/wS3bt3Ny055CzsHnQfffRRXLhwAdu3b6+1zZo1a3Dz5k0MHz7c3qcnqmRk12aYNaKj6fmf6QWY+m0ClGqOJiAiIiIistTDDz8MvV5f7Ss5OdnRpVVi96D73nvvwdvbG0899RT+9a9/ISEhAQBQXFyM8+fPY/78+Xj11VcREBCAd955x96nJ6rm+dhIvPJwa9Pz+Bv38NYPZ6HVue49B0REREREVDu7B92WLVvi559/hr+/PxYsWIDevXtDJBJh8+bN6Nq1K2bNmgWFQoEff/wRoaGh9j49UY3+b2h7jI0ONz3ffSEds38679I32BMRERERUc3sPusyAPTr1w9XrlzB119/jb179yI5ORlarRbh4eF45JFH8NJLL8HPz68+Tk1UI5FIhA/Hdsa9olL8fvkuAOD7EykIVsjxxuC2Dq6OiIiIiIjsqV6CLgAoFAq89dZbeOutt+rrFEQWkUrE+O/EaDz9VRzO3soFACzfcwXBCndM6NXCscUREREREZHd2H3oMpEz85S54ZvneqJVkJdp23vb/8CeixkOrIqIiIiIiOyp3np0i4uLkZCQgLS0NJSWltbabtKkSfVVAlGNmnjJ8O2UXhjz2TFkFpRCpwdeW38a617sjR4RTRxdHhERERFZQGRcSxKATqeDWMy+PGel0+lMjyv+3OpDvQTdWbNm4eOPP0ZxcXGtbfR6PUQiEYMuOUS4vyfWTumF8V8eR4FSg1KNDi+sTcDml/uiXYjC0eURERERkZlEIhFkMhlUKhWKiorg6+vr6JKoFkVFRQAAmUzmekF3yZIlmD9/Ptzc3DBixAi0a9cO3t7e9j4Nkc0eaOqDryb1wKRv4qHS6JBXosbkb+Kx9ZUH0czPw9HlEREREZGZFAoFsrOzkZFhuB3Ny8uLPbtORKfToaioyPTzUSjqv2NJpLfz+ipt27ZFamoqDh8+jOjoaHsemuwkKioKAHDhwgUHV+Icfv0jDa+uPw3jX0LbYG9sfrkv/Dxlji2MiIiIiMyi1WqRkpICpVLp6FKoDnK5HC1atIBEIqmzrS25xe4fc9y6dQsPPfQQQy65jL90bop5ozqZnl/NLMSLaxOgVGsdWBURERERmUsikaBFixYICAiATMbOCmckk8kQEBBgdsi1ld2HLoeGhtr7kET17tk+LXE3X4n/7L8GAEi4mYPX1p/BF89Ew03CYS9EREREzk4ikSA4OBjBwcHQ6/Ww88BVsoFIJKr3e3KrsnvQnTBhAlatWoWcnBz4+/vb+/BE9ebtIe2QWVCKH07eAgDsvZSB93ecx6IxnRv8D5OIiIiIrOeIYEXOxe5dVXPmzEHHjh0xZswYJCUl2fvwRPVGJBJh/uhOeOSBENO2H07ewsd7rjiwKiIiIiIispTdg+6wYcOg0+lw6NAhdOjQAW3btsXAgQMxaNCgal+DBw+29+ltduzYMQwbNgxNmjSBt7c3evXqhbVr11p8nFOnTmHOnDno378/mjVrBnd3dzRv3hzPPPMMEhMTa9wnOTnZ9OlTTV8cFl7/3CRifPJUd8S0LB+N8J/91/DdiZsOrIqIiIiIiCxh91mXLZnGWyQSQat1ngl/tm/fjr/+9a/Q6XQYMGAAAgMDsW/fPuTm5uLtt9/G8uXLzTqORqOBVCoFAAQGBqJXr17w9PTEmTNnkJSUBKlUivXr12PcuHGV9ktOTkZkZCRCQkLw2GOPVTuur68vVqxYYfN1ctbluuUWq/DXL47jamYhAEAkAj6fGI3HOjV1cGVERERERI2DLbnF7kH35k3Ler5atmxpz9NbLScnB5GRkcjLy8PWrVsxZswYAEBGRgb69euHa9euYf/+/Rg4cGCdx9JoNOjXrx/+9a9/4S9/+Ysp/Ot0OsyaNQsLFiyAQqHA9evXERgYaNrPGHQfeughHDhwoF6uE2DQNVdqbgnGfn4MaXmGaeplbmJ8O6UX+rQKcHBlRERERETC51TLC7Vs2dKiL2exatUq5OXlYdSoUaaQCwAhISFYsmQJAJjdo+vm5oYTJ05g+PDhlXq4xWIxPvjgA3To0AEFBQX4+eef7XsRZFfN/Dywdkov+MgNc7apNDpM/TYBf6bnO7gyIiIiIiK6H66bUmbXrl0AUG04MQAMHz4ccrkce/futXkRapFIhM6dOwMAUlNTbToW1b92IQp881xPuLsZ/lQKlBpM/iYet3OKHVwZERERERHVxu7LCx06dMisdsYFg9u0aeMUU38bJ4iKjo6u9ppMJkOnTp2QkJCAy5cvo2vXrjad6/r16wBqX3M4IyMDs2fPRlpaGnx9fdG7d288/vjjXPzaQXpENMGnT0fjpe8SoNMDGfmlmPRNPLa8/CCaePFnQkRERETkbOplMipLgquXlxcmTJiABQsWICgoyJ6lmC0/Px++vr4AgLy8PPj4+FRr88QTT2DHjh346aefMHLkSKvPdeTIEfTv3x8ymQzJyclo2rR8ciPjPbo1adGiBTZt2oTevXubfS7jmPaqkpKS0Lp1a96ja6Ef4lMwY9sfpufdmvth/dTe8JTZ/fMiIiIiIqJGz6nu0Z00aRJGjhwJvV4PkUiE6OhojB49GqNGjUJ0dDREIhH0ej1GjBiBwYMHQy6XY9WqVejbty+ys7PtXY5ZCgsLTY89PT1rbOPl5VWtraXy8/MxZcoUAMDbb79dKeQCgLu7O1555RUcOHAAGRkZyMvLw/HjxzFs2DCkpKTgscceQ3JystXnJ9tM6NUC7wxpZ3p+9lYupq07DbVW58CqiIiIiIioKrv36GZmZqJPnz6IiorCihUr0KpVq0qv37hxA2+++Sb++OMPnDhxAgqFAi+99BLWrVuHd999F4sXL7bqvOPGjcP58+ct2ufbb79Fr169cOfOHYSHhwMA1Go13Nyq99BNnDgR69evx/r16/HUU09ZXJ9Wq8WoUaPw888/o1evXjh8+LBFQ5GN5586dSpWrlxp8fkr4qzL1tPr9Zj144VK6+qOjQ7H0r92cYoh+EREREREQmFLbrH7mMsZM2ZAo9Fg69atNQa5yMhIbN68GW3btsWMGTOwevVqfPHFF/jf//6Hn376yeqgm5ycjMuXL1u0T3GxYUIhhUJRaVtNQ5eNbb29va2q729/+xt+/vlntG/fHj///LPF99u+9957WL9+Pf73v/9ZdX6yD5FIhDmPR+FuQSl2X0gHAGw9fRvBPu6Y/lgHB1dHRERERERAPQTdX375BYMGDbpvkHN3d0dsbCx+/fVXAIZhwd27d8eRI0esPm9CQoLV+/r4+MDX1xd5eXm4ffs2OnbsWK3N7du3ARjulbXUu+++i2+++QbNmzfHnj17Kq2da662bdsCANLS0izel+xLIhbh3xO6YdI38Yi/cQ8A8PmBJAQr3PF8bCTuFpRi48kUxN24h8JSDbzd3dCnVQDG92iOIIW7g6snIiIiIhI+uwfd/Px8ZGVl1dkuOzsb+fnl65H6+/s7dOhn165dcejQIZw+fbpa0FWr1Th//jzc3d3Rvn17i467aNEiLF26FMHBwdizZw+aN29uVX05OTkArO9RJvuSSyX4alIPPPnlcfyZXgAAmLvzIvZczMDJ5HtQayvfEXD4ahb+vfcKxsU0x+yRHSGXShxRNhERERFRo2D3yaiioqJw4MABHDt2rNY2x48fx++//15pVuDbt28jODjY3uWYbfjw4QCALVu2VHtt165dUCqVpsmzzLVy5Uq899578PPzw//+9z+LQ3JFW7duBQDExMRYfQyyL18PKdZO6YUwPw/TtmNJ2dVCrpFaq8eG+BRM/iYeSrW2ocokIiIiImp07B503333XWg0GgwZMgTTpk3D77//jmvXriEpKQm///47pk2bhkceeQQ6nQ7vvvsuAEMv8KlTp9CnTx97l2O2F198ET4+Pvjxxx+xbds20/bMzEz83//9HwDgnXfeqbZfhw4d0KFDB9y5c6fS9i1btuCVV16Bt7c3fvnlF3Tr1q3OGr799lvTEOmKtm3bhhkzZgAAXn31VUsui+pZiI8ca6f0gkxi/miEuBv3MHfnxXqsioiIiIiocbP7rMsA8O9//xszZsyASqWqNhxZr9dDKpVi4cKF+Pvf/w7AMBPzpk2bMHjwYPTo0cPe5Zht69atGD9+PPR6PR566CEEBgZi7969yM3NxRtvvIEVK1ZU28d4fTdu3EBERAQAQzhu3rw5VCoVOnfujOjo6BrPN3r0aIwePdr0/OGHH8bhw4fRoUMHREREQC6X4+LFi/jzzz8BGD5EWLJkic3XyVmX7SuzQIm+i/ZDqzP/T0kqEeHYjMG8Z5eIiIiIqBZONesyALz11lsYNWoUvv76axw/fhypqakAgKZNm+LBBx/E888/j9atW5vaR0ZGYvr06fVRikXGjh2LQ4cOYf78+Thx4gRUKhUeeOABTJs2Dc8//7zZxykuLoZKpQIA/PHHH/jjjz9qbBcREVEp6E6dOhVBQUE4e/Ysjhw5gpKSEgQFBWHMmDF45ZVX8Mgjj9h0fVQ/Np28ZVHIBQzDmDcl3MK0gW3qqSr74eRaRERERORq6qVHl5wbe3Tt69mv43D4at0TsFXVNtgb/xzWAYHe7qYvmZvd7yawmlKtxdydF7Dl1O0a7zuWSkScXIuIiIiI6o3T9egSNSaFpRqr9ruaWYgpayovi+Ujd0Ogwh1B3u7l371l5WFYUf68PsOlUq3F5G/iEVe2fFJNjJNrXb9biLVTejHsEhEREZHTYNAlspG3u/3+jPKVGuQrNbh+t6jOtgp3t0rBtzwMlz8PKnvuKbOsxrk7L9w35FZknFxr0ZjOFp2DiIiIiKi+1EvQ1ev1WLduHX788UdcvXoVBQUFqGmEtEgkQlJSUn2UQNRgekc2sWrocpifHDI3CbIKSlFgRa9wQakGBaUa3MiqOxR7yiRl4VdWoWfYHUFVngd6y1Ci0mLLqeqzf9/PllO38M6Qdrxnl4iIiIicgt2DrkqlwvDhw7F///4awy1gCLi8NZiEYnzP5lix72qt6+fWRCoRYce0fqZgqFRrkVVYiqxCFbIKSsseG57fLSytsE2FvBK1xTUWq7RIuVeMlHvFdbZ1E4ugEfDkWgAn2CIiIiISOrsH3WXLlmHfvn0YOXIkli9fjnnz5uH777+HUqnE9evXsXHjRixduhSvvPIKFi9ebO/TEzW4YIUc42LCsSH+ltn7jIupHKjkUgnC/T0R7u9Z574qjQ7ZRaXIKlAhq7DUEIQLy59XDMn3ilQWX4+lIdfoq8PXkZRZiICyXuIAb3cEeMsQVPa9iZcM7m6OvY/3fhNsHb6ahX/vvcIJtoiIiIgEwO5Bd+PGjWjSpAnWr18PLy8viMWGWWSlUinat2+PWbNmYeDAgRg4cCDat2+PKVOm2LsEogY3e2QUrt8tMuu+1t6RTTB7ZEerzyVzE6Oprwea+nrU2Vat1eFekQp3K/QIZ1XpITYG43tFKliZcQEAucVqbDtz575tfORuZSFYZvoe4FU2dNpLhoCy4dMB3u7wkbtVW4fbFpxgi4iIiKjxsHvQvXbtGgYMGAAvLy8AMAVdrVYLicTwprF///6IjY3FZ599xqBLgiCXSrB2Si/M3XkRW07dcprleKQSMUJ85AjxkdfZVqvT416RCn/7LgFnUnLrpR7TZFtm3Fcsk4gNQdgYhk0huEKPsZcMQQp3NPGSQSq5/9JMnGCLiIiIqPGwe9CVSCTw8fExPTcG3rt37yI0NNS0PSwsDDt37rT36YkcRi6VYNGYznhnSDtsSriFE9ezXer+T4lYhCCFOwZ3CLYq6A5+IBhRzXyRVViK7MJSZJf1FmcXqqyabEul1SEtT4m0PKVZ7X09pKbeYOOkW4beYhncxGJsSuAEW0RERESNhd2DblhYGFJSUkzP27QxTE5z4sQJjB492rQ9MTER3t7e9j49kcMFKdwxbWAbl5mYqSprJ9f6cEyXWkOhUq1FdpHKFIDvln3PLhs2nV2kMg2jvlekgtaKMdR5JWrklaiRZMbSTOZwtQm2iIiIiKic3YNunz59sHXrVpSUlMDDwwPDhg3D22+/jTfffBPu7u4IDw/HypUrcenSJYwcOdLepyciG9ljcq2q5FIJwvw8EOZX933FOp0eeSVq0z3Ehom3KofhbONrhaUoUmnNrtNSK/ZewZ6LGQjz80AzPzma+nqgWdnjZn4eCPCS2fU+YltwJmkiIiKiciK9ndf5+fnnn/Hiiy/iyy+/xOOPPw4A+Pvf/46PP/7Y9IZQr9fDy8sLCQkJaN++vT1PT2aIiooCAFy4cMHBlZCzMmfiJqPekU0cOnFTiUpr6hXOrjDjtGnodFEpTt3MgVKts/u5ZW5iNPM1hN6mvh4IKwvATf0Mj5v6esDLvV6WKze530zSgGPuDSciIiKyB1tyi92Dbm1++OEH7NixAzk5OWjXrh3eeOMNtG3btiFOTVUw6JI5DAHKuSbXstazX8fh8NUsh5zb10Nq6AU2BmI/eVkPsQea+homCqtrIq3auNIHEkRERESWcomgS86DQZcscbeg1CUn16ro0/1XsfS3KxbvN75HOHpHBiA1twSpeUrD97Ivew2ZFosMw8WNw6ErhmLjl7+ntMYh0v/clmjREPOnerXgTNJERETkMhh0ySIMutTYZBYoEfvhfosn2Do2Y3CNYV6v1yNfqUFaniH03slVIs0YgssCcXqeEhpbFiauQC4Vo5lveS9wMz8PKOQSLPr1skUTd93vmoiIiIicjS25pd5uHktOTsahQ4eQlpaG0tLSGtuIRCL861//qq8SiIgA2H+CLZFIBF8PKXw9pOgQ6lNjG61Oj6zCUtwpC8BpuUrcyS0pC8eGMJxdpDKrFqVah+tZRWatP3w/nEmaiIiIGgu79+gqlUpMnToV69evB2Do+aj15CIRtNr6mzGVasYeXWqMnPF+VqVaa1grOLekLBArkZZXUhaIDWG42M6zSvvI3TCwQ3DlybN8DTNi+3i4Oc0s0gBnkiYiImrsnGro8ptvvolPPvkEwcHBmDhxIlq3bg0vL69a20+ePNmepyczMOhSY+VqE2zp9Yallow9wIYQbHi8788MFJXaNwR7ySSVZo02DZcum0Ar1FcOd7f6/+/CmaSJiIgIcLKgGxoaCp1Oh8TERISGhtrz0GQnDLrU2Alhgi1HzSQdpHCvNllWxecBXjKIxdb3CjtjzzsRERE5hlPdo1tYWIihQ4cy5BKR0wpSuGPawDYufa9q78gmVgXdoVEh6BDqUzZxVvn9wqUa89YZvltQirsFpTh3O6/G12USMZpW6A2uOJu0OWsLz915wayQCwBxN+5h7s6LLjWTNIdjExERNQy7B92oqChkZGTY+7BERFTB+J7NsWLfVYtnkp4/unO1QKXX63GvSGUIvXklFZZRKn+eWVAKc8b/qLQ63Mwuxs3s4lrbGNcWNgZfYyD2lEmwOeG22dcDAFtO3cI7Q9o5fUi833Dsw1ez8O+9Vzgcm4iIyI7sHnT/8Y9/YOLEiTh27BgefPBBex+eiIhg35mkRSIRArzdEeDtjs7hvjXuq9LokJGvrNYTbArEuSUoKNWYVUdeiRp5JWpcSss3u/baqLV6rI9LwZuPtLX5WPXFnOHYaq0eG+JTcP1uIYdjExER2UG9rKP78ccfY+HChXj99dfxyCOPICwsrNaZPFu0aGHv01MdeI8ukTA42/2s+Uo10spCb8WllIyP03Ltt7ZwVe5uYijkUvh4uBm+y93gI5dCIXcr+zJsU5i2Gdoa23i7u8FNIq6X2v65LdGiDySe6tXCpYZjExER1RenmowKAPbt24dXXnkFSUlJ9z+5SASNxrweALIfBl0i4XClmaQrri1cMRCnli2ndCktv96CsDm8ZBJTEPbxkNYYkH2qvVYepr1kbtUm4sosUCL2w/0WDzE/NmOw0w/HJiIiqm9ONRnVrl27MGbMGGg0GgQFBaFly5b3XV6IiIisJ5dKsGhMZ7wzpJ3TzyQtEYsQ4iNHiI8cqGEwj6NmkjYqUmlRpNIi3coR1SIRoHCvGIqlyC4qtSjkAoZhzJsSbrnMZGmcYIuIiJyR3Xt0Y2JikJiYiFWrVmHSpEm1Dlkmx2GPLhE5o0/3X8XS365YvN9LD7XC2OhwFCjVyC/RIF+pRoGy/HuB8XmJ8Xn5a4Vm3lfc0EJ83DEuJhxB3u4IVLgjyNsdQQrDY4W7m1P828r1jomIqL451dBlT09P9O3bF/v27bPnYcmOGHSJyBk5YpivVqdHYWnFEKxGfoVwXPF5vrJyO2NgVqrNW5rJXtzdxIbQawy/Zd+DFO4I8paVfZcjUCGDp8zuA7cAON/94UREJExONXQ5MDAQ3t7e9j4sEREJnD1nkjaXRCyCr4cUvh5Sq4+h0uhqDMv5SjW+OJCE61lFVh+7JqUaHW7nlOB2Tkmdbb1kkmph2PTY2FuscEegtwzubuYHUaGvd0xERK7P7kF33LhxWLduHfLz8+Hj42PvwxMRkYDNHhmF63eLzO4pnD2yYwNUdX8yNzGauMnQxEtW7bXMfKVVw7F7RTZBiyaeyCosxd0Cw1d2kQpaCyfrKlJpUZRdjOT7rGts5CN3qx6GqwTjIIU7dDo9tpwS5nrHREQkHHYfulxcXIzBgwfDy8sLX331FSIjI+15eLIDDl0mImfmSjNJ18Wew7F1Oj1yilW4W1iKrAIV7hYqcbegFFmFKlMYNgbje8Uq2H9NBdu8O7Q9J9giIiKLONU9uoMGDYJKpcLx48chkUgQERFR6zq6IpGI9/I6AIMuEbmCuwWlTj+TtDkcsY6uRqvDvSIVMgtKy4Kx4Xt5MC4PyXklapvOZS5fDzf0bxuEQG/DUOkAb3fT48Cyxx4yx35wwQm2yJH4AQtRdU4VdMVisfknF4mg1WrteXoyA4MuEVHDcfaJm0o1WmQVqgxhuMZgXD58ukhVv/9me8kkZQG4PAgHVXgcUBaKg7zd4eNh39mnnf3nRMLFD1hcCz+QaFhOFXRv3rxpUfuWLVva8/Q2O3bsGObPn48TJ05ApVKhY8eOmDZtGiZPnmzRcdasWYPnn3++1teffPJJ/PDDDzW+dunSJcyaNQsHDhxAYWEh2rRpgylTpuDNN9+06IOE2jDoEhE1LKEMxy5WaTDp63gk3MxxdCmQSkQI8CoPvxV7h6tua+Ilg5vk/v9+OqLnvaHwjbnz4gcsroMfSDiGU8267GzB1RLbt2/HX//6V+h0OgwYMACBgYHYt28fnnvuOZw7dw7Lly+3+Jhdu3ZFt27dqm3v3bt3je1PnDiBwYMHo7i4GL169UJERAQOHTqEd955B0ePHsXmzZudYv1EIiIyn1wqwaIxnfHOkHYuPRzbU+aGh9sHWRV0H+0Ygs5hvsguMtxnnF1oGDqdXViKnGLLh0+rtXqk5yuRnq80q72/p9QUfk09wwp3BHjJIJWIsSlBeBNs3e+N+eGrWfj33isu+8ZcKOFd6DOYC+XnZM4HEmqtHhviU3D9biE/kHASdu/RdVU5OTmIjIxEXl4etm7dijFjxgAAMjIy0K9fP1y7dg379+/HwIEDzTqesUd39uzZmDNnjln7aDQadOjQAUlJSVi+fDnefvttAEBhYSEeffRRHD9+HN988819e4rNwR5dIiKyVn2sd6wuu6c4q0L4NT6uui27UAWNhbNP15eJvVvghX6R8POUwUfuVmevcUMSak+hkHrVHLF2eEMR0s8JEPaID8C5P5Bwqh5dV7Vq1Srk5eVh1KhRppALACEhIViyZAnGjBmD5cuXmx10rbF9+3YkJSWha9euppALAN7e3vjvf/+L6OhoLF++3OagS0REZK36WO9YKhEjxEeOEB95ncfS6/XIK1FXCsLZpkBcfVtxPd5XvC4uBeviUkzPFe5u8PWUws/TsDazn4cMvqbH5dt9PWTlbTyl8JBK7D5aS4g9ha7Yq6bT6VFQts52Xoka+Uo18ksM62z/kphmUcgFDNf33vZEjOwaBh+5GxRyKXw9DN995FLIpWKHj/xzxZ/T/WQWKAW7pJqQR30ADLomu3btAmBYB7iq4cOHQy6XY+/evVAqlZDL6/6H2N41dO/eHa1atcL58+eRnJyMiIiIeqmBiIioLo5c71gkEsHPUwY/TxnaBNfdvlilQXahcbh0WSAuW5fYOIT6TEouSjU6m2srKNWgoFSD2zklFu0nk4jhUxZ6/TzKwrBnWVA2bveUGtp4SOHnadheWy+yUN+YOyK86/V6FJZqkK80hNX8ErXpcdXgWr6trK1SjcJSjd2X+tpzMRN7LmbW+JqbWAQfDykUcjf4yMu/+1QIwwq5W7U2vmXPFXIpJGLbgrIQPmTR6/VQaXUo1eiw+kiyVR9IbEq45dRLqgntA4maMOiWSUxMBABER0dXe00mk6FTp05ISEjA5cuX0bVrV7OPe+rUKbz77rvIz89HaGgoBg0ahIceeqjGtufOnau1BuP269ev49y5cwy6RETkMHKpBGun9HKJCbY8ZW7wbOKG5k08a23z7NdxOHw1y+JjS8Ui6ABobRxKrdLqTD3SllLI3ar1IN+6V2zVG/N1cTfx6sNtIBGLIBbB4T2DFVkb3t9+pC285W6Vwmi+siyQlpQH0vwSTXlwrRJenWSkvFk0Oj3uFalwr0hl9TG8ZJLqYbnS84rBubxX2UcuhVKts8uHLFqdHiqNDqUaLUo1OpSqKzzWaMueV9xW9qWu+Lx6O5UF7Wy17LfLWH00GV7uEnhIJfCUSeApc4OHzPhYAg+pm+F7hW2esorbyh5X2N9evfZC+ECiLgy6APLz85GbmwsACA8Pr7FNeHg4EhISkJKSYlHQ3bVrl6mnFgDmzZuHhx56CBs3bkRISEiltikpKXXWULFdXYxj2qtKSkpC69atzToGERFRTYQywRZg6HW2Jui+NaQdXn24NQpLDSEpt9gQoIyPc0sM6xTnFVd8rkFesQq5JWq7DKsuUGpQoNTgFizrRa7Jv/dexb/3XjU9F4kAiUgEsVgEiUhkCsASsfFx1e+o0rbsu1gESdl+xm3Gx+Iq26vvb3j9Ymq+VeG9z6J9ThNUFe7lgdHXQ4qrmYVWBVI/DylaBngiX6lBQVkoV2ltD2ZGRSotilRapOXZ7ZD3pdbqMWjpAUjdxChVa6HS6iz+WTsjnR5lH2DZ97giESoF34pB2RicK4dnN3hIJYbALXODp1QClUYryAn4qmLQhWGyJyNPz5o/8fXy8qrW9n6aNm2KOXPmYNSoUWjVqhVKSkoQHx+P//u//8PBgwcxfPhwxMXFQSIp/5TbeGx71UBERFTfghTumDawjVMP0avL+J7NsWLfVYsnBRrfozlEIhEUZb1c4f6WnVel0ZUFY1V5OC5WI7csLBsDcfUQrWqQ8KbXAxq9Hk6TFK1gz9I9ZZKyIeOGHk3Dd0Ovpq+H8XHl14ztveVu1YYEf7r/Kpb+dsXiOqYOaFXt702p1iJfqUZB2bDpAqXG1DNdUNZLXfW1is8LSjU2/bexVUGpBrB8QEOjpNcDxSpt2Qdl1vfcW8oVhmNXJZigO27cOJw/f96ifb799lv06tUL5kw8benk1EOHDsXQoUNNz318fDBy5EgMHDgQMTExOHXqFDZu3Iinn3662r61DUewtIbaZierraeXiIioMaqPCbbMIXMTI0jhbvFxdDo9ClUa5BVX7z3OLVZjfVwK7uTa3sMrNHKpuFI4NQZTQ0itGFwNz8tDraEXVmrnWbVt+YClKrlUArlUgmCFdbVodWX3ItcQhGsNyVXa1HcvrLub2PAllcDdTQyZmxjubpJq292N26UVHpva191OLq28z+qjyVix72rdBVYxuW9LPN6tGYpKDaG0RK0xfC8LqYbHhm3FauN2DUrKetSNz4tVWrvMIWAPJ65nM+g6QnJyMi5fvmzRPsXFxQAAhUJRaZuPj0+tbb29vW2o0rD/G2+8gddeew3/+9//KgVdb29v5OTkoKio6L712loDERERVebICbYsJRaLDAFMLkX1yGP4YNyansJXHm6NyX0joNXrodPpodXpodMbvrQ6mJ5rdfpKbQyPYXityr5aHWpoq4dOjxraVtwfFdrq8dO5VIsn+QKAmJb++OKZGCjkbk43kY6jPmCpiUQsKpsRXGrV/nq9HqUandlLWlXVJcwXc0dFVQ+eZY9lEsfNJj2xTwt8duCaxR9IvDaord1+VlqdHiXq8iBcHpTLtqm1ZYG67HV15aBs2kdtCNfJWUVQWfHBRKGDe/4tJZigm5CQYPW+Pj4+8PX1RV5eHm7fvo2OHav/43X7tmEce4sWLaw+j1Hbtm0BAGlpaZW2t2jRAjk5Obh9+za6dOlSrzUQERFROVeaYKsu1vYUTomNdNr77zxlEqvC+6AOwU57TYBrfcByPyKRCHKpBP3bBloVdId2CkX3FhaO/W8gzvCBhEQsgre7G7zd7RPdrJ2Az17nbyjOs7K5gxknmDp9+nS119RqNc6fPw93d3e0b9/e5nPl5OQAqN4ze78aKm6vKQQTERGRbYwTbB2bMRjvDm2P/m0D0b2FH/q3DcS7Q9vj2IzBWDSms1OHXKD8jbkl6qun0F7G92wOqcSyHr3ahvk6E+MHLE/1alHr9UklIjzVq4VLLO8i1J/T7JFR6B3ZxKy2zvyBhJG511JVn1YBdq6kfjHolhk+fDgAYMuWLdVe27VrF5RKJQYPHmyXNXS3bt0KAIiJiTG7hjNnzuD69evo2LEjIiMjba6BiIiIamacYOu7F3pj+6ux+O6F3pg2sI1TB8GqhPbGXIjh3UgoH7AAwv058QMJ1/hAoiqR3tIZjgTq3r17iIyMRH5+PrZu3YoxY8YAADIzMxEbG4tr165h7969GDx4cKX9OnToAADYt28fwsLCTNv/85//YMqUKZV6bdVqNRYuXIg5c+bAw8MDV69erbSPWq1G+/btcePGDSxfvhxvv/02AKCoqAhDhgzB8ePHsWrVKrzwwgs2XatxMqraJqsiIiIi16dUawUxFNtIqdaafQ9o78gmLhE4hEjoP6e7BaUuv6QaAPxzW6JFw7Gf6tXCIevo2pJbGHQr2Lp1K8aPHw+9Xo+HHnoIgYGB2Lt3L3Jzc/HGG29gxYoV1fYx3hh/48YNREREVNru4eGBjh07omXLllAqlTh79ixSU1Mhl8uxbt06U5iu6NixY3jkkUdQUlKC3r17o2XLljh8+DDS0tIwevRobN26FWKxbR3xDLpERESNh1DemAPCC+9CxZ+T83OVDyQYdO3o6NGjmD9/Pk6cOAGVSoUHHngA06ZNw/PPP19j+9qC7uzZs3H8+HH8+eefyMrKgl6vR3h4OAYPHoy33377vvf6XrhwAbNnz8aBAwdQWFiI1q1bY8qUKXjrrbcqrbtrLQZdIiIicmVCCu9Cxp+Tc3OFDyQYdMkiDLpERERERAQ49wcSDLpkEYVCAbVajdatWzu6FCIiIiIioholJSVBKpWioKDA4n0563Ij5OXlBanUugXB60tSUhKSkpIcXYZdCe2ahHY9AK/JVfCaXAOvyfkJ7XoAXpOr4DW5Bme8JqlUCi8vL6v2ZY8uOQUhDqcW2jUJ7XoAXpOr4DW5Bl6T8xPa9QC8JlfBa3INQrsm9ugSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaBw1mUiIiIiIiISFPboEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaC4OboAanihoaEoKipCixYtHF0KERERERFRjVJSUuDl5YX09HSL92WPbiNUVFQEtVrt6DKIiIiIiIhqpVarUVRUZNW+7NFthIw9uRcuXHBwJURERERERDWLioqyel/26BIREREREZGgsEeXiIiIiIjs7m5BKTaeTEHcjXsoLNXA290NfVoFYHyP5ghSuDu6PCoj1J+TSK/X6x1dBDUs4xAADl0mIiIiVyTUN+ZCoVRrMXfnBWw5dRtqbfWoIZWIMC6mOWaP7Ai5VOKACglwjZ+TLbmFQbcRYtAlIiJqPIQUCl3hjXljp1RrMfmbeMTduFdn296RTbB2Si/+rBzAVX5ODLpkEQZdIiIi4RNaKHSVN+aN3T+3JWJD/C2z2z/VqwUWjelcjxVRTVzl52RLbuFkVEREREQCYwyFG+Jv1RhyAUCt1WNDfAomfxMPpVrbwBVabu7OC2aFXACIu3EPc3derOeKqKrMAiW2nLpt0T5bTt3C3YLSeqrI/u4WlOLT/Vfx7NdxeOKzo3j26zj89/drLnUNjeHnBHAyKiIiIiLBsSYUOnOvmrVvzN8Z0s7lhme7sk0na/9gpTZqrR6bEm5h2sA29VSVfdxvhMThq1n4994rTjdCokSlxb1iFXKKVLhXpEJO2eP/XcgQ7M+pIgZdIiIiIgGpj1Co0+mh1euh1emhM37Xodq2Sq/r9dDqUPl1vd5wLJ0eOj1q2V62X4Vtv11MbxRvzF1NiUqL1LwSpOaW4E5OCTaeNH8obEVfHkzC6Zs58PGQwkfuBl8PqeGxhxQ+cil8PMq2yQ3bFO5uEItFdr6a2pkzbN44QuL63cJ6GTavVGuRU1wWWIvUhtBqeq7CvWK1KdDmFqtwr1gFpVpn1xpOXM92qb8nBl0iIiIiAbG2V63/kv2QSsSmUFsxyLqqVYev49a9YoT4yBHiI0eorzuCFXKE+srRxFPWoGGpLs42aZher0d2kcoUYu/kliA1V4k7ucVIzVUiNbcE2UUqu5wrX6nBvj8zzW4vEgEKdzf4eEgrBODKYdgQlt3gI5eWB+eyx3KpGCKR+T97e4+QKNVokVusrhBSVcipEFRNAba4PNQWqxx/e0FhqcbRJViEQZeIiIjIBRUo1biZXYyb2cVIzi7CzewiJGcX42xKjlXHU6p1du8BcrScYjV+qKWXUSoRIVghR7CPO0LKwm+wjztCy0Kx4csdCrm0Xmt01JDYUo0W6XlK3CkLslVD7J3cEpRqnPP3Qa83hON8pQa3c0os3l8qEZlCscIUlmsOzjqdHpsSLBshselkCvw83FCq0VcOrWXBtaEDo0LuBn9PGfy9ZGjiKcWF1HxkWnG/rbe7a0VH16qWiIiIqJ45U89abrGqQpAt/34zuwhZhfbpTbM3kQiQiEQQi0WQiESQiEUQiwCJ2PjY8CURiyAW19TW+JoIkrL9LqcXIF9p33Cg1uoNIS/3/kHJSyapFHxDfOWmYBzi444QHzmCFXLI3Cyf47W+hsTq9XrklagrhNgSpOYpK/TMllgVdGoiEYsQ6iNHMz85CpUaXEovsPgYf+kUil6RTZBXokZ+iQb5SnXZY8P3AqUG+SVqFNgpIKq1emQVqurtb0irBz4/eL1eju0lkxgCq5cM/p4Vv0vh51llu5cUfh6yar+bn+6/iqW/XbH43H1aBdjrMhoElxdqhLi8EBERUXWOWI7HODz0ZnYRkrOKTb2yxu95JWq7nMcc3Zr7Yf7oTpUCqaQsgIrFqPC4wveKr5e1t2RIqLmsfWM+sH0Q2oUokJGvRHq+Epn5pUjPV9bLMNAALxmCfeQILQu/5gyXtnaJF7VWh4x8Q3A13COrxG1joC0L7/a6Ri+ZBGH+Hgjz80Czsq9w//LHIQp3uEkMQSqzQInYD/dbNHReKhHh2IzBZn2IpNHqUFiqQX6JxhCEKwTi8sfVg3J+WVB2th5qD6nEFEgrhlZjcDX0wMpMwdbPUwp3N9v/31PfPyd7siW3sEeXiIiIGr36nGxGr9cjs6AUyVlFNfbO2jKMUS4Vo2UTL7QM8EREoOH72ZRcbLZwMioAGNIxBJ3CfK2upT6N79kcK/ZdtfiN+ZJxXau9Mdfr9Sgs1SAjX4mM/FKk5ymRUaBERl7Z83wlMvOVyCwohcaC+5Ozi1TILlLhUtr9azIOl/b3kOLAlbtmHx8AfohPwb5LGcgqLIU9bp0WiYBghbspxIb5eSDM3wPNfMue+3vAR+5m9ocXwQo5xsWEWxTex8WYP1LCTSKGn6cMfp4ys49fkVKtRb5SXSko55uCsqZKODa0u5xeAJXW8oDs7ynF412blfeymkKr1BRoHTU7c33/nJwFgy4RERE1erZONqPT6ZGWr8TNrIo9skWme2hLbFin1ksmMYXYlgFeiDB990Kwwr3ahEpDOoZgx9k7FofC8T2aW11jfbPnG3ORSASFXAqFXIo2wYpa99fpDL3thkBs6BHOyC81BOICJdLzDGH4ngUTMpk7XLo2esCiIcdyqbhyiK3SKxviY92Q6/uZPTIK1+8WmfX31DuyCWaP7GjX89+PXCqBXCrBfX7s1Tz7dRwOX82y+Fydwnwxd1Qni/drKM78c7IXBl0iIiJq1KxZjmfjyRSIyvZNzi5Gyr1iqGwYFukjd0NkoFflIBto+B7gJbNoOLBQe2sa+o25WCxCkMIdQQr3+/Z0l2q0yMwvLe8hLusRTi8LyMZeY1s+7KhNoLesUnit2jPr7ymtl6Hk9yOXSrB2Si/M3XkRW07VPAN4fdwGUF96RzaxKug6+/2sQvs51YT36DZCvEeXiIionLX3f1oqwEtmGGIc4FUpyEYEeFo9FLM25gzFNuod2aRe1v2sD4b7qF3vjbler0dBqcYQgPMMoXjpb5eRlqe0+Fhtgrzx1eQeaOord6prrMndglJsSriFE9ezHT6xm7Vc6X5Waznzz8mW3MKg2wgx6BIRUWOn0+mRmleCqxmFmLfrAm5kFdvluMEK97IgW37PbESAF1oEeMKnnpepqcpVQ6E5nPmNubmsHRLbv20gvnuhdz1URLWxdtIwsh0noyIiIiKqgVanx+2cYlzNKMTVzEJczSzAtcxCXMsstHlW2gAvGaYOaGUaatwywBOeMud5ayWXSrBoTGe8M6Sdy4fCqoIU7pg2sA2mDWzj6FKsJtQhsULUGO5nFaJG0aOr1WqhVqshl8sdXYpTYI8uEREJjUarQ8q9YkOYzSgo+16IpLuF9bakCHvWyBaNYUiskAh5hIQzY4/uffz00094+umnUVpaitdffx3Lly/HkSNHsGvXLoSGhmLy5Mnw9/d3dJlEREQu6W5BKTaeTEHcjXsN0luo0uhwM7vIFGSNPbTX7xZZtQRImJ8HpBIRkrMtH7rMnjWyhVAnDRMqIY+QECrB9+h269YNTZo0wfDhw/H5559j0qRJmD9/Ptzd3VFUVISWLVsiISEBAQHW/2OlVCqxaNEibNiwASkpKWjSpAkee+wxzJs3D+Hh4VYf9+rVq+jSpQuUSiWGDh2K3bt3W32sitijS0REtjL0blzAllO366V3o1SjxY2sItOQ42uZBbiSUYjkrCKL1jY1at7EA22DFWgb7I22IYbvrYO94e3uxp41chihThpGZC/s0b2Pq1evIi4uDp06dcJDDz2EPn364J///Cc++OADpKamYtSoUVi2bBkWLlxo1fGVSiUGDx6MY8eOoWnTphg1ahSSk5OxevVq7Nq1C8ePH0fr1q2tOvZLL72E0lLz10ojIiJqCOa8OVdr9dgQn4Lrdwvv++Zcqdaa7pm9mlmAqxmGx8nZRbA0z4pFQMsAL7QJ9i4LtN5oG6xAqyCv+947y541cpTGsMQLkaMIPuiWlJQgODgYABATEwOxWIwnn3wSANCsWTPMnz8ff//7360OugsXLsSxY8fQt29f/Pbbb/D29gYALF++HH//+98xZcoUHDx40OLjfv311/j999/xt7/9DStXrrSqNiIiovowd+cFs3qgACDuxj3M3XkR7w9/AEl3Cyv10F7NLETKvWJYOrZMIhYhIsDT0EMbUt5DGxnoZXUQ4GQz5CgcEktUPwQ/dFksFiM9Pd0UdhUKBc6dO4dWrVoBAG7duoWoqCjk5+dbfGy1Wo3g4GDk5ubi9OnT6N69e6XXu3btisTERCQkJCAmJsbs42ZmZqJDhw6IiYnBzJkzMXDgQA5dJiIip2DNMF9rSSUitAr0RpuQsh7asmAbEeAFmZvY7ufjZDNERM6FQ5frMGfOHAwYMAA9e/aESCSCSCQyvSaTyVBUVGTVcY8cOYLc3Fy0bt26WsgFgHHjxiExMRE7d+60KOi+8cYbKCkpweeff47bt29bVRsREVF92HSy5hBoC5mbGK2DjGG2rIc2xBstmnhCKrF/oK0Ne9aIiIRD8EF34sSJ+P333/Hll18CAPR6PZ577jn07dsXPXr0QFhYmNXHPnfuHAAgOjq6xteN243tzPHLL79g48aNmDdvHtq0acOgS0REDqfR6pB0twgXUvOwPj7F6uN4SCWm+2fblN0/2zbYG82beEIiFtV9gAYihDVaiYgaO8EH3e+++w4AUFBQgISEBMTHx+PkyZPYsGEDlixZAgCVengtkZJi+Me+tpmVjduN7epSVFSEV199Fe3bt8f06dOtqqkiY1d/VUlJSVZPkEVERMJWqtHiakYhzt/Jw/nUPJy/k49Lafk2r0Ub1cwHO1/rB7ETBVoiIhIuwQddI4VCgYEDB2LgwIGmbZmZmYiPj0dCQoJVxywsLAQAeHp61vi6l5dXpXZ1ef/993Hz5k3s378fMpnMqpqIiIjMVazS4FJaAS6k5hmC7Z18XM0sqJf7b5t4yRhyiRoRvV4PgU8FRBaoevtoQxBU0D1+/Di6dOliCph1CQ4OxogRIzBixAirzmf8463th2bJH3dCQgI++eQTTJo0qVIYt0VtN23X1tNLRETClVeixsXU/PJQm5qP63cLzV7CRyIWoW2wNyQiES6kWT6BY59W1q9XT0SuQavVIjs7GwUFBVCpVI4uh5yMTCaDQqFAQEAAJJL6n9BPUEE3NjYWYrEYrVu3Rrdu3Sp9NW3a1NTub3/7G2JiYvDSSy/ZdD6FQgEAtU5mVVxcDACmJYdqo9FoMHXqVPj6+mLp0qU21URERM7rbkEpNp5MQdyNe/U6yVFWYSkupObj/J28smCbj5R7xWbvL3MTo0OoAlHNfNEpzAedmvmifagCcqnEqlmXpRIRxvdobs2lEJGL0Gq1SElJgVKpdHQp5KRUKhWys7NRVFSEFi1a1HvYFVTQfeqpp3Du3DlcvnwZV69exebNm029rYGBgejWrRtat26N7du3Y+fOnTYH3RYtWgBArRNGGbcb29Xm9u3bOHv2LEJDQ/HXv/610mu5ubkAgPj4eDz88MPw9vbGrl27bKqbiIgalmHZmgvYcup2tYB4+GoW/r33ilXL1uj1eqTnK3H+TnmovZCaj7Q8899oesok6NjUB53CfBHVzPC9TbB3rbMdByvkGBcTjg3xt8w+x7gYzlZMJHTZ2dlQKpWQSCQICQmBl5cXxOKGmzWdnJtOp0NRUREyMjKgVCqRnZ1tWv61vggq6K5btw4AUFpaij/++ANnz541fZ08eRJ79uzB3r17odfr0by57Z8sd+3aFQBw+vTpGl83bu/SpYtZx0tPT0d6enqNr+Xk5ODgwYPw9fW1olIiInIUpVqLyd/EI+7GvVrbqLV6bIhPwfW7hVg7pVeNYVev1yPlXrEh1JYNP76Ymo/sIvOHB/rI3dApzLdSqI0I8LJ4xuPZI6Nw/W7Rfa/JqHdkE8we2dGi4xOR6ykoKAAAhISE8P0qVSMWi02/F6mpqSgoKGDQtYa7uzt69OiBHj16mLbl5eVh9erVmDlzJjp37oxvv/3W5vPExsbC19cXSUlJOHPmTLW1dLds2QIAdd4DHBERUev9vAcOHMDAgQMxdOhQ7N692+aaiYioYc3decGsQAgAcTfuYe7Oi5g/uhOu3y00zXps7KktUGrMPm+gt8wQapuVh9pwfw+7TAYil0qwdkovzN15EVtO1byurlQisqqXmohcj16vN92Ta+5cOdQ4GX8/VCoV9Hp9vU5QJcigWxNfX1+89dZbaN26NUaPHo0//vgD7dq1s+mYMpkMr732GhYsWIDXXnsNv/32m+mHt3z5ciQmJqJfv37o2bOnaZ9PP/0Un376KZ544gksWrTIpvMTEZFzyyxQYsspy9ZD/yE+BdtP34bSguV8wvw8ENXMp/ye2jBfBCvc6/UNhFwqwaIxnfHOkHbYlHALJ65n1+t9x0TkvCp22HC4Mt1Pxd8PBl07GzlyJNq3b4+FCxdi7NixNh/v/fffx969e3Hs2DG0bdsW/fv3x82bNxEXF4eAgACsXr26UvusrCxcvnwZaWlpNp+biIic26aTNfd23o8euG/IjQz0QsdmhgmiOoUZwm0TL8ctSRekcMe0gW0wbWAbh9VARERUVaMLugDQqlUr7N+/3y7Hksvl+P3337Fo0SKsX78eO3bsgL+/PyZPnowPPvjALvcCExE1Rg01Q7E96PV63C0sxZ2cEtzJLUFqbgnu5JRgZ2Kq1ccUi4A2wd6GocdhvujUzAcdm/lAIZfasXIiIiJhEukFtJLzm2++ie7du6N79+6IioqCm1vNOf6BBx5AaWkprl+/3sAVOgfjOrq1rbNLRORI95uhGHDMvZ9qrQ7peUrcrhJk7+SWf6ksGGpcl3Yh3vhxWj94yHhvKxE5P51Oh8uXLwMA2rdvz+HLVCtLf1dsyS2C6tH95JNPTOO8pVIpoqKiTMG3U6dOcHd3x/fff48rV67g888/d3C1RERUlb1mKLZUsUqDOzkluF01xJZ9z8hXQteAHwuH+MgZcomIiGwgqKC7bds2nDlzptpX1Zuc27Rpg+zsbOzevRvR0dH1PrU1ERGZx5oZiheN6Xzfdnq9HjnF6rLQWow7ucoKjw1hNqdYbY/yoZC7IczPw/Dl74HkrCIcuppl8XH6tAqwSz1ERESNlaCC7ujRozF69GjT86ysrGqh99q1a7h69Sref/99U7umTZsiJiYGP/74owOqJiIiwLoZirecuoW3BreFVq+v1ANb8XFqbgmKVVq71BikcK8UZCs99veAT5X7ZzMLlIj9cL9FE1JJJSKM78H5HYiIiGwhqKBbVWBgIIYMGYIhQ4aYthUVFeHcuXOVwu+FCxewa9cuB1ZKRETWzFCs1urR98N9dhlW7CYWoamfHGF+Hmjm54FwU5j1RJi/B5r6yi0eJh2skGNcTDg2xN8ye59xMc432RYREdWv8ePHY/PmzYiLi0OvXr0cXY4gCDro1sTLywsPPvggHnzwQdM2jUbDiZmIiBzM3CHLVZkbcj1lElPva7Oynthw//Ie2WCFHBKx/dfzmz0yCtfvFpl1fb0jm2D2yI52r4GIiJzb6dOnIZFI0Lnz/W/HIfM1uqBbEzc3N3Tt2tXRZRARNTpqrQ4XU/NxOiUHf9zJs+lYTbxkZb2xclMvbMUw6+cprdeF6Wsjl0qwdkovzN15EVtO1dxr7YiZpImIXJUrLT9njtzcXCQlJSEqKgoeHh6OLkcwGHSJiKjBZBWW4vTNHJxOycXpmzlIvJMLpdq2ZXliWvrhuxd6w1PmvP+kyaUSLBrTGe8MaYdNCbdw4nq2IN6cERE1pPstP3f4ahb+vfeKS35oePr0aQBA9+7dHVyJsDjvuwIiInJpWp0el9MLcColB2du5uBUSg5uZhfb/TyDOoQ4dcitKEjhjmkD22DawDaOLoWIyKU4avk5e9q9ezeWLl2K+Ph4SKVSjBw5Eh9//DFOnToFAIiOjnZwhcLiGu8MiIjI6eUWq3AmJRenU3JwOiUHZ1NyUWTGbMcyiRidwnzQIVSBjQm3obVgZinOUExE1DjUx/JzDWn27NmYN28e3N3dMXDgQEilUmzfvh3nz59HREQEAPN7dK9cuYIXX3wRWVlZkEgkePnllzFt2rR6rN6566gNgy4REVlMp9Mj6W4hTt00hNpTN3OQdLfIrH2DFe6IaemP6Bb+iG7pj05hPnB3M3zqrgc4QzEREVVi7fJz7wxp5xT/Rnz//feYN28eYmJisGPHDoSHhwMAbty4gR49epiGLnfr1s2s47m7u+Ozzz5Dp06dUFhYiJiYGDz88MOIioqqr0tw6jpqw6BLRCQA9T0xR4FSjXO38kyh9kxKDvKVmjr3k4hF6NjUBzEt/dG9hR9iWvojzM+j1kmhOEMxEZHw6PV6s/7NqM23x25atfzct8eT8WL/Vlaf10fuZvMkhnl5eXjjjTfg4+ODnTt3omnTpqbXIiMjMXXqVCxevBiRkZHw8/Mz65gtW7Y0Pfb29ka7du2QkpLS4AHTWeqoDYMuEZELq4+JOfR6PW5mF1fqrb2SUWDWMj5NvGRlPbV+iG7hjy7hvhbdP8sZiomIhCdfqUHXub81+Hk/2X8Nn+y/ZvX+52Y/Cl8PqU01fPnll8jJycHMmTMrhVyjNm0MczZYe39uUlISTp06hT59+thUp62cpY6KBBl0i4uLkZCQgLS0NJSWltbabtKkSQ1YFRGRfdlrYo4SlRbnbpfdW3vT8P1ekarO84tFQLsQhWkYckxLf7QM8LT502/OUExEREKxa9cuAMCECRNqfL2wsBCAdTMu5+XlYezYsfj000/h7+9vfZE2cpY6qhJc0J01axY+/vhjFBfXPrOnXq+HSCRi0CUil2bNxBwLn+iEO7klZcOPc3HqZg4upeVDY0Z3rY/cDd3LAm10C390be4Lhdy2T7rvhzMUExGRqzt79izc3d1rHc6bkJAAwPKgW1paitGjR2Py5MkYM2aMzXVay1nqqImggu6SJUswf/58uLm5YcSIEWjXrh28vb0dXRYRkd1ZMzHHD/Ep2HMhHVlm9NYCQJtgb0SX3Vcb3cIfrYO8IRbb1ltLRESNj4/cDedmP2r1/l8duo5Pf7d8CPLrg9rYfI+uLdRqNQoKCuDr61vjaKfMzExs27YNQOWgu2fPHjz66KM4cuQIYmNjAQA//fQTnnzySWzevBnDhg3D008/jd69e+Ptt9+2qcb7eeCBBzBixAh89NFHpm0qlQqdOnXCxIkT8a9//atB6rCWoILuV199BQ8PDxw+fJjrUBGRoG06WfP9q/ejB2oNuV4yCbq18DPNhNy9uR/8PGV2qJSIiBo7kUhk072ukx5siS8PJVn0755UIsKkvhE232NrC6lUCn9/f+Tk5CAjIwMhISGVXl+6dClKSkoQEhJS6f7dIUOGYOjQofjnP/+JQ4cO4eDBg3jqqaewatUqjBgxAj///DO2b9+OLl26YPfu3QCAefPm4fHHH7dr/bGxsThx4kS1mjUaDaZPn45ff/21QeqwlqCC7q1btzBo0CCGXCISPHOHLNemZYAnYlr4o3tLf8S08Ef7UAUk7K0lIiInFKyQY1xMuEsuPxcdHY19+/Zh1qxZ+OKLL0w9u19//TWWLVtmalPVRx99hG7dumHhwoVYvHgxlixZgokTJwIAhg8fDp1OZ9b57927h3v37v+ewcfHB8HBwdW2x8bGYv369dBoNHBzc8OtW7ewYMECrF+/HnK53KI6HEFQQTc0NNTRJRAR1Yu8EjXO38nDudu5+ON2Hk5cz7bqOK0CvbDp5b4I9Hb8P/5ERETmctXl52bNmoX9+/dj5cqVOHr0KKKionD+/HlcvHgRvXv3RlxcXI3353bu3BkTJkzAzJkzMW/ePEybNs2q8//nP//B3Llz79tm8uTJWLNmTbXtsbGxKCkpQWJiIqKjo/H2229jwIABGDVqlFW1NDRBBd0JEyZg1apVyMnJcaoZv4iILFGs0uD8nXwk3s5F4u08/HEnDzeyiuxy7DB/D4ZcIiJyOa66/NyAAQOwefNmzJ07F3/++SdSU1MRHR2NDz/8EIcOHao16J47dw6//PILpFIpgoKCrD7/rFmz8P7779+3jVgsrnF7u3btEBgYiBMnTiArKws7d+7E+fPnra6loYn0er1lN3k5MaVSiUcffRQSiQSrVq1C69atHV2SUzLO+nbhwgUHV0JESrUWf6YXmEJt4u1cXMssNGvNWmu8O7Q9ZzEmIiK70ul0uHz5MgCgffv2tQYne7lbUCro5eeuXbuGfv364YUXXoCbmxu+/PJLXLt2zSGT7I4aNQqenp44c+YMnnjiCSxatMim41n6u2JLbhFUj+6wYcOg0+lw9OhRdOjQAREREQgPD69xljORSIR9+/Y5oEoiaqzUWh2uZBSUBdo8/HEnF3+mFZi1tA8A+HpI0SXcF13CfdEywAvvbfvD7H0Bwyfd43s0t7Z8IiIipyDk5efu3LmDIUOGYPTo0ViwYAEKCgrw2Wef4aOPPqpzCHJ9iI2NxYwZMxAWFlZnz7CzEVTQPXDggOmxVqtFUlISkpKSamxbU/glosbhbkEpNp5MQdyNe/X2SbBWp8f1u4WmXtrEO3m4mJqPUo15kzZ4ySToFOaLrs390DnMF13D/dC8iUel/3edSclxyYk5iIiIqLrs7Gw8+uij6NGjBz777DMAgEKhwMyZM/H+++/j5ZdfrjQ7c0OIjo6GXq/HsmXL4OXl1aDntpWghi7fvHnTovYtW7asp0qcG4cuU2OlVGsxd+cFbDl126739uj1etzMLkbinTwk3jKE2gt38lCk0pq1v7ubGFHNfNAl3M/UY9sqsO41a5VqLSZ/E2/2xBxrp/RymnuWiIhIOBp66DI1nGeffRZ37tzB/v377XI8Dl22UmMNrkRUN3NCoVqrx4b4FFy/W1hrKNTr9UjLU1a4p9bQY5uv1JhVh1QiQodQH3QO90WXMF90CfdD2xBvSCWWvylw1Yk5iIiIyHlptVpkZ2dj69at2L59O86cOePokqwiqKBLRFSbuTsvmL32bNyNe5i78yIWjemMuwWl+ONOLs7dMsx+nHg7F1mFKrOOIxYBbYMV6Bzui67hvugc7ocOoQq7Bk65VIJFYzrjnSHtBD0xBxERETWMgwcP4pFHHkGrVq2wefNmtG3b1tElWUWwQTc+Ph6HDx9GamoqRCIRmjZtiv79+6NXr16OLo2IGlhmgRJbTt22aJ8f4lOw/1IGMgpKzd6nVaCXoae2bAhyx6Y+8HJvmP/NCnliDiIiImo4gwYNgk5n3pwizkxwQffKlSuYNGkSTp48CcAwzBAon3yqV69e+Pbbb132kwkistymkzUP670fPXDfkBvm54GuzX3ROcwPXcN9ERXmC18PqY2VEhEREZE9CCropqWl4aGHHkJGRgaaNWuGv/71r4iIiABgmKhq8+bNiIuLw8MPP4yEhAS7zVqmVCqxaNEibNiwASkpKWjSpAkee+wxzJs3D+Hh4WYdQ6PRYP78+Th58iQuXbqEu3fvQq1Wo3nz5nj00Ucxffp0tGjRwi71EjUmucUq/HYxw6ZjBCnc0bWsp9Z4b22AN4cDExERETkrQc26PG3aNHz++ed4++23sWjRIshkskqvq9Vq/POf/8Ty5csxbdo0fPLJJzafU6lUYvDgwTh27JhpeHRycjLi4+MRFBSE48ePo3Xr1nUep7CwEAqFAt7e3ujSpQuaNWsGlUqFs2fPIiUlBb6+vti/fz+io6NtrpmzLpMQFZVqcDWzEFfSC3A5owBXyr4y8s0felxVq0AvrJ/aB6G+cjtWSkREJCycdZnM1ZCzLgsq6EZGRkIul+PSpUu1ttHr9ejYsSOUSiVu3Lhh8zlnzZqFDz74AH379sVvv/0Gb29vAMDy5cvx97//HQMGDMDBgwfrPI5Go0FcXBx69+4NN7fyjnatVot//etfWLRoEXr37o0TJ07YXDODLrkypVqLpLuFZUG2PNjezimx+7n6tw3Edy/0tvtxiYiIhIRBl8zFoGsluVyOsWPHYt26dfdtN3HiRGzduhVKpdKm86nVagQHByM3NxenT59G9+7dK73etWtXJCYmIiEhATExMVafR6PRQKFQQKlUorCw0ObFmhl0yRJ3C0qx8WQK4m7ca9DZfNVaHZKzinAlo9DQQ5tu6KFNzi6CzsL/a8ncxFBpLJ9U4d2h7Tm5ExERUR0YdMlcXEfXSj4+Prh161ad7W7dugUfHx+bz3fkyBHk5uaidevW1UIuAIwbNw6JiYnYuXOnTUFXJBJBLBZDLBZX6u0lqk9KtRZzd17AllO3q03kdPhqFv6994pd1mfV6fS4lVOMy+kF5b20GQVIulto8QRSHlIJ2oV4o22IAu1DFGgXavguFgGxi/dbdDypRITxPZpbejlERERE5AQElZr69u2Ln3/+Gb/++iv+8pe/1Njml19+wdGjRzFy5Eibz3fu3DkAqPW+WeN2Yztr6PV6fPjhhyguLsYjjzwCd3dOgEP1T6nWYvI38fddd1at1WNDfAqu3y3E2im96gy7er0eaXlKXM4owNWMAlxONwTaa5mFKFFrLapPJhGjVZAX2ocq0C7E8NU+RIFwfw+IxaIa9xkXE44N8XV/EFbenuvPEhEREbkqQQXdGTNm4JdffsHo0aPx9NNP4+mnn0ZERAREIhFu3LiBdevWYcOGDZBIJJgxY4bN50tJSQGAWmdWNm43tjPX9OnTkZGRgfz8fCQmJiIpKQkdOnTAypUrLTqOsau/qqSkJLMmyKLGa+7OC/cNuRXF3biHuTsvYtGYzqZtWYWlVSaFMtxLW1CqsagOiViEiABPtA9VoG2wwhRsIwI84SaxbFjU7JFRuH63yKzr6h3ZBLNHdrTo+ERERETkPAQVdPv27YvVq1fjpZdewtq1a/Htt99Wel2v18PDwwMrV65Enz59bD5fYWEhAMDT07PG14330hrbmWvr1q1ISkoyPe/UqRPWrVuHyMhIKyslMl9mgRJbTt22aJ9NJ1Og1eqQklOMKxmFuFeksvi8LZp4ol2It6F3tizYtgrysmlYdEVyqQRrp/TC3J0XseVUzevqSiUiuwzHJiIiIiLHElTQBYBnnnkGDz/8ML766iscOXIEqampAIBmzZqhf//+eOGFF9C8uX3uuzPO4yUS1TxU0tp5vq5duwYAyMrKwqlTpzBz5kzExMRg1apVmDx5stnHqe2m7dp6eokAYNPJmkPg/Wj1wCYzw3Goj7zs3tnye2nbBHvDy73+/3ckl0qwaExnvDOkHTYl3MKJ69kNOsEWERERETUMwQVdwDBkeO7cufV+HoVCAQAoKiqq8fXi4mIAMC05ZKnAwEAMHToUffr0QZcuXfDKK69g0KBBdgvqVD8cNUuxNUo1WqTnKZGWp0RaXgnS8pRYF2fZUPvaNPGSoV2Id6VJodoGK+DrKbXL8W0RpHDHtIFtOKMyERERkUAJMug2lBYtWgAAbt+uuSfLuN3Yzlq+vr4YMWIEPvvsM+zZswdTpkyx6XhUPxpqlmJzlWq0yMwvRWpuCdLzlUjNLQ+zaXklSM9TIqvQ8iHGtQnwkuG1QW1MwTbQ27lCPRERERE1Hi4ddFu1agWRSIS9e/ciMjISrVq1MntfkUhU6T5Ya3Tt2hUAcPr06RpfN27v0qWLTecBDL27AHD37l2bj0X2Vx+zFN+PWqtDep6yLMAawmt6nrJSqM0qLLX6+Nbo2MwHz8fyPnIiIiIicjyXDrrJyckAALVaXel5Q4mNjYWvry+SkpJw5syZamvpbtmyBQAwYsQIm8918OBBAOBsyU7K1lmKK1JrdcgsKEVabglS85RIzytBaq6ybIixYVtWYSmsvAW8GpEICPR2RzNfOUJ95cgsKMWZlFyLj9OnVYB9CiIiIiIispFLB12dTnff5/VNJpPhtddew4IFC/Daa6/ht99+M820vHz5ciQmJqJfv37o2bOnaZ9PP/0Un376KZ544gksWrTItP2nn36CVCrFY489Vmlyq+LiYixYsAAHDx5EaGgoHnvssYa7QDKLVbMUJ9xC5zAfFJVqTUOJjaH2bkEpdHYKsUBZiPWTI9RHjmZ+Hgj1laOprxxNfT3Q1FeOEB85ZG7lS/VkFigR++F+iyakkkpEGN+D944TERERWWP8+PHYvHkz4uLi0KtXL0eXIwguHXSdwfvvv4+9e/fi2LFjaNu2Lfr374+bN28iLi4OAQEBWL16daX2WVlZuHz5MtLS0iptP336NObOnYtmzZqhe/fu8PX1RXp6Os6ePYt79+7B19cXmzZtsnpiK6o/Vs1SrNPjve3nbT53oLesLLh6mMJrxVAb7OMOdzfLhkgHK+QYFxOODfG3zN5nXIzzTbRFRERE5CpOnz4NiUSCzp1rHvFHlmPQtZFcLsfvv/+ORYsWYf369dixYwf8/f0xefJkfPDBB2bPkDxmzBgUFBTg8OHDOHnyJO7duwcPDw+0adMGL730El5//XU0bdq0nq+GrGHukGVLNfGSVep5bepXvSe2via1mj0yCtfvFpl1bb0jm2D2yI71UgcRERFRNYWZwOm1QPJRQFUIyLyBiH5A9CTAO9jR1VksNzcXSUlJiIqKgoeHh6PLEQyR3trFXp3QlClT0K9fvzpnJV6zZg0OHTqEb775poEqcy7GdXRrW2eXLPPEZ0etuqfVQyrBg60DygKsR6UQG+pbfyHWXIZZpC9iy6mae6ylElGDziJNREREzkmn0+Hy5csAgPbt20MsFtexh5XUJcCv04Gz6wGduvrrYinQfSLw2GJAKq+fGurB/v37MXjwYDzzzDP47rvvHF1OvbL0d8WW3CKoHt01a9YAQJ1B9+jRo1i7dm2jDbpkX97u1v0Z9Yjwx9fP9ay7oYPIpRIsGtMZ7wxph00Jt3DierbTrwtMREREAqUuAb4fB9w8UnsbnRo4tQbIugY8swWQOlfv6O7du7F06VLEx8dDKpVi5MiR+Pjjj3Hq1CkAQHR0tIMrFBZBBV1zqVQqSCTsgSL76B3ZBIevZlm8n6vMUhykcMe0gW0wbWAbR5dCREREjdWv0+8fciu6eQTYPQMYuaJ+a7LA7NmzMW/ePLi7u2PgwIGQSqXYvn07zp8/j4iICACotoJLTa5cuYIXX3wRWVlZkEgkePnllzFt2rR6rt41Nbqgq9frcfr0aQQFBTm6FBKI8T2bY8W+q5ylmIiIiKg+FGQYhitb4sw6YOBMp7hn9/vvv8e8efMQExODHTt2IDw8HABw48YN9OjRA6dPnwYAdOvWrc5jubu747PPPkOnTp1QWFiImJgYPPzww6YhvlTO5YPuoEGDKj3fvXt3tW1GGo0GSUlJSE9Px7PPPtsQ5VEjwFmKiYiIiO5DrweUedbvH7+y5nty70enNuzX9zXrzyv3BSos+2mNvLw8vPHGG/Dx8cHOnTsrTS4bGRmJqVOnYvHixYiMjISfn1+dx2vZsqXpsbe3N9q1a4eUlBQG3Rq4fNA9cOCA6bFIJEJ6ejrS09NrbS+VSjFixAgsXbq0AaqjxmL2yCicuH4PN7KK6mzLWYqJiIioUVHmAYtb1t3O3g59ZPiy1vSbgIefTSV8+eWXyMnJwcyZM2tcQaVNG8OtYdbcn5uUlIRTp06hT58+NtUoVC4fdG/cuAHAMCS5VatWGDduHD76qOZfaJlMhsDAQEil0oYskRoBdzcxJHVMMMhZiomIiIgal127dgEAJkyYUOPrhYWFAMy7P7eivLw8jB07Fp9++in8/f1tK1KgXD7oVuy+nz17Nrp3715pG1FDOJ6UjWuZ5b25U/pF4GpGIWcpJiIiImrEzp49C3d391qHFickJACwLOiWlpZi9OjRmDx5MsaMGWOXOoXI5YNuRbNnz3Z0CdRIrT6WbHr8ULsgzBrB+ySIiIiIABjudZ1+0/r9j30CHLbitsMB79p+j64N1Go1CgoK4OvrC1EN9/pmZmZi27ZtACoH3ZUrV+Kll16q1r5z5844e/Ysnn76afTu3Rtvv/22TfUJnaCCLmAYwrxu3Tr8+OOPuHr1KgoKCqDXV58NVyQSISkpyQEVktDculeMvZcyTM+fi41wXDFEREREzkYksu1e115/A46usGxCKrHUsJ+N99jaQiqVwt/fHzk5OcjIyEBISEil15cuXYqSkhKEhIRUun/36aefxuOPP256vnfvXkydOhXTp0/Hr7/+iu3bt6NLly7YvXs3AGDevHmV2pOBoIKuSqXC8OHDsX///hrDLWAIuLW9RmSNb48nw/grFRnohYfacukqIiIiIrtRhADdngZOrzV/n+4TnWJpoejoaOzbtw+zZs3CF198YerZ/frrr7Fs2TJTm4q8vb3h7e0NAPjpp5/w6quv4rvvvsO4ceMAADqdrgGvwHXVMX2Oa1m2bBn27duHESNG4OrVq3j22WchEolQWlqKS5cuYc6cOfDy8sK7777LXxCyi6JSDX44Wb6s0OS+LSEW2zYNPRERERFV8ZfFQMt+5rVt2Q94bHH91mOmWbNmQSQSYeXKlejcuTOefPJJREVF4cUXX0TPnj0B1H5/7g8//IBnnnkGGzZsMIVcMp+ggu7GjRvRpEkTrF+/Hq1bt4ZYbLg8qVSK9u3bY9asWfj555+xbNkyfPPNNw6uloRg+5k7KFBqAADe7m4YGxPu4IqIiIiIBEjqATyzBYh5zjAsuSZiqeH1Z7YCUnlDVlerAQMGYPPmzejcuTOuXLmCPXv2oGnTpvjpp5/Qv39/ADUH3a+//hovvfQSduzYgeHDhzd02YIgqKHL165dw4ABA+Dl5QUApqCr1WohkRiWc+nfvz9iY2Px2WefYcqUKQ6rlVyfXq/HmgqTUI2LCYdCzqWriIiIiOqF1AMYuQIYOBM4/S2QfARQFQIybyCiHxA9ySmGK1c1duxYjB07ttr2kSNH1rgs6ooVKzB37lzs3r0bffv2bYgSBUlQQVcikcDHx8f03Bh47969i9DQUNP2sLAw7Ny5s8HrI2E5ci0L1zINa5+JRMDkByMcWxARERFRY+AdDAz4h+FLYBYvXoz58+dj06ZNiIyMRHp6OgDAw8MDvr62zQLd2Ahq6HJYWBhSUlJMz9u0aQMAOHHiRKV2iYmJphu8iay15miy6fHA9sGIDPRyXDFERERE5NL0ej0WLlyIwsJCDBs2DE2bNjV9ffjhh44uz+UIqke3T58+2Lp1K0pKSuDh4YFhw4bh7bffxptvvgl3d3eEh4dj5cqVuHTpEkaOHOnocsmFJWcVYf/lTNPz59ibS0REREQ2EIlEyMvLc3QZgiGoHt2xY8fC09MTe/bsAWDo0X3rrbdw69YtjBgxAt26dcN///tfeHp6YvFi55iJjVzTt8dvmpYUah3khf5tAx1bEBERERERmQiqR3f48OFIS0urtG3ZsmXo2bMnduzYgZycHLRr1w5vvPEG2rZt66AqydUVlmqwOaF8SaHnHowwrYlGRERERESOJ6igW5sJEyZgwoQJji6DBGLb6dsoKDUsKaRwd8OYaC4pRERERETkTAQ1dJmovul0lZcUGt+zObzcG8XnRURERERELkNQQVcsFkMmk2H58uX3bff888/DzY3hhCx36OpdXL9bBKBsSaG+EY4tiIiIiIiIqhFU0AUAjUaDd999F88//zzUanWt7fTGmYSILFCxN3dwhxC0CPB0XDFERERERFQjwQXdxx57DL169cLatWvx8MMPIzMzs+6diMxw/W4hDly+a3r+fGyE44ohIiIiIqJaCS7ohoaG4sCBA5g4cSKOHz+OXr164ezZs44uiwTg2+M3TY/bBnvjwdYBDqyGiIiIiIhqI7igCwDu7u747rvvsGjRIty+fRv9+vXDli1bHF0WubACpbrykkKxXFKIiIiIiMhZCTLoGk2fPh07duyAWCzGk08+iTlz5ji6JHJRW07dRpFKCwDwkbvhie5hDq6IiIiIiIhqI/iph0eMGIETJ05g5MiR+OCDD/DHH39ALBZ0vic70+n0WFthEqoJvVrAUyb4Px0iIiIiIpfVKBJfx44dkZCQgIceegjbt2/Htm3b7Hp8pVKJ2bNno127dpDL5WjWrBmmTJmC27dvm32M3NxcrF+/Hk8//TQ6duwILy8vKBQK9O7dGytWrLjvDNJUvw5cyURydjEAQCwCnu3T0sEVERERERHR/Qgq6LZo0QKBgYE1vubv7489e/bg5ZdftuvSQkqlEoMHD8a8efNQWFiIUaNGoXnz5li9ejWio6ORlJRk1nGWLl2KiRMnYuPGjfD09MTIkSPRq1cvnDt3Dm+99RYGDRqE4uJiu9VN5lt9NNn0eEjHEDRvwiWFiIiIiIicmaCCbnJyMpYsWVLr6xKJBJ999hlSUlJw/fp1u5xz4cKFOHbsGPr27YsrV65g48aNiIuLw7Jly3D37l1MmTLFrON4e3vjvffeQ0pKChISEvDDDz9g3759+OOPP9CiRQscOXIE8+fPt0vNZL5rmQU4fDXL9Py5ByMdWA0REREREZlDpLdn92Yjo1arERwcjNzcXJw+fRrdu3ev9HrXrl2RmJiIhIQExMTEWH2eDRs24Omnn0ZERARu3Lhha9mIiooCAFy4cMHmYwndv3acx3cnDMsKdQhV4Nc3+3O2ZSIiIqIKdDodLl++DABo374958OhWln6u2JLbuFvoQ2OHDmC3NxctG7dulrIBYBx48YBAHbu3GnTebp27QoASE1Ntek4ZJm8EjW2ni6/z/q5B7mkEBERERHZ3/jx4yESiRAfH+/oUgTDpaeObdWqFUQiEfbu3YvIyEi0atXK7H1FIpHZ98/W5ty5cwCA6OjoGl83bje2s5ZxmHVoaKhNxyHLbE64heKyJYX8PKUY1Y1LChERERE5WlZJFrZd3YaE9AQUaYrg5eaFnqE98UTbJxDoUfN8Pc7u9OnTkEgk6Ny5s6NLEQyXDrrJyckAYJqR2Pi8oaSkpAAAwsPDa3zduN3YzlorVqwAAIwaNcqi/Yxd/VUlJSWhdevWNtUkdFqdHt8ev2l6PqFnC3jIJA6siIiIiKhxU2qU+DD+Q/yY9CM0Ok2l146nHcdn5z7D6DajMaPXDLhL3B1UpeVyc3ORlJSEqKgoeHh4OLocwXDpoKvT6e77vL4VFhYCADw9a56F18vLq1I7a3zxxRfYu3cv/Pz8MGPGDKuPQ5bZ/2cmUu4ZZrmWiEV4ti+XFCIiIiJyFKVGiVf2voKEjIRa22h0Gmy5sgXJecn4/JHPIXeTN2CF1jt9+jQA1HgrJFmP9+jawDiPV233bdo6z9fBgwfx5ptvQiQS4ZtvvkGzZs0s2v/ChQs1frE3t25rjpVP+jU0KgRhfvx0jYiIiMhRPoz/8L4ht6KEjAQsPrm4niuy3O7du/HII4/Ax8cHAQEBeO6555CTk4NTp04BqP12SLKOoILulClT8M0339TZbs2aNWYv+3M/CoUCAFBUVFTj68Z1b729vS0+dmJiIkaPHg2VSoUVK1bgiSeesL5QssiVjAIcvZZtes4lhYiIiIgcJ6skCz8m/WjRPjuu7UBWSVbdDRvI7Nmz8Ze//AVHjhxBbGwsYmNjsX37dgwZMgRxcXEA2KNrby49dLmqNWvWAECdIfbo0aNYu3atWaH4flq0aAEAuH37do2vG7cb25krKSkJQ4cORW5uLubMmYPXX3/dpjrJMmuOJZsed2zqg54R/o4rhoiIiMjF6fV6FKgLrN5/w58bqt2TWxeNToMNf27A5KjJVp9XIVXYZcWN77//HvPmzUNMTAx27Nhhmsfnxo0b6NGjh2nocrdu3Ww+F5UTVNA1l0qlgkRi+8RCxmV/jL+cVRm3d+nSxexjpqamYsiQIUhPT8ebb76J2bNn21wnmS+vWI1tFZcUiuWSQkRERES2KFAXIHZDbIOfd2XiSqxMXGn1/kefOgofmY9NNeTl5eGNN96Aj48Pdu7ciaZNm5pei4yMxNSpU7F48WJERkbCz8/PpnNRZYIaumwOvV6P06dPIygoyOZjxcbGwtfXF0lJSThz5ky117ds2QIAGDFihFnHy8nJwdChQ3Hjxg08//zz+Pjjj22ukSyzMSEFSrVhUrMmXjI83tWy+6KJiIiIiIy+/PJL5OTk4PXXX68Uco3atGkDgPfn1geX79EdNGhQpee7d++uts1Io9EgKSkJ6enpePbZZ20+t0wmw2uvvYYFCxbgtddew2+//WaaaXn58uVITExEv3790LNnT9M+n376KT799FM88cQTWLRokWl7cXExhg0bhvPnz2P8+PH46quv2JPYwLQ6PdYeK19S6KlezSGXckkhIiIiIrLOrl27AAATJkyo8XXj6iy8P9f+XD7oHjhwwPRYJBIhPT0d6enptbaXSqUYMWIEli5dapfzv//++9i7dy+OHTuGtm3bon///rh58ybi4uIQEBCA1atXV2qflZWFy5cvIy0trdL2mTNn4sSJE5BIJHBzc8MLL7xQ4/mM9yGT/e25mIE7uSUADEsKPdOHSwoRERER2UohVeDoU0et3n/thbVWDUH+W5e/2XyPrq3Onj0Ld3d3REVF1fh6QoJhJmkGXftz+aB744ZhGRi9Xo9WrVph3Lhx+Oijj2psK5PJEBgYCKlUarfzy+Vy/P7771i0aBHWr1+PHTt2wN/fH5MnT8YHH3yA5s2bm3WcnJwcAIBWq8X69etrbcegW38qLin0l06haOrLJYWIiIiIbCUSiWy61/WpDk/hm/PfWDQhlZvYDU91eMrme2xtoVarUVBQAF9f3xpHamZmZmLbtm0AKgfdPXv24NFHHzXN0AwAP/30E5588kls3rwZ7777LkaMGFEp86hUKnTq1AkTJ07kHD9lRHpbF3t1InPnzkX37t3x+OOPO7oUp2b8ROnChQsOrsR5XErLx19WHDY93/pKX8S0bOLAioiIiIhcg06nw+XLlwEA7du3h1hs/2mA5hybg61Xt5rdfly7cZjd1/GBr0mTJsjJyUF6ejpCQkIqvfZ///d/+OijjxASElJtROpjjz2G4uJiHDp0CAcPHsSwYcOwcuVKTJw4ES+++CIuX76Mw4fL37suXLgQq1atwsWLFyGXyxvk2qxh6e+KLblFUJNRzZ49myGXrLK2wpJCncN8Ed2CSwoREREROYsZvWagR0gPs9r2COmBGb1m1HNF5jFOMjVr1ixU7F/8+uuvsWzZskptKvroo49w9OhRLFy4EI8//jiWLFmCiRMnAjBMiHvq1CloNIYe7lu3bmHBggX4+OOPnTrkNjRBBV0jjUaDHTt2YObMmXjppZcqrZebmpqKxMRE0y8GUU6RCtvP3DE9f+5BLilERERE5EzkbnJ8/sjnGNduHNzENd996SZ2w7h24/DFkC/gLnFv4AprNmvWLIhEIqxcuRKdO3fGk08+iaioKLz44oumCWtruj+3c+fOmDBhAmbOnIl//OMfmDZtmum12NhYlJSUIDExEQDw9ttvY8CAARg1alTDXJSLcPl7dKs6ePAgnn32Wdy5cwd6vR4ikQhqtRpTpkwBAOzbtw/PPfccNm3ahLFjxzq4WnIGP5y8hVKNYUmhQG8ZRnStPvU7ERERETmW3E2O2X1nY1q3adh+dTtOpp9EkaYIXm5e6BnaE0+0fQKBHoGOLrOSAQMGYPPmzZg7dy7+/PNPpKamIjo6Gh9++CEOHTqEuLi4GoPuuXPn8Msvv0AqlVZbFrVdu3YIDAzEiRMnkJWVhZ07d+L8+fMNdUkuQ1D36P7xxx/o06cPtFotXn31VcTGxuKvf/0rnnvuOVOvbnFxMUJCQjBy5Mj7TvokZLxHt5xGq8OAJb8jNU8JAHhjUBu882h7B1dFRERE5Doa4h7dxuTatWvo168fXnjhBbi5ueHLL7/EtWvX4O3tbWozatQoeHp64syZM9WWLXVmvEfXSvPmzUNpaSl++eUXLF++vMYeW09PTzzwwAM4c+aMAyokZ7PnYoYp5LqJRZjIJYWIiIiIyEHu3LmDIUOGYPTo0ViwYAH+8Y9/QKvVVltVJjY2Fhs3bkRRURHef/99B1Xr3AQVdA8ePIg+ffpg0KBB923XokULpKamNlBV5MxWH002PR7epSlCfHgDPxERERE1vOzsbDz66KPo0aMHPvvsMwCAQqHAzJkzsWzZMqSlpZnaRkdHQ6/XY9myZfDy8nJUyU5NUPfo5ufnIywsrM52paWl0Gq1DVARObPzd/IQn3zP9Py5ByMcVwwRERERNWoBAQE1DtF966238NZbb1XatnbtWgwcOBDjx49voOpcj6CCbtOmTXHp0qU6250/fx4tW3KIamNXcUmhrs390J1LChERERGRk9JqtcjOzsbWrVuxfft23opZB0ENXX700Udx4cIFbN++vdY2a9aswc2bNzF8+PAGrIycTXZhKX48Vz58/Xn25hIRERGREzt48CBCQ0OxbNkybN68GW3btnV0SU5NUD267733Hn744Qc89dRTePfdd01rSRUXF+P8+fPYsWMHFi5ciICAALzzzjsOrpYc6YeTt6AqW1IoSOGOYZ25pBAREREROa9BgwZBp9M5ugyXIage3ZYtW+Lnn3+Gv78/FixYgN69e0MkEmHz5s3o2rUrZs2aBYVCgR9//BGhoaGOLpccRK3V4bvjN03PJ/ZuAZmboP4UiIiIiIgaNUH16AJAv379cOXKFXz99dfYu3cvkpOTodVqER4ejkceeQQvvfQS/Pz8HF0mOdD/LqQjPd+wpJBUIsLTvVs4uCIiIiIiIrInwQVdwDANd02zkxEBlZcUGtGlGYIVXFKIiIiIiEhIOF6TGpXE27k4dTPH9JxLChERERERCY8ge3SLi4uRkJCAtLQ0lJaW1tpu0qRJDVgVOYM1FZYUim7hh67N/RxWCxERERER1Q/BBd1Zs2bh448/RnFxca1t9Ho9RCIRg24jc7egFLvOpZmePxcb6cBqiIiIiIiovggq6C5ZsgTz58+Hm5sbRowYgXbt2sHb29vRZZGT2BCfApXWMCV7iI87/tKJM28TEREREQmRoILuV199BQ8PDxw+fBjR0dGOLoeciEqjw/cnypcUeqZ3S0glvEWdiIiIiEiIBPVO/9atW3jooYcYcqmaX8+nIbPAcL+2TCLGU1xSiIiIiIhIsAQVdENDORSValZxSaGRXZsh0NvdccUQEREREVG9ElTQnTBhAuLj45GTk1N3Y2o0zqTk4OytXNPz52MjHFYLERERERHVP0EF3Tlz5qBjx44YM2YMkpKSHF0OOYm1FZYU6hnhj05hvo4rhoiIiIiI6p2gJqMaNmwYdDodjh49ig4dOiAiIgLh4eEQiUTV2opEIuzbt88BVVJDysxX4uc/Kiwp9CCXFCIiIiIiEjpBBd0DBw6YHmu1WiQlJdXas1tT+CXhWReXArVWDwBo6ivHo1EhDq6IiIiIiIjqm6CC7o0bNxxdAjmRUo0W6+JSTM+f6cMlhYiIiIjI+YwfPx6bN29GXFwcevXq5ehyBEFQQbdly5aOLoGcyC9/pCGrsGxJITcxnurFJYWIiIiIXJ0mKwu5W7agOP4kdEVFEHt5wbNXL/iNGwu3wEBHl2eV06dPQyKRoHPnzo4uRTAEFXSJjPR6faUlhUZ3a4YmXjLHFURERERENtEplchYsBC527cDGk2l14qOHcPdTz+F35gxCJn5HsTurrOUZG5uLpKSkhAVFQUPDw9HlyMYggq6hw4dMqudTCZDQEAA2rRpY5d7dZVKJRYtWoQNGzYgJSUFTZo0wWOPPYZ58+YhPDzc7OMcPHgQBw4cQHx8POLj45GVlYX27dvjzz//tLnGxuZ0Si4Sb+eZnnMSKiIiIiLXpVMqcWvq31B88mTtjTQa5G7aBNWNG2j+1UqI5fKGK9AGp0+fBgB0797dwZUIi6CC7sMPP2xRcPXy8sKECROwYMECBAUFWXVOpVKJwYMH49ixY2jatClGjRqF5ORkrF69Grt27cLx48fRunVrs4715ptv4ty5c1bVQZWtqbCkUO/IJujYzMdxxRARERGRTTIWLLx/yK2g+ORJZCxchKbz5tZzVZbZvXs3li5divj4eEilUowcORIff/wxTp06BQCIjo52cIXCIqigO2nSJOTm5uKnn36CWCxG9+7d0aJFC+j1ety6dQtnzpyBTqfDyJEjUVJSgrNnz2LVqlXYv38/4uLiEBAQYPE5Fy5ciGPHjqFv37747bff4O3tDQBYvnw5/v73v2PKlCk4ePCgWcd69NFHMX78ePTs2ROBgYH8ZbdSep4Sv1ZYUuj52AjHFUNERERENtHcvWsYrmyB3G3bEPTG605zz+7s2bMxb948uLu7Y+DAgZBKpdi+fTvOnz+PiIgIAOzRtTdBBd0lS5agT58+GD58OFasWIFWrVpVev3GjRt48803kZiYiBMnTkChUOCll17CunXrsGTJEixevNii86nVanzyyScAgP/+97+mkAsA77zzDtauXYtDhw7h1KlTiImJMat+o+TkZItqoXLr4m5CozMsKRTm54FHHuCSQkRERESOotfroSsosHr/e+vWV7snt04aDe6tW4+A55+z+rxihcIutzl+//33mDdvHmJiYrBjxw7TrY03btxAjx49TEOXu3XrZvO5qJyggu6MGTOg0WiwdetWyGTVJx6KjIzE5s2b0bZtW8yYMQOrV6/GF198gf/973/46aefLA66R44cQW5uLlq3bl3jJzDjxo1DYmIidu7caVbQJdsp1Vqsr7Ck0LN9W8KNSwoREREROYyuoABXevVu8PNmf/45sj//3Or928XHQeJj2+1veXl5eOONN+Dj44OdO3eiadOmptciIyMxdepULF68GJGRkfDz87PpXFSZoBLAL7/8gn79+tUYco3c3d0RGxuLX3/9FYDhPt3u3bsjJSWl1n1qY7yftrYhxsbtvO+24exKTEN2kQoAIJeKMaFncwdXRERERESN1ZdffomcnBy8/vrrlUKuUZs2bQDw/tz6IKge3fz8fGRlZdXZLjs7G/n5+abn/v7+Vg1LMIbj2mZWNm63JkTbQ1RUVI3bk5KSzJ4gy5UYlhS6YXr+RPcw+HlySSEiIiIicoxdu3YBACZMmFDj64WFhQDq5/7cJUuWYNeuXWavTCM0ggq6UVFROHDgAI4dO4YHH3ywxjbHjx/H77//XmkM/O3btxEcHGzx+Yy/mJ6enjW+7uXlVakd1a+Emzm4kFr+AQaXFCIiIiJyPLFCgXbxcVbvn/3NamR/8YXF+wW88orN9+ja6uzZs3B3d6+1AyohIQFA/QTdbdu21RqwGwNBDV1+9913odFoMGTIEEybNg2///47rl27fnLzdwAAiCtJREFUhqSkJPz++++YNm0aHnnkEeh0Orz77rsADL3Ap06dQp8+fSw+n15vmPCott5g4+uOcuHChRq/hNibCwBrjiabHj/YOgDtQ23/nxMRERER2UYkEkHi42P1V5OJTwNuFvbPubmhycSnbTqvrRNRqdVqFBQUQC6X13iszMxMbNu2DUDloPvAAw+YsoqRSqVCu3btMHfuXKxcuRIikajaV5cuXUzt79y5g5MnT2LMmDEAgD179kAkEuHo0aOmNj/99BM8PDxMvc7mHNeVCKpHd/z48UhNTcWMGTPw+eef44sqn/zo9XpIpVIsWbIE48ePB2AYxjxnzhwMHjzY4vMpyj7lKSoqqvH14uJiAKg0GzPVj9TcEuy+kG56/tyDEY4rhoiIiIjsxi0oCH5PPIHczZvN3sdvzBiHLy0klUrh7++PnJwcZGRkICSk8kogS5cuRUlJCUJCQirdvxsbG4sTJ05Ua6vRaDB9+nRoNBo8/vjjptf27t2LqVOnYvr06aZt27ZtQ3R0NFq0aAEAGDJkCIYOHYp//vOfOHToEA4ePIinnnoKq1atwogRIwAATz/9dJ3HdSWCCroA8NZbb2HUqFH4+uuvcfz4caSmpgIAmjZtigcffBDPP/98pR7NyMhIq394xl+c27dv1/i6cbuxHdWf70/chLZsSaFwfw8M5pJCRERERIIRMvM9qJKTUXzyZJ1tPXv2RMjM9xqgqrpFR0dj3759mDVrFr744gtTz+7XX3+NZcuWmdpUFBsbi/Xr10Oj0cDNzQ23bt3CggULsH79esjlcgDlHWk//fQTXn31VXz33XcYN26c6Rjbtm3D2LFjKx33o48+Qrdu3bBw4UIsXrwYS5YswcSJE02ve3t713lcVyK4oAsYwuv8+fPr/Txdu3YFANPaV1UZt7tqd7+rUKq12BBfPuHX5L4RkIhtX/OMiIiIiJyDWC5H869WImPhIuRu21bzurpubvAbMwYhM9+D2N294YuswaxZs7B//36sXLkSR48eRVRUFM6fP4+LFy+id+/eiIuLq3Z/bmxsLEpKSpCYmIjo6Gi8/fbbGDBgAEaNGlWp3Q8//IC//e1v2LBhA4YPH27anpWVhcOHD+PLL7+s1L5z586YMGECZs6ciXnz5mHatGk11lzbcV2NIINuQ4mNjYWvry+SkpJw5syZar+kW7ZsAQDTcACqHz+dTUVOsRoA4CGVYHwPLilEREREJDRiuRxN581F0BuvI3fLVhTHx0NXVASxlxc8e/WC37ixDh+uXNWAAQOwefNmzJ07F3/++SdSU1MRHR2NDz/8EIcOHaox6LZr1w6BgYE4ceIEsrKysHPnTpw/f75Sm6+//hrvvPMOduzYgUGDBlV6bceOHXjggQfQrl27StvPnTuHX375BVKpFEFBQTXWe7/juhoGXRvIZDK89tprWLBgAV577TX89ttvppmWly9fjsTERPTr1w89e/Y07fPpp5/i008/xRNPPIFFixY5qnTB0Ov1WH0s2fR8THQYfD2ljiuIiIiIiOqVW2AgAl9+CXj5JUeXYpaxY8dWG0YMACNHjsRHH31U4z4PPvggDh8+jP/85z9455130LZtW9NrK1aswNy5c7F792707du32r5bt241TUJldO3aNQwdOhSvvvoq3NzcMGfOHDzzzDOV5hKq67iuRnBBV6/XY926dfjxxx9x9epVFBQU1Dj7sUgkQlJSks3ne//997F3714cO3YMbdu2Rf/+/XHz5k3ExcUhICAAq1evrtQ+KysLly9fRlpaWrVjrVq1CqtWrQIAlJaWAgBu3rxZaUbozz77jAtKVxB34x4upVVcUijCccUQEREREdlBbGwsZsyYgbCwMLz//vum7YsXL8b8+fOxadMmREZGIj3dMBmrh4cHfH19kZeXh/379+PDDz807XPnzh0MGTIEo0ePxoIFC1BQUIDPPvsMH330EebOnWvWcV2RoIKuSqXC8OHDsX///lqX9hGJRHZd9kcul+P333/HokWLsH79euzYsQP+/v6YPHkyPvjgAzRvbv4w2tu3byMurvIaY0qlstK2/Pz8qrs1ahWXFOrfNhBtQ7ikEBERERG5tujoaOj1eixbtsw0YlSv12PhwoUoLCzEsGHDKrWfMWMGFi1ahF27dqF58+amuYSys7Px6KOPokePHvjss88AGFaOmTlzJt5//328/PLLCA0NrfO4rkikd/Rir3a0aNEizJw5EyNHjsTy5csxb948fP/991Aqlbh+/To2btyIpUuX4pVXXsHixYsdXa7DGBesvnDhgoMrsc3tnGIMWPI7yiZbxteTe3C2ZSIiIqIGptPpcPnyZQBA+/btIRaLHVyR63v22Wdx584d7N+/36L9xowZgzZt2mDJkiX1VJltLP1dsSW3CKpHd+PGjWjSpAnWr18PLy8v0384qVSK9u3bY9asWRg4cCAGDhyI9u3bY8qUKQ6umGzx3YmbppDbMsATA9sHO7YgIiIiIiIrabVaZGdnY+vWrdi+fTvOnDlj8TH69u1bbXbmxkpQH7dcu3YNvXr1MnXvG4OuVqs1tenfvz9iY2NNXffkmkpUWvwQf8v0fFLfCIi5pBARERERuaiDBw8iNDQUy5Ytw+bNmytNQGWud999t9psy42VoHp0JRIJfHx8TM+Ngffu3bsIDQ01bQ8LC8POnTsbvD6ynx1n7yCvxLCkkKdMgr/2CHdwRURERERE1hs0aBB0Op2jyxAMQfXohoWFISUlxfS8TZs2AIATJ05UapeYmFhpKm1yLXq9vtIkVONiwuEj55JCRERERERkIKig26dPH1y4cAElJSUAYJo17M0338Svv/6KP/74A6+//jouXbqE3r17O7JUssHxpGxczigwPZ/MJYWIiIiIiKgCQQ1dHjt2LH799Vfs2bMHjz/+ONq0aYO33noLH3/8MUaMGAHA0Bvo5eXVqGdddnWrjyWbHj/ULgitg9g7T0REVKvCTOD0WiD5KKAqBGTeQEQ/IHoS4O2iEzkK8ZqIHEWrBoqzgdJCQK8FRBLA3RvwDAAkrjtqUlBBd/jw4UhLS6u0bdmyZejZsyd27NiBnJwctGvXDm+88YZVN3eT4926V4y9lzJMz5+LjXBcMUREJExCCVHqEuDX6cDZ9YBOXfm1678DBz4Euk8EHlsMSOWOqdFSQrwmI6H83lUkxAAlpGvS6YD820DxPQBVVpxVFQAF6YBnE8AnHHDBJaMEtY4umceV19Fd8PNFfHX4BgAgMtAL+955iLMtExGRfdwvRAGAWOo6IUpdAnw/Drh5pO62LfsBz2wBpB71X5cthHhNgCB+76qtjQrUHqAAACLXC1D3C4UAXO6adDrgXpLhQ5W6yLyBJq3tcl0NuY6uC/wUiAyKSjX44WT5kkKT+7ZkyCUicrTCTODQR8C3o4FVjxi+H1pq2O5KjCHq9NqawwZg2H5qDfD9WEN7Z/brdPMCIWBot3tG/dZjD0K8JoH83olE5e/HdBqNIUAVZ6PmQAjD9uJsQztXmGXYGAqFdE35t80LuYChXf5tu5y24qzSFX9v6oOghi4bJScn49ChQ0hLS0NpaWmNbUQiEf71r381cGVki+1n7qBAqQEAeLu7YWwMlxQiIhcjpKGJQhtCak2IGrmifmuyVkGG4ediiTPrgIEznff3UIjXBAjm904kEkEmk0GlUqHo7k34iiwMUH4t6rdAW1kTCp35mrTqsp5pCxTfAxRNbR6eXVRUBACQyWQMupZQKpWYOnUq1q83/I/wfqOyGXRdi16vx5oKk1CNiwmHgksKEQkbQ6HzMmcIqbEXKuua8w8hdfUQpdMCOo3hzatODcR9UXvvYK3HUAO/LwS6PQ2Y3j+VfTfruSVtKz5H+fP7tb2w3bprOvQR0PNFQOxmeIMudjMMBZYYvxu3SSw7tj24+u9dFQqFAtl3M5BxrxjwEsFLBpg18K4oG/AKcd77W7VqQ4219uTWwNZrMv5N1fT9fq+Z2uhqeA3l+6sKy9pYVBRQmAUoQqy6JJ1Oh6KiImRkGObaUSgUVh3HEoIKutOnT8e6desQHByMiRMnonXr1vDy8nJ0WWQHR65l4Vqm4ZM0kYhLChEJGkOhc4dCQBi9UDodoFUB2lLrg+Gut4BWA8uCprosaJY9NgVPTeUQqtPW8FhTtr+mlsdVj6upfA5L3oDfz6nVhi8hiV9p+KqTqCz0GkNwlSBsfE0sqdDOGJLdamjnVkOYdqt8juQj1v3e/fQG0Lrs906vrfBdV+X5fbZXa3O/Y+hqaV95e4DIDUUR46H0a4fUUn/D/8fM6rHTA9m13X8puu/TOtvXSVT3bnqddaEw+2KF69dXe7nmv1snnzrpXgbglmvzYeRyOQICAmyvpw6CmowqNDQUOp0OiYmJCA0NdXQ5TssVJ6N6Yc1J7PvTcL/XoA7B+Oa5ng6uiMjJCKX3U4iTzfz0huFnY66Y55wvFFZUkAF8HGXZG3SxFHjzHCD3NYRLTakhYGpUVb6XVnjdHu3u097SgEFEddJKPJAdPgQFQTFQebjQvz1kHpkXENjO+t1lMigUCgQEBEAiMW8UhS25RVA9uoWFhRg6dChDrsAkZxVh/+XySU2eY28u2UoooRAQXu+nEHoKK6rvoYk6XXmPn1ZV4buqvNewpu1mt1dX3yf9D+t6oT7uaNk+1PDEUsOssQDKe7pE5j839YpZsa/peS2v5aYA6iILLwiGpV/EbobfQYt75chSEm0Jgm/+hOCbP0EPMfRiQUUN52AcJWAaRSCr8FxWPnLA9CUrH0VgfH7jkGHpIEtFPgTEbrKqbJFIVO/35FYlqN++qKgo07hvEo5vj9803VrQOsgL/dsGOrYgcl1CC4VCGxLryPvV9PryIGccNmp6rK4QAtV1t9OqyoeUXttrXShc+TDgFVR3ENVpbLtuso3cHwiPqT58terw14rDWKs9rmH46/2OVW1YraT6sY7/Fzi0xPLreXgGMOAf9v/vZA+HPgL2z7d8v4HvlV+TTldlOHjF4eXG4eJVhoqb/u6qDiWvZWh6tX0rDlvXVD5H8hGgOMvya/JoAoT3NPzsReKy75Iq3++33c2CthZsF0uAPXOAtDMAABF0EOlU5l1Ts+7AkA/KhwnrdWX3k2qrbNNVGDKtr7K9alt9+RDrGtvpqxyvhvPodcClnUD+Hct/Tk1aG+4Prxg4JcYgKqshiFZsZxziLisLqBXa2CMsWvv31LKPayydVEZQQfcf//gHJk6ciGPHjuHBBx90dDlkB4WlGmxOKF9S6LkHIxr806BGTyi9n0ILhYBr9H7qtDUMMa1lqGniRutC4XdPAAFtqodRUyjUVH5cU0h1tsCYf8e6N1auRiIDJO6AW23f3Q1tKn23R/sq7eK+AA4utrz+B19zzmDY80XgyMeWDy+PnlR/Ndmq+yTgwGLbrkksNvR4QWb38qxibdjoO805f+8A4IHhpqBrkQ4jgMj+9q/HHrwCrfs5dXsa6Puq/euxB3v8PbkAQQXdv/71r7h9+zZGjRqF119/HY888gjCwsJqDUYtWjjxtN8EANh2+jYKSg1vQBXubhgTzSWFGozQej9dIRRawqrez++B1oMN99hYfR+khfdD6rX1c/0VZZw3fFEFovIQV63HQFble4WehhrbVml/bgNw77rlJbV4EHjyu8oB01k+uOzxAnB4uXDe9ClCDG+yLbk3vPtE5/7wUojXJMSwwWsycPZrEuLfUw0EFXQBoEuXLvD398fcuXMxd+7cWtuJRCJoNE72CT5VotNVXlJofM/m8HIX3K+scxJa76cjhsTqtIBGCaiVgKbEEPrUJYZt9tied8uK3k8NsOlZ666nMTMNEa04tKzKc3GV4Gh87VY8UJRZ9zmqCu4IPDTd+jBan0uliETW9W60GWzoGXFGQnzT95fFQHaS+RO7PWZFj3ZDE9o1CfH3jtdk4OzXBAjv76kGgkoNu3btwpgxY6DRaBAUFISWLVtyeSEXdujqXVy/a5h4QiQCJveNcGxB5hLCUF8h9X7qtEDC19YNid3yAhDW3czwWaUNZ3StnUhS89DS/DTrJpvxjwRiJleZcENWQxCtaWKOGu6NMk3kUfbYll5Ha4cmdhoLRI22/rz1SYi9G4Dw3vRJPQwfQu6eYfjgrqafl1jqWiNzhHhNQvu9A3hNrnJNQvx7qkJQywvFxMQgMTERq1atwqRJk3gvZy1cZXmh51bH48DluwCARx4IwarJPRxcUR3uN9QXcJ3/WVi7dMg7F2sO8np92TBWpSEEmgJiheem71Uf19SmrmNU/F7ifPdeOppEBviGm3FfY4UQKpFafs/j/drV1ttobSgc9C/nvV/N3n9PzkJoSyYZqUuE+aavMBM4/a1h8iNX/QC2KiFdkxB/73hNDV+fLZz478mW3CKooOvp6Ym+ffti3759ji7FqblC0L1+txCDlh00PV/3Ym/EtnHSIW+A66/9qdcb/semzAeOrgDiv7T8GN6hhjUyjb2aFUMnGXoxpR6Am9zwJZUDbh6G4GfabnzsbnhNKq/Qvsr2wx8DGX9YXkergcCkHXa/PLtgKDRwhVBo8f/ztrrWGz8nftNHAibE3zteE9mI6+iWCQwMhLe3t6PLIDv49vhN0+O2wd54sHWAA6sxg6OH+qqVQGk+oMwzhNXSvAqP82t5XLFNge2TBhWmG76ExDsU6DCs9rDpJq8juFbYLrHz/27vXbcu6Eb0s28d9sT7oDjkzVl4BxtGCTjrSAESJiH+3vGayIEEFXTHjRuHdevWIT8/Hz4+Po4uh6xUoFRXXlIo1smXFLJ1oiOtpkIAzSt7nF/D47zq2437ac1cp85ZSGSVQ6Kbe83fpXW8Xuv+VXpHT34NHFlueZ29pjrvP2S8T5Kh0NGkHoYP7AbOZO8GERE5HUENXS4uLsbgwYPh5eWFr776CpGRkY4uySk5+9Dl1f/f3p3HRV3nfwB/fWcY7vv24BLBAxHxwPu+0jKP1LK1MLd27Xar327beuaWXbZW21bblpqbpVnqWlaWtyl44ImiiKAoKrdyM8N8fn8AI8ggzDDMd2Z4PYsHzOd7zPvjlxm+7/l8vu/vb+lYuvUMAMDd0Q4Jr4yGs70FfyZj7HWF9m7VNyI3pvhOa5IU1XEZKqAHMHpx/aRTNwJaJwlVOpj/ZuOcElvNGqbEArwOioiIiABw6rLOfffdB6VSiV27dqFLly4IDQ1t9D66kiTxWl4LpNUKrKlzS6GH4oItM8kVovqENScFOLHeuH1UFpk2JqC6QqyDe/W1so7udX720NPufkd7zc8H3jMucY+aCkSOM32fTIFTYq1n9BOw7ZFCTnmzCprcXBRu3IjSQ4ehLSmBwsUFznFx8Jz+AOx8LbheRBvCY0RETbGpEV2FAaNEkiShqqqF1yRaKUse0d2Vko3HVh8GACgkYM//jUSQt7N8AdVNaHNSgOyzQM45IOcsUFZg4ieTbiegepPVO3/2aNiucmrZrVCABqOfmnIFCtOcUZptD61GAYWdFs7+lfAML4WdY83IrzWMftYpntNkn6ypeE7N6KfmwDoUXrBv2KfOlbAb9LBVjn7a4oks+2TZtOXluPHa6yjctAnQ6KnYbmcHz2nTEPC3V6BwcDB/gEbiMbIOtnScarFP1sGS+8SqyzUuXbrU9Ep1hISEtFIkls2SE91HPkvEvtRcAMD4qAB88oiZbimkS2hrEtnss7eTWwMT2mYlhgDQPhaY/OHt5NbezfxTehvzv+egPbQGN5I8UJjuDAg9ybMk4NmpFAG9b0IRN8cqpsRqiwpw45kZKDx8BdDq6ZNCwLNfEAI+3AiFq4f5AzSCLZ70sU/skxy05eXIfOIPKD18uMl1nfv1Q9Cn/4bC0bI/POIxsvxjBNjecQLYJ/bJdJjoyqy8vBzLly/HV199hcuXL8Pb2xv33HMPXn31VXTs2NGgfRUWFmLJkiXYtGkTrl+/jsDAQEyZMgVLly6Fp6enSeK1pET33PG9SPrXArhl5EGlFqhUSbji74ENATPx+lOPYKCpqy2bMKEFADj7AvYuQOElaDWoTgwznBtPosJqEkMlLPren9qiAmROG4XSzKZvDeQc5Iig73ZB4ebZ+oG1gC2eINlqny49/jjKjxxtcl3Hfn0Q8ul/2CcZ2OLv3rWFi1D4zTfNXt9z5ky0e3VpK0bUMrZ8jASAu81dql1u6ccIsM3jZKt94vu4PMeJia6MysvLMXr0aBw4cADt2rXD0KFDkZGRgUOHDsHPzw8HDx5EeHh4s/aVl5eHgQMHIjU1FZ06dULfvn2RnJyM5ORkdO7cGQkJCfDxaXniZwmJbkHOVex46j50SS6HnZ66RxoFkBLlhLEf/wBPn3aGP0FrJLT+3QC/roBfl9s/u/gCRTegfTsKl3a7ozy76U+7HP0rEDLiFhR/ttypvrZ4MsE+WUefriz4G4o2ftfsPrnNeAAdlxlxTbkZ2WKfbO13T5OTg9SRo/SPaDTGzg4Ru3fJPq2vMTxGsPhjBNjecQJss098H5fvODHRldGiRYuwbNkyDBw4ENu3b9fdx/fdd9/Fiy++iGHDhmHPnj3N2tejjz6KtWvXYtq0aVi/fj3s7KqLMD333HP44IMP8Oijj2LNGgOK6TRC7kS3IOcqDs4ai7ArTf/qpXeUMPCrX+Dl10H/CnUT2uyU28mssQmti19NMqsnob2LK4+ORtGhrOa/AfZvj45rLLMYmi2eTLBPNaygT+dGDIeiqvl/lrRKCV327GWfzMhcv3tCiOr3+NovrRYCALRaXZvQCgC3l0OI+ttptTWPUV1NXteG6u1qtsn/ch0KvvjCoH8HAPB69FF4PfQgdO/8Em4XwKz7vV6bVOfHxtap3Vltk9TEuvWfV5OXj4v332/wMQrbshl2Xl71/t11/36ofzzq/ds3Z/07j2fddUXDfd25/s3NW1C4cWPz+1PDc9ZD8HxgOiSFVH15kEIBqeY7JKnOzwpISn3tNT8rldX/xrX7kO7YnxGs+X28sdenJicHaePvMbhP4T9uu90nPa8h3W+6vteXnu+mvC0l38dryPS7x0RXJmq1Gv7+/igsLERSUhJiY2PrLY+JicHJkydx5MgR9OnT5677un79Ojp06AClUonMzEwEBATollVUVCAoKAj5+fm4evVqvWXGkDvR3TgjFlGnypudFJ6OdsKMDUf1J7TZZ4HyQsODqJvQ+tcmtt0AF8NHzC35DVBotYBGA6HVQmiqAG0VRFUVUFUFUaUFqjR3rKNB4fr1KPjSwPsCA/CYOhXu995714Pa5B+euy1v8o9W48tvbt2Km99+28T2DblPnAjXkSNr/t20+r/r/l2NWF5Vczz0tWvrfK85PnXb1dnZqMrNNbhPCldXKFxcmreyqU4UmrmfqqJbEMWG325LcnOFndsd905v7DlN1t5Yc/0F6sICiJu39K98F5KHO+z0Xa5y59vMnX/C9f1Jb8Y64s4d3+V5tMXF0BYXN3yeJkj29pDs7esnMXWT1jtOmomsir4EuPbnRpJkbUmJUa8lhYcHlO7utz/cQZ0PDOp+WAABaPV8wADoTVLvXE+3bp3Xqd73GGug7wOiO5PjuuvW+S6qNIDGiAK2dnbV73l3utu/YWPLjNnmLsuqzz0Mf5/1mz8fvvP+aPB2LcHbC8lk//79KCwsRHh4eIMkFwCmT5+OkydPYuvWrU0muj/++CO0Wi1GjhzZIJF1cHDApEmT8Pnnn+PHH3/EnDlzTNkNszp3bDe6JFdf99nctKVrchluLA1BAG4a/HzCyQ/CJxLwjoTw7gzh2RnCMwywd4PQaHRfKNVAXMyCUF+G0KirE4q6yzUaCE11G6pq2tUaiCoNCvbsNCjJBQBFlcDFRx+BU1h4nSRGUy/5EdoqQKMn0dElqjXrVGnrtdX9bk43N23CzU2bzPqcre3Wtm24tW2b3GGYlLFJiiUTRcVQF9lYn27egtqIBNmSicpKiMpKucMgah1a7e2EsUZrpYTamzehvWn4OVGb1owk3eTHq/Yc0oYUJvxm9kS3JZjotsCJEycAAL1799a7vLa9dr2W7uvzzz9v1r4sWdJHi9DLwA+Q7LRA2jZnnHNygiQAhbb6S9ICCq1U87MEhZDqtAMKrYAkACC95utn03eoBaouZqD4YobcYRARtVlCqv6StE1/+KqPVgK0ijqjQTVnylLtD+L2fiUrHQhrDi0ASDWDijUdFjWP67brawP0b1e7fm2bWylgb8TntxoFUGZffRwUWkAhqo+FJO742biuE7UpeXlX0FnuIAzARLcFLl++DACNVlauba9dz1z7qlU71H+ntLS0ZhfIMjW3jDyjtvO6JQG3mjoNseGziFZWJQFaBVClAFQaQGnEP2W5HVDg1vjylpzkNTn638S+PUsAeyM+VC21B674Vv/b1J7QaqXan6u/VynqLJfqrtvEd92/uaS3XVvnmOhrf+A3LUKzDe/ThXbAmtHKJtcz1dVNhhz3R3ZUofN1w58jLRBYO+r2aWqjsTcSS2PrG/o7q2/9h3dr0emGYfsBgIsBwLoRCr139rrTnevoDbsZ64gmppjXPs+jO6rQ+VrTcd3pfHvg03uUehOZ2kL1dZMhfT/r1pXqbFN33UaSKu0d21a33+7v1N+0mLXX8Gl864cpsGmQESmSELcPSSPJcO3P9RPou6xTZ18vfVuFHs0/XdA5FQK8Nb36/aHRpLTev63proNsirHH6JuhzTxGQjRMfhv5boplkgDifzXyPS8A+HKU4o7jUzPNtu7vfb3laLC8yQ8g6q7T1PKatue3VKF7puF9Sg4C/jFVWe93ueYpG7y36vu9r/tY3/rNXldP+7xtVehytTm9qO9cB+DfE/T/vb3bn5fmvO8bso2+53ryhyp0NaJPBYoywzeSERPdFiiumf7n7Oysd7lLzXVwxc2YJmjKfVkyldpyklEtgCpldSJR76tOm6YmidF9V1YnJrXLtQog4qqAZ6nhz5/lBWzvrdCfMNVNcO74+fa60u2fa5fdkRjp9qmnrXY9IcEkJ3ybBht5wmcGxvZpy0DL7VP7PCA02/A+HY5U4FyQaU9OlZKy+kuhhEJSGPRYKd1uO5V1Cp2vG/5H9FR3Z/gNHgiB6us8df+J+o+r/6/+TytqihQB9ber811bZz8Aqre5o616vcb3dfTGVXS6oTa4T4ldFTjb2UG3f62wnGtWD0co0Pma4fEcjVDgUoD5EiND7IyRMGM/9N4FoDEaRfV2RpF0Y763E28TOhWqQI/Lhh+j06EKVNi30WMkSRASYM6Lfg5HKtD5uuHH6VBXBU6HWubfphNhCnTPNLxPJzspcMvFMn/3ksIV6HLV8D4ldVYg088y+3QsXIGuRvTpYrj+PMVSMdFtgdoTm8YK7BhS58uU+6rV2EXbjY30moNaJcGYP+lZPkDhw+MhlAoIOyWEQgKUyurHSgWESgmhUEDYKQCFsvq7UgmtsrqtdplQKAA7JYRSCSgk3b933QIy9X7WczzuXJ7w8ce4Z3u+wX06GeeDvk8/D6n2P0nS7bv2Z71tddul2/HUba+7rF67dPd1AeA/qreh2X/W4JOJqyO64rMRfwFwO5kAoDvpr1lw9+U16rbV+7nOfuq21U0ydN/rPNdXyo+g2Z9qcJ/Sh3bC6wP/0PyNzGiD8t/Q7L9gcJ+ujOiCz0f+VZdg2ins6iWfCoUCdlKdtprk1E6yg0JRJ0mt2V4hKUxW3XKVyz+g2fNvg/vU7qFH8Ndh800Sg6mt8vsHNHsN71On3z2BpDv6pBVaXYKuhRZV2ipd0l7bXiUaaauTMNf9qrvuXdvq7HuV3bvQ7D9n1OvptYFP6Nrq/l2r+x7Q2N+7xtZp8P5wt3008pzrzq7D7p4XMOZ4devdfqNrl+/qKcGnfTj+1P1RAGjRe3iDdY18D69t+7fqTaPex6+N7I6vxy7RG5MhfdAXU934G/ShkX7p2iUJa5LXYPe+jww+Rg8O+CMe6f7I7Q+47vjbUvshUt3HdT8Yq/sBV4M2PR+CQej/UKzuNrXfP1G9YdRxujwsEv+s8/6g729oo8vuPAdr8LDx9e98Xelbd53dv4z6e3t5eCQ+HPan6r8pNce+9meFVJ3U6/7m1Pk9qf0bpPu5dlvUtNf5WQEFINXsB4p6v39323Zd8IfQ7F9tcJ9CHp6Lo0Oerfc7V/ffrbF/T73nNPrWb8Z6jf1uLHF6Hpr9xwzu0/lBQc3fwAIw0W0BN7fqeZolJfqrhJaWVg/z1d5yyFz7smRFoT7A5RyDt8uO8sesp1eaPiATWDU9F5pfDT+R9XpgOmZEzmi9wIx0qsc92N0zxeCTiQFR9yCuXZx5gjRQZlEmdvdcaXCfhvW8H5PCJ5knSANdK7lmVJ8GRk1Av8B+5gnSQJP6PYL1PT/DqONVze7TnhglHuo32zwBGsGUfao9ydNpegZ6q0iJTsHunueNej3dH36/eYI00K3KW/h4zPtol1+FqCam/EoAkoOB1WMVeLLTfXgg8gGzxGiIE0a+j8d1H4coH/k+DL+bWV1nYeK4z9Auv6LZx+i/4+2xrdsseDp6miNEgx038jgNjp6I4UHDzROkgS7fumzU36bBPSZiWMdh5gnSQNMG/B7re641/H08Lh72Sj1Vly1ATNcR2N3zuMHHKSpysHkCNBHLnPdgJYKDgwEAV65c0bu8tr12PXPty5L1fvJVaAz8rdMogN5PLWudgExgUr9HsLdnzTVNTaxbu3xPjBL3WejJ+bSIaVg7zh7Jwc24Nha3TyamRkw1R3hGYZ+so0++Tr7InzfFoD4VPDkNvk6WeZ9CwDb7ZIu/e9MipkE4qPD6TCV+6SU1+ndKowB+6SXh9QeVEPYqi+2TLR4jXydfTOw6xaBjdG/XqXwtmZkt9onv49ZxnPRhotsCMTExAICkpCS9y2vbe/bsadZ9WbIusSNwLsoRQPOTwpQoJ3TpZZmf8gG29wZoiycT7JN19AkA/m/IAvz8TFyz+vTTs3H48+C/mTdAI9han2zxd8/XyReTwydDrZLw6QQlnnxGia+GK3AiVML59sCJUAlfDVfgyWeU+HSCEmo7CVM6T7HYPtniMQKAl+NeRkzHfs06RjEd+uHluJflDvmubPE42WKfAL6PW8txupMkjLn4kwAAlZWV8Pf3x82bN5GUlNTgXroxMTE4efIkDh06hH797j5V8Nq1a+jYsSPs7OyQmZkJf39/3bKKigoEBQUhLy8PV69eRWBgYIvibsmNl02hIOcqDs4ai7ArTf/qpXeUMGj9Dnj6tDNDZMYr15Tj2W1/RPS6wxh5UuidxqxRVE/7OPm7fvhw4r/hoHQwf6DNVK4px5O/PokjN47Ao0Rg1AmB7pcEnCoFyuwlnAmRsDNGwk0XCX0D+uLjsR9bdH8A9sla+gRU9+vNw29i5/FNGH5c3aBPe3qpMKrXVLwc97JV9AewvT7Z4u9e3T41xRr6ZIvHCLj9Wtp8YTM02obl9O0UdpjSeQpfSzKyxT4BfB+X6zi1JG9hottCCxYswGuvvYZBgwZh+/btuurI7777Ll588UUMGTIE+/bt063/z3/+E//85z8xdepULF++vN6+Zs+ejS+//BIPPPAAvv76a9jZVV9C/fzzz+P999/H7NmzsXbt2hbHLHeiC1Qnu78+NQldk8saTQpTopww9uMfLD7JrWWLb4C2dDIBsE/W0qdauWW52JS6CYevH0aJpgQudi7oF9gPUyOs71PlWrbUJ1v83bO1Ptlaf+ria8my2WKfavF3z7yY6MqovLwcI0aMQGJiItq1a4ehQ4fi0qVLSExMhI+PDxISEtC58+1bKy9ZsgRLly5FfHw8Vq9eXW9fubm5GDBggO4+t3379kVycjJOnz6N8PBwJCQkwNe35S8gS0h0a507vhdJ/1oIt4xcqNQCapWEolBf9H5qmUVPV74bW3oDBGyvPwD7RGRKtvi7Z2t9srX+2CpbPE622CdbZMnHiYmuzMrKyrB8+XKsW7cOmZmZ8PLywj333INly5YhKKh+Ge67JboAUFBQgMWLF2Pz5s24ceMGAgICMHnyZCxduhTe3t4mideSEl0iIiIiIiJ9mOiSQdzc3KBWqxEeHi53KERERERERHqlpaVBpVKhqKjI4G1ZdbkNcnFxgUqlkjuMetLS0pCWliZ3GCZla32ytf4A7JO1YJ+sA/tk+WytPwD7ZC3YJ+tgiX1SqVS6GkiG4oguWQRbnE5ta32ytf4A7JO1YJ+sA/tk+WytPwD7ZC3YJ+tga33iiC4RERERERHZFCa6REREREREZFOY6BIREREREZFNYaJLRERERERENoWJLhEREREREdkUVl0mIiIiIiIim8IRXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvCRJeIiIiIiIhsChNdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbIqd3AGQ+QUGBqKkpATBwcFyh0JERERERKTX5cuX4eLiguvXrxu8LUd026CSkhKo1Wq5wyAiIiIiImqUWq1GSUmJUdtyRLcNqh3JTU5OljkSIiIiIiIi/aKioozeliO6REREREREZFM4okuyyimqwPrDl5GYno/iCg1cHewwoJMPZvYNgp+bg9zhERERERGRFWKiS7IoV1dh6dZkbDx6BeoqUW/ZvtRcrPz1PKb3CcLiSd3hqFLKFCUREREREVkjJrpkduXqKsR/fgiJ6fmNrqOuEvjq0GVczCnGmrlxTHaJiIiIiKjZeI1uG1FYWIiMjAxkZGRArVZDq9XKFsvSrcl3TXLrSkzPx9KtZ1o5IiIiIiIisiVMdNuIlStXIiwsDGFhYUhNTUVeXp4scWQXlWPj0SsGbbPxaCZyiipaKSIiIiIiIrI1THTbiPnz5yM9PR3p6emIiIiAj4+PLHFsOJzZ4JrcpqirBDYcyWyliIiIiIiIyNYw0W0jPD09ERoaitDQUKhUKigU8hz65k5ZvlPCRXlGoImIiIiIyPow0SWzKq7QmHU7IiIiIiJqe5joklm5OhhX6NvY7YiIiIiIqO1hoktm1T/M26jtBnSS55piIiIiIiKyPkx0yaxm9guCSikZtI1KKWFm36BWioiIiIiIiGwNE10yK383R0zv09Ggbab3CYKfm0MrRURERERERLaGiS6Z3eJJUc2ewtwv1AuLJ3Vv5YiIiIiIiMiWMNEls3NUKbFmbhxmxQU3OY25X6g3HFVKM0VGRERERES2QBJCCLmDIPOKiooCACQnJ8scCZBTVIENRzKRcDEPxRUauDrYoVxdhcMZBQAAezsFfvnTMIT4uMgcKRERERERmVNL8hYmum2QJSW6+hRXaDB6xW7cuFUBABjd1R+fzeknc1RERERERGROLclbOHWZLI6rgx1emdhN93hHSjZ2nL0hY0RERERERGRNmOiSRbo/pn29glVLt55BubpKxoiIiIiIiMhaMNEliyRJEl6d3ANKRXWxqsv5pfhkz0WZoyIiIiIiImvARLeNKCwsREZGBjIyMqBWq6HVauUOqUldAt0wZ1Co7vG/dl9AZn6pfAEREREREZFVYKLbRqxcuRJhYWEICwtDamoq8vLy5A6pWeaPiYCfmwMAoEKjxavfn5E5IiIiIiIisnRMdNuI+fPnIz09Henp6YiIiICPj4/cITWLm6MKr0zsqnv8y5kb2HUuW8aIiIiIiIjI0jHRbSM8PT0RGhqK0NBQqFQqKBTWc+in9OqAuNA6han+l4wKDQtTERERERGRftaT7VCbJUkSlk6O0hWmysgrxad7WZiKiIiIiIj0Y6JLVqFbO3c8MiBE9/ifuy7gSgELUxERERERUUNMdMlq/GlsJHxd7QEA5Wot/v79WZkjIiIiIiIiS8REl6yGh5MKf53QTff4p+Tr2Hs+R8aIiIiIiIjIEjHRJasyrXcH9A3x0j1ewsJURERERER0Bya6ZFUkScKrk3ugpi4VLuaW4LP96fIGRUREREREFoWJLlmd7u3rF6b6YMcFZBWWyRgRERERERFZEia6ZJVeGNcFPi7VhanK1FV47QcWpiIiIiIiompMdMkqeTip8JcJXXWPfzh1DftTc2WMiIiIiIiILAUTXbJa03t3RGywp+7x4v+dRqVGK19ARERERERkEZjoktVSKCQsm9wDUk1hqrScEqz6jYWpiIiIiIjaOia6ZNV6dPDA7/oH6x6/tyMV12+WyxgRERERERHJjYkuWb2XxnWBl7MKAFBaWYXXtrEwFRERERFRW8ZEl6yep7M9/nLP7cJUW09k4UAaC1MREREREbVVTHTJJszsG4SYIE/d48VbkqGuYmEqIiIiIqK2iIku2YTqwlRRusJUqdnFWHMgQ9aYiIiIiIhIHkx0LdTevXsxefJkhISEQJIkLFmyRO6QLF7Pjp54qN/twlQrf01F9i0WpiIiIiIiamuY6Fqo4uJidO/eHW+99RYCAwPlDsdq/Hl8F3jWFKYqrtDgdRamIiIiIiJqc5joAjh69CjeeOMNTJs2DR06dIAkSXB0dGxyu/LycixevBiRkZFwdHRE+/btMXfuXFy5cqXFMU2cOBHLly/Hgw8+CAcHhxbvr63wcrHH/43vonu8+XgWEi/myRgRERERERGZGxNdAMuWLcNf//pXbNq0CVlZWc3apry8HKNHj8arr76K4uJiTJ48GUFBQVi1ahV69+6NtLS0Vo6aGvNQv2BEd/DQPV78v2RoWJiKiIiIiKjNsJM7AEswcOBAxMTEoF+/fujXr1+zpgq//vrrOHDgAAYOHIjt27fD1dUVAPDuu+/ixRdfxNy5c7Fnzx7d+vn5+cjPz7/rPt3d3eHv79+yzhCUCgmvTo7C1H8dAACkXC/CFwcvYe6QMJkjIyIiIiIic2CiC+Avf/mLQeur1Wp88MEHAIAPP/xQl+QCwAsvvIA1a9Zg7969OHr0KPr06QMAeP/997F06dK77jc+Ph6rV682LHjSKzbYCw/2DcL6I5kAgH/8ch73xbSDv1vTU9KJiIiIiMi6ceqyEfbv34/CwkKEh4cjNja2wfLp06cDALZu3aprW7RoEdRq9V2/Pv/8c7P1oS348z1d4O5Y/VlOUYUGb/yYInNERERERERkDhzRNcKJEycAAL1799a7vLa9dj0AUCgUUCjM+7lCVFSU3va0tDSEh4ebNRY5+Lg64P/Gd8HCLckAgO+SruLhuGD0DfWWOTIiIiIiImpNHNE1wuXLlwEAHTt21Lu8tr12PWMUFxfj+PHjOH78OCorK3H9+nUcP34cZ86cMXqfbdHD/UMQ1d5d93jhFhamIiIiIiKydRzRNUJxcTEAwNnZWe9yFxeXeusZ48iRIxg5cqTu8SeffIJPPvkEISEhyMjIaNY+kpOT9bY3NtJri6oLU/XAAx9VF6Y6e+0Wvky8jPhBofIGRkRERERErYYjukYQQgAAJEm66/KWGDFiBIQQDb6am+TSbX1CvDC9z+3R93e2n0NucYWMERERERERUWtiomsENzc3AEBJSYne5aWlpQBQrxqz3AoLC5GRkYGMjAyo1WpotW1r+u7LE7rCrbYwVbkGb7IwFRERERGRzWKia4Tg4GAAwJUrV/Qur22vXc8SrFy5EmFhYQgLC0Nqairy8vLkDsmsfF0d8OLYSN3jb45ewdFLBTJGRERERERErYWJrhFiYmIAAElJSXqX17b37NnTbDE1Zf78+UhPT0d6ejoiIiLg4+Mjd0hmN3tACLoGuukeL/7faVRpWz7NnIiIiIiILAsTXSMMHjwYHh4eSEtLw7Fjxxos37hxIwDgvvvuM3dojfL09ERoaChCQ0OhUqnMfqsjS2CnVGDZlB66x6ev3sK6Q8ZXxiYiIiIiIsvU9rIdE7C3t8czzzwDAHjmmWfqXav77rvv4uTJkxgyZAj69esnV4jUiH6h3pgW20H3+J2fzyG/pFLGiIiIiIiIyNR4eyEAP/zwA5YtW1avrbKyEgMGDNA9XrhwIe69917d4wULFuDXX3/FgQMHEBERgaFDh+LSpUtITEyEj48PVq1aZbb4m6OwsBCFhYUAALVaDaVSKW9AMnp5Ylf8cuYGiio0uFmmxls/peCNByxnmjkREREREbWM2RPdL774wuT77NWrV4uuh83JyUFiYmK9NiFEvbacnJx6yx0dHbFr1y4sX74c69atw+bNm+Hl5YX4+HgsW7YMQUFBRsfTGlauXImlS5fqHvv5+ckYjbz83Rwxf2wkln1/BgCw/kgmHooLRq8gT3kDIyIiIiIik5CEKW76agCFQtHo/WcNJYSAJElYvHgxFi1aZJJ92qq6I7rjxo2DUqnE2bNn5Q1KRpoqLe59fz/O3SgCAPTs6IFNTw2GUmGa300iIiIiImqZqKgoAEBycrLB25p9RLc1pvT26tXL5Pu0NZ6envD09AQAqFQqeYOxAHZKBV6dHIUH/50AADh55SbWH87Ew/0t55ZQRERERERkHLMnuvHx8eZ+SiK9+nfyweRe7bHleBYA4K2fUzChRyC8XOxljoyIiIiIiFqCVZfbiMLCQmRkZCAjIwNqtRparVbukCzCKxO7wcW+ujBXYakab28/J3NERERERETUUhad6C5btsziqhdbq5UrVyIsLAxhYWFITU1FXl6e3CFZhAB3R8wfE6l7/NWhyzh5pVC+gIiIiIiIqMUsOtH9z3/+o7d68ebNm7Fv3z4ZIrJe8+fPR3p6OtLT0xEREQEfHx+5Q7IYcwaHIsLfFQAgBLBoSzK0WrPWaCMiIiIiIhOy6ET3+vXr6Ny5c4N2SZLw0ksvyRCR9fL09ERoaChCQ0OhUqmgUFj0oTcrlVKBpZOjdI+PZxbim6OZMkZEREREREQtYdHZTvv27XH+/PkG7dHR0W361jhkeoPCfXFfz3a6x2/+dA6FpZUyRkRERERERMay6ER3ypQpWLp0KTQaTb32mzdvws7O7AWjycb97d5ucK4pTJVfUokV2xt+yEJERERERJbPohPdJUuWoKCgAIMGDcJPP/2kqxy8YMEC9O3bV+7wrAqrLjetnYcTnhsdoXv8ZeIlnL56U8aIiIiIiIjIGBad6Hp4eGD//v3o3Lkz7rvvPvj4+CA8PBxJSUl466235A7PqrDqcvPMHRyGcD8XAIBWAIu2nGZhKiIiIiIiKyMJIaziLD4nJwfHjh2Dvb09+vTpAzc3N7lDsiqFhYUoLCwEAIwbNw5KpZLXOTdif2ouZn+WqHv89vSemNG3YfVvIiIiIiJqPVFR1QVjk5OTDd7W4i901Wq1SElJQUVFBYYNGwZHR0e5Q7JKnp6e8PT0BACoVCp5g7FwQyJ8MTE6ENtOXQcAvPFjCsZFBcLDif9uRERERETWwKKnLl+8eBE9e/ZEjx490KdPH3h5eeGRRx7B9evX5Q6NbNyCe7vDSVVdmCqvpBL/+IWFqYiIiIiIrIVFJ7rPPvssQkJCcOLECZw9exZffPEFzp8/j8GDByM3N1fu8MiGtfd0wjOjbt/D+YuDGTiTdUvGiIiIiIiIqLks+hpdT09PJCQkoGvXrro2IQSmT58OPz8/fPzxxzJGZ71aMte9LanQVOGelfuQnlsCAOgX6oUNfxwISZJkjoyIiIiIyPa1JG+x6BFdBweHBvfQlSQJCxYswJYtW2SKyjrx9kKGc7BTYsn9UbrHhzMKsOnYVRkjIiIiIiKi5rDoRHfixIl45513GrS7uLigpKREhoisF28vZJzhkX4YHxWge/z6thTcKlfLGBERERERETXFohPd1157Db/88gvuu+8+7NmzB/n5+cjMzMSSJUvQu3dvucOzKvPnz0d6ejrS09MREREBHx8fuUOyGgvv6w5HVfVLJbe4Ait/SZU5IiIiIiIiuhuLTnTbt2+Pffv2obKyEiNHjoSfnx9CQ0Oxf/9+vPfee3KHZ1U8PT0RGhqK0NBQqFQqKBQWfegtSkcvZzw94nZhqjUHM5BynYWpiIiIiIgslcVnO506dcL27dtx6dIlfP/999izZw/OnTuHmJgYuUOjNuSJYZ0Q4uMMAKjSCizakgwLruNGRERERNSm2ckdwJ1CQkLQp08f9O7dW/cVGBiIoKAgBAUFyR0etVGOKiWWTIrCY6sPAwAOpefjfyeyMLlXB5kjIyIiIiKiO1nciO6LL74IDw8PfPPNN5gyZQo6dOiADh06YNKkSVi8eDG2bNmCzMxMucOkNmhkV3+M6Xa7MNVrP5xFEQtTERERERFZHIu+j25FRQVOnjyJpKQkHD16FElJSTh9+jQqKyvh6+uL7OxsuUO0SryPrvEy80sx5t09qNBU357piaFh+Nu93WWOioiIiIjI9rQkb7G4qct1OTg4oF+/fujXr5+uTaPR4NSpUzh27JiMkVFbFeTtjCdHhGPlr9WVl1f9loGZfYMQEeAmc2RERERERFTL4qYuN8XOzg6xsbGYO3eu3KFYlcLCQmRkZCAjIwNqtRparVbukKzWvOHhCPJ2AgBoWJiKiIiIiMjiWNSI7uHDh5Genq53Wa9evRAZGWnmiGzHypUrsXTpUt1jPz8/GaOxbo4qJRbfF4XHvzgCADh4MQ/fn7yGSTHtZY6MiIiIiIgAGa7RFUIgNjYW6enp2L17N2JjY3XLHnvsMXzxxRd6t+vRoweOHz8OSZLMFapNKSwsRGFhIQBg3LhxUCqVOHv2rLxBWbm5qw9jZ0r1deKB7o7Y8eJwuDhY1GdHRERERERWy6qu0f3hhx9w8uRJPPfcc/WS3FpCCMTHx9drO3/+PBISEvDjjz9i4sSJ5grVpnh6esLT0xMAoFKp5A3GRiye1B37L+SiUqPF9VvleH9nKv46oZvcYRERERERtXlmT3S/++47SJKEF154Qe9ySZKwatWqem2XLl1CeHg4vvnmGya6ZDFCfFwwb1gnvL/zAgDgs33pmNEnCJ39XWWOjIiIiIiobTN7MarExERERUUhODi42duEhIQgNjYWhw4dasXIiAz35IjO6OB5uzDVkv+xMBURERERkdzMPqKbmZmJsWPH6l0mhGg0SejYsSN27tzZmqERGczJXolFk7rjj2uPAgD2X8jF+sOZyC2uQGJ6PoorNHB1sMOATj6Y2TcIfm4OMkdMRERERGT7zJ7oVlRUwNHRUe+y1atXY/Xq1XqXOTk5oaKiohUjIzLOuO4BGB7phz3ncwAAL393qsE6+1JzsfLX85jeJwiLJ3WHo0pp7jCJiIiIiNoMs09d9vHxQVZWlsHbZWVlwcvLqxUiImoZSZLw1wld0VQ9cHWVwFeHLiP+80MoV1eZJTYiIiIiorbI7IludHQ0Dh06hJKSkmZvU1xcjEOHDqFHjx6tGBmR8dYczEBzr8xNTM/H0q1nWjUeIiIiIqK2zOyJ7n333YeysjIsX7682du8/vrrqKiowKRJk1oxMiLjZBeVY+PRKwZts/FoJnKKOBWfiIiIiKg1mD3Rffzxx9GuXTu88cYbePvtt5tc/80338Sbb76JgIAAPPHEE2aIkMgwGw5nQl1lWKVldZXAhiOZrRQREREREVHbZvZiVE5OTti4cSNGjx6Nl19+GR999BGmT5+O2NhY+Pr6QpIk5ObmIikpCRs3bsSlS5dgb2+PjRs3wsnJydzh2ozCwkIUFhYCANRqNZRKFkMylcT0fKO2S7iYh6dHdjZxNEREREREZPZEFwAGDhyIAwcOYPbs2Thz5gxWrFihdz0hBLp164a1a9eid+/eZo7StqxcuRJLly7VPfbz85MxGttSXKEx63ZERERERHR3siS6ANCrVy+cPn0a27Ztw48//ogTJ04gNzcXQgj4+voiJiYGEyZMwMSJEyFJTdWzpabMnz8fc+bMAQCMGzeOI7om5Opg3MvI2O2IiIiIiOjuZD/TnjhxIiZOnCh3GDbP09MTnp6eAACVSiVvMDamf5g39qXmGrzdgE4+rRANERERERGZvRgVka2Z2S8IKqXhsw7Sc0pwq1zdChEREREREbVtFpnobtmyBa+++qrcYRA1i7+bI6b36WjwdhuTrmD0ij3434ksCGFY1WYiIiIiImqcRSa6mzdvrlc4icjSLZ4Uhf5h3s1a11F1+2WXU1SB5746hkc/P4SM3JLWCo+IiIiIqE2xyESXyNo4qpRYMzcOs+KCG53GrFJKmBUXjMOvjMH/je8CB7vbL799qbkYt3IvPtiRigpNlbnCJiIiIiKySbIXoyKyFY4qJZZPi8YLYyOx4UgmEi7mobhCA1cHOwzo5IOZfYPg5+YAAHh6ZGfc17MdFm5Jxt7zOQCASo0WK345j03Hr+K1KdEYGM5iVURERERExmCiS2Rifm4OeHpkZzw9svNd1wvxccGax/rhh1PX8OrWM8guqgAAXMwpwaxPEzCtdwf8bWI3+Lg6mCNsIiIiIiKbYZFTl4UQLM5DbYIkSbivZ3v8+uJwxA8MQd1bRn+XdBWjVuzB14cuQ6vl64GIiIiIqLkkwYyyzYmKigIAJCcnyxwJ3enklUK8sukUTl+9Va+9b4gXXpsajS6BbjJFRkRERERkXi3JWyxyRJeorerZ0RObnxqMxZO6w9Xh9pUFRy4V4N739+GNH1NQWqmRMUIiIiIiIstn8SO6P/30E/bu3QshBPr27Yt7770Xjo6Ocodl1Tiiax2u3yzH0q3J+PH09XrtHTydsGxKFEZ1DZApMiIiIiKi1mezI7pLlizBxIkT8c0332Dr1q2YNWsWOnfujJ9//lnu0IhaXaCHIz6a3Qefz+mLjl5OuvarhWWYu/oI5q09ims3y2SMkIiIiIjIMll0ovvxxx/jzTffRGpqKk6fPo3c3Fz8/ve/x+TJk5GYmCh3eERmMaprAH7503A8OSIcdorb1ap+Sr6OMSv24LP96dBUaWWMkIiIiIjIslj01GU3NzecOnUKoaGh9dqXL1+OLVu2ICEhQZ7ArFBhYSEKCwsBAOPGjYNSqcTZs2flDYoMdu56Ef626RSOXCqo1x7V3h2vT41GTJCnPIEREREREZmYzU5dHjRoEA4ePNigfdasWThx4oQMEVmvlStXIiwsDGFhYUhNTUVeXp7cIZERugS6YcMfB+LNB6Lh6azStSdn3cKUf/2GRVtO41a5WsYIiYiIiIjkZ9GJ7tChQ/Hcc89hz5499drPnj2L4OBgmaKyTvPnz0d6ejrS09MREREBHx8fuUMiIykUEh7sF4wdLwzHA7076tqFAL44eAmjV+zB1hNZvBc1EREREbVZFj112cnJCRUVFZAkCXFxcejTpw+0Wi22bduGzz77DKNHj5Y7RKvEqsu25WBaHhZsPoW0nJJ67cMi/bBschRCfFxkioyIiIiIyHgtyVssOtHVaDRITk5GUlKS7uvEiRMoLS2Fj48PYmNj0atXL8TGxmLWrFlyh2s1mOjangpNFT7dexEf7LyACs3twlQOdgo8M7Iz/jC8ExzslDJGSERERERkGJtNdPXRarVISUlpkPwWFBQ0vTEBYKJryy7llWDB5tPYl5pbrz3czwWvTY3GgE6csk5ERERE1sGmE93c3FzcuHEDISEhcHV1lTscm8BE17YJIfD9yWt49fszyCmqqLfsgd4d8crErvBxdZApOiIiIiKi5rHZqssrVqxAu3bt0LNnT3h6eqJr16743e9+h3fffRd79+6VOzwiiyRJEibFtMeOF4fj0YEhkG7fehffJl3B6Hf3YP3hy9BqLfozLiIiIiIio1n0iK6vry/mzZuHuXPnIi0tDceOHUNSUhKOHTuGtLQ0aDQauUO0ShzRbVtOZBbilU2nkJx1q157v1AvvDY1GpEBbjJFRkRERETUOJuduuzv74/ExESEhYU1WFZcXMypzEZiotv2aKq0+OLgJazYfg4llVW6djuFhCeGdcJzoyLgZM9iVURERERkOWx26vJDDz2E3bt3613GJJeo+eyUCswdEoZfXxyOCT0Cde0arcBHu9Mw9h97sCslW8YIiYiIiIhMx6JHdIuLizFjxgw8+eSTuP/+++UOx2ZwRJd2ptzAws3JuFpYVq99Qo9ALJ4UhUAPR11bTlEF1h++jMT0fBRXaODqYIcBnXwws28Q/NxY1IqIiIiIWofNTl3esGED5s2bh5s3byIwMBADBw5Enz59dF8+PrxVijGY6BIAlFZq8P6OC/jPvovQ1ClM5WKvxIvjumBm3454bdtZbDx6Beqqhm8TKqWE6X2CsHhSdziqOO2ZiIiIiEzLZhPdDh06YPDgwZg9ezYuXbqEo0eP4ujRo0hJSYFWq0VVVVXTO6EGmOhSXSnXb2HBptM4cqn+vaid7ZUorWz6NdY/zBtr5sYx2SUiIiIik7LZRNfd3R0nTpxoUIyqrKwMx48fx8CBA2WKzLox0aU7abUCG45kYvmPKbhZpjZ4+1lxwVg+LboVIiMiIiKitspmi1FNmDABJ0+ebNDu5OTEJJfIhBQKCQ/FBWPni8Nxb3Q7g7ffeDQTOUUVrRAZEREREZHhLDrRHTVqFBYtWoSzZ8/KHQpRm+Dj6oBu7Qy/r666qnpEmIiIiIjIEtjJHcDdPPPMM6iqqkLPnj0xZMgQDB48WFeIKjg4WO7wiGxSYnq+UdslXMzD0yM7mzgaIiIiIiLDWXSiW1RUhBMnTiApKQlJSUn48ccf8c4776CyshI+Pj7IycmRO0Qim1NcoTFqu8JSw6/tJSIiIiJqDRad6Do6OqJ///7o37+/rk2j0eDkyZM4fvy4fIER2TBXB+PeFk5fvYnHVh3ClNgOGNs9AM72Fv32QkREREQ2zOKu0Y2OjsatW7cAAD/99BOys7PrLbezs0Pv3r0xd+5cOcIzm1WrVmHkyJHw8/ODm5sb+vTpgy+//FLusKgN6B/mbdR2AsCuczl4/uvj6Pv3XzH/62PYdS4b6iqtaQMkIiIiImqCxQ25zJo1C5IkAQAmTZoErVaLdu3aoXfv3vW+OnbsKHOkrWvHjh24//778dZbb8HLywubNm3CI488Ajs7Ozz44INyh0c2bGa/ILy3IxXqKuPvPFZaWYXNx7Ow+XgWfFzscW/PdpjcqwN6B3vqXt9ERERERK3Fou+jW15eXu8a3aSkJCQnJ6OyshK+vr4NRnuNdfToUfzyyy84dOgQEhMTkZWVBQcHB5SXlzcZ3/Lly/HVV1/h8uXL8Pb2xj333INXX321VRLxiRMnwsnJCd9++22L9sP76FJT/vrdSXx1qPlVlB/qF4T7Y9pj8/Gr+PHUdRQ1cp1vsLczJvdqj8m9OqCzv6upwiUiIiIiG9SSvMWiE1196l6ja6rpy1OmTMGWLVvqtTWV6JaXl2P06NE4cOAA2rVrh6FDhyIjIwOHDh2Cn58fDh48iPDwcJPEV2vQoEGIjo7GJ5980qL9MNGlppSrqxD/+aFmVWDuH+aNNXPj4KhS6rbdlZKNzcevYldKDiobmbrco4M7pvTqgEkx7RHg7mjS+ImIiIjI+rWpRLc1vPnmmygtLUW/fv3Qr18/BAYGNpnoLlq0CMuWLcPAgQOxfft2uLpWj069++67ePHFFzFs2DDs2bNHt35+fj7y8++eNLi7u8Pf31/vsjVr1uCJJ55AQkICevfubUQvb2OiS81Rrq7C0q1nsPFopt5pzCqlhOl9grB4Unddknunm6Vq/Hj6GjYfv4rE9Hzoe7eRJGBQuA8m9+qAe3oEwt1RZequEBEREZEVsplE9/Dhw0hPT9e7rFevXoiMjDRLHJIk3TXRVavV8Pf3R2FhIZKSkhAbG1tveUxMDE6ePIkjR46gT58+AIAlS5Zg6dKld33e+Ph4rF69ukH7li1b8OCDD+Kjjz7CY489Zlyn6mCiS4bIKarAhiOZSLiYh+IKDVwd7DCgkw9m9g2Cn5tDs/dz7WYZtp7IwuZjWThz7ZbedeztFBjTzR+Te3XAiC5+cLDTn0ATERERke2zqkRXCIHY2Fikp6dj9+7d9ZLExx57DF988YXe7Xr06IHjx4+bpZBNU4nurl27MGrUKISHh+PChQsNli9btgyLFi3C4sWLsWTJEgCAVquFVnv36rMKhQIKRf1C2F9//TXmzJmDjz/+GHPmzDGqP3dioktyS71RhM3Hr2LL8SxcKSjTu467ox0mRlcXseof5g2FgkWsiIiIiNqSluQtZq+6/MMPP+DkyZN47rnnGoyEAtWJcHx8fL228+fPIyEhAT/++CMmTpxorlAbdeLECQBodApxbXvteoD+JLYpn376KZ599lmsXr0aDz30kMFx1v5i3CktLc3k1w8TGSIiwA3/N74rXhrXBUcvFWDz8av44eQ1FJSqdevcKtfg68OZ+PpwJtp5OOL+mOoiVt3aubFyMxERERHdldkT3e+++w6SJOGFF17Qu1ySJKxatape26VLlxAeHo5vvvnGIhLdy5cvA0CjlZVr22vXM8a7776LP//5z/jwww8xYsQIXL9+HQCgVCrh5+dn9H6JLIkkSegb6o2+od5YPCkKe8/nYMvxLGw/cx3l6tszIK7dLMcney/ik70XERngism9OmByr/bo6OUsY/REREREZKnMnugmJiYiKioKwcHBzd4mJCQEsbGxOHToUCtG1nzFxcUAAGdn/SfZLi4u9dYzxvvvv4+qqirMmzcP8+bN07WHhIQgIyOjWftobIi/sZFeIjmplAqM7haA0d0CUFKhwfYz17H5WBb2X8hFlfb2FRbnbxTj7Z/P4e2fz6FfqBcm9+qAe6PbwcvFXsboiYiIiMiSmD3RzczMxNixY/UuE0KgsUuGO3bsiJ07d7ZmaM1WG2Nj0ydNcdlzc5NZIlvk4mCHqbEdMTW2I3KKKvDDySxsPp6F45mF9dY7nFGAwxkFWPK/ZIzo4of7e3XA2G4BcLK/exGrnKIKrD98GYnp+S0qsEVERERElsnsiW5FRQUcHfXfM3P16tV6qw4DgJOTEyoqKloxsuZzc3MDAJSUlOhdXlpaCgC6Ww5ZgsLCQhQWFgKorhqtVLKaLVkHPzcHzBkchjmDw5CRW4Itx7Ow5fhVXMy9/frTaAV+PZuNX89mw8VeifFRgZgc2wGDw31gp7x9bXz1LZOSsfHolQa3TNqXmouVv55v8pZJRERERGT5zJ7o+vj4ICsry+DtsrKy4OXl1QoRGa522vWVK1f0Lq9tN2R6dmtbuXJlvdsb8Tpfskahvi54fkwEnhvdGaev3sLm41fxvxNZyCm6/SFYSWUVvjt2Fd8duwpfVwfc17MdpsR2QJcAV8xZdRiJ6Y3fz1pdJfDVocu4mFOMNXPjmOwSERERWSmzJ7rR0dHYv38/SkpKdNeyNqW4uBiHDh3C4MGDWzm65omJiQEAJCUl6V1e296zZ0+zxdSU+fPn625PNG7cOI7oklWTJAnRHT0Q3dEDr0zshoNpedh8/Cp+On0dxRUa3Xq5xRVYfSADqw9kwM3BDkV1lt1NYno+lm49g+XTolurC0RERETUigy7340J3HfffSgrK8Py5cubvc3rr7+OiooKTJo0qRUja77BgwfDw8MDaWlpOHbsWIPlGzduBFDdV0vh6emJ0NBQhIaGQqVSGXyrIyJLpVRIGBLhi3dmxODIgjH48OHeGNs9ACpl/Wvom5vk1tp4NLPeSDERERERWQ+zZzuPP/442rVrhzfeeANvv/12k+u/+eabePPNNxEQEIAnnnjCDBE2zd7eHs888wwA4Jlnnql3re67776LkydPYsiQIejXr59cIRK1SY4qJe7t2Q6fPtoXh/82BsunRaN/mLdR+1JXCWw4kmniCImIiIjIHCRhihLBBjp48CBGjx6NiooKhISEYPr06YiNjYWvry8kSUJubi6SkpKwceNGXLp0Cfb29tixYwcGDRrUKvH88MMPWLZsme5xYmIiJElCXFycrm3hwoW49957dY/Ly8sxYsQIJCYmol27dhg6dCguXbqExMRE+Pj4ICEhAZ07d26VeI1RtxhV7dTls2fPyhsUkZnM+PgADmcUGLxdRy8nvDA2EpEBbgj3c22ymjMRERERmU7tbVEbu23q3Zj9Gl0AGDhwIA4cOIDZs2fjzJkzWLFihd71hBDo1q0b1q5di969e7daPDk5OUhMTGzw3HXbcnJy6i13dHTErl27sHz5cqxbtw6bN2+Gl5cX4uPjsWzZMgQFBbVavMZgMSpqyzRa4z7Pu1JQhhc2nAAASBIQ5OWMCH9XRAS41Xx3RWd/Vzjby/JWSkRERESNkGVEt65t27bhxx9/xIkTJ5CbmwshBHx9fRETE4MJEyZg4sSJjd6vlpqPI7rUlj3yWSL2pea22v47ejkhUpf8Vn/v7O8KFwcmwERERETGasmIruyJLplfS35hiKzRP3em4p3t5w3erls7NygkCReyi1Gh0Rq8fQdPJ0QEuCIywA2d/W9/d22FBDinqALrD19GYno+iis0cHWww4BOPpjZNwh+bg4mfz4iIiKi1sZElwzCRJfamuyicgx+YyfUVc1/u1MpJRx4eTT83BxQpRW4UlCK8zeKkZpdhNSa7xeyi1GuNjwBbu/hqBv5jQxwQ+cAV0T4u8LNUWXwvsrVVVi6NRkbj17R2z+VUsL0PkFYPKk77wtMREREVsXqrtEl86s7dVmtVvM+utSm+Ls5YnqfjvjqUPOrKE/vc3skVKmQEOLjghAfF4ztHqBbR6sVuFJQhtTsonpJ8IXsYpSpqxrdd9bNcmTdLMee8/Wv/W/n4agb+dVNgw5whXsjCXC5ugrxnx9CYnp+o8+lrhL46tBlXMwpxpq5cUx2iYiIqE0w+4juF198YfJ99urVCz179jT5fm3JkiVLGhSjys7OljEiIvNqTlJYq3+Yd4uSQq1W4GphmS7xPX+jGBeyi5CaXYzSysYT4MYEujvqCl/pkmB/N7zx01mDkvdZccFYPi3a4OcnIiIikoNVTV1WKBQmKy4lhIAkSVi8eDEWLVpkkn3aKhajIqqd5nsGG49myjLNV6sVyLpZppv6nHqjGOezi3HhRhFKjEiADVV3OjYRERGRpbOqRHfNmjUm32evXr0QExNj8v3aKl6jS21dTlEFNhzJRMLFPIso3CSEQNbNcqTeuH39b2p2MVJvFKO4QmPS5/q/8V3w9EjLucc3ERERUWOsKtEl+THRJbIOQghcv1Veff3vjeriV+drkuEiIxPgoRG+WPv7/iaOlIiIiMj0WIyKiMgGSZKEdh5OaOfhhOGRfrp2IQQmfbAfp7NuGbzPwxn5eOPHFIzu5o/YIE/YKRWmDJmIiIjIIjDRbSNYdZnIdkiSBC8Xe6O2LVdr8fGeNHy8Jw2eziqMiPTDqG4BGB7hBw9nw29vRERERGSJmOi2EStXrmxQdZmIrFf/MG/sS81t0T4KS9XYfDwLm49nQamQ0DfEC6O7+WNU1wCE+7mYrHAgERERkbnxGt02glWXiWxLdlE5Br+xU2/16MbYKSQ8NzoCh9LzkZied9dtQ3ycMaqrP0Z3DUBcmDfs7TjFmYiIiMyL1+hSkzw9PeHp6QkAUKk4PZHI2vm7OWJ6n44G3Ud3Rt8gPDc6AgBQVK7G/tRc7EjJxu5z2cgtrqy37qW8Uqz6LQOrfsuAi70SQyP8MKqbP0Z28eftiVogp6gC6w9fRmJ6vkVU/CayVnwtEVFTOKLbBrHqMpFtKFdXIf7zQ0hMz29y3f5h3lgzN07v/YG1WoGTV29i59kb2JGSjeQmilzFBHlidFd/jOrqj6j27pzi3AzV93BOxsajV2S5h3NrYsJB5mTLryUiaoi3FyKDMNElsh3VJ31nsPFopslO+q7dLMOulBzsTLmB/RdyUa7WNrpuoLsjRnb1x+iu/hjc2RdO9jyxvJOpPpCwNEw4yNxs9bVERI1joksGYaJLZHtyiiqw4UgmEi7mmXRUrVxdhYNpediRcgM7z2Yj62Z5o+s62CkwKNwHo7oFYFRXf3TwdDL6eW3JX787adAU81lxwVg+LboVI2o5JhwkB1t8LRHR3THRpSaxGBURtZQQAinXi7AzJRs7zt7AscxC3O0vSNdAN10V515BnlAqDJvibAtTYo0pGqZSSjjw8miL7iMTDjI3W30tEdHdMdGlJi1ZsqTB7YWys7NljIiIrF1ecQV2n8vBzpRs7D2fg6IKTaPrervY19yz1x/DIv3g7th4UTxrnRIrhEBxhQa5xZXILa5AXnEFvjl6BTvOGv5e6+NqD383R6iUEpQKCXYKCXYKBeyU1T8rFQrdMpVSUfO9dl1F9frK2u9S/ccKCUqlAiqFvu1vP4ddIz/fLFPjoX8nQKNlwkHm88+dqXhn+3mDt/u/8V3w9MjOrRAREZkDE11qEkd0iag1qau0OJyRj51ns7EzJRsXc0saXddOIaFfqHfNaK8/Ovm56pZZ2pRYrVagsEyNvOIK5BRXVCexRRXIK6lAblF1Qptb215cgQpN49czt3VMOKglHvks0ah7hwd7O2PZlB7o1dETHs686wSRtWGiSwbhNbpE1Nou5hRjZ0p10nsoPf+uo39hvi419+z1x+bjWdhwpHWnxGqqtMgvqWyYuNb8nFNcgbyaxDW/pNKgkUtqnIeTHSb36oCIADdE+rsiMsANXi72codFVmLqv37DscuFLdpHJz8XxAZ5ITbYE72CPNE10A12St4jnMiSMdElgzDRJSJzulWuxr7zudiRcgO7z+Ugv6Sy6Y2aqXZKrJujnW5kNa/OKGtOUQXySqoT2NrR14JStcmeXx+FVD1V29fVAddvlqOwzPDn697OHc+PiYCmSkCj1UJTJVClFVBrtdXfqwSqtNqa7wKaKi00WlH9VbtN3fba7auqt69eV1uzrtCtW3cd3b612nr7vVsVbkP5ujogMqA66Y2o+R7p78aRN2rgd58m4Le0PJPu00mlRHRHD8QGeSI22BOxwV4IcHc06XMQUcsw0SWDMNElIrlUaQVOXCnEzrPZ2JGSjbPX7n7P3uawVypQWdW6U4btlQr4uFYnr741331qfvZzc6h5XN3u5WyvK7xli9cVGjuF1BD+bg71k98AV0QEuN312m5TsoVCaLYkOesm4j8/hNxiwz8kC/N1RkGpGoXN/ICrvYcjegV76kZ+e3TwsKhaAERtDRNdMggTXSKyFFcLy7CrZorzrnPZd63ibGrO9soGiaufqz18axNXl9s/uzvaQZIMqxoN2GalWGOT91Fd/RDo4YTUG0U4f6MYN40Y6Q50d2yQ/Eb4u8LNRAmwtRZCs1XqKi0+2p2G93ekGnUJQe1rydfVHpfySnEsswDHLxfiWGYhzmTdatY+7RQSurVz1013jg32QqiPs1HvB0RkOCa6ZBAmukRkiSb/cz9OXLnZon14OKl0iWvdJNbX7Xbi6lcz+upsb2eiyO/O1m7FY4rkXQiBnKIKnL9RjPM3ipCaXaT7uai88erdjWnv4Vh97W9N8htZkwC7ODT/GFtaIbS2LvVGEV785gROtuA94W6vpXJ1FZKzbuLY5UIcu1yI45mFuFpY1qz9ejqrqpPemlHfmCBPeDi1/MMWziQgaoiJLhmEiS4RWSJjp8TGBnnio9l94O1iD3s7yyssY4sJVGsl70II3LhVgfM3iqoT4BvFOJ9d/b34LrevakwHT6c61wBXJ8Kd/V31fshhax9IWKsqrcB/9l3Eil/Oo7JOFfP2Ho74+5RofLI3rdVeSzduleuS3mOXC3Dyyk2UqauatW24nwtig71qRn090SWg+YWuOJOAqHFMdKlJvL0QEVk6W7yetVb1iewZbDyaaRMnsuZO3oUQuHaz/Hbye6MI57OLceFGEUoqm5eI1JIkoKOXE7rUSX59XRzw2OrDvDewzNJzS/DSNydw9FJBvfaZfTtiwX3d4e6oMutrSVOlxfkbxTiWWaBLgC9kFzdrWyeVEj07euiu9+0d7Al/PYWubPGDMCJTYqJLTVqyZAmWLl2qe+zn54fs7GwZIyIiqs8Wr2e9U05RBTYcyUTCxTyrn5poCcm7ViuQdbPsdvJ7oxipNSPAzR2Jawlr+JDFGmi1AmsTLmH5j2frVfX2c3PAmw9EY1TXgAbbyPVaulmmxonM26O+xzILDSp0FRt8+/ZGPTp4YOnWZM4kILoLJrrUJI7oEpE14PRR62OJybtWK3C1sOx28nujCOezi3Ahu9ikt0caGuGLtb/vb7L9tUWZ+aX488aTOHix/q2DJvdqj6X3R8HT2bLvtSyE0BW6qh31bW6hK6UEaAVgyIm4tX24R9RSTHTJILxGl4gsFafxUWuq0gpcKSi9XQSrJhE+e+2WQclGrdhgT2x6arDJ42wLhBBYfzgTy74/U2/6ubeLPV6b0gMTotvJGF3LlKurcPrqzXrX+2bdLDfZ/jmTgNqSluQt5ik5SURE1AyOKiXWzI2TfUos2SalQkKIjwtCfFwwtvvt6bCz/5OI/RcML4TmakBVZ7rtxq1y/OXbk9h9Lqde+/ioALw2NRq+rtY9WumoUqJvqDf6hnrr2moLXdXe4siQQld3SriYx0SXqBn4Dk1ERBbFUaXE8mnReGFspMVNiSXbNKCTt1GJrr2dAuXqKn7g0kxCCGw+fhWLtyTjVp3bSLk72uHVyT0wuVd7m70/bYC7I+7pEYh7egQCqC50dd8H+5FyvcjgfR29VIDl284iLqw6mTbFrY2o+XgbKOvBqcttEKcuExER3WZMIbRa/m4O+OPwcDwcFwwneya8jcktrsDfNp3Cz8k36rWP6OKHN6b1RKBHw4rEts7YW6rVJUlAt0B3xIV5o3+YN/qFeVv9iLil4m2g5MFrdMkgTHSJiIjqM7QQ2p18Xe3xxNBOmD0gBC6c0lzPtlPXsGDzaeSXVOraXB3ssPC+bpjZN8hmR3GbYuwt1ZrS2d9Vl/j2D/Npkx8imBrrR8iHiS4ZhIkuERFRfYacyMYGeyKqvTs2HLmCSk39Ks5ezio8PrQTHh0YAjfHtj2ltLC0Eou2JON/J7LqtQ8K98Fb03uio5ezTJFZBmNmEtgpJDw3OgJnsm7hUEZ+vQ8PGhPs7Yy4MG/EhXljQJgPgryd2uyHC8biHQHkw0SXDMJEl4iIqCFD7w2cfasc/957Ef9NvNTgtkXujnaYOyQMjw0Kg4dz20t4d6bcwF++PYWcogpdm5NKib9O7IrZ/UOgUDDRAlqWQAkhcCG7GInp+TiUno/E9DzcuFXRxB6AQHfH24lvJ2+E+7ky8b2LtnCPd0vGRJcMwkSXiIiocYbeGzi3uAKf7ruItQcvobSyfiVdNwc7xA8Kxe+HhMHLxbLvCWsKt8rV+Pv3Z7DhyJV67X1DvPDOjBiE+rrIFJllMuWUWCEELueXIjE9H4kX83EoIw+Z+WVN7tfHxR79QqsT3/6dvNE10B1KfhChY+wUc94GyjSY6FKTCgsLUVhYCAAYN24clEolzp49K29QRERENiS/pBKf70/HmgMZKKrQ1FvmYq/E7IEheGJoJ5stFrQ/NRd/3nii3j1j7e0UeGlcJH4/pBOTp0YYOpPAEFmFZTickY+Ei/k4lJ6HtJySJrdxc7RDv9Dqa3zjwrzRo4MHVEqFQc9by9oqFKurtMguqsCNW+W4cbMcN26V4z/703GloOkPDO40NMIXa3/fvxWibFuY6FKTlixZgqVLl+oe+/n5ITs7W8aIiIiIbNPNUjVWHUjH5/vT691GBwAcVQrM7h+CPwzrBH932ygSVFKhwRs/pmBtwqV67T07emDFjBhEBLjJFJl1MXQmgTFyiytwOD2/etQ3PR8p12+hqUzASaVEnxAvXeIbE+TZZMJtaRWKtVqBgtJKXL9VjuxbFbh+qzqJvXGrJqmt+corqWzy36O5YoM9sempwabZWRvGRJeaxBFdIiIi8yoqV+OLg5fwn30XUVCqrrfM3k6Bh+OC8cfhndDOw0mmCFvuUHo+XvrmBC7nl+ra7BQSnh8dgXkjwo0eCSTzuFmqxuGMfBzKqE58T1+9iSrt3VMDe6UCvYI80b9TdeLbO9irXqVxc1coLq7Q3B6BLapOXq/fLEd2UTmu36x+nF1UbtTtw1qCI7qmwUSXDMJrdImIiMynpEKD/yZcwqf7LiK3uH6VXHulAjP6dsSTI8KtqgpxuboK7/x8Dp/9ll5vBKxroBtWzIxBVHsP+YIjo5VUaHD0UgEO1RS4Op5ZiMoq7V23sVNI6NHBQzfiu+3UNXybdLXZz9lYheJKjRY5xTVJ663ymlHY2yOwtaOzxXdcJmAKns4qBLo7wt/dEfnFFTiddcvgffAaXdNgoksGYaJLRERkfmWVVVh36DI+2ZOG7KL61XHtFBIe6N0RT40MR4iPZRdsOp5ZiBc3HK93vadCAp4cEY7nRkfAwY73D7UV5eoqHM8s1FV1PnqpoEGF8ZZSShIeGxyKkkqNbgS2dhqxqTmqFAh0d0RAzVeghyP83Rx0Pwe4OcLf3aHeCDOrLsuLiS4ZhIkuERGRfMrVVdhwJBMf7U7DtTqFmwBAqZAwuVd7PD2yM8L9XGWKUL9KjRbv70jFR3vS6k1vDfdzwYqZvdAryFO+4MgsKjVanM66WZ34XszDkYyCBoXX5KBUSPB3c4C/uyMC3R10iWz1l4NudNbd0c6oWynxPrryYaJLBmGiS0REJL8KTRW+PXoVH+66gKuF9au6KiTgvp7t8cyozoi0gGJOZ7Ju4YUNx5FyvUjXJknA7weH4aXxXcxSUIgsT5VW4Oy1W7oR3x1ns6Fp4hpfQ3k5q/QmrbqRWQ8H+Lg4tGpVb3Nfd0y3MdElgzDRJSIishzqKi02HatOeC/lldZbJknAhB6BeGZkBLq3dzd7bJoqLT7anYb3d6bWm7oZ7O2Md2bEIC7M2+wxkeWa+uFvOJZZaPB2Xs4qzOgbVC+ZDXB3hJ+bg8UkjK15GyhqHBNdMggTXSIiIsujqdJi68ksfLDzAi7qud/p2O4BeG5UBKI7mqfQU+qNIrz4zQmcvHKzXvsjA0Lw8oSu9SrtEgHAI58lYl9qrsHbWVOFYnPcBopua0newncoIiIiIgtgp1RgamxH3B/TAT+cuoZ/7kzF+RvFuuW/nLmBX87cwMgufnh2dAR6B3u1ShxVWoHP9l/EO9vPo1Jzu/BQew9HvDU9BkMifFvlecn69Q/zNirRHdDJpxWiaR1+bg54emRnVlS2AhzRbYM4oktERGT5tFqBn5Ov4/2dF3D2WsPbmwyN8MVzoyPQL9R004czckvw0jcncORSQb32GX06YuGk7nB3VJnsucj2sEIxmRpHdImIiIhsjEIhYUJ0O9zTIxC/ns3GBztT600j3peai32puRjQyRvPjY7AwE4+eivK5hRVYP3hy0hMz290qqVWK/DfxEtYvi0FZeoq3bZ+bg54Y1o0RncLaP0Ok9Xzd3PE9D4dDapQPL0Pp/xS6+CIbhvEEV0iIiLrI4TA7vM5eH9HKo5dLmywvF+oF54dFYGhEb6QJKmmeE4yNh69ctfiOY8PDcXCzck4kJZXb/n9Me2x9P4oeLnYt1aXyAaxQjGZEotRkUGY6BIREVkvIQR+u5CH93ek4lBGw2SiV5An5g3vhFW/ZTQr2VBIQN07wni72OO1KT0wIbqdKcOmNoQVislUmOiSQZjoEhER2YaEi9UJ752jscYaHxWA16ZGw9eVU0mp5VihmFqKiS4ZhIkuERGRbTmSkY/3d17A3vM5Ru9j2eQozB4Qovc6XyIiObAYFTWpsLAQhYWFAAC1Wg2lktNEiIiIbEXfUG98MTcOxzML8cL647iY2/A+vE25Va5hkktENkMhdwBkHitXrkRYWBjCwsKQmpqKvDzTTHEiIiIiy9EryBMdvJyM2jbhIs8NiMh2MNFtI+bPn4/09HSkp6cjIiICPj7Wc2NuIiIiar7iCo1ZtyMiskScutxGeHp6wtPTEwCgUvFm70RERLbK1cG40ztjtyMiskQc0SUiIiKyIf3DvI3abkAnzvYiItvBRJeIiIjIhszsFwSV0rCiUiqlhJl9g1opIiIi82OiS0RERGRD/N0cMb1PR4O2md6H9zUlItvCRJeIiIjIxiyeFNXsKcz9w7yxeFL3Vo6IiMi8mOgSERER2RhHlRJr5sZhVlxwo9OYVUoJs+KCsWZuHBxVSjNHSETUulhej4iIiMgGOaqUWD4tGi+MjcSGI5lIuJiH4goNXB3sMKCTD2b25XRlIrJdTHSJiIiIbJifmwOeHtkZT4/sLHcoRERmIwkhhNxBkHm5ublBrVYjPDxc7lCIiIiIiIj0SktLg0qlQlFRkcHb8hrdNsjFxQUqlUruMOpJS0tDWlqa3GGYlK31ydb6A7BP1oJ9sg7sk+Wztf4A7JO1YJ+sgyX2SaVSwcXFxahtOaJLFiEqKgoAkJycLHMkpmNrfbK1/gDsk7Vgn6wD+2T5bK0/APtkLdgn62BrfeKILhEREREREdkUJrpERERERERkU5joEhERERERkU1hoktEREREREQ2hYkuERERERER2RRWXSYiIiIiIiKbwhFdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbAoTXZJVeXk5Fi9ejMjISDg6OqJ9+/aYO3curly5IndoBjt69CjeeOMNTJs2DR06dIAkSXB0dJQ7LKOVlpZi8+bN+P3vf4+ePXvC3d0dLi4uiImJwauvvori4mK5QzTKu+++i2nTpiEiIgIeHh5wcHBASEgI4uPjkZycLHd4JpGfnw9/f39IkoSuXbvKHY5RRowYAUmSGv366aef5A7RaNevX8ef/vQnREZGwsnJCd7e3ujTpw/+/Oc/yx2aQXbv3n3XY1T79eqrr8odqkESEhLwwAMPIDAwECqVCt7e3hg9ejQ2btwod2hGS0hIwOTJk+Hr6wtHR0dERkZiwYIFKC0tlTu0Rhn7N/WLL75AXFwcXF1d4e3tjYkTJ+LAgQNmiLhphvYpMzMT//rXvxAfH49u3bpBoVBAkiQkJCSYMeq7M6RPWq0W+/btw5///Gf0798f/v7+cHBwQHh4OObNm4f09HQzR6+focfpf//7H+Lj4xEdHQ1fX1+oVCr4+/tj4sSJ+OGHH8wYeeNMcY46ZswY3fv69evXWylSExNEMikrKxODBg0SAES7du3EzJkzRVxcnAAg/Pz8xIULF+QO0SCTJ08WAOp9OTg4yB2W0T799FNdP6KiosSMGTPE+PHjhZubmwAgunbtKm7cuCF3mAbz8fERjo6OIi4uTkydOlVMnTpVREZGCgDC3t5ebNu2Te4QWyw+Pl5IkiQAiC5dusgdjlGGDx8uAIgHHnhAxMfHN/g6efKk3CEa5cCBA8LT01MAEN27dxczZ84UEyZMECEhIUKpVModnkHOnj2r99jEx8eL2bNn694/du7cKXeozbZhwwahUCgEANG3b1/x4IMPiqFDh+ra/vKXv8gdosH++9//CqVSKQCIPn36iKlTp4qgoCABQMTExIhbt27JHaJexvxN/dOf/iQACCcnJzF58mQxfvx4YWdnJ5RKpfjuu+/MFHnjDO3TP/7xjwbrAxAHDx40Y9R3Z0ifUlNTdet06NBBTJ48WUydOlV06NBBABBubm5i3759Zu5BQ4YepwceeEBIkiR69OghJk6cKB588EHRv39/3bYLFy40Y/T6tfQcddWqVQKA7tzi2rVrrRit6TDRJdksXLhQABADBw4URUVFuvYVK1YIAGLYsGEyRme4N954QyxatEhs3bpVXL9+3eoT3TVr1ognn3xSnD9/vl57VlaWiI2NFQDErFmzZIrOePv37xdlZWUN2v/1r38JAKJ9+/ZCo9HIEJlp/PrrrwKA+MMf/mATiW56errcoZjM1atXhaenp3ByctJ70p2YmChDVK1j27ZtAoAICgoSVVVVcofTLGq1Wvj5+QkA4uuvv6637MCBA8LR0VFIkmRVH8JmZmYKR0dHAUB8/vnnuvby8nIxY8YMAUDMmzdPxggbZ+jf1B07dggAwsfHp97frQMHDgh7e3vh4eEh8vPzzRF6owzt05YtW8Sf/vQnsW7dOpGamqp7X7SkRNeQPl24cEGMHz9e7Nmzp157eXm5mDNnjgAggoODRWVlpTlCb5ShxykpKUnk5uY2aE9ISBCurq5CkiSRnJzcmiE3qSXnqNnZ2cLHx0eMGzdOhISEMNElakplZaVuVCMpKanB8p49ewoA4siRIzJEZxrWnujezYEDB3T9q6iokDsck+ncubMAIPsfJGOVlpaKzp07i+7du4vz588z0bUwjzzyiAAgPvjgA7lDaXUPP/ywACBefvlluUNptlOnTulmq+hTOyKyfv16M0dmvGXLlgkAYuzYsQ2WZWdnC2dnZ6FSqfSepFuapv6mTpw4UQAQ//jHPxose+655wQA8c4777RihIYz9DzBEhPdOxl77lNWViY8PDwEALF79+5WiMx4LTmfe/zxxwUA8eGHH5o4qpYxpE8PP/ywcHR0FBcuXLC6RJfX6JIs9u/fj8LCQoSHhyM2NrbB8unTpwMAtm7dau7QqBliYmIAABUVFcjLy5M5GtNRKpUAAHt7e5kjMc7SpUuRlpaGjz76CCqVSu5wqI6CggJs2LABHh4eePzxx+UOp1WVlJRgy5YtAIDZs2fLHE3zOTg4NGs9b2/vVo7EdI4ePQqg+pr3O/n5+aF79+5Qq9XYtm2bmSMzrfLycuzYsQPA7fOHunhOYflqrx0HgKysLJmjMR1rP6/4+eefsW7dOvztb39DeHi43OEYzE7uAKhtOnHiBACgd+/eepfXtteuR5bl4sWLAKAr1GILvvjiC5w7dw6RkZHo1KmT3OEY7OTJk1ixYgUee+wxDBs2DBkZGXKHZBKfffYZ8vLyoFAoEBkZiSlTpiA4OFjusAz222+/oaKiAmPGjIFKpcLGjRuxf/9+qNVqdO3aFTNnzkRAQIDcYZrEd999h5KSEsTGxiIqKkrucJqtU6dO6NSpE1JSUrBhwwbMnDlTt+zgwYP4+eefERYWhmHDhskYpWFKSkoAAF5eXnqX175/nzhxAo888ojZ4jK1lJQUVFRUwM/PDx07dmywvPac4uTJk+YOjZqpqqoKly5dAgAEBgbKHI1pnDx5EuvXr4dKpcLo0aPlDsdgpaWlmDdvHrp27Wp1xRJrMdElWVy+fBkA9P5Bqtteux5Zlvfeew8AcM899zR7FMTSvP3220hOTkZJSQnOnj2L5ORktG/fHuvWrYNCYV2TXbRaLZ544gl4enrirbfekjsck/r73/9e7/FLL72EhQsXYuHChTJFZJzait4BAQEYOnQoDh48WG/5X//6V6xatQozZsyQIzyT+u9//wsAVpc4KZVKrF69GpMmTcKDDz6It99+G+Hh4bh27Rr279+PuLg4rF271qpGZvz8/ABAl0Dcqbbd2j8Ya+qcwsXFBZ6enigoKEBRURHc3NzMGR41w9dff43s7Gz4+flh0KBBcodjlK1bt+Lbb7+FWq3G5cuXceDAAahUKvz73/9GWFiY3OEZbOHChcjIyMCuXbus6n2vLus6myObUXtrGmdnZ73LXVxc6q1HlmPbtm347LPPoFKpsGzZMrnDMdrPP/+MNWvWYOPGjUhOTkZQUBDWrVuHPn36yB2awT744AMcOnQIb7/9Nnx8fOQOxySGDRuGtWvXIi0tDaWlpTh37hxee+012NnZYdGiRboPW6xFQUEBgOqZAydPnsRnn32GnJwcpKen44UXXkBJSQlmz55t9SNO169fx44dO6BUKjFr1iy5wzHY0KFDsWfPHoSFheHIkSNYv3499u7dCxcXF4wZMwbt27eXO0SDDB8+HADw1VdfobKyst6yhIQEnDt3DgBQVFRk9thMqalzCoDnFZYsMzMT8+fPBwC8+uqrVvsB+okTJ7BmzRqsW7cO+/fvh729Pd577z08+uijcodmsKSkJLz33nuIj4/Xe+mDtWCiS7IQQgAAJEm663KyLGfPnsXs2bMhhMDbb7+tu1bXGv36668QQqCgoAB79+5Fly5dMGLECLz22mtyh2aQzMxMLFiwAMOHD8ecOXPkDsdkXn31VcyePRudOnWCk5MTIiMj8corr2Dz5s0AgMWLF6OsrEzeIA1QVVUFANBoNHj33Xcxd+5c+Pr6IjQ0FCtWrMD06dNRWVlp9SPy69atQ1VVFcaOHWuV0w+/+uor9O/fH8HBwUhMTERxcTHOnz+PWbNm4e9//zvGjBkDtVotd5jN9rvf/Q7BwcG4fPkyJk+ejOTkZBQVFeGnn37CjBkzYGdXPbHP2max3Kmpc4q665BlKSkpwdSpU5Gbm4spU6Zg3rx5codktAULFkAIgbKyMpw6dQpz587Fk08+icmTJzf4oMmSVVVV6WaJvfPOO3KH0yLW/c5GVqt22lDt9UN3qr2Jvaurq9lioru7cuUK7rnnHhQUFOCFF17A888/L3dIJuHp6YmhQ4di27Zt6NOnDxYuXIjDhw/LHVazPfXUU6isrMRHH30kdyhmMW7cOPTt2xc3b95EQkKC3OE0W+17nkKhQHx8fIPlc+fOBQDs3r3bnGGZnLVOWwaA1NRUxMfHw8/PDz/88APi4uLg4uKCiIgIfPLJJ5g0aRIOHjyIVatWyR1qs7m4uOD7779HcHAwfvrpJ/To0QPu7u6YMGECFAoFXnjhBQCNX8NrLZo6pwB4XmGJ1Go1HnjgARw9ehRDhgzBunXr5A7JJBwdHdGjRw98+OGHePbZZ/H999/jgw8+kDusZlu5ciWSkpLw1ltvwdfXV+5wWoSJLsmitpjMlStX9C6vbbfGojO2KDc3F2PHjsXly5fx2GOPWf0nfPqoVCo8+OCDEEJYVWXO77//Hs7OznjyyScxYsQI3ddDDz0EoPratdo2W5myFxERAQC4du2azJE0X2hoKIDqIiv6puXVLs/OzjZjVKZ19uxZHDt2DK6urpgyZYrc4Rjs66+/hlqtxj333KOb5lpXbXEqa/swIjo6GikpKVizZg2effZZPPnkk/j4449x+vRp3TrWVDRMn6bOKUpKSlBYWAhPT09en2shtFotZs+ejZ9//hkxMTHYunUrnJyc5A7L5Gorz9dWorcGW7duhSRJWLNmTb3zihEjRuD69esAgGnTpmHEiBHYv3+/zNHeHYtRkSxqp7wmJSXpXV7b3rNnT7PFRPoVFRVhwoQJSElJwbRp0/Dpp5/edXqYNav95DInJ0fmSAxTWFiIPXv26F1WVlamW6bRaMwZVqupvd7VmkZmam+jVlBQACFEg9dQ7W26rKlPd1q7di2A6hOgu10raalqkyR3d3e9y2vb8/PzzRaTqTg5OeHRRx9tcK3gr7/+CkD/7YesSZcuXeDg4ICcnBxcuXKlQVEqnlNYnqeeegobNmxAZGQktm/fDk9PT7lDahXWel4hhMDevXsbXV5bUDE3N9dcIRmFI7oki8GDB8PDwwNpaWk4duxYg+UbN24EANx3333mDo3qqKiowOTJk3HkyBGMHz8eX331le6ecLaoNiG0pnvFCSH0fqWnpwOoPgGsbbOFE4mcnBzs27cPQOO3J7NE0dHRCAsLQ1lZGRITExssrx0ltKY+1SWE0E07tMZpy8DtW5ocOXJE7/LaSxpqR9+t3Z49e5CUlISoqCgMHjxY7nBaxMnJCaNGjQJw+/yhLp5TWJZXXnkFn3zyCYKDg/HLL7/A399f7pBajTWeV+zevbvRc4uQkBAA1TOqhBCWP3tHEMnkb3/7mwAgBg0aJIqLi3XtK1asEADEkCFDZIyu5QAIBwcHucMwmkajEVOnThUAxNChQ0VJSYncIbXY3r17xddffy3UanW99srKSvH+++8LhUIhnJycxOXLl2WK0HTS09MFANGlSxe5QzHYwYMHxc6dO4VWq63Xnp6eLgYPHiwAiPvvv1+m6Iz38ccfCwCiX79+IicnR9d+5MgR4enpKQCIb775RsYIjbdnzx4BQLRv315UVVXJHY5Rjh49KgAIAOJf//pXvWUHDx4ULi4uAoD45ZdfZIrQOMeOHWvwnnf06FHRvn17IUmS2Llzp0yRGaapv6m//PKLACB8fHzE+fPnde0HDhwQDg4Owt3dXeTl5Zkj1GYz9Dxh+PDhAoA4ePBgK0bVMk31qfYcLzAwsN5xsmR369ONGzfEO++8IwoKChos2759u/Dz8xMAxMaNG1s5SsMYe44aEhIiAIhr1661QlSmx6nLJJsFCxbg119/xYEDBxAREYGhQ4fi0qVLSExMhI+Pj1UV/ACAH374ocHtdiorKzFgwADd44ULF+Lee+81d2hG+ec//4lNmzYBqJ5689RTT+ld75133rGaYgVpaWl47LHH4Ovriz59+sDHxwe5ubk4deoUrl27BkdHR6xevRpBQUFyh9qmpaSk4LHHHkO7du0QGRmJwMBAXLlyBUePHkV5eTmioqLw6aefyh2mwZ544gns2LED33zzDbp06YJBgwahuLgYBw4cQGVlJZ544glMnz5d7jCNUluE6ne/+53VVvDt3bs3XnrpJbzzzjt46qmn8OGHH6J79+7IysrCwYMHodVq8Yc//AFjxoyRO1SDzJ8/H2fOnEGvXr3g6+uLjIwMJCYmQqFQ4JNPPsHIkSPlDlEvQ/+mjhkzBs8//zzee+899OrVC2PHjkVlZSV++eUXaLVafPnll/D29jZrH+5kaJ+uXbuGqVOn6padOXMGAPD444/rLnO49957Zb2vuCF9On78OF566SUAQFhYWKN3OXj88ccxZMiQ1gu6CYb0qbS0VHd/9759+6Jjx44oKSnB+fPnkZKSAgD405/+hAceeMCsfbiTrZ2jNpvcmTa1baWlpWLhwoUiPDxc2Nvbi4CAABEfH2+VI2qrVq3SjQY09rVq1Sq5w2y2xYsXN9kfACI9PV3uUJvt4sWL4pVXXhGDBw8W7dq1EyqVSri4uIioqCjx7LPPitTUVLlDNBlrHtE9c+aMePLJJ0Xv3r2Fn5+fsLOzEx4eHmLAgAFixYoVorS0VO4QjVZVVSU+/PBDERsbK5ydnYWLi4sYNGiQ+OKLL+QOzWjl5eXCy8tLABAnTpyQO5wW++6778S4ceOEj4+PsLOzE15eXmLkyJHiyy+/lDs0o3z66adi+PDhws/PT6hUKtG+fXvx8MMPi2PHjskd2l0Z+zd11apVok+fPsLZ2Vl4eHiI8ePHi3379pm/A3oY2qfa9/G7fcXHx8vWHyEM69OuXbuadV4h97mSIX0qKSkRb731lpg4caIICQkRTk5OwsHBQYSGhoqHHnpI7Nq1S9a+1DLVOaq1jehKQvDGYkRERERERGQ7rHN+EREREREREVEjmOgSERERERGRTWGiS0RERERERDaFiS4RERERERHZFCa6REREREREZFOY6BIREREREZFNYaJLRERERERENoWJLhEREREREdkUJrpERERERERkU5joEhERERERkU1hoktEREREREQ2hYkuERGRhZAkCZIkyR1Gq5kzZw4kScLu3bvlDoWIiGwcE10iIiILlpGRAUmSMGLECLlDaVJoaKhNJ+pERGQ9mOgSERGRWSxfvhxnz55FXFyc3KEQEZGNs5M7ACIiImob2rVrh3bt2skdBhERtQEc0SUiIrJQS5YsQVhYGABgz549umt4JUnCnDlz6q2bk5ODl156CV26dIGjoyO8vLwwYcIE7N27t8F+d+/erdvH9evX8fjjj6Njx46ws7PDypUrAQDXrl3DW2+9heHDh6NDhw6wt7dHYGAgpk2bhsOHD+vd36VLlwCgXpyhoaG69e52jW5mZib++Mc/IiQkBA4ODvD399f7XED96dxlZWV4+eWXddt17twZb775JoQQep/j6aefRpcuXeDs7Axvb29ERUXhj3/8I86dO3e3Q0FERFaGI7pEREQWqlevXnjggQfw7bffIiAgAPfcc49u2ZAhQ3Q/p6SkYMyYMbh69SrCw8MxceJE5OXlYefOndi+fTvWrl2Lhx9+uMH+c3Jy0K9fP2g0GgwZMgTl5eVwdnYGAGzZsgV/+ctf0LlzZ0RHR8Pd3R0XLlzApk2b8P333+P777/HuHHjAACBgYGIj4/Hxo0bUVJSgvj4eN1z+Pr6NtnPU6dOYdSoUcjNzUXXrl0xbdo0XL58GZs2bcLWrVuxbt06zJgxo8F2lZWVGDduHJKTkxEXF4du3bphz549ePnll1FUVIS///3vunWvXLmC3r17Izc3Fz179sSkSZNQXl6OS5cu4dNPP8XAgQPRpUuXZhwVIiKyCoKIiIgsAgBx55/m9PR0AUAMHz5c7zYajUb06NFDABDvvfee0Gq1umVJSUnCx8dHuLi4iBs3bujad+3apXuuqVOnirKysgb7PXnypDhx4kSD9p9++knY29uL8PDwes8lhBAhISEN4q8rPj5eABC7du3StWm1WhEdHS0AiL/+9a/19vnNN98IhUIh3NzcxPXr1xv8mwAQQ4cOFTk5Obplhw8fFnZ2dsLZ2VkUFRXp2hcvXiwAiBUrVjSIKyMjQ1y4cKHRuImIyPpw6jIREZEV27p1K06fPo1Zs2bhueeeq1f1ODY2FgsXLkRJSQn++9//NtjWwcEBH3zwARwdHRssi46ORs+ePRu0jx8/HjNmzEBaWhpOnz7d4vh3796NU6dOISwsDMuWLasX//Tp0zFlyhQUFRVh1apVDbZVKBT4z3/+U2/UuG/fvpgwYQJKS0tx5MgRXXt2djYAYNSoUQ32ExISgvDw8Bb3hYiILAcTXSIiIiv2yy+/AACmTJmid3ntFGd917r27t0bHTp0aHTfFRUV2LJlC/72t7/hD3/4A+bMmYM5c+bg1KlTAIDU1NQWRg/s27cPAPDggw9CqVQ2WP7II4/UW6+u0NBQREZGNmivbbt27ZqurU+fPgCAp59+Grt27YJGo2lx7EREZLl4jS4REZEVy8jIAFCdKD744IONrpebm9ugLTg4uNH1T506hfvvv1+3f32KioqaHWdjsrKyAKBe0aq6attr16urY8eOerdxdXUFUJ2o15ozZw62b9+ODRs2YNSoUXB2dtaN/s6dOxf+/v4t6AUREVkaJrpERERWrKqqCgAwYcKEuyZrXbt2bdCmb8oyAAghMHPmTGRkZGDevHmYN28eOnXqBFdXV0iShFdeeQXLly/XW9nYWHWnLDd3eVPb1KVUKrF+/Xq8/PLL2LJlC3bt2oWEhATs3bsXy5cvx88//4wBAwYYHDcREVkmJrpERERWrHZUc968ebj//vtNss+UlBSkpKSgb9+++Oijjxosv3jxokmeBwDat28PAEhPT9e7vPaWRaa6/25sbCxiY2OxZMkS3Lp1C0uXLsW7776L559/HomJiSZ5DiIikh+v0SUiIrJg9vb2ANDoNaVjxowBAGzevNlkz1lQUABA/9TggoIC3XXBd2oqVn2GDh0KAFi/fr1udLqu2iJateuZkru7O15//XVIkqS77piIiGwDE10iIiIL5uvrC5VKhbS0NL2J4PTp09G1a1esXr0ab775JtRqdb3llZWV+O677wxK5Dp37gyFQoGdO3fWKzhVXl6OefPmIT8/X+92taOz586da/ZzjRgxAtHR0UhPT8eiRYvqTYfevHkzvvvuO7i6umLOnDnN3qc+a9eu1Vsl+qeffoIQ4q7XKxMRkfXh1GUiIiILZm9vj3vuuQdbt25FTEwMevfuDXt7ewwePBiPPfYY7OzssGnTJowfPx4vv/wy3nvvPfTs2RPu7u7IzMxESkoKCgsLsWnTJkRHRzfrOf39/fH73/8en376KWJiYjBq1Cg4OTlh3759qKqqwpw5c7B69eoG291///3Ys2cPRo8ejZEjR8LFxQW+vr544403Gn0uSZLw5ZdfYuTIkXj99dexadMm9OrVC5cvX8Zvv/0GOzs7fP755wgMDDT2nxAA8O233+LRRx9FeHg4oqOj4eTkhIyMDCQkJECpVOL1119v0f6JiMiycESXiIjIwv3nP//BI488gry8PKxbtw6fffYZ9uzZo1vetWtXHD9+HEuWLIG/vz/279+PH374ATk5ORg2bBhWrVqlm+LcXB999BFWrFiBsLAw7NixA/v27cOYMWNw5MgRhISE6N3mueeew4IFC+Dq6opvv/0Wn332Gb7++usmnys6OhpJSUl44oknUFxcjI0bN+LcuXOYMmUKfvvtN8yYMcOg2PV54YUX8PTTT8PNzQ379u3Dpk2bkJ2djVmzZuHw4cOYNm1ai5+DiIgshyRMWTKRiIiIiIiISGYc0SUiIiIiIiKbwkSXiIiIiIiIbAoTXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvCRJeIiIiIiIhsChNdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbAoTXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvy/07+2NTaDbtFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(nrows=4, dpi=150, figsize=(7,8), sharex=True)\n", + "fig.subplots_adjust(hspace=0.1)\n", + "# imp occupation\n", + "ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][0]['up'])+np.array(obs['imp_occ'][0]['down']), '-o', label=r'Ni$_0$')\n", + "ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][1]['up'])+np.array(obs['imp_occ'][1]['down']), '-o', label=r'Ni$_1$')\n", + "\n", + "# imp magnetization\n", + "ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][0]['up'])-np.array(obs['imp_occ'][0]['down'])), '-o', label=r'Ni$_0$')\n", + "ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][1]['up'])-np.array(obs['imp_occ'][1]['down'])), '-o', label=r'Ni$_1$')\n", + "\n", + "# dxy, dyz, dz2, dxz, dx2-y2 orbital magnetization\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,4]-np.array(obs['orb_occ'][0]['down'])[:,4]), '-o', label=r'$d_{x^2-y^2}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,2]-np.array(obs['orb_occ'][0]['down'])[:,2]), '-o', label=r'$d_{z^2}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,0]-np.array(obs['orb_occ'][0]['down'])[:,0]), '-o', label=r'$d_{xy}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,1]-np.array(obs['orb_occ'][0]['down'])[:,1]), '-o', label=r'$d_{yz/xz}$')\n", + "\n", + "ax[3].semilogy(conv_obs['d_Gimp'][0], '-o')\n", + "\n", + "ax[0].set_ylabel('Imp. occupation')\n", + "ax[1].set_ylabel(r'magnetization $\\mu_B$')\n", + "ax[2].set_ylabel(r'magnetization $\\mu_B$')\n", + "ax[-1].set_xticks(range(0,len(obs['iteration'])))\n", + "ax[-1].set_xlabel('Iterations')\n", + "ax[0].set_ylim(8.4,8.6)\n", + "ax[0].legend();ax[1].legend();ax[2].legend()\n", + "\n", + "ax[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5d0d0238-d573-4e18-9785-79408d6ac73d", + "metadata": {}, + "source": [ + "Let's take a look at the self-energy of the two Ni $e_g$ orbitals:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "daf0c1d8-a1fe-413d-a7b2-2eed78258e9f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAKPCAYAAADHbpOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3zU9f3A8ddl770TEkImJCFh77CHbAHRKlVcbdXWqm21rdVWq60L/Wnt0OLCVQVEAQVl74CMAAkkgUDIJHsnl3F3vz++5JJwl5BA5vF+Ph55NPf9fr7fe19Nwr3v8/m83yqdTqdDCCGEEEIIIUS/YtbbAQghhBBCCCGE6DxJ5oQQQgghhBCiH5JkTgghhBBCCCH6IUnmhBBCCCGEEKIfkmROCCGEEEIIIfohSeaEEEIIIYQQoh+SZE4IIYQQQggh+iFJ5oQQQgghhBCiH5JkTgghhBBCCCH6IUnmhBBCCCGEEKIfkmROCCGEEEIIIfohSeaEEEIIIYQQoh+SZE4IIYQQQggh+iFJ5oQQQgghhBCiH5JkrgW1Ws2f//xnwsPDsbGxwc/Pj/vuu4/s7OxO36usrIzHHnuMoKAgrK2tCQoK4te//jVlZWVdH7gQQgghhBDipqPS6XS63g6iL1Cr1UyfPp2DBw/i6+vLpEmTyMjI4MiRI3h6enLo0CFCQkI6dK/i4mLGjRvHuXPnGDRoECNHjiQ5OZnk5GRCQ0NJSEjA3d29m1+REEIIIYQQwpTJzNwVf/vb3zh48CDjxo0jLS2NL774gsOHD7Nq1SoKCwu57777Onyvxx9/nHPnzrFkyRJSU1P54osvSEpK4le/+hXnz5/niSee6MZXIoQQQgghhLgZyMwc0NDQgJeXF2VlZRw/fpxhw4a1Oh8bG8upU6c4evQoI0aMaPdely9fxt/fH3Nzc7KysvD29tafq6urY8CAAZSUlJCTk9PqnBBCCCGEEEJ0hszMAfv376esrIyQkBCDRA5g2bJlAGzatOma99qyZQtarZb4+HiDZM3a2poFCxag0WjYsmVL1wQvhBBCCCGEuClJMgecPHkSgOHDhxs933S8aVxP3UsIIYQQQggh2iLJHJCZmQlAQECA0fNNx5vG9dS9hBBCCCGEEKItFr0dQF9QVVUFgJ2dndHz9vb2rcb11L2aREVFGT2empqKra0tgYGBHb6XEEIIIYQQontkZmZib2/P5cuXe+T5ZGYOaKoBo1Kp2j3f0/fqyHM11FZRV1vdZfcUQgghhBBCXJ+Ghgaqq3vuvbnMzAGOjo4Abf4fX1NTA4CDg0OP3qtJcnKy0eNRUVFQmMJ/3nmTSTMXdfh+QgghhBBCiK7X1oq67iIzc6BfppidnW30fNPxjixn7Mp7dVRReWWX3UsIIYQQQgjRP0gyh9JHDuD48eNGzzcdHzp0aI/eq6NKKjq+/04IIYQQQghhGiSZAyZMmICzszPp6emcOHHC4Py6desAmD9//jXvNWfOHMzMzNi3bx8FBQWtztXV1bFp0ybMzMy45ZZbuiT2Rp05h8qcu+ReQgghhBBCiP5DkjnAysqKX/7ylwD88pe/bLXf7fXXX+fUqVNMnDiRUaNG6Y+//fbbREZG8oc//KHVvXx9ffnJT35CfX09Dz/8MI2NjfpzTz75JIWFhdx55534+Ph0SewXdb7sK7TvknsJIYQQQggh+g8pgHLFn/70J7Zv387BgwcJCwtj0qRJXLp0icOHD+Pu7s4HH3zQanxRURGpqank5eUZ3Ov//u//SEhIYP369URGRjJy5EiSk5NJSkoiJCSEN954o0tjr9OZUVPfiJ2V/OcUQgghhBDiZiEzc1fY2Niwa9cunnnmGezs7Pj666/JyMjgnnvu4cSJE4SGhnb4Xh4eHvz444/86le/or6+ng0bNlBeXs4vf/lLjhw5goeHRxdHryIxs6yL7ymEEEIIIYToy1S6rmx8JnpUVFQU5/Kr8HvgXzw1J5KHpoT0dkhCCCGE6Md0Ol2X9sQVor9SqVRt9o1uT1NrgrZai3U1WZfXzwWb5RGrOktavn9vhyKEEEKIfkij0VBcXExlZSX19fW9HY4QfYaVlRWOjo64u7tjbm7e2+EYJclcP2eBBhtVPReLeq7TvBBCCCFMg0ajITMzE7Va3duhCNHn1NfXU1xcTHV1NYGBgX0yoZNkzgSYoyW7tKa3wxBCCCFEP1NcXIxarcbc3Bxvb2/s7e0xM5OSCkJotVqqq6vJz89HrVZTXFyMl5dXb4dlQJI5E2CBhtKaht4OQwghhBD9TGVlJQDe3t44O0vfWiGamJmZ6X8ncnNzqays7JPJnHz0YgLM0aLR6iiqrOvtUIQQQgjRT+h0Ov0eOXt76VkrhDFNvxv19fV9sjiQJHMmwBKlMfmu1IJejkQIIYQQ/UXLN6aytFII41r+bkgyJ7qFOVoAjlws6eVIhBBCCCGEED1FkjkT4K9SZuQaNNpejkQIIYQQQgjRUySZMwFeqnIA0gulPYEQQgghhBA3C0nmTIAFGgDS8itplNk5IYQQQgghbgqSzJkAS5WSzNU1askoltk5IYQQQgghbgaSzJkAjY2b/vszeZW9GIkQQgghhBCip0gyZwJ2WUzSf/990uVejEQIIYQQQvSk5cuXo1KpOHLkSG+HInqBJHMmILfRUf99yuWKXoxECCGEEEL0pOPHj2Nubk5MTExvhyJ6gSRzJiDUSaP/PrdM3YuRCCGEEEKInlJWVkZ6ejqRkZHY2tr2djiiF0gyZwJi3Ju70dc2aCitru/FaIQQQgghRE84fvw4AMOGDevlSERvkWTOBIy2zmr1+ExueS9FIoQQQgjR/+3evRuVSsXKlSuNnl+5ciUqlYrdu3frj2VkZKBSqZgyZQoVFRX8+te/ZsCAAdjY2DB48GDeeOMNtNrrayG1detWZsyYgZOTE+7u7qxcuZLS0lKOHTsGwPDhw6/rvqL/k2TOBIRVHGr1+MeM0l6KRAghhBDi5lZXV8e0adNYs2YNo0ePZubMmVy6dIknnniC+++/v9P3+/Of/8wtt9zC/v37mTBhAhMmTGDDhg3MnDmTw4cPAx2bmUtLSyM+Pp4hQ4YQExPDP//5z07HIvoei94OQNw4G5UGG0sz1A3Kpz1HMyWZE0IIIcSN0+l0VKgbezuMTnGysUClUvXa8yckJDB06FDOnTuHh4cHAOnp6cTHx/Phhx9y6623snDhwg7d65NPPuH5559nxIgRfP311wQEBABw8eJFRo4cqV9mGRcXd817WVtb869//Yvo6GiqqqoYMWIEU6ZMISoq6vpeqOgTJJkzBbpG/F1sSS9UGoanXZZec0IIIYS4cRXqRmKf+6G3w+iUk3+ehbOtZa/G8Nprr+kTOYCQkBCeeeYZHnroIf75z392KJkrLy/n0UcfxcnJiU2bNuHr66s/FxwczIMPPsjLL79McHAwLi4u17xfUFCQ/nsHBwfCw8PJzMyUZK6fk2WWpkDTyGBfJ/3Dwso61A2adi4QQgghhBDdwc3NjZkzZxocv/POOwE4ePAgOp3O4PzV3nnnHUpLS/nVr37VKpFrEhoaClzffrn09HSOHTvG2LFjO32t6FskmTMFOg0jglybHwIpMjsnhBBCCNHjWs6AteTk5ISLiwtVVVVUVFy7L/DmzZsBuOOOO4yer6qqAjpfybK8vJylS5fy9ttv4+rqeu0LRJ8myyxNgVbTamYO4HR2GXEDXHonHiGEEEKYBCcbC07+eVZvh9EpTjbd//b2eqtSdmRGrkliYiLW1tZtLoM8evQo0Llkrq6ujsWLF3PPPfewZMmSDl8n+i5J5kyBTkO4tyN2VubU1CvLK0/nXPsTHyGEEEKI9qhUql7ff9YbrKysgObZr6tlZWUZPQ6QmZlp9HhFRQXl5eXY29vj5ORkdEyThoYGKisrcXZ2NlrMpaCggK+++gponcy9++67/PznPzcYHxMTQ2JiInfeeSdjxozh8ccfb/f5Rf8hyyxNgVaLm70Vz8wfoj+UclmSOSGEEEKI69G0Ry0tLc3gXHFxsb6KpDHFxcVs377d4Pjnn38OwPjx469ZbdPS0hJXV1fKy8vJz883OP/aa69RW1uLt7d3q/10d955J3l5efqvjz/+GBsbG5566im2bNnChg0b2Lp1K3FxccTFxbFx48Z24xB9nyRzpkCnzMZF+TV/ypNyuZIGzfUtARBCCCGEuJkFBwcTGBjI6dOn+eabb/THq6urefDBB6+55+13v/sdxcXF+scXL17kr3/9KwAPP/xwh2JoKmzy7LPPtlqe+d5777Fq1apWY5o4ODjg4+ODj48PR44c4eGHH+bjjz/mrrvuYt68eWi1WhITE/VfHW2RIPouSeZMgVZJ5sK9HbEwUz7pqW/Ucr7A+NIAIYQQQgjRvr/85S8ALF26lGnTprFw4UJCQkJISkpqNwkaO3YsZmZmhIWFsWzZMhYuXEh0dDQ5OTmsWLGCxYsXd+j5n332WVQqFe+++y4xMTHcfvvtREVF8cADDzBq1Cig7f1y//vf/1ixYgWff/45y5Yt69TrFv2LJHOm4EoyZ2NpTpi3o/5wcq4stRRCCCGEuB733nsvH3zwAYMHD+bAgQMcOXKEBQsWcOjQoXarQFpbW7Nz505+8pOfcOjQIb7//nsGDBjAa6+9xocfftjh54+Pj2ft2rXExMSQlpbGtm3b8PX1ZePGjUyaNAkwnsy99957/PznP+frr79m3rx5nX7don9R6TpTVkf0KVFRUVCYQvJ/H4JFb9Og0fKzNUfZlVoIwD3jgnhuUXQvRymEEEKIvkir1ZKamgpAREQEZmbyGf+NyMjIIDg4mMmTJ7N79+5eieHNN9/kueee49tvv2XcuHG9EoOp6ezvSVP10eTk5G6PDaSapWmwcQagtkGjT+QAErPKeikgIYQQQgjRk15++WVeeOEFvvzyS4KDg7l8+TIAtra2ODs793J0orvIRzCmQKcUOnGyscTdwUp/OOVyJVqtTLwKIYQQQpgynU7H3/72N6qqqpg7dy6+vr76r5deeqm3wxPdSGbmTMGVPXMAg32c2H++CIC6Ri0ZxdUM8nTorciEEEIIIUQ3U6lUlJeX93YYohdIMmcKdM3J3BC/5mQOICm3QpI5IYQQQohuNnDgQKQUhehpsszSFFzYrf82vEU1S4DkHPmURgghhBBCCFMkyZwpqGluShnu3XoW7qQUQRFCCCGEEMIkSTJnCq4UQAEI9XJA1eLU6ZxyKYIihBBCCCGECZJkzhS0WJ9tZ2VBgKut/nF1vYZLJTW9EZUQQgghhBCiG0kyZwpazMwBRPg4tXp8KrusB4MRQgghhBBC9ARJ5kzBVcncYN/WRVBOZ0sRFCGEEEIIIUyNJHOmwCCZaz0zd1oqWgohhBBCCGFyJJkzBVf1NJkQ6sFrt8XqHydJERQhhBBCCCFMjiRzJqH1zJyzrSW3RPugulLWsrpew4Wi6l6ISwghhBBCCNFdJJkzBTrDWTd7awtCPZt7ziXJUkshhBBCCCFMiiRzpsBIMgcQE+Cs//6UFEERQgghhBDCpEgyZwqsHY0ejvZrLoRyOqesh4IRQgghhBBC9ARJ5lo4ePAgc+fOxc3NDQcHB0aPHs1HH33U6fscO3aMv/zlL0yaNAk/Pz+sra0ZMGAAK1as4NSpU10fuN8wg0PJueW8vu2c/nFSTjkaKYIihBBCCCGEyZBk7ooNGzYQHx/P1q1bGTp0KHPmzOHcuXOsXLmSJ554osP3aWxsZOTIkTz33HOkpKQwbNgwFi5ciLW1NZ9++ikjR45k3bp1XRu8TmNwyN/Flqq6Rv3j2gYtFwqruvZ5hRBCCCFEr1q+fDkqlYojR470diiiF0gyB5SWlnLvvfei0WhYt24du3fvZt26daSkpBAaGsobb7zBrl27Ony/MWPGsHnzZvLz8/n2229Zu3YtaWlpPP300zQ0NHDfffdRVFTUdS9AqzU45GJnha+zTatjJ2XfnBBCCCGESTl+/Djm5ubExMT0diiiF0gyB6xevZry8nIWLVrEkiVL9Me9vb155ZVXAHj99dc7dC8LCwsSEhKYN28eZmbN//eamZnx17/+lcjISCorK/n222+77gUYmZkDiPRpvZfuZFZZ1z2nEEIIIYToVWVlZaSnpxMZGYmtrW1vhyN6gSRzwObNmwFYtmyZwbl58+ZhY2PD9u3bUavVN/Q8KpVK/6lJbm7uDd2rldpy0DQaHI70dWr1OFGSOSGEEEIIk3H8+HEAhg0zrJ8gbg6SzIG+KMnw4cMNzllZWREdHY1arSY1NfWGn+vChQsA+Pj43PC99ArPQF2FweHBVyVzZ/MqUDcYn8UTQgghhBCK3bt3o1KpWLlypdHzK1euRKVSsXv3bv2xjIwMVCoVU6ZMoaKigl//+tcMGDAAGxsbBg8ezBtvvIHWyNaYjti6dSszZszAyckJd3d3Vq5cSWlpKceOHQOMv4cVNweL3g6gt1VUVFBWVgZAQECA0TEBAQEcPXqUzMxMYmNjr/u59u/fz7Fjx7CysmLOnDkdvi4qKsro8fT0dEKa8jWtYZI2+Kpllo1aHcm5FYwIcu3wcwshhBBCiI6rq6tj2rRppKenM23aNOrr69mxYwdPPPEEp06d4oMPPujU/f785z/z/PPPY21tzdSpU7G0tGTDhg0kJSUxcOBAoOMzc2lpaTzwwAMUFRVhbm7OL37xCx555JHOvsQb1lfiMAU3fTJXVdVc4dHOzs7oGHt7e4OxnVVRUcF9990HwOOPP46vr+9138soreEyy2APe6wszKhvbP4UKDGrTJI5IYQQQohukpCQwNChQzl37hweHh6A8gF8fHw8H374IbfeeisLFy7s0L0++eQTnn/+eUaMGMHXX3+tn3i4ePEiI0eO1C+zjIuL69D9rK2t+de//kV0dDRVVVWMGDGCKVOmtDlx0F36ShymwCSSuWXLlpGUlNSpa9asWcPo0aPR6a7de60jY9qj0Wi48847OXfuHKNHj+b555/v1PXJyclGj0dFRUFhivLASDJnYW5GuLcDSTnNSzBl35wQQgghOkynA3U/q4Zt4wwqVa+G8Nprr+kTOYCQkBCeeeYZHnroIf75z392KJkrLy/n0UcfxcnJiU2bNrWaCAgODubBBx/k5ZdfJjg4GBcXlw7FFRQUpP/ewcGB8PBwMjMzezyJ6itxmAKTSOYyMjI6vZ+tpqYGAEdHx1bHnJyc2hzr4OBwXfH97Gc/49tvvyUiIoJvv/0WKyur67pPu4wkcwBDfJ1aJXNS0VIIIYQQHaYuh5eDrj2uL3nqEti69NrTu7m5MXPmTIPjd955Jw899BAHDx5Ep9OhukbC+c4771BaWsrTTz9tdEVXaGgocP375dLT0zl27Bhjx469ruu7Sl+Jo78yiQIoR48eRafTdeprypQpADg5OeHs7AxAdna20fs3HQ8MDOx0bL/73e94//33GTBgANu2bWv1KU2XMrJnDpRkrqXMkhqKq+q6JwYhhBBCiJtcy1mnlpycnHBxcaGqqoqKCsPCdVdrqrZ+xx13GD3ftP3neipZlpeXs3TpUt5++21cXXtv+01fiaM/M4lk7kY1FTVpWnfcUkNDA0lJSVhbWxMREdGp+/7973/ntddew8vLi23btjFgwIAuideoNmbmJoZ58OTsCJxsLPXHTmaXdV8cQgghhBAm7nqrUnZm605iYiLW1tZtLj08evQo0Plkrq6ujsWLF3PPPfe06q/c0/pKHP2dSSyzvFHz5s1j7969rFu3jhUrVrQ6t3nzZtRqNXPnzsXGxqbD93z33Xf54x//iIuLC99//32nE8FO0zYYPRzq5UiolyPHM8vYfjYfgMSscqZFendvPEIIIYTo/2yclWWL/YmN8w3fomlLTFvF77Kystq8NjMz0+jxiooKysvLsbe3N7qtp6WGhgYqKytxdnY2uhyzoKCAr776CmidzG3bto1Zs2axf/9+JkyYAMDGjRu5/fbbWbt2LXPnzuXOO+9kzJgxPP744+3GcCMGDx7M/PnzefXVV/XH6uvriY6O5q677uKZZ57pkThuBjIzBzzwwAM4OTnxzTff6H8xQPlFefLJJwF44oknDK6LjIwkMjKSnJycVsfXrVvHQw89hIODA999912HKwzdkDZm5prEDWj+wyZFUIQQQgjRISqVsv+sP311QfGTpj1qaWlpBueKi4uNruZqeX779u0Gxz///HMAxo8ff839cpaWlri6ulJeXk5+fr7B+ddee43a2lq8vb1b7aebOXMms2fP5g9/+AMAe/bs4Sc/+QmrV69m/vz5bNmyhQ0bNrB161bi4uKIi4tj48aN7cZyPSZMmEBCQoJBzI2NjTz11FM9FsfNQGbmUDaqvv/++yxfvpxly5YxefJkPDw82L59O2VlZTz66KNMnz7d4LqmoisNDc2zYgUFBdx1111otVqCg4N55513eOeddwyuXbx4MYsXL+66F9HGnrkmcQOa1yGfzCrr0MZbIYQQQoibUXBwMIGBgZw+fZpvvvmGRYsWAVBdXc2DDz54zT1vv/vd79i+fTvu7u6A0krgr3/9KwAPP/xwh2IYPnw4O3bs4Nlnn+U///mP/n3be++9x6pVq/Rjrvbqq68SFxfH3/72N15++WVeeeUV7rrrLkBZjdbRJaIlJSWUlJS0O8bJyQkvLy+D4xMmTOCzzz6jsbERCwsLsrKyePHFF/nss8+wsbHpVByifZLMXbF06VL27t3LCy+8QEJCAvX19QwePJhHHnmEe++9t8P3qampob6+HoDTp09z+vRpo+MGDhzYxclc+zNzQ1vMzJXXNnCxqJpBntdXnVMIIYQQwtT95S9/4b777mPp0qXEx8fj4ODAkSNHcHJyYuHChW3OJI0dO5b6+nrCwsJaNQ2vqalhxYoVHX7/9+yzz7Jz507effddDhw4QFRUFElJSZw5c4YxY8Zw+PBho/vlYmJiuOOOO3j66ad5/vnnr7sZ91tvvcVzzz3X7ph77rmHDz/80OD4hAkTqK2t5dSpUwwfPpzHH3+c+Ph4fVIsuo4kcy1MmDCBLVu2dHi8sU2sAwcOvOG+dJ1m7QjuoW2ezi6tYdUPaViZm1GvUT4FOZ5ZJsmcEEIIIUQb7r33XlQqFatWreLAgQO4urqyYMECXnrpJX7zm9+0eZ21tTVbt27lj3/8I19//TVFRUX6vnCPPfZYh58/Pj6etWvX8txzz5GSkkJubi7Dhw/npZdeYu/evW0mcydPnuS7777D0tIST0/P63npgJJM/ulPf2p3jJmZ8R1b4eHheHh4kJCQQFFREZs2bep0T2jRMSpdj2ceoqs0NQ1P/k0gPHWxzXEFlWpGv7ij1bGfjB7A35cM7e4QhRBCCNFHabVa/ZaRiIiINt+Yi47JyMggODiYyZMns3v37l6J4fz580ycOJH7778fCwsL3nnnHc6fP3/dvZJvxKJFi7Czs+PEiRPceuut/P3vf+/xGLpCZ39PmqqPJicnd3tsIAVQTIOu/f1yXo42eDpatzp27FJpd0YkhBBCCCF6UE5ODjNnzmTx4sW8+OKL/Pa3v0Wj0bSqKNmTJkyYwBdffEF1dfU1Z/jE9ZNkzhR0YAPp1c3D0/KrKK8x3s5ACCGEEEL0H8XFxcyaNYuRI0fyr3/9CwBHR0eefvppVq1aRV5eXo/HNHz4cHQ6HatWrcLe3r7Hn/9mIcmcKbjGzBxAlJ9hP5PjmTI7J4QQQgjR37m7u5OcnMzatWtbLQN87LHHqKqqatW+oKd89NFHTJ06leXLl/f4c99MpACKKWhUQ9aPMGBUm0Oi/AwbaB69VMLUSMNyskIIIYQQonN6pQheH6PRaCguLmb9+vVs2LCBEydO9HZIJk+SOVOg00J5ZrvJ3BAjM3NHM2RmTgghhBBCdI09e/YwY8YMBg0axNq1awkLC+vtkEyeJHOmQtN+n7kgNzscrC2oqmsedzK7jAaNFktzWW0rhBBCCCFuzLRp06QZeA+Td/GmQtt+MRMzM5VBERR1g5YzuRXdGZUQQgghhBCim0gyZyo0165MGRNgbN+cLLUUQgghhBCiP5JkzlR0IJkbaiSZO3appDuiEUIIIYQQQnQzSeZMhab+mkOGBrgwIsiVaS0qWB67VHrTV14SQgghhBCiP5JkzlR0YGYu2MOe9Q+N55VlQ/XH8ivqyC6t7c7IhBBCCCGEEN1AkjlTcY0CKC15OFgT7GGvf3xM9s0JIYQQQgjR70gyZyo6sMyypeGBrvrvj8q+OSGEEEIIIfodSeZMxTX6zF1t5MAWyZw0DxdCCCGEEKLfkWTOVJhbdmhYo0bL5lO5nMhsTuBS8yupVHd8maYQQgghhBCi91n0dgCii4y8r0PDzM1U/PGr01Som2fydDo4kVlGfLhnd0UnhBBCCCGE6GIyM2cqdJoODVOpVNI8XAghhBBCCBMgyZyp0HYsmQOI8XcxOCbNw4UQQgghhOhfJJkzFR2cmQOI8TecmTuRWUajRtuVEQkhhBBCCCG6kSRzpqK64zNrQ40ss6yp15ByubIrIxJCCCGEEEJ0I0nmTMX+1zo8NMDVFhc7w+qX0jxcCCGEEOLaVq5ciUqlYvfu3b0dSq9Yvnw5KpWKI0eO9HYoNz1J5kxFY12Hh6pUKmIDXAyOSxEUIYQQQghxLcePH8fc3JyYmJjeDuWmJ8mcqehEMgcQN8DF4NixDCmCIoQQQggh2lZWVkZ6ejqRkZHY2tr2djg3PUnmTEUXJHO55WqyS2u6KCAhhBBCCGFqjh8/DsCwYcN6ORIBksyZDk19p4bHGknmAA6eL+6CYIQQQggh+r/169czevRobG1t8fb25u677yY3N7fdaw4dOsSiRYvw9PTE2tqagQMH8vDDD7e6Tq1WY2NjQ3BwsMH18+fPR6VSMXXqVINz0dHRWFhYUFFRoT+WkZGBSqViypQp1NbW8vvf/56goCCsra0JDQ3l5ZdfRqfTdfq1b926lRkzZuDk5IS7uzsrV66ktLSUY8eOATB8+PBO31N0PUnmTIWmczNzbvZWBLnbEehmR5C7nf74gfSiro5MCCGEEKLfefvtt1m2bBnHjx9n/PjxTJkyhe3btzN27FiKi41/+P3JJ58wadIkNm3aREREBEuWLMHa2pp///vfDB8+nJSUFABsbGwYM2YMGRkZZGRk6K/XaDTs378fUJJCtVqtP1dUVMSZM2eIi4vDycnJ4Lnr6+uZNWsW7777LoMHD2bq1Knk5OTw+9//nmeeeaZTr/3Pf/4zt9xyC/v372fChAlMmDCBDRs2MHPmTA4fPgx0fGYuLS2N+Ph4hgwZQkxMDP/85z87FYtonyRzpqKxczNzAFt/Hc/eJ6fy1JxI/bGD6cXX9emNEEIIIYSpyMjI4Le//S3W1tZs376dHTt28MUXX3D+/HkiIyPZvHmzwTVZWVn87Gc/Q6VSsXHjRvbv38/nn3/O2bNneeyxx8jPz+fuu+/Wj58yZQpAq4qYJ06coLy8nKioKOrq6khISNCf2717NzqdTn/d1Q4dOoRKpSItLY2tW7eydetW9u3bh4WFBW+88QZVVVUdeu2ffPIJzz//PCNGjOD8+fNs2bKFjRs3kpiYyMWLF/nqq68AiIuL69D9rK2t+de//sWZM2c4dOgQb731FsnJyR26VlybJHOmopPLLAFsrcwBGDfIHZVKOVZYWcf5go79sgshhBDi5qBu0FBe29DhL2MfDFeoO359bb3G4Pr6Rm2716gbDK+5Xu+//z51dXXcfffdrZInOzs7/vGPf6BqeuPUwurVq6mtreUnP/kJ8+fP1x83MzPjpZdews/Pjx9//FGfoE2ePBlonczt2bMHgGeffbbNc20lc2ZmZqxevRoPDw/9sZEjR3LLLbdQU1PD0aNHr/m6y8vLefTRR3FycmLTpk0EBATozwUHB/Pggw+i0+kIDg7GxcXlmvcDCAoKIjo6GgAHBwfCw8PJzMzs0LXi2ix6OwDRRa4jmWviam/FEF8nknOV9dcHzhcR5u3YVZEJIYQQop/79+503txxrsPjT/55Fs62rXvaTnhpJ5Xqxg5dv3R4AKuWx7Y69k1iDr9bd6rNa349PYzHZ4Z3OMb2NC11XL58ucG5iIgIhg0bpi8E0mTfvn0A3HXXXQbXWFtbc9ttt/Hmm2+yb98+xo4dy/jx47G2tm6VsO3evRsXFxeWLVtGQECAwTkzMzMmTpxoNOaBAwcSHm74+puO5eXltf+igXfeeYfS0lKefvppfH19Dc6HhoYC179fLj09nWPHjjF27Njrul4Ykpk5U3EDyRzAhNDmT3EOpEsRFCGEEELcvJqKlQQGBho9b+x40zUDBw40ek3T8aZxNjY2jB49mkuXLpGRkYFWq2X//v3Ex8djZmbG5MmTSUhIQK1WU1RURHJyMnFxcW3OiLWcRWvJwcEBgLq6a9dXaFo+escddxg937RU83oqWZaXl7N06VLefvttXF1dO329ME6SOVOhabiuy2rqGzlysYTymuZkMOFCMY0abVdFJoQQQgjRrzQtEzW2nPJarnVNy/Mtl1omJiZSVlamX0Y5ZcoU/b65vXv3trtf7npjvVpiYiLW1tZERUUZPd+0VLOzyVxdXR2LFy/mnnvuYcmSJTccp2gmyyxNxdDbr+uyl7aksObQJQBUgA6oVDeSlFthtBedEEIIIW4+D00J4b6JhmX02+JkY/gW88Dvp9HRGmtW5obzDYvi/JkV5dPmNdYWXTdH4efnR1paGpcuXSIsLMzgvLE9X35+fqSmpnLx4kWjyx0vXVLeb7VcvjhlyhReeOEFdu/eTUlJif5Yy/9tea4p+esODQ0NVFZW4uzsbDQxLCgo0Bc/uTqZe/fdd/n5z39ucE1MTAyJiYnceeedjBkzhscff7x7gr+JycycqQifc12XxQa46L+3tmz+cThwXloUCCGEEEJhY2mOs61lh7+MJQNONh2/vqlIW0tWFmbtXmNjaXjN9Wral7Z27VqDc2lpaSQmJhocnzRpEgCffvqpwbn6+nr9vZrGAYwfPx4rKyt2797N7t27cXV1JTZW2SsYGhqq3zfXtF8uPj7+hl9bWywtLXF1daW8vJz8/HyD86+99hq1tbV4e3sb7Ke78847ycvL0399/PHH2NjY8NRTT7FlyxY2bNjA1q1biYuLIy4ujo0bN3bb67jZSDJnKnTXV8EpLtBF/726oXlp5UHpNyeEEEKIm9S9996LlZUVa9as0Rc2AaitreXXv/41Wq3hdpT7778fW1tbPv/8c7799lv9ca1Wyx//+EdycnIYNWpUq+Iftra2jBo1ikuXLrFt2zb9frkmkydP5tChQyQlJREbG9vhCpLXq6mwybPPPtuqIul7773HqlWrWo1pycHBAR8fH3x8fDhy5AgPP/wwH3/8MXfddRfz5s1Dq9WSmJio/1q4cGG3vo6biSRzpkJ7fclcsLu9QbUpgKMZpV1a4lcIIYQQor8YNGgQL7/8Mmq1mqlTpzJjxgzuuOMOQkNDSUpKatV6oElgYCDvvvsuOp2OBQsWMGnSJO68806GDBnCqlWr8Pb2Zs2aNQbXNS2nVKvVBnvipkyZQn19PTqdrluXWDZ59tlnUalUvPvuu8TExHD77bcTFRXFAw88wKhRo4D298v973//Y8WKFXz++ecsW7as2+MVksyZDt31FSwxM1MxrMXsnIWZsiyirlHL8UulXRGZEEIIIUS/89hjj/Hll18SFxfH/v372bFjB1OmTCEhIQF3d3ej16xYsYK9e/cyf/58zp49y7p166itreWhhx7i2LFjREZGGlzTMoEzlsy1da47xMfHs3btWmJiYkhLS2Pbtm34+vqyceNG/fLQtpK59957j5///Od8/fXXzJs3r9tjFQqVzlhXR9EvREVFQWEKyQ87QNgsWPwfsDf+x6U9/9hxjlXb0gBwtbOktEapjPnI1BB+N9vwj44QQggh+j+tVktqaiqg9E5rubxPiM548803ee655/j2228ZN25cb4fTpTr7e9JUCTQ5ObnbYwOZmTMd536AmuvrDzc8qLnXR01989LKA+el35wQQgghhGjbyy+/zJ/+9Cc+/fRTgoODuXz5MpcvX6a8vLy3Q7spSDJnShrV13VZ7AAXrqyupK6xebnmqewyKtTX179OCCGEEEKYNp1Ox9/+9jeqqqqYO3cuvr6++q+XXnqpt8O7KUifOVPSWHddlzlYWxDh48TZvAoA7KzMqanXoNXB4QslzBzi3ZVRCiGEEEIIE6BSqWQGrpfJzJwp0VxfMgcwIshF/72bvZX+e2lRIIQQQgghRN8kyZwpuc5llgDDA5V9c442Fvg62+iPH5R9c0IIIYQQQvRJsszSlFznMkuA6ZHe/PB4PKGeDlwqqWHqa7sBSM2vpLCyDk9H6y4KUgghhBBCCNEVZGauhYMHDzJ37lzc3NxwcHBg9OjRfPTRR11y7/vuuw+VSoVKpSIhIaFL7mngBmbmnO0sCfd2xMxMxUB3O/xazs7JUkshhBBCCCH6HEnmrtiwYQPx8fFs3bqVoUOHMmfOHM6dO8fKlSt54oknbujeu3bt4oMPPkClUnVRtG1orO+S26hUKsaHeugfy1JLIYQQQggh+h5J5oDS0lLuvfdeNBoN69atY/fu3axbt46UlBRCQ0N544032LVr13XdW61W8/Of/5yoqKjub6J4AzNzVxsf0tx8fP/5IqS3vBBCCCGEEH2LJHPA6tWrKS8vZ9GiRSxZskR/3Nvbm1deeQWA119//bru/de//pXz58/zn//8B0tLyy6Jt003sGeuiVar43xBJSXVzbN8OWW1pBdW3fC9hRBCCCGEEF1HCqAAmzdvBmDZsmUG5+bNm4eNjQ3bt29HrVZjY2NjMKYtSUlJvPrqq9x3331MnDixy+Jt0w20JgBo1GgZ+/edFFUp9xnkYc+FomoAdqYUEOrleMMhCiGEEEIIIbqGzMwBp06dAmD48OEG56ysrIiOjkatVpOamtrhe2q1Wh588EGcnZ31s3vdasrTMOHXN3QLC3Mzgtzt9I/9XJoT110phTd0byGEEEIIIUTXuumTuYqKCsrKygAICAgwOqbpeGZmZofv+89//pOEhARWrVqFm5vbDcd5TV1UW2V0cHOsdY3N++R+zCihQt3QNU8ihBBCCCGEuGE3/TLLqqrmvWB2dnZGx9jb2xuMbU92djZPP/00U6ZM4e67777hGKOiooweT09PJ8TpygOt5oafB2D0QDf+TToA5wsqcbG1oKy2kUatjgPnirglxrdLnkcIIYQQQghxY0wimVu2bBlJSUmdumbNmjWMHj26Q1UaO1vJ8ZFHHqGuro5///vfnbruhui6JpkbMdAVlQp0OiitaWBahCc7U5UlljtTCiSZE0IIIYQQoo8wiWQuIyOjU/vZAGpqagBwdHRsdczJyanNsQ4ODte87/r169m4cSPPPPMMkZGRnYqpLcnJyUaPR0VFQWGK8kCrAa0WzG5s5ayTjSWDfZw4k1cBgLujtf7c7rRCtFodZmbd3C9PCCGEEEIIcU0mkcwdPXr0uq91cnLC2dmZ8vJysrOzGTJkiMGY7OxsAAIDA695v02bNgGwbds29u7d2+pcYmIiAA8//DBOTk788pe/NFpB87rsfwPKMmHZezd8q9HBbvpkrlLdiJkKtDoorKwjObeCmADnG34OIYQQQgghxI256QugAMTGxgJw/Phxg3MNDQ0kJSVhbW1NREREh++ZkJDAnj17Wn2Vl5cDcOLECfbs2aNPEruG7oZbEzRpWQQlMbOMYQNc9I93pRZ0yXMIIYQQQvRXK1euRKVSsXv37t4OpVcsX74clUrFkSNHejuUm54kcyi95ADWrVtncG7z5s2o1WqmT5/eoR5zH374ITqdzujX5MmTATh06BA6nY7HHnusS19HVzQNBxg1sDmZu1yhZniQq/7xzhRJ5oQQQgghbmbHjx/H3NycmJiY3g7lpifJHPDAAw/g5OTEN998w1dffaU/XlBQwJNPPgnAE088YXBdZGQkkZGR5OTk9Fis7WpUd8ltPB2tGeRpr3/saGOp//5kdhnFVV2TNAohhBBCiP6lrKyM9PR0IiMjsbW17e1wbnqSzAFubm68//77mJmZsWzZMqZOncptt91GREQE58+f59FHH2X69OkG16WmppKamkpDQx/pv9ZFM3OgtCgAsDRXYaYCHydlVlKngz1p0kBcCCGEEOJm1LQtadiwYb0ciQBJ5vSWLl3K3r17mT17NomJiXz33XeEhITw/vvv8+abb/Z2eB3TRTNzAHePG8jnD47l9F9m88tpYUyN9NSfk6WWQgghhLgZrF+/ntGjR2Nra4u3tzd33303ubm57V5z6NAhFi1ahKenJ9bW1gwcOJCHH3641XVqtRobGxuCg4MNrp8/fz4qlYqpU6canIuOjsbCwoKKigr9sYyMDFQqFVOmTKG2tpbf//73BAUFYW1tTWhoKC+//HKn22wBbN26lRkzZuDk5IS7uzsrV66ktLSUY8eOATB8+PBO31N0PZOoZtlVJkyYwJYtWzo8vrO/GN2+SbaxvstuNcSvdYuGKRFefH4kC4C9aYU0arRYmMtnAUIIIYQwTW+//Ta/+tWvMDc3Z/LkyXh4eLB9+3bGjh2rL553tU8++YSVK1ei1WoZP348AwYM4Pjx4/z73//mq6++Yvfu3URGRmJjY8OYMWPYu3cvGRkZDBw4EACNRsP+/fsBJSlsSvoAioqKOHPmDMOHDzfaSqu+vp5Zs2aRnJzM6NGjGTx4MHv27OH3v/89lZWVvPDCCx1+7X/+8595/vnnsba2ZurUqVhaWrJhwwaSkpL0sXZmZi4tLY0HHniAoqIizM3N+cUvfsEjjzzS4eu7Sl+JoyvJu3FT0oUzc1ebGOqBpbnSX65C3cjxzLJuey4hhBBCiN6UkZHBb3/7W6ytrdm+fTs7duzgiy++4Pz580RGRrJ582aDa7KysvjZz36GSqVi48aN7N+/n88//5yzZ8/y2GOPkZ+fz913360fP2XKFKD1h/0nTpygvLycqKgo6urqSEhI0J/bvXs3Op1Of93VDh06hEqlIi0tja1bt7J161b27duHhYUFb7zxBlVVVR167Z988gnPP/88I0aM4Pz582zZsoWNGzeSmJjIxYsX9fUl4uLiOnQ/AGtra/71r39x5swZDh06xFtvvdVmH+Xu1Ffi6EqSzJmSLtwzdzV7awvGBLvrH0uLAiGEEOIm0qCG2rKOfxlbvaQu7/j19TWG1zfWt39NQ9d9qP3+++9TV1fH3Xff3Sp5srOz4x//+AcqlcrgmtWrV1NbW8tPfvIT5s+frz9uZmbGSy+9hJ+fHz/++KM+QWuqct4ymduzZw8Azz77bJvn2krmzMzMWL16NR4eHvpjI0eO5JZbbqGmpqZDfZnLy8t59NFHcXJyYtOmTQQEBOjPBQcH8+CDD6LT6QgODsbFxeWa92sSFBREdHQ0AA4ODoSHh5OZmdnh67tKX4mjK8kyS1PSTTNzBZVqEjPLmBrpxf7zRQDsSingqTmR3fJ8QgghhOhj9r8Be17q+PinLoGtS+tjb8RAXXnHro+9E279d+tjp9fCNw+3fc3k38PUP3Q8xnY0LXVcvny5wbmIiAiGDRtm0J943759ANx1110G11hbW3Pbbbfx5ptvsm/fPsaOHcv48eOxtrZulbDt3r0bFxcXli1bRkBAgME5MzMzJk6caDTmgQMHEh4ebnC86VheXl77Lxp45513KC0t5emnn8bX19fgfGhoKHBj++XS09M5duwYY8eOve57dIW+EseNkpk5U9LFM3MV6gamr9rN6Bd38LOPjxHdYh9dyuVKcstqu/T5hBBCCCH6gqZiJYGBgUbPGzvedE3TnrKrNR1vGmdjY8Po0aO5dOkSGRkZaLVa9u/fT3x8PGZmZkyePJmEhATUajVFRUUkJycTFxfX5oxYy1m0lhwcHACoq7v2+8Sm5aN33HGH0fNNSzWvt5JleXk5S5cu5e2338bV1fXaF3STvhJHV5BkzlTYusGo+7v0lk42ltRrtPrHeeVqBrrb6R/LUkshhBBCmKKmInfGllNey7WuaXm+5VLLxMREysrK9Msop0yZot83t3fv3nb3y11vrFdLTEzE2tqaqKgoo+eblmpeTzJXV1fH4sWLueeee1iyZMkNxXkj+kocXUWWWZoKOzeY9dcuv+3YYHeySrIBSLhQzJQILz48mAEoSy3vGhPU5c8phBBCiD5m4uMw9qGOj7dxNjz2+Gnje+mMMbcyPBZzG0TOa/saC5uO3bsD/Pz8SEtL49KlS4SFhRmcN7bPys/Pj9TUVC5evGh0ueOlS5cAWi1fnDJlCi+88AK7d++mpKREf6zl/7Y815T8dYeGhgYqKytxdnY2mhgWFBToi59cncxt27aNWbNmsX//fiZMmADAxo0buf3221m7di1z587lzjvvZMyYMTz++OPd9hoGDx7M/PnzefXVV/XH6uvriY6O5q677uKZZ57pkTh6kszMmYpuKn4ydlBz0ZOEC8VMH+ylf7zvXBE19Y3d8rxCCCGE6EMsbZQ9cB39MjZLZOPc8eut7Ayvt7Bq/xrLrkvmmvalrV271uBcWloaiYmJBscnTZoEwKeffmpwrr6+Xn+vpnEA48ePx8rKit27d7N7925cXV31bQ9CQ0P1++aa9svFx8ff8Gtri6WlJa6urpSXl5Ofn29w/rXXXqO2thZvb2+D/XQzZ85k9uzZ/OEPyp7FPXv28JOf/ITVq1czf/58tmzZwoYNG9i6dStxcXHExcWxcePGLn8NEyZMaFUBtCnuxsZGnnrqqR6LoyfJzJyp6K5kLqQ5mcsoriHIzQ5Hawsq6xqpa9SyN62IOdE+3fLcQgghhBC94d577+WVV15hzZo1rFixQp+A1dbW8utf/xqtVmtwzf3338+rr77K559/zu233868ecosolar5Y9//CM5OTmMGjWqVcENW1tbRo0axYEDB8jPz2f27NmYmTXPtUyePJm1a9fS0NDQ7n65rjJ8+HB27NjBs88+y3/+8x/9DN17773HqlWr9GOMefXVV4mLi+Nvf/sbL7/8Mq+88oq+GMy8efOM/n9mTElJiX4msi1OTk54eXkZHJ8wYQKfffYZjY2NWFhYkJWVxYsvvshnn32GjY1Np+LoL2RmzlR0UzLn72JLoFvzp2PHr1S1bPLDmcvd8rxCCCGEEL1l0KBBvPzyy6jVaqZOncqMGTO44447CA0NJSkpqVXrgSaBgYG8++676HQ6FixYwKRJk7jzzjsZMmQIq1atwtvbmzVr1hhc17ScUq1WG+yJmzJlCvX19eh0um5dYtnk2WefRaVS8e677xITE8Ptt99OVFQUDzzwAKNGjQLa3i8XExPDHXfcwdNPP81vf/vb627G/dZbbxEWFtbu15NPPmn02gkTJlBbW8upU6cAePzxx4mPj2fRokXXFUt/IMmcqaivhoNvQ21pl9967CA3/feH0ouZFeWtf7zjbAGNGtP6hEMIIYQQ4rHHHuPLL78kLi6O/fv3s2PHDqZMmUJCQgLu7u5Gr1mxYgV79+5l/vz5nD17lnXr1lFbW8tDDz3EsWPHiIw0bOvUMoEzlsy1da47xMfHs3btWmJiYkhLS2Pbtm34+vqyceNG/exkW8ncyZMn+e6777C0tMTT0/O6Y3j22WdpaGho9+v99983em14eDgeHh4kJCTwww8/sGnTJt56663rjqU/UOl0Hd2JKvqaqKgoKEwh+WGH5oMPHwavru3/9tXxbJ748iQAA9xs+e7RSYz463Z9pcvPHhzD+BCP9m4hhBBCiD5Gq9WSmpoKKL3TWi7vE6Izzp8/z8SJE7n//vuxsLDgnXfe4fz58/q2CD1p0aJF2NnZceLECW699Vb+/ve/39D9Ovt70lQJNDk5+Yaet6Pkt9bUdEPj8JaJWlZJLaXVDUwIbf5E6odkw02yQgghhBDC9OXk5DBz5kwWL17Miy++yG9/+1s0Gk2ripI9acKECXzxxRdUV1fzpz/9qVdi6EmSzJmabtg75+NsQ4invf7xgfQiZkU1Fz3ZdiYfmeAVQgghhLi5FBcXM2vWLEaOHMm//vUvABwdHXn66adZtWoVeXl5PR7T8OHD0el0rFq1Cnt7+2tf0M9JMmdqumFmDmBiaPPs3MWiaqYP9tJXHc4pqyU5t6JbnlcIIYQQQvRN7u7uJCcns3bt2lbLDx977DGqqqoMWhj0hI8++oipU6eyfPnyHn/u3iCtCUxNN1W1vG3kAEYOdGN8iDvuDtYADA905dglpeDKD8mXifY30iBUCCGEEEKIbqTRaCguLmb9+vVs2LCBEydO9HZIPUZm5vq9q5pydtPMXLS/Mwti/fSJHMCsIc1VLb+XfXNCCCGEEKIX7NmzBx8fH1atWsXatWsJCwvr7ZB6jMzM9Xeqq5I5TX2PPfXsKB/+viUFgNT8StILqwjx7PmqRUIIIYQQ4uY1bdo0k2sG3lEyM9fv9czMnDEDPewZ4uukf7w1SRqICyGEEEII0VMkmevvVFf9J+yBZK66rpFdqQWoGzTMjWmuavnd6Z6vWCSEEEIIIcTNSpK5/u7qZZbdVAAFQKfTsfKDI8Q9/wP3fvAjxzNLmRPdXKUoObeCzOKabnt+IYQQQgghRDNJ5vq9nltmqVKp0OmgQaP0lDtwvohQLwfCvZv3yW1Jktk5IYQQQggheoIkc/1dy5m5W16B0T/r1qdr2W9u/7ki5WlbzM59J/vmhBBCCCGE6BGSzPV3LffMWTuBtWO3Pt3EsOZk7lROOSXV9cyNaU7mTmaVkVNW260xCCGEEEIIISSZMwEtZuZ6oPhJpI8jXo5KrzmdDvadKyTc24FBHvb6MVukEIoQQgjR56larO65Wcu6C3EtLX83VFfXqugDJJnr71r+UHVj8ZPmp1MxOdxT/3hPWiEqlYpbWlS13HQyt9vjEEIIIcSNUalUWFlZAVBdXd3L0QjRNzX9blhZWfXJZE6ahvd3KhWgFCTpqR5zkyM8WXssG4C9aUVotToWxvrzz13pAJzMLudCYRWDpIG4EEII0ac5OjpSXFxMfn4+APb29piZyWf9Qmi1Wqqrq/W/G46O3buV6XpJMtfvtUjm9r0OpRmw4P+69RknhnpgpgKtDoqq6jiTV0G0vzODfZ04m1cBwNeJuTwxM7xb4xBCCCHEjXF3d6e6uhq1Wk1urqysEcIYGxsb3N3dezsMo+Sjl/6uZQGUunKoKuj2p3SxsyJugIv+8Z60QgBuHeanP/b1iRx0Ol23xyKEEEKI62dubk5gYCDu7u76JZdCCIWVlRXu7u4EBgZibm7e2+EYJTNz/d3Va3c13b9vDmByuBfHM8sAJZl7ZGooC2P9+fuWFHQ6yCyp4XhmGSOCXHskHiGEEEJcH3Nzc7y8vPDy8kKn08mHsUKg7Cnti3vkribJXL93ddPwHkrmIjx5Y3saAIWVdTRotPg42zA+xJ0D54sBZXZOkjkhhBCi/+gvb2CFEApZZtnfXf0Ht4eKoMT4O/P8oih2/mYyO38zGUtz5UdpUZy/fszmU7k0aKTUsRBCCCGEEN1Bkrn+TnXVf8IeSubMzVTcPW4ggzwdWn2CNyfaB2sLJabSmgb2pBb2SDxCCCGEEELcbCSZ6/d6Z5llW5xsLJkxxFv/eO2xrF6MRgghhBBCCNMlyVx/Z7DMsneTOYBlIwL03+84W0BBRc/MFgohhBBCCHEzkWSuv+sDyZxGq+PHjBL2XmlREB/mib+LrRKOVqdvMC6EEEIIIYToOpLM9Xu9s2euya7UAka9uJ3b/nOIv29JAZT9dLeNbJ6d++LHLLRaKXMshBBCCCFEV5Jkrr/r5Zm5IDc7SqrrATibV0F2aQ0Ay0cOwOxKaJklNRy6UNyjcQkhhBBCCGHqJJnr71omc1YOEDm3R59+kKcDgzzt9Y93nC0AwM/FlikRXvrjnx/J7NG4hBBCCCGE6G6V6gYSLhSzet8Ffv2/E1wqru7R55em4f1ei2TO3hOWvd/jEcwc7M07hRcA2H42n3vGDwTgjlED2JmiJHffJ1+muKoOdwfrHo9PCCGEEEKIG1WpbiApp4KknHJO55STlFPOxeJqdC12E9U39uzWIknm+ruWM3O9VMlyxhBv3tmrJHMJF4qpUDfgZGPJtEgvvBytKaiso0GjY8OJHB6YNKhXYhRCCCGEEKKjaus1nMkr52RWOaeyyziVXc6Fop6ddesISeb6u5ZNw3u4+EmT4YGuuNpZUlrTQINGx960QuYP9cPC3IylIwL49+50AL5JzJVkTgghhBBC9CkNGi2plys5mV3GqaxyTmaXca6gCk0HC/g5WlsQ5e9EjL8z76y16eZoW5Nkrt/r/Zk5czMV0yK9WX9caUGw/Uw+84f6AXDrMH99Mnc6p5zzBVWEejn0SpxCCCGEEOLmptHquFBYxclsZcbtZHY5Z/MqqG/Uduh6RxsLov2ciQlwJtrfmRh/Z4Lc7DC7Uvnvsyd7Nr2SZK6/a7nMsqEWkr6C0Blg49SjYcwc4qVP5namFNCg0WJpbka4tyNDfJ04k1cBwDeJOfxmVkSPxiaEEEIIIW4+Op2OrJJaZcbtSuKWnFNOdb2mQ9fbWpoT468kbkMDnBka4NIqcesLJJnr71ous0QL6+6Fhw6BzZAeDWNSmCdW5mbUa7RUqBs5mlHKuBB3ABYP82uRzOXyxMxwVFe3VBBCCCGEEOIGFFSoScxS9redyinndHYZpTUNHbrW0lzFYF8nfdIWG+BCqJcD5n0ocTNGkrl+z8gPWC/snbO3tmBciDt70goB2HE2X5/MLYz15+9bUtDplJ5zxzPLGBHk2uMxCiGEEEII06Bu0HA6p5zEzDJOZJWSmFlGbnnH3gObqSDMy1FJ3Aa4EBvgTISPI9YW5t0cddeTZK6FgwcP8sILL5CQkEB9fT1DhgzhkUce4Z577rmu+2m1Wt577z0++ugjkpOTUavV+Pr6Mm7cOP74xz8SFRV140Ebm+HqxaqWe9IKcba1xMK8ecbQx9mGscHu+sbh3yTmSDInhBBCCCE6RKfTcbGomhOZZSRmKclbSl4ljR0sUDLQ3Y6hAS4MDXAmdoALUX5O2FmZRhpkGq+iC2zYsIHbbrsNrVZLfHw8Hh4e7Nixg5UrV3Ly5Elef/31Tt2vpqaGBQsWsHPnTlxdXZk4cSI2NjZcvHiRL774gltuuaUbk7neqWo5N9qHMC8HRga5tkrmQFlq2ZTMbT6VxzPzh2BpLj3rhRBCCCFEa2U19UrSdiV5S8wqo7y2Y8slfZ1tWi2VjPF3xtnOspsj7j2SzAGlpaXce++9aDQa1q9fz5IlSwDIz89n4sSJvPHGGyxYsICpU6d2+J733nsvO3fu5L777uMf//gHdnZ2+nN5eXk0NHTsB/LaVFe+Wnwy0Uszc+4O1m02BZ8T7csz3yRT36ilpLqevWmFTB/s3cMRCiGEEEKIvqRBoyUlr5LErFJ98tbRfm62luYMDXAmLtCFYQNcGRbogrdTz7YG6G2SzAGrV6+mvLycRYsW6RM5AG9vb1555RWWLFnC66+/3uFkbufOnXz55ZeMGjWK//73v5iZtZ6B8vX17dL4sbCBxtrmx700M9ceZ1tLZgz24rvTlwH48miWJHNCCCGEEDcRnU5HXrn6StKmJG+nc8qp62BbgDAvB+IGuOiTt3BvB4PVYDcbSeaAzZs3A7Bs2TKDc/PmzcPGxobt27ejVquxsbl2tv/OO+8A8Pjjjxskct3Cwrp1Mqep7/7nvA7LRw7QJ3M7zhZQUKnGy/Hm+vRECCGEEOJmUd+o5UxeBcculXL8UinHLpVyuaJjkw5u9lYMG+BC3AAXhgW6MnSAM042prtc8npJMgecOnUKgOHDhxucs7KyIjo6mqNHj5KamkpsbOw177dz504AZsyYQVJSEmvXruXy5cv4+Phwyy23MHbs2K59ARZXJUR9YGYuo6ia7WfzCfVyYEqEF6C0L/BztiG3XE2jVsdXx3P4xeSQXo5UCCGEEEJ0hZLqeiVpy1QSt5NZZR2adbM0VzHEz5lhA1wYdmXWbYCbrbSy6oCbPpmrqKigrKwMgICAAKNjAgICOHr0KJmZmddM5vLz8ykqKsLV1ZX33nuPp59+Gq22+Yf4+eefZ8WKFbz//vtYWnbs04W2CqWkp6cTEhKizMy11Et75pr83/Y0/m/7OQCmRXrpkzlzMxW3jRzAmzuUc1/8mMXP4wfJL6oQQgghRD+j1eo4X1jFsSszbscvlXZ4r1uAqy3DAl2VmbdAF4b4OmFj2f/aAvQFN30yV1VVpf++ZZGSluzt7Q3GtqW0tBSAyspK/vCHP/DTn/6UP/3pT3h5ebFjxw5+8Ytf8Mknn+Dv789LL73UBa+APjczN3qgm/77fecKqVA36KfFbxsZwFs7z6HTwcWiao5cLGHMIPfeClUIIYQQQnRAVV0jJ7PKmpO3zFIq1Y3XvM7K3IyYAGdGBLkyPNCV4UEuJrXN5nK5mhOZpVdaJpSRW1aLn4ttjz2/SSRzy5YtIykpqVPXrFmzhtGjR6PTXbs/RUfGNNFoNAA0NjYybtw41qxZoz+3dOlSbGxsmD9/Pm+99RZ//OMfcXJyuuY9k5OTjR7Xz9hdPTPX0MvJXLAbbvZWlFTX06DRsf1MPkuGK7OeAa52TArzZO+V5uJf/JglyZwQQgghRB+TW1bLjxklHM1QkreUyxV0pK2bh4M1I4NcleQtyJVof6d+2YzbmPpGLcm55RzPLON4ZiknLpUaNCqvrdf0aEwmkcxlZGSQmpraqWtqamoAcHR0bHXMWHLVNNbBweGa9215v/vuu8/g/Lx58/D29iY/P58jR44wY8aMTsVtVMtkbsofYPjdN37PG2BhbsbsKB8+P5IJwHenL+uTOYA7Rg3QJ3Pfns7jzwuiTLr/hxBCCCFEX9a0ZPLIxRKOZpTwY0YpOWW117zOTAURPk6MCHJhRJArIwLdTHKv21fHs/n0cCanc8qpv8YewA72Me8yJpHMHT169LqvdXJywtnZmfLycrKzsxkyZIjBmOzsbAACAwOveT8/Pz+srKyor68nKCjI6JigoCDy8/MpKCi47rhbabnM0skfHHu/5P/cmOZkbu+5QirVDTheWWo5Y7C3fuaurlHLVyeyuXdCcG+GK4QQQghx06hv1JKUW86PF0uU2bdLpZTVXLsHsqO1BcOCXBkRqMy8xQ5w1r+/6+8aNFrO5FZgYa4iys+51bniqnqOXSpt81o/ZxtlD2CgC3/7queWWIKJJHM3KjY2lr1793L8+HGDZK6hoYGkpCSsra2JiIi45r0sLCyIjo7m+PHjlJSUGB1TXFwMdGymr0Nazsz1gUqWAGMHueNiZ0lZTQP1jVp2phSwKM4fACsLM24bEcA7ey8A8EnCJVaOH2hyn+IIIYQQQvQFVXWNHL9UytGMEo5klJCYVYa64dpVJgPd7Bg50JWRQW6MCHIl1MsBczPTeL9WWFnH8Uxl79/xS6Wcylb63c0f6svbd7aucD88yEX/vZWFGTH+zgwPdLmyB9C1VaPyN3q4kIskcyhLH/fu3cu6detYsWJFq3ObN29GrVYzd+7cDvWYA1i4cCHHjx9n165d3H777a3OZWRkkJGRAcCwYcO6JP5WM3O9XMmyiaW5GbOH+PDF0SwAvj2Vp0/mAO4cE6hP5tILqzl0oZjxIR69EqsQQgghhCkprKzTJ25HM0pJzi2/5vI/lQoifZwYPdCVUcFujAxyw8fZNAqVNGi0pORVNidvmaVklRhfRnois8zgWJSfM8/MH8LwQBeG+PWtPYCSzAEPPPAAL774It988w1fffUVS5YsAaCgoIAnn3wSgCeeeMLgusjISAB27NiBv39zovLwww/z+uuv88EHH7B06VJmzpwJKNUwH3roITQaDfPmzWPAgAFd8wJazsxp+kYyB3BLTHMytzutkKq6RhyslR+5IHd7Jod7sufK3rlPEzIlmRNCCCGEuA7ZpTUkXCjhyMVifswo5WIHWgRYWZgRF+DCqGBXRg5UZt5MtSn3vR/8yP7zRdccZ2VuhpeTNTX1jdhZNadJNpbm3D+xb24JkmQOcHNz4/3332f58uUsW7aMyZMn4+Hhwfbt2ykrK+PRRx9l+vTpBtc1FV1paGi9xtjT05MPP/yQ5cuXM2fOHMaOHYuXlxcJCQlcvnyZ4OBg3nnnna57AS1n5n5cDTnH4Y5Pu+7+12l8iAdONhZUqBv1Sy0Xxvrpz/90bJA+mfs++TIFFWq8nEzjEyAhhBBCiO6g0+nIKqkl4WIxCReKOXyhpEPFSpxsLBg50I2RA10ZPdCNmADnPjXDdCPyymv5MUNZRjpjsDfx4Z6tzg8NcDaazPk42TA8SFkuOSywf1belGTuiqVLl7J3715eeOEFEhISqK+vZ/DgwTzyyCPce++9nb7frbfeysGDB3nxxRfZv38/R48eZcCAAfzmN7/hD3/4A+7uXViOv+XMXEUuqPrGf1YrCzNmRfmw7phSQGbTydxWydzUSC/8XWzJKaulUavjfz9m8ej0sN4KVwghhBCiz9HpdGQU13D4wpXk7WIJeeXXrpHg62zDqIFujLqybDLcyxEzE9jvptXqSCuo1CdvR6+qvKkCg2Ru1EA3LM0vEOXnrO91NzzQtUf7wXWXvvGuv4+YMGECW7Zs6fD4a/WfGzVqFF9//fUNRtUBVzcNryvv/ufsoAWxfnx1PJsJoR7Mi/Ftdc7cTMWdYwJ59XtlhvOzw5k8PCUEC3Oz3ghVCCGEEKLX6XQ60gurOXyxmIQLJRy+UExB5bW30QR72DN2kNuVBM6NAFfTaRFw5ErVzR8zSjh2qf1m5T9mGFadnBDqwem/zMamh4uT9ARJ5kyBuVXrx3WVoNMpO1l72YQQdxL+OB0vR+PLJ5ePHMD/bU+jQaPjcoWa7WcLmBPt08NRCiGEEEL0Dp1Ox7mCqiszbyUcvlhCUdW1k7cQT3vGDnJnzCB3xgS7taqoaGqe3nCacwVV7Y4Z4GbLqCA3Rge7GZyzsjDdiQJJ5kzB1TNzOi3UV4N1F7U+uAEW5mZtJnIAno7WzIn2ZdPJXAA+PXxJkjkhhBBCmCydTsf5gioOpjcvmyyprr/mdeHeDkryFuzO6GA3PB2tr3lNf1BQoebwxRKOXCzh8MVi/rIwyqAo3siBbq2SOTMVDPFzYmSQMgs5cqCrSSez7ZFkzhRYGPllrqvsE8lcR6wYE6hP5vadK+JiUTXBHva9HJUQQgghxI1rKlhyML2Ig+nFHEwv7tDMW6SPI2MHueuXTro7mEbyll1aoyRuF5TWCVdX3jx8ocQgmZsQ6k5mSbU+eYsLdNFXSL/Zyf8LpuDqmTmAugrA1/B4H6DV6lptwB0d7Ea4twNp+conLp8mXOJP84e0dbkQQgghRJ92uVzNoQtFHDyvJG/XqjapUsEQXyfGBCvJ2+hgN1zsrNq9pr9o0GhZfyz7yszbtStvHrlYYnBs/lA/5g/1MzJaSDJnCtqametD1A0adqUU8E1iLiXV9Xz5i3H6cyqVihVjg3j2m2QA1h7L5rezI0xyk6oQQgghTE9JdT0JF4r1s28XCtvv89aUvI0b5M64EHdGDnTD2bb/93jTanWoVLQqvGJhpuLV71Mpbmcpqb+LLWOClSR27KAurPh+E5BkzhS0OTPXd1wqruGhT4/rH1+9lPLWYf68tCWFmnoN5bUNbDqZy20ju6ipuhBCCCFEF6pUN3DkYol+2eTZvGu/7wr1cmB8iDvjQ5R9b672/X/mTaPVcTavgoQLxfqKk58+MJYhfk76MSqVitHBbmxJuqw/Fuxhz+iBboy5MgsZ4GrXG+GbBEnmTIGxmTl130rmInwcifB2JDVfmTHccDybJ2ZF6M872liyeJg/nx3OBOCThEuSzAkhhBCiT1A3aDiaUaqfeTudU45G236LqgFutowf5MH4UHfGDXLHywQKdGi1OlLzKzl0JYk9crGYiqvaBBy+WNwqmQO4JcYXdwcrffGWm7VYSXeQZM4UGJ2Z61vLLAFuHa7MvgGsP57DYzPCW+2dWzEmSJ/Mncwu52hGCSMHGpaXFUIIIYToTlqtjjN5Few/X8T+c0X8mFFCXaO23Ws8Ha2ZEOLO+BAPxoW4M8DNNGabauobWX8sm0NXWidcq/LmkYsl3DshuNWxhbF+LIyVPW/dQZI5U9ByZs7cGgJGgV3fS4KWDPPn1e9T0Wh15JTVcuhCMRNCm6sVDfFzYnSwm37j63/2pLNakjkhhBBC9IDcslr2nyti3/kiDp4vanePF4CLnSXjBinLJseFeBDiad/vm3TrdDqD12CmUvHXb89S30Yya26mIsbfmTGD3Bgb7M6Iga49Eaq4QpI5U9AymXPwhnu/7b1Y2uHlZMPkcE92phQAsO5YdqtkDuChySH6ZG772QJSL1cS4ePY47EKIYQQwrRVqhs4lF6sn327UNR+0RI7K3NGB7sx4crM2xBfp1YrjPqrrJIaZdbtSt+7DY9MaLUM0sbSnBGBrhy6UAwoPd6i/Z0ZN8idsSHujBroJm0CepH8P28KWi6zbFT3XhwdsGxEgD6Z25KUx3OLonCyaa7eNCXCk0gfR1IuK8tE/7MnnTduj+uNUIUQQghhQho0Wk5mlbHvXBH7zxeRmFXW7r43MxUMDXBhUpgHE0M9GBboipWFWQ9G3D3yyms5lF6sfF0oJru0dauAQ+nFLB7m3+rYrcP8GezrxLgQZc+bKVTeNBWSzJmCljNzmms3oexN0wd74WJnSVlNA+oGLd+eyuMnowP151UqFQ9NCeHX/0sEYOPJXJ6YGW4y686FEEII0TN0Oh0XiqqVpZPniki4UExVXWO71wx0t2NimAcTQz0ZN8gdZ7v+n7SoGzTsSSvkwHklib1W24SD6UUGydzyUVKUrq+SZM4UtJqZ69vJnLWFOYti/fjo0CVAWWrZMpkDmBfjy2s/pJJVUotGq2P1vgs8tyi6N8IVQgghRD9SXtPAgfQi9qQWsu9cIbnl7a9YcrGzZEKIx5UEzsMkPzyuqmvk5x8fa3fMIA97xoYoVTelz1v/IsmcKWg5M9eohoz9SiGUAaN6L6Z23DZygD6ZO3aplPTCKkI8HfTnLczN+Fl8CM98nQTA/37M4pFpoXg5ShlbIYQQQjTTanWczilnT1ohe9IKOZFZSnsdA6zMzRg50JWJYR5MCvUkyq//73vTanWkXK7kwPkiDqYX8c+7hmNn1fwW38PBmsG+Tq164Q1ws9U3LB83yAMfZ3mP1V9JMmcKrm5N8OE88B8JD+7onXiuIcrPqdW+uH1pha2SOYDbRgTw5vZzFFXVUdeoZfW+i/xx7uDeCFcIIYQQfUhBpZp9aUXsSVNm30prGtodH+njqOx7C/Nk9EA3bK3MeyjS7pNdWnNl2WSxQeXNIxdLmBLh1Wr8vBgfQjztmRjqwQQTnYHsE+qrlS8r+x57SknmTIG5leGxur7VNLwllUrFfRODSS+oYtmIAMK8DatV2lia8/P4Qbz43VkAPj50iZ/FD8LDwUiDdCGEEEKYrAaNlmOXStmTVsjetEKSc9t/j+PhYMWkME/iw5W9b56O/f+9Q3lNAwfTlT1vB84XkVFc0+bYA+eLDJK5X04L6+4Qb071NZB9BC7ug4x9kHMMysvAM7LHQpBkzhT0k6bhLS0fee2NtHeNDeQ/e9Iprq6ntkHD6n0X+f0tPffLIYQQQojekVVSo0/eDqa3X7jE3EzFiEBXJkd4Mjnc02RaBjTJKqkh/tVd6NpZPmqmgpgAFyaFejBziHfPBXezaVBD9o9K4nZxH+QcBU37/Qi7myRzpsDCyCdO6r47M9dRdlYWPBg/iJe2pACw5lAGP4sfhJu9kZlIIYQQQvRbtfUaEi4Ws/fK3rdrVVz0d7ElPlxJ3saHurdqc9RfXSquZv/5In4yKrBVMhrgaouPkw15VxVzGeRhz4QryyZNpfJmn6NphLxEuLALLuyBrCPXrhyv6tn2FZLMmQIzczCzBG2LNeMN1aDVKOf6sZ+ODeKdPemU1jRQU6/hvf0X+N1smZ0TQggh+ruskhp2phSwK7WAQ+nF1DVq2xxrZWHG2EHuTA73ZHK4ByGeDqhU/Xv2raqukUPpSgK791whl64snYzxd2ZogIt+nEqlYkKoB7tTC/TJ24RQD/xdbHspchOm00FhipK4XdyjFBW81tYlKwcIHAfBk2DgJFj7056J9QpJ5kyFhQ3UX7UBuK4CbF17J55O0Gp1HL5Ygk6nY3yoR6tz9tYWPDBpEK9+nwrAhwcyWDk+2CTWvwshhBA3kwaNlh8zStiVUsDOlALSrzH7FuJpz+RwL+LDPRgT7N7vC5dotTrO5FXol48ezyylQWO4dnJvWmGrZA7gLwujsLca2u8T2D6pLLM5ebu4F6ry2x9vaQ+BY2HgRAiOB984MO+9lEqSOVNhYQ31V+2Tq6vs88nc3rRCnv76NFkltcQGOPPNLycajLl7XBCr912gtKaB6noNb+5I44XFMb0QrRBCCCE6o6BSze7UQnalFLD/XBGV7ex9c7C2YHyIO5MjPIkP8zSZiosl1fX8dfMZ9p0rpKiq/f1VYV4OONsZbidxsJa37F2muvhK4rZHSeJKL7Y/3swSBoyG4MkwaDL4jwDzvrOkVX4yTIWxIij9YN+cp6M1WSW1AJzMLiflcgWRPk6txjjaWPKraWE8v/kMAJ8fyWLl+GBCvRwM7ieEEEKI3qPV6jiVU87OlAJ2pxZwKru83fGhXg5Mi/RiSoQnI4PcsLLo2f1GXa1Bo8XSvPVrcLC24Ifky1TXawzGO9taMjHUg/hwDyaFeeInSye7Xl0VZB6CC7uVBO7y6WtcoALfoc3JW+C4Hm010FmSzJkKY0VQ+nhFS4DBvk7E+DtzOkf5Y/9pQiZ/XRxtMG7F2CA+OpTBpeIaNFodL29N4b93j+zpcIUQQghxlfLaBvadK2RnSgF7Ugtb9Ty7mpWFGeND3Jka4cW0SC+TmH3LK6/Vzz4eOF/E1sfiW70uKwszxoV4sP1sPmYqiBvgQny4J/HhnsQGuGBuQpU3+wRNI+Qeh/SdSgKX/SNo254RBsAtREncgicrSyft3Hok1K4gyZypMJrM9f2ZOYAVYwN5ar3yKclXx7N56pZIg+UEVhZmPDk7kkc+Ow7AtjP5HL5QzJhB7j0erxBCCHEz0+l0nCuoYueVvW/HLpWi0bZdN9/fxZapkZ5MjfBifIhHv9/71qjRciKrjF0pBexKLeRsXuv3W3vPFXLXmKBWx+6fGMytw/yZGOohVSe7Q+klJXlL3wEX9kJd+zPCOPg0J2+DJoNzQM/E2Q0kmTMV/XRmDmBhrD8vfHuWSnUj1fUaNpzI4adjgwzGzY3xYVigCycyywD425YUvn54vGwGFkIIIbpZfaOWIxdL2H42n+1n88kurW1zrLmZihFBrvrZt3Dv/l95sriqjj1pyuzj3rRCKtRtz/QcOF9kkMyNC5EPn7tUXaVSafL8DiWJK0lvf7y1s1KwpCmB84yAfv4z2USSOVPRcs/cqAcgfA74DO29eDrB1sqc20YM4P0DygbUTxMusWJMoMEffpVKxdNzB7PsP4cAOJlVxu60QqZGePV4zEIIIYSpK6upZ3dqIdvP5rMntbDd4iVu9lZMCfdkaqQX8WGeJjX7VFXXyJi/7aCxndnHAW62TIvwYkqkF+Nk1VDX02qVfm/pO5WvrMPtL500s1QqTg6aAoOmgm9sr1ac7E6m+apuRi1n5nxiIGxm78VyHe4aG6hP5lIuV3L0UimjBhquVx450I0pEZ7sTi0E4M3t55gS7tnvP/ETQggh+oKMomr97NuPGe0vn4zxd2ZqhJLADTWBvV/ltQ3sP1fE5AjPVts9HKwtiBvgwtFLpfpjluYqxgS7M+XK6x/kYS/vRbpaeY7SrDt9J6TvgtqS9se7h0HodAiZBkETwPrmKJQnyZypaDkz13iNzvR9UIinAxNC3TlwvhiAjw9dMprMAfx6epg+mUvMKmPvuSImh3v2WKxCCCGEqdBodZzILGXb2Xy2n8lvt/ebtYUZE0M9mD7Ym+mDvfB2MlJJux/R6XSk5VexK7X13r//rBjBnGifVmOnRnqRXVrL1EhPpkR4MSHUQ9oFdLX6Grh0sHn2rfBs++NtnJWZt5DpEDIVXAJ7JMy+Rn4KTUXLmblGde/FcQN+OjZIn8xtScqjoGIwXkb+oRgW6Ep8uCd705SE7v+2pxEf5iGfiAkhhBAdUF3XyL5zhWw7U8Cu1AJK2qk+6eFgxfRIb2YM8WZCqDt2Vv37rWNdo4aECyXsOJvPjrMF5JQZ7v3bnVpgkMw9MCmYh6eEyHuNrqTTQfF5OPcDnNumJHKadiYkVOYQMKp59s1vGJj172I6XaF//0aKZi1n5hra3pTcl80Y7I2Pkw2XK9Q0aHR8eDCDJ+dEGh376+lh+mTuRGYZ+84VES+zc0IIIYRReeW1bD9bwPYz+RxKL6Zeo21zbKSPI9MHezFjsDexAS6Y9fPlkxqtjq9P5LD9bD570wqN9ntr4m5vhZOt4X4/awtJGrpEfQ1k7FOSt3M/QNml9se7Drwy8zYNgicps3F9mbpc6WvXg0s8JZkzFdaOzd+fXgfZR8E7CmY+13sxdZKFuRn3ThjIG9vTWD5yALePGtDm2BFBrkwK82DfuSIAXt6awvgQdyzM+3ezUSGEEKIr6HQ6UvMr+SE5n++TL5Oc23a7IgszFWMHuesTOFPo/daSmQre3HGOzJIao+eHBjgzNcJL2fvn79zvk9c+RaeD4nQ4v01J4DL2tz/7ZuWo9HkLnaYkcG6Dei7W69FYr/Sxu7BL6WmXcwwqKsDT+GREd5BkzlRYOzV/X3xO+eqHyy1XjA1i2YgA3B2MtFq4ymMzwvXJXHJuBe8fuMjP4kO6O0QhhBCiT9JodRzPLOWH5Mv8cCafS8XGkxcAZ1tLpkZ4Mn2wN5MjPHGy6d/VJxs1Wo5eKmX7mXxuHe5PlF/zDI5KpWL6YC8+OJABgI2lGZPCPJkxWEngvBz7996/Pqe+5krbgCsJXOnF9sd7x0DYDAidCQNGg3k/+FlM/hpOfAKXDkBD279nPUGSOVPRcmauifoaDRP7IHtrC+w7uKF4RJAry0YEsO5YNgCvb0tjdpQPQe723RmiEEII0WeoGzQcSi/m++TLbD+bT1FV2/vfBrrbMWOwsv9tZJBrv1/NUqFuYE9qITvO5rMrtZDy2gYArC3NWiVzAPOH+qJu0DJziNK43MZSlk12qeJ0JXE7f2X2rb0JBWsnpXBJ2EwInQFOfj0W5nXRasHsqt+VwhTltRqj6tmfLUnmTIWNk+GxftI0/Eb8ad5gdqcWUFRVj7pByx83nOaT+8fIBmUhhBAmq0LdwK6UAn44k8/ulIJ294DFDnBh1hBvZkd5E+LZ/5t3ZxbXsP1sPjtS8jl8ocRo77ftZwr43ezWy9xGBLkxIsh4lWxxHRrrIfMQpH0PaVuv3bTbK0pJ3sJmwoAxfXv2rbEeshKuNCTfoRRdmf9G6zGDpsLuvyvfW9hA4LgrlTWnwto7ezRcSeZMhbWxZK7t9fH9hVar42B6MeND3I2uYXexs+IvC6P45WcnADhwvpi1x7JZPrLt/XZCCCFEf1NQoeaHM/n8cCafQ+lFNGiM939r2v82O0qZgfN1tu3hSLvHv3af5+sTOaTlV7U5xsrcjHEh7swY4o1Wq5O9b12tuliZjUrdorQOaO99ppUjDJoMYbOU2Tdn/56Ls7N0Oii50Jy8XdwHDS1adKjLlTEtPwjxHwGTfqsUZRkwFix7b6muJHOmwmgy179n5tYezeKdvRc4X1DFv+8azi0xvkbHzYvx5evBuWw/mw/Ay1tSmBPt0+/X/wshhLi5XSis4oczSgGTE5llbY6ztTRnSoQns6K8mRbhjbOd6f37l5xbYTSRc7O3YlqkFzMGezExzFN6v3UlnQ4Kziozb2nfQ/YR0LVdBRWvIUriFjZLmX2zsOq5WDtLXQ4X9ypJ6fkd7VfVLMtUkj33FnUZzC1g+jPdH2cHyE+8qTC2Z05TrzQQt7h2MZG+aMfZAs4XKH+4X9+WxqwoH8yNfMqmUqn46+IoDpwvorZBQ3F1Pf/YcY6n5w3p6ZCFEEKI66bT6UjKqWBrch4/JOdzrqDtWShXO0tmDPZmdpQPE8P6/x4wdYOGvWmFfJ+cz/gQd5aOCGh1ftYQb749lQdAmJcD0wd7M3OIF3EDXI2+NxDXqbFOaR3QtHyyLLPtsebWyuxb+BwlgXPpR6uidvwVfvxv2+ctbGHgBKUtQuj0Pl1VU5I5U2FszxyAugIc+mf/tcdnhvP9mcvodHCuoIpNJ3NZPMz4NL2vsy2PTA3htR/SAPjgQAZ3jA4kxLPn+nwIIYQQnaXV6jiRVcbWpDy2JF0mu7TtXrH+LrbMjvJhVpRpFDApr2lgZ2o+3yflsyetkNoGZe9ffoXaIJmbGunF03MHM3OINwM9pNBZl6oqUHq+pW6B9F2tlxhezcEHwmdDxC1KCwGrPvzfoiJPmXmzsoOoW1ufC51umMx5DVHaIYROh8Dxvbp0sjMkmTMVxmbmQFnP3E+TuQgfRxbG+vFNYi4A/7c9jXlDfbFs4x+vByYN4vMjWeSU1dKo1fHit2d5f+WongxZCCGEuCaNVsfRjBK2JF1ma9JlLle0Xfkv0sdRn8AN8XXq9wVMLper2XbmMt8n55NwodhoAZOEC8WU1zS0Wi7qZGPJg/F9d3akX2laPpn6rZLA5Rxrf7zfMGX2LXwO+Ma23jvWl2gaIeeokpie+wEun1aO+w03TOYGTlQS04ETlAQuZFrfr6rZBknmTIWxPXPQ74ug/Hp6GJtP5aHR6sgoruGr49ncPirQ6FgbS3OenjeYhz89DsDOlAJ2pRYwNcKrJ0MWQgghDDRotBy+UMJ3SXn8kHy5zRYCKhWMCHRldpQPs6N8CHQ3jQbe3yTm8MGBDBKzytoc42BtwZQIT2ZH+WBt2b9nHfscrQayDkPKt8pXe73fLO2Uao3hs5UvR5+ei7OzqgqVoiXnflD2vqnLDMfknlCKt9i7Nx+zdoTfpPTdxLQTJJkzFW3OzPXvIiiDPB1YOtyfL48qveTe2nGeJcMD2pyduyXah9HBbhy5WALAs98k8f1j8dhZyY+6EEKInlXXqOHg+WK2JOXxw5l8ymoajI4zU8GYYHduiVESOG+n/rG8qzPyK9RGEzl3eytmDlH2/o0Pdcfaon/v/etT6mvgwi5I+Q7StkBNcdtjnQIg4srs28BJfX+JYfIGOPgPyDkOGK/sCoBLkLJs0ljfOxNI5ECSOdNhbql8ktLUhd7RB+w8wKz//yd+dHoYG07k0KDRkVNWy8bEXIO19E1UKhV/WRDFgrf3o9HqyCqp5fUf0vjTfCmGIoQQovupGzTsSStka9Jltp/Jp7Ku0eg4CzMV40M9uCXah1lDvHF36J/FyprodDpOZpez5XQe1pbmPDEzvNX52VE+/O27FAAGuNkye4gPs6N9GB4oBUy6VHWxUrgk5Vtlv1hj23sw8RsGEfOU/W/eUX03uTHWtLuuyvjyUDNLZelk2Czlyz20776uLtL/3+mLZtaOzcncbR9B4NjejaeLBLjasTjOn7XHlNm5/+xJ59Zh/m32jxni58TP4wfxr91KA8v3D1xk3lBfhgW69ljMQgghbh7VdY3sSi1gS9JldqUUUNNGE28rCzPiwzyYE+3LzMH9v4WAUryllO9OX2bL6Txyy5XZD1c7Sx6dFtqqQEuQuz1/WTCE0cHuDPZ17Pd7//qUkotK8pb6ndLIu632AWYWyqxb5DyImNt3e7/pdJCf3Lz3zc4d7vi09ZjQGc3fO/opzcjDZytFWdparWaiJJkzJdZOUKX0Wuvvyyuv9vPJg1h3PFtf2XJHSgEzh3i3Of7R6WFsTbrMhaJqtDr4/frTbPrVRKwsZA2+EEKIG1ehbmDH2Xy2nL7MnrRC6hqNv4G2sTRjaoQXc6J9mBbphWM/74HasnjLlqQ88ivqDMaU1jSQcKGEiWEerY6vnBDcU2GaNp0O8hKv7H/7DgqS2x5r5agkOpHzlATI1qWnouycuiq4sPtKArcNKnObz1nYQoO69dJPJ19Y8Cb4j+zbs4o9QJK5Fg4ePMgLL7xAQkIC9fX1DBkyhEceeYR77rmn0/cqLS3lpZde4ptvvuHSJaUR4aBBg7j11lt58skncXJqo2DJjWj5SYS6vOvv34tCvRyZNcSb75OVZPXdventJnM2lua8tHQoy985BEBqfiX/3p3Or2eE9Ui8QgghTE95bQPbz+Tz7ek89p0rpEFjfK+OvZU50wd7c0u0D5MjPE1i3/b5gio+OpjB1uTLFFYaJnCgvJ8ePdCNuTG+RPreXLMj3U6rVQqYnN2kfJW30//N0VdZOhk5T5mJ66v9hsuylCWhqVuU3nYa40WBaKyFS/tbz8YBjFjZ7SH2B/3/r0sX2bBhA7fddhtarZb4+Hg8PDzYsWMHK1eu5OTJk7z++usdvldhYSHjxo0jPT0dPz8/5syZQ2NjI4cOHeLFF19k/fr1HDp0CBcXl659ES17zZnYzBzALyaHsDu1kOUjB/DgpGuXJx4d7MaKsYF8kqD8wXt71zluifEh3Fv+gRFCCNExleoGtp/N59tTeexNK6JeY3wGzsnGgplDfLgl2jSaeF+tsLKOjxMuGRw3U8G4EHduifZlVpQ3Xo59vHBGf6JpVJKYMxshZXPz6itjPCOvLJ+cp+yFu3qPWV/z42r49jftDFCB//Are99mgu+wHgutv+m2ZK6hoYHU1FQKCwspLy/H2dkZT09PIiIisLTsW0sMSktLuffee9FoNKxfv54lS5YAkJ+fz8SJE3njjTdYsGABU6dO7dD9/v73v5Oens6tt97K559/jrW18olIZWUlc+fOZf/+/bzxxhs899xzXftCWs7MVeRA3ilAp/QEMQHDAl05/MfpuNhZdfiap+ZEsuNsAXnlaho0Op5af4p1vxgvm62FEEK0qaqukR1n89l8Ko89aYXUt7GE0s3eitlR3syJ9mXcIPd+v5S/vlHLwfQijl8q5YlZEa3OjQ52w93eiuLqen3xlrnRPsw0geItfUpjHVzYA2e/UZZQ1pa0MVAFA8YoCVzkPHAP6dEwO6y+BkougE906+MDxhiOtXFWZt/CZkHI9H7bJ7mndWkyV1hYyIcffsi3337LkSNHqKsznIa3sbFh9OjRzJs3j3vuuQdPz97/D7V69WrKy8tZtGiRPpED8Pb25pVXXmHJkiW8/vrrHU7m9u7dC8BTTz2lT+QAHB0d+c1vfsP+/fv58ccfu/ZFAFg7twjiVeXLfyQ8uKPrn6uXdCaRA3C0seTFW6O578OjAJzILOOjgxncN1HW7QshhGhWXdfIjpQCvj2Vy67UthM4d3sr5kT7MC/Gl9HBbq2KfPRHDRot+88XsflkHtvOXKZCrVTfXDzMn0GeDvpx5mYqHpsRhrWlObOGeHf632PRjvoaOL8dzm6EtO/b7hGsMleaXQ9ZCJHz+27/t4o8Zflk2lZlH5ytKzxxtvW+Nu9opR2ChbWyJDTiFhgwFsxl0WBndcn/Y+fOnePZZ59lw4YN1Ncr6109PDwYMWIEbm5uODk5UV5eTmlpKSkpKezZs4c9e/bwpz/9iSVLlvD8888TGhraFaFcl82bNwOwbNkyg3Pz5s3DxsaG7du3o1arsbG59vKBlglcW9zc3Dof6DWf2MjywerCrn+efmZapDeL4vz4JlHZTPvq96nMHOLNADfTaMQqhBDi+tTUN7IzpYBvT+WxM6WgzSImrnaWzIn2Zf5QX8aYQAKn0epIuFDMppO5bE2+bLT/3ZakyzwytfV7s5+OG9hDEd4E1BVKsY8z3yiJXFM18quZWykNvAcvUGbg7Lrh/eON0ung8ilI3ar0s8s90fp8ZZ5SsMWvxVJJlQp+sa9vvp5+5oaTuV/96le8++67aDQapk6dyp133smUKVMIDm575uPChQvs2rWLzz77jC+//JL169fzs5/9jH/84x83Gs51OXXqFADDhw83OGdlZUV0dDRHjx4lNTWV2NhrL1mcOXMmBw8e5OWXXzZYZvnaa68BXFdRlWuyMVJUxYSTOa1Wx3dJeQS42hE3wKXdsc/OH8K+c0WUVNdT26DhuU1nWH3PyJ4JVAghRJ9RW69hV6qSwO1IyUfdYDyBc7GzZE6UD/OG+jJ2kDuW/TyB02p1HL1UyuZTuXx3Oo+iKuPFJqwtzJgS4Um0v7PR8+IG1JYp7QPOfKP0gGur4IeFLYTNgMGLIHyWsvywr9E0wKUDzRU1K7LbHmvlqLRP8Ltq35skcl3ihpO59957j4ceeognn3wSPz+/Dl0zaNAgBg0axP33309OTg6vvPIKq1ev7pVkrqKigrKyMgACAow3og4ICODo0aNkZmZ2KJn77W9/y65du9iwYQODBg1izJgxNDY2cvDgQczNzXnvvfeYOXNmV74MhbGZuYYaqK8GK/uuf75elHChmL9sTCblciVjB7nxv5+Na3e8u4M1z8wfzONfnARg+9l8dqUUMDXSqyfCFUII0YvUDRp2pxaw+VQeO84WUNtgvA+ck40Fs68kcBNCPfp9AtdSeW0Dd/43gUatYQVOKwszpkV4MW+oL9MivbC3lqVuXUZdoVRrTN4A6TvaTuCsHJU+aUMWKvvG+vr7tvRd8NltbZ93CVKWTobPgaAJYCHLcrvLDf+2XrhwAR+f61+z6+/vz5tvvskf/vCHGw3lulRVVem/t7MzvuzO3t7eYGx7HBwc2Lp1Kw8++CCffvopGzZs0J9buHAhI0aM6FSMUVFRRo+np6cTEtJiw6t1G+0Oqgv7/h+FTtLqdKRcVip2Jlwo4WB6EeNDPNq9ZnGcP58fyeLIRWUz8XObkhkf6o61hWlVHBNCCKEkcHvTCvn2dB7bz+RT3UYjb0cbC2YN8WH+lQSuvxcx0el0nMmrINjDvlVLBFd7KyaGebA7VVmxY2muIj7Mk/mxvswY7N3v+9/1KXWVyt635A1KzzSN8VYO2Loq1SeHLIRBU/pmC4HqIqUR+eAFrY8Hx4OVA9Q3vTdWQcAoiJijNCT3jLype7/1pBtO5m4kkeuq+yxbtoykpKROXbNmzRpGjx6NTme8R0xLHRnTUmZmJvPmzSMvL481a9YwZ84cALZs2cLjjz/OxIkT2bZtG2PHju3Ufa+p5cycyhx0V/7hqi4C14Fd+1y9bHyIB2MHuZFwQUnMXv8hjXG/cEfVzh8OlUrFcwujmP+P/Wi0OjKKa1i976LBngAhhBD9U1Mxj02JufxwJp+qukaj4xytLZg5xJt5Q32ZGOZhEh/qncuvZNOpPDafyuVCYTVv3hHHojj/VmMWx/mj0epYMNSP2VE+ONtJAtdl6quvJHBfKQlco9r4ODt3GLwQhixSipmY98H/BqUZV5ZPfqskcjqtUsDEqcUKPEsbJcGrLVX28oXfItUne0m3zaOXlJRw+fJltFot3t7e3Vq1MiMjg9TU1E5dU1OjbDR1dHRsdcxYM++msQ4ODgbnjLnnnntISkri66+/ZtGiRfrjd999Nw4ODixdupQnnniCgwcPduh+ycnJRo8bzNi13DOnMmuRzJnmvrknZkbom4IfvVTKvnNFxIe3/3M22NeJn44N4sODGQD8Y+c5FsX5EeAqxVCEEKI/0mh1HLlYwqZTuWw5nUepkWIeoDTyVhI4PyaZSB+4jKJqNp/KZfOpPP1qlSabTuYZJnPD/Fk8rPUxcQPqa+D8Nkj6SknkGmuNj7N1VRK4qFuVJt59rWKjTgeXT19J4DZDvpEJkpRvYfSDrY8t/rfMvvUBXf7TdOutt3Lw4EGKiopaHffz82PGjBncddddzJgxo42rr8/Ro0ev+1onJyecnZ0pLy8nOzubIUOGGIzJzlY2dQYGBl7zfllZWezevRtra2sWLFhgcH7RokVYW1uTkJDQ4eqYHdbWMsuqgq57jj5kdLAbk8I82HdO+VlbtS2NSWEe7c7OATw+M5zNp3IpqqpH3aDlqfWn+Pi+MZhJ7zkhhOgXdDodiVllbDqpzEQVVBpfxmZnZc6MwcoM3ORwT5NI4C6Xq9l0MpeNJ3M5nVPe5rhKdQNarU7+betqDWql+mTyV0r1xoZq4+NsnJWZq6hbIXhy35uB02ogM0FJ3lI2Q1lm22Md26iJIYlcn9Dlydw333wDgLm5OU5OTmi1WsrLy8nJyeGjjz5izZo1jBs3jjVr1jBo0KCufvrrEhsby969ezl+/LhBMtfQ0EBSUhLW1tZERES0cYdmTYmfvb09ZmaG6+7Nzc2xs7Ojrq6OsrKyLlumCrRO5nQt9gaY6MwcKIlZUzJ3MquMnSkFTB/s3e41zraWPD2vuRjKgfPFfJxwiXvGD+zucIUQQlwn3ZW90ptO5rLpVC5ZJcZnQZqKeSyM82NqhBe2Vv0/gWvyu7UnWXc8m7Z2f0T7OzF/qB/zYnyl/U5X0jQoBT9Or1WKmdRXGh9n7awsOYy69coeuD5c9KO6ED6cB7Txw+QZ2dyQ3G+4JG59WJcnc+vWrWP48OEEBgbqk5na2lpOnjzJ999/z5o1azh48CDx8fEcOXKkwxUwu9O8efPYu3cv69atY8WKFa3Obd68GbVazdy5czs0i9aUnJWUlHDx4kWDFg3p6emUlpZib2+Ph0f7BTs6reUyS12LUsvVRYZjTcTwQFemRniy68qG7te3pTEt0uuas3OL4/zZmnSZ75PzAfj7lrNMDPMgxLNjS2mFEEL0jItF1UoCdzKXcwXGC5GZm6mYFObBgqF+zIoy3WIevs42BolcuLcDC4b6MT/Wj2AP0yp21qu0Wsg6rCRwyRugtsT4OCtHiJyrJHAh0/peEZPGeri4R1neadnifayjDwwYA1kJzccCRl9J4OaDh9QT6C9Uus5W97hBGo2GZ555hpdeeon77ruP1atX9+TTG1VSUkJwcDAVFRWsX7+eJUuWAFBQUMCECRM4f/4827dvZ/r06a2ui4yMBGDHjh34+zevQY+NjeXUqVPMnDmTtWvX4uys9AcpKytj2bJl7Nixg7vuuotPPvnkhuJu2jOn31NXVwl/N9JeIXoZLHvvhp6rLzudXc6Ct/frH/9nxQjmRF97xrO4qo7Z/7dX32sndoAL638xrt83gxVCiP4ut6yWzady2XQyr82lhCoVjAl2Y0GsH7dE++Jm34dnQTqoqZn3N4k5BLja8ej0sFbnzxdUMeP1PQxws2VRrD8LYv2I8DHSlkhcH51O2S92eh0krYfyLOPjLO2VsvvRSyBkeuskqS9oqFX62J35RlkKWlcOd3yuJJ0tHfmv0vdu8AKlAqVjF64Wu4kZvD/vZj2ezDUZN24cGRkZ5OXl9cbTG1i/fj3Lly9Hp9MxefJkPDw82L59O2VlZTz66KO8+eabBtc0zf5cvHiRgQMH6o8fPnyYGTNmUFVVhYeHB2PGjAEgISGB4uJiBg4cyIEDB254VtLgh0Wng+dc0U+ZT35KmSb3CAOfmBt6rr7uZ2uO8sMZZZYt0seR7x6d1KF9Aj8kX+ZnHx/TP/7NzHB+ddU/nkIIIbpfUVUdW07nsfFkLj9mlLY5LnaACwtjlaWEPs597E30ddDpdCTlVPBNYg6bTuWSX6Hs//N1tuHAU9MM/i1Lyiknys/pmitQRCeUXISkdUoSV5hifIy5tdIHLmYZhM0CS9uejfFa6quVKppnvoFzP7RoGXBF7E/g1v/0Tmw3mZ5O5nqtnI67u3un2wl0p6VLl7J3715eeOEFEhISqK+vZ/DgwTzyyCPce++9nbrXmDFjSExM5OWXX2bHjh1s374dMzMzgoODefDBB/nd736Hm1s3dL1XqZR9c3VXPsWMmAt+cV3/PH3Q4zPD9clcemEVybkVxAQ4X/O6WVE+LBsRwLpjyl7HN3ecY2qkF9H+175WCCHEjSmvbeD75MtsOpnLgfNFGOlnDSgf0i2I9WPBUD8C3U1jL9il4mq+Sczl68QcLhQaFtHIK1dz+GIJ40LcWx2Xf5+6SFUBJH+tLKPMPmJ8jMpMKV4ScxsMnq8UNelL1BVKFc2z38C57W1X07SwVVpWCZPU7clcYmIiL730EuHh4Xh6eqLRaDh06BDfffcdU6dO7e6n75QJEyawZcuWDo9vb1IzJCSEd999tyvC6hybFslcXRsbdE3QYF8nFsb6YWdlziNTQzu18fvZBUM4lF5MTlktjVodj3+RyKZfTTSJqmdCCNHX1NQ3sv1sAZtO5rIntZB6jdbouCB3OxbG+rEg1o9wb9NYSlhcVcemk7l8nZhLYlaZ0TEWZiriwz1ZFOdH7IA+ljz0d+oKpXLj6bVwYU/rYnEtBYxSErghi8Gx/aJqveq/U6H4vPFzVg7KDOKQRRA2E6xkP6Wp6vZkrqqqii+//BJoXpYYHR3NHXfcwd///vfufvqbT8vG4XUVvRdHL3jzjrjrWnbiZGPJq7cN5c7/HgbgXEEVq35I5el5hm0qhBBCdF5do4Y9qYVsOpXH9jP51DYYfxPt42TDglhfFsT6EePvbHJLCY9dKuUvm84YPTcyyJVFw/yZF2Ma+//6jMZ6Zdnh6S+v9IJro5m3RwQMvQ2il4Jb36i2rldXBdoGpV9dS2GzWydz1s7KXr4hC5ViLH1tKajoFt2ezE2cOJG8vDwOHDjA5s2bWb9+PTU1NSxfvpygoKDufvqbT8v2BDfRzBxwQ//ojw/x4L4Jwbx/4CIAq/dfZP5QP2IHuHRRdEIIcXNp1Gg5dKGYjYm5bE2+TKW60eg4N3sr5sb4sDDWn5FBribRF02j1XHGyHL/yRGeONlYUHHl/4twbwcWxfmzMNZPWgl0JZ0Oco7Dyc+VQiZtVaJ0CoCYpcosnHd03yq/X1+jJKHJX0HaDzD+VzDt6dZjhixUXmPkPGUGLnhy326HILpFjxdAqaio4De/+Q0ffPAB69atY/HixT359CbF6AbLT5bB+W3K98FTwN5D6SUy/w1wD+nxGPsTdYOGeW/tI/3K3oXRA9344udjTe6TYSGE6C5arY5jmaVsTMzlu9N5FFfXGx3naG3B7GgfFsT6MSHE3WSqCKflV/LV8Ry+PpFDQaWaQ3+YjrdT6yItr/+QSp1Gy6JYfwb7Osq/MV2pLBNOfQEn/9f28kNbV6WNQMxtMGAsGOkJ3Gvaa0juHga//LF1wqnVKq2ozHutBIYwot8XQBk5ciRvvfUW48ePN3reycmJ//73vyQnJ/P8889LMtfVWvaayz3evNSyIuemSuZ0Oh3fJ+fz2ZFM/nv3CKwtrr3/zcbSnOcWRrPiPWW55ZGMEr5Pzu9QmwMhhLhZNVVj3HQql80nc8ktN76MzcbSjBmDvVkQ68fkcE+T2ZdcVFXHxsRcvjqRTVJO6+0N3yTm8LP41v/2PjEroifDM33qCqWC46kvIGOf8TEWNsrsVczyK73g+tDsVWO90kYg+StI+a7thuTVBVCZB04tKqGbmQF9KBkVvaLLk7njx48zadIkZs6cyW9+8xtmzpxpdJyLiwt79uzp6qcXLffMWdg0J3PVhb0TTy/QaHX85N0EjmQoyyo+Scjk/onB17hKMTHMo1UT8pe2nGVapBdWFvLHUgghWjqXX6k08z6Vx8Uiw2qMAJbmKiaHe7Ig1o8Zg72xtzaNGQR1g4btZ/P56ngOe9IK0Rgpw2lhptK3GRBdTNMIF3YrSwxTNre9Dy5oIsTeoSxH7GuVKAEOvwu7XgC18V6KzQ3Jl/S9JFT0GV3+V/XAgQP84he/4IcffmDbtm34+voyY8YMhg8fTkBAAFqtlp07d/L999/Lnrnu0HLPnHmLX/rqop6PpZeYm6kY7OuoT+b+ues8y0cG4Ghj2aHr/zh3MHvPFaHR6sgoruGThEvc18FkUAghTFlWSQ0bT+ay6WQuKZeNzyCYqZR9yAtifZkT5YuzXcf+9vYHGq2OP32dxOZTuW3uARwa4MySYUpDb3cH6x6O0MRdPq0soTy9FqryjY9xD1USuJjl4NrH32fauhomcpb2EDFHSeBCZ/S9huSiz+nyZG7cuHEkJibyySef8NJLL3H27FnWrFnDxx9/rB/TtE3vl7/8ZVc/vWiZzJm1WMJSVdDzsfSiX04LY+2xbGrqNZRU17N630UenxneoWvDvB25Y9QAPj2cCcBbO8+xdHiASb0hEUKIjsqvUPPtKaWZd1vl9EGpxrgg1o+5Mb54OppmEmNupuJ8QaVBIufrbMPiYf4sGeZPmIm0UegzKi8rydvJ/0F+G/2JbV2VKpSxPwH/EX2nkIlOp8R86kulKN2C/2t9PmKOsooKFYTPUhK4sFlgJcVwRMd1y3oHlUrFT3/6U376059y+PBhvv/+exITE8nKyqKhoYHAwEDuuusubr/99u54+ptbyz1zLf+Y3UTLLAE8Ha15YGIwb+1UNkCv3neBn44LwqODn5I+PjOcbxJzqaprpKymgX/sPMef5kurAiHEzaG0up4tSUoz74SLxbRVKi3a34kFQ/2YH+uHv4vplEEvq6ln86k8Bvs6MSKodTn4JcMD+DGjFDsrc26J9mXJcH/GDnLH3ASqcPYZjfWQtgVOfKIUBNEZ6UVoZgnhs5UELmxW31qCWHIRktbB6XVQmKIcM7OA6c+CnVvzOGtH+OkG8BkK1g69E6vo97p98fqYMWMYM2ZMdz+NaNJyz1zLf31vomWWTR6MH8THCZcorWmgul7D2zvP85eFUR261sPBmoemhPDq96kAfHQog5+OCyLIXZpuCiFMU1VdIz8kKwncvnNFNBrZBwYQ4mnPwlh/5sf6EuJpOm9AGzVa9qQVsu5YNjvOFlCv0bIw1s8gmZsb44uNpRmzo3ywszKNPYB9xuUkJYE79UXb7QQCRinLKKOWtE6MeltVISRvUGYRs48Yntc2wpmvYeR9rY8HGS8YKERH3fBfoUcffZTRo0ezbNkybGxkXW+va7nMUttiGchNNjMH4GhjySNTQ3nh27MAfHr4EvdPDO5wL5/7Jwbz2eFMcspqadDoeHlrCv+6a0R3hiyEED1K3aBhV0oBG0/msjOlgLpGIzMgQICrLQti/Vgw1M/kyumn5Vey7lg2Xx3PoaiqdcGS75MvU6luaLXn2tnWkluHBfR0mKartlSZwTrxCeQlGh/jHAixt8PQO8AjtEfDa1ddFZzdpCRwF3aDTmN8XMAoZQ9f5IIeDU/cHG44mXv77bdRqVSMHj2a8PBwZs+eTVxcHEOHDiUuLo7IyEjMzU2j/HC/0HJmrrFFf5+bMJkDWDE2iPf3XyS3XE2DRscb29J4/fa4Dl1rY2nO72ZH8NgXiQB8d/oyRzNKGDmwD30SKIQQndSg0bL/XBGbTubyw5l8quqMF/LwdLRmXowvC+P8GDbAxaQSuPKaBjaezGHdsWxOZhuvJOjhYMWiOH/q20hwxQ3QapTkJ/FTOLsZNEaqflrYKI2wh61QqlL2pX5wTSpy4OtfGD/nEQFDb4PoZeAmRdRE97nhZG7Tpk38+OOPODsrJV+3bdvGtm3b9H/0raysGDJkCHFxccTGxuq/XFxcbvSphTEt98w11jZ/fxMuswQlIXtsZjhPrjsFwIbEHH42eRCRPk7XuFKxMNaP9w9c5NSVf+z/uvkM6x8abzINboUQNweNVsfhi8VsOpnHlqQ8ymoajI5ztrVkbowPC4b6McZE94F9+WMWf/omyWiSZmmuYuYQb5aNCCA+zFP+1ne1kouQ+JnyVZFtfIz/CCWBi17ad9oJaLXK0smA0a2TSs8IZb/bZeU9Bk7+StxDl4N3dN8pxCJMmkqna2tb8/W5dOkSiYmJJCYmcvLkSRITE8nIyGh+wis/2AMGDCAuLo6vv/66K5/+pmK0w3xxOvxj+JUHZkCLf6yevgyWprNBvaM0Wh1z/m8v5wqqAJgx2IvV94zq8PVHLpaw/J1D+scrxw/s8N47IYToLTqdjsSsMjaezOXbU3kUVBrveWZvZc6sKB8WxPoyMdTT5PtqnswqY9E/D7Q6Fu3vxG0jBrAw1g9X+z5USMMU1NfA2Y3KMsq2mnrbeSj74IatAK/BPRtfe4rTlSqap/4HZZmw8jsYOKH1mKMfQN5JiLkNAsf1zRlE0aOMvj/vRl2+czcoKIigoCAWLVqkP1ZRUaFP7JqSvOTkZDZt2tTVTy9a7plDqyRv9p7KV331TZnMmZup+O3sCH7+8TEszFT4ONvQqNF2+BPX0cFuLBnmz1cncgD48GAGYd4O3DWmj/evEULcdHQ6HSmXm5p555JVUmt0nJWFGdMivFgY58fUCC9srUxrO0SFuoFvT+Xx48USVi2PbbVEdGiAM+HeDhRX1bN4mD/LRgQw2LdjqzVEB+l0kHMMTnwMp9dDvZGehCpzpRpl3F3K/5r3kfY/NSVKIZOT/zMsZHLyc8NkbuS9PRebEEb0SBkmJycnJk2axKRJk/THNBoNKSkpPfH0Nxfrq/rb/OoEOPn2Tix9yKwh3vxqWihLhwcw0KPzFSlfvDWGcwVVnM5Rllv++ZtkBnk4MC7EvatDFUKITrtYVK0kcCdz9asQrmZhpmJimAcLhvoxK8q7VVEPU6DV6jiYXsy6Y1lsTb6MukFZmXLP+IHEDnDRj1OpVKy+exS+LjZYyjLKrlVbpvRUO/5R2z3hPMKVGbihd4Cjd4+G16bGeji/TUnW0r4HTb3hGJWZ0itOiD6m12rqmpub66chRReytAFzq+Y/RHWVgCRzKpWK38yKuO7rba3M+e/dI1n49n4KKuto1Or41ecn2PfkVJP7RFsI0T9kldTw3ek8Np/K03/QdDWVCsYEu7Eg1o9bon1xM8ElhJeKq1l3LJv1x7LJLVcbnF97LKtVMgcQ6C5NmbuMTgdZR+DYh8qMVqOR2WArR4heoiRxAaP61l6yHc8rSyXbaoXgNUTpZRdzm3w4LvqkG07mUlJSiIyMvOFAuuo+AmV2rqZY+b6uondjMSE+zja8e/dIlr9ziPpGLUVVdaw7ns1Px8pySyFEz8gpq+W7U3lsPp3HyayyNsfFDXBhQawf82J88XE2vbZBVXWNfHc6j3VHszmSYfxNuIudJYvj/LltpLQR6Ba1pfD/7N13WFTX1sDh3wy9dwQURVHBCjbsxiQm0dhiYnoxMb2Ynpt+b25y86XdJDe9N1M1RZOYYoy9V7BXBAQEAekdZub7YwMzwwwIwgxtvc/Dwzlnn3Nmgwizzt57rd2LVBCXfdD6OT3HwfAbYOAscG6ndVpLsi0DOY8gVUog5ioIGdK+gk8h6mlxMDd48GCuvPJKHn/8cQYPHtzs6xMSEnjxxRf58ccfqaqynl1LNJOLtzGYK7f+tFaoKTknC8ro4df0J7Sx4b5cPSqcLzanAPDx+uNcE9ezU2Z8E0K0Dyfzy/h9bwa/7c0g/kR+g+dFh3jV1YLrzCNPFdU6Jr28mtwSy6lwWg1Mjgrm8hE9OG9AMC6OMnOiVRkMcGIz7PxCFcCuthwJxc0fYq+B4fMgqL/du2hVRZGqB+fiBQPq1XobehXsWqhKIURdrEbhIs8DBykILzqGFv+kPv3007z66qt89913xMTEcO2113LOOecQExODk5PlfPyKigri4+NZvXo133zzDQcOHMDDw4N//vOfLe2KqGW6bq68EIqzVBYmfTX0HNN2/WonDAYDa49k8/Kfhyksr2LVQ5Oblb3tlol9+HJLCnoDpJwu5a/9mUwbIlMvhBCtJ7OgvC6A25mS1+B5kUEeTB8axoyhofTv5tXgeZ2Ji6MDE/oG8svuk3XH+gZ7cvmIHswZ1p1g7843EtnmSnPVerKdn0POEevnREyEETeqYMnRxZ69s85ggJRNKovmgaVQVQqhMZbBXM+xMOcDiJrWfkohCNEMrVKaICsri+eff56FCxdSUFCARqPBycmJiIgI/Pz88PLyorCwkNzcXFJSUqiursZgMODj48NNN93E448/TlBQUGt8PV1Kg6lPP59hTP877AaIX6i2w4bBbWvs18F26mR+GZNeXk21Xv3oPz1jIDdPaF5Bz7u/2cVvezIANVq35K5xnaqgrhDC/k4VqgDu970ZbE9uOIDrE+jB9KGhTB8aSlQ3r075u6dap2ftkWwWbU/lokEhXDbCfKrkpmM53P7VTmbFhHH5yHBievh0yu9DmzIYIGWjCuAO/Gw9KYh7oHEULrCv3btoVUE67P4G4r+GvCTL9ru2tK/yB6LT6ZClCYKDg3njjTd48cUXWbx4McuWLWPjxo0cOWL59CYkJISJEycyffp0rrjiClxd5Qlaq3PzNW6bThPIS7F7V9qjMF83rooL56stJwB4c+VRLhveHV/3picGuH1Sn7pgLiE1nx0peYyK8LdJf4UQnVdWYTl/7MtUafRTcmno8WpEgDszhoZx8ZBQBoR2zgAOIDmnhMU7UvlxVxqnClVdvNMllRbB3Jg+AWx/cgquTjKNstWVnFbB0M7P4fQx6+f0maxG4aKmg2M7SKpTVQ6Hf1ejcImrACv/kVx9VEFvR3nfKTqXVp0Q7Obmxrx585g3bx4A2dnZZGVlUVBQgI+PD8HBwTICZw8eJt9jvUnR8LJcNW+8fvmCLuj+Kf35Of4kRRXVFJRV8cbKo/xrZtOzqw7t4cuYPv5sOa4WTb+16hhf3DSq077BEkK0npP5ZSzfn8kf+zLZntxwANfT350ZNSNwA0O9O+3vl7JKHX/sy2DR9lS2JlkmM9mZksexrGL6BnvWHdNqNbhqJZBrNQYDpO2A7R+rjJQ6KwXmPYJh2LUqoYl/H/v3sSFJ62HRdVCeb6VRA5HnqiyaUdNVxm8hOhmbru4MCgqS4K0tmAZzVWXmpQryT0A3KQkR6OnC3ef15cU/VK3DLzencN2YXkQGeZ7hSqPbJ0XWBXPrjmTz8vLDPDpVMrIKISwl5ZTw575M/tyXwe60hhNThfu7MX2IWgM3KKzzBnAGg4G96QUs2p7KL7tPUlRebXGOk4OGKQO6ccWocHqfRX1Q0QSVJbD3e9j+CWTusXKCRiUDGXGjWlPWXgp7mwoeqL4OU34REHudykbpG94m3RLCXiRVT2dkGsyV5oBPOOQmqv28FAnmatw4LoKvtqSQlldGtd7AC78f5ON5o5p8/Tn9g5jYL5D1R3MAeG9NImE+rlw/NsJGPRZCdBQGg4GDGUX8uT+T5fsyOXyq4WLD3X3d6kbghnTvGmu/vt2WyhNL9lpt6xfsyZWjwpkzrDsBnu0gkUZnlH0EdnwCCd9ChZWHCx7BMPx6NQrnF2H37lnQVavpk3u/h5lvgLNJtlaPABVoHvsbBs5Wo3A9x4FWCsKLrqHFwdz8+fOZMGEC8+fPb9Z1L730EsuXL2fVqlUt7YKozyPQuF2SDX69jMFcvqybq+Xq5MDj0wZw9ze7APj7YBZrj2RzTv+mjSZrtRreuXY4V7y/mUOZ6o3av37ZT5CXK1MHh9is30KI9kmvN5CQls/yfZn8uT+TlNOlDZ4bEeDO1MGhTB0c0iWTd0wZEMzTP2vQ1SSi8nB2YGZMGFeMCmdYuG+X+37Yha4KDv2mplLWJkmrr9cEGHUzRM9oH2vhTieqdXC7v4UitU6dvlMg5krz8y76P5j9Drh627+PQrSxFgdzn3/+OUCzg7lDhw6xdu3alr68sMZ0ZK4kB7qPMO7nn7B/f9qxi4eEMLKXHztqUn8/tXQvf91/Dm7OTVuL4e3qxGc3jWLOO5vILCxHb4B7vtnFG1cNY/pQKVcgRGdXrdOzLTmX5fsyWb7/FJmFVupu1YgO8WLq4BCmDQ6lfzfPTh+wpOeX8cOONFYeOsX3d4w1q/kW7O3KuVFB5JdWccWocKYPCcXDRSYL2URBOuz6QtWGK860bHf2UtMRR93cPrI8VleomnC7voCkdZbt8V9aBnMylVJ0YTb9zZmbm4u/v2T4szuzYC4bfHsa9yWjpRmNRsOzswcz8+0N6PQGUnPL+N/KIzw+rel/0EJ93Ph8/iguf38zReXVVOsNLPh2F2VVMcytl4FNCNHxFZVXse5IDn8fPMWqQ1kUlFU1eG5suC9TB4cwdVAIEV1g3VdFtY6/D2SxaEcq649m1yV3+ftAlsUDrneuHS5FvW3FYICktWoU7tDvYNBZntNtsArghlzePhKjZR9RAVzCNyphW31aRzWdctj19u+bEO2YzYK5//73vzz99NM88cQTPPnkk2hl7rL9mGWzrDLfl2mWFgaGeXPrxD68v1ZNRf1hRxoLzuuHZzOeEkeHePP1LaO54dNt5JdWoTfAw9/vpqxKx/Vjetmq60IIO0nPL2PlwVOsOHCKLcdPU6WznoJSq4G43v5MHRTCRYNDCPVxs3NP28bhzCIWbU9lSXwaeaWWwe3iHakWwZwEcjZQUQx7voNtH0H2Ict2B2cYeIkK4sJHQ3sZHf7xFrUezprAKLV2L+Yq82UkQgjABsGcTqfjjjvu4NNPP8VgMPDMM8+wfPlyvvrqKyIiIlr75YQ1rr6gcTA+iTN94pZ/Qj2xay+/wNuJ+87vx+97M4gN9+XpGQObFcjVGtrDl+9uG8N1H28jp1ildX566T7KK3XcOqkdpXEWQpyRwWBgX3ohKw6e4u8DpziQUdjguU4OGsb3DWTa4BCmDOjWZZJ2FJVX8evuDBbtSGV3ar7Vc3oFuHPFyHCZpWBrucdh28dqfZm1hCY+PWHkTWpUy7MdZhkPqFdw3NENBs2BEfPaV9ApRDvUqsFcbm4uc+fOZc2aNfTr149XX32Vp556ik2bNhETE8Obb75ZV4NO2JBWq55eFZ9S+w4mbywqCqEsD9xl+qspN2cHfr1nAj7uLUu7HB3izeLbx3Dtx1vJKFBrZ57//SDFFdXcc15fnBxkhFqI9qqkoprNiadZfTiLlQezGl3/5uvuxHlRwUwZ2I2J/QLxcm2HKdttyGAwMOvtjSTllFi0uTppuXhwKFeMCmd0b/9OvzawzRgMKsPjtg/hyHKsFsruOwXiblOf27ouX2UJ7PtJPWgecaN527DrYO1LEDxIBXBDLgc337bopRAdTqsFc0eOHGHGjBkcO3aM8847jx9++AFfX18uuugiHn/8cV5//XXmz5/PsmXL+PDDD1vrZUVDPIKMwZyuEqa+qEoU+PZsH3Pj26GWBnK1+gR5svj2sVz78VZO5Kpsdm+sPMp7axLpE+TBgFBvokK8iArxYkh3HwIbeIpfrdOz4VgO3bxdGRBqzNC1KTGHn+NPUl6tw9lBi5uzA+MiA5gyoBuOEiwK0WQGg4FjWcWsOZzNmiNZbE/Ko1Knb/D8iAB3LhjYjSkDujGil1+X/v+m0WiYNjiEd9ck1h0b2sOHK0aGMys2DO8uFtzaVUUR7P4Otn4Ap49atjt7qeLeo26FwL6W7fZ2MkGthdvzPVQWqbIHsdea16zz6QF3b4eASBmFE6KZNAaDwfrE/ybSarXExMRw4sQJ8vLyuP3223n77bdxcDB/ArRy5UrmzZtHRkYGoaGhBAcHs3v3bnQ6K4tyRZMMGqTqxe3fv9+yceFsOL5GbU9/Tc2PF812LKuI8io9g7v7NPvazIJyrv14C4nZlk+ua2k1MLFfEFeMDGfKwOC6NSS5JZXc8dVOtiWpReDjIgO4bkwvlsan89eBU1bv1d3XjevH9uKa0T3ljZQQDSipqGbjsRzWHMlm7eFs0vPLGjxXo4ERPf2YUhPARQZ5dKlRpmqdnjWHs1m0I5Uh3X249/x+Zu3JOSVc8u5GLontzhUjwxkYJmnhbep0oloLl/C1mmVTX0A/GH27WlvW1g9tK4rVGridn0NGgmX7lV/BgJn27pUQdtHo+3MbaJVgTqPRoNVqefXVV7n33nsbPDcvL49bb72Vn376qe4PogRzZ6/RHxbTxcSTn4DJj9qxZ53D3wdOcf+iBLxcHfnt3on4ezS/5k5OcQWP/biH1Yez6+opNcTX3YlLYrszoW8gzy47UDeq11zdvF14eW5Mk+vlCdGZGQwGjpwqZu2RLNYczmZ7cm6DyUsAvFwdmdgvkMlRwZwXHdzgyHlnlpRTwuIdqfy4M42sIrX+N9THlQ2PnoeD1jyYrdLpZfq4Len1airl1vfh2AorJ2ig34UqiOtzbtsXys46CNs/USOHlUWW7S7eagrl6DsgqL/9+yeEHXTIYM7b25tFixZx0UUXNemaTz/9lPvuu4/S0lIJ5lqg0R+WPx+HLe+q7VG3wvT/2rFnHd/J/DLOeWV13Zu+86OD+XjeyLN+Kl9RrSMxq4TDpwo5lFnEoYwiDmQUkl3zRqm5hvf05dyoYKp0ehJzSli+L5PqesHitaN78uT0Abg7S+0m0bWk55ex8VgOG4/lsCnx9Bn/nw0K8+ac/kFMjgpmeE/fLjl9sqxSxx/7Mli0PZWtSVbSwgNf3hzHxH7ykMguKktUoewt71ufSunirZKZxN0C/u0gwVb+CVhyB6RstN7eI06tkxt0CTh3/hIdomuzdzDX4nd5en3D6wsaMn/+/GYXGRfNZJq+tyS77frRQYX5uvHo1Gj+89tBAFYeyuKTDUncMvHs/mi6ODowMMzbbBqSXm9ga1Iu3+9M5fe9GZRXmf9f0mjg0anRxPTw5d01x1h/NIfuvm78Y2oUs2LCzALLzIJyvticzCfrk+rW/Hy99QT7Txby7a1jmlwEXYiOKK+kks3HT9cFcMmnGx/V9nZ1ZGL/ICb3D+Kc/kEEe7vaqaftS23Gzu+2n+CXhJMUVVRbnOPkoOGCgd24clRPxkVKWnibKzypEprs+AzK8y3bA6Ng9G0w9Cpw8bR79xrk2c2yFIKLN8RcrYK4bgPbpFtCdAUtHpkTbafRyH/XQvhlgdruNQFmvAZrX1Z15hxc4Kbf7NjTjslgMHDzFztYdSgLUG9qfrxzHEN7+Lb6axWVV7FsTwbf70hl14l8vFwdefXyGC4cFFJ3TkFpFV6ujmi1DY8OHsos5IFFuzlokkb9woHdeO+6ERbTo4ToqLKLKtienMu2pFy2JuVyKLOQxv6SaTQwOMynZvQtiNjwrjn6Vt/fB05xy8IdVtv6d/PkipHhzBnWvcuUWmhTJ+Nh87uw/yfQ1w+qNdB/as1UysltmyBEr4fElRAaa1ni4O9nYMPrEDIURt0CQ+bKKJzokjrcNEvRdhr9YTn8B3x7ldoOjILLPoYPJqp9Rzd4MkMyRjVBbkklF7+xvi5FeXdfN765dTS9Amz3ByqrqBw3J4ezTnVeWa3n6aX7WLQjte7Y/PG9+edMeTIqOqa0vFK2JeXWfRy3kg6/vt6BHozvG8D4yEDGRgbg6978Na+dicFgsJgmXl6lY/T/raSgTBX59nB2YGZMGFeMCmdYuG+XSvbSJvQ6OPy7CuJObLJsd/JQKftH366yPLalkhxVw27Hp+qh8HlPw6SHzc8pPKk+uo+Q9xeiS+tw0yzr0+v1vPvuu/z4449kZGQQHBzM4MGDiY2NJTY2lqFDh+Lq2jWntNiVh8kTs5Js8Otl3K8uU8c8g+3frw7G38OZN66K5eqPtqA3qLU4c9/fzML5cWblAlpTsFfL/n84O2p5fs5gcoorWFkzqvjpxiR6B7pz/diIVuihELZTXqVj/8kC4k/kE5+aT3xKHicLGq73VivIy4XxkQGM6xvI+L6BdPd1s0Nv27+MgjJ+2JHGkvh0Ft0+liAv4yibq5MDc4Z1Z296AVeOCmf6kFA8XGSNrc1VFKnAaOv7kJds2e4TrmrDDb+hbWutGQyQulUlNDmwVJU5qrXzc5jwgHntOu8w9SGEsKtW/639zDPP8Pzzz1M74HfkyBE2bNhQ94RPq9XSr18/YmNjGTZsGI888khrd0GA+Zq5slz1hM/V1zgHPy9ZgrkmGt0ngH/NHMS/flFPWLKLKrjig818euMoRkW0z+Lrjg5a3rpmGFd+sIW96QWAKl4+OSqYcH/3Nu6dEIrBYCApp4SE1HwSUvOJP5HPwYxCi2Q+1oT6uBLX2199RPjTN9hTRpJqVFbrWXXoFN9tT2XdkWxqv50/7Urj9nPMR3iemj5AppzaS16KWg+3a6H10gI9RsGYu2DALHBow6C6ohj2LFJBXJaVkQWNFkJjoCwfPALs3j0hhLlWn2YZERFBRkYGX3/9NVOnTiU/P5+9e/eSkJBAQkICu3fv5tixY+j1ejQajWSzbIFGh3ErS+D/TJ6QPXQEvrsa0neq/dnvqOkbosm+35HKYz/trSsx4OSg4f3rRnD+gG5t3LOGZRWVc/EbG8gpVtn8LhjYjY9uGNnGvRJdUWW1nmNZxRzIKORgRiEHThZyIKOwborfmfQO9CAuwr8ugOvh5ybBWz3HsopYtD2Vn3alc7qk0qK9X7AnKx48pw161sWl7YBNb8LBX8FQL2mcxgEGzoIxd0P4qLbpX63cJBVsxn9lPdj0DIER82D4PPDpbv/+CdFBdPhplrm5uUydOpW5c+cC4OnpSY8ePZg2bVrdOaWlpezZs4fdu3e39suLWs4e4OQOVTVZ3Uqy1dq52mAu+3Db9a2DunxkOD5uTtzzbTyV1XqCvVwZ3tOvrbvVqGAvV56cHs0Di9T/tRUHTrHy4Kl2HYCKjs1gMJBVVEFiVjGHMlUJjgMnCzmaVdRofTdTbk4ODOnhw7BwX2LDfRnRy6/LZpw8k5KKan7bk8GiHansTMmzek64vxtXjAhn7sgedu5dF6bXw5E/VRB3YrNlu4sPjLgB4m4H33D798+a42uMJY1M9Z4EI2+G6OngcHZruYUQttPqwdyQIUPO+LTU3d2dMWPGMGbMmNZ+eWHKI1DVfgEVzAVFGdskmDsrFw4K4ZtbRvPA4gTeu3YEfmdRSNzeLontznfbjLWjnvl1P+P7BuLqJOUKxNmrqNaRcrqUxKxiErOLOZ5dQmJ2MYnZJRRbSXHfmL7BnsSG+zKspwreorp5ydS/Jrrlix1sPn7a4rizo5Zpg0O4cmQ4Y/oENJoFV7SiqnLY8x1sett6fTi/3jDmToi9Bly87N+/Wroqy8Bs6BUqI2V5viorEHstjJwvxb2FaOdaPZi7++67ueOOO8jJySEwUGrStCmPYJNgLsc8mMuRYO5sjYzwZ9VDk3Gy8mbzZH4ZYe0s8YJGo+G5SwZz8RvrqdYbSM0t47UVR3ji4gFt3TXRjpVV6kjPL1MfeWWk55dyMr+8ZruMjIIymrC0zYyTg4a+wV4MDFU1F2s/+7jJ0/6msJaRcmZMmFkwNzDUmytHhXNJbHd83OX7ajelubDjE9j6IZRkWbaHj4FxCyBqmnnSEHvLOaqmUu5fCvdsAzeT2SXOHjD5MdA6qvpw7amOnRCiQa0ezF1zzTX8/vvvzJ49m59++olu3WQ6V5upn9Gy+3Djfl4KVJWBU/sKPDoKa4Fcck4JM97awPQhofxr1kDcndtPVrj+3byYP6E3H647DsCH647TL9iTy0e2k+k97ZxOb6CkspqSCvVRXKGjslqtfam/7NhBq8HZUas+HLS4ODng7KD2XWqO2XOUxGAwUFGtp6SimtJKHSWV1eSVVJFbUkluSQU5xZU125WcLqngdHElOcUV5JU2bS1bQwI9nYkM8jQL2voFe+HsKCNuzVFZrWflwVN8vzMNP3dnXr0ixqx9Zkwob6w8wgUDu3HVqJ4M7u7TRj3tovKSVWmB+C+NyxrqaGDADBh3L4THtUXvFL0ejq2ArR+oGnG1dn0J4+81P3fMnfbtmxCixWzybvPf//43U6dOZciQIdxyyy3MnDmTYcOGSUkCezPNaFmSDX4RqmC4rgIwqCd0oUPbqnedSmW1ngXfxlNcUa3WrpzI4+1rhhEdYpvyBWfjvvP7sepQFseyigF4/Ke9deuQ/tqfSbXOwB2TI+kd2PWKvFZU6zh6qphjWeojJbeUzIIyMgrKOV1cSVlV6yZqcjQJ+JwctDhpNTg6aHF00OCkrfnsoMXJQYOjyb5Wo8FgMKAzGNDpDehrP+upO1ZZraesSlcXvJVWVjd7BK05X0evAHcigzyJDPakT6AHkcGeRAZ6yqhQC+1LL+CHnWn8nJBeF1i7Omn516yBeJvUoPRydWLTY+fjINMo7etkPGx8U6Xsr5/UxNFVTVEce3fb1ocrL4D4r2H7R5B73LJ97/eWwZwQosNp9WDuzz//5NJLL6WiogKDwcCLL77ISy+9hFarJSoqimHDhtWVJYiNjcXfv+1Tu5eUlPDTTz+xbds2tm7dyu7du6msrOSFF17gscceO+v7Llu2jFdeeYWEhAQMBkNdKYYZM2a0Yu8bUX9kTusAgf3g1D51LPuwBHOtpKCsyuzN1LGsYma/vZGnZwzk2tE920XWPQ8XRz67cRRz3t1ITnEl1XoD8z7dZnbO0oR07j2/H7dN6mN19LGzqKjWsfV4LhuO5bAzJY+9aQVU6vRnvrCVVOsNVFfqKK1s39l8HbUaQnxc6e7rRnc/N/W5ZruHnzs9/Nw69c+JvZ0uruDnhJN8vzONgxmW2QTLq/T8tf8Uc0eYJzKRQM5ODAY4ukIlNUleb9nu5q/qw8Xdav4w1d6yD6uplAnfQlWJZXvQABh9Gwy90v59E0K0ulYP5h5//HHKy8u5+OKLmTp1KgUFBezevZuEhAQOHjzIgQMH+OabbwC1lqe6unkL5W3h6NGj3HDDDa16zzfffJP77rsPR0dHpkyZgouLC3/99RczZ87kjTfe4N577fA0zCyYy1Gfw+PA2VOtn/Ptafs+dBFBXi58f8dYXv3rCO+vTQSgolrPU0v3sfFYDi9eNrRdrAsK93fn43mjuOrDzZRXWQYvFdV6Xll+mJ9rgrppg0M7zRvFap2eVYey+DnhJGuPZDc7SUctZwctHi4OuDg6UBujm36HqvVqWmNltZ5Knb6ulEV74eqkxdfNGX8PZwI8nQnwcMbfw8VkWx0P9XGjm7drp/n3b6+qdHrWHs7m+52prDqUZTXjp0tNMpPLR4Yzto/U9bI7XRXs+wk2/g+yDli2+/WGcfdAzDXg3MZ1PH+9TxX0rk+jhaiLYfTtEDER2sEDRiFE62j1YO7w4cPExMSwbNkyi7bi4uK6wC4+Pr7dlCbw8vLi5ptvJi4ujlGjRvHjjz/y/PPPn/X9jhw5wkMPPYSLiwurV69m7NixdcfHjRvHQw89xLRp0+jXr19rfQnW1R+ZA5jxum1fswtzctDy2LRoxkUG8ODiBHKKVZ2nP/ZlsietgA+uH9Eu1rPEhvvyvyuHcfc3u9DpDTg7apnUL5DdaQVkF6l6dEdOFXPPN/H0CjjMrRP7MHdED7Psl7XrxNrDiOOZZBdV8OWWFBZvTyWzsLzB85wdtUQGedK3Zrpgd183QnxcCfJywdPFEU8XRzxcHJu95qt26mNltZ4Knc64XfO5Wq+nSmegWmegSq+nWmegWqcCwWqdwaRdj84ADhrQajVoNRoctBocNBq0Wg0OWtBqNDg7aHF3ccTD2QE3Zwc8nB1xd3HA3dkRNycHCc7amQMnC7ll4Q6rbcN7+nL5yHCmDw01m1op7KSyFBK+ViNxtcnETHUfqaYpRs9o26QmpoIHme+7+qracCNvBr9ebdIlIYRttXowFxISwoAB1rPkeXp6Mn78eMaPH9/aL9sikZGRfPzxx3X7P//8c4vu98Ybb1BdXc3dd99dF8gB9O/fnyeffJIHH3yQN998k7feeqtFr3NG9dfMCbuY1D+I3++byIOLdrPhmBoRTc8v45qPtrDw5tHEhvu2bQeBqYNDWH7/RNLyyhgZ4Y+niyMFZVW89OchvtlqfNOScrqUp5bu439/H+Gm8b1xd3ZgxYFTbEvKpX83Lz64fgTh/m38JLoB+aWVvL/2OF9sSra65s3VScuEvkGMjQxgRC8/BoZ62yQ5h4NWg1tNYAXyhrwryy+txMfNyewhyNAePvQL9uRozVrWYC8XLh3eg7kjetA3WLIJtomyfLXObMv7UJpj2R51sUpq0nNM241wFWVCxh7of6H58dhrYPV/wCdcTfkccnnbjxYKIWyq1YO5OXPm8Msvv7T2bTuU2lHJ2sLppi6//HIefPBBfv31VzsEc1amWQq7CPZyZeH8ON5bm8hrK46g0xsoLK/muo+38vlNoxgZ0fZrRfsGe9E32FjnyMfNif+bM4TrRvfi/bWJLNtzsi5xRk5xJa8sNy9ncSCjkKs+3MLXt4wmwNOZt1cd47e9GYzpE8DTMwa22bRSnd7A55uS+d+KIxTVm0rp5KDhwkEhzIntzoR+UmtP2F5FtY5VB7P4KT6dNYez+P6OcWYPdDQaDdeM7sn25FwuHxHOxH6BUmOvrRRlwuZ3YMdnUFlk3qZ1VGvMxt9nXubH3jJ2q+yZ+35UiVYePACuJom2XDzh9vVqGUUHmDkhhGi5Vg/m/vnPf/LTTz/xwgsv8Pjjj7f27du9/Px8TpxQIxvDhg2zaO/RoweBgYGkpKRQUFCAj48Np92ZBnNVJVBZourICLvQajXcfW5f+gV7cvc3u6jSGajU6Vs9M2JrGxjmzZtXD+ORi6L4aP1xFm1PpaLaenKQ9PwyrvhgMwaom6L5w840thw/zdvXDLf7KGRidjH/+GEPO1PyzI4HeDhz88TeXDEynEBPF7v2SXQ9BoOBHSl5/LQrnd/2nKSw3PhQYcmuNIv/FzeN781N43vbuZeizulENZUy4RvQVZq3ObnD8HkqM6VvG5Vy0evhyJ+w5V3zxCuVVaokwti7zc+X6ZRCdCmtHsxddtllDBs2jKeeeoqDBw/y5JNPEhXVhk+x7Kw2kPPz88PDw3rg1KNHD3Jycjhx4gRDhgyxXWfc6y2UL8lRwdzpRMjcA9lHoO/50GOk7foguHBQCB9eP5IF38bz5tWxTOwXdOaL2oFwf3eenT2Ye8/vxxebkvltTwYOWg3nDQjGzcmB//19FICsmiDOVFpeGXPf28TlI3swuncAo3r7071eMXWDwUBRRXWrrQX6ZusJnvl1f139NwBvV0duPyeSG8dF4OHSfur+ic7peHYxS+LTWRKfTlpemdVzthzPtVr8W7SBjN2w4X/Wywu4+qpkIXG3g0cbJZ2pLFEB5pb3IDfRst0rDFy8LI8LIbqUVn93s2rVqrrtr776iq+//pq+ffsycuRIhg0bVleSICCgc2bkKi5W6x7c3Rueo14b5NWeeyaDBg2yejwxMZHIyEZq2Dg4qlTJZblqvyRHPbFb8U84VJOgRqOVYM4Ozo0OZsOj5+Lr7tzWXWm2QE8XHrowiocuNH8o083blSeW7KW2ZraLo5YLBnbj970Z6A0qq+O321L5dlsqABP7BfLPGQPpG+zJn/syef73g5zML2P++N48OX3AWb+5rdLpeW7ZARZuTjE7PismjGdmDcLfo+N9z0XHsmj7Cb7Zlsru1Hyr7W5ODlw0qBtzhvdgfGSABHJtyWCAlI2w4XU49rdlu1cojL1HJQ1pq0CpIB22faCyUpYXWLaHDVN9HDgbHGQdrhBdXasHc0lJSSQkJJCQkFCXufLo0aMcPXqUb7/9tu6PWPfu3Rk2bFiLk42AWpu2b9++Zl2zcOFC4uLiWvza9TUly1/tOXbhEWQM5opPqc9BUcZgLvuQ/frSxVkL5HR6A1lF5YT6uFm5on27Oq4nPm5OvLvmGP27efHgBf3p4efOtqRc7v023iJz5PqjOUx9Yz0DQr3Yl26sofXxhiQqdXr+PWtQs9/kFpRWcdc3O9l47HTdsUBPF56fM5iLBoW07AsUook2J562COQ0GhgfGcicYd25aHAInjIy3LYMBji2Eta9AqlbLNv9I2HC/WpdnGMbTsU2GGDhLDh9zPy4RgvR02HM3W2beEUI0e60+l+XXr160atXL2bPnl13rLCwsC6wqw3y9u/fb7V8wdlITk7m8OHDZz7RRGlpaau8dn1eXupJXkmJlUKd9V7b07Npmcr2799v9XhDI3ZmvEMhp+Z7U5CmPgdFG9uzm/d9E62nSqfnocW72Zp0msW3j6VXQMdbz3jxkFAuHhJqdiyutz8rHpzEH3sz2Zacy/bkXFJOq595nd5gFsjVWrg5Ba1Gw79mDmxyQFdQVsV1n2xlb7rxyfXQHj58eP1IQnxcW/BVCWGpSqdnw7EcHDQaJvU3nyo9Z3gPliacBCA6xIs5w7ozO7a7/By2B3o9HP5dBXEZCZbtoTEw4UEYMLN9lBfQaFQZgeU1OQecPWHY9WrKp7+sqxRCWLLLo0Jvb28mTpzIxIkT647pdDoOHWqdUaEdO6zX6GkLPXuqQtx5eXmUlJRYXTeXlpZmdq5N+UUYt/NrpqEF9jceO30U9Lr28UesCzEYDCz4Jp4/92cCcM1HW/n+jrGE+Xa8ETprvFyduGJUOFeMCsdgMLDiwCn+89tBTuQaH6JM7BdIYXl13YjG55uSqdTpeXbWoDNm8yuuqObGz7aZBXIzY8J4Ze5QyVApWo1Ob2BbUi6/7jnJH3szyCutYlhPX4tgbnxkAAvO68u0waEMDPNu4G7CrvQ62L8E1r9qvdB3xESY+CD0ObdtRrmqK2Dv91BVBnG3mrcNu07Vt4u5GoZfD65tX59UCNF+tTiYe+GFF4iJiSEmJobu3bs3+ToHB4emjSx1ML6+vvTs2ZMTJ04QHx/PhAkTzNrT0tLIycmhZ8+ets1kWdchk6xWecnqc2B/QAMYoLoccpMgsK/t+yLqaDQaJkcF1QVz6fllXPvxVj67cRQRgR1vhK4xGo0qBzCpfxBfbUlh14k8Zg4NY+rgEArLq7n+k63sSVNB2TdbT5CWV8Y71wzDq4HEKKWV1cz/bDvxJ/Lrjs0f35unZ5z9ujshahkMBnanFfBLwkl+23uSU4XmCX7iT+STmltqVl/R0UFrsaZUtBFdFexZDBtes5yqCNDvQpj4MPQcbf++gapht/MzVcOuOBNcfCDmKvP1ea7ecMcGmUophGiSFgdzTz75ZN0bKH9//7rArvZj0KBBODp2rbUC06dP57333uOHH36wCOa+//57AGbMmGGfzpiOzNUGc87uENgPco6o/RObJZhrA1fF9aSsSse/f1VPjZNySpj+5nqeu2Qwlw7v0ca9a32uTg7cMrGP2TEfNye+nD+aeZ9tI6FmhG7dkWwuf38zC+fHEextPk3NYDDw0OLdbEvOrTt2/ZheEsiJFjEYDBw+VcSvu0/y6+4MsxFkU86OWs6NCqK8nZcX6ZKqKyD+K5WdsuCEZfuAmSqIC4u1d8+UgjSVlXLnF+Y17CoKYNdCy/IC8vtMCNFELY6y7rrrLvbs2cOePXs4ffo0q1atYtWqVXVvrBwdHRkwYEBdcBcbG0tMTEynyGYZHa3Wnq1cudJsVPK+++7jww8/5P333+eqq65izJgxABw9epTnn38eBwcH7r33Xvt00iyYS1GLqzUa6DXeGMylbFRTOYTd3TS+N2VVOl7+U61dLKnU8eDi3aw6lMWC8/oRFdL50077uDvx3W1jeHBxAr/vVSOVhzKL+PeyA7xzzXCzc99bm8gf+zLr9q8aFX5WiVOEMPVzwknuX5Rgtc1Bq2FC30BmxoRx4aBurVZKQ7SSylKV9XHTm1CUYd6m0cLgy9SauG4D26R7ZO6DTW/Bvh9AX23e5uCiRuX6XdQ2fRNCdAoaQyumVkxKSmL37t11HwkJCSQnJxtfzOQNV2hoKLGxsa2WBKWl5syZQ0aG+kOQlpZGeno64eHhhIWFAaq/S5YsMbum9utJSkoiIiLCrO3111/nwQcfxNHRkQsuuABnZ2f++usvysrKeO2113jggQda3OfaaaoNJUgBoDQXXjZZNP3IcVUzZ+8P8OPN6phPT3hgb4v7I87e73szeOzHPWbFhQHG9gngtkl9ODc6uI16Zj96vYEX/zzEh+uOA+Co1bDp8fMI9lKjc+uOZHPjZ9vQ1/zGOqd/EJ/eOAoHrQRyomn0egNJp0uIDDJPPpVTXEHc83/X/WxpNBAX4c/MmDAuHhIq5S3ao/JC2PEJbHobSnPM27SOMPQqmPBA28w6MRggaR1sfAMSV1q2u/rCqFtUUhPPzv+7XYiupknvz1tRqwZz1hQVFZkFd7WZLMvKytBoNOh07WO6SkREBCkpKQ229+rVyywwhcaDOYBff/2VV155hfj4eABiY2N55JFHmDVrVqv0uUk/LAYDvNgTKmoyCN6yCnqMgKJMeNVkjcd9e1QNOtFm0vPLuP+7eLYn55kdD/F2ZfXDk3Fz7vyJPXR6AxNeWkVGgSpr8MhFUdx9bl/S8kqZ8dYG8kurAAj3d+PXeyZ0yLp9wr6qdXq2JuXy575Mlu/PpLC8ivinL7T4/3TVh5spq9Izc2goM4aGSSbK9qq8UNVg2/Q2lOebtzk4q8yP4+9r279nuip4IxYK08yP+/SEsXepPro0LZu1EKLjsXcwZ/PFbF5eXkyYMMFs7Zher+fIkSPs3r3b1i/fZPUDtaY4Uxw8c+ZMZs6ceZY9aiUajfqjllkz8paXpII5rxAI6GtcIJ6yUYK5Ntbd141vbx3Dkvh0Pt+UzP6TKgD/v0sHd4lADtSUtitHhfO/v48C8N32E9xxTiT/+GFPXSDn6qTlg+tGSiAnGlRepWPjsRyW789kxYFT5NX87NRaeySLqYPNS2p8flOcZEJtzxoL4hzdYOR8GLdAleNpaw5OMOZO+OtJtR8yVAWYAy8Bh66VQ0AIYXtt8ltFq9USHR1dt+ZM2JhfhDGYyzcZfew1XgVzAf3apFvCkqODlstHhjN3RA92puSxPTmP86K7WZxXWa3H2bHx9P0d1RUjw3lz5VH0BkjNLeOhxQlsSjQWBX/+kiGS/l1YyCosZ+WhLFYePMWGYzmUV+mtnueg1ZCYbVkHVAK5dqqxIM7ZU6X1H3M3eAZZvdymSnNh6wcq+2T9BCYj5qnkYnG3Qu9zJKGJEMJm5BFRV2AtoyXApIfh3CfUKJ1oVzQaDSMj/BkZ4W/RlllQzqXvbuTu8/py9aieaDvZmrEwXzfOjQpm5aEsgLpizABTBnTj0uFNL4EiuobU3FImvry6wXZnBy0T+gUydXAIFwzohp+sgWv/Gg3ivNR6s7F3g7vl70ibKzyp+rXzc6gqUWvghs8znzrp4gVXfW3/vgkhuhwJ5roCa7XmAHztULRctCqDwcCTS/ZysqCcJ5fs49fdJ3nx0qGdrjbd1XE964K5Wl4ujvznksGSubILKyitYmNiDhcM7IaTSWH5Hn5uRAS4k3zaWFLAw9mBSf2DmDo4hHOjgyULZUfRnoO404mw4XXY/R3oTabulufDri8sR+eEEMIOJJjrCvxMslmaBnOiw0nLK2NHijFBypbjuUx9Yx0PXRDF/Am9O01mx8lRQYR4u5JZWF537InpAyQpRRdTrdOzOy2fdUdyWHc0m92p+egNsPj2scT1Nr6Z12g0nBfdjeX7M5kyIJjzB3RjdB9/XBxl6mSH0Z6DuIzdKojbvxSot1bezR9G3wExV9u/X0IIgQRzXYPpNMuCdJVpy0GeUndE4f7urHhwEv9cup8/96t6a+VVep7//SC/7c3g5blD6d+t49emc3TQclWcMRHKmD7+XDUqvI17JWzNYDCQfLqUzYmnWX80m43HcizKdQCsP5ptFswB/GNqlBSP74jaaxBnMEDKJtjwGhz727LduzuMvUetjXPuXDMjhBAdiwRzXYFvOKABDGDQQUEa+JuM1lWVQeo2yNyjsoGJdi3Yy5X3rx/B73sz+OfP+8gprgQgITWf6W+uZ2ZMGOdGBTOpXxA+7h03aL9rcl/yS6sorqjm8WnR8ia9EyuuqObJJXvZcvw0pworGj030NMZR61l8h9JYNLBtNcgrpauCn64CYpPmR8P6Avj74ehV4KjrL0UQrQ9Cea6AkcX8A6DwnS1n5dsDOZKcuC1AaBTAQGDLgUfSTDREVw8JJSxfQJ4btkBfopX/7ZVOgM/7Urnp13pBHm5sO2J8ztsEOTsqOWZWYPauhuiFen1BhKzi4kM8jRL3OPh7MCGozmcLqm0uMbJQcPIXv5M6h/ExH6BDAz17nRJf7qU9h7E1XJ0Vv1Y8U+1HxoDEx6EATNBKw8OhBDthwRzXYVfhDGYMy1P4BGoAr3atXQpG2HoFfbunThLfh7OvHZlLDNjwnhiyd66YtsAE/oGWgRyX25O5r01iVwyrDvzxkXQzVvWoAnbySmuIOFEPgmp+cSn5rEntYCiimp+v3eiWXkJjUbD6D7+/L5XTR3uF+zJuMgAJvUPYkyfADxc5E9Vh1dZAts+go3/g7I887a2DOKqyiHha1U6YOR887aR8yGlprxA5HlSXkAI0S7JX8iuwi9CBWpgmQSl1wTjseT1Esx1QOdGB7PyoXP4+2AWaw5nse5INpOjLOsuZRdVcLKgnHfXJPLR+uPMjAnjqlE9GdnLDwOw5nAWP+xMw0Gr4R8XRdMzwN3+X4zokArLqzicWcSetAISUvNJSM0jNbfM6rlbk05b1AqcNzaCGUPDiOvtT6Cniz26LOyhqlyl8F//KpSYZ6ht0yCuohh2fAqb31ZTKd381dRJ0/VvLl5wzXf27ZcQQjSTBHNdRUPlCQAiJkDCV2o7eaPduiRal7uzI7NiwpgVE4Zeb0BnMFick2Myjc10SmYPPze0Gg0nco2p3U8VlrP49rEddpqmsA293mAxzTHldAnnvLKmSddrNVgN8kb3CWiN7on2QlcF8V/BuleMs0JqOXuqDJBtEcSVF8C2D2Hzu1CWazxelgu7FsKYO+3bHyGEaCEJ5rqKhgqHA0SMN27nJkJhBniH2qNXwka0Wg1aLIOwe87tSy9/dz7flGw2JTMtz/zNtYezAy9eNlQCuS6sqLyK5JxSjucUk5RTQnJOCceyi8ksKGfbE1PMAroefu64Omkpr9Jb3CfYy4XYcF9ie/oSG+7L0B6+eMq0yc5Lr4M9i2Hti5Z/axzd1JTF8feDh52D99Jc2Pq++igvMG9zcIHh10PUNPv2SQghWoH8Re0qzIK5FPM2357qI/+E2k/ZCEPm2q1rwn7CfN24/ZxI5k/oze97M/hhZxobjuVQO4in1YCTg5aHLowiMsizbTsr7GbXiTz+2JvByfxy0vLLSM8rrcuSak16fhnh/sYpuA5aDVHdvDieXUJ0qJcK3sL9GNbTl1AfV3ko0BXo9XBgKax5AXKOmLc5OMOIm2Dig+AVYt9+FWerqZTbP4bKYvM2Jw8YdbMqMeDVzb79EkKIViLBXFdhGsyV5aonk64+xmMRE9UicFDr5iSY69ScHLTMju3O7NjuZBaU89eBTKp1Bi4c1I0eftbXyRWUVuHm7ICzo2Va+Fo6vaFDFS7PLqrgaFYRx7NLSM0tJbuoguziCvJKKymr1FFepaeiWkdFlZ7yah37/n2RRSHq819dQ0mFDlcnLa5ODrg4OeDqqK377OrkUNcW08OXy0b0MLs+NbeU+NR8k3ON57s4auu+33qDqsMW7OVq8W+w60QeReXVVFTpKK3UUVheRWFZFUXl1TXb1ZwuqeB0cSUT+wXxz5kDza4/klnER+uTmvx9O5hRaBbMASycPxpvN0cJ3LoagwEO/wGrn4dT+8zbNA4w7DqY9EhNiRw70+vho/Og4IT5cRdvtVZv9J32HyEUQohWJsFcV+EZrKa4VNdMp8tLVqmWa/UabxLMybq5riTEx5UbxkY0ek5BWRXXfrKF0godM4aGEhnsiZerIzo9lFZWE38iny3HT3Mos4ixfQJ46bKhHSJ5ymsrDvPtttQmn19epbcI5rKLKqwWtrbmktgqi2Bue3IuDy7e3eQ+LL9/ElEh5oXhH1yUQPLp0gauMNfT3/Lfpbufm9Vz3ZwciAj0oHegO70DPYgI8CA6xJt+3SxHbTtyTUNxFgwGSFwFq/4DJ3fVa9SoZCLn/AMCItukewBotTDyJlj5b7Xv5gdj7lZTPd18265fQgjRiiSY6yo0GvVHtfbJadZB82AuYoJx+/RRKMq0/3QY0S6VVFRz02fb2JdeCMCbq441ev7OE3mUV+vs0bUzMhgMxKfms2RXOudGB3FetPlUqj6BzZtKWlGtA8yDlmq9ZaKZhlgrbG1tnVljDFi+Xv0AszE5xZZFufsEeXJ1XDjdfd0Iq/mICPCgm7eLjLQJS8kbVRB3YpNl28BLYPLjEBxt3z6dToTcJOg3xfz4qFtg97cQe62aUuniZf16IYTooCSY60pChhqDuZMJEHOVsc2vF/iEQ0HNKEXyBplqKQA1JbM59egevrA//bu17Rum8iodP+1K56stKRzIUEFoYXmVRTDXO9CDQE8X+gR5EBHgToi3K0HergR4OOPm5ICLkxYXR+O0R393Z4vX+vbWMZRX6Siv1lNR87m8SkdFlY6Kmu3yKvU5tqevxfW+7k7E9PBR55hM6ay9rj4rSUrp4edGpU6Pi6MWN2cHvF2d8HZzwsvVEW9X9dnfw5lATxfCfC3/Lbv7uvHCpUOb+N0VXVbaDhXEHV9t2dZ/Gpz7BITa+eco+7Aqe7D3e3APgPv2gLPJ6LOrN9y9TWrECSE6LQnmupKwWNj9jdrOsDKtK2KCeoLpHggVRXbtmmi/nB21vHvtcNYeySb+RD7HsotJyi6hUqfHQaPBQauhd5AHY/sEoDcYuHZ0L4t7bDqWQ7i/u8U6q9am0xv4cWcar604QmZhuVnb6kNZVOn0ODkY15udPyCYHU9NqX+bZokJ923R9RcPCeXiIdazxxoMBqp0BrQaVVhbg/X3pJ/cOKpFfRCiUVkHVRB3aJllW59z4bynoMdI+/Ypc58qe3DgZ6gdrS7Jhl1fWJYXkEBOCNGJSTDXlYTGGrcz96jF4VqTRAoTHlApo4Oi5I+fMKPRaJgcFczkqOBmX1tepeOh73dTVqXjw+tHEtfbNnWlthw/zdNL93E0q9iibXRvfy4b3gN9vWGt9j6FUKPR4OzYvvsoOrH8E7D6BdjzHRjqjRL3HKuCONMp+vaQuRfWvgQHf7Vs8+8DXlJWRwjRtUgw15WEDAaNVv1RriyG08cgqL+xPSiq7fomOi3TmnbXfbyVV6+IYWZMWKvdv7xKx2srjvDR+uNmUxCdHbRcOSqc68f2avNpn0J0KMXZaurijk9AV69ERWgsnP80RJ5v34d+jQVxgVEw6WEYdCk4yNsaIUTXIr/1uhJnDwjsD9mH1H7GbvNgTggbCPVRqfQrq/VU6vQs+DaerKIKbp7Qu8X3Tsop4Y4vd3L4lHFasEYDc2K78+CF/RsssyCEsKK8UNVk2/yOZU22gH4qiBswy/4zN36+B+K/tDzebbAqezBglvksEyGE6EIkmOtqQmNMgrkEGHp5m3ZHdH6zY7vT3deNWxfuIK+0CoDnlh0gxNuV6UNbNiXKy9WRsipj5szIIA9euyK2xevYhOhSqsrVKNy6/6o6pKa8u8PkxyDmmrYb9fKttw6322A451GIniFBnBCiy5Pfgl2N6bo5a0lQQK2ly9gD2z+2njpPiGYaGeHPT3eNJ9zfWM/swcUJ7DqR16L7Bnq68PlNo/D3cObGcRH8du9ECeSEaCpdNez6Et4aAcufMA/k3PzgwudhwS4YfoP9ArnyQstjo28DV18VxF3xJdy+HgbKaJwQQgBoDAZ5t95RDRo0CID9+/c3/aLkjfD5xWrbxRseTTH/g1hRBG/EQOlptb9gV9sWfRWdSmJ2MZe+u4mCMjVCF+jpzJK7xrc4y2VBWRU+blK0WogmMRjU2rNVz0HOEfM2Jw8YezeMuwdcfezXp8x9ak1c+k71d8epXgmNnKPgHykBnBCi3Tur9+ctIL8VuxrTGkAVhZCXZN7u4gUeQcb9pHX26ZfoEiKDPHn/uhE4Oag1NznFldzw6TayisrPcKWyKTGHgpqpmqYkkBOiiY6vhY/Ph8XXmwdyWicYfQfclwDnPWm/QC5zHyy6Ht4fDwd/gcJ02LXQ8rzAfhLICSGEFfKbsatx8YKAvsb9jATLc3qfY9xOWmvzLomuZWxkgFmB6qScEq77eCvFFdWNXrfl+Glu/Gw7V3ywmcyCpgV/Qoga6btg4WxYOEuNftXRQMzVsGAnTHsJPJtffuSs1A/iTB39yz59EEKITkCCua7IdN3cyQTL9j6mwdw6tYZOiFY0d0QP/jHVWArjgoHd8HB2aPD8I6eKuPWLHVRW6zl8qoj5n29Hr5cZ4kKcUfYRWHwDfHQuHF9j3hZ1Mdy5Cea8D369rF7e6hoL4mrXxF2z2D59EUKITkCyWXZFoTGw7we1bS0JSq/xxnp0pachaz+EDLFvH0Wnd9fkvpRV6nB1cuDuc/tatJdXqbbSymru+noXRTUjdy6OWv49exBarRTTFqJBBemw5gVI+Nqy4Hev8TDlGQiPs19/Tu2HNS9aBnAg2SmFEKIFJJjrisJijdsZu9VieNO6QW6+avTu5C61f3ytBHPCJh660Hqh+p0pedz51U7evHoYS+PTOZZlrHn11tXDGBXhb68uCtGxlBfAhtdhy3tQXW86csgQOP8Z6Gvngt8AB362PhInQZwQQrSIBHNdUYhJEpTyfJUExb+P+Tl9zjEGc0lrVWYzIexgZ0ou8z7dTnFFNTd8so1KnXFU4fZz+nDhoJA27J0Q7VR1Jez4VGWErF8rzq83nPcUDLq07YKmMXeqALOiEIIHqdp1EsQJIUSLSTDXFbn5qhTPuYlqP22HZTDX+xz1dBfUOovCk+AdZs9eii6qolpPdc06TdNALjbcl4cbGMkTossyGGD/Elj5b8hLNm/zCFZB0/AbwMFOGV/zkmHbR3D+v8DR2XjczQ8ufE59jp4pQZwQQrQS+W3aVYWPNm6nbrNs7zUevGqCN10lbPifXbolxLjIQD6ZNwoXR+OvJy8XR966ehhODvIrS4g6yRtVmYEfbjIP5Jw8YPITcG88jLrZPoFcQRr8ep8qQL75bYj/0vKcETfCwNkSyAkhRCuS36hdVfgo43aalWDO0RkmPGDc3/k5FGXavFtCAIzvqwI6X3cnXBy1vHpFTIsLiwvRaWQdgm+ugs8vNi8zoHGAkTerIG7yo+Diafu+FGXC7/+AN4epvxP6mhIj6/4LVVJCRAghbE2mWXZVPUyymGXug8oScPYwP2f4DbD+VdU2+jZwdLFvH0WXNqFfIJseOw+DATxc5FeVEBRlwur/U6Ne9TNURs9QUxuD+tunLyU5air+9o8tE6349IRz/gFa+X8rhBC2Jr9pu6rgAeDsBZVFYNCpgrK9J5qf4+QKV36pioy7S/ZAYX/uzvIrSggqimDTW+qjqtS8rccouOA56DXWPn0pzVX92PoBVJWYt3mFwaSHYdj15uvlhBBC2Iy8U+qqtA7QY4SxiGzqVstgDuxbh0gIIYSRrgp2faHqs5Vkm7f591G14gbMsl+ZgcRVsHieykhpyiMYJj4II25SDwGFEELYjQRzXVn4aGMwl7a9TbsihBCihsEAh5bB38/A6WPmbe6BKkPliBvtl6GyVkiM+fRON3+YcD+MuhWcZU2rEEK0BQnmujLTdXOp2yyLh1uj10FhOvj2tG3fhBCiK0rdBn89DalbzI87usHYu2H8feDqbft+VJWB1gkcTN4meATA6Dtg+0cwboHadvGyfV+EEEI0SIK5rqzHCON2WS6cToTAvtbPrSiCXV/Ctg9Ao4V7dkp6aSGEaC05x1StuIO/mB/XaCH2Wjj3CfvU+qyugJ1fwPr/wnlPw/DrzdvH36cCOTdf2/dFCCHEGUkw15W5+UFQNGQfUvtp2xoO5kpz4a8njVNsjq2A/hfZp59CCNFZFWfD2pdg52fGtP61+l2k1sV1G2j7fuiqIP4rVVKgME0dW/syDL3SPJmJPUYFhRBCNJkMrXR1PUzqzVkrHl7LrxdEXWzc3/q+7fokhBCdXWUJrH0F3oxV0xZNA7nQWJj3K1y72PaBnF4HCd/C2yNh2f3GQA6g+BScjLft6wshhGgRGZnr6sJHq5pF0HgwB2p9xKFlajtxFWQfhqAo2/ZPCCE6E101JHyt6sUVZ5q3+faC8/8Jgy61/TR2vR4OLIU1L0DOEfM2rZNKsDLxIfAOtW0/hBBCtIgEc12daemBrANQlt/wWoiICRA8CLL2q/1tH8L0V23dQyGE6PgMBjj6F6z4F2QfNG9z9VVFtkfdAo4utu/HkT9h1fNwaq95m8YBhl0Lkx6RJFdCCNFByDTLri6gn0p1DYABjq9u+FyNBkbfZtw/9Jt6YyCEEKJh6bvgi5nwzRXmgZyDi0oocl+CylRp60AOoCQHvr+pXiCnUWvjFuyAWW9JICeEEB2IBHNdnVYLfacY94+uaPz86BnG7aIMy+k5QgghlNwk+GE+fHQuJK83adBAzNWwYCdc8KxKRmUvnkEQd6txf+BsuGsLXPqhKkQuhBCiQ5FplgL6XQB7vlPbR1eotRQNrdfwCISQIZBZ81T3+BpZNyeEEKZKc2HdK7DtI9BXmbdFngdT/g2hQ23fj5MJUFEIvSeZH5/wAOQlqzVxYbG274cQQgibkZE5oKSkhC+//JIFCxYQFxeHi4sLGo2GF1988azut3PnTp555hkmTpxIWFgYLi4uhIeHc91117Fnz55W7n0r6Hu+qmUEUJIFGQmNn99nsnH7+BobdUoIITqYqjLY8Dq8EQtb3jUP5LoNget+guuX2D6QyzoIi66HD8+BX+9TZQdMufvDlV9KICeEEJ2AjMwBR48e5YYbbmiVe1VXVzNy5EgAAgMDiYuLw93dnfj4eL7++msWL17MN998w9y5c1vl9VqFm5/Kanlis9o/ugK6D2/4/D6TYdNbajt5g8rO5iA/SkKILkqvgz2LYdV/zFP7A3j3gPOegqFXgNbBtv04nahq1u1ZDNSsZ849DgnfwIh5tn1tIYQQbUJG5gAvLy9uvvlmPvjgA3bt2sWTTz7ZovuNHj2aZcuWcerUKX777Te+//57jhw5wpNPPklVVRXz588nJyenlXrfSvpdYNw++lfj5/YcCw41RWQrSyDnsO36JYQQ7dmxlfDBObD0DvNAzsVHTadcsANir7ZtIFeQBr/cC2+Pgj2LqAvkQE2L9+tlu9cWQgjRpmQ4BYiMjOTjjz+u2//555/P+l6Ojo5s2bLF4rhWq+W5557jxx9/5NChQ/z222/Mm9eOnpT2uxBWPqu203eqjGcegdbPdfZQi/Z9e0HEeHD1sV8/hRCiPcjYAyv+aZkBWOsEcbfBpIfVdEZbKjoFG16DHZ+CrtK8LTAKzn0CBsyyfc06IYQQbUaCOTvSaDQMGTKEQ4cOcfLkybbujrlug8ErDIpOAgY49jfEXNXw+WPutFvXhBCi3chPVdMp64+AAQyeC+c/DX4Rtu/H6hdg05tQVWp+3LcXTH7cPtM6hRBCtDkJ5uzs+PHjAISEhLRxT+rRaNRUy11fqP2jfzUezAkhRFdSlq9Gwba8D7oK87aIiWq2QmNrjVtbeb55IOcVBuc8AsOuBwcn+/VDCCFEm5Jgzo42bNjAzp07cXZ2ZurUqU2+btCgQVaPJyYmEhkZ2VrdU1Mt64K5v6GiCFy8Wu/+QgjR0VRXwPaPVamBsjzztqABKojrd4F6IGZPEx6EXQvByV2VGBg5H5xc7dsHIYQQbU6COTspLCxk/vz5ADzwwAOEhoa2cY+s6DMZnDygqgQqCmDbh+pNwpmU5UHhSehmPegUQogOR6+H/T/Byn9D/gnzNq9QtR4t9lrbTmWsroCdX8ChX+H6peav5dUNrlkEYcPBxdN2fRBCCNGudYpgbu7cuezbt69Z1yxcuJC4uDgb9cicTqfjmmuu4ejRo8TFxfHss8826/r9+/dbPd7QiN1Zc/GE0berqUQAG9+EUbc0nOAkbQf88Q84GQ/ugfDAfnB0bt0+CSGEvSWtg7+etqy56ewFE+6DMXepRFC2oquG3d/A2pehIFUd2/sDxFxpfl79YuBCCCG6nE4RzCUnJ3P4cPPS45eWlp75pFZy22238dtvvxEVFcVvv/2Gs3M7DnjGLYBtH0FlkVqTseV9mPyo9XP9ekPmPjDoVbHxg7/AkHZUP08IIZrj1AH4+xk4utz8uNZRTWOc9A/wDLLd6+v1sO9HWPN/qj6cqY3/U0lN7D2dUwghRLvWKYK5HTt2tHUXGvTII4/w6aefEh4ezooVKwgMbCDdf3vh7q8yVa57We1vfgdG36YKi9fnEQCDL1NPkEFNy5RgTgjR0RSehNX/Bwlfq4dTpgbOhvP/BQGtuD65PoMBDi1Tfcg6YN6mdYIRN6pSBxLICSGEqKdTBHPt1QsvvMB///tfgoODWbFiBeHh4W3dpaYZexds/UCtm6sogM3vwnkNFFKPu9UYzKVuhYzdEBpjv74KIcTZKi+ADf+DLe9BdZl5W/gYuPA5CLfhdHyDQRUdX/Wc5ZROjRZir1GjgVL0WwghRAOkkqiNfPjhhzzxxBP4+vqyfPlyoqKi2rpLTefmB+PuMe5v+xB0VdbP7T4cuo80Ofcj2/ZNCCFaqrpSBXBvxKo1wqaBXEBfuPJrmP+nbQM5UHXivr6sXiCnUfXq7t4Os9+RQE4IIUSjJJhrgejoaKKjo0lPTzc7/sMPP3DnnXfi6enJ77//TmxsbNt0sCVG3w4OLmq7PB9SNjZ8btxtxu2930Nprk27JoQQZ0WvV4lE3hkFfz4GZSa/qzyCYfprcNcWGDDDPlMaB881/p4FiJoOd26EuZ9AYF/bv74QQogOT2MwGAxt3Yn2YM6cOWRkZACQlpZGeno64eHhhIWFARAaGsqSJUvMrtHU/LFPSkoiIiICgKysLMLDw6msrGTIkCEMH269iOwll1zCJZdc0qI+12azbCjbZYt9fYUxEcCoW2H6f62fV10Brw2E0hy1P+UZmPCAbfokhBBnI2kdrPinyr5ryskDxt8LY++xbYr/zH0QPBC09Z6h/vkEZB+E856C7iNs9/pCCCHswubvz+uRNXM14uPjSUlJMTuWmppKaqpKC92rV9OmupSWllJZWQnA3r172bt3r9XzIiIiWhzM2dyAGcZg7tBvMO1lyzciAI4uaoH++ppgb9PbKviT2kdCiLZ2aj+s+BccW2F+XOOgfm9Nfgw8g233+pl7Yc2LKsHJ3E9V0ihTFzwLDvKnWAghxNmRvyA1kpOTm32NtUHNiIgIq8c7pKiLQXOfyu5WdFI90e7RwJPj0bfDlnehqlSN0G3/SEbnhBBtpyCtJkPlN0C938kDZqkMlbacynjqAKx9EQ78bDy25kUYeIl58W8J5IQQQrSArJkTDfMIVBndah1a1vC5nsEqs2WtjW9AZYnt+iaEENaU5auRuLdGqFIDpoFcz7Fw8wq48kvbBXLZh+GH+fDeOPNADsDRFYpP2eZ1hRBCdEnySFA0bsAMOLFJbR9aBlP+1fC54+6D7Z9AyFA49wlw9rBPH4UQoroCtn8M616BsjzztsD+ai1v1MW2S2yScwzWvqSSQNUfCew2GCY/DtHTpVacEEKIViXBnGhc9AxY/oTazjkC2UcgqL/1cz0CVCY2317yhkUIYR96Pez7EVY9C/knzNs8u6kgatj1tpvOWHgSVv0Hdn9rWXA8KFq9/oBZ1tcbCyGEEC0kwZxonF8vCBmiFvEDHPoVgh5q5PwIu3RLCCE4vkZlqMzYbX7c2RPG3wdj77b9DAF9NexZbB7IBfRTiVUGzTFfHyeEEEK0MgnmxJlFzzAGc3t/hAkPNm/kraoMnNxs0zchRNeTuVeti0tcaX5c6wgj58Okf4BnkH364tsTRsxTUzz9+8A5j8GQuRLECSGEsAuZ9yHObOAlxu2s/XBkedOvTVoPb8RCciNFx4UQoilyj8OPt8D7EywDuYGXwN3b4OJXbBPIFZ6E3x+BQ79btk18CGa/C3dvh5grJZATQghhNzIyJ84sOBr6T4Ujf6r9dS9D/4vOPDoX/zX8sgAMOlh8g1pP5xVi+/4KITqXokyV2GTn52pao6le41Wtth4jbfPa+amw8X+wayHoKtWDqf5TzdfAeYfBsGtt8/pCCCFEI2RkTjTNpH8Yt9N3Wj4VtyYo2viEujRHTUMSQoimKsuHlc/Cm8PU7w/TQC5oAFz9Hdz4m20Cubxk+OVe42vrKtXxrP2Nl2kRQggh7EiCOdE0PUZA5PnG/bUvw5mKo/cYYR4EHv7DNn0TQnQuVWWqVuUbMbD+VagqNbb59oQ5H6iR/qhprZ8593QiLL0L3hwOu74AfZWxzSsMpr0C/S5s3dcUQgghzpJMsxRNd86jxhG51K2QtA76nNP4NYPmwOr/qO1T+9TTbsl4KYSwRlcNCV/BmhehKMO8zT0QzvkHjLgRHF1a/7Wzj8D6/6o6cfVLDPiEw4QHYNh1tnltIYQQ4ixJMCearudo6H0OJK1V+xteO3MwF9hXFezNOaL2D/8BY+60bT+FEB2LXg8Hf1b12k4fM29z9oLx96rfGy5etnn90lyVVEVXYX7ctxdMehiGXgWOzrZ5bSGEEKIFZJqlaJ5Jjxi3j6+B7MNnvibqYuP2od9avUtCiA7KYIBjK+GjyfD9jeaBnIMLjL0H7tutRuRsFcgBuPtDzFXGff9IuOQ9WLATht8ggZwQQoh2S4I50TwRE6DbYOP+to/OfE30dON2yib1FFwI0bWlboMvZsJXl5oX/dZo1XTGBTvhoufBI6B1Xzd9F5zYYnl84oMQPAgu/UiVOIi9BhycWve1hRBCiFYmwZxoHo0G4m4z7u/+FsoLG7+m+0jwCFbbBh0cXWG7/gkh2reT8fD15fDJBZC83rxtwEy4awvMfgd8w1vvNQ0GOL4WFs6Gj86F3x62TODkF6GSqgy9AhxkBYIQQoiOQYI50XxDLgdXH7VdWawCusZotRA11bh/WKZaCtHlnNoP310LH06Go3+Zt0VMhFtWwZVfQVBU672mXg8HfoGPzoOFs9TUcIBTe61n123tzJhCCCGEjcnjR9F8zu4w7HrY/Lba3/YhjLrVvIhufVHTVdFdUGtkqiskK5wQXUH2EVjzAuxfAtQbDes+Es57Evqc27qBVHUl7F0MG/4Hp49atocNNz6QEkIIITowCebE2Rl1C2x+BzCopAXHV0Pf8xs+v8850HMsRJ6nEqI4SEIBITq13OOqHuWeRZap/kOGwnlPqXptrRnEVRSr2nCb3oaik5btfc5VJQZ6T5JROCGEEJ2CBHPi7Pj3hv4XwZE/1f6WdxsP5pzcYP6f9umbEKLt5KfCulcg4WvQV5u3BQ2Ac59Qa+NaO5iqKoe3RkBxZr0GDQycDRPuh7BhrfuaQgghRBuTYE6cvdF3GIO5Y3+rjHShMW3bJyFE2yjKhPWvws7PQVdp3hbQFyY/DoPmgNbBNq/v5Ar9LoD4L9W+1glir4Zx96l6l0IIIUQnJMGcOHt9JqvgrTat+IbX4fLPz+5eBoNMexKiIyrJUf/3t38M1eXmbb494ZzHYOiVrZshMnWbWnfbe6L58fH3wYGfYcQ8GHMXeIe13msKIYQQ7ZAEc+LsaTQw8SFYfIPa378Uzj3WtKfgej2UZIFXCOz4FP76J0ROhssXNp5IRQjRPhRnwaY3YfsnUFVq3ubdHSY9DLHXtV7Bbb0ODv6qEi+lbVf1Lu/YYP4QKLAfPHRYJWkSQgghugAJ5kTLRM+EgH41GeMMsPF/MPvths/PTYKNb6jpmW5+KhX5bw9DzzHg1xvK88Hd306dF0I0W1EmbHxTPYSpLjNv8whWD3hG3KimPbaGiiKI/1qty81PMR4/tQ+S1qoZAqYkkBNCCNGFSDAnWkarVdnhfr5L7e/+Tq2N8elu/XyDHnZ+praLMuDHW1Qh8ayD6mm+m599+i2EaJ7Ck+pBzM7PLadTugeoKY6jbm29YCo3SU3d3PUlVBRYtvcaD45urfNaQgghRAclwZxouSGXw+r/g8I00FfBqudgzvvWzw2IhKBoyD6k9k/uUp/LciFqmqybE6K9KUhTa+J2LbRMbOIRBOPuhZHzwcWz5a9lMEDiKtj2UU1ypXp16TQOMOgSGHsPdB/e8tcTQgghOjgJ5kTLOTqrp/J/PKL2d38L0TNgwAzr50ddbAzmavWaoDLdCSHah7wUFcTFf6Ue0pjy7Kb+z4+4qXWnNZblwXfXWI78uXjD8BtUBl3f8NZ7PSGEEKKDk2BOtI6R82HPd5C+U+3/eh+EjwbPIMtzo6fDhteM+xotTHtRRuWEaA9yj6sgLuEbyzpxXqFqWvXwG1TtyJaqn8XW3R8Gz4WEr9R+QF+Iuw1irgZX75a/nhBCCNHJSDAnWoeDI8z5EN6foJIilOaogO6qry2DtLDh4BliLO474kb15H3P9yoYjJ5umXJcCGFbJxNUAqMDP6u1raa8u6sgbtj1LU9sUl2hslLu/BwGXwYjbzJvH32b+v0Rdxv0OVey2wohhBCNkGBOtJ7AvnDhc/D7w2r/8G/w24Mw9UVwdDGep9Wq85beCaGxcN7T6rz9S1S7g5NlMFdeqGpL9RzTOmtzxNmrKoMjyyEoCoIHtHVvREsYDHB8jQrijq+xbPcJh4kPQuy15v+Hz0b2Edj1hRrxK8tVxyoKLYO50Bi4ZlHLXksIIYToIiSYE61r5M1w6Dc4vlrt7/gU0nepYuL+vY3nDb1CPZUH0DpA9xHGYC59l/k9K4rhnTiV/bLPuXDDUlt/FaIxK5+DLe+oZBT37wGfHm3dI9Fcep0agdv4P8jYbdnu3wfG36+mN7akTlxVGRz4RY3Cndhk2Z6xGzL3QsiQs38NIYQQoguTYE60Lq0WLv0Qvr4cMhLUsYwE+HAy3L4O/HqZnOtg3O4+0rh9Ml692axtd3BW6+8OLFVBYmEGeIfa9usQDdvyjvps0MHW9+HC/7Rtf0TTVZVBwtew6S3IS7ZsDxumgrgBM83/fzaHwaCCtN3fqlIl5fmW5zi6qYc5I25Uxb+FEEIIcVYkmBOtzzMY5i+Hv55UdaJAvaHb8p5KdGJNaIwa6THooKpEZbvsNki1OTpD2nbjuSd3gfd0m34JogG6elkNDQbr54n2pSxP/V/c+gGUZFu2R54PE+6HiIktT0S0ZxEsud16W7fBKoAbcjm4+bbsdYQQQgghwZywESdXmP4qeIXAqpqRm0PLYOoL1t8sOrtDt4FqyhWoRCi1wRyomlKF6Wo7bYdKkiLsryDVfH/8/W3SDdFEBemw5V01zbGy2LxNo4VBl6oSA6FDz+7+umqV/MhUvwtB62QsZ+DkXjMKd5P6fyxZa4UQQohWI8GcsK1hN8Cq5wGDCgQyEtRULmu6jzQGc78sUEkXaqd6dR+pMuCBsfyBsL/cJOO2dw/rpSdE28s+DBvfgD2LLWvEObqqrJTj7gG/iObfW1cFSWth7w9wbCXcG2+elMjdH/pfBCU5EHOlKjUgZQWEEEIIm5BgTtiWVze13i11i9o/+GsjwdwI2PmZcX/pnXDJe8YEKbVOxoNeLynL20KeSTBnmtBGtA8ntqqkJod/t2xz9VXp/kffDh6BzbuvrgqOr4UDS1SCo7I8Y9uhZRBzlfn5cz9rWeIUIYQQQjSJBHPC9gbMNAnmlsH5/7R+Xo+R5vt7Fqm1PDFXQlgsoAEMKp356aMqNb6wr1wJ5todvR6O/qWCuBObLdu9e8DYu1Wh7+aU9aiuVCNw+5eqgM1aIhNQWTHrB3MSyAkhhBB2IcGcsL0BM1QyFICcw2oKmLVALLA/eAQZEzSMvkOVMABw8YKgaMg+qPbTd0ow1xZMgzk/CebalK5KTXXc+Ibx/4WpoAFqPdyQuap2Y1PpdfDLvXDoVygvsH6Ogwv0nQJDL4f+086u/0IIIYRoMQnmhO35Rag6UrXr4Q7+aj0Q0zqoaZWb3oKoaSqYM02W0GOEeTAXe43Nuy7qMZ1mufLfKvCe+kLb9acrqiiGXQth8ztQmGbZ3nOcykzZ78KmJRsxGMzP0zpA5m7LQM7BBfpdAAMvUWviZB2cEEII0eYkmBP2MWCWMZg7tAwmPWz9vH4XqA9ruo+A+K/UtiRBsT+DwXxkDiD/RNv0pSsqyVF1/bZ9ZH3KY9R0FcSFxzV+H10VnNgCR5fDkeUqGO87xfyc/lPV/1dHV9U2aI4K4Fy8WuurEUIIIUQrkGBO2MeAmbD6ebV9Ml4FAb49m3cP0yQomfugqlyVQBD2odfBzDdgxT+hOFMdqyxp2z51BblJsPlt9SCjuty8TesEQ6+E8fc2PO1Yr4dT+yB5PSSth5SNat1prSN/WQZzQ65Q05r7T23eOjshhBBC2JUEc8I+gqLBPxJyE9X+in+qjHfNqTkVPBCcPdW0ze7DVd0sCebsx8FRJaPBYCwKXVXapl3q1DL2qKQm+5eAQW/e5uypim+PuQt8ultem3UIktZB8jpI3mCefbK+I3/CtJfM/y8G9VcfQgghhGjXJJgT9qHRQNyt8Odjan//Eoi62JjgpCkcnOCRRAng2pqTu3FbgrnWZTCoIGzj/yBxlWW7R5BaSzrqZnDza/g+310Nuccbbndwgd4T1chbU9fWCSGEEKLdkWBO2E/cbSr5ScpGtf/bw9BzLPiGN/0eEsi1PWeTYK5SgrlWodep/xsb/6emIdfn1xvGLYCYq6EoQ02NTNsO6TvgvKeh7/nm5/eeZB7MabSqvmPERNXWcww4e9j0SxJCCCGE7UkwJ+xH6wBz3of3xqs1OxUF8NOtcMVC8Axu696JppKRudZTXanqKW543TgF2VRgfzWC5uCigr1V/4GyXPNzUrdaBnN9JkP6LhW49Z6kHppI9kkhhBCi05FgTtiXb0+4+BXjmqsTm+HNYWrUYezdZ58tT6+D3x+BnCMw5RnLAuSi5X57GPTV5skzJJg7O5WlEP8lbHzTenkBJ3eV7CTniPpoTNp2y2OD5qgPIYQQQnRq2rbuQHtQUlLCl19+yYIFC4iLi8PFxQWNRsOLL77Yaq8xf/58NBoNGo2GLVu2tNp9O6ShV8KQy437lcWw5gV4bxyctjI6UV9lCRxbCSv+BUf/Vsf2fg87PlEZ+768FLKsFFEWLbPvB9j5Gez70XhMplk2ncEA2Ydh6Z3wSiT88Q/zQE6jVQHYbWvBPdAy6YmpwP4Qcw1Mfw0u/I/t+y6EEEKIdklG5oCjR49yww032Oz+q1ev5rPPPkOj0WAwGGz2Oh2GRgOXvA9hw2HdK8ZpY/kn4LNpcMPPEDyg4ev/fBx2faG2S7Kh3xQ1Ba1WRQF8fTncshK8utnu6+hKyvKsZ0TUV6m6ZQ5O9u9Te1ZeqB4oZO2HUwcgYzdk7rEsLQCgcYBh18L4+yEgUh3rNhAKTqg6b0FREDxIHes2SK19ayz5iRBCCCG6DAnmAC8vL26++Wbi4uIYNWoUP/74I88//3yr3Lu8vJzbb7+dQYMG4ePjw6ZNm1rlvh2egyOMvUu9iV3/mkr8AFB8Cj67GK5fAmGx1q+NmGgM5pLWqXpziavNzylIhc8vVtn/sg+BVyhc/a0qayCar36xcFNVpeDgY7++tHcHl8Gia5t+/nlPwcQHzY+d/y814ubfR601FUIIIYSwQoI5IDIyko8//rhu/+eff261ez/33HMcO3aMdevW8dRTT7XafTsNVx+44N8Q2A9+WaCmlpXlwpdzYMFOcPe3vKb3RON2QSqkbAD/3qowskZrnJ52+pj6ADWqtPkdtV5PNF+eSTAX0Ff9uzm5q4/GpgN2NqW5KuFIyiaVddLVB6762vyc2tG1BmnArxdEng/dR0DEBMtTug1stS4LIYQQovOSYM6G9u3bxyuvvML8+fOZMMHKGzZhNOw6cHKDn25TSTbKcmH9q3CRlRFSrxAIjIKcw2q/IA3u3Ah5KWpq2/HVsPV94/mhsXD5Zyq9u1D0elj1nJraev7TZx6xNB2ZC4q2DGA6q6JTah1myiaVrCfrgHm7q49aC1dbp628EPb9ZP1eLt4w+naV7MdVRjKFEEII0XISzNmIXq/n1ltvxcfHh5dffrmtu9MxDL4M8pJh5bNqf9tHMOZO8OlheW7vScZgLmk9jLhRjXb49YJ+F6jRo9zj6nPwAPAKk8LIpg4sgQ2vqe2SLJj3a+Pnm47M+XfyoPjUfjjwCxxdbr3mm6nyAhUQe4XC9o9h3cuWawvd/GHC/TDqVvMafUIIIYQQLSTBnI288847bNmyhS+++AJ/fytTBYV1o+9UQVxRBugqVJbL2e9Yntd7Emz/SG0nrTMfHdE6QNyt9utzR7TZ5HuatO7M5xeeNG779Gz9/rQnuxaaj+zW5x6oim73HAOhMZC+U41ymhbpBjX6Nm4BjL7j7EtuCCGEEEI0QoI5G0hLS+PJJ59k8uTJrZIlc9CgQVaPJyYmEhl5pvU5HYyzO5zzKCy7X+0nfANjF0BwtPl5ERMADWBQI0vZhy3PEQ1zdG3e+ZUlxu3OMkVQVw3FmZYjv4Pnmgdz3j3Uz1uvsdBznFrfqdGoUbvlT0LKRvPrnT1hzF2qbqKbr82/DCGEEEJ0XZ0imJs7dy779u1r1jULFy4kLi7OJv25++67qaio4L333rPJ/Tu9YdfD5rdV8hKDXk27vPob83Pc/SFkiEr3DpC48szBnK4aTh9tvOxBV+Hg3LzzTYM5Z3eVbr80B6rK1L+Dd1jz+5CxB07ugoGz7ZtqX1cFu7+D9f9Vgelta82n4PYYCQNmQffh0H+qWiNo2l6cDSueht3fmt9Xo4URN8Hkx8EzyD5fixBCCCG6tE4RzCUnJ3P48OFmXVNaaptixz/++CO//PILTz/9NNHRrTNStH//fqvHGxqx6/AcHFW69u9vVPuHf1NJJQZfan5et0HGYG75E2rNnVeI5f1KcuCHmyBtB1RXwGMnwMWzaX0pzgb3ANBqz/rLaZfqj8yZTlO1prLYuO3soTKPpu9Q+5d+DEMvt35dQ4qz4JMLVN2142tVghpb0+thz3ew+gVVw61W+i7oMcK4r9HAlV9aXm8wQMLXajSuPN+8re8FcOFz8qBACCGEEHbVKYK5HTt2tHUX6vz6q0oksWLFCtatM1+LlJCQAMBdd92Ft7c399xzD3PnzrV3FzuGgZdA+BhI3aL2l90P4aPBp7vxnCFzjaMjAX3Bs4EC4W5+cDJB1UMDFYT0mXzmPqz6jypqHjYcbl6hgszOwrHeyFxlcePruly81ChWRbGaRujkZmyrOosHI0f/MhbQPlOSkdaQvhN+/4cxAK2lcYCMePNgzprTibDsAUhaa348eKCqB9f3/NbtrxBCCCFEE3Sid6fty5YtWxpsi49Xb14vueQSO/WmA9JoYM778P4EFWiUF8DSO+D6n42jZJHnq4QpqVvVqEhDI0taBwiPg2N/q/0TW88czFWWqEAO1FTA5PUQeW6rfGntwoz/wYGaeopaRxWkNRbM3bFBfTYY1GdnD2Pb2QRz+mrjtrVspa2lqgxW/Au2fQgYjMe1jhBztSrW7d+n4et1VWrK75oXjcEnqID2/H/CqFukqLcQQggh2owEc63s888/5/PPP7faNnnyZNauXcvmzZsZM2aMfTvWEfn3hmkvw893qf2kdbD5LRh/n9rXaGDai027V/gYk2Bu85nPd3RT68p0lWo/L7lZXW/33P3hqWzLEbozqQ2YnUxS7Juup2uq4mzjtoeN1pdl7IGfboXsQ+bHB86GC549c229rEPw0y2Qudf8eP9pMP2/tg1ChRBCCCGaoJMtBLKv6OhooqOjSU9Pb+uudF6x16hkFLX+/jccX9P8+/Q0CZ7TtqtkKI3RatVUz1oFac1/zfauuYGcKdNgrqqs+deXZBm3PYPPvh8N2fk5fHSeeSAXFA03/AJXLGw8kDMYVHmMD88xD+Q8guHyz+HqbyWQE0IIIUS7ICNzNebMmUNGRgagSgsAvPvuuyxduhSA0NBQlixZYnZNbdKVqqoq+3W0q9FoYOYbKnlJ0Ukw6GDxPLh1FQQ0oyxD9xFqap2+Wk3bzNqvaoQ1xrQ4tmnRbGFe/PpsplmWmI7MBba8P/W5B5pP5Ry3AM57GhxdGr+uLA+W3gWHfzc/PvwGNZpnz6ybQgghhBBnIMFcjfj4eFJSUsyOpaamkpqaCkCvXr3aolsC1JTAq7+BT6dBdZnKJPjNlXDL302v4+XsDiFD1fo3gJRNZw7mTEdvOts0y+aorlTBl7OHWivm4NjyBCim0yxX/Uet2bvg3y3va60BM1TwtfkdtfayKesdM3bDoush3+T3gEcQzH4X+l/Yen0TQgghhGglEszVSE5ObvY1BoPhzCeZWLNmTbNfQ9QIGwZz3jOWKzh9FN4bB2PvgRHzzBNyNCRivDGYO/AzjLnT+nmluWoExs9kZC63DUbmDAaVdMM0cGotn06D/BNq5HPKM9DnXPAIsH5u9iH4YKLadvGGx1PByeT7XdnCkTmA1G3Nv8eZjFsAw69v2mhawjcqW6VpkpO+F8Al79pmGqgQQgghRCuQNXOi4xg0RxVkrlWYDssfh9cHw9G/m3C9SZ26E5sbHm379ip1z01vGo+V5aqMmvaUkQCv9IW/nga97uzvk30Edi8yT1RSdBIK06AgFX68WSWWaYhZwfCaIK7F0yyzzPdbMo21sgR2fGrMtFlLozlzIKfXw9/PwNI7jYGcRqsyVV6zWAI5IYQQQrRrEsyJjuWcR2H8/aB1Mh4ry1VFwQvOkIgmbBgE9DPu7/ne8pzSXJUgpTDNct2UraZa/vmEGin77lo4usJ4fPcitb5v05twfPXZ3bs4Cz6eAktug5/vMR6vn7SkLK/he1gL5loyzVJXZfl6RRlnl0ilqkwF38seUMW8mzNaXlWmfm42vG485h4A1/0EEx/qfIXihRBCCNHpyLsV0bFoNGpt1f171BRLx5qgoqJQFRZv7M28RgMxVxr3T+2zPOfY32DQq23PbhAYZWyzVTCXsRtObIJDy6DwpDpmMMDW94znZB85u3tv+B9U1Iwo7v/JeLz+1Miy/IbvUVls3K4L5lowzbIkx/rxvBTrxxui18NPt6mSFQBb3oG9PzTt2rJ8WDgbDiw1HgseCLet6Vz1BIUQQgjRqcmaOdExeYfBRc9D8AD4+W517OhfsPs7iL264euGXqmCj6FXQnC0ZfuR5cbtfhdAyWnIUVlLbbZurvS0cbs2s6NGA0OugL2L1X5RxtndO3Wr5TGDwXI0rckjc57qc8R4leLfyaP52SjrT7GslZdk/d+kIev/Cwd/Me4PvRIGX9rw+XWvnwNfXmJediDyPLj8C3D1bvrrCyGEEEK0MQnmRMcWey3s+wkSV6r9Px8FfZWqCRbYz7J8gW9PmPIv6/cyGCB5vXG/34VwMkElCvGLOHOR6bNVajJS5W6ShMS/j3G7KPPs7n1qv/m+Xq9S9hvqrcErz2/4HtamWfr2VB9nIzAK7tiogrov5xiPNydYPvQbrH7euB95vso6qXVo/LrCk7DwEmOADqrswPTXwMGpwcuEEEIIIdojCeZEx6bRwKw34Z0xUFmkkpT8ssDYPuN1GDm/afcqSIXiU8b9XuNh4OyGg7/WoNerdXq13E1GubxCjNtnOzI36y346RbjflWJ9WQqjY7MWZlm2RJOrhAyWG2PvBl2fKK2m5oEJfuwml5Zyz8S5n6iSiY0pugUfD4dco8bj41bABc8p36OhBBCCCE6GFkzJzo+nx5w0X+sty1/Uo2sNUXaduO2X2/bFLOurzzffJTMtDyAV6hx+2yDuQEzzPcrS6wnLGl0zZyVkbnW4t/M8g/VlfDjLcYA09kLrv72zFkrS3PV1ErTQG7yExLICSGEEKJDk2BOdA7D56lRuAGz1Iha7dquqlL4/RHriVH0OkjbAUf+UvtpO4xtPUbZvs9gvl5O4wCuvsZ9b9Ng7iynWTq6qvvWqii2njWyohB01dbvYW3NXGsxreV3Mh5ObGm8DMP6/0LmHuP+pR9AUFTD5wNUFMHXcyHrgPHY+f+CyY9KICeEEEKIDk2mWYrOQaNR0ylrp1QmfAtL71DbR/6Eg7/CwFnG85PWw+Lr1fRC317Qb7f5yJy9grmSeuvlTIML05G5ymIoL2x+gg6NRgVgtRktK4sbXldWXmC9cLi1aZalufDrvSqZTFUZzPv1zNMcrTEdmSvNgU8vUqNs0dPh/GfAM8jYfjIe1v3XuD/iRnVeY3RVquRD+k7jsYkPwcQHm99XIYQQQoh2RkbmROcUcxVETDTu//GoedHvgEjjOrH8FMg6qEoE1Oox0ridnwqJq2D7J5BztOHXzE+FA7+o0a+mspbJspZ7IGhNAqSzHZ0znRpZWdJwPbeGkqBYm2ZpMKgAOXGlKqvQnFpzP90GH0yCry5T5QgcXc3by/Ig/itYXW/q7OoXjFNSfXvChQ1Mra1lMKhR2aS1xmNxt8F5Tze9r0IIIYQQ7ZgEc6Jz0mjUtEsHZ7VfdBI+Og/SdqqAbOmd5ud/eA7oKtW2oyt0G2xsW3KHyrr424MqMMhPhU1vw+lE4zlleSpAWXw9/HxX0/vZUCZLUEWrPc8yCcrJBJUU5pd7YejlcNcWuH+fClJdfWDwXIi62Pya2uC2LM98xHDolWpa4sSHIXyMOubsbn5tc4K5UwdU4Hzsb/U9H3a99fNMC6iDSnIy4kZAozJXung1/jpbP4Cdnxn3B18GU1+SqZVCCCGE6DRkmqXovAL7qQBkzf+p/dPH4JMLQKNV5QtM1QZyERMhKBocnY1t/hGQskFtH18LK59Vo3w7PoG7t6mU9geXQVlNVsoDP6vROZcmrC+rP82yPq8QNXrnFWLZ58akboXsg+qj+0i44FljW1CUCoxATVs06NXURp8eKtj99EL1PZq3DHqOhqip6sOUoyugAWrWIpqO3p1JSbZx2yMIck2CYo3WWLS9MF0lLKkt0eDiBTPfUMXiA/s1/hpH/4bljxv3u4+E2e+oAFkIIYQQopOQYE50bpMeVun4N74JGNQ0vfo11kydPgbX/Wh+zDRJR22R6qFXwejbjbXJ6qfVT9umClGfiVcI9Byrgjprdezm/QpObs0fTTItFh4+uuHzJj1svv/huaoOHcBvD8GdG6xfp9GAk7v63kLDUzfr0+vNgznPYPMRztpArtbyJ1W2SlNnCuTyU+HHm4338u4BV32jvo9CCCGEEJ2IPKYWnZvWQY1K3fS7SnRSyycc5n6mAhJTRRmwZ5H5MWtB1p7vzNPcnzpg3u7UxBT+w66D+X/Cgh1wwb8t253dz25aYOo243bPRoK5+qpMRthO7W38XNOplk2dZlmWZx5Mu/o0Xjri8O9qOmZT6apUIFe7/s/JHa75Dry6Nf0eQgghhBAdhARzomvoNQ7u3AQXPg/TXoG7t8LgSyFiguW5G/5nnh7fNONirWHXw5C5xv1Mk8Dn6kXNC6DOhsEAecmQut38uF4PK59TBdBrNTYyV9+UZ4zbpglkrDENhJs6zdJ0VM7BGUpOUzdVE43xuKmvLoOq8qbdf/Xz5qOS01+DkCFNu1YIIYQQooORaZai63DxhHH3mB+LPB+O/mV+LDdRTaccNEft+9UL5gL7w7SXjPuluVCYZty3ZfBwfC1s/J/KrgkQ0E+N6oGa6rj0Tti/xHh++GhI+EaNNlaWwPAbVOKT7ENq2qFvLwgxSfbi5m/crh3d+utpNcLp7AEjbjJm3TQN5po6zbIky7hdf71cQCRc/jksvsF81BPg1Si4f48ayWvIsb9hw+vG/ZhrIPbqpvVLCCGEEKIDkmBOdG19z7d+fP1rMPASNcXRzQ8CoyDnsEr8MfczY4r+qnJV/6yWewB4h7VuH3VVqixB6Wk17bA2kAM4fVSNbrn7w6LrzKckBkXDpR/Btg9V8AZQnKVKCqx9Ue37R6oRxrI8CB6oAqpapXlqBHDzO8apkYMuNQZzZzPNsrixYK6vCoQ9QyyDufC4xgO5snz42SRQD+wPF7/StD4JIYQQQnRQEsyJri2gr/XjmXtUsfGoaSqgu3Yx7FkM/S6EboNg2YMqyUnWQZXmv1bIEPM1bgaDCr7yU9RIkVO9mmqH/1SBmHuAGiWrX3g7+wi8U1PA3MHZ+pTJtG0qMDIN5CLPU6Ncrj716swVmycCyU2EtTWjjFEXQ48njG1leVBdYb7GzfRe1qZZVpaqpDC1iWHqM83e6RGkEs7Uqv238DIpx9B9pEp4cuHz1u9X66+njKUbHJxVwN2UbKJCCCGEEB2YBHOia9NoYOqL8Odj4OINocMguabI9N/PQN8LVIDlFwHn/MN4Xdp24zq5Pd8Zj3cbrI6nbFbBUMEJVQAbIG0HXPKu8dzKUvj2SuP+Q4fNAxlQ2R5r6SohZZPl15C6Vd2rVo9RcM1iY0DlbBLUVBab77v5GevLHf7dfJ1cVYmxrZZpAFd/muXKZ2H9q4AGPLupIHXcveZTHU2nWdbPZFk7KugVajwWGgMzXrP8mk0lroL4L4375zxqPnVUCCGEEKKTkmBOiDF3Qt8paqSoIBXenwgY1NTE3d+odWb1hcWq0bu6/eGQdUCtM3u/JqmKac00UGvXJjxgTK1vWjAcrNeZc/WpKQFQE6xZK6twYqt5kDTsevORMbORuRLz9W3e3c0DNtPabGCeSKX+vXy6q/WEzh4qscn6V2saDFCcqT6W3qGmQI6+XdV4qz/N0nQ00b82mDMtlJ5p+fWaqiiGX+4z7ocMgfH3NXy+EEIIIUQnItkshQAVYLn5qmAg5irj8dX/Zz7qVSs01rjdfQTcthoeT4cL/wPammck9WumYTAJeDCfcujqY31qokZjOVpX38ldcOtquGIhDJwNA2eZt7t4Gbcris3Xt51pfZ9p2QBHN5UIpdaM1+G+BLh9HRxd3vA9lj+mCpFnH4bgASrpTMgQ8A6F4lPG8+qmWZqMzNVOnWzI6v9To5+gvu+z3214iqcQQgghRCcjwZwQ9Z37JDi4qO2iDNjwmkpCYios1riduU+1OziqaYseQQ3fe/ciY3KP0lzjcffAhq8xDW5qdR9h7GN1OeQcUYHcFQtVH0w1OjJ3hmDOdGTOuYHaeTs/My/NMOsty3PStsPn09X6wut/gjs2QPgYY7uTu/HrbOrIXPYR2PaBcX/8/RA6tOHzhRBCCCE6GQnmhKjPN1xNC6y17hX4vzD4YJIKxkCtjdPWjADpKozZInVVUF7QyM31KlMmmE+ztDbFspa1YC5kKHQfbtw/saXh682CuSLzkTmvBoK5qS/BVd+Ab0/r96lVclrVtas19CroNR40DlbOzVbTLvU1I5amyU/8I9U0TDD/eotPGc+vb/kToK9W2749YdIj1s8TQgghhOikJJgTwpqJD4Krr3FfVwkZu1Udt4I0cHRRUwZrnUxQnw/+apmm3yPYfH/3t2r6ollmx8ZG5qxMswweYJ7Z0rRQdn3OJtMsLUbmrASKXqEw5g6Inq5KMdTdx0p2yDX/Z6xH5+wFFzyrEpmYJi3xMQkIE1fBlpokMNaSnwB4dTNuG3SWawsBjq6AYyuM+xf+xzJTqBBCCCFEJyfBnBDWuPnB3E9VNkWtSZ4ggw4O/6G2TadaHvhZlSHY/rHxmHuAusdV36ggx6u7Oq6vhl/vN08GUlmiAhSDwbIv1kbmgqKhp8k0xdSt1q8FURbkyQAAJmNJREFUK9MsTYJNN3/zgA3MyzXUlhyofx+AiiJVrqHW5MeMgVjwIOPxkhyImm7c//sZFRiblSUwCeZcvMwDx/rr5nRValSuVq8JMKDeOkEhhBBCiC5AgjkhGtL3fJXc44mTMOIm4/HaYC7EZH3WsRUqsEnZaDx29SIYfBmEj1IZFieblDZIXAmHlhn3k9bC13NV4e/60zStjZ4FD4Qeccb9iiLzZCJb3oNPp6k6dqZBWHU5VBQa953cVEkGU7XZNkGVMqhlWiQcVDFx03sNu86kf9Emr1mqpkDWjhCGj4bcJMuC4aYaWze341O1RhAADUx9wby2nxBCCCFEFyHBnBBn4uiigrJayetV8NStXi2z5A3G7ZCh0GOkefuwG2DgJcZ902Cm1qFl8OFklVSlVv2ROfcA8AwCjwBj2YSeY4zTOU8nqrp5JzbBT7eqkcVeE6D/VPV1lJsEYPmpUHba/P4BJsFcdYVxu/40S9Pg0dFVZQOt5eKliqDXKjoJV38DaCBlA6x72XrBcGtfs+nIXFWZeUbQ4TdI0hMhhBBCdFlSZ06Ipug5Rq2hK89X6+cSV0P0DBUkpWxQtd32/2Q8P+5Wy9EirRbmfKCmHaZsoEG5x+GTC9WoYGBfyzVz1/5g3J71Fpz7lCrAXft6iauM7RWFatTwpt+Mx07tVyUKji6HP/4B+nq160pz4Od7VP25wP7wzzxVQLz+eYUnjdumUzWrylVfug2G/BTja57zD1XM/NjfMGgOfDbVeE1TR+Z2fGoMIh1d4dwnEEIIIYToqmRkToimcHCCfhcY94/8qYKzG5fBAwdUiv/aKYmuPioFf0Nir7HMIjn6Dpj8BFATkFWVwOaaFP9eYTDpH6qu29XfqRptpry6mQeOyevN23d+Yb7fbZDq6/pXVSbO+jQOEP+lGiVM2aS+Thcv85E3gLwU47ZpbbdNb8F/guHIH8Zjp/arz/0vhItfNi9y7uoL7v71viYrwVxlKWz4n/H4yPlnrsEnhBBCCNGJycicEE3Vfyrs/V5tH1muRqq0DmqEaPM7xvNG32G5vgzg+FpYfL1aE+cRDH3OVQlG+k1RUzC9Q1VQ8/vD6vy9P8JFL6h7nfdk0/qo15tP9wRI36GmbYbUTAutKIJf7zO2O3upkgW1PE2ySZaZ1MIzex2dWvdWxyT5Su06OtOi6VkHjNu6KvNyBhETLO9vNs2yJpjb+ZkxCHR0VXXlhBBCCCG6MBmZE6Kp+k4xZrYszYG0HWp74+smo3K+MPZu69d3G2TMDlmSBePvhVtWwDmPGpOcxF5jTBRSWQQHf2leH7MPQulpy+O7TEbnVj5rLAaudYL5f4Bfb2O7aQKW0gaCuezDoCs37ptOwawosjz/9DFjSYSdn8Ppo2pbo1VF2uszDSiLMqyMyt1sXsJACCGEEKILkmBOiKZy84Ve44z7R/6AwgzY9pHx2IT71TRLazwCod+Fxv3d31me4+wBgy817sd/1bw+Jq0zbmtM/nsnfK3KJ6z+P9j2ofH4xIfUtM0Qk2QupolNSnOsF+0+uct8v9Kk3IFpMFdbPNygVwFgeQGsecHYPux66DbQ8v71R+Z2fm4yKuemsoMKIYQQQnRxEswJ0Rz9pxm3t7yvEpVU14xQeQRD3G2NXx9zlXH74K/WR7GGXW/cTl6vEqI0VZLJerkRN4JTTVmCyhJYfAOsfcnY7uQBEx5Q28EmAVV+qvk9n/WD/+sBCd8aj6XXC+Z0FcbRuYoGpmxmHYANrxtHDp08Gk5gYroWriQLtr5n3B85X0blhBBCCCGQYE6I5okyycBYXQYFJ4z7kx62LKxdX/+pxpG7qlIV0NXXY6QqCl4r/uum9U2vM8+SGXUxDLms4fMNOnCqyUIZPMB4/PQx6hKx1KosUusDa9UfmQNjMXLTYM63p3F701uw8U3j/vj7Gk5gYnrcoIf8mu+zxgHG3mX9GiGEEEKILkaCOSGaw7+PSnBSn19vNRJ2JvVr1i29E9a9Yn6ORmNegDvhG8uyANZk7jWud9M4qHIKI+djEZjVMq0bZzoyl5tofapoSTYUpKvac6Z18GpVWgnm/E3W4mUdUAEkqGmU4+5p+Gtx9gAXK30YOAt8ejR8nRBCCCFEFyLBnBDNNe0l+EcS3PQHTH8Npvwb5v2qArWmiLnafH/P95bnDL3SmGyl6CQcWHrm+5qul+s+XJUTCBsGl39unuCklpNJxk3/PioZCqiAq36BcIDlT8AbQ2tq01VZtteNzJkUJQ/sb3medw9VYuFMo5jWRu3GyKicEEIIIUQtCeaEOBvu/ioZyqibVdIT3/CmX9tjlPl+dbnlOZ7BED3duP/X06rQd2NM68v1nmTcHnQJ9D3f8nwnN+O2g5N54OXgbP019NUqGUktn3CY+SZc+jG4B6hjpiNzoTHGoBSg7wVwx3oIi238awHLdXHdR1h+74QQQgghujAJ5oSwN40GLnjWuN9Q0pTz/2UMqgrTYf1/G76nrhpSNhv3Iyaat1sbBTMN5sB83Zxp3bjG9J8KI+bB0MvB1RsMBss1c9Nehu4j4cLn4ZrFlgXCG2Ka0RLUqJymgSmjQgghhBBdkBQNF6ItjK1ZL6arqlnXZkVAJIxbAOtfVfub3oaYayDIytTFrP3Gwt9aRwgfbd5eW7vOlFO9wuamwZyuEtz8oCzPeMzBRSVnSdloPNZjpPk9qivMp2C6eKnRy1E3W/8aG2M6zdIrFAbObv49hBBCCCE6MRmZE6ItaB1UNsdJD4Oze8PnTXxITWUEFST98Yga/aqvtoA5qLpx9e/ZpJE5kyQoWkfLtX1T/qXWBp77JLh4Q484GHhJvZsaYPLjKlgdfkPDNfeaot9Fxu1z/qGmggohhBBCiDoyMidEe+bsAVNfgEU12S2Pr1FlAbqPMD8vfadxu3u90bLa+1gca2RkLj8Ftrxr3j7yZhWEnvMPFWSaliqo5eQGkx9r8MtplojxcMcGlSWz5+gzny+EEEII0cVIMCdEexc9A0JjISNB7Z+Mtwzm0rYbt+tPfQRwsZKdsv40S99e6lhtVkpTWkfzbJ21gdzBXyFxFZTkQL8L1GhcawoZ0rr3E0IIIYToRGSapRDtnUajSg3Uyjpo3l6WDzlHjPvWMj5aKzVQf5qlVmterNzseg/ryUdSt8KOT+HgL+ZTPYUQQgghhM3JyJwQHYHperb6wdzJXcZtNz9VM66+7iPg2h9hz3dw7G+VZdK3l/XXqb2fxkEFhgad9ambAB5Bxu3S0037WoQQQgghRKuQYE6IjsB0PVvWAZUEpXakLM10vdwI6yNoHoHQb4r6aMzw6yHhKxXIGXSQukVlwrzlb+vnuwcat0ty1BTQI8tVFkv/SIia2rSvTwghhBBCNJtMswRKSkr48ssvWbBgAXFxcbi4uKDRaHjxxRdbdF+9Xs9HH33EhAkT8PPzw83NjT59+nDttdeyf//+Vuq96BKCTIK5sjwoPmXcN10v19AIWlP1HAMPHoQbfzMeqyyC6krr53uYBnPZaqrlmhdg+ROw/aOW9UUIIYQQQjRKRuaAo0ePcsMNrZu4obS0lJkzZ7Jq1Sr8/PyYMGECrq6uJCUlsWjRIqZNm8agQYNa9TVFJ+YRAJ7djEFc1gFVh81ggHSTtWrW1ss1l3eYKj1gqiwPvLpZ6ZdJMFeaY14w3MVKbTshhBBCCNFqJJgDvLy8uPnmm4mLi2PUqFH8+OOPPP/88y2650033cSqVauYP38+b731Fu7uxsyBGRkZVFVVNXK1EFYEDzAJ5g5C5HmQl2y+Vs00UUpLOHuAg7MqHg5Qlms9mDOdZlleYN4XCeaEEEIIIWxKgjkgMjKSjz/+uG7/559/btH9Vq1axeLFixk1ahQfffQRWq35bNbQ0NAW3V90UcEDVZ05UCNzYF5fzj8S3P2tX2swwNeXQ9JaFaBd9Q1ETGi4qLdGYwzkAA79Zr5ur5bpyByo4LJW/dE9IYQQQgjRqmTNnA188MEHADzwwAMWgZwQZ80sCUpNRkvTcgDW6svV0mggZZMxQPvuGmNg2BT1C4jXcvYwr1dnFszJyJwQQgghhC3JyJwNrFq1CoApU6awb98+vv/+ezIzMwkJCWHatGmMGTOmjXsoOiSz8gSHQK+vVyz8DOvlnD2gqsS4X79oeGOqKxpucw+EghNqOzfJeFyCOSGEEEIIm5JgrpWdOnWKnJwc/Pz8+OSTT3jyySfR6/V17c8++yzXXXcdn376KU5OTk26Z0OJUhITE4mMjGyVfosOICjKuF1VogK5jN3GY91HNH69iyeUZBn3mxPMObo23OYRYAzmTINFCeaEEEIIIWxK5gC2sry8PACKiop4/PHHufbaazl8+DB5eXn88MMPBAYG8tVXX/H000+3cU9Fh+PipYp911p2P+hrEul4hULIkMavd/Yw33dya/z8i14wbl/SwDRLAI9gtfYuoK9lf4UQQgghhM10ipG5uXPnsm/fvmZds3DhQuLi4lq9LzqdDoDq6mrGjh3LwoUL69ouu+wyXF1dmTFjBm+++SZPPPEE3t5nThLRUE06KW3QBQUPhPyaUbDaJCgA4xaAwxlGep09zffPNDI36mZw9VaJTPpe0PB5V38HtWtD3xwOuYlqW4I5IYQQQgib6hTBXHJyMocPH27WNaWlpTbpi5eX8Q3s/PnzLdqnT59Ot27dOHXqFNu2bWPKlCk26YfopIIHwJE/zY+5+cOIG898bf2RuDONzDm6wLDrznxf0yQ/ZnXmJJulEEIIIYQtdYpgbseOHWc+yU7CwsJwdnamsrKSXr16WT2nV69enDp1iqysLKvtQjTINAlKrTF3WU6htEZb7797c9bMNZUUDRdCCCGEsJtOEcy1J46OjgwePJhdu3aRm5tr9ZzTp1VhZU9PT6vtQjSofq03F2+Iu7Vp12rqLZF1tkEw92iyCugqCsGnR+vfXwghhBBC1JEEKDYwa9YsAFavXm3RlpycTHJyMgDDhg2zZ7dEZxDYHzQOxv1Rt4Cbb9OurR/MOZ5hmmVTGQxQXgi5xyHnCHgGQUCkmqYphBBCCCFsRoK5FoiOjiY6Opr09HSz43fddRfe3t589tlnrFixou54cXExd955JzqdjunTpxMeHm7vLouOztEF+k9V257dYOzdTb+2fjDXWgXtT8bDi+Hw5jD4Ykbr3FMIIYQQQpyRTLOsMWfOHDIyMgBIS0sD4N1332Xp0qUAhIaGsmTJErNrapOuVFVVmR0PCgri888/54orrmDq1KmMGTOG4OBgtmzZQmZmJr179+aDDz6w8VckOq25n8Lx1RAyFDwCm36dm59t+mPah/IC0FWdObOmEEIIIYRoMQnmasTHx5OSkmJ2LDU1ldTUVIAGk5k0ZM6cOWzatInnn3+eDRs2sGPHDsLDw3nooYd4/PHHCQgIaLW+iy7GyRWipjX/ugv/A9EzoKoUMLRef9zrBZSlp8ErpPXuL4QQQgghrNIYDIZWfFcn7Km2zlxDdeiEsJvnw6CqxLgfeT5c/1Pb9UcIIYQQog3Y+/25rJkTQrScR72R5vL8NumGEEIIIURXIsGcEKLl6k+1lBpzQgghhBA2J8GcEKLlPILM9yWYE0IIIYSwOQnmhBAtVz+rpot32/RDCCGEEKILkWBOCNFy7vXWzMnInBBCCCGEzUkwJ4RoOZlmKYQQQghhdxLMCSFazmKapQRzQgghhBC2JsGcEKLluo8w35dgTgghhBDC5iSYE0K0XFCUeUAnCVCEEEIIIWxOgjkhROuoKDJuy8icEEIIIYTNObZ1B4QQncTgy6AgVQV1PuFt3RshhBBCiE5PgjkhROuY/Fhb90AIIYQQokuRaZZCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0BJSQlffvklCxYsIC4uDhcXFzQaDS+++OJZ3zMvL49HH32U6Oho3NzccHNzY9CgQTz11FMUFha2Yu+FEEIIIYQQXZFjW3egPTh69Cg33HBDq90vOzubsWPHkpiYSFhYGFOnTqW6uprNmzfz/PPP8+OPP7J582Z8fX1b7TWFEEIIIYQQXYuMzAFeXl7cfPPNfPDBB+zatYsnn3yyRfd74YUXSExMZM6cORw/fpwlS5bw66+/kpSUxIQJEzh06BCvv/56K/VeCCGEEEII0RXJyBwQGRnJxx9/XLf/888/t+h+69atA+DRRx/FxcWl7riXlxcPPfQQGzZsYPv27S16DSGEEEIIIUTXJiNzNmAawDXE39/fDj0RQgghhBBCdFYSzNnABRdcAMBLL71ERUVF3fGioiL++9//AjBv3rw26ZsQQgghhBCic5Bpljbw8MMPs3r1apYsWUKfPn0YPXo01dXVbNq0CQcHBz755JO6gE8IIYQQQgghzoYEczbg6enJn3/+ya233srXX3/NkiVL6tpmzZrFiBEjmnW/QYMGWT1+6NAhnJycGmwXQgghhBBC2E9iYiJOTk52e71OEczNnTuXffv2NeuahQsXEhcXZ5P+nDhxgunTp5ORkcHChQuZOnUqAH/88QcPPPAAEyZMYMWKFYwZM6ZFr6PX66mqqmqNLosmSkxMBFTSHGEf8j23P/me2598z+1Pvuf2J99z+5Pvuf1VVVVRXV1tt9frFMFccnIyhw8fbtY1paWlNuqNWg+3b98+li5dyuzZs+uO33DDDXh6enLZZZfx4IMPsmnTpibdb//+/VaP147INdQuWp98z+1Pvuf2J99z+5Pvuf3J99z+5Htuf/I9tz97z5jrFMHcjh072roLdVJTU1mzZg0uLi7MnDnTon327Nm4uLiwZcsWysvLcXV1bYNeCiGEEEIIITo6yWbZytLS0gDw8PBAq7X89jo4OODu7o7BYCA/P9/OvRNCCCGEEEJ0FhLMtbKQkBAAcnNzSUpKsmhPTEwkLy8PDw8PAgMD7d09IYQQQgghRCchwVwLREdHEx0dTXp6et2x3r17M3ToUABuv/12CgoK6try8/O5/fbbAbjkkktwdOwUs1yFEEIIIYQQbUCiiRpz5swhIyMDME6VfPfdd1m6dCkAoaGhZiUGgLqkK/UzSn744YdMmTKFFStW0LdvX0aPHg3Ali1bOH36NBEREbz88su2/HKEEEIIIYQQnZzGYDAY2roT7UFERAQpKSkNtvfq1Yvk5GSzYxqNBoCkpCQiIiLM2hITE3nppZdYuXIl6enpaLVaevfuzaxZs3jkkUfw9/dv7S9BCCGEEEII0YVIMCeEEEIIIYQQHZCsmRNCCCGEEEKIDkiCOSGEEEIIIYTogCSYE0IIIYQQQogOSII5IYQQQgghhOiAJJgTQgghhBBCiA5IgjkhhBBCCCGE6IAkmOtgysvL+de//kX//v1xdXUlLCyM+fPn1xU6F61v8uTJaDSaBj/+/PPPtu5ih7Rz505efPFFLr30Urp3745Go8HV1fWM1y1cuJC4uDg8PT3x9/fn4osvZtOmTXboccfX3O/5M8880+jP/mOPPWbH3nc8paWlLF26lJtvvpmhQ4fi7e2Nh4cHMTExPPvssxQXFzd4rfycn52z+Z7Lz3nLvfbaa1x66aX069cPHx8fXFxc6NWrF/PmzWP//v0NXic/52evud9z+TlvXbm5uQQHB6PRaIiOjm70XFv/nDu22p2EzZWXl3P++eezadMmQkNDmT17NsnJyXz22WcsW7aMzZs3ExkZ2dbd7LQuu+wyPD09LY537/7/7d19TJXlH8fxjyCSaEAgKqhsCsGKogmtmQS6Mh+yMh9WtmrKysq2yqlbWwWuYeUSZtRvudWcIokucdZ82NRkPqKUglr41BRFpiwgQAQBiev3R+PkCeTIw7nxxvdr4w+u67rd93z3cfrlnPtmWA9UY38pKSn66aefOnTNwoULtWLFCvXv318TJ05UfX29du3apZ07d2rjxo2aPn26m6rtHTrTc0mKi4tTeHh4q/XY2NjuKKvXysrK0rx58yRJUVFRmjx5sq5evarc3FwtWbJE69ev1969ezV48GCn68h553W25xI574rPPvtMtbW1io6O1sMPPyxJKiws1Nq1a7Vhwwb9+OOPmjJlitM15LxrOtNziZx3l4ULF6q8vPy2zrk95wa2kZSUZCSZxx9/3NTU1DjW09LSjCSTkJDQg9X1XuPGjTOSTFFRUU+X0qssW7bMJCcnmy1btpjS0lIjyXh7e9/y/O7du40kExgYaM6ePetYz83NNf369TN+fn7mr7/+sqJ02+poz5csWWIkmdWrV1tXZC+SkZFh5s+f75RXY4y5fPmyGT16tJFkXn75Zac9ct41nek5Oe+6AwcOmOvXr7da/+abb4wkExISYpqamhzr5LzrOtpzct59fv75ZyPJvPnmm0aSiYyMbPOcVTlnmLOJxsZG4+/vbySZ/Pz8VvvR0dFGkjly5EgPVNe7McxZw9Vg8cwzzxhJZsWKFa323nvvPSPJpKamurHC3odhrufk5uY6+t/Q0OBYJ+fuc6uek3P3Cg8PN5JMYWGhY42cu1dbPSfn3aOurs6Eh4ebBx980Jw9e7bdYc6qnHPPnE0cOHBAVVVVCgsL0+jRo1vtz5o1S5K0ZcsWq0sD3K6+vl67d++W9G/Wb0b+YTePPPKIJKmhoUEVFRWSyLm7tdVzuJ+np6ckqV+/fpLIuRX+23N0n08++UTnzp3TypUr5eXldctzVuace+Zs4vjx45KkmJiYNvdb1lvOofutWrVKFRUV8vDwUEREhF544QWFhob2dFl3hdOnT6uhoUFBQUEaPnx4q/2W/J84ccLq0u4KOTk5OnbsmOrr6zV8+HBNmTKF+yu66Pz585IkLy8vBQQESCLn7tZWz29Gzrvf2rVrdebMGUVERGjUqFGSyLm7tdXzm5Hzzjtx4oTS0tKUmJiohIQEXbhw4ZZnrcw5w5xNFBcXS1Kbgbh5veUcut/SpUudvl+8eLGSkpKUlJTUQxXdPVzlf8CAAfL391dlZaVqamp07733Wller5eZmen0fVJSkmbOnKk1a9a0+VAguJaeni5Jmjx5sry9vSWRc3drq+c3I+ddt3z5chUWFqq2tlanTp1SYWGhQkJClJWVJQ+Pfz4MRs671+30/GbkvHOam5s1b948+fv764svvnB53sqc8zFLm2h5nLKPj0+b+wMGDHA6h+6TkJCgzMxMnTt3TnV1dTpz5ow+/fRT9e3bV8nJyY7/IMB9XOVf4u+AO4SHhys1NVWFhYW6du2aLl26pHXr1mnYsGHatGmTXnvttZ4u0Za2b9+uVatWycvLSykpKY51cu4+t+q5RM67044dO5SRkaHs7GwVFhZqxIgRysrKcnrnh5x3r9vpuUTOu+rrr7/WL7/8ouXLlyswMNDleUtz3uW77mCJN954w0gyH3/8cZv7LTdhRkREWFzZ3WvHjh1GkvHz8zN1dXU9XY7tqZ2HcXz//fdGknniiSdueX1ISIiRZC5fvuyuEnud9nrensuXL5vAwEAjyRw8eNANlfVeJ0+eNPfdd5+RZL788kunPXLuHu31vD3kvPMqKyvNvn37zIQJE4wks3TpUsceOXeP9nreHnLuWnFxsRk4cKAZN26c03pRUdEtH4BiZc55Z84mWt5+ra2tbXO/rq5OkniL3EITJ07Uo48+qurqah0+fLiny+nVXOVf4u+AlYKDg5WYmCjpn58K4/aUlJRo8uTJqqys1MKFC/X+++877ZPz7ueq5+0h553n7++v+Ph4bd++XbGxsUpKStKvv/4qiZy7S3s9bw85d+2dd95RY2OjVq5cedvXWJlzhjmbaHnQRklJSZv7Les8kMNa999/vyTpypUrPVxJ7+Yq/7W1taqqqpK/vz/3V1iE7HdMeXm5nn76aRUXFysxMVGpqamtzpDz7nU7PXeFnHeNl5eXXnrpJRljHE/tI+fu1VbPXSHn7du6dat8fHw0f/58jR8/3vE1e/ZsSf/cH9ey1vKRSStzzgNQbKLlkcr5+flt7resR0dHW1YTpMrKSkn89NDdIiMj5e3trbKyMpWUlLS6oZj8W4/s376amhpNmTJFp0+f1owZM/Tdd9+pT58+rc6R8+5zuz13hZx33aBBgyRJZWVlksi5Ff7bc1fIuWtVVVXau3dvm3vXr1937DU1NUmyNue8M2cTcXFx8vPz07lz51RQUNBqPzs7W5L07LPPWl3aXausrEz79++XdOtfGYHu0b9/fz355JOS/s36zci/tYwx2rx5syTxSGsXGhoaNG3aNB05ckSTJk3S+vXrHb8D6r/IeffoSM/bQ867R8t/csPCwiSRcyv8t+ftIeeuGWPa/CoqKpL0z+DWsubv7y/J4px36Y47WOqjjz4ykszYsWPNtWvXHOtpaWkub7JE5xw6dMjk5OSY5uZmp/WioiITFxdnJJnnn3++h6rrXeTiYRy7du0ykkxgYKA5e/asYz03N9d4e3sbX19fU1FRYUWpvUZ7PS8rKzMZGRmmvr7eab2mpsa89dZbRpIZOnSoqa2ttaJUW2pqajLTp083kkx8fPxt9Yqcd01He07Ou27fvn1mw4YN5saNG07rjY2N5quvvjIeHh6mf//+pri42LFHzrumoz0n5+7R3gNQjLEu532MMabrIyGsUF9fr/HjxysvL0/BwcGKj4/XxYsXlZeXp8DAQB0+fFjh4eE9XWavsmbNGiUmJio4OFgREREaOnSoSkpKdPToUdXX1ysqKko5OTkaPHhwT5dqO9u2bXN6RHheXp769Omjxx57zLGWlJSkqVOnOr5fsGCB0tPT5ePjo6efflqNjY3atWuXmpub9cMPP2jmzJmWvga76UjPL1y4oJEjR8rX11cPPPCAQkNDVVVVpfz8fFVUVMjf319bt25VXFxcT7wUW0hPT9eCBQskSdOnT5evr2+b51JTUx0fi5LIeVd0tOfkvOta/p0cNGiQYmNjFRgYqPLycv3222+6cuWK7rnnHmVkZOjFF190uo6cd15He07O3aOlr5GRkTp9+nSbZyzJeZfHQViqrq7OJCUlmbCwMNOvXz8zZMgQM2fOHKefeKH7nDx50syfP9/ExMSYoKAg07dvX+Pn52fGjBlj0tLS+JUEXbB69Wojqd2v1atXt3ldbGys8fHxMX5+fmbSpElm//791r8AG+pIz69evWo++OADM27cODNs2DDj7e1tfHx8TFRUlFm0aJEpKSnp2RdjA0uWLHHZb0mmqKio1bXkvHM62nNy3nXnz583H374oYmLizPBwcHGy8vLDBgwwERFRZl3333X/PHHH7e8lpx3Tkd7Ts7dw9U7cy3cnXPemQMAAAAAG+IBKAAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAC40aFDh+Th4aGYmBg1Nzff8tymTZvUp08fTZs2zcLqAAB2xjAHAICbNDc36+2335YxRunp6fLwuPU/uzExMZKk3Nxcq8oDANgcwxwAAG6ybt06nThxQhMmTFB8fHy7Z0NDQ+Xp6any8nKVl5dbVCEAwM4Y5gAAcJNly5ZJkhYtWuTyrKenp3x9fSVJpaWlbq0LANA7MMwBAOAGhw8f1smTJxUcHKyJEyc67e3fv18FBQWtrmm5p669e+sAAGjBMAcAgBvs2LFDkjRhwgSne+VKS0uVkJCgzz//3Ol8XV2dqqurJUlDhgyxrlAAgG0xzAEA4AbHjh2T9O+DTVocPHhQkhQREeG0fvz4cUlSSEgIwxwA4LYwzAEA4AaXLl2SJA0fPtxpfdu2bZKkoKAgp/WdO3dKkp566inHWm1trTw9PbVmzRrNmTNHAQEBCggIUEpKijtLBwDYBMMcAABucOPGDUnO979VV1crOztbkvT333871puampSRkSFJevXVVx3rx44dU3Nzs1asWKHnnntOR44c0eLFi5WcnKzz589b8TIAAHcwhjkAANwgNDRUkpSTk+NYW7x4sYKCgvTQQw/p0KFDjvXk5GQVFRVpzJgxTg9LKSgokIeHhzIzMzVr1iyNGjVKr7/+uiTpzz//tOiVAADuVH17ugAAAHqjV155RVu3btW3336rixcvqqqqSnl5ecrOztbGjRu1YcMGTZ06VRUVFcrLy9PQoUOVmZnp9Gfk5+dr7Nixio6Odqy1vCMXFhZm6esBANx5GOYAAHCD2bNnq6SkRP/73/+0Z88eRUZGauPGjZoxY4ZiYmJUWlqqPXv2aODAgZo7d65SUlJa3V9XUFCgSZMmOa0dPXpUI0aMaHXPHQDg7tPHGGN6uggAAOCssbFRAwcOVFZWlmbNmuVYnzt3rqqrq7V58+YerA4AcCfgnjkAAO5Av//+u27cuKHY2Fin9aNHj7ZaAwDcnRjmAAC4AxUUFCggIEAjR450rF2/fl2nTp1imAMASOJjlgAAAABgS7wzBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADb0fyCvjlT/pwbbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,dpi=150)\n", + "\n", + "ax.oplot(Sigma_iw['up_2'].imag, '-', color='C0', label=r'up $d_{z^2}$')\n", + "ax.oplot(Sigma_iw['up_4'].imag, '-', color='C1', label=r'up $d_{x^2-y^2}$')\n", + "\n", + "ax.oplot(Sigma_iw['down_2'].imag, '--', color='C0', label=r'down $d_{z^2}$')\n", + "ax.oplot(Sigma_iw['down_4'].imag, '--', color='C1', label=r'down $d_{x^2-y^2}$')\n", + "\n", + "ax.set_ylabel(r\"$Im \\Sigma (i \\omega)$\")\n", + "\n", + "ax.set_xlim(0,40)\n", + "ax.set_ylim(-1.8,0)\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2a07a928-e69f-4ad1-91ea-0386024ed5de", + "metadata": {}, + "source": [ + "We can clearly see that a $\\omega_n=8$ the self-energy is replaced by the tail-fit as specified in the input config file. This cut is rather early, but ensures convergence. For higher sampling rates this has to be changed. We can also nicely observe a splitting of the spin channels indicating a magnetic solution, but we still have a metallic solution with both self-energies approaching 0 for small omega walues. However, the QMC noise is still rather high, especially in the $d_{x^2-y^2}$ orbital. " + ] + }, + { + "cell_type": "markdown", + "id": "8b22265a-4138-4d9c-8315-917320f27cb3", + "metadata": {}, + "source": [ + "## 5. Multiplet analysis" + ] + }, + { + "cell_type": "markdown", + "id": "d3c2f507-757a-4880-b9dc-1f254c78c512", + "metadata": {}, + "source": [ + "We follow now the triqs/cthyb tutorial on the [multiplet analysis](https://triqs.github.io/cthyb/unstable/guide/multiplet_analysis_notebook.html) to analyze the multiplets of the Ni-d orbitals: " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c00e89e4-cf2e-4fca-84b1-11cb42072217", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "pd.set_option('display.width', 130)\n", + "\n", + "from triqs.operators.util import make_operator_real\n", + "from triqs.operators.util.observables import S_op\n", + "from triqs.atom_diag import quantum_number_eigenvalues\n", + "from triqs.operators import n" + ] + }, + { + "cell_type": "markdown", + "id": "fe674d6b-dae6-4497-82f5-6b8004afb275", + "metadata": {}, + "source": [ + "first we have to load the measured density matrix and the local Hamiltonian of the impurity problem from the h5 archive, which we stored by setting `measure_density_matrix=true` in the config file: " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "786a549c-9306-4099-a4f0-3f19d2bdbb36", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(path+'/nno.h5','r') as ar:\n", + " rho = ar['DMFT_results/last_iter/full_dens_mat_0'] \n", + " h_loc = ar['DMFT_results/last_iter/h_loc_diag_0']" + ] + }, + { + "cell_type": "markdown", + "id": "585625be-0888-460e-879b-2a60215a69bb", + "metadata": {}, + "source": [ + "`rho` is just a list of arrays containing the weights of each of the impurity eigenstates (many body states), and `h_loc` is a: " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "efeafafa-502b-4acd-8e76-4f7eab6eb9c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(h_loc))" + ] + }, + { + "cell_type": "markdown", + "id": "72450efb-b8b8-4169-9c01-6fb6259a3178", + "metadata": {}, + "source": [ + "containing the local Hamiltonian of the impurity including eigenstates, eigenvalues etc." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "d767053a-f785-44d1-8a82-eafc5c8b9911", + "metadata": {}, + "outputs": [], + "source": [ + "res = [] \n", + "# get fundamental operators from atom_diag object\n", + "occ_operators = [n(*op) for op in h_loc.fops]\n", + "\n", + "# construct total occupation operator from list\n", + "N_op = sum(occ_operators)\n", + "\n", + "# create Sz operator and get eigenvalues\n", + "Sz=S_op('z', spin_names=['up','down'], n_orb=5, off_diag=False)\n", + "Sz = make_operator_real(Sz)\n", + "Sz_states = quantum_number_eigenvalues(Sz, h_loc)\n", + "\n", + "# get particle numbers from h_loc_diag\n", + "particle_numbers = quantum_number_eigenvalues(N_op, h_loc)\n", + "N_max = int(max(map(max, particle_numbers)))\n", + "\n", + "for sub in range(0,h_loc.n_subspaces):\n", + "\n", + " # first get Fock space spanning the subspace\n", + " fs_states = []\n", + " for ind, fs in enumerate(h_loc.fock_states[sub]):\n", + " state = bin(int(fs))[2:].rjust(N_max, '0')\n", + " fs_states.append(\"|\"+state+\">\")\n", + "\n", + " for ind in range(h_loc.get_subspace_dim(sub)):\n", + "\n", + " # get particle number\n", + " particle_number = round(particle_numbers[sub][ind])\n", + " if abs(particle_number-particle_numbers[sub][ind]) > 1e-8:\n", + " raise ValueError('round error for particle number to large!',\n", + " particle_numbers[sub][ind])\n", + " else:\n", + " particle_number = int(particle_number)\n", + " eng=h_loc.energies[sub][ind]\n", + "\n", + " # construct eigenvector in Fock state basis:\n", + " ev_state = ''\n", + " for i, elem in enumerate(h_loc.unitary_matrices[sub][:,ind]):\n", + " ev_state += ' {:+1.4f}'.format(elem)+fs_states[i]\n", + "\n", + " # get spin state\n", + " ms=Sz_states[sub][ind]\n", + "\n", + " # add to dict which becomes later the pandas data frame\n", + " res.append({\"Sub#\" : sub,\n", + " \"EV#\" : ind,\n", + " \"N\" : particle_number,\n", + " \"energy\" : eng,\n", + " \"prob\": rho[sub][ind,ind],\n", + " \"m_s\": round(ms,1),\n", + " \"|m_s|\": abs(round(ms,1)),\n", + " \"state\": ev_state})\n", + "# panda data frame from res\n", + "res = pd.DataFrame(res, columns=res[0].keys())" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "54f249f9-15b8-4b1c-bebb-7b63952e875e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Sub# EV# N energy prob m_s |m_s| state\n", + "4 4 0 9 3.640517e-01 0.310283 -0.5 0.5 +1.0000|0111111111>\n", + "0 0 0 8 0.000000e+00 0.125113 -1.0 1.0 +1.0000|0101111111>\n", + "5 5 0 9 3.640517e-01 0.083760 0.5 0.5 +1.0000|1111101111>\n", + "20 20 0 8 8.851884e-01 0.074717 0.0 0.0 +1.0000|0111111011>\n", + "2 2 0 9 2.739907e-01 0.044306 -0.5 0.5 +1.0000|1101111111>\n", + "55 55 0 10 7.125334e+00 0.038609 0.0 0.0 +1.0000|1111111111>\n", + "3 3 0 9 2.739907e-01 0.035831 0.5 0.5 +1.0000|1111111011>\n", + "51 51 0 8 2.745626e+00 0.033932 0.0 0.0 +1.0000|0111101111>\n", + "1 1 0 8 4.903654e-09 0.031693 1.0 1.0 +1.0000|1111101011>\n", + "21 21 0 8 8.851884e-01 0.019748 0.0 0.0 +1.0000|1101101111>\n" + ] + } + ], + "source": [ + "print(res.sort_values('prob', ascending=False)[:10])" + ] + }, + { + "cell_type": "markdown", + "id": "2af9aa9e-481b-48fb-952e-0d53080236c3", + "metadata": {}, + "source": [ + "This table shows the eigenstates of the impurity with the highest weight / occurence probability. Each row shows the state of the system, where the 1/0 indicates if an orbital is occupied. The orbitals are ordered as given in the projectors (dxy, dyz, dz2, dxz, dx2-y2) from right to left, first one spin-channel, then the other. Additionally each row shows the particle sector of the state, the energy, and the `m_s` quantum number.\n", + "\n", + "It can be seen, that the state with the highest weight is a state with one hole (N=9 electrons) in the $d_{x^2-y^2, up}$ orbital carrying a spin of `0.5`. The second state in the list is a state with two holes (N=8). One in the $d_{x^2-y^2, up}$ and one in the $d_{z^2, up}$ giving a magnetic moment of 1. This is because the impurity occupation is somewhere between 8 and 9. We can also create a nice state histogram from this: " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "52d1d26d-587f-4b4d-a46a-f71850423b7d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyMAAAIqCAYAAAA3q5W5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAABY+klEQVR4nO3deVxWZf7/8feNsggiLuCCu6QyUZiYpampmallg5rNd7QmFHWcjDJpfpozmqilzbg0rm2TaI2Wk5UzWma55DIgqZgkKRoh6KgTIiiLgMj5/dH35hsDKMuB4w2v5+PB4yHXdd3X9TkyjefNOdc5NsMwDAEAAABADXOyugAAAAAAdRNhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYIn6VhdQV7Rs2VLZ2dlq166d1aUAAAAApklJSZGHh4cuXLhQ4c9yZaSGZGdn69q1a1aXAQAAAJjq2rVrys7OrtRnuTJSQ+xXROLj4y2uBAAAADBPQEBApT/LlREAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEvwaF8HYBiGDMOwugz8L5vNJpvNZnUZAAAADo8wcou6evWqLl++rMzMTBUUFFhdDv5L/fr15enpKS8vLzVo0MDqcgAAABwSYeQWdOXKFf373/+2ugzcQEFBgdLT05Wenq7WrVurUaNGVpcEAADgcAgjt5irV68WBZGGDRuqSZMmcnNzk5MT23tuFYWFhcrNzVV6erqysrL073//W87OzlwhAQAAqCDCyC3m8uXLkn4KIm3atGFvwi3IyclJDRs2lIeHh86ePausrCxdvnyZMAIAAFBB/Lr9FpOZmSlJatKkCUHkFmez2dSkSRNJ//dzAwAAQPkRRm4hhmEUbVZ3c3OzuBqUh/3nVFBQwBPPAAAAKogwcgv5+ckse0Qcw89/ToQRAACAiuGMFwAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGIElau3atbDab1q5da3UplTJgwAAehQwAAOBgHDqM5Obmas6cOerSpYvc3Nzk6+ur0NBQnT17tkLzdOjQQTabrcyvEydOVNMRAAAAAHWXw76BPTc3V4MGDVJUVJRatWql4OBgnT59WpGRkdq6dauio6Pl5+dXoTlDQkJKbffy8jKjZAAAANxIhIXnXBGXrVu7DnPYMLJgwQJFRUWpd+/e+uKLL9SwYUNJ0tKlS/XCCy8oNDRUe/bsqdCcjnqLEgAAAOCIHPI2rWvXrmnFihWSpFWrVhUFEUkKDw9XYGCg9u7dq8OHD1tVYq1w+vRp2Ww2DRgwQNnZ2QoPD1fbtm3VoEEDBQUFacuWLUVjP/zwQ91zzz3y8PBQixYt9Nxzz+nq1atVWn/79u0aMmSI2rRpI1dXV/n6+qpv376aO3duVQ8NAAAAtwCHDCP79+9XRkaG/Pz81L179xL9o0ePlqRiJ8uovPz8fA0aNEjvvfee7rrrLvXq1UtHjx7VyJEjtWPHDr322msaO3as6tevr4ceekjXr1/XihUrNHHixEqv+cYbb2jo0KHas2ePfvGLX+ixxx5TQECATp8+rYiICPMODgAAAJZxyNu0jh49KkkKCgoqtd/ebh9XXosWLVJiYqJcXV0VEBCgkSNHysfHp2rF1gLR0dEaMGCATp48qSZNmkj66Za28ePH6+mnn9alS5e0a9cu9evXT5J07tw5de/eXRs2bND8+fPVqVOnCq/56quvqlGjRjp69Kg6dOhQ1G4Yhr766iszDgsAAAAWc8gwkpKSIklq06ZNqf32dvu48po+fXqx76dNm6bly5drwoQJ5Z4jICCg1PbExMQKb6i/VdSrV09vv/12URCRpKeeekrTp0/X999/r5deeqkoiEiSr6+vnnjiCb322mvau3dvpcLIjz/+qC5duhQLIpJks9k0cODASh8LAAAAbh0OeZtWVlaWJMnd3b3Ufg8Pj2LjbuaXv/ylPv74YyUnJysnJ0fHjh1TeHi48vLyNHHiRG3evNmUuh1Vhw4ddNtttxVrc3JyUvv27SVJgwcPLvEZe/A6f/58pdbs0aOHjh49qhdffFGJiYmVmgMAAAC3Noe8MmIYhiSV+ZI7e395LV++vNj3AQEBWrJkibp27arJkydrxowZGjFiRLnmio+PL7W9rCsmjqB169altttDX2n99r68vLxKrblq1SqNGDFCf/rTn/SnP/1Jvr6+6tevn0aPHq1Ro0bJyckhczQAAAB+xiHP6Dw9PSVJ2dnZpfbn5ORIUrGnbFXGxIkT1bx5c508eVJJSUlVmsuR3ezN5tXx5vPAwEB99913+uSTTzRp0iQ1bNhQGzdu1OOPP67+/fsrPz/f9DUBAABQsxwyjLRr106SynzTur3dPq6ynJycqny7ESrPzc1NI0aM0FtvvaWEhATFx8crMDBQ+/fv1zvvvGN1eQAAAKgihwwj3bp1kyTFxsaW2m9vDwwMrPJa6enpkqp+lQVVd/vtt+uZZ56RJH377bcWVwMAAICqcsgw0qdPH3l5eSkxMVFHjhwp0b9p0yZJ0vDhw6u0Tnx8vBISEuTu7i5/f/8qzYXyy8nJ0fLly5WRkVGsvbCwUF988YWkql/1AgAAgPUcMoy4uLgoLCxMkhQWFlZs78jSpUsVFxenvn37qmfPnkXtK1eulL+/v2bOnFlsru3bt5f6pva4uDg9/vjjMgxDEydOlIuLSzUdDf5bfn6+pk6dqhYtWqh3794aM2aMHnvsMXXs2FEfffSROnXqpMmTJ1tdJgAAAKrIIZ+mJUmzZs3Sjh07FBUVpc6dO6tfv35KTk5WTEyMmjVrpsjIyGLjL168qISEhBJ7P6KjozV37ly1b99efn5+8vHxUVJSkmJjY1VQUKD+/ftr4cKFNXlodV7Dhg21atUq7dy5U0ePHlVcXJxcXFzUvn17TZo0SWFhYWrcuLHVZQIAAKCKHDaMuLm5affu3Vq4cKE2bNigzZs3q0mTJgoJCdH8+fPVtm3bcs0zZMgQnTlzRgcPHtTRo0d1+fJlNWrUSH379tUTTzyh8ePHq169etV8NLemDh063PAxyTd6E/q4ceM0bty4Sq1bv359TZkyRVOmTKnU5wEAAOAYHDaMSFKDBg00b948zZs376ZjIyIiFBERUaK9d+/e6t27dzVUBwAAAOBGHHLPCAAAAADH59BXRuA4ynvLlre3txYvXly9xQAAAOCWQBhBjVi3bl25xrVv354wAgAAUEcQRiBJuuuuuzRnzhzddddd1TL/jTbCm2HcuHEaMGBAta4BAAAAcxFGIOmnMFJdQaQmVPbJXQAAALAOG9gBAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjewO6gOL35qdQk3dfrVR0yfMzc3VwsXLtT777+vlJQUNW3aVEOHDtW8efPUpk2bCs2VkZGhiIgIffLJJ7pw4YJatmypESNGaO7cuWrcuLHptQMAAKA4rozAYeTm5mrQoEGaN2+esrKyFBwcrLZt2yoyMlJBQUFKTEws91xpaWm65557tGzZMtWvX18jRoyQp6enli9frp49eyotLa0ajwQAAAASYQQOZMGCBYqKilLv3r118uRJbdy4UTExMVqyZIlSU1MVGhpa7rmmTZumU6dOadSoUUpISNDGjRt17NgxPfvss/r+++8VHh5ejUcCAAAAiTACB3Ht2jWtWLFCkrRq1So1bNiwqC88PFyBgYHau3evDh8+fNO5Lly4oPXr18vZ2VmrV69W/fr/d7fiokWL5OPjo/Xr1+s///mP+QcCAACAIoQROIT9+/crIyNDfn5+6t69e4n+0aNHS5K2bNly07m2bdumwsJC3X///WrRokWxPldXVz366KO6fv26tm3bZk7xAAAAKBVhBA7h6NGjkqSgoKBS++3t9nE1NRcAAAAqjzACh5CSkiJJZT4xy95uH1dTcwEAAKDyCCNwCFlZWZIkd3f3Uvs9PDyKjaupuQAAAFB5hBE4BMMwJEk2m+2G/TU9FwAAACqPMAKH4OnpKUnKzs4utT8nJ0eSij1lqybmAgAAQOURRuAQ2rVrJ0k6e/Zsqf32dvu4mpoLAAAAlUcYgUPo1q2bJCk2NrbUfnt7YGBgjc4FAACAyiOMwCH06dNHXl5eSkxM1JEjR0r0b9q0SZI0fPjwm841dOhQOTk5ad++ffrxxx+L9eXl5WnLli1ycnLSsGHDzCkeAAAApSKMwCG4uLgoLCxMkhQWFlZsv8fSpUsVFxenvn37qmfPnkXtK1eulL+/v2bOnFlsrlatWmnMmDHKz8/XlClTVFBQUNQ3ffp0paamauzYsWrZsmU1HxUAAEDdVt/qAoDymjVrlnbs2KGoqCh17txZ/fr1U3JysmJiYtSsWTNFRkYWG3/x4kUlJCTo/PnzJeb6y1/+ogMHDuijjz6Sv7+/7r77bsXHx+vYsWPy8/PTa6+9VlOHBQAAUGcRRhzU6VcfsbqEGufm5qbdu3dr4cKF2rBhgzZv3qwmTZooJCRE8+fPV9u2bcs9l7e3tw4ePKg5c+Zo8+bN+uSTT9SiRQuFhYVp7ty5atq0aTUeCQAAACTJZvBShRoREBAgSYqPjy9zTGFhoRISEiRJXbt2lZMTd9Hd6viZAQBgoggvC9e+bN3aDq4857ll4cwJAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACh5Kbm6s5c+aoS5cucnNzk6+vr0JDQ3X27NkKzdOhQwfZbLYyv06cOFFNRwAAAAC7+lYXgEqK8LK6gpuLuGzqdLm5uRo0aJCioqLUqlUrBQcH6/Tp04qMjNTWrVsVHR0tPz+/Cs0ZEhJSaruXlwP8/QIAADg4wggcxoIFCxQVFaXevXvriy++UMOGDSVJS5cu1QsvvKDQ0FDt2bOnQnOuXbu2GioFAABAeXCbFhzCtWvXtGLFCknSqlWrioKIJIWHhyswMFB79+7V4cOHrSoRAAAAFUQYgUPYv3+/MjIy5Ofnp+7du5foHz16tCRpy5YtNV0aAAAAKonbtOAQjh49KkkKCgoqtd/ebh9XXosWLVJiYqJcXV0VEBCgkSNHysfHp2rFAgAAoFwII3AIKSkpkqQ2bdqU2m9vt48rr+nTpxf7ftq0aVq+fLkmTJhQiSoBAABQEdymBYeQlZUlSXJ3dy+138PDo9i4m/nlL3+pjz/+WMnJycrJydGxY8cUHh6uvLw8TZw4UZs3bzalbgAAAJSNKyNwCIZhSJJsNtsN+8tr+fLlxb4PCAjQkiVL1LVrV02ePFkzZszQiBEjKlUrAAAAyocrI3AInp6ekqTs7OxS+3NyciSp2FO2KmPixIlq3ry5Tp48qaSkpCrNBQAAgBsjjMAhtGvXTpLKfNO6vd0+rrKcnJyKXpx4/vz5Ks0FAACAGyOMwCF069ZNkhQbG1tqv709MDCwymulp6dLqvpVFgAAANwYYQQOoU+fPvLy8lJiYqKOHDlSon/Tpk2SpOHDh1dpnfj4eCUkJMjd3V3+/v5VmgsAAAA3RhiBQ3BxcVFYWJgkKSwsrNjekaVLlyouLk59+/ZVz549i9pXrlwpf39/zZw5s9hc27dvL/VN7XFxcXr88cdlGIYmTpwoFxeXajoaAAAASDxNCw5k1qxZ2rFjh6KiotS5c2f169dPycnJiomJUbNmzRQZGVls/MWLF5WQkFBi70d0dLTmzp2r9u3by8/PTz4+PkpKSlJsbKwKCgrUv39/LVy4sCYPDQAAoE4ijDiqiMtWV1Dj3NzctHv3bi1cuFAbNmzQ5s2b1aRJE4WEhGj+/Plq27ZtueYZMmSIzpw5o4MHD+ro0aO6fPmyGjVqpL59++qJJ57Q+PHjVa9evWo+GgAAANiMir6gAZUSEBAg6ac9CWUpLCxUQkKCJKlr165ycuIuulsdPzMAAEwU4WXh2nXvF71mKc95blk4cwIAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsATvGQEAALhF3LnuTkvX/zbkW0vXR93DlREAAAAAliCMAAAAALCEQ4eR3NxczZkzR126dJGbm5t8fX0VGhqqs2fPVmneU6dOqUGDBrLZbBo6dKhJ1QIAAAD4OYcNI7m5uRo0aJDmzZunrKwsBQcHq23btoqMjFRQUJASExMrPffkyZOVl5dnYrUAAAAA/pvDhpEFCxYoKipKvXv31smTJ7Vx40bFxMRoyZIlSk1NVWhoaKXmfeedd7R7925NmjTJ5IoBAAAA/JxDhpFr165pxYoVkqRVq1apYcOGRX3h4eEKDAzU3r17dfjw4QrN++OPP+r//b//pwcffFBjxowxtWYAAAAAxTlkGNm/f78yMjLk5+en7t27l+gfPXq0JGnLli0Vmve5557T1atX9frrr5tSJ8xz+PBhvfrqqxo1apRat24tm80mNze3Ss+XkZGh559/Xu3bt5erq6vat2+vqVOnKiMjw7yiAQAAcEMO+Z6Ro0ePSpKCgoJK7be328eVx2effaaNGzdq3rx5uu2226q8Cb66Wf0c8vIw81nl8+fP1z/+8Q9T5kpLS1Pv3r116tQpderUSSNGjFB8fLyWL1+uzz77TAcOHFCzZs1MWQsAAABlc8gwkpKSIklq06ZNqf32dvu4m8nOztaUKVPUtWtXzZgxo0q1BQQElNqemJgoPz+/Ks1dl/Xu3VvdunVTz5491bNnT7Vs2bLSc02bNk2nTp3SqFGjtHHjRtWv/9N/Bs8995xWrFih8PBwrVu3zqzSAQAAUAaHDCNZWVmSJHd391L7PTw8io27mVmzZik5OVm7du2Si4uLOUXCVFUNiXYXLlzQ+vXr5ezsrNWrVxcFEUlatGiRPvjgA61fv15//vOf1aJFC1PWBAAAQOkcMowYhiFJstlsN+wvj0OHDmnFihV66qmnNHDgwCrXFh8fX2p7WVdMULO2bdumwsJCDRw4sETYcHV11aOPPqo1a9Zo27ZtGjdunDVFAgAA1BEOuYHd09NT0k+3V5UmJydHkoo9Zas0BQUFmjRpkry8vLR48WJzi8QtqTr2GwEAAKByHPLKSLt27SSpzE3m9nb7uLKcPXtW33zzjVq2bKnHH3+8WJ/9qUpff/21BgwYoIYNG2rr1q1VrBxWM3u/EQAAACrPIcNIt27dJEmxsbGl9tvbAwMDyzXfhQsXdOHChVL70tPTtWfPHnl5eVWiUtxqzN5vBAAAgMpzyNu0+vTpIy8vLyUmJurIkSMl+jdt2iRJGj58+A3n6dChgwzDKPVr9+7dkqQhQ4bIMAzeP1FLmLnfCAAAAFXjkGHExcVFYWFhkqSwsLBie0eWLl2quLg49e3bVz179ixqX7lypfz9/TVz5swarxe3DrP2GwEAAKDqHPI2Lemnx/Hu2LFDUVFR6ty5s/r166fk5GTFxMSoWbNmioyMLDb+4sWLSkhI0Pnz5y2qGLcCs/YbAQAAoOoc8sqIJLm5uWn37t2aPXu23N3dtXnzZp0+fVohISE6cuSIbrvtNqtLxC3I7P1GAAAAqDybwU3yNcL+npGy3kMiSYWFhUpISJAkde3aVU5OZWfFO9fdaW6B1eDbkG+rbW6bzSZXV1fl5uZW6HPnz59XmzZtVL9+fZ05c0bNmzcv6svLy1Pbtm2Vlpamf//73+V6y3tFfmYAANyM1f++V+e/3eUSYeEDgyIuW7e2gyvPeW5ZOHNCrVTWHqFWrVppzJgxys/P15QpU1RQUFDUN336dKWmpmrs2LHlCiIAAACoGofdM4K65dNPP9X8+fOLteXn56tXr15F38+ePVuPPPKIpBvvEfrLX/6iAwcO6KOPPpK/v7/uvvtuxcfH69ixY/Lz89Nrr71WvQcDAAAASYQROIjU1FTFxMQUazMMo1hbampqueby9vbWwYMHNWfOHG3evFmffPKJWrRoobCwMM2dO1dNmzY1tXYAAACUjj0jNcTsPSO4NfAzAwCYiT0j7BlxROwZAQAAAOBwCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAS9a0uAJVz3P8XVpdwU784cdy0uQ4fPqwvv/xSX3/9tWJiYnTu3Dm5uroqNze3wnN16NBBycnJZfYfP35c/v7+VSkXAAAA5UAYgUOYP3++/vGPf5g6Z0hISKntXl5epq4DAACA0hFG4BB69+6tbt26qWfPnurZs6datmxZ5TnXrl1b9cIAAABQaYQROIQZM2ZYXQIAAABMxgZ2AAAAAJbgygjqrEWLFikxMVGurq4KCAjQyJEj5ePjY3VZAAAAdQZhBHXW9OnTi30/bdo0LV++XBMmTLCoIgAAgLqF27RQ5/zyl7/Uxx9/rOTkZOXk5OjYsWMKDw9XXl6eJk6cqM2bN1tdIgAAQJ3AlRHUOcuXLy/2fUBAgJYsWaKuXbtq8uTJmjFjhkaMGGFNcQAAAHUIV0aA/zVx4kQ1b95cJ0+eVFJSktXlAAAA1HqEEeB/OTk5yc/PT5J0/vx5i6sBAACo/QgjwM+kp6dLkho2bGhxJQAAALWf6WFk27ZtGjFihFq3bi1XV9diTybatm2bwsPDde7cObOXBaosPj5eCQkJcnd3l7+/v9XlAAAA1HqmhpEpU6Zo+PDh+uc//6msrCxdu3ZNhmEU9Tdu3Fh/+ctf9MEHH5i5LFDCypUr5e/vr5kzZxZr3759uw4fPlxifFxcnB5//HEZhqGJEyfKxcWlpkoFAACos0wLI2vWrNEbb7yhe+65R998840uX75cYkzv3r3VunVrbdmyxaxlUUd8+umn6tWrV9GXJOXn5xdr+/TTT4vGX7x4UQkJCSX2fkRHR+vuu+9Whw4dNGjQIP3617/Wvffeqx49euj48ePq37+/Fi5cWKPHBgAAUFeZ9mjfN998U02bNtXWrVvVrFmzMsfddttt+uGHH8xats76xYnjVpdQo1JTUxUTE1OszTCMYm2pqak3nWfIkCE6c+aMDh48qKNHj+ry5ctq1KiR+vbtqyeeeELjx49XvXr1TK8fAAAAJZkWRuLj4zVw4MAbBhFJatmypQ4cOGDWsqgjxo0bp3HjxpV7fEREhCIiIkq09+7dW7179zavMAAAAFSaabdpOTk5qbCw8Kbjzp07Jw8PD7OWBQAAAOCgTAsj/v7+OnTokHJycsock5aWpm+++UaBgYFmLQsAAADAQZkWRp544gmlpqbqmWeeUUFBQYl+wzD03HPPKSsrS7/5zW/MWhYAAACAgzJtz8iUKVP00Ucfad26ddq/f7+GDBki6adHpv7+97/X1q1bdfLkST3wwAMKCQkxa1kAAAAADsq0KyPOzs76/PPP9bvf/U4pKSlavXq1JCk2NlZLly5VYmKiJkyYoC1btsjJiRe/AwAAAHWdaVdGJMnd3V2rV6/W3LlztWfPHp0+fVrXr19XmzZtNHDgQPn6+pq5HAAAAAAHZmoYsfPx8dHo0aOrY2oAAAAAtQT3SwEAAACwRKWvjMybN6/Si9psNs2ePbvSnwcAAADg+CodRiIiImSz2WQYRrF2m81W9Gd733+3EUYAAAAAVDqMREZGlmiLiorS22+/rXbt2mn06NFq166dJCklJUUfffSRkpOTNWnSJN13332VrxgAAABArVDpMPLf7wo5cOCAJk+erNmzZ+ull15SvXr1ivX/6U9/0vz58/Xqq69q3LhxlV0WAAAAQC1h2gb2l156SV27dtXcuXNLBBFJqlevniIiItS1a1fNmTPHrGUBAAAAOCjTwsjXX3+tO+6446bj7rjjDn399ddmLYs6IicnR5s3b9aECRMUGBioRo0aycPDQ926ddO8efOUlZVV4TkzMjL0/PPPq3379nJ1dVX79u01depUZWRkmH8AAAAAKMHU94ycOHHClDG4uVW/22V1CTf1zBsPmDbXhg0bNGnSJElSQECAhg4dqitXrigqKkpz5szR+++/rz179qh58+blmi8tLU29e/fWqVOn1KlTJ40YMULx8fFavny5PvvsMx04cEDNmjUzrX4AAACUZNqVkb59++qbb77RokWLyhyzePFiHTlyRH379jVrWdQRLi4uevrpp3Xy5EkdO3ZMf//73/X5558rISFB3bt314kTJ/T888+Xe75p06bp1KlTGjVqlBISErRx40YdO3ZMzz77rL7//nuFh4dX38EAAABAkmQz/vvZvJUUFxen++67T1evXlXXrl2LnqZls9mUnJysjz76SCdOnFCDBg0UFRWlwMBAM5Z1GAEBAZKk+Pj4MscUFhYqISFBktS1a1c5OZWdFevalZEbiY6O1n333SdXV1dduXJFLi4uNxx/4cIFtW7dWvXq1dOZM2fUokWLor68vDy1bdtWly5d0r///e9ifaWpyM8MAICbuXPdnZau/23It5aurwgvC9e+bN3aDq4857llMe02rcDAQO3cuVPjxo3TiRMn9PLLLxe9X8Sed7p06aK1a9fWuSCC6tWtWzdJPwWJtLQ0tWrV6objt23bpsLCQg0cOLBE2HB1ddWjjz6qNWvWaNu2bTz5DQAAoBqZumfk3nvv1XfffaevvvpK+/fv17lz52QYhnx9fdW3b18NHDiw2AsQATP88MMPkiRnZ2c1bdr0puOPHj0qSQoKCiq1PygoSGvWrCkaBwAAgOphahiRfnrb+sCBAzVw4ECzpwZKtWzZMknS0KFD5erqetPxKSkpkqQ2bdqU2m9vt48DAABA9eAGdzi0zz77TO+8846cnZ01f/78cn3G/hhgd3f3Uvs9PDyKjQMAAED1MO3KyLvvvluh8U899ZRZS6OOOn78uJ588kkZhqFFixYV7R25GfseprJuGTTpmQ4AAAC4CdPCyLhx48q1H8QwDNlsNsIIquTs2bMaOnSo0tPTFR4erqlTp5b7s56enpKk7OzsUvtzcnIkSQ0bNqx6oQAAACiTaWHkpZdeKjWMFBYW6syZM9qzZ4+SkpI0btw4tW/f3qxlUQddvHhRgwcPVkpKisaPH6/FixdX6PPt2rWT9FOgKY293T4OAAAA1cO0MBIREXHD/mvXrun555/Xpk2bdPDgQbOWRR2TmZmpYcOG6cSJExo1apTefvvtCj+hzX47V2xsbKn99nYeQQ0AAFC9amwDu7Ozs5YtW6YGDRroxRdfrKllUYvk5eUpODhYhw4d0pAhQ/T++++rXr16FZ5n6NChcnJy0r59+/Tjjz+WWGPLli1ycnLSsGHDzCodAAAApajRp2nVr19fPXr00JdfflmTy6IWuH79usaMGaPdu3erX79++vjjj2/6pvWVK1fK399fM2fOLNbeqlUrjRkzRvn5+ZoyZYoKCgqK+qZPn67U1FSNHTtWLVu2rJZjAQAAwE9Mf8/IzVy4cKHMjcNAWVauXKlPPvlEkuTt7a0pU6aUOm7x4sXy9vaW9NPekoSEBJ0/f77EuL/85S86cOCAPvroI/n7++vuu+9WfHy8jh07Jj8/P7322mvVdzAAAACQVINhpLCwUKtWrVJ0dLTuueeemlq21nrmjQesLqFGpaenF/3ZHkpKExERURRGbsTb21sHDx7UnDlztHnzZn3yySdq0aKFwsLCNHfu3HK9yR0AAABVYzNMeqnCAw+UfXKclZWlpKQkXbp0STabTVu2bKlz9+MHBARIkuLj48scU1hYqISEBElS165d5eTEOylvdfzMAABmunPdnZau/23It5aurwgvC9e+bN3aDq4857llMe3KyFdffXXDfmdnZ/Xt21cvvfSSBg0aZNayAAAAAByUaWEkKSmpzD4XFxd5e3vL2dnZrOUAAAAAODjTwggvMgQAAABQEabd4B4aGqo1a9bcdNzatWsVGhpq1rIAAAAAHJRpYWTt2rXav3//Tcf961//0rp168xaFgAAAICDqvFH/+Tn51fqrdmlyc3N1Zw5c9SlSxe5ubnJ19dXoaGhOnv2bLnnKCgoUEREhB555BF16tRJnp6ecnNzU+fOnfXMM88oJSXFlFoBAAAAFFejYcQwDMXGxsrHx6fKc+Xm5mrQoEGaN2+esrKyFBwcrLZt2yoyMlJBQUFKTEws9zxz587V3r171apVKw0dOlRDhgxRfn6+Vq9ercDAQMXGxla5XgAAAADFVWkD+3+/W+Tzzz8v830jBQUFSkxM1IULF/Sb3/ymKstKkhYsWKCoqCj17t1bX3zxhRo2bChJWrp0qV544QWFhoZqz549N53Hzc1N+/fv17333qv69f/vr+P69euaPXu2Fi5cqClTpujAgQNVrhkAAADA/6nSSw9//oI3m82mm03l7OysoUOH6p133inXW7LLcu3aNTVv3lwZGRmKjY1V9+7di/V369ZNcXFxOnTokHr06FHpdQoKCuTp6anc3FxlZWXJw8Oj0nPx0sPaiZ8ZAMBMvPSQlx46Isteemh/t4hhGOrUqZNGjx6tRYsWlTrWzHeN7N+/XxkZGfLz8ysRRCRp9OjRiouL05YtW6oURmw2m5ycnOTk5FTsqgkAAACAqqvSGfbP3y0yZ84cde/evUbeN3L06FFJUlBQUKn99nb7uMowDEOvvvqqcnJy9OCDD8rV1bXScwEAAAAoybRf98+ZM8esqW7K/oSrNm3alNpvb6/ok7BmzJih//znP7py5Yri4uKUmJgof39/vfXWW+Wew36Z6r8lJibKz8+vQvUAAAAAtZlD3nuUlZUlSXJ3dy+13763wz6uvD766KNiT+G64447tH79enXs2LGSlQIAAAAoS6XDiH0vxXfffacuXbpU6N0hNptNBQUFlV26aKO8zWa7YX9Fff/995Kkixcv6vDhw/rjH/+oHj166K9//atCQkLKNUdZG3fKumICAAAA1FWVDiPt2rWTzWYr2pDetm3bMsOB2Tw9PSVJ2dnZpfbn5ORIUtHjfivK29tbQ4YMUa9evRQYGKinn35aDzzwgNq2bVu5gqvBkv8ZbnUJN/XCxq2mzZWTk6MvvvhCW7Zs0cGDB3X69Gldv35dt912mx577DGFh4dX6OfdoUMHJScnl9l//Phx+fv7m1E6AAAAylDpMHL69Okbfl+d2rVrJ0llvmnd3m4fV1leXl4aPny4Vq9erS+//FKhoaFVmg+Vt2HDBk2aNEnST1eZhg4dqitXrigqKkpz5szR+++/rz179qh58+YVmresK15eXhY+WhAAAKCOcMg9I926dZOkMt+Mbm8PDAys8lr296GkpqZWeS5UnouLi55++mlNmzZNnTt3Lmo/f/68HnnkER05ckTPP/+8NmzYUKF5165da3KlAAAAKC+HfENbnz595OXlpcTERB05cqRE/6ZNmyRJw4dX/VYm+1vceRKWtZ566imtXr26WBCRpFatWmnVqlWSpI8//lj5+flWlAcAAIBKqPSVkYo+Nve/VeUWKhcXF4WFhemVV15RWFiYvvjii6InaC1dulRxcXHq27evevbsWfSZlStXauXKlRo5cqQWLlxY1P7Pf/6z6M3wP9/zkpOTo1deeUV79uxRy5YtNXTo0ErXi+plv1KWl5entLQ0tWrVyuKKAAAAUB6VDiMdOnSo9Ib1qj5NS5JmzZqlHTt2KCoqSp07d1a/fv2UnJysmJgYNWvWTJGRkcXGX7x4UQkJCTp//nyx9tjYWM2dO1e+vr7q3r27vLy8dOHCBX3zzTe6dOmSvLy89Pe//73Sm+FR/X744QdJkrOzs5o2bVqhzy5atEiJiYlydXVVQECARo4cKR8fn+ooEwAAAP+l0mHk/vvvr7GnZ5XGzc1Nu3fv1sKFC7VhwwZt3rxZTZo0UUhIiObPn1/uJ1+NGjVKmZmZ2rdvnw4ePKhLly6pQYMGuu222zR58mQ9++yz/Kb9Frds2TJJ0tChQ+Xq6lqhz06fPr3Y99OmTdPy5cs1YcIE0+oDAABA6WxGZV/KgQqxv2ekrPeQSFJhYaESEhIkSV27dpWTU9lbeurao33L8tlnn2n48OGqX7++Dh48WHTL1s0899xzGjhwoHr06CEfHx/98MMPWrNmjZYtW6br16/rk08+0YgRI246T0V+ZgAA3Myd6+60dP1vQ761dH1FWPg0y4jL1q3t4MpznlsWh3yaFiD99C6QJ598UoZhaNGiReUOIpK0fPnyYt8HBARoyZIl6tq1qyZPnqwZM2aUK4wAAACg8qr117iZmZnKzMysziVQR509e1ZDhw5Venq6wsPDNXXqVFPmnThxopo3b66TJ08qKSnJlDkBAABQOtPDyNatWzVs2DB5eXmpcePGaty4sRo1aqRhw4Zpy5YtZi+HOujixYsaPHiwUlJSNH78eC1evNi0uZ2cnIoe4/zfDzsAAACAuUwLI4ZhaMKECQoODtb27duVmZkpLy8vNWrUSFlZWdq+fbtGjBihcePGiW0qqKzMzEwNGzZMJ06c0KhRo/T222+b/iCF9PR0SeIJagAAANXMtDCybNkyRUZGqlWrVnr99dd1+fJlXbp0Senp6bp8+bJef/11tWrVSu+9917R04+AisjLy1NwcLAOHTqkIUOG6P3331e9evVMXSM+Pl4JCQlyd3eXv7+/qXMDAACgONPCyFtvvSV3d3ft27dPkydPlqenZ1Gfp6enJk+erH379qlBgwZ66623zFoWdcT169c1ZswY7d69W/369dPHH38sFxeXG35m5cqV8vf318yZM4u1b9++XYcPHy4xPi4uTo8//rgMw9DEiRNvOj8AAACqxrSnaSUlJemhhx5Sx44dyxzTsWNHDRo0SF988YVZy6KOWLlypT755BNJkre3t6ZMmVLquMWLF8vb21tS2S+6jI6O1ty5c9W+fXv5+fnJx8dHSUlJio2NVUFBgfr376+FCxdW7wEBAADAvDDi4+NTrt8ku7i4FJ0sovJq4h0etxL7Pg5JRaGkNBERETf939eQIUN05swZHTx4UEePHtXly5fVqFEj9e3bV0888YTGjx9v+u1fAAAAKMm0MDJy5Ej97W9/U3p6upo0aVLqmEuXLmnXrl0aO3asWcuijoiIiFBERIQpn+ndu7d69+5tTmEAAACoNNP2jLz88svq1KmTHnjgAe3atatE/65duzR48GB16tRJCxYsMGtZAAAAAA7KtCsjwcHBcnFx0eHDhzV48GA1bdpU7du3lySlpKQoLS1NktSrVy8FBwcX+6zNZtPOnTvNKgUAAACAAzAtjHz11VdFfzYMQ2lpaUUB5Oeio6NLtJn9nggAAAAAtz5Tn6YFAAAAAOVlWhix35IFAAAAAOVh2gZ2AAAAAKgI066M/FxKSorOnz+vvLy8Msfcf//91bG0Q/v53pnr16/LyYmseKu7fv160Z/Z+wQAAFAxpoaRd955R6+88oqSk5NvOvbnJ3H4ic1mk6urq/Ly8nTlyhU1a9bM6pJwE1euXJEkubq6EkYAAAAqyLQw8vrrryssLEyGYah79+7y8/OTh4eHWdPXGU2aNNGFCxf0448/qqCgQJ6enpzo3mIMw1BeXp4yMzN16dIlSSrzRZ8AAAAom2lhZOnSpXJxcdGnn36qBx54wKxp6xwvLy/l5uYqIyNDly5dKjrZxa2rcePG8vLysroMAAAAh2NaGDl79qwGDhxIEKkiJycntWzZUh4eHsrMzFR2dja3tN2C6tWrJw8PD3l6esrT05MrVwAAAJVgWhhp166dDMMwa7o6zWazqVGjRmrUqJGkn24L4u/21mGz2QgfAAAAJjAtjISEhOjPf/6zzp8/r1atWpk1LcTJLwAAAGon054dO2PGDA0YMEBDhw7V3r17zZoWAAAAQC1l2pWRevXq6c0339SgQYM0cOBAubi4qGXLlqX+Rt9msykxMdGspQEAAAA4INPCyPHjxzVw4EClpqYWPfq0PO8bAQAAAFA3mXab1gsvvKAff/xRISEhiouLU1ZWlgoLC8v8AgAAAFC3mXZl5F//+pcCAwO1Zs0as6YEAAAAUIuZdmXExcVFnTt3Nms6AAAAALWcaWFk4MCB+uabb8yaDgAAAEAtZ1oYefXVV5Wenq7p06ezJwQAAADATZm2Z+Rvf/ubhg8friVLlmjz5s0aMGCAWrduXeajfWfPnm3W0gAAAAAckGlhJCIiQjabTYZh6Pvvv9f3339f5ljCCAAAAADTwkhkZKRZUwEAAACoA0wLIyEhIWZNBQAAAKAOMG0DOwAAAABUBGEEAAAAgCVMu01LkgzD0Pr16/WPf/xDp06dUmZmpgzDKDHOZrMpMTHRzKUBAAAAOBjTwkh+fr4eeeQR7dq1q9QAIqnoaVsAAAAAYNptWkuWLNHOnTs1fPhwnTp1Sr/5zW9ks9mUl5en48ePKyIiQh4eHvp//+//8VJEAAAAAOZdGdm4caOaNm2qDRs2yMPDQ05OP+UcZ2dnde3aVS+99JIGDhyogQMHqmvXrgoNDTVraQAAAAAOyLQrI99//73uueceeXh4/DTx/4aR69evF43p16+f+vTpo9WrV5u1LAAAAAAHZVoYqVevnho1alT0vT2UpKamFhvXunVrJSQkmLUsAAAAAAdlWhhp3bq1UlJSir6/7bbbJEkHDhwoNi4uLk4NGzY0a1kAAAAADsq0MNKrVy/Fx8fr6tWrkqSHH35YkjR16lRt27ZN3377rZ599lkdP35c9957r1nLAgAAAHBQpoWRxx57TO7u7vryyy8l/XRl5Pnnn9eZM2c0fPhw3XXXXVq1apXc3d31pz/9yaxlAQAAADgo056m9cgjj+j8+fPF2pYsWaKePXtq8+bNSk9PV5cuXfTcc8+pc+fOZi0LAAAAwEGZ+gb20vz617/Wr3/96+peBgAAAICDMe02LQAAAACoCMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlqu09I2lpaTp37pwkqVWrVvL29q6upQAAAAA4IFOvjBiGoZUrV+oXv/iFmjdvrrvuukt33XWXWrRooV/84hdasWKFCgsLzVwSAAAAgIMy7cpIXl6eHn30Ue3cuVOGYahJkyZq3769DMNQSkqKEhIS9Pzzz+uf//yntm7dKldXV7OWBgAAAOCATLsysmDBAu3YsUMBAQHatm2b0tLSFBsbqyNHjigtLU3btm3THXfcoV27dmnBggVmLQsAAADAQZkWRv72t7+pcePG2r17t4YMGVKif8iQIdq5c6e8vLz03nvvmbUsAAAAAAdlWhg5d+6cBg0apGbNmpU5xtvbWw888IDOnz9v1rIAAAAAHJRpYaR169bKz8+/6bhr167J19fXrGUBAAAAOCjTwsgTTzyhnTt3Kjk5ucwxycnJ2rlzp8aOHWvWsgAAAAAclGlhZNasWRo0aJDuv/9+rVmzRtnZ2UV92dnZWrNmjfr3769BgwbppZdeMmtZAAAAAA6q0o/27dSpU4k2wzB09uxZTZo0SZMmTVKTJk0kSenp6UVjbDab/P39lZiYWNmlAQAAANQClQ4jp0+fvumYS5culWi70W1cAAAAAOqOSocR3qQOAAAAoCpM2zMCAAAAABVBGAEAAABgCdPDyLFjxzRlyhTdeeedatasmby9vXXnnXfqmWee0bFjx8xeDgAAAICDMjWMLFu2TEFBQXrzzTcVHx+v9PR0Xbp0SfHx8Xr99dcVFBSkZcuWmbZebm6u5syZoy5dusjNzU2+vr4KDQ3V2bNnyz1HRkaGNmzYoLFjx+r222+Xh4eHPD09de+992rZsmW6du2aafUCAAAA+D+mhZEvv/xS06ZNk4uLi6ZNm6YjR44oPT1dGRkZ+uabb/TCCy/I1dVV4eHh2rlzZ5XXy83N1aBBgzRv3jxlZWUpODhYbdu2VWRkpIKCgsr96ODFixfriSee0MaNG+Xu7q5HH31U99xzj44eParnn39eDzzwgHJycqpcLwAAAIDiTAsjS5cuVf369fXFF19o8eLF6tatm7y8vNSoUSMFBgZq0aJF+uKLL+Tk5KQlS5ZUeb0FCxYoKipKvXv31smTJ7Vx40bFxMRoyZIlSk1NVWhoaLnmadiwof7whz8oJSVFhw4d0gcffKCdO3fq22+/Vbt27bR//369/PLLVa4XAAAAQHE2wzAMMyZq1qyZgoKC9OWXX95w3ODBgxUbG6u0tLRKr3Xt2jU1b95cGRkZio2NVffu3Yv1d+vWTXFxcTp06JB69OhR6XXef/99jR07Vh06dFBSUlKl55GkgIAASVJ8fHyV5gEAALXXnevutHT9b0O+tXR9RXhZuPZl69Z2cFU5zzXtykhOTo58fHxuOs7Hx6fKtz3t379fGRkZ8vPzKxFEJGn06NGSpC1btlRpnW7dukmSzp07V6V5AAAAAJRkWhhp27atoqOjdf369TLHFBQUKDo6Wm3btq3SWkePHpUkBQUFldpvb7ePq6wffvhBktSyZcsqzQMAAACgJNPCSHBwsJKTkzVx4kRduXKlRP+VK1c0adIkpaSkaMSIEVVaKyUlRZLUpk2bUvvt7fZxlWV/8ldwcHCV5gEAAABQUn2zJpo5c6Y+/vhjvfvuu9q8ebMefvhhdejQQTabTUlJSfr000915coVderUSTNnzqzSWllZWZIkd3f3Uvs9PDyKjauMN954Qzt27FDjxo314osvlvtz9nvm/ltiYqL8/PwqXQ8AAABQ25gWRpo2baq9e/fqd7/7nT799FO9//77JcY88sgjevPNN9WkSZMqrWXfc2+z2W7YX1l79uzR1KlTZbPZtGbNGvn6+lZpPgAAAAAlmRZGJKl169basmWLkpKStH///qKN376+vurbt686duxoyjqenp6SpOzs7FL77RvkGzZsWOG54+LiNGLECOXn52v58uUaOXJkhT5f1lMEyrpiAgAAANRVpoWRoKAg+fn56cMPP1THjh1NCx6ladeunSSV+aZ1e7t9XHklJiZqyJAhysjIUEREhJ599tmqFQoAAACgTKZtYE9ISJCzs7NZ092Q/ZG7sbGxpfbb2wMDA8s957lz5zR48GBduHBBU6dO1Zw5c6peKAAAAIAymRZGOnfuXKUXGVZEnz595OXlpcTERB05cqRE/6ZNmyRJw4cPL9d86enpGjJkiJKSkjR+/Hi99tprptYLAAAAoCTTwsiECRO0Z88enThxwqwpy+Ti4qKwsDBJUlhYWLG9I0uXLlVcXJz69u2rnj17FrWvXLlS/v7+JZ7klZOTo4cffljHjh3Tr371K7399ttlbowHAAAAYB7T9ow8++yzio+PV//+/fXiiy/q0UcfVbt27eTi4mLWEsXMmjVLO3bsUFRUlDp37qx+/fopOTlZMTExatasmSIjI4uNv3jxohISEnT+/Pli7X/84x914MAB1atXT/Xr19eECRNKXW/t2rXVchwAAABAXWVaGKlXr56knx6r+/vf/16///3vyxxrs9lUUFBQpfXc3Ny0e/duLVy4UBs2bNDmzZvVpEkThYSEaP78+eV+y3t6erok6fr169qwYUOZ4wgjAAAAgLlsRlVfyvG/7C84LK+kpCQzlnUY9kf7lvXoXwAAgDvX3Wnp+t+GfGvp+orwsnDty9at7eCqcp5r2pWR06dPmzUVAAAAgDrA1JceAgAAoPIyj79qdQlAjTLtaVqlyczMVGZmZnUuAQAAAMBBmR5Gtm7dqmHDhsnLy0uNGzdW48aN1ahRIw0bNkxbtmwxezkAAAAADsq0MGIYhiZMmKDg4GBt375dmZmZ8vLyUqNGjZSVlaXt27drxIgRGjdunEzaMw8AAADAgZkWRpYtW6bIyEi1atVKr7/+ui5fvqxLly4pPT1dly9f1uuvv65WrVrpvffe07Jly8xaFgAAAICDMi2MvPXWW3J3d9e+ffs0efJkeXp6FvV5enpq8uTJ2rdvnxo0aKC33nrLrGUBAAAAOCjTwkhSUpIGDRqkjh07ljmmY8eOGjRoUJ17xwgAAACAkkwLIz4+PnJxcbnpOBcXF3l7e5u1LAAAAAAHZVoYGTlypHbt2qX09PQyx1y6dEm7du3SiBEjzFoWAAAAgIMyLYy8/PLL6tSpkx544AHt2rWrRP+uXbs0ePBgderUSQsWLDBrWQAAAAAOyrQ3sAcHB8vFxUWHDx/W4MGD1bRpU7Vv316SlJKSorS0NElSr169FBwcXOyzNptNO3fuNKsUAAAAAA7AtDDy1VdfFf3ZMAylpaUVBZCfi46OLtFms9nMKgMAAACAgzAtjPCELAAAAAAVYVoYsd+SBQAAAADlYdoGdgAAAACoCMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlHDqM5Obmas6cOerSpYvc3Nzk6+ur0NBQnT17tkLz7NmzR3PnztUjjzwiHx8f2Ww2+fv7V1PVAAAAACSpvtUFVFZubq4GDRqkqKgotWrVSsHBwTp9+rQiIyO1detWRUdHy8/Pr1xzTZ06VUePHq3migEAAAD8nMNeGVmwYIGioqLUu3dvnTx5Uhs3blRMTIyWLFmi1NRUhYaGlnuuhx56SK+88oq++OILxcbGVmPVAAAAAOwc8srItWvXtGLFCknSqlWr1LBhw6K+8PBwrVu3Tnv37tXhw4fVo0ePm8735z//uejPp0+fNr1eAAAAACU55JWR/fv3KyMjQ35+furevXuJ/tGjR0uStmzZUtOlAQAAACgnhwwj9v0dQUFBpfbb29kHAgAAANy6HPI2rZSUFElSmzZtSu23t9vH1aSAgIBS2xMTE8u9oR4AAACoCxzyykhWVpYkyd3dvdR+Dw+PYuMAAAAA3Hoc8sqIYRiSJJvNdsN+K8THx5faXtYVEwAAAKCucsgrI56enpKk7OzsUvtzcnIkqdhTtgAAAADcWhwyjLRr106SynzTur3dPg4AAADArcchw0i3bt0kqcwXFNrbAwMDa6wmAAAAABXjkGGkT58+8vLyUmJioo4cOVKif9OmTZKk4cOH13RpAAAAAMrJIcOIi4uLwsLCJElhYWHF9o4sXbpUcXFx6tu3r3r27FnUvnLlSvn7+2vmzJk1Xi8AAACAkhzyaVqSNGvWLO3YsUNRUVHq3Lmz+vXrp+TkZMXExKhZs2aKjIwsNv7ixYtKSEjQ+fPnS8z117/+VX/9618lSXl5eZKk5ORk9erVq2jM6tWry3zJIgAAAICKc9gw4ubmpt27d2vhwoXasGGDNm/erCZNmigkJETz589X27Ztyz3X2bNnFRMTU6wtNze3WNuVK1dMqx0AAACAZDOsfClHHWJ/z0hZ7yEBAADo8OKnlq5/+tVHLF1fEV4Wrn3ZurUdXFXOcx1yzwgAAAAAx0cYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxR3+oCAAAAfu64/y8sW/sXJ45btjZQF3FlBAAAAIAlCCMAAAAALMFtWgAAAIDFOrz4qaXrn371EUvW5coIAAAAAEsQRgAAAABYgjACAAAAwBLsGQEAALeUX/z6nNUlAKghXBkBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJZw6DCSm5urOXPmqEuXLnJzc5Ovr69CQ0N19uzZCs+VkZGh559/Xu3bt5erq6vat2+vqVOnKiMjw/zCAQAAADhuGMnNzdWgQYM0b948ZWVlKTg4WG3btlVkZKSCgoKUmJhY7rnS0tJ0zz33aNmyZapfv75GjBghT09PLV++XD179lRaWlo1HgkAAABQNzlsGFmwYIGioqLUu3dvnTx5Uhs3blRMTIyWLFmi1NRUhYaGlnuuadOm6dSpUxo1apQSEhK0ceNGHTt2TM8++6y+//57hYeHV+ORAAAAAHWTQ4aRa9euacWKFZKkVatWqWHDhkV94eHhCgwM1N69e3X48OGbznXhwgWtX79ezs7OWr16terXr1/Ut2jRIvn4+Gj9+vX6z3/+Y/6BAAAAAHWYQ4aR/fv3KyMjQ35+furevXuJ/tGjR0uStmzZctO5tm3bpsLCQt1///1q0aJFsT5XV1c9+uijun79urZt22ZO8QAAAAAkOWgYOXr0qCQpKCio1H57u31cTc0FAAAAoPzq33zIrSclJUWS1KZNm1L77e32cTU1lyQFBASU2n7ixAk5OzuX2Q8AgF1iRvkfwlId/Br7Wbq+UrOsW/tDa/+dPvcfC49dUsCWhjcfVJ342VumKj/7xMREOTs7V+qzDhlGsrJ++mG5u7uX2u/h4VFsXE3NdSM2m63SPyQz2J8u5udn8T8wFqjLxy7V7ePn2OvmsUuOf/xVCQOOfuySJB//Sn/U0Y+/c4uqnRBKjnvskir9s68Nx+7IP3tnZ+eic+aKcsgwYhiGpJ9O8G/UX9NzSVJ8fHyFxtcU+xWZW7W+6lSXj12q28fPsdfNY5fq9vHX5WOX6vbxc+x189glxz5+h9wz4unpKUnKzs4utT8nJ0eSij1lqybmAgAAAFB+DhlG2rVrJ0llvmnd3m4fV1NzAQAAACg/hwwj3bp1kyTFxsaW2m9vDwwMrNG5AAAAAJSfQ4aRPn36yMvLS4mJiTpy5EiJ/k2bNkmShg8fftO5hg4dKicnJ+3bt08//vhjsb68vDxt2bJFTk5OGjZsmDnFAwAAAJDkoGHExcVFYWFhkqSwsLBi+z2WLl2quLg49e3bVz179ixqX7lypfz9/TVz5sxic7Vq1UpjxoxRfn6+pkyZooKCgqK+6dOnKzU1VWPHjlXLli2r+agAAACAusVmVPRxUbeI3NxcDRgwQDExMWrVqpX69eun5ORkxcTEqFmzZjpw4IBuu+22ovERERGaO3euQkJCtHbt2mJzXbx4Ub169VJiYqL8/Px09913Kz4+XseOHZOfn58OHDggb2/vGj5CAAAAoHZzyCsjkuTm5qbdu3dr9uzZcnd31+bNm3X69GmFhIToyJEjxYLIzXh7e+vgwYN69tlnlZ+fr08++USXL19WWFiYvv76a4IIAAAAUA0c9soIAAAAAMfmsFdGAAAAADg2wggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGGkFsvNzdWcOXPUpUsXubm5ydfXV6GhoTp79qzVpVW7w4cP69VXX9WoUaPUunVr2Ww2ubm5WV1WtcvJydHmzZs1YcIEBQYGqlGjRvLw8FC3bt00b948ZWVlWV1itVu6dKlGjRqlzp07y8vLS66urmrfvr1CQkIUHx9vdXk16tKlS2revLlsNpv8/f2tLqfaDRgwQDabrcyvzz//3OoSq92FCxc0bdo0denSRQ0aNFDTpk3Vo0cPTZ8+3erSqs1XX311w5+7/WvevHlWl1ptDhw4oMcee0wtW7aUs7OzmjZtqkGDBmnTpk1Wl1btDhw4oODgYHl7e8vNzU1dunTRrFmzlJOTY3Vppqjs+cy7776re+65Rw0bNlTTpk318MMPKyoqqgYqrjjeM1JL5ebmatCgQYqKiip6Q/3p06f19ddfy8fHR9HR0fLz87O6zGozYsQI/eMf/yjW5urqqtzcXIsqqhl//etfNWnSJElSQECAbr/9dl25ckVRUVHKzMyUv7+/9uzZo+bNm1tcafXx9vZWdna2AgMD1bp1a0lSfHy8Tp48KRcXF23evFnDhg2zuMqaMW7cOL377rsyDENdu3bViRMnrC6pWg0YMEB79uzRY489poYNG5bof+GFF3TnnXdaUFnNiI6O1sMPP6yMjAzdfvvtuuOOO5SZmanvvvtOZ8+eVUFBgdUlVosTJ07o1VdfLbXv+vXr+tvf/iZJ2rVrlwYOHFiTpdWIDz/8UL/+9a9VWFiou+++W35+fjp37pz+9a9/qbCwUDNmzCjz78fRrV+/XiEhIbp+/bp69Oihdu3a6dChQzpz5oy6deumffv2ydPT0+oyq6Qy5zPh4eF67bXX1KBBAz300EPKzc3Vzp07ZRiGPvzwQ40cObK6y64YA7XS7NmzDUlG7969jczMzKL2JUuWGJKM+++/38Lqqt+rr75qvPTSS8aWLVuMCxcuGJIMV1dXq8uqduvWrTOefvpp4+TJk8Xaz507Z3Tv3t2QZIwZM8ai6mrG/v37jatXr5ZoX716tSHJ8PX1NQoKCiyorGbt2LHDkGT89re/NSQZXbt2tbqkate/f39DkpGUlGR1KTXu3//+t9G4cWOjQYMGxscff1yiPyYmxoKqrPfZZ58Zkoy2bdsa169ft7oc0127ds3w8fExJBkffPBBsb6oqCjDzc3NsNlsxvfff29RhdXnzJkzhpubmyHJWLNmTVF7bm6u8fjjjxuSjN/97ncWVmiOip7P7Ny505BkNGvWrNi5QFRUlOHi4mJ4eXkZly5dqonSy40wUgvl5+cbjRs3NiQZsbGxJfoDAwMNScahQ4csqM4adSWM3EhUVFTR30NeXp7V5VjitttuMyQZ8fHxVpdSrXJycozbbrvNuP32242TJ08SRuqA3/zmN4YkY8WKFVaXcksZO3asIcl48cUXrS6lWnz77beGJMPf37/U/uDgYEOSsXHjxhqurPrNnz/fkGQMHjy4RN+PP/5ouLu7G87OzsbFixctqK763Ox85uGHHzYkGa+99lqJvueee86QZCxevLgaK6w49ozUQvv371dGRob8/PzUvXv3Ev2jR4+WJG3ZsqWmS4OFunXrJknKy8tTWlqaxdVYo169epIkFxcXiyupXnPnzlViYqJef/11OTs7W10Oqll6err+/ve/y8vLSxMnTrS6nFtGdnZ20e0tTz75pMXVVA9XV9dyjWvatGk1V1LzDh8+LOmn2zP/m4+Pj26//XZdu3ZNn332WQ1XZh377VjS/53r/dytev5X3+oCYL6jR49KkoKCgkrtt7fbx6Fu+OGHHySpaHNjXfPuu+8qISFBXbp0UadOnawup9rExcVpyZIlGj9+vO6//36dPn3a6pJq3DvvvKO0tDQ5OTmpS5cuGjFihNq1a2d1WdXmX//6l/Ly8vTggw/K2dlZmzZt0v79+3Xt2jX5+/vrV7/6lVq0aGF1mTXu448/VnZ2trp3766AgACry6kWnTp1UqdOnXTixAn9/e9/169+9auivujoaG3fvl0dO3bU/fffb2GV1SM7O1uS1KRJk1L77f/OHT16VL/5zW9qrC4rnThxQnl5efLx8VGbNm1K9NvP/+Li4mq6tBsijNRCKSkpklTq/xB/3m4fh7ph2bJlkqShQ4eW+7dpjmzRokWKj49Xdna2jh8/rvj4ePn6+mrDhg1ycqqdF4ULCws1adIkNW7cWH/+85+tLscyL7/8crHvf//732v27NmaPXu2RRVVL/tT4lq0aKF+/fopOjq6WP/MmTMVGRmpxx9/3IryLGPfuF6bT0Tr1auntWvX6tFHH9X//M//aNGiRfLz89P58+e1f/9+3XPPPXrvvfdq5dVgHx8fSVJycnKp/fb2uvQLmZud/3l4eKhx48ZKT09XZmbmLbO5v3b+i1zH2R/f6u7uXmq/h4dHsXGo/T777DO98847cnZ21vz5860up0Zs375d69at06ZNmxQfH6+2bdtqw4YN6tGjh9WlVZsVK1bo66+/1qJFi9SsWTOry6lx999/v9577z0lJiYqJydHCQkJeuWVV1S/fn299NJLRYG8tklPT5f009W/uLg4vfPOO0pNTVVSUpLCw8OVnZ2tJ5988pb7bWh1unDhgnbu3Kl69eppzJgxVpdTrfr166c9e/aoY8eOOnTokDZu3Ki9e/fKw8NDDz74oHx9fa0usVr0799fkvT+++8rPz+/WN+BAweUkJAgScrMzKzx2qxys/M/6dY8BySM1ELG/z6t2Waz3bAfdcPx48f15JNPyjAMLVq0qGjvSG23Y8cOGYah9PR07d27V127dtWAAQP0yiuvWF1atThz5oxmzZql/v37a9y4cVaXY4l58+bpySefVKdOndSgQQN16dJFf/jDH7R582ZJ0pw5c3T16lVri6wG169flyQVFBRo6dKlCg0Nlbe3tzp06KAlS5Zo9OjRys/Pr1NXyzZs2KDr169r8ODBatmypdXlVKv3339f9957r9q1a6eYmBhlZWXp5MmTGjNmjF5++WU9+OCDunbtmtVlmu6JJ55Qu3btlJKSouDgYMXHxyszM1Off/65Hn/8cdWv/9PNP7X1Snhpbnb+9/Mxt5K68xOqQ+yX3ez3U/43+4uASnsOP2qXs2fPaujQoUpPT1d4eLimTp1qdUk1rnHjxurXr58+++wz9ejRQ7Nnz9bBgwetLst0U6ZMUX5+vl5//XWrS7nlPPTQQ7r77rt1+fJlHThwwOpyTGf//3wnJyeFhISU6A8NDZX008sB64q6cIuWJJ06dUohISHy8fHRp59+qnvuuUceHh7q3Lmz3nzzTT366KOKjo5WZGSk1aWazsPDQ1u3blW7du30+eef64477lCjRo00bNgwOTk5KTw8XFLZe0pqo5ud/0m35jkgYaQWsm/ULOtN6/b22ryhE9LFixc1ePBgpaSkaPz48Vq8eLHVJVnK2dlZ//M//yPDMG65J4mYYevWrXJ3d9fTTz+tAQMGFH39+te/lvTTvcT2tlvp8nxN6dy5syTp/PnzFldivg4dOkiSWrZsWep+MHv/jz/+WINVWef48eM6cuSIGjZsqBEjRlhdTrX64IMPdO3aNQ0dOrTo9pufs29or61B9M4779SJEye0bt06Pfvss3r66af1xhtv6NixY0VjauvDC0pzs/O/7OxsZWRkqHHjxrfMfhGJDey1kv02nNjY2FL77e2BgYE1VhNqVmZmpoYNG6YTJ05o1KhRevvtt2942bau8Pb2liSlpqZaXEn1yMjI0J49e0rtu3r1alFfbX0T943Y91XcSr8NNIv9Ee7p6ekyDKPEf+v2R3nXxmMvzXvvvSdJGjVq1A3vna8N7CedjRo1KrXf3n7p0qUaq6mmNWjQQE899ZSeeuqpYu07duyQVPqjf2urrl27ytXVVampqTp79myJjey36vkfV0ZqoT59+sjLy0uJiYk6cuRIif5NmzZJkoYPH17TpaEG5OXlKTg4WIcOHdKQIUP0/vvvF71fo66zn4z7+flZXIn5jJ9eYlviKykpSdJP/0jZ2xo3bmxtsTUsNTVV+/btk1T2I88d2Z133qmOHTvq6tWriomJKdFv/614bTz2/2YYhjZs2CCp9t+iJaloP8yhQ4dK7bffkmq/OlZX7NmzR7GxsQoICFCfPn2sLqfGNGjQQA888ICk/zvX+7lb9vyvxl+ziBrxxz/+0ZBk3HfffUZWVlZR+5IlSwxJRt++fS2sruapjryBvaCgwBg5cqQhyejXr5+RnZ1tdUk1au/evcYHH3xgXLt2rVh7fn6+sXz5csPJyclo0KCBkZKSYlGFNS8pKalOvIE9Ojra2LVrl1FYWFisPSkpyejTp48hyfjlL39pUXXV74033jAkGT179jRSU1OL2g8dOmQ0btzYkGR8+OGHFlZYM/bs2WNIMnx9fY3r169bXU61O3z4sCHJkGSsXr26WF90dLTh4eFhSDK+/PJLiyqsXkeOHCnx//eHDx82fH19DZvNZuzatcuiyqrPzc5nvvzyS0OS0axZM+PkyZNF7VFRUYarq6vRqFEjIy0trSZKLTdu06qlZs2apR07digqKkqdO3dWv379lJycrJiYGDVr1qxWbmb7uU8//bTEI2zz8/PVq1evou9nz56tRx55pKZLq1YrV67UJ598IumnW5KmTJlS6rjFixcX3bJUmyQmJmr8+PHy9vZWjx491KxZM128eFHffvutzp8/Lzc3N61du1Zt27a1ulSY7MSJExo/frxatWqlLl26qGXLljp79qwOHz6s3NxcBQQE6O2337a6zGozadIk7dy5Ux9++KG6du2q++67T1lZWYqKilJ+fr4mTZpU6huZaxv7xvUnnniiTjxFKSgoSL///e+1ePFiTZkyRatWrdLtt9+uc+fOKTo6WoWFhfrtb3+rBx980OpSq8Xzzz+v7777TnfddZe8vb11+vRpxcTEyMnJSW+++aYGDhxodYlVVtHzmQcffFBTp07VsmXLdNddd2nw4MHKz8/Xl19+qcLCQq1fv/7We/Gx1WkI1ScnJ8eYPXu24efnZ7i4uBgtWrQwQkJC6sRvhSMjI4t+W1TWV2RkpNVlmm7OnDk3PW5JRlJSktWlVosffvjB+MMf/mD06dPHaNWqleHs7Gx4eHgYAQEBxrPPPmucOnXK6hJrXF25MvLdd98ZTz/9tBEUFGT4+PgY9evXN7y8vIxevXoZS5YsMXJycqwusdpdv37dWLVqldG9e3fD3d3d8PDwMO677z7j3Xfftbq0GpGbm2s0adLEkGQcPXrU6nJq1Mcff2w89NBDRrNmzYz69esbTZo0MQYOHGisX7/e6tKq1dtvv23079/f8PHxMZydnQ1fX19j7NixxpEjR6wuzTSVPZ+JjIw0evToYbi7uxteXl7GkCFDjH379tX8AZSDzTBuwQcOAwAAAKj1av81TAAAAAC3JMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAcGg2m002m01NmjRRRkZGqWMiIiJks9n06quv1mxxAIAbIowAAGqFjIwMvfbaa1aXAQCoAMIIAMDhOTk5ycXFRX/5y1+Unp5udTkAgHIijAAAHJ6zs7MmTpyoK1euaOnSpVaXAwAoJ8IIAKBW+MMf/iBXV1ctW7ZMly5dsrocAEA5EEYAALVC69atNWnSJGVmZmrJkiVWlwMAKAfCCACg1pg5c6bc3Ny0YsUKpaWlWV0OAOAmCCMAgFrD19dXv/3tb5WZmanFixdbXQ4A4CYIIwCAWuXFF1+Um5ubVq5cqYsXL1pdDgDgBggjAIBapVWrVvrd736nrKwsLVq0yOpyAAA3QBgBANQ6M2bMUIMGDbRq1SqlpqZaXQ4AoAyEEQBArdOyZUs9/fTTys7O1p///GerywEAlIEwAgColWbMmCF3d3etXr1a//nPf6wuBwBQCsIIAKBWat68uaZMmaKcnBytW7fO6nIAAKUgjAAAaq3p06fLw8NDV69etboUAEApCCMAgFrLx8dHzzzzjNVlAADKYDMMw7C6CAAAAAB1D1dGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABY4v8DeAtWBguUaZ4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# split into ms occupations\n", + "fig, (ax1) = plt.subplots(1,1,figsize=(6,4), dpi=150)\n", + "\n", + "spin_occ_five = res.groupby(['N', '|m_s|']).sum()\n", + "pivot_df = spin_occ_five.pivot_table(index='N', columns='|m_s|', values='prob')\n", + "pivot_df.plot.bar(stacked = True, rot=0, ax = ax1)\n", + "\n", + "ax1.set_ylabel(r'prob amplitude')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f5111521-4e2b-4bce-8270-654883a31cd6", + "metadata": {}, + "source": [ + "This concludes the tutorial. This you can try next:\n", + "\n", + "* try to find the transition temperature of the system by increasing the temperature in DMFT\n", + "* improve the accuracy of the resulting self-energy by restarting the dmft calculation with more n_cycles_tot " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb.txt b/_sources/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb.txt new file mode 100644 index 00000000..f53ec5dc --- /dev/null +++ b/_sources/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb.txt @@ -0,0 +1,471 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "a661f418-c4f0-435e-8db9-ff074ad58b49", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from h5 import HDFArchive\n", + "from triqs.gf import BlockGf" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "55c5a91d", + "metadata": {}, + "outputs": [], + "source": [ + "plt.rcParams['figure.figsize'] = (8, 4)\n", + "plt.rcParams['figure.dpi'] = 150" + ] + }, + { + "cell_type": "markdown", + "id": "0275b487", + "metadata": {}, + "source": [ + "Disclaimer: charge self-consistent (CSC) calculations are heavy. The current parameters won't give well converged solution but are tuned down to give results in roughly 150 core hours.\n", + "\n", + "# 2. CSC with VASP PLOs: charge order in PrNiO3\n", + "\n", + "Set the variable `read_from_ref` below to False if you want to plot your own calculated results. Otherwise, the provided reference files are used." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1e21a834-d629-43a6-8c93-6f7e786aeca0", + "metadata": {}, + "outputs": [], + "source": [ + "# Reads files from reference? Otherwise, uses your simulation results\n", + "read_from_ref = True\n", + "path_mod = '/ref' if read_from_ref else ''" + ] + }, + { + "cell_type": "markdown", + "id": "13dd34fd", + "metadata": {}, + "source": [ + "PrNiO3 is a perovskite that exhibits a metal-insulator transition coupled to a breathing distortion and charge disproportionation, see [here](https://doi.org/10.1038/s41535-019-0145-4).\n", + "In this tutorial, we will run DMFT calculation on the low-temperature insulating state. We will do this in a CSC way, where the correlated orbitals are defined by [projected localized orbitals (PLOs)](https://doi.org/10.1088/1361-648x/aae80a) calculated with VASP.\n", + "\n", + "## 1. Running the initial scf DFT calculation \n", + "\n", + "(~ 2 core hours)\n", + "\n", + "To get started, we run a self-consistent field (scf) DFT calculation:\n", + "\n", + "* Go into folder `1_dft_scf`\n", + "* Insert the POTCAR as concatenation of the files `PAW_PBE Pr_3`, `PAW_PBE Ni_pv` and `PAW_PBE O` distributed with VASP\n", + "* Goal: get a well-converged charge density (CHGCAR) and understand where the correlated bands are (DOSCAR and potentially PROCAR and band structure)\n", + "\n", + "Other input files are:\n", + "\n", + "* [INCAR](1_dft_scf/INCAR): using a large number of steps for good convergence. Compared to the DMFT calculation, it is relatively cheap and it is good to have a well converged starting point for DMFT.\n", + "* [POSCAR](1_dft_scf/POSCAR): PrNiO3 close to the experimental low-temperature structure (P21/n symmetry)\n", + "* [KPOINTS](1_dft_scf/KPOINTS): approximately unidistant grid of 6 x 6 x 4\n", + "\n", + "Then run Vasp with the command `mpirun -n 8 vasp_std`.\n", + "\n", + "The main output here is:\n", + "\n", + "* CHGCAR: the converged charge density to start the DMFT calculation from\n", + "* DOSCAR: to identify the energy range of the correlated subspace. (A partial DOS and band structure can be very helpful to identify the correlated subspace as well. The partial DOS can be obtained by uncommenting the LORBIT parameter in the INCAR but then the below functions to plot the DOS need to be adapted.)\n", + "\n", + "We now plot the DFT DOS and discuss the correlated subspace." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f4a4fc12", + "metadata": {}, + "outputs": [], + "source": [ + "dft_energy, dft_dos = np.loadtxt(f'1_dft_scf{path_mod}/DOSCAR',\n", + " skiprows=6, unpack=True, usecols=(0, 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f1c5c3ca", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAIyCAYAAACzVnNbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAD1HUlEQVR4nOzdd3wb9f0/8JeW5W3Hzl5kJxBIAmEFAgTCHi20UNpSCpTSL9BBmy/doS0to/0BZZSWL2WUTVsoK0CBsFcgJAESsgjZw0kcx9uWrXG/PxxJn/vc56STdDoNv56PRx+1pNPpYiT5Pu97D5emaRqIiIiIiIiIqN9x5/oAiIiIiIiIiCg3GBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcKNigwZ84cuFwu0/+99NJLyuc99NBDOPzww1FZWYm6ujqcfvrpeP/99x0+eiIiIiIiIqLc8+b6ADL11a9+FZWVlYb7R4wYYbhv3rx5uPXWW1FWVoaTTz4ZgUAACxcuxCuvvIInnngC55xzjhOHTERERERERJQXXJqmabk+iHTMmTMHb731FjZu3IgxY8Yk3f7111/H3LlzUV9fj0WLFmHixIkAgEWLFmHOnDkoKyvDxo0bMWDAgCwfOREREREREVF+KNjygVTdcsstAID58+fHAgIAMGvWLFx++eVobW3F/fffn6vDIyIiIiIiInJcvwgKBAIBvPbaawCAc8891/B49L4FCxY4elxEREREREREuVTwPQXuu+8+NDU1we12Y9KkSTj77LMxevRo3TZr1qxBT08PBg0ahJEjRxr2ccghhwAAli9f7sgxExEREREREeWDgg8KXHfddbrbV199Na655hpcc801sfu2bNkCAMqAAABUVFSgtrYWzc3NaG9vR1VVVcLXnDp1qvL+tWvXoqyszBCUICIiIiIiIsqGLVu2oKKiAjt37kzr+QVbPnDsscfi4Ycfxvr169HV1YW1a9fi+uuvh9frxW9+8xvcfvvtsW07OjoAAOXl5ab7q6io0G2bDk3TEAwG034+ERER9T8b9nRi3a6O2P82NXXm+pASikQiWLVqVex/kUgk14dERNSvBYNBdHam/7ejYKcPmHnllVdwyimnoKamBg0NDSgrK8Ojjz6Kb33rW5g9ezbeeecd5fNGjBiBHTt2YMeOHRg2bFharx3NIFi5cmXax09ERET9y+HXv4rd7T2x22MHVuCNq+fk7oCSaGlp0U1ram5uRm1tbe4OiIion8t0HVqwmQJmTj75ZBx66KFobW3FBx98AACxcoBE0ZOuri4AQGVlZfYPkoiIiGgf+epMkV2vISKiPFd0QQEAsZGDDQ0NABCr8d+2bZty+87OTrS0tKC2tjZpPwEiIiKibGJIgIiInFSUQYHm5mYA8av+kydPht/vR2NjozIwsGzZMgDAtGnTnDtIIiIiIgByYgATBYiIyElFFxRobGyM9Q2IjhosKyvDCSecAAB48sknDc+J3nfmmWc6dJREREREahpzBYiIyEEFGRT44IMP8MYbbxhq7jZt2oRzzjkHnZ2d+NKXvqQbQThv3jwAfSMM161bF7t/0aJFuPvuu1FdXY1LL73UmX8AERERUYz+fIaZAkRE5CRvrg8gHWvWrMEll1yCYcOGYdKkSRg6dCi2bduGpUuXIhAIYOrUqbjnnnt0zznxxBNx1VVX4fbbb8eMGTNw0kknobe3FwsXLkQkEsGjjz6Kurq6HP2LiIiIiIiIiJxXkEGBI444AldccQU+/PBDrFq1Cu+99x4qKiowY8YMnHfeebjiiitQVlZmeN5tt92GGTNm4M4778TChQvh8/kwd+5czJ8/H7Nnz87Bv4SIiIj6O/YUICKiXCrIoMD++++Pv/3tb2k99+KLL8bFF19s7wERERERERERFaCC7ClAREREVCzkxAC5ZxIREVE2MShARERElEcYEiAiIicxKEBERESUQ3JmABMFiIjISQwKEBEREeURjbkCRETkIAYFiIiIiIiIiPopBgWIiIiIcijCkYRERJRDDAoQERER5VBE7imQo+MgIqL+iUEBIiIiohyKRNhokIiIcodBASIiIqIckssHmCtAREROYlCAiIiIKIcM5QOMCRARkYMYFCAiIiLKIfYUICKiXGJQgIiIiCiHjNMHGBYgIiLnMChARERElENypgAREZGTGBQgIiIiyhFN0ww9BBgiICIiJzEoQERERJQjxskDbDRIRETOYlCAiIiIKEdUpQPsKUBERE5iUICIiIgoR8KKVAGGBIiIyEneXB8AERERUX+zcNUuvPfFHnzt0FHGBxkVICIiBzEoQEREROSghtZuXPbQEgDA88sbDI8zJkBERE5i+QARERGRg17+bGfs5z0dPTk8EiIiIgYFiIiIiPIKGw0SEZGTGBQgIiIiSqKzJ4TvPPAR5t7yJpZu3pvV12JIgIiInMSgABEREVESD7y/Ca+v2Y31jZ341r2Ls/paTBQgIiInMShARERElMRrq3fFfu4OhjPal8vlSvi4xlwBIiJyEIMCRERERElEpHX6rrZA1l6LmQJEROQkBgWIiIiIkpDX6e+s2+PYaxEREWUTgwJERERESYTCEd3t7t5Qjo6EiIjIXgwKEBERESUh9xHI6tV8pgoQEZGDGBQgIiIiSqInqM8UyGbdPxsNEhGRkxgUICIiIkpCzhSIZBAVSDJ8gI0GiYjIUQwKEBERESXR3asPCgSlHgN2YkyAiIicxKAAERERURKBkJwpkL3X0pgqQEREDmJQgIiIiCgJeZ2e3Z4CREREzmFQgIiIiCiJrx4yUnc7m80AmShAREROYlCAiIiIKIlKv0d3mwt3IiIqFgwKEBERESURlqIArPsnIqJiwaAAERERURLysIFsxwQYdCAiIqcwKEBERESUREQaN5DJkt1lYRvGBIiIyCkMChBRQdI0DU8t24Y//neN4WSdiMhuxvKB7L4ev9WIiMgp3lwfABFROu55ZwNueHENAODhRZuw8ven5viIiKiYGTMFsrts7ysfsJJTQERElBlmChBRQYoGBACgszecwyMhov5AzhTIKEHJlXyxz0wBIiJyCoMCREREREmE5SgAi/6JiKhIMChARERElERE7imQ5ddjzIGIiJzCoAARERFREnKmQPYbDTIqQEREzmBQgIiIiCiJcER/O/uNBrO6eyIiohgGBYiIiIiSMJQPcNFORERFgkEBIiIioiTk8oGMpg9YwKADERE5hUEBIioK8gxxIiI7GRsNZrl8gD0FiIjIIQwKEFFRCDEoQERZZBxJmP6+XBa2YaYAERE5hUEBIioKoUgk+UZERGkyTB/I0XEQERHZjUEBIio4muISWjDMU3Qiyh5jo8Fslw8QERE5g0EBIio4hjRek/uIiOxiqB7IeqNBfqcREZEzGBQgooKj6h8QkoeIExHZyOnyAYYEiIjIKQwKEFHBUQUFgswUIKIskssH5Nt2Y6IAERE5hUEBIio4qqyAMHsKEFEWGTIFMpk+YGn8QPr7JyIiSgWDAkRUcFRNBYOcPkBEWeR03xKNUQEiInIIgwJEVHBU4wd7QwwKEFH2OD19gIiIyCkMChBRwVFdsesOhnNwJETUXzjeaJAxByIicgiDAkRUcFSVAgEGBYgoixwfSZjd3RMREcUwKEBEBSesOBtnUICIsknOFMhk+oALyTsNsjyBiIicwqAAERUc1cm4qvkgEZFdHC8fyPL+iYiIohgUIKKCE1H0FHC6MzgR9S/GRoPZfT0mChARkVMYFCCigqMqHwgxKEBEWWQMPGb3O4cjCYmIyCkMChBRwVFlBYRV3QeJiGzidKYAERGRUxgUIKKCo1r/h9hTgIiySA5GPv3xdmzd25W9F+RXGhEROYRBASIqOKpGgywfIKJskoMCPaEIvnTnu+gJpT75xJV8+ABjAkRE5BgGBYio4LCnABE5TfUV09wVxBtrdmfl9VieQERETmFQgIgKjnL6QJg9BYgoe8wmnGRrHCobDRIRkVMYFCCigqM6OWemABFlkypDKZuYKUBERE5hUICICo5q/a/qM0BEZBdVhlI28RuNiIicwqAAERUcVQCAiQJElE3OZwrwS42IiJzBoAARFRxV+YBZvS8RUaY0TbM1nd/C8AEiIiLHMChARAVHdcWOV9WIKFsSBR2tjBdMB7/SiIjIKQwKEFHBUQUAOHyAiLLFidIBN9MHiIgoRxgUIKKCowoAsNEgEWVLxIGgY215ie42v9KIiMgpRREU2Lt3LwYPHgyXy4UpU6Yk3Pahhx7C4YcfjsrKStTV1eH000/H+++/79CREpEdVKm8DAoQUbY48f1SU+bTlSJonD9AREQOKYqgwLx587Bnzx5L21100UX47LPPcOKJJ+Lwww/HwoULceyxx+Lpp5924EiJyA7q6QM8gSai7LC7fEDVh6Cq1KtrQMivNCIickrBBwVee+01PPjgg7jssssSbvf666/j1ltvRX19PT799FM888wzeOmll/D222/D4/HgkksuQXNzs0NHTUSZUAUA2FOAiLIlYvN0E6/bePpVVeqFS4gWMCZAREROKeigQHd3Ny6//HIccMABuPrqqxNue8sttwAA5s+fj4kTJ8bunzVrFi6//HK0trbi/vvvz+rxEpE9VOUDnD5ARNli98jTEq8iKOD3cVQhERHlREEHBa699lqsX78ed911F3w+n+l2gUAAr732GgDg3HPPNTwevW/BggXZOVAispU6U4BBASLKjkTlA640lvJexaiB8hKP7jYDnURE5JSCDQosX74ct9xyCy655BIce+yxCbdds2YNenp6MGjQIIwcOdLw+CGHHBLbJxHlP/X0AeePg4j6B7vX56rd+TxuqdEgERGRM7y5PoB0RCIRXHbZZaitrcX/+3//L+n2W7ZsAQBlQAAAKioqUFtbi+bmZrS3t6Oqqirh/qZOnaq8f/369Rg/fnzS4yGizKjqe9lokIiyxYnvF5/XtS/roO+1+JVGREROKchMgb/85S9YvHgxbrrpJtTX1yfdvqOjAwBQXl5uuk1FRYVuWyLKX5w+QEROsjsTSfV15XW7oa9E4HcaERE5o+AyBbZu3Yr58+fjuOOOw8UXX2zpOdG6PJdqBpC0jRUrV65U3m+WQUBE9lLV9zIoQETZ4kR9f4nXzZGERESUEwWXKXDllVeit7cXd911l+XnRMsBOjs7Tbfp6uoCAFRWVmZ2gESUdaryAY4kJKJssb+ngHGHPo+LPQWIiCgnCi5T4Pnnn0dtbS2uuOIK3f2BQABAX/+AOXPmxLatrKzE6NGjAQDbtm1T7rOzsxMtLS2ora1N2k+AiHKPIwmJyEmO9BTwuNOaZEBERJSpggsKAEBLSwveeust5WPd3d2xx0KhEABg8uTJ8Pv9aGxsxLZt2wwNB5ctWwYAmDZtWhaPmojsoqrv5UhCIsqWRDGBBJWJKe3P53En3YaIiCgbCq58QNM05f82btwIoC8AEL2vtrYWAFBWVoYTTjgBAPDkk08a9hm978wzz3TmH0FEGVE3GszBgRBRv+BMpoBcPsAvNSIickbBBQXSNW/ePADAddddh3Xr1sXuX7RoEe6++25UV1fj0ksvzdXhEVEKVFkBbDRIRNniRNCxr3wgjl9pRETklH4TFDjxxBNx1VVXoampCTNmzMDZZ5+N008/HcceeyyCwSDuv/9+1NXV5fowicgCTh8gImfZ+/2i2luJ162bksSvNCIickq/CQoAwG233YZ//OMf2H///bFw4UK8//77mDt3Lt566y189atfzfXhEZFFqpNl9hQgomzJ9teL3+vGWdOH6zMFWD5AREQOKchGgypjxoyx1H384osvxsUXX5z9AyKirFFPH8jBgRBRv5Cw0WBa+9Pv8MnLj0J1qU+3M36nERGRU/pVpgARFQdVUICZAkSULdksTzp4dC0OGlkDIL0AAxERUaYYFCCigqOePsCgABFlh1PfL6505hsSERFliEEBIio4DAoQkZOy+fViFgbgVxoRETmFQQEiKjjhiPE+Vg8QUbbYvUA325+YKMBGg0RE5JSiaTRIRP0HMwWIKJvaAkH8/a0NqK8swbdnjcnq94tYMuAWfmagk4iInMKgABEVHDYaJKJsuvHF1Xh88VYAQH2lH6Prym3dv1kWgFs3fYDfaURE5AyWDxBRweFIQiLKpmhAAABueGF1wkyBdHoDirsTAwEuZgoQEVEOMChARAVHdQWNmQJElA0et8v2q/bi15W+fEDcht9pRETkDAYFiKjghNlTgIgc4nLZn4kkfl+JgQCPmCnAQCcRETmEQQEiKjjq6QM8gSYi+3ncLltT+TVNw91vrY/dFpsLsnyAiIhygUEBIio4qitoPIEmomxwu1y2Bh3fWLsb6xs7dfuP/SyclTHQSURETmFQgIgKjupkmT0FiCgb7C4fuPedjYb9R+lHEvI7jYiInMGgABEVHFVPAY7vIqJscLvsbTTYG9LXP4klAx6WDxARUQ4wKEBEBUdVPqAKFBARZcrjciHxt0tqMwl7paYo+pGE8Z+ZKUBERE5hUICICk5Yca4cUTQfJCLKlNttb08BOVNA11OA0weIiCgHGBQgooKjOkHnVTUiyga3y95U/pC0M91IQjfLB4iIyHneXB8AEVGq1NMHeAZNRPbzuFPrKRCJaLj/vY3o7g3j0mPGorxEf6oVDJv3FHCx0SAREeUAgwJEVHBUkwY4fYCIssHlcqU0feC+dzfi+hdXx27/cO5E3eOhsHmmgPgzyweIiMgpLB8gooKjuoLGi2pElA195QPWv2DEgMAjH242PC5nCpj2FOB3GhEROYRBASIqOKqsAKbaElE2uFPMFBDtausx3GcsHxBey83yASIich6DAkRUcFRX0DiSkIiyweNKPH1AXNRb6T0QlMoHXLpMgfj9DAoQEZFTGBQgooKjnD7AkYRElAVut/VU/kUbmpJuY718gEEBIiJyBoMCRFRwWD5ARE7pW6hb+375fGd70m0SjiQUgwIMdBIRkUMYFCCigmMWFOgNRXDd86vwvYeWYOOezhwcGREBQHdvGO99sQcdPaFcH0rG3C6X5UyBgVV+w33yFAH5+8utG0koPI+BTiIicghHEhJRwVGdK4cjwDOfbMe9724EAGxt7sZ/rzrG4SMjIgC46P7FWLxpL6YOr8bzP5ytq5svNG534p4Cokq/8bSqKxhW3h8l/mZYPkBERLnATAEiKjiqpoKapuHxxVtit1c3tDl5SES0T2tXEIs37QUArNzRhk1NXTk+osy4XdZHnobCxg27ehNnS3iE+gG3cFbGkYREROQUBgWIqOCoygfCmobCvRZJVDzkoF1vqLCL491Jpg+I5H4BANDVE074HK+HjQaJiCi3GBQgooKjnj6gFXSKMlGx0iw26ctXbpcrYaaA+K0TUnQH7OpNHBTQZQroggKWD5GIiCgjDAoQUcFRBgU0MFOAKA/In8NCv+DtcVsPbKjKB7qDicsHvELNgDiJQG5QSERElC0MChCRo9Y3duCP/12DpZub095HWJGNzFRbovxQ6Ak7cnmS3+uxPB5QVT7QmaR8QCRmDfA7jYiInMKgABE56lv3foj/e2s9zv2/95M24DKjuoIWjmgFvxghKkaFtrYNBPWL+FKfO2GegPiYaiEvlg8s22IMhorfWy6WDxARUQ4wKEBEjmpoDQDoWyh8vKUlrX2opw8ALhYQEOWc/DkstJ4C3YaggCfhVfv/eXgp3li7u++GYrNo+cCGxg589a73E742yweIiCgXGBQgIsdoNl0yVPcUYFMBorwgfQ4LLVMgKNUned3upN9dVz6yDID6u6ljX/nADS+uTvq74PQBIiLKBQYFiMgxdl34UpYPcCQhUX4o8LWsvBZ3uZIHNqLZBarNPtq4FwDQ1q0ulxK/z9xulg8QEZHzGBQgIsfYlSlgVj5ARLlXaOUCMvnoXbC+QFdd3S/x9p1q9ao6pELfR4CZAkRElAsMChCRY+QT63Sv7Jt1AucpNFH+KbS1rSp4aWWBHo5oyn9raF8woDeUfIQBewoQEVEuMChARI6x6wqiPDIs2f1E5Bx5YVwMmQNW/gWBYFi5XXDf95LcqyBKzA7wcPoAERHlAIMCROQYu64Yml21k0eJEZHzCn0tq/p6sVL61BuKKLcL7ssQCJms8iv8ntjPLpYPEBFRDjAoQESOkc9xxfndqWBQgCh/2dU7JF9omrVU/p5QRF0+sO+5Zr+Xcw4eEftZVz5QZL9HIiLKXwwKEJFj5JPc7z60BJ9tb015P2ZlAoFg8ppdInJWoa1tVeUPVv4JPaGwOlNgX9mAmAUQ9aevHoRxgypjt9lokIiIcoFBASJyjOoU94ePf5zyfsyCAj0hZgoQ5Zr86Sy0pa0qBGClvr8nFFFuFwqbP/mo8QN1tzmSkIiIcoFBASJyjOrK18Y9nSnvx+wCWnea5QhEZB/DlfYCv+Ktadb+DT3BiDIAEto3LsXKtBWWDxARUS4wKEBEjrHrHDds1lPAwsgvInJWoS1t1Y0Gkz/PvHxg332KqIBcUaArH2CqABEROYRBASJyjF1XDK2OJGztCmLFttaCv1JJVEjk9PtC+vjtbA3g/L8v0t2naZqlq/bmjQbNMwXkPgMelg8QEVEOMChARI6x4yRX0zTTed+yU29/G2fd+S6uXbAq8xcmImsKeDH7u+dWYldbj+4+Dfp/0tTh1crn9oTCyn4EiXoKuKVIgYvlA0RElAMMChCRY1RX7OWT4mSCYc1ycKGhNQAAeOD9Tam9CBGlrZCXsi+t3Gm4T9P0C/SxAyuUz+01aTTYm2D6gEvKH2D5ABER5QKDAkTkGNU5bok3ta+hbE0Y+O+KBvz66RX4fFd7VvZP1H8V9uJWg6YrC3C5XJgwuNKwXURTl0pEMwXU5QP62/pGg2kcLBERURq8uT4AIuo/VKm1Pk+qQQH7mwnubA3gikeXAQAWrW/C61fPsf01iPoL4/SB3ByHncQsJ7PspnBE3XsgFMsUMD5Hvks/krAIfnFERFQQmClARI5RneP6U8wUCAT1mQInTBmcySEBAF76rCH284Y0RiQSUZyh0WCOjsMufeUD8dtul5z038dsER+MRDMFkkcFdOUDhf6LIyKigsGgABE5RnXOvKejN6XpAGKmQInHje8dOy7j4yr1eXS3zaYbEFFyxXaBW4N+wW/WBkXT1H1Tor0BVJkCbpfcU8D4PCIiomxjUICIHGN2Je3NtY2W9yFmCvi9bpSXeBJsbY3fp/8q7OoNZbxPIupT6EECTeoV4HK5lAv8vvIB4/2hBIt7eTceF8sHiIjIeQwKEJFjzE5xL3ngI8v7EDMF/D43vO7Mv8bktN5EI8SIKDH505NKJlB+0iz1FIhomjIAkuiKvzyRwMXyASIiygEGBYjIMXakw/YEhaCA1wOvJ8WZhhYEw/Y3MyTqL+QgQKGvbeWeAi6Xuj+ApqmbqYZi5QOqkYR6bmYKEBFRDjAoQEQFJRSJL9i9Hhe8ZpftMtDLoABR2optLSsv9uU+AFFhTV0+ENbMRxLK+xKHsbC3CREROYVBASJyjB1XvsQTZY/LZUv5gHzyHWT5AJFtiiFIEJF6Cqi30ZT/2Oj3i/L7T54+IAQ5w8XwiyMiooLAoAAROcaOC1/iibXb7bKlfEAuF2D5AJF9VCn1hUSDpp8+4FJPEoho6u+4cKSvJ4EyJiDtR9dokJkCRETkEAYFiMgx4Ujmi21xvd6XKWAtKJCo2ZkcBOgNMShAlC75o1boF7w1DbrGCKaNBiOaaQAkoqmv/HsM5QNCpgCDAkRE5BAGBYjIMWajuUq81r+KxBPlvkwBa89NdIItlwswU4DIPgUfFIA+Q0nVZBAwnz4ARMcVGh+UR6oyKEBERLnAoAAROcbsJLc3FLF8AiyeWHvc+pPoxM8zf8xYPsCTcaJ0yVfLC72LvtwqwHwkofn3TDiiKcsB5P4EHvYUICKiHGBQgIgck2jhbzVlX2406LPYUyDRwoQ9BYjsYygfyM1h2Kavp0D8tsvlUjYb1DTz8gGzyQQycRoBMwWIiMgpDAoQkWPE8gG/VDIQCIYt7UNuNGg1U2B7S7fpY3JmAEcSEqVPXsoWeqYANBgaDar0NRQ0eSysWVrki99nBf97IyKigsGgABE5RkyfrfB7dY/1pJEp4HW74LM4kvBvb6w3fUzODAixfIDIPkX2cXK7XMo+KBHNvKFpWNMSNjuN8jBTgIiIcoBBASJyjJwpIF7kt5opIO7D7XLp5non0hYIWtonwOkDRJmQF7+FfsVbbjTodgGDq/yG7RI1GgxFIpZ6BOgyBfg1REREDmFQgIgco7vK73Gh1BfvvG01U0DMNrBaOgAk7oAuBwHY4IsoffKnp9A/TpqmSeUDLgysVAQFIuZ9AyKRxM1Oo8TvtBCjAkRE5BAGBYjIMc1dvbGfPS6Xrq9AT8hapkBYSy8okCiHWS4fUHUJJyJr5CDACysacnMgNtGg/ze5XEBVqdewXUQzTl6ICmvG6QOq7y+3bvpAesdLRESUKgYFiMgRmqbh729viN0eUFECvzeeKRAIpp4pEO3UPWNUrYXXN39M7iHAWl4i+zz98XYs3bw314eRNk0aNeg2mXqSqHwgHNYMZRReRVBA7CnA4CQRETmFQQEicsSane1Yvq01dvu0A4ei1JdGpoCifGDcoIqMjk3OFGBQgCgTxs/PTS+vzcFx2KMvU0AoHwBQ4vEYtoskaCYY1ozTB3we4ymYeBe/h4iIyCkMChCRI9bt7oj9XFHiwXdnj9NlCvRYzBQIS1fsAON4QxWz0+u/vfkFnvp4u/QaPBknSlexfXw0KQPA7XJBVbkU0cyKB4BwJGL4vXgV2QZuF0cSEhGR8xgUICJH7G4LxH4+clw93G4X/EKmQMBipoC+0WDf/5corrjJVFfwPtveiv/3kvEKJq/QEaWvGD898vQBlzIoYL6QD0eMwUZV+YAYKJCnohAREWULgwJE5IjG9p7Yz4Or+zp3l6aVKWAsH1DNDJepTq8XrW9SbssrdET2ciGVpqD5pW8koXCHy4W6CvX0AbOvjmA4ougpYPzecrOnABER5QCDAkTkiLZAKPZzTVkJAOgyBayOJNT3FOh7vqo2V6Y6WVdd7QOMjQeJyLpUPmsFQZoq4HYBXzlkBIZU6wMDicsHNMgTBlUlCB7d9AF+DxERkTMYFCAiRwSC8fKAMl9fhoDYC0B8PBFdUGDf+bOVTIFUMFOAKH3mS+PCpEGfAeCCC6U+D17/3zmYLkw+iWjqMiUACEWMmQKdvcbvPHH6AMuYiIjIKQwKEJEjunrjmQLlJfuCAj6hfCCNTAF3CuUDY+rLLe1ffg0iylwhx9k0zdhTAAAq/F4cMro2dn84YfmAZrjy/8MTJhi2c7tZPkBERM5jUICIHNEt9AwoKzFmClgdSSienEevqllpNHjA8GrDfS6TnGam7RKlT/Xx2bin0/kDsYmm6f9N4sJd7AGgaZppllEorA8YHDdpEC44Yj/DdiwfICKiXGBQgIgc0S1kCkTLB0qFTIGA1UaDup4CKTQaTOH8OsyeAkRpU33WPKoC+gKhwXyxL/67Ipr590xvWB/0vOErB8WCo2b7Y8YSERE5xWvnzjZt2oR33nkHn376KRobG9Ha2oqamhoMGjQIM2bMwDHHHIP99jNGxomo+HUJ9bPlGWQKiFfPolfsrDQaTOX8mlfoiNKnWkAXclAA0E8vEbMDxGSjcIJGg/J0FY9JlhJ7ChARUS5kHBRobm7Ggw8+iHvuuQdr1qwBoG60E03T3X///XHZZZfh29/+NgYMGJD26/75z3/Gu+++ixUrVmD37t0IBAIYOnQo5syZg5/97GeYOnWq8nkPPfQQ7rzzTqxatQolJSU48sgjMX/+fBx11FFpHwsRJdctNBIsjQUFUu8pEIkYywesrDdUp+tmT2MtL1H6VEGBQp4+oEkNBMXvG3mEoFlGQW9Y//1m9p3FTAEiIsqFtIMCXV1d+H//7//hlltuQWdnJ8rKyjB79mwcfvjhmDJlCurq6lBdXY3W1lY0Nzdj9erVWLx4MZYsWYKf/OQnmD9/Pq6++mpcffXVqKioSPn1b7jhBnR2dmLatGk46KCDAAArV67EQw89hH/+85945plncNppp+meM2/ePNx6660oKyvDySefjEAggIULF+KVV17BE088gXPOOSfdXwcRJdEtZgrEygfSmT4Q/zl6Am1lBjozBYicofqsFfJEDw3QjRMUAxxeXfmABrNUATlTwG0SFdAFGQr3V0ZERAUm7aDA+PHjsWvXLpxyyin41re+hbPPPtvS4r6zsxNPPfUUHnnkEVx77bW4++67sWPHjpRf/9lnn8XMmTNRWlqqu/+uu+7ClVdeie9+97vYsmULPJ6+xcfrr7+OW2+9FfX19Vi0aBEmTpwIAFi0aBHmzJmDSy65BHPmzMkoe4GIzImZAmWZZAqIjQajQQErVyFTuHoZtnYoRKSgusIdKeDP1MJVu3DK1CGx2+LCXfw5lCBToMeQKWBSPsBMASIiyoG0Gw0eccQRWLp0Kf773//iggsusHy1v6KiAhdeeCFefvllLFmyBEcccURar3/00UcbAgIAcMUVV2DChAnYsWMH1q5dG7v/lltuAQDMnz8/FhAAgFmzZuHyyy9Ha2sr7r///rSOhYiSS9pTwHKmgCookDwqkMrpdbiQVzBEOaYqISzkTAGgb6RglPh945VGCJr3FNB/v5n2FBDOypixRERETkk7KPDMM8/g4IMPzujFDznkEDz99NMZ7UMlmh1QUlICAAgEAnjttdcAAOeee65h++h9CxYssP1YiPq7QDCMr/ztPfQKmQDRqQN+n9ho0OL0AV1tb7R8wGjmfgMwYXBl7LaqT4BZKIGZAkTpU13hLvSr3p098ekp4veGx6PPFDCfPqD/UnGZnH153PEHCv13RkREhSPtoEBHR4edx2Gbhx56CGvXrsWkSZMwbtw4AMCaNWvQ09ODQYMGYeTIkYbnHHLIIQCA5cuXO3qsRP3BA+9vwrItLbr7ykv6KpdKPGkEBcJipkDf/6suuv3q9P0xpr48djuV0+tCv6pJlEvqngLOH4edAsL3k9gOQJ4WYFo+wOkDRESUx9LuKTBkyBCcffbZuOCCC3DqqafC7U47vpCRm266CStXrkRnZydWr16NlStXYvjw4Xjsscdix7RlyxYAUAYEgL6ShtraWjQ3N6O9vR1VVVUJX9NsssH69esxfvz4DP41RMXnj/9dY7gvWj5QIpQPbGjstLQ/MVMgPn3AeILdd1d6Tbt4Mk6UPtXCuNADbQGh/ElsEij3ADBrICg3UvV61NvJp1KRBPskIiKyS9or+e7ubjz++OM466yzMHz4cPz4xz/GkiVL7Dw2S15++WU8+OCDePLJJ7Fy5UqMGjUKjz32GGbOnBnbJprVUF5ebrabWE+EfM2AICom0V4C4uJ7T0ePpeeKZQDuBI0GXdBf0XtiyVZdCnDf89Qn2yEGBYjSpgoAFHqgrStoUj4gBQXMxpmKPVUAwGdyIcUjBQDYV4CIiJyQdlBg06ZNuP7667H//vtj9+7duOOOO3DEEUdgypQpuOGGG7Bp0yYbD9Pcq6++Ck3T0NzcjLfffhuTJ0/GnDlzcP3118e2iTY9StSMTNUYyczKlSuV/2OWAJHRGdOG6W67XPHP4qdbW3SPWfkcqjIFVFwuly5YsGZnO+b9+xPDsaiYndgTUXKqAMCgKn8OjsQ+IQuNBkMRzTT4IU5fcbvMRxLK32mFHkwhIqLCkHZQYPTo0fjlL3+Jzz77DB9//DHmzZuH4cOH4/PPP8c111yD8ePH47jjjsM999yDlpYWGw9Zrba2FscccwxefPFFzJw5E9dccw0++ugjAIiVA3R2mqcnd3V1AQAqKytNtyGi1I2sLdPdFk+izz54hO4xKyfAYWWmgKJ8AIBLaiX48spdSfcP8OocUSZUH5/TDxzq/IHYSPzeEb9uxMaAEU0zLVMSgwI+j/mpl5wpUOhlF0REVBhsaQQwffp03HzzzdiyZQteffVVXHTRRaiqqsI777yDyy+/HMOGDcO5556LZ555BsFg0I6XNOXz+XD++edD07TYNIHRo0cDALZt26Z8TmdnJ1paWlBbW5u0nwARpUZesHuFk+gRA/QBAytp++JJcjTAoLrm5nIZ63MN25i9Bq/OEaVNFdzz5KjvkF0iiqkngH6EYChs3mhQ7EmQSlCApUxEROQEW/9Ku1wunHDCCbj//vuxa9cu/Otf/8KZZ54JTdPw1FNP4atf/SqGDh2KK664ws6XNRg4cCAAoLGxEQAwefJk+P1+NDY2KgMDy5YtAwBMmzYtq8dF1B/J579igy2vtFBINVMgegKtbDQIF/xeT+KdsacAke2KsdGgLkPJJFMgbLF8wKzJIGAsK2CAkoiInJC10L3f78d5552HZ599Fg0NDfjrX/+Kuro6NDc34+9//3u2XhYA8NZbbwFArMa/rKwMJ5xwAgDgySefNGwfve/MM8/M6nER9UdyCr+4UJfrZ60sxsVx39FggLLRoAso9aX3FcfyAaL0qQIAhf6J0pUPQN1TIKzpMwXEkatio0E5GCpiTwEiIsqFrOfzLV++HH/84x9x4403Yu/evQAAjyfJ1bsk3nnnHfzrX/9CKKTvJB4MBvGXv/wFDz/8MMrKynD++efHHps3bx4A4LrrrsO6deti9y9atAh33303qqurcemll2Z0XERkJC+w/cIYQo8n9RNg8aTbk6B8oO+1jN814pW33lDE8Li8DRGlRvXxSaWZbz5qCwjTB4QvHLfUaFD8fhK/67p15QPmmQKcPkBERLngzcZOt27disceewyPPvooVq5cGTsZmDZtGi688EJccMEFGe1//fr1uOSSSzBw4EDMnDkT9fX12LNnD1asWIGGhgaUlpbigQcewKhRo2LPOfHEE3HVVVfh9ttvx4wZM3DSSSeht7cXCxcuRCQSwaOPPoq6urqMjouIjOQFtnii7JVPgC0sxkPKRoPG7dwuF8pKjEGB3nAEpe6++8t86gAlr84RpU/1+Smmta3bZPpAOBJBOBL/fvP73GjfN2nVcvmASy4fyPRoiYiIkrMtKNDa2oonnngCjzzyCN59911omgZN0zB8+HB885vfxIUXXoiDDjrIltc67rjj8Ktf/QpvvfUWli9fjj179qCkpARjxozBueeeix/96EeYMGGC4Xm33XYbZsyYgTvvvBMLFy6Ez+fD3LlzMX/+fMyePduWYyMiPXmBUCJmCqQRFBCDDPFUW0VPARdQqsoUEFYnteU+9WsU0wqGyGHF2FNApJ8+IAYF9It4MVPJ6vQBOVAaYlSAiIgckFFQoLe3F88//zweffRRvPjii+jt7YWmaaisrMQ555yDCy+8EHPnzlWOC8vE2LFjcf3116f13IsvvhgXX3yxrcdDROYSlg8YegokPwHWNxrs+3/VyG+zngI7WgKYMLhv9KjZOoWNBonSV4w9BUS66QMufaaArqeA8F2nmz6QoKeAsdFgRodKRERkSdpBgcsuuwz/+c9/0NraCk3T4PF4cNJJJ+HCCy/EOeecg/LycjuPk4gKlHz1v6a8JPaz2+2CyxVfnFuaPqAYDaYKPLqgLh/4xj0fYPGv+oKVmslSheUDROkLKxayRZsp4NH3FAib9RSwWD4A9GUfRL+D2FOAiIickHZQ4L777gMATJ8+HRdeeCG++c1vYujQobYdGBEVh+auoO72MRMG6m573S4Ew/tOgFMsH4ieXKtOsfsyBYxBgcb2HrR1h1BT7jPNFCimBQyR05SfnyL6SLlMegpEIpru+0kMCoR031uJezx7XC6EYf07kYiIKFNpBwV++tOf4sILL8SBBx5o5/EQURHZ3RbAgk936O67+OgxutueFIMC6kwB43Zulws1ZeqeAdEogtmr8UScKH2q6R3FFGgTM/zF8gE5U0AsHxD5VPVO4v7dAPYlFhTT742IiPJX2kGBP/3pT3YeBxEVoUc+2Ky7fd3ZBxqabPXN7O7LN7ZSy69rNJhw+gDMgwL7mI1JY1CAKH3qkYTOH0e26HoK6BoNagiF4/9QVaYSkLjRICD3KSiiXxwREeWtxH+Z0vDf//4XZ599NkaMGAG/349LL71U99i8efOwY8eOBHsgomKxqqFNd1s1AlC8aJZqpoAnQU8Bj9tlOl0gWe9TnogTpU9VB18oHylfknp/QF+uJPYHCEc0BIWGCmYjT630FBD3SURElG22BgWuvPJKnHnmmXjuuefQ0dGBYDCouxJXW1uL2267Df/85z/tfFkiylPVSa7UA/r6WiuZAmITs2inbtUpttvlQp3Q1FDFLDU3zPNworSpMnDMmnrmG3lMqooYhHS75KBA/N9Z4VcnYybNFGBQgIiIHGZbUOD+++/H//3f/+Hwww/HJ598gtbWVsM2s2bNwogRI7BgwQK7XpaI8ph8peyQ/QYYtkn1BDgszOhKlikwqMqP/YdVGx6Lbm3aaJAn4kRpU32OC6V8INmCHdBnN3nd+qCmLlNAMf2k7zkpZAoUyi+OiIgKmm1Bgbvvvht1dXV4/vnnMW3aNNPtJkyYgA0bNtj1skSUx8TT2YGVfowdWGHYxptyUEDRU0Cxncftgsvlwj8uPsz0uMzOt61kLBCRmrqnQGF8pqwEBVwmPQUiUlCgPM2eAmL2AQOURETkBNuCAitXrsSsWbNQX1+fcLuhQ4di9+7ddr0sEeUxcSHwtUNHKrdx67p3KwacS8RzZHeCRoPR+4bWlCqOa9//m70GT8SJ0qaePpCDA0mDlfIB3fQBt/j9paE3JAQFzDIF2FOAiIjyTNrTB2RutxsRCyf0O3bsQEWF8WohERUf8SvBbdLdT27UlYwuU2DfPlX79iTqJqhFj8+spwBPxInSperVUSg9BXqC4aTbuEyCAmFNQziUvKeAWHKgoutTwO8iIiJygG2ZAlOmTMGSJUvQ1dVluk1TUxM++eSThOUFRFQ8xMWB2Ro99Z4C1ssHzEQXKGYn3MwUIEpfIU8faAuEkm4jlg+I5U/BcESXKVBZqg4K+H2JT71SDZQSERFlyragwAUXXIDGxkZ8//vfRyhk/KOqaRp+9KMfoaOjAxdeeKFdL0tEeUw8n1U1AwRS7ykgBhpiC3/Frt2JggKa8fXY3IvIHsGQIlOgAD5S1z2/ytJ2bpOeAvK/sapUPX3F700yfcDFoAARETnLtvKBK6+8Ev/5z3/w4IMP4t1338Upp5wCAFi+fDmuvvpqPP/88/j8889xwgkn4KKLLrLrZYkoj4k9BczW6B53qiMJxYV83/+7FFGBROUD0T2IAYYSjxvdkb7U4RBnEhKlTWy2F5f/n6l7391oaTvxmyVRRlKVSflASZKggBjQNBubSkREZCfbMgV8Ph9eeuklXH755diyZQv+9re/AQCWLVuGP//5z1i/fj0uvfRSLFiwAO4k9XREVBwiuqCA+uRZbMSdaqaAOzaSULXfRJkCmuH1fB6eiFN+Ui+y81ev4ngttBwqGG6T8gFZdZlZpoC6AWGUPlMgxYMjIiJKg22ZAgBQXl6Ov/3tb7j22mvx1ltvYdOmTQiHwxg5ciSOP/54DB8+3M6XI6I8Jy6ts5MpYN5o0EKfQd2+xKt3TNmlfPHcpzvwq6dWYOrwajz63SPgtTAyL9fEuvqoQmk0aIX4XWZWpuR1u1BpkimQrHzAzekDRETksLSDAu+//z5mzZqlrBMeNGgQzj333IwOjIgKX6o9Baw0+BNPkhNmCiQqH4hOH9DETIH4iTozBShf/OjxjwEAH27ciwfe34TvHjMux0eUnDJToJg+UsJXi1mmQJnPg1KThoLJggJelg8QEZHD0r7kMHv2bAwZMgSXXHIJnnrqKXR0dNh5XERUBKyVD+jnfCdj5/SBUEQdFLByHEROW7S+KdeHYElPUJEpkMOP1PaWbny2vdW2/Zk1GhT5fR6U+dRlAqn0FOB3EREROSHtoMAf/vAHjB8/Hg899BDOO+88DBo0CKeddhr+9re/YcuWLXYeIxEVKEuNBnX1s8kLaMOK6QNyvMHlMs9M6Duwvv+LsHyACkhTZ2+uD8GSzh71BKJc+GJ3B+be8ibO/Mu7eHjRJlv2aSUoUOn3wG8SFEg+fSD+M8ejEhGRE9IOCvz617/GokWL0NDQgL///e84+eST8c477+AHP/gBxo4dixkzZuA3v/kNFi9ebOfxElEBEdf4ZpkC4kxuK1fFxH3GT8j1+05UOgCIPQXi9+nKB3giTnlob6EEBXoVQYEcHAcA/P75VQjsy1y45tmVtuxT/HoxDQqUek3LB5JlCnjYU4CIiByWcceiwYMH49JLL8Wzzz6LpqYmPPfcc/jud7+LPXv24LrrrsOsWbMwbNgwfO9738OCBQvQ3d1tx3ETUQEQywfM1umpngDrMgVc0UaD+m3MAhBR0V2EdSMJheNgHS/loaaOnlwfgiWqTIFc1cY3tFg750glk0H8vjELQFb6vSjxuJUZUsmmD4jfX/wuIiIiJ9jaxtjv9+PMM8/E3XffjW3btuGjjz7Cr3/9awwbNgz33nsvzj77bNTX1+Oss87CPffcg8bGRjtfnojyjLjGN1uoi1foVV3LZcqeAtK+k009jfYUEMsVWD5A+a6zN5zrQ7Bk2ZYWw335vrZN5SPvslQ+4IPL5UKpooQgaflAis1XiYiIMmXrSELZzJkzMXPmTPz+97/Htm3b8Nxzz+G5557Dq6++ihdffBENDQ34zW9+k81DIKIcstJToLwkftLclWTRI58gu00aDSYtH9i3GzEIUVYS/zpkUIByKRAM48pHl2Fbc1euDyVlQcXkASB3mQJJvgpiUskUEHfpcrngcbsM3xlVpX3fJ6U+j+F7LZXyATYaJCIiJ2Q1KCAaOXIkrrzySlx55ZXo7OzEyy+/jKqqKqdenohyQF8+oD47LxcW48mCAnIqrcdkJKHZ7PCo6F6C4fj+ynziSMK+RULCZoVEWfLIB5vx+prdysdau4KoKffZ8jqhcATbW7oxckB5wmkdqWgPGEsHgPwfrZfK0clZTx6XC2FpD9EMAdUEgmTlAx6OJCQiIofZWj5gVUVFBb7yla/gpJNOysXLE5FD9OUD6m30mQLqBUWUfDUuWibgkhsNJgsK7DvR7hEyBeQ0X16go1x5ZdUu08cOu/5VLNm015bX+d7DS3HcTW/iykeX2rI/QN1PAMj/7JtU1t5yrFD1fRMtEfArmg0mzRTQTWTJ798bEREVB8eDAvfffz9+//vfO/2yRJQDHcICQVVbC6RYPmA1UyCd8gHp+HgyTrmSqOa8NxzBFY8uy/g1Glq7Y9kIL6/chZYueyYbqCYPAPn/eUrlirz8/eLzmAcF1JkCiU+93Jw+QEREDnM8KHDPPffg2muvdfplichhmqZhQ2NH7PagKr9yO7F8oDtJUECur403GtRvlywoENUbNs8U4Mk45UqyhpuN7ZlPIZADcFaafFphtp9iqo2Xv14SNRNUPZZKpgDLB4iIyAmO9RQgov4logHNXcHY7VF15crtxEwBs6uMsX2aBQUM5QOJjy02klCYPiCn+XIUGDkpEAzj8keWYuveLmzc0+n469v1bhf7dIhyFWSTvxvMpFQ+IO2zrMR84V+qKB9IZfqASd9GIiIiW6UdFNi9W90EKZlgMJh8IyIqeHIX8iq/+uumTFE+sKstgFdW7cKxEwdiv/qK2OPywsIsU0CePnDmtGF4fnlD7HZ0JGFIWMD4pUgCMwXISfe8vQFvrnVuTG+2WmiGTFax+f550lIIi8gjT0sVjQNLEpQPpDJ9QAxcEhERZUvaQYGhQ4em1ZmbHb2J+gezBbxMzBTo7g1D0zR898ElWLG9FfUVJVj0y7mxk2j56r3b4vSBbx4xWh8UiGUKxPcnn6hzPjg56cXPdlreNp//hJqVCeR7+UAmmQLqbIC+7zV/htMHmClAREROyLh8YPTo0Slt39DQwGwBon5AXgR4TXL6K4SeAp29ITS0BrBieysAoKmzF5ubOjFxSN/4UvmiWfTk2TAiTAoKHDV+oO52bCShcIzyiXq+L2KouGgprEorTbJuMnt9e/YjZwhF5ax8wGIAJZXaffn7JVHfAFUWQdJGg+L0AZYxERGRA9I+sxg7diw2bdqEd999FyNGjLD8vFmzZmHx4sXpviwRFQg5jdhrkilQVRr/GmrrDqEtoA8aiifF8glybPqAtE9Vo0Gv2xVb6EcXYGJqriFTgCfjlKd8+wJs3b1hBIJhDKgoSXkf2crYC5n0FMj3IFsqR2cpKLDvv1FZiWIkYZKmJ+LDzFgiIiInpD194PDDDwcALFmyxLaDIaLiYbV8oLY8vqBp7e41zDkPhoSggLDgcLniZQLG6QPG1xG3ie5FXMDIQYF8r4Gm/svtcmF3WwDH3/wmZl63EM98vD3XhxQTMqmBz/fFbSoxQDnAmahvgJwpUOJxG8qbZLryAQYniYjIAWkHBY444ghomoYPP/wwpeelkiJJRIVLvjLoM7k6Vlvui/0cDGuGcWvi2EDxBFl/Yp64fKBvi/h9yp4CbDRIOZTKn0aPG7jzjS+wsy2AiAb8+F+fpPF62Xl/m00fyPdMgVRSBeTvl3LF9IEKf999chZBsiaDgD7TKd+DKUREVBzSLh84/fTTsXnzZkycODGl5911111oa2tL92WJqEDIacRmF8dqyny623JQQKxRFtP9xRNned+q8gF93GDf9AHhhNvrccHt6hul2PdaPBkn56TS/d7jcuHzXe1ZPJr0mWUK5HsX/VR+/3KmQLnfGBSIfq/J4wqtBAXE/ed9MIWIiIpC2kGBSZMm4dZbb035eQcffHC6L0lEBURcHHjdLtMaZp/HjUq/Fx37ygYMmQKh+H50i3jhxFnetzpTIE6VKeDzuOFxuxDZF8xg2i7lK7fbZZp5Y1W2egoUaqaAfHiPfvcIXHCvOhNS/n4Rm6VG1ZT1lUXJTQVVpQYyt276QH7/3oiIqDhkdlZBRGQiLF2FT0TMFmjs0AcF/v72BuU+xRNzK40GlT0FpP0xbZdyJZXFn8ftStqsLlfMGg3m++JWLqc4eHSt6bZyUEDOBgCAQZV+5WOqbQ37F7+HGJwkIiIH5OdZBREVPPGKoded+KtG7CsgZwq8+8We2M+mQQG5fMByTwF9NgMbfFGudPaEU9o+00wBWSrp84mIGUKlvvgxmgUL8oV8dC5DqDEuWaZAiceN6rK+++TMAFX/gUT7z/dgChERFYe0zyrWrFljywHYtR8iyi9mC3gVXVCgo9d0O/2V/fjXl3wCr0pM0GcKGHsKeKSgQL4vYqi4dEhTNxIJRzT4LNSmJ5Kd4gF9MFBssperK95ymcSLKxqU28mHl6i6Qg5yyj0F6itLYq9bVarvmZJq+QAzBYiIyAlpn1UceOCBuOCCC/DZZ5+l9fxPPvkEX//613HQQQelewhElMfEK4a+JOUDtWXxsYR7pEwBUUS3iI/fL5/AW+0pEJKyGcSU7HyvgabiEYloKQUFIhEt6WcqV0JCY1BxHF++fJ6ufHSZ8n65fCBRUED+fqn06zMFBu4rHQCA6lL9Y1YyBbzMFCAiIoelHRS45pprsGDBAkyfPh2HHHIIbrnlFixZsgTBYFC5fU9PDz744APceOONOOiggzBz5ky8+OKL+M1vfpP2wRNR/pKvwidSI2QK7G4PWNqneLVOPoFXpf6KVww1rW8RsGVvl+4YxZRsscEhUTZ1BVMrHQhrmu09Bey6IC1+RsXygXxf3KrKB8yu6svTB+TygdF15fHH/HJQIHl/Z7G3Sb4EU4iIqLilPX3gt7/9La644gpcf/31eOihh/DTn/4ULpcLPp8PY8aMwYABA1BVVYW2tjbs3bsXmzdvRigUgqZpqKmpwVVXXYVf/vKXGDRokJ3/HiLKE/JV+EQqhKtnZt3LgUQ9BfQn6ckmEmrQ8O8lW3WPez0u+LzxrcRRiETZ1BGwniUAAOGIsaeApmkpTRTI0vAB3edGLB8I5fnnSVU+8Pdvz8T/PLwUXb36oI3cs6RSygY4cERN/DEpKFBqoXxA/G5jw1MiInJC2kEBABg8eDBuv/12/PGPf8S///1vPP/883jvvffw+eefG7YdOnQojjnmGJxxxhn42te+htLS0kxemojyXCrTB7wWr3pmMn1A3EjTgJ//Z4XuYbmje2+eL2KoeHT06DPsSn1uBILm7z9N0wxBgd5wBH5v8gVntoVMegokCvY5TRVAkRstugAcM3EQFv/6RJxxxzvY3NQFM/LCf+LgytjPcqaAlWCMvuFp8u2JiIgylVFQIKqsrAwXXXQRLrroIgBAY2Mjdu/ejdbWVtTU1GDw4MHMCCDqZ4JCT4Fk5QO+BI/XVcT7DVifPmDcT7JzcS/LByhHdrTES2bqK0qw9JqTMOYXL5huH9Y0XVYLAPSEMgsK2LX2FD/34mI5n4JsXb1hw2JdLm+IBhYr/d6kkx7koIDYOFV+zEqZBkejEhGR02wJCsgGDRrEIABRPxfWlQ+knykgNlTT9xSI3++Rr/opzqPlngLG13HDL3R0Z/kAOeWml9fGfm7q7Ju+UeJ1mwamwhFjT4GeYATIIAFPbrSXLjFToELoyh+OaAiFI5azguyi+ubp7AklDAq4XfoSAbE3gsoAIXAp35afa+X3LP6K8r0XAxERFQdn/zoTUb9h1hRQJdGVODHtWH/iHj9plxca6qCA8LjiuujgKj8zBSgnVmxvNdznTzByMBLRDJ+pnlBqzQrlZpy2NRoUgmnywrsnTz5TqkkP4veM/H1S7kt8/aSmzIfvHz8eVX4vzp05EuMHxcsHXC4XhtXEozWzJw5MenziuFU2GiQiIidkJVOAiEgcSZisp0Ci8WpBYSFh1qdA3n9YscIRt1AtCuoqSnRBAWYKUC75vR60Q92AMKxphpKZVBfcqsCYHYLCZ1ROnQ8EjWn7udCuaOwYNslCAoAyC2MEf3rKFFx98mRls8dfnDYFt7zyOWZPHIhzDh6RdF/i11nErmgNERFRArn/60xERcms/l8lUaaAWIssBhrETAGfO3mKrniy3tjeo3y8xCs2GuTJOOWOnClQUeJB574u+JGIcbHYk6AxoZPETAF5pF8uUuFVjf0e+WAzNu7pxF/f+AJfnjEcPzhhoi4IKH9flVsICvS9lvp77sszRuDLM5IHA1Svz/IBIiJyAssHiCgrxNpiedEuG1LtN32sNxyJLfLFhZB4NU/OFFCdR4tbbGvu1j02sLLv9Vk+QPlCDgo8/6NjYj+HNc3wHk+1fECOm9lXPhDfUYn0b8jF+lb173pi6Tb8+F+fYN3uDtz8yue44N4PsL0l/p0gBymdzm4Q+xkwU4CIiJzAoAARZUUohekDEwZXmT6mafGrZeKCQ9ynnO6b7ET6060tutv3X3woALDRIOUNt/SeFptphiOaIRsm9fIB+bY9i08xs0cObKjKerJN9V1QLzUGfO+LJty6MD5KWf6++t6x4xC9a/aE5D0BMiX/tyYiIso2BgWIKCtCJvX/KuMHVWDcoArTx6NNwMxHElrIFBA2aeyIlw9cNGs/TBtZC0DfLX3vvi7wuRCOaPj10ytw9l/fw5JNe3N2HOS8eSdNAgB8/bBRsfuOmTjQkAYvN6DLtImfI5kCOVjgqoJ7YwYav2vW7GyP/SyPSJ00pAp3fWsmLp09Fjecc5D9Bylxs3yAiIgcxqAAEWVFosZdMpfLhf85dpzp49Grj+KVxkTZB+rFR3z7tu5g7OfqsvhM8WE1ZbGfd7fFZ8c77aXPduLRD7fgk60t+Nrdi3J2HOSMEbXx991hY+oAAN86cj+cuP9gTB5ShatPnmx4vwelIEBPMNXyAf1nxK6lp67BqNsNd46b5qm69+9sTfzZVo1NPGXqUFxz5gEYXV9u27GZvj6DAkRE5LCsF8p98cUX2LNnD4YPH47Ro0dn++WIKE8Edan+yeOPZ0wbjl8+tUJ5lT96tc9qoEG1+BCvtLZ2x7uPV5XGvwbFTIHuFBdZdnptza7Yz1wTFD/xKn/06nqpz4N7Lzosdv8uKUgld9DPuHzApgW7+Ln3eVxwu1yxz2MuFrghRcPQ3e2JgwK5npCgazTIngJEROSAtDMFdu3ahX//+994//33lY+/9957mDJlCiZPnoyjjz4aY8eOxWGHHYbPPvss7YMlosIhpu2WeBNnCgB948vMTsaj+zLrKSBL1miwLSBkCpTGMwXKSuKv353Lbu5cB/QrvUKTQLkOP8ot1Q+0CtkuQBpBAbnRYErPNqcfReqWmubZ9CIpUJUPBJNMFqmwOG0gW8T/1rkouSAiov4n7aDAww8/jG984xtYu3at4bF169bh1FNPxbp166BpGurq+tIhly5dirlz52LPnj3pHzERFQRxNFmikYOiihJ1UCA6CSBisXxAPZLQuD8AqBQyBcQRat296hnxTtjblbt+BuS8RM35ouT3e0OrfoJGIMPMFrsuSIsLbq/blZflA8mUM1OAiIj6mbSDAm+99RZKS0vxta99zfDY7373O3R2dmL06NFYsWIFGhsb0dTUhC996UvYs2cP7rjjjowOmojyX68ujdjaV43ZPPBYpoCufMB8n/JVVQBwQR1EKBGOTXz9XJYPvLm2MWevTc7SNE0XpJKb80V5pPf07vYe3e3UGw0a5w/YQQ4G5rqTvtx7wYpyX/5kCnAIChEROSHtoMCaNWswc+ZMVFTou/gGg0E888wzcLlcuPnmmzF16lQAQG1tLR544AFUVFTgpZdeyuyoiSjvBXWLg+TlA4D5lILekLEmWR7Zlmw/ijhB37EJizAxU6CrN3dBAeo/QhFNl1ZvFhSQY2ByEKAnlGqjwcS30yVPHdGXDzgfFOhNY1Vd6sttD2YxU4DlA0RE5IS0//Lt3r1b2ThwyZIl6O7uRllZGc4880zdY7W1tTj88MOxbt26dF+WiApEOuUDZg0JU200qCotMNvaJ7xmmZApEMhRUKBRugJMxa1XWtyXmHxW5Pe0XC7Qk2EPjD+9tCaj50fpywfcUn28LS+RknSyE8py3FNA/G4L5eKXRkRE/U7aQYGenh60tbUZ7v/ggw8AAIcccgj8fr/h8SFDhqCrqyvdlyWiAhFMo3zAbKGvKh+QSwTExVR9hfG7x2WSKiBmFegyBWwsHwgEw/hka4thAaiytZnfj/2J/J7wm6Suy+93OShw+2vrsHDVLlglL5VfXb0b767LvN9PSMoQ8uQ4UyCdngKluS4fyHFzRiIi6n/SDgqMHDkSn376KSJSFPu1116Dy+XCrFmzlM9rbW3FwIED031ZIioQvWlkCpiVBPTGMgXEGej6bc87dGTfPlzAFXPGWz5OsbRB11PApkyBSETDt+9bjLP/+h7O//uipOnAXT0sW+hP5PR2q5kCqrfRZQ8tsZxpolqfX/HoUkvPTURfPqDPFCiUpnllOQ4K5LoPAxER9T9pBwWOP/54bNu2DTfccEPsvg8++AAvv/wyABhKB6I+/vhjjBw5Mt2XJaICITb4KrHaU8AsKBCKBgXi93mkff72rKn4yzcOxoIfzsbM/QYY9mHWU0BsWCheIewJRWw5Id+wpxOLN+0FAHy8pQXrGzsSbt/RE0z4OBUXOe3frP+G3GjQzEf73mvpaA9kPnFD10tEnj5QIAvc3GcKxH9mUICIiJyQdlDgpz/9Kfx+P377299izJgxOPTQQ3HcccchHA7j8MMPxzHHHGN4zgcffICGhgYceeSRGR00EeU/+YqhFWZjBqOlCGJqsrxIKvG6cdb04Zg6vEa5D9OggEmmAJD5mDcA6OzRL7Q+3tqScHs7FmZUOHrD8fdYiddtWuZiMSZguUGmZtO0AVkorP/ce3KcCm+1yakonzIFclFyQURE/U/aQYFJkybhP//5D+rr67FlyxYsW7YMwWAQ+++/Px5//HHlc2677TYAwKmnnpruyxJRgUinfCCVngJW9xllNpJQ3I/cYMyOCQRyo7BPkwQFOnoYFOhPxCkC/gTvaZdLf9XdTFu3tUyTbK01xfe71+OSxus5v8D9+mHGhsjJlOa40aAYSGGmABEROcGbyZNPO+00bNmyBe+++y4aGxsxcuRIHH300XCbdBC/4IIL8I1vfANz587N5GWJqACI5QNWr9bJzdRi+9oXFEhnzGGUeflA/IFSr/2ZAmLDRQBY3WBs0CrqYKZAvyI2GvQnGYXncbsQCSdeJAYsjiZUBQXsuEKuazDqdutS4QPBMFZsa8XU4dUJR4raqbI09dOcnGcKMChAREQOyygoAAClpaU48cQTLW171llnZfpyRFQgxAW82ex1mVmqbHThFEpjokGU6UhCYT9utwulPjcC++q8u20ICsgn9cu2tCAS0UwXRcwU6F96db03Er+nfR43guHE78lwkqBBIlVpLKBlYomP1+PSpcJf8sBHAIBzZ47EzedNz/i1rEgnIyKvggIsHyAiIgekXT5gJhwOo7GxEXv27EE4yckLERWvgNBAzZ9hUCB69TEoLThSYWUkIQCUl8QXRnaUDwSl7vIAsKmp03T7dikoUF9RkvExUP4SyweSBc8GVRlHbcqsjuBT9RSos+G9FtSV+LiUwa8nl26DlseL3dIkGRvZluuSCyIi6n9s+cu3detW/OIXv8D06dNRWlqKoUOHYsiQIfD7/Zg+fTp+8YtfYMuWLXa8FBEVCPGKd4Xf2hXIiHH9DADo3ZcSHcyop4CaVyp3Eq8S2jGWMKS4cmsWoACM5QNcEhS33hSCAkOrS5Puz+oiUrUmN2v0mQpdpoDbbVoSZEcWjhXpNFTMp0yBQpnYQEREhS3joMCdd96JKVOm4KabbsKKFSsQDoehaRo0TUMkEsGKFStw0003YfLkybjjjjvsOGYiKgCdaQQFzFJlVdMHzJoSmjLZXO5NIDYb7A5mnsovNxoEEncUl8sH2H28uIkNOf3exIvRYTXJgwJWMwVUMr0qHYlougkDcvmAyLEpG2n8k/Kq0SA//0RE5ICMggJ/+tOfcNVVVyEQCOC8887DM888g61btyIQCKC7uxtbtmzB008/ja9+9avo7e3FT37yE9x44412HTsR5THdYsfiVX2zBU2vstGgTZkCnkSZAiapCymQGw0Cxtn0IkNQgFcKi1oqmQIjBpTpblcqgm1hs3QbCzIJKABAUHptn8dt2uBT/Hfnm3zKFGD5ABEROSHtoMDKlSsxf/58DBgwAG+++Sb++c9/4ktf+hJGjBiBkpIS+P1+jBw5El/+8pfx73//G2+88QZqamrwm9/8Bp999pmd/wYiykPiyazVtGSzBXB8+oC+XjkVpj0F3OaZAl292ckU6EnQId5QPsA1QVFLpdHgaQcO071fZ08YaNhGFYRSUb2vMl2AyqUyXrfL9LPf41BQIJ1/UXWZz/bjSIWHPQWIiMhhaQcF7rjjDkQiETzyyCM45phjkm5/7LHH4tFHH0U4HMadd96Z7ssSUYFIKyhgWj6wb/qAbga6/dMHAP1VwmyMJAQSXyVl+UD/IgaIkmUKHDiiBvd8+1DMGlePbxw+Gj84YYJhm0wWkaoAVkrPl4MCHrfpZ9+pTIF0GhoOs9C7IZt0PQW09P4NREREqUh7/tDrr7+OKVOm4NRTT7X8nNNOOw37778/Xn311XRflogKhLiYtTqT3GxBE5s+EMqg0aDiEFwuY8CiXJcpkJ1Gg4mukspBAS4Hilsq0wcA4Pgpg3H8lMEAgK17uwyPZzJ9IMOYgKJ8wGWaodOrmMqRDa+t3p3S9l63emKCk+TXj2hAiolRREREKUk7U2DHjh046KCDUn7eQQcdhIaGhnRflogKhLg4sdoU0CwoEL2qKC46Ui4fUOQK+NzGr0B9o0EbggKKlVbCTIEAMwX6E32jwdT+JJcrGuI9vngLXl65M+lzVW8r2zMF3G7TxaxTmQIb9piP/1RJddRpNsjNGVlCQERE2ZZ2UKCkpAQ9PT0pP6+npwc+X27r9Ygo+8QTWbOxZImeI4ouVsRFhzxKMBnVIagWAHaPJFQ2GhQWRLvbAnjkg83Y1tyFnlDYcAWV64HilkqjQVl5iTrZ7/JHluKTrS0Jn6t6W2W6+AyGjZkCuS4fSJUqUOg0+RAYGCQiomxL+6/f2LFjsWjRIkRSuLIQiUSwaNEijBs3Lt2XJaICIS4wrF59k7ury/vSTx/I/IqeKoOh3O5MAUWadG+4b7+apuHif3yE+c98hgvu/RBt3cbGhqwnLm5igCjVTIFSn3p7TQPuevOLhM9VLTQznT4QkvqIuFyJygcy/2zZQQ5aePIgU0AOeGb634WIiCiZtIMCZ5xxBhobG3HLLbdYfs7NN9+MxsZGnHnmmem+LBEVCF2jQYuZAkeNN3ZTB+IZAhmNJFQcg2ofYqaALT0FFCf00ZGEbYEQVjW0AQA2N3Vh6eZmw7ZcDxS3VKYPyMwW3IC6XEZ068LPDfeFLU4uMCMGwKIBN1WJA5A/mQIDK0t0t1PNQMoGlg8QEZHT0v7r9+Mf/xjV1dX45S9/iRtvvBHhBFH/cDiMG264Ab/85S9RU1ODq666Kt2XBQB0dXXhmWeewaWXXopp06ahuroaFRUVmD59On7/+9+jo6PD9LkPPfQQDj/8cFRWVqKurg6nn3463n///YyOh4iM0mk0+I3DR+ErB4/A2TOG48Ij94vdH963r1Aa2QdRqq2V5QNCSrY9mQLm5QNyFkBbd9CwLTMFiks4ouHddXuwvaUbgH7CRalPvYBOh9liHOh7T72zbo/h/kyvSPcqgnYVfnWJgxMjCa0spne1yWWQuf+8yd9LqmwjIiIiO6U9faC+vh5PPPEEzjzzTMyfPx933XUXzjvvPMycORODBw+GpmnYvXs3li5diieffBLbt2+H1+vFP//5T9TX12d00I899hguu+wyAMDUqVNx6qmnoq2tDe+//z5++9vf4vHHH8dbb72FwYMH6543b9483HrrrSgrK8PJJ5+MQCCAhQsX4pVXXsETTzyBc845J6PjIqK4dBoN1paX4M/nzwAA3Pn6utj90ZP7THoKqGqb1ZkC8fvs6CmQqNGg3G+gLWAMCvAiYXH5/YKVeHDRZlT6vXj7Z8cjEBTKB2wMCgQTvHEaWgPK+zO9Iq37fO5b2FblMCiQLKhX4nEbenjkw1V5+XtJ1ZeEiIjITmkHBQDgxBNPxDvvvIOLLroIa9aswW233WbYJnqVa/LkyXjggQdwxBFHZPKSAPqaHF5xxRX4yU9+gokTJ8bub2howBlnnIGPP/4YP/7xj/HYY4/FHnv99ddx6623or6+HosWLYo9b9GiRZgzZw4uueQSzJkzBwMGDMj4+Ij6u0hE03U3t9poUCRmF0QDDOIJfIk3tX2qshVUQQGxeVtXr7HGP1XqRoN9ixU5YNAWUL+epmkJU8WpcDy4aDOAvtGTD7y3EYGQmClgX+p6ooDWmp1tyvsznj4QEcsH+v4tlSZBASfKB5J9fitLvdjb2au7b8ao2iwekTVyv5R8KbUgIqLilfEZyGGHHYZVq1bhhRdewJVXXomjjjoKkydPxqRJk3DUUUfhyiuvxIIFC7Bq1SpbAgIA8O1vfxt/+9vfdAEBABg2bBj++te/AgCeeuop9PbG/9hHex/Mnz9f97xZs2bh8ssvR2trK+6//35bjo+ovwtLKe/pjPkSswsisUwB46LDKtUhqJoVVpbGFzHtJov0VKhSf6NXSYMh/e/p/S+MKd0AswWK1d6u3lh/CQDwe1PPFPjJiZOU9wcSXCX/7XMrYz9PHlIV+zmiZVauIgbAop8t8fMkcmKhKwdGbv/6DN3tqlIvfnnaFN19vz1rarYPKymXy6XrLyFnMxAREdkto0wB0WmnnYbTTjvNrt2lbfr06QD6Rh82NTVh2LBhCAQCeO211wAA5557ruE55557Lu644w4sWLAA//u//+vo8RIVIzkF12qjQd1zhEV/SFU+kGKgQRVEUN03oDzeeKxZuoqYDlWdtirzAQCWKBoNAn39GTxJGsdR4QlHtFjWCJBepsCP5k5AU2cPHtqXgRBlljq/obEDW/d2x25PHVGNtbvadcckf7Y0TUNPKAK/150wY0X1+TTNFHBgoSs3Cp04uEp3u6rUi28duR9eWrkTH29pwe1fn4ExAyuyflxWlHjjpQ3MFCAiomyzLSiQLzZs2AAA8Pl8qKurAwCsWbMGPT09GDRoEEaOHGl4ziGHHAIAWL58uXMHSlTE5HFnVhsNisR1SVhVPpBip3ZVYoEqU6CuIh4U2NuVeVBAnt0O9GUPaJqGlTtaLe2Dc8qLUzii6RsNppEp4HK5MG1kLQApKGBSPvDKql262wcOr8FTy7bHbociGuTD+NXTK/D44q04/9BR+NO500yPJSiUD/jyoHxADIwMrCyBXwq6VPl9qPB78fSVR2f9WFIlfjepvkOIiIjsZFtQ4P3338cbb7yB1atXo7m5GS6XC3V1dTjggANw/PHH21Y6kMztt98OADj11FPh9/sBAFu2bAEAZUAAACoqKlBbW4vm5ma0t7ejqqpKuV3U1Knq9ML169dj/Pjx6R46UdGQr45bbTQo8ngUmQK66QPZaTQ4oMIX+zkQjKC7N4yyBJ3ck1FNHwhFNFz/wmrc++5GS/tgTKA4hSKartFgutMHVJ8vs/IBuZxlyjD93zv5s9vc2YvHF28FAPxryVb8/LQpusCZft+KTIE8KR8oK/HA79V/3iv89jV2tFuJl+UDRETknIyDAsuXL8d3vvMdfPzxxwCM9YjRVMPDDz8c9913Hw444IBMX9LUiy++iPvuuw8+nw9/+MMfYvdHRxSWl5ebPreiogItLS3o6OhIGhQgosQikcwzBeSeApGIpitLSDXQoGp2qCpBEMsHgL5sgRElZSm9liioaN4WCmv4xwebLO+DQYHiZMgUSLPRoOrzJafOR5VIC+MpQ6sNxyTq6NH31ejsCSUICqTQaNCBha74uy3zeQxBl3R6ODhFDFgGWT5ARERZllFQ4KOPPsIJJ5yAzs5OVFRU4LTTTsOMGTMwcOBAaJqGPXv24JNPPsFLL72EDz/8ELNmzcKbb76Jgw8+2K7jj1m9ejW+9a1vQdM03HTTTbHeAkA8UJGoFjKV5korV65U3m+WQUDU39iSKSB8XkORiGFxLS9uku7PYqaAz+NGVak31mSwubMXI2rTDwqoMgXkhVYyvaFIRtkKlJ/CEU03fSDdRarq82XWU6C1Oz728uDRtYbPkRzQkyVqDyKOQfTt229VDjMFAlITRzlTINXvECeJx9bDTAEiIsqytIMC4XAYF1xwATo7O3HppZfilltuQXV1tXLbtrY2zJs3D/fffz+++c1vYuXKlXCn2Dk8kW3btuHUU09Fc3Mz5s2bh6uuukr3ePTKf2dnp+k+urq6AACVlZW2HRdRf2XIFEir0WD8OeGIZlhcpxpoUG2vCgoAfdkC0aCAPLIsVaoxb4s37k1pH79bsBK3nj8jo+Og/BOOaLrpA2lnCig+X2bj+Brbe2I/Hzmu3tAEVA7opZKlImYK+NzRRoM+5bY9jgQF9FkYctDFLIshH5QwU4CIiByU9sr82WefxRdffIHzzz8f99xzj2lAAACqq6tx77334rzzzsPnn3+OBQsWpPuyBnv27MFJJ52ELVu24JJLLsHNN99s2Gb06NEA+oIHKp2dnWhpaUFtbS1LB4hsII8kVF2lT0ZM7VcGBVJtNKgqHzA5rgFCenRzhs0Gg4pMge0t3YotzT398fbkG1HBMZYP2JcpEAxrygZ1YlBgUKXf8NmUm1pqUJcEqqh6CtSUqYMCjmQKhPS/W7mxaHkeZ9+wpwARETkp7aDAggUL4Ha7ccMNN1h+zo033gigL6Bgh/b2dpx22mlYs2YNvvKVr+Cee+5RnrBMnjwZfr8fjY2NysDAsmXLAADTppl3VSYi6+QFfHojCfVBAbl8QDU5wOr+YvswSR+uK48vZDLNFJBrtK0oS3NxSIWlr3wg80wBs6Cbqq9AY4cQFKgyBgWSZQok+tTppg/sC9rVlpsEBRzpKaAvH5DPD8YPzt/MQF1PAQYFiIgoy9IOCixduhSTJ0/G2LFjLT9n3LhxmDJlCpYuXZruy8b09PTgy1/+MpYsWYJTTjkFjz/+ODwe9Yl0WVkZTjjhBADAk08+aXg8et+ZZ56Z8XERkf5qo8uV7khCsaeAhu3N+qvrZqn/ZlTH4LOSKZBhUCCdE3qzOmwqLl29Yd0Vc7NU+2TMYm6qEgIxU2BwlR/yR0Au/ZFDWonie7pMgX07Nst+6A2pex7YSdXE8TdnHgCXCxg3qAJfmj4868eQLrF8wImsCiIi6t/SDgo0NDRg0qRJKT9v0qRJ2LFjR7ovC6Cvn8E3vvENvPHGGzjmmGPw1FNPoaRE3Q05at68eQCA6667DuvWrYvdv2jRItx9992orq7GpZdemtFxEVGfTKYERMmZAr99Tt/gM9X9qrIVzAILdcIEgr1plg+EwhH8z8NL8M66PSk/l0GB/qGps0d32+yqejLiFXGRKlOgIxAPFFSX+eByuXSfNTlTQOZKkCsgBsDE8h5VVo8TC90eRWnGd2aPxUe/PhELf3Jc2uUaTvDpygc4foSIiLIr7TPP1tZW1NTUpPy86upqtLW1pfuyAIA777wTTz/9NABg4MCBuPLKK5Xb3XzzzRg4cCAA4MQTT8RVV12F22+/HTNmzMBJJ52E3t5eLFy4EJFIBI8++ijq6uoyOi4i6iMGBdJpMggYewp8srVF93ii2mbl/hRBBLO+BPpMgaBym2QWrtqFl1fuSuu5fWMRzRujUnHY0xEPOKlG5lll1veiWxEUEBf90cW6x+2KfWblcpdUJvOo9g0A5SVe3dQDwKHyAZPSjIGV/qy/dqbYaJCIiJyUdlAgFAqlNUHA7XYjFEptHJesubk59nM0OKDyu9/9LhYUAIDbbrsNM2bMwJ133omFCxfC5/Nh7ty5mD9/PmbPnp3RMRFRnNhoMJ0mg4A+mJBOXb5hf8rpA+pjE+ewp9tT4JVV6QUEgPSvGFNhEd9bAzL4bz5n8iC4XYD8MelUjL4UF+6efX/DPQk+a/InT248KNqytyv28wAh26bSrwgKOD19IM1xj7lS4o3/N2GjQSIiyrb8HdKbwO9+9ztompb0f2PGjDE89+KLL8aSJUtiEwdeeuklBgSIbCbWFqcbFPAKQcdkKc1WpFI+IC5o0p0+kMmJvPj61D/UZvDffFhNGf7yjUNwwRGjdfd3BfWZApqmKUt7vO4EQQHpo5cocaC1K77wHzGgLPazavSfEyMJ9eMeCywowEwBIiJyUEaFqw8++CAefPBBu46FiIpExIZMAbmnQKZUmQJeC5kC6QYFMjmRL7QFDGVuQEVm2SFnTBuGM6YNw/JtrVixvRUA0NWjDwrIwbXo+9+d8LOWOHNA1CFkJoiBgAq/8f3s9EhCv8mkkXwlBiyZKUBERNmW0V9JK1frVf8jouJmR6NBuadAplRJASVmjQaFBdqutp60vrcyOZGfMao27edSYcokU0BUVhJfgMvTB+RRodFsHF2mQJL3utlnYXVDG976vDF2u6JEDAoYrz84MWYvoGg0WCj0jQYZFCAiouxKOygQiUTS/l84nP1RRESUO3Y0GnS7rHdEt0JVPuA16YtSV6FvRPbSZztTfr1AML3vuSPH1eHM6cPSei4Vrkx6CojKhaBAt/QeDEb0i0ufMlNAv42V8oGte7tw1l/e1d0nBgJUV+mDDnTUDwTVjQYLAUcSEhGRkwrrryQRFYRwxI6eAvHnRWzIMPIoAgCJygfGD6qI3b7i0WVoD6Q2haC1O7WGql87dCQ2/fEM/PN7s+AvsKZoZE1zgqaVg6tKbXkN8Qp9p1Q+EJYW4h5lTwH9/uR4nOqj+JfX1xkCd2L5gKp3h9OZAv4CyxQoEQIpTvyuiIiof2NQgIhsZ0dQQDc73YaTYlWlgNn0AQD4yiEjdbd/8q9PU3q91hR7EZg1PaTisbMtYPrYkGp7xuSJ5QPdUvmAWGMPIBZ80mfl6D9rckBONX1ADj4A+j4Cw2vLDI87EhQIFUejQWYKEBFRtvEslIhsZ8dIQkcaDSYYq3rRUWN0t19dvQtbhZFrybR0p5ZZwKBA8ZPH8okGV9uVKSD2FNAv1sXbXrcrdjVazJiJGDIFEk8jANSBAjFT4AfHT9AdF+DMQrdHN5KwsD5f4veBE6UWRETUvxXWX0kiKgh2lw9kbySh+bFV+r2GEW8vr7TWW6AnFDYsyJJJdCxUHBIGBarsyhSIL8bFaQAA0C28J8WMAk+CTAFDTwGLxyH2FBhQUYK3f3Y8bvzKQbH7nOkpULiNBsXyAWYKEBFRtjEoQES20wUF0mw06LG9p4BqJGHir8DffWkqpg6vjt2+6831lrIWuk0CAgeNqIn9XCV1ZGemQPFr7TIPCuxXX2H6WCrE4MKOVn25gth4UGxImOizluw2oM4ekCcO1Ff6ceS4+thtJ8oHegq4fEAMEnL6ABERZRvPQonIdvZkCsS/nmzJFFAcR7Jj83ncuOyYcbHbTZ29+OmTyXsL9Jhc2bv5vOkYO7ACU4ZW4bavz9A9phrbRsXFLFNg4uBKXbp9JkbVlcd+3iaVu4jZK+VCRoG+f4ccBNDvXxUAUAUK5HIBQL/QDUU0RGz4XCeiazRYYOUDfmYKEBGRgwrrryQRFQQ7ggJiub8NiQIplw9EyVcYn1q23XRWe5TZOMLJQ6vw+v8eh5d+fCymDKvWPZYsoSLbCyjKvpbuePPJg0bUoMrvRU2ZD78+Y3/bXmNUXbyp37bmbt37Rmw8KL6vU8kUaLMwhaPU51Zm4ZRI98kjEu2mH0lYaJkCnD5ARETO4aUpIrKdHY0GEzUBPOOgYSnvL9VGg1F+xXzzlq4gBlSUmD7HLFMAAFz7Vv/DpMZy8rg4WVjT4Ab7DhSqPzy/Cve9uzF2+8hxdXjqyqMQCmu6+v5MjRwQzxToDUewp7MnNu5QnymgDgrIWTlyAOwX/1mOV35ynLSN/hjMsh7kEplgWEO2EmQ0TdNNWyhVfI7zGXsKEBGRkwrrryQRFQS7RxICwMDK+CL8giNHy5unvD/AWqaAKu24PRBSbBnXE0x+Eu92uzBn8iAAQJnPg6/OHJlwezsmMFBufLG7QxcQAIC6Cj98HretAQGgb0FeXRpfae9oifcVsNJTQH6fyW+7z3d1JM2UMSuF8UmfpWAWF7u94YguWMFMASIiInMMChCR7exuNAjoU4HlNGRL+1Mch6VMAUVQIFkKtTwP3sxN507H/DP2x2OXHWGY5X7YmAG623Y0W6Tc+GJ3h+G++gSZJpkS30s7WrpjP+umD/jU0wcMQQFFMKqps1d3W96iosQsU0D/GczmYjfQq993oQUFdIEafvaJiCjLGBQgItuJCwtV2r4VclBAvMqZbGqAlf0BgMdCpsABw2pQVapf5KgyBYLhCH76xKc4+6/v4YP1TZaOaVCVH989ZhwOHj3A8NiP5k7U3XYqU+CDDU348p3vYv4zK9jHwCadPcb3S51DQYHtzfGggJXygWSZAvI+gRTKB6QgXDa76suBuUIrH0jU/NFO76xrxFl/eRe/X7AqaQYIEREVL/YUICLbiQsLb9o9BfTPE/dpJe1fpiwfsJApUFbiwYIfzMacm9+M3deuyBR47pMdeGLpNgDAJ1tbUj4+2fRRtbrbWe7JFvP1v38AAPh0WyuOmTgIp0wd6swLF7Hmrl7DfbXlvqy93ggxKNCiDgqUWQwKqBaKTZ09CV+/wq++Ku92u+B1u2J9C4JZXOyKzT5drvSyi3LJm+C/iZ0uvG8xAGDF9laceMBgHDV+YNZei4iI8ldh/ZUkooJgR6PBRM+TG5ZZoWw0aDG4MGZgBQ7dL341X5UpsHDVroT7OGJsnaXXipLLHXKRQvzOukbHX7MYtSneL9VlWQwKDNBPIIgSMxYqTEYSyu8z1XrUOFpRv1Gi8ZpO1crrJg94PbEGn4UiF+UDizfudeR1iIgo/zAoQES2i2Sh0aAonaBAuiMJo8QSAlWmQCJuF3DJ0WNTeo78789Fo0FmE9ujzbCIBqpLsxcUGDlAnSnQKYwkFBfuicsHjG8CuZGm1fIBQP+Zy2ZXfTFToNBKBwB9vxOnPvv8vBMR9V8sHyAi24XsaDSY4HnplQ8Y77PSaDCqSljEqTIFNEO7tT77D6vGPd+eqRsVZ4X8z89Fo0GuEeyhakxZXZa9P79i+cC25q7Yz1098YWymOKfKFVd9b4TF9wq5SaNBgH9qL1sZgqIPUjKCqzJIOBcTwEiIiKAmQJElAV2NBp0u10we2pa5QOKIEMqWQy6TAFF4zgzw2pKUw4IAIryATb9K1ht3cb3SzYXqmL5QHsgFEv3FzMFxIW7W5o+8P4Xe/Dwok3o7g0rrx73SFf45U0qTXoKAHL5gDM9BQpt8gCgL23iZ5+IiLKNmQJEZDvx6mK6jQb79qO+P52ggKp/QIli3KAZsQZcVT7ggvrfqRppaAXLB4qH8v2SxRr3QZV++L3u2OJ9455OzBhVq+8pIGYKCJ+NDzbsxfUvroamAat3tmPulMGG/QcM5QP53VPAX4BBAV2mAIMCRESUZcwUICLbhWzIFEgknfIBVaZAKh3JxUwBVeM4M+lepXS5XLoSglyUD7CAwB7y++XaL03N6uu5XC5MHV4du710czPaAkGs2N4au6+2LD4SUfxsvLp6VywY9NiHW5SBuZ5Q4vKBxEEBoadAFoMC4jEWYk8Bjy57w5nRI/y0ExH1X4X3l5KI8l7Ehp4CiaTVaFA1kjCFq/hVfrHRoPWgQLqZAoC8MGCmQL75YncH5t7yJsb84gVccO8HpotlsdHg/DP2x7dn7Zf1YztsTHzaxR+eX4Vj/vSGLl1fLDFIlM2j7imQrHzAYqZAFhsNdgvjF0u9zBQAgM1NnfjrG19g7c52W/ZHRETFg0EBIrKdeAEw3ekDiaRTkqAKTqSWKZC4fMBMJkEBMcsiJ40GGRQwFYlo+P6jy7C+sRMA8N4XTXjukx3KbcVGg0eOq3dkPN7xUtq/PEZwuNCMMFEZjVwaABgzBeQ1a6JMAX2jQad6ChTeqY5Y0hGxISigaRq+++AS3PTyWlz8j8VZnfxARESFp/D+UhJR3hPTXe0OCrhdgDedRoOK40i3fKDDgfIBQM4USHs3aTObqEDA6p1tWLtLf8VVdQU2EtHQIdTyZ3MUoUjMFFARr+YnCgqoyweS9RSw2mgwiz0FhGMsKym8TAGvzZkC3cEw1u3uAAA0tAawYnuLYZvsh6qIiChfMShARLYLa9krH0indABQZxek0miwMhflAwlGxTmBmQLmPt3aarhvU1On4b6O3pDu9ygGl7LJ43bhyzOGW9q2xGO+aLYyklDeJHH5gDM9BXSZAgVZPhD/3rDjsx8M6feRSl8UIiIqfgwKEJHtxHN9uxsNphsUUB1HKg0Lk5UPmMU+Mul87s5xo0HGBMw98/F2w30b9xiDAm1S2r5TQQEA+Nqho5T3/+iECbrbiYJjqjRzOVNAfm/mw/SBbiEoUIjTB+RMAVUZRyp6wvpATlhRusHPOxFR/8WgABHZzq6RhCpiKnYq5IyFVMsQxMVcZ28Y8/79CfZ09CR9HjMFis+rq3Zh8aa9hvu37u02/HcSG975ve60Sl/SNXFIpeG+EbVl+N5x43X3JQoK7GozvsflTAH5dqJMgRKHGg2KwZiKAiwfkMuuMv34y/0bwvxwExGRgEEBIrJdSDgBzUajwXTIx5FqxoFcC/7Usu244YXVSZ+XyVVKXVAgJ5kCXDjINjd14rsPLYndrimLvy96wxHsaOnWbd8lBAWcrm0fVOk33PfcD442LNoTBa62NXcZ7pMzBeRyGuuZAtl7f23dG//vMFKYtFAo5O+rUIZjCeWMj2xmaRARUeFhUICIbCdmCrgd6LRuhXwcqfQTANTN055SpJDLMpo+4LK3A3nK9r1kOKJhV1sg4xTmQvfJ1hYcd9Obuvtu//oMDK0ujd2W+wqIaezlDqexu1wuHDNxYOz2QSNqUK8IFCR6j65v7DDc1yNlBsjZO4n+neIY0Gz2FNgqBDNG1ZVn7XWyRQ4KZJopJAcBeoIMChARURyDAkRkO/EE1sFs6YS8Uv+AVCYP9D3fjfIEV3rNTtrzpXxg8ca9uO75VVi3K/UZ5Zc++BGOuOE1/OI/KzI6hkJ308trdLePnlCPOZMHY8zA+KJz0x7zoEBpDtLYf3vWATh4dC2GVPvx81OnKLdJFCD7YIOxTELOFJAzAxL1ERH7eGTranU4omF7czxTYHQBBgXksqtMJxCEpKwM+b8hANYLERH1Y3lyuk5ExUQ3fcCdH18z8kl2qpkCQOImcWZXPTMZSShmCmRSPtDVG8I37/kA9767ERfet9jy8zQAX+zuwJtrGwEA/1qyFaF+mna8Ylsr3vuiKXZ7dF05/vy1GQCAsQMrYvdvatKn24s9BRIFlbJlwuAqPH3l0fjgl3MxW8gaEKUaIJMXlEeMTTz+0Oy1VE0M7dDQ2q1bRI8cUHhBAUNPgQyDAnIzSLkPBBER9W/OtUEmon4jHM6/TAG5h0A6UwyqSn3KxmuAfvEnsitTIJ2S4k17OvHrZ1ZgQ2NnbJG0sy2ASESzNBVC0zS0dvfq70v9MArapj2d+OHjH2PF9vgIwumjavHMlUfBtS9os199PCiwWS4fEHsK5LALvitBGU+qATJ5QSmuVy+XmhjKnJg+IPYTGFTld7yXgx28UjA100wBOSigzBQgIqJ+i0EBIrKdLlMgT3oKyEGAdDIFEnVVN5v77c9gRnqmjQYvuPdDbJca3wF9WQ2l7uTHpXrF/pZh/PP/LNcFBADgy9OH6xbZo4Qr0dtbArptdeUDeToaL9XPgrig3NDYgccXb4ndThZrE18rW5kCW/cK/QQKsMkgYH9PAfn5zBQgIiJRnlzDI6JiEonkYfmAJ7PpA0Di8gF5Hn1UqS+TRoPxn1NNHw5HNGVAALB+lbAvAKD/vSWaSKBpGhpau4uqs/mHG4019fKov+G18UaD8vSBXJcPWCGXD1RL7/NSnxvP/eDo2G1xQfmdBz7SbZssCFjiQKNBsclgIfYTAOzvKcBMASIiSiQ/ztaJqKiE8rDRoLzwkRdvVshjCUWtJkEB2zIFUlwUJPr39YSsXSVMNVPg2gWrMOvG1/G1uxcV9aQCsYcAAIyojV+Nbu0O6rrxi5kCuSwfSETOFDhx/yG625ccPRZVwntfXFDKPRSSlaWIn8NsLUx1mQIFGhRwu10Q4yvhDMc3yvEXVaZA8X5iiYgomTw5XSeiYiKmulupXXeCvKg2W8QnYlY+EApHDGPZovwZZQqkXz6Q6N+X2jgy66/7wPubAAAfb2nBovVNiTcuYPUV+rF+Ayv9uq76DUJARhcUyNdMASkoMLSmFBceuR+Avpr8S44ao8t4CUc002yQlDIFshQU2KIrHyjMoACg/12G0mkqImCmABERJcKeAkRkO135QJ70FBgizJIH0kvlNisfMAsIAJnVkesbDaYWFOhMcExW07ZVV/utxiYaO9QNGQtdiddtKAlxu10YVlMWW4xub+nGxCFVAORGg/n5J1duhul2ufD7L0/Fd48ZiyHVpSj1ebC3U99wsicUUZbgpJIpkLWeAsI4wkLNFAD6Pv/RrKtMewrI3x9Ws4WIiKh/YKYAEdkurCsfyI+ggHyVNp1U7uoydflAl8nkAcC+6QOpZgokOiarmQKqV5SvOJo+t0hzkWvKfMpO/mJfgW3ColQXFCjJzz+5csCsoycEl8uF/eorYkEt+X1s1qgu2ec92z0FunvDaGyPB6RG1RVmo0FA31cgk5Gkquenli1ERETFLj/PUIiooNkVFLjp3Gl2HI5SOsc1oKJEeX93gk7emQQFdOUDKV4pTJS9YHkxpmw0qCZfibQaPCg0Zhkm+9XF+wxs3BMfS9hVAD0FxJ4IAPDxlmbDNvL72Cz9PNflA9uEJoPefRkchUr8jgpl3FOAmQJERGSOQQEisp1uJGEGQYGZ+w2w43CU5O7eVshd2aO6E2YK2FQ+kOIiO1H5QI/FcWR9kwb0r2vWQFDujp5htnPeMlucjRsUDwpsaOwAALR09WLBpzti95eV5Gf5gJz5oPoXej1u3WfG7D2U6/IBcfLAiAFleZOplA6v8Luye/pAQJEpUKRxPCIisoBBASKynXhVyp1BT4F0xgZa5fGkflzy1dLoIsksVd/tgq4BXao8ukyB1J7bmah8wOJi7MUVO/HBBv1IPrN1g3wlslgzBczS5scNio8pXN/Ylylw68LPddvka6YAAFx39oGxn3952v7KbcT+GKpFJQAke7tnu3xgS1PhjyOM0k8fybDRoPR0ZgoQEZEoPy9bEFFBExeI6VyRjz03gwV10n27Uw84mAUpzMoH/F6Psv7cKvEQbW00mMIV2pteXqu7rZk81dAdvThjAhhY6VfeP17IFNjW3IWeUBgPLtqs2yad5pZO+fphozC8thSVfh8OG6PO0PF73Yj2jzRbVKbUUyArmQLxfg4jC3jyAAD4hN9lMNPyAU4fICKiBBgUICLb6TIFMggKqBbh4hXNTJSkkYXglZ4TTent7rV/HCGQWaPBhOUDGSwINJPVvqHnQeFmbSf0pRnDlfePqiuHd1+3+IgGrN/dadgmk0kU2eb1uHHClCEJtxEzZcwyBZKWD2Q5U0DsKVDITQYBfTaT3dMHzDJeiIiof2L5ABHZTkwdz2QkoU9xNX/6yNq09yeSZ7Nb4VMseO5/d6Np+UBpBv0EgGw2Gkx/QWAWm8i05jlfHTmuTnf7/MNGKbfzedwYXR+/Mn3tgpWGbfI5U8AKMahhmimQ5PPuz3JPgdbuYOzngRXqrI5CIX7/BTMMoFjJFDAL+BERUfFjUICIbKcrH8igBMDnNT43gxiDft82lSb8/vlV5uUDNmYKpFqj3xZI1Ggwk0wBNTloUSyJAmK5wE9PmWxaPgAA4wbG+wp8uHGv4fHacvVIy0JRYnemQBaCAp098c9iub+wgzDid2cm0wc0TcMrK3fp7mOmABERiRgUICLb2dVoUFX3b1dQIJ1MgXJ/atMHMhlHCMiNBlMMCghXTGVmCwIrVyOtTh/IpJdCPhH/ucney+MHVyR8vLZMPdKyUFjJFEjWQyTb5QOdQilPhcnntVB43PZMH7jrrfV4TpiCAagzBVxFE8ojIqJUMShARLazaySh6mq+XSeuJWmk9k8bUYPpo2oN9+/t7FVun8k4QkB/1TXVoEB7IB4UuPrkSbrHuk2u8r702c6k+zU7jLB0JbNYpg+IKdXJ4hwHDKtO+PjQmlI7DilnxCCXWV+KZCUS2c8UiAcFKgs8KCB+/xkaeabg7rc2GO5jpgAREYkYFCAi24kXADPJFHC5XIYrj2kMDVBKp9Gg2+3Cv//nSDx+2ZG6+3e19Si3L8uwhlzMFMikfGD/YdU4aERN7Paba3ejLWDMJHhxRUPS/ZrVHcuLllSnJeQrfaZA4m2PnzJYmR3icbvwg+MnpJWdkk90mQImi8qyksQLcV+WewroygcKvIeD+N2XbvmApmm6PgtRPaGIadYPERH1P4V9hkJEeSli00hCwJg2a9d5bImiX4EVfq8HR46r0/27drcHlNtmOpdeP6c8teeKmQLVZT4cPLo2dvvDjXsx7Xev6I47EtHw7hd7ku/YLFNA+u+U6rSEfCUGY5JlqVSX+vCzU6fo7nt13nH47Hen4OpTJmfl+JxkJVOgIlmmgEefEm9n8EjTNF35QKFnCnhtKB9YuaNNeb+mGcccLtrQlNZrEBFR4WNQgCiP7W4P4Py7F+FLd76L9Y0duT4cy8SrxpmUD6jYNV/72ImD0n6uy+VCVWl8wbHbLFMgw6CAO5NGg93xxVF1qU+ZtfC3N9bHft7e0o32BM0Jo8yOQl5g2J0pEApHsHTzXnSZjH/MFvHXbiXp5dLZY3Htl6bi8DF1+PuFMzFhcGXGGSP5wi+8n83Sz5P9W+VMCjv7CnQHw7r/XoXeU0DfaDC939P3H1tm+lhA6guxdHNzWq9BRESFj0EBojz2p/+uxYcb92L5tlbM+/enuT4cy8T1YLJu5KnKpBb2kUuPwNiBFThj2jCcd6h6tJxVVaXxTvK7zDIFMi4fiP+cSk+BQDCsm4hQU+ZDhSKt+/Nd7bGfX1u9y/C4illwQj4+u0cUXvyPj/DVuxbhlNvedrQeOqILClh7L1901Bj8+/JZOHnq0CwdVW6UWuopkHghLpdQ2BXkA4xjOFXv+ULi9WSeKbC5qcv0MdUUEvYaICLqnwr7LyZRkfvPsm2xnz/d2pK7A0lR2MbyAVkmJ62zJw7EG1fPseU4xEyBli51p/9MgwLpNhpsbI9nLrhcQH1libK+Wpw2sFYIECRilrAg9xRItTFiIk0dPbHShq17u/Huuj048YAhtu0/MXGShkMvmafEEZtmn8Ok5QNSUMDKxAurxM+h1+1CaYYjQXNN31PA/v4Lqv+GTZ29GFFbZvtrERFRfivsv5hElJfsGkmocuS4elv3ly4xKGAm454CaTYaFHsF1JWXwOdxY0y9cVye2IBsdYM+KHDi/oMxXNEt3+wo5CCAndMHmqWgy+52dblGNugyBRx71fxU6hVHEqoXqckCYXKDTzubDW5o7Iz9PLquvODHYuqCAmkE2ZI1ElT9N2zqcO6zRURE+YNBASKynbhAzLSngPz00gwX2nYRywfM2Nto0PqiYFtzd+znIdV9C/s5kwcZrgBGgwLhiIa1O+NBgaevPAr3XnQYZo0faNi32UJDXrTYWT7Q2q0f+bi3MzsLlz0dPbjjtXV49pPtsfvEf2+hLzIzJWYKqFLPgeTlA16PW/eZtjUosCfed2XcIGMQrNDoegqk8XkSvwdUekKKTIEO9XhVIiIqbiwfICLbiZ3n05j8p+N1u21tRmYXS5kCdpYPpHDlfb1wxXTsvsWR1+PGbV+fgfP+b1HssWhQYENjR6wHgdsFTB5aBaDvaqvM7DAMmQI2BgXk8ow9WVq4/ORfn+CddX1lCgPKS3DspEH6/hj9OyagyxSQm9RFWQkClnjdCOwLKtj52d4ovu8HFkFQQJw+kMbvafHGvQkfDygCO1v2mvcgEDV3MnhARFRMmClARLaL6DIFMvuaOWhkTaaHkxXVDmQKiOnDTy/bju5ea/0UNu6JL47GC4ujw8bUYdEvT4jdDgQjCATDWL6tNXbfpCFVsau9EwZXGvZt3lNAGkkYiW6vZTwPXQ4K7M3CgkTTtFhAAACeWrYNn21vxVufN8Y3YqZA7GezTAErxBICezMF4u/7cYOM791CI2YKyNM9rNjU1JnwcdUkjxdXNAAAtjV3YXuLeabB9S+uTvl4iIgofzEoQGSz1u4gVu1oy3ghBBTuGkRcIHoy/EecLDSUu+CI0Rnty05OZAqIVwp3t/fgBosn4huE8ZVjpTTqmjJ9MKOtO4gV2+NBgYNGxIMwh44ZYNi3ZtJVICw3GtQ0fLK1BUf98XWcfOvbGY3UbOmWMwXsLx9olV7jmU924AfSOLf+ningT5Ip8H/fmmlpPyUWehOkQ3zfjyuKTIH0yoeixM/Jd2ePxS3nTdc9Lr/nAeDDjXvxz8VbMPtPb+CYP72Ojzapsw1eWbkz5eMhIqL8xaAAkY26e8M49ba3cfod7+D6FzK/klKoaxAxUyDDRAFccvRYXDFnPP7n2HH4+WlTMjwy+8iLaxVVx/9UiFcKAeDhDzYnfY6mabpMgXED9VdMy3we3ZXa1u4glm9rid2eJmRmRPsR6Pevft1QWM4UiOAn//oEDa0BrNvdgcc+3JL02M20dOkzA1SLmUyp6q83SePcfJm+mQtcaZJMganDqy3tp0R4X9uVKdDc2atrSFkcmQLx33cwkvrvSZxCMrSmFF+dORKzJ8T7hJhNTfnFUysA9DXZ/ON/16T8ukREVHj69xkOkc2eXLoVDa19nd/vfXdjxvsr1MZmYv27N8OFVInXjZ+fOgW/PH1/Syn7TrESFBilqMlPRTrjHHe19aBLKDOQG665XC5UC8fe1NmLlTvaYrcPGlmr235Unb45odn1Srl8oLkrqAtOfCZkI6RKXrzI8+jtkKwpGwCMKYKrz5mQMwXSzYYSxxLa1VNAbDJYVerFwMoSW/abSz7dSMLUf9dtgfjnJPp9JX5vWQmuLd3cnPLrEhFR4WFQgMhGTo5Ky2e68oEi/ZYZUK5edPzPseNQ5vPgyzOG4+BRtRm9RjpBgSahM3+l36ucklBTFi99WLWjLZbC7XIBU/Y1GYw6/cBhuttmowbloECntHCv9Kff11YuH+gIZCMokLjB2mkHDsXM/YzlFP2JnCkgvxWsxjB1QQGbMgXE5prjBlUWbEBVJPZjSad8ICgEXKK/czEgKGfgqBRDcIWIiJLj9AEiG6Vz4laMdOUDRXByrlJbblxs+zwu/OK0KfjZqVMyHsUI6NOHrWrrNl4dlIn3i1fza8t8hpGPP5w7EXe/vSF2O2hyZVfuKSBvl8kVYXnx0p6FoIBZU7XBVX688pNjUWsSBOpPDJkC0uNWF+LZCApsaFQ31yxkPl2jwdR/T7qgwL7vkhpdUEAfbJs6vFqXNQTY2/OBiIjyV5FewyPKDbtjAoW6nNaPJCzUf0ViqqBATZkPLpfLtn+z3FMASB54ElOCzZohilkOX+zuUN4fVen3YnhNvLeAOPatLRDE0x9vw+qGNkN6s9wtPZPFn5zm3BuOKGespyMQDON///0p/vHeJuXj35k9lgGBfeTpA3L5gNV3vW76QNie/44bhfIBuWSmUImf/3TKB4Kh+HN8qqCA9LlSlWe1B0KWp54QEVHhYqYAkY3MUqvTVYgX2SMRTZdWXKxBgZoy40JxcJWxMV8mVI3tuoPhhKn4bYH4iX61SabAyAHxPgFik0FVoAMApo2sxY7Wvm7ja3a247SDhiEc0XDR/Yvx8ZYWeNwu/OD4CbrnyHPVM8sUMNY+d/aEdVeu0/Xk0m34z7JtuvsuOXoMtjR14YDh1bjsmHEZv0ax8EtTA4yZAtb2I2YKiAvXTIiZAmMHFn6TQUBfPiCX51ghZgpEAwxiUKBRKncbVqv+/trT0ZNxfxQiIspvzBQgslG65QNvf96IhxZtQiCovyLjKsBcgbAUGCnWoEBdRYlucQMAQ6r9tr+GLNlVuzbh6p9ZY0bxBL9T2N/ASvXxTxb6DKxu6Esv/nBjEz7e0gKg732/eKN+dJkcBFi5XZ+WbFUgGMbOfc07dfu3Ka35jTW7DfedNX047rv4MPzvyZOL9v2bDrGnQCAYNvYUsPh9pRtJaEOjwXBEw2ZhUkSxZAroGg2mMX1AnFigKh9oaNWXzFxy1Fjdf+OoxiyMACUiovzCoACRjdLJFPhseyu+ff9i/ObZlbhRnkNfgOsROTDiKcR0Bws8bhfG1Ouvno0YUGaydXpUIwFTCQqY9RTYr169aJosNRmMOnBEfEzhsi0t0DQN732xR7dNs1T339mjP87ecERXqmDVss3NyiyDVMoHekJh3PP2Bjy8aJPh/bmn09hsbWStvf8di0V5STxDpas3BE3KFbCcKeCxt6fAtuau2HvE5QLGFklPAbGnSMblA15jUGBXW3yx73YBB46oxlNXHI1LZ4/V7UfOKCAiouLDoACRjSJpZArcIAQCHlyUfA59vpMDI8V8pfWo8QN1tw8eZW93elXmQVcwcZM9cQxZdZm6zGC/enUq8In7D1HeL3bd39PRg81NXbjnHf3ITTkosFex2DYEvZIIhiO46631ysdSaYB2z9sbcP2Lq3HNsyvxn6X6UgFVB3azjIn+rrwkfoU/ohn/G1j9pPttbjQolg4MrykzNMssVN5MMwWEYFq0p4BZiVB5iRculwsHDK/GNWcegKPG18ce28NMASKiosegAJGN5NR5K+SSAVEhLqcNmQJFHBS4cs742MiukQPKcMqBQ23d/2BFpkCXDeUDEwZVYoR0NbzU58a0kTXK7esqSjBhcLxO+4YXVxsWc81S3X+zIijw2prdyvvN/P3tDXhn3R7lYz1B64ukm1/5PPbzz/6zPPZzJKJhh2LqgLuI37OZKCvRL7YXrW/Sb5CjkYTrG4uvySCQeaPBXl1QoG9fqpIkQB/wAYBBVfHAGDMFiIiKH4MCRDZKp6VAoj4EhZh5L/97inmBNbi6FC//+Fjcdv4MPHXlUQkbAKajWjE9IGn5QCB5+YDb7cJjlx2huy8QjCQcKTdzdDxb4JVVuwyPy4u79h51RsMnW1tMX0O2Yltr7OcRtWW6K/h2TB/Y3d5jmJLwlYNHZLzfYlUmXYH/n4eX6m5b7ilg8/SBDcJYzfGDiqPJICBnCmTWaDCaKSAu9kUV0neX+FljpgARUfFjUIDIRnL5wLpd7Rj7yxdw2u3vYEOjup460cleQTYa7Cc9BaLqK/04++ARtk8eAPrmvh89oV53X7JMAXF8n9n0AaCvr8A3Dh8Vuz3vpEkJ9zttlDqLIFWrGqw3HBRLEi6fMx5lJfZeYW7q1C92jhpfj1+cPiXj/RYrnyfxKYPVj7rPG9/QnvKBYs0UEKcPpP57ErMLov/tfB53LLtJJAcgmSlARNS/MChAZCN5QXzSrW9D0/o6ts9/5jPlcxKlhRbiRfb+Mn3AKTeeM013u6s3SU+BbqGngCLTQPTL0/fH2TOG48szhuNbR+6XcNvpI2sTH6hF6QYFBlf5DSPxMiWW7gys9OOxy47MSnCnv7D6SS/xxP872hEU2ChkCowrknGEgD5TQM5oSSYS0XQBZ59QiqB6j8tNUgdVMihARNSf2JvrStRPfb6rHY99uAVPSE3MRO/L9bf7JLoC1JnkqnA+6k89BZwwur4csycMxLv7uv3LXf1lVsoHoqpLfbjt6wdbOo4pQ6swckAZtjXHa/Cr/F7TMgEzq4WgwJamLgysKtF1tReJfQrqKkp0DersKB8ICH0JxCwESk+i8hORrqdAhiMJO3pCui76Y4sqUyD++0x13G1Q+rsilmwMry0zBOdGDtA3Hx1YJZYPWO8DQsVtfWMHQmHNdFINERUuBgWIbPC9h5ZgkzAnOxVmJ3uq2nFN0yyfeOdKfysfcILYBCxZpoDV8oFUeT1u3H3hTNzyyudo6erFuEGVOHJcPa5+4tOU9rNxTyc+2dqCs//6HoC+wMWz3z8aY6Qxcpqm6SYDDCj3SUGBzK8wi5+xUm9xdKzPJblZnZkSG/87bhQmD5T63BimaM5ZqLxucSRhar8nObNALP2YNKQSr67W9wWRG48yU4BkH25owjfv/RDhiIb/+9YhOPXAYbk+JCKyES+NEGVod3vAUkDA7ITZLC10d3vAcF+mV9WcIF6gcrmKu9GgU8QmYIkyBYLhiK7ngJ1BAQCYOrwG9198GJ668mjcfN50w0LCTF1FCSr2vf81DbGAANAXxPjrG18YntPZG9Z9NmrLS/TlAylMHzATELIN5M76lBq/1215FKCdIwk37In3Exg7sLKovm/ElP9UywfkIIKYdTB74kB5c4yUygcGVsX7DnQHw+hMMSOIis8PH/84FvS//JFlOT4aIrIbgwJEGVrT0G5pu9F16tnwZpkCqumGARsWQtkm9hRgloA9KvzxxZZYHiBrD+hP3JP1FMhUlcX9e9wuTB1u3qjw+eUNaE0y0rC2zAe/z97yAV2mQJHMts+2U6YOUd5vNupORUxlD2YY6FwvZAoUU5NBAPAImQKplg/IAWQxU2DWuHocPLpW9/h+9frfXX2FX9fThtkCtJvvAaKixqAAUYZWW2ycZjZlwOz+gGLR0xPM/x4DYSFVoJiu2uVSfUU8lbcpwXiwNqF0wO2C7SMSZWY9C06YMlh3u8TjxoEjzIMC3cEwHvlws+6+FiFIUFXqhdfjtr18QGw0yKCANf978mTl/UNSSNsvsTNTQJg8MH5gcQUFxKv7co+AZBKVD7hcLlxy9NjYbY/bhTH1+qC1x+3SBXo4lpCIqLgxKECUIctBAZMrYmZXPDsCxnTNgsgUEA6RmQL20I0HS3ByLvcTyHb/CbNMgclDq3D712egdN+V/TOmDcPM/QbothlYWYLvCAuTRz7YHPuMbG/pxmOL40GC+n2LEzumD4i/km4xKODln0MrJg2pUgaDhtWkGRTIMFNggy5ToHgmDwCAT9dTIMVGg8Lnw+N2GRq+nn7gUJwwZTBcLuD7x0/QjT+MGsi+AkRE/UbBNhpcunQpFi5ciMWLF+PDDz/Ejh074Pf7EQgY67BFDz30EO68806sWrUKJSUlOPLIIzF//nwcddRRDh05FZs1O62VD6hqQjfu6TSkfCfarx0p09kmprl6mSlgC6szw3VBgVJ7+wmomGUieN0ufHnGCBw7cRBauoMYU1+OcETDcZMG4a3PGzG6rhx//tp0jK4vx0OLNiEU0dDQGsCbaxtxxLg6fPnOd3Udz+v3LU50mQI2ZM2Iv6/a8uz/vopFmc+j+90BKWYKeOzJFNA0TT+OsOjKBzKYPiAEW8TeBFFejxv3X3wYunvDpv00BlX5Y3+HmClARFTcCjYo8Ic//AHPPvtsSs+ZN28ebr31VpSVleHkk09GIBDAwoUL8corr+CJJ57AOeeck6WjpWLVG4rgi90dyTeEevTgDx4zb9azZqcxA6GpsxcTrR9eTkSEngIsH7CH1aCA+NjASus13unyetwoL/HomhsC8cXMgIoSDNh3ld/rceGBSw5Da3cQNUIWw8lTh+DFFTsBAI9+uBlfNHYYRqDFMgV8mZcPiO/IvZ3xhe2AFGri+7tSn/Gq8tB0MwUyCArsbAvosj3GFln5gL7RYPrlA2LGgSxRg01OIMgfu9sDmP/0Z3C5gOvPOUiXxUFEZIeCDQrMmjUL06dPx2GHHYbDDjsMQ4cOTbj966+/jltvvRX19fVYtGgRJk7sW1otWrQIc+bMwSWXXII5c+ZgwIABCfdDJNrR0m3aE0CmSv9cucO89ODzXcZgw8odbThyXL31A8wB8fchp6xSesST8+auIILhiK5GOKqhtTv287Aaa5MBMlXh9xqCAmYZIi6XC7Xl+sX3BUfsFwsKvPl5I95Y22h4XjxTwI7ygfixic0M68oZFLBK1X8hlfIB8b2bSW8IsXRgUJUfVQ5kxzhJTOm3+ncmSpcpkGZpjL5sqTfBlpRt1z2/Gq+s6hsjWV7ixa3nz8jtARFR0SnYIsqf//znuPbaa3HmmWdiyBB1N2TRLbfcAgCYP39+LCAA9AUXLr/8crS2tuL+++/P2vFScdrbZf1EKdUrPbvbjKUwn2xtSWkfuSCmubrZU8AW4sk5ADSZnKA3tMbfM6lcuc2EqoTAk+DKpGzWuPrYFV7VxA0gnvWgbzSYXvmAPlMg/ntkpoB1fkVQYLjF8ZSANJIwg54CYpPBcUWWJQDog2tmPWnMJCsfsII9BfLHc5/uiP389Mfbc3gkRFSsCjYokIpAIIDXXnsNAHDuuecaHo/et2DBAkePiwrfXmFxNrgqcTpfqld69nYaF34fb2lOaR+5IJYPsKeAPUp9Hl1TP7MT9F1CIGloCjXemShXpB+nsghxu1340dwJCbdRNRrs7EkzKCAcmhjUY6aAdXWK/gsjUggK2FU+sHFPV+znYusnAOinD6T696NXFxTIPFOAPQWIiIpbvwgKrFmzBj09PRg0aBBGjhxpePyQQw4BACxfvtzpQ6MCJy4qxtQnPim12j1a0zQEwxG0KRoQbmvuzvuTM/HfyfIB+4iN8OQmb1Hie6bGocZ5FYpMAX+K6cpnzxiBYycNMn184L7FybDaeKBja3OX2eYJuaAuH2CmgHWj6ozj65IFRUV2BQU2NcXLB5J9/xYifaZAquUD8e1L0gwKpJIpEEkxaEFERPmlYHsKpGLLli0AoAwIAEBFRQVqa2vR3NyM9vZ2VFVVJdzf1KlTlfevX78e48ePz+xgqaCIV/PrkiwqrM6Zbu8JISDVaJd43LErP9ubu/O6yZC+0WAOD6TIiFfJe8Pqq+TdwvtGdQU/G1TlAyUpBgVcLhf+dsEh+M2zn+GpZcbU2ImD+76TxRRxset8ai/W93+RiIbmLuufX4obOUCfFbBffblypJ0Z3fSBDMoHNgnvgTFFWT4g9hRI7fcklht40ywfkEehappmOuY009GSRESUW/3ilL2jo6/usLy83HSbiooK3bZEVshXGudMNr/aqWnWxkr94LGPcecbX8Rul/rcuk7y3TaMYssm/UjCfvEV4wi/haurXb3xTIGKEmdivgMUafepBgWAvuDCn782A+//4gTd/W5XPDVc7C7f0hVUltgkE13StAWCED+OLB+wLhqkiZqVYvNTOzIFQuEItuyNZ4sU2+QBQL+Yj2ipXY0P2lA+IAbKekMRQ0NRUYfJaF0iIioM/SJTQNt35dIswi1uY8XKlSuV95tlEFDxahIWJfUVJbhq7kQceeNrptsHwxF43Imv4L79eSPeFm6PqC3TNWAL5HtQQMwUYPWAbUq8yTu2i5kCiUaN2Wl0nTHYWuJJ/7XlPhSTh1bHFjV1FSWoLvXGyiQ27ulAXUVdSvuP/hkQxx563C5dzwZK7JiJA/H1w0bhhRUNOGJsHa6am9qgVPG9nGpafNR2YfKLy6V+HxY6Oagaimgosfil2iuOJEwzKDBAKkHa0dKNiUP6AkJDq0uxVXjs1NvfxqfXn6MsJyIiovzXLy7jRcsBOjvN0027uvquOFRWVjpyTFQc5EyBoTWlOGPaMNPtU20WBQDHThqkGwGW90EB9hTICl3n/aBJpkDQ+fKB/eqNi7FUewqI5PfM0ePjV6FdLhfGDop/R4sj6VK1dmd77OcRtWVw871qmdfjxh+/Og0rfncK7r3oMAxOsamlXD6QSlA+SiwfGV5TphyTWOjktP9USgiCQuAw3Z4CcknIba+ui/0sjznsDUXw2prdab0OERHlXr8ICowePRoAsG3bNuXjnZ2daGlpQW1tbdJ+AkQiOVMAAEq95ienYp2nlVICAJg7ZYjuqm/elw9oHEmYDSXC+6rHpH63q8f5oIDcdA5Ir3wgqrLUqzv2C47cT/f4+Az7CkQbDf7zoy2x+6aNrEl5P5Q++cp1MI1sgc1N8dKBMQOLL0sAAHzu9H9PYgDB57Xne/iFFQ2xn1WZl6t2tNnyOkRE5Lx+ERSYPHky/H4/GhsblYGBZcuWAQCmTZvm9KFRgVM1Giz1mX+sxJM6K4v7ihIPDh9bp9tnwOQqcb4Q617TbXBFRvpMAeN7JxSO6Jp9lTnUU0A1Hz6ToIDf68EN5xyEWePqcfvXZxhqxcdmGBRwu/pGe76zbk/svvMPG5X28VLq5JGVwTSa1In/7Ytx8gAAeKTfk9VAMqAvH8hGb5euHmMPgS1708/cISKi3OoXQYGysjKccEJf86onn3zS8Hj0vjPPPNPR46LC16wMCiTIFBCu3ohN4cwcMa4eJV43yoR9dido9pQPxBIJDzMFbKNrNKhYRHVJgYIKhzIFBlSUYPIQfYZVJkEBADj74BF4/HtH4sszRhgeGzsow0wBlwv3vbsxdvvg0bWYPWFgegdKaZFTzxkUUJP7a4RS+D2J5QPp9hQA4k0+RbvaAsrRuFv3dqf9OkRElFv9IigAAPPmzQMAXHfddVi3Ll4Xt2jRItx9992orq7GpZdemqvDowLUEwqjXbhaYiVTQGyqFehNfoJ3+Ni+Jmp+X+GUD+hHEjIoYJeSJD0FxNIBwLlGg0Bf4zlRJj0FkpEzBaKZKYFgGH9e+Dn+7631CTvad/SE8NJnO2O3/+fYcQmb0JL95Br3VMfZLd/Wgrc+b4zdnjCkOHsBGcos0pw+UJJB+cCN5xwk7MeNUDiCj7e0KLfd1tylvJ+IiPJfwQYFXnjhBRx55JGx/wFAb2+v7r4XXnghtv2JJ56Iq666Ck1NTZgxYwbOPvtsnH766Tj22GMRDAZx//33o64utS7W1L+1dAV1t+ss9BQQT9S6gskzBQ4bMwAAUFsW7wLdnMYYNifpRxJysWUXv9hTQLHoFTNPvG5X2s3F0nGkNJKupsxnsmXmxKvCPaEIdrT2XZ3843/X4I7X1uGP/12D55fvSLiPaDbLiNoynLj/kKwdK6ll0lMgEtFwwb0f6u6TM1WKhfz1GU7h92THSEIAmD6qNvY93huKYM3Odny8tVm5bXNXEB2KsgIiIsp/BTs7prGxER9+qD8x0DRNd19jY6Pu8dtuuw0zZszAnXfeiYULF8Ln82Hu3LmYP38+Zs+e7chxU/FoEkaalZd4YmUDicsHhJ4CFsoApo2sBQAMrPTH7lOlbeYTMSjARoP2qfTH31edihPvLmkcoZNXv4+eMBDDakrR0BrAxMGVGF5TlrXXqvB7MbymFDtaAwCA1Q3tGDmgHA+8vym2zQvLG/CVQ0Ym3deFs/YzdFin7PO4XfC4XbHvimCCzA7Z7vYetAf07/9hNalNPygULpcLPo8rFjQJpjJ9wIaRhEDf37MDhldj+bZWAMCfXlqj68ch29bchSlDq9N+PSIiyo2CDQpcfPHFuPjiix17HpHso017Yz9HswSAZI0G4yd1yYICvz3rgNjJ3KCqeFCgsYCCAhxJaJ+q0vjV97ZA0PC4GBSocKjJYFRZiQePXXYk3lq7GydNHZr1spFpI2uxo7WvBOCTrc04eHSt7nErmQp+rxvnH8oGg7ni88SDAqmUD2xu0veR+MohI4q6/MPjjgcFQmlnCmT2+zll6tBYUCBRQAAAdrR0MyhgA03T0NwV1J1bEBFlEy+REKUoEtFw9ROf4rfPrYzdJ/7hHlRlftVKPKnrShIUEE+sdJkC7XlePqAxKJANVaXxhb58pRQAOoXyAafGEYrGDqzAxUePxYja7GUJRM0QggAfb2nB2p3tusdrypMHBc45eAQG8IQ7Z8Sr14l6QMg279XXrf/itCm2HVM+EscShlLKFLCnfAAAvnP0WMslGtub2WwwE5qm4U8vrcHYX76IQ/6wENc9vyrXh0RE/QSDAkQpWralGU8u1Y+2FIMCctM1kXhSl6xhoLieHlQV33++lw9EmCmQFWKmQLsiU6BDCBRUlhZsEpglM0bVxn5evq0VO1r0C5Fk3exdLuC7x4zNxqGRRWLPi1SmD2xpigcFzp4xHIMTBGGLgTjWNbVMAXvKB4C+TKAnr5iFn54yOem221sCGb1Wf7d8WyvuenN97Pa9727U/U0lIsoWBgWIUrRud4fhPjEoUOH34ryZ6npm8UQtWfmAmII9qDJ+4ru3qzel0VROC3MkYVZUJ8kUEEsKqoo8KDBtZE2s+VlHTwiLNjTpHg+G9CfRQ6v1C8crjhuPCYOLszldofDpggLWFz3bhQDQqLpyW48pH3nSzBTotTFTAOgLSn7/+Am4/eszEm63vYWZApkQyxKjWrqNQWAiIrsxKECUInnqAACMlFKmf3X6/rho1n64+Kgxuvpm8UqPmCkwqs6Yci026RsoZApoGrA3jycQiM0UOZLQPrqeAoqTRDFQUOXPXvf/fFBe4sUh+w2I3X5xRYPu8Z6QPuAmZqzcd9Gh+NmpxZ1yXgjEEZupZAo0tMYXncOy2NAyX/jSzRQQSjJKMuwpIPrS9OE4ekK96eNfKILmZJ2qh8DezvzODiSi4sCgAFGKVKnbR0gj2QZUlODaLx+I331pKuor43/kgyblA9NG1OK3Zx2g24e4ni4v8aJCqBPf3Z6/JwkRjSMJsyFZTwHxfVldVtyZAgBw3KRBsZ8DQf2icsX2Vt1tcdEpBlcod8TFbiqNBne2xtPTi3XqgEgsH2hoDeAvr63D4o3Gq8ky8XcqBmAy5XK5cN9Fh+H6cw5UPv7F7vaUgjykJ3+XAcCejvy9CEBExYNBAaIUyZ3fRw4ow+Fj60y31zWKMmk0WOrzYPJQfTqzPM5vYFVhjCUUzweZKWAfMeOkozdkqDPVZQr0g4WvGBSQrW/sxMY9nft+7tAF0TLtxE72SKfRoKZpaBCCAkOq+0FQQPj78eN/fYJbFn6Ob9zzQdJsMfF3akf5gKjU58FZ00fo7otm4wTDGtY3MlsgXapeQ/mcGUhExYNBAaIUtXXHF18lHjce+s7hCU+6xCs9gWAYf35lLa7658dYtyveMb2sxG2ov5eb9A0RGmqJJ8b5JixkQ7CngH3ETAFNA9p79NkC+qBA8WcKHDCsWjeVQ/ba6l0AgPvf3Ri7b1CVH1OH12T92Ci5dMoHdrYF0CMsdkcMKP7yAVW2VTii4dlPtid8XjBLmQJmRtfH+ztcdP9iXPHIUmyVJkVQcgFFUKApjy8CEFHxYFCAKEVimvavTp+CcYMqE27vFQIGz326A3e8/gWe/WQH/vvZztj95SVeQxDAL53IjRT6Dmxuyt+TLfH8ntMH7FPp1y/05TKWdl2jweLPFHC7XTh56hDTx1/dFxR4fc3u2H1XnzzJkQUSJedLY/qAWK8+qMqvy54pVl6TgLOcSSYTgydOvOeHC/0ddrX14L+f7cQ1z36W9dctNqoGxCwfICIn8OyIKImPNu3Fl+98F9c88xk6ekJ4Y21j7LFqCyelPmFhvHDVLuU2pT4Pxg2qjF0VmjC4EuOlYMNoodP2f5bpRyLmk7DGkYTZ4PW4US70lZD7CrT1s0wBADj9wGGmj320qRm72wO6rJqjxpuPCyVn6XoKWCwfWLsznl01aUjiYGyxMOvLkqw0K5vlAypDa4xZO29/3qjYkhJRZQqwfICInNA/zhyJ0tQbiuAHjy3DrrYefLqt1TD6rNrCFVmvhRrmMp8HdRUl+Of3jsSHG/fi/MNGGU76xPrZxvYeBIJhlPo88q5yLsKRhFlTXeqL9aKQJxCIQYLqfhIUmDW+HlOHV2PljjYAwJShVdjT0YM9Hb0IRzQ8vGhzbFuP29UvGtMVCr83/t21da+1MXarGtpiP+8/tNr2Y8pHZn8/kn23itkXctZZNgytLgOgb/BZW27spE/Af1c04O63N+CIsXX4xWlT4BL+W6r6BTVx+gAROYCZAkQJvLl2N3a1xf8gy+OW9h+e/MTUylWa6BXgQ8fU4fvHT1DWSs+eoL/KGW2klm84kjB7xKkCbQG5p0D/Kh8A+hb6t399BsYNrEBtuQ9XnzwZc6fESwr+8voXsZ/3qys3TcUm55X64v8t7nzjC7z0WUOCrfusbohnCuw/rH8EBcRGtaJkX6266QOOZAoYA27JShz6o0hEw5WPLcMnW1tw99sbdO9pAFi7y9ikkeUDROQEniERJfDUMvNmTsdNGoQRtckbXVkZy1dm4Yr/qLpyXVr4ujydB82RhNkj1lC3dOlPFMXMgf5SPgAAEwZX4bX/PQ6f/OZknHjAEHzjiNHK7U6YMtjhI6NE5Cynyx9ZlnD73lAEX+zuf0EBsxKsfCsfGK74WxiKcDShLBAKQ/gTiQ174n/HQ+EI1iv+rrN8gIicwKAAkQlN0/CWSU3k8JpSPHDJYZb2Y+XqZGmJtTKAY4UxbHLWQr4IR9hTIFvEoECrEATQNA0dPf1rJKFITL+dMaoW4wZW6B73eVy44Mj9nD4sSqDUm1rp0+e72hHcN9LV53FhwuB+0lPApHwg2VX4XocbDY6XPnMAELTYK6I/6QnqfydiwGZHS0CX4RHF6QNE5AQGBYhM9IQihpnBIweU4aenTMZbPztetxBJxMpc9HKLvQEmCM0Hxatm+UQMCjB91F5iY0sxM6AtEILwa8eA8v4VFJDd8Y2DdbevP+cgjFUsWih3xPKBKPG7Q7ZsS3Ps5wOGVfebKRKmjQaTfLVGAyiAM0GBuko/po+q1d3Xqeik39/1SIESsbRjY5O6JLC5K6i8n4jITv0nx5QoRU9/rC8dWHntKajwp/6R8ZrUhIrKLGYKiFfHCiNTIIcHUoRqy+KNu8RMgWYhvdTtstYAs5gdOKIGH/5qLjbt6cS0kbWWP1/kHFWT1B0t3RglTFkRLd0cDwocst+ArB1XvjHLNEu20O9xuHwAAO676FA8+P4mXS+Pfy7egq8fri7p6Y96QvpAiRg33yT0CZo+qhafbm1x6KiIiJgpQKR091vr8cunVsRuV/m9lur+VaxMH7A6RUAcU7ipqSvhlbVc0Y8k5FeMncTygQeFzvpNQlBgQHkJGzyib1rHEePqGRDIU37Fd96WvV3Y0NiBC+79AOf87T18tGkvgL7mbB8Ik18OGd1/ggJmmWbJgs29wuLTiekDADCw0o8fnzgJU4ZWxe67ZeHnefl3KlfkTAHxN7NJyBQ4YFi1MpuGiChb+I1DJLn3nQ248b9rYrfLfB5cc+YBaS+0zLpHi8otLlzEFOjeUATbm62N8nJShJkCWbNlb5futrYvACNmCgyo4Bgwyn+qIOvqhjZc/I+P8N4XTfh4Swsuf3gp2gJBLNncHJsC43G7cNT4eqcPN2fMAqualnihrZs+4GCphcftwgOXHB4LZjS29+C5T80b9vY3ck8BMSrQ0BKI/TxyQBnqK4xTiIiIsoWn7ESCnlAYt7zyeez26LpyLPjh0fjaYaPS3qeVTAGrWQhlJR7dxIP1jflXQiCOJEw2S5tSI5YMAEDXvprdvcIkgjrOBqcCMKTauOC57oXVusBXU2cv7nh1HZ5YsjV231Hj61GvGNlarMwyBZJdfNf1FHA4Oju0phTHT45P+7h2wSp20N9HLh8Qp/U0tMWDAsNrS1Ffye9yInIOgwJEgs+2t+maC/7ze0diwuCqBM9Izko9ZyopzuMGxbMF8jEoIGYKMI3dXt86Ul+b27IvSCBmCtQxU4AKwH711ho/3vvuRjyxdFvs9lcOGZGtQ8pLlSZ9bMIJMgXCEU2Xsu/LQVPGa848IJYB19IVxD/e2+j4MTghkmJphFw+ID59Z2s8829odRnq+V1ORA5iUIBIsGpHa+znw8YMUM5eTpVZ92hRKkEBsa/A+kZ1t+JcEk9WrfzbybrjhJGUQDwYIGYKsHyACsGBI6oxtLo0pecMqynFmdOGZ+mI8lNtmbppaKLFaG+CDvdOGVVXju8fPyF2+4H3N6EtkF4X/Q83NOGhRZvw4YYmtOawE7+mabjjtXX4n4eXYHVDG65/YRXG//pFXP3Ep0nLOaLMMgV6QmE0tsdHDw6rKUUdyweIyEEMChAJGjvii6tRA9RdsFNl1j1alEoTw/3q48e1vSX/egqEmSmQNS6XS1c+0qrMFOjfkweoMPi9Hiz44Wxc+6WphsdG1Jbhv1cdY2iQ95OTJjnWST9fVJsFBRIsQg1BgRyNb7xw1n6o2pfp0B4I4cH3NqW8j0Xrm/D1ez7Ab55difP//gHm/vlNbGnqSv5EhR0t3Xhl5U7DwtyqDzbsxZ8Xfo6XV+7CV+96H/e8sxGaBjy5dBv+YfHfJvcUiAYTNu3pimUNeN0ujBhQholDKuWnExFlTf/660qURFNHPFJvVz2fWU1olNftSulEd1hNfFHYkOdBAfYUsF9teXyR0LLvqtnezvjVswHsKUAFYlCVHxcdNQY/EK4oA8APT5iA/YdV489fm4GKEg8q/V7870mTcN7MkTk60typMQkKJOroLzYZBHKTKQD0jUb99lH7xW7f/to6vP15o+Xna5qGm19ZCzH+saejF99/bBmC0r8xma7eEE6/4x187+GlmPfvT1N6btTybS3C/vSBhT/+dw06ekJJ92FWPiCOGB4zsAI+jxvnzhypDOhk889qV28o5ZIIIioODAoQCfYIQQG7UveSjY5KdWTa8Np4yu2Olm7LaYtO0QUFmClgO3HR37yvbKC5iz0FqHBdcvQYjKrrC3ZeNGs/nL+vsesZ04bhs2tPwfLfnowfzp0IVz8MMtaaBPkSfe0bggI5yhQAgEtnj8PAfQH2UETD5Y8sxbvr9lh67ssrd2Lp5mbD/Su2t+JXT61I6W/f8582xIKoLyxvsPw80ee7zHv49IYj+O+K5Ps1Kx9Yt7s9dt/EwX0ZAgMr/fjSdGO5jKYlnz6Rqi92t+Osv7yLA37zMg65biH+/Mra2N/yNTvbcOF9H9r6ekSUf9QdbIj6qVUNbbGfR9fZVT6Q+ES2NIXSAaCvs3NUZ28Ynb1h02ZUuSCmtTIoYL8aIVMgWj4gdvZmpgAVmvpKP16bNwfNXb0YIvUZcLlcWb0ymu9MMwUslg943K6cfg/XVZTgvosOw9f//gG6g2F09YZxyQOLcev5M0z7QzR19ODxxVtw5xtfmO73iaXbMLy2DD85aZKl42i3cBU/mY827U34+Gurd+O8QxNPKpIzBTRFpsCEwfGygVOmDsWTQqPNqHBEszTZyIrW7iAuvG8xGlr7ph+0dAVxx+tfwO/zIBiO4I7X1hmmXZi9L4mocDFTgGifxvYebN0bT8c/eHStLftNVj6Q6oK+vES/vVw/mmshZgpkldh4rKWrF5qmYYdQRiIvqogKQYnXzfeugtniK1FPATG1PtnfHydMH1WLe759aKx3TjCs4YePf4xbF34eO9ZgOIIPNjRh3r8+waw/vo6bX/kcAaH+fsLgSl3pFADc+84GhCyWEWR6Zb2htVs3LlPlnXWN2Jpkm0DQJFNglzoocOh+A5T7SRQUStXf3vwiFhDQ3f/GF7jtVWNAAAAOGFZt2+sTUX7In8uLRDn2ydaW2M9Dqv0YVmPPCWqy8oEKf2qZAvJJntWTIqeITe9Kvan92yg5sfFYeyCExo4e3dWnEQMyn5hBRPlBXghHJar71gcF8uPaz+yJA/HYZUfgOw98hOauIDStr8fACysaMGlIJT7csBdNwt+OqCq/F3/86jScMW0YAGBbcxdm/+kNAH2Zcqsb2nHQyJqkr5/pGvqjTcYyBqAvE6K1O4hwRENnbxjn/O19PPSdw3HAcPWiuSOgz1jQNKCjJ6QrH5gyNP5cs2kyEZv+7PeEwnhk0ebY7TOnDcPz+8orOoW+CSVeN+ZMGoRXVu0Sjl3rlyU9RMUqP/5aEOWBZVvif/QPHjXAtj92ya7UVJSkFpvzSUEGuX40W1q7g3hz7W5saDSvq+zuDWPljngJhtmJEaWvqjT+fmkLBLF+d3wsZW25j2mdREUknUaD4mP5NBb24NED8MTlR8X6RwB9afMvrthpCAgMqvLjqrkT8fbPjo8FBABg5IByXRbfks2JU/qjEmVWiNY3duDKR5fizws/12UXfLQx/jpfOWQEVl57Ct68eg6WXXMSfn7q5Nhjezp68K37PsTmJvW44DYpKBDRNDy8aHPsanx1qTfWUyDqsmPGGvZjV6bAhxv2xhb/ZT4P/t+503DU+HrDdqPrynHi/kNitxdtaMJh17+Kz7a3Gra1S0tXLy6870Mcd9MbeH3NruRPIKKMMChAtM+HG5piPx+yX61t+002kjDV8gG32wXxPC8Uzn6jwRXbWnH8zW/i4n98hLl/fgt3vbleud3HW5tj5QMVJR5MGVqV9WPrb6pK9ZkCa3bGgzD8fRMVl1KfR9koMFGD+Hwu4ZowuBL/vepYnK+ovS/xuHH0hHr85RsH472fn4CfnDRJeaV8xqja2M+rhT5AiVhtqP/nVz7Hiyt24o7X1uGpZdtj94v9BA4bU4cKvxdjBlYAAL537Hj8v3Onxf4u7+3sxd/f3qDc/14p+DHv35/iTy+tid0+9cChhlG+Pz5xEuZJvRMSBYVS8cba3bGfZ08ciPISL85SNDccUu3XBaSBvkkQ97+70ZbjUHly6Ta8s24PNjd14WdPLs+7rEiiYsOgABGAzp4Qlm+LR7xnjRto276TXampSKNJoBhoCNmVR2iiNxTBDx5fFjuZ0TTgTy+tweKNxis0r62On2AcOqYuaUCEUletyxQI4bPtYlCAmRlExWaAooQg0ZXvfJ8AU+n34k/nTsPTVx6FU6YOwcTBlfjO0WPx4a/m4tHvHomzpg9PODFhf+F7bnVDu+l2Ig3WFtEvCBME/vpmX6PD1u4g1u6Kv85hY+oMz/vaoaPw7VljYrcf/XCLst/P7nZj7X7UiNoy/Or0/Q33V/i9uOToMbr77BobKE6COG7SIADAaQcONWx38gFDccykQZg1Tp9F8KkwptFuYhbCno5efLbDWgCIiNLDM3YiAEs2x69wV5V6bU17T1bTWVmaelBAnDvdG8pupsC/lmzF5iZj86TfPrdSd/KpaRoWCvWGJx4wxPAcyly1kCmwaU8n/rMs3pl6/2HMFCAqNqoGjFaDAsl62uTSwaMH4O4LD8XCecfhN2cdYFo/L9tfaHK3dle7pSvI6WTbR3szLN28N/b8uooSjB9Uodz+VGkx/YfnVxm22d3WY7gP6Pubfsc3DjYdQSkHd+woH9jVFsA6YerBMRP7LobUlpfgijnjY/cPqynFV2eORKXfi8cuOwL/961DYo9taurKWrPj5VJpwhqLWSFE/7+9+w6PqkzbAH7PpPceEtIJpABJCL0TqVI+QIhLpEhRQBERQURcXIoKIoKiix0RliJLkV0QCyBlqaFJbyZACCFSkpBe5/3+gDmZyZT0zCRz/66L62JOm2dmTpI5z3ne56WqYaNBIgD/u3Zf+n+HINcavbtS3rRBVZlO0Mpcjuwn3y3Sch53oN96+g4+3XsdDtbm+Pr5tvBxrn7DudzCYny697r0ONzbUSrXvHw3E79dTEX/iMfjPY/fSFPrztw73LPaz0+aVEs4lVMSKrFSgKjheZwUUL9A0ncdbOyVAtXVrJE95LLHQwIKixW48SAHzRrpT4iWvbNekSZ5RU8S7vuvln4/aBugu99QhyBXWFvIpVkT/nXsFrqHeKDPkwR5iUIgOT1PY7+pTzVF3xaNEOnrrDMWeZnnrIlKgQMqr8vXxUZtGuZZfUMxoKU33B0s4eVoLb1mmUyGXuGNYC6XoVghUKIQuPWw/Pe/sk7dSkfiffW+DKoJDCKqecabQiaqQwdUkgLdn5TQ1ZRyZx+oZKNBAGjhU9ptedvpZCz55Sre2HwWSWm5uJiSiTe3nK32FEwAsPrwTdzPepx9sDKX4/vx7TAworTp088XUgE8/oL11YHSPgPdmrnD24ld8GuDak+BskJq+IsZERmeVyUrBYqNtNFgTbG2MEOwR2kzvosVKCsv+25V5Jq6qEQBhUJg/fEkaVn7IM2hA0oymQxvPR2mtuzfJ29L/z9/55FGY2BbSzO80S9Ub0IAqJ1KgZ0qQyWeCvVUS3bI5TJE+DrB28lGIwliYSaHv1tpAmHt0Vs1Ot7/Smomxq+O11h+44H25o1EVDOYFCCTl5lfpJaB7t6sZpMC5c4+UMkpCQFgiEojoG1n7uDLA+qN/w7/+RBHEh6W3a1SMnIL1Y47vksQGjlaqzUh2nflHgqLFVh3PAn7VO46jOkYUK3nJt3KNntSZWPJKSCJGhovLdPj6rtTXKLSZ6YhVgoAQIhKU1XVCjVdyiZRKjIbgUwGXEnNUqu8eCpMfwXcuC5BeGdQc+nxgWv3pRl7Dl2/r7H94mER5cYBAGZlLsyr22jwflYBDv9Z2k9gkMoMDxWhmpT517Fb6PbhPny+/0+1KYmr4u6jPIxZFa8xSwPApABRbWNSgEze1dTSBkIOVuYIUMmA14Sann0AAIa0aowmOsY1Kv3njzt615fniwMJyHryh9nB2hwv93g8xrB7iDusnjSByiooxrLfrmLBfy9K+3UOdpPKJanm6UoK1HSFCxEZB22VAvruFKvOSNNQkwKuKmPvl+++Vu72Za+hK3pRffxGaXLd0dpc7WJYl9Ed/eH8pDlkYbECz355FEkPc5GoclHbLtAFP07pjCGtfCoUR9kZCarbX/iz369L70EjRyutzRP1KZtEuPsoHx/+chUdF+/FnG3ncC45o9LVioXFCkxZf1qqTpTLgFn9Sqd7TErLlfo8EFHNY1KATN4VlaRAqJdDueMMK8uilmYfeKNvqMZyb5U7Sqk6GhpVxF+Z+fj+8E3p8Us9guH05EuOraW51KUYAL46mCiVqzZytMInI1rV+HtIpeytzKWkjKqR7f0NEA0R1TatlQJ6rrcaek8BQHPWndt6qgXyCks0KisqVikgw8mb6dLjEe00p1HUxsrcDO8MLK0WeJhTiBfWnMBBlWGKz7b1Q7S/S4WOp6T6WVZn+EDi/WxsUBkSMbFbE42kQ3kGRzXG12PaoF+LRmrVkAXFCmyMv43B/zyMfp8cxNcHE/TOuKDqvZ8u4UxShvT43aEt8WK3IGmqR2X/AiKqHUwKkMlT7WgbVgvd2/VNrQQATja6x4jrMyDCG38fEA5vJ2s421ogrp0fZquMZ0zLqXpS4JM911DwpKOwu72VxnRIL3ZrorGPpbkcX41pC08td7Wo5shkMgS5a1aJeDpaGSAaIqptWmcf0JMVaOg9BQBoJJ6PJmofLvefP+6g1cLf8M99f6otL65ApYAMwJmk0qRAm4CK300f3sYXS4aXDg24fi8bD7JLS+ube1e+KazqEILqDB/48Jer0uv3c7XBmE6VH+4nk8nQt4UXvhrTFodn98S0Xs3gbq8+c8K1v7KxaNcVdFr8OyZ8fwK7zt9FQXGJ1uPtOJuCtUdvSY/j2vlhVIcAWJmr94/YGH9b2+5EVAOYFCCTd1WtUqDmu7fbltNI0LWC0zBpM7F7Exyd0wt//KMvPhgeqfbl8WF21cb2/XkvG5tOlP7hfa1XU43X0D7IFSPaqt81+WBYBFr5OVfpOalygj01S1gbs7EjUYOkvVJA90Wh6rqGWilgWWZY3pcHErSWlr/2wx9SgltVtpYx62XdyypAyqPSu9yt/Z0rFeOIdv6YojK1n1JTT3uEelX+BoTqZ1mRSgdtTt5Mwy8XU6XHs/qFwcq8er1oPB2tMaNPCA7N7omPno1C+zJDEUoUAr9fuYcp60+j/ft78Y//XMCRhAdSc0KFQuBjlSEgET5OmD+4hfT4mdalQyx2qTRHJKKaxSkJyaQJIdSSAuFV+ENdHttymr9VJylQlmqm/uGTqQorU8p/LzMfvZcfkB4HutkiTkdZ+uJhEejazB3X72WjezN3tK3kmESqurBGDvgJpV+OzOUyeDiwUoCoIdLWd6aiPQXKm/2mvnq6pRe+P3JTepx4Pwfrjt3C+C5B0jJ9Y9of5RWhcSWm7fVxtqlSFdwbfUPxILsA/z6ZDACI9nfGJyNawaKcXkPaqA0fqEKlgBACi3Zdlh5H+Trh/yrZYFAfawszxLbxRWwbX9x8kINtp5Ox9fQd3MkonYbxUV4R1h69hbVHb8Hd3hLNPB3wMKdArd/C4mERsLYo/d4U29oXH/5yFcDj3gUpGXmV+uyIqGKYFCCTlpqZj6yC0jsGIbWRFChndoGaTAqoHquwWIHsgmK9U9gpCSEwZlU8Dql0IwYe30XQ9eVFLpepzURAdafsWFRPB6sGe0eQiDTpu1FsCj0FOjZxw7SeTfHp76XDApb+ehX9W3pLlRWqf9vLyswr0limb0hGdCWrBJTkchk+jI3CiHb+SM8pREyoR7nNh3UeS+WjrExSICO3EKeT0pGVX4zTKmP23x4QXmv9fwLd7TCjbyim9w7B0cSH2HIqGT9fuIv8otKqjQfZhXiQrT7so2eYJ1qqTLkMPK5E8HO1we20x8mFU7fSmRQgqgVMCpBJu6fSjM/JxgKOFbiArqzyhg+oZsSry8XWEmZymfSF4X5WQYWSAj+euaOREHCzs8SACK8ai41qTpSf+pcmD/ZxIDIp+i4Ki00gKQAAM/qG4vnOgYhZuh/ZBcXILSxB96X78EpMU0x5Khj3MnU3uHukJSlQpKelf2WbApbVJqB6+wNVGz6gUAg88/kRjen8eod7okMTt2rHVB65XIYuTd3Rpak7Fg5pgV3n7+Kn86k4mvAARSXqryEm1AMr4lppPU4bfxcpKfDH7QzekCCqBUwKkEl7qNKMz60G79irstFz0e9QhZkH9JHLZXC3t8RfT5Id97MK0KScKZT+yszHgh2XNJavHt+OswgYKQdrC7QLdMGJJ52xa7IElIiMz/K/RWHGv89Kj/VdFJaoXNw25KQA8LgR7uTuTbDsyZj0wmIFPt5zDbmFxXqnac3U0lOg7EWqqrLj5A2hKsMHbqfnaiQEAGB675Aai6uiHKwtMKKdv1Q1ceJmGh5kFyKnoBiRvk5oH+Sq8ztHSx8nbP8jBQBwMeVRXYZNZDKYFCCTptqMz82+dpICZnIZrC3kamVzSrVRAufhYCUlBS7dzdR7N0AIgbe3nVe7a/Le0JaIbeNboxUMVPMWD4vAir1/wsfZBqM7Vr57NBHVH89E+2Dt0Vv443YGAM4+oOqVp5qiqESBrw4mSk0F1x27BT9XW537aKsUKNbSqBB4PCyvReOab0JcWXJZ5SsFsrQkPwZGemuU6Nc1FztL9G1R8UrEFo1L472UklnpfklEVL6G2YGGqIIe5pQmBWpybH9ZuoYQBLrr/tJSVZ4OpaXkC3Zc0ptV33IqGXuv3JMeLx4WgdEdA5gQqAeaejrgs+ei8Vb/MH5eRA2cTCZD+6DSu9X6Gg2aQk8BVXK5DDP6huLQ7J5SEiSnsATrjt3SuY+2ngKFOpICkb5OkBvB+6heKVCxfbLL9FVwsDbHzD51XyVQXc1VkjKZ+cVITs/TszURVQWTAmTS0nJUKwVqr3u7rhkIBkTUfNl3szLT1f168S+t26Vk5GGhyrCBbs3cEdfOT+u2RERkWOp3inVvp5oUMDcz/MVsXfFwsEJsG1/p8RWVmYXK0l4poP1NDdBTcVCXVD//8oYP3MvKx8WURxqVAj+92q3cIYXGyMnGAn6upZWVHEJAVPOYFCCT9iC79nsKALqTAoMia75ZzgvdgtQe52rpwJySkYcX15yUujM7WJljyfBIluMRERkp1ZvVFR0+YNZApyTUZVhrX63LW/k5Y5jKfPfaKgWKdNx+j/JzrpHYqquiPQUS72fjqaX7MfDTQ5i99Zy0vE2AC/zdjCPBURUtvEuHEFxMyTRgJEQNk2n9tSAqQ3X2gdpMCjjbaB57cFTjWint9HSwxuQeTaTHeUUlautTMvIwdOVhXLpb+kd13uAWnOKHiMiIVbT7vNrwARPL87YLdFG7o6w0umMAmnurlqBXLCkQ7GFnNJ3uXWxLZxLaee5x071jiQ/xf58dwsvrTiGv8PHf+m2n7yDnyf9VqyHta7ixcV1T7etw+S6TAkQ1jUkBMlm5hcU4dStdetzU06HWnktbE8PavClva1H6x3/v5Xu4nZYrPf7+yE3cyypNhkzu3kSt5JKIiIyPTFaxMeWmXCkgk8k0KvBkMqBtgAucbEovqrVOSahl+MCsfqGwMDOO9zC2benwvn+fvI0Ldx5h2sYzOH/nEX6+kIqN8UkQQmDPZe1DBu2t63dSIMSr9Dva9XvZBoyEqGEyjt90RAbw+5V70l10BytztAuq/jzCutTWzAa69Ar3lP6fmpmP5745hlsPc3A1NQtfH0yU1g2M8MacAeF1GhsREVWemUpSQFRwSkJTmH2grG7N3NUeB7jaItDdDo4qSYHMPG1TEqpnWlr5OaNv84p3yK9tce380MTdDsDjnhKDPjukluD/5WIqvj9yU2cvhZqeArmuhTQqTQokpeVKlRFEVDOYFCCT9d8nc94CQJ8WjWBlXnsd3N3sNJsY1uZXtZY+TnhvaEvpcXJ6HgZ+egj9Pjmott0gzm9PRFQvqF7f6599oPT/ZqY2fgCPx86rUk5NWNlKgdXj2hnFrANKFmZyvUn8+BtpWKDSPLgsLydrnevqA39XW1iZP75sEQJIuM9qAaKaxKQAmaRHuUXYf/W+9HhIKx89W1efu9bhA7X7ZWN0xwDM+7/m0uOyUxN1a+aOp8I8y+5GRERGSPUCv1hPozlTrxSwMjfD+8+UJsV7Pvk752itUilQTk+Bxk7WcKnFPkNV1ad5owr1OPB0sMLIDv7SY1tLMwyLrt/DBM3kMgSrzJxw/Z7u2SWIqPLqdy0RURX9cvGuNCexm50lugS71erzeTkZponf+C5B8HSwxptbzkqNh5T+9UIHg8RERESVZ6HSH6BEx/R5QNmeAqaXFACAUR0C4OVojdzCEgx8MvWvk0qjvtzCEhSVKNT6BahOSWhhbrz3zN4b0hLXUrNw9S/tF8XWFnJ883xbBHvaIzk9D8npuXh3SMt6PfOAUrNG9lKT5IR7OQaOhqhhYVKATNJ/VIYODIr0hnktNxLy1zLPcV19VRsY6Y1QLwfM3X4eJ26mo0Qh8MpTwXX07EREVBNUL/CLFbo7DarPPmCaSQEA6BXeSO2x6vABAMjILYKHQ+nQPtVKAWOusHCytcDWKZ3x3z9SEOhmi9YBLnh723n8+McdeDtaY9GwCGkaxbUT2hs22BrmozJLUmpmvgEjIWp4mBQgk3PzQQ6OJj6UHg+u5aEDALROkVRnWQEATT3t8cOkTigoLkFeYQmcbY2vLJKIiHQzr+DwAbVKARPsKaCLnaUZLMxkUu+AjNxCtaRAoUpSwFhmHNDF3spcbXjA8hGt8MHwSFgacYVDTVDti/AXkwJENaph//Yg0mLdsVtQ9mgK9rBDa3/nWn9OW0tzrX0F6pqVuRkTAkRE9ZC56vABfUmBenLHu67JZDK1v3/puep9BdSGDxh5UkCbhp4QAABvlaGYSSpTLRNR9TX83yBEKnILi/Hvk7elx2M7B9Z6wz8lvzJDCGR1WSpARET1muoFftnp81TlF5Wus7GovVl16iNXtaRAodq6IrVKAf59NkbNPEsbDSal5SK3UHNqSSKqGiYFyKRsOnEbmfmP/4jYW5ljWOu668Zbtq+ACQ/1JCKiSlIdPqCvUiCvqLSprDWTAmqcVZoNZuhJCtR2nyGqGj9XW1hblE5LeP0vTktIVFP4W49MRm5hMVbu+1N6HNvGF/ZWdddWw8+l/nf+JSIiw1BvNKg7KZCvkhSwsWRSQJWLSqVAWo768IEileEDlkwKGCUzuQwhjRykx7pmYCCiyuNvPTIJxSUKLNxxCQ+yH98ZsLaQY0pM3Xbg16gUqNNnJyKi+ky1p0CxnikJ81Smn+XwAXUudrorBVRndDDn8AGjpZYUSGVSgKimcPYBavAu383Euzsv4UhC6YwDYzsHwtPRWs9eNS9YZSwcAOj+SkdERKSuorMPqA4fYFJAnbOengKFxfVn9gFTFuZVmhS4xkoBohrDpAA1SEIIxN9Iw6pDN/Dbpb/U1rX0ccTUp5rWeUzNGqknBTidDhERVZRqo8FiPY0G1XoKcPiAGlc9sw9w+ED9oFopcIWVAkQ1hkkBanB+u5iK93ddxq2HmtPVDIzwxtJnI2FrWfenvqO1hdpjNsghIqKKUm1+p6/RYD6HD+ikr9Gg2lSOHD5gtFQrBe5nFSAtpxCudpxqmai6mBSgBkMIgY9+u4qV+xI01oV5OWBar2bo39KrzqYgLE8qKwWIiKiCzCvYaJDDB3Rz0VMpkF9c+r5ZmbNSwFh5OFjB2dYCGU8+v6upWegU7GbgqIjqPyYFqEEoUQjM3X4eG+NvS8tkMqBrU3eM7hiAPuGNIJcbPhkQ7GGHhPs5AIC2AS4GjoaIiOoLsyoMH+DsA+pcVO4o/5WZDyGEdKMgv6j0PeVUjsZLJpMhtJEDjt9IAwBcupvJpABRDWAqlOo9hUJg1uazagmBZp722P16D/zrhQ7o18LLKBICAPDduHZwtbOEs60F5g5qbuhwiIionrCoQKNBhUKoXdyyUkBdU5WGv1n5xWrDDFWncmRSwLhF+DhJ/79w55EBIyFqOFgpQPWaEAILdlzEtjN3pGVtAlzw3bh2cLKx0LOnYQS42SH+7V4oKhG8g0NERBVmpjoloY6kgGoJPMBKgbKcbCzQxMMOiU8q9s4mZyDQ3Q5AmUoBDh8wahG+pUmBc8kZhguEqAHhbz2q11bsvY41R29Jjzs1ccO/XmhvlAkBJXMzOb+oERFRpVRk9oHs/GK1x/ZWvPdTVitfZ+n/Z2+X3mVW6ynASgGjplopkPggB9kFxXq2JqKKYFKA6q1fLtzFJ3uuS4+jfJ3wzdi2BplZgIiIqDapdsTXNfuA6sWRuVzGhnlaRPk5S/8/q3KXuYA9BeqNQDc7ODxJeAkBXOQQAqJq418Lqpf+vJeFmf8+Kz0O9rDD9+Pb864IERE1SKqVAkUVSArYW5sbzWw7xkQ1KXDhziMUPam6KChW7SnAr8fGTC6XoYWPo/T4PJMCRNXG33pU75xLzsBz3xxHzpO5mB2szPH1823VugoTERE1JOYqPQV0VgqoDB+wY9WcVuHeDlLTxoJiBa6mZgEo02jQnJUCxi5SZRjIuWQmBYiqi0kBqjeEEPghPgl/++oo7mcVSMuX/S0KwR72evYkIiKq31SnJCxRCAihmRhQrRRwsGZSQBsrczM09y69y6wcQpD+ZN57AHA04r5E9JhqXwFWChBVH5MCVC/czyrAi2tO4q1t56UOweZyGT4cHom+LbwMHB0REVHtsjBT/8qmbQYCteEDHE6nk1pfgdsZUCgE7mbkScs8HKwMEBVVRpRKpcCNBzl4kF2ge2MiKhf/YpBRu5eVj3VHb2HVoRvScAHg8bRCn49qjS5N3Q0YHRERUd1QrRQAHlcLlO2Hp5oUsGNSQKfHF5SPZy46e/sRktPz1L5jNPVk9aGx83O1QSNHK/yV+TgZcOJGGvpHeBs4KqL6i38xyOg8yivCrxdTseNsCg7/+QBlb4Z0D/HA0thINHK0NkyAREREdcy8TFKgqESh0SW/bKNB0k61UuDavSycuJkmPQ5ws2WVRT0gk8nQIcgN/z2bAgA4zqQAUbXwtx4ZjZyCYnyxPwHfHb6BXJWMvZKTjQXe6BeK0R382VGZiIhMiuqUhID2ZoOqjQYdeGGrUxP3x1PaZRUUQwjg64OJ0rpwL0c9e5IxaR/kqpYUIKKq418MMgqX72bilQ2nkXg/R2NdYydrjGjnj/FdA+FozeY/RERkelRnHwDK7ynA4QO6yeUytAtyxe9X7gEArv6VJa0L92ZSoL7o2MRV+v+V1Eyk5RTClTNREVWJyTUazM/Px7x58xASEgJra2s0btwYEyZMQHJysqFDM1l/3M7A3748qpYQcLa1wOiO/tg0qSMOze6J13o3Y0KAiIhMVtlKgeISzaTAozyVDvr8m6nX671DNPo0AEBLHyYF6otgD3t4PmkKKQSw70mSh4gqz6SSAvn5+ejVqxcWLlyI7OxsDBkyBH5+fli9ejVat26NhIQEQ4docs7ezsCYVceR9eTuhkwGTO7RBIdm98R7QyPQoYkb5Fr+aBMREZkSszLD5ooVCo1tHmYXSv93tecdU30ifJ2wcEgLjeVtA1y1bE3GSCaToVd4I+nxnst/GTAaovrNpJICixYtwpEjR9CpUydcu3YNmzZtwvHjx7Fs2TLcv38fEyZMMHSIJuVc8pOEwJMxkBZmMnw1ug3m9A9nkx8iIiIVcrkMqjlybT0FHuaUJgXcWEZdrlEdAvD5qNbS415hnnCyZYVFfdK3eWlS4MC1+ygs1kyWEVH5TCYpUFRUhM8++wwAsHLlStjbl043M2PGDERGRuLgwYM4deqUoUI0KadupWH0t8eRqZIQ+HxUG/Rt4WXgyIiIiIyTuVnp17YiLcMH0nJK52pnUqBiBkR448hbPfHFqNZY8Vy0ocOhSuoU7CYly3ILS3DroWZvKiIqn8kkBQ4dOoSMjAwEBwcjOlrzl35sbCwAYMeOHXUdmkkpLFbg64MJiPv6mJQQMJfLsHJka/RRyfYSERGROtVpCctWCgghkKZaKcDhAxXW2NkG/SO8WaVYD1lbmMHbyUZ6vCE+yYDRENVfJvPb7+zZswCA1q1ba12vXK7crqoUCgUyMjKqdYyG5lLKI/xx+xGu38vEgasP8CC79E6GmVyGD5+NQnsfa75vREREesgKc6B4klBftfc83J80WQOAtOxCFOSUdtG3KM5DRobm9L414dGjR3ofE9WlASEO+OrgfQDAqr0XcO9BGgLcbA0cVfVM6BKkVhlEVB6FQgG5vOrnjMkkBZKSHmcOfX19ta5XLldup0+LFpqNaQDgypUrUCgUcHFxqWKUpmn4x4aOgIiIqH5ZWs76wBV1Esbj5woMrLsnIyrH54YOoAbMNnQAVC+pDo+vLJNJCmRnZwMAbG21Zw7t7OzUtqsKZYYmLCysyscg06Sc+SI4ONjAkVB9xPOHqornDlUVzx2qKp47VFU8d3RLSkqSrmerwmSSAkI8Hnsnk2mf3k65viIuXryodbmygkDXeiJdeO5QdfD8oariuUNVxXOHqornDlUVz53aYzKDVRwcHAAAOTnau5Lm5uYCqF7ZBREREREREVF9YjJJAX9/fwBAcnKy1vXK5crtiIiIiIiIiBo6k0kKREVFAQBOnz6tdb1yeWRkZJ3FRERERERERGRIJpMU6NKlC5ycnJCQkIAzZ85orN+yZQsAYNCgQXUdGhEREREREZFBmExSwNLSElOnTgUATJ06Va23wPLly3Hu3Dl07doV7dq1M1SIRERERERERHVKJirTdr+ey8/PR0xMDI4fPw5vb29069YNt27dwvHjx+Hm5oZjx46hadOmhg6TiIiIiIiIqE6YVFIAAPLy8rB48WJs2LABt2/fhouLC55++mm8++678PPzM3R4RERERERERHXG5JICRERERERERPSYyfQUICIiIiIiIiJ1TAoQERERERERmSgmBYiIiIiIiIhMFJMCRERERERERCaKSQEiIiIiIiIiE8WkABEREREREZGJYlKgluXn52PRokWIioqCnZ0drK2t0axZM0ybNg2pqamGDo/qgS1btqBv375wd3eHtbU1/P39MWzYMBw6dMjQoVE9sXDhQshkMshkMvzwww+GDoeM1JUrV7BkyRL06tUL/v7+sLKygpeXF4YNG4b//e9/hg6PjEB+fj7mzZuHkJAQWFtbo3HjxpgwYQKSk5MNHRoZsdzcXGzfvh0vvPACIiMj4ejoCDs7O0RFRWHhwoXIzs42dIhUT6SlpcHT0xMymQxhYWGGDqdBkQkhhKGDaKjy8/PRo0cPxMfHw9XVFZ06dYKlpSXi4+Nx584deHl54ejRowgMDDR0qGSESkpK8Pzzz2PDhg2ws7ND165d4ezsjKSkJJw6dQrvvPMO5s6da+gwychdvXoVUVFRKCwshBACGzduRFxcnKHDIiPk6+uLO3fuwNHRER06dICLiwsuXbqECxcuQCaTYfny5Zg+fbqhwyQDyc/PR69evXDkyBF4e3ujW7duuHnzJuLj4+Hh4YGjR48iODjY0GGSEfr2228xceJEAECLFi3QvHlzZGZm4siRI8jKykJYWBgOHDgAT09PA0dKxm7cuHFYu3YthBAIDQ3FlStXDB1SwyGo1qxYsUIAEB06dBCPHj2Slufn54tnn31WABDPP/+8ASMkY/bmm28KAGLAgAHi4cOHauvS0tLEtWvXDBQZ1RcKhUJ0795dNGrUSAwZMkQAEBs3bjR0WGSk+vTpIzZs2CAKCgrUln/55ZcCgDAzMxMXL140UHRkaO+8844AIDp16iSysrKk5cuWLRMARPfu3Q0YHRmzNWvWiJdfflnje0tKSoqIjo4WAMRzzz1noOiovtizZ48AICZNmiQAiNDQUEOH1KCwUqAWxcbGYuvWrfjhhx8wYsQItXV//PEHoqOjER4ejkuXLhkoQjJW169fR3h4OHx8fHD58mXY2toaOiSqh7755htMmjQJ69atw+7du7FmzRpWClCV9OvXD7/99hvmz5+PefPmGTocqmNFRUXw9PRERkYGTp8+jejoaLX1UVFROHfuHE6ePIk2bdoYKEqqj44ePYrOnTvDysoKmZmZsLS0NHRIZITy8vIQGRkJS0tLbN++HSEhIawUqGHsKVCLrKysyt3G1dW1DiKh+ubbb79FSUkJXnrpJSYEqEpSU1Px5ptvolevXhg1apShw6F6LioqCgCQkpJi4EjIEA4dOoSMjAwEBwdrJASAxzdBAGDHjh11HRrVc8rfLQUFBXj48KGBoyFjtWDBAiQkJOCLL76AhYWFocNpkJgUqEV9+vQBAHzyySfIzMyUlhcWFmLRokUAgLFjxxokNjJue/fuBfD4HLpx4wYWLVqEyZMnY86cOdizZ4+Bo6P6YNq0acjLy8MXX3xh6FCoAUhMTAQAeHl5GTgSMoSzZ88CAFq3bq11vXK5cjuiilL+brGwsOCNMtLq3LlzWLZsGcaPH4/u3bsbOpwGy9zQATRkY8aMwa5du7B582YEBQWhc+fOsLCwQHx8PLKysvD+++9LjVeIVF28eBEAcPz4ccycORMFBQXSug8++AC9e/fG1q1b4ejoaKgQyYjt3LkTmzdvxoIFC9CsWTNDh0P1XEJCAnbu3AkAGDx4sIGjIUNISkoC8LgZpTbK5crtiCpqxYoVAICnn366QhW2ZFoUCgUmTpwIZ2dnfPjhh4YOp0FjpUAtMjMzw8aNG/HGG28gLS0NO3fuxI8//og7d+6gVatW6Nq1q6FDJCOUn5+P/Px8AMD06dPRo0cPnDt3DpmZmdi9ezeCgoKwZ88eTJo0ycCRkjHKzs7GlClTEBISgtmzZxs6HKrniouLMW7cOBQUFGDEiBEcL26ilFPG6RrOZmdnp7YdUUXs2rULq1atgoWFBd59911Dh0NG6LPPPkN8fDyWLl0KNzc3Q4fToLFSQI/Y2FhcuHChUvusXbsW7du3BwCkp6fjmWeewYkTJ7BixQoMHz4ctra2OHjwIF599VX06tULmzdvxtChQ2shejKk6pw7JSUl0jIfHx/s2LFDarzTu3dv/Oc//0GrVq3w73//G++++y7vBDcw1f298/bbb+P27dvYu3cv77qYmOqeO9q8+uqrOHToEJo0aYLPP/+8uiFSPaXsSS2TyfSuJ6qoy5cvY/To0RBCYOnSpVJvASKl27dvY+7cuejRowfGjRtn6HAaPCYF9Lh58yauXr1aqX1yc3Ol/7/++us4cOAAPvnkE0ybNk1aPmTIEPj4+KBDhw547bXXMGjQIJib86NoSKpz7tjZ2UEul0OhUGD06NEanXgjIiLQtm1bxMfH48CBA0wKNDDVOXfi4+OxcuVKjBkzBj179qyN8MiIVfdvVlkLFy7El19+iUaNGuHXX3/leF8T5uDgAADIycnRul55Htnb29dZTFR/JScn4+mnn0Z6ejpmzJiB1157zdAhkRGaMmUKCgsL2RupjvBKVI+TJ09Wed+SkhJs3LgRQGlXXlVt27ZFUFAQEhISkJiYiJCQkCo/Fxmf6pw7ABAQEIAbN24gICBA6/rAwEDEx8fj3r171XoeMj7VOXd27doFhUKB8+fPIyYmRm2dctoe5YVebGwspk6dWp1QychU9/eOqpUrV2LevHlwcnLCL7/8gqZNm9bYsan+8ff3B/D4Yk4b5XLldkS6PHjwAH369EFSUhLGjx+Pjz76yNAhkZHauXMnnJ2d8fLLL6stVw6xTUpKkr7r7Ny5k0nJamJSoJbcu3cPhYWFAKCzGZxyeVpaWp3FRfVDdHQ0bty4ofPcUE7bw1+ApM0ff/yhc93ly5dx+fJltGrVqs7iofpl/fr1ePXVV2Fra4uffvqJ5wpJpd2nT5/Wul65PDIyss5iovonKysL/fv3x5UrVzBs2DB88803OoekEAFARkYGDhw4oHVdXl6etK64uLguw2qQ2Giwlri6ukpl39ru3mRmZkplnrruBpPpUnb43rdvn8a6rKws6QuYrumhyDTNnz8fQgit/5TTn27cuBFCCHzyySeGDZaM0q5duzBu3DhYWFjgxx9/RJcuXQwdEhmBLl26wMnJCQkJCThz5ozG+i1btgAABg0aVNehUT1RUFCAIUOG4OTJk+jXrx82btwIMzMzQ4dFRkzX95kbN24AAEJDQ6Vlzs7Ohg22AWBSoJZYWVnh6aefBgDMmDEDd+/eldbl5+djypQpyM3NRZcuXeDt7W2oMMlIxcXFITAwEL/++ivWrFkjLS8uLsZrr72G9PR0tGzZkl/YiajGHD58WBrutmnTJvTt29fAEZGxsLS0lIYbTZ06Va23wPLly3Hu3Dl07doV7dq1M1SIZMRKSkrw3HPPYd++fejWrRu2bdum0S+JiAxLJtgyttYkJCSgS5cu+Ouvv+Dg4IBOnTrBxsYGJ06cQEpKClxdXXHgwAG0bNnS0KGSETp27Bh69+6NnJwctG7dGoGBgTh9+jRu3rwJNzc37Nu3DxEREYYOk+qJcePGYc2aNdi4cSPi4uIMHQ4ZIRcXF2RkZCAoKAjdu3fXuk3Xrl3x4osv1nFkZAzy8/MRExOD48ePw9vbG926dcOtW7dw/PhxuLm54dixY+w9QVqtWLEC06dPBwA888wzOofVfvTRR3B3d6/DyKg+unnzJoKCghAaGir1S6LqY0+BWhQcHIyzZ89iyZIl+Pnnn3Hw4EEIIeDn54dXXnkFb731Fnx9fQ0dJhmpjh074syZM1iwYAH27NmD8+fPo1GjRpg4cSLmzp3Lhk5EVKMyMjIAADdu3JDKM7VhUsA0WVtbY9++fVi8eDE2bNiA7du3w8XFBWPHjsW7774LPz8/Q4dIRio9PV36/48//qhzu/nz5zMpQGQgrBQgIiIiIiIiMlHsKUBERERERERkopgUICIiIiIiIjJRTAoQERERERERmSgmBYiIiIiIiIhMFJMCRERERERERCaKSQEiIiIiIiIiE8WkABEREREREZGJYlKAiIiIiIiIyEQxKUBERERERERkopgUICIiIiIiIjJRTAoQERERERERmSgmBYiIjJxMJiv337hx4wwdpsmIiYmBTCbDzZs3a/25ZDIZAgMDa/15jFlgYKDec7++vT91ef5QqZ49eyIgIACFhYVV2j89PR3W1taQy+VISkoqd/sJEyZAJpPh73//OwDgzJkzkMlkWLp0aZWen4ioNpkbOgAiIqqYsWPH6lzXtWvXOoyEasL+/fvx1FNPYezYsfj+++8NHU6FzZ8/HwsWLMDq1avrNBk1fPhw2Nvbayx3d3evsxiofvrpp5+wb98+fPHFF7C0tKzSMVxcXDBw4EBs27YNGzZswFtvvaVz2/z8fGzbtg0AMHr0aABAdHQ0Bg8ejEWLFuGFF16Aq6trleIgIqoNTAoQEdUT9enCkWrG5cuXYWFhYegwjMJHH31U76oCtFm7di1yc3Ph4+Nj6FBMxttvvw1PT09MmDChWscZM2YMtm3bhnXr1ulNCuzYsQOPHj1CmzZtEB4eLi2fM2cO/vvf/2LJkiVYsmRJtWIhIqpJHD5ARERkpMLCwhAcHGzoMKgG+fv7IywsjMmeOnL48GGcO3cOcXFxVa4SUBowYADc3Nxw8eJFnD17Vud269evB/A4iaCqY8eOaNq0Kb777rsqD2MgIqoNTAoQETVAyrHWJSUl+PDDDxESEgIrKyv4+flh9uzZKCgo0LpfdnY2Fi5ciIiICNja2sLR0RE9evTA9u3bNba9efMmZDIZYmJikJmZiZkzZyIoKAgWFhaYPn26tN2ZM2fQv39/ODk5wcnJCf369cOJEyfw/fffQyaTYf78+dK2LVu2hEwmw7Vr17TGd/PmTcjlcjRr1gxCiHLfB9Xx2xs2bEDHjh3h4OAAZ2dnaRshBNasWYPu3bvD2dkZNjY2iIyMxEcffYSioqJyn0Ppf//7H6ZOnYrIyEi4uLjAxsYGYWFheOutt5CRkaG27bhx4/DUU08BANasWaM2Rl71/Sg7Zn7r1q2QyWSIi4vTGceUKVMgk8nwzTffqC2vzGerS2BgIBYsWAAAGD9+vFrc+/fvV9v2X//6F7p27QpHR0fY2toiMjISixcvRn5+foWfrypu3ryJyZMnIzAwEFZWVvDw8EBsbCzOnTunsa3qOXjt2jXExcWhUaNGkMvl2L59u9o5npOTgxkzZsDPzw82NjZo3bo1duzYIR1r8+bNaN++Pezs7NCoUSNMmzYNeXl5Gs9Z1Z4Chw4dwjPPPANPT09YWVkhMDAQ06ZNw/379zW2HTdunPSZHDx4ED179oSDgwMcHR0xcOBAXLp0Sefz7NixA/369YObmxusra0REhKCd955B9nZ2Xpfi66fr+zsbLzxxhvS+9a8eXN8+umnEEJonN9Lly5VG4evzVNPPQWZTIZDhw5V6H379ttvAQCjRo3Suc358+cxatQo+Pj4wMrKCo0bN8b48eM1PiNLS0v87W9/AwCsW7dO67HS0tLw888/w8zMTOvP6XPPPYcHDx7gxx9/rFD8RER1QhARkVEDICr76xqACAgIECNGjBB2dnbiqaeeEoMGDRJOTk4CgBg1apTGPqmpqaJ58+YCgPDx8RGDBw8WvXv3FnZ2dgKAWLx4sdr2N27cEABE+/btRatWrYSLi4sYOnSoGDZsmJg/f74QQojDhw8LGxsbAUBER0eLuLg4ERkZKSwtLcXkyZMFADFv3jzpmJ9++qkAIGbNmqX1dc2dO1cAEB988EGF3ocePXoIAGLSpElCLpeLbt26ibi4ONGlSxchhBAlJSXi2WefFQCEo6Oj6NWrlxgyZIjw8vISAMSAAQNESUmJ1mPeuHFDbXmHDh2ElZWVaNOmjRg2bJgYOHCg8Pb2FgBEixYtRFZWlrTtN998I/r16ycAiODgYDF27Fjp348//ihtp/wclfLz84WTk5OwsbFRO55SUVGRcHd3F5aWliItLU1aXtnPVpeZM2eKqKgoAUB06dJFLe7Lly9L202aNEkAENbW1mLAgAEiNjZWuLu7CwCiU6dOIjc3t0LPJ4QQAQEBWt9vbf73v/8JR0dH6T2PjY0VnTp1EjKZTNjY2Ijff/9dbfvVq1cLACIuLk44OjqKoKAgMWLECNG3b1+xc+dO6Rzv1KmT6NChg3B3dxeDBg0SMTExQi6XCzMzM7F7926xfPlyYW5uLjp16iSGDh0q3NzcBAAxcuRIjRh1nT/6rFixQshkMmFmZiY6deokYmNjRVhYmAAggoKCREpKitr2Y8eOFQDEjBkzhJmZmYiKihLDhw8XISEhAoBwc3MTd+/e1XieGTNmSJ9b9+7dxbBhw6T3v02bNiI7O1vra9H185WXlyfat28vAAgPDw8RGxsrnn76aWFpaSmmTZumcX7fv39fWFlZCW9vb1FUVKQR3/Xr14VMJhNhYWEVfu88PT2FnZ2dxs+x0pYtW4SlpaX0GmNjY0V0dLT0Pl24cEFt+yNHjkg/R9qO+eWXXwoAon///lqfb+/evQKAGDNmTIVfAxFRbWNSgIjIyFU1KQBAhIeHq118JCYmChcXFwFA/Pnnn2r79O/fXwAQb775pigsLJSWJyQkiODgYGFmZibOnj0rLVdeMCkvmtLT09WOV1JSIl2EfPjhh2rrFi5cKO2rmhTIyMgQtra2wtPTUy0GIYQoLi4WPj4+wtzcXKSmplbofVBetFhbW4v9+/drrF+yZIkAIPr06SPu3bsnLc/Ozhb/93//JwCIf/7zn1qPWfai7qefflK7EBfi8UW88gJ5wYIFauv27dsnAIixY8fqjL/sRZMQQkyYMEEAEGvXrtXY/qeffhIAxNChQ9WWV/az1WfevHkCgFi9erXW9Vu2bJEumq5fvy4tf/TokejatavepI82FU0KPHr0SHh5eQkLCwuxefNmtXW7d+8WlpaWwsfHRxQUFEjLlUkBAGLq1KmiuLhYbT/VczwmJkbt81Xu27RpU+Hq6ioOHjworbtz547w9PQUAERCQoLaMSubFDh69KiQy+UiICBA7TNSKBTSz1FsbKzaPsqkgFwuFxs2bJCWFxcXi+HDhwsA4p133lHbZ9OmTVLyTjW2wsJC6Rx+4403tL4WXT9f7777rvT74dGjR9Lys2fPSr+Hyp7fI0eOFADE9u3bNY43e/ZsAUAsW7ZM9xum4vLlywKA6N69u9b1iYmJwtbWVjg5OYkDBw6orVuzZo0AINq1a6exX9OmTQUAsXfvXo11ynN8/fr1Wp8zMzNTyOVyERgYWKHXQERUF5gUICIycsqLEn3/VO8uq+6zZ88ejeO9+uqrGhd1Z86cEQBE586dhUKh0Nhn+/btAoB49dVXpWWqF0wnTpzQ2Gf37t0CgAgLC9M4ZnFxsQgKCtJICgghxPjx4wUAsWXLFrXlO3bsEADEsGHDdL1VGpQXLa+88orGOuVddQcHB3H//n2N9ampqcLKykpERERoPWZFL+pyc3OFubm5aN26tdryqiYFlHca+/Xrp7H9qFGjBAC1i+KqfLb6lJcU6N69uwAgVq1apbHu3LlzQiaTCQcHB7WLc32USQFd/86cOSOEEOLjjz8WAMScOXO0Hmf69OkCgNi6dau0THlh7+HhIXJycjT2UZ7jZmZmagkOIR4nvTw8PAQA8Y9//ENj39dff13r+1TZ82fIkCECgPj111811ikUChEdHS3kcrnaOaxMCowePVpjn1OnTgkAokePHmrLlRUgV65c0dgnLy9PeHl5CWdnZ7W74/p+voQQwtfXVwAQR48e1Vj3j3/8Q+v5feDAAQFADBo0SG15UVGR8PLyEpaWllp/XrVRJjomTpyodf1rr70mAIivvvpK6/qhQ4cKAOLUqVNqy+fPny8AiAkTJqgtv3nzppDJZMLe3l7r+aTk4+MjAKglSoiIDIk9BYiI6omxY8fq/Ofv76+xvYWFBWJiYjSWh4SEAADu3r0rLdu9ezcAYMiQIZDJZBr7KKc8PHHihMY6b29vtG3bVmP5kSNHAACxsbEaxzQzM8OwYcO0vs6XXnoJADTGxCsfT5w4Uet++gwePFhj2ZkzZ/DgwQN07dpV67R2jRo1QrNmzXDhwgWtY8O1uXPnDr788ktMnz4dEyZMwLhx4/Dyyy/D0tIS169fr3Tc2sTExMDHxwd79uzBvXv3pOW5ubn4z3/+A0dHRwwaNEhaXp3PtrKKiopw7NgxyGQyjBw5UmN9REQEIiMjkZWVpbdRmzbDhw/Xeu4rp3ZTvs6hQ4dq3V/f6+zduzdsbW11PndgYCCaNm2qtkwulyMgIAAA0KdPH419lA0iVX/OKkuhUGDv3r1wcHBAr169NNbLZDJ06dIFCoUCp06d0ljft29fjWXafv7v3buHs2fPIjw8HKGhoRr7WFtbo23btsjIyNB6Hmv7+UpKSkJycjJ8fX3RsWNHjfXPPvusxjIA6N69O5o3b46ff/4Zd+7ckZbv2LEDqampeOaZZyo8DaXy58PFxUXretWfDW10nTPKBoJbt25V65Gxfv16CCEwbNgwveeT8pzV1g+CiMgQOCUhEVE9UdkpCb29vWFmZqaxXDnXu2qzQWVDrdmzZ2P27Nk6j/ngwQONZdoSEgCQkpICAPDz89O6Xtd+7du3R3R0NHbv3o1bt24hICAAd+/exa5du+Dv76/1Qqc82p5L+Zp//vlnrRfLqtLS0sqdQm758uWYM2dOrXcVl8vliIuLw7Jly7Bp0ya8+uqrAID//ve/yM7Oxvjx42FtbS1tX53PtrIePnyIwsJCeHl5qcWgKjAwEGfPnpXOj4oqb0pC5evs0KGD3uNU5hxW0vXZ29nZ6VyvXKerqWdFPHz4UGrwZ26u/yubttfl6+ursUzbz/+tW7cAPJ4Cs7yfhQcPHmgkDrS9f1X9+QeASZMmYfr06fjuu+/wzjvvAKhaUvDRo0cAAAcHB63rleeMl5eX3uOUfW+bNGmCzp0748iRI9i5cydiY2MB6J51oCxHR0e1+IiIDI1JASKiBqq8L/eqSkpKAADdunVDkyZNdG6n7Q6drou/8uIQemYPmDx5Ml566SV89913WLBgAVavXo3i4mK88MILkMsrX+SmLUbla27WrBk6d+6sd38rKyu9648dO4aZM2fCyckJX3/9NWJiYuDl5SXt17hx42rdMS5r1KhRWLZsGTZs2CAlBTZs2CCtU1Wdz7aqKnLuVeb8rAjl63z22Wf13qXVljSo6jlc0fVVpXxNDg4OOitrlJRVC1WJS/k83t7e5Sbd3NzcNJbpe/+q8t6MHTsWc+bMwXfffYe5c+ciOTkZv/76K5o0aYKePXtW+DhOTk4AgMzMTK3rS0pKIJPJ8Pzzz+s9TosWLTSWjRkzBkeOHMG6desQGxuLM2fO4NKlS2jcuHG5MSqTAcr4iIgMjUkBIiKS7ijGxsZi2rRpNXJMb29vAI/LiLW5ffu2zn1HjRqFWbNmSXcKV61aBblcjgkTJtRIbEDpa27ZsmWlqzDKUk4v9t5772Hs2LFq6/Ly8pCamlqt45cVHR2N8PBwHDt2DImJiXBxccGvv/4Kb29vaapDpdr4bHVxc3ODpaUlUlNTkZeXBxsbG41tlHelledHTfH19cXVq1cxd+5cREZG1uixDcXd3R1WVlawsLCo9jmqj/Ic8fLyqrHnKe/nX9dyAHB2dsaIESPw/fffY/fu3Th69CgUCgVefPHFSiUZPD09ATyu9NHG19cXCQkJ+PTTT6W79xU1YsQIvPbaa/j555+Rnp4uVQmMHDmy3MRleno6AMDDw6NSz0lEVFvYU4CIiNC7d28AqNSc9eVR3n3funWrRlWAQqHQO0+3vb09Ro4cieTkZMyaNQuJiYno37+/1nLoqmrXrh2cnJywb98+nXcSK0r5JV9bqfTmzZu1VkVYWloCAIqLi6v0nMqKgA0bNmDz5s0oLCzEc889p3FBUtOfrb64LSws0LFjRwghsHHjRo31Fy5cwNmzZ+Hg4ICoqKgaiUepNs5hQzM3N0dMTAzS0tJw8ODBWnseX19fhIaG4ty5c7hx40aNHDMgIACNGzdGcnIyjh8/rrF+y5YtevefPHkyAOCrr77Cd999B3Nzc4wbN65SMSjPsStXrmhdX51zxsXFBQMHDkRhYSF++OEH6XwfPXq03v0yMzORkpKCoKCgSiciiIhqC5MCRESEjh07olevXti3bx9ef/11aRyzkkKhwG+//YZDhw5V+Jg9e/ZE06ZNcfnyZXz88cdq6z744AMkJibq3V/ZcPCTTz4BULUGg/pYWVnhjTfeQEZGBoYPHy7dwVZ17tw5bNq0qdxjKZu3rVq1CkVFRdLyS5cu6RzH37hxYwDA1atXqxK+1Mhv/fr1OocOADX/2ZYXt3I4w7x589Q+46ysLEydOhVCCEyePFlKLtSUyZMnw8PDA4sWLcLq1as1EjE5OTlYu3YtkpOTa/R5a9vbb78NuVyOsWPHav2MUlJSsHLlymo/z9y5c1FSUoLhw4fjwoULGusTEhLw3XffVeqYygv7mTNnIisrS1p+4cIFfPbZZ3r37dixI6KiorBt2zYkJSVh0KBBla4uCQ0NhaenJ06fPq01iTVz5kzY2Njg9ddfx44dOzTWp6Wl4fPPP9fZaFTZO+Cdd95BSkoKIiIiyk12nThxAkIIdOvWrVKvhYioNnH4ABFRPaHvLpm/vz8WLlxYreOvX78effv2xSeffIK1a9eiVatW8PDwwJ07d3D16lXcv38fH3/8sdSRuzxmZmZYvXo1+vTpg5kzZ2L9+vUIDQ3FpUuXcPnyZUycOBHffPONzovDVq1aoX379oiPj4e3tzcGDhxYrdenzdtvv41Lly5h48aNCA0NRevWreHv748HDx4gMTERN27cwJAhQzBixAi9xxk/fjyWLVuGHTt2IDQ0FO3atUNaWhoOHDiAoUOHIj4+XiPpEBgYiMjISJw8eRLt27dHixYtYGZmhsGDB2vt5l5WUFCQ1OzsypUrCAsLQ+vWrbVuW5Ofbd++fWFtbY2PP/4YFy5cQOPGjSGTyTBr1iyEhoYiNjYWkyZNwtdff42WLVuiZ8+esLW1xf79+3H//n107NgRCxYsKPd5KsvFxQU//vgjBg8ejAkTJmDBggVo2bIlrKyskJSUhMuXLyMnJwdnzpyp0YqT2ta9e3esWLEC06dPR7du3RAZGYlmzZohPz8ft27dwuXLl2Fvb49XXnmlWs8zevRonD9/Hh9++CFatWqF6OhoBAUFITMzE7du3cKVK1cQFRVVqSE8s2bNwo4dO3D48GEEBwcjJiYG2dnZ+P333zFx4kT885//1Jscmjx5MqZMmQKg6knBAQMG4Pvvv8fx48fRpUsXtXXNmjXDunXrMHr0aAwePBihoaEIDw+HEAK3bt3CpUuXUFhYiJEjR2odCjNw4EC4urri4cOHAMqvEgCA/fv3S3ERERkNg02GSEREFQI9c7Qr/0VFRWnsU3b+byXl3Ozz5s3TWJebmyuWL18uOnToIBwcHISVlZUIDAwUffv2FStXrlSbH1w5h3vZ+c7LOnnypOjXr59wcHAQDg4OolevXuLo0aPivffeEwDEl19+qXPfOXPmCADi7bff1vsculR0TvgtW7aIp59+Wri7uwsLCwvh7e0tOnbsKObPn68xb7uuY96+fVuMHDlS+Pj4CGtraxEeHi4WL14siouLRUBAgND2J/f69eti6NChws3NTcjlco3PRd/nKIQQK1eulM6BhQsX6n2Nlflsy/Prr7+KLl26CHt7e+n59+3bp7bN2rVrRefOnYW9vb2wtrYWLVq0EO+//77Izc2t8PMIIaT3rrzPUOnOnTti5syZIiwsTNjY2Ah7e3sREhIiRowYITZt2iQKCgqkbfX9LAhR/jmu7/zSdeyKnpNlnTx5UowaNUr4+fkJCwsL4erqKiIjI8Urr7wi9u/fr7bt2LFjtX4mSvrOq71794pnnnlGeHl5CQsLC+Hp6Slat24tZs2aJU6dOlXp1/Lo0SPx+uuvCx8fH2FpaSlCQ0PFsmXLxO3btwUA0bFjR537Xr16VQAQvr6+ori4WOd2+hw+fFgAEFOmTNG5zbVr18TkyZNFkyZNhJWVlXBychLh4eFi/PjxYufOnUKhUOjc96WXXhIAhFwuF7dv3y43nuDgYOHu7q52HhIRGZpMCD3tn4mIiGpJ//798csvv+DYsWNaO8ILIRAWFobr16/jzz//1Ns5n4jql02bNiEuLg4vvfQSvvjiC63bLFq0CH//+98xb948zJ8/v8rPFR0djeTkZCQnJ5c7k0htOnr0KDp37ow333wTS5YsMVgcRERlsacAERHVmrS0NI2yeSEEPvvsM/zyyy9o2rQp2rdvr3XfLVu24Nq1axgwYAATAkT11B9//AGFQqG27Pz583jzzTcBlPbGKCszM1MaXjBp0qRqxfD+++/jwYMHWLVqVbWOU10ffPABnJ2dpddORGQsWClARES15tixY+jcuTMiIyPRpEkTlJSU4MKFC0hMTISNjQ127dqFmJgYtX1efPFFZGRkYOfOnSguLkZ8fLzOsfJEZNzCwsKQmZmJiIgIuLi44ObNmzh58iRKSkq0VgmsXr0aBw4cwMGDB3Hjxg28/vrrWL58ebXj6NmzJ/7880/8+eefNd7ksiLOnDmD1q1bY8mSJUwKEJHRYVKAiIhqzb179zB//nzs27cPKSkpyMvLg6enJ3r06IG33noLERERGvvIZDKYm5sjJCQE7777LoYNG2aAyImoJqxcuRI//PADrl27hvT0dNja2iIyMhIvvPACxo4dq7H9uHHjsGbNGnh4eCAuLg5Lly41aMk/EZEpYFKAiIiIiIiIyESxpwARERERERGRiWJSgIiIiIiIiMhEMSlAREREREREZKKYFCAiIiIiIiIyUUwKEBEREREREZkoJgWIiIiIiIiITBSTAkREREREREQmikkBIiIiIiIiIhPFpAARERERERGRiWJSgIiIiIiIiMhEMSlAREREREREZKKYFCAiIiIiIiIyUUwKEBEREREREZmo/wfy4xfgJAF0LgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fermi_energy = 5.012206 # can be read from DOSCAR header or OUTCAR\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.plot(dft_energy-fermi_energy, dft_dos)\n", + "ax.axhline(0, c='k')\n", + "ax.axvline(0, c='k')\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.set_xlim(-8, 5)\n", + "ax.set_ylim(0, 50);" + ] + }, + { + "cell_type": "markdown", + "id": "892a15f1", + "metadata": {}, + "source": [ + "The DOS contains (you can check this with the partial DOS):\n", + "\n", + "* Ni-eg bands in the range -0.4 to 2.5 eV with a small gap at around 0.6 eV\n", + "* mainly Ni-t2g bands between -1.5 and -0.5 eV\n", + "* mainly O-p bands between -7 and -1.5 eV\n", + "The Ni-d and O-p orbitals are hybridized, with an overlap in the DOS betwen Ni-t2g and O-p.\n", + "\n", + "DFT does not describe the system correctly in predicting a metallic state. In a simplified picture, the paramagnetism in DMFT will be able to split the correlated bands and push the Fermi energy into the gap of the eg orbitals, as we will see below.\n", + "\n", + "We will use the Ni-eg range to construct our correlated subspace.\n", + "\n", + "Note: with the coarse k-point mesh used in the tutorial the DOS will look much worse. We show here the DOS with converged number of kpoints for illustration." + ] + }, + { + "cell_type": "markdown", + "id": "afb54167", + "metadata": {}, + "source": [ + "## 2. Running the CSC DMFT calculations\n", + "\n", + "(~ 150 core hours)\n", + "\n", + "We now run the DMFT calculation. In CSC calculations, the corrected charge density from DMFT is fed back into the DFT calculation to re-calculate the Kohn-Sham energies and projectors onto correlated orbitals.\n", + "\n", + "With VASP, the procedure works as described [here](https://triqs.github.io/dft_tools/latest/guide/dftdmft_selfcons.html#vasp-plovasp), where the GAMMA file written by DMFT contains the charge density *correction*. In the VASP-CSC implementation, we first converge a non-scf DFT calculation based on the CHGCAR from before, then run DMFT on the results. The VASP process stays alive but idle during the DMFT calculation. Then, when we want to update the DFT-derived quantities energies, we need to run multiple DFT steps in between the DMFT steps because the density correction is fed into VASP iteratively through mixing to ensure stability. \n", + "\n", + "### Input files for CSC DMFT calculations\n", + "\n", + "We first take a look into the input file [dmft_config.toml](2_dmft_csc/dmft_config.toml) and discuss some parameters. Please make sure you understand the role of the other parameters as well, as documented in the [reference manual of the read_config.py](https://triqs.github.io/solid_dmft/_ref/read_config.html) on the solid_dmft website. This is a selection of parameters from the dmft_config.toml:\n", + "\n", + "Group [general]:\n", + "\n", + "* `set_rot = \"hloc\"`: rotates the local impurity problem into a basis where the local Hamiltonian is diagonal\n", + "* `n_l = 35`: the number of Legendre coefficients to measure the imaginary-time Green's function in. Too few resulting in a \"bumpy\" Matsubara self-energy, too many include simulation noise. See also https://doi.org/10.1103/PhysRevB.84.075145.\n", + "* `dc_dmft = true`: using the DMFT occupations for the double counting is mandatory in CSC calculations. The DFT occupations are not well defined after the first density correction anymore\n", + "\n", + "Group [solver]:\n", + "\n", + "* `legendre_fit = true`: turns on measuring the Green's function in Legendre coefficients\n", + "\n", + "Group [dft]:\n", + "\n", + "* `n_iter = 4`: number of DFT iterations between the DMFT occupations. Should be large enough for the density correction to be fully mixed into the DFT calculation\n", + "* `n_cores = 32`: number of cores that DFT is run on. Check how many cores achieve the optimal DFT performance\n", + "* `dft_code = \"vasp\"`: we are running VASP\n", + "* `dft_exec = \"vasp_std\"`: the executable is vasp_std and its path is in the ROOT variable in our docker setup \n", + "* `mpi_env = \"default\"`: sets the mpi environment\n", + "* `plo_cfg = \"plo.cfg\"`: the name of the config file for constructing the PLOs\n", + "* `projector_type = \"plo\"`: chooses PLO projectors\n", + "\n", + "The [plo.cfg](2_dmft_csc/plo.cfg) file is described [here](https://triqs.github.io/dft_tools/latest/guide/conv_vasp.html). The [rotations.dat](2_dmft_csc/rotations.dat) file is generated by diagonalizing the local d-shell density matrix and identifying the least occupied eigenstates as eg states. This we have limited k-point resolution wie also specify the band indices that describe our target space (isolated set of correlated states).\n", + "\n", + "### Starting the calculations\n", + "\n", + "Now we can start the calculations:\n", + "\n", + "* Go into the folder `2_dmft_csc`\n", + "* Link relevant files like CHGCAR, KPOINTS, POSCAR, POTCAR from previous directory by running `./2_link_files.sh`\n", + "* Run with `mpirun -n 32 python3 solid_dmft`\n", + "\n", + "### Analyzing the projectors\n", + "\n", + "Now we plot the DOS of the PLOs we are using to make sure that our correlated subspace works out as expected. You can speed up the calculation of the PLOs by removing the calculation of the DOS from the plo.cfg file." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2bba493e", + "metadata": {}, + "outputs": [], + "source": [ + "energies = []\n", + "doss = []\n", + "for imp in range(4):\n", + " data = np.loadtxt(f'2_dmft_csc{path_mod}/pdos_0_{imp}.dat', unpack=True)\n", + " energies.append(data[0])\n", + " doss.append(data[1:])\n", + " \n", + "energies = np.array(energies)\n", + "doss = np.array(doss)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4ffe8e91", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAIqCAYAAABc0/OtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAD/q0lEQVR4nOzdd3wUdfoH8M/sZrPpPRCK9CpSBERRwNBUEBUVKyog+jv07vDkzjv10LOdHcFyoCdwiL2ioqIiCKIEERARpEZ6SyF1k2yd3x9hNzOzM9tr8nm/Xt5ld2dnJ2WX+T7zFEEURRFERERERERE1OLoon0ARERERERERBQdDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAnRPoDmpKCgACaTCR06dIj2oRAREREREVELcOjQIaSmpuLEiRMBPZ9BgRAymUywWq3RPgwiIiKisHE4HNi1a5frdq9evaDTMfmUiCharFYrTCZTwM9nUCCEnBkCO3bsiPKREBEREYVHZWUlsrOzXbeLioqQlZUVvQMiImrh+vTpE9TzGdYlIiIiIiIiaqEYFCAiIiIiIiJqoRgUICIiIiIiImqhGBQgIiIiIiIiaqEYFCAiIiIiIiJqoRgUICIiIiIiImqhOJKQiIiIiKiFE0URoihG+zCIWjxBECAIQkRfk0EBIiIiIqIWyOFwoKqqChUVFTCbzdE+HCI6zWg0Ijs7G5mZmdDpwp/cz6AAEREREVELI4oiTpw4gaqqqmgfChEpmM1mnDhxAg0NDSgoKAh75gCDAkRERERELUxNTY0rINCqVStkZGRAr9dH+aiIyG63o7q6GiUlJaisrERqaioyMjLC+poMChARERERtTDV1dUAgJycHOTm5kb5aIjISafTITc3FzabDadOnUJNTU3YgwKcPkBERERE1MLU1dUBANLT06N8JESkxvneNJlMYX8tBgWIiIiIiFoQURRht9sBNDY0I6LY43xv2u32sE8GYVCAiIiIiKgFkS4wIj36jIh8I31vMihARERERERERGHBoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERFRlK3ZXYLPth2DwxHeZlJE5JkgCCFrvtipU6eA9hXo85TWrFkDQRAwdepUn59TWFjo+hkIggC9Xo/s7Gx069YNV199Nf7zn/+gqqrK5+er/XfgwAGv2yj/KywsDPrnEStC9fsNpYRoHwARERFRS7Z610ncumQTAODBCWbcOqxzlI+IiMLlwIED6Ny5My688EKsWbMm2oej6eKLL0ZBQQEAoKamBocPH8by5cvx0Ucf4b777sMLL7zgMdggfb5SWloapkyZ4nb/l19+iZMnT+KCCy5At27dZI/16tXL6zEXFhZi7dq12L9/Pzp16uR1e1906tQJBw8eDHv3/2hjUICIiIgoima+vdX19SOf/cagAFEzsWrVKlit1og9L5Tuvfdet6vzVVVVmDt3Lh577DFMmzYNVqsVt99+u8/Pl1qyZInbfYWFhTh58iRuu+02v7IbKHgsHyAiIiKKolqzLdqHQERh0LVrV5+ucIfqeeGWmZmJhx56yLWgnzlzJk6ePBndg6KQYFCAiIiIiIhIg7MGvrCwEPX19bj33nvRsWNHGI1GdOvWDU899ZRqermydvyhhx5C586NmUBr166V1cxLr4xr1Zx//vnnuPXWW9G7d29kZGQgNTUV/fv3x+OPPw6z2Rz6b1zDTTfdhGHDhqGhoQGvvvpqxF5Xi/P3s3btWgBA586dZT9bqbq6Ojz66KM466yzkJycjMzMTIwYMQLvvPOObDtnP4aDBw8CgGx/0tKEffv24aGHHsLQoUNRUFCAxMREtG/fHrfccgv27NkT3m88hFg+QERERERE5IXFYsFFF12EHTt2YMiQIejduzfWrl2Le++9FzU1NXjsscc8Pn/AgAG4+uqr8eGHH6J169a45JJLXI8NGzbM6+tPnz4dJpMJffr0Qd++fVFdXY2NGzfin//8J1atWoWvv/4aer0+6O/TF9dffz2+//57fPvtt5g9e3ZEXlOLs0eBsyfB1VdfjbS0NLftampqMHLkSGzevBn5+fmYMGECTCYTVq9ejXXr1mHDhg2YN28eAKCgoABTpkzBBx98AJPJJOuBkJeX5/p64cKFeOqpp3DmmWdi8ODBSEpKwm+//YbXX38dn3zyCdatW4d+/fqF/WcQLAYFiIiIiIjIRRRFVDfEX1lLRlJCWLu6FxUVYfjw4dizZ49rYbhp0yYMHToUc+fOxb333qu6GHWaOHEiBgwYgA8//BC9evVSrav35OWXX8bYsWORmprquq+mpgY33ngjPvvsM7z55pu45ZZbAvre/DVgwAAAwM6dOyPyep7k5eVhyZIlrp4Ezz77rGqjwfvvvx+bN2/GmDFjsGzZMtfvateuXbjwwgvx/PPP46KLLsL48eNdv581a9bAZDJp/q4mTpyI22+/HV27dpXd/7///Q+33nor/vKXv2D16tWh/pZDjkEBIiIiIiJyqW6wof/DX0f7MPz2y78uQmayIWz71+l0WLhwoexK8eDBgzFu3DgsX74cmzZtCuvovIkTJ7rdl56ejrlz5+Kzzz7DJ598ErGggPNnUFFRofr4yJEjVe9ftmyZ6vcRbiaTCYsWLYJOp8P8+fNlwZtevXph9uzZmDlzJl544QWMHz/e5/2ed955qvdPmzYNixYtwpo1a1BVVYXMzMygv4dwYlCAiIiIiIjIi06dOqFHjx5u9zvvO378eNiPYe/evfjiiy+wb98+mEwmOBwOVz+DvXv3hv31nZyvqZWZoTWSsEOHDmE9Li2bN29GfX09zjvvPHTv3t3t8ZtvvhkzZ87EDz/8AFEU/co4qa2txfLly7F161acOnXKNTni+PHjEEURxcXFGDhwYMi+l3BgUICIiIiIiMiL9u3bq97vvOoczmZ/oijib3/7G+bOnava1BBoLCWIlLKyMgBATk6O6uPeRhJG2rFjxwBAtawAALKyspCZmYmqqipUV1f7fGV/9erVuP7661FaWqq5TSR/L4FiUICIiIiIiFwykhLwy78uivZh+C0jKbxLm3D2K/Dm3XffxXPPPYf27dtj3rx5GDp0KPLz82EwGGCxWGA0GjWDBeGwdetWAMCZZ54ZsdcMBV9+h77+nmtra3HttdeivLwcDzzwAG644QZ07NgRycnJEAQBN954I95+++2I/l4CxaAAERERERG5CIIQ1tp88t+yZcsAAAsWLMCECRNkj/3+++8RPx7nCD+t3gGxpm3btgCA/fv3qz5eVVWFqqoqpKamIj093ad9rlu3DuXl5bj66qvxyCOPuD0ejd9LoHTRPgAiIiIiIqKWIDExEQBgs/k33cHZ0O+MM85we+y9994L/sD88MYbb+CHH35ASkoKbrvttoi+tieefraDBg1CcnIyNm7cqNp74Y033gDQOBpSmingaZ+efif79u3Dli1bAvguooNBASIiIiIiogjIy8uDwWBAcXEx7Ha7z89zNjP873//K0tHX7duHZ555pmQH6eaqqoqPPzww5g6dSoA4KWXXkJ+fn5EXtsXzmyA3bt3uz2WmpqKW2+9FQ6HA3/84x9hMplcj+3ZswePPfYYAODPf/6zz/t0/k4++ugjWU+ByspKTJ8+3dVwMB6wfICIiIiIiCgCEhMTcckll2D58uXo378/Bg4ciMTERFxwwQWYNm2a5vNmzpyJJUuWYP78+VizZg369euHo0eP4vvvv8df//pXPPvssyE9zieffBJLliwB0Fg7f+TIEfz888+wWCzIyMjASy+9hJtvvjmkrxmsyy+/HK+99hpuvPFGXHTRRa5mgQsXLgQAPPHEE9iwYQNWrlyJLl264MILL4TJZMLq1avR0NCAmTNn4tJLL3Xb59q1azF69GiMHDkSqampyMvLw5NPPonBgwdj7NixWLlyJXr06OFqrLhmzRrk5eXhiiuuwCeffBLRn0GgmClAREREREQUIQsXLsTNN9+M8vJyvPXWW1i0aBHWrl3r8Tk9evTATz/9hMsuuwxlZWX49NNPUVtbi1deeSUsmQJfffUVXnvtNbz++uv45ptvUFpaigkTJuA///kPDh8+HHMBAQC46qqrMHfuXLRv3x7Lly/HokWLsGjRItfj6enpWLt2LR5++GHk5eXh008/xbp16zB48GC89dZbeP755932OXPmTMyePRtpaWn48MMPsWjRIlc/BQD45JNP8M9//hP5+flYsWIFNm/ejOuvvx4bNmxAVlZWJL7tkBDEeGiHGCf69OkDANixY0eUj4SIiIjiRad7P5fdPvDkpRpbxobKykpkZ2e7bldUVMTVyS8BDofDlQ7ds2dP6HS8TkgUa/x5nwa7DuUnABEREREREVELxaAAERERERERUQvFoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERERERFRCxX3QYETJ07g7rvvRo8ePZCcnIycnBwMGjQIf//731W3X7p0KYYMGYK0tDTk5ORg/PjxWL9+fYSPmoiIiIiIiCj64jooUFRUhN69e2PevHkwGAy4/PLLcd5556G8vBzPPfec2/azZs3ClClTsH37dowZMwZDhgzBypUrMWLECCxbtiwK3wERERERERFR9CRE+wACdezYMYwfPx5msxkfffQRrrzyStnjGzdulN1evXo15s6di9zcXBQVFaF79+4AGgMLhYWFmDZtGgoLC5GdnR2x74GIiIiIiIgomuI2U+Dee+9FZWUlnn76abeAAAAMGTJEdnvOnDkAgNmzZ7sCAgAwdOhQzJgxA1VVVVi8eHF4D5qIiIiIiIgohsRlUKCiogLvvfceMjMzcdttt3ndvqGhAatWrQIATJo0ye1x533Lly8P7YESEREREVHcEARB9p9Op0NWVhaGDx+OhQsXQhRF2fYPPfQQBEHAQw895PNrWK1WLFiwACNHjkSrVq1gNBrRrl07XH311fjss88CPva3334bgwYNQkpKCgRBQKdOnQLeVywSRRHvvfcerr76apxxxhlISkpCeno6+vTpgzvuuMMtUxwA7HY7Xn31VYwYMQLZ2dlITExEmzZtMGjQIPzxj3/0+PMuLy/Ho48+iqFDhyI/Px8GgwF5eXm48MIL8fTTT6O0tDSc325ExWX5wA8//ACz2YwxY8bAYDDggw8+wPfffw+r1YpevXrh2muvRevWrV3b79q1C2azGfn5+Wjfvr3b/gYOHAgA2LZtW8S+ByIiIiIiik1TpkwB0LioLC4uxg8//IDvv/8eq1atwttvvx3wfg8ePIjx48fjt99+Q3JyMoYNG4bc3FwcPHgQH3/8MT766CNcffXVeOONN5CUlOTzfn/66SfcdNNNSEpKwkUXXYSsrCzk5eUFfJyx5uTJk7jyyitRVFQEvV6PQYMG4fzzz4fFYsGOHTvw8ssv4+WXX8YjjzyCBx54AABgsVhw2WWX4euvv4Zer8e5556LM844Aw0NDdi6dSvmz5+PVatWYcKECW6v9+mnn+KWW25BVVUVsrKycO655yInJwfl5eXYsGEDvvvuO/z73//G+vXr0adPn0j/OEIuLoMCO3bsAAC0bt0aw4cPR1FRkezx++67D//73/9wzTXXAAAOHToEAKoBAQBITU1FVlYWKioqUFNTg/T0dI+vr/WLLy4uRteuXf36XoiIiIiIKLYsWbJEdnvlypUYP3483nnnHUyePFl1IelNVVUVCgsLceDAAVx33XVYsGCBrJ/Zrl27cP311+PDDz+Ew+HARx995PO+ly9fDofDgRdffBG33nqr38cWy2pra1FYWIhdu3bh0ksvxfz589GhQwfZNps2bcLf//53FBcXu+578cUX8fXXX6NTp0745ptv3NZpP//8Mz7//HO31/vqq69w5ZVXQqfTYc6cOfjzn/8Mg8HgetxiseCNN97A/fff32yyBeK2fABoHC+4bds2LFq0CKWlpdi/fz9mzZoFk8mEm266yXXlv7a2FgCQkpKiuc/U1FTZtkRERERERAAwduxY3HzzzQCAjz/+OKB9/OMf/8CBAwdw0UUX4a233nJrcN6rVy988803KCgowLJly/Duu+/6vO8jR44AALp06RLQscWy++67D7t27cKYMWPwySefuAUEAGDw4MH45ptv8Ic//MF1nzOoMnv2bNULt2effTZmz54tu6+urg633HILHA4HFi5ciFmzZskCAgCQmJiIW2+9FZs3b242JRpxGRSw2+0AAJvNhueeew633nor8vLy0KlTJ8yZMweTJk2CxWLB008/DQCu2h9BEDT3qawP8mTHjh2q/zFLgIiIiIioeTr77LMBAIcPH/b7ueXl5XjttdcAAPPmzYNOp74My8vLw4MPPgigqVG6J0uWLIEgCPjf//4HABg5cqSrH4Iz22Hq1KkQBAFr1qzBV199hZEjRyIrKwuCIKCyshJA47rqxRdfxKBBg5CWloa0tDQMGTIECxYscK29pAoLCyEIAg4cOIB3330X55xzDlJSUtCuXTv8/e9/h8ViAdCYSX3DDTegVatWSElJwahRo/wq2T516hQWLVoEAHjhhReg1+s1t9XpdBg6dKjrtvMqfn5+vs+vt3TpUpSUlODcc891lZBoadeuHYMC0eRM79fpdKq/LGfKzJo1a2Tbm0wmzX3W1dUBANLS0kJ5qERERERE1AzU1NQAAIxGo9/P/fbbb9HQ0IABAwagd+/eHre9/vrrIQgCfvrpJ5SXl3vctlu3bpgyZYrr4uTFF1+MKVOmYMqUKejWrZts27feegvjxo2DyWTCuHHjcM4550AQBNjtdlxxxRWYOXMm9u3bhzFjxmDMmDHYtWsX7rzzTlxzzTVwOByqr//888/jpptugsFgwMUXXwyLxYJnnnkGt99+O/bu3YvzzjsPGzduxPDhw9GtWzd8++23GDlyJE6ePOnzz62+vh5nn32215+bkrN0fNGiRbDZbD49x1lOcOONN/r1WvEuLnsKOCMyBQUFqm9K5+MlJSUA4EoxcabVKJlMJlRWViIrK8trPwEiIiIiomZNFIGGqmgfhf+SMgEPmcHBEEXR1am+X79+fj9/69atAIBBgwZ53TY7OxtdunRBcXExtm7ditGjR2tuO2zYMAwbNgxTp05FcXEx7r33XhQWFqpu++qrr+Kdd97BddddJ7t/zpw5+OKLL9C3b1988803aNWqFQDg+PHjGDlyJJYtW4aXX34Zd955p9s+Fy1ahNWrV2P48OEAgBMnTmDAgAF4/fXX8dNPP+GWW27BM888A51OB1EUMXXqVCxduhTz58/Hww8/7PVn8fPPPwNoagzvj9tuuw3ffvstPv30U3Tt2hVXXnklzj//fJx//vmaveaCeb14FpdBAWfqTkVFBURRdCsLcEbUnFf9e/bsCaPRiNLSUhw5csTtj2DLli0AAnuDExERERE1Kw1VwFMdo30U/vvHQSA5K6S7tNvt+P333/H444+jqKgIRqMR06ZN83s/zvWJc8HtTX5+PoqLi1FWVub3a2m59NJL3QICQGNaPtBY1iA9vjZt2uCZZ57B5ZdfjhdeeEE1KHD33Xe7AgJA40XbyZMn47nnnoPFYsFTTz3lKpUQBAF//etfsXTpUqxdu9anY3b+3PwpAXC68cYbcfToUfzrX//CoUOH8Pzzz+P5558HAPTu3Rt/+tOf8Ic//EFWkhDM68WzuCwf6Nu3Lzp37oz6+nr8+OOPbo87ywacEZ7k5GSMGjUKAPDBBx+4be+8L5AuokRERERE1Lw46/ITEhLQo0cPLFmyBOnp6Xj77bcD6iPm7F/max8zX3qi+evyyy93u+/QoUM4dOgQCgoKXOslqQkTJiArKwu7d+9W7bQ/duxYt/uczQ4LCwuRkCC/Bu382R0/ftynY/an75uae+65B4cOHcKCBQtw7bXXujLKd+7ciT/+8Y+YNGmSZmlESxKXQQGgsXsnAMycOVMWQdu8ebOrKceMGTNc98+aNQsA8Nhjj2Hv3r2u+4uKivDKK68gIyMD06dPj8ShExERERFRDHPW5U+bNg133XUXFi5ciIMHD+LKK68MaH95eXkAmsqbvXEuwHNzcwN6PTVqXfuPHTsGAJoN8wRBQMeOHWXbSrVr187tPudUN0+Pmc1mn47Z+XMLZvRfXl4eZsyYgXfffRf79+/H7t27cfvttwNonCTx9ttvu7Z1/ryby6hBX8Vl+QAA3H777Vi1ahXef/999OzZE+effz5qa2uxfv16WCwW3H777Zg0aZJr+zFjxuCuu+7C888/jwEDBmDs2LGwWCxYuXIlHA4H3nzzTeTk5ETxOyIiIiIiigFJmY2p+PEmKTNku3J27g+V/v37A2i8gOnNqVOnsH//ftnzQiEpKUnzMV8yEtS28fS8UGQ5DBgwAEBTuXco9OjRA//9739x6tQpfPjhh/j8888xefJk1+sdPXoUW7ZswbBhw0L2mrEuboMCOp0O77zzDgoLC7Fw4UKsXr0agiBg8ODBmDFjhmuOqNS8efMwYMAAvPTSS1i5ciUMBgNGjx6N2bNnt6hfOhERERGRJkEIeW1+Szdq1CgYjUb88ssv+O2333DmmWdqbvvOO+9AFEUMHjzYdaU8XNq2bQsAriCEmkOHDgFo7DEQaaNGjUJSUhJ+/vln7Nq1C7169QrZvgsLC/Hhhx/Kss4vvfRSfP7553j77bcxc+bMkL1WrIvb8gGgMTBw5513YsuWLTCZTKitrcUPP/ygGhBwmjp1KjZt2uSaOPDll18yIEBERERERGGTm5uLW265BUBjcz6tOvaysjI8+uijAJrKn8OpQ4cO6NChA06cOIHVq1e7Pf7555+joqICPXv2jErzvZycHNe4+T//+c+w2+2a24qiiA0bNshue1JcXAygKTACALfccgvy8/OxYcMGvPbaax6ff+zYMRw4cMDbtxAX4jooQEREREREFA+eeuopdOjQAV9//TVuvPFGVFRUyB7fvXs3xowZgxMnTuDyyy/HDTfcEJHj+vOf/wygMVghraU/ceIE7rnnHtk20fDkk0+ie/fu+OabbzBx4kQcPnzYbZtffvkFF110EV5++WXXfZdffjlefPFFVFZWum2/YsUK17ZXXXWV6/7U1FQsWbIEOp0Ot912G+bOnQur1Sp7rs1mw9KlSzFo0KBmExSI2/IBIiIiIiKiWLBw4UJ8+eWXqo+lp6dj5cqVyM7Oxpo1azB+/Hi8++67+PTTTzF8+HDk5ubi4MGD2LBhAxwOByZOnIi33norYsd+9913Y/Xq1VixYgW6d++OUaNGQRRFrFq1CjU1NZg4cSLuuOOOiB2PUnp6OtauXYuJEyfis88+w4oVKzB48GB06tQJFosFO3fuxK5duwA0NpV3Onz4MGbOnIm//vWvOPvss9GpUydYrVbs2rULO3fuBADcdtttblMZxo8fjw8++ABTpkzBrFmz8Mgjj+C8885DTk4OysvL8eOPP6KyshJZWVk+j5iMdQwKEBERERERBeHo0aM4evSo6mOZmU0NEDt37oxffvkFCxcuxHvvvYfNmzejuroaeXl5uPzyyzFt2jTV0YHhpNfr8emnn2L+/PlYsmQJvvrqKwDAmWeeiWnTpuEPf/gDdLroJpi3adMGRUVFeO+99/Duu+/ip59+ws8//wyDwYCOHTvijjvuwPTp0zFo0CDXcz744AN8/vnnWLlyJfbs2YPffvsNFosFrVq1wpVXXolp06bhsssuU329K6+8EsOHD8d//vMfrFixAhs3bkR1dTUyMzPRr18/XHbZZbj11lubTaN6QQx2+CO59OnTBwCwY8eOKB8JERERxYtO934uu33gyUujdCS+qaysRHZ2tut2RUUFsrKyondA5DeHw4Hdu3cDAHr27Bn1BR8RufPnfRrsOpSfAEREREQxpMJkifYhEBFRC8KgABEREVEMefTz36J9CERE1IIwKEBEREQUQz7aol6XTEREFA4MChARERERERG1UAwKEBEREUVRp9yUaB8CERG1YAwKEBEREUWRTidE+xCIiKgFY1CAiIiIKIp0AoMCFFmC5G+O08mJYpP0vSmE+d8JBgWIiIiIooiJAhRpgiBAr9cDAMxmc5SPhojUON+ber2eQQEiIiKi5oyZAhQNKSmNvSxqamqifCREpMb53kxNTQ37ayWE/RWIiIiISBODAhQNGRkZqKmpwalTp5CQkICMjAxX9gARRY/dbkd1dTVOnToFAEhPTw/7azIoQERERBRFOuZtUhSkp6cjMzMTVVVVKCkpQUlJSbQPiYgUsrKyGBQgIiIiau6YKUDRIAgCCgoKkJycjIqKCvYWIIohRqMR2dnZyMzMDHs/AYBBASIiIqKoYlCAokWn0yE7OxvZ2dkQRZGTCIhigCAIEQkESDEoQERERBRFeo4foBgQjYUIEcUGVrERERERERERtVAMChARERFFEVO2iYgomhgUICIiIooihgSIiCiaGBQgIiIiIiIiaqEYFCAiIiKKIlYPEBFRNDEoQERERBRFjAkQEVE0MShAREREFE1MFSAioihiUICIiIgoihgSICKiaGJQgIiIiIiIiKiFYlCAiIiIKIpYPUBERNHEoAARERFRFIksICAioihiUICIiIgoipgpQERE0cSgABEREVEUMShARETRxKAAERERERERUQvFoAARERFRFDFRgIiIoolBASIiIqIoElk/QEREUcSgABEREREREVELxaAAERERURQxUYCIiKKJQQEiIiIiIiKiFopBASIiIqIoEtlqkIiIoohBASIiIqIoUpYPpCbqo3MgRETUIjEoQERERBRFyjyBbq3To3IcRETUMjEoQERERBRL2HmQiIgiiEEBIiIioigSFUEAhgSIiCiSGBQgIiIiiiJlEICJAkREFEkMChARERFFk6i8yagAERFFDoMCRERERFHETAEiIoomBgWIiIiIYgiDAkREFEkMChARERFFERsNEhFRNDEoQERERBRF7uUDDAsQEVHkMChAREREFEXKGABjAkREFEkMChARERFFkXLaAKcPEBFRJDEoQERERBRDmClARESRFLdBgcLCQgiCoPnfl19+qfq8pUuXYsiQIUhLS0NOTg7Gjx+P9evXR/joiYiIiBq5lQ9E5zCIiKiFSoj2AQTr6quvRlpamtv97dq1c7tv1qxZmDt3LpKTk3HRRRehoaEBK1euxNdff433338fV155ZSQOmYiIiMjFvacAwwJERBQ5cR8UePbZZ9GpUyev261evRpz585Fbm4uioqK0L17dwBAUVERCgsLMW3aNBQWFiI7OzvMR0xERESkjSEBIiKKpLgtH/DXnDlzAACzZ892BQQAYOjQoZgxYwaqqqqwePHiaB0eERERtVBumQGMChARUQS1iKBAQ0MDVq1aBQCYNGmS2+PO+5YvXx7R4yIiIiJSYkyAiIgiKe7LBxYtWoTy8nLodDr06NEDEydORIcOHWTb7Nq1C2azGfn5+Wjfvr3bPgYOHAgA2LZtW0SOmYiIiMhJGQRwsKcAERFFUNwHBR577DHZ7b/97W944IEH8MADD7juO3ToEACoBgQAIDU1FVlZWaioqEBNTQ3S09M9vmafPn1U7y8uLkbXrl39OXwiIiJq4dwbDUbnOIiIqGWK2/KBESNG4PXXX0dxcTHq6uqwe/du/Pvf/0ZCQgIefPBBPP/8865ta2trAQApKSma+0tNTZVtS0RERBQJoiJXQHmbiIgonOI2U+CRRx6R3e7Rowfuv/9+DB48GBdffDH+9a9/4f/+7/+QnJzsauAjCILm/vwZ/7Njxw7V+7UyCIiIiIh8xUwBIiKKpLjNFNBy0UUXYfDgwaiqqsKGDRsAwFUOYDKZNJ9XV1cHAEhLSwv/QRIRERGdxvIBIiKKpmYXFADgGjl4/PhxAHA1Hjxy5Ijq9iaTCZWVlcjKyvLaT4CIiIgolBgDICKiaGqWQYGKigoATVf9e/bsCaPRiNLSUtXAwJYtWwAA/fr1i9xBEhEREUEtU4BhAiIiipxmFxQoLS3FunXrADSNGkxOTsaoUaMAAB988IHbc5z3TZgwIUJHSUREROSkbDRIREQUOXEZFNiwYQO+/fZbt0j6gQMHcOWVV8JkMuHyyy+XjSCcNWsWgMYRhnv37nXdX1RUhFdeeQUZGRmYPn16ZL4BIiIiIg0OZgoQEVEExeX0gV27dmHatGlo06YNevTogYKCAhw5cgSbN29GQ0MD+vTpg1dffVX2nDFjxuCuu+7C888/jwEDBmDs2LGwWCxYuXIlHA4H3nzzTeTk5ETpOyIiIqKWio0GiYgomuIyKHDuuefijjvuwI8//ojffvsNP/zwA1JTUzFgwABcc801uOOOO5CcnOz2vHnz5mHAgAF46aWXsHLlShgMBowePRqzZ8/GsGHDovCdEBERUUunjAEwJkBERJEUl0GB3r17Y/78+QE9d+rUqZg6dWpoD4iIiIgoQMpySGYKEBFRJMVlTwEiIiKi5sI9BsCoABERRQ6DAkRERERR5HAwU4CIiKKHQQEiIiKiKHIoGw1G5zCIiKiFYlCAiIiIKIrsbpkCDAsQEVHkMChAREREFEV2RRBAmTlAREQUTgwKEBEREUURMwWIiCiaGBQgIiIiiiK3oECUjoOIiFomBgWIiIiIokQ5eQAAowJERBRRDAoQERERRYmynwDAmAAREUUWgwJEREREEXaovA6fbD0Kk9nm9hh7ChARUSQlRPsAiIiIiFoSk9mGS19ch5oGG4Z1y3N7nCEBIiKKJGYKEBEREUXQp78cQ01DY4bA9/vK3B5nogAREUUSgwJEREREXtgdIl797nfM/vhXnKxuCGpfZqvd4+MicwWIiCiCWD5ARERE5MWqnSfx7y92AgCOVzZg0dRzwvZaagMJiIiIwoWZAkREREReLFhb7Pp61a6SoPYlCILnDRgUICKiCGJQgIiIiMgLZZ3/5oOnwvdajAoQEVEEMShARERE5IVdkdP/2/GasL0WGw0SEVEkMShARERE5IXJbJPddoSx8J8xASIiiiQGBYiIiIi8qFUEBcQwXs4P576JiIiUGBQgIiIi8kKZKWBjpgARETUTDAoQEREReWGy2GW3gwkKeB0+wKgAERFFEIMCRERERF50yk2R3XaEeeXOEgIiIooUBgWIiIiIvLiwR77sdjBrdi+JAkHvn4iIyB8MChARERF5YVes0sN9JZ8xASIiihQGBYiIiIi8sDuUQYHwvh7LB4iIKFIYFCCiuHTKZMGgR1ei072fY9uRymgfDhE1cza7fJEexuEDAJgpQEREkcOgABHFpbvf3YpykwUAcPlLP0T5aIiouXPLFAjzsp2JAkREFCkMChBRXFq7pzTah0BELYhyBGH4MwUYFSAioshgUICIiIjIC/eeAsGMH/A+f4CZAkREFCkMChARERF5YXM4ZLe5aCciouaCQQEiIiIiL5SZAo4wRwXCvX8iIiInBgWIiIiIvFD2FAhmye69eICZCEREFDkMChBRs6C8ikdEFEqRzhTgJxoREUUKgwJE1CxYbA7vGxERBchmVyzTwz19gKkCREQUIQwKEFHcUTtZttgZFCCi8GGmABERNVcMChBR3LEqr9gBsDIoQERhpJw+EO6KJSYKEBFRpDAoQERxRy0AwKAAEYWTMlMgmEW74FOnwcD3T0RE5A8GBYgo7qj1D2BPASIKJ+X0gfCXDzAqQEREkcGgABHFHbWsADODAkQURpGecMKBKkREFCkMChBR3LGqnC2bzLYoHAkRtRQRzxRgUwEiIooQBgWIKO7YVRoN1lnsUTgSImopQtlTwBcMCRARUaQwKEBEcUfZBRxgpgARhZf79IFwZwqEdfdEREQuDAoQUdxRq+1VpvYSEYWSMkMpmI8cAd7HD7DRIBERRQqDAkQUd+wql9A4kpCIwsk98Mj6ASIiah4YFCCiuGNT6SlgVbmPiChUlBlKb288jG1HKgPal+A9UYAxASIiihgGBYgo7qiVDzBTgIjCSa1E6dpXisLWz4Q9BYiIKFISQrmzAwcOYN26dfjll19QWlqKqqoqZGZmIj8/HwMGDMDw4cPRsWPHUL4kEbVAaifnNgYFiCiM1IKRDVYHVu8qwWX924b89dhTgIiIIiXooEBFRQVee+01vPrqq9i1axcA9dm6wulcud69e+P222/HLbfcguzs7GBfnohaILWu3xaWDxBRGKlNPQkn9k4lIqJICTgoUFdXh6effhpz5syByWRCcnIyhg0bhiFDhqBXr17IyclBRkYGqqqqUFFRgZ07d2Ljxo3YtGkT7r77bsyePRt/+9vf8Le//Q2pqamh/J6IqJlT6ynATAEiCie1TIFwUrvAQkREFA4BBwW6du2KkydP4uKLL8ZNN92EiRMn+rS4N5lM+Oijj/DGG2/g4YcfxiuvvIJjx44FehhE1AKpnZyrTSQgIgoVrbGnvjQNDAQ/0oiIKFICbjR47rnnYvPmzVixYgUmT57s89X+1NRU3Hzzzfjqq6+wadMmnHvuuYEeAhG1UGppvA7m2hJRmDgcYkgX6WGKIxAREQUk4KDAxx9/jLPPPjuoFx84cCCWLVsW1D4A4NSpU2jVqhUEQUCvXr08brt06VIMGTIEaWlpyMnJwfjx47F+/fqgj4GIIketpwCrB4goXLSyBEJJr5OHCpgpQEREkRJwUKC2tjaUxxGUWbNmoayszKftpkyZgu3bt2PMmDEYMmQIVq5ciREjRoQkOEFEkaHWU8Ae4SZgRNRyRKKfQH6aUVaKwOkDREQUKQEHBVq3bo3Jkyfjiy++gCOKJ+OrVq3Ca6+9httvv93jdqtXr8bcuXORm5uLX375BR9//DG+/PJLfPfdd9Dr9Zg2bRoqKioidNREFAz2FCCiSAr15AG1PgQ5qYmysgJ+pBERUaQEHBSor6/H22+/jcsuuwxt27bFX/7yF2zatCmUx+bTMcyYMQNnnnkm/va3v3ncds6cOQCA2bNno3v37q77hw4dihkzZqCqqgqLFy8O6/ESUWiopfKyfICIwiXUmQIGvfvpV05qInSSaAFjAkREFCkBBwUOHDiAf//73+jduzdKSkrwwgsv4Nxzz0WvXr3w+OOP48CBAyE8THUPP/wwiouLsWDBAhgMBs3tGhoasGrVKgDApEmT3B533rd8+fLwHCgRhZR6TwFGBYgoPELdUyDJoHe7LyvFIMsgUPucIyIiCoeAgwIdOnTAfffdh+3bt+Pnn3/GrFmz0LZtW+zZswcPPPAAunbtigsvvBCvvvoqKisrQ3jIjbZt24Y5c+Zg2rRpGDFihMdtd+3aBbPZjPz8fLRv397t8YEDB7r2SUSxT72nQBQOhIhaBE+ZAkKIZgmkJOpl+2JMgIiIIiXgoIBU//798eyzz+LQoUP45ptvMGXKFKSnp2PdunWYMWMG2rRpg0mTJuHjjz+G1WoN+vUcDgduv/12ZGVl4emnn/a6/aFDhwBANSAANI5JzMrKQkVFBWpqarzur0+fPqr/FRcX+/eNEFFA1E7QeVWNiMIlEp8vxgS9YlYhP9OIiCgyQhIUcBIEAaNGjcLixYtx8uRJvPvuu5gwYQJEUcRHH32Eq6++GgUFBbjjjjuCep0XX3wRGzduxDPPPIPc3Fyv2zsnJaSkpGhuk5qaKtuWiGKXWipvqBuBERE5ecwUCCBRQC3GkJigY6NBIiKKioRw7dhoNOKaa67BNddcg4qKCrzzzjt48MEHUV5ejv/+979YsGBBQPs9fPgwZs+ejQsvvBBTp0716Tni6X9ZBQ//cot+/Ou7Y8cO1fv79Onj8z6IKHBqkwZYPkBE4eLpFCGQxbvauEFjgk4xkpCIiCgywhYUcNq2bRvefPNNvP322zh16hQAQK93b7DjqzvvvBMWi8WvoEJ6ejoAwGQyaW5TV1cHAEhLSwv42IgoMuwqEQBHBOaIE1HLFInygcZMAfYUICKiyAtLUODw4cN466238Oabb2LHjh2uq/D9+vXDzTffjMmTJwe8788++wxZWVluJQgNDQ0AGvsHFBYWurZNS0tDhw4dAABHjhxR3afJZEJlZSWysrJcAQQiil3q5QM8gyai8PD08RKq8gFjgl6RKcDPNCIiioyQBQWqqqrw/vvv44033sD3338PURQhiiLatm2LG2+8ETfffDP69u0bkteqrKzE2rVrVR+rr693PWaz2QAAPXv2hNFoRGlpKY4cOeLWcHDLli0AGoMWRBT72GiQiCIp1J8vantjTwEiIoqWoBoNWiwWWQPBP/zhD/juu++QkpKCm266CV9//TUOHz6Mp59+OmQBAWewQfnf/v37ATQGAJz3ZWVlAQCSk5MxatQoAMAHH3zgtk/nfRMmTAjJMRJReKn3FOAZNBGFRyTKk9pnJ0MnsHyAiIgiL+BMgdtvvx0ffvghqqqqIIoi9Ho9xo4di5tvvhlXXnmlx07/0TBr1iysWLECjz32GC699FJ0794dAFBUVIRXXnkFGRkZmD59epSPkoh8YbczKEBEkRPqjxdlc+N+7TMxpndr2UhCZj8REVGkBBwUWLRoEQCgf//+uPnmm3HjjTeioKAgZAcWamPGjMFdd92F559/HgMGDMDYsWNhsViwcuVKOBwOvPnmm8jJyYn2YRKRD9T6BzAoQETh4mmBHkBLAZl2Wcn48I7zodcJQe+LiIgoEAEHBe655x7cfPPNOOuss0J5PGE1b948DBgwAC+99BJWrlwJg8GA0aNHY/bs2Rg2bFi0D4+IfKQWAFArKSAiCoVwXrVvlWGEQd9YzSmwfICIiKIg4KDAU089FcrjCFqnTp3c0vHUTJ06FVOnTg3/ARFR2LCnABGFm/OcQhAEONynoAa576avpdkBnD5ARETREFSjQTUrVqzAxIkT0a5dOxiNRlmd/ooVKzBr1iwcO3Ys1C9LRC2IaqYAgwJEFCJFxeXo99DXKHx2DU5UNYQ1U0CaHSBtNMiPNCIiipSQBgXuvPNOTJgwAZ9++ilqa2thtVplV++zsrIwb948vPPOO6F8WSJqYWwqjQbZlIuIQmXywg2oMdtwsLwOT3+1K+SfL1r707HRIBERRUHIggKLFy/Gyy+/jCFDhmDr1q2oqqpy22bo0KFo164dli9fHqqXJaIWyK6Sy6sWKCAiCoT0Kv2G4nKPV+2FALoDSvenl+xAL4kKMPuJiIgiJeCeAkqvvPIKcnJy8NlnnyE3N1dzu27duuH3338P1csSUQuk2lOAV9WIKAz0esGnnkX++O1YtetrneTyjDRAwKAAERFFSsgyBXbs2IGhQ4d6DAgAQEFBAUpKSkL1skTUAqmdLDt4Ak1EYaAXhJAu0A+V12HxD/ub9i/JDtBJvuZnGhERRUrIggI6nQ4OH9rzHjt2DKmpqaF6WSJqgdRKBWw8gSaiMNAJQkib/j36+W9u+3eSlQ8w+4mIiCIkZEGBXr16YdOmTairq9Pcpry8HFu3bkW/fv1C9bJE1AKpZgrwBJqIwkCvC235QHmtWXZbFhRg+QAREUVByIICkydPRmlpKf74xz/CZrO5PS6KImbOnIna2lrcfPPNoXpZImqBVHsK8ASaiMJAr/OWKeBfp0GzTZ5VKZ04ICsfYKCTiIgiJGSNBu+88058+OGHeO211/D999/j4osvBgBs27YNf/vb3/DZZ59hz549GDVqFKZMmRKqlyWiFkitVIBBASIKB71O8DuVv7LOAptDRF6a0e0xZVBAWjIgzxTw80CJiIgCFLJMAYPBgC+//BIzZszAoUOHMH/+fADAli1b8Nxzz6G4uBjTp0/H8uXLodOF7GWJqAWyq/QUYFCAiMKhMVPA98+XTQdO4fwnV2PoE6vw3Z5St8fNNrvstiCoNxrkZxoREUVKyDIFACAlJQXz58/Hww8/jLVr1+LAgQOw2+1o3749Ro4cibZt24by5YiohVLNFGCqLRGFgU7wr6fA41/sRJ2lceH/5o8HMaJHvuxxizJTQNZosOl+lg8QEVGkBBwUWL9+PYYOHSqLcDvl5+dj0qRJQR0YEZEWtZNlXlUjonDQ6wT4MFzJZcuhStfXX+046fa4W08BSSCAjQaJiCgaAs7jHzZsGFq3bo1p06bho48+Qm1tbSiPi4hIE3sKEFGk6AXfewpU1Vm9bqPMFNBplA8wU4CIiCIl4KDAo48+iq5du2Lp0qW45pprkJ+fj3HjxmH+/Pk4dOhQKI+RiEjGrnLZznE6KNBgtaO6wfuJORGRL/wZSfjZr8e8buM+faApEJAgCQrYVHqnEBERhUPAQYF//vOfKCoqwvHjx/Hf//4XF110EdatW4c//elP6Ny5MwYMGIAHH3wQGzduDOXxEhGpZgXYHCJKahowes5aDHxkJZb/4v3knIjC4/Ntx3Hjqxvw4eYj0T6UoHkbSSitokxPMrg9rvy8Ut6WTh+QBgjYJ4WIiCIl6DEArVq1wvTp0/HJJ5+gvLwcn376KW677TaUlZXhsccew9ChQ9GmTRv83//9H5YvX476+vpQHDcRtWBqQQGHKOLFVftwtLIeNoeIP7/9cxSOjIgsNgf++NYWrC8ux1/f/wU1cZ6548/0gXSje6um2gabx+dIgwrSAIGDJVFERBQhIZ0NaDQaMWHCBLzyyis4cuQIfvrpJ/zzn/9EmzZtsHDhQkycOBG5ubm47LLL8Oqrr6K01H1UDxGRN1o9BXYcq4rC0RCRlDIIcKyyIUpHEhpeMwUkX1vs7qVN3sqZEiUjB6RBAWYKEBFRpIQ0KKA0aNAgPPLII9iyZQsOHTqEF198ESNGjMA333yDGTNmYMGCBeF8eSJqprTKB9SmoRBRZCnfhyLie3GrEwSPV+2lj1gDCAoYJEEBafkAMwWIiChSAh5J6K/27dvjzjvvxJ133gmTyYSvvvoK6enpkXp5IooRB8tN+HDLUYzp3Qr92mcFtA/V8gGHCIYEiKJP+T6MtwveyqaCBr3v5QNqQYEaL+UD0uwAWaYAgwJERBQhEQsKSKWmpuKqq66KxksTUZRN+99P+L3MhIXrfseWB8YiyaD3ex9qJ8t2UQQTBYiiT/k+jLegQL3VLrudakzwWD7w9Y6TGNO7NfQ6QXViQHV9Y6aAKIpYsLbY42vLGw36cdBERERBCGv5gJrFixfjkUceifTLElEMEEURv5eZAAB1Fjs2H6wIaD9aPQUE5goQRZ3yfRhv5QMmsyIokKj3mCnw4ZYjeGT5DgDqARBnpsDqXSV4+svdbo/LGw02fc3yASIiipSIBwVeffVVPPzww5F+WSKKAcoT5kCX8KqZAg4x8B0SUdjEW6aAsgTAoNd5XaC/VnQQAFSDBz/sKwMA/Pe731WfK30KGw0SEVE0RDwoQEQtl691ud6ojyRkTIAoFsRbZoCS2tH7etFebTvnQr/B5t5vAJD3MJCVDzBTgIiIIiTgngIlJSUBPc9qje95xUQUuFCd42qdLPPCGlH0Kd+H8fa+VDYaFOFbQFMURdXtzKeDAWZFrwIn6bQGaaYAyweIiChSAg4KFBQUBDT+SxQ5NoyopQpVpoDNoX7FzWxTP+kmoshRvsvjLXNA7WNKGShQ02B1qG5nOR0UsGhkCqQam5qtSoMCar1TiIiIwiHo6QMdOnTwa/vjx48zW4CohVKeL79WdACDOmXDmODfBAKtTAGThUEBomhzu9Ie52tbUfQty8lksalu5+xRoBUUHdWrtetrveSiSaiCqERERN4EHBTo3LkzDhw4gO+//x7t2rXz+XlDhw7Fxo0bA31ZIopjypPcr3acxMc/H8V15/gXXNQMCpg9zwMnovBzzxSIL27lDxB9qu+vt9hVF/KW00EBtSzJKUM7YmCHLNdtWaNBZgoQEVGEBNxocMiQIQCATZs2hexgiKh5Uzth/seHv/q9H620WgYFiKIv3i9wK8sdGjMFvH9TWpkCzp4CaoWTtw3vIgsW6Dh9gIiIoiDgoMC5554LURTx448/+vU8X+ryiKh5CnejQZYPEEWf+6I6fv7dF0URK387qXK/9+eazHaPPQXUogLK5AFZ+QAzBYiIKEICLh8YP348Dh48iO7du/v1vAULFqC6ujrQlyWiOBaqxYHNrr4fZbDgzjc3Y8Pvp/DAhN648uz2IXltIvLCLf0+fny27Tge+3yn7D6tqQJKdRabavDA4iFTQKeICsjLB7wfLxERUSgEHBTo0aMH5s6d6/fzzj777EBfkojiXCgufNnsDleNrjdf/HoCAHD3u7/4FBSw2BxITAg4gYqIoNJTII6iAn9++2e3+0TIU/lH9szHt7tL3bYzmf3vKaAMCujYaJCIiKKAZ79EFDFqaf9GPxfhdRqzvoMhiiKmL/kJ/R7+Cq8XHQj5/olaEve1bHwvbh2iKPue0pIM6NYqzW07u0NUDXx6yhRwKx+QfByy0SAREUUKgwJEFDFq5QNJBv/GEdaHoW/A9/vKsGpXCRqsDjzwyY6Q75+oJVFr1BfPRFFe368X1Bf4do0yA1dQwIeeAmw0SERE0RBwUGDXrl0hOYBQ7YeIYp/aha+qeqtrjrcvpBMG9DoB/7ikV9DHdfhUvew2G3wRBc59pF98EyH/7FKm/Ds5HKJq4NP5+SaohBLcegqw0SAREUVBwEGBs846C5MnT8b27dsDev7WrVtx/fXXo2/fvoEeAhHFGa0a2Tc3HPR5H3WSTIEUgx7DuuUFfVwpifJshVoLRxsSBSqeewqoUY4kFARB9aq/VvmAc4SqaqaA4ra00aDW6FUiIqJQCzgo8MADD2D58uXo378/Bg4ciDlz5mDTpk2wWq2q25vNZmzYsAFPPPEE+vbti0GDBuGLL77Agw8+GPDBE1F80QoKPLT8N5/3US/pKZBi1MOQoH7Vzh/Kk3XXCDEi8pvyank8jSRUJy8L0Gl85GiVD9g8ZEJ5mj7ATAEiIoqUgKcP/Otf/8Idd9yBf//731i6dCnuueceCIIAg8GATp06ITs7G+np6aiursapU6dw8OBB2Gw2iKKIzMxM3HXXXbjvvvuQn58fyu+HiGJYKNYGZmvTCXZigg4Gfehbo5gZFCAKWLMrH1BkCuh1gmopQGP5gPvzra5MAffnKO9KYE8BIiKKgoCDAgDQqlUrPP/883jyySfx3nvv4bPPPsMPP/yAPXv2uG1bUFCA4cOH49JLL8W1116LpKSkYF6aiOJQKEZs2RxNC3aDTofEEAQFrHb5cZnDMOGAqKWK97WtQ5SXBagt7oHGdH+1rAjnFAG1x5T70uuaPs9YPkBERJESVFDAKTk5GVOmTMGUKVMAAKWlpSgpKUFVVRUyMzPRqlUrZgQQkdviOxDSMV0JesHnTAFRFDVP5s02u+I2MwWIAuWWKRDnUQFlpoBOUO8PoAweONlPBwvUgqLKUgRppoCnsgMiIqJQCklQQCk/P59BACJyozV3W6tGV4306plep4NB79uTHWLjKDE10pIEgEEBomAoRxLG+wVvEfL6fq3pA42NBtW/WatdVL3yn5ooPw1LkHxIaX1eEhERhVroi3GJiDRojR50iNqPKdkk2QYJOgGGBN8+xqRlB0oWxWuzfIAocMp1cSjKhqKpMVOg6bZeI4qpNX0AaPz8UWscqFPsK4HTB4iIKAoYFCCiiPF0kisdNeh5H00LeL1O8LmnQFmtRfMxZgoQhU/cBwUU0wcEQb2vgENU7ykANH72+bLIl/UUCEG5FRERkS8YFCCiiJHWyGanGGSP1fsYFJCm1Br86Cnw6ne/az7GngJEoaNcysZ5TAAQ5d+DThBUy5bsDu0AiM0u+jRiUJ4pwM8hIiKKDAYFiChipI0GUxITZCfAJovNp33IewoImqm8Skcr6zUfs9iUmQIsHyAKlPJqebxnCjhEURaM1AlAu6xk1e00ywfsDp9GDLKnABERRQODAkQUMUcq6lxfG/QCkhP1rtuBZAok6Hz/CPN0Pq7MDODJOFHglO+e+WuK4/o9JUI5fUBAQab7WGWbXdT8nLE5RLefgVo8U8+eAkREFAUMChBRRJhtdryweq/rdmZKoqzzts89BezyngK+8jQWTZkZwFpeosAp32qbD1bgm50no3MwIaBsNKjTCW5TAwDArjF2EGj8TFEGBRJVmqQmsKcAERFFAYMCRBQRG/efwuFTTSn81w5ujxRJpkAg5QPO8oNJg9p7fZ7W6fUXvx7He5uOKF6DtbxEgXN/t/3vh/1ROI7QECEPKuoE9QW9w6HdaNDqcLhd+VfrhyItH2CmABERRUrYgwL79u3Dhg0bcOjQoXC/FBHFsN9LTa6vu+SnYvK5HYMvHzh9Ap1k8P5RpnayfvhUHe58c4vb/TwZJwqc2rpYgO9ZPbFGVGQA6FQmDwDOTAH1fag1GlSbnCLts2JncJJi2dEtwL5vmkEnUSICgggKnDx5Eu+99x7Wr1+v+vgPP/yAXr16oWfPnrjgggvQuXNnnHPOOdi+fXvAB0tE8evwqaZ+Aud2zgGAwMoHVHoKJBv0Wpu7qJ22fLn9hOq28Vz/TBRtze3dI6JxsoCTIAg4I0el0aBDu3zAqtJoUC1TQNZTgOUDFKsObwReHQW8cTWwYUG0j4aIQiDgoMDrr7+OG264Abt373Z7bO/evbjkkkuwd+9eiKKInJzGBcDmzZsxevRolJWVBX7ERBSXquqtrq9zU40AoMgU8K18wK6YPgAASb4EBdSuXmpcvLTyZJwoYP681+KCKM800gsCLuvXFr0K0mWb2R3amQJWu8Mt2Kg2jUDWU4DBSYpVn/4ZrvDfV/dF9VCIKDQCDgqsXbsWSUlJuPbaa90ee+ihh2AymdChQwf8+uuvKC0tRXl5OS6//HKUlZXhhRdeCOqgiSj+1JqbFv3pSY0ZAvKeAr5lClgll+wS/AgK5KYm+rR/gGm7RMEQm1mugMOtfABI0OvwxczhGN+3wHW/XdTuKWCxuQcFLjqztdt2HElIcaG+ItpHQEQhFnBQYNeuXRg0aBBSU1Nl91utVnz88ccQBAHPPvss+vTpAwDIysrCkiVLkJqaii+//DK4owbw3HPP4aqrrkL37t2RmZkJo9GIjh07YsqUKdixY4fm85YuXYohQ4YgLS0NOTk5GD9+vGYJBBGFjjQokOYKCvhfPqDWU8Co0vRLacjpkgVfMFOAKHBq6+IDZSb3O+OE2vQB5/+3yWwqI/BUPmC2OWT7SE3U464x3d22k/YUkAZAiYiIwingoEBJSQk6dOjgdv+mTZtQX1+P5ORkTJgwQfZYVlYWhgwZgr1797o9z1+PP/44VqxYgZycHIwePRqXXnopkpKSsHTpUgwcOBArVqxwe86sWbMwZcoUbN++HWPGjMGQIUOwcuVKjBgxAsuWLQv6mIhIW02DJChgdM8U8LV8wCYrH2j8CPOpfEDlPkGrYRiv0BEFTG1hrNfHb/2ACFGW6i/92JAu4m0OUbPnWoNVHvRcOetCtEpPcttOr2OmABERRZ77oF0fmc1mVFdXu92/YcMGAMDAgQNhNBrdHm/dujXq6urc7vfXJ598gkGDBiEpSf6P6oIFC3DnnXfitttuw6FDh6DXNy4WVq9ejblz5yI3NxdFRUXo3r0xQl9UVITCwkJMmzYNhYWFyM7ODvrYiMhdTUNTT4FgygfsKiMJDT4sONQWKlrPYi0vUeDUFrNaHfvjgSgqRxI2fS86ySLe4WH6QL0iKCANJkhJmw/yc4hiV/y+n4lIXcCZAu3bt8cvv/wCh6L2dtWqVRAEAUOHDlV9XlVVFfLy8gJ9WZcLLrjALSAAAHfccQe6deuGY8eOyZogzpkzBwAwe/ZsV0AAAIYOHYoZM2agqqoKixcvDvq4iEidvKeAAYC8fMDXkYTSjtzOq2paV/yl/Dm/tjFtlyhgakGBeL7qfaSiHtJTHb3k8yZBMS1Aq6eA8vNNpxEUYKYAERFFQ8BBgZEjR+LIkSN4/PHHXfdt2LABX331FQC4lQ44/fzzz2jfvn2gL+sTZ3ZAYmJjY7GGhgasWrUKADBp0iS37Z33LV++PKzHRdRSORwiTpksrttq5QN1PpcPNJ2dOzMEfLkKqXayrvU0nowTBU4tK8cRx++p345XeygfkF/Z1+opoMwU0Gt8+LCnAMWH+H0/E5G6gIMC99xzD4xGI/71r3+hU6dOGDx4MC688ELY7XYMGTIEw4cPd3vOhg0bcPz4cZx33nlBHbQnS5cuxe7du9GjRw906dIFQGNTRLPZjPz8fNWAxMCBAwEA27ZtC9txEbVUp0wWdLn/C1nzPmdQIFkWFPAxU0Clp4AviYyqY9J8eA0i8o9NpVGn2vi9eFItGakqDUJKpwVY7Q6fywe0eiwkSMoHGJwkIqJICbinQI8ePfDhhx9iypQpOHToEA4dOgQA6N27N95++23V58ybNw8AcMkllwT6sm6eeeYZ7NixAyaTCTt37sSOHTvQtm1bvPXWW9CdXjA4j00rQyE1NRVZWVmoqKhATU0N0tPTVbdzck5UUCouLkbXrl2D+G6Imp97P3QPtjl7CiRLGgRW1lndtlNjt7v3FNCphDffvv08LPr+d3yzswSARk8Bjat1LB8gCpxaACDeF7jSoKU081/az8RmF5Gg0fO0zuxbTwH3xoWiT+VRRJHFv0mi5ibgoAAAjBs3DocOHcL333+P0tJStG/fHhdccIFrMa40efJk3HDDDRg9enQwLyvz1VdfuUoDAOCMM87A66+/jkGDBrnuq62tBQCkpKRo7ic1NRWVlZWora31GhQgIt99/dtJt/ucmQLS+tlfj1b5tD95psDpngIqJyhJBp3sZPql1fswvm8btM5w70Xi6TWIyD9qAYB4f09JG6VKP7fk5QMOzfMfaU8VAEjUq2+nVwQL7A5Rlo1AREQUDkEFBQAgKSkJY8aM8Wnbyy67LNiXc/PNN98AACorK/Hrr7/ikUceQWFhIR577DH885//BNBUS+wp2q7VHEjNjh07VO/XyiAgasku7JGPtXtKZfc5U2R/L62V3e/LVTFpT4EEV6NB9+0EQZBd0Ss3WXDfR79i8dRzJNtovIZK+jMR+UYtKJCf5j6NKJ6YbU2fO9LPKIOsfECEXqf+2SENCugEeZmAlDKDwObQzj4gIiIKlYB7Cmix2+0oLS1FWVkZ7HbfaoRDISsrC8OHD8cXX3yBQYMG4YEHHsBPP/0EAK4r/yaTSfP5zjGJaWlp4T9YohakV4E880Z6heySs9rIHrP6sBiXXnF0nlirNRrUCe73r95VIrvNngJEoadWqjPurIIoHEnoSD8T5D0F5JkCWmUStQ1NQYHEBO1TL2WwIN7LLqiZYkkLUbMTkqDA4cOHce+996J///5ISkpCQUEBWrduDaPRiP79++Pee+911fWHm8FgwHXXXQdRFF3TBDp06AAAOHLkiOpzTCYTKisrkZWVxdIBohBTpsNKr6y1ypBfPbQ5vNfyq/UUUM0UgCCb+e0Puw/HQUTq1DJttEbwxQtpnxHpt6JXjCTUCihKMwW0SgeU+3Puk4iIKNyCDgq89NJL6NWrF5555hn8+uuvsNvtEMXG5jgOhwO//vornnnmGfTs2RMvvPBCKI7Zq7y8PABAaWljynLPnj1hNBpRWlqqGhjYsmULAKBfv34ROT6ilkR5tV46ccCgqL/1N1PAeQKtlikgCECqMbC8WyuvzhEFTHUkYZy/pSrq1KcPyBoNOkTZlX3p4r9GGhTwUA/gXj7AACXFoDifJkJE7oIKCjz11FO466670NDQgGuuuQYff/wxDh8+jIaGBtTX1+PQoUNYtmwZrr76algsFtx999144oknQnXsmtauXQsArkkAycnJGDVqFADggw8+cNveed+ECRPCfmxELY2yE3mSZOKAsoGWL13/pVfxnc9XuwgpCEBqonvbFOlrSOuEZa/Bq3NEAVO7Wu5P355Yp9NqNGiXlw9IA6C1kkaFRo/lA+6NBomIiMIt4KDAjh07MHv2bGRnZ2PNmjV45513cPnll6Ndu3ZITEyE0WhE+/btccUVV+C9997Dt99+i8zMTDz44IPYvn17UAe9bt06vPvuu7DZ5N18rVYrXnzxRbz++utITk7Gdddd53ps1qxZAIDHHnsMe/fudd1fVFSEV155BRkZGZg+fXpQx0VE7pQL/ZRED0EBH06AZT0FXCfkaj0FBKQY3YMCFsnxtMlM9voaROQftYWsWvZAvNIaSWi1yzMFpJ91JslIQo89BRTZU/wsopjEngJEzU7AQYEXXngBDocDb7zxBoYPH+51+xEjRuDNN9+E3W7HSy+9FOjLAgCKi4tx/fXXo02bNrjkkkswefJkXHzxxejYsSNmzpyJxMRELFmyBGeccYbrOWPGjMFdd92F8vJyDBgwABMnTsT48eMxYsQIWK1WLF68GDk5OUEdFxG5U57UJhs8lQ94zxSwqfQU0MoUSFMpH3h5TbH312DKLlHAmmP5gJSs0aBOu9Gg9LPO154Cys8y9hQgIqJICHgk4erVq9GrVy9ccsklPj9n3Lhx6N27t2uMYKAuvPBC3H///Vi7di22bduGsrIyJCYmolOnTpg0aRJmzpyJbt26uT1v3rx5GDBgAF566SWsXLkSBoMBo0ePxuzZszFs2LCgjomI1JXUmGW3O+Smur7W6RrHBjrPo305Abar9BRQG2MoQECqSqbAC6v34c6R3ZBk0EOE+usxZZcocGrv4+aUKSD9uJFmO9nsoqxcKkkrKOAhU0AQBBj0gqu/CgOUREQUCQEHBY4dO4bLLrvM7+f17dvXNRUgUJ07d8a///3vgJ47depUTJ06NajXJyLfHD5Vh8+3HZfd99exPWS3DXqdq7bflxNgm489BXQCkJ2SqLoPs9WBJINe8+qlLxkLRKROLQDQjGICsgkB0gknVkWmgLR8QMpTUMC5f2dQgAFKik0sHyBqbgIuH0hMTITZbPa+oYLZbIbBYAj0ZYkojrzx40HZ7RuGdECnvFTZfdKTaostsEwBtekDCXod8tONbvcDcJ3PaDU/44k4UeDU6uAdzeg9JS8fkGcKWCTNS9V6mgCeywca9ykJNLB8gIiIIiDgoEDnzp1RVFQEhx+pbQ6HA0VFRejSpUugL0tEceRQeZ3s9tkdsty2kaXf+vB5YpX1FDj9EaZy0SJBJyAvTSMocJrW1Us29yIKnFoAIF7eUt6u4gPyzKQEvXwBL51okp6kERTwIVPAiQFKik38uyRqbgIOClx66aUoLS3FnDlzfH7Os88+i9LSUo7+I2ohslPl6fvdW6W5bePvVTG7bPqAdqaAXiegXVYyMlROzJ2ba/UUYHMvosDF8/QBo5er+IC8h4lBEdQ0W5umDKh99gDegwLKfRIREYVbwEGBv/zlL8jIyMB9992HJ554Ana7XXNbu92Oxx9/HPfddx8yMzNx1113BfqyRBRHlOuAAWdkuW0jOwH2ZfqA5CRZ76GngF4nIDFBh6XTz9Xcl9b5NjMFiAKn9v7RKtWJNb5kCui1pg/YRTRIMgUyktRLJf3JFOBnEcUm9hQgam4CbjSYm5uL999/HxMmTMDs2bOxYMECXHPNNRg0aBBatWoFURRRUlKCzZs344MPPsDRo0eRkJCAd955B7m5uaH8HogoRkkXAn8c2VV1SoC8fCCwTAFB5QTFeWKtFogQT5+3a129tPPqHFHA4nkkoS+HKZ2kKg1qWu0O2feuVT7gLRtBGWggIiIKt4CDAgAwZswYrFu3DlOmTMGuXbswb948t22ci4KePXtiyZIlOPdc7at2RNS8yJoCqgQEAMAgKx/wJVPAvaeAWqZAgtqdpznLBrSCEDwRJwqcaqPBOMgUOHyqDqdMFq/bSYOb0p4CFrsDYtPkQbfyKSejQX0qQdM+2VOAiIgiK6igAACcc845+O2337BixQp88cUX2Lp1K8rLyyGKIvLy8tC/f3+MGzcO48ePV71KSETNl3Rmt9b7Xznn2xvpNs7nqu1b7ykocHoX0sWLfDY4T8SJAmW2ugf34uEtdflL3/u0ndb0AWXcQ2skqtaoQid5+QCzligG8XyeqNkJOijgNG7cOIwbNy5UuyOiZkB6kqy1SJelyvpwAmxTGUmodn4i3a+S86qlXZKZYEzQw2pvvMznS28DokgQRRG/Hq1Cx5xUZKbExzjfBpt7j6F46ClQUWf1aTvpR5nBQymAVlAg2VumgM6/QCkREVGwAm40SETkjTT1VevCvSHB3+kDTQt2b9MHtDhfRRpgSDJIgxM8EafYMHflHlz+0g+48NlvUeXjojXa1DMFms97StZoUK8V7BSQnaoexEn2minAzyKKcc3o/UxEjUKWKbB+/Xp8++232LlzJyoqKiAIAnJycnDmmWdi5MiR7CVA1AJJFwI6jUW6wc9UWV8zBXwpH5AGLYwJTSfqrOOlWPHC6n0AgMo6K+at2oN/XdYnykfkXYPVPVMgmm+pkpoGVNfb0E1lJGogZCMJNTKSUhL1SE1UP8VK8pIpYGBPASIiirCggwLbtm3Drbfeip9//hmAe4qg8x/PIUOGYNGiRTjzzDODfUkiihOyoIAPPQV8yxSQ9gHQbjToISbg+pySBhiMBv8aHhJF2o6j1dE+BJ/UmG1u90UrU2B/mQmXvfg9as02PHV1X1x3Toeg9yn9bNHKFEhPMiDNqH6KxZ4CFPfYU4Co2QkqKPDTTz9h1KhRMJlMSE1Nxbhx4zBgwADk5eVBFEWUlZVh69at+PLLL/Hjjz9i6NChWLNmDc4+++xQHT8RxTCfpg/o/Ru/Jd2mKVNAvu8EneCxsalzD9LjS2KmAMW4Y1X10T4En1TXu5c5RCvb+N+f/4ba00GKf3z4q2ZQwJ+eB9KsJ62gQFaKAakaQQH2FCAiolgTcFDAbrdj8uTJMJlMmD59OubMmYOMjAzVbaurqzFr1iwsXrwYN954I3bs2AGdhyZgRNQ8SNfWmuUD0pFeKg3KlGwqPQWUe/ZUOgBIpg9IMgISE1jHS7FDFEW3lPvjVQ3RORg/rdtb5nZftDIFDpbX+bSdP4cnnz6gfi6TnZKIxASdbKqJk7fyAek+GaAkIqJICDgo8Mknn2Dfvn247rrr8Oqrr3rcNiMjAwsXLkRNTQ0++OADLF++HFdccUWgL01EccLhQ6NBaSqtyeI5KOBwyBdKeo1GgwleggLOBYrZ1hQUkKb6MihA0VRrtuGG/27AsUp5ZkA8LBC1jjFah+5rlrM/hyf9eNHrBAiCe1Ah6/SkiFRjAioVDSK9NRqUlVSxfICIiCIg4Mv1y5cvh06nw+OPP+7zc5544gkAjQEFImr+pFcHta7eZyQ3deiubvDcXd2uOPNu6ikg37dWVoKTcy/ShmipRnn5QDyMUKPmackP+/Hr0SqUmyxuj92/7FdUqaTnB+LL7cdx22ubsPK3kyHZHwBU1LkfMyCfGhKL/MlkUH7eqDUbTE86HRRQaTboT0+BeAgEUUvEngJEzU3AQYHNmzejZ8+e6Ny5s8/P6dKlC3r16oXNmzcH+rJEFEekV+K1ggLpSU0nzTUN7g3KpJQnyFrTB7xlCjgX/PWyoID85J3ZAhQt64vLNR9768dDWLju96Bfo85iw4w3tuCbnSdx+9JNMPtQuuML5VVxJ1+aiEZTUEEBlb4CzoW/NNjo5L2ngH99Vogij3+XRM1NwEGB48ePo0ePHn4/r0ePHjh27FigL0tEcUIURew5Weu6nZ9mVN0uI0mSKeDlCqhyKkCCRlBA76VnifP8v8GqXj4A8AodRd7hU3XYuP+U1wXqi6fHFAZD2Z+gSmMx7696jRIgW4xP9PAnMUj5eZOskg3gXPirNRv03lOAmQJERBRZAfcUqKqqQmZmpt/Py8jIQHV1fIxVIqLA2R0iymrNrttd8lNVt8tQyRSw2BzYfaIG3VunyU6gNTMF4LmnQMfcFFnDMecCQBpkSElkpgBFz4EyE0bNWRO12vtQsdg1ggJR+saUnw1a/AkKKLOe0ox6lNXKt3H2DVAbS+i1fIA9BSjmsXyAqLkJOFPAZrMFNEFAp9PBZvOcIkxE8U+ZLpyZnKi6XbokU6DmdE+BP7+9BZe99D0m/ucHWbNC5cLC1VNA8VGkPGkf27u17LZ4OvVRGhRQpvTG+pVNal4e/ey3qAYEQvXSFpv6niy22H4/BVM+oJYN4MoU8JBFoEWWKcDyASIiigDOBSSisLAoFtWJevWPG2lPgap6K0qqG/DVjsbGZ7tO1ODgqaYr/FqZAsqTdGVQYEZhV9lthytToGl/yYny42OmAEXSkYp67xudpnb12V/K63yh6qupfN87RS1TIAzTB5QfZapBgdPZAClqPQW8TR/QcTwqERFFVlBnFq+99hpee+21UB0LETUjyvp/Q4L62XlOalMGwSmTBaWSkgNAXqOs3KdecJYPyCnLB/LSjEjQCa4TbGejQU+ZAqzlpViVmKCD3SHiiS924kB5He4b3wtd89P82ofg62rZT1oZAbGeeeNPpkCCIjUpVWWR7/w8UQZwBAEwJni+HiP9/LKxfICIiCIgqKBAoCO7wnUyQkSxQ9k126CRKZCf3tSAsKLOivJa+UgzaVd06T71OsE1elD5maI26aAxm+B0UEBlf0ZFUEAZgCAKJ9GPa9V6nYBPfzmKhd/vB9DYoPCru0eE69D8ohUUiPXpA6Ifb/cExbSBNEkJlFNyonqjwWSD3us5kLSnADMFiIgoEgIOCjgYvSYiD7QmBShJgwIAcEhSLgDIxxpKr5pJ96fcter4Q8ldzoCmNNXZmKCDTmgqLWCmAMWqBJ2Ad3867Lq9+2RNFI9GTrvRYGyfM/gTlFEGOKXNUp1yT2dAKbMIvE0eAAADewoQEVGEsacAEYWFdMGdqNdpXh0zJuiRmdx0pe1whTwo8MO+MtfX0quN0hNz5b6VV/IAeYmB2vQBg14nSwuO9Sub1Lz42/3emOB9cenX64eo1aB2+UBsv5+UMcC/jtUeuawMcGYku2cKOIOdykwBX/pB6NlTgIiIIoxBASIKC+mCW22RLiXNFlA2XJPOZJcuLKT7dMsUUAlASJsRqpUPGPQ6WYYBMwUokuos6lfY1SToBCR6qUv3JlxFfBbJe0raXFSrAWGkOTTe18pyyNuGd9HchyFBmSkgDwoIAtAmMxmAe1AgXSWrQClBz54CFONYBkzU7DAoQERhYbWpX9VX08pDUEC2T83yAe89BaSbOFQaDRr0guxknD0FKJIq6yzeNzrNLopem9VFizRTQNp5P1qZAsosohdW71XdThkr8LTmMSgaDWYkyxf6rdKNrqBNliKLwKegAIOTREQUYbF5VkFEcc+iSM33RJYpoOgpICXLFNBp71M1KCD5WhQbrwz+XmaSHaN0oWWO8bnq1HxYbA6Y/MgUsNtFn2rTo0EaFEhNbFoAx8oV73nfqAcFlJkCnoICysynTMXCv11Wsuvr3LRE2WPpKk0J3fYvnT4Q42UXRETUPDAoQERhYZX1FPCcaigdS1hu0r5iatMoSdApggDKzAHlfaIIfLTlqOzxxqBA00JLOvWAKJz8yRIAGuvMlZkCgU4Danp+UE93kQUFJJkCsd6jQ3l0OkHAXaO7q26r7CmQlSxf+J/dIbvpsRRFUIA9BYiIKAYxKEBEYSGr1/eS6uzrVU+rQ6PRoGI7taAAFOUDf33/F9nDCXoBSQZJpoA1Nq5sUvNXWW+V3e7eKs3j9naH6NZo0N/MlnCVBEunD0jr6bUaEEaDWl8BhzJTAMDtI7rg3nG93LZVliRkpciv/vdrn+n6WplFoAxgqkngSEIiIoowBgWIKCyUnf09SfTweLbkhFuWKeChp4BaZYG3U3GDjpkCFB3/+2G/7PZXfxnhcXubQ4TRIP8jr/ej/EBNqJae0owAaQO+eqtds8lfpNU02NzuU6bp63UC0owJmHFhV/Ro7TlIowwKdMhJcX2tDAr48jOQ9xSInWAKERE1XwwKEFFY+NNTwFMndemC3yqbPtD0HIOiPEHtPFp6dU95VRAActISZZkCDcwUoAh5e+Nh2W2dTnCbby9lVykfqLcGGRQIUf2ANCNAuVhuiEKgTS0YWFnvXq7haYSqtzGCbTKTXYGA9KQE9CxIdz1m0OuQIWku2CU/1esxS3uixHrZBRERNQ8MChBRWCg7+3viqZO6NC1a2qxMuk9leYJdZYEjzdqtrLO6Pd4mI0lWxtAQ5CKLKBjJidoLUZvDAUGx3PVnpKGaUPUUkL5flVfJgz3GUNl6uBKHT9XhP9/uw69HqgB4/rzy1hxQrxPw/oyhePzKvvj0T8OQovjd3Ty0IwCgc14qbj6vk9fj4/QBin0cSUjU3HjveENEFAB/ygeUs7ylpItz+fSBppMSZfmBWoqu9MrfwXKT2+M6ncDpAxQzUhSZAh1zU3CwvHEyh90hugW+/C0fUAYBwtNoUP6+jsYCV613wqvrfocAAb8ercIzX+3GDUM64KIzW7seT1B8nvgyRrB1RhJuPLeD6mP3XNwLt17QGVkpiaqTUZSkr8+eAkREFAnMFCCisLDapE0BPZ8I92mbofmYzSG6eglYZdMHmj6+lEEBtUwB6RFs+P2U7LG/X9ITAGIqU6CkugGbD1aELK2b4otyQf36ree6vrY5RLe/izqLe528J8q/KjFEXQWkafjJigai0VjgqgUith+txq9Hq1y33954CM9+vdt1WxnEHN+3jetrT59VnuSmGX0KCADsKUBERJHHoAARhYU/PQX6tM1Ep9wUzced+7I51AMNyo7e3jIFDlfUub7u3z4TM0Z0BSAfH3asst7jMYdTea0ZY55bi6sXrMczX+32/gRqNmZc2Pi3ePN5HV33jeyZD73k710U3WvN6/wMYimDCqHLFGg6jiSD9wyecJN+DjmpLex3HKt2fa0coTrurAL84cIu6Nc+E/+4xH0aQaixpwAREUUagwJEFBb+lA/odQIeueIszcedTf/k0we096maKSA5zy+vbWo0NqZ3a1dQoX12ctM2Jv9mx4fSf9f9jurTHdLnrymO2nFQZBRkJLm+Ht27FQDgmsHtccOQM3BBt1zcP7637OoxAJjM8swAv8sHvNwOlHQRm6jXyRa40cgUUBuFePhUncqWTZIVpRuCIOC+cb3x6Z+GYUSP/JAenxrpSEL2FCAiokhgTwEiCgvpybinRoJOw7vnISVRr9qMzDke0KrRU0BJ5eKgrHygrNbs+jonrSk7QFo7rDa2LFJKq83eN6JmQzo5wJlyb9Dr8MRV/Vz3l9bI/yakf8OA/038lHEztYkcgZC+7xMT9NDrBNfCNhoLXLWgQLWX97ayQWKkSQOe7ClARESRwEwBIgoLs59BAUEQkC1J35ft63SmgHRRkeChT4FamrJ0tKH02KSvKR09VmuOXlBg+bZjUXttijxpUECZcu+kDILtK6mV78PPngLK3IBwNBpMTNBBL0T3qrda+YA3GVEPCkiyKwI4fiIiIn8xKEBEYWGW1BYbE7Rnrksp03adnPPNrQ71RoNKagEDtS7kjcfWtB/p6LHaKGYKsI645bA7RNlCOsmg/h7QK/6mK+rk5S3BjvsLVaaA2S4PCkR7vJ5apoA3aR6moUSCniMJKdZxIiFRs8OgABGFhax8QOPqp5JWSYDZ1VNA0mjQQ/mAWg8Dra0TJUGBWMgUKKluiMrrUnRIg2eAe8d+J+V7QxkE+PVolayPhzfKGMBFc78LycQNWaaAXpA1AWVQwDcGjiQkIqIIY1CAiMLCLFsc+PZRo9WQ0Lkvm8ZIQgDonJfq+npgh2y3fQgaqQLSY5P2FKhusPpwxL55ZW0xLnhyNeav2ed120NemqBR86JsEKiVLaMcZ6cMCny27Ti6/3OFz4tgtaXmS6u9/316Y/WUKRCF8ZqBLKqV4yAjTc/yASIiijAGBYgoLJxX9wE/MgU0+gQ4r2BaNUYSAsCMC7sgQSegfXYybh/R2W0fWuUDnjIFlGPbAlFS3YAnVuzC0cp6PP3lbhyp8Lzor6gLXTCCYl+94up8kkapjadpG1I/7i/3aTu1P+2Xvg0+KCDPFNArMgXiY4Eb7aBAQpQnNhARUcvD6QNEFBaB9BQwaCx8nJkCVpv2SMLrzumAy/q3RbJBr5oV4EtQQJopIIqNV2ODXSAcr5KXA6zZXYqbJDPolZS14tS8SVP2ExN0skW0lIdqGZkTVb6Vn4ghG0Iop2w0KO8pEJaX9CjNmOB3KVCa0bfPq3CRZkGxpwAREUUCMwWIKCykXb99mT4AaGcKOAMM3vaZkpigWSag86F8IC1JHgAIRV8BZZ336l0lHrevZFCgRam3NP19aPUTABrLXzyN4XSq9DHTRC1TQCtw5g+LonxAmgpfb7Vjx7GqkGTg+GrSoPZ+PyfNGN3pA3pmChARUYQxU4CIwkJWPuBjUEBrUdJwel/Kq5D+8KXRoDFBj0S9zrWwqWmwoXWGXy/jRlnjvXpXCURR1AxesHygZWmQZNR4CgoAjUEzb4tEX0fwqa3LM0Mwis+i6CUiXeBOWbwRAHDNoPZ45pr+Qb+WL7SmOXiSGu1MAfYUICKiCGOmABGFhUkyN12reZqSTWMUnytTIJiggFamgGI/0myBmhA0GzSrnNQfKNfuK6DMFIh2J3QKL2mjQW/vk9YZSV7353ujQff3Wqt0o0/P9fj6skwBwa1BIgC8v/kIHBG6Ah5ImUS033PMFKDYx5mERM0NgwJEFBbSNObM5ESfnqM1K92ZKWAOKiigfr9yMkKoxxJaVRZpntKnK0zyQISyoSI1L9JGg94yaqQTNrTYfGzmp/YnqPexmaH2PkW3RoN6jTdeVX3sZsREu9GggT0FiIgowhgUIKKwkC6ofb3ypnVVzJkpEMiYQydfygcAebPB2obggwJq6dyeUryVjQa5KGjepI0GvWUK+BIUsGpk2/gi2FR15WsrewpIhSLg5pMAfhwxlSkQxO+TiIjIVwwKEFFY2D2MD/TlOVLO/gSyRoN+1gprlQ8YPGQK1IRg4aKWzq2cMS+lbBQXhdHuFEGyoICXv+nxfdvIbl/cp7XbNj6XD6j8XSmbYvpLGezyFBSQTicJp0DePrlpvmU2hYt8JCF7ChARUfgxKEBEYSG9apjg41V9raucDa6eApJUaz8zBbQatyszDtJlPQVCP30AABo8BAXcMgUYFWjWZD0FvAQFzumUg8VTB2N49zzcMrQj/jKmh9s2PpcPqCyXg8kyANwDEsqRhFLSqQvh9OP+U35tLwhAgQ+9G8JJOoXFISJi/ReIiKjlYgcrIgoLu2Rx4ssoNeVzpMwhmT7gfgwGveA2F17WUyAU5QMqV26ldeRA40m/TidAFEW3TAGtPgvUPNRLpnT40il/VK/WGNWrMUOgtMbs9vgbGw5BLwh48LI+mlfpAfVMgWCvSiv/1g169UaDgHzqQjj9crjSr+0Nep1mVlGkJCh6O9gcIhJ9/AwlIiIKBDMFiCgsbLJMAd9OaJUnw07Oq+3KGej+UDvPV+tLkJ7UNJat1hyC6QNeggIvrNqLfg9/jSe+2Il6q90tBZvZw82b9G/B3/F50qwWqdeKDuKzbcc8Plct1BRs/boyK0Y5klCq3kO2TDT5m4EUDsqfGfuKEBFRuEX/X78A1NXV4eOPP8b06dPRr18/ZGRkIDU1Ff3798cjjzyC2tpazecuXboUQ4YMQVpaGnJycjB+/HisX78+gkdP1DJYZZkCvn3UnN81V/V+52LFbA2i0aBKVEAtsCAdSRiS6QMqCy1nT4EGqx3PrdyDWrMNr3z3O3Yer3HblpkCzVuDLCjg39+0pyDCh1uOenzu0vUH3O7z1ADTF8pGoIIgaAbvGqyxERTIUARW/A02hoMys4p9BSjmRDmbhohCL/r/+gXgrbfewpVXXonFixfD4XDgkksuwfDhw7F//37861//wjnnnIOSkhK3582aNQtTpkzB9u3bMWbMGAwZMgQrV67EiBEjsGzZsih8J0TNl/Tqlq+ZAhPPboeURD2SDXqc3SHLdb8zwBBUpoDKfcomg4C8fKA6TOUDzgWRcmFUXOIe0GRQoHnZV1KLu9/diiU/7IcoiqizNP2NhXIUXnaKQfMxh0PERz+7Bw2CzRRQK+/JTFY/DmUJTTj4coVd+R6PhbWOQfHZ5mvzSCIiokDFZU+BxMRE3HHHHbj77rvRvXt31/3Hjx/HpZdeip9//hl/+ctf8NZbb7keW716NebOnYvc3FwUFRW5nldUVITCwkJMmzYNhYWFyM7Ojvj3Q9TciKIou0Ju8DFT4Kx2mfjx/tEAgNfWH8DPhyoBNC1WpCfH3ma6K6kFJowqV2ZDP5LQffHjTJ1WXpktN1nctnWIjT/PaNc5U2j84fVNKC41YdnPR9HvjCzUmZv+PlK8jCT0h9Z4TwDYfdI9I6XxOaGbPuAMCmSlqHfyl2b9hIu392+yQR+R4IS/khSfbWolSERERKEUl5kCt9xyC+bPny8LCABAmzZt8J///AcA8NFHH8FiaTrBnjNnDgBg9uzZsucNHToUM2bMQFVVFRYvXhyBoydq/pTrEb2PmQJAY01/epJBNrHAuVgJptGgWm2zek+BpqBAZX3wPQU8lQ8oF0bf7Dypug8mCzQfxaUm19fLthyFSZopkOh/nH5Ej3zV+z0tiO94Y7Pq/Va7CDGIPzbp+9M5hjQripkCNYqeIFcMaCu7nZOaiOHd82T3TT2/U7gPy6sEvXxqQ6yUWhARUfMVl0EBT/r37w8AMJvNKC8vBwA0NDRg1apVAIBJkya5Pcd53/LlyyN0lETNm7LhmCGAztnSk2KrSqaAv0EBtWwFY4L7ldlW6U3jyEqqG/x6DTVqqb/OK6rKK4CbD1ao7oNjCZsnm8PhChABQIrR/0yB+8b1Ur1fqx/GnpM1OFBe57p9ab82imNy/1vbdaIaz361GzuPV3s8FqtKpkC2RqZARIICisDIbcO6yG5npxrwwIQzXbfPyEnGHYXdwn5cvpBmQjVEIKuCiIhatrgsH/Dk999/BwAYDAbk5OQAAHbt2gWz2Yz8/Hy0b9/e7TkDBw4EAGzbti1yB0rUjClreT2NRtMirfe3qSyi/S0fUM0UUNlHa8mM8pIaM+wOMaDjd1JL/bXaHPji1+O4880tPu2DfQWaJ6tdlAUFAskU6N0mA3Ou6Y+/vv+L7H6TRlBg5W/ybJQLuubh823HXbdtdhHS/oV2h4gbX/0Rp0wWvPnjQWyaPVbz/WCxuTcCzdTobRCJq9/SwEirdKOsiSjQGLDo0Todux+7BHaHiJQAfv7hkmTQw+RsSBqh8Y1ERNRyxc6/gCHy/PPPAwAuueQSGI1GAMChQ4cAQDUgAACpqanIyspCRUUFampqkJ6e7vE1+vTpo3p/cXExunbtGuihEzUbyoZlCQGM+ZL2ALA5GtOaZTXLev+uqqr1FFALChRkNgUF7A4R5bVmtJIECvylzJpw3udrQADgWMLmymZ3yBbvgfYUUPvbVl4l13JelxzZbavDgWQ0HcexynqcOt3roqLOimOV9TgjJ0V1X7LpA6ezcKKZKSAtoUhLSnD7+TqDMGoZQ9EmnSwRif4LRETUsjWr8oEvvvgCixYtgsFgwKOPPuq63zmiMCVF/UQGaAwMSLclosBZFatYgx89BVzPkaT7W2wOt6Z8/pYPKMd8AerZBmnGBNkEghNBlhColQ+U1bo3FPRk08FTQR0DxSabQ54pEOiVarUpGjUN6v0wlGUFyoBXMBMI1BoNak1BiMRCV9qvIc3oHhTwdwRkJEmboDJTgIiIwq3ZZArs3LkTN910E0RRxDPPPOPqLQDA1TjJU/duf5or7dixQ/V+rQwCopYmFOUDykwB5eLa//IBtZ4C6vtonWFEbWnjguJEVQP6qScZ+UQtKPD5r8dVttR286KNOPDkpYEfBMUkm10+kjCQngKAesCr1myDwyFCp3jsSEW96+u7Rnd3e65yAoHyn0bl/qTk5QON22WnamQKWMK/0FVOdlAGXbQmI8SCpARppgCDAhRrOA2HqLmJ3TC5H44cOYJLLrkEFRUVmDVrFu666y7Z485yAJPJpPZ0AEBdXWPjpbS0tPAdKFEL4d5oMJDyAXlPAeXiOhSZAlr7kJYQnAwyU0CtfMCbQDIrKP7YHA6YzMH1FADUywccovxKudPhU01NBs/ISXEPCigyBZT9LDz9Zao1As1PN6puG4mr38rJDsrgZOe81LAfQ6CkWQxsNEhEROEW90GBsrIyjB07FocOHcK0adPw7LPPum3ToUMHAI3BAzUmkwmVlZXIysry2k+AiLyTZgoIgueri1oMiukDPx2Qp9D7HRRQWThp1RJLmw0GUz7wzW8nsWpXid/P06rDpualusEmq63P1Bjf541WFpxaX4GjlU2ZAu2zk90WysGUD8imD5wO6qUb1QMdEckUkE12aDwO58jBdGOC24jCWCL9bDKzfICIiMIsrssHampqMG7cOOzatQtXXXUVXn31VdWTo549e8JoNKK0tBRHjhxxazi4ZUtjw69+/fpF5LiJmjurZGERSJYAoMgUcDgw4w15Yz61K/8e96eWKaDRALFAGhSoMvv1Ok47j1fjtqWbAnpubpoRJTWBvS7Fj2OSBbogAHlpgQWDKuvUe1SoBQWkjQ2zUxIhCAIMesH1nlX2A1GGCHQeyvCki1dn0E4QBCQZdG5XuxtUympCTfq9pp7uJ/DPS3vj4j4F6NYqLbbLB5gpQEREERS3mQJmsxlXXHEFNm3ahIsvvhhvv/029BrdyJOTkzFq1CgAwAcffOD2uPO+CRMmhO+AiVoQaV2y2hV6X8h6CqhcvfTUI0SNWk+BcJYPLPv5aEDPAxrHp1HzJw0K5KUZA5rSAQDdW6lnuFWrNBuUpvg7y1Sk2QLKfiD+jMM8fKrp+0mVZAhkJbsvvhsinSlwujTDoNdhaNdczbKGWCGdPhCJ8Y1ERNSyxWVQwG6344YbbsC3336L4cOH46OPPkJioueI/6xZswAAjz32GPbu3eu6v6ioCK+88goyMjIwffr0sB43UUshXcQH0mQQkGcYKK9eBrQ/1fIBrUaDwZcPHKmo876RBgYFWgbp+rt1RuC/87PaZWLK0I7oki+vkVdOIHA4RNgkL+qcWiB7r9k9Nxr0FCQoq23Kbuma39SfR60sIhIjCWWZAgE2cYwWeVCAmQJERBRecVk+8NJLL2HZsmUAgLy8PNx5552q2z377LPIy8sDAIwZMwZ33XUXnn/+eQwYMABjx46FxWLBypUr4XA48OabbyInJ0d1P0TkH7WFh7+8ZQr4Sy04oZkpIAkK7CsJbExpMCfyWnPgqflqnZ7kfSMPHr7iLADAlfN/wM+HKgEA1fXy8gHlWE9nUMzze823zIHNByuwYvsJ1+1cydSBTJWxhJGokw/FuMdokZYPsKcAERGFW3z9K3laRUWF62tncEDNQw895AoKAMC8efMwYMAAvPTSS1i5ciUMBgNGjx6N2bNnY9iwYWE9ZqKWxC65sh9wpoBe3mgwWP5MH2iTKV+gfbD5CCYN8m8uYaCN1IwJOlwxoC2eW7knoOdT7PI0+rZVEJkCUulJTQtwZaaA21QQvTMoIO/fIaU8ZLVvYX+ZCZNeXi+7T5od4KznlzJHoqeAJX4zBaSNBpkpQDHHz/I9Iop9cRkUeOihh/DQQw8F9NypU6di6tSpIT0eIpKTNxoMsKeATnuhEtD+VDIWtIIC+elGdM1PRXFp4xjTv73/CwQAV/sRGCg3+dco8LrBZ2DyeR2Qn25Em8xkv55L8cFTKUr77NBkh6QnNf2zXq1oNKgc62lwZgrotDMF7IoogFpQ4MVVe93ul2YHqE35MEdgoVtnjt9MAaO00SAzBYiIKMzisqcAEcU26cIi0OZpoS4f8Gf6gCAIuHtsD9l99330K8prfV/o+zs9wGjQoV/7LAYEmrHjVdpBgQ4hKhnJkGQKKBsN1kpq7AUBSDldty57rykbDSrW7qLbPAL1Ras0U+Cqge3cHo9ESrwsU0AlWyGWJSWw0SAREUUOgwJEFHKy6QMBlw9oNz8LhFoZg1ajQQC4tG8bnNkmw3XbYnfg/c1HfHoti82Byjr3zu+eeDoWah7KPASKOuaGKijQdEW80iT/G5SOKExLTIDu9HvCU6NBZQ8Bh0p8Ti17QDrub+yZrfF/I7rI+gxEonxA1lPAGF+ZAtJGg5H4WRERUcvGs1AiCjl5pkCg5QPaVy+D3Z+TpyaIgiDgv7cMkt335Ipd+MCHwID0iqzUjed2cH19docs2WNqKdbUvJR6yDTp1ipN8zF/tM9uyjQpLpU3yZQFBSTBA72n8oEARxRKMwUEQcD943vjwzvOd90XkZ4C5jjOFJA2GmSmABERhRmDAkQUctJFvF4X2MeMdMGuXJgEQq2MwdtkhPbZKZg/eaDsvidX7PTYMA4A6izqQYG/jO6O8X0LcNXZ7fDw5X1kjyV7WbR4e02KbVa7A9/tKVV97IoBbUNW896zoCm7ZffJGtnfjTRYJe09IG806LmnwEmVvgjKP80EnaC6CJde/bY7xJBkAHkSz9MH2GiQiIgiKb7+lSSiuCAtHzAEming4Xl92mZoPqbFn5GEUsrFelmtBVX1Vll6tFKdxuSBVhlJmD+5MfvAvRO855+TzSEG/LOk6HI4RExasB6/HKly3TdlaEdkpybC7hBx+4guIXutngXprq9rGmwoqTGj9ekRm9JpBNIpBQZZTwHl9AH5iv9Pb/2MLQ+MlW+j6DOQlWKAoNKdXFkiY7Y5Ah5Z6o0oirKeAilxnCnAngJERBRuzBQgopCTlQ+EYPoAAGRLupnfP753APvzr3zAKdngvpgoN1k8PkcrKKB87XFnFQBorAO/YoB7MzapUGRLUHRsPlQhCwgAwBk5KfjLmB7460U9Zc0Bg5WZbEB+etN4w30lTSUE0kyBNEmNvcfpA4qL1KdMFrcmgco/zYxk9e9H2lEfCG9afL3VLstgSI2zngLSgKUlzBkVRP5jgJqouWFQgIhCTpqCrFzc+0o5GcAkGS/mLdVejVr5gC/N/TrkpEAZT6hQCQrYHSJmvv0zLpq7Fmt2l/h0TM9e0x8v3HA2PvnTMNfVXKcbhnSQ3Q5FXwVfrN51EiOe/hZ/fGsLbFyMhMTRinq3+8I5ZaJrfqrra2lQQNpTQFY+4KHRoFowqrjEJLutLB/I0ggKKN/T4ewrIP28AORBkHggb7Qavvf+l9uPY9hTqzHr3a1wMPBIRNRiMShARCEnXUwG3GhQ8Tzp1bJAOvUHminQNisZ91zcS3afWqbA+5sO49NfjmHPyVrM+2avT8eUakzA5f3bonNeqttjf7+4p+y2PYwLA6lbl2zCoVN1+HzbcXz+6/GIvGZzV6oydaBVhlFly9Domt/UtFAaFKiuVy8fkL7XfGkseLTSPcghlakRFEjQ62Tvw3AGBaR9PXSCPB0/HshKOsIYnJvxxhYcqajHRz8fxVqNnhdERNT8xde/kkQUF2SZAgHWDHsKJgQSFAi0pwAA3FHYFed1yXHdPqUSFPjWS3aA8sq/N8pUa2WtdyT8dOBUxF+zOSozuQcF8tLCFxTo0bqpr8CekzWur6slPQWkC3fpe9TqQ1Cgsk7596/sKaDdb0P63lWWIYRSrWzyQIJqj4NYJs3eiFSW0C9HKiPyOkREFHsYFCCikJNlCgTYU8DgoewgkPF9ak36/Gncl5vatIhTCwoIHmosB3bIwvRhnX1+LcA9iBGNngIceBAap2rd/15y07QXzsHq3lo9U6BKkimQkdyUTm/QaV+VVvu7q1f0AlD+nWhlCgCAUdKjwxzGrvqyyQPG+GoyCMiDopYIjG8E+H4nImrJ4qvIjojigrynQGBBAZ2H5wWWKeD/SEKp7NSmhY5aUEDL6F6tsGjqOT5v76TsxRCpq4VSLDEODbW/l/Qw1rh3b9WUKVBusqCs1oy8NCOq65uunksX7tIAVIXJgskLN2BfSS2entRfNVNAWa+v3MJjUECWKRC+xa4sUyDO+gkA8s+maGQJERFRy8JMASIKOXn5QOjTdn1N+5dSC04kqUwW0JLjJVNASyBNEQG4NTeMzvQBRgW8EUURFpvDY5O2MsXfS6+C9LCms+elJcrKE9YXl6Oq3oof95e77pMu3KUL0JfX/o4f9pXjZLUZC9bsc5s+AAD1knp9wL3EICvF16BA+MoH6iSBi9TEOA8KRKifCBERtVwMChBRyNlDMH3Ak0DKB9SCE/40H8uRLHQq3GqqtQU6H10QBPmoOJYPxJzVu07izAe/Qo/ZKzByzhqVWvtGpxQ9BeZdPyCsxyUIAkb2zHfdnvn2z+j/8NeyLvYdc5qaW0rLaKQNPTf8fko1U8DbyE3PmQKRKR8wyTIF4rB8QPLeV06ECNTK307i5kU/4pOtR0OyP2rB4qxHBxF5x6AAEYWcNQQ9BTwJVaaAP8GF7NSmGnC1kYRaUoK4SilN67ZHIYWYQQFtNQ1W3PXOVld9/cHyOny4RX2xJe0p8PnMYehVkBH247vy7HYeH+/aqiko4Ol9oJYBYVIEBZSbeMoUkAbiGsKYKWCyyBsNxptQjyS0O0TcvnQT1u0tw13vbFXNduLbnYio5WJQgIhCTpopoNb1PxgGvRDQPtV6CviVKSAJCpyKQKYAgOhnCnCZoOn7vWWoaZCn0W8/WuW2XYPVLltESxtWhtPQrrkeH5cGqzyVuNhVIkPK8gFRsU3sZQrEX1BAmtkUip4CdYrf2W/HqoPeJxERNR8MChBRyEmvbAU6klBLoEEG9fIBPzIFJGPWDp+qx/Eqz7PanYIJCuhlXeHZaDBWWGwOvPLd72737zjmHhRQXpGVNqwMJ0EQMOea/qqPXX/OGbLbyvGXUmqd75WZAsp+F5nJHkYSGiLTaFB6jPEYFJBOX7HaRbfAi78aFAGYBmv4sjSIiCj+MChARCEnTXUPdfmA8uTWV8rj0OsEv6YPSDMFAGDoE6uxetdJr89LDiJ1WRpQiU6jQVKqabDi5kU/YuvhSrfH9pXUol6xYK5uaBoDmJKoD6gfRqBG9mqlev/M0d1lt5M9BMcOnapzu0/5PUqvygP+TB8I38L0RFWD62tP5QyxShnEDPb9rwwCqGWAsF6IiKjlYlCAiEJOnikQGw2JlBkGSX72JZBmCjjdumST62utvkshyxSIYqPBqjor1uwucVsMtjQ7j1djzHNr8eP+U677BnXMRuLp4I1DBHaekKdl10pKDNIifMU6JzURbTKTXLdTE/XY9eglaJuVLNvOU1Bgh0qauTIVXVlO43P5QBgzBXadqHF93aN1WtheJ1yUActg3//KAAwzBYiISIpBASIKOfn0gdgICihPsv0pHQAa6649LZ60ruSFqqdAsFcKX1q9F6OeXYP3Nx32+Tmi2Ji2fNWCHzD1fz/h1iU/BXUM8cxqd2DWe7/gZHXTJIH22clYeusQ9G2f6bpvh6KvQI3kKnpaUuTT2P80qpvr6+nDOqv+3Xt6L6z8zT0bRjl9QJn94KkRqCxTIEw9Bax2B/aVNAUFerYOf2PHUDMogqmWICcQKJsVmswMChARUZP4K7QjopgnvaoV6p4CgVIGBYwBTDDISU3E0Ur1XgL1GlfeQjV9IJBmYzUNVsxfUwyHKOKVtY018Pd8sA2TBrWH4MNIKRGNV4qLS00AgKLfy2G1O/wqu4h3NQ1WzF25F+9vOixb4LfJTMKrtwxGqjEBfdpmYPPBCgDA9qPamQLpUahtn3xuR5zfNQ9ltWYM6pCtuo2nYJcaZVBgSOcc7Cup9em5xghMH9hfZnItgvU6QTZpIV4oPzeD7SmiDCoqsz2I/BMbwX4iCh0GBYgo5GxhHkkYCGUQwN9MAaCxSZxWUKC63qp6fzQzBf7x4TZ88esJt/utdhGJCT4EBUTRLe24pZUdP//NXiz+Yb/svqsHtsez1/RzBVbObNN0JXr3yRrZtrVRzhQAgM55qeicp70w9tRoUI10Qbn1cCXe+vGQ6/YfR3b1+FxpVkG4UtilpQNd8lIj2schVJSfm7YgMwWU5QfKwA6Rf1rYPwRELUDLudxDRBEjLx+IjY8ZZVDAU4qzFrW+Ak5ltepjCj2Ne/NGerXQ35riBqtdNSAAuDeK06L2ip7GFO45WYOHPt2B7/aU+rT/eLDw+/1u903o10aWadGtVVPNenFpraxTfDR7CvhKmSmg9t7469gerq+lC8rrXimSbac2+lP2WonSoEB4ygd2S/o69GoTf6UDgHtmkzXI8iG7ItOIQQEiIpKKjbN1ImpWrI7YazSoPMmWXk30lXICgZMoiiitMas+FqpMAX/Th49UuHeNd9IqdVBqXNsKKvepu33pJixZfwC3LN6ICpN6kKQ56NNWvtCUBgVqGmyyvwVZTwFjbHbBVwaurhzQThZEmzW2B64Y0M51u95qh+P0e1zZLNBbZlBSJDIFjje9t3sVpIflNcJNrxMg/VFag2zKqEw0qGf5AAUlNv5dJ6LQYVCAiEJOelVK2fU/WoJZnDtpZQrUmm2ajcBSQ9RTQHmlz5vKOvVyBsCPoIDkf133eQgKHCxvCkR8t7f5ZAtI6XUCctOMsvuyUhKRl9b0tyGtr5f1FIhS+YA3ylKavPREPD2pHzrnpeLy/m3xfyO6yAIHoqjdD8Db+z1J2lMgAuUDPVvHZ1AAUGYKBVs+IH++SSVTgAnhREQtV2yeoRBRXJONJIyRoIByIZercdXf4z40nlPdoH3VLajygSBGElZp9DgAfG8yJqpEABw+NhXwdbt4k5OaqLrw7ZqfhrLaxlGFu0/W4PxueQCAWnPT7yFWywcKMpJkt8tqLLjn4nay7ADl77POYldtount/S4vHwh9UKCmwSrr+9EzTjMFAMCgE+DMt1FOD/CXsidJSx8vSkREcswUIKKQC9VIwnnXDQjB0agLpKyhtWLx5FTrISgQTIaCPohGg56CAr4uxtTW9VpHoTy+ZhoTQKLG5IUzJSUFvx5pHEtYa7bhvU1HXPdHq9GgN+2zk2W3i34vd9smSdGsr05jpJ3XTAHJfnzNWPHHHkmjxzRjgtv3Fk+kmQLWEDcaNLF8gIiIJGLzDIWI4lqoRhIO1BihFgqBjNVTpn87F0DSq8FKysWUP6RNGv3tKeApKFBv8W2B8fmvx92CGloZAMpFSyDTEuKB1kK2f/ss19e/HKkEAMz5erdsm1jNFBAEAWN6t8Y3O08CAP48qpvbNjqdgGSD3vX911nVF5XegoCykYRhaDS4U9JPoGdBuk+jN2OVQRYUCO795PBh+kBzDeRRGMTx+4qI1MXmGQoRxbVQjSQMZEKArwIJCihHtzkXvlrlAymJeuiC+P7DlSngzxXa9zcfkd0WNdZxyp4KzXWBMaRTjur9/dpnur7+vcyEmgYr/vfDAdk2sdpTAACevLovHv8iAenGBEzo11Z1m1SjJCigkX7uLQgonXQQjvKB3SfkQYF4lijJZgp1poCvJUREqprrBzxRCxa7ZyhEFLdClSmgFhR44YazA96flLK5mi8S9e7P+XL7cc2reME2N5SWOESjp4AarZGEbpkMzeRCkiDIz38Le+arbtcpNxXpSQmoabBBFIGXVu9z2yaYppPhlpdmxHPXDvC4jbQfgFb5gNfpA2EOChw81dTssrtkKkQ8kn7+BRsUUAYVNUcSOuzAsZ+BvB5AUnyOcyQiIv+xpwARhVw4MwW65KUGvD+pJIP/H39q38o9H2xDjUamQDBNBoHgpg+c8jASMJjFmFZsQrloaSYxAYw7q8D1dWqiHpMGtVfdTqcTZNkCr3z3u9s2OWn+N7eMJdKghlZgyfv0AWlQIPTlA1V1TX/3WiNE44U0m8kSxEjC0hoz7nn/F9l9WkEdfHwHsHA08N9CwM5sAiKiloJBASIKOVmjwQAa+jkZVYICoSplVNu3N+lJ7nPmaxpsqG5QvyqfYgjuynAw0wc8BQVMGguCw5KrrFp87SnQXAiS8MafRnX3mPnST9JXQI1Wo8p4IQ1yaZWgeCvLkZYPhKPRYKUkQyYz2f39Gk8MIWo0+PSXu9xGEKoFdUSIwLZ3G2+cKgaKVwf8mtTMsacAUbPDoAARhVyoRhIm6AS3cw9diE5GkgMoH+jTNgNXDWzndv9xyQg0qRRjKDMF/AsKlNc2BQWeuKqv7LHnVu7BvpIa5VPw8tpir/vVKiVVllA0l5JTaRDE25/yiO7qpQUA0C4rGW3iPCggLYfRCix565uQJGs0GPqggLRsJislzjMFJIFLSxCNBpV9QQAfAzKW2oBfk4iI4guDAkQxbvPBCvywr0x1Znyski5g9brAP2YEQXBbXIbqxxBITwGdTsBz1w7ArkcvkS3YD2pcYQ+227xs+kAQmQKd81Jlae+1ZhvGPPedrCmb3SHi01+Oed2v1t+hTXEl0+pnuUOskgcFPEcFzuuSgwu65cruu7x/W1wzqD1evPHsoJpOxoIUH8oH1LJppKTvO7PN4dYVPxgOh4jqZpQpYAxB+cB3e0pV77faRbd9LvpeUfKiCy6oSURE8YNBAaIYtm5vKa5esB6TF/6I9ze5X+2JVdIFYTDlA2qCSTnulJvi+vrqgeq14b5IMuiRLbkKeahcPSgQbLf5QDMFRFGUBQXy0hKRn2502+7NHw+6vl5fXKbZG0FK6zCU0wdCPZLwtfUHMPzp1fj357+FdL/eSL8Nb0kqgiBg8dRz0LtNBhL1Otw9pgdeuOFsPHNN/7CO14wUaaaAVqO6jGRvmQLyhaY5iFp5pVqLTfb7iveggCEh+OkDtyzeqPlYveJ3aLMqyqAEniKSlvgOcBKRu9hthUxEuPvdra6v//7hNlx7zhnROxg/yHoKhPjqaDCd8+dPHoQ5X+9Gn7YZGN27VVDHkZNqQFmtGUA4MwUkPQX8SB8urTXLFumtMpJUAxTSTIFvd6lfUVTydfpAsHPVpUxmG/79xU5YbA68um4/LjmrDQZ1jMwiW/QjUwAAjAl6rLhreDgPKWrkmQJa5QPeMgXkC80Gqz3ohpxOFYo+GhkxPALSF6HqKaDFpPgsNUDx2cqgAGmKn8xFIvJNfP+LSdTMldVqN4uLZTZZT4HQnlj2bZfpfSMNZ7bNwKKp54TkOKSZAlpXxdOMwV2pDHT6gLRhYFaKARlJBnTISXHbrrKu6crgpoOn3F5b7fvydfqAv9MSPDle1SBLdd55vDpsQYHjVfXISDIg9XRAR/r9xnn2f9CkmQL1muUD/mUK1FvtCNVvcufxatfX7bOTgxqHGgsSgywf8FaaoQzsGKAI9AgsHyAiaini+19MIopJthCWDygXYrHSPMyXcWdpQV6plP7s/Okp8NvxpgyATrmNIxzHntka3RRz20tPZzpU1Vux/WiV6/6P/3gBNt4/GjcM6eC2b62eAsrMgFBmCpTWmGW3T1Y3hGzfUi+t3ouhT6zGBU+tdgVWZJkCLTwqIGs0qJEpkJbo+W/eoNfJMmBC2WzwlyNNf8P9vUyCiAfyRoP+BwU2Hazw+Lgy6ypBGRTw0FMgmBGJREQUexgUIIph8Tr1J5TlA2cFkRkQTr4EBdJD2Ghw/ppinxfD2w5Xur7u177x52dM0OP16UNwXpcc12MVdRbY7A4UFZe5rojnpiaiX7tM5KYZcWbbDLd9a08fUO8psPN4NY5UeB916ElJjfz7PlYZnqDA/344AKAxg+LNHw9h88EKfLu7qaxCiNc3ZIhIyweU9ehOvgROpNkCDdbQLS63Hal0fd23fWx+bvhDmilgtfkfZNu4v9zj47UNnssHfjpYpZlt8J9v9/l9PNSctOzPQqLmiEEBohBbWnQAf3xrC3Ycq/K+cTNlDWH5gHTM2xUD2ga1r1CKRKaAcub7o5/51mTvV8lV/36SK6ZtMpOxWFI+IYqNUwrW7ilz3Tese55rYXehyog9h2amgHxxZ3OIeGPDQYx7fh2GP/0t1mp0QfeFMlPgmMYIyGCU15pRLqlJf3ltMa5esF62TQtPFFBkCriXD9w2rLNP+5EGBYJpHColiiK2HZH+3cd/UMCgD67R4CFJGVFemhGDFSU3ZYoeDAZB/rt4fvU+LN+mPpHkfz/s9/t4iIgodjEoQBRCO45V4cFPduDzbccxZfFPQe/Pl8ZmsUiWKRBk+cAdhV1x9cD2mDigLe4f3zvYQwuZvDT3bv5K2SnB9RSQdh8HgM+2Hff6nDqLDXtONpUP9FcsjlISE5AqWdyV1JhlY8uGSwIBHXLd+xBoZwrIHzBb7Zj98XbXcz7XWFz4QhkUKDeZNbYM3J6T3meyp3pJjW/ukr1MH5hyfief9iNtNmgOUVDgQHmdbHpGML1HYkVikOUD0oyamaO74YM7zkdhz6b3t/J9pcwUECDihVV7/X5dIiKKPy37DIcoxL7afsL1tbMzfTDiMyQgv6oVbPlAqjEBc67tH+whhVwrlRF/QGOwoKzWjDRjAs7plKO6ja8SA2iUdvhUvasUIDFBhy75aW7b5KUbYTo9RnHHsSoclVx5H949T7btRWe2xte/nXTd9jVToMTt6n7gKf/KfVXUWTW2DNy+khqPjycm6DC0a27IXzeepCrKB5T9JXyNYcrKB2yhCQpISwe65Kd6nYIQDwxBNhqU9gxwjmeUBjNPVdXg8YSFyBcq8YjtZreeAno4ZNkGRC5xesGCiLQxKEAUQv40g2vOpJkC+maac52vEhRI1Ouw7M7z8dWOEzi/ax5yfcgm8ERZPuCLckkwKj/NqPrzz0sz4uDpoIC0OVt2igGtM5Jk2z50eR9ZUMBkblo4iKKI0hozMpINsuaSAGBWLPaCOYdUXtGsrLNAFMWQ1fiv21uKZ77arfn4nYVdMb5vG7efTUujLB9Qftz5+vtIlpYPWELTU2BbM2syCCh6CgSQKWCWBBKMp7MOpEGBjkeW49qE1QCA1kIF5qb8GZDE7nRwwKDXhfS9Rs2EVsoYEcUtBgWIQkhrNF2g4vE8TBRFWXAkkIVtPGiV7r5AzE834oycFNw2vEtIXkPtZ2e22WFM0O4KXioJCuSlqfc9aJPZdOw//t7UjExt0ds2KxlZKQbX+MKfD1egb/tMiKKI+z76Fe/8dBjts5MxXVFPblY0kFPe9oey0aDVLsJksSMtyEaOQGNA4OZFGzUff3pSP1w7+IygX6c5kI8kVMkU8HE/0vKBUE0fkDUZbAalA4CifCCATAF5UKDxdycNZp5T9pHr6366/eiYaVAEBUSkWsrR8PUjSO40BOg5zu9jICKi+NA8z9aJoiSQTAFRFPGfb/fhr+/9IpsvDwBCHBYQKAMjzTVToFWG0a3xXEeVGvxgOFN+pZQdw5XKa5uah2llKvQqSHd9XVxqcn1dkKl+Jfyqs9u7vv7x91MAgC2HKvDOT4cBAEcq6mVd+gH5ggQANh445fG4tVhsDtXSgzqz55+DksMhqo5T/GSre6+DedcNwD0X98SiKYMZEJBIlQRhas02KH+avvZACXX5gN0hYvvRatft/mc0j6CAIehMgaafbaIrU6ApUHjSni7bfmA7eamRHnY8a3gZyUXPAW9fD5QX+30MREQUHxgUIAqhQDIFvtpxEs98tRsfbjmCf3y4Tf5gHK6nlYGRYBsNxqokgx7dW8lPqru1cq/fD4ZakKHWy2JY2oQvV2NCQu827qMGAaCfxhVWaS392j2lMNvsmP+tfIFwXDERoKreve7/S0nPDV+9vuGg6ves1uhOy7YjlRj42EoMfWI19peZZI/9dqzabfsLuuXhjyO7YXTv1n4fb3MmzcwwmW1un3eB9BTQGm3oj30lta4pBnqdgDPbNMeggP//tkizc5zlA/mSQOFJa7Js+wl95D0zXkmchwv1kn+Tflro+vISnXZ2DbUA8ZjGSEQeMShAFEKBBAUWff+76+v1xfK50vH4z65bUCDIkYSxbNKg9rLbY88M7SJSLShQE4JMgb7tMlUzOK7RuCo+rFueK+W71mzDy2t+x6pdJbJtTlTLr+Yfr3K/un/fR9tg8uMK//JfjmmOYfQnKPCH1zejss6KE9UN+OeyX133i6Ioa7LopFV20dJJR2w6RGDTgQrZ476XDzQFBZQZJYGQlg50b5Umm5IQz6QjCQOZPiB9jlr5QIUoD2LqXr/c8w7Fpv09nfiq38dDRESxq/merRNFgVr5wCmTBcWl2uPOLB6uAMVjMN5ubxmZAgBw67DOmHZBJ7TLSsZdo7tjWLc870/yQ5vMZLf7qhs8d94vkwQFtBa3rTKSMHNUd7f7z8hRL39ITtTjwh5No8zmfrPHbRtlsEJt+kZFnRVFisCXJ54yC/yZby8NUEgDb2W1FreMhuHd89hUTUN6kryHw21L5WNXff25JUlq5UORKdAcmwwCTVf3gQB7CkgyBZId1cBb16HL8qvRWzgIAKiCn5lNjtD0fyAiotjDoABRCNkVHdiHP70aAx9didFz1uLNHw+qPsfm4QpQPPYUsCp+BsGOJIxlep2Af13WBz/cOwp3j+0R8sWkXie4jQisrvejfMDDFe+7xnTHNZJMh79f0tPjfkf2bOXxcV8ps2E8kWYf3FHYFR0kQYtQLCZPKrIbCjKScNdo92AJNVI2uGxQNI/09c9feiU/FI0Gtx1tCgr0bd88SgeA4HoKiKIo6ymQs/s9YM+X0B/5EQ8nvQUAsIh+NuoUGRQgp+b77zpRS8WgAFEIbD9ahXs/3Ib3Nh2R3X/4VFNq8j+XbVd9rqeTPX+uhsYKZQlFcy4fiIQnr+4nu+0tU0BWPpDqeSTioxPPwtTzO2HK0I646byOHre9sGd+SDJX1heXAWhc1K/49Tj2ldRobiudOjC0S66s+710BnugpL0K2mQmYcP9ozG4U07Q+22pAikfCLbRoMXmwE5JX4jmlCkQTFDA5hBlIyPTDqx0fT1EbCyhEdxaRXohhmZ8JMWv9cVl+HZ3CUR//3aIKOZxJCFRkERRxIw3NuNIhXttsi+0GkipXQmNh3nRypPX5pwpEAntspIxpndrfLPzJACgWqWBn1R5rW+ZAkDj4uyhy/v4dBxtMpNxZ2FX/Od0g0GDXsANQzpgaZF6BoyWXSdq8J9v9+GZr3YDaOyK/sb0czGks3wxLooiTlY3fS+tM5JkV5hDETCT9jdIDcF4w5YuJdG3n6G8fCC4hebuEzWu2vlEvQ49C9K9PCN+BDOSUNmrQW86LrudBDN0yoVdz0uB478A1fLgtgvLB1q0VTtPYvprmwAAv+RZ0XxycogIYFCAKGjFpSafAgJai2Otkz1lajPQeKInvcoWi6SZAoIA6BgUCJp0NKGnoEC9xQ6TJJiUp9FoMFD3XNwLNwzpgOp6G9plJWP3yRqfggJ5aUbodXAt8p0BAaDx7//h5Tvw6Z+GyZofVtVbZe+N1hlGRaZA8AuUWgYFQibZoPe5wV9SYugyBbYdrXR93btNumwhHe+kmQKees+oUf67Ihjk/UnyhCroBMW/PZe/CKTkAIIA62tXwrB/tfxxlZGe1HLc8eYW19cnqxuQ2XzeakSEOC4f2Lx5M5588klcddVVaNeuHQRBQFKS+oxtqaVLl2LIkCFIS0tDTk4Oxo8fj/Xr10fgiKm5+nG/bzXSXfJTVe/XSgtVu9+fzu3RIs18MLB0ICRks8Wr3Rv4OUn7CQBAdkrou+i3z07BmW0zkJliQI7GyEMlvQ4Y0T1f8/Edx6rx1sZDsvuk32digg6ZyQYkG8IXFEgzxnawLVb8YUQX1fvbZ7s3xdSSJOlNYA4y42Pb4aZ+Av2aUekAACQmNAXJ/C0fMCuCLYIi9f+aHgZZ+YCl+6VAaq6rMURCrsrv2dlTgMGBFkkaaBLZU4Co2YnbM/ZHH30U9913H5YtW4Zjx4759JxZs2ZhypQp2L59O8aMGYMhQ4Zg5cqVGDFiBJYtWxbmI6bmasPvp3zaTi0jwOEQUVKjvsiTdpF3CsVCKNykmQJqY+/If9IF1+GKOs3tpP0EMpMNYb9qmqsRFLh9eGeMO6vAdbtvuyxc1KdAtk2iXoczcpq+r+e+3u3ql7D4+/24eN53rscKMpIgCAKSJenpoWhQVyuZmJDqY+p7S3fPxeoNKTvlqQc91UiznYItA2muTQaB4HoKSCcP6HUCBJs88+zWASlIk2RsJKZlyx4X1IICzvIBu/u/TUREFN/i9ixo6NCh6N+/P8455xycc845KCgo8Lj96tWrMXfuXOTm5qKoqAjduzd2mC4qKkJhYSGmTZuGwsJCZGdne9wPkZQoivjxd98yBdSCAu/8dFhz+00H3IMN3prMxQKbZPpAcx5HGEnts5u67nsqVZEGmLz1EwiFzGQD9DrBrblkskGP+ZMHYs2eUhyrrMeEfm2RkqjHOZ2y8dOBCuSlJeLxK/tiQIcsjHxmDUwWOyrqrFiwphgX9ynAI5/9Jttf26zGLLAUQ/CNBqUtOUolP6+89NCWWjRXCXod2mUl42il/O+wsx9BgeTEpsWucoKBP+otduw52dSosjk1GQQaA2dOwfQUMCboAEVQIN1WgesGtwM2nr5DUAQQc9QyBU7v06odmKTwaLDa8cra3yEIwP+N6BLzZYREFH/iNijwj3/8w6/t58yZAwCYPXu2KyAANAYXZsyYgRdeeAGLFy/GX//615AeJzVvJ6obNK/0K6nVhN6/7FfN7X86WOF23y+Hq9CnbWxfDbNJvk82GQwN6RX1Y5X1sDtE1SyM/WW1rq+l4/vCRacTkJlswCmT/Mphgl4HQRDcxhi+94ehqDHbkJaY4Oo18X8jumLuN3sANGYILFhT7PY6bbMav//kEPQU0EmiAtKRhwUZ3svPqFGqSqlFp1w/MgUk5QPBjJb87Xi1KyCVbNCjW6u0gPcViwwJQWQKSMoHElWCAqgtQZpB+hmi+DzJ7uy+U2f5gEUlKMCSgrD673e/uz4ndQLwp1EcnUpEoRW35QP+aGhowKpVqwAAkyZNcnvced/y5csjelwU/45VujcD1GLxs6HWwXKT233f7i7xax/RYJNcNU7Qt4iPmLBrl9W0wLc5RNliVmp/WdPfTJe8yCyQpE0QnbQyRARBQEaSQdZ88vYRnZF/+iq9smO6UzuVoECgi0npkZ1kUCAgalMGumr0TFETqpGEvx6pdH19VruMZleuFNJMAaviM8NUAtRJstySFMHmrA7uO3VmCpTtdn9s46t+HR/557mVe1xfP/v1Hg9bEhEFpkWcse/atQtmsxn5+flo37692+MDBw4EAGzbti3Sh0Zx7kRV04lWFy/psxY/rvSIoojjVe4Lv+/3lrk1kIo1Nsn3yUyB0EhO1MuaDR7VKCGQlhZ0zA1/pgAAZKgEBaRXgr1JSUzAYxPPgqdJm85MgYykptdSm87hC+nrSN9jrTMZFPCVs5xDyp+r9NKggDmI8oHtx6pdX/dtlxXwfmKVbCShn5kCsskd+hrArshoqzwElEoW99mdFC+eArMxT36fs6fA4Z/cXk/c+F+OLCQiimMtIihw6FBjV2u1gAAApKamIisrCxUVFaipqVHdRqpPnz6q/xUXu6e9UvN2vKppEeat0ZavV3pOmSw4ZbKobl9vtWPvyVqVZ8UOuyxTgEGBUJEuvk0a9fTVksZ5WSnui/VwUMsU8HU0ndPFfQrw2MSzoBVD6prfuODs1aZpBv2vR6shBpCyLJzOFRBFESWSCQfMFPBdj9bpstt5aYnI9WP8ZZKh6dQjmEaD2yVNBs9qlxHwfmKVvNGgf3/rzuDxZP03+LR+qvsGh38CSiS9O1r3cdvElnGG/A5npsCRjW7bCqYS4NhWv46RiIhiR4sICtTWNi6iUlK0r5ylpqbKtiXyhTRToCAzCSN6aI9dc4hwa8imZuCjKzHosW9ct5MNerSVXMWsaYjtsYRWaVCAIwlDJsWH1PkaSSNK6VX1cGql0qAvOYAmWJPP7Ygv/zICN54rT1tO0Anod7qrfN92TSnOZbVmj+MZNZ0OPJwyWWRXXxkU8J2yoZ+yd4Q3svKBAIMCDVY79pY0/Xt9VrvY7rUSCIMkqGp3iD79++HkzMD4t2GxxgZVgOX0z0/QA63OdNskIbeT7LbVZgMcDtVMAQDACWZbthQcSUjU/LSIM3bn1STBQ36qP1ecduzYofpf165dgz5Wii/HJSnMbTKS8PTV/Txu729dKAD0aZuBVGNTDa/JHNtBAbtDPgqLQkO60NYKCkhH7KUlRaaPbK+CdLf7Au2M3aN1Ou4e00N23zmdclz7y0szygJk2yQ15b5y/knulnStT0nUIyM5bvvuRtzw7nmYfG4HdMpNwdgzW+NvGmMKtcjKBwL4TASAXSdqXIvkJIPOa/lWPEpU9GTxp9mg2eZAFrxnPgIAOpwHJLlnWiQqggLHK01Axf7GgIKKkr2bfD4+IiKKLS0iKJCe3njSajK5N25zqqtr7Kablta8uhdTeCkzBQoyk3DVwHaa20uDAr5e9bn2nDPkQYEAR7FFipXTB8LCl9nu0iyS9AgFBXq3cV9M+Fs+IJWSqJeVEdwytKPsceksemn6uK8ECHA4RMz7Zq/rvoEdsj0GjUkuQa/Dv6/sizX3jMSrtwxGaz+zLIySWnm7Q/S7sz4g/933bpPRLJuaSnsKAP71FTDb7HjB8JJvG3cbrXq3kC1/7+0vqQFqT2q/5vEdPh8fERHFlub3r6iKDh0a01GPHDmi+rjJZEJlZSWysrJcAQQiX0iDAm0yG5uhpap05nYy25sWc74s7tONCZjQrw3SJEGB2pjPFGBPgXBI9pJybbU7ZMGC9AiVD5zZJsOtSWAg5QNOqcYETB/WGcYEHaZd0AmXnFUge1xaQrAtkKCAALzz02Fs3H/Kdd9N53X08AwKNWUmSSDZAjuOSfoJxPiY1kAZlJkCfvycLDYHRui1R97KdBurfr9iAkGmYAJ+Wqi5m+zafRxNSEQUp1pEUKBnz54wGo0oLS1VDQxs2bIFANCvn+fUbyIph0OUjzQ7ndacojLD20l6Fb3Wh94AF59VgJTEBNlc8FgvH7Cxp0BYeBvHp/y7kAaSwik7NRHnd82V3RdMUAAA/nnpmdj92Dj867I+blfw+0rq2bcfrXKVfjVY7Xhu5R4sWFPssUynzmLHs183dV0f37fALfBA4WVUXAE3+9lXYNuRSry98bDrdnNsMgioBAX8aDaoGmjpfjFw61dAiuT9mlYAFPRV34liIsEAXTGw/UPN10xzeM4kICKi2NUiztiTk5MxatQoAMAHH3zg9rjzvgkTJkT0uCi+lZnMsgWwMyjgKVNAuljxpWHguNOLleyUpnF05bUWv481kjiSMDykC22TSlBA+fcUqaAAAEwcIC+ZCWd9vrzZoAXHTmfrPLx8B15YtRdPfbkLn/5yzOM+Tpka30MpiXo8OMG96zqFl1tQwI8r4A6HiBv+u0F236CO2SE5rlhjUGRa+dOTxu1n2v0iYPJ7jf0DxjwMV8fNwn9Acx5opvrEJk/qj273+zlERBR9LSIoAACzZs0CADz22GPYu7eplrSoqAivvPIKMjIyMH369GgdHsWhncebmjilGxNci7AUD/XU0pO6WrNVczunYd0b50S3Oz2nHZDPoo9FNpYPhIV09F9VvfvfTmWddPJAQkSbPI7///buOz6KaosD+G+2pveE9EIgCS0JvUPoVUCIgoJSlGJDBFHxgbT3UCwIKnZBUEAUBKUoAtJ7CYReUoAktJBeN7t73x/Lzu5kS3o2yZ7v55PPZ3fuzOzd3Ukyc+bcc1v5oJGTZhaCUE97BLianumlqtzsZQh00+3/yM10KFVqwZ3jownp5drXK72a8ME8UnskYpEgYFiRGQhuZRQYBMUaezTMWkAcxwmKDVaopkDp4WkDP9A9bvMcMD0OeO0s0G6S6Z1Iyj/NpFZG0rkKb0OM42ttFOXADw8t2xlCSINXb8st79ixA4sXLxYsUygU6NSpE/983rx5GDJkCACgb9++eP3117FixQpER0ejX79+UCgU2L17N9RqNdatWwc3N7dafQ+k/nrvj4tYe+wW/1z/wsLcVHAVyRRYPKIl5BJNgMHfTT8oUFDh/tYmpYqGD9QEV3tdtkhGvuFUfBkFugwSN711a4O9XIJfpnTGwesP0bd5I4hqOCDRI8wDPx+/DQD498oDgxkQyjP7QYCbLV7oFlIj/SNlk0tEUD6+uK9IpsDltBzB87cGhtf48WZJUjEHbQykIgUZVYpSwWNZqdkZ3Mp57L90DPiqM/90pXIYDqtbIbtYBeBdg9X9TiwGHERAh8mAvIHUaEo7B2x9GXBsBMSuBmxdauylGGP4cNc1fLU/AQCwIMYFE84+jSM2eZiheBlb1d1q7LUrgipHENLw1NugwMOHD3HixAnBMsaYYNnDh8LI6vLlyxEdHY0vvvgCu3fvhlQqRZ8+fTB37lx061Y3/tCSuu9iarYgIAAIgwJdmriX3oSn0Cs0WFZQIMxLd/fLz0V3Z7SuZwrQlIQ1w00QFDAcQpKpt8y1loMCABDiYY+QWpoWrneEFx8UOHwzHTHhnoL28hx2c4c0r/TUiaTq5FIxf8e/QkGBu7oCgxwHvNSzYU8FLJWIoI0KVGT4gLg4U7jAtpI3PRo1B57ZiHv/LMOWzGB8onwCaoigZnmmt9m7EDi3Hnj5GCCunYKnNWrDM0BuGvDgEnBkOdB3QY291PmUbD4gAAAuR/4LiDWf9XLZl9haROeqhJCaUW+DAhMmTMCECRNqbTtCtM7ezjRY5qMXFPB3tcOY9gH45dQdg/UUSr1Cg2UUDNS/oPZ31WUKPMpXoFChqtK0bzVJvxhW6TGxpPLcywgK6C9zs6v9oEBt6hLqAVupGIUlKuQVK/HraeHvWnGJ8OLJ1U6KTL3hFc90CMSAFlRc0JJs9OoKVKTQYMID3dTCM/qENfipJPWHD1QkU0CiFxQoFtlBLqnC34TwgfAOH4ipagaX03cw5/dyzGrw6AZw/xLgG135160rcvVqlFzaWqNBAf1ZNQCgKZdaY69FCCH6KLeXkApKN1LoLyrARfD8vSea483+YVg4rIUgYKA/JlR/9oEOwYZ3cfRTYhs52QjG4KZm1d0hBPpTElKmQPVxLStToMCymQK1yUYqxuBWPvzzs7ezBO3X7+cKnuvXuVgxJhpLnmxZo/0jZZPrT7FZgTvgyY90QYHGnrWTmWJJ+jMQXL6bgzm/X8C2MgppAgCn0N3JV0iqJ41fJOLwTIdAvNKrnNkZJXX3/1SlsYpPn1kRpYvzlpS6d+eJrBp9fUKI9aKgACEVVHo8t6NcgqGtfAXL7GQSvNq7KcZ3CRbUGFAo1bj9qACnkzOQW6S7c+nvZov1L3YU7EOsdwdMLOLg46ILLtzJqLtDCEr0hg9IxPQnprroZwpkFZYIgi9AqUyBBh4UAICn2pmujH4+JRsXUzV33I7cTBcM1Ql2t2/wd5frA3klMgWUKjWS0nVBgdoarmJJMr3P6b0/LmHDydt4bUNcmbVlOIXuc1JKbM2sWXGzB0Tg4OxeZa7HSuru/6lKq+GgQF6x8HdBUSoo8LLkjxp9fUKI9aIzdkIqqPRd2h8mtIeznelxk/onddfv56L/8gOI/foYPvv3Jr/cUS4xuIAufZc92F13AnzzgZnxnBamEhQapIuv6qJ/oc8YkFUgPA71Zx9wMXM8NhQdQ9wQ5G56loN1JzR1P5bvuc4vC/GwR0u9KQ2J5ehnCpS3psD1+3n8uhIRh1DPhjnrgD5TQ7D2XL5vdjtO7y69SlL9s4G4lAo8rrcZY7DO7uNnq/11La6GgwL5pYYVdhBdEzwfID4FMco/3IYQQsqLggKElGHXpXvo+sG/mPbTGTzMLcbOC/f4tqWjWqFDiPkCTvondR/tuoaiEsOTCgcbCVxLXcgFlrrg0a+wvmLvDdRVgikJafaBauMglwiOpdLBKWuqKQBopmsb3znYZPvWuDRk5Ctw7k4Wv2zJk61oSEsdoZ8pUN4pCePu6MbJN/NxqrN1VaqTflBZX1nHsUipCwqoqzlTwJirfiOxXinMHuh/879AXgObSk9dzgvyzGTg/C9AoWENIsYYbj8qMHrclw4KlObLZSDB5jlg7XCgIKN8fSGEkHKgM3ZCzHiUV4yZG88hNasQf1+6hw5L9gja3e3LnsfZ1EmdPge5FE28HPBcpyCEetpjxZhog6kNG+vdFcsrVgqGH9QlSv3hA3QBVm04jhNkCzwqFRSwppoCWk+3DxDU7PBzsYWzreb3prBEhXd/v8AXvhSLOLQJcrFEN4kRdnoX9LM3xSM9z3CazdJOJekugloHutREt+ocqYkhWOIyAq5i/aCAtOaHWfh6eeJd5WQkqRsJG059X+OvXavKkylwYROwIgrYMhXYMs2g+Z3NF9Djo30YvOKQQWBAf3YhJ5jJCEzcr5km0WLofzshDQ0FBQgx49tDify0WYAmbVtfeU5MZZKy72Y52EjAcRwWj2iJvbNiMDzaz2Cdvs2EJ1vxKdkG69QFgkwBmn2gWnk46IJQj/LMZApYSVDAQS7BqgntEeJhD1c7KRaPaIHR7QP49r8v6bJ6Wvo6QV6O30VSO+xlwrHS7++8anZ9xhgO33zEP+/U2PTUrw2J6aCA+e0kKt3FJZNW//CB0kIeD287pm4hbDi/HlDXbMp9rWJlZApc3wVsfkHv+d9ARiL/VKFUY+Pj2VIS0/NxQi/QxRjDqWTd8xYi4dTHhq/1V/n7TQghZaCgACEmMMaw0ci0glorxkTD3aEcmQLlKLbnKC97dlBPR7kgCBFnZGrEukBJNQVqjH5Q4GFuEf+YMSbMFLCC4QNazXycsO/NGMS91x+9IxrhpZ6hRlOrJ3YNsUDviCl2pVL/N59NMbv+1Xu5fDYBxwFdQq0jKCA3kWkmKqNYplQvUwC1kCkQ4aMZ3rZE+SzWK3vrGrJuA9d21Pjr15qyMgWOrDBc9ser/MMChXB4QKHe83s5RXiQq8uYacEl84+LmIk6MYkHzPeHEELKiYIChJiQW6wUFG/TahPogr9ndDd6N98YUyd1+hzKERQAgB5NPfnHcaWmYasrhFMS0p+Y6qQfFNCfGjOroIRPkwcAz3IEqxoqV3sZPhvTWrDs6Xb+GB7ta2ILYgn2Rv7mmastcOiGbmx6pJ8zXKwk8GUqU6CsLCypWpcpwMlqPigQ6GaHpl4OyIMd3lW+iN2qNrrGXe8ClZmJ4FECsGqQ5iezjLvmtcVc1sO1v4FbRwyX3zoCZCQB0Axr0ieXiIHzG4EVUSjaOU/Q1lwvU2CHWjg7EW/7jHJ1mxBCylK+KxFCrMyey/exaPtlwbJ/3ugBF1spvJxsTGxlnKnq0focbMr3qxitlylwPiULjLE6N71aiUp30lSe907Kz9NRd7H/7aFEvDkgHABwN1uXNWAjFcHJ1rr/tA+J9EGwRzf8ffEeBrTwphkH6iB7ueFQjhv38+BiJ8Wne64jp1CJGX2b8t/dn+fT+PV6hHkabNtQmfobalPGUBipSpcpwMlrfpYGjuOwakJ7rD2WjO8OJWGpcgxiROch5VSabIHtbwDDPgfE5ZwZpSAD+HkUkKm5mMbWl4GmfYGsO0DnVwD30Jp7M+aYyhR4eB3YMNr0dn+9DYz9FQUKYVBAxAHYMgUAEJL5HcK4JrjOAtAr3BMRSbpMxcOqVugvOgNHrlRwJaRHZd4FIYQYsO4zR0KMWLb7Oj4rVd2/c2N3hDVyNLGFeeUrNFi+X8Uofxf+cXqeAmnZRfBzqfnK0hUhzBSgoEB1ytErLqlQqvmg0P0cXVDA28mmzgWKLKGFrzNa+FIwoK4ylilw8MZD/Hz8Fh/kOpn0CFte6Yr03GJcTM3h1xsWZT1ZH6YyBcr6FZepi/hcUJG85msKAECAmx3+M6Q5nG2l+PgfYLVqIKZIHg8dOL8ByE4BRn4LOJXj+/v3v7qAAADcOqz5AYBLvwPjtwPeLav/TZTFVE2BQx8Ln/eeB4jEwJ4Fmuc3dgHFuShUCIMKouIcwfMI7jauswBE+Tqgya1Ufvk1FoAk5o1ILkmwPuSVOy8hhJDSKLeXED0Z+Qp88a8uICAWcXihWwi+fb5tpfdZnqCAYzkzBdzsZQhw0wUBzutNt1ZXCAsN0p+Y6lQ6vTqnSDMe9Z5eUKBRBTNZCLEEY8HMj3ZdE2S95BQp8fwPJ/Hahjh+WftgVzStZIC2PjJVHFP/72xpjDHYMN3nKK7lC8dXezdFTLgnPlWOwil1mK4h+RCwshNwbCVQUmR848JM4PBy4PQPpl+gMBNYNQC4/k+19rtcjGUKMAYkHdQ9dwkCus8CurwuXC/poEGmgCw/VfBcDM3+W9mlQwbN33clE+Em80MCMxJMKcoxXNZQpd8ATn6nyTwhhFQ7OmMnRM+hGw+hf661Y3o3zBvaHI425Ux5NEImLsfsA+XMFACE2QJ1MiigoikJa8rMfmGC59pig/f0LqS8nSkoQOo+/b9j5qRmFQqKr80eEFFDPaqb3OyN/+9RmQkKKFRq2EIvKGBT8zUFSvtwVCQ83FwxTvEutqq66BqKszU1Br5oB5xdCxRmaS6qU05rhgh8EgHsmV/2CyjygN9fNB1cqCEqlRKvrD+LCynZ+HL/TbT77x58teUfIPeubqXJ/2pSOUQiILi7bvmf01GSc1+wP2n+XcFzCacJGjRV6WYsSGI+UECKG2ojdYyKLDMLEavtKQnz04HvegM73wS+76c5bggh1YqCAoToSUrP5x8PjfRBhLdTlfcplVRfTQEAaKU3Pvra/dxK9akm0ZSENcffVZgGrL1YEgQFKFOA1APBHvaY3ruJ0UKsDnIJpvZobLB8dLsAdAhxq43u1Rn6dUT0mQsKFJWoYc/pAikSm9rPrPByssEXz7RBCSfDjJJX8HbJZBSK9IIT2XeAP18DlgYBC12A7/sA59YBSr2LfBtnHOn+E+aVTOAX3WJ6U/MWZQN3z5e7T7+euoPpG+JwMbXyF9JMrcaO+LsYvvIwPvz7GtLzipF5ZotuBc8IwN5D93zQUkDy+G9yQToC4j4R7E+enyZ4LgKDiAN8cuL5ZfFM87uw01ixwWLLZApwqOVpJq/v0r3XvHvAlT9r9/UJsQIUFCBET1qWroiPn2v1jNWXl5FCLxOLKjR/eqinrmhU4sN8M2taBk1JWLOi/HVBoYfaoEAOZQqQ+mdm/3BcXTwQ03oKi8bN6NsU7wyKwOLhLWAj1fz9fCLKFwuGtbBENy3Kw8RMIuaCAsUlKthCFxSQ2lpmuEVUgAsmd28MgMNGVS90L/gYf9kNAxOVkXln5w50fR2p4w7j5cM2+EnVH/2KP8STxQvRs/hTnFU30a1beiy/Ccnp+Xhrczz+PJ+GcT+cqPR7knCai2Htx9+US8G70g26FYK6Cjdo1ALo8x7/1P/WFjhAVwRSXiDMFBBDjbBGjpCmneSXnX48BCOZ+WCF8knh/qspUyCnqAQf77qGsd8fx+u/xGHf1Qeau/FFOcjIV+Cr/Qn8um25a2gmMj1dc414JKzzhNQztfv6hFgBKjRIiJ5Labqoe+m7spVVVk2BimQJAEColy4ocCezAMVKVYWCCjVNkClAUxJWO09HGwCaE8EHOZoT/9KFBgmpLziOw/Q+TXD1Xg4upmZjWs9QvNhdc2f0uc7BeLKNP1RqBmfbyg/hqs8qnSmgN3xAalv7wwe03ugXhpPJGYi7nYV0OOOljDFoIu2HLwL2ITzrILiCdN3K/h2gaj8ZJ226YueVTGz65jI/hd8N5s+vdkTdEm1ENzVP7l3QDD8oo/Liv1cf8I+NTTVcWVPE24ULgrsartRhCnDwY6AwAyKmRBfRJfyjbg8AsDEICqjQr1EucO0Cv+yMXl2GT5WxKGYyvCXdqFlQDTUFcopKEPvVUVy/nwcA8MNDPHXpFUB8CQCQwfzwl2IaPOGG96Q/4Qnx8Sq/ZoWd/Un4/N7F2u8DIQ0cBQUIeexedpEgKNC5cfWkqZYVFChvkUEt/ZNExoD84roWFNCrKUDDB6qd/vf/MK8YajVD8iNdxkh1ZbgQUlvsZBL8OLGD0baK1FtpiExmCjAzQQGlCu6cLijAySxXmNFGKsaGyZ0w5/cL2BKnKap3s8QdAxNj0dJnAma1LUALLgnnCtzxR05THPkjHVkF58zu829VB7wm2ap5knsXeJQAeDQxXLGkCMhJBdwaQ23m86qKUJEw/X/DoyYYrWYQ6WfJiaVA4xjNrAkAeojiTQYFFkt/BK79yD8vcQvD9TR/vTU4QZBAMNyikub/cYkPCDghD+tkSxAs0tU+aMKlYrXsQ2QyRzQp9X4BAA7eVe6DWSe/A/SDRwDw4AqgVmvqNhBCqgX9NhHy2L5rujsJgW52gjT9qpCVMXzApYJ3wErvT6GsnbF9hQoVztzKENyVLo0xhuv3dHUOrPXuXk3ycJDxjx/lKZD8KB9FJbpjoIlXzc9JTgipHZXJFFAo1bDTGz4AWe1MSWiKjVSMZU9HYfnoaLjZ6/5+Xbybh4m71ejwTxCmHHbAjvi7BnfxbaVizBvaHCff7YO/Z3TH2kkdcIkF4z5z0a10eQsMFGQAn7cFPm8D/PVWuYMC2QUlWLnvJv6+eK9c69txCv7xZlV3zPkrBeNXnxRMHwsACO3NPxwkPgkZSsBBDY9Hp83uX9rlJaBUUb8S6N0EUBajKu5kFGDrOd0MCB822iMICGi5c7nGAwKAZoz/t72A+5er1JfSSlRq/Lr5V6h2vm2kMR/IulWtr0eItaOgACGP7bygi9j3jvCqtrnepWVkCjjbycy2G+yv1N332ggKnE7OQNel/2LUV8fQ+f29WPbPNTAjJ1nnU7KR9rjoHccBXUI9DNYhVeOqd7xk5BfjVHIG/7yJlwPsZNZ9Z5WQhsTVTgZjpVnMBQVKlErY6l2sQmr57CGO4zCitR/2zOyJkW2MVNHXIxOL0CvcE0tHtcKJ//TBC91C4OVkgwhvJ/QI88TgVt7YqtJL0//3v4BKKdxJ/K9ATorm8clvIS7JK1c/3//rCj7adQ3Tfj6D44mPjK7zSq9QnHuvH/Y844wITjc93pfKYQCAQzfSMf+PS8KNmg3lCw66c7l4TvwPRokPme9MxFCg9fNYMSZasLgYesF2lQJV8dvpO9D+Kw9zl2FAyV6+7WvlE9is6m50u7GKOcIFaWeBvQur1JfS/joWh5j42RBDM4SEOXgD+vUormyr1tcjxNpRUIAQAI/yinE0QXcCMKhl9aXDVXemAMdxgiEJCpXKzNpVdyejABN/PIWMfM3Jh5oBn/17Ez+fMJwr+Ofjush9uyBXk3e5SOW5O+gHBRR4e7Nu7GlHK6vMTkhDJxZxRocQmAsKqEtP0ye1bKaAPjd7GZY9HY0/X+2KZzoEwF6muevdyEmOF7qF4MuxbXB6Xl+sntgBo9sHwsnIdMBdQj1wQV1qdoorfwifp18XPHUqKN/c9r+c0hXQm7fV+Lj1QS194GInQ5MUXYZCiW87MHddWv+WuFTczdYVLoatKxD1DP90tuRXfCz9xngnWsYCQz8Fnv4JEEswPNoP+9+M4ZsV1RQUUKsZfo/TZQnMDr4JrkBzHlTEpPhS+QRWKocbbHdBHYzT6nCksFJB/8QDVc5c4CkVaHl4Ory4LACAgolxpceXQPSzunWOfQGoa/b8hxBrQkEBQqDJEtCeZDVykqN9cPVdXJVVU6AyKfb6MxrkFinBGMPB6w8xfUMc5m69YJi6WEmMMfxn60XkFikN2hZtu4TrelMipmUV4s/zuvTCcZ2CqqUPREg/U+B8irDytLVN10aINQhyN7yoNxcUUCkKhAskda/4aKS/C94fGYnTc/th76yeOPpOH8wb2hyDW/kYDQTo69TYHUUolWF34htAP3stJ1XQLFZpAiVylP8iukBh/IKzha8ToMgH4n/jl0nbjcdnz7QWrNf5/X+R8FCXocB6z0UmNNMc23CG/6PvN44Fpp8DYn8A2k0SjJfXn1WmuoYPnEzOQEqmJnDBcUCPnB18W6JXX+TAAYnMF4fFwnofN1rMQDFkGFj8AWYppun1pRBIOVXp/ujL/eNNNC7SBWUWKCdgf0EQ0H2WbqW8+0DauWp5PUIIBQUIAQD8ejqFf/xEpK+wSFAVGZuHW5+LXcWDAvrF5H46fgv/23EFz686iT/Pp+Hn47fxyrqzUJs5aSyvredScfD6Q/75u4Mj4PX47n+JiuH7Q4kAgKISFWZvOs8PZfB0lGNQS58qvz4xpD8mt7SOIe612BNCSG0IdjecPUBpLlNAUShcUAeGD5hiKxMj1NMB4gr8zw31tIetTan3dOcEcHGz7nneA0EzpyzG99KPcEH+AiaLt5fr/2OxUgWlynB4HsdxwP73geLHQVmZI9DiSbT0c0aEt7Co47LduoyFy9lSTC1+HTlM2PcHrm1w7437aPT8D4BbiNG+6E/vq2B65wxMVem75T8cTuIfjwwshvyObjhDs6HT8e+snjj3Xj90e/NXoOM0wCUImPQPnnx6Ajwc5MiDHTare+CSTVvdTn8cAmx/QzNbwP1LhsM6yuHS7jVwvLCGf75RGYP1qt64kJINuAYBgZ11Kyf+W+H9E0KMo6AAsXoPc4txIVV3x/WpdgHVun9pGcMHKpMpoN/H38+m4nu9f+6AZkzjprMppTerkISHeZi3VTcusmeYJyZ3b4w5gyP4ZX+cS8OdjAKMX3USR27qhl/M7h9eZoYEqRxzQQH9u0mEkIYh2MMwKGDuolatlymghFhT/b4B4TgOvr7+hg07ZgJZj9P/S4SBkci0jegrjoOMU+E/0vVmZ2/Qpz+skJdyGjj6he5563GAXBMMWD2xPTroZRruiL+Lj3ZdhVKlxq5L93GSNcNIxUJsV3VELrNFgdwTXqM/K/Nvt37QRDB8AKjUEIJTyRnYfVlXUHCm/U5do2cEuMDOaOzpABc7mWbow6ClwIx4ILAjOI5DdIALv/q23KbCnZ9eBfz5KvBVF2CJL/BtDLBlGnDoE+Dyn8CDq4DSeJ+3nbwCu8NL+Ofx6hC8p5wAgEO8NjOucS/dBgn7K/zeCSHGUUUqYvVO6xVq83G2QVij6q3eXhPDB8Z3DsL2+DTE3c4yuc6/Vx7g6UoGOPKLlZj60xnkFWui/A5yCf47oiU4jsPgVj74344rSM9ToFipRvcP9wm2HRLpg9i2Rk7YSLUwFRQY2KKGp4UihFhERTMFmEJXU6AY8gZ5opfn1gInbkego+iqbmFRNrBxHPDiHqBEOIQiNOOg4LlKzSAtcyZfDnuu3EcUs4Mzp7e/VQMAPP783ZsCvf/DN/k422L95I7ou+wAkh9ptlm5LwFnbmUi8aFm6tibzB/LXf8Drm8YBrb0htFKkqV7wnEQizio1AyK0t+osrhC2SAZ+Qq8tj6Ofz7CPRW+Sb/rVug4TTOewIypPRvjwPUHKFEx/KqKwTPifxEkemC4oqoYSIvT/AjekBhwDdbc+Zc7AnYeSEi7j46ph/k6AgBwvcNiFB/WnEOlZhUiPa8YHqG9gP2PAwd3TmiGcsgMf0cIIRVDt/KI1TuRpAsKtA92q7ZZB7TkEvNnHubu/JoiEYuwfHQ0n8oPaKZuGtcpkH8uKHJUQfP+uIibD3RjIT9+KgoBbppxrXKJGJO6GU9xHNXGHytGR1fr8AsiZCMVI8DN8ATw+S5Uw4GQhijYw7CmgLkp9lhJPv9YwVX8/0t9oGLAGMVc9C7+GG+WTNU13D0H3PgHUJqeOhfQTHdXFo4D/r36AIUoVehR/TglnhMBTyznswS0JGIRvn2+neDv9PHEDDzI1Y3/XzisBYZE+lRo2IR2XUFNAf3+lINazTDr13O493hqYR9RFj5SfwSOPR6C4BqiyXwoQ/tgN+yZ2ROzB4QjrHEwBqo+wZDi/2FOyQvYoOyFy+oglDAz5z5MBWQkAAn/Apf/AE7/gNC07YKAwKMWEzBqyFBBoc2v9icAvm0AudPjN1SiydwghFRZQwwgE1Ih+lO61UShNkcb879mlU35DnK3xz9v9MC+aw9QVKJGTLgnbj0qwM/HNVWWtVMDVoRKzfDWpnj8flZXpOnlmFDN3Qw9k7s3xoFrDwUBlQldgvHe0OYUEKgFkf4uuJMhDPqEelZvhgshpG6oaKYA9GYfKOYa5pAiRxsJGERIZL5IVPngackhdOAuaxrPrTcYPlBaVkEJHMsoaPjw8UW8WG4igNB7LhDczWhTWCNH7JrRA+9sviAowAsAgW52aBvkava1jZGIOCgAlJQ+da/A8IHvDiVi3zVNnSAplNji+S2k2Y/v8IskwJNfl3u4SZC7PV7p1QSv9GqC7MIS7L58Hzsv3MWCm+koVqghhwJNuRQ0E91GY+4uQrk0hHJpCOQeQMqZroOggAR57V+H++B5AMfhqXb+mmAAgE1nUvDOoAhI/doCiY+zFFNOAo17lvszIIQYR0EBYtVyi0pw+W4O/7wmpnQrKyjg41z5IlAudjI82VqXql+i1J0opucVQ6FUl2tsP2MMH/x1Fd8cTBQsbxfkipn9wgzWl4pFWPtCB/x66g4SHuajWxMP9G3eqNLvg1RMpxA37Ii/yz93kEsEWSOEkIbDXm74P8RsoTy91PkSUcPMFBjfJRjfHdLW0uHwZclQdJA9Dgpc3V7m9o/yivnsNy1mIvtCBCNBAb92QNcZZl/DTibBijHRaOnnhI93XYdCpUaPME+8N7Q5bMoeu2BAmymgLJ0pUEZQICNfgZNJj+BkK8VHu67xy7/22gzv7HO6FQd+AAR2qnC/AM0wyNi2/oht64+iEhVOJ2fi4I2HOHjdHb/dE04fKYESgdwDhHJpaMRlwhGFcOeyoYAUqfDClElTENQ4nF9/Ws9QfH8oESUqhuzCEpxOzkTngA66oMCd6pnxgBBrR0EBYtWS0wv4WYzsHldBrm5OZdQMcK3E7AOmeDvbgOM0MzMxppkm0FiRqtI+//emQUAAAFY80xoSE4US5RIxnuscXNUuk0ro3awR5v2hKwIZ6GZX7cNeCCF1l7kpCZlepkAJ1zCDhf6udvhlSics2nYZl+/m4JC6FR4wF0H6uTkZuQUAhHfrS1TGP1Nx6aBAYGdg5LeAqOwLe47jMKVHKJ5qG4CswhKElOP/sSm6GQg4qEUyiNSPgwEq01MQq9QMo746iqR0zZASN+TgKfEBtJWnoE+ObrYBRI8F2r9Y6b7ps5GK0a2pB7o19cC7g5vhQU4RDt1Ix6EbD3HoRjoe5UOT4cF8BdvJxCK8P7IVghoLaxI520rRtYkH9j/OcNh37QE6h+lNk5hySnPCQ/8DCakSCgoQq5amN+7e18W2RlLfHWQS/kK9NGdbabVezMkkIng72eDu46EDSen5ZQYFNpy8LZg2Sev759vBz6XuTmVlzfxcbNE+2BWnkjMBAKOosCMhDdoHI1vhnd8v8M/NDR/glLr/ayWihjl8AAA6NXbHzte7490tF7D+xG1sUXXFVMmOcm2bkZtvsKxYaTylXZApMPUQ4BNZ4b662svgWon6QfrEIl2AnomkAB8UMJ0pkPwonw8IAMCH0m/QVxwHQZzDJwoY8kmNXVR7OdlgVFt/jGrrD7Wa4eq9XJxKzsD5lCxkFZSgUKFCuLcjnuscZPLGTM8wTz4ocDQhHejVTtdYmAE8SgA8mtRI/wmxFhQUIFbtbpbu5MmnhqZzE4k4OMglyC0yLAYU6ln9FXMDXO34oMDEH0/h4OxeCHQ3LFQFAP9cuof/bLkgWLbkyVbo08wLjZwa7slkQ/Dp6Ggs230dfi62GN+ZigwS0pA93S4APx5NxtV7uQDMFxrk9IrslYgaZqaAvoXDWsDf1Ra7jw7B+OJ/YMOZvnOulZFrWHNAoTReO0DG6S0XWe60WaJ304Lp98NMUCCrQL+NCWdrAACJLTDy+wrNXlAVIhGH5r5OaO7rVKHtujbx4B9fSstBFrODi2cE8PDx+0k9TUEBQqqIZh8gVu2uXjE+3yqM7S+Lk4mCRkMifY0ur4pQL2Gkfeu5VKPr/Xv1Pl7bEAftDadGTnIcfrsXnu0YSAGBesDf1Q7Lno7GrP7hJod4EEIaBpGIQ89wT/652UwBvSJ7SisICkjFIrwc0wS/zXkW77m8j72q1tii6ooRxYtMbpOZV2CwrNhEUEDM6X3W5RgyUFP0ZypQi/TOKVTCGw6MMaw6nIS5Wy8gPiUbAIMtiuCOHDhypYIhsasAT8O6QXVNUy8HeDhoMi0YA44nPtLMQqBVespDQkiFUaYAsWqp+pkCLjV3IexkKxW8lpb+FILVZXL3EGw4eZt/nlkgvItQqFDhP1svCGYYcLSRYM2kDvB3NZ5RQAghxLL07xSbKzQoVukXGrSeIWAcx+GJoSPw3A+aYLsMpjMGsvMM/x+bDAro59pzlgsKSMS6779IZAftYISj21fjZrQnnusUBI7j8NfFe1i0XVN00R6F2C5bjDDuDs7btAe0syJKbIHZNwymU6yrOI5D51APbHs8k8PRhEcY6N0KOP94hUc3Ldc5QhoIur1ErFaxUiWYUs/YtE/VpZGT4d2aIa18IJdU/wlGY08HvNZbl0a3+/J9XErL5p9/tOuaICBgJxPjh/HtEeFdsXQ+QgghtUesN+bbXKaASG/2AYXYugK93Zp4IMrfGQCggBQPmIvR9XIKDDMFjA0f6NusETimV2tAZLnT5kh/F/7xL/m6u+Qd763HH3/+jl3HzkH9z3xk/70YdtBkQY4W70dLUTJknArti4/rduYVUW8CAlqdGutmhzqdnAk469XSyUkzsgUhpCIoKECs1ta4VH4eYplEhG5NPcrYovJ8jRTs04/6V7ewRrp/9imZhXjyy6P4cv9NfHMgAauOJPFtIg74bVpndKiBqRgJIYRUH/1Cc+YyBSRKXWE5pcS6ggIcx+GlGF1QPI0Z/9+WYzRTQFho0NVOig9HtQQHvc/agpkCbw8Mh9PjKY6XFQ9HotobgGZ4w2b5Qgz8Jwaio8vxTP46LJauQgR3GzMkm43vzKX6sxRrWrsg3Xd59V4OChwCdI3pNwC9WTcIIRVHQQFilVRqhq/2J/DPR7Xxh4dDzY29NFbFvyYnzxka6YPpfZryxYQVSjU+/Psa3v9LWGToh/Ht0cLXuQZ7QgghpDrolw4pMRsU0KspYGWZAgDQt5kX//gucze6Tk5B2YUGf53aGW62pYIAFiw06O9qh4+figIAFEGON0umQcGMBylGiQ/jb/k7cOIMMyIAAM4BxpfXYU29HOD4OCiiZsC5Im9A8njYp7oEuH/Rgr0jpP6joACxSjsv3EXyI80/SxEHTOvZuEZfz9/VSFCgBufU5TgOM/uF4adJHU0GO6b3aYoeYZ5G2wghhNQtUr2ogFJlfPw7AEj0agpYW6YAAEjEIvw6tTOcbaV4wBnPAMwvLIKqVGBFv6aAv6stmjZyBNSlpim0YKFBAOjfwhuLR7QEAJxlYZhdMhVqZv5cQmWsvfnwmuhejRKJOLQJdOWfn03J00ynqJV6xgK9IqThoKAAsToqNcPKfbqiNE9E+SKoBusJAMJ0fq2azBTQ6tbUA3tn9sSELsGCysW9wj0xs1+YYBkhhJC6Sz8oUGImKCDVCwqorDAoAAAdQtxwbE5vjO7b2Wi7iKnwKL9YsEw/U0AuefxZs1JBAQsOH9B6rlMQlj0dhfBGjsgPH4X4Ht8gngvDZXUQflT2hwq6PqpFUhxr/SEKJx8BbN0AqR3wxGdAQAcLvoPK05/KMDE9H/Brp2tMOW2BHhHScNDsA8TqbDpzh5/rGQBeigmt8dcM9XSARMQJi0PV0vW4s50UC4a1wKu9m+BSWg6KS1SUIUAIIfWMVKILCihUZoYPCDIFajbgXZfZySSAbwujbRKo8CCnGF6OulmH9GsKyLRFgOtYpoDWyDb+GNlGW2ivHQq6j8LJpAx0draFuOQKcHo1IJZA1P5FdNPeTX/zOqAsqncFBvUFu+uCXIkP84FmetMSUqYAIVVCQQFiVXKLSvDRrmv88+HRvrVSdV8mESHU0wHX7uuCEVxtRQUe83CQoycFAwghpF6S6RWnNTd8QKrSGy8vs96gAAAgoJPRxRKo8CC3CICupk5xuTIF6maCrZ1MgphwbS2FDsYzAcRSzU89Fq53vnY5LQfFjVqDHyCZkQAUZAB2VDiZkMqom3/dCKkhi7ZdRnqeAgBgIxXh7YERtfbaET71NzpPCCHEsiozfEBi41Cjfarz5A5Aq6cNFkugwv0c4fABo0GBOpopYK1a+DrBVqr5DhQqNc7nuQB2esUk0+Is0zFCGgAKChCrUKJS44t/b+C3Myn8spdjmhidKrCmhHsLgwI1WGeQEEJIA6MfFDA3fECu1gUFpLYUjMaIL4GnfxIsknIq3M8RTmGnX1NApg0KlJSq3i+pvXMGYkgqFqF1oAv//NStTMCvrW4FGkJASKVRUIA0aPdzivDjkSQMXnEIH/9znV8eFeBSK7UE9LWkqf8IIYRUkiBTQGk6U8BGrbvYldnV/PC4Ok8sBZoPA1xDdIvKzBR4nBGQ91C3gswBENOoW0trF6wbHnA6OUMYFKBig4RUGv11Iw3OvewirDtxC/9efYBLaTkG7Z6OcqwYHS04waoN0XrRbQBITs+v1dcnhBBSf8kkuvQyk8MH1CrIobvYldtTUIAn0p3ySqHCAzOZAvzwgfsXdCt4NK3R7pHyaR+sm5bw9K1MqLq20823cOcEoFYDIrrnSUhFUVCANBgqNcP3hxKxfM8NFJaoDNo5DhjTPhBvDQiHq72s1vvnZCMs8BN3J6vW+0AIIaR+KldNgaJswVMbe5ca7FE9o1dkTw4FUnOFQYEivfMGPihwN163gndkjXaPlE/rQFeIOEDNgNwiJW7KWyKcEwFMDRRlAQ+vAI2MzzpBCDGNggKkQUjLKsTMX8/heGKGQVuAmy0Gt/LBk639amWmAXMcbSTILVICAFr50XACQggh5SMMCpioKaAXFFAzDraOrsbXs0bOAcCDywCAMC4Fxx4VQKVmEIs0GRgFCiW/qr388enxPb2ggA8FBeoCB7kEzX2dcDFVkwl65I4C4d6RwN1zmhVuHaWgACGVQPk1pN7bd+0BBq04JAgIuNvL8PbACOyZ2QMHZ/fCnEHNLB4QAIBfpnSCVMxBJhbhrQHhlu4OIYSQekJYaNB4poCyIJN/nAtbONjWflZcneXbmn8YKUpCTpESF1J1QZR8hS5TwE4uBlRK4N5F3fbeUbXSTVK2rqEe/OPDN9OBoK66xltHLNAjQuo/yhQg9RZjDD8cTsKSnVeg1rtpMqSVD5Y82QrOdnVvPt4Wvs44M68fihQqeDnZWLo7hBBC6glZOYYPFGY/gna+gWxmDxcbOs3j+bXhH0aKEgAA+689QHSACwCgoFgvU0Am0WQVKAs1C0QSwLtVrXWVmNe9qSe+OZgIADiW8Agl7TtBenylpvHWUYAxmuKJkAqiTAFSLzHG8MFfV/HfHbqAgJ1MjI+fisIXz7aukwEBLScbKQUECCGEVIhUv9CgidkHCnLS+cc5cICjnIICPL1MgUZcFryQif3XdLMLCDIFZGIgVa+SfaOWgJT+b9cV7YJd+boPhSUqnEMzXWPefSAj0UI9I6T+oqAAqXce5RVj5q/n+SgxAPi52GLTtC6IbesPjqLDhBBCGpjy1BQoytUNoysQ2dP/Q30OXoCTP/80UpSI8ylZyMhXABDWFHCQS4AUvTnv/dvVWjdJ2WykYnRs7M4/33dHBXjqBQaSD1ugV4TUbxQUIPVGfrESX/x7AzEf7ceWuFR+eTMfJ2x9pSua+1q+ZgAhhBBSE2SlagowZhgYUOXc5R/nStwM2q2ebzT/MFKUAMaAQzc02QJZBSV8m4ONRJgp4EdBgbqmR1NdXYGDNx4CwXp1BRL2WqBHhNRvFBQgdV5KZgE++ecaeny4Dx//cx25euP+2gS64JfJneDpKLdgDwkhhJCapZ8pAABKtZFsgdz7/MM8mYdhu7XTu+PfS3QOALD/2kMoVWokp+fzbX62SuDhNaPbkbqhR5gn//hiag4e+fTQNSbsA1QlRrYihJhCg81InZNfrMTRhEc4fOMhDt1MR+LDfIN1nGwkeL1vGMZ3DoJETLEtQgghDZtULBwKUKJSGwQKxPm6oECRjVet9KteCR8M7FkAAGglSkYIdxcHr8sQn5rN1xSQiUVorr4B4HHQxcYZcAu1TH+JSU29HBDiYY+kx8GcbTlNMEEsB1TFQHEOcPs4ENLdwr0kpP6wuqupoqIizJ8/H2FhYbCxsYGvry8mTZqElJQUS3fN6l27l4uZv55D60W7MXntaaw5dssgICCXiDCtZygOvdUbL3QLoYAAIYQQqyCVCP/flSgNMwVsC3XDB0psKShgwDMcaKSbReAJ0TE8ylfg7U3x/LLoABfIU47qtvHvAIjoXKOu4TgOg1p688+3XckWBgFu7LJArwipv6zqr1xRURH69OmDRYsWIS8vD8OHD0dAQABWr16NNm3aICEhwdJdtEoqNcPKfTcx5LND+P1sqtH5l0M87PHOoAgcm9MH7wyKqNOzCxBCCCHVTVYqCG7wv5IxOBfe0bU7BtZGt+qfliP5h8PERwEw3HiQxy/r1NhNWKiO7jbXWYNb+fCPz9zKRIZvT13jle2aqQkJIeViVcMHlixZgqNHj6Jz5874559/4ODgAABYtmwZZs2ahUmTJuHAgQMW7qV1ScsqxBsbz+FEUoZguZONBN2aeqB7U090a+KBADc7C/WQEEIIsbzSQwVKSgcF8h9Cri7knzL3JrXRrfqn5Uhg70IAQBNRGppzt3CZBfPN3YPsgON6Mw8EU1Cgrmrh64RQT3skPM4qXZ8ThVe1jZlJmroQXhEW6x8h9YnVZAqUlJTg888/BwCsXLmSDwgAwMyZMxEZGYmDBw/izJkzpnZBqtmO+LsYtOKQICDg52KLFWOicWZeP3w5ti2e6RBIAQFCCCFWTyziINIrK2AQFHiky3bMZA7w8KThA0a5BgP+7fmnY+UH+cfeTjZoo44H1I+L1MmdAO/IWu4gKS+O4zCuUxD//Pv4YjCPcN0KaXEW6BUh9ZPVBAUOHz6MrKwshIaGonXr1gbtsbGxAIBt27bVdteszo37uZj602m8sv4ssgt11WGHRPpg5+vdMTzaz+COCCGEEGLt9P83lqhKpUZnJPIPk5k3fJxta6tb9U/0WP7hsw7nMLZjINoGueLzZ6IhPvGVbr3GMYDYqpJq652RbfwheRwtyyoowX1bvaKQhz8FFAUW6hkh9YvV/KU7f/48AKBNmzZG27XLtetVllqtRlZWVpX20dBcSMlGfEoW7mQUID41GxdTswXttjIx5gyKwPBoP7DifGQVW6ijhBBCLKMgE4j7SfNYcK3Lyn7MamJ5Ne6juvrIGGaXpEChUoMDcOvHdbgnFYN73N7i/p/8FpdUbohGUY2dj2RnZ5t9Xud5dgCKHn+uRXcxO/w3wB/A3/9D1q1DuvWajQXonK7Oa+rC4VJaLgDg5ettsIrboWlIuYr0D7oiyb0HGMeZ2YPGlUYjUCx1rMmultukrlRMm1SMWq2GqApFUa0mKHD79m0AgL+/v9F27XLteua0aNHC6PKrV69CrVbD1dW1kr20XhM/snQPCCGEkIZiD/CxX629WnBwcK29Vs1YbHzx0kG12w1SZXcAbBEsOff4pzxWVG9nquBtS3eA1Ev6w+MrymqCAnl5msqydnbGx6fb29sL1qsMbYQmIoKKmpCK0c58ERpKcyGTiqPjh1QWHTuksujYIZVFxw6pLDp2TLt9+zZ/PVsZVhMUYI9T8TgT6UOsAtOWXLp0yehybQaBqXZCTKFjh1QFHT+ksujYIZVFxw6pLDp2SGXRsVNzrGawiqOjZoxQfn6+0faCAk0hkqqkXRBCCCGEEEIIIfWJ1QQFAgMDAQApKSlG27XLtesRQgghhBBCCCENndUEBaKiogAAZ8+eNdquXR4ZSfPREkIIIYQQQgixDlYTFOjatSucnZ2RkJCAuLg4g/ZNmzYBAIYOHVrbXSOEEEIIIYQQQizCaoICMpkMr776KgDg1VdfFdQWWLZsGeLj49GtWze0b9/eUl0khBBCCCGEEEJqFccqUna/nisqKkJMTAxOnDgBHx8fdO/eHbdu3cKJEyfg7u6O48ePo0mTJpbuJiGEEEIIIYQQUiusKigAAIWFhXj//fexfv163LlzB66urhg4cCAWL16MgIAAS3ePEEIIIYQQQgipNVYXFCCEEEIIIYQQQoiG1dQUIIQQQgghhBBCiBAFBQghhBBCCCGEECtFQQFCCCGEEEIIIcRKUVCAEEIIIYQQQgixUhQUIIQQQgghhBBCrBQFBQghhBBCCCGEECtFQYEaVlRUhCVLliAqKgr29vawsbFB06ZNMX36dNy7d8/S3SP1wKZNm9C/f394eHjAxsYGgYGBGDlyJA4fPmzprpF6YtGiReA4DhzH4ZdffrF0d0gddfXqVSxduhR9+vRBYGAg5HI5vL29MXLkSBw6dMjS3SN1QFFREebPn4+wsDDY2NjA19cXkyZNQkpKiqW7RuqwgoICbN26FS+88AIiIyPh5OQEe3t7REVFYdGiRcjLy7N0F0k9kZGRAS8vL3Ach4iICEt3p0HhGGPM0p1oqIqKitCzZ0+cPHkSbm5u6Ny5M2QyGU6ePInU1FR4e3vj2LFjCA4OtnRXSR2kUqnw/PPPY/369bC3t0e3bt3g4uKC27dv48yZM5g3bx7mzp1r6W6SOu7atWuIioqCQqEAYwwbNmzAmDFjLN0tUgf5+/sjNTUVTk5O6NixI1xdXXH58mVcvHgRHMdh2bJlmDFjhqW7SSykqKgIffr0wdGjR+Hj44Pu3bsjOTkZJ0+ehKenJ44dO4bQ0FBLd5PUQd9//z0mT54MAGjRogWaN2+OnJwcHD16FLm5uYiIiMCBAwfg5eVl4Z6Sum7ChAlYu3YtGGMIDw/H1atXLd2lhoORGrNixQoGgHXs2JFlZ2fzy4uKithTTz3FALDnn3/egj0kddlbb73FALDBgwezR48eCdoyMjLY9evXLdQzUl+o1WrWo0cP1qhRIzZ8+HAGgG3YsMHS3SJ1VL9+/dj69etZcXGxYPnXX3/NADCxWMwuXbpkod4RS5s3bx4DwDp37sxyc3P55Z988gkDwHr06GHB3pG6bM2aNeyll14yOG9JS0tjrVu3ZgDYM888Y6Hekfpiz549DACbMmUKA8DCw8Mt3aUGhTIFalBsbCw2b96MX375BaNHjxa0nTt3Dq1bt0azZs1w+fJlC/WQ1FU3btxAs2bN4OfnhytXrsDOzs7SXSL10HfffYcpU6bg559/xu7du7FmzRrKFCCVMmDAAPzzzz9YsGAB5s+fb+nukFpWUlICLy8vZGVl4ezZs2jdurWgPSoqCvHx8Th9+jTatm1roV6S+ujYsWPo0qUL5HI5cnJyIJPJLN0lUgcVFhYiMjISMpkMW7duRVhYGGUKVDOqKVCD5HJ5meu4ubnVQk9IffP9999DpVJh2rRpFBAglXLv3j289dZb6NOnD8aOHWvp7pB6LioqCgCQlpZm4Z4QSzh8+DCysrIQGhpqEBAANDdBAGDbtm213TVSz2n/thQXF+PRo0cW7g2pqxYuXIiEhAR89dVXkEqllu5Og0RBgRrUr18/AMDy5cuRk5PDL1coFFiyZAkAYPz48RbpG6nb9u7dC0BzDCUlJWHJkiWYOnUq5syZgz179li4d6Q+mD59OgoLC/HVV19ZuiukAUhMTAQAeHt7W7gnxBLOnz8PAGjTpo3Rdu1y7XqElJf2b4tUKqUbZcSo+Ph4fPLJJ5g4cSJ69Ohh6e40WBJLd6Ahe+6557Bz50789ttvCAkJQZcuXSCVSnHy5Enk5ubif//7H194hRB9ly5dAgCcOHECs2bNQnFxMd/2wQcfoG/fvti8eTOcnJws1UVSh23fvh2//fYbFi5ciKZNm1q6O6SeS0hIwPbt2wEAw4YNs3BviCXcvn0bgKYYpTHa5dr1CCmvFStWAAAGDhxYrgxbYl3UajUmT54MFxcXfPjhh5buToNGmQI1SCwWY8OGDXjzzTeRkZGB7du3Y8uWLUhNTUV0dDS6detm6S6SOqioqAhFRUUAgBkzZqBnz56Ij49HTk4Odu/ejZCQEOzZswdTpkyxcE9JXZSXl4eXX34ZYWFhePvtty3dHVLPKZVKTJgwAcXFxRg9ejSNF7dS2injTA1ns7e3F6xHSHns3LkTP/zwA6RSKRYvXmzp7pA66PPPP8fJkyfx0Ucfwd3d3dLdadAoU8CM2NhYXLx4sULbrF27Fh06dAAAZGZm4sknn8SpU6ewYsUKjBo1CnZ2djh48CBee+019OnTB7/99htGjBhRA70nllSVY0elUvHL/Pz8sG3bNr7wTt++ffHHH38gOjoav/76KxYvXkx3ghuYqv7deffdd3Hnzh3s3buX7rpYmaoeO8a89tprOHz4MBo3bowvv/yyql0k9ZS2JjXHcWbbCSmvK1euYNy4cWCM4aOPPuJrCxCidefOHcydOxc9e/bEhAkTLN2dBo+CAmYkJyfj2rVrFdqmoKCAf/zGG2/gwIEDWL58OaZPn84vHz58OPz8/NCxY0e8/vrrGDp0KCQS+ioakqocO/b29hCJRFCr1Rg3bpxBJd5WrVqhXbt2OHnyJA4cOEBBgQamKsfOyZMnsXLlSjz33HPo3bt3TXSP1GFV/Z9V2qJFi/D111+jUaNG2LVrF433tWKOjo4AgPz8fKPt2uPIwcGh1vpE6q+UlBQMHDgQmZmZmDlzJl5//XVLd4nUQS+//DIUCgXVRqoldCVqxunTpyu9rUqlwoYNGwDoqvLqa9euHUJCQpCQkIDExESEhYVV+rVI3VOVYwcAgoKCkJSUhKCgIKPtwcHBOHnyJB48eFCl1yF1T1WOnZ07d0KtVuPChQuIiYkRtGmn7dFe6MXGxuLVV1+tSldJHVPVvzv6Vq5cifnz58PZ2Rl///03mjRpUm37JvVPYGAgAM3FnDHa5dr1CDElPT0d/fr1w+3btzFx4kR8/PHHlu4SqaO2b98OFxcXvPTSS4Ll2iG2t2/f5s91tm/fTkHJKqKgQA158OABFAoFAJgsBqddnpGRUWv9IvVD69atkZSUZPLY0E7bQ38AiTHnzp0z2XblyhVcuXIF0dHRtdYfUr+sW7cOr732Guzs7LBjxw46Vgif2n327Fmj7drlkZGRtdYnUv/k5uZi0KBBuHr1KkaOHInvvvvO5JAUQgAgKysLBw4cMNpWWFjItymVytrsVoNEhQZriJubG5/2bezuTU5ODp/maepuMLFe2grf+/btM2jLzc3lT8BMTQ9FrNOCBQvAGDP6o53+dMOGDWCMYfny5ZbtLKmTdu7ciQkTJkAqlWLLli3o2rWrpbtE6oCuXbvC2dkZCQkJiIuLM2jftGkTAGDo0KG13TVSTxQXF2P48OE4ffo0BgwYgA0bNkAsFlu6W6QOM3U+k5SUBAAIDw/nl7m4uFi2sw0ABQVqiFwux8CBAwEAM2fOxN27d/m2oqIivPzyyygoKEDXrl3h4+NjqW6SOmrMmDEIDg7Grl27sGbNGn65UqnE66+/jszMTLRs2ZJO2Akh1ebIkSP8cLeNGzeif//+Fu4RqStkMhk/3OjVV18V1BZYtmwZ4uPj0a1bN7Rv395SXSR1mEqlwjPPPIN9+/ahe/fu+P333w3qJRFCLItjVDK2xiQkJKBr1664f/8+HB0d0blzZ9ja2uLUqVNIS0uDm5sbDhw4gJYtW1q6q6QOOn78OPr27Yv8/Hy0adMGwcHBOHv2LJKTk+Hu7o59+/ahVatWlu4mqScmTJiANWvWYMOGDRgzZoylu0PqIFdXV2RlZSEkJAQ9evQwuk63bt3w4osv1nLPSF1QVFSEmJgYnDhxAj4+PujevTtu3bqFEydOwN3dHcePH6faE8SoFStWYMaMGQCAJ5980uSw2o8//hgeHh612DNSHyUnJyMkJATh4eF8vSRSdVRToAaFhobi/PnzWLp0Kf766y8cPHgQjDEEBATglVdewTvvvAN/f39Ld5PUUZ06dUJcXBwWLlyIPXv24MKFC2jUqBEmT56MuXPnUkEnQki1ysrKAgAkJSXx6ZnGUFDAOtnY2GDfvn14//33sX79emzduhWurq4YP348Fi9ejICAAEt3kdRRmZmZ/OMtW7aYXG/BggUUFCDEQihTgBBCCCGEEEIIsVJUU4AQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIIYQQQgghxEpRUIAQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIIYQQQgghxEpRUIAQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIqeM4jivzZ8KECZbuptWIiYkBx3FITk6u8dfiOA7BwcE1/jp1WXBwsNljv759PrV5/BCd3r17IygoCAqFolLbZ2ZmwsbGBiKRCLdv3y5z/UmTJoHjOPznP/8BAMTFxYHjOHz00UeVen1CCKlJEkt3gBBCSPmMHz/eZFu3bt1qsSekOuzfvx+9evXC+PHj8eOPP1q6O+W2YMECLFy4EKtXr67VYNSoUaPg4OBgsNzDw6PW+kDqpx07dmDfvn346quvIJPJKrUPV1dXDBkyBL///jvWr1+Pd955x+S6RUVF+P333wEA48aNAwC0bt0aw4YNw5IlS/DCCy/Azc2tUv0ghJCaQEEBQgipJ+rThSOpHleuXIFUKrV0N+qEjz/+uN5lBRizdu1aFBQUwM/Pz9JdsRrvvvsuvLy8MGnSpCrt57nnnsPvv/+On3/+2WxQYNu2bcjOzkbbtm3RrFkzfvmcOXPw559/YunSpVi6dGmV+kIIIdWJhg8QQgghdVRERARCQ0Mt3Q1SjQIDAxEREUHBnlpy5MgRxMfHY8yYMZXOEtAaPHgw3N3dcenSJZw/f97keuvWrQOgCSLo69SpE5o0aYJVq1ZVehgDIYTUBAoKEEJIA6Qda61SqfDhhx8iLCwMcrkcAQEBePvtt1FcXGx0u7y8PCxatAitWrWCnZ0dnJyc0LNnT2zdutVg3eTkZHAch5iYGOTk5GDWrFkICQmBVCrFjBkz+PXi4uIwaNAgODs7w9nZGQMGDMCpU6fw448/guM4LFiwgF+3ZcuW4DgO169fN9q/5ORkiEQiNG3aFIyxMj8H/fHb69evR6dOneDo6AgXFxd+HcYY1qxZgx49esDFxQW2traIjIzExx9/jJKSkjJfQ+vQoUN49dVXERkZCVdXV9ja2iIiIgLvvPMOsrKyBOtOmDABvXr1AgCsWbNGMEZe//MoPWZ+8+bN4DgOY8aMMdmPl19+GRzH4bvvvhMsr8h3a0pwcDAWLlwIAJg4caKg3/v37xes+9NPP6Fbt25wcnKCnZ0dIiMj8f7776OoqKjcr1cZycnJmDp1KoKDgyGXy+Hp6YnY2FjEx8cbrKt/DF6/fh1jxoxBo0aNIBKJsHXrVsExnp+fj5kzZyIgIAC2trZo06YNtm3bxu/rt99+Q4cOHWBvb49GjRph+vTpKCwsNHjNytYUOHz4MJ588kl4eXlBLpcjODgY06dPx8OHDw3WnTBhAv+dHDx4EL1794ajoyOcnJwwZMgQXL582eTrbNu2DQMGDIC7uztsbGwQFhaGefPmIS8vz+x7MfX7lZeXhzfffJP/3Jo3b47PPvsMjDGD4/ujjz4SjMM3plevXuA4DocPHy7X5/b9998DAMaOHWtynQsXLmDs2LHw8/ODXC6Hr68vJk6caPAdyWQyPP300wCAn3/+2ei+MjIy8Ndff0EsFhv9PX3mmWeQnp6OLVu2lKv/hBBSKxghhJA6DQCr6J9rACwoKIiNHj2a2dvbs169erGhQ4cyZ2dnBoCNHTvWYJt79+6x5s2bMwDMz8+PDRs2jPXt25fZ29szAOz9998XrJ+UlMQAsA4dOrDo6Gjm6urKRowYwUaOHMkWLFjAGGPsyJEjzNbWlgFgrVu3ZmPGjGGRkZFMJpOxqVOnMgBs/vz5/D4/++wzBoDNnj3b6PuaO3cuA8A++OCDcn0OPXv2ZADYlClTmEgkYt27d2djxoxhXbt2ZYwxplKp2FNPPcUAMCcnJ9anTx82fPhw5u3tzQCwwYMHM5VKZXSfSUlJguUdO3ZkcrmctW3blo0cOZINGTKE+fj4MACsRYsWLDc3l1/3u+++YwMGDGAAWGhoKBs/fjz/s2XLFn497feoVVRUxJydnZmtra1gf1olJSXMw8ODyWQylpGRwS+v6HdryqxZs1hUVBQDwLp27Sro95UrV/j1pkyZwgAwGxsbNnjwYBYbG8s8PDwYANa5c2dWUFBQrtdjjLGgoCCjn7cxhw4dYk5OTvxnHhsbyzp37sw4jmO2trbs33//Fay/evVqBoCNGTOGOTk5sZCQEDZ69GjWv39/tn37dv4Y79y5M+vYsSPz8PBgQ4cOZTExMUwkEjGxWMx2797Nli1bxiQSCevcuTMbMWIEc3d3ZwDYs88+a9BHU8ePOStWrGAcxzGxWMw6d+7MYmNjWUREBAPAQkJCWFpammD98ePHMwBs5syZTCwWs6ioKDZq1CgWFhbGADB3d3d29+5dg9eZOXMm/7316NGDjRw5kv/827Zty/Ly8oy+F1O/X4WFhaxDhw4MAPP09GSxsbFs4MCBTCaTsenTpxsc3w8fPmRyuZz5+PiwkpISg/7duHGDcRzHIiIiyv3ZeXl5MXt7e4PfY61NmzYxmUzGv8fY2FjWunVr/nO6ePGiYP2jR4/yv0fG9vn1118zAGzQoEFGX2/v3r0MAHvuuefK/R4IIaSmUVCAEELquMoGBQCwZs2aCS4+EhMTmaurKwPAbt68Kdhm0KBBDAB76623mEKh4JcnJCSw0NBQJhaL2fnz5/nl2gsm7UVTZmamYH8qlYq/CPnwww8FbYsWLeK31Q8KZGVlMTs7O+bl5SXoA2OMKZVK5ufnxyQSCbt37165PgftRYuNjQ3bv3+/QfvSpUsZANavXz/24MEDfnleXh574oknGAD2xRdfGN1n6Yu6HTt2CC7EGdNcxGsvkBcuXCho27dvHwPAxo8fb7L/pS+aGGNs0qRJDABbu3atwfo7duxgANiIESMEyyv63Zozf/58BoCtXr3aaPumTZv4i6YbN27wy7Ozs1m3bt3MBn2MKW9QIDs7m3l7ezOpVMp+++03Qdvu3buZTCZjfn5+rLi4mF+uDQoAYK+++ipTKpWC7fSP8ZiYGMH3q922SZMmzM3NjR08eJBvS01NZV5eXgwAS0hIEOyzokGBY8eOMZFIxIKCggTfkVqt5n+PYmNjBdtogwIikYitX7+eX65UKtmoUaMYADZv3jzBNhs3buSDd/p9UygU/DH85ptvGn0vpn6/Fi9ezP99yM7O5pefP3+e/ztU+vh+9tlnGQC2detWg/29/fbbDAD75JNPTH9geq5cucIAsB49ehhtT0xMZHZ2dszZ2ZkdOHBA0LZmzRoGgLVv395guyZNmjAAbO/evQZt2mN83bp1Rl8zJyeHiUQiFhwcXK73QAghtYGCAoQQUsdpL0rM/ejfXdbfZs+ePQb7e+211wwu6uLi4hgA1qVLF6ZWqw222bp1KwPAXnvtNX6Z/gXTqVOnDLbZvXs3A8AiIiIM9qlUKllISIhBUIAxxiZOnMgAsE2bNgmWb9u2jQFgI0eONPVRGdBetLzyyisGbdq76o6Ojuzhw4cG7ffu3WNyuZy1atXK6D7Le1FXUFDAJBIJa9OmjWB5ZYMC2juNAwYMMFh/7NixDIDgorgy3605ZQUFevTowQCwH374waAtPj6ecRzHHB0dBRfn5miDAqZ+4uLiGGOMffrppwwAmzNnjtH9zJgxgwFgmzdv5pdpL+w9PT1Zfn6+wTbaY1wsFgsCHIxpgl6enp4MAHvvvfcMtn3jjTeMfk4VPX6GDx/OALBdu3YZtKnVata6dWsmEokEx7A2KDBu3DiDbc6cOcMAsJ49ewqWazNArl69arBNYWEh8/b2Zi4uLoK74+Z+vxhjzN/fnwFgx44dM2h77733jB7fBw4cYADY0KFDBctLSkqYt7c3k8lkRn9fjdEGOiZPnmy0/fXXX2cA2DfffGO0fcSIEQwAO3PmjGD5ggULGAA2adIkwfLk5GTGcRxzcHAwejxp+fn5MQCCQAkhhFgS1RQghJB6Yvz48SZ/AgMDDdaXSqWIiYkxWB4WFgYAuHv3Lr9s9+7dAIDhw4eD4ziDbbRTHp46dcqgzcfHB+3atTNYfvToUQBAbGyswT7FYjFGjhxp9H1OmzYNAAzGxGufT5482eh25gwbNsxgWVxcHNLT09GtWzej09o1atQITZs2xcWLF42ODTcmNTUVX3/9NWbMmIFJkyZhwoQJeOmllyCTyXDjxo0K99uYmJgY+Pn5Yc+ePXjw4AG/vKCgAH/88QecnJwwdOhQfnlVvtuKKikpwfHjx8FxHJ599lmD9latWiEyMhK5ublmC7UZM2rUKKPHvnZqN+37HDFihNHtzb3Pvn37ws7OzuRrBwcHo0mTJoJlIpEIQUFBAIB+/foZbKMtEKn/e1ZRarUae/fuhaOjI/r06WPQznEcunbtCrVajTNnzhi09+/f32CZsd//Bw8e4Pz582jWrBnCw8MNtrGxsUG7du2QlZVl9Dg29vt1+/ZtpKSkwN/fH506dTJof+qppwyWAUCPHj3QvHlz/PXXX0hNTeWXb9u2Dffu3cOTTz5Z7mkotb8frq6uRtv1fzeMMXXMaAsIbt68WVAjY926dWCMYeTIkWaPJ+0xa6weBCGEWAJNSUgIIfVERack9PHxgVgsNliunetdv9igtqDW22+/jbffftvkPtPT0w2WGQtIAEBaWhoAICAgwGi7qe06dOiA1q1bY/fu3bh16xaCgoJw9+5d7Ny5E4GBgUYvdMpi7LW07/mvv/4yerGsLyMjo8wp5JYtW4Y5c+bUeFVxkUiEMWPG4JNPPsHGjRvx2muvAQD+/PNP5OXlYeLEibCxseHXr8p3W1GPHj2CQqGAt7e3oA/6goODcf78ef74KK+ypiTUvs+OHTua3U9FjmEtU9+9vb29yXZtm6minuXx6NEjvsCfRGL+lM3Y+/L39zdYZuz3/9atWwA0U2CW9buQnp5uEDgw9vlV9vcfAKZMmYIZM2Zg1apVmDdvHoDKBQWzs7MBAI6OjkbbtceMt7e32f2U/mwbN26MLl264OjRo9i+fTtiY2MBmJ51oDQnJydB/wghxNIoKEAIIQ1UWSf3+lQqFQCge/fuaNy4scn1jN2hM3XxV1Y/mJnZA6ZOnYpp06Zh1apVWLhwIVavXg2lUokXXngBIlHFk9yM9VH7nps2bYouXbqY3V4ul5ttP378OGbNmgVnZ2d8++23iImJgbe3N7+dr69vle4YlzZ27Fh88sknWL9+PR8UWL9+Pd+mryrfbWWV59iryPFZHtr3+dRTT5m9S2ssaFDZY7i87ZWlfU+Ojo4mM2u0tFkLlemX9nV8fHzKDLq5u7sbLDP3+VXmsxk/fjzmzJmDVatWYe7cuUhJScGuXbvQuHFj9O7du9z7cXZ2BgDk5OQYbVepVOA4Ds8//7zZ/bRo0cJg2XPPPYejR4/i559/RmxsLOLi4nD58mX4+vqW2UdtMEDbP0IIsTQKChBCCOHvKMbGxmL69OnVsk8fHx8AmjRiY+7cuWNy27Fjx2L27Nn8ncIffvgBIpEIkyZNqpa+Abr33LJlywpnYZSmnV7sv//9L8aPHy9oKywsxL1796q0/9Jat26NZs2a4fjx40hMTISrqyt27doFHx8ffqpDrZr4bk1xd3eHTCbDvXv3UFhYCFtbW4N1tHeltcdHdfH398e1a9cwd+5cREZGVuu+LcXDwwNyuRxSqbTKx6g52mPE29u72l6nrN9/U8sBwMXFBaNHj8aPP/6I3bt349ixY1Cr1XjxxRcrFGTw8vICoMn0Mcbf3x8JCQn47LPP+Lv35TV69Gi8/vrr+Ouvv5CZmclnCTz77LNlBi4zMzMBAJ6enhV6TUIIqSlUU4AQQgj69u0LABWas74s2rvvmzdvNsgKUKvVZufpdnBwwLPPPouUlBTMnj0biYmJGDRokNF06Mpq3749nJ2dsW/fPpN3EstLe5JvLFX6t99+M5oVIZPJAABKpbJSr6nNCFi/fj1+++03KBQKPPPMMwYXJNX93Zrrt1QqRadOncAYw4YNGwzaL168iPPnz8PR0RFRUVHV0h+tmjiGLU0ikSAmJgYZGRk4ePBgjb2Ov78/wsPDER8fj6SkpGrZZ1BQEHx9fZGSkoITJ04YtG/atMns9lOnTgUAfPPNN1i1ahUkEgkmTJhQoT5oj7GrV68aba/KMePq6oohQ4ZAoVDgl19+4Y/3cePGmd0uJycHaWlpCAkJqXAgghBCagoFBQghhKBTp07o06cP9u3bhzfeeIMfx6ylVqvxzz//4PDhw+XeZ+/evdGkSRNcuXIFn376qaDtgw8+QGJiotnttQUHly9fDqByBQbNkcvlePPNN5GVlYVRo0bxd7D1xcfHY+PGjWXuS1u87YcffkBJSQm//PLlyybH8fv6+gIArl27Vpnu84X81q1bZ3LoAFD9321Z/dYOZ5g/f77gO87NzcWrr74KxhimTp3KBxeqy9SpU+Hp6YklS5Zg9erVBoGY/Px8rF27FikpKdX6ujXt3XffhUgkwvjx441+R2lpaVi5cmWVX2fu3LlQqVQYNWoULl68aNCekJCAVatWVWif2gv7WbNmITc3l19+8eJFfP7552a37dSpE6KiovD777/j9u3bGDp0aIWzS8LDw+Hl5YWzZ88aDWLNmjULtra2eOONN7Bt2zaD9oyMDHz55ZcmC41qawfMmzcPaWlpaNWqVZnBrlOnToExhu7du1fovRBCSE2i4QOEEFJPmLtLFhgYiEWLFlVp/+vWrUP//v2xfPlyrF27FtHR0fD09ERqaiquXbuGhw8f4tNPP+UrcpdFLBZj9erV6NevH2bNmoV169YhPDwcly9fxpUrVzB58mR89913Ji8Oo6Oj0aFDB5w8eRI+Pj4YMmRIld6fMe+++y4uX76MDRs2IDw8HG3atEFgYCDS09ORmJiIpKQkDB8+HKNHjza7n4kTJ+KTTz7Btm3bEB4ejvbt2yMjIwMHDhzAiBEjcPLkSYOgQ3BwMCIjI3H69Gl06NABLVq0gFgsxrBhw4xWcy8tJCSEL3Z29epVREREoE2bNkbXrc7vtn///rCxscGnn36KixcvwtfXFxzHYfbs2QgPD0dsbCymTJmCb7/9Fi1btkTv3r1hZ2eH/fv34+HDh+jUqRMWLlxY5utUlKurK7Zs2YJhw4Zh0qRJWLhwIVq2bAm5XI7bt2/jypUryM/PR1xcXLVmnNS0Hj16YMWKFZgxYwa6d++OyMhING3aFEVFRbh16xauXLkCBwcHvPLKK1V6nXHjxuHChQv48MMPER0djdatWyMkJAQ5OTm4desWrl69iqioqAoN4Zk9eza2bduGI0eOIDQ0FDExMcjLy8O///6LyZMn44svvjAbHJo6dSpefvllAJUPCg4ePBg//vgjTpw4ga5duwramjZtip9//hnjxo3DsGHDEB4ejmbNmoExhlu3buHy5ctQKBR49tlnjQ6FGTJkCNzc3PDo0SMAZWcJAMD+/fv5fhFCSJ1hsckQCSGElAvMzNGu/YmKijLYpvT831raudnnz59v0FZQUMCWLVvGOnbsyBwdHZlcLmfBwcGsf//+bOXKlYL5wbVzuJee77y006dPswEDBjBHR0fm6OjI+vTpw44dO8b++9//MgDs66+/NrntnDlzGAD27rvvmn0NU8o7J/ymTZvYwIEDmYeHB5NKpczHx4d16tSJLViwwGDedlP7vHPnDnv22WeZn58fs7GxYc2aNWPvv/8+UyqVLCgoiBn7l3vjxg02YsQI5u7uzkQikcH3Yu57ZIyxlStX8sfAokWLzL7Hiny3Zdm1axfr2rUrc3Bw4F9/3759gnXWrl3LunTpwhwcHJiNjQ1r0aIF+9///scKCgrK/TqMMf6zK+s71EpNTWWzZs1iERERzNbWljk4OLCwsDA2evRotnHjRlZcXMyva+53gbGyj3Fzx5epfZf3mCzt9OnTbOzYsSwgIIBJpVLm5ubGIiMj2SuvvML2798vWHf8+PFGvxMtc8fV3r172ZNPPsm8vb2ZVCplXl5erE2bNmz27NnszJkzFX4v2dnZ7I033mB+fn5MJpOx8PBw9sknn7A7d+4wAKxTp04mt7127RoDwPz9/ZlSqTS5njlHjhxhANjLL79scp3r16+zqVOnssaNGzO5XM6cnZ1Zs2bN2MSJE9n27duZWq02ue20adMYACYSididO3fK7E9oaCjz8PAQHIeEEGJpHGNmyj8TQgghNWTQoEH4+++/cfz4caMV4RljiIiIwI0bN3Dz5k2zlfMJIfXLxo0bMWbMGEybNg1fffWV0XWWLFmC//znP5g/fz4WLFhQ6ddq3bo1UlJSkJKSUuZMIjXp2LFj6NKlC9566y0sXbrUYv0ghJDSqKYAIYSQGpORkWGQNs8Yw+eff46///4bTZo0QYcOHYxuu2nTJly/fh2DBw+mgAAh9dS5c+egVqsFyy5cuIC33noLgK42Rmk5OTn88IIpU6ZUqQ//+9//kJ6ejh9++KFK+6mqDz74AC4uLvx7J4SQuoIyBQghhNSY48ePo0uXLoiMjETjxo2hUqlw8eJFJCYmwtbWFjt37kRMTIxgmxdffBFZWVnYvn07lEolTp48aXKsPCGkbouIiEBOTg5atWoFV1dXJCcn4/Tp01CpVEazBFavXo0DBw7g4MGDSEpKwhtvvIFly5ZVuR+9e/fGzZs3cfPmzWovclkecXFxaNOmDZYuXUpBAUJInUNBAUIIITXmwYMHWLBgAfbt24e0tDQUFhbCy8sLPXv2xDvvvINWrVoZbMNxHCQSCcLCwrB48WKMHDnSAj0nhFSHlStX4pdffsH169eRmZkJOzs7REZG4oUXXsD48eMN1p8wYQLWrFkDT09PjBkzBh999JFFU/4JIcQaUFCAEEIIIYQQQgixUlRTgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVL/B9WmHgU+JXPjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.plot(dft_energy-fermi_energy, dft_dos, label='Initial DFT total')\n", + "ax.plot(energies[0], np.sum(doss, axis=(0, 1)), label='PLO from CSC')\n", + "#for energy, dos in zip(energies, doss):\n", + "# ax.plot(energy, dos.T)\n", + "ax.axhline(0, c='k')\n", + "ax.axvline(0, c='k')\n", + "ax.set_xlim(-8, 5)\n", + "ax.set_ylim(0,)\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.legend()\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "2a2a3293-3ef7-4457-942d-8a6bdcaabe29", + "metadata": {}, + "source": [ + "This plot shows the original DFT charge density and the PLO-DOS after applying the DMFT charge corrections. It proves that we are capturing indeed capturing the eg bands with the projectors, where the partial DOS differs a bit because of the changes from the charge self-consistency. Note that this quantity in the CSC DMFT formalism does not have any real meaning, it mainly serves as a check of the method. The correct quantity to analyze are the lattice or impurity Green's functions.\n", + "\n", + "## 3. Plotting the results: observables\n", + "\n", + "We first read in the pre-computed observables from the h5 archive and print their names:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d353c296-868a-45b5-bda6-2481d4df74ed", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5', 'r') as archive:\n", + " observables = archive['DMFT_results/observables']\n", + " conv_obs = archive['DMFT_results/convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ad578719-aa61-4560-baba-f01a4f28b726", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['E_DC', 'E_bandcorr', 'E_corr_en', 'E_dft', 'E_int', 'E_tot', 'imp_gb2', 'imp_occ', 'iteration', 'mu', 'orb_Z', 'orb_gb2', 'orb_occ'])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "observables.keys()" + ] + }, + { + "cell_type": "markdown", + "id": "bd150f57-3a8c-418a-a088-470180c86d87", + "metadata": {}, + "source": [ + "We will now use this to plot the occupation per impurity `imp_occ` (to see if there is charge disproportionation), the impurity Green's function at $\\tau=\\beta/2$ `imp_gb2` (to see if the system becomes insulating), the total energy `E_tot`, the DFT energy `E_dft`, and DMFT self-consistency condition over the iterations:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "41e955de-7a19-4e1f-bf27-f6973a8855d1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAS/CAYAAAC5X2fcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUVf4G8PdOTW+UJEBo0iUgVRAQUEHBAliwUxZcdNVFLKurS9HVVdZ1FQsqEor6Q0AFpKksSlWQAAqh10BCQiCQXqbe3x93ZjKTTDKTycydm+T9PM995s5t50wISt6c7zmCKIoiiIiIiIiIiIiISBFUwe4AERERERERERERVWBgR0REREREREREpCAM7IiIiIiIiIiIiBSEgR0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2BERERERERERESkIAzsiIiIiIiIiIiIFYWBHRERERERERESkIAzsiIiIiIiIiIiIFISBHRERERERERERkYIwsCMiIiIiIiIiIlIQBnZEREREREREREQKwsCOiIiIiIiIiIhIQRjYERERERERERERKQgDOyIiIiIiIiIiIgVhYEdERERERERERKQgDOyIiIiIiIiIiIgUhIEdERERERERERGRgjCwC6L9+/fjX//6F0aNGoWkpCTo9XpERESgU6dOmDRpEnbs2OH3NpcvX45bb70ViYmJCAkJQdu2bfHoo49i9+7dfm+LiIiIiIiIiIhqTxBFUQx2JxqjoUOHYvv27R6ve/TRR7Fw4ULodLo6tVdeXo777rsP69evd3tepVJhzpw5mDlzZp3aISIiIiIiIiKiuuEIuyC5cOECAKBFixaYPn06vvnmG+zZswe7du3Cf//7X7Rs2RIA8MUXX2DSpEl1bm/KlCmOsG748OFYs2YN9uzZg5SUFFxzzTWwWq2YNWsWFi5cWOe2iIiIiIiIiIjIdxxhFyR33HEHJkyYgHvuuQdqtbrK+dzcXAwaNAgnTpwAAGzfvh1Dhgzxqa1t27Zh2LBhAIA777wTq1evdmkzNzcXffr0wfnz5xEbG4szZ84gJibGp7aIiIiIiIiIiKhuOMIuSNavX4/x48e7DesAoGnTpnjnnXcc77/55huf2/r3v/8NAFCr1Zg/f36VNps2bYq5c+cCAPLy8pCSkuJzW0REREREREREVDcM7BTMPioOAE6fPu3TM4qLi/HTTz8BAEaMGIFWrVq5ve7uu+9GVFQUAGDVqlU+tUVERERERERERHXHwE7BjEajY1+l8u2Pas+ePTAYDACkhS6qo9PpMGDAAMc9JpPJp/aIiIiIiIiIiKhuNMHuAFVv27Ztjv0uXbr49IyjR496/YwuXbpg06ZNMJvNOHnyJLp16+ZVG5mZmTWeLy8vx7FjxxAfH49mzZpBo+G3HRERERERERHVf2azGZcvXwYAJCcnIyQkxC/PZXKiUFarFW+99Zbj/fjx4316TkZGhmO/unJYu6SkJJf7vA3snO8jIiIiIiIiImqM9uzZg379+vnlWSyJVah3330Xe/bsAQCMGzcOffv29ek5RUVFjv2IiIgarw0PD3fsFxcX+9QeERERERERERHVDUfYKdC2bdvw0ksvAQCaN2+Ojz/+2OdnlZeXO/Z1Ol2N1+r1esd+WVmZ1204j+Kr7vwNN9wAQEqbExMTvX42EREREREREZFSZWdno3///gCAZs2a+e25DOwU5vDhwxg3bhzMZjP0ej1WrlyJ+Ph4n5/nXDvtvIiFO/bFKQAgNDTU6zY8ldo6S0xMrNX1RERERERERET1gT/n7GdJrIKcPXsWI0eORF5eHtRqNb766qsaV3b1RmRkpGPfU5lrSUmJY99T+SwREREREREREQUGAzuFyMrKwi233IKsrCwIgoBFixZh3LhxdX6u82g2T6u5Ope2ciEJIiIiIiIiIqLgYGCnALm5uRgxYgTOnDkDAPjggw8wYcIEvzzbeaXXY8eO1Xit/bxGo0GHDh380j4REREREREREdUOA7sgKygowK233oojR44AAN566y08+eSTfnt+v379HItNbNu2rdrrjEYjdu/eXeUeIiIiIiIiIiKSFwO7ICotLcXtt9+O/fv3AwBeeeUVvPjii35tIzIyEjfffDMAYPPmzdWWxa5atQqFhYUA4JdSXCIiIiIiIiIi8g0DuyAxGo0YN24cfvnlFwDA9OnT8frrr9f6OUuWLIEgCBAEAXPmzHF7zfPPPw8AMJvNePLJJ2GxWFzO5+bmOoLCmJgYTJ06tdb9ICIiIiIiIiIi//DferNUKw8++CA2bdoEALjpppswZcoUHDp0qNrrdTodOnXq5FNbN910Ex544AEsX74ca9euxYgRI/DMM8+gRYsWSEtLwxtvvIHz588DkEpyY2NjfWqHiIiIiIiIiIjqjoFdkKxatcqx//PPP6NHjx41Xt+mTRukp6f73N6iRYtQWFiIjRs3YsuWLdiyZYvLeZVKhZkzZ2LatGk+t0FERERERERERHXHkthGIjQ0FBs2bMD//d//YcSIEWjevDl0Oh2SkpLw0EMPYefOndWW1BIRERERERERkXwEURTFYHeCGrbMzEwkJSUBADIyMtCqVasg94iIiIiIiIiIqO4ClXlwhB0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2BERERERERERESkIAzsiIiIiIiIiIiIF0QSr4cLCQhQVFcFisXi8tnXr1jL0iIiIiIiIiIiIKPhkDez+97//Yf78+dixYwfy8vK8ukcQBJjN5gD3jIiIiIiIiIiISBlkC+z++te/4qOPPgIAiKIoV7NERERERERERET1iiyB3bJly/Dhhx8CAEJCQjB27Fj06dMHcXFxUKk4jR4REREREREREZGdLIHdp59+CgBISkrCzz//jGuuuUaOZomIiIiIiIiIiOodWYa3HTx4EIIgYPbs2QzriIiIiIiIiIiIaiBLYGcymQAAvXr1kqM5IiIiIiIiIiKiekuWwK5t27YAgOLiYjmaIyIiIiIiIiIiqrdkCezuvvtuAMBPP/0kR3NERERERERERET1liyB3XPPPYfWrVvjvffew7Fjx+RokoiIiIiIiIiIqF6SJbCLjo7GDz/8gPj4eAwaNAjz589HXl6eHE0TERERERERERHVKxo5Gmnfvj0AoLS0FHl5eXj66afx17/+FU2bNkVYWFiN9wqCgNOnT8vRTSIiIiIiIiIioqCTJbBLT093eS+KIkRRxKVLlzzeKwhCgHpFRERERERERESkPLIEdhMnTpSjGSIiIiIiIiIionpPlsBu8eLFcjRDRERERERERERU78my6AQRERERERERERF5h4EdERERERERERGRgshSEutOTk4ODh06hKtXrwIA4uLi0L17d8THxwerS0REREREREREREEna2AniiIWLFiADz/8EEeOHHF7Tbdu3fD000/jscce4wqxRERERERERETU6MhWEpuXl4chQ4bgL3/5C44cOQJRFN1uR44cwRNPPIEbb7wR+fn5cnWPiIiIiIiIiIhIEWQZYSeKIsaMGYNff/0VANCkSROMHz8e119/PRISEiCKInJycrBnzx6sXLkSubm5+PXXXzFmzBhs27ZNji4SEREREREREdWZ1Sqi3GxBiEYNlYqVg57w6+WeLIHdsmXLsHPnTgiCgIceegjz589HZGRklesmTJiAt956C08++SS++OIL7Ny5E1999RUefPBBObpJREREREREROSTI1mFWLjzDL5Pu4gykwWhWjVGJSdg6uD26NYiKtjdU1wwpvSvV7AJoiiKgW7k9ttvx/fff49hw4bh559/9uqe4cOHY9u2bRg1ahQ2bNgQ4B5SIGVmZiIpKQkAkJGRgVatWgW5R0RERERERET+890fF/DcygMwW6tGLBqVgHfG98SY61oGoWfKDMaU/PWqrUBlHrLMYbd//34IgoCnnnrK63uefvppAMDvv/8eqG4RERERERERkQdWq4hSoxlWN+FKMCmlX0eyCqsNnwDAbBXx3MoDOJJVKHPPpGDsrg93YtX+CygzWQAAZSYLVu2Xjn/3xwXZ+6Tkr5eSyFISe/XqVQBAu3btvL7Hfq39XiIiIiIiIiKSjxJHZsnVL6tVRGG5CXmlJuSXGpFfakJ+mRF5Jbb3ZRXn0jILqg2f7MxWEXd9uBPRoVroNSroNCroNWrotSro1KqK1yrHpPfO90ivzpvzsYr9c1dK8OzKA7DUEIw9u/IAYsO0aNc0AkaLFSaLFWaLKO2brTBbXfdNFiuM7vbN0r0m237l+5z3D13w7uuVsvMs3hnf0+c/w/pOlsAuOjoaV65cQVZWFnr16uXVPVlZWQCAqCjWLRMREREREVHDp6Q5xtyVLNpHZq39IytoJYu17Zcoiig2mKXArdSEPFvYZg/h8uxhXKkReaUmFJRJxwrKTPD3BGJmq4grJUb/PrSOLFYRExalBrsbbm1My8bb9/YI+t+FYJElsOvevTu2bduGxYsX4/bbb/fqnkWLFjnuJSIiIiIiImqogj2SzWyxosRgQbHRjOJyMw5dKMDfvjkISzWJldkqYsaKP3DoQgESokMBAAIAwZarSPvSG0GQ3tvfuF4nVLqn4jjcPCs7vwzvbj6B6gZnma0inln+BxZsPw2DWXSEcp5Gc5EylZksKDdbEKaTJbpSHFk+9b333outW7di9erVmDNnDmbPnu34C1eZKIp49dVXsXr1agiCgPvuu0+OLhIREREREVEj0RBGshnNVpQYzCi2bSUGM4psryUGM4rKzSgxWFBitO+7Xuv8Wm6y1rrfVhH4bMfZOn32QBABHM4qCnY3yA9CtWqEaNTB7kbQyLJKrMlkQs+ePXHs2DEIgoBu3bph0qRJuP766xEfHw9BEHDx4kX89ttvWLp0KQ4fPgxRFNG1a1ccOHAAGk3jTFMbCq4SS0REREREShDskWyAVIJYVG5CYZkZf2TkYcaKA9WOZAOkEWbdWkTCKgooNpikkXAGM4zm2ods5Bu9RoXYMB1iwrTSFqpDbLgWMWE6xIRqselwDvadz/P4nGGdm+HPQ9rDYLHCYLLCaLHCYLLAYJbmgqt4tbjs2895Oub8vi50ahW0agEatQpatQo6x74Are2Y/byumn2tm+vt+xvTspF2ocBjP+7p3apezGEXqMxDlsAOAM6dO4ebbroJZ8+erXZ0nZ0oimjfvj1+/vlntG7dWo7uUQAxsCMiIiIiomBzN5LNTqMSvJ6TzWSxoqjcjMIyk/RabkJhmcn26vze3TXSiDYKDo1KsIVuUtAWE6ZDrD2EswVyjmDOHsqF6hCqq3mU15GsQtz14c4aS281KgFrnxosSzAsitIiD89/fQDrDmR7vP6uni0w954e0KoFqFWCx8ymrpT29aqrQGUesg1da9OmDQ4ePIg5c+YgJSUF+fn5bq+LiYnB1KlTMWvWLERERMjVPSIiIiIiImqgjmQVVhvWARVzsh3IyEeoTo3CMrM0Cs4WujmHcaVGi8y9Vy6VAAxs3wQQ4FigQRQBEaLTvo2b4/bxQyKc7kfFG+fjVtGKI9lFXi0EoVULePu+nogL07mMjIvQawISRnVrEYV3xvf0GAjLFT4JggC9Ro0nhnbA92kXPQZjjw+9xmMo6U9K+3oplWwj7JwZjUbs27cPhw4dwtWrVwEAcXFx6N69O/r06QOdTid3lyiAOMKOiIiIiKhxCsZccRariEtF5cjKL8OF/HJcyCvD13szcCa3RJb2g0EQgHCdBhF6DcL1akToNYgI0TiORYRoEK637esr76sRaTsfrpfueeGbA1i1/4LHduUuWXx25R+K7JfdkaxCpOw8i41p2Y6S69HJiZgyuF3Qwid/jSwNBCV+vXxR70tiqfFiYEdERERE1LgEcq64UqMZWfnluJBfJoVyebZX23axoLzBrQqqVQt48+5kRIVo3QZwoVr/BqJKLVlUar8qU9KiJoDygzGlfb1qi4Ed1VsM7IiIiIiIGo+6jOgRRRG5xUZHAOcI4vLKkFUgveaVmgL9EbymVQuIDtUiKkSLyFAtokI0iArRIirU/mo7Zr/GaT8qVIN/rD6EVb8rc8SYUkdmKbVf9UF9D8aUqt7PYUdERERERESBoZQfxL2ZK+7ZlQdQajBDo1a5hHL2UXPBXP1UJQCjuicgOkxXQ/BWcUyvUdVpTrSpQ9pj7YEsjyPGpgxu53MbvhpzXUt0bB6puJFZSu1XfaBSCQjTMQaqL/w6wu7zzz937E+YMMHtcV84P4vqH46wIyIiIiIKjECWnnpDFEUUG8zILzUhr9SIuT8cwy+nrgS8XW/oNSq0jAlFi5hQZOSV4tyVUo/3cCSbe0oJhCtTar+ocakXJbEqlfTbBUEQYDabqxz3qYOVntWQXLp0CXv27MGePXuQmpqK1NRUXLki/c9t4sSJWLJkiV/amTNnDl599VWvrt2yZQuGDRvml3btGNgREREREfmfv4OecpMFBWVS8JZXYkJ+qRH5tvf5pSbklUjv80uNyCu1nS81BW2+uLhwHVrEhDhCuZa2rUVMKFrGhqJJuM7xc6jS5z5T+hxjRFS9elMSW13+x6nyqoqPjw92F4iIiIiIqB7ytvTUbBERE6Z1CdjyKr3aA7gyk0XmT1E9jUpAQnSII4RrGSsFcS0coVxIrUr7urWIwjvje3oMOIMVjtn79/a9PThijIgA+DmwO3v2bK2OU4WkpCR07doVmzZtCmg7aWlpNZ5v107+uRGIiIiIiOqLYJXgWawirhQbcKnIgMtFBnzw80mPI9ssVhHPfX1Aph7WXuf4CLSMDXMZFdcyJgQtYkLRPDIEaj9/fevD3GecY4yI7Pz6X4I2bdrU6nhjN2vWLPTr1w/9+vVDfHw80tPTAx6Yde/ePaDPJyIiIiJqiAI1V1y5yYJLhQZcLi7HpcKKQO5SUbnTvgFXig0IUuWp1zQqAWqVAIMXi0YEY644gCPZiKj+YHQfRN7OK0dERERERMHjbq64MpMFq/ZfwNo/sqrMFSeKIgrKTK7hWzVhXFG5Mufrjg7VIiZMi5gwHWLDtIgN0yE6VHqNDZeOx9jex4RpERuuQ7hOjaPZRV7NFReMVU+dcSQbESmdLP+F+tOf/gRBEPD6668jMTHRq3suX76MF198EYIgICUlJcA9JCIiIiIiJVHK6o/ezBX3zIo/sHzPeZSZrLhsC+KMFs+jzOSSGKVHbLheCtbsAZvt1R7IxTgdjw7V+lyOqvS54oiI6gtZArslS5ZAEAQ899xzXgd2hYWFjvsY2BERERERNQ6BKj2tjtUqIr/M5AjaLheXV+wXGfDL6Sse54oTRWDXmat+75s7KgFoGqGHwWxFQZnJ4/XBKD2tD3PFEREpHccANzIjRozA/v37UVRUhJiYGHTr1g233XYbpk2bhtjYWJ+emZmZWeP57Oxsn55LRERERI1LbUtPqyOKIkqMFlwuMiC32OASwEmhXMV+brHBYyAnhxCtCs0jQ9AsUo/mtk3aD0GzKD2aRejRPEqPJuF6qFUCjmQVKrr0lHPFERHVjWIDu/LycgCAXq8Pck8als2bNzv2L1++jG3btmHbtm2YO3culixZgjFjxtT6mUlJSf7sIhERERHJqD6Vnj638gBiQqXyzcrBW+X3ZSaLzJ/AvZgwrUv4Zt93vI+S9iP1GgiC91//+lJ6yrniiIh8o9j/cv7yyy8AgPj4+CD3pGFITk7G2LFj0b9/f7Ro0QImkwnHjx/H//3f/2HTpk3Iz8/HPffcg3Xr1mHUqFHB7i4RERERBZjcpafulJssyCs1Iq/EhDe/P+pxpJvZKmLi4lRZ+lZbGpWAWXd2Q3yUFMo1jwpB0wgd9Bp1wNpk6SkRUcMliKLo9/Hfr732msv7OXPmQBAEPPHEE2jevHmN9xoMBpw+fRpr166FwWDAgw8+iC+//NLfXVSk9PR0tGsnDVmfOHEilixZ4pfn5ufnIyYmptrzn376KR5//HEAQIsWLXDq1CmEhoZ6/XxvSmL79+8PAMjIyECrVq28fjYRERER+Z+70lM7+8gsb0pPnZUZLbhaakReiRF5pUZcLTEiv9RkezXiaqlJenU6rpRRcHaxYVrH6LdmEdLr7jNXkHah0OO9wZgrzplSRkoSETU2mZmZjspDf2YeARlhZw/onImiiI8//tjrZ4iiiJCQELzwwgv+7l6jU1NYBwDTpk3D3r17sXDhQmRlZWHVqlV4+OGHvX4+AzgiIiIi7yghVPG29DQqRIsmETrklZocIZz0asLVUlsIV1IRwhnMylkV1Vm4Tl0RwjkFcRXvpXnj4sJ10GlUVe5X+lxxdiw9JSJqWAL2X3TngXv28M6bwXwhISFITEzEDTfcgOeffx49ewbvt1SNybRp07Bw4UIAwLZt22oV2BERERFRzYJRfmq1iigqN6OgzIT8MiMKykwoKDNh4Y6zXpWeTl6izNJTANCo4FigoWmVAK5iv2mEHuH6uv3IU1/miiMiooYlIIGd1er62zWVSgVBEHDo0CF069YtEE1SHTn/uVy4cCGIPSEiIiKqOyWMZLOry8qn9tVOC8qkkWwFZSYUlpmQX2pyBHD5ttfKxwvLTfD/5DeBIQiAViXAaPHc4Tt7JuL9B3rVaoGGuuJccUREJDdZxky3bt0agiBAp9PJ0Rz5IABTGRIRERHJTgkLKVTuj6fy0xkr/sD/juRArRIcgVthWUXw5mk0nNKoVQJiw6SVXOPCdIgJ0yIuXCe9D684HhuuRWyYDrFhOkSFanH8YpFXpadPDO0ga1hnZx9p9/a9PRQTBhMRUcMlS2CXnp4uRzNUB0eOHHHst2jRIog9ISIiovqkoYxkq4nBbEFRuRmFZSbptVx6LSo3obDM9up03Pm6nMJyj4GbVQTWH8yudb/koBaAuAg9YsMqwrXYcCl4q3jvei5Sr/Hpe6G+lJ5yrjgiIpID/09DAKSVYu2GDh0axJ4QERFRfVAfR7I9u/IAyk0WxIXrbaGaawBX8WpGUVlFCGdU6GIKtaFVC4gO1SIqVOtYLMKTu3q2wLwHrmPpKRERURAwsKvnlixZgsmTJwMAZs+ejTlz5ricT0tLQ2hoKDp06FDtMz799FOkpKQAABISEjBu3LiA9ZeIiIjqv0CNZHNmslhRYjCjqNyMYoNtq7Rf5Dhmwi+ncj2OZLNYRbz4bVqd+hVMKgGICtUiOlSLGFv4Fh2qRUyY9Cod17k9HqZTO4I3b1c9fXzoNSw9JSIiChLZA7stW7ZgzZo1OHDgAHJzc1FWVlbj/GmCIOD06dMy9lA+O3fuxKlTpxzvc3NzHfunTp3CkiVLXK6fNGlSrdvYt28fpk6diuHDh2PUqFFITk5GkyZNYDabcezYMXz55Zf43//+BwBQq9X49NNPER4e7tPnISIiosBRSumptyPZwrRqxEeHVArWqoZvRbbArXIgV26q/6PaakOtEjBlcFvEhOkQE6qrCOBsoVtUqNbnUtPKWHpKRESkfLL9H/DSpUt44IEHsG3bNgDVL3IgCILLuWD8Vk8uCxcuxNKlS92e++WXX/DLL7+4HPMlsAMAi8WCzZs3Y/PmzdVe06RJE6SkpOCuu+7yqQ0iIqKGQinBmJ1cpadWq4gSo60c1GmONnuJqH1eth8PX/RqJNtjX+zzW9+URKdWISpUg8gQLaJCbK+hGkTqtYgM0UjBWogGUSHS6xe7z2HHyVyPzx17XUu8PLqbDJ9AwtJTIiIiZZMlsDOZTBg1ahT++OMPiKKIXr16oUWLFtiwYQMEQcAjjzyCvLw87N+/H1lZWRAEAb1790b37t3l6F6DNnr0aKSkpGDXrl34/fffkZOTgytXrkAURcTFxaFnz5647bbbMGnSJERF8R9mRETUeCltTjbA+9JTURRRYrS4BG3OIVtRpRDONZST5mkrNpjRWBaNbxkTgqhQXUXg5iZocwRxTsFcZIgGIVp1rdpqFRuGXac9l59OGdyurh+r1lh6SkREpFyCWFM9qp989tlnmDZtGgRBwKJFizBx4kQcPnwYycnJEAQBFovFce13332HJ598Enl5efj8889xzz33BLp7FGCZmZlISkoCAGRkZKBVq1ZB7hEREZErd8GYnb08sK5zslUmiiLKTBaUGCwoMZhRYjRL+0YzSg0WnMwpwvs/n4SHwWyI0GtQajR7vK4+EwQgQqdBRIgGEfqK18gQDcJtx3edvoJjF4s8Puue3q3wzvieMvS6QjC+v4iIiEgegco8ZBlh9+233wIAbrvtNkycOLHGa8eMGYPu3bujb9++mDRpEnr06IGOHTvK0U0iIiKSkVJKT72Zk+25lQfQtkk4WseFVQnWig1mlBrNttDNFr4ZLCg1mm3nKq6puF663x+/Ni02mOv+kADRqgVEhWgR4RSsRepdg7dIvbQfbgvgIvRal0AuQq9BqNbz94i3CykEYyQby0+JiIiotmQJ7A4cOOAofXVHFEWXuequueYaTJ8+Ha+99hrmzZuHDz/8UI5uEhERNUhKCcbsglV6ajRbUVBmQkGZEfmlJuSVmpBfasTnu855nJPNbBUx5qNfarymoYnQa1xKQe1lomkXCnA2t8Tj/eN6tcC79/eSoacSpS+kwPJTIiIiqg1ZArurV68CANq1q/iNpk6nc+yXlpZWWZn05ptvxmuvveZYwZSIiIhqpz7PyVYTo9mK/DIjCkpNyC8z2cI3+3spjMuvvF9qRInRUuNzG5IwnbrKfGzO87JFOYdwlRZLiAzRIkKvgbqaMMnbkWyPDbkmUB+vWvVhJBtXPiUiIiJvyPKvBZ1OB7PZ7BLSOS9wcOHCBXTq1MnlnpCQEMc5IiIiqh1/BGP+5k3p6YwVf+BgZj70GjXyy0wosIVx+aUmFJQ17OBNJQDheql0NFSnQvqVUq9KZvUaFb55YiBiQnWOElKNWhWwfnIkGxEREVHgyRLYtW7dGseOHUNOTo7jWHx8PCIjI1FcXIzffvutSmB3+PBhAHAplSUiIlIypZSeehOMPbvyAEK0aiTFhsFoscJotm0WC4xmKwy2reJ41X2Dy3tLlesMld7nlRo9lp5aRSBlZ3oAvir+F6pVSwGbXo1wnfQappMCszBdxbmqxzQIt+/rNAjTqxGh10CvUbn8u+fZlX9g1X7Pv7i8o0cLJLeMCeAnrYoj2YiI3DMajSguLkZJSQmMRiOsVmuwu0REHqjVaoSEhCAqKgrh4eGKyaFk+VdM7969cezYMfz+++8YNWqU4/iNN96IDRs2YN68eRg/fjz0ej0AoKCgAP/+978hCAK6desmRxeJiIh8JnfpqdliRZ5t5NmVYiOulhhxtdSIq8VGXC0x4KdjlzwGYxariGlf7PN73+qLCL0G0aFaxIRpcanIgMtFBo/33HptPF4b0x3htkUQqisZ9Zepg9tj7R9ZilxEAeBINiIiZ6IoIjc3F7m5ucHuChHVktlshsFgQEFBAUJDQ9G6dWuoVIGrVvCWLIHdzTffjP/7v//Dhg0b8PLLLzuOP/7449iwYQN+//13JCcnY8yYMSgtLcW6deuQmZkJQRAwYcIEObpIRETkE3+UnpYZLbhSYkBeiQlXSgxSAFfdZisPJUmkXoPoMCl4iw3TOUK4mFCd9BqmQ4z9WJgW0bbjWqeSUW/nZJt+cyfER4XI8bEAKL/01I4j2YiIgOzsbBQUFLgcEwQBarU6SD0iIm9ZLBaItnlIysrKcP78ebRp0yboI+0EUfRmdpS6yc/Px3XXXQdRFPHzzz/jmmsqJiGeOnUqFi1aJHXG9sWwd+nWW2/Fhg0bFJFsku8yMzORlJQEAMjIyECrVq2C3CMiqu+UVHrqKehRCcBTwztAr1VXG8KVmRrmnGy+UgnA6ORExIZVH7rFhmkRFeoavNWFu+DVzh6MyT3nn92RrEJFl54SETV25eXlOHv2rON9kyZNEBUVBb1eH/Qf+InIM6vViuLiYly8eBEWi/Tv8qSkJERERHh1f6AyD1kCO09SUlKwcOFCHD58GGazGR07dsSECRMwffp0aDT8jW19x8COqP5SSjBmJ2fpqSiKKDFakF/quupoXqkJBbZjm47k4PzVUr+2KzcBgF6rgk6tgk6jhl6jgk5jfy9t1R5zeq9Tqyv2NSro1ZXu1ajw2fYz2H7Sc6nQPb1b4Z3xPQP/4StRejCmtL+PREQkuXjxIvLy8gAAzZs3R5MmTYLcIyLyRWFhoWPh05iYGCQmJnp1X4MO7KhhY2BHVP/IPSebN3wdASWKIkqNFuSXmZBXYkRBmeuqo3klRuSX2QK50or9gjIjTBbl/y8yKkSDuHCdbdMjLlyLPzLycSKn2OO9d/dqif/ef13gO2njbenp2qcGBzUgYzBGRES1cebMGRgM0lyonTp1YhksUT1ltVpx4sQJiKIIvV6P9u3be3VfoDIPDl8jIlIAJQUE/piTra6sVhFGixUm2wqjR7IK8ezKA7DUsOrpMyv+wPoDWYAgVIyKKzOhoNQEo6V+rNCmUQmIDdchLswWwEVU7DeJ0CE2TIcmTsdjw3VuS0K9DcamDvHuHyH+wjnZiIioIbKX0Gk0GoZ1RPWYSqWCWq2G2Wx2/L0OJv5rlIgoiJQ0kk0URRzIyPcYjM1Y8QdOXipCk3A9TBYrTBYRBnNFuGZ/NdrOGc0W26t0zH5NxfVV7/e0wqn7/gP/O3qprl+GgBAE4MaOTdEkQi8FcBFS8BYbJgVxceHS8ahQjV/mulFyMDbmupbo2DxS0aWnRERERETBJntJrNlsxnfffYfNmzfj0KFDuHr1KgAgLi4O3bt3xy233IIxY8Zw7roGhCWxRO75Y5J7q1VEqcmCEoMZxQaz9Fpu2zeaUWywoLjc7HK+xGhGke1YicGCYqdzvgRljYFaJTgteiAtgBAdpsXBzAKcuuS59JRzsrmnpJGlREREvjp58iTMZjM0Gg06duwY7O4QUR348ve5Qcxht2bNGjz99NPIyspyHLM37zyiIDExER9++CHGjh0rV9cogBjYEVXl7eqio7onQq9RocgethnMTvsWlBjN4Eyk3rMHb9FhWsSEahEbprPtS6uOxoRpER1m2w/VOVYljdC7H/nGOdmIiIiIgR1Rw6GkwE62YWzvvvsunn/+eQBSSCcIAtq2bYv4+HiIoohLly4hPT0doigiKysL99xzD9555x0888wzcnWRiEgWV4oN+Of6Ix5Hs1lFYENatky9ahg0KgFP39QBceE6RNtGwsWEVQRzkdUEb75ScumpM87JRkRERERUv8jyr/fdu3fjhRdegCiKiIqKwiuvvILJkyejadOmLtfl5uZi8eLF+Ne//oWCggK88MILGDhwIK6//no5uklE5HdWq4hTl4ux71yeYzubWxLsbtWZSgD6t42DXquGVq2CXqOCVi1Aq1ZBp1E5Hat4r9OooFMLjvcVx1yv0aqFKve+uu4w1h3wHF6Oua4lpt/SSYavgGubnJONiIiIiIj8SZbA7r///S+sViuio6Pxyy+/oFu3bm6va9q0KV544QXccccduOGGG1BYWIj//ve/WLFihRzdJCKqs2KDGQcy8h3h3P7zeSgqN8vWvk6tQkSIBuF6NcJ1GkToNbb3GkTobK8hGkTo1dK+bbPvv//TSWw6kuOxnXG95J2T7YmhHfB92kWPpadTBreTrU/O7CPt3r63B0tPiYiIiEjxtm7diuHDhwMAtmzZgmHDhgW3Q1SFLIHdzp07IQgCXnzxxWrDOmddu3bFiy++iJdffhnbt2+XoYdERLUniiIy88pcRs8du1gIf67boFYJmDKoLSJCtLZQTY0IvRbherVL0Gbf12lUdWrvmVs64edjlxQXjLH0lIiIiIgA16Bp9uzZmDNnTnA7RLK7cuUK3n//faxZs8YxtVq7du0wduxY/PWvf0WTJk2C3UW/kOWniry8PABw/KXyhv3a/Pz8QHSJiBqpuky+bzBbcOhCIfbbA7rzebhcZPCpH2pBgMWL1SLGXtcSL9/u+Rcd/qLkYIylp0RERERE8pgzZw5effVVABWLhSpBamoqxowZg+xs1+lyDh48iIMHD2LhwoX47rvv0Ldv3yD10H9kCewSExNx7tw5n+8lIqqrI1mFWLjzDL5Pu+gIekYlJ2Dq4PbVBj2XiwyOstZ95/KQllkAo8XqU/stY0LRu00s+rSOQZ82cRAh4u75vypuJBug7GCMpadERERERHU3bNgwRQVx3rhw4QLuvPNO5OTkQKPR4Nlnn8Udd9wBAFi/fj3++9//IisrC3fccQf27duHli1bBrnHdSNLYHfLLbcgJSUF27Zt83oBia1btwIAbrrppgD2jIgag+/+uFBlxFiZyYJV+y9g7R9ZeGd8T9zRowVO5BRJAZ1t9Ny5K6U+tadRCbi2ZTT6tI5Fnzax6N0mBonRoVWuU+pINkD5wRhLT4mIiIiIGpdXXnkFOTnSfNvLli3Dfffd5zg3ZMgQ9O3bF+PHj0dOTg5mzpyJRYsWBaurfiHLTzvPPfccli1bhrfeegtjx45Fp041r+B34sQJzJ07F+Hh4XjhhRfk6CIRNVBHsgqrDcUAwGwV8czyP/DSt2koM1l8aiMuXIfetnCuT5tY9GgVjRCt2uN9Sh7JZsdgjIiIiIiIgi0nJwdffvklAODWW291Cevs7rvvPtx666348ccf8fnnn+PNN99EfHy83F31m7rNTu6lzp0745tvvgEADBgwAO+99x6uXr1a5bq8vDzMmzcPN9xwAwBg5cqV6Ny5sxxdJKIGauHOMzWWnQKACHgd1gkC0Dk+Eg/2b43/3NcTW54fhn3/uAULJ/bFE8OuQf92cV6FdXb2kWyHX70VR167FYdfvVURiycQERERUf1ntYooNZph9eeqaAq3detWCIIAQRCwdetWiKKIlJQUDB48GE2aNEFUVBT69++PL774wuU+o9GITz75BAMGDEBcXBwiIyMxaNAgrFy5stq20tPTHW0tWbIEAPD111/jlltuQfPmzREaGoouXbrgpZdecszt786kSZMgCALatm1b42dbsmSJo7309PQq59u2bQtBEDBp0iQAwL59+zBp0iS0a9cOer0eglBRMVP561S5Dfv8dQAc1zlv6enpOHjwoOP93Llza+w7AHzwwQeO63/99VeP1ztbu3YtLBbpZ7bJkydXe539s1ssFqxdu7ZWbSiNLMMm7GWtzZo1w8mTJ/Hcc8/h+eefR7t27dC8eXMIgoCcnBycPXvWUUPdsWNHvP3223j77bfdPlMQBPz0009ydJ+I6plykwWHLhQgNf0q1vx+oU7PCtep0at1rDT/XJtYXJcUg+hQrZ96WoEj2YiIiIjIX3yZv7khMplMGDNmDNatW+dyPDU1FRMmTMDevXsxb9485OXlYezYsdi+fbvLdb/++it+/fVXnDp1Ci+//LLH9qZMmVKlDPP48eOYO3cuPv/8c2zevBndusmzoNwnn3yCp59+GmazOWBt9OjRA/369UNqaioWL16MF198scbrFy9eDEAa1GUfqOWtHTt2OPaHDh1a7XXO53bu3InHHnusVu0oiSw/HdqTWztRFCGKIk6fPo3Tp0+7vefkyZM4efJklUkQBUGAKIouzyOixu1SYbm0aqtt7rlDFwpgsvj2W8TWcWG2eedi0ad1LDonREKtoLnbiIiIiIhq4s38zWOuq9+T8Xtr5syZ+O233/Dwww/joYceQkJCAk6cOIE5c+bg+PHjeP/993HnnXfigw8+wK+//oonnngC48aNQ5MmTfDHH39g5syZyMrKwqxZszBmzBhce+211bY1f/58pKamon///pgxYwY6duyIS5cuYenSpVixYgWys7Nx66234vDhw4iKCmxompqaii+//BJJSUl4/vnn0adPH1gsFpfQqzpjx45F3759MX/+fHz88ccAgLS0tCrX2Rd0mDp1KlJTU3H8+HHs2rULAwcOdPvcAwcO4PfffwcA/OlPf6r1Zzp69CgAIDo6GgkJCdVel5iYiKioKBQWFjruqa9kCexuvPFGBmxE5BdmixXHc4qw/1we9tpCusy8sjo/V6dWYfuLw5AQVXVxCCIiIiKiurJaReSVGgPaxomcIjy78gAsNczf/OzKA2geqUen+MiA9iU2TBf0Rct+++03vPfee5g+fbrjWO/evTFs2DB07twZhYWFeOihh5Cbm4tVq1Zh7NixLtf17dsXvXr1gsViwYIFCzBv3rxq20pNTcXo0aPx3XffQaOpiFpGjRqFa6+9FrNmzUJmZib++c9/VltJ6C9HjhxBcnIytm/fjpiYGMfxQYMGebw3JiYGMTExaN68ueNY9+7dq73+wQcfxLPPPouSkhIsXry42sDOPvJQo9FgwoQJXn6SChkZGQCAVq1aebw2KSkJhw8fdtxTX8k2wo6IyBcFZSb8fr5i5dY/zuejxOjb4hA1ubNnC4Z1RERERBQweaVG9Hl9c7C7AYtVxIOf/Rbwdvb94xY0idAHvJ2aXH/99S5hnV1CQgLGjRuHpUuX4vLly3jggQdcwjq7Hj16YPDgwdi+fbvH0Wl6vR6fffaZS1hn98orr2DlypU4dOgQUlJS8Prrr0OvD+zX5qOPPnIJ6wIlMjIS999/PxYtWoQVK1bgvffeQ1hYmMs1RqMRy5YtAwCMHj26xhFy1SkqKgIAREREeLw2PDwcAFBcXFzrdpRElkUniKjx8WWCW1EUcTa3BN/sy8TfV6Vh5LvbcN1rmzBpcSre//kUfjl1xeuwTiUAXROjcHtyAjz9Yk+jEjBlcDuv+0lERERERMr3wAMPVHuuR48ejv3777+/2ut69uwJADhz5kyNbY0cORItWrRwe06lUmHixIkApMU29+/fX+Oz6iopKQlDhgwJaBvOpk6dCgAoLCzEqlWrqpxft24dcnNzAfhWDgsA5eXlAACdTufxWnsYWlZW90qsYOIM50TkV7WZ4LbcZMHBzALH/HP7z+fhaolvZQKReg2uax2DPm1i0bdNHHomRSMyRFocwt08HnYalcBVWYmIiIiIGqBOnTpVe8559Jk319lHeFWnX79+NZ7v37+/Y//QoUPVlo76g3MYKYeBAwfi2muvxeHDh7F48WI88sgjLufti03Ex8fj9ttv96mNkJAQlJaWwmj0/POiwWAAAISG1u8KKgZ2ROQ3nia4nXVnNzSN0DsCusNZvi8O0bZJmGPl1j5tYtGxefWLQ4y5riU6No9Eys6z2JiW7QgSRycnYsrgdgzriIiIiIgaoMqlmc5UKlWtrrNarTW25Tznmzvx8fGO/atXr9Z4bV3FxsYG9PnuTJ06FTNmzMCWLVuQnp6Otm3bAgCys7Pxww8/AAAmTJjgtmTYG5GRkSgtLfWqzLWkpASAd+WzSiZLYFd5aeTauvHGG/3UEyIKlCNZhdWOYgOkCW5nfXfYp2frNCr0aBntCOd6t4lF01rOh9GtRRTeGd8Tb9/bA+VmC0I06qBPgktEREREjUdsmA77/nFLQNuY9d1hbEjL9njdHT0S8epd1a946g+xYZ5LFxsSTwttiqJvAxV8oVarZWvL7tFHH8VLL70Eg8GApUuXYvbs2QCAzz//HBaLNK2Rr+WwgLTYRE5ODjIzMz1ea19sIikpyef2lECWwG7YsGE+rxIrCALMZrOfe0RE/mS1inhv84lqw7raahapR1+ncO7aFlHQa/zzPx2VSkCYjoOLiYiIiEheKpUQ8EUYnhzeAT8evljjv8s1KgF/GdYh6AtCNDQ5OTk1nr906ZJjPy4uzuWct6P47CPHlKhJkyYYO3YsVqxYgSVLlmDWrFkQBAFLliwBIJXNdunSxefnd+vWDfv27UNBQQEuXrxY7cIV2dnZKCwsBAB07drV5/aUQLafWuVMk4kCwWoVOTIL0t/l7IJyHMzMx4HMAuk1Ix/FBt9WblUJQJeEKMfouT5tYtEqNtTnkJ+IiIiIqLGyV5Vw/mb5paamen2+e/fuLuciIyMBAPn5+TU+4/jx4751zge+/Dw2depUrFixAunp6di6dSv0ej2OHTsGoG6j6wBg8ODB+OKLLwAA27Ztq3ahkG3btjn2Bw0aVKc2g02WwG7Lli0erykpKcHx48fx1VdfYe/evbjhhhvwz3/+06WunCgYarOIQkN0tcSIA5n5OJhR4AjpcosNdXrm4A5N0b9dHPq0iUXPpBhE6DnijYiIiIjIHzh/c3Bs2rQJ2dnZSExMrHLOarVi6dKlAKT55Xr37u1yvl27dgCkhS2OHz+Ozp07V3mG0WjEt99+G4CeuxcSEuLYNxgMjpVXa3LzzTejffv2OHPmDBYvXuy4Jzw8vMaVeL1x11134YknnoDVasXixYurfZ59RJ9KpcJdd91VpzaDTZafkocOHerVdaNHj8aMGTPw1ltv4eWXX8Znn32GZcuWBbh3RNXztIjCO+N7Ysx1LYPYQ/8qNpiRZhs1dzCzAAcy85GZ59+lsEO1anz+p/6NepQiEREREVEgcf5m+RkMBkybNg2rV6+uMofcW2+9hbS0NADSSLPK4ZdzZvLOO+9gwYIFLudFUcT06dORlZUVoN5X5Rw8nj59Gt26dfN4jyAI+NOf/oR//OMf+Pbbbx1fh/vuu88xitBXCQkJePjhh/HFF1/gxx9/xDfffIN7773X5Zqvv/4aP/74IwBpTr3qymbrC0UOa3nppZewZ88erFixAnfeeScefPDBYHeJGiFvFlF4buUBdGweGdTfUvlaqltusuBodqEjmDuYWYDTl4sR6Or10cmJ/McCEREREZEMOH+zfPr27Yt169Zh0KBBmDFjBjp27IhLly5h6dKlWL58OQBp4YSZM2dWubdXr14YMGAAdu/ejc8++wxGoxETJ05EdHQ0Tp48iU8++QRbt27FwIEDsWvXLlk+zw033ODYnzFjBl555RUkJiY6SmXbtm3rdsXXyZMnY/bs2SgtLXUcq2s5rN0bb7yBH374AZcvX8aDDz6IvXv34o477gAArF+/Hu+88w4AoFmzZnj99df90mYwKfZv7qRJk7BmzRosWLCAgR0FxcKdZzwuomC2inhq2X6MSk5AbJgO0aFaxITpEBumRUyYFtGhOsSEaaFV+7+0uzalumaLFScvFbvMO3f8YhFMFt/TuagQDXq0ikGPVtHo0SoGYToV/rRkr8cJbqcMbudzm0REREREREr05JNPYtu2bViyZAkeeOCBKucTExPx448/Ijo62u39ixcvxtChQx0hn72E1u7ZZ59FcnKybIFdhw4dMH78eKxcuRKbNm3Cpk2bXM6fPXsWbdu2rXJfixYtMGrUKKxfvx4A0KlTJwwZMsQvfUpKSsK6deswduxYXLx4EXPnzsXcuXNdrklISMCaNWvQqlUrv7QZTIoN7Fq3bg0AOHToUJB7Qo2R1Sri+7SLXl17JrcEH205XeM1EXqNLczTSsFemBYxodK+FOzVLujzVKr70qguaBapxwHbvHOHswpRZvJtUQgACNGq0L2FFMz1TJJe2zYJqzIRKSe4JSIiIiKixmrx4sUYOXIkFixYgLS0NBQXF6NNmzYYO3YsXnrpJcTGxlZ7b5cuXbB//3688cYb2LhxI7KzsxEdHY0+ffrg6aefxujRox3zs8nlyy+/RN++ffHNN9/g+PHjKCoq8riSLSCVo9oDu8mTJ/u1T9dffz3S0tIwb948rFmzBunp6QCkeQDHjBmDZ555Bk2aNPFrm8EiiApdvvXHH3/EqFGjEBIS4jKUkuqfzMxMJCUlAQAyMjLqRdJdajSj26wfg90NR9AXG65FTKgU9IlWET8cvggPg/98plEJ6JIYKYVzttFzHZtHQOPlKMEjWYWc4JaIiIiIGo2TJ0/CbDZDo9GgY8eOwe4OySg9Pd2xYMTixYsxadKk4HZIIWbOnInXX38darUaGRkZbhfiUCpf/j4HKvNQ7Ai7jz76CEDFSDsiOYVo1AjVqus0Ks0fig1mFBvMuJDv34Uf7AQBuKZZBHq0ikZPW3lr18QohGjVnm+uBie4JSIiIiIiapwsFoujnHfUqFH1KqxTGkUFdnl5edi7dy/effdd/PDDDxAEAXfffXewu0WNkEolYFRyAlbtv+Dx2vZNw9G1RRQKSk3IKzUiv9SEgjITig1mGXpaO61iQx3BXI9WMejeMgqRIdqAtMUJbomIiIiIiBqXFStWICMjAwDw+OOPB7k39ZssP01XXtLYWx07dsSLL77o594ox6VLl7Bnzx7s2bMHqampSE1NxZUrVwAAEydODEh9+vLly7F48WIcPHgQeXl5SEhIwJAhQ/Dkk09iwIABfm+vPps6uD3W/pHlcRGFDx/q7bbU02i2oqDMhIIyKcTLKzUhv9SIgrKKYC+/zBTQoG9Yp2bo1ToWPZKi0aNlNJpE6D3fREREREREROSlU6dOwWw2Y+/evZgxYwYAIDk5GaNHjw5yz+o3WQK72k6Tp9FocO+99+K9996rdgWVhiA+Pl62tsrLy3Hfffc5Jn60O3fuHM6dO4dly5Zhzpw5bpeYbqzspZ2+LqKg06jQLFKPZpG1C8lqCvqulhjw6fazsHgxgV2oVo1Fk/qxHJWIiIiIiIgCpvJcb1qtFh9//HGVRQqpdmQJ7GbPnu3xGpVKhcjISLRr1w6DBg1C06ZNZeiZciQlJaFr165Vlkr2lylTpjjCuuHDh2P69Olo0aIF0tLS8K9//QunT5/GrFmzkJiYiKlTpwakD/XRmOtaomPzSFkXUfAU9F0sNHhVqjs6OZFhHREREREREckiNjYWvXv3xmuvvYYbbrgh2N2p9xS7SmxjMHv2bPTr1w/9+vVDfHy8ywoz/iyJ3bZtG4YNGwYAuPPOO7F69WqXMuXc3Fz06dMH58+fR2xsLM6cOYOYmBi/tA3Uz1Vi3bFaRUUsonAkqxB3fbjTY6nu2qcGc1VWIiIiIqIA4yqxRA2HklaJVfnlKeSTV199FXfccUfAS2P//e9/A5DmEpw/f36VOQWbNm2KuXPnApAW/khJSQlof+or+yIKwR61Zi/V1VTTD0+lukRERERERESkbAzsGrji4mL89NNPAIARI0ZUm/TefffdiIqSAp5Vq1bJ1j/yzZjrWmLtU4NxT+9WCNVKAWyoVo17erfC2qcGY8x1LYPcQyIiIiIiIiLylSxz2JWXl2PlypUAgFGjRqFZs2Y1Xn/58mV8//33AICHHnoIGo0s3WyQ9uzZA4PBAAAYOnRotdfpdDoMGDAAmzZtwp49e2AymaDVauXqJvnAPtLu7Xt7KKJUl4iIiIiIiIj8Q5YRdhs3bsSkSZPwyiuvIDY21uP1sbGxeOWVVzB58mT88MMPMvSw4Tp69Khjv0uXLjVeaz9vNptx8uTJgPaL/EcppbpERERERERE5B+yBHZff/01AOD+++/3arScRqPBgw8+CFEUHSPzyDcZGRmOfU8TH9onSax8nyeZmZk1btnZ2bXvOBERERERERFRIyVLrWlaWhoEQcCNN97o9T1DhgzBf/7zHxw4cCCAPWv4ioqKHPsRERE1XhseHu7YLy4u9roN56CPiIiIiIiIiIjqRpYRdpmZmQBqF+zYR4NduHAhIH1qLMrLyx37Op2uxmv1er1jv6ysLGB9IiIiIiIiIiKi6skyws5sNgOAY/EDbxiNRgBAaWlpQPrUWISEhDj27V/T6jj/+YSGhnrdhqfy2ezsbPTv39/r5xERERERERERNWayBHbx8fFIT0/HoUOHMGDAAK/uSUtLAwCPK8pSzSIjIx37nspcS0pKHPueymedeZobj4iIiIiIiIiIvCdLSewNN9wAURTx2WefeX3Pp59+CkEQvA74yD3nMM1emlwd55FynJeOiIiIiIiIiCg4ZAnsHnroIQDA3r17MX36dIiiWO21oihi+vTp2Ldvn8u95Jtu3bo59o8dO1bjtfbzGo0GHTp0CGi/iIiIiIiIiIjIPVkCu1GjRuGmm26CKIr48MMP0b9/f3zxxRc4d+4cjEYjjEYjzp07hy+++ALXX389PvzwQ8eqsmPGjJGjiw1Wv379HItNbNu2rdrrjEYjdu/eXeUecmK1AsYS6ZWIiIiIiIiIKEBkmcMOAFauXIlhw4bh0KFD2L9/PyZNmlTttaIoIjk5Gd9++61c3WuwIiMjcfPNN+P777/H5s2bkZmZ6XbOuVWrVqGwsBAAMG7cOLm7qWwX04BdHwFHvgNMpYA2DOg2Bhj4JJCQHOzeEREREREREVEDI8sIOwCIi4vDb7/9hunTpyM0NBSiKLrdwsLC8Oyzz2L37t2Ii4uTq3v11pIlSyAIAgRBwJw5c9xe8/zzzwOQVut98sknYbFYXM7n5ubixRdfBADExMRg6tSpAe1zvZL2DbBgGHDgKymsA6TXA19Jx9O+CWbviIiIiIiIiGpt69atjixh69atwe4OuSHbCDsACA0NxbvvvovZs2djy5Yt+P3335GbmwsAaNq0KXr37o3hw4cjOjpazm4Fzc6dO3Hq1CnHe/vXAgBOnTqFJUuWuFxf06jEmtx000144IEHsHz5cqxduxYjRozAM888gxYtWiAtLQ1vvPEGzp8/DwB46623EBsb61M7Dc7FNGD1NMBqdn/eapbON+vMkXZEREREREQy2Lp1K4YPHw4AmD17drUDV6jhyc/PR2pqKvbs2eN4zc7OBgAMHTq0wQWPsgZ2djExMRg3blyjL71cuHAhli5d6vbcL7/8gl9++cXlmK+BHQAsWrQIhYWF2LhxI7Zs2YItW7a4nFepVJg5cyamTZvmcxsNzq6Pqg/r7KxmYNd8YNzH8vSJiIiIiIiIKMDmzJmDV199FQBqXDhUTr169UJ6enqwuyGboAR2JL/Q0FBs2LABy5Ytw5IlS3DgwAHk5+cjPj4eQ4YMwVNPPYWBAwcGu5vKYbVKc9Z548BXQHgzoPNtQKv+gJp/rYiIiIiIiEi5hg0bppggzlvO/Y2Pj0e/fv2wfv36IPYosGRLFuwll/Hx8dDr9TVeW15ejkuXLgEAWrduHfC+BcuSJUuqlL3W1qRJk2o18u6hhx7CQw89VKc2GwVzWcWcdR6JwK/zpC0kBuhwM9DxVqDDLUB4k0D2koiIiIiIiKhReOqpp9CuXTv069fPkRUJghDkXgWOLIHdzp07ceONNyIyMhLp6ekeA7uysjJ0794dpaWl+PXXX9G/f385uklUQRMqrQbrdWhnU54PHPpW2iAArfpK4V2nkUBCD6AB/8eEiIiIiIiIKFDsC2o2FrKsErtixQoAwNixY71a0CA2Nhb33HMPrFYrli9fHujuEVWlUgHdxtTxISKQmQpseR349Ebgv12BtU8DR9cBhiK/dJOIiIiIiKhaVitgLJFeG4nKq5+KooiUlBQMHjwYTZo0QVRUFPr3748vvvjC5T6j0YhPPvkEAwYMQFxcHCIjIzFo0CCsXLmy2rbS09Mdbdmr577++mvccsstaN68OUJDQ9GlSxe89NJLyMvLq/Y5kyZNgiAIaNu2bY2fbcmSJY723M3l1rZtWwiC4KjC27dvHyZNmoR27dpBr9e7jEarbpVYexv2+esAOK5z3tLT03Hw4EHH+7lz59bYdwD44IMPHNf/+uuvHq9v7GQZYbdr1y4IgoARI0Z4fc/IkSOxdOlS7Ny5M4A9I6rBwCeBtK9rXnhCUAM9HwKyfwdyDtX8vKJsYP/n0qbSAm0H2Ubf3Qo0uca/fSciIiIiosbrYpq0iN6R76SqIW2YNCBh4JNAQnKweycbk8mEMWPGYN26dS7HU1NTMWHCBOzduxfz5s1DXl4exo4di+3bt7tc9+uvv+LXX3/FqVOn8PLLL3tsb8qUKVi0aJHLsePHj2Pu3Ln4/PPPsXnzZnTr1q3uH8wLn3zyCZ5++mmYzR4WUqyDHj16oF+/fkhNTcXixYvx4osv1nj94sWLAQCdO3fGDTfcELB+NRSyjLDLyMgAIP2heKtDhw4AgAsXLgSkT0QeJSQD4z4FVNXk2ioNcPcCYOyHwBO/ADOOAHe8B3QeLf0PsSZWE3BmK/Dj34EPegPv9wK+fwk4/TNgNvj7kxARERERUWOR9g2wYJi0OJ59ih9TqfR+wTDpfCMxc+ZMrFu3Dg8//DA2bNiAffv24auvvnJkE++//z42b96MSZMm4ddff8UTTzyBTZs2Yd++fUhJSUGLFi0AALNmzcLhw4drbGv+/PlYtGgR+vfvj6+++gp79+7Fxo0bcf/99wMAsrOzceutt6KwsDCwHxpSIPnUU0+hVatW+PDDD7Fr1y7s3LkTb775psd7x44di7S0NDzxxBOOY2lpaVW2li1bAgCmTp0KQAomd+3aVe1zDxw4gN9//x0A8Kc//akuH6/RkGWEXUFBAQBArVZ7fY/92itXrgSkT0ReSb4XaNYZ2DUfOLLG6bdTY4GBf3H97VR0S6DvZGkzlQPndgIn/wec+BHIO1tzO1fPAL99LG3acOCa4UDHEUDHkUBUi5rvtVqlRTI0oVIpLxERERERKY/VCpRdDWwbl44Cq6dVXyVkNUvnI+KB5l0D25fQuKD/fPLbb7/hvffew/Tp0x3HevfujWHDhqFz584oLCzEQw89hNzcXKxatQpjx451ua5v377o1asXLBYLFixYgHnz5lXbVmpqKkaPHo3vvvsOGk1F1DJq1Chce+21mDVrFjIzM/HPf/4Tb7/9dkA+r92RI0eQnJyM7du3IyYmxnF80KBBHu+NiYlBTEwMmjdv7jjWvXv3aq9/8MEH8eyzz6KkpASLFy/GwIED3V5nH3mo0WgwYcIELz9J4yZLYNe0aVNkZ2fjzJkz6N27t1f3nDlzBgC8mvOOKKASkoFxHwNjPvI+GNOGSKvEdrgFuO0t4MopKbg7+SNw7teay2xNJcCx9dJmb99eOtuyD6CyBd8c5k5EREREVH+UXQXeVsBUOFYzsPSOwLfzwmkgvGng26nB9ddf7xLW2SUkJGDcuHFYunQpLl++jAceeMAlrLPr0aMHBg8ejO3bt2PHjh01tqXX6/HZZ5+5hHV2r7zyClauXIlDhw4hJSUFr7/+usfFOOvqo48+cgnrAiUyMhL3338/Fi1ahBUrVuC9995DWJhrxZnRaMSyZcsAAKNHj0ZCQkLA+9UQyBJ3X3fddQAqFp/whn2xiZqSXCJZqVSALrz2vyUSBKBpR+CGp4CJ64C/nQXGfwH0ekT6zZYnF9OAHf8BUkYAb3cAvn0M2PgCh7kTERERERHV4IEHHqj2XI8ePRz79rJVd3r27AmgYlBRdUaOHOkooa1MpVJh4sSJAIC8vDzs37+/xmfVVVJSEoYMGRLQNpzZy2ILCwuxatWqKufXrVuH3NxcACyHrQ1ZArsxY8ZAFEWsWrUKX3/9tcfrV65ciVWrVkEQBLcpN1G9FhIFdLtLGrH37DHgz9uA4a8ALfsCEGq+t+wqkLYS2LPA8zD3i2l+73qtNMIVqYiIiIiISDk6depU7Tnn0WfeXFdUVFRjW/369avxfP/+/R37hw55WLCwjpzDSDkMHDgQ1157LYCKhSWc2Y/Fx8fj9ttvl7Vv9ZksJbGTJk3Cm2++ifT0dDz00EPYvXs3nnnmGSQlJblcl5GRgXfffdex1G9SUpIjqSVqkFQqoMV10jb0b0DxZeDUZql09tTPgKHAt+dazcAXdwOtBwBhTYCwONtrE2kuCcexOEAfJY0C9BeW6hIRERERkQJULs10pnKqnPLmOquHgQjOc765Ex9fUV119Wpg5zIMxtRiU6dOxYwZM7Blyxakp6ejbdu2AKTFNn744QcAwIQJE9yWDJN7snyltFotVq1ahRtvvBHFxcV477338N5776F169ZITEyEIAjIysrC+fPnAQCiKCIiIgKrV68OeF03kaJENAOue1DaLGYg4zcpvDuxCbh8tHbPKrkEHF3r+TqVxinEawKExboJ95wCvrAm1Yd8ad9UneTWXqqb9rW06m7yvbX7HEREREREDUFonDSvWyBtfB44vNrzddfeDYwO7MIHCI0L7PMVRvAwCEIURZl6UrsFP/3l0UcfxUsvvQSDwYClS5di9uzZAIDPP/8cFosFAMtha0u2aPO6667D7t278cgjj+CPP/4AAJw7d84lpLPr06cPvvjiC3Tp0kWu7hEpj1oDtB0kbSNeA/LPA0fXAT++7N92rGYp3Cu55P09jpDPabSeCOD4BkCs5jdP9lLdZp050o6IiIiIGh+VKvCLMAx5TvqZoaZF7lQaYMizQV8QoqHJycmp8fylSxU/b8XFuYaZ3o7iKykp8bF3gdekSROMHTsWK1aswJIlSzBr1iwIgoAlS5YAkMpmmfHUjqxjEbt164b9+/dj06ZN2LBhA37//XfHxINNmzZF7969ceedd+Lmm2+Ws1tE9UNMa+D6J4CfX69YaCJYfAn57PetegzoPw2IawfEtgOiW1WsfEtERERERL5LSJaqWipXvdipNNJ5/gLd71JTU70+X3lxzcjISABAfn5+jc84fvy4b53zgacRg+5MnToVK1asQHp6OrZu3Qq9Xo9jx44B4Og6XwSleHjkyJEYOXJkMJomqt9UKmk+uANfeb62RR+gw81A6RVpsYrSK0Bpnu31CmAxBL6/7lw6Cqx/puK9SiuFkfYAL7at676u+vkkfGK1AuYyQBNa+xV/iYiIiIiULvleqapl13zgyBqneaXHAgP/wrAuQDZt2oTs7GwkJiZWOWe1WrF06VIA0vxyvXv3djnfrl07ANLCFsePH0fnzp2rPMNoNOLbb78NQM/dCwkJcewbDAavpiu7+eab0b59e5w5cwaLFy923BMeHl7jSrzkHmf7I6pvBj4pzQfnaZj7XfOq/5+xKEr/47aHd6VXbZtzuFfpeKBCPqsJuHpa2tyJSKgI8Cq/hsV5v2AGF8MgIiIiosYiIRkY9zEw5iP+slomBoMB06ZNw+rVq6vMIffWW28hLS0NgDTSrHL4NXToUMf+O++8gwULFricF0UR06dPR1ZWVoB6X5Vz8Hj69Gl069bN4z2CIOBPf/oT/vGPf+Dbb791fB3uu+8+xyhC8l5QAzuz2Yy8vDwAUsrM1UKIvOCPYe6CAOjCpS2mtXftOkI+pwCvzDZiryQX2PnfmkNEXxVflLbzu6qe00dJo/CcR+W5K7XlYhhERERE1BipVNK/+Sng+vbti3Xr1mHQoEGYMWMGOnbsiEuXLmHp0qVYvnw5AKBVq1aYOXNmlXt79eqFAQMGYPfu3fjss89gNBoxceJEREdH4+TJk/jkk0+wdetWDBw4ELt2ufm5KABuuOEGx/6MGTPwyiuvOBYNBYC2bdu6zXAmT56M2bNno7S0Yhonf5XD/vHHH441ESq7ePGiY748u3vvvRcRERF+aTsYZE/Ijh49ivnz52Pz5s04efKkY7EJQRDQsWNHjBgxAo8//rhX6S1RoxWMYe4uIV9S1fMFGd6V6kYnAaExwNV0wFhUtz4ZCoGLB6WtMnupbXhTIHOPFDi6w8UwiIiIiIiojp588kls27YNS5YswQMPPFDlfGJiIn788UdER0e7vX/x4sUYOnSoI+Szl9DaPfvss0hOTpYtsOvQoQPGjx+PlStXYtOmTdi0aZPL+bNnz6Jt27ZV7mvRogVGjRqF9evXAwA6deqEIUOG+KVPa9aswauvvur23PHjxzF58mSXY8OGDWNg562///3v+M9//gOr1VplSWNRFHH8+HGcOHECH3/8MV544QX861//krN7RPWL0oa5e1uq++BXUt9FURqdd/UskHe26mtxzasseeSp1NblWjOw4x3g3sXel9gSERERERE5Wbx4MUaOHIkFCxYgLS0NxcXFaNOmDcaOHYuXXnoJsbGx1d7bpUsX7N+/H2+88QY2btyI7OxsREdHo0+fPnj66acxevToKiPIAu3LL79E37598c033+D48eMoKiryuJItADz66KOOwK5yiEbeE8TKyVmAPP3005g/f74jqOvatSuuv/56JCQkQBRF5OTkYM+ePThy5IjUMUHAU089hXnz5snRPQqgzMxMJCVJI7IyMjLQqlWrIPeIAsZd6amdvVTX29JTYwmQd859mJd/PjDlt2FNpTAxIRlI6CG9NukAqFmuT0RERETunTx5EmazGRqNBh07dgx2d0hG6enpjgUjFi9ejEmTJgW3Qwoxc+ZMvP7661Cr1cjIyHC7EIdS+fL3OVCZhyw/hf7yyy/46KOPIAgCunXrhgULFrjUQzvbtWsXHn/8caSlpeHDDz/E/fffX+21RKQw/izV1YUD8d2krTKLGSjMdDM6L116NRb71v/SXODMFmmz04QAzbsBCd0rQrz4awE9J00lIiIiIiJyZrFYHOW8o0aNqldhndLIEth9+umnAKSlin/55Zdqa7YBYODAgdi+fTv69OmDs2fP4pNPPmFgR1SfyFGqq9ZULDaB4a7nnEttr54GvntKKo/1lbkcyNovbc7i2leMxou3vUa18L2k1mpVRmkzERERERGRj1asWIGMjAwAwOOPPx7k3tRvsgR2O3bsgCAIeOmll2oM6+yio6Px4osvYtq0adixY4cMPSQivwvWilSCIC00Ed4USOoHnNnq3WIYtXX1jLQd+a7iWGhc1ZLaph0Btbb651xMA3Z9JD3HMSJxjDQnoBIWwWCQSERERERENTh16hTMZjP27t2LGTNmAACSk5MxevToIPesfpMlsLt48SIAaalib/Xu3RsAkJNTx4nniahx83YxjPFfAlajFKDZt8ILtWur7Cpwdpu02al1QPOuriFe/LVASLT7Of9MpVLAmPZ17eb88zelB4lERERERKQIled602q1+PjjjyFwQb86kSWwCwkJgdFoRElJidf3FBdLc1Dp9fpAdYuIGoOEZCn48rQYRpdR0vtuYyrOlVwBcuwB3iHp9fIxQLR4377FCGQfkDZnkYlA0UUA1az7YzVLfW7WWf6ATMlBIhERERERKVJsbCx69+6N1157jVOb+YEsgV27du1w4MABrF27FjfeeKNX96xbtw4A0L59+0B2jYgaA18XwwhvArQfJm12pnIptHMeiZdzCDAU1q5PRdmer7GagSV3SmW1Gr1tC5FG7WlCAI39VQ+o9dVc43Rcra/mmNM9lw5XH27a+xSsINGlHyzVJSIiIqLgatu2LUSxml/ANyL8GgSGLIHd6NGj8ccff+DDDz/EqFGjcPPNN9d4/U8//YQPPvgAgiCw5pmI/MNfi2FoQ4AW10mbnSgC+edcQ7yLaUBBRt37XZ4HZO6p+3O8JagA0VrzNVYz8N2TQJ/JQGgsEBpje40FQmKkFXQDNfxd6aW6DBKJiIiIiMgPBFGGKDQ3NxcdOnRAUVER1Go1HnvsMfzpT39Cr169oLL9QGO1WvH7778jJSUFCxcuhNlsRnR0NE6dOoUmTZoEuosUQJmZmUhKSgIAZGRkoFWrVkHuEZFMSq8COYddQ7zLR2ueT68hENTugzz7vv145WMhMdKoweq4K9W1s5c2c84/IiIiktnJkydhNpuh0WiqzOVFRPWLL3+fA5V5yBLYAcCmTZtw1113wWg0OiYe1Ol0iIuLgyAIuHLlCoxGIwBpOKVOp8P69etxyy23yNE9CiAGdkROzAbg0lEgZYQ0vx250kU4BXkxFeGe1QwcWF7z6D+VBnj4WyCxh7Qyr0orlfkGeqSbkoNEO478IyIiChgGdkQNh5ICO1lKYgFg5MiR2L17N/785z9j7969AACDwYDs7KrzOPXr1w8LFixAz5495eoeEZE8NHqpnLb7PdIiDp4kDQCue1AK+szlgNkovVoMbo7ZXs2Gis1iqHrMXI5qF7sINmOxtBVm1v5eqxn4YkzV44JaCu7UWtums4V52qrHnYM+t+d1Ughn3y/NBVIXVh8kWs3A6j8DYXFAyz6ANhxQy/a/XuWP/GOQSERERETklow/NQDXXXcd9uzZg9TUVGzevBmHDh3C1atXAQBxcXHo3r07brnlFvTr10/ObhERyW/gk9KKqzWVx6o0wO3/8X+wIopSu+4CwP/NBk7+6PkZkYlAVEugPB8oy5M2T3PfBYtokUIhc1lw2rdagC/GVbzXhEgjCXXhFa965/c1nat0jT5CCgHdhV1KXu1X6UEiEREREVGQyRrY2fXr14+hHBE1bgnJUmDiqZQyEOGFIFSMGtNXOnfzTOD0T56DxIe/du2bKAKGoorwzjnIK8uvdDzf9bipxN+fUNnM5dJWmuu/Z2rDXMM8QFq9uLqRlFYzsOoxoOgi0LyrdK82zPacsIrnqbX+66OdkoNEO478IyKiWlCr1TCbzbBYLBBF0TEFFBHVL6IowmKxAIBjvYVgCkpgR0REkEKJZp2BXfOBI2ucRhqNBQb+JTgjjXwNEgUBCImSttg2tWvTbKw54Cu9CuxdJI2UI/dMpdJWctn7e0QrsOmVmq9RaW0BXjigDa3Ydw713AV9jvdO12rDpJWTq/veAmwlxNOkvxfB+P5X+sg/BolERIqk0+lgMBggiiJKS0sRHh4e7C4RkQ/sf48B6e91sMm26AQ1Xlx0gsgLSvtB/GKasoLE1Y97N+df93uAW9+U5vOzGKUAyL5vMdk2277Vab/yeavztUbAYq76TLMBOP49g8RAiEwEWvWtCAq1YU6BoW3fcS7UFhKGVgSD9n2NXgqTvaHkxUOUHiQSETVyhYWFuHDhAgAgIiICrVq14ig7onro0qVLuHLlCgAgPj4ecXFxXt1X71eJpcaLgR1RPaaUIPFiGrBgmOdS3T9vlTfAqE2QOOI1wFgCGGwLaxhLbFtRxb7Bab/KueKKRTlq+jpQBUHlFOCFugaAOqdgz1QGHF1b8zyMghq4ewGQ0MM1RNSEBPbvhpKDRDul/HeCiChIrFYrTpw44RiZExERgbi4OISFhTG4I6oHLBYL8vPzcenSJcexa665xutRdvV+lVgiIqqHVCpp9FKwBXPOv5p4u3jI4BlAtB9/WWE2VoR3lUNAQxGw7q/SKECPBCC8uRS2GEsa3mhB0VrxdarzsyzAt1Pcn9OEuoZ4LluYm/2wqqGfu3P551hCTERUD6hUKrRs2RIXLlyAKIooLi5GcXExBEGAWq0OdveIqAbO89bZNWvWjCWx1DhwhB0R+Y3SSnUBZY6A8nbkX8+HgHEfS/uiKIV8xhLbnHhlFfvGUmlxEGNpxXx51R4rrXSf00aBEZ0EtLvRaSXhcEAf6X5VYV04oIusKCP2deSHEr/vK+PIPyKSWVFRkSO0I6L6KTo6GomJibUaHcuSWKq3GNgRkd8p7QdxpQWJSiwhtlqB1X+WRiR6ktgL6DxKCgRNZU7hX5lTAOjmuNUU+M/RkAgqp5DP6VXvFPzZwz290/mSK8D/ZtY8IjMYJep2HPlHREFktVpRXFyMwsJCGI3GKiN3iEh51Go1wsLCEBMTg5CQkFrfz8CO6i0GdkTUaCgpSFTiCKhAB4kWU6XRgWW2rYbgz1gC/PYJ5wUMBH0kENfetlpwpU0b5hQS2vbtqwzrImzHwiuOe7uAiBK/74mIiKhB4xx2RERESqeUOf8AKZRo1llZI/8CPRehWguoo4GQ6NrdV3rF+xLiu953CgJLXffN5a6j/9xd4/Lq7npbwFjTAhj1haEIyD7gn2cJ6moCP6dgz1Qmfa9X97UL9px/jn4oKNgnIiIixeIIOwo4jrAjIgoypQUELCGumShKowXXPA4c+tbz9fHdgXZDXRciqbLqsO1cQwgC60ofBST2BCLibVvzitfIBGk/NM7/f1dYqktERNQgsSSW6i0GdkRE5JaSgkQlllL6O0gURWkUoGNV4eKKMM/gFPQZnYK+ytcaioCcwwAa+D8fBbVTkBfvuh9Z6Zg3o2qV+P3lTEl/F4mIiOoZlsQSERFRw8IS4pr5u4RYEKSVYbWhAJr53i9vVyFuOxi47pGKsM8+Z6CxWJpL0FhiW2m40qaEVYVFC1CULW2e6CJqHq1nKKz+zxAIbqkuR/0REREpFkfYUcBxhB0REdUrShtt1BhLiK2WikVCXAI/p7DPWFwRAhqKgT2f1u/FQ+LaA9fcDGhDAE2ItNCGJsR1czkX6nSNXgpi7e/VOs+LdCh91B8REVE90ahG2LVv396xLwgCTp8+HcTeBN758+fx/vvvY8OGDTh//jz0ej06dOiA8ePH4y9/+QvCwsJ8fvacOXPw6quvenXtli1bMGzYMJ/bIiIiahCUNPIPsI20+xgY85EygsRALx4CACq1tMqsPhJAvHf3lF31buRfmxuALncAxTlA8SXptShHei3N9b3PdXX1jLT5heA+yLMHfRYTkLUf1ZY2W83A6j8DYU2BdkOkP49gUFp4TkREJCNFBnbp6ekQBAGiKELw9NvBem7Dhg14+OGHUVBQ4DhWWlqK1NRUpKamYuHChdi4caNLiElERESNkJKCRCWWEA98Ekj72vPIv1H/rr5/FhNQkmsL85y3S0DRxYqArzgn+GW7NRKloMtcBpTn+/YIqwX4YgwgqIDw5q5lvvbXyvvaEP90n6W6REREygzsAKAxVOoeOHAA48ePR2lpKSIiIvD3v/8dw4cPR1lZGZYvX47PPvsMx48fx+23347U1FRERETUqb20tLQaz7dr165OzyciIqJGpCGO/FNrgahEafPEUFw11HMerWffL8nx/TMpgWgFii9K28WDNV8bEuO0MEdCxWvlY/qo6kt23ZXqmkql0ZNpX7NUl4iIGg1FBnZWqzXYXZDFM888g9LSUmg0GmzatAkDBw50nLvpppvQsWNH/O1vf8OxY8fw3//+F7NmzapTe927d69rl4mIiIhcNdaRf/oIaWtyTc3XrZoGHFzu+XlNO0vlumaDtJqvYzMApjKn4wbb6DnbeyXN21eeL225x2u+ThPqtNqu0yg9qxnY9m9p0Q93grlAh0s/WKpLRESBx0UngiQ1NRX9+/cHAEybNg2ffPJJlWusViu6d++Oo0ePIjY2Fjk5OdBqtbVqx3kOu2D9UXPRCSIiIpKdUkKVQC/SYTG7D/LM5YCpvOo5Uynww0tS+W991ayLFM6Gxkqj+kJjbZttXx8dmD9zluoSEZEbjWrRicZgzZo1jv3Jkye7vUalUmHChAn4+9//jry8PGzduhUjRoyQqYdERERE9ZhSRv4FepEOtQZQ20b7eStzr3cLdFw7Dhg8w1bme9Gp3Pei6zGLwbe+++ryMeDn12u4QABCoqsGedUFfM7Hq5uHj6W6REQkMwZ2QbJjxw4AQHh4OPr06VPtdUOHDnXs79y5k4EdERERUX2jtEU6vF2gY8hzUt9qmtJPFIHyAtucfRddX12O5QCGghoe5E9iRXlu3tna3aoJrRrkAcCJ76X5/NxRSqkuERE1KEEJ7EwmE/bv349Dhw7h6tWrAIC4uDh0794dvXv3rnXZZ3109OhRAECHDh2g0VT/x9ClS5cq9/hqxIgR2L9/P4qKihATE4Nu3brhtttuw7Rp0xAbG+vzczMzM2s8n52d7fOziYiIiBoEJS3S4c9Rf4JgC7hipMCqJqYyp4U5Ko3YK7wInPlJCgCDyVwGFJUBRbX896vVDHwxDmg7GIhsIc3LF5kovUbZ3gd6xKdSysCJiMgvZA3siouL8c9//hMpKSnIy8tze01sbCymTJmCf/zjH4iMjJSze7IpLy9Hbm4uAHisbY6NjUV4eDhKSkqQkZFRp3Y3b97s2L98+TK2bduGbdu2Ye7cuViyZAnGjBnj03PttdpERERE5IFSSnWDMepPGwrEtpU2d1Y/7l2pbmw7qe9l+UBZXsVmDfK8fCWXgcOrqz+vj7IFeQlVQ71I2+rEEfGARl+7djm3HhFRgyRbYHf06FHcdtttyMzMrHHxg6tXr+I///kPVqxYgR9//BGdO3v4TV09VFRU5NiPiPA834g9sCsuLvapveTkZIwdOxb9+/dHixYtYDKZcPz4cfzf//0fNm3ahPz8fNxzzz1Yt24dRo0a5VMbRERERFTPKGnUH+B9qe79X1QNokRRCqvK8lyDvHKnfbfH8wFDYcA+kgtDobTlnqj5urAmrkGey75txF54M0Cl5tx6REQNmCyrxObn5+Paa691lEZ2794dEydORP/+/REfHw9RFHHp0iWkpqZi6dKlSEtLAwC0bNkShw4dQnR0dKC7KKuMjAy0bt0aAPDoo4/i888/r/H61q1bIyMjA9dccw1OnTpVq7by8/MRExNT7flPP/0Ujz/+OACgRYsWOHXqFEJDQ2vVhjclsfYVcblKLBERERFVy10AZWcv1fV3AGUxS/PwuQv4Sq8CO96uOUQMBkEFhMYBpbk1X1eXFYiJiMgr9XqV2Llz5yI7OxuCIOC1117Dyy+/DEEQXK7p3LkzhgwZghkzZuDNN9/EP/7xD2RlZWHu3Ln417/+JUc3ZRMSUrH6lNFo9Hi9wSCtvFXbIA1AjWEdAEybNg179+7FwoULkZWVhVWrVuHhhx+uVRsM4IiIiIjIL4JRqqvWAOFNpM2d/HTvSnVb9AHaDZEW2ijKtm0XAzOCT7R6DusAKWhMGQnEXyuNzotIqFqKG5kgLbBR6eczv+HcekREPpFlhF3Xrl1x4sQJ3H///Vi2bJlX9zz44INYsWIFOnfuXOfFFpSmvLzcEb7dfvvtWL9+fY3XR0REoKSkBAMGDMCuXbv83p+9e/eiX79+AIDHHnsMCxYs8OvzA5U2ExEREVEDppSg52IasGCY51Ld6kayGYpti21kA4VOQZ7jNUt6NZcH6hN4ptYDkfEVAV6VYM+2hcR4H+xxbj0iaiTq9Qi7c+fOAQAmTpzo9T2TJk3CihUrHPc2JCEhIWjatClyc3M9lpPm5eWhpKQEQOAWd+jWrZtj/8KFCwFpg4iIiIioVpSyQEddV9XVR0hbk2uqb0MUpXJce5DnNtizvYoWv3wsFxYDkH9e2mqiCakI8iLiq47Us28nNgFrHufcekREdSBLYBcZGQmDwYDmzZt7fY/9Wm8WZaiPunbtih07duDUqVMwm83QaNz/URw7dszlnkCQYZAlEREREVH9FehSXUGQylJDY4HmNfyb32orhS28AKTcKgVtcjKXA3np0uYrqxlY9WdAHwm0HRy8UFYpIziJiKohS2CXnJyMLVu24OTJk+jVq5dX95w8edJxb0M0ePBg7NixAyUlJdi3bx+uv/56t9dt27bNsT9o0KCA9OXIkSOO/RYtWgSkDSIiIiKiek0Jq+qqVEBEc2nrfrd3c+u1vRG4doxtlJ7zlu3dPHiBIFqAZeOlfW0YEN5UWvk2vFml/Urvw5oAam3d2mapLhHVE7IEdtOmTcPPP/+M9957D/feey9UHv7HZrVa8e6770IQBPz5z3+Wo4uyGzt2LN58800AwOLFi90Gdlar1bGCbExMDIYPHx6Qvnz66aeO/aFDhwakDSIiIiKiBkEppboDn5TKSz3NrXfbv6oPosxGoOSSm9LbHNf3ZVcD8xkAKTTzphzXLiSmmnDPTdAXEuMaqrpbhVhppboc+UdENrIEdvfddx9++OEHLF68GGPHjsWCBQuQkJDg9tqcnBxMmzYNv/32GyZPnoz7779fji7Krn///hgyZAh27NiBlJQUTJw4EQMHDnS55p133nEsuDF9+nRota6/TVqyZAkmT54MAJg9ezbmzJnjcj4tLQ2hoaHo0KFDtf349NNPkZKSAgBISEjAuHHj6vrRiIiIiIgo0Oo6tx4AaHRAdCtpq4nZYFs4w0OwV55fp4/klfJ8abty0vO1Kg0QZgvyNHrgwj4A1UwHZDVLX8u49kDL3n7ssJc48o+IKpElsPv8888xdOhQHDp0COvXr0f79u0xcuRI9OvXD82bN4cgCMjJyUFqaio2bdoEg8GAfv36YejQoY4RZu5MmDBBju4HzLx58zBo0CCUlZVh5MiRePnllzF8+HCUlZVh+fLljtVaO3XqhOeee67Wz9+3bx+mTp2K4cOHY9SoUUhOTkaTJk1gNptx7NgxfPnll/jf//4HAFCr1fj0008RHq6A3xYSEREREZFngZ5bz06jB2JaS1tNjCXAv9sHd8VbZ1YzUHxR2ry9/rPh0qq5IVHSPHt622tItOt7faTtmiinayrdo1J71259GPlHRLITRBlWHFCpVBCclv8WRdHlvbOazjkTBAFmcw3Dv+uJdevW4ZFHHkFhYaHb8506dcKGDRvcjpLzNMLO+XxNmjRpgpSUFIwZM6b2H8ALgVrimIiIiIiIbJRSSrn6ce/m1ut+LzD8ZaAkFyi5bNuc9ktzK96XXgFEa+D77m+6iEqhn3OgFyW9NxQDuz+q+fOpNMCftwZ3pJ1Svr+IFChQmYcsI+yAqiuR1pQTNqZVS++8804cPHgQ8+bNw4YNG5CZmQmdTocOHTrgvvvuw1NPPYWwsDCfnj169GikpKRg165d+P3335GTk4MrV65AFEXExcWhZ8+euO222zBp0iRERUX5+ZMREREREZFs6tvceoOfAZpcI22eWC1AWZ5TsHe5+qCv5ApgKPDbx6kTY7G0FWXX7TlWM7D0LqlUNzQOCIuTXkNjbftOr6FxUijoxSAYryi9VFepQaJS+0X1iiwj7M6dOxeQ57Zp0yYgzyX/4gg7IiIiIqJGxF2Jp519br1AlniaDU4hXq40/9666YDVFLg2lUSlrRrihcVWCvncBH8avetzgv3nWBOlBolK7ZedUoNEpfbLS4HKPGQJ7KhxY2BHRERERNTIXEwL/Nx6teFtqW6XO4AhzwKGIqC8UHo12F7LCyq9r3TeUIRqF7WoD7ThthAvBlDpgKz9qPHzCGrgnhQgsYc0ulMbKv05q7XV3+MPSg0SldovQLlBolL7VUsM7KjeYmBHRERERNRIKWXkzMU0YMEwz6W6dZkrzmqVSmCrhHqF7kO+8gLg+Mb6OT9fTVQaKXixB3iOfdt7nZtjHq+zvealA0vvDOyfoy/k+P7ylVKDRKX2ywf1fg47IiIiIiIiamSUMrdeQrIUAHgKCOoSpqhU0kISIVEAWnp3j7cj/1r1B7qMBkqvAmVXgbL8in37a01hkZys5oqQMljtL7oNiEwAIACCSprTT1A5vUel95XPC5XOVX5f6dqLaZ6//lYzsOoxoMudgFonjUR0edUBGl3FvvNxl/1qrnEXiF9Mq/573t6n1dOk1ablDjiV2C+FYWBHREREREREDV/yvVIAoKRSXW8X6bjjvzX3TxSl0X0uIV6etFUO9pyPlStkgQ5/MxYDV04FuxdVXToqbYEgqKsGf+X53gWJX4wDmnT08HxfFjKp5p7cE971a9d8YNzHPrTbMMhaEnv06FEsWLAAO3bswJkzZ1BUVASrtebhv4IgwGxWyG8KyCcsiSUiIiIiIkVRSqkuENzSQItZCu2cA72SXGD9jMazSAcplzYM+PuF4P8d9aDel8S+9dZbmDVrFiwWCzhtHhEREREREQWNUkp1geCO/FNrgPAm0ubs3C/eler2fBC44z2pz6Yy26vTvtH5uJvz3l7X0Ob5I++YSqVgXSl/V2UmS2D39ddf4+WXXwYAqFQqDBkyBD179kRMTAxUCk9KiYiIiIiIiAIqIVkq/RvzkTJG/nlbqjvwSUAbIm2BIoqAxSiFN2unA0e/83xP2yFA/z/bgj5RehVFaYPttco5d+/h3bWHVwMXD3ruV2xboEVv6fNYTIDFYHs1Oh2rtG+2vzf4+AWsx7Rh0t+FRkqWwG7evHkAgJYtW2Ljxo1ITm68kwYSERERERERuaWUkX9yLNLhLUEANHppG/oCcHyD5yDxtjflnZOw4wjvVom9/0vf+yWKgNVSTbhndH985zwgfbvnZ7fqJ42WrL5x3/pbnQNfARf2eX5Gt7GKL4cNJFkCu4MHD0IQBPzzn/9kWEdERERERESkdEpcpENJQaLc/RIEqYRZrQEQ5t09EfHeBYl3vCvv16z1AO/6NfAvsnVJiWQJ7LRaLQDguuuuk6M5IiIiIiIiIqorpZXqAsoMEpXar8YccDYAsqwSO3DgQOzZswebNm3CzTffHOjmSGG4SiwRERERERH5nZJW+3WmtH5dTFNWkKj0ftVSvV4lduLEifjtt9+wZs0aBnZEREREREREVHdKmfOvMqX1S4kjJZXcL4WQ5SsxZcoUDBkyBAsWLMC6devkaJKIiIiIiIiIiOzsQaLSQjGl9ivIZJvD7rvvvsPEiRMxbtw4PPDAAxg/fjw6deqEsDDPkyW2bt1ahl4SEREREREREREFnyyBHQDExMTgr3/9K3bv3o2vvvoKX331lVf3CYIAs7mGlUOIiIiIiIiIiIgaENnGGz7zzDMYOXIkcnNzIYpirTYiIiIiIiIiIqLGQpYRdl9++SXef/99AEBUVBTGjRuHHj16ICYmBirWKBMRERERERERETnIEth98MEHAIAuXbpgy5YtiI+Pl6NZIiIiIiIiIiKiekeW4W3Hjh2DIAiYM2cOwzoiIiIiIiIiIqIayBLYabVaAECnTp3kaI6IiIiIiIiIiKjekiWw69KlCwDg4sWLcjRHRERERERERERUb8kS2E2ePBmiKOKrr76SozkiIiIiIiIiIqJ6S5bAbsqUKbjjjjvw5Zdf4sMPP5SjSSIiIiIiIiIionpJllVit2/fjr/+9a+4fPkypk+fjmXLluGBBx5Ap06dEBYW5vH+G2+8UYZeEhERERERERERBZ8sgd2wYcMgCILj/W+//YbffvvNq3sFQYDZbA5U14iIiIiIiIiIiBRFlsAOAERRlKspIiIiIiIiIiKiekuWwG7Lli1yNENERERERERERFTvyRLYDR06VI5miIiIiIiIiIiI6j1ZVoklIiIiIiIiIiIi7zCwIyIiIiIiIiIiUhAGdkRERERERERERAri9znsXnvtNX8/ErNmzfL7M4mIiIiIiIiIiJRIEEVR9OcDVSoVBEHw5yNhsVj8+jySV2ZmJpKSkgAAGRkZaNWqVZB7RERERERERERUd4HKPAKySqw/M0B/h39ERERERERERERK5vfAbsuWLf5+JBERERERERERUaPh98Bu6NCh/n4kERERERERERFRo8FVYomIiIiIiIiIiBSEgR0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2CnA+fPn8fzzz6Nr164IDw9HXFwc+vfvj//85z8oLS31WzvLly/HrbfeisTERISEhKBt27Z49NFHsXv3br+1QUREREREREREdSOIoigGuxON2YYNG/Dwww+joKDA7fnOnTtj48aNaN++vc9tlJeX47777sP69evdnlepVJgzZw5mzpzpcxs1yczMRFJSEgAgIyMDrVq1Ckg7RERERERERERyClTmwRF2QXTgwAGMHz8eBQUFiIiIwBtvvIFff/0VP/30Ex577DEAwPHjx3H77bejuLjY53amTJniCOuGDx+ONWvWYM+ePUhJScE111wDq9WKWbNmYeHChX75XERERERERERE5DuOsAui4cOHY+vWrdBoNNi+fTsGDhzocv7tt9/G3/72NwDAq6++ilmzZtW6jW3btmHYsGEAgDvvvBOrV6+GWq12nM/NzUWfPn1w/vx5xMbG4syZM4iJifH5M7nDEXZERERERERE1BBxhF0Dk5qaiq1btwKQRsBVDusA4LnnnkPXrl0BAO+99x5MJlOt2/n3v/8NAFCr1Zg/f75LWAcATZs2xdy5cwEAeXl5SElJqXUbRERERERERETkPwzsgmTNmjWO/cmTJ7u9RqVSYcKECQCkMM0e8HmruLgYP/30EwBgxIgR1aa8d999N6KiogAAq1atqlUbRERERERERETkXwzsgmTHjh0AgPDwcPTp06fa64YOHerY37lzZ63a2LNnDwwGQ5XnVKbT6TBgwADHPb6M5CMiIiIiIiIiIv9gYBckR48eBQB06NABGo2m2uu6dOlS5Z7atlH5OTW1YzabcfLkyVq1Q0RERERERERE/lN9UkQBU15ejtzcXADwOBlhbGwswsPDUVJSgoyMjFq143y9p3bsEyTa7+vWrZvX7WRmZnrdj+zsbK+fS0RERERERESkZM45h9ls9ttzGdgFQVFRkWM/IiLC4/X2wK64uDhg7YSHhzv2a9uOc9jnSf/+/Wv1bCIiIiIiIiKi+uDy5cto27atX57FktggKC8vd+zrdDqP1+v1egBAWVlZwNqxt+FLO0RERERERERE5D8cYRcEISEhjn2j0ejxevvCEaGhoQFrx96GL+14KtUtLy/HsWPHEB8fj2bNmtU4Z59SZWdnO0YH7tmzB4mJiUHuEVHg8fueGiN+31Njw+95aoz4fU+NEb/vA8dsNuPy5csAgOTkZL89t/4lJw1AZGSkY9+b8tOSkhIA3pXP+tqOvQ1f2vE0Px4gLa7RUCQmJnr1mYkaEn7fU2PE73tqbPg9T40Rv++pMeL3vf/5qwzWGUtigyAkJARNmzYF4HnBhry8PEeYVpu54gDXIK02C0PUth0iIiIiIiIiIvIfBnZB0rVrVwDAqVOnalxF5NixY1Xu8ZbzSq/Oz6mpHY1G06BGwxERERERERER1TcM7IJk8ODBAKRS1H379lV73bZt2xz7gwYNqlUb/fr1cyw24fycyoxGI3bv3l3lHiIiIiIiIiIikh8DuyAZO3asY3/x4sVur7Farfj8888BADExMRg+fHit2oiMjMTNN98MANi8eXO1ZbGrVq1CYWEhAGDcuHG1aoOIiIiIiIiIiPyLgV2Q9O/fH0OGDAEApKSkYNeuXVWueeedd3D06FEAwPTp06HVal3OL1myBIIgQBAEzJkzx207zz//PABp1ZInn3wSFovF5Xxubi5efPFFAFIoOHXq1Dp9LiIiIiIiIiIiqhsGdkE0b948hIaGwmw2Y+TIkXjzzTexe/dubNmyBdOmTcPf/vY3AECnTp3w3HPP+dTGTTfdhAceeAAAsHbtWowYMQJr167F3r17sXjxYgwYMADnz58HALz11luIjY31z4cjIiIiIiIiIiKfaILdgcasV69eWLFiBR555BEUFhbi5ZdfrnJNp06dsGHDBkRGRvrczqJFi1BYWIiNGzdiy5Yt2LJli8t5lUqFmTNnYtq0aT63QURERERERERE/sHALsjuvPNOHDx4EPPmzcOGDRuQmZkJnU6HDh064L777sNTTz2FsLCwOrURGhqKDRs2YNmyZViyZAkOHDiA/Px8xMfHY8iQIXjqqacwcOBAP32ihqlVq1YQRTHY3SCSFb/vqTHi9z01Nvyep8aI3/fUGPH7vv4RRP6JERERERERERERKQbnsCMiIiIiIiIiIlIQBnZEREREREREREQKwsCOiIiIiIiIiIhIQRjYERERERERERERKQgDOyIiIiIiIiIiIgVhYEdERERERERERKQgmmB3gBq+8vJypKWlAQCaNWsGjYbfdkRERERERERU/5nNZly+fBkAkJycjJCQEL88l8mJApw/fx7vv/8+NmzYgPPnz0Ov16NDhw4YP348/vKXvyAsLMwv7SxfvhyLFy/GwYMHkZeXh4SEBAwZMgRPPvkkBgwY4Jc23ElLS0P//v0D9nwiIiIiIiIiomDbs2cP+vXr55dnCaIoin55Evlkw4YNePjhh1FQUOD2fOfOnbFx40a0b9/e5zbKy8tx3333Yf369W7Pq1QqzJkzBzNnzvS5jZqkpqYysCMiIiIiIiKiBo2BXQNx4MAB3HDDDSgtLUVERAT+/ve/Y/jw4SgrK8Py5cvx2WefAQC6dOmC1NRURERE+NTOww8/jGXLlgEAhg8fjunTp6NFixZIS0vDv/71L5w+fRoA8Nlnn2Hq1Kn++XBO0tPT0a5dOwDSN29iYqLf2yAiIiIiIiIiklt2drZjkNLZs2fRtm1bvzyXgV0QDR8+HFu3boVGo8H27dsxcOBAl/Nvv/02/va3vwEAXn31VcyaNavWbWzbtg3Dhg0DANx5551YvXo11Gq143xubi769OmD8+fPIzY2FmfOnEFMTIzPn8mdzMxMJCUlAQAyMjLQqlUrvz6fiIiIiIiIiCgYApV5cJXYIElNTcXWrVsBAFOmTKkS1gHAc889h65duwIA3nvvPZhMplq38+9//xsAoFarMX/+fJewDgCaNm2KuXPnAgDy8vKQkpJS6zaIiIiIiIiIiMh/GNgFyZo1axz7kydPdnuNSqXChAkTAEhhmj3g81ZxcTF++uknAMCIESOqTXnvvvtuREVFAQBWrVpVqzaIiIiIiIiIiMi/GNgFyY4dOwAA4eHh6NOnT7XXDR061LG/c+fOWrWxZ88eGAyGKs+pTKfTOVaJ3bNnj08j+YiIiIiIiIiIyD8Y2AXJ0aNHAQAdOnSARqOp9rouXbpUuae2bVR+Tk3tmM1mnDx5slbtEBEREREREZHCWa2AsUR6VRKl9ivIqk+KKGDKy8uRm5sLAB4nI4yNjUV4eDhKSkqQkZFRq3acr/fUjn2CRPt93bp187qdzMzMGs9nZ2d7/SwiIiIiIiKies1qBcxlgCYUUClgnNTFNGDXR8CR7wBTKaANA7qNAQY+CSQks18KxcAuCIqKihz7ERERHq+3B3bFxcUBayc8PNyxX9t2nMM+IiIiIiIiokZJiQFU2jfA6mmA1VxxzFQKHPgKSPsaGPcpkHwv+6VADOyCoLy83LGv0+k8Xq/X6wEAZWVlAWvH3oYv7RARERERERHJTkkj2ZQUQFnM0tcl64+qfXJmNQOr/gwYioDYNoBoBUTR9mqt5r3TMbg753xNNecLs4DUz2zPqKZfq6cBzTo36pF2DOyCICQkxLFvNBo9Xm9fOCI0NDRg7djb8KUdT6W62dnZ6N+/f62eSUREREREROSW0kayXUzzHIytngaotEBMEmAut20GwFQmvTqOeThuLgdMzu/Lqh4XLd73XbQA65/xy5fBr6xmYNd8YNzHwe5J0DCwC4LIyEjHvjflpyUlJQC8K5/1tR17G76042l+PCIiIiIiIiK/8PdINrMRMBZLzzCWuG4m+35ppWuKbcdKpGM5h6sP6+ysZuDrCb595sbqyBpgzEfBHz0ZJAzsgiAkJARNmzZFbm6uxwUb8vLyHGFabeeKcw7SMjMz0bdv32qvdR4lxznpiIiIiIiISHG8Gcm26jHg9BZAF14pdHMO4mwBnLHEc9BGwWMqlUYQ6sI9X9sAMbALkq5du2LHjh04deoUzGYzNBr3fxTHjh1zuac2nFd6dX5OTe1oNBp06NChVu0QERERERFRAybXXHFWC1B8CSjKrtgKs4Gii0BRFnBhn+eATbQCf3wZuD42VOHxgEoNCCrbJlR6rbxVOg5317k5BgCnf/aubFcbJn3PNVIM7IJk8ODB2LFjB0pKSrBv3z5cf/31bq/btm2bY3/QoEG1aqNfv37Q6XQwGo3Ytm0bXnrpJbfXGY1G7N692+UeIiIiIiIiauT8NVecKALl+bbwrZowrugiUJxT/UIEDYVaD2hDAU0IoLHv6yvea5zea0Ocjoc4bZWe4facHtg0Cziy2nOfej4k71xxqx+XSpg96Ta20ZbDAgzsgmbs2LF48803AQCLFy92G9hZrVZ8/vnnAICYmBgMHz68Vm1ERkbi5ptvxvfff4/NmzcjMzPT7Xxzq1atQmFhIQBg3Lhxtf0oRERERERE1NB4O1ecqcwpfLNvF6WVQIsuVrw3lwXvs9SGJkQKJnURUimmLkx61Ybb3jtt9usOfQNk/Ob52T0fBMZ9EvjPYHfjc8CxdTWPSlRpgIF/ka9PgBT4pn2tvH4pjCCKohjsTjRWN954I3bs2AGNRoPt27dj4MCBLufffvtt/O1vfwMAzJ49G3PmzHE5v2TJEkyePLna8wDw888/4+abbwYA3HXXXVi1ahXUarXjfG5uLvr06YPz588jJiYGZ86cQWxsrB8/pTR/nn1evIyMDC5SQUREREREpGQX04AFwzyXn+oiAWORLF2qFUENXPcwoI90Ct0ibAFbuC2McxPEacMAtQ/jmrz5eqk0wJ+3yr+Krbvg1blPtV2ko6H3yweByjw4wi6I5s2bh0GDBqGsrAwjR47Eyy+/jOHDh6OsrAzLly/HggULAACdOnXCc88951MbN910Ex544AEsX74ca9euxYgRI/DMM8+gRYsWSEtLwxtvvIHz588DAN566y2/h3VERERERESkUKYyID8DyD8H5KUD+eel/bPbvVuMIVBhnUoDRCQAUYlAZAIQmShtJ34EMnZ7vr/H/cCYDwLTN3cSkqWAyVMAJXdYB0ihV7POwK75EI+sgWAqhagNg9BtrDSCLRh9svXrNFrhyuZ30T1/C8IEA0pFPQ7FDEeTW2bgmuQBwemXgjCwC6JevXphxYoVeOSRR1BYWIiXX365yjWdOnXChg0bEBkZ6XM7ixYtQmFhITZu3IgtW7Zgy5YtLudVKhVmzpyJadOm+dwGERERERER1ZG/F3cwG4GCjIogLv88kHeuYr84p+5t1FZYEyCyhRTERSVWhHGRiRXvw5q6//wdR3g3ki0YpZRKDcYAHLG2wULTNPxQfidEUxkESyhuM7XAVGsbdPN8e0B898cFPLfyKszWCRDwCEJgRDl0EHNU0Hx1Fe9YLmDMdS2D1DtlYGAXZHfeeScOHjyIefPmYcOGDcjMzIROp0OHDh1w33334amnnkJYWFid2ggNDcWGDRuwbNkyLFmyBAcOHEB+fj7i4+MxZMgQPPXUU1XKcYmIiIiIiEgmvi7uYLUAhRecgjhbMGffL8qSbxEHbXilAC4BiLIFc/aALjJBWgzBV0oeyQYlB2MHYLbaZ0MLAUwiVu2/gLV/ZOGd8T1lD8aOZBW69EmECmUIcZw3W0U8t/IAOjaPRLcWUbL2TUk4hx0FHOewIyIiIiIiqoanubxuewtI6OEUxDmNkCvI9K50NVA0euDP26VgLkTGYOViGrBrPnBkjVPAOTaoI9mqBmMVNCpBlmDMahVhtFhhMFthNFtxOKsAU5buhcVNn+xUAvDciM5oFqWHyWKF2SLCZLHCZHs1W6wwWkSYLVbpuFWEyey6b7ba75Hus99jv99kqThvtogoMZpRQ5cc7undCu+M7+nHr1BgBCrzYGBHAcfAjoiIiIiIyA1vF3cItLAmQExrIKYNENsGSP8FuLDX8309HwLGfRz4/lXDarGgvKwYIaERUDktrii3I1mFuOvDnW7DOjuVADw7ohOaRephNEuhmskiwmi2wmixSK9mq0vgZn/vbt/g5lxNwVx9FKpV4/Crt0KlEoLdlRpx0QkiIiIiIiKihsBqBS4dAdb+VZ6wTh8NxNoCuZg2UjgXa99PklZTdebtqqfBmCsOUkC2cOcZfJ92EWUmC0K1aoxKTsDUwe39UkJZbrKgoMyEvFIj8ktNyLe/2o4VlFacKygzIf1KSY1hHQBYReA/m07UuW+NSZnJgnKzBWG6xhldNc5PTURERERERCQXUQQuHQXSdwLp26URbGVX/fd8bZibIM6+3xoIja3d8xQ8V5y70tMyk8XtnGwGswUF9qCtxIj8MlNF2FbmFMTZjtlDunKTTPP+UY1CtWqEaII3cjLYGNgRERERERER+ZMoArkngLPbgfQdUkBXmlu3Z8a1B2LbuQZxMW2l/bAmgODnskGnVU+VMldc5cUKKjNbRUxf/gdeX38EJUYLSo0WmXtYPwkCkNwiCjqNGhq1AK1aZdsEaNQq6NQqaFQCtBrXfa1KulZju9Z+n0YtQFdpv+K5Aj78+RS2HL/ssV+jkxMVXw4bSAzsiIiIiIiIiOpCFIErp2wB3U5pK7nkv+drw4Cn9gEqlf+e6Y2EZGmOujEfAeYyQBMqax+uFBtwIqcYJy8V4UROEb5Pu+ix9BQALhcbZehd7dmDMb1WDZ0t/NJpVNBp1I59vUZV6Zzrvt7jObXj/Zy1h7H2QJbHft3dS97FHV64tQt2nMyt8c9SoxIwZXA72fqkRAzsiIiIiIiIiGpDFIGrZ6TRc2d3SAFd8cXaP0cbDphKPF/Xbaz8YZ0zlQrQhQfs8fmlRpzIKcaJnCKczCnC8ZwinMwpxpWS4AdvUSEaxIbrEBOqRXSYDrFhWsSEahETpkNMmBYxYVp8vTcTv56+4vFZcgdjjw+9BhvTshUXjHVrEYV3xvf0uKquP+YjrM8Y2BEREREREVHjYrXWbsSYKAJ5Z6Vgzh7QFXkeuVRFdBLQdgjQbgjQdjBQXqDoxR3srFYR5WYLQjTqOpUoFpabcDKnyCmcK8bxnCJcLjL4sbfuRYZoEBOmRWyYDtG2wM1d+BYTpnMciw7VQu3F5+0cH+VxlVgGY67GXNcSHZtHImXnWWxMy3YsHjI6ORFTBrdr9GEdAAiiKDasdX9JcQK1xDEREREREVGtXEwDdn0EHPnOaU62McDAJ6vOyZZ3zjb/nC2kK8ysfXtRLV0Duti2Va9J+8bz4g7J99a+bT/wdTXWYoMZJ22B3ImcIpy4VIwTF4twsbBcln7rNCr839T+iAvXSyPjQrXQqAM7QtHdYhh29mDMvhiG3I5kFSo6GPNXIBwsgco8GNhRwDGwIyIiIiKioPMUjI38FxASWRHQFZyvfRuRiVJA13awFNLFtvNuMYiLaYpa3AHwLoAa0S0epy4VS/PM5UjzzJ3IKcaF/DK/9UOnUaFDswh0io/AyUvFOJxV6PGee3rLW3pqx2CscWJgR/UWAzsiIiIiIgqqi2meS099ERHvFNDdKK3kWpfVWmtbqhsgR7IKPZZ4+ptWLeCaZhHoGB+JTs1tr/ERaNMk3FGW6k2/NCoBa58aHNSAjMFY4xKozINz2BEREREREVHDtusj/4R14c2kcK7tECmga9KhbgFdZQFe3MEbBrMFb/94LGBhnUYloG3TcHSOj0TH+Ah0cgrmtB7KVpU8J5szlUpAmI5xC9UNv4OIiIiIiIioYbKYgLPbgbSvfbs/rElFQNd2CNCss38DuiAzmq04kVOEg5kFSLuQj7QLBTiWXQizte7PVglA2ybh6BgfYQvnItEpPhLtmoZDp/F99CAXK6DGgoEdERERERERNRzGUuD0T8DR9cCJH4Dy/Nrd33kU0P4mKahr1iWopan+ZLJI4dyhCwW2gK4Ax7KLYLTUPZ1r0yQMHZtLI+U6J0SiY/NItG8WjhCt2g89r8o+0u7te3uw9JQaLAZ2REREREREVL+V5QEnfgSOrgNO/STNA+cLbRhw/7J6H9KZLVaculyMg5kFjoDuSHYhjP4YOudEr1Fh/z9GIDwkONECS0+pIeN3NhEREREREdU/hdnAsfXSlr7TP3PUdft/9u47LKozbQP4PQ2GDlKkKqgooIA9urFG01CjRmNM2WjW9L5JzCbbUr5ssokxbWOyKUZj6qrRGKPGGDuJiRVBURABpQsW6gBTzvfHkZEyDZhygPt3XXMxM6c9gzgOt+/7PrNcGtZ1pFmB3iAg93I4l1Ek3o4XV6Jea99wzpTpSeEuC+uIujv+zSIiIiIiIqKu4fxpcRTdyR+AwgO2HxccB1RkA4KFEEuuBMY+1PkaOyCzuAqfpOZiS0apcU22GxNDcc+4fi3WZDMYBOSdr0VGYaVx3bnjxVWoa9R36vrRgZ5IjPRHUoQfEiP9oJTLMP+j36x2Y100LqZT1yUi8xjYERERERERkTQJAlCaLq5Hd2IjUH7CtuNkCqDvH4D4m4C4FMAvEshYC6y/3/RIPLkSmP0hEJpo3/ptsCGtqE3XU41Wj3WHi7AhrRh3XNUH7ko50gsrcby4CjUNnRtJ2KeXJxIvB3NJEX4YHOEHPw9Vm/26QjdWou6MgR0RERERERFJh0EPFPx+ZSTdpbO2HadUA/2vAeKmi40jPHu13J44V+zyuu99IPM7QFsnrlmXMEscWeeCsC6zuMpsKAaI011X7TvT4fNH+HsgKVIM5xIjxJu/p5tNx7IbK5FryQRBMD/GlcgOCgsLERUVBQAoKChAZGSkiysiIiIiIiKnMBjEBhBKD8trw+kagNzdwMmNwMnNQF2Fbed39wUGXi+GdAOmAu7e9q3LgXR6AxZ9dhC7s8vtcr5wPzWGRPhdDuj8kRjhh15etoVz1nRkbT2insJRmQdH2BEREREREZF9lWYA+5YBmRuajWSbCYx9+MpItoZq4NQ2cSTdqW1AY7Vt5/YKAeKmAfHTgegJgLIDoZRcDrh5tf+4Tjp7vg57TpVj76ly/HKqAjUdXHuut687EiPEUC4p0g9DIvwQ7ONu52qvYDdWIufj3zgiIiIiIiKyH1NrxWnrgKNfAxlrgKF3ANWlQO4uQN9g2zkDosVRdPEzgMhRgFzhiMrtrrpei32nz2PvqQrsPVWO/PN1HT7XQ5P6Y0TfACRG+CHEV23HKolIihjYERERERERkX2UZphv7ACIzx/+zLZz9R5yOaSbLt6XSX8qpt4g4FhRJfaeKsee7AocPnvRYqdVW3moFHj6ukGcjkrUgzCwIyIiIiIiIvvYt8x8WGeVDIgaLY6ii5sG9Opn19IcpaRSg73ZFdhzqhypORW4VKe1+zVSEsMY1hH1MAzsiIiIiIiIqPP0WuDYuvYdI1cCMRPEkG7QNMCnt2Nqs6O6Rh1+z7tgDOlyztW06/hALzeMjw3C+Nhg9PZ1x8IVByyOwlPKZVg0LqazZRNRF8PAjoiIiIiIiDru/Gkg7Usg7Svb16QDgJveE4M6D3+HlWZOe7qeCoKAEyXVxmYRB/IuolFvsPlabgo5RkYHYHxsMMbHBiEhzLfFNZfOS8ZTq4+aDO2UchmWzktGQriv7S+OiLoFBnZERERERETUPg01QOZ3wJEvgbO/tv94lafYfEIut3tplmQWV+GT1FxsySiFRquHh0qBGxNDcc+4fi1CsfLqBqTmiOvQ7T1VgYqadgSRAPoHe2HCwGBMiA3GVf16WeywOnNoBGJDfLA8NQ+bM0qMdaUkhmHRuBiGdUQ9lEwQhM6vgElkQWFhIaKiogAABQUFiIyMdHFFRERERETUboIAnN0nhnTH1wPa2o6fK/l2YPYH9qvNBhvSiiyOZLt/Yj/oDAL2ZFfgRElVu87t56HCuAFB4lTXgcGI8PfoUI3tGflHRNLgqMyDI+yIiIiIiIjIvMoi4OjX4rTXC7mdP59cCYx9qPPnaYfM4iqzYR0A6AwClu08bfP5FHIZhvfxN05zTYr0h8IOAZtcLrM4Go+Ieg6+ExAREREREVFL2nogazNw5AsgdycgWFmzzaMXkHQrMOwOoDwLWH+/6W6xciUw+0MgNNExdZvxSWquxcYOtujTyxMTBorNIsb2D4SvWmWn6oiI2mJgR0REREREROKU15I0ccprxhqg/pLl/WVyYMC1Ykg38EZA6SY+H5oIBA8C9r0vrnOnrRPXrEuYJY6sc3JYZzAI2JJR2u7jvN2VGNs/8PJadEHoG+jlgOqIiExjYEdERERERNST1VYA6avFKa9lx6zvHxgrhnRJ8wHfMNP7hCaKa9TNXAboNIDSw+kNJgCgXqvHyl/yodHqbT7mgYn9MCW+N4ZG+UOlcH7NREQAAzsiIiIiIqKeR68Dcn4G0r4Asn4EDFrL+7v5AENuBobdCUSOAmQ2rtcmlwNuzh+ZpmnU48vfz+DDPbkor7a9w6uHSoFnro9jwwcicjkGdkRERERERD1FebYY0h39Bqgps75/9HgxpIuf4ZLgrb3qGnX44rcz+GhPLipqGtt9fEpiGMM6IpIEBnZERERERERdncFgfuppfSVwbJ045bXwgPVz+UUBQ28Hkm8DesU4pl47q23Q4fPfzuDjPbk4X9v+oA4AlHIZFo3rGq+XiLo/BnZERERERERdVWkGsG8ZkLmhWXOHmcBVDwINlWKX18zvxTDPEqVaHEU39A4gZqJL1pvriJoGHVbty8cne/NwwUJQNz42CCP6BOC9nTkmu8Uq5TIsnZeMhHBfR5ZLRGQzBnZERERERERdUcZaYP39gEF35TltHXD0a/Fmi4gRYkg3ZA7g4e+QMh2hul6LVfvO4OO9ubhUZ379vYkDg/HYlFiM6BsAALhucCiWp+Zhc0YJNFo9PFQKpCSGYdG4GIZ1RCQpDOyIiIiIiIi6mtKMtmGdrbyCgeT5YlAXEm//2hyoql6Llb/kY3lqHio15oO6yYPEoG5Yn4AWzyeE+2LpvGQsmZuEep0eaqWCa9YRkSQxsCMiIiIiIupq9i1rX1gnVwIDbxBDuthrAYXKcbU5QKVGixW/5OHT1DxU1Zt/3VPiQvDYlFgkR/lbPJ9cLoOnG38dJiLp4jsUERERERFRV1FfCaSvBtL/Z+MBMuDal8QGEt7BDi3NESrrtFj+Sx5W/JKHagtB3bUJvfH4lFgMifBzYnVERI7DwI6IiIiIiEjKBAE4uw84vAo4/p31BhItDwZGLQLcvBxVnUNcqmvE8tQ8rPwlH9UN5oO66wf3xmNTYjE4nEEdEXUvDOyIiIiIiIikqOYckPYVcORz4HxOx86h8gSUHvaty4Eu1Dbik725+OzXfNQ26s3ud+OQUDx6TSwbRRBRt8XAjoiIiIiISCr0OuD0dnE0XfaPHWsq0VzCLEAut0tpjnS+pgEf783Dqn35qDMT1MlkQMqQMDw6ZQDiQhnUEVH3xsCOiIiIiIjI1S7mA0e+AI58CVQXW95XrgT6/gHI/wUQzI9Cg1wJjH3IrmXaW0VNAz7ek4vPfztjMaibnhSOR68ZgIG9fZxcIRGRazCwIyIiIiIicgVtPXDyB3E0Xd5u6/sHxgLD/3i5gUQIkLEWWH+/6VF4ciUw+0MgNNH+dbeDwSCgXqeHWqmAXC4zPn+uuh4f7c7FF7+fQb3WYPJYuQyYkSwGdQNCGNQRUc/CwI6IiIiIiMiZyo6LIV36/wDNRcv7Kj2AwbOB4XcBfcaIw82aJM4FggcB+94HMr8DtHXimnUJs8SRdS4M6zKLq/BJai62ZJRCo9XDQ6XAjYmhuHlYBHacLMeXv59Bg858UDdzaAQeuWYA+gd7O7lyIiJpkAmCILi6COreCgsLERUVBQAoKChAZGSkiysiIiIiInKy+irg2LdiA4miQ9b3Dx8mhnRD5gBqGzqgGgxi91ilh8vXrNuQVoSnVh+FztC+XzUVchlmDg3HI5MHoB+DOiLqIhyVeXCEHRERERERkSMIAlCwXxxNd3ydOALOErUfkDRfnPba3tFxcjng5tXxWu0ks7iq3WGdQi7DzcMi8PDkAYgOcv1rICKSAgZ2REREREREtrJlJFttBXD0azGoq8i2fs6YCcCwu4D46YDKw771Otknqbk2h3VKuQxzhkfi4ckD0CfQ08GVERF1LQzsiIiIiIiIrCnNAPYtAzI3NFsrbiYw9mFxNJxBD5zeCRxZBZzcDBi0ls/nEwYMvQMYdgfQq59zXoODGQwCNmeU2LSvQi7D9qcmom8gR9QREZnCwI6IiIiIiMgSU91YtXXiKLqMNcCgFKDoMFBVaPk8MgUw8AZxbboBUwFF9/l1rOBCHd75Odtsx9fW9AYBwT7uDq6KiKjr6j7/QhAREREREdlbaUbbsK45gw448b3lc/TqJ4Z0ybcDPr3tX6MLnTlfi/d25GDdkSLo27FunYdKAbVS4cDKiIi6NgZ2RERERERE5uxbZj6ss0SpBhJmiUFd3z8AMpndS3OlvAoxqPsurX1BXZOUxDDI5d3re0JEZE8M7IiIiIiIiEyprwKOfdu+Y8KSgWF/BBJvATz8HVKWK+Wcq8GynTnYkFaEDuR0AMRmE4vGxdi3MCKiboaBHRERERERUZOac0DWFuDkJrGJhKHR9mP/tBXoM8ZxtbnQqbJq/GdHDjamF0MwE9SpVXLceVVf9A30xIsbM012i1XKZVg6LxkJ4b4OrpiIqGtjYEdERERERD1bxSkxoDu5CSg8AKADQ8dUnkDkaLuX5mpZpdV4d8cpbM4oMRvUeagU+OPYvrh3fD9jI4kRfXtheWoeNmeUQKPVw0OlQEpiGBaNi2FYR0RkAwZ2RERERETUsxgMQNEh4OQPQNZmoCK78+dMmAXI5Z0/j0ScKKnCu9tPYcuxUrP7eLopcNfYaNw7PgaB3i07viaE+2LpvGQsmZuEep0eaqWCa9YREbUDAzsiIiIiIur+tPVA3h4ga5M45bWmzLbjZApAMMDiqDu5Ehj7kF3KdLVjRZX4z45T2Hrc/PfH212JBX/oi0Xj+qGXl5vF88nlMni68ddOIqL24jsnERERERF1T5qLwKlt4ki6nO1AY41tx7n5ALFTgbjpwICpQM7PwPr7TXeLlSuB2R8CoYn2rd3JMgor8c72U/j5hPmgzsddibuvjsafxsXA39NyUEdERJ3DwI6IiIiIiLqPSwXiNNeTPwBnfjUdspniHQrEpQCDpgEx4wFlsymeiXOB4EHAvveBzO8AbZ24Zl3CLHFkXRcO69IKLuHd7aew4+Q5s/v4qpX407gY3P2HGPh5qpxYHRFRz8XAjoiIiIiIpMdgAHQaQOlheW04QQDKjl1pGlGabvs1guOAQSniSLrwYZavE5oIzP4AmLnMtrok7vDZi3jn51PYnV1udh8/DxUWjYvBwquj4atmUEdE5EwM7IiIiIiISDpKM4B9y4DMDc1Gss0Exj58ZSSbXgec/RU4uVkM6SrP2nhyGRB1FRA3TbwF9m9/fXI54ObV/uMk4mD+Bbyz/RT2nqowu4+/pwr3ju+Hu8b2hQ+DOiIil2BgR0RERERE0pCxtu1acdo64OjXQMYaYPS9QN1FIPtHoP6SbedUqoF+k8WAbuANgHewQ0qXuv15F/DO9mz8knPe7D69vNxw7/h++OPYvvB256+KRESuxHdhIiIiIiJyvdIM840dAPH53z6w7VweAcDAG8U16fpf06VHxNnKYBBQr9NDrVRALpcZn993+jze2Z6N33IvmD02yNsN903ohzuu6gsvBnVERJLAd2MiIiIiInK9fctsbxBhin/fK1Ndo8YAip7xq05mcRU+Sc3FloxSaLR6eKgUuHFIKEZGB+C7tGLszzMf1AX7uOP+y0Gdh5vCiVUTEZE1PeNfMSIiIiIikiZtPZC3R5zy2l5hyWLDiEEpQO/BgExm/ZhuZENaEZ5afRQ6g2B8TqPVY92RIqw7UmT2uBAfdzwwsT9uv6oP1CoGdUREUiSpwK6iogJFRUUoLy/H+fPn4eHhgeDgYAQHB6Nfv36Qd+EuTEREREREdFl1KXDqJyDrRyB3p7hOXXtc9y9g8CzAL9Ih5XUFmcVVbcI6a0J91XhwUn/cOiqKQR0RkcS5NLCrrq7Ghg0bsGvXLuzduxc5OTlm9/Xy8sKYMWMwfvx4TJs2DcOHD3dipURERERE1GGCAJQcBbK3ig0jig93/FwqT2DMQ2K31h7sk9Rcm8O6cD81Hpw8APNGRsJdyaCOiKgrcElgd+jQIbzzzjv49ttvUV9fDwAQBMv/2NTU1GD79u3Yvn07XnjhBQwaNAgPP/wwFi5cCC+v7r+ILBERERFRl9JYB+TtFgO67K1AdYl9zpswq8eHdQaDgM0Ztn0/VQoZtj81ER5ukppcRUREVjj1XfvQoUP4+9//jp9++gnAlZAuLCwMo0aNwogRIxASEoJevXohICAAGo0GFy5cwMWLF5GdnY0DBw4gPT0dWq0WJ0+exGOPPYYXXngBixcvxuOPPw53d3dnvhwiIiIiImqusuhKQJe3G9DV23acTA6EDAbOHQcEg/n95Epg7EP2qbWLqtfq8cGu06jXWvg+NaPVC7B90iwREUmF0wK7u+++G59//jkMBvEfluHDh+OOO+7AnDlz0KdPH5vP09jYiD179uCrr77C+vXrcf78eTz33HP44IMP8Pnnn2PcuHGOeglERERERNScwQAUHwGyt4hBXWmG7ce6+wIDpgADbwAGXAt4BQIZa4H195vuFitXArM/BEIT7Vd/FyIIAr4/WozXf8xC0SWNzcd5qBRQcxosEVGX47TA7rPPPoObmxsWLFiAp556CgMHDuzQedzc3DB16lRMnToVH3zwAdasWYNXXnkFJ0+exI4dOxjYERERERG1h8EA6DSA0sO2qaYNNWKjiKwfgVNbgdpy268VEAMMulEM6fqMBZRuLbcnzgWCBwH73gcyvxObUag8xWmwYx/qsWHdoTMX8fKmTBw5e6ndx6YkhkEu71ndc4mIugOnBXYPPvggnnvuOURG2q+Tk7u7O+68807ccccdWLNmDfR6vd3OTURERETUrZVmAPuWAZkbmgVjM4GxD7cNxi6eudwwYguQnwroG227hkwhBnMDrxeDusABgMxKeBSaCMz+AJi5rH1BYjdUcKEOr/14Ej+kd2z9P6VchkXjYuxcFREROYNMsNbtgaiTCgsLERUVBQAoKCiwa2hLRERERB1gberprA8A/z7iNNesH4HyE7afW+0PxF57earrFMAjwG5l9xTV9Vq8v+s0lqfmoVFneq26Mf16YXxsMN7alm2yW6xSLsPSecmYOTTC0eUSEfVojso82CqIiIiIiKgnKc0wH9YB4vPr7m3fOYMGiaPoBt4ARF0FKPhrRkfoDQL+d6AAb27LQkWN6VGM0YGe+GtKPK5N6A2ZTIbJg0KwPDUPmzNKoNHq4aFSICUxDIvGxSAh3NfJr4CIiOyF/5ISEREREfUk+5aZD+tsJVcB0VeLAd3A64Fe/exTWw+291Q5/rXpBE6WVpvc7qtW4vGpA/HHMX3hprwyRTgh3BdL5yVjydwk1Ov0UCsVXLOOiKgbYGBHRERERNQTCAJQkQ0cW9ux4z0DgdjrxJCu/zWAmqO37CHnXDX+tekEdmaZbt6hlMtw55i+eHxKLAK83EzuAwByuQyebvz1joiou+A7OhERERFRd1VZBOTtBvL2ALm7geri9h0fHA/EpYghXcQIQK5wTJ090IXaRrz9cza+/P0s9CbWoAOAqfEheC4lHv2DvZ1cHRERuZrLArtffvkFa9euxenTpyGXyxEXF4d58+Zh+PDhVo89deoUrr/+eshkMpw+fdoJ1RIRERERdQF1F8RwLm+PGNSdz+n4uZQewIO/9tgOrY7SoNNj1a9n8O6OU6iuNz01OS7UB/+YnoCrBwQ5uToiIpIKpwd2Wq0Wd999N77++usWz2/cuBFLlizBzTffjPfffx/BwcFmz9HY2Ij8/HzIrLWEJyIiIiLqzhpqgLO/AXm7xBF0pRkATI/WarfBsxnW2ZEgCNh6vBSvbjmJM+frTO4T5O2OxdcPxNwRUVBwHToioh7N6YHdPffcg6+++srs9nXr1iE1NRVr1qzBuHHjnFgZEREREZHE6RqBooNiOJe3Gyg8CBi07TuHZxBQdx4Wgz25Ehj7UKdKpSsyCivxf5sysT/vgsnt7ko57h3fDw9M6g9vd65aRERETg7sUlNT8fnnn0MmkyE2NhZLly7FpEmT0NjYiF27duG1117D/v37UVZWhuuuuw7ffPMNbrrpJmeWSERERETkOAYDoNOI001tGb1mMACl6WI4l7sbOLsP0JoenWWW2h+IGQ/ETBRvQbHAsW+B9feb7hYrVwKzPwRCE9t3HWqjtLIeS7ZmYd2RQghm8tGZQ8PxzA1xiPD3cG5xREQkaU4N7JYvXw4AiIiIwK+//opevXoBALy8vDB79mzMmjULb775Jp577jnU19dj7ty5WLFiBe644w5nlklEREREZF+lGcC+ZUDmBjFwU3kCCTOBsQ+3DMYEQVx3LneXGNLlpwKai+27lsoT6DMWiJkA9JsIhCa1bRaROBcIHgTsex/I/K5ZTbPEkXUM6zqlrlGHD3fn4qM9udBo9Sb3GdE3AH+fFo9hfQKcXB0REXUFTg3sfv31V8hkMjz11FPGsK65pm0jR47EzTffjIsXL2LBggWorq7GAw884MxSiYiIiIjsI2Nt29Fs2jrg6NdAxhrg+lcBd+/L01z3tL+Tq1wJRI4SA7qYiUDkSEDpbv240ERg9gfAzGXtG/VHZhkMAtYdKcKSrSdRVtVgcp/IAA88e2McpiWGcU1uIiIyy6mBXXGx+OFj7NixFvebOHEi9uzZg+uvvx7FxcV4+OGHUVNTg6efftoZZRIRERER2Udphvmpp4D4/JbF7T9vaKIYzvWbJI6mc/fueI1yOeDm1fHjexiDQUC9Tg+1UgF5s8YQv+eex/9tysSxoiqTx3m7K/Hw5AG4++poqFUKk/sQERE1cWpgp9WKC+IqFNb/gRo8eDD27t2LqVOnIi8vD3/5y19QXV2NF1980dFlEhERERHZx773zId17dGrvzi9NWYiED0e8Ars/DmpXTKLq/BJai62ZJRCo9XDQ6XAjYmhSBkShrWHCvHj8VKTx8llwPzRffDnqQMR7GPDyEciIiI4ObALCQlBUVERzp49ixEjRljdPyYmBnv37sW1116LEydO4OWXX0ZNTQ3+9Kc/OaFaIiIiIqJ2aqwDio8AhQeAgv1A1qaOnccn7PIIuoniVFe/SPvWSe2yIa0IT60+Cp3hSucIjVaPdYeLsO5wkdnjxscG4e/TEjAo1McZZRIRUTfi1MBuyJAhKCoqwt69ezF79mybjgkPD8eePXtw3XXX4ciRI3j77beRnp7u4EqJiIiIiKwQBOBiHlBwQAzoCvcDpccAwXSTAasG3Qj0nyJOcw0cAHB9M0nILK5qE9ZZMyDEG3+bFo9JA4O5Th0REXWIUwO78ePH48cff8SaNWuwdOlSm//xCgwMxM6dO5GSkoJff/0VO3bscHClREREREStNNQAxYfFkXOFB8WQrq7CPudWeQK3fsWmDxL0SWquzWFdgKcKT147ELeN7gOlgn+WRETUcU4N7G644Qb87W9/Q3FxMdatW4c5c+bYfKyvry+2bduGWbNmYdu2bQ6skoiIiIh6PEEAzudcmdpaeBA4dxwQDI65XsIshnUSZDAI2JJhem261pRyGXY8PQkBnm4OroqIiHoCpwZ2w4YNw/jx41FcXIzPPvusXYEdAHh4eOCHH37A/PnzsX79egdVSURERERdnsEA6DSA0sO2IKy+Eig6JAZzBfuBooOA5mLHri1TAL0HA5GjAN8wYNe/LTeekCuBsQ917FrkUPvzL0CjtW2Ks84gwF3J0JWIiOzDqYHdoUOHsHv37k6dQ6VS4dtvv7VTRURERETUrZRmAPuWAZkbAG2dONU0YSYw9mEgNFHcx2AAKrLFNecKD4hr0JWfBGD7GmUteAUDkaOByJFA1GggfBjg5nVle0AMsP5+06GdXAnM/vBKbSQJ2WXVeGNrFn7KLLP5GA+VAmqlwoFVERFRT+LUwG7UqFEIDw/H9OnTMWPGDEyZMgVqtdqZJRARERFRd5Wxtm0wpq0Djn4NpK8G4lKAxlqg8BDQUNmxa8iVYrgWOepKSBcQbblBROJcIHgQsO99IPO7ZkHiLHFkHcM6ySi4UIe3fz6F9UcK0Y4eEwCAlMQwyOVsMEFERPYhEwShg/+V2H7yy9MRmppNqNVqXHPNNZgxYwamT5+O8PBwZ5VCTlRYWIioqCgAQEFBASIjI11cEREREXU7pRnAR5MsTz3tCO9QIGrUlYAuLBlw8+z4+do7VZecory6Act25uDL389Aq2//r0dKuQzfPzIOCeG+DqiOiIikzFGZh1NH2BUWFuKHH37Axo0bsWPHDmg0GmzatAmbN2/Ggw8+iKFDh2LGjBmYMWMGRowY4czSiIiIiKirEASgqhioyAIqTgHlWcCJjZ0P6+QqMZCLujxyLnI04BdpefRcu68hbzldllyqql6Lj3bn4tNf8lDXaHqtugBPFSYODMYP6SUmu8Uq5TIsnZfMsI6IiOzKqSPsmtNoNPj555/xww8/YNOmTSguLhYLuvyBKDQ0FNOmTcOMGTMwdepUeHh4uKJMsgOOsCMiIqIO0WuBC3nienMVWUB59uX7p4DG6s6f3zfyyrpzkaOA0CRAxeVaegJNox6f7cvHB7tOo1KjNbmPl5sCi8b3w73jY+CjViGzuArLU/OwOaMEGq0eHioFUhLDsGhcDMM6IqIezFGZh8sCu9YOHTqEjRs34ocffsDhw4cBcOpsd8HAjoiIqBuzxxTPhporQVxFljhiruIUcOG0/ae4AsDNHwPR4wBffqbsabR6A1YfLMC720+hrKrB5D5uCjnuHNMXD0/uj0Bv9zbbDQYB9To91EoF16wjIqLuH9g1V1xc3GbqLHAlwOPU2a6FgR0REVE3ZEs31uYEAagtF4O58qzLAV22OGquqtB5das8geeKuH5cD2MwCNiYXoy3tmUj/3ydyX3kMmDO8Eg8PjUWkQGdWKeQiIh6lB4V2DVXX1+Pn3/+GRs3bjQ7dXb69Ol46KGHkJyc7MpSyQwGdkRERN2MqW6sTeRK4NqXgMABl4O5ZuvM1V+ybx0qLyAoVuzAei5TDBGtSb4dmP2BfesgyRIEAbuyyvH61iycKKkyu9+NQ0Lx1HUDMSDEx4nVERFRd9Atmk50hFqtxvTp0zF9+nQA4tTZptF3R44cQUlJCT755BNEREQwsCMiIiJytNIM82EdID6/9a/2vaZXMBA06Eo4FzRQ/OoTfmWknC1dYuVKYOxD9q2NJOtA/gW8/uNJHMi/aHafcQOCsPj6QUiO8ndeYURERDaQfGDX2ogRIzBixAg8//zzxqmzP/zwAzw9u+aw9bq6Oixbtgxr1qxBTk4OGhsbERUVhWnTpuGxxx5Dnz59On2NnJwcHDhwAPv378f+/ftx5MgR4zTjFStWYOHChZ2+BhEREXVDBj1QWQBU5ADnc4Dzp+zTjdUkGRDQt1Uwd/m+Zy/rh4cmArM/tDzyb/aHpqfrUrdyvLgSb2zNws6scrP7JEf54y/XD8IfBgQ5sTIiIiLbSX5KbHd2+vRpTJs2DVlZWSa3+/n54auvvkJKSkqHr7F7925MmjTJ7HZnBHacEktERGQH9mjuYE7dBeD8aTGQqzglfj1/WrzpTS/M32EKdzGEC4oVA7nggeKIucABgMqj8+cvzQD2vQ9kftdsbb1Z4sg6hnXdWn5FLd7clo3vjxab3Sc2xBtPXz8I1yX0Ni6xQ0RE1Bk9dkpsd1VTU4Pp06cbw7p7770X8+fPh4eHB3bu3IlXX30VlZWVuOWWW7Bv3z4kJSV16DrN81i5XI74+Hh4eXlh//79dnkdRERE5GDtbe5gjq4RuJjXLJDLuTxy7hRQd94xtYePAHrHXx4pN1AM5/z7AnKFY64HXB5p9wEwc5njAk6SlLKqeryz/RRWHyiAzmB6LEKEvweevHYgZg2LgIKdXYmIqAtwamCXmpqK5557DgcOHIAgCOjbty8mTpyIOXPm4IYbbmixb1VVFdasWYOzZ88iNDQU48ePx5AhQ5xZrkO98cYbOHnyJADg9ddfx+LFi43bxo4di8mTJ2PChAmoq6vDE088gR07dnToOhEREViyZAlGjRqFESNGwNvbGytXrmRgR0RE1BWYau6grQOOfg1krBGneCbOvbJNEIDq0mYj5ZqNmrt0BhAMzqtd5Qnc87PrwjK5HHDzcs21ySku1TXig12nsfLXfDToTP9sB3m74ZHJA3DbVX3grnRgUExERGRnTgvsMjIycN1116GhocE46isnJwenT5/Gp59+iuHDh+Obb75B//79cfLkSUydOhUlJSUtzjFw4EA8++yzWLBggbPKdgitVot33nkHABAfH4+nnnqqzT5jx47FokWL8OGHH2Lnzp04dOgQRowY0e5rxcbG4umnn+50zURERORktjR3WHcfcOYXoL7qyjTWxhr71+LuK05ZDYq1vRtrwiyObKNOMRgE1Ov0UCsVkDcbFVfboMOKX/Lw4e5cVDeY/vvh467E/RP74e6rY+DlzklFRETU9TjtX6+lS5eivr4eCoUCt912GwYNGoTi4mJs2bIF+fn5OHToEK666irs378fd955J4qL2649kZWVhT/96U9Yv349Vq9eDTc3N2eVb1e7du3CpUuXAAALFiyA3MyH2YULF+LDDz8EAKxbt65DgR0RERF1QQY9sGeJ9eYOgh44+Kl9rilXAgHRQGAsEDRADOgCL6815xUMNK33xW6s5GCZxVX4JDUXWzJKodHq4aFS4MbEUCwY2xdHzl7CeztzUFHTaPJYd6UcC/8QjQcm9keAV9f8XYGIiAhwYmC3Z88eyGQyPPHEE1iyZInxeUEQsGrVKjz66KO4ePEiJk2ahMLCQshkMjzwwAN49tlnIZPJ8Msvv+CDDz7Anj17sHHjRtx///1YsWKFs8q3q7179xrvT5w40ex+I0eOhJeXF2pra5GamuqM0oiIiMiRzR2aaOuBykKxA2tlAXDp8tfKQuDSWaCyCBAc0YkVgFeIGMIFDrgyai4wVuzQqlBZP57dWMmBNqQV4anVR1usRafR6rHucBHWHS4ye5xCLsOto6Lw2DWxCPVTO6NUIiIih3JaYNc0vbV1x1OZTIYFCxYgPDwcN9xwA4qKiiCTyTBhwgQsW7bMuN+tt96KW2+9FUuWLMFf/vIXrFq1Cg8++CBGjx7trJdgNydOnDDej4uLM7ufUqlE//79kZ6e3uIYqSksLLS4vfXUZiIiIkmyV3MHQQDqL5kI4ZqCuUKg9pzDXgYAMWwMHNBqpNzl+2q/zp8/cS4QPIjdWMmuMour2oR1trgpORxPXjsQ0UFcs5CIiLoPpwV2CoW4yKufn+kPiddeey1uuukmbNiwATKZDHfffbfJ/RYvXoxdu3bhxx9/xKefftolA7uCggIAgJeXF/z9/S3uGxUVhfT0dJSXl6OhoQHu7u5OqLB9mtoXExERdVntae5g0IuNHZpGyF062+z+5ZDOEevImSOTAyPvETuwNo2a841w/Ppx7MZKdvZJam67wrrJg4Lx9PWDMDjcDiE0ERGRxDgtsIuMjMSpU6eQlpaG4cOHm9zn5ptvxoYNGwAAo0aNMnuuhQsXYsuWLfjll18cUqujVVdXAwC8vb2t7uvldeV/CmtqaiQZ2BEREXVptjR3+PYeYN97QN0FoKrI+tpyzpQ0H5i2xPp+jsJurGQHer0Bm9Jtm5UhlwFf3TsGY/oFOrgqIiIi13FaYDdp0iRkZ2fjjTfewG233QYPD482+wwcONB4v0+fPmbPNWDAAADA2bNn7V+oE9TX1wOATU0zmgd0Go3GYTV1RtOIQXNKSkq65EhIIiLqhgQB0FxsOSru0AobAjgBKD5i/3rUfoBfH8A/CvCLAvwiL9/vAzRUA1/OYXMH6tbKqxuw7nAhvj5wFg06g03HGAQgKZKj6oiIqHtzWmD3yCOPYPny5cjKysLUqVOxfPnyNuu3DR48GO+++y4OHjzYYmRZa00j1BwdYOl0OqhUNiy+bMWKFSuwcOFC42O1WlwIt7HRdHer5hoaGoz3TYWcUhAZGenqEoiIqCtyRHMHvQ6oLr6yVlzl5WDO+LgQ0Nba51pWyQCfsGYhXFSzYO5yOKf2tXwKNnegbkhvELAnuxzfHDiL7SfOtXvNOg+VAmqlwkHVERERSYPTArshQ4bgX//6F5599ln89ttvGDx4MMaOHYtJkyZh+PDhGD58OKKjo/HII49YPdeuXbsAmF8PT+p8fHwAiFNcramtvfJLhS1TaImIiCSvM80dGqqbBXDNmzpc/lpdDAi2jdLpNIV7yzCuRSAXKa4jp7Q+mt4iNnegbqTgQh1WHyzAmoOFKK2q7/B5UhLDIJfL7FgZERGR9DgtsAOAZ555BkFBQXj66adx6dIl/Prrr9i3b59xu5+fH4YOHYphw4Zh+PDhGDZsGOLi4iBv9r/ux48fx1tvvQWZTIahQ4c6tF6lUmmX7qxhYWEtHkdGRuL3339HbW0tLl26ZLHxRNN00+DgYK5fR0REXZ+15g43vAaED205ZbV5QFd/yVWVA3IVcPOHgH+0GMx5BjmnyQKbO1AXVq/VY+vxUqw+WIBfcs53+nxKuQyLxsXYoTIiIiJpc2pgBwB/+tOfcPPNN+Ozzz7Dhg0b8NtvvxnXdLt06RJ27dqF3bt3G/dXq9VITEzE8OHD4efnh/fffx/V1dWQyWR49NFHHV5v62m79pCQkIBvv/0WAHDy5EmMGTPG5H46nQ6nT58GAMTHx9u9DiIi6iEcMfW0vXSNQP4eYN19gKA3vY9BB2x+yjn1yOSAT7g4Eq66BLh0xvoxibcAQ+Y4vjZz2NyBupDM4iqsPliA9UeKUKnRWtxXrZIjJTEM80f1QcklDZ5ac9TkNFmlXIal85KREG5lKjkREVE34PTADgD8/f3x+OOP4/HHH4der8eJEyeQlpaGtLQ0HDlyBEePHsWFCxcAiOvU7d+/HwcOHDAeL5PJ4OHhgTVr1iArKwtJSUlITExEeHi4K15Ou40bN854f/fu3WYDu4MHDxqnxF599dVOqY2IXEQKgYopUq2LbNOZqae2aqwDakqB6jLLX+s6P7KmXVSerZo4RIqNHJoe+4QBisvr1JZmAB9NYnMHok6qqtfi+7RirD5YgPTCSqv7J0X64dZRUZiRHA5f9ZV1o2N7+2B5ah42Z5RAo9XDQ6VASmIYFo2LYVhHREQ9hkwQhPat8uokBQUFxhCvKcjLz89vsY9M1nLtil69eiExMRHJycl46623nFht+zQ2NiIkJASVlZWIj4/H8ePH27wWAHjggQfw4YcfAgD279+PUaNG2eX6K1euxN133w2gbUMMRygsLERUVBQA8c+VTSqImnFGoNKd6pI6KQWcpqaeNmlqVpA41/SxgiBOPbUYwl2+NVQ59GWY5RXcLJC7HMQ1f+wRAJj4t9Wszny/iHowQRBwIP8ivjlwFpszSlCvtbyGpJ+HCrOHRWDeyCir4ZvBIKBep4daqeCadUREJFmOyjwkG9iZUlVV1SLES0tLQ2ZmZptuqzKZDHq9mek2EvHPf/4T//d//wcAeP3117F48eIW2/ft24cJEyZAp9Nh4sSJxkYbzeXn5yMmRlzDw9w+pjCwI5IIqQYEUq1LyqQWcNoyYkymACYsBhTKtoFczTlA1/EF4e3Cv68YvJkK43zDAZUDOqeXZrC5A5GNzlXXY93hIqw+UIDcCuudl68eEIh5I6Nw/eBQqFXs8EpERN0HAzszdDodjh8/3mIkXnp6unFKrVRVV1dj5MiRyM7OBgDcd999mD9/Pjw8PLBz50688sorqKmpgYeHB3799VeTDTZsDezWrl3boiNtamoqli9fDgBYtGhRiym6oaGhuOGGG+z0KkUM7IhMsHUK3qJtQHCcuJ9BBxj0ze6bemzqZuYYvbbt9spC4MDHlrtsyhXAHzcAff8g3neF7jKSzRKDHmisFYMjbZ049VRbd/k5TbP7rbZr64DTO21bk02qVJ7Ac0Wu+7OV0s8XkYTo9Abszi7H/w4UYPvJc9CbWGeuuVBfNW4ZGYlbRkShT6Cnk6okIiJyLgZ23VBOTg5SUlJw6tQpk9t9fX3x5ZdfYvr06Sa32xrYRUdH48wZ235xa89IPVsxsCMyYf0DYlfMrkwmBzwDxamJXkGXv7a+3+yxm3f7piiaIrWRbMVHgU+usTKSTQ6Mvg9w920VuNW2DNlaB3L6Bue9DntQeQE+vQHvUPNf9ywBjq+zfq7k28WuqETkFNamnp45X4vVBwuw9lAhyqosvzcp5TJMiQ/B/FF9MGFgMBScykpERN2cozIPlzSdINGAAQNw5MgRLFu2DGvWrEFOTg4aGxsRFRWFlJQUPP744+jbt6+ryyQie6suA46tdXUVnScYgNpy8WYLpdpKuNfsvmcQoHRrebypkWzaOjH4zFhj+0g2XQPQUCOuvdZYI95vrAEaqq98bagBGqubbWva3uo5rfVpYBAMwO//te17JEVqf8AnFPDubebr5UDO3cf6ucY/CZz4ns0diCQis7gKn6TmYktGqbG5w42JobhnXD/0C/bCj8dK8b8DBdiXa71pTL9gL9w6Mgo3D49EsI+7E6onIiLq3pw2wm7NmjW45ZZbHHb+wsJCnD17Fn/4wx8cdg3qGI6wI4IY7pzcBGSsBnJ2ALC8KDcBUPtdCfAUKiB/r9gMwRyZHBh8sxgMWgrbDFrnvQapk8mAflMA36bgrVUg590bUKnte02ukUgkCRvSivDU6qPQmZjWKpMBaqUcGisNJDxUCkxLCsOto6Iwsm+AySZqRERE3V2XH2F366234qWXXsI///lPuwZ3Z8+exauvvooVK1bgr3/9KwM7IpIOXSNweocY0p3cLK6J5SgyhRh2GG9WHiuUbbfLFEDuLkCQSNOe+krxdj7Htv0FQ/cYuWiWTJwC7OYpNlxQeV2+79ns+cvP5e0Fyk9YP2XSbc6fepo4FwgexOYORC6UWVxlNqwDxP8bsRTWJUf549aRUZiRHAYftcpRZRIREfVoTgvsYmNjcfz4ccyfPx+LFy/G7bffjjvuuAODBw9u97lqa2uxfv16fPnll9i+fTv0ej3kcjkGDBjggMqJiNrBYAAKfhOnaB5fD2gudu58cTOA61+2EsYpO782XBNb19YbPBsY/9TlKbEV4teac1fuG5+XQLdRKZDJgbjp4jp+bUI2T8DNy3IIp/IQb7b+Odva1MRVU09DE8WgcOYyNncgcoFPUnPNhnXm+HuqMHtYBG4dFYW4UF8HVUZERERNnDYlVqfT4d1338W///1vVFRUGIfMx8bGYsyYMRg1ahSGDRuGkJAQBAQEICAgABqNBhcuXMDFixeRnZ2NAwcOYP/+/di/fz/q6+vRVPqNN96I1157DUOGDHHGS6F24pRY6hHKjoshXcZaoLLA+v5KtbiWGiy8BcuVwH27nDviyNagx9a6BEFsotA82GsR6LW6X1dhuUOt3cnEtdfcvAF37ytf3X3bPufmI+5rfM4H2PsmkL3F+mVc0USBU0+JyIT6Rj2SXvwJjXrb3muv7h+I+aP74NqE3lCrXNQZnIiISMK6TZfY2tpavP/++1i2bBnOnj0rFtGOkSFN5SoUCsycOROLFy/GVVdd5ZBayT4Y2FG3demsGIpkrAXOHbe+v0wBDJgCJN4CDEoBsn+UZqDiyqDHYBBHJTYP9mrOAT/93ba15+QKYNR9rYI1XxPB2+XATeXZudGJ9g447a00g1NPiQgAUFZVjy9/P4uvfj+DippGm4/LfOl6eLqxTx0REZE53Sawa2IwGLBt2zasXr0aO3fuRH5+vtVjPDw8MHr0aEybNg233347wsPDHV8odRoDO+pW6i6IU10z1gBn99l2TNRVYkg3eLbYCbU5qQYqUqvL1qm6HMlmmsHAqadEPZAgCPg97wI+33cGW4+XtnsarIdKgeMvXg+5nM0kiIiIzOl2gV1rRUVF+PXXX1FYWIjy8nJcuHABarUawcHBCA4ORmJiIkaOHAmVigvbdjUM7KjLa6wDsjaLIV3Oz5ZHUzUJjhNDusS5QEC09f2lGqhIpS6OZCMislltgw7rjxTh831nkFVW3eHzzBkeiaXzku1YGRERUffT7QM76r4Y2FGXpNcBuTvFkO7ED4C21voxvhHAkDlA0jyg9xD7NYIgEUeyERFZlHOuBl/8dgbfHipEdYPl/1ySweIqqlDKZfj+kXFICGeDCSIiIksclXlwQQoi6lksBSqCABQeEEO6Y+vEBgjWqP2BwbPE0XR9/sCQxpES5wLBg6Q9kk0uFzu+EhE5iU5vwPaT5/D5vjNIzbH875aHSoFZwyLwxzF9cepcNZ5afdTkNFmlXIal85IZ1hEREbmQ0wM7vV4PvV4PNzc3Z1+aiHqy0gxg3zIgc0OzoGcmMPZhQOEGpK8Wg7pLZ6yfS6kGBt0ohnQDpgJKd8fXT6LQRHGNupnLOJKNiHq08zUN+OZAAb787QyKK+st7hsT5IU7x/TF3BGR8PMQl5dJCPdFbIgPlqfmYXNGCTRaPTxUCqQkhmHRuBiGdURERC7m9Cmxb731Fv7yl78gISEBf/vb33DLLbe02F5TU4OcnBwMGTIESiUHAHYHnBJLLmdpKqWtZHKg3yQgcR4QNw1Q8xcZIiJyLkEQkFZwCav2ncGm9BI06g1m95XJgClxIbhrbDTGDQiy2DjCYBBQr9NDrVSwwQQREVE7dYspsTqdDq+99hp0Oh2USiVuuummNvucOXMGw4cPh5ubGwYPHoxhw4Zh+PDhGDZsGJKTk+Hp6enMkomoqyvN6FxYFzFCDOmG3Ax4h9i3NiIiIhvUa/X4/mgxPt93BhlFlRb3DfBU4dZRfXDHVX0Q1cu2z81yuQyebvyPciIiIilx6r/MP/30E86dOweZTIZ33nkH7u7mp5E1NjYiLS0NaWlpWLFiBQBALpcjNjYWo0aNwieffMKOsURk3b5l7Q/rAgeIIV3iXCCwv2PqIiIisqLgQh2++O0M/newAJfqtBb3TY70wx/HRmN6UhjUKoWTKiQiIiJHcWpgt2nTJgDA2LFjcfXVV1vcVyaTISoqCmfPnjU+p9frcfLkSWRlZWHcuHG49957HVovEXVh9VVAxmog/X82HiADxjwEJN0ChA1lh1ciInIJg0HA7lPl+HzfGezMOgdLi9e4KeWYnhSGu8ZGY2iUv9NqJCIiIsdzamB36NAhyGQyzJgxw6b98/PzcenSJeNIu7S0NKSmpiI3NxdvvfUWAzsiakkQgKLDwKEVYpdXbW17Dgau+Rs7fBIRkUOZWy+usk6LNYcK8MVvZ5B/vs7iOSL8PXDnmL64dVQUenmxkRsREVF35NTALi8vDwCQnJxs8zH+/v6YNGkSJk2aBADIyclBXFwcsrKycPz4cQwePNgRpRJRV1JfKXZ5PfQZUJbRsXOoPMWOo0RERA6QWVyFT1JzsSWj1NiR9cbEUEweFIxfcs7ju7Qi1GvNN5EAgPGxQbhrbDSuiQuBgs0hiIiIujWnBnaVleIiuSEhHV+4fcCAAZgwYQJ2796NH374gYEdUU8lCEDhAeDQSnE0nU7TufMlzALkcntURkRE1MKGtCI8tfoodIYr81s1Wj3WHS7CusNFFo/1USsxd0Qk/jimL/oFezu6VCIiIpIIpwZ2bm5u0Gq1qK01P03Nzc3NuJ85119/PXbt2oVDhw45okwikjLNReDo/4DDnwHnMi3vK1MAfa8GzvwCCHrz+8mVwNiH7FsnERERxJF1rcM6W8SF+uCusdGYNSycHVyJiIh6IKf+6x8YGIja2loUFZn/n8TY2FjU1NQgM9P8L+JJSUkAgIyMDk59I6KuRRCAs7+Jo+kyvwN09Zb39+8DDF8ADLsT8AkFMtYC6+833S1WrgRmfwiEJjqiciIi6uH+s+OUzWGdUi7DDUNCcdfYaIyKDoCMDZCIiIh6LKcGdklJSTh79iy2bduG+fPnm91PqVQaQzlTmqbUlpeX271GIpKQugvA0W/EoK4iy/K+ciUQN00M6vpNbjm9NXEuEDwI2Pe+GPhp68Q16xJmiSPrGNYREZEdlVXVY3NGCX44WoxDZy/ZdIxSLkPqXyYj1I/rqRIREZGTA7tJkyZh48aNWLduHd5++234+Ph06Dzyy7+IV1dX27M8IpICQRCnsB5aCWR+D+gbLO8fEAOMWAAMvQPwtrA+ZmgiMPsDYOYycb07pQfXrCMiIrs5V12PH4+V4oejJThw5gKE9s2Ahc4gwNdD5ZjiiIiIqMtxamD3xz/+EX/7299QVVWFJ554AsuXL+/QeUpLSwEAnp6e9iyPiFyptgI4+rUY1J3PsbyvXAXEzwBGLASix7cveJPLATevzlRKREQEAKioaRBDuvRi/J7X/pCuOQ+VAmqlwn7FERERUZfm1MAuKCgIDz30EN58802sXLkSgwcPxpNPPtnu86SmpgIAwsPD7V0iETmTwQDk7xVDuhMbAYP5ZjMAgF79xZBu6O2AV5AzKiQiImrhQm0jth4XQ7p9p8+jnb0kzEpJDINczjXriIiISOT0llMvv/wyNm/ejJMnT2Lx4sUoKCjAq6++CrVabdPx1dXV+PTTTyGTyXD11Vc7uFoi6jCDwfzU05pzQNqXwOFVwIVcy+dRuAEJM8W16aLHAVyAm4iInOxSXSN+Ol6GjenF+PX0eehtSOm83ZW4LqE3kiL98PKmExYbTyjlMiwaF2PPkomIiKiLc3pgp1ar8dNPP+Gaa65BTk4O3n33XWzYsAEvvvgi5s2bB3d3d7PH1tbWYv78+SgrK4NMJsMdd9zhxMqJyCalGcC+ZUDmhmbNHWYCVz0IaM6Lo+lObjLdsbW5oIHiaLqk+YBXoDMqJyIiMqrUaPHT8VJsyihB6qkKmzq9erkpMDWhN6YnhWN8bBDUKnGKa4CXG55afdTkOZRyGZbOS0ZCuK/dXwMRERF1XTJB6MxqGx1XUlKCKVOm4OTJk8aW9f7+/rjxxhtx9dVXIz4+HoGBgVCpVCgtLcWePXvw8ccfo7i4GAAwdepUbN261RWlUzsVFhYiKioKAFBQUIDIyEgXV0QOk7EWWH+/9TDOHIU7MHi2GNT1GcPRdERE5FTV9VpsyyzDpvQS7DlVDq3e+sdkTzcFpsT3xrTEMEwaFGwM6VrLLK7C8tQ8bM4ogUarh4dKgZTEMCwaF8OwjoiIqAtzVObhssAOADQaDV5++WUsXboUjY2NYkFWfkEXBAEDBw5EamoqgoK4hlVXwMCuhyjNAD6a1LGwLjj+8mi6eYBnL3tXRkREZFZNgw7bT5Thh/QS7M4uR6POYPUYtUqOKXG9MS0pDJMHhcDDzfZmEQaDgHqdHmqlgmvWERERdQOOyjycPiW2OQ8PD/zrX//CwoUL8X//939Yu3Yt6uvrze4vl8tx22234b333oO/v7/zCiUi6/Yta19Yp/QAhtwsrk0XNZqj6YiIyK4sBWN1jTpsP3EOm9JLsDPrHBpsCOnclXJMHhSCaUlhuCYuBF7uHfsYLZfL4Onm0o/gRERE1AVI4tNCbGwsVq1ahQ8++AA7d+7E77//jlOnTuHixYtQKBQIDg7GiBEjMH36dPTr18/V5RJRa9Wl4nRYm8iAG18Dkm4FPPwdWRUREfVAmcVV+CQ1F1sySo1TT29MDMUfx/RFSWU9NqWXYPvJMtRrrYd0bgo5Jg4KxvSkMEyJ7w3vDoZ0RERERO3l0imx1DNwSmw3VnYc2Pc+kP4/wKC1/bi/FgNuXo6ri4iIeqQNaUVmmzvYSqWQYUJsMKYlhWFqQm/4qlV2rJCIiIi6m245JZaIuiCDATi9XZwCm7uz/cerPMXpsERERHaUWVzV4bBOKZdhXGwQpieF49qE3vDzYEhHRERErsXAjohso9WII+n2vQ9UZHX8PAmzALncbmUREVHPVa/VI6OoEofOXMRnv+a3K6xTyGX4Q/9AzEgKx3WDe8Pf082BlRIRERG1DwM7IrKs5hxw4BPxVnfe/H5y1eWmExZ+WZIrgbEP2b1EIiLqGUoqNTh05iIOn7mEQ2cvIrO4Elp9+0bUyWXA/80aghuHhKGXF0M6IiIikiYGdkRkWtP6dBmrAX2j+f08g4BR9wCjFgF5e4D195vuFitXArM/BEITHVczERF1G1q9AZnFVTh05iIOnb2II2cuoriyvtPnNQjA7GER7NRKREREksZPKkR0RXvWpwuOA8Y+DCTOA1Rq8bnEuUDwIDHoy/wO0NaJa9YlzBJH1jGsIyIiM87XNODw2UuXR9BdRHrRJZs6ubaXh0oBtVJh9/MSERER2RMDOyJq3/p0/a8Rg7r+UwCZrO320ERg9gfAzGWATiM2mOCadURE3ZbBIKBep4daqYBcbuLfBRP0BgHZZdU4fPaiMaDLP1/XoevLZUBcqC/qtXrkVtRa3T8lMczmOomIiIhchYEdUU9m6/p0CncgaR4w5iGgd4Jt55bLATcv+9RJRESSk1lchU9Sc7EloxQarR4eKgVuTAzFPeP6ISHct8W+lRot0grE0XNHzl7EkbOXUNNgYvkEG/iqlRjeNwDD+wRgRN8AJEf5w9tdicziKtz0XqrFxhNKuQyLxsV06LpEREREzsTAjqgn6sj6dN4hzquPiIgkbUNaEZ5afbRFOKbR6rHucBG+TyvGX26Ig7+nyjiC7tS5Ggjt6w1h1D/YCyP6iuHc8D4B6B/sbXKEXEK4L5bOS25TVxOlXIal85LbhIlEREREUsTAjqin6Oz6dERERBBH1pkLxQBAZxDwr80nOnRuD5UCQ6P8jQHdsD7+8Pe0vZPrzKERiA3xwfLUPGzOKDGO/EtJDMOicTEM64iIiKjLYGBH1N3Zc306IiLq0S7VNeLVLScsTjttj6heHsaprcP7BCAu1AdKRefWPW0aabdkblK719YjIiIikgoGdkRdncFgurmDzevTuV1en+5h29enIyKibk0QBBRd0iCzuArHi6uQWVKFzOIqFF3SdPicbgo5EiP9Lodz/hjeJwAhvo4bxS2Xy+Dpxo+6RERE1DXxUwxRV1WaIU5vzdwAaOsAlSeQMBMYeCOQ8xOQzvXpiIjIOq3egNzyWhwvrmwR0FVqtJ0+97UJIbgqJhDD+gRgSIQv3JUKO1RMRERE1P0xsCPqijLWAuvvBwzNOuxp64CjX4s3S4LjxG6vSfMAlYdj6yQiIrsxGIROT/GsbdDhZOnlUO5yOJdVVo1GncHO1Yrr0X1450hORyUiIiLqAAZ2RF1NaUbbsM4WXJ+OiKhLyiyuwiepudiSUWpsonBjYijuGdfPYhOF8uoGcdRciRjMnSiuQt752g53a20ilwG2LGGXkhjGsI6IiIiogxjYEXUFmktAyVHxduBj28M6rk9HRNSlbUgratORVaPVY93hInyfVoyl85IxIykcZy7UtZnSWl7d0Onr+6qVSAj3xeBwPySE+WJwhC8adQbc/P6vFhtPKOUyLBoX0+nrExEREfVUDOyIpKbuAlCSJoZzxWni/Yv57T+PXAU8kQH4hNq3PiIicorM4qo2YV1zOoOAJ75Jw1/WpqPeDlNaw/3USAj3uxzQ+SIhzBeRAR6QmRiVvXRestnalHIZls5Ltjj6j4iIiIgsY2BH5Eq1FWIg1xTMlRwFLp21z7kNWsDdxz7nIiIip/vv7tMWR7EBgAC0O6xTyGXoH+xlHDWXcDmcC/Bys/kcM4dGIDbEB8tT87A5o8Q4VTclMQyLxsUwrCMiIiLqJAZ2RLYyGACdBlB6AHJ5+4+vLrs8rTXtckB3FKgqtHeVV6g8xVqJiEjyLtU14nhxFY4VVeJYcRWOFV5C3vm6Tp/XQ6VAfJhPi2mtg0J9oFZ1vltrQrgvls5LxpK5SZ1uhkFERERELTGwI7KmNAPYtwzI3CB2YlV5AgkzxQYOoYlt9xcEoLqk2ZTWyyFddUnn6lC4ASEJQEM1cOG09f0TZnUsWCQiIoc6V12P40VVOF5ciWNFVThWXInCi5pOnzfI202c0np51NzgcF9EB3pB4eAQTS6XwdONHymJiIiI7ImfrogsyVjbtiOrtg44+jWQsQaY9V+g79iWU1qL04Dac527rsIdCB0ChA0FwocCYclAcDygdBMDxI8mWW48IVcCYx/qXA1ERNQpgiCguLIex4oqcbxp5FxRJc7ZoRlEc25KOfYsnoTevmqT680RERERUdfDwI7InNKMtmFdcwYdsO6ezl9H6SGO1GsK5sKGAsGDAIXK9P6hicDsD83XJleK202N/iMiIqsMBqHdUzwNBgFnLtRdntJaaRxBd7FO6+BqgRlJ4Qj14xIIRERERN0JAzsic/YtszyKrSNUXkBYkhjKhSWLIV1gLKBo51/FxLliqLfvfSDzu2ZTdWeJI+sY1hERtVtmcRU+Sc3FloxSYxOFGxNDcc+4fi2aKOj0BuRW1Irh3OUprZnFVahp6Ny/GW5KOeJDfZAQ7ochEb7wclPi6TXmu8QCYkfWReNiOnVdIiIiIpIeBnZEphgM4pp1neHmcyWUaxo5F9gfkHd+oW8Al0fafQDMXNa5ZhhERIQNaUV4anXLcEyj1WPd4SJsSCvGLSMioVTIcKyoCidKqtDQzs6srXm6KZAQ5oshEX4YHC5+HRDiDZWi5fu4TIY2dTVRymVYOi+ZHVmJiIiIuiEGdkSm6DTiqDVbufu2DObChwEBMc4J0ORywM3L8dchIuqmMourzIZiAKA3CPjmQEGHz++rVmJIhF+LcM7WZhAzh0YgNsQHy1PzsDmjxDjyLyUxDIvGxTCsIyIiIuqmGNgRmaL0EKeY2hLaKdXAX/LtN3KOiIgcQqc3oPhSPfLP14q3ijrkn6/F/rwLFqedtkeQt5sYzoVfCeciAzw61QwiIdwXS+clY8ncpHavrUdEREREXRMDOyJT5HIgYabYDdaawTczrCMi6oCONHewRqc3oOiSBnkVtThzvu7yV/F+wcU6aPX2CeYAINxPjcGXw7khEWI4F+Lj7rBOrXK5DJ5u/OhGRERE1BPwUx+ROWMfBjLWWG48IVeKTR6IiMhmtjZ3MEerN6DwoubyKDkxjGu6X3hRY7fRcqb8eepADO/rj8Hhfujl5eaw6xARERFRz8bAjsic0ERg9ofA+vtNh3ZypbidHVmJiGxmqbnD92nFWDovGTOHRqBRZ0DhxboWo+TyztfhzHkxlNM7MJQzx0OlwKPXDOB0VCIiIiJyOAZ2RJYkzgWCBwH73gcyvxPXtFN5AgmzxJF1DOuIiGxmrbmDziDgiW/S8OrmkyivaXBYKOejViImyAvRgV6IDvTEr6fP4+CZi1aPS0kMY1hHRERERE7BwI7ImtBEYPYHwMxlYvdYpYdzur8SEdmJI9aKs0bTqEdpVT1KKjUoraxHSWU9vj1UaHW6qgCgtKq+09f3bQrlgrzQN9ALMUGe6BsohnQBnqoW68zdUFyFm95LtVibUi7DonExna6LiIiIiMgWDOyIbCWXA25erq6CiMhmnV0rzhRBEFBVr0NZlRjClVZqUFJZ3+yx+LVSo7Xzq2nL31NlHCUnhnJe6BvoiZggL/h72r6+XFMXVnOj/5RyGZbOS+7w94yIiIiIqL0Y2BEREXVDtq4V15zBIOBCXSNKm4K3KtOBXF2j3mmvI8BThWjj9FUvRBtHynm2K5SzZubQCMSG+GB5ah42Z5QYA86UxDAsGhfDsI6IiIiInEomCILzV22mHqWwsBBRUVEAgIKCAkRGRrq4IiKi7i3Thimechkwe1gEGvUCyirrUVKlQVllAxr1BidWapqbQo7VD4xBTKA3/DxVTr++K6YQExEREVHX5KjMgyPsiIiIugmd3oCiSxq8vCnT6lpxBgH49nCRw2vyUSsR5qdGb181zl4Qu75aMyM5HEOjAhxemzlyuQyebvyIRERERESuw0+jREREXYggCKioaUReRS3yKmqQW16L3Ipa5FXU4sz5Wmj1zhs4H+jlhlA/NUJ91Qj1UyPMT41QPw/j41A/Nbzdr3zUsGXkH5s7EBERERExsCMiIrIbe06lrG3QXQ7lapFbLoZzeRViOFddr7NTxabJZUCIz5UQrrdvUxinRtjlQC7E1x1qlaJd52VzByIiIiIi2zCwIyIi6qSOdmPV6Q0ovKhBbvORcuViSFdaVe/wuhVyGf50dTTC/DxaBHJB3m5QKuQOuSabOxARERERWcemE+RwbDpBRN2ZqW6sTZRyGZbekoyxAwKR12zqqhjO1eDs+Tqra811hEohs2lq7JzhkVg6L9nu17cVmzsQERERUVfHphNERESXSSXoySyuMhvWAYDOIODx/6U55NpuSjliAr0QE+SFfsFXvvYL8kZJZX2XWCuOzR2IiIiIiEzjp2QiIuoyOjr11FaCIKCuUY8LtY24WNdo/HqxVtvi8YVa8bn887UOGSHXRCYDIvw9xDAuyAv9gr0REySGc+H+HlCYCSsDvNy4VhwRERERURfGwI6IiLoEU1NPNVo91h0uwvdpxVg6Lxkzh0a0OEbTqMeFukZcbBG0NeJCnfby16ZtVx436gzOfmkI8FS1COP6B3shJsgbfQM9293YoQnXiiMiIiIi6rq4hh05HNewcyypTA0kcqTM4iqrUzxlAIb28UejzmAM3+q1zg/fzHFTyNAv2Ns4fTUm6PL9QC8EeLk59Np8nyAiIiIicgyuYUdELTh6aiCRK2n1Bpy9UIfT52pwurwW3+w/a3XqqQDgyNlLTqmvvdQqOY49fz2USsd0XrWGa8UREREREXUt/PRO1AV1ZGogkRRV1mmRU16D0+U1yC2vxenL9x3VPbU9VAoZAjzd0MvL7cpXLxV6ebrB//LjNYcK8EvOeavnmpYY7rKwjoiIiIiIuh4GdkRdjC1dKZ9afRSxIT4caUedZo+plHqDgMKLdS1DuXPi1/O1jXau2DSFvCl8UyHAUwzgAryuPBbDODf0unzf31MFb3clZDLLr3lgb58u0Y2ViIiIiIi6FgZ2RF3MJ6m5Vkce6QwClqfmYem8ZCdVRd1NR6Zc1zTokHt5hFxTIJdbXou8ilo06p2zlpxKIcPLs4YgyNvdGMAFeLnBV209fOuIhHBfdmMlIiIiIiK7Y2BH1IUYDAK2ZJTatO/3R4vwz+nx8PN07GL21P1Ym3L99+nx6BfkbZy+2jRqrqyqwe61BHm7o1+wF85VNSD/fK3V/W9KjsCto/rYvQ5L2I2ViIiIiIjsjV1iyeHYJdZ+qjSNSHpxm837q5VyTEsKx62jojAqOsAhI4yoe7GlG6u9KeUy9A30RP9gb/QP8Ua/IC/0D/FG/yBv+HmqbK5LKZfh+0fGuTQgYzdWIiIiIqKehV1iiXq4EyVVWLzmaLuOqdcZ8O3hQnx7uBAxQV64ZWQk5gyPRG9ftYOqpI5yZtBTVa9F8SUNii9pUHSpHkUXNcbHx4srHRbW+XmoMCDEG/2DvdAv2FsM6IK9ENXLEyqF5YYMXWXqKbuxEhERERGRPfC3CiKJa9QZ8N7OHLy/M6dTQUpeRS1e/zELb2zNwuRBIbhlZBSuiQuBGztXulRH1oqzRKc3oKy6oVkgp2kWyNWj+JIG1Q06B7wSkVwG9OnleTmQ82oxaq6Xl1unRnly6ikREREREfUUnBJLDscpsR13tOASnlmbjqyy6nYdJwMgkwHW8r1ALzfcPDwC80ZGIba3T8cLpQ4xtVZck6YRYzOHRrR4vvXoOOP9y6FcaVW91T93exkS7ouBvX1aTGPtG+gJd6XC4dfm1FMiIiIiIpICR2UeDOzI4RjYtV+9Vo+3tmXj4725JsOX3r7uqKhphN5C0DO2fyDWHy7C/w4WILfc+mL9w/r4Y97IKExPCoOPWmWPl0EW2LImm1wG3DgkFBqtwRjKOXJ0XHt4qBQ4/uL1DMuIiIiIiKhH4xp2RD3EgfwLeGZtOvIq2oZsCrkMD03qj0euGYDT52qtTg28f2J/3DehHw6fvYjVBwqxMb0YdY16k9c9cvYSjpy9hJc2ZiIlMQzzRkZidEwvNqpwAINBwDvbs61OcTYIwCYbuwJ3RLCPO8L9PRDhr0aEvwfC/T2w9Xgpfsu9YPXYlMQwhnVEREREREQOwhF25HAcYWeb2gYdlmzNwmf78mHqb2VCmC9en5uEIRF+LZ5vz9TA2gYdNmWUYPWBAhw8c9FqTdGBnrhlZBTmjmCjio6qrtciq7QaJ0qrcbKkCidKqnCypAp1WoNDr6tWyS+HcR7GME68ieFcqJ/a5NTVrtKNlYiIiIiISAo4JZa6LAZ21qWeqsCz69JReFHTZpubQo7HpgzA/RP7W+2k2R6ny2uw+mABvj1UhIqaBov7ymXApEEhmMdGFWYZDALOXKgTQ7nSajGYK61CwYW2f6b2YGp0XHizcC7AU9Xh0ZEdWVuPiIiIiIioJ2JgR10WAzvzquq1eGXTCXxzoMDk9qFR/lgyN8mhDSG0egN2Z5XjfwcLsOPkOZPr4jUX6OWG2cMicOsoy40qpNoUwB51VdVrcbKkGidLq3CiRAznskqrodGanm7cGQq5DI9dMwARAZ5WR8fZU2ZxFbuxEhERERERWcHAjrosBnambT9Rhr+tP4bSqvo229yVciy+fhDuvjoGCieGXeeq69vVqGJolD9uHdWyUUVmcRU+Sc3FloxSY9BzY2Io7hnXz6VBT0fq0hsE5J+vbRbOiQFd0SXHjJozZc7wSCydl+y067Um1eCViIiIiIhIChjYUZfFwK6li7WNeOmHTKw/UmRy+1UxvfDanCREB3k5ubIrBEEwNqr4Ib0YtWYaVTRpGn0V4a/G+7tOS24qpS1TPCcNDMGJUnF9uZOXp7RmlVWj3g5rzSnlMvQP9kZcmA/iw3wRF+oDpVyGhSsOcK04IiIiIiKiLoyBHXVZDOyu2JxRgn9uOIaKmsY227zcFHg2JR53jO4jqZFMTY0q1hwswIF8640qLHF2AGUwCDhWXImb3//VakdWewn0cjOGcvFhvogL88GAEG+TU1i5VhwREREREVHXxsCOuiwGduJU0+c3HMeWY6Umt4+PDcKrNyciMsDTyZW1z+nyGqw5WIhvDxeivNpyowpzQn3VGBTqA4MgQG8Qb4IA6C8/bv68wfgcrtw3CJf3bfucQRBgMFw5lyOpFOKoudbhXIhP+7rpcq04IiIiIiKirouBHXVZPTmwEwQB36UV4cWNmbhUp22z3VetxN+nJ+CWEZEd7ujpCjq9Abva0aiiqwvydkf85ems8WE+iAv1Rf9gb7t2y+VacURERERERF2PozIPpV3OQkRtlFRq8Nd1GdiZVW5y+9T43vjX7CHo7du+EVlSoFTIMTWhN6Ym9Ma56nr8b38Blm7LdnVZnaaUA7G9xVAuPtQX8WG+GBTqg2Afd4dfWy6XwdONb8lERERERETEwI7I7gRBwNf7C/Dq5hOobtC12d7Lyw0v3DQYM5LCutSoOnNCfNR4ePIAvL/rNDRay80ppMxdKUf689fBXdV2rTkiIiIiIiIiZ2JgR2RHZ8/X4dl16fj19HmT22ckh+OFGQkI9Hb8iC1nkstluDExFOsOm+5829yQcF/MSA6HQi6DXCYTv8plUMhkkMtgvN/8eYUcLfaVyy7vL4eJfZudVwa8vjUL2zLLrNY1PSmcYR0RERERERFJAgM7IjswGAR8ti8fr/+YZXKUWbCPO16eNQTXDw51QXXOcc+4fvg+rdhiN1alXIbX5yY7tZnCn6cOxM6T56zWtWhcjNNqIiIiIiIiIrLEfiumE/VQp8trMO/DfXhxY6bJsG7uiEj8/OeJ3TqsA4CEcF8snZcMpZmGCUq5DEvnOTesk3JdREREREREROZwhB2RjVp38dTpDfh4bx7e+jkbjTpDm/3D/dR4dU4SJg4MdkG1rjFzaARiQ3ywPDUPmzNKoNHq4aFSICUxDIvGxbgsFJNqXURERERERESmyARBMD9PjMgOHNXi2Fkyi6vwSWoutmSUGoOeqwcEIv98HXLO1Zg85s4xffCXG+Lgo1Y5uVrpaB1wSoVU6yIiIiIiIqKux1GZB0fYEVmwIa0IT60+2mL9M41Wj59PnDO5f99AT/z75iSM7R/orBIlSy6XwdNNem8xUq2LiIiIiIiIqAnXsHOxuro6LFmyBKNHj0avXr3g7e2N+Ph4PP300zh79mynz6/T6bBt2zYsXrwY48ePR3BwMFQqFfz9/TF8+HA8/fTTOH36tB1eSfeTWVzVJqwzRyYD7hkXgx8fn8CwjoiIiIiIiIg6hVNiXej06dOYNm0asrKyTG738/PDV199hZSUlA6dv7y8HPHx8Th//rzF/dzc3PD666/j8ccf79B1rOmqU2KfXJ2GdYeLrO7no1bisz+NxvA+AU6oioiIiIiIiIikwlGZB0fYuUhNTQ2mT59uDOvuvfdebN++Hb/++iv+9a9/wdvbG5WVlbjllluQnp7eoWs0NDQYw7qhQ4fi+eefx+bNm3Ho0CHs2LEDixcvhlqtRmNjI5544gl89NFHdnt9XZ3BIGBLRqlN++r0AoZG+ju2ICIiIiIiIiLqMbiQk4u88cYbOHnyJADg9ddfx+LFi43bxo4di8mTJ2PChAmoq6vDE088gR07drT7GjKZDNdeey1eeukljBkzps32yZMnY86cOZg8eTI0Gg2eeeYZ3HbbbfDx8en4C+sm6nV6aLR6m/bVaPWo1+m5LhoRERERERER2QVH2LmAVqvFO++8AwCIj4/HU0891WafsWPHYtGiRQCAnTt34tChQ+2+TkREBH766SeTYV2Tq666Cg899BAAoLKyEj///HO7r9MdqZUKeKgUNu3roVJArbRtXyIiIiIiIiIiaxjYucCuXbtw6dIlAMCCBQsgl5v+Y1i4cKHx/rp16xxWz+TJk4332YBCJJfLcGNiqE37piSGQS6XObgiIiIiIiIiIuopGNi5wN69e433J06caHa/kSNHwsvLCwCQmprqsHoaGhqM982Fhz3RPeP6QWkliFPKZVg0LsZJFRERERERERFRT8B0xgVOnDhhvB8XF2d2P6VSif79+7c5xt52795tUz09TUK4L5bOSzYb2inlMiydl4yEcF8nV0ZERERERERE3RlXyXeBgoICAICXlxf8/f0t7hsVFYX09HSUl5ejoaEB7u7udq2lpKQEK1asAAAEBQW1mB5rq8LCQqvX6KpmDo1AbIgPlqfmYXNGCTRaPTxUCqQkhmHRuBiGdURERERERERkdwzsXKC6uhoA4O3tbXXfpimxAFBTU2PXwE4QBDzwwAPGev7xj3/Aw8Oj3eeJioqyW01S1DTSbsncJNTr9FArFVyzjoiIiIiIiIgchoGdC9TX1wMA3NzcrO7bPKDTaDR2reOVV17B999/D0BsPPHII4/Y9fzdjVwug6cb/8oQERERERERkWMxfbBAp9NBpVJ1+jwrVqxo0fFVrVYDABobG60e27whREdGv5nz5Zdf4h//+AcAIDo6Gl999VWHG040TfE1p6SkBKNHj+7QuYmIiIiIiIiIehoGdi7g4+MDQJziak1tba3xvi1TaG2xadMm3H333RAEAb1798a2bdsQGhra4fNFRkZa3K7T6Yz3u/J6dkREREREREREzTXPOZrnH53FwM4CpVJpl+6sYWFhLR5HRkbi999/R21tLS5dumSx8UTT6LXg4GC7rF+3a9cuzJ07F1qtFgEBAfjpp58wYMCATp/XkvLycuN9jrQjIiIiIiIiou6ovLwc0dHRdjkXAzsr4uLi7H7OhIQEfPvttwCAkydPYsyYMSb30+l0OH36NAAgPj6+09fdv38/ZsyYgfr6enh7e2PLli1ISkrq9HmJiIiIiIiIiMh+GNi5wLhx44z3d+/ebTawO3jwoHFK7NVXX92pa6anp+OGG25ATU0N1Go1Nm7ciKuuuqpT57RVYmIi9u/fD0AcKahUdr0fu+br8O3fv7/NqEmi7og/99QT8eeeehr+zFNPxJ976on4c+84Op3OOLMwMTHRbufteslJNzBp0iT4+fmhsrISn332GZ555hnIZLI2+61cudJ4f/bs2R2+XnZ2Nq677jpcvHgRKpUK3377LSZNmtTh87WXWq3GqFGjnHY9RwsLC7O6bh9Rd8Ofe+qJ+HNPPQ1/5qkn4s899UT8ubc/e02Dba5jbUGpU9zc3PDYY48BAE6cOIE33nijzT779u3D8uXLAQATJ040GXjl5+dDJpNBJpOZDeDOnj2LqVOnoqysDAqFAl999RVSUlLs92KIiIiIiIiIiMiuOMLORRYvXoz//e9/yM7OxjPPPIOcnBzMnz8fHh4e2LlzJ1555RXodDp4eHjg7bff7tA1zp8/j6lTpxobVzz11FOIi4vDsWPHzB4TEBCAiIiIDl2PiIiIiIiIiIg6j4Gdi/j4+GDTpk1ISUnBqVOn8NFHH+Gjjz5qsY+vry++/PJLDB06tEPXyMjIwKlTp4yPX3/9dbz++usWj1mwYEGLqbhERERERERERORcnBLrQgMGDMCRI0fw2muvYeTIkfD394enpycGDRqEP//5z0hPT8f06dNdXSYRERERERERETkRR9i5mJeXF5555hk888wz7T42OjoagiCY3T5p0iSL24mIiIiIiIiISHo4wo6IiIiIiIiIiEhCGNgRERERERERERFJiEzgnEkiIiIiIiIiIiLJ4Ag7IiIiIiIiIiIiCWFgR0REREREREREJCEM7IiIiIiIiIiIiCSEgR0REREREREREZGEMLAjIiIiIiIiIiKSEAZ2REREREREREREEsLAjoiIiIiIiIiISEIY2BEREREREREREUmI0tUFUPdXX1+PjIwMAEBwcDCUSv7YEREREREREVHXp9PpUF5eDgBITEyEWq22y3mZnJDDZWRkYPTo0a4ug4iIiIiIiIjIYfbv349Ro0bZ5VycEktERERERERERCQhHGFHDhccHGy8v3//foSFhbmwGiIiIiIiIiIi+ygpKTHOKmyef3QWAztyuOZr1oWFhSEyMtKF1RARERERERER2Z891+znlFgiIiIiIiIiIiIJYWBHREREREREREQkIQzsiIiIiIhIcgwGA2pra2EwGFxdChERkdMxsCMiIiIichKGUNYdPXoUCxYsgI+PD7y9veHj44MFCxbg6NGjri5N0vizRUTUvTCwIyKSAH7IJiLq3qQcQknp36Cvv/4aI0eOxKpVq1BXVwcAqKurw6pVqzBy5Eh8/fXXLq5QWt8vQNo/W4D0vl9ERF0FAzsi6lGk9qFR6h+yiYiskdr7ahMp1SXVEEpq/wYdPXoUd911F3Q6ncntOp0Od911l0vrk9L3C5DuzxYgze9Xc1J6jyAiMkUmCILg6iKoeyssLERUVBQAoKCgAJGRkS6uiHqio0eP4s0338TatWtRV1cHT09PzJ07F08++SSSk5NdUtPXX39t9hcTpVKJVatW4bbbbnNBZUQ9m8FggEajgYeHB+Ry6fzfptTqkuL7qhTrOnr0KEaOHGk2hALE9/yDBw86tT57/huk1+tRV1dnvNXW1rZ4bOpmap/ff/8dJSUlVq8XHh6OMWPGwNPTs8XNy8urzXOmbk37tefvkjP+zRYEAY2NjWhoaLDplpWVhWeffRZ6vd7sORUKBT777DOMGDHCGJp5e3tDoVB0qlZrpPwZR2rvEUTU9Tkq82BgRw7HwM6xpPYLXBMp1SXFD41S/QWOuicp/X1sTmp1SfWXOCnWJcX3VWfXpdVqUVtbi5qamja35s+vXLkSaWlpVs/Xv39/jB8/HnK5HHK5HDKZrMP3re1XWlqKt99+2+LIIrlcjhkzZkCtVlsN2hobG+3yPXUFtVptNdzTaDT4/vvvrX6/5s+fD19fX5sDt9Y3Z34fPTw8WgR41r5a20etVkMmkwGQ9mccqb53EVHXxsCOuiwGdo4hxV/gpFhXRz40CoKA+vr6NjeNRmPxsS37ND3OysrChQsXrNZ/zTXX4J133kF0dDS8vb3t9n3p6qQW9DSRWl1S+/so5bqk+kucFOuS6i/jttb11VdfISIiok2wZu3Wet+GhganvTYiqVMoFMZgr7q6GlVVVVaPSUxMxOzZs6FSqaBUKqFUKlvcb/24s/dPnDiBCRMmSO69qzWpfZYgIusY2FGXxcDO/qT4C5w96xIEAQ0NDS2CrtaPbb1t3rwZ2dnZVq+pVqvh7u5uvJYUBQYGIjo6usUtJiYG0dHR6Nu3r0MCPal9aJRi0CPVurr7+4Q9tSeASkpKAiC+TzXdmj82d78j2zIyMnDttddareubb75B//79odPpoNfrodPpjLfmj+21bevWrcjKyrL6fe3Tpw+GDRsGg8EAQRBgMBiMN2uPO3LMuXPnUFtba7UuIiJLkpOTcf/996N3794ICQlB79690bt3b/j4+BhHETqCFD9LNCe1z4REUsLAjrosBnb2ZcsvlnK5HE8//TTCw8Nb/ELoyFtZWRk+//xzi9NFZDIZxowZAzc3N4shm1QDM6kLCgpqE+g13dob6EnxQ6MUgx5n1dW0rlFdXR00Go3xZu5xTk4OlixZYnX61iOPPII+ffpApVJBpVLBzc3NeL+zj5VKZZtfbNoTjA0ePLhTYX17wv78/HxUV1d36s+IiFry8PCwaW255ts2bNiAgwcPWj33iBEjcNNNN7Vrzby6ujrU19c74ZU7hkqlgru7u/Hm5uaGM2fOgL/KOY9arTaGd82DPFPPBQQEtCvUkupnHECanwmbY5BIUsDAjrosBnb2tWDBAqxatcrVZVAX1BToNY3Kax3oeXl5AZDmh0Zbg57NmzcjISEBACwGzJ3Z3nxbVlYW7rzzTqsLfj/zzDMIDAw0GbTZGsJ1xX+ulUplixCvtrYWGo3G6nEymaxLvl7q2dzd3Y1TApvfsrOzUVBQYPX4wYMH44YbbmgxctDSqMKObjMYDNi2bZvF960mSqUSzzzzDLy8vGwO3Tw9PaFWqzv0i7Ojp1vr9Xrj+6qtDTFqa2uxZMkSizU1r+3ee+81jtq3dLNln+bhnKnvp62fCRcsWICPP/4YtbW1qK6uRk1NTae/1tTUsLuqBUql0hjgmQr3mj9fVFSEMWPGSHKqrhQ/EzaRepBIPQsDO+qyGNjZj8FggI+PD+rq6lxdSo+kUqmgVqvh4eEBtVrd4tbe51atWoVffvnF6jXVarXTRgQEBwcjJCQEmZmZFsMShUKB1157DeHh4WhsbGzXTavVtvuYppFl/OeKiOzFy8urxWL6nbk1hVkqlcrktaS45l97gp6VK1c6vqBmpBgQSPX75cqfLUEQoNFoWgR4TfdfffVV7Nmzx+o5YmJiMHLkSGi1WuOUe1vuW9pmSxDdVY0YMQJ33nkn3Nzc7HJTKBQWp/hK8b2riRTfJ1qT6sg/1uUYDOyoy2JgZz+1tbU9uvGAXC43GYJZuqWmptq01tK1116Lf/7zn23O3/TY3d0dCoXCbq+lPR+CBg4ciDNnziA/P9/krayszG51EVHXpFAojFORFQqFcaH15vctbWvPMXv27LFpbdChQ4dizpw5LTqXWutm2pHHTc+988472LFjh9W6GEJJ+xdxQKzvrbfewpo1a4wjZ2655Rb8+c9/7jINrJxFaj9bgGu/XwaDwbjuZutQ77HHHsO6deusniMqKgqRkZEoKytDWVlZt10bUyaTWQz0SkpKbGqQ1q9fP1x99dVQKBRQKBSQy+V2vd/6ucLCQvzjH/+wGM66+v1LiiP/WJdjMbCjLouBnf20Z4SdXC7HxIkTjb/IOPIGAN98841N/6upUqmwdOlS45SZplvT9BBLN6VS2e7vWU/4kF1XV4ezZ88aA7y8vLwWgd65c+ccUT5JgFqthqenJzw8PIzrRanVahw8eNCmqUoKhQJTpkyBVqttcWsaDWnpsaumQtnyXmHpZur4jz76CLt27bJ67ZkzZ+KVV14xvu81fw9s/Z5oj22PPfYY1qxZY7WunjSqpyvW1URqIZQUg57WpDTiQsrfL6n9bAHS/H519D2itrYWZWVlOHfunDHEa35r/vylS5ec8ErIFm5uboiMjERAQAB69epl8Wvz+15eXh1uLiLFn3vW5RwM7KjLYmBnX1KdliHVugBp/2PgjA/ZdXV1FkfoMdCzTetgBYDNU2/kcjmmTJnSJlwzdd/WbWq12uwHSmf8fTQYDO0K+LRaLV555RX8/PPPVs89Y8YMvP76622CNXPrOHWWVIMeqdYFSPd9Vap1NSelEEqKQY+USf37JaWfLUCa3y9Hv0c0NDTg3LlzJsO91s9VVFRwuQ8JUqlUVkM9U9sKCgrwhz/8wS7/ZguCYBwZ2nRr/djUzdQ+p0+fxvPPP2/xM6tcLsc//vEPREdH2zTK0R7bT5w4gZSUFEl+xukIBnZdSE1NDQ4fPoz9+/dj//79OHDgAPLz8wEAffv2Nd7vqHnz5rX4H/e8vDxER0eb3Fen0yEjI8NYx/79+5GZmWn8C2vpWHthYGdfUv0FTqp1NZHih8bmXPkhu7a2FmfOnEFubi7mzJmDxsZGq8fIZDIkJCQYF8N2xK2p66ibmxtefvllbNq0yWpd8+fPx/vvv29y9JK5kUy2bDdHqkG1VP8+SrUuQLpBj1TrAqT7virVuqRMakGP1PH71T5S+35J5T1Cp9Ph/PnzuPfee7Fx40ar+0dERCA+Pt7m9X8bGhoYCEqQv78/QkJCLIZttjS56SlcMdijIxjYdSGTJ082O7Wms4Hdpk2bMH369BbPWQrdXnzxRbzwwgtmz8fArmv6+uuvcccdd5j8R5i/WFomtQ+NUsMAqnvUBUj376NU6wKk80tcV6mriVTfV6VaFxFJg1TeIxz5WUKv13eo2VdjYyP+85//2NQgbciQIUhJSYFer4derzeuI+iI+zqdDunp6QwiexBPT09UV1dL/t9xh2UeAtndxIkTBQACACEgIEC49tprBW9vbwGA0Ldv3w6ft7q6WujTp48AQAgJCTFeIy8vz+wxzz//vHE/tVotjBkzRujfv79Nx9pLQUGB8XoFBQUOv15PERQUZPy+AhDc3d2FBQsWCGlpaS6tKy0tTViwYIHg6ekpABA8PT0lURfZJi0tTVAqlS1+tlrflEqlS/48v/rqK7O1KZVK4auvvnJ6TVKuSxCk+/dRqnU10ev1Qk1NjaDX611dSgtSrYuIiDpHip8lpPqZ8K677rJYU9Pt+uuvF9avXy8sX75ceOONN4S//vWvwoMPPijceuutwnXXXSeMGjVK6N+/v9CrVy9BJpPZdE7eXHOrqalx6s9YRzgq8+AIOwf46KOP4O3tjdGjR2PAgAEAgOjoaJw5c6ZTI+yeeOIJvPPOO5gyZQoiIyPx2WefAbA8Sm7r1q3Iz8/HqFGjkJSUBKVSiYULF9p0rL1whJ39lZWVITQ0tMVzx48fR0JCgosqaksq/2tJ7ccRUN2nriZS/fso1bqIiIicTYqfJaT4mdARIxINBgOqqqpw4cIFXLx40fi1+X1z22pqauz10tpNqVRCpVK1uDV/TqlU4uTJkzY1CpPL5Rg2bBgMBoPJ0Y0dfa6zevoIOwZ2TtLZwO7gwYMYM2YMlEol0tPT8corr3Q4dGNg1/Vt3boVN9xwg/Gxp6cnqqqqoFAoXFgVdSdS/NDYnFSDHqnWRURERF2D1D5LSPEzoZSCRK1Wi4sXL+K+++7Dhg0brO4/YcIEPP744ybDNlOhm7ntSqXSpm62rl7uxlwA+MADD+Cbb75xWV325qjMQ2mXs5BD6XQ63HvvvdDr9fj73/+OgQMHurokcrEjR460eJyUlMSwjuwqOTkZK1euxKeffiqpD41N5HI5vLy8XF1GG1Kti4iIiLoGqX2WkOJnwttuuw0JCQmSCBJVKhVCQkLw4osvYtOmTVZH/r377rtOre/JJ5/EV199ZbWuP//5zw65vlwuh1wuh1LZMnp69tlnsXbtWpfV1VVI57cvMuvNN99EWloaYmNj8dxzz7m6HJKA1oHdsGHDXFQJdXdNHxpd/cGMiIiIiFxHap8Jm4LE6upq1NTUoLq6GitXrnTZqL/k5GSsWrWqTTDVpGnkn7PrY11dmzT+tpFZeXl5ePHFFwEA77//Ptzd3V1cEUkBAzsiIiIiIurppBQk3nbbbTh48CAWLFgAT09PAOLSRQsWLMDBgwddtgY06+q6OCVW4h544AHU1dXhtttuw9SpU11djkmFhYUWt5eUlDipkp6huroaOTk5LZ4bOnSoa4ohIiIiIiIiANKcQsy6ui4GdhL2xRdf4KeffoKfnx/efPNNV5djVtPiiuQc6enpaN4rRqFQIDEx0YUVERERERERUROprUXYhHV1LYwuJerChQt48sknAQCvvPIKQkNDXVwRSUXr6bDx8fFQq9UuqoaIiIiIiIiI7K3HjrDT6XRQqVSdPs+KFSuwcOHCzhfUypNPPony8nKMGjUKDzzwgN3Pb08FBQUWt5eUlGD06NFOqqb74/p1RERERERERN1bjw3spGzHjh347LPPoFAo8OGHH0p+DndkZKSrS+hR0tLSWjzm+nVERERERERE3UuPDeyUSiVOnDjR6fOEhYXZoZqWXnvtNQDAyJEjkZWVhaysrDb75OXlGe9v3LgRwcHBAID58+fbvR6SDq1Wi2PHjrV4jiPsiIiIiIiIiLqXHhvYAUBcXJyrSzCpoaEBAPD777/b1Mr4scceM95nYNe9ZWZmorGxscVzHGFHRERERERE1L1Ie64lEbXQev266OhoBAQEuKgaIiIiIiIiInIEBnYStGvXLgiCYPG2YMEC4/55eXnG56l7a71+HafDEhEREREREXU/DOyIupDWI+w4HZaIiIiIiIio++nRa9g5Sk5ODlJTU1s8V1NTY/y6cuXKFttuuOEGhIaGOqSWmpoarF27tk19TdauXYugoCDj46FDhzIEkiiDwcARdkREREREREQ9AAM7B0hNTcXdd99tctv58+fbbNu5c6fDAruKigqztQDA4sWLWzx+/vnnGdhJVF5eHqqqqlo8x8COiIiIiIiIqPvhlFiiLqL1dNigoCBERES4qBoiIiIiIiIichSOsHOAhQsXYuHChQ69xsqVK9tMrTUlOjqazSi6idbTYYcOHQqZTOaaYoiIiIiIiIjIYTjCjqiLaD3CjtNhiYiIiIiIiLonBnZEXQQDOyIiIiIiIqKegYEdURdQVlaGkpKSFs8xsCMiIiIiIiLqnhjYEXUBrdev8/T0RGxsrGuKISIiIiIiIiKHYmBH1AW0ng6blJQEhULhomqIiIiIiIiIyJEY2BF1AVy/joiIiIiIiKjnYGBH1AUwsCMiIiIiIiLqORjYEUlcdXU1cnJyWjw3dOhQ1xRDRERERERERA7HwI5I4tLT0yEIgvGxQqFAYmKiCysiIiIiIiIiIkdiYEckca2nw8bHx0OtVruoGiIiIiIiIiJyNAZ2RBLH9euIiIiIiIiIehYGdkQSl5aW1uIxAzsiIiIiIiKi7o2BHZGEabVaHDt2rMVzbDhBRERERERE1L0xsCOSsMzMTDQ2NrZ4joEdERERERERUffGwI5IwlqvXxcdHY2AgAAXVUNEREREREREzsDAjkjC2HCCiIiIiIiIqOdhYEckYa0bTnA6LBEREREREVH3x8COSKIMBgM7xBIRERERERH1QAzsiCQqLy8PVVVVLZ5jYEdERERERETU/TGwI5Ko1uvXBQUFISIiwkXVEBEREREREZGzMLAjkihT69fJZDLXFENERERERERETsPAjkii2CGWiIiIiIiIqGdiYEckUQzsiIiIiIiIiHomBnZEElRWVoaSkpIWzzGwIyIiIiIiIuoZGNgRSVDr9es8PT0RGxvrmmKIiIiIiIiIyKkY2BFJUOvpsElJSVAoFC6qhoiIiIiIiIiciYEdkQRx/ToiIiIiIiKinouBHZEEMbAjIiIiIiIi6rkY2BFJTHV1NXJyclo8x8COiIiIiIiIqOdgYEckMenp6RAEwfhYoVBgyJAhLqyIiIiIiIiIiJyJgR2RxLSeDhsfHw+1Wu2iaoiIiIiIiIjI2RjYEUkM168jIiIiIiIi6tkY2BFJDAM7IiIiIiIiop6NgR2RhDQ2NuL48eMtnhs6dKhriiEiIiIiIiIil2BgRyQhJ06cQGNjY4vnGNgRERERERER9SwM7IgkpPV02OjoaAQEBLioGiIiIiIiIiJyBQZ2RBLC9euIiIiIiIiIiIEdkYSkpaW1eMzpsEREREREREQ9DwM7IokwGAxtAjuOsCMiIiIiIiLqeZSuLoCIRHl5eaiqqmrxHAM7IiIiIqLOEQQBtbW1qKqqQn19PfR6vatLW1vtUAABAABJREFUIiIJUSgUUKvV8PX1hZeXF2QymatLAsDAjkgyWq9fFxQUhIiICBdVQ0RERETU9RkMBpw9exYajcbVpRCRROl0OjQ0NKCyshIeHh7o06cP5HLXT0hlYEckEabWr5NKsk9ERERE1NUIgtAmrJPJZFAoFC6sioikRq/XQxAEAIBGo8HZs2fRt29fl/8+7vTA7t///jcWLFiAsLAwZ1+aSNLYIZaIiIiIyH5qa2uNYZ1CoUBoaCi8vb0lMXKGiKTDYDCgpqYGpaWl0Ov10Gg0qK2thbe3t0vrcvo71V//+lf07dsXM2bMwHfffQedTufsEogkiYEdEREREZH9NF8fOjQ0FL6+vgzriKgNuVwOX19fhIaGGp+rrq52YUUil7xb6XQ6bN68GXPmzEFERASefvppHD9+3BWlEElCWVkZSkpKWjzHwI6IiIiIqOPq6+sBiNNgXT1Shoikz9vb2zgNVgrrXjo9sMvIyMATTzyBoKAgCIKA8vJyvPXWW0hKSsKYMWPw8ccfSyLJJHKm1uvXeXp6IjY21jXFEBERERF1A03dYBUKBUfWEZFVcrncuMalFLpJO/1da/DgwXjzzTdRVFSEdevWYcaMGVAoFBAEAQcOHMADDzyAsLAwLFiwALt373Z2eUQu0Xo6bFJSEhfDJSIiIiIiIuqhXPbfDEqlErNmzcKGDRtQWFiI119/HfHx8RAEAXV1dfjiiy9wzTXXYMCAAXjllVdQVFTkqlKJHI7r1xERERERERFRE0mMCw4JCcHTTz+NY8eO4bfffsN9990HX19fCIKA3Nxc/OMf/0B0dDRSUlLw7bffQqvVurpkIrtiYEdERERERERETSQR2DU3evRo/Pe//0VJSQlWrVqF0NBQCIIAvV6PrVu3Yt68eYiIiMCzzz7bZpF+oq6ouroap06davEcAzsiIiIiIiKinktygR0A5Ofn47XXXsM///lPlJWVGbt0CIIAQRBQUVGBJUuWYMCAAXjzzTddXC1R56Snp7d4rFAoMGTIEBdVQ0RERERERESuJpnATqPR4IsvvsCUKVMwYMAAvPTSS8jPz4cgCIiLi8Mbb7yBsrIy/Pzzz7jtttugVCqh0WiwePFifPHFF64un6jDWk+HjY+Ph1qtdlE1RERERERE1NoLL7wAmUxmHFBE5GguD+z27duH++67z9gZdteuXTAYDPDw8MDChQuRmpqK48eP48knn0RwcDCuueYafPnll8jKysKwYcMgCALeeustV78Mog7j+nVERERERNQV5efnG0OsztyIqC2XBHYlJSV47bXXEBcXh3HjxmH58uWoqqqCIAgYPnw4PvjgA5SUlODTTz/FH/7wB5PniI6Oxr///W8AQHZ2tjPLJ7IrBnZERERERETts3LlSmPgl5+f7+pyiOxO6ewLTps2DT/99BMMBgMEQQAA+Pv74/bbb8e9996L5ORkm88VExMDAKirq3NIrUSO1tjYiOPHj7d4bujQoa4phoiIiIiIqB0iIiKQkZFhdvv111+P4uJihIeHY+vWrU6sjKjrc3pgt2XLFuP9CRMm4J577sHcuXM7tGaXp6cnJkyYwCG01GWdOHECjY2NLZ5jYEdERERERF2BSqWy2DBPpVLZtB8RteX0wC4kJAQLFizAPffcg9jY2E6dKzw8HLt27bJPYUQu0Ho6bHR0NAICAlxUDRERERERERFJgdPXsCssLMRrr73W6bCOqDvg+nVERERERD2PwWBAbW0tDAaDq0txKYPBgC+++AIpKSkIDQ2Fm5sbgoODMXnyZLz//vttZiMBwK5duyCTyXD33Xcbn4uJiWnTyKL14J7ffvsNf//73zFp0iTjtXx9fZGQkIAHH3wQmZmZjn65RnV1dXj77bcxefJk9O7dG25ubggJCcF1112HFStWQK/Xmz02OjoaMpkMCxcuBACcPHkS9957L6Kjo+Hu7o7evXtj9uzZ+O2332yqpbCwEM899xyGDx+OgIAAqNVq9OnTB7feeit27txp9rjmDUdWrlwJAFi3bh1SUlIQHh4OpVKJSZMmtThGEAR89tlnmDBhAgICAuDt7Y3ExES89NJLqKqqAgDjOV944QXjcVqtFqGhoZDJZLjxxhutvqZjx44Zz/PKK6/Y9H2QIqePsFMqnX5JIslKS0tr8ZjTYYmIiIiIuq+jR4/izTffxNq1a1FXVwdPT0/MnTsXTz75ZLvWc+8OLly4gJtuugm//PJLi+crKiqwa9cu7Nq1C++99x62bNmCvn37dupaK1eubBHwNdFqtThx4gROnDiBjz/+GO+++y4eeuihTl3LmgMHDmD27NkoKipq8Xx5eTm2bduGbdu24b///S++//579O7d2+K51q1bhz/+8Y8t1vU/d+4cvvvuO2zcuBFffvklbr31VrPHL1++HI8++ig0Gk2L5wsKClBQUIDVq1dj0aJF+O9//2sxyxEEAXfddRc+//xzs/s0NjZizpw5+OGHH1o8f+zYMRw7dgxffPEFtm3bZvJYlUqFu+66C0uWLMFPP/2EoqIiREREmL3Wp59+CgBQKBRYsGCB2f2kziVdYolI/N+k1oEdR9gREREREXVPX3/9NUaOHIlVq1YZA5a6ujqsWrUKI0eOxNdff+3iCp1Hr9dj+vTpxrBu4sSJWLNmDQ4ePIjvv/8es2bNAiCu+T1lyhTU1NQYjx01ahQyMjLw8ssvG5/bunUrMjIyWtxGjRpl3K7T6RAQEIAFCxbg008/xd69e3H48GH88MMPeOmllxAUFAS9Xo9HHnkEO3bscNjrzsjIwOTJk1FUVISQkBA8//zz+Pnnn3HkyBFs3boVDz/8MJRKJfbv34+ZM2dCq9WaPVd6ejruuOMO9O7dG++99x5+++037Nu3Dy+88ALUajX0ej3uu+8+lJeXmzz+008/xT333AONRoMhQ4bgP//5D1JTU3H48GF8++23SElJASCGen/5y18svq63334bn3/+OcaPH4+vvvoKBw8exM8//4w//vGPxn0effRRY1iXkJCATz/9FAcOHMD27dvxyCOPIDc3F/Pnzzd7jXvuuQeA+Hv0qlWrzO6n1WrxxRdfAACuu+46i8Ge1MmEplatTvLSSy+1+xiZTAa1Wg0/Pz/ExsZixIgR8PX1dUB15AiFhYWIiooCICb1kZGRLq5IGk6fPo0BAwa0eI7fHyIiIiIi+zh16hR0Oh2USqXZJZkMBgPOnz/v8FqOHTuG6667Djqdzuw+SqUSP/30k0ObMwQGBkIud964nejoaJw5cwZ9+/ZFfn6+8flly5bhkUceAQDcddddWLlyZZtmkn/729+M0xmfeeYZvPbaay22Nx81l5eXh+joaLN1FBUVISAgAJ6enia3V1ZWYsKECUhPT8e4ceOwd+/eNvu88MILePHFFwGII8raSxAEDB06FOnp6UhOTsbPP/+MoKCgNvv9+OOPmDZtGgwGAz755BMsWrSoxfam7ykAjBgxAtu3b4efn1+Lfb788kvceeedAIA333wTf/7zn1tsLygoQFxcHOrq6rBgwQJ88sknJkfQNf0ZyOVynDhxAgMHDjRuy8/PR0xMjPGxuT9HADh8+DBGjhwJQRAwevRo7Ny5s82fxdq1a3HLLbcYHz///PMtpsUCYrC7Z88exMbGIjs7u811AGD9+vW4+eabjeecM2eOyf3MseV9ozWHZR6Ck8lkMkEul3fq5u7uLsybN084deqUs8unDigoKBAACACEgoICV5cjGWvWrDF+XwAIQUFBgsFgcHVZRERERETdQnZ2tpCZmSlkZ2eb3efcuXMtPpN399u5c+ec+CcgCH379hUACH379m3xfHx8vPF3oKqqKpPH6nQ6IS4uTgAgBAQECPX19S22r1ixwvi68vLyOl3rd999ZzxfRUVFm+3PP/+8cXtHbNy40Xj80aNHLe47b948AYBw9dVXt9nW9D21dB6DwSCEh4cLAITZs2e32f7UU08JAITw8HBBo9GYrUOr1QoRERECAOFvf/tbi215eXnGOvz9/c3+OQqCINx///02vfbZs2cb93v++efbbF+1apVxe2pqqslzzJgxw/iz1dDQYPZa5tjyvtGaozIPl0yJFQTBmEg33Td3M7VPY2Mj1q5di6FDh2L79u2ueAlEnWZqOqyp/40gIiIiIiLqLoqLi3HixAkAwLx58+Dj42NyP4VCYRxBd/HiRRw+fNhuNdTW1iI/Px/Hjx83rqGmUqmM248ePWq3azXZsGEDAGDQoEFISkqyuO+ECRMAiOvdmWtAkZiYaPY8MpnMuNxSbm6u2VpmzJgBtVpttg6lUomxY8cCAPbt22d2vxkzZpj9cwRgzG2GDh1q8bXfddddZrcBwNy5c+Hv7w8AWLFiRZvtZWVl2LJlCwDgzjvvhJubm8XzSZ3TAzuDwYD8/HyMGTMGgiBg9uzZWL9+PQoKClBfX4+GhgYUFBRg/fr1mDVrFgRBwFVXXYXTp0/j4sWL2Lt3Lx588EHI5XLU1dVh7ty5ThnCTGRvrTvEsuEEERERERF1d8eOHTPev+qqqyzu23x78+M6oqKiAn/9618xaNAg+Pj4ICYmBkOGDEFiYiISExMxbdq0Fvva28GDBwEAWVlZbTratr41TRdubGzEhQsXTJ4vLi7O4vV69eoFAKiurm7xfGVlJXJycgAAH374odVa1q5dCwAoLS01ey1LIVx9fb3xeiNGjLBY88iRIy1u9/DwwO233w4AWL16NWpra1ts//zzz43Tzv/0pz9ZPFdX4PTArrq6Gtdddx0OHjyINWvW4Ntvv8XMmTMREREBNzc3qFQqREREYObMmVi3bp1x4cnrrrsOAHD11Vdj2bJl+OGHH6BQKFBVVYVly5Y5+2UQdVrrwI4NJ4iIiIiIqLtrHkBZ64IaGhpq8rj2OnToEOLi4vDqq68iOzvb6hp0rbum2sO5c+c6dFzzDrDNmVuPr0nTWoWtR+jZuw4ACAgIMLvt0qVLxvshISEWrxEcHGy1jnvvvReAmC19++23LbY1jbobNWoUEhMTrZ5L6sz35XWQt99+G9nZ2Xj00UdtWvxvzpw5ePDBB/Hee+9h6dKlxqYV119/Pe644w6sWrUKW7ZswT//+U9Hl05kN2VlZSgpKWnxHAM7IiIiIiLnCgwM7HCA0R6PPPIIVq9ebXW/W2+9Ff/5z38cVkdgYKDDzt0R1pYEshas2aKxsRHz5s3D+fPnoVKp8Oijj2LmzJkYOHAgAgIC4O7uDkCcOtq/f3+7Xbe1puDs6quvxn//+1+bjwsPD3dIHQDwxBNPtGlqYY6l6aUKhaLTdQHWfx4AcWbaiBEjcOjQIaxYscI4jfb3339HZmYmgO4xug5wQWC3Zs0ayGQyzJ492+Zjbr75Zrz33ntYt25diy6zM2fOxKpVq4zDK4m6itaj6zw9PW3uQENERERERPYhl8ttGtXTWX/961+xbt06q11in3vuOafU40pNUzUBy9MsAXGgg6nj2mPHjh3GddyWLVtmHKHV2sWLFzt0flsFBgairKwM5eXlDu0EbEsdTerq6hxeS9Oac4D10X22huf33HMPDh06hN27dyM3Nxf9+vUzjq7z8PDAbbfd1uF6pcTpU2Lz8vIAAL6+vjYf07RvU+viJn379gUAVFVV2ak6Iudo3XAiKSnJbv8rQURERERE0pKcnIxVq1ZBqTQ9ZkapVGLVqlVITk52cmXO1zwg+v333y3uu3//fpPHAbaNxgKA48ePG+/Pnz/f7H5Na8w5StOMquzs7DbZhjMFBwcjIiICAPDzzz87ZDRhc2q12jhy0dr32NY/g9tvvx2enp4QBAGfffYZNBoNvvnmGwDigC8/P7/OFS0RTg/smjqvZGRk2HxM077Nu7YAYgMLoGViS9QVcP06IiIiIqKe5bbbbsPBgwexYMEC4/pjnp6eWLBgAQ4ePNhtRgVZEx4ejvj4eADiDLzWTRGa6PV6rFy5EoC4Rtrw4cNbbG/e3bShocHs9ZqPajS3DpvBYMBHH31kU/0dddNNNxnvv/766w69ljVNteTm5hqbSjjSlClTAIjdd9PT083ut2rVKpvO5+vri3nz5gEAPvvsM6xduxaVlZUAYPMU367A6YFdYmIiBEHAG2+8gfr6eqv7azQaLFmyBDKZrM2igadPnwZg28KERFLCwI6IiIiIqOdJTk7GypUrUV1djZqaGlRXV2PlypU9YmRdcw8//DAAoLy8HI8++qjJUV4vvviicU2y/2fvvsOaOtswgN9J2HsqIigOXIh7g9WqddU66mrrrFqrHVatrXa4OqWt/WqHsyqO1qqtVq111C2KiiKKuFBBQUEQQfZKzvdHJBJIIEAm3L/rymVyxnueQIjk5h1vvPGGYq65InXq1FHcL8oGVCk+9dCGDRtUHvPRRx8hPDxc8ydQCcOHD1cElStWrMDatWvLPP7KlSvYs2ePTmr54IMPFF/PadOmlduz7d9//y0zaCvP1KlTFT0i33jjDZXB6V9//YWdO3dq3OaUKVMAyEdifvjhhwCABg0aoGfPnpWu09joPbArmvzv6tWr6NWrl1L31JKuXLmCXr16KX5ISyalhw4dgkgkKnMJYSJjk5GRgejoaKVtDOyIiIiIiGoOsVgMW1tbxUqeNc20adPQtWtXAPIQrVevXvjzzz8RHh6OvXv3Yvjw4fj8888BAI0aNcL8+fNLtdG2bVtFL7v58+fj4MGDuHnzJm7duoVbt24pVnrt16+fYnXSTz75BG+//TYOHDiACxcuYOvWrejTpw+++eYbBAQE6PQ5SyQSbN26FXZ2dhAEAVOmTEH//v2xceNGnD17FuHh4di/fz++/vprBAQEwN/fH8ePH9dJLQ0aNFAsfPH48WMEBARgypQp+PvvvxEeHo5z585hx44dmDdvHho3bowXX3wR9+7dq/T12rdvr5g78Ny5c+jYsSOCg4Nx4cIFHD16FDNmzMDo0aPRqVMnxTnlDXkOCAhQBKBFcyG+/vrrGg+VNgV6X3RiwoQJ+PPPP7F3716cPXsWrVq1UqzyUfRDlJSUhPPnz+PSpUuK8wYNGqRY/QMAnjx5gu3bt0MQBAwYMEDfT4Oo0kr+ZUIikRh00lEiIiIiIiJ9kkgk+OeffzB48GCcOnUKx44dw7Fjx0od17x5c+zbtw92dnal9tnb22PGjBn45ptvEB4ejn79+intP3r0KHr27AlbW1ts3LgRQ4cORW5uLpYvX47ly5crHduzZ0/8/PPPOv9c5u/vj1OnTmHEiBGIjo7GgQMHcODAAbXHV2Tu/4qaOHEirK2tMXXqVKSnp2Pt2rVqe/0VBcxV8dNPP+HBgwf4559/cPXqVbz++utK+xs0aIDff/8djRs3BqA85FmdyZMnY86cOYoaJ06cWKUajY3eAzsA2LFjB9555x38+uuvEAQBERERpSbhB+RLKYtEIkydOrXU0taFhYXYtWsXAKBDhw76KJtIK0oOh23evLlGb0ZERERERETVhYuLC06cOIHff/8dv/32Gy5evIjHjx/DwcEB/v7+GDFiBN544w1YWFiobWPJkiXw9fXFxo0bERUVhSdPnkAqlZY6rl+/fjh//jyWLFmCI0eOIDk5GU5OTmjRogXGjBmDyZMnV6kHWUW0atUKV69exe+//46dO3fiwoULSE5Ohkwmg6urK5o2bYrAwEAMGzas1Lx92jZ69Gj07dsXq1evxv79+3H16lWkpqbC3NwcHh4e8PPzw/PPP48RI0bA29u7SteysLDA7t27sWHDBqxduxaRkZEoKChA/fr1MWzYMMyZM0epd5wmC0eMGzdOEdi98MILVa7R2IgEXS8JUoaLFy9i9erVOHz4MG7duqW0r1GjRujduzemTp2q8xcp6VZ8fLziBycuLg5eXl4GrsiwJk+ejHXr1ikejxs3TuPJNYmIiIiISDPR0dEoLCyEmZmZ0jxmRGScQkJC0L17dwDyKdCKFqtQ5/Dhw+jTpw8AYOvWrYqFKKqiMu8buso8DNLDrkjbtm2xYsUKAPJVXdLS0gDIV30tOaEkUXXBBSeIiIiIiIiIlG3ZsgUAYG5ujvbt25d7fFFHGFdXVwwZMkSntRmC3me47NWrF3r16oX169crbbe0tETt2rVRu3ZthnVUbeXn55daaKVNmzaGKYaIiIiIiIhIDx49eqTopKXKgQMHsGrVKgDA4MGD4eTkVGZ7sbGx2L59OwD5YhPVMUfSew+7kydPQiaTqVzlhai6u3btGvLz85W2MbAjIiIiIiKi6uzKlSsYMmQIRo4ciT59+qBRo0YQi8W4e/cudu/ejc2bN0MqlcLa2hpfffWVyjbu37+P7OxsxMTEYN68eSgoKICVlRVmzpyp3yejJ3oP7GrVqoXExMRy01Ki6qjkcFgfHx84OzsbqBoiIiIiIiIi/ShvNVoHBwds374dTZo0Ubl/zJgxOH78uNK2zz77DHXr1tV6rcZA70NiW7duDQC4efOmvi9NZHCcv46IiIiIiIhqmg4dOiA4OBijR49G8+bN4ebmBjMzM7i4uKBTp05YsGABbt26hb59+5bblo2NDdq0aYPg4GB88MEHeqjeMPTew27KlCnYv38/Vq5cidGjR+v78kQGFRERofSYgR0RERERERFVd3Z2dpgwYQImTJhQ6TaOHTumvYJMgN572L388ssYO3Ysjh8/jkmTJiErK0vfJRAZhEwmKxXYcf46IiIiIiIiIipJ7z3sNm7ciN69e+Py5cvYsGEDdu3ahZdeegmtWrWCs7MzJBJJmeePHz9eT5USaVdMTAzS09OVtrGHHRERERERERGVpPfAbuLEiRCJRIrHqamp2LRpk0bnikQiBnZkskrOX+fm5lZtJ8ckIiIiIiIiosrTe2AHAIIglPmYqDpSteBE8fCaiIiIiIiIiAgwQGAXExOj70sSGQXOX0dEREREREREmtB7YFe/fn19X5LIKKjqYUdEREREREREVJLeV4klqokePnyIhIQEpW0M7IiIiIiIiIhIFQZ2RHpQsnedjY0NfH19DVQNERERERERERkzgyw6UeTWrVvYuHEjQkNDkZiYiJycHOzfvx+NGzdWHHPlyhXcu3cPtra26NGjhwGrJaq8kvPXtWrVChKJxDDFEBEREREREZFRM0hgJ5PJMHfuXPzwww+QyWSKVWJFIhHy8/OVjo2Li8OgQYNgZmaGmJgY1K1b1xAlE1UJ568jIiIiIiIiIk0ZZEjsm2++ie+//x5SqRSenp4YMWKE2mMHDBiAhg0bQiqV4s8//9RjlUTaw8COiIiIiIiIiDSl98Du2LFjWLt2LQDg448/RmxsLLZt21bmOSNHjoQgCDh69Kg+SiTSqoyMDERHRyttY2BHREREREREROrofUjsypUrAQADBw7EF198odE5nTp1AgBERUXprC4iXbl8+bLSY4lEgpYtWxqoGiIiIiIiIiIydnrvYRcaGgqRSITJkydrfI6XlxcAIDExUVdlEelMyeGwzZs3h5WVlYGqISIiIiIiIiJjp/fALikpCQDQoEEDjc8xM5N3BCwoKNBJTdqWmZmJEydO4LvvvsOoUaPQoEEDiEQiiEQi+Pj4VLn9UaNGKdoTiUSIjY1Ve2x6ejr++OMPvPHGG2jXrh2cnJxgYWEBd3d39OzZE9999x3S0tKqXBOpx/nriIiIiIioujt27JjS59Sim5mZGVxcXNCgQQM899xzmDVrFv76669SC06q4+Pjo7JdVbeePXuqraMiN218bieqKr0PibW2tkZ+fj6ys7M1PufevXsAAGdnZ12VpVUvvfQSjh07ppO29+7di+3bt2t07L59+zBs2DDk5eWV2vfo0SMcP34cx48fx3fffYctW7bg+eef13a5BAZ2RERERERUc0mlUqSmpiI1NRWxsbE4efIkfvjhB7i7u2PGjBmYN2+eopMOET2j95+KBg0aICIiAhcvXkTXrl01Oueff/4BALRo0UKXpWmNIAiK+87OzujQoQNCQ0ORmZlZpXYzMzPx1ltvAQBq1aql6K2oTkpKCvLy8iAWi/HCCy+gf//+aN26NZycnBAfH4/ffvsNW7duxcOHDzFo0CCcOnUKbdq0qVKNpCw/P7/U3IsM7IiIiIiIaoaQkBAEBgbq7TxjMX36dMVnV0D+WTY1NRWXL1/G4cOHcejQISQnJ2P+/PnYs2cP/vnnH7i7u5fZpqenJw4cOFDmMba2tqhVqxYiIyPVHuPv7w8A6NChA9avX6/yGAsLizKvQ6QPeg/s+vbti4sXL2L16tWYNm0axOKyR+VeuHABmzZtgkgkQv/+/fVUZdW89tprmDp1Kjp16oTGjRsDkHfjrWpg9+mnn+LevXvo3bs3vLy8sGHDhjKPNzc3x5tvvomPP/4Y9erVU9rXtm1bvPTSSwgICMCMGTOQnZ2N999/H4cPH65SjaTs2rVrpbp6t27d2kDVEBERERGRvixatAiLFy/GkiVLMHfuXI3PCwoKwrx587Bw4UIsWrRIdwXqUK1atVQutDdgwADMnTsXUVFRGDduHC5evIhz587h5ZdfxuHDh8sMyszNzTVevE+T42xtbbkYIBk1vc9h984778Da2hqRkZF44403ypyX7q+//kL//v2Rn58PBwcHTJ06VY+VVt7UqVPx2muvKcI6bTh//jx+/vlnWFpaYvny5RqdM3r0aKxcubJUWFfcu+++iw4dOgCQzzmQkpKilXpJruRwWB8fH5MZ2k1ERERERJUTEhKCxYsXAwDmzZuHoKAgjc4rCusAYPHixQgJCdFZjYbk5+eHU6dOKUYfhYSEaPw5l6im0HtgV7duXfz4448QBAHBwcFo2LChUlfZtWvXYvr06fD19cWoUaOQkpICkUiE1atXw9HRUd/lGoXCwkK88cYbkEqlmDdvHpo0aaLV9nv27AkAkMlkiImJ0WrbNR3nryMiIiIiqnkCAwOxZMkSxWNNQrviYR0ALFmyxKSHxZbH2tpaMZoOAL777juTWWhSncLCQqxduxYDBw6Ep6cnLC0t4ebmhueeew4//PADcnNz1Z7bs2dPxcIZAHD//n3Mnj0bjRs3hrW1NVxdXdGvXz/s27dPo1pSU1PxxRdfoGvXrnBzc4OlpSU8PT0xZMgQ7Nixo8xzixbfKOrheeTIEYwcORLe3t4wNzdXuSjH7t270a9fP7i5ucHGxgZNmjTBBx98gMTERADPFg+ZOHGi0nnt2rWDSCRC8+bNy31OKSkpsLS0hEgkMpkOXVVhkJkdJ0+eDJFIhBkzZuD+/ftYtWqV4of0hx9+APBsHjhLS0usXLkSI0eONESpRuH7779HREQEfH198dFHH2m9/eKLUpQ3RJkqhoEdEREREVHNVDQMtiiEK/pX1fBYVWFdRYbRmio/Pz+88MILOHjwIO7fv4+wsDB069bN0GVVyu3btzF48GBcvXpVaXtKSgpOnjyJkydPYvny5di7dy98fX3LbCskJARDhw5VGgGXm5uLgwcP4uDBg/j2228xZ84ctef/+++/GDNmDNLS0pS2JyQkYPfu3di9ezdefPFF/PHHH7Czsyuzlk8++QRfffWV2v2CIGD69OlYtWqV0vbo6Gh899132Lx5M/7991+150+ZMgVvv/02rl+/jjNnzqBLly5qj/3tt98UU05NmjSpzLqrA4OlM5MmTcL169cxe/ZsNGrUCIIgKN3q1q2L6dOn49q1a5gwYYKhyjS4mJgYRVfq5cuXw9LSUuvXOH78OADAzMxMq8N4azqZTIaIiAilbVzUg4iIiIio5pg7d265Pe1qalhXpE+fPor7J0+eNGAllZeQkICAgABcvXoV9vb2eP/997Fv3z6Eh4fj6NGj+Oijj2BjY4Po6Gj0798fT548KbOtYcOGQSKRYMmSJQgJCcG5c+fw/fffw8nJCQDw0UcflVrcsMh///2HwYMHIy0tDT4+PggKCsKxY8cQHh6OPXv2YOzYsQCAvXv3lpu17Ny5E1999RX8/f2xbt06nDt3DsePH8fs2bMVxyxZskQR1nl5eeHnn3/G2bNnceLECXzyySd48uQJRowYgezsbJXXGDNmDKytrQFA7SIgRYr2N2/evMxgr7ow6NrJXl5e+O677/Ddd98hPT0dSUlJkEqlcHV1hZubmyFLMxrTpk1DdnY2Xn31VaU3Mm3Zu3cvLl++DADo168fHBwcKtxGfHx8mfsTEhIqVZupi4mJQUZGhtI29rAjIiIiIjJOycnJlT7Xzs5OETqUNHnyZGRmZuKLL74AIA/tMjMzMWPGDPz444+K7YB8ocFJkyYparGxsYGtra3Kdh8/fgypVKpRfeWtwGpI7dq1U9y/efOm2uMKCgpw5coVtfstLCy0Pn2UpqZOnYqHDx/C29sbx44dQ8OGDZX29+zZEyNHjkT37t1x584dfPfdd/j8889VtnXz5k3Ur18fp06dQt26dRXbO3bsiI4dO+K5555DYWEhVq9ejWXLlimdm5WVhXHjxkEqlaJv377YuXMnbGxsFPvbtm2LQYMG4bnnnsPUqVOxY8cOHD58GL1791ZZy+XLl9G7d2/s3btXqfPQc889B0D+Wf+zzz4DADRs2BChoaGoVauW4rju3btj4MCBeP7550stxljE0dERI0eOxMaNG/HHH3/ghx9+UPmzFBERoegQM3nyZJVtVTsC6UX9+vUFAEL9+vU1PmfTpk0CAMHR0VFISEhQ2jdhwgQBgABAiImJqVRNKSkpirokEokQHh5eqXaK6tDkFhcXV6lrmKLt27crPXc3NzdBJpMZuiwiIiIiohrh5s2bwtWrV4WbN29qdHxFPteUvP38889q23Vzc6t0uwsXLlTbbosWLTRuRx+OHj2qUd0lXbx4UXHesGHDSu0v+sxa3k3Tz9pFx/fo0UPjGssSGRmpaHPXrl1lHvvhhx8KAARPT89S+3r06KFoZ/fu3Wrb6NKliwBAaNu2bal9P/30kwBAsLKyEh4+fFhmLZ06dRIACGPGjCm1r6gOsVhcZt7w9ddfa/TcZ82apThuwoQJpfafOHFCsX/z5s0q23j33XcFAIK5uXm5z60qKvq+IQiCEBcXp5PMgxOWGanHjx8rupl+9dVX8PDw0Gr7UqkUY8aMwd27dwHI/5LD3l/apWr+uqK5GomIiIiIiAhKc6iVHKFkCnbt2gVA3hvyxRdfLPPYop5pDx48QFxcnMpjnJycymynffv2AIA7d+6oraVHjx5KPd3KqiU0NFTtMQEBASoXmChy+PBhAICrq2uZNY8fP77MWrp3746mTZsCUD0sNj8/H7///jsA4MUXXyz3uVUXBh0Sa0iFhYUwNzevcjvr168vtcqJNsyePRvJycno2LEjpk2bpvX233rrLezfvx+A/AU/f/78Srel7o2mSEJCAjp16lTp9k0V568jIiIiIiIqW/GQrqwpmurXr4/Y2Fg9VFQx58+fBwBkZ2fDzEzziCUxMRHe3t6ltvv6+pa5GKSLiwsA1eFmUS0HDhzQuLNI0SquqrRq1arMc4uGKLdp0wYSiUTtcf7+/rC0tFRa8LKkyZMn48MPP8SRI0dw9+5d1K9fX7Fv9+7digU4asJiE0UMFtilpKRg8+bNOHnyJO7cuYOMjIxyx9+LRCLcvn1bTxUazpEjR7BhwwZIJBKsWrVK6yu3fvTRR1i9ejUA+XLj27dvL/OHqzxeXl7aKq1a4QqxREREREREZXv06JHiflEYZUqSkpIqdZ66RRiKzzmnSlE+IJPJlLYXFBSUWhW2KnUAgLOzc5nnpqamAkC5Pd4kEgmcnZ3LDAcnTJiATz75BAUFBdiwYQMWLFig2Ldu3ToAQJ06dTBgwIAyr1WdGCSw2759O6ZOnYr09HQA8mWANaHN4YRmZma4du1aldupU6eOFqpRVrRqUIcOHXDjxg3cuHGj1DExMTGK+3v27FFMIvrKK6+U23bRKkXt2rXDP//8o3ZyVKq8hw8fllpsg4EdEREREZHxqmzwAigP6yzp2rVrEASh1AITzs7OisADkE9TNGPGDKVzywpvTp48qfGiE8aseEeHomGRpqToe9CgQQPs3r1b4/MaNGigkzoAYNSoUVUaRVekKh17KqpWrVoYPHgw/vrrLwQHB2P+/PkQiUR48OABDh48CEA+tLYivRhNnd6f6dmzZ/Haa69BJpNBEAR4enqibdu2cHFx0XpPsvI0a9ZMr9fTVFE30bNnz+LVV18t9/jib+plBXbLly9XLBfevHlzHDhwAI6OjlWsllQp2bvOxsYGvr6+BqqGiIiIiIjKo6uVVN3c3BAUFKQU1i1ZsgRz585FUFCQ4jPaF198ATs7O8ydO1ejdk2xN5oq//33n+J+YGCgASupHFdXVwDyThvNmjUzWKBkZWUFGxsbZGdnIy0tDS1bttT5NYt6zZUXdkulUqVwWp0pU6bgr7/+QkxMDI4fP46ePXti48aNijCyJg2HBQwQ2AUFBUEqlcLa2hpr1qzBa6+9pu8SaqRNmzbhnXfeASBfbvnQoUNwc3MzcFXVV8n561q3bq3Xv04QEREREZFxKB7KAc/COgCKf4v2F/2raWhn6q5cuaJYuMDb2xsdOnQwcEUV17ZtW/z777/Izs7GqVOn0KNHD4PWcurUKZw6dQrZ2dnlDq+tKj8/PyQmJiIiIgJSqVTtZ97IyMgy568r0rdvX9SrVw/37t3D+vXr0bNnTwQHBwOQL4DRpEkTbZZv9PS+Suzp06chEokwb948hnVqHDt2DIIglHmbMGGC4viYmBjFdlV27NiB119/HYIgwMvLC4cPH4anp6e+nk6NVLKHHRecICIiIiKqecoK64rMnTtXMW0RIA/tiqZJqs5ycnIwfvx4xefYOXPmmORwxyFDhijuf/PNNwasBBg8eDAAICsrC7/88ovOr9e7d28A8jUK9u7dq/a4jRs3atSeWCxW9KL7888/sW/fPsUUYZMnT65itaZH74Fd0SSI/fr10/ela6SDBw/i1VdfhVQqRa1atXDo0KEyl2Um7eCCE0RERERENZsmYV2RmhbaXb16FYGBgYrPTT169MD06dMNXFXldOzYEX379gUA/Pvvv1i4cGGZx8fGxmLLli06qWXatGmKkXTz58/Hvn37yjz+1KlTOHHiRKWvN2HCBFhaWgIAZs2aheTk5FLHhIaGVig8nDRpEsRiMbKzsxXhnZ2dHUaOHFnpOk2V3uPrOnXq4N69e1pdQMLY3Lp1CyEhIUrbMjMzFf8Wdeks0r9/f3h4eGi9jjNnzmDYsGHIz8+Hubk5/ve//6GgoECx9LIqXl5ecHJy0notNUlGRgaio6OVtjGwIyIiIiKqOUJCQjQO64qoGh4bEBBgkvO6JSUlKX3uzMrKQmpqKi5fvozDhw/jv//+U/Ss69KlC/7880+Ym5sbqtwqW79+PTp06ICEhAR89tlnOHDgACZNmgR/f39YWVkhJSUFly9fxv79+3HkyBEMHTpUo/nqK8rBwQFbtmzBgAEDkJeXh0GDBmH48OEYPnw4GjVqBABISEjAhQsXsHPnTly+fBk//fQTnnvuuUpdz9PTEwsXLsTHH3+MO3fuoH379pg3bx46duyIvLw8HDhwAEuXLoWnpyeysrKQnJxcbhbk7e2Nvn37Yv/+/YpVZUeNGlXmwi7Vld4Duz59+mDdunW4cOECOnbsqO/L60VISAhef/11lftSUlJK7Tt69KhOArv9+/crlmguKCjAmDFjyj1n/fr1mDhxotZrqUkuX76s9Fgikehlwk8iIiIiIjIOgYGBWLhwIRYvXqxRWFekeGi3cOFCkwzrAGDFihVYsWJFmce4u7tj5syZ+PDDD01yKGxxnp6eCA0NxciRIxEWFoazZ8/i7Nmzao93cHDQWS19+vTBgQMHMGbMGCQmJmL79u3Yvn27zmqZN28e7t69i1WrViEuLg5vv/220n43Nzds374dL7/8MgD54hjlmTJlCvbv3694XBOHwwIGCOzef/99bNmyBd999x3GjBkDe3t7fZdApFMlh8M2b95cozclIiIiIiKqPhYtWoQ+ffpUOHSbO3euyfasU0UsFsPe3h6Ojo6oX78+2rdvj+7du2PQoEGwsLAwdHlaU79+fZw9exa7du3C1q1bcfbsWTx8+BAFBQVwcnKCr68vunbtisGDB6N79+46raVXr164ffs21q9fj3/++QeXLl1CSkoKxGIx3N3d0bx5c/To0QPDhw9H06ZNq3QtkUiElStXYuDAgfjll19w/vx5ZGdnw8vLCwMHDsQHH3wALy8vpKenAwAcHR3LbXPw4MFwdHTEkydP0LRpU3Tr1q1KNZoqkaBupQId2rlzJ8aMGQN/f3+sW7cOfn5++i6B9Cg+Ph7e3t4AgLi4OHh5eRm4It2aPHky1q1bp3g8btw4jSfZJCIiIiIi7YiOjkZhYSHMzMzg6+tr6HKIaqzimcCvv/5abo+5W7duKX5mg4KC8OGHH+q8xiKVed/QVeah9x52RZMGNm/eHGFhYWjVqhX8/f3RrFmzcpccFolEWLt2rT7KJKo0LjhBREREREREJFd8kY0uXbqUe/z69esBAGZmZhg/frzO6jJ2eg/sgoODFZMMikQiCIKAyMhIREZGlnmeIAgM7Mjo5efnl1rUg4EdERERERERVUdZWVlIT09HnTp1VO6/ePEiPv/8cwBA+/btyx1hmZ6ejtWrVwMAhg4dqpP5/k2F3gO7evXqVesVYqlmu3btGgoKCpS2tW7d2kDVEBEREREREelOcnIymjdvjqFDh6J///5o2rQpLC0t8eDBA+zfvx9r165FTk4ORCIRvv/+e5VtJCUlIT09HQkJCVi8eDEePXoEkUik8WIt1ZXeA7vY2Fh9X5JIb0oOh/Xx8YGzs7OBqiEiIiIiIiLSrdzcXPzxxx/4448/VO63sLDAmjVr8Nxzz6nc/+GHH2LDhg1K26ZPn44OHTpovVZTYtprJxMZGc5fR0RERERERDVF3bp1sXXrVuzbtw/nz59HUlISUlNTYWNjAx8fH/Tp0wfvvvsu6tevX25bFhYWaNSoEd544w28++67eqjeuDGwI9IiBnZERERERERUU5ibm2PUqFEYNWpUpdsIDg5GcHCw9oqqJsS6bHz27NmYPXs2kpKSVO6XSqW4d+8e7t27V2Y7d+7cQbt27dC+fXtdlEmkFTKZDBEREUrb2rRpY5BaiIiIiIiIiMh06bSH3Q8//ACRSIQpU6agVq1apfZfv34d/v7+EIvFKCwsVNtOTk4OIiIiuFgFGbWYmBhkZGQobWMPOyIiIiIiIiKqKJ32sNOUIAiGLoGoykoOh3Vzc0PdunUNVA0RERERERERmSqjCOyIqgNV89exVygRERERERERVRQDOyItKTl/HYfDEhEREREREVFlMLAj0pKSPey44AQRERERkeGIxfKPu1KplNMwEVG5BEGAVCoF8Oz9w5AMXwFRNfDw4UMkJCQobWMPOyIiIiIiw7GwsAAg/xCel5dn4GqIyNjl5eUpwv2i9w9DYmBHpAUle9fZ2NjA19fXQNUQEREREZGtra3ifnp6ugErISJTUPx9ovj7h6EwsCPSgpLz17Vu3RoSicQwxRAREREREezs7BT3U1JSkJKSohjuRkRURCqVKt4jihR//zAUM0MXQFQdcP46IiIiIiLjYmFhAXd3dyQnJwMAkpKSkJSUBIlEApFIZODqiMgYFJ+3roi7u7tRDInVS2C3fPly1KpVq9T2pKQkxf3PPvtM7fnFjyMyRiUDO85fR0RERERkeK6ursjPz8eTJ08U29jLjojUcXR0hKurq6HLAKCnwG7FihVq9xX9ZWPx4sX6KIVI6zIyMhAdHa20jYEdEREREZHhiUQieHp6wsXFBWlpacjOzmZgR0RKJBIJbGxs4OTkBCsrK0OXo6DzwI7LZ1N1d+nSJaXHEokELVu2NFA1RERERERUkpWVFTw8PAxdBhGRxnQa2B09elSXzRMZhZILTjRv3tyoUnkiIiIiIiIiMi06Dex69Oihy+aJjALnryMiIiIiIiIibRIbugAiU8fAjoiIiIiIiIi0iYEdURXk5+fjypUrStsY2BERERERERFRVTCwI6qCa9euoaCgQGlb69atDVQNEREREREREVUHDOyIqqDkcFgfHx84OzsbqBoiIiIiIiIiqg4Y2BFVAeevIyIiIiIiIiJtY2BHVAUM7IiIiIiIiIhI2xjYEVWSTCZDRESE0jYGdkRERERERERUVQzsiCopJiYGGRkZStvatGljmGKIiIiIiIiIqNpgYEdUSSWHw7q5uaFu3boGqoaIiIiIiIiIqgsGdkSVpGr+OpFIZKBqiIiIiIiIiKi6YGBHVEmcv46IiIiIiIiIdIGBHVEllexhx/nriIiIiIiIiEgbGNgRVcLDhw+RkJCgtI097IiIiIiIiIhIGxjYEVVCyd51NjY28PX1NVA1RERERERERFSdMLAjqoSSgV3r1q0hkUgMVA0RERERERERVScM7IgqoeSCE5y/joiIiIiIiIi0hYEdUSWU7GHH+euIiIiIiIiISFsY2BFVUEZGBqKjo5W2MbAjIiIiIiIiIm1hYEdUQZcuXVJ6LJFI0LJlSwNVQ0RERERERETVDQM7ogoqOX9d8+bNYWVlZZhiiIiIiIiIiKjaYWBHVEGcv46IiIiIiIiIdImBHVEFMbAjIiIiIiIiIl1iYEdUAfn5+bhy5YrSNgZ2RERERERERKRNDOyISggJCVG779q1aygoKFDa1qZNm3LP04bKts+69HOertvXdV1ERERERERkPBjYERWzaNEidO/eHUFBQSr3lxwO6+PjAycnJwQFBaF79+5YtGiRQepSh3WxLiIiIiIiIjJBApGOxcXFCQAEAEJcXJyhy1Hr5MmTijoBCEuWLCl1zIwZM5SOGTZsmLBkyRKlbSdPntR7XaqwLtZFREREREREuqWrzIM97IieCgwMxJIlSxSP582bV6onVMkedpmZmZg3b57i8ZIlSxAYGKj3ukoKCgpiXayLiIiIiIiITJXWoj8iNUylh12Rkj2ainpCSaVSwd7eXmmfquP0XVdlj2NdrIuIiIiIiIiqRleZBwM70jlTC+wEQXVYcuvWLYOFdWXVVZH9rIt1ERERERERkfboKvMQCYIgVLZ3HpEm4uPj4e3tDQCIi4uDl5eXgSvSTMnhiGPGjMFvv/1W6rhXX30VgwcPLrc9Jycn9O/fX+W+y5cv4+rVqxrVtXv3bmzZskXxeNy4cdi4caPK4ZNDhw4tNYxXUyKRCKNHj1a57+7duwgNDS2zrqKvi6rtwcHBsLCwKNVuYmIijh07Vql6AWDgwIFwcHBQ2lby61JWXeq+j71794a7u3up7Tk5Odi1a1elai15/SVLlmDu3Lkqv49z586t1DWIiIiIiIhIt3SVeTCwI50z1cAOKB32VEWrVq1w6dIllfs++eQTfPXVV5Vu28XFBY8fP1Y8Lgp5li1bhpkzZ1aqTTMzMxQUFKjc9/vvv2PMmDGVahcAHj9+DGdn51Lb//vvP/Tt27fS7d64cQNNmjQptX3mzJlYtmxZpdsNCQlBQEBAqe0PHjxA3bp1K93u2LFjsXnzZsXjkt/HwMBAvPnmm2jbti2aNm0KMzOzSl+rPCEhIZWaH6+y5+m6fV3XRUREREREBOgu8+CiE0RlmDt3rtJCAcZKVVhHz7z++uuGLkGll19+Wen1Vfz7aG1tjZCQEIwbNw4tW7aEvb09OnfujGnTpmHVqlU4d+4ccnJytFLHokWL0L1793IXwSgpKCgI3bt3x6JFi7RSh6nUBcgDQX2ep+v2dV0XERERERFVDAM7onL0799f5fBNY+Ti4sKwzsTMnTsXLi4uStucnJxKhXG5ubk4d+4cVq1ahWnTpqFz586wt7dHy5YtMX78ePzvf//DsWPHkJaWVqHrh4SEYPHixQA0W7m2SPHep4sXL9Z64GOsdQHGGyQaa11ERERERFRxuhtfRVQNbNmyBWPHjoVMJlO539vbG05OThq15evrq3Zf7dq14e/vX6HakpOTkZiYqLTt8ePHCAoKUoR2rq6uFW63SFnDL52cnNS2q6ouAPDw8FDMAyeRSFSea2dnV+l6AagNVq2srODh4VFuXerY2Nio3G5mZlaleh0cHBAUFKTUsw6AxqGbVCpFVFQUoqKisGnTJsX2zZs3azxkOTAwEEuWLFGEXEX/lhX8qppnT9vDT421rpJBYnk1qapt8eLF6NOnj1ZrM9a6itdnjEObjbUuIiIiIiKuEks6Z4qrxAqCIERERAhisVjtyrAABLFYLEREROi9tpKriLq4uBjFqqKsS7t1NW/eXPD29i7zNajqFhYWpvJ6OTk5wrx584StW7cKN2/eFKRSqdpa1H1N9L2CrTHWVdFr6as2Y61r4cKFlWq/qL6FCxfWqLoEQRBOnjyp1/N03b6u6yIiIiIyJF1lHgzsSOdMNbBr166dRuFIu3bt9FqXug/Z+g5SWJf+6kpOThYOHjwoBAUFCa+88orQtGlTQSQSqXw9mpmZCTk5OSqvee7cOaVj7e3thcDAQOHdd98V1q1bJ8yYMaPMr4mhvmblXdcQdRljkGiMdZ08ebJS1ylZn7YDH2OtSxCMN0g01rqIiIiIDI2BHZksUwzsvv766wr1aPr666/1UpcxBhesyzB1ZWRkCKdOnRJ+/vlnYfLkyUK7du0ECwsLoVWrVmqvu2rVqnJfyxKJROnx9OnThaSkJMWHdVU1ZWZmCo8eParU7fHjx2rrzc7OVhy3YMECpesvWLBASElJERYtWmSw4LU6v770WU9Vj69OdRlrkGisdRWvT5/n6bp99kgkIiIyLQzsyGSZWmBX8gOGpjdj+dBrrB/GWZfu68rLyyvzZ2zatGmVem2X91qfM2dOpduqX7++2nq/+eabCrcnEokEc3Nzwd7eXm27u3fvFpo1aya0bNlSaNOmjdC+fXuhc+fOQkBAgNCjRw+hd+/eQr9+/YQXX3xRGDJkiDB8+HBh1KhRwmuvvSaMHz9eyMzMVPt96t27t7Bo0SKhT58+Stv79OkjLFq0qMxbamqqynrj4uLKPbfkreT11fXgfOedd4Tr168LDx48EDIzMwWZTKb261YVNfHnUdc16bs2Y63LWHv+GWtdREREpH0M7MhkmVJgV9mwrqZ+UGJdplXXihUrhL59+wru7u5afY0bU2BXdLOyslLb7oYNG6r0c56enq7UXlXfN4pusbGxKus9c+aMVtovOUdiyV6LgHxeTkdHR8Hb21vw8/MTunTpIvTt21cYMWKE8PrrrwvvvfeeMH/+fOGbb74Rrl+/rvZrnJeXV2qbsfX8M+a6jDFINMa6jLXnn7HWRURERLrBwI5MlqkEdiV/wa7IHHY18Rd/1mW6dclkMiE+Pl7Ys2eP8NlnnwnDhg0TfHx8NAp8VDHGwM7Ozk5tu2vXrq10uwCE7OzsUm1qI7TTdWBX8vUXGxtbpTZ27Nihst7CwkIBgGBpaSm4ubkJDRs2FNq0aSN0795daNasmVIbL7zwgrBkyRKhf//+5f58SKVSYcmSJZW+Xbx4Ue1rYtCgQUrX79+/v/C///1PePnll5W2v/XWW8KVK1eEmJgYITk5WcjOzjZYr0QGnJW7Xk35Aw0RERHpDwM7MlmmEtgJgvIQloiICMHMzKzMD6xmZmZCREREjR1aw7qqR11FHj9+LBw5ckRYunSp0KZNG7VBT0nGGNg5OTmpbVeTufzKuqnqPSYIgmBnZ1eldnUV2Dk6Oio9LgpeL1++XKV2//vvP5X1pqWlVandsWPHqmy3oKCgSu2uWrVK7WvCycmp0u3OmTNHbbvz5s0Txo8fL0yfPl344IMPhEWLFgnfffedsGLFCmHTpk3Cjh07hIMHDwqnTp0SLl26JNy6dUtITEwUMjIyFAFl8WupG9qs73DH2Ooytp5/xlyXsc6rZ6x1ERERaUJXmYdIEAQBRDoUHx8Pb29vAEBcXBy8vLwMXFHZQkJCEBgYCADYsmULxo8fj8LCwlLHmZmZYePGjXj11VdLnafruvRxnq7bZ136Oa8ygoKCMG/ePMVjZ2dnpKamKh4vWbIEc+fOVTxOT09HdnZ2pa4lkUjg7u6ucl9WVhYyMjIUj3/++Wd8+eWXisdOTk5IS0tTPJ49ezYmTpyIwsJCCIKAdu3aqWz3zp07CA8PR2FhoeImlUqVHpe1fcmSJRCLxUptlvyaFWnZsiWaNWum0ddi+fLlKr8W0dHR+PjjjzVqo6Tr16/jypUrpbYvWbIEPXv2RPfu3VFQUFCpts+ePYtOnTqV2h4XF4d69epVqk0A2LFjB4YNG1Zqe2FhIczNzSvd7qpVqzB16lSV+5ydnZVeSxWxcOFCLFq0SOW+li1bIioqqlLtvvHGG1i9enWp15aLiwseP36seOzj41Oh/1cHDRqk9PNb3Pvvv49z585p1E58fDxiY2MVj62srJCbm6t4XPx94sKFC7h79y7s7e1V3szMzDSuX52SX6eS71Pl7dcVY6pr0aJFWLx4cYWvUVRjWa/16lgXERGRpnSWeWgt+iNSw5R62KkSEREhTJgwQbCxsREACDY2NsKECROEiIgIQ5dGpHXG1nPG2OtSVUPJueIMNbRN07pyc3OF5ORk4fbt28LFixeFEydOCP/884/w+++/CytXrhS+/fZbYf78+cJ7770nTJo0SRgxYoTQt29fISYmRuV1o6KiqtQTTt1QW2PtYfftt9+qbbd+/fqVbnfmzJlqv5dVuU2ePFltvX379tXKNUq+5stb8MbKykpwd3cXGjZsKLRu3VoICAgQ+vfvL4wcOVL45JNP1NYbGxsrnDt3Trh27ZoQHx+vdtVoQ79PGMP7lzFNy2AKdREREVUEh8SSyTL1wK6IVCoVMjMzBalUauhSiHTC2OamMva6yrp2TQ4I8vLyhBs3bghhYWHC4cOHhb///lvYuHGj8PPPPwtff/218NFHHwldu3ZVGdw0a9ZMOH36tMp2CwsLhUGDBlX6tm/fPrU1jx49Whg0aFCpOfaKbs7OzoK7u7viDzfFb8uXL1fbrpubW6VDr08//VSprZKBq7EGdqrmuhwzZkyl22vfvr3aeufOnVvu+WKxWOmxm5ub0LRpU2HIkCFq2/3++++Fpk2bVurWvXt3lW2W/NkrOeXG4MGDha1btwpHjx4VoqKihOTkZK3/vmGs8+oZa12CYLxDdY21LiKimoqBHZms6hLYEVVnxjjXkjHXpck1GXBqVp+p9UgsLCwU0tPThYSEBCE6Olp4/Pix2ja//PJLYc6cOcL06dOFcePGCS+//LLQt29fISAgQGjdurXQqFEjwcPDQ7CzsxNEIpHar4Op97AbPHhwpdvq2bOn2nrfeuutSrfbunVrte1+/PHHlW7X09NTbbslFzcp7yaRSAQPDw+hVatWQp8+fYS0tDSV7ebm5gqZmZlqr1ucsb6nGmNdxjrvrLHWRURUkzGwI5PFwI7IuBlr7wZjrasi1+KHXs2ua2whoiHqkslkQlZWlpCUlCTcuXNHePTokcoaSgaJQ4cOFVasWKHx7ejRo2pr2LNnj8btDB06VKkOe3t7tV+rqVOnCo0bNxZq166tspdiWbdBgwaprXfcuHEmFdj973//q3S7IpFIKCgoUNnurl27BEA+ZYePj4/QqVMn4aWXXhImT54sfPTRR8L//vc/4bfffhP+++8/4dKlS8Inn3xS5uva2N4fDFGXsQ7VNda6iIhqOgZ2ZLIY2BEZL2P95d9Y61J1DWMJEo21Lk2vx5BA89pMPeAsLCwU0tLShLi4OOHq1avC2bNnhUOHDgl///23sGnTJmH58uVCUFCQ8OmnnwobNmxQW8f48eMFS0tLkwnsKtrDrvjNzc1Nbbtr1qypdLvlfQ+7desmzJgxo1I3mUymst6LFy+qPadbt26lrj9z5sxSvT+NoRd1VY+vbnUREdVkDOzIZDGwIzJuxjq8xhjrMtYg0VjrUncdY+n5Z6x1aXJNBpzP5OfnCykpKUJsbKwwc+ZMpevb2dkpPR4zZozw559/Cv/995/a9iIjI4U///yzUrd//vlHZZslvy62trZKj318fIQmTZqoXQClRYsWauv98ssvqxzYAaV7bw4ZMqRK7akL7LZv316ldmfMmKGy3YcPHwpTpkwRPv74Y2HZsmXCli1bhCNHjghXrlyp9JyAxvoeYax1GevcesZaFxFVHwzsyGQxsCMyfsb6y6wx1mWMQaIx12WsvUGMta6KXIshgWbXNXQPo4rWlZeXJ8THxwvh4eHC/v37hY0bNwp//PGH2vbfe++9SodfJYPD4rX88ssvRhnY3b9/X2W7586dK/O8knMCjhkzRpg1a5awZMkSYd26dUJycnKFvn+a7tcVY6vLWP8PMta6iKh6YWBHJouBHRFVN8YYJFalfV3VZaw9/4y1LlXXMJYg0Vjr0vR61TlUycjIEKKjo4VTp04JO3fuFFauXCl89tlnwjvvvCOMGjVK6Nmzp9CiRQvBzc2t1OImLVu2LNWzrmilX2MN7PLz81W2u2fPniq1GxERobLd+/fvC35+fkrHjhkzRjhy5Ijw5ptvKm1/8803hePHjyvdcnNzVbb75MmTUsdW5JaRkaH29fPRRx/p9fVurO+pxloXEVU/DOzIZDGwIyKquYy1d4Mx1mWsHy6NtS511zGWnn/GWFdBQYGQkJAgXLp0Sfjvv/+EyZMnqwyvlixZIhw9elSYOnVqpW/qArvz58+Xe26nTp1U1uXh4aH2ua1du7ZKgV1CQoLKds+cOVOldtX97nv69OkqtRseHi4IQvkL03h7ewvDhw8XZs6cKSxdulTYtm2bEBoaKsTHxwuFhYUVfAWpZ6yhvrHWRUTVCwM7MlkM7IiIajZj6/lX1fY55Np46jLWD+PGWldZ1ywZ9BgqqKhsXSdPnhTefvttYcSIEcJzzz0nNG3aVHB2dtYo/NJkFV5jDexUfc00vUkkEsHb21vo1q2bMHr0aGHOnDnCpUuXtPa9M4aQ2pjrIqLqg4EdmSwGdkRERJozxiCxKu1zyLVx1FXWtUx1vj9NFJ8TcN++fcKGDRuEb7/9VpgzZ44wfvx4oV+/fkLPnj3Vnl/VVXj1EdgJglAq2KzsbdeuXSrrLSwsFMaOHSvMnTtX+Pnnn4Vdu3YJ4eHhQnJyslJvypo8PL2ijO09tartc+gw1WQM7MhkMbAjIiIiXTDWnn/GWlfxaxhTcGHMdYWFhQkLFiwQ3nzzzVJz2RXdbGxsBFdXV5W3shbJUHeOJrfiPeEq28NOkyCwSHx8vNpzrK2tBV9fX+H5558Xxo8fLzz//PNK+xcuXCjIZLJqGQhXlrG+RxhrXUTGjoEdmSwGdkRERKQrxtobxBjrMtahgcZaV1nXNpUhxEOGDBHmzZsnjBkzRujRo4fQsGFDwcLCQm34pm613NDQ0CoFgfb29iq/XmfPnhUsLS0rfTt//rzKeu/cuaPyeIlEolRHyYVY+vfvL/z222/CnTt3dPY9M9ZeuMZaV/H69Hmerttnj8TqhYEdmSwGdkRERESGZazz6hlrXZpc01R7jEmlUiExMVEICwsTduzYISxbtkz44IMPhLFjx6pdLGTbtm1VCuzU1VPVRT3CwsJU1nv79u0qtbtq1Sq1X/f169cLe/bsES5duiSkpaVV9NsmCILxvu6NtS5j7flnrHUJgvEGicZaV1UxsCOTxcCOiIiIyHCMteeMsdZV1rWMZaiuvuu6cOGCMGvWLGHEiBFC586dhbp16wpisbjCQZiLi4tSu8Ya2O3bt09lu/n5+aWet4ODg9CyZUth4MCBwrRp04SvvvpK2Lx5s3DixAnh7t27ahc0MdaepcZWl7G+TxhrXYJgvEGisdalDQzsyGQxsCMiIiIyLGP9oGSsdRW/hrEEF8ZWV35+vnD37l0hJCRE2LJli/DNN98I7777rjBs2DChQ4cOgp2dncowzBR62EVFRalsNyYmpsJticViwdvbWwgICBAOHTqk1B4DYe3UU9Xjq1NdxhokGmtd2qKrzEMkCIIAIh2Kj4+Ht7c3ACAuLg5eXl4GroiIiIio5gkJCUFgYKDeztN1+7qsKygoCPPmzVM8XrJkCebOnau146tbXeVd18XFBY8fPy5VR1ZWFq5fv17p6zRr1gy2traltufl5eHKlSultgcHB+Pnn39WPLa3t0dGRobisa+vL8RiMcLCwmBvb1/q/BMnTqBHjx6Vrnffvn3o37+/0raSX6vOnTvjhRdewOnTp3HkyBHF9l69eiEgIEBlu9OnT0edOnVKbU9JScGyZcsqVeupU6eUrl/0PStZ78yZM/H+++/DyckJtra2EIlElbpeeTR9Lev7NW+MdRnr+4Sx1qUNOss8tBb9EanBHnZEREREZCqMtSeIsdZV3vVMfc6/4o4fPy506tRJ8PDw0GrPvblz51apR6C61X2jo6Or1O6kSZOUHpdc1KTkTSKRCC4uLkLDhg2Fdu3aCb169RJefvllYdKkScLs2bOFxYsXC8uWLRMiIyO1+j3UdL+uGGNdxtIT11TqqioOiSWTxcCOiIiIiEyJsQ7VNda6Sl7HmIILXdWVm5sr3Lp1Szhy5IgQHBwsfPbZZ8KUKVOEvn37Cs2aNROsra1LBVrp6ekq2zp+/LhRBnYHDhwo9bXRxq2sRT0aNmwo+Pj4CK1btxZ69OghDBkyRJgwYYLw3nvvCQsXLhQGDRqk1NaMGTOEq1evCrNnzy7ze3j9+nXh2rVrlbo9evRIbb3R0dHCtWvXSl1/9uzZwq1bt4SPP/7YYMFTTfp5NDQGdmSyGNgRERERkakx1tUMjbUuY+05Y6i6ZDKZ8OjRIyE8PFz4+++/heXLl6s9dtOmTUYb2AmCUKpnnZOTU5Xa3bp1q9qvWWUWMyl5U/W9s7KyqnR73377rdrvnbe3d4XasrGxEdzc3ARvb29hwYIFatv9/vvvhZkzZwofffSR8Nlnnwnffvut8Msvvwjr1q0TtmzZIuzatUs4ePCgcPLkSeH8+fPC1atXhZiYGCExMVHIyspStFOde7waE11lHmYgIiIiIiIiJZWdH0+X8/1VpX1d1lWRuaaKthcdX/SvoefM0nZdIpEIrq6ucHV1Rdu2bcs8NjAwECNHjsT27dtL7fP390fz5s3LPN/JyUnldjs7O4waNUrjmkuqXbs2goKClOYfBIC0tDQ4OTlBEAQ8efKkwu2qqzczMxMymawypSoY8zxnAJCdnY3s7GwAUJo/saRt27bhzJkzlbrGK6+8gi1btgBQ/br+9NNPUVhYqDje29sbO3fuxM6dO8tst2fPnliyZInKfZ9++ikOHTpUoTq9vb0RFxenqOubb75ROddlTcbAjoiIiIiIiColJCSkwhPDqwoRAgICtBoqGmtdqmzdulUprCu+SEdkZCTGjBlTqeDCw8MDW7durXRdZS0ekpaWhiVLlmDOnDnIyMhAWlqa0u3JkyelthXdPD09VV6vMuFfcba2tiYV8FhbW6vdl5OTo7V2S76ui4d1gHyRhKLgrCx169ZVu+/WrVs4e/ZsRUtVwrCuNAZ2REREREREVCmBgYFYuHAhFi9eXKEP2cVDhIULF2o9FDPWukpS1wuw+HZd9kLUVl3qes1VhJubG44fP65R8BcbG1uq519WVhaCgoJMJujRV2AHyL9HJXuwGQszMzOlENHFxcVkvoe6xsCOiIiIiIiIKm3RokXo06dPhcOtuXPn6rQHm7HWVaSsIbv6HDpsLHVZWVnhueeeq3B9xXv+qasnMzOz0nWJRCK1+2JiYhT3v/nmG3z88ccq6wKA9957D6+++ipycnKQk5ODxo0bq2139OjRuH//vuLY7Oxsxf2Sj7Ozs1FQUKA4V1Vgp2pos7Eo2ePv8ePHJhW86pJIEATB0EVQ9RYfHw9vb28A8u62Xl5eBq6IiIiIiIjIcDSdX68i8/BV57rKu66h6jGWuqRSqSLAs7CwgKOjo9rabG1tkZWVpXg8fPhwDBgwoNxr+Pj4oHfv3ir3HT16FHfu3KlQzfv27cNff/2leFwy4DSlYbE6yzy0tnwFkRpcJZaIiIiIiEiuoith6mvlTGOtS9PrGWqFUWOtq6xrG3o1VmOtq7J0lXkwsCOdY2BHREREREQkCCdPnqxUIFEyyDh58mSNqEvdddTVZ2whoqHq0uSaDDi1h4EdmSwGdkRERERERHILFy6sVBBRFGQsXLiwRtVlrD3/jLWuilyLAad2MLAjk8XAjoiIiIiI6JnK9kTTVQ+2qravq7qMteefsdal6hrGEiQaa13awMCOTBYDOyIiIiIiIqoMY+35Z4x1GWuQaKx1aYuuMg+uEks6x1ViiYiIiIiIqLJCQkIQGBiot/N03b4u61q0aBEWL15c4VVWi1aTXbhwIRYtWlRj6tIGXWUeDOxI5xjYEREREREREemHMQaJVWlf13VVFQM7MlmxsbFo0KABAODcuXOoU6eOgSsiIiIiIiIiIqq6hIQEdOrUCQAQExMDHx8frbRrppVWiMqQnJysuF/0IiYiIiIiIiIiqk6Sk5O1FtiJtdIKERERERERERERaQWHxJLO5ebmIjIyEgDg7u4OMzPT69hZvIsrh/VSTcHXPdVEfN1TTcPXPNVEfN1TTcTXve4UFhYqRhb6+/vDyspKK+2aXnJCJsfKygodO3Y0dBlaU6dOHS6cQTUOX/dUE/F1TzUNX/NUE/F1TzURX/fap61hsMVxSCwREREREREREZERYWBHRERERERERERkRBjYERERERERERERGREGdkREREREREREREaEgR0REREREREREZERYWBHRERERERERERkRBjYERERERERERERGRGRIAiCoYsgIiIiIiIiIiIiOfawIyIiIiIiIiIiMiIM7IiIiIiIiIiIiIwIAzsiIiIiIiIiIiIjwsCOiIiIiIiIiIjIiDCwIyIiIiIiIiIiMiIM7IiIiIiIiIiIiIwIAzsiIiIiIiIiIiIjYmboAqj6y83NRWRkJADA3d0dZmZ82RERERERERGR6SssLERycjIAwN/fH1ZWVlppl8kJ6VxkZCQ6depk6DKIiIiIiIiIiHTm3Llz6Nixo1ba4pBYIiIiIiIiIiIiI8IedqRz7u7uivvnzp1DnTp1DFgNEREREREREZF2JCQkKEYVFs8/qoqBHWmdn5+f0uOCggLF/Tp16sDLy0vfJRERERERERER6ZQ25+znkFgiIiIiIiIiIiIjwh52pHVRUVFKj+Pj4+Ht7W2gaoiIiIiIiIiITAt72BERERERERERERkRBnZEGpLJBGTnF0ImEwxdChERERERERFVYxwSS1SOqw/S8WvIHeyLTEROgRTW5hIM8PfAlMCGaOHpYOjyiIiIiIiIiKiaYWBHVIZdEffx/rZLKCzWqy6nQIod4fexO+IBlo5qjSFt6hqwQiIiIiIiIiKqbjgklkiNqw/SS4V1xRXKBLy/7RKuPkjXc2VEREREREREVJ2xhx1pnZ+fn9LjgoICA1VSNb+G3FEb1hUplAlYGxKDpaNa66kqIiIiIiIiIqru2MOOSAWZTMC+yESNjv03MoELURARERERERGR1rCHHWldVFSU0uP4+Hh4e3sbqJrKyS2UIqdAqtGxOQVS5BZKYWPBHyciIiIiIiIiqjomDEQqWJlJYG0u0Si0szaXwMpMooeqiIiIiIjImMlkMmRmZiI9PR35+fmQSjXrBEBEhiORSGBjYwMnJydYWVkZuhwFBnZEKojFIgzw98CO8PvlHuvv5QixWKSHqoiIiIiIyFhlZGTg/v37EAROl0NkSgoLC5GXl4fU1FQ4OjqiTp06EIkM/xmfgR2RGlMCG2J3xINyF56IiEvFlftP0LKuo54qIyIiIiIiY6IqrBOJRJBIOBKHyNgVFhYq7j958gQWFhZwc3MzYEVyDOyI1Gjh6YClo1rj/W2Xygzt8gsFvLHxPHa/Ewh3e0s9VkhERERERIYmk8mUwjo7Ozu4uLjAxsbGKHrpEFHZpFIp0tLSkJSUBABITk6Gg4MDLCwsDFoXV4klKsOQNnWx+51ADG/nBWtz+V/HrM0laOBmq3RcwpNcTNt8AXmFnKOCiIiIiKgmyczMVArrvLy8YGtry7COyERIJBK4urrC1dVVsS0zM9OAFcmxhx1pnZ+fn9LjgoICA1WiHUU97b4d0Qq5hVJYmUlQKBMw9tezOBf7WHHchbupmP/3FQQNb8X/nImIiIiIaoj09HTFfRcXF34WIDJRDg4OSElJAQBkZWXBxcXFoPWwhx2RhsRiEWwszCAWi2BhJsaKse1Q18la6Zht5+MRfDrWMAUSEREREZHe5efnA5DPWWdjY2PgaoiosiwtLRWBe9HPtSGxhx1pXVRUlNLj+Ph4eHt7G6ga3XG1s8Sa8R0wfMVp5BQ8Gwr7xd5r8K1lj0Bfw09SSUREREREuiWVyj8LSCQS9q4jMmFFC8UUFhZCJpMZuhz2sCOqihaeDvh+VGulbVKZgLd/D0fsoywDVUVEREREREREpoyBHVEVDfCvgxm9fZW2PckpwBsbzyMj17Tn7yMiIiIiIiIi/WNgR6QFM3v7op9fbaVt0UmZmLU1AjKZYKCqiIiIiIiIiMgUMbAj0gKxWITvR7VBMw97pe2HriVh6X83DFQVEREREREREZkiBnZEWmJraYY14zvA2cZcafsvR29j96UHBqqKiIiIiIiIiEwNAzsiLfJ2scHyMe1hJlZeHerDPy8hMv6JgaoiIiIiIiIieubYsWMQiUQQiUQ4duyYocshFRjYEWlZ10auWDjYT2lbboEMUzedR1JGroGqIiIiIiIiMn3Fg6ZFixYZuhwygJSUFCxcuBCtW7eGo6MjHBwc0Lp1ayxcuBApKSmGLk9rGNgR6cC4LvUxpnM9pW0JT3IxfXM48gqlBqqKiIiIiIiIqHyLFi1SBKPGJCwsDP7+/vjss89w+fJlpKenIyMjA5cvX8Znn32GVq1a4fz584YuUyvMDF0AVT9+fsq9ywoKCgxUiWEtfMkP0UmZOBfzWLHtwt1UzP/7CoKGtzK6Nz4iIiIiIiKqGXr27AlBEAxdRoXcv38fL730Eh4+fAgzMzPMnj0bgwYNAgD8888/+P777/HgwQMMGjQIFy5cQN26dQ1ccdWwhx2RpmQyID9L/q8GLMzEWDGmHeo6WStt33Y+HsGnY3VQIBEREREREVH19Mknn+Dhw4cAgN9//x1BQUHo3r07unfvjqCgIPz+++8AgIcPH2L+/PmGLFUrGNiR1kVFRSndjhw5YuiSqiYxEtg5Dfi6LvCVp/zfndPk28vhameJNeM7wNpcorT9i73XEBL9SFcVExERERERQSYTkJ1fCJnMtHpSEZX08OFDbN68GQDQr18/jBw5stQxI0eORL9+/QAAGzduVIR7poqBHVFZIv8EVvcELm0BCrLl2wqy5Y9X95TvL0cLTwd8P6q10japTMDbv4cj9lGW9msmIiIiIqIa7eqDdMzeFgG/hQfQYsEB+C08gNnbInD1QbqhS9O5kqufCoKAtWvXIjAwEK6urnBwcECnTp2wadMmpfPy8/OxcuVKdOnSBS4uLrC3t0dAQAC2bdum9lqxsbGKawUHBwMAtm/fjj59+qBWrVqwtrZGs2bNMG/ePKSmpqptZ+LEiRCJRPDx8SnzuQUHByuuFxsbW2q/j48PRCIRJk6cCAC4cOECJk6ciAYNGsDS0lJpWiZ1q8QWXWPx4sWKbUXHFb/Fxsbi8uXLisdBQUFl1g4AP/30k+L406dPl3t8cbt374ZUKp8P/vXXX1d7XNFzl0ql2L17d4WuYWwY2BGpkxgJ7HwTkBWq3i8rlO/XoKfdAP86eK+3r9K2JzkFmLLxPDJya+Ycf0REREREpH27Iu5j8M8h2BF+HzkF8oAjp0CKHeHy7bsi7hu4Qv0pKCjAkCFDMGXKFJw6dQqPHz9GRkYGwsLCMH78eLz33nsAgNTUVLzwwguYPn06zp49i9TUVGRmZuL06dMYPXo0vvrqK42uN3nyZIwaNQqHDx9GcnIycnNzcePGDQQFBcHPzw9Xr17V5dNVUhQ+btiwAbGxscjPz9f6NVq1aoWOHTsCANavX1/u8UXHNG3aFN26davQtU6ePKm436NHD7XHFd8XEhJSoWsYGy46QaRO6C/qw7oiskIgdDkwbEW5zb3X2xc3EjOwPypRse1WUiZm/hGB1eM7QCLmIhRERERERNWVTCYgNVv7oUlxNx9mYPa2S5CqGQJbKBMwe9sl1LK3RJPa9jqtxdnGAmIDf8aZP38+zp49izFjxuC1116Dh4cHbt68iUWLFuHGjRv48ccf8dJLL+Gnn37C6dOnMX36dAwbNgyurq6IiIjA/Pnz8eDBAyxYsABDhgwptcBiccuXL0dYWBg6deqEWbNmwdfXF0lJSdiwYQO2bt2KhIQE9OvXD1FRUXBwcNDp8w4LC8PmzZvh7e2NOXPmoH379pBKpUqhlzpDhw5Fhw4dsHz5cqxYIf+cGxlZupNK0YIOU6ZMQVhYGG7cuIHQ0FB07dpVZbuXLl3CxYsXAQCTJk2q8HO6du0aAMDR0REeHh5qj6tTpw4cHByQnp6uOMdUMbAjUkUmA67u0uzYq38DQ34BxGV3WBWLRVg6qjViV2ThemKGYvvh60lYevAGPuzfrAoFExERERGRMUvNzkf7Lw4ZugxIZQJeXXNW59e58GkfuNpZ6vw6ZTl79ix++OEHRU86AGjXrh169uyJpk2bIj09Ha+99hoePXqEHTt2YOjQoUrHdejQAW3btoVUKsXq1auxbNkytdcKCwvDwIEDsWvXLpiZPYtaBgwYAD8/PyxYsADx8fH4/PPP8e233+rk+Ra5evUq/P39ceLECTg5OSm2BwQElHuuk5MTnJycUKtWLcW2li1bqj3+1VdfxezZs5GVlYX169erDezWrVsHADAzM8P48eM1fCbPxMXFAQC8vLzKPdbb2xtRUVGKc0wVh8QSqVKY82zOuvIUZMuP14CtpRnWjO8AF1sLpe3Lj92uUV3TiYiIiIiIdK1z585KYV0RDw8PDBs2DACQnJyM0aNHK4V1RVq1aoXAwEAAKLd3mqWlJdasWaMU1hX55JNPFKHX2rVrkZeXV9GnUmG//PKLUlinK/b29hg9ejQAYOvWrcjOLv05Oj8/X7GC68CBA8vsIadORoa804udnV25x9ra2gIAMjMzK3wdY8LAjkgVM2vA3EazY81t5MdryNvFBsvHtINZie7hH/55GZHxTypSJREREREREanxyiuvqN3XqlUrxf2iwEmV1q3lCwjeuXOnzGv17dsXnp6eKveJxWJMmDABgHy+vPDw8DLbqipvb290795dp9cobsqUKQCA9PR07Nixo9T+PXv24NGjRwAqNxwWAHJzcwEAFhYW5RwpD08BICdHs441xoqBHZEqYjHQYohmx7YYWu5w2JK6NHTFosHK8x/kFcowddN5JGXkVqgtIiIiIiIiKq1JkyZq9xXvfabJcUU9vNQpWnxBnU6dOinuX7lypcxjq6p4GKkPXbt2Vczvp2rxiaJttWvXxosvvlipa1hZWQGARotnFPVgtLbWvGONMeIcdkTqdH0biNxe9sITIgnQ9a1KNT+2S31cS0jHb2fvKbYlPMnFtE0XsGVqF1iaSSrVLhERERERGR9nGwtc+LSPTq+xYFcU9kYmlHvcoFZ1sHiw+gUUtMHZpvyeULpmY6N+1JS4WKcLTY6TyWRlXqv4nG+q1K5dW3H/8ePHZR5bVc7OzjptX5UpU6Zg1qxZOHr0KGJjY+Hj4wMASEhIwP79+wEA48ePVzlkWBP29vbIzs7WaJhrVlYWAM2GzxozBnZE6nj4A8NWATvfVB/aOXoDtdVPwFmehS/54VZSJs7GPHvDDr+Xhk93XsE3I1pBJOLKsURERERE1YFYLNL5IgxvP98YB6ISUahmlVgAMBOL8FbPxgZfEKK6Ke+zmyCo/55om0Si/84f48aNw7x585CXl4cNGzZg4cKFAICNGzdCKpUCqPxwWEC+2MTDhw8RHx9f7rFFi014e3tX+nrGgENiicriPwKYegxo/ZrqOe3SYoG7pyrdvIWZGMvHtENdJ+WuutsvxGP9qdhKt0tERERERDVPC08HLB3VutR82UXMxCIsHdUaLTwd9FxZ9ffw4cMy9yclJSnuu7i4KO3TtBdfUc8xY+Tq6qpYuCM4OFgRUAYHBwOQD5tt1qxZpdtv0aIFAODJkydITExUe1xCQgLS09MBAM2bN6/09YwBAzvSOj8/P6Vbr169DF1S1Xj4A8NWAB/dB+bek/eqKy7khyo172pniV8ndICNhfJfQb7YexUno5Or1DYREREREdUsQ9rUxe53AjG8nReszeWfMazNJRjezgu73wnEkDZ1DVxh9RQWFqbx/qIVY4vY29sDANLS0sps48aNG5UrrhIqM9qraPGJ2NhYHDt2DKdPn8b169cBVK13HQDFar0AcPz4cbXHFd8XEBBQpWsaGgM7Ik2JxYC1I9BthvL2W/8BiVWbNLR5HQd8P6q10jaZALzz+0XEPDLev6IQEREREZHxKeppF7W4H65+1g9Ri/uxZ52OHTx4EAkJqucPlMlk2LBhAwD5/HLt2rVT2t+gQQMA8oUt1IVy+fn5+Ouvv7RYcdmKFnkAni3iUJ7evXujYcOGAOQLTRQtNmFra1vmSryaGDx4sKInoqqFLYoU9egTi8UYPHhwla5paAzsSOuioqKUbkeOHDF0SdrVdgxgrdyFGad/qnKz/VvWwcw+vkrbnuQU4I2N55GRW1Dl9omIiIiIqGYRi0WwsTCDWM0QWdKevLw8vPnmm4r52opbsmQJIiMjAch7mllaKs8f2KNHD8X9pUuXljpfEAS89957ePDggZarVq9OnTqK+7dv39boHJFIpOhJ99dff2Hr1q0AgJEjRyp6EVaWh4cHxowZAwA4cOAA/vzzz1LHbN++HQcOHAAgn1PPw8OjStc0NAZ2RBVlYQt0mqq87cqfQFpclZue0csXA1oqv6ncSsrEe39EQFrGxLGkOZlMQHZ+IWT8ehIRERERkZZ06NABe/bsQUBAALZu3Yrw8HDs378fr776Kj755BMA8oUT5s+fX+rctm3bokuXLgCANWvWYOLEiTh69CjCw8OxdetW9OrVCytXrkTXrl319ny6deumuD9r1iycOHEC0dHRuHXrFm7duoXCQtULM77++uuQSCTIzs5GRkYGgKoPhy3y5Zdfwt3dHQDw6quvYt68eQgJCUFISAjmzZuH1157DQDg7u6OL774QivXNCSuEktUGZ2mAqeWAYU58seyQuDMcqD/11VqViwW4buRrRHzKAvXEzMU249cT8J3B29gbv/KT9JZ0119kI5fQ+5gX2QicgqksDaXYIC/B6YENuTQACIiIiIiqpK3334bx48fR3BwMF555ZVS++vUqYMDBw7A0dFR5fnr169Hjx49kJSUhA0bNiiG0BaZPXs2/P39ERoaqpP6S2rcuDFGjRqFbdu24eDBgzh48KDS/piYGPj4+JQ6z9PTEwMGDMA///wDAGjSpAm6d++ulZq8vb2xZ88eDB06FImJiQgKCkJQUJDSMR4eHvj777/h5eWllWsaEnvYEVWGrSvQbpzytgsbgOzHVW/a0gxrxneAi62F0vYVx25jV8T9KrdfE+2KuI/BP4dgR/h95BTIu6jnFEixI1y+nV9XIiIiIiKqqvXr1+P3339Hz5494erqCktLSzRp0gQffvghoqKiFCudqtKsWTOEh4dj+vTpqF+/PiwsLODu7o7+/ftj7969KofK6trmzZvxzTffoFOnTnB0dFTMIVeeceOefVZ+/fXXtVpT586dERkZiU8//RQtW7aEnZ0d7Ozs4O/vj08//RRXrlxB586dtXpNQxEJRWvtEulIfHw8vL3lK6vGxcVVi6QbAJAaC/zYDhCKzVHQ61PguQ+00vzZOykY8+tZFBYbumlpJsb2aV3RystJK9eoCa4+SMfgn0OUvo4lmYlF2P1OIHvaEREREVGFRUdHo7CwEGZmZvD19S3/BKo2YmNjFQtGrF+/HhMnTjRsQUZi/vz5+OKLLyCRSBAXF6c0H56xq8zPs64yD/awI6osZx/Ab5jytjMrgYIcrTTfuaErFg/xU9qWVyjD1I0XkJSRq5VrVGeCIOBhei6W7LtWZlgHAIUyAWtDYvRUGRERERERUfUklUoVw3kHDBhgUmGdseEcdkRVETBDvuBEkexHQMTvQMfJWml+TOf6uJaQjs1n7im2JabnYtqmC9gytQsszSRauY6pkskEPMzIReyjbNxNyUJMShbuPspGbEoW7qZkK4a/auLfyAR8O6IVV9AiIiIiIiKqpK1btyIuTr4g47Rp0wxcjWljYEdUFXVaAw2fB+4cfbbt9E9A+4mAWDth2sKX/HArKRNn7jybHy/8Xho+2XkF345oBZHIOAMmmUxAbqEUVmaSKoVgMpmAxPRcxD7KQmzK02DukTyQu/s4C7kFMq3Um1MgRW6hFDYWfFskIiIiIiLSVNGqsefPn8esWbMAAP7+/hg4cKCBKzNt/GRKVFUB7ykHdqkxwLU9gN9QrTRvLhFj+Zj2GPxzCOJTnw23/fNCPJrXccDr3Xy0EoxpS2VWY5XKBCQ8yUGsondcFmKe9pq7+zgb+YXaCeXKYm0ugVUN77FIRERERERUUSXnejM3N8eKFSuMtnOJqWBgR1RVDXvKe9olXHq27dQPQIshgJbeoFxsLbBmfAcMX3Ea2fnPhnl+/s9VBO2/jvxCmUbBmK7tiriP97ddUpozrmg11t0RD/DJwOZoXNuuVG+5uMc5yJfqJpQTi4ByprADADjZmCNfKoOVlnpGEhERERER1STOzs5o164dPvvsM3Tr1s3Q5Zg8BnZEVSUSyXvZ/Tnp2bYHF4HYk0CD57R2meZ1HPD9qDaYtvmC0vai3mfFg7Glo1pjSJu6Wrs2IF/EIa9Qhpx8KbILpMjJlyK3QIrsfClyCqSIfpiBr/69pjYcK5QJWPzPVa3WVMTaXIL6rjbwcbWFj5stfFxtUN/VFj5uNnicmY8hv5wqd+GJhCe5mBQchjXjO8DWkm+NRERERERUNh8fHwiCBr0Dqjl+DXSDn0qJtKH5EMCpPpB299m2U8u0GtgBQP+WHhjbuT42n72r9phCmYDZ2y5BLAI8nazlgdrTUE3xb9F9FduznwZxOfnF7j+9GfJ92MZC8jSQk4dxDVxt5SGdmy1q2Vuq7W5dx9EaS0e1LtXzT5XTt1Mw5tezCH69I5xsLHTxNIiIiIiIiIjKxcCOSBskZkC3d4F/5zzbdusQkHgF8Gip1Utl5xeWe4xUJuDdLRFava4+2FmaKQI5n2I95uq72sDdTn0oV54hberCt5Y91obE4N/IBMXcep0auCAs5jGyi60mGxGXhldWn8HGyZ1Qy95KW0+NiIiIiIiISGMM7Ii0pc0Y4NjXQHbKs22nlgHD12jtEjKZgH1XErXWnqG09HRAA3e7YqGcPKRztbXQ2cSkLTwdsHRUa3w7opXSIh1X7j/B+HXn8DgrX3Hs9cQMjFwZis2TO8PbxUYn9RARERERERGpIzZ0AUTVhoUN0OlN5W1X/gLS7mntErmF8qGpxsJCIoajtTlq21tC05jN2lyC3e8E4qdX2+L9vk0xvL0X2td3gVsVetBVhFgsgo2FmWJF3ZZ1HbHtza6o46jcm+5uSjZGrgzFraQMnddEREREREREVBx72BFpU6c35CvEFmTLHwtSIHQ5MGCJVpq3MpPA2lyicWhnZyGBjaUZrC3k5yn+LX7fQnm7jYUEVk+3K+6bS2BjYQZrcwmsLMSwsTCDlZkYZpJnmf/sbRHYEX6/3JoG+tdRhGXGonEtO2yf1hVjfz2L2JRsxfbE9FyMXBmKjZM6w9/L0YAVEhERERERUU3CwI5Im2xcgHbjgbMrn20L3wD0+FC+r4rEYhEG+HtoFIwNb+eFpaNaV/mampoS2BC7Ix6UubCDmViEyYEN9FZTRXg522DbtK4Yv/Ycric+61WXml2AV9ecwdoJHdC5oasBKyQiIiIiIqKaQm+BXa9evfR1KQDAxIkTMX78eL1ekwgA0OUt4Nwaee86QN7bLuxXeWinBcYajBXNEaduNVYzsQhLR7VGC08HvdZVEbXsrbB1aldMDD6Hi/fSFNsz8woxft05rBzbHs83q2W4AomIiIiIiKhG0Ftgd+zYMX1dCiKRCD179tTb9UiZn5+f0uOCggIDVWIgzvWBli8DkdufbTu7Ur6KrLl1lZs35mBM3WqsA/3rYHJgA6MO64o42phj8+TOmLrpPE7deraASF6hDG9sPI//jW6Dl1p7GrBCIiIiIiIiqu70FtgtXLhQX5cCAPTo0UOv1yNS0m2GcmCXnQJE/AZ0nKKV5o05GFO3GqspsbU0w7qJHTFjy0UciHqo2F4oEzDjj4vIyC3Ea53rGbBCIiIiIiIiqs5EgiCoH1dHpAXx8fHw9vYGAMTFxcHLy8vAFenJppeB24efPXb2Ad65AEi0m5PLZILJBmPGrlAqw9y/IvFXeHypfR8NaIY3ezQyQFVEREREZEyio6NRWFgIMzMz+Pr6GrocIqqCyvw86yrzEJd/CBFVSsB7yo9TY4Fru7V+GbFYBBsLM4Z1OmAmEePbEa0wsZtPqX1f77uObw9cB//mQUREVLPIZAKy8wshK2M+YSIioqriKrFEutLgOaBOGyAh4tm2U8sAv2GAiOGaqRCLRVj4Ugs4WJvjx8PRSvt+OXob6TmFWDzYj4EpERFRNXf1QTp+DbmDfZGJiulIBvh7YEpgQ5OYp5eIiEwLe9gR6YpIBATOVN6WEAHEnDBENVQFIpEIs19ogk9fbF5q36Yzd/H+9ksokMoMUBkRERHpw66I+xj8cwh2hN9HToEUAJBTIMWOcPn2XRH3DVwhERFVNyYR2N24cQMnTpxATk6OoUshqpjmg+Vz1xV36gdDVEJaMKV7Q3wzvBVKdqbbefE+pm8OR+7TX+CJiIio+rj6IB3vb7uEQjVDYAtlAt7fdglXH6TruTIioso7duwYRCIRRCIRjh07ZuhySAWTCOy++OIL9O3bF8nJyYYuhahixBKg27vK224fARIuG6YeqrJRHb3x82vtYC5RTu0OXXuI19eHITOv0ECVERERkS6sOnFbbVhXpFAmYG1IjJ4qIqrZigdNixYtMnQ5pEdpaWn477//8OWXX2Lo0KHw9PRUvBZ69uxp6PK0ziTmsAsJCUH//v1Rr149lftv3ryJhQsXYsaMGejataueqyMqR5sxwNGvgexHz7ad/hEY/qvhaqIqGehfB7aWZnhz03nkFjwbCht6JwVjfj2LDa93hJONhQErJCIioooQBAGPMvNxOzlTfkvKwu3kTNxKysD9tFyN2vg74j5aeTmgfX0XNPOwh5nEJPpGEBGptGjRIixevBgAjGahvbZt2yI2NtbQZeiNSQR2CQkJGDVqlNr9TZo0QXh4OH744QcGdmR8zK2BztOAo18823ZlB9BrPuBc33B1UZX0aOKOTZM7Y9L6MGQU61V3KS4No1edwabJnVDLwcqAFRIREZk2mUxAbqEUVmYSrS3uVCCV4d7jbNxOysTt5KxiAV0m0nOr1kteKhOwcPdVAICNhQRtvJ3Qvr4z2tVzRtt6TvxjHhEZlZ49expNEKep4vXWrl0bHTt2xD///GPAinTLJAI7R0dHZGZmlnlMt27dcPToUT1VRFRBHScDId8DBdnyx4IUCP0FGPiNYeuiKuno44ItU7tgwrpzSMnKV2y/8TADI1aG4rcpneHtYmPAComIiEyPNlZjTc8tUA7lkuTB3N2U7HKHt2pDdr4Up2+n4PTtFMW2xrXs0L6eszzEq++Ehm52XGWeiKgC3nnnHTRo0AAdO3ZUjMAUiarv+6hJBHYdOnTA3r17sXTpUlhZqe6x4uHhgYcPH+q5MiIN2bgA7SYAZ1c82xa+EegxF7B1NVxdVGUt6zpi27SuGPvrWSQ8eTZk5t7jbIxYeRqbJ3eGb217A1ZIRERkOnZF3C+1wEPRaqy7Ix5g6ajWGNKmLgB5D7wHT3LkodzTQE5+y0JyRp6hnoJat5IycSspE1vPxwEAHK3N0a7e01549Z3R2ssJtpYm8fGMTIlMBhTmAGbWgJjDtMm0zZkzx9Al6JVJ/MS+8cYbuHfvHmbPnq32mNu3b6sN84iMQte3AZHk2ePCHCCM89hVB43c7bB9Wlc0cLNV2v4wPQ+jVoXicnyaYQojIiIyIZqsxjprawQmrDuHF388Cb+FBxAYdBQT1p3DZ/9cxW9n7+HMncdVCusszcRo5mGPF1vVwYzevlj2Shv8+EobmJXTE04sAno1rQUfV8171j/JKcDRG8n47uBNvLbmLPwXHcCLP57Egl1XsCviPuIeZ1douJpMJiA7vxAyPfQgrAhjravaS4wEdk4Dvq4LfOUp/3fnNPn2aq7k6qeCIGDt2rUIDAyEq6srHBwc0KlTJ2zatEnpvPz8fKxcuRJdunSBi4sL7O3tERAQgG3btqm9VmxsrOJawcHBAIDt27ejT58+qFWrFqytrdGsWTPMmzcPqampatuZOHEiRCIRfHx8ynxuwcHBiuupmsvNx8cHIpEIEydOBABcuHABEydORIMGDWBpaanUG03dKrFF1yiavw6A4rjit9jYWFy+fFnxOCgoqMzaAeCnn35SHH/69Olyj6/pTOJPOEOHDsWrr76KlStXIj4+Ht988w2aNWum2H/8+HH8/fff6NGjhwGrJCqHkzfgPwK4vPXZtnOr5KvIWnDYpKnzcrbBtje7Yvy6c7iWkK7YnppdgNfWnMWvEzqgS0P2piQiIlLn15A75Q5XlQnA8ZvJVb6Wm50FGrrboZG7HRq526JRLTs0dreDp5M1JCrCOQFQGyaaiUVKPf8eZeYh/G4qLtxLRfjdVFyOf4K8Qlmp81Q9t6gH6Yh6kI6NoXcBAO72lsWG0TqjZV0HWJpJlM7TxhBiXTDWumqEyD+BnW8CsmLzMhZkA5e2AJHbgWGr5J9LaoCCggIMGTIEe/bsUdoeFhaG8ePH4/z581i2bBlSU1MxdOhQnDhxQum406dP4/Tp07h16xY+/vjjcq83efJkrFu3TmnbjRs3EBQUhI0bN+LQoUNo0aJF1Z+YBlauXIl3330XhYVVm5+zLK1atULHjh0RFhaG9evXY+7cuWUev379egBA06ZN0a1bN53VVV2YRGAHABs3boS9vT1Wr16NvXv3onHjxvDx8UFSUhIiIyMhCAI++OADQ5dJVLZuM5QDu+wUIOI3oNMbhquJtMbd3hJ/vNEFrwefQ/i9NMX2zLxCTFh3DivGtkOvZrUNVyAREZGREAQBD57k4sr9J4i6/wSX49Nw7OYjrV5DIhahvouNPJirZfs0nJMHdBVdAGJIm7rwrWWPtSEx+DcyQRFADfSvg8mBDZQCKDc7S/T180BfPw8AQH6hDFcT0nHhrjzAu3A3FYnpmq08m5yRh/1RidgflQgAsJCI0bKuA9rXl4d4yRl5WLznqkZDiPWpIkObaxSZDMh5rNtrJF0rHdYp1VAo329XG6jVXLe1WLsYfBju/PnzcfbsWYwZMwavvfYaPDw8cPPmTSxatAg3btzAjz/+iJdeegk//fQTTp8+jenTp2PYsGFwdXVFREQE5s+fjwcPHmDBggUYMmQI/Pz81F5r+fLlCAsLQ6dOnTBr1iz4+voiKSkJGzZswNatW5GQkIB+/fohKioKDg66Da3DwsKwefNmeHt7Y86cOWjfvj2kUilOnjxZ7rlDhw5Fhw4dsHz5cqxYIZ/SKTKydM/MunXlP8NTpkxBWFgYbty4gdDQULULgV66dAkXL14EAEyaNKmyT61GMZnATiKRYOXKlRgzZgx++OEHHDp0CNHR0QCARo0a4auvvkLfvn0NXCVROTxaAo37ALcOPdt2+ieg/euAxGR+HKkMjjbm2DylM97cdAEno5998MgrlGHqxgs19xdUIiKqsQRBQNzjHFx58ARX7j9B5P0niHqQjsfFFmyqCntLMzSs9bSn3NNQrnEtW9RzsYWFmfbCghaeDlg6qjW+HdGqQqvXWpiJ0cbbCW28nTA5sAEA4EFaDi48De/C76Ui6kE6pBoMGc2XyhB+Lw3h99Kw5mRMmccWygTM3nYJDlbmaOJhD4lIBLEYkIhEMBOL5ffFIohFIkjEoqf7qz55uyZDm9/fdgm+texrXk+7nMfAt40MXYU8tNswSPfX+eA2YOum++uU4ezZs/jhhx/w3nvvKba1a9cOPXv2RNOmTZGeno7XXnsNjx49wo4dOzB06FCl4zp06IC2bdtCKpVi9erVWLZsmdprhYWFYeDAgdi1axfMzJ59thswYAD8/PywYMECxMfH4/PPP8e3336rk+db5OrVq/D398eJEyfg5OSk2B4QEFDuuU5OTnByckKtWrUU21q2bKn2+FdffRWzZ89GVlYW1q9frzawK+p5aGZmhvHjx2v4TGo2k0sIunfvju7duwMAnjx5AkEQlF6AREYvYKZyYJd2F7i2C2g53GAlkXbZWJjh1wkd8N6WCMVfxAH5L6gzt0YgI7cQY7vUN2CFREREuiGTCbj7OFseyj0N567cf4L0XO0NyTITizD/pRbwfTqM1d3eUq+rBIrFIthYVO1jlKeTNTydrPFSa08AQE6+FJfj0xTDaC/cTUVqdkGVa5XKBLweHKbx8SIRFMGd5GmQJxbJgz2JWAyJuNj+YscUD/7iU8tfibdQJmBtSAyWjmpd1adIVKbOnTsrhXVFPDw8MGzYMGzYsAHJycl45ZVXlMK6Iq1atUJgYCBOnDhRbu80S0tLrFmzRimsK/LJJ59g27ZtuHLlCtauXYsvvvgClpaWlX5emvjll1/0kpXY29tj9OjRWLduHbZu3YoffvgBNjbKUz7l5+fj999/BwAMHDgQHh4eOq+rOjC5wK44R0dHQ5dAVHE+gYBnO+BB+LNtIT8Afi/Lf0si3dLTSlmWZhL8/FpbzNsRiT8vxCu2CwLw6d9XkJFbiOk9jeAvrEREpFcymVCh3ln6UNmapDIBMY8yn4Zy6Yi8/wRXH6QjM0938yUB8uGpE7r66PQa+mZtIUHnhq7o/HS+W0EQEPMoC+H30hRDaW8mZaACa1BUiiAAhYIgn1BPx/6NTMC3I1oZzc8BVU+vvPKK2n2tWrVS3B89erTa41q3bo0TJ07gzp07ZV6rb9++8PT0VLlPLBZjwoQJ+OCDD5Camorw8HC1PdG0wdvbW9HRSR+mTJmCdevWIT09HTt27MDYsWOV9u/ZswePHslHH3E4rOZMJrALCwvDp59+itDQUMhkMtSrVw/PPfccxo0bp1G3TiKjIRIBAe8B2yc825Z4GbhzDGj0vMHKqvYSI4HQX4Cru+ST7prbAC2GyFfv9fDXySXNJGJ8M7wV7K3MsP5UrNK+oP3XkZ5bgA/7NdVrrwAiIjIMY5yAvyI1FUpluJWcich4+XDWK/ef4GpCOrLzpVWqwcHKDC3rOsK/riOcbMzx3cGbZQ4NNROLFMNKqzORSISG7nZo6G6HEe29AADpuQWIeBrghcU+xunbKQausmpyCqQIvfMI3Rq58Xch0pkmTZqo3Ve895kmx2VkZJR5rY4dO5a5v1OnTor7V65c0WlgVzyM1IeuXbvCz88PUVFRWL9+fanArmixidq1a+PFF1/Ua22mzCQCu3PnzqFHjx7Iy8tD3bp14eLigsTERKxevRpr1qzBqFGjEBwcrPMupURa0/wlwKUh8LjYX2lOLWNgpysGXClLLBZhwaAWcLQ2xw+HopX2rTh2G+k5Bfh8iHxOCGPrcUFERNphjBPwl1fTrBeawNXW4um8c+m4lpCu0UqnZXG2MVeEc0X/ejlbK4U1nk7W5a7GWuPmPXvKwcoczzVxx3NN3CGTCfBbeAA5BVULTA1tzK/n0LKuAyZ09cFLrT1hZS4p/yRTZu0in9dNl/6dA0TtLP84v5eBgbqdRw3WLrptXwMlh2YWJy422kaT42Syst8Di8/5pkrt2s8Wn3v8WLeLjzg7O+u0fVWmTJmCWbNm4ejRo4iNjYWPjw8AICEhAfv37wcAjB8/XuWQYVLNJL5S8+fPh0gkwn///YfevXsrtkdFRSEoKAibN29Gamqq4kVA6t2/fx/bt2/Hv//+i+vXryMxMREuLi4ICAjAhx9+iM6dOxu6xJpBLAG6vQv8M+vZtjtHgYRLQB3O5aFViZGarZTl3lRnPe1EIhFm9mkCeytzfP7PVaV9v529hxM3k/EoM99oelwQEZH2aDIB/+ytl5CalQ9vFxvFkMfiRwtPNwqKx4o9So9L7hfU7L+fmo1vD9xQO+qxUCbg2wM3NHl6arnZWcK/rgNaPg3nWtZ1hKejVbk9qSqyGmtNJhaLMMDfAzvC75d77NA2nvh8aEvIZIBUECCVCZA9/VdxEwTInv4rlQnFjpVBKoPyOYIAqVTFOYIAqQz4/exdhN9L0/i5XLmfjg/+vIyv913Hq528MbZLfdRxtK7CV8eIicW6X4Sh+/vAtT3qf/cFALEZ0H22wReEqG7Ke38TdD2mvRiJRP/h97hx4zBv3jzk5eVhw4YNWLhwIQBg48aNkErlf1zgcNiKMYnALjQ0FK+88opSWAcAfn5+2LhxI9q2bYv3338fv/76K6ZMmWKgKk3DTz/9hKCgIDRq1AgvvPACatWqhejoaPz999/4+++/sWXLFowaNcrQZdYMrV8Fjn4FZCU/23ZqGTBineFqqo5Cfyn7FxZAvj90OTBshU5LmRzYAPZWZpj312WlD0lxqTmK+4bucUFERFWTnluA20mZuJ2chdvJmfj74v1yJ+CXCgIW7bla5jHGzMPB6mko56DoPVfbwarS7VV2NdaaZkpgQ+yOeFDm68tMLMLU5xrB3spcb3W1qOOAwT+HlPu6L+lxVj5+OXobK4/fQT+/2pjQ1QedGrhwuGxFefjLR4+o+4O12Ey+X0d/qK7JHj58WOb+pKQkxX0XF+Xeh5r24svKyqpkdbrn6uqKoUOHYuvWrQgODsaCBQsgEokQHBwMQD5stlmzZoYt0sSYRGAHlN29dNasWfjjjz+wfv16Bnbl6NSpE06cOFFqAsqTJ0+id+/emD59OoYMGcLhxfpgbg10fhM48sWzbVE7gd4LAGcfg5VVrWSnAFf+0uzYq38DQ37R6UIUADCqgzfsLc3w7pZwlDWyqFAm4P1tl+Bby569CYiIjIxMJuDBkxx5KJeUidvJRbcsJGfkGbo8narrZK0I5vzqOqKlpyPc7XXze6M2VmOtzoqCTWMbQqxJXQP96yD8Xirii/3RsohUJuDfyET8G5mI5nUcMKFrfQxpUxfWFtV8uKw2+Y+Qjx4JXS7/HVcxf/NQoOtbDOt0JCys7BWZi+9v2bKl0j57e3sAQFpaWplt3LhRtd7PFVGZsHzKlCnYunUrYmNjcezYMVhaWuL69esA2LuuMkzif8BmzZrh7NmzZR7Ts2dPrF69Wk8Vma6XX35Z5fbu3bvj+eefx8GDBxEZGYkOHTroubIaquMU4OT/gIKnfykRZPIeYbqeT6I6y0kFru8Fov4Gbh8BBA3ndinIlq8ea2Gr0/IAYIB/HXQ+64pTt8qeLLpQJmBtSAyWjuIwaSKiitLGaqy5BVLEPJL3lLudlKUI5u4kZ5n83GGa6udXG228ndGyrgNaejrC2dbC0CVRMcY6hFiTuqQyAYevPcSG0Fi1vxNdS0jHvB2RWLL/OkZ39Ma4LvXh5ax+rjEqxsNfPnpkyC/y33HNrHX+h+ma7uDBg0hISECdOnVK7ZPJZNiwYQMA+fxy7dq1U9rfoIF8MZ2MjAzcuHEDTZs2LdVGfn4+/vpLw84IWmBl9ayndF5enkadenr37o2GDRvizp07WL9+veIcW1vbMlfiJdVMIrAbN24cZs6cic2bN5dabaRIWloa8vPzdVpHUlISzp07h3PnziEsLAxhYWFISZH/5zJhwgRFV09N3Lt3Dz/++CP27t2Le/fuwdLSEo0bN8aoUaPw1ltvlTnppa6Ym8u7ynMSSD2ydgbaTwTO/PJsW/gmoMdczilRETmpwPV/5T0U7xwDZAUVb8PcRv6LjB7IZALC76ZpdOy/kQn4dkQrDgUiItJQRVdjFQQBKVn5SsNYi27xqTnQ15RDIgCeTlaK93sRnv4rUj5Gvk2k9LjoTvH/KUoeo2hHAKKTMqHJ07I2l2DFmPb8P8jIGesQ4vLqkohF6Ovngb5+Hoh+mIENobHYEX5f5crDadkFWHX8DtacuIM+zWtjYjcfdG3kyuGymhCL9fIHaZKHWm+++SZ27txZag65JUuWIDIyEoC8p1nJ8KtHjx6K+0uXLi3VGUkQBLz33nt48OCBjqovrXjwePv2bbRo0aLcc0QiESZNmoRPP/0Uf/31l+LrMHLkSEUvQtKcSSQzb731Fn777TdMnDgRFy5cwOzZs+Ht7a3YHxUVha1bt6Jt27Y6raP4qi5VsXfvXowZMwZPnjxRbMvOzlaEgL/++iv+/fdfNGzYUCvX08S9e/dw6NAheHh4wN+fXaT1qst04NyqZ3NMFOYA59YAz39k2LqMXU4acONpSHf7aOVCuuK8O+vtr465hVKNe2bkFEhx8Goi+vl58JdSIqJylLfy6dz+zeDjZvu0x9yzYaxPcqr4f0gJErEI9V1s0NDdDvceZ+Hmw8xyz3m5nZfeelTP3hah0WIFA/3rGEXwQ5ox1iHEmtTlW9seXwz1xwf9muHPC/HYGBqLuynZpY6TCcDBqw9x8OpDNKlth/FdffByu7pG+byp5unQoQP27NmDgIAAzJo1C76+vkhKSsKGDRvwxx9/AAC8vLwwf/78Uue2bdsWXbp0wZkzZ7BmzRrk5+djwoQJcHR0RHR0NFauXIljx46ha9euCA0N1cvz6datm+L+rFmz8Mknn6BOnTqKzyQ+Pj4qO/u8/vrrWLhwIbKzn/0Ma2s4bEREBCIiIlTuS0xMLNWJasSIEbCzs9PKtQ3BJN7ZJBIJDhw4gCFDhmDZsmX45Zdf0LBhQ9SrVw+pqam4dOkSZDIZPv30U73V5O3tjebNm+PgwYMVOu/SpUsYNWoUsrOzYWdnh48++gjPP/88cnJy8Mcff2DNmjW4ceMGXnzxRYSFhenlxVVQUIBx48YhLy8P33zzjUFWlKnRnLyBliOAy38823ZuNRAwg38NK0kR0v0tH+6qSUgnNn8ahpbTl+BeKHA3FKjfVQuFls3KTAJrc4nGod20zeHo6OOMOX2bonNDVx1XR0RkmjRZjfXLf69p9Zr2lmZoWMsOjdxt0cjdDo3c7dC4li3qudjCwkysqKu8CfjNxCJMDmyg1drKouliBfqsiQgAHK3NMTmwAV7v5oNjN5MQfPouTtxMVnnszYeZ+PTvKwjafx2jOnhjfNf6qO/K353JcN5++20cP34cwcHBeOWVV0rtr1OnDg4cOABHR0eV569fvx49evRQhHxFQ2iLzJ49G/7+/noL7IpGAG7btg0HDx4slX3ExMTAx8en1Hmenp4YMGAA/vnnHwBAkyZNSs2hX1l///03Fi9erHLfjRs38Prrrytt69mzJwM7fXB0dMSxY8ewZcsWrFu3DqdPn8bNmzcBAP7+/vj888/Rv39/ndawYMECdOzYER07dkTt2rURGxurGGuuqZkzZyI7OxtmZmY4ePAgunZ9Fg706tULvr6++PDDD3H9+nV8//33WLBgQak23NzcFENxNXH06FH07NlT5T6ZTIZJkybhxIkTeOONNzBu3LgKPR/SkoAZyoFdzmPg4m9A56mGq8lY5KQBN/Y97UmnYUgnsQR8XwD8hgFN+gE3D6hfKatIYS7w+yhgwm7AU7e9dcViEQb4e2jUu6FIWGwqRq8+g+eauOODvk3h76X6P3oioprqf4duVHhVSk3VdbJGw6JQ7mlA19jdDu72luX2fjbGhQGMsSai4sRiEXo1q41ezWrjdnImNoXexZ8X4pGZV/p3uYzcQqwNicG6UzHo1bQWJnTzQWBjN/YOJYNYv349+vbti9WrVyMyMhKZmZmoX78+hg4dinnz5sHZ2Vntuc2aNUN4eDi+/PJL/Pvvv0hISICjoyPat2+Pd999FwMHDqzQNFzasHnzZnTo0AF//vknbty4gYyMjHJXsgXk05oVBXYlQzTSnEgQ9DUzh+bOnz8Pf3//Mic1lMlkePz4MaysrAyWmBYP7DSZwy4sLAydOnUCALz55ptYuXJlqWNkMhlatmyJa9euwdnZGQ8fPlTMLVfk3XffRUZGhsZ1zps3T+XyyYIgYMqUKVi3bh3Gjh2LDRs2KJaT1qb4+HjFEOa4uDh4eXlp/RrVwm8jgehif7Vwqge8exGQmEyurj25T5RDOqkG81NKLIHGfZ6FdFYlPmQkRpZeKcvWDUi7p3yctTMw8V+gdvlzNFSFJj0uyjKgpQdmv9AEvrU5FwQR1UyCIOBy/BMciErEvisJiHlUevhcRViYidHQzfZpIPes11xDd1utDLe7+iDd6BYGMMaaiNTJzCvEXxfisSE0FneSs8o8tqG7LSZ09cHw9l6ws9T979LR0dEoLCyEmZkZfH19dX49Mh7FM4H169dj4sSJhi3ISMyfPx9ffPEFJBIJ4uLiVC7EYawq8/Osq8zDKAM7sVgMMzMzNGvWDG3btlXc2rRpo7b7qCFUNLD75JNP8NVXXwEAzpw5g86dO6s8bsmSJfjoI/n8ZQcPHsQLL7ygvaKfkslkmDJlCtavX49XX30VmzZt0tlQWAZ2GooNAYJfVN42fK18WfaaQBHS/Q3cPqxhSGcBNH4B8BsKNOlfOqRTRSZ7tlKWIAW2jgNu7lM+xq428Po+wLVRZZ6JxlTNtVTETCzC6I7eOHYjGffTclSeLxYBw9p6YWYfX3i7cMU0Iqr+CqUynIt9jINRD3EgKhEJT3Ir1U77es5o4mGn6DHX2N0Onk7WkOihR442Vq/VNmOsiUgdmUxAyK1H2HA6FkduJJW5MIydpRlGtPfC+K710dBduZOHNl/3DOxqLgZ2pUmlUjRo0ABxcXEYNGgQ9uzZY+iSKsSYAjuj7LrzwQcfKCYT3LRpEzZt2qQ0sWHxEK9t27Ymk9aePHkSgHxJ4/bt26s9rvgKMSEhIVoP7IqHdaNHj9ZpWEcVUD8AqNsBuH/+2bZTPwAthysvEWcqigdj6npu5qYX60lXkZCuqCedhiFdcUorZYmBkcHyobAxx58dk/kQ2DAYmLRP3tNRR4a0qQvfWvZl9m7IK5Ria1gcfjpyC8kZeUrnywTgr/B47L50H690rId3ezVGLQcrNVcjIjJNuQVSnLr1CPuvJOLQtYdIza7aAhHW5hJsn9bVYMGUMS4MYIw1EakjFovwXBN3PNfEHXdTsrAp9C62no9DRm7p4bKZeYUIPh2L4NOxeK6JOyZ2q4/a9lZYeypG45Wkiahitm7diri4OADAtGnTDFyNaTPK/5mDgoIU9+/fv4+LFy8q3Xbs2IEdO3YoQjx3d3e0bdsW7dq1w5dffmmosst17Zp8ouPGjRurXE2lSPHhq0XnaItMJsPkyZMRHByMkSNHYvPmzVUO6+Lj48vcn5CQUKX2awyRCAh4D9hWbB7BxEjgzlGgUS/D1VVRiZFA6C/A1V3Php62GAJ0fRvw8JeHdDf3y0O6W4cBaV75bUosgEa95SFd0/6AlRZ72ppbAa9uATa9DMSdebY9PR7YOETe087eQ3vXK6FoHqFvR7RS+VdeSzMJxnf1wcj23tgQGosVx26XWs2wQCpg05m72H4hDhO6+mBaj0ZwtrXQWc1ERLqWkVuAozeScSAqEceuJyErX7NFejTBlU+Jqo/6rrb4dFALzHqhCXZevI8Np2MRnaR6VeYTN5NVLmBRfCXppaNaY0iburoum6jauXXrFgoLC3H+/HnMmjULgHytgYEDBxq4MtNmlIFdcXXr1kXdunUxaNAgxba0tLRSId6hQ4dw8OBBow3scnNz8ejRIwAot3uks7MzbG1tkZWVpUimteWzzz5DcHAw7Ozs0KRJE3zxxReljhk6dCjatGmjcZtFXT9JC5q9CLg0Ah7ffrYt5AfTCewi/yy9uENBNnBpC3B5mzywS7pWgZCu19OQboB2Q7qSLGyBMduADS8BCZeebX98B9g4FJi4F7DV7eqs5fVusLaQYFqPRnitcz38euIO1obElPoAm1sgw6oTd/D72XuY0r0hJndvoJd5W4iItOFRZh4OXZUPdT11KwX50vIntQaABm626OfngSa17fDhn5e58ilRDWRraYaxXepjTOd6CL2dguDTsTh07SEqMlVwoUzA+9suwbeWPXvaEVVQyaGj5ubmWLFiRbkLM1HZTPKTnJOTE55//nk8//zzim25ubm4fPmyAasqW/FFIjRZJKMosMvMVP0XosqKjY0FAGRmZqoNN318fCoU2JEWiSVAt3eBf2Y+2xZzHHhwUecrl1ZZYmTZK7EKUiAhouw2xOZA495Ai6HykM7aSctFlsHKERi7Uz6PYHKxnq3J14DNw4AJe3QbGmrIwcocs/s2xYRuPlhx7DY2nrmL/ELlD7UZeYX436Gb2BAai+k9GmFc1/qwMuewdyJTVx3nGYtPzcbBqIfYH5WI87GPNf5w7efpgH5+Hujf0gO+tewUHwgkYhFXPiWqwUQiEbo1dkO3xm6Ie5yNzWfvYmtYHNI0HEpfKBOwNiQGS0e11nGlRNWTs7Mz2rVrh88++wzdunUzdDkmzygXnTAVFVl0Ii4uDvXqyefCGjduHDZu3Fhm2/Xq1UNcXBwaNWqEW7duaa1mXdBkSGzR6rhcdEIDBbnAD/5AVtKzbX4vAyPXG64mTeycJu9JV1Fic+WedPoM6VTJSATWD5D3rivOuwswbkex+e+MQ8KTHPx4+Ba2nY+DVM0n3doOlpjR2xejOnjDXKL9laCJSLeuPkjHryF3qsV8S4Ig4FZSJg5EJWJ/VCKu3E/X6DyRCOhY3wV9/Wqjn59HmQvtcOVTIiouJ1+KvyPi8fHOK2UuUFHEXCLCuU/6wNlG8+lFuOgEUfXBRSdqICurZxPB5+eXP7F+Xp58yKC1tbXOatIWBnBaZm4FdJkGHP7s2barfwOP5wMuDQ1WVplkMvmcdZoSmQGNi0K6gYYP6Yqz9wDG75aHdk+KDUmPOwP88Rrw6lb598hI1HG0xtcv++PN5xrif4duYvelB6V+GX2YnodPdl7B6hN3MKtPE7zU2lMvKyESUdWpWk3a2OZbKq/nnyAIuBT/BAeiEnEgKhF3krM0atdcIkK3Rm7o39IDfZrXhru9pUbnlTc3KBHVLNYWEgxpUxcf7bii0fEFUgHdvj6MEe29MaFbfTSuZa/jComIVDO6wC47Oxvnz58v8xhra2t07NhRTxVph739szd6TYa5ZmXJf5nVZPgsVUMdJgEnvwfyn75WBJl8IYcXlxq2LlVkUiB8k3yuOk3NvAw4GvGEvk7ewPhd8tAu8+Gz7XeOAdsnAqM3ARJzQ1Wnko+bLZa90hbTezbC0oM38d/Vh6WOuZuSjZlbI7Di2G3M7tsEfVvU5rwSREbs6oN0tcM7AcPPt1RWz78mte1wLvYxDlxJxMGrD5HwJFejNm0sJOjZ1B39/DzwfLNacLCq/HstVz4loiJWZhJYm0uQU6DZAjY5BTJsOnMXm87cRXdfN0zs5oPnm9Zi+E9EeqX332JCQ0Px+eefAwAmT56M4cOHK+2PiYlBz549y/0QeerUKXTp0kVndWqblZUV3Nzc8OjRo3KHkKampioCO1Nc0MHPz0/pcUGBZnNGUDHWzkD7iUDoz8+2XdwM9PwIsHUzWFlKBAG4sU/eEzC5AqsZm9sA9nV0V5e2uDYCxv0NBA8EclKfbb+5D9gxFRj+q3zOQSPTzMMBa8Z3wMV7qfju4A2cupVS6pgbDzPw5qYLaO3thA/6NkVAY1cGd1pSHecYI8P5NeROmQsoAPLQ7sO/LmFke29YmYthZS55djMTw9qi6L4EVhZixX1ziahKP/dl9fzbGX4fNhYSjVd2dbIxR5/m8qGu3X3dOOcmEWmdWCzCAH8P7Ai/X+FzT0Y/wsnoR6jvaoPxXX0wsoNXlf6YQESkKb0Hdh9//DGOHz8OPz8/vPTSS2qPK29qvblz5+L48ePaLk+nmjdvjpMnTyqWPDYzU/3lv379utI5VEN1eQs4u/LZIg6FucC51cDzHxu2LgCIPQUcWgTEn6v4uS2GAmITmUetdgtg3E5gw2Agr9g8S1E75MHj4J+M9rm0reeM36Z0welbj/DtwRu4eC+t1DGX4tIwdu1ZdG3oijn9mqJ9fWf9F1pNVKc5xshwBEFAzKMsXLyXhvB7j7HzomYfLK/cT8eV+1EVupZELIKVWfGA79l966ePLYvdtzKTKMK/tOx8rA2JUbtAhACUG9Z5OFih39P56Do1cIEZ59ckIh2bEtgQuyMelPmHEBHkc2aqOuRuSjY+/+cqlh68gRHtvTC+qw8a1+JoKCLSHb0GdtHR0Th+/DhEIhG+/vprWFion8hTJBJhwYIFpbanpqbixx9/REhICK5fv45mzZrpsmStCgwMxMmTJ5GVlYULFy6gc+fOKo8rHkQGBAToqzytiYpS/tBQfAJGqgDHuoD/KODS78+2nVsNBLxnuIUPEi7Le9Td+q9y54vNgK5vabcmXfNsC7y2Ddj8svKw34jN8u/DgCD5b3ZGqltjN+xo5IrD15Lw3cEbuJ6YUeqY0DspGL7iNHo3q4X3+zZVCpjYY6x8pjDHGBmnJ9kFiIhPw8V7qbh4Lw0RcWl4kqOfXulSmYCsfKnGveC0oYGbrWJl11Z1HfmeQkR6VTS/ZXkrSXf0ccHmM3ex5dw9pKpYXTY7X4qNoXexMfQunmvijte7+cCLHYOJSAf0Gtjt2LEDANC0aVMMGjSo3OMXLlyocvuZM2cQFhaG7du3Y/78+VqtUZeGDh2Kr7/+GgCwfv16lYGdTCZTrCDr5OSE559/Xq81kpEJmKEc2OWkyueL6zJNv3Wk3AaOfgVc+VP9MbVbAo16A2d+edYrsDixGTBsFeDhr7s6daV+V+CV34HfRwHSYovGnFslD+36qH6vMhYikQh9WtRGr2a1sOfyA/zvv5uITSk95+Dh60k4fD0JL7X2xOBWdbAvKpE9xsph7HOMkfEolMpw42EGLt5Lk9/iUjVefMGUtahjjwEt66BfSw/41rLj8HsiMqghberCt5Z9uStJf9i/GWb09sXuSw+w/lQsriWoXtH6xM1knLiZjE+fc4V/HRs4WAFSqRQSCRM8IlMkk8kglcr/mGkMP8d6DexCQ0MhEonw4osvVqmdYcOG4dy5czh3rhLD8QyoU6dO6N69O06ePIm1a9diwoQJ6Nq1q9IxS5cuxbVr8vnA3nvvPZibc36EGq1Wc6BJf+Dm/mfbQn8GOk7Wz6IHGYnA8W+A8A2qQzgAcPYBnv8UaDlcPjy01UggdLl8ZduCbPnQ0RZD5T3rTDGsK9LoeWDURmDrWOWvRcj38tDuuTmGq01DYrEIQ9rUxUD/OvjrQjyWHY5WORH8nksPsOfSA6Vt7DFWmlQm4Kcj0RrNMbY2JAZLR7XWU2VkDJLScxH+NJiLuJeGy/FPNJ7svKJqO1iigZstcgpkyCuQIrdAipwCKXILZMgtkCKvUKaT62riz+nduPADERkVTVeStjKXYFQHb4xs74Ww2FQEn47BgaiHkKr4fz/yYS6cLUVo4CZGzIMkeHnU4nycRCYoMzNTMT2btbW1gavRc2AXGRkJoOrDPFu3ln/oKTn0UtdCQkJw69YtxeNHjx4p7t+6dQvBwcFKx0+cOLFUG8uWLUNAQABycnLQt29ffPzxx3j++eeRk5ODP/74A6tXrwYANGnSBO+//75OngeZmID3lAO7J3FA1N/yYExXctKAU8uAMyuAwhzVx9jWAnp8CLSbAJgVG97u4Q8MWwEM+UV+rpm10c7zVmFNBwAvrwb+nAz5LE1PHfkcsLDTf8/HSjKXiPFKp3oY2rYufjt7D8uP3kJKVn75J+JZj7HGtezg5+mo40rV09dQ3Sc5BYh7nI24x9m49zgbcanZuPc4B/FPtxWUE9YV2XkxHiIIaOJhD9/a9mhS2x6ejlY1vreRsQ65rmhduQVSRD148rTnXBoi7qXhfpqa904NuNtbol09J3g6WmNj6F1Iy5jX10wswvqJncrswSmTCcgrlBUL8uRhXk6BVB7wFT59nP/sfq7iOOXwLye/EEdvJKudv64466cLXBARGSNNV5IWiUTo1MAFnRq44EFajsrhsmfjc9HNy0o+rcHjFFzLyYO9vSPcHW3hYG1e4/+/JzJ2MpkMmZmZSExMVGyzt7c3YEVyIqG81R20yNHREZmZmQgJCSnVs6zI1atX0apVK4jFYuTnq/4AGR4ejg4dOsDBwQFpaWk6rFjZxIkTsWHDBo2PV/el3bNnD8aOHYv0dNVdq5s0aYK9e/eicePGlarT0FStEhsdHQ0AiIuLg5eXlyHKMl2CAKx9AYgPe7attj8w7aT2504ryJHPk3fyeyA3TfUxlg7yELHLdMPNpWdo4ZuA3e+U3j74J6DdeP3XU0VZeYVYfyoGq07cQUaump6UJYhEgKejNWo5WKK2vRVqO1iiloMVatlboraD1dObJRy1/Euqthd3yC+U4UFaTrEwLvtpQCffpsv5xGwtJGhc2x6+tezQpLYdfJ/er+tkXe1/sTfWRTo0qUsQBNx7nK2Yc+7ivVRcTUhHgbRyv05ZmInhX9cRbbyd0LaeE9rWc1YKc1XNkVikaL4lffd4nb0tQqOVFoe382LPUiKqlnILpNgd8QDrTz8bLjuqhR3a17GEi60FnG3MIRb9v737Dm+y3P84/k6a7hYKlE3ZVKAgG5kCDpSjMkTR40AQ8biPW0GPuDc/9aCiHBD1eFzgQEQFF1OQVTbIKpsCZbSlu01+fzx0BJI2bTPbz+u6ejV9cufJNyWk7Sf3fX9NYDJhNpsJtpgJDjJTtX+6iwSugoICu/wmPDycZs2aufw7ecl9+92ZeXg1sAsNDSU/P5/Vq1fTpUuXCp8nMTGRbt26ERwcTE5OjhsrLJ27AjuAvXv38tZbbzFv3jwOHDhASEgIrVu35tprr+Wee+4hIiLCHSX7hAI7D9g611iKWdJNX0HrS9xz/oJ8o4nCwpch/bDjMZYw6Hk79HsAImq7534D2Z/vw4+PnnXQBCOnQ8drfFJSZZ3IyKHnC7+WucSzPEIs5hIhXij1osNKhHzFQV+NMEuZPxArElzYbDZSTuey/+SZWXLHSwZzWRxOzXJpppA3eSLI86eZbP4YQJVVV5DJxOUd6pOdZyVx/ylOuDgj1ZFmdSKMcC7OCOfaNaxBiKX0WchbDqWVud+SN205lMbQt5eW+lphMZv47p5+2rtRRKo0m83GyqQTfPjHHuZvTmZQ83AGt4zAZDJmGYdYzEZwB5hNEBFiISo0SJ2xRfxYeHg4TZs2xVyOVWJVIrBr0KABx44dY/78+VxyScWDhl9++YXBgwdTr149uymL4p889eStVqxWeKcHHC9ekk2LC+GWuZU/79Y58Nvz9ucuyRQEXW6CAY8ZnWul2JLJRtfckkxBcN1/oW3l9ur0hczcfNo/Nd8n9x1qMdsFePULg70z4V56Tj53/29tqQFBkMnEbf1bkFtgtZsl56l9w7ytIkGev81k82TQU2C1kVdgJd9qI7/ASl7Bma8LbORZz3wusBaNKbquwEpSSgYv/rDV7eFtVKiFznExRbPnOsfFUCcqtMLnU/AqIuK/Dp7K4r/L9zJ/4wEaRpiIrxNMnfAgwiznvl7Xjgyhca1w6kSGODiT8TMtyI+2ihCp6oKCgggPDyc6OprIyMhyv0nuqczDq3vYFQZ2iYmJlQrsNmzYUHQ+kWrBbIY+98Hc+4qPJS2Gg2uhcdfyn89mg92/wy/PwOF1zse1Hw4XPQmxbcp/H9VB/4cgN8MI7grZCmDWGLjhC2h1kc9Kq4gwSxDhwUE+Cbhy8q3sO7NPXEUV2Gy8v3i3G6symEzQsEYYcbUjaFo7wu5zdl4Bt3ywsswg8dZ+zUnPzmf7kXR2HDlNeo5rS49LysgtYP3+U6zff8rueGRIEK3rRZ3ZGy+KNvWiaVM/ijV7TvLQLPtAxV3NQ/ILrGTnFzc0yM4rICfPSna+/eec/AK7Md8mHnKpScfoD/6keZ1I8orCN0fB25nrzozx9UxJkwnOqx9tt7S1Vd0ot/7B5ep+S97gaqdFEZHqonFMOI8Pacv9l7RhzrqDzFy2h23Jp0q9TYvYSG7p3YyR3Zqw/0SWX73JJiK+59UZdnfddRfvvfce/fr1Y/HixRU+z8CBA1myZAm33347U6dOdWOF4gmaYecmednw1vlw+kjxsfbDYZTry7QBOLAGfn3aCPycaTkILn6qYmFgdWOzwU+Pw5/v2R+3hMPNX0OzPr6pq4Jc3ZtqUNt6XN8jjqPpORxNy+ZIWjZH0nI4kpbNsfQcl5tY+IsaYRaa1okgrlZxGFcYzDWKCSO0lI3zyzvTyGazcSQtxwjvjp5mx5H0SgV5FWU2wbBOjYgKC7YP3hx8NhoTFH921CGvuqkTGVIUzHWJi6Fjk5pEh1XPzu7+NPNPRMRf2Gw2/kw6wYfL9rBgS3KpbyyFWszkFlhx9Je5Zi2L+L8qsSR2zpw5jBgxApPJxIIFC7j44ovLfY5FixYxaNAgTCYTX3/9NcOGDfNApeJOCuzcaOkb8MvTxV+bzHDPaqjTquzbHvvL6Ga6tZRltI26wiWToOXAylZavVitxuzHxP/aHw+Jhlu+C6jg011LFnPzrRw7bQR4R9OyOZqeYxfqHU3L4Uh6NqcyPdfUoaTgIBONY8LPmSXXtLYR0tWMqFzQ4o49xhwFeTuOnmb7kXSXm4GI5716TUd6t4ylSa2q3xxERETc48DJTD5ZsY/PV+2r0O8+2hdUxL9VicDOZrORkJDAtm3bqFu3LkuWLCE+Pt7l2+/evZt+/fpx5MgR2rRpw9atW/XLsh9S0wkPyjoFb3SA3PTiY93HwZX/5/w2qQdg4Uuw7lOwWR2PqdPGmFHX7ir3d56tLqwF8PV42PSV/fHwWjDmB6jf3jd1VYA396bKzivgWHoOR9NLhHnpJUK9tGySU7NIz3Ftma7ZBFee35BmdSKNWXK1ImhaJ4IGNcK8sheMJ2YaFQZ5O46ms/3IaXae+awgr/yCg0xYzGYsQSaCg8xYzCYsZhOHU7Nx5Zeh8OAgNj9zmWaRiYhIhWTlFjBn3UE+/GMP25LTy75BCeq8LeK/qkRgB/DDDz9w1VVXARAZGckLL7zArbfeSmRkpNPbZGVl8eGHHzJx4kRSU1Mxm83MmTOHK64IvE3dqwMFdh624En4Y0rx10GhcPcqiIkz9rorlHEclv4frPwPFDjpplyjMQycAJ3+DkH+sS9SQCvIgy9Hw18/2B+PrAe3/uTaTEg/4W9dKf/5eSJz1h0qc1x1+mXWZrNxNN2YkVcyyPsrOY3TLgac7mQ2QVhwEGHBQYRazEWfQ4ODCDvzeceRdA6nZpd5rk5NanJt9zhCgoxwzRJkJth85nPJsK3E12eHccFnbht85pjFbHL6Jp+rS8Gr0/NLREQ8x2azsWL3CWYu282CLUdduk1IkJmNTw8mNNj5Nh0i4htVJrADeOWVV5gwYULRL85RUVH079+frl27UrduXaKiosjIyODYsWOsXbuWJUuWkJ6eTmGpzz//PBMnTvR22VJBWhLrZmmH4M3zwXrWdPrgCGg/DLqNhaRFsOzf9jPxSgqvBf0fhh63QXCY52uuTvKy4bPrYPdC++M1msCtP0JMU5+UVVH+sjeVJ7uLVjUFBVYSnp5Pdp6TGbUlBJlNXN+jCeHBFkKDzYRZgozPDkO3oFLHBAeZy7w/f/139Ne6RESkasvMzaf9U/NdHl8nMphrusdxXfc4WtaN8mBlIlIeVSqwA/j444+58847ycrKMgopZRleYYnh4eG88847jBkzxhslipsosPOAmX+DvcvKf7vgCOh9N/S5F8Jqur8uMeRmwH+vhv0r7I/XamHMtItWh+uK8OZS3UDnzzPG/PXf0V/rEhGRqstqtZEwaT5ZeeWfGd+zRW2u7xHHkA4NCQ/RrDsRX6pygR3AoUOHmDx5Mv/9739JSUlxOq5OnTqMHj2aBx98kMaN9ctyoFFg52bJG2HaAGPPNFeZg6H7WLjwEYiq57napFh2Knw0FA6vsz9et62xp11kHZ+UFej8bamuv/L3GWP++u/or3WJiEjV5eqbbM5Eh1oY1qUR1/doSofGekNexBeqZGBX0ubNm9mwYQMpKSmkp6cTHR1NnTp16NSp0zl7oklgUWDnZt/cAes/c3GwCc4fZexTV7uFR8sSBzJPwIdXwNEt9scbnA+3zIXwGJ+UVRX4y1JdfxYIM8b89d/RX+sSEZGqx5U32UzgUnOkhEY1uL5HHEM7N6ZmeLDbahSR0lX5wE6qLgV2bmS1wkuNIS+z7LGmILh9ITQ83+NlSSnSj8DMy+HEbvvjcRfAzd9AiPOGOyKVpRljIiIi/s+VN9kSGtXgi1X7+WrtQU5k5JZ6vlCLmb91bMh1PeK4oEXtUrefEpHKU2AnAUNdYj0oNwNebOT6+ImHFAj5g1P7YeYQSN1vf7zFALjhSzX+EI/TjDERERH/5uqbbLn5Vn7deoTPV+1n8Y5jlPXXfIvYSEZ1j2Nkt8bUi9bvnCKeUO0Cu0OHDvHkk09iMpmYMWOGr8uRclBg50HlmWEXHAETDoK57M6N4gXHdxmh3ekj9sfjL4frPjFmROZngSVc/2YiIiIi1VR53mQ7eCqLWav3M2v1AQ6eyip1bJDZxMVt63F9zzgubFMXiwvd3UXENdUusNu8eTMdO3bEZDJRUFD+rjniP7Qk1s1c3cOu0w0wYqrn6xHXHd1qdPjNOmF/vGYcZB43gtjgCGg/zOjm26Cjb+oUERERkYBRYLWxdGcKX67az4ItyeQVlP4nfv0aoVzbLY5R3eNoWifCS1WKVF0K7CRgKbBzs+SNMG0gWPOdjzFbjP3rFPj4n0OJRvfYnLTSx5ktMOJ96HiNd+oSERERkYB3/HQO3yQe5PNV+9l59HSZ4/u2rsN1PZoyuH19woKDvFChSNXjqcxD82BFAk2DjkaQY7Y4vr4w6FFY558adYEbZ4GljD1ErPnwzT+MgFZERET8h9Vq7Ctstfq6EpFz1IkK5bb+Lfn5gQv56s7eXNutCeGlBHHLdh7nvs8S6fXSrzz93Wa2JTt+U9lqtZGZm4+1lG62IuJemmEnHqcZdh6SvBGWvwtbvi2xlHI49L5LYV0g+Hg47P697HFa2iwiIuIfkjfC8ndgyxxtYyEBJT07j+83HObzVftZv/9UmeM7xcVwfY84rurUiH3HM5m+dDc/bkwuaoYxpGMDbuvXUh3nRc7QklgJWArsPMxqVbOCQKPmISIiIoFl42xj5rujLUm0jYUEkK2H0/hi1X6+STxIalZeqWNDgkzkWW0OO9FazCYmj+rEsM6NPVSpSODQklgRccxshpBIBTqBJD/LtbAOjHH5pXf9EhEREQ9K3ug8rANtYyEBpV3DGjw9NIE/J17MW9d3pk+rOk7H5hY4DusA8q02HvpyPVsOlbEvs4hUmN/+hV+rVi1Gjx7N6NGjfV2KiIh7WcKNmXOuWv4O5Od4rh4RERFxbvk7pTf7AuP65e96px4RNwgLDmJY58Z8Or4Xix8ZxD2DWlO/Rmi5zpFvtTFjaZKHKhQRv10SK4ErISHB7uu8vDx27NgBaEmsSJFv7oD1n7k+vk4buGIytBzguZpERETEXnoyvNkRCnLLHmu2wHX/g2Z9IEx7e0ngyS+wsmj7MT5buY9fth516TZhFjNbnr0cs9nk4epE/JeWxIqIVCW973be6deR4zvg46Hw1W2QfsRzdYmIiFRnNpuxtHXRa/Cfi2Hyea6FdWDMsvvsOnilGbw/AH6aCNvmQeYJz9Ys4iaWIDMXt6vPv//exeXbZOdbueN/q9lw4JTnChOppgJqht2KFSvYtm0beXl5xMXF0b9/fyIjI31dlpRBTSdEnChtA2uT2fijAQcv0aE14eJ/QfdbwRzk8TJFRESqtPwcSFoC23+E7fMhdb+b78AE9ROgWV9o3tf4HBnr5vsQcR+r1UbCpPlk5ZWv+WPf1nW4Y0Ar+rWOxWTSjDupPqpdl9iSDh06xLXXXsuKFSsAsNlsmEwmQkJCuPnmm3nmmWdo2LChj6sUZxTYiZQieaOx582Wb40GE8ER0H449L4LrAXw/QNwaK3j2zbqAlf8HzTu6s2KRUREAt/pY7BjPvz1I+z6HfIyvHv/ddsaS2eb9YXm/SC6gXfvX6QMD365jq/XHqzQbTs0rsEdA1oxpENDgrRUVqqBah3YjRw5km+++Ybzzz+fG2+8kTp16rBv3z5+/PFHVq1aRb169Zg1axb9+/f3danigAI7ERdYrUY3WEu4fcdfawGsmQm/PAs5qQ5uaIIet8FFT0J4jLeqFRGRqsTZz6CqxGaDo1uMgG77T3BgNQ5nsTtiiTjTsb2U8SYz1O8Ix7a6voS2pNqtzsy+62cEeTFx5T+HiBttOZTG0LeXkm+teFzQvE4E4y9syciuTQgL1qoQqbqqdWBXo0YNWrRowZo1a7BY7Pd8WrRoEbfccgsnTpxg9erVxMfH+6hKcUaBnYgbnD4KC/4FGz53fH1kPbjsBeh4LWgJgoiIuCJ5o9EBdcucErO8hxn7rDbo6OvqKi8/B/YsNQK67T/BqX2u3zamKcQPgfMuN0K0rd8538bCbIER70PHayAvCw6ugT3LYO9S2L/qTNhXTjFNjfstXEJbq3nZP9/9NXj117qkTHPWHeShL9c7DO0sZhPPj+jAyYw8PliWxLH0HKfniY0KZVy/FtzYqyk1woI9WbKIT1TrwC4qKoo777yT1157zeH1e/bsoVOnTlx55ZX873//83J1UhYFdiJulLQE5j0EKX85vr7FhfC3yVBXb16ISDWnkKB0pe2jWjKACjQZKbBjwZmlrr9B7mkXb2iCJj2MgC5+CNRrd25AVto2Fs4CzvxcY2uLPUth7x+w/89y1FRCjcZGcNesj7GEtk7r4vr8NXj117qkXLYcSmPG0iR+2HiYrLwCwoOD+FvHhozr14L2jYxuyNl5BXy99iDTFu9iz/FMp+eKDrVwY69m3Nq3OfVqhHnrIYh4XLUO7Lp370779u35+OOPnY4ZO3Ys33//PceOHfNiZeIKBXYibpafC8unGB3sHL1rbw6Gvv+ECx+G4HDv1yci4ksKCcqWvBGmDXQc1hUyW+D2hb79nrkSutpscGxb8VLX/StxealrSBS0GmQEdG0GQ1Rd99XlTEE+HF5vzL7bswz2LYectPKdAyCqvhHeBUcYs++tDpoD+DJ4raqBcDVmtdrIzi8gzBKE2cm+dAVWGz9tSua9RbvYeNDRVi6GkCAzI7s14fYLW9IiVk0kJfBV68DunXfe4bHHHmPDhg20bNnS4ZhHHnmEqVOncvp0Bd6xEo9SYCfiISf3wI+PGX+gOBLTDP72OsQP9mpZIiI+o5CgbFYrfHkzbPu+7LE146DVRRBRG8JrOf9w95tDZYWu+bmwd5nx8++vH+HUXtfPXTMO4i83ZtI17w+WUPfWXl7WAuPx7l1mzMDbuwyyTrrv/CYz9LoTohoAtuIO9Od8pozrHX12dBuMhh6bZoHN6rwufwiExWNsNhvLdh5n6qKdLNt53Ok4kwn+1qEhdwxoRccmNb1YoYh7VevA7vXXX2fGjBlkZmby6aef0rdvX7vrCwoK6NatGzExMSxcuNA3RYpTCuxEPMhmg23zjOAu7YDjMW2vhCGvQE393xORKixQZo15U24GHNkCyRvgyCZIPvOR73zJWoVYws8K8WKKL5cW9gVHnLvstLTQ1WSGRl0hZXs5ZqWZoHG34qWu9RP8e69Xq9VoXFG4B97ePyCjiq4giqwH7YcaHXNj46HuecbMQX/+95Fy23DgFO8t2sWPm5IpLXno1zqWOwa0om/rOpj0HJAAU60DO7PZjMlkwmazYTKZ6NWrF4MHD6Zp06akpqby2WefkZSUxPz58+nSpYuvy5WzKLAT8YLcDFj0ijEjwdEfOcGRMPBx4132IG32KyJVTHYafH4D7FlS9th6CcaeY7VbGh9VISCw2SDtoBHGHdlohJfJm+DEblxeHuoLQaH2AZ4pyAipKltzcIQxMzD+coi/DKLquaVcn7DZIGVH8RLavcsg/bCvq/KcsJoQe56xF2/dtmcun2fMjNRelAFt97HT/GfJbr5ac5DcAuezLzs2rsmdA1txWUIDgpwsvRXxN9U6sPv+++9Zt24diYmJJCYmsmfPHgC75L1Pnz4MHDiQTp060blzZ1q3bu2jaiUhIcHu67y8PHbs2AEosBPxuCNbjKYU+/5wfH299nDlG9C0l3frEhFxp4J8oxPn7t9h1+9n9i0rZfldaYIjoFYLqN2iOMSr3dL4ukZjMAe5tfRKN8PIzzH2bEvedGbW3EbjszuXUQaiGo3PLHUdYix1Da6iG9rbbEYQu+s3+OFhX1fjPcERRqONum3tw7zaLSr+RqQa0/jE0bRsZixL4n8r9nE6x/mM6Baxkdx+YUuu7tqYUIubX4dF3KxaB3ZnS01NJTEx0S7E27ZtG/n5+UUhXmRkJOeffz5Lly71cbXVjwI7ER+z2WDdp/DzvyDTyb4hXW6CS56FyDrerU1EKq46/3Fps8HxXcUB3Z4lFduov7yCQqBW8+IQr1aL4jAvpmn5goKKNMPISCkO5ApnzaX8VfqyX3eq3wGa9jbCwKKPE8bnbOcbyntNo65GQBd/ufE9DPSZkuVhtcJLjY3nUllMZmgx8MzrhunM98nZZ8q4vozPNmCjkyYYnmAOhjqtipfUFi6vjW3jfG9FNabxC6lZefzvz718sHQPKadznI6rGx3KuH4tuPGCpkSHnfua60ozDBFPU2BXhpycHDZu3FgU4q1du5aNGzeqCYUf0JJYER/JPAG/PA1rP3J8fXgtuPRZ6HxT9fvjXySQVNc/LjOOQ9JCI6DbvRBS9/u6InumICO0KwzwSs7Oi2lmP8OrrGYYw6dCw04lwrkzAd3pZDfUaYY6bYznSoMOUL+jcZ//G1m5/f6sBUZoZxfmnTR+9px9zC7sO4Vblunel2h8r6uzb+6A9Z+VPa7TDTBiqufrKeRqXQ3ONwK2Y9uMZb/5WW4swgS1mhUvqS0M845uge8fUGMaP5KdV8BXaw8wbfFu9h53HkBHh1m4qVczxvZtTr3oMLYcSmP60t38uDGZrLwCwoODGNKxAbf1a0n7RjW8+AhEFNhVSOGed+JbCuxEfGz/KuOX0yMbHV8fdwFc8X/GH3JSNVXnmVmBrjp1Pc3Lhn3Li2fRJW8o3+1N5tK7Uhaq0QRCo+FkEuRnV6zWsosxlmjWbgFhMfDXPNdqq6zQGsasuAYdjKCtfgeo187xTCNfPbesVsg5O+g7ZcwIn/8EWPPKPkdwBEw4qNczf220UpG6rFYjlD/2lzGL9Ng2OLbduOzN2ZzVrTGNHymw2vhx02GmLtzF5kPOZ1CHWMx0b1aLP5NOUGA9N8qwmE1MHtWJYZ0be7JcETvVPrBbuHAhP//8M6dPnyYuLo5OnTrRtWtX6tTRci5/p8BOxA8U5MPKafD7C5DrYOaxKchoSDHwceMP2UIKegJbdZ2ZVVX46x/j7mK1GrPJCgO6fcvLH6DVS4BWg6DlIAirATOHuP79slqNGWwndjv4SHL8WulPYpqdmTV3Jphr0NGY8VeeN6uTN8Lyd2HLtyVeI4YbTTl88Zzy1xlj/sxfQ3131WWzwekjZ4K87WeCvL+Mj4yj7q8b9PzyMZvNxtKdKUxduIs/djnZ2qUMFrOJ7+7pp5l24jXVOrCbMmUK999/PyVLLZw517hxY7p06ULXrl3p0qULQ4cO9VWZ4oQCOxE/knYIfppg/HHmSHQjuPwlY5nRincV9AQyf/0jLhD4Iqi22SD7lPF/NO0wpB+CP6c5nxlbUtPeMGgiRDeE6Ab2obs3lOf7lXqwOKBLWgQZx8p3X1ENigO6lgMhur799e4MCTJSzg3yTiYZn73Z4MESZjQMatDBWEJYvwPUTzACSnfxlzdnqnpI7Sn+Frx6q66sk8YsvGPbzoR5Z4K81H2VO29QCDyy0+hYKz61fv8p3lu0i582J1Pe1GJk1yZMHtXJM4WJnKVaB3YtWrTgxIkTvPvuu3Ts2JEDBw6wfv36ooYTu3fvLlr+WlDgpQ1OxWUK7ET80M5fYN7Dxh+fDplwuMeQgp7S6Y/ewOapGYkF+cYMkbRDRhBXGMiVDOfSDrtv/6bgSCO4Kwzwij4aFn+Oqg+hUZW7H1e+XznpsGfpmX3ofjf+qC7vY2ne1wjoWg0y9qAqawaZN8KLzBNnwrvCjxKhXmVm/UTVN0K5Bh3OzJo739hQ392dav2Z3myoOH/5GXQ2b9eVm3EmwDuzpPbYX3B0K5zY5fo5giOh0/XQY5wRkItP7Tp2mv8s3s1Xaw6Q52AZrCMmE1zdpTHtGtagXcMatG0QTZ2oUA9XKtVVtQ7soqOjGTNmDFOmTHF4fXp6elHX2Pvuu8/L1UlZFNiJ+Km8LFj6hvFRkOv67RT0nMvbS08L8o39njKOGeFARgqcPnrm62Ow6zdIP1z2eTpeCyOnu7++QFTRkCDntPG9Tjt0ViB3GNIOGpczjnpn/7LyCok+K8yrf26oF90QQiLOvW1p3y9TELS90njcB1aVr6OpyQyNuhQHdE16giWkYo/PV+FFTroR4p1MguM74fcXXfseBIfDhEP+FbT4ir/OGJPAVZ6uumeL62UEd+2HgUWBjy/tSclg4OsLK3z7utGhtG0QXRTgtW1Qg9b1ogix6HVXKqdaB3a9e/emY8eOTJs2zdelSAUosBPxc8d3wbyHjNkvrtL+LsXcNRskN9NB+OYgjMs4ZszucUeXRYDaraFRZ2h4vtGlssH5EFHbPecOFK7MSDSZjY7KtoIzwdyZkC7H+cbYVUZoTfuZeuYgWP+5+0LIWs2LA7oWFxodrKsS7ctWcf46Y0wCk6v/F52JqANdboJuY42GMuJ1VquNhEnzycpz36o6i9lE63pRRoB3Jshr17AG9aJDK9XA0mq1kZ1fQJglCLNZjTCrumod2H322Wc8/PDDbNmyhZo1tZdAoFFgJxIAbDbYNBu+Go9LQZA69BlcWnoaBFe8YSw/dBS+ZRyD08cgL8NrZZepZtPiAK/wI7qBr6tyv+xUYybU/Imwd5mvqykWEQs1GhqzKNMOlT0+tAZgMjpvBoKwGGg5wNiDruWgqv+Hr5aoi/gHV/4vUhislPa7kAlaXwzdx0H8ZdVrybofePDLdXy99qDH76dWRDBtG9SgbcNo2p35HF8/mrDg0v+9txxKY/rS3fy4MZmsvALCg4MY0rEBt/VrqSYYVVi1DuwA7rzzTrZt28YXX3xBvXr1fF2OlIMCO5EAkZsBLzZyffyEg5XfAyvQVfbd+kASWa9EgHcmzItpVr6OlGfz9OwZq9WYCXcyCU7uKV6mWPjZm40DwNjIPLqB0dylxpmP6IZGOFd4LLpB8ZKr8gY9uZlG19P0ZONxpx858/nM16ePGJe9PSvQHAxNexkBXatB0LBz9fsDV/uyifgHV/4vNu0Faz6CtR8Zr5ulqdEEuo2BrqPPbYIjHrHlUBpD315Kfil72QWZTNzWvwUnM3PZlpzOX8np5ORXfla42QTNYyONAK/EjLwmtcIxmUzMWXeQh75c77A2i9nE5FGdGNa5caXrEP9T7QO7qVOn8vjjjwMwdOhQLr74Yrp27UpCQgJBQdXsl74Ao8BOJECUd3+Xpn3goieNDeGro8rsh+M2JmOJTmRdiKprfI6sZ8wWS97g+bsPq2ksoS05E69O67LDGHfu+ZefAyf3lgji9hRfPrUX8rMr/PDKJazmmdCt4ZngrVGJIK4h1GgM4bXLH0x6IujJOX0mvCsM85KLLxceTzvsnlmf130CrS6CkMjKnyvQaV82Ef/g6v/FgjzY9j2smgF7lpR+TrPF2Luzxzho3r9yb2ZJmcobjBVYbew5nsG2w+lsS05j65nPB066p9lTdKiFuNrhbE1OL7WbrcVs4rt7+mmmXRVUrQO7CRMm8Oqrr3J2qSaTidDQUDp06EDXrl3p1q0b48eP91GV4owCO5EAUpEZYy0GwKAnoOkFnqnJH2WdhD/fg4Uvu//cQaHnBnCRsRBV78zXZz6i6hkBUJDl3HO4OjNr+FTIPQ2H18PhDXBkMxTkVK7+4Aiju2XJmXh12xU3DqhIAJV5wj6IO5kEJ/YYx9IO4rb9/MpiCjKWQNV0EMh5MpDyVdCTk37uLL20w7DyfWMvv7Jo6bxj2pdNxD+U5//ise2w+gNY/6mxnUJpYuOh+63Q6e8QHuO2csXelkNpzFiaxA8bDxctPf1bx4aM69fC5UAsLTuP7cnpbE1OZ9vhNLYeTuOv5HQyct23R97ZRnZtwuRRnTx2fvGNah3YNWzYEJvNxuzZszn//PPZu3cviYmJrF27tqg7bHp6OiaTiYICz/3nEtckJNi3Ps/Ly2PHjh2AAjsRv+fS/i5OtL4EBk6EJt3cXpbfOLUPVkw1lsqUd/ZR7VZG101n4Vvh5dBo97wzX5FgrCAPUrafCfDOhHjJG4xQrzLMwVCvHdSMg+0/lt6swGSGTjdC3unicK6sP44qw2Q2/lhz5d/T100B/CXoURMFEamucjNh01ewegYcSix9rCXc+DnbY5zR/Vo8wt3NHaxWGwdOZrE1Oa1oRt625HT2HM8odfacq8KDg9j8zGVqRFHFVOvArkaNGowfP57Jkyc7HbNjxw4SExMZNWqUFysTRxTYiQS40oIek9nYMD7rhPPbxw+BQROMmVVVxeH1sOzfsPkb12YWnc1XwYU7ZmZZrUZodnhdcYh3eH3pzwF/Ywk3OpHWbgG1WthfjmkKKX+pKUB5qImCiAgcXGsEdxu/Mt5MKU2jrkZwl3A1hER4pz5xq8zcfLYfOc22w0aAt+VwGtsOp5GWXf43ub++sw9dm1WxjujVXLUO7AYNGkTTpk356KOPfF2KVICWxIoEoNKCnth4WPsxLJlsLJFzpt1VMHAC1E9wPsaf2Wyw61cjqEtaVPHz+ENw4e6ZWTYbpB4wZt+VDPHSXeho6ikRdYwArjCIKxnORTcoe9aimgKUj75fIiKGrJOw/nNjr7vjO0ofG1YTOt9oLJmNbeN4jL/MppYy2Ww2Dqdms+VwKnd+spa8Atejlb6t63Bbv5YMiK+r2XZVQLUO7H766SduuOEGNm3aRKNG5ehgKH5BgZ1IACvtl8a8LFjzISz5P8g46uQEJkgYYQR3deM9Xa17FOQZy13+mAJHNjkfZzIbIWb9BFj4koILgNPHIHm9fYh3Msk95zaZjSW1tc+EcGeHcmFu2MBZTQHKR98vEZFiNpvRnGLVDKNZRVnbi7S40NgXte0VEBTs3oZM4nUPfrmOr9ceLPftWteLYly/Fozo0piwYDXTDFTVOrB79913WbBgAbt27WLWrFm0bdvW1yVJOSiwE6nicjOMX06XvQmZxx2PMZmh47Uw4DGo08qr5bksOw3WfmTsUZdWyi9cwRHQdTT0utMIikDBRWmyU43vz6FE+HmSa0uKTUFwwR1GIFdy6WpQsOfrBc1uKC99v0RE7KUnw9r/Gm9sph0ofWxUA2jSHbb/pDf/AtiWQ2kMfXupw861rqgTGcLNvZtxU69mxEaFurk68bRqHdiZzWZMJhM2m42goCD69evHxRdfTJcuXejSpYtm3fk5BXYi1UROOqycZiwhzT7leIwpyOiaNuCR4rDL19IOGR1fV8+EnDTn4yLrwgX/MN4Nj6jteIyCi9KpWYGIiFQnBfmwYwGsmm5ss1FR/rC9hpRpzrqDPPTleoehXZDZxOD29Vm15wQpp3OdniPEYmZk18aM69eC1vWiPVmuuFG1DuxmzZrF+vXrWbduHYmJiRw+bOyZZDqzH03dunXp0qULXbt25YUXXvBlqeKAAjuRaiY7FVa8B8vfdh6AmS3Q5Sbo/zDExHm3vkJHthjLXjfOAmue83F1WkOfe+H86yE4zHv1VUVqViAiItXVid3Gm4OJn1SscZPezAoIWw6lMWNpEj9sPExWXgHhwUH8rWNDxvVrQftGNcjOK2DOuoNMX5LEjqOnSz3XoPPqclv/lvRpVaco+xD/VK0Du7OlpKSQmJhIYmIi69atY926dWzfvh2bzUZBQQW694lHKbATqaayThp7sayYCrlOfiEJCoGut0D/B6GGF2ZLF+4vs+zfsPPn0sfG9YK+9xldbzVbzn3UrEBERKqzvGxjn7rVM2D/n67fLjgCJhzU7yQBwmq1kZ1fQJglyGFTCZvNxqLtx5i+JImlO1NKPVe7hjW4rV8LrurUiBCL/v39UbUK7NasWcP5559PcLDre9VkZWWxYcMGLrjgAg9WJhWhwE6kmss4Dn/821gum5fpeExQKPQYB33vh+j67q+hIB+2zjGCusPrShlognZXQp/7IK6n++sQg/b8ExERgf2rYMYlro/vcTt0H2M0vJIqY+vhNKYvSeK79QdL7TRbLzqUW/o058YLmhITEeLFCqUs1SqwM5vNhIaGsmXLFlq0aMHUqVPp3LkznTp1IiIiwtflSTkpsBMRwOgguuxNYx+X/GzHYyzh0HM89P0nRMZW/j5zM4ylJ8vfhlP7nI+zhEHnG6D3Pf7bFKMq0p5/IiJSnVmt8FJj529oOtOoC3S5GTqMhPAYj5Qm3nc0LZuPlu/hkxX7SM1yvl1LeHAQ13Zvwq19W9A8NtKLFYoz1Sqwe/TRR0lMTGT69Ok0a9asqOmEyWSidevWdO7cmS5dutC5c2c6d+5M/foemI0hbqPATkTspB2GpW/AmplQ4GTT3eBI6HWHEaA5a/BQmtNHjRl9q6YbS3OdCa9tBIQ9xkNU3fLfj4iIiEhluNqQyRFLGLQbauwL3Ly/3vyqIjJz8/lqzQFmLE1iz3HnYa7JBIPb1+e2/i3p3qyW9rnzoWoV2J2trKYT9evXLwrx1HTC/yiwExGHUg/Aksmw9r/Omz6E1oBed0GvO+3fQXY2Mytlh9FIYv3nUJDj/L5rNTfCwM43QohmbouIiIiPuNKQyRUxTaHzTcaKAV819BK3KrDa+HXrEaYvSWLlntIblXSKi+G2fi0Y0qEBliAFt95WrQO7s6npRGBRYCcipTq5Fxa/Bus+BZuT1/Cwmkan1uYXGjPztswpsffZMONd5W3z4K8fgFJ+rDXqajSSaDcUzEEeeTgiIiIi5VJWQ6ZLnoHM48ZMvPTDZZzMBC0HGrPu2l6pDvdVxPr9p5ixNIl5Gw9TYHX+u27jmHDG9m3OdT3iiA47tydAWc0wpGIU2JVBTSf8lwI7EXHJid2w6FXY8AXYrO49d/zlRiOJZn2M9QMiIiIi/sSVhkwF+bDrN0j8L/z1o/MVCoXCYuD8UUZ417CThx+AeMPBU1l89McePvtzH+k5zmdlRoVauL5HHGP7taBxTDhbDqUxfeluftyYTFZeAeHBQQzp2IDb+rWkfaMaXnwEVZMCOwlYCuxEpFxSdsDCl2HTV5Q6W64sQSHGL6m974V6bd1WnoiIiIjHuNqQKSMFNnxphHdHt5R93gYdjUYVHa+t2P7A4lfSs/P4YtV+Zi7bw8FTWU7HBZlNnN+4JhsOpjqcmWcxm5g8qhPDOjf2ZLlVngI7CVgK7ESkQo5uhYUvGctfyyO0JvS4FS64A6IbeKY2EREREX9gs8GhREj8xFham5Na+vigEGh7hTHrruUgbRES4PILrPy0OZn/LEli/f5TFTqHxWziu3v6aaZdJVSbwC4zM5PVq1eXOiY8PJwePXp4qSKpLAV2IlIph9fDtEHO97crKSgYHtll7HknIiIiUp3kZcHW741Zd0mLyh5fo7HRpKLzjVC7hefrE4+x2Wys2XuS6UuSmL8lmfKmPCO7NmHyKC2brqgqE9gtX76c5557DoBx48YxcuRIu+s3b95Mx44dy2xJvGzZMnr16uWxOsV9FNiJSKXkZsCLjVwfP/EQhER6rh4RERERf3dyD6z7DNb9D1L3lz2+eX9j1l27oRASce71ri7VFZ/bezyDmcv28MWqfWTlubYvdHhwEJufuUyNKCrIU5mH1/+nTZw4kZ9++on9+/dz1VVXOR1ns9lK/Xjssce8WLWIiPiMJdzYeNkVwRHGeBEREZHqrFZzGDQB/rkBbv4GOoyEoFDn4/csMTrVTj4P5t4PB9YYy22TN8I3d8BLjY03UF9qbHydvNFbj0TKqVmdSJ4emsBvDw10+TZZeQVk57uwmkW8yuLNO9uxYweLFi3CZDLx0ksvERIS4nSsyWTiqaeeOuf4yZMn+fe//83SpUvZtm0bbdtqI3F/k5CQYPd1Xl4Z3YtEREpjNkP7YbD+s7LHth+ud31FRERECpnN0Ooi4yPzhNHUK/G/xpYjjuSkwZqZxkd0IzidDLYSs7TyMo3fyTbOghHvQ8drvPM4pNzq1wgjPDiIrLyyg7jw4CDCLNrP0N94NbD7+uuvATjvvPO48soryxw/adIkh8dXrFjBqlWrmDVrFv/617/cWqOIiPih3ncbvxhanbevx2yB3nd5ryYRERGRQBJRG3qONz4ObzCWy274ArJOOh6ffsj5uaz5xoy8uucZHWjF75jNJoZ0bMDXaw+WOfZvHRtqOawf8uo0hOXLl2MymbjiiisqdZ4RI0Zgs9lYuXKlmyoTd9q8ebPdx2+//ebrkkQk0DXoaLyLa3byPpPZYlyvXxhFREREytbwfBjyCjz0F1z7IbS+BChnYGPNh+XveqI6cZPb+rXEUkYQZzGbGNdPTUf8kVcDu40bjXXuffv2rdR5OnUyupds3ry50jWJiEiA6HgN3L4QOt1QvKddcITx9e0LtSRDREREpLwsoZAwAm76Ch7YBBc9CTHNXL/9lm+NhhTil9o3qsHkUZ2chnYWs4nJozrRvlENL1cmrvDqktiUlBQA6tev73SMyWTCbDZjLmUPonr16gFw4sQJ9xYoIiL+rUFHGDEVhr2jTmUiIiIi7lSzCVz4CPS8A152sctlXqbxO1lIpGdrkwob1rkxbepFM2NpEj9sPExWXgHhwUH8rWNDxvVrobDOj3k1sMvOzgYgLCzM6Zj27duTn1/KHkUYoR5AVlaW+4oTEZHAYTbrF0MRERERTwiJNFYx5GWWPTY4wngDVfxa4Uy71645n+z8AsIsQdqzLgB4dVpCrVq1ADh+/HilzlN4+8LziYiIiIiIiIgbmM3QfphrY9sP12qHAGI2m4gIsSisCxBe/Z/VoEEDABITEyt1ng0bNtidT0RERERERETcpPfdzpt9ldT5Bs/XIlJNeTWw69OnDzabjblz51bqPN999x0mk4nevXu7qTIRERERERERAc7sG/x+2aHd6g+8U49INeTVwO6yyy4DYNmyZfz6668VOseiRYtYvHgxAJdffrnbahMRERERERGRMzpeA7cvhE43GHvVAZiC7Mds/hq2Vm5Cjog4ZrLZbDZv3ZnNZiMhIYFt27ZRt25dlixZQnx8vMu33717N/369ePIkSO0adOGrVu3FjWgEP914MAB4uLiANi/fz9NmrjYcUhERERERER8z2o1usFmp8G7vSD7VPF1kfXg7j8horbPyvM7hd8vS7j2+KsGPJV5ePWZYzKZeP311zGZTKSkpNC9e3emTJlCRkZGqbfLyspi6tSpdOvWjeTkZEwmE5MnT1ZYJyIiIiIiIuJpZrPRPbZGQxjyqv11GUfhx8d8U5e/Sd4I39wBLzWGFxsZn7+5wzguUk5enWFX6JVXXmHChAlFgVtUVBT9+/ena9eu1K1bl6ioKDIyMjh27Bhr165lyZIlpKenU1jq888/z8SJE71dtlSQZtiJiIiIiIhUETYbfHY9bP/J/vjfP4fzhvimJn+wcTZ88w+w5p97ndli7AnY8Rrv1yUe56nMwyeBHcDHH3/MnXfeSVZWllFIKbPlCksMDw/nnXfeYcyYMd4oUdxEgZ2IiIiIiEgVknYI3ukFOanFx6IawN0rILyW7+ryleSNMG2g47CukNli7AnYoKO3qhIvqRJLYksaPXo0O3bs4IEHHiA2Nhabzeb0o06dOjzwwANs375dYZ2IiIiIiIiIL9VoBJe/aH/sdDLMf8I39fja8ndKD+vAuH75u96pR6oEn82wO9vmzZvZsGEDKSkppKenEx0dTZ06dejUqRMJCQm+Lk8qQTPsREREREREqhibDf53Dez8xf74jbOhzaW+qckXrFZjr7q8zLLHBkfAhINqRFHFeCrzsLjlLG6QkJCgYE5EREREREQkEJhMcNVbxtLY3PTi49/dZyyNDavpu9q8KT/LtbAOjHH5WUYDD5EyKNYVERERERERkfKr2QQue97+WPohWPCkb+rxBUs4WEJdGxscYYwXcYECOxERERERERGpmK63QMuB9sfWfgy7fvNJOV53aq+xPNgV7YdrOay4TM8UEREREREREakYkwmu+jeERNkf/+4+yEl3fJuqIjsVPrseCnJdG9/zds/WI1WK1/awu+iii7x1VwCMGTOG0aNHe/U+A8GpU6d46qmnWLVqFUlJSZw8eZLY2FjOO+887r77bq6++mpMJpOvyxQREREREZFAUasZXPoMzHuo+Fjqfvj5KbjyDd/V5UkF+TD7Vji2zfXb7PoVGnfxXE1SpXgtsFu4cKG37gqTycTAgQO9dn+BJCUlhQ8++IBevXoxfPhwateuzdGjR5k7dy7XXHMN48ePZ9q0ab4uU0RERERERAJJt1th87ewZ0nxsdUfGMtAWw7wVVWes+DJczvk1moJTbrBtnlnGlGYgBLLZRe+DOf9Deq392alEqBMNpuri60r55lnnvHG3RQZOHAgAwZUwReFSiooKMBms2Gx2Ge16enp9OrViy1btrBp0ya3duz1VItjERERERER8SMnkmBqH/uuqTHN4M4/IDTK+e0CzeoP4PsH7I9FxML434zZhlar0Q32yBb4YDDYrMXjGnaG236FIK/NnxIP81Tm4bVnyKRJk7x1V1KKoKAgh8ejo6O57LLL2LJlCzt37nRrYCciIiIiIiLVQO0WcMnT8OOjxcdO7YVfn4W/veqzstxq9yKY97D9saAQuP5TI6wDo7FESCTE9YA+98GyN4vHHl4Hf7wF/R9CpDRqOlEOR48e5fvvv+epp55iyJAhxMbGYjKZMJlMjBkzplzn2rdvHw8//DDt2rUjMjKS2rVr07NnT15//XUyMzPLPoGbZWdn89tvv2EymWjfXtNzRUREREREpAJ6jIemfeyPrXwf9izzTT3ulLITvrwZbAX2x4e+DU0vcHybgRMg9jz7YwtfNmbfiZRCczDLoX79+m45z7x587jxxhtJTU0tOpaZmcmqVatYtWoV06dP54cffqBly5ZuuT9HTp06xZtvvonVauXo0aP88MMP7N+/n0mTJtGmTRuP3a+IiIiIiIhUYWYzDHvbWBqbn118fM7dxtLYkAjf1VYZWSfh01FGZ9iS+j8Ena5zfrvgMBj+Lsy4tHhpbEEuzLkLxv2ipbHilGbYVVBcXByDBw8u9+3Wr1/PqFGjSE1NJSoqihdeeIE//viDX3/9lfHjxwPw119/ccUVV3D69Gl3l13k1KlTPPPMMzz33HO8//77JCcn89prr2npsoiIiIiIiFROnVZw0b/sj51Mgt+e9009lVWQB1+OhhO77I+3uwoGPVn27Zt0hz732h87lAh//Nt9NUqVo8CuHJ566inmzp1LcnIy+/bt4/333y/3Oe6//34yMzOxWCwsWLCAiRMn0rt3by666CKmTZvGq68a6/q3bdvG//3f/zk8R8mluK58OOrQ27x5c2w2G/n5+SQlJfHss8/yxBNPMHLkSPLz88v9uERERERERESK9LoTmvS0P7biXdj3p2/qqSibDX54BJIW2x9v2AlGvG/MKHTFwIkQG29/bOFLcHSre+qUKkdzL8uhsp1uV61aVRSejRs3jt69e58z5qGHHmLmzJls3bqVN998kwkTJhAcHGw35u9//zvp6eku32+DBg2cXhcUFETz5s15/PHHCQoK4tFHH+U///kPd955p8vnFxEREREREbFjDoJh78B7/aAg58xBm7EU9I6lEBzu0/Jc9uf7sGam/bGoBnD9Z0ZjCVcFh8Gwd+27xhbkwrd3wbiftTRWzqFnhBd9++23RZfHjh3rcIzZbGb06NFMmDCBkydPsnDhQi699FK7MVOmTPFIfYMHD+bRRx9l4cKFCuxERERERESkcurGw6CJ8EuJrZeO74TfX4TBz/muLlft+AXmT7A/ZgmDv38KNRuX/3xxPaD3PfZLYQ+theVToN8DlatVqhwtifWiJUuWABAZGUm3bt2cjhswYEDR5aVLl3q8rkKHDh0CwGJRjisiIiIiIiJu0PseaHzW37/L34YDq31Tj6uOboPZY4tnwxUaPvXcx1MegyZCnbMaPf7+onF/IiUosPOirVuNtemtW7cuNRRr27btObdxl3Xr1tl1py104sQJJk6cCMCQIUPcep8iIiIiIiJSTQVZjKWgQSHFx2xWo2tsXrbz2/lSxnGjI2xOmv3xgROhw9WVO3dwuBH6mUrEMYVdYwu0n7wU01QqL8nOziYlJQWAJk2alDq2Vq1aREZGkpGRwf79+91ax4cffsj06dMZNGgQzZo1IzIykr179zJv3jxOnz7NyJEjueGGG8p1zgMHDpR6/eHDhytTsoiIiIiIiASyem1hwGPwW4llsMe2waJX4JJJzm/nC/k58MVNcGqv/fEOI2HAo+65j7ge0Ptu+KPEdlcH1xgzD/vd7577kICnwM5LSjaJiIqKKnN8YWB3+vRpt9ZxzTXXkJqayooVK1i8eDGZmZnUrl2bfv36MXr0aK6//npMJlO5zhkXF+fWGkVERERERKSK6ftP2PodHF5ffGzZW9B+KDTq4ru6SrLZ4PsHYd8f9scbdzcaaJTzb+VSDXoC/voJju8oPvb7i3DeEKh7nvvuRwKWAjsvyc4unuobEhJSykhDaGgoAFlZWW6to1+/fvTr18+t5xQREREREREpVVCwsTR22kCw5hnHbAXw7d1w+0KwlP13ssf98W9Y94n9sRpN4PpP3d/VNjgchr8LMwYDNuNYQc6ZrrELjC67Uq1pDzsvCQsLK7qcm5tb5vicHKPtdXi4/7e63r9/f6kfK1eu9HWJIiIiIiIi4msNOsCFj9gfO7oZlrzum3pK2vYD/HzW8tzgSPj7ZxBd3zP3GdfTWBpb0sHVxtJYqfY0w85LoqOjiy67ssw1IyMDcG35rK+VtSefiIiIiIiICAD9H4Stc+HIxuJjSyZD2yuh4fm+qSl5I3x1G0Uz3QAwwdXTPF/TRU/C9p/g+M7iY7+9APFDoG68Z+9b/Jpm2HlJWFgYsbGxQNlNGk6ePFkU2Gl/OBEREREREakygoJh+DtgLjF/yJp/pktqnvfrST8Cn14PeRn2xy+ZBO2u9Pz9B4cb++NRYn+8ghzj+2Et8Pz9i99SYOdF7dq1A2Dnzp3k5ztv17xt27ZzbhNIEhIS7D4uuugiX5ckIiIiIiIi/qJhJ+j3oP2x5I2w9A3v1pGXDV/cCGlnTarpdAP0vd97dTTtde7S2AOrYPk73qtB/I4COy8qbPaQkZHBmjVrnI5btGhR0eW+fft6vC4RERERERERr7rwEajX3v7YolfhyGbv3L/NBt/dYwRjJTXtDVe96d6OsK4Y9ATUbmV/7Lfn4dh279YhfkOBnRcNHz686PLMmTMdjrFarXz88ccAxMTEMGjQIG+U5labN2+2+/jtt998XZKIiIiIiIj4E0uIsRTUVKIbqjXP6JJa4HxFmtssfh02zrI/FtMUrvsELKGev/+zhUQYXWPPWRp7t5bGVlMK7LyoZ8+e9O/fH4AZM2awfPnyc8ZMnjyZrVu3AvDPf/6T4OBgr9YoIiIiIiIi4hWNu0Lf++yPHV4Hf7zl2fvd/A38/rz9sZBouOFLiIz17H2Xpmkv6HWX/bEDK2HFu76pR3xKXWLLYenSpezcWdy5JSUlpejyzp07+fDDD+3Gjxkz5pxzvPXWW/Tt25esrCwGDx7MxIkTGTRoEFlZWXz++edMmzYNgPj4eB566CGPPA4RERERERERvzDgcdj2A6T8VXxs4ctw3hVQr6377+/gWvjmTvtjJjNcOxPq+cEe8hc9Cdt/hBO7i4/99jzEXw6xbXxXl3idyWaz2coeJmAEcB999JHL4519a+fOnctNN91EWlqaw+vj4+OZN28erVu3rlCd/ubAgQNF3W73799PkyZNfFyRiIiIiIiI+I0Dq2HGpWCzFh9r3A1uXQBBbpxnlHYI/nMRpB+2P37ZS9D7Lse38YW9f8DMvwElMoW4C2Dsj2AOcnoz8Q1PZR5aEusDV111FRs2bOCBBx4gPj6eiIgIYmJi6N69O6+88gqJiYkBHdapS6yIiIiIiIi4rEn3c7ukHlwDK9zYJTU3Ez67/tywrtsY6HWnw5v4TLM+cMEd9sf2/wl/vuebesQnNMNO3C4hIcHu67y8PHbs2AFohp2IiIiIiIg4kJcF7/WD48XbUBEUCncuq/xSUKsVZt0CW7+zP968P9z8DQT54d7xuZkwtQ+cTCo+ZgmDO5ZBbOBO8KmKNMNOAoa6xIqIiIiIiEi5BIcbXWM90SV14YvnhnW1W8Koj/0zrAPHXWPzs9U1thpRYCciIiIiIiIivte017nLU/f/CX++X/FzbvgSFr9mfyysptERNqJ2xc/rDc36wAX/sD+2f0Xlvh8SMBTYiYiIiIiIiIh/uOhfUKuF/bFfn4Xju8p/rv0rYc499sdMQXDtR4HTcfXip9z3/ZCAosBORERERERERPxDSAQMe9v+WH4WfHevsRedq07tg89vMJbVlvS3V6HVoMrX6S0hkWeWCpeQnwXf3qWlsVWcAjtxO3WJFRERERERkQpr3g963m5/bO8yWDXdtdvnpMOn10PGMfvjPf8BPW5zT43e1LyvUXtJ+1fAymm+qUe8QoGdiIiIiIiIiPiXiydBTDP7Y788DSeSHA4vYi2Ar8bD0c32x1tdDJe96NYSveqSSVCruf2xX57R0tgqTIGduJ26xIqIiIiIiEilhEbB0Cn2x/Iyyl4a+8vTsP1H+2Ox58G1MyHI4vYyvcbZ0tg5d5dvqbAEDAV2IiIiIiIiIuJ/Wg6AbmPtj+1ZAmtmOh6f+An88W/7Y+G14YbPjc6wgc7RUuF9y7U0topSYCciIiIiIiIi/unSZ6FmnP2xn58ymkqUtGcZzL3f/pg5GK77BGq39GiJXuVsqbCWxlY5CuxERERERERExD+F1YCr3rI/lnsavrvP2K8uNwOO74QvbgJrnv24K98wGjZUJaFRjpfGlreLrvg9BXYiIiIiIiIi4r9aXwxdbrY/tvt3eKEBvNgIpnSHrBP21/e5F7qedZuqokV/6DHe/tjeZbDqP76pRzwigHdcFH+VkJBg93VeXp6TkSIiIiIiIiIuuOwF2PUbpB0sPlaQe+aCzX5s/OVwyTNeK80nLnkadsy3Xxr8y9PQ5tKqtQS4GtMMOxERERERERHxb2E1od8Dro3t9yCYgzxbj685Whqblwlz7tHS2CpCM+zE7TZv3mz39YEDB4iLi3MyWkRERERERMQFB9e4Nm7Nh9D0Ao+W4hdaXAg9boNV04uP7V1mfH3B7c5vJwFBM+xERERERERExL9ZrbBljmtjt3xbfWaZXfIMxDS1P/bLJDiR5Jt6xG0U2ImIiIiIiIiIf8vPMpZ8uiIv0xhfHYRGwdC37Y/lZaprbBWgwE5ERERERERE/JslHIIjXBsbHGGMry5aDoDut9of27MEVs/wTT3iFgrsRERERERERMS/mc3QfphrY9sPN8ZXJ5c+CzXPWhr7s5bGBrJq9gwWERERERERkYDU+24wl9E702yB3nd5px5/EhoNw6bYH8vL0NLYAKbATkRERERERET8X4OOMOJ956Gd2WJc36Cjd+vyFy0HQrex9se0NDZglRFNi5RfQkKC3dd5eXk+qkRERERERESqlI7XQN3zYPm7RjfYvExjz7r2w42ZddU1rCs0+DnY+Quk7i8+9vMkaHMp1Grus7Kk/BTYiYiIiIiIiEjgaNARRkyFYe8Y3WAt4dVvzzpnQqNh6BT47/DiY3kZMOceuPlbKMjR9ytAKLATt9u8ebPd1wcOHCAuLs5H1YiIiIiIiEiVZDZDSKSvq/A/rQZBtzGw5sPiY3uWwIsNoSD3zIzEYcaegNV9RqIfU6QqIiIiIiIiIlKVXPoc1Dxr4kxBrvE5LxPWfwbTBsLG2V4vTVyjwE5EREREREREpCoJqwH9Hih9jDUfvvkHJG/0Tk1SLgrsRERERERERESqmgOryh5jzTcaeIjfUWAnIiIiIiIiIlKVWK2wZY5rY7d8a4wXv6LATkRERERERESkKsnPMvaqc0VepjFe/IoCOxERERERERGRqsQSbnSDdUVwhDFe/IoCOxERERERERGRqsRshvbDXBvbfrgxXvyKxdcFSNWTkJBg93VeXp6PKhERERERERGppnrfDRtnGY0lnDFboPdd3qtJXKYIVURERERERESkqmnQEUa8b4RyjpgtxvUNOnq3LnGJZtiJ223evNnu6wMHDhAXF+ejakRERERERESqqY7XQN3zYPm7RjfYvExjz7r2w42ZdQrr/JYCOxERERERERGRqqpBRxgxFYa9Y3SDtYRrz7oAoMBORERERERERKSqM5shJNLXVYiLFKmKiIiIiIiIiIj4Ec2wE4/Lzy/uSHP48GEfViIiIiIiIiIi4j4lc46S+UdlKbATjzt27FjR5Z49e/qwEhERERERERERzzh27BjNmzd3y7m0JFZERERERERERMSPmGw2m83XRUjVlp2dzcaNGwGoW7cuFkvgTew8fPhw0ezAlStX0rBhQx9XJOJ5et5LdaTnvVQ3es5LdaTnvVRHet57Tn5+ftHKwo4dOxIWFuaW8wZeciIBJywsjB49evi6DLdp2LAhTZo08XUZIl6l571UR3reS3Wj57xUR3reS3Wk5737uWsZbElaEisiIiIiIiIiIuJHFNiJiIiIiIiIiIj4EQV2IiIiIiIiIiIifkSBnYiIiIiIiIiIiB9RYCciIiIiIiIiIuJHFNiJiIiIiIiIiIj4EQV2IiIiIiIiIiIifsRks9lsvi5CREREREREREREDJphJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIiIiIiIiJ+RIGdiIiIiIiIiIiIH1FgJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIiIiIiIiJ+RIGdiIiIiIiIiIiIH1FgJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiZdi3bx8PP/ww7dq1IzIyktq1a9OzZ09ef/11MjMzfV2eiNuYTCaXPgYOHOjrUkVccvToUb7//nueeuophgwZQmxsbNHzeMyYMeU+308//cTVV19NkyZNCA0NpUmTJlx99dX89NNP7i9epILc8bz/8MMPXf6Z8OGHH3r08Yi4Yu3atbz44osMGTKEuLg4QkNDiYqKIj4+njFjxrBkyZJynU+v9+Lv3PGc12u9/7P4ugARfzZv3jxuvPFGUlNTi45lZmayatUqVq1axfTp0/nhhx9o2bKlD6sUERFH6tev75bz2Gw27rjjDqZNm2Z3/ODBg3zzzTd888033H777bz33nuYTCa33KdIRbnreS8SKAYMGMDixYvPOZ6bm8uOHTvYsWMHH330ETfffDPTp08nJCTE6bn0ei+BwJ3PefFvCuxEnFi/fj2jRo0iMzOTqKgoJkyYwKBBg8jKyuLzzz/nP//5D3/99RdXXHEFq1atIioqytcli7jFnXfeyV133eX0+sjISC9WI+IecXFxtGvXjgULFpT7tk8++WTRH29dunTh0UcfpVWrVuzatYtXX32VxMREpk2bRt26dXn++efdXbpIhVXmeV9o/vz5NGrUyOn1TZo0qfC5Rdzh4MGDADRq1Ihrr72W/v3707RpUwoKCli+fDmTJ0/m4MGD/Pe//yU/P59PP/3U6bn0ei+BwJ3P+UJ6rfdTNhFxaODAgTbAZrFYbH/88cc517/66qs2wAbYnnnmGR9UKOJehc/nSZMm+boUEbd46qmnbHPnzrUlJyfbbDabLSkpqeh5fsstt7h0jh07dtgsFosNsHXv3t2WmZlpd31GRoate/fuRT8vdu7c6e6HIVIu7njez5w5s+g2SUlJnitWxA2uuOIK2xdffGHLz893eP2xY8ds8fHxRc/pxYsXOxyn13sJFO56zuu13v9pDzsRB1atWsXChQsBGDduHL179z5nzEMPPUS7du0AePPNN8nLy/NmiSIiUoZnnnmGK6+8slJLBN944w3y8/MBmDJlCuHh4XbXR0REMGXKFADy8/N58803K3xfIu7gjue9SCD5/vvvGTVqFEFBQQ6vj42NZfLkyUVfz5492+E4vd5LoHDXc178nwI7EQe+/fbbostjx451OMZsNjN69GgATp48WRTwiYhI1WCz2ZgzZw4Abdu2pVevXg7H9erVi/POOw8wfn7YbDav1SgiImUr2TBr165d51yv13upasp6zktgUGAn4kBhV53IyEi6devmdNyAAQOKLi9dutTjdYmIiPckJSUV7RNT8vXekcLrDxw4wJ49ezxdmoiIlENubm7RZbP53D+B9XovVU1Zz3kJDPqXE3Fg69atALRu3RqLxXlvlrZt255zG5FAN2vWLM477zzCw8OJjo6mTZs23HLLLfz+++++Lk3Eq0q+rpd8vXdEPw+kqhozZgz169cnJCSE2NhYevXqxZNPPlkUbogEgkWLFhVddvR6rtd7qWrKes6fTa/1/kmBnchZsrOzSUlJAcruhlOrVq2ijpn79+/3eG0i3rBlyxa2b99OdnY2p0+fZufOnXz88cdcdNFFjBgxgtTUVF+XKOIVJV/Xy/p5EBcX5/B2IoFu0aJFHD16lLy8PI4fP86ff/7JCy+8QOvWrXn//fd9XZ5ImaxWKy+//HLR16NGjTpnjF7vpSpx5Tl/Nr3W+yfnU4dEqqn09PSiy1FRUWWOj4yMJCMjg9OnT3uyLBGPi4iIYOjQoVx88cW0bduWqKgojh07xqJFi3jvvfc4fvw43377LcOGDePnn38mODjY1yWLeFR5fh4UvnkD6OeBVAktW7bk6quvpnfv3kUBxe7du/nqq6+YPXs22dnZ3HHHHZhMJm6//XYfVyvi3BtvvMHKlSsBGDFiBN27dz9njF7vpSpx5TlfSK/1/k2BnchZsrOziy6HhISUOT40NBSArKwsj9Uk4g0HDx4kJibmnOOXXnop9957L0OGDCExMZFFixYxdepU7rvvPu8XKeJF5fl5UPizAPTzQALfiBEjuOWWWzCZTHbHe/TowXXXXcf333/P1VdfTV5eHg888ABDhw6lQYMGPqpWxLlFixbx+OOPA1CvXj2mTp3qcJxe76WqcPU5D3qtDwRaEitylrCwsKLLJTfrdCYnJwfgnNbvIoHGUVhXqH79+syePbvol9gpU6Z4qSoR3ynPz4PCnwWgnwcS+GrWrHnOH3AlXXnllUyaNAmAzMxMZsyY4a3SRFy2efNmRowYQX5+PqGhoXz55ZfUr1/f4Vi93ktVUJ7nPOi1PhAosBM5S3R0dNFlV6a5Z2RkAK4tnxUJZC1btuTSSy8FYOfOnRw6dMjHFYl4Vnl+HhT+LAD9PJDqYfz48UV/6JXc3FzEHyQlJTF48GBOnjxJUFAQn332WandX/V6L4GuvM95V+m13rcU2ImcJSwsjNjYWMBo116akydPFv3QLrkBrUhV1b59+6LL6holVV3JjcfL+nlQcuNx/TyQ6qBevXpFvy/p54H4k0OHDnHJJZdw6NAhTCYTH3zwASNGjCj1Nnq9l0BWkee8q/Ra71sK7EQcaNeuHWDMIsrPz3c6btu2befcRqQqs9lsvi5BxGtKBtQlX+8d0c8DqY70M0H8TUpKCpdeeim7d+8GjC08Ro8eXebt9Hovgaqiz/ny0Gu97yiwE3GgX79+gDHlfc2aNU7HlZwW3LdvX4/XJeJrW7ZsKbrcqFEjH1Yi4nktWrQoep6XtQxk8eLFADRu3JjmzZt7ujQRnzt69CjHjx8H9PNA/ENqaiqXXXZZ0e8qL7/8MnfffbdLt9XrvQSiyjznXaXXet9SYCfiwPDhw4suz5w50+EYq9XKxx9/DBib9Q8aNMgbpYn4zO7du/n5558BYz+7xo0b+7giEc8ymUwMGzYMMGZUrFixwuG4FStWFM24GDZsWKkbOItUFdOmTSuadeGOfZJEKiMzM5MrrriCtWvXAvDEE0/w2GOPuXx7vd5LoKnsc95Veq33LQV2Ig707NmT/v37AzBjxgyWL19+zpjJkyezdetWAP75z38SHBzs1RpF3Gnu3LmlLv8+cuQI11xzDXl5eQBuf/dOxF/df//9WCwWAO69916ysrLsrs/KyuLee+8FwGKxcP/993u7RBG32rNnD4mJiaWO+f7773nuuecAY+/fsWPHeqM0EYdyc3MZMWIEy5YtA4zfy59//vlyn0ev9xIo3PGc12t9YLD4ugARf/XWW2/Rt29fsrKyGDx4MBMnTmTQoEFkZWXx+eefM23aNADi4+N56KGHfFytSOXce++95OXlMXLkSHr37k3z5s0JDw8nJSWFhQsX8t577xVNh+/Xr58COwkIS5cuZefOnUVfp6SkFF3euXMnH374od34MWPGnHOO+Ph4Hn74YV5++WVWr15N3759eeyxx2jVqhW7du3ilVdeKfqF95FHHqFNmzYeeSwirqrs837Pnj0MGjSI3r17c9VVV9G5c2fq1auHzWZj9+7dzJ49m9mzZxfNuHj99dc141p86u9//zsLFiwA4KKLLmLcuHFs2rTJ6fiQkBDi4+PPOa7XewkU7njO67U+MJhs2kFQxKm5c+dy0003kZaW5vD6+Ph45s2bR+vWrb1cmYh7NW/enL1795Y5buTIkUyfPp2YmBjPFyVSSWPGjOGjjz5yebyzX4msVivjx4/ngw8+cHrbcePGMW3aNMxmLV4Q36rs837hwoUubfMRERHBG2+8we23317uGkXcqbzLUps1a8aePXscXqfXewkE7njO67U+MGiGnUgprrrqKjZs2MBbb73FvHnzOHDgACEhIbRu3Zprr72We+65h4iICF+XKVJpH330EYsWLWL58uXs3r2blJQU0tLSiIqKIi4ujj59+nDLLbfQu3dvX5cq4nVms5kZM2YwcuRIpk2bxqpVq0hJSSE2NpYePXrwj3/8gyFDhvi6TBG36NatG5988gnLly9n9erVHD58mJSUFPLz86lVqxYJCQlcfPHF3HbbbdSrV8/X5Yq4lV7vpbrQa31g0Aw7ERERERERERERP6J5vCIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIVHsDBw7EZDIxcOBAX5ciIiIiosBOREREpKpauHAhJpMJk8nE008/7etyRERERMRFCuxEREREqqE9e/YUhXkffvihr8vxiDFjxmAymWjevLmvSxEREREpF4uvCxARERER8bWFCxf6ugQRERGRIpphJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIi1YzJZKJFixZFX48dO7ZoP7uymlT89ddf3HfffSQkJFCzZk3Cw8Np2bIlY8eOZe3atU7vs2QDjIULF2K1Wvnggw8YNGgQ9evXx2w2M2bMmKLxVquV3377jYcffpi+ffsSGxtLcHAwMTExdO7cmYcffph9+/Y5vK+nn34ak8nERx99BMDevXvPeXwmk8nuNq52iV26dCk333wzzZs3JywsjJiYGLp06cKTTz7JsWPHXH78AF9++SUXX3wxdevWJTw8nPPOO49HH32UEydOlFrD9u3buffee+nQoQNRUVGEhITQqFEjOnfuzK233soXX3xBTk5OqecQERER/6Y97ERERETEJc899xzPPvss+fn5dseTkpJISkrio48+4l//+hfPPPNMqefJzs7msssu45dffnE65tlnn3V4ntTUVNavX8/69euZOnUqn3zyCSNGjKjYAyoHq9XKfffdxzvvvGN3PCcnh3Xr1rFu3TrefvttZs2axaWXXlrquQoKCrjxxhv59NNP7Y5v376d1157jW+++YYlS5bQoEGDc247a9YsbrrpJnJzc+2OHz58mMOHD7N+/XpmzpzJxo0b6dChQwUfrYiIiPiaAjsRERGRambjxo0cOnSIyy67DIDnn3+eYcOG2Y2pV6+e3ddPPfUUzz33HAB9+vTh1ltvJSEhgeDgYP766y/efvttli9fzrPPPktsbCz33nuv0/t/7LHH2LBhA0OHDmXMmDE0a9aMI0eOkJaWVjQmPz+fhg0bMmLECHr37k3Lli0JCwtj//79/PHHH7z77rucPn2aG264gbVr19KuXbui2951111cc801PPnkk8yZM4dGjRoxf/78Sn3PHn/88aKwrkWLFjz22GN07dqVjIwMvvvuO95++21SU1O58sorWblyJZ06dXJ6rqeeeoo//viD4cOHM3r06KLH/8477zBv3jx27tzJAw88wGeffWZ3uyNHjjB27Fhyc3OpV68e99xzD7169SI2Npbs7Gx2797N4sWL+frrryv1WEVERMQP2ERERESkSvr9999tgA2wTZo0ye66pKSkoutmzpxZ6nlWrlxpM5vNNsD25JNPOhxTUFBgu+mmm2yALTo62nby5EmntQC2f/3rX6XeZ1JSki03N9fp9fv377c1btzYBthuuukmh2NuueUWG2Br1qxZqfdls9lsAwYMsAG2AQMGnHPdhg0bih5/hw4dznlsNpvN9uOPPxaN6dmz5znXn/34n3/++XPGWK1W2+DBg22AzWKx2I4ePWp3/YwZM4puv3HjRqePJSsry5aZmVnmYxYRERH/pT3sRERERKRUr7zyClarlW7duvHss886HGM2m5kyZQqhoaGkp6cze/Zsp+eLj49n0qRJpd5n8+bNCQ4Odnp9kyZNeOSRRwD47rvvsNlsLjySipk6dSpWqxWA//znP8TExJwz5vLLL+fWW28FYOXKlaxatcrp+bp168bEiRPPOW4ymXjwwQcBY4bh8uXL7a5PTk4GoFatWqUudw0LCyM8PLz0ByUiIiJ+TYGdiIiIiDiVl5fHjz/+CMA111xzTrOGkmJiYujYsSPAOWFTSddddx1BQUHlqiMtLY2kpCQ2b97Mpk2b2LRpExEREXbXeUrhXnvt27enV69eTseNHz/+nNs4csMNNzj9Pnbr1q3o8u7du+2ua9iwIQAnT55kzpw5ZRcuIiIiAUt72ImIiIiIU1u2bCEzMxOACRMmMGHCBJduVzgbzJHzzz/fpXPs3buX119/nblz57J3795Sx6akpNCyZUuXzlseOTk57NixA4ALLrig1LFdunQhODiYvLw8Nm3a5HRc27ZtnV5Xu3btosvp6el21w0dOpSYmBhOnTrFiBEjGDhwIFdddRUXXnghnTt3LncIKiIiIv5LM+xERERExKmjR49W6HaFIZ8jtWrVKvP2P/74I+3bt+ftt98uM6wDyMrKKld9rjp58mTR5fr165c6Njg4mDp16gBw4sQJp+MKZwY6YjYX/3peUFBgd12dOnX47rvvaNy4MTabjd9//50HH3yQ7t27U7t2bUaOHMn3339fao0iIiISGDTDTkREREScKhkavfbaa1x++eUu3S4yMtLpdWXNBDt+/Dg33HADmZmZREVF8fDDD3PZZZfRqlUratasSUhICAC//fYbF198MYBH97ArVNpy4EKerqN///7s3LmTr776ih9++IHFixdz4MAB0tLS+Prrr/n666+57LLL+Prrr0sNBkVERMS/KbATEREREacKZ4yBsZ9dac0O3GXWrFmcOnUKgK+//ppLL73U4biSs988peRswNKW+YLRKKJwZl3Jpa3uFhYWxo033siNN94IGHvdzZs3j7fffpvt27czf/58nnjiCd544w2P1SAiIiKepSWxIiIiItWQK7PFABISEopmtC1YsMCTJRXZvHkzYIRezsI6gNWrV5d6HlcfY2lCQ0Np06YNAH/++WepYxMTE8nLywPwSrBZqGXLltx7772sWrWKJk2aAPDll1967f5FRETE/RTYiYiIiFRDYWFhRZdzcnKcjouIiChadrpw4UJWrlzp8dry8/OL6rJarQ7HZGZm8vHHH5d6nsLHWNrjc8Ull1wCGA04VqxY4XTc9OnTz7mNN9WoUYMePXoARhMOERERCVwK7ERERESqoTp16hTNnNu1a1epY5944omi2WrXX399qeMLCgr49NNPOXDgQIVrK5zRlpGRwezZsx3ex2233cahQ4dKPU/Dhg0Bo3HG2R1Xy+POO+8sagZx++23k5qaes6YBQsWMGPGDAB69uxZFJy50/z58zl8+LDT61NTU4sC1RYtWrj9/kVERMR7tIediIiISDVksVjo0aMHy5Yt44MPPqBLly507tyZ4OBgwFiOWrgPW9++fXnqqad45plnSEpKonPnzowbN47BgwfTsGFDcnJy2LNnD8uXL2f27NkcOnSIjRs3Fi3PLK9Ro0YxceJEcnJyGDNmDOvWreOSSy6hRo0abN68mSlTprBmzRr69u3LsmXLnJ6nT58+AFitVu644w7uvfde6tSpUxQ+tm7d2qV6OnbsyEMPPcRrr73Gxo0b6dq1K4899hhdunQhMzOTuXPn8u9//5uCggJCQkJ4//33K/S4y/LZZ59x1VVXcemllzJ48GA6dOhA7dq1SU9PZ9OmTbz99tscPHgQMEJGERERCVwK7ERERESqqQkTJnDVVVcVdWUtadKkSTz99NNFXz/99NPExMTw+OOPc/r0ad566y3eeusth+cNCQmxW3JbXv8lK6QAAAKlSURBVE2aNGHq1KncdtttZGVl8dJLL/HSSy/ZjbnuuusYP358qUtPL7roInr16sWKFSv49NNP+fTTT+2uL09H15dffpmMjAzeffdddu/ezT/+8Y9zxtSsWZMvv/ySzp07u3ze8srLy+OHH37ghx9+cDrm7rvv5t577/VYDSIiIuJ5WhIrIiIiUk1dccUV/PrrrwwbNoxGjRoVza5z5v7772fXrl3861//olevXsTGxmKxWIiMjCQ+Pp6RI0fy3nvvcfDgQZdnrzkzduxYlixZwvDhw6lbty7BwcE0bNiQyy+/nC+++ILPP/+coKCgUs9hNptZsGABTz75JJ06dSIqKqrCjSjMZjPvvPMOixcv5sYbb6Rp06aEhoZSo0YNOnfuzMSJE9mxYweDBw+u0Pld8eabb/LVV19xxx130L17dxo3bkxISAjh4eHEx8czZswYli5dyttvv120hFdEREQCk8lWnrcWRURERERERERExKP01puIiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn7k/wFvfb04F7hV9wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=4, sharex=True, dpi=200,figsize=(7,7))\n", + "\n", + "for i in range(2):\n", + " axes[0].plot(np.array(observables['imp_occ'][i]['up'])+np.array(observables['imp_occ'][i]['down']), '.-', c=f'C{i}',\n", + " label=f'Impurity {i}')\n", + " axes[1].plot(np.array(observables['imp_gb2'][i]['up'])+np.array(observables['imp_gb2'][i]['down']), '.-', c=f'C{i}')\n", + " \n", + " axes[3].semilogy(conv_obs['d_Gimp'][i], '.-', color=f'C{i}', label=f'Impurity {i}')\n", + " \n", + "# Not impurity-dependent\n", + "axes[2].plot(observables['E_tot'], '.-', c='k', label='Total energy')\n", + "axes[2].plot(observables['E_dft'], 'x--', c='k', label='DFT energy')\n", + "\n", + "\n", + "axes[0].set_ylabel('Imp. occupation\\n')\n", + "axes[0].set_ylim(0, 2)\n", + "axes[0].legend()\n", + "axes[1].set_ylabel(r'$G(\\beta/2)$')\n", + "axes[2].set_ylabel('Energy')\n", + "axes[2].legend()\n", + "axes[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')\n", + "axes[3].legend()\n", + "\n", + "axes[-1].set_xlabel('Iterations')\n", + "fig.subplots_adjust(hspace=.08)\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "599730cc-8214-48cd-80a6-14676f2e23c0", + "metadata": {}, + "source": [ + "These plots show:\n", + "\n", + "* The occupation converges towards a disproportionated 1.6+0.4 electrons state\n", + "* Both sites become insulating, which we can deduce from $G(\\beta/2)$ from its relation to the spectral function at the Fermi energy $A(\\omega = 0) \\approx -(\\beta/\\pi) G(\\beta/2)$\n", + "* convergence is only setting in at around 20 DMFT iterations, which can be also seen from the column `rms(c)` in the Vasp OSZICAR file, and more DMFT iterations should be done ideally\n", + "\n", + "Therefore, we can conclude that we managed to capture the desired paramagnetic, insulating state that PrNiO3 shows in the experiments.\n", + "\n", + "## 4. Plotting the results: the Legendre Green's function\n", + "\n", + "We now take a look at the imaginary-time Green's function expressed in Legendre coefficients $G_l$. This is the main solver output (if we are measuring it) and also saved in the h5 archive." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "91f19160-3f34-4738-a9fa-8fe9c4289b0c", + "metadata": {}, + "outputs": [], + "source": [ + "legendre_gf = []\n", + "with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5') as archive:\n", + " for i in range(2):\n", + " legendre_gf.append(archive[f'DMFT_results/last_iter/Gimp_l_{i}'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "50176755-edbb-41ed-9656-5c648a08a6c0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCMAAAIqCAYAAAAekIA6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1gUV/fA8e8uHaQIIipS7BUVKxpU7CZq7L1ETfE1sSVGTVWjSUz5xZ5XY2JJ0VhiNC9GE3sXOzawIcUOgigifff3x7gLyy4KStXzeR4eYe6dmTu7uOycvfcclVar1SKEEEIIIYQQQghRSNRFPQAhhBBCCCGEEEK8WCQYIYQQQgghhBBCiEIlwQghhBBCCCGEEEIUKglGCCGEEEIIIYQQolBJMEIIIYQQQgghhBCFSoIRQgghhBBCCCGEKFQSjBBCCCGEEEIIIUShkmCEEEIIIYQQQgghCpUEI4QQQgghhBBCCFGoJBghhBBCCCGEEEKIQiXBCCGEEEIIIYQQQhQqCUYIIYQQQgghhBCiUJkX9QDEsytXrhyJiYl4enoW9VCEEEIIIYQQQrwAoqKisLOz49atW0+1v8yMeA4kJiaSlpZW1MMQQgghhBBCCPGCSEtLIzEx8an3l5kRzwHdjIhz584V8UiEEEIIIYQQQrwI6tSp80z7y8wIIYQQQgghhBBCFCoJRgghhBBCCCGEEKJQSTBCCCGEEEIIIYQQhUqCEUIIIYQQQgghhChUEowQQgghhBBCCCFEoZJghBBCCCGEEEIIIQqVlPYsRHv37uW7774jODiYqKgopk2bxvTp04t6WEIIIYQQogTRarVotdqiHoYQ4jmiUqlQqVSFek4JRhSiBw8eULt2bQYNGsSECROKejhCCCGEEKKE0Gg03Lt3j7t375KSklLUwxFCPIesrKwoXbo0jo6OqNUFv4hClmk8cvz4cb766it69eqFu7s7KpUKa2vrJ+6XnJzMtGnTqF69OtbW1lSoUIGRI0dy7do1o76vvPIKs2bNon///lhZWRXEZQghhBBCiOeMVqvl1q1b3Lp1SwIRQogCk5KSwq1bt7h9+3ahzL6SmRGPzJw5k7/++itP+yQnJ9OuXTsOHjxI+fLl6d69OxERESxfvpxNmzZx6NAhqlSpUkAjFkIIIYQQL4KEhATu3bsHQNmyZXFwcMDMzKyIRyWEeJ5kZGRw//59oqOjiY+Px87ODgcHhwI9pwQjHmnevDn169enSZMmNGnShHLlyj1xny+//JKDBw/SvHlztm7dSqlSpQCYPXs2EydOZOTIkezZs6eghy6EEEIIIZ5j9+/fB8DZ2RkXF5ciHo0Q4nmkVqtxcXEhPT2duLg4EhISJBhRWKZMmZKn/mlpaSxYsACA77//Xh+IAHjvvff4+eef2bt3L8ePH6dRo0b5OlYhhBBCCPHiePjwIQD29vZFPBIhxPPO3t6euLg4EhMTC/xckjPiKe3fv5/4+HiqVKmCr6+vUXufPn0ACAwMLOyhiQKybH841+OTntjvenwSy/aHF8KIhBBCCPG802q1ZGRkAEjOMSFEgdO9zmRkZBR43giZGfGUTp06BUDDhg1Ntuu26/rlhzp16pjcHhYWJrkpCtiy/eHM2BTCioMR/P6WH+5ONib7XY9PYuCSIKLilE8wRvpXKsxhCiGEEOI5k/VmoLDL7gkhXjxZX2e0Wm2Bvu7IzIinFBUVBUDFihVNtuu26/qBUtozODiY4OBgUlNTuXXrFsHBwYSEhBT8gMUz6VS3HJ7OtkTFPWTgkiCTMySyBiI8nW3pVPfJeUeEEEIIIYQQ4kUkMyOe0oMHDwCwtbU12W5nZ2fQD+DYsWO0adNG//MPP/zADz/8gJeXFxEREU8857lz50xuz2nGhMg/7k42/P6Wnz7YMHBJkMEMieyBiMfNnhBCCCGEEEKIF53MjHhKuilzOU1bMbW+JiAgAK1Wa/SVm0CEKHq6gET2GRISiBBCCCGEEEKIvJGZEU9Jl804pyyjuqzHWatsiJIv+wyJVt/sAi1kaLUSiBBCCCGEEEKIXJKZEU/J09MTgGvXrpls123X9ctv8fHxREREEBERQVpaGhqNpkDOI4xlZGhpX7us8r1GS8ajWTBW5mq2nrvF3cTUohyeEEIIIcQLQaVSPZdJPa9du8bIkSOpUKEC1tbWVK9enalTp5KcnFzUQytRIiIiUKlUBAQEFPi5AgICUKlURjPeVSoV3t7eBX7+kkqCEU+pfv36AJw4ccJku257vXr1CuT8c+fOpVKlSlSqVIlLly4RGxtbIOcRioTkNNYcjaLf4kO0+nYXy/ZHGPW5FP2AzwJDaPrldt5eeZxd56NJz5AgkRBCCCGKNylfXnyEhYXRsGFDli9fjouLC927dycjI4OZM2fStm1bUlJSinqIQuQbWabxlF566SUcHR0JCwvj5MmT+Pr6GrT/8ccfAHTt2rVAzj9hwgSGDx8OQMeOHTEzMyuQ87zIMjRa9l++w58nrvHvuVskp+UusJCWoWXzmVtsPnMLNwcrejWsSN9GFansKkt2hBBCCFG8SPny4mXkyJHExMQwbtw45s2bB0B6ejr9+vVjw4YNfPnll3z22WdFPMqSwd3dndDQ0BwLDhSG0NBQLCwsiuz8xZ3MjHhKlpaWjBkzBoAxY8YY5I6YPXs2p0+fxt/fnyZNmhTI+Z2cnPD29sbb2xsLCwvUankq88ul2wnM2hJKi6928NqyI/wVfIPkNA0jzLZQgTv6fk42Fmx4uwUHPmhLeUdrANQqqMAdRphtAeD2/RQW7Q6j7Xd76LPoIGuORvEgJb1IrksIIYQQIjspX158HD16lL1791K2bFm++eYb/XZzc3MWLVqEhYUFCxYsIC0trQhHWXJYWFhQs2bNAls2nxs1a9akSpUqRXb+4k7uYB/5+++/8fPz038BpKamGmz7+++/Dfb55JNPaNasGQcPHqRatWr0798fPz8/Jk6ciIuLC8uXLy+KSxFPIS4xlRUHwum2YD8d5uzlhz1XuH0/cxrcCLMtTLP4lTVWX1CBO3g62/L3+Jb4epbG3cmGP0a3wNPZlnLaO6y1/oJpFr/yuvk/Buc4FnmXKevP0OTz7Uxce4qgK7Emq64IIYQQQhSWnKqF6ZS0qmFZ8wQkJiby3nvv4eHhgY2NDQ0bNiQwMFDfd926dTRt2hQ7Ozvc3NwYN24cSUnGwRhvb29UKhVarZZ58+ZRu3ZtrK2tcXd3Z9y4ccTHx+fL2Ddt2gRAt27dsLKyMmhzc3OjZcuW3L17lwMHDuTL+R48eMCMGTPw8fHB1tYWBwcHWrduzcaNGw36HT9+HJVKpb9HMuWbb75BpVLx8ccfG2xPTU1l3rx5NGnSBHt7e+zs7GjatClLly41+T5Yl2MhIyODb775hurVq2NlZYWHhwdTpkzJ0zKVnHJGrFixApVKxfTp04mKimLQoEG4urpiY2ND48aNDX5HsluyZAk+Pj7653/s2LHcu3cvx/6PyxkREhLCiBEj8PLywsrKCjc3N1q1aqWfEZNVbp8rndDQUIYOHUqVKlWwtrbG1dWVBg0aMGHCBG7evJnjeAubBCMeiYmJ4fDhw/ovUMpzZt0WExNjsI+1tTW7du3i008/xdbWlo0bNxIREcFrr73GyZMnqVq1alFcisil1HQN/567xVu/HKPZl9uZHhjCmeuGLybmahXta7lRv8MQrqvc8FDdZp3NF6wdUNHgD7G7kw1rB1Rknc0XVOQ211Vu9Bs6mk+61KJmOXuDYyalZbD+xDUGLAki4P92s2DHJW7kYp2mEEIIIURBeB7Ll6emptKuXTt+/fVXGjRogJ+fH6dOnaJnz55s376dOXPmMGjQIMzNzenYsSMZGRksWLCAN954I8djjh07lkmTJlGxYkV9LocFCxbQunVrEhISnnnMp06dAqBhw4Ym23Xbdf2exe3bt2nWrBnTpk3j7t27dOjQgWbNmnH8+HF69uzJV199pe/bqFEjatasyeHDhwkLCzN5vFWrVgEwaNAg/bbExETat2/PhAkTiIiIwN/fn4CAAC5fvswbb7zB6NGjcxzf4MGDmTFjBhUrVqRjx44kJCTwzTff8Prrrz/ztetERETQpEkTDhw4gL+/P76+vhw/fpwePXqwdetWo/7vv/8+o0aN4tKlS7Rt25bmzZuzcuVK2rRpk+dcHuvWraNhw4asWLECe3t7evXqRYMGDQgLC2PChAkGffPyXIGSu7BRo0asXLkSV1dXevbsSbNmzfSBoQsXLuT5sSowWlEi3b17VxseHq4NDw/XVqtWTVuzZs2iHlKJoNFotKeu3tVO3XhG2+Czf7VeUzaZ/Ooyf6922f4r2jsJyVqtVqtduu+KtvmUFdpr06tptdMctNq59bTau1GZB74bpWyb5qC9Nr2atvmUFdql+64YnPOTDWe0PtP+MXk+7w82aYf8FKT9K/i6Nik1vSgeGiGEEEIUQxkZGdqQkBBtSEiINiMjw6hdo9Fo4x+m5stX6M172pe+2qH1mrJJW+XDv7VVPvxb6zVlk/alr3ZoQ2/ey7fzxD9M1Wo0mmd+bABt9tuZ8PBw/faAgABtXFycvm358uVaQFu1alWts7Ozdu/evfq269eva8uWLasFtGFhYQbH9PLy0gJaBwcH7bFjx/TbExIStG3bttUC2nffffeZr8fX11cLaP/66y+T7XPnztUC2vfee++Zz/Xyyy9rAe3kyZO1qamp+u1hYWHaKlWqaM3MzLSnTp3Sb58xY4YW0M6YMcPoWCEhIVpA26BBA4Pto0eP1gLaoUOHahMSEvTbo6Ojtc2aNdMC2k2bNhnso3vuatWqpQ0PD9dvv3LlirZ06dJaQHv58uVcXaPud6F169YG23W/B4B27Nix2rS0NH2b7jFu2bKlwT4HDhzQAlpnZ2ft2bNn9dvv3LmjrVevnv54Wcesux4vLy+DbRcvXtRaW1trLSwstGvWrDFoy8jI0AYGBhpsy+tz9dprr2kB7fr1640ek5CQEO2NGzeMH6xsY3jca05WtWvX1tauXfuxfR5HEliWUHPnzjVIXuPq6lqEoyn+bt1LZmPwddYfv8al6Acm+7jaW9HT153eDStSI9tsBl2SJjPPFrChD9yNgJ+7wmvKdDp+7qpsK+2NWc8/eCPKXL+PSqWiXkUn6lV04uMutdgacpt1x66y//IddLPTtFrYd+kO+y7dwcHanO4N3OnbuCI+7o7PZckqIYQQQuSP+8np1P/M+FPcZ5WuyZxCf+1uEp3n7svX45+a1hFHm4JL7GdmZsaPP/5I6dKl9duGDRvG5MmTuXz5MlOnTqVly5b6tgoVKjB48GDmzJnD3r17qVy5stExx4wZQ6NGjfQ/lypVioULF1KnTh2WLl3KrFmzjJZX5MWDB8p71JwSLtrZ2Rn0e1rBwcFs2bKFFi1a8NVXXxm816xcuTLfffcdPXr04KeffmL+/PmAMlNh6tSprFy5kk8//dTgeCtXrtT30YmOjuann36iUqVK/PjjjwaPi6urKz/88AMNGjTghx9+oEuXLkZjXLBggcHyhkqVKjFkyBAWLFjAvn378iUPg+5azc0zb4nfeecdPvvsM4KCgkhNTcXS0hKAxYsXAzBx4kTq1Kmj7+/i4sK3335Lp06dcn3eOXPmkJyczJgxY+jXr59Bm1qtNiiA8DTPVXR0NABt27Y1OnetWrVyPc7CIMGIEkqqaTxZUmoGW0Nu8cfxaxy4fIcsf1P1rMzVdKxTjt4N3fGvWgZzs5xXLumzRr+2KTP4MK+eEklAC1YO0HQU5SySGOlXw+QxrC3MeLV+BV6tX4Eb8Un8eeIa645fIzL2ob7P/eR0fg2K5NegSGqWs6dPo4r09HXHpdTT/3ETQgghhHiReHt7Gy2ZVqvVeHl5ERMTQ4cOHYz20d3g5rSmfsCAAUbbatWqRf369QkODub06dPPlLxe++hTqpw+iNLmU66xbdu2AdC9e3eT5/L39weUhJo6lStXxs/Pj6CgIE6cOGGwlGT16tWo1WqDx2fPnj2kpaXRuXNnkwGa+vXrY29vb3AOHQsLC6M8DwDVq1cHcn5+8iogIMCo0oW5uTmVK1fm+PHjxMbGUr58eQD2798PYBQ8AOVezNnZmbi4uFydd/v27QCMGjXqiX2f5rlq1KgRW7ZsYdiwYXzyySc0bty42BY7kGBECeXk5ISTkxOAlIvJQqPRcjQijvUnrrH5zK0cK1c08S5N74YVeaVeeRys8/j4WZWCKu3g2FLQZin3mXIf/v1Q+V5lBi5Vwa02lK3z6N/a4OQFj14MKjjZMKZtNd5pU5Uj4XGsPXaNzWdukpSWoT/k+VsJfP53KF9tOU+7WmXp28iDgBqujw2aCCGEEEK86Nzd3U1u180uMNWua8tp/b+Xl5fJ7d7e3gQHB3Pjxo2nGaqevb0yMzdrlb6sHj5UPrwqVerZysVHREQAMGXKFKZMmZJjvzt37hj8PHjwYIKCgli5cqU+GBEUFERYWBht2rShYsWKRudYtGgRixYtyvEcphKGli9f3uQHrbrrzmt+hpxkHe+TznPjxg1UKhUeHh4m9/H09Mx1MOLq1asAJmffZPc0z9WkSZPYv38/gYGBBAYG4ujoSLNmzejatSvDhw/X/54VBxKMEM+FyNhE/jxxnT9PXuNqnOlkkBVL29CrYUV6N3THy8Uu7ydJTYSgRXBgPqTknDUXAG0G3LmgfJ3bkLndshS41jQIUqjK1qFZZReaVXbhs+512Hz6JmuPXeVY5F39bukaLf+eu82/525TppQVvRsqyziqli0+LyZCCCGEKHwO1uacmtbxmY9z814Sb/x8jGt3k6hY2oafXmsMYLStvGP+JLB0sC7Y25AnLXPNz2Ww+TVjwdPTk5MnT3Lt2jWT7brtz1qqMiND+eCrZcuWj70hLlOmjMHP/fv3591332X16tV8++23qNVqfeLKrEs0sp7D19eXevXq5Wl8hbVEuSiXQqtUqlyd/2meKwcHB3bu3MmBAwcIDAxk9+7d7Nixg61btzJr1qx8W+aSHyQYIUqs+8lpbD59k/UnrnE04q7JPqWszHnFpxy9G1akibczavVTvOikp8LxFbD3W0iMNm5XmSnBB0s7cHCHuHDQ5FD/OfUBXD+mfBkM1A3K1qaUWx36la1Nv+61CVdVY92pWNafuGZQZvTOgxR+2HuFH/ZewdfTib6NPOha/ylmeAghhBCixFOpVM+ce+F6fBJv/XKca3eTjKpmrBnVXF9R461fjpeoihr5LTIyEh8fH6PtUVFRgJJ34lnUr1+fv/76ixMnTphs123P6819droZAX369GHcuHG53s/V1ZUOHTqwZcsWdu/eTevWrVm7di1WVlb07t3b5DkCAgKYPXv2M423OChfvjwRERFcvXrVZMVE3e9Abnh4eHDp0iXCwsKoW7fuY/s+7XOlUqnw9/fXL+OIiYlh/Pjx/P7773z00UesWbMm18cqSDLXW5QoGRotuy9EM/b3kzT5fDsf/HnGKBChUkHLamWYN6ABRz9uzzd96tOsskveAxGaDAj+HRY2gi2TjAMR1k7w9hEYfwpKeyszJzJSYcxReDsIei+FlhOh+svg9IQI9oPbcGUXHFoIf70NSwKotKQ6ky8N5lDln9nVOIiPKl2kqtkt1GQuDTkZFc9HG87Q9IvtvLsmmIOX76AxlRwjJ0GLIP7qk/vFX1X6CiGEEOK58qTynTmV/XwRmbqBO3/+PMHBwdjb2z9zkECXyDEwMNBoKcLt27fZt28fjo6O+hvMp9W+fXsANm7cmOd9dTMgVq1axY4dO7h9+zZdunTRLx/XadOmDWZmZmzatEn/6X5JpnvM161bZ9S2bdu2XC/RgMzHf8mSJbnu+zTPVVaurq5Mnz4dgDNnzjzTsfKTBCNKqPj4eCIiIoiIiCAtLQ2NRvPknUqwi7cTmLU5lOazdjB8+VECT90gJd3wmquWLcWUzjU59EE7fn29Gd0buGNj+RSJPbVaCN0Ei16Cjf+B+KyRzkcBDSdP+M9+KFsDnDyUpJalvZWklr/2UJZj+PSBdlNh0GqYcAY+vAavb4Ouc6HpW+DlDzaljU6fOQ4NxF5Gff5/VDo7n7duTme7xXtctH2DbXZT+dZ8Ma+b/Y2/+gz2aXFsOHmNQT8dptW3u5i7/SJX4x7mfGxQggv/fKAk43xcQCL+qtLnnw8kICGEEEI8Z/49eyvHQIRO9oDEv2dvFcFIi97ChQs5efKk/ufExETGjh2LVqtl5MiRBokajxw5Qs2aNWnXrl2uj9+0aVNeeukloqOjDfIDpKen8/bbb5OWlsbYsWON8sVNnz4dlUqlT27/JH5+frRr145du3bx7rvvGlXn0Gg0bN26VZ+0MasePXpgZ2fH+vXrWb58OWC8RAOUnBzDhw/n0qVLDB061Cj/BMDBgwfZvHlzrsZc1HTJJmfPnk1oaKh+e1xcHJMnT87TsSZMmIC1tTWLFy9m/fr1Bm0ajcbgMXma52rx4sWEh4cbnXfLli3Asy/zyU+yTKOEKgmlPZftD6dT3XJPnMp3PT6Jf8/eyqxW8UjsgxT+d+oG609c4+z1+yb3LW1rwav1K9C7UT6VwbyyG3bMgOvHDberzMDSFlISlKDDa5uUIISOLiChq7KhK/uZtY+VPXg0Vb50tFplVsTtcxAdArdDIPocxFyA9GSTQzTXJFONy1Qzv2ywPVZrzwWNBxcSPDi/y5OxOzxwrlSPV5tUp3PdclhbZAvM1OzK/T0LcchpvJAZiLgbwX2bijjU7IoQQgghnh+6919Pes+mC0iYes/2ohgyZAjNmjWjbdu2ODo6snfvXm7dukWdOnUM3peDkmzywoULJCebfj+Xk+XLl9O8eXPmzZvHzp07qV27NkePHuXKlSs0a9aMjz/+2Ggf3YeSeUlqv3LlSjp27MjcuXP55ZdfaNCgAa6urly/fp0LFy4QExPDnDlzjGZh2NnZ0b17d1atWsXq1atxdHQ0WZoTYP78+Vy5coXff/+dTZs20aBBAypUqMCtW7e4fPky169fZ/z48bzyyit5eISKhr+/PxMmTGDu3Ln4+vrSvn17bGxs2LlzJ56envpKI7lRvXp1li1bxmuvvUafPn2oW7cudevW5e7du5w5c4YbN24Y5CHJ63O1ePFiRo8eTe3atalVqxbm5uZcuHCB4OBgbGxsmDZtWoE8Rk9DghElVHEv7blsfzgzNoWw4mDEY9cWZp0aCDDEz4ud56NZf+Iau85HG9S41jFXq2hbsyy9Glakbc2yWJrnwwSfa8dhx2cQvidbgwp8+kJpLyVnhKlAhE72gMT5TeA3+vHnVanAvpzyVTVL5FyTAXFXsgQpHv0bFw6YXobhokqghVkILQjJ3HgDIjeU5eBfnlC2DpXrNMWrVmNULlVZdjadn+5OZp3NF7ibCkhkCURcV7nR9+5k3jibzshnmxkohBBCiGImt8EFdyebFzYQAbBgwQIqVarETz/9RHh4OM7OzrzzzjvMnDkTR0fHfDlHtWrVOHnyJFOnTuWff/5hw4YNeHh48Mknn/DRRx9hbW1ttM+pU6cAGDp0aK7P4+bmRlBQEIsXL2bNmjUcPXqU1NRUypcvj6+vL927dzdZxhKUmRC6xJW9e/c2WboTwNbWlq1bt/Lzzz/z66+/cvr0aQ4fPkzZsmWpUqUK48ePZ+DAgbkec1GbPXs2NWrUYOHChWzbtg0XFxf69evHrFmz6NGjR56ONXDgQGrXrs0333zDrl27WL9+Pc7OztSsWZMPPvjAoG9en6uZM2eyceNGDh8+zI4dO0hNTaVixYq89dZbTJo0yWTOi6Ki0uZX+ldRZOrUqQPAuXPningkmZ60/jB7n3IO1rSo6sLO89HEPzSd/NHH3ZHeDd15tYE7znaW+TPQ6POwc6YSOMiu+svQ9hMo9yixTNAiqNnVdCAiq/iruQtEPI3URIg5/2gGRZYgRWJMng6TrrYkrXQ19sS7cjnZgQEW+yjD3cxgCxgGIpI+xtzZ84VOWiWEEEIUBY1Gw4ULFwCoUaMGarWssi5s3t7eREZG5lvVjPyk0WhwcXGhcePGbNu2raiHI54DeXnNedb7UAlGPAeKYzACHh+QuB6fRL/Fh7gen4S5WmVyBgSAm4MVPXzd6d2wItXd8rGM5d1I2D0LTq9RcjNk5eWv5HrwbJZ/5ytoD2KU5R2Plnlob4egiQ7FLP1pEkyplBkbWo0EIoQQQogiJsGIolecgxHHjx+ncePGHDx4kObNmxf1cMRzoDCDEbJMQxQY3dpCXUBi4JIglg9vwt6LMXz973mS05QgQPZAhJW5mk51ytG7UUX8q5bB7GnKcebkQbSy3OLYcuPym+XrK0GIKu2Um/GSpJQrlAqAygGAkmbTTKOBu+EkXz9D2Lkj3I88jevDMCqpbmKmetwfU62SywJ4mKGmn/0Z+g3rRAUJRAghhBBCFCuNGjUqlkESIXJDZkY8B4rrzAid6/FJ9F18kBvxj0/g09Tbmd6N3HnFpzz21s9WL9tIUjwcnK8stUjLVmXCpZqyHKN295IXhMijyNhENhwN4+Txw7gkXqaG+io1VVepob5KOdXdnHc0t4G6vaDRCKjY+Ll/nIQQQojiQmZGFL3iPDNCiPwmyzREnhT3YATAsYg4+iw+ZLTd09mWXg3d6eVbEU8X2/w/cepDOPID7J8LyfGGbQ4VIeADqD8QzF6sSUIZGi0HLt9h3fFr/HvuFmXSo1ljOQMP9R3StWrUaMhxQopbXWg0HOr1A+v8SdYkhBBCCNMkGCGEKEyyTEM8UXx8PPHx8QCkpaUVu2oa2ZV3skFFZh0ItQoWDmzIyz7lnr0cpynpqXDiZ2VJxoPbhm22LtDyfWg8EiyMMxK/CMzUKlpVd6VVdVfu3wpH9fP72CfdIVJTloGpnwCwzuoz3FWxaFChzlrB4/ZZ2Pw+bJv6aLbESHBvKLMlhBBCCCGEELkmodUSau7cuVSqVIlKlSpx6dIlYmNji3pIOdIlstSi3ARbmKnQaOGrf85z417eai8/kSYDTq2B75soN8xZAxFWDtDmYxh/Cpq//cIGIgzEX8VhTQ/sk65xXeXGwNRPuKUqww3K0DdlGpGasqjRckfrwBWrWob7pj2Ek7/BT23hh5Zw9CdIvl801yGEEEIIIYQoUWSZRgmVdWZEx44dMTMzIzQ0tGgHZYKpihrAE8t+5plWCxe2KGU6o0MM28ytoemb4P8e2Do/23mKSmwYnPgF4qPAyRMaDgOXKs92zPirOZbvvBmfxLBlR3BKvc3vlp/jpY4mUlOWjzPeZGzFMJrc+xd1sokcExZ24NNbyS3h3vDZxieEEEIIWaYhhChUkjNC5ElxzRnxpNKe+RaQCN8LO2bAtaOG21Vm0HAotJ4CDhWe8WqK0Mnf4H/jQJuRuU1lBq/OB98hT3/coEXwzwc5lu+8Hp9Er/8ewOz+dX1A4rO0oSzPeBk3Gy3f1o3E/14g6ijjXCCAUp2k0XDw6QtW+ViWVQghhHiBSDBCCFGYJBgh8qQ4BiNyE2x45oDE9RNKEOLKLuO2un2gzUfPPnugqMWGwcImhoEIHZUZjDn61Nd4PT6J9d9/zOqE+kaBiKx9Bi4JIj0uipfNj7E0vbNBe2VXO758yYJmd/+H6tRq4yShAJalwKePEpio4PtUYxVCCCFeVBKMEEIUpsIMRsirmSgQ/5699cQgg7uTDb+/5Yensy1RcQ/59+yt3B085gKsGQo/tjEORFTrBP/ZD32WlvxAxL3rsP4N04EIULYf/gEy0p7q8P+evcXshHY5BiIg8zkyd/ZkaXpn2tYsi51lZrLUKzGJDNgYz5DrPQkddAR6/gAefoYHSX0Ax1fAkgD4obXyfcqDpxqzEEIIIYQQ4vkgMyOeA8VxZgTAsv3hdKpb7omzHa7HJ/Hv2VuM9K/0+APGR8Hur+HUKtBqDNs8W0C7qeDV/BlHXYjSUyH2EkSHKpUo6vY2bI+/CnPrPv4YpcpB0l0oVxcCPoRqHfI0hKd5jqITkpmz7SJrjl5Fk+XVQ6WC/o09eK9jdco+vKIEHU6thpR7xge0LKUs32g8QlnOIYQQQgiTZGaEEKIwyTINkSfFNRiRbx7EwL7/g2PLICPVsK2cD7SbBlXbF9/SkpoMpfJE9rwJZ/6A9a8r35etDW9ny72g1cLMsqDJds1ZWdhAWpLy/eD1UK29YfuVPUpFkQq+4FwF8vENTOjN+3zxdyj7L98x2G5racbbAVV4o2VlrLUpELIRji2Ha0dMH6hCQyUoUbc3WNrl2/iEEEKI54EEI4QQhUmWaQgBkHwPdn4O8+rD4cWGgQiXqtBnOby1V5kNUBwDEadWK8sSvnSHrZ8at5fNUirzzkVlpkRWKhU0eSPna1OZQUZ65s8VGhj3Ob4c/nwTFjaGXV/k+RIep1Z5B359vSnLhzehimtmEOFhagb/t/Uibf9vNxvP3UVTbyC8sQ1GH4Smb4GVo+GBbpyA/42F/6sBm96DW2fydZxCCCGEEEKI4keCESVUfHw8ERERREREkJaWhkajefJOJUVaEhyYpwQh9n4LaYmZbQ7u0G0+vH0Y6vbK10/68+zGSTjyI2x6Fy5vN25PfQA3gyE9SVmKkZ1LNbCwVWZF1O6u9M/u5Vnw6kIl8JCVygxeXQAf3YC3dkOPxWBXxnj/6ycyvy9fz7g9+Hf4taeSCDRi/+Ou1iSVSkWbmmX5Z0IrZnavQ2lbC33bjXvJTFgTTM9FBzkWEQdudeCVb2FiKHT/HtwbGx4sNQGOLYXF/vBjOzjxK6QmIoQQQghhikqlQlUcP5B6RteuXWPkyJFUqFABa2trqlevztSpU0lOTi7qoeVo+PDhqFQqdu/enet9pk+fjkqlYsWKFbnqHxERgUqlIiAg4KnGmBcBAQGoVCoiIiIMtqtUKry9vQv8/C8K86IegHg6c+fO5bPPPtP/7OrqWoSjyUHQIqjZFZw8Ht8v/iqc36TMAjjxixKASLhp2MfGGVpOVPpYWBfcmLNLSVASZrpUBRsnw7ZD/4Uza5XvreyVpSJZla2d+X3MeWXZRdY/mOaW8MFVMHvCf0PfIeDZHE7+quTNcPIE36GZCTor+JquUpGRDl4twNxamXlhqk/EfgjbqXylJIC3v2F78n1IT4ZSZR87RAszNUObe/NqA3f+u+syyw9EkJqhBMhOXY2nz+JDdPEpz5TONfF0sVOuyXeIMgvi+Ao4vRZS7mce8Pox5evfj6Bef2UZh1udxz9OQgghhBAlXFhYGM2bNycmJoa6devSsmVLjh07xsyZM9m+fTu7du3CysqqqIcpRL6QYEQJNWHCBIYPHw5Ax44dMTMze/wOhS1oEfzzgbK84rVNOQck4q/Cz13hbgTs+QaS4gzbLe2hxRjwexusHQp82AaWvwKRB5TvB66GGi8btmddZhF93nj/cj7Q/b/gVhvK1DC93OJJgQgdlyrQfnru+mY9ds/FyvcpCUrSyOxuZJk5UaGhcfv5TbBxtDIjpU5P6PT4pR6ONhZ8+EotBjXz5Ot/zrP5TGaFlL/P3GRbyG1GvOTNO22r4mBtoTxGXb6DDjPg7Holt0TWMaXch6M/Kl8VmyrlQev0BEvbPDwQQgghhBAlw8iRI4mJiWHcuHHMmzcPgPT0dPr168eGDRv48ssvDT6QfJG4u7sTGhqKrW3RvQ8MDQ3FwsLiyR1FrsgyjRLKyckJb29vvL29sbCwKH7JjGp2hdLeSpDh565K0CG7+Cj4qZ3SBwwDEWZW0HwMjD8FAR/kLRARGwbbpsG6Ecq/sWHGfTLSlMoca1+DhU3hYZxxH6ss54wOMW53bwhe/tDkTajXz8T+9uA7WJmRUNQ3z1b2poMhnb9SEoDWehUqNjFuv3FS+ff+dUiKN25PuKUsqQnfq8yieMTLxY7/Dm7Euv80p17FzBwRqRkafth7hYBvd/ProQjSH82ewNIOGg6Dt3bBqL3QeKQSiMrq2hH4622YXRM2Tza99AWUQJip37fs4q8qfYUQQgghioGjR4+yd+9eypYtyzfffKPfbm5uzqJFi7CwsGDBggWkpT1dWfeSzsLCgpo1a+Lp6VlkY6hZsyZVqlQpsvM/b4rZHax4bjh5KDMicgpInP0TFjRWKj1kpTJTbkrHnVA+hbdzydt5T/4GC5vAgblw7k/l34WNle1Zqc0h6L9KpYc7F0zf2OpmPljYZVasyKpyAIz4G7r8H/j0yds4i4vKraHle9D/VyhT1bj9bmTm9+4mlnlEBcG2qfBzN/ihlVFzE29nNr79EnP616e8Y+bymrjEVJb+bzt/fP0Gt5cNQps1aFS+PnSdAxPPQ7d5xstLku/BkR/gv36wtKOS90L3/Ohm5OQUANPRzcj55wMJSAghhBDZhN9J5Kst5xmz6gRfbTlP+J2Sk8Mpa16BxMRE3nvvPTw8PLCxsaFhw4YEBgbq+65bt46mTZtiZ2eHm5sb48aNIynJ+D2ft7c3KpUKrVbLvHnzqF27NtbW1ri7uzNu3Dji4+PzZeybNm0CoFu3bkZLMdzc3GjZsiV3797lwIED+XK+q1evMmrUKLy8vLCysqJs2bL06tWLo0eP5rjP+vXradq0KTY2Nri5uTFs2DBu3Ljx2PPs2bOHgIAASpUqhYuLCz179uT8eROzip8gp5wRK1asQKVSMX36dKKiohg0aBCurq7Y2NjQuHFjg+c8uyVLluDj46N/PseOHcu9eybK0j/yuJwRISEhjBgxQv94urm50apVK/0Ml6wePHjAjBkz8PHxwdbWFgcHB1q3bs3GjRtNHjs0NJShQ4dSpUoVrK2tcXV1pUGDBkyYMIGbN2+a3KckkGCEKDimAhIX/4Vlr8AfIyAjxbB/nV7wzhElMaNjxbyfLzYM/jcOtBmG27UaZXvWGRIqlWFOB1MzH5q+qczM+PAatP0k7+N5HgxeC++dhwG/Q7VOxu26mRNguppH4h3Ui1vQM3IWewLCeL99ZWwtzehrtpvtlpMYkLoet6i/UR2Yi3ZhE8OgkVUpZVnGW7vhrT3K99mXmlw9DBv/A9/VgC1TwLVWLmbkZFkaVNpbmcUjhBBCCADWHrtK+9l7WLwnjE2nb7J4TxjtZ+9h7bFczDosRlJTU2nXrh2//vorDRo0wM/Pj1OnTtGzZ0+2b9/OnDlzGDRoEObm5nTs2JGMjAwWLFjAG2+8keMxx44dy6RJk6hYsSLdu3fX79O6dWsSEhKeecynTp0CoGFDE0tns2zX9XsWZ86coWHDhixZsgRbW1t69epFtWrV2LBhAy1atGDdunVG+yxcuJA+ffpw4sQJWrRoQUBAANu3b8fPz4/Y2FiT5/nrr79o164de/bsoX79+nTs2JHTp0/TrFkzLl++/MzXkVVERARNmjThwIED+Pv74+vry/Hjx+nRowdbt2416v/+++8zatQoLl26RNu2bWnevDkrV66kTZs2pKSkmDhDztatW0fDhg1ZsWIF9vb29OrViwYNGhAWFsaECRMM+t6+fZtmzZoxbdo07t69S4cOHWjWrBnHjx+nZ8+efPXVVwb9T5w4QaNGjVi5ciWurq707NmTZs2akZqayrx58/RlOEsiyRkhCpYuILGss3Lzt8rEcoaqHaDdp8on4s/ixC/GgQgdbYaSADJr3oV6/ZSEjWVrgUcz430cKjzbeJ4XDuWVL1NcqkCl1nAj2HTOiRsnlUBPdAiWdlsZ8/6bDKymxWn5T5hhWAFGpc0g46+x3HNphLNnLcPjVGgAFeZBx8/hzB9KydKbWf4QJ99T8pMcXqyMI/VBZkAia86S7IGIx+UzEUIIIUqQ5LQMUtKVv62WZmpsLA3ziaVnaEhMVd4nqVQouZuyOXM9ng/XnyFDqzXYnqHR8uGfZ6jr7oC7k7L01MpcjbWF4TlS0zUkpSnnMFersLMyvNXQaLSkZmiM9isIhw4dIiAggIsXL1K6dGlA+QR9xIgRjB49mri4OHbu3EnLli0BuHHjBr6+vqxatYqZM2dSuXJlo2P++uuvHDp0iEaNGgHKp9vdu3dn586dTJs2jdmzZz/TmKOiogCoWNH0h3K67bp+T0ur1TJ48GDu3LnDhx9+yBdffKGvSvLHH3/Qv39/Xn/9dVq1aoWbmxug3Oi///77WFlZ8c8//+hnJzx8+JAePXroZ3VklZCQwBtvvEFGRgarVq1i4MCBgJID44033uDnn39+puvI7ueff2bs2LHMnj0bc3Pld2/evHlMmDCBzz//nI4dO+r7Hjx4kO+++w5nZ2f27t1LnTpKovTY2Fjatm1LUFBQrs976dIlhg0bhkajYc2aNfTrl3m/o9Fo2Lx5s0H/ESNGEBISwuTJk/n888/1OSiuXLlCx44d+eSTT3jllVeoV0+phDd//nySkpJYv349vXr1MjhWaGgoTk5OuX+QihmZGSEKnpMHdJ1rvL28L4zYAkP+ePZABCg5KPLS3ngEtP1YKRHq6P7s538RNRwGr/0PpkRAs1HG7QYzJ3xBpcLl4hqjQISOGRrWL53F97suk5xmIrBkZa88b6P2wpu7lPNb2GU75wlIvAMqtRJ0WNZJCUJIIEIIIcRzbNHuMOp/tpX6n23lk41njdpPX7+nb2/7f3tMHqP3fw8aBSJ0MjRaxq46qT/GsgPhRn3+Cr6ubx+5wniq/53EFBbtNpHLqwCYmZnx448/6gMRAMOGDcPV1ZXLly8zZswYfSACoEKFCgwePBiAvXv3mjzmmDFj9IEIgFKlSrFw4UJUKhVLly7N86fp2T14oJR5zylBo52dnUG/p7V7927OnDlDpUqVmDlzpkF51D59+tCjRw8SEhJYvny5fvuyZctISUlh2LBhBsskbG1tWbBggckSq+vWrePOnTt06NBBH4gAJQfGnDlzKFXKRHL1Z1C5cmW+++47fSAC4J133qF06dIEBQWRmpqq3754sZLkfeLEifpABICLiwvffvttns47Z84ckpOTGTVqlEEgAkCtVtO1a+Ys3ODgYLZs2UKLFi346quvDJJh6safkZHBTz/9pN8eHR0NQNu2bY3OXatWLcqXz+FDwxJAghGicJStaZhAUW0G/X9RSk/mF6cnJLN5Urt4emo1mJsoM1WvP/RYDE1HQa1uyrYnBI3cNNF8++8F2n23h7+Cr6PN4U0R7g2VJT0Tz0OX2Upljqy0jwIe96/DXB+YV18CEUIIIcRjaHL4k6uTlJrDDNRiyNvbm6pVDfNhqdVqvLy8AOjQoYPRPrrEhDmtwR8wYIDRtlq1alG/fn3u37/P6dOnn2nMuvc8pm7ss7Y/q3379gHQv39/kxX5hg4datAPYP/+/QBGN9sANWrUwNfXOLfY4/YpXbq0wUyF/BAQEGBU6cLc3JzKlSuTlpZmsJTkcWPr2LEjzs7OuT7v9u3bARg1ysQHc9ls27YNgO7du5t8nv39/QEM8nboAmDDhg3jyJEjaDSmP9QriSQYIQqe7hNprVZJUKm2AE2GkvQwN1UPcqvhMOX4pqjMwHdo/p1L5E5pL2gwEF75Bho+evyfEBS6pnUF4Hp8EuNXB9P/+10cj7yb8w7WDtDkdRi1D97YCb5DwCL7JwrazCU8fm8rpUqFEEIIYUBt+h5YL/vSj+LM3d3033rd7AJT7bq2nGY46AIZ2ekSGj4pkeOT2NsrlcQSE00nDH348CHAM88o0I0zp0SMpq5H931OlSxMbX+afZ5FTstbdI9X1uf1xo0bqFQqPDxMfziVl7Fdvarcz5ha2pNdREQEAFOmTEGlUhl9lSlTBoA7d+7o95k0aRIBAQEEBgbSrFkznJ2d6dSpEwsWLMiXXCVFSXJGiIJlamo8ZG7Lvqb/WbhUgVfnGyexVJkpn6C7SBmeYqHhMDi4wGR+D63KDG2DIViczCAtQ0t11VWWxkwn8Mfm7Kjcl4E9euDhnEOZVJUKKjZSvjp9CafXwpElcOeiYb8tk+H4CmjzMdTsYrrkqRBCCFHCjA6owkj/SoCSMyK7eu6OnJqmfBKd05++9W+3oMdC00s1zNQqFgzyNcgZkV33Bu50rFMOUHJGZFfGzorRAYXzfiyn2QW5bc+L/Jqx4OnpycmTJ7l27ZrJdt32/LqJz8tj9KRZG6Y8zT7PorDOk9O5c3P+jAzl/W/Lli0fG7zQBSUAHBwc2LlzJwcOHCAwMJDdu3ezY8cOtm7dyqxZs9i3b1+JLTcqwQhRcB63Rv+1TQUTkPAdAp7NlWSV8VHKp/C+QyUQUZw8JmikenUB7/h2okuAUlKs6YVfsFclMch8J6ciImg3uzQjX6rE222qmEy8pWftCNU7w6GFj46tzly2AUpSzTWDlWSXbT+BKm0lKCGEEKJEs7Ywe2xiSHMzNY42j58U7ePuxKzePnz45xkysqzZMFOr+KqXD7XLOz52f0tzNZYmghQ6arUKa3XJmV2RXWRkJD4+PkbbdQklK1R4tuTn9evX56+//uLEiRMm23XbdYkNn5ZunOHhxnk/QLlOwCAXQYUKFbh48SKRkZFUq1bNaB9TSTV159EdLzf7FJby5csTERHB1atXjZbzQN7G5uHhwaVLlwgLC6Nu3bqP7aubvdGnTx/GjRuX63OoVCr8/f31yzhiYmIYP348v//+Ox999BFr1qzJ9bGKE1mmUULFx8cTERFBREQEaWlpxW/t0JOSBZoq+5lfSzZcqihVM/osU/6VQETx4zsExhwF/3ehbm/l3zFHwVdJHOVdxo7Fg30Z5JRZcnVNRhtS0zUs3hNGm29381tQJOmpycryn+yy//6NPw3DAk0nu/ytFyx/BSIPFtz1CiGEECVEv8YebH+vNaMDqtCtfgVGB1Rh+3ut6dtYci2ZuuE7f/48wcHB2NvbP3OQoEuXLgAEBgYaLRW5ffs2+/btw9HRUX9D+rR0iTvXrFmj/6Q+q99++82gH2TmMjBV8vPixYsEBwcbbX/cPvHx8SbLbRaWx41t27ZtxMXF5fpY7du3B2DJkiW57rtx48ZcH98UV1dXpk+fDihlWksqCUaUUHPnzqVSpUpUqlSJS5cu5Vjbt8ic3/TkZIHZAxLnjUsCiefYk4JGajXW4w6j6b6I22WaE2QboG+KTUzlk41nWTb7Ax5+Vx/2z4GE20pjToGwyq3gncOmS7ZGHYTlL8OvveC66U8jhBBCiBdFpTJ2TOlckwUDfZnSuSaVytg9eacXwMKFCzl5MrNSWGJiImPHjkWr1TJy5EisrDKTeR85coSaNWvSrl27XB+/adOmvPTSS0RHRzNlyhT99vT0dN5++23S0tIYO3asUZLG6dOno1KpGD58eK7OExAQgI+PD+Hh4UydOtVgmcnGjRv5888/KVWqlMHxRowYgaWlJb/88otBYsukpCTGjx9v8oPRvn374uzszNatW1m7dq1+e0ZGBhMnTnzmqiDPQpdscvbs2YSGhuq3x8XFMXny5Dwda8KECVhbW7N48WLWr19v0Ja9tKefnx/t2rVj165dvPvuu0aPgUajYevWrfoEm6BU/jA1i2XLli1A/ufeKEwSjCihJkyYQHh4OOHh4VSrVg0XF5eiHpIhv9HQ+asnL7/QBSQ6f6XsI0RWlraofQfhNuYfNk16hXfbV8dGPwVVS7uH/2D7IBK2Tyd210KIv8r9Hzo/fkbOyK1KG5CuzlYBJGwH/NgGVg+G2yEIIYQQQugMGTKEZs2a0blzZ/r370/VqlXZvn07derU4bPPPjPo+/DhQy5cuEBYWN5KmS5fvhwXFxfmzZtHvXr1GDBgADVq1ODPP/+kWbNmfPzxx0b76AIB2YMUOVGpVKxcuRIXFxe+/PJL6tSpw6BBg/D396dnz56o1WqWLVtGuXLl9PtUrlyZr7/+muTkZNq0aUP79u0ZMGAAVatW5ezZswblK3UcHBxYsmQJarWa/v374+/vz6BBg6hRowZ//PGHvpRqUfD392fChAncuXMHX19funbtSt++ffVLUPz8/HJ9rOrVq7Ns2TJAWX7h4+PDwIED6dy5Mx4eHvoZLzorV66kXr16zJ07Fy8vL9q1a8eAAQNo2bIl5cqVo1OnThw7dkzff/HixVSuXJk6derQp08fBgwYgK+vLxMmTMDGxoZp06blwyNSNCQYUUI5OTnh7e2Nt7c3FhYWqNXF8Kn0G527PBBOHhKIEE9ka2nO+PbV2D0pgL6NKlJTfZVKqlv69p6HKrNs6Xwckq5xXeXGrZ5/gH054wM5eXCr5x9cV7lhrkkhpGJ/8Ghm2Of8JljUAta/AbGFUw9dCCGEEMXbggULmDVrFpGRkfz111+oVCreeecd/fKJ/FCtWjVOnjzJ8OHDiYmJYcOGDahUKj755BN27dqFtbW10T6nTp0CMkty5oaPjw8nTpzgzTff5MGDB/zxxx9cuHCBHj16cODAAfr27Wu0z4QJE1i7di0NGjRg//797Nixg4CAAIKCgnL8YLR3795s27aNli1bcvLkSbZs2ULt2rU5dOiQyVwNhWn27NksWrSIqlWrsm3bNg4cOEC/fv3YtWuXwSyX3Bg4cCBHjx5l0KBBxMbGsn79eoKDg6lWrRrz58836Ovm5kZQUBCzZ8+mWrVqHD16lI0bN3Lt2jV8fX35/vvvGTJkiL7/zJkzGTlyJCqVih07dhAYGMjDhw956623OH36NM2bN8+Xx6MoqLT5lf5VFJk6deoAcO7cuSIeiRCF5+z1eyz6azfVbmykouoO76f9B4ARZlv4N6MJZqU92OY6F2tztVLBo2YXMLfienwSA5cEkR4XxQD7U/R+5wvcHa3h0jbYORNuZasRrjKDBoOg9ZT8SbIqhBBC5IFGo+HChQsA1KhRo3h+APWc8/b2JjIyMt+qZuQnjUaDi4sLjRs3Ztu2bUU9HPEcyMtrzrPeh8qrmRCiRKrr7sjC0a9Se+AsvnecqN++PONlblAG4iOwjtoDV3bBHyPg+gl9ICIq7iHmzp5KIMLJRqmkUb0jvLUH+v0CZWpknkiboVRnWdAQNk/OzE0hhBBCCFHETp48SXx8PDNmzCjqoQiRZxKMEEKUWCqVio51yvHvhFZM7VobR5vMtZIvq4/ov39gX5nrDvX1gQhPZ1t+f8sPd/tsayvVaqjdHd4+BD1/0OeWACAjFY78APPqw7ap8DD3WZaFEEIIIQpCo0aN0Gq1JXqqvnhxSTBCCFHiWZqrGelfiT2TAhj5UiXM1SqWZHSlb8pU1mf483VcK/y/2WUYiLBOhTm1IXCCUkEj69RLtRnUHwBjjkHXuWCfpQJHehIcmKcEJXZ/Bcn3C/tyhRBCCCGEKPEkGCGEeG442VoytVtttr7big61y3FUW5OJaW/za0ZHfayhdfUyOFibw5k/4MFtOL4cfuulzHzIzswCGo+AcSeh0yywLZPZlnIfds9SghIH5kHqw8K5SCGEEEIUqoiIiGKZL0KIkk6CEUKI505l11L8OKwx8wc2MGr7NSiKNv+3m9uHVmVurD8QzLNlTdZoMmdLWFhD87dh/CloNxWss2TMTopTlm3MbwCHl0B6Sr5fjxBCCCGEEM8bCUYIIZ5L1+OT+L9/LwJgplIZtN15kErAjbf5P9sJ3HNtBL4mSmFd2goLGsH+ufAgWtlmVQpaToTxp6HVZLAsldn/wW3YMknZ58QvkJFeQFcmhBBCCCFEySfBCCHEcydr1QxPZ1v2TmnDtndbGSS4TMKahXFNqX91IiM2P+BydILhQU78AnFhsH0abJ5k2GbjBG0/VmZKNB8D5llqft+7Cv8bC983VZaCaDQFd6FCCCGEEEKUUBKMEEI8V7IHIn5/yw93JxuqudmzeXxL3J2sjfbZdSGGTnP3MfWvs8Q+SIGku8rMCJ2GJmZOaDRgVwY6faHklGj8OqizVOeIC4P1r8PilyB0k2GCTCGEEEIIIV5wEowQQjw3cgpE6Lg72bD2Py3wdLYFwMo88yUwQ6Pll0ORBPzfbpYcjSPl7aPQegp4+EHlNsYn++cD+LUXnNuoJLbsOhuGrIeytQ37RYfAmsHwY1u4vEOCEkIIIYQQQiDBiBIrPj6eiIgIIiIiSEtLQyNTwYXg37O3cgxE6Lg72fD7W354OtuSkq6hb+OKeLnY6tsTktP5cvN52i8LZ3OZEWhH/qOU+swqLQlOrYawHbDuNTizFk7+Br/2VIIPptw4oVTtWP4KRB7Mz8sWQgghhBCixDEvjJOkpaVx4cIFYmJiuHfvHo6Ojri6ulKjRg0sLCyefABhZO7cuXz22Wf6n11dXYtwNMVL+J1E1hy9yrW7D6lY2pb+TTyoVMauqIclCsFI/0oAdKpbzmQgQkcXkPj37C1G+lciJT2DXw9FMm/HJRKSlcSTV+OSeHvlCZp4l+aTLrWp7+GUeYCL/0LKPeV7y1JQrh4sCQBthomzqYAssyGiDsLyl6FKO2j7Cbg3fKZrFkIIIYQQoiRSaQuoaG5MTAwrVqzg77//5siRI6SkGJe7s7a2pmnTpnTp0oXXXntNbqjzID4+nvj4eAA6duyImZkZoaGhRTuoYmDtsat8+OcZMjSZv9ZmahWzevnQr7FHEY5MlARxianM33GJX4MiDX6HAHr6ujOpUw0qONkoSy0iDyhJLq0dwcIWDszN+cD1BsCDW3Blt3Fbza7Q5mNwq23cJoQQ4oWn0Wi4cOECADVq1ECtlonNQoiCk5fXnDp16gBw7ty5pzpXvgcjLl26xNSpU9mwYQOpqakAlClThho1auDs7IyDgwP37t3j7t27nD9/ntjYWAAsLS3p1asXM2bMoGrVqvk5pOfes/4SPC/C7yTSfvYeo5tIUAIS299rLTMkRK5cjn7ArM2h7DgfbbDdylzNW60q85/WVbCzyjKxbN0IOPdnzges1Q36/wbh+2DnTLh6OFsHFfj0gYAPwaVK/l2IEEKIEk+CEUKIwlSYwYh8XaYxduxYlixZQkZGBm3atGHQoEEEBARQqVKlHPe5cuUKu3btYtWqVaxdu5b169fz1ltvsWDBgvwcmngBrDl61WQgApTkhGuPXWVK55qFPCpRElUtW4qlw5uw/9IdPv87hPO3lLKfKekaFuy8zOqjV5nUsQa9G1XETK0CJ8/HH9DlUYC1UksY+S9c3q4EJW6eetRBC2fWwdk/wXcwtJoMTjKTRwghhBBCPL/yNbS6dOlSRo8eTVRUFNu2bWPEiBGPDUQAVK5cmddff50dO3YQGRnJf/7zH5YtW5afwxIviGt3Hz6hPamQRiKeF/7VyvD3uJZ83duHMqWs9NtjElKYvP40XRfs5+DlO9BwGKjMTB9EpQbfLKVBVSqlOsebu6HfL1CmRmabNkNZ+rGgIWyeDAm3le1BiyD+6pMHHH9V6SuEEELkRQn9O6NSqVCpVEU9jHy1adMmPvroI9q3b4+joyMqlYrOnTsX9bBKpIiICFQqFQEBAQV+roCAAFQqFREREQbbVSoV3t7eBX7+kipfZ0ZcuXKFcuXKPfX+7u7uzJs3jw8//DAfRyVeFBVL2z6hPeeEhkLkxEyton8TT7rUq8Di3WH8uO8KKelK9ZrQm/cZ9NNh2tcqy5dtvqXsrkmGSSxVZvDqAuOlF/tnK2U+23wEbx9SZkXsngV3I5T2jFQ48oMSmPBoCuF74PBieG1TzjMm4q/Cz10zj+E3Ol8fByGEEM+poEVKuWr5O1MsDBkyhHv37hX1MIQoFPkajHiWQERBHEe8WPo38eDHfVdyzBkhCSzFsyhlZc77nWowsJkn3/5zno3BN/Rt20Oj2X2hPOMarOJN+wPYJF5Xlm74DjUORCTFw8GFSjWOX16FbvOg0XCo21spD7r3W7h/XembnqQEIlApb/5WvALDNxu/Ucz6BrG0t5IUUwghhMiNml2VQMTdCOVviamAhPydKTS9e/emVq1aNGnShISEBLp161bUQyqx3N3dCQ0Nxdb28R9YFqTQ0FCpHvkYkgFHPDcqlbFjVi8fZQ1/FmZqFV/18pHklSJfuDvZMHeALxvfeYnGXqX129M1WmafyKDZYX9+cvuE1ICpppNRnt+UWRbUygFqd1e+N7OAxiNg7Ano/BXYZa0u9CjAFh8FP7SEmIuZTdnfID7uUy0hhBAiOycP5W9Hae/MgETWJRvyd6ZQLV26lPfff5/WrVtTqlSpoh5OiWZhYUHNmjXx9HxCbq8CVLNmTapUkeTkOZFghHiu9Gvswfb3WjM6oArd6ldgdEAVtr/Xmr5ZZkWkpGfkmOhSiNxq4OHEuv805/tBDQ2WAN1PTufzv0PpOGcP/5y9hVHBIt8hMGILeLeE5u+ATWnDdgtrqNIWxgVDu6lK6dCsku7Cf/1g99cQGyZvEIUQQjy7nAISJTAQkTVPQGJiIu+99x4eHh7Y2NjQsGFDAgMD9X3XrVtH06ZNsbOzw83NjXHjxpGUZJxjzNvbG5VKhVarZd68edSuXRtra2vc3d0ZN24c8fHxhXiF+efBgwfMmDEDHx8fbG1tcXBwoHXr1mzcuNGg3/Hjx1GpVPj5+eV4rG+++QaVSsXHH39ssD01NZV58+bRpEkT7O3tsbOzo2nTpixdutT4PRKZORYyMjL45ptvqF69OlZWVnh4eDBlyhRSUlJyfX055YxYsWIFKpWK6dOnExUVxaBBg3B1dcXGxobGjRsb/I5kt2TJEnx8fPTP/9ixYx+7rOZxOSNCQkIYMWIEXl5eWFlZ4ebmRqtWrZg3b55R39w+VzqhoaEMHTqUKlWqYG1tjaurKw0aNGDChAncvHkzx/EWtnwv7WlKaGgoXbp04cqVKwV9qheSlPbMveS0DEb/dhwnW0v+r299o1kUQjyN5LQMfj4YwcKdl0lISTdoa1bJmU+71qauu6PxjhnpYJZttVzkIVjeGap3Vkp9lvaGQ99D0H8h9YHpAZSQN4hCCCHy7oll9rRaSM6nHAP3r8PvA5SZeOpHU8s1acrSw4GrwcE9f84DSrD9GZNP6pJXZr2diYiIoFKlSjRv3hyNRkNYWBh+fn48ePCAvXv3olKp+Oeffzhz5gyTJ0+mSZMmuLm5sW/fPmJjYxk0aBArV640OI+3tzeRkZG88847LFmyhICAAEqXLs2ePXu4ffs29erVY//+/djb2z/T9WS3e/du2rRpQ6dOnfjnn3/y9di3b9+mbdu2hISE4O7uTqNGjXj48CGHDh0iMTGRWbNm8cEHH+j716pVi/Pnz3P58mWTn/Q3aNCAU6dOcfbsWf29SWJiIi+//DL79u2jTJkyNG7cGLVazaFDh7h79y6jRo1i8eLFBsdRqVR4eXnh5+fHpk2b9MGiffv2ce/ePQYPHsxvv/2Wq2vU/S60bt2a3bt367evWLGCESNG8Nprr7Flyxasra1p2LAht2/f5tChQ6jVarZs2ULHjh0Njvf+++/z3XffYWVlRdu2bbG1tWXnzp14e3tjZWVFUFAQ4eHhBsEH3fVkT2y5bt06hg4dSkpKCnXq1MHHx4e4uDjOnj3LjRs3DH6n8/pcnThxAn9/f5KTk2natCmVKlUiISGBK1euEBoayq5dux6b1LPElvbMSWpqKpGRkYVxKiFylJyWwX9+O87uCzEAqIBvJSAh8oG1hRmjWlehT6OKzNl+kVWHo9BNvjkcHke3hfvp5VuRSZ1qUM7ROnPH7IEIgN1fKv9e/EfJL/H6v9D2Y2g2CvbPgSM/Qka2TwVsyzx6IyrBCCGEeOEk34OvvfL/uJq0zO/jo2BRi/w9/pRIsHHK32NmcejQIQICArh48SKlSyuzEHU3oaNHjyYuLo6dO3fSsmVLAG7cuIGvry+rVq1i5syZVK5c2eiYv/76K4cOHaJRo0aA8ml19+7d2blzJ9OmTWP27NkFdj35bcSIEYSEhDB58mQ+//xzfV6DK1eu0LFjRz755BNeeeUV6tWrB8CgQYOYOnUqq1at4tNPPzU4VmhoKKdOnaJBgwb6m1OASZMmsW/fPoYOHcp///tf/bKTmJgYunXrxg8//EC3bt3o0qWLwfEiIyOxtbXl7Nmz+hv78PBwGjVqxMqVK/nss8/yZenDzz//zNixY5k9ezbm5sp7snnz5jFhwgQ+//xzg2DEwYMH+e6773B2dmbv3r3664yNjaVt27YEBQXl+ryXLl1i2LBhaDQa1qxZQ79+/fRtGo2GzZs3G/TP63M1f/58kpKSWL9+Pb169TI4VmhoKE5OTrl/kApYvizTmDFjxmO/fvjhh/w4jRDPLPVRFQSApLQMNAU/MUi8QFxKWfF5Dx/+mdCKgBqZOR+0Wlh/4hpt/m83c7Zd5GFquukDJN+DlCyzH9pkqSxkVwY6faEs8VBle+m+fkzJJbHpPXgYl49XJIQQQpRMZmZm/Pjjj/pABMCwYcNwdXXl8uXLjBkzRh+IAKhQoQKDBw8GYO/evSaPOWbMGH0gAqBUqVIsXLgQlUrF0qVL87SEoCgFBwezZcsWWrRowVdffWWQYLFy5cp89913ZGRk8NNPP+m36x6b7LNGsm7T9QGIjo7mp59+olKlSvz4448G+S9cXV3194c53ScuWLDAYIZBpUqVGDJkCAD79u3L6yWbpLtWXSAC4J133qF06dIEBQWRmpqq366bwTFx4kSDgIuLiwvffvttns47Z84ckpOTGTVqlEEgAkCtVtO1a2aC2Kd5rqKjowFo27at0blr1apF+fLl8zTegpQvMyOmT59O+fLlsbS0NNme9YkUoqhYW5ix9LUmjFxxFGc7S+YOaICFmaRNEfmvups9K0Y0Zc/FGL74O4SLt5UAQ1JaBvN2XGL10SgmdapJL1931Fln5lg7wps74eK/cGkrVGpteOD4q8r0Wa0G1OagyUCf3FKrgWNL4ex6aPsJNBpheuaFEEII8QLw9vamatWqBtvUajVeXl7ExMTQoUMHo310n7bntKZ+wIABRttq1apF/fr1CQ4O5vTp0zRp0iQfRl+wtm3bBkD37t31S12y8vf3B+Do0aP6bZUrV8bPz4+goCBOnDhBw4YN9W2rV69GrVYbPD579uwhLS2Nzp07Y2VlZXSO+vXrY29vb3AOHQsLC5PLCKpXrw7k/PzkVUBAgFGlC3NzcypXrszx48eJjY3V37jv378fwCh4ANCxY0ecnZ2Ji8vdB0Lbt28HYNSoUU/s+zTPVaNGjdiyZQvDhg3jk08+0S+PKY7y5Z2qp6cn3377LX379jXZHhwcbBBFFKKo2FiasWx4EyzMVJhLIEIUsNbVXXmpSkvWHrvG7G0XuPNACczevp/C++tOseJgOB+/UpvmVVwyd1KpoEZn5Sur+KtKac9EJdpN9c7g/x6sHggPbmf2S46Hze/DseXw8ldQqVXBXqQQQoiiZe2oLHl4VlnzRehyRIDxtvzKG5E9QXM+c3c3PU47O7sc23VtOc1w8PIyvRzG29ub4OBgbty4YbK9uNHlL5gyZQpTpkzJsd+dO3cMfh48eDBBQUGsXLlSH4wICgoiLCyMNm3aULFiRaNzLFq0iEWLFuV4DlMJQ8uXL4+ZmZnRdt3sivyagZJ1vE86z40bN1CpVHh4mF4S6+npmetgxNWrSrUaU0uBsnua52rSpEns37+fwMBAAgMDcXR0pFmzZnTt2pXhw4fne26TZ5EvwYgGDRoQHBycYzBCl31WiOLAxtL4xQ0gJiEFFztLw0+qhXhG5mZqBjXzpFv98vx3dxhL94frlwudvX6fgT8G0bG2Gx++Uivn8rO6bObxUZnbruyGbvPhjR2woivER6BkQnn0Wht9Dn7uppQO7fi58iZSCCHE80elevbcC/FXYfUg5e9M9qTIwzdnVtRYPajEJEw29SlyXtrzoqTd52RkZADQsmXLx94QlylTxuDn/v378+6777J69Wq+/fZb1Go1q1atAgyXaGQ9h6+vrz6XQW7l53NTHM6T07lzc/6nea4cHBzYuXMnBw4cIDAwkN27d7Njxw62bt3KrFmz2LdvX7EpN5ovwYiJEyfy4EEOWd6BqlWrsmvXrvw4lRAFIjI2kQFLgmhbsyyf96hbpC9O4vlkb23BlM41GdTUk2/+vUDgqcxPT7aG3GbXhWiGNfdmXNtqONpmmTKYtayanStYloK74dDsP2DnArjA8E2ZfSxLGVbdCPlLWfbx0nh4aQJY2hbSFQshhCgRnlS+U1f2U9fn564lJiCR3yIjI/Hx8THaHhWlfFhQoUKFwh7SU9HNCOjTpw/jxo3L9X6urq506NCBLVu2sHv3blq3bs3atWuxsrKid+/eJs8REBBQohJ75qR8+fJERERw9epVo+U/kPk7kBseHh5cunSJsLAw6tat+9i+T/tcqVQq/P399cs4YmJiGD9+PL///jsfffQRa9asyfWxClK+zFNv2bIlL7/8co7tdnZ2tG7dOsd2IYpSVOxD+v8QxM17yaw8HMW0/0mJVFFwPJxtWTDQl/WjW9DAw0m/PS1Dy9L94bT+v10sPxBOWsajZKvnN2W+QXxzF4w9Dj2XQPN3Mg+qe6NoX14JRPgOA/fGme3pybDna1jYBM7+qWTUFEIIIcDw70xOQQbd35nS3krf85sKd4zFhKkbuPPnzxMcHIy9vX2eZwAUlfbt2wOwcePGPO+rmwGxatUqduzYwe3bt+nSpYtRhYY2bdpgZmbGpk2b9J/ul2S6m/p169YZtW3bti3XSzQg8/FfsmRJrvs+zXOVlaurK9OnTwfgzJkzz3Ss/CSL5sULr7SdBeWdMsstVnMrPuuoxPOrkVdpNrzdgvkDfXF3stFvj3+YxmeBIXSas5dtIbfRNvsPQdUncavnH8qbQbUZ1O8Pts6GB3TyIMXBW/n+9Gqo2xt6LIZSbpl97l+DP0YoyzpuFZ8/REIIIYqQ32jo/NWTZzvoAhKdv1L2eQEtXLiQkydP6n9OTExk7NixaLVaRo4caZCo8ciRI9SsWZN27doV+LimT5+OSqVi+PDhuerv5+dHu3bt2LVrF++++67RDHeNRsPWrVv1SRuz6tGjB3Z2dqxfv57ly5cDxks0QMnJMXz4cC5dusTQoUON8k+AUi4zexnL4kqXbHL27NmEhobqt8fFxTF58uQ8HWvChAlYW1uzePFi1q9fb9CWvbTn0zxXixcvJjw83Oi8W7ZsAZT8FsVFgQQjYmJiGDlyZEEcWoh8Z29twc8jm9LQ04kve/ow1K8AanULYYJKpeLV+hXYMbE1kzvXoJRV5sq5K3cSefOXY7T5v90MOO1Lv9XXuB5vnORJJyZkH1bXDyk/ZKSCa3VoMFCZSfHSeFBnWfoRuR9+aCWlQIUQQij8Rudu2YWTxwsbiAAYMmQIzZo1o3PnzvTv35+qVauyfft26tSpw2effWbQ9+HDh1y4cIGwsLA8nWPmzJn4+fnh5+fH22+/DShJInXb/Pz8jKpJaDTKbMrslSEeZ+XKldSrV4+5c+fi5eVFu3btGDBgAC1btqRcuXJ06tSJY8eOGe1nZ2dH9+7diY+PZ/Xq1Tg6OtKlSxeT55g/fz5t2rTh999/p3LlyrRq1YoBAwYQEBBAxYoVeemll9i6dWuux1yU/P39mTBhAnfu3MHX15euXbvSt29fqlWrBihBg9yqXr06y5YtA5TlFz4+PgwcOJDOnTvj4eFh9Hjm9blavHgxlStXpk6dOvTp04cBAwbg6+vLhAkTsLGxYdq0afnwiOSPAglG3L9/n59//ln/H0OI4s7B2oK1o5ozqFnxiRSKF4e1hRlvB1Rl1/sBDGzqSdYcqhGxDwGIintIv8WHTAYkrscn0T8wiY/TRhKtciGlfBOo8uiTGCt76DAD3jkM1Tpm7qQrBTrfFw4vgYz0grxEIYQQosRbsGABs2bNIjIykr/++guVSsU777zDvn37cHTMn+ogYWFhHD58mMOHD+s/gb93755+2+HDh42qSZw6dQqAoUOH5vo8bm5uBAUFMXv2bKpVq8bRo0fZuHEj165dw9fXl++//54hQ4aY3DfrTIjevXubLN0JYGtry9atW/npp59o2LAhZ8+eZcOGDYSFhVGlShW++eYb3n///VyPuajNnj2bRYsWUbVqVbZt28aBAwfo168fu3btyvExyMnAgQM5evQogwYNIjY2lvXr1xMcHEy1atWYP3++Qd+8PlczZ85k5MiRqFQqduzYQWBgIA8fPuStt97i9OnTNG/ePF8ej/yg0hZA+tewsDCqV69OWlpasa1pWtLFx8cTHx8PKLVtzczMDKYMifwTcuM+tcrbS1JLUWjO37rPF3+Hsu+S8ZRGRxsL/hzdgipllbJT1+OTGLgkiKi4h3g62/L7yAa4mycYV89ITYT/NocKDeFmsJIEM6uyteHlr6UUqBBCFDMajYYLFy4AUKNGDXlvXQS8vb2JjIwsllUzNBoNLi4uNG7cmG3bthX1cMRzIC+vOXXq1AHg3Lmny7knr2Yl1Ny5c6lUqRKVKlXi0qVLxMbGFvWQnkt/n75Jt4X7mbXlfLH8AySeTzXLOfDLyKYsH9GEqo+CDjr3ktLoOHcvy/Zf4WrcQ8NAxFt+uJcpbbqM55EfIT4SQjZAWiK0nw6WWfKjRIcopUDXDIW7+VCvXgghhBAF7uTJk8THxzNjxoyiHooQeSYzI0oomRlR8HZdiOaNn4+RoVH+i7zbvjrj21cr4lGJF016hobfj0QxZ/sl4hJTDdpUgBYyAxFZEmEa0Gjgv83gzkXl55fGK0s3Em7DjhkQ/Jthf3NrKQUqhBDFhMyMKHrFeWaEEPlNZkaIJ3JycsLb2xtvb28sLCzkD1MB8PVwosajyhpOtha0q1W2iEckXkTmZmqGNvdm1/sBjGpVGYssCSV0b4lsLMwIuXE/5zdJarVSFrTdNHD0hBbjle32btDje3hzJ5Srn9nfoBToeikFKoQQQggh8p3cwQqRAydbS1a+0YyXqrqw6g0/6rrnT2IiIZ6Go40FH75Si1Vv+pE9fcmF2wm8+csxuszfzz9nb6LRmAgeWJWClu/B+GCwczFsc28EDuXB0g4ssywLuX8N/hgJK7pIKVAhhBAvrIiICJkVIUQBkGCEEI9R2s6SlW/4UbuCQ1EPRQiuxycxcd0ptFowV6vInlI15OZ9/vPbCV6Zv4+/T+cQlFCbmTjwcbj4j5LkMvUB1Ho1WynQA7DYXwlMJEp+GiGEEEII8ewKLBgh0UPxPNNotOw8f7uohyFeINmrZuyZ3Ib9H7SlnIO1Ud/ztxJ4Z9UJOs3dy1/B1/V5T3J05xJY2CnfV/CFfr9Am48ge7jj7HqYUwcO/yClQIUQQgghxDMpkGCEs7Mz06ZNkzwG4rmk0Wj5eONZRq44xvwdl4p6OOIFYFS+81GySncnG9a/3QJPZyXJpI2F4ayHS9EPGL86mA5z9rDh5DXSMzSmT1B/AEw4oySsbPspxF2BnZ+TmZUii/Qk2DIZfmgJV/bk74UKIYQQQogXRoFEC0qXLs20adMK4tBCFLkFOy/z+5EoAGZvu8i6Y1eLeETieZZTIELH3cmG39/yw9PZlqS0DMo7WtO2ZlmDvBJXYhJ5d80p2s/ew7pjV0kzFZSwc4EOn0HVdnDiF9BmPH5g0SHwy6uwZoiUAhVCCCGEEHkmUxeEyKOBzTyo4qpMaW/kVZrOdcsV8YjE8+zfs7dyDEToZA1I3LyXjH/VMmyd0IruDSqQpfgGEbEPmfTHadp9t4c1R6NITc9hpkR8VO4HGBqoVN3Y+YWSc0IIIYQQQohcUGnzMbmDl5cXQ4YMYfDgwdSuXTu/Diue4Fnru4q8i76fzDf/XmD6q3UoZWVe1MMRz7ll+8PpVLecyUBEVtfjk/j37C1G+lfSbwuLecD3Oy+zMfg62VNHuDvZ8HabKvRpVBEr8yxLPLZNgwNzcz5R/YEQexmuHTXc7uAOHWZA3d4YlfwQQgjxVDQaDRcuXACgRo0asgxaCFGg8vKa86z3ofkajFCr1agevQH19fVlyJAhDBgwgHLl5JPjgiTBCCHEk0TcSeT7XZf586RxQsvyjtaMDqhCv8YeWFuYQWyYMtvB1FINlRmMOQqlK8GZtUrg4sEtwz6eLeDlr6F8vQK8IiGEeDFIMEIIUZgKMxiRr69me/bs4Y033sDJyYkTJ04wceJEPDw8ePnll1m1ahUPHz7Mz9MJUezcTUxl/fFrRT0MIYx4l7Hj27712TUxgAFNPDDPsn7j5r1kpv51jtbf7mL5gXCSHbzh1flK4CErlRm8ugBcqoBarSS+7P8LStWNLDMhog7CktYQOEFKgQohhBBCCJPydWaETlpaGps3b+bXX39l8+bNJCcno1KpsLW1pVevXgwePJgOHTroZ1GIZyMzI4qHuMRUBv90mNCb9/m0a21ezzJVXoji5trdhyzaHcbaY1dJyzD8M1CmlBX/aV2ZIdXSsT67Sskh4eQJvkOVQISOVgsrukLkfuVny1KQ+sDwRNaO0OZjaPw6mMmSJiGEyCuZGSGEKEwldmaEjoWFBd27d+ePP/7g1q1b/Pjjj7Ru3ZqkpCR+/fVXXn75Zdzd3Xn//fcJDg4uiCEIUeimrD9N6M37AMzcFMLRiLgiHpEQOatY2pYvevqwZ1IbhjX3wtIs88/BnQcpfP53KP4/RfKDxVASuy2B9tMNAxEAKQmgzjJ7os9yGLweXKplbku+p5QCXewPV3Znbg9aBPG5qEQTf1XpK4QQQmSjUqmeuw83N23axEcffUT79u1xdHREpVLRuXPnoh7WEw0fPhyVSsXu3btzvc/06dNRqVSsWLEiV/0jIiJQqVQEBAQ81RjzIiAgAJVKRUREhMF2lUqFt7d3gZ//RVHgoVUHBwdef/11du7cSVRUFF9//TV169bl1q1bzJ49m0aNGlG3bl2+/vrrgh6KEAVq+qt18HBWEgz+p3UVGnuVLuIRCfFkFZxsmNG9Lnsnt2HES95YmWcNSqQya8t5/L/eyfe7LpOQnGa4s7UDDPsL+v8GjUdC9Y5QrT2MPggdvwArh8y+MaHwS3elFOjOL+CfD+Dnro8PSMRfVfr884EEJIQQQrwQhgwZwqxZs9ixYwf3798v6uEIUaAKdZ5XhQoVmDRpEqdOneLs2bNMmTIFZ2dnQkJC+OijjwpzKELkO3cnG35/04+PXqnJlM41nrtIvXi+lXO0Zlq3Ouyb0oY3W1bC2iLzz8Pdh2l8++8F/L/exYIdl7ifNSihUkGtbtB1TuY2c0toMQb+cwAs7QxPFBoI++cqyzfuRuQckNAFIu5GQGlvqNk1H69WCCGEKJ569+7Nt99+y+7duwkMDCzq4RQr7u7uhIaG8ssvvxTZGEJDQ9mxY0eRnf95UyQLeGNjY9mzZw979+4lLk6msovnR8XStrzVqsqTOwpRTJW1t+bjLrUZ1boKP+67wq+HInmYqlTVuJeUxnfbLrJk3xVGvlSJkS9VwtHWIueDnfodUhOV79VmoHlUnUOTCsmpSkJMXUDitU3g5KG0Zw9EZG0TQgghnmNLly7Vf5+XJQ8vAgsLC2rWrFmkYyjq8z9vCm1mRHJyMmvWrOHVV1+lQoUKjBkzhkOHDuHi4sI777zDoUOHCmsoQhS6YxFxrDkaVdTDECLXypSy4sOXa7F/SlveaVOFUlaZseuE5HTm7biE/9c7+W7rBe4mphofQKOBsCyfHDQbDT1/gFJZSj3rSofejYBlHZUghAQihBCi6MWGKaWb141Q/o0NK+oR5VrWvAKJiYm89957eHh4YGNjQ8OGDQ1mG6xbt46mTZtiZ2eHm5sb48aNIykpyeiY3t7eqFQqtFot8+bNo3bt2lhbW+Pu7s64ceOIj48vxCvMP1evXmXUqFF4eXlhZWVF2bJl6dWrF0ePHs1xn/Xr19O0aVNsbGxwc3Nj2LBh3Lhx47Hn2bNnDwEBAZQqVQoXFxd69uzJ+fPn8zzenHJGrFixApVKxfTp04mKimLQoEG4urpiY2ND48aNHzvDZMmSJfj4+Oifz7Fjx3Lv3r0c+z8uZ0RISAgjRozQP55ubm60atWKefPmGfV98OABM2bMwMfHB1tbWxwcHGjdujUbN240eezQ0FCGDh1KlSpVsLa2xtXVlQYNGjBhwgRu3ryZ43iLuwKdGaHVatmxYwe//fYbGzZs4MGDB2i1WqysrOjduzdDhw7l5ZdfxtxcMqyL59fRiDiGLztC4qNPl/s38SziEQmRe852lkzqVJM3W1Zm2YEIlh8IJyE5HYCElHQW7LzMsv3hDGvhzRv+lXApZaXsqFbDiC1w4mc4vARaT1FyTNTsAvu+g0PfQ0aWIMb9GzCvnjJbQpMmgQghhCgqJ3+D/43LDBgDHFyglHz2HVJ048qj1NRU2rVrR1hYGH5+fjx48IC9e/fSs2dP/vnnH86cOcPkyZNp0qQJHTt2ZN++fSxYsIDY2FhWrlxp8phjx45lyZIlBAQE4OPjw549e1iwYAF79uxh//792NvbF/JVPr0zZ87Qtm1b7ty5Q82aNenVqxdRUVFs2LCBwMBAVq1aRd++fQ32WbhwIWPHjsXMzIzWrVtTpkwZtm/fjp+fH/Xr1zd5nr/++ovevXuTkZFBixYt8PT05MiRIzRr1oxu3brl6zVFRETQpEkTrK2t8ff35/bt2xw6dIgePXqwZcsWOnbsaND//fff57vvvsPKyoq2bdtia2vLypUrOXDgAFZWVnk697p16xg6dCgpKSnUqVOHFi1aEBcXx9mzZ5kwYQLjx4/X9719+zZt27YlJCQEd3d3OnTowMOHDzl06BA9e/Zk1qxZfPDBB/r+J06cwN/fn+TkZJo2bUrTpk1JSEjgypUrzJs3jx49elC+fPlne/CKirYAHD9+XPvee+9pK1SooFWr1VqVSqVVq9XaVq1aaX/88UdtfHx8QZz2hVW7dm1t7dq1i3oYwoT0DI22zf/t0npN2aT1mrJJW+OTzdrb95KKelhCPLX4h6naudsuan2m/aP/vdZ91fxki/aLv0O00feTDXfKyDA+0J3LWu3/1dRqpzkYf00vrdXGRRTOBQkhRDGXkZGhDQkJ0YaEhGgzTL2e6qQmabUP7ypfKYnG7elpme1JObwXv35SeQ3O6bX55unMY6SaeD+TlpLZnpxg6mJM7/eUAG3225nw8HD99oCAAG1cXJy+bfny5VpAW7VqVa2zs7N27969+rbr169ry5YtqwW0YWFhBsf08vLSAloHBwftsWPH9NsTEhK0bdu21QLad999N9+uS2fXrl1aQNupU6d8Pa5Go9H6+PhoAe2HH36o1Wg0+rZ169Zp1Wq11t7eXnvr1i399vDwcK2VlZXWyspKu2vXLv32xMREbYcOHfSPeda2+/fva8uUKaMFtKtWrdJvT0tL07722mv6fZYvX56rceue29atWxts1z2vgHbs2LHatLQ0fdvcuXO1gLZly5YG+xw4cEALaJ2dnbVnz57Vb79z5462Xr16+uOFh4cb7Adovby8DLZdvHhRa21trbWwsNCuWbPGoC0jI0MbGBhosO3ll1/WAtrJkydrU1NT9dvDwsK0VapU0ZqZmWlPnTql3657rNavX2/0mISEhGhv3Lhh/GA9g1y/5mif/T40X5dpfPHFF9SuXZsmTZowd+5cbt68SfXq1Zk5cyZXrlxhz549vPHGGzg6OubnaYUotszUKpa+1oSy9lZYmqv5YWhjyjpYF/WwhHhqjjYWjG9fjQMftGVSpxo4ZckZkZSWwZK9V2j5zU5mbgoh+n6y0mCqPnXCTUh4NK1Tla1dm6FMDY65UEBXIYQQz6H9c+BrL+Xr74nG7TdOZrYvaGz6GEs7Gs6IyEqbAX+MzDxG0H+N+5xZl9m+qr9xe2KMMs5CYGZmxo8//kjp0pnVzYYNG4arqyuXL19mzJgxtGzZUt9WoUIFBg8eDMDevXtNHnPMmDE0atRI/3OpUqVYuHAhKpWKpUuXkpKSUkBXk792797NmTNnqFSpEjNnzjRIut6nTx969OhBQkICy5cv129ftmwZKSkpDBs2zGCZhK2tLQsWLDCZuH3dunXcuXOHDh06MHDgQP12c3Nz5syZQ6lSpfL1uipXrsx3331nMOv+nXfeoXTp0gQFBZGamjkjc/HixQBMnDiROnXq6Le7uLjw7bff5um8c+bMITk5mVGjRtGvXz+DNrVaTdeumUm4g4OD2bJlCy1atOCrr77CwiLzfZRu/BkZGfz000/67dHR0QC0bdvW6Ny1atUqubMiyOecEZ9++innz5/X54E4fPgwoaGhfPzxx3h5eeXnqYQoMSqVsWP1W34se60Jrau7FvVwhMgX9tYWvNOmKvuntGVK55o421nq25LTNCzdH47/N7uY/r9z3LxnvP6Wgwszv1ebWKp34zj8t4VSBjQtuQCuQAghhBGt5vHtqQ8LZxz5wNvbm6pVqxpsU6vV+nuSDh06GO1TpYqShDynNfgDBgww2larVi3q16/P/fv3OX369LMOu1Ds27cPgP79+2NmZmbUPnToUIN+APv37wcwutkGqFGjBr6+vkbbH7dP6dKljZZNPKuAgACDm3tQAh+VK1cmLS2N2NjYXI2tY8eOODs75/q827dvB2DUqFFP7Ltt2zYAunfvbjKA4+/vD2CQt0MXABs2bBhHjhxBo3nC/9MSJF+DEX379uV///sfN27cYP78+TRp0iQ/Dy9EiVXZtRT+1coU9TCEyHelrMwZHVCF/VPa8PErtShTKjMokZquYcXBCFp/s5tPNp7henxmUOJn92kkNPwPoFJyR5T2hjd2QNV2mQfXpsPeb7g3pwlc2VN4FyWEEC+q7DPVsrO0LZxx5AN3d3eT2+3s7HJs17XlNMMhpw9XdQkNn5TIsbjQjTOnRIymrkf3vaen6dxnprY/zT7PomLFiia362ZgZH1eb9y4gUqlwsPDdG6qvIzt6lWlRHnlypWf2DciIgKAKVOmoFKpjL7KlFHuF+7cuaPfZ9KkSQQEBBAYGEizZs1wdnamU6dOLFiwgISEhFyPszjK18yRa9asyc/DCfHc+2FPGOUcrenewPQfTCFKCltLc95sVZkhfl6sOhLF4j1hxCQof/RTMzT8FhTFmqNX6dPIA9dSlvyx8wjtbTZgj9YwWeWQP+H4LxA4DmW5Jjg+jIJfXoX6A6HjF2DnUnQXKoQQxZX/u+A3WvnezNK4vYIvTIlUvjfxiSwAr2+FH9uaXqqhMoM+y8Dx0c2buYllpz59lUTFYHrWm52rMs5CYOpT57y054VWq823YxWmvDxGumvMy+P2NPs8i8I6T07nzs35MzKU/1stW7Z8bPBCF5QAcHBwYOfOnRw4cIDAwEB2797Njh072Lp1K7NmzWLfvn36WT0lTaGUsUhPT2fTpk0cPXqUO3fu0KxZM0aOHAkoUak7d+5Qu3ZtqaohXijf77rMt/9eQK1SXsBerV+hqIckxDOzsTTjdf9KDG7myZqjV1m0O4xbj3JHpGVo+f1IFBVVd1ht9QXu2ttcV7lh1vMPymWtmlG7G5qtn6BOyVZa69TvcPFf6Pg5NBiU85tpIYR4EVlYK185MTMHG6fHH6NCA6VqRvZqGiozeHUBlPN5/P7mlspXTtRqUJfc3FmRkZH4+Bg/BlFRSvn2ChVKxns53TjDw8NNtkdGKkGrrLkIKlSowMWLF4mMjKRatWpG++geA1Pn0R0vN/sUlvLlyxMREcHVq1eNlvNA3sbm4eHBpUuXCAsLo27duo/tq5u90adPH8aNG5frc6hUKvz9/fXLOGJiYhg/fjy///47H330UYmdFJCvyzRM2bNnD5UrV6Z3797MmjWLn376Sb9GB2DHjh34+vry119/FfRQhCg24hJTWbZf+QOg0cK87RdJTX9+1n8JYW1hxmstvNkzOYDPe9TF3clG39ZBfRRP1W0iNWXpm/QxPVdGGSzhSNj+jT4QYfS/IikO/nobfu4Gdy4VwpUIIcQLxncIjDmqzGCo21v5d8xR8B1c1CMrcqZu+M6fP09wcDD29vbUq1evCEaVd7rEnWvWrNF/Up/Vb7/9ZtAPMnMZrFu3zqj/xYsXCQ4ONtr+uH3i4+PZunVr3gefTx43tm3bthEXF5frY7Vv3x6AJUuW5Lrvxo0bc318U1xdXZk+fTqglGktqQo0GHHmzBleeeUVoqOjGT9+POvWrTOaxtS7d29sbW1Zv359QQ5FiGLF2c6SlW82w9nOkkpl7Fj5hh+W5gUeGxSi0FmZmzHEz4td7wcwq5cPFUvbsDzjZT5LG8rA1E+4QRlu3kumw+w9HLgcw/X4JAaENOfn9A5koCax8Rjo+CV0mgUWdpkHjtgHi1rA7q8hvWRkLxdCiBLDpQq0n64sy2g/XflZsHDhQk6ePKn/OTExkbFjx6LVahk5ciRWVlb6tiNHjlCzZk3atWtn6lD5avr06ahUKoYPH56r/gEBAfj4+BAeHs7UqVMN7s82btzIn3/+SalSpQyON2LECCwtLfnll18MElsmJSUxfvx4k0kV+/bti7OzM1u3bmXt2rX67RkZGUycOJEHDx7k/WLziS7Z5OzZswkNDdVvj4uLY/LkyXk61oQJE7C2tmbx4sVG97QajYbNmzfrf/bz86Ndu3bs2rWLd9991+gx0Gg0bN261eDD+8WLF5ucxbJlyxYg/3NvFKYCXRcxY8YMUlJS2Lp1q8lSJKCUg6lVq5bBf+zn2datW/nwww85d+4cLi4ujBgxgs8++8xkJlvxfKtZzoHf3/TDydYCNyn3KZ5zluZqBjb1pE+jimw4eZ3vd9lyIzYzK/vD1AwG/3QElQq0WjOWOr9D514f4eZdB8wfvbmr/SpsngQXHv1Rz0iF3V/C2T+g61zwfqnwL0wIIcQLY8iQITRr1oy2bdvi6OjI3r17uXXrFnXq1OGzzz4z6Pvw4UMuXLhAcnLeKkLNnDmTv//+G4D79+8DEBQUhJ+fn77Phg0bDJZQ6AIB2StJ5ESlUrFy5UratGnDl19+yYYNG2jQoAFRUVEcOHAAc3Nzli1bRrly5fT7VK5cma+//pp3332XNm3aEBAQQJkyZdi3b5++fOWmTZsMzuPg4MCSJUvo168f/fv3Z/78+Xh6enLkyBFiYmIYPHgwK1euzNPjk1/8/f2ZMGECc+fOxdfXl/bt22NjY8POnTvx9PTEz8+PoKCgXB2revXqLFu2jNdee40+ffpQt25d6taty927dzlz5gw3btwwCPisXLmSjh07MnfuXH755RcaNGiAq6sr169f58KFC8TExDBnzhz97I3FixczevRoateuTa1atTA3N+fChQsEBwdjY2PDtGnTCuQxKgwF+lHsnj178PPzyzEQoePp6Vliss8+i5MnT9K1a1datWrFyZMnmT9/PgsXLuTjjz8u6qGJIlKjnL3JQERJTYT0ogu/k8hXW84zZtUJvtpynvA7iUU9pGLHwkxNv8Ye7HivNbP71adyGTuDdt2vvrOdBWfT3NGos6w9dqwI/VeCWx2DfbhzEVa8An+9Aw9zP61SCCGEyIsFCxYwa9YsIiMj+euvv1CpVLzzzjvs27cPR0fHfDlHWFgYhw8f5vDhw/pP7O/du6ffdvjwYaNqH6dOnQIyS3Lmho+PDydOnODNN9/kwYMH/PHHH1y4cIEePXpw4MAB+vbta7TPhAkTWLt2LQ0aNGD//v3s2LGDgIAAgoKCcHExnVy6d+/ebNu2jZYtW3Ly5Em2bNlC7dq1OXTokMlcDYVp9uzZLFq0iKpVq7Jt2zYOHDhAv3792LVrl8Esl9wYOHAgR48eZdCgQcTGxrJ+/XqCg4OpVq0a8+fPN+jr5uZGUFAQs2fPplq1ahw9epSNGzdy7do1fH19+f777xkyZIi+/8yZMxk5ciQqlYodO3YQGBjIw4cPeeuttzh9+jTNmzfPl8ejKKi0BXjXY21tTffu3Q3WV6nVaoYPH86yZcv027p168auXbuKdKrO8ePH2bZtG0eOHOHw4cPcuHEDKyurJ0Yzk5OTmTVrFr///jtRUVE4OzvTuXNnZsyYYVReZvDgwZw/f57jx4/rt82fP58PPviA6OhofdmZvKpTR3ljfu7cuafaXxQvyWkZvLPyBP2beNCxTrkn7yCKhbXHrvLhn2fI0GS+pJqpVczq5UO/xqbLRgnI0Gj55VAEnwWGmGyv4mrHGy0r09PXHWsLMwgNhDVDTPYFwLYMdPoS6vWTBJdCiOeCRqPhwoULANSoUQO1WpZ1FjZvb28iIyOL5YdFGo0GFxcXGjduzLZt24p6OOI5kJfXnGe9Dy3QV7Py5csbrMHJydmzZ3Os21tYZs6cyYcffsiGDRtyPUsjOTmZdu3aMWPGDB48eED37t3x8PBg+fLlNGzYkLCwMIP+Bw4c4JVXXjHY1qVLF5KSkgwCFOLFlZyWwZu/HGPH+WjeWXWC7SG3i3pIIhfC7yQaBSJAudGe8sdpftx3xWgfrVZLWoYkLb11P5nlByIAJXiTPXwQFqM8tv5f72T+jkvEO9WBOj2Vxirt4PUd4JYls/nDO7DhLfi1B8SGIYQQQjzPTp48SXx8PDNmzCjqoQiRZwUajOjYsSPnzp1jw4YNOfZZsWIFkZGRdOnSpSCH8kTNmzdn6tSpBAYGcuvWrVzt8+WXX3Lw4EGaN2/OxYsXWbNmDYcPH+a7774jJiZGX75U5+bNmwbruwD9WqwXYZmKeLKouIecuhoPKGUQN5+5WbQDErmy5uhVo0CEjhZYfsA46VBsYirVPt5C3Wn/8tJXO0lOM85mvf74NX4/EsWWMzeJSSj8JI0FvezkenwSA5cEERX3EE9nW/ZObsP+D9ri5mA8NfLOg1Rmb7uI338v8KnF+9zq8Qe8/A14NIa3dkOHmWBhm7nDld3w3+aw91tIT83XcQshhBDFRaNGjdBqtSV6qr54cRVoAsuPPvqI1atXM3DgQCZNmkT37t0BJaHL2bNn2bhxI19++SUuLi689957BTmUJ5oyZUqe+qelpbFgwQIAvv/+e4MlFu+99x4///wze/fu5fjx4zRq1CjH46geTSNWyXRiAVR3s+fX15sxZOlh2tQoyzd9lBJR4XcSWXP0KtfuPqRiaVv6N/GgUra19qLwJSSn8d3Wi5y5fu+x/UwkmCb+YRoAD1LSSUnPwMpENZUFOy8R8SjJ488jm9La3tWgfc62iwSevoGTjQU9G1ZkqJ/hDLPohGTOXb+Po60FZeys8HSxJbdMLTv5cd+VfFt2kj0Q8ftbfvryn3++/ZK+rZSVOanpGaRmKONITtPwa1Akvx2GTrXv8WarOBp5OcNL46B2d/itF8ReVk6SkQI7P4czjxJceskbNSGEEEKI4qJAgxFeXl78/fff9O3bly+++IIvv/wSlUrFunXr9GU+XV1d2bBhg0G21pJg//79xMfHU6VKFXx9fY3a+/Tpw+nTpwkMDNQHI8qXL8/Nm4afdOt+zj5jQry46ns4sfGdl/BytsXcTF3gN4Xi6RwKi2X86pNEJ6RgZ/n4ajhVyhoHju4lZX5a72hjaTIgGZ+UlqWPcYbsa3eTuBKjzFZ4qWoZo/YTkXf5z28nAKhV3oEt41satKemaxix4ghONpY42Fjw0Ss1sbe2eOyykw//PEMTb+dnCoY9LhAB4O5kw+9v+en7VCxtQ+c65dhw8jqxicrjptXCP+du8c+5WzT0dOKtVpXpUNEMs/smZpnFnIflnaHRcKVEnU3ppx67EEKIF09ERERRD0GI51KBBiNAKZty8eJFli5dyvbt24mIiCAjI4OKFSvSvn17Ro0ahZOTU0EPI9/pstY2bNjQZLtuu64fwEsvvcSWLVuYOXOmftvmzZuxsbF57OwJHV2CkOzCwsKoUkXqPz9PqrgqM20K+qZQPL1yjtb62Q2JqRmPSlIa9zNTq/i8h4/R9noVnTjwQVviH6aSkm46d4R/1TLEJaYS/zANFztLo/Z7TwhW6MYH4GSi/V5SGgcux+p//rRrLeDxy04yNFrWHrvKlM41Tbbnxr9nb+UYiNDJHpCo4GTDgQ/asuHkdX7cd0UfhAE4ERXPf347QYvS95hdqjbl7h4DWxeo/jIEr0RZLAMcXwHnN0PnWVC3tyS4FEIIIYQoQgUejACwt7dnwoQJTJgwoTBOVyiioqIAjCpm6Oi26/oBTJw4ET8/PyZOnMgbb7xBaGgoU6dOZdy4cU9dSUM83wr6plA8vUpl7PhPQBUW7wljTJuquJSyZOpf54yqaXzVy8dkwMjCTI27k43JG3GdhYNMBzt1JnWqwaBmHtxLSqNuBeOSYpbmaiqXsSM+KQ2XUqaCGZmzMyzN1NhYKDM8rt19+NjzXrublOUYadhZmmFulvsURCP9KwHQqW65x16/LiDx79lb+n0GNvWkf2MPdp6PZsm+KxwJzyzlefCuI368S1+b47Su6EKzdm/i2ug1CBwP0Y+qdSRGw/rX4d+PoMYr0GIsuEgwVwghhBCisBVKMOJ5pCtDamtreg22nZ2dQT9QZksEBgby4YcfsnDhQlxcXHj77bdznf02p5IpOc2YECVfXm4KRcHZfSGa6m72VMh24/x2QBV6N3THy0X5/96iShnWHrvKtbtJVCxtQ7/GBZvbo0Y5e2qUs8+xvVfDivRqaDpgCuBiZ8WXPX2IT0olNV2jXypSsfTjc0tULJ35OHy15TybTt/gpSplGNbcixYmlouYogsuPIm7k41RX7VaRfvabrSv7Ubw1Xh+3HeFLWduosSBVKxLasy602AZspNevu680fNvql5eoeSP0D5KFPrgNhxfrsyW6DYPGr2Wq/EIIURhy7qMT6PRSGlPIUSB0mRJdlbQeQ3zNRhx/vx5atZ89k9p8+s4BUlXZzinJyinOsSdOnWiU6dOBTYu8XzJy02hyH837yUxc1MIm8/colMdN34Y2tig3drCTB+IAGW2REmaqVLazpJBzTyNtvdv4sGP+66YnJVjplbpc5VotVr2XowhITmdf87dokNtN6P+Wq22QP+QNfBw4vtBDbka95BlB8JZc/QqD1OVgENquobVR6+y+uhVBlX24gtthlHpUNBC4DiwcoC6PQtsnEII8bRUKhWWlpakpqaSmJiIo6PxTDghhMgviYnKUlhLS9M5zfJTvgYj6tatS//+/fnwww+pW7dunvcPDg7mq6++Yv369aSlpT15hyJkb698Gql7srJ7+FD5RFuWX4hnkdubQoDgq/HULu+ApYmqDOLpHLgcy+YzSqnff8/dZuf527StaXzD/bypVMaOWb18jPKVZF92cvt+CtEJyfr2ltWMZ0V8teU8J6PiaVmtDC/7lKdq2YJ5TfRwtmVatzpMaFedlUciWXEggugs5VBrRP2O6nF/8f4YDpH7od1UsJY3+kKI4sXe3p7Y2Fhu374NKDNwZYaEECI/aTQaEhMT9a8zuvvdgpSvwYhPP/2U7777jtWrV1O/fn0GDx5M69atqV+/PhYWxsnTUlJSOHnyJLt27WLVqlWEhIRgZ2fH1KlT83NYBcLTU/k08dq1aybbddt1/YR4Grm9KYxJSGHQj0GUKWXFux2q8Wp9d8zUkpzvWfVu6M7ao1c5EhFHI6/SRss0nmf9GnvQxNv5sctOyjlaEzy1I4fDYwm9mUBZB2uj4+w4H83l6AcciYijtJ1lgQUjdBxtLXg7oCqv+1fif8E3+HHfFS7efoCzKuHJOx/9CUI3wctfK2VCJcGlEKKYcHFxITExkeTkZG7cMFE1SAgh8pG1tTUuLi4Ffp58DUZMmzaN0aNH88UXX/DLL78wadIkVCoVFhYWeHt7U7p0aezt7bl//z5xcXFERkaSnp6OVqvF0dGR8ePH8+GHH+Lq6pqfwyoQ9evXB+DEiRMm23Xb69WrVyDnj4+PJz4+HoC0tDTMzB5fWlCUXLm5Kfx+12UepmYQFfeQmZtC6VC7HKWsJCVMXtxNTMXBxsIgiKNSqZjZoy7BV+/St5EH6hcswJObZSd2Vua0relmcsbIjfgkLkdn5s1pVc34tX3FgXAiYh/SqnoZ/Cq7YGuZP7+3VuZm9G3sQZ9GFdlzMYaETV6QEPTkHR/cgnWvQbVO0OX/wEkCykKIomdmZoanpyexsbEkJCSQmpr65J2EECKPLC0tsbe3x8XFpVDuL1XanJIbPKOkpCTWrl3Lpk2bOHDgALdu3TLqU65cOVq2bEmXLl3o168f1tbGn6oVFZVKhZWVFcnJySbbU1NTKVu2LPfu3ePEiRP4+voatNevX5/Tp09z5MgRmjRpku/jmz59Op999pn+Z1dXV6Kjo/P9PKJkmP6/c/waFEmGRssnXWrxRsvKRT2kEkOj0bLu+FW+2nKedztUZ1hz76Ie0nMjQ6PlzPV77LsYw4XbCSarg3RbsJ8z1+8B8PErtXizVQH97saGoV3YBJUugWUW6Vo1F7UVqa2OMmywsIU2H0Gz0WAmwT0hRPGh1WpzzE8mhBBPQ6VS5TlHhK6QQk6FFp54zoIKRmQXExNDdHQ09+7dw9HRkbJlyxbrGRBPCkYAfPLJJ3zxxRe0aNGCrVu36itozJ49m4kTJ+Lv78++ffsKZHxZZ0Z07NgRMzMzQkNDC+RcomSIuJPI0v3hfNylFtYWhpHM09fi0WiVZH/C0Lztl5iz/SIA9tbm7JjYmrL2xScw+jyLfZBC4y+2o/sr9O+EVkbVQbaeu8X95HRaViuDm4llIHly8jf437jMihoogYiZ6UOYYr4GW1WK6f3K+SgVN9wbPdv5hRBCCCGeIyUmGFHc/f3338ycOVP/8+HDh1GpVDRt2lS/7dNPP6VLly76n5OTkwkICODw4cOUL1+eli1bEhkZyeHDh3FxcSEoKIiqVasW+Nif9ZdAPN+0Wi09/nuQU1fj6VTHjSmda1LZVRKr6sQkpND2u90kJKdjZ2nGwsENaVOjbFEP64WQkJzG/07dYN/FO4TFPGDru62MIvL9Fh/iSEQcADO712Hos85ciQ2Dk79CfBQppSryl6oNc09osLwfzkzz5VRQxbIovRsfWvyOS9Y8Eyo1NH0L2nwM1g7PNgYhhBBCiOfAs96HyrzTR2JiYjh8+LDBNq1Wa7AtJibGoN3a2ppdu3Yxa9YsVq1axcaNGyldujSvvfYaM2fOxMPDAyGK2r/nbnPqarz++7daVSnaARUzrvZWTO5Ug0NXYvm0a23KO744SSqLmr21BYObeTG4mZfJEqAJyWmciLqr/9mnopPRMU5fi8fCTE3Ncva5m1roUgXaTwfACugH9GyvYfOZmszaXZ3oW9e4gyPbUxrxkfkq+pnvUfbTauDwYgj5H7zyLdTq+nQXLYQQQgghAJkZ8VyQmRHicY5GxDEjMIQz1+/RvlZZfnot/3OYlASRsYnMCAxhUuca1Cxn+Mm2qRthUfSiE5KZu/0Sey/G8CAlneOfdDCqEjNs2RH2XozB1d6K6d3q0KVe+ac+n1ar5VBYLEv2XWH3BSX47KcOYY7595RX3zXsXKMLvPINOFZ86vMJIYQQQpRkMjPiBSXVNERuNfF25n9jXuKfs7eoYqKsYvzDVJbuD+cN/8o42hqX4H0e/BYUyYxNIaSma7iXlMbaUc0NKmNIIKJ4KmtvzZc9fdBqtcQmphoFIpLTMjh8JRZQltu4lLI0Osbt+8k42ljo86iE30lkzdGrXLv7kIqlbenfJLMyjUqlokXVMrSoWoYLtxL4ad8V/g1OQaNSGw/uwt9kXNmNWbtPleUbajOW7Q+nU91yuD+hBOz1+CT+PXuLkf6VnuZhEUIIIYR4LsjMiBJKqmmI/DJrSyg/7LmCvbU5EztUZ/hLz98N0q4L0YxYflT/87LhjU2WohQlS1TsQ8auPsnpa/HYWJgRPLUjluaGgYNRvx5jz8UYmlVyoWY5e37aH06GJvPPnplaxaxePvRrbHpZXfTdBEI2fk2zyCWYa9M5p/WigfqKQZ/7peuys+pHnDq4hTP2rZj3n245BiSuxycxfnEgPgl78Xh5ogQkhBBCCFFiSQLLF5RU0xD54fb9ZFp/u4vkNA0AkzrV4J02BZ90tSiM/u04xyPvMrVbbbr4lJfZEM+Ru4mpXIp+QNNKzgbb0zM0+M7YRkJKOgBqFWhM/MUzU6vY/l5r/QwJUx5Gh3N072Y+CauJ3/1/+Mh8FaVVD/TtGlSo0RKlceU92y9NBiR0gYjvHn6Mlzqa+NYzcWoz7hmuXAghhBCi6EgwQkjOCPHUHqams2x/OD/svYKVuRl7Jwdga1lyV2+lZ2hYd/waPX3djcqb3nmQgpW5Gnvr53MpijB2OTqBbgsOkJSWkWMgQqeHbwVm921gsHzHlPQMDf+eu83q3SfoEfNfepvtN+oTrXVktPW3zB/9qj4gkT0Qke7ohfmI/2fvvsOjqrY+jn9nJj0EAiGQkEJCkw6hVwWkCSgKiqKCiBUr9qvXguWKet+LiAVFQCxYQKSIhSaGXkIHQVoSAqElMBDSMzPvHyNJJpNCySQh/D7Pk4fM2fucs8brxTlr9l7rF/BXoWMRERG5MikZIUpGyGUzp2Vx4OQ52tZ1/GbZZrPx4k876HFNIP2aBVXo1QRbDp3m33N38tfRszzRqwFP972mvEOSCiAzx8Km+NOM/3UPO46cKXbu/93WilvbXlhBSpvNxsa401T94WYaZ2xzGk+1eTKa13hm1B2EVPdRIkJEREQqnSuugGXdunVp27Ytbdq0yf0JCgoq6zBEJB9/Hw+nRARA9N6TfL8xge83JtAytBoz7+9YYVcW/LrjKH8dPQvAp9EHuTkqhHqBzgU75eri6WaiS/2adG1Qs9hkhNEA1zeu5XQ8NTMHX0/n/1QaDAY6hHhCDRMk2o/l2Ay4Gez5fV9DJt/Z/s2EqZuZZ+3GTPe3lYgQERERyaeQEuGu9cwzz1CtWjVmz57NzTffTEhICCEhIdx444289tprzJ8/n4SEhLIO64pjNpuJi4sjLi6O7OxsrFZreYcklYzNZmPCkr25r6t5u1fYRATA2N6NCKrqBcBNretQzbvixipl7/b2YU7dOPLrXC+A6r6O3ThsNhs3fbSKwR+vZvqqWM6kZTue5OEL9y+FAf8H9a8nZdRyjvi1yh02Gmw86/4jKzzGUtd4gkRjEH90nEa2X0ipvjcRERGRK1G5btPIzMxk+/btbN68mU2bNrF582Z27txJVlYWNWvWVHeIYqibhpSFPcfO8r/Fe1ny13EWPNaVlqH+DuM2m61ctm4cO5NBUDUvp+Mr953E083kVMhQBGBWTAIv/rTDqZvGO0NaMKRNqFOyYueRMwz6MK8mxMrnexJWw6fwi9tsYDCA1UrWxhlYF7+MlyXVYfgLSz/eybmT6lWrMLJzBHd1DMffx7kdqYiIiMiVoNLVjMjJyWHHjh1s2bKF0aNHl3c4FZa6aUhZOnjyXKFbHiYu3UtcUipP97mG8IAiHtJKUWpmDpOW7WPaqli+vq8jnesHuPyeUrnEJqUyKyaBw6fTCa3uzbB2YUV20Zj85wHe/X0PAG3rVmfOmC5Oc1buO0m7ujXw9sgrmHrEnM6rk2fyecYzFFyMsd9ah39l30+MrTFe7kaGtgnl3q6RNKilLUUiIiJyZalwyYisrCw8PPRNT1lSAUspD8nnMrn2veWkZllwMxr4bERbrm9S26X3fOCrGJb8dRyABrWq8OsT3fFwK/PdZnKVsNls7DmWwoJtiTQO8mNwa8ftFQmn0uj+3nJ8PUz0axbEW7c053Ra9j/FKl+irvFkkdf+KqcP7+XczjnsSbwe1wRyX7dIujWoWaELxYqIiIicd7nPoaX6KT4nJ4drrrmG8PBwNm3a5DC2dOlSfv/9d44dO1aatxSRcvL9xgRSsywAVPFyo30ZbI14vFcDzj+nZWRbOHw6zeX3lKuXwWCgSXBVXujf2CkRAfDzdnvlytQsC1sPmzmVmpWva8ZJcqoEQ0hbcPfB6u64+mKk2xKWeD7P9Ub7fyv//PskI6ZtoN/EFXy/4RAZ2RbXv0ERERGRclSq3TTmzp1LfHw8I0eOpG3btg5jM2fO5KuvvgLs9Q1at26d+9OrVy9q1XKuYi4iFdfD19UnqKoX7y/dy8jOdalaSHHLjGwLXu6mQs6+NC1D/RndNRJvdxOP9mzgsDRepKxl5Vip4unGucwcel5Ti7GfLXRo35k6fB6TN2dwa5d06ocEYvm8D6bUvIR8sOEU0zz+x0JLJ8Zl30MS1dh7/Bz/+mkH7y36m7s7hnN357rU8nOujyIiIiJypSvVbRp33XUX33//Pfv37ycyMtJh7N577+XLL7+kZs2aJCUl5QVgMNC3b19+++230grjqqNtGlKeMnPs3+B6ujkmBtYcSOKJ77bwaM8G3Nkx3Gm8OGv2JzFx6T6mjGyrAn9SoWVkW/hjzwmOxO2l78b7Hdp3frfXxos/7QCgS/0Avr0thJzpA3A7eyi33uV55wxVGJd1Fz9argXyBjxMRm5sVYfR3SJoVqdaGb87ERERkaJVqG0aGzdupHnz5k6JiPMMBgMnTpzgyJEj/Pbbb7zzzju0atWKxYsXq/iiyBXK083klGiw2Wz8d9HfJJ3L4vWf/+KZWdsu+Hov/rSDO6euZ0PcKd79/e/SDlekVHm5mxjQIpgHAv9ySETgH8aCrYm58xrV9gP/MNxG/0pO1XAKloWoYjvH/7l/xtKaE2jontcZKctiZc7mwwyctIo7pqxlyV/HHbqBiIiIiFypSnWbRmJiIv379y9xXnBwMMHBwfTr14+2bdvSp08ffvzxR1555ZXSDKdSy99NIzs7G5NJy9Wl4jiYlMqeoym5r0d1iXCaE5uUyg8bEzh8Oo3Q6j7c3t7e1SAiX1eOWTEJPNarASH+3mURtsil6zQGALfGg8A/DJvNxg0tgsjIsbDlkJmbWtexz/MPw23UAvj1OSwHozFZs8gxeuBmzQKgwblNLPb8izUNH+S5hK4kpuTk3mLdwVOsO3iKugE+3NslgtvaheHrWar/GRcREREpM6W6TcPb25ubbrqJH374wWns4YcfZsqUKVitVqexkJAQmjVrxuLFi0srlEpv3LhxvP7667mvAwMDOXHiRDFniJStEykZfPzHfo6dzeCzEe0cxmbFJPCvOdvJ/wWvyWhg/JAW3BIVwsBJK/FyN/Gfm1vQIlRL0+XKlnAqjdDq3k5dMl6dPp9qBxbwo+U6ptb8lmbn1jqM24Ja8WfjV3l/pxfbD59xuq6flxvDO4RzT5cIJexERESkzFWo1p7h4eEEBwezfv36QscTExOpU6eO0/GePXuyb98+Dh8+XFqhVHr5V0b07dsXk8mkrS5SIdlsNoeHsNikVHr/LxpLIX/1mIwGlj59Hd7uJgL9PDEZ1eJQKqeUjGzavrWUrBx7gn76PW3pZVkNvz4PaXl1lWwYoeuTbIp8kGnrjrJo1zEK7tIwGQ30bxbE6G6RtK1bvSzfhoiIiFzFKlTNiHbt2rFp0yYSExMLHS8sEXH++KlTp0ozlErP39+fiIgIIiIicHd3x2gs1f8pRUpNwW+Df9iYUGgiAsBitTErJoGgal5KREil5uvhxrf3d2Rk57rUD/SlW8Na0HwoPLYRglrmzjNgxbD6fVouuIHJXdOIfq4n93WLpEq+7RkWq41fdhxl6OQ13Pzxan7elki2xXkVooiIiEhFUqpPsMOHD8dqtfLcc89d1HkpKSlODywiUjkdPp1Wwnh6GUUiUn6MRgPtImrwxuDmLH36Ojzc/vnPsZc/mJw7yHicjYMvBxG26gVeub4Oa1/sxauDmhJWw3F7xtYEM49/t4Vr31vOp9EHOJOW7fo3IyIiInIJSjUZMXToUKKiovj+++957bXXLuic7Oxs1q1bR3h4eGmGIiIVVGh1nxLGtfddri4OyXijEUb/TmKHl4i31eaLnL5YbPnGN38FH3fA7+BvNAmuyvD24RS2iOjomQze+W0PncYv45V5Ozl48pzr34iIiIjIRSjVZITRaOTbb78lMDCQt956i5tuuonY2Nhiz3n77bdJTk6mT58+pRmKiFRQt7cPK3ILhsloYFi7sDKOSKSCMblTZ8AL+D+/Dd+bJzCnzZdQu0Xe+LnjMGsEGd8MZ8aidU41JPJLz7bw9bp4rp8QzX0zNrJmfxKlWCpKRERE5JKVagHL8/bu3UufPn1ISEjAZDLRp08fbrjhBtq1a0ft2rVz53zxxRf8+OOPeHt7s337durVq1faoVwVLrdwiEhZmxWTwIs/7cCS7ynKZDTwzpAW3KZkhIgzSzas+RCWvw3WvK0XZ23eTMkZiK8hg1BDEodtgfxg6UGcLRhPNyOZOc61IxoH+TG6WyQ3taqDl7vaQouIiMilqVDdNPI7e/Ysr776Kp988gk5OTmF1oSw2Wx4eXkxc+ZMbrnlFleEcVVQMkKuRLFJqcyKSeDw6XRCq3szrF0YkTV9yzsskYrLZoOPO0LS38VOy7EZeTHnfo5G3soNzYP4Yk0c+084b9OoWcWDuzvV5a6OdQn083RV1CIiIlJJVdhkxHkJCQl8//33zJ8/n3379pGUZF8iGhwcTL9+/XjhhRe45pprXBlCpadkhIjIVeLoNvh5LCRuJsvgiYcts9BpOTYjvbP+i2etRtzXLZKAKh7MWBPHyn1JTnM9TEYGt67Dfd0jaRxUNff49FWx9GseRIh/8XVcjpjTWbTzGKO7RV7WWxMREZErS4VPRhSUk5MDgJubWwkzpThmsxmz2QxA3759MZlM7N69u3yDEhER17NaIH41ZzbNodrOGUVO+yTnJt7LuYPwGj4sf7YHJqOBvcdT+GJ1LD9tPlLoFo6uDQIY3TWSuKRU3vxlN+E1fPjuwU5FJiSOmNMZPmUdh06l8eqgpkpIiIiIXEUuNxlRqgUsL4Sbm5sSEaVg4sSJREZGEhkZyb59+0hOTi7vkEREpCwYTRB5LdVsZ4ud1tcYgzcZ3N89MrdobKPafowf0pK1L17Ps30bUavA9ozV+5O578sYvlwTR3Ufdw6dSmP4lHUcMTu33M2fiAiv4UO/5kGl9x5FRESk0ivzZISUjrFjxxIbG0tsbCwNGzYkICCgvEMSEZGy5F98S+wGxkRWV32ZYTX2OY39+fcJ9hxLYfLdbZkwrBXN6lR1GD90Op3TadkYDHDoVBq3fbrGISFRMBFR3OoJERERkcIoGXGF8vf3JyIigoiICNzd3TEa9T+liMhVpc1IMBTfDaNGViJe390Kc8dA2inAXjz60+gDLNx+lKGT13AyJZOFj3fjhwc70bdpbfLXmz6/kTPRnEGfCdEs+eu4EhEiIiJSKrRfQkRE5EoUUB9umgQLngCbJd+AARr0hgN/5B3f9i3sWww3vMtqz+vYezyvu8b1TWpjMBjoWC+AjvUCiE9OZcaaOGZtTCA1K++6aVkWHvgqBgNgAyUiRERE5LIoGSEiInKlirobwjvDlq/BfMi+dSNqhD1RcXQ7LHgcjm61z01Lgjn30bVBH7645SUmbUonwNeDBrWqOFyyboAvneoFcG/XCBbvOs4Xq+Mctmicr3qdY7Gy9K/j3NYuFB8PfZwQERGRi1Pm3TSk9Km1p4iIFMqSA+snw9I3wJqVd9zdB/q8QVqre/Dx9HA45Yg5nWvfW46HyciwdqGM7d2QX3Yc45V5OynsA0M1b3fu7hTOPZ0jqFXVy7XvR0RERCqMK66bhoiIiJQRkxt0fgwCGzkez06DX5/F55tBcGKPw9AXq2KxWG2kZ1tYtucEZzNzmLLiIDbAzWhwqCkBcCY9m4+XH6Dbu8t5bvY29h5Pce17EhERkUrBpcmI0aNHM3369BLnzZgxg9GjR7syFBERkauTwQD3/grt7geTO3j45Y0lrIfPusOf70KOfeVEraqe1PC1r5a4tW0oI6ZuyC1WGf18T6Kf60lwNXtL0Px5iSyLldmbDtP3/RXcM30Dq/cnocWXIiIiUhSXbtMwGo2MGjWqxITEAw88wPTp07FYLMXOk8Jpm4aIiFyQlOP25MRvL8CunxzHajSAWyZDWAcysi1MXx3Lt+sPcfh0ukOxyp82H+b9pftIzcjhVFoW/t7uuJkMJJ3Lcrpd0+CqPHBtJINa1sHdpMWYIiIilUml2KaRlZWFyVR8ezIRERG5TH61oUotuO0LGP49VA3JGzu1H6b1gV+e5dTpU+Ss/gTr6QSHRITNZmPKioMknErjVFoWVTzd8Ek/ygjDr7wysAmNg/wcbvfX0bM89cM2rn1vOZ9FH+BsRnYZv2ERERGpqMq9/LXNZmPz5s0EBgaWdyhXFLPZjNlsBiA7O1vJHBERuTjX3AB1u8Kn3cEcl3d84+cEbPmBJ3LOMtS7NqY7fiHon/adfx09y9/5akJMvyWIkPmPE5J9nHUJAYx+8t+s3p/MlJUHWbH3ZO68o2cyGP/bHj78Yz93tA/j3m6RagkqIiJylSv1bRq9evXK/f3PP/8kKCiIxo0bFzo3JyeHAwcOcOzYMUaMGMGMGTNKM5RKbdy4cbz++uu5rwMDAzlx4kQ5RiQiIlccmw22/wC/PgeZZwufUy3cXnPCPwyAuKRUpq+OxXL6EP858yKcjuOsdyhVH/od/MP4ck0czUOq4uvpxtSVsczfeoRsi+NHDZPRwMAWwTzQvR4tQqu5+l2KiIiIC1zuNo1ST0YYjXk7PwwGQ4nFq9zd3enfvz/Tpk2jZs2apRlKpZZ/ZUTfvn0xmUzs3r27fIMSEZErU2oyxEwDSzaseh+sBbZT+NaEB5aDf7j9tTkB25eDMJyOg+oRcM9C8A/j6Jl0ur+7nByrjTbh/nx8VxuMBgNfronjm3XxnM3Icbp1p3o1ePDaevRoVAuj0eA0LiIiIhVThUtGxMfHA/btF/Xq1ePWW2/lv//9b6FzPTw8qFmzJu7u7qUZwlVHBSxFRKTUHP8LFjwOR2Icj5s8YeQCqBYCXw6CAokIgPG/7uazFQcBCPH3Jvq5Hrj9U7gyNTOH2TEJTFsdS8KpdKfb1g/05YHu9bg5KgQvd209FBERqegqXDIiv9dff52oqChuuukmV91CUDJCRERKmdUCG6fCopfBWqBLhsEENotTIgIgeu9JPl6+nw2xp3h5YBPu717P4dRsi5VT5zKJiTczZeVBtiWYnW5ds4oHIztHcHenurktRkVERKTiqdDJCCkbSkaIiEips9lgxkCIX13IoAHunAWN+hZ66tYEM/UDffHzclz5OG/LEZ6fs52hbUK5r1sEp9Oy+XzFQZbsPk7BTyNe7kZubRvKfd3qEVnTt5TelIiIiJSWKyIZkZaWRkxMDEePHiUzM7PIeSNHjnR1KJWSkhEiIuISVivETIc/3oKM0wUGDdD5UejxInhWKfFSNpuNgZNW8ddRe6HMIW1CmDCsNQAHT55j2qpYftx0mMwcq+NdDNCnSW0evLYebetWx2BQXQkREZGKoMInI1599VXef/990tLSipxjs9kwGAxYLBZXhlJpKRkhIiIuY06wr5Awx4PBCDbHZAE+gTD4Q3ur0GIkmtMZ/PFqTqbYv5T4fWx3GgdVdZiTfC6Tb9Yd4ovVsZjTs52uERXuz4Pd69G3WRAmFbsUEREpV5f7HOpWmsEU9N577/HWW2/h5ubGoEGDaNSoEVWqlPztiYiIiFQA5gR7sUpzfF6NiENrYd4YsP7TGSPtJHx3BzTqD4Peh6p1Cr1UHX9vVr3Qk/lbE9l55IxTIgJgxpo4Ek6lkZLhnIgA2HLIzJiZmwmv4cN93SK5rV0oPh4u/SgjIiIiLuLSlRENGzYkMTGRlStX0qZNG1fd5qqnlREiIlLqziciCumawcm98EkneyHL/Dz84PpXoP39YLy4jhjHz2bQ9Z1lFNilUaxq3u7c3SmcezpHUKuq10XdT0RERC7P5T6HGkszmIISEhK47rrrlIgQERG5khSXiAAIbAS3fwPGAq25s1Lgt+dh6vVwdNtF3XLGmrgSExENalVx2J5xJj2bj5cfoNu7y3lu9jb2Hk+5qHuKiIhI+XFpMiIoKMiVlxcRERFX2LOw6ETEeY0HwKMbwDfQ/trNO28scQt8dh38/iJknrugW97VMbzErhm1q3ry57PXcV+3SHw98lZeZFmszN50mL7vr+Ce6RtYvT8JNQsTERGp2FyajLjjjjvYsGEDp08XrMAtIiIiFVanMdD/naITEecF1IMHltvnjt0BLW/PN2iDdZ/ApCj4+7cSbxla3Yd+zYr/EmP1/mQe+24r7SNqsObF6/nXDY0JKrA9I3rvSe6aup6Bk1Yxd8thsi15yy2mr4rliDm9xFiOmNOZviq2xHkiIiJy6VxaMyIjI4O+fftiMpmYOnUq9evXd9WtrmqqGSEiIhXGgeUwexRkmB2PNx4EN7wH1UKKPDU2KZXeE6KxWIv/aHJz6zpMvCMKgKwcKwu3J/L5ylh2/9M2NL/gal6M6hKBxWbjvd//JryGD9892IkQf2+nuWBPRAyfso5Dp9J4dVBTRneLLDYWERGRq1WFbu3Zq1cvsrKyWLt2LUajkYiICEJDQwvtEW4wGFi2bJmrQqnUlIwQEZEKw2aDn8fC5hnOYx5VoNcr0OGBIgtczopJ4MWfdjgkJEwGAxE1fThwMhWAX5/oTtM6jt04bDYbq/cn8/nKg0TvPel0XR8PEyajgZSMnCITEvkTESUlLURERK52FToZYTRe+C4Qg8GAxWIpeaIAYDabMZvNALmrT3bv3l2+QYmIiJwXtwqWvg4Y4PB6x7E6UXDjBxDcqtBTY5NSmRWTwOHT6YRW92ZYuzAia/qy/bCZlfuSeLRnA6dzxi3YRY7Vyv3d6pGRY2Hqyljmbz1CtqXwjzlBVb2Y80iX3GSDEhEiIiIXp0InI+Lj4y9qft26dV0USeUzbtw4Xn/99dzXgYGBnDhxohwjEhERKYTVCltnwuKXC2zdMEDHMdDr3+BZ5bJucSIlg27vLCfLYsVggJn3daRLg5ocP5vBl2vimLn+EGfSs53O83Qz8tbNzehUryZ3TV2vRISIiMhFqNDJCHEdrYwQEZEryrmT9oTE9u8dj1cJhkET7N05LtEHS/fx/tK9gL3jxsrne+Hhlrc6MzUzh9kxCUxbHUvCqaILWCoRISIicuEuNxnh0m4a4jr+/v5EREQQERGBu7v7RW2JERERKXNVAmHIZ1DzGsfj547C98Ph+7vgzJFLuvRD19Vj/JAW1Kvpy71dIx0SEQBe7iaq+biz6Mlr+eSuNrQK8y/0OkYDbE8wqy2oiIhIGSiTlRE5OTksXLiQjRs3kpSURMeOHRk9ejQAiYmJJCUl0bRpU9zc3FwdSqWkApYiInLFSDkOvz0Hf80Hgwls+epFXUCBy+JYrTayrVY83RzP/WX7UR79djM1q3jyQPdIHry2Hr/tPMajMzdT2Ieg5iFVeabvNfRoFFho0W0RERG5/OdQlz/9R0dHM2LECI4cOYLNZsNgMJCdnZ2bjFi2bBmjRo1i1qxZDB061NXhiIiISHnyqw3DvoKTf9tf/zwWDq2x/551Dn5/ATZOg9B2kJMB/uHQZiQElNwe3Gg04FkgiWGz2Ziy4gAASecy2Zl4lsQzGbzz2x5sgJvRgMVmI/9XMzuPnOXeLzbSrm51nul7DZ3rB5TCGxcREZH8XLq2f8eOHQwYMIATJ07w5JNPMnv2bKelj0OHDsXHx4c5c+a4MhQRERGpSAKvsf+M+gVu+gi8q+eNJe+Fbd/Crp9g9UT4qD1s+eaSbpOZY6VZSLXcrRu3RIU4dM2Ifr4nfz7Xg+BqXk7nxsSfZvjn67hr6jo2Hzp9SfcXERGRwrl0ZcQbb7xBZmYmixcvplevXoXO8fHxoUmTJmzZssWVoYiIiEhFZDRCmxFwzQ0wpQecSXCeY7PAgicgvPMFrZDIz8vdxNu3tODpPo2Ys+kw4xbscuqa8eJPOwjx9ybHYuPkuUy83I1kZFtzr7F6fzKr96/h+sa1eLpvI5rVqXaZb1pERERcujIiOjqaTp06FZmIOC88PJzExERXhiIiIiIVmW9NqFGv6HGbBdZ9csmXz8yxMnP9IadERNK5TOZsPkxM/GlOnsskwNeDjGwrtat60irMMemwbM8JBk5axaPfbmb/iXOXHIuIiIi4OBlx9uxZQkJCSpyXmZmJxWIpcZ6IiIhUYj4l1GaI+QLWfQrWi//MsGjnMadEBMCvO46SlWNfBRHo58mPY7oQXsOH42czGdyqDl/f14FWoY5JiV+2H6Xv+9E8M2sbh5LTLjoWERERcfE2jeDgYHbv3l3ivJ07d1K3bl1XhiIiIiIVnX948eM2i73A5ZavYfBHUCfqgi89ulskAP2aB+UmIgBGdKpLo9p+TFlxkHYR1Yms6ct3D3Zi0c5jjO4WicVqo09TM3d1qsv0VbHsOZYCgNUGczYfZv7WI9zePozHezUkqJC6EyIiIlI4l66M6Nu3L7t27WLu3LlFzpkxYwbx8fEMHDjQlaGIiIhIRddmpL3dZ0mO74QpPeH3FyHzwrdLjO4W6ZCIADAYDHSqF8D0Ue0Zc529HkWIv3du8mLJX8f5v8V7+ffcHbQIqcYHd7SmXk3f3PNzrDZmrj/Etf9dzpsL/yLpXOYFxyMiInI1c2ky4qWXXqJKlSoMHz6cV155hZiYGADS0tLYuXMnb731Fo888ggBAQE8/fTTrgxFREREKrqA+nDTJOeEhMFk77zhwGavIfFxR9jzS6nc3mAwON7BZuOzf9qCZltspGVZGNw6hMVPXct7t7Z0SGxk5ViZtiqWa99bzn8X7eFMWnapxCQiIlJZGWwFe22WslWrVnHbbbdx/PjxQv8jHxgYyNy5c+nSpYsrw6jUmjVrBsCuXbvKORIREZFSkHzAvhXDfMi+dSNqBPjXhfWfQvQ74FUdzhxyPKfxILjhXagWWmphWKw2vlgdy/RVsSSeyWD+o11pFeafO56VY+XLNbFMWXGQk+eyHM7183Ljwe71uLdbJFU8XborVkREpFxc7nOoy5MRACkpKUybNo2lS5cSFxeHxWIhNDSU3r1789BDD+Hv7+/qECo1JSNEROSqkZUGBiOsmgArJ4A13woENy/oPQ46PAjGC9jucYGyLVZW70+ixzW1nMZenreD5XtO0qxOVTbEJmNOz3EYr+HrwSM96nN3p7p4uZdeTCIiIuXtikhGiGspGSEiIlelk3th4ViIX+14vHbziy5weSmSz2XS5Z0/yPynG8e4m5qRkp7NlJUHSclwTErUrurJY70acnu7MDzcXLpLVkREpExc7nOo/msoIiIiV6bARjDqFwhu7Xj8+E74vNc/BS5TXHb7jXGnyLHav9OpWcWDO9qH8fj1DVn5fE8e6VEf73wrIY6fzeSVeTvp9b8/mR2TQI7F6rK4RERErgRaGVEJaGWEiIhc1RK3woLH4NgO57GqITDgv9B4IKybbK8t4R9W/PXMCbBnIXQaU+Ktj5jT+WJVLEHVvLi/ez2HsRMpGYyctoH9J8+RY3H8uBVW3Zvn+zdmYItgjEbHmloiIiJXggq1TaNevXoYDAaWLl1KZGQk9erVK/mk84EYDBw4cKC0QrmqKBkhIiJXPasF/poP3jXgl6fhVIHPFIGN4eQeqB4B9ywsOiFhToAvB8HpOOj/zgUlJIqy5K/jPPBVTLFzGgf58Uzfa+jdpJZToW8REZGKrEIlI4xG+66PPXv20KhRo9zXF8pq1ZLFS6FkhIiISD7ZGYUXuDyvqIRE/kRESUmLC3Dr5DXExJ++oLmtw/x5tu81dG0QoKSEiIhcESpUzQir1YrVaqVRo0YOry/0Ry6c2WwmLi6OuLg4srOz9c9PRETkPHcv6PkSjFkD1SOdx0/HwbS+9uTDeaWciLDZbDzSsz7B1bwuaP7WBDN3T1vPHVPWERN36pLvKyIicqVQAcsr1MSJE4mMjCQyMpJ9+/aRnJxc3iGJiIhULIGNoOXt9lagBaUkwuQucGJPqSciwL79tFfj2rStW734eQVer489xa2fruWe6RvYcfjMZcUgIiJSkbm0gGVmZibHjx+nevXq+Pn5FTonJSWF06dPExQUhIeHh6tCqXTMZjNmsxmAvn37YjKZ2L17d/kGJSIiUhEd2wGLXgLvmvDXT87jRpO95kQpJSLye+e3PXwaXXJNrMiaPsQmpTkd798siKf7NqJR7cI/R4mIiJSXCrVNo6AJEyYQGRnJtm3bipyzbds2IiMj+eCDD1wZSqXj7+9PREQEERERuLu7X3R9DhERkatGUAu452cY9oX9zxr1HcetFvufN39WqokIgNvbh2EqoVtGgK8Hvz5xLd/e35E24f4OY7/vOka/iSsY+/0W4pJSSzU2ERGR8uTSlREdO3YkOTmZ/fv3Fzuvfv361K5dmzVr1rgqlEpNBSxFREQuQnYGLB0H6yc7Hje6Q48XoMsT4OZZarebFZPAiz/twGLN+8hlMhp47campGTk4OflxsjOEYC91sSff5/kv4v28NfRFIfrmIwGbmsbyuPXNyTE3xuA6ati6dc8KPd1UY6Y01m08xijuxVSQ0NEROQSXO5zqFtpBlPQgQMH6NKlS4nzmjVrxvr1610ZioiIiIhd6knY+5vzcWs2/PEWbPseBvwf1O9ZKrcb1i6M9hE1mBWTwOHT6YRW92ZYuzAia/o6zTUYDPRsXIscq5UHvtrkMGax2vh+YwI/bT7CnR3DqeHrzoQl+5ixJo7vHuxUZELiiDmd4VPWceiUfRuIEhIiIlIRuDQZkZqaiq+v839oC/Lx8eHs2bOuDEVERETEsVilfzg07Asx08FmA/5ZuZC8H76+GZoNgX7/gap1Lvu2kTV9eaF/4wue/1n0wdzfm9epytmMnNxkQpbFyow1cXi6Gajq5cahU2kMn7Ku0IRE/kREeA0f+jUPuuz3IiIiUhpcWmggLCyMmJiYEudt2rSJ4OBgV4YiIiIiV7uCXTNG/QoD/wdjd8CY1eBZoEjkrp9gUhtY+zFYcsosTJvNxqM9G9A+wt6J442bm7Psmet4+5YWDq1CM3NsnM3IwQAcOpXG7Z+t5Yg5PXe8YCKiuNUTIiIiZc2lyYi+ffty8OBBPvzwwyLnfPzxxxw4cIB+/fq5MhQRERG5mhXXvrNaKNRuBmPWgl+BVRA56fZOHJO7QvzaMgn1/FaN2Q934ZcnutEmvDruJiN3dgxn+bM9eHVQU7zc8z7Cna9Ecfh0OgM/WMn+EylKRIiISIXn0gKWCQkJtGjRgpSUFG688UYefPBB6tevj8FgYP/+/UyZMoWff/4ZPz8/tm7dSkREhKtCqdRUwFJERKQE6ybD7/8quX1n/qRFYVrfBX3eAN+aroq0RKdTs+jy7h+kZ1mKnGM0gNWGEhEiIuIyFbqAZVhYGAsWLODWW29lwYIF/Pzzzw7jNpuNmjVrMmvWLCUiRERExHU6jbH/2XhQ8e07/cPsyYrVE2HfEjDHO45vnQl7foHrX4W2o8BoclXERdqaYMb6T2cOf293hncI46u18aTmS06cb9xxc1QINXw8yjxGERGRkrh0ZcR5ZrOZKVOmsGzZMhISEgB7oqJ3797cf//9VK9e3dUhVGpaGSEiIuIC2Rmw/lOoEwWL/g3HdziOB7eGQe9DSJsyD+1kSiYz1sRS3ceD+7vXI/lcJv9bvJdvNxxymluzin3OiE518fV06fdQIiJyFbnc59AySUaIaykZISIi4mKWHNg41d76MyvFcazdfXD9K+Bdfl+u5K8RYSCvjkR+/j7u3N8tkpFdIqjq5V7WIYqISCVzuc+hLi1gKSIiIlIpmNyg08PweAxEXuc4FjMNPmwHW7/9p0Vo2SpYrLJVmH+h88xp2fzf4r10e+cPJizZizktq2wDFRERyUfJCBEREZEL5RcE4Z2dj6clwbwx8MUAOP5XmYVTMBHx7QMdua9bJE2DqwL2LRoAhnznnM3IYdKyfXR7dznv/b6H5HOZZRaviIjIeaW6TaNevXoYDAaWLl1KZGQk9erVu/BADAYOHDhQWqFcVbRNQ0REpIzFrYJfnoHIa2HLN5CdljdmMNkLZvb4F3j6uSyE4tp32mw2NsWfJtjfO3dOVS83LFabQ6FLAG93E3d3CueBa+tRy8/LZfGKiEjlUqFqRhiN9oUWe/bsoVGjRrmvL5TVai2tUK4qSkaIiIiUA6sVjEZ7O9Df/wV7FjqOVwmC/uOh2S1gMBR+jcswfVUsbyz8q8T2nfmTFk/0asDk6ANkW5w//nm6GRneIZyHr6tPUDUlJUREpHgVKhkh5UPJCBERkQpg72L45Wk4k+B4vF5PGPB/ULNBqd9y+qpY+jUPKjIRcd4RczqLdh4jtLo3Y2ZuxmK14eVuxNvdxOm0bIe5HiYjt7ULZUyP+oRW9yn1mEVEpHKoUMmIXr16ccMNN/Dcc88BsGLFCoKCgmjUqFFp3UIKoWSEiIhIBfHLs7Dxc+fjRncIiYIqwVAjEtqMhID6ZR8fcPh0GlNXxlK7qhf3dKnLzHWH+GzFQZIK1I5wMxoY0iaER3s2oG6Ab7nEKiIiFVeFSkYYjUZGjRrF9OnTC30trqFkhIiISAWRdgqWjoPNX0JAA0jeX/g8gwlumgRRd5dpeEXJyLbw/YZDfLBsn9NKCZPRwOBWdXi0VwPqB1YppwhFRKSiqVCtPT08PEhNTS3NS4qIiIhcOXxq2JMM9/8BY9bCDe8VPs9mgQVPQHLFKN7t5W5iVNdIGtV2Lrhpsdr4acsRek+I5rFvN/P3sZRyiFBERCobt9K8WIMGDVi2bBnR0dFERkYCcO7cOQ4dOnRB54eHh5dmOCIiIiLlI7St/c+ziUXPsVlgwWMwYh64eZZJWMWx2WzcEhXCiZRMYpNSefjaevy26xjxyWn/jMPC7UdZuP0o/ZsFcUubELYcMnP4dBqh1X24vX0YkTW1nUNERC5MqW7TmDRpEmPHjsXwT8Vom82W+3uJgRgM5OTklFYoVxVt0xAREamgZt8Lu34qfk5AA3uBy/o9yyamElisNlbvT6J7w5pYrDZ+3p7Ih3/s5+DJ4le/mowGxg9pwbB2YWUUqYiIlKfLfQ4t1ZURTzzxBKGhocyfP5/Dhw+zfPlyatWqRePGjUvzNiIiIiJXBv8LWPWZvB++vhmaDYF+b0PVYJeHVRyT0cC1jQIBcDMZuCUqlJtahfDjpgRe/GkH1iK+xrJYbbz40w7aR9TQCgkRESlRqSYjAIYMGcKQIUMAewHLG264QQUsRURE5OrUZiSs+dC+JcPJ+dWj/zzd7/oJ/v4drn8ZOjwEplL/mHbJTEYDfl7ulLSc1mK18f6SvXxwR+sLXh0rIiJXp1ItYFnQa6+9xs033+zKW4iIiIhUXAH17QUtDSbH4wYTDP4YHvwTQtrmHc9Jg0UvweQucGhdmYZakgEtglny1HWEVfcudt6CbYkM+2wtK/aepBR3A4uISCVTqjUjevXqRf/+/Xn++ecBWLFiBUFBQTRq1Ki0biGFUM0IERGRCi75AGz5GsyH7Fs3okbYExUAViusmQRLX3M+r/Vd0OcN8K1ZtvEW453f9vBp9IV1AWkV5s8TvRrQq3EtrZQQEalkKlRrzz///JM9e/bkvu7Zsyfvvvtuad5CRERE5MoTUB96j4Nbp9v/PJ+IADAaocH1ULOQL2+2zoQP20LMdLAWttWj7N3ePgyT8cISC9sSzNz3ZQyDPlzF7zuPYS2q4ISIiFx1SjUZ4eHhQWpqXqVlm82m5Xn5rFixgsGDB1O3bl0MBgPjxo0r75BERESkIghqAWPWwsAJcO3zULtF3liGGRY+BZO7QeKWcgvxvMiavowf0qLYhESr0GoOr3clnuXhbzZxwwcr+XlbIhYlJURErnqlWhmpQYMGLFu2jOjoaCIjIwE4d+4chw4duqDzw8MvoOL0FezcuXM0bdqUO++8k7Fjx5Z3OCIiIlKRmNyg/X323697ATZOhT/egqwU+7GTf8GUHtDydrjhXfCuXm6hDmsXRvuIGsyKSeDw6XRCq3tzS+sQ/tx7gtikNMYPacHWBDMfLtvHsj0ncs/7+3gKj3+3hYlL9/JYrwbc2LIObiaXljATEZEKqlRrRkyaNImxY8fm7gm02WwXvD/QYDCQk5NTWqGwadMmlixZwoYNG1i/fj2JiYl4enqSkZFR7HkZGRmMHz+e7777jkOHDlGjRg369+/PG2+8QWhoaKnFFxERwahRo0pldYRqRoiIiFRSKcdg0b9h54+Ox31qQt+3IP00NLkR/MOKv445AfYshE5jXBdrEXYeOcP7S/Y6JCXOqxvgw6M9GnBLmxDc/0lKTF8VS7/mQYT4F18o84g5nUU7jzG6W6RL4hYRkeJd7nNoqa6MeOKJJwgNDWX+/PkcPnyY5cuXU6tWLRo3blyat7kgb775JvPnz7+oczIyMrj++utZs2YNwcHBDB48mLi4OL744gsWLlzI2rVrqV+/fskXEhERESkNfkHQfzwc3QrJ+/OOpyXBvIftv6/9CEYvKjohYU6ALwfB6Tj76zJOSDQPqUa9QF+W7XEei09O4/k52/lg2T7G9KhPWlYOb/+6hxlr4vjuwU5FJiSOmNMZPmUdh06lASghISJyBSr1BtZDhgxhyJAhABiNRm644QamT59e2rcpUefOnWnVqhXt27enffv2BAUFlXjO22+/zZo1a+jcuTOLFy+mSpUqAEyYMIFnnnmG0aNHEx0dnTv/1KlTnDp1qthrVq1alVq1al3emxEREZGrV5Va8OhGezHLLV/DsR2QnZY3fvYIfNIJ7l8GtQp8AZQ/EVE9AhoPKsvIAUjPsjB/a2Lu63s61yUlI4f5+WpHHDGn8/K8nQRW8aS6jzuHTqUxfMq6QhMS+RMR4TV86Ne85M94IiJS8ZTqNo2CXn/9daKiorjppptcdYsLZjAYit2mkZ2dTa1atTCbzWzevJmoqCiH8VatWrF9+3ZiYmJo29beD3zcuHG8/vrrxd73nnvuYcaMGU7HtU1DRERELon5EPz+on3bRUHX/Qt6/AsMBudExD0LS97O4SJn0rJ5f+le/vz7BL+PvRYvdxPxyal8svwAczYfJqdAQUujAaw2CKvuzfcPdc5NSBRMRBS3ekJERFzrcp9DXZqMOC8nJ4eFCxeyceNGkpKS6NixI6NHjwYgMTGRpKQkmjZtiptbqS/UyFVSMmL58uX06tWL+vXrs3//fqfxN998k1dffZXXXnstN4FgtVqxWq3F3tdoNGI0OhdmUjJCRERELsveRfDrc2COdzwe2gGufxUWPFYhEhH5ZWRb8HI3ORxLOJXGqC82EJeUhqWQj6X+3u7MfrgzPp5uSkSIiFQgFapmRGGio6MZMWIER44cyS1omZ2dnZuMWLZsGaNGjWLWrFkMHTrU1eEUadu2bQC0adOm0PHzx8/Pg6ITDSIiIiIu16gf1O0KkzvbV0ucd3iDfUUEgH94hUlEAE6JCIB9J1I4cNLeGr6WnyfmtCyyLHlJCXN6Nn3eX5G7WkKJCBGRysGlT9I7duxgwIABnDhxgieffJLZs2dTcCHG0KFD8fHxYc6cOa4MpUTn248W1THj/PELbVNamHPnzrF161a2bt1KVlYWx44dY+vWrfz1118XdH6zZs0K/Tlw4MAlxyQiIiJXMM8q8OR26P8ueFZ1Hk8/A7vmQU5WmYd2IWw2G+/+9nfu6/qBVVj5Qk8e6B6Jd4HExfmdHH2b1qaql8u/TxMRERdzaTLijTfeIDMzk19//ZUJEyYUuvLBx8eHJk2asGXLFleGUqJz587lxlMYX19fh3mXIiYmhqioKKKiojh69CifffYZUVFRDBgw4JKvKSIiIlc5gwE6PQxjVoOxwMqDzDOw5GV4NxzWfQqu3517UQwGA5+PbEefprUxGQ28dlNTalf15t8Dm7LqhZ6M6BTudM7UVbF0e3c5H/2xj3OZpdcWXkREypZL08rR0dF06tSJXr16FTsvPDycJUuWuDKUEp1fsWEwGIodvxw9evS4rOsUtRfn/F4dERERuUqZE+DLG8FqAaM72Cxgy1fXKjsdfn8Btv8AN06E4FblFmpB4QE+fD6yHQdOnqN+YJXc4xk5VqL3JgFgAPJ/gjqTns3/Ld7L1FWxPNC9Hvd0iaCKp1ZLiIhcSVy6MuLs2bOEhISUOC8zMxOLxeLKUErk5+cHQGpqaqHjaWn2Flrn232KiIiIVAgFu2Y8scW+daNaIXUiEjfDZ9fB3DFwNtF5vBzlT0Tk75pxPhHRo1EgVTwdV36Y07L576K/6f7uH0z+8wCpWikhInLFcGkyIjg4mN27d5c4b+fOndStW9eVoZQoPNy+DPDw4cOFjp8/fn6eiIiISLkrqn2nfxjc+xv4n/98lX/lpw22fQuT2sCyNyEjpezjLkb+RISvhyl3RcSWBDOzHu5CaHV74cr87+h0Wjbv/r6H7u8t59PoA6RlKSkhIlLRuTQZ0bdvX3bt2sXcuXOLnDNjxgzi4+MZOHCgK0MpUatW9uWKmzdvLnT8/PGWLVuWWUzFMZvNxMXFERcXR3Z2doktRkVERKSSKSoRcZ5/GIz6xT6GDarUhhoN8sZz0mHl/8F7kfakhLV8V6mCYyIivIYPE25vTYuQagA827cRTYOr8sNDnQmv4YMNqOrlhpd73sfZU6lZvPPbHrq/u5wpKw6QnlX+70lERArn0mTESy+9RJUqVRg+fDivvPIKMTExgH3Lw86dO3nrrbd45JFHCAgI4Omnn3ZlKCXq2rUr1apV48CBA4UW0/zxxx8BGDRoUFmHVqiJEycSGRlJZGQk+/btIzk5ubxDEhERkbK0Z2HRiYjz/MPsY9Uj4NxxaDcaBk0E38C8OdZse1JiYkvYv6xsYi/Cop3HchMR3z3YiX7Ngpj/aFc+HB7FnR3tqzxC/L357sFOhNfw4WxGDsM7hPPQdfUcum8kp2bx9q976P7eH0xdeVBJCRGRCshgK43KjMVYtWoVt912G8ePH3cqDmmz2QgMDGTu3Ll06dLFlWFgMBjw9PQkIyOjyDkvv/wy//nPf+jSpQuLFy/O7aAxYcIEnnnmGbp168bKlStdGueFMpvNmM1mwL4CxWQyXdCWGBEREalE1k2GxoMKT0TkZ06wJy86jbG/zkyBH0bCwT+c5zboDX3fglpNSj/eCzB9VSz9mgcR4u9d7LyE02nc8dk6TqRkMLpbJHd1CGfm+kN8tTae9GzH5EPNKp6M6VGfuzqG41WgZaiIiFya840Uimq0UBKXJyMAUlJSmDZtGkuXLiUuLg6LxUJoaCi9e/fmoYcewt/fv9Tv+csvv/Dmm2/mvl6/fj0Gg4EOHTrkHnvllVcctodkZGTQo0cP1q9fT3BwMN27dyc+Pp7169cTEBDAunXraNCgARXN5f5LICIiIlep7bPh12cg44zjcYMR2oyEHi+BX+3yia0Es2MSeO7H7bmvv32gI13q1yTpXCafRR/g63XxZGQ7bmMN9PNkzHX1uVNJCRGRy3ZFJCPKw4wZM7j33nuLnfPFF18watQoh2Pp6emMHz+eb7/9loSEBKpXr07//v158803CQsr4VuHcqJkhIiIiFwyq8XeZWPJOIhf5ThmMELU3XDDe+Be/EqFsrZs93Fenb+LI+Z0BrQI4pO72jqMn0jJ4LPog3yzLp7MHMekRC0/Tx7pUZ87OigpISJyqZSMECUjRERE5PLZbPD3r7DkVUje7zjm4QcD/w9aDAOjS0uOXZT0LAufRh/gtnahhFb3cRhLzcwhM8dKjsXK5OgDzFx/iKwCSYmgql480rM+t7cPw9NNSQkRkYtxxSQjNmzYwMqVK0lMTMRgMORug8i/bUIunGpGiIiIiEtYsmHRv2HDZ85jwa2h338goluZh3Wx3v19D9+uP8QzfRtxZ4dwklOzmPznAb7d4JyUCK7mxSM9GzCsXaiSEiIiF6jCJyP27t3LyJEj2bhxI2AvWgnkFrPs0KEDX331FQ0bNnRlGJXOuHHjeP3113NfBwYGcuLEiXKMSERERCqVfUtg3iOQlgS2Ai3ErxkI7e+H2GgwHwL/cHuNiYD65RNrAbFJqfR9P5psi/1z56uDmjK6WyQAx85kMPnP/Xy3IYEsi+P7qpOblAjDw63irAAREamIKnQy4ujRo7Rp04bjx49Tp04dbrvtNiIiIgCIj49n9uzZHDlyhODgYGJiYggODnZVKJWOVkaIiIiIy1mtcHwXrPof7Jpb/FyDCW6aZK8xUc4W7zrG07O2cS4zhzrVvFj2TA+8PRxXPBw9k84nyw/ww0bnpESIvzeP9mzArW1DlZQQESlChU5GPProo0yePJmnnnqK8ePH4+Hh4TCenZ3Niy++yIQJE3j00Uf58MMPXRVKpaaaESIiIuJyCRtg0UtweGPRcwwmeGxjhVghcSIlg/d+/5ue19RiYEvnL7yyLVbcTUYSzel8vHw/s2IScldSnBfi783jvRowtG0o7iYlJURE8qvQyYjIyEi8vLyK/cbeZrPRtGlTMjIyiI2NdVUolZqSESIiIlImbDaYeSvsX1r0nK5PQZ9xZRbSpVix9ySvzN/JKwObcn2TWhgMBg6fTuOTPw8wu5CkRFgNbx7v2ZBb2oQoKSEi8o/LfQ516d+m57dpFMdgMNCmTRuOHj3qylBERERE5HIZDOBZtfg5W76ChGJWT5SzrBwr437eRXxyGvd/FcN7i/4GINtio6qXO9c2DKRJsB8mQ945CafSeX7Odq7/XzSzYhLIKbCtQ0RELp6bKy9etWpVEhISSpyXkJBA1aol/IdNRERERMqff3jx42nJMK031G4Ot06HwGvKJq4LFBN/ivjkNACMBhjUMphZMQm8+NMOLNa8FRFGA7SPqM7mQ+bc44dOpfH8j9v5ePl+Hu/VkJtb18FNKyVERC6JS//27Ny5M2vWrOG3334rcs6vv/7K6tWr6dKliytDqXTMZjNxcXHExcWRnZ2N1aoMvYiIiJSBNiPttSFKcnwnfNwBfnkG0s0uD+tCdalfk9+e7E6X+gEM7xCOj4ebUyICwGqDzYfMfDW6A7e1DcVkzFsqEZ+cxrOzt9Hn/RX8tPmwVkqIiFwCl9aMWLt2Lddeey1Go5E777yTO++8k4iICAwGA7GxscycOZPvvvsOm83GihUr6NSpk6tCqXTU2lNERETKzZZvYMETYLPkHTOYoMvjsGEKZKc5zveuAT1ehHb3gsm9bGMtgs1mI8ti5f0l+/g0+kCR88b0qM8L/RsTl5TKR8v3M3fLEafERb2avjxxfUNubFXHIWkhIlKZVegClgDffPMNDz30EOnp6RgMjn8522w2vL29mTJlCnfddZcrw6h01NpTREREylXyAdjyNZgP2bduRI2wd9E4dxLmPggH/nA+J6Ah9H4dGg+w15+oAB77djMLtxddu+zGVnX4cHhU7uu4pFQm/bGPeVuOUCAnQb1AX568viGDWiopISKVX4VPRgAcPnyYzz//nFWrVpGYmAhAnTp16N69O/fddx9hYWGuDqFSUzcNERERqXDMCbD9e1j5PmSnOo751IQbP4Amg8ontnze+W3PBa2MKOjgyXN8+Md+5m91Tko0qFWFJ65vyMAWwZiMBqaviqVf8yBC/L2LjeWIOZ1FO48xulvkJb0XEZGydEUkI8S1lIwQERGRCivlOCz/j30Vha1AbYXIa+HmT6FaSPnEBsQmpdJ7QrTT1gsAk8HA0meuI7Kmb5HnHzh5jknL9rFgWyIFP1U3rFWFlqHVmLP5COE1fPjuwU5FJiSOmNMZPmUdh06l8eqgpkpIiEiFV6Fbe4qIiIjIVc6vNtw0CR5eDTXqOY7FroAP28Ifb0Fmiv3Yusn2VRUlMSfY516myJq+jB/SwmlbhdEA7wxt4ZCIsNls/LjpMJk5ebUy6gdW4YM7oljy1LXc1KqOw+6TfSfOMWfzEdxNBg6dSmP4lHUcMac7xZA/ERFew4d+zYMu+32JiFR0Ll0ZkZmZyfHjx6levTp+fn6FzklJSeH06dMEBQXh4eHhqlAqNa2MEBERkSuC1QrLxsHaT8Ca7TjmWwsiusKuuVA9Au5ZCP5FbOU1J8CXg+B0HPR/BzqNuezQYpNSmRWTwOHT6YRW92ZYuzCnFRHztx7hye+3Uq+mL2/e3JyuDWo6XWff8RQ+WLaPX3YcdVopAVCzigdzH+lKWA0fwDkRUdzqCRGRiqRCr4yYMGECkZGRbNu2rcg527ZtIzIykg8++MCVoYiIiIhIeTMaoc8b8EI8DPyfPQFxXuoJeyIC7EmGGQMLXyGRPxFRPQIal07diciavrzQvzEfDo/ihf6NnRIRZzOyeesXe7Hwg0mpTF15sNDrNKztx0d3tuH3J69lYItgp/Gkc1n0+t+ffLv+EIdPpykRISJXLZeujOjYsSPJycns37+/2Hn169endu3arFmzxlWhVDrqpiEiIiJXvMwUWP0BrPkIcpy3L1A1BEYvylshUTARUdzqiVJ2LjOH/1v0N1+tjcPdZGTJU9cRHuBT4nl7jp3lg6X7+G3nMacxA2ADJSJE5IpUoVdGHDhwgKZNm5Y4r1mzZhw4UHQVY3E2ceJEIiMjiYyMZN++fSQnJ5d3SCIiIiIXx9MPer0Mj2+Chv2cx88egU86wZEt5ZqIAKji6ca4m5qx4LFujB/SotBERPK5TKdjjYOqMvnutvz6RHf6N3OsBXH+G8HBresQXNXLFWGLiFRYLk1GpKam4utbdPXh83x8fDh79qwrQ6l0xo4dS2xsLLGxsTRs2JCAgIDyDklERETk0lQLgbtmwW1fgneBzzRZ5+DzHvBBy3JLROTXPKQaQ9qEOh1POJVG9/eW8++5OziTlu003rROVT4d0ZYv7m2HocDYh3/s566p60kspLiliEhl5dJkRFhYGDExMSXO27RpE8HBznvqpGj+/v5EREQQERGBu7s7RqMao4iIiMgVrtnN8PwBuO0rCGjgOHa+LWiVIHCrWKsIbDYbry3YRVqWhZnrD3H7lLUUthP6iDmd1+b/hQ2cunesPZhMv4krmL/1SBlFLSJSvlz6BNu3b18OHjzIhx9+WOScjz/+mAMHDtCvXyFL80RERETk6mIwQLPB8Mg66PGS83jCOpjQGLbMBKvFebwcnEnPJuFUWu7rh6+rj8HgmGwo2DVjxfM9+fWJbni7m3LnpGTk8OT3W3n8uy2Frq4QEalMXFrAMiEhgRYtWpCSksKNN97Igw8+SP369r+c9+/fz5QpU/j555/x8/Nj69atREREuCqUSk2tPUVERKTSyV8jIrfUYwGBTeD6V+CaAfYkRjnKyrEybVUsMXGnmHpPO4dkRHHtOw+fTmPwR6tJTs1yuF5QVS/+N6xVoe1DRUQqgst9DnVpMgJgxYoV3HrrrSQlJTlliG02GzVr1mTWrFn06NHDlWFUakpGiIiISKVSWLHK0/HwzS1gyXKeH9IOrnvOXgSznJMSNpvNKRFxx2drSTidTs0qHsx/rJtT14wj5nRu+3QNieYMp+uN7hrJ8/2vwSvfCgoRkYqgwicjwN6GcsqUKSxbtoyEBHu/6LCwMHr37s39999P9erVXR1CpaZkhIiIiFQaxXXNMCfAtH6QUkRdBS9/6P8OtB5eRsGWbPqqWN5Y+Ffu695NavPp3W1wMznuls6/esJoAGu+T+gNa1Vh4h2taVanWlmFLSJSoisiGSGupWSEiIiIVAoX0r4z/xx3b8gupANF5HUw4L8QeE0ZBF289CwLbd5cQnq2vb7FbW1D+e9trQqde8SczqKdx+hYrwZP/bCVvcfP5Y65mww83ecaHry2nlPxSxGR8nC5z6FqwXCFMpvNxMXFERcXR3Z2NlartbxDEhEREbk8exaW3L7TP8w+Vj3CnojoOMbeYSO/2Gj4pBPMexTMh8og8KJ5e5j4+fGudKpXA38fd14c0KTIuSH+3ozuFkmzOtVY8Fg37usWmTuWbbHx7u97GD5lnUOxTBGRK5VWRlyhxo0bx+uvv577OjAwkBMnTpRjRCIiIiKlYN1kaDyo8EREfuYEe/Ki0xiwWmHV/2DF/yCnwEoJkwdEjYAuT0KNuq6LuwQ2m41Dp9KoG+DrNDZvyxG6NqhJoJ+n09jq/Uk8O3sbR8/k1ZOo4unGuJuaMbRNiFNNNhGRsqJtGlcps9mM2WwG7C1UTSYTu3fvLt+gRERERMqTxQJ7FsAfb0Hy/gKDBmjQG4Z8Bj4B5RJeYXYeOcNNH62iiqcbz/VvzJ0dwp22YZxJy+aV+TtZsC3R4fgNzYP4zy0tqOHrUZYhi4gASkYIqhkhIiIi4sCSA9u+hT/fgbMFil26eUPPF6HDg/aaE+XIarUxZPIatiaYAYis6cvvY7vj6VZ454z5W4/w8rydpGTk5B4L9PPkv7e2pMc1tcoiZBGRXKoZISIiIiKSn8kN2oyExzfbt2jkl5MOS16FSVEQMx0s2eUTI2ADbokKwc/TDYA3BzcvMhEBMLh1CIvGXkuX+nkrO06mZDLqi428Mm8n6VkWV4csIlJqtDKiEtDKCBEREZFinPgbfrofTv4NlkzHsRr1oOPDUK8XbP3GXvDSP9yezAioXzbhpWSwaOcxRnSOcBo7fjaDWn6eDrUhrFYb01fH8t6iv8nKyStiXq+mL+/f3ppWYf5lELWIXO20TUOUjBARERG5EKnJsGoCbPjcOSlRkMEEN02CqLvLJrZCpGXl0GfCCiJq+vDG4ObUD6ziMP73sRTG/rCV3UfP5h5zMxp44vqGPNKjPm4mLYIWEde5IpIROTk5LFy4kI0bN5KUlETHjh0ZPXo0AImJiSQlJdG0aVPc3NxcHUqlpGSEiIiIyEU4cxii34XN3wDFtEc3mOCxjWW2QqKgd3/fw+Q/DwDg62Fizb+up5qPu8OczBwLE5bsZcqKg+T/VB8V7s/E21sX2r1DRKQ0VPiaEdHR0dSrV4+hQ4cyfvx4pk6dyqpVq3LHly1bRlRUFPPnz3d1KCIiIiIiUC0UbvoQRv0CRvei59kssOXrsosr/61tNg6cOJf7+p4uEU6JCABPNxMv3tCE7x/oRIh/XkHOLYfM3PDBSr7bcAgthBaRisilyYgdO3YwYMAATpw4wZNPPsns2bOd/jIcOnQoPj4+zJkzx5WhiIiIiIg4iugCjQcWP2frt/ZaE2XMYDDw2Yi2fHp3WzpE1ODxXg2Lnd+xXgC/je3OkDYhucfSsiy8+NMOHvhqE0nnStiWIiJSxly6L+KNN94gMzOTxYsX06tXr0Ln+Pj40KRJE7Zs2eLKUEREREREnFWPKH783HH4uANEXgc3f2JfVVFGDAYD/ZsH0b95UKHjL/y4nXqBvozuFom7yUhVL3cmDGtN7ya1eWnuDsxp9k4hS3cfp9/7p3l3aEt6N61dZvGLiBTHpSsjoqOj6dSpU5GJiPPCw8NJTEx0ZSiVjtlsJi4ujri4OLKzs7Fai9nvKCIiIiKFazPSXhuiJLHRMKkNLH4Z0k65Pq4SrNx3kh9iEhj/2x4GTVrFibMZuWMDWgSzaOy1XNsoMPdYcmoW938Vw4s/bSc1M6c8QhYRceDSZMTZs2cJCQkpcV5mZiYWi/oiX4yJEycSGRlJZGQk+/btIzk5ubxDEhEREbnyBNS3d80omJAwmCCwseMxSyas+RAmtoQ/34XMlLKLs4CJS/fl/u7tYaJmFU+H8dpVvfjy3va8MbgZnm55H/m/25DAgEkr2RR/usxiFREpjEu7aURGRuLn58f27dtzjxmNRkaNGsX06dMd5vn4+KgbxEUwm82YzWYA+vbti8lkYvfu3eUblIiIiMiVKvmAvVil+RD4h0PUCHui4tguWDgWTsdB6gnHc7z8oe0o6PEiuHuVabinU7N4b9HfzI5JYN6jXWkeUq3IuftPnOOpH7ay48iZ3GNGAzzWswGPX98Qd7UAFZFLcLndNFxaM6Jv375MnTqVuXPncssttxQ6Z8aMGcTHx/Pss8+6MpRKx9/fH39/fwDc3YupAi0iIiIiJQuoD73HOR8Pagb3L4GsNNgwBVa9Dxlm+1iGGVZPtB+/7l/Q+VEwlU2r+uq+Howf0oLHezWgTr4uGuct/es4Vmxsjjdz+HQanesH0DqsGjPXH8JqA6sNJv2xnz/3nuT921tTP7BKmcQtInKeS1dGxMfH07JlSzIzM3nuuecYPHgwHTp0YNiwYbz88svMmzePt99+G19fX3bs2EFQUOHFeaR4l5uREhEREZELlG62b9VY86F920Z+NRtBz39D08FgMJRLeADJ5zLp9u5y0rMdt0GbjAYevq4eP287yqFTabnHvdyN/HtAE+7uVBdDOcYtIleWy30OdWkyAmDVqlXcdtttHD9+3OkvN5vNRmBgIHPnzqVLly6uDKNSUzJCREREpIztmgc/P5m3SiK/4NZw/atQv5c9KbFuMjQeBP5hxV/TnAB7FkKnMZcV2sNfx/D7ruOFjpmMBhY81pWv18bz/cYEh7HrGgXy31tbUqtq2W45EZErU4VPRgCkpKQwbdo0li5dSlxcHBaLhdDQUHr37s1DDz2Uu91ALo2SESIiIiLlwJIDaz+C+DWwbzFQ4GN1jXpQvzdsnGJvIXrPwqITEuYE+HKQvTZF/3cuKyHx2LebWbj9aJHjt7UNxcfDhJe7iVkxCZz+pwUoQHUfd8YPaUH/5sGXfH8RuTpcEckIcS0lI0RERETK2Ynd8Mdb9pUNBZk8wJJVdEIifyKipKTFBSgpGdE4yI89x+ydQNrWrY6/tzvL9jgW5xzaJpRxNzXFz0u1yUSkcJf7HOrS0rlPP/00b775pitvISIiIiJS/mo1gTtmwv3LILyz45gly/7n6Tj4or89+XBeKSciAEKr+xQ7npqZk/t7twY1mXpPO96+pQXe7nntTedsPsx17y3ntx1FJzVERC6HS5MRH330kUNbTxERERGRSi20HdzxLTS+ESikGOSZwzC5MxzZ7JJEBMDt7cMwGQsvRGkyGri7U10Gt65D7aqedKxXA4PBwJ0dw/ntye60DvPPnXsqLZsxMzfz7u97yMqxXnZcIiL5uXSbRr169YiKimLOnDmuuoWgbRoiIiIiFdLpeNj8Fez+GZL+LmSCAbCVaiLivFkxCbz40w4s1ryP+iajgXeGtOC2dvb72Gw2bDYw5ktc5Fis9Ju4ggMnUx2u1zS4KhPvaE2j2n7EJaUy6Y99dIoMoGO9GtQN8C21uEXkylGha0Y888wzfPnll8TGxuLn5+eq21z1lIwQERERqcCsFtj+Ayx/G84kOI83uxV6vwrV65bqbWOTUpkVk8Dh0+mEVvdmWLswImuWnDj4ZftR5mw+zIq9J8nJl8zwcDPyQv/GeJqMvDx/J2CvP/H72GuLvNYRczqLdh5jdLfIy39DIlKhVOhkREpKCtdddx2+vr5MmjSJqKgoV93qqqZkhIiIiMgVICcTVvwPVrzrPGYwQfOh0O0pqN207GMrRFpWDv/55S9mrndMoPh6mkjNtAD2Qpf/G9bKYTzRnM7bv+6mcZAfM9cf4uiZDF4d1FQJCZFK5nKfQ91KM5iCBg8ejKenJ6tXr6Zdu3YEBwcTHh6Ol5dz72KDwcCyZctcGY6IiIiISPk5dwK2f1/4mM0CO2bZfxr1h25PQ3jHso2vAB8PN/5zS0t6Nw3i+R+3czIlEyA3EQEQvfcER8zphPh75x5bdzCZhduP5nb0CK/hQ7/mQWUbvIhUeC5dGWE0Xnh9TIPBgMViKXmiONHKCBEREZEKrmCxypE/w6G1sOhFSEsu/JywjnDtc9CgNxgKL0hZVk6lZvHiT9tZtOu401hodW9+eKhzbkIif2tRX08Ti5+6ziFZkXQuk5d+2kHHegF0jKxBszpVMZTz+xORi1ehV0bExsa68vJXNbPZjNlsBiA7OxuTyVT8CSIiIiJSPorqmlE9HOp2yRszuYMlO++8hPUw81ao3QK6jYWmN4PJpR/fi1TD14NP727Lj5sO8/rPf3EuX3vQw6fTueXj1cx9tCsAG2JPAeBuMvBM32scEhHnxxf/dZzFfx2ndlVP1r14fdm9ERGpMFy6MkJcZ9y4cbz++uu5rwMDAzlx4kQ5RiQiIiIiTi6kfWf+OR6+kJVayIWA6pHQ9QlodSe4O297LisJp9J4etZWNsaddjhuNNg7dmRbbITX8OG7Bzs5JSIAXp2/k6/WxgMwuHUdPrjDsa7c2YxsnvxuCx3+6dbROtQ/t+NHbFIqP2xM4PDpNEKr+3B7+wsryikipa9CF7AU18m/MqJv376YTCZ2795dvkGJiIiIiKN1k+H3f5XcvjN/QqJ+L4hfA9VCIXm/81zfWtD5UWg3GryqujL6IlmsNj5bcYD3l+wl2+L4OOFmNBD9fM9CExFgXxmxbPdx1sWe4q4O4Qxr7/jP5I89xxk9IwYAfx93Nr/cB6PRUGS70vFDWjCsXem1RRWRC1OhtmmsWLHiss6/9tqi2wKJI39/f/z9/QFwd3cv32BEREREpHCdxtj/bDyo6EQE2MfuWQh7FtrPOXcC3H3AHA+rJsLOOfYilwCpJ2Dpa7BqArR/ADo+DFUCXf5W8jMZDTzSowHXNgzk0W83E5+cljtmsdrIzrEWeW6HyBp0iKxR5Pj6g6fy5kbUwGg0EJuU6pSIOH+vF3/aQfuIGlohIXKFKdWVEUaj8bKKz6iA5aVRAUsRERGRSu5ULKz9CDZOAwp8fHfzgqgR0OVxqF63TMM6Yk7njs/WknA63eG4r4eJRU9dS2h1n4u+5rYEs33lxMFT3NgqmBGdI3jntz18Gn2gyHPG9KjPC/0bX/S9ROTSVaiVESNHjnRKRiQnJ7Nw4UIMBgNRUVGEh4cDcOjQIbZu3YrNZmPgwIEEBASUZigiIiIiIpVHjUhocw9snOo8lpMBGz+HmOnQ4lboOhZqN3V5SEfM6Qyfso6E0+mE1/ChSbBfbreN1CwLAyet4tcnuxe5XaMorcL8aRXm73Ds8Om0wifnjqcXOy4iFU+pJiNmzJjh8Pro0aN06tSJPn368OGHH9KoUSOH8b179/Lkk0+ybds21q1bV5qhiIiIiIhULsEt4b4lsPR1+5aNBn1g/WRIPWkft1lg+w/2n0Y3QPenIayDS0I5n4g4dCott1hlzSoejJi2Ibebxpn0bG76cBULHu920QmJgkpaYRFa/fKuLyJlz6UFLO+55x6WLVvG/v378fIqvOJveno6DRs2pFevXnz11VeuCqVS0zYNERERkauIzQaZKfbildnpsHUmrJ5kry9RUNVQ+9aN0PbQZiQE1L/s2xeWiDifbDCnZTHkkzUcTMrrCFK7qic/PdL1shISsUmp9J4Q7VQzAuz1K5Y+fZ1qRoiUsct9DjWWZjAFLVq0iO7duxeZiADw9vame/fuLFq0yJWhiIiIiIhUDgZDXhcNd29ofz88vhma3uw89+xhiF8NqyfCR+1g8+V/+bdo57FCExEA/j4efHFve2r4euQeO342k2/XH7qse0bW9GX8kBaYjI5bwk1GA+8MaaFEhMgVqFS3aRR09uxZkpKSSpyXlJRESkqKK0MREREREam8DEY4UUKbd5sVFjwOZ49BtyfBzfOSbjW6WyQA/ZoHFbraoW6AL1NGtOXOqevJ+qerxi/bE7mvW6RDkuJiDWsXRvuIGsyKSeDw6XRCq3szrF2YQyJidkwC/ZoHUdVL3eZEKjqXbtPo0KEDW7duZdmyZXTv3r3QOatWraJnz55ERUWxYcMGV4VSqWmbhoiIiIiQnQ4bpsCK/0HmmeLnVgmCzo9Au9Hg6eeScH7elsjj323Jfd2ubnW+ub8jXu6mUr+XzWbj/SV7mfTHftrVrc6Xozvg6+nS711FrnoVepvGCy+8QE5ODv369WPMmDH88ccf7N+/nwMHDvDHH38wZswY+vXrh9Vq5YUXXnBlKCIiIiIilZu7N3R9Ehr0KnnuuWOw5FV4vxksexNSS17NfLFubFWH5/pdk/s6Jv40z/+4HVd8F7rkr+NM+mN/7n3e+PmvUr+HiJQul66MAPjoo4947rnnyMzMdGr7abPZ8PDw4N133+XJJ590ZRiVmlZGiIiIiEiuJa/Za0RcDDdvaDMCujwO/uGlForNZuOFOduZFXM499jjvRrwTN9rijnr4lmtNl6au4PvNybQsFYVZt7fkVpVi65bJyKX73KfQ12ejACIj49n2rRprF69msTERGw2G3Xq1KFbt27ce++9REZGujqESk3JCBERERHJlXwAPmpvb/VZmMAm0LAvxEyHrAJ12wwmaHEbdBsLtZqUSjjZFiujvtjA6v3Jucf+e2tLbmsXVirXP89itTFp2T5Gdq5LQJVLq4chIhfuikhGiGspGSEiIiIiDrZ8AwuecExIGIzgVwdu+wLCOkC6GWKmwbrJkHrS+RrXDIRuT0FY+8sO50x6NrdOXsO+E+cAcDMa+Gp0B7o0qHnZ1xaR8qFkhCgZISIiIiLOkg/Alq/BfMi+9SJqBNSoZ28Nml92Osx9GPb8AtZs5+tEdLevlKh/fd656yZD40HgX8LqBnMC7FkIncaQcCqNWz5ZQ9K5TAD8vNyY+0gXGtRyTQHN89KzLMxcH8/orpEYC7QGFZFLd0UkI9LS0oiJieHo0aNkZmYWOW/kyJGuDqVSUjJCRERERC5Z+mmYFGX/E+ydNs4dc54X1NK+UiLlKCx6CapHwD0Li05ImBPgy0FwOg76vwOdxrA1wcwdU9aSkW1v+Rla3Zu5j3Ql0M812yrOZeZw34yNrI89xZ0dw/nPzc2d6tiJyKWp8MmIV199lffff5+0tLQi59hsNgwGAxZLEfvapFhKRoiIiIjIJds+G3663/67RxV4fDMkboFVEyBhvfP8auGQnQppyUUnJPInIgrM+X3nMcbM3MT5p5DWYf58/2Anl7T8fOPnv5i+Ojb39f9ua8XQtqGlfh+Rq9HlPoe6tPnue++9x1tvvYWbmxuDBg2iUaNGVKlSxZW3FBERERGRi9HyNgioD4v+DQ17g19tuKa//Sd+Dax6H/Ytzpt/5pD9T4PJnmyYMRBG/ZKXkCgmEQHQv3kQL93QhP/8uhuArQlmnvphKx/f2abUt1E807cR2w6b2RR/mqFtQrk5KqRUry8il86lKyMaNmxIYmIiK1eupE2bNq66zVVPKyNERERE5LLZbGC1gKnA95XHdsC3d0C10H9WShTy+OBVzZ508K5ebCIi71Y2Xpm/k2/WHco99tC19XhxQOl08MjvbEY2364/xIPd66lmhEgpqtArIxISEujVq5cSESIiIiIiFZ3B4JyIsNns9SHOHrb/NB0M3jVg60ywZOXNyzgDn3W3d+ywWUusJ2EwGBh3YzMSTqUTvdfeyeOzFQcJD/Dhro51S/VtVfVy5+Hr6pfqNUXk8hldefGgoCBXXv6qZjabiYuLIy4ujuzsbKxWa3mHJCIiIiKVzck9ELc673XUCLhxIozdAV2fBI8CnTBs/3wm7fNWiZ023ExGProzisZBedd4df6u3OSEq+0/cY4fNh4qeaKIuIRLkxF33HEHGzZs4PTp0668zVVp4sSJREZGEhkZyb59+0hOTi7vkERERESksqnVBB5ZB41ugPq9oEFv+3G/IOjzBjy1Ezo/7nzerLth8cuQnVHs5f283Pni3vbUrmrvpmGx2nh05mZ2Hz1b2u/EwZ5jZ7ljylpemLOD7zYoISFSHlxaMyIjI4O+fftiMpmYOnUq9etreVRpMZvNmM1mgNx/xrt37y7foERERESk8spOB3dvx2Mn98KnXf/ZsmHAqZ5EzUZw86cQ2rbYS+88coZhn60lLcveXS+4mhfzHu1K7apepRf/P2w2Gzd9tJodR84AYDIa+OOZ66gb4Fvq9xKpzCp0a89evXqRlZXF2rVrMRqNREREEBoaWmhvX4PBwLJly1wVSqWmApYiIiIiUubMCfBpN8gw21/XbgbX/gvm3AvWnLx5BiN0ewquewHcPIu83LLdx3ngqxis/zydNA+pyg8PdsbXs/TL3MUnpzLss7WcTMnkf8NacUuU2n2KXKwKnYwwGi98F4jBYMBisbgqlEpNyQgRERERKVPmBJgxAMz5tjh0eQL6vmlfLTH1esgssNWiVlO4eTLUaV3kZb9cE8drC/I+0/ZuUovPRrTD5IIuGAdOnmPf8XP0b646dyKXokInI+Lj4y9qft26pVs592qhZISIiIiIlBlzQl77zmqhUKcNxK+BxzeBt3/enGm9IeWY47lGN+j+LHR/Btw8Cr386z/v4ovVcbmv7+0awWs3NnPJWxGRS1ehW3squSAiIiIiUsnsWWhPRORv35luzktEgP3YfUvhk46QlZp33JoD0e/A37/Ya0kENXe6/MsDm5JwKp2lu48D8MXqOOrW8GFU10hXvqtc87YcoVZVT7rUr1km9xO5Wrm0m4aIiIiIiFQyncZA/3fyEhHgmIg470xCXiKiSi3wq5M3dmwHTOkBK/4LlhyH00xGA5OGt6ZFSLXcY28s/Iulfx0v3fdRiO83HOKpWVu5/8sYYuJOufx+IlezMklG5OTkMG/ePP7973/z0EMPMX369NyxxMREtm/fTk5OTjFXEBERERGRCqPTmLxERFGi38v7vVoYPLIW2o7KO2bNhj/egml94OTfDqf6eLgx7Z521Klm76ZhtcHj321h5z8dMFzhREoGr//8FzYbpGVZeO7H7eRYrC67n8jVzuXJiOjoaOrVq8fQoUMZP348U6dOZdWqVbnjy5YtIyoqivnz57s6FBERERERKSu3ToeOD9vrRPR727564sYP4O45jqskEjfDp91h9QdgzStoX6uqF9PvbU+Vf7pppGdbGD1jI4nmdJeEW8vPiykj2+LhZqR2VU8+H9kON5MWkou4ikv/37Vjxw4GDBjAiRMnePLJJ5k9ezYF62UOHToUHx8f5syZ48pQRERERESkLPnUgBvehbE7IbxT3vEGve2rJMI65h2zZMKSV2F6f0jan3u4cVBVPrmrTW43jRMpmYyesZGUjGyXhNy9YSCfj2zHrIc606BWFZfcQ0TsXJqMeOONN8jMzOTXX39lwoQJDB061GmOj48PTZo0YcuWLa4MRUREREREykPV4MKPJ+2z/2nI90hyeAN82g3WTQarfYvEtY0CeevmvEKXe46l8Ni3W1y2heK6RoHUDfB1ybVFJI9LkxHR0dF06tSJXr16FTsvPDycxMREV4YiIiIiIiIVxbpPIP2fApFu3tD4xryxnHT4/V/29qGnYgEY3iGch66rlzsleu9JXl2wy2nVtatYrDbG/7abhFNpZXI/kauBS5MRZ8+eJSQkpMR5mZmZWCyWEueJiIiIiEgl0OUJuO5f9kRE96fhjm9g2Nfgk6+dZvxqmNwVNnwOVisv9GvMgBZBucPfrj/E5ysPujzUbIuVJ7/fwmfRB7lr6nqOnclw+T1FrgYuTUYEBweze/fuEuft3LmTunXrujIUERERERGpKDyrQM8X4fFN0PlR+7GmN8Gj66Hp4Lx52anw67Pw9c0YzyYwYVhrWof55w6//esefttx1KWhrtqXxMLt9nscOpXG+0v2uvR+IlcLlyYj+vbty65du5g7d26Rc2bMmEF8fDwDBw50ZSgiIiIiIlLRVAsBd++817414bYvoVYTx3mx0fBJF7y2f8PUkW0Jq5F3ztgftrLl0GmXhdizcS3+PcAeT/eGNRl3UzOX3UvkamKwuXCjVXx8PC1btiQzM5PnnnuOwYMH06FDB4YNG8bLL7/MvHnzePvtt/H19WXHjh0EBQWVfFFx0qyZ/S/EXbt2lXMkIiIiIiKXaf8y+GZI0eP+dTnn34gf4nz4OvNa4mzB1KziwdxHuhJWw8dlYS3cnkjvJrXxcje57B4iV5LLfQ51aTICYNWqVdx2220cP34cg8HgMGaz2QgMDGTu3Ll06dLFlWFUakpGiIiIiEilkZMFG6dC9LtQpzW0HA6/Pw8ZZ5yn2oy8mHM/sy09aFCrCnPGdKGat3vZxyxyFarwyQiAlJQUpk2bxtKlS4mLi8NisRAaGkrv3r156KGH8Pf3d3UIlZqSESIiIiJS6aSdgswUqF4X4tfAFwMA50eXHJuR3ln/Jc4WTJf6Acy4twMebi7djZ7rxNkMJizZy2s3NsPbo2KtmJi+KpZ+zYMI8fcudt4RczqLdh5jdLfIMopMKosrIhkhrqVkhIiIiIhUakteg9UTix62tOGB7GcAA7e1DeW9W1s6rcoubYnmdO6aup7YpFS6NajJ1HvaVZgtHNNXxfLGwr8Ir+HDdw92KjIhccSczvAp6zh0Ko1XBzVVQkIuyuU+h5ZNylBERERERORSmQ8VO9zHtJlP3D8ggDMs2HSQT5bvc3lIX6+LJzYpFYBV+5NYtOuYy+95ofo1DyK8hg+HTqUxfMo6jpjTnebkT0SE1/ChX3PV75Oy5ebKi69YseKC5nl4eBAQEECDBg1cnsEUEREREZErjH94iVMGmDbQ0bib5ZbWdIveyYHDA6nf+36oE+WSkJ7tew1HTqezYFsiz/e/hsGtQ1xyn0sR4u/Ndw92yk02DJ+yzmGFRMFERHGrJ0RcxaXbNIxG40UlF3x9fbnjjjv4z3/+Q2BgoKvCqnS0TUNEREREKrXkA/BRe7BZLuq0xJaPUGfIeBcFBTkWK3/+fZLeTWu77B6Xo7CkA6BEhJSKCl0zYtSoUZjNZhYsWIDRaCQqKorw8HBsNhsJCQls2bIFq9XKjTfeSHp6Olu3biUpKYl69eqxfv16AgICXBVapaJkhIiIiIhUelu+gQVPOCYkDCa4cRJkp9rrSuQ4bkd4l1Hc/tjbRNT0zTt4eJP9z5A2cBWsys6fkDAa7CVAbTaUiJDLVqGTESdOnKBTp040a9aMDz74gHr16jmMx8bG8uSTT7Jjxw7WrVuHn58fDz30EDNnzuS5557j3XffdVVolYqSESIiIiJyVUg+AFu+tteQ8A+HqBEQUD9vbN4jkLDO4ZRFbj3pOGYK/gG17Ae+HgIHlkG1cOg/HpoMKvUwV+9P4s+/T/DSgCblug39iDmdeVuOMDsmgbjkNIexBY92pWWYf/kEJpVChU5GjB49mqVLl7J//348PDwKnZOZmUnDhg25/vrr+eKLL0hNTSUyMpKAgAB2797tqtAqFSUjREREREQAqwXWTcay9HVM1qzcw6eMAfgN+wT38A7w3wZ5qytG/QIR3Uo1hOV7TvDQN5vIyrHyQPfIMk9InEnP5vedR/lp8xHWx54qcl6vxrWYPqp9mcUllU+F7qbx66+/0q1btyITEQCenp507dqV3377DbDXjYiKiuLQoeIr5oqIiIiIiDgwmqDLY5jGrOaYX7PcwzWsybh/fzu2n5+E0PaAAarUhvDOztdY8iosexOO7bTvZ7gINpuNydEHyMqxAvDNukMcOpVWwlmXLyvHypK/jvPozM20/89SXpizo9hEBMAfe07wY0yCy2MTKYpLkxFnz54lKSmpxHnJycmcPXs293X16tXVVUNERERERC5NYCNqj43ml1oPkmnLayBo2L0AzhyGodPg1un25EV+WWmwYSqs/D/4tCvsX3ZRtzUYDHw+sh3N6lSliqcbX93XgboBviWfeAlsNhub4k/zyryddHx7KQ98FcMvO47mJkLOczPan6vqVPNi5fM9aRFSLXfshZ92sP9EikviEymJS5MRzZo1488//2TNmjVFzlm7di3Lly/PXeIBcPjwYWrVquXK0MrFF198Qc+ePQkMDMTPz4+2bdsyc+bM8g5LRERERKTSMZjc6fPgu7xS+2N2WCPyBs4ehjmjYedPkHnO8aT9S+zFMAE8/ArfwpFa/Jet1bzd+fq+jnz/YCfaR9S4vDdRiLikVN5fspce//cnQyev4et18ZxOy3aYU8PXg6FtQqhd1ZMcq43wGj7MHtOFsBo+/G9YK0z/fO9rsdq45ZM1HDGnF3InEddyaTLiueeeIycnhz59+vDoo4+yfPly9u/fz4EDB1i+fDmPPvoovXv3xmq18txzzwH21RSbNm2iU6dOrgytXCxbtoybbrqJX3/9lS1btnDHHXcwYsQIfvjhh/IOTURERESk0vFwM/Lve4fybLUJTMi+lWxbvpUQMdNgcheIW2V/vW4yVAuDvv+BkHbQeAC4ezle0JIDH7eH/2sE0e9BWuFbIWr4etA83wqEy3UqNYuv1sZxyyer6fF/f/LBsn3EFyhI6elmZFDLYKbd0465j3RhY9xpjp/NdOqa0ai2Hw/3qJ97XkpGDkOVkJBy4NIClgATJ07kX//6F1lZWU5bL2w2G+7u7rz99ts888wzgL3DxqxZs7j++utp167dJd9306ZNLFmyhA0bNrB+/XoSExPx9PQkIyOj2PMyMjIYP3483333HYcOHaJGjRr079+fN954g9DQ0EuOpygDBgzA29ubOXPmXPI1VMBSRERERKRoCafSuPnj1dRO28v/3D+libFAfbq6XSB+DVSPgHsWgn8YWLLB5O44b/ts+Ol+++8GEzx/ELz9LygGm83G+0v2Elrdh2Htw0qcn5FtYdnuE8zdcpg//z5JjtX5sc1ggE6RAdzSJoT+zYOo6mWPd/qqWN5Y+FeR7Tszsi30m7jCIaHx8sAm3N/dsfuhSHEqdDeN82JjY5k2bRpr164lMTERgODgYLp06cK9995L/fr1S7jCxbv55puZP3++w7GSkhEZGRlcf/31rFmzhuDgYLp3705cXBwbNmwgMDCQtWvXlnqsXbp0oUWLFnz22WeXfA0lI0REREREirfl0GnumLIOa04Wj7v9xCNuC3AjX30FoxtYcxwTEvmZE+DTbpBhtr+OvA7uWeA4x2aDDZ9Dwz5QIzLfYRtv/7qbz1fGYjDAxNtbM7h1iFOMVquN9bGnmLflCL/uOEpKZk6h76VR7SrcEhXK4NZ1qFMg0XDe9FWx9Gse5JSIOG/lvpOMmLYh9/XrNzXjni4Rhc4VKcwVkYwoD++++y5paWm0b9+e9u3bExQUVGIy4tVXX+XNN9+kc+fOLF68mCpVqgAwYcIEnnnmGa699lqio6Nz5586dYpTp4qvUlu1atUi6198+eWXPPDAA6xbt442bdpcwru0UzJCRERERKRkv+04ypiZmwFoaTjARz6fE24ppIuff11728/zCQlzAnw5CE7HQdUQaH6rvZ5Eo76O5yVuhSnX2X+v0wbu/Q3cvTiZksnASSs5kZIJQNPgqix4rCtuJvuu+b3HU5i75Qjztxwh8Uzhzyu1/DwZ3LoOt0SF0iTYr1QK/o/9fgvzttq/LK7i6cbSp68jqJpXCWeJ2CkZcYEMBkOxyYjs7Gxq1aqF2Wxm8+bNREVFOYy3atWK7du3ExMTQ9u2bQEYN24cr7/+erH3veeee5gxY4bT8fnz53P77bczefJk7r333kt7U/9QMkJERERE5MJ8Fn2A8b/tAcCTLCYF/05f8ywMNscuFPgFw31L7L+fT0QUtWrivCWvwuoP7L+HdYL7FuUO7Tuewu1T1hFU1Ytv7u9IjsXKgm2J/LT5CH8dPVvo5Xw8TPRvHsQtUSF0qV8Tk7F0Ow4mncvk+v9FcybdXgCzf7MgPh3RtlTvIZXX5T6HupU85fLl5OSwcOFCNm7cSFJSEh07dmT06NEAJCYmkpSURNOmTXFzK5NwCrVq1SrMZjP169d3SkQA3HrrrWzfvp2ff/45Nxnx6quv8vLLLxd7XaPRuUbo999/z6hRo/j0008ZNWpUqcQvIiIiIiIle/DaesQlp/HdhkNk4sFDR2/ijTa9GXn8HUjenzcx5Sh80NJeG8KaXXIiAsA/HAIbw8k90OwWh6GGtf2YOaQWNZc8zq+fd+aT481ItAUQYTjKC25/Emo4yWFbID9aexLWsAW3RIXQp2ltfDxc94xUs4onLw1ozAtzdgDw+65jLPnrOH2a1nbZPUXOc/nTf3R0NCNGjODIkSPYbDYMBgPZ2dm5yYhly5YxatQoZs2axdChQ10dTpG2bdsGUOR2ifPHz88De6KhsGRDcT7//HMef/xxZsyYwR133HFR5+Zvf5rfgQMHXFJ3Q0RERESksjEYDLw5uBlHzOms2HsSgFc3++A1+FuGnZlh76rBP4vHbVb7j9Gt5EQEQPv77T8ndkMV+wN9jsXK6gPJzN18mLC/PuMZ4zbuZhvt3UOZahnAeLepuBnyVmU8bPgVQ+tJ0LqDC969s2Htwpiz+QgbYu3bz1+dv5PO9QOo4ll+XxTL1cGlrT137NjBgAEDOHHiBE8++SSzZ8+m4K6QoUOH4uPjc1ndJErDoUP2vWJFdcw4f/z8vEsxYcIExowZwwcffECPHj04duwYx44d4+TJk5d8TRERERERuThuJiMf3xlF4yC/3GMv/nyAFfWetteKqFbgmcCaA3ErL/j6tsDG7Dxt4o2f/6LT+D+4Z/oG5m1NpB9rc+estjRjvLtjIgLAYLNgXfAEJB+4tDd3kQwGA2/f0hx3k30LyNEzGUxYvLdM7i1XN5emu9544w0yMzNZvHgxvXr1KnSOj48PTZo0YcuWLa4MpUTnzp3Ljacwvr6+DvMuxaRJk7BYLDz88MM8/PDDucfr1q1LXFxciecXtRenqBUTIiIiIiJSOD8vd6aPas/NH6/mREomFquNh7/ZxM8jIqhvMDmfMG8MHNvJkY7/ZtGuE4zuFuk05fDpNOZvTWTuliPsP+H83PBC9oPc7LmBIR4b6VW3Cm7xVqc5AEabhZTFb+M3fNplv88L0aCWH2N6NGDSsn0AzFgTyy1RIbQIrVYm95erk0uTEdHR0XTq1KnIRMR54eHhLFmyxJWhlOj8io2iqtKWRp3PC0k4iIiIiIhI2ajj7820e9oz5JPVZFtt+Gcdx3PmE8Bxe42IjmNg6WuQ808R/HUfc3T9CiamPw7A6G6RnEnP5rcdR5m75QjrYwvvtOduMtDzmloMadOGHtc8jJebkeMf3lpsbDlx60rxnZbskR71WbgtkYNJqVht8OLc7cx7JK/jh0hpc2ky4uzZs4SEOPfPLSgzMxOLxeLKUErk52dfopWamlroeFpaGkBuu08REREREbnytQitxps3N2fST8v5zuMtQjlBojGI6nfOxzswAiK7w7e3w5kEANrZdrDI699szZjMIzNPsXT3CbJyCl/h0K5udW6OCmFQy2D8fTwcxg7bAmlaTFx7PZvRseDBcyfBqxq4eRR2ymXxcjfx1i3NufPz9QDsPHKWL9fGc18hK0BESoNL01zBwcHs3r27xHk7d+6kbt26rgylROHh4QAcPny40PHzx8/PK29ms5m4uDji4uLIzs7Gai38L0ARERERESneHY0M/Or/LnWNJ4i31uLWtJd4YMFxLFYb1G5G4vClbDS2zJ0fzEl6rhyOx64fnRIRkTV9ebpPI1Y815Mfx3Th7k51nRIRALHhQ8ixFf44ZrXBtsj7nAd+fwEmNIbfX3RJTYku9WsytE1evYz/Lf6bI+b0Ur+PCLg4GdG3b1927drF3Llzi5wzY8YM4uPjGThwoCtDKVGrVq0A2Lx5c6Hj54+3bNmy0PGyNnHiRCIjI4mMjGTfvn0kJyeXd0giIiIiIlemPQvxzzhCknsdhme9TCI1WbUviRd/2sG6g8n0/2w7w9Ke59PsgZzfve1lyGaixyeMc5tBLR8Do7pEMO/RrvzxzHU8cX1DwgMKr0V3Xt/uXXnJ8oBTQiLHZuRflofp072b4wnpp2H3QkhLhnWf2Dt2uMC/Bzahuo87AGlZFl6bv7NUtqyLFGSwufDfrPj4eFq2bElmZibPPfccgwcPpkOHDgwbNoyXX36ZefPm8fbbb+Pr68uOHTsICgpyVSgYDAY8PT3JyMgodDwrK4tatWpx5swZNm/eTFRUlMN4q1at2L59Oxs2bKB9+/Yui/NCmc1mzGYzYE/6mEymC1qFIiIiIiIihVg3Gcs1Axn5YyKrDxT9Rd8txpX8x30aPoas3GPW0A4Yh30FVYMv6pazYhL47KfFDDX+SajhJIdtgcyx9uDhIX3pVC+A9GwLjWr/0/Fj/zL4bjhYMsGnJjyzB0zujhdMPgDVI8F4ed85/7jpMM/O3pb7+tO729C/+cW9N6n8zjdSKKrRQklcmowAWLVqFbfddhvHjx93Kg5ps9kIDAxk7ty5dOnSxZVhlJiMAHj55Zf5z3/+Q5cuXVi8eHFuB40JEybwzDPP0K1bN1auvPCWPmXlcv8lEBERERERu9TMHG7+eDX7CumGYTBA53oB3HWNjf67nsN0fEfeoG8tuG0GRHS9qPvFJqUyKyaBw6fTCa3uzbB2YRw1p/Pot5up4uXGz491y9vmkW6GnXPAaoGODzpeKCcLJjQBd29ofSd0fBh8alzcm/+HzWbjzs/Xs/agPSlTu6onS5++Dj8v9xLOlKtJhU9GAKSkpDBt2jSWLl1KXFwcFouF0NBQevfuzUMPPYS/v3+p3/OXX37hzTffzH29fv16DAYDHTp0yD32yiuvOGwPycjIoEePHqxfv57g4GC6d+9OfHw869evJyAggHXr1tGgQYNSj/VyKRkhIiIiIlJ6tiWYGfzxaodjY3rUZ2TnugRX87YfyE6HX56Frd/kTTKYoO+b0OkRe+biEhwxp9Pjv8vJttgf07o3rMlXozsU2fUv1+6f4Ye77b+bPOHZv8G7+iXFAHDw5Dn6f7AytybGPZ3r8vrg5pd8Pal8Lvc5tEz6tPj5+TF27FgWLlzIzp072b17N0uWLOGFF17A39+f2bNnM2nSpFK958mTJ1m/fn3uD9gzfPmPnTx50uEcLy8vli9fziuvvIKPjw/z5s0jLi6Oe+65hy1btlTIRISIiIiIiJSeI+Z0Hv9uCwAmowE3oz0J8Mv2o1jzf43r7g2DP4JBE8H0z8oFmwUWvQQ/joZM55UVFyLE35uxvRsB4Olm5JaokJITEQAn99iTIQBNbnRORNhskLgVLvC76HqBVXisZ97zz1fr4tmaYL6gc0UuRJmsjChJ586d2bBhQ7m397ySqGaEiIiIiEjpOmJOZ/iUdRw6lUZ4DR++e7ATgNOxEH9vxxMPb4JZI+DskbxjgU3g9m+g5sV/oWmz2Xj957+4tW0ozUOqXfiJKcdg2/cQ3hnCCzQGPRwDU6+HmtdAmxHQ+bESV29k5lgY8MFKDpxMBaBJcFV+fqwrbqYy+U5bKrgrYmWElD510xARERERKT2FJSJC/L0J8ffmuwc7EV7Dh0On0hg+ZZ1zu8vQtvBgNER0zzt2cjd83hP2/HLRsRgMBsbd1OziEhEAfkHQbaxzIgJgyz/bSZL+hr9/v6BtJJ5uJt6+pUXu691HzzJ9dezFxSRSBCUjrlBjx44lNjaW2NhYGjZsSEBAQHmHJCIiIiJyRSoqEXHeBSUkqgTCiHnQ9cm8Y5ln4fs7Yenr9qKTpeCSF7afO5H3e9TdhY8X0i60Y70Abm8Xlvv6/SX7SDiVdmkxiOSjZMQVyt/fn4iICCIiInB3d8d4me17RERERESuVot2Hit+GwbOCYlFO485X8jkBn3egGFfgUeVvOOrJsA3QyH10lcz22w2pq48yH1fxmCxXkJCYvi38MQWuO5f0PQm5/GN0+CTTvB5L9g1z2HoxQGNCfC118VIz7bw6vydl54UEfmHnmBFREREROSqNrpbJK8OalpkIuK88wmJVwc1ZXS3yKIv2HQwPLAcajbKO3ZwOUy5Do5svuj4snKsPPXDVt76ZTd/7DnBfxf9fdHXAKBGPej5Inj4Oh63WmHrt/bfj2yCUwcdhv19PHhlUNPc18v/PsmvOwpJrTRgPAAALgxJREFUxohcBCUjRERERETkqje6W2SxiYjzQvy9i09EnBfYCB74w56YOO9MAkzvD5u/uqjY3E0GsizW3Nc/b0vkbEb2RV2jWOeOg88/3TcMRmg13GnK4FonuDkyb6vJuJ93cSa9FGOQq46SESIiIiIiIq7g6Qe3fQl93rQ/5ANYMmHB47DgCcjOuKDLGAwG/ntrK66p7UenejVY8FhXqnq5l16cVYPhoRXw8CoY+D/764Ix/PYc7x8dyUyP8bQwHORkSib/XbSn9GKQq45baV7MZDKV5uWkGPlbe2ZnZ+ufvYiIiIhIRWQwQNcnoE5rmH0vpCXZj2/+Eo5th2Ffg39YsZcA8PV04+v7O1DdxwN3V7XWDGph/yno5N9weCMGoKtxBxbsKydmrj/ELVGhtK1b3TXxSKVWqv8W22y2S/6Ri6PWniIiIiIiV5DIa+2rD0La5R1L3AKfXQsHll/QJWr5ebkuEVGcc8ehRn0ArLVbkFOrOQA2G7z00w6yLVbY8yuk/pNoST4AS16zJ1+WvGZ/LVKAwaZMwBUp/8qIvn37YjKZ2L3buRWPiIiIiIhUIDmZ8PuLEDMt75jBCL1egW5P2VdSXISMbAtLdx9nUMs6pRxoATYbHFoHORlscmvF0Mlrc4de7VWL0ev621/UagbHd4ItXytTgwlumlR4S9ErRGxSKj9sTODw6TRCq/twe/swImv6lnxiJdasWTMAdu3adUnnl+o2DSk7/v7++Pv7A+DuXor7xURERERExHXcPGHQBAhtBwufgpwMsFlh2ev2ThY3Twavqhd0qcOn03jo603sSjyLzQY3tnJhQsJggLqdAWgL3NkxnG/XHwLg2MqvwJRjn3dsm/O5Nou9TobJ3b4yJKC+6+J0gVkxCbz40w6HlqqfrzzI+CEtGNau5C02UjgVsBQRERERESlrre+E+xaDf3jesT0L4fOecOLCVjw/N3s7uxLPAvD8j9vZf+KcKyIt1Av9G1OziicAaVYTp0wBxZ9gs8JPD8KXNxY+vuQ1WPU+bP0OMs6WcrSXLjYp1SkRAWCx2njxpx3EJqWWU2RXPiUjREREREREykNwK3gwGhr0zjuWvB8+vx52/lTi6eOHtKCql32x++3tw6gb4OOqSJ1U83bntRubAvCNpQ/tUj8gKaBdCWcBVWo7H8tOh9UTYek4mPcwZKY4z/n9JfjuTvtqksMxlxX7xfhhY4JTIuI8i9XGrJiEMoulstE2DRERERERkfLiUwPunAXR79p/ALJT4cd77ds2er8OpsIf2yJq+jJpeBQnUzK5rRy2CwxqGcyczYf58++TWDGy8FQooygmUeDuC1UL2Upy7rjj6yq1nOfErYBjO+y/R3S3b3PJb8X/wfpPoUoQNB8C3Z92HM9Ks9/HLwjcvUt+c/84fDrNfkvDUW43/Umo4SSHbYH8YOlBnC2Yw6fTL/ha4kjJCBERERERkfJkNEHPl6BOG5j7IGScsR9f+xEkboXbvij8AR3ocU3hx8uCwWDgzcHN6fN+NBnZVmZkdGeE5wJMWAuZbIKHV0KNes5jJg9o/wCcO2ZfJWEqpCZeSr6EhV+Q8/jZREg9af+J7O48nrAevr7Z/nutpvDIWuc5O34E30D79WvUIzndSmh1H24z/cl4t6m4GfLe1wOmX3gx535qVr/P+TpyQZSMuELl76aRnZ2NyWQq34BEREREROTyXNMfHvwTfhhh70gBEL/K3v5z2FcQ1uGCL5VtsZZJG9CwGj481bsR43/bQ5wtmH9l3897HtMwOHXT+LDowpVV68DA/yv+Rv3ehpREOHei8IRG/tUVhW0FyT/uXsh2lqxUmJOXWFhx40rGzE9kXDdPni2QiABwM1gZ7zaVow1GFh+3FEnJiCvUxIkTef3113NfBwYGlmM0IiIiIiJSKmrUg/uWwM9Pwo5Z9mMpR+GLAdB/PLS/v8T2n2sPJPPs7G18PrIdTetcWGeOyzG6WyRztxxhz7EUZlt6cMKnDdNb7cF0NsFeoDNqxOV30Gh5W/HjN7wHnR+zJx1qNXUeTzfn/V7YyoqUY7m/2jAw+sc4cmwmTq+ajpuxkJUe2BMSYXFzoEGLC3gDUpDBZrMVXo1DKrT8KyP69u2LyWRi9+4Lq7orIiIiIiIVnM0GGz6HRS+CNSfveMs7YND74FF4scpv1x/ilfk7sVhthNXwZsGj3aju6+HycLccOs2QyWs4/3T5TJ9GPH59Q5ff96JYsu3bOKwW8C9QY+PEHpg3Bs4dJ8dqo13aB5jTspns+RE3GNYUfc3mQ+HW6a6Nu4Jq1qwZALt27bqk89VN4wrl7+9PREQEERERuLu7YzTqf0oRERERkUrDYICOD8KoX+1FGc/b/j1M6wunYgs9rY6/F9Z/MgLHz2ay7bC5DIKFqPDqjOhUN/f1h8v3V7y2lyZ3+5aQgokIgFqN4cHl8PRfuD3zF5/d3ZbImr50iGpd/DXzt2aVi6InWBERERERkYoqvCM8tALCu+QdO74DplwHexc7Te9xTS2e63cNQVW9mP1Q5zItcPlsv2uo5ecJQFaOlX/P3cEVuRDfYKBjvQAWP3UtAd3vt9e8KHSeyb4FRS6JkhEiIiIiIiIVmV9tuGcBdHo071jGGfh2GCz///buPDyqKl/3+FupzIGkyABkYEgYJQwiiCgi2GIQpVUGp24Q0VYazrHlgrflqAjYaOMVHOg+tuLAoK0oKjiDCi2CDA0CAmkgGAgkEKaEIiHzsO4fRUJCEpJAqirD9/M89WitvXft39btetwva6/1V6m4/JwGEwd10MrJA9Wrjc2lZQb6emnW7bGl3zckpmn59iMuraG2dqbY9X+X/aLCoorzQnhZPRxzXdw+v2IgUd2knKgWE1gCAAAAQH1n9ZJueV6KvEr6/FGpIFuSkdbOkY5uk0a8IfkHS3IsuWnzd/48EZW5pXtr3dS1pVbvPSFJmv3VHg3u0lLBLpi3orZW7j6myR9uV25BsQJ8PDWzTJBSTu8xUttrpe3vSvbDdTcpZxPHyAgAAAAAaCh6jJYeXiMFl3kQ3v+ttGCwlLqzysOMMfpwy2Gdzsp3ankWi0XP3tld/t6OkQTpWfn669f1b6J9Y4w+23FEuQWOERHvbTqk/cczqz4gpIM0ZKZjssohMwki6gBhBAAAAAA0JC2vcEy22OW28232Q9LbN0u/LK2we25BkR5ftlNPfLJLf1q6vdJXEupSpM1PU27uXPp92c8p2piY5tRz1pbFYtG8u3upR2SQmvt6atH4furUqrm7y2pSCCMaKLvdrqSkJCUlJamgoEDFxc7tUAAAAADUI75B0j3vSTc9I1nOPdYV5krLJ0hfTZUKz4+A+PyXo/pkW4okad3+U3rth0Snl/fAde0VGxFY+v2p5buUV1jk9PPWhr+3p94e11efTrxO13cKdXc5TQ5hRAP1yiuvKDo6WtHR0dq/f7/S0upX0ggAAADAyTw8pIFTpTGfSH7B59u3vCX9rY+UslWSdFefKN3WM1ySdHX7FrqvX5nlKO3J0qZ/1HlpnlYP/XVkD3lYHN8PnMrSa/9yfghSlZTT2fr1xNkK7S0DfRkR4SYW0yDXWoHdbpfdbpckxcXFyWq1as+e+vcuFgAAAAAXsB+WPhwrpe4432bxkEa9LXUfqez8Qi38KUkPD4yRt+e5P5O2J0uLh0unk6Rb5kj9J9Z5WbO+iNfCn5IkSd5WD3392EB1bNmszs9zMTuS7frD4i3y87Zq+aQBCm3m49LzN1axsY4JP+Pj4y/peEZGNFA2m03t27dX+/bt5eXlJQ8P/lUCAAAATZatrfTgKscqDyVMsfTxeGn1bPl7WfVfN3asPIho0V7qOtwpZU2N66LwIF9JUn5RsZ5avkuu/PPwE5m5um/BJp06m6/k9Bw9smSr0+fMQM3wBAsAAAAAjYGXr3TH36Xfzpc8vM63r3tRev8eKe/cawplgohiW3sVjv1csrVxSknNfDw1q8ySmZsPpmvZzylOOVdlWjb31eQhnSRJnh4W3duvrTytPAbXB/xbAAAAAIDGpM846aFVUvPw8237V0lv3CAdXFcaRBQGtdPDlhl6cVO2U8uJi22tuG6tSr8///UepZ3Nc+o5y3rkhhg9ckOMljzUT3f3dU7ogtojjAAAAACAxiayj/THn6S2/c+3pSeWBhFF3s31TsbV8jm+XVvWrdS3G3+WigqdVs6sO2IV4G2VJNmzC/TcV86Z766gklcwLBaLnrz1Cl3XgRUz6hMmsGwELnfiEAAAAACNVHGR9PWfpa1vVb+vxUNq1koKjDj3iSz/1+bhjr96XtoEkAt/OqhZX/yn9Pt7D11TuyU1N/3DMbdFFa+UJKdn66HFW/TnawM0RFucMiEnzrvc51DPuiwGAAAAAFCPeFil6ydL2xY6gomLMcVSZqrjc+TnqvfzD70grLgwuAiXvAMqHHb/te21fPsR7Uw5I0l6esUurZx8g3y9rNVfx6Z/SCunSZtfl8Z9WSGQ2JFs10OLtsgn66g6fzNbspxwbCCQqLcIIwAAAACgsSqZrLK4yDGppSmWTJHk3VyK6K3i7HR5ZB6VctJr/pvZpxyfYzur3sc3qEJYYQ2M0Py+Nv0xNVVHioKVlGb09zW/6vGhXao/Z9fhjiDidJLjei4IJAJ9PRVWfEJveM9WW8sJnfGNUpCTVghB3eA1jUaA1zQAAAAAVHDh8p3jvnS0X9hmayMV5EgZR8t8jjj+mpl6/u/PnpBUd4+PZ42vjitYraNiFBDatvJRFv7BksVS9fWUBBL2ZOW+dat8zx7WWf82avbIN05bIQQOl/scShjRCBBGAAAAACinmgf3KrdJ2pKUrrSzebqle3j53yzMl84eKx9WXPjJTHWMvKgrVp8yIUWE5NNMiv/MMZKjebh07/uSf4i05HbHxJxB7WUdX/E1DtQ95oxooux2u+x2uySpoKBAVmsN3rMCAAAA0PhVEzbI1sbRVrLPudceTFCU3tt0SLO++I88rRZ9Euyv2Iig88d5eku2to5PVYqLHCMoygUWR86NsCjTVpRfs2spypNOH3R8LpSZKr154/nv3s1l7TtOyjopBYRJXr41OwfcgpERDdTMmTM1a9as0u9hYWE6ceKEGysCAAAAUC+UTPZYWRBRVtnQ4pY5OtX9Qd00b63O5BRIkmLCAvTt5BvkafWo2/qMkbLT9PzS75WYmKBwS7raedk1ppuX/HKOnw8tCrIv/RwenlLYFVJ4L8cn4kqpVWylE2vi0vCaRhNVdmREXFycrFar9uxxzlq9AAAAABqYapbBLGVPlvZ+WbrqxI8JJ/XAwn8rtJmPXh/bR1e1beG0Eo9n5GrIvLXKzCuUJN3eK0Lz7+vt2GiMlHumwhwWm3/ZpZy0FEVZTqiDJbV0OokasXhIoZ3PBxThvaTWPRyTbaLWCCPAnBEAAAAA6sxnO47o2pgQtQx0/msO725M0vTPzj/HLBp/tQZ3aVnl/tn5hfqv1z7TzPRpaudxQsbDSxYZqbhQ8mku2dpLpxIcr3fUVHBM+YAi/ErHxJm4KMIIEEYAAAAAaJCKi41G/mODdiTbJUltgv307eRB8vOuYk48e7IKF94mzzOHql4hZOwKxyseqb+U+eyUCrJqXlhQWym8pyOYKAkpmre65OtsjAgjQBgBAAAAwKmMMTqdXaDgAO86/+09qRn67d/Wq7DY8Wj6x0EdNG1YV+UVFulkZp6iWvg7dryMFUJUXCSlHzgXTOyQju5wBBR5Z2peaLPWF4yg6CUFRal274pc4BJfp6kPCCNAGAEAAADAafIKi/TMinit//WUvnj0eqcEEnO+2avX1yZKkjw9LHr/4Ws0d1WCUjNytGLSAIUUnrh42CBVH0hcyBjHvuVGUOyQstNqXrhfcPlJMsN7SS2iaxZQXOJEo/UlkCCMAGEEAAAAAKcoLCrWPQs26edDpyVJAzqGaPH4fnW+wkZOfpHiXlmr5PQcSZKPp4fyCoslSX3atdDSntvl9d2Tzn9wN8YxYeaFAUVmas1/wyfo3CseZUZQhHSUPC549cSerIw3blFgTkqNApYMvygFTlhZ/SgKF7nc51DPuiwGAAAAANB4eFo9FNetVWkYkVtQrLN5hbL51+3oCD9vq/5yR3c9sHCLJJUGEZIUHRogc81EyepR/SsNtjaOh/pLfaXBYpGCIh2frreeb888Lh3b6QgmSkIK++HKfyPvjJS0zvEp4eXvWLmjTECxMMFHb57+s5b5PafI00mO0KGKV0+OWFrprtN/1h92F+rB62t/WfURIyMaAUZGAAAAAHAWY4z+tHSHmvt6auZvY+XtWbejIsp69IPt+uKXo5IkLw+L/nBDjP48tIsslzMvg7Nkp58LKMqMokj7tcaHG6uP9po22pvfSjd67pJNGZKtnfTAV44dygYROU/JM7itPnikvyJtfk66oNrhNQ0QRgAAAABwqsKi4jp/NaMyJzJzNWTeWmXkFkqSbusRrv/9/VVOP2+dyc2Qju0qH1Cc2ieZ4uqPLWVxjNAwxfU2iJB4TQMAAAAA4GTOCiJyC4o07ZOdurlba93WM1wtm/tq2rAr9OTyXZKkr3alatTe4/pN1wayrKZvoNR+gONTIj9bOh5f/hWPE3uk4oIqfsRIxqhYlnobRNQFwggAAAAAQK0dz8jVmz8e0LRhXS8prEg7m6cJ7/6srYdO65vdxxRu89VVbVvo3qvb6NNtKdp6bp6K6Svi1X9KiPy9G+jjq7e/1OZqx6dEYZ4jkDg3QWZe8nbp+C75qLB0F2OkCJufXm2EQYQkOX+cDQAAAACgUdmalK7hf1uvt9Yf1Asr917Sb5zJKdD+E2clOSasXPRTkiTJw8Oi50f2kKeHY56II/YcvfxdQp3UXV8UWry0vbCdXsscoPtP3KdbU/+g48XBjm3GQ0XGIqvFaKnPbEXqlJurdY4GGi3BbrfLbrdLkgoKCmS1Wi9+AAAAAADUkfc3H9bJzDxJ0pvrDurWHuHq3bZFrX4jJqyZXh/TR/e/s1kje0dp9ojupds6t2quCYNi9L//SpQkvfNTku64MlLdI4Pq7iJcqLCoWPFHM7TpQJo2HkjTloPpysovkiRF6JQ+8J6tth4ndKi4pe7Lf1qS9IH3bLU7c6jiKhuNBBNYNlAzZ87UrFmzSr+HhYXpxIkTbqwIAAAAQFORnV+oka9tUOLJs5p5e6x+f027S/6tfccy1blVsworZuQWFGnoKz/qUFq2JKlnVJCWTxogq0c9XFnjAkXFRntSM7QxMU2bDqTp3wfTlZlXWGG/kiCiXZkg4pglVBaLRa2KTzqW/TTHpRbt610gwWoaTVTZkRFxcXGyWq3as2ePe4sCAAAA0GQkp2freEau+rYPrnbf4mKjFTuO6I4rI2sVJqzff0pj3t5c+n3mb7vpgQHRl1SvMxUXG+05lqFNB9K1MTFN/z6YVroiSFXaWtP0ke/zal2UqhS10t255yerlKT7FmxSYfrhehtIsJpGE2Wz2WSz2SRJXl5e7i0GAAAAQJPTJthfbYL9q90vt6BIU5f9oq92pir+aIamD+9W43Nc3ylUI3pHavn2I5KkF1ft09DurRUe5N4JHYuLjRJOZJaOfNh8MF327KpWx3Dw9LDoyjY29Y8J0bUdQnT1sQ/l/X2qjlha6e5KVs344JH+um+BdFf6U45A4nSStPdLqf9EF1yh8xFGAAAAAADqTMrpbEW1OB9SzF+9X1/tTJUkvb3+oHpEBunO3pE1/r2nbrtC/9p3QvbsAmXlF2nm5/F6Y2zfOq/7Yowx2n/irGPOh0RH+JCelX/RY6weFvWMCtK158KHPu1alFsR5Ejog/pkbaKWZvaqdPnOSJtfuUDi3ua/aFTXB1Tzf3L1G2EEAAAAAKBOvL/5sGZ8tls3dAmTn5dVUS38dXuvcK1NOKn4oxka2ClUv7miZa1+M7SZj54cdoX+/MlOSdKq+OP6Nv6Y4mJbO+MSJDnCh8STWdp44NzIhwNpOnX24uGDh0XqEWVT/5hgXRsTor7tg9XMp+pH7lW7j+mlzJvUNti/QhBRomwg8VJ6qJrtPqYHr69/r6lcCuaMaAQu910dAAAAALhcr/3wq/7fyn0V2q0eFv3PsK5Kz8rX/7m5s7ysHrX+bWOMBr34gw6nOyazDA/y1XdTBlX6sH/EnqNVtXxoN8bo4Kksx5wP5wKIktVCquJhkWIjgnRthxD1jwnW1e2D1dy3dq/Qv7P+oIZ2b11pEFHWpVyTszFnBAAAAADA7a6MslXaXlRs9Ndv9ur7KYMuKYiQpIU/JZUGEZKUeiZX877dpxm/jS233xF7ju5bsKl036oe3o0xOpyeXTrnw8YDaTqecfHwwWKRuoUHOuZ8iAnR1dHBCvK7vPn7ahouRNr86lUQURcIIwAAAAAAl+3H/aeq3FZUbPTR1mQ9cUvXS/rtod1ba9GG8oHE4g1JGtE7Uj3PhSBlg4i2wf4a2r38axzJF4QPqWdyqz1v19bNz418CNE10cGy+XtfUv2oiDACAAAAAHDZUk5nV7M955J/u2TuhHvf2Kjkc79TbKT/+XSXPvuvATqemVcuiChZHvPjn1NKA4gj9urP36VVc8ecDx1CdE10iFoEED44C2EEAAAAAOCylV1Bo/Ltl7ccZ6TNT0snXKsR//uTTpybzyH+aIZeXb1fn+04qsPp2QoJ8FaPyEDdu2CjktOrDx86tmyma2POjXyICVZoM5/LqhE1xwSWjQATWAIAAABwt4OnsjTkpbUqKq74iGn1sOj7KYMUHRpw2ec5Ys9R3EtrlZVfVOtjY8ICSud8uCYmWC2b+152PU0VE1gCAAAAANwuOjRAfx3ZQ//z6a5ygYTVw6I5I3vUSRAhOUZIfPTHa3Xb/PXV7ts+xL90zof+MSFqFUj4UF8QRgAAAAAA6sTdfdvo6vbB+mhrslJO5yiqhZ/u7tumzoKIEjZ/b1ktFhVdMNC/bbB/6ZwP/WNCFB50ea+GwHkIIwAAAAAAdSY6NOCSV82oiZJVM4qMkdVikZFRsZEibL764JH+irQRQDQEl7bIKwAAAAAALnbh8p0/PnGj1j3xG7UN9tdRe67uW7CpRqtmwP0IIwAAAAAA9d6FQUTJKIiSZT/bBvvrcHo2gUQDQRgBAAAAAKjXqgoiShBINDyEEQAAAACAem3V7mNVBhElLgwkVu0+5oZKUVNMYAkAAAAAqNcevD5akjS0e+uLTlBZEkis2n2s9BjUT4QRAAAAAIB6r6bhQqTNjyCiASCMaKDsdrvsdrskqaCgQFar1b0FAQAAAABQQ8wZ0UC98sorio6OVnR0tPbv36+0tDR3lwQAAAAAQI1YjDHG3UWg9sqOjIiLi5PVatWePXvcWxQAAAAAoEmIjY2VJMXHx1/S8bym0UDZbDbZbDZJkpeXl3uLAQAAAACgFnhNAwAAAAAAuBRhBAAAAAAAcCnCCAAAAAAA4FKEEQAAAAAAwKUIIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFzKYowx7i4Cl6d58+YqKChQhw4d3F0KAAAAAKAJSExMlJeXlzIzMy/peEZGNAIBAQHy8vJydxk1kpiYqMTERHeXgXqC+wFlcT+gLO4HlMX9gLK4H1AW94P7eHl5KSAg4JKPZ2QEXCo2NlaSFB8f7+ZKUB9wP6As7geUxf2AsrgfUBb3A8rifmi4GBkBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAAAAAADgUoQRAAAAAADApVhNAwAAAAAAuBQjIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCPgdLm5uZoxY4Y6d+4sX19fRURE6MEHH1RKSoq7S4MbDB48WBaLpcrPypUr3V0i6tjPP/+sOXPmaOTIkYqMjJTFYpGvr2+1xy1ZskT9+vVTs2bNFBwcrFtvvVUbNmxwQcVwptreDzNnzrxonzFt2jQXVo+6lJ2drRUrVuihhx5Sz549FRgYqICAAPXq1UvPPvuszp49W+Wx9A+Nz6XcD/QPjd9LL72kkSNHqlOnTgoKCpKPj4/atWuncePGKT4+vsrj6CMaBosxxri7CDReubm5uummm7RhwwaFh4dr4MCBSkpK0r///W+FhYVp48aN6tChg7vLhAsNHjxYa9eu1ahRo9SsWbMK26dOnaoePXq4oTI4y5133qnPPvusXJuPj49yc3OrPGbKlCl6+eWX5efnp7i4OOXm5mr16tUyxmjZsmUaMWKEs8uGk9T2fpg5c6ZmzZqlAQMGqGPHjhW233bbbbrrrrucUiuc66233tLDDz8sSYqNjVW3bt2UkZGhDRs2KDMzU127dtXatWvVsmXLcsfRPzROl3I/0D80fqGhocrKylLPnj0VGRkpSYqPj1dCQoK8vb21YsUKDRs2rNwx9BENiAGcaPr06UaSufbaa01mZmZp+7x584wkc8MNN7ixOrjDoEGDjCRz8OBBd5cCF5kzZ4555plnzBdffGGOHTtmJBkfH58q91+9erWRZEJCQkxCQkJp+4YNG4y3t7cJCgoy6enprigdTlDb+2HGjBlGklm4cKHrioRLLF682EycOLHcf+fGGHP06FHTu3dvI8ncd9995bbRPzRel3I/0D80fuvXrzc5OTkV2l977TUjyURERJjCwsLSdvqIhoUwAk6Tn59vbDabkWS2bdtWYXvPnj2NJLN161Y3VAd3IYxAdQ+ft956q5FkXn755Qrb/vSnPxlJZu7cuU6sEK5EGIHKbNiwofTeyMvLK22nf2iaqrof6B+ato4dOxpJJj4+vrSNPqJhYc4IOM369etlt9vVoUMH9e7du8L20aNHS5K++OILV5cGoJ4qGUopne8jyqLfAJqGXr16SZLy8vKUlpYmif6hKavsfgCsVqskydvbWxJ9REPk6e4C0Hj98ssvkqSrrrqq0u0l7SX7oWl5++23lZaWJg8PD3Xu3Fl33nmn2rZt6+6y4GZ79+5VXl6ewsLCFBUVVWF7Sb+xc+dOV5cGN1uzZo127Nih3NxcRUVFadiwYerTp4+7y4KTHDhwQJLk5eWl4OBgSfQPTVll90NZ9A9Nz5IlS7Rv3z517txZMTExkugjGiLCCDjN4cOHJanSzqBse8l+aFpmz55d7vvjjz+u6dOna/r06W6qCPVBdf1GQECAbDabTp8+rczMTDVv3tyV5cGN3n333XLfp0+frlGjRmnRokWVToaLhu3VV1+VJN1yyy3y8fGRRP/QlFV2P5RF/9D4vfjii4qPj1dWVpb27Nmj+Ph4RURE6P3335eHh2OwP31Ew8NrGnCakiWY/P39K90eEBBQbj80DTfccIPeffddJSYmKjs7W/v27dNzzz0nT09PPfPMM6X/w4Gmqbp+Q6LvaGo6duyouXPnKj4+XmfPnlVycrL++c9/KjIyUp988onGjh3r7hJRx77++mu9/fbb8vLy0l/+8pfSdvqHpqmq+0Gif2hKVq1apcWLF+vjjz9WfHy82rRpo/fff7/cCBj6iIaHMAJOY86tGmuxWC66HU3Ls88+qzFjxigmJkZ+fn7q3LmznnzySa1YsUKSNGPGDOXk5Li3SLhNdf1G2X3QNIwZM0ZTp05Vt27dFBAQoKioKP3ud7/Tli1bFBISohUrVrB2fCOyZ88ejRkzRsYYvfjii6VzBUj0D03Rxe4Hif6hKfn+++9ljNHp06f1448/qkuXLho8eLCee+650n3oIxoewgg4TcnQp6ysrEq3Z2dnSxLD5yBJiouLU9++fXXmzBlt2rTJ3eXATarrNyT6DjiEh4dr/Pjxkhx/YoaGLyUlRbfccotOnz6tKVOm6LHHHiu3nf6haanufrgY+ofGy2azaeDAgfr666/Vp08fTZ8+XVu2bJFEH9EQEUbAaUomI0xJSal0e0k7kxaiRKdOnSRJqampbq4E7lJdv5GVlSW73S6bzca7nqDPaEROnTqlm2++WYcPH9b48eM1d+7cCvvQPzQdNbkfqkP/0Lh5eXnpnnvukTGmdHUM+oiGhzACTlMylG7btm2Vbi9p79mzp8tqQv12+vRpSaTVTVmXLl3k4+OjkydPVvo/E/QbKIs+o3HIzMzUsGHDtHfvXo0cOVJvvvlmpcOs6R+ahpreD9Whf2j8QkNDJUknT56URB/REBFGwGkGDBigoKAgJSYmavv27RW2f/zxx5Kk4cOHu7o01EMnT57UunXrJFW9HCwaPz8/P/3mN7+RdL6PKIt+AyWMMVq+fLkksYRfA5aXl6c77rhDW7du1dChQ/XBBx/IarVWui/9Q+NXm/vhYugfmoa1a9dKkjp06CCJPqJBMoATPfXUU0aSue6668zZs2dL2+fNm2ckmeuvv96N1cHVNm7caNasWWOKi4vLtR88eNAMGDDASDK33367m6qDq0gyPj4+VW7/7rvvjCQTEhJiEhISSts3bNhgfHx8TGBgoElLS3NFqXCBi90PJ0+eNIsXLza5ubnl2jMzM82ECROMJNO6dWuTlZXlilJRxwoLC82IESOMJDNw4MAa/Xukf2i8ans/0D80fj/++KNZunSpKSgoKNeen59v5s+fbzw8PIyfn585fPhw6Tb6iIbFYgxTisJ5cnNzNXjwYG3evFnh4eEaOHCgDh06pM2bNyskJESbNm1Sx44d3V0mXGTRokUaP368wsPD1blzZ7Vu3VopKSn6+eeflZubq9jYWK1Zs0YtW7Z0d6moQ1999VW55dg2b94si8Wifv36lbZNnz5dt912W+n3yZMn69VXX5W/v79uvvlm5efn67vvvlNxcbE++ugjjRo1yqXXgLpTm/shKSlJ0dHRCgwM1BVXXKG2bdvKbrdr27ZtSktLk81m05dffqkBAwa441JwmV599VVNnjxZkjRixAgFBgZWut/cuXNLh2NL9A+NVW3vB/qHxq/k/xtDQ0PVp08fhYSE6NSpU9q1a5dSU1Pl6+urxYsX6+677y53HH1EA+LuNASNX3Z2tpk+fbrp0KGD8fb2Nq1atTLjxo0rl2KiafjPf/5jJk6caK666ioTFhZmPD09TVBQkOnfv7+ZN2+eyc7OdneJcIKFCxcaSRf9LFy4sNLj+vTpY/z9/U1QUJAZOnSoWbdunesvAHWqNvdDRkaGeeKJJ8ygQYNMZGSk8fHxMf7+/iY2NtZMnTrVpKSkuPdicFlmzJhR7b0gyRw8eLDCsfQPjU9t7wf6h8bvwIED5sknnzQDBgww4eHhxsvLywQEBJjY2Fjz6KOPmv3791d5LH1Ew8DICAAAAAAA4FJMYAkAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCMAAAAAAIBLEUYAAAAAAACXIowAAAAAAAAuRRgBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAADgNhaLRRaLxenneeCBB2SxWPTDDz84/Vy19c0338hisWjSpEnuLgUAAJchjAAAAHCj7du3S5J69+7t5koAAHAdwggAAAA3IowAADRFhBEAAAButG3bNnl6eqp79+7uLgUAAJchjAAAAPVKUlKSLBaLBg8erJycHE2bNk3t2rWTj4+POnbsqBdeeEHGmEqP/eSTT9SvXz/5+fmpVatWuv/++3X06NFqzzdhwgS1b99ePj4+CgsL0+jRo7Vz584K+95zzz2yWCx64oknKmzbu3ev/P39FRgYqAMHDtToWs+cOaODBw+qW7du8vX1rdExAAA0BoQRAACgXsrPz1dcXJwWLFigK664QjfeeKOOHDmiadOmafr06RX2//vf/67Ro0dr27Ztuu666zR48GB9//336t+/v9LS0io9x/r169WrVy8tWLBAzZo10+23365OnTrp008/Vf/+/fWvf/2r3P6vv/66oqKiNHfu3HKTYRYUFOh3v/udcnJyNH/+fMXExNToGnfs2CFjDK9oAACaHMIIAABQL23cuFEWi0UJCQlauXKlVq5cqXXr1snT01Mvv/yyzp49W7pvUlKSHn/8cfn4+Oj777/X6tWr9eGHH+rXX39V165d9eWXX1b4/YyMDN11113KycnRsmXLtHv3bi1btkwbNmzQt99+q6KiIo0dO1b5+fmlx7Ro0UJLliyRJN1///2y2+2SpKefflrbt2/X6NGj9cADD9T4GpkvAgDQVBFGAACAesnDw0NvvfWWQkNDS9v69u2rYcOGKTs7W1u3bi1tf+edd5SXl6f7779fgwcPLm339/fX3/72t0qXD33nnXd07NgxPf744xo9enS5bUOGDNGkSZN05MiRCkHGjTfeqKlTpyo5OVmTJk3SDz/8oLlz5yoiIkJvvPFGra5x27ZtkggjAABND2EEAACol9q3b6/OnTtXaC9pS01NLW1bv369JOnuu++usH+XLl0qfdj/7rvvJEl33nlnpee//vrrJUlbtmypsG327Nnq3bu3PvjgA91xxx0yxmjx4sUKDg6u5qrK2759uywWi6688spaHQcAQENHGAEAAOqlqKioStubNWsmScrLyyttK5mksm3btpUeU1l7UlKSJOmaa66RxWKp8CkZLXHq1KkKx3p7e2vRokWSHK97/Pd//7eGDBlSsws7Jzc3V3v37lWHDh0UGBhYq2MBAGjoPN1dAAAAQGUqe7WiKiWra9TmmKKiIknSXXfdJX9//yr3u+aaaypt//DDD0v/fvv27SouLpaHR83/nGfXrl0qLCzkFQ0AQJNEGAEAABq8iIgIJSQk6NChQ+rUqVOF7YcPH67QFhUVpX379unpp59Wz549a3W+devWac6cOYqIiFDXrl21Zs0azZkzR08++WSNf4P5IgAATRmvaQAAgAavZH6HZcuWVdiWkJCgHTt2VGgvea1ixYoVtTpXRkaGxo4dK2OMFi5cqPfee08hISGaOXNmuUk1q1OyksZVV11Vq/MDANAYEEYAAIAGb/z48fL29taSJUu0bt260vacnBw99thjKi4urnDMhAkTFBYWpueff14LFy4sfdWjRFZWlpYsWaKUlJRy7ZMmTdKhQ4f06KOPKi4uTuHh4XrzzTdVUFCg3//+98rOzq5RzSzrCQBoyggjAABAgxcTE6MXXnhBubm5uvHGGzVkyBDde++96tixo3bv3q3hw4dXOKZFixZavny5AgIC9OCDDyo6OlrDhw/XqFGjdPXVV6tVq1YaN25cuQksly5dqn/+85+KjY3VCy+8UNo+YsQIjR8/XgkJCZoyZUq19RYVFWnXrl2KiIhQy5Yt6+YfAgAADQhhBAAAaBQmT56sjz76SFdeeaXWr1+v1atXa/Dgwdq0aZNCQkIqPWbAgAHatWuXpk6dKj8/P61Zs0bffvutMjIyNHz4cH344Yfq1q2bJCk5OVkTJ06Ut7e33nvvPfn6+pb7rfnz5ysmJkZvvPGGPv/884vWunfvXuXk5DAqAgDQZFnMhWMSAQAAAAAAnIiREQAAAAAAwKUIIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCMAAAAAAIBLEUYAAAAAAACXIowAAAAAAAAuRRgBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAAAAAADgUoQRAAAAAADApf4/7FJWuqqEdCAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "for i, legendre_coefficients_per_imp in enumerate(legendre_gf):\n", + " if len(legendre_coefficients_per_imp) != 2:\n", + " raise ValueError('Only blocks up_0 and down_0 supported')\n", + "\n", + " data = (legendre_coefficients_per_imp['up_0'].data + legendre_coefficients_per_imp['down_0'].data).T\n", + "\n", + " l_max = data.shape[2]\n", + "\n", + " ax.semilogy(np.arange(0, l_max, 2), np.abs(np.trace(data[:, :, ::2].real, axis1=0, axis2=1)), 'x-',\n", + " c=f'C{i}', label=f'Imp. {i}, even indices')\n", + " ax.semilogy(np.arange(1, l_max, 2), np.abs(np.trace(data[:, :, 1::2].real, axis1=0, axis2=1)), '.:',\n", + " c=f'C{i}', label=f'Imp. {i}, odd indices')\n", + "\n", + "ax.legend()\n", + "\n", + "ax.set_ylabel('Legendre coefficient $G_l$ (eV$^{-1}$)')\n", + "ax.set_xlabel(r'Index $l$')\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "8308345c-3f72-476c-8f58-583f9aeb1ccf", + "metadata": {}, + "source": [ + "The choice of the correct `n_l`, i.e., the Legendre cutoff is important. If it is too small, we are ignoring potential information about the Green's function. If it is too large, the noise filtering is not efficient. This can be seen by first running a few iterations with large `n_l`, e.g., 50. Then, the coefficients will first decay exponentially as in the plot above and then at higher $l$ starting showing noisy behavior. For more information about the Legendre coefficients, take a look [here](https://doi.org/10.1103/PhysRevB.84.075145).\n", + "\n", + "The noise itself should reduce with sqrt(`n_cycles_tot`) for QMC calculations but the prefactor always depends on material and its Hamiltonian, the electron filling, etc. But if you increase `n_cycles_tot`, make sure to test if you can include more Legendre coefficients.\n", + "\n", + "## 5. Next steps to try\n", + "\n", + "Here are some suggestions on how continue on this type of DMFT calculations:\n", + "\n", + "* change U and J and try to see if you can reach a metallic state. What does the occupation look like?\n", + "* try for better convergence: change `n_cycles_tot`, `n_iter_dmft` and `n_l`\n", + "* play around with the other parameters in the dmft_config.toml\n", + "* analyze other quantities or have a look at the spectral functions from analytical continuation\n", + "* try other ways to construct the correlated orbitals in CSC, e.g., with Wannier90\n", + "* apply this to the material of your choice!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "550fa534-c187-49d7-96e4-0848f53dd854", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/SVO_os_qe/tutorial.ipynb.txt b/_sources/tutorials/SVO_os_qe/tutorial.ipynb.txt new file mode 100644 index 00000000..4303d27b --- /dev/null +++ b/_sources/tutorials/SVO_os_qe/tutorial.ipynb.txt @@ -0,0 +1,185 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Disclaimer:*\n", + "\n", + "Heavy calculations (~ 800 core hours): Current tutorial is best performed on an HPC facility.\n", + "\n", + "# 1. OS with QE/W90 and cthyb: SrVO3 MIT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hello and welcome to the first part of the tutorial for solid_dmft. Here we will guide to set up and run your first DMFT calculations. \n", + "\n", + "To begin your DMFT journey we will immediately start a DMFT run on strontium vanadate (SVO). SVO is a member of a family of material known as complex perovskite oxides with 1 electron occupying the t2g manifold. Below, we show the band structure of the frontier (anti-bonding) t2g bands for SVO.\n", + "\n", + "![svobands](./ref/bnd_structure.png \"SVO band structure\")\n", + "\n", + "In these materials, the electrons sitting on the transition metal ions (V in this case) are fairly localized, and the fully delocalized picture of DFT is insufficient to describe their physics. DMFT accounts for the electron-electron interaction by providing a fully interacting many body correction to the DFT non-interacting problem.\n", + "\n", + "If you want to generate the h5 archive `svo.h5` yourself, all the necessary files are in the `./quantum_espresso_files/` folder. We used quantum espresso in this tutorial.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## 1. Starting out with DMFT\n", + "\n", + "\n", + "To start your first calculation run:\n", + "\n", + "```\n", + "mpirun solid_dmft\n", + "\n", + "```\n", + "\n", + "Once the calculation is finished, inspect the `/out/` folder: our file of interest for the moment will be `observables_imp0.dat`, open the file:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```\n", + " it | mu | G(beta/2) per orbital | orbital occs up+down |impurity occ\n", + " 0 | 12.29775 | -0.10489 -0.10489 -0.10489 | 0.33366 0.33366 0.33366 | 1.00097\n", + " 1 | 12.29775 | -0.09467 -0.09488 -0.09529 | 0.36155 0.35073 0.36169 | 1.07397\n", + " 2 | 12.31989 | -0.08451 -0.08363 -0.08463 | 0.33581 0.34048 0.34488 | 1.02117\n", + " 3 | 12.29775 | -0.08282 -0.08296 -0.08254 | 0.32738 0.34572 0.34479 | 1.01789\n", + " 4 | 12.28973 | -0.08617 -0.08595 -0.08620 | 0.33546 0.33757 0.33192 | 1.00494\n", + " 5 | 12.28825 | -0.08410 -0.08458 -0.08510 | 0.33582 0.33402 0.33759 | 1.00743\n", + " 6 | 12.28486 | -0.08474 -0.08549 -0.08618 | 0.32276 0.33028 0.32760 | 0.98063\n", + " 7 | 12.29097 | -0.08172 -0.08220 -0.08118 | 0.32072 0.33046 0.33529 | 0.98647\n", + " 8 | 12.29497 | -0.08318 -0.08254 -0.08332 | 0.34075 0.32957 0.33089 | 1.00120\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The meaning of the column names is the following:\n", + "\n", + "* **it**: number of the DMFT iteration\n", + "* **mu**: value of the chemical potential\n", + "* **G(beta/2) per orbital**: Green's function evaluated at $\\tau=\\beta/2$, this value is proportional to the projected density of states at the fermi level, the first objective of this tutorial would be to try and drive this value to 0\n", + "* **orbital occs up+down:** occupations of the various states in the manifold\n", + "* **impurity occ**: number of electrons in each site\n", + "---\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Looking at the Metal-Insulator Transition\n", + "\n", + "In the following steps we will try to drive the system towards a Mott-insulating state. \n", + "\n", + "Inspect the script `run_MIT_coarse.sh`, we iterate the same type of calculation that was performed in the last step for a series of value of U {2-10} and J {0.0-1.0}. \n", + "\n", + "Run the script, sit back and have a long coffee break, this is going to take a while (about 6 hours on 30 cores).\n", + "\n", + "Once the run is finished run \n", + "\n", + "`python3 ./collect_results_coarse.py`\n", + "\n", + "The script will produce a heatmap image of the value of G(beta/2) for each pair of U and J. The darker area corresponds to an insulating state.\n", + "\n", + "![coarsegrid](./ref/MIT_coarse.jpg \"Coarser grid\")\n", + "\n", + "Do you notice anything strange? (hint: look at the bottom right corner and check the output file `observables_imp0.dat` for U = 2 J=1.0. )\n", + "\n", + "We have seen that for 1 electron per system U and J are competing against each other: larger J favor the metallic state. The coulomb integral U wants to repel neighbouring electrons while J would like to bring electrons together on one site,. When the latter component dominates the resulting phase is known as a charge disproportionated state which is also insulating. What is happening in the bottom right corner is that the J favors here charge disproportionation but the unit cell has a single site, therefore the system has trouble converging and oscillates between a high occupation and a low occupation state." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Refining the diagram\n", + "\n", + "In order to get better resolution in terms of the diagram you can run the script `run_MIT_fine.sh` and plot the result with \n", + "\n", + "`python3 ./collect_results_fine.py`\n", + "\n", + "The result is also visible here:\n", + "\n", + "![finegrid](./ref/MIT_fine.jpg \"Finer grid\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Plotting the spectral function\n", + "\n", + "The spectral function in DMFT represents the local density of states of the impurity site.\n", + "In order to plot it we need to use one of the scripts that implements the maximum entropy method ( [Maxent](https://triqs.github.io/maxent/latest/) ), while in the folder run (be aware that you need to substitute `/path_to_solid_dmft/` with the path where you have installed solid_dmft) :\n", + "\n", + "`mpirun -n 30 python3 /path_to_solid_dmft/python/solid_dmft/postprocessing/maxent_gf_imp.py ./J0.0/U4/out/svo.h5`\n", + "\n", + "and plot the result by running in the docker container:\n", + "\n", + "`python3 read_spectral_function.py`\n", + "\n", + "\n", + "![Afunc](./ref/A_func_J=0.0_U=4.jpg \"Afunc\")\n", + "\n", + "\n", + "Take care to edit the values of J and U in the python file. What is happing to the spectral function (density of states) as one cranks U up?\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5 Visualizing the MIT\n", + "\n", + "We will now plot the spectral function at different U values for J = 0.0 eV:\n", + "\n", + "Run the script `run_maxent_scan.sh`.\n", + "\n", + "Then collect the data:\n", + "\n", + "`python3 read_spectral_function_transition.py`\n", + "\n", + "![MIT](./ref/A_func_transition.jpg \"MIT\")\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb.txt b/_sources/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb.txt new file mode 100644 index 00000000..691622bc --- /dev/null +++ b/_sources/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb.txt @@ -0,0 +1,480 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "50bbc308", + "metadata": {}, + "source": [ + "# 5. Plotting the spectral function" + ] + }, + { + "cell_type": "markdown", + "id": "e8d5feac", + "metadata": {}, + "source": [ + "In this tutorial we go through the steps to plot tight-binding bands from a Wannier90 Hamiltonian and spectralfunctions with analytically continued (real-frequency) self-energies obtained from DMFT." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0d69c4d5", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "from IPython.display import display\n", + "from IPython.display import Image\n", + "import numpy as np\n", + "import importlib, sys\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import cm\n", + "from timeit import default_timer as timer\n", + "\n", + "from ase.io.espresso import read_espresso_in\n", + "\n", + "from h5 import HDFArchive\n", + "from solid_dmft.postprocessing import plot_correlated_bands as pcb" + ] + }, + { + "cell_type": "markdown", + "id": "c3ce4f44", + "metadata": {}, + "source": [ + "## 1. Configuration" + ] + }, + { + "cell_type": "markdown", + "id": "42a860c4", + "metadata": {}, + "source": [ + "The script makes use of the `triqs.lattice.utils` class, which allows to set up a tight-binding model based on a Wannier90 Hamiltonian. Additionally, you may upload a self-energy in the usual `solid_dmft` format to compute correlated spectral properties.\n", + "Currently, the following options are implemented:\n", + "
    \n", + "
  1. bandstructure
  2. \n", + "
  3. Fermi slice
  4. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "b8d962f9", + "metadata": {}, + "source": [ + "### Basic options" + ] + }, + { + "cell_type": "markdown", + "id": "b652e03a", + "metadata": {}, + "source": [ + "We start with configuring these options. For this example we try a tight-binding bandstructure including the correlated bands (`kslice = False`, `'tb': True`, `'alatt': True`), but feel free to come back here to explore. Alternatively to an intensity plot of the correlated bands (`qp_bands`), you can compute the correlated quasiparticle bands assuming a Fermi liquid regime.\\\n", + "The options for $\\Sigma(\\omega)$ are `calc` or `model`, which performs a Fermi liquid linearization in the low-frequency regime. The latter will be reworked, so better stick with `calc` for now." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b8f73a48", + "metadata": {}, + "outputs": [], + "source": [ + "kslice = False\n", + "\n", + "bands_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}\n", + "kslice_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}\n", + "config = kslice_config if kslice else bands_config" + ] + }, + { + "cell_type": "markdown", + "id": "3c6ece97", + "metadata": {}, + "source": [ + "### Wannier90" + ] + }, + { + "cell_type": "markdown", + "id": "6d0ce79b", + "metadata": {}, + "source": [ + "Next we will set up the Wannier90 Input. Provide the path, seedname, chemical potential and orbital order used in Wannier90. You may add a spin-component, and any other local Hamiltonian. For `t2g` models the orbital order can be changed (to `orbital_order_to`) and a local spin-orbit coupling term can be added (`add_lambda`). The spectral properties can be viewed projected on a specific orbital." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "27a94d47", + "metadata": {}, + "outputs": [], + "source": [ + "w90_path = './'\n", + "w90_dict = {'w90_seed': 'svo', 'w90_path': w90_path, 'mu_tb': 12.3958, 'n_orb': 3,\n", + " 'orbital_order_w90': ['dxz', 'dyz', 'dxy'], 'add_spin': False}\n", + "\n", + "orbital_order_to = ['dxy', 'dxz', 'dyz']\n", + "proj_on_orb = None # or 'dxy' etc" + ] + }, + { + "cell_type": "markdown", + "id": "57f41c87", + "metadata": {}, + "source": [ + "### BZ configuration" + ] + }, + { + "cell_type": "markdown", + "id": "f23d7e3a", + "metadata": {}, + "source": [ + "#### Optional: ASE Brillouin Zone" + ] + }, + { + "cell_type": "markdown", + "id": "fc7b2fac", + "metadata": {}, + "source": [ + "It might be helpful to have a brief look at the Brillouin Zone by loading an input file of your favorite DFT code (Quantum Espresso in this case). ASE will write out the special $k$-points, which we can use to configure the BZ path. Alternatively, you can of course define the dictionary `kpts_dict` yourself. Careful, it might not define $Z$, which is needed and added below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c6e46f88", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G [0. 0. 0.]\n", + "M [0.5 0.5 0. ]\n", + "R [0.5 0.5 0.5]\n", + "X [0. 0.5 0. ]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dZ1hUV9eGnxl6RxBB6SAoHRQw2IXYDfYu9p7ymcSoURLR2KJRo76aqAliD8FGjEkU1KAgioIIioKINBUEpddhzvp+TOSNr6CUmTkzw7mvyx9hztnrOWEWa6+z116bR0Tg4OCQPfhsC+Dg4GgYzjk5OGQUzjk5OGQUzjk5OGQUzjk5OGQU5Xd8zr3K5eCQPLyGfshFTgWjtrYWxsbGuHPnDttSOFoJ55wKxoEDB/D8+XN8/fXXbEvhaCW8dxQhcNNaOaK2thampqYoLCyEmpoa7t27B1tbW7Zlcbwbblqr6Bw4cABVVVUAgLq6OgQGBrKsiKM1cJFTQfh31HyFuro67t69y0VP2YeLnIrMv6PmKwQCARc95RgucioADUXNV3DRUy7gIqc8ERsbC0dHR4wbNw4pKSlvvbahqPkKLnrKL1zklDGICJs3b8aKFSsAADweD0QEJycn2NnZYfPmzbCzs3vtHg8PD9y7dw8qKioAgKqqKqirq4PH40EoFIJhGJSVlUFNTU3qz8PRJBqMnJxzyhB5eXlYuHAhwsPDYWFhgR9++AHOzs44deoUtm7ditzcXCgpKWHQoEEYMWIEJkyYgPbt26O0tBRlZWX143h6euK3335Dp06dAABqampo3749W4/F8W4adE4Q0dv+cUiJNWvWkJKSEqmoqNB3331HtbW1BIDWrl1bf01ERAStWLGCzM3NCQDxeDyaOXMmXbx4kYRCYf11pqamlJOTw8ZjcLSMBv2Pc06WKS4uphkzZhAA0tTUpHPnzhERkUAgoG7dutHGjRvfuEcoFNL3339P/fr1Ix0dHQJAGhoaNGjQILp79y7nnPIH55yyxrZt20hfX5/4fD4FBgZSdXV1/Wd1dXVkY2NDu3bteusYFRUVdPDgQTIyMiI+n08ASEVFhYYMGULJycmSfgQO8cA5p6xQWVlJS5YsqXeky5cvv3ENwzBUUFBAFRUVTR43Ly+Pvv/+e1JWViYAxOfzaciQIRQcHEwFBQVifAIOMcM5pyxw8OBBsrGxIQA0f/58ys/Pb/C6urq6N3LOpmJqakoHDhygZcuW1eenAGjChAkUGRlJdXV1rX0MDvHCOSeb1NbW0qpVqwgAqaur0/nz5996vUAgIA8PjwZzznfx75xTKBTSjz/+SO7u7qSrq0sASFdXl3x8fLhpr+zQoP9xRQhSICoqCr169cL69esxcOBApKSkYNCgQW+9h8fjobq6Gnp6eq2yzefzsWDBAty+fRt5eXn45ZdfoKenh+vXr8PFxQUeHh6YNWsWkpKSWmWHQwI05rXERc5WIxQK6bPPPiMApKWlRb/++muT72UYhp48eUKlpaXNttuUt7XPnj2jHTt2kIeHR/2yzODBg+nw4cP0/PnzZtvkaBXctFaaZGZmkq+vLwEgGxsbun37drPub23O2ZyllN9//50++ugjsrCwqM9PBw4cSBEREVx+Kh0455QGDMPQxx9/THw+nzQ1NWnfvn3EMEyzx6mtrSU3N7dW55zNQSgU0uHDh8ne3r5+/bR9+/bk5eVFsbGxzR6Po8lwOaekKSgowLhx47Br1y5oa2sjMjIS8+bNA4/XcHXW2+DzRb8aAwMDcct8q81p06YhNTUV+fn5CA0NhaGhIW7evAkfHx+4u7tjyZIlSExMlJqmNk1jXktc5GwWq1atIh0dHVJVVaXNmzeTQCBo1XgMw1BGRga9fPmy2feKu0IoJyeHdu7cSV5eXvXT3kGDBtHhw4eppKREbHbaMNy0VhKUlJTQrFmz6svvEhMTxTKuNHPO5nDu3DmaOXMmWVpa1r9I6tGjB124cIHLT1sO55ziZseOHWRubk58Pp+WLFnSojerjVFbW0suLi60YcOGZt8rjdpaoVBI4eHh1KVLF9LS0iIAZGxsTJ6ennThwgWJ2lZAOOcUF1VVVbRo0aL6Bf2YmBix26irqyNvb2/66aefmn2vtAvfq6qq6NdffyVPT8/6aa+rqyutWrWK4uPjpaZDjuGcUxycP3+eHB0dCQCNGDGCnj17JhE7DMPQgwcPWlQTy+aulIcPH9KuXbvI29u73lH9/Pzo0KFDYp1ZKBicc7YGgUBAAQEBBIAMDQ3pzz//lKg9Wc05m8Nff/1FY8aMISsrKwJASkpK5OTkROfPn+fy09fhnLOlPHjwgHr06EEAyN7entLT0yVus7a2lhwdHWU252wOQqGQoqKiyMHBgdTV1QkAdezYkXr16kVnzpxhW54swK1zNheGYTBt2jQ4OjoiNTUVx48fR2pqqlQ62fH5fBgYGKBjx44StyVp+Hw++vbti5SUFBQVFSEsLAwODg6IiYnBqFGj4Orqig0bNiA+Pp5tqbJFY15LbTxy5uTk0MCBA+urZFJSUqRqn2EYSkpKanRL2duQtcjZGA8ePKBt27bVz0oAUI8ePejgwYNUVlbGtjxpwk1rm4JQKKRFixaRpqYmaWpq0p49e17rzyMtFCHnbA4XL14kX19fsra2rt+Ebm1tTefOnWt1QYccwDnnuygoKKCxY8cSAGrXrh09fPiQNS0CgYC6du1K69evb/a98uicr2AYhq5evUpeXl6koqJCAMjExISGDx9OoaGhLapTlgO4nPNtrFu3Ds7Ozvjtt9+watUq5OXloXPnzqzp4fF46NSpE8zNzVnTwAY8Hg+9e/dGXFwcysrKcOLECXh5eeHcuXOYOHEiXF1dsXnzZiQnJ7MtVfI05rXURiJnaWkpjR8/vr7CRVzld62FYRi6efMmPXnypNn3ynPkbIy0tDRat24dvffee/X5qZOTE4WEhCjC+ik3rf1fwsPDydramng8Ho0ePVqmirjbWs7ZHK5du0Z9+/at33+qpqZGlpaWdPToUXnNT7lp7StqamowfPhwjBw5ErW1tbhy5QpOnToFXV1dtqXVQ0Sws7Or3zrG8V98fHwQFRWFzMxMREdHo2fPnsjJycHUqVNhZmaGyZMn4/jx42AYhm2praMxryUFjZwJCQnk7OxMAMjZ2blF00ZpUFdXR0OHDqVjx441+15Fj5wNUVlZSSdPnqRRo0YRj8ern/Zu2rSJ0tLS2Jb3Ltr2tFYgENDQoUOJx+ORsbFxfWd1WYVhGIqJiaHs7Oxm39sWnfPfpKWl0YoVK8jHx6c+P7W0tKQDBw7Ian7adp3z4cOH9b8oMzMzys3NZVvSO+FyTvFw9+5d6t+/P3Xs2LH+2AorKyvas2ePLOWnbS/nZBgGU6ZMgbOzM+7fv48jR44gKysLpqambEt7J0QEGxsbLudsJU5OTrh8+TKePHmCa9euYfDgwcjKysLixYthZmaGefPm4ejRo7KZnzbmtSTnkTM3N5f8/PwIgFxGkrq6Oho5ciSFhoY2+155fF5pUlJSQidPnqTRo0fXny9jb29PGzdupMePH7Mhqe1Ma5cvX076+vqkoaFB69evZ6X8rrUwDEOXLl1q0ZeFc86mk56eTosXL6ZevXrV56dGRkYUHBwszaU1xXfOFy9e0IABA+p7xaamprItqcVwOaf0SU9Pp/fff58MDAzqj81wdHSkb7/9VtL5qWLnnKGhoXB2dsaVK1cwadIk3Lt3D/b29mzLajFEBAsLixa11eRoGba2toiIiEBhYSGuXbuGyZMn4/79+1i+fDlMTU3xySef4OjRo8jPz5eOoMa8luQkcpaVldW/ibW3t6eEhAS2JYkFoVBIEyZMoBMnTjT7Xi5yio+ysjL65Zdf6jdEvPon5vY0ihc5Y2Ji4O7ujtjYWHh5eeHGjRvw8PBgW5ZY4PF4mD17Ntzd3dmW0qbR1tbGxIkTMXDgwNfenKurq0vctlw6Z3V1NXr27InevXtDKBQiKioKcXFx0NfXZ1ua2GAYBkOGDMGxY8fYltKmKS8vR8+ePbFw4ULweDx07twZenp6UvmuyZ1zJiUloUePHoiNjYW9vT1u376Nvn37si1L7BAROnXqxLaMNs3JkydhZGRU/13LzMxE+/btUVZWJhX7cuOctbW1GD58ODw9PZGXl4czZ84gNTVVoaLlv+Hz+fD19YWLiwvbUtoctbW1GDZsGMaNG4eamhqsXLkSqampMDMzg76+PpSVlaWiQzpWWklGRgYmT56MuLg4dOnSBVevXoWRkRHbsiQKj8fDhAkT0KVLF7altCn+/vtvjBw5EqWlpejYsSMuXrwIBweH+s+7dOmC2NhYqWiR6cjJMAyWLFkCFxcXpKamYvv27UhJSVF4xwREz+7v74/Q0FC2pbQJGIbB9OnTMWDAAJSWlmLBggXIzc19zTGljcxGzmfPnmHYsGFITEyEu7s7fvvttzbVsoOI0KFDB1GlCIdEuXPnDgYOHIiCggK0a9cO586dg4+PT4PXxsbGtu2c88CBA/XF6jNmzMDNmzfblGMCopxzxIgRCrM0JKt8/vnn8PDwQEFBAcaMGYPnz5836pgAYGho2DZzzqKiIvTu3RspKSno1q0bjh49iq5du7ItixV4PB6GDh0qlQbWbZHHjx/D19cXmZmZ0NTURFhYGIYNG/bO++zt7XHt2jUpKJShyBkREVGfW/bv3x/R0dFt1jEBUQ40fvx4nDx5km0pCsemTZvQuXNnZGZmYsCAASgoKGiSY0ob1iNncXEx+vbti+TkZDg4OODMmTPw9PRkWxbrEBHatWsHoVDIthSFoaCgAH5+fkhOToaqqir279+P6dOnN2uMmJgYlJaWSkjh67AaOa9fvw4vLy8kJyfD09MT8fHxnGP+A5/Px6RJk+Dt7c22FIXg559/hqmpKZKTk+Hh4YFnz5412zEBwNjYGKqqqhJQ+CasOGd5eTn69++Pnj17ora2FhEREbh58yY0NDTYkCOz9O7dGxYWFmzLkGvKy8vRp08fzJ07FwzDYOvWrUhISICBgUGLxuvcubNU6moBlpzTy8sLUVFR4PP5WLNmDd5//302ZMg0RISpU6fi9OnTbEuRW8LDw9GhQwdER0ejc+fOyMjIwGeffca2rCbDinOqq6uDx+NBKBRi1qxZ0NDQwIgRI5CQkMCGHJmEiKCtrY26ujq2pcgddXV18Pf3x6hRo1BdXY0VK1bg4cOHYpmFREdHK3bOmZOTA01NTdy/fx/jx4+HkpISzp07h+7du8PQ0BALFy5EXl4eG9JkBj6fjzlz5qBnz55sS5EroqOj0b59e5w9exYmJiZITk7Gxo0bxTZ+x44dFTvntLGxgZmZGbp27Ypff/0V5eXl+PPPP9G7d2+UlpZi79696NixI2xsbLBx40bU1tayIZN13NzcYGxszLYMuYBhGMyaNQt9+vRBSUkJ5syZgydPnsDJyUmsdmxtbRU75zQwMHhjN8mQIUNw9epVVFdX4z//+Q+6du2Kx48fY+XKldDQ0ICnpyd+/fVXNuSyAhFh9uzZOHv2LNtSZJ67d+/C1NQUISEh0NfXR3R0NH766Se5byvKivrKykpUV1c3+JmSkhI+/PBD3L9/H0VFRVi6dCk6dOiA+Ph4TJw4ERoaGhg+fDhu3bolZdXShYigpqYGgUDAthSZZvny5XB1dUVeXh5GjRqFgoIC9OrVS2L2rly5IrWck5UeQoaGhqSlpdWse1JTU2nChAmkra1d38fFwMCA5s2bJ+5+LjKBUCikZcuWUWRkZLPvbQs9hLKyssjGxqa+i3t4eLhU7Pr7+5O6urq4h5WdHkK2trbNLmS3t7dHaGgoysrKcP78efTp0welpaXYv38/OnbsCGtra6xfv77RiCyP2NjYKOxm8tawZcsW2NjYICMjA3379kVhYSH8/f2lYtva2hpqampSscWKc7Zr1w56enotvn/QoEG4cuUKampqsHv3bjg4OCArKwuBgYHQ0tKCp6cnQkNDZbPFfhMhIixcuBB//PEH21JkhpcvX8LDwwPLli0Dn89HcHAwoqKioKmpybY0icCKc1ZUVKCqqqrV4/D5fCxevBgpKSkoLi7GF198AWNjY8THx2PSpEnQ1NTEsGHDcPPmTTGoli5EBB6P12bfVP8vBw8eRMeOHZGYmAg3Nzc8ffoUs2bNkrqOqKgolJSUSMdYY/NdkrGcszmkpaXRpEmTXstP27VrR3PnzpXZ8zj/F6FQSIGBgXT58uVm36tIOWdFRQX169ePAJCSkhJ9++23rOoZOXKkYuecnTt3hqWlpcTGt7Ozw/Hjx1FWVoaIiAj07dsXZWVl+Omnn2BqagorKyusW7dO5vPTDh06KOyUrSn8/vvvMDIyQlRUFGxsbPDo0SMsW7aMVU1WVlaKnXPq6+tDR0dHKrbef/99REVFoaamBj/++CMcHR2RnZ2Nr776ClpaWujevbtMHlHOMAw++eQT/PXXX2xLkTp1dXUYM2YMPvjgA1RVVWHp0qV49OiRRP+gNxVpfk9Y25VSWVkpVZt8Ph8LFizAvXv3UFxcjGXLlsHY2BgJCQmYMmUKNDU1MXToUJnLT9vaOmdsbCyMjIxw+vRpdOjQAYmJidiyZQvbsuq5evUql3NKi/T0dJo8eTLp6Oi8lp/OmTOH1fxUKBTS2rVrKSoqqtn3ymPOKRQKae7cufW/gxkzZsjk0Y2jR49W7JzTzs4OVlZWbJh+A1tbWxw7dgylpaW4ePEi+vfvj7KysvrNuVZWVli7di0r+amGhgZUVFSkblfa3Lt3D2ZmZvjpp5+gq6uLqKgohISEyGT5nYWFhWLnnHp6etDW1mbD9Fvx9fXF5cuXUVNTg71798LJyQnZ2dlYvXo1tLS06puOSSPvYBgGX3zxBc6fPy9xW2yycuVKuLi44NmzZxgxYgQKCgpk+ngNaW7hY8U5y8rKUFFRwYbpJsHn8zF//nzcvXsXpaWlWLFiBUxMTHD79m1MmzYNmpqaGDJkCG7cuCFxLaSgfWtzc3Nhb2+PjRs3Ql1dHadOncLZs2elth2rpcTExHA5pyzy6NEjmjJlymv5qb6+Ps2aNUvsOZ5QKKRvv/2WYmJimn2vrOec27dvJyUlJQJAvXr1orKyMrYlNZkxY8aQhoaGuIeVnZyzS5cusLa2ZsN0q7CxscHRo0dRWlqKy5cvY8CAAaioqMCBAwdgbm4OS0tLrFmzRmz5aV1dncwt8bSG4uJidO/eHZ9++in4fD7279+P6OhomUxxGsPc3FyxN1vr6OhAS0uLDdNio3///rh06RKqq6uxf/9+ODs7IycnB0FBQdDU1ISHhweOHDnSYudiGAarVq1CRESEmJWzw5EjR2BiYoKEhAS4uLggNzcXc+fOZVtWsxEIBFJLNVhxzpKSEqmdNyFp+Hw+5s6di+TkZJSWluLLL79Ep06dkJiYiICAAGhoaGDw4MEtPplKFt9YNofq6mr4+fkhICAAAoEAGzZsQFJSEjp06MC2tBZx7do1bj+nvJORkUFTp04lXV3d+vxUT0+PZs6cSdnZ2e+8XygU0vbt2+n69evNti0rOecff/xBWlpaBIAsLS0pIyODbUmtZty4cYqdc3bt2hU2NjZsmJYa1tbWOHLkCEpKShAVFQVfX19UVlYiJCQEFhYWsLCwQFBQ0FsrpYqKimS+/rch6urqMG7cOAwbNgyVlZVYsmQJMjMz5fI9w/9iamoqvTfKjXktSTByDh48mHr06CGp4WUWoVBIP/30E7m4uBCPxyMAxOPxyM3NjUJCQl6riBEIBASAAgMDm22Hzch5/fp1MjAwIABkZGREt2/fZkWHpFi4cCHp6uqKe1jZiZzFxcXSm7fLEK/aXSYlJaG0tBQrV65Ep06dcOfOHcycORMaGhoYOHAgYmJiwOPxAEDm1/1ewTAMFi1ahPfeew8vX75EQEAA8vLy4O7uzrY0sXL9+nUu52xLZGZmUkBAwBv5aY8ePejs2bPNHk/akfPBgwdkampKAEhHR4cuXrwoNdvSZvz48Yqdczo4OHDnTv4LS0tLHDp0qD4/9fPzQ0VFBW7cuIEPPvgA5ubm+Prrr6W+k6cpfP3113B0dMSTJ08wdOhQFBYWwtfXl21ZEqNTp06Kvc6ppaXFHVrUCH379kVkZCQqKiqgpKQEIyMjPHnyBN988w20tbXh5uaGkJAQsRYn8NbwoLFeA+rr1GH8nTGyirPeec/Tp0/RtWtXfPPNN1BVVUVYWBj++OMPuZmGt5Tq6mrFXucsKiqSXn2inKKkpAShUIiPP/4Y5eXlCAwMhKmpKZKSkurPl3n//fcRHR0tFntVq6pQHVgNbVVtzP3t7cUBu3btgqWlJVJTU+Hj44P8/HyMGzdOLDpknRs3bnA5Z1vn1ZvdhISE136emZlJ06dPJz09vfr8VFdXlwICAigzM5OImp9zIui/v+rJJyaT026nBq8rKioiT09PAkDKysq0Z8+eFjyZfDNx4kTS1NQU97Cyk3M6OTmhc+fObJiWK1JSUlBYWPjazywtLXHw4EEUFxfj6tWreP/991FdXY3Dhw/DysoK5ubmKCkpadGun9q6WlzJuoJJzpPe+Oz48eMwMTHBrVu34OjoiJycHCxatKjFzyavmJiYSG2PLSvOqaGhIbXDYOQVhmGwd+/et05be/fujYiICFRVVSEkJASurq548uQJysvL4eDgAFdXVwQHBzcpP9VYrwG19WqoFFRiWc//NtGqrq7GoEGDMGXKFAgEAqxZswb37t2DiYmJWJ5T3qisrJTeZoTGQipJcFrr6elJXbp0kdTwCkFdXR0BoLVr1zbrvoqKCtLW1qaOHTvWT3tVVFTI19eXrly50uA9r6a1WcVZpLtRl8b8MoaIiC5cuFDfXtTc3JzS09Nb91AKgLu7O4ncRqw06H9czimjCIVCOnToEN25c6fZ977KObOysmjGjBlv5KfTpk2jx48f11//75zzWNIxUlqjRGMnjq2vYPr444/F8UgKweTJkxU753R2doadnR0bpuWKGzdu4MmTJy2+38LCAiEhISguLkZ0dDQGDhyI6upqHDlyBNbW1jAzM8OqVateu8euxg5MBYOT5SdhaGiIuLg47Ny5s7WPojB06NBBsXNOdXV1qTVJklcYhsHRo0fF1gqlV69euHDhAqqqqnDw4MH6Iw02bNgA3hoevu5ojpN6vfCjlxdoM2Gy7mQ8f/4cnp6eYrGvKJSXl0st51SWipX/obCwUGH2c0oKHo+H4uJiKCkpiXVcPp+P6dOnY/r06aisrMTmzZtRu20nduYlowR60EMJ7nwYBNf/fC9Wu4pCfHy81L67rETOzMzMVk3X2gI8Hg+hoaEYO3asxGxoamoiaOJETKnrjBLoAeChBHrgh1wHnj6VmF15xtHRUWpdPFhxThcXF9jb27NhWq6IjIxERkZGs+7hreHhyawn6BzSGRrrNTDl5JTGLz52DPDygiPvPvRQAoCghxI41twGunUDrlxp3QMoIEZGRlBWls6EkxXnVFNTU/gazNbCMAxOnz6N+Pj4Zt9resAU6TPTUbWqCsfGHnvzgupqYOFCYOpUwMMD/LQHSG1nj6twwalJH4KfmADo6QG+vsD33wMK2p6zJZSVlUEoFErFFivOWVBQgJcvX7JhWm7g8XgoLCwUfw+h9HTAxwfYuxdYvhy4fBkwNUWNvjbqcA+pfXsDTk5AXBzwwQfAp5+KnFiG+wxLk4SEBJSXl0vFFivOmZWVhadcTvNW+Hw+Tp8+jfHjx4tv0JMnge7dgaws4OxZYNMmoLEpmp6e6PoNG4DQUOC994CHD8WnRU5xdnZW7JzT1dUVXbp0YcO03EBEOH36NFJTU1s/WG0tsGQJMG4c0LUrcPs2MGLEu+/j84EvvwT++gt49gzw9BQ5dRvG0NBQsXNOVVXVNnFAT2tgGAYRERFISkpq3UBZWUCfPsCOHcD//R9w9SrQ3HMuBw4E4uMBOzvA3x/46itASnmXrFFSUqLYOefz58/x4sULNkzLDTweD8+ePWvdIL//Dnh4AA8eACdOiF7utPRFnKUlEB0NzJ4NrFsHDB8OtMH3BomJiYqdc2ZnZ7f+i6fg8Pl8/PHHH5g8eXKz7z3UZwBees8G88EHIqeKjwfEsV6qrg789JPoZdLly6L89fbt1o8rR7i4uCh2zunu7o6uXbuyYVpuICIcOnSo2dNagfb3GPPLLrg9Ow8DFKFu5lxAnHtneTxg/nzR9LiuDujZEzh4UHzjyzgGBgaKnXMqKytL7QHlFYZhEBMTg5SUlCbfk5eXh7vB116r9klYeRDlx48D4j6+3ttbFJF9fICZM4HFi0UvnhSc4uJixc458/Ly3tjhz/E6PB4POTk5TWomRUT4+eef4ezsDNVBZq9V+zhVJUB7yhSUaGsjY/hwCGJixFdU0KEDcOEC8MUXwA8/AP36AQpelnnnzh3Fzjlzc3ORl5fHhmm5gc/nIzIyEtOmTXvrdXl5efD398euXbtw+fJlOG7fisIJHyIZLnj59Q5o1VSh/PhxFLq6wvTPP6HSuzfyDQyQs2AB6PHj1gtVVgY2bwbCwoC7d0Vlf1FRrR9XRnFzc5PakYWsOKeHhwccHBzYMC03MAyDPXv24NatW41ec/LkSbi7u8PV1RVxcXFwcXEBAChv2wxn3ANfTQVQUYH2pEmwvXkTai9fomDjRlTr68N83z7wbGyQZWWFgg0bwGvtNqhx40RVRe3aAX5+wLZtCln2p6+vL/adQo3S2C5s4s5KYRWBQEBWVlb0zTffvPFZUVERBQQEUOfOnenatWsND9CjB5GnZ6PjM48fU/aiRfSsXTsigIQA5QN0auZMopqalgsvKSEaPVrUZGPiRCI5OrW6KQQEBEiii4fsdEJ49uwZCgoK2DAtN/B4PGRmZr6Rc168eBGurq7Q1tZGYmIifHx8Gh5g9Gjg1i0gJ6fh8a2sYL5nD0xevEBdbCyKNTSgD2B0SAhKdXSQMWwYBNHRzY9+urqisr9Nm0RT3ffeA9LSmjeGDJOcnNyizoYtojGvJa6HEKswDENXrlyhrKwsIhI17vrkk0/I1NSU/vrrr3cPkJoqil47dzbJXpa1Nf0N0KnZsyndy4uq+XwigPL09Chr3jxiHj1q/kNERBAZGhLp6hKdOdP8+2WQmTNnkra2triHlZ3I2a1bNzg6OrJhWm5gGAbffvstrl27hps3b6Jbt24oKChAUlISBg8e/O4B7O0BR0fg9Okm2yQAeZ6esI2Lg9rLlyj89ltUGRjAYv9+8GxtkWVpiefr1wNFRU0b8P33gYQEkZZRo4BVq+S+7E9PT09qOScrzsnn8+X+OHVJQ0R48OAB9u3bhxEjRmDNmjU4duwYDAwMmj7I6NGiN6ctWbbS00P7ZctglZEBysxE7uLFUCsrQ4fAQNQaGuJRt24oO3Lk3WubFhaigoW5c0U7XIYNA+S4dPPFixeoq6uTjrHGQipJcFrr4uJC1tbWkhpeIUhOTiYAZGdnR0+ePGnZILduiaa2wcHvvDTL2pouA28/YoFhSBAbSxkffEDFampEAJWoqtKjIUOoJiqKiGHebmT/fiJVVSJLS6L4+EYvu55znZTXKlP6C1Gf3IyXGaS8Vpmis6Lf+RyShutb24YRCoW0ZcsW0tDQoM8//5zu3btHH374IZ05c4aYd335/xeGIbKwIPrgg3de2iTn/De1tVT+66+U7u39en46Zw4xb2s+HRdHZG5OpKb21j8aQ48Mpa67uhIRUdf/dKVBhwY1TZeEmT17ttRyTm4pRYbIzMykfv361XdZDw4OpsjISFJSUiIAFBcXR3l5efUHFjWJTz4ROcI7ljSa7Zz/pqSECjZvpkxra9FXCqAsc3N6/s03RC9fvnn98+dEfn6iaxcsIKqufuOSipoKUv9GnUYdH0Vq36hRWY1sLMn83//9H+np6Yl7WNl5IcTxOkSE4OBguLu7Y+jQodi1axdWr16NGTNmwM/PDw8fPkRISAg8PT2xa9cu2NjYoF+/fhAIBO8u7xs9GqipEW2YlhS6umj/xRew/Fd+qlpeDqOvvkKtoSEyPDxQdvjwf/NTIyORnuXLRTtc+vUDcnNfG1JTVROBfQNxJvUMgvoHQVtVOlU576KgoECxc04nJyeysrKS1PByRX5+Pg0bNoxUVVVJVVW1fumkMR4/fkyzZs2iuXPnEpFomtWnTx+KiIho+AaBQLScMWXKW8dtVeRsCIah2hs36JG/PxX9k5+WqqjQo8GDqebvv/+bn548SaStTWRkRHTp0mtDuP/oTvw1fBp5fKR4NIkBaeac3GZrFgkPD4erqyscHBzg6OiICRMmwMzM7K33WFlZITg4GPv37wcAtGvXDnfu3EFYWBgAYMuWLThz5sx/I6qysqh7wblz0t01wuNBxdsbNuHh0C8vR0VYGJ57eMA0IgKq/fvjub4+sufMAbm6AjdvAoaGoo4L330HECH0bijuF9xH9Kxo/J72OxKfJUpP+1vo3r07dHR0pGOsMa8lLueUGMXFxTRp0iRSUVEhPz8/IhK9CGopNTU19OLFC8rLyyNVVVXCPxFQIBCIIvHZs6L87i3FC2KPnI3xT3762MaGhK/yUzMzKli2jMjXV1RKOH4saa/Xoo1XNxIR0djQsWS53VKyupoIl3MqMJcvX4abm1t9Lxpzc3PRL6IV676qqqowMDCAsbEx0tPTsWPHDvj7+yMyMhKWlpbwXrkSjJZWswoSJMY/+anVo0fgZWUh96OPoFJZifabN0Nw+TIAYHrdSbQrrsYKo9EAgGNjjuF5xXPsuL6DTeUARLM+gbj3xjZGY15LEoycjo6OZGlpKanhZZLKykpasGABqamp0bZt24iImvfWtQXk5uZSQEAAeXl5Ud2YMVShq0v9+/ShsLCwN5ZlpBY5G+JVfjpyJBWpq9e/8RWAT3dMB5Pwh73S19QICp9zFhYWoqipJWAKQHx8PLp3744//vgDtbW19YXTls3tgtdMTE1NcejQIcTFxUFp3DholpZC484dBAUFAQDOnDmDv/76691vfCXNq/z0zBnol5Wh4sQJlKtroz1ewO3JnzBYNAH3l65gXycALy8vqeWcrPQK8fDwQHFxMRumpYpAIEBQUBB27tyJH3/8Eb1798a9e/cwbNgw6YsZNgxQUcHZOXOQ9dFHAIBPP/0UeXl5mDFjBlZKX1HD8HjQyszE3WrL19qt3NxzCcNP2WLatGkICAhg7XxXTU1NqZWecjmnhEhNTYWPjw+2b9+O8vJyGBkZwdLSkh3HBEQd3P38oBQeDhtra/B4PNy4cQOrV6/GxIkTIfxns3VQUBBiY2PZ0ZiZKTqfZelSOLoov9ZuZeq2uQgLC0NpaSl69+6N9957D7t375Z6u5u8vDzFzjkdHBzIwsJCUsOzilAopO+//5709fVp9+7dtGXLFtq4cSPbskTs3SvK5xo4yj7D0pIuA2RoaEi3bt2iO3fu0NChQ2n//v1UW1srWV0MQ/Tzz6L1Th0dogMHRHW8u/dSss+8N3JOgUBA586do0mTJpGuri75+/tTWFgYVVVVSVYntYHaWmNjY0m8jmad7Oxs6tWrF6moqJC+vj4VFxezLel18vKIeDyioKA3Pnr1Qmj37t3EMAydPn2atLW1SUlJifLz8+n27dt06dKlVi35NKrpgw9EX8X+/Yma+ZKspKSEgoODacCAAWRgYEDz5s2jK1euiF/nPyxYsIB0dXXFPazsvBBStL61RKIes926dcOAAQNgbm6OgIAA6Orqsi3tdYyNRX1m37KkwuPxwOPxMGrUKBQWFiImJgYdOnTAhg0bMHToUPTr1w8AUFVV1Xo9p04Bzs6iDn7btwMXLzb7qAhdXV3MmjULly5dQmJiImxsbLBw4ULY2triq6++QpqYuzCoq6uDx+OJdcxGacxriStCaBIFBQU0ZMgQUlVVpenTpxMRUV1dHcuq3sJ334miVEbGaz9+11JKcXExrV69mnbv3k1Eoumdo6MjnWlJh4OiIqKAAJGObt2I7t1r/hhvgWEYio+PpyVLlpCxsTF5e3vTrl27qKCgoNVjjx8/njQ0NMSg8jVkJ3JmZWUpxLHzZ8+ehaurK4RCIYRCITp27AgA0uvO1hJGixb2m1uQoKenh6CgICxevBhCoRD+/v4oLi7G48ePUVtbi4CAAGzbtg217yoRvHgRcHUVnar99dfA9euijg1ihMfjoVu3bti+fTtyc3MRFBSEa9euwdbWFv7+/ggLC0N1dXWLxn748KF4Zg1NoTGvJQlGThMTE9LX15fU8BKnpKSEJkyYQJqamnTs2DFiGIYeP37Mtqym4+pK1Lv3az9qSRECwzAkEAgoOTmZdHV1CQCdPXuWCgoK6OrVq6/nfRUVou1rAJG9PdGNG+J6miZTUlJCBw4cIF9fX2rXrh3NnTuXoqKimpWfLly4ULFzTjc3N7k9n/PKlStwd3fHlStXUF1djcrKSvB4PFhZWbEtremMGQPExAD5+a0ahsfjQVlZGc7Oznj27Bl+++03DB48GIcPH0afPn1ga2uLoqIiCK9fFzWb3rkT+OQT0eFH3t5iepimo6uri5kzZ+LixYtISkpC586dsXjxYtjY2CAwMLBJZ6GqqalxOaesUVVVRYsXLyY9PT06e/Ys3blzhy79zxYnueHOHVEE2/vfJQpxlu8VFxfTl19+SQvnziX6+muq4/HoqbIy/fn5560eW9wwDEMJCQn06aefkomJCXl5edHOnTvp+fPnDV4/bty4N3LO2tra1r4dlp2llC5dupCZmZmkhhc7CQkJ1LVr1/odH4mJiWxLah0MQ2RjQzRkSP2PxF5bm5JC1L07EUAPvL3JydSUxo0bR0RE69evpx07dlBNa5pXSwCBQEB//vknTZkyhfT09GjEiBEUGhpKlZWV9dc0tM45a9Ys8vb2fu26ZiI7ztmpUydq166dpIYXGwKBgNauXUsGBgZ0+PBhWrZsGe1sYh9Ymefzz4lUVIj+WYsVm3MKhUTbt4taoxgaEp04QUSiCFVWVkZVVVVkbGxMfD6fAgMDiWEYiouLk9i6ZEspLS2lkJAQ8vPzo3bt2tGcOXPo77//pkWLFr2Wc1ZVVZGmpiapqanRgAEDWvoHR3acUx6mtWlpaeTm5kbKyspkaWkpc3/lW010tOjXf+wYEYnJOTMzRYUEANGIEUTPnjV4WVVVFYWFhdGjR4/oxo0bBICMjY3p1q1bzW9iJgVycnLo22+/JWdnZ9LR0SE1NTW6f/8+ERGFhYWRjo4OASANDQ0aMWJES5bSOOdsCgzD0K5du8jQ0JDWrFlDnTp1ojVr1rAtS/wIhUTGxkTjxxNRK52TYUQldzo6ohK8n356d5vMfygtLaVVq1bRgAED6OXLl/TLL7+Qk5MTbdq0Seb+IDIMQ35+fqSsrEwmJibk6elJdnZ2BFE/bgJAmpqaNHny5ObOBGTHOe3s7KhTp06SGr7F5Obmko+PD6mpqdGqVauISDS1VVjmzxc5U1VVy50zP59o1CjRV6lPnzeKG5rLiRMnyMzMjDp16kR1dXV06tQp+uGHH2TGUV/lnAKBgEJDQ4nP57/mnK8cdP78+c2ZBcjOUkplZWWLF4ElARHh+PHj8PDwgJqaGoRCIdq3bw8Ain0C9+jRQHk5EBnZsvvDw0Xld3/8Ier9c/kyYG3dKkljx45FdnY24uPjoaSkhO3bt+Pzzz/HyJEjAQCPHz8WRRWW6NWrF/T09KCsrIznz59DXV39jWsqKytx6NAhLFu2rHXGGvNaaiPT2sLCQho8eDDp6OhQZGQk1dTUSLxDgcxQU0Okq0sIApl/rlQfOasEVcQL4lGHzR0avq+4mGjmTFG0dHcnSk6WmMTa2lo6dOgQRUREUGVlJeno6JCxsTGdPn1aYjbfxr97CDk4OLwRNf/336JFi5oybIP+p8Bh4d388ccfmDt3Lqqrq1FRUYHKykqoqqpKvEOBzKCqCgwfDtBxFGgwKP0nCGyO2Qw1ZbWG77l8GZg5U9RndtUqUQmeqqrEJKqoqCAgIAAAUF1djdWrVyM0NBTa2trIzs7G2LFj8f7772PFihXQ09OTmI5XZGdno6amBo8fP8b9+/ehq6sLhmFQVVUFDQ0NGBsbw8LCAnZ2dtDS0sLAgQNbbItHb58iSGT+YGdnh4qKCjx9+lQSw7+T8vJyLFiwABcuXEBYWBiUlZWhpKTU+FmXikxYGHj3JsAzXwXWGQIMGLUH39V+B3tDeyQ8S0D+F/9UEVVViZxx+3bAzg44dEh09iaLXL9+HWPHjsXTp0+RlpaGqqoq3L59G2PHjpXY0fAeHh5ITExEeXk5zpw5AxMTE5ibm8Pc3BwaGhotHbbhkqPGQipJcFprZmZGhoaGkhr+rURHR5OFhQWpqKiQkpIS5ebmsqJDZigrI6wGHeqmQe0/A333n+9IfZ06bY/d/t9p7a1bRA4Oomnshx8SlZezq/lfMAxTv6zxySefkLKyMpmampJAIKDCwkKxL818/PHHUmuNycq01snJSeo9hGpqarBy5UocPnwY+/btw++//46ePXvC1NRUqjpkjn8izOQ7tZg3BDhZfhIeJh7/fEjA2rXAN9+I9oKePw8MGsSe1gbg8Xj1e4O3bt0KFxcXCAQCKCsrY/z48UhLS8PKlSuxePFisdiT5tGVCpNzZmVlwcTEBGpqb+ZKd+7cwdixY5GVlQV3d3eMHDkSo0aNkr5IWYUHKAuFcH4CxKrG4oTPCeQ8vCU6JHfjamDKFOA//wHatWNb6VtRVlbG3Llz6/97xowZ2Lp1KwoKCsAwDMaPHw8LCwsEBgbC0NCwRTYyMzNRU1MjLslvp7GQShKc1trY2JCJiYnYxisvL6d27drVb3Z+RV1dHa1fv57at29PQUFB1KFDB3b6sso4CAIxAIV3ArltcCXauZO291aiDst4RKGhbMtrNQzD0NOnT8nW1pYAUEhICJWWltLx48eppKSkWWMpfA8hCwsLat++vdjGCwwMJHV1ddLU1KRz584REVF6ejo5OTmRuro6/fjjj0Sk4AUFrQBBoAq+KiXCiQqMjIkA2j7LgTpsEt/vSBYQCoUUHx9PZWVldOTIEQJAOjo6lJ6eTlVVVU3KTxX+OAYHBwfY2tqKZay8vDxs3bq1fm/l1KlTsXXrVrz33nvQ1tYGwzD1vXwUuqCgFQiM9qITkw93JKNzwQPUTZmOJT/fQ/7yAraliRU+n49u3bpBW1sbEydOxO7duzFjxgxYW1tjw4YNMDY2RmBgIKtFDv9G7r+ty5cvf+28xOLiYnz55Ze4ceMGbG1tUVFRUd8+hKNhHhy5hRLMw6sGzg8eq8FZWhuKWUJZWfm1l0Tdu3dHp06dcOPGDfB4PKxbtw6lpaVYtmxZfbUYIKpQklp1W2MhlSQ4rbW2tiZjY+NWj3Pv3j3S0NBosDIjqIH2jxwNI/xhL+mhiACG9FAkU2eTSJva2lpiGIa8vLxIWVmZ5s2bR0REkZGRVFZWRh4eHsTj8cRttkH/Y6UIwcrKCpWVlXj+/HmrxvH19UVUVBSYf7qV/xttbW08ePCAWyppIr+NHIunv6XCfpIbfI8fZVuOTHDz5k3o6+uDx+PBzs4OGhoaGDRoEP7++29xLwU2OE1hJefs2rUrbGxsWjXG5cuXce3atQYdExCVen344YetstGWSPHxwiLcQ2rf3mxLkRm8vLxgZ2cHa2trBAcHw9zcHBcuXHhtmitJ5DbnHDNmDGpqaqCpqVmfA5iYmMDGxgZOTk5wcnJC797cF42j9VRUVCA6OhppaWlQV1fH8ePHpWKXFedMTU1FZWVli++/dOkSysrK4Obmhq1bt8LW1hbm5uay3S+WQy7ZsWMHtmzZgmfPnuGLL75AYGCg1Dr5y1XkZBgGfD4fNTU1MDQ0xKpVq+Dn58e2LA4FpLq6GitWrMCOHTugpaWFq1evomfPnlLVwErO2aVLF1g3c1NueHg4bGxscO3aNQwdOhS5ubkYP368hBRytGXCw8PRvXt37NixA+PGjUN6errUHROQo8i5Z88e5Ofn10+HVVRUWFbEoWjU1dXhww8/xL59+6Cvr48///wTQ4YMYU0PK855//79Jp03cf78eZw6dQp79uzBwYMHoaKi0uKCZQ6Ot5GSkoLZs2fjxo0bcHFxwenTp8VWxdZSWJnWKisrv3PrTXFxMUaNGoWDBw/i4cOHMDEx4RyTQ+wwDIOZM2fC2dkZqampOH78OJKSklh3TIClyGlnZ9foIm5aWhry8/PRp08fHDhwAM7Ozgp1lieH7JCbm4vZs2cjIiICRkZGiIyMhKurK9uy6pGpnDMmJgYDBgxA+/btkZ2djUmTJrEtiUMBYRgGH3/8MYKDg8Hn8/HDDz9gwYIF0jugqImw4pwpKSmv5ZwvXryApqYmnJ2d4efnh6VLl3I7SDgkQmFhIRYtWoQTJ05AV1cXN2/ehL29PduyGoSVnFNVVbXe+X799VeYm5sjMDAQenp6+PPPP7m1Sw6JEBQUBCcnJ4SHhyMoKAgFBQUy65gAS5Gzc+fOKCoqAgCUlZVBT08Pw4YNY0MKRxugrKwMixcvxpEjR2BoaIibN2/Czc2NbVnvhJXIWVBQgISEBNy9exezZ89GVlYWFy05JEJoaCjc3Nxw9OhRTJ06FRkZGXLhmABLzpmdnY26ujr07t0bH330Ef76669Gd5dwcLSEmpoajB07FpMmTUJVVRWuXLmCI0eOSK0uVhyw4pyPHz/Gvn37MGTIEAQHB2PkyJEwMDDA2rVrkZGRwYYkDgUiPj4enp6eOHXqFLp164aEhAS53KHEinNqa2tj3rx5+OWXX5CdnY1Zs2bB2toaq1evhq2tLfT09LBs2bL6vJSDoynU1dXB398fXl5eKCwsxLlz5xAfHy+3bWpYcc5/Y2RkhODgYNy+fRtZWVn46KOPUF1djS1btsDExARDhgzBl19+ifLycralcsgw6enp6Nu3L86ePQtTU1PExsbK/UtG1p3z31hYWGDXrl2oqqrCzZs3sWjRIkRHR2PTpk2wsLDA4sWLERkZyeWnHPUwDIMpU6bA2dkZ9+/fx9GjR5GdnQ0rKyu2pbUamXLOV/D5fHh6euL7779HYWEhvv/+ewwePBgHDhzAwIEDoaWlhTVr1uDRo0dsS+VgkSdPnmDo0KE4fvw49PT0kJycjClTpshcpU9LkUnn/Dfq6ur4v//7Pxw/fhz5+fmYN28eLCwssGbNGnTu3BnGxsZYuHAhXr58ybZUDiny2WefwdnZGVevXq3vVGBmZsa2LLEi8875b3R1dbFv3z6kpqYiKysLq1evRklJCfbu3YuOHTti1KhR+PLLL1FaWsq2VA4J8fLlSwwfPhzbt2+Hjo4OEhMTsXTpUqkeMCQt5PaJzM3NERQUhMrKSty4cQOLFy9GVFQUNm3aBFNTUyxatAhXrlzh8lMF4uDBg3B2dsaFCxcwe/ZspKWlyXT5XWuRW+d8BZ/Ph7e3N7Zv345nz55h7dq1GD58OA4ePIh+/fpBTU0Ny5cvR3p6OttSOVpIeXk5BgwYgJkzZ0JTUxNxcXH4+eefoa6uzrY0ydJYt2mSYMd3aVBaWkqffvopmZqaEo/HIwBkZWVF06ZNo8LCQrblyRwbN24kADJ3CtvVq1fJ1taWeDwe+fj4UFFREduSJIHsHGQkDXR0dLBt2zbk5uYiOzsbmzZtQkFBAY4cOYKOHTti9OjR2LBhA5efyig1NTXo06cP+vTpA6FQiL///hvXrl2Dvr4+29KkhsI6578xMzPD8uXLUVpaipiYGHz00UeIiYnBqlWr6t/2RkdHc/mpjJCUlARvb29ER0fD3t4ecXFx6Nu3L9uypE6bcM5X8Pl89OzZE9u2bUN2djbWrVuHwYMH4/Dhw+jTpw/U1NQwf/58PHz4kG2pbZLa2loMGzYMnp6eyMvLQ3h4OFJTU2FkZMS2NHZobL5Lcp5zNofS0lL6+uuvycDAoD4/dXR0pIkTJ9KTJ0/YlicV2M4509PTycfHhwCQjY0NPX/+nBUdLNG2cs7moKOjgzVr1uDFixfIzs7Gt99+i7y8PISGhsLKygqjRo3Crl27uPxUAjAMg/nz58PNzQ0pKSnYs2cPHj582Haj5b9pzGupDUXOhhAKhXTx4kX67LPPyMTEhACQsrIyzZ8/n65evdqkI8rlCTYi59OnT+m9994jAOTg4EDZ2dlSsy1jcJGzOfD5fPj6+mLr1q3IycnBhg0b0L9/fxw5cgR9+vSBuro6xo8fz+WnLeSHH36As7MzEhMTsWjRIiQlJcHc3JxtWbJFY15LbTxyNkZZWRlt3779tfzUw8ODxo8fT+np6WzLazHSipwvX74kNzc3AkBubm50//59idqTE7jIKQ60tbWxZMkSvHjxAjk5Odi8eTOeP3+OsLAwdO3aFSNHjkRwcLC4Tz5WCP766y+4uLjg3r178PX1RWxsLNcw/C1wztkKTE1N8cUXXyA3Nxfh4eFYsmQJbt68iTlz5sDAwABz587F1atX2/z6aXl5OVxdXTF06FDo6uoiNjYWFy9ehIaGBtvSZBrOOcWEv78/tmzZgpycHGzZsgXe3t745Zdf0LdvX+jp6WHIkCFIS0tjW6bUuX79Orp164bk5GR069YNN2/ehKenJ9uy5ALOOcWMkpISli5diuvXryMvLw8hISFQV1fHhQsX0KVLF/To0QNTp05Famoq21IlSnl5Ofr06YNevXqhpqYGFy9eRHx8PLS0tNiWJjdwzilBtLW1MWPGDBQUFCAnJwffffcdioqKcOzYMTg5OcHf3x/Hjh1TuPz07t278PHxQXR0NNzc3JCUlARfX1+2ZckdnHNKCVNTU3z++edIS0vDiRMn8NFHHyE+Ph5Tp05Fu3btMHHiRLnff1pbW4vp06eje/fuyM/PR0hICBISEqCnp8e2NPmksde4xC2lSJy6ujravXs3OTg4kJaWFgEgAwMD6t27t9SXGFq7lJKRkUEODg4EgHx8fCg/P1/MChUabilF1lBSUsLixYuRkpKC/Px8HDlyBJqamoiOjoaDgwO8vb3x4Ycf4v79+2xLbRSGYbB161a4uroiNzcXn376KaKjo9GhQwe2pck9nHPKCFpaWpg6dSpycnKQnZ2NrVu3oqamBnv27IGTkxM++OAD/PrrrygpKWFbaj15eXno3Lkzli5dCg8PDyQnJ2Pbtm0K2c+HDbj/izKIubk5PvvsM9y5cwenTp3C3Llzcfv2bUycOBH6+voYPHgwoqKiWM1PT5w4AWdnZzx58gSjRo3CpUuXYGlpyZoeRYRzThln9OjR2LdvH7KysnDo0CHY2toiJiYG/fv3h6mpKXr16oW4uDip6SkoKICtrS3Gjx8PKysr3L59G6dPn+YOO5YAnHPKCUpKSggICEB6ejry8/Nx9OhR6Onp4dq1a+jRowe8vLzw5Zdf4t69exLTEBkZiW7duuHx48fo378/YmNj4ejoKDF7bR3OOeUQLS0tTJkyBQ8ePMCjR4+wbds2CIVCbNq0Cc7OzhgxYgRCQ0NRWVkpFnuFhYXo3r17fbf969ev4/Lly1BRURHL+BwNwzmnnGNjY4NPP/0UCQkJOHPmDCZNmoQ7d+5g0qRJ0NHRgY+PD/7+++8W56dxcXHo0aMHEhISMGDAACQkJMDb21vMT8HREJxzKhAjR47E8ePHkZmZifDwcFhbWyMxMREDBgyApaUlevbsiUuXLjVprMrKSkyaNAk9e/aEQCBAWFgYLl26BE1NTQk/BccrOOdUQJSUlODv74/09HS8ePECx44dg4mJCWJjY+Hn5wdPT0+sW7eu0fw0JSUFXbp0QWhoKIYOHYrk5GSMGzdOyk/BwSOit33+1g855Iu7d+8iIiICR44cQUJCAgBg0KBBmDVrFtLS0rB69Wr4+voiJiYGOjo6WLBgAdatW8ey6jZBg8eicc7ZRjl79ix+/PFHJCUlITc397XPhg8fjp9//hnGxsYsqWtzcM7J8SYMwyAqKgr+/v4oLy9Hr169cOXKFa7KR7pwzsnxdqqrqxX/cCDZhHNODg4ZpUHn5OYuHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyyru6MjVYVsTBwSF5uMjJwSGjcM7JwSGjcM7JwSGjcM7JwSGjcM7JwSGjcM7JwSGj/D+YYxCd4Xe9YQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "scf_in = './svo.scf.in'\n", + "\n", + "# read scf file\n", + "atoms = read_espresso_in(scf_in)\n", + "# set up cell and path\n", + "lat = atoms.cell.get_bravais_lattice()\n", + "path = atoms.cell.bandpath('', npoints=100)\n", + "kpts_dict = path.todict()['special_points']\n", + "\n", + "for key, value in kpts_dict.items():\n", + " print(key, value)\n", + "lat.plot_bz()" + ] + }, + { + "cell_type": "markdown", + "id": "31956a53", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "e47c2a48", + "metadata": {}, + "source": [ + "Depending on whether you select `kslice=True` or `False`, a corresponding `tb_config` needs to be provided containing information about the $k$-points, resolution (`n_k`) or `kz`-plane in the case of the Fermi slice. Here we just import the $k$-point dictionary provided by ASE above and add the $Z$-point. If you are unhappy with the resolution of the final plot, come back here and crank up `n_k`. For the kslice, the first letter corresponds to the upper left corner of the plotted Brillouin zone, followed by the lower left corner and the lower right one ($Y$, $\\Gamma$, and $X$ in this case)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "68c0f047", + "metadata": {}, + "outputs": [], + "source": [ + "# band specs\n", + "tb_bands = {'bands_path': [('R', 'G'), ('G', 'X'), ('X', 'M'), ('M', 'G')], 'Z': np.array([0,0,0.5]), 'n_k': 50}\n", + "tb_bands.update(kpts_dict)\n", + "\n", + "# kslice specs\n", + "tb_kslice = {key: tb_bands[key] for key in list(tb_bands.keys()) if key.isupper()}\n", + "kslice_update = {'bands_path': [('Y', 'G'),('G', 'X')], 'Y': np.array([0.5,0.0,0]), 'n_k': 50, 'kz': 0.0}\n", + "tb_kslice.update(kslice_update)\n", + "\n", + "tb_config = tb_kslice if kslice else tb_bands" + ] + }, + { + "cell_type": "markdown", + "id": "bf58de16", + "metadata": {}, + "source": [ + "### Self-energy" + ] + }, + { + "cell_type": "markdown", + "id": "67e42361", + "metadata": {}, + "source": [ + "Here we provide the info needed from the h5Archive, like the self-energy, iteration count, spin and block component and the frequency mesh used for the interpolation. The values for the mesh of course depend on the quantity of interest. For a kslice the resolution around $\\omega=0$ is crucial and we need only a small energy window, while for a bandstructure we are also interested in high energy features." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "70fd0787", + "metadata": {}, + "outputs": [], + "source": [ + "freq_mesh_kslice = {'window': [-0.5, 0.5], 'n_w': int(1e6)}\n", + "freq_mesh_bands = {'window': [-5, 5], 'n_w': int(1e3)}\n", + "freq_mesh = freq_mesh_kslice if kslice else freq_mesh_bands\n", + "\n", + "dmft_path = './svo_example.h5'\n", + "\n", + "proj_on_orb = orbital_order_to.index(proj_on_orb) if proj_on_orb else None\n", + "sigma_dict = {'dmft_path': dmft_path, 'it': 'last_iter', 'orbital_order_dmft': orbital_order_to, 'spin': 'up',\n", + " 'block': 0, 'eta': 0.0, 'w_mesh': freq_mesh, 'linearize': False, 'proj_on_orb' : proj_on_orb}" + ] + }, + { + "cell_type": "markdown", + "id": "6e314f15", + "metadata": {}, + "source": [ + "__Optional__: for completeness and as a sanity check we quickly take a look at the self-energy. Make sure you provide a physical one!" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e7cb04b5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrAAAAGtCAYAAABePTTsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACzxklEQVR4nOzdd5hb1bX38d/WNE3vxfa4dxsXMMZgwECooaQBCeGmkAJpN73f1Js3nfRySQ9JSA8EQjEBAtg0GxsXbNy7x/b0XjRF2u8fmhnPOdPHozrfz/Pokc4+R0eLgzE6Wnutbay1AgAAAAAAAAAAAKKFJ9IBAAAAAAAAAAAAAH2RwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBBYAAAAAAAAAAACiCgksAAAAAAAAAAAARBUSWAAAAAAAAAAAAIgqJLAAAAAAAAAAAAAQVUhgAQAAAAAAAAAAIKqQwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBBYAAAAAAAAAAACiCgksAAAAAAAAAAAARBUSWAAAAAAAAAAAAIgqJLAAAAAAAAAAAAAQVRIjHQBCwxiTImlJ92aVJH8EwwEAAADCIUFSYffrHdba9kgGg+jHfRMAAAAmmJi6ZyKBFb+WSNoU6SAAAACACFkpaXOkg0DU474JAAAAE1XU3zPRQhAAAAAAAAAAAABRhQqs+FXV82L9+vWaOXNmJGOJO21tbVq/fr0kac2aNUpNTY1wRPGHaxxaXN/Q4vqGFtc3tLi+ocX1Da3Dhw9rzZo1PZtVQx0LdOO+KYT4Oy+0uL6hxfUNLa5vaHF9Q4vrG1pc39CKtXsmEljxq7d3e0lJiUpLSyMZS9xpa2tTQUGBJKm0tJS/SEOAaxxaXN/Q4vqGFtc3tLi+ocX1Da22tra+m6xlhJHgvimE+DsvtLi+ocX1DS2ub2hxfUOL6xtaXN/QirV7JloIAgAAAAAAAAAAIKqQwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBNYAjDFFxpjrjTFfMcasNcZUG2Ns9+PuMZzvGmPMfcaYMmNMe/fzfcaYa0IQPgAAAAAAAAAAQExLjHQAUapiPE5ijDGSfibpDteuKZJeL+n1xphfSHqvtdaOx2cCAAAAAAAAAADEOiqwhndc0mNjfO9XdTp5tVXSmyWd1/28tXv8Dkn/70wCBAAAAAAAAAAAiCdUYA3sK5I2Sdpkra0wxsyQdHg0JzDGzJH0qe7NzZLWWGvburc3GWP+JWmdpHMlfdoY81tr7cFxiR4AAAAAAAAAACCGUYE1AGvtl6y1D1lrz6SV4Ed1OkH4wT7Jq57PaJX0we7NREkfOYPPAgAAAAAAAAAAiBtUYIVA99pXr+3e3GOt3TDQcdbaDcaYvZLmS3qdMeZDrIUFAACAsXhg2wn9bN0hpSZ5dPHcQt18bqlKc9MiHRYAAAAAhMT6fVX6zmN75U1M0BdvWKSzpmRHOiSMMyqwQmOmpCndr9cNc2zP/lJJM0IVEAAAAOLXP7eW6cN/2abdpxq15Vi9fvif/brmB8/omf1VkQ4NAAAAAMbd1mN1etfvNunlsga9eKRWH/rLVlEbEn+owAqNhX1e7xnm2L77F2qEa20ZY0qHOaSk50V7e7va2tqGOhaj5PP5BnyN8cM1Di2ub2hxfUOL6xtaXN/QCsX13XKsXp/6x8v9xpvbu/Tff9qie+9YqSk5qePyWdGuvb090iEAAAAACLGa5na9956X1Ok/nbA6VNWiV042UoUVZ0hghcbUPq/Lhjn2+CDvG87x4Q8J2rhxow4ePDiKU2M01q9fH+kQ4h7XOLS4vqHF9Q0trm9ocX1Dazyub8BKX9+WoE6/GXB/Q1uX3vGr5/WRs/xKnAC9F6qrqyMdAgAAAIAQ+/oje1TR2H/y2lN7KklgxZkJcBsbEZl9XjcPc2xLn9cZIYgFAAAAcep4s1TlGzh51XtMi9GzFUMfAwAAAACxIBCwWrvz1ID7ntpbGeZoEGpUYIWGt8/rjmGO7ZsqHk1vl+GqtUokbZKkVatWafbs2aM4NYbj8/l6Z02vWbNGXq93mHdgtLjGocX1DS2ub2hxfUOL6xta4319f/Cfg5KO9m5Pz0vVX999rt70q806Wnu6hfRTFV599k0XKNMb31//6ToAAAAAxLeyuja1dvgH3Lf1eL1qWzqUl54c5qgQKvF9Bxs5fRc0GO6/lpQ+r0e8UJW1dsjWhMacnmWbkpKi1NSJse5BJHi9Xq5viHGNQ4vrG1pc39Di+oYW1ze0xuP6Pr2/1rF9zZJJKsnL0vfedLZuvOv53vH6tk79YdNJffyq+Wf0edEuJSVl+IMAAAAAxKw95Y2D7rNWemZ/lV67fEoYI0Io0UIwNJr6vB6uLWB6n9fDtRsEAAAAJEnHalq1t6LJMXblwmJJ0orpubpqUbFj36+eOazaluGaAwAAAABA9Npb3jTk/qf20EYwnpDACo2+1VGlwxzbtxXg8RDEAgAAgDj0+O4Kx3Z+erLOnpbbu/2pa+bL02fpq7ZOv37/wpEwRQcAAAAA42+PaxKfx7Xc7+5TQye4EFtIYIXGrj6vFwxzbN/9u0MQCwAAAOLQ064Fil+1oEgJfe7e5hRl6nWu1hm/e/6I2gbpFw8AAAAA0c5dgXXd0smO7bK6VllrwxkSQogEVmgclnSy+/Ulwxy7pvv5hKQjoQoIAAAA8WX3KWfv90vnF/U75o5LZjm261o79bfNFP0DAAAAiD3tXX4drm5xjF2x0Hkf1NLhV11rZzjDQgiRwAoBG0zxPtC9ucAYc/5Ax3WP91RgPWBJDQMAAGAE6lo6VN3sXM9qwaTMfsctKMnSZfMLHWO/fOaQuvyBkMYHAAAAAOPtYGWL/AHnT+iXzCt0dKKQglVYiA8ksELnB5K6ul//2BiT2ndn9/aPuze7uo8HAAAAhnWgqtmxnZRgND0vbcBj33PJbMd2WV2bHt5xKmSxAQAAAEAo7K1wdqGYkpOqnLRkTcr2OsaP17aFMyyEUGKkA4hGxpiLJM3pM1TQ5/UcY8xtfY+31t7tPoe1dp8x5juSPiPpXEnPGWO+JemgpNmSPi3p7O7D77TW7h+3fwAAAADEtf0VzgTWzIJ0JSYMPDdt1cw8LZ+ao23H63vHfr7ukF6zbLKMMQO+BwAAAACizR7X+lcLSoJdKKbmpqms7nTSigqs+EECa2DvlvT2QfZd2P3o6+5Bjv2cpCJJ71QwWfWXAY75taTPjz5EAAAATFQHKp0JrLlF/dsH9jDG6L2XzNJ779nSO7brVKOe2V+tNfMKB30fAAAAAESTQ1XO9a/mdSewSnMdzc90nARW3KCFYAhZawPW2ndJuk7BNbFOSurofn5A0rXW2ndba1mEAAAAACO2v9I583B2UcaQx1+5qESzCtIdY7985tC4xwUAAAAAoVLe4HNsT+tuoz7V1U69bzUWYhsJrAFYa2+z1pqRPkZwvkesta+z1k6x1qZ0P7/OWrs2HP88AAAAiC8H+1VgDZ3ASvAY3b5mlmPsmf3V2utqwQEAAAAA0eqUK4FVkhVc+6pfBVYtFVjxggQWAAAAEEOafJ066bpxmzNMAkuSXn/2FOWnJzvGfv0sVVgAAAAAol9HV0A1Le2OsZLsYAJroAosa23YYkPokMACAAAAYshBV993j5FmutoDDsSblKC3nD/dMXb/1pOqamof5B0AAAAAEB0qm3xy56Qm9SSwcp0JrPaugKqauc+JBySwAAAAgBhywNU+cFpemrxJCSN671vOn67kxNO3AB3+gP6w4ei4xoeJwRhTZIy53hjzFWPMWmNMtTHGdj/uHuE5buvznuEet4X2nwgAAADRzL3+lTfJo+zUJElSUWaKkhOcqQ7WwYoPJLAAAACAGOJOYM0pyhzxewszU/S65ZMdY/dsOCpfp39cYsOEUiHpQUlfkHSNpPzIhgMAAIB4Vt7Yf/0rY4wkyeMxmsI6WHGJBBYAAAAQQ8obnDMJp+enDXLkwN510SzHdm1Lh/659cQZx4UJ7bikx87wHFdLWjLE4/4zPD8AAABimLsCq2f9qx6lrgQWFVjxITHSAQAAAAAYuYpG18LFWd5BjhzY/JJMXTy3QM/sr+4d+/Wzh3XLyqm9MxiBEfiKpE2SNllrK4wxMyQdPoPz7bPWHhmPwAAAABB/TrkSWJOynQmrKTnO7QpXxRZiExVYAAAAQAypbHLeiBVlpYz6HO++2FmFdaCyWev2VZ1RXJhYrLVfstY+ZK2tiHQsAAAAiH/uFoLFrol8BRnO+6LqZufEP8QmElgAAABADKl0VWAVZY6uAkuS1swt0NyiDMfYr589k+IZAAAAAAgddwvBSdnuBFayY7u6qSPkMSH0SGABAAAAMaKlvUtN7V2OseIxVGAZY/Tui2c6xp7ZX6095Y1nFB8AAAAAhMJwa2AVZFKBFY9YAwsAAACIEZVN/W/Cika5BlaP1y6fom8/ulc1LadnJv76mcO68+ZlY44POAN3G2MWSsqV1CjpgKQnJN1lrT0x1pMaY0qHOaSk50V7e7va2ljsezz5fL4BX2N8cH1Di+sbWlzf0OL6hhbXN7QGur4Ba/utaZXnNY7vbplJzvNUNfHdbiDt7bGV2COBBQAAAMSIStdNW3pygjJSxvaV3puUoLecP10//M/+3rEHtp3Up65ZoMLM0Vd1AWfokj6v87sfqyR93BjzEWvtz8d43uMjPXDjxo06ePDgGD8Gw1m/fn2kQ4hrXN/Q4vqGFtc3tLi+ocX1Da2e69vYIXUFnPc9u7ds0Mmdp7fLW6W+6Y6m9i49/OhjSqIHnUN1dXWkQxgV/vUBAAAAMaLCVYHlXrh4tN5y/nQlJ56+JejwB/SHDUfP6JzAKB2S9B1JN0o6r/txi6S/S7KSvJJ+Zoy5I2IRAgAAIKLqXctZeYztV3Hl3pakps7QxYTwoAILAAAAiBHuCqyiMax/1VdhZopev3yK/rr5dJHKPRuO6v2XzpY3KeGMzg2MwD8l/c5aa13jmyT91RhzvaT7JCVJ+r4x5l/W2vJRfsbUYfaXdH+eVq1apdmzZ4/y9BiKz+frnTm9Zs0aeb1nlnSHE9c3tLi+ocX1DS2ub2hxfUNroOv7nz1V0o4dvccUZ3l1zdUXOt5nrdWXtjytzsDpr5aLzzlfS6ZkhSfwGBFrHQdIYAEAAAAxwr0G1plWYEnSuy6e6Uhg1bZ06L4tJ3TrqmlnfG5gKNbahmH2P2SM+V9JX5WUJuldkr42ys8oG2q/Mab3dUpKilJTU0dzeoyC1+vl+oYQ1ze0uL6hxfUNLa5vaHF9Q6vn+tb6Ao7xSdmpA173/IwUlfeZ9NfUKf79uKSkxFa7eFoIAgAAADHCvXBx0TisVTWvOFMXzy1wjP18/UF1+QODvAMIq18q2EpQcq6TBQAAgAmiutnZQ3CwiXwFmcmu97UPeBxiBwksAAAAIEa4E1jjUYElSbdfPMuxfbSmVQ++fHJczg2cCWttpaSelaanRDIWAAAAREaNKxGVn5E84HEFGc4Jfu7EF2IPCSwAAAAgRlQ2Om/cisYpgXXx3AItLc12jP3kyQPyB9xLEwERYYY/BAAAAPHKXUmVnz5wJwp3AquqiQqsWEcCCwAAAIgR/dbAGocWglJwHaAPvmquY+xgVYse3Vk+LucHxsoYUyQpv3uTskAAAIAJqMZVSVUwwgqsmhYqsGIdCSwAAAAgBjS3d6m5vcsxNl4VWJJ0xcIiLZyU5Rj78ZP7FaAKC5F1h05XYK2LZCAAAACIDHciKj9jsAos1xpYVGDFPBJYAAAAQAyodK1/JUlF41SBJQWrsP77sjmOsT3lTXpid8W4fQbQwxgzwxhz9jDHXC/pC92bPkm/DXlgAAAAiDr9WwgOXIFVmOleA4sEVqxLjHQAAAAAAIbnbh+YmZKo9JTx/Tr/6rNKNKcoQwcqm3vHfvzkAV25qFjGsAwRTjPGXCSpb8azoM/rOcaY2/oeb62923WKGZKeMsa8IOlBSdskVSpYbTVL0k3dj54/eJ+w1p4Yn+gBAAAQK9q7/GryOTtRDFaB5V4biwRW7COBBQAAAMQA9wLE7tmF48HjCVZhfeSv23rHdpxo0OO7KnTV4pJx/zzEtHdLevsg+y7sfvR19yDHXtD9GEyrpI9aa38xqugAAAAQF2oHWMdq0DWwMp3jda2d6vQHlJRAI7pYxb85AAAAIAbUt3U6tnMHaZtxpq5fOkkzC9IdY995bK/8rIWF8fWSpLdI+qmkjZKOKZis6pBUIelJSZ+TNJPkFQAAwMRV0+xMYCV6jLK8SQMeWzBAZdZACTDEDhJYAAAAQAxoaHXeeOWmDXzTdqYSEzz6yBVzHWP7Kpp1/1a6t+E0a+1t1loz0scA72+y1v7RWvvf1trzrbXTrbXp1toUa22JtfZya+3XrbWVkfjnAwAAQHRwtwHMS0+WxzNwe/PctGS5d7k7WSC2kMACAAAAYkB9q7MCKzs1NBVYknTD0slaUJLpGPve4/vU3uUP2WcCAAAAgJu7Amuw9a8kKcFjlMc6WHGFBBYAAAAQA9wtBHNCVIElBdfC+vQ1CxxjJ+rb9KeNx0L2mQAAAADgVtPiTEANtv7VYPvrWmkhGMtIYAEAAAAxwF2BlZMaugSWJF06v1DnzchzjP3kyQNqbu8K6ecCAAAAQI9+FVjDrAWcm+bcX9vSOciRiAUksAAAAIAYUO+aORjKCixJMsboU9fMd4zVtHTol+sPhfRzAQAAAKBH9ShaCErBNbL6qmuhAiuWkcACAAAAYoC7hWB2WujWwOpx7ow8XbGwyDH28/UHVVbXGvLPBgAAAAB3C8H8YVoI5qY7J/rV0kIwppHAAgAAAGJAuFsI9vjk1QvkMae3fZ0Bfe3h3WH5bAAAAAATm7uFYEH6MBVY7haCzSSwYhkJLAAAACDKWWvV0BbeFoI95pdk6r9WTXeMrd1ZrucOVIfl8wEAAABMXDXNo63AciWwqMCKaSSwAAAAgCjX2uFXp986xnJSQ99CsMfHr5qnXFfC7Ev/ekWd/kDYYgAAAAAwsVhrVd3CGlgTGQksAAAAIMq517+SpJz08FRgSVJOWrI+efUCx9iBymb97vkjYYsBAAAAwMTS0uFXR5dz0lx++tAT+folsKjAimkksAAAAIAoV++66UrwGGWmJIY1hjetnKqzpmQ5xn74xH6VN/jCGgcAAACAiaFmgOqpYVsIprkTWJ0KBOwgRyPakcACAAAAolx9q7MCKzs1ScaYsMaQ4DH639ec5Rhrau/SZ+97WdZyQwgAAABgfNW2OO+D0pITlJY89EQ+dwWWP2DV5Osa99gQHiSwAAAAgCjnTmDlpIavfWBfK6bn6sZzSh1jT+2t0t9fKotIPAAAAADil7sCa7jqK6l/BZYk1dJGMGaRwAIAAACiXH2b84YrOy0yCSxJ+sL1C1WY6Vw4+f89uEsn69siFBEAAACAeFTrTmClpwxy5GmpyQlKTUoY8jyIHSSwAAAAgCgXLRVYkpSTlqxvvH6JY6ypvUufuW8HrQQBAAAAjBt3BVbBCCqwpP5tBElgxS4SWAAAAECUa2hzJbAGaIsRTlcsKu7XSnD9vir96cVjEYoIAAAAQLxxr4E1kgosqX8Cq44EVswigQUAAABEuXpXz/bsCFZg9fjiDYtUnOVqJfjQLu0tb4pQRAAAAADiibsCK2+EFVi57gos1sCKWSSwAAAAgCjXr4VgBNfA6pGdmqRv3rjUMebrDOgDf9qi1o6uCEUFAAAAIF70XwNrhC0EXfdLVGDFLhJYAAAAQJSrd7UQzI1wC8Eel80v0tsvmO4YO1DZrC/c/0qEIgIAAAAQL2pcLQQLMkbWQrBfBRYJrJhFAgsAAACIcu4WgtFQgdXjf65bqLOmZDnG7t1Spn+8VBahiAAAAADEg34VWCNsIZjnmvBXRwvBmEUCCwAAAIhy7haC0bAGVo+UxAT95M3nKCMl0TH+hft36pWTDRGKCgAAAEAsC1ipznUflJ9OBdZEQwILAAAAiGLW2n4tBHOipIVgjxkF6frmjUscY22dft3+u82qbPJFKCoAAAAAsaqlS7KusYKRVmCRwIobJLAAAACAKObrDKijK+AYy4miCqwe1y+drP9aNc0xdrLBpzt+/5J8nf4IRQUAAAAgFjV19h9zV1YNhgRW/CCBBQAAAESxhrb+d27R1EKwry/esEjnzchzjG07Xq9P3/uyrHXPnwQAAACAgTV3Gsd2TlqSkhJGls5wJ7AafV3q9AcGORrRjAQWAAAAEMWa2/snsDK8iQMcGXkpiQm66y3nqDQ31TH+wLaT+sET+yMUFQAAAIBY0+y6DcofYfWVJOUO0HLdva4wYgMJLAAAACCKNfq6HNupSQkjnnkYCfkZKfr121cqI8WZZPvhf/br7ucORygqAAAAALHE3UIwPyNlxO/NSevfsaKulTaCsSh673wBAAAAqNmVwIrW6qu+5pdk6kdvXi7j7PqhLz+4S/dvPRGZoAAAAADEDHcLwYKMkVdgJSV4lOW6b2IdrNhEAgsAAACIYk2uBFZmDCSwJOlVC4r1ldee1W/843/frid2VUQgIgAAAACxol8FVvrIK7Ck/utg1ZHAikkksAAAAIAo5l4DKzMlNhJYkvTW86frE1fNc4z5A1bv/9MWrdtXFaGoAAAAAES7fmtgjaICS+qfwKohgRWTSGABAAAAUax/BVb/fu7R7AOXzdG7LprpGOvoCuj232/W03srIxQVAAAAgGjW5GohOJo1sCQqsOIFCSwAAAAgirkTWBkxVIElScYYfe7ahbppRaljvKMroDt+/5Ke2kMSCwAAAICTuwKrIH10FVi5ac7ja1tJYMUiElgAAABAFIvVNbD68niMvvmGJXrt8smO8Q5/QO/5w0usiQUAAADAwb0GlruiajhUYMUHElgAAABAFHOvgZURgwksSUpM8Oh7b1yu1589xTHe4Q/oPfe8pL9vPh6hyAAAAABEkw6/1B5wthAsyBxdC8HcdHcFVucgRyKakcACAAAAolisr4HVV4LH6Ds3L9MbXEksf8Dqk/94WT9fdzBCkQEAAACIFu7qK0kqGO0aWGlUYMUDElgAAABAFGtudyWwYmwNLLcEj9GdNy/Tza41sSTpG2v36KsP7VIgYCMQGQAAAIBo4E5gJSd4lDXKThT9KrBIYMUkElgAAABAFGuMgzWw3BI8Rt++aanec8msfvt+9exhvfeel9TiStwBAAAAmBiaO13tAzOSZYwZ5OiB9VsDq5UEViwigQUAAABEsWZffKyB5WaM0WdfvVCfu3Zhv32P7arQzT97Qaca2iIQGQAAAIBIcldg5Y+yfaDUP4HV2uGXr9N/JmEhAkhgAQAAAFEsntbAGsjta2bpuzcvU6LHOaNy16lGveYnz2n78frIBAYAAAAgItwJrIKM5IEPHIJ7DSyJNoKxiAQWAAAAEMXca2BlxPgaWAO5cUWpfv/O85Sd6kzOVTW1640/f0EPvXwyQpEBAAAACLemfi0ER1+BlelNVIJrkhwJrNhDAgsAAACIUl3+gFo7nG0uRrt4caxYPadA/3z/as0qSHeMt3cF9N9/2qpvrN2tLn8gQtEBAAAACJfxaCHo8RjlpjknyLEOVuwhgQUAAABEqZb2/j3a42UNrIHMKszQP99/oVbPzu+37+frDum/frVRlU2+CEQGAAAAIFzGo4WgJOW62ghSgRV7SGABAAAAUarR19lvLN7WwHLLTkvS7955nm5dNa3fvo2Ha3Xdj57VhkM1EYgMAAAAQDg0u1oIFmaOvgJLknLTnQmsOhJYMYcEVogYY+wIH09HOlYAAABEJ/f6V8ZIaUkJEYomfJISPPra687SV167WEkJzpvXqqZ23frLDbrr6YMKBGyEIgQAAAAQKv1aCKaPLYGV70pg1bb2nyCI6EYCCwAAAIhSTT5nAisjJVEe10LE8coYo7ddMEN/e88FmpztdewLWOlbj+7RO+7eREtBAAAAII50+gNq6XLe8xRkjrGFoDuB1dI+5rgQGSSwQu8uSUuGeLwjcqEBAAAgmjW3O2cIZqbE7/pXgzl7Wq4e/tDFumReYb996/ZV6ZofPKPHXimPQGQAAAAAxlvdAFVSBRljq8DKS3O3EKQCK9ZMvDvg8Ku01u6MdBAAAACIPe4KrHhf/2owuenJ+u1tK/WTpw7o+0/sk+3TObC2pUN3/OElvfm8qbp1wdhubAEAAABEhxrXOlUeI+WmjVcFFmtgxRoSWAAAAECU6tdC0Dtxv757PEYfunyuVkzP1Uf/uk2VTc72H39+8bie2twcoegAAAAAjIeaZmeSKS89WQljbKOel+6cAEgCK/bQQhAAAACIUv0rsCZuAqvHhXMK9OhH1ujqxcX99pXVsx4WAAAAEMvcFVhjbR8oSXnpzve6z43oRwILAAAAiFLuNbAyJuAaWAPJS0/Wz96yQt+6cYnSkhMiHQ4AAACAcVLjWqcqP2Ns7QMlKd/VQrCutUOBgB3kaEQj7oBD72ZjzJslTZPUJalc0vOS7rbWPjXWkxpjSoc5pKTnRXt7u9ra2sb6URiAz+cb8DXGD9c4tLi+ocX1DS2ub2hxfUNrtNe3rtl5TFqi4XtdH685q1DLJq/Up+7bpZdPNEY6HAAAAABnyN1C8EwqsNzv9QesGto6+62NhehFAiv0Frm253Q/3maMuV/SbdbahjGc9/hID9y4caMOHjw4ho/ASKxfvz7SIcQ9rnFocX1Di+sbWlzf0OL6htZIru/+wx71bZpQfapMjz12LIRRxabbSqUnPEYP72I2JQAAABDLqsexhWCuaw0sSappaSeBFUNoIRg6rZL+Iul2SRdLOlvSVZK+Jqmm+5jXSXrAGNP/vyQAAABMeG1+57Y3kQTNQBI80tWlVncs8A9/MAAAAICoVetKYJ1JC8GUxIR+6whXN7MOViyJWAWWMaZA0hRJhZLyJbVJqup+HLLWBiIV2ziZYq2tH2D8cWPMjyWtVTCpdYmk90n60SjPP3WY/SWSNknSqlWrNHv27FGeHkPx+Xy9s6bXrFkjr9cb4YjiD9c4tLi+ocX1DS2ub2hxfUNrtNf3j6e2SHX1vdvLFy/QVauG+xo4cc0+eFCfj3QQAAAAAMasZhwrsKTgOlhNvq7ebXeCDNEtbAksY0ympNdKulTBiqQ5QxzeYozZIOkZSQ9ba7eEPsLxNUjyqmdfhTHmJkm7JSVL+qBGmcCy1pYNtd8Y0/s6JSVFqampozk9RsHr9XJ9Q4xrHFpc39Di+oYW1ze0uL6hNZLr29LhnNOVl5nGv5MhpKSc2c0tAAAAgMhyV0gVnmkCKyNFR2pae7drmtvP6HwIr5AnsIwxKyR9WNKNknqmmJrB3yFJypB0effjy8aYvZJ+Kulua21LqGINJ2vtIWPM45KukzTHGDPZWnsy0nEBAAAgejS3dzm2M1JYwhYTopsFAAAAJqBAwKqutdMxNh4VWH3RQjC2hOwOuDtx9VUF132STietTinY2u4lSZWSaiXVSUqVlCcpV9I8SSslLZWUJGmBghVKXzbG3Cnph9baeEiV7lIwgSUFb0BJYMWghrZO/WVLuR56+ZTKG3xKTDCalpemy+YX6dolk1SSTeslAAAwNi0ksKCJ180CAAAAE1NDW6e6As51f89kDayB3k8LwdgSkjtgY8xvJb1Vkqd7aIukP0q611p7bBTnSZa0RtKtkl6v4OzCb0h6nzHmrdbaZ8c18PAbrhINUe6VOqMv/OgFNfqcPy4drWnVM/ur9Y21u/WmlVP1wVfNVXEWiSwAADA67gqs9JSECEWCSKCbBQAAACaS6gHa+51xAivdWcFV0xIPdTETR6imcL5dUoek30n6rrV231hOYq3tkPSEpCeMMe+TdLOk/1GwIutVkmI9gbWoz2uqr2LMzjqj3+z1yG+7Bj2m0291z4Zjun/rSX322gV688pp8njIWwIAgOF1+QPydTo7wVGBNTHQzQIAAAATkbu9X5Y3USmJZzaJL8/VQrCGFoIxJVR3wHdJ+oa1tmy8Tth9k3WPMeaPCiayYnr6qTFmlqQruzcPWWtPRDIejM7Ok43dyauRJaOa27v0uX/u1KM7y/X9Ny0/496tAAAg/rV0+PuNpZPAint0swAAAMBE5a7AciefxsJdwVVDC8GY4hn+kNGz1n5gPJNXrnNba+3frLV/DsX5x4Mx5gZjzKC/LhhjiiX9Q8EZkVKwpQdihLVWX127r1/yatXMPH335mX64S3LdeM5pUpO7P+f1zP7q3XtD5/RhkM14QoXAADEKPf6VxIJrAni7ZK6JP1S0gJr7bnW2u+PJnklBbtZWGufsNa+U1KJpLdJ2itpuoLdLAAAAICo4k5g5acnDXLkyLkLCWoGaFOI6MUdcGj8WFKSMeZeSS9IOiKpTVKBggsvv1fBGZBSsA0iCawY8siOcm0va3SM3XhOqb5901IldLcHfO3yKfrk1fP1ncf26h8vOXO5lU3tuvWXG/TRK+bp/ZfN6X0PAABAXwMmsJJjugkBRoZuFgAAAJiQ3O39Cs5w/SupfxVXfVunuvwBJSaEpLYH44wEVuhMlvTB7sdg7pX0bnrQx46OroC+/e89jrFpuan6xhuW9EtElWR79Z2bl+k1yybrE3/frsqm0/+aA1b67uP7tPFwrb7/puUqzKSlIAAAcGp2JbC8SR5usiYAa+0HQnhuK+lvoTo/AAAAcCb6tRBMG/8WgtZKda2d/B4bI7gDDo23S/qSpEcl7VNwceUuSfWSdkj6uaTV1tqbrLX1EYoRY/DoK+U6WtPqGPvYFbMHbBfYY828Qj3y4Yt18dyCfvuePVCta39ES0EAANBfS7tzDawM2gciihhjiowx1xtjvmKMWWuMqTbG2O7H3WM43zXGmPuMMWXGmPbu5/uMMdeEIHwAAABEoX4tBMejAmuAJFhNC/UksSLsd8HGmBmSVkiaI2mSpGRJrZKOSXpJ0iZrbUyvpGatXSdpXaTjwPi7b4uzk8v0DKurFhYO+76CjBT97h3n6a51B/Xdx/YqYE/vq+puKfjxq+brfZfMloeWggAAQP0rsFj/ClGmYjxOYowxkn4m6Q7XrimSXi/p9caYX0h6b3cFGQAAAOJUtbuFYPqZJ7ASEzzKSUtSfWtn71htc0ynHyaUsN4FG2OOK9habyg+Y8xaSb+x1j4ShrCAEals8umZ/dWOsYtLAgrecw/P4zH6wGVzdO70XH3oL1tV0ehsKXjnv/fqxe6Wgu7erAAAYOJxr4GVnkwCa6KL4smAxyXtlnTVGN77VZ1OXm2V9G1JByXNlvQpSWd376+S9PkzjhQAAABRq18LwXH6jTQ/PdmRwKpuIYEVK8J9FzxlBMek6vRMuy2S3mGt3RnasIDh/WvbSfn7lE4le6yW5o1+EuiqWfl65EMX66N/2671+6oc+9btq9J1P3pGP37z2Tp3Rt4ZxwwAAGJXS4czgUULwYktCicDfkXSJgWTZhXdybXDozmBMWaOgkkqSdosaY21tq17e5Mx5l8KdrY4V9KnjTG/tdYeHJfoAQAAEFWstf0SWAXj0EJQkvLTU3SwqqV3u6aZFoKxItxrYG2T9CtJH5V0s6TLJF0i6VpJ71GwdcRuSab7sULSi8aYK8McJ9DPfVtOOLaX5VmlJIztXPkZKbr7tpX65NXz5e4YeKrBpzf9YoO+//g+dfoDY4wWAADEuv4tBMf4xQPxYopO3ycN9uiZDPigMWaTMeasUAVjrf2StfYha+2ZtBL8qE5Pqvxgn+RVz2e0Svpg92aipI+cwWcBAAAgirV2+OXrdP4Wmp+eNC7ndq+lVUsFVswI6zROa+05IznOGLNA0oclvUuSV9I/jDELrbUnQxkfMJhjNa3adarRMbay8Mxa8Pe0FDxnWrClYFXT6cy/P2D1w//s15N7KvW9Ny7T3OLMM/osAAAQe9wtBNOowJrotilYpfSKpDJJ1ZICktIlTVWw1d4lkhZ2H98zGfC11trHwx7tMLrXvnpt9+Yea+2GgY6z1m4wxuyVNF/S64wxH2ItLAAAgPjjrr6Sgq3/xoM7gdX3d1hEt3BXYI2ItXaPtfZ9ki6V1CQpQ9InIxoUJrT1+52t/vLSkjQ3e3zumy+YHWwpuHp2fr99O0406LofP6v/e/qAOrqoxgIAYCJpafc7tjNYA2tCs9aeY629w1r7Q2vtvdbaddbaZ6y1j1prf2mtfb+1drGkRZJ+LqlLpycDDtd6MBJm6nSL+XXDHNuzv1TSjFAFBAAAgMhxJ7CSPFZpyePThaIwwzvkZyF6RfVdsLX2eWPMFyV9X9J1CraYAMLuGVcC68LZefKYE4McPXqFmSn6w7tW6SdPHtCPntzvWGuroyugbz+6V/dtOaGvvHaxVs8uGLfPBQAA0ctdgZVOBRZGwFq7R9L7jDF/kLRWpycDRtu91MI+r/cMc2zf/Qs1irW2jDGlwxxS0vOivb1dbW1tQx2LUfL5fAO+xvjg+oYW1ze0uL6hxfUNLa5vaJysbXZsZyYFv58FC/fPTI7XeY6KhrYJ+72vvT22knexcBf8XPfzcDceQEh0+QN6/kCNY2z17DypYvwSWJKU4DH68BVz9aoFRfrY37Zpf6XzL+0Dlc269Zcb9brlk/U/1y1UUaZ3kDMBAIB40NLhTGBlsAYWRiEGJgNO7fO6bJhjjw/yvpE4PvwhQRs3btTBgwdHeXqM1Pr16yMdQlzj+oYW1ze0uL6hxfUNLa7v+Hmuwkg6fc+TmTR+1/d4rfPcx6sb9dhjj43LuWNNdXV1pEMYlahsIehyfffzxEyJIuK2l9WryTUDevWsvJB93pLSbD34wYt0+8UzNdAEg/u3ndTl31mn3zx7mLaCAADEsWZXC0EqsDAG0TwZsO8ir82DHhXU0ud1RghiAQAAQIQ1dTi3M5PGb9nTLNe5mjolVlWNDVFxF2yMuUfSeZL2KTj7rkXBG5OVkpZJsgq2vwDCbv0+Z1Z6QUmmijJTQvqZ3qQEfe66Rbp+6WR9/v6d2nGiwbG/qb1LX3lol373whF94qr5um7JJHk8Z15OCwAAogctBDEOonkyYN92Ah2DHhXUt89J6ig/Z7iKrRJJmyRp1apVmj179ihPj6H4fL7emdNr1qyR10sXifHE9Q0trm9ocX1Di+sbWlzf0Hj+oT1S2cne7ayk8bu+Jxt8+t7O53u3/dZo1ZrLlJOadMbnjjWx1nEgWu6CEyTNkeS+WzAKJq/+LelD4Q4KkPqvf7VmXmHYPnvZ1Bzd/4EL9acXj+nbj+5Rk8/5Q9bRmlZ98M9b9ctnDunDlwfbD45HX1gAABB57gRWBgksDCCGJwP2XTAieZhj+84eG1Uyzlo7ZHvCvt+dU1JSlJo62vwYRsrr9XJ9Q4jrG1pc39Di+oYW1ze0uL7jp6bV2YEiK9mO2/UtTer/dbO502hS3sT7d5eSEtrCjPEWLXfB35X0iqTVktZISlPwRmudpE9aazdHMDZMYL5Of7/qpwvnFIQ1hgSP0VvPn65rFpfoG2t3674t/dfeermsQe/63WbNL87U+y6dreuXTlJiQix0CAUAAINppgILIxOrkwGb+rweri1gep/Xw7UbBAAAQAyqavI5trOHm+I0CimJCcpOTVJDW2efz2vX3OLMId6FaBAVv3Bbazdba79qrb1WUr6kmxRMXl0iab0x5p0RDRAT1o4TDer0n26I6jHSium5EYmlMDNF33vjcv39vRfonGk5Ax6zt6JJH/nrNl36naf1hxeOqK3DP+BxAAAg+vVvIZgwyJGY4L4r6YsKJqraFExcScH7qVXW2muttbWRCm4IfSujhlujq28bwOMhiAUAAAARVtHY7tjOGufufoWuJWGqmtsHORLRJKwJLGPMsJ9nrW231t5nrX2VpDcqOGvwl8aYV4U8QMBl85E6x/aCkqyIt+9ZOSNP975vtX72lhWaVZA+4DFldW36wgOv6Pxv/Edff2S3jtW0hjlKAABwplranRNRIv0dBNEphicD7urzesEwx/bdvzsEsQAAACCCAgGraldCKTvZDnL02BRmuBJYTSSwYkG4K7C2GWMuHenB1tp/SPqMgrMI/ydEMQGDeumoM4EVqeorN2OMrjmrRP/+6Bp95+ZlmlM0cNeVhrZO/WL9IV3ynaf0jt++qIdfPiVfJ1VZAABEu46ugDr8AccYLQQntjicDHhYUs8q3ZcMc+ya7ucTko6EKiAAAABERm1rh7oCzoRV1ji2EJQGqMAigRUTwp3AOkvSf4wxDxpjVo7wPS90P58XopiAAVlrteWYM4F17ozoSGD1SErw6KYVpXrsI2v0i7eu0PKpOQMeZ6301N4qfeBPW7Tya0/os/ft0KYjtbJ2fGcyAACA8eFuHyhRgYX4mgxog19EH+jeXGCMOX+g47rHeyqwHrB8gQUAAIg7FY3O9a+MrDLGuYVgEQmsmBTuBNZuBW+grpW0wRizzhjzNmNM1hDvubb72QxxDDDuDle3qLalwzF2zrToSmD18HiMrlpcon++f7X+fPv5unR+4aDHNvm69OcXj+nmn72gS+58Wt96dI92lDWQzAIAIIo0D5DAogJrwovHyYA/kNTzh/3HxpjUvju7t3/cvdnVfTwAAADiTKUrmZSZJCWMczaANbBiU7jvgpdJ+qSkz0lKk3RR9+PXxpgtkrZKOiipXlKGgq0iblCw9cWeMMeKCc7dPrAoM0WluamDHB0djDG6YHa+Lpidr8PVLfrDC0f195eOq8nX/0cwSTpW26q7nj6ou54+qNLcVF27ZJJefVaJlpXmyOMhZwwAQKS0dPT/f3daUkIEIkEU2S1poYIT/K41xjwr6deS7rfWNg7ynpBNBjTGXCRpTp+hgj6v5xhjbut7vLX2bvc5rLX7jDHfUbBS7FxJzxljvqXgPeFsSZ+WdHb34Xdaa/eP2z8AAAAAokalqwJrvNsHSrQQjFVhTWBZa7skfcMY8xsFk1i3S0qRlKDgDcu5A7zNKJjAuitccQKS+rUPXDE9V8bETlJnZkG6vnjDIn38qnl6eMcp/XPLCW04XKPBCq3K6tr0i/WH9Iv1h1SQkaI18wp0ybxCXTy3UHnpIfi/BgAAGJS7hWB6cgKTSxBtkwHfLentg+y7sPvR192DHPs5SUWS3qlgsuovAxzza0mfH32IAAAAiAWVjc5kUlbS+HeKIoEVmyLSh8RaWyHpQ8aYL0t6h6SbJa1QMJHl1i7p69ba34QvQkDadrzBsR2t7QOHk56SqDeeO1VvPHeqTtS36f6tJ3TfljIdrGoZ9D3Vze26b8sJ3bflhIyRlpXm6JJ5hbpkfqGWTslWYkK4u48CADCxNLf7Hdu0D0S8Tga01gYkvcsYc6+kOyStVLCaq1rSJkk/t9aujWCIAAAACDF3C8HsMFRg1bZ2qNMfUBK/c0a1iN4JW2trJX1X0neNMZmSFivYhiK7+5Djkp4eoiUGEBJtHX7tq2hyjC2bmhOZYMbRlJxUfeCyOXr/pbO180SjHt5xSmt3ntLRmtZB32OttO14vbYdr9cP/7NfGSmJOndGrs6bmadVM/O1tDSbv+gBABhn7gqsDBJY6BYtkwGttbdJum0cz/eIpEfG63wAAACIHRXhaCGY4UxgWSvVtnSoOMs7/h+GcRM1d8LW2iZJG7ofQETtOtUgf+B0qarHSGdNyYpgROPLGKMlpdlaUpqtT18zX7tONWrtjnI9svOUDg1RmSUFF5V/em+Vnt5bJUlKTUrQsqnZOntars6emqPl03JUlMlf/AAAnIlmdwtBElhwYTIgAAAA4oW7AisULQRz05KV4DGO33yrmtpJYEU57oSBAbjbB84rzlRacnz+52KM0eLJ2Vo8OVufuHq+jlS3aN2+Kq3bV6XnD1bL1xkY8v1tnX5tOFSrDYdqe8em5KRq+bQcnT01R0tLc7RgUqayvEmh/kcBACBu9FsDK2Wg4hogiMmAAAAAiGXu9ahC0ULQ4zEqyEhWRZ/1tiqbfDo9/wvRKD5/kQfO0Mtl9Y7tpaUT5y+yGQXpmlGQrrevniFfp1+bj9Tp6b2VenpflQ5UNo/oHCfq23Sivk0Pv3yqd6w0N1ULJ2Vp4aQsLZqUqYWTsjQ1N40F6QEAGAAtBAEAAABMBNba7kTSaVnJ41+BJUlFmV5nAquxfYijEQ1CcidsjLnZWvv3UJy7+/ylkqZZa58P1WdgYtt+vN6xvbQ0JyJxRJo3KUEXzS3QRXML9HkFZyW8eLhWLx6u1cZDtdrrWidsKGV1bSqra9Pjuyp6x9KTE7RgUpYWdie05hRmaHZRhvLTQzDNAgCAGNLc7nds00IQAAAAQDyqa+1Up9+ZsMoOUSOn4iyvdpw43XnrVINviKMRDUJ1J/xXY8wXJX1lPBNZxphpkj6r4GLFX5dEAgvjrqG1U0dqWh1jy6fmRCaYKFOU6dX1Syfr+qWTJUl1LR3afLRO247Xaeuxer1c1tBvzY6htHT49dLROr10tM4xnp2apJn5qUpp96g41Spxb5UWTsnT1Lw0JSV4xvWfCQCAaOSuwIrXVsboj8mAAAAAmEgqGp1JJCMpM0Rz20uyU4b8bESfUN0J71dwEeG/GGPulPQnSX+01r4y2hMZY9IlvV7Sf0m6XFKCpICkA+MXLnDayyfqHdvJiR7NL8mMTDBRLjc9WVcuKtaVi4olSf6A1YHKZm09Vqdtx+u17Xi9DlQ2qyswurLfhrZObSvrlBRMVv3r2A5JUqLHaHp+mmZ3V2rNzE/X1Lw0TctPU0mWVwm0IwQAxIn+LQRZA2sCYTIgAAAAJgx3EikvPUkJZuQT5EdjUnaqY7ucBFbUC1UCa7GkD0n6jKRpkj4t6dPGmP0KLiy8SdJWSZWS6rofqZLyJOVKmidppaTzuh9eBZOvkrRW0qettTtDFDsmOHf7wMWTs6j6GaEEj9H8kkzNL8nULedNkyR1dAV0oLJZu081avepRu3qfq5r7Rz1+bsCVgerWnSwqkXq04pQkpISjEpz04IJrbxUTctL07S8nu00ZXpDVHsMAEAIuCuaaSE4oTAZEAAAABNGuauNX0mWV1JbSD6rOMs75Gcj+oTkTtha2yXpe8aYn0t6v6QPKJjImidprqS3jvBUPUkrv6QHJN1prd04zuECDtvLGhzbyybo+lfjJTnRo0WTs7RoclbvmLVWFY3tjoTWgcpmHapuUUdXYEyf0+m3OlzdosPVLQPuz/QmakpOqqbkpGpy78Pbu12UmaJEEpUAgCjR0uGuwCKBNYEwGRAAAAATxsl+CayUQY48cyXuBBYVWFEvpHfC1toWSXcaY74r6UpJb5R0maQZI3h7m6QXJT0s6U/W2pOhihPo6+Wyesf20tLsyAQSx4wxKsn2qiTbq8sWFPWO+wNWJ+radLCqWXtO1mn9tn2qbDOq8yerdgwVW301+bq0p7xJe8qbBtyf4DEqyfJqco5Xk3NSVZLlVXHvI0XFWV4VZqbIm0QLJwBA6DW3+x3bVGBNHEwGBAAAwERS3uCstioOZQIr25nAqm/tlK/Tz+99USwsd8LW2oCkf3c/ZIyZImm1pFJJhQrOFvRJqup+7JC02Vp7Zr9YA6NU3uBTRWO7Y2zZ1JzIBDMBJXiMpuUH17Q6f3qmJjftkSRdddXFarcJ3e0Dm3WwqlmHqlp0vLZVx2pb1drhH+bMw/MHrE7Ut+lEfZuCE5kHlpuWpOIsr4qyvCrOTFFRVooKMoKP/IxkFXa/zk5Nkoc1uQAAY+ReA4sE1sTDZEAAAABMBKcGqsBqDc1nuRNYUvD34BkF6aH5QJyxiNwJW2tPSBq3BYmB8bLdVX2VmZKomfn8BRYNctKStWJ6slZMz3WMW2tV09KhozWtvQmtnsfx2tZ+/xM8U3Wtnapr7Ry0kqtHoscoLz05mNzKTFFBRvfr3udgwqsgI0W5aclKTqR9IQDgNHcCKyOFGYETFZMBAQAAEM/6J7C8IUtgZaQkKiMl0bHmcHkjCaxoxlROoI/tx+sd20tKs6miiXLGmN6EkDu5JUm+Tr9ONfh0sru66mTvw9dbcTXWdbeG0hWwqmxqV2VTu3Rq+OMzUxKVl5Gs3LRk5acnKzf99HNeerLy0pKVl3H6OTMlUcbwZxMA4lWzuwIrma/tCGIyIAAAAOJJuSuBVZyVovry0H1eSbZXByqbB/18RBfuhIE+Xi5rcGzTPjD2eZMSNLMgXTMHmUnRU8HVk9g6UR9MdlU2tauiwaeKJp8qGn3ydY5/kquvpvYuNbV36WjNyKaYJCUY5aZ1J7f6JrzSkpU/QCIshyovAIgZ1tp+7XFpIQgAAAAg3jT5OvtN3ivJSlF9CD+zJMuVwGokgRXNQnYnbIz5YvfL/7PWVp/BeWZI+o0ka629fDxiAwYSCFi97GohuKw0OzLBIGz6VnAtLc0Z8BhrrRp9XapsDK6RVtHoU3ljMLFV3dyu6qaO4HNzuxp9XQOeY7x1+vtUeI1QpjexN+GV7U1QW51H6UnS8eeOqignXfnd+/LTU5SbnqQMqrwAICLauwLyB6xjLIMEFgAAAIA4M9DSH8VZKdoTws90r4NFBVZ0C+Wd8JclWUn/kDTmBJakdEmXdp8LCJnDNS39kg+DJTQwsRhjlJ2apOzUJM0tzhzy2PYuv2qaO1TTHExqVXUntnq2exJeNS3tqmnpkA3j32xNvi41+fpWeQUrsp48eXDA45MTPcGWhenBqq683gRXsvLSU3q3e8ayU5NouQkA48A9A1GiAmuiYTIgAAAAJgJ3Ais/PVkpiaFd/7ckiwRWLOFOGOj20pE6x3ZRZoomuTLywHBSEhM0OSdVk3NShz3WH7Cqb+1QbUufR2uHapuDz3UtHapp6VBd91hNS4faQ7Be12A6ugIq7642G4kEj1FuWlKfpFYwyVWQkaKCzOBzYWaKCrsr3lKTQ/uFBABiVcsACSwqsCacL4vJgAAAAIhz5Q1tjm13dVQoFLsrsGghGNUieidsjJkl6ai11j/swUCIbTpS69heOSOP9mkIqQSPUX5GivIzUkb8ntaOLmfCq8+jrjVY+VXX2p34aulQfVtn2Kq8/AGr6uYOVTd3jOj49OQEFWam9LZwLMpKUVFmioqyvCrO8qooM0XFWV7lpiXx3yKACcVdgeUxkjeJdQwBAAAAxJeT9c7kUTiKCSa5KrAqSGBFtYglsIwx10n6s6Q9xphbrbUHIhULIEkvHXVWYK2YnhuhSIDBpSUnKi05UaW5aSM6vssfUENbZ78qr4r6Fm3ffVDNXZI3u0D1bcHEWE1LhzrCVOXV0uFXS02rjvS2NBxYcoJHhZnBBFdxpjf43J3gCia7guM5JLoAxImWdufcrnTWJMQAmAwIAACAWOdu3xeOCiz3Z1Q2tcsfsEpgWYyoFJEEljHmQ5K+q+ACLCskbTXGfMRa++tIxAPUNLfrUHWLY2zljLwIRQOMn8QEz4BVXm1tbXrMt1+SdNVVy5WaGmx5aK1Va4e/N5lV2xJcv6sn+dVT2VXTJyE20Fot46nDH9CJ+jadqG8b8rieRFdxVoqKMoOJraI+lVw9SS8SXQCinbuFIO0D4cZkQAAAAMSDU43uCqzhl+Q4U+4Elj9gVdXUHpbkGUYvrHfDJviL4Y8kvV+SkdQoKVPB3uy/MMa8WtLt1tq6wc8CjL/NruqrtOQELZyUGaFogMgxxig9JVHpKYmamjeyKi9fp7+3fWHfVobBhFe7qpo6VNXcruqmdlU3t4dsHa8RJ7oSPcHqrT6JrcLe1yma0r2GmTeJNboARIZ7YkA6CSz0wWRAAAAAxItTrt9wwtFCMD89WSmJHsfvUyfqW0lgRamw3Q0bY9Il/U3SNQomr16RdIOk+ZLullQs6fWSVhlj3matfSpcsQHu9oFnT8tRYgJrTQAj4U1K0KTs1BHNkrHWqqm9qzuZ1aHq5nZVNZ1+VDT5VNnYrsom34jX0hqtjq6AyuraVFY3dKKrKDNFpbmpKs1Ncz2T4AIQWu4KLBJYkJgMCAAAgPgTiRaCxhhNyU3VoarT3bjK6tq0YnrIPxpjEJa7YWNMqaSHJC1R8GbrMUlvtNY2SjpijFmiYBLrWklTJD1ujPmupM+FIz5g85Fax/aK6bQPBELBGKMsb5KyvEmaVTj0sZ3+gKqa2lXZ1K6KRp8qG32nXze1q6KxXZWNPtW0hCbRVdn92VuO1Q+4vygzRVPzTie1SnPTNCUnVQUZKcpICshvpQQ6FQIYA3cFVkYKCfOJjsmAAAAAiDcNbZ1qct37hKOFoCRNyemfwEJ0CkcCa6Wkr0sqUfBm6/8kfbjvYsPW2mpJ13e3w/imJK+kT0i6XNI3whAjJrCGtk5tL2twjJ07PTdC0QDokZTg0eTudn5D6egKqLr5dGKrstEXTG41BZ97xmvHOdHVk+ByV3D2MEpQWqL04wMbNaswQ/OKMzW3OPg8uzBDyYlUeQIYWEu737GdnkwF1kTGZEAAAADEoxOupJEx0uQcrwKdoZmo3FdprnPZjLK61pB/JsYmHHfDv1awP7tf0settT8a7EBr7Y+MMU9J+pOkxZLOlvSXMMSICey5A9XyB2zvdnKiRytnUIEFxIrkxJEnuqqanQmuyu4EV0V34utUg08NbZ3jEpeVUUuXdKCqRQeqWvTYrorefYkeo9mFGZpfkqnJOakqzExRQUayCjNTVJiRouJsr7K8SeMSB4DY09LhrsAigTWBMRkQAAAAccmdNCrO9ColMUHj9LPMkEpznb8hUYEVvcJxN+yR1CTpFmvt2uEOttbuMMacK+l7kt7X/X4gZNbtrXJsr5qZp9RkWvUA8SY50aMpOamaMkyiq9HXqRPda2SV1bW6ntvGJcHVFbDaW9GkvRVNgx6TmZLYnZjz9iboJud4NTU3TdPz01WQkazgcigA4o27hWAaLQQnMiYDAgAAIC4ddyWN3EmlUHJ/lrsaDNEj1AksI+mYpOuttTtH+iZrbbukDxhj1ip40zbMSinA2FhrtW6fM4F16fyiCEUDIBpkeZOUNSlJCydlDbjfneA6Xtv9XNemykafals7ZO2Abx2VpvauIZNc6ckJmp6frhkFwYTWjPye53QVZabI4yG5BcSqFlcCK50KrImMyYAAAACIS+4KrEgmsMrq2xQIWH5LiUKhvBu+rPt5p7W2ZiwnsNY+ZIw5S9Ki8QsLOG1PeZPKG32OsUvnky8FMLjhElxd/oBO1TbpocefVlOn0ZS5i3W0vkP7Kpq0v6JZJ+rHZ1ZPS4dfu041atepxn77vEkeTc9L1/T8NM0sSNfMgnTNKszQrMJ05adTuQVEO3cCK4M1sCYqJgMCAAAgbrnb9rnXpQol92f1rK9elOUNWwwYmZDdDVtr143Teaokjcu5JqrjdW2a2umXN4n2M25Pu9oHluamalZBeoSiARAPEhM8KshI1uR0SbK66uzJSk09PbOn0depfeVN2lPepINVzapqald1c3v3c8e4tCj0dQYGrd7KTk3SrMJ0zSoIJrRmFwaTW9Pz05SSyP8ngGjgbiFIBdaExGRAAAAAxDV3AmtqXvgqsAozUpSc4FGHP9A7dryujQRWFOJueAJ4291blXjf8eAPqt3rv/Q8T8lN7V0TJictacLNyn9w+0nH9qXzCyfcNQAQXlneJJ07I0/nzsgbcL+v06+KRp9O1LfpZL1PJ+vbgo8GX3Atrto2xxes0Wpo69TWY/XaeqzeMe4xwRlIzuRWhmYXpqswM4W/G4Ewamn3O7YzSGBNOEwGBAAAQDyz1qqs1t1CMHwVWB6P0ZTcVB2ubukdO1HfphXTc8MWA0aGu+EJpLq5Q9XNHXq5rGHA/WnJCY7E1tTcNE3NS9W0vDRNy0tTdmp8Jbh2nmjo13rr6sUlEYoGAIK8ScG1rabnD1wN6g9YlTf6dLS6RUdqWnWkpkVHqlt0tPt1e9fYklsBKx2rbdWx2tZ+1anpyQmaWZiumQUZwXaE3W0JZxSkKzs1aUyfB2BwrIEFAAAAIJ41tnWpyXXfE841sCRpSo4zgeVekwvRIWJ3w8YYj6RLJV0gqURSmqTPW2tP9TkmWcEY/d293BFCrR1+Hahs1oHK5gH3Z3oTNS0vTVNz0zQtP01TuxNbU3ODCa9Yaz31j5fKHNuTs71aPbsgQtEAwMgkeExv5ezqOc59gYBVZVO7jtS06GhNiw5Xt+pwdbMOVQUTXGOt3Grp8GvniUbtPNF/va2CjOTedbZ6E1yF6ZqWl0brWmCM+rcQ5L8lAAAAAPHjuCtZZIw0KTu8CSx3wszd0hDRISIJLGPMdZJ+JGmGa9d3JZ3qs/0uST+R1GyMmWytbREipsnXpVdONuqVk/1/wDRGmpTl1dS8NM0sSNecogzNLsrQnMIMTclJlccTXZVb7V1+3b/thGPsxhWlSoiyOAFgNDweo5Jsr0qyvTp/Vr5jnz9gVVbXqkNVLTpY1axD1S06VBVMblU2jX2OSE9176YjdY5xY4KzmfpWbM0szNCsgnRNzknl71tgCO4KLFoIAgAAAIgn7mTRpCyvkhM9YY2BBFZsCPvdsDHm3ZJ+Lqnnl6tqSQWS7ACH/1rSVyXlSHq9pHvCEGLceeQDq5RaMEVl9W06URdcS+VEn9fljT4FBrr6o2CtdLLBp5MNPm08XOvY503yaFbB6YTW7KJggmtmQXrEqrb+te2k6ls7HWM3rSiNSCwAEA4JHtPbmvCyBUWOfU2+Th2ubtGhqmBS62D368PVzfJ1jq1qy9rgl7+yujY9s7/asS85waPp+WndSa1ggmtGfrAlYRHrbWGCCwSsWjqca2DRQhB9GWMSJV0n6WJJsyRlShruS7W11l4e6tgAAACAkXC36wvn+leDfaZ7TS5Eh7DeDRtj5kj6affmk5L+21q7xxgz4K9j1toOY8y9kt4t6SqRwBqT1OQEzS3O1NzizAH3d/oDKm/w9Sa2TtYHf3A8XhdcC+VkvU/+M8hw+ToD2nWqsd96Uwkeo9mF6Vo4KUuLJmVp0eTgc35Gypg/a2Tx+PX9x/c5xlbNzBt0vRkAiHeZ3iQtLc3R0tIcx3ige72tw9UtOlTdosPdSa3D1S06Xtc25v83dPgD2l/ZrP0DtKz1Jnl6116clpeu6fnBtrXT89JUmpsW9hlZQLi1dvr7jVGBhR7GmEsl/VbStL7DQ7zFdu8/w+lqAAAAwPhxVzuFe/0rSZqa50xgHa9rVZc/oMQEfneIJuG+G/6IpCRJOyVda63tGMF7nlEwgbU8dGFNbEkJHk3NS+v3H22PTn9Ap+p9OlYbTGj1JLaOd2+7K5lGyh+w2lfRrH0VzXpg28ne8eKslN6k1uLJ2Tp7Wo4m54zfX2K/ee6wTjb4HGPvvWT2uJ0fAOKFx2M0OSdVk3NSdeEc5xqBHV0BHa9r7U5qdSe4upNbFY1jb0no6wz0/r+hXzzdPbFLc1LkafUo32sVeKVScyflaFp+mrK8SWP+XCBauNsHSlRgIcgYs1zSWknJCialfJL2S6qXNLZyWQAAACAC+ldghT+BNbPAWczQ6bc6We/TtPzwV4NhcOG+G75cwdl/Pxhh8kqSDnY/TxvyKIRMUoJH07pnwA+k0dep490JrSM1rTpY2awDVc06UNmsJl//H2GGU9HYrorGKj29t6p3rCTLq7On5XQ/crVkSra8SaNvP/jKyQb95MkDjrHVs/N16fzCUZ8LACay5ESPZhdmaHZhRr99Le1dOlzd4nj0rLk1lv8v9AhYBVvg1rdJCs6IeujYzt79uWlJwcqt/HRNzztduTU9P9iaMNrWYwQG0jxgAisyLZcRdb4sKUVSu6SPSfqttdY35DsAAACAKHS0xpXAGqSwIpRy05KU5U1UY5/fKQ5VN5PAijLhTmBN7X7eNor3tHQ/8ycnSmV5k7R4crYWT852jFtrVdXcrgOVzTpY1aKDlc062J3YOtUwunvt8kaf1u4s19qd5ZKkpASjRZOztWJars6ZnqMV03M1KXvoTP2hqma947eb1NpnXQljpP+5diHrrQDAOEpPSdRZU7J11pT+/1+obenoU7HV0lvBdaSmRe1dZ1ZAUNfaqbrWBm0va+i3LyWxT2vCPomtaflpmkprQkQRdwVWUoKJ2JqhiDoXKTgZ8GvW2rsiHQwAAAAwFv6A1VHXelPuaqhwMMZoZmGGth+v7x07Ut0izQ97KBhCuBNYPb3XR5Mt6CmNaRzyKEQdY4yKMr0qyvRq9Wxn66nm9i7tLW8Kro11slG7TzVqT3mjfJ0j+/Gy02+1/Xi9th+v12+eC45Nzvbq7Om5WjEtV8umZmtKTpqSEoyqmtu1dke5fvnMIUfySpJuWTmt3w+sAIDQMMYoPyNF+RkpOndGnmNfIGBV2dSuozUtOlrbqmM1rcHn2lYdq2lR3Rjb1fZo7xp83a0Ej9HU3FTNLEjXrMKM4HNBumYWpqsky8skB4SVuwKL9oHow9v9/GhEowAAAADOwMn6NnW4JrDOyA9/AkuSZuanORNYrsowRF6474hPSpojaZ6kl0b4nku6n4+EIiBERkZKolZMz9WK6bm9Y/6A1eHqFu06FUxovXKyUduP16uhbWQ/Wp5s8Onky6f08MunRnT8qpl5+vJrFo0pfgDA+PJ4jEqyvSrJ9mrVrPx++xt9ncGkVk2rDlbU64UdB1Ttk1pMmsobfQrYAU46Qv6A1ZGaYBvcp/q0r5Wk1KQEzexOZs0qSNeswnTNLszQnKIMpSWTWMD4a2l3TrZJ588ZTjsiaaGCawoDAAAAMelITYtjOyMlUQUZyRGJZYar8utQdcsgRyJSwn1HvF7SXEm3SvrzcAcbYwokvUfByq0nQxsaIi3BYzSnKPij4GuWTZYUnJF/uKZFW4/Va+uxOm05Vq+95Y1n9EOlJM0rztAv3nouLXkAIEZkeZN62xK2teVoeus+SdJVV61WQlKKyupaT1du1bTqWG1LsHqrtnXE1b0Daev0B6uFTzkLwY0JLjI7ryhT80oyNa84Q3OLMjWnKGNMazQCPdwtBDOowMJp9yuYwFoj6YXIhgIAAACMzRFXkmhmQXrEOp+4Wxe6Y0PkhfuO+BeS3iXpWmPMO6y1vx3sQGNMqaT7JBVI6up+LyYYj8dodmGGZhdm6KYVpZKCrXW2H6/XS0fr9NLROm09VudYbG84t66aps+8eoGyvExeBYB4kJzo0azCDM0qzOi3LxAIrsd4tKZVR2uCSa2j3e0Jj9e2qralY0yfaa10vLZNx2vb9J89lb3jHiNNy0vT3OJgUmtecabml2RqTmGGEhNYZwvD699CkIQoev1Q0m2SPmGM+au19khkwwEAAABGz13l5K6CCid3AqusrlUdXQHWyY4iYU1gWWs3GWN+Jum9kn5ljLlW0t/7HLLUGLNE0lWSblGwz7uV9F1r7YFwxorolZGSqAvnFOjCOcF1tQIBq4NVzb0JrS3H6nSstlWd/tNlWlNyUnXRnALdct5UnT0td7BTAwDijMdjVJzlVXGWV+fNzOu3v6GtU4erW3S4ulmHq1p0sLpFh6tadLi6RW2d/gHOOLSAVW87wsd3VfSOJyd6tLAkU4unZGvx5CydNTlb80syqdZCP+4EVgYTbtDNWlvVff/0kKSNxpjPSfq7tbYhwqEBAAAAI9avAis/LUKR9E+eBax0rLZVc4r6T5BFZESiJ8kHJaVLequkN3Q/ejINf+xzXE/d4N2S/idcwSH2eDxGc4szNbc4U7ecN01SMKlV29qhgLVKS06k/Q4AYEDZqUlaPjVHy6fmOMattapobNehqmYdqg4mtA5VNetgVYuO17XKjrKVbUdXQNvLGrS97PTvzAkeo7lFGVo8OVtnTcnSWd3JLdbWmtjcLQQz+Q6DPqy1Lxtj1kjaKOnnkn5mjKmWNNxq09ZaOzvkAQIAAADDOOxOYBVGrgIry5ukgoxkVTef7s5ypLqFBFYUCfsdsbXWL+ntxph/SfqspHMGOXSXpK9aa/8StuAQNzweo4KMlEiHAQCIUcYYlWR7VZLt1eruit8ebR1+Haxq1r6KJu2raNb+iibtq2zS8dq2UX2GP2C1p7xJe8qbdO+W4FiCx2hBSabOmZarc6bn6JxpuZqWlxaxfuAIvyYfa2BhcMaYGyX9WlKmghP+jKSiEbz1DFeQBQAAAM5cpz+g43XOe+cZ+ZFLYPV8viOBVcM6WNEkYnfE1tp7Jd1rjJks6VwFb7wSJNVI2mqtPRip2AAAAAaTmpygs6Zk66wp2Y7x1o4uHahs1r6KnuRWk/ZXNOtE/cgTW/6A1SsnG/XKyUb9YcNRSVJBRrKWT83VeTNztXp2gRZNypLHQ0IrXvVvIUgCC0HGmAsk/UXBeyZJOirpZUn1kgIRCgsAAAAYsbK6NvkDzrlV7nWowm1mQbo2H63r3T5YRQIrmkT8jthae1LSvyIdRygZY6ZJ+pCk6yRNk9Qu6YCkv0n6P2vtcC0/AABAlEtLTtTS0hwtLc1xjNe3dnQnpRq080Sjdp5s0OHqlhG3Iaxu7tATuyv0xO7gmlo5aUm6YFa+Vs/O1+o5BZpVkE6FVhxppgILg/u8gsmrBkm3WmvXRjgeAAAAYFQOVzc7tnPTkpSTlhyhaIJmFTrbBR6obIpQJBhIzNwRG2Nu7K7aiinGmOsUXNur7zTtNEkrux/vNsZca609FIn4AABAaOWkJevCOQW6sE8rwpb2Lu0+1aidJxq0s7vial9FU7+ZaAOpb+3U2p3lWruzXJJUkuXVhXMKdPnCIl00t0BZ3qSQ/bMg9NwVWJlUYOG0FQq2AvwSySsAAADEosPVzjqOGRGuvpKk+SXOBNbe8iZZa5koGiWi+o7YBP+U3CrpfyTNV5TH62aMWaZglVWapGZJ35D0lKRUSbdIul3Bf66HjTErrbXNg50LAADEj/SURJ07I0/nzsjrHWvr8OvlsnptOVavLcfqtOVonWpaOoY4S1B5o0/3binTvVvKlOgxWjkjT5cvLNJlC4qozopBTe4WglRg4bSeu/tnIxoFAAAAMEYHq5w/f0e6faAkzSvOdGw3+rpU0diukmxvhCJCX1F5R2yMSZT0dkmfkTRLwcWJY3Hh4R8omLzqknSVtfaFPvueNMbsl/RtSQskfUzSV8IeIQAAiAqpyQlaNStfq2blS5KstTpW26otx+r04uE6vXCwWkdqhu463BWweuFQjV44VKOvPrxb0/PTdPmCYr16SYlWTMtl7awY0OzrdGyzBhb6OCxpsYL3FwAAAEDM2V/hbM83tyhzkCPDZ0pOqtKTE9TS4e8d21vRRAIrSoT8jtgYky7pDklXSpqqYDLniKS/S/qrtdbf51gj6TZJX+o+Vgomrzok3R3qWMeTMWalpEu7N3/tSl71+K6kd0haKOkjxphvWGs7BzgOAABMMMYYTc9P1/T8dL3+7FJJ0on6Nj1/oFrPH6zRcweqVdnUPuQ5jta06jfPHdZvnjuswswUXb24WK8+a5JWzcxTYoInHP8YGCV3C0EqsNDHfZLOknS1qMICAABAjLHWal+FswJrXnHGIEeHjzFG80oytfVYfe/YvvImXTKvMHJBoVdI74iNMUslPSJpkmvXUkmvkfQ+Y8yrrbXNxpi5kv4k6Zyet0vySfq1pG9Za8tCGWsIvK7P698OdIC1NmCM+b2CrQVzFUx4PR7yyAAAQEyakpOqm8+dqpvPnSprrQ5WteiZ/VV6ck+lNh6qVYc/MOh7q5radc+GY7pnwzHlpiXpykXFevWSSbpwdoGSE0lmRYuWdr9jmzWw0Md3Jb1ZwYlvD1hrN0c6IAAAAGCkqpra1dDmrN2IhgosSZpf7Exg7XVViiFyQnZH3F159YCkyUMctlrST4wxd0pap2ASx0hqkfRzSXdaaytCFWOIXdz93CLppSGOW9fn9UUigQUAAEbAGKM5RRmaU5Shd1w4Uy3tXXr2QLWe2lOpp/ZWqqJx8OqsutZO/W1zmf62uUyZ3kRduahYrz97ilbPLgjjPwHcAgE7QAVWUoSiQbSx1jYZYy5XsJPFemPM9yX9VdI+a60vstEBAAAAQ3NXX6UmJag0NzVC0TjNda2DtY8EVtQI5ZTOt0maruDaVU9J+rKkLZL8khZJ+qSkWxScRbhCUp6kgKS7JP2vtbYqhLGFw8Lu5wPW2q4hjtszwHuGZYwpHeaQkp4X7e3tamtrG+mpMQI+n2/A1xg/XOPQ4vqGFtc3tLi+A/NIWjMrW2tmZeuLr56j3eXNenJvlR7bXaX9lS2Dvq/J16X7tpzQfVtOqCAjWVcvyNekdqk0nesbCkP9+XUnryQpUV18jxuF9vah22rGMmNM3/I8o+B6wZ/p3jfc2621lnI+AAAARIw7KTSnKCNq1mme70pg7a9oViBgoya+iSyUNzE3dD/vk3SNK4mzVdKtxpgcSdcouBhxh6Q3WGsfCWFMYWGM8UrqmcI8ZOtDa22dMaZFUrpOr/s1EsdHeuDGjRt18ODBUZwao7F+/fpIhxD3uMahxfUNLa5vaHF9hzZP0rzZUuVkaXut0fYaj463DP4FvLq5Q3/cfEpSoopTrR478YzOLbDKZ+3akHD/+a1vl9xfz198br3SSDuMWHV1daRDCCX3f7zcTQMAACBm7K90JrDmRsH6Vz3mlThjaev0q6yuTdPy0yIUEXqE8nZ4iYLVV98bogLpawomsKyk38RD8qpb35Rt86BHndaTwIqe/2oBAEDcKEqVrpxideUUv2p8p5NZR5oH//27os3okeMJWnvcakGO1UXFVotyrZiAFjo+f/+xlITwx4Go9b+RDgAAAAAYK3cLwXnF0bH+lSQVZqQoNy1Jda2n1+jaU95IAisKhDKBld/9vHeIY3b3ef2vEMYSbn3nKXeM4PieXiejafo5XLVWiaRNkrRq1SrNnj17FKfGcHw+X++s6TVr1sjrZWr6eOMahxbXN7S4vqHF9T1zb+5+rmhs19pXKvTgjgrtOjVwj28ro931RrvrpUlZKbp5xWTdePZkFWWmhC3eeDLUn99tZQ3S9tNLp6YmefTqq68Ke4yxLJ67DlhrSWABAAAgJllr+7UQnBdFFVjGGM0rztTGw7W9Y6+cbNRVi0uGeBfCIZQJLK+ClVWD9vGw1tb26dd+MoSxhFvfBQ2SR3B8zy9AI17gwFo7ZGvCvn3wU1JSlJoaHQvixSOv18v1DTGucWhxfUOL6xtaXN8zMyM1Ve8rztH7XjVfByqb9MC2k/rnljKV1Q+89tWpxnb96KnD+r91R/Sa5ZP1njWzNb8kembNxRr3n99O65yRmOFN4s/3KKWkkFgFAAAAok1FY7uafM4mbXOLoute8qwp2a4EVkMEo0EPT6QD6GOwNoOxqG86eSSp5PTu55G0GwQAABh3c4oy9fGr5uuxD12gj5zVpQuLA8pMGXiuU1fA6r4tJ3T1D9brnXdv0sZDNbLWhjni+NPc7vw6PNj1BwAAAIBY4q6+SktO0JSc6Jqst2RKtmN7xwkSWNGAu+IQsNb6jDHVkgoklQ51rDEmV6cTWMdDHRsAAMBQjDGamSnNzAzox5ddqCf21umPG49qe9nAX96f3FOpJ/dU6uxpOfrQq+bq0vmFjkpwjJw7gZXh5av6RGWM+eJ4n9Na+5XxPicAAAAwEq+cbHRszyvOlCfKFlg+y5XAqmhsV2WTT0WZLFsQSeG4K36/MaZyPI6LsZuu3ZIuljTHGJNorR2swmyB6z0AAABRITUpQW9cOVVvXDlVO8oa9MeNR3X/thPydQb6Hbv1WL3ecfcmnTczT5++Zr5WTM+LQMSxrdnVUiODCqyJ7MsKtmMfT7F0LwUAAIA44m7Ht3hyVoQiGdzMgnSlJSeotcPfO7bzRINetYAEViSF4674fcPs77kxG+44KbZuup5VMIGVLmmFpI2DHHdJn9fPhTooAACAsVhSmq1vli7Vp65ZoN89f0S/e+GI6ls7+x334uFa3XjXC7piYbE+efV81sgahX4VWCSwJrrxnJJKj08AAABEzC5XBdbiydmDHBk5CR6jxZOztOlIXe/YjrJGvWpBcQSjQqjviifyTdf9kj7b/fodGiCBZYzxSHpb92a9pKfCERgAAMBY5aUn66NXztN7Lpmlv206rl8+c1gn6tv6HffE7gr9Z0+F3nB2qT59zXwVZTFrbTi0EEQfl0U6gHAxxoz0Pm+dtfbSUMYCAACA8dfS3qXDNS2OsWiswJKCbQT7JrB2nmQdrEgL5V3xhLnpGoi19kVjzDMKVmG9yxjzO2vtC67DPi5pYffrH1pr+09jBgAAiEJpyYm67cKZesv503X/tpP6/uP7+iWyrJXu3VKmf79Srg++ao7eceFMJSd6IhRx9GtytRDMpAJrwrLWrot0DAAAAMB42H2qUbbPlKUEj4naTh1nuSrDdp4ggRVpIbsr5qZLkvRhBdsCpkp6zBjzdQWrrFIl3SLpju7j9kn6bkQiBAAAOAOJCR7dtKJUNyybpD9uOKafPHVAtS0djmOa27v0jbV79NdNx/XFGxbp0vlFEYo2ulGBhQnuLkn/N8T+liH2AQAAIEq94mofOKcwQ96khAhFM7Qlpc4E1qkGn6qa2lWYmRKhiMBdcQhZa7caY94k6R5JWZK+PsBh+yRdZ61tCmtwAAAA4yglMUHvvGim3rhyqn71zCH9cv0htfRZ/FaSDlW36LbfbtIVC4v0v689S1NyUiMUbXRq9jmL8TNSkiIUCRARldbanZEOAgAAAOPrFVcbvmhtHyhJswszlJacoNY+97Jbj9XpqsUlEYxqYqOHS4hZax+UtFTS9xVMVrUquN7VZkmflnS2tfZAxAIEAAAYRxkpifrIFfP01Ccv1c0rSgc85ondlbr6++v15xePydpYW+Y0dFranQk/KrAAAAAAxDp3BdaiKE5gJXiMlk/NcYy9dKxu4IMRFiSwwsBae9Ra+zFr7Xxrbbq1Ntdau9Ja+21rbWuk4wMAABhvRZle3XnzMv3z/au1zHUDIAXb5X32vh16669fVFkdX4ckqamdNbAAAAAAxI+OroD2VzQ7xha71pmKNium5zq2txwlgRVJJLAAAAAQMmdPy9U/37dad960VAUZyf32P3ugWld/f73u2XBUgcDErsZqbne2EEwngQUAAAAghu061agOf8AxFs0VWJJ0jiuBtb2sQR1dgUGORqhxVwwAAICQ8niMbj53qq5aXKKvPbxLf9tc5tjf0uHX5+/fqcd2Veh7b1ymgoyJuUBus89ZgZVBAgsTy83GmDdLmiapS1K5pOcl3W2tfWqsJzXGDNzL9LTeBQ3a29vV1tY21o/CAHw+34CvMT64vqHF9Q0trm9ocX1Di+s7chsPVDq2ZxekKVldamvrGuQdkb++Cwu9ju2OroC2HK7UstLorhwbqfb29kiHMCrcFQMAACAsslOT9O2blunaJZP02ft26FSD82Zk/b4qXfvDZ/TDW87WBbPzIxRlZFhr1exuIcgaWJhYFrm253Q/3maMuV/Sbdbahn7vGt7xkR64ceNGHTx4cAwfgZFYv359pEOIa1zf0OL6hhbXN7S4vqHF9R3av/d51LcJXIFp1mOPPTbi90fq+pakJqi8zfRu/+WJF1UxOT46hlRXV0c6hFGhhSAAAADC6tL5Rfr3R9folpVT++2rbGrXf/1qg37wxL4J1VKwvSugTr/zn5cKLEwQrZL+Iul2SRdLOlvSVZK+Jqmm+5jXSXrAGJMUiQABAAAwNkeajWN7RmZs3OPNdMV5pMkMciRCjbtiAAAAhF2WN0nfvHGprl0ySR//+3ZVNZ1uYxCw0g+e2K9XTjbqB29aPiHWgnJXX0lSBhVYmBimWGvrBxh/3BjzY0lrFUxqXSLpfZJ+NMrz98+UO5VI2iRJq1at0uzZs0d5egzF5/P1zpxes2aNvF7vMO/AaHB9Q4vrG1pc39Di+oYW13dkqprbVfvCc46xW6+6QPOKM4Z8XzRc35Ztp/TCA7t7t8vavbryygtlTOwnsmKt4wB3xQAAAIiYNfMKtfbDF+ujf92mZ/Y7Wxk8vqtCN971vH719nNVmpsWoQjDw73+lUQFFiaGQZJXPfsqjDE3SdotKVnSBzXKBJa1tmyo/X1/hEhJSVFqaupoTo9R8Hq9XN8Q4vqGFtc3tLi+ocX1DS2u7+B2H3J2f05PTtBZ0wqU4Bl5EihS13f13GIFv4IGVbd06ESTX3OLM8Mey3hLSYmtNadpIQgAAICIKshI0e/ecZ4+dc38fjcze8qb9LqfPqeXjtZFKLrwaGjrdGwnJ3rkTUqIUDRA9LDWHpL0ePfmHGPM5EjGAwAAgJHZeqzesb1sas6okleRND0/TZOznZVfzx2IrbWj4gUJLAAAAEScx2P0/kvn6J53rVJOmnOZm+rmDt36yw16YldFhKILvUafM4GVncpSP0Afu/q8nhKxKAAAADBiW445JyGePS0nMoGMgTFGq+cUOMaeP1gzyNEIJRJYAAAAiBoXzM7X/e+/ULML0x3j7V0Bveeel/S3TccjFFlouSuwslj/CugrNqbqAgAAQJLk6/Rrm6sC65xpuZEJZoxWz853bG84VCN/wEYomomLBBYAAACiyoyCdN33/gu1Zl6hY9wfsPrUvS/rJ0/ul7XxdePQ2OZcA4sKLMBhUZ/XJyMWBQAAAEZky9E6dfgDvdseI62cmRfBiEZv9WxnBVajr0uvnGwY5GiECgksAAAARJ3s1CT9+u3n6qYVpf32feexffr2v/fGVRKrXwUWCSxAkmSMmSXpyu7NQ9baE5GMB6e1dfj16M5T+vvm42pytUEFAAAT2wuHnO32zpqSrSxvbN3jlGR7NcvVGeS5A7QRDDcSWAAAAIhKSQke3XnTUr3/0tn99t319EF969H4SWK518CKtZs7YCyMMTcYYwbtl2mMKZb0D0k9/0H8NCyBYUj+gNUPn9ivVV9/Qu+9Z4s++Y+XdcX31mnzkdpIhwYAAKKEe72oC2blD3JkdLvQVYW1bl9lhCKZuEhgAQAAIGoZY/SpaxboSzcsknGtgvOzdQf1zUf3xEUSy12BRQtBTBA/lnTUGPMjY8ybjTEXGGOWG2OuMMZ8VdIrks7uPvZZkcCKCv/voV36/hP71Og73fq0orFdb/rFBj24nQ6PAABMdC3tXdp+vN4xdsHs2ExgXTzXmcDafKSu370bQosEFgAAAKLeOy6cqW/fuLRfEuvn6w7pW4/ujUxQ46ixXwvBQYtSgHgzWdIHJf1J0vOStkp6XNLnJPX80nGvpBuste0RiRC9ntlfpbufPzLgPn/A6rP37VBNM/+aAACYyDYfrVNX4PQkw0SP0coZsbX+VY+L5hYoOfF0CqUrYLV+X1UEI5p4SGABAAAgJtx87lTdedOyASuxfv3s4cgENU6owMIE9XZJX5L0qKR9kmoldUmql7RD0s8lrbbW3mStrY9QjOjW6OvUJ//+8pDHNLd36cdPHghTRAAAIBo9f7Dasb20NFvpKbE5QS8tOVGrXdVj/9ldEaFoJqbY/JMDAACACemmFaWSpE/+Y7v6dg786sO7VJLl1XVLJ0UosjPTtxWXxBpYmBisteskrYt0HBiZP244pvJGn2PsU9fM1ysnGvXwjlO9Y/dsOKrbVs/QjIJ09ykAAMAE8NQe5zpRq13rSMWayxcU6em9p6uunt5XpS5/QIkJ1AaFA1cZAAAAMeWmFaX61o1LHWPWSh/96zZtOFQzyLuim7uFIBVYAKJJIGD15xePOcYumlOg966Zrf+5bmG/1jpUYQEAMDEdr23Vvopmx9hlC4oiFM34eNXCYsd2fWunthyrj0wwExAJLAAAAMScN547VZ+8er5jrMMf0O2/36z9FU0Rimrs+q+BRQILQPR47mC1jtW2OsY+euU8eTxGU3JSddvqGY59D+84qSYfC5wDADDRPOmqvspLT9byqTmRCWacTMlJ1YKSTMfY2p2nBjka440EFgAAAGLS+y+drbecP80x1uTr0u2/39xvTaloZq1lDSwAUe1PG53VV/OLM3XOtJze7dsvnqUEz+kFCn2dAa3dUR6u8AAAQJRwJ7AunV/o+I4Qq65eXOLYfvjlU/IH7CBHYzyRwAIAAEBMMsbof19zlq5a5GzpcKSmVR/+y9aYuaFo6/SryxUra2ABiBaVTT49vsu5WPmtq6bJmNM/RhVmpuiy+YWOY/7xUllY4gMAANGhpb1LLxx0tnR/VYy3D+xxwzLnWsuVTe168XBthKKZWEhgAQAAIGYleIx+9OaztbQ02zH+9N4qfe/xvRGKanQGqhbLSk2MQCQA0N/fN5c5kuzeJI9ed/aUfsfdtKLUsf3ikVoddbUdBAAA8euZ/VXq8Ad6txM9RhfPLRziHbFjTlGmFk7Kcow9+PLJCEUzsZDAAgAAQEzzJiXoZ29ZoYKMZMf4T586qEd2RH9v8sa2rn5jmVRgAYgCgYDVn190tg+8YenkAducvmpBsXLTnOMP7ajodxwAAIhPD77svPdaOSMvrlqju6uw1u44pc4+CTuEBgksAAAAxLzJOan66a3nKNHVX/0Tf9+uozUtEYpqZNwVWJkpiXHRJx5A7Fu/v0pldW2OsVtXTRvw2OREj25YNtkx9uTe6pDFBgAAokdrR5ee3O1c/+q6pZMGOTo2Xb/E+T2nrrVTT7nW/ML4I4EFAACAuLBqVr6+eMMix1hrh18f+es2dUXxzLhGVwIrK45mKQKIbe7qq4WTsrR8as6gx1/jWuB816km1bWHIjIAABBN/rO7Um2d/t7tBI/Rq88qGeIdsWdafprOmZbjGPvrpuORCWYCIYEFAACAuPHW86f3W4dl67F6/eSpAxGKaHjuCiwSWACiQUWjT0+4ZlLfumqajBm8QnTlzDxleZ1r+O2so6IUAIB495BrPajVs/OVn5ESoWhC500rpzq2n9pbqfIGX4SimRhIYAEAACBuGGP0v69ZrBn5aY7xHz95QFuO1UUoqqE1+pwJrOzUxEGOBIDw+dum4/IHbO92WnKCXrd88hDvkJISPLp8YbFjbEctCSwAAOJZo69TT+2tcoxdH2ftA3tcv3Sy0pMTercDVvrHS1RhhRIJLAAAAMSV9JRE/eCWsx3rSPkDVh/96zY1t3dFMLKBNbY5Y8ryUoEFILL8Aau/uFrivGbZZGWO4O+nKxc5E1gHGo3aou+vXgAAME4e3H5SHV2nW7YneoyuXhxf7QN7pKck9lvz8y+uST8YXySwAAAAEHeWT83Rhy+f6xg7WtOqrz+yO0IRDc7dQjCbFoIAImz9viqdqG9zjN26atqI3rtmXqGSE07/1OC3RrvrqcICACBe/W1zmWP7ioXFyklLjlA0oeduI1hW16bHd5VHKJr4RwILAAAAcen9l87Wium5jrE/bTymFw/XRiiigblbCLIGFoBI++PGY47txZOztGRK9ojem5GSqNVz8h1jtBEEACA+7S1v0vbj9Y6xN64sHfjgOLF8ao6Wljq/F/3m2SORCWYCIIEFAACAuJSY4NEP3rRcaX16lEvSZ+57Wb5Of4Si6s9dgUULQQCRdKqhTU/uqXCM3bpqmowZeRLK3UZwV71Rhz8wyNEAACBW/X2zs+VwUWaK1swtjFA04WGM0TsvnOkYe/FIrXaUNUQoovhGAgsAAABxa2pemj5+1XzH2KGqFv3fUwciFFF/jf1aCCZGKBIAkP666bj6LuOQnpyg1y6fMqpzXLHQmcDy+Y02Hakfh+gAAEC08HX69Y8tzvaBN64oVWJC/Kccrl0yScVZKY6xn68/GKFo4lv8/2kCAADAhHbb6hla5mrxcNe6g9pX0RShiJz6VWDRQhBAhHT5A/rrJudM6tcsn6KMlNEl1ouzvFo2Nccx9uTeqjMNDwAARJEHtp1QfavzXubmFfHdPrBHcqJHb7tghmPs4R2ndKAyOu4x4wkJLAAAAMS1BI/RN96wVAme0+2vOv1Wn7n3ZQX6lhlEiLsCixaCACLl6b1VOtXgc4z916ppYzrXVa42gk/urZa1kf87FwAAnDlrre5+/qhjbM28Qs0qzIhQROH3llXTHZN8rJV+8mT0dPqIFySwAAAAEPcWTc7Se9bMcoxtOVavv7l6toebtVa1rR2Osdz05AhFA2Ciu/v5I47tpaXZOmtK9sAHD8OdwCpvbNcrJxvHGhoAAIgim4/Wafcp5//Xb1s9PULRREZ2WpJuWz3DMfav7Sd1sKo5MgHFKRJYAAAAmBA+dPlczSxId4x969E9qnclkMKptcMvX2fAMVaQQQILQPjtq2jSsweqHWNvWTX2H6LmFGVoWl6qY+yxV8rHfD4AABA9frH+kGN7en6aLp1XFKFoIuddF81UenJC73bASt9+dE8EI4o/JLAAAAAwIXiTEvS/r1nsGKtr7dT3Ht8XoYik2pb+ybM8KrAARMBvnzvi2M5LT9Zrlk8e8/mMMbpifqFj7LFdFWM+HwAAiA57y5v0uOv/6W89f7o8fVq2TxS56cl6u6sK69+vVGjjoZrIBBSHSGABAABgwlgzr1DXLC5xjN2z4aheOdkQkXiqm9sd28mJHkcfdQAIh9qWDv1za5lj7L9WTZM3KWGQd4zM5QsKHNt7ypt0tKbljM4JAAAi6/+edq7zlJ2apDefN7Y1M+PBey6Zrdw05zrGX3tkd1SstxwPSGABAABgQvn89QvlTTr9NThgpS8+8IqsDf8NhrsCKz89WcZMvJmLACLr188ecrQzTfQYveX8M1/HYllptjKSnH+3umdsAwCA2HGkukUPbj/pGHvHhTOUPoEn4WWnJukjV8xzjL1c1qA/vXgsQhHFFxJYAAAAmFBKc9P0gUvnOMZeOlqn+7acCHssNc2uBBbrXwEIs/rWDv3u+aOOsdcsm6ziLO8ZnzvBY3RWrjOB9ehO1sECACBWfeexvepbWJSWnKDbXC30JqJbV03TrELXestr96ii0RehiOIHCSwAAABMOLevmaXp+WmOsTv/vVe+Tn9Y46hxVWDlpaeE9fMB4DfPHVFze1fvtjHSB141Z4h3jM7SPGcCa/PROp2sbxu38wMAgPB4uaxeD718yjH21vOnKyeNSXhJCR79v9ee5Rhrau/S5+/fGZFOH/GEBBYAAAAmHG9Sgr50wyLHWHmjT797/khY46hxrYFVkM7NH4DwqW5u12+ePewYu2HpZM0uzBi3z5ifbZWa4Pzh5pEdpwY5GgAARCNrrb716B7HWJY3Ue+7dHaEIoo+F84p0BvOmeIYe3xXhf62+XiEIooPJLAAAAAwIV02v0irZ+c7xn761AE1tHaGLYZ+a2DRQhBAGH33sX39qq/+exyrryQp0SMtcVVhPfgyCSwAAGLJozvL9dyBGsfY+y+bQ/WVy+evW6Q816TEL/9rlw5VNUcoothHAgsAAAATkjFGn75mgWOs0delu9YdDFsM1bQQBBAhu0426q+bnIuLv375FM0rzhz3zzon35nA2n68XsdrW8f9cwAAwPhrae/SVx7a5RgryfKy9tUA8tKT9c03LHGMtXX69f4/blFrR9cg78JQSGABAABgwlo2NUfXLZnkGPvtc4dV3hCexXbdLQSpwAIQDv6A1Rce2OlYhD01KUGfciX1x8u8bKuc1CTH2L+2nwzJZwEAgPH1o//s1ynX/dHnrlsob1JChCKKblctLtGtq6Y5xvaUN+kz9+5gPawxIIEFAACACe0TV89Xgsf0brd3BfSDJ/aF5bP7tRBkDSwAYfDb5w7rpaN1jrH3XTpbJdnekHxegke6amGhY+zel8r4EQcAgCi39VidfvnMIcfYRXMKdP3SSYO8A5L0+esWal6xc03Rf20/qf97OnzdPuIFCSwAAABMaDML0nXLyqmOsb9tPq6DIe5Tbq1VTbN7DSxaCAIIrQOVzbrz33sdY9Pz03T7xbNC+rmvXVbi2D5U3aItx+oGORoAAESar9OvT/x9u6NiOynB6MuvWSxjzOBvhNKSE/Xzt56rzJREx/id/95LFfookcACAADAhPfhy+cqtU8LjICVfvLkgZB+ZkuHXx3+gGOMCiwAodTS3qX33fOS2rtO/91jjHTnTcuUmhzaNkBnT83WrIJ0x9jfNpWF9DMBAMDYfXPtHh2sanGMfeSKeZpTlDHIO9DXzIJ0/eCW5XLn+j7xt+16Zn9VZIKKQSSwAAAAMOEVZXn1jgtnOMYe2HZCh6tbBn7DOKhxtQ+UWAMLQOhYa/WZ+3Zof6WzuvTtF8zQeTPzQv75xhjduKLUMfbQyydZ0BwAgCj0+K4K3f38EcfY0tJsvWdNaCu2483lC4v1uWsXOsY6/AHd8fuXtOlIbYSiii0ksAAAAABJ7754ltKSw1eFVdvS6dhOTUpQWnLiIEcDwJm589979aCrZc2Ckkx9+poFYYvhxnNK1WfJQbV0+PXANtroAAAQTY7XtuqT/9juGEtJ9Oi7Ny9TYgLphNF610Uz9bYLpjvG2jr9etuvX9TTeysjFFXs4E8cAAAAICkvPVlvu2CGY+z+bSd0tCY0VVi1rgqsPNoHAgiRXz97uN+i4ZneRP38rStC3jqwr5Jsry6ZV+gY+93zR2StHeQdAAAgnFrau3T77zervtU52e5LNyzW3OLMCEUV24wx+tINi3XDssmO8bZOv979u816YNuJCEUWG0hgAQAAAN1uv3imYy0sf8CGrAqr1nVTWED7QAAh8PN1B/X/HtrlGEvwGP3wluWanp8+yLtC5+2rZzi295Q3acMhWugAABBp/oDVx/+2XXvKmxzj1y2ZpDefNzVCUcWHBI/R9964TFcsLHaMdwWsPvLXbfqdq10jTiOBBQAAAHTLz0jp197hvq0ndKymddw/iwosAKEUCFh9c+0efWPtnn77vv76s/SqBcUDvCv01swt1KwCZ+Lst88djkgsAAAgyFqrLzywU4++Uu4Yn1OUoW/euETGmEHeiZFKSvDorreco9ctd1ZiWSt96V+v6HP/3KH2Ln+EooteJLAAAACAPt598Sx5k05/TfYHrP7v6fGvwnKvgZWfkTLunwFgYmpp79IH/rRFP1t3sN++T1+zQG9aOS0CUQV5PKZfFdbjuyt0sKo5MgEBADDBWWv1jbV79KeNxxzjWd5E/fJt5yrTmxShyOJPUoJH33vjct3m+i4kSX/ceExv/PkGnaxvC39gUYwEFgAAANBHYWaK3rLKVYW15YQqG33j+jk1rgqsfCqwAIyDfRVNes1PntXaneX99n3+uoV636WzIxCV040rSpWZkti7ba3006dC064VAAAMLhCw+uIDr+gX6w85xpMTPLrrLSs0syD87Ybjncdj9KUbFuljV87rt2/78Xpd/+NntW5fVQQii04ksAAAAACXOy6ZpeTE01+VO/wB/Xac+5KfanAmxIqzvON6fgATS6c/oJ88uV/X/+hZHaxqcexL9Bh98w1L9O6LZ0UoOqeMlES9bbVzosAD206GpF0rAAAYWKOvU7f/frP+sOGoY9xjpB/eslwXzimIUGTxzxijD10+Vz9403JH9w8p2Gr+7b95UV+4f6daO7oiFGH0IIEFAAAAuBRlenXjOVMcY/dsOKrm9vG7gTjpSmBNyU0dt3MDmFh2lDXohh8/q+88tk8d/oBjX6Y3UXe/4zzdcl7k2gYO5J0XzlRqUkLvtj9g9ZOn9kcwIgAAJo4Dlc163U+e03/2VDrGPUa686ZlevWSSRGKbGJ53dlT9M/3X6jp+Wn99v1hw1Fd+8Nn9NLRughEFj1IYAEAAAADePfFs9R3reImX5f+8uKxwd8wCv6AVNnU7hibkkMCC8DolDf49Jl7X9Zrf/qs9pQ39du/eHKWHv7gxbpobvTNoM7PSNFbzncm1f7xUpl2n2qMUEQAAEwMj+48pdf99DkdqnZWbCclGP3k1nN044rSCEU2MS2clKV//fdFumJhUb99R2paddPPntdn79uhOlcL+omCBBYAAAAwgNmFGbpiYbFj7DfPHlanq7phLOo7pIB1jpVSgQVghBraOvWtR/fokjuf0l82He/394nHSLdfPFP3vm+1pg0wozda3L5mlqMKK2Clrz28W9baId4FAADGor61Qx/5y1a9954t/TpL5KUn6/fvXKVrqbyKiOzUJP3ybefq/712cb+WgtZKf37xmC777tO6Z8NR+d1f/OIcCSwAAABgEO+9xLlezMkGnx5++dQZn7e23Ti205MTlJ2adMbnBRDfyht8+voju3XhN5/UXU8fVHtX/4T6gpJM/fP9F+pz1y2St09yKBoVZXr13ktmO8aePVCt/+yuHOQdAABgLJ7YVaErv79e92872W/fWVOy9OAHL9IFs/MjEBl6GGP01gtmaO2H1+jsaTn99te3durz9+/Uq3+4Xo+9Uj5hJvyQwAIAAAAGsWJ6nlZMz3WM/WzdwTO+Wahzdg/UlNxUGWMGPhjAhGat1bbj9frE37fr4m8/qV+sPzTgenypSQn6+JXz9K//vkjLpuaEP9Axun3NTJVkeR1jX3hgp5p8nRGKCACA+LGnvFFv/82LevfvN6vK1cJckl63fLL+8d7VtDOPIjML0vX391ygz756gdKS+09G2lfRrDv+8JLecNfzev5AddwnskhgAQAAAEO4Y42zCmtPeZOeO1BzRuesdSewuGEE4NLQ2qnfv3BEr/7hM3rdT5/TP14qU6e//w8UCR6j/1o1Tes+eak+ePlcJSfG1m1+WnKiPnXNfMfYqQafvrF2T4QiAgAg9p2sb9On/rFd1/7wGa3bV9Vvf5Y3Ud974zJ9/03Lo75ieyJKTPDoPZfM1n8+fomuWzpwW8etx+p166826g13Pa/HXilXIE5bCyZGOgAAAAAgml25sFizCtIdixzf/fwRXTS3YMzndLcQnEwCC4Ck1o4uPb6rQg9uP6l1+6oGTFj18Bjp2iWT9LEr52lWYUYYoxx/rz97iu7bckLPHqjuHfvTxmO6YmGRXrWgeIh3AgCAvg5Xt+hnTx/UfVsHnvgiSZfOL9Q337BUJdneAfcjekzKTtVPbz1H/3Vetb7y0C7tKW/qd8zWY/W64w8vaV5xhm5bPVOvXT5Z6Snxk/aJn38SAAAAIAQ8HqN3XDhDX3jgld6x/+yp0PHaVk3NSxvTOes6nNtTcklgARNVRaNP/9ldqSf3VOjZA9XydfZf16qvlESPbj63VLdfPEvT89PDFGVoGWP0jTcs0VXfX6+2Tn/v+Mf+tl0Pf+hiqlQBABiCtVabjtTpd88f0dqdpzRYIU5hZoo+dfV83bSilPblMWb1nAI98qGL9eDLJ/Xdx/bpWG1rv2P2VTTrf/65Q19/ZLdef/YUvfm8aVo0OSsC0Y4vElgAAADAMN5wTqm+/eheNXWvO2OtdM+Go/rstQvHdD53BRY/zgITh6/Tr23H6/X8wRo9uadCO080juh9pbmpumXlVN1y3jQVZKSEOMrwm5qXpv+5doFjskB9a6fef89L+ssdFyh1gDUgAACYyBraOvXg9pO6Z8PRAStzeqQlJ+iONbN0+8Wz4qoyZ6LxeIxeu3yKrl0ySX/ddFw/W3dQZXVt/Y5rbu/SHzYc1R82HNX84ky9ZvlkvXb5ZJXmjm3yZaTxJxYAAAAYRnpKom46t1S/fe5I79hfNh3XR66YN+ofVQNWqnetgVVKBRYQt1rau7TlWJ02HqrVi4drte14vTr8Q1dZ9UhO9OjyBUV683nTdNGcAnk88T1b+i3nT9fzB2u0dmd579j2sgZ97G/b9NNbz4n7f34AAIbT0Nqpf+8q19odp/Tsgeoh2w2nJHr0ppVT9d+XzVFRFu0C40VSgkdvOX+63rRyqh56+aTuevqg9lU0D3js3oom3fnvvbrz33u1ckaublg2WbNS2gc8NlqRwAoRY8zTki4ZybHWWr6FAwAARLm3nj/dkcBqaOvUv7af0JtWThvVeZo7pS7rrsCKzdlwAJz8AauDVc16uaxBO8rqta2sQTtPNMg/ikW1PUa6cE6BXrNssq4+q0RZ3qQQRhxdjDH61k1LtetUo47WnG6Ns3Znub784Cv639cspuURAGDCOVHfpqf3VuqxVyr03IFqdQ3zvSIjJVFvvWC63nnhTBVmxl/VNoKSEjx6/dmleu2yKVq3v0p/3HBUT+6pHLSF5KYjddp0pE5djdUDHxClSGABAAAAIzCrMEOXzCvUun1VvWN3P39Ubzx36qh+UK11TXhLSjAq4sYSiDkNbZ3aX9GkvRVN2lfepF2nGvXKyUa1dviHf7NLpjdRl8wr1BULi3XJvELlpieHIOLYkOVN0q/edq7ecNfzavJ19Y7//oWjSvAYffH6RSSxAABxrb3Lr81H6vT03ko9vbdK+ysHrq5xm5GfprecP103nztV2akTZwLMROfxGF02v0iXzS/Sifo2/XnjMd27pUynGnyRDm1ckMAKvc2S3hHpIAAAAHDm3r56uiOBtftUozYfrdPKGXkjPkeda/2rSdmptMUCopQ/YHWqoU3Halp1tLZVh6tbtLe8Sfsqms7oRwGPkRZNztL5M/P1qoVFWjkjT0kJnnGMPLbNLc7Uz96yQm//zYuOWea/fe6Imn1d+voblnC9AABxo9HXqS1H67T5SJ02HQm2G27vGnm74cvmF+q/Vk2fEO2GMbQpOan6xNXz9bEr52nTkVrdv+2kHtlxSg1tnZEObcxIYIVei7V2Z6SDAAAAwJm7dF6RpuWl6Vjt6dZWdz9/ZFQJrArXOrusfwVEh//sqdKTJz06Wd+mo7WtOlbTqrK6thGvVzWURI/R0tJsnTczX6tm5mnFjNwJ1RpwLC6cU6Af3LJcH/rzVkcrnL+/VKbyRp9+dMvZE7pSDQAQmzr9AR2qatHuU43aeizY0m1PeeOgbd8Gkpzo0aXzCnXd0kl61YIiZfKdAi4ej9GqWflaNStfX37NIq3fV62HXj6pdfuqVN0Y6ehGhwQWAAAAMEIej9HbLpiurz68u3fs0Z3lKm/wqSR7ZAsjn2h1zoqcX5I5rjECGJuvrt2vxKy6cTnX5GyvlpRma2lpjpaV5uic6TlKS+b2e7SuXzpZ/oDVR/+6zfHD3jP7q3Xdj57RD9989qgmEAAAEC5d/oBO1LfpUHWLDlW1aM+pRu0ub9S+imZ1jLC6qq+ctCRdPLdQVyws0uULi5WRwvcKjExKYoKuXFSsKxcVyx+wevDZrXr9XZGOauT4kw4AAACMws3nTtV3H9unts7gOjf+gNWfNh7Vx66aP6L3n2hxJrAWTsoa9xgBhEeix2h2YYbmlWRqfnGGFk/J1pIp2SrIYF278fLa5VPkTUrQh/681dFO6WSDT2/8+Qt6+wUz9LGr5lHRBgAIO2ulyqZ2nTwZbDN8uLq5+7lFx2pb1ekfRVnVAJaWZuvSeYW6ZH6Rlk/NUQLtAXGGEjxGiyfF1gRKElgAAADAKGSnJun150zRnzYe6x3704vH9IFXzVFKYsKQ721u71KNaw2sRSSwgKiXlpygaXlpmp6fprlFmd0Jq0zNLEhXciJrMYXa1YtL9Oc7ztcdv39J1c3tvePWBtu4/mv7SX3oVXN066rp/PsAAIyr3vUwa1t1vLZVx2pbdbCySTuPJKiyTerY8Ny4fE5ygkdLS7N17ow8rZyRqxXTc5WTRqtcgARW6C0wxmyStEBSkqRqSS9JulfSn621sbuCGgAAwAT1tgumOxJY1c0demTHKb3+7NIh37e3otmxnegxmlucEZIYAYzOtLxUzZyRr+Isr6bmBpNV0/PTNC0vXQUZyTKGWc+RdM60XD3y4Yv0oT9v1YZDtY59tS0d+vKDu/Tb54/oI1fM1XVLJpPIAgCMSCBgVdPSofIGn8rqggmqnsfx2uB6mF0DLlB1Zt8LJmV7tWhSllbMyNXKGXlaMiVb3qShJ8MBExEJrNAr7n70mNL9+P/t3XuYJVV96P3vry/T3dNzYQYGhts4AoJgkCgC4hsQz1GSE2I0xiiJ9xwvT85JYnI85uJ53wQ5OZiL5tXzenw0YESN8ZZE1CA6XgAxjwreicAgCAgKA8PMwEz39H29f1T1dHVP7+7eu7t6X+r7eZ797FW71q5a9evf9NTqVbXqV4E/jogXp5Run/ebC4iIhf86AlunC6Ojoxw8eHChuqrTyMjIvGWtHGNcLuNbLuNbLuNbLuO7NE/Y2Mu524/g5nv3Hfrs7268m188bfOCf+S+9f7Zz9c56ai1TI2PcdBLmlbE6Ojo4pWkGj74qqfxpCc9qdnN0AKOXt/PR177TP7+a/fw9h07Z00pCHDfo8P84ce/z19edwevPH87v3XuNjYNevW6JFXR8NgEjx4YY8/Q7Neux0d48PERdj02woOPjfDw/pFlT/W3kI0DvZy0ZZCTt6zj9GM3cPqx6znj2A3eXSUtkQNY5ZkCvgx8Dvg+8CiwHng68AbgdOAM4PqIODel9JNaG6rh/qVW/OY3v8ndd99d5+a1VF/96leb3YSOZ4zLZXzLZXzLZXzLZXwX9nNrgpuZuUry9ocO8O5PfonTjqjdAf7q3V3AzF0BG6f2s2PHjjKbWSm7d+9udhMklay7K3jdhSfxvDOO4YrP3c6O23YdVmfX46P8zRd28q4v/4iLTt3CJU891gfeS1IbG5uYYt/wGHuHx9k7PMbeoZny9MDUo0Nj7BkaZc+BMfYMjzEyPrX4hldIf28X248c5KQtgzzxqEGeeNQ6nnjUICcdNeiFFNIyefZWnhellPbN8/lNEfEe4ErgVWR3Z70TeNHqNU2SJEnLdebmxJb+xCMjM3dcfflnseAA1gNDs+/OOm6wvKs9JamTbT9qkL975TO45d49XPG52/nuT/YdVmdsYoodt+1ix2276Ovp4lknH8kFT9rChadu4eQtg04LKUmrLKXEwfHJbPBpaIx9w+PsGR7LBqeG8sGp6YGqoay8b3icA6MTzW76oedhbtu8lmM3rGF4171sGYAXX3wB248+gq4u/0+RylDpAayI6AFWYsKW16SUri5+UGPwanrdeES8FjiP7NlYvxYRx6eUflrHPk9cZP1W4BaA8847j5NPPrmOTWsxIyMjh65Kv/DCC+nv729yizqPMS6X8S2X8S2X8S2X8a3PY0f+lMuu3XloeedjXRx/5nk85dj1h9WdmJrizTffCMwMWr3gwrM5/6TNq9HUSnDWAal6ztm+mX/5nWex47ZdXHXTj7nl3r3z1hudmOL6nY9w/c5HANi6oZ+zt2/i6ds2cfYTNvHkret99ogk1SGlxOMjEzN3Rg3NDD7ty++M2le4S2q6PHf611bR3RVs3dDPiZsHDg1UnZi/b9u8ls2DM8/DPHjwIDt23ANkz7Jy8EoqT6UHsJoppTQREe8H/ib/6NnAP9bx/QcWWl+8kqyvr4+BgYFGmqkl6O/vN74lM8blMr7lMr7lMr7lMr6Lu/SZT+TdN97D7gNjhz577033cdWrzjms7g8e2MfYnPn1f377FgYGnFZkpfT19TW7CVqGiNgG/D5wCbANGAXuAj4BvCelNNzE5qmFRQS/+JSt/OJTtvKDB/bx91+7h2tvfXDBZ5o89PgI1/7gQa79wYMAdAVsP3KQU49Zz6lb1/Pkres5acsg2zavZe0a/3QiqfONjE+yd3iMRw+MzZqab28+PV/xsz1D2SDVxFTrzybQ2x1sHlzD5sE+Ng/2ctS6Po7dOMDWDX1s3TjA1o39HLuxn6PW9dHtQJTUcip9FpYPIp2+Apt6sMHv3VYoH78C7ZAkSdIq6u/t5jX/1xP5my/M3IX1pdsf5vv37+OsE4+YVXfHD2c/p2Xb5gE2Oye+BEBEXAJ8BNhY+HgtcE7+em1E/HJK6cfNaJ/ax1NPOIJ3Xvo0LvvVp7Djtl1c+4MH+be7di/6R9apBD/ePcSPdw/x+R8+NGvdlvV9PCG/Av+EzWs5en0fW9b3cfT6Po7e0M+WdX2s6emqsWVJWn1TKTE0Dgcm4Ns/2cfQxGMzA1HTg1DDY7M+GxqbbHazl2RDfw+bB9dwxNo1bFrbe2hgavNgH0cOrskGq9atYfPa7H19X49TxkptrNIDWAAppTuauHt/e0qSJLW5Vz1rO+//2j3sGZq5C+tvv3gnH/ztc2fV+8KcP4g+97Qtq9I+qdVFxFlkd1mtBQ4AbwOuBwaAS4HXAacB10bEOSmlA81qq9rHEWvX8JJnnMhLnnEi+4bHuOlHu/nqnY9w049289DjI3Vt65H9ozyyf5Rv3Tf/9IQAm9b2cvT6fo7e0MemtWtY39/DhoHe7L2/d3Y5X7eur4eB3m6nnpK0qJHxydmDT8XX8Bh7DswMSO3J75aaSvmffb/3neY2voburuCIgV6OWNs7a0Bq0+AaNk2X167Jl7PyxoFeerq9YECqksoPYDXZGYXyz5rWCkmSJDVsXV8Pb7jwJN523cx1UTfe+QjX73yY55x2NAB3P3KAHz08+2/uzz3dASwp906ywasJ4OKU0tcL674SET8C/prs+cH/Dbh81VuotnbE2jU8/6zjeP5Zx5FS4u5HDvDt+/bynfv28e2f7OWuh5c/Jrp3eJy9w+Ps3LW/7u/29XTR39vNQG83A2u66e/tpr+3K1vu7aZ/TTf9Pd0MrMk+689fPUzx411Bbxdw+8OsG+inuyvo6erK3ruDnjnL2fqYXa8r6C7U7ekKB9WkkkxOJfaPjPPYwcNf+4bHD5u+b/p1cLy1745a093FpsFskOmwAam1+YDUYKGcD/T7u0bSYhzAapKI6AF+u/DRV5vVFkmSJC3PK8/fzpU33cPuA6OHPvvzT/+Q8//wSPp7uw+7+2pDb+KsEzasdjOllhMR5wAX5YvvnzN4Ne0dwGuA04E/iIi3pZTGV6mJ6jARwSlHr+eUo9fz0nO2ATA0OsFdDx9g56793PnQ/ux91352PT66yNZWxujEFKMTUzx2sJG07gbgH+769xVtUwTzD3TNGvDKPu+OIAK6IujqIl8OuqY/K6zv7irUzd+n63Z3za473/ridottmil3zTNQl39eqDtrfffMwF22nJUnxsf42TB0B9y3Z5jBgURv90wserpnx8Y/xHe2qanE0NgEw2OTHBidYGh0ggOjEwyPTjI0NlH4bJLh0QmGxiYOH6QaHmf/6ASpxR8b1RWwaW02Fd+mwZmp+DbnnxU/nx6UWrum22n6JJXCAawSRMRzgO+mlPbVWN8LXEl2BSHAZ1NK969S8yRJkrTCBtZ080e/dBp/9E8/OPTZT/YM844dO3nTxafxz99+YFb9MzcnuuzkSwAvLJQ/MF+FlNJURHyIbGrBTWQDXl8svWWqjMG+Hs468YjDnl14cGyS+/cOc9+jw9z36BA/2TPMg4+NHJpS8OH9I4xPtvhfohuUEoxPpvz4pprdnCbK/mx2xfe+sWjNriAbCOuePXDWW1ieHhzrnlvO34sDZIcNvnXXHpTL9tE1a1Bu7mBg5IOJMwODcwcYF69TXJ6pv/Q6E1OJsYkpxianGD44wr37swHCO3cdYHDtxKH4Tb9PTSUen3O30oGRCcYnE5NTiYmpxOTUFJNTMDk1lS+nwvtU9j6ZmEyFdZMz3537ncnC8sj4zGDVcJs8H2o+a9d0c+S66QGnfBAqLx85OPt9cz5NnwOyklqFA1jleBXwmYj4DHADsBN4HFgHnA28gezqQYCHgTc2oY2SJElaQS9++gl84pb7Zz0j5cqb7uHKm+45rO5TN3fmHzylBlyQvw8B316g3o2F8i/gAJZWwcCabk49Zj2nHrN+3vUpJfYNj/NwPpj18OOjPLx/lMcOjrN/ZJzHRyay94Pj7B+Z4PGR7L2d/xCu2qYSjE1O4Y+3HtmfJd9+681Nbkf76OmKWXc/HTnYx6bB3kN3R2WDUX2s7Zni1lu+zmAvXPJL/4GBgYFmN12SGuIAVnnWAb+Vv2q5Fbg0pXT4XzUkSZLUVrq6gr/4tZ/jkv/9NSanag9QHb82cepGB7Ck3PSFfXellCYWqHdHoXx6zVpzRMQJi1TZOl0YHR3l4MGDS920lmBkZGTecifp74JtG3vYtnEd2Z8BFjc+OcWB0ezOjpHxSUbGpzg4PsnoRPY+Mj516POR8UkOTi9PTM2qf3Bsgocf3cfYFHT3DeR3oRx+N8mhcqvPWyZVTG93sLG/lw0DPWzo72HjQC+bB3vZNDA9NV82MHXE2rw82Mv6vp4lTdU3MjLC/X0zZa2sKvz/1kzGt1yjo6szRfJKcQCrHH8FfA84HzgD2AJsBkaBXcC3gH8CPpVS8tocSZKkDvHkrRu4/AVP4X98av5nkfT3dPHKJ43hrCwSREQ/cFS++MBCdVNKeyNiCBgETqxjN0ueqv2b3/wmd999dx2bVj2++lUf+7xU/flrlgB681fRcdOFA4tuN6VsMsCplL0m57zPLU8xZzkFk3PrJEjMvE/vI00vF8tz182znIhDy4dts1B3KmXlyRrHNHs5DtWZf/2ceDD7u9J8uiPR3w193dDXlb33d6dsOX8NdMPansRAD6ztycpru7PyQA+s6YKIGs++G8pe48Aj+atR/v4tl/Etl/Fdebt37252E+riAFYJUkq3A7cD72xyUyRJkrTKXnbeEzg4NslfXHv7Yeve8p9OZePu+Qe3pAoqzsu2+F/fsz/nDbLU21wkzRIB3WTPHGrMatzB1Vp3iRUHzIqDd/MOfM07GBZMTc0Mis1Xv/agWmTfm/P9RfcPTE7FvAOIxc/mDh7CfAOKhRiQfXnuZ7W2n5g/0YJET1eWhzNxXTgp+7qyQaCBnmxQqKcr0UX23K7u/Plds14c/vmsZdK83+2es43erunBqJQPUM0MVvV0NZRSkqQ6OYAlSZIkrbDXXnASx2zo59Pf+ymPHRynuyt4wc8fzwvP3MKOHQ5gSbniTSZjS6g/Pd9JPQ/yWOxura3ALQDnnXceJ598ch2b1mJGRkYOXTl94YUX0t9/2H1FWgbjW67p+AZw0bONbyNSSvlAW2IqJbq7gp6ubORnbv72ruljcioxPjXFxGQ27WUErOvrobfb0aJ6+fuhXMa3XMa3XO0244ADWJIkSVIJnn/WcTz/rONmfebzdaRZig81WLOE+vnTPFjyP6SU0oJTExafI9LX1+dD7kvU399vfEtkfMtlfMtlfMtlfMtlfMtlfFdeX1/f4pVaiJcwSJIkSZKaYX+hvJRpAQfz96VMNyhJkiSpzTmAJUmSJEladSmlEWD6KdInLFQ3IjYxM4B1f5ntkiRJktQaHMCSJEmSJDXL7fn7KRGx0BT3T57nO5IkSZI6mANYkiRJkqRm+Vr+PgicvUC9ZxfK/1ZecyRJkiS1CgewJEmSJEnNck2h/Jr5KkREF/DKfHEfcH25TZIkSZLUChzAkiRJkiQ1RUrpZuCmfPE/R8T581R7E3B6Xn5XSml8VRonSZIkqakWmmNckiRJkqSyvZFsWsABYEdEXEF2l9UAcCnw+rzencA7mtJCSZIkSavOASxJkiRJUtOklL4bES8F/gHYAFwxT7U7gUtSSvtXtXGSJEmSmsYBrM7VPV146KGHGBgYaGZbOs7BgwfZvXs3AA888IDxLYExLpfxLZfxLZfxLZfxLZfxLddDDz1UXOyuVU+tJ6X02Yh4KtndWJcAJwBjwF3AJ4F3p5SGS9i1/aYS+TuvXMa3XMa3XMa3XMa3XMa3XMa3XO3WZ4qUUrPboBJExDOAW5rdDkmSJKlJzkkpfavZjVBrs98kSZKkCmv5PlNXsxug0hzd7AZIkiRJTeT5sJbCPJEkSVJVtfy5sFMIdq47CuVnAj9tVkM61FZmrtQ8B3hogbpqjDEul/Etl/Etl/Etl/Etl/Et1/HAN/LyHQtVlHL2m8rl77xyGd9yGd9yGd9yGd9yGd9yGd9ytVWfyQGszjVWKP80pfRA01rSgSKiuPiQ8V15xrhcxrdcxrdcxrdcxrdcxrdcc+I7VqueVGC/qUT+ziuX8S2X8S2X8S2X8S2X8S2X8S1Xu/WZnEJQkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUhzAkiRJkiRJkiRJUktxAEuSJEmSJEmSJEktxQEsSZIkSZIkSZIktRQHsCRJkiRJkiRJktRSIqXU7DZIkiRJkiRJkiRJh3gHliRJkiRJkiRJklqKA1iSJEmSJEmSJElqKQ5gSZIkSZIkSZIkqaU4gCVJkiRJkiRJkqSW4gCWJEmSJEmSJEmSWooDWJIkSZIkSZIkSWopDmBJkiRJkiRJkiSppTiAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYHWAiNgWEb8TER+PiJ0RMRQRIxHxQER8OiJ+MyJ6Vnif50fEhyPi3nxfD0bE5yPi0pXcTyuIiHURcWFE/PeI+ERE3BMRKX/du4L7uaiw3cVel63UfpttteI7Z5+Vyd9pEbE2It4cETdHxJ6IOBARt0fE2yNi2wpsvyPzN//9+vY8VkN57G7O83XtCu7n0oj4Qp6LI3lufjginrlS+2hFZcY3Ii6rIycvWpkjar6IODoifiUiLo+I6yJid+E4ry5pn5XJ39WKb4Xz9+kR8ZY8tvdHxGj+/9WdEXF1RFxQwj4rk79VF/aZShX2mUq1WvGds8/K5O+0sM/UkLDPVKoy41vhc077TCVarfhWOH+r12dKKflq4xdwOTAFpEVetwDbVmiffwZMLrCvzwD9zY7NCsb4+gWO9d4V3M9FS/g5Tr8ua3Zc2i2+hf1VKn/zYz4ZuGOBY94H/PIy99Fx+Qtcksem1nHcAZy0zH30A59dYB+TwP/T7Fi0Y3yBy+rIyYuaHY8VjOtCx3n1Cu+rcvm7WvGtYv4CNy7xeD8ErFmB/VUuf6v8wj7TasT4+gWO9d4V3M9Fdfx+vKzZcWm3+Bb2V6n8zY/ZPlNjx2SfqY3jSwXPOfPjXug4r17hfVUuf1crvlXMXyraZ1rRK8zUFMcBAQwBnwK+DPwIGAFOB34fOAd4BvCliHh6SulAozuLiNcCb80X7wauAG7N2/FG4DnA84GrgJc3up8WE4XyXuBbwPnAuhL3+dtkHehaHi5x36tt1eJbxfyNiHXAvwKn5R9dCXwMOEh2vH8KbAQ+GRHnp5R+sAK7bfv8jYizgE8Aa4EDwNvI/nAwAFwKvI4sptdGxDnL+L36fuBX8vL1wLuAnwFnAm8h60hfHhEPppSuanAfLWcV4zvtzEXW37PM7beq+4HbgYtL2n4l87eg7PhOq0r+Hp+//wz4JHAT8BOgm+y84E15nVcAPcBvLXN/Vc/fqrHPVD77TOWyz1Qi+0yNsc9ULvtMq8Y+U7nsM62savaZmj1y6Gt5L+CvgD8C1tdY3w18nJmR0YZHRYEjyE6WE3AfcNQ8+/pMYV8XNjs+KxTj15P9gz+l8Nm9lHs14UXNPu4OjG9V8/eywjG9eZ715wPj+fqvLGM/HZW/zFzlOg6cP8/6NxeO988a3MezC9v4DNA9Z/1Rea4mYA9wRLPj0mbxPZT7zT7eVY7tW8lOMI/Jl7cXYnn1Cu6nkvm7ivGtXP6S/eHwJXNzqbD+KGBnId4XLGNflczfKr+wz7QaMbbP1BnxrWr+XlY4JvtMSz8e+0ztH99Dud/s413l2Npn6oz4Vi5/qWifqemB91X+CzgSGM0T6vvL2E7xP8dLa9Q5AZjI63y22cdeYkzvxc5Yu8W3cvkL9DLTAb0N6KpR772F2Jzd4L46Jn/JrsCePpb31qjTlcd0+j/q3gb2c23+/QnghBp1Li205U3Njk2bxbdyJ7M14lBWZ6GS+buK8TV/54/LrxTi/a5lbMf89TXfz9w+08rHtIxz+o4552zR+FYuf7HP1Gjc7DN1Rnw950z2mdo4vubv/HHpuD5TF+p4KaVHgelb3E9exqZemL8/DvxLjX09AHwpX3xefiu+1ApemL9XKX8vIruKEuCDKaWpGvWuLpRfVGJ72sULC+UPzFchj+WH8sVNZLFesjy3/mO++MU89+bzL2Q5C53zs3lhoVxKfFWuiuevmuuGQrmhc1rzV7XYZ5KAaubvRdhnasQLC2X7TCvvhYWyfaY2VPH8VXPdUCh3RJ/JAazq6Mvfa52MLSgi1gDn5otfTymNLVD9xsI+z2lkf9JKqnD+XlAo31izVjaH/lBe/oXymtM2puM2BHx7gXrFmNYbt3OZ+b1c82eT5+o3pr8TEb117qcVrUZ8Va4q56+aa02h3NA5LeavFmafSZVV4fy1z9QY+0zlss/U/qqcv2qujuszOYBVARFxNNnDiQHuaHAzTyJ7+NtStlFcf3rNWlrIFRHxQESMRcTeiPhuRPy/EXFqsxvWpqqav8X21zzulNIE2QOa536nUe2ev9MxuCuPTS3LyZUl/WzmrO8hy+V2txrxnSUivhgRj+Y5+XBE3BARfxIRm5az3Qqrcv6uOvN3lmcXyo2e05q/mpd9prbU7uecraaq+WufqTH2mcpln6n9VTl/V535O0vH9ZkcwKqGNzNzIvqJBrdxYqFc67bBaffX+J6W7nzgeLL5uI8Afh74A+D2iLgsIqJpLWtPVc3f6fYPpZT2LVJ3+ri3RETfgjUX17b5GxH9ZA+ihEVyJaW0l5mrMOvNlUrm5CrGd67nApvJcnIL2Qnd24AfR8QLlrntKqpk/jaR+QtERBfwJ4WPPKfVSrPP1H7a9pyzRVU1f+0z1ck+U7nsM3WMSuZvE5m/dG6fqWfxKmpnEXEe2UkQZAn3ngY3tb5QPrBI3aFCud3nw15tD5LNH/o14MdkD8rbBjwfeAXZL+I/J7sd9C1NamM7qmr+Th/3YscMhx/3aAP764T8rSdXIIvbIPXnStVzEsqN77RbgWuAm4GfkeXgacDLgIvJ/ljwzxHx/JTSdQ3uo4qqmr+rzfyd7Q+ZmdrqUymlbzW4HfNXh7HP1HY64ZyzFVU1f+0z1c8+U7nsM3WGqubvajN/Z+vIPpMDWB0sIo4B/ons55yAV6WUhhvcXH+hvNBc2DD7JG6gwf1V0S3AE1JK43M+/w5wTUS8D9gBbAT+JCI+kVL63iq3sV1VNX+nj3uxY4blH3en5G89uQIzcas3ZlXPSSg3vgDvTCldNs/n3wQ+FBFvAN4LdANXRcQpKaWDDeyniqqav6vJ/C2IiGcDf5kvPgz8zjI2Z/5qFvtMbadTzjlbUVXz1z5T/ewzlcs+U2eoav6uJvO3oJP7TE4huEoioici0gq8Xr3E/a0HrgVOyD96S0rpK8s4hJFCeU3NWpnirfSr8othteNbhpTS0DwnssX1NwP/NV+MQrl0HRDfqubv9HEvdsywzONu5fytUz25AjNxqzdmLZ2TJVqt+LLYFDAppfcBV+WLxwEvqncfFVbV/F015u+MiHgK8CmywYVR4CUppV3L2KT528LsM5WrA87pW/qcswPiW9X8tc9UP/tM5bLP1Bmqmr+rxvyd0el9JgewOlBk8+V+Gjg7/+hvU0p/ucBXlmJ/obzY7YCDhfJSbnfW0n0ceCwvP3uhipqlqvk7fdxLuYV3NY67HfK3nlyBmbjVG7Oq5ySUG9+lel+h3Ko52Yqqmr+tpuPzNyKeSHYl+iZgEvjNlNKNy9ys+SvAPlOHa4dzzlZU1fy1z1Q/+0zlss/UGaqav62m4/O3Cn0mpxBcJSmliYg4fQU29eBCKyOih+wBbc/JP7oqpfSmFdhv8YFtJ9SslSk+sO3+mrVW0GrFt9ny47wTOIfsga+rud92jm9V8/cB4DxgMCKOWOTqlOnjfiSl1Mhc7otqVv7WI6U0EhG7yR6au2CuRMQmZv6jrjdX5ubkQvMSr3pOlmUV47tUtxXKLZmTLaqS+duCOjp/I+I44EtkV0sm4LdTSp9agU2bvy3MPlO5OuCcfknsMzWsqvlrn6lO9pnKZZ+pY1Qyf1tQR+dvVfpMDmCtopTSHWVuPyK6gA+TPfwTsit33rBCm7+TbBS3G3jyInWL629fof0vquz4tpBoxk7bPL5Vzd/bgF/Py08GvjFfpfyPOCfni2Ufc1Pyt063AxcAp0RET0ppoka95eRK8SRqqTk5AdxV535a0WrEd6naIR9bUZXzt5V0bP5GxFHAF4GT8o9+L6X0oRXavPnb4uwzlavNz+nrYZ+pflXNX/tMjbHPVC77TO2vyvnbSjo2f6vUZ3IKwc7yPuDSvPyvwCtSSlMrseGU0hhwc754fkQsNP/l9C2Zoyw8Qqs65SfNp+aLP2tmW9pJhfP3a4XyQrdKP4OZq7b+razGtFH+TsdtkJlpheZTjGm9cbuFmQdh1vzZ5Ln6zOnv5Lnc7lYjvkt1RqHcyjnZaqqcv62kI/M3IjYCX2Dm+P4kpfR/VnAX5q/sM3W4NjrnbCkVzl/7TI2xz1Qu+0ztr8r520o6Mn+r1mdyAKtDRMTfAq/NF78MvHihh4M26Jr8fQM1HnwXEScAz51uR0pp/3z11LBLyeIPsNz5TKvmmvy9Svl7AzPzp78qImpdefLqQnklbjWupV3y95pC+TXzVciv3n5lvrgPuL6eHeS59eV88bl57s3nRczErMyfzWq6plAuJb51KF5x38o52VIqnr+tpOPyNyLWAtcCT88/+l8ppb9ayX2Yv9Vmn6ky2uWcsxVdk79XKX9vwD5TI64plO0zrbxrCmX7TG2o4vnbSjoufyvZZ0op+WrzF3AZ2TyXieyKi8EGtrG9sI0batTZTPafYgLuBY6cs74b+ExhO89pdmxKjPm903FYifiSPWjvokW2cS6wN9/GFPCMZsehXeKb16lk/gKXF47pzfOsPx8YXyR2lctf4Kt5W8eB8+dZ/+ZCTC6bZ/2rF1qf1/kPhTqfBrrnrD8KuC9fvxfY1Oy4tEt8gTOBUxZpwxsK23iQBv7vbIfXnH+/Vy/xO+ZvE+Nb1fwF1pBdRTh9XO9scDvmr69auXFZ4edun2l1Yn7vdBxWIr504DlnK8U3r1PJ/MU+U6Nxs8/UxvGlouecNY6z+O/36iV+x/xtYnyrmr9UtM/kM7DaXET8HvDn+eJPgT8Cnlj7oiEAdqYGrjRMKe2JiD8G3gs8AfhmRPwv4Fayh8X9ATMPQv5oSun6evfRiiLiFOAX5ny8bvo9Il49Z93nU0oP1bmbjcD1EfEDsittvk32y3US2EY2R/8rgN68/ttTSu0+VQOwavGtbP4CfwO8lGwair/O4/0x4CDZ8b6F7HmIB8li0IhOzN83kv1xawDYERFXkF3RNkB2VeTr83p3Au9oZAcppa9ExMfy7f0q8MWIeCfZbe1nAv+DLH6Q3Q6+t7FDaUllx/ds4KqIuB64juzf+aNkuf5k4OXA8/K6k8AbUkpDjR1Ka4mIXwBOKXx0VKF8ytzfqSmlqxvZT1Xzd5XiW9X8/ShwcV7+CvD+iPi5BeqPpZTubGRHVc3fKrPPVD77TOWyz1Q6+0yNsc9ULvtMJbHPVC77TKWqZp+p2SOHvpb3IrvdPdX52j7PdrYX1t+wyD7fSnY1UK3tXwv0Nzs2KxjjV9cZ34vqje+c9Qu9Jsg639HsuLRTfKucv/kxn0J2UlvrmB8DfmWB71cyf8k6kY8tcDw7qXHFD0u4miWvN5DnXK19TC70/XZ+lRnfOn6v7AZe0OxYrHBcr67nd6r523rxrWr+1hPX/HWv+eurjvy6oYEc2z7PdrYX1t+wyD4rdc5Zx++u6ddF9caXDj3nbJX4Vjl/82O2z9RY3OwztWl86/i90lHnnPmxX13P71Tzt/XiW9X8rSeu+eveTshf78BS3VJKfx4RXwD+K3ABcAzZNAPfBz6QUvpoE5vXrn4G/AbZ1ATnAseTXaHQT3ayspOs431VSune5jSxM1Qxf1NKd0XE08iO+TfIOmdrgPuBzwHvSindt4xddGT+ppQ+GxFPJbvy7RLgBLKHWN4FfBJ4d0ppeJn7OAhcEhG/RXYCcRZwBLALuCnfx9eXs49WVXJ8Pwf8Z7KcfBrZv/MjgQD2kP17/zzZ9AWPL+c4qqzK+Vsy83cVmL8qWxXPOVdBR55ztqIq5q99psbYZyqXfab2V+X8LZn5uwpaJX8jH02TJEmSJEmSJEmSWkJXsxsgSZIkSZIkSZIkFTmAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYEmSJEmSJEmSJKmlOIAlSZIkSZIkSZKkluIAliRJkiRJkiRJklqKA1iSJEmSJEmSJElqKQ5gSZIkSZIkSZIkqaU4gCVJkiRJkiRJkqSW4gCWJEmSJEmSJEmSWooDWJIkSZIkSZIkSWopDmBJkiRJkiRJkiSppTiAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYEmSJEmSJEmSJKmlOIAlSZIkSZIkSZKkluIAliRJyxARvRGxMyJSRLy02e1ZTES8J2/rB5vdFkmSJEmdzz6TJKlRDmBJkrQ8vwecCtwOfHIlNxwR78s7TikinlPnd/9j4bvvLqx6GzAGvCIizlnJ9kqSJEnSPOwzSZIa4gCWJEkNioh1wJ/mi5enlKZWeBcfKpRfUed3X14of3i6kFK6H/ggEMBfNN40SZIkSVqYfSZJ0nJESqnZbZAkqS1FxJuBvwbuB7aX0BkjIu4CTgb2A8eklA4u4TsDwC5gPbAzpfTkOetPA+7IF89NKd2ysq2WJEmSJPtMkqTl8Q4sSZIaEBHdwO/mix8toyOWm76icD3wgiV+54V5fShcSTgtpbQT+E6++MblNE6SJEmS5mOfSZK0XA5gSZLUmOcB2/LyP5S4nw8D07dLL3VKjOl6idpt+0j+/usRsbHBtkmSJElSLfaZJEnL4gCWJKltRURvRPwwf+juv0dEzxK/9938Oz9dxu5fkr//KKV06xL2eW5EXBkRd0bEgYgYiog7IuL/RMSTan0vpXQP8LV88eKIOHqR/RxD1lEEuDGldF+Nqv+cv/ez9KsUJUmSJLUR+0zz7sc+kyS1CQewJEnt7L8DZ+TlN6aUJpb4vW/l78dFxEkN7vs5+fs3FqoUET0R8R7gm8BrgScBg8Ba4DTgvwA/jIjXLbCZ6SkxeoDfXKRdv5nXK37vMHkn7cF88aJFtilJkiSpPdlnOpx9JklqEw5gSZLaUkRsBf7vfPG6lNKX6/j6DwvlsxvY9wnA9nxxsYf5vh/4nbx8HfBy4FzgHOB1eVt6gb+LiOfX2MYngOkHES82Jcb0+mHgnxapO932CxapJ0mSJKnN2GeqyT6TJLUJB7AkSe3qLWRX5AFcXud3HyiUT2lg388qlL9bq1JE/DrwynzxdSmlX04pfSSldEtK6VsppauAZwBfyev87/mm9EgpPQ58Ol88OyJOr7G/M4Cn54vXpJT2L3Ic387fT1lsmg1JkiRJbcc+0+H7s88kSW3EASxJUtuJiCOB1+eLX0spLTglxTx2F8rHNtCEEwrlhxeo96f5+6fyjtdhUkojwO/mi9upPTVFcWqLWlcUFj+vORVGQbHtxy+hviRJkqQ2YJ/JPpMkdQIHsCRJ7ejVQF9e/vsGvj9VKK9p4PtbCuW981WIiOOZmWrjEwttLKV0OzMdxPNrVNvBzPzrL4uImLO/AF6WLz4IfGmhfeb2FMpbataSJEmS1G5ejX0m+0yS1OYcwJIktaOX5O9TwKfmroyIcyLiYxHxkYiY7/+6wUJ5uIH9by6U5+2MkU1zMe2jEZEWegFH5XW3zrexlNIk8I/54jbg2XOqXAScmJf/Ma+/mGLbj1xCfUmSJEntwT6TfSZJansOYEmS2kpEbGDmKr3vpJT2zVPtl4CXAuellKbmWX9iofyTBpoxUigP1KjT6PzoaxdY98FCee6UGPVOhQGz236wZi1JkiRJbcM+0yH2mSSpzR320ENJklrcU4DuvFzrYcDTDwy+s8b6pxXK365RZyGPFMqbgfke/NtdKL8M+MESt13r6kRSSrdGxPeBs4AXR8TvppQORsQA8Ot5te+nlJa6r+JVkY/UrCVJkiSpndhnss8kSR3BASxJUrs5pVC+e+7KiOgHLswXH6ixjempJEaAWxpoQ7Hjsgm4b546jxbKKaX07w3sZz4fBP4W2AD8KvBx4AX5Miz9SkLI2j7NzpgkSZLUGewz2WeSpI7gFIKSpHazsVDeN8/6X2ZmSomhuSsj4nTg9HzxupTSyNw6S3BroXxqjTrFKx0vbmAftfwjMJGXXzHnvTjn+1JMt30I+PHymyZJkiSpBdhnss8kSR3BASxJUjtbN89nvwekBdb/fqH8gQb3+y1m5j8/Z74KKaW7gNvyxUsjYluD+5q73V3AjnzxFyPi55jp7O1IKT1Ux+am2/6NlNLEgjUlSZIktSP7TPaZJKltOYAlSWo39xfKFxZXRMSLgYuAm/KPzpmz/lnAa/PF7wL/2kgDUkpjwM354rkLVP2L/L0f+JeI2FKrYkT0RcR/yafzWMz0g4l7gI8xMyXwkqfCiIg+4Kn54k0L1ZUkSZLUVuwz2WeSpI4QKaXFa0mS1CIiYiOwC+gju2rwrcDngGcCf0X2IOALgG8AAVxO1ul6FvA/gfXAKHBeSun7y2jHm4G/JpsT/uiU0nwPJSYirgZelS/uBt4H3Eg2f/ogcHLe3heRPSB4fUrpwCL77gceBI4ofPw4sDWldHDeLx2+jecxc1XiOSmlby3le5IkSZJam30m+0yS1CkcwJIktZ2I+DOyTth8Xp9SujIirgN+aZ71B4DfSCl9fpltOJ7sQcTdwKtSSvNeyRcR3cAVwJvyugsZArYspUMVEX8HvK7w0ftTSq+tVX+e738AeDWwM6X05KV+T5IkSVLrs89kn0mSOoFTCEqS2k5K6XKyjsh3gGGyTswNwMUppSvzaq8APkr20OJR4G7g/wNOX25HLG/DT4FP54svW6DeZErpj4EzgHeQTcOxl+zhwfuBHwIfIbvi8NilXg3IzJQY0+qZCqMf+LV88T1L/Z4kSZKk9mCfCbDPJEltzzuwJElqUEQ8E/g6WcfqlJTSvc1t0dJExMuBDwN7gO21pvKQJEmSpOWwzyRJWg7vwJIkqUEppW8A15FNc/GnTW7OkkREF/CWfPHtdsQkSZIklcU+kyRpObwDS5KkZYiIM8mmuJgiu6LwJ01u0oIi4qXAx4D7gdPqmH5DkiRJkupmn0mS1KieZjdAkqR2llK6NSJeDZwCbANaujNGduXjW4Gv2BGTJEmSVDb7TJKkRnkHliRJkiRJkiRJklqKz8CSJEmSJEmSJElSS3EAS5IkSZIkSZIkSS3FASxJkiRJkiRJkiS1FAewJEmSJEmSJEmS1FIcwJIkSZIkSZIkSVJLcQBLkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUhzAkiRJkiRJkiRJUktxAEuSJEmSJEmSJEktxQEsSZIkSZIkSZIktRQHsCRJkiRJkiRJktRSHMCSJEmSJEmSJElSS3EAS5IkSZIkSZIkSS3FASxJkiRJkiRJkiS1FAewJEmSJEmSJEmS1FIcwJIkSZIkSZIkSVJLcQBLkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUv5//lYMbP10WOMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "with HDFArchive(dmft_path, 'r') as h5:\n", + " sigma_freq = h5['DMFT_results']['last_iter']['Sigma_freq_0']\n", + "\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,2), squeeze=False, dpi=200)\n", + "\n", + "orb = 0\n", + "sp = 'up_0'\n", + "freq_mesh = np.array([w.value for w in sigma_freq[sp][orb,orb].mesh])\n", + "\n", + "ax[0,0].plot(freq_mesh, sigma_freq[sp][orb,orb].data.real)\n", + "ax[0,1].plot(freq_mesh, -sigma_freq[sp][orb,orb].data.imag)\n", + "\n", + "ax[0,0].set_ylabel(r'Re$\\Sigma(\\omega)$')\n", + "ax[0,1].set_ylabel(r'Im$\\Sigma(\\omega)$')\n", + "for ct in range(2):\n", + " ax[0,ct].grid()\n", + " ax[0,ct].set_xlim(-2, 2)\n", + " ax[0,ct].set_xlabel(r'$\\omega$ (eV)')" + ] + }, + { + "cell_type": "markdown", + "id": "8c249dc9", + "metadata": {}, + "source": [ + "### Plotting options" + ] + }, + { + "cell_type": "markdown", + "id": "93d1db24", + "metadata": {}, + "source": [ + "Finally, you can choose colormaps for each of the functionalities from any of the available on matplotlib colormaps. `vmin` determines the scaling of the logarithmically scaled colorplots. The corresponding tight-binding bands will have the maximum value of the colormap. By the way, colormaps can be reversed by appending `_r` to the identifier." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a2d79e6d", + "metadata": {}, + "outputs": [], + "source": [ + "plot_config = {'colorscheme_alatt': 'coolwarm', 'colorscheme_bands': 'coolwarm', 'colorscheme_kslice': 'PuBuGn',\n", + " 'colorscheme_qpbands': 'Greens', 'vmin': 0.0}" + ] + }, + { + "cell_type": "markdown", + "id": "6b2e5a0e", + "metadata": {}, + "source": [ + "## 2. Run and Plotting" + ] + }, + { + "cell_type": "markdown", + "id": "89a67dd6", + "metadata": {}, + "source": [ + "Now that everything is set up we may hit run. Caution, if you use a lot of $k$-points, this may take a while! In the current example, it should be done within a second." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "7e875f21", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2022-08-01 11:33:20.627842\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "H(R=0):\n", + " 12.9769 0.0000 0.0000\n", + " 0.0000 12.9769 0.0000\n", + " 0.0000 0.0000 12.9769\n", + "Setting Sigma from ./svo_example.h5\n", + "Adding mu_tb to DMFT μ; assuming DMFT was run with subtracted dft μ.\n", + "μ=12.2143 eV set for calculating A(k,ω)\n", + "Run took 0.588 s\n" + ] + } + ], + "source": [ + "start_time = timer()\n", + "\n", + "tb_data, alatt_k_w, freq_dict = pcb.get_dmft_bands(fermi_slice=kslice, with_sigma=bands_config['sigma'], add_mu_tb=True,\n", + " orbital_order_to=orbital_order_to, qp_bands=config['qp_bands'],\n", + " **w90_dict, **tb_config, **sigma_dict)\n", + "\n", + "print('Run took {0:.3f} s'.format(timer() - start_time))" + ] + }, + { + "cell_type": "markdown", + "id": "b7780b5d", + "metadata": {}, + "source": [ + "That's it. Now you can look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "1936db33", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDUAAAIcCAYAAADmA5UlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd6DdtnX/v4f3vae997L23tawbEuW5aE4nnFix4md4YxmNGnTpv2lM81s0yRNm7RpRjOd4TjDifdekoe2LGvvvffWW5f4/UGCBEDw7v3OR6YfLwgCIAkSBwfnACSEAMMwDMMwDMMwDMMwTLXhlLsADMMwDMMwDMMwDMMwucBKDYZhGIZhGIZhGIZhqhJWajAMwzAMwzAMwzAMU5WwUoNhGIZhGIZhGIZhmKqElRoMwzAMwzAMwzAMw1QlrNRgGIZhGIZhGIZhGKYqYaUGwzAMwzAMwzAMwzBVCSs1GIZhGIZhGIZhGIapSlipwTAMwzAMwzAMwzBMVcJKDYZhGIZhGIZhGIZhqhJWajAMwzAMwzAMwzAMU5WwUoNhGIZhGIZhGIZhmKqElRoMwzAMwzAMwzAMw1QlrNRgGIZhGIZhGIZhGKYqYaUGwzAMwzAMwzAMwzBVCSs1GIZhGIZhGIZhGIapSlipwTAMwzAMwzAMwzBMVVJX7gIwtQURtQMw2f95DECyjMVhGIZhGIZhmLZOAkAff3+dEKKpnIXJFCKqA9C/BFkdFkK0liAfpkiwUoMpNJMBrCh3IRiGYRiGYRiGiTALwMpyFyJD+gPYV4J8hgDYX4J8mCLB7icMwzAMwzAMwzAMw1QlbKnBFJpjcmfqvB+ioX2vcpaFYXKH/D9E5S1HBSOE4PujIRBUnNh9P0QI/bQ2CNcfJl+4DjERiNttG82NJ7Bm0cfkz2Op4lYq32p3GXpT4bqux0Ur/qZpb8HSY8oLKzWYQhPModHQvhfadehbzrIwTP4Y/VJTiCaQd4zt3tomAhDe/4K6EtQR/1jsvn8Cd8wYJnv4vWFiUapFpM0WxO11lc5315vq0Jvqy10MpkJhpQbDMEwqhL5PIMBF2IGVESyj7QSLwM0yeGWjGVBkYEIhjL/wheZ0+0pFaMsdM+6YMgxTcETMPhQldBoi7Td/psoOJQiOU7gHQS4/1FqClRoMwzDZYmsHbYKT5TwSAGqkE1eLHdJUSqqUUJb7TE3WH6Z0EBHXISYt1vqRkb5a1VTbBimiboUMw5QPVmowDMMUAauVhgAEARChu4JNKLeFkSBPfqogGapiOxOBXiLGLQQpOtRtdH6LclCx9YepClihwZQMoSs5wronjN8e7OJSHKjeATmFu7Hk8kOqJVipwTAMUyrMDrPQXRJi4yFzk9lUVJQ7TLZuHjmmDQDC9QRO1XXIdCNiygN3TJl84PrDlIwYF0PzmPcz//YaYBcYhskGVmowDMOUCptAYtMzpBLS8xCUTHPa8E9uklKuHYqSrfzhW2loZWR3kIqBO6RMPkj3E4YpOaauoQhWfxFlf425r+aCkyA4icJdv5Nsu/eyFmGlBsMwTFtEmzoixh0mg7BcOhVClGjlD5ZXKhpWaDD5wEoxppaJWGkY7qvBalr+Ma2ttrTdtaAApHoCFVCpQQWcdJQpP6zUYBiGacuYq7tYzGrThqnzpWWwzyt/MBLumDL5wPWHaTOYhhu2dll1q7T8ZphahpUaDMMwTEiGLjLaKBCv/MHkAHdImXxg9xOmTWF+KuM+nZnGq0KcBMGpK6D7SS3dHIbn5mUYhmFygzukTD5w/WHyhesQwzAMA7ClBsMwDMMwZYKtNZh84PrDMG0HqgeogJYa/OmoLdhSg2EYhskJNv1m8oE7pAzDMAzDFAK21GAYhmFygjukTD5w/WHyhesQw7QdqMBzakQmW2WqGlZqMAzDMAxTFthag8kHrj8M03agRIGXdHX521FLsPsJwzAMkzVCCHY/YfKCO6QMwzAMwxQCttRgGIZhsoY7o0y+cB1i8oXrEMO0HRyH4BTQUsNJ8vejlmBLDYZhGCZr2FKDyReuQ0y+cP1hGIZhALbUYBiGYRiGYRiGYSoYcgjkFHBOjQKmxZQfVmowDMMwWcNm30y+cB1i8oXrEMMwDAOwUoNhGIbJAWn2zZ0KJle4DjH5wpPNMkzbgRIOKFG4mRMKmRZTfvhpMgzDMAzDMAzDMAxTlbClBsMwDJM1PDrK5AvXISZfuA4xTNvBSRR49ZMCpsWUH1ZqMAzDMFnDrgNMvnAdYvKF3U8Ypu1AVOCJQvnbUVOwUoNhGIZhGIZhGIZhCggR9QUw299m+Vsv//ADQoj7M0ijPYC3AbjBT2c0gC4AzgHYAuBZAD8UQhwqdPmrCVZqMAzDMFnDIxxMvnAdYvKF6xDDtB0oUViXEUoULKlUHMnnZCKaAuA1eEoMkx4A5vjbZ4noo0KI3+WTXzXDSg2GYRgma9h1gMkXrkNMvrD7CcMwVcQ+AJsALMzinK4IFRqvA3gCwEoAJwD0AfBOAB/14zxIROeEEE8XrMRVBCs1SkAhTI8yzOeLAL6QYfQFQohXCpEvwzAMwzAMwzBMsaAEgQpqqVESheiXAawAsEIIcYSIhgHYlcX5LoDfAfiSEGKj5fhzRPQ0gD8BSAD4HyIaLeSoQRuClRqlIS/TI4ZhmEqDR0eZfOE6xOQL1yGGYSoZIUSmg81x578B4I00cR4loj8CeBeAkQCmAXgzn3yrEVZqlJ5cTI9yYXKa49loCRmGYTTYdYDJF65DTL6w+wnDtB2IHJDjFDS9GuJleEoNwFNssFKDKQr5mh5ljRBifTHTZxiGYRiGYRiGKQXkFHhJ1wKmVQG0U/bdspWijLBSowTka3rEMAxTafDoKJMvXIeYfOE6xDAMAwCYr+xvLlspyggrNRiGYZisYdcBJl+4DjH5wu4nDNN2cBJU0CVdjbT6p/uWCCH2FyzzAkJEUwHc4v/cEDOhaM3DSg2GYRiGYRiGYRimrbIigzgVp0ElonYAfgxv5RMA+McyFqessFKjRiGi5wFcDm/d4tMANgJ4BsAPhRCn8kh3cJoo/XNNm2GY6oFHR5l84TrE5AvXIYZpO/CcGla+C2Cmv/+AEOKxchamnLBSo3a5QdnvA8/Xaj6AvyOi+4UQj+aY7r68S8YwTFExlycnImsYhIDIMSxuCXQCgrh57XNnpeZh9xMmX9j9hKkVIm00oLe76X4b7bL5O67NZgJmAThc7kJkAxH9A4CP+j9XAfhUGYtTdlipUXusA/AIgOUADgKoBzAWwH3wlpHtDuBhIrpNCPF0MQsy4OQONPWsw4V23YECLsHEMEx2CNefCNtXUACKgGOGyQ5ClmFQlR+Z7MuyKfsuBMi37hTgzi7DMAzTNgnaWdnuEgAYv4UR348CEf2NGlBqFHlJ18OVOmeGDSL6OIB/839uAfB2IcSFMhap7LBSo7b4thDii5bwZQB+4b8AP4Dnd/VjIholhLiUZR5D0hzvD98v7Z1rfoDeVK91Wlqdelxs6IzjnQZid58J2Nx/Js517JVlERim9rGNqthGJdOGSQEIANmEGjMskzjpzku3bypF/H1S3VUN5Uc6zPvACpHKh58Rky9ch5hKxWzDzTYqpZWR2lYGYcH/lN+2c9P8rmacAruMVOl4KxG9F8D3/J97ANwghDhWxiJVBKzUqCGEEKfTHP8hEc2EZ6o0EMA7Afw6yzxSajFtH2g1pN5tQbfGU+jWeAojT2zA9Zt/DxcOTnfshQ0D52D1ZQtwqX3XbIrEMFWPzexUOaiHu26oEMg2TFUmFKjcOXUq1HNSna9eQ4wiRO5r15zCPSbMljtD5YZdB5h84TrElAthtM2ma4gSMQxT2jRbO13oNpqpPYjodgC/gKeSOQTg+mqyMCkmrNRoe/wQof/VfGSp1CgGDlz0vHgM87Y/jrnbH0erU4/dvcbjpfF341TnAeUuHsOUHAHhm1ZYDtoEnnzC8qDonYk45Ue6/QzMbNm9pfxIn29+DgzDVDNBixPjKhJgfuvS/WY0iryka8VDRNcD+B28/vsJADcKIXaUt1SVAys12h7q2sWDylaKGAieNcfoY2sx6thaXKrvhLWD5+KNUbegub5juYvHMFmR08RcEXNTpljYng93sEsL328mH7j+MMUgq7bb6p4Z/I9hCgIRXQXgUQDtAJwF8DYhxIbylqqyYKVG26NkEsAfLv8kBrYm0bXpFLo2nkLfs/vR4+JRtG+5CEck0xaEAHRsuYA5u57FFbuexZGul+HpyR/AkW7DSlB6hikgtrkk1GNVKphX9Si7EPokpzJYiVK111YlVHX9YSoCrkNMITBXDVEO6Ps2F0imZLTVJV2JaBqAJwF0AnABwM1CiFVlLVQFwkqNtscEZf9gMTM60n0ETnfoaz1GwkXf03tw5c6nMezEJrRrvZRSyUEA+p/di/tf/ypOduyH5ye8F7v7TipKuRmmaJTAJaSUVH1ngizmwRZFB1Mc2P2EyQdeopIpBuFqYcaBTOeCYhgFIpoLYJQS1FvZH0VE96vxhRA/N84fCeBZeKtXAsA/AzhDRKk6QUeFEEdzLHLVwkqNtsfHlf1F5SqEIAdHegzHIzP+HADQruUiJhxYisv3vIzeFw7FKjgIQK+LR3DPym/jXLvueGn8u7F54OySlZthbKQVrm2dZ6YyiJukzVh9hTvexYHvK5MPXH+YYuCtFmYGsnVGuSnykq7F4qMAPhhz7Gp/U/m58XseAHWE+L8yyPNLAL6YQbyaokoXs2l7ENH9RCT87YuW45OJaJTlVDXOxwF8xP95GMCfCl/S3Giq74g3h12Hn8z/Cv7n+m9hybCFaHYaYuMTgK5Np3HHmv/Dx175R/Q5u690hWWYVEi3BtcN92tUoVHTI6XqsxMCQtmYwsD3kskHaenDMNkS+z1XVypJN8knwzAVBVtqlIB8TY8yZAaAHxPRywCeBrAO3sy4dQDGAXgfgBv9uEkAHxdCXMghn6JzsV03LJrwbiwe9y6MProGc7c+ir7n7Z4yBKDnxaP48Gtfwq7eE/HItI+juYEnFGXKhCoEtQEBqOZGSdNdD4/UFRR2P2HygRUaTH4I/7+Y1cb4u1RxVOOcGkKI+wHcn8f5P0fUeoOxwEqN0pCv6VGmJADc4G9xnADwESHEYznmUTKEk8DW/jOwtd/lGH58A65f/xv0vnTEGpcAjDi+AZ958a+wctgNeHnsXUABTdQYRpJSkM5iSVGmwkkxWRwvB1s4+D4y+cD1h8kdQqjYsLibMBVHNSo1mNLBvb7a4Sl4riU/BrAKwH4AlwA0wpsQ9GkAnwEwQgjxaLkKmRNE2NVnEn587Vfw2NQ/w5l23WOjJoSLK3Y9hz9/+XPode5A6crItE0MF4VadjWxwSOlTD5w/WHygd1PmEJhdTdhGKaqYEuNEpCv6ZGfxs+RwoLDn+X2p/5Wm5CDjYOuwOYBMzBj90uYt+WPaBCt1qhdm07jo69+AcuH3YiXJ9xT4oIybQIWgNrsKGlbve5Cw+4nTD5w3WHyg+fMqDbYUoNJBVtqMFWH69RhxYiF+Mn8r2BXr/Gx8QjAFbufxydf+hx6nD9UugIybQMWgNosPDpcOLhTyjBMeQi/PfxFZ5jqh5UaTNVypmMf/Hb2Z/Hk5PvR6LSPjdet8SQ+tvhfMHvH0yUsHcPUPty5Z/KB6w+TD+x+whQKdj+pDjxLDaeAGyvVawlWajDVDRHWDZmLH137VWzrOy0+GgQWbHkY71n2LcC1u6wwTHawANRWR9nb6nUXGr6PTD6w+wlTULguMUxVw0oNpia40L47Hp7xKbw47t1IRtbl8iAAw05swl+89P/Q7YJ9FRWGyRwWgNoqPDrMMAxTO/AXvTogh+AkCrexpUZtwUoNpnYgwooRC/HglX+Hs+17xEbr1HwOH1/8eUzc/0YJC8cwtQd37pl84PrD5AO7nzCFgt1PqgM5UWghN6Z2YKUGU3Mc6DEKP5v7L9jRZ1JsHEe4uHXtT3HT2p+XrmBMjcECUFs1/W6r111o+D4y+cDuJ0xB4brEMFUNKzWYmuRSQxf8fuZf4rVRt8XGIQDT9r+Ge5d8A3Dd0hWOqRFYAGqr8OgwwzAMw5SWwk4S6m1M7cBPk6ldyMFrY+7A41M/giQlYqNddmorPr7oH1HX2ljCwjFM9cOdeyYfuP4w+cDuJ0xB4brEMFUNKzWYmmfDoCvx0OzP4lJ9x9g4PS4dx6df+n/oevFYCUvGMNVNWzX9bqvXXWj4PjL5wO4nTEHhulTx8JwaTCpYqcG0Cfb1GotfXvmPONWxT2yc9q2X8LFF/4zBJ7aWsGQMw1QbPDrMMAzDMAxTObBSg2kznOzcH7+48h9xoPuI2Dh1Iol7l30Tw4+uK2HJGKY64c49kw9cf5h8YPcThmlbEBXYUoOtc2oKVmowbYpL7brgt7M/i709x8TGcSDw7pX/jTGHVpWwZAxTfbRVgaCtXneh4fvI5AO7nzBM24InCmVSwU+TaXM017XH72Z9Bjt7T4yNQxC4883vY+L+N0pYMoZhKoYUI8A8OswwDMMwDFM5sFKDaZO0Jtrh4Rmfxra+U2PjEIBb1/4U0/a8XLqCMdUFUXRrQ7SZzn0bfsbFpM3UH6YosPsJw7QtyCn0ZKHlviKmkPDjZNosyUQ9/nT5J7G5/4zYOATgbRt+jdk7ny1dwZiKhogiW1ulrV07P/PCwveRyQd2P2EYhmEkrNRg2jSuU4dHp30MGwbMjo1DABZs/j2m72aLDSYDWMhmGIZhmMqH2+uqgufUYFLBT5Np8wgngSenfhhb+02LjUMAFm78Nc+xwaSnDZlDs+k3kw9cf5h8YPcTpiCwayHD1ASs1GAYSIuNj2N3r3GxceQcG6MPry5dwZiqpS2I2jVn+q12kGrt2iqQmqs/TElh9xMmV9K5kLaF9rsqsc1jlu/G1Ays1GAYn2SiHg/P+DQOdB8RG4cA3Ln6+xh6bEPpCsZUF34jyU1lDcCCT9HhkXaGYSoGtf3mbxPDVBWs1GCKB5Vhy5OWuvb4/cy/xNEug2LjOBC4Z8V3MPDU9vwzZGqCyEhPGxkJaAsdUp4ctHjwSDuTD+x+whQcttarbKiQK5/UtnzWFqkrdwGY2qUcHQGhGg2mkHUEBChGC9LY0Bm/nf1Z3Lfk6+h58ag1jgMX9y39Jn4y94s42WVAPkVmagSrCashcAvUlgVHTXRIhQgFm1q4niqiJuoPUzLqks3oeukkujSeQn2yCXXJZtS5rWhJtENjfQc017VHU11HnO3QE62JhnIXl6lGiAAhaq6trhUKPbknTxRaW7BSg6kpNEWFvyss2g01nm2050L7bvjdrL/CB5b8Gzo2n7fmlRBJ3P/GV/G9Bf+OxoYu+ReeqV18QYmFpCqAO9olha01GBudGk9jyKlt6H9mD/qf2YM+5/ajU/O5jM4VIJzu2BvHugzC8c4DcbjbMOzpNQ5N9R2LXGqmJiBjyEvKh6oCnGGYioOVGkxtYWlv4iwytDhEEcuOM5374eGZf4H3Lv0m6txW63kNySZ89NUv4HsLvgHX4deJiaFGTaRrtUNai9dUidRq/WFyQLgYdGoHxhxZg+HHN6Dvuf05J0UQ6HHxGHpcPIYxR9YAAFxycKD7SOzoMxk7+07G0S6DuYPKBJjfIaEqMsJIJSwRYyNwGylgekztwL0whpFYvm0He47CE9M+ines/kHsaZ2bzuL+17+Cn179BYBN2RgbNWrSWs0d0uBZVPE1VDvVXH+YwtDz/CFM2f86xh9cjm6NJ4uWjyNcDDm1DUNObcO1W/+Io10GY82Qa7Bh0By24GDiqdG2m2FqEVZqMEwatgychZcvHseCzX+IjdP33AHctep/8IfZn/ECanNgnskH06QVqFkLjmpAexbcuS4bbK3R9iA3iTFH1mD63pcx7MTmrM9vrOuIxvqOaEnUI+nUo6G1CQ2tl9Cu9RLq3ZaM0uh7bj8WbnwQCzb/AZsHzMCK4QtxtOuQrMvCtAHUtpvb7LLCc2owqWClBsNkwPKRN6HHxaOYtndxbJxRx9bhhg0P4sWJ96Wcz4MVHm2HlJOH1oBwVEsd0lq5jmqiluoPk55EsgWTDryBOTufQY+Lx9LGb6zrgAM9RuJw16E40u0ynOzUH2c79EJzXfsgjlmH6lub0PPCIfQ5dwC9zx9E/zN7MfjUtlgX0nq3GZMPLMHkA0uwuf8MvDb6dhxPsfoZ0zaIdUdhGKZiYaUGw2QCEZ6fdB+6XTqB4cc2xEabsfslHOsyCGuHXuudZjFYzHSFFqZtUM1mrdXWIVXvdTXf91qh2uoPkxuO24qp+17FlTueQtfGUynjHu/UH1sGzMTO3hNxqPvwtHNVmXWopa4djnQbhiPdhgVh9a1NuOzkFow4th6jjqyJdXMZd3gVxh5ejU0DZuK10XfgZOf+mV0g03Zgd5SyQk5h58EgNtSoKVipwTAZ4jp1ePTyT+ADr34ldqlXAvC2db/C0a6X4XCPETFxUqzQwkqONgcLRqUjuNc2VyCmLLC1Rg0jBMYeXoX5W/4Y22YCwMWGzlg7+GpsHDgn6wk8Uy3PLmmpa4cdfadgR98peH7CezDs+CZM27cYo4+sQUIktbgEgQmHVmDs4dVYOuImLBl1Cy8Py4T4Fhv8xSoPRAWeKJTbnpqClRoMkwVN9R3xp1mfxvte+1e0SzZZ4zgQeO/Sb+L713/DvtSrbYUWQZFjbO5Y49ga0yp75lXXITXKWlVlr0Gqrv4wGdP37F7cuOFBDDm1PTbOoW7DsHLY9dg8YCaSifqc8slaPUkOdvediN19J6Jj0xlM27sYs3c+j/atF7VoCZHE1TuexIRDy/HcxPuwq8+knMrH1Bjm96rK2myGqWVYqcEwWXK8yyA8Ne0juHPV92LjNCSbcf+rX8YPFnw9sxVR0sll3G7WDCnn2SAAonpcI6qhQ2rey2ooc1uBn0X1oSqibFYS7Vou4Jotf8L0vYvgxDRce3qOxRujb8He3hOCTmI5asKl9t2xZMztWDXseszc9QJm7Xoe7VsvaXF6XDyGe1Z8GxsHzMJzE+9DY0PnMpSUKTexc2ywO0ppcZzCrjLIE4XWFKzUYJgc2DpgBt4YdQuu2v5kbJxul07i7hXfxu+v+GxOebCbShtE0W0whUF1OWEqD7bWqDLUZok000KMPbwKN254EJ2bzlpPPdB9BBaNuwv7eo2NpJUrhag/zfWd8MaYO7Bq+A2Ys/0pzNr1fMQtZcKhFRh8ajsen/Zn2NdrjJ95XtkytQC7ozBMxcBKDYbJkdfGvgP9zuzFyGPrYuMMP7YB8zb/Ea+Oe2f2GbCbClPhVEWHtNLL14apivrTlrG1Qf4/NU7nS6ewcP2vMPrIGmsypzr2waJxd2HLgBmV+T76RWpq6IRFE+7GhiFXYeG6X2LIyW1atK6Np/Depd/EktG34vVRt0E4CQCWVc64Sa55iMiTvWrAjbSaIKKCthnc/tQWbHfDMDkiyMHjl38MJzv2jY1DAK7c/iRGHl5TmEwpzcZUN4FZd3VQqQKBef+kIFSp5W2r8POofNR3J3iHlDZn3MHl+PDif7EqNFqcBiweeyd+Mv8r2DJwZlEUGsWoQ8e7DMKDV34OT025H5fqO2nHHAhcve1x3Lv0G+jceAqgNPeIqVkiz5xhmLLCSg2mJNSq4rqpviP+NPNTaHHiZ0cnAO9Y9X10bDxdlDKQ+s8idDJVRvAMqaJHgYQQFWslxC4n1UEl16FaQ1oTCIi0yvGgo5aiAWnXchG3vvkj3LH6h+jQcjFyfFu/qfjRgq9iyehbc54ENBOKVn/IwbrL5uGn87+E3b3GRQ4PPrUdH3jtq+h/erflXKRuk7l9ZpicIMcp+MbUDvw0maKharAdJzqS4Wm2q79lP951MF6YdG/KOHWiFR94/d8A1y18AeKEUkOo4pGEysX+bsRGLl3BqpU4hRDDtAViFRWAQ06kXUhliWHjsuOb8eFFX8DEA0sjxy40dMUjl38Cf5z5FzjXoVfRLrFUnG/fA7+b8zd4Zdy74JIuMndpOo173/h3jDu4InpinKJIURhpSg+GYdJCDhV8Y2oHVmowRSSdrwQZcauXtUPmYv2gOSnjdLt0Are/+cMSlQjsqlIrKAJvJY1pV5owzi4n1Qc/n8xQrRHU+Rsiczko2JUV+blFJJItWLDxt3jP0v9A18aTkeObBs7Cj6/9CrYMnFUypWIp6o8gB8tG3YxfXfUPON2xt3as3m3BHat/gKu3PAqILAYtuG1mGIYpKKzUYMqKamWfauQo061sUgERnpv8fpzo1D9ltHGHVmLy3ldLVKgoKV1VmMpE6dBU0mOqNNeBSro3TGZUWh2qVNSOu/rNNq0qMnEbyZVuF47hfW98DbN3PgcylCmNdR3w2PQ/w2OXf6LkS56Wsv4c6jECD8z9PPbI1VsU5m57DLes+SnITVrOTI/ZNrPCo4rRBVv9GH/v8oMoXNa1EBsr1WsKVmowZSYTa47Mt0wVJMWQElrq2uPRGZ9AixPvP0wAblr7C/Q4f6hg+WYFC0nVhykgcSNsh+8PU61k0Lxpbgs5uo3kyuhDq3H/q19C/zN7Isf29BqHn87/MjalsVSsFRobOuN3V3wWb142P3Js0oEleMeq7yGRbMk+YXZXqXoyciHlZ8cwRYOVGkyNkakCpDgc6zoEL058b8o4Dly87/WvwXFbi1aOnOC2tqJIOc9GBbiklEu4FjH7ALucVBu1+KyydhXJ0EqxHIpox23FdRsewjtX/S/at17SjrU6dXhxwj14aM7f4FyHnqUrlEE56o/r1OG5ye/H8xPvhWs8kDFH1uCu5d9Gg3G/8sai9OCBieqCbTQKQKHn0+A5NWoKVmowbZJM3V5ykSTfuuwabBh4Rco4HVsu4K7l38nrGgoFu6RUIaZLShlMWsvlOqBWS1JfZKbqqEX3k0pwFSkEXS6dwL1vfB2zdj0fOXaiU388MPfzWDliIUDlFSPLVn+IsHr49Xh41l9GVj8bdmIz7ln6LbRvPl/E/GFvt5nKw2+jyNZW1dj3j2HKCSs1mDZKpu4sdpeWlL1+f36N0x30CcXMpmvY8Y2YuvuVwl1SrthMnQ1hqdZGU2uONvx8uI4yJaXCXUUKwYij6/ChxV/CoNM7I8c2DrwCD8z7PI53HVyGklUeO/tNwe+u+Gs01XXQwgee3oX3Lvlm0RUbkXabv4cVA7ujFB4ip+AbUzvw02SYtKRyX7E3SM31HfDE9I9qpqkEXbFBABZu+DW6Xjxe6ALnT4beO6lm32eKSBtzP0nlcsJUL4WqQ7msDpIPlegqUgjITWLe5j/i7uXfRoeWC9qxVqcOz0x+Px6f/mdoqWtfphJGqYTO+/5eY/CbK/8fLjR00cL7ntuPdy/7LzS0XCxNQUrvccvkgl9nuS1jmMLCSg2GyQGb+4opPRzoORpLR9+in2ek4wgX973x74CbxVJw5UZpiQnELXO5SGXSChTdrLWUrgPsclKbCP9fvthcPgREVMGQx1bp7iL50qnxNN6z9Fu4avuTkWOnOvbBr67+R7w19NqKe+8qxX3pSLehePCqv8fZ9j208AFnduPu5d9BfWtjyctkupaygqOCYHeU3JDzYBRyY2oGVmowTE5EpV6bm8rro2/HoW7DUqbUtfEUbn7rp8Uvcp7EuqRwm1AyMp081Pq7hmAT68oh0qnMSlGAgikeTJcPx3HSWlRks9XyqPdlxzfhQ4u/hMtObokc29L/cjww719wpNvQMpSsujjZuT8evOrvIoqNwae2410r/gd1yebSFoitNSoKdkfJH3Kcgm9M7cBPkykJbcNNISppu04dHp/+MTQn9InEzLsx6cASjDy8piSlzJl0HQuftvGsK5tSPIFiKxXY5aRKsFSBzJUFhVM8cOctB4SLq7Y+jnuWfgudms9qh5KUwIsT3oNHZvw5muo7lqmA6ak0xeaZjn3w0Jy/xfl23bTwoSc2486V/1sZq55V1i1j2B2FYQoCKzWYoqGO6jsxwmsmHeJq7iQTAae79MfLE9+jh5vxANyx+gdoaC6R722hYZeUyqCELinFdj9RS88uJ+Uh8u2NsZDI1T2jFlc/qRY6Np3Fu5f9F+ZtfQSO8ZzPtu+JB6/6O6wccWPFv3OVWH9Ode6P3875G1xs6KyFjzi2Hjet/UXZXAzYHaVC8esDP4r0EFFBl3QthVKUiPoS0a1E9GUiepqIjhOR8Lef55DeTUT0RyLaT0RN/t8/EtFNRSh+VcFKDaZ4ZGMynEL5kalCpDLxCvnWZddie79pKWPWuy24d+k3SlKqQsEuKeWnZl1SDEUGu5yUHgrc6thSopYYfGIL7l/8JQw/vjFybEffyfjZNV/AwR4jy1Cy2uF4l0H47RWfRaNh5TJ5/+u4eutj5SmUKX8Z7TdTJtS2jp9DLXIEwOMAPg/gJgC9ckmEPH4I4GkAdwIYBKDB/3sngKeJ6IfUhl9mVmowlUEuftTquZUOEZ6Z+iFcrNdHbszxmn5n92H2jqdLV658YZeUqqHQT6AYgrBZRlZklB7zXRVA0ZQV/GxLjHAxZ/uTeO+Sb6JL02ntkAvConHvxB9m/SUaDQuDgmVf4I+QEJXnfqJytNtQ/H72X6HF0d1P5257DFP2vlqmUilkIl8xRSPjwQgmhAggp4Bbye/1PgDP5XjuVwF8zN9/E8B7Acz2/77ph38MwFfyKWA1w0oNpmrRGgTFlKxSRxAvtuuKFya/TwsjRDty8zc9jK6XTqAiCp0P7JJSfpReRKFrUsFcB1KUsRJNy2uFONeSfNxJsi4Du5+UjA7N53DX8v/G/M1/jLibnGvXDQ9d+f+wdNQtnqBfJPT+Q/7zqHhz/BVgPhalrS10dTzYYyQeu/zj2vLuAPC2db/A8KPrCptZnrB7SoXA38Ra48sAbgPQXwhxGYCPZ5sAEY0C8Dn/50oAVwshHhJCrBBCPARgrh8OAH9HRG3S1I6VGkxtkYGLSznNpzcPnI0tA2ZGiqziQOA9S76pWCPahK/KlTTYJaWCMM1aK9C8VRPfLC4nTHEgUMrvYxV8apgMGXRyG+5f/CWMPBbtRO/uPQE/v+aL2NdrbJ65ZKtM8M7Jb3OCvPPZ1LbWsQyO5PsibO8/Dc9Puk8Lc4SLd6z6Pvqc3ZdzugXHIjsF4UzpqOD2utwUdD4Nfys2QogvCCGeEEIcySOZvwZQ5+//hRDikpHHRQB/4f+sA/BXeeRVtbBSg2lbZGpuWazvHBGen/z+yARipl6+x8VjuHbD79IUskJJJ0P6sEtK8Ug5z4ZCPk8gH9cBbXTekga7JRSWlNYQZfy08HMuMsLF7O1P494l30DXxlP6IRBeHXMHfnfFX+Niu67RU5U6o1afVFVJaL5KmWz5U5j6k2k5c89rzbAFWDLyZi2sIdmEd674Ljo0n8s53aLCTXRJYXeUDHCcwm8Vjj9Hxh3+z81CiKW2eH64XJf7HW1xbo3Kf5pMTWBrGyutvYx0BJ3ijFZebNcVz09+v543ovdj1s5n0OfMHqOM6lY91hsB7JJSfgrkkpK160BMvsQjUkVHF5CVb12ZvxnsflI8OjSdw7tWfBcLNv8BjnC1Y+fbdcVDc/4Gb4y5HUKpG3GPQrYzcZYM0vKiHK9wKeqPrd3NxZJj8bg7sWHQHC2s+6XjuGPVDypjqVcTQsTyshrEjJqDv5FtneHwJgMFgEVp4srjgwEMK1aBKhVWajDFQ2n0HYsg4ASNZOW2kmlNs3Nky4BZad1QCMC7l34LcF0jNKrIqOBbCCAqGLFZaxkpkEtKtoMAmljmOFq+mViVMDlgmJIHiowq0oMy2TPiyFp8ePG/YNTRtyLH9vQah5/P+yL29h4fOaa1z4666lio2CiF9UXlkfqaUyk8NMUHJfD0lPtxoPsILfWhJzZjwcbflfiaMsS4XGs7zhSFUE7Kv72uFbJzcctsqwLUj/XmNHHV49GPfI3DSo0SQAVeozjDPN9DRM8S0SEiaiSi3UT0SyKak/7sghUi7SbUuMjcoqMseutCWqOS3Q3FnEysU/M53LLmx2mTq3hFfluUgyuMtI15MRQbcW4mfngVCRUVS+xItdHJqsT3jZ9/YalLNuHGdb/C3Su+g85NZ7VjAoTXR9+G3875G5xv1y0MF6TFinchqUwqo/5kruxJJurxp5mfwrl23bUUZu5+EZMrYUWUdKS5RHYrLSxV2AGvZvoT0eBUW5nKNUTZ358mrjpJz5DYWDVKXfooTAHIZ3KYrCCi9gB+D+BW49BQf7uXiL4ohKiIJX+0TzTZjaHjwoKm0xDqhRBF//ib5twyX28nszSkG8odq74fhDm+SKCWfsKBJVg97Doc6jkqpizaL78sahgLGUwG5KAZs75r3jqLkbgskBWHiGtJBXdATUrxrW4r9D+9G7e++SP0unA4cuxCQxc8Mf1j2N1nIoj00axqv/3VUofCIhIuduiBP838NO5d8u+oU9xOFq7/FY53GYRDPUZY06ho/OYjcCut/EdS3djaXXW/Ct6JnKACz4Ohr/a0IpMzCpd5xnRR9s+niXtB2S/O2twVDFtqlJ581ijOhJ8gVGi8DOAd8NYx/giAHfCe+ZeJ6KNFLEPmZGDNEbcFAwSGJls3m/XjlsBkLxc3lS0DZmFbv2l6Oma6AN61/NuGG4oZwzSHtZvEVtKoG6n/eBSiLOgd4uxNXNM+M3YzKT2V9ZqnhIh4To08cdxWXLntCbzv9X+zKjR29J2Cn137ZezpO9FoA9h0rrTo9/hwzxF4dsoHtRh1bivuWP19tG9O12+pHKxtOFehohHbhqrtdhVMfslkRXtlvzlN3CZlv0MRylLRsKVGafgyPA3gCiHEESIaBmBXoTMhovkA7vV/Pg7gTiFE0v+9gogeA7AKwGUAvkFEfxBCnC50OUqO/LDbTN39sDgXlqK0vbo1bxhmKwQRXpj8Pgw9vhkNycYgOEkJJIJHB3RsuYC3v/VTPD09F12ULJAwwiqoMyGLYz6QCipirSMFpMjKJNl2Ok03E1/4kpNCsjIjf2z3UUBUlZWGhOtDeuIGXvuf3oWb1j6AfpZlQVucBrw88R6sGXqtcnLtDaFXc/3ZMORq9D27H7N2PhuEdbt0Eres+SkenvVpcxS5srG14dx+l4yIgthvu2vtjS/0MqxGWrMARDXD5adR2W9IE7edsn8pNlaNUkVfzOqlQGsUZ8Ln/L9JAH+uKDRkOY4D+Dv/Zw941hslogitmzmabBthVi06EGq5YWq5ZSlNV5a8i6ho1eXH2BgMO9ehFxaNf5d2XkIkI3lP2v86+p3KRhdmjrpVmLRhDgyyQqMsmCM+1rk28tli8mFyJ+JyQgSHnKpTarCVRmboukVCQ7IJ1294CO9/7V+tCo1D3YbhgflfxJph1/kd49q1wqjeOuQ9j1fG3429vcZqR0YdfQuzdzyHqmgU49pwEbPPFBS1XbW13RTTHlctRN43rWCbdk8OCyH2p9rKdNXqms/pXEo6KfvVY/JVIFipUSMQUWcA1/s/n0/x8v0RgJxB7J3FLZPaqdddQoINJRCz8nBdKcYKLbb7sGb4dTjQY6QWz5w0lADcldINJZO8zedSWcKuVyd0c1buCJce67uax8YUnvAbqihKq+xWs/uJSfw7JJdSHXF0LT78yucxc9fzcIzeogvCG6Nvx6/n/hNOdh5QpmsoHbVQd4STwBOXfxwXGrpq4fO3PIzBJ7ca7XTli+zsjlJeuC2uSdT+XLrJStXJQaMa7xqn8r+QTKbMRmh2tCgukhCiGcBSeQ4R1RezULZvqBbmt9VhWInXOolTWChhmazQklve4SbIwbNTP4gkJYLDCQi0ku4h1qn5LG5c/8sCZm6GVRCWelJpRWSYYpJqZZNaoZYF7UL2ubtePI7bVv0Ady//NrpdOhE5frTLYPx67j/htXF3wnWqy7M45xUzqDbqz/n2PfD45R+HUF5sR7i4ffUP0KHpnBG7Sq5Xtd7gtpspFA4Vfqt8Nir749LEVY9vKkJZKhpWatQOuaxjXAdgdHGKE+oFbNZv4X7Y4sVbdMRYecToIzISj8yTUxRSbZOl9YZ5fiHcVE50uwzLR9+shdeJ1kja0/a8gj5nclXAmtJFnL1oGTHNWSuwiIxHLYyUVjI2N5Nqt85Qqb76E5bXXGzAht4+qe1c3BbGk1tDyyXM3/h7fPTlf8T4g8sjebQ6dVg87l34xTVfwCHD2q9a0NymDEvCVJtDTlbxPatLaO9MpSxBurfPBLw+5nYtrEvjady85ieAMEWUCn75zfZbwu4oDJMruwAc9Pfnp4l7jf/3AIDdxSpQpVJd6nwmFfmsY7wxLqIJpV+nuX+maXnpZRNbRwiypmEmKYTIb1pMSyFJSrH+MVW9kY+cvmTMbRh7YDl6XginX0lSHepEuOwbAbhr2X/i+wv/K/eMFMLLU65CACx5MOmohVHSqqLGbrd0P6mWeqRO2BkqIbJpxzK/TsdtxdQ9i3D11kfQMWY1jL29xuHZKR/Eqc5ZNbtFR3umZCgtrCfA3hHOIJ9szzHLYitboOgocRO4ZMztGHxyG4YdD0WykUfXYvrul/Dm8Ou1uETqLOQeldhuB/fX/yOEqLnvGFM6vEHOwo3HFzKtYiGEEET0KIBPAhhHRHOEEEvNeEQ0B6GlxqOi+kYN8qbynyaTKaVax3hfmi2TdZ4Lis1iwzS4gCVOoTMXgGc+moebSjLRgOem3a+F1YlWNCf0CY+7NJ3GvI2/zyGHVNisOCpM+qiw4jBMoWlrckjpFRrprS0yscIIFdhxlm9x++mK52L0oVX40Cufx43rf2VVaDTWd8TTUz+Eh678XMkVGpnUT+tcCqluQR6GBznXH1ueZW5fBDl44vKP43y7blr4tRt/i17nDhixC1DXSolpfVmhxWSYCuXbAOTo5v8QkbZcq//7f/yfrX78NgdbatQOFbiOcXFbLZsiwxZHWnTocfylXg35LOPlryyZk5qY77YShGTRUdnXezzWD7kak/a9HoQ1JJsjZbtix9N4c/j1ON+hZ54r9ZknqiWvjA6WaZ4MlG80jQmpplH2asF0OfH+VOM9Tv9RKlX9US0sdGsLwHMJ0T/p8ftxZS2AYkO4GHNoFa7a9jj6WlY0Abylvt8ctgBvjLkDjQ3ZjkdkifL4YpcLTlU/bZdb4EddMEsf4zGZ1gVmG2Ntewq0dubFdl3x9LSP4O5l/xmE1bstuHX1D/GruZ9HMqFOg2bWrwpsDOOKWIFFZaqAQs+DUYI5NYhoLoBRSlBvZX8UEd2vxhdC/NxMQwixlYj+A8DfA5gJ4HUi+jqAHQBGwlvZcrof/ZtCiG0Fu4AqgpUatUOp1jEekuZ4f0hrDdWKQcQIRVmTfUtonXfD5rpSRDeVbNNcNOHdGHVoNdq3ho+nsa4jOrReDH47ELhr+X/h59d+peDyTLxLCgqbUabYqg4LRWWHFRqFx+xAVus9VpUHgHodYe/PUzrLY2qvsEA9xCBvWzmCkILlkwt1yWZM3P8GZu54Fr0uHI6Nt7X/5Vg0/u6SWWao9VCuZiH3c3EVKQYlU6qaYxhmgIBm95yvwn1X38lYOfwGzNz1QhDW7+w+zNvyR7wy4Z74YhrtdjW4owBtzzqNaXN8FMAHY45d7W8qP4+J+08A+gL4MDwFxkOWOD8B8M/ZF7E2YKVG7VCSdYzTrdNsChgE8sRTKb0iHF0xz7OF+XlqKRa6kQ6KZg7OFCAbbeUUITIW1S+274ZXJ9yFG9eGK510aL2IFqcB9W5oiNPn7H5M3r0I64bNL9JAjW2oqsJGhCqsOAyTLWrnrDqsMsIvWZwVROQMYbYPqmK5nIqGwipQMqXbhaOYsncxpu5dFDtnBgAc7jYML0+4B/t6p5v0PkcytMgQMBQI1VBNi00qI0fb7yxYNP7dGHp8E/oobiezdzyDXX0mYU+fiRkUzJxzowIbSZsuk2FSQOSAnLY1p4ZECOEC+AgRPQzgYwBmwbP6OA5vMPmHQoiny1jEssNKjdrBXMd4ZYq4JVnHWB/M0aVd2+hK3IgLERltnSJBpyTeNtTmuqK6qYRx7P7XmaKlmMYlxRx1emvYAkze8yr6n9mtxHEjc6rduP5X2DT4CrTWqR5I+ZJKWktd7pLDglDZKPuzrxEq1+UkvfIiUMaQ/l3NxFVDV3RUwvUWl7rWJow6sgaT9r2G4cc2wGzZVI53HoglY27DpoGzgUII3jHKC80iQ1GsWefFsP0uIxUz0Wyc+4pyLBicybC9Sibq8cTlH8f7X/0y6txwovC3r/kJfnrtV9Fc3zFtQcLJRL3fdmvLEiv14kQLbseZTLBNopdvekVGCHE/gPsLmN5TAJ4qVHq1BCs1aodc1jFuBbC9OMWB4X5CMd+OzBp666mWBK3JCGkbmjqTVG4qkeOZupVksHKKl5yA4ziaVYogB89P/QDet/grgfDbIFpxvqErOjefDeLVua24c8X/4g9X/W14rlqyAgkLdpcU4Wu6Sy+RsBlr+Sl7Z6KKMTtjlT4Krq/2UZiebluoP3XJZgw9vhFjDq7EmMOr0K61MWX8o10GY8mY27BlwMzCKDMsVKo7SbZUhEIjQ8xyZuKicqzrECwafzeu3/CbIKxr4ylct+EhPDPtw5nkavwWoWVqbJwywRaXDMPkCSs1aocV8CYIbYC3jvG/2yIRUQOAOfIcIUS6SUXzIvSZjobpEeE3aLZRg9xGEgg2C4/sWk21rFq5lf50zv1oY9hTRDIBDnUfjreGXYtpu18Owjo3n0WSEkiIZBA27Nh6XHZ0Pfb2neSnqeaDAgsLqq2oKg2XafTHZmkLsIDEVDbG6G5g3l/2eqtaZ6jKaJFGOV0hnaMKoMvFExh+bD2GH12H4cfWoyHZlPacnX0mYcXIm7Cn94T8Rg/jLDJIcS0h5ViVKjQAVHeZM3zPVw2/ASOPvKUt8zpl36vYMmAmdvWbknX24Yo9IvhdJXohhvEnCi2gsrcEE4UypYOVGjWCEOIcEb0I4O0AbiCiwTHzX7wTQFd//0/FLJM+w7z9mCaVkPe/qJIg7qMTHekIPEZUpYPFjzsb1xXbTPhWC45crTdURYalXIvH34XRB1eiU3M4bcql+o7o1HxOk0dvX/k9fPem70Y/+AXrJMXZjUYzKYmgZHmsPLN6aammkdJKI9a9pCy30+5moq4OElK4AtZC/XHcVvQ9uxcDTu3CgNM7MfDUDvS8cCSjcxvrO2L94Kvw1tBrcaLLoIKUx5zgU7pD2CzbqgqKvjHBnF1KmM29M1U9K5c6znTvsbqnCADk4JmpH8KHFn1es/K5ae3P8dNrv4omqxtKXJ7aL+VdL6M7CqJWl2xxyTBMLrBSo0rwl/z5mf/zS0KIL1qi/Qc8pUYdgP8loncKEQ7nE1FvAF/3f54G8ONilTcfMpdxLe4nQkQ8TfJzXbH/sLqqBIKkVqD4tNXixCRMRGhq6IRFE9+Nm9/8SRDeufkczrXrji5Np4OwDi0Xcd36X+OlKe9PIcBl59ebCTbLm2rvqDCZwc85dyp1lRPPzcSmMSxOXtWC47ai+4Vj6HHxCHqcP4IeF46g35k96Ht2rzbnQTpcEPb0noCNg6/ElgEz0VrXLv1JmaAqL0rz+LLG05HpFoqR/ZQJGC4cFmVFxL1TCH1iQSOvcE8UZHLwfPCUNFHh5WzH3nhlwj1429oHgkNdGk9hwYbf4JlpH8kqB+0XhdYacXFKQppxK4YJqMI5NZjSwUqNElCINYozQQjxEhE9BOA9AG4H8DwRfRvAQQCT4S0HdJkf/e+FEKdyySensiEzp5KcxghsJ+TpchG6rmTvx5G3m4qyUor8vWHIXEzdswiDToZToLRrvgAXBEcp0/RdL2H5qJtxvmMvvdgStVwFEhhMc1YZVta2ooDXxzDFwBx3Lr3VQpybifn+Fn7k1nFb0e3CMXS/cBR1bgtcx4GAA9dJwKVwX4DCMHLgkgOXEl6YH6c1UQ+X6rz4RBDkeApm7YJcOMIFCQFHuHBEEvXJJtS3NqEu2eztJ5vRruUSOjafQ8fms+jYdBYdm7z9rpdOouvF49q3NhtcEA70HINt/adj86DZON++R4HupI9NiVGBsrpQrS1sJpCFxOb7GpOX91S9RqOcjlQCQmu7VMXnW5fNx5iDKzH8+IYg/pR9r2HrgJnY2W9qbvmFQkaQadnbboZhmBxhpUZpKNQaxZnwYXjuJTcDWOBvKi6ArwghfphHHhmhjvjF6R0yCQOiJqVxHQDbZHt2ZUJ0Is3AClO1hEy78ko6NxXjL2Ku0SJ4kVpwx8FLU96H973yJYSThrbgWJeB6HPuYBgNAu9c9m38YsFXbLmEFKjDbzNLt5u0yt/FlZZSzjrPFJxacB8oKeYrQFHT65IVpVRuJq6L8QeXYdzBFeh/Zjc6NZ4GBXZtxcM2zU4puVTfCbv7TMTuPhOxo980XGzXNf1JcZDxbYuJUyzU9zyjr3iKdr+QPWbr6ic5KEtU6w7bGdm6tOSCKbsI4Ss0gopMeGbqh/DhRf+suaG8be0D+Ensaijp8tR+pWi7GaZCcAq7pGtB5+dgyg4rNWoMIcQlALcQ0b3wlhCaCqA7gCMAXgXwXSHEktKUpnBmYqZJaSr/WG8ntauITdwKRkm0hOyCWeZNviyv8ivHuTeO9BiBdUOvwZQ9i4KwPucOorG+I9q3XAzC+p7dh3H73sDmIVdZkoy57owKZC2kJY8wPatCqJikyoLltILDCo3s0FxOqLz3r9huJn3O7MM1m3+PYcc2apMal4py18z61kaMOLoOlx3fhKu3PIrWRD1anXok/b/efp3316nXjyfqkaRwvzVhxHHqomHBsXrfeiVRlCF3B8jMhaQEdbtgioU0aaR1aVHKUyhsq6Wc69QLL094D25a+/MgvEvjKVyz+WG8MPn9ueRi5GlzRyk9PMcGEws5KOiqUEVaYYopD6zUKAGFWKPYd0n5eRbxHwTwYD55FhLTfzybMA3r0imW8Lh41jSDzPWwjE7PLGKhVk55dcJdGHNgBdq3hkqMCw1d0K7lomZ1/La3HsDmQbMBJ+YVV29xgV1SbCatXniZR/ULdH0MUyjK/U4Uw82kz5k9uHX1/6H3+YNlVyyUkzqRRF3rJRRoxoyccMlB0qmDSwkknUToukMJL9xJIBmE1XlxgrDwvCQlIJxE4NrjOgkAFLgEqW4/QZgT/hZ+HOlGFIaH8QNLPyColKFbCMIJvwXQvuUC6lsbUd96CfVuK5rqO+JSfWdcbNcFF9t3x7EuA9HS0KnwN9R0abG4ihZcI2DIJ2uHXoOxh1Zg+LHQDWX67pexcdAcHOw5Oq+s4trusiGLYZNXGIZhDFipwRQN3f3EMqKfYRhgtGNxnQDTZUMTjGRC8S1ipHNBxgiBpvSwjHBm7JJC0eOqWWtsCYFL7brijXHvwHXrQ31VrwtHcLzzAPQ+fygIa0g24eY3f4KnZnw8RWoGRRYWyj6qz8JQwSl3p7zaiFhHlOXWFcfNpEPjWbxj5f9g8KntWaVYzjkMah1HuHCSRV21vWJJkoPGhs4416EnDncfjm0DZ+BQz1E5uWmktECxyB02i9F8IUWR8vzU+3H/y/+EBv/ZEgTetvYBPHDNF+HGDWRklIf2yyh+CRtQU7yKilZMW4WosMuwsvxSU7BSgykeBG2UgciY2RueEsMMsyelxAssQSlqlmibZ0NYcshwRCXwIxb6BF5kGcgQQZrqwWhE2zdUyHjpikSENSNvwNQ9r6CXMpdGh8azSFJCM/OesH8Jlo2+FSe6pl4qMLiPqYudMfZbWyEjP0xBYYVGejTFj/pNLCnhkGcxntmU3S/jxvW/TulmkiQHZzr2wb6eY7Cnz0Sc7NQPpzv2RXNDR8B1AbhICBeOm/Qn9fT3EYY5IumHu3BEKxJuKxIiiUSyFQnRCsf1w/zwMC0BQMARSSTcVjgi6bkQAHDcJOpEK+qSLUi4LahzW5FItqDO9TZvv9U7loyGlcO1hklPQrjo1HQWnZrOov/p3Zi2+2UIAOc69MSePhOxfeAM7Ok7Ca2Jhvwzi1mBRSiNoVVeyZEznfrg9bF3YsHG3wZhfc4dwBXbn8KSMbfnkXJluqMwDMNkAis1mKJBIDjkhB1mP8xs3KV1Rjrlhm1CPZvfqfJDOdfHcUJzUXM2z1R5k563ek2mBYfXfVDTtkU0kdoSI5plKnLXqcNLU96Hu1//RhDWqfUC9vUcgyEnt4ZFAXDnsu/gxzd+A+nI+PoyJCyyt75uuEKKmWAJx2lZr8KUG+G72JVBGRTmWbh3rq61Efcs+SYGnt4ZO/fQqY59sWrEQrw5dEH8pGyOA8BBEkAyUZCiGeUQWjuT1b6plIJuUUhuMlRwqIoPXykSKEuSLUi4rfpxTUmixosek+ebx+rdlsLfsBqFAHS9dBKT976KyXtfRYtTj939JmP7gBnYNnAmmus7FCgjCpRmmsWo4q6S7xu4asRCjD+wFP3P7AnCrtz2OLYMnIWTnQfkmXpIRSk0TKsN1qm3OYgcUAHnwShkWkz5YaUGUzQC15MUq5SoSohAULQ1osGhNIoPxbUjNrk83VS8Uywm5MoSJ0FQhm4qauusuaTYygZgT99J2DZgBkYfWhWEDTy1A+fadUeXptNBWI+LRzFl98tYO2xByuuJpSCTh6bSJhRfKuEVUYoHu5+kh4gAsitli5xzcVYz8elx7hDe/9pX0L71UuSYAHCyU388Mf3PcKTHCLNYVuVBMdGUELnsU/Ajgkgk0JJIoKVcs2cIESo7pJVJshkJkQS5rUgIFwk36Vm2BJYwvsWKm/QtWloDS5iE6/0Owv04FCyL61m+kLSmES48KxjjmBHmwDxXaGkCQMemM+jUeCajpXM92xtvTg6ZX7Y1qd5twehDqzH60Grc8NYD2Dx4DtYNX4BD3UfobiS5EGO9EQ58yAvJLReRSODZaR/C+xd9KbhfdW4r3rb2Afzmys+hMBMgUjjxd6DkC0pQgPQzLoX6Qx90YRiG8WGlBlMS4oRXq0BrExylCWc6d5V0DV3QPqdxUynQhF9xo5eReFaXlNQnvTL5vRh+ZC3q/JG6hEjiZOd+6Nx0Wsv3unW/wfrL5uXla1vVpKoTrNvIC1Zo2DFH98t3n4qT78jDb+IdK7+LhN8ZVWlKtMPjl38CO/tPiy+OxeKhYqn0IhIhmfBWP0k5e0aalcNywmJJaMkybZ49zx7A21b+H7o0no6Nc7ZDL+wYeDkO9BqDQz1H4VzHnp5UoaSdSLag88UTGHJsEwae3I7eZ/ah+/nDVsWbSX2yGZP3LMbkPYtxrOtgvDnyRmwYMhfJRH3aczPCvAcFkC+Odh+GVSPfhlk7ngnChpzYgkn738D6IXPzTt/DfHZlaDTjqg+3320PB4WdU4MNNWqKNtrLYUoCAeRQuN66DLb4lsb6m+qDBP5uCosO7dRQERLgeUOkd1OJsZDISBDJ2M0hXcSw3L7XjBb/TKe+WDVyIa7Y9mQQNvTEFuzvOQqDT24PwurdZtz05k/w5IyPZy+fF8hlQ5fnVJcUlTIJS2XyhmHaCGV0OSko/rsxc8fTWLDxd9auzq4+k/DHKz4D4dTbX6MqvwVVAxVWXaR/FpVfiktTOP+UaSGUKmGBGduewtUb/oA6tzVy2AVh65A5WDdsPvb1GR+1PjAakWSiHme69MeZLv2xfkRondj93CGMOrASY/cvQ58ze9NagvQ5ux8L3/wZrtz8KFaMuQXrhl2L1kSDMtYRnp+rbiK4RapLrJFoJs3R6+PuxOhDK9H94vEgbP7G32H7gMvRqE6KWotuG+yOwjCMAis1mOLhkCdcpXA/USUCMhUJquxkS5+UeMGuxZ0FxnHKwk3FKGNE2WEpv1puc3JTNQ0jolZKLZpymilALRt7GybvWYyOzeeCsPqWRrQ6dZqQOGH/Erwx7k6c7twvUm4bGV9LxqRzSSnTkIuZLQtFWcHuJ3YiLiely7mok7lfsfUJXLPl4chVuXDw1PSPYtNlV2WVHtefHMhUYVGk+xq645AWKrPMNNu61ka8bdWPMXb/MuvxLYNmY8mEd+Jkiomu5WBIujp0ussArBx3G1aOuw2dLp3G5F0vYcrOF9G56WzK87pcOonr3volrtj8KFaOuQVrRt6IZKI+uoKZooTIGGNFFdsKKhH5w0JLXTu8MOX9uGvpfwVhnZrPYd6mh/H8lPcjUrA8q0VY7PK5owQU8LqYKoGcArlWKekxNQM/TaZoSAEn1QZ1k+fJTYtLkU07IdiN/rMXLrqRQ9by2AuuHEuVtrWMcktTxgxoru+I1ye8Swvrd24/tve/PFKkdyz/7+wzsF1LLVGr11UiuEOqYBOwi/T+pO7nFDBTJZ8rtz5qVWg0J9rhF9d+IWuFBsD1J2cyalwzI5OuKBk/vDY45yzR9cIxvOeVr1gVGic798dD8z+PJ+f8BU50CRUaVkNOEa1DZjzz94UO3bF0wjvx45u/gyeu+DQOm3O+WOjUdBbz1/0GH3z+7zHqwEoQhFWOUccCsibXmwlgV7+p2Ga0+dN2v4z+p3f5aedSoDhiBLdywJ+Ptkcm375sN6ZmYKUGUzS8lU4cv9MebQiFjANFUZHFRk50i1NWyM0hB45fJvlP/S2PO+TY0wuuTSpeYsou46mKGFsZw4gIpKJAE51KO0JwHC/ddcPm43gXfTRr8MmtON+uuxbW++x+jDmwTMmvMEYXmSzJm3WiRUZTewXPDxUhpzHVSZxLWzHQ5TBV2ZtjgjHWbnL/iq2PY+7WRyKvxrn2PfCDhd/CsW5Dc8yYicWiyKdMrTQsiNhfpiso7PkGgwmU13QQvc/sxXtf/iL6ntlrlIiwcvTN+NUN/4aDvcdC1mv5UVb3bWHkt5lmPNt5AMF16rF18Bw8uOBLeGzOZ3Cyc/+0Ze9+4ShuX/od3PXq19D79B71rmn5OYXsLymJpLrtL02+Fy3K8rQEgRvX/hKO7xoUK3sU7FullLPY3z+j/ea2m2EYgJUaTDGRjbEicKuWF44mqFEQZtvIloalY2oVwtIoRLwiRhUYUWHSkqa8TjJUN7Z4JsZcHpm0zaHAGf4WTgKLJr9Xi9e58TR29Z0UGTx+25s/A7luUEYnC221/T4o9y5Loo8lRoNUDGxyLpM1vIpMiPo+RKzJip87ClWRCeF1OORg4v43cM2WP0ZSPtOhF/7v+q+jqaFzznm12fqTor3SlBcx7VcBCqC0w05EaRGXbeZFsCsS+p/cgXcv+ld0Mtw+Gus74pGr/xavTr0Pybp26e+N8Y6pf7PeHAfbB8/GAwu/gecv/wjOt++W9u5ddmwT3vfi5zFv3W9Ql2xO2ZapzzObJ2fKE1Cu18bZjr2xZMztWtiA07swZc+iaOQCu6OY1130b19c291GPydtCscp/MbUDPw0mRIhPUQjmoPMtgDSd1NttmgpBTJK+U9L19agZiv5ZdnuC8S32bv7T8GuvpO1sHEHl+Ngz1FaWPvWS1iw/sH8BOSC9Z+iD62k/cA0CP8fE0+bdx+wLmWEoijJCt7/j+vYKN+4wSc24eY3fxy5nNMd++DHN3wdbl0D8qHa6o+mhMlkPxX5aw7sZYzLLosipExfuT67UsquYBhybBPuevXf0b7lohb7RJeB+M11X8buAdNSZxxTlkLUIQIAJ4H1I67DLxZ+E+uHzU97jgOBWVufwvte+CcMPL41mqZ5T7PWasQ8FLlvufcrRt2EE4bFybyNf0AHc+6Qgr52cRqGMiBvDbfbDNMmYaUGUzQI8KwhSAo4fvvsUFpZLrKpbibkgAwXktBiwwm3dO4ecvTDIcAvU6q2mWQgGeoPOYKSql1XhJKsXFLCGwC7Kw+Cv4smvxeukkB9shlnO/SEa0yENH3nC+jQaJkgzS9jIcSBXEdg9dPKKyAFyiyWj5gKQO+7qR3G3NITEVMx+W32tu7nD+PdS/4DZLwAZzr0wk+u/1rBloguhbVGnLNFtvsayug5OYq1g6NbPtgsMAr2ZbMUznxeYftrWjikK4X9yvUmynSTtGtG+p/Yhne8/h9oaG3Uwvf3HoeHrvsSTncZkKYspaOpoROen/kxPDzv73GmY++08XueP4x7Fn0V1771K9S1NqWIKRX34Xubzbur3WUib4RZSUQAcJ06vDDlA9p5HVouYN6mP3ppGLKHVe4oijtKaRtRKrPswBQR6Z5dyI2pGfhpMkUjEO4cR99sYdpxb9MUD4FAqAhlvjJCj6f+zNB81Sp42uJF09RkOYuiQxNklfxMacZeNuVaYBNBw1VSiAgnuw/BuuELtBjjDqzAhiH6BH4OBO5QJg01haVsXFJin30e54aUXhCKKKq8A0wMbdZ9wEbJ60l+o6PaNw2kvbNOazPet/jLSIikds6l+o746XX/WlCFRtpvRYbf8VSbU6j9iMIChvI5g012RguBkkzY5mXuTpJdRobSIrbt1GtkrzP7cedr30R9Uu/w7+o3BX+a+zk013eUjU/WGzlOzuema2D39puMXy78OtYOvy6DuyNw+fZnce/LX0DPswfscSL33lByRIuQMgH1HLXd3tt3IjYNmq2dOmXPIvQ9syc+7aKsImJZGa5ImG03wzBtE1ZqMEUjnUIgXsmAIH40UUQFEIqLYNnscpkvnEY34ejlMUUPbUQgZdYWSTKu8U0h3di6kGrYkgnvRFNdeyUpgS4XT+JSfSftnEEntmLAiW1hOeKk3RLLB/otKXXmaTYfNm0NafMCpHr5RagWJdEZWb43977+NXQw3ARanHr8/NqvoFX5vgD5uWRkXH/y7rQWaSvVNyrDihBbzNSJx4RGTwyUJsG/uBS9NLteOIZ3vvrvaN9yQTu+bdAsPH7VZ9Fa1y64hTndfjkJZr6PMYaWuvZ4ccZH8PSsT6Il0S7NfQR6nz2A+176F0zYvTiDZdPt8kdWn9SYC3ll4nvQbEwaet26X8eXqSjVuIRtQ5p2m9vsGoIoHNAsxNbWZZgag5UaTPEgaAoNTVmRohHSRtgcJzKRmXbM30LXFIvQYnFdsfZWjbID/gviJyStQ8wVV2wrqsSlJ3eDLVDkZCaBhveOIE3nlPEaXGzfHSvG3qqdM+z4RqweuTAyGHPriu+lzCtS8JjyBFsqVxogw06f+gz10caUz6uEEIhdUtoy5ouk1tUC109TyadZCOSduD342nUPYoBcCtLHBeHBq/8B5zv2ApCi+vtWCN73IDOXDJhhQOR3m8d/4LZvo/6NTEXMU4u4/Hlb0K6oVpMpktFTIbRrvoA7X/06Ojee0o7t6j8VT17xF0jWNWjuTrlSkLW3Im2Yvm0eNhe/uf7LOJmBm0x9shk3rfoRblr5f6hP6Y4SKUWwmYoaSabXer5DTywbrcsBQ05sxdiDK/Qcjfa7EM2sfuvi2m52R2FyRJF9C7Nx3aglWKnBFI04Cw1bWMrNokgwhSFNeLa5u2S7QUkbYXMcae8tHRzr9SkdEqvmJeb+RTeEf82y+AVaPeomnG/fQwsddXg1jncdrIV1u3QCU3a+lPohFnKoOOO2I9UdrxBtAreDANj9BPBf35Lp3ArR60DkGycZeehNzNz5nBYmADw39YM40mN4mITyTdJcMiDvR8x3ztgEZDuhbOpcASm+j7VIRKFjVVzEKO+zvk1BY6Vt0bYrRY0LDhppQODmZd9Fz/OHtOgHe43Bk1f9FVBXl1l507TTUXcgu9Is25sTvbeee+dvrv8qthmuHXFM2Psa3vvyF9H14nHjI5FZnhL1E5vuKsLHQVg1+u04bcwJcu2Gh9LM+yEzTR8lg1Kg7G03N08M06ZgpQZTNFTFQzYbCF7NVJUEUilgsYbIOu1Im2sJ9OOmHb0gdTfFP1s/PRs5K0V8s91urWuHNya8Uwvrd3oPNlx2dSTugvUPAm5rinzbTociU9iUNSSfEdaqxZDTC63XKVR61noapysE0NB8Abev/F7kM7Np8BysG3at/qyFn7q1Z515naj5+pPtw8xMF5Qu0/jEjX2vXbS7k8StciIs+Zvlm7f2Nxh2ZK0W53i3IXh03t96LifZkK1SLO5mFaCutTR0wJNX/SVWjrklo/i9z+7HvS/+CwYf26KFZ1Mrsiq2ct2tde2waOJ7tMNdL53E7O1PZ5BOFnlmXrhiZ6CkTqXIhikHmXwgs92YmoGVGkzRICIkEgnNTSRwF0mlfHCUv3JLGH/jrDas+gl9ZCdSllhLEE+zYltRxbalH9JCqKAJlB3GtRIFFiaZfnDD6yZIk7oNQ6/B8S6DtHjTd76I7f2na2H1yWbc+NYvItlotzDNiFemo/VVrQzQRsuIR4DaGubzVr8rBZac9VdMfiOyl700wd5X0KrWbSbvef3rqHNbtLCTnfrhyekfCwumfqezK04slW7tI2J/ZbBGinKvw09ojMI9Xwsca1FsDWIqd5KYuU+C9i1sC+Lq0/jdizFj65Na2IV2XfHIvM+hqV2XoO5kZjGZweWmm7tC3eLuvXI/0tZGcvDatPvw0vT74VreJXO1sY7N5/Cuxf+GSbsXBW207gKbvuS5fgO2DpyJvb3HaWGztz+FLhdP2HM05LBCVEm9/1jAep4yU0XOMmVDhmFqFlZqMEVDNiQ2BYCTcOAk7EqClEoQ2ASfDISjbDdrmhahKMPymMqViAImuGnWG6nd0/hyhckJJ4HXJt2jJdPt4nEc6jUaSUpo4ZN3L0LHxtPRPM0t1XM2fsddf65Cha1DUFIpxcyGhSMAld8hLRYk/1eSKkgITdeyO039HqXiiq2Po9/ZvVpYq1OPX17zL6BEQumIIqNvQqZktPpJBUFQv7eqcj4DNwijc2pu+S+KIpUWyl9FEaEqCmKrrXaO7ZpSP/pep/fi+lU/0cKSTgJPXv1ZXOjU239vyO5iFLeluuJMblgGeahKDydyzfayrB29EE9c9Vm0KBNyAoAjXDQbk4omRBILV/0I17z1a5Bww/ugpa0/lehtUOsQZfTpISK8NPm+yFLv12z8ffr7piWUXfToySVur8uYLVNkHKfwG1Mz8NNkika6Tr1VGZDun6kMUOX9mDzSNWzWsvijFLoFhpmxKjjay6OVyyiA+Tv7Gxx/TYIIOwdMx35zlGbrk1g1+iYtzIHAbUv/J3OBOhvJu2ACheXeM2WnmjqkhaTQqpyi6YYyeFV6nDuAuZv+qJcHwOMzPoHmhk66m0mu712+q5+UEbWE8ioy7Y9n0T9PSeyiMkYpNQVL8M+WYMwFqtcXY0wQp8isa23ELUv+G3VJ3drnpZkfxaG+4wCiohi4FaQOZfrgjLx2DpqBP87/RzTVd9DCG5JNuNSgrzgGADO3PYWbVvwAjtuqtGTmU/L2I8ZhER2IlKtSX9fx7kOxdvgCLXjCgaXof2pnihPl6cV8P8v37le11SjDMLGwUoMpHkan3tYvTevGYYknVxtRN9MNxVRQpNxilCzSQkSzFrGeq7inpOlFEChyX7zRIWWVF1seWbqkOADgOFg8+b1aePuWCyBX4FJDZy180MltGHB8a2bPVcQbZKc/10yqsoULU6GWiZKMqT2E7n9UcPRX2u/qEOXeEc7gPPnu3b3kW3CMF3PrgJnYMWhmMCKcMp3YX+o9I22XNAV0jGKZ1Pug75dzK8eLH94+tQx+Z9h0J1GJcS2R9VlA6G1scI3QvvOxX2k/XyLCgjcfQM9zB7XDb41eiI0jFijRVQVBqOzP63mkqD/ZpJHqsWriiKHsONR7DP54zT+gsb6jdk6H5gs416FnJK3xe1/H7W/8J+paG6330tviZIno+5VJE/r6+HdFyrdg/UPh3DgpMOWowrV95Wv703/VmIpFe08KtDE1Ays1mKJhcyNJObdGtu4nFpeVbJQWmQuxWUAUCD7aZhPcLGNp1sbWVgSlXLaOgRzBOdJ7FLYas7VP3/k8Fk16T2Sw7uaVP1DKFs1WFerCfMK/md0f8zIqvEGxKNiYkEpXShUKrfOEHL4LueSXS4XLsozzNv4e3S6d1MIuNnTG47M+lZPQ5+UrvxF2lwxdYSOU71d0U/W42XgsFHsrHrYPjr+R7FCa7UimNUU931fYy0lC01yUmp9ttZuxe17HxF2LtHOO9BiOV6e9P3K+2v6BYLVszGpLc9sy2YKWOK7NNyqA2RYe6T0aD1/7z5HBgi6XTuJo96ERl8/hh9/Cu179d7RrOa8+nQyeZXhEf5fi220AuNSuC5aNuU0LG3xyK0YfXl3yNji8jfo3gRtXJiMKupyrvzE1Az9NpmjEyQb676jiQY4aRQQPh7wa629pFRKWf7kISymVHLZ2mCz52Ex5C9qGU/iH9MRfn3SPJlTVuS0YdHI7jncdoqXQ/eJxTNjzKlQZQ7vc0kr3VUVbNWeteKVUPtgeaQFl73K6nABA10vHMXvbU1qYAPDbuX8PJBKR+LHFtYzoZ6oUqOn6gxRuI2ldSFK1ZzF5pVrtRtknguFaYn+yupGHfbUbAaDLheNYsFKfR6O5rj2eueovkUzUp25fbZlluR+pQ+blZPKeZVJGLX60Qh/rORwPX/vPuNiuixa17+k92N9nPFqMeTYGntiGd7/8leh8VtbCxXyOzGKkKPfqkTfijLHE6/wNv4Pjtpa4Lc/mRjMMw2QOKzWYokGOE0wIGk4MGg1zHH3SUNPtw3EcJBIOHIf8vxarDCn4pXE1Sem6EnH5MP4qI1VpV09RXVJSupVEwyLliz3XcEnRBJNQBDrdpT/WKSbAADBxz2IsNqw1AOC6t34JuG6YSqYdL9Mlxfhts8ipJZkmvqtR27QVS41ioPcj1FHXXBPMLvrdS/4z4nby1rAFONHtsuB3nGuJOtpqWtxlUxAhRJXVoezKGlXghM852IevZchTURx8g4Kkw3aBHGlVEe0g64ul+PEtz5WC+Loa5oblP0S71ktaWV6a9Wc403VgaJFhL7CSrR9PhPuB5US6ffOfeSxVXOOfei+Dcy2b2W7Jnyd6DMWf5v8TmgxXj6FH12PHwOkRS47eZ/fjrsX/hk5NZyyDHsrIQgaurelIJhqweOK7tbAeF45g+s4XdcVk2d7H4uZrPtNakT3aHESFnSS0xhXrbQ1WajBFIxMlg11ZQJEtarpsbAVyNUklwFiPwRKulTHLb6YlrlUozPI7vHzcO7SRIke4mLR3EXb1n6rFa9d6CVdv/EN2iQORiyzFCKzasWIz1tJTXZ3R/Cl2lc65/sp3AJTxezdjx7Podf6QFnaxoQtemPrB2HMcUPC+qQoY29Y2iBveNzZVuRC3Iccvl6m80Nqf+OchFRwR5QVkXzr+wZJSD6bseAGXHVmvpb1x+HxsHT5XbzdTKSD8NtaqSLG18ZluBWjjYx9ppPzhdrznMDx2zeciq6KM27cUm4bOjcyz0evsAdz1ylcjFhvBY8iqXhgyknHulkFX4GCPkdoZV255FO1bLgbXQWlWg0in4MmdYn9gjY1hmJqDlRpM0SC18Y8bNZHCChkCgmMRqAKBxejQGpNX2QQS8gY7UgsoRrk0QUe1LtCu0S58hemHio+IdFnEhlVThBBwoUMPvDnqbVqcsfuXY8XoW+EaPoUztz4VTGJW2R0Um8SpHisdbdH9RFXstQUqWoeThaBe19qIazboSzoKAI/M+Qzg6LYbZMQBclNcxLleyA5YqjiF2i8EQkQvPG2nOfiXQfraZJ6w7ocZy/yVZ0KxsSMPzeZOoiSiKS1NBaYA0PXCEVy95lda+LmOvbB4xv2WrHXlRbBvuTPWe2C07SkVFMY5mXmf6P8yOCF+A3Cwzzg8dfVfR+bSuHzbM1g59lac7txPC+957iDueuVfPcVG2uz952M7YnuUqthChFcm36ud06HlAq7c+phePzJ5wWtMOdAW2/CqJE7hms/G1Ays1GCKRuDykTCsLowwqXAIt+jIjHRT8X47oIQDJ5Hw3FYotPJIJBJBPM11JZGdCwiR7gYiBR0tfiqBSrsR/ggICAVzSVGkCVL+BuWQ90lRtKwaf2tkBvQrtj6Ot0Zcr4UlRBI3rfqxTFG5vni9jJZ3TENR2pH90goomXVZaovqcx3IjsgKEQVKNfZIKe4lEW5f+X3UiVYteMvAWTjYa4wsSfBXUx4rHV6d9OXW+0thbyvXfSFg3U91biG2IL0CuItY75P6Xfc+qhAIv6vC19BHVipRiHMnsVmHePGjq6IACJTztoEHEgI3LP0BGlqbtLxfvOITaGnoFAwMBIMD1uujsNNt2Rd+/dMGOCxXG+mMqm2QL19k/IjDgobXLttuyz/1uoJ/fvl3D5qO56/4ZKTE89Y+iFen3hdRbPQ6dxB3v/Kv6NR01u6eqXXEVHeU9HVQvUMHe47CFmPy8Gk7X0DXi8eVE/L7FuX2LStvW9IW23CGqTVYqcEUjXAuDH3+jIQxj0Z0tZN495PIXBOkn6+vhhKe6wmCTjRNm4IiYjmCrOJpwpAqFMUJl0acCLYgLV9DmaD3IILdpobOWDnudi2dYUfWYtuAGWg2JjEbc2A5ul48Zk3SKEhGecsy1wKmAFsr18XoyHc60xUicsjBUBhmkb7xjUkb3Y/X/9ROjDjylnasJdGAJ2eFnS/vWgHyTdtUhWb6rFL0GJVEzHJnMgKvbqqbQkqXhWJtypXlja+8MO+NvO+2FWBSJqemI8tofqOVhxk+b9LaVbWDrj9GwoRdizD46EYt33WjbsD+gdP0861pxF2r2rZ6gxZkPNvoNTiR8Fyep5lutDykK5JMpYctHIStw+dh0eX3a/epzm3F9St/jGdn/zlOd+6vHet57iDesfjf0dB8MfIcguIFt1ENkM/Trp3R6i0RFk98tzF5eCuu3vhw6oqVBdl+K8m4lwV8u5hag1c/YVLAT5MpGrq1AQK5Vhu5iRVqosJd8P0x5WTHTFPmYwgpkTk8dEsRLT1HzUMvVxDukDVeMPlozHmacGcTjxWBM/UNtmzKIduPN0ctxPn23bVk5m78A16ddE8k6VuXfdeebVXIGkUsZIp+m/ocat2cNdMOdVVR4hVPvN85ZpDFadLV4Pbl342c8sKU90M4ddHkU36G1NH9aCS7IkD+i8arRjT3DDU8g/0A/9I1PYPlueb0JTGUF6mQ1VCQCPLXJwQN02jfeAZXv6m7nZzt1AdvXP6BaHmD6wuVB2mLZNNdmPdJuzyyxo/czxR5qk2y2cHW6ieFO7YardVuP9G3xr0db43RXT87Np3FDSt/hMfm/m1EsdH39B7c/tp/INHarBfOKIMIDtneLON+GffibOe+WGNYaE7Y9wb6nNkbnpgteb3GGT4ohmGYFLBSgykampDgEJyg02+3wogoNGLcT+R5qluJ47u0JNR40sVFcz9xtA1KmOamYuQvlRiyLIlEIn4Ux4EyuqIqURRrlGCESb1hutCXyiUlXbsvYn4k69tj+YQ7tbgDT27H+c69I8qO/qd2YuCxLdG0I0vmxYjcFj9sFdtIWOHkmjIqFPysbUJmLVHL7ic1pZDyOyiXb3sG3S6d0A6d7NwfG4ZdE0TTR0qB2PdIXVIz1PJmrpCVyZSsDuWxZmh61YTSYdRH/uP2YSjZ0xH2pcO0vOyi7QyIlKdnuFD5zziirFd7yj6BhZL6jwhz3/wlOjSf18r3yuw/Q0tDByUPWN1GSBEKYi0sYr6bYTLyGtW45jm6QkYtv93iw9wsmctNdWlRH5Byf00lw+LLP4jdA6ZpSfY6ux/XrPklHr72n3C6U1/t2ODjm3HLku+AXN1NTCtS7JH0CAEsHXs7muraK+kJzNv4B0XBE31+1nIY7bi1/a7Az2m0ToD1KdVARu9vlhtTM7BSgykasvMedOSNJVydhANK+MoHZUs4DhJyPoxg31dk+MoHucSrqrSQ6Un3EyJHMV9FMJ+HNleFTFsVCK0uMKEyQjPRtW0WhUZk1Ef+SZWOkpZJ2vPi8ibC+hHXRYSoq9f9Ds/O+FhkksCbVv7QCDHLh+CvHguRfAMhKQ21rgxgKh9ZB4st72RlpWB0RDNJO3hH3VbMM1Y1EgD+dMVnEErylEbO03pu0Q6pEqNoKJ3i7Dan4PtkbQcKKEdb2wP//noNmjVhT7Hut29+GTUXKvVBGR1xtW3T6pt/7uDD6zF+12KtmNuGXoV9gy/PrA3S6pg/wEFh+6vFs/1T7rGyE6QXnusY5+ibE5u3n6ytnVM2a/0nvZzq/UOiDs/M/Suc6DZEu3fDDr+Fqdufw58W/BMuGIMKIw69iYUr/g8Qrl8dDJnA9rJFKpkZKWzDG9t3w8rRN2unjzzyFgaf2BKtpBlV2BRUYpMeeahMVVDI5VzlxtQM/DSZokEOBUoGVZNvDbO4azgx4TYBJRLHodBlTgoXtjwSfuPtKMKJOckmqXNwIBQEA+WJRXiyuZvI+2Jci0Visp0UESxsQp8qpAZJGCNmbqIOSybdraXV++x+dGg9j2PdLtPCu108hlH7l2tFsMpMmtyUiwQfXpMITR3yoIxSip91TY32W8i0c13NFMKIQLVEMO9X1lYKWQjg6uoWC9/6BerdZu34lkGzcarrIPMMIKLaNIpABNJG8ZUUsnTJgFKHcnHVKOumukJmQN4uJP6WcTqku5NozUncc7U+VUAQ4CRbcO2KH2vhTfUd8drMD1nzDhUEsJZBvT5B0E+I27ckQmZDpJ1j+51B+2S2bUb5g5/m6cG3H5G2uaW+Ix6f/3e42L6bltXMzY+j76ndeOTaf0BjfSft2Pg9r2Hu2ofsZVMLEyl29BmG9yvcVo2+CRfa6eW5Zv1vgw9ftTbBedFG2m+GqUVYqcEUjdAaIrTCSKmgkMqIOKVHytVBjJEXKJOKqm4qidB1JWGsnOJE3E+kpYfUjABQlRd+66eWSZOtMii3ln+sS4oqSFsUIRa0BtnSNm+57MqIAmPOhj/h6VmfjHRpbljz87TPOjpXQIYuKREXldTlTocuq8oOU9yNKpLQwu4nVUtxVjxR8bscRNnq+3KmfeNZTNqjj663OnV4+vKPKe+JLBtMrQP8j5neg4vzb1PPVHp+pLyY+n76ODDairKSgdImDq3karsXt8Wlo94D+fyUdsnr1xvPSUQ72eY55pWo7QwRMGXrM+hx9qBWliWX34eLnXroz0ppG+W1wpKnfhl6fP0bDhCEfd+6mcf032bbKZC+zTDvWaRJUTNQ3VOMh3iuc188Me9vkXT0pV5vXPZ9JJ06PDb/c2hJNGjHZm55ApN3vGjRoGT/7fVOD89rqWuPJePu0OIMPLUDow+u1HMQQv+dCVpTXkXthNp+V1Gx2wqCqOAbUzuUTalBRL2JaCoR3UBE9xDR7UR0JRGNIuLpaGsBxwES2tKt0VVNQlcSm1uJskkXEXWeDZluwthizk0o7jC6QsHiapIgTcliurkEK7ckHKNMiouNqqxQhXI5wGIIsaBomBS0TGyCacYbAJCDJZPu0tLsef4Q+p/Zg319JmjhHZvOYfr2Z5FKi2IWMbbzYYTHXVvumFJrqrS4MWN05HtYvBVPZJ3PpH4a52WYttkpvm3l9+AY0vmysbfBrW8HT8Fi9JeCTpvyTUpVWq1Dm51LhiWJlPHKjabwVa4xYi2Y0Tc4zUVbvpXRdPxnZUygrbUxoHBeKFLC5F+to678VfLs2HgGs9bp7ktHeo3CxjELtXbKfh/ke0WBW4y9bqhtoVKfHAckV0Ix9zPZSB2Y0O9dTs8u5nlqW/D8KJLvkb5jsXjGh7R72dDaiFtf+xZOdB+Kp+Z+VluZBAAWrP4Zhh56y14fTOVU2vdFj7Bu+LU41UlfXnbuxj+A3GR4bUo9T/dSxsk12WDWiWy/lQWjgr49DMOkp2TKAyLqQkTvI6IfE9EWAEcArAbwLIAHAfwJwGsAtgA4TUTPEdHniejyUpWRKSwEpWFHjFAmG0vbhKHm5isrQmuFmHNtE5AaLimKrGHNJ5Ku4+jCDwiqckXL21RiOAiOyVE0TQgJb1goAITSkSJEkBbPtpHtnykP+HnsHDQTR3oM057ZFZv+hGev+ARcozW/ev3vAddVCupR6IF6QqHcT+yplwQ/m6oancqBUOCscoq84omZWTrrFmu9ocwGDVWXExCh15m9uOyYvvTmpfpOWDbuHan7JiL8fuiJy8OR2YK99JTOdSZWPKWqQwWbGlQtqxCR+53plvWXIe6bryI/myJ6P8NnKdsQbaZX/9L89pGibcacNb9Bu5aLWpqvXfGRqD96cI1moZX0Yu+LnqfaIY7dV9pSWzy1LY3UM10LEVOW4GRLW2zENcuPmFNA2DB6ITYNn68Vp+fZg7hx2fexZ+A0vDT7z7RjjnBx8xvfQa/Te6MvbVx9iESyf0Ncpw6vTdQHOHqdP4Tx+5f4p5rXniEWuSP7k/NKJDfaSPtdtciGpmBbDcgwTEDRlRpENIOIfgHgMIAHAHwIwGjEN9MEoDOA6wF8EcAKItpIRJ8iok7RHJhKRWr2w4k2w3kyQqsIf74zbaPIprmQOMpKJ2qY6lYirTXUc5UJPxNKWNQtJBSKwklEASiCUrCai7xORbkRCFWy7HL0EqRNnGoqXKIWJLZJSeXIk1lmu2AIGMvrKZIWOQ6WTn63Frf7+SMYeng9tg6+QgtvSDZh7obfmikqgqJaxhTtRJoVUUyBNOLWkxepXV8KBrufVCWFFWLj0kpfJ7R6Q8jL9eLWlT/QchQAXph2v98ZjXP1Imu4MN97WTaE34HYOyi/OZEOqD28IBuU77i6r8TJZ1/mkQvaszS/edZrickp0Bfo8bTfpMTV2gD48y1B+WCHv6V1Q9+TOzF++0tatltGzMfRPmMDZQn5ivyw/x+2A6TUYa3dS7Gp8TSlBHkKtWDfMeYMUeKpv812Nd09Ttf+aNdmaZfTtldEeHn2n+Foj+Fa8Kh9yzB985PYNHIBlk+8UzvWrvUS7nj1G+h06ZT27qREfwi6Yks+bwBbB83Gke7DtFOv2vQnOClWX8ka9VuSc7uhuH+Vov2uneaNYdoERVNq+MqMpwEsB3AfgA7wvqCHATwG4AsAPgngHgALAdwBT+HxWQA/gGfF0eqfMw7AfwPYTUSfI6J2xSo3UzhCpYK5uokyx0bCMxFV3TUSjh/H/yv3g9VPjBVRTJcQdQlYx3dnCQQlcy4O39UkvfuJE7kOcmSe6kZaJ4RUwcp0QbF0WKJCv03gNYRiIJRFAyFTyUeLpgfsHjAdh3qO0sKu2PQnvDjjQxET2BnbnoHTqk82aBNg1WNK8bROhhTKHPOkGHLvPqRIM4N8s0nLvPeFTJ8pPoWsY6q8rbtkZFfvMokZ18keeHwLep/dr8U93akftg6ZY0tE6+zayqiWX63fsS4ZaucRCN752I9FoTd1dZCYlUIKsqV7Jum28OMdu2nfF/Of2p6o7ZyWvt86qPkGcVQrRP05OwDmrvgZVNuSlrr2WDrzA/59JZiTaoOkkkN1AYlp42yDCo5+P8zvqqroT7sSWdwWGcgw2+3UW/js5X1V28LMNre+HZ6e/zdobNDH6q5660H0PbEDSye/G1suu0o71vXiCdz22reQcFu8e5m23imvtrWeStnEwRsT3qUd637xGCbteTV6jrXGZ0ch2saStK/chFceBbXSkKbbTK1QlKdJRD8DsAzA2+B9Ft4E8DcAhgkhBgkh3iGE+IoQ4odCiN8LIV4QQjwuhHhACPFtIcSfCyFmAegCT+HxcwBnAfQC8DUAm4lobjHKzhQOfdJP2XiSMRGoYqlhCAbh6ifKsbh4RmNurpyiKi0igg1F4xI5enyLW4lUbKiTd6rx/LsQnG8VVKXEgehv//Qgrj7KpgpVelxtk+lCdkAM1w4iLJmsr4TS7cIxjN2/HG+NvEELT4gkbnzzp1qemc/Eb+8MZHp+VayIkqZjUmuw4iZThK/kyL4i5OJyInn76h9ruQkAT836RBhFc1Og0OVECReGm0JwGbrWRskkhUuGhUzqUCFGZFUrk2LvB7/TfQ9s1SHFpartg7YP+X2XH3wlvtKGIuIypDQh/iaMGjN03woMOLpJO2fVlHfhYseeSiL6dVjLqCoE1PwRtk22fbJdk6ZciIbZ4qhlFBARxZB2j03lj6EMibTP2k3wNpI31szfKMu5zv3w3NWf0e57wk3ipte/g4ZkI1648pM42HuMds/6n9yB61b+BKS+ayZm3QquXQ9Qa8Su/lNx0BjgmLPlUSSS+kBGthPkmmXIjxK0N9ykVTiFniSUH3gtUSwV1QfhWVn8CMA4IcRMIcR/CSH2ZpOIEKLZV3h8GEB/AB+AN+fGUADXFbrQTGHRxAYpFGhhCEaIQjcVy0op5qRf0rojsJhQVzXxtkCRkQjDpBWGdFEJJyU1Vj9RLTaccCJTdSLQcPQpFB7VSUG98xJIJBJ2VxNFQVIwlxTLx1kV0oLVYAz3lX0DpuBg77HaebM3PoLXJt0dmYl9/N7X0b7pHKSGmyLSU0jGK6JkQ15JlMj9JH3WNUGtuZ8Uj9ILTcMPr0H3C0e0sKPdhuJIL6XTQv7/1EmGEO9mAqVTalpnQP0e+eGZuPMI/18qtI5wBp1Y2+bAse/HjPrns68qkTPCUAjY2k0tjtEJl59gIgCOsjwqjGeJUAkglSFhekp+8q/r4srVv9SKerZzX6ybeLvX7hntU0SZoDwvtTMfURCQeR1G/BSWFOqzTKWIUNNwHCeiYNDSTjEAobXDjhONr95tqdPQ2mmlPLL9HXw5Vk98h3afu58/ggXLfwLXacCT1/w/nOmsT+Q5YdciTNn+XFjEoJ6E77GGHBMIngtF228ivG5Ya3S9dBJTdr+ihal5xk0cam0XKtz9xHzvUog2DMNUKMVSanwfwCghxMeFEFsLkaAQokkI8SsAEwG8B8C2QqTLFI9AOZCQLiJkuKQYq4QYHfvoqiTG+YaLSiIhhSzZ+Td8oG3pOY62QovV/cTM21GUJOpqLQ4hmBMkEF5guMSEViSmf3YgXBluKlYhLZUAp6VJ6RtmilprdL10ApP2vIalE96phTsQePuKH2TU3puyFZkBGaQRxstduogKl3I0jc0OmdJgq/vxkc26mjZ6hBvX/FwLFwCenvWJ2PPV99nLV3aww7KbHTtViSG/NerIsdopL9iGaIczo82J2S/mJu9BJv/ivve2ThZB/agZ8QHH71CDCP5sIuFz8zvWmtWh8vzU9mf89pfQ48wBra4sn/l+JOvb6S4nWjtphKd5nrb23yYPaKuIqVsiWgara0mafDMtb6Zb8IyUhybfChvLp92Dw4ZFxtg9r2H8rkVo7NANT8z/f2iu072ur3nzlxh0bJNeF6yphwQKkJiS7O0zEXt7j9fC5mx5HPWtTUoipG+2fJRw270JLVkzw2zDi9J+W95fpgJh9xMmBUV5mkKITwkh9qePmVPaQgjxOyHEb4qRPlM4iKC4i4iwYVLCINtFZYsIS4GQ7W8AwrXqzc34VilCYKB0UNJyEtFGN2P3E6k4STiRMNP9RFVgwLg+9brVv/7Z2m8gNG3WBN3A3Fm5ScGl6+fLdFX295uI/X11YWb25kexZszbccnw+R125C10Pa+PAqsZZDOAUhr3k5geR+4J5laEGiPTTnelIkf6oit5FDyn7EcVsxCszZTH7FuKrpdOamEHeo7GyW6DLZn4acS4mQj1+ca4lpheLHrZLG4YCPcj3zdLnMi+7cIzWrqkAOSQT1ynV9v3/1mzIj0dKO1hKmS7qq1I4x8Iza6N5+cfr2ttwqw1D2nBx3qPxM6R8/TrCIqolN9sx20d/gwUS2qbartPcl9T/pjH1H9qe5likxORRpUU4bMIb5VxfY7ShkOPn6oquk4dnpv3V2iq76iFz1/xE/Q4exCnug/FC1d+WjuWEEnc/Pq30eXi8fR5pP2WBJUMb0zUrTU6NZ3BtF0vpEsggwpplCOrpqOM7befBa+GwuQDETUQ0UeI6BkiOkRETUR0noi2ENFPicgy2RWTLayiYoqG3uDbzEQdzWohWGnEnGPDQURwiB1V0RQR6miMonRQJxaV+UasNWSZldEcJ3QVMcthXd1FWqc45E2oppXJa5zVcz3lRziSFueSIoU442Z7wq4U8uREbb6gYSpRIg00EZZO0q01Ol86hck7XsAr0z6gRwVwy7LvGk87jxVRsqHgckVpV0SpJard/SR4N6B0Mi2dy8zJfcWTSErp7qv6zTMOLVj3YKRUT8/+pF4eOTpl3gMn/F4EJbfkZXVRsX2PbdeuBGkd0mLvy2crYjq9mfzLIh+bMjm8BaTdA9lX0/fhr06ifzw9fQQFzwXKpnb+w+dISjugpuH9lat7qW3q1A2PodOlU1qZl826H3AcreOuzielXoMWx9JGq22dbVNdJO33Jl5BESmPo+dpy1fNz1ouw4UlnRWI+jca39E3/9i5Ln3x8pW6NVV9sgkLX/9vOG4rdgy5Aism6paTHZvO4pbX/hOJZDhxKEG57+pErVY3GYkI6sXB3mOwu99k7eisrU+ivuWS7UQliSxdQwrSdPBqKG0O45tXkK3oRaYhAFYC+DG8uSb7A2gA0AnAGHiLZCwhov8kKkGBaphirn7y30Q0s1jpM5WP35fPbHOUvxY3kUQkzLHGi8RPpNscb3WTBMGp8zf/vIQxH0dCXcGlztEVF3UEp85XfMi/Mn0lnmaqmwiVOnKOEKv/sCFApfRjNj+HFiEm7tyD/SZib79JWtxZmx/DjsGzcbZDLy2836md6Hdiu/W5UyDMmm0GRdqPTL/esdeax+ff1nRwe9KGIYQjyPkmleeKJ+niS2WDKZSNObAcXZpOa3H39J2Ec5366J1f2F4fe55mx9mLqbyLZgde7dzK4zblgFLuuG9SMbZMlxVNt2nlTuH2ENf51p5HNhv0b2u4+den1DlSlBVqZ918rqo7Sfumc5i67hGtDuwbfDkODZkW5K/NJxLrPmpfMj2tu4eMm4iea9s0xUWqLWGkadaLmDkvCumWki6tncOvxobRN2r3vu/JnZi1/o8gIiyf8m7sGni5drzfyZ2Yt+ZX2vMMtnRE4nsfwdcn3KVF69h8HjN2PGdPIqjOFJTBcVJ3LagAH1nz8krSdrN4wGQJEdUBeBKA1BSuBXA/gCvhLYTxZQAX/GN/DeBvS1zEmqKYlhqfBrCMiDYS0d+Tp6li2hJ2ySvYhLURjhEgSR+00rbI6inmbylkWQQZxxKeMOfHkCsC6nFVBYsm4FHUJSVhCI6qlYpsi1XBxwuA1jlQG9Q4qw1CVLFhDfPP0/4RYemUd2vxOjWewZQdL+C5WR/TJwcE8PYV3zdC0hEd5sh64MPWG8tR0AhXpCgBNSgMqR2kaqTQ5sT6QGH6FU+s+VMWK55YWLD215F4z8z8GKC96f6xyDsUzCaopyHddOJW+NCSIf04EHy71O9YUBJF4VOKVUnyRUvP8lhTKT6gtWeUvt+ptmcyv9j4QSPit6v65K9eIxYmpr63mpIDwJR1f0JDy0XlmgnLr7g/jGO6jkD/bW1bjHY9VrFkU+qn2bJVUgVlNBVPToqyK9egXbvNjca4p7b89fh6wOuzPxxxFZux/mH0PbENIpHA83P/Eqe6DNCOT932LEbvXRJfR8yKposYxpcBONJzJLYP0JUnM7c/jXbNFxAhIsMpKzLFYPt2ZEvJ2m8/C3Y/qRC8kc/CbsXlDoQKjSUALvdX+lwqhHheCPEFAPMBtPhx/sFXhDA5UOynSQDGAvhXALuI6EUi+gARdUpzHlNr2NoD0wMCoQCntZMwVkkh6aZiCD+GIBR1J4kLs08aFliDJBQXFvXcwMzU4n5CehgsFibwFR3Biipk5q0La+qcHsE9U+KnEtjIuF/BDdceh8DhPmOxe8A0LXzm5sdxtM9YHO+m6yW7nz+MkYdWRcxqU3bkLH0CktdhEY4yohpWRKlReaiq3U+KKhCnT1vL31RgWk9Qvm+Ww6MOrkSXRt1lYG+fCbjYoUd8/oSoy4nSAYeSl6aEoLD8WkeQ9L9aJ0+5xnLs27asll6NS9tRGq3II1O/1Qjiqd8687sXPmO1fljucfBbtXzQ3UmCcvrPL5VCAAR0aDqDSRue0K5hx6hrcKrPiKjFh5PChcQh/b45MeHGOdkoJ8y2Xv2b8WZaYxgWInDgKTuUOHGriJnXmMo9RZM3DKuQ1roGvDjvL5GkRPAMHOHixtf/B3WtTWiu74Snr/nbyMpk1y/7IbqfOxSpgwCChldTtqjPInpCZG6N9i0XMXP7M5DVPi3p3FHY/YTJgUIu5xou61pUrlb2vyaESEauSYhVAOSHtweAccUuVK1STKXGDQB+DuA8/KYfwLUAfgbgMBH9gohupFgJjqkVpLxnbo5hXaEJOuY/izCSyv3EdEWJ3YylYL3NWxElURdugYuJ6qbi79tcTdQwx08zzEcJI1IUG/45FApWMq3AdJcsgpApoEWERF3wDARnqGHh81pmrITSsekspm57Fs/M+XTEWuOG1T9N8+T139rbbhHobWfFp57fp8P25eHPUXbw/bJDlP7eqEK4941MHZ/ChLXKK8+9zmKl8eysj0XiA7IzqXdywu+C8dtQmIIQUbDGfoMUk7m4jqV2fom3lKP8cj6CdJvyjbU1dEF6wffWjGIo662b8uxTuEUEecpyGd949RlFLQwdTH/rYW2lC5ccvDnzvvBe2TrsSmdeba8iHXc1L6XNC10x45YsDwcLQldOfQl2kgMDxpxZWvsZyV+3trQpGuLm4MirXhl1P/KeE+F471FYOVVvh3ucO4Sr3vw1iAinegzF4tkf1Y43tF7Cza99G3XJlvj8/LqRCce7XYYtg6/QwmbseBYdms6lbaQjLb9yrfZyWU5Kg3n7StIWcXPHZI+qfdyZIt4OZb9dbCwmJUVTagghXhJCfBhAPwD3AngaQBLeZ6ETgPsAPANgHxF9nYgmxSbGVDUC/ohYqhni/X9eNGP0PNo31n8qMrsqKJIR0RSipcDpkHqenNvDa2W9+KqQpgtzgWCmhenuJ0E+pqATCGryLilCp1JuRym3gNBmZ1fvR0RYgBRidK2RvD+m6aw850jvUdhp+O1evvlxnOvUGwf66ArkTo1nMGX782kbe6//ZhutSeGSkkZIyW9FFHY/aesU05w4k0lUVSE8H5cTEDD88Bp0uXRCC97fexzOd+yD6AfT2+JGqLxX1XDhIH2kUn7PvW9M9F4GHRWI4DUW0P/K/fDbZr/WwuxnEsO8w0L7BEX3RUx4dD+j9z/2ZLVENvNGPX2zAyn/mp0+9fspINDx4nGM3/i0FmfbmOtwtseg4NlLJUmQttH2AAjdJ9XyGeFhm+1bLcZcUzhvRrwiQCtPTHiofIGlzKSUx7sztrIEQ3OWNjP4p9wTW3yLnj96TX6ZVk9+F470Hq0dmrLlaQw+/BZAwKaRC7BpxHzteJ/TezB/1c8t5dYu0KIRMMrlBywZfydc5WBDayNmbX3CjBwhnftJkEUOyowgD6P9Lpqlhlo+ttQoP0QIfc4LsRVdONuq7I9IEW+k/1cA2Fa84tQ2RXcmEkI0CiEeEkLcAmAwgM8CWI3wczYQ3sQobxHRaiL6DBH1LXa5mNIiBHnKDeE3RuoGxf9aKjckUkZQFQ9Q9o12Wh3ZIjnpqG8BIb9hcj+wFDFHa3wLCs+Kw/EtN5wgjvwdWl84SNRJ6w7HGP3xjqujTJ6Jq+MpUBJylCmhuL44QT6OYkJMCV1ZoitGdMFKHUHz7o0+WqWN2pFvRoxwf7kxt0aH5vOYtvUZPD3n0xCGFDJ33UOA69qeuvJsQklPf0YU36ZkKqSw+0nZYPeT+NSzJZ97ueCtX0Vk72dnfCxlv8H7riqKV/W3o3wnYHQOA4UptHDTDcPaIVX+gmQn0xZe6P3IclrRfW9SBeV+UHCjlM+XtW+o3pfA4gKK5QWUv+Z3WrlngRVG8G3Uv9mhJYFpKWJRnMdZ85ltgr9NW/MH1CWbg2tLOnV4a9Z9oVWO744RuEs6MXnIcsi2xVHcMhOhRQUFlh+ktMH+pl6LmU/MpipBYl1AFCuNsKyEqCtpZpvtPqsrmFmfg2F5Ke+XmSbq6vDiNZ+JuJlc98b3UN/szXmyaPZHccJwC52040WM2rtEf9kj+jphPx5WaIAcnOw6GJsuu1qLOm3ni+h06TTSUpLVUErQ/lRvE8dkT38iGpxqyyHN3wA46+//HZHiV+ZDRNMB3OL/fEgIcdaMw2RGSZd0FUIcFUJ8WwgxE8BEAF8HsA+h3DUVwH8C2E9ETxDRu4mIzXBqAUOqVgfupaLDFSI6EqUYeBh6kPisiNJujqY4sJij+kqLOl9ZEXVRsbiv1Dl+mPe3ro6C84N0/Hh1CUIikYBDTpBOos4JV0QJTGkTYdlI5mUx8TXNbE2BWHsORjeHjL8AjvUcgR2DZ2n39fItT6G1vgO2D9LD27U24sqND1t6TmEABQonUxmln0Syc5UBSrcjJ2zKFNtIIBMP3y87sr6nQnc/IWt8XZFgp9/JXeh+4YgWdrDnKJztrI8N2L4HqiLD5mYS+ZaonUHVLF9xw1Aty8J3XnexCDdfuRt7vHRbwgmVEKoywlEUEdp+3GoiGXbCY9sni4sL1E5+qo6++Zygpx22ewkkEokgvPPFkxi78RmtvmwbvxAXuw9QlBNOoOBQO+GJhK4QkPmHbhx+Oxbkb3f7UK/XSSjx5PLmci4LY18tm6Z0kL+lW6eSLyUcfVPaXIqUUTkv1b1XlRVx7icWRVUqOeVs98FYMuuD2nPpcvEErnrzV3AcB8n6Dnj2mr9BS117Lc51y3+ELhdPZCQL6ZuvCILUTxKWjr8TLoVdhfpkM2ZvfVz7LqnfJvVc+U5ktBpKFk2JfNXC98/79hQdbu7KjiCn4JvCCnh90lRbduUV4hi81U4uwZtfYwV5c0vOIaIbiOgLABbBc1NZA2/gn8mRkio1VIQQm4QQ/yCEGArgOnhzbZyD99moA/B2eBquw0T0QyKaW66yMjkitRUxm2s1+PVNt5V/Xnxom3BFxgP5KmFjmH6LnhMVUKwuKQkKlnUNLTT00StIIdD3KZaNZZhWcDeCES3ZeANAQvH9DQYUHT0tQSLsoGg3QV6fjCivUxcslk3WrTXat1zA9K1P4fk5n9CEHACYueVJwI3Mf5QBUUuJbNxP8vEgYfeTtk1h3E/MWWb80Bj3E02RIes3xZclk3fhhjU/i1hpPH+57m8fZ7KhO2KE1nLm5Hhqp0N+J/QVDAw3E4LyQw2PmjlQnPmDuZ8HObutEKXej7nYuGuN3VesCmxYFdRxmD1M+ddRnrGiiCEQJq95GAm3NTgt6dRj7ez3BuUyn7esx7I40l0TUK6DEHTuvXClzQga1TB9c1PdM73ONqz7XpvpWz0q7Xf4O2ybZZ7qPY3cX1LLR1p5AysaUvMmIw/FZUtVLkk1vPIemm2uVhb/wMbxb8f+AVO0OJO2PoeBh9cDBJzqMRiLjPk12jdfwI1L/heOK0KFqXp/HdKv0THKoTznM537Yf1Q3c1lyq6XQ3c3+bzMqqkEmO+D+W3M/VscyTTHdDLMgq02mBwQQvwJwEwAPwEwDcAD8FZCeR7AFwFchKfMmCuEOFyeUtYGZVNqqAghXhFCfARAf0Tn3+gG4M8AvFK2AjI54Qpvk24nrjDDBFw33GRHwBVC138g7OxGLDXSmG+owkfczOixE4wmwtGkRCI6emMe97aEbrmRcJCo80bEnAT5yojQ2sKRrit1CW2iUW+TLimA7pLiBObh1lEhw7RVNVuWo5IIRvCU0UBAO/9kr2HYdtkc7X5O3/IUHNfFuhHXaeF1bgvmr33QMmqYfkWUWIKlJOOebfSas8+G3U/yoa27n2ir+WjvFUWF/GgBoI7UxuYRZgB1l4jQ7cIx9Du9W4t/vOtgnOw+JF4hEHTeyOjHkFYm1Xw+zrUkGG2WHVqlQxZOUKxakUHbj7hbpNrPY3My2VfyUpfbzng/6PQqnWXVRSTFfk5WGEH7pVjrKSt3qFYZNusGzzqB0KHpNMZu0OfS2D5xIS516avloVs1ytXAwusw55KKumcgnBBUaXfJb590t067pUM6VxBtNRfAcj4p8S2ygWxP1fue0PMwXX8iq6mRE1wngfR7II+Tmab9OTuOp71ZNPdTaKnTjZYXLPk+6pMtAAhbRszH1mG6m8jgIxswffNj/jckxt0k+J36+LLxd6DVCVeZrHNbMWvrk9onJkiCyPrNSjsKlVVTojb0RdY6VG8TV5uoyrhCbSGzAAxJs+VQZKqH17e9DXYJtR+A9wK4Npf0mZCKUGpIjPk3pgPYAMXbr3wlY3IhUFK4AoALQGhhwphcw1NiCO1c/0f419+EP4KYqUuKhjKyEGz+XBvmllBMVz03knAL3Ea0DYFQFsy14XjuJ07C8VdOkYqMUPhJOA7q6jyT4ISjuL7UJYJ5OlSXFFO4jcy1oR7XBCVHGXFSNsDaCVo++W5tDo12LZcwfcuTWDz9fk3IAYCpO56H0yp9sjN5Xb0HYS7zGmzy2jLtJAJyLCx9vODZG52QApuwkvxn5FMr1Nr15IOsT3otThEf9vqQ2aoo3vtw45qfRkT6V6Z9MPIOqWnId52IQuWo+k0wyiW/DwT1XdTdL7RvUaAkoKDjJ9Px8lXN/C0dxXJtiUT+aVg64hkpXmznad/nmM69sTKH7JBHOubymZiui+Rg8po/aXNpuE4C62e+R1MSmMuRa+lItw1V8Z9Q6oHjK/HJCc4NlBvB39QKC11xYeYRKiZi0ze3hBJPDiak2MJ5Bc17atYB8ua+irn/gdJJvn9SkZbq2TuE8137Y9nM92tfgG7nDmP2mw9676bjYPGcj+Ncp95anDlv/RZ9TuoLLqS2bdC/W/KdPdepD9YNX6DFnLzrFX9ujej3yfxmRfKMHKe8JfxCN0Vm2+0HMrXNYSHE/lRbtgkSUScALwD4JwC9AHwDwHh4K5x0A7AQwGvwFCqPE9FnCnY1bZCKUmoQUTsiupuIHoM3meiEcpeJyR3V2sJ1vS21R4ow/oYWGq5hqSGVHmYatjJEAy0HjJ9qIxYqPvQOSygI6Z3kSJgigMkNpApMntAEChUr0upAClKekOS5lAgIrQPiFV9EOibyOiICg+x8BfKLgJAKa6PRPtXjMmwbepUWNm3bM6gXzVgz5u1aeMJNYsGaB8IbahUAzC6YvsKA9kPZ92OmlVyyd0mxjfiYJxdgqMa4/7kYrjD5U0zLkkxWPNHiwx6fjHofd3a75vMYenSjFnq2Yy/s7+s3m7Z6RhRNU8ZRhg+0lTGE0MNJKZv8aMiXjpRw/9sSfG/ktclPa/CNjSpRKpG4Mma0j/T7IvabifAZSaM3I1z75it/tXbMUb75/rNs13gGY9c9rmW1c/wNuNS9f/jMHIT1JmjUgGAZW8i20Xv2qgWPtF4ApIuKcT2Adj1hOxqzmRIrhR3ioCx+Oo5Dwb7cIrdVqZeBtZ/8rdRLTWFHynEnzNvTEcpzRFgGQ2mha+4RDTNWTJGKqw0TbsGhvuO18k/d+AT6Hd8KENDcrhOen/uXmmtoQiTxtte/g/pkuEyv2T7qriG+hGW5VyvH3oakMsdhnduCGduekimkbJqL536ipJFdw585aj3ldrvsCBR4To3id4O/BOAaf/8jQoi/E0JsFkI0CyHOCiGeB7AAwMvwatd/EtGUuMSY1FSEUoOIriGiHwE4DOAheLPA1sN7wGcA/AjAvPKVkMkF4bpwk67iYuL/TrrBnBi6+4l0STHDQ+sONcwVQlFuKJtyTlCWiOLDaJk0wcoXwojCTZqOGpYcUuFgXRFFsdggsq+mErip+BYZgQLEd2VRrS08i45wlRRHjgpJU1fVMsPRBag4hYe/YxXuZNiKKXdFrDWmbn0Gb0y7NzIz+8Rdi1DX2piqVqSvOKoEakqjBVsRJdLbiz05r36wKbzHZ1OVVJv7idZhVjsnBZFUCyTt+nVeWkjEsWDNL2CqKF6d/J7YNEN3B2WU2MhBG520fE/CjiyFr6hDgRuJ1Uw/6BDqlh3qd0l2us39Striymju2yZuVuuadd8JR/dTWitQOFmnanFhtcgwXFFMK49EwsGEtx5FfUv4vXbJwfrZ94bK+cDCQpm8M+EEbpQ2F5IgD8MqJMxbbVd16wmbBYRqUeE4xr5ijSGv2/o7obatnhtownH8CWJDdxrZdqsuNupvMsqsWsdISw3vHintNKn3SX+nbM9ce/e0djmBxdf8BVoT9cr7KrDg9f9Fwk2CyMHh/pOwetKd2jvd49whXP3mr0O3l9hVWQyLo+Ad9b5s5zv2wsZh12hpT935Ijo0eQs1qE2BtV1I0VaY9yV35UEB26MYxVsttNtVTVrNZw5b0YpKBOBD/s+tQogHbPGEEK0APu//dJRzmCwpm1KDiMYS0VeJaBc8DdWH4ZniELz5NJ4CcA+AAUKIjwsh3ihXWQsJEV1GRP9BRJuI6AIRnSSi5UT0t0TUMc+0v0hEIsPt2sJcUTyu6ykePEWGgFAsNTzlhGnN4SkkNDcTX8ERuKbIcMVNRXVACefgCMvh7ad2VCEoozvat04E+462UTBjvup+UpcI59qQ7irB6ieOg7qEv0n3E8dzT1EVISTDEoS6ROh+knCUtHxBLfhbl9CsQQKBThUuA+GZLCNS+uiUKlid7j4EO4y5NaZteQr1ySasHH+7Fu4IFzeu+qkvsFMawSQc+tDKgehpXlh6aUJ2ynLF1r5V6shxJVD196aAo2/yHco8a7LG975FUWFLhhMR4CYxdv9y7filhs7YNuQq7R1Wz1XzjSg6DaWDfd8JlbuKgkONoykklA5gRDmgdOqB8L5FvkEVtmllBGmdRPVaNSWEZd/sHKvzMQT3SXF30O4hRedlsOandMqlkkIqyh3HQUPLJYx961GtDu0Zfx0u9h4SKBMSgVKAgrZJd/EI25lEIlQA6B11ZQBAU8KrioTo/bApAqKrkSASFnUdUdrDuE2W11wxRbtOspZPL4+nBDIVM3GrqgTPUh2oMDr46jt6tscQrLz8vdoz63lmP6ZteCT4vXLau3Gk92gtzpStz2Lw4XX+L70dVdvL6KdQD1kx9vbISigztj0DtQ0H4M/bpaegvkeOk341lGw+yUXumzJMrvQD0NPffzNN3FXK/rjiFKf2KalSg4h6E9FfENFyABsB/AOAoQi/e2/BmwF2sBDiViHE74UQTfEpVhdEdAuAtQD+Bl6l7QigBzxfqm8CWE1EI8pXwsIiXAGR9C0nXN3SwnUF3GQysNyQ1huROIaFRtLfPIWItPZAYN0hlM1N+psroLu/ZD4Lh9Yx0PajDSn5tVifRJQCgUmdn8Mh+HNn6O4qUnlBgXKFgonHghEMmBOfyvw9v+agcyE7GGoHwtfeaMK6VCzIQiiCjOxcrZzyLu2+dGg+jynbnsPyie9Es7Gc3Ji9b6Ch+bxMwbyjMffZiGLc2+zcT1KYcafBZsJaNGsEFsJKTmFWPIlJO4MVT8yyWOOrP4L6rtfpKzc/hoTQVxtaOeZWu5KG1In7lGCQn6z3HQjeG7lKhv+tCN4JgpFO1LVETdPbtcRJocCodNSya9cnlTWOHm610rLej+j1SwWtqvzR0nIQTd//bV3lhJwwbwJGrXsS7ZrOB8kKEDbMuc+PH8azuZAIEdYPIGxnZJygWMq1ait9aSuZyMYKqbcUzyPITD+YIq6RbkxepF4flPLLNsrR66+jtNH6caW+qxZLRJCup7IeBBOMam1wWK71U96JY71Hadc2463fo+vZQwAA16nHC/P+MmJFed2S76G+5SKgpA1EXcpMVxH123Omc19sukyfkHT6zhfQvvm8IofI69FSCALseegEbqQZElrhluAbUvmfqdrG+2gUcCvqA21V9utiY3nUK/utsbGYlKS7yXlDRO0A3AHg/fAmRJF5ypp0CMCDAB4QQqwvdnnKBRFNBfA7eIqM8wC+Bs9CpQOA98Bb4WUsgCeJaJYQ4nxcWhkyOc3xXXmmnxapgPAE3ND3QwjZwOvLshJ5VhGeoE9+PD+MhBLPqzquC6hdgFDgghKmpC+POYAQFDa+MoLw8vGEc0BQeJ4u3AjIs8K9sCiWeU2DBpcE4JILgJBMuoGgREkKJ1AlgITf0fDdcRICcH2lg3SxgSA4JO+VgHBdT/5IOOF9BuDCBTnheYKEN2+r45fZ8cQc13VDAcqb1xWuf1EnegzDzsGzMGL/iuB+Tt/0BNaMXoilk96Fa9b8OrznELhxxY/w5NV/7d9jpTekCR6q2CKfvRJik2oK5n5StJMrLptiIoSois6oJLvxvzi0t15LPW3+ioVUyhwi91We5/26fMezWvxWpx4rx9xiZKZ0lNWONOzh2n5MnEjH21T6UrhP2sc1SDXSudQ6b5WKpWhqx1ONF+k8q8cQ3tOIogKW+qklZdxreDK5EUk7bu57vwGntRnjVz+she8fMxfn+wxDQj3XMc6FrkiHplQnI55SKIuiQJbFdrG5VwXzRGMialVJqCAEhQ2m/K2cE3Sxhdc2h8pIzzRUxhdCIAHy2lkoyh+Qb2HqiUIgAlyvzfPaXQRDjML15sySysGgXRYyuwRenfcpvOORv4EjXABAXbIF1yz9IZ5Y+AUAhLPdBmPpzA9g3rIfB9fR9eJxzHvzl3h5zieCtOV1uZ4wpd4Q630CgOXjbseEPa9BqkobWhtx+Y7nsGTCO7U2PEhCDbRGKCQlaFRroN1mSsZJAGcBdAVwJRHV+a4mNuYr+0Xvn+UDEfUGMAhAH3iTn14CcMzfdgoh3BSnF5WiKTWIaD48RcZdALrIYP/vJQCPAvgFgOfKeQNKyLfhKTRaASwUQixRjr1ERNvgzYo7Dp61ypfzyawiFESy8w1vtRJNcy/8CS+VUQ1PMJDCvKoA0QVvT+BXBW3vkGyXiUQQ7gZCBMLJMAUFccL+CUUE0lBuM8MoUKBol6vsmO22qtyQppeOE1qPEHlaBte3MBEQIH/tW28uEuErV8IwaZFC8JQkqrUKOY6vxHHhCMcLE+RNNCpcCCK4SVcrvVSiBBdK5JXBD1g55S5NqdGx6Swmb38JaybcjtkbHkH7lgvBsVEHVqJ94xk0tu9m3E2rpkLZt8eTKqR08gRlHDPmfIrKWhXd2Sozbf3eeObmWkjq+JaOfjQOYnp1XtiYfUvRvuWidmTz0KtBiYStfxvmG5Q5w33/p/xemRYDQUfL/G5alCGmkkZ2qKRiILAsQPjmZ7tvoqcbfhcy3qdoudXfcfuB8kIqydV0ZRyh3BsZbrmXIQKBOj2iPNIu2vvjOMGN0Y0ZvDSGb34JHc+f0HLYMufewFVFRMoignCzPbaXPRpfuoGG4XbFnfaKRPSHZDx0EV6gjCsVCUHbK7SbIIQAGUbKQp6snqMedyH1EmFe3tX47X0or3jP3SuAOo+X8JUfWhsLAYecoE0nAly/7MKVAyxhueS9ONl3NDZMvBWT1z8WlHHIwbcweter2D5yPoQQWD/u7Ri+ZykGHw5FwYnbX8TOy67AnoHTtRcn9jtuaRBPdx2ILUPmYNy+UISdvv1ZrBr9djTXd1AKKpRkonJVqhbaH1bKuBUPqgArHGoeQeS/X4VLr1gIIVwiehLecq0D4a2A8iUzHhH1APB1JeiJohUqB4ioCzzjhGvhzW85KkX0C0S0FMCrAJ4UQqwufglDiul+8jK8yU66IvyOvQrPIqG/EOJeIcQzbUGhQUSz4FUGAPiJodCQfAvAJn//r8hb17iqkZ3spJwk1NiSSRFurd7cG1pY0p8QNKlsrXJfTkLqIpkMNy9tiwuLMF1b/PIJ+Te6kkq4RVtK+6oFvi5Am5cjNEt1HAQbEfw5NML5OByCP3GodF8BvOXq5PKvupuKkyBvMrhAwPXm7fDMW2Xe4Qz1nmykSInkh5GICMvhNVFwYcd6jfSEIYXLNz+ORGszXp+q+/kSBN62/AfqHQMUM1Yjl2g86MK4F0pBYJzswu4nTCoKN8u+kqLxO/W56VdIiT/qHZm74fdaqAvCoqnvM7QYusuJ2rnXVjPR9sMThD85UcRCI+goG51a/1sS5KV07FXrjMDdgqDNwxHuq+5y2e2bmyybWr6s9tXrRPR35JqM6/O+zf6+o8eR6WuKDk35YG7ejjYhNNlPIGmeGDwPBGXwnouL8csf0q7r6GXTcGrwBKWMsjjyW+z9ClxRzGtS3FJUpYejXTe0feUmK40ndIJnYkQzf8NvV6HGUSIbzytI15jjxaw36vXJdpyUMkurlbCdd4wwB47FRSX4Dd9S02/noaTh+HNXBBN7yn9+mVbNug/njSVcr1r2UzQ0nfeVcg5evvrTEffQBUt+gPZNF7Qw8x2G7xKkXqv6fJaPv0M7v33LRUzb8bwSoq9qpk3aDlknzYetns3uJ0zN8GUAchTii0T0GBG9i4imE9GVRPTXANYgXO3zRSHEc+UoqAkRzSCiX8BbxOMBeH360dC/FubWGcD1AL4IYAURbSSiT5G3tG3RKbb7CQHYAc8i45dCiN1Fzq9SeYey/zNbBF+j9wt4bik94ClBnrfFrRaEcEPTSUX4F76gqwnVPt5IUjjSEriqKPFIk1xkoJqvd9izipCBAJQwIYQ/2V0gtkGQCCe4UoQumZYmiGllDsseHE5IIQ/KX/IbXxdyLpBEIhwVE46nBEoQ4AoCBHnKGAjP2kQAEA4EPKVMIBPUJcIVX1xPHgESvhWH50LiJJxg5EfA67A4juMJoa4UX/VRo/BZeRcpyMWKKXdj6ME3g2vvfOkUJu58GWvHvA1XrvsdOvozoQPAsMNvofOF47rglYWkopkNGzec1KRsncS8+q4lGu6pgVGltul+oqeo/80weiScrIfDW+vt9Dm1B90uHNXi7Os7AS0NHYMTIgoHQOsMqeHafkwciknTTD9OEQACHDjBN13vvJN1v1LQ3EUyiaeGGYoHc19XShhp2bLVzg93gl3fZUF/pkaZHMKgLa+h68l9WvjWq98HJ6FY5CjlkpaOaidXrZdmHQ3S0J6zVgrLHox7oIanuvl6pTLbaJKNvpGW+umlUAgI2n1dLiGlHRegRHjca7uVPAT8477jpuuXQmn3dTnAv6fCc0v1XFt8d1EKO+skyHNbFdLShNDarhPeuPpjWPjcvwUl7dh4BnNW/hKLr/4kiAjnu/TFG7Pux7VLwgGGzpdO4urVD+Clqz7lW9JaFPdC+xNpY090G4Jtg2Zh9IHQcnPGtqexetRCtCTa2U6JUsDBArN+hUkXoZGtgXa7qpFzYRQyvSIihNhMRHcA+A2A3gBu8zcbLwG4u6gFygAimgHgq/CmjADCj+ohACvgTWp6FJ57zSl40yj0hNd3HQNvnsgp8OYJGQfgv+EpdL4J4DvFnCuzmEqN/wPwi1pZtSRP5HK0F6DPcGuySNmfiypXarjJ0P0EgaAmlRtRl5QgVBGaRRKREZ7QdBVBPMD/1sk4/l9pBqSO3gjfZFVOyUEEOEJ4SgSKKkSEIE12kunIdOVfq0uKiO4L4SUcruoi06PAkiQBIBm4pLhItgo4EHAdESgdXFeAkgJEAnD8MBKe+Qk87YZwXZBIeBOx+iNEQri+AsXV5u4I5uqAP2okBFzHK7gs49F+47Cv/2QMCWZSB2ZsfBTrR16PxZd/ADct+W4QTgDetvz7eHjB55WHJCxCgS5ARsOUG60GScFSi2Z5BhEJzY48ld1PMqet35s4RWdsfKXDqofDWsfVTqMAcO3aX2mnCwAvTf+Qno6alyUjdeUBdc4EUoQ7r4PrffAcZeQ/G4WJ+i3X75PIY79UqG4SYd5RNxPZsU21T8G9IL9x8dondd/PwB+R90rgh4uwDQzdQqKKdnLCZx4oOKC0h3742GW/1a70dL9RODZmDhxZ1yi87+E9kG2n0h4LAIp7DaCW0XA3kukodUJzu5EX6WeQ6WfFS0M21AjbaS2S/s4Finpbg6ANQii6jiCqd6YbzIchtPhhHgmvdI4IXVL8dj9UJIRygLfjPXtXwFspznXhOF77DwE4fnwp1AgI7B81F3u2XoGhu5cFeU/Y8iy2jrkOR/qOAxwHm8ctxIg9S3HZwTVBnPE7XsbW4fOwr7996jWp5FD1VUK7BwLLx92hKTU6NJ/H1J0vYeXom71YQTUSQd1R00zVHJvtSvo2XI8v3YvZHaX2EN5XpKDpFRshxAtENA7ARwC8HcBEAN3hTUdwGJ6i4EEAj4mimQZnBhH9DN7UEVIgWA3g1wAeFkLszSKdBgDXALgXwJ3w5t74GoBPEtH7hRCvFbTgPkVTUQkhPsEKjYDx/t/tKSaJAYDNlnNygoieJ6ITRNRMREeJ6BUi+nvyfLfySXdwqg1Afxk36buGtCZdtCaTSLa6vpuJ51qirnzirX5iuKjIFVGUOMlW3d0k6Ye5SRduq+V4a3g86Xpba1IoriqhK4y22orQ3VeE1BXIzr9pOQLLaAekACiVHsbvBCGR8MKlu4njeMvAyhVUpElrXb0TuqQQvGVf/eXmfH2IsoyrYuLqL09H2rKucsm9qNl02IESMTKiwKopuiK5y8UTmLB7EbaNuAbnO+jVa/CxTeh27pCfSty32uymCe2+xhHEtEUkZbNlY0tPSCHIEKjY/YSJIdadJKbKpFrxxF7PwrB2zZcw6PgW7eipLgNwuusA7wfFu5yYZZDvRlDfKbSQ05Z7dkiPL+PIzrPfg4/E8c+X6clvixOzLzvK6fdLtYX3QEU10yc/cuCGQeR/j819xb3Gf06Rffld1tL3doMluElf9SruXkoXiWBif5mWQ+hxYCN679en29p29X1+/tH77hfRvu94iYvgOrza5SjKFU8xElyqclHQVkKR7g5QVw/R7rt9c4iCz3xw3cpx+S6YaUUiqu2FspFaHCVNqeczXUtMJV6w7LG6NKvmPqQ+R29URlvWF9ItJSy/Q/7qKP69Wjrvk2gxXEyuXvJ/cIQL6YayaN6nlfkuPK5d+gPUtTb55Q3dW6Aq8ki2s+pN9N7voz2GY2f/aVqaM7c+hbpks3IP9Hspz1bb7ZStq3wW6u8MKKo7ShGSZGofIcQJIcQ3hBALhBB9hRANQoiOQogRQoh7hBCPlluh4fNBeMqWHwEYJ4SYKYT4r2wUGgAghGgWQrwghPgwvH7hBwBsgbfi6XWFLrSk6KufxEGeev1aAFfCu+COAP5ZCHFIidMAr4zJal3alYjawzM5AoD9qeIKIU4R0QUAnQAMyTPrG5T9PvBm1p0P4O+I6H4hxKM5prsvfRQPqZhQR2YkQQOnD7ODSA+TIzvaPAkUCl9qenKT1h1CCXNd73TPxcQBHCApkySpcBBw4ASjUcJfak2OtMiyqfkGLukR4Vf/qyJnSnf9RtczinDhutI1xgtLJvXJRKUw45I3iahwASQAIOFbffiWFkRA0vEnBfVGfbx54wgufBNWCN/32p+ATvrQyzDNJcUffXM9NcfBARNxsO94DDy6KbimGRsewaYR1+LlmR/Gra9+S31UuGn5D/Db678U3i+rtYbtPqWPk1XEyGhanOtEidqVSmi+8qTa3E8Kj92hRZ14Mujcw95hS4e8x/PWP+R/nUJen3SP1plSO8yqC4DstERK74Th6pLRarhcHUl2yNRzA+s1S6cXsuNlxlHzz/52lB0iKMYjlnuqvA/6M9DjU2THON9rsCKdcwoT0++lY+SrhvvlHb3iD1pel7r2xaHJ1yORUKxxEHY21aIE5dc6+hTeB1JcYZTjZr3XLpcs9yOODCqL9i0y2moVU1GvLXWGsI0OYqiDGPDlABHKA3oT5Fs+yni+ZkC6n8jfrnD9NDz3FCLPHUUIAUeEVj2uEEiQ41lhwrewBAUWGxe79sObs9+H2W+EK530Ob4D47c8hw3jbgKBcKFTbyyd+QFcs+SHQZxu54/iirW/xeszPhiar/gKDWlFI1Q3V7kjXVMhsGz8OzDi8JogzU5NZzB59yKsGbUQUqGlu+AG2QT1WP7WIsWhHM6s7SlCI1sD7XY1I8iBKKDLSCHTqhG+D+BrQoiU/dVs8PvvvyKiX8Nzr0kUKm2Tsig1iOgWeD42w4xD34LnsyP5CIDvAjhPRAOFEBdQfXRR9jNZplUqNTrnmN86AI8AWA7gIDyfprEA7oPnH9UdwMNEdJsQ4ukc88gM39JBNmGmEkI37VVH6HUBwzRv9uKops2+WayUyxQhUk4CH45YEeAIIHBrgd8REIFAIQVzuXSrpydQR5woKINUSgTlMAQpW6MrZU/fs8O7Va5nmaG6pDj+SJjrCrS2eqasIBcJ3yVFrpRCvolr6JLiXQ98E1bXEUDS9WbiV+bR8IQjgMgLc0kqRaT7ibRO8Z+PI81nXaycdjdufy5coKfb+aMYs/t1bB4xH2c79ka3i8eDY/1PbEOvM/twovtlXrlEKkFEE3FCbK4m8lCK1Lx4oYJGC49RRMHQubTtTntq2vq9MTuq9jjplRlqRzU4R8sDGL/3de2cxvqO2DFkNij4kEXzkh1KbRRZ6fyqriix+wkn6OQ4FHZ+HSd0z1A7QiR7/XJffhNJdq79Lo38rlCu+9A/F3H7SHFc/YiQ0mH12wv1e665YfhlSbcfXrcwFAbCfm8QmuqrecnyQHaKzfIHbZYXLJ8N5D6ADmeOYtCGl7RbsuvKu+A0NOh5qrcpyN9wJTLLayiuAmU5wjjyPoeDHAgVRAjvc4QU704uStXQ/UTJwKLw1n8rlUP+ht+miHgliBDqXGK6+wmp7ifCkwEc8tplrz33XWtc11sSRfrA+PfMV5tAuAKbpr4Dozc9hx6nwsHUmSt/iZ0jrkZT+65wBbBp/E0YtfNVDDyyMYgzddOT2DF8Lo70HBmmrZRffZ4irBRB1CO9x2BP30kYejS0/pm19QmsG74AyYTsXhgttaL8kpA/chTXltva8FTPXX1nGYbJHCHEp4qYtgDwu2KlDxR39RMrRPRRAI8BGA7va3cC8c3WTwCchtfBv7MU5SsCql1gcwbxpUVKh5Sx7HxbCDFFCPEvQognhBCrhRDLhBC/EEK8DcAn/HgJAD8molzyGJJmmyUjukkEy44K1424m3hb0t+iK5l4biPC6mqiu6Akva01qbmVJJMuWqU7ihvmZ8aTc1ZEzk0K77xg8yboDFxV3FBoCSwlfIVEuPnCgboFCpbQJcVxQtNh6WaSSFAg2NbV6aukOL77SaLOdzchIOE4qEv44f6M6pTw3FekCbNUEHnnhCawBArKoBY2GGU2OlwHBk7D4d6jtYoxc/0f4bguXp79sYjyYeGy7yu/zBuiBoT7qik0lHsmCfQtaYTaTFdECZ6ZEZHdT5g4MlrNRIkTF1cEx4S1Ok/cvRgNSd1Ycd2I64Jzw3Tk90bVbKjvnOzsUrBKhqqUAEFzOdFcUdQ4ioJE/UaE7hMUdLKdhOIaoeyTI8/PdR/avlwtKrKfCONq+6o7oOqq4YTXoroXpFrJw7avX6t6b0IFRJC+ei5Byyv4dpNv+RJcG/kuh/o3Xs7tJN0ZQZ4iffjyh+G4yaBatNa3x/5Zd/jXLYJ7Ib+zXvZCK1fgZmFeq1wVJKjDpKSj1sXwLyn7aZV+ZN9km2Xu234Hr0EkL2G0ReF+sDqKnK/LkW2Tn4e8H0p9VPMI7ldw32LcTxz/fSQoK9yEq58gsJwifzUUpe44BFFXh2Xz9b5I+6bzmL3iFwD55zgJLJ77KbQmwoX1HOHi2je+h4RIBtetzWsG2X7GPRhg2YR3aEFdLp3EhD2vKjcz+l2LKI0QbXf149E2PNV3l91PahhyCr8xNUNJLTWIaBSA//V/vgTg0/7MsNZlXYUQzUT0MICPwrMy+FVpSlpQGpX9hgzit/P/Xso2IyHE6TTHf0hEM+Hdz4EA3glvAphs8khpkqQ1hsKbJwPQB8jU38I8hxAMiXm7wVhPIChpI1ckTwI8G05AemAACNV2wTrzUiARXhBRcB40QSRcYcRLiyBHK4jkyIw3POW6wh8Z080tA0FPvT9SkI7eOU0Z4o1+uUH+0nJDuqNIpYonmDvh/B+BzOoAvuWFd6WOf81uOI+o44SjPX7GToIAeHOZCN/awzNDDUcW5USrq6a+G7e8+K/BFfQ4dwij9i7B1qFX43SXAehxLjS66nt6N/qd3I6jPUdlYb0ZjWmfdiDDFHPUTRTNGqEGRpHY/US3QIuJEhNufB80xaFyMgFXbHpEO9UlB0sm3mVJUnc/CV1LHKUTacSR+4kw/0QitA4NV8UI3wW106UrObxOmBCyI0jBvrxYp6J7BZYOeGaxZROBQEkr4H2GyYgcWIVYMlDvpWzbrJ1x0toGIjWCMgGnn57T1IihKx7Rsjow4xYku/QAQbUaURsndRJQo56r5Q/+6NcT916Q5R6Tsp8KWxTNYIXMMpD2mSX1GSipCjWMYJwTWqIAACXCuDI4sNQIrDJkuyp/K227n0HgfoLQ/USueOa4BEoovwX57bh0pU1AJH0BxXXhJAhHL5uOXaPnY/i2RUHZx25+HlvGvw1H+4wBgXCm+2CsnnYPZq8KRenep/Zg2oZHsGryu8I6IGUQ3xLFuzR7g3Wgz3js7z0Og4+HU8LN3vI4NgybB9cJuxiaW3GubUbWaRShka2BdpthapVSu5/8FTx3iPUAbhZCZGK58Cq8Tvi04hWrqJxT9jNxKZFr+WbiqpILP4R3PwFvjo2slBrZIC0ePDyhSGiKAdkwSVNHVcmhmBlCEU40odo/TqqppG4mSyIU3gMBT44+uhQKg/5EZZ4PqVdAKder5reOEy4JG44ISYGFIN1UHMdTdlDCM8IVsjxK/ur1ScHfdcM8XUH+kq8CSV9ZkUx62hepxEgmobufJAVaW12Q41uSuC7cJIFcF0gKbyRPSAWICxG4r4RhjiPn4/AUG5pLCuApiITAviEzcbTnCPQ9uTO4llnrH8bWoVfixTmfxLue/xdt4Gvhsh/gVzf/h/dLlRK9K05Tm6LSqFU+tZ5JfrzUMc1OA6AKYizJ2GjbCg1ZZ1Lfg8BdIBIOs9KpRwJ6njmAbhePaWF7+06CqG8XpBF88/x/6qi6lq76Hst9qWww3U9I3zcVJtKtgQjhXDzkWYCp3zvTDUNaLwQ+9kXel8qGdHEDXUSK/ei5/nxEUhkRKCzCT5yMo94PWzqykEHzZ0sT0O4f+coFeb/D5+dFEP7+4BXPoOHSWajsu+a9wSo3EaWGr7wOw4WWQehaEgbrCs7oyil+JPUERelgrJaipg9Y92Uachl2oRzXz9G/3UK/lOBcM07kHCVe8NzM+IqyA8JQCvh/ZRtPxuonrr/6CYQLQf5vX2kBF3AhLTxc36LQP98fdBCOwKp5H8Pg3ctQ39IYXPtVr/0Aj9/5LbiOAxKEtdPeiZG7XkOvk7uD65u59mFsHzYXpzv3k8M3wYWQWiGVOxbeI8KyCXdi8OKvBUe7XTyGcXvfwMZh1wTnkXGzwqY1tNGIa2UzbcOD+Ep1Y2oLQYAooNyR0hua0SCiYQBmABgFYAC8gfqLAPbCW9lzRYb9+qJRarub6+F9t76dxYXv8P9eVpwiFRchRCMAOcHA4FRxyVuZRCo1Mp6QM0s2KvuDipQHANUlQ8CbCNMNwlzfLcU13ECiK6KI8Jjw9oXrwm313EikK4rXwTfScoWyGkq44kqr736SdGWYpwhItvrn+OXyfssyyC10e5F5JhUXmUA5oGz6aI2xcor/1/FHMqXSxHGAhCNXO1FXRAlNTz33EwosQhzyV0rxXVKkMEmJ0ORVigeO3/kIJgck2TmxdMD844JEIOgKLxGsnqqPFvc8sx+j9i3Hob7jcKKbPtdtz7MHMPDIBiVEhJu1YTGVHoYJq7/FDgkG8TJzP4nP2/a7ANISN6ZVT7buJ1o4EHOuHnbt2l9H3oRXLv+g7C0G76cWKdD4Qns/NKUEOUEnQVWKhBZcYSeXlKRI+W5oLiFS6UFhPKjnEMLvEEmT++Lvh+VNHRcZ7EfPVa7Jv98UHNfdClVXDXUFkzCOA9WlQLd+gRIfgTLd/6QbrjfhvXYcr1M89LXfaHXq2LircLHfMC8d5dmoWmjr8yOZp+KuAnWAwquhmrVJmCQC1xWtzoWd1jD99Pvk1z+ZoGxDtXtixDfLpJUtGqxfh/q6GWlaE5L3UNZ3PxG1XLI+ePfXdz8huTpZ6H6i/fZXyZGr68j7QARc6toHa2ffpxWpz7FtGLPlhaBMrlOHRfP+Aq5idl+XbMa85T8OFECqMi28GOMmKc97b9+JOCTn5fCZtfVJeLOZe3HMexSc7iu2Un1F2f2EkciJQgu5Mekhon3w+uO/A/BvAP4CwMcB/DWA/wKwGMApIvoDEd1crnKW2lJD9nLWZHGOnBy0Y2GLUlI2AZgHYBQR1aVY1nWccU4xKNknWSQFRFJq5f3GUsneWyEAQesmwjbSb0PlKJi07vAOCCWFYGRJCl5QzGSDyT290Q0iIAlFCBdukL/jBYQjjPAtL1xAJKTgJwBBvgue8F1CoK1a4rr6CJVnQaEKMfpIHYDAX9cfXFOuzvuf66ctLUJcV1pqyGt24TrkzT8STOjmwCFpzSH8VfOEr3hx4CYF/KlKvbxcAZdcf4QPcOHdG9cFfC+UcEUUIVe0Edg19Aqc6DEUvU7tCco9a/3D2DF0Dl646tO45+m/U2U83Lj8R3jgtu94Fy+HrJBZ586LZ4uWoYIhbTSbhBo/dpQ3NTCKxO4nebifAOnvnduKIUf1JTjPdOqH010HxnbCws5w6HLiWNxJALubiRce+k0k6jx7e9m5UuN4lgAAqS4nskPku5/IfbmKUt4ypNrZKvO+107ITi9JYwsdUv9oP8wo4T0zk/DbjqCjbFh7yPYlKKJSiN7blqLz0d1aevuuvQ+JRNhLzfQV1qJZToq7Rt0Kw5aYkU7G3xQ9nnlacN8A7flFRvyF8XjVPrhyv2WW0rbAdDmFeb6SqOuJMpDuJnI1FBlfTYcEeRODC39wCL7FpPAsMhN+ew/p7uXHcYXA5svfhZEbn0P3U+G42Izlv8DOkXPRVN8BEMDxvqOxcfzNmLTxiSDO0ANvYuS+Zdhx2ZWe9YQvC6hWG+pNCOq8L+Asn3An7njtP4IYvc4dxMiDq7Fj0Eyoz0m95qwxn0s2JxSKGmi3GSYHMhkE7wBv/ss7iWg1gA8JIdanOaeglFqpIT8H2UjBffy/Z1PGqmxeg6fU6ATPdGdZTLz5yv7rMXHyZYKyf7BIeQDwGu2kmwyUE4GPJnxhQ1Awh4aAUAQ0RQAKlBJB91s5pi/1qk5qJ8/1/L71icu8ZVv9ZUt95Ql8f3Jv7gjvZDmC4q0goo+mCUeASMAlgpPwZy533GCULJHwFBFCiMiIkWdZIaUXeX2hWXZ4/zwFCrnhyIPXiRCeYiPpT4rudxbchICTJLQmE3AcF8mEdz1O0kWy1UsHJJ+F669pK/xVUvy/UtlBnsDmwJvkNXCZ8RUc0rQZ5GDV1Lux8JVQmOl9ag+G7V+J3YNn4WjPEeinuKd0u3AEgw+vw/7+k3UpLh8KlQ6TNdWm0FCXWs32zLADqJ9vM2c3yfQ+mdFmbX0KCeFqYSvG36acYKTva0cDRaLUmML7PnpKX1XxEX4DA4sG+AoRx0tQtRwIR+x9SwO577ufhCPSiiuKb7vv+CsvyfKWyv0kdh8pVJbqJ8Xoo9vSk/dEvz6v60uODKcwDhlxgvCwDQjD5fMz8/LCHXkhFKqpFR0LLlv8oHZt5/uPwOlxc8I6oP9Pvw/KPdL25XXDqNvmCbArGmzXod1X5UJSv6+qKiI+zHQDcSL56tNUuq7iIhXcUOXa1Ocsr1HXhHgWWqo+RU6BIdNzvfZdBFNjCDiOA1cIr1l2EViiCGVODfhKDCchBznCPB3XhWhowMoFn8INf/z7oDgdLp3G9NW/xbI5HwIRwRUuVs5+H4bveh2dLp0K4s1d/lPsGzgdLXXtjbsY/hJyFRa1MgDYNWA6jncbgt5nQmXKrK1PYsfAGUYlkN8HeX8L33azSFDLUPoGN9v0mExYA2AlgA0A9sPzQHDh9WuHAJgOrw873o8/A8ByIrpDCPF8qQpZaqXGQXi+OGPg+d9kguzo7y5GgUrEIwD+wd//ECxKDfJ63x/wf54G8HKRyvJxZX9RkfIAgMDFRCoyNLcLX+AiZSI0KUBoigq/dYoITvKYL2gQKDL3gydQJCFNraVgknSTvtJCmnMKJFsRhHmCmkBSSAHT8cvpTd4pXEAkHH9meb+b5MeDfy6kRYb4/+z9d5wlx3Ufjn5PVXffO2HzIuecIwEikAAJkgJzEEVQEpNEUZFKlm1ZP9sf23p+tvz72U9+T5ZtKpAUJdMURYpBDACDSILBjCBIEASIDBB5F9g04Ybuqjrvj1NVXd33TtjFzOwuOGfRmL7V1d3V1dVV53xPqoPsKSUZYQgARwAGkTtMmVmEy3HK2AgD5FiECfZWImRVTP+mFEFpB1P5QKEkgg0RYI20SxQrchxWIqgKY6bgRN8DxUqsNRQJK+VEc8OB8fKcFBHhwZOvwp5Nx2HLvsfiK7r89o/gx8dfjs8/77fx5k/+XsNa48W3vBt//ao/SUqCdUubCxkVO9pCSd2JfgylldvXa13umVgZrIiFwmJS1TqtCh0YoDEOuBhjoTFOvornjx8vobw+1GT+L7m/yQsYleOOU65rAhD+XwAzgrCICOR6MAKJu5mqzdobYIUPAJq6lCjvcpG6qxFCeX39ILRHawKEdNdUC+scfo/ps9XeXwFqWAIuUCNQmFNppC3NdzwKKlB4dWPavrRlkKJ6lE8+cT+23fWNxvHHXvjmRvyUMU2Xn3E9Ci8uXDcANGntenynqX0Xamt9+2adWL7sd1ZXrNeQ0ZNjywNr0fqew35YMtJ4WvK3tegkjvhidTGKbMb+CDEktPAEKvwO3Zp5cEt5iygfHDSsdVrJb4byShIBOMQy1CW/AYaCY4edp16OR069Cic8UL/7c3/wD7j7vJdhZtNx0KxhutP4xlW/jJd88b/EOtO93bj8tg/iG5e/XRQXJNaqkQFBCATMvihZwJTCLWe9Ci/79rti0bG778NxT9+Dx44IRsgBJWp0VGOtXvSTTdbMxdbg+nKrsMiur9vr9BNIzHzpcuoR0dkAfhfAOyDZP/+eiM5h5lVVogdaa2eir0CmhDctpzIRbYcI4QzJlnJYEjN/GxLwFADeQURXjan2z1AjXH/CzFV6kIh+kYjYb3/YPpmILiDJLrMgEdGvQQYaADwJ4GP78Rj7TXU612TjZkwNdhzdVNjWZXCIFgRS38VzG2UhNoc/DkbzusnxEA+jHc8jlMVYHk7ibUidOm5GTCXrY2lIHI46LkcjdocTvMAypL4DrBUtjfNljhseGG1Fj0/d6lO5KkKmJbZGpmXT/neeAXlGyDMFrYFME/JctiwP9XyqVy1pX5WStK9aKWilav/c4OOt6wCBwYeXUINDqV8vdIbvXXRD490ftet+nPj497F30/HYsa05LDfNibWGPCgiM1j75NMIgziujxr12ueMU9OM8FIHLu2siIXCs4AxWrV0t4c4UZQ4w9Y+ngr3yd/wLVEAIJpCWQASiAhH7H0IU4M9jevef9xzYurH5nn+eo3YDapuR1KutY7fttZ1/B3lyymUawE3dKbld6aQ5Vp+Zwo67GuFLK+33JfnufLHNbLMp5vONLJ0y9dwfyW2XNJoh7k07mcSy0hnYV8jy7LGvKt9H2Ra6ja3+h557Kvk3Dh300hZPBbr+zSvmnDCV5qxNKqpzXjqilfG441NNbdojaPqlLGj+yHVuEp+q+Y1WtdVOilL7q+TNugltrD+aV2vhyENelwffd3Rto5uqtWemC53iS0+X6sP07VMrJ5U0pdJP/q+iu8t6cMwpkLf6IwkhbsmqFiu/TEdv1mtNZRW+P6LfgM2yT6incFzv/4eaZd3E3vo9Gvx6HEXN8bIhXd+Glt3PzgCNrTnnMacBQDMuOfEqzAzua1xvcvv+aTfa64V7UuH+VAtxgM0eKTlrMGrsD79ZC55hw6tdDyN9ZgaK0rMfBcz/waAF0ISZUwD+P21uv9av82/8H9fQURvX6wiER0P4EYA2yGhEP5isfqHAf0uJE1rBuBzRPQviehKIrqOiP4cwH/29e4B8McHcP3nALiLiD5PRP+UiH6KiC4loucS0duI6HMA/szXtQB+jZnnF77cM6cRMIJrMGFckFCxgqgBizR4KKegg3ULXsNaW2/O1mVJYNFGPWMlIKi/pjVWAolWFqaSY7ZKyo2DqdLNwlQOlWFUablxMKHMSCBSY1k2D4RYyw3AI3Uxqa1R6i24seQ5kGX1lueETkHodAhFQchzhTwnFLmSrRDmKC903LIgcGQ185TlgSkWQSQcS5k2Shk+74OvtMJ9p1+LfRuObrz/y27/CIgIX7j6t9ouyXjxLe8eHTCesxEmqXYDSpmbFbU6XKdnTIej+8mKXGcsZjZGABjXPX5ML94SwrW3f7BxOgP42sVvGQMCQqw0orWE8u4gAmYo8kCK9pZoXqDSAWDRtXClPHihPBAagg6HuUBFcFXVQmKmGoJYAFuV/xuCGYtQT9AZpDwBZg/K/gICbltYzny7Y/343O2/Naigx9xT+sAL8KoGmpWqBdpwrkp+pwK5vDuMlAdBWicCdTG/D0d++1ONUfXENTeAOxOJJcVi20Lfd5ibEevETaVACGKQU6XqdUOr2upHhePUDJKtdN2Ger/ul/CsKWgRfo+AB1TfM26qeb/RcwAdjlN9vA4+659N1dYloSzdVFzPavy+GRy2vcYnioXwvLoOChrHpwpAGTW+3VBGitDbfiLuec7rG2/uxAe/iWMf/V58VyDC16/5DRidxzqKHV7wjb/wa3Bt4Toyn8Vyig/nVIbvntmMEXjqk7c1XFLCRRpDK+2ExdaUZS43h9mytE7r9KwjZv46gH8L+WpfuVb3XVP3E2b+DhH9GYBfB/BukgipH06qXEhEFwC4HsDPQUxXGMAfM/N9a9nWlSZm/h4R/SyA9wPYCIke26Z7ALySmWfHHFsOaQAv8dtCtAvAO5j5Ewd4j2VTCmi0KZal7gAC9zdcUlJTw5TElzUxP6TabSVqEVDH8KhdUsQKJDXJZlUH3QyWCER1Ozi4n4DAynnf5uB+Ik1UDADiICttc8LsaAWwFzh0MKz03I9P5UYASEs6WfaMDnt/2vB4yp+mVc0QaIhwFSxAyInpsVFiCks2ZTolBghA0gekIMFTCQbkg5QraSM5wASfYwWCgyMCoKLfLzsnz+3bDZ3hexffgBd+9U/jOzrmqbtw7FM/wuNHnIMd207H0bvqT3jT3A6csPOHePSoCxBsgdm1TFUABPfdFE0PKXzTMTHquUKjhYTmeDvg+Arr7ieHKx3o+95vWsiGmkMwYhoZP+mYUs7ghKfubBzfM30M5qa2N+au2v0D8s1TWla7nAQgIxU+o/tJKgjqIEzVdUXQSgQ7L8hE9xPUxxFdTtB01QiySsPd8FAOMtt2ndifdqYgLPmpaJzLxpgzl32b5rUa+/7v0V//CHQ1jOVOZ9jxwjciBJxezj1Gr1+/UKLR9ydDg+uxkBwOa9jIN5gYHqXjBcF1CWG/2Sah+kMLU/6o/F3zGk23hKQJ7T6J8UskKLeCP07eElQnV+cYkiv+ptbvcX+1ruu2rTRlcQ1tC7FXEvcTH7Rc3E4ZzgdT5/DXK5B+9Ly34ZQ7Po9ur7b4uuKrf4ZPvOnP4EBgRZjdfDx+cPENuPS7deyVo5+6G2fe/2Xcc9p1SWekfcMja1d4jh+e8kJceefHMFHOxWOX3fMpfOby38BY95NlELUGeIMf5ORvnFuSyuvuJ88qYoHbVvR667RqFGJDLpr5cyVprWNqAJIGZgrAWwG83m9hivjfSb0w0t4H4F+tVeNWk5j5k0R0IcRq45WQF10CuA8C7vx3Zu4d4OVvhLiWXAUJ2HIUgG2QftwN4DYAnwHwPmZek6CrYnnRDHI3yrWlK1Goww2f1XgapYwE14tLssg0YnQksTlCDIgU9AB5kINrkASqrhNvxy4G2XNMCdDihQh2MZAXk6rBA+80WzM5qYZC/FUlaBlHN5QAaESmKTBS8E3zwkFksiC4iXPercUiCixWS0BRY3ywUkUS1NQSlK0zwwRAwVpJdcIGQAYfo8TBQYX0J4ItOGko+UhmRJIt5f4zrsNzbv1bbJgPGYyBS2//GJ548bn4wvN+C2/6xD9pMJwv/k6IrTEungYWYBzGAWTjqtWF8X03hpoHNA6QOVl3PxE6tAXT1aMlH5kWqDMGzKgP1eWX/+gTUK0Aobec+7oasE2v0xBuE2BD1fupK4rOdGxblut4jSyU+/3wDFmm47V1mJe89jucGwIJh/SgjCDEUr2PhbGe/aH0Giu/T83QF8s8eeSVUrt8eWjGQrX2e6qwBsd85cONol2XvQzV1qMCrN4CeFvNGdlJf4a1UY3UiU9BMhZieTLxU/qs7SEcf49cdAFqv6QxNG5pWaBDYzF7Syr2oIJfx8NgFmUNYp1UR0PJ9ePaP4rXNwCNBrDhLxLjcbKsVqwQgYwQhDwEoVWMOoV8DDzqYKc24vYXvgOX31gH8t68+2GcdceNuOuCV4kSxwE/uPQGnHbvl7Bp5olY76pb/gYPnnAFqmIC4Z2Cm8qAet2WByAi2HwCt51+Pa6886PxWmc/8g38n3PfgNmp7Uu+g/2i9Bpjh8AqLLLPgnV7ndZpjehV/m9/rW645qAGM1sAv0BEn4AEz1wo+MidAP4DM39wzRq3BsTMPwbwT/22P+e9DwLwLHR8J4D3+u2QoKAtCMg6hZXbgwghEFWNSFAiJAkHUS/6be6KaiAC7UMJp0TCIFHCPaWCQa1p9Iu0b2/UcBKBXa0JjRlRbB3gL2g1xQdd2uxYypzlqP1kR3BO+UwpwixlGQFQUIqR+SwqmUa9QGuAmKOwEMxVA1gCCKCR+S/ZeoDDECHzTJfRgLEEZRhWETgjWN9+rRllKbezllBVEnisKiEaNCegDTIARu7ryIEtQErBOCv95AicFbj9op/G1V//y/guTnrsVmzf8yB2bj4JO7edhqN23R+PbZrbgeN3+Ewo7N8pEkapxQw2x9b48kUpHUIJL3awmZRnYjFysOlwAzRWqq/HxAU8oDpAu478uOiBf2zUqXSBH538fAE1g4DRAjPCnNjIcpL6/Tdi5KCezwIgoWrrs/Hm/6jN4lX97mvrjRbYgibgJQJYXb72+03hsa0hX/QdpTtRgOXms6L53Evdc9w++fUpaNtj+fKaGWnTD7+Gzu4nGmVPvvhNjfeRpuoce30KwAM1BjO1n5vqFOYhDWgA34OQn67JYXlPnzVYfaT9EZuxZP/RyLtMfzOoYYnBXLuMhHaHtOv1b65TrFOStt3jjOG3c+F4sw0hqxvgs4WR30nHTzI/0Jhr1PUJxBKDK2QkAhjOAxtgid+liUDkwErDWifuZY7x8KWvwunf/Ti27KgtJS/65vvx4DkvwUB3QJrgqINvPf/XcP2NfxjrTPb34rIffAjfuPwXUSuauIEhEajOhlJrDPD9M67Hc+7+FHJbAhCXlsvuvQlfuvit/j2PT4W7UrSa1x4H7qzT2lGMhbGC11unAyciej+A50I8DR4FMA+Jo3E5gIsgM8ZNa9Weg2GpAQBg5o8A+AgRHQvgMgBHQizqdwH4HjPfv9j563QYkEPDTLHpLpCoNjwReTYr4eIa2ouUGllHYqFUJa4Zf/jFJ7htcJ0GNjDgDK5dUrxAkFpwBGGA4AEOJWlhAyjiPJPEYCinvHuKmIlCKzCL9QYzQXkti9YKzqdqdc4hzwgWBFLStoBrsArMITfcU4Ba+ymhLYTJCYyW0gJSuPgMAoxU8AwcGCgkvgcz4KwDoMBMMMZCZ8q7gxCQKR8BHd7yRrKkgB00e5cULRlR7jr7elxy699hYlAbA116+0fx2Wv/Kb5w1W/h5z/1e5ENIAAv/s578Dev/pOocZI71pzfQhlRlhRODpCrWdzyoNmulXI/WWeM1o4OJfcToBbsQmUiwlG778PkcF/jtPuOf26dkoFqhjqAGUASOwN17Izon6+SmBktN5Paf1+1ykXbLqAtPAgqDaiBDfkt858HgxsAR1N4Y/8AMvR57L7UW/n9Z07NK8naEY7QgvVGaaHBkV67vs5ypjHmBKQAcPTNf9c4PnfiOZg/+fykX1pAzZgGUFor1uFk7FJzHCfjgeIzMAJYTckNU9fKcK1WA+pxNKbNYX9/BEtG2pfNTm27nyhVAyzMiOlToQMoQsm45hHQJGRDYQTXVNTpXf1vnfQHM8fPO14jLDcEbxUqb1iTX3+CBQez8EMMEMl6DM+rAAymDLe/9Hdx7d/8drx+t78X53/3Q/jeVb8ovAppPH7qFXj4pMtx4o+/E+tdeMencNeZL8HeTcfH8RX72z/HSDYUAgbdTfjhqdfhkns/G691/kM345vnvh79YjoZN811fr+X7AZIlGTg4TEVVpjW1+2DRM3JZGWut07PhDQkq+lprfLw8X0WwO+sVWMOGqgRyKd5WfX4Dut0EIjRWk/azBw3yppajta1iJsTGQe5tXm9wFSleekpqIyAkYU5tQpgZigoAUWYoqDt4Lzw4JkFW1+XiADlxC0FDCYHcgSVhWdgcIyzISRBQQMjxB70kLRt2mu6oP0CbRCywtaMYMB8yAci89obxZ7hEiylttqwSIKjKVjnYCpK1nuCUwrG+rRwLBKKUwyyQHCvETNcJSexPLOkkeXIUHA+iR+e/xpcfsv741s57aFvYPPFT2DP1hOxc9vpOKoRW+NJHL/jh3jkqPOSMYHmu2nQaNn4astkZFrVFgcqeJn1lkmrpUlaQ1p3P1mowgK8UlsQTC0Z/P414wKEXvSmhhAZAAxQbSkGggTyDeVZHcEwuJyQInE58ft5lnmAV1xRKN1HvR+EWZ0ED6j3U1DD/4/r2BrPOjrQ4d4QtJZRPQVt08mCm3XqJUyuWzz1KDbd8X+Q0s7rfk7Ws0YLRtuRvsNwvQC6pUBL3E3GMFHtchLiZ4T6wT0pKQKl38iYLqmPLdZfieS/EI1ZCxb0o091LZx0NbdBkbTva/dJ55r1Ug+yUD9eO9lPrVQaFl6U/PbrvgAadX1RYgj/4Ci8BwVHHvx3hN2nXorHz3w+jr3na7E9Z3/3I7jn4tegN7VNgq6Twrev+XUc98j3oJ0BACi2eN4334NPv/Tf1YBBeH+BFfDAUg0wyYPdeuYrcNF9n49udLktcfF9n8M3zg3BS1dgAUwuMX4dWoVF9lmwbq/TOq0g/TGAOwBcDeBaAJOQr+TLAH6fmW9Zy8Y8W9mOdToEiJnhWIKFStDQdhmPKavTtLKrOQlmNMrrlLAubs6nYGXr4gbnwNbCJRs7B5dkSXHO1tcNWVDCMevgjGQ/kSwo/ngVMqSYZD9sBqayqCoLU1pUpUVVGpjS+H2HqrQoS+uzpDgMh/J7WFqUlUNlgLJiVJYls4pJ0sK6EGNUQCECQxEjU7LlmqE1o8gY3YIx0WF0cqDIgU4BTHQUJrqEolDodBXyXKHT1eh2JQ1jpyOZT4pcMqVonxpRKcmYojLl09HpKEiFFHGkCHec+wqU+UQcBwTGJT/8OIgIX3zeaCaU6779l7XWGZEbTrTQaJ2xgnzFISCPr1RGjoNBhxugsZrZT0bvJdTuocXS4CpT4rin726U7d54HPpT2+I3ElK6krfACNZkaZrlYKkRvleJp5OkffSZj1RGMRWr9ilbJQ2qZFHKciVppLPwt97qNJOoU3KGrBwaUXufZnQ4mPsrsUm8Ip+9g8bvL7QlRjUepMfo1ho7qdRPoMbEF60zKD2HceTNHwIlY8xMbMCu574sXi5uNLrFuE2tcUleQI5bmO+pzl4Ss4X4LWQm0bpd3spyopIMJeEc39dyLGnfyD77vm89R6OtiSuWqt9VvF94f+F+Wp5La2mr9s+aZsuJx3U47vtAA5kOGU7gv43abVTrOtMLUX1utEppv5NGhpZwTvjOVGyX9Jn/nWn/jftsRYV86z966TvhqDYHycwQF339fVBaSwYkpTC35VjcccnPNN79CY9/H6c+8i3/vusAwmGgNNx4wwAnYHb6SNx94tWNa118/+eQmUGjbDXcROplaRXWp/i9Hb7r9uFMDLXi2zodODHzLcz8H5j5FZA4jm+AABovAPAVIvqltWzP+ttcp1Wj4HoibgV1WtfllgWwwzE3AA12DLhW2lfnAYy4cQROnGuCJY00sh4IEXCjeT1nXF1uHawLQIiDdQ7WOjnXJGljw/HSwlUBGBFwxBgnIIipU8wGgMNaAWWslfSvVWVhbdp+xJSwDrU2KDAEyjOdgdHKI3MF5BlQ5IwiZ+ReGMlzhW4haV/z3Kch1AJoZJlCnmvPmNUCTxCOtJJ9EYIyATuUMFKkCWZyI+48t5nW7awHvozp3tPYs0WsNVLa7K01IpOQcNyRKVXUZP6S88fK1QcobC8mcB5IvUUpPsvhBQwcznRQ+tpLJI0AiZ7aLnlX3PUPIwFCv3P+62vBIRGigdrlBBDtbPittY4xMrJMwAwBLzL/3QqAEVM65+G7l28/pHjOE4Ajlvutkd7UC7Fpms1a+EmF+TH7YEmK4st4qfoHuP9Mt+W2MaV0LQsk1YJkxHEeD5p79gaMISZVTIXulQCy1AWgH3UdZnBZ4oivfazRhqeufg1sMdm8T3tD2AI0kszFiSWEgAOQ8axq4T26MFENYtUCeajDXsBPUtUmYEgKkOzfPjfK2/UCiNDYT+8XgBaq/0agIEnLG38rD+qpGsgLqYvD8TwjZFrSJsdvxAMHjRS9lAA5fr2OIFAECKU/dQs4DGmESWvvOubX7ZheWCMrMpCS73xw7Kn48XNe3Rgbp97+WWzZ9aBvm8wbt1/+85hPAnoCwJXfei8yVyGAqWOnUWoK+kTALWe9qlFlopzDBQ99OfkSDnipTi8BoD2XPoNrLvvW6+v2Ov3kENHSwUeYecjMH2XmFwF4I2Tx+EsietGqN9DTqoAaRHTDalw3uf7xRHT10jXX6WBSytDJ5saUjdnSf+PKEICQBjfmFzWOzFl6LkJZLK/PCWUuACK2xUxaVzOYARSxTgAXD4BYb+ERLT2c30xr86CFMew350EMh+FQ/srGqCpGOWSUVagrFhrGiEuJc4Tao9j7LXurjdxbahQZI9MCaHQLRrcjf4uckedAkRO6HYVuRyw3Mq+5LToKRUcsNzKtoEi0tTpTTd/7hiZTIfjz33HRT8PoIo4F7QwuvuOTIMKS1hpRU9iw9ZWa45iVtXM/Sest7/L7c+/DkVYE3DkMaTnvP2V6Reil5EfYbe5f8OAXG9codQf3nnINQEkGE0AsNLxwQZqitZTK5fuEkiwnIWZGXmTQWkFnhDz3IEemUBQZ8jxYaGUevBBwM8/Jb2rEQiP8DVr1ILiOaMqRyMVxq+ftELeHknJq1VmRfffM92mB/Xb95lrWBAzCvgtgBqiuGywPG+thAB5qkF7WUYyts/W7n0c+t6cxhp685oYmsN9YU5vgRnhVITYK+XGZWplE8CJYoXhBvbZ8SMEMSsAu5a0MmpYb7Y2ScZRu44h5/Jow7vxx1g/RekQvvmWZ3+I+IcvlO8gzQuG/lbS83jwQmAvwMXo8ASxSqxIPChJqIDNstRVSaH/zOrJW+32NCFrcf/2vwBRNK8qLv/wX0YKLlILrTuG71/xKoz83zu7EhXd8stGmJmiZgl5i0QEQdm85CQ8ec3HjWs+590YoZ7AiC2ByiXX3k58MYqIV39ZpWfR9Inrhcisz898D+L8gy8iaZTBdLUuNvyOi21ca3CCiE4noXZAUqC9ZyWuv08oTI2HSEleTZhmPliWuJXDcssAIriZiwSGWHLIxuGXVkQAPCeDQdlsRN5Vg/TFqASKghXdFSS0+wjV9mbUWzltgOFO7pET3k8pEd5RyaFANDSrvkhLdT4beeqMSl5RhaTEcCuBRlg7DIVBWslVG3FGM9c2HZ0i99iqAG7lm5BkE6NDijjLZYXQLCMjRASa6CpMThE5HYaKrxTWlozExoZEX4p6iM4W8kN/BJSWauIcAhJmYxpcbtuHec36qMR7OuedzmCjnsHfridi5rRlTaPPckzh+5w/9r8hNJ4KgjKiGcBhqL6A1WhYd8Hq2cgvh4WzG+hPvfrIIU53eK9Qf311SeNSu+zA5nGkcue/EK2uz7iBUKg9gJub02mtrCQStBLQgEmBDaw1SQFZob5pOKAqNItfQmtDpaBSFhs5IwMxCQWt4Ky7y1l4iHBEhapjrGBs0+uxcC/Eutbxz9Ras05yfS1PLtMa+W5n9YOGwYvss+8FyL+zLMcR719aAgLMct3oNYTgr9Y3/a5O2W9831t9XXBBH+9JaxpGtAKF7z7gM80edEvs0vXaw8nANZQMJMOPfYbRASUZqmIJrEIubbiFq/H66tZX9qZVKxIm4uY2W+/UeVNeBrIOebWj8jcDNElNA3fbE7YhaQAgBmfKblm8/U4RCE/JgweStJPOstgDJM0Q3FqLauiMoCVILFkLTjQZj9oGmVZRcI1hdeEstb5GVZQrlxu148Nq3NJ73mPu/haMf/p64oShxX3v4nOvw5HEXNOpd/P0PY2q4T0AV3XTnSYGYtB+hCLec/ZrGdTb2duGsR78ZB9Zq4OJ1M1ZhffKXPJzX7XVapwOg8wF8gYg+SUSXL/Ocb/i/z12lNo3QaoEa9wI4D8AHieghIvojIjpvqZPGERFNEdFbiOgmCJjxq5Boq/ctfuY6HWwKQEbgJiLYsERZzbWg1k613U/89VOOJwIeEeiQY2wXdj+JWwBGwtZ2ZQnXsDWYEcpCDA6ODGviupK4nwRrDWOkzBgLU3lXk+C6YizK0qEc2uiCYkNcjYpRGReZdWMZVQJqNNx4CNCaQUosNXLN6OSyCcgh4MZEIeBGngFFRpicUOh0FDqF9polsdgIpujax9IIVhtZpqFQ+/RrJWavIOCHl9wAl1is5WaI8+/8FECELz7/t0etNb71l00GmtDkeDxHJ0KeitqgBW1hsQylSqvCwpYHvMx6+0/rZqxrRyvd1w1z/QR0AMYDPjEOQaLNDALB8+74cFPQA/C1i9+ctLse98EHPriZkDcdD7EysixYYGjknQxFkex3MhQeyOh2BcQoCo1uR6HI/VZ495NMfmtvXi9m+UksAYhbQWox4KKVG2qhnVMhHQ1AQ0CBVDh3DSHcWST7PLLvkjoL7jPHuXSl9mWrwZh0vwYrknPTfQeYBc61pn6uRh0T9sXSr31u9+F7sOm+7zXG2+PX3JAARIjt4AQ4EnDDbwEocKkFCBI0A1GgDqBHFLKjpUVisUFNy4swsKNVSAAdHOBCvKiwjo4Bt2xSHuJLNcAxV58bQCcXxmIKcvgtfca0TeFv2E/jbmhFI+4pee7dRjLv/pkDed50XylyAT6yxEVFJ9druLho1fjdtIgKFjJj4pVkTVeVPJd5IvMuZkWh8fB1b8Fgw7bGOLnwC+8SgMaDnirLcOsL34k0oGpR9XHZLe/3FmPBaiyJr+EjiNZzrABkjx1xNp7Ydkbjfpff/SmENXUc0FuDZ2n8jsXn7uaaXFsX1QGWV2juDwD1+rp9UCikdF3JbZ2WRT+CfESvAPBNIvoyEb2NiDYuck7wQ1+zj2W1sp+cB0nh8n8BOBHAHwD4AyK6F8A3AXwHwPcA7ASwx28TALYC2ALgTEiO2+f6rYu6U24C8AfMHNS663SoUgAuGBgVCseXReEgFi50aVluuV2vUVhbLoihZW1f21iQCBEoCXVBySKpJIk9MeAg4c1VYrYWtKhMDEXC6bMiEBPAzgfzCxHLGYoVWCkoAlhZsJN8cGzZu3YwmMUOl9mJ+XhOcCzqHmYHrQmcycMqJVYbmgjQkrpV+XZK09hr0xiaAMcE6wjO+UBoWiw+SgtQKSbRRARjFYzhtJNgnYOyDgRhJjmTdLlknbfMETN5ENDbfAweOPM6nH73F2JXX3Dnp3Hb+a/D3q0nYee203DUrjpz8+a5J3HCjjvw6FHny/tiHuFj2mCCRI0fk4HDc9zNMbI0ELGw5UFzYB1mBgqrRuvZT/zvJObAUvVHtJkA4ByOf+pHjXN2bzwW5eSW6GYS07R6y4yomc38viafwUQAiLzIBUBJ9rOMUBSZt7gAikJHLXSe18ydVqhd25K2h+DNgkFzBDGCJtxFYFXKgdo1ImR4cByyMjTLQ1/U+8sDGFdSXlmK6vbKXBeE+9CO9n54lrDeEYkwHa+XNJ1Dx47cE0iWLv9/bkxnzMDRX/lw47zhhm3Yef51cW1L2xUMf2JskOQFUKjo7yGH67FAaFleoP4b5txQFprLcdc/cQDhQXEs1c/aLk8uhGb/NXuyvielN0e9jtRQd219Ec6rx2E43hpn8RtH42965WZrkrYmwElqNZICLSEdOyN8G/W3I3XDGkT+Pdb9VD+u54vC2peMUWYBQ6yexoMv+3Wc8+H/GNu7+cl7cNKdX8CPz/8pOEdwlrHvuLNw/3nX4/Q76rSsZ931efzovFfh6W2nQHkLmZD7RBKjUewKDjOIUrjlnNfg1V/743id7TOP4tQnv48Hj7lk5E2O68cDW7vbv8NYWjmFxDqtPUlo/JWb8FfyWs9yugjA7wP415AMJ8/323uI6FaITH8/gL0ApiGZUF4N+eDuWqtGrgqowcwGwH8loj8H8E4AvwkBN84EcAaAty7zUmG0WQD/AOC/MPO3Vri567RKFOJojAqovGhZU1vvmasx125LFkTk16sxAErrmrVHMbzwLxVcOJ+SRdJJGSdlLuFsUn9S9lHtlU/Tys4zRxQ0WEpSpZKLZpxKMawjsawwDlor2MzBOo0sE9DCWQWdOTirvUk4weaAcwrWEYrcp3F1FNg4ZCE4GxE0sQAdRMgUwxHBKkLGQEUEZEDhCANFyA0wrISJMgYgUsiywBwpsSYhwBqCcwyVAc5SBIdKJ6lxoYDbL3tjA9TolPM4757P4rYLXo8vXv3b+LlP/pNUr4PrvvNuvP/Vf1KPg/BOk/cSh0t8n/V7jkOCEl/rKGmMDI1nwOMscyEMQyxKB2OqHMbAwOHW7shoP9PrjE4/XngbD7CxF0TkZ1pHvpuL7vtH6JAr2tP3znl1HGbkwdJg1RHmk7Cvs5AFpQY2BAwVk/JMS6ycoDUWLXCIF1AHeQxpWhmAinOytCGa9zc035xovL1bgxdMbXwc9sIdx/04r3NdHvtjv/dDH9Xl6fWb76MtJO/fvrSXkucI5ZTs1/dvPyt5cL0W1pv1/XLZLGcBjahVn+M+oIfzOPo7n0ZKj1/5WlSkQLZGAdK+SFPuiuVQyHAS9qmu49gD9dK+FBhpvYaGooGT1xSAIJAMJBeBjKRf/bPGsRKn/Lq/Q/3Ruafu08b3hSY4Hp5T9oOLTF0vZKppHG+cl4658X89toc8qwEK6yQbSvhejJWA3s5byVQGyPIa5DBG7s1MCIFhY2+EMcBtkYzCf/LaZBmGxN9iODAyrbHz+a/FiV/5AKZ2PBjPPPdLf4HHzn0BbFYIT2IIP7j2l3HSPV9GXg381RlXfOPduOk1fwQHBUUMNpwiJ/X8FsaKZTxw3KXYtfE4bJt5LN7vsrs/hQePubQBXBFxk19bam0+GBiFv+dKrSXrtE6HA3m5/j8R0XshwMavAOhAPCcu81ubwhf6rrVq52pZagAAmHkewH8hoj8G8FOQaKjXATh5Gaf3AXwbwKcBfICZH1+tdq7T6lDNfKRMazw6oglpMrfhGu0doahdGle3pQllBqjmFj3w4Bm0cC4BjfWJpR7BAxXheqlpub94YKCUUk3hNTKIHvhwACtv2aDFjYKZ4BSLj21sr1hzAMJEOCVWFZkLjRSBhZm8O423HEmYVILXtvrnYI9vay1lSjO0Z7w0KVjPfFMhAd1AgLEhQBljWEq7jGEoEvcSowV4sdaBIM/uHCOzWsyvwZjdfgoePvVqnPjA12PbLrz9E/jhua/C3u0n4amtp+HI3Ym1xuwTOHbHHXjsyHN9/4xBIRbQ2qSa0rFVllG2MMDQHmvLAyIacNwCzNfhBgwczrSqTOhCl17k/TJExrvkvs82yq3KcNepL4ogRhQ2Ve3qFVK3Kq3Efz7THrjw8W/ykKVE4uDEIJ+5EvN5ImSZCLQgmS8abfNBGIMFFjOi60QaX6KOlVG7wblGVo56Xmto2aPwwqg1vNwqX2Qf4cJ139dzqPyKQlJjP6njb7vYfhOg8KtUAmrVaxySZ3Vj6gS5rzUnBCEp2Q8Pw+zi74asF59DAJVjvn0TsuF8fVlS+PFlPw1XMeJCF8ZQ6KhEqx52QvwIUgTlVw25DzWGcdp/aeNEyPaWLP5QMBQJYBfDC/qo+0mOc6N/HNfPJxYH9fipLRXqOmE/NCi8u2B5Ec4LQEV4JyHuRziuFDf6Sbka+JDzJYZIGAzBej1afQCASsaSz6Kq/fekPJChfB8qAljLddi/LpWcz0Bch1PLjRTYqYdUc5HRFO4p35giLd9h3sGDP/1PcP6f/W6sO7n3SZzx3Y/h3qvf5HkeB7P5SPzoijfhwq+9N9Y79vEf4KQffws/PulKOCdKGHacxPSiKPA7dr5DNG49+1X4qW//ebzO8U/fjaN2348dW09DCPLeGFv7ScsDGVYAAYmf0/q6fTBopV1G1t1P9o+YeQeA3yGiPwTwdgA3AHgO4kzXoCGAP2Lm9445tiq0qqBGIBZ1/Wf9BiI6DsDVAI4HcATE7WQA4Cm/3Q7gFmau1qJ967Q6NMLAjdDoojDK/48/v9aSNZGIRFkX2wAKRQl32L5Zqs1Pbs1gKA8kgNByU/HXpsCEsbiaMMDkG0h1HSKCZQvFBHJiSi7uGgw4b/WgFEgxVIj/YVhStGkHl4nu1DkJAOac16KSBoORKSB3BCoA45lTrYCMxe1EuC72zBdH7VOmGJYJxhIqpaAziyzTMIZRGoCG8PKDuKNUVR1UTnyJCdZ47SM7rzUGyAmjcvvlP9sANSb7e3DWvV/EHWe9FF+69nfwxo//LpLuxIu+/Re1tUZ7HBwIt7MftHz3k3WGBlg+uPNso4UeOVptKdWU96hdR6QrRUB3OIPNc082rvPI0ReAMt0IxBdAjBDMr07jmPk5QrKZkBIAo9PJfOYTCQZKJME+i0JFECPPKQq3hFoAbaYPlfI0NoMxHOtYW2fjMDYI9xLbQPblekFYCfsRp0hA4Gf+XmihJcNXwFiQYLlGIePaHp49WFUEwQ4NQKeuM6pdr9uz5PTGNTAT28aM47/+941qO89+HuY3Hglyzgvn4R1Lgyi+dtmXtUvWIyif3aWxPo7pSmr+DTiTgGDyrDHWExABsMX2g7AO1K5MAigt2TGtIdQEOdLnDhY1qSVKapkSgQ/yQAPV7iGAWDcxiQUEEaDiO04sPNC0hAll4flYI4KGwR1Fq9pKg71raHRPsQCpACL6wKiJe1dcP1sTUw2sBfDDSTsVY99FL8C+M56DTfd+N9Y/4+b34bHLX4NBd2MEce69+udw2g8+hamZnbHec7/+bjx60mVgpQEoMDkoR3ABrXEJyOCbdNdJ1+Cq2z+E6f6eeJ3n3Hsjbrzit9MeWuI9t54z8nf+Xkuevvx7rNM6rdPCxMy7AfwxgD8mog2QsBOnA9jkqzwC4GZmnlngEqtCawJqtImZHwPw4SUrrtOzgmTRrTU3qeZudBEeH0dh/GI9ukCJxqZV5prnR4YztcDwzDC3hA8x2QQCFxvqOc8YBe2XnACws7VlBiWm4n5xV0qJ4EAW5KSeI5bgX5bhlIPSBEcEpzVspqCMCDHa+GBzmYAa1se8MEZSs0psDHF5MZbQKSQyu1UKIAcGUHhQg+AzpMCKeToIuQIypWEdoSTAZUDHSnCzMif0BgSbE4rCQSmNzISMBuTdUxhWKwxcBU0ayjO4e48/D4+fcAmOfeR7sW8v+sFHceeZL8HebSfjqW2n4chdTWuN43bciceOOje+/zAo4tttcP9S2igZp+0ZV7jGPM6zzWT1cAM09q//azFpYWGhWT26nzCLXzt5f/P2PaOAqfC82z/UxlLxzYvf1AA/yKdzDZYaTYsN8gH+BOQoCgn2l+Uhk4kEJczz2jpDsi+g1lrDa8ZRu5M4W2fjqIMzyjdvTB0Q1JgAcvrj3tWkNpmHCDv+KSMw0OrH1d1P38H+7qfvvV5L0vs4rsdVo45zcb9RB+Pru6R+815pnWb51kd/iE1P3tto5wOX/TSMEd25CuA64GM+sRe6KQr6ymfUgQKUI3AEYvwzxjgTzX6tx00ytXLtbsSo3ZBS0AseJAvU2HcuCqg27T832k/tt0ShPRFwCd9vXSFaXEBAizpdKuq+SOooXcffIAK0C79lHIfguSq678g1Q3tqICV8ayGQLkWrDQaJO4oHUKx3RwmWlYaAysi3G4BBC4JjjuDHQoBYOk8554EbFgvUh37m93DR/11nQ8kHczjjy+/DPa/5PZQEMDFsdwJ3vOQ38NyP/r9ivY37nsC5d96EOy98LYyx0NBw4pAC6wQgAzOIJWguCOAsx21nvhzPu+0D8TpnPPptbDj/KcxMbo9l+7Ucp59r+L3a67m/x7NtLT9ciAkrmoaV11/hMyZmnoXEy/zmwW7LQQE11uknhBKuyDFAyarL8FYG6UpM43POjysTJqqlm6FQlgoj4WjifsL1NRr3ILRcUti3qdasBTeVYGYrQIjXBpFoZ8UqwzOPLAxScGWxbKFIRTcWVoFRk428BQQpBYaVe1EITFersZSqtTXM7M1KKWAvcEzRH5c1Q1UKBEauPKPtrTUUWLIXgKAY0MQwIGijUXn3ExBBVQrMhMoQDCmgy9AVw9oMprK+HRnIOOSWYY0FMyNDBmcZd1zxpgaosXF2B8546Ou477QX4OZrfxc3fOx3GtYa1337z/H+1/yJfyeUxDUhsQAJHLXXjIKb/MxYBm/s4GpXWVn3kzatM0EHl/an/0eBC8Kir7whXaXzUgqMBGGHoobxzEebYaL6nY3YfcSp8t154ILCfsx6ony6Vp9euchieta8kOxERaF8BgYlmRcySTOZZYiCbhACY+YLFzJKiADazPSBmGmDvVBqfbwG67M+pcFDo9adazcUgMd/m0kXjpNPxsoqy6nc3nfwAQ391t6H1AmuAB53WnK/cZ1E6NkfigE991MwO+k7H2/8nt98DJ445TIJ2gCJ/0RemGdyqIdhDWoQ6WTtqa8VhX9frwH7cPo3zryNGCvBVUmyqghQJtYJnATDlEUrppX1g9LVl6y7I4yjcX2UNi4cT8AK5mB9EeJgcVRAqOhWCh/nqnY/0X4tVRwAlZCFxLuOuJANSI4r5dd1IAbsVPAgSOhTJYUc+5ijpUbdhhqsUMkzMId36l1zvKlGauUS+qYxX5F3MWPhc1gRhmdchKcvfxm2f+czsdqJ/+dDeOyanwVvPhZBIfPYBS/Brm/9PbY9dkesd+G3P4D7zn4JOJsUK1NSYMVgzf49SVDzECCdQLj99Bfh8js+gsIMpa/Y4ZL7P4evXPTmOA6WO/zHBwhf8qxlXHl5l1hfy9dpnQ49Wgc11mn1iINLwhj2boEyROuLZMEYI0lwNKtIgBJu1mgSjRxjHi0bqcbeLDccCAuvamZTkVOdIMgMePtLeOdbD36QhLwlBryVBjnRvka/YW+6qZRocsQlhbwg4/vSeZeUTME55YUI0b4WuYLz8S0YokXq5D5ehxKzU00KOTvxsyWASMANj4lAA8jJodCE0iooChkSFIwBygpRBeWcgs0JlQnOzgA7sTCxxoFgYWDx9CmX4uljzsb2J+ogyBd//8O4//RrsXf7eGuNY3feicePPDfgPaMgGCM5sDK07n6yfKp92n8y+oKClLNonSbIOr7cAwpEOO6pO9Gpeo1r3H3aC2phS9eghm5YY2RivZUrFJ3MlylMTGRQSqEoCBMTkuUkz4BuRz4iRUCma8FQTNgpSXPJqKo6hWpVsU+ZCVSVpFtlJ+lIg7BqTe1+4mwdGLqxz2nWkMQNY4wlwjMwpFh1Gtfm9DsY2Q/4a9LehZ91/+exfDCH4+/8UqPs/kteHS0lgpUKUx38M8RocWgCGCN6Z6qF6RrYSF04mi4QIfCnpGWVdx9S0Aagy/los8GNKVwjup8kbiappU86/aZuiWmPhUgO8XfyvYZdRVIrgPUxXg0QU9GSQQQ6iACramsWpeR3TK0aUqk6b/moCcoFC4vawoNDkFGqW9R2T1EelGAtfZnpZvpZrevv1DqIZad3R7EuWHzwSL80Kcw9vv8IePwNv4Ott/4jlDXSDmtwxmf+J25/6x/F53dW4Y6X/Taufc+vxyt1BzO44NYP45Yrf7Ge63x8Lxl+zr8H/72AURYbcOcp1+Hie2sQ5fwHvoRvnvvTKPPJ+r3WKNbCT3JA685+IobrdAjSymY/OSgLyTqtGq2DGuu0JjR22hhVhUatexOsGF+PWotTrJHUHb84Bq1Ma3HjJl8Z3E+ClUBdBl/WrOf8DVMtLMUAZvVf52NbROEmuKEoMaklLb6pihSUYzgPKDitYLWCzhSUJSiroI2CNYzcZzaQjCQZjGFYK9rZqpKsKMYC1irkmmEUgEJicRRUu6RkxAAsWAG50siVZE7JtcKQNGwG2FyCiVZGmGBjgcJpaAWUpRIzYcvQWqEigIykiLvzyjfj2o/9m9hvW/c8jJMevgUPn3zFeGuNb70bH3jN/zdqPanxXjm+cK9za7w8av5cuHCteJxnIS91OIIZz8RkeBzmOt59jjxoS8mQa2sVZf+qH36k1T7gOxf9rBe4VCJs+YCgmYLKvJVGLr91pr1VhkKeKRQdjSwD8oxR5ApKiRtaCmYQM6wXjsS1BCiNABHGAmUpwqixDJPsW+PAjmGct8zwgmoIChoFVK4F3tAvYfyHlK4AGq6BC4EcC+4n/b+c+itBi98nqYO6PBzglXK7Qb3WnfzDLyDzmSkAwJHCA+e+FDYBmRVJSnH4dcTj0UAQ7n07lW+1WAYk+6ppoVRbaNTWOJIFRwAvxwxr6iCyacwVax3gNffSRr92Wlf3U7Lv7Hj3E/a5StvYVmhz+/tM8I0IzPgfHqQRgIeIojuK8kEzlD8W3FK0lphR4sJFPnuQ/FY+6LdSPggviQWGVmK5oDzIoQggXb+HAHjopH+Nqy0rjCPAu6MA4poiLqj+HRvvKmbl+nZBd5RmjxEAc/RJeOolb8JRn/2bWH7kdz+LLde/HfuOOQNkAGSEuTMuwePnvhDH3nlzrHfO9z+Guy58FfobjoIl6+cEyEjy0VidM/U3qIDvn/UyXHTvZyP/1jF9nP/gzbj1zFfEtsm82fy+kgPjHiwZAAsfXhHy91h3Pzk4tB4odJ0Wo3VQY51Wjxj7r1GrI4Am1xmzSo0DOgID00QmZGFNlp+wmLa1OhzRilDuoRNuMqMIC25gXEPkewrrHce2hAChjQUwMGTMPqioZ6JiyHQACgJyIPg3OzhmqKANI9EIBc2NuLASmBUAK3WVjlYcRBJgVGtpX8aANgpgLS4p7DzI46DI+fSwAGnCBDFy9qCFIRgiTHaBYaVgHGFYQpjYQjqgMhpVZcGW4bQCQMi0wxNnPg97t5+MzU8/FPv94u/9HR4+6bnYu/1k7Np2KrbveiAe2zLzKI54+n48te20hhYUvr/gA5E2XFJQa/1GuJsG6JFoihNhZNxp4wqXKyw1mJ4olCx2n8OHDkdLjZVgQhvfciIoNcYENeeWlFmPmlK2OPbpuxvX3rXlJJjOZO3nr5MsJ5lClmcCZHgLDa0VOl2NotDIMkJ3QqPICXmu0MnF1USEKsS5JYAZ4k4iwlBlGKaS+BiVAYxxMNbBGsAYK9Ya0f3EIQQCdd79RNwKXK2J9xYZQAJAjnyOfoFo481jtPMj+/BzQMPS4eDvj32m1SIinPqDGxtFj512FeYnNoOsq8edcmKRwH49YnjATTo1xoDyZiUSQ0JcKINbRnhA9s9WgxSIYFaIt1IHlPWbldga7MsZqMEwlrUnTr1hzERlgl9P97c/4+PUbiThPQXgggW9idYrwaqGNEGTiuu5UhRdUsCA1pLxw1npE2sIOpPA3QJ6MLS3viQI2JFpubcjscjItPApBO/1RIAmIM3UopT/jph8anZxfXEMUAYYohhPgzIBXrSu45k0ArA2OiYOH1lLAex87a9h21c/hqw3G4+f8qn/iTve+adQyn/zULj35e/E0Xd9FcqJa1NmSlz6rffj69f/MxALD6Odlhg6/v0ppROkyWF247G4/4TLcfoj3473uuTez+J7Z7wMDJW0r/7owziUyyS8QHtgLDlOVuDDDGzIOqCxTut0yNE6qLFOq0aelakXgZbwM04YWm7Z+Bu2F3B/Ppq4Crfqh936NpwcDibGCQfLGO9+QglQEgQ+r4kKgbnqBVH+Jx40cnOHmgkjVmLl4Y8Rk6R5ZdHgkCKQc9BOgVnStGlNyDIF5zSs175mmlAUwjpJejWFXBO6ueSYJxCGlqDZQZOF1hYKDK0Y5GNtaHLIYJGRQUdrlEYBlHnPGo1uIcAGkSQBnJgA8lzBGAdSBlXp4DoayhLued6b8dx/+I+x34/ceQ+O3/FDPHbMhfjKtb+Nn/7Y7zWsNV70rT/Dh175/2m95hZo0WJsRgTMwIi3x8VC42qstqdZuOwxOa7aYQ5m/KTSgsNlgQN1ce2zHwE5AM+55yYodo1zbr3g9dBax2CgWSauJSpTKIocWitkuUJnQvbzQmFyMsTTIExNiiBa5EC3qMFY7acSwxJvxzFQGtH4WssohwxjHKxjDIfe5cQyqsoDGi5o310UVJ33H7DGxjFtfVTIIOgSWi4nYf4MgskBygUHS6AY636SPlOYaNqAx/6C+2MozSQBAFuevg/bdzRBsXvPe7kAA15gRUhj6xAHZGwK1dcMcSaUomiBoLVsAiD5x/GCcoiXEawwnGMYY2XfylgK5WKdkbifwLuW+PFTx1sRUCNdn1NLy7HARgMQY8Sof7GrWr8TICc8f7DUALw7igEsWdRWGhStNJQPxk3koLRYwSgtwby1ho+B44EMW1tsGAtYlrgbIXZG7uOXaPKZVDQjcAxEoqhQ/rkZwf3E9zsD2tbuKJUFlLfUYCVttFRnVklYj2Q8+b8EuI1b8NQr345jPvzf6vF1+1ew9eEfYN8pF8JZAoFQHnsqHrnidTjpG7WF2al3fA73XPYG7N52iswFGUDOu515i6EYD8xJv3/v7Fc3QI2Nvadx5qPfxt0nXLnK6+PYxX2dDiNirKz7ycq6sqzTwaZ1UGOdVpcCszJmVV04+8nSZfsDdPA4k8WWpUfAFkYll6YALcw4xrqfjHVT8UWclDdcUjxDJRq0OmgohZR4WpgJUuKeEszQiQBlFVgrOOPgMg2rCFYTjHHQpYLpOGSZuIkYq5HnGs465DmhNCLcVLm4zeSakClAg8GKoZQV0AIOmgScykCw0OgUCoocTKahKUOlFTo5QRNQ5AozIFTaIc8VFIn2yFph1J646HrM3/weTO2rU1heeOuH8MRrL8Leo8/Cni0nYuueh+Ox7Xsewpa9P8buzSc2BJnRjCjN8ZVqeeABpaDZ5bHc8UEg38TD1Yz1cLLQCLQi7ifNCyK4Ro32R13G3OovIlx43+cbtY3O8cCp14g86tO2QkFcTvx3nxUKWaaRZRqdrricdDsKRYdQZArdAigyhtbikx8EKOtkPpLYGAKMVpXDYCjfpjEOw4HE0TDGohw6OHZwxsFU3jLDuaiNd86B434SOykKoh7U8HGP0swfjmu7uUYWkGew3+r20TrjgIbl7qevexluLiv1TIs+HxFOv/0zjeL5qe149IRLAWvFSs/HcXAIFhc1uCSXZZAXwokAnQVAQ/aVCvfyYAPLX+ctNJxzktrXMhw7D3p5qw1jIwCSup+E+BoCctSLqFvQ5aQeKwtlhlmMasupVllSHL9dqo833U/EglL5tVj5jGYB/JH1mKLbic7kHOlDcU8J2crEPUWUDc73cbCkElcf/y6Ci4oHpgBxSdWZNNJayYhiLIEyQFvAGKAS9gHWCNBhDUBJath2cHUBi+SdP/3St+KIz74f2czuePSEj/0J5v75e5FlSlxwKuChl/0qjrv1JmTDnu9DxsVffTe+csP/I8oZriRoaLAqrVy0hAEpsLPYceRZeHLbGTh6V52159J7bsTdx1+5xPtssXLtgrXALA7zdXud1unZTOugxjqtDaVeHYGW0rwsUhZBgga3MqauRyvGgiUpkxQE5Jbryoj867WLTeZA9kfcVICY9SS0hZmju0mMueEZEVBQNCVR2aE84CGWGi4JvhVdUpS0yXn3E8eA0wylFMAO7OTCYrkhcTTYAT1SsEzIM9+jrFAqBUCjgJiTExiKHBQsoAgGDMMKkzlgmMFQGFSi8eWuaJdLQ6AhwRoGFwqAQ6erUZUESwr3Pv/NuPjTfxy79NhHvoftO+/D00ecga9e+5t4zT/8Qa1FAvDib7wLH37Ff5IfDrXZeQgkF34vxM14ISe8soYry1jXpsYQSIRZGnPKM+CgotXO4ckY/aS6n7QumOzXYGWUpcK4SQQmEGFDbxc2zj/VuNTDx14KaAXSFAOC6kz7TSHLNYqOgJOdrkK3q9EpCBMThG6HUGig2xEwI/juC9ggQYhLQzF2RlUxhiWjLB2qykncHeNQVVZcT4wTwdRnOBHz89TlhKMLAYBojZG6nMSghUHV7PcJ1JjHFtz3wZaXt4/G973ka0vmgNXYT++zrGddxn6wbFFEIFPitHu+2LjXfWe/BA4K5BiOnHexqCGS4GYhQnMIPg1opZFpicmklfxVwUoBXAMaXGfCEcsMF4GuYMVTu574eCtJoFCO4BeitQeAaLEBjInDgub4Wepdjnsn7Tk/rK0hrGj9W0isMpTE9CaAvDLBWpk/lPZKBieLttY+mDiL64S2BKUZGYvywRoVwYgAWLicAFYR1Mgz/27g+QsA0BxdU8jH5gA7yWzm3coyLVliYtBSH0w0xCcXlxX5EhWLBUer9/zoAFx3Cjtf86s49v3/dzy64a5bsPWeb2HmvKtj31XbjsTDL/4FnHrju2K9Yx74Fo56+FY8eeIlcE6UJ845P8Y02EoQdeccSMta/L1zX42Xf/W/xmscvft+HLf7bjy+/exa+bBoMPgxBUsuxyuAeBzm6/bhTowVjqmBlbvWOh18Wgc11mlN6Jm4moxbPAJz3MihMk675hneJe+1gOvKyH193dQSYEE3Fd/2EHOjXgx9U/2a3Yy3kUTUJ4ILxxR5baeqNcNOGFMoMSsnRXDaQbO4pGAgTE6WSWwN65nHPBOXFEZIm6dQaEI3t+KSkgGlBbRy0LBQMNAklhtaWWSskJGDgUVGFhOZxrBS0JR7IU6j7CiUJdDryRM7R9DawRqHJy5/Nc6++a/Qna81Qhd+78P40kv/NXYdewH2bToWm/c9Ho8dues+bJ7dgb0bjk4ApbQvvQEh1QxalHAOhIlpnNYMktd4kev0E0ULycrpPNI0xkjKW8DG1bf/XUtfCnznuW+D1lpcTrI6y0mmNbJcozORIcskhsb0dI48I3Q6wMZpMWkvMsZE4eK9mAHrMyMMDcEaYFAC/YEIpoOhxXDovPuJgTXiclKWNsbNMJUIJwgadxdiaNRxEEJcDUDcT9pa9ijArpUWda3oGVh8pOTFXY/N1pXTtY1R958j4JQHvoHOcK5xnXvOud6fQwHLj2tfeCdK1zEk8kxAaJUBWa6iVUFwOQljKLiQ1NlxbHQ9MX7fWQdb2WgNYL0rSgwOigTU8Psp0FXHfmiWx/0DHDhtl52FLD6VBzWISDwkyDUAESJbg0KWEmsOglNSbirvpqIUtHYwOgT4ddCVuGNqDx5VBqiMi/E2Qpyb8DvE4JDlncVFJQAVMgzAiqGdKDOsE9AjV+KaEgOJOu+K4i05KKz5DLhWlzKAXS/+WWy/8X0odteWlMd+5L+hd+FV/nk1lCLsfNnbcNzXPozOzNOx3oVf+UvsfNu7kHmrUWUVTGUkyLm8UJCr+/yBE6/AzNQRDXD30rtvjKDGCH/3DEmAz7WYhNZpndaJiE70uzPMvHet7rsOaqzTqlGDWWlZSpC3SMByUNIxTOGCKPmCivcxK/gizI7UGV1ShVlkz2GMu3GqtRvTpsjsJupFb2IqOe0pghbBQgMkLiviupKYuivvw0sKyokJLGmCsxpWe02JVrDGwloJMOgsYHLl0zZmKAoRdjo5Y1gSmDMMcwUGkCmLjJQ46ypGR1VegydgR86EDAoZcnSURkYOE3kGTQWGRsHkQKYUikIeuTIS6Gyop/DQNT+Psz/zP2K3nHjv17DleU9g99TR+Po1v4mXf+pfN6w1XvT1/46Pv/yPwM55I41oPiHvJMlkQ9GapvXuxpSNL1wjOsz5q8PJQiPQarqfyHxByZAan/EEAE579DuNy/QmtmBm24kNlxOtNZTWyDribpLlCpOTEhR0okOYmFDIM8ZEzihyybCQKQaIxbXMiFBjDKE/YDFPrxx6fXEVKEuL4dB6TbtFObQ+XoaNLifWOQ9g1NlOAESrDIbzsTOExmnakQiqdXkN4jbM2w50P53QEzm2Lt1fBOKZ7C9NaW2XjMlgyTPukqkrxVl3fbZxvceOuwizG472sRO8m4kKwIQE/SQvFetMi+uEkhhMAcgIW7DwsT5+Azvn0/nWQIYx3g2lst4aQ8aNuCLJ+AouSc66uAY7WysjYuwPRtyPbpyh3MM8jFqRIVca41bk+yatN26OTV1NpArBJX0brX1IjjXBDfL9KAARINlQAMSsKOTj4eis6ZaSGR1jlmitUPiMZToDqkqhyAlZLhYYRS7fbqYF2Mi1fN9KyZMpMKBkfsnIuwMxoSIgJzmvMkBlCfAxPYxmDIc1x2UsYlrd0I8u72Dn69+J49/9b2P/TN5/O7Z8/0vYe+mLa7Zl4wY89tp34tT/9e9jva2P/QgnPfRNPHTylXVEVACVq0T54u8Ts9hkCred80pcc8v74jVOe+y72DT7JPZOH1W/oOT9jSzX7YJF1tQVW+YbY/PwWwMPd1qPqXHY0EOQr7Eior8G8J+Y+aHVvum63c06rSLxgpvwO8EkNGzjzln8OqN1F2iGG60atUWcADAjt+bGxgAQLCnCNlrNM//C4IVrR79zV/+Nxxx7d4pmGfuLs3OQ7ALJ9bwpeDD1dE584K2xsJWDMwxbefPy0qIqDYyxqCqLsnToDyz6fYdhxRiUYp4+P1QYlBkGJkdpNSpLqFwGywqS9I9B7JCxQQcluijRpSEKKjFZDDFZGGyYdJjsWHRyi4kuY6LD6HYVilzMnItc4YnnvwFVZyq+IgLjvFs/DJ1p7DjpUsxuSJgaAMfsvAsb5nYKwEPisxwZTsaItDluNIxlapZwP5Eqq4Q8HGaARmMct34fMnFKlqClmdCFnmOB8xoCVRu0FaGHRArxAg/hhCdvR2EGjcvcddZLYhwNrcXlJMs18kKjKDJ0JzJMTGSY6GaYmlSYmiRMTTCmJxiTHYdu7lBoB61kDrOOYRwwKAn9UlK09gYWvb7DcOgwGBj0BwZlaVEODIYDA1NZVGWFsrR+njCwxtZaeO9SICCp/A4pXp11sW69b8EunZ+CtQf7cuvBEvvM930by6Q51gABAABJREFUotuDa+9zTDu66vu8yL6r5/AYOJND4EyO4FEAktg5P/dzPG/Dvsdx3OM/aIyfu88OVhrJuPTjTWtvhaFVBDGyTALO5oW4NYWU4CGgrYAZwSVJ3JFkfMj6YSqLyo8ZKTcwlbx3U/r378+xxq9L3urHunr8OOsa+864xphhJ8Ba7Qol58Z958ehL3d+PKa/Q5/H+4Qt9LNrtcvWbQljmi3Xv41vdxVizsh3YiqHspTvxpQWprSohgbl0Po12KEaWgwHVr67UuoPB4zB0KGsJEjvoJRNrDlIwEjj07QmGU0UMXLNPuU6I88YncIh14wiYxQ5o5MzsswfzwlFh5DlPpaHDpY84jYbZq/d17wWw6NObIyvIz74J9Ak8bjyXMbQnhe8Dv0jm/XO+eJfIs9krAVgR2dawFogzm/BDepHZ7wEw3wyGbaMS+/7DEjy63ogSclvLOAOjBoMjKATYYEpewXWKQ5tPTyE4cNxnV6nZw0RgALALwO4m4jeQ0SnreYN19RSg4huAHAbM9+zlvddp4NP40z4BfVP/WHrshTQGKchHas1RSpMtA+Mq5sUek3FiDvLSLO9gW/a7jGNCWBE81nqqsxinQH2eqtU+4igXSPAOkktR+TjSUCAkkSTxMRgU1twMEuwTwAxcjs7hrHCFGitkOfkA7opMDIxZS8AlugZgMpRaIVOZkBwyJSGYQfNBAULxQYaBrlzyJHBqAyauxLgTDMmMo1BpTBDGoCGZY2iYFQloT8A+tiIR676GZx689/Evjnljs/jB1f+AuYnt+LbL/xNvPiT/7ZhrXHd1/8nPvHSPwRLYHoxa2UH8rFDap0sRWuNpEsXeKFjqKXtORwtElabUgZJPrnQac+eviJvOYXWo9UxM2qrqvqcuOcFRGG2VcJ0X3HnRxv3YRB+8Jyfi5lO8k6GLBdQY2IylxgaHY2NGzMUGWGiS9i8gZFpRqEdJgrR9TNL4EDLhGFFmB8QjGH0BsD8vIWxwHBgMRgYOMsYliKUsmNUpbifMHMUPiWGRm2dEYRqAC1XAlcDxal1m+PmfOr3Xfg2GRITY1zfp52ZWHakTPnYfcbYe67t/iLH4xhKn6muKX09av0hsRZkbj/zni8gpUFnWrTjqNcNRarpcqIIpIGsEGuBvFDodILlALzLidzTerClHNqY9ndY2hhPpSpNjJsRXE4CoB7mBefHRATsfdua46RePzkpH0u8/2+17kFK1oI6Glf4E7KONYqTbzoEKA0WG+3f0YKDJCCmswRSLqZ4JatgDcFm1mdHIVgjFpTax87JrYIx7EEnicNhLSHPGJkmdHLffs1QRJKdDBQDi4KAjBxYiSuKdRL42/hsLUaJS6kELIWPrSPj0DmZO4LVBuscO97w2zjxf/x+7IPuo/dh09dvxOy1r0aeicUlTXSw42d+Cye/61/Eeht33I9T7r4Zj1zwU7DGoSwrONYgK644xhiJGeQkkKjtTOLOM16CS+78RLzGuQ98GV8/9w0YdqYb73OxdTh+KYsI7W3ecL/5gnU6JIiJVjamxjp/t1r0FcjHNQHgYgi48XYAbwHQWa2brrX7yd8BYCLqAbgdwPeT7QfMPGifQEQ/C+DFAN7DzN9as5au0wrT6MRRu6Asp6x97jgBKkTyHs/aLNmmhfgptM1Zx2n3eeQuCy+VCRfrmdXAmKRNC3E1AMTgoiH1ntSRuBoSpKwJajgSYUQpyaDiXBD+BdQIfrY6E3CjyDXKkuCYkA8IzgLdnFDqDNQtUFqFzV1CTgYaCh22IBAyGGRgib1BFh0qUVCOARfoQkNP5OhkOZTqYDAk2DwEowOeePGbcNLXPghtSgCAthXO+f5H8d3n/wqeOP0q9Ka3Y2qu9tk97okfYHKwF/3uZjjL8b00ep792IjWNMEdoAaYFjVfXUtaxFT2YFNbuBgJtMvsgaNa8OQFHuhQAoWWMhlu45NBKGqfJ8AmMH5eq4VVr2AEQ/z24RyOfqqJ6e/adgq400WWKSitJX2rBzYkZatGkWtMFISpKUInc5jILTre5UT57ETGKQyNBOodVoT5PlCVwLC06PUtTCWZTYYDU7uclCZqxW2VWDYElxN20aKtYW3G9RhJAz02wIUEWGxMjowlx73gGByrI41LtNA1l9pfCWpd+0DHdrNrkm/LJZ8UJfv+tuQszrq3CWrcd/p1sLoQ18SwPhB7AVqkXp17Kw1NyAuNTIf4Gd5lgnzKVZbYC9Y4VIZRlWKpUFXOA2CSDccZB0bIeCJWhNY6SNzWFMiQOC31c6dAxhiwiptKjHTeWWh/tG+bxxy7kbrpb279ju4nrboBxAjZUGK5qv/WsTaUgBskAAcRQRsVlQxKizuKVhIYuMokk1FwDTIdFpeUQuLlmA6hsuKWIlnGfD8jZEmpjfJzJVYczrcl84FIM0MYGuEHLBNUCQxLwGeKhzHixgIAe698OY74xF9i4pF6rjriQ3+K2ateBspz6EzcYnrXvAL9T727Ue+sL/wldlz8ElitAULMfMYaESiFknnVAbj93Ffioh99Kqa3zu0QFz7wBXzn3NeiHSi0rSSSdR71Gr6oO8oov3hA5K95qLqfLLp2PwssNdbdTw4PYuYXhn0i6gC4EsALAVyzmvc9GDE1CMAU5AGvSModEd0LAThu83/vAHA0xHTldAAvWsuGrtPhSE1mKZY2GJvApDSkW4zjgMcGJE3Kw6nyO10/E+ar0br0XqNtr3ep2RRmQBHYBvNKWbxDhHvlw4cxkc/qony7FIgFuFBaQA7JiKLAjqGthlZyrcxp9AjodMRFBExwGWNe52BSKJ20nVFCQ0ORAXlAg+GgYMCokHEOBYOScnBuoYhgkUGTxrAUxpmhUB15NJ587qtx3NfrnPenf/8TuOPKN2FYTOGWa38NL7jxPzbe0HVf+++48fp/IzFGHDWYizqYnmSGSakdIb/Rr4u8hvgOV0MwPxz4i2CNMaaf2B+nNiOZSiVEq9d/B0ArzYQ2BB4gCohItMOUHD/vwS9Bs21c446LXhezneSFRp5nyAuNbjdDt5thckJjcoIwPUWY6jpM5haTHYtMyazETDBWeTBDoT9UGJSM/oAxHDqUpcNwaFCVzpvI164C1jo4E+IiuEaqVhskHAacs3F2dC3LjLb2nUJ5QHOieRqaYyPRvo/FI4LgT1RHNXym++OEnwPdj8Apj4mxFJ6rCYjFdYMS4YMQQYA6SLQfqy0Q5cRHb8V0b3fjHned9RKvtVfRQkMrHbPn5Hm9FZ3Muw+IEJ2CByGzibibWHGX8C4nYawEYMNZjpY9zOKa4bi2zggUrXtiOcf7SRDZBBALLx1ALE76ZrH99kBqHENznNZWZUmfp++M0NDeku/TELcppgcP33ewyODassspB610BD9IhfFDkhpVy/prEssN5zQyw1Ba0r92OxrOSeYUywzHSiwtffpXzhVUxmDyAUWJ4zDMCIBy0I6SQKLeWsIKeEGFVDaOBHjS9RrJrLDjht/Byf/1t2I/FDsewaabP4bZ69/on4OgOwpP//zv4oT//Jux3uSuR3HS9z6Nhy9/HZgBW2SSQclYCVruXHRDI0WYnz4S9510Nc586GvxGhfd+zncevarYJWGj6YeAa/0hY8sS+2C/Vxjl7VWxaF1aKxpC1JqSekStHSd1mmNiZmHAL7st1WltQY1zoWYoVwM4BIAFwE40h/TAM4GcBaAnx1z7mWr37x1OnxosQl69FhzoRq/II61CBljzREDeTYsLlqUWG40DicMcXrRerGuy1IwJQQeJeKomRDXk3BJ5605GFAKTA5kfLBR76sPBgxbOC3ao8xp0a4xUGYKee7gOIOxEiCuyIFuJ+SbF7/WQmXoKC0MkzawqoCCA7GDcgaEErnrIUeBkgpoPSVp3XKNycJgUCrs6wnzZ53G7tf8Eo79xsdAQUtT9nHO7Z/CnVe9BY+f/2L0b/6fmOjtib1y4qPfQ3cwi0Ex7aOqO0l16zMtoO6xwCWPvtFEahobDH1EGTRuPD0rlB7Lp6UYokWOHyqAxoHQQk0f53JCFMrlo1Re8KnN0wkX3X1T4zpWZXjonJeg6BTI8gx5rjE5VQioMaGxZbME853uMrZvNOIvry0mcgNmQuUUhlajsgq9IWHfPKEyjF7fYXbWwhrGcGjQ71fepcCgGhqA4d0IXC2U2tTlxGc58fF/ABEUY8jHFpgRKATyBQLYGH60QK9YZ5S4vb/Aufuzz6iBuRXbTwFr23qSAGq31wpftpiwRcncFean4GZ4TstKY+cRZ2LP9lNB5FO9klgB6Fz7bCYKRTeTWEYeKAvxFLSW7glghrWMoY//YK3FoFdJPAzHKAeVj3EBiW/h37NkOeFo4RP6BUkfxceN1hnyTAu5HtXLKmOhKvtFASBq3yD8agmy9fLs3yE5+bbjb/+dJ4Bm7R7q9y3EBTT5/p1WEeBQ1sFZsaQJcU+ssdAh65HRsJYFgNKEoiMuLGUuQUC7BWAdwToFrRyKDAAkcLDMQAwiseJyLC5GzonbinEEYwnaAJkWFzXjCMNSHtn5uB0zl16H+dMuxNT9dfyW7X//PzF77WuAbjfOd+UV16F/xoWYuLeud+rn342nr34N+uQzrxkLoxUqVHBWS384BioAGvjBBa9rgBrTgz048+Fv4EcnX4N6ADXBqNWgw3mtWpSeRc8l7icr9zzr7ifLIyL6ZWZ+98Fux1K0pqAGM98F4C4AHwxlRHQMBOC42P+9HMCJY06/dw2auE4/sTQ+doeYPatW0fhJcKybSvuC7LOcNBj7UcmaKNHqwTOHJGZ3UbtG3BCYvErYMzQ1wwUHaKfhyMFlDsoKI8WOAa/10VbBVATrHLRSsDZDt6NQVgR2hP5QwW7Q6OaMIXXAHYeSM2wsZtGBBcEhY4uMHbStwMRQJCliO7pCgRIFdzBBPluKzqAVYe7Ek7Dviuux+Zufic9++rc+jPuv/jlQkeO2F/4KrrzxP9f9AsYLvvEufO66PwBbB0UKDmJqLRrkBLSIYBHqvkiAKE4Z1f1EKFYE0BgHqBxqtAh6sywGMIB7hwjjsL8mw2PnBCSCEC+U8SQ8t/LjjJGbIbbte7RxnR3Hng9d5FCaUHREm54VClPTGt2ORrdD2DQNdDOHibxCN3NQxBCRUME6H9y3IgxKhfl5xmAoaTf78waVkUCN5UBiZljrYJKYCCEOQgzMyHXAyiCEjgMwRgTXpL+a/b3Mfl7mO3hG+wvcb6X208JoBbjQUGs3jNJ5PilOTpnq78XJj97SuMxdZ71EbkMCcEuwzxA3I4POBdjodDLkOfkgoeGqFIO9DocM6yR45bBvYH3sjKoUAMNWtUtSDPbKzmc7qQOchpZHSwkk44PbY6XpTtIoH1NnwRe7WN8CEtulXXfkN8b8rt/huDlsxP0kQTeJCI5cA9QI624ENrS3rFGAVUrAqEx7yw0HVVkUPgZKx2QYZoxuR1w3jSWURqHbATKtYJwHNlisMYPVRrDgIIa4wkHCfeeKkCmCqhQyny5eK6A3EBdeZkIJ4Mk3/i5O+0/viM+c796BjZ/9W+x99dtBBGjNIK2w5y3/FBP/7hdjvc7enTj5Wx/Bj1/wJjAYRgFZpkEArLOAUSDtKxtg1xFn4PGjz8OxT94Rr/Gcuz+Nu065Jhi4xNfSXNNbc067YDXW2MNh3QZiX7TnkXVapwOkPyWi2w/1MBAHPaUrMz8B4AkAN4YyIjoPwB9AAoqUAP4HgD85KA1cpwOmwOxQMrkGIm+OnJYuVjZCqzRLcxJw0qMEEEElvXG7QVSb047TAiWNXTjyABqLsVhdtBdwz6wFJphDvWDeKldWTB44qa9jHHv/akRlBzNLyldlwQw4TeCBRZYxdK48AyJB5ywDeaHgnEInc1BUgDoKhiyIh8hcBXIKmgFyFjkB1vv75zDQykFriz5ncLkENiw5hyPC3tf9UgPU6PT24uTbbsR9z3kdHrn4lbj4i3+G7mAmHj/5oW+hMAOUugtmB/K8tCKxUIlaQRJT34ZAVqs+vfkzIuMZOzsVLBKGfMXpcGCMFkFvYqDQxQCLRGg5FICNFTEZTi8xYrFBsUoM1EiikX3ODz8Oar302696K7IiQ9GRrTuRYWIyx9SExvQUsHGasaHrMJVXmCoqcTlhwDiNstKY9+4mvQGhN2DM9yyGQ4fh0GIwqHz6TeczH4mriUkzOjgX42YIoOGiJRiHQJ9BGA3AaqgTJ7LkG0nm+XSee6aWTStgrHHA1HiOxfaj4EWt+zPCyIugGsG7CZIIweEEGnWTC+vKWQ98JcYdAIAq6+CB018g2n5NyHJxOckyhbzIUHQk2Gy3m6MoxN0kdTkJriZVxT4jlrgolT5LlvWZS2IGEJ9VJGZpSV1L0iCyLRAsugem8yvCcBl9UYz2+0vW5JH99C0l48zXa/8OdRDaSKN9Hl2AkncSlQD+VnUdePcTWWvD0hxS6Eb3I0WxLoB4PUc+6Kh20NBwzgfzdA6Z1YBft51ldDoaYIm5IVYach1rfeBOSPwMzQxWBFLBakPGpiaGJsApCdarSAKNVoZgHCDBhilmWslBGFx4FebOuwLTd9RyzPaP/yX2vugG8NQU2A/64cVXonfhVZj8wTdivWM+/W7sfP7rYSe6KJVkhckKjcIWMGTrYLKQ8fSDC17bADW27/0xTth5Bx458nz/voKAXn95wTqoPYbq39gv2h/3k0OF2mM3OSBlYf8QWH9XggLotpLXW6dlUQfA3xPR5cz85P6cSETHeFl/1emQTOnKzHcw89sAvBMSMfV0Zn74IDdrnfaXgvDsEo15WtZghhcuc2imRW1rD1eW0gkuifAf7+sQLLLTspFpMdFKcfJvLKXMXNg49Fld2gjS19ames1Z/TukxHORIXXWwhoDU1WwlREBpzSohhbVoJKtNBgOKvTmKszNVpifrdDrWcz3LPbOMnbNKuyZyzBX5uiZDvZV05gxGzHnplCigCUNaNE+ZTDI3RBdM4eN5S5sc09hG/Zgk5rHdF5hy5TFkZsdNlx8NvoXX93okjO+/rfo5oQsV/jhte9oHFPscM3X3wWVKZCPRRC0YyGdGymVWLAkb2eJ9Uvk0pZGzgshjbL1dXBZFINIcv0tHWyK1k3LADhq5StFc+vwO72e34OKgRpl/CkKmScIZ9//5ca1y2ISu0+9BFmu0J0q0Olm6HY1tmzKsGGasGGCcdTGCpsmKkwWFSb1EBksHBN6JsfQZugNNPbMEub6jLl5i9m5Cv2BuJv0eyXKoXzPw0EJUxlJNzk0korSGBhj6tSWxibpVmurjUYa6SjIuihoIJmPOJ2v2nMXRrc4l485dvA3JM+R7o8+nwvrkRfSItUTeiwP56UWCPWalggo6TgEcPb9X2qMnwdOeR5Mdypq/bMsQ5ZlyIsMnYkceaExMZFJoNlCIc9DGk+GMRJrxRrGoF9h4NP7DgYlqqGBKQ3KfoVqWPl0pQamMj5dr4E1BuzjsdSpUm0zvbgbM4bcmLXcOXBM9ctIFtgafFhkn5O67FrH3Oh5I6nUrRNrjhZY01iLW+dwq36wfGJXpyxm6/uEJX2xtRKbJKagNbIZ61PC+n6vSgMzlFTLg36FYb/CcGAwP28wN1dhbs6g17OYm7OYmWHMzjH6A6A3AOYGGvOlxNexTsExIXInxFCKoZVDphlZ5iTtemExUUha6MkuMDUBTHWBTgYUBWHXm/5JY9xls3uw5dN/A+dC6l/hSfa+ZbTesV/635iczDA1nWFyqkBRZMg7GYqJHHknk5SvWiPLMzx6ypXYu/HYxjUuvvumhhUqqLkWp5aqCabsv5nF5/dxRw8F4P2ZkGSias4jANYZlnVaCfoWgOMgwMayDSKI6DkAvr1qrWrRIQlqBGLmPwPwGQCvIqJ3Huz2rNMzpLZMw8srG+vu4ZnHUQapZi5H+NMDIFkLuFXmRspCW9Kb0gK8cgRkGrxzm5ELz9QuTi/kfwdG0NbMFBwLUxWYzMhEOR+0ywcKNAZVVYnAUxqUg8BECSPV7xnMzRvs22cwO2cx32fM9Ah75zM8NZNhX7/AfJlj1kxgjqcwiw0YUBdOKTAUyBkoM0A+nEVWzmPSzmIT7cP2bA+2dWYwnQ+weXII++ZfaPTnxO7HcdLdN6M7kePR570eZWe6cfy0+78KbYeiBddiuguJbdoUQCOzM16QHfEOGjMGxoFRKyKfHw58xiLMUASNljon0dAeDGCj8f6otS11bks+jcx16w61GT38WPP1PcgxNfc0pnu7Gmc9duqVPnhjjjwnTE9nmJrSmJhgbN3I2DRl0NUDbMj7mMwrODAMi2Z1vk/YPacw1yfMz1vsmxHgsd8zmJ8rMRxUqErJdFKVBqYUANNWXriytfadfQwNx0nmk0RAa4MXoTtrQS/Mh+Pmq8W3tJ+Xs6U8+/7u7//GI/vt68VhlU727TUpEd5rwbqu3hxJ4/eP3HU/trZcl+4+66cAkqCTITZDXmjkhYAY3W6GolAoCoVOR0FrCTRpjIAa/b7BfK/CcGjR7w0x6JWohlbAjIGAGbaysJXxgUKbYycCFxGwqNe2hvIhGUONvksAjLR+CqItvY+R+7kWcNL+3QYpHEv2FrCX0j0o0Wifc00gw9r6Gwn38MddY90NgXhl31oLY0wENOo+lu/TVB5QKiuUwwrl0GAwqDDoV+jPl/K3V6I3V2F+rsR8r8Jcz2Bm3mLfLGOuD8z3CfMDJW5phlBZiaFhxRtGYqoohlaMjBwy7dDJHCYLh25mJbtShzHZZXQLwJx7MeYub8bo3/7pvwLN7oV1DONTxPbPuAi95zbrHXnT+zBtZtDtKExNakxOZeh0xZqo6OQSuLbQAszlGe648LWN80957FZsmnsSBBq73sS1HqgtLsNcDF50jj/glegQX7fXfoVdaxLecqW2Q1wMPpToDQB2ArgK4j2xJBHRGyCpXY9dqu5K0eHwNj8ImUbefrAbsk6HEC0AGABoalXGbFJpDLDwTJrDgalPwIikvGb6R5m+huVJ2p4xEkCb6a4ZQheBFRc2JAyc43hO0CSZkPUgghwOprQxUnllJGjccGBRDi2GA4tB32EwcJjrM+ZLsdiYq3IMjEbfZqhQwOoODHJYBpy1IGugqiFyM0DGQ3TQx4ash81FH1u6PUxlJTqXXghz1vmNPj3pi3+NPFPIMo0fPf9tjWOKHZ7/9b/wJr6ITH3Q6jReaQpmBNNgr0kfy6HwmAGxGpzC4cB9jOuLeGhpkKLRuwdJW7S0RcZCzzD+vAiSJdZARGI2Ttoz2V57Ho5f8YO/a9mAAXdc9w50urm4m0zmmJzU2LyBsHWasbFbYetEHxuLAbpZCUUWzmUYmBz7BjlmBzlm5xX2zDDmehbz82JZNRwYlAODYb9CVVYwVSVgRnQnqDXFQSCtNe2JMMYhzoYVLbQVwS9aq40RFKO2OhUmF9hc8teNKV9oH7z/+2OvdUACNCd9kM69CwEiYTKvQfD0/PS6qUXHCGIC4OwHbm78ntlwNHYed75YZ+Ra3E26OTrdDJ1ujm43R3dCLH+KvP4CrBULjcHAiBVPXyx5qqFFOahQlSWMEYueAGSYynggw8IZK9lx4phIrC3S/bDZAJZxCyxzI/0Z9tN+WnrfNa7R7udx/b6sLcScScEMZ2WLVkyJVUb63FwDHanFSvqNNcCPxMXHVr6/Sw8m+a0ayrdclbIWDwYGg4H/23fo9Sx6fYf+gDEYAr2BZEKqjEJlCJUD2Ltekt8yYmSKkWuGJocid5joCKCRa4dOwZjoAJ0CmHnr7zTikuj+HLZ9+q9hrRi6WCfveM+bW/V6czjmpr/CRFcjy4BuV2NiokCnk0NrQpZlksY201BK4f5zXoJhMZXMtYyL7vlsXOdl6vXWbzHjENWARgA/lKrn51B3WSD2MhblQ3Xd9m2nZP/ZSPUIXrltnZYmZn4MwBsBWAC/TES/ulh9Ivo3EPl9AsCO1W+h0OEAajzi/551UFuxTocWLTYPLXQsaHWCgI8mI7P8xWr0BqPyWs1kpfcIOoSRdsG3J/wLjFu6xYWqBZIEDWlw80mAjMhQBebeM6ch2FvQHAXzYmstqrISwahXYtAXrW9/UGJ2tsS+fZXXCjNm5xm7ZzSemi2wq9fBnJlADxPoZZswn21GL9uESk3AsQKRQ4ESHdfDhJvHlNmHLdUOHO2exNHqKWwv5kBvekujW6YfuxfHPPBNFJ0cj173VlTFROP46fd8EQVZ6Czz2nEFpTVIhb+jQVRH3x033t1y3E+iFWy0CtlP9f9PELU/qUPdvDdljOV3+1hzv3ZJ8edFjaJoz5Ufi6c+3LS+HExtBR93isTQmFDYsiXHpmnCximHYzb3sXWyj6m8xKQeQrOFdYR95STmhh3MDTSe2gvMzDtxOZkpMehVGPZLDHolyoFkOKmGBqZKNMLBPcDYaJ1hrWSviC4ozNHKKwju4PZc095HfNEpgBRSZYa5qznXLgA4r8L+gqD2Au90sf10QHC0TGnfw7Xu13YkGb1umPeBenYPpF2JMx/6P43xc+9ZL4bKBMzQmaRqnZgUzffkVIbpaY1uR6EoJG4CEaMsLXo+5kpv3qA3792TeiUqD3xVQxMFbGM8mBGs/oxrCvvsx4lNhPsYRJTjXwQriJYGYrTf8Az2a2AtrOWN360x2BzHbWqus/X7TJUJ8Wg93hpKBBe/MWlHy7IjrMOJBUzo7+CaYip5HxIPR/4O+0OUA1mTB/0K895io9+zmJursG/GYO+MxVzfYa4PzPYUZgcK/VKhNEpcUlwd84VIYm3kmQAZ3dxisrCY6jhMFA5TEw6bpoDuOWeif+0rGr207TP/C2pmd509xzH6J5yF+Wua9Tbd+H5sHD6NjRsydCc0JqYKTG/qYGpDB0VXXE86nQJFJwdPTOGec65vnH/uA19CYfpi9Ra26BeYvq8mtVeacev4yDmH+Pq0bHq2PMc6HVLEzF8B8C8gX9J/I6Kr2nWIqENEHwDwhxCM4fsArlirNq4pqEFEJxzAaUf4v9VKtmWdfsJoMd7F7zc1Zsm2LBq3iIyeHBjhsVVbW0OoCIxTQ3Mk10oj0De0R4kpbWRGQ5YD66LmLTJWptYOiZZXmKphv8RgvkS/V2HQF9/evfsMdu0x2DtnMd8D9vU0dvW72Dk/hT3DKcyZCcy7SfTVNPrZRlSqC1YaCkBhB+iU+zDRfwpFfw+myr3YjL044roLgRNPanTLyV/8a2zYoJF1NR58QRP00M7i8m+8B9pbc+hMUsWpqEFX8bWkGvVQVus1UuFi3KsZEc3HbO3jy6DDge84EPeTZIC3A5ctSxO2wjT6/lrHxx6m1t+mFq8WlPz5lHzbyThTWuOop+9FUc43rv7IRS9DnmtMTWpMT2WY6ALbNlhsnSzRpT42ZvOYyCpUDhjYDP0yw2wfeHpGY9+cQm/eYu9ei/k50bb356voalINJTZO6rfvrAUb+eajANiOYxC2Vn81BLrofkIN15Q4V6E1Zy1BawYDpm1hPyLGzK9LbdTwP2k/yeh++xKxvAFgI14r9KMEs5SyUx67Fd1yrvE4D5zzU9AeuA0m/EWhMDmVodvRyHNxO1FawVigrCQoaL9v0JsrxfKuX2HQG4r238fSCPEzwpoQALAAeI1a33BrPWqNBfCC3Rn6cNFhkp4w1q8o3KZZr712tu/RGg4t0GL0d7rGBqAjHQfy/K36jsWqxbpoEenCuhvX4mTfujrORlA0+L/VUFxDy6HBcCjuoYNeKd9+v8LcXIm5uRK9+Qrz8wazsxa791rMzAPzPcJ8T2F+QOiXhKFVKK2C8eGOiCCZUkg6Q5FDnjmJtZFZFNpgsuNgfvHXwaoWGfSghyNvel+MrWGMuDY9fcNvgZWO9Wg4wOa//wt0CoXpCY3JSYVuhzA9lWF6OsfEZAaVE/JOhrzIcc8lr4Wj+j5F1ce5D3xFAGJS9Zo0JmZWY7lpFbTXgQNeig7VdTu63Ty7ad1S4+ASM///IBYYBSS+xjHhGBEdBeDLAH4W8qV8FMDzmfmRMZdaFVprS42HiOhpIvpHIvovRPQmIjqXiBZrxxv83y+vRQPX6SebFtTu7RfAsRiFCXQJ1GSRauNNvxcwr0Wb0UQETKJlh0PULJnU/7fyGrvSSRaFGCHfoN83GA4sej3G/IDRHxLmBhq9qoM5M4l5M4GBKdB3BSrVhSu6cCqTRcQaqGqAbDCPTjWHzPXQ5QGmiwpTv/DzjW6Yuuu72PbI7Zjo5njkZb8Ck3cbx8+64zOAs6DE1F8lQUOVdzOJy9a4Y951QIVzl/EWFxeUlzlQDgfuYxHOb2FNZ0JNs5YVbtzyaFxWogO4yNif0bwZ5K0ygslzsBYCLv/+B0dcT378krdjcirH9FSOTRsJ2zY6bJoy2NLpYYOeR44KzA4VdzFvOtjT72Bvr8C+4HIyX6HfrzA/X2E4NNH/PghC1tjErN1Gf/6gZbchJkAAQhd0LcHYOSYAA+3y9n4DABizLQgkr9Q2hlJLjv12RWnMrfW1xiIXnsI5QP29iIJ5NKhfGDvBWkgphXNaAUKfOO4iDLYeiyzX6HR9gNmJHJNTBSa6GbpdhU5HMj85J2DGcGjR71sMY4wGsc4ohwJgB0HamXruD8Ez03HTdDNJ15rx608AA9JAoel1XAN4GO3LGrOQ/TSI50hA0uS9tIN9jryj1n1TRcAIcOPfXTvlsXPh+VruJ8HtKWyJUqHxO6zNaX8kioeQcjl1HQv7En/DehDTYjioUA7kHQ8GYpEzGDj0+ozewKE3ZPQrhdJm4pJiCcapBoADFmBDE0PBIVMhkCijyBzyU09GdV3bWuMDyOf2RGs1Ywn9I0/GzIte36g3edOHkO18DIUHNqYmNPIcyAuNTjdHp5tL0NBMo7/teDxyclOxe+HdN0kDCdG1RCVBm4NL6cjnt8j6tLC1ZeMCoyceyuv2GKAHwDNAcNZppYmIthPRvyCi/0NETxLRkIgeJ6Jvebl4xPrhEKR3APghgGMAfISIciK6BMB3AFwO+ZD+AzO/gZl7a9mwtU7pSgC2AngRgOuS8gER3Q4xU/k+gPsBTAH4GQiosQvAv1zLhq7TOgEivDbT0aF2Z1iCxiuxRQuXrjF1vZaagVrCM4/Xjo+6TMSTpd1R7UeRiRPTcAYxwfm/RAQFJcpaspERU5mKwVqtcdBaoeNq7dVwqNAtvGkrKzh00NUKEzrD5pyhNdDJNoBdBVUNoR2gbAlVDdHVDpoNsoKRKYXOay7HA3++HXbn0/Fpjv3MX2HwT/4HqlLhiet+Did87n3xmLYVLv/23+CWq38J5CR9prMWSnlm3Auboj6TLfYoiXYt9Eu06lji5YYxEbs6eY8/SbzDck11DwWT3v1J5VorAuU7j2kZU42g11gKiCYWQQ0rIeVBDgKOfeL2xvXnjzgJ+fYt2LKlwIZJYNOUwbGbBpjMKnRQYooGMC6DdTn2VNPoVxqzfYWn9gJl6dCbt5idrd0FBr1SgAov8ITsJeJagkYcCXhhDIDMBWE/EbjHzVERzPAHmOo+XdRtg4NVxML97eD26/0sSamJ+XLauB/7KcV51IPH8V5yUqNObE3jUmPt3+M9lVKY6u/FiU/c1qjywPnXQ+fau5oUyHLlXU4yKEXIMy+eMaMcOvT6EhupNy9BJp1lDPtVDBprKlPHODFtUCoBblCDUDWYmY4buW84Ep+O6z6sz0J9zbRPx/Z02j2j72UcsJpmlgEQM3knFZJjY+qiPp4CmKGNFP/nnzucg1DWfrcOdQpxAtiBmOK9mBjkxwoRga1c1Cn5G9ZqZkkPq5yCcgrsGEoRdK5hjYNzQJmJlU5lHIx1yHOFia6CdQTnCHmm0MkIk12HTCHqqokYwbgxaBmZGVpZGO/2Uf3yr4G/dKNYLAFQwx6Ouum92Pnmf+5BHrHY2PG6X8eGmz8OZcTAmkyFjX/7PzDzz/4TOgXQKRS6wwyKHABvUVRa9FUJEOOey38GJz1Yp4fdPPsETnniNvz4+EsF9AkpcknJuh7m7FheY6n1e2yD26MAxuganoy3mkGozzgEFvz2/DS2TYfAGrxStNLWFWtpqUFENwB4F4BtrUPH+O25AM4A8Lo1a1SLiOhfArgNwPeZ+fFxdZi5T0Q/DeAWiGvJjQCuhMjtAwC/xMwfXKMmN2itQY23A7gIwMUALoQAHIAEEnkuBOFpkwXwAQBnEtGAmX+8Bu1cp3USGgfUJ4tkg0bmxtHJUqLkj1+ERtYdHr1GQ6COJWiVBOaqBjICiCGtFiYqMkvw2mamhOlkQDHIEZidMFuemXVWAWBUpRKzZJvDGmHs+0Ogsgobu0ClM4AnYFgDSmESPWitkWcS4yO3ct1MOZDrIa8sjO5gy8+9HE//t/8Vn2f6lpux+al7MX/Mqdj9c7+F4774AShTxuNn3fYJ3Hbtr8AqhWpQgbQwOoExsz7sO6nA5EAyxQQhg1vgUWRQ28SNPyNHa7Rk4UopLbPaQaXlIjU1Z98cyF6oXWtgoylM+rLWt9MURjCm3FNSp74mR2CDwVBK1yBIYjV02sNfh7ZNz8knXnADpqczTHQZ2zZYbOyWmOB5bFRDKDhUTmPIBXpVjrk+sLuXoTcA+n1J41gOxV2gHHpT9dJEDa81tg7AaUXwiEEzgdrVxLe8FsKQjEVKwI6WkBrmqhSpWOh7WGRwN97P6JT4zKiBA7fny/24Ro1FRGq7U42rn1pjNOZlbj7o2E8iVCGAiXHWg1+BYhcPV/kEHjnrWhTdHHkumU6mpjLkhUKRE7SWk4eVQ1U6lJVDr2dQxcCgdVaTamiS4JU1iD3qRoLmeEjak5ZHAMuTS592PzTojb4Y1zetffIA/th6465Frfs713wZiZAsTZUJgZhHyuR6FIHAhRofbkl+hwOQAZKPKazFqp5nZM0lubfzygwNWZPJwRkC53KO8+AGHENlGtYoVKWFtRmKXMNUCmWlYa1GtyCUGcNaAk8QilzalZFkRSEK/AI87wBkPhVwftqJKK9/Jegzn4zPtuUzH8DMa9+OauNWVBVgHFBtPwZ7rv95bLvxb2K9iS98Ar2f/w3g+OORaQCFwtSUD+I5D2SaAcpBCnj65Euw54hTseWpB+L5F/7oU3j4xMvkPbj45pN5hqF8P7Kfn8L8HoDHpYgjz7VI3fQ7T8fjoUYJqPzsgTQOXyKitwH4KwhmuBMCbnwNwG4ARwM4DcCrcfBDLfxHBOmDaBc8wJFsdzGzZeb7iegtAD4BMVQgAE8AeC0z37L2zRZaU1CDmf86/e1jbASQI/w9Fc1vUAP4Lb+BiGYgZi8/CBszfwPrtE6rQOOEMWYeg/r7+mPQ/OWSMItNTpqoxY1xazFN2zSC2C8AlCRrtggqiRDDDqRIgghCzidWUIpglReMtDC8OtNQmbhsWFZgaFhWyDKCcgTXIWidQ+cafU0g1si5D6ssJjKHrCih2AJsoU2F3AzgQDj2pRdg919Nws3WVmtHfvq92Pnb/wGEDE+98PU46h9rEDirBjjvux/C7Ze9EaQVlGNYttEMU7SpvkMCI+RBGulSBkEhCHmBIRrpzGXT4nUbQlaU6xYXEA8aLfHcYxmmQ0Ar1AzuGKA8atVJ/1LEb8Y1n0LFFnBDPhiogGa1pYbONLIiw4W3fbRxHacUZq7/OWzeQNi+CdgyWWGLnsUWNYPCORjSGKoJzFdd7B52sWu+g5keYWbWYmbGYNi3GPRLDAY+9kFlYazx4CLXbiWtGAdisRHGd3OcB41mQ2gDkFp11YVI6nCcj1Kt+XLAirH1V4M8YLlQGxfdb4+XkfGzSLuDgE81qAyIKwrVxaPXSEBvIhrJevLjM65FtmETOp0MnW6G6ekC3S6h0yF0OwRrgcoIoNEfGPTmJS23xGOoJHisMdG1MAUzUveK8O79oyTzwELlyfBIrTrafctNoGkc6NSeCxvvxTX3F3oXab32NeI5oZ/boEjjYRARCde6Bju3MMi1AGIVLDjqw+Hj8yYS1q/tRLJGqRrYYEWAq+cipRRgrF+vGUorQBGUYzhLsFZirrCFj4kCZFqsNYpcMoblhYArWjmQYmhigDjinjIapU1aA1pb4Fd/BdXnbwRZCwBQwz62f+q9eOqtvw9GncH36df+KrZ84cNQw748s7OY+rs/w+Bf/EeQYjhH6BQEeLeRcgg4ywLEdBj3Xf4GXH7jf469d8Ljt2Hr3kexe+NxYGI4iCURkVfSRDBWGJy47hOi1Vg0J0INPo6uuU3wKr7jhT73Q23NDpRaGi20sB2GJKvXyj3LWrw+IjoHwF9AAI2vAng1M+8bU/VPiahYgyYtRgY1NrAdwIshoEWgkojuQA1yfAbAyyFWG69l5ifWrKVjaK0tNRrEEjzkEQCfCmVENAUBOMJ2MYDzAUz6KpsAPA/A1eEyOMjPsU4/WTQW6EACdMisGzW3rbMXu3LjigDALbtZChxx46zWfcYwkw2mslYZyT2jVOOfwwojRZ4xJMVgVmAYOCsAR5ZnwjiCYSuHbKhhuwxrAWcYgw6h29GorJKEhqpAV3XR4T42QEEpIC8MiA3IVEA1BMoedDXAJtXF0a+6Ao//7ZfiI3W/9Gmc8Gu/gn2bjsHOt/4Ojvji30M5E4+f862/xV1X/jxQEKy13py1AkP59+Ik6rtn7pS343DO1doer6WhxKw4vBVuWSy0QS3y/bks7GM8v3to0hKMUDzaHpOHGgO1RHOa5uOUlI/fVwEwQ6JVJYpZd3SuUcBi21P3Ne7TO/UCbNraweYJgxM39zCVD9F1Q0zRHKzNYGgKT7tN6JUZZvoKO3cDg6HDoG8xu28Ia5wEduyX0cVEXE68YGpsFDZrlxMRwGoQItG0hzHO9RBMGflUyI8CaAusWNBVYxlDoDE3rSLtt8tJatET5vbQB6Fv0v8vIEBHMCxeN7lDBNPqDE1EdSrKo/c8gK17m/HVHr74FZicLpDnGpNTGTZs1Mi0uJyE+Xs4tJidszDe5aQ3J2Ol7FeoKuMtekwjeHQaKyIAGhwsGCIQgQiQheeMQiKPPGCrbxHHIsI+WvsL0FLva1H3k3G/W22IFhNRxm0qDSL0sdA143XqNaL93usxUQM+BJV0mwO8O4qsLQImhE9V3FMI1gMpRKJ4kMxi3tXN1u4oNlPQVtxRsswi7+iYpaRfSKBO60QJ0ckYRUaY6jAy7S05W/hMsOEkMNQpx4Ff8UrYT34i1pn+9AcwuOEXMT+1XdrrCG7LNuz+qZ/H9k+9N9br/uMn0H/zO4Fjj0eWAUoBRQ50c43hUIATGWkKOy9/OYY3/zk6vVr2u/CuT+PLV/46SDM0A44CuBQay2J5M6KkGF3HxymmWsv8ovNSmLsOWWrMxTRadpgSM2HUveuZXW8N6E8BdAA8DeD1CwAavj1cLnRsjWgSwHkQ2TtsFwLY4o93AFwK4JLkHIZ4XvxXIroNYt1x20LuK6tJhxwYwMzzAL7uNwAAycxyJkatOo4ZvcI6rdPa0zhtz/LdVBYjbuwzt/yyW5qveP2WqWxcgIO2OZR59mnEJYVJzOiZAU5Mb9kvKjCeiXLICtGwOMcofUAzcAbrhDmRAGUKmwqLDnXg9AZYpcEZYcrOgjRBOQsmDXIidB3z6svw5Ee/Bjf0lnjWovjQX2HbO38X2N7B/POvx4av3BifsRjM4cw7b8KPzn4ZoLQw6GCQdTBsAFZQ5MBaGD/rRMvUBiM4YTMjAzr2rTRLm8xNE4jaL3oGp64GjRMclhImgnXAwQQ2UpBxOe4HEedLq1Ja7r+Z4HLCNbAh7icqCqY60xLg8YefhGr10e7XvQPbNhhsnhiii1lsoh5ybVHZHAPXxZzrYnZIeHq+wFwP6PUtZmdtDOhYDkIchMprNcP3xpJlIYmDEAE7H8wwtLuhCB/3DtNyrsc6pczfssbo8gayDJPlDvoWorKCGrsGpdPpAs8tWuDgQpDUT4VZX7Et4MfnCGOOIGb4BJCSwMVn31eDugAwt/lYzJx+CaY7GlPTkuWkWwSXE6AcMoYlS8rWnqTlLocG1aCCCVk1KhPHibUWYESXEwASc8iDN6klRgi6GR688bZ4zD43v8H2sbHnHiAd0DyT3rfhJ9N632i9Z2DBIZdabqQuSO3bLXjjBDyTecVbj0FcTALYkgKOmkVQZ8VwJOCU8jE3JOgrw2Ua1hiYKoOxDqbKUJaEykj8i4kuocgAZgECOt4dRZN3RfEPkoJ4+S+/A/bGTwPeWoOGA2z+2LtB7/gDwBEsS8ytXa/6RWz93AegyoHUswbF//5zzP/e/1ssQ8QzFcEtdwNrKEXYiwqVnsLDz30dzrj5r2MPnXHvl/Cdy9+KOZoAQ0Fplmglto57xEoB1nkdBdVgXPt9jXkrzOEZlx6YKTB3KK3ZgdqgyyGnaPgJISI6G2LtAAD/nZmfXqz+wSZmNvCgBID48RHRiWgCHRcDODk59VQApwB4Y3LObtTxOf75arY70FpnPzkgYqG7mflDzPyvmPmVzHwcgCMBXL/U+eu0TgeD0qBqcQNjnDC4PEpZpEQ6AVqm5olPdOsMN6aObM3MBgBqBpedZEhhB+ejt8f0dA4+cr5FVRnx4y4d+gOJvj4/YPQGhJm+wkw/Q69S6NkMQ9VFVUyj7GxAlU9KhpS8C1V0oAuNyW1TOOrllzWe3nzy0+jueRzTukT/nX8AbiVNOvdL70HeyZHnGZQmZJlozZWuc9tL5HSqXQa8wEoqyYiC/c+IItozJNtiEdUXoUOEOarb3/w9TlPaPtaudzBofwCN9nlBwKQ4Lurgn/HdelNvIoL28TRUppFlGbTWyPIMZ/7wpsa1Xd7BxItfiG1TFY7IZ7ENezDhemC2KLNJzNE0nh5O46nZCeyZU9i112F2tkKvX2K+N8Sw77+xoYE1PpuJlYwKzvHItx2tNbDA3OAZ/QCAIHz7Yc4K6V6bU80CxCNbvNyYewcrknb2iqX30dgfd9/lbQdGzZgso/P7ouc25gblBa56XgIISkvaysxVOP3BrzXOf+SSl2NyQwcbNhaYnMgwOemznACoDGMwlPgZs7Ml+vMl+r0S/fkhyrJCVVaohlUjfTdb9n99f9o6C05Av0benXPNsZJQXaf5F4xW7I0D7f3x75K5/V737z0va67i0TW2fcuo2IhlzXER+zWWj/82mn2YZkxpWtTE7yKNiWItrM9ilqaHLUuJqzLsGwz6xmdIMZibd5jv+SwpQ4VelWNgMpRWoXICckSDFEi4U4CQnXgCsle9qtFF2T98CBNzT2GiS+jkgFYAtm3H7hf/bKPe1D9+DPbxR2Gt9EWuBEjJc0KeK3S6Wczk8/jzb4BL0sNmZoiz7/0CdKahdbBSERBZJVZT9VqOxlq+2JtOjRkWXrvHjKlDZM0ONG4tblveHc50GKZ0vSHZ/3DYIaItRHQGEbWDhh6SxMwPM/MnmPnfM/PrmflUiOfECwD8LiReyPcBlKg/nm0Q15XfW6t2HhagxkLEzE8z8xcOdjvWaZ3G0QEFqFuUAnOU8pSei2oYatTMcl3m/45b1NLrtZktx3XKV8PgSiLkO2PhjGiMJa2c/C3LCoNehdnZCjMzFebnDObmLPbuA56aybBjtoO9w0nMuknMqa3Ymx+FmeIoDLrbUBUb4CamQUUHmoCTfuYKyTEXmjkYIvvY32FD1sfmIydRXvmCxmN05nbj1Ae+iu5kjonJDrJcI8s1dJ4hL3JkRe416gJsaK1jejiiRHBVlHA4YaMGg9DeIveE5iYM0iHG9awgHcpMUp3Od6E21sATtb6fuJ8cUMk4CWCXUkosjZSC1go619CZwqQqsWH3w427lRdchuO3DbB9eoCpToUp9KCMgTUaT5ut2F1txMywgx27CXv3ibAxO1Ni2KtQDSQ4qClNdDlxPigoWy+Q+rTMacpMxHki+YsgoNSFbTeTpDOWTcwhI1LQYi487hdisvfPTWQhgHYciJL+Xv4zjTZ84eKFLJgWfY4AmikPaCgNlWmc8vit6A7nGtfZeeWrMDmVY8N0hokJjTwXYc+xWGfsmzHo9S16vQq9+VLclIYmjhVrvZVGGCM+pSwzJwB2CmYgPs9SGt8o5C/juQ90WUzXvfHvtQnOR0B+f6XOhaeLpDGowUJvFZj+G2l7fIbFwK/WjZN68Ry/RoePOA3u6lwdJ8UlljnV0MD4sTDol+jND9GbLdGfrzAzW2HPXoM9Mxb75hz2zSvsndeY6WmUBnDsBT9v8u9cEASB4lfeIRFEQ+uHA0x86N3YNOmwcdJhwwTQyYE9P/1LcHmnrmcNpj74lxiWJMFKQZJRrZAsLdOTCls3Z9iyNUfnxGOx46IXI6Vzf/gp5FpcYLM8rxUSmW6k1A6AdLqWL76G+7U/ATNGh3oL6EfrGuu0TqN0pf+7D8CPiOjN3kVjN4B7ADxNRA8Q0b8joumD1soDIGaeZeavMvOfMvM7mPk5AKYh7ipvA/BfAXwJ8qxrQoc1qLFOhzaN08wtZEnwrKRxa9w4ZdJ+KQ+DODLKfMYaY7RJUTM7oi1KGMEYYDDRDCVB5KyzcFxnVhCNX/3XVBZmYFAOJV1gVVr05g1mZkrMzFYYDBx6A2BPP8eOuQns7E1gviowZycwrzZiPt+Kfr4ZNivAOkPnyE046oXnNZ5t7uOfw9bBYzgy3wX6F/+yTsfn6dyb/hRFkflAejm63VzACxKLDa0VdCZadhBBqSZDwv69jQpbSFWtydZ6z63f0tX7Ya2xzhcdMAVhglsg34FeB6iFCaJExlDew1zVFkAq0yKQaoW8k+Ocb39opAn0C7+ICcxjk9qHDboHA40eF5i3Xcz1FXbMdrBrLsdwaDwgWMGUBsOBaNqD5tVWRgSXIMDY5vcaI/Vx/PjrtqfCaTpxcP2si89H4zXl9aXGacwXp7UQBprAYlu7v9+T8Agxp2OFWsfa110A5PAWQUqrEdeTXac9B9lJJ2FiQqMogKKQuERlyej3JY7GoFdhbmaAciCCbNkv43gJlhlpal/2ABQS4T8FpuJ6UT/gmOdurePNbh7XU89gq6+Rjrelhs/C73o591rgEdrP5wGGFGxoWHME65a6Ua21GPE7aigrosYB8dtOLWbiepysycGKMoAapjIwpbivVQODqrQYDisBv+aGGAwM5uct9s447N7nMN9nzPWBub7G/FChNITKkXcn9X0OQB93PPJXv7rRNerjH0Zn3+Po5A6THYvJLkMfcQT2Xf/GRr2NX/go6MnHMTRAvwRKI0+b5+IOM9EBJjvAhqkMu1765sa507M7ccrD35Kg4Jms57Xrll+TwQjL7gigtpw1vH5NjYIFeVZK/q6v4atKq2ypcTQRHb/YdgBNPtf/fQgSW+P9EKE/pVMA/CGAbxDRsQdwj0OGWDKj/JCZ38/M/5yZX8zMR6zV/ddBjXVaPUoWbWqqWZIqLYBjHOjxLAJDau1p65nADT5mcRpdgUdNcDH+PmPApVFt1xjTWNTtFoDDm7w7b7nhmShhrhhVaWEqi7I0KEuH4cBiru/QHxB6Q0K/zDFXdbGvnETPdDCwOSrVgSvEDcVSBseME17XzPJsZ3soP/t5bJ6ocMTxk6CLL2kc7+55Ekc/9F3ojJDlGkprrz0XVxTSYpmhlfjuItXqaOVNVIOWRsVt/1TWyy5M3mLyr2H9sfzbHgw6lL7F+N5Cpy1kQdw6S46P52qjAU7rR9AIQikoLWCGzhSKIkNeaJx8x+cbd+GJSWx9zunYrvZgiuehYWCLCfTVNHZXk3i6N4l98xq79jnMzDoMBwb9XhU17WYoAR6jn7z/bp0XVOX36Pfe+LYTgTYKSkG4XdTNJAUw6jmgnotrkLUp0C89eA/G+EmtEcaB7QcEcCzzOw2PW5u4I8maI/FYpgd7cfwjtzbO23XN69DtakxNKkx0FBTJux8MGb2+weysQa9XYTAwGPRKAZW9MGutg7VN4Td1b3DpWHE1wJ26maSuFfV4WmzNYkgml+ZWD7/R/l9qX853sf/CeFvOGBq14FhM4TJuPV16XIyAc8lzShu40Yfj+JoATobvVtbYWvEQ3D9jfesE6PAuRHA+g0iYJxKAI7geCcghlhvl0GLQtxgOLPo9h0HPYW7OYdBn9AfAsMpR2gzWKlgWZFf5/mcA2Tt+GciS0HzDIbL//V5M5BZ5xugWjIkOoXfDL8PldVIHshU2fvTdMIZRGcA6kvieDHQKxmSX0e1IANzq7Isxc1JTuXHu7Z9AlmUeBPQWGgkoSIk7iryb/VjHx43lBV96cslDfK1ep2XRdyDJKxbb9pe2+r9nA/hNAHsB/DokfEIXwOUAgq/q+QA+TETrsvkB0nrHrdPBoQYj4hd455LlY1xZevqhI0ztDy2olWSgYb66bL66rjiq5UnuGwX1psC2YJsCMxY2z1gFhhiB+TJW/HiNhTPOM9OSPnDYr1AOvVaoL9rn3fsM9s4w9vUIu+Yy7JibwI7+FHabafRVF2VnGsOJLSgnt8B0N2Li9BOw7bJTG03b+8GbsGXwGI7DIzj2X/1S6zmBs//hv2DT5g663QxFR6Po5OhMFOh0O9CZaHcoC+aqOroRKC+gBuCD1MKmqtTyz60hiSYt2/2ExmyHAR3OJre1VTI1TJNT650Q6wCg2p3FC6FKe5cTb/acd3PknRxT1Rwm9zazmuVXX4ENeYVNdjeKcg7OMPa6rdjHmzFrJvDk3gx7Zxi9PmN2dohBr0QVrDQqA+s8aGgDcGjBzi4gmI0R1McByekcsQxtdzrn7i94sRAtVyh95rSAdcSIVnYEd1/m1cebn1Nyv8bY8m5vKt20gK9nPvAVqCRDjelMorzmZZicyFEUGhKrljEsHWb2Vej3rI+fUYqFhg8q64yDMaaOfxTT/dZWPbVw7cEqjL5jKa9jsyyfRgHyUN6+x4HsA/uTOWfhOiNYRBwH6fe0+Pq6FEVgA63vrq4R/x9rJveK+6EdCQAVv/0IXFlZq53ES5E1WsaAqWy02jClwbAv1hrzs0P05kvMzFXYM2OxZ5/DTA+Y6Sns62nMDDTKymdloYiJAscch+w1r208if3oR1DseRJTHYvJDmPjFGPqhCMxePkNjXqbvvD3wM4dGJaE4ZBRVvJwmhgTXcLUhMKG6QxTkzl2v/ytjXOPeux2HDXzEIpuLmu61sgyLVaZQTHg3bliTKQl1nCgBW1HY47UTXEZItPhyZoeNnQYxtSY8n87ACyAlzPznzPzU8w8ZOZbALwKNbBxNYDXr3ajnq20Dmqs08GjqAlabllzW0jzcjhS21JjROhYktouKc2+SC1ExmmLRvu09rdupP4L2j7H0Tc7WGxYa2CsmLuG6PqVZ5wGvRJVZVGWFnM9i117LHbttegPHPpDYLYssKvcgN12AwbUwUBPYFhsRDmxGce96YWNJ62e2ov5f/gcitmnMb2lg/ysJujRfeJBbH/yTkxvyDC9oUCW+xgauUJWZBJIVElA0CCckg8cCoIHORLTVHAUZmMRuGHamsBRz8z9ZByl11vnmBq0PC3tMsv9a5J36N8/xLw9Zh9Q8EFm67GjNCEvMmitUHQynPfN94+87W2//kZszmYlQ5BRGJgc86XGjvlJ7OpNoBwY7JupMDdbwVQWg4EAgyF+hq1EyxoDa0YQQ4TTaAk3AnAu1gGx+iIHg0BFSfnK0sEFxtJ7M5rPvfxnXWjtCQKqgDf+fkmcoDQgrfbpgE+790uNa+y59MXIN0xiokvIMoWyYvQHEkej3zeYmRliOBANfDkoa618SNsawQyW+CvpHB+tJ3zbXTJwGuWoX30jTAWP3ep5D62+bPfToTefEY37MJrjomnJsQyQY0z1dC2WLVmHo4UV4vtpW1SGeuFvWJPrNdpbVLKLwWGtMTDWB/YuDapKMuOUpViG9eZKDPsSm2XfrMPuGXFH6Q3gLSxJ0rb790sEZO/4paa1RlnCvO+vkGlGN7fo5gZFZmDf8nZwlsdqylTY8vF3o6og1hqWYKxkZHEWAAFFAUxPA8NrX4pqc9OC/axbP4qiyJAVWbSckxhHdSylttXjyDpOzfmnvX77EbHE7/07vE6HNF0O4IQltv2lQbL/YWb+ZrsCy2T8+0nRzx/AfVaEiOiGpWs9o+sfT0RXr9b110GNdVobGse4LrdsHI0BOepDTaH+cAA9FgxmuEyeadR8fvR6KbAxYvLa0OimghEn56EBcqRaYglSVpskO+NinA3r95vmrg6DHmPfHGF+QOhVGgPuYqA2YF5vwUBtwFBPwOST2HDpOdh0wUmNZ3n0b29GZ++TKHp7se233jTSEye87z+g2yFkGaHoZMg7ok3Psvqvzr3ZqlZ1tHSK3E9Do9ru3hiAMqlTm7gmVSndao3PfnE+ybuPZuCHCB3s76ntL11r4MZr44FUU7ec6/v3Cm/m7LNWaK2j2XNe5MiLDEUnQ3ciwzG3/WPzGhs34Mgzj0BHDaGKDGU2hb1uCjv7U9jby7FrH7BnxqHfs+jNVxj0qxjgz4XAvDZoZYOpOby2Fh58BNLvNlIb2Iw/xj1tWyitBd/VGnQHe/wsTcts3wJjqf7uvVVKqOfd3eDN5ZWPD3DU3GPY+tQDjWvMv+g1mJpS0JrgHGM4BPo9i9kZg/n5yrsqiZVG5bXw1hgYH8y57XJSj5cw3dc/mgJeDW6MBvpMx8m4NbZ2FQn9UO+vjJVPuNYzH0MH1obaIgrJ9zf+W2mv7wutxfUJFCo2vuGFs5fV1leNNT1kKouuR+zX5hCfx8GUBqbyIEdp0O8b9AcW8z2D+b7D7LxYkPWHhNJolE7DOAUr2aOhjz0G2ete13g+89GPgnfuQJE5TBYWk4VDdtSRGL68qYDe9I8fhnr6SUkva4HKSfwOEzToROgUhOmNHcy8rJlF5cQ7v4jJwV5kWebXdQ2oem5O42wEa41x63hjDU8yXdXAtq9cv70FRgRqi83DyIX08KM6cO1KbK0X9CQzP7rYdgANnk32b1qoEjPfAeAx//PyheqtAf0dEd2+0uAGEZ1IRO8CcB+Al6zktVNaBzXW6dCn/dHkpdzaQtqzQxjcaBAjsQDghfilEUqF6EXrjXFJCfdt7fj6zaJo+toKMOp8GjnjA9SZSoKH9n1U/n7foNevMDtnsWcf46m9GrvncswMOtgznMbT5Rbsslsxi60YZlOoOtM47m0/1WhL79HdmP3arZgaPIWjT5xEdnIzflPnwR9hy96HMD2lMTXdwYYNXUxPd33Mgww6Fw1PVmS1tYb27idZyJCSRFIfY7qajkuK/c6jdRpABqF16v7TIcQkHWz3kxHLlSUwI6LxldLnUMn7VjGKfsvlJAE0siKDzjUmpzrYOnwa+UwzDf3may/CZLkX2hnMZ1sxo7eg5yaxY18Xu2cIc33GzL4hBn1xOSkHFUyZuHW5xOWEa5eTpjDUBCbHuZykfxfsz5G5cXXf79q5nyxNC7miLBfYSN1MRuYKL+ioZFzFDDqZpADOCo3T7/1i45rVlqNgLroCeQZoYhjDmJk16A0sBkOD/nyJcuhTtnqXE1vZGFSyHS+itpQY73JSP/9iz7y8sbSS4MWCLeHlup+sBqXWSynAE8rGVF3wSm3nRU6ujHjhEZuBRkFqvYFmCtok9avzrqLOenfR0geWLQ0GA1mj52eH6M9XmJuVzCi79zFmesDcQGN2kGN+qFEaBecYioDiHb8kUT4DVRXMX70XWjl0M4upjsGGCQu87R3gxKpDVSW2f/I9cE6sNaoK4o5SitWGIqDIGJs2MPD6G8BJXA5tK5x1x40oCo0sF9e/olMkIKFkEqozmy2wji/ymtrg+JJDjbDkGrROz4wcaMW3VaY0DsdSoEioe+QqtWU5dC+A8wB8kIgeIqI/IqLzljppHBHRFBG9hYhugoAZvwpA+/1VoUMC1CCit/ltw8FuyzodJjRudWlyovU+84gLy+HgunKgLiltJnYhNKThktI6N03NOHI9FoY5RmNPthCUjK0wUqINktSv4tPrUA4r9OYr9HqlN311mO0Rdu5V2DmjMT8gzJcZZm0X+7AZc3ojNlx1ASZPPabR/oc/cSuQKeSZxYm/29QAEYAT3vvvccRGKwHHcoVOV6E7maM7kUscBC9c6FzHDCnB/SSYqIphBDeEE9EU+PtE95OwBSADo8YzsY/DEF3mYrrOHDUoHa8LWjgteO6YQkLrfbZcTjxDHDR7SilAQXy5SSHPNbrdHFmhcern/mKkRUf/wivhTIXKKPRMgaeGG/HUYBrDocXefQYzM6JVH/RLDIcVnLO1JjWkaYya16b5ORoCqt8WfFCMmQqa1hlNQW1t6GADYzW1hcoaBFhybUjmUZmnEdcoZm4gwoooWj+EeSgrMnQyjZPuaFr5zL/wVSgmclgDDErvcjIwmJ0pMegb73JSRfcka4zM394NIczVaM/rLnmm5bicjFjxhP5aJtL+E0GjLqALrb/jLDfa6z08GJHyK00eJqzPiMdSd5TobmSbWcxCxhTrlQ/BNcUMffpXY1FVFv2ewfxciXJgMOhbzMw57J5hzA/EamNQEcpKsuWoo49C9rqfbjyT+djH4XbsgPPWXpliTJxwJNwrmvU2f+FDyPbsBEOsNYYVoywZ1obnclBg6K3bMHjhKxrnnvSdf8BkV4klZgCdMx3nlLCWh+4O7l5xHUdz/km/W/nN8dz9XrfH0HL4t3V61tEdyb5esFbzuFmltiyHzgPwzwHsAnAigD8A8AMiuouI3kdEv0lEVxPR6US0jYiUBy9OIKILiegNRPT/ENGXAOwE8NcAXgogA/AZAJcw8wdWq/GHBKgB4H0A/grAMUvUW6d1OjAah8inQIenQwnYeOYuKSkg4UvS5xvHwzdOb4FA8FkXuI6YH81d2fnI7LJsu+jDHWIAQFxRrDBM1liUlcN8z6A/dD62BqHXz7C3X2Cu1BgYhYozuKwD292Ao996faN5c/ftQP+uR9DRDkdddAKKY7Y1jusffh+dvTsxOZVjYkIjzxTyTDTteaaRZRm0D9IXNfE+QrpoVOV3GkU9MkexaMxLGDeGxr6rJTSd6b8xWqVDgQ7G97Icl5PlXQiNmAbkY2WkKrngmgTyFhwqxGcR96Wso5F3MnQnM0xPZ9j8vZsbt8i2b8aG4zfDIsOc7WJXtQl7hxPYPauxe5+4EfTnKxFQS4tqaGAr5600vDDCtWDCKZiYaIQbryEVrlua2zbVgtHqupksRIfSfLswpYjk0lX+/+z9d7wtyXXfh36rqtOOJ948eTAJOYMAKZIACJDEACABkSKpyCSHZ1mWbNNyePbT87OfbVq09PRkBUukRIoEQBAEkQkCBEAkApwZYBAGmMEkTL75pB07VfmP6rj3Punme2ev++m7++xd3V1dXV1Va63fb60pg3v+d0FlE0inRIe5vovjOhw78QCNXh3lM3rzTyGEVR7DUDMYJAz6iaWcDCKiMEvXGcZF6taccpJWs5xUtxmZTQqDWTWjSWGIqdNMqsr7JZGqkl8xFpjJfl4xzFweW8vk+FOff+tGjhlSMTbl2yTdcBJ5MztzWWWrzM/FMRU6itEVOkpu3MhoKFFosy8NBpaOMhymDIeG3gBGY4gim7XEINFG4vzSNFoj+u3fBVRBwXIdg/Mrv1xHa0QhBz7+W0UQ3TQVxKk1cGhtXx8lBY4SjN/112tN5m+e5tgjX8L1HVzfQTkltbRI5S5mUEvlDnPG5JhUGLzLz3OikcLU85zL/uUqDBT6hcr+rbuUzQPEPbtjqYsoxpjEGPN/YNPM/gMsekQAtwN/A/inwBeB72GNFjGwhU1Zez/w+1ijyI8ADeyE8UHg9caYu40xD1zM+l8pRo25zOWSyqRFPpcrUXGsibHW/nOipDBxf6b0HFTPZ8qfK6eveokojR0F7aT0IuvUQueTJLWByjL0Rh4nIInSDGYfMRzEbG1F9PoJvaFmo284vaU41fM4O24wJGAoOwz8VRp3/wTekdXafT3zwa/ikOBHPW7722+u3zOw8n/9z6wuSQ6sOKyuuDRbiqCh8AIXv+nhNV0ct4y1kSuryDJTgeXnTmZDKRdJVVj5lD4zBSuu04N2jLMxCWW9AmGtl+N9mfJ27dous+No1KHF5b6sPBeZG7aqqVtdG2zWcRwaDY9m06MRKA73v4/sb9auvPTW15H6TcbuAmPR4ES/ydmeQ28k2NiKGQ5jwjAlHEUkcZqhmZIy4N9ElpNcSbEvYcnpL5S8AhVQNs2seyy/m1Xy0skVP95SVWLqfW8Swl58VvcnKSfZphwH5dg+5AYenu9y84P1NMDxrXfBrbeRpob+UDMaaUajlNEgtFlxopg4tGi3NCnjZhSKL3UFN69bta5T6L/a4yiNBhMtcm4NeQ5SNWBUq5GH66jVzZT3s9/58WJL6VTI9rfLiDXRtMV95D9POmem/q4fnRuC7HBRQXppbR0ROR0lC0isY21js2R0lCiMGQ0i+r2I4SChN0jY2NKWjjIQjEKHUewQJpL0wBHkRCaU+A8/SHJ6DYNESnCVoXXDQZx3vKNWrvup3yfonbapio0hSSCKIYoFcapIkRgpkHe9kPhFr6wde9NXPmDH4ZZPs+VbOmBu2HCdMmaWkhWkBoVRm8IoXm/P6bm7PlfvhY4y0ylx5Q95c7mw8hGs4g87ZDURQvwIkHvmvnixK7WbGGMGxpj/HWto+Uks8OBJdl6Z5tsY+DzwXwE3GmN+xhjzF5ei3s7uReYyl2tPpuaV3Oszq+yVtvCureOsErObl7rqxardzpRTIjNsiImgcQZMoYiX3uH8unnraa0RArQQCJPxtTPjhxAig6KSUVVM5k0xjMcarWOSxOApcDAMleL0MCCVDtI3OI5h6W+8k5O//ltFvdbue4zeo8fp3rDEwVcc4+HFFvHGoPhd3fsV2tFZhm4XaQxJR+Io6/WMIm1RG56LFClplvZOCgkKtNA2da0xWZtlgf5E5uHMLUXZgltk7VCNE1AsSPMfazLry5kFp2WyWOFZvUalcn/7RmRse0pTnsuYYnGb7SKktGUq9BOpZAFz9nwbSyNoSLptxcH3/Iupmh39pbcRygZreoG1tEU4TlnflAyGxmY5GdnUijo1pTEj86ZWIee5p1dUvNN5tU1VY8rbiqldZn1bwqkvsuY3OWZtI7Vne4X058IgMGMeyPvHZJsLY2z/sQMCUuRUJrKYPSAdm41JSWiphCPf/Xzt3KM3vp00NSSxJhxr+oOY0SgmjlKicZQFYbaGsBzJU2jN2vogc0RddiOlMb/6vWYbY0b1u6lC5yZ77AfV8mbi79r+5ClmzWd7kKkx5YL3vXr75W073aXy8YjyU2R9UEz0wex5iqKoKA/I/zLF487m7/x3gUYXc5jQAmEgIcERTmk4NSVdaghZnAuD0QoprZdbKIGrJI4yOH/zl+DDH7IpTADCkOjf/3vcv/f3UcIghUGgcX/5l0g/8lFIbTkZjln6yL9l7W/9Gmlq0FpgpL3eOMxaRtqnFL/7r+J+5+tFMyw8+nVW1h/n9OLNKGOpKGkiSTQgwSiN0QKjDVIKizMyongIRZOKjI4iRYY4nZ67q3NG+X7sYfysPpri+e18yFxmSxng88Kd72KKMeasEOLfAP8x8BYhxM8bY95XLZOFXvgnla/+1UWt1D7EWBjnn2QbQohj2LSz1wEHgGWsEeN0tn0buM8YE8884UWWOVJjLnOpyjaUlCsx5kYhuWKzi1eq7vXahpIC2y7o8sl/onmqlSjPW+VuZ161uvfZ7sdhTBxbr1CcaKLI0OvDIBSMYkmYuoxMky3dZpA28e/+CdRSt3blp97/56RRhB72ueFnXj150yz88/+JxWZK00sJHF1kRPF9B8dVJf0kCzCGIsuGIgrKQablljSFGRlR7Efm+alGUp9auVZhBZMQgz32sSukK16yd2JGE+6PclJ1Isz4teLByzPZQDVoKCilUDKjL3kOnqcIGg6tpkOnDc37v1w7p3d4Gd1eZDPt0ks7bIw81gYOw5HOspykRd/PDRppktYyF9QoJDnlpGLQKGQSip9TTopC+UtbGkh2hcPvJpXDSwPM7P0qaqA6XtXGrW3K18ff7fbP71Z2lu0GxMquqHh8cx4/IGWZHrpAaoiMvuRk8ViaPtc99mWccFicz0jJ6I1vJ0kMw7GmP7BxDUZDGxg0T8mpkyyldtYO1ewYNWqCtpTBYvCeUJqrD6E0lFUbdJ8L/1nPdId+sO22i+w50OwO15hJ0Zmc88/zVZmcAmbNxfZSExcR9c9qe5UGz53qPut7yj5gwGgympsuUrGnaWqNZrG2RrRsnIqilPFIMxrbdOzjSDAIJaNIEMUGDh3FffvdtXtN/+D96PW14s6kAPe6I6i76+VaH38vbu8M0jJA0UaQaLvFsbV/GG3gR96MWa4jNm/8yh/SbLh4vipQdMpRGa00CxaKxKo81UDfOZJCFu8viGlkZp5JZaaDa4dOMTnVzzrkCpnL53JR5f8FPJXt/3shxP9fCPFGIcSrhBC/CNwDvDz7/V8YY+69DHXckxhjnjXG/IEx5h8bY/5bY8x/ZIz5e8aY/9kY838ZY75yuQwaMDdqzGUudZmYtCYXTFeycWO/kNuZlBTKe64vRvP18Oz2KBZlWRkbXyNXykqYa5pBpdPYpnuNwoRwGBONLU98OMyyomxo1regN3JYH3icHbY4G3Xouass/Fx9MXT6Sw8yPL4BiebYG25Gtfz6jX72TzninOJot89CkNBpaJpNl1bbpdX28AKF4ypUloXAdd1KqldZpu+spH21CsoEHUWWykzZxvWFUYHumHQM7gHKuqNcJq/2pUIxTULkt2vHWVKroph4JrWNyid1ykCWclM6Mouy76JcRbvj0Wkpuo/djxgNa9ddfeurSRLD2ajL2rhFP/JY39QMBinj0AYGTSP7XuSZgvL0m7UAvBNK5pRBsqK8TN171asoLvzYlSuq9g+23Z9cxOf12jFuUPUzP+ekjWaiHsX4dwFFbKvMVL4XpaJUe98z46YUAiVVYTh1XNdmzvEdGi2f677xJ7Xzhi9/PaP2AaLYEIWafj9iPI6JotRmx8moSmmB0sgDg05mO5nWqWrPrCLVfnWhpNbfdugH53P+8x2Ddjze1PvWfubXiatMXHOby21n3KD8s6jHHq4z8/zVeTlPx67LfqSTcq6O45g4jIlGsaWkjGIGg5j+lp2newPNZg82+zAYS6JU4P7SL4OqxEMcj9G/93sVCpedO/2/XS8nxiMWP/G7uMrG0MjrGycwjiGMIU0N0nPhXfVskwf+4hMsqjHdro/vKRzfwQ1cvMDLMlbZ+V1KUR/blbBWlsqYX7JE6g6JSTrKec/Z5Ynnsg+xb8aFjKlxCepszGngJ7BZPxzg7wCfBe7D0jruzIr+FvCfXYIqXbMyN2pcYhE2V+8/EkI8KIQYCCHWhBD3CCH+SyFE8wJe5+eFEH8ihDguhBgLm5rn3wshfuBCXeOaF5PBvWdsO3lHLguyYxvP2E4epqrnrH4CprcsdgaZ16/YKp7AYmFdeJV1kRFFp2XUdZ1F6U+SpPAMxVHCeBgRjiLrJUo0o7Hh7KaxARVDTRhqxrFA/tRPIZpBeSPa8MzHv4X2AnAcrnvXRIrvNCX8jX9MEG6w5A9YCkICz6AUKCUIAhc/cFFKZgsZUBnNAGEXkdaBUyrStuWqHFuAnLpQgRnnTT9r9VNHEmeL2T2ucCaLXZl2tgsmNeVnn97cqdewAG0UK9nau5ob8fLnbBe8tm/kvGzlCJpNB9cRtPyE5T+YRosu/cLb6OsG0ThirSc5uyWIk5TBIGI0iEiTJEvFmZTpWzMlNUczYUyBHtOmmr2izG5Rel8n26T+RQmz3Uujlduu41s1S8Z2+5PtvxepGjb0DvuTw9dkHc9JCa1Uw1THyHr9Sk9+2R7VtimOkAIjDEhsjB7A9SxarDk8w9JDX62devTGdxBGml4/ZThKSOKU0TAkHmdjZpyg0yRTTNPK+GoK5MFkvWr1tRj8otHKsWebh7bH/rAdyqEWpDbfvVKVucn3aJf+te297zhOzRrAq89jYl7O9yf6e/06+XXzNUpe17yczjaTISantzS1cbDSfD8LIJokmQNinBk5opTxMKHXSxiNEqJIMw4NgxHER29A/mQ9S0ny++/DbG6AECRGoI1EXX8dztt+slYu+NDv0Yg3UdIgpb2VNIUktmNfnvpVv/NnMKpkz6toxKGvfhjPEzRaDr6fZzezqCjpZIYLaWNkVTg7dQCFtf7WngiFMcYU84Etu885uypzGso5S04/uZDbpam3eRCLxvg14C+ANSDCpnn9feBNxphfuZwoh2tB5kaNSyhCiLuBbwH/BdYy1wSWgNcA/zvwdSHELdufYU/XCIQQHwXeC7wVOAz4wI3AXwe+LIT478/nGs97mWXomEgZm2tSs40cl8jwMbEAm1oEkU/is+u46+l3W9hpakHrtDZ2wZRvWaT1JLZGjRy5MezHDIcJw6E1bAzGsNFT9EeCMDSIVpuld7+lVpeTn/kWyTBCeS43vv1lyMCt/T7++GfwN0/ijAcoYwgaDo2GwvckUlg2iVQS6WaUE8rgfrNoDoUpo1wDQW78mFJ+qm0ysdid9dD2IlfIQuhyoZZKBNE5XL96SFH/0jhV89blAWEFhcfPcRS+7xAEiqUFyVIzQX7r/tolghsPkS4epKdbnBi02OgLtnopmxsx4TjOlAObPjFJKoFBk5Q0yy5UZCcojIYVA2KtP81WgMqhqHzHa21goPru18aB6veTytlk3xV72N/uUey1/+z3GrsoobUysy43YXCstt/MOlc9ugLIsijZv/OxRCGlzcrgNVxcT9FoOdz00GcROi2vFzTov/pNDIcwHqcM+zGjQUgcJoTjiCSKs8DLpSFMp3ka7e3GYmtkLjqFqCq91Yeaa2wTbbeX/rDDuFZDQ1xAHWLP9JN9nXSP5SbveYbBYUdjT/Uc212ihrwhG+8q7/PUHD/rero8D2QZzKp9Iwsya+rGjTxLSpKklbk6IQpTwjBmNE4YjxP6g5TBUDMONXEqiBOF+MVftZNqLsMh6Xt+DxtZRqCNQZDS/KW/Vn93Bn3af/IHeC4oae8z1YYotWE60hQMAnPwMOZHf6zWVgc/+z4ansZzbVBnx1O14LxVRF6RDWXC2bDd/D313Hf+YvrnySJXyPw9l0srxgbf/EfGmB8wxqwYY3xjzPXGmJ83xnzuctfvYokQ4pLF75wbNS6RCCFeBrwfWAD6wH+HDbbyZuBfZ8XuAD4uhGifx6V+E3h7tv854KeB1wK/AjyGfeb/oxDiV8/jGs8fmelh3wvmfeLv2oJj8qeLbNzIr5PNpIXHwcxev1W9O5PK47RiUPcOUVkkaZ0W+2mcWu9inNotsZ9JGBOPIxtbYxwTjiIGvZDe5pitzZCtrZi1tZiTa5rn1h1O9AJ6aQP3r/08wi3HSROnPP2ph6DZQTgex976kvo9JQnh//kvCXrH6egNDi5LDq0oDq5IOm1JI1C4nsLzXFzPQeaxNjLDBlJMLMxn0R+26Rd5pLZdiszpJ3uT/RoypvjsVBQAAFMxRuUQ5OxfntpXKUtRchxJ0HJptRxageHoUsiBBz5j8xtWpPXOt3JKHGFTdzmxpjizFtPrJQx6Y8KB7e9RGJNGCSax70euRJR0AlMgn+oe2On7F1TeW6qKd1m2aIdcSac+FtVOu3fb5nnJ5eo/haK+7Q3OdqVagE/pua0dUUYcLIDNebwemwZY4rgOjqdotnzabY9u2+HwPR+vnSf6wTcTuT7ra2N6WxGjUcyoH2YZcmwKV52kGQouraTYLpVX2xHyfcCYit19eg6aaKC6wXBSKbuCFDJjzp9+csFkH8YQbXS9D25r3Jg+6a7OhNqWdwVTpFivZSvTZYDZqmHVJNrO01FKGiYkYUwSx0TjiPFgzLAXMuyH9LdCNtcjzp6NObOmWd8SnN6UbCzdgn7Tj9fqHb3nfbC1YYOAGokxEv/WG2m8+S/VyjX+8LdZ8QcstlJavkYJTRLDOIJhJBiGguEYwp/+q7Xj3BNPc9OTX2KxDe2OS6vj0+r6eJ6lnihHFZnMShoiuRVyqr0np/ft6Cc7PvZimTRhEMx/q9gR57I3uQpTuj6vRAhxRAjx40KIX8vYAd8Eepfq+vPsJ5dO/gkWmZEAbzXGfKXy22eFEI8Av45FcPznwP+43wtkKYHykf6jwLuMMbkL6F4hxEeArwE3AL8uhPiAMWbjHO5lLruJAYye1qj0jO8qh+xFznkRN+VwKGfXOhJhRk1yB9+UBzPT2cHC9bMvhZT2GAxCZEqjscG4jLDRxYUU4IAwlrZhUoNMLP/cpiY0JInGC1JcIVFAXwmODwLC7g007v4xhh/6ZFGf4x+7l+t++tWIeMzBN93FMx//BibVxe/9L32L9tufYmEVzOIKA8fFcVOStkQJGI4V4ThBKoGjJLiGJAadQadFBl8lC6w2s4nzhqgqBNiF93bHVNuyduxOMlnsebQ42i8Pv9Zv8zbL+qoASw3IlCMhygj4QtpsN8rJYMyOxG+6eK6iE2iOdELaekz6u78zUUFB+uYf5/igzakNQRQmbG6khCNLNQlHcQbptkY+Y0pUBpkXNddGin0qhorcKGHq9rL8x0LRq/xQU8D3o5ReS32qsCuKia8r498u91sYg4tBLz8+ewVF3peysc5oyIxiIHA9hd9wcR3J4oLDod4TuI99t3aN9TfcTW/LojJ6vYh4HJMmNr2m0Zo0SSqonYqxWZf9o2rUKrtBNQOHhgrsemb/2C7hybXUJy6VTL5zE227nXFtal4W1YF+GkEwOdYZUc3WUTWsVwrmWZ4MGCMs7UPYo7TWSGPTWutU20DaBmSO6Ii1zXKWOll8DoM2Lt1Ggvy5X6T1mU+W41d/QPK+30f96n+ABByhMUDzV/46oz/9Qnkfa2dpfPIPcN7xswhXkaaKKLaqSpJag4YxhsadL8O/9XbkYw8XhzY+9n5W/ps3EGvB2dTGwDKJaxEncZqhNARaCotsojqV5qgfUX8i2VhqqLRfOSyz05y947g7f4/mchWLECIAXgS8dGJbnizKJTSFz5Eal0CEEK8BfjT78zcnDBq5/AbwYLb/94QQ7owyu8l/lX2mwP+jYtAAwBhzBvgH2Z9LWPTGXC6EnCuioyoTiIep7byrONvrU3jmJhAYU+WY8P5MIDnqcGddHEPle13xJuoKr9cGELXw1nAUEY4jwlHMeBQz7IesbySsbWrWe5K1gc+pfofeX/6VWhungzEn/+QbNjCfguWXHa3fQ5zg3/tVji2PeUHnNDe1TnPI36LrDAgcbSkFDc+m6nTyAJGqyHohhF0kSVHCWSdacwZ8dUIh3VX2WO4KWSBdCoTRBZUqEqN4hmVAR6hmPJFZFH0Hx3cJGh7Npsvyss9KR7OUnOHGM/cSfvt7tUs41x3haX2UZ854nF6DE6cjhr0xo8GYcGi97XEUW/RSRsPKY2jkMWfybBVVqkkBw6B8PU1m4Kh2iCqSYMoTfIU9rsvdf/K2KZAJu9anVDOLdJh5gNDK93lQYKmUDRDqSPyGh99w6XR8Dh5usrTocOjeOkojWVzl2Rtew5mzEetnR4wHIcPBmGgUWmpSVA8oOxXbaMZYnD/4+nglyt5htukfV4HSdVHoJxdDJtpyW8eEqW/TaMkJmlP10Kk5uj731mkqlXNX+5DO0WJZH6tkQ8lja8RxQhwlBdpsNIwY9EP6/YjNrYSzawln1w3rq7eQ/siba3Uc/+77aIbrNLwYKTQpkvjOV+D8wGtr5eR7/h3Lco22MyJQCZ5nMwlpA2Fk6A1gMILoHfWAoeqeP6e18RyLiz4HVgMWOi5+I8uI4jko18nSciuEsvM5eYBvsc1zmexfU93tKuh/15BcrTE1rmYRQtwkhHinEOL/KYR4vxDiISz64h7g3wB/F6vjrlCCnPItBh66VHWdIzUujfx0Zf/fzipgjNFCiN8B/hesweFHgU/v9QIZZSWfQT5tjHlmm6IfBLaALvBurDFlLpdK9mHouBTO9ymvt9jLtSvu7m2+KpSwGj5TZ94jgZDW6ZTmXmUhQElI7eIqTWxQRptaTmG0ZjxSDIeKMAnYHMJW81aOve5HCb76uaIaz3zkPg7+5R9GdRa56ZckZ7/xuzZwaSbrH/0Sx37oBtSj30SoBRzVYezdimGVcOUocQxRlNDflIyGsfU8ZRxjEtBJPTiqRtrzS12kroXcuVN6fXIEQNY4uz2Wq0YuF33gvLIm1HQ7URo5cuVUlal8HU+hHIdG06XTdWk3JTccSrg+2CTYXGf0wY9j4prtGP22t/PUZoPTPZvRZ3M9JAqtMhqOIxsINPO4Y0wBBYeKIpLvlzdd3r2pvp176EtXcHe73NQBYUStKat/bn9QieqoZUfIYwjklDUhUK6D47k4rqLVCWh3PBa6ipuuEzQcg/9nf1w79bMvfyunziYMByHD/sgGkI01SWz7ik7zvlJRXCv7gurwMuPBm4r32FSKXaXr+iuKfnKxpfrsyObuyq3Xm8FUlDVT/92IaWRIdm6LRNQF9khIAUaQCoPQAintvCelRCtpA4omKcqROGPHxtsYxwwaiq2exNz9q1z/Z39aXmarR/y+97D8q79ALBwGaUCsXdQv/wrJV+8pyqXPncT5/KdZeevdSNchCBKiVDAKBb0hjMYarQXp697O9e1/iuhn6HZjaH/yA7T/zt9n1DH0h4ZnlULggpQ2JshIgojt+yQNpGCMtuCZapDviXlaUG+3aZTcXOZybYgQ4j+iRF68GOhMFtnmUAN8EvgU8HC2fd+Y6ur44srcqHFpJCcNDrD0j+3k85X9H2IfRg1s3Iw8l+XntytkjImEEF/FBhF9rRDCNfNou1ekTI0ak/yPiyFV40Rlwt4zYaYGycy9xRlqNk93akm+tkhGU0EYctVQSGGNBWiSKEWnBuVYJcHmro8IGgYnNaz95M9ztGLUiNd6nPjCIxx8x+sJ2h1W3nAXZ79UwrvTQcjGp/8CdWiRUXCQMFihuSgwnZhoZZWB6xG7Ake4eK4gSQ1xmCCk9RSl0nrQSQ1IgRQaLTQmLRtJIND5GC7KtsjNGrVWm2rCOf1kplTub38GDTFzd0oxFRQpOKWQKMeidRzXodn28QKXbkdybCnmQBBxkBM0+o/yzJfrDggjJN9/0y8z2oStrTHhMLbIjIxCoFONzukDaZ69xN5g1YNa3DOl4rYtzWSygeayZ9neQLZ9e846poiJIzLUjypRXl7g0mj6BIHL6rLL6pKi7WuaD34dc/JE7TxPvegtbK4NicIEnWgbP6MI5FhHX5jJvlIAebYfP6YMGmx7m1ecbIfI2AtS45oxfNTsnLmxYrt7q3NcbDMJakNGVQTWYCYrk0t2CpFN01qniAzgXdDmMBijisw72ljEYqrhyfYLWHjNm+je+9niMlu//UEWf/6d6GYXhwSHGP3KV5C89MWk33qgLPdb72flHXez7MW4Y8koAkdITCqJYwdjIHS79N78brof/u3yNj7+Idp/55dxAh+h4cCyIDEOUSJIHVEuQ1KN0NrWVQhkFQ1nQObGn4w6ei70k2KckEwZpa5kY/OVLIYyAdaFOt9cpuSfs/0kOMCyCh4AvpNt3wWeyH7/bWPM+y9BHWfKnH5yaeSu7PNRY0yyQ7nqCvmubUvtfI3J8+x0HQe4bZ/XmcvlkouxMJuJtpyAp87yHE+UnwxMNlFgNiUlD1RWjfBORkvRKWmqiwV9NLaKYRzFRGHCeBiztqU5efglDF/06trlnn3f59gQKwy8ZW78L39u6h6f+fQjbD1+nOT4CeSgR8MVLK343HhMcuMhzaElw0LL0GwIGk2XRtvHb3jW6+oqHNdBuWXgseomssCAOUVFSpkFmywpDnnshtpjENWtmip2olz1X/U81zr9ZAZ8e1ZWmuoBeSC4atmi/QGllIUfC4F0VEZbktaz7jl4gUez7dNseaweDDi8JFhRm9zcf4Drtr7DijcgfG6tdtXoxhdwduBx+kzKeBAThjHROCZNk4JaUqRmhUIxNXpCSZ2415l3OEEnmClX+IrtclMHqhSS7fpTQVES01thxJB5/7HjguM6eL5L0PRpNH3a3YBDR1ssLnosdmG1kyL++KO16/QP38LTwXWWejceE0dxZgRLK4EdqxSCGQaKqxy5s2cpOZBlW2y3Xasy1VV3mwS2N9JtR1miQmlhIsBokZ0pyemjNotZNE4Y9iOGw5h+P+axH6uznPXGFqf+4DOENNDSJXANTS+h+at/s1YuefxJos99kZYacaixwarfp+OOCXxN0JA4rn3n1n/8FzDVsbDXQ3z6E3QbCc3A4AeSdsdnebVBd8Gn0XTxgxxB5aCULDaRpXIXUmT7KnvHRX0eqY0DO8zZ1T/F9Pw9l/3LnH5ySaUP/HvgvwHeAdxijOkYY15rjPllY8xvGGM+aYx56vJWs5Q5UuMiSxZMZTX7cztKCADGmHUhxABoAdfv81LV8jteB3h64rjvbldwUoQQ1+1S5PBezzWXneVy+V6nJtvzqcTkTRjr56QawAwQhbEj40hrQGh0AkZmiy6traHDQJoYjHGIY4nzo3+Tl3znvuISydPHefIzD3Hdm+6ktXyEhZffwub9jxe/p8OYwHNoHwnQrRFJsIH0TmAcj6EI6AnFM7qJJzxi4xHFkMQp42HEeBSTGo3UEpNq0lQgEnsXRtpFoNY2OCrGBlqbxKnmC7Caf2fm2nvGl7s9i0u8hr/QC7Mq+mCmF13UP42Z1SS1VWT9Kyo0AWyaVoTIeNbW6OT6No6G33ToLAQ0G4pDK4LruyGt8ZjmqSdQ0XOc+e4aJqn7jJ59/c+w2dMMBpkxI0u9mceOKTzumDKrycV8aHsE/lwuuewL+1r/MJNfTBeq/lwYK61ioxyrADmOg+u7OI6i2W3Qbnu02g6HVh3aDYHrCga9Puazn6ld5YkXv5XxKK5li6Iw8tp+NtMItN9nfIX3iV2lOpYy/f7Xvrvc/esCymyE0AW4v0nUTj5Hg4VYmrzLZASMjHZpY+VqUmMwRmK0BGMItUEnDnGUkCaGuHUz17/wh1j97peKywz+7XsZvv0X6C5Iml6EEgb5I69jeNutpI88VpTr/Zvfo/Pm1+GpFAKLItHCBceQpoI4hfGRGxi8/Ido3//F8vzv/RCNd/xlXF/Sbimk69BoGoZDwbqXo0EFOtU281oUY4yx+NBUI1JBohProNA2kKoRutZGZTwXsdtEXm/fvTyHuczl8kquh7aAY8A/Mcbcf3mrtDeZIzUuvlS5SP09lB9kn/tN67qf6wwq+/u9ztO7bPdOHzKJk99OLtWovlt9zA7ldip/YWUm/WTf9dmp3PZfT3ovJ9OZbS8zTrhH52HVC1kNLKq1ztcRNiNKlBJHMWhNqg1nbnkN/RvqwKbod9/LehjQ101u/s9/Zup6Z79+gqXbj3Dg9gMcWYk5KM+wMHyaxuAEjeEZVsU6B4M+iy3wfUXgKxpNj2bLI/A9lFRlmk/XsV7/TClWedDJnNIgLHUlR2LI3LtT+Y7qNiX1Lyf1mtoTylPP7ni+C9HndzrnduX3BxPP78Nkq+pqXyzL1I4u+6zM4rZU0CwWQVN5HnmqTcd65BzXwc28d42mRxD4hUFjqZmy5PU5yElkmhBGgmc+XbcFGyH5/iveTn8rQqc22n4SJxgMaaor2Skmk8iJnUfFme/99t/vcCbqz3S7fnAu570Ysl09dupfE/dn7P5UDIEcFUUJEZ+2F1T6zkQ/y7/L+5FUEqQs0Fuu6+A3fVxX0el4LC86+J4hCATScRh97iuIQTlNGwSPvuBHMFqTRLHtL5lBo+Y5zytaDfio92IY28uzn3XMxZDzea7UYG2iup/FMal+d+712unv3crt55x7P25q/jVsYxTd6/i7Q10KJ0O1pJlYgmSIs6yo1oY0KVGWaaIz1FHMo2/8xdrpxfoa0Qf+iP5IEMfZGyUkwS9PoDUeeIjBV75FgkOCi3QcOi1NN0hoeCmBm+I7ho0fr6d31Q8/wuBrDxKaAM/3aLcELR+aASx0FQsLFknlugq/4eEFHo7jIGWGuMze4wKlIW0GrHwr+5qcmLNmoS2pfNbbfwq5se28vZf3ez/lrl6Zp3S9JHIrNgCoBt6IzZ75O0KIGy5vtXaXuVHj4ktQ2Y/2UD7MPhsX8TphZX+/1zkHyQeNWX6V7crtRfZqYJj8ruqqmlWfyYloOw/eZPlzrc92301eZhvv4Y712ancNteueSPZYaKdceysQtso6tP87gnlPf9OUATs1JlyaFLDeJzaLdI8+ea/VT/9o48Q3v9dTBCg7ryT5m11gNHoRI9kpHFcByeNcHtn8J59jObpxwl6J5DhAEcIWp2A5UWXTsch8CVuZsRwfQtflUohHRtMsqCgKIXMoKxCZQugCnw1XwzVlPBtoa2T8NYZ3jlh6s+noqxN0VS2fSD77fNZKVN9j7Z7p2aVge36fNkWdt9mI2Gbflhvp5ke9soCs8h4UqGc2ICgeZYTBy/PUtH1WFpwWAgSbmhtcDRYZ6ER02kZZLvD8LHjtXoPrruNUWxTuI5HCWlq48HoLK1wVbEusxmY2d73ifaYuid2j6dR9AEhat+U5Wc9p2oZmH5mk+Vnldn7wnn7e6/e03b7s8pP3F+WAlNkL0W1b5UayOy65/2pfGerBrMK5URao5hS1qjhBi5uli1nYalBs+XQaUmW2uAqQxSB+USdenLyhpez6S4RR4mlJ6VpQefLNcl6NouyvnXlaWYjU3veZvIZz2pLZpTZj0J04Z9rdRzcbkycopwV48Je6it2+JvK35PtslNb7nbOyTpsd86d5tW9XmPW/exk2MjMSdl/RZ8z+fhVFqw5JDQ2U0+qbVyYWHNi9Q5O3/4DtdOr9/028SBGC5fYeGgc3Lf+GOK6Y7VyW7/5XiLTwEgXoQSuAwvNmIVGTNNNcZVh9Kq/RHyoDm5O3/9+klQiMLS8hKVOQrdp8F2B6zo02x5+y8NxFI5SKNfJjJKyeJeVKmmk1QxZtSEVKs6EbJvqs0yMw9lnde6eMW8XDb5rv9mub07Knl6GuTzPxRhzyhjzHwCvwMZ2lMBfAx4SQvxvQoiFy1rBHWRu1Lj4Mq7se3sonwf7HF3E6/iV/f1e5/pdttdsf+heB9TzKXc+3+3nOnstd+7fnb9NfQ/1nlIES0WjxrHdNjLTOUySxpAHQ67yw6uexyLehtY2W0SW9jJNEpv6NUmIwpjxMGbQi3n6tr/E8EDdiDx87x+yli6w6R3iwH//n0xV43v/9ktoLyANQ+L1DeKnHoPnnsA//X1aw1MsiC1WuykrS4KVJcniokOr7eAFTpae0cPzXOvhUaLg5UpZoTOIjJ8rZM2QARRojarncbYhaVuNfvtnsN25Jk4x5cHe6ZyzSu1qLJn83u5XM3jUFNtaPfdy7smDJi+XtXUlBW81tknuWVd5LARHEQQOfmCf9VLX0PYiFuLTLI6foy1HuCuLnH28D0k968lTr31XRjnRJHlQ0Kz/UnmXTH7P5/WC76FtZvWBncpve84LVX5WFS9xXab6VtkPJ40DU/aW7Lgq5SQ3agglMiVIWYNG08MPHDpdl27XwfWUTUmpIT1zhsb9X66d+rE73kySxSUwFcNtrkxWx+SyguXOzjQmURtft22bmd+f23O9VH1sdvaT3f7e7Tp7OeZCXGN/59x+rN5vPfZXvjSiman5usgCliEq86xONmtZQpxlfBqNYr71+r9RO69aO8PwQx/j7DBgK/IZpi5aeTR+qV4u/ouv0f/GQ8TGQQiJp1La7oiOP2KxMabpJ3i+oP/2OlpD/tmnCZ87iTAaTyW0vJTFlmahA92OQ7vj0u341rgRODiuzXbluPY9Rgib+rVmzMgcElVHQfG5XfvuNH9Pjk+z5m1RFJvdB86lL169Mo+pcenEGPOAMeYngJ/ABgQNgP8SeEwI8feEEO5lreAMuVKMGi7gGWMevtwVuQjSq+zvherRyj73QlU51+u0Kvv7uo4x5pmdNuDErieZy55kaqidXEzUAntdQDHTm2Gv15lRZvJ82XdFLDdKj6TRpQJIliGijLButzTRpLEuPEZaG0ah5tEfrC9quP9+Nr71JAPdQLz4pTjX1cO9bH33WYbH14nHCUkYEw9iopEhThRuMqSdbrLgDAiclMDVtBvQaUmaTacIJua4CsexASZzpIWsBAOtUXemHuhkRgsmFPmi2AyZbYjasxTrsMszoZfxVPKUvhTtdR4nLQO6VQwXBfUngxEDpfctR4JIkS1oHVxX0W4pmoGg7SYckBu443Wc/gYqGkKjzfGP1ll2RkieevndxFFKFNpkUlVkUYEw0hq0zt6DaTj3tGyvsO76zGe8x1eiXM5godtTTioe/sKwSNmPKFE/BVpDKRzPRSlpDRodB981NHxB4AuSFMaRRvzpHyPSMl544vg8dsPrSOMUY2z6aKOzsb7wgFPSlybqnyuc9R/KrUR8nH97na/MmrvOZ7sY57yc/XEnmUU/KT739HxnDQjb9xv7dwWPMQnaKfon5XyttUVVauu4SOPUpkHXhjNHXsipm19Vu1zj/f+OjXXNKHYIY0mcgvuOn0QeWK2VG/2b37FZx4xGiRRXJDikKKlpuSkN3zB667vRfglYFmmC+9E/INUmi0lj6+p5knZL4PsKxxV4vsRruCjlFA4Jm9ZblHOKFHU6SjY+5HTG/UvVeLr3/na55uu5PL/FGPMp4OXAfwicBJaB3wC+J4T4uctYtSm5IowaxpjUGJPuXvLqE2PMGDiT/bljkE0hxBKlweHpncrOkGpw0N2CeVZxevu9zlwutxTWgIuz+Jo5ce55Lt2+oKHKbRf1RVm1XBXKSmm4SFNdZERJtY2rEUUJcZyQxilPvPjHGXfriyH9nvewHnfYSNq0/7P/YKpOj/32F0nGEfFGj7TXRw43cJM+gatpLihWllIOLwxZbIUEToIUGqkkfuDieSrj0mdIjCKWxiRPtvS+VBX42Y20jVFoly/3HTDuAnWd81UAqrSAmY6s7Y7aF7S8FFnxupWQ4gyxISWe7xA0HAJfsLoIK62YwAxpn30Cc/JZwn7IGouMHvx+7bxbx+6gHxriOCVJUpuKMzfITaE0MkWsBtkuy1HxqJvaZ10J2e2Zm8q/K1Vme9ovn9QpTBVjW045EbL8GwqDmMxQPq5nUwAHgUOrqTi4omg3Ja4rSY0kSQSNz32sds0nb3odoQwKdE89K1R1q6Atao90hrHjsj/7SQ14VhFzQTZzgc5TnVOvVMNGVUzGDynHlvqaYPsppmIomzndmJoToWjj7Py13wrvBJW+mTkjEou01Kk19MZRwgNvqKMwnLMnEZ/8KFsjxSiUmDTF8wSdX/wrtXLJ579A8sjjCKNxifFVTODEeCrFcSDwJP5Kl/Gb3lE7zv3YBzBJhJIC17FBeq0hQ7HQdei0HXzfQSmB8jIKilQVw/i0M8LADIDFLNroTnPa3sfxieLPe5nH1Lg8YozRxph/jc2Y+T9hUf43Ae8RQtxzOetWlSvCqPE8kAezzxcIIXbKOHPnjGP2KtWodXduW6r+ewI8us/rzOVKkm08TXm0/HOSGWP8LK8Y1vkxq1ITXq+sYM1zqKfK1RTAPF1cRkHRSWK32NJP0timj4vHMeEwYjyO6YeaR1/7s7WaqC99jlPffJZTmz69V7wJubRY+33j/icxUqG6HZxuQLOtaKsRi/osq+GzHO4/xJHw+9xgnuaQe5YVf0yzIQgaWTDJhoPnVbi42ac1dpRenhK2WmnjnYwbuzyPCyXnq/Scq0I6ed39KxHbwXm3KZ0tMnMlWkgb08UGfpNWIXUVnqvotBSdIGXFH3DUO8Wys4Uz7jHa6DNcG/DMpx6ApJ6Z+/HXWOpJHMakcWKNGjqHZFsPfEGnMhMKQ/VdLewZ5TtStNhemqjyjk16669EudgGjf3277yZpvnvdSVRWDdt4cG1GU8szaTZ9llYdGk1JUvthIVmhKsStvqG/kPfp/HYA7Vrfu+WHyaJ44JiZ3QJ5c+NX3UDsH2oJYInp2Iw89lfTKmO12V9deapn9g3uuyH5sKYW4y5ACrJNu9G9b6q9zY1VxXz3KWVSedD1Qlg5+fdWqbsR3UjBbW+U45TmeEkQ2FUKaI6TTFpThFNSbPPJEnsPB3aefqZA3dx8vqX1WrRfN+/5uypkLVNQ28giWJB62ffjuh2auWi3/odjBBoFKkWKClpuJp2kLDcGLHUDFE/U5//5doZ4s99gX6oGMUKpKLhC5Y7cHAx5dCyYXVR0OlY2onne7iBg+M6FsWnVEFBAVPE46kaLWqxNCZppBdKdqSfzGUul06MMQNjzP8A3A78DnakeHWlyOLlqFcuc6PGpZE8l1ULeNUO5X6ksv/lbUvNlnspA4T+yHaFhBAekEdsutcYs5fgpXO5gkVABmkvvU0CphZd57PwEjmyoqoo5Qvr2vf5AlxTLpooF0xVz46ueNty2okuvZLaZPE0Cu+lPU+O1rBcXgvtj8Yx8TjhkZfeTRyU7CthDPJ9/47RMCEaRbh/fQIpZwzPfORb+KtLtA4u01ju0Frw6Yo+C8Pn6K49gXv6WThxnGb/NEtssNBI8VyB54LnKTxfZZx5iZCl97aaOrQeHkIUbTq1SNmzkndt0E8u+nUERSyT6oJTVPjSylEoRxI0XYKmQ9M3HGoOWRTrLEQnWBw8heekJE6TTe8gvT/8k9o1tJA8dMsbiePY8siz9IBpkmaKatmHqSh3k573MjtKXc/K48/YrlGWqRsJzfQ5KfvFlYSGmJSLqRCeN50p57QzbfCQIqOcZP3HCxzaHY/Alyx0JAcWDYFKkSQkkQ1o7H76I7VLjBqLPHnopcRxXNBOSoRPvU+UzzSvS+4h16WHvPLsL4RMeuun9uvNVTRSMSdV982M7y/As7/g/ac6l1LRTysGmVlz7mWntOxpfp51YHWunjpJeW5sf9S5gaOgmpRzcZrF1zBZgOQ0tsYNnaakqXVC3P+qX6hd3T/zHN6ffoTxOGE41gxCiW60afzVetay6JOfwjzzLBpJikeKNSq23IhuENJUY/zbbyJ50ctrxzkf/gP6oUeUuqRa4ClDK4hZaCS03Jh2Q9NtSRoNF8exKZmdLGhoGai6nM/Leb0M+L1/mdNPzlW0ufDbXPYvxpjnjDG/iI2j+LnKT/9cCPEHQogXX456zY0al0Y+VNn/pVkFhB0d83xWG9Q7ya5ijOkBn8n+/DEhxHYUlHcD3Wz/j/ZzjblcwTJLaaksuMrF44Ufwevw+nxBNF2fenWmF3zFmqtiHKlDbO0iqoi1kWjSKKksmlL62uORl7+zdt3mn32M9SfOshm68Pa3I1r1hD+nv/QwLB/CPXodsrtAmhiGJ86y+Y0HOfMnX2D85S8SP/Qd4hMnSMYJzVaD5WWPTtclCBSua5EZru+gXKeMr1GN4zAJTa1C2/OyeSNNNdzMVq/9dbXST3K56Dp3dv58gYoQNvONo3B9G/g1CBRLiy4HuoZWssnyM1+n+fC9OFtnUJ023HQ7484B9KOP1U69dug24kQTjWKSKCGNNWmcoNO05m3P+6/J+/dUG8xuhFnBWGv0glkKi5l17JUnVyb9JN8Xtf1yyzIbORLlSJTrEDQ8GoFHp+Ny/TGbwrXZVHiewGgYjjTHT0Qs//nHa9d75OYfIk4NJjVZgFCdGSmmjV81b3qJ56l9Zn9cEKm+21WKx0y6xyypN+bu++cgF6TvTJ5jr+ecLDerXSrtc7ENG5NtUZ87q3Pz1JH14ybm6fxcNaMW+TRdOi1MriGmJdISAyYzbuhYkyQpzxx6EaeOvLB2zeU/+k3W1hI2R4rNKGBt1IKf/QVoVOZqrRn99nuItWKU+sSpg0hTGqbPKmdYddbpqgH6ne+qndv75j2MH32K3lAQRQZpQpacHkdaW6y2x3QCG2i01QlodgL8IA8aXSIwZYa2lBWHRN7Ktu3386TK4+yxc/rJfmROP7myxBhzvzHmzcBPAd/D2hXeDXxDCPE+IcRdl7I+c6PGJRBjzD3AF7M/f0UI8foZxf4LIH/4/z9jTFz9UQjxi0IIk23/cJtL/aPs0wH+TyGEmjjHKvC/ZX9uYPMQz+UalO3mwAu9rpoFh9z+EjNcRrlDqILW0MZU4Mvlp86NGdmWJAlJYmkoSZRaiOs44tsvejuJKhMAyTTB/8j7eHbD5eSwg3l3HaJqkpTH//BrpO0uqQpI8BhvhPSeXufsfY+yfv9jRA88hPvU4ywMjnO0ucmxlYTrDhgOrQgWuw6tlovnuwSBhxfkxo0s5aNSVgmSZdR0UVkkSVn5rpr6NZeZc+6VMRHvR6moKUkTveS8++WMalSzWRT0E2GybCeWHuR6Lp7n0Gopuh3J6mLK0fYmK2oTeepZ+g8+zNZTp9gQKxxffDFr9z6BSOvhn77zorcXtJM0TdE6rcPV8yB1VWTSxA3nakKdcrKHdjGz38ErpHvsKpeHfrK9QlFHyMwwHGaGSikljsoCy3oOjY7PwpLLQkdyaDHmQDfG9wwbA8mpTclm3yDv/wsa6/U0wA/d9EOZUVbXY7BoU7L2aq7EbWhI1X5wnk06hSy4FCiDc5QrzSi2m5TG+e0MVhdOZgUWrToUtkduTBjOdFm2SjeqUuny+brIgJJRUiapKEmckMQpX3tFHTHZOPMMzmc+wfHThqdPKZ4943BKryB+6qdr5UYf+gRm7SyxEWgjLVrDGJQICWTEgj+m+5Yfwiws1Y7zP/Je+iMYjARhCGkqkErTCmC5azi0LFldURxY9VheDWh3XKQjcT3XpvtWlTgblfnbojVsa+/36eytVAGpnMtcrmgxxnwUeAnwd7BxJCXws8C3hRC/d6nqMTdqXDr5z7CBVRzgU0KI/0YI8QNCiDcKIf4V8OtZuYexUWX3LcaYzwLvy/58J/BpIcQ7hRCvFkL8EvBVIM97+V8bY9bP9WbmcmXL1BxYWfjV0BHnuZA6dzjk9IIrr0/hqSwilmdcbJNnQckXhRrQGHQG9deQGgb+Io++8K210x/40odJNgecHLY48e7/FNx61uMTf/QlotQhGkSMzw4Y91KiASShxBgXt9Wm6aQs6jVW1RqLwZCu6rHUDFnqatodhesrlCtxXQfXd3GzoGNS5Lnuy1SQ5HDWYmEky0+RIzvklIEj19NFBeWxPYF3Qimr/ssXZTsdfqGlaqfJI8tXgqqe6zknDUFCiiIqvSyQMqCUzLxvEsdzrEGj4RA0Pdpth8OLKYfbIw6666yMnsAZbzIcCdZY5vioy/HkIMMP1j3tWigevvmHiaMk45XbvonJvJZFv66jk6bQFRMO75mUk22bQFzVnrwL7sGunG6WUjB9udkZT3JEjxTCKjVKohwH5Ti4rovjugQNj043oNHwWFp0OXLA0PYTfJWgk5TeyOHUmuDk6ZTDX/tk7apr3WMc79xYxiTIvd56UtGtGrwqiK6JPnQ+0PSqF75opLwfX+FyOeJZ7FtqVBUQe0G6XCzJDRQ50mt/B01sdeoo5P2oPldrnRntsrTFTx1+GacO3F67ws1/+u/YWIs5u5ay2dMMBwnjt/9lcMowdCaMGL33D1FopEiRGLR0SIWPVh5aubSXXNx31gOGtj77Ycx4CBgirRgkLrEOCI2PdAM6bYflBUWnCe2mpN22MbNkgcay6A2RZUdBijJmVmWu2S0byuT8PXvyrQ1g5Zy9a/DR54kYuKDpXK+C4eNqEWOTfvxz4AVYnTbE2hl+/lLVYW7UuERijLkf+DlgC5ty9f8LfAX4LJCnZXgYuDujkpyr/DLwiWz/jcCHsfE2fgu4Fev/+X8bY/7VeVxjLlebzIDElgEKr6xRvbo4zxf6hYcyX/hnf+scum1sQMYkSUiimG+8+KfQohzenHDIwqc/QH8I6yOP4Zt/qnZNMwo584l78JdatI50WTjWZvnWBa5/zRGuv6vFsesF1x9NuPnQkBc4T3Jb/BDX6WdYTs/S0GM816XdCWi2LFLDcbJYDZ6yCyIlizSiNpbDdJT0QikXFUWsoqjnSlZ9MTRNTdj278lDLsDCaL984MIYw36NKnvIeFJpm2p7SUfZdHyy3Hdch6DhEwQu3QWflQVFV4y4bvQo1299m1W1yeqKQ/cFN+CsHOC0dz1PbzTxHqvHbz5z4AUZL1eXfPKcd34eXthZlJNdmueqlIviaZ9out0MZ7mntfp+5f1TVhBUUogiGLByHbyGS9D0aHVcjh5tsLzk0mw6dBoGgWY0NjxzImV9I2WwNuDodz5Xu+5DN/1QEZ+Agm6iJ/rKNKqkJBKYWcXOS2qGjasAAXHVoDSulnpOSG5Uq49hk8byannK8rqkpOT7JjWFYeO+l9VjZrTPPs3K1z5Fr59wei3hzJZgq3M9vKXuoBi974O04g0CJ0EpQSI9hrJLJBtIpWg4MQd+4S21NleDLRpf+BNC7RKmHr2owUbUIsZDOYJOQ3P9asjRlYSldkrDE3iBR9D0LVrDsWgN5SiUsnNIjsSkcE7k7TE7E8rs+XsPMjHdTxk55jKXK0yMMT1jzH+NTUrxvt3KX0iZGzUuoWTwnJcC/xhrwBhiaSD3Af8AeIUx5ryykRhjRsaYu4G/BnwaOIUNIPo08B7gh4wx//B8rjGXq1S2UawuqKNoEqa6Lcy1vliqlqstoLKPMoI+BZKjlimgQklJk5SNYJXHb/mh2hWPfeH9rJ/sc+pMzCPv/HsYWR/+nvr9L6OXDyKvu4HG7TfSfdltLLziBSy/6DqWjrXoOAP8049jvvYFuP/PCR6+l+6p77GcnOZAK2JhwWVx0ae74NNq5zQUheu7OJ6LchWy8PZkhg0lS8VrhoEDKBdM+9Rz9yI1Re8czrnfRZXJr7PNYTv3xYnF4Ixz5PBga9iopG9VmTFJCFzPwXEVfkPR6rh025JDnZgltYU6+RTJt+/HnHgOllcZ3/VawhvuoE+L9GMfRug69eTbL7zb9sNEFzER0DrLEFDp18Ud1FQASg98WWi/7+Peva1XnlyMRflUewhAmLLb7EA5Kctn+7JwqxaKjOPa1K1B06Oz4LHQcTi4pDmwCI1AshW5nO059IawuT5m7eyYzre+iB/2a5d58Po3lIGRC3pScROVymx7o+dFOZk2uF2d/eiaUOxmGEEvOgJlu7l6qtBUVSv7mYGtgvAp/SamgtIo415pbZGVjx96OaeWb6md+wWf+21660M2NmJOr2ueWxOc+IlfrF9/c4vwgx/CZ4xrIrQWDLVLpF1SA66JWLquSeP1r6gd1/3k7yOlJExdtkKfjYHDYCxJE01Dhaz4WxxqDzm6FHFgWdBdcOl0fTqLAX7D0lGU6yBdVQYPFWUgUaAyRYmJjV3e0X1M7pM+jX3aSK52meGfO+9tLhdHjDFPGWP+KvC6S3XNS27UEELcJIT4y0KIfyCE+CdCiH8uhPhHQoi/K4T4QWGzc1yzYox50hjznxtj7jDGtIwxS8aY1xhjft0YM9zhuH9njBHZ9g/3cJ33GGPeaow5ZIzxjTE3GGP+mjHmKxf0huZy9cpFoqTYk5TbzjDXeuT16uKqulCq1jPnmQtEid7IFk9oCvj2/S9+V+1K/nCT1S99iH4vYmBceq/84drvyUaf43/xfaL2KvrgDYgj1+MdPoxsNEliw+j0FsMnnqP/4GNsPPQUG4+fYvzcabyt03TUiFZD0mhAq6lothyCpqWgSClswLEs6FiueNvFUPa3FEWKyALOKkSxJtpJzoeSUvP8zIK47nHhVAtYOOOYWoDU3e6lWjnK9qjVeZJyUmmrIjgrNjCoUnYRmiujeWDQZtNleUGyumRY8gcsDZ6G40+zdXyd9YFkTSyzvngLz3k3s2VarP5p3eGQCsUjN/2g5YznQUHTjF9O5X2Cog9X34PJBdV+KCf1VhJXqz4KXMDxJpPzoZzkB+Uw8/xTKZVB0a2RstkJCJo+Cwseh1Yli42UdpAgBQxCjzNbDs+dhihMGPVDrv9GnXryzIE72WyslIZabWpj29QDNeXYN0U5OZ/mq9JMrtI+dFXQT/YgAqYoPxd8Xp4lk3P1nq5THFAzjmQVLTZRKVujoxiNNnDvi99dO+vi2Sc4+O3PEYUJYajZ7MGJhdsYv6Y+V2/+9h9BGBXIOJMKSFNUGtstiVh+91tqx3iPPEDw6LcwGKIIwtigkwTSEJmG+DJCkuBIQ7dtWOjYQOC+pwiaLl7g27FAVhEbZWYUSxfdXzaUwhZSODL2b52YnL+fTwaOuVwdYoy571Jdy9m9yIUTIcTTwNFdio2FEH8M/JYx5hO7lJ3LXOZyrjJj8WKMASEuDix8pkxfow5ntXUUwla3+CRXAqVdM2XmWa01BhBacHrxRp687pXc+MzXi/Pd9ufv4/FX/TRbjuDBd/0ar73v84jKav7pf/YhxBvfQjNdo+VolD8ELyWJQ4anQnqPnGTriTOknS3M0Rj1ggWaxxyCIwEdmTIYwvqmQSeCcOyQNoUNkhYnBQw3V1y01gg0GBuBWxiDEaXabzKDgzHGKuk1DbhsqMpuRTHJd0T1y5ntPfurGV9WT1l8ZYrydi0ltz3nuciufTBvL1EGXC1QGtkCT2aLT+Uo/EaA5yuabZ+lRZ+FIOTG5ga3N09Au49yNsERDIXLmnMdp6MjbIwMz56Juf6Zh2qXPn3gNquDpKaEWBeGOV08rpLmxY6K474pJ7WD91f8SpELNs5MGr32ZDwTpUGwYswoKV+Z8VGpglPv+p7NdNJ0WTnYZGlB0W4mrC6EICSDoeL4aUGvb+j3E9bOjhEbaxx74t7a9b97ww+WEP2KdatUYKHaWWpGw/LLC6PAXAtIh6tNtmvz/PuJuTmfly+FTMVwmqhHPgdnJajOQPn7XJuTJqXo74bHj72as4vXs7LxdPHzi7/6u3z6zh8mSTVpCgjJs2/5W9x67xeKMvFzp9j4zF/Q+Mk3AwpXGmxUfIXGIRVNWm95PerwAdITp4vjOp94D+a/+B/px4pxLFAofMfFSINRAa6v8I1LYHxWD7g0W5peT2DSlJHnIISdz01k0KlEGtDSZGsIWRgJBaI0Tu5oL5ykU56D4WqioYWpG3VrY8Y18KrbVdOFu5ELea65XH651EiNY+zsAxRAA3gX8FEhxL3iMuW6nctcrjmZtSi6CN6fKVTGni9RXdBT80gWvPMsNWYO187h2zpTKnWRfSIl1Slfe9FP167Q2jrJ4fs/xbAfsi4X2Lj1FbXf0+MneebeZ1hLF+iZLrHjo4VEthu4i238gwu0jnToHmqztJCyItc4lDzHDdHD3Og+x03BSW5ob3KwE7O8qGg0HVotn2bLx2u4uL5N+eq4FsYuM5SGEJaKUtJQqvui8AYVcAR5GTwyOyEw9gyznZZ9eSBrymvp5qp6uQqURhbHRMgsfavr4HiSZsuj3VKsdDQHghGd4Qm6z36T5fA4ncNdnBe9FHP0Fnppi6dOKY5vOCx86WNIo2tV+eZdd5OmlaC1hbeyuoo1pYI9CZKZr6XOy6CxY7/JukNhh9sH5STPblLGY5FIR+F4Ll7Dpd316XRcVhclB5ah1ZKEiUNvKBiMDRsbMadOR2xuJYTjiOse+ixKJ8WlEuny8JHXZONbBa5Tq9M292Yq4+s5NN0UteEa6ITXBP1khlwK/Mnu1LXJtp0sb6bm69xIZ4yxSIq8z1UMv5aWkqKN4Z4X/eXaGVfOPM7qg19kNIjp90I21kOeOvBi+jfXVYG13/wD+pGH0BpfDgnkGKU0Wnn0RZux06H9s2+vHSM/80kWx6doOylSCFIchknARtRkLWwwMk2k67HQFhxZjDm8nHJsFZaXHJptB7/pErQ8PD+nk9q5XKqSkiKzTCm1rGaT8S927bLn0ad3mKOvhXfFcOGChBozT+l6rcmlNmp8A5tG9O9jU728EfgR4G3Afwj8S+BBylfyVcA9Qoi3zDrZXOYylwssF2DSm/KS7vmUe0MRgCjQ0kUg0dw7Dpm3xAYle271Lk4cuKN29F1/8V7iKCWODQ/89H81tUyL/49/wnAsGaYOqXTBU6imS/uGLisvPsihVx3h0MtWOPLSZa6/zeG67hqH9DMsjp+jOThBJzrLitNnwU8IAg/XV3i+QxDYtK+O5yAcC2l33AqUNVOmiswgWaaU4lPsLcI6sAsl5XJN4nXqxWzJDBMzKCfFAk1WKTz54pFKW4kCnWENGZZy4gUejaZHt+uwvOyx3EpY1SfpnH0cefIZTH8LtbiEvvF2tg7fSc9ZZqtvWFtPOPaFD9RqmUrFI9e91ho0tEFXdERjqHhct1ccJttg30FXc3zM5Xyk5ynnEztgksc+i+I0SWfaE+VEiIJqohwbVNYPPJotn0bDo9NxObiqWOxoum3wXMkw8VkfeJw4IxkOU/q9kMHWiDTVvOB7n6vV+7GjryD0mtSCgs5qgktCObn6qRvXCv1kUupd9+K84FNz9TZ9bqcz7PRnMVebikEtT1eswWh45NhrWeseqx31snveQxonhOOE0ShmNE556k1/vVZGP/Qwgy/eRxKl+DrCIUaalFQLYu2SaofOu38SHFUeFIZ4f/Ihml6E5wqUI9EohrHPIG4QJgpjoOElLLUiOl5I049Z7Ai6HR8/sCnAvcDF9cq07UrJwoguM6eEHWcyOko2QVXnLlF1TJT2+cp2uefruczl6pNLSj8xxrxyL+WEEHdiU6D+ChAAHxBC3GWMee5i1m8uc3neyyWEuW4ntctnONaah2FGHQ3Gwi6NwejsGGPVya+/+F287XP/a1F26ewTHPzeVzh1xxtI20fpHb2d7nMPl+d68gkGz5yhc8cS2j+EaLYR4wFia52g3aK51C49UekYs34cffY4DecJImeFkXcU6bp4zRVWPI8wTBkOEzCaJNF4votObbA0g82UIQC0QAiDTgGhK87+Cu+m0i47eV1mUVKEmKah1PWB/SkHJTVo//2larSYPr5UVmfFR5g+T6aoVpAuyrGeM+koPM/DdW1gx4VuQKcJh5cSblwe4J8NaQxOEJ88SbJ6Hf2DR9nsvoiNnuL4KGBzSxP2Q7on6vGbT67choUbp2SawHnz3/fVjhWlvAo3vhoVvPPxHu7H+7kfyokQNv2vdKRFaPgufuCyuNKks+DQbBoOLaW4rmEwlpzeUPQGkq1+wpkzIeEoJooSglNPcfj092r1ePC6H0RXYljUAjTm3DrmlJO5VORSzssTaKD9xUGa7prTR9cNmVoI7n3Ru/jxr/yz4rsDpx/h0GP3cPLW1yGEYDSQfP+mN3DTgetpni6pKuPfeQ/xD7yUPBW6MQqNxCAxGJzVFTpv+gF6n/pycUzy4Y/g/ewv0nYNWgtSI4g0JKHCV9B0EwI5JnBjXCMRRtEbKhptD+E4jIcJRmviyBpAjDYkZNQbBEZj6ShG2HVJbnjeaWjO3mtT/bto2zqZx0wWep7JhbbFXoVT5lx2kCsy+4kx5iFjzH8M/CjQw6ZA/bXLWqm5zGUu5yYVWOruGVFme7BneXRrUfvz8+s8+rrJaAGGxw6/nLML19WOtWiNhNEw5us/8fenok6M/um/5HiyynHnKBuN69jq3kS4ehPp4RuQh44gux2E75PGKeGZNfrfe5TNhx4jfvRRnOceY3F8kiPeOiuLcGBZcmBZ0e16tDsejms9PV7g4bgujuvYgJaOQmQenxKJoIqsHVXPdKGITW3soPBMojUmER/7WzTvBc5afWaTBhT7tyg+6y6riSqXF61dv7gPOeFtl6KIg6BcSdB0aQQO3TasdhOWnB6Hkqc4rE7T6jik3WWiYIGtsMlTg0WOjxfpxw6DQcShr35oinryjTvvLvtl5Z7yKha13INh5rxl+rFOyZWaIWW7/lPrN9vVfZt7nr1IrfetIqCeLD2ok5QToSxtyfUdgpZLs+3R7SqWlxTtlgMI4lgTRoaNrZRTZxI2eynROCYchSRRwgse+bNaLUZem8cPvQSKNK51qtLMPnKelJPppri2DBrXAqR+llyON3bWu7azodTU37cJVEbN2FvTRsvAoQbDQ9e9jo32odqZX37fe4nCiCiMGY9CRiPNI6/7uVoZ+bV7OPOtpzgTNuinDULjoZEokeKIBCmh+/PvqB2jn3yazne+zKI/ZCEY03BiFJoohiSFKBHEicQYg5KCVlOytCA5sCRY7DosL7t0uh6NllcEnnY8B+U6FrXhOAipQE3QSicQhbV5W4r6uz01L89RG3OZy17kijRq5GKM+XPgf8C+yXdf5urMZS7XvlzMBWIF0jo7I8okRMNMH1fAtXeiMpQLKa01Rgi+PhFb4/Dx77Dy9LfQqebk6h0MFuvxi53vfJP1kxEbyRJbusMgbTCQC4TeAmmjTWIU40HMcH3I4OyA/qk+o7NDxqGlvQRpn64zYrGZ0vZj2kFKpyVoNRV+4OI4Csex2TicDOaec/llZthQUpX0EWvJ4FwirE+0zMQ3YsIuMjt7yqx1bUH9mfh9uzVwCcnNI7XPKkShdE6mtS2oJdtRTvJMJ0rhODaGhus5BA2PZtuls+jRbUsO+j2O6BMsj46zGJ9hsSvxjx0lXL2ZnrvCet/h5Dr0+ppoHHPzvR+qVTGVDo8efbXNtpNTnbIAtcXavWzwss130VIuBMpiZhT8qhJ/ha2Lt8uMVA9WOH0vBfVmhpSH5oa7Mmhs3leqhowcMi6z99CmbXVwfQ+/4eP7Pu22z/KyS7ejWGgrWk1JYhwGocPZDRiOEnr9kK2NEXEcE0cJ8Tjijsc/X6vbQ9e9jlSounF3sk0mjbe5t/ccu8eUUfgac01ejeikvUhdr700L+1uqIxZR1ipeilMkdRsyrhRmZuL77XGSMW9L3xX7cyHTz3EkWe+SRqnJIlFOT5211sIW0u1cvHvvY9e1GIYB4xij1RLpEhxVYKSKcEPvAL31htqxyQf/CAdP8SXIYGMcEVSyd4siHGIjE8kPFLp0Wg6dDuKVkvQCASttkujYSkoOUXNUZZGKkQZzymPr1FFgJWG/HOT3ebqa11sWNYLu83l2pEr2qiRSY4bu27HUnOZy1zOXwpKwWW5eLFVs0hMlSoW6BOftX0KDdMYw/dueD295krtPC+69/3EcUKSpNz/xv+49psA3H/6v3Ny2Oa50RJn4gWGiUdqJNJxkJ0uTreL22rgOBLXg44XsuAOWGqOOXjAcN3BhFsXz3JDp8dqc0TLi22gyrZHs+3jN2zgypy/77jW0JEjDVBYL4/KvD3SfhapXysByPay1ZTbqbudRnBUF05y5rXkzN/r+9WAp3m/qi/EZtbV/rDt9YqFYoZuEUqiXKfIVOEGLq6n8BserY5Po+GwvCA5umxoyYj25tO4zzyE7vcIG4uMbn4p4+WjnGaV0xuKwdCwtZUQDccsnn681lonVm/DCFFbnJdxXSY8k/uQC5YFZMIwNLVRaedZKI9LuO1Uj1n1LREW7LCOn+xvxbfFfpkph8KQKKRAOU6G7nHwfQ/Pd+guBbS7Ps2m4vAKdJsaKaAfKjaHisEYzpyJGQ2sMWM8jEmTlAOnvsdi/2StZt+5/od2f4TVSptKvc+3e1wjMTSel3IZn9uEbbkm1fm3HoC2ckztgBpYI5+yMdrw4A1vYLN1oHb+V3z9fTZldpwSjmPGRvHIa+qBRf0vfJq1x85yqu/TGymSOMUlQpEiMGghaf+Vd9aOGX32y7ROf58Fp0cgQxypUY7ACEmKQ6w9hmmT1PgoqQg8OLCQcGwlZWVB0/DJEFw+fsNFObKS+lkVxtJt5+nJ72DmGD3bXrHzXL3rOmAuc7mG5WowauThi0eXtRZzmcvzSC70GurcM6JkxQsvY3lskRHF5FeoeH+qC61Uk6L4+p31SOg3PHkPnROPEYUJT9z4OkbNugcouOfznHh2yHpPcGbgczZqs2GW6HnLpI02LK/gHDlE44YjdG45RveGFVYOBqwGI1ai46yefYDFjUdYHX2fI+ZZDgV9jnRjWm1Fq+3S6fo0mh6Npp9l53BxPDdTzJ1C2VIVQ4cAG4is8DLXkRa1P4qNc1CIdtdIpz1FO28lzWSiPiLrH7PqmHvVKwu3TOO1Rg2ytlAZ0iULwCqlxAusUtpoKpYWJIutlIONDQ4Fm7gmJNocEo5S+mmD496NnPKuZ0iD3mbEoJcQRSk33z+d9eRrd9yd9ee6p73Kda7f3gVSSi+U7MXwcQVsE7avKdl5jJo4uHq/FaqSkMKmTs4z5SiB41oEld9waLR8Wi2HxQVFpy3xHYMUGm00m304eUazsaUJxzGjfkg4tgYNnaTc/uif1Wq01jrEiaWbEfsZ/LLqX6n0oStBni+Kmpkwmmo9bfA/72vMpJ9U/5ps68nyM+gos65j8mPL4KGpUNx3Z934cOzEdzj07APEcUwSJ0TjmAdf+DYSNyhrpFOS3/0d1rfgTE+xNXIYxg4xigQHbRSNn/pxRKM8hiSl/0efIBAxHXfMgj+m6SQELggpibRDP1KEiSQ1At9J6PghC42IAwspq4vCZkRpubQ6Ac2WhxfYGDyu46BcWRo3lEIqkWUvs+OOLAwb2by2DR1lb3PHfq3JV7doc+G3uVw7ckUYNYQQvyuEeFgI8TEhxL8UQvyGEOJfCSG+Dvz32NHvjy9zNecyl2tfLtICUUxOpnu+zIyCYuJzCq5d8QBVYh48cOubGHntWtmX3v8BtNYkacq33vC36pcxmqXf/HVGoSFODSM8hqpN1FgkbS6gm13k0ir+0cO0jh2ifXCB5mJAK9C0wrM0N54hOPM06uxJ5OY6nWSTthfTbrkEvsTzJc2mix9kvFxHoRyJ67lZ5gWnFindKl1lClhbyRzBsDslRRQGAlEodOez1tlT5ortfs6VzFzBrNxPUcfJAya8XPlxUlh0iMooPY7n2MCOjSwOQlux0kk41B6y4m2xyBk6sgeex8BdYk0c4Ey4yHO9Jmf7LuMwYTiMiKOE27/18VotEunw/etenVFOypustcOU/W42/aREE8x6CM+Pldb5ZT8p9qga2YSofV2jnFTfFyFslpw8c4FyHFzXwfU8vMAjaHh0uzbbSaft0G1JpBIkKWz1DINBQq+fsLE+ZjxOiKOYeByj0xTiiNue/PNafb97/RssW0mbwjs9o7PUaSmF41ucX5e4hhEa1yr9ZFIE1LLWCCEu+L1PzdPVfrinS20zz9fYKSW6rah+9tJ+58a/RK+xXDvFq77xftDYNLCpYaCaPPrSOht94bMfZHxqnTCEfuQxSAJC7TNOXRKjkJ0Orbe9sXbMxgc+hUk1UkHgatpBgu8kKFK0NiSJINEGYWIcEhoqxpMJDimthqHdUjQCF98TBIENJOxmaV5Vln1LSpkNQ/k8Lst5mHIs2u4xmqrheXLOfr7KhUznaoRt5LlcM3JFGDUABbwA+EngbwN/D/hV4OXZ738C/N3LUbG5zOV5JZeVfjJL8vqIya9qC7BqfAcK5EZezv6eKJ9v3v4TtbPf+tgXaG6cQCeah1/0NiKvWft96csf4/S64czQp5c0GDpd+o3DbLRvote5nrC9im4t4Swv4ywsIF0XE0bEJ08zfvgReOhbOM88jLdxAqkjGk2XA8uS1RXFQkfh+9Yz7AUuXsPF8R2kEhMoDZVBWbNFkij5uVVI6e6e74pyl7fNbl7yCyiTENjis0pRyb+fqI+Ne1BScHLPunTKVHqO46AcB891aLQ9fF/R7bqsLik6bsIBc4ojo8fomj5BU6EOHYPOEhtqhRP9Fv2Ry2Y/ZTTMvILDEUtr36/dw/HVO7JgtDMg1+fWKjABIabgV8xlZymNGLYrVVA8hdJQduIpyknW7ywqqjQoup6i2fItbakpObCiWGhbo1msHQahZBzB2bWEfi8mDDWjQUgSp6RZVqMbnvk6jahfq+13rnt90VfKT6hqfLWMJ5MK5RUzJs/lssnExHyxUSp5P9zPWFerUmHPraMn7ZeVzyy9capc7ruzHtjz+uPfZPXEg+g4JUkSdKr57st+Gi3KMVJFY5wPv5+1vqQfuvTjFhvjFsPYJ0kEipTFX6gbQpKTZxn++X24LjT8hAV/SMcd03AjpNEkWpFoRWochABHGho+BA2J6zu0Wh4rKy4LCx5+wzohPN/D9V0bpFqqwjlRxNiQcnquhR3pKLOe+cWeq+cyl6tVrpSV029gA4L+CZZmkr+inwdeZ4x5mzFm7XJVbi5zeV6JmYCQXohTXij6yXbfZfAMrSdjapBlQbHbN297K7Hyi8Ok0bz4mx8kTVLCKOLBV7yrdg2ZxKx+8F+xNRCcHvgcH7R5ZtjhbNplQyzT8w4xah8i6h5AewFauiRaEo8iwvU+g9ObJGtruBvHWRif4KA5wUpzxIFOxKHFlMWuZGnBwfct5D0IvCwzipsFC5VZnA3rUSZHbSg5BWmtbRUkKzMWRjNlFmBgh8P2wtE11TSyYhuaSY6mqdQz1+1LaC41r7v1smeGHpVBfZWwgVd9he8puh2XVkOy2Ig44PUIwh7i9HHc4TrCD+gdvIWt5ZsYiwbr6wnrW5pxCFGYEIUpt33zo8iJfvf1O+8uDX8VZbTWDJOL0H1DiJ8/sqc+tB+ayeTX+TW2o5xkfcjxLP3L9V2CpoffdGh3HDodh4YHvqtRyjAYw9l12OwZRsOYfi9kPIpsMMM4sdQTrbnzic/XqvPM8m1sNrN4AbX72c5FWxkzz6FbTMc4uHb71fOGfjLru4uNUplml+xyzRlrBzOxQYnW0Db7idHl9u2bfpRBsFg7xau+8X5SnZIm9j1b95Z54vYfrZU5+Jn3sXV6wOl1OL6mWO87bAxcBpFDlAiCF92G/5I7asds/f7HcURCIMY06dOUA9pqRMMNUSJFCjBIEqMYJS6JcXEch24TVhc1i23DyoJkacGlu+DhBg5+4OL7Hq7v2Dg9yhpM87m6iOGjdqejlGC0GX18H3P1tSRFMO4LuM3l2pErwqhhjLnPGPM/GWPeBqwAP4M1aPwI8AUhxC9f1grOZS7PF6kolhfGE52d9rzoJzMwsLvAYqcj/ttt5HV44NY31cre+b1P4w/WQRvuf9VfJVVu7ffDn/t9ohQGoWJj5LI1atILfYaRZJgoxjJAuw2McmxKuCghTjRxmGDSFOko3IZDxxuz6I1YaY5pO2MCGbLQTGkGWEOGJ23QUVfhOJkxw7Gp4awRQxVIjWzlU4G0ygkP9TQlpar+1bxAu3mDtgl2tq+4DPkibebirOwdVcRCcU+5R15m2VMQBXLFLhjzTCcuXuAQNHyaLZeFjuLgkma1GbEsN2iPjyN6m4wj6Mkum63rOCUOcTpZoD+CrV7MYGADx8ZRwh0P1BmPiXR54ugri/5Us6lV++AUHWo2/WSvci3D6/cyvtS7zAyaSf3n+oEF6meaciIyykmeJccLrEGj3fFptz26HYeFtiTwDUoYorFmPDb0BpqNjYjxOLXpJgcRSZKiE41OUrxxj5ufu79Wre9e/4Zd22H6VsT5U04qdIVrVa7l96Mql0Nn3f+8nReoWTCmSk2m+jaUY0GiXO67o46quOnZr7N6+jFrDEmtg+Lbr6gHDPX66yx96aP0BrDVF/THMIo0YSSItUQj6Uykdx1+6T7Sp57CMyGBCHFNjDQxnkjxXIOrDEoaUuOQ4JLgYITE9wXtQNNuanwvpdmERkOWmc08a8iQjrKBvqVEZbQUIStzdXXuZmKcyubdIvC2lMWxxRqNGXP1TvPw88XyMZfnrVxSo4YQYtfrGWNCY8wHjTFvAv4K9r3910KIN+1y6FzmMpfzlW1M2RfKuHEOFaqjVE1dEZqGtZaf5UHUPEFfu/1uUqGKK7hpxAu/8zHSNCVONQ/f8WO1GjjhkM4nf5/BSDMYCdYHDicHLc6MuwxMi1QF0GphVg4jDhzEWV7GbbXw2wGdtqTjhiyqASv+iMPeWW7U3+cG+SyHnbO0xBjXE3Q7Hp0Fn2bbxfNtBgbXd7OUr062GBJZdPWcciFKSkru7ZlB8ZhtkKigIvb6KMTEtt33k2WqHvMcZTFl9KhmUqns55STamyR/P4zeo6NpeHgNz0836XZclhc8mg3NAcaA25onmYxGNFRY4QwJFqyaZY4nhxmM21zduCy1bPojPEoJg4TCMcsrT1Vu/3nDtwxZSzbyxuxX09y3bAzmUEmf7bXOqpju4W5/W3q/vP2otJXqFNOCgUCbPrWjL7kei6Oq/CbHs2WR9BQrC67LHQVnq9wlCJOIErg9FrCVi9lNNb0t0LisYXDp3Fivc7GcNuTX8HRSVG1RDo8dPS12xpgYYc+cr6P+HmCYni+yuVAqVQvOX35cg7eac2wY70NfOuWNzH0O7WvX/XNP0Cn2r5vacrphRt45vpX1soc+8zvMuxHbA00p9cFa1sO/dAhSn2GSRPnrW9FdOtxtTZ//4+RJsU1CYGIaKgE30lpeQmBm6AkaASRdki0wiBwZUo3CDnYCVnppLQCg+c7dLoBrY6fzeHWWOq4dp+COimKwN9lhpQKlXSX8b3qmJCznBI7zcfXwHCgERd8m8u1I5caqfENIcSP7rWwMeYDwH+NfRX/24tUp7nM5fkrsxYXsxYiF56PMnubGdB9VkGy7Cf1r6sZUWyQ0DwtbGn86DWWeejGH6xd4SUP/jFyOMCkmj//gV+u8XUBbvnUb9LrpaxtxJxZi+kNNJtjxdmozWmzwhn3MENvkbB7iPTAMeTRY3g3XEdwcIH2UkDbDWkPT9A68T38k4/TPPsky/2nOKDWOeb36LYlnZbDQtel1XJpdzyb4tVVeL6b7TvFQsgGIlPIjJohpcgygMiCrjGJsNhGFyz1rIr3Z9YTmCVixjGmXqDyQ4VmIicXY6ZQWEsqCsV95JUtFHxZGjYcT+H4tq1abZdm06ETaA60Ijr0aQ+fYyE5i990iJeOMG4fYaQDTq07nNp0GY0F4SgqUnGmScLt3/ook1kqvpZ7DytfVxEmM++5Wv6crUcXZ2W6HdLkYuxvJzvTT6bve+Ypq8azoq9MU04QxsarUda4kadvdVyF3/DxfYdW26HTdWk0BE0fPBfGiWC9L+gNDKNhwtZmyKBv464kkf002majMFpz15NfrFXvsUMvZ+w2mcbgV9ppBkT/vI3IzxODxvOFfjIpk3F9LobTYRZttH6Z3dp+D1TWqpE424+lz9dv+8lasVufuZels98n1Zo0i1/zjZe+q1amtfYs7Xs+zfp6RL+fsNEznNlyOLHlsz526ctF/He8rXbM5h99hjRMSIUABa6T0vJCOqpPQ4UEKkSSEqeQaFtfJTSeTPFVSsdPWWrDgSVJqyXpdOz83ep4mXPCKZwTRXwoqZDSOlaKMVBl83ZmoKUw4M6YX2YaM56f78Fc5lKVS23UeDHwGSHER4UQr9njMV/JPl97keo0l7nMZTe5SBNmbVGGwYi9LM5m1GVS1zN15aG+Z7jvrnrquCDq88KHP40xkCqfJ2/6gdrv/mCDxfs/y3iUMhobRiGMU8lI+PRVl767wqixSugtEDcXYGkVtbyM323j+AqFRvQ2EGdPwoln0GtnSfoDGlGfppvQaUuaDYHnQbPp4AcOnu/geE4WwNDJ0r5aZILM4KyyAmktqSJympIyCcGXM+CtubFgBjJgpkeo0q65h2nWcVUPlKiUL9EI5QOsIhSqcNvcgJEbdGxbZLQBzyUIXJpNl3bLYWlBstI1LLt9VtOTtIZn8OIB0vVIlo6y2TrKWbHKxlCxvgVbfU0UpYRhTBwlaG2448FP1e4zkS5PHn55lrFiRq/agX5SpehcKJvEJJpj542Z+9XnfrH3t9vK5z4LkTHjvifRGRPQ7FrfLvq8yNIqKkTedzwny5JjY9g0Wi6ttk+75VkDY1PguTZGzziE/hDWNhJGo5TxKLKBQaOENNE2eGEWt6ezdZxjZx+p1fk7172+UAZzYyuFsRWqBlfbfUz2jM+zozxPaBnPF/rJpIgZgQEuejaUXHZAHU2eYebhOeek/mWJDMVw/y0/xtht1Yq8+oEPFogoozXPHn4Jp1dfUCtz8+d/l3AUMx5rwtCwNYLNkcsg9BhFEvnTdUNIurHFxqe/ilEuRiqkBF/FtNyIQEY4xDgiJSdvSKGRmQdGSgNS4HvQakraTYXvQyNQBL7CD9wCXamyuduOUxSxscTE/CuEtKgOJsawYlyrt2rN7DtrjJ0xb1/NMo+pMZed5FIbNR7EvntvA74qhPi8EOJvCiG6OxyTm1WvnbdyLnOZy7ay+2J+xqLfzDi2Omnl3qDs77XOUR479uraWV/23Y9ANEanKV/6wf8IMzHk3PXH/4ww0ozGKWs9WOsrNkce/bjBpl7gtDzKunOYobNC4jZx2m1UdwHhNzBGkPQGjJ87iX7mSZxTTxL0TuKpmHZHcXg54chKyoEFbIwNV9FoejSaHn4ji6bu5AENHZSrSkUuC3aIqhgPMsVwiuZRWSTVjA/bKKBVj9DUwilfnOW/5f9Vj5lQOGuZTir1KGgCojSq5NHibWA1VaTJU66NJu84Dl5gA7L5gUOn69FoCpY6mqOLYxYaMU3dw+mfJR1HDGSbM+2b6XvLnE1arPVgNNYMBjFhmKBTQxKnMB6ztPF07dk/e+BO9rGS31bqbct5zGp7QXPkm9xm/0rYdrqf8qddDTfVM1X7lSr7Xk7jkkrhupb77vkujaZFaXQXXTpdhecpPNemWUxT2OjpgnKyuRESjhKSOCUKE9I0waQ2loZONXc++aXaUxp6bR4/9NLZT3Cbce68jRlzed7KBe87E6crsvNU0SG7DInbVWkyG0r1NAKI3QZfu62erey2p77K0sYzQJbiVWu++ZKfrpVZfu4huo/cR6+fsNVLGA6hNxSc3nRZ67uMjt6C89o6bWX9fX+MFgohQJHimpCGGdISA5pyjCNSHGWDBSNyxJhNIe65As+TtJqCA8uSlSVFq6XwfIeg4RG0rOFUZenG7eaWcbKUjZ1VZEepBQ7dZtuJUrrDvH0tGTfmMpdZ4lzi670M+DXgvwOawA9l228KIb4O3A88BmwAbeCHgXdgx7uHLnFd5zKXueRizAWfEA2m7gkygLALpr0YNmyVJowYTBybUx6yK5nMVGG04d4738Gtz95XFG0P17jtsS/w0O1vZuB1OX74hRw98Z3i99b6czQevp/+LS9DSZdcSdQoxlqy6iX4NInFEiJIUa5DwzyH0ZLUNSRiSKohiWNwI/xwg4XwJO0QvJbD2CiaQmASl8AVHNeKOBF4qUJgiB2J1pZKU0DrU2HRAxIkgtQAWtt7zqH4OqtqFWUwIze7bbYMLpz9LMg9GdPP3y7tcrt4eZCo7Jvs79wrX54iK1ssEHMjiK2azOg/uSEEKFAkCDLEikWrBA2XoOHQ8AUrbUPHj+mKdRbVGr6jSXAJRYNh4nM67LAe+QwTSTiMGY5S4sSQJhbSbIzhhd/52BTRIU8zKISoeEMFpYGt4vHJyuzYg8tDn98iqI8BM36vfdZ+m16kl+++KChOJW9d1FBOXuDh+Q6NpqLd9mj6klYgcV1IjWE8hvFYMx5ptjYjwtAaM+IwJk0tOkOn2lJPjAGteeGEUeOho69FS2fPz3pqTNyHTHnpa53y2pXnqxGoMkxnX5gicOTFEjE5bxgwYqc+azBmAnk1o0sarStzAdmcJbj/lrfw6oc/gZ+M7PUxvPqBD/LpH/y7SCUxAh674fW8tnOIbu9kcb5bv/h73HfzK9FaYoQgTgVGSxIf0A4L7/xZuOfrRfnxNx5k9OBjNO68GYlBmhSMRhnwgIZ00AiMcOy0KiSxMWhjjaYNz+A6CcIIlABSMMYh1gYVS7JEJwzz+9QVZI0BYcAgSXVaGryNAHT2XoupdhOibgwq52omC87ev0rFGIGZsX45n/PN5dqRS4rUMMYkxpj/BbgV+GdAhH0XFfBq4G8D/yvwL4F/BLyzUsd/cSnrOpe5zKUiF2EynFoI7fkSk17eiT9rLp/JH0rP0PHlF/DMgbtqp3nFA38EaYrRmi/84H8y5T16xR//Y9JUE0WaODaMY+iPJb2Roh+pItJ6pBokfgsTtEldj0SoAt6qlMDzBEFT0fUGLHgDlp0N2rKHr0d0vJDANQQNB99zUI7AdR3cLCCmcjLEQoZeUEVWlDLeRq68yQryIYe2bo8SKBX0qsd8O3RHnc6w/e9VA4bVYmXt2QghoEjoUqIYyhS1oDLqiXQkrmu9Xp7v4gcuQcOl3XZY6EoWmxGHvU2WxTods0VDjTGNJiNvgQ2xzHrYYq3vc7YnGYWa8TghCmN0bNMF6kRz58N/WmuVWHk8fejFGeR5Z/rJfrxi23ndpp7NRdJLq3z5i72/p3pMIjKq8WB2ESEoodk5rUqUgXXzLDnKVbiBixd4BE2PRsuj1fZotxXttiTwQUpItSAMYbOnGQwSRqOY4SDKKCcJSZRTTgw61aANh88+zOLgVK1e37n+Dds+v4uV8cQ8DzKeVOV5Sz+Z+uIyKGe7XjIvYCa27c9hAJ0hOEKvyddvfWvt99uf+jLdrWczg4AhBb754p+qlTn2+F/QeO5hklgTjlNGY0sbHYcwDBXD1/4YYnW1dszm73/C0kRNijDGGjfQCKnxVEzgJnhOghIJAoM2ilw9cZSm4aW0/ITASQk8QzMQNAIP31O4rsLznGLuytO65nM02XiX01Eya2/2fZVaWh0X5cS2F8rfbs/ryhdtLvw2l2tHLktKV2PMSWPM3wWOYZEb91D6Eye3EPiHxpjfuhx1nctc5nJpZS8oDTFZzlSgsdVF0wyAici95AbuvbMeW2Np6zluevIv0Nqw3jnM2tKN9d9PPoJ34kkG/Zh+L2EwSBmODL0hnO4HnB632EjbjJ02cWeF0eqNRKs3YJYOIVptnKZPs+XQVDFN3aed9uiOT3Jg41GODL7PgeQ4TTMkcA2LXZfFRZdu18UPFI4r8XybHcXNKBiFEaOIGVDSPQoPdVVBrC562G0BlBstZm/V9tx+E0U61/zZ5s+uSo2xWU7s4ixP1yozuomUGR854yR7gYPnu7ieotXxaTQU3bbk4JKh6yd0zAaLvafwoh7CcRkvHSNsLLFpOpzc8ugNBf2BZjiIiaOUcJyQxJmSGo5Y2ny29swnDV/TMt0Y+/aWVma8vUCNL8QmqzSNi7y/120m+2Q/58iUhZySJZ2KMcxzLWXJd2i0fPxA0V3w6HY9gkDRbkpcxypK/YFhawBhaNjcjBiPE5IoJRxGJHGK1qagnOQw+rue/HLtka61DvPcws0ViH1dodu2j5yn4nExPfVzubLlynv2pSNhP9lQqn/ff9uPEzlB8bc0hld/58MF/cRow4O3vpHRRLaUF3zpvYxHMVGYMB4lbG0lrG9peiNBPw2I766nhN36yOeI+xEax64whEBKbdO7yoS2HNESIwIZokjQRmAQSGHwZEJDjVlqhCw1Y9oNTRBIFhYcFhY9Gi0Hx1M2dbvv4vqWCpc7KWwQUVnO3UrW6Jd12mY+pxaNVdt2m7vnMpdrWS6LUSMXY8yaMeY3jDE/ACwDbwD+JvCfZttPA4eMMf+fy1fLucxlLhfD6zcrsrq91O7XqgbWqx2fbbXgo1nE8npgKFvwiUMv4dTCDbXTvOqBD2LSFK01n3/d355Ca7zyE//IeoCilOEgYWsrYmMjYjhK6IeS9ajB6XSR4+kBtkSXobvEuHOYdPUo4vB1OAtt3KaHJ1O8/hm8U08hjz+JPP0czY1nWE7PcNg5w0IrpdOExa6k23XoLri4vsT1csXewfFV4eGxiyNVUDSEyDw/yiI4ikbKjQxyQokUMzTKHTSs7bzodThnZsxATJ3W1K5bP1+hEEuJdBQIUWSqkI7Eb7j4DRfPhaWuoNPULLhDDnobNBlhhkOIImKj2PRWOeMcYmAaDAYxG1sp47EmjhKiMEEnmlRrdKJ5yQMfmaae3PWObZqj9EJONUMB3aifbV9v0SwT/xW4GUy5X/1+D8fWjBnbiIHphbusLtqr39e9nghh07c6DtIReIFNk+w3FO2OTxDYAL2tpn0/4hjCSDMOUzY2I7a24sKYEY4jm3khTUlTa9gwxipVIgm545m/qNX7O9e/nmofmbqpHZzX5yzPQ63lylPkL41MdZmLlAFlf5XYwyGTx5iJOb+WDQVGXodv3FJPs37XE1+gs3XSxrPRmgiHB+6qZzW56aHP4p19jnGGshqNYobDhI2tlFNrhrU3/QxGliqQGY1Z++ifEQuXWDhoUTFsMMYzfTyGBIzwhA0gKkhRUttNGKTQuK6h3TCsdA2dtqDVFCx0Hbrdyvztu7iVuTufvwu0hZrhlJCyMgaC/c9UMZV2ni1EzG7vq1zmgULnspNcVqNGVYwxPWPMV40xv2uM+T+z7SPGmK3LXbe5zOV5Lxdh4SgmNZk9X6KqeG+jERTKQqZ4GDN7A+698x21Qw+tPc71z30DY+D4obvotQ/Ufj/y9DeRvXXSJCWOU6JQE44141AQxpJR6tBPmvR1h75YYEiLyPhov4tqdXGaLaTjYBJN2uuTnj2LPnUSvbVBMhoTJAMaTsJiW9NpaXwnoRmA70v8TClzXInjWlir49n4EjY6ulX6HeUUqStzT4+lrai691+W3qEpiOtEBom9arl5Wet5EoXSKSow22rg0DwQaGGcUQqphKWcqNzLbjO/eJ6L73v4gY2D0O26dFtwqBNxoDmk6/TpmA2k0YyNz6ZYZs2scjZa4NSwwWAIw4Fd3CaxJokT0iIugubORz5be9ax8nn24Ivq/WrGH1MLIyGKFpkM1nqlKJ7bGVv2u1+V8lmLbYLUzmiL3crVzg9yEn5dUQykFCUty7EBQV3PxfEc/MAnaHg0mj6tlke75bDQcWg1Ja4jQEjCBHoDw2CYMhomDPoR4chmxYmjhDRNi8CgRqcYbeket5z4Bo14UGuL7xx7w3SbF0ERZ2c8OW95Hq7Q5/ST/Itcib1Mxo19XHJm/SbPUdE673vBTxArr/hJGs2rv/the4i29/vtOybK6JTb7/tDkigliRLiUBOFmtHIoiu3WocJX/vDtSpsvvfjhKkkNR4GG8tK6BTXJPg6wtMR0sS4RDgyxZMaR6S24sJk4x64DjR86DSgFYDngR+oYv6WjrDBirO5O3dAFIGNmR4XEZRzMplRt2boqBh8d5y75zKXa1euGKPGXOYyl7nAtOdtWgc0xdq9NFDoyULl8btM5A9f9zrW24dr373m2x/ApClow1df+Tcmzmd45Z/8E6JxQhyllsIQpmz2UtZ6ho2+Yit0WQ8bnIxXOMNBNr0DxEEH0e0iVg5gFpYwjSZplBJt9jFrp3HXnqM1OEnDGbPYTDiyMODYwpDDSzHdZkrTF5b/3/Fptnz8IEtpGni4gYcbuEi3NAQoxykWSVLm0PwsUKJUdXhrbuDYVrmUdQNIJfji1PfVOB4iz2KSec+dkhqTxwLJ6QFFerssKrxynSxLhYPrebiehe222h6NwKXVlBxcliw0NAvOkMPmBF0GeC7oZpvUbTAwLU4MF9gKfbaGDlv9hCg2xKGlnBhtbCwNrZHxiMWt52rP+ulDL9yx7xQ9bIYCPgv7m5e5EPSR893khdqv9hvqyIldt23aaqbBbXKr0kxkmbJVOgqlHKSjrDHMUVnaVh+/4dDquHQ6Ln4gaTTAc6xCMo4s7SSKYHMjYThMiKKU0TiyfSTVpJHtM2iTGTTs+PPCp/683m9W7mCruTo1dm2HKni+og3mciGlmBQraIcLbNyY6KbG8j73nQ2l2t+rtNH8n/27lFGwwLduflPtPC984s9oD84Ufw+9Dg++oF7m9gf+GDncJI7TLC5OzGiUMholbPYMJ37k52rlk0e/z+a9jxAbhRYOWigQErRGmQTPRATEeCQ0VETgRLgywVUWMSGlxHOg4Rk6jZTVTszqgmapJWj6knYxf3u4vsrmbhe/4dnsZq4dr5SrShqdmhgH8zk3+02qMt3rzJgaE/Pz1S+W9nOhtrmh59qSa6GHz2Uuc7nYcik8PxXqSB2aPWvS0UyvnmZTUgqaS8XzU+xqgzaCe+6oozWOnnmYY8e/jU41j9z0him+7o2PfBETji00fRwzHkVEUco4NPSHhrObcHpd0B9CP3LY0h023INstI4R+gvEfoekuUDabKODBlqAcASeGdEZn2Rx+ASL6Sm6Zp0VucmB1phD3YhWUxA0JK2WQ6Pt0Wi5FrXhKBzXwctSxgkpQIJyrMc6T7+KEGXsDVVRFnNEhZxQOjOKipmljxYLJzIqQfZ9LWuoKOgDQmZKb36tbD/P0lJduEmVfwpLqVGipNy4kk5X0W5Jml7MSnNAR/aRo028pId0JOPGChv+YQaiydbAcGZLMgxtytbxKCFJNWm2GWOV1Jd++yNTy5v77nxnXTGtWy3Ibq3SJrmuvsP7sh+lf7/bvs7Pxdmvvny7SJVyVG0eZla56FQ1Q0dpVJFlv3EyOLcjbWBQ38HzFc2WSxCojHZiDWqpNiSJIYw0vUHK1lZCFCWMBiHjkTVoJHGSoTMMOs0+M4NGEPa45cQ3avfwneteb9+bizxsTiLPpqwozwN53hqEJu9bT2Dpjbno/W9mNpRd3vtZ9JPapimC3ZaGEsO9t91NIt3iMKVTXvXgR4oAzkZrvnHn29GiVGvceMRt3/goSWSN2HFs42v0e9bAcebW1xIeur5Wnf77PkI/9hkbhxRJYhRaKHK3iRQpnggJxBCXEb4IUSbJo4cghMFzEhpuRNONabkxC62U5QVoNRSNQNJqujSa+dxtUYiu5xaoRUdl6aczpIWS0hqS838Vo0UxT28zd29nR57LXK5FmRs15jKXuewu2Wy4W8CvCyKTMTFmGSumK8hMi/uMrywrpR6877vXv4HNZp1m8prvfNAu0DR87SXvrv0mTcrLv/hvSNKUJNUkiSaO7WY5+YZRCIPQYZw4xMIhctokwQJxe5kk6JAqH/wG0vPwPAffBd+HFgO6usdCeIZ2vI4X9WzwUEfTakqagcRzwXdlEVHdyTw7UlgjhnItBF/ILCNKRj2Z8uRUM0xkiuMU/UTWkReTC6ptEQA1NEceOFJmQUHL80thaTNCWOqAkwVBVa7dd9wswJqnaDQd2l2XdlOy3NGstGIWnSELZp0g6kGaEAmffuMAW84iZ+IOvaFDf6jpDzRRmBZUAp3aOBpaa7Qx3PHI52rPOHJ8jh+6q74Iz/eLVWJuwan3w3o2mOpi8mJrGaUmnRsCdkTfFEaF2fv1+zif/T2iRyqw6YplrDxX1m/ANn0eME86eVBQkfUZu1mqkmtpJy2XZtOh3XZoNiSea/tjkgqGI81goBkMUgaDiHCUKUFZGledpCQZokcbY1MrZ8rWHU9/FWXS4hEk0uF7R149rb1VDbaTXeF8u4XJUgjr7RFr16o8X+knu8rl0GD3eMlZgXO3O4fBZkPpBwt8+6Yfqf324sc/R2Owhs6Qmpvtgzx2w+tqZV74rQ9DHJLm83Rk3+ko0oQJnPrhn6mVTz/3WcZnByTaIzEeKZJUKJCOnSMxKBJ8E+KbCKljpIkQaIQgi7GR4quEhhvjOymu0gQ+NFuSoKlwPfB9S6d03CxmlJKoDGmJoEBcygKRISsUFTufVrft5u6pOfsqF80Fzn5yuW9oLhdU5kaNucxlLnuQ3AtURTtcAu5udvrdJ2OzbTkxsUqaZf4wyuGeO95e++76U9/lyKmH0EbzjdvfRqz82u93PPDH6Ngqx0mScXUHCaORZjSGwdBwtu9weuizFjUZqBb9YJXN9vX0F25ktHCUNGgjmw38to/vGPxkjBf28LdO0Tr5KEvrj7EyepaWHtByE1YWJKtLkqVFRasp8H1J0HRotDwaTRcvsBxdx7GIjTz9a45+UE41Q0oJY809RFVKSmF8qBkpKhHaK5HZ5eRveewOIaaoKMW+UgWEthoHQeWoE99GjHd8h0bDpm9tNByWug7tJiw0Io60N+l6YxoqRukYncJINzmtD9IzHXpRwEbPZrEIxynhyMbQSBNtM1cYm5JThUMWesdrz/eZgy+qrbnri8NKP6q4wapGjEmEwbkq+vvepKxcczbiYXtjwl7SAl64rWy+WXXK+2UOwRY1SLbMKFRFv1EKx3Vxfdf2n8AlaHl4vkOz5dDpuDQCh1ZDEPiglLUBjMaaOIZ+P2Y0sJQTm741o5xkNCUyY0ZubM0Hkxc+Xc968ujhVzB2mrWAxPWRykwbNM5H1zC1TnoeJ5rLtSZXZnco48jsORtK9nnPbXdbA0Mmjo551fc+ClC8m1+/q57RrDlc55YH/5Q4tsbsONZEUcJwENPrJTz1yrvRTokAEXHM8MOfZGia9NMmI9MiMi4aS0WRxuCYBDcdE6RDAj3CNQnKpLgiwRGJ/ZQRgRPTDhI6DU0rsEGtVxYkC12XoKEIMsRGs+2hPBvQ2MnQlvl8bako5VydGzgs2nLCiLHdfFChhl7tMg8UOped5Orv4XOZy1wurMxaCeXJvGuL8Qs/G8yEruYezr0cvR39pIbKLa9Sndi+e+NfotdYqh3+mgf+0JYXggduf0vtNycNeeF97ycOY+IwJkkSksTSGwb9iN5WzDhMGEWCzbHHqVGb44MOG3GDnm4wcJcJF44Sr1yHaLeRgY9wJGLUx2ycQZ8+Sbq+hto6RTc8xWp6ggV/RCdIWWxplrqSxQVB0FC4rsT3HeuVDiysVSrL0S0oKEIgEGU8i6qCncNbq8iNSuT1mTFBc5nYzxekMg94RvadyJ5FETyUQnHNqTI2poYoKDOu7+Bnxo1WW9FqKgIvZbUdseCN8aMtOmYDXyXEXpOBs8DIBGyNHE71GvRCRRglDPoJUWTpJkmcotMyJoJA8IoHPjSlV9774nfPvL/ib1H9uv7DBAo8a4NK+Yuwvzc5Ny2nqmRcyP2qwaeoX9VilEGqBSCybCZTho8sIG6e8lcqaalKnmPT/rY9gsDF9yTNpsBx7bJHa02caIZDzVbP9o/BIGTYt5STOIxJogSjQadpYQRD62JcWegd5+j6Y7W2euDY62t/V4ODZjsTjbtDw+9FsrZ7vq7NrwXv80WRS0A/mb7muRScmLcn5/t8vjaGXmOZB26sB/d86WOfoTHcKOLcnFi6macPvahW5iXf/CN0nFgqWZQQjW2q1zhK6ckOp19Wz66SfPCDrPUUg9ilH3uMtE+IgxbYOAzGIHWK1AnKJLgmIjBjHCJcEeOKBIVBopFC0/RTFpox3YZN97rYhsWOpNFQeL7K0GQujm/nQydLYV6gGbP05lMBvifGQjFBT9lx3p7LXK5BmRs15jKXuZybXITF5CSqYu8T8eyCOdx7Jm1mwlyfSIf7br+7dvxNJ77FwTOPYIzhz1/6V2teIoCX3P+HaG29/WliFeY4tt7eKE4ZjQ3jEMaxoB+69OOAXtpmqJtE2iXxWtBsI7oL4AcWahtGpFt90vU16G+h4xBfD2n6CUvNiG4jpOnGND1Nw5cEvksQ2FgTrqcyZc7FdZWFtDoVj48jS1qKU2aMyGNbVCGsskoRmUU/qcFcs+jtFcoJlawU1SwnUmRpNlU9Ha1QApVlOHE9u9DzPGukaTVd2k2HxY5gtatZ9EKWxTrdZB0/GSKFIWksMHa7rOku6+OAraFgY0swHKWEYcJ4bFEaOt+0JtUpxhhuf/zztecaOQEnV2/L4MYVmEOtc9n/KqaMErEhq9SJuvJ+sfZnIyG2o3DMCvyaBZKbERSWykL6wu6LEk49GRSvGhgvRxtV0BvKtcFApbJ8dMd1siwnFp3hN1xaLY9m06HVUrRbCs+z6A5jIIwNw5FhMNIMhgmDQUwcJoWRUicpaZKlb81RGroSw0IbXvhkHaUx8Dp8/8CLqx1kezlHhXM7CqCwP57bSa9imdNPtpHLYew5p0tuc1ABDK0jQ++5/e563Iw04pXf+3hBK8XA1ycymi1tPMN1378Xk5rsndYkqSaOUqIw4YnXvqtWXj33NOOvfJ1B5BImksi4pNIjFS5pZtgQxiCNRpoUZSIcEeET4ZoYZRIUKUoYXGVwVErTT+kGmpaf4juaRmAdEn7g4LgC11V4rofr25hYjuPgODa2hhCiFli7HOPrY2WZBUoW1NNZ6LirWeZIjbnsJM7lrsBc5jKXuWwrGTR798nYVJS4PZzUgBFTJhS+fdOP8tqHPkIrLDNJv+aBP+JjP/xrJFLyyI2v584nvlT8FoQ9bnrwT3nirh8jiRJ0KnG1g5ApIOhLQRwJ4sQqbEgHdIcARVe5lnfbEOiWix6NYNAjHR9Hx0NMNEIZQ9MkJJ0WDRo01UnGnksPD5W2gICo65EkiihMGQ5jxuPUckW1k3mmJHGSFreutUZoYVEKWbsWsPoMkSNyY1ClgUrloe5Vm3xGhmzfmFLBN6bwMJH9ntNihBRFWjs34xgrR1rqgKcIfMnSokOzYVhopBzpjmjoMa0kpBltoJVL5LbZ9A8xiD36YYuzfSeLa5LY+AiJLpRUrbVNzZndozvq0e2fqvWDp468tPZ39X7qIiqtUe1P4tJ5xWZXq3xMNaSJmPpqV5m89wu6L2tQlkkkh8EUC3MDlUU6BZpHKpvy1yKTFEHTw3EkQUPR6bg4jqDZFPieyO1QjENDHBn6/SSLtaIZDSLiMCmMk6nO4q0kaWlEMHmQYYvYeOEzX6k11YPHXodRLgJTua1tWvtC9I/JFfk1oLTM5cLJ1dAdBNQqaqzJYNuAoxvNA3z3+jfw4qfKefhlj/0p993xdsKgiwGeOPwyzixcz+rm00WZl37jAzx5w6vtuJEIkjCLq2QUJ4+8iP6hW2iffLworz/4Ac6+7A00PWnTtCpIpYciImCAI2KkMECKJA8cHJMKRSocElyUlAiToKQkNQYnSPGVwlMKjUeYugS+JgolPRFjDKSpIk0U4TgGHIyyBtU0Se04mM3T2mjQFPFEcvSYyJFhOTCsMm8LdRV0iLnM5TxkjtSYy1zmcm5yGeknsxZrk8E/p1yhuedHV7w/xddWwU0cn6/d9rbaYbc+9zVW1p4AA3/2ql9CT2gjr7nnd0hzSkOqieOUaJwQjmOSOCGKNcORZmNTs7aZMhhpxrGklwasOwc46x9lGCwz9hcIm8uk7WVMZwnhODi+g6cSmsPTtDafotV7lmBwlk50lhW1yaGgx0IjoREY2m1Bu+3Q7jj4gUS5As93cLOsIdKVGbVDFqgNoUokRu4JEjkqoRZ0rKQL5B7/QnHPYjoaTM24kXvXgcKAkQdAK9AglUBojufabCeutPE0lKTZUDRbDr5vWG6lLLYifDNgUa7TkCMSo4iMR2h8ekmD09ECm3HAeJSy1UsZj9PCI5emGqM1Js3oA5kB5+Xf/qPaEzXAvS+qBIadtQ7M2ic3+lT74yXbr36KzABVjYI/KyL+fiWHMFcoSCILZHfB9jMkRn4/Veh0juZB2kB6RZ/JMps4nlNQrLzAtUYxT9JsW4SP60qaTYXrqMx+YohTw3Cs6fU1YWQYDkNGg5A0TonCmDiKMZkxQ6epDVRcZGPQGDuAcOzsIywOT9ea67vXvT4bh8oHtC2S4HyHT7Od2vf8kmvB+3xRpGKAu2gBviebfnL6nTENT1VzBv1kcptEWH7l9nfU5mEvGfOKhz9Z3i/TaI0jJ7/LgRMPFdmM4sTSUaLIovi+/5o6WiP46mcZP3uS3lCwPvTZCAOGictY+4xNg1D4pDkyz6Q4aYhKQ5x80yHSxDgixhURvhjjiTG+jGh5MUstmxWl1RC0W5J2WxE0FI5j5z8/cHF9i2DM42wUlBRlkRtCVdAYBa1TFM6EyXn70lnaL55oIy74drlECPHrQghT2X70slXmGpG5UWMuc5nLuclFWExOYycqsssCKTdoTC7gphZyNQ22gj/MHNLfuPXNjLx27ZDXfvePMMYQuS2ePvyS2m/twRkOP/ftjM5gCnpDmqTEUVrLijIcG/pjySB2GBuXoWgx9hYYBKuM/QUi6ZP4TYTn4TV8PEfiSoObDmlEWzR6pwiGp3HHPbx0QKBSOi1oNyBwDb4HvifxfRffd6wBQ8kM2upkXF0HpWwaWFXZpCzjElS/K2gjqqSrWCNIHqwx23J4bEYnKfaVQgiJdFURNyNXRC1/2MFzbRwQ13fxAg8/sMEdm03FQluw3IVukLDk9FiRGzQY4YkQXJdINdiky3rcZSvyWB8oBiMIwyx9a2wzV6RxnorTolJyr9ft3/9C7XlGbpOzK7dORZXPDQSm1O8zg1CFgrOPfXk++6qMJ1HQNyqQ4x23SrDN7Tb7vNXUsUraWCxKqouyX6Wi5LBre11Z9Ju8f7meazPkeAov8PB8l6Dp0Gp5BIGi2ZK0WjbejFIWmZTEhtHIxtEYjhKGgygzQCaEYUya2r6SJAnamMIIlsdfyQcKA7zomTr15Ez7CMe7N1LXxnJaSGUMu4Dyf7P33+GSHOl5J/qLyMyqOqYdXMN0w3UDDe+BgR3vHUdDcjhDiUuKlJbS6koraXUprp69d0XtSiuttNJKu1eUxCU1MhSpmeF4bzDADDwa3nTDNFzDA+2PqarMiO/+EWkisqpOn+4+p49Bvv1Un6jIyMhIUxkRb3zv97m639nURiM/GYEltLGvRy+bG0WHPKKDH7BCU+yfPJWdm0PfNVc++wPa/SkKqcpTZ97I1NgJQZnLHv1aHsHIOilKEQHLWF685ENkSac6jDW0vvs1un3NTD9mJm0zk7bpZhE9Sch0glVJHklXUDYjsimRzdD535akJLZPy/Zo0aetU9pRRqINYy1hchwmxoR2SxjraDodJyWNYlWGZ0/aMTr3M+XLSf0+IOirg3d92G9HupnyLRcopS4H/tZSt2O1oZGfNGjQYFmjNEct7SkpV3Lngzr3MtQAvzDdVJBGbR7Y+hFufvLPys3nvXwfJ+zfzb4NZ3LrtX+J3/jW3wgWym+669/w1U3/2g3kIutWhRF6XYXJBGOc53TBckBpen1Nr9MmbsVgLJIkJO1x2jLB2n4PhSFuubUosQJpH/o99KEpxlprUO11ZGsVqtWB8T5rxzSzPcWeSKE1ZDamZWKy1LgJW98gKGIrzqw+086cVetywlaatOpiUGoRzSA5VDeAKWQmikpyUlhreKvu/mqSk5y4SWucRI5s0YrOeMsRMC3FurUJYx2Y7AinrEmZiHpMSpfJdI8jJJSmO3YCXdNmJhvn7Zkxuj2Y6VqmZwxZKmSZkPUNYnLCyeZamfwkOr1DTE6/HZzPS6dfMefqr/KkJYGy4wjTwTXMn/GgoBCO9xXl76D+/FdnNKS9qjDlzlfuRA3uVDuOLzlxt9U75pB2lYxgvfw80sVzVdTvVCnVM1TKlJSqovloRdLKyblE0xlPiKKIdjuXnESKTsdJTgr0+kKaCdMzhulpQ5oaZqZTet0sJyCzMsRvYdVj/clZaYEhRFmPba/cF1znJzbdOJLobSKeLA4aQsPDCn0OCkVadS8Hz6Mm7APgnvM/xYW77y4FgO1slsuf+QH3XvRZFGB0xEPnf4xbHvnjct9zX7yHNftfYWr9GVhVOP51+8+0Ouy+5IOc89C3y/JrfvQVXvvkb6F0CxVH9E1EJ4qhDYkWUAmRSkmyWWLJ0GJQSlBKiBCEDIvGKo0ojcK4kK+JzYmHiImWZqblHHxm4hyH9vsRMzMpaIWJI4xxoWiNVkTWfbfWorQNZHGFHKXoigMrGAEdhT7BViIWmqNbileIcmYzf4Cbg78JnHL8W7E60dB2DRo0ODocr95gmJJk3qa0gx7gi85+sL6qw3xoy4foJuPldoVw7Y5vICIcnDiZN084N9h/w76XWPv2C4gRbCbOOqBvMJlzIJr2DLMzfaYP9en1Mvp9mOoq3jrU4o2DbQ7MJEz3E6ZlkunJ05ldvwlZuwHGJqEzhohg+ynZwUNkMzOo2UNMdN9kQ+8V1qm9TEYzrGvNcOJEn5PXWtZMQLulGBuPGBuPGR+PabUrq42kFZVh41Sk0LHKQ8dV0hDlWwL4zsbyMHLF6FJr5SKn5D4zSm/svs+MmlNQF4ZT08rDzrZaEe2xhDhRjI1rJiYSWglsmBTWT2S01Szr9QEm1AxiDJgMQ8w0Y+xlA4eycbo9y/4pxWxXsMY5B81yfwimIG5K3wjunl/5yJcHpSeX/WIpqSnJmOLfKDLtWNgNVQ3ay2tM6M2+jCSjfHP7ah/8++N/CgdyWpdWHmhQUb67n1aUciT//pHvTy45cn5R6mkquZF2jmAL+cvh0irSQb5v5VNaZuTRAKLY5SUtZ3XUHktotRPi2MmUOp2IJFaMjWlaiS4tGbJM6PaEqSlDv2+ZnXW/xSw1pF3nGLRwIihZLjWxlnwZtnzXFXr2LW88QiebDR6BJ864nvrDUa5TF/MKzyrsmFAQQ8dYzWpAIz+ZJ45Tfx30rfM6pK0VHBINxdteyEv2rjmdp0+/Jqjp6me+T6s/DeJIycfOeR+9eKzcrhAuf+ybWCPOSXTu4Nv0Df0049nLQ8lKa98btO77GfsOWvYdhJkuTHUjDvTG2J+N07MJXWnRV236xFiK12pGlHXRWZfYdElMl8j0iCQlIqWje0zGs0wkM4xFPdZ0+myYdFFROm2VOzZO6IzpygF4O6HVjp0cJc4jpOTvShcWXZdyFIp+utZvrwL1yYAB0kJ8lgB/A7gW2An84ZK0YJWiITUaNGhwdDhOg8kBSUph+z/PveeTVT+XXjzOQ+eGIVy3vXQX6w++iljhp9f8VjAMU8DNd/xrZ9pqqwgbWWbJjCHNDFnmQkh2e5bZnqXfh9keTPdipvptZkyHHglpMoFMrsWuP4lsYi1Z1CKzmqyfIrMz6N40kenRtrNM6Fk26IPlhH9CdxlvGSbHNZMTmk4b2m1Fux05ScpYTKsVEcdOjtJKIpLcy7qKVOmkszRxzWUmA5KUIi/JZQpJWKYgSCJPcpIkCXEcl44dk8SFam13Ylq5XGZ8PGFiPGbtGsWGdbB2LOOEzjQntg8xHs0wxjSxWAwJ0zLBQXUCU2aCvb0OB2a0s9KYtfR6OZmUFhYaNr/NoWXAlufuCO5xrzXB/g1nlwSGb1lSRYUZYuarFiDtSS9GpguiqTBF9iQ/1Se/J3mZaj+XH8UxWhfEUi1d7BcXZfO0f/+956EgHuLEeen3w6qOKl9Px3k74yQun48yrauwxHES0+q08gF+zNhYi3YrZmw8ZnIyYawTMT7ufGjEueNZEWedMdu1zMzmf6dS+rMu6kG/m7poCP2MLE2x1mBsHr7Vj3RSWC7l0qWLXwqlJy+eeAGHxk7kcLO4OeV1R4LiGfbS70T4v+cGh8FS9NdHdcgRO/mLG+KsCu8+/9NBkU46zZXP/sAVU9BvjfPYlg8EZS7Y9VM6M/sQyftq65wCi7G8ddJW9p66LSh/0k+/7JxOd2FqVjHbV0z3E7pZhxkzTs+26JNg4xaiY3dsa9E2I8l6xKaPNimxTYklI5GUhD7jusdk0mUy6dGOU8ZbhvGOYnJc00kUnXYhI3WRzJL8XZkkcS4hjXIrx7gkf52/Ia/vrstL42bKt9RQSm0G/pf8618F+kvYnFWHRn7SoEGDFYn5rtDVyw2bWAyr6cGtH+HqXT+glXUB0AjX7PwWP77ut3njhC0cmNzI+qk3yvKnvfEkrUN76K05AaUUFudXQ0SIIslDSWbMzCiyVJGmAjrCCGjaTEcwGSckHUXU7hBPdlDjM+jOAXT6EjpLiXqzxKYLvQNIv4Xqwtghy7geY0LG0fpEtFbYtWP0M0U/1RyaVkzPOFN/YyDLDGnfOTRVkSLKJ/1xrjGWqAhZaREhl2yEMpRABZ3LCIoJRumDAkorgcLCoIhyEidupUlrRSd3ZJrEirVrY8baivG2ZePajImkz4TqscHsISZDacG0xujToUuHPb01zPYjZvqKqWlIUyFLXfQKa/IVd+O1X0ArjShhbGYPEzN7g3v+4uZryra7nXypiVSygZFaD0bIM/z0aGlHlR5VRg1cb3edi+KqTHsqmXJCU48uMqrtdZlLecz55PvtHXV+Xn6xCltKlaSKcoKCKK6InUJyEsWasbE4t/bRTIzHxLFyH8/Dfy+XIM12M6amnOXU7EzqnPhmxkU7ySOdGM93RrEa7E+Yi+s73j3IOW8+Fly6JzaF+v6RWKh5pf8MvoMtFRpCY/XBvSKrZ7oeDaW0akPx1rrNPH3aNZz/2vay/NXPfI+Htn6EtD2BIDx03ke58pnvEVkXASw2fS7Z+T22X/0FRIEWt0qSpQZrhacu/QQ3vP5UWd+GJ+/CvvwyhzadSWYUs63ImbdFMWkroa1arI0UUQwqitEmza0yMiIxWDEoHSESocQS6RirIozOiOjTilu0VQuFhjhhvBMx24MDhyJQilYSkWYRvW5Gv+8sKo0x2HyRxL2zLFZrZ9FZ9NdD+u04XvlTPk8xtGD1HWf8a2AS+A8iclvjHHRh0dB2DRo0ODpIfSVzkTysDxyXUj4wn8L1coVGvu5dvdCmFp/Z1iQPnxuu8lz4ws/z8J/C7Vf+erBNAe+++9+4AYbJV3uNc0hmjSXtZaS9wnGl0OsJh6YyDhzKmOkaepliKmvxtl3Pm+YkDqp1zMg4M/E60rWnkK3fiJ6cJBrrELdiWr0pkkNvEe17A3VoH8nMPtZlezhR3mZda4qxpM9ky7BuQli/xnlYT1qKdieiMx7TGYtJWs4yI0kiknb+PfGsAfzvUSEJKFbanePKOC6kDVRyljxMq/soksStniexpt2OieOIditibMytQo2NaSYnYtotxdoJy/oJQzvqsS6aYq2aAuNWvBDoRh0O6nUcshP0esL+mYjpWYUxLtpJmrqBXaE7xvNnUERoESVc9fCg9OSBKz7nBtT+RFF5CV1qUgYnk3PKM0ZINZQnyVDKaZ5LXxJRKQOK4thJSXyLjeATlZFkSudwNUdxUexFnfGci0ZefWUEHO151490aTWhcod1OnZRSJJW4qLoxM5Dv4pVmda5rCluxa58lDv61LraN687SZKyLa68Jmpp4pazIHHPpntuOmOxe4aSiPHxiE47IkkUrUSTxG62b0XIjLOKmp429HtCr5sxM9Unywz9fkra62Nt7hQ0nxwUFhoUH++VoPKH5MKX7yISU972VLd46tSr8B6ywY//kB0FBt+t71wio45GfjJPLFv5yeD+c0VDKUjHAndt+4Vg/046w5XP/MD9jgWmxjaw88ybgjKXPPV9dG8Wsdb5mDIGk7kQr7u2vpt+y5OeinDibV9mZiYtnX3vm4J9U4qZnmI6jThkxjlgJ+nSoqfbpLpNptulHEWJRdmUKOsRZ12SdJZWOk2SzRDbPmN0WZdMsy6ZZizusaaTsW7SsHZS02orOh3N2HjsoqMkTrbp5ChRaUlZREfx++mqT3BWmDpqpnxLCaXU54BPAnuB//cSN2dVYuXTdg0aNFgyKABrqwne8RhgHtEhRpuySjlTGbGngu1bPsKVu35EYpyFYCSGq3d8k59e+5d44fQrme6sY6J7oNzn7N33E/Vnse0JZyJrBVHOSWchm8lS41bTEaK+RimY6Sq3UgPMZC2iJGHKGlpaaGOJ4jGSTpd4zRq3ZiWCEgPdWVTfEHUMumOIojad9jjrOn2SRDPb1wgaiEmNRmlIM0uaClE+kc5yiYbJrCMnMovVbgRpjHNoVg4kC32zQO4NtfQZoHRx3XLrDMgnx85SI87NYyONkxK0nF643Y4ZG9OMd2DNuLBmzLC2NcsJ7Rkm1CztbJq27WN1RE+1mYnXM5ONcSAbY3+3zWxPMz1r6HXdqnyar7g5a5PiGZDST4S1Fq005zx/V3C/u+21TG3YjA5W549uIqB8eyA1eiBZTsgGjCbyDO2tTJZ+FEKnor5lyagJntLKW9mv8rVSZbbWOlgNLdJahfnFtSS3soiIynYVaVcm8qw/oiLbe0eE5WMVle0pwrcqrYhzAi2KVO6DRZEkmrGxhChSJAm021X4YCuQZZZ+X+h2hV7PMDub0Zt10Yh6vRTTd3KwLDX56qab2FQWSkOI2lyCculLPw+u7VOnXU3f879TTuqKP551yjFxEcFET6rr6KffYfCtwxocBp6FlPu6ONdsqMSqrtU8TA2DO43e/631Z/LU6dew7VXPWuPZ7/HweR+m35oEgQe2fYKLX6iiXI31DnHBs7fyxAUfR+V9mmiw1pLqNs9d+CEueOQbZfkz7vsmL3z0t+nGCpu4KCKRjpmKFGOJcwoaJ9DGkkgXIUMTgY7y/tISiYAYxBqsUmiJQQtojaLFWBQhkSN3Z/qazMZkEiFo+n2LIsqJVffuMlpAxWhlsUXUNcn7XnHEri7GOfk5RquA1BBRyAKGYa3Vderhfhci8vLRHEcptR74l/nXvysib81RvMFRoiE1GjRocHjM9aJfogHlfAZlqjD3H7rRTw4fiM101vHo2e/l6l0/LLMvfuF27r3oM8yMn8g9F32WDzz478ttWiw33PfvuePmv+Y8kRuLEoVERZx45zTUGsGkOpekCFM6Jk2h29MorbFaAevo0KLTGkOLIWnHyJiGLEX6PWTqENKbRboHSdqzqLEpNEK7peioiH7coati9qpxDugx0GOMG02aKmZ7wuysG+Rkuewkyyxp3xLFUpm0liFQqzmVtba8XqX8hEJyIp7kRALJSRTnE1StaLd17tvDWZCMtRWdluXktSkTccqY6nICe0gkQ5OhIk2mWqS02GfWMZsldLOIQ7M6j2oB/dQ4CUFBJnljYt/Bp9aasak3GJvdH9zuF89+FzrSg6uEo56dw8hMAjmOGi7PKOQXA2UUQ/dVyoUmLXx9iIgjooqmFvITG3IpvnPRin9098y/f5LrVpR/fC9fF5IXpdCKMl2UB6+9umiLV6aWrq4H6MKxHbgVxnz/JImJImfp0enEaK1IYuh0ivDCoPMoPdZCPxWMcWTG9EyGySzd2Yxe7j8j7TnpiTEGkzmLqiLMb/mvZhlRXN9TD7zAyYdeCR6FxzbfPOIhqV/7BURgSfTOndA3hMbRY7HJjepAzjKugPIkfe749XZRSeiGoN5XK+DubZ8JSI1OOsOVz/6Qey78c6AUe9Zu5vnTruCc1x4uy1zx5Ld54rwPY+PYvTCNO6hoYeeFHw1Ijc7UXtY/+BP2XPMR+rF2/SGCtYqZJMZOKogSpBWT0GGS3NpMKZTJiGwfMX20zVDFe9RmaJUS6z6JbhEpS0sbxlotZnVCpMaJo5ixdkSvr5iagZmus1AzmaXft/T7+VjCWIwFm1mMMeV1tJ5Vi1ghaSVHcOPekbh/HmWO9gfzvwOnAnfROAddNDSkRoMGDY4a/lzOZRyHVUNPShD6CBhS1PM5MAgVllPhgKmYpN1/3se5/PlbiW0GQGwzrtn5HW6/8td4bMuHuPnRP6XtRUK44Nnb+Pm7fhvJLRQ0LnKFIcNaZwqKEVDC7EyfNImIItAqAlHsn1J0U41eo5FIYVWbpH0yhgmSliLqTYFqQWpRRsDOusmtSel09yGHMtJYUMl6lI3ZgCFJDForDvXbJBHEESSRZnrG0usrJFaYWBNHTr6RGetWMARMVpAb7hrFRKXjTbcq7VaG3KTbzaR1lEfegFye4lbeWy0XlSKKNeNj2jkxTYS144aJtqUd9VkbTzEuM+isR0IPpRSpTphlglnG6aVwsNfiUE+TZZbZWej3LdaCNYI1vs2/UITqtd7zcsX9fzogPXn4ms+XZET92SkG2MFgu7CiqD9b3vdIRSVpoCOdT+rz/FwKE+nI5es83yMtrLWlnwx3fJX32kXI05xs0FXYVp2TECIuMk0Bl+/aV1po5GmKn21JoFQ/GqUKy408rRTWSpmW3EpHK40x1smQcrJOKRxJl+cPTefRc6wVotxDv1KqdPZZ+M3QWjuZSUujlbPciCJ3bYxxhIa1Qr9v6fUMaWqdDr2XkaaGtJ+S5cRXlmbOIiO30ChZO+uZHjn7Ks9SAy55MXQsu3/sJF46MXQsGDwHxaO4EK/EuWZ6DRrUMYQtGHgUjwMhJEgVRhpHcMztMLcQbXh1SO297PXVIsJbazfx1OnXsu3Vak561TPf46EtH6LXmkQQtp//8YDUWDf1Bue8dC+7zroBi0YwoCKUtexZfyavn3Yxp772RFl+8z1f5Y3LP+jeazNgrUIrnf+NyazAhKWtLRKNY7VCK2fpGIsiUpBIH43K3wuZS8cJiWQoDP2oh2UCVMz6luun9/fGSLQiUpo4UhxSCpvo0odQr2eJRWOtkGWKLK1eEyYnPIp3tV4FjkL9BZaFqm+xoZS6GfhLQAb8FWmcAS0aGlKjQYMGR42Bockyk58UE6uwC6kma3PWmReYGjuBx896N1c8f2u56bLnfsL9F36ambH1PHTeR7l+x9fKbbFNufqRL7H9ys/nsg0LorAoN3TKPEJAaVCWXk9AGaxodM8tPU/1Y4jb2FhoJRMk7ZhZZYjjDoqDRL0uUdRzzr+UQSmDmC46jYhn9qCSPpGawEaCjTVpa5woyeiniq5yJrSiNHECxkA/tUSxIoqEzEiuN3bWHFaqyZ2b4Oly7lfIUZzkRFBKl5NNF/VEozVEWtNqR8QxtFuasQ50WjA5Jkx2DJNxl/WtWcbVNJ1sijEzg1KQRm168QRdGedgOsGB/gQz/ZjprrM4yYyLcOGIl+Je51YjWhNFzrokiqPSZ8KZNenJ7Nh6Ztef7sQQpdlD8RB5z0hdwlF7bnyZgcIjC/JdVeI51dSFSEVQiQra7HYQYh1VdeuqokLeI0h53V0ZXdyUgPBzpEeeVgpRRT1eGaXcimqeP1imIFe8i1Ccp5v9kyivvao4O0F5EpUyLYJqRZUFjVLu5wC5TxBFpBWtVpTLmCgJDa3B+bxz5I01kBpHaMx2LVlq6XYzurOGtJ/R76WkfWeZkWVZ6T/DGhe21YrnINRWXgH8Zz7KUi569Z7gfj+++abR77yFHraOkp+8g9HIT44Mx5vQcMccPE54zw7XjvpLtqgk/H7ntk8HpIaz1vgBd1/4WRSK3SddxBsbzmHjvufLMlc98Q2ePfN6lOQWJBZEu9/7zos/HpAap7zwIK1Xn6N72jmODNaK2VmFsTlhEEVMxS2yCEiEqC20tSWmi7UztFUGKs7HAwYtrrPSqTg5SmTQsUEpS0+3HdGSxKBjuqlGKY3SCUpr0kzo94U41kSRs0zLMkMcabJIY3NrxcgW7zB3wZJ29X5uMBTXAq8vZIVKqRbw73BP6r8QkccOs0uDY0BDajRo0GBFYnAgO79B2rCx3OEiotx33ie49IXbSweBsU25+unv8PPL/jz3XPJZrnnqW6UlB8DlO77NfZd/DhSIUrl5v/PnUDglLMztIaarMozRpH0LxFhxFEg3aTPWilBRhJUxJGmTdNaSqEOMG+gQEeksr0eBzVCzU6j+LGPJAaJkDD1xClEMSSemL236mWaqlXCo2yKJE/pGk2VCP43o9oS0Va3wWOv8E9hidaSQduQDucJU30lOcjlEKTlxA78kcel2yzlzjCJhYhzGWtCKMzaMp4zHKW1mWMc+WjZFk6KUYFVCRsIhtY6utOnaFod6Cb2+yiexEqzSF9YPBaGict4oVo6YUcDEwVfozB4I7vXL591MnETlczU8kscQeQhuIl6ldVkmzB+UebgIH3hSjaL+Khypc+bprBgKOYbYQqrh3NnoqIiQUqVtQUbk5Qv/oyJOxuFWbR1pUL9/TloyKDMJIq748pOi7dbL92Um5b6+RCWsszi/gs/xnc8msSrTcVIQK6o0rS4IOZM/D7MzKdZY+j1Db7bvdPJ9Q5Y6R4AmM4ipwi4P86MBftq9H857/UE66Uzw3Dy+6cbDvm8WxEqjqKecyDWTeGjkJysBdR9AMKzvHg33cx9CjAR+fmDP2s3sPP1aLvCtNZ79AQ9u+Qj99iRKKbZv+wSfuOf/Lrdv3LuL019/nNdOv8xZH4qAuP76+TNv4PrOWjrdg2X5zfd+ncc/8tfL94IVaPUVIhGCwkpEO26RdjSiE9AJsXQY0wkoTaQELQaVpaish7J9NDZ/r2Zo0yeOerR0iyixtGNhPO7Ti2MORB2mY2i3WqQZzPYU3Z7zJ5QZS5pq0tTJSN370eZ9o1C8L9PuypefWBY2+okNv75+tD4z5sDfAy4EXgJ+b4HrblBDQ2o0aNBg4bCE8pN57+5NrII8z6S1ynM5BydO5snNNwZOAi979sdsP/+TzHbWseOsm7n0+dvKbe10hgue/hFPX/Bhl2HBGoMSjdXOUaVYyFKLmJQ4UlgNGYrZGYvJUmIdE7mWsnd2jK61KGA8S8lkHD12MhK1SGJLbHrkDARinM8NK0720unvJ44sSdsyE60nVpooaZOojDgaZypNkBjaiZtA9vrQ7YMiyp0uKrLMER3FNTM5y2Gtyv0Z5KtVmpLMiCI3OU5azgdCFCnabejEkCSWNWMZ44mhE3WZjGYYk1mirEssPTRCpjSpatPV46SZ5pDpMJ0mGCN0+86XBuKcgxbh6xTVpNeZ3FaWDNqCKM2l9/7xgPTksev/AlEclYvh2rPuCdOqGGVXFkAqtzKgeF4Kj6mh5YZWxYUaIs8Qm1sqOIlKYEHhhSgtiBqoWV+UIXQH80X8Mq7BUV6mIGWq+qmsPHJCRKnqJ+2HjC3yS5N2pfN85yTUSVQEXUhwyvzCHDoqZSyOMFLEcfEcFc+SItIEhEdBrpn83lsrdHvOH4xzEJqR9qzzm5FbZtjCf4a1ObFoKhIj9xnj2zWXSVUQQMIlu0PpyYsnXsCB8ZMYieJyL5T8ZMCEqEGDY8BxsvY5vKXG3CgsAcvytZ9A2Xcrxd3bfoFtr26neAN20hmuevb73H3RLwLwzOnXcmDiZNZNVz4ar3ryW3xr48Wu/ihCGcGi6OuIp7d9kMse+WpZ9uxHv8/j7/ktUjWOiHuPIprpXI4SaYU1ClTs+l9l6SiLqHFEQ4QhtmkuRbTEWR+FdeS7ybDKvd8jbRnTkKQp6LVoElRiiLVFaci0phUp2rHmUFchVpMlQj/TdHv5O0vi3FdW3jcqRW+6kZ8Mq2+xoJS6APgf869/XUSmF+9oDaAhNRo0aLCQON6rZnU5wLww1FTjsLh326e5+KU7yIUXtEyPq576Dnde9gVuu/zXuPj528ttANc/+iWe2vYhislIZemQy0/ErdpbNFla5Gl0ZNGRptt3Az+LJo6FKE6YzsawWMaUohWP04oFWn1Mvwu9LsxOozKDpH20mnUrQP2YKImJewdIYkOPNjHjKC0w1iJJNH2j6KcuQkkcO98F1jryIssijMGZ6EvhfCy//LlZq0ixmi55aE6ItDjJSa4NTmJhrC204oxOYphMMsaiLhPxDGPSJTEzdMyMk+joCBuNk+oxZmWcKTtJL0uY6UfM9pz5bZYJmSEfwDkLEdGCFk0Uk6/+O+uYwmeFIJzx7N3Bfe1Onkh2wqlUAVe9x6KwTKAYVOdUQOEUFe0Co5cWHEV+Xqae76V1YfmAoFRc/nS0T4TUfGLU00JIVgxLS5HOz6OwyCjIg+I+RpHnEFRTyouqqDZuglLM0QfIDanKFRKgqkxh5QGF35X6nMqRFi4j0pRym9izmJbcnNpYSkKj33eWGGlq6fUy+j1D1jekaUqaOkehWT+rHIJmhXVGaKFRPEclwVE0UmBydi/nvFWZogM8tjkMEzlUsnRMCJ3dNvKTQTTyk2PAirlmh2mnt/nt3LfGBa/eV+ZdteuHPLj1I/Tak1ileWDrx3j/I/+x3H7Oaw9xwv7d7NtwFlhBPKu6HRd8JCA12t2DnP7ET9l9xUdBKXq93HGzchZ2cRxhEtcorWKm+h2ySGFcIBR6icXYLhGztMQQ2R7izAwduWEMkXQhitFiiaxFxUJPtVHKupDZUUTfaLpphNYxKlKkBrIMkkwTx06OZ0UwRpf9tYjQbuQnxxt/C2gBzwHjSqnPDylziZd+v1Lq1Dz9rYYEOXI0pEaDBg2WN4aMaQqT1tIEVdTIsgPVzVHG99+kylVah/0Tp7Bj841cvPvOsswVu37Eg9s+wWx7Lc+fdiVbXnuw3DYxu4/Nux9g96arEaVAuUgoSinInUEaBUSQ5SvHxth88u0mnyZT9PvOHNa42CZ0Is2YbkOiIR4jjtpEaRfVmyVWbxGh0GkfLQbSWSQCtEVsjyQZp63bJMl64tYGWoliotUmNZpuFjHdT2i3IoyN8qgoin4GxroJqRVnEGJMsUovhfFBHiLWTdbjGLQSklhoJc5h2njL0k4ssTasac0yplNi22NNto8WfZRkxLaP6BhREbPJJH3p0M9aTKUdeiYis4o0c4RQcbOVdpFVjAXQ7qkQR6o4EqaYuAsTbz5PyzMnBnjlovfT6iTlvdf+RElVA9yhchJPtjEg4fCjhugqyklBMDj5SS1SiFdPJcmonGgWMo9CuuTyHdlgxQ2cFRVJQZ4eRl5U6YKY8KKsaI+wYJC8KBdNg32dlYazuigsNobnl2mqMkW0nOI36rif4hoKVtxz534nTmpirSVNXXQTYxy50ev28+hClqxvcv8ZUllpSB4hRywVieHxEMVv3pOfXLL7rnL1F6AXd3jqtKu9F8fg+6PMP8q5Y1lVcCPyvBUzIV1cNITG8scxy09yS66R22vb7tr2C2x79f7AWuPqZ3/A3Rc7a43Hz343N+z4KmP9qXKfq3Z8ix9f/98hWlPoFK2F/ZOn8vIZV7DplYfLslse+ibPX+IWK7RSWJO/L5QBFL1EkVqFEbAktCPFRCvCqhhpRbTUOK14BtBECCIZKsvQ6SzKpiixYDMwGdr0iKMuSdQiSVLakWEsSunrmBndZiZpM24gzRclepmmn2msKIzJLSzFLTpYC/3plT/lW0mWGkA7/3su8CfzKP//8dLnAA2pcYRY+U94gwYNlg+O1wriwNyhRkbMtesQ+UnlGZBy/FRJUvLvSnHPtk9z4e67AmuNq5/6Dj+/7PP8+Krf5NzvPFiWV8At27/IH59xlcuwgign2UDr3ORUEDGoqJJNuJCvbsKpdUSqFIdmNH1jnSl+C4gUB6I1pNJGKUVHOV8Gydh6YhXRNikaAzpCW4N0p5G0jx2DKM7oABEpSZQyE62jFWnaKqatW8yYhNm0hSRgRdHPHJGQGu2kGLjJpbGAVejIjQMj5SbYooRECUkCSjldcDt2prPjSUpH90l0yridomVnibNZJzkRZ/ZriElVh0w0M9JmRjoYsXTTmL5xVzfL3CS3mFAXkVeUFrQStChvQlxMxhUX3P7FAenJs+//DaJIl1IK3zohtDYojSzytHsKnORDV+TBCKlGWUY5vxaFtENr59it9JkxQEIUT5MqrRmcZUxFJpRpcouH3FKilAZBSFQURALVpKE+eVCe3EPraoufX6ZzyxPJS2lVVlwSJwWJkhsq5e0sSIzwvVENXB2xYHMLjcwIJnMERb/vCA1TSE76LjyrSZ30pJCcSEFmGIuILS00CiuMyiojJBJKgu8QIZ8AAJB3SURBVMIIl+6uZGcAO0+7jixql9/L949PPISX89hQXJBmAt9gobBU8hMZQnTMY6FhVL9el47uWXsGO8+4jgtfubcsc9WzP+CBrc63RhZ3eGTLB7l+x9fL7dtevIO7Lv0VZtachBJnoajEvaie2PaRgNQ45bUnWfvqMxw6/XxM5H7wvV7+nlSAaGbRiNVEGiTRiCTOYk5ZjBIMHdAWHWfEpufCv1pDlKYoLFosYvpEGZhEiIyhjaDpo5L1RETEUUqsU6aVYCJNFruFiZl+hOSOvNMM0qwirrtjh7tbDRqsbDSkRoMGDRYOx2nQPTQk3LwPPUdBNSINgLBvzalDrTW2n/9xZsY28OqJ53HGnmfKbesPvcaJe3ax58Qtzvmn0pW5uwWrnH8NmwkZxvl/yCfpad/50DC5o02tFLNdDSai08pJjzhiSgmZjkiiGOKMuJUSTUyibEYe5xRlDKQZkRVUawxlLVoJsYloYemTOFlKZIhjoZ0464zMQhpHZFaT5fPAwmmolWq1XVDEuvChICQRRNoQaUs7tiQqox316eiUlnTpmBna0iVKu8TprCNLdIToBBO16akWs0zSlxY9E9HLEqxVZEa5AWdJLii0FkRys1vr0kpVq/ASSzlh3fhMGL2iu24jsuFkWp7MxLewKMkNIY9WQlkG8se9lJzo/LtAni6sElRJCoThWUvJSSEtUfnAmIqsKODLM0bJNvz8QXmI8tKDVhgj5xgjfi7DfirDiobEkoSviPw+CqpcIRVb8QKF6bTz7WJzB7bi/Gfk4Vn7PRfhxFlqZGQFuWFMHu0m96EROAN1x/Hb6MtQqg1wxr5n2DD9ZnBOA9ITr/yCYpGXEVc6GvnJMWApr5kMEoGj76Gqdgq+D/8KcPe2X+CCV+4rrTXa2axnrSE8dO6HuOap7xDbFIDIGq58+nvcefVfqBoEIMILm69hevwEJmb2lvVvfeTbbN/4N51PrJwbVcqFVy1IW6UVM12FtQorCqVjkmSMTEd0tJMtJonFZl10OksrtugkRUyW60fcx0lQErTNiG1GJJZMt+jplCi2JJGiLxGpiWhFLVoJGGOdRC/WZNaR5gLMjtXcYq5AWFlgR6GL+IoVkd8AfmOuMkqpvw/8z/nX94nIbYvXotWPhtRo0KDByoc3UTxs0XmO5YatMAHcfcGnufDlu11INiAxPa55+rvccdkX+MnVv8Wv/fB3g0ne++77f/jyR/+RW5W2gmCxtYG4VcatrmgpJ7/kEVHiVKOISslFL9G0EhAijAhWxbTp0NITrGvFqKRFPNZCmxSV9lHdKVR3BpXOEvUFZVK0pAgZYnu0k0NkOqEfjTObrGEsGiOLWxiJSCWibxMyG2Eldp7HrSKTYkZcyC2EWIMSIdKGJBKUsrRUSksbtBjGmaYlPbRNaacHXbQYa9G2Dzoik4g0GSPVYxhadG2b1LawosmMzh2fuvsXRS6kp5PFaLS2pfNN5wvEiZOKFX6lYOylp4m7h4Jb+tY1H6HdicsoIIILPVtOxIfISRSFo83C0WdB7hSWEbXySpXORp1lhirbVMkzPKeehQxDCCQcIEH50kqjICry5y00RXG5gpMDVeRHnlbF1sIyREqLj5LY8ScgDEaGqaxZpCRO4MjSVdhBynsIjtQoPPgX/jOMKawznOPPLLX0u5krm1kyp0/CZi7SSWF1MTTKiZ8mNLQo5G2X1hyE7pk4lVc2bOG4IGhQM3GvoyE0Vh4OJ0ep387ifVdZloXkxrAFjj1rTh9prdFrTTLbWceTZ9/CZc9VYdov2fVj7r/ks/Rb4yhxv30rgqiIHed/kGse/lJZdsvOn/DATb9FNrHWhYWWyldFlmmM0c6SUVyEkrG2xojzj9WOY8biBNuOUComiVNiNYsoF65aTIoyGao3jTaZk6SkhshmiOkTZ10ynZC0JkhllvHWBJmK6EVtelGblBYWtxDRNzFGNIIjV7Kx9EhuVYMGKw4NqdGgQYOFw1KZSJcW5DLnAAnCleNBqLCcCgdNIsK+iVN5cvONXPJSNdm5YtcP2X7ex9izbjN715zBiYdeKbdt3PMsk9NvMz15sptAKV2a3YsVLBarVe4NAkxmEcnQuXWGwdLtKjKTlXIFpRQHZ6Bv8ol+kiLETMfrsCpBi6adToFKiEShJSIyGS46iEJnGTJ7CEl7MGaQKKYdp0TSJ2WcXrzGDYRUTF8npDohlZZroYLMRhhx7Y1wshGthQSTy08MiUrRytKyfVrSJbJ92tks2nTRJkWbtLxnhgSjEzI0XdWmJx0X1SLT9E0EIs5SBDeJt1REgLV+lA9VEgEoQQu5Izc458d/OCA9ee2jv0WrFeEIA01AGJTPSGUuUTwLRRlKSUhx7PwZUgXBkIfzrT1rodPPalDvW10UDEUpexlmpaFC44AibG3xbJGTB9YW+4n3E/UdUYo3QRxMQyUHqa6ev69/VQuSRKiICz/tQg66dticrKvqcZ+CyMhDCufkRpYasjwkctbP3LaskJu4fGstYnICwycxCge3kl8oqo+zWPEkJzmRk5heECISciuNUabwQyZsx4Zw1bghNhosGJboeRopRxnZFve+KIuX7/nie0FIhqZmd5//6UFrjWe+z10X/yIisH3rx7n0uZ9W29NZLn72xzx44afyCE15jUrYsfWDXPXIV6qFjHSWs3feynNXfArQpGn+7i3Y65yk1Rpa4lxQW3IfSi2F2BhkDBSMKyGmDdE6lECLGZTSaOdAyC1OiEBOdlhr0VFG2xoS06MvGbGOSXRCS4/R1eMYIogUaRTTNwk2p2inW71juHPLBDVjuoWor8HqQUNqNGjQYOGwlIPuIzx06NRvcMI4tL68wD3bfoGLdt/lWWv0ufaZ7/Lzy3+VW6/8b/iln/1vgbXGe+/9d3z7/X/PHdcKYEHnzh1Fl+QGys3YVe4cMssMEKEyi9KKfuomYe1WEeZSMdOPsNJmLNZoLegkYiZSZPEYUTpDIooEIZYeSmzVLjFIfxbEopI2Ns6IxBBjSCTDqphMxSS6hdEJRrcc0SEKidwgTVAoESzOp4Z2a0TEYogkIzJdYsmIsh5R1iWxqXOAlvVzEwMnOZG4TRa36UcTGNUmlYS+tBC0M9/FWTs4Sw2XjiKIBQr3CAWxUfliKAwVXHrDk3cFt7J30umw4QQSKksHCMOgKm9OWfinKMr4z8tImQc5JeKPt0c8p771Q90SokozkPZsNErLjFJXgm91UZUO4F2zQYKiqjYkQIafQ7WqOthWP18pKY9ZSAiKc3WSk9zixjjLDBEX/jjLnOPPIm2t86FhsgyxuAgnmcUROTaP2COlX426ZUZ1/hJep/zP+a/eT8t0y6IWxRObbhh66R3ft8DvP7+dDaExgEZ+cgxYLtdsoBmHa9cIQlEk+C3uWXsGO854Fxe9UkkOr9r1Ax7c+mF6nbXsX3sqz55+Nee9ur3cfsVT3+Ph8z6KxK2iUgQ4NHESL266inN2V2W3Pf5dnr30E1WrlMKk1nEwuD6818vlKeIcHc3EGms1NgFF4qwNo5iO6oJWxB3BmhZROkuscoI+07mMNHMWHNYS2RixGVoMSiwmamF0iyhOSZIUo2IMEZmK6SQJNifsJ5OZw1zb5Y88WMyC1tdg9aAhNRo0aHDU8Mf0S4qRjVic1u2f3DhgrXH5rh9z/3kfZ/cplzA1toE1s/vKbWe99ghxd5qsM+EyhNJRpFghM4ZI3IRYYlBGkaUZYiO3Ak2cLzALWSsiTTWCJrMKI4qxVsJMrMk6iizKMDqhHY2T0GVMEsZ0gk4iYpOCMaisD1mKEpfW1qCyFG1T4nSWJG4hOiKLEkw8ho1iJEpy6w2FVQmgXFQXASWO4kAMWlJicYMvnXZzmYlBp928TLFCHmOVwsQtsriN1Ql91aFPgiEitW4AiKoEElo7MkMpIHcaWkRkKRxk2vw6FpNvaxUTLzxG3A0die+94VO0kioIb8lf1B6ZkgTyLCeC7Wr0oqeCAeKjSBfwzarLfFWs9qk8vybVoKQr3LmKzSflhSUEuXVGnm+rdkrQgCoSCrncouIywjLFgqmUlh/VNR6WtlZGEjX1dGGZURzLGGeW43xo2DIvSw1iBGssaZo7ATU5+Sd5lBNjy+M7h6A5kVg8dwE5IwiDJEeBy14KpSfPn3wJU50NQTmpi7IX8qXo2903GEBDaBwZlkN/fazRUA5TeV6h+3P3tk9z4Sv3etYaXScVvfTzKGD7+Z8MSI01s3s5/8U72XnuewGcHyzc+/WJ8z8SkBonvb2LE17byZ7TLvAUYgop5Ch5ps0iTObe0yKWflvTS7Trt9B0k4iWjlnXijCqRSfqEdFjjASiBMl6rm/uzaDFLUYomyGS+8vKekQ6xkYJSdIhS1sQxY7YiNtYHYPSWBSH7IGFuc4NGixTNKRGgwYNjhoDQ5Ellp8c/YhtyHBv2AjQO79Ba40e1zzzHX5+6a9yx8W/zMe2/7tyN43wnge/yI9v+O/CyW2uC1A6KieUYoRMDOjcnNVqN5mzglIxNtJkyjLbVRhrUComVm41aEq3ySRBxiKILEYsxOuwUYzKIlQ2Dcaioj5KuzCwOje/RzIknQXTR9sMqzSRjrBRFxsn2LhTXhOrY4zSoKLcP4cTz2jTRwlOXmL7juzIUrfKZCWXryhERxgVuRWmKCHVHXq6gwVSiUlthBJxpE3uH6O4v4XcIypuh+QyHVV9LybI4Mqf+s3qXhS3ds+nfhMd+bmjH55KAjLkyZGqTf69LSQf/kqQ7zuiKD88LXk7vfLim2H7PigqOYf43i9zwsMVy2Ue4qXzMkXI23p+IZFC5SRGUT4oUzVJBDzr6zLaCnm6IJwKTXx5raRQg+TWEjbXsufyE5tZTC4jydJKZmKyzIVTFFvmFaFaKeQmtiCHfOKiIIM8C5RAtO+KnHDoVTbvfQofvoPQRY94UkcjP2lwjAienhUjP6ljftSMiLB3zens2HQ9F718d5l/1XM/4oGtH2F2bD2vnbiFl088n017ni63X7PzW+w4+xYXH5vihaZ46bTLOTh5Mmun3irLbnv8O9yx8fzq3LQFNGSOTNZxHsI9BVSGVlEeIUVxSIEohUiEiQQYc9aPWoi1RhJBTESHgygVE6FAaXTWdWS5M19zxIY26CzFZn100kF0RKI0JkowSTt/GVvG09Cn1EpEaDW4MPUtJUTk7wN/f2lbsXrQkBoNGjRYOKwg+clhdx4pP3GDKmetcROXvFSFe7xi14954LyPs/Ps9/C+R/4znbQy99z24p38+Lr/FpTO56eCinRp9m6NLVetIxXl5IYlisulfEwm9JUhsRFaWbSO6KfCtFK0beGfIWLGtBGgTYQohYoVaQKYjrOY6Dvz1lgsiiLchJTaXRdi1JEWKkqJTISkXecPRCn3V+vcP4gbwEWII0xsisqjrmib5pYc+Yq4jgCN1QkStzBxizQpHJO2SOk4AYtEZBKTu63IiR/QxcQ5l6DEUS4/ya9xfhrYMqyp+7PmsVB60t+4GbVmLQWnIYcZ2QwOpGQEMVBZGxSERmkW7YWYLeqs6vZlGDkZ4udb8Y5VryMnCarbWE64KzVFTphVBaprJrXzD5JV3dUxw7KF3UiV8q02PK5AVa4sBvI9h66F/ARPfuKsNizWGGd9Yyw2K4gPySUnlH40CuuMekQTkeI61CQ0Q87/spdux8dMa5JnN17BABZzUNzIT+ZEIz85BiyXa3bEzZjfDsUzcee2z3DBK/cGUtEbnvomt17x64Cz1th09z8v9zvx4CtsefVBntt8bUD8WKV58vwPcf2D/6Use+6zP+PeG3+LdGwtSqncSgxAHLeR2er9qqCXh7e24giKKNJYC50kRilNpBU2imirHqIUUaJQUURkelilcLyGquQombOILNoZiXUh3HXkHI/GMbGZBRUhAkl35ZMaDRrMhYbUaNCgwVFjfmsmxwGLtjrqrch6hyny7t72KS7afWcwYLruqW9x2xW/xvbzP8HNT3y53DeyGTc+8l+568o/j9LOwafNnVgaMejIORLTaKyxZECkBbEaEldHTwRrY0xmXTQS6+pIU00vVhiThz0VRTcZI9ExvcTJSLKoQzvqEUV9WtEUnfgQkrSITd/NWjOn2cU681YlGnASGDJVEhqluUROLlQzafdR1jhyRJypLEojCkRFoCOsTjCtDiYZw+iEXjROqsZIiejZhExiRDRpHgrP+fEgmDw6YiO/J45XCcboCkXhS2PyoZ+j+5VfBIB97/2l6k4GFhK1219O+Auywt9WWU5UaQGKsH7uuynbZrHGl2cU+YIx9XRdwuEcZVbpgl+T3PohJ0S8cLdGqvCp1kjp46OU5pREhW8NgveQSxXuTgTrmY2XxUoS5nCSE986qeYzpJCuGMkXRp2MBIroJ46ksDaPZoIjNTKTRzmxleSkcBSqxEm1EGcdVPjWqKw2vPPO769/byOTcqkXthngsU03Y6KE44pGfjInGkLj2DCMzF3s67nwznTnxv7JjTx25i1c/mJFUl72/E+5//yPMzVxMs+ddjlvr93ESQdfLrdf8+Q32HXG1ZUJnnU+rXZseR/XPvRficS9h+Ksx7k7fsKOy3+heLm6/tI656B9yYiiCJM4KzhrhSyJ6Keq9A3RaylmI42xLvxqN4lIdMxkrDFJTEePEekeHZVgozY26aJNhs66aNVzDrfdYKIMA+ucnCrIIqzOrUVQJN2p43bdFwurzVKjwcKiITUaNGhw1Fj18hMInK9XEVEc9o+fwuNn3sxlL/6s3O2y525l+3kf577zP8m7dnzdOccstj3zA+68/PNV2Apr3YpMpMvjFU5DFQpRAmIxxm2OFdjcxDXtF5KUiEg7icZsz4WSExQasFGEUh2sSjCqh2iIlMYmGqtjOjpGzLSThkQGnfVRWc+RG+AsJKzJk5UGw43p1OAAWKyTiniTYef8PUbiCIk7mLhNFrXIojH6UZtMxfRokZFgRdE3bnAn4giazKp8UlvFqB9GRHjz02pFHjjx6zXpiVK89bFfqyb6UpFL9QFTJQNxD0Il4agmxpRWG9WE2dVVkBtVvUV+ZaURTrAH0/l3G1xSipMLypfZEraxXqZob3AeVZ2Bz9GgPkrSQeVfnNm4d37edatbY5SXK68Hn4wJ2unO14p1f20lLTHGVDITT3Liopzkz1tu9RH4yii2ldxbeQOqtPc7P/+17YyloQ+WR858N0NRl58cA+a0GFqqd2uD1Ynid2w9Rvg4PF9DQ6XPcdjBJo36jYQFfcLrrvM/xcW773T+nYBIDDfs+Do/vPovA5r7t32Sj93/b8p9T9v7LJveeJJXTr2kWtSwMNPZwHNnvovzXqws/y7a8X2evORTWAon09b1wRm5bFFBpklJ0SomU46on83XBxQaG8PUrMKKGwe4gF/jGBWDniVCYyJn4YiJUCYjihIiFROls24RQVvXV1tTUc/GEtmq31amP/pCN2iwCtCQGg0aNFg4rCb5ybBNQ4rdve0XuPilO6vVG5ty3c5vcOtVv8kTZ7+HK577cVm2ZXpc9swPeeyCj7mxnLeS7UKh5IcRN2E0xqJxWgrnVNRFgYjySaNSkGWabteQJG6UJCjivrMq6CRR7oxdoyONlZiW6pHRRWKNjjViO84HRtojimIirUGcD4x8hkixrF+cfjlo8lfaS5JDI3l0EFEaohirY2zcwiYdUt0ibY2TRR1SWnQZI5UWfRPTNQmZiegbRWo0xiqMgcy4KCjGVvIEK2By3xlukSqnHrxJq80sY08/HNyv2c3nY6J2KelwxIOfJr8nFaFRkQeVhUMoYfCJimLinzvALKUPXp3lDL+K9hHIMPx6VL1dVXup1SlD8gfSYUX5+Q3Z7pWpX4/KYomcnMjJoZLw8Ekc972eDspYR/YopRyJUcwjiqglgBhHakAuP8mlKKX1BUW60uFUhIlvoTF4bvWJ1eU16ckLJ17AvsmNDMUCERqD9dYqbgiNATTykwXAUl+7ozx8PXpZ/TT8Z+LQ2Ik8fPb7uOa5H5V5F7/4c+4//xPsW3M6T226nhuf+ArrZt4ut1+z4xu8vPFizzrNvUOeOP/DAamxYf9uNr76OG9uuqwiyIt3mRHA9aEZEVEkCBYreWh17SzLWon7rrRCiGhFChGFVgoVaxKV0lYREsdInBCZPlE6S6JjiBO0zSBL0XmEFMGtAJRc1bFd6mUFC5UF4QLV12D1oCE1jiOUUuPAXwN+GdgKtIDdwHeAfyUiLx1j/e8FfjrP4r+XO6hp0OCocZhFlsXDkIP6fgnKYqJKomBBMOSED46dyKNnv5crn/9JmXfpC7dz//mf4LZLf5XLnr+1lKcAvOuJr/Loto+Wk15nOWrQWiO2sn6QTNCRdpOxWMC4SV6cRFiry1VnKxmtJCJLlQt/mpu1tluKbqQYzyJMB1LRjMURsU7oRAlp1CKNOrSiPjrOiKMu7WyGKOkRm9RZXJgMbfIoKdY4uYmn4dXeZBLtPKwXjkBFF74zEqyOSOMxbB4edjaeIFNtMomYtmNkkpAZxUyaYK2L6tJNnbWGsdBPKQeMqZvX5tIEN9gs0sVz4AY9ig0/+wa6sDrJ8foH/jxpmltRqMLioZKEBJYQ+U2X0h+GeARDYfEgFBYPRT3GFAPKXEoRSE5UkC+5bKKo0y8vZbqSkBTnXtZTECh5PYXhgP87KMtL8QCHFhqBpURAWbh9pDQLqW0rjhPIXwblJ4GVgZcOfYkUZE51Payfts4hqLPasaV+vXICKqXkhMK6pSSAXB2BmsO3sPDSJxx6jTP3hA5CHznrPdVp167twLkuBETwr3aD4WgIjWPDcnjG6v32YJ99FC30Cd4c9573SS578We0TA9wzrtvfPKrfPu6v4ZREdvP+zgfeOQ/luXPfuMxTtmzizdP3JK3wvk2evnki9i35jQ2HHqtLHvhju/x+mnOqkNrt4BA5s4tyqN4xUrR62XERhNlOeFtXDSzfl/lIaw1/RTiSJGZmNRqeonrs8fjmL5u0Vcd4iijpWZo2VlarR5aDDrrEWc9Z22JoKxF2cxFO8v9cIhayMHQ0mAgJPcC1Ndg9aAhNY4TlFJbcOTFttqmC/LPX1JK/aqIfPe4N65Bg6PEUPkJwxcvF33wOeSghen84Y99bMO7u8/7JJe8+LNSalKat1732zxz+jVse+W+sux47yBbXrqXXWe+q1xF1zry2u/M6ZWq8sQIVgxRHDmTeywmA6SIiOLIhH7flJYBsdYgim7PrfoYUegOZBqsdLC4sG/jWqMxxHGCiVq0TBexs65uXPQSnUdEKaBFwBoM4nxlOONbRMeIEkTH2KgFSmGiNmnUxmpNGo27kK2qRVfa9G1MmsX0bEzfKDKj6WcRmQFjFKlRGCPuex4NwxjJCY58ciuVhUNBSkg+UT/pe/8puE9Wx7x27aegbynCpDqY3NmnmxTbQp6hfOlHTmjkE86AFChDphakR0Fy+FYX+SOWky455+FIidz/hztW4f+hrL1cThI8S5Fiop6TYxUH4e0r3tC+/G0KpUMSaoO60pSiZihQkgM5J+GV8SUnI4eHgWlHiNB5akEmVdfAd/jpSI3CYkbKfWzhHJQwvzxn8c5nKKtRnejlL90W5My0Jnlm45X51ur6+LsuxrtNFW1tJu0NFgnL4smS+tf59tlHVu90ey0PnPshbnjm22XeBa/cy70HPsVb687k8bPfzQ07v8Z4r3Kmec3Ob/HdG//7qioFKMXj532IWx6sCJBzX7ibO6f3kk6eSG6LUb6Pi9PI0hSl4px8V9B327RxFpaz3bzJylklTgGZuAgskXb9dyYRJH200qRak+kYS0JkMnQ0hom6JNGMk6NgUSZDm8wtUCgwrbFju6YNGixzNKTGcYBSahL4NhWh8QfAnwKzwPuA/xFYB3xZKXWDiDy6AIf9TeD+Oba/uQDHaNBgOCQY8R+XQw51PjbvQ8+z4LBiSjE9fgKPnPN+rtn1gzL7opfu4L4LPsVPrvh1zn/lvmDXmx/+Y3ZtfpdXp++jQZUr3zZ3UKZEocR5MLfGIqJBuZm0NpZ+H+LYOSdTCvqpRrAkiZOjCLlpq8S0YksWZ1hJEKXJSIhVRkv1aakE02qRMYa2Bi0pUZwS2cxZa4gFsWgLCuecsbRo0JE7loqwcexCtqoEG7fIiOkrF+GkT0TPtMkkpm8iulnkVqUy6BnnMC1Noe/8QDq/Gpm7PiYnNxBHblip8isZRm6pkfYZfzlccT947mUYUdjUBuXd3yIUbLHY702IGSxTEFJl+aKMDfN9/xID0hL8KCeUMoxih3Ie7kc8sT55UBEYVQsoJ/5+G4pHrZrbD9txjpWrEVYKJR94FAtehdPAkowoeaXiWhYhWnPSxPed4RMfJZEzuIpXWHH493uQjHV/dJZyyXwchB7FuR4VGkJjTjTyk5WPgX57MW6lctXev/VjXPn8T+hks+Wmm5/8Cl+/8W+TRW0e3PrRwLn3eS/fx/pDr7F/7Wk+r8uOc97LDQ//CXGxiGEzLnjmVh694pdcGVuRM6UEJdMY7ZjrwqdRphQiGXGkS/5SxFlquAgpAJokclaYzkGVJtaGRKeO1NAtotgQS49EtzCtDto6y0ptU5fOzdayVugnaCUiIKgXqL4GqwcNqXF88Hdw1hgAvyMi/9TbdrdS6qfAz4Bx4P8E3r8Ax3xeRB5fgHoaNDgiFHOclYdQc69UcSbKLzJ4cvlo5L5tn+LyF35Kkjvj0gg3PPlVvveuv8buky7kzLd3lLusm36TU9/cyeunXIDChYJTWrtBjXL7GjFo0ShRaNFYLJIKURyhRVDKkRhpT5AkwppKRmAlwxhNmipMpslazi9F2oI40rSSmLQNPavpxDGxEpKozVjUdwSHzoi0RWFo6R5aLJFJUZFCiUXnXtBU7mROcNYZLlJJ5HxooElVTKYSrET0TEJGTGYjuqkzrTVW0+1HZNY5OJ3tO6sLY4VeLx8fWiHNKkIhy9xNsrYKb+oiYJR3EWuFzT/8j/mKVYXn3vvr9HpZuQ/4JMSgDKPM96QM1aDKI3S8fSsZiKom3hTyk8LzfxUpZLB8KRDJJ/qhtKOUahTERzEYhkr+kecXEWAGJ+EyYjAXylKwxcDae/DLuovrlE9MyraoYLU1sCgZkh44rlTXzDlbrQgOKfxr+KSN5zlWbEXyBGW8c/JsVAaMNs5//YF5OwgtCJnFwsp9jx4/NITGseGd9IwJ0GtNcP/Wj3HLzq+W+Vtef5jT9j7Layds5ZFzP8C1T32LduaiZSmEq3d+ix9f85fdc5arN7qtCZ456wYufL5yEH7hUz/g4Us/g5LIyT0AUlCRQqyCBLJ+hkTaLTAkEVYgtoLRhfWh68d0pJw/qUyT9hVJDP1WRK+l6WaKRCe04phOktGLY2IUsUpp6ZSEHpEGJYaEFJWlqFihrDDbqcicBg1WIxpSY5GhlEqA/z7/ugP4P+plRORupdQfAr8NvE8pdbWIPHAcm9mgwYJhqCRlqQae8x61FbMbP0yny5lX00WYbq3hgS0f5vqnPfPWl+/l/gs+zY+u+ov85g9/J3DY9b4H/oj/8tF/4gbmuliizlthrYuIkjetiIiiI52nASOIGIgjFyVCCVnmLBASFaHzCCs9rLNoACKt8ygiGivQsQraFq0siXVOOltxho0ylHL5qeoQ65Q4zqoVbSwaZ9ZqiFE4va7JY88a0aQkztLCJvSsRmxE30b0Mo2xEf0sop87AU0zRWpyS4xM8rTzTWFyyYnN5ScFmSHFdSn/VnkCbLzra8EtMkmbN867Aemb8pEs6oF8Py+/uPfWSDlJD6QSnsxBvOesblVRTJhteaBaPYHFREViVJYiXhtHWVfULDbKXI9o8R3eFXkDKJsowfeh8LbZShNzTAidm9qK2Mmf3/KaF/n5PuG9KNmRIctwhT+R4odG8H644sXbgtIjHYSqXPu/iGjkJw0WG8vyyVoMpsWr84EtH+aq537ERL+Smdz0xFf48s2/SzeZ4JFzP8h1Xh9+0Qs/5+6Lf4mZ8ROgJLrhsa0fCkiNdYfe4IyXH+KVzVeDxUlQFGirXYTXzCKxI3qdg+98u3Ymev2++7lrpdDWrW44v08aI5CJiwQmKFJtSW1CJhHjEhMpi1YxqU7o6BilLUoJkTLEUYpGsJGmm6yCkK42dJy9EPU1WD1oSI3Fx3uB9Xn6P4iM/Al9EUdqAHwWaEiNBqsDKyoiihqRnk994sxbn/sJ7dy8VeXWGt+64W/y1rozOeVA5Qv45AMvseHAbvav3zx0tVFEKJ0vaDeJKiQpOhd/gEZZIUuNGwghCBqVahBDFCmS3GRVKTfJi2NoWWfeKoCRiFhrWpHFJJpMIjKJ0fmgKNGWWLXQyqKVmyUrZdFUJgDOjUSEzX13WIkxokitS2dG0zcaIxGpgV7qIpukBvqpG7xlhtKBpzGQZjaXlrgoMCIqdwjqztz51nATdGOria21QjS9n/G3dwfX860t15LlXkZ9SUbhcBJCQsInIewwEkLCdFU+b1duMRGGi/XJgmKk7Vlz+ARJwHV4Fgj+pDx4YLz6h8hB6r46gm3ztsGtrvH8yqojSFdtqZMbBWcTSk7C0LjDzqfMLXmOGinkHfqEQ69x5t6ng3pKB6HDTu14oCE05kQjP1mFWCz5Sf6MpHGHe87/JB94/E/KzWe99SRnvvkEuzdezANbP8JVz/6gkpaI4eqnv8PPrvg1kMJZs+K1E7by9vozOWl/1adfvPMHvHzGVdU5qJBELsO1i0LFzl8UyriIY4VRqIIoUgi6lM1EsaKVT+YF5awtI8EYTWY0cWSJtSXVMWmUoLUlwhJpQ6xsbnUqdGl8ajRY3WhIjcXHLV769jnKbQemgQng5kVtUYMGi4iBacqKXW0csmRUX8mmGiwh0E0m2L7lI9z01NfL7ee9up1T9uziR1f+RX71tt8LrDU+eP8f8OUP/gOwFqU0okAJoPOIFdqZ6ivr9lICRCCiSgfxIoJEEdq6MK46LkxZnbVGYdlgjKtTp4p+Cu22s5BotRSRhkRHdNoQR5ZWrNEKtLK0YmexEWuDJoKS3AClcgehIjlJ4kxtM1FY0WQmJzaspp8pJzMx7viZdYO6NLVk1oXy7PcrM9w0LaQetvSpIeKsUSC3zvDlJ55MYcuP/ii4cwI8ectv0O9noQ8H8nmuJ1OopCgFM5CnPYmK5IUrh58hQRFKKcj5CiktAwJ5RiEnyVcBK6sKn+AIZSHi7etxI6FFhtR8edQiA/lX5/CcRkhE+Ofnb/MnmNUxyZ8VGZkuqlL5ftWphr4wBqxjqBE+tfLlfS3bOoz4cd8vr1lpTLfW8PSpV5WnX7eGWajJdN1qp7x+LNOV9GWEhtA4NqyeZ6wuHQX/zOrvvYfPeh/XPvsD1nb3lnk3P/kV/svJFzHdXsfjZ93CFc/fWm67dNet3HvhZ+i311DEl1IKHt36Qd6//Y/Kcme/vJ3xqbeYmTwJJRpjcglpEeIcwXWhbkEhyt9pVltEIkdaWMp+2xgnt4wjRZooWokmyyCOFXGkaLeglUGsI+LIkkRCEitirV2fHVm0StHKWVMeSlc+qeG91hesvgarBw2psfi40EvvHFVIRDKl1C7gsto+R4t/pJQ6EzgFR5a8ANwG/L6IPD3HfnNCKbXpMEVOPdq6G6wODAySVuygc452e2brdYJje27e6mvzb37iS/zZLb/L/omNbJh+o8w/fc8zTE69xdTkyUDlVwEp/BQUJfMJnVbl5NhiEevCvmrtIpw4vxK5bw6tsCiy1A3qEgGtKcuKOMsMUGitMBFkAq04wlhBIyit6RshjoRES3muBeGhlTOL1bjBQWYVCmetkRqw4ogM5xNDOZlJ5qwsUmPJMrAGMmPIMk9yUspN3HmbPAKGn+c7iSzlKPkgcdOjPwpuV7+zhj2nnIfk8hx/ElyM7Av5SZEur7w/6bTFJD6cWPsYJlEJBt2erV7hJV+8OkdaUtTyC8nHIJFRpfNEuGvAT/iT/pGFGG76UewrwX518oV8b9+4w/czIt5vqbpcNaLCvz614/vER0FC+WcRkBkhB1NWE5k+l7wcOgh9fNNNWB1X51g7/YWeTJcOTHM/NY38ZH5oiI2jx7CrVicAjvu1rb9u5n14XzpaEA/VgoMPEyXcte3TfPSRL5Z5p+/bxZbXH2LXaVex/fyPc9nzP82tEaFlelzxzA+575JfrNhXFE+dfTM3P/zHtLI8TKxYLnzmJ2y/4lewImjPv1AhRXTRwQQMFOSI308rIkTnVnuFn6h8YcA6PQrGaEwMxiqkHZEqIYo0SQRt0Wjt6okjIdaxO4bAbNaa921o0GAloiE1Fh+b87/TIrL/MGV340iNk5VSbRHpHcNxb/DS64Er8s/fUEr9L8DvyfxtjuttbNDgnY1hypR8ANVPxrnvvE/wnie/VG47+60nOPPNJ7j1il/js3f+s9BaY/v/wzfe9/fCysrV/WKgpnAu1XVOblBEUQXJ/T5YkMi6YZhSIAYdKSQSHNGRrw5p50nd2gg38bREWhFFkCTKST+MCyMXaYg1RBFoJbgFJ2dBUqTL/8VZbDirCzeISjOFFReetZ9VFiNpVshMnEVGtSplkdxRqDFuwu+2GQr5iS8zKSUkXn5nzyt0pvYEl/OV827EZH7EE2/wbm055i19aRCu4AwnKry0NwgvrUAK64khK/F1kkLEK++TFFWlQ60sSmInmMj7E/ziPOqExEBVNeuLeqG5uopR5WRorj9rCeQ4XtK/+NZTbI70RVI/3lzNHfLb3fba/B2ELhbKZvmTyGayPidGWx81OCrUr6UqXmyL+BwOGEOKk1r6iwVlW+Zf0eGKP7H5Zt717HfZMF0FArzpyT9j16lXcGDiFJ7a9C4ufPmectuVz/6AB7Z9HJOMUXCc/WScp866mUt3/aQsd9EzP2L7Jb+IxLHzgyXakRgaInHERHF+AhhchDNiUEaRYZ2lRkFGKzCRIhbB4qSkUWTJjCI2jgONIkWsFWkMqRG0hki5RYxIO+JEKWGmX4vitAJhJSTIF6K+BqsHDamx+FiT/52Phx5/VDUJHA2p8RrwVeAO4DkgA84EPgX8GpAA/zPQAv7eiDoaNDhqDAyBjtdq45BDDDO7V0WotMM2aZ6DuSHFHjznA1z13A9Z091f5t38xJf4L+/9+0x1NrCmu6/MP+uNx2jPHKA7tjasxOZESb66g1ZI7v9BiQvRWlhzFM5GJScWxILEgjYKG+WkgRUSG5FphckUtuXIkDjR+eDHWVJEkSKJnfWG1pDEjtCItMqJDIWOKO+rk00UPiW0O5Y44iQzQmYUkkctKSQwqbFYU0QzsaUD0Cx1fhKstWTGjRytWGwuOXHe4auV9yoEa0VqXPizfz8gPXnk+v+GLDNhBJEyNGtpBzDCaVjlcHOUJYJrqHL3yc8X/+HIrUlU3bdF0Y6K7PDrKSQZQYukdNmBx4DV7CtCy5/A8GLoWeb/H9UgT0qLimFWI4OGHxLml20PZTeDVjXipb18z5IjkKWAf6GGGpwAXPHSbcH3oQ5CR+y7kFjk6eOqRGOlsXAY9vwdb2Ohsn/2GlXPmmdNc241OuLObZ/hkw/+uzLvlIO7ueDle9m5+Qbu2/bJgNQY609x6XO38dD5H60qsfDolg8EpMbkzF7O3n0fz599AxhxTkI90lZ77zYpQrkW8hTriHKlFVHhQ8q6vtfEmjgWTCbEseun41iTZZooEiLtfG9EkQsJq4A4yq0zlXu3Tnc1Kx2N/KTBXGhIjcVHJ//bn0dZn8Q4GvHb/cBZIpLW8h8Evq6U+rfAD4F1wO8qpb4kIg8f4TE2H2b7qXk7GrxDsazkJ8NWpAt/EIcdJs2z3cW8zZvEZUmHuy74DB95+ItlsdP2PcfWV+/nZ5f8Cp/Y/m+83YX3PfiHfO/Gv1kNKnOrinyK50Z1kjspKybh+QTcalv6Y3Bmro6x0eKsJPAcYWrtPKtnkUL6uYNNxMlPtAsjF8eOHFG5ZUaW5RYbcWE94NqltfPibkylYc6MCzVbhF4VwOQyExFnjZFmlaTE+GnjnKBaK4iR0vlnJS/Jv5dSE1tJTqSSn5zxTCgjmJ04gUPjJyGlk9Daar9PVgjhxLwwHfYmzQNGD761gZ9PVXeQ7xExtQ15/vB6StLBn/iX5esEjbdv9WXwuAs0oKscc3rXtk6QSFg+ID/ytMVWRIytypZkxlBZkO9Hw78fQ86zTiQBpxx4ic17nwnOZ6iD0ONFaDSSkyNCIz9ZOCzLq3iUjZrPc7Fz0/W865nvcPKhV8q8m5/8Ck+fcS1vrT2T5zZezrlvPFJuu/rp7/DIlg+UsjSAtzacw2snbOW0vc+WeZc+9X2eO+tdpaWLyt9L1rr3G6qKjlI4AcfkbdbO5waZBhG0cpG9MvL3GyCiMMZZRLp+NV+YMG4RIlPu0FGEC++a+zaa7S3LO9ygwYJh5dN2CwSlVKyUkgX4/Eat6m7+dz5itraXPuKA0iIyPYTQ8LffB/y1/Kvy0kdyjJfn+gCvH2mdDRosFg5PXBxm/yPYPRhAifD4mbewdyJc7b35ya/w9ObrmW1NBvnnvbKdOHOvCjdoKVbq/Um3lBYR5UTeusmfZI4IEJPrPkSwmbNwcESBxRpnCZFmliy1ZMaSZZZ+v/qkqdDrWbpdQ7dr6fWEbv6ZnhFmZoXZrvs+2xVmukKvL3S77nuvDzOzNk8Ls7OunjR1dfZ6hix1f/t9Q5YZev2MNE+nvYysb0hTQ9bPMJkrn6V5Ov8YYzCZzdMWYyzWGNa/tpNWLzSKe+689+a+OCzW2JIYCdIFeSI2/24xxmCNu3ZiwvLBR6QcsBYfY0xZjzXVx2QGKdtR+/j3VZwsyG0rngNbPBzB8Qt7XBf6lKEf/3kJjnEs/7zzHmz73J+iTbaIbFLLD9o5ov5g+ZMaGeRZdBTnGZIqFQFy9Qs/Dp6Xqfa6ykHoccRQ+UmDBkuMlfo4Hq7dCoUozR0X/mKQv37mLS5/7ieAcN+2Twbb1szuZdtLd4X8pgiPnPfhoNzmNx7nhH27q/d1/rewuiv7db/vtuKkl6lgMyn7NdfnFf21S6ep+/T7ll7P0usbl+5bZvP+ut/P++keZX/c7a98s4RgcWMhPo2pxqpCQ2osPopg2JNzlnKY8NKLFVD6vwIH8vSQ5agGDY4NA13Eiu00Dj+RyosNhVHRwIDpxEOvcdGLP+fuC/5ckK/F8p6H/mM52xLyybbYcqJNMNGtPhVpYcuQpyYz1Se1mLQgB0xJGqR9Ryz0+45k6HYzer2MXkloGGa7hm7XMDNr6fYss11Lt2vp9sSRF7PCbNcy07X5d8PsrGV21idGbF63CQmUnqXfc+1w7clcJJScrCjbmxlHwqT5eaX5JzNY72NSy2V3/IcB6cnDV30uIBYGPh7xIEY8YiIs4wZBNiAvHOFhEWMQa8p7Qj4Zx5+Ql/nFffSJASnrLyfxVgICqyRegjpzIiZ/bvxt9XIlaSPHng4JiupTEAWhFY1P2oRpymsQEjtlfdaGNzP4beIdI88tEvUZzYjfaKc/xYWv3BvkPXzWe9xKrEcILbSVxuB7Zc5mNpgDjZXGwmHY87fk3fdRH3/u50Lyip899UpeOWFrsO2Gp75J0p/l5RO38fKJ5wfbrtv5TVSNaH1m07uYaYfy0Uue+p73bq/6Zr+/MaYg6PNP/j3Lv2d5P532HcmfpoZ+r/r0upkjNbomX0DIPz3DTL6gMDtrXB896/ruBg1WMxpSI4eIZLioI8f6+Vqt6pfzvxNKqfWHaUYh7XhLjs1J6Ejk51lEPzljMY7R4J2NUfKT+iB+5TDklmKGU0ykAnjyk4DzEOGp06/hjXVnBcVv2PE1Hj3r3fTiTpB/4Yt3ICZ19XjRPeor7VWeN6nLV6ILqwJjLFaktFAwxSS9+J5ZstQRAVlWkCCSEwxue9qvVoPS1JSrQ72e+zhywg2cijK9ns1Xkqp0v2/o91xY1jS1pP1q4OYIDJsTFZU1g7Mwyc8jKwaBprQ88c+ntNTIMk7f/VBwTQ+uPZ3ZZKK0uigHkYUVRp3Y8AmOOoHhWW4M7ltFZimtQqzNSYkqXRIhBUlVWlh40hsrjijxLDCK+259wsNWkVxKYoPh6eDZKa07jiXtEQ/Fr0OE3B46P46Xzn8PpQTG2oG0CIFlSmW5gcsr76p49flEynzIEB/CZS/9nMRWxo1GRTx85nvzrd5vcLEgXsQTPPlJg3lj5fQjyx/Lkh46BvnJ0EUIvCxxB7j9ol8JNo/3D3HtM98F4L7zQ2uNE6Ze5/yX7wkIz0zHPHbu+4NyFzz/M5LudEXceqS4b9lXWq35fZBHqhf7OFJfyj4yS43zWZWZajEgrRYAiv46zfvdft/ST1c+qeF3QQv1abB60JAaHkRk5wJ8DtSqfdJLXzDq2EqpGNiSf92x0OdWP9wi19+gQYXaai611cnlj8P8XLxxk3im+W5Xzc8u+qWg+NrZvVz+wk95YOvHgvzYZtzy2H+tjjpitXlghdzPs9Ugv7LkqMxbnYVDMSEXF0o1LQZFhixzg6Rez9D3B0Z9txrU7xXERmHh4UtYnB+Nft+VzzJXrhhw9fOVpiyzpdykXJHKiQmTZZjMVtYmJXFQEAqhjMQYU5IE5+78MZEN1XePX/LJAWIgIInqlgyexCQkk0IrgiDf1u6HR1ZIfu1LiYg3zvb9hARWFSP+1a0mhso25kgv5Me3IPGfQ/+ZnWsFvR52tqoH72/x3FckhvgkTVGkVi6sc2QTUGK56sWfBnk7T7uG6c660TstFpqIJw2WKVbm4+jeDqEllE+LSvlXEF4+YSvPnHplUMO1u77PRHc/z228nDfWnRlse9fOb4DYYGTw2JYPYFU1pWplPS58/rZam6jIkByVpV2+zes3iqhgjsyQvK+uFgOy1JD2TE5iGNJUSklKsQDR75nye9pf+aRGgwZzoSE1Fh93eOn3zFHuGir5yZ1zlDsm5ORJYU/36mIdp0EDHwNzi6UkNY7p0HPsLLUPbvDywsmX8NJJIZ/5rqe+yfZzP0yqwxBrl+/6kVulh0H/B/5kz5us+qs5hRm/LUgC46Uz40iMzJCmWSlFKWQeaT8j7WfOtLWQpXQz97df6HdNKRkprDWqv7lJbM/kGt+sNJ118hKbfy+ObUuSpfCPkWW+fMZZaTgrDDeoK8iY0ieGkdLfxaUP/1lwLa2KePyCj1TWD/lqWEU4FNeqko2ERIf1yAhbuw81ciOwGBjlY8J6+9iS/BqQddjhaX/QO4pwGZX2iYECYYQiv+yRpWVeaY8QCZ7r6rcjwaSj4Dfqud5pFPegMOc4rOSkmugAbHnjUdbNhqF/HzwnXG09HvT/SqJ3lyMa+cnCYdizeNy76vrP2CMpgz7wCBGcR72vFrj9wl/CpykS0+fGHV8Dpbhn2y8EdZ108BW2vvpAUOeh8RPZdcY1QblLn/6BkyWW775CTjrE4q9mSWjsoDTFGovpu37b5H6n0nzBwElSMvfpOxmp68Orfrm/GkiNwTWyY/o0L+DVhYbUWHzcRuXD4tfV6B74N7z01xaxPZ8HCvHf7Yt4nAYNSiyriCjHdOgji4ji0oqfXRhaa4z3p7ju2e/y6DnvDfITk3LDk3+W+2KoJsH+KnQ+Nas6ZarJoS9/qJu1Fs4ri08pwcgq0iDLCilFJfsoiI9igJVlhjSzpYSksrqw9Gs+MJyprFtRsqbw7WGdnw9TERomMx5ZYao2BCa5lVWGNW5wWGxPZg6yYd9LwbV8beNFCFHo/yKvR4K8Sjbi+ywJ9yO4dv6+g/kheVKRFgTpgrQoJCGl008Znh4gVAp5B1T+OgTPemRIemBQV9RPNcCfI10+c971mFdaZO60hERNMOIsCZL8xkr1xz3+3jWYA8X5Fid1zfM/Cp+XdWfx6rotQ8nJxUQjOTk2SHPtFgyjerfQ4uH4QokKyfz838IeBPauOZ3Hznp3kH3pi7dzwsFXeOb0q3l7TajWvn7H14N3FCI8tDV0GLrh0Gtsfu2RkJCpyVECwsP/7vl4Kvs8Y8p+zxR9TUmKmFxKmvevhUTF91FlzMJetyVAKPNcmE+D1YOG1FhkiEgf+Ff51wuBv1Mvo5S6Afit/OvtIjIQElUpdbYXYeW2Ids3KKXeO1dblFLXAf9X0TTg38xRvEGDBkeLvJ8sOMzXhpi3Xv3s93lgy0cwKgrzn/mem9B6xE+xau2+FANMqcgN601y88FTNWH3fC+Uco5iEu75gDCFP47K10aWW0oUZq5p4bAzt7QoHHn2c2sMU0RWKUiOMl9I0wzjyUZKmYkx1d8sC3TFQdoW/kFM6Ty1mBBf8dCfDgzI77vy86GVwBDLF0cShddtmFVMYBkzl1RkWP2jPrX2cJi0x2IFz5a/kknZ7sOlvTxXGV7Fo9NFe7wLM6+0VGlq+aO2VY2r/pZNLrMGr0ewy1AoTjnwImft2RnkPnj2B1zkZM+a4/B1LRAaa4MGyxG190X1W115mE80lDu3fYY0qgIVarHc8sSXEIG7t306KH/KgRc597UHg9foqydfwNvrNgflLn/6+2EfQvUSE3ziF0cE59aHWCpiI7dQNFn+KdOFTDMPiW6qfjvz03l/bleBT40GDeZCQ2ocH/xTKuec/7tS6t8qpd6nlLpeKfU/Aj8EYlwY1795lMdYB/xUKfWIUur3lFKfVkpdq5S6Sin1GaXUH+KkMOvz8v9MRLYf9Rk1aHAEGBgGLeXq2jEd+sh29idHP7volwPNbWJTbtj5DR47O1wdapke1zz1rYHJbGHSX672B9IIW1t9qDm8rJu2FqFQvTCpWSlPKRyOeeFVMxcKNs01vannb6McNJVSlor4qAZdWWBiW0lJCisRF0XErTyJS9fJjUJu4llFFFYV5z17W3ANu60JXt94YWkNUK721ywrHCFUERaBzGMEGTFXRJBiX+URCBLUNWTVc8RvYS7ZxnwkHEFdxedISJchn4WGUtVko3rUh5xfwef4pIrIwEylbGNR58D1cBuufe6HQe5Uey07Tr9uRCOP/vzqbRt2LVfmFHH5oJGfLB4GfvP++2apcJTHn7Pd+btzemwD288NrS3Oe/0hNr+9g6fOuI49k6cF2wrfGhVhoXh4y4eCMme/+jBrD71W9Q9FfzPUys9zFJqT9yMlKcb1184yIyv737SUk3q+NvIwsP1s5ZMaA7z8AnwarB40pMZxgIgcAj4BPJNn/bfArcDdwD/ChXs9CHxORB4+xsNdBvx/gW8A9wEP4OQsvwkkgAH+PvB3j/E4DRrMG8tKflJg1ILwnCjafZidh5ze3rVn8OhZ7wnyLnnpDh7bfAtGha/i6576FpKZYHJdDijrk+5ilYeC4BA32UeweM41i4gTxcTY9yWRW3WY1I/wIS7KSG7SWhASpYNPY0ppSUFUZJ72N8sqCwuTVYRLZaFRRDCpHJcWgzvjeYivx5Qv/WlY57Byw1u7GOseDK7frrNuCC0qBvxQSHWdagPMIozu0BCmhVSjkIccUUQQl67kGR6xUrbNv9/5fS7vL2V5vDbjnc8oMsZV7GtJ8tH1EaZDcmYhPj4x4z3jFI5U3bna2nUtChWSk6HXrPwZhr/Tydl9XPhqaAz54Nnvx0QJZfHFhDQRTxYSi0G2NXBYlv32MTXBfxcMqVPgvq2fYLq1Jtj8vsf/FAHurVlrnLbvOc564zFyVgQRYceZN9FNxr2qhUufKaRuUln0VUxtma73NWWkFPGlknn/VC4EVJLRIAx5EUnMC/FuVwGp0aDBXGhIjeMEEXkWuBJHJmwH9gMzwFPAvwAuE5FvH8MhXgV+GfjnOIuM54FDQAq8jXM++g+BrSLye9KMBBq8EzBSJDw4+ZvfbCYfhAxMHIcUo24SL9yx7TP0o7bXPOHmnV9j5+Ybgt3b2SxX7vrBPNpTVO2v/kpp1upHQwFCnw9CaRlh8zCwIuRkg2dJYW25OlSULXxlVIMmJzlxJrIuX8owdCYPSefIEF8HHGiG634uvEgkocVCSFZc9+AfB7dZgHsu/5WAwKlPer1bSbFKJ/6AcygxUNwzNdTyYVREkOD+eJ/696K99XG38k0Zyr9H86lDHUW6eP6P3lHo6E9BWLhPKa/xblf9uo6SnFTSHH8XV+CqF24lkkpbnuoWD5/13iHXZ5HRRDxpsAKxEh/Von+v95NVgeKP0Es63LntM8H+Gw+8yCW772LHpuvZN3FKsO36nV8v30kKyOIOT5z9nqDMxc/dRpTOVq/u/JhFf1OSuUV/lL8MfbK6JGut5BaLed9cWyQoP6V/DRMsTKx0LByhPtCdNFgFaEiN4wgRmRaR/11ErhWRDSIyISIXiMjfFpEXD7PvCyKi8s97h2zvi8hXROR/EJFbRORcEVkrIi0ROVlEbhaR/0lEXlis82vQYBQG+o0l7kmk3iIZ0sYjqA2GrxjW82baa7nvvI8Heee8+RhPnXZtIE0BuGHH1waPMmwyWJdUBB+bD4LCSCHikRaFaastSIpSMuINhoIBku/gs9peOjLL6lYYlVVIWaZ0YGkDi4OKsCisStyZ+xPlynBAwBo2vfZocJ32rzmV2c764Pr4A8Tgg2DEBHnlpJrKh4St7VNg1PTfn9CHGD4jqMaz4bECAscnrY7wYa0GcOG1PFJioronR0qIjIIaLOdMF0LipziJoecm3n5Dftt5LkCSdbnypduCLY9vupHZZE11fscBzTh64dDITxYPw/rtJZ8EHtXx6zuNWIjIP4+c+R7enjw92Hzzk18hthn3nv+pIP+MPc9w5huPB3U+suWDiPde66TTbHvhDkr56LC+urAQ9Eh+hKCvrqKamZK4KCWdRT+chURH5vXTWWOp0WCVoyE1GjRosOhYbmasauhE6uhrG5rlLwh5A6jtWz7KVHt9UPymnV/l6dPCcHCddIZLdv04WFIQ728w6RywMHCyAd+CwFoblsvlHqXGVzyiQSqLjsKxaCELKVeB8vwqdKyLnmIK6UpW1WeMUEQQKWQmIlKazbr2eeRD3qbCsqQib7y2Ipy/6zZimwXX7dHzPxYMFpE86kh5PbxrZsV51x8iIUGktMYYKSHxV3sK0qCQpZTkS2gtUBEUPllQfZS7CIDkP5N6On+s8gnG/FaiiucmOI0jS/ucxgIhIGvq173IgyCySVG+TrQEkhPxW1q1+NLdd9JJZ4I23HfOB48roQGN5GQhMYxMbrAwWG79tmvD4lciUcRtF38uyFvT3cc1z3yXJzffyIGxk4JtNz75Z+X7B4QDkxt5/tTLgzKXP/PDqs9AgneO6zcYkBOWIWDFk6D4/XlNohLIUwrn354V5OEiRK0E2HxMs5CfBqsHDanRoEGDBscI5/AwNIUvVoyl+Jd3nmnc5o4L/1yw/8YDL/HSyRdga4Otm574ymEmkmrk+KyY9Pqra75finKSbwsZSEU0hCFMbW5pUREF1aDJlNuNyZyPClMNvgqrjiokXeUrowjLWjn99HxoiFCXmQyzHrjiiW8G52xUxKPnfai65jWphPWcuoVmwCX/EJBDxYVTSg3mF+RRmfbqDCLX1EipwibDSw/QBepw1g9V4wesT4Z+CpLAP4Q6sjSLi+AqeNfeb4dPaAxeMk9ygkfm5NA247rnvh8c85mNl7Nv8tSFPpX5YTlMEBs0OEKslsf2cOfx/CmX8cLJFwd51z7zHTrdg9y9LbTWOH3fLs5+4xGgenXVHYaefOAlznjLi7hUe5WX44WAhK5IjmrxwSPUiz7Z80dVfs8lKmJNbqlpPeJl5cKNTRb202D1oCE1GjRosOgY6EqXmB0fMFE/puYUK+BD6hwyZxURHj/zFt6qx71/+ts8V1vdGe8f4sIXfl5OxMvjSG3Q40/+ayatBRHgr9b4fyvHoNXKTuHss/LBIYETsmKQVJnFCr6/DWcGa7ztxvORUREX+O2WKj+QmQST/yo/7k1z4oHdwfV69eQLEB1Vq/clsUNQnztmZbFRQHn3cEB6UZUK0lW1wwmF+aC6peG+c0Y8Keb9R/Jbmu+EJG9QIIU5hvThrk1wneZzPvM65bDQha/ex7rZvUHe/ed+xCVWyUTtnYhGfrJ4GNZvH/euu357g3f7ILk5PxzmPAREKX56yeeDhYaW6XPLzq/yxOab2D9+crDLTU9+FbGmbOALGy9h38TGoMzlz/wgaHOdKC+sJH1fUr6j78BJtg0XBer9eOmk20jga6NBg9WMhtRo0KDBomOUGWt9gnO8TIkXXX5ymGKiNLfXzFvXzu7lrbWbkFp9737sT6A0J5DagE4KpQK+WWsZMaNczaEml/DyCFeAyoHSCBNWn+goyQ7rBmNFFJTK4sMbmBVmtP5EvVamascQksCXn1jhuke+PHDl7770l4Lr4JMYxSi2tASAyudIOYis6h8lISmvsc8siOVYooYU9RTfy8gfzJEuEkoNH9OPOtg8PgVJc+QalRHpev35tiLyTpBfNv/w74KqjM9aDStouf7Z7wZZL2/Yyu4Tzq92XwTMSW4d99nh6sTx6jPeiThcv72k8Pu8I/4BH6bPzje/vWYzj515S7Dpkpfu4JQDL3HXtl8I8k/d/zznvv6wV0c0YK2x9ZX7mZjekxPqo6NrldfXcxQ64BPKs5oM8mQYuVF9Vjr8/ndBPov18m+wJGhIjQYNGhx/eJPMckKz1IOkY8CA/GQYyjmoK/f8KZfx4kkXBkWu3vUjXjrpgiBvoneQi5+/bY6DD36vImaEB/dXt+qDA4TQiVlpwupWh/AkKUGkEnHlbOYGZGW4uXzAUJRBqMoXK04iYT3eClW5aiUyOKATYdvzPwtOu5tM8NrJFw4duOD9LZ67kkijPvkurqMfnYIaC+E+JbExcCPmEzXE/4S3aiGkIf40f9gx57KwKK7REbdjRLqOUduG7V9/RkdKTnyCqDZQPe/1hzlp6rUg756tHz++tvT+Ow9Wjx1/g3cO6uTkcui3j/Lwc/78iqEJwh0XfJZ+1Kn2Q/jAY3/Mk5uuH7DEuOnJrwa/8R1n30LqRTvTYrls149d3VIcIe+Py/6o6g/Kvlq8/iYnOPD7y6Bf9t7lQ0KiN2iwmtGQGg0aNFgSuD7d62Rrk83FPbbUM46tNplnu/1ySnHbJZ8PLDNapsdsMjFgrXHL4/91aCPLa+hPyL3Vq8CqoPh4fjXcAMmGKz513xY1r+xDP8FxqomoH5Y1IDQ8fxm+LCSYite++lYXJ+x7nrHeweBaPLP5XcE5kl+boXfFzxQ1sCkfQoYT6nmgNuZ3n8DD5jwmsiPDEPv3cJ7WEcV+hznMkcYsWSgopeYvH5Ahv9thhQayhBue/U6Q9eaaTew6+bJh/MfioJlMLBoa+ckion5t68/xEj3XR7q6PviISI0AHfIiyLOm2+u46/xBHxoXvXIvd13wC0H+KQdeZMsrD5R1d5MJdpx1U1DmkuduJTJp3pdRjQm8ftNJUPxIYCFxIdazbKwTG75MVMK+drX41LAL+Gl8aqwuNKRGgwYNlgRL6Vl9QH4Cw8c38xoDBME8R+80JHrlm+vO4tGz3h3kXfDadl4+YWuQN96f4tJdP6mOMWS1zA1aBjW5waqNP2gqCYtwcFTX6RbWGqWfDc+s1be0COQqPqFRG3iNdgAqw/P9laf8780P/ueBq37npZ+rVregkjKUg0Vqx2GAkKnIn2K0U9xPPz2CvPBIl8BL/dxPBXNW6N/nop48XR5jRDq4Bt51WU4ICCOfz/IH4QUxRBFmd371Fjjr7R2cduCFYPvdWz4WPCvHDcvwHqx0LMfn+h2DJSKUgv77KJrgWz5UfcPo8g+c+yH2TZwS5L37iS/x7MYr2DN5WpB/4w7nW6PoZx8694PB9oneQbbuvqdoyPB+fERfyIh83+dG0Jd7Drj9fqFBg9WKhtRo0KDBssJSrrwNyBbmtxfVZLciDYYVUwye388v+Cy9eCzIi01/IBLKzU98uRqAMXpuV6wSFZN1v7Cb+OZ5VCO5csDkD4xqBEhwfrk8xWa2kqkEoVr9ifUgsVJMVKvB5RD5SU2KUliSYDI2v/lEcM77J0+l214bno93XqUlSEBYeZPpoYzWXPYLtXYXn7L0kUUNCY4+YnBbH3kvpBxkqTF4rgQPeND2kacx5NqIcPPT3whK7Rs/hZ218MnHDcv4HjRosCJxxAsPI0rMUcTohFsv+dUgb7J3gOuf+faAb42TD+5m2yv35XUq9qzbzO6TQ5npVU9/ryScq3f/6BMp+hbfosMnZfxyJSmM14d6ffRKx0jy5xg+DVYPGlKjQYMGS4KBrqQ2IT3eGBhUyNwDjWE1DNRYOxeRauBRFJ9pr+XubZ8Oyp124EXeWHdWkDeWTnPlM98vGlYNbupz8Zz4qFQctYmi52yzXAX3V6xq8pMir7RqmMe/AgOmr2W7K/uFQJ5RPxcIaxS4Zse30DXS6L4LPh2U8W+J3x5/ABnmDofPJQS8QtnGESPhwIxkRCVDiAqW6NkPMOxeLNbHP+YxN7Tyr1HgnLceZ9O+Z4O97t3yURchp+EXVgWWM1m36rFc+uqFqPEwVe7aeDm7Nl4W5F3z7A94c92ZA5HMbn7yKyiTlf3/Q1s+HGzfuP8FznhrZ0hWD3k/hv1mQVSEcpT6AoAv8wwIjlqv16DBakRDajRo0GBJsJTyk2FY+IgogxUEKyneKsH2cz7I3prTscnZvQPWGjfu+KoTglaMhWcl4JEo/mS5zPKGNnnaDoSQG+XIMhw8+U5Dh35kLpnJiPxAZlLJYyqyxv25/NkfBtck1Qk7zn63R8x4ZE1+L4oxo08kKFeIWnaNvBg8F1usmg277UMqKceo9WsStFcWXipyhARDcQ+Cc12gdP1TdwwbtHmeJ1VdYsmvmbt+7jXiNt7y1NeDvfePncRjm26a57GOHiNXAJcDabXK0Ky0LiGWg/wERpOlR1DjfDb/9OJfxaiozI7E8N4n/pQ7LvhsUHzD9Jtc+sLtrmkCz552Fftr8pWrn/7uQHuHWqxB1bfLYJmq3x4hP/FJj1XgU8PKwn8arB40pEaDBg2WFVbHypscUUQUiRJuu+TzwaY1/YPsrel1O9ksVz37vbnrKiZ5ftonOHySwB80EQ6mggnoEC/rdZlKQST4zkH9CbObiA6Rn3hpfzXJ/1sc44S9zzMxuy847V2nX40oNTBA9CUIxSR3SKHaxTh2OYlAEE2kXI1j7udhIaQiR2Jya2sEVnGyCxXx5Giinxzu4gaEU+1ehnUqtr7xyIAvjTvP+6SblNSIskWDd+/zRi7yARs0eGei3n8dKeYTDWXv5Ea2nxtaXWx541FAeHXDliD/hp1fJ856rmVK8eDW2n6vPcj6Q6+VPd6c5FzQj1L1TWW/6hG8Mqw/99IrHHMuphzlp8HqQUNqNGjQYEkw0JXUJ+DHGVJv0TE2Y96DiHwwsmvjFbxw8sXBpnVTbwxYa9yw4+uIsd7ErtbmcnAjpQXASIuLnFDA4vnCdOQDki9j5N9t4YR0YDLsPpUjMqlMZPPyLs8jOQYIj7D9Qz/Aux/+4wEHoT+//Av5QK74yCCpkJcODuVPkMu2zHOy7e/sX+shxRdlGutfF8vAdSoGtnNhqLPc44wjin4S4DC/K7Hc/PTXg6y9Ext5/Iwbag04ikMfBqth4rCSsDpI8BUKf5K9hBNnKToA7/tc7RgeDWVEp1MVAYG7z/sUU+11waYPPPZfuKsmIZ3sHeDKZ39Ydg+Pnfluusl4UOaqp79X9rnuGLX+ZAj5PChHCTuysu8eWDyoEawNGqxCNKRGgwYNlgTvRPnJnMWU4tZLfhWrqtdygmGqsz7YpZ11ue6pb+aDnCK3NhAbMi4bKQOwVdjW0KS1nh4iU6lJTgryw0qNWJhDZmJ96wgG21gSJFmfzW89GVyL/ZOncqhzYrVqlX8qaUkx6C5IoOI65BepPO6IafIc5MUwucWCDBxHkDr161dFPJFaxBP3d76RQpYS85sEjZhkMJpA2PbaA2w8uDvIu+O8TyEqOizZs2DwJyoNFg0NibSEqL8blwgLRdBWhP3o0+knY/z04tCqcm13L2e+tYPnT7kkyL/u6e/Q6U8BkCUdHjnn/cH2i1/8GZ3eoYqkkCGyPa+/rLr36vvQfnhUP70KfisjuuRj+jRYPWhIjQYNGiwrrI6Vt/nLTxTVavWetWfw8NnvC4qs7e4bsNa4/ulvgc2gJAH8Tjqf3Jb/GDq5DSZ33oQfBts9UKeUNXtH8VaEqFaKKsuRqr5ApoCq6vAm7/6IQ0R4145vDjoIPf+TRQMZmPgG0hJq10rK5o1mNKpNPkFjvVHQQkYXOZxcZPD05iH7WAU/pfBRCC/CsGsemZT37PyzIO+tydPZcdp1bp9R1jgLhIE2rYr3WYMGrKhnee738aht/nt09N47Tn8XL550UZB3zXM/5NEzbwnyOtkM1z39nfL7w1s+FPjkiG3KZc/92H0Rd/x6u8Pv4aJFQWD7/XJhpVdZq0jwr0GD1YyG1GjQoMHywFwTuiVpzxyf+ewu1aCi+AwbJ9UnrXds+yzTrTVBmTRqBd8T0+d9j/1JbaJXfYJJcEFADCxRQGneSnWdq+te8RIUq/7+p1wJyssVZrGeY07//vlkSHFMYLgUZcgq9xW7fhRcg0wnPHHWu4urWLumtclw+XfIzasb1QxZwhmQkxztMzniearOe+jprFqE8pPD/djmd1GueuFWNsy8FeTdcd4vIIUF1CJJTgbeVytoAriSsTpI8FWCJeqrh03Wj23cIHOfilL88NJfI9NxmaXFcs1zP2LHGdcFRa/c9UMmZ/ciAlOdDezcfH2w/Ypnf0RkekWja6+/kOAXIbSoZNCSoy4nddsHurQVCyuCtQv4WQ0XpUGJhtRo0KDBskE5Yaz1wEtpNhlMWI5gtaNcJfFJAgbPJTAjFaGbjHPbRZ8LyrRNb8Ba44rnf0JiukOOPMwz/DCiyJs0epPryuQ194dR+tWoTdqKctYGfjuK41F3xiUMtKF00jVkxFXKQqyw6fXHGesdDLY/vek60IowgkkxGK3aDFQDF6WquzdA8uT75Mc+JjlJjbAoznV09BNWiMOyUcTD0X3857C6BVJe/+o3ZGttGI5Of4obn/l2kLd7w1aeOvWqYz7zeWGATWN1zCSWMVaDSf2qwXKKhlL8ParH4/DnsXdiI/du/XiQd8beZ3lr7ebAGiOxKbc88eWyOdu3fDTYZ6J3gG0v3T3w3vPll6PkKOWihAzm2SAaiuujm1AfDVY7GlKjQYMGyxf5gHV1rMbNU5ICPLH5JnafcH5t7xCRWD76wB8w/6XnuqSkqrRuvloesLAiqOdZj9rxB46Sr5oVk9PCGsMjgwakFB6vEjTKa++7H/uTAQeht136hbzYMJkJQftCuUvYbIs3kfYmo8cSgSSwfvFu3Lwjgizjx10EbLn6J4dJz/2Bqlx9BjJa2jP64tz09DfpZDNB3q0Xfo7S0miRMOezsireXQ0arDwERPsRYj4/23u2fpJ942Go1muf/T5PbgodEl+8+0427n0ORHhr/Vm8eHJNuvL0d0BMfty55Cdzfxe/Mx3Rd694HKZPOdJPQzqvLjSkRoMGDZYNhnYvvnXAccaAVcYxNmP+chrFjy77tcBpaIRga6/s81/ZztjM3tri8JBVcWd+UMv2rCWKTzEhrZm4Bqs+/orRMAegvkMyb2AVhnmtGjxg+yJhotM9wCn7XwjO+431Z9PtrAvPuxzIDVxK/wYMrKQrb4cjnn7WL7N33strMDnkmTgqywpXmxtHy0B6KFs1rDXBTZIR+UeGE6Ze58oXbwvynjjtOl5bf+68/fYeLRrJydJhdRDeqwQjycvj3IyizyubdaTtqBOtw1/iJkr40aV/IcgbS6dpp9P04k6Q/77H/kvZhu1bPxZsO/HQq2x99cHB4/nEhNdnV31YfTtln+0vVAQSlRUOsQv/abB60JAaDRo0WDYYGhFlCQetSxIRJS/69tpNbN8SxrbX2Fox4ZP3/+tjW60YFfK1lh4gOrClRYIfwWRA8+sPpkoioxijCXgyj/CYjgh5z6ODYVx/dsmvVAROeSwCfWzFjUh4XK89Yo9iRFMMHOtyEs83yOJbXRw5GTFgolyL3HK4dBGady6yYr6OU4ttIrIwzlat8OHH/hNRvtoJkOmY2y/4xaOrb54YmCisgknDSsNqmKitJiio3ulL1oaF6bfnEw3lhVMuZefp1wZ557/+EM/UJG+b9j7N+a9uB+D5jZfx5trNwfbrnvpm3pfNLTcZKkfxJaBI8Jou++fB5YMGDVYdGlKjQYMGywYDA9RiNX1VrMbNX36i8n93bfsMhzobgm113xqb9zzFiQfC8JVHIkkZMGflMNFP8oGUkmrfYhBZXyEKxlCeEUMwQvQmuANjLrGc//J9QdZsaw27T7kY33KgqHgumcnAcYec5+FQDhqH7X8cH9GQIzo8cTWMiJhP9JT5yj6OFkqpBZmUXvzKXZy1Z2eQd//ZH+Rg58RjrnteaCbWS4KG0FhijHp/LnF/Pey5OLoxRNWLzLX7jy/588wmE0He2W8+wYGx8P3znif+K5FJQSnu3fapYNup+57nzDcep/6enVNuUvbLxRs+t97wFxNk4ULeLgc4o1JZwM9Sn1GDhURDajRo0GD5YNjIob4aehwxsLJxjM0IJ5nuMzIiCkIadbj1kl8NtulaqxTwye2/7+07rKFDGh6Ys4bfQxPX0Lx14Fw8s1ckD5lp6/vX1om8pa/AcoLqcIhw1TPfJ7Zp0OwHt3y4MNAIz+wwEUyOeOJZM3gYKi1ZFMzH+mLUfV55OFbCcqx/iPc/+aUg70DnBO7a+snjIzlxXxpiY4mwOgjv1YPgV7BEv4mBZ8Lrn472/T3Xqcy01/GTi8N+erJ/gP0TJwd562fe4qpdPwQRnj79WvZNbAy2X/fUt+pHDccLA+dR62NtbTFhAc67QYOVhIbUaNCgwbLBXPKTpdCEDl3hGJxfDt93KD/jdqpW0YuxiQyWywckT516Nc+dfMmc7Tzp4Muc+eYTeZspJ/3hXCvU2vrnM6ckJWhTjYzwTF9DAoMB+UIgM/H2xw8yUtbhpA71QZ5REfec/4n5yUy8NvsykzmfIanaNUpasrAYJCyq0xgtB3Hl5hcRZDnjmH7P+SV735NfZjydCjb98OI/T1rTtC8aRJZ8ZfqdioWy9GmwcAh+Ccvkd+H3p74scv4YtPurjw2eOON6dp1yaZB31ts7eWvNGUHe9U99k7HuAazS3HteGD3lzLd3cNrbTwd9QDheCOUo/rmFVpE+6+/LU1a+A4n5WCYe6WexoZS6Sin195RS31NK7VZK9ZRSU0qpp5VSX1RK3bLojXiHoCE1GjRosHwxpMNZCnJjoA0+OTBysjsPmYkqPnNHT/jxpX+BNGoFNfuHVMDHHvi3A60caFyw6DNMYZvLSfz2+MRGMcCyNiA7LB5R4dUayjNGyEzK8WLY1i2vPsB4/1DQuqdPvwZ0PD+ZiQxvx7Br7Q92h7d9YJcFg09ghFY8g+04ntKQ44FjmZQKwtlvPcalL98Z5O889Wp2bbx8IZo3JxoLgaXHUvcDDVYGhi1OHNnvtyAQvK5F1Z49pfjhZb8+4CB0rB8Sru1sllue/DIK2LH5pgF5qSPyRzPow+UnXt/lkTaVn43lMW56J0IpdTvwAPAPgY8Cm4AWMAGcB/w68DOl1H9USrVGVtRgXmhIjQYNGixv1KwAytX4JeqgAyJjYEJ6hHXNc9/9Exu5Y9ufC/LqQ7I13f1c8/R3qlV973INhs2sLCIGzeiHrP6U98A7vkccqMLKgqL6ucmo8jZSWVN4JQG45dE/CfcHfnLZr5V1hRXVzuFIUD/0cbDGqFbfqgb490GGXI/ViqMlB8Z7B/nEI38U5HXjMX580RcWollDMXSFryE3lhQNubSMsUQr44dv19EQYkIeABzfesLHobETuf3CzwV5k70D7J0Iw75e9tLPOf3tp8mihO3nhZFQtrz+MCftf6lmrVG1obQ0qY1DEAblJ8VeR+MQe5nCWlnwzyKjMNV5FfiXwC8B1wE3AH8beCXf/mvAFxe7MasdDanRoEGDlYXlGBHlmKOiHB7bt3yYV9efG+TVu+Obn/wzoqyL1GodfrmqhvsrPQOmunOYufp+JkpuIeCePPmGLzPxSBV/oOjqhJP2vsiG6TeC1r584ja6nbUeeXIMMhNq57dgZMYw8qK6FoEcZ8AiAy+98q0w5oMjnlgUl8wKH3/k3zPZOxhsvn3bZ5nqrF+o5s3RDgnJ1gZLgkZ+svwRREPx+5KlxFG/Ug//Xn74rPfw0onbgrwTpt8k1UmQ96FH/wPKGh496z3MtCaDbe/KZZcD/Xa9g6V2LVVVrMyWfMyyKIT98ceQ9a1j/iwydgK/ApwpIn9TRP5MRO4XkXtE5F8AVwBP52W/0EhRjg0NqdGgQYMViaVaoRsm2oCja49Sat4RUVAR37/itzAqqrJqRWLJ+MT2fzvM2HZIad9k1X1kgA4hWNUKVoioJhVSEBO1dFBNIDOpty3c9IFHvjgQxvXHV/yGt4e/SuYTA/OUmSwokTF4jGoMHx5g7vu8esmLUTjSSWlBY131wo/Z+tZjwbZnT76Mh85878I2cC40FgJLDhFpLDVWAuaI4LFUONY21PvtcrFDab53+W/Si9pBeVHhdOvkgy9z9XM/oh93ePDcMHT7tlfu46SDLzMQnWxIk4c5RS37Ys+qI5CoNDhuEJFPisiXRLx44+H2t4H/wcv6pePTstWJhtRo0KDByoJUHfayQLl4cuTtGe5LYXRElLfXns7d5396zjrPe/1BTqiFeK2OU1uhKAZAviQFO3guUi9WOSxz21VFEBSGFzhDjNIaNlgWqQqF7RHGZ/Zy+t5ng8PvnTyNt9ec7llnVEtS4pmPzvseLOijE1plOHgXIUg3qOOwk4vas3fa3l28b+dXgiJT7XV857K/uGhEw4Cp+TKYlDVosBKwLN98RX9de7ccURVD+u0CByZO4Se1qGUt0xvwt3HTjq8xMf02D57zgWCbQrjpyT8b2m/XTyQgLsq+tjrPwrJt9Vhq5GOPhfosj3HkbV56y1I1YjWgITUaNGiwsrAcI6IUOMzAYX4RUSrHXsPqv2fLx3lz7eY52gefue//GmpfaYeQKOFxPKsJb2VnVBSYMioI3qmr2oBvqMxEeU3zV5XgIw/+PwNH++kln6+uVU1mEpz7XNYZeVt9EuTIBnn1AWxFZLhjVOTFO0U+cqwI/blUn/C3UKXXzbzFLz7wfxPbLKjn25f9JrPtNYvd2EZysszQyE+WP0YR9EvZiAGJ5VFYMQz024Tn9dimm3n61KuCfdpZN/jeMl0+8MSf0GtNsH3rR4Nt5732ABv37vL6F7/N1SJA1cdWn4HzaUjY5Q7fQejqcYCyBGhIjQYNGqwsDBkQLRcHZAMOvAYwv8HFXJIUG8V87/LfxKrRr+8Tpt/gohd/VjUjH+zUjIAZMG8t2p4n3VeppCO13QdNX31rhfoFGJSZ1J2ajc/u55w3Hw/2mmqv4/lTrwhrmofMpCRsas04lqgmdWlJ+Mg1A8cjxeh7V3yhvH/tdJpfvv9fMlGLiHPvOR/mhZMvXsRWemgmB8sKjfxk+WNYN7jU92zOhYmjrbPeHyrFDy77Daba64Jy9X5726vbOeeNR9l+7kcGfGvcvOPPakcJO+eRIx6/7z7C81juEBHsAn6Ww7gReI+X3rlkrVgFaEiNBg0arDwss4gowMiV5qOq6jD7vrH+bO7b8tGR2wE++Oh/ApMGVhDDjjEgSxnUmlBESZnrM0xaMpfMpCBZ/NIfefiPULWW/vTiXxmwzpjPdS2NUfD+HjFCiwwGWvwOk5aMsqZYwE9xHN+iJkl7fPaBf81J068HzXnupIu5bdsvHp9zbybPDRocMQZ+NaN+80uJBWhC/VwUitn2Gr53xW8F5bRYbO2qfPiRLwJw39aPB/nnvPk4Z7y1o/zuRzSrPn7jD993N5gTpyqlNs31WegDKqU08Lte1pcW+hjvJDSkRoMGDZY35juZWE6TjuMQEeXO8z/DW2vOGLm9Zfp89OEv5tWNri8wby0JiAEKZMjHUkkuQmmJfx4V31ERT8NKd7oHOff1R4KjTrfWsnPzjQNtPl4yk+raVC1e8dIS/xYiwb2fK12u/HnXeODWj0oPPjrVPfJ5Ie8+Fde505/iV+7/55y196ngNN5ccwZfv/KvIDpicVAj65oJwbJDIz9ZoVg10VAOX8nzp1zKA2d/IMjTtQ5p7exe3vf4n/DQOR8YsOy4ZcefVddrxBGDNYWhCCOMrWQsqD+N/OPhfmD3YT4Ljb+FC/EK8DUR2b4Ix3jHoCE1GjRosPKRT4BWQ0QUt9/h9zVRwreu/itkOh5Z5pLdd3DygRePgGMZJkkp8gfLVuWG117NByWcsA65XB8eYqVx+8W/XO0zJzEzZMB3jDKTUb5GVgNK1bXP+3hj3mHpUlZVxyiOZx6BXpRSc+4z2d3Pr97zT9m0f1eQf6i9ji9f89/TT8bmOMixobAoWvnTgNWLRn6y8uAM3pZfNJRjxaD8pEreftHn5vSDBXDZSz9j856d3HP+p4L8TXue5qw3HxvxHvLZYJmD3Fj513c1Qin1HuAf51/fBP7qEjZnVaAhNRo0aLDyscTykwGNrmeifzSoO/OsLa+XeHvNJn560efnaBf80t3/HDGmWnWuf4Ycd0CSMo/TGFr1CJlJGK9VGJs9wNbXHgrqm2lN8vjmm4O2DR7T85txxNYZw69vJTOZVyXLC96pzC0VYviHWnqEFcXxGCOf++aj/Pqd/yunTL0S5M8mE3zlmr/BobETFr8RSo1cJW3QoMGRY5QcZUlx+K728FUM7bMdsqjFN67+7wain9QP8ZGH/z07T7+WA2MnBvnvfvIrYM3AtbKeJaQE7/wj67tXEhbZUuNaYPNhPgsCpdTFwNeAGOgBnxORNxaq/ncqGlKjQYMGqwPLdbXnMAOkeUdEGTFAeejs9/PsxitG1j/ZO8CHHv1PAFjr6WuLpg0lNqhNggfbUJUp8ooyQ47B8MFssRL+iQd+f8Ak9+cXhuHai1WwAZmJ1/6AXBr6OITkRf08w0HpMkMwXh4uFRH8e8ZwAuNIsMg/qWGTmU5/io8/8kd8bvu/Yk1vf7DtYGcD//n6v8sb685a3IZVDVy+75UGjfxkNWApfl8jDhm8Rw/zshz0kV3vs8F/4e6bPJXvXR7616g3Y013P+974k+5a9tngvyNB17kkpfuAJX3cIdhK0oHmBL2dasBVhb+4+F1EXl5rs9CnINS6hzgh8AGwABfEJHbF6LudzoaUqNBgwYrH0ssPxmGYlBUDpBGTiqPJCLK8A3fu/w3mWqvH7nv5S/+1MlQ/Kghxadead00GPCX60tCIY88VhIBZZF5nE8+whIRTjiwm7PeejLYPNOa5NGz3zvQtqEyk8MSGQOHXd7kxWFQkEXuizdYrZ+OLI6X/4VEcX+TrMemvU/ziUf+kP/XrX+Hy165a6Ds3vGN/Ocbfpc9a04/3s1ssEzRyE9WHoa9cVfmPZy7ze6UwjJPn34N95/74Tn3u/jlu+klHfZMnhbkv/vJL9PqT4cLBSOYiuCowYLDnIducByglDod+DFwOu7u/KaIfG1pW7V6MFqM3aBBgwYrBcUkecimJRswSf2rZ1FwFG1yE3E1lNiYba/hO1f+JX7lnn82dN9ChvL7H/4XoLVXX7U93MELv0q+YO23BRBbFbP+9lGnVrcIyf9+evvvD9T9o8t+vbarBDsFk5mhZiDDjjS0GcsP4idlaH5hhaGUGjSFKdKL9diLpZPOMNafYjydYqw/RSedITE9EtPP//ZIsj6tIm16RDZDi0WJoMSixaLFMNk7wGTvwJyHfO6ki/n25b/FTHvtIp1Ufmr1h0OpFfDANGiwcjBUflIvs9Qkx2H7lHlUkb836qdy+4W/zGn7nmPTvmdH7vuRh7/IrRf/Kp94+A/KvIn+IW7a+TV+eumfD5rpjjHCp1XZFnc6q+FVVi2qLFx9xwtKqZOAHwHn5ll/XUT+43FrwDsADanRoEGD1YFhnVNunrwUg6Shq+SLGBHlxZMv5t4tH+Ndu743dHshQ/nRFSFhEAwqPYlHYNUx5Pop79rOzSk4E/5gTp772Tj79Uc56VDoM2Hf+Ck8fca14WBjYK45H5lJcS71/OUH/3qPJDJqGHkNjvIZi0zKmu4+1nT3sba716Vn9zHZO8B4/xBjOYEx1p8akAotFnpxh59c+Cs8uunm42umvhpG/+8AqCV8vzdYIAwhEpf8nh7FoYfJUUJO1BWwOuabV/9Vfv1nv8dE/+DQusbSaa584Sc8u/Fytr7xSJl/1fM/4bGz3sPbazeVB51PU5tfx9JDKbUO+AFwUZ71uyLy/1vCJq1KNKRGgwYNVh6OYMCzbAa8fsSHwxUdWSQ0Ia3KucTPL/gsm/c8xen7nxu69+Uv/pSHz3kvb83hk6CgA8qVpjkaddhzKSxorEU8PXCx18ce/sMBK43vXPPf5sdVlWznqFD4nFAsSzLDl8Ioz/9FvcwCPb7aZqybeZsNM2+xYeZN1s+8xfqZt1mTExgT/UMLc6AFgFERO0+7htu3fZaDNad5i46G0FgxWPLJb4NFwZLf09IwsOgDi857rp3m369PjZ3AV6/7G3zhrn9MbLOhZU/f/xyPn3EDmY7LMlos73/sj/nSjb8TLhTMo69eLRiMTHbs9S02lFLjwHeAq/Ksfygi/2TRD/wORENqNGjQYPUit0JY8kESBAOlw7dn2Hap/S3GMpUkxeqYr1/7/+LXfv4PWNPdP7TWz931T/n9j/yf2GGhYAuPYjX5yVytOhxcE/MoEl69N+746oDs4NUNW3h9w9Z8v7psZP4TmLp1xpJOfkbJSfxtUju/o5WQiGXd7B5OmnqNE6deY8P0m6yfeZMNM2+xdnbPcbOwOFq8PXEqj226icc23bToUpMCjeSkQYNlhGXaZ6OO1UeRIFL11a9t2MJ3rvzL/MIDvz9yj0teuZunT72K819/sMw76+0dnP/q/Tx9xnUDfWopRxnZhOa9dryhlGrhopzclGf9SxH5n5awSasaDanRoEGD1YvlMDDyseDNGaxwqrOBr1371/nVO/+3oatA4/0pfuWOf8yfvHv+/WohFwmGRMXkrzAXLsp6rfLT/iB1vLufG575dngMFN+4+q8O+M+oDne4i1c3azg2HyYLhdLa5DAGI4eX1HibxbJ+5i1OmnqVEw+9xklTr7r01Osktr8QzZ4X+lGb2dYk3WScftQmjdqkUSv/2yaNXboftTE6xqoIUQqrNKI0FkW3Ncn+8ZPZP34SWdQ+bm0fQDPgX3Fo5CerEKv2Xg6e11OnX8fPpt/k3Tv/bOReZ7/5OFPtdcECwPue+FOeP+VS+rUQsQVGWh+sgnecWLAL6VPDLlhVo/AnQOEd9lbgD5VSl8xRvi8iTy96q1YpGlKjQYMGDRYDQ8ZmxQC8knbMx6z1yPH6+nP5/uV/kU8+9AdDt2/a9yzvefxPuP2SLwxsm9cEIfdPqXJiY5RLh1E1/eI9/ye6Npp45MxbmBrPpQYLIjlZQtmJLy3x845UTiLC2u5eTjm4m1MOvcyJh151VhjTr400Wz5W9KI2h8ZO4GDnBA51NjDVWc90ay2zrUlmWpPMtiaZTdzfLGotShuOP1b+YP+diIbQaLBYEOSY+ufhj2UlHy2237P1E2yYep1LX75zaD0t26fHeJC3dnYvH3jsj/n+VX/pyBu2wrEC5Sef9dLvBx49TPkXgbMXrTWrHA2p0aBBg9WLmpRiyTGgPjhWa4LRs+QnN93IyQdfHuk49NpdP+CV9Vt55oxrjvzY9fAnR4ALdt/DxgMvBHndeJwfXvbrR+FToi7FqfLDCc8COqcY3YTDO/mcowmRSTlp6jVOObTbkRgHd3PKod2MpTML1lSAmWSSfROn5NYRJ3Ng7EQOdTZwqLOBg50T6CdjC3q85YjBgewy9bvSoME7DZ71X4Eld/Q96tVwRM0K5aOVdFTxg8t/g7XdvZz19o6he67p7acXj9HOZsu8S3ffwfMbL+OpM647kkY0aLCq0ZAaDRo0WL1YToQGxz8iys8u/CVOOvQKW94cXBxQwKcf/H3+cP3/xoHJjXMf5TDRT+aLVn+Gjz78RwMikW9d/dug9JADD6tlfpFNwnYt3nNQEhlHMCce6x/ilIMvs/HgS5xy6GVOOfgSJ069TiRmQdrUjcd5e81p7J04lX3jp7Bv4hT2jZ/M/vFT6CXjh6/gOGHJV9pXgTn2OxmN/GSVouYNe7nc44AMPayPjfn7zbI65qvX/g1++Z5/zqZ9zwwt3c5msUoHFo4ffuSLvHrCuRwaO2kerV8dELvAIV0XsK6h9Yss/YP7DkJDajRo0GDVwx+MlGFIl8EgaWFQj4hSyS9Eab511W/zF+74h5w09erAnpFY/sLP/gH/OncceqTX5EjLf+HOfzTg8+GlEy/g+VMuO6J6KpkJFKvsx9UoR/I2lOnhE3Qllg3Tb9asL15mbXffgjRjpjXJ25Onl589k6fx9prTmW6tXXaE3jAs7W+wITRWOpbLZLfBMWAwFuqyfHcFcpQFqtEnNtK4w1fe9bf45Xv/D87Yt2voHnXJZied4eMP/AFfuunvIsMWBRo0eIehITUaNGiwemEHJRLLbrh0TMqIYmJmqVsvFKfdT8b50vV/hy/c/Y/ZMP3mQA3j6TT/zc/+AV+85e8jOh8Y+atQC3TB3v34n3LKwZeDvEzHfO2avz6PvUfJTEDE5iRVUe44yEyGrPC3TY+TD72ckxcvc8qh3Zx86GVa5tgdd3bjMd5cu5m31pwRkBiz7TXHXPc7BY3kpEGDFYhlQnIMEBoy30hmcyF8//STDl9519/mc3f/U06rSTRH4cw9T3HtM9/lvvM+uQwHNwuPlWap0eD4oiE1GjRosDow38HFMhggBViQ5swttZga28Cf3PB3+cJd/4QNM4PExikHd/Obt/9PfPE9/wCjIxRqQFbhLltY9+FWSouJ5Ka3n+K6Xd8PtwHfvOqv0G8dXg6xrGQmVlg3uye3vni59H2xYeatBTnOvvGTeXPNJt5cu9l91mzmwNiJy++5XQAsyUp7IzlZNWjkJ+8ALNd7qxamtwnJVkUvGefL1/8P/Mrd/5SNB1+aVx037/war60/h5dOvsi1ableswYNFhkNqdGgQYMGxwvziIgCoETBAluTTo2dwJ/e+Dt84a5/wvohE/CTpl7jL9/6u/zhe/5XsiQMFSe1mKTFJML9FaxUprl1M911U2/wuXv+2cCpP3HGjTx72tVHeBbHd0IaZ31OOvQKJ3vSkVMO7qbjOWw7WqQ64e01Z/BGTlw4AmPTO8JRZ4FmMtrgWNAQGu8c1C2tlvq+S2FBUkQyW8A+u9ua5E9v+B0+s/3/5qw9Ow9bPhLDZ+/7V3zp+r/DqydudW3yu2zltXmFw+bjjYWsr8HqQUNqNGjQ4J2FZWLOWmJInyrOtvUYIqIMx6GxE/nTG36Hz9/1T1g/+/bA9nWze/jtW3+HP3zfP6LbmhxZZTk4KppnvbQ3iBqf3c9fvP1/Hgg/emDsRL57xW8d9Xks9GQmMiknTL/OSYde5aRDr/z/27v3OMnK+s7j3193z/RlenqYG8xwUVe5GxcBMY7ggm5EIjFqNBA0ZmUNhrCb6Lq6xLC7xH2pLyOY3WyyGFHEuHJ5bVyiiYLBqCjITVyMUVFAFAeGoZkb0z3Tl+mu3/5Rp7pPVZ2qrsupc6vPu1/nVedUnTr1VNXpOs/5nef3PNo49ZQ2Te/Q+oOTdXnMnZgeXrfU+qISxNiz5gj5wGAMpc83TkwBNBSRQpqJ43fUSGYdH7PrNzq3ekx/87L36DXf/6xetP2uFZ+5enFOb77/v+vmbZdrcuI5Vdl1XirObyzpJ2iGoAaA/pKxg3v8I6KU1TZrlcpvff/YJt388st10d0f0bqZ3XXPWzM/pd/72n/Sded8UNOjGxqXMXgNU3Wnq5X51fMH9Y5v/metXpyres6iDepzZ10hDTS/rNV6yknrhhbntGE6CF5M79DGqR3aNP2UDjswqYEYrtiUbEC712xZanXx9MRzNDlxtA4Or+t620WUeECjAFcqsYz0kwJa6bvMyHddd0yMqVjh4/aiDem2Uy7W3rHD9a9+csuKzx05dFC/ee/VuunM92vP+NblomXkMwN6jaAGABRedQea+8c26YYz/1iv/+41kT2tDy/M6NKvvU/3Pf883XnimxoGIBoFOw7f93NddPefanhxtur+kkw3bbtcB0bWNylnuGLX/sgmQ4tzOuzAM1p/YFLrD05q/YFJHXbgaa0/OKmJmb2ymJqbzg6NaXIiaH0RpI/sGj9Si4OrYtl+P+h1ZbuuuXWouTjyj4BGH8pIS8v4R0Np9Dqme49/nZ5ds1nnfe/TWlU61HT9NfNTuvCeq/TF0y/Tjg3H9rx8SXP3WNNoipCSg2UENQD0l+AgFnUoy0wFuSeDeFS/4+nR9brp5ZfrnB99Xi/52e11aw94Sdt+eqtOe/zr+tKLL9FPt57W0quc9tPb9aof3VzX8sEl3XLGH2rHxuMal3ClkU28HHBZO7NHEzO7NTG7VxMzu4PlPVp/YFJr5/a1VM5WuUx7xw5fCmBU0kj2j2zIROU673p+YuqemRMhxI/ARp/JyHedREBjmeuho35ZT697jl774HU6ct9jTddeO7tXb/32h/XA88/VnSe8UQtDwwmVE0gXQQ0A/Sl8Bp2RitKSXo1KWpOSsmhD+vov/Zae2HCczn/w2sirQMMLs/qNB/5C+8Y2684T3qiHt5yu0tDqpe1VTiiO2/GAXvWjmzUxs7uu+C7pSy++RI9teXFkuVYtzGlsfr9GZ/drbH6/xub2a2x+qjzN7dea+SmtndmrtbN7NLwwG7mNODw7ulG7xrcuDZm6e3yrnll7lA4Njaz8ZLQtsRPSrP1/Ixa1HSwDaYr7V6b8+7hcVdm9ZqtuOPP9+uVHb9OZP/mCBtW4vyeT64zH/kEn7PiOvnLKxfrFphNjLl06vOQq0acGGiCoAaC4GpzM1DWESPNKbjsjolj0+p2pfAqmh498iZ6ZOFpvvu/PIocmNUnrDz6jX3/wWrkk14BmV41pemSdRuenNXroQF1noMuvYvrFxhN07OQ/6eQd92n1woxWL8xqeGF2ab7Rc3vBZdo3tkm7l4IXW7Vr/CjtHt9C8CJhvQhohP9nloImnPgWEq00+lBWWl3VFKE3o6HUN9ks2aDuPf51euyIU/SrD35KR0xtb7qFidk9uuC+j8klPTUwoPu6LRKQYQQ1EmBm45JOk/TSYDpD0vOChx939+dFP7Or19wm6TJJr5C0RdJeSf8k6TPufnPcrwfkSV2VKAuVpLCoEVEsqCzFFtUIhmANrgbtHT9C15/zQZ3+6Fe07ZEvabVH5+6WwyAljR2a1tih6RZexVsali5uUyPrtXfscO1dE5pGN2vP+BFaGCg3x+WkKH09+w7cy3s4AY3CoqPQPmTLx63yYkb2gdrUSYtjNJTGLza57hj99dlX6rid39NZP75Fm6d3NH2GSXWdducRo5+gGYIayfh7Seck9WJm9l8lXanqOPGWYHqNmb1F0gXu3rt23AA6lky+bviKdvn20MCQ7j3+dfruC87VqT/7R73iJ1/UkCfXiqId08PrtH9kg6ZGN2j/6AZNja7XvtHN2rvmcO1bs1kLg/V5xO5eVflMvSLc53oZ0ABQQDX/256Rlhu9OGbXvq3adBRpQI9sPU2PbDlVx+78nl75w5u1fqa+pSXQLwhqJCP807RX0gOStkkaj/2FzH5X0geCxZ9K+rCkf5Z0pKR3SXqlpNdJ+pSk34779YE8yFT6SQYdGhzWd477NX33Befp5T++RS997KuJBDcWBoZ0cPWEDg6v1cHVa3VgeEIHVwfzI+u0f3Sj9o9s0PTIYa2PMuKVm+qARiau7vW5uD7/RiknPelvF5nC/3DBRXy/ufi/jqWQ1Rswq95o+Xev3HbykS2n6tEtL9amqSf1S9vv1klP3KPx+Wez/zm1qdzvc5yjn8S2KWQAQY1k3CjpWkn3u/ujkmRmP1fMQQ0zO0zSVcHiLyS9zN13hR7/kqS/VTmo8VYzu9bdvxVnGYA8yHz6SWrCn4OrNDCou06+QHed/JtatTCn507+UCftuE9bnv2Zxmef1WBpQaWBQR0aWK25VaPaN7ZZi4PDWhwYUMkGVRoY1KINaX7ViOYGRzQ/NKr5oWHNDVXmRzU/NKLZVaM6uHpC80Mj8XwXNcGLqoeCk15OhrKh0+BSZMW2knJSKkmW7PgESAfByf5T9W1n/bsPj07es41XlkzPrD1ad7zwQt3xwgu1ZmaPXrT9Lh2x73Ftmt6hudlnpMVelCM57iV5qXEHqZ1sD8VBUCMB7n5tQi91iaTDgvnLwwGNoByLZnaZpNdKGpT0PkkENQAEfKnRyvI5Y/lq0KGhYT165Ol69MjTl9ducEJROeGsNJdNmkd2SiLJuLKbJbGdkNYGOPiOgf6QlVaWtakicplb1bHIZF0GN1Z+cvijODC6Qfce/+tLy3Mzk9JX3thNAYBMI6hRLG8IbvdLuiVqBXd/wsz+UdJrJL3azMbdfeXe/oAi88jTYEkpnQRHvWQ4jWJpNWu8fqcvbfXtZqsDHJWKU+WE1CsXxiO2FV+5OuJB5bLryiR6Ia6ARi6ao6MnCFL2nzz8vy+NVlbh5c5D42w/Vr/ru9zLx+SqFw51Cp53pZiHdI1zW0hf1wMOIRvMbLXKI6tI0j3uPt9k9W8Gt8Mqj8QC9L2lZuvlpM20i9OYL08e/PVeqeqF3csfVankQUUp/Hh4PkGhz6WyvBTQyPDX2c/cva2KdmX92ucwykn/KsKJGtoTlX4S/m3I5D6RWBSm/hhcTrFI4ZgMJIyWGsVxnJa/z5XGTww/fpKkb/SkREDecNVPUbWvqCtC1Y+HV0jnM6wK7gSz5vG3ZEFGkHICICqA0Te/BY3eZ20Ho8X5POIOWmUyAIaOEdQojmNC80+ssO72Bs9bkZkdvcIqW9rZHpAVeRgRZanlwfIdCZ2wtxLoSMFKI5tkoYxoqJXKNiOboJkinbChM5n8LagtUE36aC9SR4F+R1CjONaG5lfqI+NAaL7dEVi2r7wKkD95GBElMh+39kJDJaW2x8WvnGymeVLhyzXF8g0jm+RKo32o5ZFNMhh4RLIY/QSRXVBldb+oHKusJriBlnjJ5TH2gxHntpA+ghrFMRKab9afhiTNheZHe1AWAAmK7GOgDytLmazEojvN0kz4vgFE4FhQTAQ10AxBjYCZDUk6FMOmLnb3z8SwnXbNhuZXr7DucGh+ps3XWSldZYuk77S5TSB1eUg/iRKVklLb8XovpFZpXCnlBLlTyZO2UKd/pJmgFfzPIy+/EVXH6rwUGsgRghrFMRWaXymlZE1ovq3hXN29aX8dVDCQV3lIP4lS13w1oWInmn5S1QdodDCD355kLX3/Wv46WpmP2o5J9aklpJmgBQQzkZf0k7pjtVc9SKCjBa6SSl6KdXsoDoIaAXdfMLOTYtjUUzFsoxPhYMNKnXmGW1vQRwaATIsa2WRphJOMVVz7TVVHnuH7G8yr2f2NUkv4jgG0IS/HhaXfz6W4bT7KDWQRQY0Qd19pKNQse1jSoqRBSSeusG748Yd6ViIgz9wbnoxlqcKU1ogoqXwGHnq/2fkKCiepYe74CtGtLP0WIxuifr+yuJ/UHrtpqLEyL8XbD0aMjT6QAQNpFwDxcPd5SfcHi9vMrFm/GmcHt3OSHuhpwYAcW2oG717fYWFGNBwRJTxJjS+Xdyju8eLrX0CR5TdZ7O+ln1S+t2ZTsGL1vt9oPoayAJ1i/0GtpZS10G9UFveTyHSU2uMegJYR1CiWLwS3E5J+I2oFMzta0q8Ei19z96mo9QAEMniFpxWRJ6o54qG/ulyGfH4l2ROu+NdOEukgAAohiy01ouT9uN1rldFP4pxQHAQ1csLMnmdmHkx3NFjtU5KeDeY/YmYba7YxKOkalVNUJOnqnhQWKIi6w11OKhl1iTMecV+XEuucs7bY+aibZkpkJTkD+zIdvKJb7D+oFXXczkOAIPK4nYNyJ6mVlobtTigO+tRIgJkdK+msmrsrI5SMm9nbax77irvvbPd13H2PmV0u6a8kPVfSfWb2IUn/LOlISe+W9Mpg9Zvc/RvtvgbQTxgRpbGejX7SrLfJfHz8mVBXWcvg8KiJjqCDQsriKBdIF8dtoD8R1EjGWZKub/DYxojHXimp7aCGJLn7J8zsSEn/RdILJH06YrVbJf3bTrYPAL1S3ZJA1fNU8DoXGn4VAPpNXgNfeS13r5RKJZVK8fXuGee2kD7STwrI3a9UOZByo8pDts5LmpT0VUlvcffz3X02xSICuZDX9JM6tR2QVaYujuc9TR0g5aQjjTr8zOpeS/oJusX+g1p5TT+pU0k/ofNQoCW01EiAu39G0me63MbP1UbV3t3vlnR3N68J9Lu8NmNtpKpiZ8HknZ0YxJo6QMpJxyIr6+7LI/eYLY8GkLH9l/QTdIv0E9QqynHbvTzk61JYuovjdVG4x9u5Zy6DXWiIoAYA9LEsVJCWKm0ENLpTW0FjxBIAyMRxrl1Rw7Xn8X0ASSGoAQAN1J1XZ/Bqd6tcXl1JCt5cp1c6u6pcVQ3C0eBKST4/5kSEP7Ol7y+DHYGuhAo6usU+hFpRx21XDveV2uJ6xHE8Z2+pW+4lucfXD0ac20L6CGoAQANFacYqRV/1War9+dJKLesodWCpQYaTH9ymPKeZNEL6CbpF+glqNTpu5/33hnQUoDmCGgDQ55Y7lQwqSC3Ukcyso3zUuoBG3poXZAFpJgDQoqVmictLOfydjE5HSaEgKfJSzH1qxLgtpI+gBgA0UKT0kygul3n1+2nnataK65Bm0pVGrTOKIo8nFsgW9iGsqOTVx5lCpaNEtUxJpjipKMUciCD7pFAIagBAAys1Yy3fld8aRGRKSkULKSkNm36TZtKxpoGMcFCtAAE2UgfQLfYhtK0g+0tkOopWOK4DBUZQAwBaVTm5tOqmrOW7ilGRqHRE1kpKSrP3TJpJDLzmCmPB0kwqKUxF+d8BkA9F+M3px+BFyUsqxdi5Z5zbQvoIagBAG1ySBR0zlu/Id55unciGAkFKSm0lqqpJb/36DdfFykJBpSIrxP8MUsP+g7blNf2kVkQ6SvnGq+5bep8FP5YABDUAoA0mFe6KeVhURa+umWsUKkwda9rhagHSTBqhlQa6xT6EthV9f6k5nHjQp0gnHXtnDR2FopmBtAsAAEVQ5Ip10/dWWyegjtAdd1V9iAXfr4pQ0UY62HfQqSIfr+v00VtFf6OlBgC0IXJEFBUo/aQdXnMrUYHqRuUkrVSsDkGb6bv/GcSK/QdtK0r6SR9yL8lL8fWD4fSpUSgENQCgDY1GROlHNP3uTktXmgv8+bL/oBt0NIuOsL/kFuknaIb0EwCIQT9WrPvxPfdEH6WchJF+gm6w76BTHLuA4qGlBgC0gfQTxGF5yNz+SzkJ438G3WD/QdtIP8kt91KsKSOknxQLLTUAoA2R6Sd9WjniSmmP9Mn+xP6DbtDSBx3pk99XoN/QUgMA2lDXUiPQj1d9+vE990wffpb0iYBusO+gU+w3+VQqSaUY+8GIsc9RZAAtNQCgG+7l5qxcMUQ3+nT/4eQCQKI4XiMFZvYcM7vazB4yswNmtsfM7jez95rZWNrlKwJaagBAGxj9ZBlXStEN9h90g5Y+6Aj7S36V4h3SNammGmZ2vqQbJK0L3T0m6Yxg+l0ze627P5ZIgQqKlhoA0IZG13f6sWLdj++5Z/rws2T/QTcIaKBT7Df55O5Lw7rGMiXQYsfMTpH0f1QOaExLukLSyyX9a0mfDFY7QdKXzWy85wUqMFpqAEAb6qpCjH6COPTRiCcAkBpGP0Gy/ofKrTIWJJ3r7veEHvu6mT0i6aOSTpT0Hkn/LfESFgQtNQCgG4x+AnSE/QfdYPQTdKRPj9dFUBnSNc6pl8zsDEnnBIvX1QQ0Kj4m6aFg/t1mtqqnhSowghoA0AbST5b143vumT78LNl/0A3ST9Ap9hsk5A2h+eujVvByZOWzweJ6LQdB0CbSTwCgDaSfoCdIPwGA3iP9JLcqfWHEub0ee0Vwe0DSd5us983Q/FmSvtqzEhUYLTUAoBuknwAdYf9BN0g/QUf69HiNVJwU3D7q7gtN1vtxxHPQJlpqIG6DlZn52d1plgPomqumZUaTIQS56oN2LJ2McVIGdITGTWhJ7YHcrC+P1zV18sFG62XZ3MyuWId0nZ/bE17cstJ+4e5PtLptMxuRtClYbPo8d99rZgckrZF0TKuvgWoENRC3zZWZ73/799MsBwAAAIBqmyU9nnYh2vX9uy7t5ea/08I67UTD1obmp1tYvxLUYFjXDpF+grgdnnYBAAAAAESirt57I6H5+RbWnwtuR3tQlr5ASw3ELZwX9jJJT6ZVEAA9s0XLVzXOkLQzxbIgn9iH0A32H6A9R0m6N5j/cbMVM2anep+SsUXSM5IWY9zmbGh+dQvrDwe3MzGWoa8Q1EDcwtHIJ9vJPwOQDzV5pzv5P0e72IfQDfYfoD01/zOttBzIhKCDzV7/f/di+1Oh+VZSStYEt62kqiAC6ScAAAAAAMTA3Wcl7QoWj262rpmt13JQY3svy1VkBDUAAAAAAIjPQ8HtsWbWLDvixIjnoE0ENQAAAAAAiM9dwe0aSac3We/s0Py3e1ecYiOoAQAAAABAfL4Qmr84agUzG5D0O8HiPknf6G2RiougBgAAAAAAMXH3+yXdGSy+w8y2Raz2HyWdFMz/ubsfSqRwBcToJwAAAAAAxOtdKqeUjEq63cw+rHJrjFFJvyXpncF6D0v6WColLAiCGgAAAAAAxMjdHzSzCyV9TtKEpA9HrPawpPPdfSriMbTI3D3tMgAAAAAAUDhm9lyVW22cr/IQr/OSHpX0N5L+0t0Ppli8QiCoAQAAAAAAcomOQgEAAAAAQC4R1AAAAAAAALlEUAMAAAAAAOQSQQ0AAAAAAJBLBDUAAAAAAEAuEdQAAAAAAAC5RFADAAAAAADkEkENAAAAAACQSwQ10DEzO8fMvME0Y2ZPmNltZnaZmY2nXV4AnVvh/73R9Pa0y410mdm4mT0e7A+7zGxzC8+5KrQPXZpEOZE9Eb85U2Y21sLzRs3s2ZrnntP7EgPZwTEb/YagBnplRNJRks6T9L8k/cDMTkm3SACAJLn7tKRKYGKjpD9vtr6ZvUTSfwgWvyXpE70rHXJmXNIbWljv9ZImelsUAECWDKVdABTGxyVdE1reJOkESe+RdLyk50q6zcxOcPepFMoHID61/++NPNHrgiD73P02M7tB0lslXWRmN7j7l2vXM7NVkq6TNChpVtIl7u7JlhYZNavyxZK3SbpxhXXfVvMcoN9xzEbhEdRAXCbd/Qc1991hZtdLuk3SqyRtlfROSR9LunAAYhX1/w40825J50raLOnjZvbCiAD3H0n6l8H8B9z94QTLh2z7O0kXSHq1mW1x951RK5nZ4SrvZ5L0RUkXJlQ+IMs4ZqPwSD9BT7n7vKQ/Cd316pSKAgBIibvvUjmwIUnHSPpI+HEzO0nSFcHig5KuTqxwyIPbJe1UuRXPRU3Wu0jlC3ZPS/pqAuUCAGQAQQ0k4f+F5o9JrRQAgNS4+42Sbg0Wf9/MzpIkMxtQOe1kWNKCpHe4+0I6pURGLUq6KZh/W5P1fie4vTF4DgCgDxDUQBLCFQsqqgDQvy6VNCXJJH3SzIYl/YGkbcHjV7v7g2kVDpn2v4PbU83shbUPmtnJkk6rWRcA0AcIaiAJJ4fmf55WIQAA6XL37ZLeHyyeqHIHdh8Klh+W9IE0yoXsC4JdlX4BolprVO77IYExAOgvBDWQhPeG5j+fWikAAFlwjaRvB/MXS1ojyVUe7WQ2tVIhDyotMN4apC1JkszMVB5dJ7wOAKBPENRAT5jZRjM7y8xu1XKnXvdIujnFYgEAUhYM03qJyoGMik+4+7dSKhLy4wZJJUlHSzo7dP85KvfZVQrWAQD0EYIaiMuVZuaVSdIuSXdK+lWV+9H4nKTz3P1QmoUEAGTCmSr3q1GxI62CID/c/UlJ3wgWwykolfk73P2JZEsFAEgbQQ0k4WFJH3X3/WkXBACQLjPbKumqmruvMLPj0ygPcuezwe2bzWzUzEYlvSm4j9QTAOhDBDUQl49LelEwnSrpfEmfkHRI5Y5C7zCzE9IrHgAgI66RdJjK6SfvUzllYFjStUHfCEAzt0g6KGmtpNdLeoOkCUkzkv5vesUCAKSFoAbiMunuPwim77n7re5+qaQ3qlxh3SDpRjMbTLeYAIC0mNmbVT4Jlcr9aFwt6S+D5bMlvSONciE/3H1a0t8Gi2/TcurJF9x9Kp1SAQDSRFADPeXuX5b0V8HiaZLenl5pAABpMbP1kv4iWHxS0uXB/BWSfhHMf9TMjki6bMidSgrKuZJeHcyTegIAfYqgBpLwAUkHgvkrzWx1moUBAKTizyRtCeb/XaWfpeDK+2XB/esl/c8UyoZ8+ZqkpyQNBdPTkm5PtUQAgNQQ1EDPufukyv1rSOUh1/5NisUBACTMzH5Fyy31Pu/uXww/HrTqqwz5fYGZ/VqCxUPOuPuiyi0z5oLpc8F9AIA+RFADSblK0mww/0f0rQEA/cHM1ki6NljcK+kPGqz6Lkl7gvlrzGy812VDfrn75e4+EkzvTbs8AID0ENRAItx9p6TrgsXnS3pLisUBACTng5L+RTD/3uB4UCdo1Vc5OT1G0ocSKBsAAMg5ghpI0p9Kmg/m/9jM2P8AoMDM7KWS/jBY/Lq7f7rZ+u5+vcr9JUjSvw+eDwAA0BAnlUiMu2+X9NfB4omS3pRicQAAPWRmq1RuoTcgaUbSO1t86u8F6w9I+qSZDfWmhAAAoAjM3dMuAwAAAAAAQNtoqQEAAAAAAHKJoAYAAAAAAMglghoAAAAAACCXCGoAAAAAAIBcIqgBAAAAAAByiaAGAAAAAADIJYIaAAAAAAAglwhqAAAAAACAXCKoAQAAAAAAcomgBgAAAAAAyCWCGgAAAAAAIJcIagAAAAAAgFwiqAEAAAAAAHKJoAYAAAAAAMglghoAAAAAACCXCGoAAAAAAIBcIqgBAAAAAAByiaAGAAAAAADIJYIaAAAAAAAglwhqAAAAAACAXCKoAQAAAAAAcomgBgAAAAAAyCWCGgAAAAAAIJcIagAAAAAAgFwiqAEAAAAAAHLp/wNGgn0J0QJPPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "if kslice:\n", + " fig, ax = plt.subplots(1, figsize=(3,3), dpi=200)\n", + "\n", + " pcb.plot_kslice(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], tb_config,\n", + " tb=config['tb'], alatt=config['alatt'], quarter=0, **plot_config)\n", + "\n", + "else:\n", + " fig, ax = plt.subplots(1, figsize=(6,3), dpi=200)\n", + "\n", + " pcb.plot_bands(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], dft_mu=0.,\n", + " tb=config['tb'], alatt=config['alatt'], qp_bands=config['qp_bands'], **plot_config)\n", + "\n", + " ax.set_ylim(-1.25,1.75)" + ] + }, + { + "cell_type": "markdown", + "id": "186cf322", + "metadata": {}, + "source": [ + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 00000000..81415803 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 00000000..30fee9d0 --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/code_structure.png b/_static/code_structure.png new file mode 100644 index 00000000..cf4cdc8c Binary files /dev/null and b/_static/code_structure.png differ diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css new file mode 100644 index 00000000..707d99e4 --- /dev/null +++ b/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:normal;src:url("../fonts/fontawesome-webfont.eot?#iefix") format("embedded-opentype"),url("../fonts/fontawesome-webfont.woff2") format("woff2"),url("../fonts/fontawesome-webfont.woff") format("woff"),url("../fonts/fontawesome-webfont.ttf") format("truetype"),url("../fonts/fontawesome-webfont.svg#FontAwesome") format("svg")}.fa:before{display:inline-block;font-family:FontAwesome;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa{display:inline-block;text-decoration:inherit}li .fa{display:inline-block}li .fa-large:before,li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-0.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before,ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before{content:""}.icon-book:before{content:""}.fa-caret-down:before{content:""}.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.icon-caret-up:before{content:""}.fa-caret-left:before{content:""}.icon-caret-left:before{content:""}.fa-caret-right:before{content:""}.icon-caret-right:before{content:""}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60}.rst-versions .rst-current-version::after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge .fa-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} diff --git a/_static/css/custom.css b/_static/css/custom.css new file mode 100644 index 00000000..428cb68a --- /dev/null +++ b/_static/css/custom.css @@ -0,0 +1,28 @@ +@import url("theme.css"); + +.wy-nav-content { + max-width: 70em; +} + +/* here we add an empty svg icon to overwrite the rst icon in order to avoid the default exclamation mark, alternatively we can add a small icon */ +:root { + --icon--empty-icon: url('data:image/svg+xml;charset=utf-8,'); + --icon--book-icon: url('data:image/svg+xml;charset=utf-8,'); + --icon--square: url('data:image/svg+xml;charset=utf-8,'); +} + +/* definining a new admonition class called 'intag' */ +.admonition.intag { + border-color: rgb(0, 0, 0); +} + +/* title layout of the new */ +.admonition.intag > .admonition-title { + border-color: rgb(0, 0, 0); +} + +/* Removes everything, including the icon before the title in the 'intag' admonition*/ +.admonition.intag > .admonition-title::before { + all:unset; +} + diff --git a/_static/css/theme.css b/_static/css/theme.css new file mode 100644 index 00000000..6a65e2f9 --- /dev/null +++ b/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,*::after,*::before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}audio:not([controls]){display:none}[hidden]{display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:hover,a:active{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:bold}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;color:#000;text-decoration:none}mark{background:#ff0;color:#000;font-style:italic;font-weight:bold}pre,code,.rst-content tt,.rst-content code,kbd,samp{font-family:monospace,serif;_font-family:"courier new",monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:before,q:after{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-0.5em}sub{bottom:-0.25em}ul,ol,dl{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure{margin:0}form{margin:0}fieldset{border:0;margin:0;padding:0}label{cursor:pointer}legend{border:0;*margin-left:-7px;padding:0;white-space:normal}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type="button"],input[type="reset"],input[type="submit"]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type="checkbox"],input[type="radio"]{box-sizing:border-box;padding:0;*width:13px;*height:13px}input[type="search"]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}input[type="search"]::-webkit-search-decoration,input[type="search"]::-webkit-search-cancel-button{-webkit-appearance:none}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}textarea{overflow:auto;vertical-align:top;resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none !important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{html,body,section{background:none !important}*{box-shadow:none !important;text-shadow:none !important;filter:none !important;-ms-filter:none !important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:.5cm}p,h2,.rst-content .toctree-wrapper>p.caption,h3{orphans:3;widows:3}h2,.rst-content .toctree-wrapper>p.caption,h3{page-break-after:avoid}}.fa:before,.wy-menu-vertical li button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.rst-content .admonition-title:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content dl dt .headerlink:before,.rst-content p .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-alert,.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo,.rst-content .admonition,.btn,input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:'FontAwesome';src:url("../fonts/fontawesome-webfont.eot?v=4.7.0");src:url("../fonts/fontawesome-webfont.eot?#iefix&v=4.7.0") format("embedded-opentype"),url("../fonts/fontawesome-webfont.woff2?v=4.7.0") format("woff2"),url("../fonts/fontawesome-webfont.woff?v=4.7.0") format("woff"),url("../fonts/fontawesome-webfont.ttf?v=4.7.0") format("truetype"),url("../fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular") format("svg");font-weight:normal;font-style:normal}.fa,.wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li.current>a button.toctree-expand,.rst-content .admonition-title,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.rst-content p .headerlink,.rst-content p.caption .headerlink,.rst-content table>caption .headerlink,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content tt.download span:first-child,.rst-content code.download span:first-child,.icon{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.3333333333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.2857142857em;text-align:center}.fa-ul{padding-left:0;margin-left:2.1428571429em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.1428571429em;width:2.1428571429em;top:.1428571429em;text-align:center}.fa-li.fa-lg{left:-1.8571428571em}.fa-border{padding:.2em .25em .15em;border:solid 0.08em #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left,.wy-menu-vertical li button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.rst-content .fa-pull-left.admonition-title,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content dl dt .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.rst-content code.download span.fa-pull-left:first-child,.fa-pull-left.icon{margin-right:.3em}.fa.fa-pull-right,.wy-menu-vertical li button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.rst-content .fa-pull-right.admonition-title,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content dl dt .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.rst-content code.download span.fa-pull-right:first-child,.fa-pull-right.icon{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.wy-menu-vertical li button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.rst-content .pull-left.admonition-title,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content dl dt .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.rst-content code.download span.pull-left:first-child,.pull-left.icon{margin-right:.3em}.fa.pull-right,.wy-menu-vertical li button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.rst-content .pull-right.admonition-title,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content dl dt .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.rst-content code.download span.pull-right:first-child,.pull-right.icon{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}.fa-pulse{-webkit-animation:fa-spin 1s infinite steps(8);animation:fa-spin 1s infinite steps(8)}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scale(-1, 1);-ms-transform:scale(-1, 1);transform:scale(-1, 1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scale(1, -1);-ms-transform:scale(1, -1);transform:scale(1, -1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-remove:before,.fa-close:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-gear:before,.fa-cog:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-rotate-right:before,.fa-repeat:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.rst-content .admonition-title:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-warning:before,.fa-exclamation-triangle:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-gears:before,.fa-cogs:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-save:before,.fa-floppy-o:before{content:""}.fa-square:before{content:""}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.wy-dropdown .caret:before,.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-unsorted:before,.fa-sort:before{content:""}.fa-sort-down:before,.fa-sort-desc:before{content:""}.fa-sort-up:before,.fa-sort-asc:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-legal:before,.fa-gavel:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-flash:before,.fa-bolt:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-paste:before,.fa-clipboard:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-unlink:before,.fa-chain-broken:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li.current>a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:""}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:""}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:""}.fa-euro:before,.fa-eur:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-rupee:before,.fa-inr:before{content:""}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:""}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:""}.fa-won:before,.fa-krw:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-turkish-lira:before,.fa-try:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-institution:before,.fa-bank:before,.fa-university:before{content:""}.fa-mortar-board:before,.fa-graduation-cap:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:""}.fa-file-zip-o:before,.fa-file-archive-o:before{content:""}.fa-file-sound-o:before,.fa-file-audio-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:""}.fa-ge:before,.fa-empire:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-send:before,.fa-paper-plane:before{content:""}.fa-send-o:before,.fa-paper-plane-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-hotel:before,.fa-bed:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-yc:before,.fa-y-combinator:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-stop-o:before,.fa-hand-paper-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-tv:before,.fa-television:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:""}.fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-signing:before,.fa-sign-language:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-vcard:before,.fa-address-card:before{content:""}.fa-vcard-o:before,.fa-address-card-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li.current>a button.toctree-expand,.rst-content .admonition-title,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.rst-content p .headerlink,.rst-content p.caption .headerlink,.rst-content table>caption .headerlink,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content tt.download span:first-child,.rst-content code.download span:first-child,.icon,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context{font-family:inherit}.fa:before,.wy-menu-vertical li button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.rst-content .admonition-title:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content dl dt .headerlink:before,.rst-content p .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before{font-family:"FontAwesome";display:inline-block;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa,a .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li.current>a button.toctree-expand,a .rst-content .admonition-title,.rst-content a .admonition-title,a .rst-content h1 .headerlink,.rst-content h1 a .headerlink,a .rst-content h2 .headerlink,.rst-content h2 a .headerlink,a .rst-content h3 .headerlink,.rst-content h3 a .headerlink,a .rst-content h4 .headerlink,.rst-content h4 a .headerlink,a .rst-content h5 .headerlink,.rst-content h5 a .headerlink,a .rst-content h6 .headerlink,.rst-content h6 a .headerlink,a .rst-content dl dt .headerlink,.rst-content dl dt a .headerlink,a .rst-content p .headerlink,.rst-content p a .headerlink,a .rst-content p.caption .headerlink,.rst-content p.caption a .headerlink,a .rst-content table>caption .headerlink,.rst-content table>caption a .headerlink,a .rst-content .code-block-caption .headerlink,.rst-content .code-block-caption a .headerlink,a .rst-content .eqno .headerlink,.rst-content .eqno a .headerlink,a .rst-content tt.download span:first-child,.rst-content tt.download a span:first-child,a .rst-content code.download span:first-child,.rst-content code.download a span:first-child,a .icon{display:inline-block;text-decoration:inherit}.btn .fa,.btn .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .btn button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.btn .wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.btn .rst-content .admonition-title,.rst-content .btn .admonition-title,.btn .rst-content h1 .headerlink,.rst-content h1 .btn .headerlink,.btn .rst-content h2 .headerlink,.rst-content h2 .btn .headerlink,.btn .rst-content h3 .headerlink,.rst-content h3 .btn .headerlink,.btn .rst-content h4 .headerlink,.rst-content h4 .btn .headerlink,.btn .rst-content h5 .headerlink,.rst-content h5 .btn .headerlink,.btn .rst-content h6 .headerlink,.rst-content h6 .btn .headerlink,.btn .rst-content dl dt .headerlink,.rst-content dl dt .btn .headerlink,.btn .rst-content p .headerlink,.rst-content p .btn .headerlink,.btn .rst-content table>caption .headerlink,.rst-content table>caption .btn .headerlink,.btn .rst-content .code-block-caption .headerlink,.rst-content .code-block-caption .btn .headerlink,.btn .rst-content .eqno .headerlink,.rst-content .eqno .btn .headerlink,.btn .rst-content tt.download span:first-child,.rst-content tt.download .btn span:first-child,.btn .rst-content code.download span:first-child,.rst-content code.download .btn span:first-child,.btn .icon,.nav .fa,.nav .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand,.nav .wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.nav .rst-content .admonition-title,.rst-content .nav .admonition-title,.nav .rst-content h1 .headerlink,.rst-content h1 .nav .headerlink,.nav .rst-content h2 .headerlink,.rst-content h2 .nav .headerlink,.nav .rst-content h3 .headerlink,.rst-content h3 .nav .headerlink,.nav .rst-content h4 .headerlink,.rst-content h4 .nav .headerlink,.nav .rst-content h5 .headerlink,.rst-content h5 .nav .headerlink,.nav .rst-content h6 .headerlink,.rst-content h6 .nav .headerlink,.nav .rst-content dl dt .headerlink,.rst-content dl dt .nav .headerlink,.nav .rst-content p .headerlink,.rst-content p .nav .headerlink,.nav .rst-content table>caption .headerlink,.rst-content table>caption .nav .headerlink,.nav .rst-content .code-block-caption .headerlink,.rst-content .code-block-caption .nav .headerlink,.nav .rst-content .eqno .headerlink,.rst-content .eqno .nav .headerlink,.nav .rst-content tt.download span:first-child,.rst-content tt.download .nav span:first-child,.nav .rst-content code.download span:first-child,.rst-content code.download .nav span:first-child,.nav .icon{display:inline}.btn .fa.fa-large,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.btn .rst-content .fa-large.admonition-title,.rst-content .btn .fa-large.admonition-title,.btn .rst-content h1 .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.btn .rst-content dl dt .fa-large.headerlink,.rst-content dl dt .btn .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.btn .rst-content .code-block-caption .fa-large.headerlink,.rst-content .code-block-caption .btn .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.rst-content tt.download .btn span.fa-large:first-child,.btn .rst-content code.download span.fa-large:first-child,.rst-content code.download .btn span.fa-large:first-child,.btn .fa-large.icon,.nav .fa.fa-large,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand,.nav .rst-content .fa-large.admonition-title,.rst-content .nav .fa-large.admonition-title,.nav .rst-content h1 .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.nav .rst-content dl dt .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.nav .rst-content .code-block-caption .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.nav .rst-content code.download span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.nav .fa-large.icon{line-height:.9em}.btn .fa.fa-spin,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.btn .rst-content .fa-spin.admonition-title,.rst-content .btn .fa-spin.admonition-title,.btn .rst-content h1 .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.btn .rst-content dl dt .fa-spin.headerlink,.rst-content dl dt .btn .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.btn .rst-content .code-block-caption .fa-spin.headerlink,.rst-content .code-block-caption .btn .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.rst-content tt.download .btn span.fa-spin:first-child,.btn .rst-content code.download span.fa-spin:first-child,.rst-content code.download .btn span.fa-spin:first-child,.btn .fa-spin.icon,.nav .fa.fa-spin,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand,.nav .rst-content .fa-spin.admonition-title,.rst-content .nav .fa-spin.admonition-title,.nav .rst-content h1 .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.nav .rst-content dl dt .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.nav .rst-content .code-block-caption .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.nav .rst-content code.download span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.nav .fa-spin.icon{display:inline-block}.btn.fa:before,.wy-menu-vertical li button.btn.toctree-expand:before,.rst-content .btn.admonition-title:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content dl dt .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.rst-content code.download span.btn:first-child:before,.btn.icon:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.rst-content code.download span.btn:first-child:hover:before,.btn.icon:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before,.btn-mini .rst-content .admonition-title:before,.rst-content .btn-mini .admonition-title:before,.btn-mini .rst-content h1 .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.btn-mini .rst-content dl dt .headerlink:before,.rst-content dl dt .btn-mini .headerlink:before,.btn-mini .rst-content p .headerlink:before,.rst-content p .btn-mini .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.rst-content tt.download .btn-mini span:first-child:before,.btn-mini .rst-content code.download span:first-child:before,.rst-content code.download .btn-mini span:first-child:before,.btn-mini .icon:before{font-size:14px;vertical-align:-15%}.wy-alert,.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo,.rst-content .admonition{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.wy-alert-title,.rst-content .admonition-title{color:#fff;font-weight:bold;display:block;color:#fff;background:#6ab0de;margin:-12px;padding:6px 12px;margin-bottom:12px}.wy-alert.wy-alert-danger,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.admonition{background:#fdf3f2}.wy-alert.wy-alert-danger .wy-alert-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .danger .wy-alert-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .danger .admonition-title,.rst-content .error .admonition-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition .admonition-title{background:#f29f97}.wy-alert.wy-alert-warning,.rst-content .wy-alert-warning.note,.rst-content .attention,.rst-content .caution,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.tip,.rst-content .warning,.rst-content .wy-alert-warning.seealso,.rst-content .admonition-todo,.rst-content .wy-alert-warning.admonition{background:#ffedcc}.wy-alert.wy-alert-warning .wy-alert-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .attention .wy-alert-title,.rst-content .caution .wy-alert-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .attention .admonition-title,.rst-content .caution .admonition-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .warning .admonition-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .admonition-todo .admonition-title,.rst-content .wy-alert-warning.admonition .admonition-title{background:#f0b37e}.wy-alert.wy-alert-info,.rst-content .note,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.rst-content .seealso,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.admonition{background:#e7f2fa}.wy-alert.wy-alert-info .wy-alert-title,.rst-content .note .wy-alert-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.rst-content .note .admonition-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .seealso .admonition-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition .admonition-title{background:#6ab0de}.wy-alert.wy-alert-success,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.warning,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.admonition{background:#dbfaf4}.wy-alert.wy-alert-success .wy-alert-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .hint .wy-alert-title,.rst-content .important .wy-alert-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .hint .admonition-title,.rst-content .important .admonition-title,.rst-content .tip .admonition-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition .admonition-title{background:#1abc9c}.wy-alert.wy-alert-neutral,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.admonition{background:#f3f6f6}.wy-alert.wy-alert-neutral .wy-alert-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition .admonition-title{color:#404040;background:#e1e4e5}.wy-alert.wy-alert-neutral a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a{color:#2980B9}.wy-alert p:last-child,.rst-content .note p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.rst-content .seealso p:last-child,.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0px;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,0.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27AE60}.wy-tray-container li.wy-tray-item-info{background:#2980B9}.wy-tray-container li.wy-tray-item-warning{background:#E67E22}.wy-tray-container li.wy-tray-item-danger{background:#E74C3C}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width: 768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px 12px;color:#fff;border:1px solid rgba(0,0,0,0.1);background-color:#27AE60;text-decoration:none;font-weight:normal;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;box-shadow:0px 1px 2px -1px rgba(255,255,255,0.5) inset,0px -2px 0px 0px rgba(0,0,0,0.1) inset;outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:0px -1px 0px 0px rgba(0,0,0,0.05) inset,0px 2px 0px 0px rgba(0,0,0,0.1) inset;padding:8px 12px 6px 12px}.btn:visited{color:#fff}.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn-disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn-disabled:hover,.btn-disabled:focus,.btn-disabled:active{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980B9 !important}.btn-info:hover{background-color:#2e8ece !important}.btn-neutral{background-color:#f3f6f6 !important;color:#404040 !important}.btn-neutral:hover{background-color:#e5ebeb !important;color:#404040}.btn-neutral:visited{color:#404040 !important}.btn-success{background-color:#27AE60 !important}.btn-success:hover{background-color:#295 !important}.btn-danger{background-color:#E74C3C !important}.btn-danger:hover{background-color:#ea6153 !important}.btn-warning{background-color:#E67E22 !important}.btn-warning:hover{background-color:#e98b39 !important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f !important}.btn-link{background-color:transparent !important;color:#2980B9;box-shadow:none;border-color:transparent !important}.btn-link:hover{background-color:transparent !important;color:#409ad5 !important;box-shadow:none}.btn-link:active{background-color:transparent !important;color:#409ad5 !important;box-shadow:none}.btn-link:visited{color:#9B59B6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:before,.wy-btn-group:after{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:solid 1px #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,0.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980B9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:solid 1px #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type="search"]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980B9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned input,.wy-form-aligned textarea,.wy-form-aligned select,.wy-form-aligned .wy-help-inline,.wy-form-aligned label{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{border:0;margin:0;padding:0}legend{display:block;width:100%;border:0;padding:0;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label{display:block;margin:0 0 .3125em 0;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;*zoom:1;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:before,.wy-control-group:after{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group:before,.wy-control-group:after{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#E74C3C}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full input[type="text"],.wy-control-group .wy-form-full input[type="password"],.wy-control-group .wy-form-full input[type="email"],.wy-control-group .wy-form-full input[type="url"],.wy-control-group .wy-form-full input[type="date"],.wy-control-group .wy-form-full input[type="month"],.wy-control-group .wy-form-full input[type="time"],.wy-control-group .wy-form-full input[type="datetime"],.wy-control-group .wy-form-full input[type="datetime-local"],.wy-control-group .wy-form-full input[type="week"],.wy-control-group .wy-form-full input[type="number"],.wy-control-group .wy-form-full input[type="search"],.wy-control-group .wy-form-full input[type="tel"],.wy-control-group .wy-form-full input[type="color"],.wy-control-group .wy-form-halves input[type="text"],.wy-control-group .wy-form-halves input[type="password"],.wy-control-group .wy-form-halves input[type="email"],.wy-control-group .wy-form-halves input[type="url"],.wy-control-group .wy-form-halves input[type="date"],.wy-control-group .wy-form-halves input[type="month"],.wy-control-group .wy-form-halves input[type="time"],.wy-control-group .wy-form-halves input[type="datetime"],.wy-control-group .wy-form-halves input[type="datetime-local"],.wy-control-group .wy-form-halves input[type="week"],.wy-control-group .wy-form-halves input[type="number"],.wy-control-group .wy-form-halves input[type="search"],.wy-control-group .wy-form-halves input[type="tel"],.wy-control-group .wy-form-halves input[type="color"],.wy-control-group .wy-form-thirds input[type="text"],.wy-control-group .wy-form-thirds input[type="password"],.wy-control-group .wy-form-thirds input[type="email"],.wy-control-group .wy-form-thirds input[type="url"],.wy-control-group .wy-form-thirds input[type="date"],.wy-control-group .wy-form-thirds input[type="month"],.wy-control-group .wy-form-thirds input[type="time"],.wy-control-group .wy-form-thirds input[type="datetime"],.wy-control-group .wy-form-thirds input[type="datetime-local"],.wy-control-group .wy-form-thirds input[type="week"],.wy-control-group .wy-form-thirds input[type="number"],.wy-control-group .wy-form-thirds input[type="search"],.wy-control-group .wy-form-thirds input[type="tel"],.wy-control-group .wy-form-thirds input[type="color"]{width:100%}.wy-control-group .wy-form-full{float:left;display:block;margin-right:2.3576520234%;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.3576520234%;width:48.8211739883%}.wy-control-group .wy-form-halves:last-child{margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(2n+1){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.3576520234%;width:31.7615653177%}.wy-control-group .wy-form-thirds:last-child{margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control{margin:6px 0 0 0;font-size:90%}.wy-control-no-input{display:inline-block;margin:6px 0 0 0;font-size:90%}.wy-control-group.fluid-input input[type="text"],.wy-control-group.fluid-input input[type="password"],.wy-control-group.fluid-input input[type="email"],.wy-control-group.fluid-input input[type="url"],.wy-control-group.fluid-input input[type="date"],.wy-control-group.fluid-input input[type="month"],.wy-control-group.fluid-input input[type="time"],.wy-control-group.fluid-input input[type="datetime"],.wy-control-group.fluid-input input[type="datetime-local"],.wy-control-group.fluid-input input[type="week"],.wy-control-group.fluid-input input[type="number"],.wy-control-group.fluid-input input[type="search"],.wy-control-group.fluid-input input[type="tel"],.wy-control-group.fluid-input input[type="color"]{width:100%}.wy-form-message-inline{display:inline-block;padding-left:.3em;color:#666;vertical-align:middle;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;*overflow:visible}input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type="datetime-local"]{padding:.34375em .625em}input[disabled]{cursor:default}input[type="checkbox"],input[type="radio"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type="search"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type="search"]::-webkit-search-cancel-button,input[type="search"]::-webkit-search-decoration{-webkit-appearance:none}input[type="text"]:focus,input[type="password"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="date"]:focus,input[type="month"]:focus,input[type="time"]:focus,input[type="datetime"]:focus,input[type="datetime-local"]:focus,input[type="week"]:focus,input[type="number"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="color"]:focus{outline:0;outline:thin dotted \9 ;border-color:#333}input.no-focus:focus{border-color:#ccc !important}input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted #333;outline:1px auto #129FEA}input[type="text"][disabled],input[type="password"][disabled],input[type="email"][disabled],input[type="url"][disabled],input[type="date"][disabled],input[type="month"][disabled],input[type="time"][disabled],input[type="datetime"][disabled],input[type="datetime-local"][disabled],input[type="week"][disabled],input[type="number"][disabled],input[type="search"][disabled],input[type="tel"][disabled],input[type="color"][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,textarea:focus:invalid,select:focus:invalid{color:#E74C3C;border:1px solid #E74C3C}input:focus:invalid:focus,textarea:focus:invalid:focus,select:focus:invalid:focus{border-color:#E74C3C}input[type="file"]:focus:invalid:focus,input[type="radio"]:focus:invalid:focus,input[type="checkbox"]:focus:invalid:focus{outline-color:#E74C3C}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}select[disabled],textarea[disabled],input[readonly],select[readonly],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type="radio"][disabled],input[type="checkbox"][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:solid 1px #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{position:absolute;content:"";display:block;left:0;top:0;width:36px;height:12px;border-radius:4px;background:#ccc;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{position:absolute;content:"";display:block;width:18px;height:18px;border-radius:4px;background:#999;left:-3px;top:-3px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27AE60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#E74C3C}.wy-control-group.wy-control-group-error input[type="text"],.wy-control-group.wy-control-group-error input[type="password"],.wy-control-group.wy-control-group-error input[type="email"],.wy-control-group.wy-control-group-error input[type="url"],.wy-control-group.wy-control-group-error input[type="date"],.wy-control-group.wy-control-group-error input[type="month"],.wy-control-group.wy-control-group-error input[type="time"],.wy-control-group.wy-control-group-error input[type="datetime"],.wy-control-group.wy-control-group-error input[type="datetime-local"],.wy-control-group.wy-control-group-error input[type="week"],.wy-control-group.wy-control-group-error input[type="number"],.wy-control-group.wy-control-group-error input[type="search"],.wy-control-group.wy-control-group-error input[type="tel"],.wy-control-group.wy-control-group-error input[type="color"]{border:solid 1px #E74C3C}.wy-control-group.wy-control-group-error textarea{border:solid 1px #E74C3C}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27AE60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#E74C3C}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#E67E22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980B9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width: 480px){.wy-form button[type="submit"]{margin:.7em 0 0}.wy-form input[type="text"],.wy-form input[type="password"],.wy-form input[type="email"],.wy-form input[type="url"],.wy-form input[type="date"],.wy-form input[type="month"],.wy-form input[type="time"],.wy-form input[type="datetime"],.wy-form input[type="datetime-local"],.wy-form input[type="week"],.wy-form input[type="number"],.wy-form input[type="search"],.wy-form input[type="tel"],.wy-form input[type="color"]{margin-bottom:.3em;display:block}.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type="password"],.wy-form input[type="email"],.wy-form input[type="url"],.wy-form input[type="date"],.wy-form input[type="month"],.wy-form input[type="time"],.wy-form input[type="datetime"],.wy-form input[type="datetime-local"],.wy-form input[type="week"],.wy-form input[type="number"],.wy-form input[type="search"],.wy-form input[type="tel"],.wy-form input[type="color"]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0 0}.wy-form .wy-help-inline,.wy-form-message-inline,.wy-form-message{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width: 768px){.tablet-hide{display:none}}@media screen and (max-width: 480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.wy-table,.rst-content table.docutils,.rst-content table.field-list{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.wy-table caption,.rst-content table.docutils caption,.rst-content table.field-list caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.wy-table td,.rst-content table.docutils td,.rst-content table.field-list td,.wy-table th,.rst-content table.docutils th,.rst-content table.field-list th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.wy-table td:first-child,.rst-content table.docutils td:first-child,.rst-content table.field-list td:first-child,.wy-table th:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list th:first-child{border-left-width:0}.wy-table thead,.rst-content table.docutils thead,.rst-content table.field-list thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.wy-table thead th,.rst-content table.docutils thead th,.rst-content table.field-list thead th{font-weight:bold;border-bottom:solid 2px #e1e4e5}.wy-table td,.rst-content table.docutils td,.rst-content table.field-list td{background-color:transparent;vertical-align:middle}.wy-table td p,.rst-content table.docutils td p,.rst-content table.field-list td p{line-height:18px}.wy-table td p:last-child,.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child{margin-bottom:0}.wy-table .wy-table-cell-min,.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min{width:1%;padding-right:0}.wy-table .wy-table-cell-min input[type=checkbox],.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox],.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:gray;font-size:90%}.wy-table-tertiary{color:gray;font-size:80%}.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td,.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td{background-color:#f3f6f6}.wy-table-backed{background-color:#f3f6f6}.wy-table-bordered-all,.rst-content table.docutils{border:1px solid #e1e4e5}.wy-table-bordered-all td,.rst-content table.docutils td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.wy-table-bordered-all tbody>tr:last-child td,.rst-content table.docutils tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px 0;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0 !important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980B9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9B59B6}html{height:100%;overflow-x:hidden}body{font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;font-weight:normal;color:#404040;min-height:100%;overflow-x:hidden;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#E67E22 !important}a.wy-text-warning:hover{color:#eb9950 !important}.wy-text-info{color:#2980B9 !important}a.wy-text-info:hover{color:#409ad5 !important}.wy-text-success{color:#27AE60 !important}a.wy-text-success:hover{color:#36d278 !important}.wy-text-danger{color:#E74C3C !important}a.wy-text-danger:hover{color:#ed7669 !important}.wy-text-neutral{color:#404040 !important}a.wy-text-neutral:hover{color:#595959 !important}h1,h2,.rst-content .toctree-wrapper>p.caption,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif}p{line-height:24px;margin:0;font-size:16px;margin-bottom:24px}h1{font-size:175%}h2,.rst-content .toctree-wrapper>p.caption{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}code,.rst-content tt,.rst-content code{white-space:nowrap;max-width:100%;background:#fff;border:solid 1px #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;color:#E74C3C;overflow-x:auto}code.code-large,.rst-content tt.code-large{font-size:90%}.wy-plain-list-disc,.rst-content .section ul,.rst-content section ul,.rst-content .toctree-wrapper ul,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.wy-plain-list-disc li,.rst-content .section ul li,.rst-content section ul li,.rst-content .toctree-wrapper ul li,article ul li{list-style:disc;margin-left:24px}.wy-plain-list-disc li p:last-child,.rst-content .section ul li p:last-child,.rst-content section ul li p:last-child,.rst-content .toctree-wrapper ul li p:last-child,article ul li p:last-child{margin-bottom:0}.wy-plain-list-disc li ul,.rst-content .section ul li ul,.rst-content section ul li ul,.rst-content .toctree-wrapper ul li ul,article ul li ul{margin-bottom:0}.wy-plain-list-disc li li,.rst-content .section ul li li,.rst-content section ul li li,.rst-content .toctree-wrapper ul li li,article ul li li{list-style:circle}.wy-plain-list-disc li li li,.rst-content .section ul li li li,.rst-content section ul li li li,.rst-content .toctree-wrapper ul li li li,article ul li li li{list-style:square}.wy-plain-list-disc li ol li,.rst-content .section ul li ol li,.rst-content section ul li ol li,.rst-content .toctree-wrapper ul li ol li,article ul li ol li{list-style:decimal}.wy-plain-list-decimal,.rst-content .section ol,.rst-content .section ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.wy-plain-list-decimal li,.rst-content .section ol li,.rst-content .section ol.arabic li,.rst-content section ol li,.rst-content section ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content .toctree-wrapper ol.arabic li,article ol li{list-style:decimal;margin-left:24px}.wy-plain-list-decimal li p:last-child,.rst-content .section ol li p:last-child,.rst-content section ol li p:last-child,.rst-content .toctree-wrapper ol li p:last-child,article ol li p:last-child{margin-bottom:0}.wy-plain-list-decimal li ul,.rst-content .section ol li ul,.rst-content .section ol.arabic li ul,.rst-content section ol li ul,.rst-content section ol.arabic li ul,.rst-content .toctree-wrapper ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,article ol li ul{margin-bottom:0}.wy-plain-list-decimal li ul li,.rst-content .section ol li ul li,.rst-content .section ol.arabic li ul li,.rst-content section ol li ul li,.rst-content section ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:before,.wy-breadcrumbs:after{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.wy-breadcrumbs>li code,.wy-breadcrumbs>li .rst-content tt,.rst-content .wy-breadcrumbs>li tt{all:inherit;color:inherit}.breadcrumb-item::before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width: 480px){.wy-breadcrumbs-extra{display:none}.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:before,.wy-menu-horiz:after{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz ul,.wy-menu-horiz li{display:inline-block}.wy-menu-horiz li:hover{background:rgba(255,255,255,0.1)}.wy-menu-horiz li.divide-left{border-left:solid 1px #404040}.wy-menu-horiz li.divide-right{border-right:solid 1px #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0 0;display:block;font-weight:bold;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:solid 1px #404040}.wy-menu-vertical li.divide-bottom{border-bottom:solid 1px #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:gray;border-right:solid 1px #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.wy-menu-vertical li code,.wy-menu-vertical li .rst-content tt,.rst-content .wy-menu-vertical li tt{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.on a,.wy-menu-vertical li.current>a{color:#404040;padding:.4045em 1.618em;font-weight:bold;position:relative;background:#fcfcfc;border:none;padding-left:1.618em -4px}.wy-menu-vertical li.on a:hover,.wy-menu-vertical li.current>a:hover{background:#fcfcfc}.wy-menu-vertical li.on a:hover button.toctree-expand,.wy-menu-vertical li.current>a:hover button.toctree-expand{color:gray}.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li.current>a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:solid 1px #c9c9c9;border-top:solid 1px #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:gray}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 4.045em;padding-right:1.618em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 5.663em;padding-right:1.618em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 7.281em;padding-right:1.618em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 8.899em;padding-right:1.618em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 10.517em;padding-right:1.618em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 12.135em;padding-right:1.618em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 13.753em;padding-right:1.618em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 15.371em;padding-right:1.618em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 16.989em;padding-right:1.618em}.wy-menu-vertical li.toctree-l2.current>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:normal}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980B9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980B9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em auto;height:45px;width:45px;background-color:#2980B9;padding:5px;border-radius:100%}.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a{color:#fcfcfc;font-size:100%;font-weight:bold;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search>a:hover,.wy-side-nav-search .wy-dropdown>a:hover{background:rgba(255,255,255,0.1)}.wy-side-nav-search>a img.logo,.wy-side-nav-search .wy-dropdown>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search>a.icon img.logo,.wy-side-nav-search .wy-dropdown>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:normal;color:rgba(255,255,255,0.3)}.wy-nav .wy-menu-vertical header{color:#2980B9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980B9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980B9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:before,.wy-nav-top:after{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:bold}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980B9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,0.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:gray}footer p{margin-bottom:12px}footer span.commit code,footer span.commit .rst-content tt,.rst-content footer span.commit tt{padding:0px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;font-size:1em;background:none;border:none;color:gray}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:before,.rst-footer-buttons:after{width:100%}.rst-footer-buttons:before,.rst-footer-buttons:after{display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:before,.rst-breadcrumbs-buttons:after{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:solid 1px #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:solid 1px #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:gray;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width: 768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-side-scroll{width:auto}.wy-side-nav-search{width:auto}.wy-menu.wy-menu-vertical{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width: 1100px){.wy-nav-content-wrap{background:rgba(0,0,0,0.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,footer,.wy-nav-side{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60;*zoom:1}.rst-versions .rst-current-version:before,.rst-versions .rst-current-version:after{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .icon{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content h1,.rst-content h2,.rst-content .toctree-wrapper>p.caption,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0px}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>img,.rst-content .section>a>img,.rst-content section>img,.rst-content section>a>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px 12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;display:block;overflow:auto}.rst-content pre.literal-block,.rst-content div[class^='highlight']{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px 0}.rst-content pre.literal-block div[class^='highlight'],.rst-content div[class^='highlight'] div[class^='highlight']{padding:0px;border:none;margin:0}.rst-content div[class^='highlight'] td.code{width:100%}.rst-content .linenodiv pre{border-right:solid 1px #e6e9ea;margin:0;padding:12px 12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^='highlight'] pre{white-space:pre;margin:0;padding:12px 12px;display:block;overflow:auto}.rst-content div[class^='highlight'] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content pre.literal-block,.rst-content div[class^='highlight'] pre,.rst-content .linenodiv pre{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight span.linenos,.rst-content div.highlight .gp{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0px;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^='highlight'],.rst-content div[class^='highlight'] pre{white-space:pre-wrap}}.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo,.rst-content .admonition{clear:both}.rst-content .note .last,.rst-content .note>*:last-child,.rst-content .attention .last,.rst-content .attention>*:last-child,.rst-content .caution .last,.rst-content .caution>*:last-child,.rst-content .danger .last,.rst-content .danger>*:last-child,.rst-content .error .last,.rst-content .error>*:last-child,.rst-content .hint .last,.rst-content .hint>*:last-child,.rst-content .important .last,.rst-content .important>*:last-child,.rst-content .tip .last,.rst-content .tip>*:last-child,.rst-content .warning .last,.rst-content .warning>*:last-child,.rst-content .seealso .last,.rst-content .seealso>*:last-child,.rst-content .admonition-todo .last,.rst-content .admonition-todo>*:last-child,.rst-content .admonition .last,.rst-content .admonition>*:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,0.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent !important;border-color:rgba(0,0,0,0.1) !important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content section ol li>*,.rst-content section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>*:first-child,.rst-content .section ul li>*:first-child,.rst-content section ol li>*:first-child,.rst-content section ul li>*:first-child,.rst-content .toctree-wrapper ol li>*:first-child,.rst-content .toctree-wrapper ul li>*:first-child{margin-top:0rem}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child{margin-bottom:0rem}.rst-content .section ol li>ul,.rst-content .section ol li>ol,.rst-content .section ul li>ul,.rst-content .section ul li>ol,.rst-content section ol li>ul,.rst-content section ol li>ol,.rst-content section ul li>ul,.rst-content section ul li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content .toctree-wrapper ul li>ol{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ul.simple li>*,.rst-content section ol.simple li>*,.rst-content section ul.simple li>*,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ul.simple li>*{margin-top:0rem;margin-bottom:0rem}.rst-content .section ol.simple li ul,.rst-content .section ol.simple li ol,.rst-content .section ul.simple li ul,.rst-content .section ul.simple li ol,.rst-content section ol.simple li ul,.rst-content section ol.simple li ol,.rst-content section ul.simple li ul,.rst-content section ul.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content .toctree-wrapper ul.simple li ol{margin-top:0rem;margin-bottom:0rem}.rst-content .line-block{margin-left:0px;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0px}.rst-content .topic-title{font-weight:bold;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0px 0px 24px 24px}.rst-content .align-left{float:left;margin:0px 24px 24px 0px}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.rst-content p .headerlink,.rst-content p.caption .headerlink,.rst-content table>caption .headerlink,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content h1 .headerlink:focus,.rst-content h2 .headerlink:focus,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content h3 .headerlink:focus,.rst-content h4 .headerlink:focus,.rst-content h5 .headerlink:focus,.rst-content h6 .headerlink:focus,.rst-content dl dt .headerlink:focus,.rst-content p .headerlink:focus,.rst-content p.caption .headerlink:focus,.rst-content table>caption .headerlink:focus,.rst-content .code-block-caption .headerlink:focus,.rst-content .eqno .headerlink:focus{opacity:1}.rst-content h1:hover .headerlink,.rst-content h2:hover .headerlink,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content h3:hover .headerlink,.rst-content h4:hover .headerlink,.rst-content h5:hover .headerlink,.rst-content h6:hover .headerlink,.rst-content dl dt:hover .headerlink,.rst-content p:hover .headerlink,.rst-content p.caption:hover .headerlink,.rst-content table>caption:hover .headerlink,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table th p,.rst-content table.docutils th p,.rst-content table.field-list th p,.rst-content .wy-table th ul,.rst-content table.docutils th ul,.rst-content table.field-list th ul,.rst-content .wy-table td p,.rst-content table.docutils td p,.rst-content table.field-list td p,.rst-content .wy-table td ul,.rst-content table.docutils td ul,.rst-content table.field-list td ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:solid 1px #e1e4e5}.rst-content .sidebar p,.rst-content .sidebar ul,.rst-content .sidebar dl{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>*:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif;font-weight:bold;background:#e1e4e5;padding:6px 12px;margin:-24px;margin-bottom:24px;font-size:100%}.rst-content .highlighted{background:#F1C40F;box-shadow:0 0 0 2px #F1C40F;display:inline;font-weight:bold}.rst-content .footnote-reference,.rst-content .citation-reference{vertical-align:baseline;position:relative;top:-0.4em;line-height:0;font-size:90%}.rst-content .footnote-reference>span.fn-bracket,.rst-content .citation-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none !important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent !important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.footnote,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list{display:grid;grid-template-columns:auto minmax(80%, 95%)}html.writer-html5 .rst-content dl.footnote>dt,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem, auto) minmax(40%, 95%)}html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.footnote,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list{margin-bottom:24px}html.writer-html5 .rst-content dl.footnote>dt,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt{padding-left:1rem}html.writer-html5 .rst-content dl.footnote>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.field-list>dd{margin-bottom:0rem}html.writer-html5 .rst-content dl.footnote,html.writer-html5 .rst-content dl.citation{font-size:.9rem}html.writer-html5 .rst-content dl.footnote>dt,html.writer-html5 .rst-content dl.citation>dt{margin:0rem .5rem .5rem 0rem;line-height:1.2rem;word-break:break-all;font-weight:normal}html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before,html.writer-html5 .rst-content dl.citation>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after,html.writer-html5 .rst-content dl.citation>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref,html.writer-html5 .rst-content dl.citation>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-0.1rem;max-width:5rem}html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child)::before,html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child)::before{content:" "}html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.citation>dd{margin:0rem 0rem .5rem 0rem;line-height:1.2rem}html.writer-html5 .rst-content dl.footnote>dd p,html.writer-html5 .rst-content dl.citation>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-0.1rem;max-width:5rem}html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child)::before,html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child)::before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child)::before{content:" "}html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}html.writer-html4 .rst-content table.docutils.citation,.rst-content table.docutils.footnote,html.writer-html5 .rst-content dl.footnote,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation{color:gray}html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html4 .rst-content table.docutils.citation code,.rst-content table.docutils.footnote tt,.rst-content table.docutils.footnote code,html.writer-html5 .rst-content dl.footnote tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content div.citation-list>div.citation code{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils th>p,html.writer-html5 .rst-content table.docutils td>p{line-height:1rem;margin-bottom:0rem;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>*:last-child{margin-bottom:0}.rst-content table.field-list{border:none}.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content tt,.rst-content tt,.rst-content code{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;padding:2px 5px}.rst-content tt big,.rst-content tt em,.rst-content tt big,.rst-content code big,.rst-content tt em,.rst-content code em{font-size:100% !important;line-height:normal}.rst-content tt.literal,.rst-content tt.literal,.rst-content code.literal{color:#E74C3C;white-space:normal}.rst-content tt.xref,a .rst-content tt,.rst-content tt.xref,.rst-content code.xref,a .rst-content tt,a .rst-content code{font-weight:bold;color:#404040;overflow-wrap:normal}.rst-content pre,.rst-content kbd,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace}.rst-content a tt,.rst-content a tt,.rst-content a code{color:#2980B9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:bold;margin-bottom:12px}.rst-content dl p,.rst-content dl table,.rst-content dl ul,.rst-content dl ol{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>p:last-child,.rst-content dl dd>ol:last-child,.rst-content dl dd>ul:last-child,.rst-content dl dd>table:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980B9;border-top:solid 3px #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100% !important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:solid 3px #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100% !important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname{background-color:transparent;border:none;padding:0;font-size:100% !important}html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname{font-weight:bold}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:bold}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",Courier,monospace;color:#000}.rst-content .viewcode-link,.rst-content .viewcode-back{display:inline-block;color:#27AE60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:bold}.rst-content tt.download,.rst-content code.download{background:inherit;padding:inherit;font-weight:normal;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content tt.download span:first-child,.rst-content code.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content *:not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd,.rst-content *:not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:grey 0px 2px;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width: 480px){.rst-content .sidebar{width:100%}}span[id*='MathJax-Span']{color:#404040}.math{text-align:center}@font-face{font-family:"Lato";src:url("../fonts/Lato-Regular.woff2") format("woff2"),url("../fonts/Lato-Regular.ttf") format("truetype");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:"Lato";src:url("../fonts/Lato-Bold.woff2") format("woff2"),url("../fonts/Lato-Bold.ttf") format("truetype");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:"Lato";src:url("../fonts/Lato-BoldItalic.woff2") format("woff2"),url("../fonts/Lato-BoldItalic.ttf") format("truetype");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:"Lato";src:url("../fonts/Lato-Italic.woff2") format("woff2"),url("../fonts/Lato-Italic.ttf") format("truetype");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:"Roboto Slab";font-style:normal;font-weight:400;src:url("../fonts/RobotoSlab-Regular.woff2") format("woff2");font-display:block}@font-face{font-family:"Roboto Slab";font-style:normal;font-weight:700;src:url("../fonts/RobotoSlab-Bold.woff2") format("woff2");font-display:block} diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 00000000..d06a71d7 --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 00000000..7e4c114f --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/favicon.ico b/_static/favicon.ico new file mode 100644 index 00000000..fdc14d12 Binary files /dev/null and b/_static/favicon.ico differ diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 00000000..a858a410 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/fonts/Lato-Bold.ttf b/_static/fonts/Lato-Bold.ttf new file mode 100644 index 00000000..ef5ae3b4 Binary files /dev/null and b/_static/fonts/Lato-Bold.ttf differ diff --git a/_static/fonts/Lato-Bold.woff2 b/_static/fonts/Lato-Bold.woff2 new file mode 100644 index 00000000..5711413d Binary files /dev/null and b/_static/fonts/Lato-Bold.woff2 differ diff --git a/_static/fonts/Lato-BoldItalic.ttf b/_static/fonts/Lato-BoldItalic.ttf new file mode 100644 index 00000000..664cd02c Binary files /dev/null and b/_static/fonts/Lato-BoldItalic.ttf differ diff --git a/_static/fonts/Lato-BoldItalic.woff2 b/_static/fonts/Lato-BoldItalic.woff2 new file mode 100644 index 00000000..04450a92 Binary files /dev/null and b/_static/fonts/Lato-BoldItalic.woff2 differ diff --git a/_static/fonts/Lato-Italic.ttf b/_static/fonts/Lato-Italic.ttf new file mode 100644 index 00000000..b23256ff Binary files /dev/null and b/_static/fonts/Lato-Italic.ttf differ diff --git a/_static/fonts/Lato-Italic.woff2 b/_static/fonts/Lato-Italic.woff2 new file mode 100644 index 00000000..2526bb74 Binary files /dev/null and b/_static/fonts/Lato-Italic.woff2 differ diff --git a/_static/fonts/Lato-Regular.ttf b/_static/fonts/Lato-Regular.ttf new file mode 100644 index 00000000..adbfc467 Binary files /dev/null and b/_static/fonts/Lato-Regular.ttf differ diff --git a/_static/fonts/Lato-Regular.woff2 b/_static/fonts/Lato-Regular.woff2 new file mode 100644 index 00000000..41baa4f2 Binary files /dev/null and b/_static/fonts/Lato-Regular.woff2 differ diff --git a/_static/fonts/RobotoSlab-Bold.woff2 b/_static/fonts/RobotoSlab-Bold.woff2 new file mode 100644 index 00000000..40a6cbc8 Binary files /dev/null and b/_static/fonts/RobotoSlab-Bold.woff2 differ diff --git a/_static/fonts/RobotoSlab-Regular.woff2 b/_static/fonts/RobotoSlab-Regular.woff2 new file mode 100644 index 00000000..d36556f2 Binary files /dev/null and b/_static/fonts/RobotoSlab-Regular.woff2 differ diff --git a/_static/fonts/fontawesome-webfont.eot b/_static/fonts/fontawesome-webfont.eot new file mode 100644 index 00000000..e9f60ca9 Binary files /dev/null and b/_static/fonts/fontawesome-webfont.eot differ diff --git a/_static/fonts/fontawesome-webfont.svg b/_static/fonts/fontawesome-webfont.svg new file mode 100644 index 00000000..855c845e --- /dev/null +++ b/_static/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/fonts/fontawesome-webfont.ttf b/_static/fonts/fontawesome-webfont.ttf new file mode 100644 index 00000000..35acda2f Binary files /dev/null and b/_static/fonts/fontawesome-webfont.ttf differ diff --git a/_static/fonts/fontawesome-webfont.woff b/_static/fonts/fontawesome-webfont.woff new file mode 100644 index 00000000..400014a4 Binary files /dev/null and b/_static/fonts/fontawesome-webfont.woff differ diff --git a/_static/fonts/fontawesome-webfont.woff2 b/_static/fonts/fontawesome-webfont.woff2 new file mode 100644 index 00000000..4d13fc60 Binary files /dev/null and b/_static/fonts/fontawesome-webfont.woff2 differ diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 00000000..2ec4ba8d --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.1 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(e.document)return t(e);throw new Error("jQuery requires a window with a document")}:t(e)}("undefined"!=typeof window?window:this,function(w,R){"use strict";function v(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item}function g(e){return null!=e&&e===e.window}var t=[],M=Object.getPrototypeOf,s=t.slice,I=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},W=t.push,F=t.indexOf,$={},B=$.toString,_=$.hasOwnProperty,z=_.toString,U=z.call(Object),y={},T=w.document,X={type:!0,src:!0,nonce:!0,noModule:!0};function V(e,t,n){var r,i,o=(n=n||T).createElement("script");if(o.text=e,t)for(r in X)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function h(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?$[B.call(e)]||"object":typeof e}var e="3.6.1",C=function(e,t){return new C.fn.init(e,t)};function G(e){var t=!!e&&"length"in e&&e.length,n=h(e);return!v(e)&&!g(e)&&("array"===n||0===t||"number"==typeof t&&0>10|55296,1023&e|56320))}function M(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e}function I(){T()}var e,p,b,o,W,d,F,$,w,u,l,T,C,n,E,h,r,i,g,S="sizzle"+ +new Date,f=R.document,k=0,B=0,_=q(),z=q(),U=q(),y=q(),X=function(e,t){return e===t&&(l=!0),0},V={}.hasOwnProperty,t=[],G=t.pop,Y=t.push,A=t.push,Q=t.slice,v=function(e,t){for(var n=0,r=e.length;n+~]|"+a+")"+a+"*"),re=new RegExp(a+"|>"),ie=new RegExp(Z),oe=new RegExp("^"+s+"$"),x={ID:new RegExp("^#("+s+")"),CLASS:new RegExp("^\\.("+s+")"),TAG:new RegExp("^("+s+"|[*])"),ATTR:new RegExp("^"+K),PSEUDO:new RegExp("^"+Z),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+a+"*(even|odd|(([+-]|)(\\d*)n|)"+a+"*(?:([+-]|)"+a+"*(\\d+)|))"+a+"*\\)|)","i"),bool:new RegExp("^(?:"+J+")$","i"),needsContext:new RegExp("^"+a+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+a+"*((?:-\\d)?\\d*)"+a+"*\\)|)(?=[^-]|$)","i")},ae=/HTML$/i,se=/^(?:input|select|textarea|button)$/i,ue=/^h\d$/i,N=/^[^{]+\{\s*\[native \w/,le=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ce=/[+~]/,j=new RegExp("\\\\[\\da-fA-F]{1,6}"+a+"?|\\\\([^\\r\\n\\f])","g"),fe=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,pe=ve(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{A.apply(t=Q.call(f.childNodes),f.childNodes),t[f.childNodes.length].nodeType}catch(e){A={apply:t.length?function(e,t){Y.apply(e,Q.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function D(t,e,n,r){var i,o,a,s,u,l,c=e&&e.ownerDocument,f=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==f&&9!==f&&11!==f)return n;if(!r&&(T(e),e=e||C,E)){if(11!==f&&(s=le.exec(t)))if(i=s[1]){if(9===f){if(!(l=e.getElementById(i)))return n;if(l.id===i)return n.push(l),n}else if(c&&(l=c.getElementById(i))&&g(e,l)&&l.id===i)return n.push(l),n}else{if(s[2])return A.apply(n,e.getElementsByTagName(t)),n;if((i=s[3])&&p.getElementsByClassName&&e.getElementsByClassName)return A.apply(n,e.getElementsByClassName(i)),n}if(p.qsa&&!y[t+" "]&&(!h||!h.test(t))&&(1!==f||"object"!==e.nodeName.toLowerCase())){if(l=t,c=e,1===f&&(re.test(t)||ne.test(t))){(c=ce.test(t)&&ye(e.parentNode)||e)===e&&p.scope||((a=e.getAttribute("id"))?a=a.replace(fe,M):e.setAttribute("id",a=S)),o=(u=d(t)).length;while(o--)u[o]=(a?"#"+a:":scope")+" "+P(u[o]);l=u.join(",")}try{return A.apply(n,c.querySelectorAll(l)),n}catch(e){y(t,!0)}finally{a===S&&e.removeAttribute("id")}}}return $(t.replace(m,"$1"),e,n,r)}function q(){var n=[];function r(e,t){return n.push(e+" ")>b.cacheLength&&delete r[n.shift()],r[e+" "]=t}return r}function L(e){return e[S]=!0,e}function H(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t)}}function de(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function he(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&pe(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function O(a){return L(function(o){return o=+o,L(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in p=D.support={},W=D.isXML=function(e){var t=e&&e.namespaceURI,e=e&&(e.ownerDocument||e).documentElement;return!ae.test(t||e&&e.nodeName||"HTML")},T=D.setDocument=function(e){var e=e?e.ownerDocument||e:f;return e!=C&&9===e.nodeType&&e.documentElement&&(n=(C=e).documentElement,E=!W(C),f!=C&&(e=C.defaultView)&&e.top!==e&&(e.addEventListener?e.addEventListener("unload",I,!1):e.attachEvent&&e.attachEvent("onunload",I)),p.scope=H(function(e){return n.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),p.attributes=H(function(e){return e.className="i",!e.getAttribute("className")}),p.getElementsByTagName=H(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),p.getElementsByClassName=N.test(C.getElementsByClassName),p.getById=H(function(e){return n.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),p.getById?(b.filter.ID=function(e){var t=e.replace(j,c);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E)return(t=t.getElementById(e))?[t]:[]}):(b.filter.ID=function(e){var t=e.replace(j,c);return function(e){e="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return e&&e.value===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=p.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):p.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"!==e)return o;while(n=o[i++])1===n.nodeType&&r.push(n);return r},b.find.CLASS=p.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},r=[],h=[],(p.qsa=N.test(C.querySelectorAll))&&(H(function(e){var t;n.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&h.push("[*^$]="+a+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||h.push("\\["+a+"*(?:value|"+J+")"),e.querySelectorAll("[id~="+S+"-]").length||h.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||h.push("\\["+a+"*name"+a+"*="+a+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||h.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||h.push(".#.+[+~]"),e.querySelectorAll("\\\f"),h.push("[\\r\\n\\f]")}),H(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&h.push("name"+a+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&h.push(":enabled",":disabled"),n.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&h.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),h.push(",.*:")})),(p.matchesSelector=N.test(i=n.matches||n.webkitMatchesSelector||n.mozMatchesSelector||n.oMatchesSelector||n.msMatchesSelector))&&H(function(e){p.disconnectedMatch=i.call(e,"*"),i.call(e,"[s!='']:x"),r.push("!=",Z)}),h=h.length&&new RegExp(h.join("|")),r=r.length&&new RegExp(r.join("|")),e=N.test(n.compareDocumentPosition),g=e||N.test(n.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,t=t&&t.parentNode;return e===t||!(!t||1!==t.nodeType||!(n.contains?n.contains(t):e.compareDocumentPosition&&16&e.compareDocumentPosition(t)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},X=e?function(e,t){var n;return e===t?(l=!0,0):(n=!e.compareDocumentPosition-!t.compareDocumentPosition)||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!p.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==f&&g(f,e)?-1:t==C||t.ownerDocument==f&&g(f,t)?1:u?v(u,e)-v(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?v(u,e)-v(u,t):0;if(i===o)return he(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?he(a[r],s[r]):a[r]==f?-1:s[r]==f?1:0}),C},D.matches=function(e,t){return D(e,null,null,t)},D.matchesSelector=function(e,t){if(T(e),p.matchesSelector&&E&&!y[t+" "]&&(!r||!r.test(t))&&(!h||!h.test(t)))try{var n=i.call(e,t);if(n||p.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){y(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(j,c),e[3]=(e[3]||e[4]||e[5]||"").replace(j,c),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||D.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&D.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return x.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&ie.test(n)&&(t=d(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(j,c).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=_[e+" "];return t||(t=new RegExp("(^|"+a+")"+e+"("+a+"|$)"))&&_(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(t,n,r){return function(e){e=D.attr(e,t);return null==e?"!="===n:!n||(e+="","="===n?e===r:"!="===n?e!==r:"^="===n?r&&0===e.indexOf(r):"*="===n?r&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function K(e,n,r){return v(n)?C.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?C.grep(e,function(e){return e===n!==r}):"string"!=typeof n?C.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/,te=((C.fn.init=function(e,t,n){if(e){if(n=n||Z,"string"!=typeof e)return e.nodeType?(this[0]=e,this.length=1,this):v(e)?void 0!==n.ready?n.ready(e):e(C):C.makeArray(e,this);if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:ee.exec(e))||!r[1]&&t)return(!t||t.jquery?t||n:this.constructor(t)).find(e);if(r[1]){if(t=t instanceof C?t[0]:t,C.merge(this,C.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:T,!0)),J.test(r[1])&&C.isPlainObject(t))for(var r in t)v(this[r])?this[r](t[r]):this.attr(r,t[r])}else(n=T.getElementById(r[2]))&&(this[0]=n,this.length=1)}return this}).prototype=C.fn,Z=C(T),/^(?:parents|prev(?:Until|All))/),ne={children:!0,contents:!0,next:!0,prev:!0};function re(e,t){while((e=e[t])&&1!==e.nodeType);return e}C.fn.extend({has:function(e){var t=C(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,Ce=/^$|^module$|\/(?:java|ecma)script/i,N=(L=T.createDocumentFragment().appendChild(T.createElement("div")),(o=T.createElement("input")).setAttribute("type","radio"),o.setAttribute("checked","checked"),o.setAttribute("name","t"),L.appendChild(o),y.checkClone=L.cloneNode(!0).cloneNode(!0).lastChild.checked,L.innerHTML="",y.noCloneChecked=!!L.cloneNode(!0).lastChild.defaultValue,L.innerHTML="",y.option=!!L.lastChild,{thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]});function j(e,t){var n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[];return void 0===t||t&&u(e,t)?C.merge([e],n):n}function Ee(e,t){for(var n=0,r=e.length;n",""]);var Se=/<|&#?\w+;/;function ke(e,t,n,r,i){for(var o,a,s,u,l,c=t.createDocumentFragment(),f=[],p=0,d=e.length;p\s*$/g;function Oe(e,t){return u(e,"table")&&u(11!==t.nodeType?t:t.firstChild,"tr")&&C(e).children("tbody")[0]||e}function Pe(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function Re(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Me(e,t){var n,r,i,o;if(1===t.nodeType){if(b.hasData(e)&&(o=b.get(e).events))for(i in b.remove(t,"handle events"),o)for(n=0,r=o[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),T.head.appendChild(r[0])},abort:function(){i&&i()}}}),[]),Qt=/(=)\?(?=&|$)|\?\?/,Jt=(C.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=Yt.pop()||C.expando+"_"+Nt.guid++;return this[e]=!0,e}}),C.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Qt.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Qt.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=v(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Qt,"$1"+r):!1!==e.jsonp&&(e.url+=(jt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||C.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=w[r],w[r]=function(){o=arguments},n.always(function(){void 0===i?C(w).removeProp(r):w[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,Yt.push(r)),o&&v(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((o=T.implementation.createHTMLDocument("").body).innerHTML="
",2===o.childNodes.length),C.parseHTML=function(e,t,n){var r;return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=T.implementation.createHTMLDocument("")).createElement("base")).href=T.location.href,t.head.appendChild(r)):t=T),r=!n&&[],(n=J.exec(e))?[t.createElement(n[1])]:(n=ke([e],t,r),r&&r.length&&C(r).remove(),C.merge([],n.childNodes)))},C.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(C.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},C.expr.pseudos.animated=function(t){return C.grep(C.timers,function(e){return t===e.elem}).length},C.offset={setOffset:function(e,t,n){var r,i,o,a,s=C.css(e,"position"),u=C(e),l={};"static"===s&&(e.style.position="relative"),o=u.offset(),r=C.css(e,"top"),a=C.css(e,"left"),s=("absolute"===s||"fixed"===s)&&-1<(r+a).indexOf("auto")?(i=(s=u.position()).top,s.left):(i=parseFloat(r)||0,parseFloat(a)||0),null!=(t=v(t)?t.call(e,n,C.extend({},o)):t).top&&(l.top=t.top-o.top+i),null!=t.left&&(l.left=t.left-o.left+s),"using"in t?t.using.call(e,l):u.css(l)}},C.fn.extend({offset:function(t){var e,n;return arguments.length?void 0===t?this:this.each(function(e){C.offset.setOffset(this,t,e)}):(n=this[0])?n.getClientRects().length?(e=n.getBoundingClientRect(),n=n.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===C.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===C.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=C(e).offset()).top+=C.css(e,"borderTopWidth",!0),i.left+=C.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-C.css(r,"marginTop",!0),left:t.left-i.left-C.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===C.css(e,"position"))e=e.offsetParent;return e||S})}}),C.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;C.fn[t]=function(e){return f(this,function(e,t,n){var r;if(g(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),C.each(["top","left"],function(e,n){C.cssHooks[n]=tt(y.pixelPosition,function(e,t){if(t)return t=et(e,n),Ge.test(t)?C(e).position()[n]+"px":t})}),C.each({Height:"height",Width:"width"},function(a,s){C.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){C.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return f(this,function(e,t,n){var r;return g(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?C.css(e,t,i):C.style(e,t,n,i)},s,n?e:void 0,n)}})}),C.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){C.fn[t]=function(e){return this.on(t,e)}}),C.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),C.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){C.fn[n]=function(e,t){return 0"); + + // Add extra class to responsive tables that contain + // footnotes or citations so that we can target them for styling + $("table.docutils.footnote") + .wrap("
"); + $("table.docutils.citation") + .wrap("
"); + + // Add expand links to all parents of nested ul + $('.wy-menu-vertical ul').not('.simple').siblings('a').each(function () { + var link = $(this); + expand = + $(''); + expand.on('click', function (ev) { + self.toggleCurrent(link); + ev.stopPropagation(); + return false; + }); + link.prepend(expand); + }); + }; + + nav.reset = function () { + // Get anchor from URL and open up nested nav + var anchor = encodeURI(window.location.hash) || '#'; + + try { + var vmenu = $('.wy-menu-vertical'); + var link = vmenu.find('[href="' + anchor + '"]'); + if (link.length === 0) { + // this link was not found in the sidebar. + // Find associated id element, then its closest section + // in the document and try with that one. + var id_elt = $('.document [id="' + anchor.substring(1) + '"]'); + var closest_section = id_elt.closest('div.section'); + link = vmenu.find('[href="#' + closest_section.attr("id") + '"]'); + if (link.length === 0) { + // still not found in the sidebar. fall back to main section + link = vmenu.find('[href="#"]'); + } + } + // If we found a matching link then reset current and re-apply + // otherwise retain the existing match + if (link.length > 0) { + $('.wy-menu-vertical .current') + .removeClass('current') + .attr('aria-expanded','false'); + link.addClass('current') + .attr('aria-expanded','true'); + link.closest('li.toctree-l1') + .parent() + .addClass('current') + .attr('aria-expanded','true'); + for (let i = 1; i <= 10; i++) { + link.closest('li.toctree-l' + i) + .addClass('current') + .attr('aria-expanded','true'); + } + link[0].scrollIntoView(); + } + } + catch (err) { + console.log("Error expanding nav for anchor", err); + } + + }; + + nav.onScroll = function () { + this.winScroll = false; + var newWinPosition = this.win.scrollTop(), + winBottom = newWinPosition + this.winHeight, + navPosition = this.navBar.scrollTop(), + newNavPosition = navPosition + (newWinPosition - this.winPosition); + if (newWinPosition < 0 || winBottom > this.docHeight) { + return; + } + this.navBar.scrollTop(newNavPosition); + this.winPosition = newWinPosition; + }; + + nav.onResize = function () { + this.winResize = false; + this.winHeight = this.win.height(); + this.docHeight = $(document).height(); + }; + + nav.hashChange = function () { + this.linkScroll = true; + this.win.one('hashchange', function () { + this.linkScroll = false; + }); + }; + + nav.toggleCurrent = function (elem) { + var parent_li = elem.closest('li'); + parent_li + .siblings('li.current') + .removeClass('current') + .attr('aria-expanded','false'); + parent_li + .siblings() + .find('li.current') + .removeClass('current') + .attr('aria-expanded','false'); + var children = parent_li.find('> ul li'); + // Don't toggle terminal elements. + if (children.length) { + children + .removeClass('current') + .attr('aria-expanded','false'); + parent_li + .toggleClass('current') + .attr('aria-expanded', function(i, old) { + return old == 'true' ? 'false' : 'true'; + }); + } + } + + return nav; +}; + +_ThemeNav = ThemeNav(); + +if (typeof(window) != 'undefined') { + window.SphinxRtdTheme = { + Navigation: _ThemeNav, + // TODO remove this once static assets are split up between the theme + // and Read the Docs. For now, this patches 0.3.0 to be backwards + // compatible with a pre-0.3.0 layout.html + StickyNav: _ThemeNav, + }; +} + + +// requestAnimationFrame polyfill by Erik Möller. fixes from Paul Irish and Tino Zijdel +// https://gist.github.com/paulirish/1579671 +// MIT license + +(function() { + var lastTime = 0; + var vendors = ['ms', 'moz', 'webkit', 'o']; + for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { + window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; + window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] + || window[vendors[x]+'CancelRequestAnimationFrame']; + } + + if (!window.requestAnimationFrame) + window.requestAnimationFrame = function(callback, element) { + var currTime = new Date().getTime(); + var timeToCall = Math.max(0, 16 - (currTime - lastTime)); + var id = window.setTimeout(function() { callback(currTime + timeToCall); }, + timeToCall); + lastTime = currTime + timeToCall; + return id; + }; + + if (!window.cancelAnimationFrame) + window.cancelAnimationFrame = function(id) { + clearTimeout(id); + }; +}()); diff --git a/_static/language_data.js b/_static/language_data.js new file mode 100644 index 00000000..250f5665 --- /dev/null +++ b/_static/language_data.js @@ -0,0 +1,199 @@ +/* + * language_data.js + * ~~~~~~~~~~~~~~~~ + * + * This script contains the language-specific data used by searchtools.js, + * namely the list of stopwords, stemmer, scorer and splitter. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; + + +/* Non-minified version is copied as a separate JS file, is available */ + +/** + * Porter Stemmer + */ +var Stemmer = function() { + + var step2list = { + ational: 'ate', + tional: 'tion', + enci: 'ence', + anci: 'ance', + izer: 'ize', + bli: 'ble', + alli: 'al', + entli: 'ent', + eli: 'e', + ousli: 'ous', + ization: 'ize', + ation: 'ate', + ator: 'ate', + alism: 'al', + iveness: 'ive', + fulness: 'ful', + ousness: 'ous', + aliti: 'al', + iviti: 'ive', + biliti: 'ble', + logi: 'log' + }; + + var step3list = { + icate: 'ic', + ative: '', + alize: 'al', + iciti: 'ic', + ical: 'ic', + ful: '', + ness: '' + }; + + var c = "[^aeiou]"; // consonant + var v = "[aeiouy]"; // vowel + var C = c + "[^aeiouy]*"; // consonant sequence + var V = v + "[aeiou]*"; // vowel sequence + + var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/logo_cea.png b/_static/logo_cea.png new file mode 100644 index 00000000..1a28b439 Binary files /dev/null and b/_static/logo_cea.png differ diff --git a/_static/logo_cnrs.png b/_static/logo_cnrs.png new file mode 100644 index 00000000..53c7af0e Binary files /dev/null and b/_static/logo_cnrs.png differ diff --git a/_static/logo_erc.jpg b/_static/logo_erc.jpg new file mode 100644 index 00000000..b7181ee0 Binary files /dev/null and b/_static/logo_erc.jpg differ diff --git a/_static/logo_flatiron.png b/_static/logo_flatiron.png new file mode 100644 index 00000000..9c97b4be Binary files /dev/null and b/_static/logo_flatiron.png differ diff --git a/_static/logo_github.png b/_static/logo_github.png new file mode 100644 index 00000000..54bca717 Binary files /dev/null and b/_static/logo_github.png differ diff --git a/_static/logo_no_text.png b/_static/logo_no_text.png new file mode 100644 index 00000000..dbdbc568 Binary files /dev/null and b/_static/logo_no_text.png differ diff --git a/_static/logo_simons.jpg b/_static/logo_simons.jpg new file mode 100644 index 00000000..88431238 Binary files /dev/null and b/_static/logo_simons.jpg differ diff --git a/_static/logo_x.png b/_static/logo_x.png new file mode 100644 index 00000000..18aba0bc Binary files /dev/null and b/_static/logo_x.png differ diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 00000000..d96755fd Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/plot_directive.css b/_static/plot_directive.css new file mode 100644 index 00000000..d45593c9 --- /dev/null +++ b/_static/plot_directive.css @@ -0,0 +1,16 @@ +/* + * plot_directive.css + * ~~~~~~~~~~~~ + * + * Stylesheet controlling images created using the `plot` directive within + * Sphinx. + * + * :copyright: Copyright 2020-* by the Matplotlib development team. + * :license: Matplotlib, see LICENSE for details. + * + */ + +img.plot-directive { + border: 0; + max-width: 100%; +} diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 00000000..7107cec9 Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 00000000..0d49244e --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #eeffcc; } +.highlight .c { color: #408090; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #007020; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #007020 } /* Comment.Preproc */ +.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #FF0000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #00A000 } /* Generic.Inserted */ +.highlight .go { color: #333333 } /* Generic.Output */ +.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #007020 } /* Keyword.Pseudo */ +.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #902000 } /* Keyword.Type */ +.highlight .m { color: #208050 } /* Literal.Number */ +.highlight .s { color: #4070a0 } /* Literal.String */ +.highlight .na { color: #4070a0 } /* Name.Attribute */ +.highlight .nb { color: #007020 } /* Name.Builtin */ +.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */ +.highlight .no { color: #60add5 } /* Name.Constant */ +.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */ +.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #007020 } /* Name.Exception */ +.highlight .nf { color: #06287e } /* Name.Function */ +.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */ +.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #bb60d5 } /* Name.Variable */ +.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #208050 } /* Literal.Number.Bin */ +.highlight .mf { color: #208050 } /* Literal.Number.Float */ +.highlight .mh { color: #208050 } /* Literal.Number.Hex */ +.highlight .mi { color: #208050 } /* Literal.Number.Integer */ +.highlight .mo { color: #208050 } /* Literal.Number.Oct */ +.highlight .sa { color: #4070a0 } /* Literal.String.Affix */ +.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */ +.highlight .sc { color: #4070a0 } /* Literal.String.Char */ +.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */ +.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #4070a0 } /* Literal.String.Double */ +.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */ +.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */ +.highlight .sx { color: #c65d09 } /* Literal.String.Other */ +.highlight .sr { color: #235388 } /* Literal.String.Regex */ +.highlight .s1 { color: #4070a0 } /* Literal.String.Single */ +.highlight .ss { color: #517918 } /* Literal.String.Symbol */ +.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #06287e } /* Name.Function.Magic */ +.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */ +.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */ +.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */ +.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */ +.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 00000000..09d64585 --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,578 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root + ?? DOCUMENTATION_OPTIONS.URL_ROOT; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => { + if (!(objects[prefix] instanceof Array)) { + objects[prefix] = Object.entries(objects[prefix]).map(([name, match]) => [...match, name]); + } + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ); + }); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js new file mode 100644 index 00000000..8a96c69a --- /dev/null +++ b/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/_static/triqs_logo/Icon/JPG/Triqs_Icon_RGB_Black.jpg b/_static/triqs_logo/Icon/JPG/Triqs_Icon_RGB_Black.jpg new file mode 100644 index 00000000..a25819aa Binary files /dev/null and b/_static/triqs_logo/Icon/JPG/Triqs_Icon_RGB_Black.jpg differ diff --git a/_static/triqs_logo/Icon/JPG/Triqs_Icon_RGB_Full.jpg b/_static/triqs_logo/Icon/JPG/Triqs_Icon_RGB_Full.jpg new file mode 100644 index 00000000..8fac42ac Binary files /dev/null and b/_static/triqs_logo/Icon/JPG/Triqs_Icon_RGB_Full.jpg differ diff --git a/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_Black.svg b/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_Black.svg new file mode 100644 index 00000000..ff598488 --- /dev/null +++ b/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_Black.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_Full.svg b/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_Full.svg new file mode 100644 index 00000000..76d6707d --- /dev/null +++ b/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_Full.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_White.svg b/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_White.svg new file mode 100644 index 00000000..4fbd963d --- /dev/null +++ b/_static/triqs_logo/Icon/SVG/Triqs_Icon_RGB_White.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/_static/triqs_logo/Logo/JPG/Triqs_Logo_RGB_Black.jpg b/_static/triqs_logo/Logo/JPG/Triqs_Logo_RGB_Black.jpg new file mode 100644 index 00000000..a9206e03 Binary files /dev/null and b/_static/triqs_logo/Logo/JPG/Triqs_Logo_RGB_Black.jpg differ diff --git a/_static/triqs_logo/Logo/JPG/Triqs_Logo_RGB_Full.jpg b/_static/triqs_logo/Logo/JPG/Triqs_Logo_RGB_Full.jpg new file mode 100644 index 00000000..58e6a815 Binary files /dev/null and b/_static/triqs_logo/Logo/JPG/Triqs_Logo_RGB_Full.jpg differ diff --git a/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_Black.svg b/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_Black.svg new file mode 100644 index 00000000..27ff0f46 --- /dev/null +++ b/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_Black.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_Full.svg b/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_Full.svg new file mode 100644 index 00000000..149bdb6c --- /dev/null +++ b/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_Full.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_White.svg b/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_White.svg new file mode 100644 index 00000000..eb273f97 --- /dev/null +++ b/_static/triqs_logo/Logo/SVG/Triqs_Logo_RGB_White.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/_static/triqs_logo/triqs_favicon.ico b/_static/triqs_logo/triqs_favicon.ico new file mode 100644 index 00000000..9e20d735 Binary files /dev/null and b/_static/triqs_logo/triqs_favicon.ico differ diff --git a/_static/workflow.png b/_static/workflow.png new file mode 100644 index 00000000..e934d6f1 Binary files /dev/null and b/_static/workflow.png differ diff --git a/cRPA_VASP/README.html b/cRPA_VASP/README.html new file mode 100644 index 00000000..3d6af258 --- /dev/null +++ b/cRPA_VASP/README.html @@ -0,0 +1,505 @@ + + + + + + + How to do cRPA calculations with VASP — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

How to do cRPA calculations with VASP

+

This is just a small tutorial and help on how to do cRPA calculations within +VASP (https://cms.mpi.univie.ac.at/wiki/index.php/CRPA_of_SrVO3) . Moreover, the +python script eval_U.py contains helper functions to extract the full +\(U\) matrix tensor from the Uijkl or Vijkl file from a VASP cRPA run. There +are also some general remarks on the notation in VASP for the Coulomb tensor in +the pdf included in this folder. Moreover, there is a small collection of +examples for SrVO3 and LuNiO3. For more details please take a look at the PhD +thesis of Merzuk Kaltak (http://othes.univie.ac.at/38099/).

+
+

file description

+
    +
  • eval_U.py extraction of Coulomb tensor, calculation of reduced two-index matrices, and calculation / fitting of Kanamori or Slater parameters

  • +
  • ext_eps.sh a small bash script that can extract \(\epsilon^-1(|q+G|)=[1-VP^r]^-1\) from a given vasprun.xml file

  • +
+
+
+

Workflow:

+
    +
  1. DFT NM normal like:

    +
      +
    • SYSTEM = SrVO3

    • +
    • ISMEAR = 0

    • +
    • SIGMA = 0.05

    • +
    • EDIFF = 1E-8

    • +
    +
  2. +
  3. optical part (larger nbands) and optical properties for generating the linear response integrals needed for cRPA or GW

    +
      +
    1. nbands: ~100 bands per atoms, but not larger than number of plane waves generated from ENCUT

    2. +
    3. example:

      +
        +
      • SYSTEM = SrVO3

      • +
      • ISMEAR = 0

      • +
      • ENCUT = high value!

      • +
      • SIGMA = 0.05

      • +
      • EDIFF = 1E-8

      • +
      • ALGO = Exact ; NELM=1

      • +
      • LOPTICS = .TRUE.

      • +
      • LWAVE = .TRUE.

      • +
      • NBANDS =96

      • +
      • LMAXMIX=4

      • +
      +
    4. +
    +
  4. +
  5. if needed generate wannier functions with ALGO=none (read wavecar and chgcar additionally) and do 0 steps to get the wannier functions correct - this step is not needed, if one has already a wannier90.win file

  6. +
  7. ALGO=CRPA to make vasp calculate U matrices (bare, screened etc. )

    +
      +
    1. omegamax=0 (default) for frequency depend U matrix

    2. +
    3. NCRPA_BANDS for selecting bands in a non-disentagled workflow (vasp.at/wiki/index.php/NCRPA_BANDS)

    4. +
    5. or set NTARGET STATES= # of target states for using the KUBO formalism for disentanglement. Works directly with the wannier functions as basis. The states not listet will be included in screening.

    6. +
    7. example file:

      +
        +
      • SYSTEM = SrVO3

      • +
      • ISMEAR = 0

      • +
      • ENCUT = high value!

      • +
      • VCUTOFF = reasonable high value!

      • +
      • SIGMA = 0.05

      • +
      • EDIFF = 1E-8

      • +
      • NBANDS =96

      • +
      • ALGO = CRPA

      • +
      • NTARGET_STATES = 1 2 3

      • +
      • LWAVE = .FALSE.

      • +
      • NCSHMEM=1

      • +
      • LMAXMIX=4

      • +
      +
    8. +
    +
  8. +
+
+
+

important flags:

+

if you get sigsevs while calculating the polarization make sure your local stack +size is large enough by setting:

+
ulimit -s unlimited
+
+
+
    +
  • ALGO=CRPA (automatically calls wannier90 and calculates the U matrix)

  • +
  • NTARGET_STATES= # number of target Wannier funcitons if more target states than basis functions for U matrix one specify the one to exclude from screening as integer list: 1 2 3. This would build the U matrix for the first 3 Wannier functions in wannier90.win, where 5 Wannier functions are specified there in total and the last 2 are included for the calculation of screening.

  • +
  • for the disentanglement with NTARGET_STATES there are 3 options in cRPA:

    + +
  • +
  • LOPTICS= TRUE for calculating the necessary response integrals withing the Kohn-Sham Basis W000x.tmp

  • +
  • NCSHMEM=1 nodody knows, but it is needed!

  • +
  • VCUTOFF cuttoff for bare interaction V. This tests your convergency +and is written in the OUTCAR as two sets of bare interaction, where for one of them +it says: low cutoff result for V_ijkl. Here ENCUT was used and for the one above 1.1*ENCUT or VCUTOFF was used.

  • +
  • usually a converged ENCUT gives also a reasonably high VCUTOFF, so that explicitly setting VCUTOFF is not necessary. Moreover, the effect of the VCUTOFF convergence is included by subtracting the constant shift between LOW and HIGH VCUTOFF test output in the OUTCAR

  • +
+
+
+

convergency tests:

+

\(`E_{corr}^{RPA}`\) converges for NBANDS,ENCUT to \(`\infty`\), where the asymptotic +behavior goes like \(`1/N_{bands} \approx ENCUT^{-3/2} `\). The ENCUT for the GW part +is set automatically by VASP with the ratio: \(`ENCUTGW = 2/3 \ ENCUT`\). Moreover, +it is crucial to first converge the bare interaction V that does not depend on the +polarization. To do these tests set in the INCAR file:

+
    +
  • ALGO = 2E4W # calculates only the V

  • +
  • LWPOT = .FALSE # avoid errors

  • +
  • VCUTOFF # vary the cut-off until convergency is reached, default is 1.1*ENCUT

  • +
  • NBANDS # minor effect on V then on W, but nevertheless a reasonable amount of +bands must be used. A good choice is 3*NELECT (# of electrons in the systems).

  • +
+

The procedure is then to first convergence KPOINTS and ENCUT, where KPOINTS dependency of the results seems to be weak. Then increase NBANDS until U does not change anymore.

+
+
+

Parameterization of U and J from cRPA calculations

+

eval_u.py provides four different methods:

+
    +
  • Kanamori: calc_kan_params(...) for extracting Kanamori parameters for a cubic system

  • +
  • Slater 1: calc_u_avg_fulld(...) using averaging and symmetries: \(`U_\mathrm{cubic} = \frac1{2l+1} \sum_i (U_{iiii})`\), \(`J_\mathrm{cubic} = \frac1{2l(2l+1)} \sum_{i, j\neq i} U_{ijji}`\). Then, the interaction parameters follow from the conversion \(`U = U_\mathrm{cubic} - \frac85 J_\mathrm{cubic}, J = \frac75 J_\mathrm{cubic}`\).

  • +
  • Slater 2: calculate_interaction_from_averaging(...) using direct averaging: \(`U = \frac1{(2l+1)^2} \sum_{i, j} U_{iijj}`\) and \(`J = U - \frac1{2l(2l+1)} \sum_{i, j} U_{ijij}`\). This is more straight forward that Slater 1, but ignores the basis in which the cRPA Uijkl matrix is written. For a perfect Slater matrix this gives the same results if applied in cubic or spherical harmonics basis.

  • +
  • Slater 3: fit_slater_fulld(...) using an least-square fit (summed over the matrix elements) of the two-index matrices \(`U_{iijj}`\) and \(`U_{ijij}`\) to the Slater Hamiltonian.

  • +
+

These three methods give the same results if the cRPA matrix is of the Slater type already. Be aware of the order of your basis functions and the basis in which the \(U\) tensor is written!

+
+
+

general sidemarks:

+
    +
  • careful with the averaged U,u,J values in the end of the OUTCAR, because they sum all off-diagonal elements! Also inter-site, if the unit cell contains more than one target atom

  • +
  • in VASP the two inner indices are exchanged compared to the notation in PRB 86, 165105 (2012): U_ijkl = U_ikjl^VASP

  • +
  • when specifying bands, always start with 1 not 0.

  • +
  • GW pseudopotentials can be more accurate, since they provide higher cut-offs e.g. , test this…

  • +
  • NCRPA_BANDS and NTARGET_STATES gives the same result in non-entangled bands

  • +
+
+
+

version and compilation:

+
    +
  • supported vasp version 6 or higher

  • +
  • wannier90 upto v3.1 works, if no features exclusively to wannier90 v3 are used

  • +
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/documentation.html b/documentation.html new file mode 100644 index 00000000..9aed4ff1 --- /dev/null +++ b/documentation.html @@ -0,0 +1,428 @@ + + + + + + + Documentation — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Documentation

+
+

Code structure

+_images/code_structure.png +

more details in the reference manual below.

+

To get started with the code after a successful Installation, take a look at the Tutorials section. Here we provide further special information and a reference manual for all available functions.

+
+
+

DFT interface notes

+ +
+
+

Input/Output

+ +
+
+

Further details for running

+ +
+
+

Module reference manual

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +

csc_flow

contains the charge self-consistency flow control functions

dft_managers

DFT code driver modules

dmft_cycle

main DMFT cycle, DMFT step, and helper functions

dmft_tools

DMFT routine helper functions used during solid_dmft run

gw_embedding

GW embedding tools

io_tools

IO tools

postprocessing

Postprocessing tools

util

external helper functions, not used by any DMFT routine

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 00000000..2bd377e5 --- /dev/null +++ b/genindex.html @@ -0,0 +1,1032 @@ + + + + + + Index — solid_dmft documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ _ + | A + | C + | D + | E + | F + | G + | H + | I + | K + | M + | P + | R + | S + | T + | U + | V + | W + +
+

_

+ + +
+ +

A

+ + + +
+ +

C

+ + + +
+ +

D

+ + + +
    +
  • + dmft_tools.greens_functions_mixer + +
  • +
  • + dmft_tools.initial_self_energies + +
  • +
  • + dmft_tools.interaction_hamiltonian + +
  • +
  • + dmft_tools.legendre_filter + +
  • +
  • + dmft_tools.manipulate_chemical_potential + +
  • +
  • + dmft_tools.matheval + +
  • +
  • + dmft_tools.observables + +
  • +
  • + dmft_tools.results_to_archive + +
  • +
  • + dmft_tools.solver + +
  • +
  • dummy_sumk (class in gw_embedding.gw_flow) +
  • +
+ +

E

+ + + +
+ +

F

+ + + +
+ +

G

+ + + +
    +
  • + gw_embedding.gw_flow + +
  • +
  • + gw_embedding.iaft + +
  • +
  • + gw_embedding.qp_evs_to_eig + +
  • +
+ +

H

+ + +
+ +

I

+ + + +
    +
  • + io_tools.postproc_toml_dict + +
  • +
  • + io_tools.verify_input_params + +
  • +
+ +

K

+ + +
+ +

M

+ + +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

U

+ + + +
    +
  • + util.symmetrize_gamma_file + +
  • +
  • + util.write_kslice_to_h5 + +
  • +
+ +

V

+ + + +
+ +

W

+ + + +
+ + + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 00000000..0734748f --- /dev/null +++ b/index.html @@ -0,0 +1,390 @@ + + + + + + + solid_dmft — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

solid_dmft

+ +

This program allows to perform DFT+DMFT ‘’one-shot’’ and charge self-consistent +(CSC) calculations from h5 archives or VASP/Quantum Espresso input files for +multiband systems using the TRIQS software library, and the DFT code interface +TRIQS/DFTTools. Works with triqs >3.x.x. +solid_dmft takes advantage of various +impurity solvers available +in triqs: cthyb, HubbardI, ForkTPS, ctint, and ctseg. Postprocessing scripts are available to +perform analytic continuation and calculate spectral functions.

+

For installation use the same branch / tag as your triqs installation. More +information under Installation.

+

Learn how to use solid_dmft in the Documentation and the Tutorials.

+

For more technical information about the implementation check also the solid_dmft publication in the JOSS journal. If you are using this code for your research, please cite the paper using this bib file.

+
+

Workflow of DFT+DMFT calculations with solid_dmft

+_images/workflow.png +
+
+
+_images/flatiron.png +_images/eth_logo_kurz_pos.png +
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_input/advanced.html b/input_output/DMFT_input/advanced.html new file mode 100644 index 00000000..1f6ccf14 --- /dev/null +++ b/input_output/DMFT_input/advanced.html @@ -0,0 +1,442 @@ + + + + + + + [advanced]: Advanced inputs — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

[advanced]: Advanced inputs

+

Advanced parameters, do not modify the default value unless you know what you are doing.

+
+

dc_factor

+
+

type = float; default = None

+
+

If given, scales the dc energy by multiplying with this factor, usually < 1. +If None, the dc is left unchanged, which is equivalent to dc_factor=1.

+
+
+

dc_fixed_occ

+
+

type = list of float; default = None

+
+

If given, the occupation for the DC for each impurity is set to the provided value. +Still uses the same kind of DC!

+
+
+

dc_fixed_value

+
+

type = float; default = None

+
+

If given, it sets the DC (energy/imp) to this fixed value. Overwrites EVERY other DC configuration parameter if DC is turned on

+
+
+

dc_nominal

+
+

type = bool; default = False

+
+

TODO: write

+
+
+

dc_orb_shift

+
+

type = list of float; default = None

+
+

extra potential shift per orbital per impurity added to the DC

+
+
+

dc_J

+
+

type = float or list of float; default = general.J

+
+

J values for DC determination. If only one value is given, the same J is assumed for all impurities

+
+
+

dc_U

+
+

type = float or list of float; default = general.U

+
+

U values for DC determination. If only one value is given, the same U is assumed for all impurities

+
+
+

map_solver_struct

+
+

type = list of dict; default = None

+
+

Additional manual mapping of the solver block structure, applied +after the block structure finder for each impurity. +Give exactly one dict per ineq impurity. +see also triqs.github.io/dft_tools/latest/_python_api/triqs_dft_tools.block_structure.BlockStructure.map_gf_struct_solver.html

+
+
+

mapped_solver_struct_degeneracies

+
+

type = list; default = None

+
+

Degeneracies applied when using map_solver_struct, for each impurity. +If not given and map_solver_struct is used, no symmetrization will happen.

+
+
+

pick_solver_struct

+
+

type = list of dict; default = None

+
+

input a solver dictionary for each ineq impurity to reduce dimensionality of +solver block structure. Similar to to map_solver_struct, but with simpler syntax.

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_input/dft.html b/input_output/DMFT_input/dft.html new file mode 100644 index 00000000..22bad75c --- /dev/null +++ b/input_output/DMFT_input/dft.html @@ -0,0 +1,461 @@ + + + + + + + [dft]: DFT related inputs — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + + + + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_input/general.html b/input_output/DMFT_input/general.html new file mode 100644 index 00000000..b01737bd --- /dev/null +++ b/input_output/DMFT_input/general.html @@ -0,0 +1,863 @@ + + + + + + + [general]: General parameters — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

[general]: General parameters

+

Frequently used parameters that apply to the whole simulation.

+
+

afm_order

+
+

type = bool; default = False

+
+

copy self energies instead of solving explicitly for afm order

+
+
+

beta

+
+

type = float; default = None

+
+

inverse temperature. If set, solid_dmft stores all Greens functions etc on an imaginary-frequency grid +and also n_iw and n_tau have to be specified. +If not set, it uses a real-frequency grid and eta, n_w and w_range have to be set

+
+
+

block_threshold

+
+

type = float; default = 1e-5

+
+

threshold for finding block structures in the input data (off-diag yes or no)

+
+
+

broy_max_it

+
+

type = int; default = -1

+
+

maximum number of iteration to be considered for broyden mixing. +Only used if general.g0_mix_type=’broyden’. +1 corresponds to simple linear mixing

+
+
+

calc_energies

+
+

type = bool; default = False

+
+

Calculate the energies explicitly within the dmft loop and write them to the observables file. +Not compatible with ‘ftps’ solver

+
+
+

calc_mu_method

+
+

type = string; default = ‘dichotomy’

+
+

optimization method used for finding the chemical potential:

+
    +
  • ‘dichotomy’: usual method from TRIQS, should always converge but may be slow

  • +
  • ‘newton’: scipy Newton root finder, much faster but might be unstable

  • +
  • ‘brent’: scipy hyperbolic Brent root finder preconditioned with dichotomy to find edge, a compromise between speed and stability

  • +
+
+
+

csc

+
+

type = bool; default = False

+
+

are we doing a CSC calculation?

+
+
+

dc

+
+

type = bool; default = True

+
+

is the double-counting correction on?

+
+
+

dc_dmft

+
+

type = bool; default = None

+
+

Calculate the double-counting (DC) correction from DMFT or DFT occupations. +Needs to be set if general.dc = True.

+
    +
  • True: DC with DMFT occupation in each iteration

  • +
  • False: DC with DFT occupations after each DFT cycle

  • +
+
+
+

dc_type

+
+

type = int or list of int; default = None

+
+

Type of double counting correction considered. +Can be a list per impurity to have different types for different impurities. +Needs to be set if general.dc = True.

+
    +
  • 0: FLL

  • +
  • 1: Held formula, needs to be used with slater-kanamori h_int_type=2

  • +
  • 2: AMF

  • +
  • 3: FLL for eg orbitals only with U,J for Kanamori

  • +
+

for cRPA interactions this can be also a string to determine the type of DC from the full interaction +* crpa_static +* crpa_static_qp +* crpa_dynamic

+
+
+

dlr_eps

+
+

type = float; default = None

+
+

precision for DLR basis set if needed, see also triqs.gf.meshes.MeshDLR

+
+
+

dlr_wmax

+
+

type = float; default = None

+
+

spectral width (one-side) for DLR basis set if needed, see also triqs.gf.meshes.MeshDLR

+
+
+

enforce_off_diag

+
+

type = bool or list of bool; default = True

+
+

only if False, the block structure can be reduced to ignore off-diagonal elements +if they are below the general.block_threshold of the block structure finder

+
+
+

eta

+
+

type = float; default = None

+
+

broadening of Green’s function. Used when Green’s functions are stored on real-frequency grid, +i.e., general.beta is None, and for the real-frequency solvers

+
+
+

fixed_mu_value

+
+

type = float; default = None

+
+

If given, the chemical potential remains fixed in calculations

+
+
+

g0_conv_crit

+
+

type = float; default = -1.0

+
+

stop the calculation if sum_w 1/(w^0.6) ||G0-G0_prev|| is smaller than threshold

+
+
+

g0_mix

+
+

type = float; default = 1.0

+
+

Mixing the weiss field G0 with previous iteration G0 for better convergency. 1.0 means no mixing. +Setting g0_mix to 0.0 with linear mixing can be used for statistic sampling when +restarting a calculation

+
+
+

g0_mix_type

+
+

type = string; default = ‘linear’

+
+

which type of mixing is used. Possible values are: +linear: linear mixing +broyden: broyden mixing

+
+
+

gimp_conv_crit

+
+

type = float; default = -1.0

+
+

stop the calculation if sum_w 1/(w^0.6) ||Gimp-Gloc|| is smaller than threshold

+
+
+

gw_embedding

+
+

type = bool; default = False

+
+

use GW embedding workflow module (gw_flow.py) instead of dmft_cycle for aimbes GW embedding, see section gw

+
+
+

h_field

+
+

type = float; default = 0.0

+
+

magnetic field

+
+
+

h_field_it

+
+

type = int; default = 0

+
+

number of iterations the magnetic field is kept on

+
+
+

h_int_basis

+
+

type = string; default = ‘triqs’

+
+

cubic basis convention to compute the interaction U matrix

+
    +
  • ‘triqs’

  • +
  • ‘vasp’ (equivalent to ‘triqs’)

  • +
  • ‘wien2k’

  • +
  • ‘wannier90’

  • +
  • ‘qe’ (equivalent to ‘wannier90’)

  • +
+
+
+

h_int_type

+
+

type = string; mandatory

+
+

interaction type:

+
    +
  • density_density: used for full d-shell or eg- or t2g-subset (with U=F0, J=(F2+F4)/14)

  • +
  • kanamori: only physical for the t2g or the eg subset

  • +
  • kanamori_den_den: density density form of Kanamori, but with Kanamori U and J

  • +
  • full_slater: used for full d-shell or eg- or t2g-subset

  • +
  • ntot: U/2 (Ntot^2 - Ntot) interaction

  • +
  • simple_intra: density-density like but only intra orbital with given U value (no rotations applied)

  • +
  • crpa: use the cRPA matrix as interaction Hamiltonian

  • +
  • crpa_density_density: use the density-density terms of the cRPA matrix

  • +
  • dyn_full: use dynamic U from h5 archive

  • +
  • dyn_density_density: use dynamic U from h5 archive but only the density-density terms

  • +
+
+
+

h5_save_freq

+
+

type = int; default = 5

+
+

how often is the output saved to the h5 archive

+
+
+

J

+
+

type = float or list of float; mandatory

+
+

J interaction value. If it is a float, the same J is assumed for all impurities, +otherwise as a list a different J can be specified per impurity.

+
+
+

jobname

+
+

type = str; default = ‘dmft_dir’

+
+

the output directory for one-shot calculations

+
+
+

load_sigma

+
+

type = bool; default = False

+
+

load a old sigma from h5 file

+
+
+

load_sigma_iter

+
+

type = int; default = -1

+
+

load the sigma from a specific iteration if wanted. +If it is -1, loads from the last iteration.

+
+
+

magmom

+
+

type = list of float; default = None

+
+

Initialize magnetic moments if magnetic is on. length must be #imps. +List composed of energetic shifts written in electronvolts. +This will initialize the spin blocks of the sigma with a diagonal shift +With -shift for the up block, and +shift for the down block +(positive shift favours the up spin component, not compatible with spin-orbit coupling)

+
+
+

magnetic

+
+

type = bool; default = False

+
+

are we doing a magnetic calculations? If yes put magnetic to True. +Not implemented for CSC calculations

+
+
+

mu_gap_gb2_threshold

+
+

type = float; default = None

+
+

Threshold of the absolute of the lattice GF at tau=beta/2 for use +of MaxEnt’s lattice spectral function to put the chemical potential +into the middle of the gap. Does not work if system completely full +or empty, mu mixing is not applied to it. Recommended value 0.01.

+
+
+

mu_gap_occ_deviation

+
+

type = float; default = None

+
+

Only used if mu_gap_gb2_threshold != None. Sets additional criterion +for finding the middle of the gap through occupation deviation to +avoid getting stuck in an insulating state with wrong occupation.

+
+
+

mu_initial_guess

+
+

type = float; default = None

+
+

The chemical potential of the DFT calculation. +If not given, mu will be calculated from the DFT bands

+
+
+

mu_mix_const

+
+

type = float; default = 1.0

+
+

Constant term of the mixing of the chemical potential. See mu_mix_per_occupation_offset.

+
+
+

mu_mix_per_occupation_offset

+
+

type = float; default = 0.0

+
+

Mu mixing proportional to the occupation offset. +Mixing between the dichotomy result and the previous mui,

+

mu_next = factor * mu_dichotomy + (1-factor) * mu_previous, with +factor = mu_mix_per_occupation_offset * abs(n - n_target) + mu_mix_const.

+

The program ensures that 0 <= factor <= 1. +mu_mix_const = 1.0 and mu_mix_per_occupation_offset = 0.0 means no mixing.

+
+
+

mu_update_freq

+
+

type = int; default = 1

+
+

The chemical potential will be updated every # iteration

+
+
+

n_iter_dmft

+
+

type = int; mandatory

+
+

number of iterations per dmft cycle after first cycle

+
+
+

n_iter_dmft_first

+
+

type = int; default = 10

+
+

number of iterations in first dmft cycle to converge dmft solution

+
+
+

n_iter_dmft_per

+
+

type = int; default = 2

+
+

number of iterations per dmft step in CSC calculations

+
+
+

n_iw

+
+

type = int; default = 1025

+
+

number of Matsubara frequencies for the imaginary-frequency grid

+
+
+

n_tau

+
+

type = int; default = 10001

+
+

number of imaginary time points for the imaginary-time grid

+
+
+

n_w

+
+

type = int; default = 5001

+
+

number of real frequency points for the real-frequency grid

+
+
+

noise_level_initial_sigma

+
+

type = float; default = 0.0

+
+

spread of Gaussian noise applied to the initial Sigma

+
+
+

occ_conv_crit

+
+

type = float; default = -1.0

+
+

stop the calculation if a certain threshold for the imp occ change is reached

+
+
+

path_to_sigma

+
+

type = str; default = None

+
+

path to h5 file from which the sigma should be loaded. +Needed if load_sigma is true

+
+
+

prec_mu

+
+

type = float; default = 1e-4

+
+

general precision for determining the chemical potential at any time calc_mu is called

+
+
+

ratio_F4_F2

+
+

type = float or list of float; default = None

+
+

Ratio between the Slater integrals F_4 and F_2. Only used for the +interaction Hamiltonians ‘density_density’ and ‘full_slater’ and +only for d-shell impurities; default is 0.63.

+
+
+

sampling_h5_save_freq

+
+

type = int; default = 5

+
+

overwrites h5_save_freq when sampling has started

+
+
+

sampling_iterations

+
+

type = int; default = 0

+
+

for how many iterations should the solution sampled after the CSC loop is converged

+
+
+

seedname

+
+

type = str; mandatory

+
+

seedname for h5 archive with DMFT input and output

+
+
+

set_rot

+
+

type = string; default = None

+
+

Local orbital rotations added by solid_dmft

+
    +
  • None: keep the rotations stored in the h5 archive

  • +
  • ‘den’ use the DFT occupations density_mat_dft for diagonalization

  • +
  • ‘hloc’: use the DFT local Hamiltonian hloc_dft for diagonalization

  • +
+
+
+

sigma_conv_crit

+
+

type = float; default = -1.0

+
+

stop the calculation if sum_w 1/(w^0.6) ||Sigma-Sigma_prev|| is smaller than threshold

+
+
+

sigma_mix

+
+

type = float; default = 1.0

+
+

careful: Sigma mixing can break orbital symmetries, use G0 mixing. +mixing sigma with previous iteration sigma for better convergency. 1.0 means no mixing

+
+
+

store_solver

+
+

type = bool; default = False

+
+

whether to store the whole solver object under DMFT_input in h5 archive

+
+
+

U

+
+

type = float or list of float; mandatory

+
+

U interaction value. If it is a float, the same U is assumed for all impurities, +otherwise as a list a different U can be specified per impurity.

+
+
+

U_crpa_threshold

+
+

type = float; default = 0.0

+
+

threshold for the cRPA interaction matrix. If the absolute value of the +elements is below this threshold, they are set to zero.

+
+
+

U_prime

+
+

type = float or list of floats; default = None

+
+

U prime interaction value. +Only used for impurities where general.h_int_type is kanamori. +If it is a float, the same U prime is assumed for all impurities, +otherwise as a list a different U prime can be specified per impurity. +For None; default of U prime = U-2J is used.

+
+
+

w_range

+
+

type = list of int; default = [-10, 10]

+
+

Minimal and maximal range of the real-frequency grid

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_input/gw.html b/input_output/DMFT_input/gw.html new file mode 100644 index 00000000..b7c547f1 --- /dev/null +++ b/input_output/DMFT_input/gw.html @@ -0,0 +1,400 @@ + + + + + + + [GW]: GW embedding inputs — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

[GW]: GW embedding inputs

+

List of parameters for the GW embedding calculation. The parameters are ignored unless gw_embedding=true, or interactions are read from cRPA.

+
+

code

+
+

type = str; default = None

+
+

GW embedding code: aimbes or Vasp to load screened interaction

+
+
+

h5_file

+
+

type = str; default = None

+
+

path to h5 file in which the aimbes results are stored (checkpoint file)

+
+
+

use_rot

+
+

type = bool; default = False

+
+

use rotations of sum_k object to rotate 2 particle objects

+
+
+

it_1

+
+

type = int; default = 0

+
+

iteration to load 1 particle objects from aimbes

+
+
+

it_2

+
+

type = int; default = 0

+
+

iteration to load 2 particle objects from aimbes

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_input/input.html b/input_output/DMFT_input/input.html new file mode 100644 index 00000000..a5ff70a8 --- /dev/null +++ b/input_output/DMFT_input/input.html @@ -0,0 +1,384 @@ + + + + + + + Input — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Input

+

The aim of this section is to provide a comprehensive listing of all the input flags available for the dmft_config.ini input file. We begin by listing the possible sections and follow with the input parameters.

+ +

Below an exhaustive list containing all the parameters marked by section.

+

[general]

+

afm_order; beta; block_threshold; broy_max_it; calc_energies; calc_mu_method; csc; dc; dc_dmft; dc_type; dlr_eps; dlr_wmax; enforce_off_diag; eta; fixed_mu_value; g0_conv_crit; g0_mix; g0_mix_type; gimp_conv_crit; gw_embedding; h_field; h_field_it; h_int_basis; h_int_type; h5_save_freq; J; jobname; load_sigma; load_sigma_iter; magmom; magnetic; mu_gap_gb2_threshold; mu_gap_occ_deviation; mu_initial_guess; mu_mix_const; mu_mix_per_occupation_offset; mu_update_freq; n_iter_dmft; n_iter_dmft_first; n_iter_dmft_per; n_iw; n_tau; n_w; noise_level_initial_sigma; occ_conv_crit; path_to_sigma; prec_mu; ratio_F4_F2; sampling_h5_save_freq; sampling_iterations; seedname; set_rot; sigma_conv_crit; sigma_mix; store_solver; U; U_crpa_threshold; U_prime; w_range;

+

[solver]

+

type; idx_impurities; crm_dyson_solver; delta_interface; diag_delta; fit_max_moment; fit_max_n; fit_max_w; fit_min_n; fit_min_w; imag_threshold; legendre_fit; length_cycle; loc_n_max; loc_n_min; max_time; measure_chi_insertions; measure_chi; measure_density_matrix; measure_G_l; measure_pert_order; move_double; move_shift; n_cycles_tot; n_l; n_warmup_cycles; off_diag_threshold; perform_tail_fit; random_seed; length_cycle; max_time; measure_pert_order; move_double; n_cycles_tot; n_warmup_cycles; random_seed; crm_dyson_solver; diag_delta; fit_max_moment; fit_max_n; fit_max_w; fit_min_n; fit_min_w; improved_estimator; legendre_fit; length_cycle; max_time; measure_G_tau; measure_nnt; measure_pert_order; measure_statehist; n_cycles_tot; n_l; n_tau_k; n_warmup_cycles; off_diag_threshold; perform_tail_fit; random_seed; legendre_fit; measure_density_matrix; measure_G_l; measure_G_tau; n_l; bath_fit; calc_me; diag_delta; dmrg_maxm; dmrg_maxmB; dmrg_maxmI; dmrg_maxmIB; dmrg_tw; dt; enforce_gap; ignore_weight; maxm; maxmB; maxmI; maxmIB; n_bath; path_to_gs; ph_symm; refine_factor; state_storage; sweeps; tw; force_real; method; one_shot; tol; with_fock;

+

[dft]

+

dft_code; dft_exec; mpi_env; n_cores; n_iter; n_iter_first; plo_cfg; projector_type; store_eigenvals; w90_exec; w90_tolerance;

+

[gw]

+

code; h5_file; use_rot; it_1; it_2;

+

[advanced]

+

dc_factor; dc_fixed_occ; dc_fixed_value; dc_nominal; dc_orb_shift; dc_J; dc_U; map_solver_struct; mapped_solver_struct_degeneracies; pick_solver_struct;

+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_input/solver.html b/input_output/DMFT_input/solver.html new file mode 100644 index 00000000..440b0b7f --- /dev/null +++ b/input_output/DMFT_input/solver.html @@ -0,0 +1,1077 @@ + + + + + + + [solver]: solver specific parameters — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

[solver]: solver specific parameters

+

Here are the parameters that are uniquely dependent on the solver chosen. Some parameters are used within solid_dmft and some are passed directly into the triqs solver. +To see which parameters were passed to the solver for a given calculation, look at the triqs_solver_params in DMFT_input/solver in the h5 archive. +Solver-specific parameters are listed in the respective sections.

+
+

type

+
+

type = str; mandatory

+
+

type of solver chosen for the calculation, currently supports:

+
    +
  • ‘cthyb’

  • +
  • ‘ctint’

  • +
  • ‘ctseg’

  • +
  • ‘hubbardI’

  • +
  • ‘ftps’

  • +
  • ‘hartree’

  • +
+
+
+

idx_impurities

+
+

type = list of int; default = None

+
+

list of impurities this solver is supposed to solve

+
+
+

cthyb

+
+

crm_dyson_solver

+
+

type = bool; default = False

+
+

use CRM Dyson solver to extract Sigma_imp from G(tau) (conflict with legendre_fit and tail_fit) +set dlr_wmax and dlr_eps parameters in general section to use

+
+
+
crm_dlr_wmax: float; default = None

customized dlr_wmax for the crm_dyson_solver. Only used if crm_dyson_solver = True. +Set to dlr_wmax if crm_dlr_wmax = None.

+
+
crm_dlr_eps: float; default = None

customized dlr_eps for the crm_dyson_solver. Only used if crm_dyson_solver = True. +Set to dlr_eps if crm_dlr_eps = None.

+
+
+
+

delta_interface

+
+

type = bool; default = False

+
+

use delta interface in cthyb instead of input G0

+
+
+

diag_delta

+
+

type = bool; default = False

+
+

approximate the hybridization function as diagonal when using the delta interface

+
+
+

fit_max_moment

+
+

type = int; default = None

+
+

max moment to be fitted. Only used if solver.perform_tail_fit = True

+
+
+

fit_max_n

+
+

type = int; default = None

+
+

number of highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True

+
+
+

fit_max_w

+
+

type = float; default = None

+
+

highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True

+
+
+

fit_min_n

+
+

type = int; default = None

+
+

number of start matsubara frequency to start with. Only used if solver.perform_tail_fit = True

+
+
+

fit_min_w

+
+

type = float; default = None

+
+

start matsubara frequency to start with. Only used if solver.perform_tail_fit = True

+
+
+

imag_threshold

+
+

type = float; default = 1e-14

+
+

threshold for imag part of G0_tau. be warned if symmetries are off in projection scheme imag parts can occur in G0_tau

+
+
+

legendre_fit

+
+

type = bool; default = False

+
+

filter noise of G(tau) with G_l, cutoff is taken from n_l

+
+
+

length_cycle

+
+

type = int; mandatory

+
+

length of each cycle; number of sweeps before measurement is taken

+
+
+

loc_n_max

+
+

type = int; default = None

+
+

Restrict local Hilbert space to states with at most this number of particles

+
+
+

loc_n_min

+
+

type = int; default = None

+
+

Restrict local Hilbert space to states with at least this number of particles

+
+
+

max_time

+
+

type = int; default = -1

+
+

maximum amount the solver is allowed to spend in each iteration

+
+
+

measure_chi_insertions

+
+

type = int; default = 100

+
+

number of insertation for measurement of chi

+
+
+

measure_chi

+
+

type = str; default = None

+
+

measure the dynamic suszeptibility of an operator O, chi(O,O(tau)) +triqs.github.io/cthyb/unstable/guide/dynamic_susceptibility_notebook.html +Possible values for this flag are:

+
    +
  • ‘SzSz’: spin susceptibility

  • +
  • ‘NN’: occupation susceptibility

  • +
+
+
+

measure_density_matrix

+
+

type = bool; default = False

+
+

measures the impurity density matrix and sets also +use_norm_as_weight to true

+
+
+

measure_G_l

+
+

type = bool; default = False

+
+

measure Legendre Greens function

+
+
+

measure_pert_order

+
+

type = bool; default = False

+
+

measure perturbation order histograms: triqs.github.io/cthyb/latest/guide/perturbation_order_notebook.html. +The result is stored in the h5 archive under ‘DMFT_results’ at every iteration +in the subgroups ‘pert_order_imp_X’ and ‘pert_order_total_imp_X’

+
+
+

move_double

+
+

type = bool; default = True

+
+

double moves in solver

+
+
+

move_shift

+
+

type = bool; default = False

+
+

shift moves in solver

+
+
+

n_cycles_tot

+
+

type = int; mandatory

+
+

total number of sweeps

+
+
+

n_l

+
+

type = int; default = None

+
+

number of Legendre coefficients. +Needed if measure_G_l=True or legendre_fit=True

+
+
+

n_warmup_cycles

+
+

type = int; mandatory

+
+

number of warmup cycles before real measurement sets in

+
+
+

off_diag_threshold

+
+

type = float; default = 0.0

+
+

threshold for off-diag elements in Hloc0

+
+
+

perform_tail_fit

+
+

type = bool; default = False

+
+

tail fitting if legendre is off?

+
+
+

random_seed

+
+

type = str; default = None

+
+

if None; default seed by triqs. +If specified the int will be used for random seeds. Careful, this will give the same random +numbers on all mpi ranks. +You can also pass a string that will convert the keywords it or rank on runtime, e.g., +34788 * it + 928374 * rank will convert each iteration the variables it and rank for the random +seed

+
+
+
+

ctint

+
+

length_cycle

+
+

type = int; mandatory

+
+

length of each cycle; number of sweeps before measurement is taken

+
+
+

max_time

+
+

type = int; default = -1

+
+

maximum amount the solver is allowed to spend in each iteration

+
+
+

measure_pert_order

+
+

type = bool; default = False

+
+

measure perturbation order histograms: triqs.github.io/cthyb/latest/guide/perturbation_order_notebook.html. +The result is stored in the h5 archive under ‘DMFT_results’ at every iteration +in the subgroups ‘pert_order_imp_X’ and ‘pert_order_total_imp_X’

+
+
+

move_double

+
+

type = bool; default = True

+
+

double moves in solver

+
+
+

n_cycles_tot

+
+

type = int; mandatory

+
+

total number of sweeps

+
+
+

n_warmup_cycles

+
+

type = int; mandatory

+
+

number of warmup cycles before real measurement sets in

+
+
+

random_seed

+
+

type = str; default = None

+
+

if None; default seed by triqs. +If specified the int will be used for random seeds. Careful, this will give the same random +numbers on all mpi ranks. +You can also pass a string that will convert the keywords it or rank on runtime, e.g., +34788 * it + 928374 * rank will convert each iteration the variables it and rank for the random +seed

+
+
+
+

ctseg

+
+

crm_dyson_solver

+
+

type = bool; default = False

+
+

use CRM Dyson solver to extract Sigma_imp from G(tau) (conflict with legendre_fit and tail_fit) +set dlr_wmax and dlr_eps parameters in general section to use

+
+
+
crm_dlr_wmax: float; default = None

customized dlr_wmax for the crm_dyson_solver. Only used if crm_dyson_solver = True. +Set to dlr_wmax if crm_dlr_wmax = None.

+
+
crm_dlr_eps: float; default = None

customized dlr_eps for the crm_dyson_solver. Only used if crm_dyson_solver = True. +Set to dlr_eps if crm_dlr_eps = None.

+
+
+
+

diag_delta

+
+

type = bool; default = False

+
+

approximate the hybridization function as diagonal when using the delta interface

+
+
+

fit_max_moment

+
+

type = int; default = None

+
+

max moment to be fitted. Only used if solver.perform_tail_fit = True

+
+
+

fit_max_n

+
+

type = int; default = None

+
+

number of highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True

+
+
+

fit_max_w

+
+

type = float; default = None

+
+

highest matsubara frequency to fit. Only used if solver.perform_tail_fit = True

+
+
+

fit_min_n

+
+

type = int; default = None

+
+

number of start matsubara frequency to start with. Only used if solver.perform_tail_fit = True

+
+
+

fit_min_w

+
+

type = float; default = None

+
+

start matsubara frequency to start with. Only used if solver.perform_tail_fit = True

+
+
+

improved_estimator

+
+

type = bool; default = False

+
+

measure improved estimators +Sigma_iw will automatically be calculated via +http://dx.doi.org/10.1103/PhysRevB.85.205106

+
+
+

legendre_fit

+
+

type = bool; default = False

+
+

filter noise of G(tau) with G_l, cutoff is taken from n_l

+
+
+

length_cycle

+
+

type = int; mandatory

+
+

length of each cycle; number of sweeps before measurement is taken

+
+
+

max_time

+
+

type = int; default = -1

+
+

maximum amount the solver is allowed to spend in each iteration

+
+
+

measure_G_tau

+
+

type = bool; default = True

+
+

should the solver measure G(tau)?

+
+
+

measure_nnt

+
+

type = boold; default = False

+
+

measure two particle density-density correlation function (suszeptibility)

+
+
+

measure_pert_order

+
+

type = bool; default = False

+
+

measure perturbation order histograms: triqs.github.io/cthyb/latest/guide/perturbation_order_notebook.html. +The result is stored in the h5 archive under ‘DMFT_results’ at every iteration +in the subgroups ‘pert_order_imp_X’ and ‘pert_order_total_imp_X’

+
+
+

measure_statehist

+
+

type = bool; default = False

+
+

measure state histogram, i.e. diagonal components of many body density matrix

+
+
+

n_cycles_tot

+
+

type = int; mandatory

+
+

total number of sweeps

+
+
+

n_l

+
+

type = int; default = None

+
+

number of Legendre coefficients. +Needed if measure_G_l=True or legendre_fit=True

+
+
+

n_tau_k

+
+

type = int; default = 10001

+
+

number imaginary time points for dynamic interactions

+
+
+

n_warmup_cycles

+
+

type = int; mandatory

+
+

number of warmup cycles before real measurement sets in

+
+
+

off_diag_threshold

+
+

type = float; default = 0.0

+
+

threshold for off-diag elements in Hloc0

+
+
+

perform_tail_fit

+
+

type = bool; default = False

+
+

tail fitting if legendre is off?

+
+
+

random_seed

+
+

type = str; default = None

+
+

if None; default seed by triqs. +If specified the int will be used for random seeds. Careful, this will give the same random +numbers on all mpi ranks. +You can also pass a string that will convert the keywords it or rank on runtime, e.g., +34788 * it + 928374 * rank will convert each iteration the variables it and rank for the random +seed

+
+
+
+

hubbardI

+
+

legendre_fit

+
+

type = bool; default = False

+
+

filter noise of G(tau) with G_l, cutoff is taken from n_l

+
+
+

measure_density_matrix

+
+

type = bool; default = False

+
+

measures the impurity density matrix and sets also +use_norm_as_weight to true

+
+
+

measure_G_l

+
+

type = bool; default = False

+
+

measure Legendre Greens function

+
+
+

measure_G_tau

+
+

type = bool; default = True

+
+

should the solver measure G(tau)?

+
+
+

n_l

+
+

type = int; default = None

+
+

number of Legendre coefficients. +needed if measure_G_l=True or legendre_fit=True

+
+
+
+

ftps parameters

+
+

bath_fit

+
+

type = bool; mandatory

+
+

DiscretizeBath vs BathFitter

+
+
+

calc_me

+
+

type = bool; default = True

+
+

calculate only symmetry-inequivalent spins/orbitals, symmetrized afterwards

+
+
+

diag_delta

+
+

type = bool; default = False

+
+

option to remove off-diagonal terms in the hybridization function +available for ftps

+
+
+

dmrg_maxm

+
+

type = int; default = 100

+
+

TODO: add description

+
+
+

dmrg_maxmB

+
+

type = int; default = 100

+
+

maximal bath-bath bond dimensions

+
+
+

dmrg_maxmI

+
+

type = int; default = 100

+
+

maximal imp-imp bond dimensions

+
+
+

dmrg_maxmIB

+
+

type = int; default = 100

+
+

maximal imp-bath bond dimensions

+
+
+

dmrg_tw

+
+

type = float; default 1e-9

+
+

truncated weight for every link

+
+
+

dt

+
+

type = float; mandatory

+
+

time step

+
+
+

enforce_gap

+
+

type = list of float; default = None

+
+

enforce gap in DiscretizeBath between interval

+
+
+

ignore_weight

+
+

type = float; default = 0.0

+
+

ignore weight of peaks for bath fitter

+
+
+

maxm

+
+

type = int; default = 100

+
+

TODO: write description

+
+
+

maxmB

+
+

type = int; default = 100

+
+

maximal bath-bath bond dimensions

+
+
+

maxmI

+
+

type = int; default = 100

+
+

maximal imp-imp bond dimensions

+
+
+

maxmIB

+
+

type = int; default = 100

+
+

maximal imp-bath bond dimensions

+
+
+

n_bath

+
+

type = int; default = 0

+
+

number of bath sites

+
+
+

path_to_gs

+
+

type = string; default = None

+
+

location of GS if already present. Use ‘postprocess’ to skip solver and go directly to post-processing +of previously terminated time-evolved state

+
+
+

ph_symm

+
+

type = bool; default = False

+
+

particle-hole symmetric problem

+
+
+

refine_factor

+
+

type = int; default = 1

+
+

rerun ftps cycle with increased accuracy

+
+
+

state_storage

+
+

type = string; default = ‘./’

+
+

location of large MPS states

+
+
+

sweeps

+
+

type = int; default = 10

+
+

Number of DMRG sweeps

+
+
+

tw

+
+

type = float; default 1e-9

+
+

truncated weight for every link

+
+
+
+

hartree

+
+

force_real

+
+

type = bool; default = True

+
+

force the self energy from Hartree fock to be real

+
+
+

method

+
+

type = str; default = “krylov”

+
+

method for root finder. Only used if one_shot=False, see scipy.optimize.root for options.

+
+
+

one_shot

+
+

type = bool; default = False

+
+

Perform a one-shot or self-consitent root finding in each DMFT step of the Hartree solver.

+
+
+

tol

+
+

type = float; default = 1e-5

+
+

tolerance for root finder if one_shot=False.

+
+
+

with_fock

+
+

type = bool; default = False

+
+

include Fock exchange terms in the self-energy

+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_output/iterations.html b/input_output/DMFT_output/iterations.html new file mode 100644 index 00000000..c86b36ff --- /dev/null +++ b/input_output/DMFT_output/iterations.html @@ -0,0 +1,492 @@ + + + + + + + Iterations — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Iterations

+

List of the main outputs for solid_dmft for every iteration.

+
+

Warning

+

According to the symmetries found by the solver, the resulting indexing of the triqs.Gf objects might vary. +In order to retrieve the indices call the Gf.indices method.

+
+

Legend:

+
    +
  • iiter = iteration number: range(0, n_dmft_iter)

  • +
  • ish = shell number: range(0, n_shells)

  • +
  • icrsh = correlated shell number: range(0, n_corr_shells)

  • +
  • iineq = inequivalent correlated shell number: range(0, n_inequiv_shells)

  • +
  • iorb = orbital number: range(0, n_orbitals)

  • +
  • sp = spin label

  • +
  • ikpt = k-point label, the order is the same as given in the wannier90 input: range(0, n_kpt)

  • +
  • iband = band label before downfolding, n_bands = number of bands included in the disentanglement window during the wannierization: range(0, n_bands)

  • +
+
+

[observables]

+
+

chemical_potential_pre:

+
+

Chemical potential before the solver iteration.

+
+
+
+

chemical_potential_post:

+
+

Chemical potential after the solver iteration.

+
+
+
+

DC_energ:

+
+

indices= [iorb]

+

Double counting correction.

+
+
+
+

DC_pot:

+
+

type= arr(float);

+

indices= [iiter]

+

Double counting potential.**what exactly is the indexing here?**

+
+
+
+

Delta_time_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

Imaginary time hybridization function.

+
+
+
+

G0_freq_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

Imaginary frequency Weiss field.

+
+
+
+

G0_time_orig_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

??

+
+
+
+

G_imp_freq_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

Imaginary frequency impurity green function.

+
+
+
+

G_imp_l_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

Legendre representation of the impurity green function.

+
+
+
+

G_imp_time_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

Imaginary time representation of the impurity green function.

+
+
+
+

Sigma_freq_{iimp}:

+
+

type= triqs.gf.block_gf.BlockGf

+

Imaginary frequency self-energy obtained from the Dyson equation.

+
+
+
+

deltaN:

+
+

type= dict(arr(float))

+

indices= [ispin][ikpt][iband, iband]

+

Correction to the DFT occupation of a particular band:

+
+
+
+

deltaN_trace:

+
+

type= dict

+

indices= [ispin]

+

Total sum of the charge correction for an impurity.

+
+
+
+

dens_mat_pre:

+
+

type= arr(dict)

+

indices= [iimp][same as block structure Gf]

+

Density matrix before the solver iteration.

+
+
+
+

dens_mat_post:

+
+

type= arr(dict)

+

indices= [ispin][iimp]

+

Density matrix after the solver iteration.

+
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_output/observables.html b/input_output/DMFT_output/observables.html new file mode 100644 index 00000000..e3d379af --- /dev/null +++ b/input_output/DMFT_output/observables.html @@ -0,0 +1,552 @@ + + + + + + + Observables/convergence_obs — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Observables/convergence_obs

+

List of the single-particle observables obtained in a single DMFT iteration

+

Legend:

+
    +
  • iiter = iteration number: range(0, n_dmft_iter)

  • +
  • iimp = impurity number: range(0, n_imp)

  • +
  • iorb = orbital number: range(0, n_orbitals)

  • +
  • ispin = spin label, ‘up’ or ‘down’ in collinear calculations

  • +
+
+

[observables]

+
+

iteration:

+
+

type= arr(int);

+

indices= [iiter]

+

Number of the iteration.

+
+
+
+

mu:

+
+

type= arr(float);

+

indices= [iiter]

+

Chemical potential fed to the solver at the present iteration (pre-dichotomy adjustment).

+
+
+
+

orb_gb2:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter, iorb]

+

Orbital resolved G(beta/2), proxy for projected density of states at the Fermi level. Low value of orb_gb2 correlate with the presence of a gap.

+
+
+
+

imp_gb2:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter]

+

Site G(beta/2), proxy for total density of states at the Fermi level. Low values correlate with the presence of a gap.

+
+
+
+

orb_Z:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter, iorb]

+

Orbital resolved quasiparticle weight (eff_mass/renormalized_mass). As obtained by linearizing the self-energy around \(\omega = 0\)

+
+\[\begin{split}Z = \bigg( 1- \frac{\partial Re[\Sigma]}{\partial \omega} \bigg|_{\omega \rightarrow 0} \bigg)^{-1} \\\end{split}\]
+
+
+
+

orb_occ:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter, iorb]

+

Orbital resolved mean site occupation.

+
+
+
+

imp_occ:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter]

+

Total mean site occupation.

+
+
+
+

E_tot:

+
+

type= arr(float)

+

indices= [iiter]

+

Total energy, computed as:

+
+\[E_{tot} = E_{DFT} + E_{corr} + E_{int} -E_{DC}\]
+
+
+
+

E_dft:

+
+

type= arr(float)

+

indices= [iiter]

+

\(E_{DFT}\) in the total energy expression. System energy as computed by the DFT code at every csc iteration.

+
+
+
+

E_bandcorr:

+
+

type= arr(float)

+

indices= [iiter]

+

\(E_{corr}\) in the total energy expression. DMFT correction to the kinetic energy.

+
+
+
+

E_corr_en:

+
+

type= arr(float)

+

indices= [iiter]

+

Sum of the E_DC and E_int_imp terms.

+
+
+
+

E_int_imp:

+
+

type= arr(float)

+

indices= [iiter]

+

\(E_{int}\) in the total energy expression. Energy contribution from the electronic interactions within the single impurity.

+
+
+
+

E_DC:

+
+

type= arr(float)

+

indices= [iiter]

+

\(E_{DC}\) in the total energy expression. Double counting energy contribution.

+
+
+
+
+

[convergence_obs]

+
+

iteration:

+
+

type= arr(int);

+

indices= [iiter]

+

Number of the iteration.

+
+
+
+

d_mu:

+
+

type= arr(float)

+

indices= [iiter]

+

Chemical potential stepwise difference.

+
+
+
+

d_orb_occ:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter,iorb]

+

Orbital occupation stepwise difference.

+
+
+
+

d_imp_occ:

+
+

type= arr(dict)

+

indices= [iimp][ispin][iiter]

+

Impurity occupation stepwise difference.

+
+
+
+

d_Gimp:

+
+

type= arr(float)

+

indices= [iiter]

+

DMFT self-consistency condition | Gloc - Gimp | difference of current iteration.

+
+
+
+

d_G0:

+
+

type= arr(float)

+

indices= [iiter]

+

Weiss field stepwise difference.

+
+
+
+

d_Sigma:

+
+

type= arr(float)

+

indices= [iiter]

+

Impurity self-energy stepwise difference.

+
+
+
+

d_Etot:

+
+

type= arr(float)

+

indices= [iiter]

+

Total energy stepwise difference.

+
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/input_output/DMFT_output/results.html b/input_output/DMFT_output/results.html new file mode 100644 index 00000000..6ee75382 --- /dev/null +++ b/input_output/DMFT_output/results.html @@ -0,0 +1,382 @@ + + + + + + + Output / results — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Output / results

+

The DMFT_results group contains the output of the DMFT iterations. The subgroups contained here fall under two main categories:

+
    +
  • Iterations: relevant quantities for the DMFT solutions, such as Weiss field, Green function, extracted self-energy, etc. +Normally these are solver dependent.

  • +
  • Observables: Single-particles quantities that can be measured with the aid of the green function. Includes chemical potential, estimate of the quasiparticle weight, impurity occupation, total energy, energy contributions, etc. The convergence_obs subgroup lists the stepwise difference in the observables’ value as the calculation progresses and can be used as a proxy for convergence.

  • +
+
+

Group structure

+../../_images/group_structure.png +
+
+

Subgroups

+ +
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/install.html b/install.html new file mode 100644 index 00000000..10c4a4c2 --- /dev/null +++ b/install.html @@ -0,0 +1,472 @@ + + + + + + + Installation — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Installation

+
+

Prerequisites

+
    +
  1. The TRIQS library, see TRIQS installation instruction. +In the following, we assume that TRIQS, triqs/dft_tools, and at least one of the impurity solvers available in TRIQS, e.g. cthyb, HubbardI, ctseg, FTPS, or ctint is installed in the directory path_to_triqs.

  2. +
  3. Make sure to install besides the triqs requirements also the python packages:

    +
    $ pip3 install --user scipy argparse pytest
    +
    +
    +
  4. +
  5. To build the documentation the following extra python packages are needed:

    +
    $ pip3 install --user sphinx sphinx-autobuild pandoc nbsphinx linkify-it-py sphinx_rtd_theme myst-parser
    +
    +
    +
  6. +
+
+
+

Installation via pip

+

You can install the latest solid_dmft release simply via pip (PyPi): +` +pip install solid_dmft +` +However, please make sure that you have a valid TRIQS and TRIQS/DFTTools installation matching the version of solid_dmft. Furthermore, you need at least one of the supported DMFT impurity solvers installed to use solid_dmft.

+
+
+

Manual installation via CMake

+

We provide hereafter the build instructions in the form of a documented bash script. Please change the variable INSTALL_PREFIX to point to your TRIQS installation directory:

+
INSTALL_PREFIX=/path/to/triqs
+# source the triqsvars.sh file from your TRIQS installation to load the TRIQS environment
+source $(INSTALL_PREFIX)/share/triqs/triqsvars.sh
+
+# clone the flatironinstitute/solid_dmft repository from GitHub
+git clone https://github.com/flatironinstitute/solid_dmft solid_dmft.src
+
+# checkout the branch of solid_dmft matching your triqs version.
+# For example if you use the 3.1.x branch of triqs, dfttools. and cthyb
+git checkout 3.1.x
+
+# Create and move to a new directory where you will compile the code
+mkdir solid_dmft.build && cd solid_dmft.build
+
+# In the build directory call cmake, including any additional custom CMake options, see below
+cmake ../solid_dmft.src
+
+# Compile the code, run the tests, and install the application
+make test
+make install
+
+
+

This installs solid_dmft into your TRIQS installation folder.

+

To build solid_dmft with documentation you should run:

+
$ cmake path/to/solid_dmft.src -DBuild_Documentation=ON
+$ make
+$ sphinx-autobuild path/to/solid_dmft.src/doc ./doc/html -c ./doc/
+
+
+

The last line will automatically search for changes in your src dir, rebuild the documentation, +and serve it locally as under 127.0.0.1:8000.

+
+
+

Docker files & images

+

We provide docker files to build solid_dmft inside a docker container with all dependencies and instructions on how to integrate the connected DFT codes as well. Additionally, we host a most recent unstable version of the docker image used for the github CI on dockerhub. To use this version, which includes the cthyb solver, the hubbardI solver, dfttools, and the maxent package, pull the following image:

+
$ docker pull materialstheory/solid_dmft_ci
+
+
+
+
+

Version compatibility

+

Keep in mind that the version of solid_dmft must be compatible with your TRIQS library version, +see TRIQS website. +In particular the Major Version numbers have to be the same. +To use a particular version, go into the directory with the sources, and look at all available branches:

+
$ cd solid_dmft.src && git branch -vv
+
+
+

Checkout the version of the code that you want:

+
$ git checkout 3.1.x
+
+
+

and follow steps 3 to 6 above to compile the code.

+
+
+

Custom CMake options

+

The compilation of solid_dmft can be configured using CMake-options:

+
cmake ../solid_dmft.src -DOPTION1=value1 -DOPTION2=value2 ...
+
+
+ + + + + + + + + + + + + + + + + + + + +

Options

Syntax

Specify an installation path other than path_to_triqs

-DCMAKE_INSTALL_PREFIX=path_to_solid_dmft

Build in Debugging Mode

-DCMAKE_BUILD_TYPE=Debug

Disable testing (not recommended)

-DBuild_Tests=OFF

Build the documentation

-DBuild_Documentation=ON

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/issues.html b/issues.html new file mode 100644 index 00000000..71432533 --- /dev/null +++ b/issues.html @@ -0,0 +1,400 @@ + + + + + + + Support & contribute — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Support & contribute

+
+

Seeking help

+

If you have any questions please ask them on the solid_dmft github discussion page: +https://github.com/flatironinstitute/solid_dmft/discussions. However, note +that solid_dmft is targeted at experienced users of DMFT, and we can only provide +technial support for the code itself not for theory questions about the utilized methods.

+

Also make sure to ask only questions relevant for solid_dmft. For questions +regarding other parts of TRIQS use the discussions page of the respective TRIQS +application.

+

Take also a look at the Tutorials section of the documentation for examples, and +the official TRIQS tutorial page for even more +tutorials.

+
+
+

Improving solid_dmft

+

Please post suggestions for new features on the github discussion page or create +directly a pull request with new features or helpful postprocessing scripts +via github.

+
+

Reporting issues

+

Please report all problems and bugs directly at the github issue page +https://github.com/flatironinstitute/solid_dmft/issues. In order to make +it easier for us to solve the issue please follow these guidelines:

+
    +
  1. In all cases specify which version of the application you are using. You can +find the version number in the file CMakeLists.txt at the root of the +application sources.

  2. +
  3. If you have a problem during the installation, give us information about +your operating system and the compiler you are using. Include the outputs of +the cmake and make commands as well as the CMakeCache.txt file +which is in the build directory. Please include these outputs in a +gist file referenced in the issue.

  4. +
  5. If you are experiencing a problem during the execution of the application, provide +a script which allows to quickly reproduce the problem.

  6. +
+

Thanks!

+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/md_notes/docker.html b/md_notes/docker.html new file mode 100644 index 00000000..d1f19baa --- /dev/null +++ b/md_notes/docker.html @@ -0,0 +1,437 @@ + + + + + + + Docker — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Docker

+

There are Dockerfiles for images based on Ubuntu 20 (“focal”) with OpenMPI (for non-Cray clusters) or MPICH (for Cray clusters like Daint), IntelMKL, VASP, wannier90 2.1, triqs 3.x.x, and Triqs MaxEnt included.

+
+

Building the docker image

+

The Dockerfile is built with this command, where <version name> could be 3.0.0:

+
docker build -t triqs_mpich:<version name> -f mpich_dockerfile ./
+docker build -t triqs_openmpi:<version name> -f openmpi_dockerfile ./
+
+
+

Note that you need a working, modified vasp version as archive (csc_vasp.tar.gz) in this directory to make the CSC calculation work.

+
+
+

Pulling a docker image

+

Alternatively, you can pull an already-compiled image from the ETH gitlab container registry. +First log in with a personal access token. +This token you can save into a file and then log in into the registry with

+
cat <path to token> | docker login registry.ethz.ch -u <username gitlab> --password-stdin
+
+
+

and then run

+
docker pull registry.ethz.ch/d-matl-theory/uni-dmft/<image name>:<version name>
+
+
+

Just make sure that the version is the one that you want to have, it might not yet contain recent changes or bug fixes. Alternatively, there is the official triqs docker image, which however is not optimized for use on Daint.

+
+
+

Getting docker images onto CSCS daint

+

First, you load the desired docker images with sarus on daint. +Then there are two ways of getting the image on daint:

+

(1) For gitlab images (don’t forget that you need the personal access token) or other, public image this can be done via:

+
sarus pull registry.ethz.ch/d-matl-theory/uni-dmft/<image name>:<version name>
+sarus pull materialstheory/triqs
+
+
+

Pulling from the gitlab didn’t work on daint when I tried, which leaves you with the second option.

+

(2) If you wish to use your locally saved docker image, you first have to save it

+
docker save --output=docker-triqs.tar <image name>:<version name>
+
+
+

and then upload the tar to daint and then load it via:

+
sarus load docker-triqs.tar <image name>:<version name>
+
+
+

then you can run it as shown in the example files.

+
+

Running a docker container

+

You can start a docker container with either of these commands

+
docker run --rm -it -u $(id -u) -v ~$PWD:/work <image name>:<version name> bash
+docker run --rm -it --shm-size=4g -e USER_ID=`id -u` -e GROUP_ID=`id -g` -p 8378:8378 -v $PWD:/work <image name>:<version name> bash
+
+
+

where the second command adds some important flags.

+
    +
  • The -e flags will translate your current user and group id into the container and make sure writing permissions are correct for the mounted volumes.

  • +
  • The option –shm-size, which increases shared memory size. +This is hard coded in Docker to 64m and is often not sufficient and will produce SIBUS 7 errors when starting programs with mpirun! (see also https://github.com/moby/moby/issues/2606).

  • +
  • The ‘-v’ flags mounts a host directory as the docker directory given after the colon. +This way docker can permanently save data; otherwise, it will restart with clean directories each time. +Make sure you mount all the directories you need (where you save your data, where your uni-dmft directory is, …)!

  • +
  • All the flags are explained in ‘docker run –help’.

  • +
+

Inside the docker, you can normally execute program. To run uni-dmft, for example, use

+
mpirun -n 4 python <path to uni-dmft>/run_dmft.py
+
+
+

To start a jupyter-lab server from the current path, use

+
jupyter.sh
+
+
+

All these commands you can execute directly by just adding them to the docker run ... bash command with the -c flag, e.g.

+
docker run --rm -it --shm-size=4g -e USER_ID=`id -u` -e GROUP_ID=`id -g` -p 8378:8378 -v $PWD:/work <image name>:<version name> bash -c 'cd /work && mpirun -n 4 python <path to uni-dmft>/run_dmft.py'
+
+
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/md_notes/run_cluster.html b/md_notes/run_cluster.html new file mode 100644 index 00000000..07b5448c --- /dev/null +++ b/md_notes/run_cluster.html @@ -0,0 +1,429 @@ + + + + + + + Running solid_dmft on a cluster — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Running solid_dmft on a cluster

+
+

Running on CSCS daint

+

in some directories one can also find example job files to run everything on +daint. Note, that one has to first load the desired docker images with sarus +on daint: https://user.cscs.ch/tools/containers/sarus/, see the README.md in the /Docker folder.

+
+
+

one shot job on daint

+

one shot is quite straight forward. Just get the newest version of these +scripts, go to a working directory and then create job file that looks like +this:

+
#!/bin/bash
+#SBATCH --job-name="svo-test"
+#SBATCH --time=1:00:00
+#SBATCH --nodes=2
+#SBATCH --ntasks-per-node=36
+#SBATCH --account=eth3
+#SBATCH --ntasks-per-core=1
+#SBATCH --constraint=mc
+#SBATCH --partition=normal
+#SBATCH --output=out.%j
+#SBATCH --error=err.%j
+
+#======START=====
+
+srun sarus run --mpi --mount=type=bind,source=$SCRATCH,destination=$SCRATCH --mount=type=bind,source=/apps,destination=/apps load/library/triqs-2.1-vasp bash -c "cd $PWD ; python /apps/ethz/eth3/dmatl-theory-git/solid_dmft/solid_dmft.py"
+
+
+

thats it. This line automatically runs the docker image and executes the +solid_dmft.py script. Unfortunately the new sarus container enginge does not mounts automatically user directories. Therefore, one needs to specify with --mount to mount the scratch and apps folder manually. Then, one executes in the container bash to first go into the current dir and then executes python and the dmft script.

+
+
+

CSC calculations on daint

+

CSC calculations need the parameter csc = True and the mandatory parameters from the group dft. +Then, solid_dmft automatically starts VASP on as many cores as specified. +Note that VASP runs on cores that are already used by solid_dmft. +This minimizes the time that cores are idle while not harming the performance because these two processes are never active at the same time.

+

For the latest version in the Dockerfile_MPICH, we need the sarus version >= 1.3.2, which can be loaded from the daint modules as sarus/1.3.2 but isn’t the default version. +The reason for this is that only from this sarus version on, having more than one version of libgfortran in the docker image is supported, which comes from Vasp requiring the use of gfortran7 and everything else using gfortran9.

+

A slurm job script should look like this:

+
#!/bin/bash
+#SBATCH --job-name="svo-csc-test"
+#SBATCH --time=4:00:00
+#SBATCH --nodes=4
+#SBATCH --ntasks-per-node=36
+#SBATCH --account=eth3
+#SBATCH --ntasks-per-core=1
+#SBATCH --constraint=mc
+#SBATCH --partition=normal
+#SBATCH --output=out.%j
+#SBATCH --error=err.%j
+
+# path to solid_dmft.py script
+SCRIPTDIR=/apps/ethz/eth3/dmatl-theory-git/solid_dmft/solid_dmft.py
+# Sarus image that is utilized
+IMAGE=load/library/triqs_mpich
+
+srun --cpu-bind=none --mpi=pmi2 sarus run --mount=type=bind,source=/apps,destination=/apps --mount=type=bind,source=$SCRATCH,destination=$SCRATCH --workdir=$PWD $IMAGE python3 $SCRIPTDIR
+
+
+

Note that here the mpi option is given to the srun command and not the sarus command, as for one-shot calculations. +This is important for the python to be able to start VASP.

+

In general I found 1 node for Vasp is in most cases enough, which means that we set n_cores in the dmft_config.ini to 36 here. +Using more than one node results in a lot of MPI communication, which in turn slows down the calculation significantly. +For a 80 atom unit cell 2 nodes are useful, but for a 20 atom unit cell not at all!

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/md_notes/run_locally.html b/md_notes/run_locally.html new file mode 100644 index 00000000..183ec9ec --- /dev/null +++ b/md_notes/run_locally.html @@ -0,0 +1,385 @@ + + + + + + + Run on your machine — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Run on your machine

+
+

CSC calculations locally

+

Here one needs a special docker image with vasp included. This can be done by +building the Dockerfile in /Docker. +Then start this docker image as done above and go to the directory with all +necessary input files (start with svo-csc example). You need a pre-converged +CHGCAR and preferably a WAVECAR, a set of INCAR, POSCAR, KPOINTS and POTCAR +files, the PLO cfg file plo.cfg and the usual DMFT input file +dmft_config.ini, which specifies the number of ranks for the DFT code and the DFT code executable in the [dft] section.

+

The whole machinery is started by calling solid_dmft.py as for one-shot calculations. Importantly the flag csc = True has to be set in the general section in the config file. Then:

+
mpirun -n 12 /work/solid_dmft.py
+
+
+

The programm will then run the csc_flow_control routine, which starts VASP accordingly by spawning a new child process. After VASP is finished it will run the converter, run the dmft_cycle, and then VASP again until the given +limit of DMFT iterations is reached. This should also work on most HPC systems (tested on slurm with OpenMPI), as the the child mpirun call is performed without the slurm environment variables. This tricks slrum into starting more ranks than it has available. Note, that maybe a slight adaption of the environment variables is needed to make sure VASP is found on the second node. The variables are stored args in the function start_vasp_from_master_node of the module csc_flow.py

+

One remark regarding the number of iterations per DFT cycle. Since VASP uses a +block Davidson scheme for minimizing the energy functional not all eigenvalues +of the Hamiltonian are updated simultaneously therefore one has to make several +iterations before the changes from DMFT in the charge density are completely +considered. The default value are 6 DFT iterations, which is very +conservative, and can be changed by changing the config parameter n_iter in the [dft] section. In general one should use IALGO=90 in VASP, which performs an exact diagonalization rather than a partial diagonalization scheme, but this is very slow for larger systems.

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/md_notes/vasp_csc.html b/md_notes/vasp_csc.html new file mode 100644 index 00000000..35f06fbd --- /dev/null +++ b/md_notes/vasp_csc.html @@ -0,0 +1,469 @@ + + + + + + + Interface to VASP — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Interface to VASP

+
+

General remarks

+

One can use the official Vasp 5.4.4 patch 1 version with a few modifications:

+
    +
  • there is a bug in fileio.F around line 1710 where the code tries print out something like “reading the density matrix from Gamma”, but this should be done only by the master node. Adding a IF (IO%IU0>=0) THEN ... ENDIF around it fixes this

  • +
  • in the current version of the dft_tools interface the file LOCPROJ should contain the fermi energy in the header. Therefore one should replace the following line in locproj.F:

  • +
+
WRITE(99,'(4I6,"  # of spin, # of k-points, # of bands, # of proj" )') NS,NK,NB,NF
+
+
+

by

+
WRITE(99,'(4I6,F12.7,"  # of spin, # of k-points, # of bands, # of proj, Efermi" )') W%WDES%NCDIJ,NK,NB,NF,EFERMI
+
+
+

and add the variable EFERMI accordingly in the function call.

+
    +
  • Vasp gets sometimes stuck and does not write the OSZICAR file correctly due to a stuck buffer. Adding a flush to the buffer to have a correctly written OSZICAR to extract the DFT energy helps, by adding in electron.F around line 580 after

  • +
+
CALL STOP_TIMING("G",IO%IU6,"DOS")
+
+
+

two lines:

+
flush(17)
+print *, ' '
+
+
+
    +
  • this one is essential for the current version of the DMFT code. Vasp spends a very long time in the function LPRJ_LDApU and this function is not needed! It is used for some basic checks and a manual LDA+U implementation. Removing the call to this function in electron.F in line 644 speeds up the calculation by up to 30%! If this is not done, Vasp will create a GAMMA file each iteration which needs to be removed manually to not overwrite the DMFT GAMMA file!

  • +
  • make sure that mixing in VASP stays turned on. Don’t set IMIX or the DFT steps won’t converge!

  • +
+
+
+

LOCPROJ bug for individual projections:

+

Example use of LOCPROJ for t2g manifold of SrVO3 (the order of the orbitals seems to be mixed up… this example leads to x^2 -y^2, z^2, yz… ) +In the current version there is some mix up in the mapping between selected orbitals in the INCAR and actual selected in the LOCPROJ. This is +what the software does (left side is INCAR, right side is resulting in the LOCPROJ)

+
    +
  • xy -> x2-y2

  • +
  • yz -> z2

  • +
  • xz -> yz

  • +
  • x2-y2 -> xz

  • +
  • z2 -> xy

  • +
+
LOCPROJ = 2 : dxz : Pr 1
+LOCPROJ = 2 : dx2-y2 : Pr 1
+LOCPROJ = 2 : dz2 : Pr 1
+
+
+

However, if the complete d manifold is chosen, the usual VASP order (xy, yz, z2, xz, x2-y2) is obtained in the LOCPROJ. This is done as shown below

+
LOCPROJ = 2 : d : Pr 1
+
+
+
+
+

convergence of projectors with Vasp

+

for a good convergence of the projectors it is important to convergence the wavefunctions to high accuracy. Otherwise this often leads to off-diagonal elements in the the local Green’s function. To check convergence pay attention to the rms and rms© values in the Vasp output. The former specifies the convergence of the KS wavefunction and the latter is difference of the input and out charge density. Note, this does not necessarily coincide with good convergence of the total energy in DFT! Here an example of two calculations for the same system, both converged down to EDIFF= 1E-10 and Vasp stopped. First run:

+
       N       E                     dE             d eps       ncg     rms          rms(c)
+...
+DAV:  25    -0.394708006287E+02   -0.65893E-09   -0.11730E-10 134994   0.197E-06  0.992E-05
+...
+
+
+

second run with different smearing:

+
...
+DAV:  31    -0.394760088659E+02    0.39472E-09    0.35516E-13 132366   0.110E-10  0.245E-10
+...
+
+
+

The total energy is lower as well. But more importantly the second calculation produces well converged projectors preserving symmetries way better, with less off-diagonal elements in Gloc, making it way easier for the solver. Always pay attention to rms.

+
+
+

Enabling CSC calculations with Wannier90 projectors

+

You basically only need to add two things to have W90 run in Vasp’s CSC mode, all in electron.F:

+
    +
  • the line USE mlwf at the top of the SUBROUTINE ELMIN together with all the other USE ... statements.

  • +
  • right below where you removed the call to LPRJ_LDApU (see above, around line 650), there is the line CALL LPRJ_DEALLOC_COVL. Just add the following block right below, inside the same “if” as the CALL LPRJ_DEALLOC_COVL:

  • +
+
IF (WANNIER90()) THEN
+   CALL KPAR_SYNC_ALL(WDES,W)
+   CALL MLWF_WANNIER90(WDES,W,P,CQIJ,T_INFO,LATT_CUR,INFO,IO)
+ENDIF
+
+
+

Then, the only problem you’ll have is the order of compilation in the .objects file. It has to change because now electron.F references mlwf. For that move the entries twoelectron4o.o and mlwf.o (in this order) up right behind linear_optics.o. Then, move the lines from electron.o to stm.o behind the new position of mlwf.o.

+

Remarks:

+
    +
  • W90-CSC requires Wannier90 v3, in v2 the tag write_u_matrices does not work correctly. Until now, linking W90 v3 to Vasp with the DVASP2WANNIER90v2 has worked without any problems even though it is not officially supported

  • +
  • symmetries in Vasp should remain turned on, otherwise the determination of rotation matrices in dft_tools’ wannier converter will most likely fail

  • +
+
+
+

Speeding up by not writing projectors at every step

+

This is very important for CSC calculations with W90 but also speeds up the PLO-based ones.

+

Writing the Wannier projectors is a time consuming step (and to a lesser extent, the PLO projectors) and basically needs only to be done in the DFT iteration right before a DMFT iteration. Therefore, solid_dmft writes the file vasp.suppress_projs that tells Vasp when not to compute/write the projectors. This requires two small changes in electron.F in the Vasp source code:

+
    +
  • adding the definition of a logical variable where all other variables are defined for SUBROUTINE ELMIN, e.g. around line 150, by inserting LOGICAL :: LSUPPRESS_PROJS_EXISTS

  • +
  • go to the place where you removed the call to LPRJ_LDApU (see above, around line 650). This is inside a IF (MOD(INFO%ICHARG,10)==5) THEN ... ENDIF block. This whole block has to be disabled when the file vasp.suppress_projs exists. So, right under this block’s “IF”, add the lines

  • +
+
INQUIRE(FILE='vasp.suppress_projs',&
+        EXIST=LSUPPRESS_PROJS_EXISTS)
+
+IF (.NOT. LSUPPRESS_PROJS_EXISTS) THEN
+
+
+

and right before this block’s “ENDIF”, add another ENDIF.

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/md_notes/w90_interface.html b/md_notes/w90_interface.html new file mode 100644 index 00000000..72b63c26 --- /dev/null +++ b/md_notes/w90_interface.html @@ -0,0 +1,399 @@ + + + + + + + Wannier90 interface — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Wannier90 interface

+
+

orbital order in the W90 converter

+

Some interaction Hamiltonians are sensitive to the order of orbitals (i.e. density-density or Slater Hamiltonian), others are invariant under rotations in orbital space (i.e. the Kanamori Hamiltonian). +For the former class and W90-based DMFT calculations, we need to be careful because the order of W90 (z^2, xz, yz, x^2-y^2, xy) is different from the order expected by TRIQS (xy, yz, z^2, xz, x^2-y^2). +Therefore, we need to specify the order of orbitals in the projections block (example for Pbnm or P21/n cell, full d shell):

+
begin projections
+# site 0
+f=0.5,0.0,0.0:dxy
+f=0.5,0.0,0.0:dyz
+f=0.5,0.0,0.0:dz2
+f=0.5,0.0,0.0:dxz
+f=0.5,0.0,0.0:dx2-y2
+# site 1
+f=0.5,0.0,0.5:dxy
+f=0.5,0.0,0.5:dyz
+f=0.5,0.0,0.5:dz2
+f=0.5,0.0,0.5:dxz
+f=0.5,0.0,0.5:dx2-y2
+# site 2
+f=0.0,0.5,0.0:dxy
+f=0.0,0.5,0.0:dyz
+f=0.0,0.5,0.0:dz2
+f=0.0,0.5,0.0:dxz
+f=0.0,0.5,0.0:dx2-y2
+# site 3
+f=0.0,0.5,0.5:dxy
+f=0.0,0.5,0.5:dyz
+f=0.0,0.5,0.5:dz2
+f=0.0,0.5,0.5:dxz
+f=0.0,0.5,0.5:dx2-y2
+end projections
+
+
+

Warning: simply using Fe:dxy,dyz,dz2,dxz,dx2-y2 does not work, VASP/W90 brings the d orbitals back to W90 standard order.

+

The 45-degree rotation for the sqrt2 x sqrt2 x 2 cell can be ignored because the interaction Hamiltonian is invariant under swapping x^2-y^2 and xy.

+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/objects.inv b/objects.inv new file mode 100644 index 00000000..196c8c86 Binary files /dev/null and b/objects.inv differ diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 00000000..034cc391 --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,573 @@ + + + + + + Python Module Index — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ c | + d | + g | + i | + p | + s | + u +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ c
+ csc_flow +
 
+ d
+ dft_managers +
    + dft_managers.mpi_helpers +
    + dft_managers.qe_manager +
    + dft_managers.vasp_manager +
+ dmft_cycle +
+ dmft_tools +
    + dmft_tools.afm_mapping +
    + dmft_tools.convergence +
    + dmft_tools.formatter +
    + dmft_tools.greens_functions_mixer +
    + dmft_tools.initial_self_energies +
    + dmft_tools.interaction_hamiltonian +
    + dmft_tools.legendre_filter +
    + dmft_tools.manipulate_chemical_potential +
    + dmft_tools.matheval +
    + dmft_tools.observables +
    + dmft_tools.results_to_archive +
    + dmft_tools.solver +
 
+ g
+ gw_embedding +
    + gw_embedding.bdft_converter +
    + gw_embedding.gw_flow +
    + gw_embedding.iaft +
    + gw_embedding.qp_evs_to_eig +
 
+ i
+ io_tools +
    + io_tools.dict_to_h5 +
    + io_tools.postproc_toml_dict +
    + io_tools.verify_input_params +
 
+ p
+ postprocessing +
    + postprocessing.eval_U_cRPA_RESPACK +
    + postprocessing.eval_U_cRPA_Vasp +
    + postprocessing.maxent_gf_imp +
    + postprocessing.maxent_gf_latt +
    + postprocessing.maxent_sigma +
    + postprocessing.pade_sigma +
    + postprocessing.plot_correlated_bands +
 
+ s
+ solid_dmft +
 
+ u
+ util +
    + util.symmetrize_gamma_file +
    + util.write_kslice_to_h5 +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/search.html b/search.html new file mode 100644 index 00000000..1910080f --- /dev/null +++ b/search.html @@ -0,0 +1,349 @@ + + + + + + Search — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 00000000..cb418c38 --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["ChangeLog", "_ref/csc_flow", "_ref/dft_managers", "_ref/dft_managers.mpi_helpers", "_ref/dft_managers.qe_manager", "_ref/dft_managers.vasp_manager", "_ref/dmft_cycle", "_ref/dmft_tools", "_ref/dmft_tools.afm_mapping", "_ref/dmft_tools.convergence", "_ref/dmft_tools.formatter", "_ref/dmft_tools.greens_functions_mixer", "_ref/dmft_tools.initial_self_energies", "_ref/dmft_tools.interaction_hamiltonian", "_ref/dmft_tools.legendre_filter", "_ref/dmft_tools.manipulate_chemical_potential", "_ref/dmft_tools.matheval", "_ref/dmft_tools.matheval.MathExpr", "_ref/dmft_tools.matheval.MathExpr.__init__", "_ref/dmft_tools.matheval.MathExpr.allowed_nodes", "_ref/dmft_tools.matheval.MathExpr.functions", "_ref/dmft_tools.observables", "_ref/dmft_tools.results_to_archive", "_ref/dmft_tools.solver", "_ref/dmft_tools.solver.SolverStructure", "_ref/dmft_tools.solver.SolverStructure.__init__", "_ref/dmft_tools.solver.SolverStructure.solve", "_ref/gw_embedding", "_ref/gw_embedding.bdft_converter", "_ref/gw_embedding.gw_flow", "_ref/gw_embedding.gw_flow.dummy_sumk", "_ref/gw_embedding.gw_flow.dummy_sumk.__init__", "_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf", "_ref/gw_embedding.iaft", "_ref/gw_embedding.iaft.IAFT", "_ref/gw_embedding.iaft.IAFT.__init__", "_ref/gw_embedding.iaft.IAFT.check_leakage", "_ref/gw_embedding.iaft.IAFT.tau_interpolate", "_ref/gw_embedding.iaft.IAFT.tau_to_w", "_ref/gw_embedding.iaft.IAFT.w_interpolate", "_ref/gw_embedding.iaft.IAFT.w_to_tau", "_ref/gw_embedding.iaft.IAFT.wn_mesh", "_ref/gw_embedding.qp_evs_to_eig", "_ref/io_tools", "_ref/io_tools.dict_to_h5", "_ref/io_tools.postproc_toml_dict", "_ref/io_tools.verify_input_params", "_ref/postprocessing", "_ref/postprocessing.eval_U_cRPA_RESPACK", "_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data", "_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__", "_ref/postprocessing.eval_U_cRPA_Vasp", "_ref/postprocessing.maxent_gf_imp", "_ref/postprocessing.maxent_gf_latt", "_ref/postprocessing.maxent_sigma", "_ref/postprocessing.pade_sigma", "_ref/postprocessing.plot_correlated_bands", "_ref/util", "_ref/util.symmetrize_gamma_file", "_ref/util.write_kslice_to_h5", "cRPA_VASP/README", "documentation", "index", "input_output/DMFT_input/advanced", "input_output/DMFT_input/dft", "input_output/DMFT_input/general", "input_output/DMFT_input/gw", "input_output/DMFT_input/input", "input_output/DMFT_input/solver", "input_output/DMFT_output/iterations", "input_output/DMFT_output/observables", "input_output/DMFT_output/results", "install", "issues", "md_notes/docker", "md_notes/run_cluster", "md_notes/run_locally", "md_notes/vasp_csc", "md_notes/w90_interface", "tutorials", "tutorials/Ce2O3_csc_w90/tutorial", "tutorials/NNO_os_plo_mag/tutorial", "tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial", "tutorials/SVO_os_qe/tutorial", "tutorials/correlated_bandstructure/plot_correlated_bands"], "filenames": ["ChangeLog.md", "_ref/csc_flow.rst", "_ref/dft_managers.rst", "_ref/dft_managers.mpi_helpers.rst", "_ref/dft_managers.qe_manager.rst", "_ref/dft_managers.vasp_manager.rst", "_ref/dmft_cycle.rst", "_ref/dmft_tools.rst", "_ref/dmft_tools.afm_mapping.rst", "_ref/dmft_tools.convergence.rst", "_ref/dmft_tools.formatter.rst", "_ref/dmft_tools.greens_functions_mixer.rst", "_ref/dmft_tools.initial_self_energies.rst", "_ref/dmft_tools.interaction_hamiltonian.rst", "_ref/dmft_tools.legendre_filter.rst", "_ref/dmft_tools.manipulate_chemical_potential.rst", "_ref/dmft_tools.matheval.rst", "_ref/dmft_tools.matheval.MathExpr.rst", "_ref/dmft_tools.matheval.MathExpr.__init__.rst", "_ref/dmft_tools.matheval.MathExpr.allowed_nodes.rst", "_ref/dmft_tools.matheval.MathExpr.functions.rst", "_ref/dmft_tools.observables.rst", "_ref/dmft_tools.results_to_archive.rst", "_ref/dmft_tools.solver.rst", "_ref/dmft_tools.solver.SolverStructure.rst", "_ref/dmft_tools.solver.SolverStructure.__init__.rst", "_ref/dmft_tools.solver.SolverStructure.solve.rst", "_ref/gw_embedding.rst", "_ref/gw_embedding.bdft_converter.rst", "_ref/gw_embedding.gw_flow.rst", "_ref/gw_embedding.gw_flow.dummy_sumk.rst", "_ref/gw_embedding.gw_flow.dummy_sumk.__init__.rst", "_ref/gw_embedding.gw_flow.dummy_sumk.symm_deg_gf.rst", "_ref/gw_embedding.iaft.rst", "_ref/gw_embedding.iaft.IAFT.rst", "_ref/gw_embedding.iaft.IAFT.__init__.rst", "_ref/gw_embedding.iaft.IAFT.check_leakage.rst", "_ref/gw_embedding.iaft.IAFT.tau_interpolate.rst", "_ref/gw_embedding.iaft.IAFT.tau_to_w.rst", "_ref/gw_embedding.iaft.IAFT.w_interpolate.rst", "_ref/gw_embedding.iaft.IAFT.w_to_tau.rst", "_ref/gw_embedding.iaft.IAFT.wn_mesh.rst", "_ref/gw_embedding.qp_evs_to_eig.rst", "_ref/io_tools.rst", "_ref/io_tools.dict_to_h5.rst", "_ref/io_tools.postproc_toml_dict.rst", "_ref/io_tools.verify_input_params.rst", "_ref/postprocessing.rst", "_ref/postprocessing.eval_U_cRPA_RESPACK.rst", "_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.rst", "_ref/postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__.rst", "_ref/postprocessing.eval_U_cRPA_Vasp.rst", "_ref/postprocessing.maxent_gf_imp.rst", "_ref/postprocessing.maxent_gf_latt.rst", "_ref/postprocessing.maxent_sigma.rst", "_ref/postprocessing.pade_sigma.rst", "_ref/postprocessing.plot_correlated_bands.rst", "_ref/util.rst", "_ref/util.symmetrize_gamma_file.rst", "_ref/util.write_kslice_to_h5.rst", "cRPA_VASP/README.md", "documentation.rst", "index.rst", "input_output/DMFT_input/advanced.rst", "input_output/DMFT_input/dft.rst", "input_output/DMFT_input/general.rst", "input_output/DMFT_input/gw.rst", "input_output/DMFT_input/input.rst", "input_output/DMFT_input/solver.rst", "input_output/DMFT_output/iterations.rst", "input_output/DMFT_output/observables.rst", "input_output/DMFT_output/results.rst", "install.rst", "issues.rst", "md_notes/docker.md", "md_notes/run_cluster.md", "md_notes/run_locally.md", "md_notes/vasp_csc.md", "md_notes/w90_interface.md", "tutorials.rst", "tutorials/Ce2O3_csc_w90/tutorial.ipynb", "tutorials/NNO_os_plo_mag/tutorial.ipynb", "tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb", "tutorials/SVO_os_qe/tutorial.ipynb", "tutorials/correlated_bandstructure/plot_correlated_bands.ipynb"], "titles": ["Changelog", "csc_flow", "dft_managers", "dft_managers.mpi_helpers", "dft_managers.qe_manager", "dft_managers.vasp_manager", "dmft_cycle", "dmft_tools", "dmft_tools.afm_mapping", "dmft_tools.convergence", "dmft_tools.formatter", "dmft_tools.greens_functions_mixer", "dmft_tools.initial_self_energies", "dmft_tools.interaction_hamiltonian", "dmft_tools.legendre_filter", "dmft_tools.manipulate_chemical_potential", "dmft_tools.matheval", "dmft_tools.matheval.MathExpr", "dmft_tools.matheval.MathExpr.__init__", "dmft_tools.matheval.MathExpr.allowed_nodes", "dmft_tools.matheval.MathExpr.functions", "dmft_tools.observables", "dmft_tools.results_to_archive", "dmft_tools.solver", "dmft_tools.solver.SolverStructure", "dmft_tools.solver.SolverStructure.__init__", "dmft_tools.solver.SolverStructure.solve", "gw_embedding", "gw_embedding.bdft_converter", "gw_embedding.gw_flow", "gw_embedding.gw_flow.dummy_sumk", "gw_embedding.gw_flow.dummy_sumk.__init__", "gw_embedding.gw_flow.dummy_sumk.symm_deg_gf", "gw_embedding.iaft", "gw_embedding.iaft.IAFT", "gw_embedding.iaft.IAFT.__init__", "gw_embedding.iaft.IAFT.check_leakage", "gw_embedding.iaft.IAFT.tau_interpolate", "gw_embedding.iaft.IAFT.tau_to_w", "gw_embedding.iaft.IAFT.w_interpolate", "gw_embedding.iaft.IAFT.w_to_tau", "gw_embedding.iaft.IAFT.wn_mesh", "gw_embedding.qp_evs_to_eig", "io_tools", "io_tools.dict_to_h5", "io_tools.postproc_toml_dict", "io_tools.verify_input_params", "postprocessing", "postprocessing.eval_U_cRPA_RESPACK", "postprocessing.eval_U_cRPA_RESPACK.respack_data", "postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__", "postprocessing.eval_U_cRPA_Vasp", "postprocessing.maxent_gf_imp", "postprocessing.maxent_gf_latt", "postprocessing.maxent_sigma", "postprocessing.pade_sigma", "postprocessing.plot_correlated_bands", "util", "util.symmetrize_gamma_file", "util.write_kslice_to_h5", "How to do cRPA calculations with VASP", "Documentation", "solid_dmft", "[advanced]: Advanced inputs", "[dft]: DFT related inputs", "[general]: General parameters", "[GW]: GW embedding inputs", "Input", "[solver]: solver specific parameters", "Iterations", "Observables/convergence_obs", "Output / results", "Installation", "Support & contribute", "Docker", "Running solid_dmft on a cluster", "Run on your machine", "Interface to VASP", "Wannier90 interface", "Tutorials", "3. CSC with QE/W90 and HubbardI: total energy in Ce2O3", "4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2", "2. CSC with VASP PLOs: charge order in PrNiO3", "1. OS with QE/W90 and cthyb: SrVO3 MIT", "5. Plotting the spectral function"], "terms": {"solid_dmft": [0, 7, 23, 24, 28, 56, 61, 65, 68, 69, 72, 76, 77, 79, 80, 81, 82, 83, 84], "i": [0, 3, 4, 5, 9, 12, 13, 15, 21, 24, 25, 28, 29, 30, 32, 33, 34, 39, 41, 46, 51, 52, 53, 54, 55, 56, 59, 60, 62, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84], "major": [0, 72], "releas": [0, 72], "compat": [0, 65], "triq": [0, 13, 14, 23, 24, 25, 28, 48, 51, 54, 55, 56, 62, 63, 65, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84], "updat": [0, 5, 6, 9, 12, 15, 65, 76, 82, 84], "latest": [0, 33, 34, 63, 68, 72, 75], "app4triq": 0, "skeleton": 0, "bring": [0, 78, 83], "chang": [0, 12, 13, 60, 62, 64, 65, 72, 74, 76, 77, 80, 81, 82, 84], "code": [0, 2, 3, 28, 62, 64, 67, 70, 72, 73, 74, 76, 77, 84], "switch": [0, 51, 80, 81], "e": [0, 9, 13, 20, 28, 29, 30, 32, 56, 60, 65, 68, 72, 74, 77, 78, 80, 81, 82], "string": [0, 3, 4, 5, 13, 21, 28, 44, 51, 52, 53, 54, 55, 56, 64, 65, 68], "have": [0, 3, 13, 28, 65, 72, 73, 74, 75, 77, 80, 81, 82, 83, 84], "pass": [0, 68, 82], "quot": 0, "boolean": [0, 13], "paramet": [0, 1, 3, 4, 5, 6, 9, 12, 13, 14, 15, 21, 23, 24, 25, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 45, 48, 51, 52, 53, 54, 55, 56, 60, 63, 64, 66, 67, 75, 76, 80, 81, 82], "given": [0, 6, 14, 21, 28, 33, 34, 48, 51, 56, 59, 60, 63, 65, 68, 69, 74, 75, 76, 81], "without": [0, 12, 23, 28, 76, 77], "capit": 0, "list": [0, 3, 9, 12, 13, 21, 45, 52, 54, 55, 56, 59, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 84], "bracket": 0, "check": [0, 3, 5, 9, 15, 46, 54, 62, 64, 77, 80, 81, 82, 83, 84], "below": [0, 61, 65, 67, 72, 77, 79, 80, 81, 82, 83, 84], "separ": [0, 10, 52, 53, 80], "section": [0, 45, 61, 65, 67, 68, 73, 76, 80], "detail": [0, 60, 80], "allow": [0, 45, 62, 68, 73, 80, 81, 84], "defin": [0, 29, 30, 32, 56, 77, 80, 82, 84], "each": [0, 12, 21, 52, 63, 65, 68, 74, 77, 80, 81, 83, 84], "impur": [0, 8, 9, 12, 21, 23, 24, 25, 26, 52, 54, 55, 56, 62, 63, 65, 68, 69, 70, 71, 72, 80, 81, 82, 83], "problem": [0, 23, 24, 26, 68, 73, 77, 81, 82, 83], "differ": [0, 3, 9, 12, 13, 15, 28, 51, 52, 53, 60, 65, 70, 71, 77, 78, 80, 81, 82, 83], "solver": [0, 1, 6, 9, 12, 21, 22, 29, 62, 63, 65, 67, 69, 70, 71, 72, 77, 79, 80, 81, 82], "want": [0, 51, 65, 72, 74, 80, 81, 82, 83], "d": [0, 51, 65, 74, 77, 78, 79, 81, 82], "shell": [0, 9, 12, 24, 25, 29, 30, 32, 51, 54, 55, 56, 64, 65, 69, 78, 80, 81, 82], "cthyb": [0, 62, 72, 79], "p": [0, 74, 77, 81, 82], "hartre": [0, 12, 28], "fock": [0, 68, 81], "see": [0, 52, 53, 54, 62, 63, 65, 68, 72, 74, 75, 77, 80, 81, 82], "text": 0, "nio": 0, "docker": [0, 61, 75, 76, 82, 83], "imag": [0, 68, 75, 76, 81, 83, 84], "ar": [0, 1, 8, 9, 13, 29, 30, 32, 33, 34, 39, 45, 51, 53, 54, 56, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84], "automat": [0, 14, 53, 60, 68, 72, 75], "push": [0, 82], "all": [0, 1, 3, 4, 5, 9, 12, 13, 15, 21, 23, 24, 28, 44, 45, 46, 52, 53, 54, 59, 60, 61, 63, 65, 67, 68, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83], "ghcr": 0, "io": [0, 13, 33, 34, 43, 63, 68, 77, 81, 84], "from": [0, 4, 5, 8, 9, 12, 13, 15, 21, 28, 33, 34, 38, 40, 44, 48, 51, 52, 53, 54, 55, 56, 59, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84], "old": [0, 65], "ctseg": [0, 62, 72], "ctseg_j": 0, "crm": [0, 68], "dyson": [0, 68, 69], "both": [0, 33, 34, 39, 41, 77, 81, 82], "obtain": [0, 69, 70, 77, 80, 82, 84], "sigma_imp": [0, 68], "g_tau": [0, 14], "crm_dyson_solv": [0, 67], "true": [0, 9, 33, 34, 39, 41, 48, 51, 56, 60, 65, 66, 68, 75, 76, 80, 81, 82, 84], "dlr_wmax": [0, 28, 67, 68], "dlr_ep": [0, 28, 67, 68], "http": [0, 13, 33, 34, 60, 68, 72, 73, 74, 75, 82], "github": [0, 13, 63, 68, 72, 73, 74], "unstabl": [0, 13, 65, 68, 72], "document": [0, 13, 62, 72, 73, 82], "python_api": [0, 13], "gf": [0, 9, 12, 13, 21, 28, 29, 30, 32, 52, 53, 54, 55, 65, 69, 80, 82], "dlr_crm_dyson_solv": 0, "html": [0, 13, 63, 68, 72], "modul": [0, 2, 7, 19, 27, 29, 43, 47, 57, 65, 75, 76], "add": [0, 19, 56, 68, 74, 77, 81, 84], "dc": [0, 12, 54, 63, 67, 70, 80, 81], "scheme": [0, 68, 76], "crpa_stat": [0, 65], "crpa_static_qp": [0, 65], "crpa_dynam": [0, 65], "us": [0, 3, 7, 8, 9, 12, 14, 15, 48, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84], "crpa": [0, 61, 65, 66], "calcul": [0, 3, 4, 5, 6, 8, 9, 10, 12, 15, 21, 23, 28, 45, 51, 56, 61, 64, 65, 66, 68, 70, 71, 74, 78, 79, 80, 83, 84], "uijkl": [0, 28, 48, 51, 60], "interact": [0, 13, 21, 24, 25, 28, 51, 60, 65, 66, 68, 70, 78, 79, 81, 83], "via": [0, 68, 73, 74, 81], "crpa_density_dens": [0, 65], "dyn_density_dens": [0, 65], "dyn_ful": [0, 65], "hint": [0, 83], "type": [0, 3, 12, 13, 21, 54, 60, 63, 64, 65, 66, 67, 69, 70, 75, 80, 81, 82, 83], "read": [0, 4, 5, 28, 42, 51, 52, 53, 54, 55, 56, 59, 60, 66, 77, 81, 82, 84], "tensor": [0, 28, 48, 51, 60], "aimb": [0, 28, 65, 66], "h5": [0, 5, 44, 46, 52, 53, 54, 55, 56, 59, 62, 64, 65, 66, 68, 80, 81, 82, 83, 84], "experiment": [0, 80, 82], "gw_embed": [0, 66, 67], "gw_flow": [0, 65], "py": [0, 59, 60, 65, 72, 74, 75, 76, 82, 83], "run": [0, 1, 3, 4, 5, 7, 15, 24, 25, 29, 56, 60, 64, 72, 77, 79, 83], "top": [0, 77], "pade": [0, 55], "ac": [0, 13, 60], "post": [0, 56, 68, 73], "process": [0, 3, 4, 5, 56, 68, 75, 76, 82], "we": [0, 13, 28, 61, 65, 67, 72, 73, 75, 78, 80, 81, 82, 83, 84], "thank": [0, 73], "contributor": 0, "sophi": [0, 56, 59], "beck": [0, 56, 59], "thoma": 0, "hahn": 0, "alexand": 0, "hampel": 0, "henri": 0, "menk": 0, "maximilian": [0, 52, 53, 54], "merkel": [0, 52, 53, 54], "nil": 0, "wentzel": 0, "find": [0, 3, 15, 48, 51, 65, 68, 73, 75, 80, 81], "an": [0, 9, 29, 30, 32, 54, 56, 60, 65, 67, 68, 69, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84], "item": [0, 84], "thi": [0, 3, 4, 5, 9, 12, 13, 15, 24, 25, 29, 30, 32, 42, 54, 56, 59, 60, 62, 63, 64, 65, 67, 68, 72, 74, 75, 76, 77, 80, 81, 82, 83, 84], "merg": [0, 45], "dev": 0, "gw": [0, 1, 6, 12, 27, 28, 29, 60, 65, 67], "embed": [0, 27, 29, 65, 67], "includ": [0, 12, 60, 68, 69, 71, 72, 73, 74, 76, 81, 82, 84], "well": [0, 72, 73, 77, 81, 82], "78": 0, "param": [0, 33, 34, 38, 41, 46], "method": [0, 13, 15, 17, 21, 23, 24, 29, 30, 33, 34, 60, 65, 67, 69, 73, 82, 83], "multipl": [0, 64, 82], "74": 0, "ad": [0, 63, 65, 74, 77, 84], "restor": 0, "python": [0, 60, 72, 74, 75, 83], "8": [0, 51, 60, 80, 81, 82, 83, 84], "dictionari": [0, 28, 45, 63, 84], "63": [0, 65], "mathemat": 0, "express": [0, 19, 70, 82], "random_se": [0, 67], "61": 0, "pcb": [0, 84], "tb": [0, 56, 59, 80, 84], "object": [0, 9, 12, 15, 17, 21, 23, 24, 25, 28, 29, 30, 33, 34, 37, 38, 39, 40, 46, 49, 56, 65, 66, 69, 77, 81, 83], "respack": [0, 48, 49], "fit": [0, 14, 21, 51, 60, 68, 81], "slater": [0, 13, 48, 51, 60, 65, 78], "sigma": [0, 9, 12, 13, 21, 54, 55, 56, 60, 65, 70, 81, 84], "analyt": [0, 52, 53, 54, 55, 62, 82, 84], "continu": [0, 52, 53, 54, 55, 62, 82, 84], "refin": [0, 79], "simple_intra": [0, 65], "intro": 0, "orbit": [0, 13, 21, 23, 51, 53, 56, 63, 65, 68, 69, 70, 77, 79, 80, 81, 82, 83, 84], "onli": [0, 6, 9, 21, 45, 51, 53, 56, 59, 60, 63, 64, 65, 68, 73, 75, 77, 80, 81, 82, 84], "dc_orb_shift": [0, 67], "depend": [0, 3, 13, 33, 34, 46, 60, 68, 71, 72, 82, 84], "shift": [0, 12, 28, 56, 60, 63, 65, 68], "level": [0, 70, 80, 83], "mix": [0, 13, 15, 65, 77, 82], "perform": [0, 5, 56, 62, 68, 75, 76, 79, 80, 81, 82, 83, 84], "stat": [0, 33, 34, 36, 37, 38, 39, 40, 41], "sampl": [0, 33, 34, 37, 39, 65, 81], "pytest": [0, 72], "unit": [0, 60, 75, 81, 83], "The": [0, 3, 4, 9, 12, 13, 33, 34, 39, 45, 51, 52, 53, 54, 59, 60, 64, 65, 66, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84], "follow": [0, 45, 51, 60, 67, 72, 73, 77, 80, 81, 83, 84], "can": [0, 3, 4, 5, 8, 12, 45, 46, 53, 56, 60, 65, 68, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84], "now": [0, 28, 64, 77, 80, 81, 82, 83, 84], "per": [0, 21, 51, 54, 55, 56, 60, 63, 65, 75, 76, 82, 83], "general_param": [0, 1, 6, 8, 9, 10, 12, 13, 15, 21, 22, 23, 24, 25, 29, 46], "u": [0, 13, 28, 33, 34, 35, 48, 51, 62, 63, 67, 73, 74, 77, 80, 81, 82, 83], "j": [0, 13, 28, 48, 51, 63, 67, 75, 80, 81, 82, 83], "u_prim": [0, 67], "ratio_f4_f2": [0, 67], "h_int_typ": [0, 67, 80, 81], "enforce_off_diag": [0, 29, 30, 31, 67, 81], "dc_type": [0, 67, 80, 81], "advanced_param": [0, 1, 6, 12, 23, 24, 25, 29], "dc_u": [0, 67], "dc_j": [0, 67], "dc_fixed_occ": [0, 67], "map_solver_struct": [0, 67], "pick_solver_struct": [0, 67], "mapped_solver_struct_degeneraci": [0, 67], "which": [0, 3, 13, 21, 56, 59, 60, 63, 64, 65, 66, 68, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84], "solv": [0, 23, 24, 65, 68, 73, 81], "specifi": [0, 13, 56, 59, 60, 65, 68, 72, 73, 75, 76, 77, 78, 80, 81, 82], "idx_impur": [0, 67], "solver_typ": 0, "move": [0, 28, 68, 72, 77], "renam": [0, 80], "n_l": [0, 67, 80, 82], "measure_chi": [0, 67], "delta_interfac": [0, 67], "possibl": [0, 54, 64, 65, 67, 68], "io_tool": 0, "default": [0, 9, 28, 29, 30, 32, 45, 51, 52, 53, 54, 55, 56, 60, 63, 64, 65, 66, 68, 75, 76, 80, 82], "accord": [0, 28, 69], "format": [0, 3, 81, 84], "config": [0, 45, 64, 76, 81, 82, 84], "file": [0, 1, 3, 4, 5, 9, 12, 13, 21, 28, 46, 51, 56, 59, 62, 64, 65, 66, 67, 73, 74, 75, 76, 77, 79, 81, 83, 84], "call": [0, 3, 13, 19, 46, 60, 64, 65, 69, 72, 76, 77], "instead": [0, 65, 68, 81], "ini": [0, 67, 75, 76], "txt": [0, 73], "For": [0, 54, 56, 60, 62, 64, 65, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84], "exampl": [0, 52, 53, 54, 60, 72, 73, 74, 75, 76, 77, 78, 80, 84], "refer": [0, 45, 56, 77, 80, 81, 82], "integr": [0, 51, 54, 60, 65, 72, 83], "interfac": [0, 62, 64, 68], "script": [0, 42, 60, 62, 72, 73, 75, 83, 84], "wrap": 0, "routin": [0, 7, 48, 51, 54, 57, 76, 81], "main": [0, 6, 52, 53, 54, 55, 59, 69, 71, 82], "run_dmft": [0, 74], "expect": [0, 78, 80, 82], "supplement": 0, "etc": [0, 60, 65, 71, 80, 81, 82, 84], "equival": [0, 63, 65, 81], "what": [0, 63, 69, 77, 82, 83], "happen": [0, 12, 15, 63, 83], "when": [0, 5, 54, 56, 60, 63, 65, 68, 74, 77, 81, 82, 83], "exist": [0, 77], "beta": [0, 9, 21, 28, 33, 34, 35, 39, 41, 67, 70, 80, 81, 82, 83], "determin": [0, 8, 10, 12, 14, 15, 21, 23, 63, 65, 77, 84], "imaginari": [0, 10, 14, 33, 34, 37, 38, 40, 53, 56, 65, 68, 69, 80, 81, 82], "real": [0, 10, 51, 54, 55, 56, 65, 68, 80, 81, 82, 84], "frequenc": [0, 33, 34, 38, 39, 40, 41, 53, 54, 55, 56, 60, 65, 68, 69, 80, 81, 84], "grid": [0, 54, 65, 80, 82, 84], "within": [0, 23, 45, 55, 60, 65, 68, 70, 80, 81, 84], "bug": [0, 73, 74], "construct": [0, 13, 33, 34, 35, 48, 51, 56, 81, 82], "idea": 0, "everi": [0, 63, 64, 65, 68, 69, 70], "part": [0, 3, 10, 28, 54, 60, 68, 73, 80, 81, 83], "should": [0, 13, 21, 54, 65, 68, 72, 75, 76, 77, 80, 81, 82, 84], "care": [0, 4, 5, 60, 65, 68, 78, 83, 84], "littl": 0, "abstract": 0, "solverstructur": [0, 23], "class": [0, 16, 17, 19, 20, 23, 24, 29, 30, 33, 34, 48, 49, 78, 81, 84], "In": [0, 69, 72, 73, 75, 76, 77, 80, 81, 82, 83, 84], "transfer": 0, "dict": [0, 1, 3, 6, 9, 12, 13, 15, 21, 23, 24, 25, 28, 29, 30, 32, 44, 45, 52, 53, 56, 63, 69, 70, 81], "triqs_solver_param": [0, 68], "futur": 0, "thei": [0, 53, 60, 65, 80], "also": [0, 12, 13, 45, 52, 53, 54, 55, 60, 62, 63, 65, 68, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84], "need": [0, 3, 4, 5, 10, 15, 59, 60, 64, 65, 68, 72, 74, 75, 76, 77, 78, 80, 82, 83, 84], "block": [0, 9, 10, 12, 13, 14, 23, 54, 55, 63, 65, 69, 76, 77, 78, 82, 84], "structur": [0, 10, 12, 23, 45, 54, 63, 65, 69, 80, 82, 83], "larg": [0, 60, 68, 79, 81, 82], "unus": 0, "block_suppress_orbital_symm": 0, "remov": [0, 1, 5, 68, 77, 82], "Its": 0, "behavior": [0, 60, 81, 82], "replac": [0, 44, 77, 81], "previous": [0, 68], "One": [0, 76, 77, 81], "ftp": [0, 65, 72], "requir": [0, 64, 72, 75, 77, 81], "instal": [0, 33, 34, 61, 62, 73, 83], "otherwis": [0, 3, 13, 15, 33, 34, 39, 41, 54, 65, 74, 77, 80, 82], "just": [0, 21, 60, 74, 75, 77, 81, 84], "do": [0, 13, 61, 63, 65, 77, 80, 81, 82, 83], "anyth": [0, 83], "one": [0, 5, 6, 8, 13, 54, 60, 62, 63, 64, 65, 68, 72, 74, 76, 77, 79, 80, 81, 83, 84], "combin": [0, 28, 79], "ct": [0, 80, 84], "hyb": 0, "relat": [0, 12, 13, 15, 21, 54, 67, 81, 82], "function": [0, 1, 4, 5, 6, 7, 9, 12, 13, 14, 15, 21, 28, 29, 30, 32, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 64, 65, 68, 69, 71, 76, 77, 79, 80, 81], "read_config": [0, 82], "deal": 0, "postproc_toml_dict": 0, "verify_input_param": 0, "contain": [0, 1, 3, 4, 5, 9, 10, 12, 13, 15, 21, 23, 24, 45, 54, 56, 59, 60, 67, 71, 72, 75, 77, 80, 81, 82, 83, 84], "befor": [0, 9, 12, 13, 15, 46, 68, 69, 76, 77, 82], "start": [0, 1, 3, 4, 5, 12, 60, 61, 64, 65, 68, 74, 75, 76, 79, 80, 81, 84], "dmft": [0, 1, 6, 7, 9, 10, 21, 56, 57, 59, 64, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84], "comment": 0, "proj": [0, 77, 80], "postprocess": [0, 62, 68, 73, 79, 83, 84], "correct": [0, 4, 6, 9, 12, 13, 21, 52, 53, 54, 60, 64, 65, 69, 70, 74, 80, 82, 83], "diag": [0, 65, 68, 81], "A": [0, 45, 56, 60, 75, 80, 82, 84], "k": [0, 5, 28, 53, 56, 59, 69, 77, 80, 81, 82, 84], "w": [0, 56, 60, 65, 77, 84], "nno": [0, 81], "magnet": [0, 12, 29, 30, 31, 52, 53, 67, 79, 81], "tutori": [0, 60, 61, 62, 73, 80, 81, 82, 83, 84], "vasp": [0, 1, 3, 4, 5, 51, 61, 62, 64, 65, 66, 74, 75, 76, 78, 79], "csc": [0, 1, 3, 4, 5, 6, 21, 62, 67, 70, 79], "pno": 0, "after": [0, 4, 61, 63, 65, 69, 74, 76, 77, 79, 80, 81, 82], "option": [0, 12, 28, 45, 51, 60, 68, 74, 75, 80, 81], "dtest_gw_embed": 0, "ON": [0, 72], "modifi": [0, 63, 74], "basic": [0, 77], "svo": [0, 75, 76, 83, 84], "gl": 0, "apt": 0, "packag": [0, 72], "openmpi": [0, 64, 74, 76], "pr": [0, 77, 81], "ci": [0, 72], "cach": 0, "base": [0, 17, 24, 25, 30, 33, 34, 49, 53, 74, 77, 78, 79, 82, 84], "70": 0, "auto": [0, 14], "action": 0, "workflow": [0, 65, 79], "66": 0, "simplifi": [0, 80, 82], "dockerfil": [0, 74, 76], "trigger": 0, "pypi": [0, 72], "tag": [0, 62, 77], "patch": [0, 77], "ver": 0, "6": [0, 20, 60, 64, 65, 72, 76, 80, 81, 82, 83, 84], "clean": [0, 4, 5, 74], "up": [0, 3, 8, 13, 23, 51, 52, 53, 54, 65, 70, 80, 81, 82, 83, 84], "diff": [0, 9], "cmake": [0, 73], "variabl": [0, 3, 4, 5, 68, 72, 76, 77, 80, 81, 82], "max": [0, 20, 68, 80, 81], "number": [0, 3, 4, 5, 6, 9, 13, 15, 21, 23, 24, 25, 33, 34, 51, 52, 53, 54, 55, 56, 60, 64, 65, 68, 69, 70, 72, 73, 76, 80, 81, 82, 83], "mpi": [0, 3, 13, 52, 53, 54, 55, 60, 64, 68, 75, 80, 81, 82, 84], "rank": [0, 3, 68, 76], "dure": [0, 3, 7, 69, 73, 81, 82], "warn": [0, 54, 68, 78, 80, 81, 84], "matrix": [0, 10, 51, 53, 54, 56, 60, 65, 68, 69, 77, 81, 82], "valu": [0, 13, 15, 21, 29, 30, 32, 51, 60, 63, 64, 65, 68, 70, 71, 76, 77, 80, 81, 83, 84], "selfenergi": 0, "draw": 0, "colorbar": 0, "onc": [0, 21, 83], "kslice": [0, 59, 84], "aprx": 0, "diagon": [0, 13, 53, 54, 60, 65, 68, 76, 77, 82], "interpol": [0, 33, 34, 37, 39, 42, 54, 84], "broken": 0, "f": [0, 33, 34, 37, 38, 39, 40, 41, 74, 77, 78, 80, 81, 82], "np": [0, 28, 29, 30, 32, 51, 64, 80, 81, 82, 84], "shape": [0, 28, 56, 82], "len": [0, 80, 81, 82], "small": [0, 60, 77, 80, 81, 82, 84], "introduc": [0, 79], "eta": [0, 55, 56, 67, 80, 84], "maxent": [0, 15, 52, 53, 54, 65, 72, 74, 83], "precis": [0, 28, 33, 34, 35, 65, 81], "origin": [0, 82], "fermi": [0, 21, 56, 70, 77, 80, 81, 82, 83, 84], "surfac": 0, "akw": 0, "off": [0, 13, 14, 54, 60, 65, 68, 72, 77], "minor": [0, 60], "improv": [0, 68, 80, 81], "plot": [0, 59, 79, 80, 81], "coloarbar": 0, "jenkin": 0, "support": [0, 33, 34, 60, 68, 72, 75, 77, 82], "flatiron": 0, "sever": [0, 76], "match": [0, 56, 72], "x": [0, 51, 56, 62, 64, 72, 74, 77, 78, 79, 80, 81, 82, 84], "z": [0, 21, 70, 77, 78, 81, 84], "estim": [0, 21, 68, 71], "linear": [0, 21, 54, 60, 65, 70, 84], "first": [0, 4, 9, 60, 64, 65, 74, 75, 77, 80, 81, 82, 83, 84], "two": [0, 9, 28, 51, 52, 53, 56, 60, 68, 71, 74, 75, 77, 80, 81], "matsubara": [0, 21, 33, 34, 38, 39, 40, 41, 54, 55, 65, 68, 80, 81, 82], "qe": [0, 3, 4, 64, 65, 79], "field": [0, 65, 69, 70, 71, 82], "joss": [0, 62], "paper": [0, 62], "doi": [0, 60, 68, 82], "org": [0, 60, 68, 82], "10": [0, 60, 65, 68, 77, 80, 81, 82, 83, 84], "21105": 0, "04623": 0, "simpl": [0, 13, 21, 65, 81], "ntot": [0, 65], "uprim": 0, "2j": [0, 51, 65], "kanamori": [0, 13, 51, 60, 65, 78, 80], "output": [0, 28, 29, 30, 32, 42, 60, 65, 69, 73, 74, 75, 77, 80, 81, 82, 83, 84], "alberto": 0, "carta": 0, "harrison": 0, "labollita": 0, "szsz": [0, 68], "measur": [0, 68, 71, 81, 82], "mpich": [0, 64, 74], "vasp5": 0, "hf": 0, "regular": 0, "kmesh": [0, 56], "postproc": 0, "charg": [0, 1, 5, 62, 64, 69, 76, 77, 79, 80, 81, 83], "self": [0, 1, 8, 12, 21, 23, 24, 28, 29, 30, 32, 33, 34, 37, 39, 54, 55, 56, 62, 64, 65, 68, 69, 70, 71, 79, 80, 81, 82], "consist": [0, 1, 13, 62, 64, 70, 79, 80, 82], "48": 0, "offici": [0, 73, 74, 77], "pmi": 0, "crai": [0, 74], "supercomput": 0, "environ": [0, 3, 4, 5, 72, 76, 80, 81, 82, 84], "38": 0, "energi": [0, 4, 5, 8, 12, 21, 28, 53, 54, 55, 56, 59, 63, 65, 68, 69, 70, 71, 76, 77, 79, 81, 82], "logo": 0, "ico": 0, "direct": [0, 51, 54, 59, 60], "name": [0, 3, 4, 5, 13, 19, 36, 74, 75, 80, 82, 83], "dft_mu": [0, 21, 84], "mu_initial_guess": [0, 67], "dft": [0, 1, 2, 3, 4, 5, 6, 10, 12, 13, 21, 29, 56, 60, 65, 67, 69, 70, 72, 75, 76, 77, 79, 83, 84], "cubic": [0, 51, 60, 65], "basi": [0, 28, 33, 34, 35, 51, 56, 60, 65, 81, 82], "convent": [0, 13, 65], "36": [0, 75, 80], "den": [0, 22, 65], "alwai": [0, 60, 65, 77, 81, 82], "averag": [0, 13, 29, 30, 32, 51, 60, 81], "sym": 0, "hubbardi": [0, 62, 72, 79], "h_field_it": [0, 67], "iter": [0, 1, 4, 6, 9, 12, 15, 21, 24, 25, 28, 52, 53, 54, 55, 64, 65, 66, 68, 71, 76, 77, 80, 81, 82, 83, 84], "write": [0, 1, 3, 6, 9, 15, 21, 22, 44, 52, 53, 54, 55, 59, 63, 65, 68, 74, 84], "hash": 0, "delta": [0, 68], "site": [0, 60, 68, 70, 78, 81, 82, 83], "correctli": [0, 15, 77, 81, 82], "tail": [0, 68, 81], "doubl": [0, 12, 28, 65, 68, 69, 70, 82], "equat": [0, 69], "ref": [0, 80, 81, 82], "addit": [0, 9, 28, 63, 65, 72], "add_loc": [0, 56, 80], "hamiltonian": [0, 10, 13, 21, 24, 25, 51, 56, 60, 64, 65, 76, 78, 79, 81, 82, 84], "add_lambda": [0, 56, 84], "might": [0, 65, 69, 74, 80, 81, 84], "sumk": [0, 9, 12, 21, 23, 24, 25, 29, 30], "mesh": [0, 9, 14, 21, 28, 52, 53, 54, 56, 65, 80, 82, 84], "definit": [0, 77], "maxent_gf_latt": 0, "adapt": [0, 59, 76, 82], "ver6": 0, "det": 0, "n_orb_solv": 0, "appli": [0, 14, 15, 54, 56, 60, 63, 65, 82], "picker": 0, "map": [0, 13, 45, 63, 64, 77, 80, 81], "header": [0, 9, 21, 77, 82], "ob": [0, 81], "pick": 0, "struct": 0, "select": [0, 60, 64, 77, 81, 82, 84], "specif": [0, 24, 25, 65, 67, 84], "print": [0, 10, 28, 77, 80, 81, 82, 84], "fail": [0, 77], "comparison": 0, "enforc": [0, 29, 30, 32, 68], "pep": 0, "standard": [0, 4, 5, 78], "optim": [0, 65, 68, 74, 82], "alpha": [0, 52, 53, 54, 80], "final": [0, 3, 5, 28, 55, 56, 80, 84], "proj_on_orb": [0, 56, 84], "max_g_diff": [0, 9], "ignor": [0, 51, 60, 64, 65, 66, 68, 78, 81, 82], "norm_temp": [0, 9], "sigma_imp_iw": 0, "_w": 0, "dfttool": [0, 62, 72, 81], "load": [0, 15, 19, 65, 66, 72, 74, 75, 81, 84], "gf_struct": 0, "made": [0, 56], "wai": [0, 12, 15, 74, 77, 82, 84], "store": [0, 46, 64, 65, 66, 68, 76, 80, 81], "maxent_gf_imp": [0, 83], "deg": 0, "n_orb": [0, 13, 23, 28, 51, 56, 81, 84], "aver": 0, "critic": 0, "model": [0, 56, 59, 80, 84], "soc": [0, 23, 54, 56], "convert": [0, 1, 28, 64, 68, 76, 77, 81], "warmup": [0, 68], "cycl": [0, 1, 5, 6, 29, 65, 68, 76, 80], "int": [0, 3, 4, 5, 6, 9, 12, 13, 14, 15, 21, 23, 24, 25, 28, 29, 30, 32, 33, 34, 39, 51, 52, 53, 54, 55, 56, 64, 65, 66, 68, 70, 80, 81, 84], "ish": [0, 29, 30, 32, 69], "v": [0, 60, 68, 74, 83], "icrsh": [0, 23, 24, 25, 69], "henryscottx": 0, "report": [0, 4], "h_int": [0, 21, 23, 24, 25], "orb_nam": 0, "clang": 0, "15": [0, 33, 34, 35, 80, 81], "ubuntu": [0, 74], "22": 0, "enabl": 0, "loc_n_min": [0, 67], "arg": [0, 76], "comput": [0, 4, 28, 56, 65, 70, 77, 80, 81, 82, 84], "observ": [0, 6, 9, 56, 65, 71, 79, 80, 81], "shot": [0, 6, 62, 64, 65, 68, 76, 79, 80, 81], "imp": [0, 9, 63, 65, 68, 81, 82], "latt": 0, "30": [0, 51, 77, 81, 83], "get_dmft_band": [0, 56, 84], "issu": [0, 54, 74], "04": 0, "rootfind": 0, "quasiparticl": [0, 70, 71, 84], "dispers": [0, 56, 80], "avail": [0, 61, 62, 64, 67, 68, 72, 76, 79, 80, 84], "crash": 0, "pm": 0, "calc": [0, 56, 84], "branch": [0, 62, 72, 79], "gap": [0, 15, 65, 68, 70, 82], "finder": [0, 10, 63, 65, 68], "readm": [0, 75], "md": [0, 75], "public": [0, 5, 62, 74], "spectral": [0, 52, 53, 54, 56, 62, 65, 79, 82], "extend": [0, 54, 56], "instruct": [0, 72, 81], "21": [0, 81], "contribut": [0, 70, 71], "bump": 0, "eth": [0, 52, 53, 54, 74], "websit": [0, 72, 82], "debbuging_exampl": 0, "pip": [0, 33, 34], "delet": [0, 5], "obsolet": 0, "make_spaghetti": 0, "node": [0, 3, 75, 76, 77], "due": [0, 77, 81], "slow": [0, 65, 75, 76], "bcast": 0, "atomdiag": 0, "expos": 0, "execut": [0, 3, 4, 6, 15, 59, 64, 73, 74, 75, 76, 80, 81, 82], "chemic": [0, 15, 21, 56, 65, 69, 70, 71, 83, 84], "potenti": [0, 15, 21, 56, 63, 65, 69, 70, 71, 81, 82, 83, 84], "plotlabel": 0, "tini": 0, "modif": [0, 77], "h_loc": [0, 81], "provid": [0, 13, 56, 60, 61, 63, 67, 72, 73, 79, 82, 83, 84], "work": [0, 6, 45, 51, 56, 59, 60, 62, 65, 74, 75, 76, 77, 78, 80, 81, 82], "w90": [0, 56, 64, 77, 79], "mlwf": [0, 77], "lprj_write": 0, "dmft_config": [0, 67, 75, 76, 80, 82], "begin": [0, 67, 78, 81, 83], "converg": [0, 65, 71, 76, 79, 81, 82, 83], "merkelm": 0, "rework": [0, 84], "metric": 0, "gf_struct_flatten": 0, "more": [0, 52, 53, 54, 60, 61, 62, 73, 75, 76, 77, 79, 81, 82], "spin": [0, 13, 28, 52, 53, 56, 65, 68, 69, 70, 77, 81, 84], "anymor": [0, 60, 82], "afm": [0, 8, 65, 79], "densiti": [0, 6, 10, 12, 13, 64, 65, 68, 69, 70, 76, 77, 78, 80, 81, 82, 83], "w90_toler": [0, 67, 80], "flag": [0, 67, 68, 74, 76, 80, 81], "sphinx": [0, 72], "autosummari": 0, "barrier": [0, 3], "flow": [0, 1, 29], "better": [0, 65, 77, 82, 83, 84], "stabil": [0, 65, 82], "With": [0, 65, 82], "program": [0, 59, 62, 65, 74], "matric": [0, 12, 48, 60, 77, 81], "creation": 0, "plot_correlated_band": [0, 84], "sigma_max": 0, "develop": 0, "becaus": [0, 13, 53, 54, 60, 64, 75, 77, 78, 81, 82], "bugfix": 0, "explor": [0, 84], "correl": [0, 21, 24, 25, 29, 30, 32, 68, 69, 70, 81, 82, 84], "band": [0, 4, 21, 56, 59, 60, 65, 69, 77, 80, 82, 83, 84], "presesnt": 0, "skip": [0, 68, 81], "maxent_sigma": 0, "parallel": [0, 52, 53, 54, 55], "measure_pert_ord": [0, 67], "measure_chi_szsz": 0, "afm_ord": [0, 67, 81], "alatt_k_w": [0, 56, 84], "recomput": 0, "rotat": [0, 10, 13, 65, 66, 77, 78, 81, 82], "even": [0, 73, 77, 82], "initial_self_energi": 0, "case": [0, 56, 73, 75, 80, 83, 84], "fals": [0, 28, 36, 51, 52, 53, 56, 60, 63, 64, 65, 66, 68, 80, 81, 82, 84], "flatten": 0, "depract": 0, "lno": 0, "longer": 0, "manag": [0, 80, 82], "applic": [0, 72, 73, 79], "control": 1, "csc_flow_control": [1, 76], "solver_param": [1, 6, 21, 22, 23, 24, 25, 29], "dft_param": [1, 6], "gw_param": [1, 6, 12, 13, 23, 24, 25, 29], "sourc": [1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 72, 73, 75, 77, 81], "It": [1, 3, 5, 56, 77, 81, 82, 84], "lock": [1, 3, 5], "stop": [1, 65, 77], "abort": 1, "job": [1, 28, 81], "finish": [1, 5, 76, 81, 83], "gener": [1, 6, 9, 12, 15, 21, 24, 25, 29, 53, 63, 64, 67, 68, 75, 76, 80, 81, 82, 83], "advanc": [1, 6, 12, 29, 67], "3": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 84], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 83, 84], "driver": [2, 33, 34], "handl": [3, 5, 15, 23, 24], "reactiv": [3, 5], "kill": [3, 5], "create_hostfil": 3, "number_cor": [3, 4, 5], "cluster_nam": [3, 5], "host": [3, 72, 74], "mpirun": [3, 64, 74, 76, 80, 81, 82, 83], "tell": [3, 77, 81], "ssh": 3, "hist": 3, "core": [3, 4, 5, 64, 75, 80, 81, 82, 83], "server": [3, 74], "return": [3, 5, 6, 9, 12, 13, 14, 15, 21, 23, 28, 33, 34, 37, 38, 39, 40, 41, 45, 51, 52, 53, 54, 55, 56], "hostfil": 3, "local": [3, 10, 12, 28, 56, 60, 65, 68, 72, 74, 77, 81, 82, 83, 84], "master": [3, 77], "find_path_to_mpi_command": 3, "env_var": 3, "mpi_ex": 3, "complet": [3, 5, 12, 65, 76, 77, 84], "path": [3, 4, 28, 48, 49, 50, 51, 52, 53, 54, 55, 56, 65, 66, 72, 74, 75, 80, 81, 82, 83, 84], "scan": 3, "directori": [3, 65, 72, 73, 74, 75, 76, 80, 81, 82], "command": [3, 5, 64, 73, 74, 75, 82], "absolut": [3, 65], "get_mpi_argu": 3, "mpi_profil": [3, 4], "dft_ex": 3, "set": [3, 4, 5, 9, 15, 56, 60, 63, 65, 68, 75, 76, 77, 80, 81, 82, 83, 84], "cluster": [3, 4, 5, 61, 74, 81], "argument": 3, "most": [3, 13, 64, 68, 72, 75, 76, 77, 80], "technic": [3, 62], "handler": 3, "so": [3, 4, 5, 28, 60, 77, 80, 81, 84], "tailor": [3, 4, 5], "poll_barri": 3, "comm": 3, "poll_interv": 3, "1": [3, 9, 13, 21, 28, 33, 34, 37, 39, 41, 60, 63, 65, 66, 68, 70, 72, 74, 75, 77, 78, 79], "asynchron": 3, "synchron": 3, "cpu": [3, 75], "time": [3, 14, 33, 34, 37, 38, 40, 65, 68, 69, 74, 75, 77, 80, 81, 82], "subprocess": 3, "commun": [3, 75], "float": [3, 9, 13, 14, 21, 28, 33, 34, 35, 37, 51, 52, 53, 54, 55, 56, 63, 64, 65, 68, 69, 70, 80], "step": [3, 5, 6, 60, 64, 65, 68, 72, 79, 80, 81, 83, 84], "ping": 3, "statu": 3, "sleep": 3, "quantumespresso": [4, 64], "read_dft_energi": [4, 5], "seednam": [4, 59, 67, 80, 81, 84], "iter_dmft": 4, "quantum": [4, 62, 64, 79, 80, 81, 83, 84], "espresso": [4, 62, 64, 79, 80, 83, 84], "": [4, 5, 12, 14, 28, 52, 53, 54, 60, 64, 65, 77, 79, 80, 81, 83, 84], "out": [4, 51, 75, 77, 79, 80, 81, 82, 84], "At": 4, "scf": [4, 5, 79, 80, 81, 84], "mod_scf": [4, 80], "wrong": [4, 54, 65], "subtract": [4, 28, 56, 60, 84], "total": [4, 60, 68, 69, 70, 71, 77, 79, 81, 82], "nscf": [4, 80], "qe_file_ext": 4, "qe_exec": 4, "child": [4, 5, 76], "take": [4, 5, 56, 60, 61, 62, 64, 73, 80, 81, 82, 83, 84], "initi": [4, 5, 12, 15, 65, 79, 81], "doe": [4, 5, 13, 60, 65, 75, 77, 78, 82], "get": [4, 5, 15, 29, 30, 32, 60, 61, 65, 75, 77, 80, 81, 82, 83], "confus": [4, 5], "slurm": [4, 5, 75, 76], "simpler": [5, 63], "vasp_process_id": 5, "last": [5, 9, 12, 21, 28, 60, 65, 72, 83], "line": [5, 72, 75, 77, 81], "vasptriq": 5, "oszicar": [5, 77, 82], "read_irred_kpoint": 5, "kpt": [5, 59], "indic": [5, 9, 28, 33, 34, 39, 41, 45, 51, 56, 60, 69, 70, 81, 82], "irreduc": [5, 6], "point": [5, 33, 34, 37, 39, 52, 53, 54, 56, 59, 65, 68, 69, 72, 77, 80, 81, 82, 84], "outcar": [5, 60, 82], "remove_legacy_projections_suppress": 5, "legaci": 5, "suppress_proj": [5, 77], "present": [5, 68, 70, 80], "run_charge_upd": 5, "creat": [5, 13, 29, 30, 72, 73, 75, 77, 79], "wait": 5, "until": [5, 60, 76, 77, 80], "ha": [5, 13, 52, 53, 54, 56, 59, 60, 65, 75, 76, 77, 81, 83], "run_initial_scf": 5, "vasp_command": 5, "its": [5, 82], "helper": [6, 7, 9, 29, 30, 57, 60], "n_iter": [6, 67, 76, 80, 82], "dft_irred_kpt_indic": 6, "none": [6, 9, 12, 13, 22, 23, 24, 25, 28, 44, 45, 51, 52, 53, 54, 55, 56, 59, 60, 63, 64, 65, 66, 68, 75, 84], "dft_energi": [6, 21, 82], "equal": 6, "If": [6, 12, 13, 53, 59, 62, 63, 65, 68, 73, 74, 77, 80, 82, 83, 84], "kpoint": [6, 56, 60, 76, 81, 82], "arrai": [6, 9, 21, 51, 56, 80, 81, 82, 84], "archiv": [8, 9, 12, 15, 21, 22, 52, 53, 54, 55, 56, 59, 62, 64, 65, 68, 74, 79, 80, 82, 83], "n_inequiv_shel": [8, 9, 21, 29, 30, 31, 69], "symmetri": [8, 12, 60, 65, 68, 69, 77, 82], "These": [8, 60, 79, 80, 81, 82], "copi": [8, 65, 80, 81], "anoth": [8, 13, 77, 79], "exchang": [8, 28, 51, 60, 68], "down": [8, 13, 23, 52, 53, 65, 70, 75, 77, 81, 82, 83], "channel": [8, 81], "speedup": 8, "accuraci": [8, 9, 68, 77, 80, 81], "calc_convergence_quant": 9, "sum_k": [9, 10, 12, 13, 15, 21, 22, 23, 24, 25, 46, 66], "conv_ob": [9, 81, 82], "g0_old": 9, "g_loc_al": [9, 12], "sigma_freq_previ": 9, "quantiti": [9, 71, 82, 84], "between": [9, 45, 54, 60, 65, 68, 77, 81, 82, 83], "second": [9, 74, 76, 77, 81, 84], "instanc": [9, 12, 21, 23, 24, 25, 33, 34], "g0_freq": 9, "g_loc": 9, "extract": [9, 54, 56, 60, 68, 71, 77], "previou": [9, 12, 15, 64, 65, 82], "compar": [9, 60, 82], "check_converg": 9, "inequival": [9, 12, 29, 30, 32, 54, 55, 68, 69, 81], "save": [9, 65, 74, 80, 82], "sumkdft": [9, 12, 15, 24, 25, 46], "is_converg": 9, "bool": [9, 28, 33, 34, 36, 39, 41, 51, 52, 53, 56, 63, 64, 65, 66, 68], "desir": [9, 74, 75, 82], "reach": [9, 60, 65, 76, 82], "criterion": [9, 65], "g1": 9, "g2": 9, "numpi": [9, 21, 33, 34, 37, 38, 39, 40, 41, 51, 56, 80, 81, 82, 84], "linalg": 9, "norm": 9, "along": 9, "axi": [9, 33, 34, 37, 38, 39, 40, 56, 82], "result": [9, 15, 22, 51, 52, 53, 54, 55, 56, 60, 61, 65, 66, 68, 69, 75, 77, 79, 80, 81, 83], "divid": 9, "sqrt": [9, 20, 82], "meshimfreq": [9, 21], "taupoint": 9, "meshimtim": 9, "2": [9, 13, 20, 21, 28, 51, 60, 65, 66, 70, 74, 75, 77, 78, 79], "sum_n": 9, "sum_ij": 9, "ab": [9, 20, 28, 65, 81, 82], "_ij": 9, "w_n": 9, "done": [9, 12, 21, 46, 51, 74, 76, 77, 80, 82, 84], "other": [9, 13, 28, 63, 72, 73, 74, 77, 78, 80, 81, 82, 83, 84], "weight": [9, 60, 68, 70, 71, 81], "blockgf": [9, 12, 28, 54, 55, 56, 69, 82], "account": [9, 75, 83], "temperatur": [9, 33, 34, 35, 65, 81, 82], "scale": [9, 63, 84], "uniformli": 9, "distribut": [9, 82], "error": [9, 52, 53, 54, 60, 74, 75, 81], "__return": 9, "__": 9, "prep_conv_fil": 9, "conv": [9, 81], "noth": [9, 15, 21], "prep_conv_ob": 9, "h5_archiv": [9, 21], "prepar": [9, 21, 79], "hdf": [9, 21], "write_conv": 9, "entri": [9, 21, 45, 53, 54, 77], "thing": [10, 77, 80], "print_block_sym": 10, "dm": 10, "summari": 10, "shell_multipl": [10, 21], "print_rotation_matrix": 10, "count": [12, 28, 65, 69, 70, 80, 82, 84], "calculate_double_count": 12, "density_matrix": 12, "solver_type_per_imp": [12, 13, 21, 22, 46], "manipul": 12, "gf_struct_solv": [12, 29, 30, 32], "like": [12, 29, 30, 32, 51, 54, 60, 65, 74, 75, 77, 81, 82, 83, 84], "str": [12, 33, 34, 36, 37, 38, 39, 40, 41, 56, 64, 65, 66, 68], "green": [12, 14, 28, 52, 53, 54, 56, 65, 68, 69, 71, 77, 79, 80, 81, 83, 84], "determine_dc_and_initial_sigma": 12, "iteration_offset": [12, 15, 23, 24, 25], "five": [12, 80], "resum": [12, 15], "load_sigma": [12, 67], "therefor": [12, 13, 54, 75, 76, 77, 78, 82, 83], "adjust": [12, 70], "new": [12, 15, 72, 73, 75, 76, 77, 80], "effect": [12, 60, 80], "break": [12, 65, 83], "inform": [12, 15, 28, 52, 53, 54, 56, 59, 61, 62, 73, 81, 82, 84], "about": [12, 56, 62, 73, 79, 80, 82, 83, 84], "hdfarchiv": [12, 15, 80, 81, 82, 84], "current": [12, 13, 15, 23, 24, 26, 68, 70, 74, 75, 77, 80, 82, 83, 84], "implement": [13, 62, 65, 77, 82, 83, 84], "usual": [13, 60, 63, 64, 65, 76, 77, 80, 84], "full": [13, 48, 51, 60, 65, 78, 79], "5": [13, 60, 65, 68, 77, 78, 79, 80], "rot_mat": [13, 56], "non": [13, 60, 74, 79, 81, 82, 83], "ident": 13, "consid": [13, 55, 65, 76, 81], "invari": [13, 78, 80], "under": [13, 62, 65, 68, 71, 72, 77, 78], "space": [13, 59, 68, 78, 81, 82], "interpret": 13, "either": [13, 21, 56, 74], "cm": [13, 60, 80, 84], "univi": [13, 60], "wiki": [13, 60], "index": [13, 24, 25, 28, 29, 30, 32, 48, 51, 60, 69, 81, 82, 84], "php": [13, 60], "ldautyp": 13, "note": [13, 73, 74, 75, 76, 77, 80, 82], "except": 13, "order": [13, 14, 60, 65, 68, 69, 73, 77, 79, 80, 81, 83, 84], "matter": 13, "here": [13, 28, 51, 60, 61, 68, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84], "oper": [13, 24, 25, 48, 51, 68, 73, 81], "util": [13, 73, 75, 79, 80, 81, 84], "u_matrix": [13, 48, 51], "spherical_to_cub": 13, "h_int_simple_intra": 13, "spin_nam": [13, 81], "off_diag": [13, 81], "map_operator_structur": 13, "h_dump": 13, "intra": [13, 64, 65], "inter": [13, 51, 60], "term": [13, 51, 56, 65, 68, 70, 83, 84], "h": [13, 80, 84], "frac": [13, 70], "sum_": [13, 60], "neq": [13, 60], "u_": [13, 60], "n_": [13, 60], "g": [13, 21, 60, 68, 70, 72, 74, 77, 80, 81, 82, 83, 84], "element": [13, 51, 60, 65, 68, 77, 81], "ye": [13, 65], "denot": [13, 28], "spin_orbit": 13, "up_0": [13, 82, 84], "down_0": [13, 82], "written": [13, 21, 56, 60, 65, 77, 82], "100": [14, 60, 68, 80, 81, 84], "g_l_cut": 14, "1e": [14, 28, 33, 34, 35, 60, 64, 65, 68, 77, 80, 81], "19": 14, "filter": [14, 68, 82], "bin": [14, 75, 81], "legendr": [14, 68, 69, 79, 80], "coeffici": [14, 68, 82], "threshold": [14, 64, 65, 68], "cut": [14, 60, 81], "nl": 14, "expans": 14, "g_l": [14, 68, 82], "next": [15, 79, 80, 81, 84], "set_initial_mu": 15, "broaden": [15, 56, 65], "mu": [15, 65, 82, 83], "fix": [15, 63, 65, 74, 77], "dichotomi": [15, 65, 70], "system": [15, 56, 60, 62, 65, 70, 73, 76, 77, 80, 81, 82, 83], "middl": [15, 65], "necessari": [15, 60, 76, 80, 81, 83], "alter": 15, "update_mu": 15, "expr": [17, 18, 19], "__init__": [17, 24, 30, 34, 49], "attribut": [17, 23, 24, 33, 34], "ast": 19, "sub": [19, 81], "unaryop": 19, "num": [19, 80], "binop": 19, "mult": 19, "div": 19, "pow": [19, 20], "bitor": 19, "bitand": 19, "bitxor": 19, "usub": 19, "uadd": 19, "floordiv": 19, "mod": [19, 77], "lshift": 19, "rshift": 19, "invert": [19, 81], "built": [20, 74], "aco": 20, "acosh": 20, "asin": 20, "asinh": 20, "atan": 20, "atan2": 20, "atanh": 20, "cbrt": 20, "ceil": 20, "comb": 20, "complex": [20, 54, 79, 81, 83], "copysign": 20, "co": 20, "cosh": 20, "degre": [20, 78], "dist": 20, "718281828459045": 20, "erf": 20, "erfc": 20, "exp": 20, "exp2": 20, "expm1": 20, "fab": 20, "factori": 20, "floor": 20, "fmod": 20, "frexp": 20, "fsum": 20, "gamma": [20, 77, 80, 82, 84], "gcd": 20, "hypot": 20, "inf": 20, "isclos": 20, "isfinit": 20, "isinf": 20, "isnan": 20, "isqrt": 20, "lcm": 20, "ldexp": 20, "lgamma": 20, "log": [20, 74], "log10": 20, "log1p": 20, "log2": 20, "min": [20, 80], "modf": 20, "nan": 20, "nextaft": 20, "perm": 20, "pi": [20, 28, 33, 34, 39, 41, 82], "141592653589793": 20, "prod": 20, "radian": 20, "remaind": 20, "round": [20, 81], "sin": 20, "sinh": 20, "sumprod": 20, "tan": 20, "tanh": 20, "tau": [20, 28, 33, 34, 37, 65, 68, 80, 82, 83], "283185307179586": 20, "trunc": 20, "ulp": 20, "add_dft_values_as_zeroth_iter": 21, "g_loc_all_dft": 21, "zeroth": 21, "gloc": [21, 65, 70, 77], "degeneraci": [21, 29, 30, 32, 63, 81], "add_dmft_observ": 21, "map_imp_solv": [21, 22], "previous_mu": [21, 22], "density_mat": [21, 22], "e_bandcorr": [21, 82], "input": [21, 28, 29, 30, 32, 45, 51, 62, 65, 68, 69, 76, 77, 79, 84], "decid": 21, "adhoc": 21, "sinc": [21, 60, 76, 80, 81], "master_nod": 21, "counter": 21, "wa": [21, 56, 60, 80, 83, 84], "occup": [21, 63, 65, 68, 69, 70, 71, 81, 82, 83], "e_kin_dmft": 21, "e_kin_dft": 21, "man": 21, "calc_z": 21, "invers": [21, 33, 34, 35, 65], "mass": 21, "enhanc": 21, "im": [21, 81, 84], "s_iw": 21, "n_iw0": 21, "iw": 21, "orb_z": [21, 82], "1d": 21, "calc_bandcorr_man": 21, "kinet": [21, 70], "target": [21, 33, 34, 37, 39, 60, 73, 82], "state": [21, 60, 65, 68, 70, 79, 80, 82, 83], "calc_dft_kin_en": 21, "prep_observ": 21, "write_header_to_fil": 21, "write_ob": 21, "is_sampl": 22, "density_mat_pr": 22, "deltan": 22, "collect": [22, 60, 83], "deg_orbs_ftp": [23, 24, 25], "kwarg": [23, 24, 26, 56], "get_n_orbit": 23, "dft_tool": [23, 24, 25, 56, 63, 72, 77], "hold": [23, 28], "initialis": [24, 25], "solidmft": [24, 25], "general_paramut": [24, 25], "tool": [27, 43, 47, 75, 80], "bdft": [28, 42], "edmft": 28, "calc_sigma_dc_gw": 28, "wloc_dlr": 28, "gloc_dlr": 28, "vloc": 28, "verbos": [28, 51], "screen": [28, 60, 66], "coulomb": [28, 51, 60, 83], "meshdlr": [28, 65], "ndarrai": [28, 29, 30, 32, 33, 34, 37, 38, 39, 40, 41], "sig_dc_dlr": 28, "sig_dc_hartre": 28, "static": 28, "sig_dc_exchang": 28, "calc_w_from_gloc": 28, "wijkl": 28, "constant": [28, 60, 65, 80], "dlrmesh": 28, "notat": [28, 33, 34, 39, 41, 60], "phi": 28, "_i": 28, "r": [28, 60, 80, 81, 82, 84], "_j": 28, "phi_l": 28, "phi_k": 28, "c": [28, 72, 74, 75, 77, 80, 81, 82], "c_l": 28, "c_k": 28, "where": [28, 33, 34, 39, 41, 52, 53, 54, 55, 60, 65, 72, 74, 77, 80, 81, 82, 83], "diagram": [28, 79], "left": [28, 63, 77, 81, 84], "right": [28, 77, 81, 83, 84], "same": [28, 51, 54, 56, 60, 62, 63, 65, 68, 69, 72, 75, 77, 80, 81, 83], "__________": 28, "l": [28, 51, 80, 81, 82], "product": 28, "form": [28, 51, 65, 72], "go": [28, 68, 72, 75, 76, 77, 80, 81, 82, 83, 84], "nb": [28, 77], "uji": 28, "kl": 28, "phi_j": 28, "_k": 28, "psi": 28, "_ji": 28, "psi_kl": 28, "transform": [28, 33, 34, 38, 40, 81], "uki": 28, "jl": 28, "swap": [28, 78, 81], "col": 28, "row": [28, 81], "end": [28, 52, 53, 54, 55, 60, 78], "w_ki": 28, "back": [28, 52, 53, 54, 55, 59, 78, 82, 83, 84], "revers": [28, 84], "Then": [28, 60, 74, 75, 76, 77, 80, 81, 82, 83], "pubbl": 28, "polariz": 28, "pi_ab": 28, "g_bl": 28, "g_ka": 28, "iwn": [28, 33, 34, 39, 41], "sum_ab": 28, "u_ji": 28, "___": 28, "b": [28, 33, 34, 37, 38, 39, 40, 41, 51], "w_ji": 28, "1_ji": 28, "target_shap": 28, "4": [28, 48, 51, 60, 64, 65, 74, 75, 77, 79, 80, 84], "w_dlr": 28, "convert_gw_output": 28, "job_h5": 28, "gw_h5": 28, "it_1": [28, 67], "it_2": [28, 67], "ha_ev_conv": 28, "dlr": [28, 65], "checkpoint": [28, 66], "wmax": 28, "ir": [28, 33, 34, 35], "downfold": [28, 69], "2e": 28, "ev": [28, 53, 80, 81, 82, 83, 84], "gw_data": 28, "mu_emb": 28, "lam": 28, "w_max": [28, 55], "prec": [28, 33, 34, 35], "mesh_dlr_iw_b": 28, "mesh_dlr_iw_f": 28, "g0_dlr": 28, "sigma_imp_dlr": 28, "sigma_imp_dc_dlr": 28, "uloc_dlr": 28, "hloc0": [28, 68], "vhf_dc": 28, "vhf": 28, "ir_kernel": 28, "sparse_ir": [28, 33, 34, 39, 41], "kernel": 28, "paramat": 28, "dummy_sumk": 29, "n_orb_list": [29, 30, 31], "use_rot": [29, 30, 31, 67], "dummi": [29, 30], "symm_deg_gf": [29, 30], "gf_to_symm": [29, 30, 32], "over": [29, 30, 32, 52, 53, 54, 55, 56, 60, 82], "degener": [29, 30, 32], "deg_shel": [29, 30, 32], "correspond": [29, 30, 32, 33, 34, 59, 65, 80, 83, 84], "overwritten": [29, 30, 32], "embedding_driv": 29, "lmbda": [33, 34, 35], "ft": [33, 34], "lambda": [33, 34, 35], "evalu": [33, 34, 56, 83], "spars": [33, 34], "fly": [33, 34], "xprec": [33, 34], "readthedoc": [33, 34], "en": [33, 34], "To": [33, 34, 60, 61, 68, 72, 74, 77, 80, 82, 83], "xprex": [33, 34], "dimensionless": [33, 34], "finitetempbasisset": [33, 34], "tau_mesh_f": [33, 34], "dim": [33, 34, 37, 39, 41, 56], "fermion": [33, 34, 37, 38, 39, 40, 41], "tau_mesh_b": [33, 34], "boson": [33, 34, 37, 38, 39, 40, 41], "wn_mesh_f": [33, 34], "NOT": [33, 34, 77], "physic": [33, 34, 39, 51, 65, 80, 81, 83, 84], "wn_mesh_b": [33, 34], "nt_f": [33, 34], "nt_b": [33, 34], "nw_f": [33, 34], "nw_b": [33, 34], "check_leakag": [33, 34], "tau_interpol": [33, 34], "ot": [33, 34, 36, 37, 38], "tau_mesh_interp": [33, 34, 37], "dynam": [33, 34, 37, 39, 65, 68], "arbitrari": [33, 34, 37, 39], "tau_mesh": [33, 34, 37], "dtype": [33, 34, 37, 39], "statist": [33, 34, 37, 38, 39, 40, 41, 65], "dimens": [33, 34, 37, 38, 39, 40, 56, 68, 81], "nt_interp": [33, 34, 37], "tau_to_w": [33, 34], "fourier": [33, 34, 38, 40], "nt": [33, 34, 38, 40], "nw": [33, 34, 38, 40], "w_interpol": [33, 34], "ow": [33, 34, 39, 40], "wn_mesh_interp": [33, 34, 39, 41], "ir_not": [33, 34, 39, 41], "wn_mesh": [33, 34, 39], "whether": [33, 34, 39, 41, 52, 53, 65, 80, 84], "n": [33, 34, 39, 41, 65, 74, 76, 77, 78, 81, 82, 83], "2n": [33, 34, 39, 41], "nw_interp": [33, 34, 39], "w_to_tau": [33, 34], "w_input": 36, "extract_qp_eig": 42, "dump": 42, "g0w0": 42, "eigenvalu": [42, 56, 76, 81], "si": 42, "eig": [42, 64], "wannier90": [42, 56, 59, 60, 61, 64, 65, 69, 74, 80, 82], "prep_params_for_h5": 44, "dict_to_writ": 44, "nonetyp": 44, "abl": [44, 75, 82], "prep_params_from_h5": 44, "dict_to_read": 44, "pars": 44, "come": [44, 54, 75, 84], "merge_config_with_default": 45, "cfg_inp": 45, "cfg_def": 45, "match_kei": 45, "toml": [45, 80, 81, 82], "dictat": 45, "kei": [45, 81, 82, 84], "must": [45, 60, 65, 72, 80], "extens": 45, "mandatori": [45, 64, 65, 68, 75, 82], "insid": [45, 72, 74, 77], "pair": [45, 83], "verify_before_dmft_cycl": 46, "dmft_cycl": [46, 65, 76], "verify_h5_depend": 46, "content": 46, "construct_uijkl": 48, "uijij": [48, 51], "uiijj": [48, 51], "data": [48, 49, 56, 59, 65, 74, 80, 81, 82, 83, 84], "assum": [48, 51, 56, 63, 65, 72, 80, 84], "uijji": [48, 51], "fit_slat": 48, "u_ijij_crpa": 48, "u_ijji_crpa": 48, "u_init": [48, 51], "j_init": [48, 51], "fixed_f4_f2": [48, 51], "best": [48, 51, 83], "f4": [48, 51, 65], "f2": [48, 51, 65], "625": [48, 51], "read_interact": 48, "seed": [48, 49, 50, 56, 68, 80], "respack_data": 48, "calc_kan_param": [51, 60], "n_site": 51, "procedur": [51, 60, 82], "review": 51, "86": [51, 60], "165105": [51, 60], "2012": [51, 60], "vaugier": 51, "biermann": 51, "formula": [51, 65], "31": [51, 77, 81], "32": [51, 82], "4d": 51, "atom": [51, 60, 75, 80, 81, 84], "wannier": [51, 56, 60, 64, 69, 77], "center": [51, 80], "mode": [51, 56, 72, 77, 81], "int_param": 51, "calc_u_avg_fulld": [51, 60], "pavarini": 51, "2014": 51, "arxiv": [51, 80], "1411": 51, "6906": 51, "julich": 51, "school": 51, "page": [51, 62, 73], "23": 51, "25": [51, 77, 80, 81, 84], "atm": [51, 56], "f0": [51, 65], "14": [51, 65, 68, 80, 81], "calculate_interaction_from_averag": [51, 60], "directli": [51, 56, 60, 68, 73, 74], "spheric": [51, 60], "assumpt": 51, "give": [51, 56, 60, 63, 68, 73, 80, 81, 82], "indepentendli": 51, "choosen": [51, 81], "harmon": [51, 60], "tupl": 51, "construct_u_kan": 51, "jc": 51, "uiiii": 51, "hund": 51, "coupl": [51, 65, 82, 84], "wave": [51, 60, 64], "fit_kanamori": 51, "switch_jk": 51, "fit_2": 51, "fit_3": 51, "fit_4": 51, "scipi": [51, 65, 68, 72], "four": [51, 60], "flip": [51, 81], "inner": [51, 60], "three": [51, 60, 80], "uijkl_fit": 51, "fit_slater_fulld": [51, 60], "read_uijkl": 51, "path_to_uijkl": 51, "vijkl": [51, 60], "red_to_2ind": 51, "reduc": [51, 60, 63, 65, 80, 81, 82], "4index": 51, "2index": 51, "prb96": 51, "seth": 51, "peil": 51, "georg": 51, "u_antipar": 51, "u_mm": 51, "oo": 51, "mm": 51, "u_par": 51, "m": [51, 80, 81, 84], "intersit": 51, "u_ijij": 51, "u_ijkl": [51, 60], "u_ikjl": [51, 60], "uij_anti": 51, "red": 51, "u_iijj": 51, "uij_par": 51, "g_imp": 52, "omega": [52, 53, 54, 55, 70, 80, 81, 82, 84], "a_imp": 52, "docstr": [52, 53, 54], "Not": [52, 65, 82], "author": [52, 53, 54], "materi": [52, 53, 54, 82, 83], "theori": [52, 53, 54, 73, 74, 75], "group": [52, 53, 54, 59, 74, 75, 81, 82], "zurich": [52, 53, 54], "2020": [52, 53, 54], "2022": [52, 53, 54, 56, 80, 84], "external_path": [52, 53, 54, 55], "sum_spin": [52, 53], "maxent_error": [52, 53, 54], "02": [52, 53, 54, 77, 81], "n_points_max": [52, 53, 54], "200": [52, 53, 80, 82, 84], "n_points_alpha": [52, 53, 54], "50": [52, 53, 54, 80, 82, 84], "omega_min": [52, 53, 54], "20": [52, 53, 74, 75, 80, 81, 82, 84], "omega_max": [52, 53, 54], "last_it": [52, 53, 54, 55, 81, 82, 84], "sum": [52, 53, 60, 69, 70, 81, 82], "analyz": [52, 53, 54, 81], "hyperbol": [52, 53, 54, 65], "vari": [52, 53, 54, 60, 69, 80], "logarithm": [52, 53, 54, 84], "lower": [52, 53, 54, 55, 77, 81, 84], "rang": [52, 53, 54, 55, 65, 69, 70, 80, 81, 82, 84], "being": [52, 53, 54, 55], "compris": [52, 53, 54], "featur": [52, 53, 54, 60, 73, 79, 84], "normal": [52, 53, 60, 71, 74, 75, 81], "upper": [52, 53, 54, 55, 84], "maxent_result": 52, "lattic": [53, 56, 65, 80, 82, 84], "g_latt": 53, "a_latt": 53, "trace": [53, 56, 81, 82], "kohn": [53, 60, 80, 81, 82], "sham": [53, 60, 80, 81, 82], "hop": [53, 64], "sort": [53, 79, 80, 81], "lead": [53, 77], "crossov": 53, "chosen": [53, 54, 68, 77], "least": [53, 60, 68, 72, 82], "unpacked_result": 53, "auxiliari": 54, "pleas": [54, 60, 62, 72, 73, 79, 80, 82], "formal": [54, 60, 64, 79, 82], "particular": [54, 69, 72], "kramer": 54, "kronig": 54, "continuator_typ": 54, "inversion_sigmainf": 54, "12": [54, 76, 80, 81, 82, 83, 84], "400": 54, "linefitanalyz": 54, "n_points_interp": 54, "2000": [54, 81], "n_points_fin": 54, "1000": 54, "inversion_dc": 54, "bend": 54, "neglegct": 54, "chi2curvatureanalyz": 54, "classicanalyz": 54, "entropyanalyz": 54, "bryananalyz": 54, "sigma_w": [54, 55], "g_aux_w": 54, "g_aux": 54, "rais": [54, 81, 82], "notimplementederror": 54, "larger": [54, 60, 76, 83], "than": [54, 60, 65, 72, 75, 76], "1x1": 54, "global": [54, 81], "frame": [54, 81], "violat": 54, "would": [54, 60, 83], "n_w": [55, 56, 67, 84], "w_min": 55, "n_iw": [55, 67, 80, 81], "approxim": [55, 68, 80, 82], "offset": [55, 65], "dmft_ouput": 56, "properti": [56, 60, 81, 84], "bandstructur": [56, 80, 84], "slice": [56, 59, 84], "2021": [56, 59, 80, 81], "todo": [56, 63, 68], "multi": 56, "make": [56, 60, 72, 73, 74, 76, 77, 80, 81, 82, 84], "proper": 56, "wannier_hr": 56, "mu_tb": [56, 84], "w90_path": [56, 84], "w90_seed": [56, 84], "tb_obj": 56, "add_spin": [56, 84], "with_sigma": [56, 84], "fermi_slic": [56, 84], "qp_band": [56, 84], "orbital_order_to": [56, 84], "add_mu_tb": [56, 84], "band_basi": 56, "mu_shift": 56, "proj_nuk": 56, "spec": [56, 84], "tight": [56, 84], "bind": [56, 75, 84], "seed_hr": 56, "dat": [56, 59, 80, 82, 83], "wout": [56, 80], "altern": [56, 74, 84], "tb_from_wannier90": [56, 80], "strength": 56, "t2g": [56, 65, 77, 82, 83, 84], "extra": [56, 63, 72, 81], "sigma_dict": [56, 84], "project": [56, 68, 70, 78, 80, 81, 82, 83, 84], "integ": [56, 60], "special": [56, 61, 76, 81, 84], "purpos": [56, 80, 81], "finiti": 56, "manual": [56, 63, 75, 77, 81, 82], "Will": 56, "togeth": [56, 77, 83], "tb_data": [56, 84], "emat": 56, "eigenvector": [56, 81], "n_k": [56, 80, 84], "freq_dict": [56, 84], "get_tb_band": 56, "e_mat": 56, "nk": [56, 77, 81], "e_val": [56, 80], "e_vec": 56, "extern": 57, "ani": [57, 65, 72, 73, 77, 80, 82, 84], "coord": 59, "them": [59, 60, 65, 73, 74, 81], "through": [59, 65, 80, 81, 82, 84], "_kslice": 59, "latter": [59, 77, 83, 84], "2d": 59, "coordin": [59, 81], "independ": 59, "projector": [59, 64, 81], "dft_bands_input": 59, "sumkdfttool": 59, "spaghetti": 59, "write_bands_to_h5": 59, "filename_arch": 59, "_band": 59, "seedname_arch": 59, "help": [60, 74, 77, 82, 84], "crpa_of_srvo3": 60, "moreov": 60, "eval_u": 60, "There": [60, 74], "some": [60, 68, 74, 75, 77, 78, 80, 81, 82], "remark": [60, 76], "pdf": 60, "folder": [60, 72, 75, 82, 83], "srvo3": [60, 77, 79], "lunio3": 60, "look": [60, 61, 68, 72, 73, 75, 79, 80, 81, 82, 84], "phd": 60, "thesi": 60, "merzuk": 60, "kaltak": 60, "oth": 60, "38099": 60, "ext_ep": 60, "sh": [60, 72, 74, 82, 83], "bash": [60, 72, 74, 75], "epsilon": 60, "q": 60, "vp": 60, "vasprun": [60, 81], "xml": [60, 81], "nm": 60, "ismear": 60, "05": [60, 77], "ediff": [60, 77], "optic": 60, "nband": 60, "respons": 60, "plane": [60, 84], "encut": 60, "high": [60, 77, 81, 83, 84], "algo": 60, "exact": [60, 76], "nelm": 60, "loptic": 60, "lwave": 60, "96": 60, "lmaxmix": 60, "wavecar": [60, 76], "chgcar": [60, 76, 82], "addition": [60, 72, 81, 84], "alreadi": [60, 68, 74, 75, 80], "win": [60, 80], "bare": 60, "omegamax": 60, "ncrpa_band": 60, "disentagl": 60, "ntarget": 60, "kubo": 60, "disentangl": [60, 69, 80], "listet": 60, "vcutoff": 60, "reason": [60, 75], "ntarget_st": 60, "ncshmem": 60, "you": [60, 62, 63, 68, 72, 73, 74, 76, 77, 80, 81, 82, 83, 84], "sigsev": 60, "while": [60, 75, 80, 83, 84], "polar": 60, "sure": [60, 72, 73, 74, 76, 77, 80, 81, 82, 84], "your": [60, 61, 62, 72, 73, 74, 82, 83, 84], "stack": [60, 81], "size": [60, 74], "enough": [60, 75, 82], "ulimit": 60, "unlimit": 60, "funciton": 60, "exclud": 60, "build": [60, 72, 73, 76], "lproject": 60, "ldisentangl": 60, "miyak": 60, "1103": [60, 68, 82], "physrevb": [60, 68, 82], "80": [60, 75], "155134": 60, "lweight": 60, "friedrich": 60, "shih": 60, "withing": 60, "w000x": 60, "tmp": 60, "nododi": 60, "know": [60, 63], "cuttoff": 60, "sai": [60, 81], "low": [60, 70, 80, 82, 83, 84], "cutoff": [60, 68, 82], "v_ijkl": 60, "abov": [60, 72, 76, 77, 80, 82, 84], "explicitli": [60, 65], "e_": [60, 70], "corr": [60, 70], "rpa": 60, "infti": 60, "asymptot": 60, "goe": 60, "approx": [60, 82], "ratio": [60, 65], "encutgw": 60, "crucial": [60, 84], "incar": [60, 64, 76, 77, 81, 82], "2e4w": 60, "lwpot": 60, "avoid": [60, 65], "nevertheless": 60, "amount": [60, 68], "good": [60, 77, 81, 82], "choic": [60, 81, 82], "nelect": 60, "electron": [60, 70, 77, 80, 81, 82, 83], "seem": [60, 77], "weak": 60, "increas": [60, 68, 74, 81, 82], "mathrm": 60, "frac1": 60, "2l": 60, "sum_i": 60, "iiii": 60, "j_": 60, "ijji": 60, "convers": 60, "frac85": 60, "frac75": 60, "iijj": 60, "ijij": 60, "straight": [60, 75], "forward": [60, 75], "perfect": 60, "squar": 60, "Be": 60, "awar": [60, 83], "cell": [60, 75, 78, 80, 81, 83, 84], "prb": [60, 81], "pseudopotenti": 60, "accur": 60, "higher": [60, 81, 82], "entangl": [60, 80, 81], "upto": 60, "v3": [60, 77], "exclus": 60, "success": 61, "how": [61, 62, 65, 72, 80, 81, 82], "machin": 61, "homepag": 62, "changelog": 62, "visit": 62, "multiband": 62, "softwar": [62, 77], "librari": [62, 72, 75], "advantag": 62, "variou": [62, 83], "forktp": 62, "ctint": [62, 72], "learn": 62, "journal": 62, "research": [62, 81], "cite": 62, "bib": 62, "unless": [63, 66, 80], "multipli": 63, "factor": [63, 65], "unchang": 63, "still": [63, 81], "kind": [63, 80], "overwrit": [63, 65, 77], "configur": [63, 72, 79, 80], "turn": [63, 75, 77, 80, 82], "exactli": [63, 69], "ineq": 63, "_python_api": 63, "triqs_dft_tool": [63, 81], "block_structur": 63, "blockstructur": 63, "map_gf_struct_solv": 63, "symmetr": [63, 68], "dimension": 63, "similar": [63, 81], "syntax": [63, 72], "choos": [64, 80, 82, 84], "vasp_std": [64, 81, 82], "env": 64, "n_cores_dft": 64, "feed": 64, "davidson": [64, 76], "recalcul": 64, "newli": 64, "plo": [64, 76, 77, 79], "cfg": [64, 76, 81, 82], "locproj": [64, 81], "eigenv": [64, 81], "singl": [64, 70, 71, 83], "frequent": 65, "whole": [65, 76, 77], "simul": [65, 82], "maximum": [65, 68, 83, 84], "broyden": 65, "loop": 65, "mai": [65, 80, 84], "newton": 65, "root": [65, 68, 73, 82], "much": [65, 82], "faster": 65, "brent": 65, "precondit": 65, "edg": 65, "compromis": 65, "speed": [65, 82], "fll": 65, "held": 65, "amf": 65, "eg": [65, 82], "width": [65, 81], "side": [65, 77], "remain": [65, 77], "sum_w": 65, "g0": [65, 68], "g0_prev": 65, "smaller": 65, "weiss": [65, 69, 70, 71], "mean": [65, 70, 75, 82, 83], "restart": [65, 74, 81], "gimp": [65, 70], "kept": [65, 81], "wien2k": 65, "density_dens": [65, 80, 81], "subset": 65, "kanamori_den_den": 65, "full_slat": 65, "often": [65, 74, 77], "dmft_dir": 65, "moment": [65, 68, 81, 83], "length": [65, 68, 81], "compos": 65, "energet": 65, "electronvolt": 65, "posit": [65, 77], "favour": 65, "compon": [65, 68, 83, 84], "put": 65, "empti": [65, 80], "recommend": [65, 72], "01": [65, 81, 84], "deviat": 65, "stuck": [65, 77], "insul": [65, 79, 82], "proport": [65, 83], "mui": 65, "mu_next": 65, "mu_dichotomi": 65, "mu_previ": 65, "n_target": 65, "ensur": [65, 81, 82], "solut": [65, 71, 80, 81, 82], "1025": 65, "10001": [65, 68], "5001": [65, 80], "spread": 65, "gaussian": 65, "nois": [65, 68, 81, 82], "certain": 65, "occ": [65, 83], "calc_mu": 65, "f_4": 65, "f_2": 65, "mani": [65, 68, 75, 81, 82, 83], "keep": [65, 72, 80], "density_mat_dft": 65, "hloc": [65, 82], "hloc_dft": 65, "sigma_prev": 65, "dmft_input": [65, 68], "zero": 65, "prime": 65, "minim": [65, 75, 76], "maxim": [65, 68], "particl": [66, 68, 70, 71, 81], "aim": 67, "comprehens": 67, "exhaust": 67, "mark": [67, 81], "block_threshold": [67, 80, 81], "broy_max_it": 67, "calc_energi": [67, 80], "calc_mu_method": 67, "dc_dmft": [67, 80, 81, 82], "fixed_mu_valu": 67, "g0_conv_crit": 67, "g0_mix": [67, 80, 81], "g0_mix_typ": 67, "gimp_conv_crit": 67, "h_field": 67, "h_int_basi": 67, "h5_save_freq": [67, 80], "jobnam": [67, 80, 81], "load_sigma_it": 67, "magmom": [67, 81], "mu_gap_gb2_threshold": 67, "mu_gap_occ_devi": 67, "mu_mix_const": 67, "mu_mix_per_occupation_offset": 67, "mu_update_freq": 67, "n_iter_dmft": [67, 80, 81, 82], "n_iter_dmft_first": [67, 80], "n_iter_dmft_p": [67, 80], "n_tau": [67, 80, 81], "noise_level_initial_sigma": 67, "occ_conv_crit": 67, "path_to_sigma": 67, "prec_mu": [67, 80, 81], "sampling_h5_save_freq": 67, "sampling_iter": 67, "set_rot": [67, 82], "sigma_conv_crit": 67, "sigma_mix": [67, 80], "store_solv": [67, 80], "u_crpa_threshold": 67, "w_rang": 67, "diag_delta": 67, "fit_max_mo": [67, 81], "fit_max_n": 67, "fit_max_w": [67, 81], "fit_min_n": 67, "fit_min_w": [67, 81], "imag_threshold": [67, 81], "legendre_fit": [67, 82], "length_cycl": [67, 81], "loc_n_max": 67, "max_tim": 67, "measure_chi_insert": 67, "measure_density_matrix": [67, 80, 81], "measure_g_l": [67, 80], "move_doubl": 67, "move_shift": 67, "n_cycles_tot": [67, 81, 82], "n_warmup_cycl": [67, 81], "off_diag_threshold": 67, "perform_tail_fit": [67, 81], "improved_estim": 67, "measure_g_tau": 67, "measure_nnt": 67, "measure_statehist": 67, "n_tau_k": 67, "bath_fit": 67, "calc_m": 67, "dmrg_maxm": 67, "dmrg_maxmb": 67, "dmrg_maxmi": 67, "dmrg_maxmib": 67, "dmrg_tw": 67, "dt": 67, "enforce_gap": 67, "ignore_weight": 67, "maxm": 67, "maxmb": 67, "maxmi": 67, "maxmib": 67, "n_bath": 67, "path_to_g": 67, "ph_symm": 67, "refine_factor": 67, "state_storag": 67, "sweep": 67, "tw": 67, "force_r": 67, "one_shot": 67, "tol": 67, "with_fock": 67, "dft_code": [67, 80, 82], "dft_exec": [67, 80, 82], "mpi_env": [67, 80, 82], "n_core": [67, 75, 80, 82], "n_iter_first": 67, "plo_cfg": [67, 82], "projector_typ": [67, 80, 82], "store_eigenv": 67, "w90_exec": 67, "h5_file": 67, "dc_factor": 67, "dc_fixed_valu": 67, "dc_nomin": 67, "uniqu": [68, 80], "were": 68, "respect": [68, 73, 80], "suppos": 68, "conflict": 68, "tail_fit": 68, "crm_dlr_wmax": 68, "custom": 68, "crm_dlr_ep": 68, "hybrid": [68, 69, 81, 82], "highest": [68, 81], "g0_tau": 68, "occur": [68, 81], "taken": 68, "restrict": 68, "hilbert": 68, "spend": [68, 77], "insert": [68, 77, 82], "chi": 68, "suszept": 68, "o": [68, 77, 79, 80, 82], "guid": [68, 80, 81, 83], "dynamic_susceptibility_notebook": 68, "suscept": 68, "nn": 68, "use_norm_as_weight": 68, "perturb": 68, "histogram": [68, 81], "perturbation_order_notebook": 68, "dmft_result": [68, 71, 80, 81, 82, 84], "subgroup": 68, "pert_order_imp_x": 68, "pert_order_total_imp_x": 68, "random": 68, "keyword": 68, "runtim": 68, "34788": 68, "928374": 68, "sigma_iw": [68, 81], "dx": 68, "85": 68, "205106": 68, "boold": 68, "bodi": [68, 81, 83], "discretizebath": 68, "bathfitt": 68, "afterward": 68, "descript": [68, 79], "bath": 68, "bond": [68, 81, 83], "9": [68, 81, 82, 84], "truncat": 68, "link": [68, 77, 79, 82], "interv": 68, "peak": 68, "fitter": 68, "locat": 68, "termin": 68, "evolv": 68, "hole": [68, 81], "rerun": 68, "mp": 68, "dmrg": 68, "forc": 68, "krylov": 68, "consit": 68, "toler": [68, 80], "found": [69, 75, 76, 80, 81], "retriev": 69, "legend": [69, 70, 80, 81, 82], "iiter": [69, 70], "n_dmft_iter": [69, 70], "n_shell": 69, "n_corr_shel": 69, "iineq": 69, "iorb": [69, 70], "n_orbit": [69, 70], "sp": [69, 84], "label": [69, 70, 80, 81, 82], "ikpt": 69, "n_kpt": 69, "iband": 69, "n_band": 69, "window": [69, 79, 80, 81, 84], "arr": [69, 70], "block_gf": 69, "represent": 69, "ispin": [69, 70], "iimp": 70, "n_imp": 70, "collinear": 70, "fed": [70, 82], "pre": [70, 76, 82], "resolv": 70, "proxi": [70, 71], "presenc": 70, "eff_mass": 70, "renormalized_mass": 70, "As": 70, "around": [70, 77, 80, 81, 82, 84], "bigg": 70, "partial": [70, 76, 82], "re": [70, 81, 82, 84], "_": [70, 80, 81, 82], "rightarrow": 70, "tot": 70, "stepwis": [70, 71], "condit": [70, 82], "fall": 71, "categori": 71, "relev": [71, 73, 82], "aid": 71, "convergence_ob": [71, 80, 81, 82], "progress": 71, "path_to_triq": 72, "besid": 72, "pip3": 72, "user": [72, 73, 74, 75, 80], "argpars": 72, "autobuild": 72, "pandoc": 72, "nbsphinx": 72, "linkifi": 72, "sphinx_rtd_them": 72, "myst": 72, "parser": 72, "simpli": [72, 78, 81], "howev": [72, 73, 74, 77, 81], "valid": 72, "furthermor": [72, 81], "hereaft": 72, "install_prefix": 72, "triqsvar": 72, "share": [72, 74], "clone": 72, "flatironinstitut": [72, 73], "repositori": 72, "git": [72, 75], "com": [72, 73, 74], "src": 72, "checkout": 72, "compil": [72, 73, 74, 77], "mkdir": 72, "cd": [72, 74, 75], "test": [72, 75, 76, 80, 82], "dbuild_document": 72, "doc": 72, "search": 72, "dir": [72, 75], "rebuild": 72, "serv": [72, 82], "127": 72, "8000": 72, "connect": 72, "recent": [72, 74], "dockerhub": 72, "pull": [72, 73], "materialstheori": [72, 74], "solid_dmft_ci": 72, "mind": 72, "vv": 72, "doption1": 72, "value1": 72, "doption2": 72, "value2": 72, "dcmake_install_prefix": 72, "path_to_solid_dmft": [72, 83], "debug": 72, "dcmake_build_typ": 72, "disabl": [72, 77], "dbuild_test": 72, "question": 73, "ask": 73, "discuss": [73, 80, 81, 82], "experienc": 73, "technial": 73, "itself": [73, 81, 82], "regard": [73, 76], "suggest": [73, 82], "request": 73, "easier": [73, 77], "guidelin": 73, "version": [73, 74, 75, 77], "cmakelist": 73, "cmakecach": 73, "gist": 73, "referenc": 73, "quickli": [73, 84], "reproduc": [73, 79, 80], "focal": 74, "intelmkl": 74, "could": [74, 80, 81, 84], "t": [74, 75, 77, 80, 82], "triqs_mpich": [74, 75], "mpich_dockerfil": 74, "triqs_openmpi": 74, "openmpi_dockerfil": 74, "csc_vasp": 74, "tar": 74, "gz": 74, "gitlab": 74, "registri": 74, "person": 74, "access": 74, "token": 74, "cat": [74, 80, 81], "login": 74, "ethz": [74, 75], "ch": [74, 75], "usernam": 74, "password": 74, "stdin": 74, "matl": 74, "uni": 74, "yet": 74, "saru": [74, 75], "don": [74, 77, 80], "forget": 74, "didn": 74, "tri": [74, 77], "leav": 74, "wish": 74, "upload": [74, 84], "shown": [74, 77, 79, 80], "rm": [74, 77, 81, 82], "id": 74, "pwd": [74, 75], "shm": 74, "4g": 74, "user_id": 74, "group_id": 74, "8378": 74, "import": [74, 75, 77, 80, 81, 82, 84], "translat": 74, "permiss": 74, "mount": [74, 75], "volum": [74, 80], "memori": 74, "hard": 74, "64m": 74, "suffici": 74, "produc": [74, 77, 83], "sibu": 74, "7": [74, 77, 80, 81, 82, 83, 84], "mobi": 74, "2606": 74, "colon": 74, "perman": 74, "explain": 74, "jupyt": 74, "lab": 74, "everyth": [75, 80, 84], "quit": [75, 80, 81], "newest": 75, "sbatch": 75, "00": [75, 80, 81], "ntask": 75, "eth3": 75, "constraint": 75, "mc": 75, "partit": 75, "err": [75, 81], "srun": 75, "scratch": 75, "destin": 75, "app": 75, "dmatl": 75, "thats": 75, "unfortun": 75, "enging": 75, "idl": [75, 82], "harm": 75, "never": 75, "activ": 75, "dockerfile_mpich": 75, "isn": 75, "libgfortran": 75, "gfortran7": 75, "els": [75, 80, 81, 82, 84], "gfortran9": 75, "scriptdir": 75, "pmi2": 75, "workdir": 75, "python3": [75, 82, 83], "lot": [75, 84], "significantli": 75, "prefer": 76, "poscar": [76, 81, 82], "potcar": [76, 81, 82], "machineri": 76, "importantli": [76, 77], "programm": 76, "accordingli": [76, 77, 81], "spawn": 76, "again": 76, "limit": [76, 82], "hpc": [76, 83], "trick": 76, "slrum": 76, "mayb": 76, "slight": 76, "start_vasp_from_master_nod": 76, "csc_flow": 76, "simultan": 76, "veri": [76, 77, 81, 82], "conserv": 76, "ialgo": 76, "90": 76, "rather": [76, 81], "few": [77, 80, 81, 82], "fileio": 77, "1710": 77, "someth": 77, "IF": 77, "iu0": 77, "THEN": 77, "endif": 77, "99": 77, "4i6": 77, "nf": 77, "f12": 77, "efermi": [77, 81], "wde": 77, "ncdij": 77, "sometim": 77, "buffer": 77, "flush": 77, "580": 77, "stop_tim": 77, "iu6": 77, "17": [77, 81], "essenti": [77, 80], "long": [77, 83], "lprj_ldapu": 77, "lda": 77, "644": 77, "stai": [77, 82], "imix": 77, "won": [77, 80, 82], "manifold": [77, 83], "y": [77, 78, 80, 81, 84], "yz": [77, 78, 81], "actual": [77, 81], "xy": [77, 78, 80, 81], "x2": 77, "y2": [77, 78, 81], "z2": 77, "xz": [77, 78, 81], "dxz": [77, 78, 81, 84], "dx2": [77, 78, 81], "dz2": [77, 78, 81], "wavefunct": 77, "pai": [77, 80], "attent": [77, 80], "former": [77, 78], "necessarili": 77, "coincid": 77, "de": 77, "ep": 77, "ncg": 77, "dav": [77, 81], "394708006287e": 77, "65893e": 77, "09": [77, 81], "11730e": 77, "134994": 77, "197e": 77, "06": [77, 81], "992e": 77, "smear": 77, "394760088659e": 77, "39472e": 77, "35516e": 77, "13": [77, 81], "132366": 77, "110e": 77, "245e": 77, "But": [77, 82], "preserv": 77, "less": 77, "subroutin": 77, "elmin": 77, "statement": 77, "650": 77, "lprj_dealloc_covl": 77, "kpar_sync_al": 77, "mlwf_wannier90": 77, "cqij": 77, "t_info": 77, "latt_cur": 77, "info": [77, 84], "ll": [77, 80], "twoelectron4o": 77, "behind": 77, "linear_opt": 77, "stm": 77, "v2": 77, "write_u_matric": [77, 80], "dvasp2wannier90v2": 77, "though": [77, 80], "ones": [77, 80], "consum": 77, "lesser": 77, "extent": 77, "logic": 77, "150": [77, 81, 82], "lsuppress_projs_exist": 77, "place": 77, "icharg": 77, "inquir": 77, "sensit": 78, "pbnm": 78, "p21": [78, 82], "dxy": [78, 81, 84], "dyz": [78, 81, 84], "fe": 78, "45": [78, 81], "sqrt2": 78, "overview": 79, "typic": 79, "short": 79, "hdf5": [79, 80], "prnio3": 79, "lighter": 79, "ndnio2": 79, "mit": 79, "metal": [79, 81, 82], "transit": [79, 81, 82], "visual": 79, "try": [79, 80, 81, 83, 84], "ce2o3": 79, "analysi": 79, "multiplet": 79, "matplotlib": [80, 81, 82, 84], "pyplot": [80, 82, 84], "plt": [80, 81, 82, 84], "ticker": 80, "disclaim": [80, 81, 82, 83], "heavi": [80, 81, 82, 83], "deliv": 80, "minut": 80, "demonstr": [80, 81], "goal": [80, 82], "fulli": [80, 82, 83], "ce": 80, "_2": 80, "_3": 80, "ground": 80, "equilibrium": 80, "repeat": 80, "strain": 80, "fig": [80, 81, 82, 84], "2111": 80, "10289": 80, "fact": 80, "predict": [80, 82], "underestim": 80, "overestim": 80, "perpar": 80, "analys": [80, 81], "primit": 80, "rel": [80, 81, 82], "flat": 80, "relax": 80, "iii": 80, "explicit": 80, "nosym": 80, "dmft_prefix": 80, "electron_maxstep": 80, "mixing_beta": 80, "bnd": 80, "pw2wan": 80, "wannier90convert": 80, "inp": 80, "34": [80, 81], "b10": 80, "u6": 80, "46": 80, "j0": [80, 83], "03": 80, "pw": 80, "Of": 80, "cours": [80, 84], "polynomi": 80, "omega_n": [80, 81], "unlik": 80, "rotation": 80, "inspect": [80, 83], "card": 80, "interest": [80, 83, 84], "dft_input": 80, "cp": 80, "append": [80, 81, 82, 84], "filenam": 80, "ouput": 80, "identifi": [80, 81, 82, 84], "_itxi": 80, "track": 80, "seedname_hr": 80, "seedname_itxi": 80, "seedname_band": 80, "too": [80, 82], "let": [80, 81], "e_fermi_run": 80, "grep": 80, "split": [80, 81, 82], "n_iter_run": 80, "ce2o3_it": 80, "_hr": 80, "_it": 80, "3557": 80, "42": [80, 81], "4619": 80, "495": 80, "k_space_path": 80, "bz": 80, "33": [80, 84], "k_path": 80, "n_bnd": 80, "ax": [80, 81, 82, 84], "subplot": [80, 81, 82, 84], "figsiz": [80, 81, 82, 84], "dpi": [80, 81, 82, 84], "rdylbu": 80, "col_it": 80, "linspac": 80, "enumer": [80, 81, 82], "h_loc_add": 80, "ey": 80, "extend_to_spin": 80, "k_vec": 80, "k_1d": 80, "special_k": 80, "axhlin": [80, 82], "zorder": 80, "color": [80, 81, 82], "grai": 80, "set_ylim": [80, 81, 82, 84], "set_xtick": [80, 81], "set_xticklabel": 80, "set_xlim": [80, 81, 82, 84], "set_ylabel": [80, 81, 82, 84], "fontsiz": 80, "serial": [80, 81, 84], "663824": 80, "lt": [80, 81, 84], "0x7f4a21de2160": 80, "gt": [80, 81, 84], "isol": [80, 82], "worri": 80, "throughout": 80, "modifici": 80, "far": 80, "carefulli": [80, 81], "reliabl": 80, "figur": [80, 82], "show": [80, 81, 82, 83], "substanti": 80, "e_fermi_ref": 80, "7437": 80, "path_w90": 80, "gnbu_r": 80, "0x7f49a4157c40": 80, "ref_observ": 80, "ref_converg": 80, "e_tot": [80, 82], "d_g0": 80, "g_0": 80, "set_xlabel": [80, 81, 82, 84], "xaxi": 80, "set_major_loc": 80, "multipleloc": 80, "subplots_adjust": [80, 81, 82], "wspace": 80, "jump": 80, "bit": [80, 81, 82], "yield": 80, "confirm": 80, "achiev": [80, 82], "conclud": [80, 81, 82], "tune": [80, 82], "agre": 80, "fnd": 80, "paramt": 80, "set_printopt": 81, "suppress": 81, "mpl_interfac": 81, "oplot": 81, "vaspconvert": 81, "plovasp": 81, "plo_convert": 81, "pymatgen": 81, "vio": 81, "electronic_structur": 81, "completedo": 81, "orbitaltyp": 81, "filterwarn": 81, "2023": 81, "11": [81, 82, 84], "24": 81, "49": 81, "44": 81, "156139": 81, "antiferromagnet": 81, "phase": [81, 83], "clear": 81, "ni": [81, 82], "treat": 81, "supercel": 81, "2500": 81, "hour": [81, 82, 83], "raw": 81, "pbe": 81, "nd_3": 81, "ni_pv": [81, 82], "pseudo": 81, "eigenst": [81, 82], "nelmin": 81, "sti": 81, "webpag": 81, "monitor": 81, "569483098581e": 81, "31832e": 81, "42131e": 81, "29952": 81, "148e": 81, "488e": 81, "07": 81, "26": 81, "569483098574e": 81, "75124e": 81, "25243e": 81, "30528": 81, "511e": 81, "226e": 81, "27": 81, "12733e": 81, "17328e": 81, "28448": 81, "285e": 81, "826e": 81, "08": [81, 82, 84], "28": 81, "569483098578e": 81, "41837e": 81, "17366e": 81, "29536": 81, "151e": 81, "370e": 81, "29": 81, "569483098576e": 81, "22192e": 81, "19300e": 81, "29280": 81, "689e": 81, "124e": 81, "569483098572e": 81, "38563e": 81, "27026e": 81, "28576": 81, "388e": 81, "598e": 81, "569483098573e": 81, "92768e": 81, "34212e": 81, "29024": 81, "218e": 81, "amn": 81, "onto": [81, 82], "56948310e": 81, "e0": 81, "56941742e": 81, "131358e": 81, "complete_do": 81, "ni_spd_do": 81, "get_element_spd_do": 81, "o_spd_do": 81, "nd_spd_do": 81, "nd": 81, "tdo": 81, "lw": 81, "axvlin": [81, 82], "henc": 81, "orthonorm": 81, "our": [81, 82, 83], "inde": [81, 82], "intern": 81, "basenam": 81, "normion": 81, "ewindow": 81, "lshell": 81, "ion": [81, 83], "later": 81, "orient": 81, "d_": 81, "oxygen": 81, "degree": 81, "cartesian": 81, "octahedra": 81, "generate_and_output_as_text": 81, "vasp_dir": 81, "convert_dft_input": 81, "39": [81, 82], "isit": 81, "titl": 81, "sc": 81, "405": 81, "No": 81, "tetrahedron": 81, "ibzkpt": 81, "doscar": [81, 82], "eigval": 81, "unorthonorm": 81, "overlap": [81, 82], "1544881": 81, "0000000": 81, "9626619": 81, "0000002": 81, "7591058": 81, "9464342": 81, "5114185": 81, "9548582": 81, "9464339": 81, "8114830": 81, "9495307": 81, "9626621": 81, "0000001": 81, "9464343": 81, "9464344": 81, "9468082": 81, "8880488": 81, "5912192": 81, "1979419": 81, "512066911392091": 81, "512066911289741": 81, "024133822681833": 81, "5179223": 81, "2888643": 81, "9927644": 81, "0828254": 81, "ctrl": 81, "pg1": 81, "00000000005771": 81, "ngroup": 81, "kvec1": 81, "1803844533789928": 81, "kvec2": 81, "kvec3": 81, "30211493941280826": 81, "nc_flag": 81, "cross": 81, "qualiti": 81, "roughli": [81, 82], "nomin": 81, "mor": 81, "insight": 81, "appropri": 81, "articl": 81, "103": 81, "195101": 81, "290": 81, "nno_lowt": 81, "001": 81, "2001": 81, "20001": 81, "40": 81, "5e": 81, "16": 81, "290k": 81, "lift": 81, "autocorrel": 81, "By": [81, 84], "sign": 81, "caution": [81, 84], "submit": 81, "detect": 81, "reflect": 81, "sigma_freq_0": [81, 84], "nrow": [81, 82], "sharex": [81, 82], "hspace": [81, 82], "imp_occ": [81, 82], "_0": 81, "_1": 81, "orb_occ": [81, 82], "semilogi": [81, 82], "d_gimp": [81, 82], "mu_b": 81, "loc": [81, 82], "e_g": 81, "up_2": 81, "c0": 81, "up_4": 81, "c1": 81, "down_2": 81, "down_4": 81, "clearli": 81, "earli": 81, "rate": 81, "nice": 81, "approach": 81, "walu": 81, "qmc": [81, 82], "especi": 81, "panda": 81, "pd": 81, "set_opt": 81, "displai": [81, 84], "130": 81, "make_operator_r": 81, "s_op": 81, "atom_diag": 81, "quantum_number_eigenvalu": 81, "rho": 81, "full_dens_mat_0": 81, "h_loc_diag_0": 81, "atomdiagr": 81, "fundament": 81, "occ_oper": 81, "op": 81, "fop": 81, "n_op": 81, "sz": 81, "sz_state": 81, "h_loc_diag": 81, "particle_numb": 81, "n_max": 81, "n_subspac": 81, "span": 81, "subspac": [81, 82], "fs_state": 81, "ind": 81, "fock_stat": 81, "rjust": 81, "get_subspace_dim": 81, "valueerror": [81, 82], "eng": 81, "ev_stat": 81, "elem": 81, "unitary_matric": 81, "4f": 81, "becom": [81, 82], "prob": 81, "m_": 81, "datafram": 81, "column": [81, 82, 83], "sort_valu": 81, "ascend": 81, "640517e": 81, "310283": 81, "0000": [81, 84], "0111111111": 81, "000000e": 81, "125113": 81, "0101111111": 81, "083760": 81, "1111101111": 81, "851884e": 81, "074717": 81, "0111111011": 81, "739907e": 81, "044306": 81, "1101111111": 81, "55": 81, "125334e": 81, "038609": 81, "1111111111": 81, "035831": 81, "1111111011": 81, "51": 81, "745626e": 81, "033932": 81, "0111101111": 81, "903654e": 81, "031693": 81, "1111101011": 81, "019748": 81, "1101101111": 81, "tabl": 81, "probabl": 81, "occupi": [81, 82, 83], "sector": 81, "seen": [81, 82, 83], "carri": 81, "somewher": 81, "ax1": 81, "spin_occ_f": 81, "groupbi": 81, "pivot_df": 81, "pivot_t": 81, "bar": 81, "rot": 81, "amplitud": 81, "rcparam": 82, "read_from_ref": 82, "own": 82, "path_mod": 82, "perovskit": [82, 83], "exhibit": 82, "breath": 82, "distort": 82, "disproportion": [82, 83], "1_dft_scf": 82, "concaten": 82, "paw_pb": 82, "pr_3": 82, "understand": 82, "procar": 82, "cheap": 82, "close": 82, "unidist": 82, "uncom": 82, "lorbit": 82, "dft_do": 82, "loadtxt": 82, "skiprow": 82, "unpack": 82, "usecol": 82, "fermi_energi": 82, "012206": 82, "mainli": 82, "betwen": 82, "describ": [82, 83], "pictur": [82, 83], "paramagnet": 82, "coars": 82, "wors": 82, "illustr": 82, "aliv": 82, "deriv": 82, "role": 82, "35": 82, "bumpi": 82, "84": 82, "075145": 82, "setup": 82, "resolut": [82, 83, 84], "wie": 82, "2_dmft_csc": 82, "2_link_fil": 82, "doss": 82, "pdos_0_": 82, "zip": 82, "prove": 82, "captur": 82, "dict_kei": 82, "e_dc": 82, "e_corr_en": 82, "e_dft": 82, "e_int": 82, "imp_gb2": 82, "orb_gb2": 82, "toward": [82, 83], "deduc": 82, "ideal": 82, "experi": 82, "legendre_gf": 82, "gimp_l_": 82, "legendre_coefficients_per_imp": 82, "l_max": 82, "arang": 82, "axis1": 82, "axis2": 82, "odd": 82, "effici": 82, "decai": 82, "exponenti": 82, "noisi": 82, "prefactor": 82, "fill": 82, "plai": 82, "800": 83, "facil": 83, "hello": 83, "welcom": 83, "journei": 83, "immedi": 83, "strontium": 83, "vanad": 83, "member": 83, "famili": 83, "known": 83, "oxid": 83, "frontier": 83, "anti": 83, "sit": 83, "fairli": 83, "deloc": 83, "insuffici": 83, "yourself": [83, 84], "quantum_espresso_fil": 83, "observables_imp0": 83, "open": 83, "29775": 83, "10489": 83, "33366": 83, "00097": 83, "09467": 83, "09488": 83, "09529": 83, "36155": 83, "35073": 83, "36169": 83, "07397": 83, "31989": 83, "08451": 83, "08363": 83, "08463": 83, "33581": 83, "34048": 83, "34488": 83, "02117": 83, "08282": 83, "08296": 83, "08254": 83, "32738": 83, "34572": 83, "34479": 83, "01789": 83, "28973": 83, "08617": 83, "08595": 83, "08620": 83, "33546": 83, "33757": 83, "33192": 83, "00494": 83, "28825": 83, "08410": 83, "08458": 83, "08510": 83, "33582": 83, "33402": 83, "33759": 83, "00743": 83, "28486": 83, "08474": 83, "08549": 83, "08618": 83, "32276": 83, "33028": 83, "32760": 83, "98063": 83, "29097": 83, "08172": 83, "08220": 83, "08118": 83, "32072": 83, "33046": 83, "33529": 83, "98647": 83, "29497": 83, "08318": 83, "08332": 83, "34075": 83, "32957": 83, "33089": 83, "00120": 83, "drive": 83, "mott": 83, "run_mit_coars": 83, "seri": 83, "coffe": 83, "collect_results_coars": 83, "heatmap": 83, "darker": 83, "area": 83, "notic": 83, "strang": 83, "bottom": 83, "corner": [83, 84], "compet": 83, "against": 83, "favor": 83, "repel": 83, "neighbour": 83, "domin": 83, "troubl": 83, "oscil": 83, "run_mit_fin": 83, "collect_results_fin": 83, "visibl": 83, "repres": 83, "entropi": 83, "substitut": 83, "u4": 83, "read_spectral_funct": 83, "edit": 83, "hap": 83, "crank": [83, 84], "run_maxent_scan": 83, "read_spectral_function_transit": 83, "spectralfunct": 84, "inlin": 84, "ipython": 84, "importlib": 84, "sy": 84, "timeit": 84, "default_tim": 84, "timer": 84, "ase": 84, "read_espresso_in": 84, "alatt": 84, "feel": 84, "free": 84, "intens": 84, "liquid": 84, "regim": 84, "stick": 84, "bands_config": 84, "kslice_config": 84, "view": 84, "w90_dict": 84, "3958": 84, "orbital_order_w90": 84, "brief": 84, "favorit": 84, "kpts_dict": 84, "scf_in": 84, "lat": 84, "get_bravais_lattic": 84, "bandpath": 84, "npoint": 84, "todict": 84, "special_point": 84, "plot_bz": 84, "axes3dsubplot": 84, "tb_config": 84, "kz": 84, "unhappi": 84, "letter": 84, "tb_band": 84, "bands_path": 84, "tb_kslice": 84, "isupp": 84, "kslice_upd": 84, "h5archiv": 84, "freq_mesh_kslic": 84, "1e6": 84, "freq_mesh_band": 84, "1e3": 84, "freq_mesh": 84, "dmft_path": 84, "svo_exampl": 84, "orbital_order_dmft": 84, "w_mesh": 84, "saniti": 84, "sigma_freq": 84, "squeez": 84, "orb": 84, "colormap": 84, "vmin": 84, "colorplot": 84, "_r": 84, "plot_config": 84, "colorscheme_alatt": 84, "coolwarm": 84, "colorscheme_band": 84, "colorscheme_kslic": 84, "pubugn": 84, "colorscheme_qpband": 84, "hit": 84, "start_tim": 84, "took": 84, "3f": 84, "627842": 84, "9769": 84, "\u03bc": 84, "2143": 84, "\u03c9": 84, "588": 84, "That": 84, "plot_kslic": 84, "quarter": 84, "plot_band": 84, "75": 84}, "objects": {"": [[1, 0, 0, "-", "csc_flow"], [2, 0, 0, "-", "dft_managers"], [6, 0, 0, "-", "dmft_cycle"], [7, 0, 0, "-", "dmft_tools"], [27, 0, 0, "-", "gw_embedding"], [43, 0, 0, "-", "io_tools"], [47, 0, 0, "-", "postprocessing"], [62, 0, 0, "-", "solid_dmft"], [57, 0, 0, "-", "util"]], "csc_flow": [[1, 1, 1, "", "csc_flow_control"]], "dft_managers": [[3, 0, 0, "-", "mpi_helpers"], [4, 0, 0, "-", "qe_manager"], [5, 0, 0, "-", "vasp_manager"]], "dft_managers.mpi_helpers": [[3, 1, 1, "", "create_hostfile"], [3, 1, 1, "", "find_path_to_mpi_command"], [3, 1, 1, "", "get_mpi_arguments"], [3, 1, 1, "", "poll_barrier"]], "dft_managers.qe_manager": [[4, 1, 1, "", "read_dft_energy"], [4, 1, 1, "", "run"]], "dft_managers.vasp_manager": [[5, 1, 1, "", "kill"], [5, 1, 1, "", "read_dft_energy"], [5, 1, 1, "", "read_irred_kpoints"], [5, 1, 1, "", "remove_legacy_projections_suppressed"], [5, 1, 1, "", "run_charge_update"], [5, 1, 1, "", "run_initial_scf"]], "dmft_cycle": [[6, 1, 1, "", "dmft_cycle"]], "dmft_tools": [[8, 0, 0, "-", "afm_mapping"], [9, 0, 0, "-", "convergence"], [10, 0, 0, "-", "formatter"], [11, 0, 0, "-", "greens_functions_mixer"], [12, 0, 0, "-", "initial_self_energies"], [13, 0, 0, "-", "interaction_hamiltonian"], [14, 0, 0, "-", "legendre_filter"], [15, 0, 0, "-", "manipulate_chemical_potential"], [16, 0, 0, "-", "matheval"], [21, 0, 0, "-", "observables"], [22, 0, 0, "-", "results_to_archive"], [23, 0, 0, "-", "solver"]], "dmft_tools.afm_mapping": [[8, 1, 1, "", "determine"]], "dmft_tools.convergence": [[9, 1, 1, "", "calc_convergence_quantities"], [9, 1, 1, "", "check_convergence"], [9, 1, 1, "", "max_G_diff"], [9, 1, 1, "", "prep_conv_file"], [9, 1, 1, "", "prep_conv_obs"], [9, 1, 1, "", "write_conv"]], "dmft_tools.formatter": [[10, 1, 1, "", "print_block_sym"], [10, 1, 1, "", "print_rotation_matrix"]], "dmft_tools.initial_self_energies": [[12, 1, 1, "", "calculate_double_counting"], [12, 1, 1, "", "determine_dc_and_initial_sigma"]], "dmft_tools.interaction_hamiltonian": [[13, 1, 1, "", "construct"], [13, 1, 1, "", "h_int_simple_intra"]], "dmft_tools.legendre_filter": [[14, 1, 1, "", "apply"]], "dmft_tools.manipulate_chemical_potential": [[15, 1, 1, "", "set_initial_mu"], [15, 1, 1, "", "update_mu"]], "dmft_tools.matheval.MathExpr": [[18, 2, 1, "", "__init__"], [19, 3, 1, "", "allowed_nodes"], [20, 3, 1, "", "functions"]], "dmft_tools.observables": [[21, 1, 1, "", "add_dft_values_as_zeroth_iteration"], [21, 1, 1, "", "add_dmft_observables"], [21, 1, 1, "", "calc_Z"], [21, 1, 1, "", "calc_bandcorr_man"], [21, 1, 1, "", "calc_dft_kin_en"], [21, 1, 1, "", "prep_observables"], [21, 1, 1, "", "write_header_to_file"], [21, 1, 1, "", "write_obs"]], "dmft_tools.results_to_archive": [[22, 1, 1, "", "write"]], "dmft_tools.solver": [[23, 4, 1, "", "SolverStructure"], [23, 1, 1, "", "get_n_orbitals"]], "dmft_tools.solver.SolverStructure": [[25, 2, 1, "", "__init__"], [26, 2, 1, "", "solve"]], "gw_embedding": [[28, 0, 0, "-", "bdft_converter"], [29, 0, 0, "-", "gw_flow"], [33, 0, 0, "-", "iaft"], [42, 0, 0, "-", "qp_evs_to_eig"]], "gw_embedding.bdft_converter": [[28, 1, 1, "", "calc_Sigma_DC_gw"], [28, 1, 1, "", "calc_W_from_Gloc"], [28, 1, 1, "", "convert_gw_output"]], "gw_embedding.gw_flow": [[29, 4, 1, "", "dummy_sumk"], [29, 1, 1, "", "embedding_driver"]], "gw_embedding.gw_flow.dummy_sumk": [[31, 2, 1, "", "__init__"], [32, 2, 1, "", "symm_deg_gf"]], "gw_embedding.iaft": [[33, 4, 1, "", "IAFT"]], "gw_embedding.iaft.IAFT": [[35, 2, 1, "", "__init__"], [36, 2, 1, "", "check_leakage"], [37, 2, 1, "", "tau_interpolate"], [38, 2, 1, "", "tau_to_w"], [39, 2, 1, "", "w_interpolate"], [40, 2, 1, "", "w_to_tau"], [41, 2, 1, "", "wn_mesh"]], "gw_embedding.qp_evs_to_eig": [[42, 1, 1, "", "extract_qp_eig"]], "io_tools": [[44, 0, 0, "-", "dict_to_h5"], [45, 0, 0, "-", "postproc_toml_dict"], [46, 0, 0, "-", "verify_input_params"]], "io_tools.dict_to_h5": [[44, 1, 1, "", "prep_params_for_h5"], [44, 1, 1, "", "prep_params_from_h5"]], "io_tools.postproc_toml_dict": [[45, 1, 1, "", "merge_config_with_default"]], "io_tools.verify_input_params": [[46, 1, 1, "", "verify_before_dmft_cycle"], [46, 1, 1, "", "verify_h5_dependent"]], "postprocessing": [[48, 0, 0, "-", "eval_U_cRPA_RESPACK"], [51, 0, 0, "-", "eval_U_cRPA_Vasp"], [52, 0, 0, "-", "maxent_gf_imp"], [53, 0, 0, "-", "maxent_gf_latt"], [54, 0, 0, "-", "maxent_sigma"], [55, 0, 0, "-", "pade_sigma"], [56, 0, 0, "-", "plot_correlated_bands"]], "postprocessing.eval_U_cRPA_RESPACK": [[48, 1, 1, "", "construct_Uijkl"], [48, 1, 1, "", "fit_slater"], [48, 1, 1, "", "read_interaction"], [48, 4, 1, "", "respack_data"]], "postprocessing.eval_U_cRPA_RESPACK.respack_data": [[50, 2, 1, "", "__init__"]], "postprocessing.eval_U_cRPA_Vasp": [[51, 1, 1, "", "calc_kan_params"], [51, 1, 1, "", "calc_u_avg_fulld"], [51, 1, 1, "", "calculate_interaction_from_averaging"], [51, 1, 1, "", "construct_U_kan"], [51, 1, 1, "", "fit_kanamori"], [51, 1, 1, "", "fit_slater_fulld"], [51, 1, 1, "", "read_uijkl"], [51, 1, 1, "", "red_to_2ind"]], "postprocessing.maxent_gf_imp": [[52, 1, 1, "", "main"]], "postprocessing.maxent_gf_latt": [[53, 1, 1, "", "main"]], "postprocessing.maxent_sigma": [[54, 1, 1, "", "main"]], "postprocessing.pade_sigma": [[55, 1, 1, "", "main"]], "postprocessing.plot_correlated_bands": [[56, 1, 1, "", "get_dmft_bands"], [56, 1, 1, "", "get_tb_bands"]], "util": [[58, 0, 0, "-", "symmetrize_gamma_file"], [59, 0, 0, "-", "write_kslice_to_h5"]], "util.write_kslice_to_h5": [[59, 1, 1, "", "main"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:method", "3": "py:attribute", "4": "py:class"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "class", "Python class"]}, "titleterms": {"changelog": 0, "version": [0, 60, 72], "3": [0, 62, 80, 81, 82, 83], "0": [0, 62], "gener": [0, 60, 65, 77], "new": 0, "toml": 0, "input": [0, 61, 63, 64, 66, 67, 80, 81, 82], "parser": 0, "doc": 0, "build": [0, 74], "other": 0, "fix": 0, "2": [0, 80, 81, 82, 83, 84], "1": [0, 80, 81, 82, 83, 84], "feat": 0, "test": [0, 60], "5": [0, 81, 82, 83, 84], "4": [0, 81, 82, 83], "csc_flow": 1, "dft_manag": [2, 3, 4, 5], "mpi_help": 3, "qe_manag": 4, "vasp_manag": 5, "dmft_cycl": 6, "dmft_tool": [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "afm_map": 8, "converg": [9, 60, 77, 80], "formatt": 10, "greens_functions_mix": 11, "initial_self_energi": 12, "interaction_hamiltonian": 13, "legendre_filt": 14, "manipulate_chemical_potenti": 15, "mathev": [16, 17, 18, 19, 20], "mathexpr": [17, 18, 19, 20], "__init__": [18, 25, 31, 35, 50], "allowed_nod": 19, "function": [20, 82, 83, 84], "observ": [21, 69, 70, 82], "results_to_arch": 22, "solver": [23, 24, 25, 26, 68], "solverstructur": [24, 25, 26], "solv": 26, "gw_embed": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 65], "bdft_convert": 28, "gw_flow": [29, 30, 31, 32], "dummy_sumk": [30, 31, 32], "symm_deg_gf": 32, "iaft": [33, 34, 35, 36, 37, 38, 39, 40, 41], "check_leakag": 36, "tau_interpol": 37, "tau_to_w": 38, "w_interpol": 39, "w_to_tau": 40, "wn_mesh": 41, "qp_evs_to_eig": 42, "io_tool": [43, 44, 45, 46], "dict_to_h5": 44, "postproc_toml_dict": 45, "verify_input_param": 46, "postprocess": [47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "eval_u_crpa_respack": [48, 49, 50], "respack_data": [49, 50], "eval_u_crpa_vasp": 51, "maxent_gf_imp": 52, "maxent_gf_latt": 53, "maxent_sigma": 54, "pade_sigma": 55, "plot_correlated_band": 56, "util": [57, 58, 59], "symmetrize_gamma_fil": 58, "write_kslice_to_h5": 59, "how": 60, "do": 60, "crpa": 60, "calcul": [60, 62, 75, 76, 77, 81, 82], "vasp": [60, 77, 81, 82], "file": [60, 72, 80, 82], "descript": 60, "workflow": [60, 62], "import": 60, "flag": 60, "parameter": 60, "u": [60, 65], "j": [60, 65], "from": 60, "sidemark": 60, "compil": 60, "document": 61, "code": [61, 66], "structur": [61, 71], "dft": [61, 62, 64, 80, 81, 82], "interfac": [61, 77, 78], "note": 61, "output": [61, 71], "further": 61, "detail": 61, "run": [61, 74, 75, 76, 80, 81, 82, 84], "modul": 61, "refer": 61, "manual": [61, 72], "solid_dmft": [62, 73, 75], "dmft": [62, 80, 81, 82, 83], "advanc": 63, "dc_factor": 63, "dc_fixed_occ": 63, "dc_fixed_valu": 63, "dc_nomin": 63, "dc_orb_shift": 63, "dc_j": 63, "dc_u": 63, "map_solver_struct": 63, "mapped_solver_struct_degeneraci": 63, "pick_solver_struct": 63, "relat": 64, "dft_code": 64, "dft_exec": 64, "mpi_env": 64, "n_core": 64, "n_iter": 64, "n_iter_first": 64, "plo_cfg": 64, "projector_typ": 64, "store_eigenv": 64, "w90_exec": 64, "w90_toler": 64, "paramet": [65, 68], "afm_ord": 65, "beta": 65, "block_threshold": 65, "broy_max_it": 65, "calc_energi": 65, "calc_mu_method": 65, "csc": [65, 74, 75, 76, 77, 80, 82], "dc": 65, "dc_dmft": 65, "dc_type": 65, "dlr_ep": 65, "dlr_wmax": 65, "enforce_off_diag": 65, "eta": 65, "fixed_mu_valu": 65, "g0_conv_crit": 65, "g0_mix": 65, "g0_mix_typ": 65, "gimp_conv_crit": 65, "h_field": 65, "h_field_it": 65, "h_int_basi": 65, "h_int_typ": 65, "h5_save_freq": 65, "jobnam": 65, "load_sigma": 65, "load_sigma_it": 65, "magmom": 65, "magnet": 65, "mu_gap_gb2_threshold": 65, "mu_gap_occ_devi": 65, "mu_initial_guess": 65, "mu_mix_const": 65, "mu_mix_per_occupation_offset": 65, "mu_update_freq": 65, "n_iter_dmft": 65, "n_iter_dmft_first": 65, "n_iter_dmft_p": 65, "n_iw": 65, "n_tau": 65, "n_w": 65, "noise_level_initial_sigma": 65, "occ_conv_crit": 65, "path_to_sigma": 65, "prec_mu": 65, "ratio_f4_f2": 65, "sampling_h5_save_freq": 65, "sampling_iter": 65, "seednam": 65, "set_rot": 65, "sigma_conv_crit": 65, "sigma_mix": 65, "store_solv": 65, "u_crpa_threshold": 65, "u_prim": 65, "w_rang": 65, "gw": 66, "embed": 66, "h5_file": 66, "use_rot": 66, "it_1": 66, "it_2": 66, "specif": 68, "type": 68, "idx_impur": 68, "cthyb": [68, 81, 83], "crm_dyson_solv": 68, "delta_interfac": 68, "diag_delta": 68, "fit_max_mo": 68, "fit_max_n": 68, "fit_max_w": 68, "fit_min_n": 68, "fit_min_w": 68, "imag_threshold": 68, "legendre_fit": 68, "length_cycl": 68, "loc_n_max": 68, "loc_n_min": 68, "max_tim": 68, "measure_chi_insert": 68, "measure_chi": 68, "measure_density_matrix": 68, "measure_g_l": 68, "measure_pert_ord": 68, "move_doubl": 68, "move_shift": 68, "n_cycles_tot": 68, "n_l": 68, "n_warmup_cycl": 68, "off_diag_threshold": 68, "perform_tail_fit": 68, "random_se": 68, "ctint": 68, "ctseg": 68, "improved_estim": 68, "measure_g_tau": 68, "measure_nnt": 68, "measure_statehist": 68, "n_tau_k": 68, "hubbardi": [68, 80], "ftp": 68, "bath_fit": 68, "calc_m": 68, "dmrg_maxm": 68, "dmrg_maxmb": 68, "dmrg_maxmi": 68, "dmrg_maxmib": 68, "dmrg_tw": 68, "dt": 68, "enforce_gap": 68, "ignore_weight": 68, "maxm": 68, "maxmb": 68, "maxmi": 68, "maxmib": 68, "n_bath": 68, "path_to_g": 68, "ph_symm": 68, "refine_factor": 68, "state_storag": 68, "sweep": 68, "tw": 68, "hartre": 68, "force_r": 68, "method": 68, "one_shot": 68, "tol": 68, "with_fock": 68, "iter": [69, 70], "chemical_potential_pr": 69, "chemical_potential_post": 69, "dc_energ": 69, "dc_pot": 69, "delta_time_": 69, "iimp": 69, "g0_freq_": 69, "g0_time_orig_": 69, "g_imp_freq_": 69, "g_imp_l_": 69, "g_imp_time_": 69, "sigma_freq_": 69, "deltan": 69, "deltan_trac": 69, "dens_mat_pr": 69, "dens_mat_post": 69, "convergence_ob": 70, "mu": 70, "orb_gb2": 70, "imp_gb2": 70, "orb_z": 70, "orb_occ": 70, "imp_occ": 70, "e_tot": 70, "e_dft": 70, "e_bandcorr": 70, "e_corr_en": 70, "e_int_imp": 70, "e_dc": 70, "d_mu": 70, "d_orb_occ": 70, "d_imp_occ": 70, "d_gimp": 70, "d_g0": 70, "d_sigma": 70, "d_etot": 70, "result": [71, 82], "group": 71, "subgroup": 71, "instal": 72, "prerequisit": 72, "via": 72, "pip": 72, "cmake": 72, "docker": [72, 74], "imag": [72, 74], "compat": 72, "custom": 72, "option": [72, 84], "support": 73, "contribut": 73, "seek": 73, "help": 73, "improv": 73, "report": 73, "issu": 73, "pull": 74, "get": 74, "onto": 74, "daint": [74, 75], "contain": 74, "cluster": 75, "one": 75, "shot": 75, "job": 75, "your": 76, "machin": 76, "local": 76, "remark": 77, "locproj": 77, "bug": 77, "individu": 77, "project": 77, "projector": [77, 82], "enabl": 77, "wannier90": [77, 78, 84], "speed": 77, "up": 77, "write": 77, "everi": 77, "step": [77, 82], "orbit": 78, "order": [78, 82], "w90": [78, 80, 83], "convert": 78, "tutori": 79, "qe": [80, 83], "total": 80, "energi": [80, 84], "ce2o3": 80, "prepar": 80, "non": 80, "interact": 80, "hamiltonian": 80, "analysi": [80, 81], "tight": 80, "bind": 80, "o": [81, 83], "plo": [81, 82], "afm": 81, "state": 81, "ndnio2": 81, "creat": 81, "hdf5": 81, "archiv": 81, "multiplet": 81, "charg": 82, "prnio3": 82, "initi": 82, "scf": 82, "start": [82, 83], "analyz": 82, "plot": [82, 83, 84], "legendr": 82, "green": 82, "": 82, "next": 82, "try": 82, "srvo3": 83, "mit": 83, "out": 83, "look": 83, "metal": 83, "insul": 83, "transit": 83, "refin": 83, "diagram": 83, "spectral": [83, 84], "visual": 83, "configur": 84, "basic": 84, "bz": 84, "ASE": 84, "brillouin": 84, "zone": 84, "self": 84}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Changelog": [[0, "changelog"]], "Version 3.3.0": [[0, "version-3-3-0"]], "General": [[0, "general"], [0, "id2"]], "new toml input parser": [[0, "new-toml-input-parser"]], "doc": [[0, "doc"], [0, "id4"]], "build": [[0, "build"], [0, "id3"]], "other fixes": [[0, "other-fixes"]], "Version 3.2.3": [[0, "version-3-2-3"]], "Version 3.2.1": [[0, "version-3-2-1"]], "Version 3.2.0": [[0, "version-3-2-0"]], "fix": [[0, "fix"]], "feat": [[0, "feat"]], "test": [[0, "test"]], "Version 3.1.5": [[0, "version-3-1-5"]], "Version 3.1.4": [[0, "version-3-1-4"]], "Version 3.1.3": [[0, "version-3-1-3"]], "Version 3.1.2": [[0, "version-3-1-2"]], "Version 3.1.1": [[0, "version-3-1-1"]], "Version 3.1.0": [[0, "version-3-1-0"]], "Version 3.0.0": [[0, "version-3-0-0"]], "csc_flow": [[1, "module-csc_flow"]], "dft_managers": [[2, "module-dft_managers"]], "dft_managers.mpi_helpers": [[3, "module-dft_managers.mpi_helpers"]], "dft_managers.qe_manager": [[4, "module-dft_managers.qe_manager"]], "dft_managers.vasp_manager": [[5, "module-dft_managers.vasp_manager"]], "dmft_cycle": [[6, "module-dmft_cycle"]], "dmft_tools": [[7, "module-dmft_tools"]], "dmft_tools.afm_mapping": [[8, "module-dmft_tools.afm_mapping"]], "dmft_tools.convergence": [[9, "module-dmft_tools.convergence"]], "dmft_tools.formatter": [[10, "module-dmft_tools.formatter"]], "dmft_tools.greens_functions_mixer": [[11, "module-dmft_tools.greens_functions_mixer"]], "dmft_tools.initial_self_energies": [[12, "module-dmft_tools.initial_self_energies"]], "dmft_tools.interaction_hamiltonian": [[13, "module-dmft_tools.interaction_hamiltonian"]], "dmft_tools.legendre_filter": [[14, "module-dmft_tools.legendre_filter"]], "dmft_tools.manipulate_chemical_potential": [[15, "module-dmft_tools.manipulate_chemical_potential"]], "dmft_tools.matheval": [[16, "module-dmft_tools.matheval"]], "dmft_tools.matheval.MathExpr": [[17, "dmft-tools-matheval-mathexpr"]], "dmft_tools.matheval.MathExpr.__init__": [[18, "dmft-tools-matheval-mathexpr-init"]], "dmft_tools.matheval.MathExpr.allowed_nodes": [[19, "dmft-tools-matheval-mathexpr-allowed-nodes"]], "dmft_tools.matheval.MathExpr.functions": [[20, "dmft-tools-matheval-mathexpr-functions"]], "dmft_tools.observables": [[21, "module-dmft_tools.observables"]], "dmft_tools.results_to_archive": [[22, "module-dmft_tools.results_to_archive"]], "dmft_tools.solver": [[23, "module-dmft_tools.solver"]], "dmft_tools.solver.SolverStructure": [[24, "dmft-tools-solver-solverstructure"]], "dmft_tools.solver.SolverStructure.__init__": [[25, "dmft-tools-solver-solverstructure-init"]], "dmft_tools.solver.SolverStructure.solve": [[26, "dmft-tools-solver-solverstructure-solve"]], "gw_embedding": [[27, "module-gw_embedding"], [65, null]], "gw_embedding.bdft_converter": [[28, "module-gw_embedding.bdft_converter"]], "gw_embedding.gw_flow": [[29, "module-gw_embedding.gw_flow"]], "gw_embedding.gw_flow.dummy_sumk": [[30, "gw-embedding-gw-flow-dummy-sumk"]], "gw_embedding.gw_flow.dummy_sumk.__init__": [[31, "gw-embedding-gw-flow-dummy-sumk-init"]], "gw_embedding.gw_flow.dummy_sumk.symm_deg_gf": [[32, "gw-embedding-gw-flow-dummy-sumk-symm-deg-gf"]], "gw_embedding.iaft": [[33, "module-gw_embedding.iaft"]], "gw_embedding.iaft.IAFT": [[34, "gw-embedding-iaft-iaft"]], "gw_embedding.iaft.IAFT.__init__": [[35, "gw-embedding-iaft-iaft-init"]], "gw_embedding.iaft.IAFT.check_leakage": [[36, "gw-embedding-iaft-iaft-check-leakage"]], "gw_embedding.iaft.IAFT.tau_interpolate": [[37, "gw-embedding-iaft-iaft-tau-interpolate"]], "gw_embedding.iaft.IAFT.tau_to_w": [[38, "gw-embedding-iaft-iaft-tau-to-w"]], "gw_embedding.iaft.IAFT.w_interpolate": [[39, "gw-embedding-iaft-iaft-w-interpolate"]], "gw_embedding.iaft.IAFT.w_to_tau": [[40, "gw-embedding-iaft-iaft-w-to-tau"]], "gw_embedding.iaft.IAFT.wn_mesh": [[41, "gw-embedding-iaft-iaft-wn-mesh"]], "gw_embedding.qp_evs_to_eig": [[42, "module-gw_embedding.qp_evs_to_eig"]], "io_tools": [[43, "module-io_tools"]], "io_tools.dict_to_h5": [[44, "module-io_tools.dict_to_h5"]], "io_tools.postproc_toml_dict": [[45, "module-io_tools.postproc_toml_dict"]], "io_tools.verify_input_params": [[46, "module-io_tools.verify_input_params"]], "postprocessing": [[47, "module-postprocessing"]], "postprocessing.eval_U_cRPA_RESPACK": [[48, "module-postprocessing.eval_U_cRPA_RESPACK"]], "postprocessing.eval_U_cRPA_RESPACK.respack_data": [[49, "postprocessing-eval-u-crpa-respack-respack-data"]], "postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__": [[50, "postprocessing-eval-u-crpa-respack-respack-data-init"]], "postprocessing.eval_U_cRPA_Vasp": [[51, "module-postprocessing.eval_U_cRPA_Vasp"]], "postprocessing.maxent_gf_imp": [[52, "module-postprocessing.maxent_gf_imp"]], "postprocessing.maxent_gf_latt": [[53, "module-postprocessing.maxent_gf_latt"]], "postprocessing.maxent_sigma": [[54, "module-postprocessing.maxent_sigma"]], "postprocessing.pade_sigma": [[55, "module-postprocessing.pade_sigma"]], "postprocessing.plot_correlated_bands": [[56, "module-postprocessing.plot_correlated_bands"]], "util": [[57, "module-util"]], "util.symmetrize_gamma_file": [[58, "module-util.symmetrize_gamma_file"]], "util.write_kslice_to_h5": [[59, "module-util.write_kslice_to_h5"]], "How to do cRPA calculations with VASP": [[60, "how-to-do-crpa-calculations-with-vasp"]], "file description": [[60, "file-description"]], "Workflow:": [[60, "workflow"]], "important flags:": [[60, "important-flags"]], "convergency tests:": [[60, "convergency-tests"]], "Parameterization of U and J from cRPA calculations": [[60, "parameterization-of-u-and-j-from-crpa-calculations"]], "general sidemarks:": [[60, "general-sidemarks"]], "version and compilation:": [[60, "version-and-compilation"]], "Documentation": [[61, "documentation"]], "Code structure": [[61, "code-structure"]], "DFT interface notes": [[61, "dft-interface-notes"]], "Input/Output": [[61, "input-output"]], "Further details for running": [[61, "further-details-for-running"]], "Module reference manual": [[61, "module-reference-manual"]], "solid_dmft": [[62, "solid-dmft"]], "solid_dmft 3.3.0": [[62, null]], "Workflow of DFT+DMFT calculations with solid_dmft": [[62, "workflow-of-dft-dmft-calculations-with-solid-dmft"]], "[advanced]: Advanced inputs": [[63, "advanced-advanced-inputs"]], "dc_factor": [[63, null]], "dc_fixed_occ": [[63, null]], "dc_fixed_value": [[63, null]], "dc_nominal": [[63, null]], "dc_orb_shift": [[63, null]], "dc_J": [[63, null]], "dc_U": [[63, null]], "map_solver_struct": [[63, null]], "mapped_solver_struct_degeneracies": [[63, null]], "pick_solver_struct": [[63, null]], "[dft]: DFT related inputs": [[64, "dft-dft-related-inputs"]], "dft_code": [[64, null]], "dft_exec": [[64, null]], "mpi_env": [[64, null]], "n_cores": [[64, null]], "n_iter": [[64, null]], "n_iter_first": [[64, null]], "plo_cfg": [[64, null]], "projector_type": [[64, null]], "store_eigenvals": [[64, null]], "w90_exec": [[64, null]], "w90_tolerance": [[64, null]], "[general]: General parameters": [[65, "general-general-parameters"]], "afm_order": [[65, null]], "beta": [[65, null]], "block_threshold": [[65, null]], "broy_max_it": [[65, null]], "calc_energies": [[65, null]], "calc_mu_method": [[65, null]], "csc": [[65, null]], "dc": [[65, null]], "dc_dmft": [[65, null]], "dc_type": [[65, null]], "dlr_eps": [[65, null]], "dlr_wmax": [[65, null]], "enforce_off_diag": [[65, null]], "eta": [[65, null]], "fixed_mu_value": [[65, null]], "g0_conv_crit": [[65, null]], "g0_mix": [[65, null]], "g0_mix_type": [[65, null]], "gimp_conv_crit": [[65, null]], "h_field": [[65, null]], "h_field_it": [[65, null]], "h_int_basis": [[65, null]], "h_int_type": [[65, null]], "h5_save_freq": [[65, null]], "J": [[65, null]], "jobname": [[65, null]], "load_sigma": [[65, null]], "load_sigma_iter": [[65, null]], "magmom": [[65, null]], "magnetic": [[65, null]], "mu_gap_gb2_threshold": [[65, null]], "mu_gap_occ_deviation": [[65, null]], "mu_initial_guess": [[65, null]], "mu_mix_const": [[65, null]], "mu_mix_per_occupation_offset": [[65, null]], "mu_update_freq": [[65, null]], "n_iter_dmft": [[65, null]], "n_iter_dmft_first": [[65, null]], "n_iter_dmft_per": [[65, null]], "n_iw": [[65, null]], "n_tau": [[65, null]], "n_w": [[65, null]], "noise_level_initial_sigma": [[65, null]], "occ_conv_crit": [[65, null]], "path_to_sigma": [[65, null]], "prec_mu": [[65, null]], "ratio_F4_F2": [[65, null]], "sampling_h5_save_freq": [[65, null]], "sampling_iterations": [[65, null]], "seedname": [[65, null]], "set_rot": [[65, null]], "sigma_conv_crit": [[65, null]], "sigma_mix": [[65, null]], "store_solver": [[65, null]], "U": [[65, null]], "U_crpa_threshold": [[65, null]], "U_prime": [[65, null]], "w_range": [[65, null]], "[GW]: GW embedding inputs": [[66, "gw-gw-embedding-inputs"]], "code": [[66, null]], "h5_file": [[66, null]], "use_rot": [[66, null]], "it_1": [[66, null]], "it_2": [[66, null]], "Input": [[67, "input"]], "[solver]: solver specific parameters": [[68, "solver-solver-specific-parameters"]], "type": [[68, null]], "idx_impurities": [[68, null]], "cthyb": [[68, "cthyb"]], "crm_dyson_solver": [[68, null], [68, null]], "delta_interface": [[68, null]], "diag_delta": [[68, null], [68, null], [68, null]], "fit_max_moment": [[68, null], [68, null]], "fit_max_n": [[68, null], [68, null]], "fit_max_w": [[68, null], [68, null]], "fit_min_n": [[68, null], [68, null]], "fit_min_w": [[68, null], [68, null]], "imag_threshold": [[68, null]], "legendre_fit": [[68, null], [68, null], [68, null]], "length_cycle": [[68, null], [68, null], [68, null]], "loc_n_max": [[68, null]], "loc_n_min": [[68, null]], "max_time": [[68, null], [68, null], [68, null]], "measure_chi_insertions": [[68, null]], "measure_chi": [[68, null]], "measure_density_matrix": [[68, null], [68, null]], "measure_G_l": [[68, null], [68, null]], "measure_pert_order": [[68, null], [68, null], [68, null]], "move_double": [[68, null], [68, null]], "move_shift": [[68, null]], "n_cycles_tot": [[68, null], [68, null], [68, null]], "n_l": [[68, null], [68, null], [68, null]], "n_warmup_cycles": [[68, null], [68, null], [68, null]], "off_diag_threshold": [[68, null], [68, null]], "perform_tail_fit": [[68, null], [68, null]], "random_seed": [[68, null], [68, null], [68, null]], "ctint": [[68, "ctint"]], "ctseg": [[68, "ctseg"]], "improved_estimator": [[68, null]], "measure_G_tau": [[68, null], [68, null]], "measure_nnt": [[68, null]], "measure_statehist": [[68, null]], "n_tau_k": [[68, null]], "hubbardI": [[68, "hubbardi"]], "ftps parameters": [[68, "ftps-parameters"]], "bath_fit": [[68, null]], "calc_me": [[68, null]], "dmrg_maxm": [[68, null]], "dmrg_maxmB": [[68, null]], "dmrg_maxmI": [[68, null]], "dmrg_maxmIB": [[68, null]], "dmrg_tw": [[68, null]], "dt": [[68, null]], "enforce_gap": [[68, null]], "ignore_weight": [[68, null]], "maxm": [[68, null]], "maxmB": [[68, null]], "maxmI": [[68, null]], "maxmIB": [[68, null]], "n_bath": [[68, null]], "path_to_gs": [[68, null]], "ph_symm": [[68, null]], "refine_factor": [[68, null]], "state_storage": [[68, null]], "sweeps": [[68, null]], "tw": [[68, null]], "hartree": [[68, "hartree"]], "force_real": [[68, null]], "method": [[68, null]], "one_shot": [[68, null]], "tol": [[68, null]], "with_fock": [[68, null]], "Iterations": [[69, "iterations"]], "[observables]": [[69, "observables"], [70, "observables"]], "chemical_potential_pre:": [[69, null]], "chemical_potential_post:": [[69, null]], "DC_energ:": [[69, null]], "DC_pot:": [[69, null]], "Delta_time_{iimp}:": [[69, null]], "G0_freq_{iimp}:": [[69, null]], "G0_time_orig_{iimp}:": [[69, null]], "G_imp_freq_{iimp}:": [[69, null]], "G_imp_l_{iimp}:": [[69, null]], "G_imp_time_{iimp}:": [[69, null]], "Sigma_freq_{iimp}:": [[69, null]], "deltaN:": [[69, null]], "deltaN_trace:": [[69, null]], "dens_mat_pre:": [[69, null]], "dens_mat_post:": [[69, null]], "Observables/convergence_obs": [[70, "observables-convergence-obs"]], "iteration:": [[70, null], [70, null]], "mu:": [[70, null]], "orb_gb2:": [[70, null]], "imp_gb2:": [[70, null]], "orb_Z:": [[70, null]], "orb_occ:": [[70, null]], "imp_occ:": [[70, null]], "E_tot:": [[70, null]], "E_dft:": [[70, null]], "E_bandcorr:": [[70, null]], "E_corr_en:": [[70, null]], "E_int_imp:": [[70, null]], "E_DC:": [[70, null]], "[convergence_obs]": [[70, "convergence-obs"]], "d_mu:": [[70, null]], "d_orb_occ:": [[70, null]], "d_imp_occ:": [[70, null]], "d_Gimp:": [[70, null]], "d_G0:": [[70, null]], "d_Sigma:": [[70, null]], "d_Etot:": [[70, null]], "Output / results": [[71, "output-results"]], "Group structure": [[71, "group-structure"]], "Subgroups": [[71, "subgroups"]], "Installation": [[72, "installation"]], "Prerequisites": [[72, "prerequisites"]], "Installation via pip": [[72, "installation-via-pip"]], "Manual installation via CMake": [[72, "manual-installation-via-cmake"]], "Docker files & images": [[72, "docker-files-images"]], "Version compatibility": [[72, "version-compatibility"]], "Custom CMake options": [[72, "custom-cmake-options"]], "Support & contribute": [[73, "support-contribute"]], "Seeking help": [[73, "seeking-help"]], "Improving solid_dmft": [[73, "improving-solid-dmft"]], "Reporting issues": [[73, "reporting-issues"]], "Docker": [[74, "docker"]], "Building the docker image": [[74, "building-the-docker-image"]], "Pulling a docker image": [[74, "pulling-a-docker-image"]], "Getting docker images onto CSCS daint": [[74, "getting-docker-images-onto-cscs-daint"]], "Running a docker container": [[74, "running-a-docker-container"]], "Running solid_dmft on a cluster": [[75, "running-solid-dmft-on-a-cluster"]], "Running on CSCS daint": [[75, "running-on-cscs-daint"]], "one shot job on daint": [[75, "one-shot-job-on-daint"]], "CSC calculations on daint": [[75, "csc-calculations-on-daint"]], "Run on your machine": [[76, "run-on-your-machine"]], "CSC calculations locally": [[76, "csc-calculations-locally"]], "Interface to VASP": [[77, "interface-to-vasp"]], "General remarks": [[77, "general-remarks"]], "LOCPROJ bug for individual projections:": [[77, "locproj-bug-for-individual-projections"]], "convergence of projectors with Vasp": [[77, "convergence-of-projectors-with-vasp"]], "Enabling CSC calculations with Wannier90 projectors": [[77, "enabling-csc-calculations-with-wannier90-projectors"]], "Speeding up by not writing projectors at every step": [[77, "speeding-up-by-not-writing-projectors-at-every-step"]], "Wannier90 interface": [[78, "wannier90-interface"]], "orbital order in the W90 converter": [[78, "orbital-order-in-the-w90-converter"]], "Tutorials": [[79, "tutorials"]], "3. CSC with QE/W90 and HubbardI: total energy in Ce2O3": [[80, "3.-CSC-with-QE/W90-and-HubbardI:-total-energy-in-Ce2O3"]], "1. Input file preparation": [[80, "1.-Input-file-preparation"]], "DFT files": [[80, "DFT-files"]], "DMFT": [[80, "DMFT"]], "2. Running DFT+DMFT": [[80, "2.-Running-DFT+DMFT"]], "3. Non-interacting Hamiltonian and convergence analysis": [[80, "3.-Non-interacting-Hamiltonian-and-convergence-analysis"]], "Tight-binding Hamiltonian": [[80, "Tight-binding-Hamiltonian"]], "Convergence": [[80, "Convergence"]], "4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2": [[81, "4.-OS-with-VASP/PLOs-and-cthyb:-AFM-state-of-NdNiO2"]], "1. Run DFT": [[81, "1.-Run-DFT"]], "2. Creating the hdf5 archive / DMFT input": [[81, "2.-Creating-the-hdf5-archive-/-DMFT-input"]], "3. Running the AFM calculation": [[81, "3.-Running-the-AFM-calculation"]], "5. Multiplet analysis": [[81, "5.-Multiplet-analysis"]], "2. CSC with VASP PLOs: charge order in PrNiO3": [[82, "2.-CSC-with-VASP-PLOs:-charge-order-in-PrNiO3"]], "1. Running the initial scf DFT calculation": [[82, "1.-Running-the-initial-scf-DFT-calculation"]], "2. Running the CSC DMFT calculations": [[82, "2.-Running-the-CSC-DMFT-calculations"]], "Input files for CSC DMFT calculations": [[82, "Input-files-for-CSC-DMFT-calculations"]], "Starting the calculations": [[82, "Starting-the-calculations"]], "Analyzing the projectors": [[82, "Analyzing-the-projectors"]], "3. Plotting the results: observables": [[82, "3.-Plotting-the-results:-observables"]], "4. Plotting the results: the Legendre Green\u2019s function": [[82, "4.-Plotting-the-results:-the-Legendre-Green\u2019s-function"]], "5. Next steps to try": [[82, "5.-Next-steps-to-try"]], "1. OS with QE/W90 and cthyb: SrVO3 MIT": [[83, "1.-OS-with-QE/W90-and-cthyb:-SrVO3-MIT"]], "1. Starting out with DMFT": [[83, "1.-Starting-out-with-DMFT"]], "2. Looking at the Metal-Insulator Transition": [[83, "2.-Looking-at-the-Metal-Insulator-Transition"]], "3. Refining the diagram": [[83, "3.-Refining-the-diagram"]], "4. Plotting the spectral function": [[83, "4.-Plotting-the-spectral-function"]], "5 Visualizing the MIT": [[83, "5-Visualizing-the-MIT"]], "5. Plotting the spectral function": [[84, "5.-Plotting-the-spectral-function"]], "1. Configuration": [[84, "1.-Configuration"]], "Basic options": [[84, "Basic-options"]], "Wannier90": [[84, "Wannier90"]], "BZ configuration": [[84, "BZ-configuration"]], "Optional: ASE Brillouin Zone": [[84, "Optional:-ASE-Brillouin-Zone"]], "Self-energy": [[84, "Self-energy"]], "Plotting options": [[84, "Plotting-options"]], "2. Run and Plotting": [[84, "2.-Run-and-Plotting"]]}, "indexentries": {"csc_flow": [[1, "module-csc_flow"]], "csc_flow_control() (in module csc_flow)": [[1, "csc_flow.csc_flow_control"]], "module": [[1, "module-csc_flow"], [2, "module-dft_managers"], [3, "module-dft_managers.mpi_helpers"], [4, "module-dft_managers.qe_manager"], [5, "module-dft_managers.vasp_manager"], [6, "module-dmft_cycle"], [7, "module-dmft_tools"], [8, "module-dmft_tools.afm_mapping"], [9, "module-dmft_tools.convergence"], [10, "module-dmft_tools.formatter"], [11, "module-dmft_tools.greens_functions_mixer"], [12, "module-dmft_tools.initial_self_energies"], [13, "module-dmft_tools.interaction_hamiltonian"], [14, "module-dmft_tools.legendre_filter"], [15, "module-dmft_tools.manipulate_chemical_potential"], [16, "module-dmft_tools.matheval"], [21, "module-dmft_tools.observables"], [22, "module-dmft_tools.results_to_archive"], [23, "module-dmft_tools.solver"], [27, "module-gw_embedding"], [28, "module-gw_embedding.bdft_converter"], [29, "module-gw_embedding.gw_flow"], [33, "module-gw_embedding.iaft"], [42, "module-gw_embedding.qp_evs_to_eig"], [43, "module-io_tools"], [44, "module-io_tools.dict_to_h5"], [45, "module-io_tools.postproc_toml_dict"], [46, "module-io_tools.verify_input_params"], [47, "module-postprocessing"], [48, "module-postprocessing.eval_U_cRPA_RESPACK"], [51, "module-postprocessing.eval_U_cRPA_Vasp"], [52, "module-postprocessing.maxent_gf_imp"], [53, "module-postprocessing.maxent_gf_latt"], [54, "module-postprocessing.maxent_sigma"], [55, "module-postprocessing.pade_sigma"], [56, "module-postprocessing.plot_correlated_bands"], [57, "module-util"], [58, "module-util.symmetrize_gamma_file"], [59, "module-util.write_kslice_to_h5"], [62, "module-solid_dmft"]], "dft_managers": [[2, "module-dft_managers"]], "create_hostfile() (in module dft_managers.mpi_helpers)": [[3, "dft_managers.mpi_helpers.create_hostfile"]], "dft_managers.mpi_helpers": [[3, "module-dft_managers.mpi_helpers"]], "find_path_to_mpi_command() (in module dft_managers.mpi_helpers)": [[3, "dft_managers.mpi_helpers.find_path_to_mpi_command"]], "get_mpi_arguments() (in module dft_managers.mpi_helpers)": [[3, "dft_managers.mpi_helpers.get_mpi_arguments"]], "poll_barrier() (in module dft_managers.mpi_helpers)": [[3, "dft_managers.mpi_helpers.poll_barrier"]], "dft_managers.qe_manager": [[4, "module-dft_managers.qe_manager"]], "read_dft_energy() (in module dft_managers.qe_manager)": [[4, "dft_managers.qe_manager.read_dft_energy"]], "run() (in module dft_managers.qe_manager)": [[4, "dft_managers.qe_manager.run"]], "dft_managers.vasp_manager": [[5, "module-dft_managers.vasp_manager"]], "kill() (in module dft_managers.vasp_manager)": [[5, "dft_managers.vasp_manager.kill"]], "read_dft_energy() (in module dft_managers.vasp_manager)": [[5, "dft_managers.vasp_manager.read_dft_energy"]], "read_irred_kpoints() (in module dft_managers.vasp_manager)": [[5, "dft_managers.vasp_manager.read_irred_kpoints"]], "remove_legacy_projections_suppressed() (in module dft_managers.vasp_manager)": [[5, "dft_managers.vasp_manager.remove_legacy_projections_suppressed"]], "run_charge_update() (in module dft_managers.vasp_manager)": [[5, "dft_managers.vasp_manager.run_charge_update"]], "run_initial_scf() (in module dft_managers.vasp_manager)": [[5, "dft_managers.vasp_manager.run_initial_scf"]], "dmft_cycle": [[6, "module-dmft_cycle"]], "dmft_cycle() (in module dmft_cycle)": [[6, "dmft_cycle.dmft_cycle"]], "dmft_tools": [[7, "module-dmft_tools"]], "determine() (in module dmft_tools.afm_mapping)": [[8, "dmft_tools.afm_mapping.determine"]], "dmft_tools.afm_mapping": [[8, "module-dmft_tools.afm_mapping"]], "calc_convergence_quantities() (in module dmft_tools.convergence)": [[9, "dmft_tools.convergence.calc_convergence_quantities"]], "check_convergence() (in module dmft_tools.convergence)": [[9, "dmft_tools.convergence.check_convergence"]], "dmft_tools.convergence": [[9, "module-dmft_tools.convergence"]], "max_g_diff() (in module dmft_tools.convergence)": [[9, "dmft_tools.convergence.max_G_diff"]], "prep_conv_file() (in module dmft_tools.convergence)": [[9, "dmft_tools.convergence.prep_conv_file"]], "prep_conv_obs() (in module dmft_tools.convergence)": [[9, "dmft_tools.convergence.prep_conv_obs"]], "write_conv() (in module dmft_tools.convergence)": [[9, "dmft_tools.convergence.write_conv"]], "dmft_tools.formatter": [[10, "module-dmft_tools.formatter"]], "print_block_sym() (in module dmft_tools.formatter)": [[10, "dmft_tools.formatter.print_block_sym"]], "print_rotation_matrix() (in module dmft_tools.formatter)": [[10, "dmft_tools.formatter.print_rotation_matrix"]], "dmft_tools.greens_functions_mixer": [[11, "module-dmft_tools.greens_functions_mixer"]], "calculate_double_counting() (in module dmft_tools.initial_self_energies)": [[12, "dmft_tools.initial_self_energies.calculate_double_counting"]], "determine_dc_and_initial_sigma() (in module dmft_tools.initial_self_energies)": [[12, "dmft_tools.initial_self_energies.determine_dc_and_initial_sigma"]], "dmft_tools.initial_self_energies": [[12, "module-dmft_tools.initial_self_energies"]], "construct() (in module dmft_tools.interaction_hamiltonian)": [[13, "dmft_tools.interaction_hamiltonian.construct"]], "dmft_tools.interaction_hamiltonian": [[13, "module-dmft_tools.interaction_hamiltonian"]], "h_int_simple_intra() (in module dmft_tools.interaction_hamiltonian)": [[13, "dmft_tools.interaction_hamiltonian.h_int_simple_intra"]], "apply() (in module dmft_tools.legendre_filter)": [[14, "dmft_tools.legendre_filter.apply"]], "dmft_tools.legendre_filter": [[14, "module-dmft_tools.legendre_filter"]], "dmft_tools.manipulate_chemical_potential": [[15, "module-dmft_tools.manipulate_chemical_potential"]], "set_initial_mu() (in module dmft_tools.manipulate_chemical_potential)": [[15, "dmft_tools.manipulate_chemical_potential.set_initial_mu"]], "update_mu() (in module dmft_tools.manipulate_chemical_potential)": [[15, "dmft_tools.manipulate_chemical_potential.update_mu"]], "dmft_tools.matheval": [[16, "module-dmft_tools.matheval"]], "__init__() (dmft_tools.matheval.mathexpr method)": [[18, "dmft_tools.matheval.MathExpr.__init__"]], "allowed_nodes (dmft_tools.matheval.mathexpr attribute)": [[19, "dmft_tools.matheval.MathExpr.allowed_nodes"]], "functions (dmft_tools.matheval.mathexpr attribute)": [[20, "dmft_tools.matheval.MathExpr.functions"]], "add_dft_values_as_zeroth_iteration() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.add_dft_values_as_zeroth_iteration"]], "add_dmft_observables() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.add_dmft_observables"]], "calc_z() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.calc_Z"]], "calc_bandcorr_man() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.calc_bandcorr_man"]], "calc_dft_kin_en() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.calc_dft_kin_en"]], "dmft_tools.observables": [[21, "module-dmft_tools.observables"]], "prep_observables() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.prep_observables"]], "write_header_to_file() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.write_header_to_file"]], "write_obs() (in module dmft_tools.observables)": [[21, "dmft_tools.observables.write_obs"]], "dmft_tools.results_to_archive": [[22, "module-dmft_tools.results_to_archive"]], "write() (in module dmft_tools.results_to_archive)": [[22, "dmft_tools.results_to_archive.write"]], "solverstructure (class in dmft_tools.solver)": [[23, "dmft_tools.solver.SolverStructure"]], "dmft_tools.solver": [[23, "module-dmft_tools.solver"]], "get_n_orbitals() (in module dmft_tools.solver)": [[23, "dmft_tools.solver.get_n_orbitals"]], "solve() (dmft_tools.solver.solverstructure method)": [[23, "dmft_tools.solver.SolverStructure.solve"], [26, "dmft_tools.solver.SolverStructure.solve"]], "__init__() (dmft_tools.solver.solverstructure method)": [[25, "dmft_tools.solver.SolverStructure.__init__"]], "gw_embedding": [[27, "module-gw_embedding"]], "calc_sigma_dc_gw() (in module gw_embedding.bdft_converter)": [[28, "gw_embedding.bdft_converter.calc_Sigma_DC_gw"]], "calc_w_from_gloc() (in module gw_embedding.bdft_converter)": [[28, "gw_embedding.bdft_converter.calc_W_from_Gloc"]], "convert_gw_output() (in module gw_embedding.bdft_converter)": [[28, "gw_embedding.bdft_converter.convert_gw_output"]], "gw_embedding.bdft_converter": [[28, "module-gw_embedding.bdft_converter"]], "dummy_sumk (class in gw_embedding.gw_flow)": [[29, "gw_embedding.gw_flow.dummy_sumk"]], "embedding_driver() (in module gw_embedding.gw_flow)": [[29, "gw_embedding.gw_flow.embedding_driver"]], "gw_embedding.gw_flow": [[29, "module-gw_embedding.gw_flow"]], "symm_deg_gf() (gw_embedding.gw_flow.dummy_sumk method)": [[29, "gw_embedding.gw_flow.dummy_sumk.symm_deg_gf"], [32, "gw_embedding.gw_flow.dummy_sumk.symm_deg_gf"]], "__init__() (gw_embedding.gw_flow.dummy_sumk method)": [[31, "gw_embedding.gw_flow.dummy_sumk.__init__"]], "iaft (class in gw_embedding.iaft)": [[33, "gw_embedding.iaft.IAFT"]], "gw_embedding.iaft": [[33, "module-gw_embedding.iaft"]], "tau_interpolate() (gw_embedding.iaft.iaft method)": [[33, "gw_embedding.iaft.IAFT.tau_interpolate"], [37, "gw_embedding.iaft.IAFT.tau_interpolate"]], "tau_to_w() (gw_embedding.iaft.iaft method)": [[33, "gw_embedding.iaft.IAFT.tau_to_w"], [38, "gw_embedding.iaft.IAFT.tau_to_w"]], "w_interpolate() (gw_embedding.iaft.iaft method)": [[33, "gw_embedding.iaft.IAFT.w_interpolate"], [39, "gw_embedding.iaft.IAFT.w_interpolate"]], "w_to_tau() (gw_embedding.iaft.iaft method)": [[33, "gw_embedding.iaft.IAFT.w_to_tau"], [40, "gw_embedding.iaft.IAFT.w_to_tau"]], "wn_mesh() (gw_embedding.iaft.iaft method)": [[33, "gw_embedding.iaft.IAFT.wn_mesh"], [41, "gw_embedding.iaft.IAFT.wn_mesh"]], "__init__() (gw_embedding.iaft.iaft method)": [[35, "gw_embedding.iaft.IAFT.__init__"]], "check_leakage() (gw_embedding.iaft.iaft method)": [[36, "gw_embedding.iaft.IAFT.check_leakage"]], "extract_qp_eig() (in module gw_embedding.qp_evs_to_eig)": [[42, "gw_embedding.qp_evs_to_eig.extract_qp_eig"]], "gw_embedding.qp_evs_to_eig": [[42, "module-gw_embedding.qp_evs_to_eig"]], "io_tools": [[43, "module-io_tools"]], "io_tools.dict_to_h5": [[44, "module-io_tools.dict_to_h5"]], "prep_params_for_h5() (in module io_tools.dict_to_h5)": [[44, "io_tools.dict_to_h5.prep_params_for_h5"]], "prep_params_from_h5() (in module io_tools.dict_to_h5)": [[44, "io_tools.dict_to_h5.prep_params_from_h5"]], "io_tools.postproc_toml_dict": [[45, "module-io_tools.postproc_toml_dict"]], "merge_config_with_default() (in module io_tools.postproc_toml_dict)": [[45, "io_tools.postproc_toml_dict.merge_config_with_default"]], "io_tools.verify_input_params": [[46, "module-io_tools.verify_input_params"]], "verify_before_dmft_cycle() (in module io_tools.verify_input_params)": [[46, "io_tools.verify_input_params.verify_before_dmft_cycle"]], "verify_h5_dependent() (in module io_tools.verify_input_params)": [[46, "io_tools.verify_input_params.verify_h5_dependent"]], "postprocessing": [[47, "module-postprocessing"]], "construct_uijkl() (in module postprocessing.eval_u_crpa_respack)": [[48, "postprocessing.eval_U_cRPA_RESPACK.construct_Uijkl"]], "fit_slater() (in module postprocessing.eval_u_crpa_respack)": [[48, "postprocessing.eval_U_cRPA_RESPACK.fit_slater"]], "postprocessing.eval_u_crpa_respack": [[48, "module-postprocessing.eval_U_cRPA_RESPACK"]], "read_interaction() (in module postprocessing.eval_u_crpa_respack)": [[48, "postprocessing.eval_U_cRPA_RESPACK.read_interaction"]], "respack_data (class in postprocessing.eval_u_crpa_respack)": [[48, "postprocessing.eval_U_cRPA_RESPACK.respack_data"]], "__init__() (postprocessing.eval_u_crpa_respack.respack_data method)": [[50, "postprocessing.eval_U_cRPA_RESPACK.respack_data.__init__"]], "calc_kan_params() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.calc_kan_params"]], "calc_u_avg_fulld() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.calc_u_avg_fulld"]], "calculate_interaction_from_averaging() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.calculate_interaction_from_averaging"]], "construct_u_kan() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.construct_U_kan"]], "fit_kanamori() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.fit_kanamori"]], "fit_slater_fulld() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.fit_slater_fulld"]], "postprocessing.eval_u_crpa_vasp": [[51, "module-postprocessing.eval_U_cRPA_Vasp"]], "read_uijkl() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.read_uijkl"]], "red_to_2ind() (in module postprocessing.eval_u_crpa_vasp)": [[51, "postprocessing.eval_U_cRPA_Vasp.red_to_2ind"]], "main() (in module postprocessing.maxent_gf_imp)": [[52, "postprocessing.maxent_gf_imp.main"]], "postprocessing.maxent_gf_imp": [[52, "module-postprocessing.maxent_gf_imp"]], "main() (in module postprocessing.maxent_gf_latt)": [[53, "postprocessing.maxent_gf_latt.main"]], "postprocessing.maxent_gf_latt": [[53, "module-postprocessing.maxent_gf_latt"]], "main() (in module postprocessing.maxent_sigma)": [[54, "postprocessing.maxent_sigma.main"]], "postprocessing.maxent_sigma": [[54, "module-postprocessing.maxent_sigma"]], "main() (in module postprocessing.pade_sigma)": [[55, "postprocessing.pade_sigma.main"]], "postprocessing.pade_sigma": [[55, "module-postprocessing.pade_sigma"]], "get_dmft_bands() (in module postprocessing.plot_correlated_bands)": [[56, "postprocessing.plot_correlated_bands.get_dmft_bands"]], "get_tb_bands() (in module postprocessing.plot_correlated_bands)": [[56, "postprocessing.plot_correlated_bands.get_tb_bands"]], "postprocessing.plot_correlated_bands": [[56, "module-postprocessing.plot_correlated_bands"]], "util": [[57, "module-util"]], "util.symmetrize_gamma_file": [[58, "module-util.symmetrize_gamma_file"]], "main() (in module util.write_kslice_to_h5)": [[59, "util.write_kslice_to_h5.main"]], "util.write_kslice_to_h5": [[59, "module-util.write_kslice_to_h5"]], "solid_dmft": [[62, "index-0"], [62, "module-solid_dmft"]]}}) \ No newline at end of file diff --git a/tutorials.html b/tutorials.html new file mode 100644 index 00000000..d78e7182 --- /dev/null +++ b/tutorials.html @@ -0,0 +1,414 @@ + + + + + + + Tutorials — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

Tutorials

+

These tutorials provide an overview about typical workflows to perform DFT+DMFT calculations with solid_dmft. The tutorials are sorted by complexity and introduce one after another more available features.

+
+

Note

+

The tutorials are run with the 3.1.x branch of triqs. Please use the 3.1.x branch for triqs and all applications to reproduce the results shown here.

+
+

Short description of the tutorials linked below:

+
    +
  1. Typical one-shot (OS) DMFT calculation based on prepared hdf5 archive for SrVO3

  2. +
  3. Full charge self-consistent (CSC) DFT+DMFT calculation using the PLO formalism with Vasp for PrNiO3

  4. +
  5. Full CSC DFT+DMFT calculation using w90 in combination with Quantum Espresso utilizing the lighter HubbardI solver

  6. +
  7. OS magnetic DMFT calculation for NdNiO2 in a large energy window for 5 d orbitals

  8. +
  9. Postprocessing: plot the spectral function after a DFT+DMFT calculation

  10. +
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.inp b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.inp new file mode 100644 index 00000000..8628e633 --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.inp @@ -0,0 +1,5 @@ + 0 4 4 3 + 2. + 2 + 0 0 3 7 0 0 + 1 0 3 7 0 0 diff --git a/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.mod_scf.in b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.mod_scf.in new file mode 100644 index 00000000..caf85adc --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.mod_scf.in @@ -0,0 +1,100 @@ +&control + calculation = 'scf', + restart_mode = 'restart', + wf_collect = .false., + prefix = 'ce2o3_soliddmft', + tstress = .true., + tprnfor = .true., + pseudo_dir = 'pseudo/', + outdir = 'QE_tmp/', +/ +&system + ibrav = 0, + celldm(1) = 7.3510340956, + nat = 5, + ntyp = 2, + ecutwfc = 70.0, + ecutrho = 840.0, + occupations = 'smearing', + degauss = 0.01, + smearing = 'm-p', + nbnd = 50 + dmft = .true. + dmft_prefix = 'ce2o3', + nosym = .true. +/ +&electrons + electron_maxstep = 1, + conv_thr = 1.0d-8, + mixing_beta = 0.3, + mixing_mode = 'local-TF' + startingpot = 'file', + startingwfc = 'file', +/ + +ATOMIC_SPECIES + Ce 140.116 Ce.pbe-spdfn-rrkjus_psl.1.0.0.UPF + O 15.9994 o_pbe_v1.2.uspp.F.UPF + +CELL_PARAMETERS {alat} + 1.0000000000 0.0000000000 0.0000000000 + -0.5000000000 0.8660254038 0.0000000000 + 0.0000000000 0.0000000000 1.5574077247 + +ATOMIC_POSITIONS (crystal) +Ce 0.66666700000000 0.33333300000000 0.75412000000000 +Ce 0.33333300000000 0.66666700000000 0.24588000000000 + O 0.66666700000000 0.33333300000000 0.35741800000000 + O 0.33333300000000 0.66666700000000 0.64258200000000 + O 0.00000000000000 0.00000000000000 0.00000000000000 + +K_POINTS crystal +48 + 0.00000000 0.00000000 0.00000000 2.083333e-02 + 0.00000000 0.00000000 0.33333333 2.083333e-02 + 0.00000000 0.00000000 0.66666667 2.083333e-02 + 0.00000000 0.25000000 0.00000000 2.083333e-02 + 0.00000000 0.25000000 0.33333333 2.083333e-02 + 0.00000000 0.25000000 0.66666667 2.083333e-02 + 0.00000000 0.50000000 0.00000000 2.083333e-02 + 0.00000000 0.50000000 0.33333333 2.083333e-02 + 0.00000000 0.50000000 0.66666667 2.083333e-02 + 0.00000000 0.75000000 0.00000000 2.083333e-02 + 0.00000000 0.75000000 0.33333333 2.083333e-02 + 0.00000000 0.75000000 0.66666667 2.083333e-02 + 0.25000000 0.00000000 0.00000000 2.083333e-02 + 0.25000000 0.00000000 0.33333333 2.083333e-02 + 0.25000000 0.00000000 0.66666667 2.083333e-02 + 0.25000000 0.25000000 0.00000000 2.083333e-02 + 0.25000000 0.25000000 0.33333333 2.083333e-02 + 0.25000000 0.25000000 0.66666667 2.083333e-02 + 0.25000000 0.50000000 0.00000000 2.083333e-02 + 0.25000000 0.50000000 0.33333333 2.083333e-02 + 0.25000000 0.50000000 0.66666667 2.083333e-02 + 0.25000000 0.75000000 0.00000000 2.083333e-02 + 0.25000000 0.75000000 0.33333333 2.083333e-02 + 0.25000000 0.75000000 0.66666667 2.083333e-02 + 0.50000000 0.00000000 0.00000000 2.083333e-02 + 0.50000000 0.00000000 0.33333333 2.083333e-02 + 0.50000000 0.00000000 0.66666667 2.083333e-02 + 0.50000000 0.25000000 0.00000000 2.083333e-02 + 0.50000000 0.25000000 0.33333333 2.083333e-02 + 0.50000000 0.25000000 0.66666667 2.083333e-02 + 0.50000000 0.50000000 0.00000000 2.083333e-02 + 0.50000000 0.50000000 0.33333333 2.083333e-02 + 0.50000000 0.50000000 0.66666667 2.083333e-02 + 0.50000000 0.75000000 0.00000000 2.083333e-02 + 0.50000000 0.75000000 0.33333333 2.083333e-02 + 0.50000000 0.75000000 0.66666667 2.083333e-02 + 0.75000000 0.00000000 0.00000000 2.083333e-02 + 0.75000000 0.00000000 0.33333333 2.083333e-02 + 0.75000000 0.00000000 0.66666667 2.083333e-02 + 0.75000000 0.25000000 0.00000000 2.083333e-02 + 0.75000000 0.25000000 0.33333333 2.083333e-02 + 0.75000000 0.25000000 0.66666667 2.083333e-02 + 0.75000000 0.50000000 0.00000000 2.083333e-02 + 0.75000000 0.50000000 0.33333333 2.083333e-02 + 0.75000000 0.50000000 0.66666667 2.083333e-02 + 0.75000000 0.75000000 0.00000000 2.083333e-02 + 0.75000000 0.75000000 0.33333333 2.083333e-02 + 0.75000000 0.75000000 0.66666667 2.083333e-02 diff --git a/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.nscf.in b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.nscf.in new file mode 100644 index 00000000..579094ab --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.nscf.in @@ -0,0 +1,97 @@ +&control + calculation = 'nscf', + wf_collect = .true., + prefix = 'ce2o3_soliddmft', + tstress = .true., + tprnfor = .true., + verbosity = 'high', + pseudo_dir = 'pseudo/', + outdir = 'QE_tmp/', +/ +&system + ibrav = 0, + celldm(1) = 7.3510340956, + nat = 5, + ntyp = 2, + ecutwfc = 70.0, + ecutrho = 840.0, + occupations = 'smearing', + degauss = 0.01, + smearing = 'm-p', + nbnd = 50, + dmft = .true., + nosym = .true. +/ +&electrons + conv_thr = 1.0d-6, + mixing_beta = 0.7, + mixing_mode = 'local-TF' + startingpot = 'file', +/ + +ATOMIC_SPECIES + Ce 140.116 Ce.pbe-spdfn-rrkjus_psl.1.0.0.UPF + O 15.9994 o_pbe_v1.2.uspp.F.UPF + +CELL_PARAMETERS {alat} + 1.0000000000 0.0000000000 0.0000000000 + -0.5000000000 0.8660254038 0.0000000000 + 0.0000000000 0.0000000000 1.5574077247 + +ATOMIC_POSITIONS (crystal) +Ce 0.66666700000000 0.33333300000000 0.75412000000000 +Ce 0.33333300000000 0.66666700000000 0.24588000000000 + O 0.66666700000000 0.33333300000000 0.35741800000000 + O 0.33333300000000 0.66666700000000 0.64258200000000 + O 0.00000000000000 0.00000000000000 0.00000000000000 + +K_POINTS crystal +48 + 0.00000000 0.00000000 0.00000000 2.083333e-02 + 0.00000000 0.00000000 0.33333333 2.083333e-02 + 0.00000000 0.00000000 0.66666667 2.083333e-02 + 0.00000000 0.25000000 0.00000000 2.083333e-02 + 0.00000000 0.25000000 0.33333333 2.083333e-02 + 0.00000000 0.25000000 0.66666667 2.083333e-02 + 0.00000000 0.50000000 0.00000000 2.083333e-02 + 0.00000000 0.50000000 0.33333333 2.083333e-02 + 0.00000000 0.50000000 0.66666667 2.083333e-02 + 0.00000000 0.75000000 0.00000000 2.083333e-02 + 0.00000000 0.75000000 0.33333333 2.083333e-02 + 0.00000000 0.75000000 0.66666667 2.083333e-02 + 0.25000000 0.00000000 0.00000000 2.083333e-02 + 0.25000000 0.00000000 0.33333333 2.083333e-02 + 0.25000000 0.00000000 0.66666667 2.083333e-02 + 0.25000000 0.25000000 0.00000000 2.083333e-02 + 0.25000000 0.25000000 0.33333333 2.083333e-02 + 0.25000000 0.25000000 0.66666667 2.083333e-02 + 0.25000000 0.50000000 0.00000000 2.083333e-02 + 0.25000000 0.50000000 0.33333333 2.083333e-02 + 0.25000000 0.50000000 0.66666667 2.083333e-02 + 0.25000000 0.75000000 0.00000000 2.083333e-02 + 0.25000000 0.75000000 0.33333333 2.083333e-02 + 0.25000000 0.75000000 0.66666667 2.083333e-02 + 0.50000000 0.00000000 0.00000000 2.083333e-02 + 0.50000000 0.00000000 0.33333333 2.083333e-02 + 0.50000000 0.00000000 0.66666667 2.083333e-02 + 0.50000000 0.25000000 0.00000000 2.083333e-02 + 0.50000000 0.25000000 0.33333333 2.083333e-02 + 0.50000000 0.25000000 0.66666667 2.083333e-02 + 0.50000000 0.50000000 0.00000000 2.083333e-02 + 0.50000000 0.50000000 0.33333333 2.083333e-02 + 0.50000000 0.50000000 0.66666667 2.083333e-02 + 0.50000000 0.75000000 0.00000000 2.083333e-02 + 0.50000000 0.75000000 0.33333333 2.083333e-02 + 0.50000000 0.75000000 0.66666667 2.083333e-02 + 0.75000000 0.00000000 0.00000000 2.083333e-02 + 0.75000000 0.00000000 0.33333333 2.083333e-02 + 0.75000000 0.00000000 0.66666667 2.083333e-02 + 0.75000000 0.25000000 0.00000000 2.083333e-02 + 0.75000000 0.25000000 0.33333333 2.083333e-02 + 0.75000000 0.25000000 0.66666667 2.083333e-02 + 0.75000000 0.50000000 0.00000000 2.083333e-02 + 0.75000000 0.50000000 0.33333333 2.083333e-02 + 0.75000000 0.50000000 0.66666667 2.083333e-02 + 0.75000000 0.75000000 0.00000000 2.083333e-02 + 0.75000000 0.75000000 0.33333333 2.083333e-02 + 0.75000000 0.75000000 0.66666667 2.083333e-02 diff --git a/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.pw2wan.in b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.pw2wan.in new file mode 100644 index 00000000..185d7d0a --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.pw2wan.in @@ -0,0 +1,9 @@ +&inputpp + prefix = 'ce2o3_soliddmft' + outdir = 'QE_tmp/', + seedname = 'ce2o3' + write_mmn = .true. + write_amn = .true. + write_spn = .false. + write_unk = .false. +/ diff --git a/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.scf.in b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.scf.in new file mode 100644 index 00000000..72591ab6 --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.scf.in @@ -0,0 +1,45 @@ +&control + calculation = 'scf', + restart_mode = 'from_scratch', + wf_collect = .false., + prefix = 'ce2o3_soliddmft', + tstress = .true., + tprnfor = .true., + pseudo_dir = 'pseudo/', + outdir = 'QE_tmp/', +/ +&system + ibrav = 0, + celldm(1) = 7.3510340956, + nat = 5, + ntyp = 2, + ecutwfc = 70.0, + ecutrho = 840.0, + occupations = 'smearing', + degauss = 0.01, + smearing = 'm-p', +/ +&electrons + conv_thr = 1.0d-8, + mixing_beta = 0.7, + mixing_mode = 'local-TF' +/ + +ATOMIC_SPECIES + Ce 140.116 Ce.pbe-spdfn-rrkjus_psl.1.0.0.UPF + O 15.9994 o_pbe_v1.2.uspp.F.UPF + +CELL_PARAMETERS {alat} + 1.0000000000 0.0000000000 0.0000000000 + -0.5000000000 0.8660254038 0.0000000000 + 0.0000000000 0.0000000000 1.5574077247 + +ATOMIC_POSITIONS crystal +Ce 0.66666700000000 0.33333300000000 0.75412000000000 +Ce 0.33333300000000 0.66666700000000 0.24588000000000 + O 0.66666700000000 0.33333300000000 0.35741800000000 + O 0.33333300000000 0.66666700000000 0.64258200000000 + O 0.00000000000000 0.00000000000000 0.00000000000000 + +K_POINTS automatic + 4 4 3 0 0 0 diff --git a/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.win b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.win new file mode 100644 index 00000000..05f5d8a4 --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dft_input/ce2o3.win @@ -0,0 +1,147 @@ +begin unit_cell_cart +bohr +7.3510341 0.0000000 0.0000000 +-3.6755170 6.3661823 0.0000000 +0.0000000 0.0000000 11.4485573 +end unit_cell_cart + +begin atoms_frac +Ce1 0.66666700000000 0.33333300000000 0.75412000000000 +Ce2 0.33333300000000 0.66666700000000 0.24588000000000 + O 0.66666700000000 0.33333300000000 0.35741800000000 + O 0.33333300000000 0.66666700000000 0.64258200000000 + O 0.00000000000000 0.00000000000000 0.00000000000000 +end atoms_frac + +! system +num_wann = 14 +num_bands = 14 +mp_grid 4 4 3 + +! job control +exclude_bands : 1-30, 45-50 +iprint = 2 + +! plotting +wannier_plot = false +wannier_plot_supercell = 3 +bands_plot = true +bands_num_points = 100 +bands_plot_format = gnuplot +write_hr = true +write_u_matrices = true + +! disentanglement +!dis_win_min = 11.75 +!dis_win_max = 18.5 +!dis_froz_min = 15.1 +!dis_froz_max = 15.6 +dis_num_iter = 2000 +dis_conv_tol = 1.0E-12 +!dis_mix_ratio = 0.9 + +! wannierisation +num_iter = 0 +conv_window = 10 +conv_tol = 1e-12 + +! pp tools +kpath = true +kpath_task = bands +kpath_bands_colour = spin +kpath_num_points=500 +begin kpoint_path +G 0.0 0.0 0.0 M 0.5 0.0 0.0 +M 0.5 0.0 0.0 K 0.33 0.33 0.0 +K 0.33 0.33 0.0 G 0.0 0.0 0.0 +G 0.0 0.0 0.0 A 0.0 0.0 0.5 +A 0.0 0.0 0.5 L 0.5 0.0 0.5 +L 0.5 0.0 0.5 H 0.33 0.33 0.5 +H 0.33 0.33 0.5 A 0.0 0.0 0.5 +end kpoint_path + +kslice = true +kslice_task = fermi_lines +fermi_energy = 11.3244 +kslice_2dkmesh = 200 200 +kslice_corner = 0.00 0.00 0.00 +kslice_b1 = -0.25 0.25 0.25 +kslice_b2 = 0.25 -0.25 0.25 +!kslice_fermi_lines_colour = spin + +dos = true +dos_project = 3 +!dos_energy_min = 8. +!dos_energy_max = 13. +dos_kmesh = 50 +!dos_adpt_smr = false +!dos_smr_type = gauss +!dos_smr_fixed_en_width = 0.05 + +begin projections +Ce1:l=3,mr=4:x=1,0,0 +Ce1:l=3,mr=3:x=1,0,0 +Ce1:l=3,mr=5:x=1,0,0 +Ce1:l=3,mr=2:x=1,0,0 +Ce1:l=3,mr=6:x=1,0,0 +Ce1:l=3,mr=1:x=1,0,0 +Ce1:l=3,mr=7:x=1,0,0 +Ce2:l=3,mr=4:x=1,0,0 +Ce2:l=3,mr=3:x=1,0,0 +Ce2:l=3,mr=5:x=1,0,0 +Ce2:l=3,mr=2:x=1,0,0 +Ce2:l=3,mr=6:x=1,0,0 +Ce2:l=3,mr=1:x=1,0,0 +Ce2:l=3,mr=7:x=1,0,0 +end projections + +begin kpoints + 0.00000000 0.00000000 0.00000000 + 0.00000000 0.00000000 0.33333333 + 0.00000000 0.00000000 0.66666667 + 0.00000000 0.25000000 0.00000000 + 0.00000000 0.25000000 0.33333333 + 0.00000000 0.25000000 0.66666667 + 0.00000000 0.50000000 0.00000000 + 0.00000000 0.50000000 0.33333333 + 0.00000000 0.50000000 0.66666667 + 0.00000000 0.75000000 0.00000000 + 0.00000000 0.75000000 0.33333333 + 0.00000000 0.75000000 0.66666667 + 0.25000000 0.00000000 0.00000000 + 0.25000000 0.00000000 0.33333333 + 0.25000000 0.00000000 0.66666667 + 0.25000000 0.25000000 0.00000000 + 0.25000000 0.25000000 0.33333333 + 0.25000000 0.25000000 0.66666667 + 0.25000000 0.50000000 0.00000000 + 0.25000000 0.50000000 0.33333333 + 0.25000000 0.50000000 0.66666667 + 0.25000000 0.75000000 0.00000000 + 0.25000000 0.75000000 0.33333333 + 0.25000000 0.75000000 0.66666667 + 0.50000000 0.00000000 0.00000000 + 0.50000000 0.00000000 0.33333333 + 0.50000000 0.00000000 0.66666667 + 0.50000000 0.25000000 0.00000000 + 0.50000000 0.25000000 0.33333333 + 0.50000000 0.25000000 0.66666667 + 0.50000000 0.50000000 0.00000000 + 0.50000000 0.50000000 0.33333333 + 0.50000000 0.50000000 0.66666667 + 0.50000000 0.75000000 0.00000000 + 0.50000000 0.75000000 0.33333333 + 0.50000000 0.75000000 0.66666667 + 0.75000000 0.00000000 0.00000000 + 0.75000000 0.00000000 0.33333333 + 0.75000000 0.00000000 0.66666667 + 0.75000000 0.25000000 0.00000000 + 0.75000000 0.25000000 0.33333333 + 0.75000000 0.25000000 0.66666667 + 0.75000000 0.50000000 0.00000000 + 0.75000000 0.50000000 0.33333333 + 0.75000000 0.50000000 0.66666667 + 0.75000000 0.75000000 0.00000000 + 0.75000000 0.75000000 0.33333333 + 0.75000000 0.75000000 0.66666667 +end kpoints diff --git a/tutorials/Ce2O3_csc_w90/dmft_config.toml b/tutorials/Ce2O3_csc_w90/dmft_config.toml new file mode 100644 index 00000000..23021830 --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/dmft_config.toml @@ -0,0 +1,44 @@ +[general] +seedname = "ce2o3" +jobname = "b10-U6.46-J0.46" +csc = true + +eta = 0.5 +n_iw = 100 +n_tau = 5001 + +n_iter_dmft_first = 2 +n_iter_dmft_per = 1 +n_iter_dmft = 5 + +block_threshold = 1e-03 + +h_int_type = "density_density" +U = 6.46 +J = 0.46 +beta = 10 +prec_mu = 0.1 + +sigma_mix = 1.0 +g0_mix = 1.0 +dc_type = 0 +dc = true +dc_dmft = true +calc_energies = true + +h5_save_freq = 1 + +[solver] +type = "hubbardI" +n_l = 15 +store_solver = false +measure_G_l = false +measure_density_matrix = true + +[dft] +dft_code = "qe" +n_cores = 10 +mpi_env = "default" +projector_type = "w90" +dft_exec = "pw.x" +w90_tolerance = 1e-1 diff --git a/tutorials/Ce2O3_csc_w90/tutorial.html b/tutorials/Ce2O3_csc_w90/tutorial.html new file mode 100644 index 00000000..54a46bc2 --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/tutorial.html @@ -0,0 +1,1010 @@ + + + + + + + 3. CSC with QE/W90 and HubbardI: total energy in Ce2O3 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+
[1]:
+
+
+
import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib.ticker as ticker
+
+from triqs.gf import *
+from h5 import HDFArchive
+
+
+
+
+

3. CSC with QE/W90 and HubbardI: total energy in Ce2O3

+

Disclaimer:

+
    +
  • These can be heavy calculations. Current parameters won’t give converged solutions, but are simplified to deliver results on 10 cores in 10 minutes.

  • +
  • The interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!

  • +
+

The goal of this tutorial is to demonstrate how to perform fully charge self-consistent DFT+DMFT calculations in solid_dmft using Quantum Espresso (QE) and Wannier90 (W90) for the DFT electronic structure using the HubbardI solver.

+

We will use Ce\(_2\)O\(_3\) as an example and compute the total energy for the \(s=0\%\) experimental ground state structure. To find the equilibrium structure in DFT+DMFT one then repeats these calculations variing the strain in DFT as was done in Fig. 7 of arxiv:2111.10289 (2021):

+

drawing

+

In the case of Ce\(_2\)O\(_3\) it turns out that in fact DFT+DMFT predicts the same ground state as is found experimentally, while DFT underestimates, and DFT+DMFT in the one-shot approximation overestimates the lattice parameter, respectively.

+

The tutorial will guide you through the following steps:

+
    +
  • perpare the input for the DFT and DMFT calculations using Quantum Espresso and Wannier90 and TRIQS

  • +
  • run a charge self-consistent calculation for Ce\(_2\)O\(_3\)

  • +
  • analyse the change in the non-interacting part of the charge density using TRIQS

  • +
  • analyse the convergence of the total energy and the DMFT self-consistency

  • +
+

We set path variables to the reference files:

+
+
[2]:
+
+
+
path = './ref/'
+
+
+
+
+

1. Input file preparation

+

The primitive cell of Ce\(_2\)O\(_3\) contains 2 Ce atoms with 7 \(f\)-electrons each, so 14 in total. They are relatively flat, so there is no entanglement with any other band. We start from relaxed structure as usual. All files corresponding to this structure should be prepared and stored in a separate directory (save/ in this case). For details please look at Section III in arxiv:2111.10289 (2021).

+
+

DFT files

+

All input files are of the same kind as usual, unless stated otherwise:

+

Quantum Espresso:

+
    +
  1. ce2o3.scf.in

  2. +
  3. ce2o3.nscf.in

    +
      +
    • explicit k-mesh

    • +
    +
    &system
    +    nosym            = .true.
    +    dmft             = .true.
    +
    +
    +
  4. +
  5. ce2o3.mod_scf.in: new!

    +
      +
    • explicit k-mesh

    • +
    +
    &system
    +    nosym            = .true.
    +    dmft             = .true.
    +    dmft_prefix      = seedname
    +&electrons
    +    electron_maxstep = 1
    +    mixing_beta      = 0.3
    +
    +
    +
  6. +
+

Optionally:

+
    +
  • seedname.bnd.in

  • +
  • seedname.bands.in

  • +
  • seedname.proj.in

  • +
+

Wannier90:

+
    +
  1. ce2o3.win

    +
    write_u_matrices = .true.
    +
    +
    +
  2. +
  3. ce2o3.pw2wan.in

  4. +
+
+
+

DMFT

+
    +
  1. Wannier90Converter: ce2o3.inp

  2. +
  3. solid_dmft: dmft_config.toml

  4. +
+

Here we’ll discuss the most important input flags for solid_dmft:

+
+
[1]:
+
+
+
!cat ./dmft_config.toml
+
+
+
+
+
+
+
+
+[general]
+seedname = "ce2o3"
+jobname = "b10-U6.46-J0.46"
+csc = true
+
+eta = 0.5
+n_iw = 100
+n_tau = 5001
+
+n_iter_dmft_first = 2
+n_iter_dmft_per = 1
+n_iter_dmft = 5
+
+block_threshold = 1e-03
+
+h_int_type = "density_density"
+U = 6.46
+J = 0.46
+beta = 10
+prec_mu = 0.1
+
+sigma_mix = 1.0
+g0_mix = 1.0
+dc_type = 0
+dc = true
+dc_dmft = true
+calc_energies = true
+
+h5_save_freq = 1
+
+[solver]
+type = "hubbardI"
+n_l = 15
+store_solver = false
+measure_G_l = false
+measure_density_matrix = true
+
+[dft]
+dft_code = "qe"
+n_cores = 10
+mpi_env = "default"
+projector_type = "w90"
+dft_exec = "pw.x"
+w90_tolerance = 1.e-1
+
+
+

Of course you’ll have to switch csc on to perform the charge self-consistent calculations. Then we choose the HubbardI Solver, set the number of Legendre polynomials, Matsubara frequencies \(i\omega_n\) and imaginary time grid points \(\tau\). In this calculation we perform five iterations in total, of which the two first ones are one-shot DMFT iterations, followed by three DFT and three DMFT steps. For the interaction Hamiltonian we use density_density. Note that you unlike the +Kanamori Hamiltonian, this one is not rotationally invariant, so the correct order of the orbitals must be set (inspect the projections card in ce2o3.win). We must also use dc_dmft and calc_energies, since we are interested in total energies. Finally, we will specify some details for the DFT manager, i.e. to use QE, W90 and the tolerance for the mapping of shells. Note that this value should in general be \(1e-6\), but for demonstration purposes we reduce it here. If dft_exec +is empty, it will assume that pw.x and other QE executables are available.

+
+
+
+

2. Running DFT+DMFT

+

Now that everything is set up, copy all files from ./dft_input and start the calculation:

+
cp dft_input/* .
+mpirun solid_dmft > dmft.out &
+
+
+

You will note that for each DFT step solid_dmft will append the filenames of the DFT Ouput with a unique identifier _itXY, where XY is the total iteration number. This allows the user to keep track of the changes within DFT. For the W90 seedname.wout and seedname_hr.dat files the seedname will be renamed to seedname_itXY. If the QE seedname_bands.dat, and seedname_bands.proj are present, they will be saved, too.

+

You can check the output of the calculations while they are running, but since this might take a few minutes, we’ll analyse the results of the reference data in /ref/ce2o3.h5. You should check if the current calculation reproduces these results.

+
+
+

3. Non-interacting Hamiltonian and convergence analysis

+
+

Tight-binding Hamiltonian

+

Disclaimer: the bands shown here are only the non-interacting part of the charge density. Only the first iteration corresponds to a physical charge density, namely the Kohn-Sham ground state charge density.

+

The first thing to check is whether the DFT Hamiltonian obtained from Wannier90 is correct. For this we use the tools available in triqs.lattice.utils. Let us first get the number of iterations and Fermi levels from DFT:

+
+
[4]:
+
+
+
e_fermi_run = !grep "DFT Fermi energy" triqs.out
+e_fermi_run = [float(x.split('DFT Fermi energy')[1].split('eV')[0]) for x in e_fermi_run]
+n_iter_run = !ls ce2o3_it*_hr.dat
+n_iter_run = sorted([int(x.split('_it')[-1].split('_')[0]) for x in n_iter_run])
+print(f'Fermi levels: {e_fermi_run}')
+print(f'iteration counts: {n_iter_run}')
+
+
+
+
+
+
+
+
+Fermi levels: [14.3557, 14.42, 14.4619, 14.495]
+iteration counts: [1, 3, 4, 5]
+
+
+
+
[5]:
+
+
+
from matplotlib import cm
+from triqs.lattice.utils import TB_from_wannier90, k_space_path
+
+# define a path in BZ
+G = np.array([ 0.00,  0.00,  0.00])
+M = np.array([ 0.50,  0.00,  0.00])
+K = np.array([ 0.33,  0.33,  0.00])
+A = np.array([ 0.00,  0.00,  0.50])
+L = np.array([ 0.50,  0.00,  0.50])
+H = np.array([ 0.33,  0.33,  0.50])
+k_path = [(G, M), (M, K), (K, G), (G, A), (A, L), (L, H), (H, A)]
+n_bnd = 14
+n_k = 20
+
+fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)
+
+for (fermi, n_iter, cycle) in [(e_fermi_run, n_iter_run, cm.RdYlBu)]:
+
+    col_it = np.linspace(0, 1, len(n_iter))
+    for ct, it in enumerate(n_iter):
+
+        # compute TB model
+        h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0
+        tb = TB_from_wannier90(path='./', seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)
+
+        # compute dispersion on specified path
+        k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)
+        e_val = tb.dispersion(k_vec)
+
+        # plot
+        for band in range(n_bnd):
+            ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it}' if band == 0 else '')
+
+
+ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')
+ax.set_ylim(-0.2,0.8)
+ax.grid(zorder=0)
+ax.set_xticks(special_k)
+ax.set_xticklabels([r'$\Gamma$', 'M', 'K', r'$\Gamma$', 'A', 'L', 'H', 'A'])
+ax.set_xlim([special_k.min(), special_k.max()])
+ax.set_ylabel(r'$\omega$ (eV)')
+ax.legend(fontsize='small')
+
+
+
+
+
+
+
+
+Warning: could not identify MPI environment!
+
+
+
+
+
+
+
+Starting serial run at: 2022-03-25 12:42:36.663824
+
+
+
+
[5]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f4a21de2160>
+
+
+
+
+
+
+../../_images/tutorials_Ce2O3_csc_w90_tutorial_11_3.png +
+
+

Note that since this is an isolated set of bands, we don’t have to worry about the disentanglement window here. Pay attention if you do need to use disentanglement though, and make sure that the configuration of Wannier90 works throughout the calculation!

+

You see that one of the effects of charge self-consistency is the modificiation of the non-interacting bandstructure. The current results are far from converged, so make sure to carefully go through convergence tests as usual if you want reliable results. The figure below shows the difference to the reference data, which is quite substantial already at the DFT level.

+
+
[6]:
+
+
+
fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)
+
+e_fermi_ref = [14.7437]
+for (fermi, n_iter, path_w90, cycle, label) in [(e_fermi_ref, [1], path, cm.GnBu_r, 'reference'), (e_fermi_run, [1], './', cm.RdYlBu, 'run')]:
+
+    col_it = np.linspace(0, 1, len(n_iter))
+    for ct, it in enumerate(n_iter):
+
+        # compute TB model
+        h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0
+        tb = TB_from_wannier90(path=path_w90, seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)
+
+        # compute dispersion on specified path
+        k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)
+        e_val = tb.dispersion(k_vec)
+
+        # plot
+        for band in range(n_bnd):
+            ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it} - {label}' if band == 0 else '')
+
+
+ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')
+ax.set_ylim(-0.2,0.8)
+ax.grid(zorder=0)
+ax.set_xticks(special_k)
+ax.set_xticklabels([r'$\Gamma$', 'M', 'K', r'$\Gamma$', 'A', 'L', 'H', 'A'])
+ax.set_xlim([special_k.min(), special_k.max()])
+ax.set_ylabel(r'$\omega$ (eV)')
+ax.legend(fontsize='small')
+
+
+
+
+
[6]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f49a4157c40>
+
+
+
+
+
+
+../../_images/tutorials_Ce2O3_csc_w90_tutorial_13_1.png +
+
+
+
+

Convergence

+

To check the convergence of the impurity Green’s function and total energy you can look into the hdf5 Archive:

+
+
[7]:
+
+
+
with HDFArchive('./ce2o3.h5','r') as h5:
+    observables = h5['DMFT_results']['observables']
+    convergence = h5['DMFT_results']['convergence_obs']
+
+with HDFArchive(path + 'ce2o3.h5','r') as h5:
+    ref_observables = h5['DMFT_results']['observables']
+    ref_convergence = h5['DMFT_results']['convergence_obs']
+
+
+
+
+
[8]:
+
+
+
fig, ax = plt.subplots(1,2, figsize=(8, 2), dpi=200)
+
+ax[0].plot(ref_observables['E_tot']-np.min(ref_observables['E_tot']), 'x-', label='reference')
+ax[0].plot(observables['E_tot']-np.min(observables['E_tot']), 'x-', label='result')
+
+ax[1].plot(ref_convergence['d_G0'][0], 'x-', label='reference')
+ax[1].plot(convergence['d_G0'][0], 'x-', label='result')
+
+ax[0].set_ylabel('total energy (eV)')
+ax[1].set_ylabel(r'convergence $G_0$')
+
+for it in range(2):
+    ax[it].set_xlabel('# iteration')
+    ax[it].xaxis.set_major_locator(ticker.MultipleLocator(5))
+    ax[it].grid()
+    ax[it].legend(fontsize='small')
+
+fig.subplots_adjust(wspace=0.3)
+
+
+
+
+
+
+
+../../_images/tutorials_Ce2O3_csc_w90_tutorial_17_0.png +
+
+

Note that the total energy jumps quite a bit in the first iteration and is constant for the first two (three) one-shot iterations in this run (the reference data) as expected. Since the HubbardI solver essentially yields DMFT-convergence after one iteration (you may try to confirm this), the total number of iterations necessary to achieve convergence is relatively low.

+

This concludes the tutorial. The following is a list of things you can try next:

+
    +
  • improve the accuracy of the results by tuning the parameters until the results agree with the reference

  • +
  • try to fnd the equilibrium lattice paramter by repeating the above calculation of the total energy for different cell volumes

  • +
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/Ce2O3_csc_w90/tutorial.ipynb b/tutorials/Ce2O3_csc_w90/tutorial.ipynb new file mode 100644 index 00000000..6e154533 --- /dev/null +++ b/tutorials/Ce2O3_csc_w90/tutorial.ipynb @@ -0,0 +1,530 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "1cc005bd", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as ticker\n", + "\n", + "from triqs.gf import *\n", + "from h5 import HDFArchive" + ] + }, + { + "cell_type": "markdown", + "id": "f93f161b", + "metadata": {}, + "source": [ + "# 3. CSC with QE/W90 and HubbardI: total energy in Ce2O3" + ] + }, + { + "cell_type": "markdown", + "id": "c1dbd052", + "metadata": {}, + "source": [ + "Disclaimer:\n", + "\n", + "* These can be heavy calculations. Current parameters won't give converged solutions, but are simplified to deliver results on 10 cores in 10 minutes.\n", + "* The interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!\n", + "\n", + "The goal of this tutorial is to demonstrate how to perform fully charge self-consistent DFT+DMFT calculations in solid_dmft using [Quantum Espresso](https://www.quantum-espresso.org/) (QE) and [Wannier90](http://www.wannier.org/) (W90) for the DFT electronic structure using the [HubbardI solver](https://triqs.github.io/hubbardI/latest/index.html).\n", + "\n", + "We will use Ce$_2$O$_3$ as an example and compute the total energy for the $s=0\\%$ experimental ground state structure. To find the equilibrium structure in DFT+DMFT one then repeats these calculations variing the strain in DFT as was done in Fig. 7 of [arxiv:2111.10289 (2021)](https://arxiv.org/abs/2111.10289.pdf):\n", + "\n", + "\"drawing\"\n", + "\n", + "In the case of Ce$_2$O$_3$ it turns out that in fact DFT+DMFT predicts the same ground state as is found experimentally, while DFT underestimates, and DFT+DMFT in the one-shot approximation overestimates the lattice parameter, respectively.\n", + "\n", + "The tutorial will guide you through the following steps: \n", + "\n", + "* perpare the input for the DFT and DMFT calculations using Quantum Espresso and Wannier90 and TRIQS\n", + "* run a charge self-consistent calculation for Ce$_2$O$_3$\n", + "* analyse the change in the non-interacting part of the charge density using TRIQS\n", + "* analyse the convergence of the total energy and the DMFT self-consistency\n", + "\n", + "We set `path` variables to the reference files:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8681be23", + "metadata": {}, + "outputs": [], + "source": [ + "path = './ref/'" + ] + }, + { + "cell_type": "markdown", + "id": "10d286f9", + "metadata": {}, + "source": [ + "## 1. Input file preparation\n", + "\n", + "The primitive cell of Ce$_2$O$_3$ contains 2 Ce atoms with 7 $f$-electrons each, so 14 in total. They are relatively flat, so there is no entanglement with any other band.\n", + "We start from relaxed structure as usual. All files corresponding to this structure should be prepared and stored in a separate directory (`save/` in this case). For details please look at Section III in [arxiv:2111.10289 (2021)](https://arxiv.org/abs/2111.10289.pdf).\n", + "\n", + "### DFT files\n", + "\n", + "All input files are of the same kind as usual, unless stated otherwise:\n", + "\n", + "Quantum Espresso:\n", + "\n", + "1. [ce2o3.scf.in](./dft_input/ce2o3.scf.in)\n", + "2. [ce2o3.nscf.in](./dft_input/ce2o3.nscf.in)\n", + "\n", + " - explicit k-mesh\n", + " ```\n", + " &system\n", + " nosym = .true.\n", + " dmft = .true.\n", + " ```\n", + "3. [ce2o3.mod_scf.in](./dft_input/ce2o3.mod_scf.in): new!\n", + "\n", + " - explicit k-mesh\n", + " ```\n", + " &system\n", + " nosym = .true.\n", + " dmft = .true.\n", + " dmft_prefix = seedname\n", + " &electrons\n", + " electron_maxstep = 1\n", + " mixing_beta = 0.3\n", + " ```\n", + "\n", + "Optionally:\n", + "\n", + "- `seedname.bnd.in`\n", + "- `seedname.bands.in`\n", + "- `seedname.proj.in`\n", + "\n", + "Wannier90:\n", + "\n", + "1. [ce2o3.win](./dft_input/ce2o3.win)\n", + "\n", + " ```\n", + " write_u_matrices = .true.\n", + " ```\n", + "2. [ce2o3.pw2wan.in](./dft_input/ce2o3.pw2wan.in)\n", + "\n", + "### DMFT\n", + "\n", + "1. Wannier90Converter: [ce2o3.inp](./dft_input/ce2o3.inp)\n", + "2. solid_dmft: [dmft_config.toml](./dmft_config.toml)\n", + "\n", + "Here we'll discuss the most important input flags for solid_dmft:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "165c087b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[general]\n", + "seedname = \"ce2o3\"\n", + "jobname = \"b10-U6.46-J0.46\"\n", + "csc = true\n", + "\n", + "eta = 0.5\n", + "n_iw = 100\n", + "n_tau = 5001\n", + "\n", + "n_iter_dmft_first = 2\n", + "n_iter_dmft_per = 1\n", + "n_iter_dmft = 5\n", + "\n", + "block_threshold = 1e-03\n", + "\n", + "h_int_type = \"density_density\"\n", + "U = 6.46\n", + "J = 0.46\n", + "beta = 10\n", + "prec_mu = 0.1\n", + "\n", + "sigma_mix = 1.0\n", + "g0_mix = 1.0\n", + "dc_type = 0\n", + "dc = true\n", + "dc_dmft = true\n", + "calc_energies = true\n", + "\n", + "h5_save_freq = 1\n", + "\n", + "[solver]\n", + "type = \"hubbardI\"\n", + "n_l = 15\n", + "store_solver = false\n", + "measure_G_l = false\n", + "measure_density_matrix = true\n", + "\n", + "[dft]\n", + "dft_code = \"qe\"\n", + "n_cores = 10\n", + "mpi_env = \"default\"\n", + "projector_type = \"w90\"\n", + "dft_exec = \"pw.x\"\n", + "w90_tolerance = 1.e-1\n" + ] + } + ], + "source": [ + "!cat ./dmft_config.toml" + ] + }, + { + "cell_type": "markdown", + "id": "7f970c47", + "metadata": {}, + "source": [ + "Of course you'll have to switch `csc` on to perform the charge self-consistent calculations. Then we choose the HubbardI Solver, set the number of Legendre polynomials, Matsubara frequencies $i\\omega_n$ and imaginary time grid points $\\tau$. In this calculation we perform five iterations in total, of which the two first ones are one-shot DMFT iterations, followed by three DFT and three DMFT steps.\n", + "For the interaction Hamiltonian we use `density_density`. Note that you unlike the Kanamori Hamiltonian, this one is not rotationally invariant, so the correct order of the orbitals must be set (inspect the projections card in `ce2o3.win`). We must also use `dc_dmft` and `calc_energies`, since we are interested in total energies.\n", + "Finally, we will specify some details for the DFT manager, i.e. to use QE, W90 and the tolerance for the mapping of shells. Note that this value should in general be $1e-6$, but for demonstration purposes we reduce it here. If `dft_exec` is empty, it will assume that `pw.x` and other QE executables are available." + ] + }, + { + "cell_type": "markdown", + "id": "47bb27d5", + "metadata": {}, + "source": [ + "## 2. Running DFT+DMFT\n", + "\n", + "Now that everything is set up, copy all files from `./dft_input` and start the calculation:\n", + "```\n", + "cp dft_input/* .\n", + "mpirun solid_dmft > dmft.out &\n", + "```\n", + "\n", + "You will note that for each DFT step solid_dmft will append the filenames of the DFT Ouput with a unique identifier `_itXY`, where `XY` is the total iteration number. This allows the user to keep track of the changes within DFT. For the W90 `seedname.wout` and `seedname_hr.dat` files the seedname will be renamed to `seedname_itXY`. If the QE `seedname_bands.dat`, and `seedname_bands.proj` are present, they will be saved, too.\n", + "\n", + "You can check the output of the calculations while they are running, but since this might take a few minutes, we'll analyse the results of the reference data in `/ref/ce2o3.h5`. You should check if the current calculation reproduces these results." + ] + }, + { + "cell_type": "markdown", + "id": "c74f73cb", + "metadata": {}, + "source": [ + "## 3. Non-interacting Hamiltonian and convergence analysis\n", + "### Tight-binding Hamiltonian" + ] + }, + { + "cell_type": "markdown", + "id": "f7f6d9a1", + "metadata": {}, + "source": [ + "Disclaimer: the bands shown here are only the non-interacting part of the charge density. Only the first iteration corresponds to a physical charge density, namely the Kohn-Sham ground state charge density.\n", + "\n", + "The first thing to check is whether the DFT Hamiltonian obtained from Wannier90 is correct. For this we use the tools available in `triqs.lattice.utils`.\n", + "Let us first get the number of iterations and Fermi levels from DFT:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1f204686", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fermi levels: [14.3557, 14.42, 14.4619, 14.495]\n", + "iteration counts: [1, 3, 4, 5]\n" + ] + } + ], + "source": [ + "e_fermi_run = !grep \"DFT Fermi energy\" triqs.out\n", + "e_fermi_run = [float(x.split('DFT Fermi energy')[1].split('eV')[0]) for x in e_fermi_run]\n", + "n_iter_run = !ls ce2o3_it*_hr.dat\n", + "n_iter_run = sorted([int(x.split('_it')[-1].split('_')[0]) for x in n_iter_run])\n", + "print(f'Fermi levels: {e_fermi_run}')\n", + "print(f'iteration counts: {n_iter_run}')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7fa4150b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2022-03-25 12:42:36.663824\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAGQCAYAAAB1UpekAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wcd5n48c/MbO9a9d4l95pip/eQhBKSQAJHh4MDfsBRjjuuQTj6cdzR4aihd3IJIT1ximvcuy1LVu+r7X1n5vfHSrJlrWTJlmwp+b5fr/XuamdnZte7s/N8y/NIuq4jCIIgCIIgCIIgCIuZfLF3QBAEQRAEQRAEQRDOlwhuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8GtIAiCIAiCIAiCsOiJ4FYQBEEQBEEQBEFY9ERwKwiCIAiCIAiCICx6IrgVBEEQBEEQBEEQFj0R3AqCIAiCIAiCIAiLnghuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8GtIAiCIAiCIAiCsOiJ4FYQBEEQBEEQBEFY9ERwKwiCIAiCIAiCICx6IrgVBEEQBEEQBEEQFj0R3AqCIAiCIAiCIAiLnghuBUEQBEEQBEEQhEVPBLeCIAiCIAiCIAjCoieCW0EQBEEQBEEQBGHRE8HtBSBJUpUkSV+VJOmIJElRSZJGJEnaIUnSJyRJss3RNpZJkvRNSZIOSJIUkiQpJUnSkCRJz0qS9FFJkpxzsR1BEARBEARBEISFSNJ1/WLvw8uaJEl3AL8E3FMscgy4Xdf1tvPYxseBLwGGaRbrAF6r6/r+c92OIAiCIAiCIAjCQiWC23kkSdJqYAtgAyLAF4FnAStwH/C3o4seBS7VdT1yDtt4I/Db0bsp4NvAU8AwUA98ALhq9PE+YKmu68FzeT2CIAiCIAiCIAgLlQhu55EkSc8C1wEZ4Bpd17ee8fg/AF8ZvftpXdc/ew7bOACsGL37al3XH8mxzB+Bu0bvflzX9a/NdjuCIAiCIAiCIAgLmQhu54kkSZcCO0bvfl/X9b/LsYwMHASWAn6gWNf19Cy24QLGemF367q+forlVgH7Ru/+Udf1e2a6DUEQBEEQBEEQhMVAJJSaP3eedvsnuRbQdV0DfjZ6N49sL+9smE67Pd2c3dbTbptnuQ1BEARBEARBEIQFTwS38+fq0esosGua5Z477fZVUy6Vg67rw8DI6N26aRatP+328dlsQxAEQRAEQRAEYTEQwe38WTp6fULX9cw0yx3N8ZzZ+N/R63WSJN02xTL/NnqtAj88h20IgiAIgiAIgiAsaNOVjhHOkSRJFqBg9G73dMvquu6XJCkK2IHKc9jc54FLgJuAP0uS9C3gabLZkuuA9wPXkg1sP6zr+pHZbkCSpIqzLGIClgCDwNDotgRBEARBEARBeOVRgMLR2wd0XU9eqA2L4HZ+OE+7PZPyPmPBrWO2G9J1PTLaY/sO4J+Aj49eTvcn4Cu6rm+f7fpHdZ3j8wRBEARBEARBeOW6FNh5oTYmgtv5YTntdmoGy4+1ZljPcXuXAG9i6nm3NwEDkiQd0XU9dI7bEARBEARBEARBWLBEcDs/EqfdNk251CljGYzjs92QJEn3AL8YXcd+4NPA80CY7DDne8nOuX0/cI0kSTfput4/y82cbbh0ObAN4Mknn6S6unqWqxcWu2Qyyfbt2YEBl19+OWazSMqdi3ifhLkkPk/TE++PAOJzMFPifRLmUkdHBzfffPPY3aELuW0R3M6P8Gm3ZzLU2D56PZMhzOMkSSoGfko2sD0EXKHrevS0RdqAL0qStAN4ElgOfBN4w2y2o+v6tPOGJUkav11dXU1jY+NsVi+8DMTjcVpbsxWn6uvrsVrPdRDCy5t4n4S5JD5P0xPvjwDiczBT4n0S5tEFzcUjsiXPA13XE2QTOgFMm4xJkqQ8TgW3s53bet9pz/3CGYHt6fvzNNkkUwB3jW5TEARBEARBEAThZUMEt/NnLCtxgyRJ0/WQL8nxnJk6vXTQ7rMsO1ZrVwaaZrkdQRAEQRAEQRCEBU0Et/PnxdFrO7B+muWuPe325llu4/T6uWcbYm6c4nmCIAiCIAiCIAiLnghu58+Dp91+Z64FJEmSgbeN3g0Az85yGydPu331WZa9ZvRaB9pnuR1BEARBEARBEIQFTQS380TX9R3AC6N33y1J0sYci32cU0OLv67revr0ByVJeockSfro5TM5nv8I2WAV4F8kSSrPtS+SJL2XbLkggG26rvtm8VIEQRAEQRAEQRAWPJEteX59hOxQYyvwhCRJXyDbO2slmwzqvaPLHQf+a7Yr13X9qCRJPwHeRbYczx5Jkv6HbFA9VgroPuDNo09RgX8+1xcjCIIgCIIgCIKwUIngdh7pur5HkqR7ydahdQFfyLHYceAOXdfDOR6biQ+Qndd7L1AIfH6K5aLAe3Vd33SO2xEEQRAEQRAEQViwRHA7z3Rdf1iSpFVke3HvIFsaKAWcAH4PfEvX9dh5rD8J3CdJ0veBdwAbyPbimoEQcAx4Cvjfs9WrFQRBEARBEIT5ous60WiUUChEIpFAVS9oCVThHBgMBpxOJx6PB4Nh4YeOC38PXwZ0Xe8APjZ6mc3zfgr8dIbLPsvsE1IJgiAIgiAIwrzTNI3Ozk7i8fjF3hVhFjKZDIlEguHhYWpqarBYLBd7l6YlgltBEARBEARBEOaNruuTAltJklAU5SLulXA2uq6P967ruk53dze1tbUL+v9NBLeCIAiCIAiCIMybaDQ6HtgqikJJSQkOhwNZFoVbFrp0Ok1PTw/xeJx0Ok04HMbj8Vzs3ZqS+EQJgiAIgiAIgjBvQqHQ+O2SkhJcLpcIbBcJo9FIUVHR+P1oNHoR9+bsxKdKEARBEARBEIR5k0gkgOxQZIfDcZH3Rpgtq9WKJEnAqf/LhUoEt4IgCIIgCIIgzJuxeZuKooge20Xo9PnRmqZd5L2Znvh0CYIgCIIgCIIgCIueCG4FQRAEQRAEQRCERU8Et4IgCIIgCIIgCMKiJ4JbQRAEQRAEQRAEYdETwa0gCIIgCIIgCMICUlNTgyRJbNq06WLvyqJiuNg7IAiCIAiCIAiCIExv06ZNbNq0iTVr1nDnnXfmXEbTNB5//HF27tzJSy+9xM6dO+nr6wNgz549rFmz5sLt8EUggltBEARBEARBEIQFpL6+HovFgs1mG//bpk2buP/++3n7298+ZXAbCoW4/fbbL9BeLjwiuBUEQRAEQRAEQVhAnn766XN6nizLrFmzhksuuWTC5ZVCBLeCIAiCIAiCIAgvAy6Xiz179lzs3bhoREIpQRAEQRAEQRCEBeTMhFKSJHH//fcD8MADDyBJ0vilpqbm4u3oAiN6bgVBEARBEARBuCh0TSPpC1zs3ZgT5nwPkjw/fYdXXnklnZ2ddHV1UVRURGNj4/hjpaWl87LNxUgEt4IgCIIgCIIgXBRJX4A/FW282LsxJ+4a3Iql0Dsv637xxRf5zGc+w/33389tt93GT3/603nZzmInhiULgiAIgiAIgiAIi54IbgVBEARBEARBEIRFTwS3giAIgiAIgiAIwqIn5twKgiAIgiAIgnBRmPM93DW4dc7Wp6oasViKaDRNNJZCzWhztu7pGI0KAdWAO57GYjEgSdIF2a4wkQhuBUEQBEEQBEG4KCRZPq8kTLquk0hkiERSRKIp4nENMIDBgOSyXrBgRwdG/AlG/AkMBhmn04zTYcJmMyHLItC9UERwKwiCIAiCIAjCopJMZQgGEgRDCdLpc+udlWUJg1HBYJx+pqaa0UinVTRVn9F6MxkNvz+O3x9HliVcTjNerxWLxXhO+zlG9AafnQhuBUEQBEEQBEFY8FRVIxRKEgwmiMXTM36eYpAxmQ0YjDIGo4LRpGAwKsjK7IJFTdVJp1QyaXX8OpVU0dSpg2tN0wkEEwSCCex2E16vFYfddE6BqtVqBSAej8/6ua8UIrgVBEEQBEEQBGFB0nWdaDRFIJgkHE6i62fvPZUkCbPVgMVqxGIzYjAqMBZL6iCTQdZTyJkMsp5BQs2OK865MtCR0SQjmmzAYDGgWc2n7SCkkhni0RTxaJpMWp1yv6LRFNFoCpNJId9rw+22zGrIcn19PQA7duwgGo1it9tn/NxXChHcCoIgCIIgLHIjIzGOHh/m+PFhWttGSCQy6Dro6KCDroOm68iSRGmJg/r6fBrqvdTXebHbTRd79wVhkkxGIxBM4PfHSU8TMI4xGBUstmwwa7YYkEaDRkVLo6hxFD2dDWT1DLPqMx0PeuOgjv1JQpMMoxcjstmCyWLDnQ+ZlEo8miYeTZFKZnKuMpVS6esPMzgUJS/PijfPgsGgnHVXbrnlFgoKCmhvb6eyspLm5mbMZjMlJSX85je/GV/uda97HZs3b570/Ouvvx5FObWd4eHhGb8Ni4UIbgVBEARBEBaReCLNtu1dHDo8yPHjwxw9PszwcOyc11da6qSh3ktDfT6XX1bBujVlGAyiWqRw4em6TjyewR+IEwqdvZdWViRsDjN2pxmjORu0SbqGQUugpJMYtCQS0wwZzuioSRUtrTF11y3IBhnFrCCPzs2V0FH0NIqeBuKY1RCqZCQjW5ANFgx5Fpx5FtSMRjSUJBJK5Jyvq6oaw8NRRkZieL028r1WFGXq757T6eSpp57i05/+NFu3buWll15CVVWqq6snLBcMBvH5fJOeHwgEplz3y4UIbgVBEARBEBa4TEbjpZ3dPPp4C89saiMWm/l8w7Pp6wvT1xfmhRc7+MkDu3G7zFx7TS03XF/H5ZdWYDaL00VhfmmaRjCUxO+Pk0jk7u08ndVuwuY0YbEZkSQJWc9gyESyQa0++buhpXUyiQxqUkVNaWip7PUMRjhPIEmgmLKBrmKSkc0KBosB2SBlg101jVkNo0kGMrKZjGxF8VpxeizEIinCwQSZ1OReaE3TGR6O4vfHKSyw4fFYaW9vz7kPq1ev5sEHH5x2Pzdt2jS7F/YyIo5WgiAIgiAIC5Cu6xw5OsSjj7fw+BMtDPvOvXd2NoKhJA/95SgP/eUoNpuRq66o5obr67jmqhosFnHqKMydRCKNP5AgGEygadNHmkaTgt1pxuY0ISsykq5j0OIY1TiKnpqwrK5DJpYhHUmTjmZQzzGb8pl0HTJJjUxy4voMFgWT04jJYUQ2ych6BpOawaRGUSUjacWO5LRid5pJxNNEggkSORqoVFWjfyCCbyROUaEdl8ssMiTPkjhCCYIgCIIgLCDpjMpfHz3Oz3+5l7aT/hk/z2hWKKv2UFaTh9NjAUlCItvbNHY7k9EY6A7S3xVkuDd81oAiFkvzxFMneOKpE7hdZl77mqXcc9dyKivc5/UahVeusYzH/sAMemklsNnNONxmTGYDSKBoSYzpOAYtgXTaUGItrZOKpEhHM2RimVn3yp6PTEIlk1CJDSUwmGWMo4GuYlayPbqZACbC2SDXasNic5JOqYQDCWLh5KT1pdMqPb0hfCMGioocOMS8+BkTwa0gCIIgCMICkEqpPPSXI/zkZ3vo6wtPu6wkS9QtLaSyIZ/y2jzKa/MoKHEgTzNf70zplMpQb4i+zgB9HUFOHBigu21kyuWDoSQ//+Vefv7LvVyxsYo33rOCKzdWTTtHUBDGpFIqqgotJ3xnbVRRDDIOlwW7a6yXVsWoRjCqMWRODevVNZ1UKEUymCaTOHvSKQDZoKBYzSgWM4rFgmI1I5tNo61AWdLEf9DSadR4EjWRRI0nsreTqVyrH+3ZTRIfTqKYZMweE2a3CVlWMashTGqYtGJDMtrxFtlxeiwEfXESscnrSyQydHYGcDhMFBc5xBSBGRDvkCAIgiAIwkWUSGT48/8d5oGf72FwKDrtshV1XtZdU82aK6tx5VnH/65oSRzJLpzJPhzJAUxqONurpeujvVs6kq6jSQoxUwFRUxFRUxGWyiLKavLG1zMyFOXg9i4ObO+m/ejQlL1fW7Z2smVrJ6WlTu55/XJef+cyPG7LXLwdwsuEpukcODTA88+fpKgwRWGBlbw8O7IydWBrsRlxuCxYbMbRXtoUpnQUg5aYsFwmliEZTJEKp8/aQ2t02DC6nRgcNhSLGdk4+/BHNhow2KwT/qZrGmoiSSYaJ+UPkQ5FJj1PTWnEBhPEfUksHhOWPDOSAiY1ikmNkpatSEYnBaUOkvEMQV8sZ4blSCRFNDqC12ujIN8mGpSmIYJbQRAEQRCEiyCZzPC7PxzkZ7/Yg28kPuVy3iI7666uYd01NRSVuwAwZcIUBnbgSnbjTPZhTY/MuLxJXqJj/LYOJBUXUXMRfmstZs8SvK9ewjWvXkI4EOfQSz3s29JJy4GBnOvq6wvzze9s4wc/2slrXt3Mm+9bTXWVZ4Z7IrzcxBNpduzo5rkX2nn+hXZG/NnP9Yc/0DzlcxRFxu4yY3OaMRjH5tLGMKlRZP1UoKdldJKBJMlQCi09dUQrKTJGlxOTx4nR5TinYHYmJFnGYLNisFmxFHrRMhlS/lDOQFdXdeK+JImRJGa3CYvXjGyUMWpxDKlEdriyxYG53EU8liLoi0+ql6vr4PPFCAYTFBXZcbssYj5uDiK4FQRBEOZEOJIkFEoSi6WJxdPEY2niiTSxWJp4PE08nkFRJCwWIxaLAbNZGb9ttRiwmA3k59tEAg3hZU/XdZ56ppWvf3MrvdMMP65uKuCme5azZG1pNiOslqYgfJDi8H7y4m3IOUqXhHvi+A75iA0l0FUdTdXRNX38tmyQcFXacdc6cdU4MZgVLGoISyxEfuwE9b4nCZtLGbIvZdi+BOfNDWy4uYGhvjBbn2jhpWfaiEcnJ8JJJDP8/o+H+MOfDnH1VTW85U2rWb+uTHyXX8Y0TaevP0xb2witJ/3s29fH9h3dJKao7Xomi92Ew2ke76WVtQzGTBijGp8wlzYdzZD0J0lFp16vbFAweT2YPNkeWkm+8D2bssGApdCbDXTTGVKByYGurkMikCIRSGF2GbF4zShmBdPokOukwQk2G1abiWg4SXAkjqZOTF6VyWj09obx+xOUFDuwWo0X+qUuaCK4FQRBEGZE13VGRuJ0dQfp7gnS1RXKXncH6e4OEQgmzr6SGbBYDBQXOSgudlBcZKe4yEFRkYPSEge1tV5KSxzihFlYtA4fGeSr/72Zvfv6plymfnkRN92znIYVxUiShDveQUl4P4XRIxi0U8lnkmGVoX0+fIdHGDkWYORYkPQ0AcCZJBnsJTbctU48dU6K1xVQuMqLK9mHK9lH3cgzRE1FDDqWYyxcw2vfvo5X3beKvS92sPnxFnraJie70nV4frTXbklzAW++bzW33NSAyaTM7o0SLihN00kkNNIZnb6+MJKcIJ1SSaVVkimVdEolFk/T2Rmg7aSf1rYRTrb7Z1S253SSDG6vFZvTjGKQQdcxanGMamxCxmNdg2QwSTKQQk1NnenY6HJgLsjD5HFelIB2KrLxVKCbiSdI9A2RHAlOWCYZSpMMpTG7jVgLLMgGsGSCmKQoScWJ3WXB5jAR8scJBxOTyvDG42lOtvvxeCwUFdoxGMR3DERwKwiCIEwhkchw+Mgg+/b3s+9AP/v3989ZAHu27XZ0BujoDOR83GE3UV/vpbEhn4b6fBpGbzud5nnfN0E4V4ODEb713e385a/HplymaXUJN9+zgtqlhQDkR49RM/I8zlT/+DJaRqf7hT7aHu1iYNcw+nlUONE1iPTGiPTG6Nk8wKGfn8CcZ6LiqhIqry6haF0+jtQgjpFBakaeZ8ixlB73pVx2Yz2X3lBHZ4uPzY8eZ++WTjR1ci/y0WPD/Pv9T/O1r2/mda9Zyt2vX0ZFuciyfDpd1wmHkwz7Yvh8cUb8MaLRiaNfVDU7d3osB5PBIGMyKhhN2WuTScFgGLuW0TQdXddRVZ10WiUSSRGJJIlEU0QiKcLhZPZvo/cjkRTRWGp87urXvvGHOX2NxRUu8kscOPMsmC1GnHnWKXtp1bROwpcgFUpNOZdWNhowF+RhLshDMS/8LMIGqwVHXSXWsiLi/cMkff4JgWoymCYVTmP1mjF7zchksGb8qKqJpMGFO9+G3Wkm4IvlLB8UCCQIhZIUFtjJ81qRX+GNvyK4FQRBEADwB+Ls3tPL/v397N3fz5GjQ2Qyc1MbcC5FoqlswL2/f8LfS0ocrF1dyto1ZaxfV0ZNtUf08AoXXTyR5ue/2MtPf75nyl6u2iWFvPpta6huKgByB7Whrjgn/q+N9id7SIUmn+DmIptNKGZTNomOxYxiNqHrOtH2HvRM7n1J+lO0PtxJ68OdmFxGyq8opuqGMkovLaQ4cpDiyEFC5lJ6XZcgN6yg+iNXcMdb1rD5seNsfeJEziHLgUCCB36+h5/9Yg8bN1TxhruWc9WV1a+opDihUIKW1hFaW0fo7ArQ3ROiuztIT2+IZHJmWX4XC0mWqF1SyPJLy1l+STkFpU5sgT4MaMio2FLDKPppnxMdUpEMSX+CdHzq98LkdmAu9GJ0OxflsV2xmHHUlGMtLSQxMExyyI8+GsHrGsSGkySDKayFVkxOI4qewpYeJi3bSBqdFJQ6SUTTBHxRMmfU7dU0nYHBCP5AnJJiJw7Hwg/654sIbgVBEF6hdF3n5Ek/z7+YHUK4/+DAWcszzIQkgclswGQxYLaMXRsxmpVs2YakSjqVyV4nM6RS2eszf6xnq78/wqP9LTz6eAsAeXlW1q0pZd3aMtavLaO+3vuKOpkWLi5N03nsiRa++e2tDAzmzoDsLbJzx1vXsGpDJZIkkR89Ts3IcxOC2s7n+jnyqxP4jwdzrmOMe1kDBVeuo/Cq9RReuQ5HbcWUwzTVVIrIiU6Ch0+MXloJHjpB8FALp3eXpUJpTj7WzcnHunGU22i8s4a62ypw0Ydr6GHqfE/R51pPt/tSbv+bNdx413J2bjrJ848cw9c/OXOsrp/KslxS7OA1r17CzTfWU1/nXZTBylT8/jiHDg9y8PAAhw8PcrzFd9Ys2IuZ1W6kuNJNcYWb2iWFLF1fhn10JI0xE6EgtBstCZJiRTY4xwNbLQOJkTjJYGrKEQiSLGEuyMNSlI9ieXmMzlHMJuxVZVhLCon3D5EYPFV+S03rRHpjGK0KtiIrikXBqMUwpBLZ+bh2G8U2N5FAkpA/Ph4cj0mlVDq7AjidZoqL7JhMr7xQ75X3ii8CSZKqgA8DdwBVQBI4AfwO+I6u67E53NZNwFuAq4BSIAMMAPuBp4Gf67o++RdHEBYZXdfHAzFdzwZUInA5u3RaZfeeXp5/oZ0XNnfQ3ROa9ToUg0x+sYP8YgcFpQ7yi53klzgoKHHg8towmZVzOlHNpFWCI3GCvhgBX+y06ziB4RjD/eGcQ7Km4vfHefrZNp5+tg0At8vMNVfXcP21dWy4vBKLRfwECvNj34F+/uu/N3PwUO4Mw2argZvuXs5VtzdjNCm44p00+J7AlTw1D7d32xD7f3iUQGvu76jJ66H2ba+j5MaNFFyxFrPXM+P9U0wm3MsacC9rmPD3eP8Q3X9+ks4/PsHgph3o6qletEhPjD3fPsyBHx+j5tYKGu+swV0N1YEXqQhuZcCxkm7PRq68rYmNtzRweFcvL/z1GK0HB3PuQ/9AhB/8aCc/+NFOqqs83HB9HTdeX8fSJYWLKtCNxdIcOTbEoUMDHDo8yKHDg9MmCVtsZEVCUWQMRhmDUSGv0E5ZTR7FFS6KK92UVLpxeiZm7bWlhsn376QgegxXsgcJaLVeR1rJlopKRVQSvvi0dWllkxFLkRdzQR6y4eV5rJZNRuxVZZgLvcQ6eklHToUD6bhKsCOC2W3EVmhFUjQsmSBGNUbC4MaZZ8HmNBH0xYlFkpPWPTb0PN9rpaDAhryA5iPPt5fnp2UBkSTpDuCXwOmTTGzApaOX90iSdLuu623nuZ084CfA63I87AIagbuBrcDe89mWIFwI8Xiajs4A7e0BTnb46eoKMjwcxR9IMOKPEwjEJ83HsdmM5Hms5OVZyMuzUlXpob7OS32dl7raPOz2V+YwnUQiw+atHTz9TBsvbu4gEs1deD4XSZYorXJTs6SQmuYCqpsKyCuwIY82JEh6Bks6iDXjx5LuxRSLIEczyFoaRc8g6xlkPY2sZW/rkkJGNqPKptHr0duSmYxiJc/tJlHgIa0UTdoXXdcJDMfo6wzQ3xmkryNAf2eAgZ5Qzvl+ZwqGkjz8yDEefuQYFouBKzdWcf11dVx9ZbWYryvMid6+MN/89lYef/JEzsclWeLyG+u49d6VOD1WTJkQ9QNPUxQ5OF7GZ+hgkL3fO4Tv0ORkTQDeS1bQ9MG/oere2zFY57aurLWkkMb3v5nG97+ZxPAIPQ89Q+cfHmfgqa1o6WzDUiaucuLBDk482EHx+gKa76mlbEMRZeG9lIb34rM10uXZyIrLqllxWQWDPSG2PtHCzk0ncw5ZBujoDPCTB3bzkwd2U1bq5Ibrsw1QK5YV4XItnNq5qZRKy4lhDh0e4tDhQQ4fGeRku39ORrxAtgfU4bZgc5gxWRTMFiMms5I93kqMf0bUjEYmo6GmNTIZlUxaI51SiYQSxCMpkonMjI6JM6GpOpqaTSgFaSLBBJIEngIbDpeZfEcKR7wXW2oYe2oIT6ITW9o3YR06CumEnK3fqmWIRKfuYzE6bJiL8jHluRZVI8f5MFgtOJtrSY0EiXX3o6VPTRlIBtOkIxlsRRZMLhOKnsaeHial2EgpTrzFdhxuM/7hKOnkmaWDdIZ9MQLBBIWFdjzuV0bpIBHcziNJklaT7Z21ARHgi8CzgBW4D/hboBl4RJKkS8+1R1WSJDfwJLB+9E+PAL8h2zusANVkA+l7zvnFCMI8SmdU2tr8HDg4wKHD2dbvtpOzP2GIxbJlZ3p6x3o6OiY83lDvzQ5RXVfGujVl5Ofb5ugVLDzxRJrNmzt58pkTvLi5g3h8ZhktjWaF2uZCapYUULOkkKqGfCw2I4qWxJXowZnci83nw5L2Y0kHMKvhGdfWnI2MZCRh9JAweMavo6YCTN5S8grLWba+/NSyaZXBnhAdx320HR6k9fAgoWlqhkI24B/r1TUYZC5ZX87NN9Zzy00Nr9hGEOHchUIJHvjFXn71m31Tzp9sXFnMa96+lrKaPCQ9Q6V/M1X+FzCMDtEMtMfZ8639DOwanvRc2Wyi+r47aPzAmym4bNW8vpYxlgIv9e+6h/p33UNieITWH/6Blm//klj3qSHTA7uGGdg1jLvOyZJ766i+oYyCWAsFsRZC5jK63ZcjlS3lde9cz21vXs3eFzvY8sQJultHptxub1+YX/xqH7/41T4Aaqo9rFhezMoVxaxYXkxDgxfjBcgKG44ksyVu2vwcOz7M4SODHG8ZJn0e0ycUg0xRuYviChcFJdkRL/nFDjyFdpxuC8ZzyCg9Mhhh25Mn2P50G9HQ5B68uabr0HHcR8dxH4/9ej/F7jRXL41x1dIol9THsRizv9saVnwnNU784SBdT56g9KtLsDdZMOX42ZUkCVO+G0thPga7dd5fw0IkSRLmfA9Gj5N47yCJgVMNBJqqE+mLYwylsRdbkY0yJjWGUU2QNLjAYqW43D1aOig2qWEjk9Ho6wvj88UoLLC/7MvtSWeO1RbmjiRJzwLXkR0afI2u61vPePwfgK+M3v20ruufPcft/Ax46+h23qLr+m+nWE4CFF3XZ5e3/ezbrwC6AI4fP05jY+Ncrl5YBOLxOE888QQAt9xyC1br1D9Ouq7T2xfm4MEBDh4e5NChAY4eG55xXby5tKS5kOuuqeG6a2ppbMyf94P9bN6ncxGJpNiyrZOnn2nlhc0dMy7R4M63seySMpatL6dhRTFGk4I15cOV7Mad6MaV6MaeGpqQ0XKMmtaID8aJDmQvyWAKLaOjZzS0jIaW0cevdVXDYDVgchoxuUyYnEbMTiMmlxGT04Qlz4TBOn2bqw6kFCdhcwkRc+nodQlJw6nBMbquMzIYpe3wYPZyZCjn/L9crFYDt97cyJ2vXcrK0TIsC9V8f54Wuwvx/sTjaX792/088Iu9hMO5A4uCUieveftalq0vG59XW+97Els6G+ClYxp7vn2Qtke7JpX6kE1Gmj/yNpZ+8j1YCrxzvv+zpaXTdP35SY59/WcMb9kz6XFbkYWme2qpf3UVxtHvclJx0OdaS69rHSmDC4CuEz52v9DO/m3dBH2zm5llMimUljgpKXFQUuygpMQ5fl2QbxutoT1aR9tsIJ1O8uSTTwLZz4HJZCaVVgkFk/gDcfz+OCP+OH19YXp6Q/T0hOjqDk45T3qmjGaFilovlY1eKuu9lFbnUVjqzJa/OZOuYVIjmDOR8XqnipZC0VMoWgpZVwEtewwenYfT3qPxq4fivLR/6qzCF5rZqLOhMs4lXTuQtuyb8Hku//onsTdVYyvIp5hsXVbFbMRcmI+5wPOyHXp8rjLxBLHOXtLhid8PSQJrvhmL1zLela9KJhIGN5psQFN1Qv44kWkqG5jNBooK7Tgcpln9xrW0tJDJZDAYDGc9129paaGpqWnsbqWu690z3tB5EsHtPJEk6VJgx+jd7+u6/nc5lpGBg8BSwA8U67o+8wll2XVcBbwwevczuq7ff+57fW5eTsGtruvEYml8vlg2Lf9IjFAoicViwGE3YT/9YjPidJpF7T5yn0Tquk4gmKCzK0jnaFmX48eHOXh4kEBg/svJzFZZqZObbqzn1psbWdJcMC9BzVyfbOu6TkdngBc3d/DC5g727O2bcXbjygYvy9aXs+yScspqPBi1OPmxE+RHW/DE2zFpE39Q474EvsPZOpqR3ijRgTixwTiJkeR5lSI5kyXfjKvCjqPCjrPCjrPSjrPCgbPchpzrpHBUSrERsFTjt9YSsNYQN+VPeHxkMMKhl3o4sL2bk0eH0GcwKqC+zsudr13KHbc343EvnKGRY0RwO735fH9SKZU/PXiIH/54FyP+3KMErHYjN79hBVfc2ojBmG0wavA9QX7s1JDlk0/0sufbB3NmP66851bWfOkTOOur5my/55Jv5wGOfePndP7mr+NDlscYHQYaX1dD4+urseZnvzsaMsP2ZnrclxK0VgPZY1jXiRH2b+vkwLZufANznxJEliWU0Z9pTSNbVmcetlFS5aaqMZ/K+nwqG7wUV7on5YEwZiI4UgPYU0NY0yNY0yPY0iOYM6GcjYe59I4Y+N6TXh7d40TXp/+dcuVZqVtaiLfYgctrxZ2XrS8ryxKSlB0mL8kSsnTqfjyaJuSPj1/C/jhBf5ywP4F/KDo6PPns6v2tbOh9idJodt756cFtpTsPc1E+RpeoWT4dXddJ+vzEuvrR1Yk/tIpZxl5iw2A5dQ6aUuykFCe6JJFOqQSGYyTjU4cVVquRwkI7jhmOVhLB7SucJEmfB/559O4GXde3T7HcP5Edrgxwi67rT85yO78B7iU77Ln0YiSLWqzB7cBAhL37+9i3v5+jx4YZHo4y7IvNqiC5JEFVpYempnyaGgtobiyguamAggLby/KA7ffHOX7CRyAQJxRKEgxla6uNjERpbe0mHteQDTYi4RTBUOK8hm9B9v31FNopKnNRVO4kr8COw23B4TZjd5oxmE4lLtJ1nVg4RSSUIBJMEvTFGOgO0t8VxNcfmdUQ56pKN7fe3MitNzdQVzd3vSVzcbKdSqns2t2TDWi3dNDdPbOEUJIsUbeskFUbqlhxWTlurw1baoj86HHyYy24E93jJ1dqSmXkeBDf4QC+IwF8h/3EBi9ug4QkS7iq7OQvyyN/qYf85V7c1XYkOff3LGFw4bfWELDW4rfWjPcYAUSCCQ7vzAa6x/f3o56lQcBolLnhujruuWs569aWLZjvtghupzcf7086o/LXR4/z/R++RP8UowFkWWLjrQ3c8saV2J1mFC1Jtf8FKgLbkcl+1sJ9KbZ/YSfDByfPq/VesoJ1//0piq665Lz390KI9Qxw9L9/yonv/YZMdGKjmGyQqLy2lMbX11CwPG/87xFTEQPOlQzal5E0eoDRUT3tAQ5s66LlwAA9J0fOO4P6fCksc1JZ76WyIZ/Kei9ltXmYzBN7Hg1qDFeiB1eyB2eiF0eqH7M6fW+wpkqkEzLpBGQSGpm4SjqmoqkQS8n8+mABfz3hJaNNfQyqX17E6iuqaFhRTGFZ7pI5kq4i6RqgI+nZHmEJDXQdVTajycac686kVVoPDXJkVy+HdvXgn0HvdnWwkw29O7jqf/4Wx9I6rF4PTc3NZ32eADU1NXR0dPDUE09waXUj6dDkY47ZbcJWZEUabUfRkUkaXKQVK+iQiKcJjsRJTzM6zmYzkpdnxenINnxMRQS3r3CSJD0PXA1EAc9UQ4ElSdoIbBm9+1ld1z89i22YgCBgAX6v6/obR/9uAMrJDgjp13V95tljzsFiCG51XaflhI+9+/rZt7+Pvfv76ZvHbIZ5eVaWNBdw+aUVXLGxalGWOUhnVFpafOw/OMCBg/0cODgw40DqXBWUOKhsyM+2fjfkU1bjmXTCMEbWUih6+rQfaVDlbFKiSa8lpdJz0p+dj3lokPajQyRn2IjRUO/llpsbuOWmRqoq3Wd/wjRmO3y7rz9Ca6uP1rYRTrSO0No2wsl2P6kZtpxLskTD8iJWbqhk5eUVON0W3IlOCqNHyY8ex5oJjC8baAvRu22Qvm2D+I4E0DJn/20welzYK0uwVZZiG7025bmQFCVbgkSSRnsGsrcBUiNBEgPDxPuHSfQPkRjwZYvaD/rQtdmdyBosCnnNbvKXeihcVUjR2nyMlsnfMx2ImooYsi9lyLGUmKlw/LFEPM3RPX3seaGdI7t6z9oIsnRJIW/7mzXceEM9hml6ki8EEdxOby7fn6HhKH9+8DB/fPAwQ9OUdFlzRRW33LuSovJsY0pxeD91vqcxq9mTUlWVOPijoxz9XSv6GT2ItooSVn/xY9S8+TVTlvBZyJIjAY5/+5cc//rPSPoCkx73NrtpvKuGquvLUIzZ16cDYXMZQ46lEwJdyAZSfR0BOlp8dLb46Dw+zPAMpxfMFVmRKCx1UlzppqIuO7y4ot6L9YyeLklXsScHcCV7xgNaa3okZz6CTEoi0p8m2BbAf3SIUGeESF+M+FCCdDT371Kru4anam4gbHbmfNxiM3LJtbVsuKWBktHfKaMaxRPvwB3vwJoJYM6EMGfCGLT4tHkSdLLDXFMGJynFTnL0OqU4iRu9+K01qIoFXdcZ6A5xZFcPh3f10n5seNoRMf/6T6uoq3Vjt1sW5HniQjQW3D777LNce+21JIf9PPHnh3hx5w5WNjVz+3U3AtnPqa3EhsmRPV/q6e3nR7/4A9v3HOLY0WP4fMPEolHc7jyWLl3JnXfey6tum5x/1qDIeDwWPHlWTMbJoxJFcPsKJ0nSEFAA7NN1fc00y+UBY5kVxgPUGW7j9KHPHwN+TbYX+A2AffTvCbJJrD6n6/qWSSuZAws1uNV1nSNHh3jy6VaefOrERU3NX1RoZ8PllVyxsYrLL63AvQCHOOq6zvEWHy+82M6WbV0cOTo4r4Xl7S4zVQ35VDbmU9WQbQG3n5Gx1pQJY08NYk8NYUsNYU37MasRTJkwip7K+QOtI5GRLSQNDuLGfGLGAqKmAiLmkvGgRs1onDw6xKGXujm4owf/DOsPLltayK03N3LzTfWUFOc+yRijqhojI3H6ByIMDkboH4jQ2xtg/4E2ojEVr9eLwWBAlgBJQpal8dvBYIK2thGisyh7M0YxyNQvK2LVxkpWXFaBw2XOBrSRwxRGj546yU6pDOz20bttkN5tg8QGpk7AZMpzk79hNQWXr8Z7yQoctRXYKkswOh2z3r+paKpKvHeQwIHjBA8cw7//GIH9xwkdbUPPzKwhQpIlvEs9lF1eROUN1TjLjORqU4oaCxl0LGXIsWxCoBscibFz00l2PN121uGRJSUO3nzfal7/2qUXLQGVCG6nd77vj67r7N7bx+/+cIBnnz1JRp268WXpujJe9aZVlNdmeycdiV4ahx/HnTx1Pte/L8KOz28nNnTGKAhJovnDb2XV5/4eo8POYpeJxmj98R858tUfE+vsnfS42WOi/tVV1L6qAmf5qdd7eqDrt9YRMRUx3h01KhpKMtgTIuCL4h+KERiO4R+OEhiOERiOTpmNeSqSLGFzmHC4zHgKbHiLHHiL7HiLHBRVuCgsdWLIcZJvTgcmBLKOZD9Kjj6MTAr8JyIM7OzDfzyI/0Ro2mPtmaIGG89WX8PR/Nw9nWaLgWtft5RrXt2MxWrElAlTGtpLYfQw9tTgvCT705AJWirx2RsZsTWMH0OjoSSbH2/hxUeOEYtM7lP58Aeaqap0UlDgoKmpSZRim4Ebb7yRnp4efvazn3HZZZcB8O//+m/8x+c/x313vJZvfebzE5Y32g04Su088sRTvPbedwGQ7/VSXFqKLMt0dXYSDAZH130b//W1H2A05u6ldzrM5OVZsNtPzcsVwe0rmCRJFmDs6PWIruuvPsvyEbLB6DZd1zfOYjtvB346evefyQa4BVMsrgEf13X9f2a6/tO2U3GWRUqAlwAOHDhAfX39bDcxZ7I9tCM8s6mdZ549SU/vuQe0ZqsBp8eKzWEinVJJxtMk4mkSsfR5pdiXZYmlSwq4cmMlV15RSX1d3kXr1U0mM+za3cfmrV1s2drF4NCclVweN1YTtaDUOWEol7fIPuF1S7qKI9mPK3EqiZFFnb6nWE1raCmNTFJFS6koFgNGq4Jizj0POiVbCVkqCVirGLHVEzMVjQ+F27elk72bOxiZYRKRuloPJcUOiorsFBTYiEbTDA1FGRyMMjAUZXg4Ni9zu3Jx5VlZsq6UpevKaFxVgsViyBnQpsJpul/sp/vFfgZ2+1Bz1RiUZTyrmsm7bCXeS1eSd9kqHA1VF+0zqiZTRI63EzxwnJHt+xh+YRfhozOrnGZyGSm5pJDq25soXuXCYJz8escC3QHnKhLGbGCiaTqthwbY/lQrB7Z3Tzts2W438rrXNPOGu5ZRVHRhA5NEIsHzzz8PwDXXXIPFsvAazS6mc31/+vsjbN7axYMPHaXtZGDaZeuWFXLbm1dTuyR7gm/KhKgd2URJeP/4MP9kTGbb53bQt3VyzVtHUw3rvvcZ8jesmfkLWyS0dJqePz9F67d+iX/nwZzL5DW5qLq+jKrryrCXTGx8yEhGwpZyQuYKgpZyQpYKMsr0Ge41TSeTVkknVdKpDOmUOn4BMBhkFKOCwShjtZmwOkzTDsOEU42szmTfeDBrmmJ4cXQ4w9CeQYYO+Bg+6CfUET7nnAStnloeq72JuHHya1YMMlfc2siNdy3D4bbgibVRHtpFfvT4+ND38fdE1YgPJ4kPJ4gNJbJJ/9Iauqqjqdnr7G0dXdMxWA1YPCbMoxeLx4zZY8LkyB0ExQ0efLYGfPYm/NY6EokM2544wXMPHyV8Wn6NseA2L8+O2VKI12ulIN921vdfmOj+++/ns5/9LG954718/R//bVJvuSRBR6CH3UcPcPMNV1NZUYaORFqxE9Mt/OLnP+Oj/++DqKrKP3zyM7zjHe+fdntGo4LTmc0z09fXSSaTQVEUqqqmzwXQ2trKypUrx+6K4HaxkySpEBirWv5bXdfvO8vyA0ARcFDX9ZXTLXvG8z4KfG30bhIwA38BPkM2UZWbbG3bL5GtdasDd+i6/uiMX0x2OzP+kPzwhz+koGCq+Hr+RCIqew/E2Lsvhm9k5nNmLTYj1U0F1C4poKgiW4g8e7FinqJVUdd1MmmNRDyNfyhKX3uAnnY/ve1++toDMx7uOsbtUmhqtNDUYKGm2ozBML8H+pGRDCfaErS2JWlrT5KZwfDT0xnNCnkFdmxOEzaHGZvDNH6xnnHf5sy2hp+ZVAOy85GyQWwX7kQ3zmRvzpZvgMDJMEP7RwicCGaz8vZnkxmpydxnDZIiYXaZcJTbcJTZcJbbcdc5yV/qGU9uAqf/KDfjt9agI9F1YoS9mzvYu6XzrOVkLhZJgqrGfJasLWPp+jLKa/NQ9Ax58ZPjc2jHAtpkMEXP5gE6N/UxuGc493BjqxllbTOGy5ahrGtGci3s3iPNH0Y72Ip6sBX1QCt67+TSKWeSZInidflU391MxXoPZzZW64DfWkeP+xJ8tsbxHqNoOMmuTSd58dHj0zZ8yDKsWGblyg1OiopynwQKC1M8rtHekT0etp1MMOI/+4iV6qYCbnnjCppWlyBJEoqaoCqwmYrgjvHjmKbBkb/0cfg7eycfq2QZ413XYXzjjUiml//nRT3WQfrhF1G3HMi+MTnkL/VQdX0pldeXYSuY3BChA3FjPlFTAUmDm8Rpl6TRTVo59+OWQY1jzoSwpv1YMn6saT+21DCO1CBGLffvQCap4Tsewrd/mOFDfnyHAySD5zgLzGZB8rqQPA5Ut5tNchO7kiU5F21YUcw977uUglIn7ngHtSPP4kl0jT+uZTSGD/oZ3OdjcO8IvsN+1NT5z12WjTL2EivF6wsovaSQonX54xmxx0SNBXR6rmDAuZJ0WmfHM208++BhAsOxScEtgKJIuF0KFsviG4Z/sXzpS1/iy1/+Mm9605v49te/gT7oR49PztSumGXsZQ4MplPnlNn5uA4+9Pf/yI/+9/tcctllPPzXZ4mEEqRmcO6aTAwRDkcJBuN0dg1SVmqcsnFieHiY97znPWN3RXC72EmSVAl0jt79ua7rbzvL8p1AJdCq63rDLLbzr8B/nPanh4E7dX1iO+FoRuXngLHszKv0WfzHL9TgVtN02k4m2b03yrGWxFS/lxPkFdqpXVpITXMBtUsKKa50T9tqqKgJTGoUTVJQZROqZEKXpx5Ko2k6IwMRuk/6OXGgn6N7+ggMz7w31GiUqKk2UVluprLCRFmpEZPp/A76yaTGyfYkJ9qyJ27+wOyGGheWOaluKqCqMZ/qpgJKqiZngDwboxrFlhrGlhrGlezBnejGmvblHDKlZnRGjgUZ2jvM0EE/vkN+UuHZD8+diq3YSv4yD8Vr8ym9rAh7cba3ICVbGbY3M+RYht9ai6ZLnDw6xN7NHezf2nVB6gfmYrEZKa3yUFLlpqTSTUmVh9IqNzanGVMmRH60hYLYcTzx9vGT6mQwRfcL/XQ918fAHt+kuX0AUoEH5bJlKJcuQ1lRh2RcvEPENF8Qdf8J1B2HUXcfheT0nxfFJFN6XQW1dzdT0mBGkSe+PwnFSZ9rLX2uteOJqDRV48CObp576CidLb5cqx3X1Gjhyg0OqirN0y4nzD9d18lkIBpTiUQ0olGVSFQjEs3e7+tP0duXnlEpFaNJYd3VNWy8tYGK0URzkp6hPPgS1f7NE4KgwR6Nl/7lRcIdk0cPybVlmD70BpS68kmPvdxpQwEyj20l/fg2iEzReCiBq9pBwfK87GVVPq7ys9ckVyUjadmCJhvRJCOqZECTjaiSEU3KHt9kPTN6UTFoCYxqDKMam9TbmUt4IMHwPh++QyMMHwoQPBmeUdb1cbKEVFaIXFOKXFWCXJaPVFKAXJqPNFrbdXg4zR8e9DMwOPkYZnWYeM3b1nLp9bU4UoPUjTyNN9Y6/jsa7IjQ9tcu2p/oJhmY11Qr2ZdjkChYnkfJpYWUXFqIt+lUToq4wU2XZyN9zrVkNJndL7RTYQpTWmSbENyOsVhk3C4FRRG9uKdbtWoVXV1dPPzww1x11VXk5eVNuWxlaRl7Hnp80t/NeWasBRZOn8b/je89wN9/8t9Ytnw5W3fvBbK5SaLBJNFIcsrPdTIxhN8fpbMrzDe+cwyzWaKywoTLqWC3Kzjs8vh1Munnk/8wXihGBLeL3QXsuf0E8J+n/WmJruvHplj298A9o3dX6bp+YBbbWVDDkgcHozzyWAsPP3KcgYGzDyHNL3aw+opKVm+soqx28hBgcyaIO96JPTWIORPGrIYxZ8KYMiEMOSozaUjZH07ZRNLgImoqImIqImouJmIqmjBsStd1hnrDHNvbx9E9fbQdHpxxGn0ARZZoaPCyYnkRK5YXUlRox2434XSYsNuN2GxGFEVG13WCwSTdPaHRS5junhBdXSFaTvhmNTw2v9jBskvKaFpdSnVjPjbn5BN0RU1g1OIY1DhGLY5RjWPQ4hjVBAYtNnodx6jGsKVHpmz5BkgndHyHAvTv7Gf4oJ+RY0G0C5gh01XloPTyQiquKaFwRfaENSXbGLY3M+hYRsBag6rBiQMD7NvSyf5tXSRmMRdWMci4vVbc+TY8+TY8BTZceVYkWULXdHRdR9fJ3iZ7bTDKFFdkg1mX1zr+mbWkR3AkB3Am+/HGTuBI9Y+f2IwlhOrdOojvcCDnj5OtuoyKN7yK8rtuwb26edElOZuJTCzO4JNb6X3oafr/+hzp4PRzZ412A81vXU/da6qx2SYeTzQkfLYmet3r8duyxzVd12k/NsxzDx3l0Evd0wZFq1YU8ZY3r2Ljhop5GXp3MYYl67pOOJyibyBCX2+YYChJNJoiFksTH235l0dLiygGCZfTjMtlxu0y4/Vayc+3YbebsFoMZDIakUiKcCRFOJwkEkmduh9JEYlk/xYOZ9efTKmkprhkVA1N09E1UDUNXWdWGdKnU1Di4IpbG7nk+jpsDtPYG0Fx5AA1I5uwZoLjy6qSnQM/aeXoA7smrUcyGljyqffR9PF3IE8xz+2VIhOL0//Ic3T//jEGntiMlpr+mGp2m8hf5qFgRR7uOjfOcifWQhPGeejxS0U0In0x/MdGCLSGCLSFCbSGpkz2NBV7fSXey1Zlp3dcsgLX8gYU69Tf0U3Pt/O5L75APD55Oysuq+Du916C26VQO7KJ8uAO5NFh773bBznyyxMMHZiceXuMuSgf96pm3KuacDRUo9gsyCYjssmUzTiv6ySTSQ4dOIgeilBl85DqGyLeM0Csq4949wBaYvoGXovXTMNrqmh8fQ1md/Z7klQcdLsvp9e9HlPAhx5PYbWYMJsLJz1fliUKCmzkeSwvy9+mc1FXV0dHRwdPP/001113Hddccw2dnZ10dXVRVFQ0Yd5rcVERP/7CV8lEJneoSBLYK9yYbBKgc987PsDv/vQX3v6W+/ju//4vadkynvRR105VnjjzfPXM4HY6qZSfQ3v/deyuCG4Xuws45/Z9wPdG757Udb1ummXfA/xg9O67dV3/8Uy3M4P9mPeEUpmMxuYtHfzp/w6zeUvnWU9a8grtrL6ikjVXVFN+xpxWS3oET7wDT6ITd7wTSyYwZ0kXdCClOIiYSwhYqxmx1hM1F48/nk6ptB0e5PCuHg7v7J1xIqPp2G1GJEkiEj23llpJlqhpLmDZ+jKWXVJOUblrwvulqInTEmd040r0Thusnk0yIjF0YIS+rd0MHRgh1BFhhuX9cDRU42ysxtlQjaO+EktxAUaXA5PbgcFhR0unUeNJ1HiCdDBMtLOPaEcv0fZugodbibR2Trt+a4GZiqtLqby2hMKVXiRZIqXYGLYvYdC+jAGpnD2bO9n5zElGhiJEw6kJ8zFlWcLhtpBXaKO40kN1Uz61zQUUlDqRz+zt1nXGXvjp9Q11XUPR0tjT2SFxjtQA9uQA9tTghMYWNa0xsHs4m+F46yDRKZKUWIoLqHrjbVS/6Q4KNqx5RZ00qKkUA89so+tPT9L9pydyZnA9XcGaYtZ9/GryKlNI+sQf9bCphM68KxiyLxs/CRjqC/PCX47x0rNt0zZaNdR7edtb1nLLTQ1zWhd7PhJKBYNxDhwc5NCRQVrbfPT1RfCNxAiHkyQSmQs2j/xiszlNNK0q4dLr62hcVTLeOCFrKUrC+ykP7sCePtWDr8tGhk46eeGDvyMdnRwE5K1ZyoYHvkTeqiUX7DUsFqlAiK4/P0nHb/7KwNNb0dWZNwAb7QZsxVbsJVbsxTZMTiMGi4JillHMCgarEYPNiGyWQQc9raEmMmSSGVLhNEl/ioQ/STKYItofJ9IbJROffSJFo8tB/uWrKdiwmvwNa8i/bCWWgpmVkdM0ne/+7w5+9JPJDSIGk8Jr376Wjbc0kB9roWn4MSyjjSn9O4c48NMWfIdyB7UFV6yl8u5bqbzzJhx1lWfdj+mOJ7qukxz2EzzUQs/Dz9L15yeJnswdqxgsCnV3VLLkjXXYirLrSMsWjjruQDO6MRuNmM2FE6dw6TqKnv0Ns1oMlJQ4MeZI5LUoGG1I0tw0upyeLfm6664D4DOf+Qz3338/b3/72/npT386YXld10kO+oj1DExq4I4nEnQP9/OLv/6Jb//gJ5SWFLHlqQeprqpARyal2EkrNvRTNYVIJTPEo2mS8TSpZEYEt690Fyhb8u3AI6N3X9B1/Zpplr0VeGz07qd0Xf/STLczg/2Yt+C2tzfEgw8d4f/+cnTa8guQHTK2+soqLr+xnprmggkn8c5EL0WRgxRGjpw1SZGOjCbZSMcVYiMZ4kPx7F8VkBSQRy+SDCa7hM0LimHqnsak4sBvrcNvq2XEWkfakM0wq+s6/V1BDu/s4ciuXjqOD89oaNxccHosNK0qoXltKUvWlE7onVXUBN54G3mxVtyJbmzp4VkH/5pmQM0opKIaoc4Iw3v78B0cINAWJjEy8+G9zsYaim+4nJIbN1J03eVYCs+v5mxyJMDIzoP4duxn4NntDL24a8oeA0uemYqri6m4ppSh/DIe2uXm8X1OYsnZ/2iZjFCUB4VulSJnCq8tSSIlEY7LhBMK4bhMJJG9hOMKaVXCYtSwmTWsJh2rScMsqRhSSZRkElMkgrOnh4LgAIWxYUzaxNdgdDupvPsWat70aoquuwzZsHiHHM8VNZmi+/+eovUHv6f/qekTx1sKbKz/55spX29B1ib2/MaMXro8G+l3rkaXsidf0VCSFx89zuZHj+fMEjrG47Zw26uauPO1S2lsyD/v1zTb4FbXdXy+GEePD9PS4qO9I0Bvb5D+gSj+QJx4fGbDc1+ODCaFuiWFNK4qpmlVCaU1eRN6283pAOXBlygN78WoTcx2nKCGzZ96iqFtk0/2JEVh+b/8Hcv/5e9QTBcnq/Zikhj00fmHx+h7/EWGt+whOTx1b+TFIikKnpVN4xnk8y9fjau59pzKN4XDSf7l35/kxS2TG15Lqtz8zd9fQUWFlcahRymOHEACgu1hdn/zEAO7J0+PsFWU0PiBN1P79juxlRVPenw6sy1VFzx4nK4Hn6L7wafx7z40aRnZIFF9YzlL3lSPu9pBq/U6UuYiFKuHspoGouFsPXpN01G0GI1D35jV/i5U0hWfRTLNTSWB2Qa3Y9REkmh7D+lIjJV33Ejf4OD4Y4qi8O43v5l/+7ePUV4y+XcoLVtJK3bUM2oda6pOz8lWAsE4HZ0hvvq1yf/npxPB7cvQBapzWw20j97douv6ldMse3og/A+6rn91ptuZwX6MB7e/+NUmLlm/DKfDjMNhwm43zWp+pq7rdHYF2be/n8eeaGH7jq6znmyV1XjYcHMDa6+qnlB7zpryURw5SFHkILb0SM7n6rKZeMzF8JEww3v7GdrdTuBwz6yzG1q8Ztw1Dty1TvKa8slrzsNVYUY+o+FRByKmEnz2Rny2RsKWU3OuIsEELQf66Tjmo/3YML3t/jkbVqcYZGqXFNK8poTmNaWUVnsmBP/WlI/82HHyoy24E11Tzj9KJYyEetJE+xPEfTHigxFivQFigxFSoRTJYIp0JDO7eUinsVWUUHzjRopv2EDx9Zdjryw9p/XMVCYaY2DTDnoffZ7uPz9JvHdwwuM9jlJeqLiCbtfZRuZfXJ5EgKLkCA3VbtbetJKr33IdRaWei71bC1bkZBetP/4jbT/+46T/89NJisyqv7+JhtdWYtT6JzyWVJx0eS6n17UeTR4dghdPs+OZNp57+OhZ59ovW1rIna9dyq03N+LMMfR/Kum0SjicJBxJ0dcX4LHHNhMMa1RU1KBpEqlUhmgsTTCYGB/qGwwliEbTM66P/HKlGOQJSQOdbgsur5XapYXUNhdgzFFT2x3voCK4g/zosfFhoGM0WwVH/jDIgf/8c87tuZc3svGBL+Fdv2JeXs/Lna7rhI+fZGjLHoY372Zo825CM8yUPlckRcHVXIt7ZRP5l6wg//LVeNcvx2A7/1ES3T1BPvzRR2jvCEx67JLra7n7PZeQr/ezdODPWDMBMgmVQz9r4djv2yYlBiy8aj3NH3kbFXfedM6NmeczEiTa2UvXn5/k+Ld+SeREx8QHJSi/opjCz/495BVjtLioriolaXChahJBX4xE0C+C2xzONbiF7PcnMeDjDW++j+GREcLRCB29PURjMcqKivn4u9/HB//+7zDZJdAmN/KrkpG0Yicjm8d7c3tOtpFIpUki0ae5aT00yHBfmHAwQSSQmHAdDg6J4PblRpKkLwCfGr27Qdf17VMs909ka9MC3Krr+hOz3E4HUAUM6LqeO7VedrkPAWNHjjfruv7r2WznLPswHtwuX/M5TKaJE94NBhm320J1lZvGhgIqK1xUVLipKHfh9do43jLM/gP97D8wwMGDAwSCiVybmcBsMbD26mouv7GeinrveKBmUOMUh/dTEt4/YT7iqZ01kDGW4D+Zpv2vRzn5+x1o6dnNo5kpxaJQuNJL8bp8Si8vwVM7OZNjUrEzYmvAZ2tixFY3fpIMkExk6Drho+PYMO3Hh+nvDBKPpkhO07uiGGS8RXbyS5wUlDgoKMmW36lZUjgh+7OspfDEO8iLt5EfO5Ez+Nc0hcgQDO330ft8K8OHRkj65zZJhbkgLxvIjl6cDdUXbdisrmkMbdlN5+8fY8eD23naspSTnpqLsi/nS5Jg7Zoybrqxnhuvr6OwYGFnP75YtEyGvsde4MQPfkfvXzahT5OVruHNV7DiXcuwKH0T/p6WrXS7L6XHfRkZJXsymEmr7NncwaYHjzDQPf1IEbNZ4cbr61mzuoRIND0akCYJh7PzUIPBBCP+OKFwkng8gzpNrVVhapKcHd1jsWYzudvdZlx5VvIKbBRXuimt8lBU7sKkqHji7XhjbXjjrbkbRl01DLTa2fKBH+TsWZRkmaWffA8rP/MhFLPorZ1LSZ+f4OFWoh09o1NORq9H72vJ2f9GGRw2zIVe7FVlOOorcdRV4qivwr20HteSunn5P9x/oJ+P/sOj+P0Tp5PIisRr37GOK2+tpyawmWr/88jo9O0YZOfXDk6afpJ/+WpWf/6jlNw44xltU5qLaQ5aJkPn7x/j0Oe/R/BQy4THKr7+SVyr67EX5dNQ4RnN3OskrdhIhQJ4D37hvF/DQrBQgtsxajJFrLOPVDCMqqr89pGH+JevfYVwNMLnPvpJPviud+OoKkQxZEDNff6tSkYysoX2rgHiqQxJJEL2InpO+hkZjBDyJ/D1h/ENRAmOxIiGkgRHBti385/HViGC25cDSZIuA8YC2u/ruv53OZYZy168FAgARbqeI4PR9Nv5GvDR0btX6rqec7ydJEnPAteN3p3TD9nZgtu5VNmQz4ab61lzRRVm66khE85EN2WhXRRFDucoJyORNpTSsyPM0R9vJ3Do5Lzt33TMbhNFa/MpWV9A2cZirPkTe2s0FIKWCoKWSkLWSoLmClRlcvIJTdNJJTIkYinisWzdXTWjkVdon7LsDrqOI9k3Oty4DXeiG5nJvTixgEzPi310PtHK8KHcSYnOh9HtpOiaS8aDWc+KpnMayjVfAsEE//ONLTz0l6NTLiPJEs2rS1i5oZL8Ygd5hXbcXivRUJKhvjDDfWEGe0L0dQbo7wxOqPN3MUgSrFldys031nPj9fUUFopAN5fwiQ6OfPVHtP30z9OeINfcdRlrPrQeC12cPlk8Ixnpc62jy7PhVIZlTefIrh6ee/gYbYen7iFeqCT5VIKR818ZuDwWTBYjikFGlrJ1thOxNMlEBvUCJpGbiqJARaFOU0mcppI4zWVJ1tbGsZr07AvIX47fV8Lez/6GgWdztlfjXb+cy77/WdFbexHomoYaT5CJJUav46jxJDF/gB0vZk+NLr3yCmwuB7LZhMnjwlzoxTBNkqf58OTTJ/j3+58mmZz4G2x3mXnbJ66iudnBsoE/4Y2fJJNQ2fu9I5z4v4m9oe4VTaz+wkcpf/X1c9YgPJdz+HVNo/uhZzj0+e8yMlrjuPzrn8TeVI2tMJ/6EhcmV7bRQJVMJHQF2y4R3J5pLoJbyPbipgNhop29aOkMf3z8r7zvX/8Rh93O0cefw2I2Y3TYsJZ6MZhUyEweeaSq0NITIBSM0tkb4yv/fQx1mlKSF3NYspiINU90Xd8hSdILZIcmv1uSpAd0Xd96xmIfJxvYAnz9zMBWkqR3AD8ZvXu/ruufybGp/wHeD1iAb0iSdK2u6xMmp0qS9BZOBbaPXMgP2Fyw2o2su6aGy2+sp6zmVOCsaEmKwwcoDe3GmRqY9DzdUoC/187B722l98m/zGqbkixjr63AtaQOZ0MViiX3sMF0KEK4tYvIiQ6i7T3T9vwkgym6NvXRtakPOICnwUXZhiLKNhSRv9SDLKvkJTrIS3RAIHvaHDUVErJUErRUZjMxy1YyigXZZsZiM+KZ9KI1LGk/lrQfayaAJe3Hlh7BHe/AlCMJlKZJ+NtStD92gp4X+4hNkZRoxiQJY54LS34e5oI8LEVe3CsayVuzlLy1y3DUViyoYHaMrus8+ngL//U/mye1pI9x59vYeHM9l1xfhyffhi01lH2vM12YQ2HSioV4rZdEYx5xYzXa6HyVcCDOYE+YkD9GcCROaCROLJLCbDVgsZmw2oxY7SYs9uy11WbEYFRIJTOkEhmSiex1NplDhmQ8zXBfmN6OAIPdobMOXdd12LO3jz17+/jPr73I6lWl3HFbE6++vRlzjmGYr1TOhmou+95nWfmZD3HsGz+n5Tu/Ih2cXMal/U87aP/TDqrvvoK1H74Ui34SdBWDnqYyuJ3y4E76nSvp8lxB3JTP8ksrWH5pBcN9YV56to2XNp1cMPWTFYOM0aRgMMrIskQmrU2YM3wuQa3ZYqCw3EXRGZeCEgeGaRLE6LpOOJCgs8VHd9sIA11BfAMRQv448Wh6QuK2+aKq0NEv0dFv40myWe8NBlhVb6BZCuF5/s/Y2o/nzEFgcNhY/fmP0vjBv0FWFmkinEVOkmUMdhsG+8SyQdZ4HCU8BGSTLM1F4rVz9bNf7OF/vnnmqSCUVrl516eupdIVYnn3D7FmgviOBtj2hb2Eu06d0hmcdlZ99sM0/b+3LOhcCpIsU3nnTVS87kb6n9zMoc9/79SDOkT64hiDKWxFVhRzCpuuk1r7cVKKnXg0RdAXJ1fnm81mpLTEgbKQv2PGs5etutAkScKU58LgshPvHeTWq68DIBKN0trZzvLGZtKRGOmWGAabBWtpPooZIuE4kYRMLCWTzkAyJRNNyESj+rSB7cW2cL8ZLw8fATYDVuCJ0aHKz47evw947+hyx4H/OpcN6LreKUnSvwNfAdYDOyRJ+grZHmE3cBcw1msc4lQv76KQV2hj2SXlNK4swZOfPWA4kv3ZXtrwQQz6GT0sspGUqYG2R3s49PU/5Tw5PZNsNlF8wwaKrlqfDWaba3E2VM96KJKaShHt6CVyooPQ8XZ82/cz+NyOKef0BU6ECJwIcfgXJzC7TZReVkjJJQUUrsrHXmJFAhypIRypIcpCuyc8V0Mmo1jIyNZsXT/JgCUTxJwJTVuvT9ch5oPebf10P9vO8MGZF3eXFAXPqmbyL1+Fo64Sc74Hc0Ee5nwPusPGlv17wG7l1ttedVFPHmaruyfIF778PNu2d+V83OmxcMPrl7HxlgbsRCiO7Kakcz+29NS1TnUkEgYPUVMhUVMRsap8UrV2UoqXlMFBRragaEkMWhKDlshe1BgGbQSDlkDWVVTJgCqbxstOqbIRVbKiyiYShiVospF0SmWgO0jvST+9HQF62wP0tI1MzEJ5+n7psHdfH3v39fG9/93Bm+5dxRvuXjGrOZ8vd9aSQtZ84WMs/6f3cuJ/f8vR//5pzu9wxx+30PHHLVS/4VrWfuRyLGoLaClkVMrCeykN72PIvpSOvCsJG4tJp1Xc+TbqlhbScmBgTusmS1K2l1WSJGRZQpIljEYFk0XBaDZgNhswW40YzQqyrhMNJxjsDROLZs4raDRbDVTUeals8FJZn09FvRdvkX3mPUmaijERwqyGsBChXI6xojGJoT6BrKVIKw4ShjJSBgcx7HR0q7S2hultDzLcH8kOfwtnp2po85TFOZOB3ccy7MYGRbfhKr6RmpFW6oZOUBPswKCrVN51C+u//i/YKqacGSS8wmmazte/uYWf/2rfpMea15Ty1o9dSbV6mKaev6LoGY78ppX9Pzw2oUZ59X13sPa//nHWiaIuJkmSKL3lKkpvuYqDW3eQjJ7qEUzHVEIdESx5Ziz5ZsyyhoEkkseD0eFmZCBKKjnxtyycgHh3mopyKzbbK3PI//n01MuKgr2ylPhpbQPqGZ0ysYTKSG+EhGxGX6Rh4uLc60VC1/U9kiTdC/wCcAG5xlwcB+7Qdf3sUdjU2/lPSZK8wD8Cy4Cf5lhsELhT1/WWHI/NmeJyJ5m0mXg0TWYOhpn5h2JsfrSFzY+2IElQWwaX1gRYXxfHWKVSmB39h27Ow9/n4cB3t9H31INnXa+lpJDyV19H+auvo/jGjRgd5z9UUzGZcDXW4Gqsoey2a7P7petET3Yz+PxL2csLuyYnWyDbq9v+ZA/tT/Zk9y/fTOGKPApWeilc4cXT4EI+rbi5jIZJjWFSp09ao+sSiRAM7h2me1MHA7uHSYVmNvLdWlpIwca14xkhveuXT2oRHxOPx5Haj89ovQtFOqPyy1/t4/s/3EkyOTkYNFsN3HjXcq68rYl8BqkZ/gP5sYm9NmpKJT6UIOFPYbApWAssmF0mJHSsGT/WjJ+C2Ny/LxoScWM+EXMx0bxiIsVFRK5tJGVwkU6pHN/Xx76tXRx6qZtkjpqJAL6RON/67nZ+8sBu7r5rOX9z32oxZPk0RpeDpZ94N00ffivtP/8/Dn7uu0TbeyYt1/H75+j4/XPU3HcTy9+5AoelE0lLEk3A/v0dPHfEx4vHnITPv+rXBJIEDo+FvDwLeV4juqqRyahkUirJpEo4lCbsT5Geo9Z1g0mhvMZDZX1+NphtyM+WuDpL/V6DlsKeHsaW6MOW9mHOhDBnQlgyIYxqZFKSpulsVIAm0JsgbvAQMZUQNRURN3pJKVYiaTP+kI7PrxKLqaRTGsmkRiyWYXgghn8oRtAXJRxIEoskzykzdEg3sT9vKfvzlmJVNK5dk8/y91+PtXzxBBzChZXOqHz2c8/yyKOTfws23NzA69+9jsbAM1QGt5GOpNny5X30vHhqNJq1tJDLf/T58fOKxcpckIfsdiBrOlKS8Rrv8ZEkqXAae4kVgw3sqWESBjdF5S6CI3HCgYkjXTIZjfaOACXFDvLyrBctT8fFMtZ5EI+f+wigB/+azS9rs9poamgkIykkTFYSBivqeRTHVAwydqcZl9eC2Wrl0N5zXtV5EcHtPNN1/WFJklaR7cW9A6gAUsAJ4PfAt3Rdnz5Cmdl2PiVJ0kNkhyhfDZQCCbLB80PAN3VdD06zijkx0BPGZJqfj5WuQ1sPtPV4+O1mDwAFbokaaxz7gf0U+bopiQ4wVR+UtbyYunfeReWdN5G3dtkFGR4rSVI2OUVdJXXvuAuAWHc/fY+/QO9jL9D/5JacvcsJX5Ku5/rpei6bodVgUXDVOjG7TZjdRswu0+htM9ZiBwabkWhfhHB7gOhAnGh/9pIYScw487OkKBRetZ6yO66l7PZrcS9reNn+aBw8NMB/fGETLSdy976uuKyCO9+9ngp7gBr/H8iPtSABmXiG3u1DdD/fR/+uUw0Fis2CmkyDqqJYFGyFFpyVdpwVDlyVdhxlNixeM5Y883hxe4BMUiUdSZOOZkhF0qQjaVKRDFpKRTbKyEYFxSSPXhRkk4zBomTrOjKMPT0MnErHn5KthCwVVDQvZdW6tSTUy84a6EZjaX72i738+rf7efXtzbztLWuprvLM5du9qCkmE/XvfgM1b30dbT/+Iwc/913iPZOnQbT/5in2/mkH7cUN9C1bw7GQk8w8JifWdQj7E4T9CTrnOIGsLEuUVLmpbMinsj4byJZUulEMUx8zZT2Trcuc6MGeGsKWyn4+jWp0zuqIj5EAWyaALROAWI758Y7Ry2n0ldka5Amjh6ghn6ihiM6gixf2Smx9ph1ff2Tyes4irso8tsvPY+/5E2XlLl5zezN33NZERbn7XF6W8DIUj6f5x39+PGepnzvespobXlPPssE/Uhg7hr81xOZP7yLSc+qUsPpNr+aSb/0bZq/nAu71/JEkCcVsxN1QRbSzj3Qo+71T0xqhrihWrxlrgRlrxk9atiF5XVhsBkYGopOS6fUPRIjHM5SWOpAX4HSn+VJfXw/Ajh07iEaj2O2TG6U/8YlPcP3113PTTTdhNp86K04kEvz85z/nIx/5CADveOd7SBRW5WzgnwlvsYOrX1VPY52JivwUxaYAjvQgjlQXvp52/vDjc1rteRMJpYTzdiETSs1EnhbFE/XhiY3gSQapW17B+jfdyJo33YjFtrCGX2qZDL7t++h97AX6Hn2ekV3T1w2ba5biAspuu4ay26+h5OYrMXlc57SeuUxEMZ8ikRTf/t52fveHAzl7bdxeK69/zyWsXeeh3vfUeF3BkeNBjv2+je4X+lGT2R9YR0M1Fa+7kfI7rqXwqvXoqoZ/7xF8O/aPXg4QbmmftA3ZIGGwGcjEVbRzHN0gyeAos+Ouc+KuceKpc+KudeIot4/38GvI+G11DNmXMmxvJq6aOLa3jy2PtXB8f//U65bglpsa+NAHN1JW6jyn/Xs5UxNJWr7/Gw5/4ftEh/z0OMpod1fTVtTEsOHcvj8Xk8VmpLTKQ2mNh7JqD6XV2etcZXHG6Tr2jB9nvBNXohtXshdbanBWvbDTkhQw2MBoHb22gWIBxQSyAWQjyEYk2UgmrRHvHSbhC5EaCZIOREgFI6ipNGoyTXAkAKk0ZklCTybQ06lsvXJDttGo+PJS9A1X8GxPPU8/H+Hgju7znt+7enUpb3rjSq6/rhajYQHPDXyFuFi/T5FIig9/7BH27puYYV2WJd74gcu54qp8Vvb9Fmeqn45netnxlX3jvy9Gj4vLvnc/1ffefkH2Feb/fWppaSGTyWAwGGhsbETXdVL+ELGuvglVKwwWBXupDcUko0kG4gYPGV3BNxAlGZ888sxsNlBR4cI8Tx0rF1OuhFLhcJi6ujqGh4fJy8ujubkZs9lMSUkJv/nNbwBYs2YN+/btw2g0Ul9fj8fjIRaL0dLSMt7je/sdr+fzn/8GplnU304mhvD7o/iCKQKagZtqTmLa/hzxDh+ZeIZMXCUTz6BmJAbiGe54aLwAjMiWLCwuMwlujWYFi9WIyWLAbMnO/zJbjQx0BfEPTT1er7wuD7PFQOeJETLnWaNRksDtseJ2mXG7LXhGL263BbfLjMNhxmYzYrcbsdlMOEav7bbstc1mPOsQvPOV9PkZ2ryboRd2MvjCLkZ2HULPzF2pInO+h6LrLqf4+uzFtbR+TnpnF0Nw++xzbXz5P19gMMfnTZLgilc1ctt9q6jL7KN25FmMWpK+l4Y4+ptWBnZne3hls4mqe26l4b33Unj1JWd971L+IL6dBwnsO0q0s4/wyS4GDregh6I4CryY89wYPU5MHhcmjxOj24nJ40QyGkn5g6T82RP21EiAlD9EciRIcthPOpC7vIxikvE2uym/uoTKa0qxF2f/H7KBbi1D9mUMOpbTeTLMMw8e5sD27imTBpnNCm998xre8bZ12GzGnMu8EnV1B9m6rYsXX2zjpZ09JNMz/w1VDPKUgZMkS5jMCiazAZPZgNGsYDQZMJmzCZ+ioRTBkRiRYOKchtM6PRa8RQ68RXYKy5yU1eRRWu2Z0RxZsxrFlejOBrPJXhzJPgyzS+x/iskJ5jyw5IHZg2T2jN/G5MwGs4ppTo9Lekbl6hWrUYf8RDt6CR8/SfBQK5GTXYRbu7DYVepur6Tk9Ws46b6UR3Y52fTo1Im/XHlWQlMknjtdfoGNN9y1gntevwyvd+ElmXmluBi/T8Fggg9+5GEOHxma8HejSeFtn7iK9SuMrOr9FRY1xIEfH+PQz0+ML5N/2Squ/O1/46i5sPXVL3RwO0bLqMR7B0gMniq7JUlgK7Ji9ozWEFdcpBR7zmHKkG0wKC9zvezyR+QKbgH27dvHpz/9abZu3YrP50NVVaqrq2lvbwfgiSee4JFHHmHLli10d3fj8/kwGo2UlpazfMUaXvfaN7Jh4zWz2hdJkkinh8lkEphSPuRffIcTD3UQ92mYC/NwVJfjbKrGs2oJzoYqBvQU626/eezpIrgVFpfTg9tP/ufDlNVUYXOasTvN2J0mbA7zlMPZMmmV7U+38dQfDk5ZMqW4QOFd764mZi3h2LEIrYcG6DoxQiJ2jidX58FiMWCzjwW8RpxOM0WFdooL7RQWOSguslNUaKeoyIE3z5q7LM8sZKIxhrfvY+iFXfj3HCbWO0i8d5BE/zC6OnWwLxuNWEoKsJYWYqsqpfCq9RRff/m8ld5ZyMHtwECEr/zXCzz7XO4SUKVVbu75u8tYUZWkaeivOFP9DO7zse9/j+I7HACyc56a//7t1L/7Hsz55z4yYa7ep1jPAL6XDuDbsZ+Rlw7ge+lAzuHt3iVuKq8tpfKaUhxl2ZPrlGylx30pPe5L6R9U2fTQUXZuaptyjnxBgY0PfWADd9zWPO+NOwuRzxdj7/4+duzsYcvWTnp6pq9bezrFIFPdlE8ykaGnbXI91LFlrr6jmZvuWobFfvYWdDWjEQ4mCPpihPxxgiNxoqEkikHGYJQxGBVMJgW724LDZcbhtuBwWybUuZ6OQU/hTA7girXjTPbgSvZiUmc7YVgCaz7YSsBegmQvBnsJWIuQlMkNJZqqkhgYJjnsH23MCZIca9QZCZL0BUgHw6iJJGo8iRpPjN/OxBNoiSRaOoOu6eiqiq5p6KqGrmlomQwzHR8uKRJlG4uofU0d0Stv5btPeNn8eGvOxgSn28TSdeWcPDbMUO/0KTMMRpmbbmzgb+5dyfJlYm7uhXahf59GRmK8/0MPT5r2YnWYePenrmV1VZQV/b9DikXZ9sW9dD9/aiTNko+9k9Vf/BjKLHrT5srFCm7HpMMRIid70FKnzu1MDgP2EhuSIpGRLSQMHmLRNCND0ZwNswUFdgoLbC/bKVXnIpNR8Y3E8fvjZ62ukIskSbjyLHjsGt2dncSHfIQOtNH9oS9P+zwfaT7M+HmXCG6FxeX04PY32w9QWFp+1ueY0mEc6QEMagKfvZF4WmHzo8d55sEjxE8rRTFGluFdN4zw5lshYq8mYCqj1e/hWIdO5wk/XSd89LYHLki5iJkyGhWqqj001ntprM+nvt5LfZ2X0pKzJ2E5G01VSQ6NEB8NdtOhCOZCL9bSQqylhZi8ngt6cF+Iwa2qavz+T4f41ne2EcvREGIwKdzyhhXceHs1jaFNlIb2EGwNsu8HR+nbnm1tdy2pY+k/vJuav3ntrLNn5zJf75OuaYRPdODbsZ/BTTvo+tOTpPwTp9h7GlxUXVdK3W2VWLxmVMlIn3MNXZ4NDEXMvPjXY2x5/MSUjUbLlhbyiY9exZrVpXOyzwuRpumcbPezd18fe/b1sXd/P72zCGYhW6ty6boylq0rBn8ff/htF7FY7uPS8kvKufvNdWwwbSc/dpyoqYiwuZSwuYywuZSoqTA7Bn2eWLQojuQAjngnjmQ/juQAZjU0yzmyUjZwdVUjuarBUQ62IiTl1PdF1zQiJ7uJtHYS7ewj2tFDtKOX2OjtWPfAnI5QmQveZjer/+Vqtubdzo8e6Kevc3LKClmGd9xto2h5I89vi7F3cwex8NQ1kgGWLy/mXW9fy7VX174iG4suhgv5+zQ4GOHvPvQQ7e2BCX93eiy899+vZ6W3n6WDfyY1HOH5T72EvyV7fDG6HGx44MtU3nnTvO3b2Vzs4BayU7WiHb2k/KeOu7JBwl5iw2g3jA5TziOVkRjuj5BJT264cjhMlJe5zrtzYbFTVY2h4Rh+f+6ySmMURZ40n3mM2WKgsMCAOeYnORKnOxonNuwjeryDno98Zdrti+BWWNRyBre6jpE0Ri2JSY1iSQ5iT/bhSA5gTw1OqLmqSkaG7Evpd62iTyvnuYeP8vxfjpHKUc6kxhLkgzX7aGpSyGtyYypyEjGXEjKXMaKUcmzAQc8gDPeH8fVHGO6P4BsIEwnOXdmN82WxGGhoyGfd6lLWrill9epSPO4LW0R+ri204PZ4yzCf++ImDh7KXYapaVUJd733ElbYWqnzPY024mf/D49x8tEudA1cS+tZdf+HqLz71jnt6b5Q75OaStH/xGbaf/0Xev7vGTKnlV+QjTI1t5Sz5I11uKocaMgMOZbR6dnIYCqPJ353gK2Pn5iyhfeWmxr4yIc2Ulqy+OfjBoIJDh0e5NDhAfYdHODAgX4iZwlOcqmo89K8poSVq92sL/ehDLTw7V8m2Hw49xC5ogoXr3/bCm6tbqE8uANFz92zqEoGIqZiIuZiksY8kqZ8kkYPScVBUrKinSXwldAx6ilMWhxr2o8lOYg1OYQt7cOeGsConcNx0eQ8Fcg6q8FZiWTIvk5d10n0DxE42ELgwHGCB48TONhC8NAJ1NjCqO07JUnC2ViNZ1UzeauXYK8p59jXH6CgNkbR/3stP9q9hEf/2JJzeswVhT7+4d4o8WUbefxoEc893kX7seFpN1dZ6eYdb13LHbc1YzKJebnz6UIdd3v7wrzvg/83aXSHO9/G3336elbZW2gafpRQe4jn/uml8bryruZarn7w27iX1M/Lfs3UQghuIXscSfkCRDv70E8rU2MtMGPNt4yX2ktLZvxD0Qm1uceYTAqVFe5XZC13Xdfx++MMDUdRpymRZrYYyKTVnMtIkoTbayHfEifV5ycVzjZ6D5AWwa3wynB6cHvkT/9Abb4RgxY/pwyZcYObAecqDsSbeeC7B2k/OvkEwYjKDW3PsGL4MNY8M3lNLrxNbvKa3OQ1urGUOEgY8ogbs5eEMY+RtItuv5lARCIUhVg4RSySIhZJEh29nYylSSbSJOMZEvE0yfjclDOaieoaD+tWl7F2TSnr15UtusBhoQS3kUiK7//wJX7zu/05D9h2l5nXvWMdV11mocn3GK5oBy1/7uDgA8dJRzI4G2tY8ekPUn3fHcjzUCT+YrxPmVicnr88S8evH6H3r8+dGvIlQfkVxSy5r47CFV50wGdrpC3/RtoGTDz8wG6O7c2deMpqNfD+917GfW9chWGaDLoLSSyW5sixIQ4dGmD/4UEOHx6kv+/cKrA53GaaV5fSvLqIS5szVBu7yIu1kTrcwkNPG/lJ5zJimcmfH6vdyK33ruCuy0M0hF7ApGUbHTTJgiypoM18qoUOZGQrCYOLtGJD1lUkXUXWMyh6GqMaw6Alzi9TsWQAZ8WpYNZVnZ0nOzoqJBUIMbx9H8Nb9zK8dS8jOw+SGgmczxbnlWK1YKsswV5Vhq2yBFtlKfbqMtwrmvCsaMRgm/h91DIZWr7zK1q+8T1Wvn8Z7Wtfz3d+laDlwORs2VX2NPd1/oHVry7Gdc9NbI+t5LFnQux9sWPa35H8fBt/86ZV3P365TgdL6/5ggvFhTjudnYGeN//e4iBgYlZt71Fdt736RtYY9pH3cgzDO7x8eK/7yQdyTbel91xHVf88quY3Bf/N3+hBLdj1GSKSFsXmeiphjGj3YCjNDtMOaXYSSpOIsEkAd/koiOyLFFR7sLxCvle6bpOJJpiYCBCapocNVaHCasJ/P5UzikXJouBogID5sgI8eEE1opSjC4HaDon2lpJJ5NIaZXCpI4aS5D0BYh29hLr6ifW2Ut09Lp3eFAEt8LidXpw2/G791BROIuDtMkNihHUJKip7DWQkYwc99zEr56x8MTvDubsRVrjinFndA9qZxfx3kHGvqWyUcZeYsVeYsNRasVeasNeYsNeYsXsMmFwGJGcDlSjjYxiJS1byShWVNlERjKhymZU2YQqm0iqRiIphVhKIZqUiSVkYkmIJSXiCYiFkwRH4gR9sez1SHYenDZNa9lMVNd4uGpjNVddUcXaNWULvmX/Yge3uq7z2BMtfO3rW/Dl+JEDuPT6Wl73lmUsT2+jPPgSg7sG2f2tQ4TaI1hKCll1/4eoe9fdyIb5a+m92O9TKhDixP/+lqP//QCJ/lOJTgpW5LHk3joqripBQ6bPtY6T3ms5sC/Aww/sYXCKoblLmgv4109dx7KlRRfqJcyYzxdj774+Xtrdy+59vbSe8M24LNaZzBYD1U0F1K8oYu1yMysKBylInEQ6dojh3QMM7PFx8kCMv5ZcT4uzJuc61l5VzTvu87Am9Rz29DDR4TSxaD5y6Rrcl12P0WkF/3H04YMwfAgyc1wY96xksBeBowLJWQmuGnCUIsnZ74OuaYSOtjG8dc94MBs80so5ZbeaiiRhynNj8roxe7PX2dsejG4HBpsVxWpBsZpRLOYJt2WTEUmWkRQZZBlJUUilUmx7aQeSLHP93a/DXV5yTtM1Yj0D7Pr7z8PQPur/8Ta+uX89j/9pcsn4vDwLH6jxoTz8Z8ousVP+1ivoKr+Sv2y3sPmJNoJTHJsAbDYjb7xnBW998xry8i7+tI6Xk/k+7ra1jfC+//fQpN+ewjIn7/v0DaxlG9WBzXQ83cP2L+8fz5K//J//jlX/8ZELUpZwJhZacAvZ3/Z431D2HG+UYpSwl9kxWBRUyZTtxEho+AbCOc+9iooc5Htf3vVwE4kM/QMRYrGpRx7ZnGa8LoiH4vjCkz9zZ/bWSkYbtspSZOOpc6LZ/B8ePXCApatWjd0Vwa2wuMwquLUVg7sOyVOXvbbkEW7tpPP3j9H5u0fx7z2MYlYwu02sfGcTztdfzxPBK/nZt/cxnKOXpbLSzX99+VXUVjqJdw8Q7ewl2tE7Pqdr7BLr7J2QpAAJDFYDJocBo8OIyWHEYFFQLAqG0YtiVjBYR68thlOPj/5dNhtQ8lxIRfloTi8pg5OkwUlccjAUs9I5bKKjV6O/O0R/Z5D+zgDx6OyTYJktBtavK+PqK6q56spqyssWXrmRixm0HTg4wNe/tYXde/pyPl5Y5uTu917KxpphGoafJN09wN7vHqH7hX4MDhtLP/keln7snRjs85/N9GIHt2PURJKTP3uQw1/5IZHWU/UX3TUOVr9vKWUbikjLZjryrqbTfgmbn2jjid8fnGI+vMS996zg/e+7HIfjwidBGdPdE2Tn7l5e2t3Dvn299PbMvm7pGE+BjZrmAmqb81leD0sLA+SlelDajuDf0c7gHh+De0dQdTP5l66ktWo1v2i1EI5Nbi23u8y88T2reEPdPgx7ttLzYj/dL/QTbD9t/ySJvLXLqHnTHVS/+dVYSwog1D4a6B6ERO56zOdMMoCjdDSQLQdHRTbx02nzZNOhyGiv7Ggwu23flFm6Z8roceGoKcdeXYatugx7VRn26uzFVlWGuSBvTkdMzPX3reevz7Hvk59j+fuaeMx7Nz/+fgvp5MT/c4NR5lMfv5LVoRMc//YvMaR6qLtvOZkbb+GRoxU89XA7fR2BKbdhNhu4567lvP2taynIFxmW58J8HnePHhviAx9+mMAZCTFLq9y899+vZ236OSpCL3H8TyfZ/a3DoINsMnL5jz5P7VteN2f7MRcWYnA7Jh2JEmnrQktle7yz2ZQtmD1mdGTixjySqgFff5h0jl5Lt8tCaen55ztZaDIZjcGhyKTP3+msdhP5HglzMkT/iExUm5zUz2g2UFxgwBQdIeFLYqsozVkacjb/hy0tLTQ1NY3dFcGtsLicHty2//HDVFZWZOdlGR1gciKZnGArAlcNksmBrmn49xym99Hn6X7wqWlru5ZuKGLNJy+npeZOfvKHKNufap20jNli4F//8VruuL15yvXomkZi0EfKHyIdjpIJRUifcRnLvKnGE9mMnInkqdunZedUx5ZJpEiHIuiqimKWsXiz80EsXjPWAguOMhvOujyMTTWoxZVEjQX0xDwc7zNzojXOyaNDdB735TwQT6emNo/rr6nhmqtrWbGsaEEkTbgYQVt7h59vfWcbz2zKnQXZYJS5/s5l3HFHMctCT+Lyt3DkVyc4+ts2NE2m4X33svLfP4ilKH/e93XMQglux2iqStcfH+fwl36Af8/h8b8Xry9g7fuX4ql3ETPk0ZZ/Ix16HY/+ah/bnpz8HQQoKrTzyU9czQ3X1V2Qfc9kNPbu6+OZ59t44YU2enrOrafTYFKoqM2jssFLXZ2NVTUp6uyDGHtOkNx3hOARHyPHQ4Q641hrG8i/bCX5l64k/7JVZPKL+OJXX+DpZ9pyrnv1FVW8601ulvc+zL4vbRlPVDYtSaLkxo3UvPV1VL7+JgwOOyQDkPBD0g8JP/robS0+ghbzYZDGjiFytg6sYho//mJygMmFZC3IZjC2FoA5D0k+FUSqyRTBQy2M7D6Mb8f+bK/soZZz7pU12G24lzfgXtGIZ0UTnpVNuFc0YikuWPSJ7tKRKNve+Sm8xb103vEuvvqdIfyDkz977373ej7wt5cxsvMALd/9NYNPPkXda6twvvkOnhxYyuOP9NB6MHdOAMjOGbzzzqW8663rKCpynPd+v5LN13H3wMEB/t/fP0z4jHn6FXVe/vZfr2Fd4glKw/s58JNjHPpZttSPOd/D1X/+NkVXXzIn+zCXFnJwC6ClM0ROdpMOnWoYNLuM2IqtSLJEwuAmJVkZGYwSj05uiLVYDFRWuDEaF/ZIuJnQdZ1AMMHAQGTK/BhGs4LXa8SphYkNRBhWPKTUycdfm8NEiTtNus+HZHJgqyyZcgSbCG6FV4zTg9vjx4/n/MAnfX76nthM76PP0//4iyQGZ94TYbQbWPOBZdjuvYM/t63i19/bnbMH6e67lvMPH73qgg7h1TWNlD9IvH+YxMAwiQHf+HXkZDeho22Ej51EVlScVQ7c1Q7ctU5ca6uQVyzHb6ni4ICHw606J48O03Z4MGdyhKm4PRauuqKa666pYcNlldhnUEpkPlzIoK21bYSf/WIPjzx6fMqD+pJ1Zbz+HStZb95HVWArXc90se/7R4gNJqi851ZWf+FjuBpr5m0fp7LQgtsxuq7T/+RmDv7Hdxh6cReQTdJb+6pKVr6rCWu+hYClipaCV3HopMzvv/8SA12Ts8cCXHdNLZ/8xFWUFM/9HLJgMMGLWzp4+tlj7Hipj1iOntLpyLJESZWbyoZ8amttLK3M0JTvx9R7kszBo0QO9hDqTaMpBVhranEvrce1tB730nps1WUTehWffqaVz335OYI5WsztLjNveNcq7mk8SOyPj7LnW4fI33DZeMbgmVKsFipefxO1b3ktxTdunFQeJPt5ehwZjZtuvgWr7exBUCaeILD/GP7dhxjZfZiR3YcJHjiOlj630mqyyYh3/QoKNq6hYOMavOuWY68pXxBDLectO7muc/iL38f/7O9wfeqd/McvrLTmSF53zxtW8E8fuxpZlkj6/LR87ze0/fDXlG90UPSu29iWWc9fHvVxcHvXlO0IBqPMa1+9hHe9fT1lpRd/XuZiNB+fg117evnIxx6ZlIm/prmA93zqKtZFHqEwfJhd3zzEiQc7AHA21XDdI/+Ls6H6vLc/HxZ6cAtjw5QHifeeaihUzDKOMhuKSSEt20gYXIQDCYI56lQbFJmKChc228UbZXS+kskMvX1h4vHcx2xFkfF4zXiMMdIDAZJY8Uk2Mjmqibi9FgpMERK9YazlZZg80x9jRHArvGKcHtxu//WfKZZNxHsGifUMEO8dJHyig5GdB2fcC2ApyqfynltxLanj5M8ezD4XKLm0gFX/fA07i+7iO99spbttZNJzlywt5KtffNWCOgnQNY1YVx/B0UA3ePgEvpcOEjp8DE+tg4IVeXhXl2C+bCWRwgb29hWx61CaY3v76Drhm3HniaJIrFhZwtVXVHHFhiqaGgsu2BCc+f5R1HWdnbt6+dkv97B5y9TBQV6RnTvfuY7rmv3UjzxN/HgPu795iKF9IxRddxlrvvhxCjasmdN9m42FGtyO0XWd7v97mr2f/E/CLe0AGCwKS+6rY8m99cgWAz3uy2lxXc2mR7JDlXNlj7VaDXzgfZdz7xtWnnfCKX8gzmOPH+WRvxzk6Ikw2izmzZotBqqbC6hv9rCyTmOZ24ep8wSpgy2ovhSqIR9DfiWOhlqcjdW4mmvP2rsYCCb40n8+zxNPnsj5+MoNlbz7b7ys7H+YfV/eTKBT5rIffo6yW68GID4wnB3mu3kXQ1v2MLLz4MQpE1OQZBlbVSmOusrxi6mymAMD3cgFHq695lqMkoSWzI4oSQyOjDe0Rdt7CJ/oINLaRbSz97zmydoqSkYD2bUUbFxD3tplc1Imaz7M9/et56/PcfjfPk3T/XfwtZdW8MJjk0eR3PqqJv7j324Y/x6oiSQnf/EQx/7nx+RVpKj8uxs45LmaPz0aZffz7VM22CmKxO23N/Oed6ynssI9p6/j5W6uPwfbtnfx0X94lGRyYkWH+hVFvOeTV7Au+GfyQi1s++I+Op/pBaBg41quffi751Unfb4thuB2TCoYJnqyG220hrUkg6PUhtFhRJWMxI15xGIaI4ORSfVwJQlKSpzkeRbW7+/ZaJrOsC+GzxfNeQiXJAmnx0y+PYU+7CedlNG8BfSPpCaVApIkiYJCC86Mn5Q/jb2uCsU0ebjymURwK7xinB7cfoNa8jn7F+RM5kIvlXffQvUbb6Pwmksn9JCM7D7Eie//lvZfPgx6inUfXUXirrfwnT8Z2ZbjBNPpNPO5z9zI1VfVnPNruhAysTgjuw4xvG0vvm3ZuW2KHKXkkkIKrqrBuPFSegx1bGuxc2jfCEf39hENzbx0hyfPyobLK7lqYxWrVhZTXuaatyGB8/WjeLLdz2NPtPDYEy10TdFTCNlhNTfdvZybr3OwNPQUpq4WDvz4GO1PdONZs5w1X/wYJTdfedETSiz04HaMmkrR8t1fc/D+b4/Xy7UWmFn9t0uouaWChMFFS8GrOBYu408/2MnxfbmzKp9rwqlwJMljD+/lkceOcvB4dMYBrd1lpn5ZEU2NNlZWxqlOdKK0dyKFNYylS3AuXYqrqRZrWdE59Sw++1wbn/vic/j9k3sEbA4Td797NW9oOkTywUfZ881DVL7hdaz9r3+aNhOqmkwx9OIu2n/5EJ1/eJxM+EInkpqabDKSt245BRvXUDga0NoqSi72bs3Yhfi+hVra2f6WD9P8nnp+k7mD3z5wfNKJ55VXVfPVL9w6oSyJrmn0PLKJo//1YwzJDmr/33W0VNzIHx9PsvO5k1PWbJdliVtvbeRv37memuqFGygtJHP5OXju+ZN88p8fJ31GBuzmNaW86xOXsd73exyBk2z+9C76dmR7F8tfewNX/vprk7JxLzSLKbiF3NmUrfmj5YIkmbjRSyIj4+sP58xY7s2zUlTsQF4Eiaai0RS9U8wnhuy82sI8HSXoJxXKYCkpJoqR/oHJuScUg0xxkQlTYAhNNc1qpI0IboVXjHMNbp2NNZTedjUVr7mBousuO2uW2nQ4Qvuv/sKRr/6YgroMNf92D79qXc/vf7g35xf+Dfes4KMfugKLZXHUOdN1nWh7N/1Pb6P/qS0MPrsVRxEUX1ZE3o2rSS5Zw66+EnYeSHFoZ++Uw0Kn4nSZWbasiFXLi1ixrJjly4rweucmYclc/SgODUfZt6+ffQf62bGzm5aW6YevG00K17y6mdtvL2JpYjOewQMc/XUrx/7Qhq26itWf+/s5r1V7PhZLcDsm5Q9y8HPf5fg3fzE+bLVwtZf1H1mBp9b5/9l77/g47jr//zlle19Jq14syZIsS+41jh3bcXonCRAIEGqA4+B+x3EHXIHjuAPyPe6Ao/cQAqQ30qvtxN2WuyzJ6nXVtvfdmd8fK7lEki3bsi07ej4e45ndHe3Mjqd8Xp/P+/16M2isoDHjOrbv8PLM7/aMW09aFAU++P5aPveZZacMm/d4I7z+xBZe3tzBvqYoyeTknk35sxzULsxgaXGY8ngHOk8YfWYJlpr5WOeUjQnlPRt8vijf+/5mXnp5rEMuwNyl+XzqI1nMG/gr+7/3Np42gWW/+g/yrl9zRttJhiN0P/cmrQ89Q+9Lm1FTZxZ2fa6Yy4txLqomY/n8dIjxwmok/aVbRuNCXW+JQJDtn/gaWRVeXq/4GL/9RdMY19b5C3P58fdvGvcaGNy+j0P/+TOS3fsp+5s1tFVcx+OvJNj+esuEIlcQYMPV5Xzmk0soK3Wel991uTBV58FLLzfxr//+2pgyczXLCrjviwtYNPgI+sEONn19J4MHPQCUf+YDLPnJv51XF/6p4lITtzASGdfVR7T/eCTfaLkgJIGYbEuH5bqDxMYJ4zUZteTnW6dtSbtkUsHdH8TnG98wSpJFMjK0WFI+ogNhdBmZ6LIc9A+Gx60codXJ5GYJKL39yFbnGfsgzIjbGd4zTFbcSgY92etXkHfDGnKvX42lrOistpcMR9j3z/9Lz5NPsPi/rmZ77l387EcN47opl8xy8L1vX8vs8gtnGjRVqIqCZ98R+l7bQt+rW/Dt34er1oZrXRnaq1bSlCxly2GZQ7vdtNQPTNgIOhUOp4HMTBNZmUZcWSZcmSayskxkZpowGjSIIoiiiCgJSKKAODKpalqMpyeIRKJs374dVYWlS5eh0WpBVVEUUEmvoyoqyaRCJJogHE4QiSQYGo7Q2xugu9dPd0+AwYHJjVoZzVquuH42V29wUatsx9lXR9NTrTQ81oJkcVL7zb+l9L47pl2D4lITt6MEmjvY+0//TecTLwMgSAIVd86i5r7ZCEYDbc6raJQW8vzD+8c1fQNwuUx89R/WsGZ1CV1dPhqaBjm4p5ND+9to7Yvj8U9OyMlaidm12Syaq2dxxhB5cT+2/EoyrrgC2aCfst8M6YbFU88c5me/3DGuG6XBrOXO+2r5wJzDRJ98kbqfHJ7UaO1kiA4M0/7IC7Q99AxDO/af03eNQRCwVpXiXFSNY9Hc9Hxh9bSotTmVXMjrTVVVDnzzRwj9m9mz9n5+8uOWMSH7FVWZ/PxHt2K3jX+eevbWc+i/fk6kYQdln1tFV+0NPPGawtbXxn7XiVy9vozPfXoppTMid1ym4jx48unD/Od33xozKr/wymI+8tkaFg38Cam3k7f+cQe+lnRbpPbf/5aaf/2bix4xNFkuRXE7SmzYS6it+1gIsqQZycPVH8/D9Q1FCIwjEjUaicIC27QaCFFVFZ8/htsdGNOZMorFpiPTFCfZN4xktKIfiUjq6Q2MK4aNZi051jjxbg/6/Lyzut/PiNsZ3jOcKG5/oq+isLAIQ54LQ74LY54LQ3429poKsq5cPKWjAP2bdrL9U1+j/CYHkXs+yQ//GOfA9rHXjkYj8sUvrORDH5h3yTxkxiMZjtC/cQc9L26m9+VN6HV+clblY7l+Bb68uexos7PvYIiGvb0M9Z19GZTpTGaOmdU3VbJ+hYay2G5s7oM0PdFM4xNtSGY7Vf/wSWZ/7p4pFzlTxaUqbkdxv7WdXV/4j7STLmDI1LPw83MoWpdHUJtNY+b17Gsz8PgvduDuGr9sjFYWiE9yVHYUjVZi7uIcVlYLLHX4cFmdZK1cjcZ6fspiqarKW5ta+cH/bZ0wHH7O4jw+c6+TWvdf2fe9Lfj7tCz9+TfPeLR2MsS9foItnQSbO9Lzli4CzR0EmjsId/Ty7rhtUaNB50r3yutdTgx5LizlxVjKizCXFWGpKEFjNk35fk43Lsb11viTh/Fv+TOtd32B//1RJ9F3GQ4VFtv59U9vIytz4uPvq2/m0Hd+QWD3ZsruX07/kpt5/E2RLa8cJR5Njvs3ggDXXjObz356KcVF9qn8SZc853oe/PFPe/mfH24Z8/6y9aV8+JMVLHT/CaWtkze/sp1QbwRBFFn6i29R/qm7p2T/LxSXsriFtFle8GgHqVjalFMQwJRjQGvVHquHGwom8AyMzVkVRYG8XAtW68VvO8TjacOod5uVjaLVyWRlSGgDwyTDYCjMRTboURSFrm4/wXFMSa0OPVmaANH+MKaSwrNuI82I2xneM0zGLfl8kQiG2PtP/0143+vM+q8P8ceGeTzzhwPjhikvW17Af35jAxmXSe3AwNF2el7aTO+Lm/Dt34trroXMtbORr1zO0WQJOxq01O8fpL1x8IxydacbFrueBauKWHxFHoty3RT4d5E63MDRZ9ppf60bfX4B1f/4KWZ99PZpa2wzyqUubgGURILGHz/M/m/86Fh+aPbiTBZ/cS6WIjP95hoabOt59fkuXn384Li5TpNBkkXmLMhmxVyJKwsSzKqdh2XW+b+37D/Qx/d/tIUD+8fPI9YbNdx5Xw0fmnMQ359e5MBvmij91D3M+48vXXDBGIlEePmFF1H9IdZtuBqTw4ak1027iIWLxcW63tofeYGeP/4Qz/1f4Ds/7B9z/80rsPKbn95G9mkcxQPNHRz+7i8Z3vwa5Z9awvCqW3h8o5a3X2oiFplA5IoCN15fwf2fWkJB/ozxFJz9eaCqKr/8zS5+8audYz5bfVMF77+nmIV9DxNt7OKtf9xBdDiGZNCz6pH/peCW9VP6Gy4El7q4BVCSKUJtXcS9xyP59A4txiw9iiAT1TiIxAWG+oKkUmOfTaORbBdjIERRVYaGwgwOTmwYZXfqcMgh4v0BdK5stI60l0oyqdDR5SU6zn3BmanHnvKSCCiYZhWc0/NhRtzO8J7hYorbUfpe28Ler3yTyk9UcmjuB/n5L9rpafOOWc9q0/E39y/n9tvmoJEv/VpnoyQjUfo37aT3xU30vLQJWRkme1k2tg2LYE4V7dEcDnfpaG6N0XF0iK6WYRKxC5vPN1n0Rg1FszMoqcpi9hw7SwuHyQnXY+5voHdLN83PdTB40INr7TIqPv8hCt537UkGZNOZy0HcjhLp7afuH/8fbX98FgBRI1K8Po/Smwqx1eTwRugKXqkzsvPNViKhyZWZkTUiZXMyWVmrYe0cPVXLl6G1XhjTnI5OHz/48Vbeemv8mrUA1Uvy+cyHzFR3Pkfdd7aTIIvlv/42GUvnXZB9fDeX0/l0PriYx6f31Xc4+sA3Sf39/Xzrx0G8gyfnv+XkWfjNz24nN+f0oYGhjh7q/99vcL/0POUfX0Bg/W08/o6BTX9tGjMyPIokCdx8YyWf/uTSaVU94GJwNueBqqr84EdbeOhP+8Z8tuGuudx5eybz+/6Mb28Xm76+k0QwidZpZ+3zv7iojvznwuUgbiH9fxftGyDcfbw8l8YgYcozIsgSMdlGVNUx1BckHhsrBs1mLfl5ViTpwuXhhsNxenoDxCc0jNKQZVNhcAhRZ0af6zrW7oknUnR0eMf8rSBAZpYBc2QQJaXFWJR3zqJ9RtzO8J5hOohbgIQ/yMH//CmRQ6+T8Y8f5ucbc9n41/ENYFxZej732ZXcfEPlBb2BTQWqqpIKR0iGIiRDYZKhCEo8gWwyIJtNaCwmIu5B+l55h56XNjOwZTdGq4Kzyo5tQQH6JXNJFJVx1JdBr0dmyC/i8aUIeCL4hyP4vRH8nijJRApVUVEUNT1X1WOvBUFAEICRufCuOYKAQHoUAThWkkiURHR6Ga1eRqeXMZi0OLJMOLKMODMN5GepVGT6sMd7sMS6obWV3q29dL/jZmD/MLLZTOl9d1B+/wexzSm7aP8HZ8ulLkbiXj+++mb8I5OvvoVox1G01hTh+fNot5dzYMjGoaNxQoHJCVqtTmJ2lY0NSw2sW55HbvV8NPKFGYFXFJW6vT08+Ww9r7zSNGFuU0GpkzvvKeYG1276f/sK9Y90UP21zzPnyx9H1Jy5O/xUcamfT+ebi318hnbu5+A//AP6r32Mf/1ZisF3pYu4csz89me3k5c3ufD6SG8/9d//HT1PPU3ZR2oIX38Hj242sun5xglHcmVZ5LZbq/jUfUvIzj59HeTLkTM9D1Iphe88sIknnz485rObPrKA2681Udv3F/q3dPLON3eTiimYivNZ+9KvsFVdes+lUS4XcTtK3Bcg2NqFOlIuSJQFzHlGZINMXDIRFS14B8OEAmMj2y5UHm4qlTaMGs/TAdI1a50ZWsxxL8lgCkNB7kkhxdFogvZO3xjPFVEUcGXr0Hv7EXRW9DlZUzIaPSNuZ3jPMF3E7Sih9m4Offt/sVXG2VZ6F7/9xVECE9w4cjM1fHidi7s+ew1a8/kJV07F4ySDYZKBEInReSBEMhhOzwMhksGx77173WNTOHKsTqUgCkg6EUEUSEaSqCfc3ySjAY3FhNZpw1iQg6TXkgiECLZ2Ee3pwzbLjCnbiCFDhz7bgqbIhZyXhejKAocTNBpUUUQQRVRBQhUEVMR0d6AKAiqgIKhqellVEFARUGDkvZOWVQUYXVYBFTEVQ/QOow4OkuofJjIQxnvUj+eoH2+zn7g/gS7DTv5tV1P4vmvJuXrljHvreUZVVaLuwbR4Pdx8TMwGj7ag1Uexl9tIzZ1Nu7OKo2EnjV0ira3hCUeQzoQ5VVncdEMFV68rO68N8Z4eP888f4Rnn2/APY4R3SgOl4lb31/OnVWNKK+/zoFfHUFfXM3SX3wL6+yS87Z/k+VSOJ8uJtPh+PiONLPn/r/F+k938/VfyQz0nHy+ZbpM/Pbnt59RCHF0cJiGHzxI518eo+wjNfivvZPHN2rY/OLEObmyRuR9t8/lk/ctOmW+7+XImZwHiWSKb37rDV58lzO6IMAdn1rCzVfCXPfjdLzYyo7/PoCaUrHPr2LtC7/EmJd9Xn/H+eZyE7cwUi6ouYNkON0GFAQwuvTo7DqSgpaoxkHAF8c7jrOwIKTzcG0TGMCdC6qq4g/E6JsgPBrAbNORaYyRcnvRZh0PQR4lGIzT1e0bUxtbkkRysjVI/W40jix0mVMX/TQjbmd4zzDdxO0ow3sO0f6rH5K8Yz0/elbPoZ09E65bmC2zTttOua8Xm92MLsOOLsOBNsOO1m5BTaZIRWOkYnGUWJxUNIYSi5OMxI4L1wkEqxKfuNEvG2V0Vg1aqwadVYvGbkDKzyTszMFnzMQjWfEoJoajWrxhgUgcojE1PUUVotEU0UiSVErFaJIxm2TMJhGTXsWsVTDLCSxqGNdgO5a63aSa+lEVFUGrwZifjS7DjmQ0oCYSRHoHCHf0oo5XVFRIC2lBFBCkE3r/Ru8f6ti3JnrjxJeqop70twD6nCwyl88jY9k8MlctImvVossmh3A6NLZPJBWN4Tt8FM/eejx7j+DZW4/vYBMCERxlVmyzbcg1ZXQ6ZtPgz6ChU6S5NYpncGyd19MhySJ5JQ56O7yndH4dpaYmmw3rSrl6fRn5kxzZOhWRSIJX32jmqefq2VfXe8p1DWYt194xmw8v68W4/VUO/vIQkYCR2m99kVkfuW3aGNNNt/NpujFdjk+4q48dH/sstv/vZr72Wz393SebrWVkGfnNT2+n6AyNoGJDHur/32/oevRxyj+1kOG17+OxN0S2vHx0wnqYWq3EXXfW8ImPLpyyUnDTncmeB6FQnK987WW2be886X1RFPjAF5Zzw8IQVf3PcOThRvb/ugGA7PUrWP3kjy8Lp/HLUdxCuvJEqKOH2KD32Hs6mwajy4AqykQ0DiIxGHIHx5TwAnA6jWS7TFN234/HU/T2BQiFxho/QdpAMStDQuMdonr1Wjq6unjzzTdZu3btsXU83nSliXcjayTyXCJqTz+63LNzRD4Vl4q4vTxajDPMMA7ORXNx/PQX9L74Ov9ctZG6dWt49Olh2hvH1k7tdCf5A/kIQj4FNgNzdApV0T4Kt7xD8kgXqWgqXfZGUVFTaUGmKioIoDHKaIwysknGZNKgccnIBh0akxnZpEFyWBEdNgSrhajeil8wM5wyMRjV0+2TGfDCkEdh2JPAOxwj0BB5V09cbGQ6NQFfnIBvvJulFpgNttk4r9NRlCtRYAiT5+/EePgQyR0taKMRjC4n+beuxzqnFEOuC12GnVR0RLyHIiPzcLoHdFShCsKImUGSru70fauosAhZIx/7/MS5kI5dHnkPZIMefW5W2lU7z4WppABDnmvaiIfLiWQkyvDugwxt339MzPqPtKC3yzgrbTgq7RR/oIKez6/h8JCDTR0izS1Rep8LjJRXOLO6ygBZuWbmzTWwvCLGquJeMoVWWsRqnq0vZMvmgXGvxVEOHnRz8KCbH/zfVioqMrn26jLWrS0lP8+KVnvqHGuvL8rRo0M0Hh3iSOMgTc1DtLYMEz9Nnrkki6y+oYyPXh0it/5RDn1hH74ekZp/+RKln7hzSmrmzvDew1iQw4o//4bt997Pd794DV//vY2+E1y4hwbCfPz+p/jNz2+npHjyoyy6DAcLvvsPVP7dx9LGU/f+M5/97Aru/N5tPPaqytZXj44xdIvHU/zpz/t44slD3PPBWj724YXnZWTqUmNwKMwX/7+/cqRh8KT3JVnk3v/vCq6rcjO7/yXqfnyQxifaACj+4E2s+P13p72R4XsdQRQxlxQgm02E23tQVZWYL0EqpmDOM2JkCElrQy6wjZuHOzwcJhpNUJBvRT4HrxZVVRkajjAwEGK8gUVBELA5dDjEAMnBOLr8fIR3+YmoqspTT7/E66+9QVXVXK7ecOOxz7R6mTynQrJ7AGNREbLp5M4JRVG44oor2L59OwC/+93vuO+++87690xnZsTtDJc1giCQd+MGclLrcL61kaXXuXn72lIef85PT7t3zPqqCp2dETo74RUciOLVFMyzkuHUYDSIGA0CRoOIyQAmPei0EE2IxJIi0bhALAGxkXkwlCIQSBFqiBH0Rwn5YyO96SoQHJkuLMNDMYaHYC8AhSAVwryRUB29iCmQQvd2BF3wKKIAWK2oJhOKTo8imUgoAvF4asyNWQUSlCII4AybsdsM2O16Mp1GqioyqJ7jonSWc9oWSj/fxAIhBlr76GropuWtRuIxheyEk/nXLMRgOz/ht+FuN4Nb9jCwpY7BLXV46urRmAQyqu04Ku3kfLoUb+ENHPRmsr1DS3NrnI5HPCNGY4On/f7xsDr0zJ5tZV4BVHjr0bz1CImmKMlIih2RJFqLhtl3tPClDfnct2A224PzeXN7gt0b2/B7Jh4NbmwcpLFxkB//LP1Q1molTGYtZrMWs1mH2azFYtERCMRoaRlmaHBsiNmpyC6wsnxtITcsDFDa9RJHvraLloYk1V/9DFfd/8FLOhR+humB3pXBir/8mu33fo7v3L+arz9so7f9uMD1DEf4+P1P8euf3kZZ6ZnVZTfkZLH4B/9M6Muf4NB//gzfL77G57+wivc9cBuPvZRg++vNY3LyYrEkv3+wjkcfO8hH713Ahz4wH7P5vSnS2ju8/M2XnqPnXSHjGp3EfV9ZzTXFzRT1vs7W7+6j4410BFj1P32a+f/19wjie/OZdimiz3QgG/UEmztJxeIkoyn87UFMeUb0Ri+iaETKs+IZCo9xOA+HE7S0eijIt2I0nvl1Eokk6On1E5ugg1Vv1JBlUxAG+xGdWZjL0iHIZWVl6PV6jEYjiqLS0+vn9dfe4Kc//W9uu/0Dx8StwaQl1xoj3uvHVFoybofLD37wg2PC9nJnRtzO8J5AlCRcV6/HxXpKU0lurH2bZ3daeOwF75gcqBNRFJWOZh8dzRdwZy8CqgqhiEIIATCCZiRcLQyElZGFyeEdHh73fa1GpDBbx2ybQrngo0QZRhsJHQvzTkVjCIKAqNchjUxahxVDbla6bnJuFoa8bAy56RyS6dqoaN/Xwtt/3UNju4cun0K3HwY8qRPCsdP5bo8cOID4/QNk2iRyrCr5FolZ+TaqF5VQvXoO9ozJhxOpqkqgsRX3m9vp37iTgS11hDt6sBSYyKxxMGt9NqVf+TD1qRI2txtoaldof947kot+dkJWp5eZVW6nak4WtTV5LF2QS0HOyeHDce+X6P7rm3Q+8Qq9L20m1OdnxwP7OfDbBirubGXDzUdYfVUB7Tcv5+2WDOre6eTwru7TuivH4yniwxE8w2ceHj2KwaRh4ZVFbFgusSKjidS239P+rXY27w1R9ZVPs/KFDyMbZ8J8Z5g6dE47K//yK7bd+zm++4nlfP0vTrpbvcc+93mifOL+p/nZ/91CdZXrjL/fVJjLsp9/i2DLpznwrZ8Q+slX+OLfraXrgVt4/MUIO95oGRN2GQ4n+Pkvd/Knv+zn4x9dyPvvrsWgv3gmaReaXbu7+crXXsbnO9mXw2TV8cmvXcVaZx25XZvZ/G+7ce8eRBBFlvz4X5n9uQ9dpD2e4VyQjQas1WWE2rqJe/woKZVAZwhDpg6DEyQ1gZjpQKuT8QyGTkqbSiYV2tq9ZDiNZGWZjhllnopkUqF/IITXO/6zSpREMpwaTFEvBHXoZ806qfrD66+/fux72ju8RCJjn40Wuw6XNkTMHcFcNgtRM1baNTc386//+q8sWbKEvr4+urouWITwRWFG3M7wnkOUZFwL1vKpBfCBu3p55OkDvP6Ol5YGz4R5ShcDWRaxZ+jJcOrIyNSTmWHAYtFgNGgwGTWYjNr06JVJhyyJeLwhPN4wHm8Unz+Gz5/A70/Q2xehuyMwpuf+QhNPKDR3RWjuAtAjCHlkZ2rItItkZKtkmJLYtXEsYhQTUSyEMMV7kTsPEt0foD+QIOqNExmMEvUmEQ1WDPk5GPOzMRZkYyzIwVCQc3w5z3VBwkjbD3XwyiNb2dfio3FAZdA7+XNIUaDfk6LfA/tR4OAgvDwI39lFYabAHFOExXk6llw5m4x5szGXFSFKEqqqEmzpxP3mdtxvbqP/rR1E+/qxl1nJmp/BvM+VEam+g73DubzdpqGhKUrXRg9KygN4zvg3iqJAQYmNiqosaubmsHheDpWlztOGaGntVmbdexuz7r2NRDBEx2Mv0fjjh/HsOcS+Xxzh0ENHKbu5iMq72pidk8XNH6zC/bF57DpqZP/2Hg7s6CQcGD8v6WwQRIHK+TmsXmXj2ooezPV/pesPR9n6RjdaVyGzPnYPS5+4B43lvekqO8P5R2M1s/Ivv2T7R77Adz5Uyz8/kU1n8/FrMuCP8ZnPP8NPfngL82tzzmob5tJCVv7+u/iONHPgmz8m+sMv83dfvpq2793E488H2b2xbSTV4Dh+f4wf/ngbD/1pH5/42CLed/vc8+4Ue7F5/MmDfO+/N49xSc/INvPpf17NldJb2Ft38cZXd+Bp9CMZDVz5yP+Sf/O6i7PDM0wJoiRhLi0k1j9EqKsPVIgMxkiGU5hyDRjVQUSzHY3WypA7OKbtNDQcJhCMkZ9nxWAYvyNIUVSGh8MMDoXHGD6NYrZqydDHUL1BtHk5J7kgn0g8nqS9w0ciMbZtcayGrRcs5bMQxqn+oaoqn/rUp4jH4/zqV7/i9ttvP/UBugyYMZSa4ZyZroZSZ4ovGGT37la27+5l34Fhmhu9500QarQizgwjGZlGXC4zrmwL2S4zuTlm8rPN5GWbcTrPrZB4JJrgjTdbeGtzG1u3dRCeZK3R6YYgCpitOmx2HQ6nBpdTJNuhkGtP4NIEyFKHMHvcJLvdRN1BIkNRIoMxIkNRknEZQWdJG4Rlpg3CRpd1GXa0Ths6Z3o+uixbTm0cERr2s/mZXWx6p5X9vUl6Bs9/h4heJ1BuDFLUcoC5phiGITf+3gGE8lykpXNIzCohYMliMGLA7ZNpaQ6eMiLhdGRlm5hdlUXN3GwW1eZQMycLo2FqOgpUVWVo+z4af/IwHY++iBJPIMoCRevyKLgqB9f8DESLEa9hFv36cna0O9m9c5CD27smdD0fD0kWyS6wkltkp7BQT2luirm5fvKH9tL/1320v9ZNQrFScs9NFH/oZuy1lZdcrvd0MUyarkzn45OKxtj+ib/Ddkc5//JswZj8c51e5offv4llS/LPeVue/Uc48G8/IlS/i/J/vI6m8ht44lkPe99pH2sAOILDYeBj9y7g7jtrJmzAXyq8+zyQNVr++3/e4bEnDo5Zt6DUyWf+aTkro88iNx9m4z/tINgdRu/K4Kq//vyi1bS+EFyuhlKnIhEME2zpPGb8KUoCplwDGpOGmGQhKhgZ6gsSm8CFPCPDSFbm8VHcURdktztIcoL2o6yVyHJIaH3DyLaMMS7IJ1JcXExHRwe/+/2TLFu2irnVEztyFxcX09bWNub9X/ziF3z2s5/lK1/5Cg888AAlJSW0t7efVc7tpWIoNSNuZzhnLhdx+27CkTg76no40jREIBgnFIwTDMYIheKEQnHCoTjxWAqdXkanS096/fHJaNCQ4TDgdBjJdBrIyDDisBtwOPSYTdrz1pBuaBzkiacO8cJLjYSnoDzLpYBGK+HIMuHM1JHllMjOEMhxJMmzxcgzB3EmhhD6+0l0DxAdiqTF73CUmC9B3Bcn5o8T88VJhJIIopQWuw4rWqcdrcOGx5zBgYCORslJs1dDPHH29029UYOsEQn6Tm8SNhE6rUAsPjX3bpNZS3llJrU12SysyWF+TfYFc1GN9g/R/JvHafrZnwl3ph2MBRHs5VayF2biWpBB5jwnMXsBg8Zy3FEHgahIICIQikAwIhAKK4TCKqFwCkmE4lyYnROl3OHFEu0j2dRKsMGNt9nP0BEfQbdK0d03UPyhm8m6YtG0DW+fDNNZvE0HpvvxURIJdn76H7Fe7+LfXimn+dDASZ9rtBL//b3rWX1F8ZRsb3DHfvb/6w9J9hyi9Gu3cDBnA08+5ebgjonbnDabno98eD4fuKsWk+nSzMk98TzIy1/AD3+yk8OH+8esV70kn49/vppl3scJ7jjCO9/cTdyfwFJRwroXf425tPBC7/oF5WKKW1VVSUwwwnm+UZJJwp19JHzHfVD0Di16p46kpCMq2Qj64wS8kTHVHSB9nebmWFBVlf6BEPFokvFad4IgYLNrsRFASMnoc7JOCkE+kdH6t0uX1NDT03lM3N577y309XbT29tNVkYG5WXlx8KQc3Nzeeyxx076nq6uLubOnUtmZiYHDhzAaDS+J8Tt5R1zMsMM54DRoGXtFSWsvaLkYu/KaQmHE7z8ahOPPXWII/UDp/8DQGeQyS22gwqplIqSUkamFIlYEs9QdMJe/elGIp6iv9tPfzccGedzSc7AnlGII9NIRqYG17z06K/TnMJpTpJvTmDRRBFiUZL+AAlvkMM9Jt7qdrC/TWSo/cRe29MfFL1RQ2GZg8J8HcU5AuX5GvJyjTgcero7OlBUyMzMpbk9QGtfiq4B6OlL4O4OMNgXGLccwYmcrbAVRYGSMic1NdksqM1hYU02RUX2izZiqXdlMPdr9zPnK5+k5/m36H5+I549h/AeaMTT2MKRR1oQJAFnpY3shRm48k3kSAKCLCLK6bJUojSyrBdJxVL4tgTwNvs5fNSPvzOEIS8H56JqHIuuYt5nFpC9bjmi5tIeiZrh8kDUaFj6m/9mzxf/jW9fdZh/19RwZK/72OeJeIovf+VF/uvb17BhXdk5by9z2TzWv/wb3G9uY+9Xv49VeYFvfP197L5lDU890UXD3rElsny+KD/+6XZ+/1Ad994zn7vvrMFhn16dBJPB60vy+pt+Dh5+ftzP199Rzd13OJnX/xBdzxxm9w8PoiRVslYtYs0zP0WXMXW1QmcYS0JRebvnzB35pwydBVzv8rk4Fvw04jlimvi50T0cSi/IAi4YI26NZi0ZpiSiz4suJ3vCEGRIl6Tq7vWPcToHeOTRF/jdrx/gO999gOuvvY4//OnhU/6s+++/H7/fz+OPP47R+N4o/QUz4naGGS5p2ju8/PFPe3nhpUYikfHDZk4kt8hG1cJcFs+VWZLTi1R/kEjbAOG2IUJdgyQjMoaSSpwr5yOVzaY1IdHgjtPUHqK5JUh/b+iSEbwnkkoqDLmDDLmDHD3lmgJgHZkAlJHp1BhMGsqrM6kuFamU3eQNtqGNdeGoXobrqmUYcrKAdM943aG02+aiKxZSOd+Aqqr4DjXR9/Ir+LTtpJaY6MidS12PmUP7PfS0ec/6d+v0MpXVLhbMz2XZwjwW1OZgNE4/YSfKMgW3baDgtg0ApOJx/IebGd5ziOE9h/HsOUzDk/WkIieHJQuiiKjTImo1iFoNGpsFx4IqnOvnMusfqnEumos+y3kxftIMM0wKUZJY/ONvs/+fH+Abi3fzHc1S9u88LjKTSYWvfv0VvvFv67nlhsop2Wb2uhVcu+1Rup56lX1f+x9cruf49lfvZutty3j+mU4a9vaN+ZtgIM7Pf7mTX/92N2tWl3DbzVWsXFF03h3wFUVl2BOhvz9If38Id3+Q4eEIwVCcYDAdRZVejhEMxYlGkySTCqmUOjJXSCaViUNENSLv//xybpo3RFn3H9j/0wPHSv2UfPgWlv/6P2fc0mc4a7R6mQybiDbgRRYcaEuKJuxMVhQFd38IzwSVA/RGDbn2JKo/LbZF7amf5X/84x954YUXuPfee7nmmmvO7YdcYsyI2xlmuATZd6CP3z9Ux6ZNracUm4IAFfNzWbAsh5WVEYqTTURef5C+B1qoqxvGsaCWrCsXkXvrHWQsn48x/+R8jkrg+hNe+wIxDjf1MdjvZ9iTbmR4vFG8vhgeT4xINIUkiSOTMGZSFJVYXCGWgGhUxd3lI3oGodM6vYTFqkeSBKLRJAF/7LSjnOcLo1lLXrGN6hory6sV5jq6cSbdiIN9BIQAvrYA/Y9so+k7flKSA/viRThWLkBRQggOCwObduDduJnwkT3oTTEc5VZyF1nRFukp1ngwZ+gwGrM4YNTQ3jhIKnnq36nVSZhNEg6DSmWBhffds4R5S0svyfJLklaLY8EcHAvmUPaJ9HtKMknc40fUyMcF7QQhXTPMcCkhCALz/+ufqH/g53y14m2+r13N7nd6jn2uKCrf+ObrdPcGuP/ji6ck0kIQBArfdy35t66n5fdPsf/+/6Ok+km+/fd3s+N9y/nrM53U7+4Z83fJpMIbb7bwxpstZGQYufmGCm69ZQ6zSs5+ZDOVUuju9tPa5jk2dXb6cPeHGBgMTShMz5XMXAsf/ttlXG3fgb1+Kxu/XcfA/mEEUWTBA1+h6u8/fsnl4c8wPRAlAadThynqQ0oY0BUWnTIFJhyO090TGNc0CsBi1ZJviRDrDaNx2k+7/f7+fv7u7/6OjIwM/vd///dsf8Yly4y4nWGGSwRFUdn8dhu/e6iO/fvH9qyfiM1pYNn6Uq5dCeW+XfiefpCe/+7hnQYfmSsWUvSBT7Hs0evHiNnTYbPoWLlobP7XmebqqEqKSEc9XQfrOBpxcmDITv2RMA17e4mdYgQ6Fk0Ri4ZOes9q0WCz6TBZ9Chqun5jJJIkHEoQDsUndCo8V8LBOEcPDXD00ADPkh4ByCkqo3DWQkoLRKrWxJhz1zCVqhtjfBAlFiA6/Bp2TwylS8VWbCbvWgOBW1bRlczl7W479R0yLZtDtDUMEg2fWXpKPJZiOJZiGGjuHmbTgdeY60qyJE/DNe9fReGKuRe9oaYkkyRDEVLhCKlIjGQ4QioSPbasxBNobBZ0mQ70WU60ThuinH5MibI8Mwo7w2XNnH/8LEd/9Rf+3vUaP153LVvfPPke8Mtf7KC1zcO3/3U9Gs3UdOyIskz5p+6m5MO30Ph/D1H3oV9SuORxvvXlO9n1vhU8/0zXhDm5Q0NhHvzjXh78414qKzIpL3OSn2+lIN9GYUF67nQaUFXweCK4+4P0uYO43el5X1+AljYPHR1eEuOEYJ4v9EYN195dw9VXZ1Az/ByhV+t4+bv7iPniaB02Vj3yv+Res+qC7c8Mlx9KSmV4MIpqt6fNQU8QtqqqkkopxGKpdHslmhxTimqU0Ue2OeElPhTHPHvWpDp1v/CFLzA0NMSDDz5IZmbmlPymS4kZcTvDDNOcRDLFCy828rs/1NHR4Z1wPUEUmLMoj9XrclhX0oX4+p9o+9sDvLN3COeSGoo/eT+r774eU/G5u2+eK4IoYSypoaKkhgpgTcNBhqxv4r3Wzp5QMTv2Rji0s2tSpkv+QAJ/IAEET7vu+SSZUOhqHqareZitI++JooCroJD8klpyXDIuu4orM4FOo9DQqaNxU5KOo8MM9XkB75TuTzCssL1NZHtbip9u3USpaxPzHAnWrp7NktuWo890TrnYTfiDhNq7CbX3pKeOnuPLQ4OEVQVBKyHoNYg6GUGrQdBKI2HFEkgS+uEB5KFh4p44UW8MZGPa3TrTgT47E2vlLGw1s7HPnY21qnQmZHCGy4ryT3+Q9kctfO7Qs+iuu4W3Xu446fNXX26it9fP//33TdhsE+ftnSmyQU/1P36a8k+/n8Pf+xW77/g5BVc+wTf//n3UvW8FLz7fy/7tXSQnKJfX0DhIQ+PYmtkGg0wyqVxQ8Xo6UskUUtcByg820vrYIY482gIqOBZWc+VjP8RSVnSxd/E9h0YUuDLPdrF3YwyqohDtGyA86COsMxERTv+8GX2qKioMeSIMeSJYrTokSSQWSxKLJceUnxrzHYKAzalDEkfWk02Yy4sn9cx+7rnneOyxx9iwYQMf/ehHT7v+5ciMuJ1hhmlKLJbkmefq+e0f6uh3Tyzc9EYNV1xbzo1XyZQHdjP4x19x8PkOElGBWR+9jSUP3Yu9pmLCv58OmCtrMFfWUKSqFO/byxr/bsIrnRxWytm2P8HBHT0MneIYTCU2pwFXlhazMe3I6/cn8XljRM7CeVpRVPo6fPR1TI1RRnGpgyWL8jGZtdQ3DNBydIihgfBp/05VodkNzW4NTx1pQ/dgO9lWlWxdnDxdkgK7jorqPMoXl+EoLwRRQE0pqKnUmHnc4yfc0UOgrZv+5j7cHQP4/EECspaw2UrEbCckmwiqOvxxB/6wA79cSdzxrsZtCoiMTO9CNovYCnQ4HDIOq0iGRcGhS+CUQ+QEuwg+9gaN/zWIvz2EPj8fe00Ftrnl2Gsr0uH1hbkXfZR6hhnOluL330TPyxbue/V3ZH7o/Tzx55PTTw7ud3PPfY/x0x/cTEnx1BodaR02Fnz3H6j4249w4N9/zI5bfkLhuif55y/dQu+HlvHGHomdb7bSeXTo9F8Gk/KCuNAk4gpPva7w3GtFLO3pZ5nQwfx//Di13/riBamNPsNYBEFAK02ve7aqqoRjCj5VR1CfjhqaKLBYZ9Ck87sn6Pzx+ydfHUGrk3FlSmiDQ6gjIljnnLzx4+7duwHYsWMHOTlja2UPDKRNR7/0pS/x1a9+lZqaGl577bVJ79+lwIy4nWGGaUYkkuCJpw7x+z/uZXhoYuFiyzBy1U2zuXV5GMfuv9L299t5Z+cAxqJ85vzz31H2iTvROqZfT+ipEAQB+4KF2BcsBKCksZErQq8TmSfQoZ/FgU4Djc0x2hoHcXeem2DUGzXkldgpLjZSnpei0pWkujKbrMJyRJNrzIMkEIzR2xugp8dPR7eflnYvra0eOjs8eD2Tr796JuRlG1iyrJgrVhaxdFE+DsfYcO9hb5Q9Bzo4sL+dhtYQrc2B09a4jcVVOgahAy0w0pjb40b8k5sMi4AspsOhBEFNz0m/FgVIKCKBaHpkWFGcwEiocIK0UD1m1p0amc6cZEJhaCDC0BjjbwkoRtbMIq/WxKwbNZRmRCjGjaZnL96fPsWev/GgyhYyViwgc8V8MpbPJ2NJDbLpveMUOcOlT951a9BYLVz70/8k/wsf56e/7CIRO3499fUE+MgnnuD737thSmrhvhtjfjbLf/kfzPnyx9n3Lz9g600/xbXwET74wfnc8w/XUue/knfeHmT3xtZzKmt2MUkKMlvzV9Bcs4aCa9fNuKjPAKSNnTzDITzeGPHTRBwYTFpsdi1GOY4iaAnGZIK+6Bl5iRxDAJtDT6YhSry3n6TOfKzMz0mrTVLk+v1+/H7/aT8fTwBf6syI2xlmmCYEg3EeefwAf/zTvgnzLwByimysv6WcG+f2o33tDzR9eA9HGv1kr1/B6qf+nbyb1l42RjuWigosI3XSylMJVtTXEXS1EF6ZxG/IpC9motevo2dIYGBYIR5XSMRSxOMpUkkFrU7CYJQx6AVMBoEcR4o8a4JCu0K2Q0dGXgE6ZzGCznqaPQGLWYe5XEuO4qew+SgVR/cw8PZuAo1tRCQdA8YsPGWzGcqbRY9qxz2cOiNnaVkjUJItUpzsxdXRgL2+AVMshPyGEeNNV+G/81rMN16Fxmw66e+cdj0bVlewYXX6OEVCwxw8dJSN24epOxSm6dDAhL3J70ZRYMB3up2++OGFyYRCR2uAjlbYCIAVQViKK3cdVffpmJcfJjvSSHD7E7T96pf420PY5laQuXIBWauX4Fq9BGPB5fdAn+HyImvlQox5PyTxD1/mW1+6g+/8Oox/+HioQygY52++9Cyf+cwy7vvQginLwz0Ra2Upqx/7EZ699Rx+4Nfs/PqL6L77DqU3FrL8w+sZvHUZO9od9HUFGeoLMtAbwN3pw+eJoJ4HvwOtXsaRacRs12O26jFZdZitOkwjywajBlkrIcsisiwiadLL0UiCzc83ULe5fYwPQ78nzle+9jJLl+Tzt59fQc3cM/OimO4oqRTxYR+xgWFigx4SgRBKPAaJCKTCkIpBKkEyHiGzsx1Fhb7BHjQWB6LejGi0IhnNyGYjsimdJqKxmi+76JhYNMHgoJ9ASDmtV4fRosNhFTFKEaRUACWcQtKK6CQZa5aRsGIh4IsTDsRRJ2gICIKArBHRaGU0WhGLUUUX9hBpC2MoyEPnHH9wYtTTJBIZ31X5m9/8Jt/85jcn3PdzqXN7qTAjbmeY4SLj80X58yP7+dMj+wkG4xOuV1KZyXW3z2JDYQvxx/+Ppq8dItgTJv+WdSx96PNkLpt3Aff6wiNKGsw1yzDXLDvpfTUZJeVzkxjoQkklUZUUiqqgqio6qw2tPQNBawKNCTSTfyCrqkrUPYh3fwOevfUMbqljYEsdsYFhACStiKPCRt49ZVhXziExp5b93mz2t8j4jvgQ/YOkziDPLJVUiWitxGpKsLzvCpYV9GPYvYWBV+rpeeFVOh59EVGnJfe6Kyl837XkXnflsRJDJ2IwOVm6bBlLl0EiHqGvp41N23vYcTDGwb0DePpD42z90kdVwd0TxN0THBG8hWTmVDHnDiPzS2KUKK1o6nbT9J2X2PZRL4bCfFxrluJavZis1UuwzC657BprM1z6mIrzWfK737D3i1/lgY/P4T+etNPd6j32eSqp8rOfbufZ5+r5+leuYuXywvOyH44Fc1j1p+8z/z//jiP/+yBNv36MI3/6JdlLnqJqzRxUbTk9fVbaj0I0dm6i1mzTkZVnJSvXgtNlwpltJiPbjDPbjNmqS1+nqoJGiaBJRZBTYTRKFE1qGEmJIaopBFKIqoKgphDVFCmtzOz759F5dw1vPHWYnW+2jhHfO3d189FPPMHqVcV89jPLmFM19v46XUn4g/jqm/EdPkrwaBvJ4W6IDCERRGtMoc/Qoct1kMjIIqS1ExQM+BUd/rhMJK4lntITS1qJO3ORRJXmVApzJIFV7cec6sEciWLsD2NIBGDIQ9ztIxkVSCV1KKIJdFZEcyayMwdjQR6mknxMRXnIxulbE1lVVaLhKH5/mFBEJRo79fNaEARMFg0Os4I25iM1FCMSSZGMJlGVtEOy1qJBa4tj18uY7XqiDhOBgEI8lkQQQKOVkLUSOllFJ6WQ1ASiEkYJx4j3xogpGiyVZUi6icPjy8rSNa937NhBKBTCZDJNuO57FWGiHoUZZpgsgiAUAJ0AjY2NzJ49+yLv0aXB8HCYh/60j0cfP0gkMnEIy+zabG64vZirnAcJ/uE5Gh9tJOaJU3jnddT8y+dwLJhzAfd6fM7ULXm6kYrG8NU3493fkBaz+47g3d9wTMgC6DN0ZM51kDE/C+PKWvx5VdR12znYItDc4KGzeXhKyxKJosCs6iwWLbRyVZWf3M49DL24h54tboLd6XB1e20FOdesIufaVbhWLzllQ0JRUvg93TS3uWlqC9Dem6SrL0lfb5j+Lj8B79mHVhvMWsxWHRabHqtVg80m47BpcNi1ZDr1ZGSYyMqy43I5MRm1CIAogoB4LNxZFASSSQX3YIje/iC97gD9/X4GB4IMDoYZGorQ1xPCMzR+b/VkyMwxM6/GxPLyMHOjh4ls3sfAnkE8TT50WZlkrV48IniXYKutmPYREJf6dXe+uZyOj6ooHPqvH0GWhwf2zePgbve4662+qoSv/v1qcnMs521fvL4o77xxhFcffoe9rWH88tk1rh1ZJnIKbbgKrLjyrWTnW8nKt2Ky6BCVOIaEB33Siz7hHZn7MCS96JI+ZCXKmXZFqYDHUEq3bSkHBrJ4+rd7aDncP+H6q68s5p73z2PZ0gJEcXp0fKmqSqTbzfDug3jqDhHtOIIYdaOzpjDOziGUV0qvkEWnx0DXsEzvgMrgcAq/P0HAGz1lNYLJYjBrsTn02GwanHYJhxWyrCkyrQmyzTEyRS+OkBulq4+EN05SMaDKVuLrrkfKyERnMVNWXIKo1SLKF+4eq6oqqVgUvy9MKKYSiakkT1NiD0CWRSwWGYucQIolUBQhfe6lc3dGv5yEL0Aykg7Rl7QiOpsWrUWDqtWRErUIqoqoJhCScZLhJMlIkmQkRSqWQtRq0WU50WdnnNTJOjrK+uabb7J27VoAAoEApaWlDA4O4nA4qKysRKfTkZOTw1/+8pfT/p5zGbltamoimUwiy/Jp2/pNTU1UVBzzeylUVfXMSkCcAzPidoZzZkbcnhn9/UEe/GMdTzx9mHhs4nDRqkV53HhbIavN+/D85mmaHmsmEU5R/IEbmfvPn51WJlHTvRGpqiqxIQ/B5k6CLZ0EmzuOLQeaO4h0n9xQNGUbsJdbcZRbMdcWINfMoUsuZk+7icPNKVqODNLfNXEuy/kgr8TO/MWZXFUToSpxhNBbu3Dv6GNg3zCJUBJRqyHrysXkXLOK7HXLsc+rRDac2k1VVVXisQDhoIf+IS9H2wP0DcRRlHRDcHSuKul1FVVAlgScdplMp4GsDCNZmVZMZis6nRGtJJ330c9BT4T99f0cqnfT2NBPa4uH3q7AGYWAQ7p0U1mVk8VzZa4oHiK7dQ/D77TQu6OfYHcYjc1C1qpFuNYsIWv1EpxLaqad2cx0v+4uNpfj8el47Hl8B57jIflmXnu+Y9x1tDqJ++5bzCfuXYhWe+7iweeLcqRhgF17eti2vZPD9f1ndL1Jskh2gZW8WQ7ySxzklTjILbZjNGvRJIMYE4OY4oMYE4MY40MY44PoUv6TxGsqoRDpjxAeiBIejBIPJEgEEyRCSRKhBPFgep6MpFBS6ogBnoqSVFFTKoIkkLMkk6K1eWTWOPDrcjnq3MCmvSLPPViH7xT+FkWFNt5/Vw0331iJ1Tp1DtWTIRWL46k7zODW3USO7oNgF9o8E8NFc2gnl6MDBjr6wN2fZLA/dFJe9sVEFAWsTgPOTD0ZThmXU+CqlVk4bAaMJiMl2U7EVAI1kQRVQEUCUUKQNAiyjCDJCLKMqJERZAlBFCf1bFFVBTURR43HSMYTxJIKsZRAIgXRuHDa0dkT0RtlrAYwyyAbjCgqIAioCCNzAAFVVVFVFUEUIJkk5Q+Q9PpJhdMdxhqjjKQTURU1LWbjCoIooLGY0djMaKzmCV3/xxO3APv27eMb3/gGW7duZWhoiFQqRXFxMW1tbaf9XTPi9nxtVBAygXwgC8jguA3JANCiqurFT+qaYdLMiNvJ0dHh5fd/rOOvLzSQPEW4au3yAm66NY8V2j0M/vJZjj7VSiqmUvLhW5j79fuxVpZewL2eHBerEZmKx4l7/Ol8okEPkZ5+wt1uIj39REbmo69TkbEjkzq7FkuBCUuhCdssC+baYqTqCnrUXA71mmnqFGlvC9HVPIzfc+YjhoIAJbMcLFyQR+XsDDKdOpqb96GRBTKy5nDg8CB79/fRcnTotKUBTsSeaaRynouFVSLLSzzY2w/i3XiA/l0DDB32oCRVBEnCVl2Gc3ENjsVzcS6qxrFgzrQOEztbIpEEBxsH2LG7m7q6buoPDpyxu7Ujy0TtfDtrauMs1jUQ2VRH3/Z++uuGSEZTSHodWWuWknfjGvJvWoulfGy95wvN5SjeppLL9fgM1x2m7SffpveG9/GLxxN0tXjGXc/uNFBd7WJuVRbVVS4qKzLIdk2cmqEoKoODIY40DnLkyAANjYPUNwzQ13fmTvUFpU4q5udQMT+HkspMZI2EIT6EOe7GHOvDEuvFHO9DmzouKmP+OP6OIP72IP6OEKG+MGF3hHB/NF0WbIqaq8YsPWW3FFF+RwkB11zqzWt5/c1h3ny6ntApXG0lSWDpkgI2rC9j7ZoSnM6pN6kLd7sZ3rGLSMMe4kPteE0W+uwltEedNPfJdHQn6esJkUpees3kL36+kqJCCw6HCZ0+CwSQJBFJEpBlAVkCSVSRxLSZoSiAiIKoqogoCCN6RSEtMBUEFDUtMhU1vZxICcQTKomEelY17kfzYCUxfT0oyuj8bL4rXaJRFAREETSSil5NoImGkQURUacdKYOnQdJpkYz6Y3Xdpysz4vbEjQiCBbgNWAusBspPsXoI2AZsBp5XVXXPed/BGc6JGXF7ag7X9/PbB/fw5lstE/Z2C6LAgiuKuOlmF0vUHfT/4q80P9uOkhQo/djtVH/t/mlRey8VixMb8pAMhkmFoyRDYZKhCGGPj73bd6DGk8ytrkYz6jo58oOP3WfeNT/+fnpZTSZJRWKkojFSkSipaPz4ciRG3JsWsvFh37H9OBWCCDqHDqPLgCnHgLXAhLnAhGF2PuKsIsImF60eG60DOpq7BTpag3S1DJ91iK4oCpRXZLB4YR7LFuezcH7uST39EzW2I9EEhw/3s2dfL7vqetlb10NikiZQkB7VrarNYHFFiiXZfWgO7ye4txVvkw/PUT+BrhCoIIgi1qpSLJWzMBXnpaei9NxYlIcu03FZ5J2mUgqHGwZ5Z2cne/Z0c/igm3Bw8mJXb9Qwd6GLK+bBmuIetPv30L+li56tbgKd6Zxly+wS8m5cQ96NV+Fas/Si1Nu9XMXbVHE5H5/owDCHvvkAhpIIL5uv54nHuwmfwrNhFItVR1lZBrIkEArFCYUThENxwuEE4bNxeB3B5jSMiNlcZtdmY7HKWKNdOCJt2CIdWOJ9yEpaOCpJBW9LgOEGL96jfvztQXwdQWKe0+8/gCDLaB1WNDYLWrsFrf34smQyIGo0iLKEIEuIGg0pVaGpsQmlvg31cCtKPP07NSaZ2bcXU3F3Ob78BTQYlvPa617eeqb+tMdSFAVKy5wsmJfDwvm51NZkk5drPaPw5bjXi2/3DgINB+ga8NKlWuhSnXT59HT0KfT1RE4Z3XWpMUbcvofRakX0WjAQRxMOkQrHUVIqkkGHxmxENpuQLcZpFy00I24BQRAWA18C7gRGW3iTufJP3KkG4CfA71VVvTydUC5xZsTtWFRVZfuOLn77hz3s2tU94XqiJLB4TQm33JjB/NhWen/6PK0vdKIiUfbJu6j+p09jKj51mQdVVUlFoqiKAoqKqijHJlRG3ldQRz7j2OcqqXCEuC9Awhck4QuQ8AWIjyzHBj1E+4eIDYzOh0n4L0yt2dMhGyR0Vi1amwatRYvOqkFn12HM0mN06dHnWJEKciAri5jWxlDMQrvHSHu/hg439PeEcHf5GHIHzylPVquTqJrjYvGCPJYszGX+vFyMxonLSUy2sR2JJNi6vZNX32phyzvtBM6gRp4kixSWOykotlJaIFCRG6XCMoCmvYVwXRPehmECXSEiA1EiQ1GUE3KOJKMBY0E2WrsV2WJCYzEdm2sspnT4lFGPIEkIkjgyl9INyRNeH18WR0LMRMSR1xq7FX12BnpXxgXrpVYUlfqGAd54u42tW9tprB+cdE+8JItU1LpYukDP1VWDZHfvwf16M52b+/AeTYemS0YDOVevoPB911JwxzVobecv3/FELmfxNhW8F47P4I79HP2fB9DfsYzf7C9ly+sdZxyifzZotBJlc13HBG12vgVrvA97pBVHpBVbtBNJTed3+juCDB3xMnzEx/ARL56jfpRTRC9JBj2WihLMpYWYinIxFuVhKso91gmnz3IiiBNVHB3LiefB+iuuxPtOHe1/eo7OJ19FTaWQ9BIl1+RTflsJydolNOqX89b2OFteasR9BuknsiyQlWUgL8dAVqYeo15ErxPQyipqLEIoECUSTRJNqPgiIsNBAY83hc8bP6uRwUuNGXE7PoIgoNNLmHQKxlQE1R8kGUlXW5C0mrRLtcWEbDIg6XVndO5PNe9pcTsiar8NXDv61si8F9gJ7Ab6gWHAAxhIF0t0ABXAUmAeMNpKVEfW/X/AD1VVvaSKqgmCUAR8EbgJKAJiwFHgUeCnqqqeevjp7LaZC9QDo17iG1VVXTvV2xnZ1kURt6qqEu7sxVN3mOG6ejx1h/HubyAZCCEZ9COT7thcNhowlxWRd8NqstetOC8jLYlEildfb+YPD++lsXFwwvUkWWTZ+lJuvd5Gtf9tun7yIofe8OAxZmG7YT2W9asJC1o8vghDfT6G3V6CoRgaQUEnKmiFJDoSaJU4WiWGXo1jiXixBAYx9fci+72koilS0VT6Jnm2D04hnS+iMWvQmGS0Zs2x/BFJJyFp03NRIyJp06/T6SjCsb+Hd70WTujhGimimv5YQJSF49+rlZB0IqJOQjToEPQ6RLsVrFYUvZmEaCSKHm9Mz3BYy1BIQ79Xon8YhoYTeAZCeAbDeAfDxKPnbqIBYLHpmFebw+KFeSxekEdVVSaaMzDEOJvGdjKpsHdfL6+91cJbm1rpP4sQQUEUcOVZyCuxU1Igk5+RItOcwGWK4BS9aIaHSPYOkGjvI9rnP2ZykYyl56loOk8oGU2hJhUEWUSUBURZRJSE9GtJQJAFBK0MRgNRo4OQ1kxYYyYkGwkJesLoiSUFYkmBeFIgrkokVCk9V0SSqoDJoMXpspGZ58BpN+CwG7BZddhsepwOA7NmOc655EkgGGPz1g42bWln5/bOSZtUiaLA7HnZXLncyDWVbjK799L3Ziudm/sYOuwBFUSdlrwbr6LknpvIu3ndafOez4X3gng7F94rx0dVFFr/+AzeTY/Sd8Od/OqpFO1NQ1O6DVkjkltsp7wmm4r5OcyqysKqDuOItGIPt2GPtqNR0hEvge4Q/XVDuPcM4t47NOGIrGw2Yp9XiW1OGdaRyTanFFNx/pQ24Cc6D8Ldbpp+/meO/uKRY+aBWbUOym4vwb5hIW7HQrZ05LD5lXYO7+4+ZTrRxcBk0aIzyETDyUmN2k+EVitiNGkwmWR0OkgmVQKBFD5ffEpNEi9ncSsIwoQlf84UnUHGYgATEVR/iEQocawTWhAEJKMe2WRIi13jiOC9QBFX71lxKwjC74CPAKN3pj3Aw8ATqqqO734w/vdogTXAh4A7SIs0FegAPqKq6ttTud/nC0EQbiL9+8cvWJUemb5RVdWWKd7u46RHzEe55MWtqigM7TxA93NvMLhtH566euLD3mOfG116Muc6MGTq0Zg1yCYZOcOOmpGFX5+BO2VFjcaQ+9wIbT3YTDZcq1aTd9M6DNmZ57RvHm+EJ548xCOPH2ToFMYUOoPMsvWlLKxQSTXs5+Dr3bT6LQwaMggrUzeKpdVJ2J06HA4tTruIzSxgNylY9SlsugR2KYpNjGCUY8iSgEYrIGvSuSajIkXU61B0OmKKlpiiIZqSiac0xFJSOq8lJZBIMJLjAokUJJPC8XwYdcR0YSQnRlVJjyQDcPJ7o02GZEognoRYnJG8mZF5PEUiniISjBMKxAgHYoSCcSLn8EA/HXqDTPnsTKqrsqid46K62kVJsf2cHiLn2thWVZXmlmG2bOvgne1d7N/XS2wKhLvBpMHiMGC1G7DaNMiygCSO5D9JIIkgiyqSqKKq6VIf0ZhKNKoQjaWIRRVi0RSxWIpwKEE0FD9vo0darURVVRYL5+Uwb14O82pyyMg4+9w3VVVpah7itY2tbNzUStORiTulTkTWSsxdnMeaZVrWl/Zg791P92uttL3chbc5kF7HbKTg9g0U33MzuddcgaiZeFT/bLjY4i0VjZHwB0kEQiSDYZKhcNrIR1GOpR5IRgOyUY9sNKQbZUYDkkE35cdiPC728TlblFSKqHuQcJebSLeb2KCHuNdPwhtIp2acsCzptBgKcjAV5qLLcuDZtQfL7BTuxes53GfmaLdAd5uPnjYv0UmGHeuNGvJK7OTPcpA/y0n+LAeuPDNm1Yct2oEj0oY90oYule5oC3aHGDzkwV03hLtuiLB7bGeRZNDjXFSNc0nNsclaMeuCjEKd7jxIxeL0PP8WbQ8/R/df30SJJ5ANEnkrXOSvL0K+ei3d+kq2HtGxf0cf9Xt6pqzDdDLo9DK5Li3ZmRKiXsuQX6Cz1UckdGZh5BmZesrL7VRVuSgtyaKk0EZhoR3bSHmldx8nnU6PPxBjaCiMeyBE/2CQvj4/XV3DdPcE6O0NMTgYnbQAns7iVpJFZElAGnn2yZKAJI3OBWQpnYc70j8PaVupNKqanoTRPGBOmlIKJJIq4UiKaCR1RiJYZ5CxGAXMUgwhFCIZPm6aNoogishGPaJeh6TXIul0iHotkk475dfXe1ncKkAceBD4vqqqjVPwnTrgbuDrQBXwTVVVv3Wu33u+EQRhPrAFMAJB4DvAm6RHqj8IfHpk1SPAUlVVpyTmUxCEW4BnSY+Ou0beviTFbSoao++NbXQ/8zrdz71BpHfg2GeWQhNZ85y45jmxLplFML+KPT3ZtLkl+gYU3ANxBvtCDLmDEz6INFoRo0HCoBfIdsjMrcln0dIyqiqzyM05fU3U5pZhHv7LPl54sZH4KXIkdXqZjBwzqUiY/v7z1/CfCkRJQJRElJQypb220xm700BxsZ3qqixq5riYU5VFUaF9yss/THVjO5FIceCgm3e2d7BtRxcN9QPvifC2d5Ofb2XBvBzmz8tlzZXFuFzms/6ugYEQr77VwmtvtnBgb8+kjL4MJg3zVhSwfpnEVblHEQ/U0fZSB+2v9xDzpjtgdBl2ij54E7M+ejsZS2unpKf9fIs3JZkk2NKJv74Z/5EW/A2thDv70kZtPf0kvGfvGC7IcjrU/VjOpBmt3ZpetltOzqe0W9HazOn5yHuy1XzaUk3TUdwmgiEi3e600V23m3B3/7teu4n2DaKmxn+eiLKAzq5D79Sit+tQVYj54sR9caK+OKlo+u9EjUjG3Aycc2xYV85BnFdNp5JHfa+J7gEBWSOhM0joDRr0Bhm9QcIwMuVYIphTw2nn4sQghsQQatBDIAjxuIqnJchQo5/howGGWoJE/Un0yRj2mPdYg1/rsJG9bjnZ61fgWrME65yyi2aWcybnQdzrp/PJV+h+9g3cG3eS8PqR9BJZNQ4yF7gwrFtKuHw+B9126lsU2hqHaWsYIBw4945Wk1VHdqaWLG2cjMgwxbYgjopMWoRcdtcrNNcPTfqZLAhQWmZj4aI8Vi4tYUFtDg7Hqc//s40s6nMH6Oj009oxTHvHIF1dPnp7Q/T1hYlFj5/HF1PcimK6A18ji2hkAY1GRKsR0WkltNoRd2bh/He0KIpCKBQjGIoTCifPKKdaq5Mx6EWMegUDMdRwhFQ4QSKcPCm96EQkrQZRP2JcJY86UEvpuSwjaKT0dSkIk3omvZfF7U+A75yPHyGkj/zdgKSq6p+n+vunGkEQ3iRtopUE1qiquvVdn38FeGDk5TemQrALgmAGDgOFwEeBP4x8dMmI24Q/SPdf36TzqVfpfWnzMdMgSS+RtzyLgjW5ZCzJJ5JbSUMwn22NRg4c8HP0gHtKRrFGMZs1zK7IorI8A0VRCYXjhEKJY/NgMEZHh2/KtjfD+UUQBXJzLRQX2ymd5aR8loNZJQ5Kiu0XrLzD+W5sB4Nx9u7r4XDDIPWNAzQ1DdHb7Z/WnSlTjSDAvNocrrm6jKvXlZGdffZCNxCIsemddl55o5nt2zqJx05/f8nKs3DFunxuWhSgIrUP39sNtL7cRc+2/mN5htbKWcz66O2U3HsrpqK8s96/qT6fIu5BBjbvYmj7Pga37WN496FxXcYhLZ4MTl06ZcEoIZs0yAYJURQQRiaAVDwd0p6KnTAfWU5EkiSCyVPmX54K2WI6ZiYkG/XpsiEaOW0opJFRBIGB4SGQRXLz8pBHG3GieLwxJ47Mj73Psc9Pek8QYLQciTDy+8b5LoBkMDx2lNUXID7kPbVvgQB6pw5zrhFzvhFzrhFjoQ25KI+UM5MhMYP+uJkerwa3R2LAo5JKqei1oNepGLQqellBJyTRESczOoB94xsMbGpD43Bir8jElJHEnKtBa5SR9RKyQR6ZJASthDusp6VHoq1PpmNIR3fYQm/MiC92emGq10Bpto75tTksWzeH2tqc8+IofKac7XWipFJ499bT9/pWhnYcwF/fTKCpHdQklgITpiIbxkUVyHMr8Vtz6Y8bcAc19PsE/EGFeFwhHlOIx9KpQToNaDWgk8AgpjDHA2h6ejC4+zB3tZKZ6sd1bRU981ezczCLun1h3N2T70Cy2XUsW57PhrWzWbGsAIv5zFKvpvp+oqoqXm+Uji4vrR1eTPoAJqOM2azHZM4mlVRJKerZp02NIAgCogSSmHZd1sjiMfGq1crodJq058M0NEtMJhUCoRgBf4xQKDH5UV0BdDoZvV7EpFMwSHGIxVGicZS4kr7vxs5sgEIQxfR9bWQuiOLI/XFkyBqB7rCfqM9PrGeA6MMvHbsXnnwPTb/XG/Tz/hd/P/r1l7a4nSGNIAhLgR0jL3+hqupnx1lHBA4Cc0jnHmerqnr2doXp7/wR8LfAm6qqrhcEYfQ/eFqL27gvQPdzb9Dx2Ev0vvw2SizdCzoqaAvX5pKxqox+Ry1vt+ex+0CMhn19DPQEpvS3XGw0Wgl7phGjWYvBpMVo1mI0yViMKmadQjyhpENBowqRqEIsqhCNpggFE3g9MYK+SyodfUoxGDVkZprIyTGTm2MhL9dCfq6FnBwLuTkWsrKMZ5Qfez64GCNJ4XCCpuYhjjQMcKhhgJYWD0NDYTzD4QvixKnVSRjNWsyWdE6XwSCh1YrodCJarZDuPdcJaLXpsPhgVMIfFgiGUkQCcULBGOFAnHDw7M7v2tpsrrm6nA3rS8nJPnujp0gkwZsbW3nupQZ27eg67YiuKAlUL85n7WoLG0o6cLr30fVaG20vdzHcMNIpJghkr1vOrI/eTuH7rkFjOTMhfq7nk5JKMbzrID3Pv0XPCxsZ3n3opM81JhlriQVbsRlLsQVNZREBez79goP+qIk+r4w/JBCMQDCsEg4rJJMKyaRKMpVutB4r8yELaEbKfcgyaCTQacGgUzFoFAxSCp2YwCDE0aVi6FJRtLEQ2mgITciPxu9D8vtRgzGS4XRN00QoLY4ToQSp+PTKhxwPSS+lTe+y9BizDBhdegwuA7o8B3JRLtGMPNqDNjqGDXQOyPQMKPT3xRgeCOH3RM5KBGh1MrPLjcxx+Cls3IXmjR045s7BuayGiMVJkzvBka4ILREtXQkDCXVqR69c2SYWLczng3fVUFuTfVEExlTed5VEIl0rvbUrXYbO4yPu8ZMMRdLGepr0iJhk1GPIyUKfk4lsMuA7fBT369voeWEjscF06SZBEsiqdWK+eQX12YvY0WrgwD7PGY0CF8+ycuWqWVyztoyaudnnFG10vp9PE436KYpKMqWQSiqklHSI77G0JdI1ZNMpTSqiIIyEEEtIkoAoilMeYXWxSCkKgWAcvy96ZkJ3BFkjIWtEtBoBjayik1W0YhIpGUeNJ1CTKdRUuu7zaC1oZeS1qowc49Ns0k2C8OAQocZ2ur/0wCnXHSLBF2kdfTkjbi8HBEH4T9Jh1AArVFXdPsF6XyUdrgxwraqqr57DNpcBW0mPFM9TVbVhOovb2JCHnhc2Hhe0I/b8JwrazCtmMeScy5beIt7eEWX/ts5T1qE7FbKc7o06kxIr5wtBFMjMMZNbZCen2E5BgYHynCilliE0w30I/hBSCvRGG8aS2RiKKxEMGQjixL3nqqoSjiXp6QvQ6/bT5/bT1xdkaDiM1xvF543i88Xwe2ME/HGS51gnT9aIaEZuphpZQiWFJAnodLpjD5u0X5TAiSZTIx186ffh2GfCSM07nU5Cp5PTk1ZCr5PR62X0OhmrWYvDYcBu02O367HZ9NhHDIfO1WToQjCdwiRVVSUYijM4GGZwMIx7IEhff4hhb4RUalSgKOnlkdeplIIggMGgwWDQYDRqMBpkjEYtRoMGk0mDxaTDYdenJ5seg37yuZWqqqBGPcTaGwgcPUw06CGlEcBpBUcm7qST/Z0Wjh4N0t4wSEfT0BlFa8yrzebG6yu57ppybLazH633+qK88tpR/vpSIwf39512favTwLK1xdywLMl8w2E4coi2l7toe7Wb6FD6fibpdWRvuIKCW9eTf/NaDLmu03zr2Z1PsSEPva+8Q88LG+l9afOxhjakUz1c8504azIRF1RzRC2lvtdASzd0dsVwd/kvuqmOKArpcFqdhE4vYtAJ6HUCBn16rtMK6LUgSyAKChIqIioCKqKQXhZHqmSmP1PQiim0wshEEg0JNGoCrZo27dMoMbSpOHIyjpyMoUTj6SqbooAgnTDCIaZN8WSrCdFmQrCYSRpMxHVGYpKBsKLHHdTT79cy6BcZ8gkMe1P4vTE8A+GzqqV9puj0EoVZMOxTGPZf2PZfRWUGH7lnAdduKL+g9+uLcd8NHG2n+7k36f7rm/Rv2oWaTN+nNGaZnFX5JK+5ijpms7MejtYPT7purSyL1M7PYu1V5Vy9ZhZ5udYp2+eLJW5nGIsyInR9vhihUPyczKoEUUCS0p0AosgJc5AEFXF0YBY1be450qlwjBO23T/YTygYxu8LcnhPK+pobrFC2l9FhdSISPb6PDzwwy+P/umlL25HRg//oKrqrin/8ksEQRA2ka7pGwLsqqqO2wITBGEl6bxcgG+pqvqNs9yeDOwC5gP/oarqv428P23EbTIUpv/t3bhf30rf69vw1B0+bjpygqDNuqIYj7OaXUOz2Lgzwb6tnXgHJ28oXVzioLDIRmGBjaJCGyWFNooK7biyTEiSSCyWxOOPMTTsZajPjbu9lwFPlFavlvaOON2tw2ds1HAqREkgp9BGQamT/FInRaVWZmeHyVTdGAOdpA42kHSHkF2VWJetx75g3nnv3R4VNtFIckS4jIiYpEIqpZJMppAkEa1GQqOV0GoktFoJzbG5eNI+TifRNp2ZOU5nRzISZXjnXnzbXkP1NGBeUERq9hyGtcXUDzo4ejRMa/0A9Xt6JmWaI8sia64s5uYbq1h1RdE5NbR7+wK88HIjTz93hO7O06cplNdkc+XabK6rclMQ3od3ewutL3XR/Y77pNFH59LatNC9ZT32eZXj3hMmcz6pqopnbz09L2yk54WNDG3blzZ8Ih1a7FrgJHdlNqa1i6iLz2bnUT31jVE6jnom3eB+LyGKArJWQpLFkY464Vgo9minXjKRIhFLEY+fg1P9JcDobxYEzqjTw+7QcecdNXzwrtpzMoObLBfivquqKr6DjbQ/+iKdj7+M/8hxj1BrsRnXNRX0LljNzqFs9uyP0Nc5+XBjq03L0uUFbFg7m9Uri05Zbu5cmBG30xNFUQiHkyN5uvEpTb87U2LRATyeEB2dAX7004ZTrhuPezi0919GX14W4lYhLfsbSOd8PqyqaueUb2gaIwjCAJAJ7FNVdcEp1nOQLnME8Jiqqu8/y+2NjgA3AzWqqkZH3j9ncTsiXk9FDukST+zfv5+iTBfR3oFjU6i1i4FNuxjevg81cfyilA0SucvSgta1shBvRjX7AqVs3K1S907npEOOrTYdS5bks2p5PsuX5p/WNGEiokMeXn/wOV4+lGJPK6hn0K6TZBGb04A904jNacSeacSRZaJwlo3y3DhOxY011oPc00poVwNBt4qQUY558RVkrlmObLq0RU40GmXTpk0ArFmzBr3+wuSwXmrMHKdzR1VVfHuP0P/iS6Q663CUyNhXVRLMmE2PtpKdTTr2b+vi4I6uSQldq1XHNVeXcsN15VRVZpx1x5Kqquw/0M/Tzzew8a02YqcJ+TaYtSxeXcyGVVqW2ZuwDR7Gvb2Xnq1uerb1E/cf33dDYS4ZK+ZjKMrFWJiLsTgPY1EuosvJlt07gfT5pNPpSPqD+OubGd62j+Ht+xnaupdY//GyMIZMPXkrXWSvyiexeDkbO/LZdlDlcF3/pN10Z7h46PQSmVkmMl1msrNN6PUaotEE4XCcaCRBJBxnaCiC1xMjGjm7RrDJqiMrz0JWroWsPCvZ2TqKshLk2aLopCSSoCALqfQouJpCQKHbb+RQl57G1iQdTcN0tQyf1lFYlgXWrS3m059YQn7e+asNfb7uu6qq4j/YRPeTr9L91KsEG9uAkU6jhZmYblzKkaxFbG8xcGCf94yizgqKLKxcWcS61cXUVrsuSOjt+X4+dXR0kEql0Gg0lJWVTel3v5dIpRTCkSShcPq6vxDpRaPMiNs06gnzjaQdlJ9QVTU05RudRgiCoAdG44ueV1X15tOsHwRMwDZVVVeexfZKSefuGoDrVFV95YTPpkLcTvok+ZGmgowJ2keiRiSz2k72okyyF2Viq87EY6mgPjabN+tk6rZ00t3iGf+P30V+oYGKUg3lpTpyczTnNNLp8SSp2xdm38EIfv/pGwOCAAVlGVQuyKFiXjb5WQIZpigGJYgu6R+ZAmjjwyQPH2X4wACD3Uk8Qgbx4hLEmlJE50SVoWaYYYbJoqoqSlsvytYD2AZaKKw1krOhnED+fHr1Vexs1LFvWyeHdnRNKhojM1Nmfo2ReTVGrNazH82NxRQOHo5QdyBGd9fpQ00LSp0sX1vImpoY5bpWHIEmfAf66N7qpvsdN4HOUzwyrSYEuwVCEVRfEJInN3QEETKqHeStcOFaVUi4YhGvH81l084E9XW9ZxVmLGtEHE49Nkc6l1qvFzHoRfS6tCOpJIIkCQiCSkoRUJT0bqUUlVQKUikVJQWJZNpwJxFXiMUVYrH061g0NTIlL+ooxcXC5tCRkanD6ZBx2kXsFhW7TcRmlTAYxDHPu1RKpbk1xqHDYY40xoifQ/6xKAmUVGZSVWVmYXmSpZkdWPsOE2jxMnjQQ9gdIRFJkoykSIZH5tEkOpsWW4kFS7kT3cIqKCunJZHD9iMaNr5y6ugrSRJYssjMlStNmM3TP71E6XST3LSX5Dv7UHvSpcP0GTpy1xQSX7eGPclSdh6GpsNDk45+kGSR8goL5aV6yovBbrs4ztLnk4yMDAwGA0ajkdzc3Iu9O5cNiqKOpBGl77PJpEoqqZJMKlNuJvleF7frgXtJ11kd7Y4b3VAYeAp4CHhNvQyTfgVByCJdhgfgEVVVP3ia9d2kS/YcVFW19iy29yqwYbxtXXBxyyyyDXoMGXoMGTr0GXrMuUZcC5w4a7MI2woZ0pVwaCibvQ0qB3b20Fo/cPovBlzZOuZW6aipNuB0nNuNP5FQOdIYYc++CG1t47uBnojVYaBiQQ6V83NYWCVSKHVh9Tej7DtAuNtHdChGZChKJKQSS2mIoiOqtSBUzEKsnRGzM8xwvlFVFaW5i9TGPWT42yle4SRrbTk+Vy09+ip2NmjYvamdQzu7TivoBAFmFeuYV2tkTqUerfbsTXbc/Qnq9kfYfzBMJHz6HvbCcic1S/JYMU+k1tFJVriJZFs3g4c9hPsihNzpKTwyf7fTsMYsYy+1klnjIKvWiX1eLsOZ1WxszWfTrgQHd3YTm+SIniBAboGZ3Dw92VkyWU6VTLuAyTRWYJ0vVCCREoknRRIpgURSIJZI19iOJ1WScYVEQiU+Io5jsRTxeNooZbTcrqKox+aKCqqippcVUFIqiYRyfIorx+pqT6YM1JliNGuwWjVYrBosFgmzScBsFLAYVZx2CYdDRqM5/bFVVZXWthgHD0c40hglEjk/IeSyVqJktpO5lToWl4ap0beT3LWf4b39DBzw4GsLnJSehyhAhg3BakZj1eLM05Bx+0p26Jfy8uteWg73T7gtrVZkxRIjK1dY0OvPf1mWM0FNJEltOUDipa0o9W0AGLMN5N9YiXvFerb3u9i9N3RG4cZmi4bKOVbKZmkoLRDQ6abXb55qZsTthUVVT+hMHMmNVVUhff9TR++N6fvhmDudetJs1CyZUMCNzx+mzx3isWe70/m6I54pgiggjnqoiBAODfPEHz8/+o2Xvrg99uXpEczbgY8A1wCjimR0o73Aw8BDqqoePG87coERBKEQ6Bh5+ZCqqh89zfodpEv3NKuqWn6G2/oo6RFxP1Clqmrvuz6/oGHJRx/8OMVFGcRkM3HJTFy2ENE4OBrMYVeThsYDgzQdcE86PMeVbebaq2dx7YZSykqdZ7P7J9HYNMRzzzfy8msthIKndiTUaCXmrSjkirW5rCgawOptJrmrjuFdXQzsHyapcZF7y9VkXLkYY0EO+pxMJP2ZWe9fLsyE206OmeN0YVASCfrf2E7XY88juA9ScGUWGavLGcyYT6tYzbZdIXZtbKXtyOBpv0uvl1m7ppgbry9n4YLcsw4PjMWSbHq7nWeeb6JuT+/p/wDIyDYzd2k+ixaYWFAYwEwAfdJ3bNIm/cSHo0Q8MXQWDVq7FlVvIqDLpU8oZnubjT37o+zf3jXpe+6scieLF+exdGEOC2uzMZm0Z/V7pwPner2lUmmxHI0licZTRKPH56mUMiKQ1RHxnC7Lo6qg00ppozW9jEE/Ukd2xBhPls9NwHi8UZ5/oZGnn2ugt/cUZYVOQKOVKChzUjLbQXVxknKHh7qjGrbuTXD0iPeM8oK1epny6izmzdWxojxMhbaD+O4DDNW56ds1gOeo/ySxq7FbcCyuQWfXYplrprN2Nc/v0rHn7Y4JO5mMRokP3jGbD39kKXr9uY9gnst5EGzppO03j9P+0LPEBz0YMnXkX19O/6preLsvmx07/WfkCZJfZGHFikLWry6htjoLSZo+gnYmLHmG09Hc3EwikUCSJIqKik67bm3tsfG6y0fcnrQhQXABHyI9orvohI9Gd2AfaZH2Z1VVJ+7auwS4UCO3giBkAvWkc3v/VlXVH4+zzgU1lPr3Hz+HKmXi90TwD0fweyIMuYMM908+Et3hMHDNhnJuvG72lJQOaO/w8ubGVl56pYnGxtM3ZgvKnCxbP4urF6Uo8OzG++gbdL3VjfeoH11WBrM+ciulH78TW/UZ9UNc1swYJU2OmeN04UkEgnQ+9Rqdjz2HNtlOwdoczKtq6bct4GCohB1vu9m9sXVS96jsbDM3Xl/BzTdWMqvEcdb71N3j5+ln63n6uXqGJtkwFgSw2A04sow4Mk3Ys0w4s4y4nOAwK3iDIgNe8A5FaW8cpKV+YFIhkZIssmBRHuuvmsXVa2bhcp19XeDpxuVyvamqyt59fTz2xEFef7OZxCQiD0rnuqhZWkBVmZaaTDfZ8WYsgVYG6/rp2dpP3B9HNkiEnLnsM9VS53VS354glTyzNqE900hFbTYLqjVcWe4l21ePf/MB+nYO0rdrgJj35E5kQ56LnPXlJK9bzdMteWx+pW1CkWuzSHzinrl88GMrz6mM25meB0oySfdf36LpZ3+m75W30dm1FFxXyuDqDbwzkMf2XQE8A5O7biVJYG5tFqvXlHHt2lIK86dvFNeModTUo6oqkUiScDiOysioJsdHN0crR4iigMGgOefOr/PNmfwfNjU1UVFRMfry8hS3J21UEOYAHyUtdgtH3h7dkRTwCmkjqmdUVb3kCndeqJxbQRD+QHpUfBewXFXHWiBdaHE7d8G30WrPvNFnMmlZv66UG6+bzeJF+ed0gSuKyuH6fl5/q4U3N7bS0e497d8IQtrgJSNTj8uewhwahC43Stsg+miQ+YsLWf2ZG8m/YQ2i5vw4FV7KXC6NyPPNzHG6uEQHh+l68lV6nnsRvdRL4fp8pBXL6DXXsqvTya6NHezb2jEpY6Wqqkxuu3kO1107G/tZlhVKpRS2buvkuRcb2LKlg1Bo8vUtzwVBgNr5udx03WyuvfrcyiJNZy716y0STfDX5xt49PGDNLcMn3b9kspMFqwqZvliE7PlRlyhw0iDffRsddO9tZ++nQMkIyeHxjsWzSX/pqvIu/EqtNWV7Nrbx5YdndTt6aatxXNGOXuiJFA6x0XtogxWV0eYY+6A/fsY2NZF784BBg96UE8I9TaXOTH9y6d54kg22zd2TDiC7HLKfPqeudxx7xVnFTkx2fMg3O2m+dePcfRXjxLtdZO9JAvh7ut4K1zFOztCDE9S0JqtWpYsy+fqq8q56opizOZLI/phRtxOHcmkgs8XxeONED+D8pMmkxarVYfFrJuWQndG3E52BwRhLWmBdicwWrBrdKf8wKOkQ3vfvuA7dw6cb7dkQRDygO6Rlw8AdROs+ueReT3wrZHl1onq7p4NZytuc3ItrFhWwJpVJVyxsgit9sx7ZlPRGP6OXhr2tLP/yAD1nSH2tkfxBabePS4zy8TqK4u5em0pSxbln9X+Xq5c6o3IC8XMcZo+RNyDdD7xMu6XXsZkGiDv2nIS81fQqZvL1v2we2MrDfv6ThuyKYkwr1Di6morV15TTd6iSmTDmYvFRCLFnroe3tjYylubWhk4g2iXyVJRlcWN183mhmtmk5VlmvLvn25cqtdbIBjjsccP8sc/78PrPbUnRG6xnUVrSli2zEGVvgVX8CCagU463+ql4/VuBg95TnL+F2SZnGuuoOjOa8m9YQ3GvOyJ9yMQY8fubrbu6mLPnh7amk8vsE/EVWBl7uJcltVILM3vw+E5gn9bI+6dA/TuGCDUlx4DsNbkIHz5MzxeZ2bftu4Jv6/QJXH/B+dyw4dWnVFE16nOA1VR6HttC00//wvdz76BxiSS/4H5HKy+llfrtBw9MjmTy9x8M1eunsU1a0tZOC93WoUbT5YZcXtuqKpKOJzA440QCMTO2czJPCp0Lbppcz7NiNsz5BT5uQCKqqqXlHXc+a5zKwhCCdB6lrv3oKqq953l3463L5MSt1arjqVLC1i5rJBlS/MpmER4jqqqxAaG8Te0EmhsxdvQxtG2YdpFM12Cla6Inq6BJMkzDKU6V/QGmWXLClm/poSr15Vd0nlpU8Gl2oi80Mwcp+lJuMdN97Nv4Nu5Bb2mh8yrKwlWruBAoJTXXu7h4PYuAqcRGaNkOUSKTFEKkkPkJ/1UlrgouKKG7KuWYSyYnImKqqo0NA6ycVMrb2xspalp6PR/NA6SJDC3JpsrVxZz7YZyigqnb0jk+eBSu96Gh8M8/Jf9PPr4wVOO4ssakfkri1h17SyW5vaQGzyA2d9G71Y3ba9207u9H+WEZ6IgirjWLaf4gzdReMcGdBlnF1I/PBxmy45O3tnWyc6dXQyfQa6p0aJlzsI85i+0sarcT4HagnT0EAO73PTvG2Jg7zD68lyin/8kj26RaNznnvC7ZucKvH+BmSvXVWKrLkefdWo/jvHOg+jgMC2/e5Kjv3iEYHMHthIz5o+s5zVhCW9sDhCZRBRFTp6ZdevLuPW6Sipmn30ZsenCjLg9O5JJBa83gscbJZGY2oGVazYsoaenk7888hw33HANFrP2op5nl4q4nTaCcaQu61+AvwiCMHdkuZq0SdeleMd4m7S4NQGLgYlGSq86Yfmd871T5xtXtpniohyyskxkZ5rIyjKRmWmirNTJ7PKMU4YUxb1+PPuO4Nlbj3ffEbwHm4gEPQxX19CVWU5z2EJLl41w6MQRh4tTlzEaSbJpYyubNrby//73He75wDzu/eA8rNbLM7xvhhkuZ9REkghxWvMraAnNpfEFHS2/7sfnPfNn8YBHYcCjZTe5QC4MQkZLP2UvP0VZoJX85noyTCaci6rJXrecnGtXobWeXONTEASqKrOoqszi/k8vIxCM0dsToLcvPfX0pqeuHh/dXV7C4RR2hwGXy0y2y0R+npUli/JYurjgkgmJfC/T2xfgoYf38uTTh08ZwpiRY2blNeWsXmWnggPkBB7Ct7GXppc66Xirl0Tw5D70rCsXU3zPTRTeeR2G7EwgHerc3uHFatFht+vPqKHsdBq5+fpKbr6+Mu3W3Ophy/ZONm/tYO+e7lPmAocDcXZvamP3JnhQFimtzmHuogWsuD3F7I/2URttR206yuD+Ryk2Wqj/3O08/lqUjnE6dpp6Vf6zN0D+th0savof5vraccyZhbWqFHNpIbLZiGzUIxkNyEY9KUkkdagVpW+IfS/uxrf3CJ49h1ESCbLmOxG/93Ge7ihhz6seVOXUHUnZuSbWri/j1uurqLoMBO0MZ080lmR4OIzPFz3tKK2sEdFoZVQ1bTrHyFwlvZxMKJxqsDESSdDV5UOWRQ4f3sme3VtZtGgRt99++7jrt7W1MWvWrFPu0/Lly9m2bdupd/wSZdqIW0EQdMCtpEdur2Ma7dtZ8jTwtZHljzOOuBUEQSSdewzgBd6c7JerqtrGJET/hci5PZFf/N+Np+3NURIJAkc78B1qYnjPYYa278N7sAk16se6pIj+RavYZ6vicEEl7t4ISqc6Mi48+V7i8bDY9bgKrJjMOoxmDSaThMUkYDGCyQDRuEAwDMEIhMIK4VCCSChBX4f3lGYzoWCcX/9mFw//aR933VXDxz40H6fTeE77OsMMM5xflGSSlr++yqu7u3irTc/RphCqKgEKxy0Tpoah4QRDw7CDWWCYhdWiZV4K5r26Gee/f4dkqwet04GlvBjHomqy163AtXYZGlP6PmIx67BU6KioyDzpey+1kckZTmZwKMxvfrebJ546RPIU5l+VC3JYc3MlK8oCFAZ2YR04Sucb3bzxVBuexpNLz+gy7My6733k3Xs7Q1o7Da0eXnysiZbW7bS2euju8R9riOt0EtkuM9nZZnKyLeRkm8nNtbBsaQF5uZZx9uQ4giBQWuqktNTJvffMJxJJsHV7J29uauXtd9rxnSLSIZVUaNrvpmm/m6cBR5aJ2fNqqZx7FYvvjlGs7ebWyBGuy47z3MASHntmCHfX2BI73R6R7sw1bCoRWB46yOzfPYshdWqblhYAAXKWufDddTu/OZhD4xM+jmeHjcVk0XL1NWXcfetcqquyZgTtexhVVQmF4gwNR07vkSCA0aTFZNFi1iYRSaGOjNepwsh8pBmfRCYcUYgE40TDiWNCt7CwGJ1Oh16fvrcnkwqvvvIGP/3pf3PX3fdw7bU3YjBoTnlOrlq1atz3586de8a//1LhogtIQRDWkBa0d3E853b0f8kLPEbaRfmSQlXVHYIgbCY9evtJQRAeVFV167tW+zIwZ2T5h6qqnjQMKQjCfcDvRl7+u6qq3zyPuzxlxANBIl19hDr7iPb2E+5y4z3QgL+hjXBnL/FhH6IEtlkWMpbmEb3hCnYsvob9jSn63WHUTSrpaO5zRxAFXLlmaucaWJXXz+zAHmSfDyUcR0joEWMWpLgNWbGjJiKokQAkQiDHIVtEtJoQ7yrjcKKMtw/rOLB7kI6mwXF76SKRBA89VMcjj+7n9lur+fhHFpKdffk4j84ww+VAoL2LVx97lTfbNezcFyIeS3GhI0D8vjhv18Hb5IPxAziv0jOvQuYKWxv6A2+z8+G/EO6LIOq06F0ZmMuLMc/Kx5CbhbEgB2NRHuZZBUg5GRd0v2eYGvz+KA/+cS9/fmQ/0ej4NYcFAWpXFLLhtgqWZrZS4HsC9VAvR5/poPn5jjEuxNnrlpP1kbtoMBXz87fa2PO5N1BOky8ei6Xo6PTR0ekbs+2li/O59ZY5rFs7C4P+9CaKBoOG9WtLWb+2FEVROXS4n7c2t/LWpjZaT2OG5RkIseP1Fna83sJDQG6RjfLaJZRW2qksS/Jf3zSzcZfCc0+24Rmno9kXVHmFuby1soZl5l7K+o+Q6+1B9vqJ+eLHTKysRWbyNhTQMPdqfrzLQdtjAcA35vtGqV3g4o7ba7lhfRk63UVvLs9wEVEUFZ8vytBQiPhp3coFRElAEiEVj+Pvj+JTVERVQSMqaEUFjaSikxVkTdqITa+TMGq1JDP1xAUL4bBCOBjnt79/grFFaNMkEgpt7V50Ohmnw4DNph83OvLtty8py6Ip4aJcrYIgVJIWtB8GRgsljf6PJEm7JT8IPHspuiWfwJdIhxobgFcEQfgv0qOzBuCDwGdG1msEvn9R9nCKeaniOjI4+UEoakQcs60ULHdh+uQy6g1zeavJwaGGKAOtYZSjKmnvsKlHVVTc3QHc3QFeA/T6WtZdmcV9f3Mls8tdp/37ZCTK0PY6Cre8xIcCTZjvrMadWcumBhs7d3k5sqdnzN/EYykefewATz51iFtvncP9n1xCVublb94ywwzTFSWVYtcTL/Pi7iHePpxkqD/C2YzOCqMNh5HeLfXYP+fG8GCUtwbhLTIRxJvIucLIsnkaVud0U9Czj4EtHbhf2EfMGycZHSdsVRR5Rv5nEAUEUUSQJSS9HtlkQGM1oct0YikrxDZ3NvaFc8hYWos8U2P5ghMOJ/jzo/t58KE6ghPUWRclgcVrSthwWzkLTQ0U+B4i8E4Pex5poWtz30luw7LZSO5976dn/pU8ecDLjl91kUqde1qbqsKOXd3s2NWNyaTl2g3l3HpLFfMmWZpPFAVqa7Kprcnmbz+3gp7eAJs2t/Lmpjbq6npOOUoN0Nvho7fDx+bn06+NZi0FZU4WrCwkHErQtL9v3GiqeFzl7eEc3pZzIBNyqiXmFqeY5xpmttXDtkA5//OOBu/BOBAYd9s6vcz6a0r5+IcXUT7r1Lm8M1yeqKpKbKSedSQUIxqJE0uoTLYctKqqpJIqx+/Uo2ZQElGFdHBQEoiBoKpIagpZSWGUI9gsYcwWGaNOS9KgJ46VUDhFyB8jHhu/IywWS9LbF6B/IITTacDpmInguZB1bjOBe0iL2sWjb5+wymid2z9d6nVuT0QQhFuAP3J8VPrdNAI3qap6dJy/vY9zHLm90KWAdv/7XRSV55Ky2BhW7PTHzHQEbGyrl2k4EsQzGD5nB7mporrKzD1313Dd9QsmZbmuKgoDW/bgfvF5GDyI/coyDrnW8ejLCfZt7ZzQVVWrk7j7rho++bHFZ10yZLozEx45OWaO04VFVVXefuRlfv/mEHV7Jx6hGQ+NTiK/xEHV/EwWlidZlDOAXk6gCBpSggZFHJkLGpKChu1tNl57voOGvb2MLcp29siySGGplZpKHcWuJPmWAHnGIC7Bg+gZJDEYIDIYJRlJkkoopGIKyWiSyGCUuD9BPJAg6okR7o+inDDiIBn1GPJc2GsqyLvxKko+fDOy8fJKp5gu11sikeKJpw/zq9/swuMZv1NF1ogs31DGhptnUas5QL5vJ979PRz6w1H6dg6ctK4uJ4vUPfeyRclj666e09a9nSqKi+18+IPzue2WKjSas6sWEArF2ba9k7c2t/LO1g68nskZtb0bUUyPjk1UI/dMsTn13Hl3DR+9ex5Wy+X5nD4d70VDKVVVicdThMMJIpH0FE+kLlo7VVBVDKkoVk0ck0WkcuVa2ju7eOmlv7J45XqybBPfo/PyCnn1tV2IokDA38+yZTUAp8zlPVNmDKU4lkd7G2lBe+0J2xsVtb3An0i79x48n/tysVBV9TlBEOaRHsW9CSgA4sBR0iHXP1ZV9dySSacRX962mvhbBiKh0TC/FKfKZTkXNDoJm9OI1WHA5jTgtAtkmuIMDCscaYzQ2+E75Q3q8JEg//of2/ifH+/hxtUZfPQzG8jKmjjPSBBFXFcuwXXlElRFoX/zLlwP/5Z/W2ig+abrePRVhd2b2lFSJ280Hkvx8MP7ePLJw3z4Q/P46IcWzpi8zDDDeWbni+/w62fa2LX31PeBUQRRoGZZPpXzXNTOSlJt78Pc30Bg0xO4Xxpg/95BQEDv0KKz69A7tejtOnR2LYYMPR9Y6uKmT9RwKLWAV7ak2PbqUfzD5567m0wqtDZ6aW088V0tgpCN2VaM02UkM1OPTicgmQQ0MmhlsCxUsBlS2IxJMk1xym1BXOIw4qCbSMcw/fuGGTrspf/1jXQ9/Ro7PvOvaDPsOJfUUPbJuyi88zpEcXqUn7hUUVWVV147yk9+tp2u7vGjk0RRYOm6Uq5/Xxnz5TryfL9maE8vm//QRP/ek82NzFWlBO/8ME92aql/ZxA4dVtREAUyss1kF1jJLrCRXWglO99GRo6ZaDiBdyiMdzCMdzCUXh4I01Lff8Lz+2Ta27381/c28psHd/OZTyzh5psq0chnJnJNJi1Xry/j6vVlqKrK0eZhduzsYtvOLvbU9RCZRI1pSIeJni7sejJkZOpZoXYw78Bb2Pw51G8pw1pVinVOGY4FczDmT1wqaYapYzTs90JsJxpLEIkkCYcTRKPJKTmPTsRs1p5VPWYAVRAIywbCqgGNJ0FqxPVcDPlxCsOsXLmczs5uurq6yMjIoqj4uGlUVmb6XFUUFa/v+LPnb/7mCzQ1NSIIAiUlJVx33XXcfvvtl/X9/byM3AqCcBXH82hH1cLo/3QEeAb4A/CKqk5lH/cMF4OzrXP7bnQGGY1GJOifOEl/NGTr+htymOPowxwfQGluwf/2Ifq39TBwYBgloWCd7US7YSkdefNoCNk50pKgu/XUBek1WpFrl5v52//vBlz5k89lG959kLZf/RxbFfQsuJFH3pDY/norqQlCr8wWLfd9dBH33F2LwXD6XKZLgekyQjLdmTlO55/97+zjF386yLbd/kn1WGt1Eiuvm83NVxupTu0muX0P/du66ds1iK91/NDF8RA1Ivmrsim7uQjrigo6jIt4vTGLTa+003xw4mAknV4ilVKnbATqlPsoCdgzjGTnmykp1FCZG6U6x88stZ1gXTOdb/XSv2eIqCeGoJFxLJxD+Wc+SOnH33dJNoQu5vW2a3c3P/jxVg4fnvj/fsEVRVz//jksMh2iyLuVge1dHPpDE4MHT66tal1cw+BtH+aZ/VHaO7yn3K5GK1G9JJ8Fq4qoXJDL/8/eWcfJUZ9//D2zsy63d7fn7pJLcnEXCEGCBoproUJ/bam7F+qlQoG2FEqhWIt7gsTdLnLu7rLuu/P7Y5OQkL3kLrmEQPN+vfa1crMzs3O7M9/P93mez6NSSwhyEL1/AIOvF4OvD72/H1kQCYpaAgotAYWOgBi5HxKT2VXhZufaZhr29x73mpmcYuRzd87g0hXjF7nRCARDVFf3s2NnFxX7eqiu6cduPz2VaQaTmpUXKPmUei2OuhGG6qxYG+24etxHtVHSpiYSP2sy8bOnkLBwBvFzpqJQfzInpz/KyO3IiIdlFz8+yjs/Xjz99HXExGj5cAZ/MBgm6A8RDIRO6I58iEOtgJ599FmWzy5Hb5b41UMP8fPf/Imbb7mJP/zlUZw2L94PTQp1dbVz4fJZo663vLycl1566YSOyh/mfz1yu5ZIJdKhf60MbCQiaP8ry/LYRwzn+MSiN6rIK4xj+rQ02putrFvXjM8TvaZApZGYe0EelyyPoVzYiWf1U3Ss6aSyYgi/PfKjFpVKUi5eQuLSOcjBICGPjwS7lameXmSLH+vUONY609i4zY7LcewFM+AP8+ZGO+9uf54LZ2n54pcvIikn+YSfI25GGXEzHoyYZv3t73w100XfL6/g6dUKdqxtOWZW0Onw8+BD23jyqQpuvamcG66d/D/fJ/cc5zhV6iubefCRbWzZaRvTTLzOqGLJZcWsWKygwLqJnofXsemlVgKuyDlIVCqxzJtGwqIZJC6eRfysyQTsTlytXThbu3C1duJq6448b+7A091Px7oeOtb1YEg9QO6lO7hjRS5X/980Ng/N4sXn22nYf2zvTt/BGtrSSYmkZ5mprx+gvcV6TAbIRBAOyQz3uxjud1FTAW8ffF2rz6Rg0nSmXCEw9ysjFAZq6F1VS8uqZnZ85gfs/MJPSFm+gPLffAtz2dmRTni20tA4xAMPbWXzlvZRlymensolN5QxK76FrJEncGzsYP0/ahnYd3SWk6Ywl56r7+DflV763ugddX0KSaR4WgrlC7IonZGKRiMS527EYnsLo68HnX8QkcjkiWfYy3CtjaA3hEIlolCJ6FQKxIOP81P1TM3O4PIvT6LOez5bNw+yc20zQ73OY7bb2+Pg579Yx6OP7+Fzd81gxcVFYyrxGQ2lpGDqlBSmTon0g5ZlmZ4eB9U1A1TX9lNV3U917QCuUeqVx4PT7uPfL/nYWnIRF8yTuOSmPhLlLsSAG1e3G0enC0eHC0eHE0drBXUbN7HvBz4UGjWWeeUkLp1NysWLiZ9ZhvAxnPg5x+kjQeMkVhs47IR8yB05LEgHy1o0hIVDk5ohgv4wHrf/GIF6JF5JTb8iFtOQHe9IZPyqCPqIV4xgStDjCplwWL24D/42FAqJC5ZfypVXXEtR8SQSEpKxWofZsX0d99//C/bu3cuFF17I7t27MZlGq5r8+HK6IreHpqCbiAjafx9sXXOOTyBjjdxqdEqKShNYviyfC5fk4veHeOKpCl5+pXpUgwmdUcXCFUVculiiyLON4Zc2Uf98M86uSCa3oFCQvHw+WdevIP2qC1CZj/8j9VvtNL6xijVdId7bJ9PeZB11WbVGwUXTldz9ufNJLsk+8YE4iL2+heaH/4Y+3UnH9Mt55q0QFZvaRp0BNxhU3HTjVG6+fgpGo3rM2zmbOBeRHBvnjtPEMzzs4Pe/eYt3Nw4TGoMgjEvUs+SKEi6eEyRnYD1dT26m/sUWAq4gCYtmknzBPBIXzSR+zlQk3dj+P7IsM1JRTfPjL9H6zBv4h60AiJJA6vwkCq/JJTx/Mau6JvHKc810Hsc9trDQwq03TiU+Uc87a5vZurWN/m7HGa0BM8VpmTE7nvMnOZilraH/tf3Uv9SKd9iHNjWR0u9/noIv3HTWR3PP5O+tq9vOI4/u5I236kb9X2UVxnPpLeXMyRwkZ3gtgYY29j9aR9fmoyc9tGlJBO78HE9VMmo6M0B8koElVxQzbWEWWp0Ss7eNREclCa4alGEvIX+I4XobQzXWyK3airvv+KnyoiSQMDWetPlJpM5PIphdRJ++lE0tCax6sZGW2oFR35uRGcM9X5jL+eflnrZ2ObIsMzTsobvbTk+Pg7a6HlorW+npHWHALeAMSgTCAoEgBINj/9GoNRLZxRaMJjUmo0CsQcZsCBGnC2DR+7DoPFjCA8iNbdirurE22BmqGSEU0pF66RLSLjuP5OXzURo/vh0SzkVuJ4YXfjOX2Bg1gggIAsLB+nCFVoFSK6HQKEAUD4pdiZCojGRRBMFl9+Fy+AiHImPiQ5Hbx//1ErNnR1r6/P2BX/HA3/7EDZdewSO/+w2aODUKnQq/Qo8nrMFui6xjNLPDtrYWrr/uQhwOO/feey8//OEPx/zZPi6R29Mlbv8GPCnL8pYJX/k5zjo+LG4NRgtJyUayss0U5MeTnx3LpOJE0tNNNDWPsG59C2vWN1NXNzjqOrV6JUuvLOGqxWFyBjbS/exWGl5pO9z+IG5mGfmfvY70q5ejsZyco6GtqYkNa3bxZrXErm39o0Z7NFoFF08VuOv2haRNLx3z+p2tnbT87W9oU100lqzg2dc9HNg++m9bq1Ny4/VTuPXGqcR8zIynzom2sXHuOE0cwWCIx//2Dv9+teu4pQyH0OqVXHLjFC6b6yejbz1dT22j7oWIqE25aCGTf/plLHPLT3m/Qj4/Xa+voflfL9Pz9gbkcGSQkjTDwqS7SvDNWsprDfm8/p8GBntGT2JKSNRzyw1TWXllKWqNgvZ2K3VNw9Q1DFJbN0hLywhD/c7TLnp1BhVzFiRy1fRBCgZ2Uv/vKro296HQasn/3PVM+eXXzlrn5TPxexsYcPHo47t4+dWaUSdpE1KNrLhpKgunBMgbXoPU0cyBf9XTurrrKCNCVWwMlns+x0vWJDZt7Rh1m6nZZs67qpQp8zIwhoZItu8l0VmNJmQnHAzTs32Alnc66d7af5SJmCEvk6Tz5pC4dDb6zFQUGhUKjRpRo0Zx8OYfsTGwcRf9G3bRv34nksJO2rwk0s7LwD1tMe92FPLmC8201Y9+/S4uSeCrX5rH7JnpJ3FER8c7OIytshZ3bQX+kQ4GtEY6NWm0Ok209Ah0dXoY6nOOmgE2ERhi1JjjtMTHS6TGy6SbvCR4e4lpqSO8oxZVajGply4l7bLzMORmnLb9OB2cE7cTw6oXrsdsVCGHQgdvYcL+AAG7k5DPjyCAQq1A0iqQtBKSVoEgRcoE/Ao9IUHC6wrgtPtYvGDqMeL2oQd/x8MP/57rLruKh39yLwCSVoE2To1kUBFQ6PDIOhx2P067L6rZ6R/+cC+PPfogZWVT2L17DyrV2MoK/qfF7Tn+tzhS3N5y+6MUFuYSH6cjLl5HXKwWrUZi5+4u1q5roav7+C1/VBqJRZcWcfUyBXm979P26Gaa3+4g5ItcoFMvXUrJt+4icfGsCZsZDoVCbH/jHZ5a72b71v5RXY+1OolLyoLcevUMss6bM+b1u7v6aH3076hT3BzIWM7zrzuo2X1sC6FDqDUSl19WzG03TSU9LWbcn+ej4JxoGxvnjtPEsP79ffzhb3vpaB9bP+wZS7K57vo0pjlW0f3kJuqebybgDJJ8wXwm/+zLJMyfflr209PTT8tTr9H4t+dwNkfESsrcRCbdNQn7tGW8UJHGqhfqsI/ioAug0yu5+spSJpUkYrP7sDu82O0+bDYfw8Mumpp78HpldDotoihGogQCkWalQsRcxOcL4nIFTjmdMyUzhgsW6bg6t4aR/0Qi3qEA5Ny+kpkP/uisE7mn8/c2YvXwryf28J8XKvH7o7RnAoxmDcuvLWPZQj0FtrXo+mqpebqJxldaCfmPdK7WknPP7WxPnsHTL9SMur6ckgTOX1lK8bQUYnxdZI5sJt5djwAM1VppfaeL9jXd+GyR/7MuPZmkZfNIOn8uSefNQZ+RMu7P6Wrron/jLnrf24Kndjv512QjnL+M1e1FvPFiC+0NQ6O+d8asNL7+pfmUFCeMeXuyLOPt7cPVUIu7tYYhq50en5LekJ7+gJ4+p4qu3hBdnS48E5CePJHojUoy0zVkxnhJdnSR1ttB8YKZZF2/AmN+1ke9eyfkoxS3JzKUirTnCeJwBnA6vfh94/MoUKpE1FolGpWARgqhkEMoRAVBhZrefveo69MblMRrvQQH7ISDApLJgKTXIum1iEpl1HHoaP1mAUJeHwG7k4DNQcDhOjzeVBkkNPEaJI2CkBCJwgZFDWWFeXS0t0cVt1dedT1//tmv0fudhxOgJY2IJk6D0qgkKOrwCnrs9gAOm/eose2aNav48pduR6fTs2t3M+YYLfHxWlSq41ernhO35/ifYSIMpSSlyLwLC7j6Ej3Fg2tof2QdTW92EA6EEZVKsm+5nOJv3Il50umr9wqHw2xbvZ4nVg+za1vfqBERvUHikmIv111QTN5Vy8cssr39Q7Q9/ghSvJOqtPN54S0XlTtG/60LIixalM2nb5l2uAbpbOWcaBsb547TqdHaPsSvf/0OO3aPnHhhICndxDWfKWd5chXiO2+y+4/7cfd5SDpvcGTKcgABAABJREFUDpN/dg+Ji2ae5j2OEA4EaHnyFQ78/GHc7ZGJrbSFSZR8ZgoDpct5ZY+FdW82MdR3bF3j6UIUBdRqBYFAaFzpmxAx4Vq0LIVbZnah37SW/Y/U4nOEyP/89cz44/cRpdPaiGHMnI7fm9Xm5dnn9vPUs/vweKLXyKk0EkuvKOaiS5Ipdm8kbvAADS82U/Ns0+GabgBBksj73PUMLrucB584QG+UulaArEILl91aTk5JAnGuBjKtW4jxthP0BGl+o52mNzuwt0Xeq9Bpybz2YnI/fTWJi2ZOaD2ob9hK06PP0/vaS2QtjUF1xUWsai/mtRda6WoZ/TdZXp5AUoIWo0HEpJYxKIMYFH50og+ny8uwG6xeBXa/ArtXxO4WsNpDDPZ78Z7GKOyZwGRSkpskkyNYmZFpZuGnL8J0lgrds7EVkN8fwmbzYrV5xtXySiGJaLRKtFoRnTKEFA4iSUoUOgOCqCAclhkYdDI0FH1iUSGJJMSJqO3DBJwhNMkJqOPNE/p7ksNhAk43Aasd36AVORxGqZPQxKlR6iXCKMgtm0t7ewcvvvI2pcUzCIflo8TtL3/5AEpCmDxWpPAHk2IKlYg2Xo3SqCKo0OIV9NhsQZw2L7Iss3HjGu7+/I2o1Rr2VLQdfp/JpMYSr0OjiW52+nERtx/JFUgQBBFYCswDkgEd8ENZlnuOWEZ1cP9CsiyfHru8c3zkaA0qyhdkcuWKWCY71tP1m3dZ93o7IX8YSa+j6Gs3UfSV29Clnn47flEUmX/Jecy9KMy2tdt4/NVu9uzoP0bkupxBXtglsaqujUve+SOXlSVQdNMVqGKPH2XVJMZT9J3v4R+xEf7no/yoZID6y5bxwtte9m/rOGY7chg2rG9lw/pWSkoTuP3maZy/NPeUDDvOcY6PI26Pnz/9YTWvruomMEpU60iUagXLP1XGyvNFctufpeqbW2hf003stFLmPfddkpaOPfNiIhCVSvLuupbsW6+k+bEXqLzvr3Rt6qNr87tkLKnks58u4/qfLmVVQzHvv9F63JTPiSIclvGcpHDw+0K8/1Yna96GybNu5OZ/OCmvfpf9f3mRpn88T9E9tzL1198862tyx4osy+zb38sLL1Xx3pqmUSOrklJk/kUFXHhFNmWh7ST3vELrm21sfbIB79DRw5ismy4j59tf4IH/NvPOb7ZGXZ/RrOHSW8qZviiLZHc1mR0vY/D34bX6OPBiK42vtuF3RAS2Zf408u68hszrLjltdZ/qODOl3/4sxV//NI3Pv8uen71EcuJ6br9gMZvbs9i9tRdnFHfjvXtHr9M9ncTGaUlMMpCQoCPkH0GlhPSMLMKyyEBrF3trrQyOjP4bUKkVaHUqXA7fqCnnJ8JuD7DXDnsx8HJ9EOO2VRQnBJmWquKy288jfWr+yX68TyzBYBi7w4fV6sHrHeM5SuCgmJXQqcOoCSASRNIZEZVHG3a63QG6e+yjZ1yYVMSJDoI9bhSJFnRZsafFNEwQRVQmAyqTAW1KIt7eAbwDwzg6XUgaBZo4NcLBwlmtFpIyYhjudx4TUAmgYFgbjwkvGlckOzLkD+Ps8aAY9KGJ92MwedCYtJhiDNhtARobawFISjo6cGK3+7DbfRj0KuItOnTa6NHps50zLm4FQbgUeADI/tCf7ifS9/YQdwEPAk5BEFJlWR5b/tk5znrMFh1ls9OZMjOJWZkjJAzuoedPq9nwahshbwhRpaTwnpuZ9P270SZZzvj+iaLI/GXzmXe+zNaNu3jsv21U7Dy2nYPTEeD5PRper3Ezd++zLFF3M/OS80i5aNFxIxeq2BgKvvENAg4nwuP/4ntZrbSsWM5/VwfYt6Ujau1vTfUA3/3BOyQmG7j5+imsvKL0XK/cc3zikWWZ51/Yyd//WcnI8Nh6IE6amca1txcyR9iA45n3ef+haoI+gfJff4Pib9z5kUYVFSoVBV+4iZw7rqbx789R/atHIg7L63tInbuPT91SzOX3LOKd9mm8v7qH+v29o5qCnA3IMuzf0cP+HZCafRE3/PpS5g++R+WfnqX+wacp+fZnKPvxFz+2Itfp9PPWqnpeeKmSxqbRTcBEhcDs8/O4eGUekxV7SbM+QvfaNlY/Vo+j8+ihS+qKJUz9xdeoDxi58wfv0z9w7NBGFAUWrihk+bVlJIu95Hc/htHfi7PHza7/NtNysFRH0uso+upN5H/+emKK8ybkM4dCYYaG3PT0OenucdDZNUJ31zA9vQ4Gh7zY7H4c9gB+fxiYBoNAtRdoO8GaTw9qjYLMrBhy8y0UFVgoyY8nLdVEYoLhcB3h0RHJmYcjkuFQiC1/fZbNbQ7e2qfCYTtamPt9IUQxwNe/NptLlpfS1++ks9dBZ4+Dji47He3DdHfZ6etxjWnSDcDhDLHTKbCzJcA/trxDftoa5mSrueLmReRPz53AI/PxIhyWcTp9jFg9uEbps/xhRFFAo1Oh04nopUAkOqtRIWoMUQVZOBymr9/JyEj0a4mkVJAQI6MY6keMjcNUmnbGnLBFpYQuIwVNsgVPzyC+gWGc3W7CBydVNEE7OpwoUozExEU6rPq8H0SdZcCGhkCcDpPPgeyKnFdCgTCuXg/eoYjINZo8hMQwzz//BAALFiyNuj9Olx+ny49Wq8QSr8NgUH2sRO4ZTUsWBOEzwN/5oEXQIGAh8n+ZLMty9RHLqoiIXTNwuyzLT52xHT3HuDgyLfkLP3geQTThtHqxDXsY7HHgdQcQRAFJKSIqBAiFCIdkgsEwsgyWoIPM/gZy7B0svHIG03/+JfRZaR/xp/oAWZbZvHkvjz7TxP7do/csBMjK0LDI0s/8mDBFN1+NeXLRCU8IQbeHtieeIuCoon/mcl7erGLb+y3HNcXQ6pSsvLKUm2+YQkqycdTlzhTn0m3HxrnjNHb27Ovk179dS2Pj2DrHafVKVt41g8sm95Nc9zZ7freL3p2DJCyayZxH78NUOL5+fqcbvz9Exc5WVj3yLhXVgzhFLW5BiU9WHNFC4mg0WomEVBOJ6Sb0RjVavQqdQYVGpyQsy4SDMqFQmIA/hM8TwOsJ4HUHcNl9OG1e7FYvDquX4BgH4ieDSq2grFTLbHUDyjc2oxqwM+0nX6D0G3edtm2Oxnh+b06nn84uG52ddjq7bDQ1D7NmXfNxo9uCANMXZXPxpwop11STbttK/8Z2Kp+sZ6T+aH8Jy/xplP/qG8TMmcaDf93O08/ui7rOvLJEVt41k6xkyBt6jwRXNc5OF5VP1NO+pgc5LKNOiKPonlsp+L+bUMeZx39gAI83QGurleaWYeqbhmhqHqS1dYS+XveYXMfPJKIoEBuvITFRS0qaifT0OIoLLEwqSiAtxTRqfeMhTvQ98I/Y2PXr+3nOX8qmLdEnMebOT+EXP7mYWPOx36FQKExzp40DlZ3U1PbQ0GSnudGG0za+pMOMZCWzcrVccf1cJs/JO+Ni4kynJcuyjNsdwGr14HD6x9TCTSGJaPUq9FrQiX4UMpHorOr4nSacLh/dPY5R+4mbYpSYAzYUKj2axDgExan3bT4VQv4A3p4BSubNoqOnm7eefIKLLl+KLCl57vV13HLTTaSlZ/LKK+vQ6fRHvVehEPjlvd9i+aw5nD9zDmrVB4GQps5WvvrLn7J1524MBj2bt+8m1pwSMZ46jh4UhEgZi9vVh9frRxAUFBYVYDSMftz/J2puBUHIB6qIRIvXAl+SZbn2YNugY8Ttwfc8AnwGeEqW5dvOyI6eY9wcKW63v/Vn7P5EXl/rY+tO97hrudRqBTOmp7FgXibz5maQlWk+a2aLZFlm45YDPPrvOiorjp9mpVIrmFUsMincQak6QMbc2SQtm3/c9OqQz0/7cy/hqV9H4IKlvFqVzLq3W7EOukd9jygKnHdeLp++dRqlJYkn/dlOlXOibWycO04npm/AyW9/9w7rNvSO2Qm4cGoyt36uhLmB1fQ/tY4D/6wHSc20336L/M/fcFb0oQyHZerqB9m+o4OtOzvZt68Hv+/kRGZyooIrz1eyfI6AThlCkEMgCIQFBTLiwfYSaoIHbwGFjoBCj1+hx6fQM+xQMNTnZKjXefDeEbnvc457QD4WVATRBr3EJcVgSLGgUikiN2XkXnnwXhAi0WBZlg/eA8iEwwefI4P8oWWQkcNHPz+0TDAUpL9/AGSwWCyIonhwmQ+WPyRqrdaxZQZAZIA9ZW4Gy68uYrqpnsyRLQxsaqHyiQZG6m1HLRtTVsjUX36NtMvOo6FhiB/89D2aokSBtQYVK++awYz5qWTZtpJh3ULQ5qbqyQYaX20jHJQx5GZQ8s07ybnjaiTt2My7HA4fza0jNDcP09gyQmPzEG2tw/T3jX5dOZMolSKx8Ros8WpMRgmzSUVcvAFLspmMjHhyMsykpxhQKU8+42Ks593WZ19hc30r/9plZqj/2ONjjlXzkx+dx5IFJ46wBoJBamqb2bG7nf3VDqqr7Qz3jz0BMSFOYm6RnqtvnMuU2aevtdKRnClxK4oKzOYUbDYvwTFMpIiigM6gwqAT0Ak+FIKIZIhBUJz4OxEKhenptWMfxVFfqVKQYAii9AbQpiQhqqLXmn5UZGdl09bexit/+yeL58xGn6zFG/aRN3URg4NDxJjNZGfloVKpsVgS+P39jwBw9crzqaurQqlUkpuZhUGrY9g6QktnxNjQbDLx9N/+wsWXnne4JtfuiNTkHq/Hus87wMiIi/YOBw88XEdaqpHMTDMKUYjM9nHQy1AQsFn7+Ndjdx566ydW3D4I/B9QCcyUZdl/8PXjidtbgSeASlmWp5yRHT3HuDlS3F5z+b00951ca55oJCUbmD83k/lzM5g9K/24s0RnClmWWbe5msefqqZq78CYBuBpaRpKk7wUhnqYFCOROnsW5inFGPKzED80QyjLMj2r1jK85nmkpVNYM1LK6rd76Wgc3ZUSYPKUZG67aSpLF+egUJzZwfw50TY2zh2n0fH7gzzyzy08/WwtvjHWWSnVCi6/bRpXzXORXvsqu+7bQf/eIVIuWczsv/0MfWbqad7r4zMw6GLzlnY2bW1j584uHI6JFY4mrcxFM9xcMd9HUXYMIiEIByAcPHgfgFAAwkcP7IKCEq8yFo8yFq8UuY88NjPk1dHT6aC3zUpPu5WeNhu9HdbT2l7l40J8soG5y/OZtziFfKGWDOs2hjY3Ufmveobrjha1+uw0ptz7FbJuvIzePhevvlHLv57cE9UUp3BKMtd/cQ756lbyht5F6bHS8HIrVf9uIOAMElOaT9mPv0jGNRdGTauXZZnhYQ8trSM0t4zQ1DJMY/Mwra0jjAwfv6/tqaKQRPQmNTqDCrVaQqURUatENBoRjUogEIZ9Owfwuo+fajplSjKfvXMm8+dmTLiQG89519XRw57f/J7/auayeWP0SeyrVhbyna8tRa0eu+D2eaxUVjawcccAFTU+avf1jzmVOSFOybxSA1ffNI/J07NOm9A9ndengUEXVZU1iKKM0ahDrTm+g7YggEanwqAXMSj8SIKIZIxBEMceUbXZPPT2OaNnIghgNkmY/A7UFgtKg/7YZc4CsrOzaWtrY/WrrzMrM49wMIQ6RkVDXzM//fWf2LqzguGhIUKhEKmpGbz73i4A3n77FTZtXEtNzX6GhgawWkfQabTkZGRwwbyF3HntjSRZLCiUIiqzGqVJRUihxifocLhkXHYfodCx56oPi9vj4fePULX3cA/dT6y4rQEKgc/KsvzPI14/nridD2wC7LIsm8/Ijp5j3EyEW/JYEEWBsrIkFsyNRHVLihPOuIg7ElmWqWvp5fkX97F2bQ/WUVz3PowgQGqqhpTYMMlKF8miizRVgOyMRBInl2EszEGXnowoSQzvrqTrP/9EVRbPvth5vPmuk8odnccV1MkpBm66YSorLy9Brz8zdbnnRNvYOHecjiUclnn5zUoeeWQXA/1jH4hnF1m4+f+mslCxHs8ba9j5hwOg0DLzLz8k+5YrP5KMj2AwTGVVHxs3t7FxSxuNx2mTMhbUGgmdUY3fF8QVxajnEKIcJlW2kyS6SVF4yVD7MBjUSAYdkkGP0mxAk2BAHadFHaNGZRARRR/4bMg+O7LPDiEfsgxhRDxSDB4pInY9UgxuRQyDDiXD/S6G+pwM9zkZ7ncyMnB2RP9OJ4IoUDwthbnL85ldEiLDVUG8rZK+Ld1UP9PEcI31qOV1mamUfuczmFdeyppNHax+p4F9+3ujrltSilx6SzlLL0yjeOhtEly1dKzvYd8jtTi73egyUpj8sy+Tc9tViAoFXm+Qzi4b7R2RW1u7laaWYdparRM+cSIpRcwWPbEWHbHxaiwxEK/xY8SDPuBE6xzB4HOhDcuolVokpRaCAQiHIRSK9HcOhwiM9KCcmcom9RzWbLDTVn/830R+QTx33T6dC87Pm7Dr+3jPu+FgkMr7/sROfRyPrwrjjtJyKD3TyG9/cQnFheP3BQkFffR2NLBmQxtbKgMc2DMYdRvRSIhXMr/MxDU3zWPS1ImdCJjo65PbHeDdd2p56cUKKhucfPkLRWRmGImN1Y8qbtVaCYNewqAKokRGOcYI7ZEEAiG6e2y4XNEn5FRqBRaNH41ShdoSd9ZkB56IcCCIq70b/4gdhVJAn6xDoVPiVxjxClpGBtx4XNG/RyajGhkI+YMEfAHCYZmwICAL4/uNnRO3H96QIDgBLTBLluU9R7x+PHE7FagAgrIsn3PPOUsZi7iVJJHkDCNpWSayck2kZejRqAWcXoGaagd1e3vpbBoacxoigClGzZxZGcyfm8H8uZkkJHx0M28ef4DV71fy6pvNHNjdP6bakWgYTRIWs4IYXRizKoRZFSBWHcasCGKwdhGfo8IxZRGrdirZua4V/3EiXFqdxFVXlnLz9VNJTTm9dbnnRNvYOHecPkCWZdZuauaBv2ymvW3sLXAUksjFN0xm5TKJgo5XOHD/dlrf7SJh0Uzm//u3Z7xef8TqYfOWNtZvamPb9o5x9ZIVBEjLiSN/chLZOXpi9DIxhjBmbRCN6KOx1srevQ6qm4JYHeDzBMZ1jjzH+JFUCuSwTGgUd1ylEEYRCqAOeNEF3AdvHmJjVOQtm0ni7Mms39zOjp2dx70OpGabuekr85kc20nBwCqcjX2s+1Mjbc0hfLGJGC+7ELGsjMERL53dDto7rAyMI611LAgCxCUaSEwzkZKmJSNBJk3jIN43gKa3G19tG57qLhSaWEwlhcRMysdYmI0xPwt9TvqYU6MHd+yn6c9/IaZcR0vZRby5VcGeje3HjeampZu45YapXHxhATExp9Y/+WTPu52vv0/N+tU8bp1B7YFjRbkkiXzuczO489aZJ6z7HY1w0I+1p571m5vZVA0Vu4ePW4p0JIkWFXMLNVxx+VSmnVd2yiJtIq5PwWCYzesbeOG5XeysseMPfPAbuOf/ootbSaXAYFBiVIdQC2EkvQlRGn96sCzLDA25GBzyRP3tCYKA2SQSI/vQJCWeNS3LxoMsy3iGbDi6BgjKgE4NKiVhQSQsqgiGwOcNnDYjwnPi9sMbEgQHkZY/s2VZ3n3E68cTtxcA7wDDsiyfedvcc4yJk4ncalVhyrM9zMjzMLVEhaUgk/ZQFrsa1NTsH6B+by/2kfGlU+XmxrFgbgbz52VSPjVlXClDE4Usy7R2DfPS6/up2DtIY+3IcQXoySIIoNNLIIh43cGo6SNHEmtWkpasIyPdSE5uPDnZCWRlx5OYoEejUaJUiqd0YTwn2sbGueMUYdfeLv745w3UVI+tX+0hEtNN3HrPLJYYdyJtfo/tv9yLe8DP5J99mdLvfu6YFP/TRVu7lXUbWlizvoXKyj7kcUxmWZINFExJpmSSiZm5TjIVnZg9rWiCdnpGJDbW6NlQrWN3s5ZA6KOvFT4TqLUSMXFazPF6dEYVWr0KpVqBgACHS7kEIqXTQuS5IHDwZQTh6Nei/T0YDOF2+HE5fLgdPlx2Hy6HH4fVM6rJzOnCaNZEzt9eF35fCI9HxhsSYRQjsVNFVAhYUowkpZlITtOTmQyZJhfJvh6E+iac22qw7ekgJBiInz2Z2PISzJMLMU8ujFo6c7L0b9xFwx/+gmWKgsDFl/FyRQJr3mjCNjS6mJMkkQXzs7jysmIWzM9EqRz/vpzKedfZ0sHub/+InXMu57+vDET9rkyemsBv7r2Y5KRTm0SWw0Hs3bVs2d7M+mqBXTuGx1yna4lTMi1D5Pw5GSy9cTFq3fgnBE72OAUCITa+tY/Vq6rYXufG7oqebn2kuNXpk9AZlBi1MloxhFJnQFSefNmZ1xugq9uObxQfA41WIl7pRW82I+l1J72dM0U4LOP3B/H5Qnh9Qfz+EH5/iEAgdNLBk4ngROJWZ1BhtuiIidchKV08+cAth/70iRW3dUA+cIssy88e8frxxO29wA+APbIszzwjO3qOcTMRaclxah+LStwsnuqjsCwed0wulUPJVFQHqNvXQ0tN9IvKaBwyppo/N4N5czPJzvpojKmc3gA79rSwbUc7+w8M01w/clqdSk8WQQCVSkSpFFCrRFRKIXJTiagPvvbBTYFSKaKQRCSFgKRUIAoyDocNhSSQkpqMVqdFqZTQajUkp1lITjKRlKj/SCYczib+18VtffMQ9/9xHTt39I37vXOX53PTDclMGX6F5n9sp+aZJvQ5Gcx/5n4ss0+vJUMoFGb/gT7Wbmhh3YYWOjtsJ37TQTQ6JQVTkpk0NY5ZBT4K9N0RMesbwtbsYNd2P2trTOzzJNMnTZxfwccdUXHw/KNWoNNLaNSRjo9yGMLyIROpDx6HZZlwODIoDIdBDsuHHweDYXzes++8O9FIKgWJqUaS0mNISjOQmQw5Fi+p4X5obsFTUYdtZzPWJjsyKuJnTSZ+9pTDN21a0mm/TsqyTN/7W6m7/0ESJ4Pi6it4tTqd915vYaD7+M7oJpOai5YXcNmKIiaVJo45Wnqq592Q18eeb97HQG48D29LoLvt2N+/Tq/ke99ZwqUXFUZZw/iRwyEcXdVs2nZQ6O4aYWSMQlenFSlNhqnJSpYuL6V4+QwUqhMnP47nOPU1dvHW01vYUjtCVVcIr+/EWuKrXy4mN9dMnFlLbloSKq0WUXVq18BQKEx/v50Rmz9qtFIUBeJMAjEqEVVc7FmXghyWZfy+ED5f8OAtImYDgbPzfHUucvvhDQnCP4j0rn1TluXLj3g9qrgVBMECVAPxwP2yLH/7jOzoOcbNRNfcKoUQUxKsnD/Dx/wZElJqDj2KXHa1GKg5METd3l76u+wnXtERJCYZWDA3g3lzMpkxPZXY2DMvKmRZxurysauilcamQdrabXR1e+jrdTPc5/pIZ+POFDEmJXl5JkpLkplSlkZpadJpT5k+m/hfFbfV9QM88ug2Nm7oGDWtVqlSRDVY0RpUXHf3bFYUd5BQ+Rbb7t3FcI2V3DuvYcafvo/SaDgt+xwIhNixs5N31zSxfmMrtnG46aZkxlA8LZXpZRKz0gZI9Dehc3YxUmdlYP8wlfuDbOlPpNqQz7D2oxe0ggCiQkShECI9aYUPop/AURHQI98DEAyE8XuD/xPnr7MFU6wWS4oBS4qRhBQDGckiuYk+0tVDCG1t+CobcOxuxFZvxd7mREZB7NSio4SssSjnjGU6REOWZXpWb6T+j38lsSSI5obLebsln1WvtdHVfOKMDqNJzeSyJKZPTWHqlGRKSxPRaqKnsk7Uebfl36/Q9t4rvJ17Ne+9Hd374vxlOfzke+djNE6c+aUsh3F0VLNpSwPrawR27baOq949KU5BbkyAfF2QqYUJlC0uxVSYhTr+aLEX7TiFQyHcHT30V7VQtbuVyjYbe4cUNPVFJo5OhCgKFE5NZuFsHfNKdKgMJlQaHQUFBeM+Dh/GZnPR1+8hOEoJgV4vEa8KoLNYEKWPtrUPRIS41xfE5w3i9QYjj33BM15qIogCJrMWlUZCFAUEEQ7NEx36Ohxx+iccBp8/cp4f6u9geNhJW9s5cRvZkCDMArYTEbKfkWX58YOvHyNuD4qll4CZQBAolWW58Yzs6DnGzek2lMrU2FhY4OSCRTLpBQlYDQXUu9LYWxOkbl8vDft7T+jE+GFycmKZNSONWTPSmD7toxG7hwjJMja3n+bmPppb++nvdTA45GHEGsBqD2KzBQ73pxytDuzjTFqankULc1m6OIdpU1NOKu3s48L/kriVZZnNOzp47PHt7DtO6yy9UUXA68cf5SecW5rIbf83hfnhd3C8uYldfziAoNIz+5Gfk/mpiyd8nz3eAFu2tvPemmY2bmrFPcbzilKloHBKMmXTLcwv8pCvaSPO3YyndYCenQP07hygvjpAtSGf2rhCBvTHdwr9KFGpFeQUxTFrYQplUy0YTEqEI8YJsiAQFqQjbsqIUUkwjM8TxOWI9NR12X3YRjyM9LsYHnAx0G1noNtOaJzt4T4qJEkgPcdEbkEMmXlxJGbFERKUBAIyAV8It9OHw+rFPuKhq2WEvk4btiHPKZ+jFZKI0azBFKuN3OK0xMRpSUzSkGEJkRnnJlYYQeztIlDfint/E9baIayNdtz9kQkYY0E2cbPKIpHZOVOJLS8Zc33smUaWZXrf3Uzd/Q9jyfMSc8slvNdfxob1Q1Tt7BxzxpZCIVBQaKGsJJH4eB3mGE3kZtag0Qjs27cdtUpk+fJlGI16JOnkSnGsB+rY/aXvMHTb9fz1RV/UlOo4i5Z7f3wB8+ZkjHv9J0KWwzg6a9m8tZ51lTI7d9vGXKN7CI1GJNkskKTykiS4SJS9mIQwZqMKm2MApyOIXxtPj2SkO6Sn26VkcGR8kcSM/Djmz4vl/EIvxQWZGLKm0NjUfFSf25PF5w/Q02PH7Y6+TwpJxGKQiYkxIOk+mmtsKBTG4w3i9QQi994JjsYKIEkKJKWIpFQgiAJyWI60ODvcGk1GDsv4owhoQYBEc4hYfQhhDAW6gbCIw6ukq2+AwSEX7e3nxO0HGxOEh4G7iYjZl4DngecOPr/54P2FwA3AoTPxb2VZ/t4Z28lzjJsz5ZYMYBR9zEwY4oI5AWbO0uCPz6Vfnc/ezpjDUd3xGlMB5OTGMnt6GjNnpDF9emrURu0fFbIsE5RlvIEQDqeboSErQz0jDA3Ysdm82JxB7M4gDk8Yp0fG5ZFxOYO4nX7sVg9e1/iE/0eJTi9x8YWFXHd1GYUn4UJ5tvO/IG6DwTBvvlvPE0/uprV59PRdnUFFcjw0tx1rwCSKAhdeV8anLlJR2PUqlX/aQfNbHSQsmM78Z+6f0BY/Hk+ADRtbWfVeI1u3tY+596wpVkvpzFSmT9UzP2eI1EAD6qF2+vdExGzPzkG6R5Q0xOVTH1dAjyF5wvb5w8ycY2HBNAGnX4Pdp6ShJUBjVf+E9KyNj1exoMzPFWXdTE5382EDWxmO6K2rjPTUFSN9dX2S8XCbIY8yDrcYw3C/m/bGIap2ddHZMMTIoGtMEaCPGkmCkmyYnWtnWq6fLpuWDTV6dtcIY0rJ1OiUTJ2fSUqWOdLjVyOhVEuoVArUKhmtMkSCMUCcxoM27EATtKPyWwn3DeBv6cZV04m9xYG12YG9zUn4oOjTJCdgmTOFuEMpxjPLUMXGnOajMfHIskzfmm3U/u4h4lJtJF6/gM646by338DODV201B6/t/zJoNZI6PUqjAYVRqOauFgtiQl6EhP0WCx6UlONZKTHkJRoOCoF2m9zsP3O7yDOiOPxgZns2dIddf3XXDOJb9yzAI3m9JTjyLKMd6SNLZuqWV8ZYM8+F92t1tOyrRMhCJBZEE95eQyLioPMKE3GlDkVQfFBNP1Qn9uTFbfhcJiBfjvD1gCjaReTUcKiE1DHnrlStFAojNcbPErMTpSQVUgiSpUCpUqBpFQgSSKSJKCSwohypMe5KAeJdPgWI+7Hgnj4sYyIxy8w1OeMOvFmlALEKdxwsD84RMo9QrKAX1bglyW8ohpfMHIsz6UlR9uYICiAfwK3cnwvr0PfyH8Bd8lncifPMW6OFLd33P139u0Z3X49GAhPWPqaiEyW1sHsLBuL5gnkliXiNOXREUyjok6gbl8vdft6sZ9En7/cvDhmTU9j5ozUSGT3LBK7xyMcCmGvaWJ49x5c7U143CM0Fc7h7d1Kqnb3HNf4JjVZzaJyLYkWFd4gBMIC/tCHbkEBf1AmFIJQSP7gFj7icYiDtzA+TwDbsGfckXWA4pIErrt6EisuLkKl+mREcz/J4tbp9PP8a1U89+ze47b0UWkk5s40Urd3gD7nsYO+2EQ9t9wzh/MtezFUvM/Wn+/B3u5i0vc+z+SffXlCHC59viBbtrXz9uoGNm5uG3Nf3ZTMGCbNSmXOZJEZiV0keBoJNHfStaWP7q39DFaOMKSKoSE2n/r4Qvp0px6hVUgiokDU/qh6o5r/u0HJp7L3EPaHUeoix8anMNISt4Qabz6r/lPJ7vWtp7wfEGkPk5chsSyjh4UpXSSYgkgaBUqdhFIvoTjB7zSMiE+K+UDsKuNwKeNpG9ZR3+ilq2WE3g4bQ71OXHYvgUAI+WMgfEdDEKBgSjKzzsth7hQFGb5KjL5eFLIPKexDDHgJDjnxDnvwDHlxdrtxdrpwdLlxdrlw9XmQj+jRqTQZIiL2kJCdNfmM1MmeSWRZpn/DThr+9izBjgoyL8pAvXwxVYFi1uyQ2bOhlcHesburTwSSUiQlxUhuThyF+fEU5MWTnxeL4+n/MLjpTWqv+QJPPdONJ8pEclqGid/ceyGlJYmndR9lWSZg76aysp5N+1zsrQtSVzmIZxzu7eMlkrGSyMwyDYsmKykuykIbn4MgRj9Hn4q4ddhc9A54op4HIeKzYjHIGONjT2u6/ekSskeJWJUClVJEJclIQghRDiAeFLGCfHSkVQ7JhAIRAwJBFBAUAqJC+CCnGAgJSlxiDIP9XnyeY7+jSjmE1u8iqFASlFQEUIwq0M6J2+NtVBCuAb4HTB9lkWrgPlmWnztze3WOk+VIcVv/+KepM1zEQ88G6Os8ti5WoYCpU2PoHRaOO8MoHXTvHWuTcwClKFNkdjAnz86smUpS85NwmbKoHkqgojpI/b5eWusGT8q9uKQkgfOX5nLekhxycz76GrmxEg6FaHvmNfrfe4nAVRfxZl0SW9Z24DhO/eD8BZl87UvzycuN/jnlcBg5FEIOhQkHg8ihMG6Hk3Xvr0EOBpk/fSaiP4jf4cI9PIDHMYTdH2QorKIbMy0jGtrb3HQ0D4/pwpuQqOezn57BlZeXfOxTlj9p4jYcltmxp5PnXz7Apg3tBPyjKxG9Uc3y80woGhp5td5MMHTstWfawixuviOXGY7X6X1+O3sfrkZpjmXeU78jZfmCU9rXQDDEjh2dvP1OA+s2tOAeY0ZDVqGFKbNTWDwlQKm+FbOjAdv+bro2RwStvdPFoDaehth8GhKLGBhj5opaKxHwhwhHOQ6H/p6UrKO9Jbq/QPnsRH58WQvqqgPsvP8Azm43CpWIKdvApFsKSF+UjFOVSFXiSla9M8wb/957zORWXKwCtUFHb5dzXI7Ph4gxSeQJw+Qe2ExaXxNqSUYTq0JtVqOJVaFL0KBP1mFI1aFP0WFI0aGOiW5sExKUuJXxuFXxuJWWg/fxDAVMDA/6sA65cYxE0oDtVg/2YQ/2g88dVs+ox/GjwBSnZfb5uSw6L4UidSPJjv3ILS20vdfFUI0Vz5AP75APn803qnjXJFkwTy0mdkoh5imRelljQTaC+L/hoA3gHRym9anXaH/2JcypXjKuLMVXvoAmdwr7W9W01NtoqRugp9X6kdR86w0q8tO0xNXsoHhlMe80WmiqOjbCrFAI3PnpmXz20zOQpDPz/wsH3NgGO9i5r4uKWg91LX5aGmzHdaY+EaIokJBmIjffxNzJSpbMSSA1LRdJO7Zz3smIW5/XT0+fY9QU5EOGUXFmPdIEX09lWcbnC+J2B3AfErITYAiqVCkOZ20o1SIa5REiNhxElIOIRE4Mckgm5A8TDoQIB8KEAjLhYJhwIHIbTcIJIhGhKwooDUo08Vq8UgxDNvm4478TcU7cjmXjgpBKpK42EVAAQ0CFLMtNH9lOnWPcHClu/x5TxLK7J2O6dDYP75rKWy+1RD0ZTMsOctWVZl7ZbqRiW8+o6zbEaMgqiKe/235CJ8UPIwqQFR9kapaH6cV+sooSEBKz2N8bT1W9n6aqflpqBwiMMQ3xEJmZZpYtzWHpktxxOTZ+lIR8fhr/8R+G17yI+dMXscZexqo3Okc17hBEgRWXFPKFz8wiNdV0wvWPVbQ5WzvpWb0Ra90+ghYdXdlT2d1poKpigM7m4eNuIzHJwOfunMkVlxWfsQHCRPNJEbfdPXaef7Wat9+qpb/v+IOl+CQ9ly3RUNZbwX+6S9jVeKzjp0ojsfIzM7hsmpXs9jfZ/ZvddG7oJWnZPOY/9Tu0yScXAZVlmeqafl57o47V7zZgt584TVcUBfImJTJlVjJLyjwUKJswjdTTv72brk19dG/vx+EUaI/JoMWcQ4slD4cwtnpGnUFFbmkiPW0jDPVFdz7Vm9TMW5xM474eWjuOnfzRGVR8+mYL1ydtpPLhfTS/1RF1PQlT4ij/QgkxpUlUJ65kS72ep/645ZgsijRHF7cb9uC/8hJ22FPYX+nEOjj+bBdBgKR4JQW+TrL3bCRxpCtqYxulXooI3VQdxjQ9xgw9xnQ9xjQ9mrhjTXhkwCuZ8SrNeKUYvFIMPikGn2QgoNDjV+jxizp8Pjli1OIO4PMECAXDhEIy4VAYrzvAYK+DgR4HA90OBnscpzTAG+vxyE0XKVX2klRZgaGqAUk+9lqjjDFiKs7FVJyLeXIhsVOLiZlciDbpk1eWcbLIsszQ9n00Pfo8w5vXYSk1YJkSh35WCb7kfPpIZX+XgcZGDyMDblwO3wc3uw+3039Skzcng8mswmEPRN1eXn48P/n+UsomJZ2RfTmScCiI19FHc1svtU02mju8dHQH6OrxYhv24rB5j+rkoDOqSMuKITNdQ26miuI8A8V5ccSaY1HpLIiK8WfQHBK3CoWCwsLju0qHQiH6em3YHKMbLhkMEgkGEY05ZkKyF0KhMB5PRMi63UE83uj/x7EiCKBUSajUEkq1ArUK1FIYiYMCNhxAJBRxdveHCQXChP0hQocfhyds0k6hEtElacFgZMSrZXjAPWpq9/HweQcYHnHRcRxxq5BEUjLNxFiCPPXgrYde/t8Rt+f4ZHCkuH2AHOJRYimLZdrXyqnJvoz7H3PS0XiscIkxSHyxsIq4i+bwr3c1VO7qHXUbxZNiWHxZEb29Aap3d9NSO3BSxh0xRpGiDJnS7CA5ORoseRk02y1U13tPSuxaLDouW1HEtdeUkZJ89rv+Bpwu6v78BNYNr5L85RW8PTKd155vYagvepqXQiFw6aVFfO7TM48rck9GtAXdHtqfX0XnSy+jmZKIc94SVlfq2b627bip5Pn58Xz/24spn5pywm2cbXycxa3T6ef9Dc288loV+/f2nbCuPTPPzBVzw0zr2kNP7oX84ZUehqP8X9Nz47jtnhkslNYjbN/E1vv24hnwMfnn95x079qBARdvvl3HK2/U0t5mPeHyoihQMCWJaXOTWVLiJFdswDDUSO+Wbjo29NK9Y4A+wUxLTBatKcV0Ki2Ex9iTVGdUUTY7neLyFFr2t7PpveiO0UazhosvzyDTU8df31Dg9h67UNnMFL5z9RDGrWvY9adKvEPHF+uCCJPvLKLk5gKa4pexw1rM33++FteHRH6au5fru95FpxRQmlRoV0ylNn02m2sUNNfbTirtTlKKZCRJlDibSdu8hhjXiR1wlXopInQP3Q4KX0O6HpU+uhMuRARwWFASFNWERDVBUYWMIlJzJoiEBCV+hQG/ZMCvMOCTjNh8GjoHoKMrSHebje7WEbrbrKctjVMlCeSaw8yM97NsVjLJU/IwFeWgSbJ8otKKTzdBt4fBLRX0b9hJ//qdeNrriS8ykDA5DtOMHBRpyYTUBgIKbaT+W6HDhxabT40vKBIICoTC4A8KePwCTo+AywsuV/iwQZh92INt2M1Qr3PMJQtjRRBg5cpJfOWLczEaJs5R+WQJh4IE/C58PjeDQzb2H2hAkmD+vBmYY5MQxYnLlmppacHrjUwq5efno1Qe+5uWZZmhATtDVj+hUYSdUqUgwQAxlliED5sAjINwWMbtCeBy+nG6/Ph8p/C/PixkFajUEhoVqKUQCjmAQg5E6mLDYUK+MCF/KCJm/aHI81Pssy0qJUSlhCBJiJICQXnwXpIQJQlZDuPtGyLo8qA2KVEmGLGGDIwM+8YlnmU5jM83wOCgi6YmG/94vAmlSkFqtpm03DjSc2LJytKQkxTEiA1rZwMLL/rsobefE7fn+HhxpLh9SFuC2RMZCAmiQMHKLBK/fAUPbCxgzevHGl4LAlxeJnJ98nZaZ17Kv98WqN0bvQemKMIViwWuvtKC05DB/jYttQeGaTjQS3fLyEnbqScmKMnLkijIVZOZH4tDSqS+0TMusSuKAksWZ3PjdVOYMT31rB+s+IZGqP7NI3jr1hP7pWt4qTGft19qPGbQewiFQmDFiiI+f2d0kXuqos1W3UjdA0/gadtD3BevZou7hHff7qK5enQTkUsvKeSrX55PfPzZ35D9EB83cdvX5+Dd9S2sWdvIgX19ow42DiEqBCZNS+Ty0hHymipJXnkrz+3x8u9n9kVdfumVxVy3Mo7JA6/Q/MRuKv/VgDY1ifnP3k/iwvG1Nvd6g6zf0MIrb9Swc2fXCdMUBQFyShKZPj+V88tc5It16Psb6N7SQ/v6Hqoqw7RrU+hMKaRTl4wzNPZIhdGsoWxOOlPmpDMt10vLtir+8ZyLYeuxgxhBgPkXZHNbSTMvv2RndZf5mHOZpBS54bY8bk9dT/XvN9Kx/oOJQCE9EeXKpSy89Vo0Bx1x/cM2bDVN2GuaaHvuLRInqZj97Sn0Jcxig3sBf/vZmmN+67NmpvHAHy49qhe1LMt4B5rZuHobaxo07N7rHDXifCL0BiUl6QJT2ncRv3M7smt86ZEqoxJNvBptnBqtRYM2XhN5Hq9Ba1GjMqpR6iWUOglJIyKMMaMmjIhXacajjMMlxdLlNNHQraK5Ezq7ffR12OjvdkyoU71areC8ZXlcv3ISUyYnn/XXi7OZkNfH0I79EbG7YRfOlk6CDisK/KhiVGjMKtQxKtRmFQqVeLAmUUSQBBRqBUqthKRToNCpUFjiEOLjEGLNBPVmPFIM/W4jncMq2vtFujo99LRb6WmznrJZW4xZw43XT2Hl5SUkJOgn6GicGqf7+jQ4OMjAQOSartVqSUxMRKvVHv7+O2xO+ga9+EcpbxFFAbNRxBKnR9KM3/37UJqx0+XH6Qzg8YxuTHVcjhSyKgUaFWiUocMiVgwHCPtCH4jXQ48D49uWIAiIaiWiSoWoUkZE7KF7pRJRFRG0o50/ZFnG5w/h8QTweiM3vz98wut49HWFCQYdhMNehkY8jDgDGLQe8uPsmEKDaAMjaAIjSPIHk4OdAw6yrnv00NOPt7gVBOFaWZafn9CVHr3+dCBTluUtp2sb5xgfR4rb6t0ViJv2U//Q0zjqWwEwZRmYee9i3tFczqP/aIl6USgpjucO7T5ycoaoLryEJ1/101wzGHV7Rp3IzcU9rJjUh7owA09CHp3BVHY3qqmtsdFWN0hPu+2k00mUKpG8XB0F+Vqy8824FLHUVo5QubNzTOZUeXlx3HDtZFZcXIhWO3q04WzA3dVH1X0PIjgPoPrMjTyzI4F1bzSOWpd8SOTeflM5OTkf9MibqIuiq62Lql/+Hev2NWR+/xq2aebz+ovtozpl6g0qvvGVBVx5efHHYoB4totbWZZpbhlm1ftNrN/QRGP9iaNtAEnpJpbO0zE/eABjv4usO+7Ebk7mez98h9q6Y3/HRrOGG780l+WZDSQ1vsv2X+6hb88QqZedx7x//Qp1/Ngd15tbhnn+pSreeLMOl+vEUbfMgnimzU9nabmfYmU9MUN1dG7qYvv7bvZ2m+hMLqRDacEdGN/3KTZBT9nsNKbOTmZGhpUETwPeqmp++6qFHV3RszqSM2P4zM3xxL71PP/0LKOq3nrMMvHJBr7xOTNFu//L7vv34rdH0orjZkwi/xt3UqkJIIjiqN8nd1cf6y+/G1xdLLpvJtbcuaz3LORvPzs2gnvekhx+88uLRk37l0M+2nZv5r2dg6zfL9NQazspDwOVRsH0YjUzencSt78aldGAu6OXgHV8/cuPhyCCKImISvHgvRD1uaRRoNQrURoklHolKoOE0qBEZVSiitcjZaQQSkqlzR1HY5+GjTt91NZGapTVOiUarRKNToVaq0SSRHzeIG31g2OuzcvMNnP1laVccWkx5pizs13Px5GQz49vcATfwDD2zh52rdmA7PNTnFeAQpYJ+/yEfH7C/kDk3uvDb3XgH7HhH7YRsNsQQ05UBtAlatAn6dDlJ6EszIbMTLoCCRxo11LbHKStYZjO5pGTmgARRYHZc9P51JWTWDg/6yM1Tzzd16dgMEhjY+NRgvLQdftEoiviECyclKFgMBgmGAwTCo1eo3o8BBFEUUQUBURRRiEAhCPGTuFwpAVPmMiYMyxHtjGW7QhEauhFAUE82JpKjEzMCaJ4lCnUWAiHI+ae4VA4ch+Wx7Yfo+3eof7noowshxCRkf1OZK+d+IZ3CXb34h3y4R324XcGCLiCh+8DrgA9Njd39lQdWt3HXtyGgSrg5xMpcgVByCRiQvVp4JeyLP98otZ9jlPjKEOp+noKCgqQw2F6399K/V/+TdfraxGVIpM/U4zv+hv47VMS9fuPjc7qDCq+cWM+Ke/+k+QLEnhHfSHPPtczqgFCUUkCP/3uYjKUw/jaqwhZWwlJIQKxFoZViRzo1FPTItDcaKOt/uRdAwUBMnNMTC43E5MUR3ePj8odnSesATYYVNxy01RuubEcne7sFrn2+haq7n0AbUwvnk/dyH82aNnybvNRNTgfJsasZsrUFGbPSGfKpHiaGnciCMKEXBSdrZ3s+8Ef8HfsIf1HN7PePY2Xnqqjtz16a5m5czL48Q+Wkpx0dqeGn43idmDAxdadHWze3s7ePd0M9I8toqbRKZk1N4Fl2QOkVmzHNGkhWTdfhSo2htfeqOW392/E4zlW+JRMT+WWu0uZ7Xkbz/qdbP/1PgIumfLffpOir9w+pkmKQCDE2vUt/OeFSioqorfhOJK4RD0zlmSzbJbAZH0jwfYGNq/1sKclhmZ/LF1uFb5xGnorJJHckgSKp6dSXqamxNxHrLWOcFUDPm8MWx1F/G1DAIfj2POOpFJwyTX53JC4m50v9vIvVxnWkWNrQCfPTuWHK3sZ+fOLNL7WDkDi0tlM+t7nSV6+AK/XO6bvU8DpYsvN38S6Yyvn/3Eu9oJ5rPcu5q8/PTaCe/mlxfzkh+eNyUsg4Oxn75advF/hZfs+L51t449wmuM0XDLFR+6b/0Uj6Em9ZDEIAiMVNdhrmnB3jl6ucibxmmN4p2gF9fLorrcxWkgxBikrkMicls7+DjW1B0boahk+4aBakkSWX5jP5++cRWbGx6+Vz9nMqZx3Aw4nnp4B3J29uFq7cLZ04mxux9/XhegfRJ+qQT+ziHBJMQ2BNCrb1TQ0eWiq6sMd5bd/PDRaibnzMrhkeSEL52ei1ZzZccOZuD55vV46OzsJBAL4fQHsDh+B40Q0lSoRg1pAo9eOWeyFwzJeX6S3rM8XHJ/AEyLndkmpQCmBSpJRCCHEcBDZH4yYOQXlw/fH+2ELohiJrEqKw2nChx8rFKdkDhcOy/j9IXz+iFtz8DjmUuNGAK1GRK8Mgs9PKBAi7AsSsLsIefwM/v0FXFuiZ2MdyRAB7qHl0NOPvbitAwqIfJ06gGeAp2VZrjruG6OvSw+sJNIDdxkR06kwcLssy89M2E6f45SIJm6PpOvNdez47A/x9AyQNMNC6c8u5ZGG2bz+34ao+f5XXFnC9YlD2N54DMuXLuexXfm8/0Zz1GbuCoXAzTeVc/dnZh3VS04OeMDdh+zqw+0cxuby0jigoLpDor5dprXZRVfryHHF22jExGooK48nKSuWrk4PFZvajhu9iI3T8vm7ZrHyqhKU0tnt9ju8p4rqX/wJY5YX92Wf4r+btGx+t2VMx0mrVZCVpSU5ORalSkJ5sCebUhIPNhtXoFJJGA1qDHoVBl2kv6Bef/CmU2IwqDAY1IcH1gObd7Pn678gLjeA/ut38fyuRFb9pxJfFNGk0yn56pfncdUVpWet4dTZIG5HrB627+xky44O9uzupLtr7G01FJJIwSQLS8tlpvZuRRpRknnj9VjmTUMQBBwOH7/49Xreee/YEgSFJHLZreVctThMYe/rVP+tgroXWtBnp7PwP38kftaUE26/t8/Biy9X89Kr1YycIItCrZGYMi+D8qkGEoLt9LTZqGwSaegUsNpPzvHSbNFRPC2VsqkxzM5xkhxoRdXVgRA2IKWUYpy2CEdQ4pe/2cD7a6L7IhZOTebua9Vo//Uo7xov5+V9vmOyTESFwMob8rgzZR0V33sXa5OdxCWzmfqrr5Mwb9rh5cbzfQqHQuy+5z66X3yZ8/80F0fBXN5zRCK4HzaZuumGKXzjqwvGnQ3hcQyyY+s+Vm+2UrHfRX+Pc8wDLoUkMm9ODBcPr8H16m7SLltG+a++gdJkwFbdiKOh9aCw6MTZ3IG7sxdvzwAh76n38gVQaDVoUxM/uKUkoEmyoIo1salXwWNrR3BHOe+MRqxeYIV9M0uWGgjPn8NeRwqbdvqo3t193JR5URRYfmE+d981i6xM8wR8snOcrvOuLMt4evqx1zRjPVCH7UA14eEWlPEK1Itn0hZTxJ5WLVUHbDRV9Y/L0VmlVjBrdhoXLy9k6cJs9ProLuMTyZm6PnW29/LiSztweAQSLGrUUaLVKrWCtDiB5IzEMUVr/f4QQ0NuBofdEePAsR5qITJRqzeqiNELGDUBVGEvstNJ0HkwIukMEvQee80QRBFJp0Gh1aDQaZB02g8eazUIEzjec7sD2Bw+bDYPTqcfX5T9mWhUQoh41xBGNYRcHrwHGnGs34W3vm1M7/+kiVsJuAf4LmDhg69YA7AN2AlUAP3AyMGbFogDYoFCYBYw++BNwwd9b98GviPLcuWE7vQ5TokTiVsA/4iN3V/9JS1PvoLKpGTG92ezv/R6/vJIL8P9x9ZwZWWb+ekXpjD083vJXKymd9HVPPKyQOXOrqj7kJJq4sffW8Kc2RnH3Vc55Ad3PwHXAFaHk5pWF5VNfmqbgzQ0uujvGp8js6QUKZ6SiD5WT1NVH4M9owuFtHQTX7p7DsuX5Z/1DsvDFdU0PvwEktiO71Of4r9bjWMWuaeKIIDBoMRgVGIyKjEalWhlH9JwP8nZWsLp+eze66DxQPTa7Iw0I//3hbln5XE+0+LW5wtSVz/A3sp+9lX2UFfTPy4xC5EL/6RyC/OKg5Ra9yEeaCVm7kXk3HwFqtgPIkx7Krr50U/foydKD8rEdBO33jObxcadmGo2sPXeCobrbGRedwmzH7kXVczoEfdwWGbrtnaefbaCrTu7jy+WBEhKjyHOoiXs89Ld6cJhH3+P5UOYLTpySxMpLDZRnhugQNeLwW1Db05BkzcdwZCKcIThyvtrmvjFb9ZjjeLEqzOquO62IlaIa9n3p528XnYz+2uiGO3Fafnq3QmUVTzH7t/uIRwSKf/1Nyn6ym3HzPSP9/skh8Ps+PyP6X39Dc7741zshQt4e3A2/7hv3TG/7f/7/Gw+c+f46p4/zPBQP++v2c+qNYNU19ijTkodgwAzZsVxnWEX9r+uRpuTy/Tff5fkZfOO/TyyTMDuxNPTj3/ETsBqx29zErQ7I2mpbg911dUQkimeWoY21oyk1yIZdAfv9ShNerQpiShNhmPE/MCAi5/8Yg3btkZ3pB4LhfFhFq57mjS9i6xPTSJ4xWW8VZvI5nU9DB2nX6sgClywLI/P3zXzY9V+7mzkTJ93gx4vw7sqGdi4E2dNBWJsiOCy89nUl8auHUM0VPaNK5ooKUWmz0jhogsKWbYkB5Pp9KSvn+7jNDRk4y9/XM2qDSP4R/Ey0eqVXLlIx2duX0hcbtZx19fcMsyadc28t7aZ+ijlL6MRn2SgcGoyk0s1zM6xkeprxrd9LwM7exisGsHaaCd8MJgiSBKmohzMkwsxleZhzMtEn5OOISf9tJnBud0BKqv72FHRzd59XdTVDOJynvx1TKtX4vMGRzWPyi1NoK1+aNSsm7lzM/jW1xaSkx0pFwr5/QTsToJ2F36bg6DTTcjrI+TxHrz3EfL6aG1v58JffufQaj7e4vbwiiNR1/8DvghkHnx5nMkBAISAV4HfybK8feL28BwTxVjE7SG63ljLjs/9CE/PADmXZhD79Rv43euJVGw59juvUin46pfnUrxvDcPvvcik75/P6uD5PP1Ux6gpwZdcXMg3v7qA2NjxnZTlcIiwe5Dunj627+1nX6WN2mYvbS2OqBHjaBhi1OQUJ+C0+2ipGd0IqajIwle/NO+EQvxswNM7QOPfn8bbtoPgNVfy/O5Y9mzpwj4y/lYhZ5r0eJFlJXqKZ+RSMr+YtIxYFKfgrDgRnM7BQygUpqV1hH2Vfeyt7KW6qo/2VutJmUfExGmZOiOeeTlO8tq2E6wfwTznPDKuvhB9VtpRyzqcPv7y0DZeeCl6cs7c5XnccFMG5dZXGXp7Lzv/UIkcVjD9T98n/3PXHzU4CLrcOBrasNe10FXZwruVTjaNGBjyHH8AIYoCMvKoPUPHSnySgdzSBEoKVEzL8ZMX5yfOqEdjTEQwpYM6Nupgxmrz8uvfbeCdd4+NWAOUzU7ni9cKCA//nX3OMp4JFmKLkoZcNDWJH15nxfGnZ2l+swPz5ELmP/17zJOLoq73ZL5P4VCIbXd8l/5332XZn+YyVLyMN1pL+NdvNx4z+PnONxdx/bWTT7jOsRAMhti4qYbnXqqhYs/QmM6rk8vjuDm3Ds8DLxMK6yn51mco+urtiGNM5zvZ35ssy7z2Zi2/u39D1P6aRrOGeRcVMNzvpKfNSl+H7bifR6EQuKBQYvLrjyPah0lfmkryZy5gj3IGqzcHOLC9c9T3CwKcd34eX/zc7MODy3OMj486Y8Y7MMyBn/6FgXffJO32BXTMvJSnXrBTv3/8KfeiQmBqeRIXX1DE8mV5E1qnfbqOU2tbH4/9fT3vb7HiHWWCS6VWcOF8A3euLCF7zvSoy4TDMlXV/axZ18z765rp7IhepvRhRFEgpzSB8pmJzC/xUqjpILyngqGtLfTtGWS4zoYcktEkJxA7rQTz5MLIbUoRpqJcFOrTFzWXZZmubjt7D/Sye28P+/f30NZy8n2bTbFaMnMM5KUJxIWGeW9HkI5RdH9Suombb81guWUfB/ylPPGSi6pRAkgKhcDtt07js3fOPMp08Hg0NDQc2fLpkyFuD29AEERgOXAdcB6QPYa3eYAdwJvAM7Isn7io6hwfGeMRt3B0FNeYoWfaLy7ged9FPPdkY1Rn4nkLsvjKBbHUfeVH5CwzoLttJY9syuD9VxuizjSZTGq+9fWFrLi48JRn1ZxuH2tf3czGnb3sbfAx2D82UZeYbkRAoK9zdIOUxYuy+fbXF46pj+xHTcjro/WZ1xjZ/CaqeUUMJBZS2W+iuiFAc83gqK2EziYkSSApTiLVoiQrI4biqTnkFSSRmWHGbNacEUOqiRo8yLJMd4+D/QeFbFV1H00NQyedqqTRKckvjWdyoYLJpkEse7cS6AsTv/h8MlZeiDYlep3h+g0t/PK3GxgYODb7QmtQcd3ds7mopI+srlXs/fNeWt7uxFSSy7TffQcEAUd9C/a6Fhz1rTjqW3F19tKXkktV+TIO2PQEg6fv+qTRKcnIjyMvV09xjsiUPImMBA0mfQySKQ1UY+uduHZ9M/f9aj0jUSZ8dAYV195RypW69Rz4zivsWf5/vFbhOib6LIgCl12Ty2ezNrHvu29ja3ZQ/PVPM/UXX0OhGb1dyMl+n8LBIJtv/DrW7Zu44C/z6cq5mFcq03j2ga3H7Nt9P7uAFRcfvyflePH5grz+diWPP7mPnq4Tuy8XlsZyW3kX4l//i7XNS9aNlzLjD99DZT7+ufNkjk/Dvjbu+/X7HGiO3gd3+qIs7r4GEiveRrTEIaYk49HG0zpsoKFH4v11Npqqo48mY+M03DRZQewzj+Ht6iOuxEzezZNxLriIpzfHsOmd1lFLXARR4NIVRXzxc7NJSjKc8HOc4wM+anF7CFt1I3u++Rvse3ZS/Nvr2KA7jxeebjyhf8doiAqB8vIkVlxUzAXn5Z5yRHeij9OOHQ089q+d7K6wjSrWFJLI0nkm7rw4g5ILFh3zd5fLz/adnWzc3MbGzW0Mj+LB8mEklYKiqclMmxHLkmI7yUOVWFdtp3dbP4OVw4R8YUzFuSQsmknCwhkkLpyBPif9tI8DBofcVFX1sbeqj8qqPupqB3COszb7EJJKQVaemcIciQKdlUx3J2a7DaU+mTptHn9+dwiX69jziVorccmnCrmlrAHPyxsxnXcz/votqApUrBeX8Nwz7XS3WqNuMyleyfe/uoBFF5aecP8+0eL2mA0KQhowH0gHEoikI3uBgYO3A8AuWZZPPgZ/jjPKeMXtITpfX8POz/8Y38Agk+4qZXDlbfz+MTc9UfpSxsRq+OHX5qJ+/B+49m9h2k8WsstyOY8+2U9rbfSBxJLF2fzwu0snrFVMOBRi+6tbWLupkX3d0NTuPWGPMIVSRKNVjtpiR6VScNcdM7jtlvIxz4Z9lMiyjKu1k5F9ddgrqwgMtyIn6hlJzqHOn0TXiIJAEIJBmVAYQkGZUAiCIZlQUCYQCOPzBvF6Avg8h+4DY0tXPI1otQqSE9WkpZnIyo4nOzuBnEwzWZlm4uK0E3bBO9nBw/Cwm8rqfvZW9nKgso/6ugEc9pPvx6lUK8gttjC5WMWU+GFS2/bi2dmElFhM4tL5pFyyGI1l9FTIoSE3v71/I+++H72uNLc0gVu/OI254feRDuxk688rsLc7UZpNBJ1u5GAQUSmiSzfgm1TCYFoevcoE9nSq6eqemBrKI1FpJFIyY8jM1FGcr2FKoY6i7BhijLFI+gQExfhn5m02L7+5fyOrVjdE/fukWWncfZMe8wuPseelIVYvuoPqKG7IpjgtX/5sAlP2PEvFHypQxlmY98RvoqbhfphTGYyG/H7WX3Y3ga4qlt4/l5b0y3h+i4mXH9t91HIKhcD9v72ExQuzx7zu8bD3QC9/fWwbO7d1nzC3K7vAzO0LrBiefI6+7f3ETiul9LufJevaS6IuP9bjEw6F6Hh7I489V8GqFk3USRWjWcPNny5gmecdvG0a4heeh7d/CHdXH77+XmTHAPht6At0bEhewdP/HRjVXX/23HQ+U+ij98F/Yq9tRpegoeSuMjyXXMkzm2PZuKpl1P6qSpWC6z5VxmfumEHMOXflMXG2iFuIXENbn36NXV/8OakL44n7wWd4dncqq5+vGlPbwdFQKASmzUjm0ouKOX9p7kn10J2I4xQMhnnjzT089Vw1zc2jT3qLosD82THcvjSe6VddePgaG3HsH2HTljbWb2rlwIG+MZvUafVKSmakMXO6kUV5g5gadzO0qoKuTX3YWhyYpxaTfMF8EhbOIGHBdDQJpy/dPxyW6e6x09A4RF3DENV1A9TWDDAYZSJ4rMTE68gtMFGcKVOg6CO5swZ1UEvs7IUknT8PbXICwWCYPz+0maefORB1HdMXZXHX5SFi3nwBTeFFZH/6hsO95L0Dg/T+9xECBXG80lHGG/+txxGlxAZgXnaYr9wylYLLFo46PvqfErfn+ORxsuIWwDdsZfdXf0nrv18lsTye3Ps+xZ+3F7NxdWvU5a9aWcrVxh5qvvdrJt+Zh/GmS3lyXzGvP1N9jCkKRKK43/v2Yi5aPvZ9Ggshv5+6V9bzylvV7LQbaOs68YBcUoqjpp6lpZn47rcWs2BeZtS/n+3Y+wd57/GnoX+YSSVFKEUBORSCUJBwKAgHb6GAn3DQTygcIiyECSMjKwRCoohXkHCjwokat0KHS1bjDClx+hU4fQIOt4zNHsJu9WEf9uA+Sffr8aLWKEhJ0ZOSYiA5xUxGWgzpKSZSU4wkJxmIjR27+B3L4MHl8lNd08++qj72V/ZRV9s/ZgfjaAgCJKaZyM4zUZgJhSYrqb01uDbsQ9RnEr9gPsnLF2Aqzj3h55BlmdffrOP+P23G4Tj2O69UK1hx01RWLFUxaeBVOl48QO3zzWjTzQQnlzCclEO3aKHDoaajN0x3p2vMaf9jJSZeR3qmgcwUiYIsDZPKkijIScQQY0GSxj/gi8b6DS3c+6t1DEcRL1qDimvumMSnUnfT+L3nqNLN4AXlFBxRJriKy5P4/jXD2H73DG3vdZN53SXM+utPUceZx7QfpzoY9dscvLfoJnR6Kwvum0ldytU8sxpWPXf0wEilUvDQA5czY1rquNY/Hjq6bPzhoc1sWNN6QhOqtCwTty7zkb3hNdpebSQcUpC0bC7Zt1xJxjUXolBGXGaPd3xCXh+OhlbaX1jNlh0NvCJOoX8w+pz6tAUZfOECGwldQ6Rcd+dxa8TdXX00P/AnhDIDT7aVs+btjqiDc51eyde/Np9ZoW6qf/UIQzv2Y0jVUfrZybiWXc6zW2LZsKol6nXt0Ptvv3Uat9w49Yy76n7cOJvE7SGcrZ1sve072Cv3M/kH59E672aeeraPyh3Rx/9KlYJQKHzCCXWIOG/PmJnCiouLOG9RLgbD2CbvTuU4NTYN8cZbFbzxdhvDQ6OPhwQBZkw3c+tcHQtvuQIEIZKWu6+X3RXdbNnWzkAUH5bRMMVpKZuVzuxyFfPSe1Hu2cbA6iq6tvThd4kkL59P6oolpK5Ygi4taczrHSuyLDM46Ka9w0p94xC1DUM0NA7S2jIyagr2WBAVAmnZseQX6ChN9ZMXaEOzZw+yW4t51jxSLlxITNnR2Yl9vXa++uUXqWs/9rpkSTZwx51ZlNe9TMiWQNG3vjxq5kvAbqP3lccZyEjn6S2xrH+jPmrk3aBXcLmhhRULcrHMmYqpKAdNcsLhfTonbs/xseZUxO0hOl97nx2f/wlhl5Xy789nU/a1PPZYe9SIZ1pGDN+/KZf+r/8AY6KPad+fT2XSpTz2nIP926Ibfyw7P5fvf3vJuGtxx4Ktpol1f36BtX0K9jpjsJ/IwEZg1AjF0qU5fOtrC0lJPrtb2nyYiRw8yOEwvmEr3r4hums6aKvppLNlkJ6OEQY6h3CLEn5DDB6NHr9STUBUEkSBP6zA65dPafb7ZFCqRCwJOhITDSSnmEhNNpKWYiQ1yUhiop7EBMPhwcWHj5MkqWhoHGLfgV72VfVTXd1LV4f9lCz9YxP0ZOaZKchWUJTgIsvTBrv34ajsRWHJJW7WdBKXzMIyZyqicmyD4uFhN2vfPMCrb9ZS2RJ94FE4NZkrby7BZK1loH2Y1j4V3VaJnv4g/T3uMff9HCsKSSQpzUhGqpJ0g48U3wDZBpmCeTNIO2/BmD/beLDbvfz2D5t46+36qH8vnZnGZ2+NI3Pr02y/dzvbLvo8G5qPFTaiKHDldTncHreGvd9/F59TZOZDPyb75ivGlSUwEb87V0cP78y5luSpamZ9ZxoHkq7liRecbHij7qjl9HoVjzx8JSXFCePexnjo7rHzwCPbeXdV4wl7lZtiNSxbbOQiUyXOp95nYO8QIX8YTZIFfU46KkssAyEvgslAekwcgb4h3J29uDt7CdisSFOzeadkJTurok+UmWK13HxTGissPSSffx0KzdiPr62qgc4nH2Bw1gz+tlpP3f7oPgzTpyVw388uJlxRwYGfPsjQ9n2Ysg1M+twUnItX8NTGWNa91TTqec0cp+XGayfzqZWTTsv17ZPA2ShuIZIxUPO7x9j/oz+TMtdC5n13sGpwKi8+foCRUSJ8cXFKYhKMdDTbCAZOfE6VlCKzZ6ex4qIili7KOW5bwvEcJ1mWqakd4I3VVWxY30Z39/EnYFVqiQWzDFxZpiRu5gL2Vfaza28PBw70Mjw0Pg+PhFQjZbPSmF8uMs3cRnjjZvrebaB7Wz+atHRSVywh7dKlJCyaOSH1srIsMzTsob3dSnuHlbYOGy3tVjo6bHR32UfNshgPepOarII4ivNUlCY7ybbV41u3C3dPGEPJVJKXLyDpvDmoYmMOR1oP7184zGv3v8L9b/Th9B57zpwyN50vLe4j9NpuSr7/bUxFuWPap5DbTfc7z1EhpfPYsyN0NA5FXa4kV8WicA0Je7YR6nejS0tBl5GMzaTm6hf+dmixc+L2HB8vJkLcwsEo7ld+QetTr5F1YRr6b9zG7182Ub3nWNMFhSTw6ZsnU/TmvxnZuJkZX5mE7opl/LepnP8+diCqKDabNfzgO0tYdn7eSe3fifCP2Kh/9AVWv7Sb/SmTqOoVxzTL+mFUKgW33zqNO26dhlb78ZiRP5nBg98foq/fSW+vk55eB729jsh9n5OeHgd9fU58Z8Cd+Uyg1UrEWXTEx+sQRS+SAqw2Ba3NIwTH2Rf0SHRGFZn58eRlqyhO85Mn9KCpOYB1Yw0+hxrjpMmHU7BiJhWMqa+ed2CYkf117N1Yx9aqYfaPSHQ4pFEzRpUqBckZMbgcXoZPIcJ8PCSVgoycGHJTIE0YIWGgDe2evXj3tqA0Gcj77HUUfulmDNnpp2X7ABs3tXLvr9YxOHjsZ9Tqlay8YwrXFVTR89vn2LZZZvWcm+iNUqNvtuj46mdjyX3331Q+Ukn8vBnMe/I3J7XvEzVoH66o5r1FN1N4VQqTPlvG3qQb+ce/etm1tuWo5WLNGh57ZCXZWaff2Kivz8GDj+7k7TfrxnQezS2KZcYkBdPj+khp3Il9ZzveYR/ekUifRlO2EWFKAW1Jk6jzJlDbDu1trqjrFkSBpRdmsFK7h4EH30IOSSg0qkibD40ahUaNZNChNBlQmvRIRv3Bx5GbKtaEOj4WVVwMrqZmnNXvsDX9fB5/dijqtUmrk/jinVO44ebZ9L6ziQM/+QtDO/YTW2ii9PPl9M+8lCff1bL1/eZRj4VSKXL+Bfncev0USktG78X7v8jZKm4PMby7ki23fAtPRzuTvzEX11W38exqmXWv1Yz6/85LCJE7JYEeu5ravX1jyoBRqkRmz8ng0gsLmTM7nVjz0cfhRMfJ4wlQXdvPqvfqWb+hdUweJMYYNYXpArEaFX0BHfV1g5Hes+NAIYnkFCdQWp7A3NIgxWI93nc20bOmlYEqG5YFs0m7NBKdNeYf32F5NGRZZmTEQ3uHjbZ2K63tERHb0WGju9uOZ5QMipNBUookpseQmW2kNE+gPNVG0kA9nq37Gdjdy0iDnYAzOOrknqhUotCqQavFoY9jf1wBGxV5x0yKKySRlTcXcXHf6/S+XIdCp0cOBgkHQ8jB0OHH4UAQORhEDoYO/i14+F4OhhAUkPGlC9iUczmvvNg6ahmZKArk5OopywhQSgdixUY+9c6aQ38+J27P8fFiosTtIQ5FccWwgyk/X85L8oU8/3RL1MhPQVE8d6YNM/zbB0hfksTUb81lf9wK/vGMjQOjRHEvWp7Pd761eEJdBo8kHArR8cJqttz3KLszprE7mIzNNv4TY5xZzT1fns9lK4rPupY2H8blcvPSS6uwO0KUl89AFCX8gTBeTwCrzYvt4G1w2E1Pj5PePgdDQ+6Jazr+P4BSrSAjL47sHD3FGSEKdQOY2+twbtqPrd6GlJiDZfYU4ueWY5lbfsIUrIDDia2qEWtlAz1762nuHKFXoaFVSqRmUI3d+RFNLAiQnBFDVkE8BdkKJidaSWjcRc9j6xiptR5ezJCfRdFXbiP39qtQGk+fwc6I1cMf/7yFN96qi/r34ump3Hl7MpOaXmTnD9eyKe0C1oSzog5Ky2Ym890V3fT+9Fn69lqZcu9XKPnWXcfMxI+ViRy0d721ng2X3820L5WQe00Ru5Nu5q8PNh+TJpmUZODxf6wkOenMZJcMDLr462M7ef21GkJjNBhTqhRYkvWYzUpiYxQIyDQ0eejvPrHxXVZBLJ9b5iZr79sE7V5C/jAhf5iwP3T4ccgfIuQNEXAFCXiCBF1BAu4gQU9wVMduQ7qR1O9fxd/rStm9NbpLbk6GhmWFKi49Px/RYaf61/9gaMd+LGWxlHxxFk0FF/PkmzJ7N7cf9zMU5Bq56drJrLhi8lnfW/1McLaLW4Cg20PFt39Hw0NPk1geT9F9K9lpWM6zTzTSVNU/6vvitSEWF/kxlOaypw5q9429RjUjM4Zp01KZNjmZxAQ9RqOC/fu24/PJZGZPprvHTVPrCK3tVro6rAwNjj3CqlRFyrBO9hp/qKd4eZmGuTkjGJv3Y393Fz3bevE6NYdTjZOXzUPSj89XJRQK09Zupa5+kOraAaprB2hsHIpaOnImUEgieqMao0mJ0ShhMorEGARMujAxqgAmpR/8fnpsEn1Wkb4Rmf6hEMPW4KjHNzZBzxc/m0LG83/Fur8HRAFRISAoBESFiHDosSR+8LokIBz824eXFRUCgkqBbd5y/rErhf07Tuz0LWNn747vHXp6Ttye4+PFRItbOBjFvec+Wp95nfyVuXjuupP7/x2ks3nkmGUlpchNF6aR9uCvUIpu5v6gnNDcJTzfUMYL/9yHO4oTXWyclh99dylLl+Sc8r6ORjgYpPWZN9j3s4eoNudwIHc29e3jrxPNTlTxra8tYN75JadhL8eHy+Wnrn6Q9g4r7R022ttttHdG0nN8Zzgd+IwjgN6gQlIpCAXDuB3+k7brPxGiQiAly0xWXgxFmVAcZyNluBHP1v1Yd3cQkM3EzijHMiciZs1lBaOm4QY9Xuy1zYxU1tO6p4m2ASc9sop+wUB/QEfvSPikJl8mGlOslvOuLOKyOV7SQs0om6poebGGllUdBJwfzBQnnT+X4q/dQeqKJWOKRJ8s4bDMK6/V8MBDW7FHGfRodEquvKOc6yc34f7nf9n4ry7eXfJpmgePHVgqVQquuymLq0NvsefHa1EnpTP/6d8TN33SKe3jRA/aa//4Lyq++Svm/Wg6yefnsSPhFh78fRWNlUf3lM5Ij+Eff72SxMQz59o7POzm70/s4eUXKye8ThsitYB6kxqdUY1SpUBSiEhKAUmK3JRH3itArQKNCrRqOXJThtGpw2jFAGoCaPChDnlRBz2o/B6UXic4XKh0sC3hAh77jwOHLbpZi1YnMbtQZF6giYShEQKDNkb2VmMpMVB0z3z2Jizn6Vec1O09/gBTqxHJShDJNoUpiJOYUpJIzrQ8jPlZKE3/O47LHwdxe4juVRvYefdP8fb2MOmuUrR33cjq1jxef6aavuO0vhEEyNV7KM0XUWRnUdsG9fv7Tip77KNAb4q0UswrMjO7OECR1IJ/wzYG1jUyVOPCPH0aScvmkbJ8/jG1psfjUGeBPRXd7D3QS03tIM3NQ6P22f0kYLboKJ0Sj14TRiWBJEW+H8gfVMTJsnDEYwiHiZiAhiOPw2EIhSLXwQ9elw++LjMy7KOnzXrcc7HfP0LV3h8eenpO3J7j48XpELeH6Hz1PXZ8/icolR6Kf3E5j3fNZfVrrVHTNQoK47i8cTWKHVuZdFs+uXfMYKf2Eh7/d/+oJg0rLink219feNqaogOEAwGan3iFyp8/RJdPom7pFezq04zbbKA8OcQdF2cx54YlqGNjTtPeHk1/v5OKfT3s29/L3n091DcMnTZBNxqiKBATr8Ns0WGK1aIzqtAb1OgMKlQaCVEhIkkigigQ8AXxeYP4PAGG+pw0HOjDGiWN9BDHM/kaC2nJSjLSVMQm6lFoNVidIkNDfqwDLmzjML1KSDWSmRdLQbZEcbKbbH8b4T2VjGypx94ZwFhUgmVeOZZ55cTPmRrVcCjk92OtbaFpWy0N9T102Xz0+yUG/EoGXQoGhwMEToMo+DCiKGBJ0pGSoiMhXkt7m5P6+uFRlzdbdJx/VTFXzLSR79zC0MZGGl5upXf34FG16WmXn8ekH/4fltlTTvtnqK0b4Je/WU/lKBGTovIU7rgzi+lDr7H/p++xbjib99MW4Y3Siik9N5Zv3Syj+ucTNL3SSuEXb6H8N99E0p36AHuiB+2yLLPjsz+k5cmXWPrb2Zhm5LA17mYe+OVuOhqP/h9mpMfwyMNXnvG2NFabl6f+s4+XXq7GOoob8dmKpBTR6lVo9SrUGhHbsBd7lH7HR5KTb2JRoZ8UTw8Wjw0qW1B4e8n7yvlUGBbwxroAFZujm1ZFI8akJDMBkpQe4hU+EpSQGqsnpzQdS0k2xvwsVGfo+nKm+DiJW4j0+z7w84eovf9xYnL0lH1lFq5Fl/P6vgRW/afyuNe0QyhEGUuMiMqkxekG6+DZlSmVkGokpySBgnwd5dlecqQuQvuqsG2upn/PEMrEXJIumE/yBfOInz0FhWpstbOyLNPSOsKeih52VXSxp6LnlByKz3HynBO35/hYczrFLYBvaIRd99xH+3NvUnxbCR1X3MFDT9qj9oZTqkSuyPKT9fTDJE02M+cH0xnJX8gLtYW89M+9eKKIjfh4HT/+/lIWnaZWF4cI+fw0/uO/VP78IZwjLtovvoJdqjw6Osc3QDPqRQotYcpS1Cy+aApTL5p+0mmNhwgGw3R22WhpHaGlZYSGxiH2Huilr/f0969VayViE/TEWvSYE3TEWvTEJugwW/TEJuiJM4EubEcdtKEOOlCG3CjDbpQhD2I4gEgQUQ4hyGFCooqgqCYoqvEo4xnS5tE+rKFqRyfvvVgV1XlUoxVZsDwbtdFIZ/MwXS0jDJ3E5xYFSDf4KVL1UZbqo6TMgCo1kWEplqGQgQGnigGbyJBVxuMJk5KkoDTdT57Ug6q2GvumKoYrhxAMSVjmlmOZNw3LvHJMJXlH/X/9vgCNO+qo3d1Ma+cQPbYgfS6BATsMjgTGnLo5EUgqBWlZJnJSRAozNMxaMpWyknRCQZkn/l3Bk09XjBrRj0vUs2xlMZfNcJDn2MzI1kYOPFbHcN3R0YmMay6i7IdfILb89GcuOJw+/vr3Hfz3hcqokzhqrcQVt0/j2mndqN95ifd/W8s75ddT6zh2ckwQBS66Ios7UzdT88O3CYb1zHn0PlIvWTJh+3s6Bu0hv5+1y+9kZHcF5/95HuribDYZb+TPP9t6TN/u9HQT/3j4qo+k72o4LLNtZyfPvnCAbVvaxyzuPu6oNRLxCVoscQoSDSHSY33kFRnZ3h7Lhve7Rm0/NBYMBon4GJE4bYh4dYhELaTE6ckpTKVgdiGWgozTmi1xuvi4idtDjOyvZefdP2VwawXJMy0Uf2U+A1NW8M5+ExvfaqCzafRJw7OJ+GQDqdmxpGcZyUuDyWkO4oYb8W3fz8iONmwdATRZhYczkRIXzRhXqUl3j4MtW9vYsr2DPRU92EfJiJgIBFFAZ1BhMKnRmzQYTUpMBgGTJoQiHCQUlAkGZcKIhGWBECIhBIJBcDgCOOwBHA4/Trv/Ex09hnPi9hwfc063uD1ExyvvsfPun6DWesm772oebZrG2reit43IzdCzZM3jJAcGmP3NKcRfMIltykt4/F8d1Ozujrr+yy8t4ptfW4jRODHtQkbDb3NQ9cu/UfenJwj5A1hnzaJy8nnsrgucVBTRaJQoSJOwxKgwxxqJT7MQnxJLXIwWc4wGpVLE6QrgcvlxOn04XAGcTh9Op5+OLjutrSN0d9lPydjoEJJKgUqtQFIqUEgiSpUCneFgpNWoQm/SEGvRYU7QE2vREWvREaPxoQnaUQdsaII2NEErmqANddCGJmBDkiMTEkFPEPegF5/Nj8/qx2fzE3QHI/VwgTDhoIykVaDUSyj1SowZeuKLzXgkMwOGEvbLM3n5ySr2bYlerzY/286Xb9WgTk+jL5DA3jYtdfUumqsH6GwaHnfEWhAgJVYkHQeJHfXEWdtJMvhIipfRGiXsHU6cfSFM06ZimDUV3dRSNEWF+CUVQwMOWuu66O0cpH/Yw4gjyIgzjNURwuEcvc7mVBBFAa1Bidd9fIE8ZXYqcyaLFBn6MVbsJNQrUH7/L9AkxhMOy7z5dh1/eXhbVOMliAx0LrimlEum2slzbMK1t4X9j9bSv++DgZogimTesIJJ378b86TTcz45ElmWeXt1A3/48+ao7X0Aps7P5LqbspnleZumP7zLa9VprE2ZGzVaG5ug5547TGS+8QS1/64l57aVTP/j90ZtvXCynK5Bu3dwmNWzryVkH2D5g/ORM3NYp72Oh+/dTH/XsQL37w9d+ZE6vPt8QfYd6GXT9g62buugpfHMZ5h81FgSNJTmq9EY1dS2BGlvmHjho9criI9RYDGKJMaqSE+LI7csi9z8JNLSTOj1p+5Mezr4uIpbiJybOl95j/0/+jO26gYyz0sl99ZyXNOWsrU3h3Wr2qna1TXhbvQng0ojkZhmIjXLTGaGmsK0IIUWO/rBdvyVDTj3NuNocxNSJWIunxIRs3OmYizIHpdLfCAQomJfD5s2t7FpSzutrceWq50qGp2S5MwYUjLNpKdryEsJkBfvJCY0QrirD299J84D7dgO9BASTMTNLCdhwXQs86cTU1YwpoCD2+NnaDjiRTI47GZoxMPQsIuRYRcjI56DXiU+7DYfoZCMTi8xPOTF7fzoy4jGwjlxe46PNWdK3EIkirvn67+m9alXKbipmM4r7+Dhf9sZjBJpExUCC6Vupm96kcIVqUz70mS6khbyYmUWL/+zImoULzFRz49/cB7z557+frOOpnb2fvt3dLwUuegGUxLpuf56tnTH0NF6bFT6bEFUCCSkmkhIMWJJMR6+t6QYiDOBgiCiHImminIQZciDMuRGCntQhdwR0XpQuKqDdkQiF+WAO4irz4Orxx257/Xg6nUfvveP1mJJEFDFxqAyG0GI9NeVQ2E83f2oTRIpcxLIWJJC/IJcGi0XsaHezIuP7Iya2qUNeblgaAuLLT3E5pswTctEKp+CLTaHvZ0mqhqCNNcM0t4weNLpzKIY6Q8XCoHPHyZ4BiOtEDGmSkoxkJqqJjNVTU6mDrcLXn6tg+6e0dPdymanc8OlKia3vUn1X3Yy0uCk/Lffouie2xAEgX0HevnN7zdSWxu95YlGp2T5tWVctShAgX0DvpoW9j9WT8+2I1J/BYGcW69k0g/uxlR4+urhj2RPRTcP/nUbe/dFr1+0pBi5+q5pLM9swrTnbVb/so5XMq+g2Rl9Emz24jTumVFL249fwOvSMPsf95G2YuKitUdyOgft1qoG3pl3PbpYgWUPzMOblMtG7ad4+GcbjhG4iQl6HvzzZeTnxU/Y9k+FcFjGZvfS3T3Cu+9uwuOHKZMno9NqUEgCClFEoRCQJBEZCPjD+PxB/IEwvkDwqOf+g/eBQAi/P0QgEMYfCOH1BvB6g7jdATwePz5vEI8ngNcTxOcL4vUEP7J6R1EUyMzSk5KsQmdS094VpKPZOmrP3IkixqQkNVlLVnY8eYVJFOTGkZMVS2qKEYXio4v4fpzF7SHCoRBtz73JgZ8+iLOxjbjiGPKvyUdz2TJ6tcXsatFTuWeAmj3do7YRmih0BhVJ6TEkphlJT1WSlRQi1+IhKdhHuK0D7/4G7NV9eD1alAmZmEoLMU8uxFxWgLEoZ8wpxkfS1+dk89Z2Nm1uY/vOTjyeifsuq7US2UUWsooSyMmQKEj2kW0YROfqIVhZh62ig8GqEYZqrPgdYWJnTCJh/rSImJ1Xjjbl9LqT9/ba+cXPX2Xz7ujjQkkpsmxpBrGJZvz+EH5/mEAwRMAfipy3jmgZJQgCwgdPIo8FkBQioiigkCLnxsPnSEXEcEpSiCgUB/926HVRRJKEg6+LSIqD7xcjfx8Y6OLzdy0/tLVz4vaThiAImcA9wKVAJuADGoH/Ag/LsnzS/TMEQTABK4BlwAwgF9ABNqAKeAN4VJZl6yl8hBPtwxkTt4fofX8rO+7+CXgGyL/3Kh5tncH61e1RI1oJZolle1+mVNvPvB9NQyopZJt0EU/8s5naip6o6195ZQlf/8qCMzIT3bd+B3u+9itGKqoBMGYaUN/zKdbaC9i81YbT9tE4+B1Co1OSXWQhpziB7KJ4ijPDmMURNIEPoqwRoWpFkqNfcALuIH67H6/Vj7vfg6vPg/uQgD342O+I/l5dejKGvEyM+Znos9PQZaSgS09Gm5aINsmCMsYYNVXO1dFD49+eo/GR/+AbHCF5loUZ95ThKyxnn+4C/vNEA3s2tEbd5uQ8E59daCDONYi7vQdvbxeirw9NvIB2/mQCBZOosiawrwEaqwdpqx86q9Ii1VqJhGQDSYkqUhIk0lPVZKcbyMuKIy09EZUuDlFU0No2wu//sIktoziLA0yamcZVVyWxRFpP0x/fo+mNdkxFuSx49g/ElpcwPOzmgYe28dobtVHfL4gC85bns/KqBKb516JoquXAY3W0r+s5qqY2dcUSyn/9DcyTiyb6cESlpnaAh/+2nc1bo0fyJZWCC64u5YoLdZQMvEXTo9v4z4FM1pum4vcf+7/Wm9R8+pZEZlU8Q9XDe8m+5Sqm/2Hio7VHcroH7YcclOOKTZx3/1zssQVs1lzJX3+2/hiBazSq+MPvVjBjWuqE7sOp8FGLmkAghMcTwO0J4HYHcDr9jNh9WO1eRmxebHYvNpsbu81DVeUAfT0TL0p0eiU3XD+Ja1ck0tkzwr6aERpa3PQPBhgcCjA86InanmgiUSpF0jNM5BUkUFQQT2mBhYICC/Fx2nFF7E6Wj/p7MJGEQyF639tCy79epuPld5HUMimzEkiclYR+yXRcKSX0+C20D0h09sv0d7uwj3jwH/Si8HqCBP1BQmGZcEgmFAoT9IfweYP4D/ZrFQSIidcRn2QgPslAYoJEqkUmLc5PhtGJwd5HqLEVz4FmXJ1OQkIMoikFQ142xoIsYiYVEDMp/5Rc7APBEPv397JpSzubtrTRNIEp2KZYLTklCeQUxzMpV6A0YYj/Z+88w+O4zrN9z+xs78Aueu+NvVMkRYpUb5ZkybJky7binjhOPsdpLnHixOmxk9ixE/cqq/dGihIpUuwNJArRe9+G7X2+HwtQpAiQIAmQhMT7uuaamcXs7tnB7sx5znnf502P9iH1tOI5NoCjyY2z0Y2n04cqzYp97RJsE0v68gUoNHMb3Xc6j/9uL9/7UT2RyNT9i8ULzXzjr2+huPjqGFg8nba2NioqKiZ3r4nb9xOCINwO/BaYzqGhBbhNluXOi3jtW4FngfP90kaAj8qy/NaFvscM23HZxS2kXGAb/+GHNP3LTyj5UAkDH/4UP/pdAMfQ1KNbSzRO1h94ilWfLqH8vjI6rdfzzNEsnv/FkSnrdmVlGfjWN25g5fK5q505STKRoOuXz1L/V/9BeDRVKDtndQYVf7qOt6NLeXWfxImDUwvx2URvUpOZZyIj10xOoZmaUgUVdi/m2DDGyCD66CjhYR/B0dBEDckIYVeEkCu1jniixCOJVJhwLEkikiTqj5E8xyynQqNGX5R7ajGWF2EszcdQVoihJB9Je2lmX4lwhLYfPcaxv/x3SMapfrCEikfq6My+la2NVp7+34NTGj9Jksidt1fxsYcWUVyUqus56Tw83thGoL0F2d+HkGMmUlpGSyyX+g6R9iYXve1zL3a1eiW2SQFrE8m1KyjKN1BWkk52Vjpqgw1Rmvrc+fwRfvLTQ/zu8eMkppldql6aw20fLmOj5TDJbW9w+D+OExwLU/FHKUMkQa3mmeea+O//2Yd/GuOsikVZ3PuxKq7THyR95AhNv26l9enuM74PaSsWsORfvkrmxlWXflJmQFe3mx/93wG2be+Y9pjqpTnc98kaVkl7UOzdwWv/NcBzhXfR65061Gz5uhz+aHUXI3//BH6nklU//vas5tZOx+XotDf/x885+pV/InuVnfV/vxyHuZZ9qlv537/bcVYOrkql4B/+bgubN81NLfELZT6JGlmWOXKin+dfqGfXO6OMu6bPG9QblFQUSIiSSEtPfEYDoAajioc/upiPPbjw1KCtLMvEw16cLid9Ay76+r30DwYZdsYYdSZxOKO4HSF8nrnJYTSa1BSXpFFemk5VRToVZTZKS9LQ6Wa3vvt8+h5cCFGPl94nXmVo6zs4D54g2DuIMU+PpcyELkOLLkuPuiQH0WYFtRqUSmSVGkGSkJMpl1wZUuFEKhUJhZJwUokqEUYxOky8q59Iax8RT4KkaETQ2VFlZKcGm8uLMFUUocvPnrU87LGxAO/s7eWdPT3sO9BHIDA7s7NavZLyBVlULs5gSXmSMsMolkgvyv52HIeHGD3qZPSok8BICHNt+UR4cUrMGssKL8sAzHsJhWN87S+eYse+qUOus3INfPa+fD708KbL3LKZc03cvk8RBGERsIfUTKof+EfgLUALPAh8ZuLQk8AKWZYvyMVGEISPAb8GksA24DWgHvAAecDDwEcmDg8C18myfOyiP9D07bgi4nYST2MbBz77DYLtzZR98w5+N76WrS/1ThkSZtQruL53F5tsPaz6y4WEs8rYI97Ib37cSuvxqcMSH/hwHX/8h2tm/YY7FVGPlxPf+m9av/9b5EQCUSlScV8RlZ+sY2f4On7ydJTuFseUzxUEsGfr0Zu0hIMxQsEYIX+URCKJWqtEo1Oi0SpP25YwmtXkZkkUZCYpzoiQofahibuRPGMk+/rxd3vw9frx9vrx9gXw9QdITJFjeDoKrQalUY9k1J+1VlmM6Ivy0BflYpgQs5pM22W5eXga29jz0FfwHG/BmK9n5VcXIqxazQFpM0/+opkT+6e/7q5bW8iDH1nAwrosDIazZ/Nj/gDu+mZ6jxyhzRGiNZrGiV7o7wtesGmEIAooVQpMFg22TC22NIk0I6QbZexGyExTkV9gJa8wB5U+HUFlnPH5SyZlXnjpJP/9P/twu6fOLS2sSOfuTyxmbWYn2T3bOf6fR+h5YwBtbiarf/6PZN94HQ2NI3znX96eNgQ5I9fEXY8sZEtxL0We3fS92kH9j1sIu97thBtKC1j0nT+l4P5bL8v/f3DIx//95CAvvdIybT6m1a7n7k8tZXPlGIWDWzn2g3p+P7KI/WLhlIMA5jQtn/mYldrdv6P5pyco+vg9LP33v5zT2drTuRyddlmW2f/pr9H5s6fJ35jNmq8vYdiyhKPam/jZP75NT+uZ1yNBgC98diWPfnLZFa/PPV9FTSwW4+23DvDy9kH2H/QQmqaTX12h5xbnTgw1ObSm1XK0Q6TjpPucA2tGk5qPP7yYhx5YeN57WjIRIxby4Ha56O4cprffx5AzxqgHxjwyY44Y7rEg3mmuJRdLZraR0pI0KitsVJalU16WTn6eGUm6OBE1X78HF0poeAznwRP4WruJOD1EXR4iTg9xfxBBSlUWECQJUaVEMuhS92WDDoVaBYJALB6nrb0NQath2S2bSasoRl+Yc8F1ZGdKOBzn6LFB9u3vY8++Pjo6Z2d2VhAgrzSdqiXZLKzVsSTbgT3aiXakjbGDQ4weczJyxEFgOELa8joyNizHvn459uuWTlmJ4HLT0tjDn33tDQaGpilBt9nMFz63GZP96putPZ0PjLgVBKGIVOhsGZANqEiJrl7gMHBQluULLwR6lSIIwlvARiAObJBlee97/v5V4F8mdv9GluW/u8DX/wiwCfiOLMtTxtYJgvAl4L8mdt+UZXnzhbzHDNtxRcUtgJxM0v5/j3Psr/4D+yIDsS8+yg+el+htn3rUq9iS4Kam57jzT3KxLc+mI20zzxyw8uKvjp4KzTmdnBwj3/jrTaxaMfezuACehlYOfenbjO44AIAmXc2SL1STdstiHu9eyZOPD+AcmXosJDNDw+dvUrMow0c0FkJOJpHDIeRQEDkYmtgOIcQiJPwhIo4QIVeEkDNC1JsgEpQRBAmlxYTaZkVjt6K2p01sp9ZKs/EM4RpXKth1YD9oVdx8661XbechEY5w7K//g5bv/gJBhPJ7iqj+3FK6c27mrTYbz/70MO7Rc4cGZucYKStLx2hUEwjGCASj+HwR+ns9BObA6CE7x0hNdQZ1NRnUVGVQVWXDaJh5WFQikeREwwhv7ejkzZ1dDLwnnHQSk1XL7R9bxA3LklS4tuLcdpzD/9VIxB2l8KN3sOIH3yQoqvnvH+zluReap0wBUGslbn5gAXdugCrPGwRPdHL4v5twNXvePcZmpe5v/oiyzz5wUblXF0pj0whPPNXAa1vbpi2FZLRo2HxfLZs2mKnxvE5wx0F+/bjEtrTVjPunfs66zXl8tvIEPd96BlmbyYoffovM61fO5Uc5i8vVaU9Eo7y55VOM7TpE8a15rPrzRQyYltFovJHffm8vjYcGznrO+nWFfPtvNs9pmbXzMd9FjSzLDLQe5z9+3srOnY4pS+CJCoEVCw2sHdlDgasZ+0PraTQu5JV9EvX7p4/2MVs0/OHnV3HPXdUXlQ8rJ+MkxocY72rFNTpKjzNBv19Nv1dF/yiMDEcYG/TOuBza+VAqRQoKrZSVpVNZlkZ+npncHBO5OabzmkDO9+/B5WKuz5Msy3R0uti7r4+9+/s4cnSQ6CwZYam1EtVLc6hblsXKigiFim7Sgp2EmroZ2jfK4L5RPF0B0lctIWPDcjI2rCB99SKUBv2svP9s8dgPX+Y/H+ufclB89YYcHl0tsvy+u65Ayy6cD4S4FQShDzhfMk4YeBX4mSzLr8x9q+YOQRBWAAcmdv9XluXPT3GMCDQA1YAbyJTlaZIWL60tB4HlpGZ4M2RZds7y619xcTtJeNTJsb/6d3ofe46KL1/Htuy7efrpwSkFqygKrJIGeTjnKCs/U4bbWM4ebuDXP2qks2nq+pZ33VHFn/7xWszmue+wybJM7xOvcvTP/plgf2pWOWNxOku/XIu/cjW/OFzKa0+3TWsSsnZtAX/xlfXk550dEZ+IRomN+5GTSRQaNQq1ClGlvOjwovnWeRh5ax/7P/11/J19GHJ0LP1SLfrrl9BouolnX3Dw9kstV1UO7XvJzTVRUmyltCSN4iIrxUVWigqtp2aVI5E4Bw8N8NbOTna83T3tLC2AQhLZcEclt9+VS23gLbSdRzn6/SYG3hlBaTGx4offIvuem3nymUZ+8rNDeKfJz1uyrpD7PlrEisQOdP2N1P/fSbq3DZzKqxVEkfI/fJiFf/ulOa+jGYnE2fpGO0881UDjNL9lSIWrbfpQDZtuzKIquBtr/2Fe/v4gvxc20DUuTfmc9EwDX3hQQ95zv6Tr5T7qvv6HVH3lU5dFqL+Xy/m7izjdbF3zIL62bsrvLWLZl2oZMdTSmH4nT//kKPvfODvMOy/XxL/+0y1UVtjmrF3nYr5dl6ZDlpMc2LWXf/9JD+0tnmmPq6oxs9nYQ/a2F6j6WDVdi27nV69LnDgwdYUAgOISK1/9k3WsXpU/K21NRsP4G4/g72gkFA3gEjT0JNPpdOroHpQZ6Asw3OchNotlUPQGFdnZRnJyTGRnGjDoVeh1SnQ6FTqdhEIh09x8HJVSYNPGdVitBnR6FTqtEpXq0srovZ+Yi7rZnV1uDh8Z5PDRAQ4fGZzWjf5iMFo01K7IZfEyG6uLXWRHWzE42hg9NMLgvlGGDoyhySkk66Z1ZN24loz1y2elvvhcEPT6+eZfPcmbh84+P2qtxCc+bOejty7AXFp2BVp3cXxQxO1Me4qTDToCfEqW5YY5atKcIgjCPwB/PbG7Wpbl/dMc95ekwpUBbpJledsctOVfgT+b2F0hy/KhWX79q0bcTuLYd4yDf/h3yON9WL/5CP+zN4fGIyNTHms2KLgteojPfE5EW5BOS9otPLtbxSu/rZ/SXj8tTctf/Nl6ttxQelnCKWP+AI3f+V9O/vvPSEZjiJJA+b3FVD1ax0nTBn7+qpq92zqmHNVXKhU88rHFPPrJpWg1cxdWPR87kfFAkPqvfZeW//o1yDKZS9NZ9IUawkuup55VvLVtkL3b2qesjXyhGC0aCkotFOUrKc9NkKGP0OE20tor0NvlZaDbQ3wWRrDtdj25OUZaWp0zcpOsWZ7L3Y8sYJn6GDlj79D2+1aafttOIpIk66Z1LP/x3/NWvYcf/fggI9NECmTkmbjv0SVszmsjz7mLtifaafxVG/HQu5/Hvm4Zy7//TayLqi75M56LgUEvTz7dwPMvnmT8HLUOVRqJ9bdXsvn2QqpiB8ka28fxx7v5RccCDoQzpwxbFhUCm2/J4+PWd2j/9quYl61gxQ/+BkPJ7IiCi+Fy/+587T1sXfMRIg43VR8pYfHnq3FqS2nI/DDbX2jn1ceOn3UdkiSRP/jUMh79xFKUyssrJObjdelcJGJhfv/ELn7ym75z5uTm5Bu5uTbE0o5tlN+WzxHzJn77apLGg2fPsE+ydm0Bf/Yn11FUaJ31dscDQTyHDhI4eYho2Eki3cKoKZdOr4XOIYne/ihDvR4cw/4p72NziSSJaLQSWq0Sq1VLRoaBrEwD2RkGMjMNZGbosdsNZNj1aDRTD3i9X7jU30syKdPe4eTI0UEOHxnkyNFB3LOcr52eaaBuVR5Ll5pYkTNCZqgF1WAnA+8M0b9rhPEByNy8luwb15K1Ze2cOxnPBife2MvXf9hMX//Z5yq7wMxX7laz8aP3zKi80NXEB0XcHgEOkXLw7QccpGYS9UA+sAS4ntQs5iRh4O65EHxzjSAIbwPrgQBgkWX57KnD1HFrSOXlAvydLMt/Mwdt+S/gSxO7y2RZPjLLr3/ViVtImTR1/N/j1H/je+RtyaHlpo/zy6d9U5aAASi3JflC5TE23GViVF/NO/EN/O5Hx+maJq/w+vVF/NWfbyAj4+IdAS8Eb1s3h7/8Dwy9+jYAWpuGxV+oJv2WRWwPrOfXvxmk++TU+bj2DD1/8kdruOWm8jkR5PO5Ezn2zmEO/dG3cR9rRhCh6MY8qj9eQaR8Md3qhWzdL3LgrU6GejwzKu2h1kpk5VsoKtRQW5SgWj+Mpb2BWI8LwZpPV0JFMs1KhRwjMdiEKs+AuKSOHiGfxgEd7T1x+jvdDHZ75mz2ODPPxJ2fWMKGMhclzu243mnnyPcb8Q8EkQw6Fv3TV+ivWcMPfnRg2hqCKo3ETffXcecmBdXurQSOdHDouycY735XBGuy7Cz5tz+n6KE752wgaMwRYPc7Pbz5Vid79k3tmD6JQhJZe3MZW+6uoFo4Tr7nHXpf7+R3b1jZrl+CPzD1AEPFAjtfuHEcfvhbXK0xlv3n18j/8C1XxGjkdK7E725s71G2b3qEZCRK+YcKWfblOsbVeZzIfpDmxnF+8709U7rvlpak8c2vbWJBXeact3GS+XxdOhfjbjf/+cO3efnV4XPWN9UZVdTUmFhSGGFNTYReinj8BT/NR6aeyVUoBO67t5ZPf2o5tvS5ybOE1Iyev7MP9769hDuPk4yMoSiwES8poztip21YQ/cgDPb6GOr1zJmh1YViNKmx2fVk2PVkTgjgrEwDmRkG7HY9er0SnTY1YzxdfnAikSQaTRCZcCiORBNEInGCoVQt+mAghj8QJRCI4POntieXQCBKMBglGIyjlETUagVqlYRWK5GTZSQvz0xeromCAgv5eeYLynn3OBzUH23l6OF2ZFFgyYoFlFcUk5U1fRknpzNIQ+MIJxpHaGgYobF5jEBg9jMLTVYti9YWsHqVmRWZfWQEW6C3m4Fdw/TvGiahzSP39o3k3rEJ65KaK35dninxcJhf/NNv+NmOJOEpTE3XbsjiLx4qJn/JkivQukvnAyFuZ4ogCFXAl4E/ACTAB1TLsjx9XM1ViCAIY4ANqJdlefE5jrMCk1n0T8qy/MActKUeWEgq9zddluWpk+4u/vWvSnE7Sdjhov6v/oO+J5+n+M9u5BlhI1tfGZxSOIiiwLr8AH/9kX6MGSaa02/jlT0iL//m2JSOynq9ij/6wiruu6f2os0uLgRZlhl46S2O/Ml38HemyrdkLk1nyR/XEa5Zye+banj+dyen7QzU1Gbw53+6joULsma1XfO9EynLMoMv76Dh2/+D88BxAKwVZgo2ZZN5Sw2BwiV4hDS6RtV0Dsj0DcSQk0m0atCpkuhUCTItMUo0TqwjHYSPtBAPa1Dm1pC+egX265aiyUif8jwFB0cYfOVtRrfvIDHSgqXKgu66hcRKq2gdt9Hcr6any09/h5uh3osXvEqVAkmlQBQFLGYFRRY/OUon8WO9cHIAc2SciusXov/SF/m/J9vOGc67cE0+932snBXyLoz9x6j/32a6X393VkiQJCq//AgLvvmHKE2zO/gjyzLNJ8fY9U4Pb+/qpnmawafTsdh0rLmpjJU3FFMhnqTI9Taew9387nGRbcZVjI5PfU4t6Toe+bCJhfufoP03DZR8+kEW/t2XUZmNs/qZLpYr9bvrfeo1dt//ZQBKbstnxVcWEFal0ZD1AAN+A7/6t930tp2d/SII8KG7qvn0o8vJzpr7czjfr0vnY3TEyS9+u5+XXh3E7z2/qMjMNVJba0BrMXBwzwij/VN3BQSg0K5kUbbIihyB8kITGosJyaBDkBSIkoQgKVLmRJLijMfe/ds5Hpsi/SXm8+M8eAL3wYPE+psRomNoa3NR1ZbjVOfSMmakY0hBf3+U0UEvrtEAXlfwnINZV5LJep+iQkAUBZJJmVgsQeIy1TU3GtUsWZzNkkXZLFyQRVqaFoNehdGoxuHyc/hgC8eO9dHaFaJ/MMK4e+p0E1EhkJ6uITvbSF6elewMA929HhoaRqaN5pkNtHolC1cXsGKtjevyh8gKNEFPJ31vDjKw34W2bDG5d2wk57br0WbZ56wdc0X7G2/zz491cLjh7DBkpVrBI/dl8LnP3YKkmb/XrGvidgoEQVhLKv/WAPyXLMt/eoWbNGMEQdAAk9/Yl2VZvuM8x/tJzWDvk2V5zSy35XZStW5n1JZpXuN8LkpZwEGAEydOUFp6dZSBeC+eYyc58Rf/Sny4Hc1ffoL/22On9cTUM506nYKHV3l49MYRHJbFHGQdT/70OM2Hpx5jKSu18idfWs2SxbMrGqcjEY7Q9r1f0fqvPyURCiNKAhX3FVP5qTraLNfzi9fV7H61fVpX2C1bSvjiZ5eROUuzzuFwmLffTs0ob9iwAY3mypnIXAqyLDP25j46fvQ4zj1HiLm9IIClxIQ+S4varEJtVqEyq0lE4oQcYULOMPG4Csmej3npEtLXLsG6vA5Jf/ZN6XznKRGJ4tx9mOHXdjGybTcqhRdbnRXL6jKUS+vwmYtoHrXQNaxgZNDPaL+XkQEvzmHfZenkldRkcMfDC1ib2UGhYyfdL7Rz4qctZ9Qotm9axcJ/+3NM1bNzHYjHk/T2jdPR6ebI0SH27OvHMU30xXupWJjF2lvKWbDYQl6gnlzvYaKdAzz1iyAvKtfQ55l6hF8hidxyew73a3fR+c/bMC5cSt0/fwVTVcmsfKbZ4kr+7jp++BjHv/LPABRuyWHVXy4iKalpybiLIXUlW584wY7nT055DVIqRe66o5JHPrZwTmcI3y/XpfMRCkV59oWjPPV8NyODM/ttQMqZHThvKLDJpKSuWEFlWhAFSRKyQDwpkJAhkRQmFkjIAomknPpbcuJvp15aQBBIzaoJIApCyhleTKIRk6iFBFoxgUaU0ShktJKAPhJBOeZA6R5FJbrRmeOYa7NRVhUhZGfjF630e/X0u9UMuxSMjMUJ+iKEQ7FUXdeJ2q6ntk+r5XqNy4dCEmc0KCspRWpX5LHiuizWlbrIizShHmynb8cA/fs8aOtWkXv3FmzXr0g5PM9D4r4Az//P7/nxOxp8UwxIZeYa+ItP5rPqxtVXoHWzS0dHBwsWLJjcvSZuJxEE4cvAd4F2WZYrznf81YIgCHZgctrjcVmWHzzP8SNABtAgy/KCcx17ge1II5W7XAgkSOXbHr2I15nxl+QnP/kJNtuVMQ+ZCbIsk9jXQPQXL5O3Ip22Ox7h188FGJ/G5CAnU8lX7xpheVWSZvudvH1U4NmfHp626H1ttZYbbzBhNl+e3JzkmJvoz18isecEkApVXvLFatJvWshb4Q38+nfDdDRMPQOnVIqsWWVg7So9avXczzrPJ2RZJhZNwoiDRGsfcscAYiiMoFGCUkJQSghWE2JBJmJhFpgNcxIKlRwYI3G4mfihkySbutDbVNjq0rBWWdEvLaNbV8KTu9TsOTjzDu3FIClF7DlGctPj5KkdmCJufO90QZ8TfTSAIeZHb1ajefR2FGsWXNS5SCRk/IEEo2NxRkdjjI7FGBmN4XDGSVxAOrJGp2TFpmLW3FROsS1I3vgBMvyN+NpdbHvaxzPJ62hzT//7rF2awefWjhD+998w5pRQfeoOpGVzmys8X4k+/gaxx1Izo1kr7Fz3N0uQ9Ep6LdfRlbaJgS43T/zwAANdU4e2SxLUVGlZulhPQb5q3oQTXq3Iskx3X4I9B4K0t05d730+olSKGEwqjAYRk1bAqE5iUEQxiRFMiiBpiiDpmgCZ1jjmdAm1WYdk1CLo9MgaDQlBRUJMLVFZRSgu4Y9IBGMSwYhIICLiD4u4veB0Jxl3BRl3hvC4gnhdoWlNG68xNTqDClEhzKj+MkBhhY3lGwvZtDhGWaIBw9hJBt8eoGe3A6c+F+mGFYgVBQgX4ep9VdHQzJuDmeyawjQKYNUaOzeuU6C4zN4Ec4XD4eDTn/705O41cTuJIAjLSTkOh2VZnrvh3VlGEIR8UuWNAH4ty/Ij5zm+l1TecYcsy7NihSYIgoLUjO0tEw/9rSzL37rI13rfiNtJ5Fic2Iu7kV/aQcFn1/GSfgtbXxsiPk2pkKW1Kr56axeasoWcUF7HC785waG3uqY8VpIE1q01sHaVEaXy8nTWEvVtRH78PHJ/SshmLk1n6ZfrCFct5/nuBTz92zacw1OHEOl0Ctau0rNimR6Vap7fPGaILMv4A0mczjhOV2rxeJP4fEl8vjg+X5zke74KarVAVoaSrCwl2Vkq8nNVpKVdPoMRORgmUd9G/OBJOlt9HNBX02MuuGzvfz4EAfQ6Ea1WRJIEJElAObGWpNTvQiEJxGMy4XCScGRiPbEdi138vUijU1K5OJua5TnUrcglL9FO7vgBzOE+BveOsPtZN6+ab6DBO/1tJLfIwsduEyl65Xd0vtaH8oEtSLesQZDeHx2NuUCWZaI/f4n4C7sAMBUZ2PCdFRiydXg0+bTY78QvWtn54km2PdlwzvzQtDQFi+p0lJdpyMpUXhO6l4hnPEnvUJKurgitrX6CgQ/WjKWoEFAqRSTpvdcjUComFglUkoxKklFLSXQqGb0miV4vYTApSbMqSLer0GiVjMc0jHmVjI4rcHrA5Y4z7gwy7gricQYJ+i4t11SlkSbq0EtT1KRXotYp0WhEdFoRtUogLotEYiLxWIKAN0Jfu5ORAS/+8fCMvCGmQhDAYFIhKkT83uiMZltFhYBGq0zNziaSMz4PFpuOZRuKWLfWzGJDG/bx47j2ddP1xhDDMSvinRtRlOW9L64D8riPQHMvvziRhXPs7JQxvVHFA3dYKCieO9PPK8E1cTsNgiB8C/gm4JZl+equVnwaV8PMrSAI/wt8dmL3ZVLGXBdlx/p+CUueivCIk+a/+wFjW1/H/NUH+HVHOUf3T+2qLIoCN62V+MyNTsZK7+RYu4Lnf3aYod7xKY/PzjLwmUeXsmVz8UXVEbxQkrEYnT/6Pc1//yPivkDKVfmeIqo/UU1/xlp+tz+LrU+fnHYU2mzW8LGH6rj37uoLdoW8GsP/EokkDmeQoWE/w8N++ge89PR56e3zMtDvnZGb8PmorEhnyw3FbLmhhIyM89fLu5TzFInE2f5WF08+3UzrFPmMk4gKgfIFmehNGrR6JVqdCo1eiVavQqNTolJLjA16Ob63j95250V3hK40tiwDNctzqV6WQ0l1Bpb4ELZAK5m+eiS/m67X+3nztSi7Cm6gxauZNmw7PdPAg3fqWdLwPJ2/OEbeQ/dQ9bXPo063XNbPczFcDb87WZY5+sW/o+eXzwKgtqhY9+1l2OvSSAgSXWmb6DevwusJ8+YzTezd1n7eTnOaVcuqlbksWphJZUU6xUWWi3JavhrOz9VAIpGk8aSD3fu6OXR4kI628WkHcq8xNWqNggy7imyrTJ4+SJ7aQ5nBTXa+HtGeTsJgJJRUE0pKhOJKwrFUnm0ywURovoxKCSpJQKUEpZhALUdRJiIoExGEaBQ5FEYOhUkGJ9b+EMlAaiEWRZSTCKKALCnoF9NooJTjHjutPYlpa3hfTWj1SupW5rH8uhyuKxwhJ3AcOtroerWPsXaBoi8+St59NyPMM1fg6UjG43T+5rf8rkPD1t1T54cvWJzO176ymvz8q9/V+UL5QIclC4LwG2Al0ErKRTlAKs92BbBo4rDHZFn+2JVp4YVzpXNuBUH4R+AvJ3Z3kyoxNHvFxc5+v6vaUGomjDe1c+yv/p1IbwP+z3+Kn7+pZqB7atGq1ih4YHOSW262MWhfx57tfbz2++PTlowpKrTw6UeXc/ONZZdF5IaGxzj2F/9G16+eA0BlUlL3iQoK7q3muPp6fv0K7Htj6tJBAFarlkc/sYR776mdUfmgcDjO8Iib117bQSQis2rVSvR6LQqFMDFqLiIpxFPbSlXK4VGpSj1+ISOzsiwTjsQJBlLOku7xMG5XCLcnhMMRZGDIy8Cgj6EhH6OjfuKXqVatIMCSxTncclM5WzaXYpmmDvLFGNz09Y/z1DONvPBiM+PThMMDqDUSq28sY8PtpZRoh1DHfUjJEMpEEGUihDIZJDge4tmdAk+9rSEYmV8j4uZ0HdkFZsoWZFKzLJesbC3WUBfpgVbSg22oE378AwHaXuzlzQMa9pVtmrZWLaTKM91zZxqbRl+n4wfvYL9hIwu//WXMVfNncO5qMUxKJhLsf/SvT11zRKXIki9WU/6hIgA8mnxa7bcRVGXgHgvwxtONHNrRNWNzNKVSpLQkjfw8Mzk5JnJzjGRmGLBatVgsGixmLTqd8ix32Kvl/FxtJJMyDmeAo0+8Sf3zO/EZLfj1VjyCjj4HuBwzcycWRLBY1KTbtal6spKAQkzNkioUqUVSpHJskWXkpIxMKsdXlmWSSYhEkoQiSSLhJKFIgkg4STgcJxyMn3Om/2rBaFRSlCVQpA5SGhun0q5GEY8gx6LICO8Wt0Q4414nKCYNtlLGXGcYb02IOzkeR04kiYRitA4EafaItMcN9PglwtH5MSip1krUrchj8do8VpcHyAk3YXY0MfhWL12v9qEsWET1V/+AjA0r3heztJMMv7WDV3Y28Ov9uinLdqk1Ep/6WCmf/oNNiFMYrL0f+EAbSgmC8BjwEU67BEz+aeKx14GPybLseu9zr2aulFuyIAh/AfzTxO4R4AZZlqdWabPE+0HcTjK66xBH/+Jf0WZEqN/0EE++7Js2b8RiVfHJW2Ms2lJHr1DOa78/zr5p6s1CSuR+5g+Wc9OWyyNyx/Yc4fAf/z2uw40AmAoMLPp8FabrF7IztI4nn3HQeGj6uocAKpUCrVaJTjdZ4kCJWi3h90fxjIfweMKEL8GgQxBS76FUKlCqFCgUInJSJjnREUqtmegIyYTD8WlNsq4WFAqRNavz2XR9MYsXZVNUaDl1055pZzuRSLJ7Ty9PPt3Anr29Ux4zicGsZv1tlay7sYCyxAnyxvejTqRC0EOuMJ7eELtOqNneZedYIJMEU3/3BAEWrSlg84drMafpCPoiBHwRgv7ou9u+KH5vGK87jNcdwusO4feEZ/V/otZKZBdYyCqwkF1gJqvQQnaBBZ1BhTrmwRrqwhZoxRrqQiHHcLeN0797mN7doxxOlHCofAOD3uk7SRqdkttuy+R2YRd9330DQ81iFn3nT0lfsXDWPsPl4moSb3IyyaE/+jvafvjYqcdyVmew8s8XorGqkREYNi6g27qRiNKMfzzMoZ1dHNjeyejA7Bj4S5KIUimimrieKCWRaDSMUilQW5NHVVUG5WXplJelk5U5N3ny843ouI/6v/6P1P9NltHaNFj+6HZaMpdytENNW5Nz2vJ5kwgCrLuukNtvrWTd2kJ0uksPr0wmk3jHvYyOuhkbG2fMGcDhCOJ0hXB7Yoz74oz7Eox74/h8MQK+6GWvkTsVkiRQlKOkNl/D+s0LWbWxCr3+wsyPvN4wx44Pc+TYIIePDtHSMnbBM+0KSaSozMLCCpHaojgJvR2/yk4wpqTl2BBtJ0YYG/TOSeSOSiNRuzyXRWsLWFEZJy/ahG28EfehPrq3DzC410nefbdR9ZVHsdTO3/7iVAS6e9n329/xs458mhun7nqXVVj4+2/dQEXp5TEgvZz4fBHa2p20d7jYt7+B7/7bRyf/9IETt8tJ5YWuBTYAOlKi9m3gq7IsH7qCzbtorkSdW0EQvgj8YGK3Gdggy/LUdsCzyPtJ3EJKSPU/u43j3/wPTJuL2Gq7ia1bx6YdRc7N1fCJ22Vyr19Hx5CS5352mM6m6cuTFBVZ+Myjy9lyQ+lFhdpdCHIySddvXqD+r/6d0OBEPu4yG4u/UE1ywRJ2uJfx3HPD09Y9fL+jVCmwZRuxZxuxZRswp+tJsyhIt4BBJxIXlCQEFTGUjA0HGOhyM9DporvFMa2p2HuxmDXU1mQgCOAZDzE05CYaS2Iy6tHqlGjUSjQaCY0mVa9QrZI4fGSQoeFzG8LYsgxcf1c1a9bZKQ4dJsd7CEUsRO/2Qdqe66F1WMVxYyXN6VUEldPnmgoCLFpbwJYP11GYJZPv2Yc64SUuqkmIGuKiemLREBc1xBRaogojEclIUlSRTCQJ+CJ4XSG8njCRUIxYNEEsmiAeSxCPJc/YV6kVaHQqtHpVKmx6Ilx6ct9g1qCQY+ijoxiio+gjIxiiI+ijYyiTqXwyR4OL/t0jDOwexuGQaapYw/GsRTj909/PNDolm7Zkcm9aPSP//gKitYDF//gVsrasndH/8WrkahK3kLp2HvvLf6P5X35y6jG1VcWqP19EzupU2F1CUDBoWk6fZQ1RyZgyQTrpoH5PLyePDuKYxhtgtjEYVJSXpVNZYeOGjSUsW5rzgRa7Y3uPcvAL38JTfxIAY76euk/XoLv5Ok6Eq9jfpmXvtk4Guz3nfB2VSsHaNQXcuLmU9dcVYTBcHlfbSDSCc9TFuDdIOBIjGo0RjiSIxuIEgzEGh0aIJwR0OiOxeJJIJEE0Jk+sk0QiSYKhBIFAnEAwtR53RwhcYi6tIEBhjoq6ChsltQVkZxrJyDCgUon4fFF8/gjj4xF6+zy0dbjo7HIxNhq4qPfJLbZSW61hgdlF6Ug9ifomvL1+HKZMhooqaIpmcqJfSzI5e99zo0VDYYWNsroMLDY9RouG0pw4+ZFmMvwNhJp66N42QO+bgyTiSsq/8FEq/vjj6HIuX73ry0E8FKb5xz/iyREbr77lJ5E4ezBCIYl89CNlfOmLm1C+D7wcYrEEe/b2crxhZELQOhk+7fodjbppPPb1yd0Plrg9HUEQ1MDtwB8BG4Ew8EeyLP/sSrbrYhAE4TvAX03srpZlef80x/0l8I8TuzfLsrz1It/v48AvSc14dwLrL1dt4PebuJ0kGYvR8dOnOPlvP0L38HqeDS5l767haXP3Sku0PHyPHsvK9Zw44mDrEw3TuoRCKq/s9tsq+dBd1RQXWefoU6SIB4I0/etPaf6Xn5AIhRFEKNycS80j5UQrlrB1ZCFPPNZLf8e8CpCYEUqVAmuGnjS7Hlu2kcwsLXmZMoW2KDkGH4aEG23MhegaRfZ6SQaixEJxFEoRrU2TmnUSRfzqLDzaIjyaQpyqfNqaPRzb3cPxfX2X1U1zsrzN0kU6Cr37yPLVQyRCw4tD7HnRQ0c4jSZbFaP6c+fwCAIsvq6QzffVUpwZp8Czm0xfAyIzmyGQgYSoJjIhdCcFb0JUkxAkkoJEUpRICkqSgnTqMYUcQ0pGkJJhpEQ4tT5t0UZdaONuJrtfIUcYd4cXT7sXd4eX0aNOwp4oA6Y8GhZs4mQynfg5Zh+MFg233GzjVu1hRr7/GrGElYX/8Kfk33vTvBczV5u4hZTAbfyHH3L8G/95xuOFm3NY/MVatGkpsZNExKGvZNC0DI+u+NRxjiEfJ48O0dk8ykCXe1ojvNmmIN/Mh+6u4c7bKkmfw/JEVzPJRIKuXzxD/df/k/BwaoA2rdLMos9WYV1ewKBxCTsHinnr9X4aD/aft/yYUimyelU+GzcUs3BBFkWFlssStfReLvZ3kkwm8fvGGRwYo6fXQVubk+7BCAMjcfp6/ZdsInWpZOaZqKyxsLQ0SnWkldi2vYjaIqhcwNtbm6gfjNNtKiB0jsHN2UKvE7lpeZQPr3CQmxil540Bet4YxNvrR5eXReWffIKyzzww63XPrzTJRIL+J5/krS43v9ylweOcOgOwui6Nr//VDVSXzf/c2s4uF8+/0MyLr7Tg8UyfwvCBELeCIIiyLM84rkIQhA+TEmsa4EZZlt+cs8bNAYIgrAQmBe3/yrL8+SmOEYEGoBrwABmyLF9wL1kQhHuBJwAFqbzl9bIsd19cyy+c96u4nSTmD3DyP35O9y9/C5+9j8fa8zl5fHpDn7oaHR/+cDb6umU0HR46r8gFWLwom3vurmbLDaVotXPnmBfsH6b+a9+l81fP4dCm02MpZLS4nA4yiMQvrdMhiCnXRJBJJGQS8STJpDynoWJKtQKDSYPBrEZv0mBJ15GWoceeriArHXItYTK1XnTxlIAVRoYId48QGAjiGwjgHwjgGwjiHwgQD009My8oBPSZWjKX2chZlUHmMhtoNTgM1QwbF+GQ8jl5dIgju7ppOjxIfA7yxJRqBRWLsliyrpCqrCDa4RM4e4boHJBobEzS7dbgk2bWaZCUIgvXFLD53hpK7GEK3buxB5pBlhncO8bJ37fhGwgiKgSEiUVUiKe2VXoJrV2DNl2D1ja5qNHZNGjSNSiUF/Y9SiZkYv4YUX+MqC+GfyCAu/1dMRtxv9uBDCtUNBcu43j+MsZC5x75tmUZuOMWC5si79D3gzeJyxbqvv4Fij52F6J0+Vyu55KrUdxO0vWb59n/6a+TjLz7/1OoRaofKqfm4XJExbvXhaAynRFDHU59OX519hmvEwpEGehyM9LvxTXqxzUawDXqx+cJE/BGZpy3O1MkhciG9UXc86EaVq/MuyJi7EoT8wdo/pef0PxvPyMRSnVe7YvSqHqghOy12YwaajkWXcjWNz0c2N4548E9nU5JTXUGC2ozqKvLpK42E7vt/EZ8l8pc/E6iYT8nG9s4dLifpu4orZ0RBnrG5+x+JwiQXWihpCqNuhKZZZkODPX7GX7lBDF1EeHrb6ZDn8f+I8OcbLn4gD1BAIVSkUoLusj7d5HKz8ZDz1JWbqP6q39A4YO3IyrfX07AcjLJwLNPs79jkCea7LQ1e6Y8zpKm4Q+/uJR7bl84r3NrQ6EY27Z38NzzTRw7Pjyj53xQxO1x4I9lWd5xAc/5EvCfwJuyLG+Zq7bNFaeFJsdJhQjvfc/fvwr8y8TuWaV6BEH4JPDz6f4+ccxNwIuAipRD8wZZlltm71Ocn/e7uJ0kNOKg4dv/w+gbrzP+6Uf43X49g73T54qtWGbg3nuykSqW0HhoiK1PnDhvSJdep+SGTSUsW5rL0iXZ5OaYZmV2KZmUaWt3cvjIAIePDnL4YB/eOSoNIQgp0y21WkKjk0izqbFlaEmz6Uiz68jMN6LWqIglIB5LlYCJxxPEYjKynHq+IIogCIhCEhEZhZBAJIFGSqJXJzGo4xjUMQxiEFXch3piEf1u4oNjhIb9hMbCEwJ2QsgOBkmE3xWekkGHsaIYY3khpooitDmpEVU5kSQZj+Nr7ca5vx53fQty/N1zpVCJZK/KoPjWPLJXZhBRWxk2LmTEuBBP3MCBNzo4sruH0f5xopGrxxAlVUuwmEVrC8iSRilw7yY92EYyLtP1ci8nn+zEP3Dp9XIVKhGFRoFCpUChFlGoFUhqBQp1aj8RThD1x0+J2XgofrbjwmkkEegx59NSsYYWKYvYeU5pXrGVD92sZfXIdjp/uAdZY6Pu61+g8KN3vG9E7SRXs7gFcB48ztv3/BGhgTMd6LU2DYv/eAUF69MQOPM6FFYYcenL8WgK8WpyCCvTpn19WZaJhuMEfBGikQSJWIJ4PEk8lkyFxMdT66AvylCvh6Ge1DJTMZadbeSeu6u5566aD+Rs7uRg6KRRGKS8GyrvL6bwplz8piLaVMvZfkzN8X39tJ8YueD8e71BRWaGgcwMPVmZRjIz9GRmGsiw69HplGg0StTqifuJOpW+ISlFkEGWJ/wYZBnk1H1u8rHU46ntUCjMW2++BcD6DdejUatTfg4yp0yuJp/LxOud/bd3X3tyP56QU9+xeJJYJMxQTzdNrU66R2QGhqO4RgIX7UcgqRQUlKVTUpVOXYnM0jwn1tEWPFuPMLRnmFE5F9eaLbQrMznc4CAQmPkssqgQyC60kF+aTn5ZGln5ZvQmNTqDGs17jNlkWYZEHDmZRE4mcLsiHHirl4NvdeI7x6ydQiHw0EOL+MKnV15w9YWrGTmZZOiF59jX1s8TTTZamzxTHicqBO68s4T/96VNGC9TaP5c0HxyjGeea+S119sIzPC6qZBEMnJNmNLi/P5/PzH58PtW3CZJdWFeIZVbenAGz5msc+uXZdk0x02cdQRBWAK8A2gBP/Ad4K2J/Qd5t1RPK7BclmXfe57/Sc4hbgVBWA1sJ5WnHAM+CRw/T7P6ZVn2XMznmY4PiridxNvWzfGvfRdf53F6P/JJntoFzpGpc2QEAVavMHDnh3JRli2m8dAgO184SdfJ6XNyTyfDrmfpkhyWLslmyeIcsrOMaLXStII3kUjicAQZGvYxOORjcMhLY+MoR+uH8M4wR/RykGtPsig/wOKiENdVBsi0vKtYkgmZRDRBIpIgGU0SjyRIRJMkIgligThRb5SINyWMQo4wwbEwwZEQwdEQsfcIdlGtwlhWiLG8EGNFEcbyIkwVRRjLC9Fk2Wc0cBAPhhjbfZjOnz9D3zNbSUbfvcBrbWqKbsqDleXsH7OxvSmNjoGrJ9TVnK5j+fVFLLu+mNwsBZm+E2T56jFER4kGkrQ80Ub7871Exq9seN17kYEBQw4tRUtotZRxvn6bQhJZvCqHO1ZHKT3xOh0/OYjCkk3t17+QmjV4n5SWeC9Xu7iFlHv7rnu/hGPv0bP+prZoWfntO8hZLCHEpx4ojIlafOpsAio7IaWVkNJKWLISkUwkxQufDZJlGY8jyFCPh4EuN0ff6WG0/9yGVpIkcsPGEu7/cB1LF2fP+3D2C8V1uIFjf/1dhrfuPvWY2qqi/O7ClCN2WhoOfSVdchl7GkRO7Bug9fjwrM+qv99QSCIqjYTOoCI900B+aRp5eVqKMyJUpHtID3cSPXCc4T2DnNzvp0tTgrt2Oe1JE31DFzYQacs2UrU4m4rFWZTV2EgTXRgiwxgjQ+hiztNSRCKIcgxBTiKQ5L3f9ISgwK0tZVBTzdvNBvZs76G1fvqZvMwsPX/95xtZf13hRZyhqwdZlhl++QX2t/TweKOdlsbpo/GqatL4+l9vpqbcfhlbOHvE40ne2tnJY78/PqNZ2qIqG8VVdrInzB/tOUYkpYKxoQEeXPU+LwUkCEIjqfDbyTfcDfwUeE6W5SnvLIIgfBP4FhCQZdl4Odo52wiCcCfwG2A6cd4K3C7LcvsUz/0k5xa33wIu1IDqU7Is/+ICn3NOPmjidhLnoRMc//r3iMdHaLzpIZ57M+UiOxXvitx8VOWLGB30ceDNDg6+1TVjY6JJFAoBvV6FQa/CYFBhMKgRBRge8TM8cvHlbwQB8krTqViURcXCLCSliHPEj3PYf8ba6579qlKZCQ+lY62UuTuw+0bPuqGeC1WaBV1+Frr8bIyl+WeIWG1e1qwKm4jTTdevn6fth48x1DVGU3oVjbYqnDrbrL3HpSCKArZsI/llaSy7vpiyGhv2SAdZ3nrSg22IJPF0hWh7po3urQMkomd/VwRRRFeYgybThjYzHU2mDc1pa1EpERp2EBocJTQ0llpPbIdHHJw3EW+qdquUKK1mXLZ8TuYu5FjChtt3/sgCW5aB6zfZuaOsj+RTr9D5XAea3AJqv/FFCu6/5X0raieZD+IWIBGJ0vB3P6Dpn3+MnDh76l1p0rPsbx+gYHM+orcFYjPLs00ISqIKHTGFnrioJikoSYgqEoISWRBTCyIJUU1QmUZQmU5QZSMpvjuTIssy3S0O9r/RQf2e3vOWnyktSePD99Zy+62Vl80s6WrBfayZpn/9Cb2Pv3rq/6hQixRszCF/UzZZy2zE1UYc+kp6KGdPk0TjoUF6287vuHwNUKkV5GSrybfGSHoDOEci+EMCAYUWd/TCrmVqjURZXSaVS7KpXJRFocWHNdSNNdSJOdyHYmqPU6L+GPFgnHg4QTycIBFOEI8kiIdSA85yIokxz4C51Iio0+DSldIYKOO1fbD/rZ5pZ3M3XF/I1766Ebt97sPQZ5NEKMzQi09zdNDF7xvsNJ+Y3pfEkqbhi19cwX131M3LAbDx8TDPvtDME0+eYHjk3Ndgg1nN8o0lrLyhhIzc98gbOYk25sbX18zNm+6afPR9K24l4KvA13jXERkgSapkzVGgg1TuqYGUc/KdpAySjsiyvOKyNHQOEAShEPgyKbOsPCAKtANPAt+XZXnKq/41cTs/GN11iOPf+B6iPc6BJffw4hs+QtNMNQkCrF1p4N7bTSgrlhCU9TQfHmT/9g5ajg1djC64JKwZeioWpsRseZ2dbOUI6cF20gPtqBJ+ogo9UYWe2MQ6KunxxvR0OrR0jygYHgwy0u9ldMCLc9g/KyVh0pJ+Fno7WKoYw25WorIYUVlMKM0GNFl29PlZ6Apy0OVnoc/PRtJfvnDBUDjGjp1dvPRyC/sP9DEb6VWSUsRg1mC0aDFaNBgtGlRqiVAwSsgfJRSIEvSntoOBKLFIAlGRErFZeWYy881k5pnIzDdjzzYiSSL66AhZvhNk+k+gSgSIBmQ6X+6m89VevN1T37QkvY7Sz9xP5ZcfwVCUd1GfJRmPE/cHiQdDJIJh4oHQadtB4sEwkk6DympGZTUhmU20j0TZsa+f7W91MnCeGTRIhXstWJHLretElkcOMPjzXfTtHCJt2QJq/uIz5H1oSyqs/QPAfBG3kzgPnWDfJ/6S8aazxnIBUJqNFH/8Lio/tR69JQjj3eDrheTsGbbJQERhJKRKJ6C049SX4daWgCASCkQ5squH/W+0nzeFRK1WsHJFHtevL2b9usLLkjt6tRDoGeDkd39B+4+fJBF8d7BTZVKSty6L/I3ZZC5NJ67U49KV4dXk0h+00dynoKfNTV+7k74O12U14vsgkFNkoWpJNhWLsqkuEbHHerCEurGGulEm3/0/jXf7cLd58XR68XT48A8EiHijxINxZuyMI4AhR4e1zISlzIypIo3IolX89FAR21/unrLEkFYn8fnPreSh+xde9bnsvrZWera/yFveDLYfFentnL6ipsWq5qGHF/LxB5agVs+/EOzOLhe/f+IEL73Scs7SjoIAlYuzWbW5lOplOUhKBWIyii3QiiE6jC7qRBdzoom5EUnSP+aj8IFTzvnvT3F76g0FIZOUwP0MoJ54eLpGTNa6/cx8dEz+oPBBF7cwEbLyxh7qv/EfqGot7Cy8ha1vuomEpr5QCAKsXKrlwc0JLLV1OHXluB0hGg7009k8RmfT6AXP6M6E9EwDpbUZlNRkUFKbQaZVJi3YQXqwDWuoE2UyQtQfY2j/KN4eP4IkolCKiJKAqBQRJRFJJ2HM02PM15M0WAiqbASUNsaFdIa8WoJRBcGoSDgq4PaLjI2GcQ77cQz7GexxE7uAPNSlS3O470M1bN5Uikp1ZWbhkkmZo/VDvPTySd7Y3jGjvBO9SU1ZXSZ5pWnkFVvJmXDDDgWjRIKpUjk6oxqjRYNGp0QQBMRk7JRjsCgnzii/w2mjwPFYAkEUUChE1PFx9NEx9NHR1Doyii7mQCHHSSZgcL+Djhe7GD4wNq0xiDbbTuWXH6Hssx9BZTXPzkk7B/F4kqPHhtj+Vgdv7ujEMcMZnfyyNFautnFr7RjGd7bR8VgjrmYPObddT/Wff5qMDSvm5Wj5pTDfxC2kZnFP/O33OflvPyMZm/63lL56MUUP30nurevQ2wXwDyGHRiE4CsExiLghOTu+AVGFnlF9NaPGOryafGRZpq/Dxd7X2zj6Tu+MTOJqqu1sWFfE9RuKqShP/0B8FyNON20/fIy2//kdoaEzU21UJiV567PIvS4TW40VtVlFQlDgV2Xh0+TgUebQPW5mxKPA7YrhcQbxOIKMO4N4nEF8nhCxSKqE2NVQ21wQBYSJNUwYLylS90SFInU9FhWp7dRjIuLE4wqFSDQST9UFHw/P2iC2zqiiclE2lYuzqV1golA1hDXUhSXUhTaeEmPJeBJXyzhjJ1yMHXfhaHAT9c1sUEGTkYahojiVylNWiLGsAENpAYlwJBW1MzRGeGiM0NBEFM/QKOb8KMFHH+WHz0L3NMZWZeUWvv3Nm6isuDoiniZJxmIMv/YsR7odbO21cWC/h2hk+muMyaLm4YcX8PEHlqDRzC/DrEQiye53enj8qQb27e8757GmNC2rt5Sy8oYSLDY9ghwnPdBOhr+B9GDbtFEAHyhxe+qNBSEN+BRwP7CMlNPve4kA35Fl+duXs23XuDCuidt3kWWZgRff5MS3vodmVQ47sjaz9S3PtCIXoLZayyMb3ZQuKsBhrMGvykRGYGzQR2fTKJ1No3Q0jTHunHlYl6QUsdr1WO160rMMFFfaKanNIN2qwBzqmQhP6kIfTYUAB0ZCDOwZYeCdEcbqnSTjM7guCKCzaTAVGjAWGDAVGNBnalHqJZQ6CaVeQmVVI+tMBJVphJRpeKQsmsfSaO5M0nVyjJb6YUL+8+d7msxq7rq9ins/VENR4dyWTZqkp9fDy6+08MprrQwOnbvmLIDFpmPBqjzqVuZTVq7DFu3BFB7EGBnAEBlBFsSJGXAdCVGNIhlBmQgjJUNIyfC0N4jJkjuxCaEbFzWIchxdzIEy+e4ASDIhEHQmcbe5GTkwQO+OIaLe6Tsx5roKqv/sUQo/ejsK1dyGV0ajCfYf6GP7jk527Oyacf53Zp6JZWtzuHFRkIrgMYaf3EvXq31EPHEKP3o7NX/+aSwLKue07Vcz81HcTuLv7ufEt75P96+fR06ee7rIWFFEzq0bsK1ZgnVpDcbSgpS6SIQh6oOIN7UdD0MiklrkBLFohM6OdiQhQWGWBUVsPCWKY9PXEQ1JFkYNtYwY6wiqMgj6Ihza0cWere04ZnAdANBoJLKyDGRlGsnOMpKdZSAry0BGhgG1WkIhCoinLQqFmFqLAqJCQBTFU9sKUUCtltBNDIJdjSQTCcbePkjP46/Q9/RWIo6z8xENOTrSa6yk11hIr7ZgLTMhSuJpJcVMRCQjYclERDIRVRgmSolJRBMSkbhAJCYSjonEEgKCICMgIwogICOIE2tAFGQEIbUGUAgyCDIiqeeJk8fLMqKYes6pxwU5NdgopByrJl9LmHCwEpABGUGWUchRFMnYxDqKKMdQJFPbp/6WjCImIkTHIwTHk/jHZYZdSjqiGXRG0mkbU9LVEz5nH2ESlUaiqNJGWV0mFbVp1GV7SY+ceS+PheI4G90TYtaNs9lNInIRqUqSAuuCStKW1Z5aLAsqUWjU53yaY98x6v/yn7GuNvF28T089UQ/wSnu8aJC4KEH6/jDz625orOdyUQCz+E99DfWs33EyhuHkwz1nvt3bjKrefChOj7xkaVzWt1iLnC7Qzz3QjNPPdvI0HmuZwXl6ay/vYKFqwtQKMAa6iLD34A90IKUPMc9XFSBxkqvK0HxrV+bfPSDIW7PaIQgGIFaoAyYnDroA3ZMl497jauHa+L2bORkkt4nX6Phb7+LblMpb2VsZtubbiLnCPkoLNDwyEY3N1ePEdTnMa4pYFybj1edS0KQCAVihAJRwsHYxJLaDgVjJOJJzGnaU4LWYNYgigLq+DjaqAtLuAdrqAtjeBCRJHJSxnnSw/CBMQb2jOBum5ufmSCCLkOLqcCAqdBAeo2FjIXpSDYT45p8RtVlHOi3UX/UTcP+flwzKF6/dGkO999Ty6aNJbM+m+sZD/P61jZefrWVhsaR8x6v1kosWlPAsuuLqSjXkhFqxR5oxhLqOaNebHA0RDIhI2kVKHUSCpWCyHiUsDtCxBMl7IkQdkeJTKwTkQRKgxKVQYnKqERtUqFJ16G2alCZVCSiSTwdHtwnnYx3+Rjv9hEYDp3TdRhAoVGTe/dmSj51L9k3rZvTznIwGOOdvT1sf6uT3e/0EJxhCKLVrmfJdflsWpZkqb6V0NbddL3UzchRJ5JOR+mnP0zVn34SfWHunLV9vjCfxe0k403tHP/Gf9L37LYZ52srTQYsCyrQl+RjKMpFX5SLNtuOKs2CKi0V8q7QqIkmEmx7600EQTjj/MiJCIQ9EHYhe7vB2Qz+M/tdMuBXZTFsWsSIoY6ooKW9YYS9r7fReHDgss8mqlQK0tN0pKdrSUvTkZ6WWufmGKmuyqCkxIpSuvI55sl4nJE396WE7jPbiHmmvrcoVCLmYiO6TC06uwadXYsu4921Jk2NKF1doauJ6Gl5qJNLKH5qHXZFCLsihFwRws6JtSt1jZ+MnFEY9URWr2OgaCHNEQMtHR5isQsTn/YcIwXlaZQXq6kpjFGZ7kHr7CfW0o63foDAYJCQM0zYEyXijhLxRpHPUQt8pgiShKWunPTVi8i6YTUZm1ahsZ3tZi7LMj2Pv0Lrv/8Xhs/dyq9aSzmwc+rZwewcPX/z9c2sXHZxqTAXQ9zrZnTXa5zo83HYaeJYq0xnm2fKUOrTsVjV3P9ALZ/86LJ5J2obGkd44qkGtr7RTvQckSiiQmDh6nzW315JYYUNXdRBtvcImf4GVIn39M8EBVhKEawVoLWDxppaJB2CINDW1kZFRcXk0R88cXuN+c01cTs9yXic7t+8QMPf/xfGm6t4076ZN3ZMH64MYLOruXtthAcXdWHVJ0giTriFZpAQ1SnDFFFJQlBNmKeokIVUiKo2lqrnqo250cQ9Z8wGhlxhhg+MMXRgjOHDjiln9SSjnrwPbaHwI7dhXVxNMholEY6SCEdIRlLrqMeHt6kdz4lWPCda8bZ0nVEqZyYY8/VkLkknZ20mGUttBA15jOqq2DeUy77dY9Tv6SEUOLcYMps13HFrBTffVE5tTcZFCzW/P8re/b28+lobu/f0nNeQSxAFyhdksnxjMQuWZ5GT6CDLdxxrsANxQl06GtwMHRzDddKDq2X8irsRZ1y/kuKP30X+h29BZZ47bz7PeJi3d3Xz5o5O9u7vO685zyT2HCMLVuWxdrHECns36sYD9DzfSs8bA0S9MfRFuVT+8SOUPHrfnLZ/vvF+ELeT+Lv66PjpU3T+7OmzQlwvGUmBOt2Kxp6G2mZBbbOeWjSZNiy1ZViqc1ExjOxsBncLxN/NUUyiwKkvZ9i4CKeujKA/xsmjQzQdGuDksaGrIndUrVZQUW6jpjqD2ho7NVUZFBZarmhuYyIaZWz3YRx7j+HcX49jXz2RsekNed6LIAqpcmKnlRVTqFKhwJNle+TkRLmaiTI9nL4/UbJnsmwQp5UK4j3Pk5PvOY7Tjk/VFJp5PuqpDyBgqixGrltIb1Y5zUkLJ1rH8c1yypGkUpCVZyarwExOrobirCTZlijZpjBWVQBV3I8YD0MkjBAOQTSauleJMqKcmtUWSM1QI8sQjRHzh4kHYsQCcWKBGDF//NR2cCyMrz+Ary+ArriUzBtWk7l5DRkblqM0vJt7Hg+FafneLxnd+RKjD32Knz0bYGxw6tnCO24v46v/73qMhnPPDF8MyUgIX/MR+k62sH9IyZE+NQ0Nfnzj05cymkQUBRYvtnH/A0vYvL4E6SobcDkXfn+UbdvbefrZRpqaz31N1RlVrN5SxtpbykmzKrEHmsj2HsUc7jvT4FNtgbRqSKsiFDThPt5BoGeQqNNDxOEmctq6f2iIzw7tm3zmNXF7jfnFNXF7fhLRKJ0/fYrG7/wAy+017C3Ywms7Aue8uEpKkZXVIh9bMcCKch8Xot2ivhjeHj/ePj/j3X5GjjjwdHinnNlT6LTk3rmJwo/cRs6tG84bdnTWZ4tEGatv5p3fP0NyyEmBPRM5ECI27ifYP8x4Uztx3/Qzskq9RM6aDPI3ZpO9KpNxYym9mjp2NhnZ+0Y37Q3nn0HNyjJw05Yy1qwuoKrChtmsmfbYYDBGR6eLw0cGeGdvL8fqh0kkzt9rycwzsXxjMUvXF5Gvd5LlO47d34QyGUZOyowccdC/a5j+d0YIO6982SVTZTFFH7+boofvvGiDqJkQiyV4e3c3L73cwu49PSRmOEOQW2xlwao81ixWsMjUhXn4BENbW+neNoCr2QNAxsaVVH75E+Teuel973x8MbyfxO0kyXicwZd30PfMNgZfffuCxNClos3NxLKwEuviSjKXZmHJTaCS+xGizlPHRBR6HPpq3NpiPNpCwkkVXc1jNB0eoOnQIM7zuIxeTswmNRvWF7Hp+hJWrcpDe4XzAmVZJtDVj2PfMRz763EfaSLYN0xwYOSCB0ivFhRaDZosG9psO4aSfAylBYh5uXQkzRwbhQNHhhgauHIBiBqdEpNVi1avRKNTotGpUKkVKCQRUUzlBZ8KhZcmwuMVE+HyooxClFEqkihEGUlMIglJTNoENkMMuy6EVTGONDZGtHuIUNsQgmhAnV2MOr8UQ0Ul5tpyktEYx7/5PaImH6+m3cLWl3qmnCW1pqn5i69ez+brSy5qUEaWZRLeUcabjtLRNUq7U6bLo6ZnTKSvP8LooG/G+c7pNg233lrOQ/cvISvTcMFtuVLIsszRY0M8/2Iz27Z3nNMgCiCvJI21t5Sz5LoCLDjI8R4lw3/ijJQnTIVE5FxcXQlGD/bgPtKM+1jzlOkHp+Mkxh/TNbl7TdxeY35xTdzOnHgoTMdPnqT5X/8P67pcji+9ixd3xXAMnzscNzdD4jpFJyuDh9FrUiFdCtXEKLZKRBAE/ENBvL1+vL1+Iu5zzxRKRj25t28k754t5N6+8ZIdh8/VyZZlmWDfEJ6GNhzvHGH4zX24Dp6YsiSI2qyicEsOxTfnYajMZMS4kKOBKnbsdHFox8zLJmVlGagst50ROuQPROnsdM0of3YSg1nNknWFLLu+mJI8kazACbJ8x9HFUh1ud7uX7q399GwfJOw6d9sEheLMzywIKLQaFBo1Co1qYq1G1KiR43HCI07Co87zhmoKCgWGklQJJFNlMcaKItJXLMC6pGbOwo5lWab55BgvvtzCa1vbGJ/BCLggQGGljQWr8lmzUKRG30mauxHHzna6tw0wfHCMZFxGVKsoeugOKr/8CayLquak/e8X3o/i9nTkZBLXkUYGX30bx95juA83pn4TlxlTkZnCG4vIXm3HWqQ6ZSokI+BXZeLWFePWFuFR5+N2x3GNBvA4grgdk+sg7rEAPneIRCJJMpmaKZxcX45umFotsXZNPpuuL2b9dUXnHAC83MjJJOFRJ8H+YYL9IwT7hwkPj50VNZRaosixGIgigiimjJ4UipRDuihMPDaxPfF4IplkcGgQBIG8ggKUatVZx0++DpPboohCp0Uy6FAadEiTiz61Vhr1aDLTkQx6RkcDHK0f5ODRQY7VD9Pd6bqg/6koCmQXWcjOM1CYBaX2IOpkEK8/gWssxshwgg6Hkp7hJPGZ+GFcZtQaCYNFg9GswWhSYjGJWI0yVn0CixTCLAewCGHMyRByRycjKzfxvy8J9LZPPXClVIrk5OooytdRUqintFBPRZGRPJueuNfN+JiT0TEvY+MxHAFwh0TcIRGnX0HfUJzB/sBFRVMoJJFlS9J58KMr2LCmEFG8OnPcp2J01M9Lr7Tw/Isn6euf3tkZJurCry1g7S3lFJcayAw0ke09gjEydGqWNiZbcHYIdL7UzuAbx4kHLryU1zVxe415zTVxe+EkIlG6fvUcDf/4IyzVWrpvup9n96no6/Sc83kqlUiFKUJZ20EK24+glGfuPKy2p5F392by772RzBvWoFDPnonQhXayY14/Izv20/fMNvqf3z5lXpa13ETpnQUUbMklaC2hR7uEt5qM7N3WSUfj6Ky1/b1IKgV1y3NZen0R1QvSyYq0kOU7jiXUjQAEHeGUoN02wPg0ZXUAjOVFZN24lqwta8ncuBKV1UwwGGTra6+DLHPTrbeg0517UCEZjxNxuAkPOwiNOAgPOwgPjyFIUkrMVhRhKMlHVF6eGRmHM8grr7bw4sstdHSef0ZNVAiU1WVStzKP1QsVlCvbsfma8B7qovuNAfrfHiYWSI0s64tyKfvcg5Q+eh+ajPS5/ijvC97v4va9yLJMaHAU15FG/O29+Lv7CXQPEOgeIOJwE3V7SYTOP9ByKahMSjKX2rAUGzEXGzEVGTDm6hFEgSQiAVUGUclATKEjJuqIKXQTtXh1KefzMz/R5AcjkRRIyCIJWSQuiySSIglEErKCQFSBdzyOfzyMzxPGNx7G5wnhc4cZ6vFc8GyxQiGwYnket91SwQ0bS9Dp5lf+4IUym7+TaDRBZ5eLEw0jHDw6yPHjw4xexGy9LdtI5QI7S6sEVhc5yaMHyTXEWL2D0WNOHE0evF0+4uF37/EJQWRUZ8dVvpCxgir6ohpGXFc25eVCkZQiKrWEpFKQiCcJ+iIzHghQayRESZyRCeVMsWdoWLrIzqYttaxbmYdON39qV8diCd7e1c3zLzazZ1/feX0ALDYda28uZ+UNJWSrnWR7j5Dhb0KSU+cz7JMY2Ofi5G/r8fVcerTBNXF7jXnNNXF78STjcXoee4nGf/gRWlsU3/338XpPFof2j5E4T+6nWiVSoQtQ1rqfwp4GpPcIXVWahbSlNaQtqyXn9o3Y1i6Zs9DOS+k8JKJRRrbvpef3r9D71Otn1E0EkHQShZtzKLuzAH1VNsPGxRz1V7B3j5tje3pn7GB6LhSSSEmNncXXFbJoVQ45Qj8Z/iZsgZNIcpRYKEHfjkG6tw4wWu+c1rhJk2Wn6KE7KP743VgWVZ01czpfxUhT8yi/fayerW+0nzfsWFIpqFqczYJVeayoEyiS28gINBNu66d7az+92wcJjk0IEEEg57brKf/iQ2TfvO5a6PEFMl+/T3NJPBQm5vGSiEQJev28s3MnciTG0opqZF+AyJgrlRPmcBMZc+Pv6me8sY1k9OLzZhUqEWOBAXOREVO+HlGVCvcUFCLCRNjn5PrdHM53c0LlZCqyQdJKSFoFklZCqVNM7EuorSqSGiMRKeUoHJlwFI5IJnzqbBwRE/2dLvraXfR1uOjvdOGZYYktjUbiho0l3HZrBatW5F319Ucvhov5nYTDcfr6x+npcdPV66Gtw0Vbu5P+Xs+MUy9OR2dQUb4gk4U1GtaUeanQ9aJxdOOoH2P0mIvRo07Gu7xn5fUKkoR1STW2NYuxX7cU+9ql6PKyTv19fDzMyVYHHR1OWjtctHc46R/w4vXM7SDPfEWlUlBdYWTtdcVs2VxNcaHlSjfpgmnvcPL8iyd5+dUWPOf5PwuiQFGljboVudQty6BA0UtJ7ASW2CCiHCM4EqJ/9zBdr/fjuQhjUaXZiLm2DE1GesrHIN2CKj3lazAcCbLuC49MHnpN3F5jfnFN3F46yUSC/me20vQvPyE20oX10c3s1q7kjV0BXGPn76Ro1CKldpGaDAUr6jJYcesSTMW5sx6WKssyHk8YhzOIyxXE6QrhdAYZGfXS2NhJKCJjt9tQqZQoRAFJEtFplWi1SnRaJXq9EqtVS5pVm1qnaUmz6k65Hse8fnoef4WOnz2Nc9+xs94/rcpM2V2F5G/KJWApYkRfQ70zl8P7U2WFhns9xGfgPCmIArYsA2ULMqlakkNFTRqZDGDzN2MPtKBMptyNhw6M0r1tgMF3RkhEp35dhU5L/r03Uvzxu8ncvOacAm0+iZFkUmbX7m5+/bt6jhwdPO/xxdV2lm8sZs1SNUXJFuz+Jhgepmf7IN3bBlI53xOo7WmUfvp+yj77wJzmA7/fmU/fp8tB2OVh6NW3cew7RmTERcjhwtk3gByOYjAZUUhSSkWmnHMmBGaSZDxBfNxHzBcgEYqckf8paRQoDRJKvTJV5sygRLJbSCQEwmNBwqN+QmNBkpE4yYlCMZKcYDavvIIIWrsWQ44OY64OQ64eQ44eU4EeU4GBuKTBp87Fq8nFq87Fq8lj1JWk8UD/qdrp09W5Pp30dB233lzOLTeVU11lv2pLD82UeDyJ1xtmZHScN97YRSwus2jREkRRIhZL4vdH8HgjjHvDeLwRxsYCjI0FcIwFGL9EcaiQRIqqbNTUmllVEWGJfQCjqx33kUFG652MHnPi6ThbzGpzM7GtWYxt9WJsqxdhXVqLpL3wEPJIJM7IaICRET8uVxB/IIrfH8XnjxAKx0kkkiTiSeIJmUQitY5EYoyMjJJMgtliRZYF4vFkakkkSSSSxGJJvONhPO7Qec0XrzQ6vURutpaiPB2V1bksWFzAgir7vKtJC+DzRXh9WxvPvXCSpuZLi1wTRAGtXonOoEJvUKI3SNisEhkWmQx9hAzJhz3iQO0YJtY9SLh3jLAzQtgRJuSKkJzoYwmShNJqQqnXIiqlibB+YeK6ITAaCfBo+47Jt70mbq8xv7gmbmcPWZYZe+cwLd/9JcNbd5B3dyXd6+7glWN6musdMy4/oVIpqKjJYNnibJYuzCIn24TdpsNoVM+owxKLJxgY8NLV7aa720Nnt5vObje9PR4CgdkPg9LrVVisGuw2Pfl5ZgryzaQlAsR37iT03EtIPs8Zxyv1Evkbsym8IQf7YhsefQkuXQluRRYdTgN93T6cw/4zwp1EUcCebSSrwExWpgqL4MYc6iEt1Ikp3IdCTpCIyQwfGKV/1zADe0emrxMrCGRtXkPxI3eTd8+NZzhEnov5IEZCoRgvvtzCb39fT1/fuXN3rHY9yzcWs2pdFrX6LrJ89WjG++nfNZya5T7qOKPzZl+3jPIvfJT8+26e1bD4Dyrz4fs0VySTSQZf3kn3r59jbO9RwiNO5NiEKBU4VWtbqVci6SUUShGFUkRUpnwKJrclrYTaokJlN6PIskFaGl6NFVfCiCOsZcwn4fAKOD0yLk8CjyuK1xMiFkmQPC1v9nR0BiUFuXqKcg1U5JuoLrFQXmnHYDGQTCRIRmNnLTGvn+DACKHT8k6D/cME+4YJjzimPQ8qoxLbAisZi9KxL0zDWm5GUAgEVBk49JU49FWMRKw0HR6gYX8/LceHic/AxTw3x8jmG0rZckPpJbnRzyXJpEx//zht7U6a2xy0tDoYHQvgHQ/j9UYIXUYXa61eSVGlnfIKPQuLYyzOcpDmbcd3qIPRY05G65142s8Us6JaRdqy2pSQnRC0p8/KXm4u5HoiyzJ+fxSnK4jLFcLhDDLiCDDmDOJwBnC5ArhdQdyuMN7xCNFpBocvBYVCwGRWYTIoMBskzEYl+TkG6paUsGhxHlkZhqvyeztTJs2hnn6uie1vdpyzhM9coNZKpGcaSLPryLBLZKUL5KTFydaHyBRcKN1jJAaGiQ+OEfeFSUZOL5UVZ8gb4iNHD06+3DVxe435xTVxOzf4u/po+a9f0/HTJ7HVGNA9sImD0kJ2H0vS3uyc0Uj8e1EqRaxpOtJtOmw2PUqliN8XxR+IEPDHCASiBALRy9opmAl6jYgl5sM81o/dP4ot5MAedKCPBdGmqynYmE32qgzSqy0oDSqCShtBVRpJQUJGRBZEQEYb86CLOVEmAqSqHsiMd/kZOepgrN7F8KEx4qHpbyDmmjKKP/Ehih6+C11u5gV/jqtZjHjGw/z2sXqeeKoBn296cyylSsGitQUs31jE8iIfOf56bIFWXE0OOl/uo/etwTPOoWTUU/zxuyn//INYFlRejo/ygeFq/j7NBaHhMZr/9af0PbuNQM8gJJNorGpy12ViW2xDW1NEIjsfhzIXT0SDP6LEF1EQjAjEYjLRaPK0dZJoVCYYTOB2xxh3Rxh3BfF5wudNCbkYBAGyc00sW5rLrVvKWL4sd8ZlRcJjLlyHG3AdbsR1qAHXoQaC/cNTHivpJOx1VjKX28hfn4U+S0dIMp8SuqNk03R4kMM7u2mtH57RgGlWloEtN5Sy+YZSaqszrkg5lGg0QVu7g4bGUZpaxmhtd9Ld6SYSuTIuy+mZBgor0qkqU7G4KESNdRjNUDveo72MNbhxNLjwtPvOuE/ri3KxrVmCbfUi0lcvxrq4CoXq6hnkm8vrSTAYw+EM4PSECIXjBENxguEYQW8Qv8dH0BfEPephT2OQsZHQOV+rrNzMn315AyuW581r8TodXm+Yl15p4clnG+np9lzp5kyL0aIhPdOAOV2HRiuhVotoNSIajYBaLRIJOvjWVx6YPPyauL3G/OKauJ1bouM+On76FB3/9zjBvj5yN+agvOsG9kQq2X0kRtdJ52Vx27waMRAh29NPrneAHN8QmaFRrAU6bLVWzIWG1KzNRO6aQikScoQJjIQIjoYIDIdwnvQQ85+7c6S2WSl86A5KHvkQ1qW1l3QzvRrFiM8X4TeP1fPbx+oJnmNQw2TVct0t5Vy/yU653ECm7ziC20n3tgE6X+5jvOvM3GfLoirKv/BRih66A6Vx/pRSmE9cjd+n2cbb1k3TP/+YwZfeIjziRKmXKLwxl6ybKojXLOS4v5jDLSKdbV5GB3yMu4IzSk240hhNajZeX8wtW8pYvjwXpXRh+eah4TGc++sZ2voOg6++TaBr6n6jtcJE3vps8jdkYSowEBV1OAxVjBjq6I9kcHR3D0fe7qF/BgZxADqdkoULsliyKJvFi7Kpq804w5V+NohGE3R1u2lsGuFE0yiNTaN0dbnnZNDhfJjTtNhyjNizDBTmKqjIjlKd6cXGCInmFtz1IzgaU2I2OPpuKLNCpyV9xQJsqxdhW7OY9FWL0GbZL3v7L4Sr4XoSHvfx5Pef4fUuFU0npi81Iwhw45Yi/t8fbyAjY/7fX2RZ5viJYZ58ppE3ts/uLK1KnTLvuphc8UshGnXTeOzrk7vXxO015hfXxO3lQZZlHHuP0vHTp+h9/FWU2gT5NxYi334D9cECjndKtLX6GOm/PDX1dEYVRos2Zf9v0WAwa9CbUjVyk4kkyYRMPJ4kGomnlnCccCCG3xvG743gHw9PWevuUlATp8TVSZmzjeLxHlTJi5uBlox6cm7dQNHDd5Jz64ZZcyO+GjoPkwQCUR574ji/+s0x/Odwn8wpsrDhjirWL1dQ7D+ALXCSsSNjdL7SR9/bw6fybwBElZKCB26l/IsPYVu9+H05qn41cTV9n2YTx/56mv/1pwxv30vM40WXpaXsnhJMt6/mGAvZcUSg+dgYY4O+GadqXM0YjSmhe8etlSxflnPBvxtZlvG1dTP02i4GX32b0R0HSITPjr4wFRnI35BF/vXZWEpMhBUmRo21jBpqaR/VceTtbur39uIcnrn7r0IhUFVpp7Ymg6xMAzabnowMPRl2PRl2wxlOzLKcuieEI3EikQTBQJT+QS+9vR66ejx093ro7RtndMR/UZFJ50KtkVBpJBRSqp6rQiGi1kpo9Sp0ehVavRKLWcRmBrs5QaYpSoHFT5roRnQMEm0fwNvlxd3uxdPuZbzL964PgyBgqigifdWiU7OylgUViJI0q59hrrmarifOI43sfvIl3hYr2LvHMW1pH5Va5KEH6/jMp1bN+iDL5cDnj/DyKy08+UwjXV3nrhs7FZJKQWlVOlUlCtKNMSxSGG1oHLVrDKl3gERDJ8GWUWKhJLrFdWhXL0VRV0tIVDHU0s9Y1wBBhQKv3oozrmXElcTjjs7KhMk1cXuNec01cXv5ifkD9D7xKh0/fQrHnqNobWqyltlJX19CbPESjrqyOd6loq3Nz9iQj6Dv4vJkjRYN9hwTGbkmMnIN5GWKFGbEyTKG0QpBVPEAqkQAZWJinUyZX02GAidRkBRVJAQlCVFJXNRMlMbQExV1uMMaXAEJl1/C4xNwOGM4R/w4hlM5s25H8KI7OQqSlI53s3jwKPm+/vMavOgLc8m5bQO5d28mc+OqOckJvRo6D6FwjCeebOCXvzl6TqfF6qU5bLijktXFLgrG96P39dCzbYCWp7rwvqcEkqEkn7LPP0jJp+5FY0ub649wjQmuhu/TbJBMJul57CXaf/wErgMnSITCpNdYKP1IDfE1a9k5XMzbe3x0NI4SjVzevLPTEQQwWrVk5JrIz1NTnh0nVxhF6O4hMexGTgooM824c0vpDlrpHISBvgCOId+MO4u5eSY+/KEa7ry9irS0i6s/Hg+FGdm+l76nt9L//Hai7rNz501FBgo25VCwKRtTvoGA0saooZZRfSXtgyqO7+2lfm/fJbvR63RKJEkkEk0QiybmZDBCb1KTU2Qhp8BEXqaAxZDErE1g0cax6qJY1GF0igiKZBRRjiPICQSSCJEQss9H0uMj4QkQdoUJjoUJjoYJjYXwDwbx9QdOlSsDUGjUmBdUkLakBuviKiyLq7EurLzkWvFXA1fb9SSZSND6w9/R336cIyWbeO310WldwC1WFX/4+dV86M6aq97xW5ZlGhpHefKZBra+0X7B17ScIgs1dVZWVoRYaekm/OZ+BncN4m4bJ+R4d1DLsqiKrM1ryLxhNemrFuI63Mjo69sI951Au7iQ0fw6WoM22voVDAxGGOkfxz8+fUrShXJN3F5jXnNN3F5ZvC2dqXqxz72B88BxEMBSaiJruQ3b2iJUVcVEDekMBQ2M+rWM+lQ4vBIuLyRkAZ1WRK8V0GkF9BrQa0GvkckyR7GpxtFFnWhjTrQxDyIJErEkEXeEsCdKxDO5jhJ2R4j5YwiKlFHLpGGLQjVh4qIUUeok1GYVaosKjUWF2qxC0r47uh0X1YQkKyFlGiGlFZ9gpX9cS79TyfBogqFeD8O9HoZ6x4mGZ55rlRb3sXjgMLVjzRjNWjSZ6WhzMlJmHhM5UNrsjLn495zBlew8xGIJnn62kZ/8/DAu19Q5TYIAi68r5KZ7K1hs6iRv/ACCY5j253toe76HiPvdQRJBFMm9cxNlX/go2TdehyBe3R2K9yNXW2f0Qoh6vLT816/oefxVvCc7UagE8jZkkXv/cnrzVvBmo4kDex2M9I9f1WkXKo1EYXk6ZRVGFhRGKY/3kNh9AO/+VvQ5ejI2V8LiBbT4sjjYaeDwAQf9HecPAZYkkes3FHHfh2pZuSIPUby4KIhkLMbIjgP0Pf06/c++QXjUedYxljIThTekhK4+S0dQmYZDV8GYroLWURP1+/o4sa/vskUFTYcggD3HRF5pGgX5GspyElRk+clTO9CMDxBu6sHb4yXiiRLxxoiOR4l4392OhxIkYgmScRk5niQZn/6LpbanYSjJx1hRhLG8EGN5EdaFlRgriubdjOxMuVqvJ8HBEY786T+QKNbypm0TW1/sJTLN/b+wyMhn/2AVN20uu+pErt8f5dXXW3nimUY62s/+HZ6LqqU5XLfKwNoSFwWhkzjfOE7/ziFGjjiRJyLgjOVFZG5eTdYNq8nYtApRqWTk9a342o4wqtHTrS2iZUxHe3eUvk7PBfWhLoZr4vYa85pr4vbqITg4wsALb9L//HZG3tx3qnaj0iBhzDdgytdjzDdgzNNjzNej1ChSJVsnay9CqiMpy0TGowSGgviHQgSGgwSGQwSGgoSc4bPKF1wKCrWI2qJGY1GhtWvQZ+nQZ2kxZOkw5usx5OgQJZG4oCKgysCvzsQrZdDpsdDUJdDd6qS7xcHIeZx9AQwGFQ99ZCEPPbgQk+nCyytcKlei85BMymx7o53v/3A/A4PTd04Xrs7nlvsrWWE8Sd74PkLdDlqe6qL79f4zyiBpMtIp/ewDlH32I+jzs+e8/deYnqu1MzoV8XCY7t++RN9Tr+E6eIKI04M+U0vpfWUob1zLvkA1Ow9GaTkxRugcYfLTIQhgtmjJyzNRXWmjMN+CQa+gtbURpVJg0eKlyLJIOBwnEokTDscJheK4PCEGhnwMDvkYGfZdcgkYURTILUmjus7M0sIwJe4mgq++gzzuI2dtJtZbV9As1/Bmg4Ej+0bom0EnNzvbyAMfruOeu6ov6bqVTCQY232Yvqe30vfMVkIDI2cdYyk1krM6k5w1KYO+mNKAQ1eOU19Jf9hOe5ufrpNjdJ0cY6DTPadh4emZBvJL0ygsMVCZF6cue5xMYRjlcBf+5mHcbeOnwoT9Q8Gz6o8rLSbUNivKNDPeZAy0KnILC1BqU6VLlEY9KqsJldWMympCk21Hl5uJNifzA+nmfrVfT0Z27Of4N/8d8Z41PDtWzt63+qaN7MrM0vKJjy3lnrtqUauv7GBEU/MoTz7TyOtb2whfgKBUSCLL1hdy72aRFeIBHK/V07djiJGjKUGrsprJ2rKG7JvXkXXTOvT52QT7Bhjd+TJtzjCNERuN/SpaW7z4ZqnusSCA2arFZtNjs+nIsOuxpevQapRo1Qq0WiVqtYRarcDhGOTBBzZMPvWauL3G/OKauL06iXn9DG3dzdieo7gONeA+0kQ8cP6auedDodNiKMlHX5iDviAbfWEOymw7J4Z6Eawm1m9Yj0ohIccTJGMx5Fic5MQSD4aIjfuIeXxEPV6iHh8xj5fouI+o20t4xElocDRV+mLi2iQoBAw5OkyFBiwlJqzlJqxlJvRZOuKCEp8ml3FNAZ3hXPadkGk82E97w+g5zUd0eiUfvX8BDz+0GIv58oncy915OHCon+/9915Onhyb9pia5bnc+kAVq6xt5Hv24m0cpPHX7QzuGz2js2iqLqXq/32K4o/dhUKjntN2X2NmXK2d0Xg0yujOgwy9soOx3UfwtfUQG/ehtqrIXZeF/fYl9GYuYmd7Ggf2uxjpu/DZWUkpUlKaxvXrithwXSEVFbazTJku5vyEQjGGhn0MDvpo63DSeHKMllYHgxc5g6xUKSiptrOgRsvCdBeZ7YdRD3aSsSgNxcplNIYreatezf4dPYyeZ2ZUrZG447ZKHvrIQoqLrBfemNOQk0mcB47T9/Tr9D69dUpDKrVZRfYqOzlrMshabkdpUBJSpp+qpztGFk09CrpbnDhH/HhdIcZdQcZdoWlzJN+LRqfEnmPEnm3Elm0kN0OgwBajKC1ApjiC3t9HsLEXZ7MbZ5MHZ5P7DOMmpdlI2tIarEtrSVtag7muHE2mDXWa+ZRXwtX6O7namA/nSU4m6f7tC7T96GeEH72f3+3T0np8+rqvZrOKBx+o46EHl2A0XL77VjAYOzVL29Y6fSmvqdDolKy9qZR7N8SoDuyh77HDtD7dTdQfJ33lInJuXU/2zetIW7EABIHx44c4dqiR+lGJxiE1LS2+SwovliSRnDwTxcVplJakUV5sJTvLSEaGnvR03YzN79ra2qioqJjcvSZurzG/uCZu5wfJRAJvcweuQw04D57AdbiRiMNNIhwhGY4QD0VIhMKnRKVCo8ZUXYq5tgxzbTnm2jIsteXoi3LPCkGd7ZtiMh4nPOzA39WPv7MPf0cvvvZexhta8Z7sIhmLoTarsNVZsS9Mw77AirXCQkxlxKGvoJcyth+EPa+3MzowfYdRp1fyyMOLefjBRej1cz9Sf7k6D61tDv7z+3vZu69v2mMqF2dxywM1rM3oIN+zF1/DAA2/aGPowJlCOPOG1VR95VFybll/LfT4KuNKdUaT8Ti+jl58Ld24j5/Ed7ITf1c/wf5hwqMukuEISr2EtcJM1sYipOULaJNKONxjpP64j8FuD7GLcAO1pmlZv76Ie+6ooq4287xhh7N5foLBGG0dTk6eHONE0yj1x4cYuIgwXYNZTUWdnYXlIgs1/eQHW7DnwXjuEnaNlPPWTjf1e/vOW4t29ap8Hn5wIWtWF1x0yPIksizjPtZM39OvM/TaLlxHmnivkhdEAVOhgbQKM9YKM2kVZixlJgStGp86m4hkTnkpKPTEFHp8cQ2jXgnneKoMm1opo5ESqBUJNMoEWimORhHHrPCij7vQRR0Io8P4uscZ7/bh7fbhahnH0+E9FT4sqpSkLa/Dft1S0lcswLq0FkNJ/nkNuOaDaLsamE/nKR4McfK7v2D47Tfof+ARHn/l3GaaWq2CD91VwccfXk5WpnHO2tXS6uCJpxt4bWvbBZdUtNh0XH9bGXev9FHk2EX37+ppe7YbJC113/gipY/eh8pqJh7ycuj1XRxo9tAwIHKyNXjRYtaeoaOiKoOaKjuVpemUlaSRk2OalXJf18TtNeY1p4vbX1RvIduajqTTotBrkfQ6lEY92twM9PnZKC0mVBZjKgzIYkRpMaE0ze9C2+8nZFkm0DPA2O7DqZlV1zgRh4eIw31qibrHkeMJZFkGWUZOysjJJJFI6uKqNehRaNQo1CoUWjWqdCtqmwW1zYomIz0141uUi6EoD022HVFxYSUwEtEovtZu3EebGHvnCGO7jzDe2IbKpCRnTQZ512WRtcJOzJDGgHEpu/ry2fl6Lw0Hpr+ums0a/uCTS7n/vro5DWGa687D0LCP//nf/bzyauu0s0yFFTbueLiO9bk95Hv24G/oP0vUCpJE4Udupeorj5K2pGZW23iNcyPLMnF/gPCoi/Cok/CIk/DwGBGnh6hrnOhE5EPM6yc67sM9MgrRGDqtDkHg1Gz7qXv7aV+Edx879ci7q4m/yZx5jBxPkIhESUZjyPFUBAayjCgJqC0qtHYt5lIjppocFGUFjBrz6Ylk0DmqorU9xECPF6/74kLiBFGgpDSNO26t4KbNZWRnXVindK5/b253iKP1Qxw8OsjRowN0tLsuuNyGPcdIVa2VxUVRVmYNkWWL0ynW8tpRHfve6GKo99zpFgUFZj76wELuvL3qDGfiSyHi8jDy1n6G39jDyPZ9+Nq6pzxOEAVMBXqsFWZ0dg0qowqVSYnalFqrTCrURiVyUibqjxELxIkFUuvJ/cBwaELM+omMnxmOrkqzYL9uCfbrlmJft4y0ZXUXFTUyn0TblWQ+nqfQ8BjHv/mfhOIjnFxzN6+86T9vWauaagu33lLNLTdWkp5+6UZgwWCMrdvbefzpBlqap4+Smg6lWsGN99Xw0fVecgd30vnbE7Q/30MSJdVf+RSVf/oJ2jr72LmzleOdUU62hS5KzOr0EuUV6dTWZbN0YTaLajNn5fNPxzVxe415zenidsc3/gC7pCTuCxL3BIh7gkQ9IaLjMWL+2Ls3OH/sVB6fQqNGm5Nx1qLLzURfnIexrBC1zXpNAM8RwcERRnceZHTHAUZ27MfX2o3KpERr06CxqicWFZo0Neo0LUq7GUGtBElCUCkRlAoESQJJAoUI8QRyIgGxOHI0RtIXIOnxE/eFifpihJxhQs4IIUeYiC+JKjMPU1U5lgUVmBdUYFlQgTY744L+3xGXh+Fte+h7dhuDL+9AjoXJ35hN2R2FWBfYGDPUste3iJefH6B+b++0ws9u1/O5T6/gzjsqL7ju5EyYq86D0xnkp784zNPPNhKbpsanPcfIbQ8t5MbqMYrcuwg09J4lahUaNaWfeYDqr/7BtXzaOUKWZSJjLrwtXXhbuvC1dOJr6yE4OEpkQtAmQu+KQUknoTYrUeqVaK1q1FYVGqsapVWD0m5FSLOQ0OlJIqQSouDUWkacWAOikNoQhImVgCxP/E0AEJHld19CnthICBIRhYYQGgJo8MU1jEfUOL0CDleC0bEobmcY/3iYcDB2yeZPeoOKFSvyuPv2SlauyEOruXjBdrk766FQjPrjw+ze18v+A710drgv6HyICoGiChuL6rSsqQySn6/h0FAO27cOc3xf3znzW/V6FffcXc2D9y8gJ8c0C5/mXQK9gwxv34v7aDPjjW2MN7anUkdmEV1eVsp5eHEV1kVVWBZVYSwtmJVokfko2q4E8/k8eRpaafqn/yUUHGLo9g/z4l6ZthNn55SfjiDAwgVp3HpLNTdtqbygFKV4PMmBQ/288PJJdu7sJhK5OHOmRWsLeOiBDJYHXqPrJ3tpe76HWFJC8/8+Ta81n8aOEG2dQfzeC/chsKapqVtgY9WqEtYsz6OowHJZ+9HXxO015jWni9sFS/4BrSEdSalAqRRRqiSUagV6owqbTY3ZJGLUgVErY9AkMEhxjGIQc9yPLuQCh5P4gINI/xiRER+B4RDB0RCCSouxtABDWcHEuhBzTSnmmjJUltm9kb/fSUSijLy5N2U69dZ+Eu5hrBVmzAtz0C6pIJhTxEDMijuoxBtS4AuK+ELgD8gEgknCwRiJeIJkQiaRkEkmUzVtkwkZWZYRFSKScmKRFBPbCiRJQCXJ6LQCOg1o1TJ6dRKjOo5OjKCNB1CHfSjHPSh9XrSCgEZnRl9YhmnhEkzV5TNyqUyEIwxt3U3HT55k4KUdmIsMlN1VQNGtBbjSF7AvuJSXnh/k2Ds903Y88/LM/OHnVnLjlrJLDvk7ndnuPHi9YX71m2P87vHj0xpVGC0abnpgAbetilI2voNIYycnftbC0P7TRK1WQ/kXPkr1nz16WVyjPyjEA0Gchxpw7juGp7EdX0sX3tZuYh4vSr2EIVePMVeHvsCCMs+OIt1M3GzFrzHjE/W4E0Y6R1X0DsTx+xOEQglCwQSR8ETt6EiCWCTBfL6PCwIUlaRx841l3Ly5jIJ886x1wK50Z90zHmb/wX527+3m0KF+RoYvzPPAlKalemE6S+vU2PLTeWefn31vtJ+ztJsoCmxYX8TDDy5k6ZILr5k7UyJON+ON7Smx29RBeMxF3B9MLYHJdYi4P4hCo0KdkY7Gnobanobabj21bSwrxLq4CnX6peUQn4sr/T2YL7wfzlOgd5CT3/slrvoD+B68nxcb9BzfP3DeQSaFQmDRwjRqa7IoLc6gsMhKYYHlDMEryzInWxy89GoLr21twz1N1YGZkJln4r5P1XFrdj0jT+1g9wkT/RkVdIcN9PSGph2kPhcWq5raSiOr1pawfm05BXmmKzopdE3cXmNec7q4rV3896hUF3+T0hpUGExqDCYNRpOSNKsCu0XGro+RrghgibowuIZIdPUTONGLr9eHLBkxV5edmRu6oAKl0TBbH3HeEw8EGXxtF33Pvk6w+QjG9RW4KpcwJNroH9cwMJJkZDiMY8hLKHBheSJziVorodFIaLQKtBoRrRo0KhGdVoFOr0Jn1KLTqdHoNGh1GrRaFTqNEr1WQq9TYYz48D33MoO/fAoxGaTi3iLK7ilmPHMBu/3LeP6pPhoPDUz7/kVFVj73B8vZsrl0VsoKzFbnIRSK8djjx/nFr4/in8ZZVq2R2Hh3NXdu0VId2InQ1sKJn7XQ9/bwqZBTSa+j/A8fovorj6LJSL+otlwjhSzL+Nq6ceyrx7H3KM599XhOtKLPVGOtNGOsykYsK8RjzWVESGMooGXQITLiSOIYi+AbDxP0RYhfRKdmPiEIkJltZPnyPLZcX8SK5Zc2O3surrbOev/AOHv29bF7bxfHjg7j98/8WiuKAoWV6VTVphGTJRoODDB8Hof48vJ0Pv7QYm6+sQylcvYjUeYLV9v34EojyzJOV4juHjftPW4czhBeb5jx8RDDw04kSaC6Op/igjSK883k55lJT9fN6kDvXBN1j9P2o9/T9+LLJD52J68N5HB4z+CMjc4mMRok8vIMFOSncbLFQU/vpZXDUqkV1CzPJc2QYLh3nL6BCD7vxfW5LGlqqos1LKmzc8PtyykuuLoiHK+J22vMa2ZT3M7s/cBk1WLLMpCZoSTHBtn6IBlxF2muXuSTHXiP95NUWDFWVqQKrS9KhTrp8rOvqh//XBJ2uBh6dSdju3bg0ykYyKuhLZhGa0+cnva5r3H2/9n76/BIsvTA//1GJKMypUwxMxYzQzNO45BnxuMZM61xDb+7a1/f9XoNd9fPGtb2ejwznvFgMxZ0MYMKxMycKCVT/P6Qqrq6W1xSlVQVn+fJJyOVkRGRoYjI88Y55z0riVqjwGJWkSwFsAUdlKWNs/uAiHVdFadca3nzx5101M+ccTEnN4lf+LlNPPZo8V01V77bQlYoFOPNtxv5l29dxe2e/q6xQimy/dFinn02lXXx02g662j4ThvdhwduD5ugNBko+42vUPafvobWlrzo7/Ow8/cMMPjBKQY/OMXYmVoUYghreRKWrcWMF1fTJWbSNqKhozfO6LAfjyMw49AVD6okq5bi4hQ2b8pi09oMKivS0GrvzdAcKzmoSSQkmlvGOH2+h/MXumhscBKbZdzVTzNZtGTmW/BPRBjodM1aM2W3G/ji59fw0ucqMZkevkznK/k4WG6SJNHb66G2bphrdcM0NQ7T3ztOOLSwhG4qlYg9TU96homy0lT278pn7Zr0Zem+s5Ti4Qjd33uL9v/7H2j2l9Oet5ULrQrqrwytujKQJVlLWb6a6iwle/fXULWjckWXZ+XgVraq3evgdi5JyTps6QbSU1VkWOKkqX3YgqOY+zuRWgcQ1VZMFZPBrnVdBeaKogdiTLtbGS8Hj52gy+unXbTROWGkrSvE6MDE/d68FUmjESnJV1JcoidmTOfapREGOt0zzm9PNfClV2t48XNViyokLraQ5fYE+clr9fzwx3V4ZhivThAFNu8r4Jnns9iovIy5t5bG77XR8W4vianaQJXFTPl/+hplv/EV1NakBW//wy4eieA4W8vg+ycZfP8UMdcAabtziezaTqcqj9YxHZ09Ufq6xxc1VutqJIhgMGqwJutISzNSVmKjqtxOUUEyuTlJ93WMydUU1ASDUS5e7uf4qXYuXOxnbHT+TR5FhYDZqsPnDc1a86/Tqfjcc+V8+Qtrl7xf7kq2mo6DpTDhC3PqXC/HT3dy5VI/457FDwszG51eyboNmezZmc/enXnLmoX4bkmShLu2gb7XjzBy4hSq/dW0ZG3iYjM01A7PmZ38fsjINlKcKVBqibK2wMqGp/egT1s9Lazk4Fa2qt0Z3H7xZ/8vCqWVUChKaKpfWDgcY8IbvutEI0shKUVPWrqODLuCdGOE1ISbZFc/yV4XKqWZpIoKrOsqsKwtWxU1Wv6+YbrOX+VG2xCt42o6nCq6On133bRYoRRJTtZhNGkwTT3MZg1JJg1JZg0ajRKlQkShFFEpBBLxGE3NjQiCQFlZJYKgIBKJEY7Epx4xwuE4gVAMfyBCIBDF74/g90cI+COEglGCgRiR+/wDI4hgTzcR8EdmzUao1Sp57plyXvxcJaUltnkvf6GFrL5+L9/7wQ3efqeJcHjmfbN2Ry7PvJjHNn0t1v6rtPy4nbbXu4lN3Z1XJ1uo+J2vU/KrX0adtHILICtRxDNO/5tH6X/7GI4zF7CWG1E/uo12axXXBw00NPpwDPmWdRsUShGNVoFKpUCtUaLRKNHqlOi0SmKxIBqNiM2WjEJUTCaHEkCYzBKFeEeOKUEQ7nhvclq89ebHTwjirc8IKBQi1iQtJqMao0GN2aQhxarFYtFjSZq8NqzU2oPVGtRIkkR3j5vjp7s4c6aD+gbXgpqrK5TirON8i6LAwf2FfOXL66iuSluKTV7RVutxMF+SJNHZ7ebwyS7Onu2iuWGMxAKzdi+FnLwktm3L5YmDxaxbk75irwuSJOFtbKfvtUOMnDqLa30lJ8PFtHSGcTsC96WsqlIryCswUpwap1TnozpVT/G+7SRVl67Y/TgXObiVrWrzGec2Go3T0eWmvnmUplYHbW0Oujtd884AJ4iTxbHZskXeDYVSxJZunKrtlbArfKTF3KQTJEVnxFxUiKm0EHNp/n1LYBULh+k4d5MbNzppHY3Q7RLpHYziGFlYkpI7Jdu05OQkkZuXTGGelaJ8K/l5FjLSTQvqY7pUhYdYLEEgEMHni+D1hfGMhxmfCOAZHcM97GLC6yMQiBGISIRiApGESCQhEo5AJAqRSIJIVCISjhMKRmdNvDIvdwytMpOSUhsvPlfBE4+VkDRHtsX57qe6+hG+/b1rnDjROesPbfmGTJ59pYhdlpsk91+i9UdttL3RTSw4GdRq7MlU/O7PUfLLX5T7oC9AzB+g/53j9P7wPTxXLmF7uor+qh3cdNuoawnT3+lZ1gJQZraJmrXpbFqfzdYNmWRlTp8Y5EEvtN+tB2X/BENRLlzq58SpVi5eHGB0dHFDK01n/boMvvKldezZnb+q+lQuxINyHNwpHI5x9nI/x091cOliP2PD/gUvQ6kSSUk3kZyiwWgQMeoF9DrwB2HUmcAxGsQ16l9UrWZGlonnn63ghWcqsNsNC/78corFEty4OcSx092cOdtDX4/nnq4/Jc1ATraW3JQ42UoP2UyQrddh27gJ+46NixruaiW6n8Ht/WsvJHuoqFQKykttlJd+XMslSRKdXW4Onejg1Kku2podMxYYpcTt0RdJzzVTWaTAJngY6Aoz7FfjDCnwjC++1i8eSzDSP85IP9y4/VcDYEBnVJPS6CPZ0kCKoZ5kdRibKopNEyc9SUtKchJmux19RiraDDuaZMuihy9IxOOMdgzQfLOdnn43Q84wIxMw6pUYHo3gdiw+O59KJVJYnERNdTobN+SyaW3Gso5xthhKpYjZrMVs1pL5iXdKPzNvxDOO+1ojrtoGxhsaCPZ3kphwoktWo03Vo1ljQ5GbgdechlO00ufW0TWipHcwzlC/D49jHjcF5hHAtLU6+B9/fZq//p9nWLM2gwN7C9i3p4CsBTT7GxnxcbN+mJt1I1ypHaClZfZhNkrWpPHkS8XsT2smpe9fafvXVs7fEdRq0+1U/v43Kf6FV1EaVtb/eKWKh8IMfnianh++x9jJMyQfLKJr10HO5+/n5nU34esxYPahJT5jHjdHAGypevbuL2L7pmw2rs2Y8yaJ7OGi06rYv6eA/XsKkCSJnl4Px091cOpUG/UNngWPrXuna9eHuHZ9iNzcJH7mi2t5+qmyZUvwJbs7QyM+Dp/s4OyZTm5eHyUyS2ueTzNZtOQVJVGWL1Ka7CMtOoLVO4xiPIioMiOoDSTUetr7h1HGwuQmayA5QGKrgXFTCmMaO6MRE12jKuoa/Ax2e2bf1oEJ/s//ucQ//fMlNm3O5uXnK9m3p+C+JTZzOgOcv9THsVNdXLrUT2AB3UZS0gysXWOiJj+KSowTiQlcuh7myo3gnP3kFUqRogobGyqgUtFHhn8Yk9qMrnAtyZvWo89dvozmDzO55lZ21+ZTczsfTqefI6e6OH6yi+tXB4nOcbdQZ1CxZ386r64fQnP0CE2vd9PvVCPt20d04yYckpqBwQmGBv24XcvT5+QWjVaJ3qjCYFBi1IsYtaBVgShONgsUhckhYAUBFAJE4hCIQDAMgbBEMJQgGEwQCEQJLCCD5mysKRrKS5NYuzaDzZsKqS5PXbYflpVyZzwWDDHe2I77RjOemy2TzzdaiI6PY8o2YCkyYyk2Y67OYqKwkhuOVOq61bR0hOltdy1pU66MLDOVlanUVKWxtioVk0lDOBzm7NmzBIMJ1Pp8GpudNDSM4JpHoC0qBNbtzOPRp7LYZmkhpf8C7T9qpvWNHmKBycQYxsIcKn7/mxR+7YUH5u7vcpISCcbOXKXzO28w9N5RTNuz6NrwKBeHk6m76Z3zGnQnvUFJil2LPyDhGp27FiXJqmXf/kKef7KMtTWLa8K3Us67leph2D8+X4STJ9v54K1arrf6CATvLtt2UpKWV1+u5vMvV5Oc/GDcGFutx0EsFudq3TDHTkzW2Pd2zT9Tr0IpUlyRzOYqBRvMA6R0NEBIhSa3BuvmTSRVlXymFdpM+ykejuDvGcDX2Yuv8SbhkSZ8pSVcixZwtVmguW5sXjkGTGYNTzxewkvPVVJaOv/uPAuVSEh0dLq4dmOIK9cHqasbYWRo/nlHRIVAQbmNjdVq9hWPkd52keFjXQxdHuMGuZzI2c24cuaWUPZME2Vr09lUIbE7s4fEsVO4+y2s+es/f6i6BcnNkmWr2lIFt3cKBqO8d6SdN95qoGmWLLYwVejfmskr+yKU956g+0d1DJ4fQZedSemvfomib75CQmegt89LW5eDzs4Rurs99A/4GBz0E/Cvrox501EoBHLzDFQUG9i4KYctW8vISr93CYNWcuFBkiSCAyO4ahtwXq7DeakO1+U6ol4vliIz9rUp2NfbkdbVcMWVw5V2LfVNwTnvTN8rGp2SbY8W8+RBE2sU19G1X6P9zS463u29HdRa1pRR+Qe/QO4rT8xrLOCH3URHL13ffZOeH76NJk9N15bHOT9qo6FhYta+indSqURKcpSUlGhxxwxcv+ZhfI5xD/UGFbv2FvDcE2Vs3ZR118NLreTzbiV42PZPNBrno29/xKHDTdR7NDjHFx/oqlQizzxVxs98aR0F+fc3SeTdWk3Hgdsb4qNTbZw+08W12tF5d90CMFu1rF1rZku+j3LnTRQDXrTFm0l/bP+8+m4uZD/5uvsZeOMDAi3nUJWn0525ngudRi5fdDI2OHcgWVySwgvPVfDU46V31VJFkiSGR3y0tjloaB7j2s1hmhpGCCww74jBrKFiXTqbq0V25wyguXSOwY+6GTw/QtQfw51RwIniR+gIT3/DR6tXceCFSnZuVFOla8M23sDw4TaaX+un7A9+h8KfffGhq6GVg1vZqrYcwe2dunvc/OjNRj78oAWve/a+RgXlNp45qOcR83VGvneazg/6kSQl+T/zHGW//jNYaso+Mb8kSbg9Qdo7nbS3D9HV7aS3b4KBwQCjIyFi8yzo3ktKlUh2tp7CLBUVRUbWbS6iqroIre7+1dStpsIDTNbYeRvbGTlxidHjFxk9eYmwy0NSgYnUtSnYNqQRWbOWy2NZXG1X09C0/EmDPk2rV7F2ezbPH1SxRXeD0LnrtL7RzdCFUaSpw9K+ayOVf/iLZD6556H74Vyo6LiP3p98QNd330CKDjPyyJOc82RSe903r+Z9ggDZdiVlBg/bqmNEiyr48IJI3eXBOWv816xL5wuvrOHAngLU6qVrPbHazrt77WHeP64bTXz0Z9/hQm+YTnsJvU4W3U98+8Y0vv6NbWzcsDqbUK7k4yCRSNDUNsZHx5s5f3GIthb3vFsQCQLkFSWxsVLBRn0vac3XEfS5JO/aR/ojOxdcS7jY/RToH6bv9UOMXz6OvtpCW/E+Dl1Wcf38AOE5httRKkX27Mnnhecq2bYle8YbfomExPhEmO5uNy1tDprbnLS1O+nuci04kL0lM99CzfoUdlSEWWfsJnz6EkMn+hi6OEYsnCBlcw3B7Xs4HkzlzA3ntOePIMDWR4p46XOpbIx+hDHQT/fhARq/347KnsfOH/7/MZcVLmr7Vjs5uJWtassd3N4SiyU4caabH71ez9WLs58jyakGHnk0lZcquoi+dYS217vwDwVJ3beFst/4KlnPHUBUzF7IjMcT9Pd76Ogcon/AxcDgOMPDfkYdYRyuKG5XeNkyEgrCZLNFu01FWrJIerKCbLuamjU5VG2qRq1dOT/OsLILD/MhJRJ46lsZPXGJkeMXGT15mYjHi6XQROp6G/ZNGXjK1nFpKI3aNiXNTRN456ilW0panYJ0q4JUZYhk3xiFdi27vrSf8ie23bNtWI3ikQhDH56m+z/eJdh1nYnHDnA+UsTF2iC+8bm7KoiiQFGWinJ/Jweze7G9uIt32vM4ftzJ6MDsTQQNRhVPPFnGl1+pIT9veWq+Vvt5t9zk/QPjbd00/Y9/oe4/DtOZW01vyTpaXeoFjal7S2G6yKsvVvPMK1vR61dPv9yVdhwkEgmuXO/h0JEWzl0YYWRw/smgtDoV1TUmNuX4qXRcR+vwoy/dTPpje7Cuq1h0vg9Ymv3kqWuh7e//DcHXjPbVxzk2VsypMx46G8fm/GyKTc+uHXmEQjE84yG83jDj4yEmJsL4fJG7HiNco1VSXJ3Khhotu8s8pPXfwHWsjqGLY7hbPKiTrWQ8vou0J3bTnVzED95uo/ba0IzLK6xM5cWvVbLHdJWMiev0HO2n7lst+IeClP2nr7HuL373gRhmcrHk4Fa2qt2r4PZOXT1uvv396xz6sHXWWhetXsWOfVl8focb+9WPaPthE2M3XBjysij51S9R9I2X0SRbFrUN8XgCl2sCp8ON0zmOyzmBc2wCtzuIdzxCKJwgLkEiLpGQIJGAuCSRSIBKCXqNgEEjYNSJGHUiJr0Sk1FNdq6NopoS9GbrqrlLvtIKD3crEY/judnCyPGLU8HuJeL+ANZSM2nrbaRszsRTsIYbngzqe7V0docZHRhnYoYxaJeL0awmM1NPXpaOwnwTZWUZVNXkY7PqV82xs9SkRILR01fo/v7bjNeeI/7YNi6pqzlzLYpjHhlFFQqB0jwtpd4OdqrrKHmhikbrZt45p+Lq2YE5++EWl9n4wkvVPPV4KVrt8jYRf9DOu6Um75+P+fuGaPrrf6XjX35CMBxnoHI9nZVbqOtXLjjQ1agFdlYqefWVjWw+uH7FX2tWwnEQjcU5d6GZw8c6uXjJiWts/qMcpGcZWV+hYK26n/z+JjTJRdj27iF1zyZUxqXLRLyU+yk4PEbbP3wf1/H3yHihiqGaA3xwVc+lU/14nYsf4WEhrHYD+WUpVBQpWZsXpFTTT/T8VUZP9zJ0eYywN0rKljVkPrmHjCf3YFpTzqGjnXz3+9fonGW8e6vdwDNfXcfjlWMUuo4T6Bjl6t/WM3bDhcaezLZv/wVZT+29J99xJZODW9mqdj+C21u83hA/eK2en/y0HvcsF0xBFFizOYOXDiTYOHGOru/X0ntsCEGpnrHJsmz+VkLhYTklYjFctY2MHr/AyPGLjJ2pJeYPYMzUk1JhIak6DWV5IT3aPGqHLbT3g9ebwOeLEQxECQWjJBISUkKaHM5qmS+7lhQd+TlaCtOgOAXKM3RkZGRgKshDm2Gfs9XCaiNJEu7ahslMx8ePotpXxTXbFk7fhJ4Oz5yfF0WBsiI9FROdbPRfoezRTLyb9vJevZ2zpx2M9Hln/bxareDAI0V8+dU1VFWkLtG3mtuDft7dLXn/fFZo1Enz//oObX//faLjPhImHeMHd1BnreZqq0AsurCLU0aqikfWKXnl1c1k11Qv01bfnft1HMTiMc6ea+DdQ11cvuJifI5uVbcolCLlFSbWZQao8jSRGoekTTvIeHQX+uz0Zdve5dhPUX+Aq//0Jhd+cARXTiYjKYV0DYu4HKElHdpRq1eRkWshp8BEdaHE+hwvqZ52ghfqcdwYxVHnxjcYQGNPJuPxXWQ+uYf0x3aitFhobhnjwsU+fvp6A6NjM98A1eiU7H++gqceS6J6/DA6Vw91354cfk+KS2Q9d4At/+dP0WXcu9+AlUwObmWr2v0Mbm+JxuIcOtLOd75/nY4256zz5pWk8MyjRp6w38TxozO0v91L2BMhbf9WSn/jq2Q9u/+BK/wvt4etEBmPRrlx9AbnT7bQMhSg2w3DztiimvrdKylpBvJy9RTYYhRox8nHgzkG2vQCzGWFmErz0aamrPhamFvCLg/DR84x+MFJfPVX0W0vprFgJ6eaNTTXOedVcMrL0VMtDbJh5Bzlm3Ron9nHR0OFHD8XouX68JzLyMpJ4pWXqnjhmQpMpnvf5/1hO+8WSt4/M4t4xmn9++/T8j+/TdjpQVAI2Pfk4NyxhRNj+dQ2xIlG559zQhAFykv0bCsVeHJfAUU7diCIK+N39F4eB4lEgqamDt54t4VT55zzai0CkGTVsLZczRrlAOUT/VgKq0l/dPddNzVeiLvdT5Ik0T8wTlPzGHVNozS3OGhrdTDuXdoWTQazBlu6kcJCAzWlIhUZfjLjQ8Rb2hi/3oOz3oWz0UNkIoohPwv7zg3Yd27AtmMD5qoS2jpcXLk6wOWrA9ReG8Lvnz1plzlZx+6ny9i9P52K8Hkyx2vpOdLP9f/TRMgVRpeZyqb//f8h+4VHV83v570gB7eyVW0lBLe3SJJE7fVB/u171zl/tmfWBBpWu4FHHkvjlZpupEPHaftpB56OiSVpsvywWa2FyEQ0SnTcN/mY8E9NTz7Hpv4e9k7gkiQ6olq6Ahp63Ap6BsMPRJZte6aJ/AIDhalx8hUOMl1daIadoEpGn1uAuawAU1kBppJ8lLr7O/ZqIh7HdbWBoQ9PMfLRGZRKJ8Jju7mpLuNyq4KWeue8hu6x2TSsM3nYFqxl7QYR9e5tXPbmceKagqtnB+Yc0kKhENixK58vv1rD5o1Z97Uws1rPu3tF3j9zi/kDtP/Lj2n6q38lODg5MkH6Zhu5L5Vw07CGDxtsXLvpJ77AG3f5BUa2Vog8sjmZdQf3oNDMPHTKcrsXx8HQwABvvFfPsdMuOltnbtJ6J1uqjk1FCdZFuyg2aEjfv4fUPZvv29jkC91PkiTR1eXm4tV+Ll4Z4Mb1Ibz3uGuOggQpUS827zD2iBtzRgraglw0OZmos9KRNDqi0ckbNaNjPq7WDjI+j3wLAGnZZvY9X8GOrSYKfBdJ891kotNzuwkygkDJr3yJtf/ttx6qIX7mSw5uZavaSgpu79Tb5+G7P7jJ++83EwrOHIhodEp27M/mCzu8ZLadpPMnzfSfHkZUayj4yvOU/vrPYKkunfHzspVZiIyHwky0deNt6mC8qRNfZx+hUSehESehUScRpweBGBqLGo1FjTrdgrIwG09KNqMaO/0xC11OJd09ASY8yztO8t3S6hSo1Qp8E9G7auoliAJpWWbyCvQUZ0oUal1kujqIXakn6kqAPg1DUT7GwhyMBdmTj8IcVOalLbjGwxG8DW24rzXiutaE52YjkncAy7Z8HBt3ccWVxtWbQfo65leINBpVrEsPsUvZxLYdSoJVmzndZefizThN14YITMw93EZqupHnnqnglRcqsduWrp/b3ViJ591KIu+f+YuHI3R9900a/+Kf8XX2AZBcnkTFF4tI2pLN+10lvF9rprHOteBuFamZBtaUathULLJ/bwm2omoExb1LSLVcx4HHOcr7R+o5esZJ3TXnvIYRy8jUsSE7zPpYH+WFuWQ9+wjmssJpb5KFQjF6+zz09npxugI43QEcziBub4h4LEE8IZFITK7TYFBjMmowmdQkmbVkZ5jIyjSTmWHCatXN6ybcXPvpVjB74cpkMHvzxiDeu/xtVKpEUtJN2NKNpKZqCQQTdDSO4Ri+t6MT3Kmw0s6+5yvYXJEgf/wCNn8L3g4vzT/ppOfoIFJcIqm6lK3/8mfYtq27b9u50snBrWxVW6nB7S0TE2F+9EYDP/pxHc5Z+lMIokDVhnSe3atgr/4aQz+5RMc7fYTcYVL3bqH4l75AzguPPtTZ72ayEgqRYZeHsdNXGDlxCcfZK8SdfWizTOgK09HmpxK12fCqkhlXGHFHdbhDStw+Ebc3gdsbxzUWxDXiu+t+QEnJOjJyk7Db1VjNIlYzWM6F5/MAAGTKSURBVIwJFAoBSRKQBAEQploV3LGuO67FDq9IR3+C/q5xhno98x57FaCk0ECuXQSFQOdQnL7+ILEFNC/8NFEUSMtJIr/AQEmORLHZS1ZkEEVnJ4GGHvz9PkJ+JQqTDWNBDvqcDLRpKWjTbGhTkyef02xo7FYUajWSJBH1ThAacRAadU0+T91wCPQO4W1sQhFxYC5OQr+tirGMMponUmjoEmisc+NxzC8ZiVotsq5Y5GDuKNv2mBgQsjnVbObajQna60fntU81WiX79hXy0nMVbFifiSiurCZnK+G8W8nk/bNwiViMnh+9T+N//2e8DW0AmHIMlL9aSN5jWXTH83i9oYDjZycYG1x4ACIqBApLklhbrGRrpY4de6rRpeQgiMuXfG0pjwP/hJOjH9Vx6LSTa1edhGe5cX5LapqWrVkBNokOqnesJ/OJPWhSPplB3esNUd8wQl3DCPWNo3R1uxkemlj08E130miV5OQmUVCYQllJChUlNirL7Z8ZX3a6/RSNxblaO8jh4x2cPdPN2OjikkFp9SqyCqxk5ZnISRPIsUXJSw6SpXehHBsm3ttPeMCDPseCuH4t7dECLnebaW7209EwimNo7rFz70Zqlpni6jQ27s1nQ5aLHM85kkJ9DF8eo+XHnQxfcQCg0Gqo/q+/RsXvfB1RtXoyht8PcnArW9VWenB7SyyW4PCxyX65bc2OWedNzTbzyMEUXqjqQfjoJO1vdOGod6OxWSn8uZco/oXPYyrKXdbtDYaidHe7ae1w0dLhYmh4AqVSRKtVotMq0elUkw+tEpNJw5oKO4X5yfelAH6/CpH+3kF6XzuEu/UGXnsy7uRsRgULw+MqRhwJxj0RJjxBxj0hInOMt7cYJouWomITpTlQbA2Qr/FijflRhEFQ6kGpA5UWQaEhEYsR8fvpbG2GRIKCwgKUGh2iSomgVCGoVIjKyen4uIPoaAcJnUQ0PZ1+dRYtowba+6Gr1cNA19w1lslWNV94pZpXXl5HX7+Da9e7aWgYpbVjgr6+APG7HMYqOdVARo6Z7EwVBRkJCu1BshlBOTRAwuEiPuoi6g0THo8SmYgQ9kaJhSUUSlCbVZM15mY16hQ9ygwbYqqNiC2d1nAmdT0aWjrCdLc48c+zCRlMDqFVXWlg20YNpmQjHcMaOruC9LY5FzR0U/XadF58toLHDhav6CFP5OBtdvL+WTwpkaD/7WM0/Ld/xHWlHgCNRU3J83kUfy6PREoaJ101fHhFy9UzfYQCi7u+arRK8ovMlOUrqM5Xs21LDhn5hSi0liX7Lnd7HIT9Lk6fbeSDE2Ncuuya1zXJYFSxqSDOdtUY2x7dQtZT+1BoP+6X7/YEuXJ1gEuX+7l0ZYC+OZLWLQd7qp6SUhtVlWmsrUqjMN/ExYunCIcTaAylnDzTw6WLAwseR9Zg1pBdaCU3z0hxdoKKzACZkX4Sza34b3bjHwrgHw7iHwkSHAuhsSVjKsnDUJiDp66FYE8nWdvTyNyRhnlHGV5LKR3hXK53aRnsmbzhO9TjmfeNzunY0o0UVadRXJ1KcaWNLL0bS7CXtIk6tIERej8aoPknXXg7J4NqQakk7/NPUvOnv7HsZb8HhRzcyla11RLc3iJJEtdvDvOt713j3JmeWcdO0+pVbN2bxYvb/ZS6LtD3Wj1dh/qJ+mKkP7KD4l/6AtnPHbjrO3ixWILa64OcOtdLW4eTnm43YyO+Bd+11RtUlJTbqFmTwaa1GWyoScdoXP5EN/eyEBlyuGl460NuDPrpipjoHBXp7RxfUBC0GFqdkrx8A8U5KspzldQUGSkpzkKTWYSonF9/1MXsp0Q8jq+tm/G664T7m4grQ/RlVnK0xcrFsyNz/sDrdAoe22jhF359Pxn5k1kcI5E4LW0Ort3so75hmNZWF/19/ruutRZEgWS7AXOyjqRkHVarihSLSEqShD0pjt0UxRdWMuJVMuZR4PAkcLmieJwBvM4g7jH/gmqpAdQaBdm5RlLSdMRQM9jjZbTfu+BzJ7/QyoF9hXzumXKys5IW9uH7RA7eZifvn7snSRLDR8/R+N//iZHjFwFQqEXyHs2i7JVCDPnJ9GjX8n5zFqdPjMxrPNO5pGWbKCnUUZQpUpyno6oyjaysdJSG1EXV8C70OIhHQwwPdHH8TC8Xbvipr/PMK9OxUiWyplDJVp2DPTvKKHzxUVQm49Q2RKm9PsSly/1cvNRHW7tzSWpll5rVqmZ8IrqgPtZJKXqKq+zUlCpZnzNOuqeD6M1mJuoH8LSP4+2aAIUGc3kB5ooiTKX5mEryMZfkYSzO+0x/1fHWLrr/4116/uNdAn19pG+0kbUzjbRt6STScpjQpOPTZDAcS6FzWMNAr4+hXg+jAxOAhFKpQKESUaoUKJXi5LRSgVqjIDPfSnGVjTyjm6RQD5ZgD0mhfhRSlMBYiJ6jA7S+3kXQMVmeUFnMlPzi5yn9tZ9Z1kzVDyI5uJWtaqstuL1T/4CX7/zHDd57r4VQcPa7kwUVdh7Zreepwi6iR07T+U4Pjno32nQ7Rd94ieKffxVDXta81x2Nxbl8ZYAPjrRz+nQX496lD84EAXLyk9i2PZcnHyllTWXqsiTAWe5CZDQa5eRrJzhX56CuD7raPSTusuZxNkaTiswsPaXFZqrKUli/NovComyUyrvL/rlU+ynscDH64ZsEIiPc1Jbx0XUVNy4OEZ6ldlqhFNiWB5/fmU7NgTWozEZUSUaUhskxcYOhKE0tDm40DFNfP0hbq5OB/oXfYLkXRIUAEncVjCuUImvWZnBwbwH79hSQmbH6EoLIwdvs5P2ztNzXm2j+n9+m5wfvkYhGQYCMLXbKXi4gbZMdt66AK4EaDp9LcPlE15LecDRZtGRkG8jJUJGXriDDriYz00R2honk5CS0WjOi1jxt8DvTcSBJCeIhL/5xN519Dq7ddNLQEaK9K8RAl2de1xdBgNJ8DZtMbg7UZFDxpSfR2pKJxuI0NIxy8XI/ly73U1c/QmyBN+5usdj0WG0GDGYNxiQtRpMStVJCFEAUEiBJBEISgUCCQCDOhDeEZyyA2+Fflt/JpBQ9JVU2qksUrE93k9LXiO/ENZw3R/GNJEiqLCGpsghzZTFJFYUkVRajz8lYcNZnSZJwXa2n+/vv0PPD9wkNj2FI15FSYSGl0kpKhQVLiYWQMRWfOgO/2o4kCAiShEACQUogICFICSCBKMUxRkYwh/oR41E8XRM46t046l046tz4Rz5u3WMszKHsP32Nwq+/uKRjCT9M5OD2AScIQi7wG8DTQC4QBtqBHwP/IEnSkoxoLQjCF4CvA2sAKzAMnAb+XpKkC0uxjhnWu2qD21v8/ghvvtfMD39cx8AczYO0ehWbd2Xy/NYAleMXGXirgd5jgwSdYTKe2E3JL32BzKf2Iio/+yMbicS5cKmPD462c+Z0N/45MrMutWSbju07c3n8YCnbNmahVC7NEAPLUYiMxxOcPHydQ8fauNIYwO2Yf7PS2Wh1SiwWDdZkLSkpemw2I3a7ibRUA8V5VvLzLJjNy5MZeDn2U9jhwHH0DVxSmLP+PA6fCtLdMnOze0GAqkyJzV2nSb5+DVEUUZqNqJNMqMwGBJWK0NAowWEHEUHJqDmdsfwKxmw5DAlmHOOJFRnwzofBqGb79lwe2VfIjm25GI2ru/+8HLzNTt4/yyM4NErr33+ftn/8IRGXB5jsl1v8fB4Fj2eTsKTQq9/AkbZ0zh8foPXG3MNq3Q2VRoElRY8lWUOSSYFaJaBRC3c8g1JMkEhAJC4SCksEQxJj7hhjIyFcowtvMZKXpWGzdZz95Sms+8qTKFOSaWwapfbaELXXBqm9PkRwjhvmn6ZUK8gusJJbmkJOnon81ChFKT5SRAe6qBtNbILE2BjBfhcRb4SYP0Y0ECMWiiMoBBQqEUEpIiaZUGSmkbCl4lQm0zthpmNETfdggoG+AMO9ngXnYcguTGb9hiS253jI6K5l/Ng1PO0+dDnFJG+qJnljFcmbqjEV5y3L0EWJeBzH2VqGPzrP8NFzOC/eRIrHEVUiliITKZVWLIWmyX2gEEAQEEQmb+YLAoICSIC3a4KxejfORjfRaUY8sO1YT8Xv/BxZzx+Uh4S8S3Jw+wATBOFp4PvATO3cWoCnJEnqvIt1aIGfAM/MMEsC+BNJkv5sseuYY/2rPri9RZIkLlzq599/dJOL52YfSgggu8jKhrUGNud5KXVfx/X+DfpODqMwJ1P0cy+RdnA7hppyLt5w8MHRNs6f6yUYWNgPXnKqgfRsExmpCkQBQmGJcEQiHEkQDk8+XGNBvM6F3SMxmtRs2prJY4+UsW97Llrt4ptWL1UhMpGQOHe+g3ffus6lunE8roUNK6BWi6Sn68nKNpGTk0xGehKpNj1pdsNkEGvTo9Pdvz6Uy13YDo+NMnb2Xa74Tbx+TkH9leFZ58/O0fFE2QTrOo/jrZ1sQnZnM32NVY0hVYc+TYc+VYchTYc6w4TLmEKXmE+Tw0rnkILevjDeBf6vlptCIVBQlEJVZSrra9KorkojP8+64pJC3Q05eJudvH+WVywQpOvf36Llb7/LeFMHAEqtgrxHsyj5XB7mQisOQxnNiUpOXBW4crKLwW7P/d3ou5CWqmazPcC+YhNrP/8Y7c7EZDB7fZC6+hEi8xiK7E4qjYLCCjvFNelUlumpTPOQEu0jKdSHenwET5sXZ4sHV7MXb9cEvqEA8dDH61AlmdBl2NGm2VBo1ZN5G1RKkCRivgDRCT+xCT9xnxelOowp24ChyI5iXTmD5iLa/VY6BkS6uwMM9niI3bH9CqVIUZWdzWvUbNL3oT5xikBnAFPNeuw7N5C8qRpzacE9G4P306ITPkZPXWH4o/OMfHQez82WBS9DZTGTvLGKlE3VJG+qJmVzzYJa38lmJwe3DyhBENYC5wA94AP+O3Ac0AFfAH5+atZmYLMkSYvKfS4IwveBL029PA78LTAI1AB/BBRNvffzkiT938WsY471PzDB7Z0GB8f53o9v8v77rfMahFyhFMkvNFFdEKci0YWry0utVERdn4JwZH53SbMKrFRWJ1GQHqc4NUiuOISiox3fjW68HeMkIglElYigFFAoJ59FpYgm00Kgeh3tyjwaB7W0dETp7/bO+260WqNg/YZUDj5SzmN7CzCbFlZzeTeFyERC4vyVPt59s5aLtU487vk1ZVMoRYoK9FSWW1m3Lpf16/LJzjKv6EHU71VhW5IkQv11XKxt46fnVVw8PTjrsWBM0vDIPjMvrx0ipfcGGpMSdYaVmM5KWGkirDARVpoJK02MhC009Yj0dIzT2+agt90159iwy0kQBZKTdaSmGcnMNLOmMpU1NemUldjQapcvA+tKIAdvs5P3z70hSRKjJy/R9o8/oO/1I0ixyRox+9pkip/NJXt3OlGdlRHTGq64Czl3zsW10z2Mu5emNc5yUSpFSrIVlOn95NktiMVFdDtiNDaN0d7hIh5fWO2nKArklqRQsiadsqpk1uaMkxrpIjnQiTrgwFHvZqTWwXCtE3eL9/aNRo09mZSta7GuLcOypgxLTRmGvEyU+vkfz/FwhODQKIH+Yfxd/Uy09eDr6CHuGUDURlDWlDCWUUJ/PBmNGKfY3Yx4rQVNajH2PVtJ3bMZXbp9Qd/3XgqNOnFeriPiGZ8co/7WuPVTAX503E8iEsFcVkDyphqSN1VjLMxZ0eWF1U4Obh9QgiAcB/YBMWCPJEnnP/X+7wF/OfXyv0qS9P9dxDr2AiemXr4DvCBJUvyO923AVSabQ7uBQkmSPAtdzxzb8EAGt7dEo3GOnezix280cP3qwJI3ycwpTmHTZguPVHrI7L6E46NG3G1ePB3jRH1xkmpKse9Yj237OjT25MmMuiol4u2HiqjPz3hjB576VsL9HSgSTpSlGQzkrOGyI5VL14M4hmceBulOCoVARaWVXbuL2Lopl6oy+5zNlxdaiAyHY1y42sd7b9/g0jUH4575BUe2VC3ry9Ts3ZnDnke2YDStrsLq/ShsJ0Jumm5e4/uH/Zz4aJjQLC0HFEqRtVszMZi1BINxgv4IoUD09iMYiMxrTNj5Uqknx+dVqSaTfajVCtRq5dTz5EOjmfybRqNAp1WRkWYkM91IRrqZ9HQjdpthyZrXrzZy8DY7ef/ce8GhUdr/709o/6cfERwYAUBlVJJ3MIvCJ7OxllnwanMYNKzlYp+dm1dGqLvYf1eZb5eKXq/AZpQwizE0okhcZ2RoQmJkdH6/ndPJyLNQUpNGcXUaa4riZNJLcqADc6if4LCPwQujDF4YZfSak/jUTXC1NYn0R3eQtm8Lqfu2Yi6ffhzcpSJJEqFRJ476Vi68/SGiTs2BX/pZrPnZy7ZO2YNPDm4fQIIgbAYuTb38J0mSfmmaeUSgHqhgMvBMkyRpQW1WBUF4D3gKiAP50x08U31xfzD18nclSfqbhaxjHtvwQAe3dxocHOfHbzby7rvNuBbYDPhO+eU2Nm1O5mClh8zeywy/c52+k0NEJhKk7t2CfdcG7Ds2kLJlMvHPYoTGXHjqWnCevUB0pJ6RvGKuRAq4eDNGf/f4vJej1ijIzzVQVmxh07Yitm3OxZ7yyQQLsxUiJUnC6QrQ0DLG+VNN3Ghw0tnlIzrPPj9pGXq2VSl4YpudzU89gqhYGbVxsWCI0PAYwaExQsMOIm4vEa+PqHeC6LiPRDhCIhqbekSRojGi4Qijg0OQSGCz21GqVQgKxeRDFKamRRBFSCSQJAkSElIigZRIgDQ5REciGiMeDE0+QpGp5zDxYJh4KIwgCAhKxe2bH4JSgVKnwvTcBs4b13D0fBDHyOILbPNlTtJSXJJCRamNijIbZaV2UlMNaNRKVCpRvmt+l+TgbXby/rl/ErEYA+8cp/2ff8TQoTO3x/G2FJkoeCKH/EezUFp0uHWFjOrLuTGaxo0rY9Rd6mdkCYbFEQRQCJOXUlGY/IMggHBrbPGphHSxBMQSS3MdEgRIz0mioDKVwgo7FeUGclUDJAc7sAa6UEb9OBvcDJwfYejCKN7ujxvrJVUWk/XsfjKf3odt+7ppc3Ysh54+Lxdq+7h+rY/GRgcD/T60WgUbN6Xz4ovr2L0l54HqyiG7d+Tg9gEkCMJ/Y7JJMMA2SZIuzjDfHzDZXBngMUmSjixgHUbAAWiADyVJenKG+dTAGGAGzkmStHO+65jndjw0we0t8XiCcxf6OHm+h2vXh+jucM06pJAgQGFlKls3GthX6iFt6AZj79+g98QQQVeUjMd2kfvqk2Q/dwC1xbws2xx2eRg5dhZ/w1lGNRquUsz5JpHOFveCa6M1WgUGgwqjQYHZoMCoV6ASo6hVAiq1jmAoQSAcwz0eZ2gkhN+3sH7G6dlGtlWJHCwT2PLsk6jMyQvbwCUiSRK+jl5ctQ2MN3cy0dbDRGs3E209RNz3flzC2Si0CjQmFWqzGm2yBp1Ngy5Zi86mQZusRWvTokxPQUpJJSAZOdGZytvHQ3S2Ls33sFp1VFWlUVOZSnmZjbJSG3a7QQ5gl5EcvM1O3j8rg79viK7vvknnt17D19kHgKgSSd9sI3dfJlk7UlEYNLh1BYwZK2gaz6Kx3ktn4yidjaNMeFZWf/5bRIVAdmEyhZV2CipSKSnRk6UYmhpepgdDZIyIN8LQ5TGGLowydGmMyMTHv4XJG6vIeelxcl58FHNZ4T3Z5lAoxtkLnXx0uIGrdW7GRmfft9ZkLfv2ZfPqy5soK7o/v8Oy1el+BrcrowrkwbR76tnPZLPgmZy8Y3oXMO/gFtjCZGD76eV8giRJEUEQLgCPAVsEQVAttIZ4vqLRKJHIwpstKhQKFDNkpotGoyz2JsxyLVcURXbvzGP3zjzC4RjvHGrlJ6/X097imEw9/6ny/OTQJXE8E3E63XoM2UVoy4bRd/kJBsdBpyGhVjDbDeRYLEYisbihBERRRJNsIfflp+HlpymXJNa3dPKC7Qgja5xcjWVxqUtLS+P8+unGojG8nhgeNyQ+s9FTg54LErdyTcwn6WB6lpEt1Up2ZvjYsHctlrK1084Xj8eJxxeWuONOavX0GXITiQRBrxfHueuMnbmK60o97uvNRL2freUWVSIquw6lTolCq0CpVaJRTyZTUU39TVQIk1UGAiSmamYRpo4F7txnk8fg7UNRAkEEUSlOrkcBCpVw+7WoFFHqFaiNakSTGpVJidqoAo2GqEJPVNQTVpoJKi2EVUmMxU0MuNQMOgScfUEcl8YZG5xgqM9JKDDd0EHSnP8vrUZBaamdqspUKivsVFakkpY6GcgqlUrEGZKMLObacMtqvEYoZ6h9udtzeTUtVxAEVDOMA3435/J8lhuJRG4vPxKJzPh//rTZrhGx2MzDbc1FpVJNe7NnuZYrSRLR6OJ/6mc6lxe6XFVaCqW/9w1KfufrjJ2rpec7b9H/kw8ZPDfK4LlRRJVIxhY7Ofv6yNnaQr5eze7ydDzr83FrK+lyW+locdHd4qCreQyvc/q+uokESNL0P6IKUfrkZXcBJg99AXuWmewCK9mFyWQWWCnM12CL9WIO9mIJnUc34kSKS7jbvHRcdzF8eQxXs+fjG9+CgG3PJrKfP0jWcwcw5Wffk3PZ5fLz3o/PcvLKCA1tvk9kSp7rlBj3Bnn7rTbefquN3Dwjj+zN5ZXPb8Nm/eSNotV6jVgs+RoxaamuEUtNrrldJoIgjAE24IYkSetmmc8KuKZe/kSSpFcXsI5fBf5u6uULkiS9Ocu8f8vkcEQAVZIkNS5gPXN1vEgHLgN897vfJT194QNdFxUVkZGRMe17Fy9eXPRJkpubS25u7rTv1dbWEggsrmlxeno6nnE9b3/YztkzvZ/ox5iTFUKvn/2iqVAIpGaayc0SydW5ibd14+3wIHW4KS0qJu9nniP14DaEO355mpubcThmHuJlNklJSdTU1Ez7XkdHB4P9A4QHegm4RxmM6BiaUON0xwjMUeMaiYh09UxfG5KSHMGWMvPnBcBs0ZBphzxjBFtaCurULJj6Qdq6deu0nxsaGqKjo2PW7ZrNrl27bk9L8TiuSzcZ/vAMPVdvMiiFQZIQFAIa82QtqMasRp2kQqVXotQpUemViGoREJAEBRIiCUFkU74ShVJFQlCSEJVIiEiCiDcg0TwQnJr/VmB7q3Hcx3+Tpv6OcMd7CJQWpaLRqJGEqXUiEhM1TEREWloGCUYFghGRSDhBJBwjEooR8EcI+iIEfJEZx77t7dcSDH62ZKNQSBQXzn5emM0aMtKNUw8TOt3HBany8nJsNtu0nztz5sysy53NartGZGRkUFRUNO17dXV1eL2LqzG32WyUl5cDEAqFOHXqFAB79uyhu7t72a4RQ0NDi1quXq9nw4YN077X29tLb2/vopY7n2tELBajp6cHgLy8vBkDiU+78xpxJ4fDQXNz86K2F2DLli3TFoq9Xi91dXWLXu769esxGD47Fqff7+fatWuLXm5NTQ1JSZ8d6CESiXDp0qVpPjE/5eXlJKk0DL59jP6ffMjY8UtIU4GG6+AajFl6TNkGjBl61EYVCUTCShMhpYWQyoIvrsM/EcM/Ef74MR6mu1vA7Z7+f1xcGEChmL28KwiTQ/1p9Sq0OhV6owaDWYMtN5eC8lysjGEKD91+6KIurgyocY1G8Q0H8A8F8A8HSdwRPAoKEX1eFqbSfIyl+SiN+tvvLdc1IiUlBXNYwZEjDZxti9LcEbg93m1megiTaXFBXSCgoG9Ai0Ipsq7GzJN7snn02Q0olYpVe41YLPkaMWm2a8Tbb7/NV7/61Vt/kpslr3ZTQ/PcurX4niRJMw3Rc2t+H2AALkiStH0B6/kL4D9PvdwsSdKVWeb9XeCvpl4+IUnSoQWsZ94HyZ//+Z9jtVrnO/ttZrN52hMPYGRkZNF3BI1GIyaTadr3xsbGFnUnzOGK09wm0tg4/W6ZT3B7J5VaQXq2iYIMiQqDA+uJ8/QeHcDnV6DcvxHlgY2IWam43W5CocU1z1Kr1aSkpEz7ntfr/UwBXohG0AQmf1i9CT3usBqHFzyuyCcyRC4kuBUVAkaTGrtVxKYLY1EGSKh1RLSf7VMsiiJpaWnTLtfv9zM+Pv8+w5+WbkkmfrWJ2OUm4rUtCP4ASYVmNBsy8RZno03RoEw2E1PqiIlaYgotwbiaYExJOCoSjolEYgLxuEQiISElJBLxBHFNHvG4QCyaIBZLABKSBGIihFoaQUK6VUn7CdInJj6uxY3HEyTiEm5fMuGISDQSJxpJEIvECAaiRAIBcrIW32/2boLbTzMYlFgsCpJMIpkZyaSk6Ke9S7zYwg+srmsETBbYpvvRB3A6nYuuxdZqtTNeY+/lNWK+lEoldvv0WVYnJibw+RY1SMCyXiNmuokSDAbxeDyLXm5qauq0tcfhcBiXyzXNJ+bHZrNNW0MVjUYXfbMDIDk5GY1G85m/x+NxRkdHF71ci8XyybwMHh+xczeJnb7OWNonz0W1SYUxU48hQ48xQ49CLSIBMVF7u6VKVKEnojBgyC4FXSqhQJRwMEooGCUcjE0mwxtrgUQcQRQQFQKiIKBQTSW00yhQqhVoVKCSwigTIZSJMKp4EFXcT5E5QLF5AgFIxBN4OydwNnsYu+GiMZZESPhUQK1WImTYEbNtiOkpMMNNlSW9RkRjxEddTMRU9I2buXRNJB7/7A/OdMGtWqMgOVlNiknCqgjgiWvpGYEJ7yfXfyu4vZM1RcuWcgV5qROQpOAzzdbmQb5GfOxBuka0tLTwR390q3em3Cz5QXDn1Xk+Z6WfyeB2oZmDFrKeO0vBi8tQ9BCTJBhzxujrj+HzRfF4lHzcIvyTRFEgI12NSRlhbFyBZzw+XUxzWzQSp6/TQ18nHCeJ3LJf5dF/DLLDW8vYm5fp/S/nCNrSiT+5GQozQLX8p62kUhNKmvyx0TBZNZ9tD6MOhYgkFLcfMUnFpjVJTIQUjAcEAiEJrUZAr5UwqP2olX6MqhhGRRi1IkFMJRBWGQAlIaYPVJZFPE5iyEGid4TAj05hTteQu8lG6u9VYNpSTCClkGankf5OH26fiL8r+nGm4KBvXgPet3eOE49/9oddp4uTm734PmNdPREikc82+1GrFxfMfXY5AunJCjLMMbJMYZJStQxEdTjdcXzj8ytc+f0x/P4YA8DR4w4CIRVJFjUWi4oks4IkE1jMImpVHJVKQCFOtl5QKATu0zCJMplshRAsRlRP7UD11A6UHV1IfSMkBsaQHF4iE1FcLV5cLV4QQJcylUfAqkFr0WC0qlGoJi8iRSOXSU8SiYsaYmotca2aWIqWmKihVh0kFpem2swkECQJUYohSjEUiRhiIIrIJ4O+eDRB2B1hrM7FRMcw7lYvrrbxT4w1G91sAIMSTHrEDBtilh3BbllUkLdQkteHNOrCp9QzEjUy4tQTj0tMTISJx2cezk8QwJKsJS1ZIFXlRxebIKzUIZlNoEwiJRIlQxojmqGmP5xE72CUSHj6G/ZuZ4hDZyEtNUpxUYJMQxizOobCbpnK5CWT3XtycLs87ryqzKd0eGtgz4Vmu1jIeu4cPHSh68mZ4/3bzZKzs7MfqGbJiYREW4eLG3Uj+GYZAkUQoKgimYPrY6S7axmtGyHkDJOdYUdTlE8gOZXRgMDwiA+POzhjAqfARJhj73Zy7F1IzSpjy/ZdPP4NL9nd56k93c5QSyeGwjyS1pRhyM+a9w/ocjc5DIVCnD51EgVxduzeh1anv+/NiaRYDF97H+PNHfjaetBalJhzjez53nOMZ1dzbSiFd3pUdL49QU+rAzExSGbG/MbYXY0MehVmswazSU1Skpav/kwl5WXZpKYaEEWBRCyGp7aR3rc/QtPbTqVFQFmTg0trZ3RCjcsVxeMKzqtPdjwm4XKEcTk+uT/LSj57vglMDkGk/NRDpbo1rUClFHF5TZjNKaSnGcnKMpGVaSYlWYcoCnKzZORmyXeSmyVPWsnNkmftulBTBUA8FMbf1Y+/ow9fRy9xf5CgI0TQ8cmbhSqjEq1VA6ogAWMMtVGFyqhEbZh8NhpVGHwmYglhsrVNfKrFTSRBNBwnFI4TCyeI+WNE/FGivigRX5RYYDKg03WPoO/+ZE21JjUF+77NGLeWo8xNQ5U0feuP2Sz0GiHFE/i7+wl09uCOx+lX2Bh0pUyNPDD79U+pVlBZZWVNvoeMpBiWtDSUpk8mr7x9vqhVZGzZjlKppCAaI9DTTp87QYdTz9Ao09/slcDhCONwgEqtITMQJUcXJj3FjLEoF3GWm/Jys+SPPUjXCL9/+UdkmIncLHkZCIJgB25dCX8kSdIX5ph/BEgF6iVJmr50Mf3n/h74lamXFZIkzXhGCYLwy8A/TL18WZKk1+a7nnlsx+1syQ0NDRQXFy94GSstWUw4HOOt95r5/g9v4Bj9bOFWkiYTKaWkGTmwP4WnS3tRHTlG64/bmBiLkPPy41T+wS+QVPHZHy6XK8DR4518eLSdlqaxaZf7aTnFyWzbauKRUgfmm+cZ/KAFz6BI7itPU/Azz2EsnL5wfstyJ4uZLivp/UgEEQ+FGT56jr7XDzN86BTWYh0Zu7PR7N9GfTCX2g4tTY0T9LQ6PxOk3ZkAazEmN2m6mw1zJ2i62+Vq1CLWZD1Wiw6rRUtqqpGcbDPZWWayMpPIyDCh1X7y/z9bIohIJILrSj29P/2QgXeOkJQhkfZIGaqdm2jyZ3GjW01r8zg9zWOEP3VHf9akLnP0eZvNdMtVqxWkZ5jIzjKSnWUmPzeJmup0CgusKBTz+2eu5oRSnz7vVCqVnFDqjuUGg0E++ugjAA4ePDjvbMlysphJy5UsZjFJ56REAs+NZgYPncF56Saea02ExpyfmEeIJxBmGLUgoVr8RVihUGCpKCZl6xrsO9Zj37kRQ0E2giAs+zUiFgwxfPQ8g+8ewT0xzM2CHZxr1zA6MnNroFvlCKVKpLrGwp4qJY/tLSSjet1kd5cZzuU5z5d4lL4TH/HOFQ/HbkJ/78cNBkXxs4k0AWzperaWCGxWDFNcUkzmU3vRWD8ZDMkJpT72IF0jmpqaqKqquvUnuc/taveg9bmdx3Y8MEMBBQJRfvhaHd/7/g087ukzMgKkZpv53NPJPJ95g9EfnKHtzR6ivji5X3iK6j/+ZZIq5xfgDwyO896Hrbx/qJXebs+c8wsC5Jfb2b7ZwIGiEQwXTtP/TjMJQz75X3qWnJceR2u/9+n67+eQG/FwhOEjZ+n50fsMHz6BvcpAxoFC4jt2cHYgiws34zTWDhPwLT5T7y2iKGA2azCZNOh0KlRKcbLPlkqBSjU1rVSgVIooFLd+SCafBQESiTj9AwMIQFZWFqrbd7OF2wUDQZhcj0ajRK1WoJ161miUaDSTz3q9mpRkHclWHVarDp1u+h/wpSAlEoydraXnR+/T99ohNPow9rUpJO8qQVi/jgZ/Ftfa1bQ0j9PVPEY4uPgf4KWiN6ipqUlj0/pMNq7PpLIiFbX6Lu4wrFDyUDezk/fPg0uSJIKDo7hqG3DXNuK6Wo+rtpHgwMiil6mymDEV5WAsysVYlEtSVTHWteWYywoQZwiSlkPU52fw/ZP0/fQQvv4merbt44wri8Zm/5zD9omiQEWVhf1brTz73HrsM/Q5nc5CzpdYJMD5d4/x1jkv5676Z8i8/0kllVa25wRY427Bakolfd827Ds3oDTo5/ysbPWRx7l9AN2jbMm/BvzvqZfLli15Htux6oPbiYkw3/3hTX7045v4xmdumppVYOWFpy08lXKVge+cpePtHuIRibwvPUP1//PLdzVWXVu7k3c+bOHQoTbGRuduziEIUFBuZ/tmPfvzhtGcOcnIsS6E5BJyX3mS7BceRZNsWfT2LMS9LkTGIxFGPjpPz48+YOzESdJqDKQ+XoWnYgsn2lO4cj1IW93IvPrK3kmjVZKba6GoMJnCPAvp6UbSUk2kpRpISdGj109/93O+VnthW0ok8NS1MnLsAsPHLjB68hL6ZIHUtclYdpag3LgGl8rOgEfHkEfFiEtkzBXHNRbAPebH4/Dfl+BXpVZQUWFn88YsDuwtpLzM9kCMv7vaj6flJu+fh08iHifqGSfs8hJxeQk7PfiGx6g7fxESCSpqatCajYgaNWqLGY09Ga3disaejMp4D/NAfErEM87AO8foe+0wvqZrcHADp/WbOHU1SnCOwFEQoLjMwoHdqTz3zAYy0hd3g3ux54vf4+T1n5zlvdNeWlsm5pxfoRQpr05hc16Isv5a1J1jJG/eRNr+rdi2r0epm7m/sGz1kMe5fTA1MTnWbbEgCEpJkma6OpV/6jMLcWeAWj7jXJ98Pwa0L3A9D6zhkQm++8ObvPVmI8HAzE0z8stsvPi0iUcNl+j91jlOvtdLIi6Q/zPPUfVHv4i5tOCut6WkOIXf/rUd/NavbufGzWHe+qCF48c6GPdOH2xLEnQ2jdHZBP8hQF7pM2z8goHdRR5izSe5+NI/QFIJ2S88SebTe9HaVvcA7FGfn6EPTtH3xhEmrl/CvsZExpMbiHz+tznUZOLaRS+933MiSfPry6hQCBQWp7CmOo31a9KpqU4nK9OMKCfBmJEgiljXlmNdW075b/0siVgM15V6Ro5doO/wBRz/9R+AGIZ0HeUZejZm6DFkGtGUZaB8NBMxPY242kggppp8hJUEogqCUQWB8OSQRsGoSDAMoYhAOCwRDHN7iCP/eBjnqA/XyPySfN0SjcS5eWOYmzeG+ddvXcVmN7Bndz6P7i9kw4ZMVMoHr1ZXJnsYiQoFmhQrmpSPM4oHg0GaUyZrXgtX0E2OkMNF/5sf0ffaITxXa0ndn0Pblsc4ZNpO+9UJPm4AOD17uoED+zN5+XNrKcpPvTcbPQ2DJYWv/PxzfOXnoautm5+8fp2PzroZG5l+++OxBA3Xx2i4DqJYSnHVdraaYc3JD4n/3h+SEKxY11WSvLEK64YqLGvK5IBXtiBycLt8zjAZ3BqAjcDFGebbe8f02QWu4zKTiaTUU8v5i+lmEgRBDWy79RlJku6+feYqd7N+mG997zpnTnaRmKGPDkBJTSqvPKljl3iRnn87z/EP+5ESAgVf/RxVf/RLmIrzlnzbBEFg3doM1q3N4I9/dw8XL/fx1getnD3dPWMALknQ3eKgu8XBa4A9cytr9z/JzvIgqc6r3PjFfyYaTcayZQeZT+3Dur5yVdRchcZcDLz9Ef1vH0VytJC6LZ2ML29j5MU9/LBJw403HDiGxoCxOZcFkJNnYeuWbHZuzWHThiwMhun7zcjmR1QqsW1bh23bOqr+6JdIRKP4uvoZb+liorWb8ZYuBuu6Gf/pdULDRwAQRAGVQTn1mEz4YjUoSTOoUBlVt99TT00rDSoUyXoUZj1iSjIJqx2/wsJQwEyfS8uAQ8GwM4Fj2E9fuwvnyNwJ6h1jfl5/vYHXX2/AYFSzbXsuj+4vZNf2PPT6e9f8UCaTPVyCQ6P0vXGEvtcO4zx3hfTtdnhiH5c3HODUeT+Bt6LAzLWfWp2Krbsy+NyzVezenDdj3+X7paAkn9//z/n8niRx8UITr7/dxNkLzhlrnxMJidY6B611IAhpFNT8CuurtKxJGkNsPU3XP/5v3G3jmEoKsW6owrquHHNFEUkVRehzMlZFOUZ278nB7fJ5E/jDqemvM01wKwiCCNwa4dgDHF/ICiRJmhAE4SPgSeARQRCyZ6j2fxG4lRbvjYWs40ESiyU4fKyD7/7HdVqbZg+GKjdk8IXHBTZOnKHzH69y/MQQCAoKv/YiVX/0SxgL50ogvTSUSpGd2/PYuT2PcDjG2Qu9fHCknbNnugnN0rxzbHCCo4MTHH0P9KZ8Sqs3s7ZMwcY0B+Khf6Ltz3tQpFVi37sb+86N6LPm3y9nOSXicdy1DQwfOYfz/Fk04gi2R6sw/OoeznQ+z7WGKK1/NUI4ODiv5SkUAtVrM3hkbwH79xSQmWme+0OyRRNVKsylBdO2ZIiO+5ho7yE47CA86iQ04iA06iI06iQ06sIz4iBcPzktzZLoQ2VUYsw0YMrSU5ZlYFPWZO2w+kAmkS/m0xXM5VqPgca2KF1NYwz3eWftp+b3RfjoSDsfHWlHpVaweWsOTz9Wwr7d+cval1kmkz0c/D0D9L1+hL7XDjF2/hr2GisZz1bR9+Lv83eXVLS/5mGyCDg9QYDyGjtPPVnCc09UYtKv/JuygiCwbXsl27ZXEgpFOXzkJm9/0MbNG56pceA/a7I1moPOJngNMFk2U/74U2z4TcjXD6C5cpnB/zhNXZOHqC+G0qDHXF6AubKYpIqiqaC3cDI78zwzo8seTPJ/f5lIknRJEITTTNbefkMQhO9IknT+U7P9DlAxNf23kiR9olpOEISfBf5t6uWfSpL0J9Os6q+ZDG6VwN8LgvCiJEm3S4aCINiA/zH10gP830V/qVVqdMzHj99s5K23GnGOzTyshyDA2m1ZfPmRKMUdh2j/s5scr3UiatQUfeNVKv/wFzDmZ9/DLf8kjUbJgb2FHNhbOBnonu/lvSNtnD/TQyg0c6AbmIhw/fwA18/DdwCrfSNlVY+yrlRinaIf//ePEG4ZRNBnoCteQ8q2jVjXV6CYIRvgUkpEo7ivNzF2rpaJm7VI3i7Ma9JQblzPWMnLXGxWU3/SxfC/e4H5NTfW6pRs3prDY/sK2b0zD7NZbs60EqjMRpI3VM05n5RIEHF7bwe+4VEnwZHJZ3/PIOMtXYw3deBu/ezQNHq7lpRqKweqrby0NgPxyTKGpBxqe83caE1Qf3UY5/DMNbvRSJxzp7s5d7obtVrBlu25PP1YCXt25aHTyoGuTCabn/G2bvpeO0zfa4dwXanHlGMg7/FcjL/yK7zdksXps24CE7Pn1jAlaTjwWAFffHkdpfmrt1uRVqviuWc38tyzGxmfCHH0WDOHP2rn2jUH0cjM3UsmPCEun+rj8qnJ8llW4aNUvfAq638/xjr9IGL9TcbPt+C6dILeH7xNIjZ5F1NUqTCV5GGuKMJcUUjSVPBrKiuQmzc/JOTgdnn9JpNNjXXAYUEQ/pzJ2lkd8AXgF6bmawX+ZjErkCTpmCAIP5xa3nPAEUEQ/hcwCNQAfwzcGifmDyRJci/uq6wusViCE2e7+fHr9dReGpi16bFKo2Dbnixe3eEl7dJrtP6nJs52jKOxJ1PzJ79OyS9/EW1qyj3c+rlpNEoO7CvkwL7JQPfilX6OHO/k7NkePK7Z++m4x/xcOOHnwonJ10kpa8kp2EthrooKe4Ti3nOMnvw20ogXVEkoLemoMwowFBViKspFm25fcFOgRDxOeNTJeGs3443NhHpbkTwDiNoImrWljJcU0pzyKPVdStpaJ+g/5CIeG5j38pNtenbtyuPRvYVs3pT9QGbGfVgIoni7z9x0Q2nBZKbU0PAY482djDd34m3qZLypA+eVevqOD9F3fAhoRKk9QXKFhXVVVh5Zl4rq99ZT5y/gVL2W61ed9He4pl0+QCQS58zJLs6c7EKjVbB1ex5PPVbC3p15aDTyT6dMJvtYIh7Heekmg++eYOCdY3jqWlGbVeQdyKT0117iVGw93zsr0fa3DmD2jM6Va1P53OeqefaRYjTqB+taYzZpefH5dbz4/DqCwSjHTnVy+EgTly6PEA7N3GJHkqC/w0V/h4tDgFIlkle2l7Jdn2P91xNsSh1F1d6E/1Ij7kY3zqZB+l77VHoZQSCpqgT7jvXYph6m4jy5afMDSM6WvMwEQXgW+B4fNwv+tFbgaUmSPpPkaZ41twiCoAN+Cjw1wzoSwJ/N9Pm7tZKyJfcNePnB6w0cer8Zt2vmceAAklL0PHIwhRdLu4i+eZTOd3oIjIVIqiym/Ld/lvwvP4dCq7lHW740EgmJxqZRjpzo5NTpLnq6PItajsWmJz0nCbtdRXqKQEZynAx9gFRc6N2jEAghRaIIsQREY0hRCa/PT0ISSbaYEaUECSkOSpD0agSTASnZilttoz+cRL9TxcAo9PUHGehyE5hYeDfwguJkdu3I47H9hVRWpK6KHyg5e+vykhIJvE0dOM5dY+xsLY5z15ho6779vkKrIG1dCunbUrHur6bPVMWJpiSuXPPR3jBKIj7376FWp2TrjtzJQHdH/n29kSIfT7OT948Mlu84iI77GDpyloF3jjP4/knCYy4UGpHMbalkP1XMYMVu3q5N5tyZMfyzjMIAYDRreOTxYr708hqK862zzrtc7uf5cqvb1YnTHVy6NMDoyMyt7Kaj1iopKLdTWpXM+pIE1WkOTK4uwrWNuBscOJs8uFo8RMY/mbdEY7Ni27F+MuDduQHb1rX3dNinB5k8FNADThCEPCZrcZ8GsplMAtUO/AT4O0mSpj2L5xvc3jH/l4CfBdYCFiZvD56eWsenm0Qvmfsd3I6M+XnnUAtHj7bS2jRzTcwtucVWnjugYU/8AkM/uMTAmWESMYn0x3ZR/ltfI+Px3asiUJqPwcFxzl7s4+zFPq7XDsyYeXkhtHoVOqMajVaJWjP10CrRaERUKoFYTCIWk4hGE0RCMXzeEL7xMIGJ8Jxj9M1Gb1CzaXMWe3flsXtHPraU1Tc2nlzYvvdCo04c568xevoqw0fP4bnRfPs9c66RjK127HuKmKjazEetds5dDdFeNzpra49bdHoVW3dk8/Tj5ezZnotKdW8DXfl4mp28f2SwdMdBIh7Hc7OFkeMXGfrwNKMnLpGIRlFoRDK2ppJzIAtpx3Y+6Mjlo7NBulvnLo9Urknj5RereOpgMer7XEu7ks6X3j4vp851c/psNzdvDM9aqzsdnUFFUVUaxZUprCuFypQxLOE+aGpk7PIQw1cdjN5wEf/UclVJJjKf2kv28wfJeGI36iTTUn6th4oc3MpWtfsR3DpdAd4+1MLRo200NzjmDJrUWiWbtqXyzPpxcq8eovMnzYz3+NBlpVH0cy9R+PUXMRbcmyRR94skSbS1Ozl3qY/zl/qpuzE0a1Kq+00QJ4fq2bk9h30786muSkOpXFmZIRdqJRUeHlbBEQfDR88xfPgsw0fOEhyaTC6n1CvJ2GwjY18ewS07Od6TydkrIdobHUjzCHT1BhUbN6ezZ3cRB3cXYkla/r5d8vE0O3n/yGDxx0F0wofragPOy3U4ztYyeuoKEfdk7ofbAe3+TAz7NnLBU8oHF0SunR8kMksODACjSc1jT5byxZdqKLpPtbTTWannSyQS59qNQU6f7+PylX7a2xxICxvCHmOShuKqNMrXprKtMkq+sgfLeCuB610MX3UwfNWBu8X7iWu9oFSStm8LWc8fJPvZ/Rjyspb4mz3Y5OBWtqrdi+A2kUjQ1O7gxMlWLlwapKneOa+alZxCC4/tVLErcQ3vm+cYOjdCIi6S/dwBCr/xMhmP70JUPJz9M+PxBD29HuoaRrnZOEJT8yidbS4ikYXdIV0qOr2KopIUNqzLYMuGLNZUp2M0rvyskAuxUgsPDytJkvA2tjN8+CxDR84yeuIS8WAIQRSwVVnI2JtDdM9uTo3kcOZqlM6muW+kAYiiQEm5lW1bs3jkQDmVJbZlaQ0iH0+zk/ePDGY/DhLxOOExF8GBkcmcELf68de34W3q4M4TXp+qJWOLnbTNqZh3V1MXreTwdQNXzg8zNjjz8D23VNak8cqL1Tz5SPGKzAuxWs6XCV+Y2tpBzl/u5/KVAbo6564hv5MgQG6JjcpNmWxca6AqeRBbsAPdWCfD54foOznE0KUxEp8aS926roK8Lz1D/pefRZ+5MkaYWMnk4Fa2qi1XcOv0BDhxuplzF/q5fs2J2zl7oqRbtHoV27dbeTxvgKSjh+k/0kvYGyFlyxpyX3mC/K88jy7NtiTb+KCJxRJ097hpaBqlp99L/8AEg0PjjAxN4HIG7qpZ8S1anZKMLDM52Unk5VqoKrdTWW4nK9P8wDQHn8lqKTw8rOLhCI5ztQwdOcfw4TO4ahtBkjBlG8jYlUni4G7O+Ys5Uxuls3n+BaoUu54NG21sWJfO1s1F5GVZluRYl4+n2cn758EgSRKxCT8Rt5eIe5yId4LYhJ+oL0Bswk/MFyA64SPmCxALhEhEop94RIMhxoaGkGJxLEYTxOIkQmHCDvesQ4/p7VpsNcnYqq3YN6QilVVS583jVKOeKxcdDHTNnZ8zyaLl8SdLefVzlRSu8IzHq/V8cbuDXK0d5MLlPi5dGaC/b34jK9ySnGqgclMW1RtS2ZLnITPUiMnZwvC5QfpODjN0cZT4HVmdBVEk7eB2Cr76PDkvPIrSsPq6SN0LcnArW9WWIriNRGM0t/Ry7eYAjS1u2ton6O0cn1ftLIBGq2TdBgu78r0Ut5xi5O16fAMBUratI/eVJ8h96TG5ScldikbjDA37GBnx4feHCQRj+AIRAsEo4xMh2jt6iMchJzsTvV6NWq1Ep1Vis+qw2QwkW3WkJOuwWnUPfBA7k9VaeHhYhRwuRj66wPCRswwdPkugbwi1SUX69jR4bA+XpHLOXE/Q3bawJPRWm47SMjM1lVY2rstibU0BWs3CWynIx9Ps5P2zstwKUoMjU2Ndj7qIuDyTAat7/HbwGnZ5b09H3V4inolZx76+WyqDEn2qjqR8I0kFJpIKTViKrSRy8xkRcrnab+VKE9RfGcYxy1BitwiiwOat2bz8fCV7d+ejUq68WtrpPCjny+ioj8tXB7g4VbM7MjL3/+wWg1nD2h25bN6RzqasUdL8jRhdHQxfGKb3xBCD50c/UaOrNOjJeekxCr76OVL3bXloWwJORw5uZavafIPbRDxGKDDOwJCD3j4PvYM+evoDtLb76e4cJxSITvu5majUCtauTWJHpovC+hM4j7QQckexbV9HzkuPkfPS4xhyMu76+8nm9qD8KC43eT+tXpIkMdHadbtWd+T4RRKhIPa1KQhP7qLOUMXVTjXNjV5i0YUVxDVaJTkFJjIzdGRnaMnP1lOQa6GwwI7ZYkOhmD57p3w8zU7eP/eOlEgQmhqLOtA7iL9n6tE7SGjYQWjESWjEQTw0/6SGokpEqVOgMihR6ZUodZPPCq0ChVqBQiNOPqtFFGoRUa1AoRIRlAKiUkS841lQiIgqAVEx9XeViNaqQWvTIZmSCCmT8KnsdPtSaBnU0dqToL3JRW+7c15Z1AEyMk0892wFLz5bgd1uWOyuvG8e1PNlYHCcS5f7OXO+lwsX+ggG51fWtKYa2LArjy07Uqmx9pPqa0A31knvsUG6PuzD1fzJGmJ9djqFX3/xocjhMh9ycCtb1e4Mbv/yb/4dvT6FYDhBMBQnFJYIBBM4XDHGxkK4xgLE7qJPpyVZy5oKDdX6UfKuncB9oh1tRiYZj+0k4/FdpO7bKme3uw8e1B/FpSbvpwdHIhrFcfHGVH/dc7iu1KMxK7DsLqKvZjc3g2lcawjjmWNIstkIooDVpic1XYfZqECnFdFpRfRaEb1uclogjFoNVosZpVJEFAQUooioEBAVoBBFVEowaBXotAqMOgGdRoVarUZUKlEo1CiVahRKDSi0oFAjiA9G7YN8vi29iNuLt7mTiZau2/1Tx5s78XUPkAjPPqSbUqtAZ9eis2nR27RoUzRoktRozGrUZhUasxqVWYXSYkBMMiOptcRFFXFBTWLqefK1CklQEJVEYgkF0YSCWEIgGp98jschFod4Yuo5DrEEROMKogmRWEIkmlDg8Io43QncziDOER9DPZ4F32RPsup45EARzzxRwpqa9FXdKulhOF8ikThXagc4dbqbE6e6GB31z+tzmfkW1u/OZ+f2JMoUzaRP3CDUMUTnB/30HBkg5P7kTZv0R3ZQ9M1XyP7cIygW0SrnQSAHt7JV7c7gtmrd/w+1eumy/ymUIqUlBqptPooHb6A6dgFJYcK2fT3pB7eR/tguTEW5S7Y+2eI8DD+KS0HeTw+uWCCI60o9Y+eu4Tg3OcauUhslcnAnrak1tLp0tHeFCPoXVnheLkq1ArVGgUarwmDSYExSkWRWYjWLpFok0o0R0rVB7OIE2gkfYlhA1KeiSsvFWFyAMT9rxY8HKZ9vi5eIxRhv7sR9rRH39Wbc1xrxNrQTGnXO+BlRKWDI0GPKMmDM0mPKNmDMMqC3a1GnmkkkpRBWmgkrzbhjRoa8WjwBFZ6AyHhAYNwHE74Efl+UoD9KJBQjEp56hGJEInEioRjRSJxEPLEkOSAWI9mmZ9fOPJ44WMymjVmrPov/LQ/b+SJJEm1tTk6d6eb4yS6amsfm/IyoEKjalMXWg4VsL/GR6buBdaKFkYsjdH3Yz8C5EaQ7avrVyRYKvvIcRd94GUtN2XJ+nRXnfga393dQLZnsU8xJagqyFeRrfWS6u0m+dAmzkE2KbR22Fz+H7S//BH12+v3eTJlMJvsEpV5H6p7NpO7ZDHzcjHns3DVyz11jY10z/p5uQmsrGCqooVOy0T4IjrHF1+zejVgkTiwSJzARwT02c+2FqBBIy84mK89MQY6SMuMEJTffQ/jOdUJdHmKCDUNpFSmba0jeWI02NeUefgvZUkjE43gb2nBeuIHzSj3u601461pnbEIsiAKmXAOWQjOWIhOWQjPmHAPqjCRCOjsBlQ2vkEy700jPqJJhJ7i6IngcAdxjfjwOP0H//PtB3m8KhUBpmZ3t23I4uLeQ8rLlyX4uu7cEQaC01EZpqY1v/twmevu8HDrcxnsfttLb65n2M4m4RN3Ffuou9vOa3cCWA5Xs2Luf8mfa2LD3OptGBuk61E/n+31M9PuJuDy0/O13afnb75KyZQ1F33yFvC88hcpkvLdf9iEj19zK7tpiam6VKhFbsooUE2Rq/GS6e8l0DJJmTyGpqoikiiLMFUUkVRWjUD+cTTpWk4ftju9iyfvp4SYlEvi6+vHUteKtb8VT18pw3zCDqZk4LRk4BTOjARWjrjjj4yujhnc6SrWCvNIUyiuS2FQWo1psJ3TsHKNn+wj4jKTu20HGoztI278Nlfn+FeLk8216waFRHBdv4rx4A8eF67gu1xPzB6adV1SJWIvNJFdYsBabsRSZMeebiBhs+NTpeJTptDnNdA4r6R+MMtLnZaTfi3PYN++EkCuN0aSmqDiFNVVpbN2czbo1Gej1K7uVwlKQz5dJkiTR3OLgg0OtfHi4DYdj+nPjFkEUqNiQybZHithSHiXbfx27vwnntRE63uul/9TwJ7ItKw16cj//JEXfeBnb9vUP7I0SueZW9sBIt6uwmFSoFRIahYRaiKMW4piFMMmJILZEiDSdgvRcO4ZMC7oMO6aSfEzFuSu+iZtMJpPdDUEUMRXlYirKJedzj9z+ezwSITQ0hr9viED/CIG+IRzdbgacAYYFNS5RTwglIZSEEwrCkoJwXCAUEwhHIRwFKSGRkCaH5UwkpNvPicTkEF9LeR87FonTUT9KR/0o7wHmZCM1m3+WHf9ZwTZ7D/EjJ2j774c586ob++7N5L36JNkvPIrWvrKHQnkQSZLERHsPY6cuM3r6KqOnLuPvmqGMKYAp20BKhYWUCgvJ5RYsRWai2iS8ulzG1Rlc8lhp7lPSc2Gcvg4nA10DRMO99/ZLLYAggEIhIoqTrRDUaiVKpQKFQsCcpCU9zUhmuonMdCN5uVbKymykpxkf2IBDNjdBEKgot1NRbuc3f207tdeGePf9Zg4fbScc/mzOGCkh0XhlgMYrA7yWrGPzgUJ27NtNxcF21my+xgbnAD1HB+h4rw9v5wQxf4DOb71G57dew1xRRNE3X6HgK8/L18clJNfcyu7anTW31w8fp6SiHIVOg0KrQdRq5NToDwH5ju/8yPtJdrcS8TjxYIh4IITP5eb00WNIkSjbt21Ho9VM+xlJkojGJILhOKFwnFAkTjAcJxhJ4AvGcHqCuMZDuMYjOMejjLkijLoiBAILT/5nturYsi+XJ7fFqYjfxPXmOTrf7mFiIEjqvi0UfPVz5L78OEr98h/7D+P5lojH8da1Mnr6CqOnLjN2+iqhEce084oqkeSyJOxTY7naqq2ozWpCSiseXS6jQjY3Bs20toXoah6jt8255H3G9QY1ZrMGs1lLUpKGpCQtVosWS5IWg16NXqdCq1Wi0ynR6VRoNUq0WiVKpTj5UIgfT99+KFAqRRQKAYVCfCiPg8WQ99PsJnxhPjzUxmtvNNLaNv05dYsgQOnaDLY9WsTWygS5wevYfY14GsfoeLeP3uODxIIfX19FlYrMp/eS/+VnyXx6H0qddrm/zrKTa25lDwx9fpbcJ1Ymk8mWiahQIBoNqIwGJJMeMScNAMv6iiUvjI6Ph+jodNHQ4qCpZYzm5lG6O92z1gKPu4McfaOFo29ASU0B+x7ZzpNf60J17iSdb7Rx8ef+gKu//mfkffFpir7xMsmbauRasrsQj0RwXaln9NQVxk5fYexsLVHvxLTzqgxK7DXJ2NckY6uxklyahKhWEFDZ8OjyuBHL5FqPgdZWH93NY/R3thGPJaZd1nzZUg3kZCeRkW4iK8NERrqJjAwTGWlGUlONaLVyMVS2OpiMGl55qZqXX6yiqXmM195o5MPDbdMOLSRJ0HJ9iJbrQ7xu0bJ5fyHb9++iancnlWuvsf5XB+g9NkjHe724mr0kolH63zxK/5tHUZmN5Lz4GHlfeoa0A9vkCqJFkK8qMplMJpPJPsNs1rJ+XSbr12Xe/tvERJirtQOcvzLA+Qu99Pd6Z/x8W90IbXUjvJFuZN/TP8tzf+mksu80nf9+g85v/4T2f/oRyRurKPmVL5H3hafvSW3uahed8OE4f53R01cYO3MV54UbMyZ+UptU2NckY1+bTOraFCxFZgSFiE+dhkeXy5V4Fte6dbQ0euloGGGop2nRzdftqQYKC5MpnnoUFiRTkG/FaJRzZsgeLIIgUFmRSmVFKr/9mzs4fLSd195spLFxdNr5Jzwhjr3RyLE3GilZk8bWR55g+xqB3C9e58CzDfjanXS810fP0QEiE1Gi4z46v/06nd9+HW26nbzPP0n+l5+VbwQugBzcymQymUwmmxeTScO+vYXs21sIQGeXiyPHOjlyrIPO9umHiXEM+/jpv97gfZOaPU8/w8t/eJBHf/40vT+4TtubLVz8xh9T+zv/g8Kvv0jJL38Rc0n+PfxGK1twxDFZI3vmKqOnr+K53oSUmL42VZOkngpkk7GvTcFSYEISFUxoMvDq8miTsrjeraW10U1H/SgD3fVIi0j6ZLFqqaxIpaYylarKNKoqU7Fa5RsTsoePwaDmhecreeH5SlpaHbz+ZiPvf9iK3z/9mM9tN0douznCG2YNm/YVsOPAdqq39lBaUcu6Xx5k+NIY3R8NMHhuhHg4QWh47Ha2ZX12OpnP7CPr2QOkH9iGYoZuKDK5z61sCdzZ57a1tZWSkpL7vEWye03uqzM/8n6SLaWVdjy1tjl47Vbhzjd94Q5AZ1Cx++lSXtodpWT8DAM/vUbLT7sIOSdrINMf20Xpr3yRzGf231WTvJW2f+ZyO/nTmatTAW0tE23dM86vsapJXZvyiWA2LigZ12Th1eUxImRxs1tDW6OT9vpR+jtcC85gLIoCJSUpbFiXwbq1GVRXpa26hEur7Ti4X+T9tDSCwShHPurg9TcbuVk3POf8hZWpbHukiK3r1eREGkmdaEAx4aL/zDA9RwcYuer8zE0ohV5HxqM7yHp2P5nP7EeXZluur7Nocp9bmUwmk8lkq1ppiY0//L09/Nav7+DosXa+8/0bdExTmxv0Rzn84wZOvati15P7ePHn9nLgi+cYe+caTT/oYPjwGYYPn0Gfm0nJL36ewm+8vCILb3crOuHDfa0J55V6HOevMXamltDw2IzzG7P0H/eZrbZizjESE9R4tTm4dLk0kU19r5r2iw46Gkboa7+64D6zao2C6uo0Nq7LYP3aTGqq0zAY5KbFMtl86XQqnnumnOeeKaej08Xrbzby7vstTExM332gs3GUzsZRXterqN6azYZdr7KxOERGWgM7n2gi7vDSe2KQ/tMjjNW5kOIS8UCQ/rc+ov+tj0AQSN5UPTnO+u6N2HZuQGt7uDMvy8GtTCaTyWSyJaPVKnnmqXKefrKMy1cH+Pa/X+PChb7PzBcKRDn6WiOn31Oy88mdvPDqHnZ/7jyeQ1dp/I8OvJ2D3Pjj/0ndn/wdOS8/TuHXXyRt/1ZE5eorukQnfHjqWnFdqcd5pR7XlXrGmzuZqZOrIApYis3Ya6yT/Wark9Ema4iKOjzaXEZ1udSRRUO3go4LY3Q0jNLXcXHBwaxKNRnMbt2UxaaNWVRXpaFWywlsZLKlUFSYzO/99i5+41e38dHxTl5/s4Haa0PTzhsKRLlyvIsrx7swW3Ws25nLhl1bWVPhJD2ngcKX2kiMBxi6NMrghVGGLo4RmYiCJOG6XIfrch3Nf/MtAMwVRdh3bcS+ayOpuzZiKMheVa0t7tbq+4WQyWQymUy24gmCwJZN2WzZlE1rq4N/+tYVjh/v/Mx84VCMY280cuYDJTse38znntvFjqcv4Dt+ldafdjFS66TnB+/S84N30aamkPvqk+R94SlStq1bcZlEwy4P400deBs78Da2423sYLyxnUD/7M0TlVoFKZUWbNXJ2GuspFRZUemUhBVGvNpcenW5jJJNYzd0nB+lo2GU3vazJOILa2asVIpUV6WxeVMWmzdmUVOdhkYjFwVlsuWk0Sh56olSnnqilK5uN2++1cg777fg8YSmnX/cHeTUuy2cercFe6aJ9bvLWLN5HxUlLmxZ7ax/vJWtYQ+OejeD5yeD3fEe38efb+pgvKmDjn/58eT6bVaSKotJqiomqaqEpMoikqpK0NiTH8igV76iyWQymUwmW1alpTb+5i+eoL3DyT//6xU+OtbxmUrLSCjGibeaOPuBgu2Pr+X5x3ay7sBFpPqbtP20i56PBgmNOmn9u+/R+nffQ2Uxk35gG+mPbCd17xZMJXmIKtWybH8iFiPi8hJ2egg73AT6h/H3DBLoHcTfM4i/d4hA7yDRcd+cyxJVIpZCE9bSJJJLk7CWJmEpMoFCgV+dhlebTZs2h6F4Gm1dUTobb9XMdiw4mFUoJjO73gpm16xJR6ddnn0kk8nmVpBv5bd+cye/+svbOH6ykzfebOTy1YEZM5WPDU5w+Ed1HP5RHRabnsqNWVRuWsuaYki3d1CwpY21vzRA2BPGUe/GUe9mrM6Fu9VLIja50LDDzeipy4yeuvyJZWtSLCRVlWDIz0KXmYouKw391LMuMxVdum3ZrqnLSQ5uZTKZTCaT3RPFRSn85Z8/Tmeni3/5tyscOdrxmSRH0UicU++0cO6Qgu2PVvLsEztYW3OJdb/SRO+xQbo+6MPV4iXqGafv9cP0vT6ZBEdUqTCXF5BUVYI2w46g1xIdGgCdmq7+CVQKBVI8QSIWQ4onkOJxpGiMWCBIzB8kHgjdMR0k4pm4HcxGPeOL+r76VC3mPCPmXCOWQjPWUjNJ+SYEpUhIaWVCk45Hk0GPJoN2p5mutnF6Whx0t/Yy2l+34KF5RFGgssLOpo1ZbNyQxfq1Gej1q69wKpM96NRqBY8/WsLjj5YwOurj0JF23v+wlZZWx4yf8TgCnDvUxrlDbag0CkrXpFO5cS81ay3kpo1hzuuj4GAfa8JDJMJRXM2TtbvOJg/jPT58g4FPJKcKOz2TAe+ngt7bBAGNzYoqyYTKbERlMqAyG1CaDFPTRhR6HaJKiahUICiVCEoFolJJv3Pm77Hc5OBWJpPJZDLZPVVYmMx//7PH+MVvuvmXb13l0OG2zwS5sUic0++1cv6wyNZHSnjs8V3UfK2FvS/eJNQxTP+ZEYYujuJs9CAlJBLRKJ66Vjx1rZ9Z33VeW5bvISgEdDYthlQt+jQdhjQ95lwD5jwjplwjKp2SuKAkqErBr7bj1KTTrU6n22Omt8fPQKebgS43fe3XCMySYXomokKgqiKVTRsy2bgxi7U16XICKJlslUlNNfKVL6/jK19eR2eXiw8PtfHB4TYGBma+qRYNx2m4PEDD5QF+AqSkGckvs5FfvofCUgvFeT6sGQOkbu+jODyAKh4gEYkz0efH2+NjvGcCb7eP8V4fgeEgsVD8syuRJMJjLsJjrgV/JyfRBX9mqcjBrUwmk8lksvsiP8/Kf/vTR/jFb27mX//tKu990PLZIDea4OwHbZz9oI2SNWlsPfgiezYGyaxupeSr7eD1MnLNiafDi6djAk/HOEFH6HaTvHkRQKFRoNQoUGgnn1VGJRqzGnWSavLZrEZjVqE2q9HbtOjTtGiTtYgKgQQiYaWJsDKJgCoFl9pGvyqFsYiZvhGR0e4Jhvs8DHS5Gey6StC/uIKfQiFQVZnKxg1ZbNqQydo1cs2sTPYgKSxI5ld+aSu//ItbqKsf4cPDbZw81cXQ8OxdHpwjPpwjPq6e6gYmh1zLK7WRX15DTtFeMjPUZJl8GDId6Dc4yIo4KIk40MTHEYCoP0rQGZ56hAg6QoRcYUKuMBF/jFggRjQw9RycfI6HF5bA7l6Rg1uZTCaTyWT3VW5OEn/6Xw7w89/YyLe+Xcs77zUTn6Z/advNEdpujvC6ST3Z92zjejaWJcjM7SU9MkxxeARtzIMAxEJxor4o0UAMhMkmu4JCQBDveCgFlFoFimkyBCcQiSl0REUdUYWO2NRzVNThUZoYViYREEyM+dSMuQU8I0E8Y37GBicYHRhndHAQ//j0w3/Ml1qtoKLMzoYNmXIwK5M9RARBYE1NOmtq0vm9395FR6eL02d6OHm6m7r64Tm7LAT9UZqvDdF8R3ZmtVZJaqaZ1GwzaVnZpGabycjUkW6JYVQE0BT4UMd8qOMTpEw9q+N+lIkwikQYUYpxZ/qpRFwiHo4jxSUS8QRSXJqalugfm4Df7FqenTMHObiVyWQymUy2ImRnJfFf/ng/3/z6Rr713VrefqeZ2DTD2wQmIlw50cWVE118XymSV5pCVkExmQWbyMnRk2qJY9LG0RBGkYiAABIiICAJIhICkiAgoSCGglBUQSgqEo4JhKIC4YhAMAQBX5iAL0LAFyE4Ne2fiDDumsDjHGHCHfxMTfPdsNv0rF2TwZo16aypTqO8zC4PzSOTPeQEQaC4KIXiohS+/rUNuD1Bzp7r5fTZbs6d78Pvn1+XhkgoRn+ni/7OzzYz1upVmCxaTBYdZqsRs9V++7VWr0KtVaLRiOg0oNck0KkTGDUJ1Io4gpRAIDH1LCFICUaGh4H/WOI9MT9ycCuTyWQymWxFycw08//8wT6++fWNfPd713n3/RZ8M/RJjccSdDaO0dk49pn3NDolGp0KJEgkEkgSJBLSZB/dhEQ8lljw2LBLJSlJS0W5nYoyG2Vldmqq00hPMz6QQ3PIZLKlY7XoeOapMp55qox4PEF7h4vrN4a4cXOY6zeHGJ6jCfN0QoEooUCUscGJBX1OEAVEUUBU3HoWEUWBaMS94G1YKnJwK5PJZDKZbEVKTzPx+7+zm9/41e0cO9HJG281crV2cN6fDwdjhIOxZdzCuSkUAjnZSeTnWSkpSaGizE55uY20VDmQlclkd0ehECkrtVFWauPzr9QAMDLi4/rNyWC3rn6Ezi43weDyJHiSEhLxhET8U5fZSOTuumTcDTm4lclkMplMtqJptUqeeqKUp54oZWBwnNNnujl5upurtYPTNlu+19RqBal2A2mpRrKzzeTnWcnPs5CfbyUz04RKKTctlslk90ZamvH2MEMAkiQxOuqnq9v98aPLTVePG5creJ+3dunJwa1MJpPJZLJVIyvTzBdeXcMXXl2D3x/hytUBmlsdtEw9hoYW1qxuOqJCQK9TYUnSYk7SkmTWkGTWYp56tibrSE81kpZmJC3VgNWqk2thZTLZiiQIwuS1Ks3Itq05n3jP54vgcPpxOgM4HAHGnIGpaT8OZwCXO0gwECUQjBIMRgne55Yw8yEHtzKZTCaTyVYlg0HN3j0F7N1TcPtvoVCMiYkwY45xjh07TTgssXHTRnQ6LYqpLMmKqX5iSqWIVqNEo1VOPmuUaLQKuaZVJpM9FIxGNUajmvw867zmj8cThEIxAsEogUCUcChGPCGRSCSITWVKjscT9PR08fJLy7zxM5CDW5lMJpPJZA8MrVaJVqvEaBTJydYAsHVzFjqd7j5vmUwmk61uCoWIwaDGYFDPOl+SOXCPtuizxPu2ZplMJpPJZDKZTCaTyZaIHNzKZDKZTCaTyWQymWzVk4NbmUwmk8lkMplMJpOtenJwK5PJZDKZTCaTyWSyVU8ObmUymUwmk8lkMplMturJwa1MJpPJZDKZTCaTyVY9ObiVyWQymUwmk8lkMtmqJwe3MplMJpPJZDKZTCZb9eTgViaTyWQymUwmk8lkq54c3C4zQRD0giD8niAIlwRBcAmC4BMEoUkQhL8WBCF3CZavFAThUUEQ/koQhNOCIIwJghAVBMEjCELt1HqKluK7yGQymUwmk8lkMtlKpbzfG/Agmwoq3wPKPvVW+dTjm4IgfEmSpPcXuXw70ASkTPN2ErB+6vHrgiD8viRJf7uY9chkMplMJpPJZDLZSifX3C4TQRCMwLt8HNj+C3AQ2AH8MeBjMgD9iSAIaxa5Gg0fB7bXgT8FngI2AgeAvwJCgBr4X4Ig/MIi1yOTyWQymUwmk8lkK5pcc7t8fpfJ2lmA35ck6a/ueO+8IAjHgVOAHvhfTAajCyUBR4D/IknShWnePy4IwmvAcUAH/KUgCD+QJGliEeuSyWQymUwmk8lkshVLrrldBoIgqIDfnHrZBPzNp+eRJOk88K9TL/cLgrBxoeuRJGlAkqTHZghsb81zEfiHqZdJwCMLXY9MJpPJZDKZTCaTrXRycLs89gGWqenvSJKUmGG+b98x/eIybs/xO6bl5FIymUwmk8lkMpnsgSMHt8tj9x3TJ2eZ7wrgn5retXybg+aO6ZkCbZlMJpPJZDKZTCZbteTgdnlU3DHdPNNMkiTFgI5pPrPU9s5ne2QymUwmk8lkMplstZITSi2PnKlnvyRJnjnm7QPWAHZBEDSSJIWXckMEQcgAvj710sEnmyjPdxnZc8ySdWuip6dnoYuXPQDC4TAOhwOAjo4ONBrNHJ94OMn7SbaU5ONpdvL+kYF8HMyXvJ9kS+lT8YDiXq5bDm6Xh2nq2TePef13TBuBJQtuBUEQgP9zx/b8mSRJwUUsqm++Mz766KOLWLxMJpPJZDKZTCZ7ANmBe1b7JTdLXh7aqefIPOa9M5jVLfF2/BHw3NT0ceDvlnj5MplMJpPJZDKZTDaT1Hu5soe65lYQBCUQXYJFfV2SpG/f8To09ayex2fvbPexmFrVaQmC8GXgz6ZedgNfmiVr81xy5ng/Fzg7Nb0NGFjkemSrVzpweWp6MzB8H7dlJZP3k2wpycfT7OT9IwP5OJgveT/JllIWcGuo0nua7+ehDm6X0cTUs3Ee8xrumJ5PM+Y5CYLwNPBvgACMAI9KkrToi5QkSf1zrO/OlwNzzS978HzqGBiWj4HpyftJtpTk42l28v6RgXwczJe8n2RL6VPH03xasi6Zhzq4lSQpJgjCUmQpHvrU635gK2AQBMEyR1KpW7WiY0uRTEoQhH3ATwEV4AYekySp/W6XK5PJZDKZTCaTyWQr2UMd3AJIkrQcVeWNwEtT0+V8XC3/CVPNooumXjbd7UoFQdgCvMNkn18f8KQkSTfvdrkymUwmk8lkMplMttLJCaWWx5k7pvfOOBds4uNmyWdnmW9OgiCsAT5ksil0CHhWkqSLd7NMmUwmk8lkMplMJlst5OB2eZwAvFPTXxM+1fD8Dj97x/Qbi12ZIAilwGHAymSCrJckSTqx2OXJ/t/27i9GrqoO4Pj3Fwi2KIRI0tJYq8SCQSAVY2KMRKrYGn2gjVIIbaqoiaYqYhAwJiaWBxLxTwwNsYkEDdJCo/JHkzYRFVvBB6KJRpHwUB8KaAEfREookJSfD/eMOx23u7M7O3vnzHw/yc3MOffcnV+nk9/ub+6590iSJEmqjcXtEGTmq8CO0jwPuL53TES8F/hMaR7IzD9MM+atEZFl2z/da0XEKuDXwHLgGM1dkfcN/q+QJEmSpHpM/DW3Q/Rt4ErgXOBbEbEa2EOz3M8HaNagPbm0vzyfF4iIM2kK285Nqb4LPBERF8xw2L8z06V6JEmSJI0Vi9shycwjZUmefcA5wGfL1u0FYEtm/nmeL3Nh+dkdN5ZtJndy/HRoSZIkSaqexe0QZebBiLgI+AKwCVgNnAI8RVP03pqZh1oMcUGUtdBOdF2xJoCfgf74Pmkh+Xmame+PwM9Bv3yftJDa/DxFZrbxupIkSZIkLRhvKCVJkiRJqp7FrSRJkiSpeha3kiRJkqTqWdxKkiRJkqpncStJkiRJqp7FrSRJkiSpeha3kiRJkqTqWdxKkiRJkqpncas5i4i1EZFz3K5uO24NZpr/9yMRcWofxy2NiP/0HLt2+BG3r+c92z7L2OUR8VjX+J0REYsUqiph/u1fRFzc8z68v+2YtDjmknsnzXzem4jYPmm/vzWYNvOvxa2k+XoDsLGPcRuA04cbSt0iYgWwHzi/dN2amdsyM9uLSqreJ2ZpS5KGo7X8e/JivZDG1k7g+32Me3rYgWhRvQwsAbYCd88ydmvPMeoSESuBh4BzStd3MvOGFkNSPcy/JxARrwM2leaLNF/GbYqIazLzaHuRSdJ4azv/WtxqUM9l5mNtB6FF9wvgCmBdRJyVmc9MNygilgHrS/PnwJWLFF8VIuItwG+Bs0vXzZn59RZDUl3Mvye2ATijPL8WuINmBskGYE9LMUnSJGg1/zotWdJ8PAg8A5wEXDXDuKtovkR7FvjVIsRVjYh4G/A7pgrb7Ra20oL5ZHl8PDN/CDxe2k5NlqThajX/WtxKmo9jwD3l+dYZxnUS2d3lGAERcS5wAFhVur6WmTe1GJI0NnpmjOwqj7vL4/qIWL74UUnS+BuF/GtxK2m+7iqPF0XE+b07I+IdwLt6xk68iDiPprB9U+m6LjO/2WJI0rjZQjNjJJn6o2p3aZ9U9kuSFl7r+dfiVtK8ZOafgM71ftOdve30/a2MnXgRcSHNXZHPokn012Tm91oNSho/nSlxD2fmkwCZeQh4pPQ7NVmShqP1/GtxK2kQnTOyWyLif/mkrM+6pWfMpFtDc/OoZTSF7ecy87Z2Q5LGS/kCaU1p7urZ3WmvKeOkSbcsIi6YbaP5vSXNaFTyr8WtpEHsBl4DVgKXdPWvBd5c9u3+/8Mm0kbgzPL885l5e4uxSOOqc9bgFeCnPft+Uvq7x0mTbBvw1z62bW0FqKqMRP61uJU0b5n5D5qzkXD81OTO8/2ZOXFrbJ5Adj2/LCJOaS0SaQxFxEnA5tLcm5nPd+8v7X2lubmMlyQNaJTyr8WtpEH9uDxeHhFLI2Ip8PHS55TkKTuZuh3+R4B7IsK1xqWFsx5YUZ73Tomjp38F8KGhRySNtpsyM2bbAO/mr9mMTP61uJU0qPuAl4DTaBbo3kizWPdR4N72who5/6JJ5gdL+2PAnd3XKksaSOdGJc8De08wZm/Z3z1ekjSYkcm//lElaSCZ+SJwf2luZWpK8gOZeaSdqEZTZh4GPggcKl2bgdvLDbgkzVNEnE7z5RrAGcArEZG9G/By2Q+wMSJOW/xoJWl8jFr+tbiVtBA6U5PXA+vKc6ckTyMznwIuBf5Zuj4N7GgvImksXAEsneMxpwKXDyEWSZokI5V/vd5L0kL4DXCYqestngUebC+c0ZaZf4+IS4EDNEssfDEijmbmjS2HJtWqM8XtMHBdH+NvAVaV4340rKAkaQKMVP61uJU0sMw8FhF3AdeWrl2ZeazNmEZdZj4REeto7jb9RuCGiHgpM7e3G5lUl4g4G7i4NO/NzD19HPNu4CvAJRGxKjOfHGaMkjSORjH/Oi1Z0oLIzK9m5pKyXd92PDXIzL8AHwZeKF3fiAjP3kpzsxXoXLf+sz6P6YwLjl/GTJLUv5HLv565laQWZeYfI+KjwC+B1wO3lDO4t7UcmlSLzh9HzwEP93nMo8DTwMpy/M1DiEuj4Z0RcXUf4x7JzIOzD5PUZeTyr8WtJLUsM38fEZfR3CZ/CbCjXIN7R8uhSSMtIt4HrC7N+zPztX6Oy8yMiPuALwFvj4j3ZOajw4pTrdrA1J1cZ/IpppZqkzSLUc2/TkuWpBGQmQ/RrH37Ks1UnR9ExJZ2o5JGXvdaiXNdV7t7vGveStLcjGT+jcxcyJ8nSZIkSdKi88ytJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6FreSJEmSpOpZ3EqSJEmSqmdxK0mSJEmqnsWtJEmSJKl6/wVdYdFqHXH58AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import cm\n", + "from triqs.lattice.utils import TB_from_wannier90, k_space_path\n", + "\n", + "# define a path in BZ\n", + "G = np.array([ 0.00, 0.00, 0.00])\n", + "M = np.array([ 0.50, 0.00, 0.00])\n", + "K = np.array([ 0.33, 0.33, 0.00])\n", + "A = np.array([ 0.00, 0.00, 0.50])\n", + "L = np.array([ 0.50, 0.00, 0.50])\n", + "H = np.array([ 0.33, 0.33, 0.50])\n", + "k_path = [(G, M), (M, K), (K, G), (G, A), (A, L), (L, H), (H, A)]\n", + "n_bnd = 14\n", + "n_k = 20\n", + "\n", + "fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)\n", + "\n", + "for (fermi, n_iter, cycle) in [(e_fermi_run, n_iter_run, cm.RdYlBu)]:\n", + "\n", + " col_it = np.linspace(0, 1, len(n_iter))\n", + " for ct, it in enumerate(n_iter):\n", + "\n", + " # compute TB model\n", + " h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0\n", + " tb = TB_from_wannier90(path='./', seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)\n", + "\n", + " # compute dispersion on specified path\n", + " k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)\n", + " e_val = tb.dispersion(k_vec)\n", + "\n", + " # plot\n", + " for band in range(n_bnd):\n", + " ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it}' if band == 0 else '')\n", + "\n", + " \n", + "ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')\n", + "ax.set_ylim(-0.2,0.8)\n", + "ax.grid(zorder=0)\n", + "ax.set_xticks(special_k)\n", + "ax.set_xticklabels([r'$\\Gamma$', 'M', 'K', r'$\\Gamma$', 'A', 'L', 'H', 'A'])\n", + "ax.set_xlim([special_k.min(), special_k.max()])\n", + "ax.set_ylabel(r'$\\omega$ (eV)')\n", + "ax.legend(fontsize='small')" + ] + }, + { + "cell_type": "markdown", + "id": "45062ca5", + "metadata": {}, + "source": [ + "Note that since this is an isolated set of bands, we don't have to worry about the disentanglement window here. Pay attention if you do need to use disentanglement though, and make sure that the configuration of Wannier90 works throughout the calculation!\n", + "\n", + "You see that one of the effects of charge self-consistency is the modificiation of the non-interacting bandstructure. The current results are far from converged, so make sure to carefully go through convergence tests as usual if you want reliable results. The figure below shows the difference to the reference data, which is quite substantial already at the DFT level." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a3d760e5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAGQCAYAAAB1UpekAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOyddZgcRf6H3x6fdXdNstmNu3sIECIkQIK7ywEHHByHu9yhh7u7BYhBgLi7J+vubuPTvz9mN5dkZjYrs5Zfvc8zT3dPV3fV9k5316fqK5IsywgEAoFAIBAIBAKBQNCbUXR3AwQCgUAgEAgEAoFAIOgoQtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8StQCAQCAQCgUAgEAh6PULcCgQCgUAgEAgEAoGg1yPErUAgEAgEAoFAIBAIej1C3AoEAoFAIBAIBAKBoNcjxK1AIBAIBAKBQCAQCHo9QtwKBAKBQCAQCAQCgaDXI8RtFyBJUpwkSS9IknRYkqQGSZIqJUnaJknSPyRJ8vJQHQMlSXpNkqT9kiTVSpJkliSpTJKk1ZIk3SVJkq8n6hEIBAKBQCAQCASCnogky3J3t+G0RpKkucAXgL+bIkeBObIsZ3agjnuA5wBVC8VygHNlWd7X3noEAoFAIBAIBAKBoKcixG0nIknSMGAT4AXUA88CqwE9cDFwQ1PRI8AYWZbr21HHhcA3TZtm4A3gD6Ac6AvcCkxu2l8EDJBluaY9f49AIBAIBAKBQCAQ9FSEuO1EJElaDUwHrMBUWZY3n7T/XuDfTZuPyrL8RDvq2A8MbtqcJ8vyMhdlfgDOb9q8R5bll9paj0AgEAgEAoFAIBD0ZIS47SQkSRoDbGvafEeW5ZtdlFEAB4ABQBUQLsuypQ11+AHNs7C7ZFke5abcUGBv0+YPsiwvam0dAoFAIBAIBAKBQNAbEAGlOo+Fx61/5KqALMt24NOmzUAcs7xtQXPceks+uxnHrWvbWIdAIBAIBAKBQCAQ9HiEuO08pjQtG4CdLZRbe9z6ZLelXCDLcjlQ2bTZp4WifY9bT21LHQKBQCAQCAQCgUDQGxDitvMY0LRMl2XZ2kK5Iy6OaQvvNi1HSpJ0jpsyDzctbcD77ahDIBAIBAKBQCAQCHo0LaWOEbQTSZJ0QEjTZn5LZWVZrpIkqQHwBmLbUd3TwGhgFvCTJEmvA3/iiJbcB7gFmIZD2N4hy/LhtlYgSVLMKYpogBSgFChrqksgEAgEAoFAIBD8/0MJhDat75dl2dRVFQtx2zn4HrfemvQ+zeLWp60VybJc3zRjezVwP3BP0+d4fgT+Lcvy1raev4m8dh4nEAgEAoFAIBAI/v8yBtjRVZUJcds56I5bN7eifPNohr6d9Y0GLsG93+0soESSpMOyLNe2sw6BQCAQCAQCgUAg6LEIcds5GI9b17gt9T+aIxgb2lqRJEmLgM+bzrEPeBRYB9ThMHO+CIfP7S3AVEmSZsmyXNzGak5lLh0NbAFYtWoV8fHxbTy9oLdjMpnYutVhGDBu3Di0WhGU2xXiOgk8ifg9tYy4PgIQv4PWIq6TwJPk5ORw5plnNm+WdWXdQtx2DnXHrbfG1Ni7adkaE+ZjSJIUDnyMQ9geBCbKstxwXJFM4FlJkrYBq4BBwGvA4rbUI8tyi37DkiQdW4+PjycpKaktpxecBhgMBjIyHBmn+vbti17fXiOE0xtxnQSeRPyeWkZcHwGI30FrEddJ0Il0aSweES25E5Bl2YgjoBNAi8GYJEkK5H/itq2+rRcfd+wzJwnb49vzJ44gUwDnN9UpEAgEAoFAIBAIBKcNQtx2Hs1RiftJktTSDHmKi2Nay/Gpg3adomxzrl0F0L+N9QgEAoFAIBAIBAJBj0aI285jQ9PSGxjVQrlpx61vbGMdx+fPPZWJudrNcQKBQCAQCAQCgUDQ6xHitvNYctz6Na4KSJKkAK5s2qwGVrexjqzj1qecouzUpqUMZLexHoFAIBAIBAKBQCDo0Qhx20nIsrwNWN+0eZ0kSRNcFLuH/5kWvyrLsuX4nZIkXS1Jktz0eczF8ctwiFWAByVJinbVFkmSbsSRLghgiyzLFW34UwQCgUAgEAgEAoGgxyOiJXcud+IwNdYDv0uS9AyO2Vk9jmBQNzaVSwVebOvJZVk+IknSR8C1ONLx7JYk6RUcoro5FdDFwKVNh9iAB9r7xwgEAoFAIBAIBAJBT0WI205EluXdkiRdhCMPrR/wjItiqcBcWZbrXOxrDbfi8Ou9CAgFnnZTrgG4UZblNe2sRyAQCAQCgUAgEAh6LMIsuZORZflXYCjwMg4h24jDv3YH8E9ghCzL6R04v0mW5YuBmcCnTXU04AgaVQlsBp4EUmRZ/rL9f4lAIBAIBAKBQCAQ9FzEzG0XIMtyDnB306ctx30MfNzKsqtpe0AqgUAgEAgEAoFAIDgtEDO3AoFAIBAIBAKBQCDo9YiZW4FAIBAIBAKBQPD/ElmWMVlsmC02zNampcV6bNtksaHXqIgN98fXS9vdzRWcAiFuBQKBQCAQCAQCwWmNxWoju6iao7nlHM0tJzW3gqN55aTmllNVZ2zVOQJ8dMSF+xMX7k9M0zIuPIAB8SEMSAhFkqRO/isEp0KIW4FAIBAIBAKBQHBakV9Wy9pdWazZnc2OIwVkFFRisdo7dM7qeiPV9Ub2ZZQ47YsI8mHGqETOGNWHGaP6EBXi26G6BO1DiFuBQCAQCAQCgUDQq6moaWTtnmzW7spm9e4s0vIqurT+4sp6vlq1n69W7QdgQHyoQ+yO7sO04Ql46zVd2p7/rwhxKxAIBAKBQCAQCHoVsiyzN72Yn9cfYcXmNPZlFCPLnq1DkkCjUmKy2Np87OGcMg7nlPHmj9vw0Wu45MwhXD9/FEP7RXi2kYITEOJWIBAIBAKBQCAQ9HhsNjtbDuXz87rD/Lz+CLklNW0+R2iAF/3jQkiODaF/XDDJcSEkRgWi16rRqpVo1Eo0KiVajQqlQkKSJIxmK/mlNeSW1JBbXENuSTW5JTXkldaQll9JUXldi3XWG8y898tO3vtlJ2MHRnPD/NFcMGMgeq26vZdC4AYhbgUCgUAgEAgEAkGPxGyxsXZ3Fr9sOMqvG45QUtXQ6mMDfHRMHZHA9BEJjOgfSf/YEIL89G1ug06jol9MMP1igp32ybJMRkElf+7I5K9dWazdlUVNg8ntubYdKmDboQLufeM3Lp89jOvnjyI5LqTNbRK4RohbgUAgEAgEAoFA0GNoNFpYtT2Dn9cfZvmm1BbF4vF46dRMGhLHtBEJzBiZyLB+ESiVik5tqyRJx4TvTQvHYLXZ2XW0kL92ZvLnjkw2HcjDbne2l66uN/L691t5/futnDW2L49eO4ORyVGd2tb/DwhxKxAIBAKBQCAQ9BCq6gyk5lWQlltBRmElFTWNVNUZqaozUFPvSFmjVCpQSBJqlYJAXz2hAd4E+zuWCZEBJEYGkhAZiJeu95i9VtcbWbE5lSXrj7BqWzoGk7VVxyVGBbJgSgpzJ/Rn7MAYNGplJ7e0ZVRKBWMHxjB2YAz3XzGVvNIaPl62mw+X7aK4ot7lMb9vy+D3bRmcN20Aj147Q8zkdgAhbgUCgUAgEAgEgm7AarOzL72YDfty2bg/l20H8ymudC2A2kNkiC8pcY4crAMTQhnQ9An0bbtprqex2ezsTitize5s1uzKYu3ubKy21qXqGdwnjAVTUlgwZQCD+4T16PyysWH+PHzNdO6/YgrLN6fx/i87+GNHpsuyP611+BJfftYwHrhqKvERAV3a1tMBIW4FAoFAIBAIeiFmi42MgkqO5JRzNLeMo7kVHM0pJ72gArPFdmx2T6mQjq2rVAriIwIYlBDGwMRQBvcJY2BiGKEB3t395/y/od5g5vdt6SxZd5jftqZT20qT2/ZQVF5HUXkdq3dlnfB9RLBPk9gNY2BCKIkRvjQYbXjrOm/W026XOZRdyppd2azdncX6vTmtNjcGGDswmgVTBrBgSgp9o4M6rZ2dhVqlbBLkKWQWVPLB0l18umIP5TWNJ5Sz22U+XbmHr//cz/XzR3HfZZMJD/Lpplb3PoS4FQgEAoFAIOgF2O0yWw/l8+uGI/y2NZ2jueXYXPjyHcNN+pLiinq2Hsw/4buwQG8GJYYxbUQC8yYlMzAhtEfPhvU2rDY7Kzan8fnve/l9azpGc+tMbjuL4op6iivq+WvniaJXq1IQ9FkGoQHeRAb7Eh3mR1igNyH+XoQEeBMa4HVsPcTfy6UJsNVmJ6+khvT8CjIKqkgvqCQjv4KdRwspq250Ku8OpUJi6vAEzp2cwvzJyUSH+nX47+4p9IkO4umbZvHAlVN5a8l2XvpqI1V1xhPKmC023vxxG58s383dF0/k7ksmodMI6XYqxBUSCASnJUazlbLqBsqrGymvbqDBaMHXS4Oft44AHx1BfnqC/b26u5kCgUDQIiazlTW7s/h1w1GWbjzapkixbaG0qoHSqixW78risQ9WkxgVyLyJ/Zk/KZkJQ+JQdXJQntOVzIJKPl6+m89+2+vW39IVKqWCPlGB9I8NJjLEl0BfPYF+evy9tSgkCZtdxma3YzLbqKxtpKLGQFlNA4XldeQUVbfbtNlktVNUUU9RRT37MkpOWd7fW+sQugFe+Og15JbUkF1UhcXaOvPik9Gqlcwa05cFU1KYM6H/af+e9tZr+Mclk7h+/ihe+WYTr32/lUaj5YQyDUYLT368li9X7eelO2Zz1th+3dTa3oEQtwKBoNdjs9nZm17sCK9/OJ9thwrIKKg85XGRIb6M7B/JiP6RjEqOYurwhF4VfKOnYLPZKSivI7e4mup6IwaTFaPZgsFkxWCyYDRbaTQ6lgqFhFatRKtWoVYrj607cguqCPDREuinJ6ipIxfoqxedasH/O2RZZvOBPN79eQfLN6dS12ju8jZkFVbx2vdbee37rQT76Zk9PolLzxrK9BGJKBRiRrclZFlm3Z5s/vvdFpZvTmvVMUmxwUweGsfkofGMSomiT1QgalX7TYQbDGayiqpIzavgSHYZh7LLOJxdRmpeRav9WltDTYOJmgZTq9657kiJD2Ha8ASmjUhk1pg++HppPda+3kKAj47HrpvJLeeN5d9fbOD9X3diPsnyIqOgkgX//JKFUwfw79vOIjbMv5ta27MR4lYgEPRKZNlhnvftnwf5cc3Bds1mFJXXsay8jmWbUgFHCoHZ45JYOHUA50xIwkev8XSzey3NQU+O5paTU1xNdlG1Y1lcTX5prUc7Syfj560l0FdPsJ+e6DA/4sIDiAv3/98nIoBgP70woRT0eixWGz+sOcTrP2xl55HCVh8XGeJLcmwwyfGhpMSFkBwXjL+P7tjsnt0uOz6yTIPBzJHccg5mlnIoq4zDOWWnNJGtqDXwxe/7+OL3fSRGBXLN3BFcMXs4EcIP8AQsVhvfrz7If7/bwp604hbLKhUS00cmOqL8TkwmKsTXo23x1msY3CecwX3CYRoczS3nkff/4lB2mUfraQ8JkQFMH5HItBEJTBuRQGSwZ//23kx4kA8v3j6bOxaP59lP1/HZb3ud0ggtWXeYVdvSeeCqady+aFyHBkFOR4S4FQgEvYrKWgPv/bKDj5fvJruo2qPnbjRa+HHtIX5cewi9VsXFs4Zw2wXjGJQY5tF6egMGk4XthwvY2BTBc+vBfOoNXT97BFDbYKK2wUROcTW7UotclvHSqUmMDGR4UgQjk6MYmRzJ0L4RYiZe0CuorDXwwdKdvP3TdgrL605ZfmBCKPMnJ3PW2H4MSgzD30fXpvrOmdD/2LrNZiezsIoDmaWs25vN0o1HyS+tdXtsVmEVj7z3F098uIZ5k5K5bt5IZo7q8/96NtdotvLJ8t289PUmcktqWiw7dmA0V88ZwYIpAwjy6/yIxfUGM89+uo7Xvt9ySlPhED81erUSg1Wiss7oMjdrW/D31tI3Jph+0UH0jQ4kKTaYCYNjSYgM7NB5/z8QHxHA2/edyy3nj+XOV5Y7+cg3GC08+M4ffPHbXl658xymDE/onob2QIS4FQgEvYLsoir++91WPlmx28kfpSUUCokQf4cvUIPBTHW9EZObICvHYzBZ+WjZbj5atpsZIxP526JxzB6XdNp24Gw2O+v35vDHjgw27stl59HCdvtMdQeNRgsHs0o5mFXKF7/vAxwzIwMSQhnZP4oR/SMZNyiG4UkRYoZX0GMoKKvlP19s4NOVe1rM6SlJMG5gDPMnp3Du5GT6xQR7rA1KpYKk2GCSYoM5b9oAXrp9NnvTi1m68ShLN6ayN931DKTVZmfJusMsWXeY+IgArp07givOGf7/ahautsHE+7/u5L/fbm7ReijAR8dlZw/jmrkjumywVJZlflhziH+++bvbAROVUsF50wYwd2IyY5LD2b9zEwBnnXUWWq2OsuoGCspqyS+rpaCsloOZpfy68Silp7CU8tKqeOrGWdy0cDQKhXAr6QjD+kXw13+v4bOVe3jwnT+oqDWcsP9Qdhln3fUpV8wexrM3n3na+yi3BiFuBQJBj6agrJbHP1zNF7/vO+Uocr+YIMY1JU4fnRJFfEQAgb56J0FqNFvJLqpid2oRu1KL2HmkkK2H8t2ef/UuR5CVEUmRPHrddM4a2++0EEiyLLP9cAHf/nWQH1Yf7HBuRb1WRVigD15aNXqtCp1WhV6rRq9Rodep0WlU2O0yJosNs9WG2WzFZLFhsjiWRpOV6nojVXWGNg1guMNmlzmQWcqBzFI+XbkHgKgQ32MCYcqweGHOJegWymsaeeHLDbz90/YWB9viIwK45bwxXDRrSJeZAEuSxPCkSIYnRfLQ1dPJKa7mlw1H+GT5Hg5mlbo8Jqe4mkc/WM0TH61hzsT+XDdvJLNG90V5mvrLl1U38MYPW3lnyQ6q641uy/WJCuRvi8ZxxezhXermUl1v5LYXlvLj2kMu9/t5a7lu3khuOX/sMb9Ng8HA/uPKKBQS4UE+hAf5MDI56tj3r/59Dhv25fDDmkP8vP6IS6HbaLJy92sr2bAvl9funtslM9SnMwqFxFVzRjBvUjKPvPcXHy7b5VTms5V7Wbkljf/8bTYXzhx0WvRR2oskyx0zORAIJEmKAfIAUlNTSUpK6uYWCboag8HA77//DjhGfPX6jr/IGgxmXvl2My99valFodM/NpgLzxjM4hmD6B8X0u76yqob+HXDUZasO8zqXVkt+pBOHBLL49fNZPKw+DbV0RnXqT0czi7j278O8M2fB8gqrGrTsX2iAukXE0R8RABxEQHEhweQEBlAfEQAoQFeHnuhGs1WquoMVNcZqawzUFVroKSyntySmqZPNXmljtmE9prOBfjomD0+iXMnp3Dm2L69zse6p/yeeio98frUNpj473ebefXbLS2a+U8cEsvti8Yzb1Jyjwmo1hzn4MOlu/h+9cEWZ5oBYsP9uWbOCK48Z3i3pnDx5O8gt6SGV77ZzMfLd7X4948dGM3dF09i3sT+XS7wNx/I4+qnfnRpHq1WKbhj8Xjuu2wKft4nBm1qz3Wy2ezHhO6SdYddpvmJCvHlg38tZPrIxHb+RYKT2Xoon7+/stytX/fscf149a65xIV3X8CptLQ0+vc/5v4QK8tyfkvlPYkQt4IOI8StwJOdB7td5svf9/HIB39R5MaUSqmQWDxzMH9bNI6R/SM9PkJZVFHH+7/s5L1fdrSYk2/+5GSevfnMVieT787Odk29kU9X7uHzlXtbld4BHKPFw/pGMHFoHJOGxDFxSGyPSyRvtdkpKKslt7iaA1ml7DpaxO7UIg7nlLVJ9GrVSs4en8QtC8cwbURCrxj17onirSfRk66PwWTh7SXbefHLjU5mhc2olAoWzRjE3xaNY9RxM2U9kep6I1+v2s+HS3exP7Pl54kkwZRh8SyeMZiF0wYQ0sVmk574HRzOLuOlrzfx9R/7Wxz4nDkqkfsum8zU4V3/DLHZ7Pz7iw08/clal7mPzxjdh5dun+12ELij16mu0cS9r//GJyv2OO2TJLjzwgk8du0MtCJPq0ew2ey8+8sOHn3/L5fR1L116qboy2O6xYJCiFtBr+Z0ELcNBjPlNY1U1DRSWWugotZAZa1jvcFgJqQ5mXmoL1EhvkSF+IlANcfhqU7kuj3Z3P/mKnanuQ4a5K1Tc+28kfxt0fguGZE0mq18++cBXvxqI6l5FS7LqFUKbrtgHPdfPuWUQV26o7N9NLect37azucr99DQClPf4UkRnD2uH5OGxDFuUKzT6H5vocFgZm96scP0/GgRWw7mkdnKWeqBCaHcct5YLjlzCN49eDa3J4m3nkhPuD52u8xXq/bx6AerKShzHaRJpVRw3byR/OOyycR04wxne5BlmR1HCvlw6S6+/evAKd0JlAqJmaP6sHjmIOZPTiGgjYGw2kN7fwc2m51V2zN4/9edxyLqu2P+5GTuvXQyYwZEd7i97aGu0cQ1T//ksp1Bfnpe/fscLpg+sEXB7an7Zcm6w9z24lIqXQziDOsXwUcPnseAhNB2nVvgTH5ZLXe9uoKlG4+63D86JYq37p3viJrdhQhxK+jV9EZxW1JZz/q9Oazfk8O6vdkcySlv8zkCfHTEhvkzblAMU4bHM2VY/P+rQBrH09GXYnp+BQ+88we/bnD9cFYoJK6ZM4KHr5neLTOHVpudr1bt46mP17qNhBka4MWj187g6jkj3I6SdlVn226X+W1rGm/+uI0/dmSesnzf6CAuOmMwF54xmOQOmHb3ZGRZ5mhuOb+sP8IvG4+2Ks1KgI+Oq+YM5+aFY3pkdM+eIN56Mt19fdbuzuL+t1a5NR2UJLhk1lAeunoaiVE97/fVVmobTHzz534++HWX2yBUx6NRK5kyLJ6Jg2OZOCSOMQOiO2Uwqa2/g7zSGr78fR8fLt3VYuRjlVLBxbOGcM8lE0mJ7z6xll1UxaIHv3HpDz1lWDwfPnheqwZNPHm/FJTVcuPzP/PXziynfT56Dd88eSEzR/Vp9/kFJyLLMkvWHeHu/65wGTtDpVRw+6JxPHDVtC5zvxHiVtCr6Q3itq7RxMot6azfm826PTkczW27mG0NSbHBTB0Wz5ThCUwd/v9H7Lb3pVhZa+DZz9bx9k/b3Zp6nTG6D8/dcmaXjzq6wmR2RFB+5tO1bs2Vh/QJ59+3neXSv6izO9s19UY+W7mXt5dsJ6OgssWykSG+LJo+kItmDekU0+6eTn5ZLUs3HOXXjUdYtyenRVNDSYK5E/pzx+LxPSrdQneLt55Od12fo7nlPPjOHy3O9s2fnMxj185g4GmYZkyWZXalFvHhr7v4bvUBlyaTrlAqJIb1i2DCkDgmDI4lOS6YuPCADluPnOp3IMsyR3LK+WXDEX5Zf8RturFm9FoVV88ZyZ0Xjic+IqBDbesoG/blcMkj31Fec+L7SKmQeOjqadx76eRWm6R6+n6x22Ve/2ErD7/3J+aTgqapVQo+fOA8Fs0Y1KE6BCdSXW/koXf+4IOlzgGnAKJD/fj3bWdx3tQBnf7OF+JW0KvpqeJWlmW2HMznk+W7+X71wVaZZHqa0SlRLJg6gPOmDmi1X2ZvpK0vRZPZynu/7OSZT9dSVec60mRKfAjP3XJmj4xMXFNv5LnP1/PGD1vdpsuZNymZR6+dfoIo76zOdmpuOW8t2c7nK/e2GKRGqZA4d0oKN8wfxdThCadtJNO2UlVn4Js/DvDWT9vcmp83M2VYPA9fPa1HiFwhblumq69PWXUDT3+yjvd/2eHS5xFg+ogEnrjhjG4zX+1qDCYLv21N5/vVB1m+OfWUQahcEeirIy48gNhwf+LC/YkJ88PPS4u3XoNP88fLsdRpVCgUCpQKCaVSgUKSsJhNrF2zBpPVztCRYzGYZUqrG9iXXsyuo0XsOlro1g/6eAJ8dNx83hhuPX8soQHe7bkcHuXbvw5w/bNLnN5BwX56vnx8MVPb+IzqrPtlf0YJVz/1I4eyy074XpLghb/N5tbzx3qkHsH/2LA3h1tfXEqam/fZrNF9ePnOczyaUuxkhLgV9Gp6mrgtqazny1X7+GT5njbP0KqUCoL89Md9vPDWqSmtaqCwvI7C8tpWj0KfzJA+4SycmsKCqQMYmBDa4wRbR2jtS9FktvLpyj38+4sN5Je69j8L8ffi4Wumc+28kT0mSqg7Mgoquf+tVW59XSQJLpg+iIeunkZyXIjHA2/9vi2dN3/cxqrtGS2WDfLTc+28kdxw7uhujZ7Y07HbZf7amcmbP25j5dY0Wno9ThuRwENXT2Py0LZFzPYkQty2TFddn3qDmf9+u5lXvt3s9v2QEh/Cszefydnjet5gXVdRbzCzfHMq3/11kN+3pTvN5vVUhidFcN28UVw0azC+Xj0jBsEbP2zlH6//5vT9gPhQfnjm4naZuXfm/WIwWbjhuZ/5YY1zaqJ/Xj6ZR6+d0a33hWy3Y21oRLbLYLcjyzLIctMSkGVUPl6ovHrPM9ZotvL85+t58auNLgfhNWold188kfsum4xe6/kYMkLcCno1PUHcyrLMxn25vPbDVpZvSm3RxLAZXy8Nk4bEMXmYw182OS4EP2/tKR+wdY0misrrKCirZW9GCev3ZLNhXy61DaZWtzcpNpiFU1JYOHUAI04Dk9BTvRSbZ8Ze/HqjW1GrUSv52wXjuO+yyacMzNTTWL0zk/ve/J0Dma5zQCoUEvMmJTNvfF9U9Tl4aZUnXCeL1UZpVUPTp54GowUvrRovnRp909JLq0avUyMB368+yFs/ndr0eEifcG49fywXzRrcKS+v05mMgkreXrKdT1fsafHenjEykQevnsakIXFd2DoHQty2TGdfH7PFxgdLd/LcZ+td5voEhy/+w9dM55q5PX+wriuprjfy185MNh/IY/OBPPakFrmd7e4OAn11LJgygOvmj2RUclSPeUfLsszjH67m+c83OO2bPa4fnzx8QbvNuDv7frHZ7Nzz+m+8s2S7076r54zgtbvndvo9YrfZqM/Mo/ZwBjWHMqg5lE7toXRqDmdiazz17L13QjT+g5LwH9QP/4H9HMsBfVF5d20E8LaQllfBXf9dwZ9u4m/ERwTwn9vOZt6k/h79nQtxK+jVdKe4tdns/LrxKC99vYnthwtaLNscpXHGqESmDItneFKkxx6kNpudvenFrNubw4a9Oazfm9NqsRsX7s+CJqE7flAsCkXPeIm2BVcvxao6A6u2Z/Ddnwf4bVu6W/NdgAumD+SpG8/okUF7WovVZufjZbt5/MPVTv5Px6NUSKREeRMYFEh5jYHSqgaXUSXbi0Ihce7kFG47fyyThsb1mE5Zb6XeYOazlXt48atNbqPdgiMFyENXT2fC4Ngua5sQty3TWdfHbpf55s8DPPHRarKLql2W0WlU3LF4PPdcMqnXRhzvShoMZnYcKWDzgTw27c9jX3oxJW4GDDqLyBBfzp2UzIIpKUweFo9apezS+k+FzWbnjpeX8+EyZ3/KW84by39uO6tDriZd8TyRZZl/f7GBxz5Y7bRv3sT+fPrIBR4diLUajJSs3krh0tWUbdxF7dEs7Kb2Wd+1hHdCNMFjhhB7wdlEzZ2G2qf7zdaPR5Zlflx7mPve+I1CNykWR6dE8fA10zlzTF+P9BuEuBX0arpD3BrNVr74bS+vfLuZ9PyWZ6/6Rgdx1ZzhXHbWMKJCuibAk8VqY92ebJasO8IvG464HdU/mYggH2aPT2LKsHgmDY3r9mAVAI1GCyWV9RRX1lNSWU9ZdQMNRgtGkwWDyYrBZKG+0UhGVi6NJhtGtOSV1FLTCnE/eWgcj18/k4ndMOvVWdTUG3n9h63897stbZrN7yhBfnqumTuCG84d3SN+N6cbJrOVT1Y4TOpbErmzRvfhwaunMX5Q54tcIW5bxtPXx2az88uGozz32Tq3uaKbIyA/et0M4QLQQQwmC3klNeQe+1STW1JDSWU99QYzDQZL09JMvcGM0dw6f94AHx2Bfnriw/0ZmRzFyOQoRiVHEh8R0GMHA602O9c/u4Rv/jzgtO/x62Zw72WTO9z2rnyefLh0F7e/vMwpF/nEIbF8//TFBPq2v+7GwhIKl62lYOlqiv/Y3KoZWU+i1OuImjONuMWze5zQrWs08cyn63jtuy1uLSXGDozm4aunc8boPh36TQlxK+jVdKW4raoz8N7PO3jzx20tjurqtSrOnzaQq+eM6PbZK5vNzuYDeSxZf4Sf1x92a5bripgwP4fp9FCH2E2KDfao2U6j0UJeaQ25xdXkldYe6zzkldRQUtVAcUVdu32MW2Ly0DgeunpatyS67yqq6gy8+u1m3vhhW4tBnjrKkD7h3HL+GC46Y4jIvdwFNEfM/veXGyhyMwIOcOaYvjx09TTGDozptLYIcdsynro+dY0mPlm+hzd+3Op2phZgzoQkHr9+Zo+I7P7/EavNjslsxWaXsdnt2O0yNrtMQ2Mjq1evQaNSsHDebHx6kNhoDRarjWue/snJX1WhkHj97rlcM3ekR+rp6ufJLxuOcOUTP2A6yfd6aN9wlr94BcH+rTf1rTmSQc7XyylcuprKnQc93dR2c7zQjZ43vceYLx/MKuXvryxnw75ct2UmDI7l4aunMX1kYrv6aULcCno1XSFu80preO27LXy4dFeLUY/jwv25Y/F4Lj97WI/022xOeP/z+sMsWXfklD6TJ6NUSESF+hEb5kdsmD+x4f7EhvkTEeyDQpKwyzKy7DCbk5Gx2+VjM68lTf6cJZX1x/w7PWkOeyq0aiWzxydx88IxTBtx+ora46lrNPHuzzv4ZMVu0vMrWwxQ1B68dWqeuGEmNy4YI/z5uhij2cqHS3fxny83UFzhnFewmbPH9ePBq6Z1SnRcIW5bpqPXJ7ekhrd+2saHS3e1aIUxYXAsT954Rrf4XQtOTW++T8wWG1c99SNL1h0+4XutWsmnj1zAuZNTPFZXd1ynDXtzWPTg106WXsOTIlj2whUE+blvg9VgJPe7lWS89y1lG3a2qV5taBD+A/vhN6CPw3d2YD98+sSgUKsd5hcSjj6KJCEpHO9WQ2Ep1QfTqD2UQc3BNKoPplOfkUtrX+zqAD+S77iC5DuvRBsU0Kb2dgay7HCvePKjNWQWVrktN3loHNfOG8W0EQltsn4U4lbQq+lMcXsgs4SXv97Mt38daDFI1LB+Edx18UQumD6w13TyZVnmQGYpS9Yd5uf1R1wmYO/tqJQKpo9I4MIzBnPu5JQeOeDQGWQUVPLWT9v5dMXuTpn5Pplh/SJ4+c5zutTfU+DAaLbywa87eeHLjRRXuhe5s8f14+8XTfCotUJv7bSXVNZzJKecgrJayqrrKa82UFVnwGi2YrLYsFhtWG12VEoFGrUSjUrpWKpVaNVKtGolXlo13noN3noNvl5NH28dfl5afL0cKWFsVgvr1q5BrZKYe87sFq+PyWwlvaCS1NwKUvPK2ZVaxLKNR1sMcjQwIZQnbpjJnAmeDcQi8Cy99T4xma1c/sQPTtH4dRoV3z11EbPG9PVofd11nQ5kljD/vi+cBglH9o9k2YtXEHBSv6Fq7xHS3/uW7M9/wVLj3nqmGUmhIGTiCKLnTSdkwgj8BvRFF+qZ1IxWg5G6o1lUbN9P3g+/UfzHZmRby1HAVT5eJN16KSl3X4M+PMQj7egIVpudr1bt45lP17VomQLQPzaYaSMSmDrc8QkLdG8FIcStoFfjaXFrtthYuzurKR1HeotlZ45K5O6LJzJzVMd8A3oCaXkVrNiSxsb9uWzcm9OqvHtdiV6rIiLYl7BAb3z1GnRaNXqtCr1GjVoJxUUF6NQKpowbTv+4UOIjAogJ80ej7llBOTqT3alFPPvZOpZuPOrxWdrWcOXs4Tx54xktvnAEnYPBZOH9X3fy4pcbW3SZSI4L4YZzR3HZ2cOcOm1trtNgYNnylVTUm5k5fTpBAb546zVoVAoUiu4Z5Cutqmf7oQL2Z5ZwJKecnOJqiirqqaxtxGCytiqSfWehVinQaVT46DX4++gI9vdCrVSQU1JDTnG1k/+fO0YmR3HnheO5YNrAHpkrWpZlGvOLsdTUYTeZsRlN2IxmbCYzdqMJu8WKV2wE/gP7oQnw6+7mdjq9UdwazVYuffQ7VmxJO+F7vVbFD09fzIxRfTxeZ3dep+yiKs78+ydOblujU6JY+p/L8ZbsZH+1jPR3v6Fy+/5Tnk/t70vk7ClEz5tO5Owp6EI8I2ZPhamiivwlf5Dz7UpK/mxZ6Cp1WvrecCED7r0O79jILmlfS1isNr74bR/Pfb6enOLqVh0zKDGMof3CaTCYKalsoLymkZp6Iw1GM4baSoybX2wuKsStoHdxvLjVjr8bnW8Q3noNQX56woN8iAn1IzEqkCF9wxnWL4LEyECniMDV9UZWbklj2aZUft+W3qIJmEIhccH0gdx10URG9O/+B0JnIMsyR3LK2bgvlw37ctiwL7fFIDYdJdhPT1x4ADHhfsSFBxAb5kd0qB8RQT6EN318vTRuBxB6Y+fBk2w7lM9zn6136oicjEqpoG+4noEx3owYOhCFQukwJbfL2GWHf5jdLqNQSI6gJ756An11BBy3tFhtPPr+X3y1yvULPsBHx2PXzeCGc0f3ysjbvZ1GY5PI/Wpji4HkvHRqLj5jCDcsGMXwpBOfY7IsU1FrILuoiuwihx98eXUDxZX15BRVU1RRR0WtgQaD2e3MoiQ5fm8alRKdRoWXTo2vlxZ/H13Tb0tHsL83IQFehAf5EBnkTVSoHxFBvmhUCpRKBQqFhMVio7y2kYpaA1U1jWQXV5NRUNUkWusor26kut5Ig8GM2WrrlkGdrkCSYP7kFO5YPJ6Jg2N71GCqzWymavdhyjbspGzjLso37sJYWtGqY/VRYQ7zzIF9j6U2CR49BKXu9Inw3NveTwaThYse/tYpf7m3Ts1Pz17ClOEJnVNvN1+nzIJKzvz7JydE8w00NnC5qZAxWYexVLc8S6sNDSLh0nnELDiD0MmjHCbG3YixvJL8JX+S++0KildtdFtOoVaTeNVCBj1wEz6J3W99ZbbY+GzlHp7/YgN5JTXtPo9srMG05aXmTSFuBb2Lk8WtpGs5QqROo6J/XDBjB8QQE+bHml1ZbNiXe8oRfb1WxVVzRnDn4vG9OmVMe2ju7OaV1DQFgHIs80odwZ/KaxqRJAkJh/iXJAmFJCFJoFWrCAv0JjzI58RloDeRIb7Ehvnjrdd0qH3d/VLsLnanFvH4h6v5rQULA0mCeZOSuXL2cMakhLNlw1qg49dpw94c/v7qCrfm7LPH9eOjh87v8OygoH00Gi28+8sOXvpqI2XV7lNDgSM65eiUaHKLq8kqqiarqIrGFmILCLoWtUrBpCFxzJ2YzIxRiQxMCO12cVubmkXWZz9Ttm4HFdv2YTN6LjK7yteb6HkziL3gLKLOmYrKq3c/z3vT+6nRaGHxQ1/z186sE7730WtY8vylnerX3ROuU3p+BWf+/RO8M7OYlX+EUWV5KGlBp0gSEWdOot8Ni4k+dyZKTcf6Mp1F9cE0Dj37DjlfLUO2u+7rKrQaBt53PQPvv7Hb77miijp+WnOI93/dSXpBZYupHN0hxK2gV9NWcdtWgv303HL+WG5aOIaQNkTPE3QdPeGl2JUczS3niQ/X8OPaQ27L+HtruXruCG5eOObYYIynr5PFauOtn7bz1MdrXPr29o0O4psnL2RQYliH6hG0nwaDmU9W7OHdn3dwNLe8u5sj8ABhgd6cMboPF0wfyJlj+nWZ64XdZqNw6WpS3/iyxZkgT9Ic7TX2grOInjsdtZ9Pl9TrSXrL+6nBYOb8B75i3Z6cE77389by8/OXdnp6se6+TnaLhdwffmfvv9+nYbf7dys4LA76XHsBfa9bhE9C50Wk9zR16Tkceu5dMj9Zgmx1nbrKOyGaUa88QPS5Z3TpIFpGQSU/r3ekr9x2KL/DVjhC3Ap6NZ0lboP89MwYmci9l05iaL+Ibh8pF7inu1+KXUVOcTXPfLKOz3/f69Y/L8TfizsvmsBNC0bj63WiaV9nXafC8joeeHuVyxyI3jo1b993LotmDPJIXYL2Icsya3dn858vN7JmVxZ28e49LQj01XHe1IFceMYgJg+N7xQfXGNZJRnvf0fa21/TmFvYpmMVWg1KrQalTotCp0Wp1SDLMg3ZBW471y2dK27R2STfeSXBY4a26djupDe8n+oaTZz3r6/YeFJqlgAfHb/8+7JOibZ+Mt11nQzFZaS/9y3p73yDocB1/uhm8hP6csELd5G4YAYKlapL2tcZNOQWcvg/H5D+3rfYTa6DTkaeM5XR/30I337xndaOtLwKvvlzPz+vP8KBTM8GNRXiVtCrOV7cjrn8OarMGqrqjBiMVo914CJDfJk2PIHpIxKYPjKR+IgAj5xX4Bl6Q+ehIxRX1vPvzzfw/q873JrnhAd6c9fFE7l+/ii3Zt6dfZ3+2pnJ1U/96NIM9u6LJ/L49TN7TTTx04V6g5k/d2Ty29Y0ftuafoI/WXtRKRX46DWEBnjho7IQE6ylX9++yEhYbHYaDBZqGozU1hupM5hpMJhpNFowmKwYzVYsVhsWmx2bzd6UNuz/D2qVgvAgn2PxBLIKqziUXeaRc0eG+LJo+kAuOXOoR+JB1KXnsP+JN8j9Zjl286nN1P0H9iNk0khCJ48idNJIfBJjjqUxORmb2Ux9ei41h9KbPhnUHEyn5mBaq1KbhEwYQf87riDugrO63bfxVPT091Ntg4kF//yCLQdP7PsH+upY9sIVXRZbpCuvkyzLlG3cSdobX5L3w+/YLe5/3yaFkg0RffkzJpkSLz9mjkrkh2cuQafpveK2GUNRKQefe5e0N750GXxKoVEz4L7rGfSvmzxmqmy3y/y2NY23ftru5NfdVvy8tEweFodeq6bRZKGksoHCslqKK+uFuD3dkSQpDrgDmAvEASYgHfgWeFOW5ZYdstpW1yzgcmAyEAlYgRJgH/An8Jksy+7zVbSvzk41S3ZFXLg/YwfGMDI5ktHJUQzvH+k0SyboOnp656G9VNUZePnrTbzx4za3PpCBvjruvmQStywcc0rf5a64TnmlNVzy6HfsPOI8wzNzVCKfPHyBMO/vZIoq6li+KZVlm1L5a2cmJkvLqSH+P6JSOkRmkK+eAF8dgX56An3+t/T30aHTqFCrlE0fBWqVI0CWWqVEqZCOifLmfkxzd6Z522gysXPnTiQJZp8xlYSoEAJ99U6B1lJzy/lhzSG+X32wRaGrUipaHe157MBobl44hvOnDUTbxk64uaqG/U++SdrrX7TY6dcEBZB45QIizphAyMQRHsmdaSguI/+nVeT+8Dula7adMq2JPjqc/rdeSt8bLvRYehVP05PfT9X1Rubf+zk7TnpeB/vpWfbiFQzrF9FlbemK62RtaCT7i19JfeMLqvcdbbGsV1wU/pcu4MY99eQbT7zv5kxI4qvHLzxtsjFUH0hlx21PULpuu8v93vHRjH79YaLnzWh/HfVGPl2xh3eWbG8xr21raI4Yf97UAahVzv8Ds8XGlh17mTZxVPNXQtyeTkiSNBf4AnCn+I4Cc2RZzuxgPYHAR8CCUxQdIcvyno7U5aLuLhe3zm2AlLhQRiZHMiwpgr7RQSRGBpIQGYBe27NHlU8HenLnoT3UG8y8+cNWXvp6k1Ny+Wa8dWpuXzyeOy+c0OqgTV11nYxmK3e9uoKPl+922hcX7s/XT1x42kYa7w5kWeZgVinLNqWydONRp47q/0e8dWriwgOIi/AnLtyf2HB/x3a4YzsiyKfT0+i05347lFXKD2sO8dHy3RS5mWVvNhHdfrjglOcLDfDi2nkjuW7+KGLDWn432i0W0t76iv2Pv4G5stptuaDRg+l/22XEXTQHlb7zAsYZyysp+OUvcr//jZI/NrcotBVaDX2uOZ8B/7gO376dF/SoPfTU91NlrYH5937OrtSiE74PDfBi+YtXMLhPeJe2p7Ouk2y3U755NzlfLyfrs59PmZs2dNJIkv9+FTELZ6FQqdiXXsw593xG5UnpEc+fNpBPHj7/tLFGkmWZnK+Wsuue5zEWux5kS7xyIaNeeQBNYOv72Yezy3j7p+188fteGk4RqNBbp8Zgcm112Rwc847F45k0JO6UroIiz+1piiRJw4BNgBdQDzwLrAb0wMXADU1FjwBj2jujKkmSP45Z2eYhkmXA1zhmh5VAPDAGWATM7+nidkjfcBZMSSGjoJI1u7PddjBaS2SIL4mRASRGBhIV4kugn55gPy8CffUE+esJ8tUT5KfHR69Br1WL9CntoKd2HtpKc67SF750n8ZFo1Zy44LR3Hvp5Dbnk+1qs68Pft3F3a+tcDKl1mlUvHf/gnb74VoNRhrzimjMK6Yxr4iG49atDQaQZWS7HdkuH1vHbkeWQePvgy48BF1ECLrwEPQRJ693fyTa1pBTXM26Pdms25PD2j3ZbUqZEB3ii9lqO2UU5Z6KRq08FnU9OtTvmGA9XrwG+em7/f/YkfutrtHE4x+u4a2ftrn0rw/20/PY9TOprjfy3Z8H2JfRsq+gUiExb1Iyf7tgHJOGntgxlGWZgqWr2f2P56lLzXZ5vEKrIf7iuSTdeikhY7ve39VYXknG+9+T9sYXNOYXuy0nKRTEXTSHgf+8gcBhKV3YQvf0xPdTeU0j8/7xOXvTT7yW4YHerHjpSgYkhHZ5mzx5nY4J2m9XkPfD76f0pVXqtMRfOo/+t15K0KjBTvt3HS3knHs+c0oTeemZQ3nv/gWnVb/NUlvP/sdf5+irn7q0nNBHhTH2vaeInjOtxfPsTi3iqY/XsHxzyykKg/z0nDM+id2pRS4tVyQJrp07kr9fNIF+McGt/juEuD1NkSRpNTAdh2nwVFmWN5+0/17g302bj8qy/EQ76/kUuKKpnstlWf7GTTkJUMqy3LYoEqeu/5i4Pf/ut+jXt09TqhkfwoK8CQ3wRqGQMJgsGE1WGk0O369Go5m3ftzO7rQip3P6eWt55c45XDxrMOn5lazZncXa3dms25Pd6R1CrVqJl06NTqvGq+mj16nQN69r1ei1jryRXjo1fk25I/29dfj5aAnw0eHnrSXQV09EkE+bTdJ6Iz2x89AWTGYrHy3bzb+/3OB2MEWpkLhi9nD+deVU4sLbN4DTHddpy8E8Lnn0O4ornMfOHrlmOvdfMcWtCJFlmca8Isq37KF8y14qtu6l7mgWporqTmuv2s8H/8FJBAxNJnBoMv5D+hMwJBmNv2+n1dka8stqWdf0DFq7J5vsoupWH6tUSEweFs8545NoNFp44csNNJpcP4ZVSgUp8SEM6RvOkL7hDO0bzsDEMCxWOyWV9RRX1FNcWUdJZT35pdUcOJpNrcGKv78/Cjf+ladCp1HhrXMM7nnrm595arx1any8tIQH+hAZ/L+c14G+um4Xrq3BE/fb7tQi/vbSMnYddT0b//eLJvDE9TNJz6/k278O8NnKvafMST5hcCz3XTaZs8f1oy49h+23PEbJn5tdllVo1CTfeSUD7rseXUj3m/3aLRbyflrF0Vc/pXyTs2XI8USeM5VB999I6JTR3fp76Wnvp7LqBubc85lTAJ+IYB9WvnQlyXEh3dKujl6nZkGb+91Kcr//7ZSCFsCnTyxJt15Kn2vOP6VZ/eYDecy/93On2ccbzh3Fq3+f0yueSW2h+kAqO/72JKVrt7nc3+ea8xn58gNO78b9GSU8+fEaft3Qstn30L7h3LxwDFX1Bp78aC1Gs/M7qV9MEO/cdy4T25GCSojb0xBJksYAzb/Id2RZvtlFGQVwABgAVAHhsiy3KbmhJEmTgfVNm4/Jsvx4+1vdPo4Xt6mpqSQlJbX6WLPFxlMfr+GFrza6jGFx0RmDefMf8/HSOUyL7XaZQ9mlbD9cwM4jhew8WsiBzNJW+0F1B4G+OiKCfAkP8iYi2JeIYB+iQ/xIjAqgT1TQaWE63dM6D63FYrXx6Yo9PPf5evJL3XdIF80YxMNXT6N/Bzsd3XWdiirquOyx79l8IM9p30VnDObt+85Fp1FhbTRQsX0/FceJWUORZ4LtdBTv+GgChvYndNJIwmaMJ2jkwE6Jlmmx2kjNq2B/RgkHMks4kFnKvoySNluQ+HlrOWtsP+ZNSuassX2x22Vue3EpP68/4lRWpVRw/xVTmDcpmZS4kFYPiPXW+66r8NT1sdnsvPPzDh774C+XKbcmDY3j04cvICrEF6vNztKNR3l7yXbW7s52e06F3c6Vhnym7N0KZtfRUmMXnc3w5/7R48x8m6nYsZ+j//2M3K+Xt2iyHDJhBCl3X33MzLSr6Un3SUllPXPu+cxphiwqxJffXr6yTTNjnqYt10m226lLz6Fy50EqdxxwfHYdxFrfiskHSSLqnKkk3XYZUbOnuA165oo1u7I4719fOQmx2xeN4/lbzzrtBK4sy2R+9AO77noWS63zALVXTARj33+KqLOncCirlKc/WddiikKlQuLcKSncev5Y+kYHcdWTP7J+b45TOUmC2y4Yx+PXzTzW/24rQtyehkiS9DTwQNPmeFmWt7opdz8Oc2WAs2RZXtXGer4GLsJh9hzp6WBRrWxDu8VtMxv25XDdM0vIdWHaNzwpgm+fusitv5LRbGVfejE7jxay62gRafkVZBdWUeLGrLQncrzpdP/YYAYmhjEoMYz4iIBeYW7TkzoPrcFqs/PVqn088+m6FmfgZo/rx2PXz/RYUI/uvE5mi41/vL6S937ZecL3fiYDC3WNXKBtpGrNVmxG1z7GPQ2VrzdhU0YTPmMc4TPGETB8AApl64KLyLJMWXUjWUVVZBZUkV1URXp+JQezSjmcU4a5nQGgYsP9mTuxP/MnJTN5aPyxYCerd2Zy3XM/uxTISbHBfPzgeYxMjmpzfb3tvutqPH19Cspquee1lS4HKMIDvfn0kQuYOjzh2HeHskp5Z8kOJ1+36Poqrjm6hcS6Spf1BI0ezMiX/0XY5NEdam9X0VhQwpGXPyb97a+xNrgXN15xUfT/22X0u35xm3wGO0pPuU9yS2qYd+/npOVVHPtOabcxxFvizasnEWg3Yywuw1hSgaWuAVuDAWtDI9ZGIwCSQgJJQlIqUfv5oAnwRR3ghybAF02A3wnr2pBAtKFBKLUtBzlsxmY2U1dawerlK8FgYszQYSjMVqx1DVjqGhzL2npMlTVU7zlM5c6DLsVWS/gP7Efs4tkkXrGgQwM2v21NY/FD3zi529x/xRQevbb9AZd6Mg15RWy9/iGKf9/gcn/eqDE875WIQelaiAb76blu/iiuP9fh+7/tUD4XP/qdy3dSYlQg7953LpOHdSwFkRC3pyGSJK0DpgANQIA7U2BJkibg8MsFeEKW5UfbUIcGqAF0wHeyLF/Y9L0KiAZkoFiWZdfDwh7CE+IWoKbeyD2vreSL3/c57QsP9Oabpy5i3MDWJ+uuN5jJLqoiq7CazMJKsoqqqahppKrOQGWNgco6A5W1jS5H4nsKXjo1KfGhDEwIZWBiKIMSwxiQEEpMqF+PGqHsKZ2HU2EyW/ni9328/M0m0vNddyzBEVX44WumM35QrEfr7+7rJMsyb/6wlVf+8x1Dy/IYXp5P37qKUx/oBnWAH96xEXjFRuLVtNQE+iEplY7ReElCUkjH1gHMlTUYS8oxFJcf68gZissxlVY4fHPb2xZ/X8KmjSHm3JlELzgDhb8/uSXVZBZWkVVY5RCyhVVkF1aTVVRFvaHj932wn57Jw+KZNiKBacMTGJBwor+w1Wbn8Q9X88KXG10ef928kTx/61mnjLLtju7+PfV0OuP6yLLMe7/s5N43fnMaBFEoJB67bgb3XDzphEHJmnojn63cy+tfb2DYjs3MzT2ISnb+rdfovfG+9WoufuYWNJreZ81jqqwm9Y0vSH310xZdF5ReevpctZD+d1yBf0rfTm9XT7hPDh/J45a/vYk2L5+Y+moiDLWEGeoINjWi6MR+uMrHC21wIEq9FqVeh1KvRZIkLMeL1roGt7lWO0qzoI1bPJuAQe3rG7ri5/VHuOyx77Cd5A//xPUzufeyyR6rpychyzIZH3zPrrufxVrnPHlTofXio+TxHA76X7DIID89f79oArecNxafpvfMpyv2cPvLy1wO4t583hieuuGMdr+TjkeI29MQSZLKgBBgryzLw1soFwg097KPCdRW1nG86fPdwFc4ZoEXA82Rbow4glg9JcvyJqeTeABPidtmflhziNte+NUpSq1WreTNf8zn0rM8G0zDYrU58vKaLDQaLU0+wRYMRguNJqtjvWmfwWxt+t7hN9xgMFPTYKSm3khtg4nqpmVNvdHpoetJ/Ly1DsGbEMbARIf4HZAYRnigd7eI3p7QeWiJmnoj7/26kze+30pxpfvR5slD43j02hkdHrF0R3ddJ1mWqdp9iJyvlpL34yrqM53Nk1tCE+hP8PhhhIwbRtDowfgkxuAVG4Ha18djbbTbbBgKS6nen0rN/qNU7TtK9b5Uao9kIlvbFibALkmk+oexMySWXaGxVGs9k/oowEfnELPDE5g2IoFBiWFuLSuKKurcmnwF++l5695zmT85uUPt6en3XXfTmddnx5ECLn3se5eBxOZO7M8H/1qI/3FR1Cu272PzNQ9Qe9A5uIsd+DM6mZ8Sh2FSqekTFciDV03jojMGd3pE6c7A2tBIxoc/cPiFD2nMbTlyeMSsicRfOo/Y885EE+DXKe3p6vvEbrFQvT+Viq17Kd+yl4L1OzFm5dH7/pPto7ME7cl8/cd+rn3mJyeXtudvPYs7Fo/vtHq7m8q0XH4+7w60Bw+73L86Konfh4zn5kunctsF4/DzdqTJtFht3PvG77yzxDndUEyYH+/fv4BpIxI91k4hbk8zJEnSAc0xy5fJsjzvFOXrcYjRLbIsT2hDPVcBHzdtPoBD4LpzCrQD98iy/Eprz39cPaeaLo0AtgPs37+fvn07PhKbll/JZY//SHqBcy6uOxaN5eGrpvTol74sy9TUmyiuqqeksoHSqgaKK+sdy4oGcktryCmuprTKs8GxAn11pMSFkBIfTEp8CClxISTHBRMa4NWpotdoNLJu3ToApk6dik7n2fQUdouFmr1HqU/PoT4jj4bMPBqy8rHU1GGtbRqBrm9EoVY5Rqh1OpTeOmyBgeTIanbXWClU6snzCaTAOwDbST4+YwZE8cAVk5k67NTh7TtCZ1+nk6lLzSb/2xXkf7eS+jRnkeUKOxK2hFj6nzWeoDFDCBw7FJ9+nXtdWsJmMlN3NIvsTfvIXbMD4459qAudg9C1RIZfyDGhW6ZvXWCq6FBfBieGMSix2XIihKTooFY9dzbsy+X65391eX/PGJnAG3efQ0RQxwcGuvr31Nvo7OtTWWvg5heW8ceOLKd9yXHBfP3Y+cQEenHk6bdJfeljcGGZUKT346OU8WT4O0fHTYoN4p+XTmLhlORe4Z5yMnaLhYKf/iDj9S+o2nGgxbIKjZrwsycTs3g2EXOmovLynADt7N+BoaCEyu37qdq+n8pt+6nedQibwejROnoq2rBgAkYOJHDkQAJGDiJwxAB0kV0X6fmz3/Zx56u/OX3/7E0zuWnBKBdH9F5kWebnDak89uFacourmVaYxoUZu9HZnQd/dXGRjH7nCUKnjQEcQcyueeYXNh1w1pdThsbxwb/mE+LvmUHgZjIyMhgyZEjzphC3vR1JkkKB5jB438iyfPEpypcAYcABWZaHtFT2pOPuAl5q2jQBWmAp8BiOQFX+wAXAc4AfDjPlubIsr2j1H+Oop9U/kvfff5+QEM9E+qs3Wvnv8hz25TrPtI1M9ONvs+Pw0vbuBN5Gs43SWjMl1WZKa80UVZkoqDSSV2Gk3tg+vz9X6DUKwv01hPlriQjQEO6vJTxAQ6ifhkBvNRpVzxookG127NmF2PdnYNuXju1QFhg9YzZlVijJ8wkkyzeYqsQ4RswdztCUkB5l5t0R7GXVWDfswbZ+D/bM1uVbNShVHAiKYk9wDPuDo2hQa5k6IJDrz4jplt9GVYOFzJJGMksMjmWpgZrG/73A/UwGUqpLSK4uIaW6hAhD64M9HfEPY31kP3aGxmJXqwnz1xDmpyE8QENUoJb4ED2xITp8dG0PfGOXZX7ZXso3m4udZhOUColLJ0dyzogQFKfJb03g+J8v2VbKd5uLOflFOdBcwx3Z21AXljofqFCgOm8aR8aP44ddFaQWuR/ojA3WsXhCOGP6+vfa55TtaA6WXzdg27Tfpcg/AZ0G5ZiBqEaloBiQgBQW2GP+btloxp6ehy01D3tqLva0POSK1qcBc4uXDinIDynABynAF8lHDxo1kk4DWo3DrUOWHdfOZkduNEKDEbnBgNxghAYDcnUdcm0DWD3XdzglIQGoxg9CNW4QioGJSK2Me+BJVu4p4+M1zu+6a2ZEc/aw7ok87WkyShr5dG0hRwtPNEcOMdRz9dEtDKh2HZlaNWciBWdP44VVRVTWOwd9O2dECJdPiULZCYNn5eXlXH/99c2bQtz2diRJigVymzY/k2X5ylOUzwVigQxZlvu1oZ6HgCeP++pXYKEsn+jM0xRReS3QHJ15qNyGf3x3iVsAm13m83WFrNhT7rQvJljHvecmEO6v9Vh9PQVZlqlptJJXYSSv3Eh+5f+WBrPnI0PrNQoCvNUEeKmOLb11SvQaJTq1Ar1GgU6jRK9WoNMoUCkVKBUSSgVNy6aPJKFUgkohoVBIre7Ey7KMnF+KrVnMHsiAesOpD/QESgWK5HiUI5JRjR+EIja8a+r1IHJNPdaN+7Cu34P9cHarjpFCAlCOHYg8MoUPijWsT3cRWCJMz93zEgj167j/jTtqG61kljaS0SxkSxqpamibGXKAqZEBVcUML89nSGUhWvupO3eylw7VtJFozh6HIiHylOVPRb3Ryhsrc9md7XwdQ3zV3DknnqTItuVFFvQe9ufW8d8VOdQZbCjtNublHGRuzgGUTpIXFIlRaG5fjLJPNOB4/u3LqePbzcVklLh/7iWE6lk8IYKRib49Ruy1FXtZNdaVm7H8tqXVz3gp0BfFgASUKQkoUuJR9IlGUnW+iJIbjdhzi7HnFGPPKHCI2dySU4tzN9iRqPL3J3hQHOqESBRRwUgRISgig5G82zdTLVus2Dbtx7JsI/bU3FMf0Jn4eqEaPQDVtBEohiV16W/0152lfLHe2aLn+pkxzBrafRGoO0plvYWvNxax7rCzFWMzU1MCuNSQi/rrlWByFrBleh8+TB5PasD/+jZqpcQNs2KYOqDz0osJcXua0YUzt/8A/nPcVymyLLtMbCVJ0nfAoqbNobIs729DPV1ulnwyn6zcy71v/OGU8ifIT8/HD5zL5KE9M1WCp5FlmYKyOg7nlHM4p5wjTcvUvAoMbvJmdicqpYIgPx2BvnqC/fQENX989YSY6gnOykJ/+CjsPYCtzH2Ap67Ed2Bfos87k+gLzsIvpY9Hz+1J8zhLbT1Fv64m/9uVlP61xWWy95Pxio8iZvFsos8/C/9hycc6H7Is8+LXW3jmM+dIjEF+ej68fz5Th3fcD7m6zsie9GL2pJWwO62YPWnF5LWQgqm1BPjoSIkPpn9sMH2CvIjLz8Z71x6M67ZibUVEz8BRg4i/5nxiFs9G7dt2AbortYhrnvnF5d8ya3Qib/9jLkF+nvfzE2bJLdPV1ye3pIbb73iHmatXEFfv3BmV1CpS/nUT/e+5GoXaOWCULMv8ti2DZz/byP5MF7O9TYxKjuRfV0xixoiEXityrY0GipetJf+7lZT8vhG7ufVZEBVaDV7xUXjFReEVF9m07ljqIkKPBU5SeulQqFQufweyLGOprsNUVun4lFbQkF1AQ2Y+jdn51Kfl0JjbNveHkynR+5LpF0yGXwhZviEMmTmSdx46H10rU321hN1iIefTnzn63HutyierDQvGf2gy/kP749Mv3nFtNGoUGo0jCrMsYzKZOLj/AHJtPXFeAZiLyjAUlNCYV4QhvwR7GyLpB4wcSPK91xM5f3qbUv10hFe+3coTH69z+v7lO87iqtnDuqQNnqLRaOG1H7bx2vfbaXQhWAHGD4rm6RtmMqK/I5tDfWYeu256lIqNu1yWXxPZjx/6DCcwKoTPHlrI8CTPZIFwhzBLPs3oQp/bm4C3mzazZFl22xOXJOl64L2mzetkWf6wtfW0oh0eDSjljg17c7jk0e8orznRfEulVPDKnedw3fzTy7+iLdhsdnKKqzmUXcbh7LJjy6O55S4Tc3c5skygyUBSTSkDqotJqSohzNj2rFUlel9K9L6U6n0p0/tQq9ZhUKkxqNQYlWqUdjsauw2N3YbeaibI1EicZGaoj4Lg6kqM2W17tgYOH0DCFQuIv3gOXlEdn9HtaGATY1klpWu2kvPNCgqXrWlV2h5deAhxF55D/CVzCRk/vMXO8M/rj3D9s0ucIgkrFBLP3DSLOxaPb3Vnuq7RxJ7UInamFrGrKU1XRkHHBjACfHRNAdQcUcMHxIe0GEjNZjZT8tcW8n5cRf6Pv7cYwRUc6YWSbr6Y5L9f1ar/t81m5+VvN/PEh6ud0lIoFBKPXDOdey+d3Gn+kiKgVMt05fWxmc0c/vf77H/iDWSL8zM31yeQwmuu5D8v3HjKPMZ2u8wvG47w1MdrOZjlXuROHBLLI9dM92gQmO7AXF1L3k+ryPl6OSV/bm7VQF1rkVQqlF46bE36SiWD3WTBZjLj5DvQAdR+PviMHMRfjSrWGtRk+QZTr/nfYMot543lP7ed1eFYIXabjZyvl7H/0deoz2h5pjZk4ghiLzib2IWz8Olz6sj/Ld0vsixjKq+i5mAaBb+uJu+nVTRknfp96j8oiUEP3ETched0SY7j5z9fz2MfrHb6/u1753PVnBGdXn9HsdtlvvlzPw+9+yeFbnKrx0cE8MzNszhv6gCn955st3Pg5U/Yc/+LKK3Ootig92LMqw8y5PoLOn1gTASUOg3pomjJc4BlTZvrZVme2kLZs4GVTZv/kmX5udbW04p2dIm4BcguqmLRg9+4fOHffN4Y/nPb2ag6+PKw1NVTezSL2iOZ1B7NojGv2G2KEqVGjXdCND794vHtF4dvv/hOi/jYHmw2O/lltWQWVJJZWEVG0zKzoIrMwsoTci92BJXNho/VhI/lxE+IsZ64+ipi66vws7Q9f2qx3pcjAeEcDozgSED4CZ2FlvDWqZk9PomLzhjCOROSjv0mTJXVVO44QMW2fZSs3krZhp2tmjGQFArCz5hAwuXnEnverHZHCW5LZ1uWZepSsyjbsJOyjbso27CLurTsVtWj9vcl9oKzSLhkHmHTx7apU3Ekp4yLHv6W1DznFEEXzhzMW/fOP5bUXZZlymsayS2pIa/EESRtX3oJO48WkppX3qG+o6+XhhH9IxmZHMXI/lGMSo4kMar9vnc2k5n8n/8g473vKP6j5cDxCo2axCsWMODe6/BLdj1mmFFQyfXPLmHLQef3dVigN588dD7TR3au6BDitmW66vqUrtvOtpsfpfZwhtM+GxLL4gezNH4QNoWSiUNi+ebJi1oVvMVul/l+zUGe/nity/uxmWkjEnjkmulMHNL7LZiMpRXkfr+Sot82UL5pN6Zy9+aY3YWkVBIwpP+xCPLB44ax36zkiid/pLjixEFbSXJE7719Ucej95Zt3Mn2256geq9znuVmvGIiSLr1UhKvWtjmAdm2vp9qDqSSt+QP8pf8SdWugy2e26dvHAPvv5HEKxeg1HSemwvA05+s5amP157wnSTBu/ct4PIePIO7+UAe977xGzuPuI6V4eul4b7Lp/C3C8a5nf0vqqhj8UPfkLfrCNce2UJSbZnLchGzJjL6zUfxS0rwVPOdEOL2NKSL8tzGA9lNm5tkWZ7UQtnjhfC9siy/0Np6WtGOLhO34JgRuubpn1i2KdVp38xRiXz+6CICfVvXiTFX11L02wZK122n9nAGtUezMLgK/tEGtMEB+PSNwy+lD6GTRhI6dTR+yX16nPmYLMvUNZoprqijpLKe4soGSirrKamqp6SynpoGE/WNJuoazZhqGvAtyiesqJDQ6nJ8TAa8LeZjItZVtL72UKn14nBABIcDwzkSEE6VrvUmopEhvswYkcjCqQOYNaYPeu2p80RaGxopWbONwhXryP9pVav+90q9jpiFs0i4/Fwiz5zo0rzweBqNFtLyyinOLqbwYDpHNm5HqqkjJT6KuGBfQny1SDYbdovV4T9lttCQmUfZxl1t6tgp9Tqiz51JwiVziZw9FaW2/R2Imnoj1z+7hKUu7rHkuBBiw/wcgra0xiPm8F46NcP6RTAy2SFiRyVH0S8muNNmPOuz8sj48AcyP/yh5f+5JBGzcBYD/3kDIeMcnSJZlnn35x088M4fNLoYHJo0NI5PH76AqJDWRWXuCF0pbhsLiilZu53aI5k0ZBdgKCjBWFqBtb4Rm8GEzWRyDBTJjmvUPLKhUKmQVEoUGjVKnRa1vw+aoAD04cF4xUcRODSZ4LFD8UlKQOFh88XOvj6miip23/cfMj/8weV+a2w0z4YPJdvnRL+2xKhAfnr2EpLjWhefwmqz8+2fB3j6k7VkFrp/Jpw5pi8PXzOdMQOiW/039GSODfBt2k35xl2UbdxF7ZHMLm2DpFTil5yI/5D+BI8eTPC4YQSNGnQsmrMsy7zxwzb+9fYqJ7cpvVbFRw+ez4IpKR1qg7Gskj33/YfMj390WyZ08iiS77ySmIWz2j1D2pH7pSG3kLyfVpH6+hfUp7uPzO8VE8Hgh2+l7/WLO9Vc+YkPV/PsZ+tP+E6S4IN/LeSSMz2bTrKj5BRX89C7f/L9atcDBAqFxDVzRvDwNdMJbyHK/r70Yi548Gvym9xjJNnOmflHWZi112UcCoVWw6AHbmLgP2/sUH/BHULcnoZIkvQM8K+mzfGyLG91U+5+HLlpAc6WZfn3NtaTA8QBJbIsuzWglyTpduC/TZuXyrL8VVvqOUUbulTcgmNE+9EP/uKFLzc67esbHcQ3T17IoMQwl8fWpmZRsHQNBb/+Rdn6nR41gXKHNjSIsKljCJs6mrCpY/Af0h9FN0QVbA2yLFOXlk355j3H8vRV7zvaKdepUacnIySKfT4hHPALo1Tv63gDtYBGrSQ2zJ+4cH8GJIQyblAM4wfFEhvm16EBBNlup2zTLnK/W0nedysxFLke8TwebWgQ8RfPJeHyc/GKDqcuM5+D2w6SsSuVqvRczAUl6KqrCDI2oLN53jxcUqmInD2FhEvmEn3uTNQ+ngtYZLfLPPL+n7z4lWfTY2vVSoYeJ2RHJkeRHBfSYYuL9mC3WilauZ70976lcOkatxYaAGHTxhJ2y2U8sL2MP3c6p36RJLjnkkk8eu2MLvtbPC3e6nMKKVu3jfJt+6k9lE5DTgHG0kqs9Y0eNeF0h0KrQe3ngy4sCK+4KPxS+hA0ajChk0fiE992wdZZ4laWZbI++5nd9zzncgBKUigYcN/1DHnsdn7blc2VT/zgZCUT4KPjy8cWMWNU6/36LVYbX/y2j2c/W0eui/y6zcyZkMTD10xneFLHA6X1NEwVVdQcyqAhp4CGnEKHn2xO4bFtu6ntUfVVPl5oQ4PwjovCp28sPn1i8ekbh/+Avvil9HHb8c8vq+W2F37l923OM/ax4f589fhiRiVHtbk9zciyTMb737Hnny9grnL9/w4eN4xhT99FxBmt9mhziyfuF7vVSu53Kzn49NvUuMjp3Ezw+OGMfesxAocPaHd7W0KWZR59/y/+c1IfUaGQePOeeT3CRLm63sh/vtjAGz9sxWRx3b+aMTKR5289iyF9W56FX745laue/NHJpcjfW8unN01B+96nFPzqbK4N4JecyOg3HvXIb+h4hLg9DZEkaSzQLGjfkWX5ZhdlmqMXDwCqgTBZlttkJypJ0kvAXU2bk2RZdtkTlSRpNTC9adOjP7LuELfNfLVqH7f851enB4NGreRfV0zhnksmoVYpqdx9iKzPfqZw6ZpWm3Z2JuoAPyLPnEjkOVOJPHuyR/w5O4K1oZGS1VspWLaGwuXraMxtXQqZtqL29yVs6mjCZ44nfOZ4Agb3R1IokGWZ2gYTNQ0mGo1m6g3mY7NiGrUSjUqJVqMiyE9PeKBPp+d8tNtslK7ZRvbnv5D7/UpH576HoPL2ImTiCOIWnU3sBWehDQ7s8DllWaagvI69aUXsaQr0tCet6NgIcLvbqlQwpE84I5tE7MjkSAYlhqHugkinbaUuPYfDL3xA5sc/tdhBTvML5afEYRwN/N892ycqkPfuX9DlZqFt7YxajUYqtu+ncscBqvenUp+eS2NeEabyKqwNhi4RsO1GklB66dAGBeAVG4Fvvzh8+sXjP7AvQSMG4pUQ4zTz62lxK9vtlK7fwYHHX6dktcvxaoJGDWLsO08QNGrwse/2pRdz/gNfU1B24v2kUip49e9zuHbeyDa1w2yx8fHy3Tz/+Xq3fnkA505J4Y7F45k4OLbHWQ51BrLdjs1gxNpobFoasBlMNFZVs22Do2s0ZtJEvPx8UGg1aAL80IYGodK3LdCYLMt8tnIv973xGzUNzu42Z4zuw8cPnd+hvKGNBSVsvf5Bilaud7nff3B/hj1zF9HzZnjsf+vJ+0W228n/5S8OPv0WlW5yHEsKBf3vvJKhj9/eblefFtsgyzz07p+89LVzt/jft3nGVLw9mC023vtlB89+uo6KWtcRw5Nig3n25lnMmdC/xf+vLMu8/sNW7n9rFXb7ic/vhMgAfnr2ElLiQ5Flmfwlf7Dj9ifdBiALnTyKQQ/cROTsqR75TQlxe5pynGmyFZgqy/Lmk/bfC/y7afNxWZYfO2n/1cBH7vY3lYkDjgI6YCcwTZblhpPKXA581rR5ygBXbeV4cbvhnU8ZPG0S2qAA1P4+ne5bAbDtUD4XPfwtxZUn+rpobFbOp4r5NXkY9x1u0zklhQLvxBj8Uvrg2y8Opc51uiFLbT11GXnUp+fQkF3Q4sxPSwQMTSZy9hSiZk8hZNLITr9usixTn5FL4Yp1FC5bQ8mabe0a8XZCklAH+qELDkQbEoguLAj/wUkEDh9A4IiB+CTGdFnkRE9hbTRQ8Otqsj7/haKV65GtXRugq1qjJy80Et3IwQycO5UzLppBUED7OwJ2u0xmYeUxAbu3ScyeHKitLSgVEtGhfsSF+9M3OuiYkB3cJ9wjkUG7EkNxGUf/+xlpb36Jpca9cDgcEM5PicOYdeU5PHXTLHz0nf+sA8e9azMYMVfVUpmew5bvf8FeVkViZDRYbY5OfV0DxrJKLFW1mGvqMFfVYK1r7BIrlW5FIaFQqRxRYNUqUCgw22xIKgW+EWHoI0LwigrHOy4Kr4QotEEBaIMD8O2fgC7cda5rWZap3nuE7C9+Iefr5TTmF7usWuXjxbCn7yLptstcWuUUVdSx6IGv2ZXqHIH3rosm8NSNs9o8aGc0W/ng153854sNlFQ1uC03IimSW88fy+KZg04ZzOp0xJOi7UhOGfe/tYrftqa73P/Pyyfz8NXT2x04SpZlcr5ayvbbnsBS7Ty4qPL1ZugTd9D/b5d7PEBTZ1g6yLJM8aqNHHz6bUrXbXdZRh8dzqhXHyT2/LM8PggjyzL3v7WK/363xWnfQ1dP44ErPSPkWtuWn9Yd5pH3/nIbXDHQV8cDV07jxgWj0ahbHgQ2W2zc89pK3v91p9O+CYNj+ebJCwkNONGay1JXz75HXyP11U/d9lcDhw9g0AM3EXP+Wae0MLRbLBhLKjBVVGMqr8JQVErt4UzqMnLJOprGlXuavSGFuD1tkCRpBLAR0AP1wDPA6qbti4Ebm4qmAqNlWa476firOYW4bSp3vEg+1LR+APAHzgduBpRAbVM97m1F2sHx4va/JBLM/3wQJaUSpZcOfUQoIROGEzAsBf+BffEflIRXTITHHir5ZbVc+OA37E4rIqqhmmmF6UwszsTLduqJcIVWQ/jM8YRNHuUQs8mJ+PaLb7MPgs1spiGnkPr0HGpTs6nYuo/Stdva7MOr1OsIHjeUsCmjCZ0ympAJwz1ibtqQU0DJ6q3HPo15bUtzICmVBAxNJnjcUHz6xKINDkAbEog2OADZx4tN+3aDt56zz5l92gW2MZmt/LV6D3tf/ITAtevxNbcvB68MmDQaDHovLLICi9WGhIwkyyiaPkrZjixJ1Gj0lOp8qNB50aDW0aDW0KjSYNBoiegfj29SHJEh/kQF+xAZ4ktksC8RwT5EBPtS32giv7SWvNKaE5b5pbVkFVU5mS51lMhgH16+c06Hfct6EtmZhXxxx4sErPqTwBb+35HnTGXYk3eeMFPXUUyV1VTvO0r1vqNU7jlM1c6DDrFaW4/NYGp3nk2PoFCg1GlQ+XijCfBDE+jbtO6L2s8HhUYNSiUKhQK73Y6t0YC1vhFrfSOW2nrMlTVYauux1DdgazD2GMGt8vHCf2A//JpMUf2SE6k5mEb2l0tdBoo6ntjzz2LUqw/iFdNyao0Gg5lrn13CL+udAwLNn5zMRw+ch3c7BkkajRbe+Xk7L321qcVBqrBAb66bN5Lrzx3dJT7hPQVPiLb8slqe/ngtn67c4zRDBhAR7MNb/5jP7PHtt1yz1Naz7aZHyPl6mcv98RfPZcSL/+w0S6/O9lEvWrWRHbc94dZ6LvKcqYx5/ZFWRXZuC+5MlAH+tmgc/77V86L6ZLYczOP+t1ax1UUAQnBYcdxw7mgevGoqwa2Y8S+rbuCyx75n/V5n/+ZLzhzCW/+Y3+JAVuXuQ2y76REqt7vPCurbP4GB/7yBhMvPRVIqqc/IpeZgOtUHUqnec4TK3YdozC1Etrl+H1Vg4Q6OufAIcXs6IUnSfOBzwF0I3VRgrizLTsOArRW3TWWfBf4JuLtDS4GFJ88ee4KWxG1LqP188BvYj+DRgwmZNJLQiSPwjmuff4q1oZH0r5az/vkP8U5vuSMCoIsIJXredKLnTSf8jAke9VU8HlmWacjKp3Tddsdn/c4Wgy24QlIqCRwxgNApo/FP6YM+KuzYRxsadMLImt1iwVBcjqGoDGNRKYaiMiq276dk9dZWhe0/HkVIEIpByVj69aU+Pp6qiEiqrTJ1DWbMVhsWqw2rzY7FZsdstlBU7BDxSYkxRIT4EervRUSwL8OTIhiUGNbhFAhdTVWdgZVb0ln/7R/ol/3O0OJs1HI3ioqTaFSqyfYNJssviCzfELJ9g6nS6k/ps9xWtGolg/uGMyIpkpT4ED5Zvof9ma7NmuZPTualO84hJrTnRAxvKxU1jbzw1Ube+nEbJosNpd3GhJIs5uUcINTofnYsZuEs+l63iNDJo1odMV2WZRpzCynbvIfqvUeOCVp3s4NdhaRSovb3RR8Rik/fWAKG9CdkwgjH3+bvWVFkNRqp2nWIih0HqDmYTl1aNoaCEkyllVjqGnqM+HWFV1wUY954hOh5M1p9TEu+7COSIvn+mYvbLTzrGk289eM2Xvl2M1V1RrflVEoF8yYlc960AZwzPglfL9eWSacLHRFth7JK+WDpLj5custtWr1LzxzKC7ef3epAlq6o3H2IDYvvdJneRx8ZyrgPnibqnGntPn9r6IoAdTajiUP/fo+Dz7zj0lpMqdMy9Mk7Sbn7Go9bef3nyw088t5fTt9fdc5w3rhnXqf0UfalF/P0p+tcDmg1s2BKCk/deAb9YoJbdc79GSUsfugbcoqrnfY9cs107r9iSqvEut1mI+O9bzn4zDstTnaoA/ywNjS6THHWEkLcnuY0RTW+E5gLxABmIB34DnhdlmWXQ61tEbdN5ScAt+AwhY4EjDjE8y/Aa7Isu49A0QHaK25d4RUT4RC6TR+/AX3d+sPIskzFtn1kfPA9OV8vw1rnvuMJUKnRszGyL6YxIznz4jNYPGtoh3xi2ktjfjFFv62ncOV6ildtatH08VRISiX6yFDUfj4YSys6lDbBLklkBoazKyCS/cFRFHr5e0wo+eg1jE6JYvzgWM4Y3Yfxg2K7JYBQS8iyzNHcclZuTee3zalUrd7CWTkHSal2LeSOx6RUobbbUHTz87RaoyPLN4Q0/1B2hMVRoWub+bKft5Zh/SIYlhTB8H4RDO8f6RTsyWK18d/vtvD0J2tdRkr29dLw8DXTueW8sT3uf9wS9QYzr3+/hZe/2UytCz86pd3GOTV5nF94BLnMfVoWJInAEQMJnz6WsGljCJsyGk2gP+Cw7qjac8QR+XXTLso37e5wdPb2otBqUAf4og8PwadPLAHDUggZP4yQSaPQ+HbOYF97MNc1UL55NxVb9zr8hDPyMBSWYKmpw2b0bK7S1uLTL54+V59Hyt+vQuXdvnfIJ8t387eXljlF2I0K8eWHZy7uUDComnojHy/fzVs/bXfZAT4erVrJmWP6snDqAOZM7N8hgdZTaatoq6w18Mv6I3y0fBfbDhW4LRcR5MPr98xl7sTkdrdNlmXS3/manX9/xqXYi79kHqNffxhtUEC762gtXRl9vS49h+23PUHx7xtc7g+fOZ4Jn/4br2jPzlK/+/MO/v7qcqfHxnnTBvDxg+ef0hS4texLL+aZT9fxcwuiduzAaJ69+cw2xWr4ef0RrnvmJ6cAdTqNinf/uYDFMwe1ua02s5nsL37l8PPvUXvUOVhiexHiVtCr8aS4dYVXbCS+SfH49k/ANykB36R46tJyyPzge2oOufZ7acYOHAiKYm1UP/YFRWM/biRQpVRw9rh+XHLmUOZO7N8tvoF2q5WKrXspXLmeohXrqNzZcq44T1Oj1rE/OIr9QVEcDIzEoO4av8EAHx2zxvRl9rh+nDWun5NfSFfRYDCzdk82v21JZ+XWNPKKqxlZlsf8nP3ENlS3eGyVrz/28aMZfMk5TLn0bCRZpmrPYSq27Wv67O/24GVpfiFsC0tgR1gctZoTOyphgd4MT4pgWJOIHd4vgoTIwFb7/WUVVnHHy8v4Y4fr1ByD+4Tx8p3nMHlofIf/js6kqKKOz3/byxvfb3Xrt6jXqvjbBeO46+KJ+KkVpL3zNYeeeQdjaQsitxlJInBYCiofLyp3HMBmbHu+59bUIamUSAoFklKBpFKi0utR+TrMhXXhwfil9CFgWArB44bh2y/e42l3ugtzXQPVe4/QkFNAY34xxqIyjGWV2AxGLAYjZUUlYDCht8lYqmqx1NYjWzs+G6zQqImaO52Ey+YTPXe627gMLbF2dxYXP/Id1fUnzrJ669R88vD5HRJN4MhzvnxzGm/+uJU1u7NPWV6lVDBjZCJThsczsn8kw5MiW2Ui2dNpSbQ1GMxkF1dzNLecDXtz2bA3x61lSjNeOjV3LB7P3y+cgL9P24JRHY+10cDWGx4i58ulTvvUAX6Mfftx4i+a0+7zt5WuzpstyzK5365g113PuMxOoAn0Z+x7TxJ3wdkerferVfu54bkl2E4yLz9rbF++evzCY3nc20NrRG1iVCBP3nAG508b0GpzaFmWee6z9Tzx0RqnfVEhvnz31EWM7EBk7uYgmof+8wElf27ucGwRpU5Lra+GG8uO+QMLcSvoXRwvbvdv3kaYVaL2SCZ1abnUZ+VReziDmgMedfM9JbrwEPpetwj77Jnc/uV2t0mxm/H31jJuUAwRQb6EB3kTEexLeJAPEcE+hPh7YbbYaDRZMBgtNJosNBotGEwW6g1mR5TfeuOxaL+1DUZqGkwYjJZjZrtWm/2YGa/VakelVKDXqfHWqdFr1Xjp1Hhp1fjZLMSVFxFemIdvZiaqzGzwoFlenUrL0YAwjgSGcyQggiIvP4+bsbYVSYJRyVHMHp/EWWP7MaJ/ZKfN+JnMVvakF7P5QB5/bs9g/d4cR6RtWWZ4RT4LsvYT1+B+9tuqVGIZP4bhd17ByEVnnPLFZK6qoWLHAUfnO7eIuqw8Sg6lIdc24BMShDbQH3WAr8N3McAXtb8vmgBfJLUac1UN5qpazJU1mCurMVfVYqyoprG0ErmuvsV6T0aWJIwDU9CcOY3Ic2cycEgfIoN9OuxnJMsy3/x5gPve+I2yate+fpeeOZSnb55FRAv5+boaq83Oyi1pfLJ8Nyu2pDl1cppRKRVcN28k/7xiCpHBJ5qKWhsaSX3jCw49/z7myupOb7MuMhSvmAh8EmPx7R+P/4C+aJPi2ZqdiqRRd0lntLfR3FmXrTamDB6GrayKhpxC6lKzqDmYQX1WHnUZeVg7YD0DDheb2AvOIuHS+YTNGNemNG+pueWc96+vnPLXShI8d8tZ3L5onEf8AQ9klvDWj9v5ctU+t+a1roiPCGBE/0hGJEUwtF8EkSG+hAZ4Exrg5fGo5zabHYPZisFkwWCyYjRZMJqtGMyOdYPJ6vjebMVobt62NG079lksNmx2O3ZZxmaTsdntWCxW8gsLsdpkfP2DMFlsNBgs5JfVuH1uuaL5eXD/lVM7/DxryClg3cLbqNrjHOwyeOxQJn3zMj4JMR2qo610tbhtxlxTx76HXyX19c9dWmL0ufYCRr36oEfdx5ZtOsplj33vlGljaN9wXrxjdpsHZVsjaoP89Nx/xRRuPHd0mwK7NRjM3Pj8L/y49pDTvrEDo/nmyYva/Xss27SLrE+WkL/kj9YN1p6MUoFSp0MbGohPfDS+/eMJGJqCb784SmQzI+ec2VxSiFtB76I1qYAMRaXkfLuCnK+WUbF1b+c0RKEg8uzJ9L1uEdHzZxyLOGy12Xnjh628+NXGNr3IegIam5U+teX0ryklrq6KALOBIIsRX1NjiyawVklBjUZHjUZPpc6bNP9QjgSEU+AdgNzKjlKgrw4/bx0BPjr8vLX4++jw99bi661Fp1GhUipQKxUOISrbycxIRwaCw2OoqjdTVt1Aal4FWYVtM5X21qkZNyiGSUPiGDMgmuT4UGJC/docSbTBYOZQdhmHsko5kFXKrqOF7DxS6PQyG1BVzAWZu0mscx29EEAOCiDp9isZdvulHUq946nOQ2NBCRXb91OxbR+V2/dTsX1/q83bFRo1MQvOYMC91xE8xjPJ7CtrDTz4zh98vHy3y/1+3loeuWY6Ny0c062myun5FXyyYg+fr9zrFF39ZC46YzCPXDOdPtFBLZaz1NaT9s7XFC5bS/mWPZ6JOt6ELiyYxKsW0ufaC/BP6eu0v7s6o57GbrNhLCnHVF7VNJhTg6l5UKeyBlNFdZMZsgmbwYTNYDy2bjUYsRtN2C1WZLuMbLMh2+3INjuy3Y7dagUPzNS2Fl1EKAmXzaffTRfhl5TQqmPKaxq5+JFv2bjP2d/yhnNH8eLtsz0mJCtrDfy8/jA/rT3M6l1ZTmbRbSHQV0dogDdhgd74eWtRKBQoFRJKhQKlsmmpkLBY7TSaLA6B2iRCjSZL03dNYtZsxewm12d3ExHkw2VnD+W6eaNIjOp46rWStdvYsOgOl25EKXdfw7Bn7+6STBMn093Pk5I1W9l85T9d+n/69I1j4hcvEDJumMfqW7Mri0UPfu1k4gsOM+VnbppFQqT7/7fdLvP7tnTeXrLdbfRscNwndywezy3njW3zTH92URUXP/Ide9Od4zBcMXsYr901t80R0GW7nYKlqzn0/HuUb3L9zvYEwixZ0Ktpa57b+sw8cr5eRvaXS1tM8t0eVD5eeMdH4x0fhVdc5LF17/gotNERbMyr4avVh/h1w9E2jV73NCTZjq/ZRIDZQICpEb3NQp3aIWartXoaVJpTzshGhfgyICGUuHB/YsP8Hcum9agQ3zY9MFt6KZZU1rP1UD5bDuTx545M9mWc2of1ZPRaFf1jQ4gO9SXAR+8Q2j4OM0CT2YrZasdgtFBcWUdhueNT2kJqDICY+ioWZexmSJX7QAo+yYkMuu96Ei47t83Rs13RWZ0H2W6nLj2Him37KF2zjbwfV2GuOrWLffgZExh0/42EnzHBI7NDm/bncterK9z+j4f0CeelO9s+Kt5eZFkmLa+C37al88v6I2xwIR5O5pzxSTx23QyG9nMf+VaWZRrzix0DC01m6I0FJUgqFbLN5hBddQ2Ya+raHNlYUiiInD2FvtcvJnredBRq9yZy3d0ZbS2y3U59Vj71Gbk05BbRkFNAQ04hjU3rjfklXZ5iq90oJEfY81b0nSLOmkz/Wy8hat6MU87mmsxWbn1hKV+u2ue0b9boPnz+6KIOmcC6oqrOwPJNqSxZd5hV2zOcBv7+P6PXqjhjVB+uPGcEs8f389jgQtpbX7Ljjqedfu9qPx/Gf/I8sQtneaSe9tATnifmqhq23fwoud+ucNonKZUMeexvDPzXTW2yjmiJbYfyWXj/ly4DsGnUSm5fNI77LpuCn/f/3A5q6o18unIP7yzZ4TalD3RM1AJ8/cd+7nxluVMMCIVC4tmbz2yzVYfNbCbny6Uc/s8Hp3Tp8wRC3Ap6NW0Vt83IskzJ6i0cev59t0EFOgOlXofK1xujSkOlVabULGNUqjEplVgUKiwKBRaFCrNSiUXh+JgVx60fV86oVFOn1lKr0WFTeNZEy5MoFBJhAd6kxIcwcWgc8yclM6yf51IxteWlmF9Wy+9bHT6uf+3IdDlq2pkEGRtYmLWXCSVZuJtDrAwIZs+EKVQMGYqvjw4/Ly1BfvpjKXeOpd4J8mlTAIr2dh7MFhuF5bXkljhS+lisNny8tPh5afD11uLnpXVse2vx1WvAZqX4941kf7WUgp//wtrQssVC0KhBDLz/RmLOO7PDnQarzc57v+zg8Q9WU+MiMBPAqJQorp83isUzB7Ur9UlLNBotrNuTzcqt6fy+Lb1VlgNeOjUXTB/IdfNHMW7giaaAsixjLK2get/RE/ypjcXOPmIdwadPLH2uOZ8+V59/ypQyzfSEzujxyLKMsbiM6gNpVO9PpeZAKtUH0qg5mI6tsX3ps7oMScI3KZ6AockEDkvBOyGaIy9/QtUu13EQfJLi0QUHUr517ymFrldcFEk3XUSf6xahDw9xW06WZf79xQYe+2C1077+scF8/cSFDEgIbdvf1UrqGk2s3JLOxn057EotYn9GSa8eAG4rEUE+DO4TxtThCUweFs+o5CiPBRcCh3XC7nue4+irnzrt80tOZMqSN1xaZ3QlPeV5IssyWZ/9zI7bHsda7/zuCp85nolfvtjivdQWDmaVcvnj33Mkp9zl/rBAbx69dgZjB0bz7s87+PL3fS32WzoqausaTdz16gq++N15oMvfW8tnj1zAmWP7tfp8lrp60t/9liMvf4yhoO2TC+1FiFtBr6a94vZ4Kncf4tDz75H33Uq3iaV7Ola9Hpu/HwT4owwORBUWgiI+BnV8DOrEWDThwahVSlRKBVabnUaj9Zgfb4PRTKPJQoPBTGWtgdKqBjILqsgrraGmwdgpAUFD/L0YlRLF+EExTBgcy+iU6HYLjfa+FE1mKxv357JySxq/b8vgaK7rl4sn8LKYmJN7iFn5R9ym9CnW+/JLwhC2hcUjS60znw0N8CIy2Je4cH/6RAfRNzqIvtGB9I0OIibM/wQz3JauU22DiUPZpRzKKiM9v4K8pvy0uSU1FFfUtek3EBXieyzq8ZDoQGKzUjH8tpbC5Wuxm92/lH37JzDwvutJuHxBh2eqSyrreejdP/n8N/duCH7eWi45cyjXzx/J4D7ti4pZ22BiX3oxO48W8tfOTNbtyWl1p3zMgGiunjOCRTMG4atX05BTQM3hTGoPZzhiBRzOoPZwZqtmwduDd2IMcYtnE7d4NkGjBrd5sKm7O6Pm6lrKt+6lfPMeyjfvoXLHgS7xP24vSr0Or9gIvOOi8IqNwCs2Eu/4KPwH9ydgcBIqrxOvn91qJe3NL9n70Csuo/FrAv0Z9dpDGIvLyf7iV6p2O/vEHY9CrSbuwtkM+Md1BA4f4Lbc96sPcv2zS5xmUr11at755wIumD6wDX91+7BYbRzJKWd3ahG7UovYnVpIdlE15TWNLvO8dhYKhYReo0KvVaPTOpZ6jQqtRoW+aVun+d9Sq3bkWFYoJJQKCYVCQrbbyM7ORq2UGDwwBX8fL7x0akIDvEiMCiQuPKBDQYROhaWuno2X/oPCpc6DFlFzpzPxixc8nmKrPXT38+Rk6jPz2HT5vZRvdjad1UeGMumbVwibMtojdVmsNt7/dSdPfbyWytr2DcR1VNQC7DhSwNVP/eRyRrh/bDDfP30xSbGtSxlkqW/gyEsfceTlT7BU17otpwnyx9pgcOlSowsLZvSbjxJ51qRjLiFWg/F/7iGNRkwV1TTkFtKYV0xjbiENTcvC8lIhbgW9F0+I22aK/tzEvgdepmL7/hNGw3XhwXjFRjZ9IlDpdSeYtxkKS7slJURbUPv54Juc6IhaOjiJ4HHDCB49+FgqCVmW2XGkkO9XH+THtYfIL3X/MOoMVEoFQ/tFMGFwLBMGxzJuUAzRIb6t6nB76qVYWtXApv25bNqfy4Z9uRzNKafR1LGZXZXNxszCVOblHMDb6tofslqj4+eEoWyI6HtCRO2OolIqSIgMoG90EH2igogL86G6OAtfvYqQmCTSCqo5mFnKwewy8ko6R0A14+etZVSMP9OLMohevw6pqtptWe/4aIY9dw/xF83p8Oz+xv253PXKilNGIB0/KIbr549iZNOMiVqlRKNWojluWdtoYm9aEbvTitmTWsSetOIWzcKckGUStXDRgGBmRujxqaqkLi2HurQc6jNysRnc5wb1JJJaReDwAUTOnkLopJGEjB/ers5tV3ZGZbud2iOZlG/efUzM1hzO8OxzV5LQBPqjCfJHG+RYOtYDUPv7oPLSo9TrUOq1KHXaE9YVGvWxaNEoFEhKJWazmS3btyEpFMy4YAH+0e2zVmksKGHn358m7/vfnJusUDDs2bsZcO/11B7JJPPD78n48MdTivyIWRNJ+ce1RJ412WWbth7K58KHvnHpXnHnheN56sZZ3eK/brPZqawzUFbVQFl1A6VVjZRW1dNotGCz27HZZWy2pmXTtlqpOCZOvbTq/wlVjRovnQpdk2DVa9XHBGvzukqp6PAzqDtFW2N+MWvm3UT1XudAQ4MeuJmhT97p8Xyu7aWniVtwDDAdfPptDjzxhtPEh6RUMvy5e0i551qPWaFV1Rl45tN1vP3T9lb7ow/uE8Yt543l4llD2j1IYrfLvPzNJh77YLXLei87aygv33lOq3JS2y0WMt7/jv2Pv4GxxP2Egd+AvkhqFTX7jrrcH3/pPEa9+iC6kJbjTrjjyP79DBh6LK6HELeC3kVHxW1dRi65360k99sVbke+vWIi6Hv9Yvpet8ilyZ7NbMaQX0JDbiENOYXHRG/zpzG3sMUZq+5CUirxGtCX4tBI1hjVbLbpKdX7njLok16rYtKQOGaM6sOMkYkM6RtOYXkdR3PKOJJbTmpuBUdyyjiaW96hIFoRQT6MTI5kZHIUo5KjGJkcRVigc8TC9r4UaxtMpOdXkF5QSXpeBWn5laTlV5CRX+mUHqOtKOx2JpZksiB7P0Em19fAqFSxInYgv8cOwKzs+lRQ3YXKZmNiSSazcw8RbnQfWCl43DBGvnQ/oRNHdqg+q83Ouz/v4KWvN1FQ1jWDNnqLmdiGKuLqq0i21NPfUodPZQV4MBWPOsCP4DFDCB47BP/B/UGWsRlNGApKyPr059angmrKjZtwyVziL52HV1TrZrE7szNqqa1vmpVtErNb9rY4+t8a1AF++CQ0xUSIj8I7LupYTASvuCi0IYEe86UDz1+fguVr2XHb4zRkO+c+jbvwHMZ/+Awqby+sBiO5364g9Y0vqNy+v8VzBgzpT8o91xJ/yVynIEI5xdVc/Mi37ElzDiYzZVg8nz1yAeE9KAp5T6W7RFv1gVRWz77eyRRUoVEz7oOnSbx8QZe0o7X0RHHbTNmmXWy86C4a853vhZiFsxj/0bNoAvzafX6zxUZuSTWF5XUUlNWyJ72Yn9cdcZsnWqmQOHdKCreeN5ZJQ+M6JK4Ly+u4/tklrN7lnGPW10vDf++ay8WzhpzyPLIsk//TKvb860XqUrPdlgubOoa4i+Zw+MUPacjMc9qviwhl7NuPEbOgY/7faWlp9O/fv3lTiFtB76Kt4la226nafYjCFevIX/JHm3K7SgoFUfOm0++mi4maPaXVI56y3Y6xtAJzVS2WugastfVYTvo0R960NZtcGE3/Wz8uOqetuYzR7MiZ6MFUPQB1ai2HAyI4GBTB4cAIKnSOzsvgPmHMndifmaP6MG5gTKsCPsmyTGF5HbuOFrHzaEHTsrDdZjcAseH+JEYGEBboQ1igN+GB3gT4aMjPSsVPr2TU6DEoVepj6ZOq64xU1RmorjdSVtVw7OVRWF5HeU0nRK+WZUZX5LEoZz+hddWuiyiVyHNmobj8QtQhgcdmQKw2O1abDYvVjsFkobbRRF2DidoGE2XVjRRV1Dk+5XXdEnzFW6d2mNDp1dQ3mo+1r97Qvgi9kmxnVFkec3IPEl/v3je1IGUQZRcsJCg5gdAAb7x0Grz1jvRVXjo13noN3jo1XjoNOo0KtUqBRuWYfT0+yrXVZue3rWm8/8tOftuW7rFJP53VQv+aUhLqKoitdwjaEGPLAcXailKnJWD4AILHDmkStEPx7Rd/wjNIlmXS3/2G3f943qWvWKuQJCLOmEDCFQuIPW8Wal/34sVTnVGbyUzNwTQqdx2iYts+x6zswbR2z8qqvL3wH9QP/8FJBAzuT8CQ/vgPTkIXHuKxGZbW0BmddUt9A1uu/hd5PzjP4gYM6c/UJW/i0yf22HcV2/eR9tZX5Hy1rMUcx/qoMFLuvoZ+N110QsoTg8nC319Zwacr9zgdExniy1ePL3byExecSHeIttJ121m74FanASFtcABTfnrDY+a0nqQni1sAY1klmy77B8WrNjrt8+kbx5Tv/9uiuf/xyLLMgcxS/tqZyepdWazfm0NjK+N/+Hlreeiqadx6/liUHbCeqKw18OaPW3njh20uB/PHDIjmk4fOb1WE7tINO9hz3wsuTbgBkCRiFpzBwH/e4LiOl97j8h2VeOVCRr78L7RBAW39c5wQ4lbQq2mNuDVVVFH0+0YKV6yj+LcN7cundRLB44Yx/uNnuzUIg2y3Y66qwVBcjrGkHGNJxbFlfVa+I9/v0awWOzWnwhIeRuSsiQw4/wzCZ47v0OgkOB7qOcXVbD9cyJaDeWw5kMfe9GK3uT57IpIEceEB9I12+EvFhTuiPYdlZWB4+1Pq9zrnDmwmdtHZDHvm7lan6TiZ2gYTaXnl7M0oYV9aMUdyy8kpqqaowrOC19dLQ1y4PwPiQxmVEs20EQkM7Rvu8mVqs9lpMDrEeFWtgUPZZexNK2JfRgl704pPPYggywyqKmZezn7617gOlGSRFPwVnczS+EE0qk9tGtWMQiE1CV2H4NXr1PjqtahVCmobTe0aKNDYrPSrKSOlupgBVSXE11ei9NC7TB3gh/+AvvgN6NO07Iv/gL54xUe1OKvYkFPA1usfoviPTS73R8yaeCxicGtR6nXEnDeLxMvPJfyMCU4ze+3pjFoNRqr3HaVq10Eqdx2ictchavanYre0z7JFoVETNGowIROGEzJhOEEjB+GdEN0jTC07LTq5LHPo2XfY+9ArTgMAmkB/Jn3zMpFnTjrhe1NFFWlvf03qa5+3aCqoDQ4g+a6r6f+3y4+ZqsuyzIdLd3H3ayud0uWoVQoeu24mdy4e36GOdmdRWWsgp7ia/NJaCspqyS+roaCsjvzSGkqaTK61TW4H6qalVq1Eq1EREeRDdKgfMWF+xIT6Na37t9n0s6tFW96Pv7Px0nucfBh9+ycwfdm7+PbrmmjxbaWni1twBOY68OSbHHjiDad7T6nTMvqNR+h77SKXx+aX1bJ6ZyZ/7shkza6sY7+/9jIwIZTHr5/J3In92zRoV1RRx3+/28J7P+9wGZhKkuC+yybz4FXTThmluzYtmz33/pv8n/90WyZqzjSGP3cP/oP7u31u6SJCGff+U0TPnd7qv+NUCHEr6NUcL263fvUT4QoNhoJSGgtKMBSWUpeeQ+WOA62eBdCFBRO76Gz8UvqQ9ekSx7FuUOq0DH36LpLvvNKj5myepKSijq+++Is/l2xAzisgqqGGhLpKYuurUNK2+09SKgmZMJzI2VOIOmcqgcMHeKQTWW8ws+NwAZsP5LH5QB7bDuW7jXTblWjVSpJig0mOC3F84h3LpJjgEzo45Vv2sPfBlyn5a4vbc4VNH8vwZ+8hZPzwFuuUZZniynqyi6rJLqomp7iK7KJqMgoqSc+vPGV+1M7E10vDkL7hDO0XwdCm5cCEUPRa95295tn7venF7EsvZm96CYezHUGrnAY0ZJkR5fksytxNhMF13tx6lYYliUNZE5XU6qBbHUVht9OnrpyBlcUMrCmhT205yg4EnlPqdfj2i8OnXzy+SfH4JiXgmxSPX3Jim2cXZVkm471v2fWP510GHfKKiWDs+08RdfYUAAwl5Q4z3407Kdu0m8odB1rlMiEpFHjFReLTJ/bYRxMbzv6SfBQhAUybOg21JGE3OSxKjKWVxwbaGrILqEvPoT4jj4bcwg75yXrFRDQJ2RGETBhO4IiBHkmT1Rl0dme9YPlaNl16j1OOaUmhYPTrD5N0y6VOx9iMJrI+/4UjL35I7ZFMt+dW+/vS//bLSb7zymM+b9sPF3DJo9+5NO0fOzCad+47l5T4zomm3FpyS2rYuC+HDXtzWb8vh7S8jg9kn0ygr46YUH+iQ32JCfMnJsyP6BCHCA4P8sHHS4OP3vFRq5RufweyLFNvMFPbZJ1T22iitt5IbaOZ+kYTJosNq82OxWrDZpfRqpXoNCrHR6smyFdHsL8XQf5ehPh7odOoSH3jC3bc/qTTPRYyYQTTfn2rQ3nSO5veIG6bKVy5js2X34upotppX9/rFpH03H3sy61k59FCdh4tZNfRIrcmxh1l/KAYnrzxjFOmuMsprualrzbxyYrdbgd0o0P9+OiBhUwZntDiuawNjRx85h0Ov/CB2/dH0JghjPj3vYRPH4e10cCWax8g95vlLstNXfJGq91hWosQt4JezfHi9r8kEkzbHeq1oUHEXnAW8ReeQ+jUMScI1cpdB0l/5xuyv/jVbUqT0MmjGP/Rsz1mRNRul1m9K5MPlu5i6cajWKzOHXGNzUp8XSV9astJaawipbESTW3bfNp04SHHhG7kWZPQBPp7rP0ZBce/GArZk1bcarOdtiBJEB8RQFJMMH1jgkiKCSYpJoik2GBiw/zdzkbIskzxqo0cfPYdStdsc3v+wJGDGP7s3UScOQlJkpBlmYpaA3klNQ4BW1xFTlE12cXNYra601Jg+Og1hPkp8dUpqTIqyfVAECmlQqJ/bAhD+/1P9A5MDCMy2KdFkWYyW0nNq+BQdhmHskqPLbOLq5GsVmYUpnFu9n63QbhyfQL5PGkMGf6d05n2tpgYVFnEsIoCBlcW4uOmHS2hUKvxH5xE4PAUAocPwH9wEn79E9FHhXlkUKg2LZttNz7s9vfX97pFjHjx/haDRdlMZso27CT7i1/I/f43lwK5u1Bo1ASOHETIhOGENgna1qYp6gl0RWe9Ni2b9Qtvc5k3csjjtzP44dtc3oey3U7BsjUceeFDStdtd3t+lbcXSbdcTMo916KPCKWsuoErn/iBNbuzncpq1UoevmY6d144ocuCTZVU1rNicxrr9+awYV+OR55pnkSjVuKtU6PEhiRJqNQaLFY7JouVBqPFc5GfZZnLig4xM3WP0y6vGRMY9fF/iI4JOcFNo6fRm8QtQENuIRsu/DsVW50j8mf5BvHmoKlU6pxjhLSEn7eW6BA/okJ9T1j6+Wh59+cdbGwhV/qIpEiC/fV4NbnpeOs0eOnU+Og1ZBVV8e2fB1q0kFs8cxCv3DmHID/3173Zr3bn35+hMa/IZRmfvnEMe+Yu4hafgyRJNOQVsW7hbS7TmiVcfi5j330Sld6zObRBiFtBL6e94tY3KYHIc6YQM38mYdPHolC17ENqqasn+8ulHH7hQ+rTc5z2K730DH/+H/S/9dJuM4krqqjjsxV7+Gj5brKLqlssq1IqmD3u/9g76/g27vuNv0/MlpmZHYccZmqgTZm7wopbtw466OC3dszQUbeV1q3M3CYNNMwMDtiOmdmSxXS/P2S7SSzZsmMnTpfn9brXnXSn08k++D4feJ4svrBsIlfMykYhl2KtqqPp0100rd9B8/odAaOSwSBIJETOnEjC5fP9Wd3JBSP6d/B6fZysaaO4ooXmDgstnRZaOq20dFppau+mtqkDq8OLUinvKzFTyqWE69QY9SqMehWRBg0JUfq+KSkmjPSEcFQh9A/3HYfTRe07azn5p+cG7tdOSsB047VUZuTQ0GGlsb2bhrbR75eVyyRkJPjJeS9Jz06KJDs5Er1Kwrp16wD/4MHpFSgub+7JqjZztLyZY1Ut/UoPhwONSk5mQgSZSRFkJUWQmdAzT4ogxqgNGjTweH20dPr/Xo2VjbQ/+RKyj9YgBOkt35OYxWvpEzHJzvHhKIokWk1M6KhnQns9WaY2JEOobHALEpqi41GPzyFv8TSmXjGHsIKMfqW8IwGf282JPz7H0Z89EdA+QZMUx/RnfkHCivlD2q/HZqf+w41Uvvg+jZ9sHfF+/sGgy0oloqiAyBkT/SXGkwuQqkIvQR9rOF+DdXe3xd+H+87afuuyH7qdqX97dMB7cdvuwxz71b+o/7C/VUwvpColmQ/cTP4j96FMiOVnz23kT69uD5iEn5qXwNPfv2bUPHGrGjt5f+tJPth2kp3FtWPdqGDUIfX5uKt0N3Ob+mfiN8Vn8XL2NHwSCSqFjLR4I+nx4aTFh5Oe4F/OSPC/Hk07olAwlsmt0+WhuqmLkpp2Tta0UlLdxsmaNsqrmrn86G4uq++v+NstU/JUwRxORMQH3W9qnJElUzJYPDWD+ZNSiTYGJ8OiKLJm9yl+/MyGQdX/Q4VEInDz4kK++4U5jEuPGXBbc2kl+77+S5rWbgu4XhkVTuGPHyLry7f0Pfdadxxg6/Vf798KIQhM/v0jI6o0fTYukdtLuKgRKrmVqlXELp7pzzKumIc+M2VY3+ex2Tn8oz/7zdADnL+xi2Yw7amfD7uncqjwen2s31fOcx8f5OPtJYP2ruanRnP3ysncetn4gMrDvRB9PjoPn6Rp/Q6a1u2gdeu+IfXuqmIiiVs+l4QV84iZP21UMy52u501a9bg9oosXrwEpUqF1+vDJ4r4fGLf3HvasiiKuD1enG4vTpcHl8eLq2fZ6fa/b3O4sNhdWGwuHDX1aD7dTOSuXSiswbNbHQo1H6RNYHtcxoja+pyO3mxzVmIEWb3kNSmCrKRIUmKDZ5tDGTy4PV5Kato42kN6j5Y3c+RU84iKb0kkAhF6NZFhGqKMGiLDNET3LBv1amQ9PpESQUAQQNrcgvKF15DuCJyhdCmVHJgxj10Z42i3OGk323C6BidmepeDgs5GCjqbKOhsCqpqHQheBCoNkZw0xnIyPI5Thijcpylex4ZrWTk7l6vm5rKwKH1IAZSB0LbnCHseeJSuIPYJoWRrQ4GjtYPq11dR9eL7tO85ck776gdBwJCXQURRAeFF4/zzyQVjwmtzJHFerZJEkaM//bu/F/AspNxyBbNe+N2ggZbOQyc49usnqXlrTdDScYlcTvrd1zHuB1/iiFXky7//gFN1/e2wFHIpP7xzHl++dhrh+nP73aIocrS8mQ+3l/DB1pMcKR/awF4iEYiP1PvLiE8rJ06I0iOTSnC6vbjd3s+eAW4PVrurT3ywrtXfr9vZfX6suoYCpcfNg8e3MaGjod+699Im8GFqof+BEQLiInR+8pvgJ7zp8eGk9czjInSjnvW9kOTW5xNp6bJS1dhJZYO/HaiyoYvKxk4qGzupbzUPGESZ3lzF3SW7UPrOfO74EHgnfSKrUwr8qvR6FQuL0llclMGSqRkhiTUFOtY3NhTzs+c2DprECAa5TMKdyyfxndtmk5E4sNWOx2qj+FdPcvKPzwXURhBkMvIevovCxx5CbvhMgLDmrU/Ycccj/QKwcoOO2a8+TuIVC4Z17KHiErm9hIsap5Pbf6jySE5OQZ0QgzoxBk1CDOrEWIyFOUTPnTKiWYCWLXvZefcPsFb2v14EmYzsB2+l8McPoYoenkfXYKhvNfNCT5Z2MI9SlULGjYvGce+VRcwclzSsSJnHZqdl8x4aVm+lYfWWgNnrgaBJSSB69mSi5hQRPXsyxgm5SGQyPF4fNocbq8OFzeHuW+402+kw2+no7pmb7LSbbXRZHFjsLqx2F1aHG5vdhdXhwmp3D7GDeHBE2i0UtdVS1FZLlqmVgahql0LNmuR8NiZkn0FyhguFXEpKbBhpcUbS4sNJizf2ZWGHmm3uxXAHD719s36i6++bPVrRzKm69vOaNcntbOb2sr0k2gKf77VaI29nTKJDqcEjkeKWSPFIJLglUtyCFAki2aZWP6HtaCLFGlyhORA6o2M4GhbHAXUEZWExOGShZTp0agXLpmdxzfw8rp6bN6z/ndti5cijf6H07y/181sEvzfwtCd/OuRsbShwdZmxVNRiKa/xzyvq6C6vobu8BltNI5x1PBK5HGVMBKrYKFQxEagTYtBnpfr7jDNT0OeknaHI+3nFhRisB+u5jFs6h3nv/D2kv7vpRDnHfvMU1a98FDR7L0ilpH7hSjK/cx+Pb6/m72/tCngvUMilrJydwx3LJ7J0WuagAjW96Oy28+m+CtbtKWft3lM0tYeuNRBhUDNnQgpzxqcwd2IqEzJjQ/7egWCxu6jvIbp9AlUtZurb/PO6FtM5aUVoVXL0WiVhWhU6jQJlj9+2XOoP9rncXhwuD06XF4vDhbOlnbt2rCa9+8zggg+BF3KmszUh61x/ch9UChnpPdnetPjwvuXeLPBIZH1H83qxO93UtZipae6ittlMbYvJPzWbqGk2UddqPueKpURLF189tiWgXoRv1jQK//lzxo9PO2fhNVEUcbm9dHY7+M+qAzzx1u6QHShUChn3XlnEt26dTVL0wOKgoihS+85aDnzrN0FLkGMXzWDqEz8mrODMc63kby+w/+Ff97sP6XPSmP/+P8+LEOslcnsJFzXO1ef2XOC2WDn0/T9S9s9XAq6XG3QU/OBL5D78xRHpKei1MvnPxwdZvats0H6dwowY7r2yiFsvGx9S9NxkcdDQ1k1TezeN7ZYe6xkLTe3dtHRasTvdOF1eHG4P6rY20uqryGqsIbu9EYVvaA8Gh1RGjT6SZpWOFrWOFrWeVrWOFpUeu/z8C8QIokiMvZsMcxvp3e1km1pJGcCephfNaj2fJBewIy4djyT0AZQg+MUbTievaXFGUuP9rxMi9SMeKR/pwYPF7uJYZQtHesqaj5Q3UVzRMiq90b2Q+nwsri/hmqojqL2j05vcC5dEyvHwOI5EJHA0MpEOlZbFU9K5fkEBWrWCfScb2HuijkNlTSEPjCIMam5fNoH7rppCbkrUoNuLokjDx5vY+9DPsdX0z84IEgk537iTCb/45nknjHa7nTWrViOarSy6bAna8DCkKuWgLR7/K7hQmajq11ex887v9cuyRE6fwIKPn+oTiBoM3eU1HP/t01Q+/15wNWtBIPW2lXi/cCNfe/3AgAJOMeFabl5SyO3LJpAcE9YnptRtc/Ytl9W2s3bPKfacqA+5H1WnVrB0eiYLJ6czd0IKeanRF6y31OP1YbW7+gKwFruLDpOFLdt3AzBj+hQMWg0ymRSdWoFBq8SgVaLXKIfUp9xdXsPGFff3CzKLCgWNX76fk/Gp1LWaqR0h4jYY4iJ1fsLbQ3ozEiJITwgnPSGc2HBtSAH1cwm+tveoYtc0+UlrTbN/Xtczb+0aBdu/06BVyclNiWJigoGZq95Htmd/v20MuenMe/cfhOUHJnZmq5O6FlNfpcBnCt89lQNmOzane0R6tQ1aJREGNREGDVFh/nmEQU1UmH8ebupC8uRzuHYdCPh5dUIMRY//kJSbLz/jfyv6fBz6wR858Yd/9/tM/PK5zHn18RHTZhkMl8jtJVzUuJDkthdN63ew674fBRx8gr8HbsIvHyb9zmuG1Yda3dTF86sO8vzqQzS0BVaR7fsulZybFxdyz8rJTMtP7PdQ8flE6lrNlFS3UlLTTklNW9/UMkxpernXQ46phfHtDYzvaAiqdBsqumVKuhVKHFI5Tqnss0kiwyWV4RMEBFHk7MelgEhv+lboWTh9G+G0+40AqLxujE47Rpcdo9PWr6RoIJw0xrIxIZv90clnqPYKAn0lt/FReuIj9af1+foFIuIj9cRH6kYkmzAUnI/Bts8n0tje3afufKqunfKGTsrrOiiv7xgxsawwp52bKg4wq7lqRPbXi3alhiORiRyOTOSkMTZoFj41zsiXrpnKFy+fhE6t4NCpJlbvLOXDbSUcrwpsZ3Q25k1M5b6rpnDtvLyAvtHNG3dx5LG/0ro98ADDOCGXGc/+kshpE0L/gSOIsdwjNxZwIf8+jeu2s/W6r/UTQTTkZbB43X+G1CZirWngxB/+zaln3gjY4w3+TG7KndewJmsSf9pQOnJCSUEQFaZh5ewcrpmXx6IpGSNW9j8aGOnzoGN/MZuu+FI/S0NFhJGFHz/VT5Hf5/Mr8Fc2dlLV0ElFg7/UtrLBr8Q/2gr8WpW8j+j2ljtnJISTkRhBSmxY33NwIFXplk6rn7w2m/pIbE1zF9VNJqqbu0Y1oHo6osI05KZGkdfjnuCfR5MUbegLqIg+H8d/+3RAyxuZVkPuXx6ls6iIE9WtnKjyTyer20a09We4UHg9XFldzPLaE8jE/hVCXkHCocIiyhYswhBlJNKgITJMjUGnQoWI9p/PIN3c347OcPOVxD72TWQKOVKJgEQiIJVIkEoEpFL/XBA+Wz59nUQQzthO2tO2NBgukdtLuKgxFsgtgNtsofhX/6Lkry8EHQCEjcsm5ZbLSbxykd9GZ4BoptvjZdXOMp77aD/r9pYPWv45KTuOe68s4pYl4zFo/eXXTpeHY5UtHO4pJT1c1khxRQsW+9CVX/sgiih8XpReT98kFX19BNQhlaN32SnsbKSwo5FsU2tQxduLDR6Vis6ZM7BftghFZmofiY0M80c8I8M0GHWqMen3CBeejPh8Is2dFlo7rbSbbLSabLR12WjvmbearJgsDn9PdM/2PtHfH+3zicgcdiK7Oom3mYgydxLW0Ya+oQGZydQv0BEqZDoNMQtnEL90NrGXzaZBbWDVrjJW7Shl9/G6QQfpKoWMW5YU8uB105iU7RcOOVXXzofbS/hwWwm7jg0ueBNpUHPHioncf9UUspIiad2+nyOP/ZXmjbsDbi9VKSn8ydfI/849SOQXTgTmQp9PFxp2p5uSmjZOVLVS2+z3T61vM9PY1o3V4cZqd2G22HB7fUil0r7zoPd06B3/9L3f+/q07xhsm7PXg18sUCGXkmnp4IE9a9C6ziyVtRjC2HXXvciS4tFrlH3Zw7gInX+K1BMXqcOoU53xjLI3tnDiT/+h7F+v4rUFLoOUyOXob7qCt+Jyeedo6BUNoSA1zsiVc3K5Zm4us8annDdF5nPFSF4nDWu2su3Gb+CxnEmEtKmJLPzkmWGVe1rtLqqbuk4jvV3+3tMeAjyaAohSiUBybBjp8eGkxOpxd7fi84mowmKpb7P0EdrRchA4G3KZhNQ4Y18WOq2n9Do9IZy0OCNhutAq8ERR5Nhb6zj6wP8hmvoH+z9NyOGNrKIhVXuNKkSRKW213HJqP5FBtCdOGGN5OXsajdr+mVe1x8VDxVvI7+rfD/9O+kQ+ThkXcu93qPAT5F5tDqFv94IgIABeh4muTb/r3fwSub2Eiwtjhdz2wlpdz+FH/0LVSx8MuJ06MZbElQtJuHIhcUtmIdP4H3iVDZ385+MDvPjJ4UEjqjq1gluWFHLvlUXkpkRx+FQTB0sbOVjayOFTTZysbkN0u1F5Pai8bpReDyrPacted8/kQeXpfe+s9R4Pyp5tlF4PCp9nwN7TXjglUhxSORaZgk6VvwdS5XUTZbcS5Rw7diODQRlpJPGaJSRfv4y4JbMuqbeOMkRRxNHchvlEOabj5ZhOlGPumeyNoWVEB4IglRI5fQJxS2cTt3Q2UTMmBiWIbSYba3aVsWpnGev2nqLbNnCQZua4JB64eirXzs/v60Fr7rCwamcpb244xsYDlQN+Pr27nS+Zyok5VRZ0m/MtWDcQLobzaaRgd7o5UNrInuN17DleT3FFMxUNnaOeoTxXxFlNfPvIhn4D1g6Fmj9NXEJTgIFqL5RyKXE9lSdZSRFkJUaQmRRJmkaC7+2PqPzXK0Gto6QqJSkP3ELxtFm8tKuSPcfrh3zsKoWM+ZNSWTY9i2XTs8hKihg1ZdXRxEhdJ+X/fpM9X/5Jvz5o48Q8Fq56esR9QuGzShx/1vczgaWKBn8WuHmY1V4XCuF6FckxYSTH9kwxPVOsgeSYMOIidEMKTtsc7r5AQHl9JyXVbRyvauFkdRtdFgeRdgsPHdtCaoAWpwp9JE8WzKVdrQuw56FBLpP0ZcAF6LtOei8XUSRoUiPWZub2sr2M62wKuL5Toeb1rCL2RqcGJKhGp42Hj2wk2dp1xvteBJ7PncH2+NHvrw0E0WHCuevx3peXyO0lXFwYa+S2Fx0HjnHwkd/TvGHXoNtKVErEhDga3VDnELHIFFjkSqxyJTaZAonoQ+7zIvP558nhGtKitKgRMbWZsLSbcHdbe0hoLyH1k1N5gNKSCw65DFlMNFKjAblOjeDx4m5tx1HX1E+c5nxDFRdN1IwJRE6f4Be/mlP0uekhHGtkxOtwYjp+is5DJ+g8dJLOQycwFZfh6hwlr0qplNhFM8j9+h0krFx4hp/1YHC4PLy5oZh/vbOXg2WBxTV6EaZVcutl47nnyiImZn1W/lle38FzHx3gxU8O9fWACaJIlqmV5bUnmNwe/NmrTU1k/M+/4W9tGCMD/LF2Po0kLHYXO47WsOVQFZsPVnGorAmPdwzeS0NAuMPGt498SoLtTB9zk1zF4xMXU6cbumIrQLpOxrVNpRQc3ockSE+uTKsh9+G7UNxyLa/vqeSVdUfPEEAUBH+QVq/x952G6ZRML0hi2bRM5k5MRa28sPY0I4FzvU5EUeToT/5G8S/+2W9d7OKZzHvniQumNG61u6hq6qLytKxvZUOHn/w2dY16r+/pkAgCUUZNjzK2gdQ4f0Y4OymS1HgjSTEG9JrBg9OiKGJzuOnottPV7aCzV9TSbKe2xeQv527qCpncy70ebi/bx7ym8n7rrDIFz+bP5khkYt970UYNidEGkqINJEYbSIzxL8eEa9Goejxs1QrUSjlalRyNSh5Si5Pb4+37He1mG21NnZifeRnpux8HtNrzCgLrkvP5MKUwqHhivNXEtwIEzxwSGf8aN4/iyIRBj2u0cIncXsJFjbFKbqFHDGb1Fg597w+YjgXPxlyC3zooavZkDPkZqONjUEYa8TqceCw2PFZ7z9yGx+b4rAavpxzF4/FQV++/byUnpyCTy/rWnz4XBOG090CmVqGKj/araifEoE1LQp0QM2bIw0jjQpIRj91Bx/5i2ncf6SOz5pMViJ6RKzdTJ8biaGwNqCZ8NrSpiWR/5VYy7rsxZIEd8F/Te07U8+S7e3l70zHcnoG/qygnnrtXTubmxYV9JW0Op5sPXljDoaffIv7o4aBlYABWrZ7or97Jlb94EJlybFUNfJ7IrdfrY39JA+v3lrN+XwV7jtcNaqt2MUHvcvDtwxv6KYRbZQoen7CYKkPksPdtcNq5ouYYCxvKggZT5WF68r97L9lfv5M2l4ggCOg1CrQqxQUTfzpfOJfrxOtyseeBx6h84b1+61JvXcnM//4WqfL8CzCejV4f+j3H6zhY6m9/Kq5oHrTa5XxBp1ag1yrRnBYsEUWxX3m/w+mho9s+KqR8TmM5d5TtDSi+qbjzRib87BukJEaOev94SCrIi2cy9Ykfo8/NwGR10G6y0W6202Gy0d7jXOHYfZD4fz6FzHGmRZZNpeHNJVdTrY/E6fLgcHnweH14fT68PrHPpnG06d8lcnsJFzXGMrnthc/rpWXTHuo/3EjFO+tw1wYWnrpYIchkI0pSwB/xDy8qIHL6BCKnjSdy2ni06YFtjD5Pg+zRgMdmx9HSjrm2kZ1rPwWnm1lXX05M0bi+cviRhq2+mbYdB2jdcZC2HQfpPHgiuOLqECBIpeizUjAUZBGWn4khP4Ow/Ez0uenIdVocrR3Uf/ApNW+vpXn9zkG/U6JUkHrLFWQ/dDtR04cmzNTUYeE/Hx3gmQ/30ziI0JtaKeML42NZbG5AvnUn3Sf6R/FPh0muYlXqODbFZ+ORSpmQGct3vjCHGxYUjJme7ov9uqttMfnJ7N4KNh6oGJaPqSBAWnw4WYkRJMX4My3xkXrCdCpkgo/io4eQSyXMnDkDpVLZ1xt+dtlg3+sz9j3wNoHWi6Lfz9vV49t6un+rva0T5/d+jqT0zHPPrVCy4bpbOKqKoKmje9h+ruEOK1dWFzO3qRxZkLGdMtJIwQ++RPZXvzBq956xhuFeJy5TN9tu/AZN6/sL9BR8/wEm/vrbwxKoHAm0dlnZe6K+r0x/38n6MUNkxxI0Kjl5KVHkp0WTlxZNjrsbz0//iKOytt+2MQumM+e1x1HHRY/a8ZhLKtj39V/StG57wPXqxFiKHv8BKTddPmCQv+L5d9l9/6P9xn367DQWffIsuozkQY+l917l9fpJr0/8bPlsIuzz9V/n61nu1eg4XX9AFEVqaqq46fJ5vV93idxewsWFsU5uzVYnu4/VsuFAJe9sOk5NUxdxNjMT2+uZ0F5PtqkV6Yg7tAaHTKtBptMg02uR67XIdBr/XK9F3vN+73u962V6nX+dToNMq/5sH1o1UrUKQSLB63L5s6vdVty9824rtpoGuorLMBWX0VVchqNp+H2TMr0WTXIcCoMeiUqBVKlAolKCQkZTezuCUk5GYT6ayHDkRgPyMD0SqQSvy43P6cJjc+DuMuPq6sbdZcZtseFzuvA6nHgdTgRBQKJSIu2ZFOEG1PHRft/k+GjUCbGo46NRRoVfsEHFYLDWNtK6/QBdR0r6pmDRWQQBXUYyxsJswgqzCSvMwTguC31uOlJF6NkAURTpLq2keeNuWjbvpXXHwaDK4aFCqlZhyE3HkJ9JWEGmf56fiS4rJeRjc3WZqf9oI7Vvr6Xxk614HQN7UEZMLST1liuImDKO8MkFKIwD+wD2wu3x8uH2Ev778UHW7/OLv0l8PuLsZlK7O0ixdJJlaiWjO7hNSi+sCiUfJxWwMTEHVwCl5szECL5z22y+sHRCQIXl84mLjdxa7S62Hq5m/b4K1u8tp6SmbUifl0gECtNjmF6QxNS8BAozY8lLiUKrDnw+jsW/j9tsYdOVX6Z1674z3pdq1Cx4/5/EXTYbh8tDc4ffCq6p3S/qU17fQVltO6fqO6hrMQfZux9R9m6uripmVnMlkiDPNkVsFBN+8jWy7r/xgoqinQ8M5zyw1TWx6YoH6Dpaesb7gkTC1CceI/srXxiVYw2GhrZuNh+sZNOBKrYdqaaiYWge4YEQE64lOzmSrMQIUuOMxEWoaaouxesTiU7KprHD6ldDbuqiuqmLxvbu8+qrPhTEhmtJjTeSkxxFXmoUBWnR5KdFkxJr7FeZ4DZb2HXf/1H71pp++1FGRzDj2V+SdPWSET0+j9VG8S//xck//SdgwFeQycj79t0UPvbVAS3lBiqRj5wxkQUfPTmkSqjRxCW15Eu4qDHWyG1DWzc7jtaw42gtO47WcLSieUDREY3bSXp3OwaXA63bhc7jROd2onU70budqLxuvIIEt0SKRyLBI0j9y1IpujAt4THhRMdHkpASQ0paHJpwfRDiqkWqVQ+pz3A04GjtwHSsjK4jJbTuOEjr1n3YG1ou6DENFYJMhjouCnVSHJrEWDRJsWiS4vyve5cTYoZEEIcLe3MbTeu2+4nlpj1YKvpHhIcKQSbDkJPWQ3izMRbmEDYuC11mChKpFFEUsVTU0rxxN80bd9Gyac85/Q91WamET8ojfFI+4RPzCBuXhTY1cUQDCG6LlZo3P6H0iZfpPHAstOPKSCa8qICIonGEFxVgHJcNgoDP5cLrdOHrCZr4XG68ThfWqnqqtx6gausBJFW1KIbgwyumJJFz3w3kfOULvLKtlD+/vvOM3sSzER+l5+GbZ3HvlUXogpCr0cZYJG+nw+cTOVrRzLq95Xy6t5wdxbVDKjeUyyRMzUtkweQ05k1MZXpB0pD+1mP17+Ox2dly7UP9sjcShZw5r/+F5GsvG/DzdqebioZOSmvaOXzKL2B4oKSxn5VJnNXENVVHmd5aHWRP0GkwcuqyZaiXzCUzOarPIiYp2jBmKhTOFUM9DzqPnGTTFV/CXn+m8qxUo2bu638m8cpFo3asvegw29lyqIpNB6vYdKByyIGg02HUqSjMiKEwM5bxGbEUpEeTmxJFuP7Mv8NgfyeX20tdi4nGDgtN7RaaOyw0tXfT1NG7bKGl04rZ5hwxayBBgHC9GqNORbhBTVyEjrT4cNLjjaTF+5WUU+OMQQNcwSCKIqV/f5ED3/ldwKq3zPtupOjPP0SuPzexKVEUqXlzNQe/+/vgJchLZjH1748F9d/thdfpYvf9Pwoolpp8/TJmvfj7MVWNcYncXsJFjfNJbr1eH+1mO43t3dT2moS3mKltMVHb7DcOH8yHdjiQSgTy06Ipyklgck48k3PjGZ8R26fIerHB63TRvGEnrdsP0LbrMO27j+CxXFyqi6FAHqZHGRWOMtKIMiocRaSxb1kZaUQREYYywj/vXZbpBza8d1usdB0+SeOabTSs2kzH/tCI2khAqlJiyMvA2d4VPBs8AASJhLDxOUROLSR8cgHhk/IwTsg95wf4UCCKIu27D1P6j5epeWM1Ptf58UcMhHalht0xaeyOTaNOawRBIDclitnjk5men0SH2cYLnxyipCZ4xjfCoOah66fz4HXTiTCc34HFWCRvJouD9fsqWL2zlPV7y4es5pqfGs1l0zK4bFomc8anDHnQejrG4t+nF16Hk223PEz9BxvOeF+QSJjx71+Rcff1Q9qfKIqcqGrj/W0n2Ha4huKK5j7f9CRLJ9dWHhlQMK1KF8HbGZM4HuG301LIpaTFGclMjCA9IZzMxAiykiKYmpd43s/zc8VQzoO6Dz5lxx2P9FOhVsVEsuCjJ0fN09rr9bGvpIHVO0tZu7ucQ6cah5UlTYkNY1p+IhOz4xifEUthZiyJUfqQdCxG8nrxeH1Y7C7MVifdNidmqxOLzYnV4e6zjRH4rKzfPwkoZFLCDWoi9GqMehVhWtWo9oS37TrEtpsfDvg81aYnMeuF3xEzd+qw9t264wAHv/t72nYeDLhenRjLlD//kOQbVwz6/3F2dLH1uq/RsmVvv3V537mXyb9/ZMxVs10it5dwUWOkyK3J4vAr4DX6Pd5qW8y0dlpp7bLS0jNvM9lG3fpBKhEoSIvxk9geIjshM/aiV430ulw0rd9JzeurqHtvPW7z6BrHX6wQpFI/2Q03oIgwoowIQx5uwNnSgflkObbawHL9Ie1bLgO9BmRSxNaufgbzIw15mJ6oWZOImj2Z6NlFRE4ff16J7GBwtLRT/u+3KPvXq8Mi68NBt1zJvugUdsWkUR4WjTjIoCLGqCEtIdzvodoavBxUrZSRGG1Aq1KgVsrQqhVoVHK0Peqaeq2SaKOWGKOW6HAN0UYt0eH+18Mtbx4r5K2ivoNVO8tYtbOUrYerh6RqHGFQs3hKBpdNzWDJtEySokMrRQ8FY+XvEww+t5sdd36PmtdX9VtX9Ocfkvfw3UE/a7G72HO8jgOljRzqsZ47Vdcx4Pelm9u4tvIIhZ3Br7XjxjjeyphE9QACV7kpUcwqTGbmuCRmFiaTkxw5pkUAQzkPRJ+P4l/+k6M/+Xu/dfqcNBatDq2PcSgwW52s31fO6p1lrNld1qfgHio0KjlTchOYXpDI9IIkpuUnEh85fNXmsX69jBYcbR3suf9R6t7/tP9KQaDg+w8w/mdfD7kSrLu8hkM/+GPAsmfwV2blf+cexj36lQFLkHthqahl0xUPYC4508pOkEiY8vdHyfnq7SEd1/nGhSS3nw9/jUu4aNBtc1Ja205pTRslNW2U1XZQ1eiXde8wBzalH23kJEcyvSCJKbkJFOXGM/5zQGR74fN4aN6wi5o3VlP7zrpzsniR6TTIdFoEqQTR48XrcvlLQp3ufr5/w9q/Ro1xcj7GCbmo46Lw2p042zqxN7Rgb2zF3tCCo6V91Amh6PXibO3A2TrwQHEgKMLDiJwxgfCJ/syocUIumuR4PHIp69atA2Dx3Hm4q3r7oUv982OnzonkqeOjiVk0g9gF04maU0RYfuaYi+aeDlVMJON++GXyH7mPho83Uf/xZjoPHKPraOmIZXQ1yfFEFBUQXlRA1MxJiBPHId1dQdPWE1QdrBqUiLV02WgJYdBpd3oGJRfBYNAqSYo2kJUcSU7PlJXkn0eGaYa1z9GEKIrsL2ng3c0nWLWzlJPVoZdMyqQSZoxL4rKp/uzs5Oz4z03561AhkcuZ/fIfkeu1lD/75hnrDnzrNzjbu5jw828iCAJWu4udxbVsOVTFlsPV7D/ZMGRrpEpDFH+euJjcziZurDgUsAe9oKuJHx/4hL3RKbybPpFmTf9gQ0nP8/u/q/wZqQiDmlmFySyYnMaionTGpV9civfubgs7v/gD6t5d129d9Jwi5r//T5SRw7NrOhu9gaDVu/yBoMHU3k9HmFbJvElpLJycxpwJKRRmxCL7H712RhKqqAjmvfsPKv7zNvu/+Ss8ltPu96LI8d8+TcPqLcx+6Q8YC3OC7sfZ0UXxL/5J2T9eCSqkGHfZbKb8/VHC8kLznm3etJttNz/cbzwi02qY8/qfSVy5MKT9/K/hUub2Es4Zp2du31mzDZU+hjaTldZOf6a1pctKRX0n5fUdfWVSFwp6jYLpBUlMz09kxrgkpuYljsnB47nCVt9M2ZOvUv70G35CGCLUibFEzZhI5MyJhOVnooqNRBUbhTI6AplaFfRzVrOZdR98jOhwsWDBAlQaNQjgbO2kY38xHfuKadt9JOReS01yPKm3XE7KLVcQUTSuj6D5PB4cze3YG1uw1zdjq2/GVtfsX65r8k+1TXjtw1MbHQkIMhlhhdlEzZxI7MIZxCyY1qe+GCgyLooipuOnqH//U+o+2ED77sND/k5tWiLpd15D9tfvQB09fEuRsQKvy4X5eDkdB47RceA4nQeO03noRL//qyCRIFEqkCjkSBRy5GF6wifl9fXoRhSNQxUdXFyjs9vO6p1lvLf1BJ/uqxixPrGRhFGnIj0hnIQoPTHhWn/2N1xLTLgOo07GqWOHMGrlXHvV5aOeaSmtaeP1T4t5/dNiyutDJ/IZCeEsnZbJkqmZLJichkF7fiyVLpZMlCiKHPrBHznx+2f7retatIA382ewr6RxRHx+dWoFUomAyeKgqK2W6ysOE28PXJHgRWBrfCYfpo2nSxn6czImXNtHdBcVpZMWPzLEcLgY6DzoPHSC7bd9G/PJin6fS7v9KmY8+yukquGfr26Pl13FtazaVcbqnWVD6p1VK2XMGZ/CgqJ0Fk5OG/VA0MVyvYwmLBW17Pzi92ndtr/fOkEiQRUfjSomsm9spIqJQBUbhcdq4+Sfn8fdFfha0mWmMOl33yX5+mUhBX58bjdHfvJ3jv/26X4BfXV8NAs+fpqIyQXD+5HnCZfKki/hosbp5FY589sIqrALfETBIQgwe3wKV8zKYeXsnDFfTjUUiKJI286DlPztRWrfXju4NZAgEDVzEtFzi4iaOYnIGRPRJMYO67tDfSja6pupfWcttW+toWXrvpCysKqYSOKWzyV++VziFs9EHR8z4PaiKOLuMmNraMHZ1omrvQtnexfOts4z5o7mNhyNrTg7TH7SNIr3Qn1OGjELphM+ayLHfFaEcD1F2iha12yn/oMNWMprRuR7BJmMhMvnkXrblSSsmIcifOxei0OFz+PB1WlGIpd9RmhHUJzN7fFy+FRTnxDdjqO1tHZdXH3oggBSiQSFXEpUmIaMxHAmZsazeGo6l03NQDKMLL7D5eHdzSd49sN97DgamliaQi5lwaQ0Lp+VzfLpWWQkXhj1zottsL7tR3+l5tf9VVB3xaTxXN4svCH8/2RSCQVp0UzMjiM7OZLEKAMJUXrio/QkROnRa5R4vD42H6zkzQ3H+GDTMQrLT3B11REiXIGrp1xSKfvzJvF2TA6d4tDPobR4I4uLMlhYlM7CojSijYOXYo4kAgYVfT5O/Ok5jvzoL/2ybIJEwqTfP0Let+8Z1vig3WRj7Z5yVu8qZd2ecrosoQdbC9Ki+66b6QVJ51WR/WK7XkYLPq+Xk3/8N0ce+9s52+cpIowU/virZH/ltiGVNe/4wndo33Ok3zrj+BwWfPw02uT4czqu84FL5PYSLmpcTOT2bGQmRnDFrGxWzs5h9vgU5LILq2Q8HHgdTqpfX0XJ314MKTMaNWsyKbdcTsqNK4ZNZs/GcB6K9sYWqt9YTfWrHw8pW6mOjya8aBzhk/Mx5KT57YF6rIKkKiUIAoJEQPT6cLZ14ugpMbbVNmI6UYHp+CnMJ8qxVtUP+/eeM2RS8AyvlFuQSBB9g2dwBKmUqNmTSVy5gIQrFhBWmHPBAzk+jweP1Y7XZsdrd+Kx2fHaHX3LPpe7TwRMFR2BIiIMiez8ds8cLW/mpTWHeW3dkZDKkS8WSASBxGgDcyYkc+/KIuZNShtw+/pWM/94ezcvrD5EewgtIzHhWlbMyOaK2TksnpKOXnN+srMDYawP1q12F1sOVbF2bznr95Zzqq6D+Q2nuLN0N2dTyKPh8Tw1bi522WcDZJlUwqTsOIpyEpiYHcek7DgK0mNQDYEQOV0e1u4p5601B7G/8QFLK46i9QT2S3UolNhXLsd75TJ215jYeax2UH/pQBifEcvCIn9md86E1FHP5J99Hrjrmtn74E9o3rCr37aK8DDmvP5n4pfOCXn/LreX3cdqWb+vgk/3V3CgpCHkWKlCLmX+xFQun5XD5TOzSU+4cFnusX69nG90HjrBjju/h6m4dPCNz4JEISf3G3cy7v8e7Asyn+6B7XR7euZe3B4vHq8PlUJG13trOPnIb/Fa+j974lfMY+7rf0FuGDu6GQPhErm9hIsaFzO5PR3xUXoeu3sBd62YdFH0gLktVsr+9Son//jcoKXHvf6hKTetQJuaOOLHcq4Pxe7yGqpf+5jqVz7CdPzUiB/fcKGMCidu2Rzil88jctp4pGolUqUCQSrFVt+MuaQS88kKzCfK6ThwHMup4JYbQ4FMq0Gfm44+MxldZgq6zJS+ZXViLJ0HjlH54gdUv/ZxyL3BmpQEEq6YT8IVC4iaNQllZPiIk1232YK1uh5rdYN/qmnoW7ZV12NvahtyhlwRHoYyOtxPeGOjMOSm++2RxmVjyMs4p5LBXnSY7byy9ggvrz3MobKhC4YJcB6dskcGaqWMORNS+PYts1k0JaPv/bLadh5/bQcvrz08aD9gekI4Ny4sYOWcXKblJY6qqulwMNYG66IocrTcb420fgBrpKkt1TxwYgcy8cy/f6PGwObrbmHSgsnMn5TGzMLkEbWhMludPPPKZkr+8Cyzy4tR+AIH4JxSGc4lC7jij9+CmBh2HK1hy6EqNuyvpLqpa0jfKQh+gaqpeYlMzUtgan4i4zNiUchHLtBst9tZ89HHeHcWoz9wirbN/RVnAcInFzD3zb+iz0wZcH+iKFJS08b6vRVs2F/BlkNVWIfQ0hAbrmXFzGwunzV2AkEw9q6XsQCvw8mRx/5Cyd9fwucMHPQ5G4ql82m77hpOeeVUNnRQ0dBJbbMJm9Md9PGn9ri4vXQvs1qq+q3zCBK2TJ5Nw4IFpMQZSYkNI7VnnhJnJCFKPyYTM5fI7SVc1BgKuRUEUCtkqJVyVEo5KoUMg0aJXqvAoFVh0Cgx6JT+uVaJgMD2o9Vs2F+JwzW4Z6VEIpASG4bXJ+LuiYi5PN6+CFkoKEiL5ldfvozlM7IueKYrEFymbkqfeImSP/8XZ3tX0O2kahXpd11DztfuGFAEYSQwUg9FURTpOlpC9asfU/PmJyNWrhsqerOd8T1l0Kf3+4YCl6mbhlWbqXlzNW07D+FoGoI3oUTAkJdB2u1Xk/ONO1GEoKLoc7tpXLudqpc+oO699XgdzpC/Tm40oM9O7ZnS+ua6tEToyXyLXm+/uavTjO000tpHZmsag/YbjRYEiQRdVkqfD7BxfI6/vD45PqRrt6XTyt/e3MlT7+3DYh944CKXSRifGUd6vJH0hHDS48PJSAgnPSGcxGgDxypb+MvrO3lzQzHeARTdU2LDKMyIRSLxiwR125xY7C4cLg9Otxeny4PT5cHh8gy4n5GE/74sJ0ynpKnDMmD8ISZcy02LC7llSSFT8xLG5D2yF2NhsF7bYmLzgSo2Hqhkw4EKmtpDU6kf19HAQ8VbUJ5FMBXhYcx94y/EXTZ7NA4X8PvovvDiBkp/8ySTKk4gDRK68QoC7ZMnM/cXX2fqFf7jqWzoZOOBSjYeqGTzwcohKwCDP5s5ITOWcekxZCZFkJ0USWZiOClaGd4evYW+NpOeVpPe9hN3t/UM72uf04XX5cLdbQ1eLSMIFHzvfsb//Bv9SkdFUaS500pxeTP7Ttaz90Q9+042DFk/ZHJ2PJfPyubyWdkU5SSMuUAQjI3rZSzCXFJB1csfYjp+CrfF1ld95LE5sJksOLpteJ0uOuUq1iXmsiUhC1EIbdwgiCI5Xc3cU7KbaEf/e0OTWs/TBXOo1gfX0pBIBJJjwhifEcP4zFjGZ8YxPjOGjISIC3qeXSK3l3BR43Ryu3bLHnJzcpBIBKQSAalEgkQioJRLUSvlISv77T1Rz59f38H7W08Oav2TkRDOkqkZLJ6SwYLJaf2MyXthc7jZdLCSVTtKWbWrbNByqgWT0/j1ly+jKDchpGMebbg6TZz86wuU/PWFAUmENi2RnK/dQea9N5y3nsvReih2n6qmcc02GtdspXnTnn7eg+cKqVpF5LTxfXY5MQumowgbmpWCo7WD1q37aFy3naZ1O0aEkMuNBhKvWkTKDcuIWzZ3QDGvXrjNFmrfWUv1G6tp3rAr5Cjz5xHq+GgiZ04iauZEImdMJHJqITLtZ4I4je3d/Pm1HTz74X7szoGDZlPzErhj+URuWlwYkr9nTbOJf7y9m+c+OhCUMEskAvdcMZlH71lIXETwEjOv1+cnvG4/0fX5RLw+X89cxGazsXrdJsx2D6mZ+ZhsbtpMNiobOjlZ3UZ9qxmz1YlvBJ7zCyencf/VU7lqTu6IZtVGExdisN5msrH5YBWbDlSy6WDlkBW0o8I0XDYtk6XTMpkiWii+8zv9qjMEqZSix39AztfvHNXggtvj5Y3/rqXkl0+QVz1wRU1jajoZ1y9lwV0rCZ+QgyCR4POJHKtsYcP+CjYdqGTbkZoBg0gSn48oh5U4u5kYWzdRDgtRDitRDguRDisa78gLvikSYon77Q9gwjiaO600d1ho7rBQ32ruc3YwWUMPGvZCrZSxeEoGl8/MZsXMbBJH0OJqtHCJ3H4GV5eZmjdWU/Hfd4P61AaDSa7iYFQSB6JTOGmM7dcrr3U7GdfRSGFHA4UdjYS5A/dkb43L5NWsKThlw3Pv0KjkjEuPYUJmLOMzY5mcc37dQC6R20u4qDFSPrcAO4tr+fXzm1m/r79y4emYlB3HlNwEYiN0eH0+mjt6HkqdViQCJMWEkRxjIDk2jOSYsL55tFGDIAiIosjB0kZW7yrj4+2lHCwLbr9yy5JCfnb/YlLjjMP+XecCR1sHJx//L6VPvDQguYtdPJPcb95FwsqFIyq0EwrOx0NR9PnoLqvqUc89RueRUuz1zdgbWga0OBIkkp6S1kj0OekY8jMIy88krCCLsHFZSOSh3+hFUaS7tJLW7Qf807b9dJdWDe2HSAS/160pNKIu02pIWLmA5BuWkXDFgpB88Tw2O80bd/fZ69hqGoZ2jOcRUpUSqUaNVK1EIpfh6uoe8QywIJViHJ+DalIBW70anquy0SwNHjBIiNLzhWUTuH3ZBPJSo4f1nV0WB89+uJ9/vL07aLZOq5LzrVtn882bZw2rvNRut/Pxqk8w2z3MX7AAtUqFRCIgCAISQUAQAFFkZ3Etb248xq5jddS3mkOuDJdIBO5YPoHv3DqHnJSoIR/fhcZo35d8Pn956u5jdew6Vsvu43VDskUCf9/szHFJLJ2WyWXTMpmUHX9GtsVaXc/ma75K1+GT/T6b+cDNTH3isZCFalxuL3uO11Fc0YJWLSc+Ut8nNmXUqYISZZ9P5P3nV3Pst8+QWho8k9sLUacjfuE0EhbPJGbBNL8NmsWKo8vCkWPVHDpcybETNdRXNhJpMRFn6ybOZibW3t2vFHu00C1Tsj0+g49TxmGTj0xZ8OTseJZMy2DJlAxmFiYPqfd5NOHzenF1mPwWd22d/uy2y90z+bPcPrcHp9XGyeJjIBEomDwJTYQRmVaNTKtBqlX3LSujwpEbdGO6amM48Hm9NK3fQeXz71H37rohVUIFg1Wm4FBkIsURCcTZzRS2N5De3d6vp/502KRyns+dwb6Y1HP+/rMhlQgUpMUwKSeOyTnxTM6JZ0JmHBrVyBPeS+T2Ei5qnE5uwxZ8j6SkZP8DM1JPQrT/4ZmdFMnknHhig2Qpth2u5tcvbGHjgcqA68Hf16ZSyrE7hx+9jTSo+3ziFhal96klf7qvnB899SmHTwXut9Oo5Pz6y5fxpWumnrcbur2plZN/eo7Sf76K1xZc0CXxqkWMe/SrRE2fcF6OKxAudMTXY3fgbGn3l876fH2CS8pII4rwsGF5vYqiiKO5ja4jJXQeOkHbjoO07jg4LP9bQ34mcUtnEzF/GkfcXQhqFTNTsmj9eDO1b6+l89CJkPYjUSqIXz6X5OuXEb98bp/F0GC/w3T8FA2rNtPw8Wbadh4cMQ/ZYFDFRaNNiUebmoA2NQFNaqJ/OSUBZaTR37usViFVKQP+b3xu92fK1j0DMmdbJ9bqBrqOncJUXHrOgmCtKh2lYTGUGqMpC4uhVWvgugUF3LNyMgsnp5/Rd1/Xambv8Xo6zDY6uu10mu10djv6lru6Hbi9XpJjwkiPDyctwUh6fE/JcpSBdzYf51fPbw5ayhgXoePL104lMkyDSiFDqZChlMtQKaSoFDKkUgnNHVbqWkzUtpipazFR12qmtrmLls7RF71SyKXEhmsx6tSoVTI0SjnqnkmjkqNWylApZD3LvZN/O9UZy6d9ViVH0/N5pVw6KvfVkbwveb0+Khs7OVbZSnFFM3uO17HneP2QlHB7kRZvZOm0TJZOywrJGsltsbLriz+g9p21/dZFz5vK3Nf/HFBFXhRFTlS18un+Cjbsq2Dr4eqgvaEqhYz4KD3JMQaWTc/i7ismB7TJ2/3pATY99ndid+8O2pM7llGrNbI2KY89sWl4JOcWBE6MNnDZ1AwWT81gUVH6eVeBPh1uswXTiXJMx0/RXVaNtaq+Z6obltbBYJCqVajiolDHRffMo1DFR6OOi0aTHIc2LRFtSgIyzdjO/rq6zLRu20/zxt1Uv74Ke33zBT0e48xJZP7tp4gxUdidHuxON3anmzaTnZrmLmqbTdQ0m6hpMlHT3DWkXu9gkEgEspMiGZceQ2FGDAU98/T48HMqa75Ebi/hosZQem7jo/QU9USLJufEIyDw25e2sOf4hVGujYvUsXByOgsmpbFgcho7jtbw0+c2UtcSOHO0ZGoG/3rkKpJjRq/c11bfzPHfP0P5028MGDlMvmE5hY9+hfBJ+aN2LKHiQpPbc4XX4cR0opyuIyV+Mnv4JF1HSoZFZAGU0RHEXTabuKWziV86B01SHBD872SpqKXm7TXUvr12SMrRxvE5xC2dQ9yyOcTMmxrSQMLn8WCracRcVkV3WTXdffNqrJV1iN6BB6yCTOYfvPSQ1V4Cq01NRJOagDY5fkREngaDu9viV78uLqWruAxTcRkd+4oHzOIPBHl0BHELphEzfxox86biSUnivW0lvPFpMduOnFupeaRBTVq8EREoLm/BNUyl7M8rJBIBrUqOVqVArZKjVflJr1alQBNwWY5Gpejb7sxl/7ZymQS3y8W2bVuRCHD58qVEGvVBxQK9Xh+dFgcdJhttJhvtJjun6ts5XtnK8coWTlS3DlrCHgwRBjXze4Kqi6dkkJUUMWQyL/p8HP35Pyj+2RP91sl0Ggp//BC537wLqULBzuJanvvoAJ/urxiWmjH4ye4tSwp58LppTMrubztSU1bLB9/7K4pV69C5Lpyv+HDgESSUhUVzICqZnbHp2OWDZ77VShkTsuKYmpfItPxEpuUlkJ4w8qJ8g0EURez1zX7/+APH6dh/jK7DJ7HVDV0I73xAGR3hJ7o9zwhtasIZr4faBnSucLZ30rJ1Py2b99Cyea8/sBwCDzLJVRyJTMQpleETBP+Efy5IpUg8bgo7Gkm2dg3ruHRZqWQ/eCu537wrZIcAURTpMNupburiRFUrRyuaOVrun4bT6342NCo5+WnRjEuLITUujMRoA0kxhp552IDVRqIocvxkCYUFfePTS+T2Ei4ufF7UkgGykyNZODkdu9PN+1tP0m3rTy7DtEr+9PUVfGHZhBF9sFmr6zn+u2co//dbwTNrgkDqLVcw7kcPjrpI1FAw1smtKIo42zuxlNdiqajFUl7Tt9xdXnPO0VqpRk307MnELZ1N3NI5hE/MC5iRDOXvZKtrovbdddS+vZbWrftCsv0Bv/VA9NwpxC2dQ+yiGRgn5IbUq3s6fG43zrZOv52SVIoglfSbS2SyYWXCzwdEUaS7rIrmbQfZ9sZ62nYdIs7UMWgZZSDYZHJOGaIpNcZQGhZDlT4C7zlmei7hwkMqEZDLpMikEqRSCQLgdHtwOD0jpnitVcmZOzGVBZP9djcTMuNGTNil5s3V7PziD/ze3GdBkZbEhqnz+U/byBKuWYXJfOW66Vw7P6+fKqulq5t3f/VfTr6/gZjamoCiOGMZTomUXXEZ7M4qxJ2USFykjtgI/5SREE5eShQ5KVEkx4RdEHEer9NF58HjtO44SNuOg7TtPIi9oeW8H8doQW40nBkgTY5DFR2BMjqizxJOGRWOTK8NabwlimKf9Z+1tglbbWPP1ITpWBldR0O39fEIAsfD49gflUJpWDQ+iRSPRIJbIsUnk+EUBXxnPQtjrCamttUypbWWNMsAwXGVkoQlM0m4fAHxK+YNqtA9VDR1WCgub+ZIeTNHTjVxqKyJ0tq2EU3gK+VS1Co5MokEn+jXhPB4fbi9XtxuH157F85dj/du/vknt4IgRAGJQDQQCdiB1p6pQhTPU9PFJYwILgS51ajkJETpiY3QEROu9T+MwrXEhPt7cGub/eV7tS0maptN1Leah6w8KpMKRBu1NAbpl7tqbi5PfPtKYsLPrRSpu7yG4795iorn30P0BM4MCFIpabdfxbj/+zKG3IyA21xIXChy63W5cHWa/f1EbZ3YG1qw9fTh9vbj9r4ONBgcLtTx0UTNKSJ67hSi5xQRPjEvpN7dof6dHC3t1L23npq319K8YVfQ8yMQBKmUsIJMIqYUEj5lHBFFBYRPyh/zZWLnAlEUeW/LSR575lPK6/0DC4XXQ2p3B1nmVrJMreSYWtEE8fEcCC6JlNKwGI5GJnAkIpEWzfnNOFzC2EVSjIGZ45KZUZDEjHFJTMyKG1XRrY6Dx9lyzVex1QbWijgSkcBrWVNo1gQWMRqf4fc3b2zvps0UeoYnNlxLYWYsSadncHqyOBqVnM0HK3n7za107zpITlczuV0txNo/yxyLgA8BAXHAnsMLhZj500i742pSblx+3sQYz4atvpn23Ydp2+lvg+nYf+x/WhywFxKFHGVUONJAAVtRRBRFf99wS/uot92cDh8CbokEj0SKVPSh8HqRDBAm8wHdchXNaj2e6Cjypuczdf5EjFkphBcVoIwwjtqxdtucHClv5mBJIwdL/VNJbdugoq3Dhegwfb7JrSAIeuAaYCEwD8gaYHMrsAvYCnwsiuKBUT/ASzgnnE5uH/nTazgEHQ1t3bR2WWk32WnptNBtG/7NWSoRKMyIZVp+ItML/CVBOclRQ4qier0+appNbDtSzaYDVWw6WEnDMMu1TkdUmIaHb5nFFbNyyEuNGlIm11xSwbFfP0XVyx8GLQUVZDIyvngtBT/88ohH9oYDr9OFs70Tj8WG1+bAY/XL4ts6TRzavQfR5WFcQQHyXqLXc3/pu8+cNf/sff+y6PHgtTvxOpx47Q68Dtdny3Ynri4/kXV1mPqOY7Qh02oIG59D+KQ8oucUET2nCG1a0rCy9ucSBHB1mqj7YAN1762necMu3OahZ0gEiQRDXgb63PTPouU9pcWalASUUee/zG6ksOtYLT/81zp2HQv8/JRJJdx31RQeuW02mqZGWrbso2b9Tuo+3Y3SMvR7gSM6Guek8UhmTEE/cxKCQkF1UxeVDV1UNnZS2dg5JPGmwSCXSdCpFUSGaYgxaomL1BMfqcHe2UiMQcGM6VORKRT4fH4v1dU7y9hZXEOwcYtEEBiXHsO0ggQiwzS4XH7bNGevhZrbS32LmUOnmga1SeqFtEfMyuvzjXSL35hElFFDbkoU49L8ljWZieFkJUWS3EP2RhOO1g62f+PXNL/2YcD1HkFgS3wWRyMSsGVlMmdWfr/eUFEU6ei2c6qug/L6DiobOtlyqIrtR2rOyYYq3GElr6uZ/M5mcruaiHKO7H3aIwjYZArsMgU2mdy/LPXPXVIZXkGCt6d01CuR4BUkCKJItqmV3K5m5IPkTyRyOQlXzCf5hmXELp6FJjF2RI+/Fy5TNx37imnfc6RvOl9ZWZlWgyE/A0N+JvqsFFSxUUjC9ByuLAO3h3EJKXhaOvzB4fpmbPXN2OqahmZvdwlDRti4bKLnTSFm3lSi501Fm9y/JWAkIIoilQ2d7DxWx6YDFRwpb6a6qQuT5dxFtPq+4/NKbgVBmAJ8E7gB6A23hDJyOv2gSoB/AP8VRXFkfUAuYURwPjK3+anRLJuRyfLpWcwen4LyHFUIRVHkVF0Hmw5W9tk2tJuDizaFgpTYMFbMyGb5zCwWTEpDG6QfoetYGcd++S+qX18VtNdDopCTed+NFHz/AbSpiYP+Fq/d4S9f9Yl9gkqiz+cnjT4f+HyIPevoWy/itdlxmbpxmyy4Td24Td24epadbZ04WtpxtvbOO4ZFqC4m6DKSMU7IxTghl/CJeRgn5KLLSB6xMtyRynD73G7a9xyhcd0OmtZtp333kUF7ZUOBVKNGkxSLwmhAptci12v75nK9FrlBh1SjOqtUWYpEdubrM8qZZTJ/OXPPa7nRgCo2ElVMZMi9RQOhvL6Dx575lHc3BxflunpeHr98YAnZyX6vQIfLw9/e2MnvXt6Gze4ixm4hx9RCtqmFnK4WYoZYWinVqIlbMpPk65eRdN3Svj6y8oYOXv7kCKt2llJc0XzefGsv4cLDqFMRH6knPkrXM9cTF6HDqFOh0ygxaBToNEr0PXOdWoFU4le5lpxmoycRBNrNtj5bmtLadspq2ymtbaeivoOUrlZuK9tHZnf7gMdjioqhIT6Rmsh4SsOiqPXJ6bI6R+ScDHPayTE1k9fZTH5X8xnZ2uHAKZHSrDbQqtbRodTQodLSrtTSrtLSodLQLVchDjMIp/S4KehsYkZLFUWttSG1LOhz0ohdPJOIKYWE9RDCoWTYPHYHlopazCcr6C6pxHSinI59xZhPDuwKMVKQqpRETC0kcsZEomZMIGLaeLSpif0CmaE8n7wuF9bKuj6dhj7NhlPVWKsbRly46n8d2tREoudNIXruFKJmTByywwP4kzulte0cKvNnaw+VNXH4VBPmYVhcDQWfO3LbQ2p/CSzrfatn3gjsBfYDLUAH0AmogQggHMgBpgETgN7/oNiz7R+Av4qiOLr/kRGGIAgpwDeAlUAK4AROAW8A/xRFccTTT4IgxAMngF6muVkUxYUj/T0933Vey5K1KjkLi9JZNi2ThUl6NPV1dBw8QefB43QdKcHTbfUrsapVn6myqpXINGp0mSkkXD6P2EUzzxC98Xp9HDrVxPq95azfW86uY3V4vMOvjlfKpcwsTCYzIYKUOL8NUWxzA+5X3qHjk81BPydVKcn68i3kP3I/msRYRFHEWl1Px75iTMdP+Ylma8dnCrKtHTjbuvC5z18ZzsUMQSZDm5qALiMZXWYy+swUdJkpfa9Dsdk5F4xW+bbL1E3Lpt00rttB84Zd/kHTRTDI8Fs0RfnJbmwUqrgojIXZRM2ejCEnfcCgQpvJxm9e2MIzH+zD7Ql8rU7LT+Q3X1nKnPH+qgdRFFm1s5Tv/WMtFQ2dAT8jk0q4MjeKq8JE0tob6dxxEFNx6H1agkKBdcI4thiTec+pxi0dG3Yg/wvoVWxWyqXIZFIkgMNhRyJAeJgBhUKGQiZFJpMglUiQSf1erC6PB5vDjcXmosvioNPiGLVSvdGAIIrMbK7kxoqDGEMUd7JJ5bSqdbSqdLSq9bT0LLepdTglMjw9pZZuiQRR8F+HMq+XBJuJZEsnSdYukixdJFq7gvp0DgaHVEat1kijJoxGbRiNGgONmjDaVdphk9ehwOi0sbChjAUNZRjcQxtWKqMjUEVHoIgIQxFuQKbTIno8+DxefG4Pnm4rjqZW7E1tuE3nXiU2VIQXjSO+RwMiek5RSCJ/5/p88jpdfh2LAGKFwUro/1cgSKUjE4BWKTFOyidy2ngipxUSMW18v2dlU4elR829jt3H6jhQ2ohtBFSVexGhVxFt1BKmU6FWypHJJIii3zLM5/Ph8fpwebyYO1s48vqPej92cZNbQRD+A9wJfS0VB4CXgbdFUQxZclIQBAUwH/gCcB1+kiYCNcCdoihuG8njHi0IgrAS/+8PxvhKgCtEURzREJ4gCG/hz5j3YkyRW0GAwnS/sXRnt51TPSVRAxFKQRRJ625nUlsdGeZ2Uiwd6IbROwf+kpy4pbNJvGoRCSsXoo4908PRbHWy5VAV6/eWs/VwNSeqW4fHFUSRwo5GLq85Rp4peLmRT6HAvmwx2uUL0HWbkVVU4S0px15cgmeY6q//a5DptajjolEnxqBOiEGTGIs64cxlTXL8iGQLh4vz1ZvstljpPHSCzh41zY79xzCfKA9ZnGosQBEeRuTMiUTPnkzUrMlETh+PXK/D4fLwj7d384eXt2EKEnlOTwjn5/cv5oaFBX3ZibLadh75xxrW7D4V8DNGnYof3DmP25dPJOosCxRne6ffN3jVZhpWbcHRHFppnkMq42BUErtj0jgeHo/3LLIeFaZh8ZQMLpuagdnmZMvhao6eaqKu1RyUsI8lyLxe1F43Kq8bpdeD0utBIooIiAg990uXVIpLIsMtkyHTqpCp1ch1atQalV/dWClHq1b0qRyrlXK0ar8islrpf0+r7l0+00Ko14pIo5T3WSadjuFebz6fSGe3ndoWU1/Jbu+8vL4jqKXTSEEQfYS5HIQ7bRiddvRuJ2qPC03f5EbjcaH2uPBIpHQqNXQoNZjlSnJMrUxqr0M2gmM7jyDgEaQofAP3Ew4El1RGrT6CCm04VfpIqvQRNGsMg5LYcJ2KxBgD8ZF6tGo5Hq+I1+sfQPdObo8Xj9eH1yt+9p7X+9k2Hi9WuwOXR8Tp7n9dyXxeJrTXM7O5ignt9YOWLY82JAp/XmcovaOapDjils3xq+cvmYUqOmLI3zuazyeP3YGlvAZrVT32xla/LkZDC/bGlr5lR3P7iDyjJColPo2adp+UTl9vCfuZ5eu9r2UGHfPm5DNtag6v7zjFuv2VfSrI4mmqyCq1gm/dPJM7l4wjXCXzt0s5Xfic7p65C0EmRdbj2d4777W8QxB67OzqsVTWc2DrEfZvPYyztolIp5U4m3nY1loSrQZnSjLNGgMnPTJOeuQ0a/S0qPR4pMPr/U+JDSM/LZr8tGjyUqJIjTOSGO3vsw+15eJzZQUkCIIPcAHPA38SRTH0kHfwfSqBm4D/A/KAn4qi+PNz3e9oQxCEicAOQANYgN8AG/Fnqm8FHujZ9CQwTRTFEan5FAThKuAD/NnxXvO7C0puIwxqZhemMHtCMtPyE5mcHd+vbNfj9VHd1MWpunZO1XWw+3gdm3eXEltTxaS2Oia112N0nVvpcJAfQOT0CSRfv5T0u64N6B3aZXGw93gdu4/XseuYPyI2UB+xxOdjamsNl9ccJ8UaOEMEYJfKOBYej0MqJ9fUclEpTQpSKTKtGqlGjVSjwuZ1IyjkhIWHI5FI/KSiZ9zSV/502rz/eyCRyfwPBJUSiUqJTK1ColL0zJUowvT+SHlEGMqIMBQRxh4vW8OQS3UuBC6kqrTHZqfz8ElMR0uxVjdgra7HWtOItboBe33ziESVRxOCRIKYlsxWZSQbNLHU6MI/O3d6EGFQ84M75/Glq6f2tS54vD5+99JWfvfS1oCEURDg3pVF/OS+RSH5VIo+H017i9n57/dpWbsVXXV1SOI43TIl+2JTMc+eyeQr57J0RjaTs+MDageIokhNs4k9x+vYsL+CA6WNVDV2DbuMLNqoQSaTIpdKkMukyGX+rKVc6s9iyqQS5LKedVL/a5lMikIQ0ZtNhHe0o+9oQ9vWitLUhdxkRtrVhcQ6/KIjQSbzl7ob9SiMBuRhOhRGg3/ZqEcepkfRu85oQBGm88973pMZdEgGGbiN1vVmtjpPI7ztlNd3cqqunfL6jkEtOJQeN0aXnXCnrY+8hrt65k4bRqeNMJdjWArfZ8MtSJAgIr0AVRyK8DBiF80gdvFMYuZPxZCfiUQmw+ny0GVxYLI4OF7VystrDrN6V1lI5dFp8UaumpPL1XPzmJafGHJ70unnwWWXLcUnSDFZnVQ3dVFe18GpunZOVLex+1gtltYuprTVMqmtjhxTC9phBtBDhUQhRx0f7bf4aWhBDNEmTJBIiJo1iYQrF5F45ULCxmWfs17ChXY98Hk8eKz2Hr0N51n6G/7XgkToGx9I+yYFUpUSqwde2lrCE+/tp741sJ0j+O/5S6Zk8MUrJrNyVg5PfbCPnzy7AZc78N/+liWF/PLLl5EUHVig7VxwoKSB3760lVVbjpPW3UG2qYVsUyvZptZzPvd8QIdSS7NGT4dSS7dcSbdC5Z/LVZgVKhSRRjIK0ijISaAgPYb8tGhyU6LQa87dzu/zRm7/AfxmNH6E4L9ybwKkoii+OtL7H2kIgrARv4iWB5gviuLOs9Y/Avy+5+VPRoKwC4KgA44DycBdwAs9q84LuY1c/EMmjsumMD2WgvRoxmXEMC49hnB96DdJt9lC/UcbqX13HY2fbD0vokG9EKRSEq9aROZ9NxK/Yl7QLJ/X62PvyXp+9NR6dhyt7Xtf5XEzt6mcy+pKBiSqLomUbrmSMKeNC1m06ANccgVOuQKXQolbqcStVOFWqvBo1Li0Ojw6HR69Dq9ej2gwIBp0iBoNyKQIgr8vzOv1UF9Xh0QiMKEgh9hIA5FhGmLDtUzMjhvS///zjAs9eAgGn8eDvaHFT3QbW/B0W3F3W3GbLact++deuwPR60X0+vxzj/fM1z1z31mvRa8P0e3G1Wkekeh8i0rH/ugU9kan0BgRzUM3zOCR2+eeca5VN3Vxz6/eZWdxbcB9zByXxOPfuJzJOYOLdnR22/lkVxkfbCth3Z5TWHvKvHQuB4UdjUxtrWF8RwOyELI+htx00u+6lrQ7rkabkhDiL4bWLmufrcPhU00cLGmgvL4TEb+YU05yFOMzYynMjCE3JYrspEjSE8JRhUoCmtto3brPr9a66zAd+4+NqMr4SEOm1/YQYz0yjQqJXIYglyGRy5HI/X6UrR3tIJMQn5CATCbzB9Ykks8CbD0iWJ+9T9/6M94TBOgL2gkIEiHgvlxuL6a2LiwtndjaTTi7zHjN3WCxIbPZULguTFeVN8wAeh2SThOCdeQzz3apjNKwGE6Gx1EaGc+1X1zO/929MKRBclOHhVfXHeHF1Yc5Ud0a0vcp5FIm9vnOJjAtP5HMxMD+waHed0VRpLy+g13FdWw4UMHaXaXoGhrI72wi3dxOvM1MrL07pGs8ENQJMehz0lGE6/FY7Fgq/JZ0oUJu0BG/Yh6JVy0ifsU8VFFDz84OhLH6fBoMXRYHf3l9B/96d++AAcCYcC33XzWFuy6fRGqckbpWMw/85j02HawKuP3k7Hj++PXlzB4/+mKeH2w7ycN/Xd3nSy2IIglWE9mmFnLNrYz3dKNuH7iv/lwgSKWntfGpkKmV/sRFT7Kh7z7Xc987497X7x7qf6/RYubm1f/t/YqLm9xegh+CIEwD9vS8fEoUxQcDbCMBioF8/L3HsaIonlNhvCAIfwO+DmwURXGxIPQWh50fcltaWkp2dvaQ9+EydVP/4QZq3vyExjXbhiR9b5UpqNWFU9MzdSg1yH1eFD6vf+71z7P0ciZZWlCeCq0fUZ0QQ8bd15Nx7w1BlYpFUeSNDcf4wx/fYvzRA8xtKkftDW7X4oNhWSBYZAqq9RG0K7V0K5RY5L3RN38EziZX4BX8BWOiICAiIAp+mXr/68/e9/W+xq8keT56m/JTo5lZmMTswhSumJ1DhOHieGiONC7WwcNIwuf14mrvwtHchr2pDUdzG47mdhzNbVjKa2nbdWjIiqHKpHjSb7mclJtWEDnd7z/9zubjPPTHj+iy9CdncZE6fv3ly7j1svEDZju6LA4+2HqSNzcUs/FA5aDZJY3bSVFbLfM768hobUAY7D4jCMQumkH6XdeSfP1S5HpdSL+3F3a7nQ8+Wk2XzcPN115OeNjQ7Il8Xi8d+4pp+HgTDas207H/2JA+fwkXJyKnTSBieiHKqAi8Nkef93d3eQ2e7sGJry4zBd24bGo1YXzS4maHRaBVrev3LImP0vO7ryzjxkUFA15nvRBFkX0nG3jxk0O8t+XEoFnwsxGuVzE+M5aoMC0RBjXhehXhBjU6lYzqUyfRqaQsXTyPuCgjEQY1auXA1T4er49dxbV8uL2EtzYeo6GtG6nPR5TDQrTdgsbjQttTKq70epAr5RQVJDNjQiphkQbUcdGo4qKQadWYjp+i+dNdNKza7PcSDxH67DQSr/JnZ6PnThnVCqWL7flkc7j557t7ePzV7XR2Bw/CZSdH8vDNs/jCsgl9gb63Nx3n649/FPBzMeFafnbfYu5cMbFfq8NowmRx8Ngzn/LMB/sDrte6naR1d5DW3U66uZ207nbCR6OacYTQjptvUNn78hK5/TxAEIRf4S+jBpgpiuLuINv9AH+5MsAyURTXncN3Tgd24s8UTxBFsWQsk1tneycNqzZ/RmhD7C8x5GWQeNUiImZMpN4QycZ6C2v2lLPvZH1IfbE6l4ObdS7m2FqQHToaUmZYl5GMPjcdw2mTPjed7pJKTv7leeo/3DhiAj42uZJqQyQVWiPVOn9vUrtK268E82KFQi7lytm53HX5RC6bmnleHx4XGhfb4OFCQBRFDm8v5vnHX6drzxEyzW2kWDpC7iHUpCdxMjOff5lVtJzl8ymVCHzz5ln84M55QTNKFruLj3eU8taGYtbuLQ9aqnY2CjNiuGpOLlfNzWNSdhyO5jZq3lhN1asf077r0KCfl6qUxF42m6SrF5N45ULU8TGDfmY455OzvZPGtdtpWLWZxk+2DmmgPRAEiQSpVu2vdumJ3Dudblw2B4oBAn6XEBweQcCkUGNSqLHKFdilCpwKJTkFKcyZlU94XAQemwNbbSO22iastY3Y65qwN7WF/DxSJ8QQu2QWcUtmEbt4Jgqj/rNeQocTd7cVV0cXrk4z7m4rEqkUZ3snttombHVN2GobaS+vw2y20SVVYOkJuHYreuZyJXGTcvnWL+5lQu7Ayv+nw+v1sfNYLR9sPckH20qobuoa5l8xOKKNGsZn+rU/JmbFMaswmbT48KDHs+VQFS+vPcJ7W070VW4Egkoh40tTE7lGYcO+ZRctW/aF7FEuyGTEzJvSV25syEkf1m8bDi6W55Pb4+U/Hx/kNy9uoak9eIXcrMJkvnXLbFbOzulr/zBbnXzn75/w0prD/bYXBPjq9TN47O4FhOkC+OmOEnw+kWOVLWe4dwx0fp0Oo9NGancH4xUe8qRuYm1mFK2teFpGL8sbKj535LYne/iCKIr7RnznFwkEQdiC39PXChhFUQx4ZxMEYRb+vlyAn4ui+JNhfp8M2AdMBH4hiuKPe94fM+TWY7XRsm0/zZ/upOnTXXQePB7aA1gQiJo1iaRrlpB0zRIMuRkBN2s32Vi7p5wPt59k7e5TId0cjEop9yQrmdlag33dFry28x8FkyjkRM+dQvzyucQvn4dxQi6C0FPeZvX3JnV2++ddFgdd3Q66et7v6va/Z7Y6sDnc/snpxupwY3e4sTpc2J1jd2CZEKXn6zfN5MvXTB00iv55wMUyeLhQqG7q4pf/3cwr646coVYr93pI6+5gYns9szrrMVpCE1kr10eyKzadPTGpRKXG8d9Hr2dGQVK/7ZwuD5/sPsWbG4pZtbM0pGtGEGD2+BQ/oZ2TS0Zi8BJBS0UtlS+9T+UL72MpD01XMWLaeD/RvWpx3z3hbIRyPomiSOehEz1iWJtp33V4yGXhqphIDHkZGPIy0GUmo06MRR0fjTo+BmWkEZlOg1StCpqd236kmu/9+SNKyhpQeD0ofF6UXg8qrxt1jziSxuNC63WTE6FmXlY0arfL72vd5bcoc/csj/Xe8FAhD9P7he4SY3vmMXRrdPxrSzn72hx0KdVnWN5IJQJfvHwyP7hrHskxA4s2el0uzMfLqX7tY6pe/hBbXVPIx6VN93t4u80W3GbLkESNBoJZrqJ7ymRWfP+LFF69YEj2aqLo927+YNtJPtxWwpHy5hE5pkCYmBXHNfPyuGZeHvlp0QHP6W6bk1fWHuHJ9/Zysrqt9yBJtHYxrbWGKa01JNiC93yeDUWEkYQr5pN45SLil89FYRz53s5QMNafTz6fyOufFvOL/26iMojavSDA1XPzePiWWcwcl3zGup3Ftdz763epauzq97nEaAPP/d+1zJ+UNgpH3h8+n8iuY7W8s/kE72w+3leOHCqiw7VcNy+f+ZPTmDshhdiIM6t+3N0Wuk/V9ClWO5r9do6O1g6cLe04Wv1uG6N5P/08klsffmXjEvw9ny+Lohh6Y8HnAIIgtAJRwGFRFCcNsF04fpsjgDdFUbx5mN/XmwEuBwpFUXT0vH/O5LaHvA6EOPwWTxw5coSUqBgcja19k7WyjtYt++jYfRjRHWL0Ui4jZvFMEq5ZQtzl81HFRg7pmO1ON5sPVfPRjjI+2V1ORwgetuPjdDwU6SZq525MB0a3PE9ITiDjqgXELJlF1PxpyLSj9xDx+UTsLjd2p9/uwupwY3f6ibDT7cXj8cu2uz1+1Um314fb3TM/7X2Xx4fH63/tE0VE0T/oEEURt8dDfX0DHq+ISmfEZHXRZrJT02zC4Rr8fx4fqeM7t87kjmUTUMiHp+53McDhcLBlyxYA5s+fj0p1/qLDYxkNbd387a09/HfVYVxBBFUSo/V8//Y53LK4AOvRUurfXUf9u+uwhtCz5hMkRF82i/TbryR+5cK+6624ooWX1h7lzY3HByxr64VSLmVRURpXzMpm+fSMkASoTocoinTsOkTNyx9R//Ya3KbQBOTUyfFEzpyIOiUeTXI8mtQENCnxSGIi2LF/L+A/n5RKJR6zBfOJcjp2HaZj9xHadx7COYQovkynIWLmRMKnjidi+njCp4xDOQzl1UCoauziO0+sY/OhKgbTD8pJjuBHd83jqjl9giR+T2+rvc+T2096/XOvw4Xo9uDzePC5PYhuDy67naryCvD6SE5ORiqR0HPjQvT1zP0eFj3L+H3ARdHvGd63rd8zvG8ZsW+bz/bx2fZSjdovlBWmRxamQx72mUCWMjYKdUIMMp3mjN/17EcH+cm/Nwe8X84oSORvD68gO2no/wfR56N9+wFqX1tF/bvrcHedf1uas+EOCyPjlhWk33YFET1tBEOB2erkQGkjB0qb2F/SyP6SBlo6R16bY1x6NA9dP5Xr5+cHfC75fD42vbOVXU++hfHgYeLtoRNafUEm8VcsIO7yef6/wTBVbUcSY/n59On+Sn763GaOVQbvyb56bg7/d+dccpLPHC96vD7+8OoO/vTaroAWX9cvyOOPX12KUT+6v9fnE9lX0sB7W0t4f2sJjQNknUPBgkkp/PM7K4mPHFo7Sy9Enw93VzfO9i68NjtehxOf3YnH5sDncPgFvexOvE7nmffMnvslIn3LvetOX1/f3sbVT/+29+s+N+QW6JP7E4HN+BWU3xZFcXR19C8wBEFQAb1s6mNRFK8cZHsLoAV2iaI4axjfl4G/d1cNLBdFce1p60aC3IZ8kvxNnkPkcAO9MinSSdlIZ09ANr0A4bSH/7nA6xMpabCyo6SLnaVdWJ0DR6qi9HJuTYIp1aX4Nh8E67lnc5vUek4aYykxxlJqjKFLqWFmdhh3LUgkQvf5zVh6vD4qW+yUNto4UWfhUHU3Hm/w0ynaoOCu+QlMyxpdr+RLGBtoM7t4f18LG491BD0v9Cop106PZemESBSyM7M9oihiK61n/6vbSSwpJc4ewsBdIactO4NNYUl8Ko3CNYgPrUwqMDlNz6wcI0XpBlSKkRmEii433j3H8Wzaj/dAqZ9gDQcGLYJRD1Y7oskCIaqtng4hORbZlFykU/KQ5KUhyEdX5s7q9PDfTQ3sLOnCMwjLVcokTM00cNuceKIMigG3vRjRYXHz1LpaDlf3P3elErhpZhxXT40JqKo9VIhuD979J/HuPY73UBli+4W3mRPiIpFftwDZ4qnDPu9EUaS9282pZhvt3W4sDg9WhxeLw4vF4cHi9C9bHd5Bn/+BEKGTc/nkKJYURqJRSvHVNuPZcgjP9sOIDaHZgrkFCaURcXgn5TL+minoUgZvO7gEaOhw8OKWBg5WBb+3T0jRceuceDJi+48Z27pd/H11DSUN/WmHWiHh3kVJzM0znrPS9ECobLGx7WQXu8q6aO8OfYCcGKFkXJKOnAQtaw61UdbUP4CjV0l5cFkyUzLG3pipra2N+++/v/fl54LcLgbuwO+z2qtw0ftFNuBd4EVgvfg5bPoVBCEavw0PwOuiKN46yPbN+C17ikVRHD+M71sHXBbou847uSWdSIZA1hRypBOykM6ZgGxaAYJudMtgXB4f+8pNbD7eyZHq7oBmC4IoktfZxKK2SiY11yAdStmGXoMkMgwhwoAQE44kP40D6iie3m8O+FBVySXcNCuOFZOikI7A4GWsw+LwsL2ki83HO6hoDh40mJ4Vxj2LEgnXfn6J//8yWkxO3tvbwubjnUFFmlRyCSuLollZFI1GGZhQVrXY+fPHVTSbXCCKpHZ3MLu5kuktVRjcg6vSOiQyDkUlsi86laMRCX2egBIBxqfomZ1rZFpmWNDvHymI3Ta8B07i2XsC74ESsI2yQnHvfXdKHtKiXCSxI6u6Gio8Ph9v72rmk0Nt2F2Dk3ujRsakND1XTY0hMWLsZJWGi91lXTzzaR0WR/9nQ2KEkq+tSCE9ZmSCvACi3eEPqOw+hvdgKdhHQblZIkBkGIJBh6iQ0d1mQd8aAgEMN6C4dj6yZTMQ1OduQxIMPp+I1enFbPdQ2+6gutVOTZuD0kYr3fbgz3qZz8ucrjqu7arCUBPaGN0kV3EkMpHDkYkcD4/DKfM/z9QK/73tisnB723/67A4PLy9u5m1h9vwBrk1ZMdpuHVOPOOSA2cu95WbeHJdbcDrKzdBy0PLU4gJG52AmdXhZXtJJxuKO6hqDS1BEmNQMC5Z1zedPv7xeEXe3t3Ee3taAo5bl02M5I55Cf0CwBcSnzty27dzfwbzWuBOYCn0uZ70fmkj8DLwoiiKxaN2IOcZgiAkA72NVS+KonjXINvX4LfuKRdFMWuI33UX/oy4GcgTRbHxrPXntSx5MHIrSKWETyskeuEMYhZNJ3z6BKTKCxONr2/r5o1Pj/Hq+mJO1XcSZe9mTlMFc5oqiHQOXuJkGJ9D4nWXETl3CpqkOFRxUX6z7gBo6rDwrb+tZc2e8oDrx6VH88eHljKjIHTBjbGE4ZQz7TvZwK9e2MbmQ9UB1xu0Sn5+30LuXD6wou3FhLFc9nU+UF7fyeOv7+KNDceCklqFTMo9Kyfx7VtmBC37FUWRF9cc5fv/Wo8zgODTV6+ezJdT5DS8vpr69zcguAZXX7dLZTRkZBO/bDaL7r+ahNzUof24EYLP5aZt+wGaPt5E48ebsVU3jMh+tZnJxC2fS+zyeUTNmxL0XnWh8Pqnx/jNS9uoaQ6ttFOnlpObEsXc8clcvyCP8Zmx/bYZq9eb2ebkh09+yqvrA7e/fOnqIn5yz/wR0SHw2Ow0f7KVurfW0vTJVnyO82tFJDfq0U7Mp7zVgruqjrhBelGlRgPZD32BzK/chiJiZLJRoZwHXq+PXcfr+XB7KR/tKKOhpwcy2t7NgoYy5jZVoA8hYKZOiiPhustQLJ7DMyUmXlx3DE8QdhZhUPOtm2dw35WTQ7brGk2MhevF4/XxwieH+fWL24O2k+WnRvHoF+exYkZmwLGB0+3hp89t4an3+6sOy6QSvn/7bB6+acaIi1mKosiO4jpeWnOE97eVhtSSlZMcyXXzc7lmXi55KVGDbr/9aC1f/sPHfefn6chOiuBvD68YM+PI8vJyxo/vy9d9fsjtGV8kCDHAF/BndItOW9V7AIfxk7RXRVEcmg/EGMP5ytwKghAFnMDf2/t1URSfCLDNeRWUOp3cKiONqBNiUMXHEDYui7gls4iZP3XIdhejBZ/bTcfBE7Ru3cfRV1bhOXB08A+FG8m793oy772BsIIhxSEQRZGX1hzmB/9aF/SmffcVk/nll5YQGTZy0frzgXMRothyqIqfPLuBXccC3/dWzMji6R9cM+T+xrGIsS7YMVrYX9LAX9/YydubjgfseQK/ivbdl0/m27fNJjXOGHRfNoebb/5lVUC1y0iDmn//37VMzUvkmQ/28eS7ezG1djG5rZaZzVXkdzYhDRj37o+wwhzil80hbtkcYuZNRaY5//8rURQxHSujZfNeLJV1WKvrsVY3YK2qx9naEfyDgoBxfA5RsyYRNbuI6DlFQe3MxhoOljbynb9/wu5jdfiGMD6RCAIalZwIg5rEaD3hejVqhZTO9hbUCikzi8aRkRRFfIQOjVqBRilHrZKjVyswaJXnLYC27Ug19/36PWqa+5cEx0XqeOb713DZtMxz+g6vy0Xj6i1Uv76a+g824LGG1o+qjAonbukcNEmxyLQaZFo1Uo3Kv6xR4erqpvPwSboOn6Tz8MmQbIPOhl2np0WUYXA7BrQxkWjV5H7lNvK+fU9IyuEDfucQ77sel5uPHn+F0n+9SlJN5YDbAmhSEki5cflnVmSniWVVNXby6xe28PLaI0HvfYnRBn70xfncuWISsgvoHnChn08b91fwyD/WcqwyMAWIi9Dxs/sXc/uyCUGJaXl9B3f+7G0OljX2W5caZ+SFx65negBRwXNBa5eV51cf4vlVBzlVN8B9uQe5KVHcsLCAGxYWUJA+9HO7w2znq3/8kPe3nuy3ThDgazfM4Kf3LUajOj+Vb26PF2uvoKnDhc3hxmx1suvAUR6596rezT6f5PaMLxWEfOAu/GS3V86s90C8wFr8QlTvi6J4YRzPzwHnq+dWEIQX8GfF9wEzRLG/s/j5Jrd7Xn+P/OlTUMdFj6nMgCiKuDpNtO8+TOv2A7RuO0D7niN47YOX/3kEgcORSWyPy6A4IoHZk9P509dXBMwUhII2k41Hn1rP86sPBVwfYVDz/Tvm8eVrpqIcA9HcUHCuD0VRFHltfTGPPPEJ7QGIf1ykjv/+6DoWTD5/tgijgQs9eDif8PlEPtldxl/f2MmWINl58Ntm3HtlEd++dTaJ0QOrhJbVtnPbT94MOPiZXpDIr760hDc3HOfFNYcCKh7rXA6K2mqZ0VpDblfz4D60PZAoFUTPnULk9AmEjcvCOC4bfW46MvWFywR6bHY6SivZ+u5HYLZSNG82huR4VDGRKGMiL+ixjQQcLg9/fGUbz310kMb20RVBUitlJMeEkRht6Jn0JEWHkRoXxsTseGLCzz2w5nJ7+fl/NvL4azsCmgRctyCfv39r5TkFNs2llZQ/+yYV/3134ODHaQgvGkfiygUkXLGAiGnjkYQobCT6fFgq6+g6fJKO/cdo3rSb9t1Hhqy+6pDIUPmCZ7hEuYz4265m+k++ii4jOeh2AyHU+66tvpnyZ9/k1DNvYK8fWJHZJFexKzaN8sw8HvnF3VwzL3/A7Utr2vjV81t4c2NxUJOI7ORIfnzPQq5fUDAiPdZDxYV6PpXXd/CDf63jo+0lAdcr5FK+cdNMvnf73KAWbgCvf1rM1x//iG5b/0qd6xbk88/vXoVxBC1+TlS18sRbu3ll3ZFBs7RJMQbuWD6RGxeNoyCICvdQIIoi//n4IN994pOAz7rMxAie/N5VzJ1wbhVIXq+PulYztS0mapvN1LWYepZN1LaYqW7qwmIPXBklOkw4dz3e+/LzT27POABBWIifoN0A9I5seg/KDLyBv7R323k/uHPAaKslC4KQANT3vPw9cDDIpq/2zE8AP+9ZrgzmuzscDNfndiTgdTix1Tdjr2/2e+7VN+NoavPLnbd24Gjpnbfjcw5emng6rMZwNunj2ZKQRZtaf8Y6iUTggaun8uN7FhJhGN4DYMfRGr75l1UUVwSOUibHhvGTexZy62Xjx7wX7Eg9FFu7rHzvH2t5bX3/LLogwPdun8ujdy+8oNHtc8H/Arl1uDy8uu4If31jFyU1wXvtNCo5D1w9hYdvmU1cxODVHG9vOs5X/vBBwIHLLUsKsdhdrNpZOqC7WG5KFPdeWcRtS8ejc9qpfXsNNa+vpmXrviH7VAsSCdqMJMLyMzHkZRA2LhvjhFwMeRnnjVj+L5xP4A9q/Pn1HXyyq+ycFUaHg4QoPZNz4pmUHdczjychSh/SANXp8vDGhmIef23HZ7Yxp8GgVfLnb1zObUuH137hdTipfXcdp55+nZZNewbdXpDJiFs6m5QblhF/+Xw0CcML0gaC22yhedNumtbvpGn9DswnArfhDAc+QcAxewbTf/o1Jlw2bUifHeg6EX0+mtbvoOzJ16j/YMOg5PyEMZZNCdkcjErCK/ksEPCFpRP449eXE64f+Bo8VtnCz57byIfbAhM5gEnZcfzs/sUsnRa47Ha0cL7vJ2ark9++uIV/vLMnqJ/4NfPy+M2DS0lPCOw/DP5qnu8+8Qn/+bj/MFgpl/KHry3n/qumjMjfUhRFPt1Xwd/e3MW6vQOf33KZhCvn5HLPFZNZPCVjVMZxJ6tbeeC377PvZP/2FUGAB6+dzi8eWIxWPXj7X2e3neLyZo5WtHC0vJmjFc0cr2wZtp3k/zS57cUA/bkAPlEUL44UVg9G2+dWEIQ0YPB6mcB4XhTFu4f52UDHMmrkVhRFnK0dmEsq6S6txFxaRXdpFZbKOuz1zTjbAnudjTRqtUb2RaewLzqFJu1nfUARBjW/eGAJ96ycPKwbp9vj5Z/v7OGX/90cNPo1Lj2GXzywmBUzs8ds7+lIPxQ/2VXGg7//gObO/mVvcyak8Pyj1w+a5RuL+DyTkZZOK//+cD9PvreXlgD/t15oVXIevG4a37hpVkgZMZvDzff/uZZnP+zfP6VVy5mYFc/O4poBuenCyWl88+ZZLJueFTAjYmtopv6DDTSt20HTpztxm84tUyjTqlHFRqHNSMJYkE3E9EJiF0xHkxR/Tvs9G5/n8ykYOrvtPPnuHtbtreBkdWtIFk6jgYQoPctnZLFiZjaLitL7ZZQ6zHae/WAf/3pvL01BCPncCSk8+8NrByzDDwZLRS0lT7xE5fPv4eroGnBbQSIhZtEMUm9dSfJ1l6GMDE4URhK2+maa1u/omXbiaApu4zIUnErOQDKjiMQpBYxbMJmJU3IGrHIKdJ042jqo+M87nHrq9UG9p+VGAxl3X0f6/TfzZlknP3tuY8DzLinGwAuP3cCswsEzzHuO1/HjZzew+WBV0G3mTkjh5w8sCWl/I4HzdT/xen288MkhfvrvjUGfFeMzYvnD15YNWq11vLKFO3/+Nser+p9buSlRvPjjG4ZdZXc6eoO2T7y1O+B3nf29d6+czBeWTiBCJaW7tAprTQOq2CiMhdkj3uLi8fr46xs7+cV/NgXUoEiLN/Ld2+YAYLG7sNpdWB1urHYXFruLdpONY1Wt1AZolTgXXCK3Z0EQhHHAa0ABIACiKIoXlaScIAi/Bn7Y83JmsEzpaf60cJaNzyD7T+NzRm5dXWY6D5+k89AJug6fpKu4jO7SqnMeaI406rRh7I9OYW90Ko09RHfxlHT++d2rhjVIAahrNfP9f6zlnc3Hg24zZ0IKP79/MbPHj73eudF4KDZ3WHjgt+8HjI5GGzU893/XnXNv2vnG542MiKLIrmN1PP3+Pt7ZfDxo9B38peVfvX469181ZdDsRi8On2ri7l++EzDjFWFQY7Y6gloIyaQSblo8jm/cNJNJ2QOTSmtNA3UfbKBjXzHt+4r9GafhWvMMAEEqRRFpRJeRTERRAbGLZhC3bA4Kg37wDwfA5+18Gg5cLg/r9lWw72Q9J6taqWzqoqXDitPtwe3x4nS58frEoIqrIwG5TMK8iaksn5HN1LwE3thwjBc/OYTNEdj2Qy6T8JN7F/HwzbOGnM1p33eUE3/4N7Vvrenx3A2O6LlTSL1tJck3LEcdO7hYzWhCFEVMx0/RtG47Tet30rJpT8i9wIPBIldiiohCkpKIPjMFtVGHJkyHNkyHNlyPSqukrKIUWWsnyR4J5kMn6TxwHJ97YFuWyBkTyf7KbaTcfPkZ1RhNHRa+9qeP+HhHab/PSCUCP71/Md++ZfagpcWiKLLxQCWPPbOBAyXBheNWzs7hJ/cuGhGSNhDOx/1k2+FqHvnHGg6VNQVcH23U8JN7F3H3FZMHvDYGK8u9c8VE/vyNy0PKWA6ELouDp97byz/e3k1rV/DzVSt4uSMvmisS1USbOzGfOIXpeDnWyrozrlNBIkGfk0b4pHyME/MIn5hL+KR8VHHnXqpcUtPGl3//AbuD6Jecb1wit4AgCErgavyZ2+V8lrm9WMntdKCX0D4liuKDAbaR4PenzQe6gBhRFIfrEhvsOM5rz20o5NbndtN9qgbTsTI6DhynffdhuorLcLa0j8bhjSoaNAY2J2SzJT4LhU7Drx+8jPuunDLsfpldx2p59OlP2X4keCR5zoQUvnvbHJbPyBozmdzReij6fCJ/fXMnP35mQz/FSUGAH9wxjx99ccGYL9vuxeeFjFjtLl7/tJin39/H4VOBBym9KEiL5uFbZnHz4sKQe8h9PpF/vLObR5/+NCBhlkmFoKQ2TKvkvqum8JXrp5M0QHbf5/HQsGozp556nYbVW4ZcljySkCgVqGIi0GelEl5UQOyimcQsnI5cO3D/5eflfBotnP73WbLkMjptHmqbTdQ0m6hq7KSivpNP91cEVB4dLYzPiOWZH17DxKy4kD8jiiKNa7Zy4vfP0rxx4I4iZaSR9LuvJ/P+GwnLG7vBP6/LRce+Ylq37qNl635atx/A3RWaUvZowiNX0D6lCPvSxYRPzichykBClJ6EKD3xkfq+Z7soiry85gjffeITTNb+0jDLZ2TxTIhCiKIo8v7Wk/zsuY0BA3m9uHpeHj+4Yx6Tc0a2AqQXo3k/Ka1p46fPbeTdzScCrpdJJTx0w3R+eOd8wgbpizVbnXzt8Y94c0N/tXGtSs7fv72S25ZOOKfjbeqw8Pc3d/HMB/sCtsIAxNjMzLE0s9jTiebUuQVEVTGRxF8+n8x7byB63tRhj+28Xh//eGcPP/33hmGXEw8VBo2C3JQoMhIiyEmJJCspksykCLB3MHXy51wtOegBCMJ8/IT2Rj7rue39r3YBb+LPNO7o/+mxjdNKkz3AfFEUd561/hH8/bIAPxNF8adnrb8b+E+w9SEew3knt6lx8djrmrDWNuFobMFW10zX0RLMJVXYahtxdZgu6EASQG7QoU1NQJOaiDYlHk1iLO5uK/bGVuwNLX2TqzO0Mg2zXMna5Hw2JuQwc1o2/3rkKtLih1f6JYoin+wq48fPbgjajwtQmBHDt2+dzY2LxiGXXdjYz2gPsveeqOeOn70VUGF0weQ0/vvo9SH1bV5oXOxkpLSmjac/2M9LnxwKOKA7HYunpPPNm2cNuW+sucPCl373PmuD2GYFg0Gr5Nu3zuar108fUHTEWttI+bNvUv7vtwYVjbnQ8JPeSHRZqejSE1HHR6NJikOTkoAuPQlpXCSfbtkMXJzn02gjlOtNFEX2nqjnzY3HeGvjsaAlxL2QSSVBrV0GwryJqTx8yyxWzMgOOfjp83iofvUjTvzh33Qd7Z8lPB2xi2aQ+aVbSL5u6QWz1zsXiD4fXcWltG7bT+vW/bTuOIitZmRssEJBnTaMTQk57IxNxyELrDKrlEtJiw8nIyGcjMQI8lKiiDZq+PvbuwMGpBOjDbzy0xtDVuf1eH28svYIv3x+84AloitmZPG9O+aNeLnyaDyfQlGLXjk7h988uJTs5MhB97e/pIG7fv42FQ39W9ImZsXx4o9vCGk/wVDZ0MmfX9/BC6sP9SvxFUQfGeZ2JrXVMd3cRJQpNNG2oUKXmULGPdeTfte1aJOHFsiwO93sLK7lnU3Hef3T4qDtbsEgl0mIDNPQYbYPWIklCLBkSgb3XFnElbNzUcj7j0HLysrIycnpffn5J7eCIOTiJ7S3A701lr13ew9+teTngQ8uRrXkXgiCMBnYDqgBC/BrYGPP61uBL/VsWgpMFUWx+6zP381FRm4H87k9r5AIyA16lBFhKKMjUMdFYZycT/pd16JPD+2h4LE7aN99mNq311L79hrsjQP3WlhlCtYn5bIzo5AffX0lD1w9ddhZXK/Xx2vrj/Kz/2wa8EGXHBvGN2+ayRevmIzuHEtwhovzQdo6u+186bfv81GAUrDYcC3/ffR6FhaNbTXli5HcWuwu3tl0nOdXH2TH0doBt1XKpdy4aBxfv2nmkDJTvVizu4wv/e6DAXt2z4ZCLuXBa6fxvdvnBlWa9Xm9fVnaxtVbBi3nBEAioIw0IggSnO1dfUIzMr0WdXwMmqRYNEmxqJPi0CTFo4qJAFGkY/8xuorLsFTU4Ghqw222IHqGpiA7ZEgkSGRSkAgIEgmCTIpUpUKmVSM3aFFGRaDPTPaLXk3OJ3LaeGRjxPN1NDHU683r9bHjaE0f0R2on1evVdI9SICnF/FROmaOS2ZyTjwrZmQPWl4qiiK176zlyI/+jLkkePeRTKch8/6byP7KbRhyxva9bziwN7XSzxWycAABAABJREFUvueIf9p9hLY9R/CYR05QzC1I2BeTwqaEbE4Zov0j9mFCr1EEzPAp5FIe//oK7r2yKOQgn9Pl4ZkP9vP7l7cOWAo7c1wS37p1Nitn5YxI9dJIPp/qW838/qVt/GfVAdyewPfb/NRofv/QspDai0RR5Im3d/Ojp9YH3N+D103jNw8uHbZf8LHKFv74ynbe3FD8mQe7KBJj7ybb1EpuVwvjO+oxhOB1HAiq2CgcLe1DS+wIAnFL55B57w0kXbMkoAOJKIocLG3k0/0VbNxfyY6jNQH7bk+HTCqQFh/O+MxYUuOM6NQKkmMMnKhq5aU1h2kzBbfoio/S88XLJ/HFyycNmsD5nyC3PZ6st+EntVN63z5tk16f21cudp/b0yEIwlXAS3yWlT4bpcBKURRPBfjs3VwitwBINWp0aYloUhPQpsT3+d6Zy6roOlyC+cQpxBCj6RKFnISVC0m/61oSrpiPVBEaIRR9Plp3HKDmzU+ofXvtgFkfu1TGhsQcbFcs54mff+GcxI8cLg/PfLCPv7y+c8DyOb1Gwa2XjeeelUWjVrYUDOeLtImiyF/f3MVjT3/aL3sikQj8313z+d7tcy94JjsYLhZyK4oiO4treWH1Id7aeAxrkN7BXqTFG3ng6qncdfkkooZhZWKyOPjpcxt58t29IX9GIhG4fdkEHr17ISmxYQG36S3nPPS9Pwya+ZJqVGhTEvBYbdjqW4ZVYqZNTST9i9eS8cXrzrAtcZnMfrGqDbvoPHgcS3ktro6ukO9ZowGpRoU6IQZjYQ4JVywg7fYrkWkuLn/twXAu11u3zcmT7+7lL2/sDOpLPlzMKkzmweumce28/H4Zj6ZPd3Loh3+iY29w33VVXDS537yL7C/fgiI88LkfKkRRxOdy43O68Dr8A3dldMSYaXk5HaLPh+lEOVUvf0jFc2/jaA5ewns6vIKADwGHVE6LWkeTxkCDNoxyQxQtagNmhRJRGN3WlpsXj+OJ71w5YFXJ2ei2OXnird387c1ddFmCB1qykiJ46PoZfGHZBAza4VswjsTzqaXTyh9f2cbT7+8LSrIiDGoeu3sh9189JSTng9YuKw/+/gNW7Szrt86oU/Hk967mmnl5Qz5WgN3H6/jDy9v4eEcpUp+PZEsn2aYWsk2tZJlaCXMPQbBOENBlJhNWkOVX0S/IIqzAr6Yv12nxWG10FZf16cr4PaNLQuo9V4SHkXnfDeR+84uoE2PZe6KedzYf553NJ85JCGpqXgKLp2TwwupDNHUEDxxdMSube68sYvmM7JDdKj635Lanj/Ya/IR2GWf20QI0Aq/gLzsuHrUDucAQBCEV+CawEkgCXMAp/CXXT4iiGPDM/l8itzKdBk1yPIbcdLTpSWhT4tGmJqJNTUCbmoAiwoggCPg8Huo/3EjVKx/S8PHmkHxqB4IiwkjqLZeTfte1RM6YGPIDXfT5aNm6j+O/e4bG1VuCbueUSNmdls+KP36ba6+bc07H6nJ7eW39UR5/bceAFisARTnx3LOyiJuXFJ7Twy5UnG/StutYLXf87G3qW/v3aBVmxPD3b69k5rjzozA5FIx1ctvQ1s0r647wwupDlNUO3AMvCLBiRjZfvnYqS6cFViEeDL2qmT95dsOAGYqzceXsHH52/2IK0mOCbtNx4BgHv/cHmj/dGXQbAE1KPK5OM57u0LPFoSBmwXQy7rme5BuWIdcF7ruzVNfTsHoLrVv2YTpWhrWm0S+gd4HaNhSRRiKmFpJ5340k37AcieTi6GUPhpG43kaT5MaGa7n3yiLuu2oKqupqDv/wcZrWB+/AMuRlkP/de0m745ohlR6LPh9dR0po3ri7L8DisdrxOZx9hPZ0qOKiiZk/lZgF04iZP42wgiyEMXYu+Nxu6j/cyKmnX6dx7fZzu2YkEkRjGJ7oSGzRMXSFR9KsM1Km0HPKAY3t3UGzj0OBTCrhmnl53L5sApdNyww5CGu2Onnq/b387Y1dtJmC3yd1agVfWDqBL107lXED3BuD4Vyul7Ladv790X6e/WB/0GCoRiXnoeun8/Ats0O2UFy/t5wHfvt+QOI1vSCRFx67YchCnr12Pn/+7wYatx0g29RKtqmVDHPbgJ7LgSBVq5Ao5J8JnwoCcr0WeZgeuUGHPEyH3KBDYTRgnJBL/Ip5hE/K7xtrij4f3eU11L23nor/vDOofZZPKuVIchbvRGVRrxva7x4Orpqby2N3LxyWmNnnjtwKgrCAz/poe2Uge0c+duB94AVgrSiKFy50fQkjglDIrUSpQBlhRJMchyE3HeOkfMIKMv0ENiUe2SDCKR6rjfLn3ubkn/+LtXJ0ro/hDhw69hdT/Mt/Uffe+qDbuAUJ7TNncOdzPyE679zKx3w+kY93lPKn17YPqoqnVcm5aXEhtywpZO7E1FHzh70QpK3dZOP+37zHJ7v7FT0AcN+VRfziS0tCVuY9HxiL5NZkcfDBtpO8tv4omw5WBe2L6kVUmIYvXjGJ+6+aMuy+coDtR2t45O9rOFjWGPJnxqXH8JeHLx/QmN5SVceRR/9C1csfBt1GptdiHJ+DuaQKV/vo2onJdBpSblpBxj03ED13cK9FURQxl1bStHY7bTsP0lVchr2+Ga/dgc/lPm/ZXkEuI3xyPllfupWMe66/KInuSF5vvST3T6/twHRWFi0pxkB2UiQ5yZGkxhupbuxif0kDR8ubBy0RjLWZuaHyMFNag4sIRkwZR+GPHyLxykUhkcxeZeLmDbto3ribls17B7ULGgjKSCPR8/xkN+Xmy0fUG3ckYKmspfzfb1Hxn3ewN4xs4Z86IYaIqeNRjM/FnplJY1QcFW0WSmvbOVHVSklN27B6sKPCNNywsIBbLhvPzHFJIQXWrXYXz364n7+/tTtgYPd0TC9I5PZlE7lx0biQieRQrxebw817W07wn48PsG0AEUylXMqXrpnKd78wNyT7N/CXZv/42Q387c1dAdd/57bZ/OTeRUOq0rI2tLD6mQ/Z+9Z6wqqqSLZ0ImXoHEiQSs7pPqyKiyZ++VziV8wjftkclBFGwH/dtu8+TMV/3qH6tY9xD1KCfyQigU+S8ykxxp5RUi+RCEzJTWDxlHQWFaUzNS+RTQcree6jA3yy+9Sgz3jw93U/ds9CinIThv07P4/k1geIfEZoRWAbfkL7xtm9pZdwceN0crsw+0Zc+mjMKi0WlQanQokokyGRCAj4LzqJICBIBATBv6yQS1HIpMhlEv+857VCLiXC6yL34F6S9uxCbhs4syPIZSSsmEfMwhmIHg9euxOv3YHH7sBrd+JobqNxzTZ8zoEb7NUJMeQ+/EWyvnQLirDQLTq6jpZw7NdPUf3G6qAljT5BIPy65cz7zcPn3CMliiLbj9bwl9d3snpXWUik5Oq5eVw7P4+FRekjWrp7oUibzyfy+Os7+OmzGz7rkzkNvcq5X71++pjwxR0r5Nbp8rBmzyleW3+UVTtKBx2ASyQCK2Zkcdflk7l8ZnZA8YhQUdNs4tGn1wdUugwGpVzK/901n4dvmR30u50dXRz71ZOUPvESPlfgzIGhIJPwCXk0b9w9eEmjTIa8IBvJ+AK843JxpKVh7zTjqmvE19iC2NSCpLUNWXs7qvZ2VN2DP9aqjdF8kltESWQCoiAgiiKi6L+WRQj6+gyIIiqPiyiHlSh7N0aHFaPLSaJRRVqUjuRwDWESEVeHCVeXGbepG1enGbfZEvTvMhgEuYz4pXOY9LtHMBaOnI/5aGOkrjeL3cW7m4/z4ieH2Xq4+ox1uclRrJiVxbLpWcwZn3KGIrjb4+VEVSsHSho5UNrAh9tK+jJQ4Q4bV1cfYU5jRdABtj4njYm/+hbJNywPifzYm9uoevF9yp97e9AM0HAhyGSk3LSC3G/eRdSMiaPyHcOFKIp0HS2h+rVVNK7Zhqm4dNjnfDBIVUqiZk0iZuF04lfMRz8xn/KGTg6famLfyQb2lzT8P3tnHR7HeXXx3yyTVszMkgWWZWZKYju2ww5zw/0CDTXQNg010ECbNNg02LDDdmIHzIySbTEz80qrxfn+WFmxol1pBXagPs+zz6yGdzTzznvee+85ZBfV02t2PwIYFezFBYtTufCUNJIi/Ydd32K1sXpjLv/8aOewavVymYRlMxM4e14yS6bHDTnY6+7zkl1czxtrDvDB94eHFBaUSSVcvTyTuy+dM6L3b35FE1c+8pnT3xbgreW1e87k1Glxw+7H2mOkcfMeKtduofiLDUiqRydQJshliJbjozwsSCT4TEsnZOlcoi5ZiUdcJLXNXXz49T4O/Odzog4dJLl9aOHDcp0PBydOJfTcJSyaGsu8jCi8XChOr91RwB3Pr6OifuhU5rAAPZctmcjlbtTWusJvldwClOAgtO+Iolg+7gc6iV8EjiW3yhm3I6jGVgMEjtHs06rymF1finyI4L4NgVyfIPb6R3LALxzBQ4ufp4ZgPw+CfHQE+3kQ3DcN8tERqBSQbttN7Ydradq6b8hzkOt1xN94EYm3Xt5f4+sOOgvLOPjQi1S9twaJi3MXBYHI85eRev8NeKUlur1vV6hq7ODtb7J48+uDVDcOb6fg7aFi+axEzpybxNyJkcNK7w+Hn5u07cmt5v+eXsvhUucvgaOep1evyGRmSvjPZh30c14nq83O9kMVfPRDDp9tyR1SLOco4sN9uXxZBhefmk6I3+i8WI/CYDTzz4928vT720dkUbBgUhTP376cuDDnCph2m42CF97j0F/+ic2FJ3avh5668Ej8y0vR9bhOPy709CfXO5hCT3/K9H6YpW6Kk4giEYY25tSXML2hHJ116AG0Qk9/PoueSKHX8YmA+XtpuHTJRP7vvBkD/m92u52u/FJHKvTWfbQfKaKnun7YAb9joQ4JYMJ91xN/48W/+GjuWJ43u11ka3Y576zL5vMtecPWnYMj7XLBpCjOW5jCBYvTBqXqmy02Pl+zlwMPv0By1j6X77ZWhZpvEzOJu+pcrj93OokRrj1q7RYLtV9vpuT1T6hdu7lf+OxEwHdaOgm3XEbEqqVua1eMN3pqGmjeeZDmXdm07MqiLSt/3Pxz3YEqwJeQ5fMJXbGQoFNnIffQYbHaOFhYx9bsCtbtKmLH4Srsbva1M+KDuOCUNM5flDpsmyuKIpsOlPHyF/tYs71g2AFuqURgVloEy2bGMzM1nIlxQaiVP2baOXteLFYbhVUtHCpu4HBJPZsOlA+bbXNUD+G+y+eNiBiJosh/vjrA3S+ud/qOWDI9jlfuPoNAF84IoijScaSQuvXbqFu/jYYt+xDNI1MLBkcWny42gq6iCroKXQu6jTskAqXJabzmEU2D6sffGNDTyWnV+cyuL0Vhd/18eyREkXL/jURdvAKJbOC7q7i6hQde28inm3NHfFoLJkVx7oIUTpse51Lfwhl+i+T2ZeDtX6N9z0mMHONJbn17DZxRfphZ9WVIhkgXKfPwYUtwHAf8wjEoRk7MvD1UpKhhen0pMXlHUDW5VkGWKOREX34WyXdejT4xxu1jdJVV8cX/PYH9mx+QDUHQw846hZT7b8B3SprLddyFzWbnu70lvL72AF/vKHQazfwpJBKBjLgg5mZEMi8jillpES5H/Vzh5ya34CBv//pkNw+/sYmeITqiAd5aVsxK5Iy5icydGIVGdeLUvU/0dbLa7GzNKufTzXl8sTXPrbpWnVrBOfMncMXpGcxMDR+TsIzZYuP7fSV8+P0R1uwoGPL/8lP46tU8fuNpXLIkHUEQaGzrprCymYr69r5PB91ZOUxav5bgNufPb49Uzq7AKJLaGggxuh70OewdzJdR6ZR6uiYR7kJmtzGxuYbZ9SWktdYN2Y7legXxeXQ6JZ7DR2tGA7lMwllzk7notHR89GoUMilKhQyNUo6HRoFOrUAhl9KZV0LJ66upW7+NzrxStwiSTKsm7roLSP/bH36xyssjfd4q6tvZklXOlqwKNh4oGzb1cygsmBTFv+89q99r2WLopuCfb5P35Gsu0w27ZQrWRqSwITQByzEDKwszo7n41HRWzEnsb5sNZVUUvfgeZW9/4VBhdQO62AgCF04nYME0tBEhSFUKpColEpUSad/H3Nbh8J7dso/GzXvprqgZdr+qIH/ib7yQ2GtWHdeU5d7mVjpyimndn0PLriyad2bRUz105NIdaKPDiL78LOQ6DZ35pXTkldBxpGjYtNCfQiKXE7BgGqErFhC6YmG/qFx+RRMXPfDxkB62P4VUInD2/An833nTme6GlVBVYwdvrDnAG2sPDikMdCxkUgmpMQGkxQYS7OuBt05BXWUx7T1WrAof8spbyC1vHDaz5yj8PDVcsiSda1ZOdjkY6QrNHT3c9NRXfLWtYNAypVzK3244lRvPnjrofWTrNVH/w06qP/+e2q83jzgtXZRK8Z2cQuC8KfjPmYxEoSD/mTeGrH0/CnVIAP6zM/GbNQn/2ZmoAnwxd3Rh6TRg6TD0TbuwdHTRXVlH3bfbMRRXDLtfGwLbg2NYE5lKyzEk18PcyypDFTNKc5AaXA/S6mIjSLn/BkLOP51DFS28t/4Qr6894DJ9PiLQk/pWw5DWP0eRHOnPkhlxLJkWx6y0iCGzuH5z5PYk/rcwHuTWw9zLioojzK8tGjJSm+0TwrqICRR6BoxJtn8ARJHU1lqWVeWRNFT6hyAQuGIhE++7Hr8ZGW7vPndvPm9e8xDJR7JQDjHqFrx0Lin330DAnCkjOHnXqG3u4t1vs/lsU96I6holEoGJsUFMmxBKYqQfiRGOT4ifh0ui80sgt0dR2dDBPS99y+db8obVGJHLJExJCmXuxEjmToxkRmr4cbVTOhHXyWqzsyWrnE835fLltny3CK1cJmHJtDjOX5zG8lkJYyL8drvI9kMVfPjDET7bkjcqEZ4z5iRy+sxEyupaOVTcQFZxPXXHKIVrLSbOKc1iXl0xzmKHVkHCluBYBFFkvot1AHK8g/gi6viRS0+TkRkNZSyoLSKg13WH85BPCJ9HpVOhH70/41ghEQQkEgGZADMay5lbVUh4exPS4WQxpFJ8zl3GtBf/go/v8G2/0WShw9BLW1cvnT29dBhMdBp66TKa6eox0200YzCa6TFZkCAgSEAqkSCXSfD2UOPtocbPU4Ovl4ZAbx2B3lo8XIjmuXreTGYrTR09NLV1c7ikgS1Z5WzNrnDqo+0M3h4qBEEY9t729lDxr1uWklpwmCMPv+gyFV5UKtgRn877ntEY5a7bH7lMwrnhGk4pO4Jk665hByE0YUEELp5J4KIZBC6cPmLPTIDuihoat+6j/vudVH70zZAijoJUSujKhcRddz5Bp81BIh15+YIoivQ2NNNVVEFHThEdOcX9U3dJ/GgRunIhU1/8K5qwIIfQT1F5nxXRYZq2H6AtK29EwlXeGclErFpKxPnLkIWHcM+L3/Hql0NnjDnD1ORQ/u+86Zw9L3nYciKL1cb3e0t499tDrNle4DYxHS0EAU6ZEsuVyye59DsdDp9vyePWf3zt1AIuOdKft/58zgBBI1NLGzVrN1PzxQ/Urd82oki9USqjISiUmNNmMe+SpQTMnIhMo6b1QA6H/vIctWs3udxWGxlKyPL5+M/OxH92JpqIkBEP/nYVV3Dg3a/JX/0dyrwCFDbXWUxWQcLW4FgOZM5g+RkzWbUoldSYAGzGXkrf+JT8Z97AUOranq9ZpWNtxAS2B8Vgkwz+v4T66/nzlfO5ZMlEOrtNfPjDYd76OmvYVPej0KkVLMiMZtHkaCICPQny9SDQx9Emy2XSk+T2JH7dGAm5DfXXk5EQzKT4IFKjA1BYTPS88wmmD7+EXucvTbtUSsvkyZTOnE2D3oduo5mObhOtnUZaO3vcSq90F9GdzSytzCWzucplhxigPjSC9mWnEXDaXNLiAkmNCXTpsQmOF85jz31FwT/fZlFNAeohGrSAeVNJvvsaQpbNGzeFyrLaNj7fmsdnm/PYmzf8SLwzeGgUJET4kRDuS4C3Fr1GiYdWiV6jRCkXKMw7gkouYcaM6aiUyv5GXxBAEBw114Ig9I9JuDNPpZDhoVHioVGO+KVZVNXCv1bv5p31WW6nwcqkEjITg/vJ7szUiHFVmz5e5LbXbGXD/lK+2lbAmu0FQypqHovZ6RFcuDiNs+cnD3n/DgVRFKlu6mR/fi07DlfyyabcIS2rhoJcJkEuldDj4v8liCKz6ktZVXoQDxd+g3v8I8n2DeWs8kP4uyCUeV6BfBGVTpGX63IDjUqORil3TFVyNCoFGqXsmO9ytGo5aqUcrcoxVSpkqBQylHLpwO8SMH29gc5/v4utznVkweOMU/G74zpqrBK2H65ka3YFOWVDe2sfV9jtLKwt4tTqfAJ6DQzVjbMKApuC4/kwbjL2nyFdWRBAInHcP3KZBKlEgkQiYLNaHMukcswWGyaLdVTKtxKJwOy0CFYtSmHlnER8dGoOFtfz3Z5i1u8uZn9B7QDeI4gi0xrLObvM9X0oyGTEXX8BqX+6EWWAHxv2l/Ly53v5emfhQA4liiS1N7CsMpfUtqEHKqUadZ+A2TkEzJ0yrirHptZ2Sl77mMIX3qOncuj6RU1ECLHXnEfs1eehCXUQE5vZjLmlHVNzG71NrfQ2ttJTUYOhvIbusmq6y2vorqh1quA8UqgC/fDOSMJrYhLa5BhyOpqwt3YS3mmhZfM+2g46T8+Ue+mZ9vKDRF5w+qBl5rYOGrfuo2HjburWbaUzv9Tt8/GeNIGI85eRHxHHje/uceqJOxxC/Dy44eypXL080632ut3Qy2ebc1mzvYAN+8tGVAc8HEL99VyxLIPLl2WMWK34KFo6evjDc9+41F+4/qypPHbDKaiVcrqr6qj6ZD3Vn/9A07b9bqff2xAo1fuR4xuMbs40zrt2BcvmJPX3T4wNzWTf8zSlb37qch+a8GBS/3wTMVeejUQ+uoHf+lYDH35/mPe/O9xPHmU2GwkdjUxsqWFOXYlLpWaJQk7Mtefjd9PltErk1LcYqG8xUNfUgWXTTgK/+xbvBteEtEWp4ZuIFLYGxWKVSvH2UHHnxXO48eypA9LSjyKrqI5/f7mf1Rty6OwZ3bOolEuR2bpp2fDY0Vm/fXIrCIIEWADMBIIADfAnURTrjllHgcM6yCaK4thbupM4bhhN5FZmt3FKbSErq3JRmZyTU5lWQ/zvLybx1suHTHWy2ey0GXpp7eihpdNIY1s39S1d1LV0ORqAvmltc5fbnX53a36rtZ5sCElgb0AkXsF+pMUG9qX5BJEeG0hihN+AuqutWeXc9OCHJGft49TqfLRD1OZ5Togj6Y6riLrkjBGpNw+HqsYOvtiSz5fb8tmdW+1WKsovAUq5FH9vLaH+esL89YT660mK9GNyYggTogNcKkE3d/Tw+lf7Wb0x12VNritIJAIZ8cHMnRjB3ImRzE6PHHHK9rEYT3Lb1mVk3a5ivtyWz3d7it2qCQRHTdc5CyZw/qLUUXVKWjuN7M+vYX9BrUNAJb/W7TQ4iSCAgFtqjT9FmKGNSwv3Et/pnOzVaDz5PGEy09trmVKe73QdW0wU0huuRD0tA63aQV7Vqh/JqVbtIK0qhWxU1kbDwWY2U/qf1Rx55CWX6XMmmZzPI9P4ITQR2y+optXb2M1FJfvIaKlBOkS/wSJI+D4skdXRGfALOv/xhkQi4OOhxtdTg5+XBp1GgdFo4WBhHdFVpZxTlk14d7vL7SMvXkH6Q7fiERsxaFlFfTv//nIfb605QGRJIcuqcojuah3yfKr8guiZP5fES1cyd1YS4QFj175wBbvVSvUXP1D43Ds0bhnam1qQSNBGhWJqaf/RLmWcIffS4zc9Hb+Zk/Cdlob3pAmog37MxnDW7jZu28f+W/9G2wHnxCry4hVMfeEBFF6uhZC6iiuoWbuJ2jWbaNy8F7vFvTZYk5rIOoUfa+V+NKsH1o/6e2kwGM1DDsiqlTIuPjWd/ztvulsCVOBQNt6wv5RvdhaxO7ea3PLGEbknhfrrSY8NJC02kDnpESyaHDMm7Yovt+VzyzNraXASrfXz1PDy3StZFOND5er1VH6wlqbtB9zed5NKS453MEd8QmiPi+WiM2dwxemTBtSL2i0WCl98j8N/ec5l+rk62J+U+28k9ppVo+qDFVe3sHZHId/sKmJrdsWQ7z2duZdlVbksri1C7iL4YZApeDd+KnsCIgdmLooi6S01rKw4QkyX6+yGdqWa3rOWc/lzd+IX4E1LRw/rdxezK6eKuhYDjW0GGtu6aWzrHlEJkSuIvR2Ydj1z9M/fNrkVBGE58BwQ9ZNFaaIo5h6z3o3AvwADECKK4viaEJ7EuGFE5FYUyWyuYlXJQZdpehKFnLgbLiTlvhtQB469Bu5YGE0Wqhs7qWrsoKqhg8qGDqoaO6iob6esrp3qxo4BDb7eZOSUmgIW1hSisbl+2C2ChCy/MHYExXDEO7g/cuGhUTA5MYSpyaFMTQ5j6oRQlHIpNz+zlrXfZ7OgtpDTqvKHNApXBfqReMtlxN1wYb9k/HjBaLKwN6+mv85sT271cU9jOh5QK2VkxAezaLKjNi0m1MfpeqU1rXyxLZ8vt+azN6/GrZrkYyEIkB4bxJyJkczrq1EeCdkdK7mtqG/nm51FfLU9ny1ZFW5bUEyKD+bsBcmcM38CsS6uzU/R1N5NQWUzBRXNjmllM/kVzW6nbh6LiXFB9Jgsw3rnOoPKauGM8kOcUl3gXFVWpcTv/64gJDWOonv/jrFuMPmVKBWkP3gzSXdcPUho4+eA1dhL8SsfcPjRl7E0O7ciqtXoeS9+KnneQSf47IaGzGbl3NIs5tcVD1lmYZJIWRc+gS8jU3/TJLcfokhieyNnl2W7HIABaIhLQHfTFSQunEJylD/+XoOtUURRpG7dFg7e8zQdhwbXIB5Fr0TGlpA4NgfHUa8d+N6NCfFmVloEmYnBZCaGkB4b6DRKMxpYDN0YSqowlFTSsGUv9eu20lVSiWg9/u8OiVKBPikG32np+M3MwG9GBvrE6CEj1K7aXdFup/TNT8m+9xmnKc+a8GBmf/gs/jMnDXtelk4Ddd9tp3bNJmrWbsLUNPRgxFGUePiyNyCSvQGRtCsd0VhPnZKVs5PYnFVO1TDt7dLpcdy8agYLM6NHlCLb1WMiq7CO/YV1VNZ30NBqoK65k4raJpRyCTPSY5nUd98Ml5k2ErR09HDH8+v48IcjTpefnRHGH8Kk1H6yDsPugwhuvKPtCBR7+nHQL5xs31CatHqWzojn6hWZLJkeP2jgu2HjLvbd/AgdOUVO96cK8GXCPdcRd8OFyNTuv9+tNjs7D1eydmch3+wsonAU7zu9ycjplTksGKJEb79fOP9NmEqn4if9B1Ekpa2OM8oPE9fpur7b5qlnX9pU3pb60yuMn2vGT/E/Q24FQbgGeIUfLYKaAT8cVkE/JbcKoA7wAq4QRfG/J+xET2JEOJbc3vuPj6hsh5yyJsrq2jCZf3zZRXS1ckHxfpI6nEcs7AjsCIrm4PQ5nHvBAi5bMtGlKt7xgslspbKhg9LaVkpr2yirbaOkppXykjrCD+zllMo8fMxD11m1K1TsDohmR1A01VqvQbXB4YGeTEkMQSqVsHZHAbaeXubWFbO0MnfIfUs1amJ/dx5Jt13RL1Qx3ug1W9mbW83OI1XkVTRT2Edq3I0K/lIwIyWMi09LZ9WiVJfks6vHxM4jVWzNrmBrdgX782tH7Fd4NLK7YFIUCyY5xLi0Q9TsjpTcWqw2dh6pYt2uItbtKiavwv0U1cyEYM5eMIFz5iU7Jfs2m53ali6HOFNdO+X17ZTXtVNS00phZTMto6iVPRapMQGcOjWWoupW1m4vGLGboK+HipViGzO2/oC8w3kHL/zcJaQ/dAs5j79K+TtfOF3Hf+4Upr/2yJitt8YLoiiy/VAlz63exbdbclhYXcDyihyXg2d7/SP4KDaTVtWPJEirkpMY6UdGbAAetJMWoePslctQqdTY7HYKKpv5fm8JP+wr5ft9g1Mnbzt/BktnxGMwWjAYTXQYHLWvHQYT7d3G/r+7ekyOOtheM8ZeC71mK2arDYvVjs1qZXnFEU6vzB2S5PZKZXwRmca3EROGvTZHSxikffW/4OgcIIJdFLHbRbdVZ08YRJH01lpOrzhC/BAdyiK9H5/GZAxSyPb30pAU6c+E6ABmpIQx0dpFzeMv0bh5j8t9dclVfB+awMbQBLrl7pVNSCUCE6ICyEwMZlKCg/CmxQaiUrge7OltbKH9cCHthwtoP1xIV0EZXSVV9NYf/1R5iVyOR2I0nilxeKbE4ZUSj2dKHLrYiBEPUA3X7prbOth704NUfLB20LaCTEbm038k4ebL3CaPdpuNpi17qfx4HZWr17tFdO1Asac/ewIi2e8fQadCzeVLM5ibEcnraw6w84jr2kpwtLe3rJrB+YtSB9hRjQTHUxPCarPzxdZ87njum0HRWrXVzPT2OhZ31xNUUYrEhZXisTBJpOR6B3PQL4xs31AMChUZ8UGsmJ3IZUsznKr69lTXc+DOJ6j88Gun+5R5aEm57wYSb74UmdY1me/sNlHd6AiMVDd2Ut3UyaHiejZnldNtHJ++kpeph+UVR5hXV+JUkLRLpuTdhCns9R8YxfXRq5mWFMI8DIR99y2Wg84HEQA65UrWhyezMSQBk2z8hTX/J8itIAhxQA6OVOONwP+Joph/jCfuAHLbt82rwDXAf0VRvPyEnOhJjBjHktvCwkLi4x0+iHa7SFldG59/vp3qJ15hclWRyzrW/X7hfBY9kbpjRp9lUgnnLUzh7kvmkBx1fARfRgKT2UpxeSN5r39K9zurkdcOL9LUqlCT5x3U/zk6MusMMruN6Q3lLKnKI7TH9WitIJEQfu5pJN35O/ympY/qt4wEdrtITXMnhX2Ru5KaNjq7e+nsMWHoMdPZ4xCEaW7rpNdiRyqVOrw6cXTkgSG9PDlm3njDS6firkvmcNM504bsxAF0G83synGQ3S1ZFezLrxlxbZ5cJmHahDAH2c2MZlpy2IBa4eE6D6IoUtPcxab9ZXyzq4gf9pUM6SN4LCQSgZmp4ZwxJ4nTpsWiUsioOyYtv76li/pWR3p+eV07lQ3to6o9dAVPrZLJSSHMSAlnbkYkn2/O4z9rXCs0/hRJkX4smR7HnPRI4iUmah54lvrvnCtW6mLCmfKvPyP39GDHJXfSXT64jlym0zDpybuIu/7Cca07HC3MFhufbMrh+Y93DxJ405uNnFuaxZx65zV8ZomUpnlzCV0yl6lnzycuIQxBENzqjL7wyW7u/Nf6QfNfvmslV5w+fERqKNjtdtq6jOy/52maX/8IhvIU1WmRXHcZPhesxEOjxFPr+Hh5qNGo5COKOlksNpo7uqlv7aa5vYem9m5aOntobndoMLR3GTFZbPSazdTVN2K3iwQF+qNWKVHIJMjlUuQSCYIgYLXbsVjtWKy2vo/ju9lqo9dkdQhddTuI/rGDfIJoZ2pjJadX5gyZflyt9eTT6AyyfUOHFEEM6u7gnLJsJje7JjG6mHCS77wav1XLWXewki+35bM1q3zUA1EyqYSU6AAy4wPJ1AnEGFrRVVfTlVtMx+HC4yrgpPDxROnnjSYsCG1UKLroMLRRoX3fw1EH+4/bc+suaSt/7yv23vSg0/TpiPOXMf21R5B7jGzA3W610rhlL5UffUPVJ99icpGpMWAbBPK9AtkTEEltUjJ/v+dc/L21vPDJHlZvzBmyTQ301nL9WVO5ekXmiIMD401uTX1aEJ9vyWfNjoIBAmwKm5WM5mqmNVaQ2lo7ZPnXUfRI5Rz0C+eAfxi53sGo9FoWT4lh6fR4Tp0WS7Cvc+skm8lM/jNvcOSRl7D1OH9Woi8/i4zH70AdHIDVZqeqoYOSmlaKq1sprmmltKa1P9Ov08138njAp7ebVSUHmNZU6XR5a3o63ddeQXhCBNMmhBIb6tPflpbWtHL//z1H3KYNQ3rldsmUbAhLYGtQHG2qgX1UtVKGn5cWnUqBWiVHrXSo7av6phqVHIVchlQiIBHAbLVhNFnpNVlprK9l/Uu3HN3Vb5bc/gu4CTgCTBFF0dw3fyhyexnwFnBEFMXj34s/iVHhWHJ7eMce/M0infmldBaU0ZlfStOWfS7V7Ir0fnwYN5kyvev0Y0GAs+dN4J7L5g5QzPs5Idrt1H6zhdI3PqXmqw1uG8XXavTkeQdR6BlAlc6bRrUOUfjJC7xPvXlpVd6w5t3+c6eQfOfVhK5Y+LN24MfzpXgs+TWarXR2mzD0mGg39FLfaqCmqZOapk7Kats5WFRHWe3wnYWwAD1/vXohF56S5nadUE+vhT251f2R3dGkbGtUcmalhjM/M5opiSFEBurI3rsdQRBYsHAxlU3dHCqu51BJA4dLGjhUXD+ijqpEIuCrV6PXKpHLpHT3OpRoj/fLVymXMjE+iClJoX2fEGJDfejsMfHM+9t54dM9w9bsqBQy5k+KYun0eJbOiCMq2BursZfcx14h94l/O32mJAo5E+69nqQ7riL/6TfIefhFRCej/MHL5jHt5QfRRoSM228eLTq7TbzyxV5e+mzvAMVnZ4jpaOaSor1EGVxHegSJBK+MZPznZOI1LY3D5g4kPp5DPnf/+Ggn97703YB5MqmEr568hAWZ4xPRtlutHLjjCYpffn/I9lDh60XK/TeQeOsVx90nd7w76zabnY6WDkr++yUVz72FeQibnBa1jk8j09kdGDm4jT8GerORs8uymVNX6tI2qsnTB8sFZ7Pij5eTFDMwTd1uF8kpa2RLVjmbs8rZll0xrMiip8lIdFcz0Z0tRHe1EN3ZMmTZzfGAJjyY1L/8npgrzhq1SI+7GMl90F1Vx87L7nYaOdcnRjPnk+fxSokf1XnYrVYaN++l4sOvqfrkW8yt7cNuYxUEcr2DkSyczXVP3ITC04NXPt/La1/tH1KtWyaVsHR6HJcty2Dp9Hi3BBnH43npNpr5dk8JX2zN45tdRQPeRTKbjbTWWqY1ljOxpWbIjI+j6JXIyPILY09AJLm+wSTFhnDa9FiWTo9nekrYsOrRNV9vZv+tj7q04NGkJGC+/gqy5J7kVzRTXNNKeV3buA78ugOlXEqwnwdBPjqCfD0I8tUR0jcN8tGh3r2PugefxdLSPnhbP2+mvvgAEauWAY6+03/XZ3P7c+swGB26LnHtjaysODKkIJ0oEZBOn4zfhSuJPGMRQQGe6NSKUdsB/k+oJQuCkAckANeKovj6MfOHIrezgG1ApyiKXifkRE9ixDiW3D5HNL4M/6Jq0+j4MGrioJSK4bBidiL3XjaXzMSfv9N6FKbWdio+WEvZW5/TsufQiLY1S6TUajyp0XpRrfOiRutFvdqDNqUGu0RCRFcrS6rymNpY4bzesA/6xGjibriQyAuXDxDSOFH4Oa2Amjt62J9fw/rdJXy84ciQomGxoT5cvSKTy5ZOdFrr5gw2mx2TxUZHdy97cmvYcbiSXTlVZBfVj6o+WSYRUMgFjGb7cYlWjycUcinxYb59dlC+JET4kRzlz4Qo/wGdip5eCy98uptn3t9Bu2HojvXyWQn8bkUm8ydF91sOiaJI7dpN7LvlEbrLnL//gpfMYfLzf0YilbLj0rto3nlw0DpyTw+mPP8noi49c0z+vOMBo8nCK1/s46l3t41owEIQ7cyrL+HCyiMojO4J4An+3uhDApGplEjkMqQqJXK9DrmnDrmnB0pfLzaVt/HOnkraFWpalRoMckfUdPMLV5MQMX7aBlaTif23PErp66uHrMGU6TTE/9+lpD3w++Pmkzte7ZLdaqVhwy7K3/2Kqk+/xWpw/X/RRIQw4Y/XEHP1eTR0mSiubqGoqpUt2eWs3pjT/8xL7HYW1hZyVtkhl8SyRanhi6h0dgRF9xPkzMQQLjoljVWLUpxG5ux2kSOlDWw7VMmBglqO5FRgyi0kquNHMutrct86ZShowoLQxUXgERuB0t8H0W5HtNkRbbb+qaG0irp1W13uQxcTTsr9NxB92ZnHjeSO9D6wW60c+stz5D72yqBlUo2aaa8+RPQlZ4zpnOwWC/Xf76Diw2+o/uw7tzx1LRIJvelpzL31IsJWLOLDHUU8v3r3sFoG/l4azpiTxPJZCSycHOMyi2mk16mrx0ROWSM5pY0c6Zvuy68ZIIalsFlJba1lclMlGS01qIZwijgKs0TKIZ8QyhInoJs/g8z0KKYkhpCREIyHxr00fENpFftve5SarzY6XW5SqVkTP4lvfIYefBoPeGgUJEb4ERXs3U9Wg309CPb9kch66VTDvrN6G1vYe9ODVH0yOBMHHCJo8U/8kT+8toVPNztXA4/paOa8ujwS651Hgo9CFeRPzJVnE/u78/CIi3Tvh/4E/yvk1gCogamiKB44Zv5Q5HYicBCwiqJ4/MwnT2JMGBG5FQT0yTEEnbGYgzYV/9xbS6moQBxhR3TJ9Dj+dOV8piSFjuXUxx0deSWUvf055e9+RU+V+96yP4UdgTalmhaVlhallm6ZnGBjF/EdTSiGGu2USPCaO5XEK84i4tzTkOtPTM3yL8Xn1myx8e2eYt5el+XUDP4oFHIpp02LQ6OU0917jLdmr6V/2mOyYDJbRyw69WuDWikjMsiLqCAvIoO9iQr2IiHcQWijgryGjHRbrDbeWHuQx97ZQn3L0J0zT62Sf92xgvMWpgyY35aVx4E7n6Dhh53Ozy80kMn/uI+wc06j4t0v2fv7h7B2DdYX9J87hVnvPIk28udtEyxWG29/k8Xf3t7itiWSwmYlqKeT4J4O5vnImK6XYC+tpKuoHNyoPxsNjFIZTSoPery9WXb+AoKnpOCVnog+IWpcSIa1p4fd1/2FivfXDv0bJBJ8JqeQcv8NhJ95ypiPeyzG0i6JokjrvsOUv/sVFR987dKj9ij0STFMuPd6oi5a7vL6bc0q59KHPsG7tJSLi/cS1u28/MQgU7A2MpUNIQlYXXjFSiUCp0yN5aJT0zlrbhJKhQyb2UzH4UJa9h7u92ftyC0ekTfrT3F0ALZa50WtxpN6jZ5GtQfNKi2ePnomxjucASbGBzMxLpD4MN9BbUbznkMc/ss/qVu/zeVxtNFhpNx3w3GJ5I72Pqj+agM7L/8jlvbOQcvibriQyf+4f1ycDGy9JurWb6Xiw2+o+XKDW76tokyG79wpRJ25iKKQKF7cWcGmg+XDbqdVyVk0JYb5GQ6NiLTYwH7BJVfXyWK1UVjVwpHSRnJKGxyEtqyJivp2p8dQWi2kt9YwuamKdDcjtDaJhKa4BKQLZpN4wRImZ8a5PQB9LKw9RnIff5XcJ1/DbhrsRmEHNofE81n0RLfr1d2FUi4lKcqPjLhgkqP8+z9h/vpxG2wVRZHKj75h3+8fxOQkitum8eClxJmDvNsjg7y46FSHj31mQghtB46Q88hLVH/xw7DHDFw4ndAzFxMwZzJeE5Pcrnn/XyG3XTgsf6aJorj/mPlDkdtTgG+BVlEUx1c29yTGDaOJ3B4Ls0bDYY0vhV4Bfem6Xv0jaYIw9Ht51aIUHvzdIqJDvEd9/scDoijSWVBK/fc7afhhJw0bdx83GwRXsEqlNCZNQJwzHe+4CAKjggmNDSEiOhhfT824RrZOFLk1W2w0tXf3ydUbaGrroaFPvv7o/Ka2H5f/xnnpsFArZY6R4b6R4iBfHUG+OiICvYgM8iQq2JtAb+2I7wW7XeSjDUd46I1NbqWFnzo1lpfuWkmo/4+2Gj01DRz60z8ofeszpw+5IJWSeNsVpD3we0S7yN4bHnAu+CKVkvbgzUy45zokLojAiYDdLvLxxhwefmMTJTVDCMiIIoHGLuI6mojpbCa2s5nQ7g6XKaknGhK5HH1yDF5pCXilJ+KVnojv1DSUvqNrY01tHey+6l6qv9wwLMmSqBR4JsUStHQucdech0fs6CIGRzGSdqm3qZW2g7m0Hsil7WAuLXsOOa3l/il8JqeQct8NhJ11yrClIT3V9ey45VEaP/vW6XKLVIb24rOoXbSILUVNbMuucFlzL4giAcYuojtbSLF0MlnoQV1V7bRD7y7aFSrKPPyo0nlT3ZdN5LR0ZgiolTJSYwKZGBfExLgg0vt84DUqOY1b93HoT/8Y0j5IGxlKyn3XE33l2UgV4xPTGMv7yVBWxdbzbnVqGeQzJZW5nzw/ruUP1h4jtWs3UfHh11R+tRHBzZInj4RoFHOm8oPEizcqejBY3GtPdGoFU5JCSIryJzbYk86GMnotdlTeYRRWt5FT1khBZfOwabq+RgPJ7Q1MbKkmtbVu6EH4PogSCdqZmSRefiaxq5ag8B69fZUoilR/9h37/vA3jJXOAwslej/ejZ9ChYfvqI/zU3jpVJw1L5nzF6UwLyNqTPZII4GxoZm9N/6V6s++G7TMhsCXUWmsjUxBFCRctXwST/5+CTonYpdt2fkUvfQe5e+tcTpo/FPItBp8Z0zEf3Ym/nMm4zdjoss69P8VclsAxAGXiqL4/jHzhyK3DwP3AwdEUZxyQk70JEaMsZLbn6JHKu8nunneQVTpvJHJpS4bV7lMwvVnTeWeS+eOm1z9eMNutdJ6ILef6LZn5x9XsY6hYBUEeuRKTGoNdo0GtBqkOi0yvRalpwdqH0+0vp5ovXSo9To0nlo0eh06bx0qDw1StQqJXIYglSJIJUhkMkxmM5u3bgWZhFNXLkerd+0NaLeL9JqtGE2OKGm7wSEA4xCC6aXN4FBrbe/qpam9p997ram9e9hast8aJBIBvUaJXvvjx1Or6p96aBX9f+u1Kjx1SvQaJX5eGoJ8PfDUKsd1EEMURdbtKuKB1za65RmsVsp47IZTue7MKf3nYTF0k/fka+Q99To2o/P/p/+cyUx98QG80hJp2XuIbRf8wWm6si42glnvPX1ChNVcYbhrIrPZiOtsIr6ziZgOB5kdyt/6lwqPhCj8ZmTgN2MivjMy8EpLGJFqbW9rO/tu/CtVn3yLaHMvnV+QSpDptKgCfFGHBaL09ULh7YnCxxOZVg19olCCIPxILAUBJALYRSxmE4UFhQAkJieh0KgBAVuPEYuhB2tXN90VNbQdzKOnut7t3yJIJAQunknynVcTdOrsYZ8xq7GXgn++Tc4jL7mMyu0MjGJ1zCSsXl48f/tyLjwlDZvNzoHCOj7ecIR1a3ajq6oiuquFqHGok5XpNPhOTcN3Wnr/x+zpyeGSBrKLG8gurudQcT255U0jVpH/KQQBYkJ8SIkJIDXKn6S2ehTvfkz3Qeces+BI706+4yqiLj1jzBZ4Yx18tfWa2H/boxS/8uGgZUpfL2Z/8CxBp8wa0zk6g6XLQM57X7P9+Q/wyM1zqprrFBo1hrhYDqm82WRRU+7hg00yvgN/erORpLYGktvrSWprcGntOAiCQMC8qUReeDrh5y5B5e+eNd1QaM8t4dsr78O6N8vp8g65itWxk9gZGO00S1CjkiOTStzWqlArZSyflcj5i1I5bVrsqNWpxwpRFNnzwgfk3vEYSvPgcy/1CWLCyw9zzqp5w+7LYuim8qNvKHlttdOSH1cQJBL0ybGoAn0dInE+Xo72WaemprWFpc/85eiqv1ly+2/gd8BaURRXHjPfKbkVBMEPyAV8gadFUbz7hJzoSYwY401uf4ouuZI8ryDy/YIpCQijWnCeSuKpVXLnJXP4/TnTxs3P73jipzYL7YcL6cwtcSsl6ZcOi1SGSa6gV6mkWedFndaTao0n5UoPKlT6Eaeh/xIhCKCUy1ApZCjlUhR9U6VchrLvu9Vmp6fXjMFooafXTFePid4+eyyFTEpcmA8Z8cFMTQ4lJtT7GNLqUJIdi5jDeGNLVjl//c/GYS0pjmJKUgiv33c28eGOUXK7zUbpG59y6M//dGklog4NZOLfbif6sjMByH/2TbLveRq7ZXAnPubqc5n8j/tGrF46njhS2sDdL3zLxgNl/fMEUSTc0EZKWx3JbfXDlxL8SiHVqPGdmobfzAz8Z2fiN2uSWyTEajRy4M4nKXvrM2zdY7ObOtHwmZxC1CVnEHnh6aiDA4ZdX7TbKX/vK7Lve9ZlmUq1hzf/jZ1CkZdjf4JoJ8Bo4NJ4L84KU9OdV0zrviMYa51b6LkDQSbDe2LiACLrkRjtVqaDyWwlr6KJQ8UNZBXVc6jEQXq7esY4QCOKZHY1ck5VDsFNrkt4JEoF4eeeRtw1qwiYP21UwonjlVlU9s7n7Ln+gUGDcoJEQvqjf2DCH689bu113uEy3vjTK8i27iKpvR7ZCPruZomUaq0XlTpvKj18qNI6xCwNcuWwmieCaMent4cAYxcBvQZCujtIaq93mVLvFBIJgQumEXHeEsLOPnXcdEG6Wjr47LqHED77GqkT4m9D4IewRL6MSsMoc0QtvT1UhAd6ggiVDR3DakQchVIu5ZSpsZy3MIUVsxOdRkFPNDbuL+Xiv65G2tzMNXk7SOgY/F6Ve+mZ/upD/WJT7qD9SCElr31M2TtfuiV65gotWLiF/nfjb5bcTgV24yCy14ii+Ebf/EHkto8sfQpMAazABFEUi0/IiZ7EiDFqcjtczrELNOs8yfMJJtsjgHyvQIzygY1MqL+eh69dzIWnpP5iiIG7EEURU0sbPRW1dPd9DOU1lGcXUX6oGHW3Ab25d0hxqV86uuRKcryDOeITTI5P8GAj8uMAbw8VEkEYVthnanIoqxalkB4biFop7yepxxLWo1OZVDLg/ursNrEvv4ZdR6rYlVPNntxqt218AOLDfVk0OYbFk2OYPykKvXZ864FGi22HKnjkzc1sdqOeCxzR5vsvn8fdl85FJpVgt1gof/crch57ha5C5/uQaTVMuOdakm6/CplGTW9zK7uuvJfatZsGravw9mTaqw8Rcd7S0f+oMaK5o4eHX9/Ea2v2Y7eL+BoNpLTVMaHNEcXwsI5CrVoQUIcGIJHJMNY1jSm99OeC54Q4fKak4jUxCe/0RPTJsUj6BhoFQUC0i9jNFuxmM3azhdr1Wyl+9SM6c0vGVBd6PKGLCSfqkpVEXrwCz6RYt7er37CTg3f93Wk6Kzg6nUm3X4khJJTXXl6LvKaGMEM7od3tbtUoDnlstQflHr6UefgiT03kkpvO4KzFE8ctZdJuFymvayOrL7qbXVRPdknDsGrgTiGKpLTVs7L80JA+wQCSsGACL1xJ2g0X4BsT6vb7fTzLZtoPF7D13Fsc9fA/QdjZpzLzzcePq9bF/oJaXvtgC4WfbySxvpK0llo8LaPLaDpad9+mVNMjV9AtU9IjU6Cxmh1k1tiFX2+3+xHjYyGVErh4JpGrlhJ25uJxidAeRXN7N+/f+yLyN99D3+s8GJDnFcj7cVOo0Tk0JCKDvOjs7uVAYZ3bSshalZylM+I5c24yS2fEuS1mdSLw2pf7ue2fX/drggiineUVOZxRcRipk7Y0eNk8NKGBSJQKpColUqUCiUrhmCrk2IwmrN09WA19n24j5o4uuitq6K1vwdLR5XbGzVH8T5BbAEEQXgRuwEFmPwU+Bj7o+/uSvulpwIXAUfnEJ0VRvPeEneRJjBjjEbkVZFIkcrnLNEVXsCNQpvclp89HtkTv159+MzM1nKdvXsqkhOARn88vER2GXv7w3Dd88O0htBYTXmYjnuZe9GYjwT2dzFdb8Kqtcatu4pcCO5DjHczWkDiyfMOwuTkqL5UI+HtpCfDW4u/tmAZ4a/H30hLorcPfW0OAt65/nkIuRRRF6lsNZBc5zNZf+GS3y5fcadNiue38mUydEOZ0hLan18Lh0gayCus4WFjHgYI6jpQ1jFv/XCoRWDQ5hlWLUjhjThKeuuOjJjsUduVU8fAbm9iwv2z4lfsQ5KPj7T+fw9yMKGy9JkpeX03ek/+h24VliiCREHvNKtIevLl/NL9x6z62X3Q7xprBKb7+szOZ9d7TP5vFj8Vq4+XP9/LYm5vwqa1hYks1Gc01Q/pSu4I6JAC/mZPwTIlFtIs0/LBrROlg7kCm1yFVKbF0dmHvHQVZlkiOmlSP63n9mqDw88Z7YhL+szPxSo3HMzUBj7gIl6JH7TlFZN39d2q/3ux6nz6eWHt6sfeO3bJL6u9DnV8QO0wKSnQ+lHv40ONEKCcuzIfbL5zFxaemH7c0ysY2h7VZdt/nUHEDhVXN7t0+okhyewNnlB9yGoE6FnYEKjx9qQ4MpSUyGmNcLB4B3vh5atBrlX3ZNDIUfQOTEsFOYX4ecqnA1CmZ6HUalHIpXh5qAn10+HlqkEjcHwg3d3Sx64o/OhXj0SdGM/ezF/BMdn8gZDTo6jGxemMOb319kIZdh0hvqSG9tYboriHq/Y8zJN6eBC+aQdjy+YSduXjM6eQ/RVltG//+5yeo/v02cW3Oy2JaFWo+ip9Me8YkdFolVQ0dQzoo/BReOhXLZyVw1rxkFk+J+cVlAVptdu556TteXL0TD7OjH+hl6kFvMRGtlbIyWIlx864hFd1PFP6XyK0UeB24DIYMPR1tZd4EfieeyJM8iRHjuKQlSyRIFPIRv/x7JTIKvALI9Qkm1zuIOq0nV6+YzAO/Wzgq5b1fIj7acIRbn/3aaTpNSoQv/7pgEv71tbTsPkT9hl0u/d0ArLHRdMXF0WMTMXcYsBm6obsHSU8PEosFqdWKwmZFYbc5PjarW2bro4FBpaYgKY3KGbNQBPrj7aHCR692kFQfLQF9ZDbAR4ePh3pEnRFnyCtv4sanvmJ3ztDtbYifB/HhvsilEupbDdQ1d43I2mWsUMilLJkex6qFqSyfldBvn3O8sDevhkfe3MS3e0pGtN38SVG8+adz8FUIFL/yIXlPve4y/RgcI8mT/n53v2ek3WYj97FXOPzA84O9awWBlHuvJ+3Bm0dU5zme+OaHbN546A38C/JJb63Fw+J+22RHoMk/kKQlMwlPjMRutdCZX0bL7my3RItO4pcFQS5D6ePVZ3ljw251WN9gt2MzmYbu3YwBUg8tftPSf6yVnZqGOjQQQRCoaerk5c/38p+v9g+pTRDkq+OWVTP43YrJJyQ7pNtoJq+iaYBdTE5ZI41tLgZhRZGEjkYW1hQxqbnKrfeNHajSeVPoGUCp3o92pZouuYouuZJuuWJYQSypRMDfW0tEoCexoT7EhfoQE+pDUqQfSZH+Tq1zRLud3MdfJftP/xg0+CPTaZjxxmMnLLukrcvI3jxH1lDWnnxsWUcIrKkktq2R8O7243ZciVZD4IJpBC+eSeDiGXilJowqbXw4FFQ28/dX1sPbH7KgutCp+J5VkLA5Lo1tyZOp7BxZvzE21IdlM+NZNiOeOemRbnkCH0/YrVaMdU10V9TQXVFLT0UtPdX1dFbWk7u/AKG1Dc9fQQbf/wy57T+oIJwL3AtkulglF3hEFMUPTtxZncRocbxrbseCNoWaXO8gyoMjWPF/53Htlaf0y97/mlHV2MG1j3/hNFVUJpVw3+XzuPPi2UgFqHjvKw795TmXnWhBJiP2mvNI/fNNaEICByyz2ex099njGHpMjml3L3aro0Nns1qxW230dhvJzsoCq5XkqBikZgt2Qw9icyuSqhqoqMJWWoG1dngRIolSQdz1F5Byz3Vu1bWNBXa7yCtf7OWv/9notpjESBEWoGf6hDDSYgOJCPCgsSIfpVwCnhFsza5m08EyWt0ky1qVnOWzElm1KIVTpsa69CscDbYfruTp97bzza6iEW/7x0vncNfydEr//SEF/3h7yDod74xkMp68i+BTZ/fPM9Y1suPSu2jYsGvQ+qoAX2b+9+8D1j9R6G1qZd9/PmP3q5/gX142ovS8erUHpXpfetVaZiUEEtrRQtvBXOxuqp+exP82OuQqh2qxzotqrRelej96fHx54JpF3HDWVJcpxt1GM++sy+a51buGVDL31Cq5ekUmN54zjfCA0avUjhaNbd3kljVSWNVCYVULRVXNFFa1UFHf3s8VdeZeZjSUM6+ueFTZEeAYWDLIFXTJVfTK5FgECVaJFKukbypIsEokWCRSjFJ5f3put1xBp1xFl0qDf0woCQmhpMYEkBIdSGpMAJFBXkgkAnXfbmP7RXc4bfOS7riajMduP27+vUNBFEXaDb3UldXRtPcwloISzPklGHOLMFdUD+lB7QwyDy0ecZHoYsPxzkgmcNEMfKekHtffVlDZzONvbKT53c9YWXYYnQshvsM+wbwfN4UGjWshy2Mhk0qYkx7B0hnxnD4zoV8X4kTB2mOku7KWnsq6vvKzGror6/rL0Xqq60ecAvxLxP8cue0/uCCE4KirDQCkQAtwUBTFkYUMTuJnxVDkVhsdRsjSuagCfGnPKaJ1f45T1dMThWYvHyIXzyD9rAUEzJ2CJiLkV1eXexR2u8hzq3fxwGsbMFsGN4SZiSG8ds+ZJEf5YzOZKf73R+Q8/KJLlWapWkXiLZcx4Y/XjliS392aJkN5NXXrt1G3biv13+8YMnVGqlI6SO79N45rvY4ztBt6efXzvfzrk900tY8+nUcuk5ARH8yMlDBmpIYzfULYAPsbZ9fJZrOTVVzPhn2l/LC/lJ1Hqpz+P38KnVrRVw+UxNIZ8aMSuLDbRdbuKOSZD7aza4gItlQiOPX79fVQ8dJpMXhv2071p985FX46Cr+Zk0i5/wZCTp8/4Jmr+3YbOy+72+l9Gbh4JrP++/dxEyBxB8b6Jqo/+46SD76hZeteBDffkQaZgkqdNz0yBSqbhbDudrzMY1f3lnvpiVi1FN/pE2nPzqfq0+8w1riv7Purg0SCVKVEplUj02mQe2iR96VXSxRyJH01YhKFHGnfVJDLkMhkCBIBjionCwJWq5WyinIAoiIikYpgt1ixWyyIFit2ixVLp4GemgZ6KmrobTzxKZ1yTw/0STHokxz2S94Tk1AnxvDwF9m88Mlup9tMTgrhxTtWkB4X5HK/Vpudzzbn8fT728kudn2/yKQSzl0wgVvPn/mLKOHpNVspqWmluLqVqoYOKhvaqWrowHQ4n8iD+0irKkFlt57w8+qRymlRaWlW6WhWaenUe6GMiSBwYiKJYd74Pv8SlrzB0jB+syYx+4Nn0Yb//Nf2KOxWKz3V9RhKqzCUVmNqbMHc1kFPUxvVBUWgVBA/eyreybHoYiPwiItE6ed9wvpKhZXNPPb2FvI/Xs+qov0EGZ3XcjepdLwfN5ls39BhhbHCAz1ZPDmGU6bGcsqUmONa6mPrNdFdUeO4vmXVdJdVYyir6Y/Empp+vtTxn0IilzmyP6RSLB1dDu/cEfBCQSLBKyMZhZcHUrUKqVqJVK1CplbRYDJwxlvPHl31f4fcnsRvA+5EbuVeejKfupuYq8/D3NZB24FcWvYepuil912qSJ4IKHw88c6cQODC6QTMn4Y+Pgqlv8+vivAeKW3gmse+cNqBUcqlPHjNIm4+bwYSiYDF0E3BP98m78nXsHQ6l+6Xe+mZcPc1JN5yGTKte9ZKoxHssPYYqfx4HSX//oim7Qdcrif30pP21/8j4aaLj/sIeE+vhTe/Psi/v9xHQeXQtWKCAIkRfkxKCGZSQjCTE0PITAwZMprqznUyGM2s3VHI6g1HWL+n2C3xC6VcyqlTYzlzbjKnz0rARz/09TeZrXzw/WGe/XAnBZWuRVzkMonT43uYe7nQ3syChlJ6y4ZWTw5cPJPU+28gYMH0Ac+V3WLh0F+eI/fxVwdtI0gkpD10ywnzrjXWN1G5ej1Vq9c7PDjdfC+2y1V0y5XI7Vb8ersZr5wQiUJO6MpFRF2ykoD5Uyl7+3PynnrdaR3ymI8ldxBEu1RCe68VKwIiAkqbBaXdNvoyBEFAqnHch7YxKsALUim6mHB0cRGOaXQY2qhQ1MH+fZ8ApKrBKbbuPG+2XhPGukaMtY10V9XTVVBGV3EFXSVVGEorMbd0IFrHSKYEAW1kSD+J7f8kRqMK9HP5vlmzvYDfP73GaQqvVCJwy6oZ/OnKBUOWKoiiyPd7S3jq/e1syXJdogIwd2Ikt54/g2UzEsZc9nG80NXWSfH6HTRs2UfnroNYjxTAEINqJwK9EhkNag+UdqtTIqbw9WLWO08Ssmz+z3B27uNE+dU7g90uklfRxBP/3crur7azqmg/E9qdD8qYJVLWRqSwPjwZi9T5+9ZTq2R+ZjSLJ8ewaHI0saHj168T7XaMtY395NVQVo2htMpBYkurxqRsPlIIUimqID/UQX4o/X1Q+nmj9PdB1TdV+nljM5kpePZNWvYcGpdjKrz1BC6eSejKRYQsn4/KhQf6/4TP7Un8dnEsuX1BnYyX0XXUKXjpXKa9+nD/KKbV2Ev+06+T89ir2Hqcp2bKvTywdHbDT+vwjhOkaiUe8VHoE6PRxUXiEReB79Q0PFPij0s9yXjAbLHx+DtbePLdbU4jbDNTw3n5rpUkRPgBYGppI/eJf1P4/H+xuahrVgX6Ef/7i4m/4aJhI6djfSl25BZT8NzblL7+qcvonz4phsx/3EfIkrkj2vdoYTRZKK1to6iqhZKaVkQg2EdHsJ8HQT46IoK8RhwtHel1ausy8uXWfD7emMPGA2XYnfxvfwqZVEJKdAC+nmq8PdT46jX49H9XU9vSxUuf7R1S2VSlkGGyWAdwPKndTlJ7A3PripncWoNkmLSp0JULSbnvBvxmZAxa1l1Zy/aLbqd5x2ABJU1YELPef5qAOcfX2txi6Kb6s+8o++9XNHy/Y3CdrxPYAVEiQXo82iJBIGD+VKIvPYPwc5eg8NLTsGk3Oy//45ADgEJYAPKzFzDnslWo1I5ohLm1g468EjrzSqj44Gt6GwYOYAgyGTPeepyoi1YM6PB98P1hrnr0swHrRnireX9eEK2fr6d1f86YhEpkWjVStQqrsXfcbYBkWg1yLw8Unh7IPT0cKs1SCS3t7SAR8NHpsff0Yu02YjV09017RixiOBIIchlBi2YSd/35hK5cNKp68dZOI/e/8j1vfu1cbCwq2Iu/XLWAVYtShy252ZNbzdMf7OCrbflDjt9Eh3hz1fJJXL40g0Cfn89qyx3Yek207DlE45a9NG7Zh6GsGlNTK5aOUSg3H2eUJ6XQfupifKamERHoRXiAnoggL0L99b+IcqnjTW5tNjtVjR2U1LRSUtPWN/3xo+nu5qyybObUl7gcKNznH8FHMZNoUQ+8L3VqBdNTwpiTHsGiyTFkJoaM+ZpaOg20H3HYNHYcKaKrqNwRiS2vOSHlJTaZjCa5mhaVlhallnalhnalGs+IIP5y5znETIxD6e/j1gCwKIo0bNhFzqMv0bDReUbIaCDIZMh0GmRqJRKVEplahUSlRKpS0CxauGTnp0dX/XWTW0EQVomi+PG47nTg/sOACFEUdxyvY5zEyHAsuc3dfxDJtkMUvvCuS9sPuV5H5jP3EHP1ef0dq57aBrLve5aytz5zuo0uNoK0v/4fos1OW3Y+XYXlGEoqMZRWnbAaNoW3J36zMwmYN4WAuVPwzpyAVPHze50di715NVz7+BdOo3FKuZT7r5jPbRfMRC5zNIY9NQ0ceegFSv6z2mWNh0SpIPrSM0i87Qq8UhOcrjNeL8Xuihpy/vYKJa9/4jJaErJiIZlP/xF9QvSojvFzYizXqaHVwOdb8vh4Yw47DlceFwFbD40Cm02kx+R4pmR2GxPa6pncVElGc7XLmqejkCgVRJy/jOQ7r8Y7PcnpOtVffM+uq+7D3Da4hi5kxUJmvvkYShcjwWOF3WKh7rsdlP/3S6q/+MHlgNp4Qunrhe+MDDwnxFK3fhvthwoGraMO9mfWe08TuGA6ADaTmUN//gd5T73uMorsMzmFuDuu5ojKgiCRuLyfemoa2LzyBtoO5g6YL0ilzP3kOcLOPGXA/LtfWM/zqwd2fuakR/D105chl0nprqqj5N8fUbNmEx15JWNS/JWoFKgC/ZDrdfRU1WNp7xz1vn7pUAX5E3XJSmJ/d96olHS3ZVfw+6fXUFjlvKwkOsSbOy6cxaVLJg6rhlxc3cK/PtnDO+uy6Ol1/f6UyySsnJ3ENSszmT8p+hcbzXUGm8mMqbkNU1MrndV17NuwBdFkJik2HqkoYjeZsZkcllQ2kxl7rwlzexfmtg7MrR2YWtox1jcdFy/mEr0fP4QmkO0bRq9MjkQiEOLnQUSgJ+EBnoQHeg76fiJsaMbjPW612amsb/+RwNa2UlLtIK9ldW1OM4FUVgunVeWxpCrPZcp5mYcPH8ROprjPDzrQW8us9AhmpUYwKy2c9LigUZNZURTpKiqndX8O7Yf7yOzhQpcq/+MFhY8X2ohgtJEhaCJD0EaEoI0MoVvvyW3v72VLWdugdOvTZ8bz5p/Ocet+6G1soS07n44jRZia2zC3d2Lp6MJQVk1nXgnmtuPb3v6mam77fGtzgIfGk+QKghCBQ4TqKuBvoig+NF77Pomx4VhyW1hYSHx8PKLdTv0POyl8/h1qvtrodLvgpXOZ/u9H0IT9WDfUsu8wB/7wGE3b9g8+jkxG+sO3knzX7/pHquw2G8aaBrK3ZPHma+voLqvCx9SDp6kXT7MRL7MR7TAd8tFCqlbhNzODsLNOIfLC5ce9LtRdGE0W/vqfjTy/epfTfvHEuCBeumvlgPqqzsIyDv3lOSo//HrIfQedOpvE264gZOncAVHs8R7xNZRXk33/s1S8t8bpcolcTuKtl5Hyp5tQeHqMaN+iKFJU1cLBonryyhvJLW8iv6KZlo4eBBx+nIIAfp5aFk+NYeXsRGalRYzLyPp4XaeGVgNrthfw+ZY8Nh0sx2obv0iiwmYlrbWWzKZKJrbUoLYNn5LpOSGOuOsvIOrSM1zaP9hMZrL++HcK/vn2oGUSuZyMJ+8k8dYrxrUkwGLopiO3hPZDBdSu3UT9DzuPq1WWIJXiNTEJvxkT8ZuZgd+MDHSxEf11xc5qrYKXzmXm20/2tx/tRwrZceldtGfnOz1GwIJppNx7PUGnzqa3t9et+8li6GbHJXdS8+WGAfMlCjnzvniRkKXz+udZbXaW3/nOoBTWG8+exjO3DFZ/NZRXU/rW59St20JnbrEjy2Y0kErwTI4lZNk8EATaDubRmVdCT/Vvr7449IxFTLjnOvxnThrRdiazlb+/t40n393mslwhxM+D2y6Yye9WTB5WWb2108hrX+7jpc/2Ut/qvEzlKGJDfbhq+SQuOjWdEL+Rtbk/N8bS7lq6DBjrmuiprqe7vAZDaTVN+WW05pdiLq1EMobIv1UQKPYM4LBPMId9QqjRermsHQ3y0TEh2p8J0QGkRAUwOSmElOiAcR1wGM11EkWRQyUNrN9VxLrdxezLr3HbR1Zms7GgtogVlUdcqs+3KjV8Ep1By5TJzEqLYFZaBLPTI4gJGX0NsN1qpe1gLk3bDtC4dR9N2/YflzpYpa8X2ugwRxlFdBi6qFA0kaFoI0PQRgQj9xicFbH9cCWXPPAxDU5KEf5wwUwevnbxIDE5u81GV1E57dkFtGXl0ZadT3tWHsa6oS21jjd+a+S2AIjHIYZfBbwHvCuKonMn86H3pQXOxuGBuxiH6JQduEIUxffG7aRPYkxwRm6PRc3aTey59k9OHzS5pweZz95LzJXn9DdUoihS9tZn7Lv5YacpcAELpjHrnb8PIMXgqNn48IcjPPTGRsrr2n88hs2Kp7kXL1MPfuZuYiRWpM0thPZ0EGDswsNiGnOtnCCVErx0LlGXnkHYGYuQaU5crYorbMuu4Ponv6TUiWKmVCLwhwtncd/l8wb4uLUeyCH7/mepW7d1yH0rfLzwnpiIV3oiXhOT0CRGs7umFEEhH9d0pqbt+9l/66O07nfefCh8vIi95jzib7gQXXS403VEUaSwqoUtWeVsyapgW3bFsB25n8LbQ8XyWYncev4MUmMCh9/ABY5H2ldbl5Fvdhbx2ZY8vt9bQq95hPWBokhQTycT2ur7PnUo7cMLWklVSiIuOJ24687Hb+akITsanQWlbL/4TtoODP4/aqPDmPPhs/hOTR/ZeR8Dc1sHXSWVdOaV0H6kiI6cYjpyio6rzY5JKkMSE0nC/Ex8JyXjPTEJ70kTBjz7dpuNww88R86jLw/aXpBKmfi3P5B85+8QJBJEu52C598h649PYTcNHpALmD+NiY/dPoAQjeR+stts7L/lEYpeHPjqlKqULPj6VQIXzuif19Tezazr/01148CR/X//8UwuXTpxyOtiMXRT+dE3VH+5gdb9RzDWNo24pESm0xB21ilkPHYHcr2Ojtzi/pRAQ6mjrq2nup7euiaXZRUjhVStQh0S8OMn2B9VoB9KH08UPp4ovD2x9RipXL2e+u93YOk2og70QxXgqGtT+Hih8PEERDqOFNHww64hBdYA/OdOYcI91xGybN6IOur5FU383zNr2X6o0uU6fp4abjx7KuctTOkvR3EFk9nKxxtyeO7jXRwuHbquWxBgTnokqxalcNa85F+Fxd7xSrcVRRFjXSOdeaW0ZudTuT2Ltqw87OVVCKMoXWhVqDniE8IR3xByvIPplQ09OOGpVTIzNZxZ6REsmBRNZkKwSxVtd+DudersNrFhfynrdxezfk/xkCUuziCIdmbVl3Fm+SF8Tc7LHMwyOc1LTyP25suZNSVuTOnxdquV5p1Z1P+wk6Zt+2nZlY11jDoA4Ggz+olrdBi6mPAfv0eHIde7f86iKPLqF/u481/rBw1Wq5UyXr77DM5flNq/bldxBfXfbqfu2200bNx93AZtpSolutgI7GYLlo4uLJ0Gt9vc3xq5lQG3APcAfvzo+FYE7AL2AgeBRqCt76MGfABvIAGYCkzr+6j40ff2G+CPoigeGdeTPokxYThyC47O5/7b/kbZ25873UfwsnlMf/XhAYS1q7iCHZfc6bQIXuHtyfT/PEr42acOPpbFxutrDvD4O1ucjn4dhUoho9dsRRBFAoxdpLfUkNFURVxnM7Ix+IfJPLREnLuEqEvPIHDh9J+1Tren18JDb2zk+dW7ndZrxoX58Nxtp7NwcsyA+a0Hcyn459tUvLdm2A5aPyQShGBfPAP8HSqmMimCTIYgk/Z/lyoVjvqMPhVUmYf2x+86DQovPaoAX4cQgr83UoUC0W6n9K3PyL73mUG1g/0QBEJOn0/05WcSMH8a5UaRLVnlbM12kNmh7oORQBBg1cJU/nzVfOLCRm4fcLw6WTabnR/2l/LvL/ezblfRsJFcvdlIcj+ZrcfHRQfDGXwmpxB95TlEX7JyWFVtURQp+c9q9t/6qNMU4IjzlzHt1YeHjb6LokhvY4uD4JRU0VVcMWA6lPXQWGERJDSqPajX6KnRelLv6cu8c+Zx221n4+PpumNvamljxyV3Urd+26BlmvBgZn/wDP6zHG54PTUN7LrqXuq/2z5oXYlCTsbjd5J46+WD2pKR3k+i3c6e6/9CyWsDk6pkWg2LfngTv+k/EtcDBbUsuvkNTMcodyvlUjY8fxWZiSFDHmfAMUWRph0HqfhgLY2b92AorhxRnatXRhKZT91D0OKZTvdt6TRgrGvE3NaJpb0Tc4cBa6fBkZbaY6QgNxdsIkkTU1F7e/WrMDumWuR6LergAOR6nUuC2bw7m7yn/kP1p9+5VZstSKVEXXoGHglRVH/+Pa17Dw/9G9MSSP7jtURecLrbdbmiKLJmeyFPvLuV/fm1Q66bHOnPGXMTOXNuMhnxQS5/pyiK7M6t5j9fHWD1xpxhB8qkEoGFmdGsWpTKGXOT8DqOCrRjwYkWSrIae2ndd4Smrfuo27SHxq37YISDMFZBQq53EPv9w8nyDcOgGP7aenuoWNAnojQxPoiEcL8ReRkPdZ16ei18vOEIH3x/mO2HK92Ozg6AKDKpuZqzy7JdWjuJgkDEpWcy+fHbB1kTjgS9Ta3UfrOF2rWbqPt2+6hLHgSZDH1iNF5pCegnxOIRG9FPYIcSgxvRuZqt3Prs17y9LmvQsugQbz586HwSfdU0bNhF3bfbqFu/7YT4owcunknaQ7cSMGtghonNbMbSacDa2Y25o8uhXdBrwmbs7ZuasPWaKK+s5LS//fHoZr9uctu/Y0fU9Sbg90BE3+yRHOzoHWMDvgD+Lori+FVBn8S4wR1yexQ1azay57o/ux3FtVssHH7wX+T87RWntWdJt19FxuN3OFXRNRjNvPDJbp75YMeQHqYCA29Mhc1KUls9k9rrmdXbjKzZeY2TO9AnxZD0hyuJuuxMZOqf78W/N6+GG//+FTllzlX8zpqXzOM3nkpkkNeA+cb6Jopeep+il97/WeTrj6b1aKNCUYcEYCiupP67HcMS7lqNngKvQEr1flTovKnXeGIbx0EGqUTgsqUZ/OnK+QOsfobDeHeyKurbeWddFm99kzUoynYsvEw9xHU0Ed/RRGJ7A+Hd7e4fRBDwnzWJ8HOXEH7OqWgjQ93azNTazp5r/0zVp98OWiZVKcn8x33EXXfBgM6BtbuHrqIKOgvK6Cwso6uwnM4Cx/R4CsTYgTalpp/E1qv11Gsc31tUWkRBgiDAuQtSeOiaRUSHDF0T3Howl63n/J/TDkjoGYuY8cZj/enblavXsee6vzitQfZKS2DWu0/hlZbo9DijuZ/sNhu7rryH8v9+OWC+0t+HJbs+QhfzYwbEu+uzuebxLwasFxagZ8cr144pYmesb6L0jU+oeP9rOnKL3fJ0VAX5kXzXNSTedgUSN5/lsTxvot1OzZqN5D31Ok1b97m93bGQaTUk3XEVoSsWULl6PSX//tjp//kodLERpP7pRqIuPWNEJHfD/lKe+O82tmYPrYYMEBHoyco5SSzMjCI1JpCIQE+nHfS2LiPvfXuI/3x1gLyK4dMbZVIJM1PDOXVqLKdMjWViXNAvpkb351QBBgfROvzX5yl6+YNRCWPaESjwCmC/fzgH/cJpV7rnYgAQ7OdBYrgviRF+JET4kRjhS1KkPyF+HoP+786uU3F1C69+sY931mXTbnB/UMpTqyQ2zJfIQE9aO7oxbt/LKQUHie1y3Z8KXrmISX/7g0ttj6Eg2u20Hsih9uvN1K7dTMvewyOytAFHXbz3pGS80hIcn/RE9IkxSJXHT1uluLqFKx75jAMFAweoJHY754epuDFSSfvm3bTsPjQq71upWoXnhFis3UY6C8tHdf8FLppB0h1XE7xkzojcC37TasmCIEiAU4HzgYVAlBubGYE9wFrgPVEUhx6WPImfFSMhtzB8FDfk9PlMe/VhNKE/jto1btnLjsvupqdy8K3gP2cysz981uUoX0tHD0+9v51Xv9g3pHiGU4gi87Q2bvS2IG7aPmorDqW/D/E3XUzCTRejCjixhuFHYbbYeOq9bTz+363ORR0UMu64aBa3Xzh7UK2WrddE+XtfUfCPt2g/XHiiTtk15PIR2T9YBAlVOm8qj348fLCEhzEhMZTkKH8mRAUQGeSJRBCwiyIWq53dudWs2V5AVpHrmj+NSs4fLpjJHy6YhdYN5eTx6GSZLTbW7ijkza8P8N3ekkHvb0EUCenuIK6jkfjOJuI6mvDvHVnkWpBICFgwjfBzTyP87FNRBweMaPuGTbvZceldTp8XfXIMk/7+RxAEugrL+slrV2H5ca+v7JArqdJ5U6P1pkmto1Gto0mlo1WlxSpx/tJWyqVcviyDW8+fSWzo8HX1pW9/zt7r/zIodUuQyZj05F0k3uaoK7Z0Gth3yyMuRfSSbr+KiY/+wanFzVGM9n6yW61sv+h2qlavHzBfnxjNqTs+GFA3fftz63jpsz0D1puTHsHapy5DIR+7TZPdbqfyo28o+Mebjg7pMIrgEpWSyIuWM/mZe1F4DT2wNJrr09vUStk7X1D8ygcuRRFHCqW/D2kP/B+RF6+g7M3PyHt6aFun0ZBcgB2HK3ny3W2s3z3Yb9UV9FolqTEBpMUEkhITwIToAEJ8PfDz0vSrwe84UsUbaw7w5bZ8unrc07Dw99KweIrDUzQzMQS9Voleq0SrUoyK9IqiiNVmx2qz9zsCHKuRIAiCy797e4189913wM9Dbo+iI7eYA3c+Qd03W8a0n2K9H/v8I9gTEEWHcnS/JchXx5SkUKYlhzI1OZTMxBDkEjvffvstdruI3TOGN785xPf7St3aX3SIN0unx7NkeixTkkKxWG28sHoXu179lEWFB4k0DC6POgqvWZlMferuEdegmzu6qP9uO7VrN1P7zRbXmV0uoE+KwX/uFPznTCZgzmS00WEnzAbSbnekId//6vf9/VJfo4GUtjpSWuuY1NOMdISCh+pgf7wy+kpkMpLxnBBL0/YDHH7wBXrrnQ9QeaUnkvbgLTRu3kPxqx8NKbKojQol7roLiLn6XNSBQ5c6wG+c3A46oCCEArOAMMAfRzpyL9DU9zkM7BNF8ec1LjsJtzFScnsU1V9tYO/1f3EZxZ38j/uIvuLs/sbG3N7JnhsecCp6pArwZfYHzwyoG/spWjuN/GfN/mFtUFzh9Bmx3JPhj7hxG5Ufrx9VKqREqSD6sjNJuv2qUSlmjgdyyxq54e9fsTfPeVpLeKAnj994KmfPSx7U0IuiSHd5NW3ZBbRn5zuECw4VYChxXft1vCHyY5rHSCBIpeiTY/GelIxP5gS8J03AOyN5UIpsZUMH76zL4rmPd7nMAAj28+Ch3y3i4tPSh+y4jYXcFlY28+bXB3n320MDfC+1FhMxnc3EdLYQ09lMdFfLqETU1CEBBJ0yi6BTZhK8bB4qv5ELpNktFg498LzDu9bJu0Xupcdq6Bm7b+gI0KTWsTMgml2BUTRo3I+ye+lUXH/WFG48e5pb9V42s5kDtz9O0QvvDlqmCvJnzsf/6Lc3aty2j52X3e00sqsODWTmW084TcP9KcZyP9nMZjavuGFQKnTA/GksXP+f/miFxWpj2R3vDKrvvGzpRF65+4xx7QxajUaHWvprH9NbP0xHVRDwnjSBCfdcS+SqZU5Xcff62G026r/bTslrq6n5csOQmSEyDy1x111AyNK59Da20FPTgLG2EWPftHV/jsuaNF1cJBMfvY3QMxdT+f5acp/4N535rsnDaEluVlEdr685wFfbCkasL3AsFHIpvp4a/D01+Hpq0GkUtHQYqW7soKap06ntnDvQqRXotcp+xdejpNVitWHr+94/r2/qjg2aOziW+KqV8n7S7aFR4u+lIdBHR6CPjiAfHeGBnsSEeBMV7D2kf7m7MJmtlNe1kf/GZxj+/iKCEyJhlMqQ2+3I3PCXtiOQ5x3IrsBoDviFD1ujOxQEARLCffHX2Miv6aa5a+guuFwmYe7ESJZMj2fZjHjiwhw+shX17Tz77lZy3/qCU0sOuUw/BtCkxDPtqbsJXjLXrXZEFEU680qoWbuJ2q8307TtwIjeJV4Tkwg6ZRb+cybjPzvzZxMBrWrs4IYnv2TH7kIS2xv6Ca0zj+ShoAryJ/i02QQvmUPgohmog/wBx+Bl2TtfcOThF+kuc84nlX7eTHz0D8T87rz+aGxvcyuFz71DwfP/HTKNW5DJCD/7FOJuuJDAhTNc/u/+p8jtSfz2MFpyC47Uxf23/Y3yd75wujxk+QKmvfJQfxRXFEWKX/2Q/bc8MsgCSJBISH/4Vibcc92Qda5mi43VG3P450c7OVQyskisVCJw9YpM7r1oFrY9Byh84T3qvx1cU+cOQk6fT9IdVw3ZOBwv2Gx23vz6IA+8toGWTucjdfMyIrn3snnMnxQ17Pl1Njbz/RvvIja0kZKcjFwiwW61IVpt2K1WRKsN0WrF1mvGaujG0tWN1dAzcNrVjam1A1Nz26hSZ2wIiILgVqdgKOhiI/oIbwrek5LxnjQBdaAfLR09/OOjnbz46R6XGQCT4oN54qZTmZsR5XT5SMlIT6+Fzzbn8sbXB9l+qBKp3U6YoY3YzmYHoe1qIXCEL8SjkOk0BC6c7iC0p85GHRfJjsNVFFa1oFbK8NAo8dQq8dAq0WuU6HUq9BolaqVsgPibsaaBjtxi2rLzKXr5fbpLj9/7S5BJEaRSp4JLx8Ku92CnXwQbvcIo8/B1qUDqDKH+em5ZNYOrlk9y236jp7aBbatuderb6zdrEnM+/ieakEBsZjNHHnyB3MdfdVq7GXH+Mqa+9FeXitM/xVgzAcwdXXw/9+JB2RhRl6xk5jt/7/8/N7QamH3Da9Q0DezwPHTtIu66eM6IjukuGrft48Btj9G6f3iJDalKSeDiGURdeibh556GtK9MZajrY+s10VVUTuXq9ZS+8emQXsLgGHRIuu0KYq89f8ga8Z6aBg4/8Bylb3zqsj7XZ2oak568i4B5U6n5agM5f3vFqbbEUehiI0j4/SVEXrzCrYjJUdjtInvyqvliaz5fbs13Ki54EsNDECDET09ypB8pfVHuCdEBhPh54Oup6VfSt1htVDd2UtnQTmVDBxX1jmllQwdltW1UNXb0j/n5Gg1ck7+DhI7Bg/smQcKegCjUNgtprbVuCfyZJVKyfEPZFRjNEZ9gbC4yUcaK06bFcuXpmZwyNaa/faxvNbB+VxFfb8ul47P1LC3PIaDX9aCKLDyEaU/eSeT5y4bVJOltaqVhwy7qv99B/Xc7RmTPI9NqCDp1FiGnzyfk9PkDsgF/DthtNt574Qu+eXE1sfV9+i4j6K9IlAoC5k0leMkcgk+bjWdqwoC+md1mo+L9NRx+8AUMxc5LFASZjMRbLiP1zze5zHyxdBkofuVD8p95Y1jFZY/4KGKvOQ/faenoE6NRBfn3n9NJcnsSv2qMhdweRfWXP7Dn+gecpk7IvfSOKO7lZ/U/NC37DrPtvFudNnQhKxYy863Hh+0giqLI5oPl/POjnazfUzyi8gytSs5dl8zh5vNmYCmrpPD5dyh96/NR+WZ6ZySTdMdVDjERJ7XDxxNtXUYefmMzr36x1+Uo/KT4YG67cCbnzJ/g0g5ntJ3sbqOZffk17Dhcxc4jVezOrabL0IvWYsLDYsK3txu/XgN+vd0EGjuJ7WjG0zJ03Y/o40XgkrkojEbaDuaNi1edOiQA70kT8MmcgBAXzZuFHby8o8xlBuUZc5P42/WnDEpjdfc6ZRXV8ebag6xds5uA+hpiOpuJ7WwmqqsVhRsdHWeQe3rgN2sS/rMzCZg/Fb/pEzGLAj/sK+GLrfms3VFIq4uBDkQRb1MPYd3tRJi6SBR7CTV2om9uQtI7eisMpxAEtBEheCRE4ZEQhTYqlK6CMqo+/x5zs+vOuSCRYJ8xhbfxZbvMa0Q11pI+YZxLTpvIeQsn9PtAu4PGLXvZdsEfnLZd8b+/hMxn7kGqUNCRX8LOS+9yqvwt1+uY8sJfiLpkZJHQ8Uhz766q49vpqwZ1YtIeuoW0P/++/++DhXWccuubgwZ23vvrKs6enzzi47oLY30T+295lKrPv0O0uBGlEUAV6Ic2OgyFnzdNtl4EvY4wTx8sDS30VNc7lJYbWtyqyfNKTyT5zquJuOD0Efmad+QWk3XPUy6t8MAxeJvx+B14psRTt34rh//6L1p2Z7v+aVIpwcvmEXPl2YSuWDiiWkBRFDlS2siX2/LZdKCMI6WNI6qhPAnnEACdRoFCLqOtyziiCLMg2llamcdZ5dnInNyL+V6BfBCTib/JQGZTFRNbatDYhk9qNCpV7PINZ0dgDKX6kQ3uOYOPXs3lyzK4duVkYkJ9sNtFDhbV8c3OQr7ZVUxFdiHzaouZU1+Cl9n1PaWICifzr78n6uIVLvs6FkM3TVv3Uf+Dg9C6skRzBY+EKEJOn0/o8gX4z51yXOtlj4Vot2Pp6KK3uc3hKdvSjqm5DWN9Mx05RbQcLqIttxjZCMqpwPF7AuZPI+jUWQQunI7C23NQ3atot1P58ToO//X5ITNBQpYvIPPpP6JPjHG5zrGw9Zooe+cLCl98j/asPLe2kWrVaCNC0IQH0aFXcs7qfqeAk+T2JH5dGA9yC31R3FsfHSR0chQhKxYy7ZUH+2trTa3t7Lz8j9Su3TRoXV1MOHM//RfeE5PcOnZNUyerN+bw4fdHOFg09Aj+sfD2UHHpkonMTI1gUogHxi+/pfBf/x2Vkp06NJDEWy4j7trzh1WhHW8cKW3gjufXDfK2PBaRQV7cfN50rjh9Un8t1lG428mube5i55Gq/k92Ud3IUttEkQCjgcSuZhZ11RJRXe5y1ajLziTz6XsQJAJtWfm0Hsih7WAebQdz6SwoG7HYxE8h8dDRqPOkwK6kTqunTqOnTuNJk0qHXSJBJpVw2dKJ/PHSuf1CXUNdp7bWLj59/Wv2froJZUkJsR3N+JlGr/KsjQrFf3ZmfwqWZ0o8gkRCV4+J9buL+WJrPut2FWEwDoyC6sy9hHa3E9rd0Td1fHenUzUSKHy80CdG45EQhT4hCo/EaPQJUejiIpGpVZg7uij8138pePZNTC3tLvdjU6vInzCRj7RhVEtGJtqWER/EhaeksWpR6oi9O0W7nby/v0b2fc8OitBJVUqmvvIQMZef5cg2efl9DtzxhFOVYP+5U5j59hPoosJGdHwYP6Gc1oO5fD/3kkH2GHNWP0fEuUv6//5qWwEX/OXDAY+OWilj/bNXMDXZPaGx0cJutXLkkZcofP4dzK2uUx3HE4JchlSjRqZWIVUpkKpVSFVKpCqlQ+Vdr0Oud6i+O747PgpvPUpfbxQ+nhhKKsl98jWXismCREL0FWeR/tCtqEMDHST3geeHjOSCwzEg8qLlRF28Au/MlBELFoqiSHVTJ0dKGjhS1siRkkaOlDZQXNOK2TK6AbSTGB0iu1q4Jm8HIT2DU0FFmQzNFatIuOsaQvw96dl1gIoP1lL92XdOrRJ/CqOfH1v8IvnBM4wW9cjsdLRqOeEBnkQGeqJVO7J2rDY7mw+W09DSSXpLLQtqi0htrR3STlGdHEfmX39P+LlLBhAzURTpqaqjZXc2zbsP0bIri5Y9h913aMChJh+wYDqhyx3RWY+4yBH9xpHAZjbTXV5DV3ElhuIKukoqMRRX0lVcQXdZzYjOeyyQyOVI1cr+9shusWCsdS4WCiD38kATGohMp0W0Wvuz6o5+t1usiH0ZdvZj5h+d545CvDP8pqyATuJ/D+NFbo9i2CjuP+8n+rIzEQQB0W4n9/FXOfTnfw7uYKpVTH/tEaIuXjmi4+dXNPHhD0f48IcjlI0wjSvEz4NpSSHM7azF78s1WMtH/ixLNWoiVi0l9nfn4T9n8glLWRZFkc+25HHPS99R1eC68+jtoeKc+RPIiA8mLS6Q1OgAJNgGdbJtNjt5FU3sPFLVH5mtqG8f1bl5apVMTwljVloEM1PDmZwYglatoPVADrlP/Juq1eudNsAShZzgpXOJOH8ZYWcs6jdNtxi6aT9UQOuBXNoO5tJ2IJeOnOJxeTlZBQmNah2Nag+aVTraNDpSZ6ZxwSULCU+NZuOenQiCwNzUDAwH8zi0ZhuVm/aiqaoadVRWqlbhMyUVv+np+M7IwG9GxoAULFEU2Xmkipc/38uXW/MxWWyorBZCfkJgQ7vbh42MjxQ9UjnVOi8avf0xh4diCw9DDA1B5eeFh1aJh1rRN1WiVcvpbWnH/slalF9/i6THdeetQe3B96GJ7AiKGVGtWXigJxcuTuXCU9KYED0yoayjMLW2s/OKe6hdMzgqp40KZe6n/8Jn0gS6K2vZfe2fnZYuCDIZ6Q/fSvJdvxuRAuWxGE8V2JqvN7Nl5Q0DniOpWsWp297DJzOlf96zH+7gvpe/H7Ctn6eG75+7ksRh/FTHC7XfbOHwwy/QuucQ4jC2V78UCDIZiKJLxVOpSknwsnn4zZiI7/SJmFvbyX3838OSXOjTD0iKwTsjqV87wDsjCaXv0KreziCKIgajmZaOHpo7emhu7+n/3tltGlAfa7WJWG22/ppYuUyKVCpBKhGQSR0DfIIA9S0GSqpbKatvp2EMNcC/Ffjq1USHeBMT4kNMqDcxId5Eequxv/oOta9/7HQbXWwE6Y/c1p/Ka+0xUv3lBsrf/Yq6dVvdqj1ti47hG10I2z1DRl2f62XqYW5dCfPqioe1kPPITGHSX/+P0BULEQQBc3snrQdyaNl9qJ/QuhI6GgqasCBC+shs0OKZyLTuq0e7C7vFQvuhApp3ZdO8K4uW3YcwlFSOmuj9L+IkuT2JXzXGm9xCXxT3lkcof/crp8t/GsWt/2En2y+63aldTeJtVzDpybtGnPJ71PPvwx+O8MnGHJraR2b6LbHbmd5YztmVR/DtGV1dpEdCFLHXrCL68rNGVGs1FhhNFt7+xiGg5E6NliBAXKgPfho7AXoFEo0PxdVtFFW3DOuT6ApRwV7MTA3v/0yIChgk1GQ19jpSf1rbacvKI/eJ1+jMda0SKlHIUYcGovTzRunr5fj4eaPw9ULl543cS4/dasPU1IqhpNIR5c3OH1Wq+VCwKZUIGgWSttFb23gkROE3c1I/mfVKjXd6f/earXz09QE+fns9hrxSQrvbCenpIMzQPqao8FBoUWjYHhRDud6Xap0XLUqtW2lxOnMvp1XnsbimEJXN9X2T5xXIt2FJHPYNRXRjv1KJwNTkUBZNjmHxlBhmpISPyaKkZe8htq26zWm6e/CSOcx672kU3p6U/Gc1B25/DGvX4OusT4ph1rtPDSCNo8F4W5zkP/smB25/bMA8dWggS/eu7lfMFkWR3z+9hjfWDqwvDgvQs/FfVxM2AmusscJqNlPw7JuUvvEphtIq99KWfyUQpFI8U+PRRARjbumgLSsXW8/IBp5UQf54xEXgEReJR3wkuqPf4yKR60cWxRsv9JqtVNS3U1bbRmltG4VVLRRWNlNY1TKopvu3BKlEYHJiCGfPT+a8Rakun5PadVvYe8NfXZbTeKUnkv7wrYSuXNQ/8N3b3ErVx+sof/crmrYfGP5klArqomP5RurDAe8QjDLXqbsKm5XYzmaS2upJbG8kprMZ6TCunt6zMom77AykGhUdOcW0Hy6k43DhqNXwZVoNAfOnErh4JsGnzhpUazoeMNY30bT9AC27smjelU3rviMuheFOwj2cJLcn8avG8SC3R1H9xfeOKK4TiXe5XkfG43cQd/2FCBIJPTUNbD3vFlp2ZQ1aN2D+NOZ89I9R2/BYrDY27C/lg++P8PmWvBGRNqndzqz6UlZWHMZ3mJFOVxBkMkJXLCDqkpUEnTJrWAuM8YDNZufLbQU8++EOl8rK4wGpRGBifDCz0n4ks8G+Hg7P05JKDCVVdBVXYCippKeqnp6qOnqqG4b0ixwrJAo5mvBgNOFByD0dfoA2owlTSxtdJZVY2k5cJ0yq0+A/IwO/mY6P7/SJTuvJbWYzXYXldOQUU7n7MLmb9tNbWIZvdxeSEVmMD3UuWkS1ErsLz+N14cl8Gj1xRGImSquF06rzWVqVOySpzfINZU1kKmX64Qd5wgP0rJidyOIpMcydGIVe654w1FAQRZGiF9/jwO2PDRKzQxBIe/BmUu+/kZ7qenZf86dBKsRHkfB/l5LxxJ3INGO3IxlvciuKInuu/RMl/1k9YL7vtHQWb3qnP/XVYrVx9r3v88NPbEKSIv34/p9X4us5/pEUd9Cy9zAlb35K844DmJvbsXQZsHQbwWZHkEoc4jUOuVwEBETE/vS8XzoEuQyvtATsJjMdOe5b/biC0t/HCel1TE90WcxRGIxmiqpaKKxqobSmlbqWLuqau6htMVDX0kVDq2HcVJNHA0FwZCn4e2nx0Coxma10G830mCw0tHZjHUEWQWZiCOfMT+bcBROICh4YYbd293D4oRfIf/oNl5F+74xkYn53HlEXLR8QoTeUVVH+7leUvf0FXUXlw56HRZBQ4BVIuYcPVTpvqrVeeJqNJLU3kNTeQHRnC3I3RI8kCjnqsCAQRXoq60blyXoUgkyG3/R0AvvU+32npY+o3t0d2MxmmnccpG79NurWbaXNzZrS0UAEumUKuuRKlN56osP9kQk4rpHdjmizY7fasPWasBl7sfeasBod38daPnXCIZEgSARAoEU0c7Otv606SW5P4teF40luAUwtbey75REq3lvjdLnfzElMe/UhvFITsJnM7L/1EYpf+XDQepqwIOZ88jx+09LHdD7dRjNfbsvn2Q93cLjEdZ3DTyGz25hXW8zKisPoLc5HBN2xtbELAi2hYTTHJ9KVPAF7TASqPu/AoxYHx363iyImiw2T2YrJbKPXbMVksWIyW/u+9y2zOJb1mq2YLdb+7848cceCoynGMyeEMi1IS5zMhq2uge7yGgeRLXHUswyn0vdzQh0WiDo4ALmHFlG0Y+kw0FNVh6lp7GqkXb5++M3MIG3FXAJmZ6JPjh2Qtmq32TCUVNJxpIj2nCI6jhTRkVNMZ0EponV8auWkKiX6CXF4pcbjmRqPV2o8UrWKA3c8TtuB3EHrKwN88X30bqrDoimra6Oivp3y+nbK69qpbe50+n6W2u3MrSvmjPLDQ6ZC7/MLZ01kKlUeQ9s26DVKLlk6kdsvmEVYwPgO/li6DOy57i9UfLB20DJVgC+z3nuawEUzKHntYw7c8bjTaK06JIDprz1CyLL543Ze401uwdHp23jq1TRu2TtgfuRFK5j17lP9EROD0czS299mf/5A7/GpyaGsfepSt5WmjydGYgVk7zU5Ope95v5Opq1vnr3XjLWv0+lYZsJi6MHSacDSacDaN7V0GjB3GLC0dWBqacfc2nFc0hjlnh54xEdiaml36DuMcz9OFeCLPikGfXJM3zQWz6QYNOHBw6rbHk/YbHYa27tpauums8dEZ7eJDoOJzu5eOrtNdPaY6Om1YLXasdhsWKyOFOpek5ma2noEAUJDglEp5cilUuQyCTKZFIVMglwm7bco8tSq8NA61OL1WiWeOhV6rRIfDzVSV6KKJgu7jlSx8UAZGw6UDXouhkJmYgjnLpjAuQsm9OszALQdymfvDX+leedgFfajkMjlhK5cSMiKBQ7F2qQYJFIpoijSsjubsrc/p+KDr4/rYPBYIffS4zstvT8TKWDu5P4SovGEoayKunVbqVu/jfofdrpVszwaGKUySvV+FOv9KfH0p1TvS3BEIA9ft9ipxaIriKKI3Wz5sT0y9mIx9FD00vuOPu4wbYsqwBfvySn4TE5BExaERCZFkMkQZFIk/VPHPIl84HxBJutb1jdPLvtx3Z8s799eKh3w206qJZ/ErxrHm9weRdXn37P3BudRXEEmI/mu35H655uQqVWU/Odj9t704KAIi0QhZ+qLDxD7u1VjPh9RFPloQw73vPjtiLwE1VYzyytyOKU63+WIaK9EhsruXjShQ64ixyeYcg8farVe1Go86VCoxqyQ6C4kdjsqmwWlzYrKZkVls6CyWn78brPgIxOI99WQ7qdG39VJd0UNPRW1J0yA4URAkErRxUWijQhG4eWBoJDTYzBSeqQUS00DXr09gyKoPVI5ZXpfavyDCZw1ictvX0VKWgxWYy+G0ioMRyPXJZX937vLx0+4QpBK8UiIOobEJuCZGo8uNqKfUB+NWB6860mngkghp89nxhuPucyKMJmtVDU6bDEq6jto7zIibt2F9yefo2p0PjhkFwSqklPZPmEye3oEunpcW/8E+3lwx4WzuHpFJmrl+KuNt+w7zM5L73KIkP0E/nOnMPuDZxAtVkdtrYtobcyV55D57L3jnnFxPMgtONIc109bNcgjMf2R20i9/8b+v5s7ejjlljcpqBzYJs9ICeOLJy4Zl4j5WHC8ro+7EO12LJ0GTC3tmFra6a1rpDO/lI7cEjpyi+nMKx0k4jVS6GIjiLrsDFR+PrRl59N2MJf2w4XD2mWNBlKNGq/UeLwmJuGVnoh3eiJe6YknJJNoLPg57oPa5i6+3lHImh0FbDxQ5rZI1+SkEM6Z/yPRFUWR6s+/59Cf/0lHTtGw28t0God9XbA/Sl8vFL5etPTa2LtuF9LScoJ6OocUfzrekMjleE1MxHf6RAeZnT4Rj/jh7QZHA1EU6ThSSOXq9VStXk/HEGVLY0GzWkeRhx/Fnv4Ue/pTo/VEFBxX2d9Lw72Xz+N3KyajkI/Nnqm7ooYdl91N09Z9g5bJtBoCFkzDp4/M+kxORR0ScMJtJo/FSXJ7Er9qnChyC44o7oHbH6fs7c+dLtfFRjDtlYcIWjyTlr2H2HrOzU7rPOKuv4DJ//zTuMjEdxh6efjNzbz02R6nKVMyqYRZaeEE+XpQUtNKQUUzBqMZf2MXq0oOMrm5yul+rQjUaj0JMnaNWGioW6agVuNJrdaTBrUHPTIFRpkco0xBj0yOUer4bhcEZHZbn2m8DZndjtxuQ2a3obOa0Zl78eiz5dFZfvzuIK8OAjtaEaRxgyCg8PZE4eUBgoBosyHa7BhrG12mRqkC/Qhe5jCONzW3YWppx1jXRE9V/binKLYrNVRqvWhS6TDK5NgEAbsg0CuVY0fA09KLl9mIp9mIp6kXX5sJbe/4jygLwYEET57wI5FNS0CfGDPkM9BT08Cuq+9zKogkUcjJePIuEm+53O0XaOPWfRy8++9OSwccJykQuOp0dqRN4aU91bR1uY7ohvrruevi2Vxx+iRUCplbxx8J7FYrOX97mSMPv+T0nki++xrSHrqFklc+JPv+Z51GAdQhAUz79yOEnj5+0dpjcTw77e05RXw784JBUei5nzxP+Dmn9f9d2dDBopvfGFQvOSUphK/+fileupGp+I4nfm5yOxxEu52e6nrasvLIe+p1p51WdxEwbyqTn/8T3ulJ2K1WugrL6Soqp6tPzbVf1bWidtwjvZqIELwnJuIzJRXfqWn4TElD5T90psWJxM99H3T1mPh2TwlrthewbleR2xZMk5McEd1z5k8g3N+Dig/Wcviv/3LpYfpLgzYqFK+0BDxTE/BKS8ArNR6PxOhxTzE+FqIo0paVR9Xq9VSuXkdXYfm47l+Qy7DHRpOt8GS7TU2J3p8O5eD7SaOSc+uqGdx2waxxGeQr/2Ate294AEvHYK0Ov1mTmPXfv6OLDh/zccYTJ8ntbxyCIEQAtwDLgQjABBQDHwEviqI46p6sIAh64HRgMTAZiAE0QAeQA6wBXhNFsX0MP2G4czhh5PYo6n/YyZ4bHnDZyEdetIJJT92NRCZj2wW30bhpz6B1fGdkMHf1c+Nm7H2ouJ5b//E1u3KcP79Bvjoeve4ULlicSruhl6rGDqoaOqndsAvZa2+jrnK+XYtCw2HfEPx6DSS2N7pV//JbgiYsCF1sBB5xEWijQh21sGFBqEMDUAf6OWpinaTKdVfVUfzyBxS/+iEmJ/6oEqWCjCfuJPHmy/q3t9ts9DY0011RS09lHd2VjqmhvIbO/FIMJZW/+BqYVqWGGq0njXofomems+zCRaQvmoxcpx3Rfso/WMu+mx50ms6mT4ph9vvP4J3hnr+pobyaA7c/TvVn37lcRzd/Bt+nz+DNvJYhU+EjAj25+5I5XLpkIsrjQGoBOgvL2HnZ3U6VauVeema+9TjqkAD23vCAU99agJirziHzmfGP1h6L491pd6qgrFE7FJQnTeifl1/RxKm3vkVzx8BX2aT4YNY8dSk++p+HVP7cpGYkEEWRunVbyL7v2VHX/wkSCfE3XUz6Q7e4rJu1mcwYyqr6yW6/rUlRBd3lNeOWRq2NDO0ju6n4TkvHZ2raiNug8cIv6T6wWG1sySrns815fL4ljxZX3uI/QWZiCMtnxrNseiyB5aWUvfU5VZ99d1wi9COBRZDQoPGgQa2nQe1Bg8YDe3gYN9x2DuedfuLcHtqy8ih/fw1Vq9djKHUeMBgNlP4++M+ahCQ1iU29Cl7Lb6Oh23XmlFQicNXyTO67Yh7BviOzl3MGS6eBfbc8Qtlbnw1aJkgkpP7l96TcfwMS2fF5F44FJ8ntbxiCICwH3gVcKTQUAKeLoujaedn1vpcBnwHDDQs1ABeJoujaTX4M+DnILTjUcnMefYncJ15zGlmR6TSk/fVm4m+6iOz7/0HBs28OWkcV6Mecj/9JwNwp43JOdrvIO+uy+NOrPwzq6B3FtAmhPH3zUqYk/egLabfZKHvrM7LvfYbexhan2wmTJ2K54kLMDS2Iew+iyDqM3EVa568JZokUu78fwSkx+CZE4hEfhUdsOLq4SHQx4SP2b/wpbL0mil5+n6x7nnbaEfCfM5np/3kUfUL0sPuyGnsdaYU5RbQeKqR812E684pRNjv/nx1PdMhV1Go9qdF69X08Mfj7M3VKAqdMjeXCU9LwHEXUzNTazr7fP+S0vhRGJohkNfaS9/fXyH3sVZfKk9LkeL5Jmc6HzUO/izLig7hl1UzOWzgBuWxs6V2uMFwKts+UVKa/9iglr31M4QvvOh3oUIcGMv3fD49rba0rnIhOe94zb3DwjscHzFOHBrJk98cDBgZzyxo5/Y53aGgbGOlNjQng08cuIjzgxIsU/ZJIjbsQ7XYqP17HoT//c0hBIKlaic3o/JlS+nkz8W+3E3P1uSOymbKZzXSXVTvauLxSOvNL6cwroTO/FEvn2Cx8BIkEr/RE/GZNwm9mBv6zMtFGh50Q8vNLvQ8cnrFlfLopjy+2uk90Q/31nDo1lrlxfsSXFtC78wCNu7Ix1YxOjXg4KP280UaGoI0KQxsZgi4mnFKUvLS3mu/KO1yq1s9ICePJ3y85bh7YxoZmKt5bQ+mbn9J+qGBc9umZEo//7Ex8Z2bQERHJt9UGvtpRxIGCoWuo5TIJZ8+bwH1XzBs3S7SGTbvZdeW9TpWztVGhzHr3KfxnZY7LsY4HTpLb3ygEQZgI7MARSTUAjwEbATVwIXBt36r5wFRRFEf09hAE4VLgHcAOfAesA7KBdiAMuAS4oG/1HmC2KIpZo/5Brs/jZyG3R9GeU8Se6/5M8w7nogv65Fim/OvP9NY3s/uaPw3qtAoyGZlP/5GEmy8btxdtu6GXR9/azMuf7XWpoHjB4lQeuHoh0SE/Kh2a2zs5/NfnKfzXu05TagWZjKTbLif1z79HrtfRVVxB7bqttO49TEdOER15peNuXTNSSNUq5B5aZH2fbiTUGW1UdproREqzSkeLSkuzSkezSktnX32wTCrholPTuPuSOcSFjU7Veii05xSx4+I7nL4EpSolaQ/dQtIfrnQ5AiqKIvkVzWzJKneIhuwv7a8FVVothHW3E25o6/+EdbejHGPKdrtCRZPKg0a1jia1B00qHU1qHQ1qDwwKh8jJnPQI5mZEMT8jivTYQJeCJ+6g7ttt7LrqXqeG8OrQQGa88RjBp84edj+iKFLz1Qb23/a3QXWbR2EPDmRNQiZf4D1kffjyWQncsmoGcydGHteO8FAp2IJUSsp91+ORFEPWnU+4FDuLufpcMp++54TVIJ6ITrsoiuy+5n5KX/9kwHyviUmcuvXdAcIvhZXNLL3jHeqaB6bOBfnqWP3ohUxODBn38xsKv1RS4w7sFgulb33OkQf/NaSFikSpcBm985mcwtSXH8R3StqYzkUURYx1jQ5bl+x82g4V0H6ogM7ckjHV/6sCfB0q8LMm4TdzEj5TUsc8mOkMv4b74GhE95NNuXy5Nd9togsO7/m2rl70JiPRXS0EGrvQWUxoLSZ0VjNKmwVBJiM61IfYCH+UGhUyncbxntZpHKUpgoDFaqWouAhBrWLy0sX4JESjjQxx6SMriiKbDpTxyFub2XHYdbT0gsWpPHTtYiICxz7AZTOZqVmzkdI3P6Pumy1jU2WWSvGZkkrAvCn4z52Cz4wMDtR18dW2Ar7aXkCZG1aIof56rj1jMlecPokgn/ERwbIae8m+7xkK/vGW0+VRl6xkygsPoPAce2T4eOJ/htwKghCFI3U2DggGFDhIVyWwH9griuLPm2MxjhAEYSOwALAC80RR3PmT5XcBT/b9+YAoig+NcP8XAAuBv4miWOlinZuB5/r+3CCK4uKRHMPN8/hZyS04RruLX/2QrHufwdLu3KYl4vxlxP7uPPbc8IDTDnfUZWcy7eUHx8Wi4yjyK5q4+4Vv+W5vidPlcpmEa8+Ywj2XzcXf68eUrfYjhey7+WGn6dTg8C+c9Pe7iLrkjAEdftFup7uylo6cYjpyi+nIKcZY24ilowtLR5dDybOjy2lUChx1lBKlAqlSgdxLj9LPG5W/N0p/n77vjqnc06OfwMo9tFjlUrbu2Q1qBUuWLXPaeeg2mvlowxFe/WIfWUWuO2tSicBlSzO457K5A5QjxwO2XhNZ9z3jNIoPoE+MZsJ9NxB18QoEqZSCyma2ZFWwJaucrdkVNLYN7w2rtFqI6WohqbOJGaZWfJvqEYbx35Qo5OgSohAT46kKi6BW44XFzxdUKofyNQ4FbIngUMH29dQwOz2CjLigMZHZozC3d3Lwricpee1jp8sjL1rB1Bf+4pZFSGdROftvfZS6b7Y4XW7z0LEmOp21XhEuLYNUChmXLpnIzedNJ2GcRsFdQRRFyt/7iv03P+I0BdsjIYqMx++k+NUPqVu31ek+9MmxTH3prwTOn3Zcz/WnOFGddpvZzIZTrhpUExq8dC7zv3p5wIBQSU0rS29/m+rGge2wWinj9fvO5qx57qWyjwd+DaRmONhMZkrf+IScv71CT1XdiLcXJBISbr2c9IduGfe0YJvZTFdBGW3Z+bTuz6F172FaD+S6fL8Me64yGd6Tkvsju34zMxwKzWMc1Pq13QcWq43NB8v5dHMuX2zNp3UERPenUMikrJyTwHVnTiUhwg9/T41rxedRXqejJPehNza5LMtSKWTcev4M7rho9qiU1Nuy8ih+7WMq3vsK8yit+CQKOX4zJxEwbwoB86biNTWNouYeduVUsfNIFd/tKXGZcfdTLJ4Sw/VnTmXZzHhk4/AOPoqWvYfYefkf6cwfnMwp1+uY8uIDRF9yxrgd73jif4LcCoJQBQw3bNsLfAO8Lori18f/rI4fBEGYChxlJq+IoniDk3UkwBEgGWgDAkVRHHf5WEEQ9gJTcER4A0RRHNccyl8CuT2K3sYWsu59elCU4ShkWg0Jt15O697DTpVNvdITmbP6OfTxUeN2TqIo8s2uIu5+4VtKapz7g3poFPzhglncvGoGOrWif7vKj77h4J1PuBy595+dyZR//cXt2sejsJnNWDoMiHY7UpUSqVKBRCEftc3DSF6KoiiyN6+GFz/dw+qNOdhc+BbKZRKuXjGZey+bS+A4jYgeRcPGXey+5k8ua3O6vX34LnIC21R+tP0/e+cd30Z9/vH3aW9Ltrxn4hE7e5NNSELYo2WvMgoUWgpt6aAT2lLaXxfQQWmBQktb9g4BAtl7L9vxjPeWLVvWXvf7Q7ZJiGzL2wG/X9HrNO6k80W6+36+z/N8HqWm18iiIIqY3XbS7FayOlqYam8l2daKMJS6NUEgZuFMki45l+RLVmKaM3VEI5Y1b3/Cga8/EjYaKTcaWPC3R8i4/pJ+38fvcFLw2N858fvnzuwDC4iCwJaUKbyZNh2nPPzgJs6k5Z4rF3DXFfMxj0KvVOuxIg5+89Ez2t50k3n3tSii9BT/6cWw0TGpSsn0n32D3AdvH1GTlN4YzUG7p9XKhsXXn5Eqm3XP9Sx46pHTvqOVDVYu/8H/KK0581Lzk9vO5aGblw/LpEx/nG2ipi8CHi8nX3gzJHKrI28z040mLYkFf3tkxMzNugn6/dhOlNN6IJ+2/cdp3XcM69HiQRv1qZPju3p8zyF2yRxMc6YO2AjybP4e+PwBdhytYv2eUtbvKuFkBNHEvhAEMOnVqJVyNCo5GqUcmUzS1YJQpKOjA5lEIDkxDp1GhaZrPbVS1rO+2aglOVZPcqyB5FgDRp0KQRAQRZG3txXx43980mvUM96k5d4vL+TKFXn9pu/6HU6qXllP8ZP/HnTasXFGDglrl5Fw/hLUc2dwqKqVPQW17MmvYd+JOmyO8Kn94TDpVdx8wSzuunw+2anDm10W9PnI/+VTFDz297DR6LhzF7LohV+jy0gZ1s8dSb4o4jbS0V73Dh0CbhdFMX+EdmlEEQThV8CPuh4uEkVxby/rPUQoXRlgrSiKvTuuDH5ffgd8t+vhAlEUB2/JGP79x4247cay5wj7v/ELrIfCm72oUxOJmT89rMGNTK9l8Qu/Oc0RdDjweP385Y29/Pa/O3o9ocabtDx0ywpuu+RTB1if3UHBY3+n6A//DCsaBImErK9dx8xHv4Uy2jis+xwpgx08VDZYeeLVPfxr/WHc3vCDH51awfduXMo3r1k0rK1eGuss7Pj2b/C8vg6hj/Ngu0JNucFMq0qLLBhylFYE/cS7OklydAw59bg/1ImxJF18LkmXrCRhzeJh6//narJw8Ju/pPq1D8O+nrB2GYv++Vi/hmuiKFLz+occ+s5vep2EKYmK5b/ZC6jVmcK+PjUjlvuvWcR1a2aMiPPxZ/FaOzj2sz9R+tT/whroqJPiSL/hEir/uw53Y/gU5MQLl7Pgrw+jmzx2DpWjPWjvLKtiw+LrzjBom/WrbzPtR6fP37bZXNz4yGtsPVx5xvssmZHKP3/0pWHPzPgsZ7Oo6Y2A10vFC29R8Njfw9bi9UfadRcz74kfoU6IHYG9C4/f6aLtQD6W3Ydp2XUYy+4jeFrCT/T2h0SpIHruNKKmZxOVl9nTi1ebltTr5Ozn4Xtgc3j49weH+csbe6lqHF89azUqOUnmLrFrNhAfreVkvZWP95fjdPcer8lNN3PlijyuXJHHzMz4ngky6/FiCh/7+6AMs1TxZgwrFuCZPo361AyKHUHKalsprWmlosE6YD/I1PgoLl0yhcuXTWHpzLQR8XtoLyhl91d+EHa8KlUpmfXr74S6Eoxhj+nB8EURt4eAA4QcfGsBC6FIohZIBeYA5xKKYnbjBq4YCcE30giCsA1YDjgAoyiKYUfugiAsJlSXC/ALURQfHoF9+RPwza6H80RRPDTM7z/uxC2ETJrK//EKR3/8RK8NzA25k3HUNBBwnJn2k/ud25n9mweRyIe3d2Zrh5Pf/ncHT7+9v9fedwkxOh64djF3XjavJ5LbX7qnMsbIzF99m8w7rxmQichwMNTBQ7PVwZOv7uZvb+3D5QkvclPiDPziztVct3o6EsnAIpmBQJCiagt78mtCs7YFNZTVhgZXWR3N3FR6gDT70GbE+0Ofk0H04jk0GORI4kykO0SaN+zsdQImHBKFnLgVC0i65FwSL1yOYcrkAUd1RVGk4t9vc+jbvw77u5DpNMz+v++Sfe+N/b53R2EZB+5/lKaNu8O+3q5Q8WrmXPbGZYSNfq+eP5kHrlnEmgWZo2IsIwaDlP/zDY7+8A9hHbQB4lcvxmNpo/1o+EiBOjGWeU/+mNSrLxzTHoIwNoP2lt2H2XjeV84YdM7/68/I+fpNpz3n9QV44In1vLD+TD8Eg1bJEw9czA3nD60etC8+D6KmNwJeLzVvbODkC2+FspAGMJaTqBRMuvkK4lYuRJ+Zhi4zDaXZNGrfZ1EUsZ+swbLrEJbdR2jZdZiO4yVDcmqWatQYpkxCl5mKwmhAYdSHymei9KBWkl9RhqBUsGDxItR6HRKFHLlB11NmM9a/5d4oqGjmmXcO8N8Nx7C7RrZqTxoMEOuy45bJaVeOfObMqUwzKbnJXUfi/v0ELQOb+GhPSqYqPZP82BT2eOQ4exlDRMqMyfFctmwKly2bwqyshBH7bgS8Xk789lnyf/lU2MBF9PzpLP73b4nKyxyRzx9pvhDiNlIEQcgFHgC+CsiATiBPFMWB5+GMIYIgtABm4KgoirP7WM8EdP+SXxNF8doR2JejwExCtb8xoigOrmCh9/cfl+K2G7eljaM//CPlz73e6wBAbtTjaz+zf1js0rksfeWJYWsXdCpVje388vkt/O/jY72OS6INar7+5YXc+6WFRBvUIaOedZs59K3Hek2pNc2dxvy//JTYxXOGfZ97Y7gGkY1tdn7/v5088+6BXoX/vNwkfnPv+SybmR72dZ8/wInKFo6UNnK4tIGjpY0cK2vE0ccMMqLIzNY6LqvKZ3Ln0LP2BZmM6LlTiV02L3RbOhdVXEzY4+Ssb6J+/Tbq399C48e78Dsi7wymSUsi6cLlJF6wjPjVi3s1mBCDQZx1TdjLqij4zTNhTZMAEi9awcKnf442re8KEp/NzvFf/JXiJ/8dNt3QLwhsTM7l3YwZuGWnTw7JZRKuXzODb169iBmZw/+76g3L3qMcuO8XtB0InwykSUlAk56EZWf4uT9BKiX7Gzcy8xcPjBsjj7ESb9Wvf8iOax444/nFL/6WSTdfcdpzoijyxKu7+ck/NobtA37+gkx+c+/5TJ0UN+z7+XkWt6firG2k4sV3OPn8m306LPeFTK8NCd3JqSiio5AbdMijdF1LPYooPTKdBkEmRSKTIcikCDIZEpn0tOc+fa2P58JEoHyddlr3H8fSFdm17D7S66T0cCNIpShjjChijCjNptAtxogqLgZVfAzKuBjU8TGo4s0o46JRRhtHNIrWZnPx6sZ8XvzwCIdK+q6zjtIqufnC2czKikchl6GUS/H4Apysa6O0tpWSmlZqmzpo6XCe/vsTRRKdNvKsjaTb20izW0lydCDrajVYrTVxIC6NA7FpNGmG3yBPGgySaWthems9C1qqiXXbiVRCegQp+TFJHItJ5lh0ErYwfWYHQkaikUXTUlk0LYULzskiIzF8htFwYtl7lL13/oSO/JIzXhNkMqb/9F6m/fBrwx5cGU0mxG0YBEFYQqj+Vgf8SRTFb4/xLkWMIAgqoDsU+L4oipf2s76dUAR7jyiKi4d5Xy4h1Os2on3p5T36S/JPAPYDHD9+nMzM8TnL1H6kiOM/+B2W7QfDvi5IJYhhnI2VcdEseOE3xK4cGbOYgopmfvHCdj7e33s3KJ1azu0Xz+aeK+eTGKMLtbd54t+U/O65Xs070m6+jGm/eABVwsga8gC43W62bQtFlFesWIFKNTTHy9oWG79+cScvb8zvVfhfuiSby5fmYLW7ae1wUW/pJP9kM4WVFrz+QaYKiyJrZU5W1RdjrqlGsPdvIAWgiDFinJ1LzJK5xCyZg2n+dGTaMy+4/R2ngMdL646DNH64ncYPt+Moj7xfnyCVEn3OTOLWLEGmU+M4WYvjZA2OyjqclXVhZ4ZP3f8Zv/0eqddf3OcstSiK1L6ynvwfPdFrum6hMYH/Zc+nQXu6+ZRJr+KOi2fz1cuGz1UyEqwHCyj54/PUv/VJ2NclKgWmudNoO1iA2EsKXPz5S5n+fw9iyJ08krs6YIb7dzcQyv/2Esce/L/TnhOkUhb+7/ckXXbeGevvLazjnt+/HzalUiIRuPXCmfzwlmXDWms9lsdnLBBFkba9R6l+8V3q3v4E3yCNd0YcQegRulKdGrk+JKJlPWJah0yvBUGCr6MTd0MLjpM1OKvqx0WfcUEmQxFjRKZTI9WokWlUSLVqpGo1Mq0KqUZ9Rl3waWNtUUQMioj+AGLAj+gP4PP4aGzpoL65g9Y2OwERRAQCgkBQkOCUybHLlXQqVNjkKlSZaVxx4yquuWBWT3ZXXwQCQZqqm6hct5WObfvw7DuCGGFquCMpicap06mekkezxkCT1UG9pZOW9sgnYgUxSIKzkyntTUxvayC3vRF1IPIIq0Mq50BsGodi0ygyxePvxYywP+QyCbOy4lmYl8w5U5NZkJc0qtcjv91J4c//QvlTL4X9LuvzJjPvmUcxzZ0aZuuzi/LycmbM6MnMmRC33QiC8ADwOFAmimJOf+uPFwRBiAW6e2m8Iori9f2s3wTEAfmiKA5bjpYgCNGEapfTgQChetvw/XL6fp+IvyTPPvssZvPIi6nBIooigT35eF94H7FpAKkvgoD86vOQX3c+wgj12CystfPG3iYKanrvCCURYO4kA+dNj2F2hh6htR3v8+sI7DoefgONCsX1a5BdvHTE9nu4CAZFvP4gHn8Qrz90v7TByfuHWqhpHZz7Zn8oZRKyEjTkJGnISdSSnahBpwrVfIrBIGKDhUBxNcGyWnB5QCkHuQxBLkMwGZCkxSNJT4Ao3YikLgXrWggcPIH/QBHBwgoYrGjvA+nyWSi/egWCsfcLvGh34d9XgH/DXoJFVWHXaVVqeCVzHgdjU09LQU4wKrh4TiwrpppQyUfnOyiKIsFjZXjf2EzwWFmv6wlp8YitHeAI//0SUuJQ3H4psnm5I7WrZzXeVz7B99KG05+USVE+9BVk8880uXN6ArywpY5tJ8KnhCvlEs6dauKCWWaSoz/fQnSkEQNBghX1BI6VEjhaRrDg5IicP8YEmTR0A/D5oZd2e597ZFIkqfFIJicjnZWFdH4egubT340oiohNbQQOFOHfVxD6DgzxWEkyEpFMz0RijiJgMmDX6LAq1VikKizuIG2dPtrbXcjqm9E2NGNubSHNbiXFbh2wP0VI0KayKzGTcoMZUYg8Wq6SS0g0KUk0KkPLrvupZhUK2djUrvoPFuF9+k3ElvYzX5QIyC9fgfzGtQiKszdaeyoWi4U777yz++GEuO1GEIT5hByH3aIojm4BwBAQBCGVUHsjgBdFUfxKP+tXE6o7LhdFMWuY9kFKKGJ7YddTPxdF8ZFBvtfnRtx2I/r8+N7bge+1jSHREiGSnDSU37kBScLw92HtprTBwdv7mzl4su9Zd5NWxrlTo1k5LZrYqmo8z7yDWHtmf1LoGqTfdgnSeblDb6vgDWDp9GGxeWm1+2jt9PY8trn8iGLIFa773NL9mM8+DwQC3YJW7NU1eTiJNSjISdSQk6QlJ1FDmlmNdID1u2OF6HQTOFpK4EARgSMlIVE2FIx6FPd+Cfk508N/nt2Ff38hgZ1HCRwp7XVg7BMkfJSax/vp0/FKPzWDyk3WcuncWOZOMgy4RnqwiIEggb35+N7YTLC8D7Mdox4CAejsJfKgU6O4/nxkFy4e95NCY4koinifX4f/3c+0SJJJUX77BmRLZ4bdbk9pO//aUofV0XvkZla6nvOmRzMrXY9aMfF/MFREj49gUSW+j/cR2H38iysIP8/IZUjn5CDJyyB4sp5gYcXQrxORIgihCVKNCrGxddDfL49EyrHoJD5Mm0pjdOwpTs6hMYNSLkGnlKJTy9CrpOhUMnQqKXp1aGnWK0g0KTFpZeOmjlrssOP553sEtoaPLUkmJaH4xtVIs84eJ+RImBC3vSAIwiPAzwCrKIojpyaGmfEQuRUE4e/A3V0P3ydkzDWoadvPS1pyONxNrZz4xV+p/NfbEKGZhUyvZdYTPyLthv7bowyFgopmnnh1H29tLwpbq3Yqy2emccnCSUw9fgjrUy/i7wyfThu3ehHTf/0gUdMjq4sOBkWKa1rZW1jH/hN17Cusp3yIrQhGi/SEKGZmxjMrK54Zk+OYmRk37C2FBspwpUmKokhnYTlNn+yi+ZNdWHYcGrCrJIBUo0KXmYYuOx1ddga67HTEQID6tzfS9MkuxH768x6LTuKlrHk0d9VkCQJcsWwK9121gLk5iYP62waDt91G3RsbKH3y3zjKwrb8BkCqDqUPensxkxKkUibddQ25P74HZYxxhPZ2+BgPabeiKHL467+g6l9vnf6CRMLcvz1M+i1XhN3O4fbyp9f38Zc39vdqIgehPp3LZ6Vx0aJMFk1LISc1JuK+kuPh+IxHnNX1HP32b2jsxZxQER1F1Ow8ZFo1Ppsdv82Bz9ZJwOFGDAYI+gOhlFp/KKU26A9EfP2cYHyhSoojduVCjHPyUOdOIt/aRLCqkbhKC03vbcHTPKydI3ulXm3gvYzp7I9LPy1Cu2b+JP7v3tVMGoU62OEm6PdT+ezrFP7yqbAlAhKVkrwf30PW/Tef1bW1vfGFTksWBOE/wEKghJCLsoNQne0CYFbXai+Jonjz2OzhwBnrmltBEH4NPNT1cAehFkOD7wLe/+eNa0OpSOgoLOPID/9A3bubIt4m46bLWPDUI8gNIyuYyuva+ONLu3h54/E+bfW7maSC2xoKSTkafpZQkEjIvPMaZv7yAVRxn84ZdTo9lNe1UVbbRnG1hX2FtewtqKVjAH3gxgMZCUae+u6lnDdvfNVHwsgZ3PidLpq27KP0r/+lZech/HZn2F55w0WLSsdLWfM4GpMcStmXSbj5gll85/olZKWMzjykt91G7TsbqX7tQxo37CTo66Om2GRAqlHjqmvqdZ3Uqy9g5i8fICr37JmcGy+GScFAgL13/IiKf799xmvz/vxTptzX++W7tsXGI89u4uVPjkeUvaFRyZmVlcDMrAQyEo2kxxtJT4giIUaPUadCrfw0YjNejs94RBRFat74iIP3Pxq2xzWEDObm/O77GKf1f00Xg0HEQLfw/VT0in5/KEW65zl/lzAOEPD68Hc68HV04rPZ8XZ0hu532PFaO3A3t+FubsXd1Iq7yTKoCbzRQJ2SgC4jGU16Mi6tlqamdpqa2mlss2O1hy95CAoCAUHStQzV1YoSCenJ0UzPTCRvUiwqqRA6dl5f6Hi0tOFpseKsaejVULI/JEoFCWuWkHjhchLWLD7Ncf+zvxelQkHLjoNUv/oBNW9swN1kGdwB6oP4i1ZgOf98XrcE+WhfGT7/mZMkKoWM79+0jO9cvwTlKLSKGw6atuzl4P2P0n78TMMogLiVC1n4j19iyM4Y3R0bRb7QhlKCILwEXMen/W17Xup67iPgZlEUB9cUbYwYK7dkQRB+APym6+EhYJUoiiOal/J5ELfdNG8/wOHv/47WPUciWl87KYUl//39qDgT2xweXtuUzwvrD3OgqH/z8MyOFm4sPUCGPfxPJ6BSUrlyFdsnTaWksZMma2TmSaOJRiUn1qgl1qjpWmoxGzXEmrTUtdh45p0DeMK4KkskAt+8+hx+dvt5aFSnz4iKwSDO2kY6SyrpLK3EVlJJZ2kV3rYOBImAIJUiSCUooo1Ez5+OedEsoudPR67TDvnvGanBduPG3Rx56Pe9OgEPBz5BQn50Evvj0jhoTsMvlaJVyfnqZfO4/5pFJMcOv6PmZxmIoAVQJcQiUcpDRjS9kLBmCbMe+zYxC8Kn0I5nxpN4E4NBDtz3C0r/9tIZr2V/4ybmPf7DPqMT1U0dPPPuAf657hBttsHPxSrkUow6FUqFDJlEwON2IZMKGKMMKOQy5DIpcpkktJRKUCpkGLRKonQqorRKDFoVRp0Kg1ZJjEFNcqyBpFjDqPRfHgu8HZ0c/dEfQ/9vYcaDgkRC5t3XMvPn9582GTraiKKIv9PRJXYtIeHbZAkJ31MEsM9mJ+jxEvB4u5Y+Ah4PAZdnVKLLHomUQlMiR2OSORqT3K+Tr1wm4dzZGVy2LJcrV+QRZ+r7OiMGgzRv20/5P9+g5s0NYdsY9oYhdxIzH/02qV9eGzZlt6/zSTAQoGXHQRo/3omjugFXbSPO2iactY29mlr2hkQuJ+Pmy8h98I7TJk5Ka1r51pPr2XSwIux2WSnRPPHARayeP34nIB1VdRz+3m977R8vNxqY+/vvM/mOq8dN2nRfdNjd1Fs6sXa6aLe7ae9099y3drpp73ThcPvw+wP4AkF8/gA+f2jZaW3h4P+642xfPHE7n1Bd6BJgBaAhJGq3Ad8TRfHAGO7eoBmLPreCIHwd+GvXwxPAClEUh3+q7czP/dyIW+hyhH3rY4788A90llT2v4EgMOWBrzDr0W8h045OaXj+ySZeWH+Elz4+1udAUBBFFjVVcNXJI5i84ddrU6hZlz6dHYmZBAbgQBhn0pISayAlPorEaC1OawMmrYy5c2ajVCoRBAFBAIGupUDoOeh5TSaVoFbKu26yM+73l35Y1djOL/65hZc++Uw7JVHE4HMzWwMPLEknyWOns7QKW0kl9rIqAu6BRaMFiQTTnDwybrmCSbdcgTLaOKDtuxluMdJ2qIAjD/0h1OcyQjRpSXjb2vHb+3e6PFXQHo1J6WnrY9KrelpUxQyju+2piMEgnaWVtB0soO1QIW0H87HsPNyvoAXQTU5FFEUcFb1fS6PnT2f2rx8kYc2S4dztUWU8iVsInTuPPPR7Tvz22TNei1u5kGWvPYnKHN3ne7g8Pl75JJ/XtxSw9XAl/nFSG2qO0pAcayA5Vk9yrIH0BCN5GbHkpceSFh+FNMJU6fFKy+7D7L/3EdqPFoV9XabXMu1H9zDlga8gU59d6d3dvxMxEGT1ueeilEgJuD2hm8tDwOXG73TjbbfhtdrwtrXjam6jtbwWW0Ut7rpGxCYLwiCyYU7qY3qEbo3OBIJArFHDqnmTuWTJFNYuzCRK1/fxFEWR9mPFVP73Xapeeh9nbeNgDwUAxlm5TH3obtKuuRCJ9NNr/mDOJ53l1dS8sYG697fQuvdon9F1uUFH9r03kHP/LWiSwreBE0WR1zcX8v2nPqKxNby55hXLc/nNveePSsueSPG73Jz47bMU/uYfvY4v0q67mHmP/xB14vC3PRssPn+A8ro2KuqtVDV2UNlopbKhnequ+9bOwZt5iu4OPHv+2P3wiyVuT0UQBCVwCXAfsBJwA/eJovjPsdyvwSAIwmPAD7seLhJFcW8v6z0E/Lrr4QWiKG4It14En3cL8C9CEe+TwPLR6g38eRO33QR9Psqfe53jj/wlonQcbUYyC//+CxLXLhuFvQvh9vpZt7OYDfvK2HK4kpqm8EF6RcDPhdWFXFhT2KtjYYtKxzsZM9gTn3GGK2FafFSoD9z0FBZNSyU33Yxa+WkUZiwG2X6nC2dNA86aRgr3FfLO69sR6xqId3US7+xEE+hfBA0GiVJB6pfXknXXNcStPGdAs6/DdZw6y6o4+pMnqH5lfZ/rqRJiiVk4g5iFM4lZMIPo+dNRRhsRRRFXQzOdxRWhyHVJJc3HS6k9dIKAzY5FpaVWE4VNoUYT8GHwujF4XZj8XoxqGeZJyehS4lEnxqJOigvdEmNRJ8WjjDEi04ZaZEgU8l6PTzAQwNc9mLR24LXacNU303a4EOuhQqxHTkQkwLuRKOQYZ+XiaW3H0UfKnmHKJGb+qvfoxdnEeBO3EBqcFvzqbxz76ZNnvKbNSGb5m38hek5kbS467G427Cvn/V3F7M6vobqX89tYo1LImJJmJjfdTF5GLNMnxzEvN3lUW4wMB8FAgIoX3uToT57stdWXKi6GnPtvIfveGwY9yTfSiKJIh8NDc5udZquD2mYr23cfxOMPkpmZDYIEfyCI0+PD4fJid3npdHqxdrpo7XBiaXfS1uk6zetCGgyQ6LSRYm8n1WElw9ZKps2CXIx88sUfayb+8tXMue0KYpfM6bdXrr2ylqr/raPyv+/RUdi763s3EqWClMtXEbNwJvXrt9K0ZV+frZN0WelM/cFdTLrlCqRKRUTnE7/TRfPWfdR/sJ2GD7dH1FdZk5LAlG/dStZd10ZcxmVzePjF81v421v7wnqOKOVSHrh2Md+7aVlErZBGimAgQPUr6zn6o8dxVIU3MTTOnMK8P/2E+HNHpp1kpHi8fgoqmjlS2sjhkgYOlzaQX94UNvttOPhCiFtBECSiGPlZQBCEqwmJNRVwviiKkRdDjgMEQVgIdAvav4uieE+YdSRAPpAHtANxoigOeEQuCMKXgVcBKaG65eWiKFYObs8HzudV3Hbjszso+uPznPjdcxENtid95Urm/vEhlDGjO6soiiKVDe1sPVzJ1iOhW4Ol87R1TG4nX6o4wtKm8Gk/AC16I0XnrkK3dgWLZ6ZzztSUflNOBzvIFoPBUPpY1yy6r9OBt70zJHrabfjaO0Oz6e2deK0duOqacNY04qhuwNvWHtFnjCTGGTlM+datZNx4GVKVst/1hypGHNX1FP7mH5Q98xqiP7wJjz4ng2k/vpeEVYtQJ8f3K+AcLi9//uu7lP/5PyyuK0U1gN6D/SFIJEg1KmRaTWipVuF3uvBabfg6Ovt/g36QKOQkXrAMTUoCzdv201HQ+wBQl5nG9J/cS8bNlyORfT5STMejuO2m4j/vsPfOn5wRyZHI5Uz76b1Me+juAZuoNFsdHC6p51BxA+V1bVQ1tlPV1EFdi61f072xIDnWwNwpicyfksS83CTm5CQRbRg//0e94bM7OPHbZznx+3/2mnIq02rIvPNqcr99G9r05FHew0/pdHrYk1/DjmPV7M6voaLBSrPVgXeEBuynIgsGyLC1ktPRzIy2erI6LEjOqLALjyreTOIFy0hYu5TE85eiiI7CVd+Mo7IO67Fiql5ah2VXBJ0bBYH4lQvJuPlyUq+6AEWUvuclV2MLVS+/T9EfX8BZ09DrW6iT4ki//hLiLlnBgY4mBImE89esIdjURntBKR0FZXR0LwvLIq59Ns7IIe97XyX9+ksGbZh0tKyR+x9/n32F4YVjQoyOR+9azQ3nzxw1V34IjV2qX/+Q44/8BduJ8rDrKKKNzHr0ATLvunZMrjl1LTa2Hq5k+9EqDpc0UFDRPKqZMF8UcXsMuF8UxS0D2OabwJPAJlEU14zUvo0Up6Qm+wmlCO/+zOvfA37b9fCMVj2CINwGPN/b613rrAXeAxSEHJpXiKJYPHx/Rf983sVtN64mC/m/fIqyv7/Sq7DoRhkXzfw//ZS0ay8as+iQKIqU17VR2dBOh8ODzeEOLe1ufCdKiX/rHaLLexcDmrQkDFMmoU1PQpuR3LPUJMfjszlwNTTjamjBVd+MvaaBqqMFiJ0OjHoDQlD81FwkEPzUVMTr+zQdzO0ZU4MQmU6DPmcS+ux0DDkZqJNCqULd5iedJZW07j2K9Whx///fsdFk33sD2ffegDohttf1BitGrMeKOPG756h6eX2v+6JOimPGI99k8u1fjuhCGgyKvPTXt8j/7bNMqz0Z8aBsrJEo5CReuJyUy1fjaWun9Kn/4ajsve2PPieD6T+5l/QbLv3ciNpuxrO4BWjdf4xtX7ovrJGXae40Fr/wa4wzpgz5c/yBIO12Nx12d8/S4/XjcLo5ePgwgYBI3rRpCIIMX+DTmjBfIIjH66fD7qbD7qHD4cbm8IQeOzw0tdmxu4b3HDU5ycS83CTmTkli/pQkZuckjmnkqS+ctY0c/fHjYY3CuhGkUtKuu4ip37sT0+wzexsPN202FzuOVbHjaBU7j1VzpKxxzCY2BAEyk6OZOimO6ZPimBWnJbW6HMfm3dR/uL3XrgVh30sqHZAJoHFGDhm3XEHGDZeiSUnoc92A10vV/9ZR+H/PYCs62fd+mPQIJj3UtxIcYPlO6A1CYjvvB3eRuHbZsIx/gkGR598/xMPPbqK1lzKs+blJ/P6bF3LO1JFtpyMGg9S+/QnHHv4zHfnhzaIEiYSse29g5i/uH9XshjabKxTcOFzB5kMVlNQMn9O1Tq3AqFdh0qkx6lWn3ddrFChkUmTdfgbS0LK1uZ4f3Hl591t8bsVtkFAt7XpCtaX7I9imu8+tXRTFkXcrGWYEQZgD7ATUgB14DNjc9fh6Pm3VUwLMF0Wx8zPb30Yf4lYQhEXARkJ1yj7gNuBYP7tVK4pi+2D+nt74oojbbmyllRz78eO9GgacSvyqRcz57feInhe+l+hY07R5D0d//ASW3RHMEJ+F+CQSmlV6mjR6mtQGmtSh+/6EeH7+/au4auXUfi++fqeLlh0HOfn8m9S8uYGgt/fkColCTvoNl5L7rVvDDvQGIkZEUaRp0x5O/O5ZGj7a0et6cqOBaQ/dRc43b0Gm6V/ciMEgnzz1Okce+wfJDYNz3BxN1ElxmOZOI3ruVKLnTsU4cwoV/36Hkj+/iKe1vdftDLmTmfaTe0NRA+nns0/qeBe3EIoebf/yN8OeYyRyOdnfuJFpP/zaiJgVDcfxsTk81LXYqG3uoK6lkzqLjZqmDkpqWimqahlSTRqEzO9y08zMnZLEvK4I74zM+HFlYNV2MJ8jP3qcxg29n4cgVMuZft3FpF93MbrJqcP2+a0dTt7bUcybWwvZfKhiVKNPCrk0VGtt1jM5KZrMZBOTk6PJSokmJ9V8hmFhNwGvl5ZtB6h9bxN1727qcwIuUjRpSWTceCkZN146qEmhbmFW8NjTtB0sGPL+9IY8Ss/0n36dnG/ejFQxfBM31k4Xj/17G0+/tb/X78D1a2bw09vOZXJy37X9A0UURere28Txh/+M9ciJXteLO3ch8/70Y0wzc4f188MRCATZXVDD+l0lbD5UwdGyxr6y0Psk1qghPcFIRqKJ9IQoMhJMZCQayUg0khoXNSiX6i+EW7IgCAWE0m+7P3AH8BzwtiiKZzaACm3zM+ARwCGKoj7cOuMdQRAuA/4D9CbOS4BLRFE8I4QWgbh9BBioAdXtoii+MMBt+uSLJm67aT1wnGM/eaJP4dFN2vUXM+vRb6PPTBuFPRsYoihSv34rx37yRJ8n7fGKItqIJjUBTWoi+sxU9DkZ6LMzMORk0CJTcf+TH/Lx/vBpQ1csz+WJb10ccW2cp9VKxYvvUPq3l/o1GzMvnkPKFatIvnw1htxQu4VIBttBv5/q1z/ixO+ew3qo9wGIVKUk55s3M/WhuyOaHfa0Wjn099c59vi/0FvC19MBiIKAOi0JbWIs6vgYVPFmVKcsJXIZrkYLrvpPI/fd991Nlj5rvHpDopCjMEWhiI7CkDuZ6LlTewRtdyTcUVXHiT8+T/mzrxNw9m6iFjU1i2k//foZZimfR84GcQsQ8HjJ/8VfKfy/Z8JGp2Q6Dbnfvo3cB+84La1yqIz08RFFkWarg6KqFoqqLJyoslBwsokjpY1DivjKZRKmT4rvivAmMndKEtkpMb0KqdHCeuQEhb97lupXPug3yhg9fzrp111M2rUXoU1LGvBnDZeg1WsUxBo1yEQvaoWUxIQ4FAo5UomARilHp1agVSvQqRWY9GpiojSYo9RER2lIMusxR2mGHH0URZH2o0Wc/Pfb1Lz24YAMoSQKOTELZ5J197Wk33jZkM9pjpoGmrbspep/62jeui/kIj1C6DLTmPO775Ny5ZphzWArqmrh+3/d0Ot1XSaVcMuFs/jBzctJTzAO6bMCbg/Vb3xE8eMv9DkhYJyVy4xHvknKFatHNFvP6fax8cBJ1u0sZv3uEiwdkftSdJOVEs3s7ERmZycwJyeR2dmJI1Iu8UURtzLge8CP+dQRGSBIqGXNYaCcUO2pjpBz8mWEDJIOiaK4YFR2dAQQBCEdeICQWVYK4AXKgNeAv4iiGPbbOSFuzw6atx/g2E+eoHlb38kIgkxK9j03MP2nXx/Tlgq94aht4NhPn6T6lQ8GbO0/nEhVSuRGAwqjvmepMBqQR+lQJcSiTU1Ak5aEJjUBbWpivw7Voijy34+O8b2/fkR7mJ6D0QY1v7/vAq5fMyPii5IYDFL/wTaKn/gXjZ/s6nd93eRUlHExBNweOqxWCATRyBWhvo8+P0Gvj6DPh9h1X+yjZYVUrWLyHVcx7aG7+09H83ipW7eZ0hfeouGDbUj6GJD65HISb76SJT+7B13G4FK7gn4/frsTv9NFwOnG73Cdct+J3+lGplGFhKzJ0LOUqlVhj70oirTsPEjxk/+m9s2P+zwuMQtnMvUHd4UGUv0YtXxeOFvEbTetB46z59aHejXHkUfpmXTLFWTdfe2wpCuP1fEJBIKU1rZysKieA8X1HCyq51hZ45CNW9Lio8hJjSE71UxOagw5aTFMSTOTZNaPavmLo6qOosdfoOyZ1/qcaOomet40zEvmYl40C/Oi2WgnpYTd38EKWrlMwtwpSSybmcaCvBSSzHriTFriTFrUSvnYGB663LQfK8Z6uJC2Q4W0bD/Qb0pwfyjNJuJWLCDu3AXELJyJcUZOn9c/URRxVNbSvO0AzVv30bx1/6D74w6FuHMXMvfxH0ZsJBcJoijy4Z5Svv/UBspqw7c7lMsk3HHJXL5307IBt6rrLK+m7O8vc/Kfb/SZIRQ1LZsZP/8mqV86f8SuOy3tDj7YXcp7O4rYePAkLk/kvhhRWiXLZ2ewbGYac3MSmZmV0K8793DxhRC3PR8oCPGEBO5dQLcDS2870d3r9q6z0TH5i8IXXdxC6ETb+Mkujvzoj1j76TUqVauY+oO7yP76jahihzd1ZqC4m1upeeMjql75ICTOh3I+0KgQYgyYkhKQ67TIdBpkei2a5Hi06ck9UT+ZWoVEpUCqUiJVq0JLlRKpShEyHorAmGkwNLR2cv/j61m3M3xJ+kWLsvnTdy4hZYAXwfbjxRQ/+W8q/vPuiNYQK80mcr55c+h700c7FVEUsew+TMW/36b61Q/xWvt2mO1Ua4m77WoufvTr48b9NODxUvXKeoqf/Hef0WuApIvPJe/7dxK3YsFZ7348UM42cQuh/9vjP/8LRb//Z59tnWIWzSbjpstIvvjcQae4jqfj4/MHKKho5mBRyBDrYHE9+SebCAxDvahJr2LqpDimZcQxdVIs0ybFMXVS3IibV3larZT+7SVKn/ofrobes0E+izI2ukfoStJT2d/iYl2JhQ+Lm/FFoGdVChmLp6eybGYaS7sEbV9R7eH+HoiiSMDpwtVoCfXabbTgqGnAXl5DZ1kV9vJq7GXVfU7GDQuCgC4zDeOMHNQJZhSmKORGPUGPl9Z9x7DsOYqnJbzwiwRVXDS6nEkYcjLQZ6Wjz0pDl5lGwO0JZe00tOBuaDnNf6P9WC+WL4LA5Fu/xMxffavXNkCDwesL8NRb+/j1v7dhc4SPQivlUu68fD7fvXFpn1laQb+funVbKP3bS/2m4BvyMpnxyH2kXX3hiIjaNpuLd7cX8fqWAjYfqoi4rlytlLFkRhor505i5ZwM5mQnjlmbsi+UuO35YEGIBm4HrgHmEXL6/Swe4DFRFH85mvs2wcCYELef0l2XcfTHj9ORX9rnuoJcRtpVF5B197UDbikzFFwNzdS+s5GaNzbQtHnvgEwshoLcoCNqejZxKxYQv2oRsUvnRlQjOpx099D7zp8+CJvOY9Aq+c2953PbxXMG/P/hbm6l9OmXKH3qpYhaR0WKNiOZ3O9+lczbv3zG8fK227AVV9BZUtG1rKT1QH6f/V27adCbMNx6DV/5v6+jHOX/h95wNVkoe/plSv/W9zEUpFLSb7iEqd+/c1gifGcr40m8DRR7ZS3HH/kLlS++068I0OdkkHTRCsyL52CaOxV9ZlpEA8rxfnxcHh/Hyps4WBSK7h4srqekxjKkOcZTSTLrmZuTyJzu25SkEWlPFAwEaNm2n6pX1lPzxgY8Fuug3scvCHQo1LQpNXQoNbilMvyCBJ9EiiiXk54WS15OMrmZCShlEsRgMGRYGAzd6DIyDD0Woet5n8dLZUUFiCJpKalIBeGMdT77PkG/P5RxYnfiszsJOEJLf9dtuK6bMp2G2GXzUMXF4G5uxd3chrO6ftDHcNiQSTHNmEL0vGk9N+OMKf1OPlv2HOHQd37Tq4+HTKth2o/vIffB24e1Hrel3cEfXtrJ398+gNvbi+miUsZXL5vH166YT1ZKKHtODAZpO1RA7TsbOfn8m2HN705Fn5PBjIfvI+26i4e97MXm8LBuZzGvby7gkwPl+PyRTY7MmBzPxUuyWT1vMgunpgyqPnYk+EKK29N2QhD0wDQgC4jqeroG2NJbPe4E44cJcXsmYjBI9WsfcvTHf8Re3n8akD4ng6y7r2PSrVf2GZUbLJ3l1dS+9TE1b32MZfeRoUVohwmJQo55yRxSrlxD2lUX9JtiO5y0tDt48M8f8tqm8FHB8+ZO4qnvXjqoJvF+l5vyf7xC5UvvYz1yYliiuYJEgjI2GlWCGXWCGb/Dha24YsCz8l6JlKPmFExXX8w3HrubmKi+U7pHA1EUad17lJKn/kf1K+v7NOwaL+1HxgvjXbxFQkdhGcd++iQ1b30c8XlJbtBhnJGDdnIquoxktBnJqBNjUUQbUUR3pbqrlHgDAT7evAlBEM6a42NzeDhS2sCBonoOFYcEb2VD+7C9f0KM7nTBm5NEknn46pyDfj9Nm/aEhO6bH+NrnxjCnYpMryV22TziVy4kbuU5RM+deoaLuyiKdJZW0rx1P83b9tO8dX+frXxGC0Emwzg9m5hFs0hYtYi4884JO14RRZGqV9Zz5Ae/x1ldH/a9oqbncM6zj2I+Z9aw7mNDaye/++9Onlt3sNd2UIqAnxtjYFXAivTAYdwRZB3Er1pE9j3Xk/Kl84fVdd/h8rJ+dymvbyngoz2lEZUuSCUCS2emcdnSXC5dmjOoccpo8IUXtxOc3UyI294J+v1U/uddjv70CVy1fc8IwqdtTmKXzsW8aDbR86b1W1P6WURRxFpSxbGPdlO5/RCB3QdQ14W/wHwWl1TGYXMq++PSqdaZkAWDyIMB5MFAz32N30uis4MURzsp9nYSXDakw3AeMS+eQ9o1F5J+46Wo481Dfr9IeHdHEQ88vp7GNvsZr2lVcn5592q+dsWCiPrndZwop+LFd6j873u9XtDHiqKoOHYnTMJ8ySp+8a3LyE4d+5pvv8NJ5f/WUfrU//o1MtNmJDPl/q8w+Y6rhtVw6Gzn8yBuu7FX1FD+3Ouc/OcbA0pxjQiZFGWMCVVsNEqzEaXZ1HNTxZsxTsvCOHPKqPcmjxSHy0tZXRsl1a2U1FgoqW6ltCZ03+HufTIoUhKidZ+ay+QkMinRRHKsAZM+fC18b4iiSL2lk+JqC0VVFkrKG2nZdRDfsSIyOlqYbLNg8I2cgdG4QxAwTJmEac5UoudNI27FfExzzhSzveHrtNO67zgtuw7R+Mlu2vYfH1M/jHCYZucRv2oR8asXE7diPnKdtuc1v8tN8RP/ouCxp/Hbw1jLCAI5993MrF99C7l+eDMKalts/PY/23lh/WECXj8JLhtT2puZ2VpHnrURudh/VFRuNDD5ti+Rfc/1GKZMHrZ9c3v9fLS3jNc3F7B+dwnOCH7DGpWctQuzuGzpFC5clD3m/bJFUcRZ24j1yAkcVfV4W9vxWKx4TlnWNjRwd8Oe7k0mxO0EZxcT4rZ/Al4vJ597nWMP/3lA0TZBKsU4cwrmRbOIWTgThckQaq4nCKFBhyAQCAapKKmlascRHMeLUdbUoPJGPoDwSKQcjUlhX1w6x6OT8A8w1UYWDJDgtJHsaCfe1Yna7+u6eTF5nCQ5O1AHIjdAEGQyki85l8l3XEXSxeeOeG/SNpuLHzy1gf98dDTs60tmpPL09y4PKwjdza1UvrSOyhffGdHWCoOhQW1gd8Ik9sRlkDQtk99+Yy0r504a692i40Q5pX97iYp/vYXPduakwqnErVzIlAduJfmy8z73zseD4fMkbrsJ+v3Uv7+Fmjc/pv6DbUOqGRwo6uR4jDOnYJqVi3HmFKKmZqFOikMZYxx0XZ0oigQ9XvwOJwGXB0EuQ6qQI+m6CTIZ/kCQTqcXnVqBQh759zwYFKlp7qCgopmCimYKK1ooONlMcY2l16jVQFArZaE2OLEGks0GYqLU+AMi/lN7BfuD+AIBapttFFdbeq177DoYmN12Mm0WJttaSbO3Ee12YvI6h2WCdCyQqlWhjJrEWHSTU9FlpoVc+7Mz+jV8OhUxGMRWXIFlzxEsu4/QuucI7fmlo5plJVEpCcql0DlwB14IXbtjFs4gZsEMoqZmYZiaSdTULIJeH8d++iTlz70e9u/RpCay4KmHSb70vKH+CSEjr+MlWA8XYj1cSOO+fDqOFyPtp1f9qZgWzGDK128k7bqLkamHx3zJ6wuw8UA5r28u5L2dRXQ6+8/okkklTEo0khpvJDFGR6xJS7ReTbRBjcmgJsagxqQPOXvHRmlGLB1ZDAbpLK2k7fCJ0HE9VIj1yIl+U+db8XE/Fd0PJ8TtBGcXE+I2cvwuN+XPvkbBr/8eUSrMSOGSyjgWk8whcyrHYpLxSkdQQIoi0R4nyY52sjpayGtvIsPWirRXH7lPUSXEknnn1WR/7foRT1v+aG8p3/jD+9S1nJlGp1LI+NkdK/nm1YvA66X2nY1UvvgODR/tiLj2SpBKT19XEE4x1FL0GGtJVEpEvx93Uyvu5tZ+BzdBQaBZpaNJradRY6BJY6BCH0O1zkR8tI6Hv3oeX7lw9piZSkBocqf27U8o/dtLNG/Z1+e6EqWCjBsvZcoDt2KaNfK9As9mPo/i9lS66+HqP9iGZfcRrAcLQr+JUUYil4cETFIc6sRY1ImxCHIZAYcr5AjucHY5g7sJdN/vej7gdPdbU+zrqittV6rpUGlx6PS4DFH4jEYC0SYUKYlMXTaTZXMnMysrAVk/v2WfP0BpTStHShs5VNLAkdIGjg6xPdFwE2fSsnr+ZC44J5uLzslEbrfjrG3EWduEs7YRd2MLAbeXgNtD0BNahm5eRJ8PJBIEiQRBIiBIpaHJB4nQ9VzX/a7nA8Eg9Q31IAikpKUhVyrOWL/7fei+L5Eg1aiR6TTIdZqQQaJOg0wbWsr1WlTxMch02kH5ZXitHVj2HsWy5yite45g2Xts0CncMp0G05ypPZMyhtxQlLH7uAX9gZ6/CYkEiVyGXK9Fptci77rJdBo8fj8bNmxAdLqZF5OEPb+MtoP5WA8WYCupHLTQVsWbiZqaicJswrLrcK91rWnXXsS8J3/c0/6tGzEYDHUV8PnwWKyftqDrNrSqb8bV0IyjuoHO4opBGXk1qvUci0lmd/wkWmPjWb0gk0sW53DBOVnED7JOvaqxnc0HK9h8qIKP95cNuSd2X0gkApOTTORlxJKXHktueix5GWampJlRKwfWQszvdGHZfSSUEr9tP2378/E7Bj7hMSFuJzirmRC3Ayfg8VLx77fJf+xpnMPQ3D0SbHIlR8wpHDSnUmRKQK5WYtSrkUoEJIKA5JSlIAh4fQHcHh9Ojw+n2zcsrp7dqPw+prQ3Ma+lhtmttWj9/Qy6pBISLzmPvPtvIX7VohEz37I5PPz475/w7HsHT3teEEWyO5q51NnI9PqTiOFSrD6DPjuDhPOXkLBmCfErF6IwReF0Otnw4Ucgiqy96EI0mr5n9YN+Px6LFXejBVeXK6e7sYXGdhcvFbbwcaMbi0pH4DNRJaVcyv3XLOJ7Ny1DrxkZ9+lIcFTXU/aPVyh/9vV+Tba0Gclkfe16Mu+4aly2yhqPfN7F7WcRRRFXfTNthwqwl1Vjr6zFUVmHo7IOj8WK12obd2mbw4VHIqVaZ6LeFItiajbpK+ax8PwFLJieFtHgNRAIUlbXxqHikNg93CV6I4kgDQcKuZQl01NZvSCT8xdkMmNyfETlHsPBWP9OgoEAHQWltO45imX3ESx7jgypLZA2PRnzkjnELp1L7NK5RM3IGZbMlr6Ok6/TjvXwCSx7jtC0eS/N2w5E1AZqwHRN+gqCQNDvR/T5R8R1OiBIKImK5VhMMkdjkmnS9N4lYX5uEhcvzmH57HSi9Wr0WiUGjRKdWnHapHFLu4MthyrZcqiCzYcrqKgfY1MwQol+kxJNTM+MZ35uEvOnJDF3StJp7YB8NjstOw921XgfoHX/ccQBRLp7Y0LcTnBWMyFuB0/Q76fqpXUU/OppbMUV/W8wAOwyBS3meIKZk5AsmkfMojmkJBpJiTOQGhdFtEE9IJHo8wdwefw4PT58/gBeX9fNH6DT7mTnrt34gyIzZ81FkEjx+gPYnV6arHaa2hw0tnZS1dhOaU0rHaekrkmDAfKsjSxsrmJ+SzXKYN+RUCE1mZnf+grZXx25+ssthyq49/fv4SyvYXFTBYubKoh1951CC6FIc8aNlzLpliswzso94/gOdZDV2Gbn589t5l8fHO51Ev3q86bx6N2rh9y8frCIwSANG3ZQ+reXqF+3pe+BiSCQdPG5ZH/9RhIvWDaRejxAxnrQPh7xu9z42m0EPF6cNjs7t25F9PiYm5OH2OnA09IWqgmzWPG0WLFX1NJRUNqnkdl4xS2RUR1lRpg/i3NuvZQ1161GJhtYWnN5XRuHu8Tu4ZIGiqssNFntQ+wKJ2dKqpkp6WZy083Mykpg+ax0tOrhc8cdCKP9O3G3tNG691Mh27rvWPia0wgQZDJMc/IwL54dErNL5o5YFtNAjlPA66V17zGaNu2hceNuWvcc7bO113hAk5JA3LkLSL5sFQlrl3KkoZO/v72fN7YUDjqNX6uSo9coUcilVDf13XZvtFH7vUyytZJub0PvdaPx+9D4vWj8HuKCPvR+D3KvB8E/+BIGeZSeqGlZqOJiQj4GMUYUMSFfg0aPk2X3fqV71QlxO8HZxYS4HTw2h4d9hbXsPlZF3dsfk7F9G2kdfUe4/IKARyrHI5X1JPYGBAkd0WbInkzs/GlMWbWAectnYtSPzmB3IBdFURRptjooqbZwuLSRA0V1HCiqp6LeisrvY2FzFcsay8m09X0cAnIFhstWs+hbtxC3bO6wRXNdjS3Uvv0J5f96m7Y9R/pdX6pRk/rl85l0yxXEr17cp0Ab7CDL5fHx59f28Lv/7ew1tXB+bhK//cYFLJ4+uJ6gQ8VtaePkP9+g7O+vYD/Zt0O4MjaazDuvIevua9FlpIzSHn7+mBC3p+Nua6fhg21Y9hzB09SGy9JGa00dotuLzqBHKpP1eBaAGPoXDBL0B/B3dOLrdBBweYYlajEWdKo0BObOZO5NFzP3hgtRmKL63ygMXl+AhtZO6lps1LV0UmexUdtsw+ZwI5dKkcskyGShpVwqQS6TYtSrmJIWSoNMjYsatahsJIzk78TvctORX0LrvuM99bL28upBv586OR7z4tmYF83GvGgWprnThq3usz+Gcpz8DifNOw5i2X0EW2EZHYXldJZUjo3gFQQMORmhVO05eaHl7DxUseE7UTRbHbz44RHe21nMvsLaMWsmoVMriNKpiNIqT1sadSokEgntdhdWm4tWmwtrp4u2rqUogiAGSXJ0kGlrZbLNwmSbhURnByNZjCTIZMhNBuRaNRK5rCutv8sPBoFmj4M7yrZ0rz6q4nZ8NEOaYIIvAN2z5AeK6tmTX8OeghryK5pPac6thtlryepoYW1tEXMstUjC1KXKRBGZ34s64MM+fRrxN1zO0ruuJM48uIHMaCMIAvHROuKjdSyfndHzfLPVwdbDoZSelw5X4C05yXn1pSxurEAVPHOwKfV5cbz5ARvf/ABvbCzpN1/OnK9+iaipWQNz+AwG6Sgope79rdS+/Qmte8MbS51KEDhhSmB3/CT8i+bz2+9eQeK04ReVoijy2uYCfvqPjb3OCifHGvjlXau5bvX0UR9QiqKIZfdhSp/6H9Wvfdhv9Ct22Tyy772B1KsuQKocmyjOBJ8PgsEg9e9vpfLFt2nZfRh3Uyuir3dR2knzsO9DAGhTaanXRFGjM9Gq0uGRSvFKZHikn968EileqYyk5Bgy4qJINqlJMKhIMKiJ0yuJ1SnRigHs1Q3Yqhtw1Tbirm/C32hBbLEgaY8sIqR3O2HXHk7u2kPZfQ8j5uUw69YryLz+IrRpSRH/XQq5lPQE45hlf4xX3JY22o8UYT1yInQ7fAJb0clBp81KlAqi500LCdkuQTuaLfGGE5lWQ9IFy0m6YHnPc0Gfj87yamyF5XR0CV5HVR1eqw1vWwfeto5BiV+JUnFK/XvXsuuxPicD48wpp7k290ecScuDNyzlwRuW0mx1sGFvGev3lPDJ/vIRS9uPMahZODWFc6alsDAvmXm5yRi0AyshCvp8VL32ESXPvU7bniOII5Em3gei34+3pQ1vL/YxdsYukj8RuZ1gyExEbs9EFEWqGts5WNzAoeJQv8LDJQ2npeP2h9llZ3VdMSsaylD14zasiosh9eoLSLlyDXHnLhjW5uiRMBIz4yfr2li3q4SPNh1D2LSNlbXFJDn7N9wQowwkrTqHpFWL0E1ODbX7MJuQatWh+tUmC+6mVjoKy2jdc5TWfcf6de3tpkFnZEdcBnviJ9GuPL1e9isXzubhr57XZ8/IgRynfYW1fP+pDewtCD/ZqVHJ+e4NS3ng2sVoVAMzjBgqvk47lf99j9K/vUT7seI+15XptUy65Qqy77ke44wpo7SHXwy+aJFbV2MLJ373HDVvfYyjqh5GoBZvKHSb0hw1p8DMqczOSWJ2dgJzcxKZmZVwWp3bQHC3tNF2MJ+aHYep3HoQV34xivb2Ab2HYe40Jl97IalXXYA+K31Q+3G2EunvRBRFfB2dOGsbQ+ZEpZV0llbRWVKJ7UQ5ztrGIe2HNiMZ8+I5oe4Hi2Zjmp076tfqvhjt84koigScLjxdQrdl50GOP/KXXh3SU65ay+zfPIg+M33EfDdOxesLsPNYFev3lPLxvnJqmjsiatsTjoRoHZctm8KiaamcMy2FyUmmQf8N7uZWyv7xCqV/ewlX/fBP2g0XEzW3E5zVfNHFrd3lpbCimfyT3bcmCiqaabMNfhZtcpKJxdNTWTw9lYVpJqSfbOHkM69GVJcrN+hIuvhckq9YTdJFK0alL6jL5eKjDz8El4fV55+PxqAPpakMsn3GZ2ntcPLu9hNsfn4d5u07mNNSE5Hb8nCgNJtIv/FSJn/lStzpafz47xt5+ZPjYdfVqOTcf80ivn3dkrCzsJEMHmqaO/jpPzbyysb8sJ8hCHDzBbN45Kur+hTSI0H78eJQG58X3+m3hsw4K5fse28g48ZLh72H4QQhvgji1lZaSeH/PUP9us24m0bfKXmwaFITybjpMjJuvhzjtOG/JroaWzi5aR97//0+nl0HiOqMvN7POHMKqVetJfWqCwac6TLeCfp8eNo6Pq2rtlix1zdTsHc/uL2kp6Qi6WrP5LM58La147Xa8LR14KpvHjaTJKlGTcyCGZgXzcK8eDYx58w6wwV4vDEezic+u4PjD/+Z4if/HbYTgTLGyIxf3E/W3deNeJvAz+Ly+HhnexH//egomw6epD+PTYkgkJ5gZE5OAjOzE4gzaomJ0hATpcHctTTpVBF3Mmg7mE/xn16k6uX3h8UjwKXVUas3cVKmQeX3k+i0Ee+yETVMvagnxO0EZzVfBHEbDIrUWWyU17ZRVttGWV0rZbVtnKhsoaLBOqQaDblMwpycxC4xm8aiaSlhree7U0DLn3ud6lc+iMiaXSKXE7dyIeYlc4hZEOo/N1gnWlEUcTe2YCs6iaOqvutWh6O6IeRaWt0An0kLFCQSBLkMiUwW6u+oUqIw6pEbDSiidKGlUY/CaEBuNKCMMaJOjkeTFIc6OR6l+czZzeqmDl57dRulL7xJ9ol8El2Da5/QFzK9lqSLVpBx02UkXbQCifz0yOj2I5V868kPKKwMn48Ta9Tww6+s4I5L5p7We66vwYOlw8kfXtrJ02/tx+0NH6lfNjON337jAubkJA71T4wYURRp+Gg7RX94nsZPdvW5rkQhJ+3ai8j++o2YF83+XA2axyMjPRgVRRGbw0OrzUlrh4u2Dif+YBCNUo5SIUOrlpNsjsJsjKyXZ6RY9h7lxO+eo3Hj7kG1RwkIAh6JDJ9EikcaWgqISINBpGIQWTCIPBhAHgygEEc++tuRkIhl3jzcSxdhTEvsGeDGRKkxR2kwG7UDGuR+FlEUObjxIJv//ib27fuY1FKPoh9jvm4MUyaRetUFpF61FtOcqWfNb1YURZy1jVgPFdB2sIC2Q6G+pmMSyeqq8Yw5Z1ZPVNY4I2fUxddQGQ/itpu2w4Xs+9rPaNsffiLZkDuZOb/7PkmXrBzR76zN4WHTwZN8sLuUt7ef6LuP8yAQBEK9ag1qNEo5KqUMtVKOWiFDpZSjkUJK8QmSd+5AV1U16M8JIlCtM1EWFUtpVCxuqYzsjhbmWGpJdg7NCCsA+CRSfBIpfokUv0RCQJDQKvp4zH2se7UJcTvB2cXnQdy6PL4u84yQgUZtc0ePkUZVYzvldW24PMNjMhJv0jI/L5lFXZHZuTmJA+5D5rM7qH71A8qfex3LrsMD2laTmkjMghlEL5iBYcokpGrlp/1W1V29VhVyHBW1tBeU0VFQSkd+KR0FZXito+sGKFUp0U1ORTs5FX1maqieZsYUjDNykEfpOVLawNvPrqPtjQ/IqaskxjM4R0oItVdIungFyVesJn7lOf3WhPr8AZ56cx+/+tfWXutykmMNfO/Gpdx28RyUClnYwYPN4eFPr+3mT6/t6fV9JiWZeOxra7hi+ZkOzCNFwOOl8r/vUvTHF+goKO1zXd3kVLLuuZ7Jt38ZlTm8accEw89wDEbdXj/7C2vZd6KO/JNNlNW2UW/pxNrpGtA5TyoRUCpkaJRyDFolRr2KWKOWxBg9KXEGMhKNZCQYiTZoiDNpMelDJinBYBCHy0v5f96l/JnXcB8vQvBGXucWQMCi0lIWFUuxMY7j0UnYlJGLbbXfS5Kjg2RHB0mOdpKcoftG7/DXrwURKIhOYHtiFkdiUk5r4SUIEK1Xh6I6xtOjO+ZT7vc8NmrQqRVnnA98/gAbdhTy3p9fR7JrH3MsEbRa60I7KYXUL68l+dKVmBfPGVd18d6OTix7jtCy4yBt+4/Tdqiw1/TVkUSqUhI1I4foOVMxzc7FODsP08wpyLTDO8EzFowncQuhFkqlf3uJoz/6I/5OR9h14lcvZu4fHhq2nuiiKHK8vImP9pWxYW8Zewpq8QdGv/whxW5leUM5SxpPogkMLkpbrTVxwhRPkSmBcn0MGfY25lhqmW2pxTSI81uHXEWjxkCDxtC1jKJBY6BNpUUMMy4R3R149vyx++GEuJ3g7GIsxa0oinh9AVxePy6PD7fHj93lpdPpwe7yYnN4sDu9dLo8dDo8tHW6ae1w9twsXUvHIOso+iPGoGZebqiv2NycJOZOSSTJrB9WgWIrPknNmx+HzJD2Het/g88JmpQEoudNI3bZPKIXz2G/X8Grr26nYdNecqyNpNrb0fvc6Hwe5KdEZxwyBW6tFn1qAjmrFpK6cgHmRbNQJ8YNaj8aWjt59PmtvPDB4VPMwU4nOdbAt65dzFUrcti3exsAy1acx78+yucPL+3sNYXdoFXy0C3L+fqXFp4WAR5JPK1WSp9+mZK//Bd3Yy9OEYSi8smXnUfWvTeQeP7SYUtBnyByIh2M1lts7DxWzaGSBooqW6hsbKe5zYHN6RmTgRuAyudlTV0RC5urB+TqKRL6DReaEtmWmMkJYzyMwHdP6/OQ1dHClPZmcjqaSO+0hjX4GywdchW7EiazPTGzzx6bfaGQSzFHaYg36YiL1hJn6r7piDNpcbi8rN9xgpoNu5jdVMUcSy1Rvsj6AEvVKmKXzydh9SIS1izBNDtv1H7joijirGmgZcdBWnYeomXHQdqPlzCaNrbK2Gh0k0MTqvrsdPTZGZhmTkGfk3HWRWQjZbyJ226c9U0cfOBX1Lz+UfgVBIHJt32JmY9+C01S/IDfv6U9ZGb58b5yNuwvo7E1Mg+O4Ubt83JOcyXLG8rJsA984qZRreeEKYEiYzxFxngCEgkzWuuZ3VrLjNb6AYlkj0RKWVQsJVFxlEbFUqsz4ZAPzPBqQtxOcFZzqri98OtPYjQndrUHCLULkEklaJRyJBKBoCgSCIgERRExKBIIBvH5g3j9n/ZM9X3mvs/X9fopz3u9/h5BOx6+whKJQHZKDNMnxzEjM55pk0LLtPioUU3zctY3UffuJmrf2UjTpj1nZe/GwSJVKYk7dwG685ezWWXmue3lIYdhUUQV8KMI+HHIFQQkn7bqUcilXLE8lzsumcuK2RlDchs+UdnCT5/ZyPu7SnpdR6WQsSBTT1qMio2FNhrbws9Gy6QS7rhkLj+5/VxijZG7Pg4FR3U9J373HOXPvU7A1fsAWBUXQ+bd15J193VoU0cvPXq4CQSCWO3urtYKTto73TjcPlxuHy6vD5cndH4J3fx4vH78gSD+QJBA17nLHwgSCITuB0URQRCQCAKCEKq3kkgEBLqWYZ7rWbfrPl3bhx5zyjoC/kAQj8+P1xfA5wvg8QVwebzU1jfiCwRRqvW4vQGcHh9Od+jWvc/j4BSJLODnnOZKFrRUk2FrQ+f3EOmvTQTaFWqOxiSzPm0qreoza83lMgl6jZJYo5bkWD3mKC1alZTW5nrUCikzpuWh16hQKKQoZFIUMhkSqYDPH8Tj9ePuniA97X4Ad9dzvk47+opKTBUniauuJK65IeL974+iqDi2JWVx0JyGf4R6PQuE2oVkdbQwr6WGuS3VRA8geqOINhK/ciHG2bkYp2UTNS0LXWbakIVe0O/HVlyB9cgJ2o8WYT1SRPvRItzNQ6+vlhsNKM0m5NFR2II+UCtITk9Drg61LpHrtShMBhSmKBQmA6rEWDTJ8aiT4sdV1Hq0GK/itpumLXs59OD/YT1UEPZ1qUZN3oO3M+WBr6CMMfX6PjaHhx3HqthyqIIthyo5frJp0Pskl0lYPiudixfnkJUSTYfDQ4fd/enS7qa9a9lqc/UEVrqztAQxyJT2ZpY2nmR+S3XE5QTQPcmXQH50IgWmRKwqLUaPk9mWWuZYasltb0IWYdmFS66gNjaJhqRUWlLTsCenoNaqUClkaFRy1IpQynTovgx113MalRyFXIpUIgmN8YOh65THG6Cmuoqf33dV90dMiNsJzi5OFbfKRd9BUJ0dLWkGg1YlJyslhszkaLJSoslOiWHa5Dhy080DTi0eaXw2Ow0bdtCy6zBtB/KxHiqMqE63P6QadShVOD0JbVoi2vQk5ImxHG+oRjAZWL5iOQqpDNEfIOjzIfr8BLtufqcLX0cnvvZOvO02vO2d+NpteDs68VptuJtacdU3426yDGmWXpBIMC+bi2vxIl4VTLyzv7LfCFVmcjQ3nD+Da86bRk6aedCfveNoFb94fgvbjw68PkYQ4Po1M/jJrecyOXl00nvtFTUU/uYZTj7/Zp9tGQx5meR+53Ym3Xw5UtXAZnBHk2BQpLHNTnVTO9VNHVQ3dVDT2EFNcwfN7Q6stlB/wHZ7ZBGsCQaOJOhnSnszM1vryba1EO/sRB3wDUgMikCLSsf+2DQ+Ss3DoQg5DUslAtEGNZOSTMzOTuDc2ZM4f0Em+kEauA0WV5OFhg+2UbduCw0fbe/XYC0SOmVKtidmsiU5m1bVyJqwCaLIJFsr8yzVzGupIdY98GiVRCHHkDuZqKlZ6CanItNrkek0yLRq5DoNUm3ovt/hwtPShqelDXf3srkNV30zHYVlBD2Db7cij9ITPXcqprnTiJ47lajp2ajizSijo3q8Esa7aBsvnA3HSQwGqfzvuxz90eO9uldLNWoy77iK3O/chm5SKg2tnRwtbWR3fg1bDldwsKieQH9uUH1g0qu4cFE2Fy/O4fwFmQN2QReDQeq3HaDsf+toevtj/BGm14uAPT2djrw8bHm5uNLTESQS1E2NRB/Px3j8OMqKyoj3Q5+TQcqVa0i5YjUx58xCMswTa6WlpeTk5HQ/nBC3E5xdfJ7EbZRWSXKsgeRYAylxoWWy2UBmsonMlBgSY3RnjeHGZwkGAthOlNN2IJ/W/cdpO1iAx2Il4PYQdHvwuzyhiF3XOUGqUmLIyyRqWhZRXTP1xmnZaDOSz0hPG+6LYtDvx91owV5Ri/1kDfbyajrLqunIL8FWVDGg3nhyg4746y/lUM4Mnj3cSHld/xeSWVkJXL1qGpcsziE33Tyo//NtRyr51b+2su1IZCL38uW5/Oz2lUybNLj06IHSWVZFwWNPU/Hvd8K6UnYTv2oRuQ/eQdKFy8dV6rHXF6C42kL+ySaOlzeRf7KZ8ro2altseH2Rz35P8ClqpQyTXk2SWU9mcjQzMuOZMTkOs1GL2agl1qhBJpFgd7hoLarEWlhGw/58rCdO4qtpQGhtQ263Iw34BxXV9AsCNVoTexInszctF0O0jrQ4I7kZZubkJHLhomxS4yK/vozWYD3g8dKy/QB16zZT995m7CdrhvR+okTAOWsmNYuWUBGf0hPxsXTdhv37LYqk2a3Ma6lmelsDafa2iNPERxOJQk70/OnELp1LzIIZmOZOQzc5td/z83gWbaIo4vGFstICwSDBoEggKCLryn5TyKTIZdJR6WE+no/TZ/E7XRQ9/gKFv/5Hr5P2QUEgP2kSbyfkUKUfnJHmqVyzahp3Xz6fRdNTkQ3Q/E0URayHCqh6+X2qXvkAZ01DxNvKo/RM/+nXybzjKhSmKIKBAJbdh6l9eyO172zEXhb5RHrMotmkXLGalCtXE5WbOaC/YaBMiNsJzmpOFbc/0MxGLdPglcrwSGR4pTLcUhlWpQarUoNTpsApU+CQK3DJ5DhlClxSeShkNWz7Azq1Ap1GiUGjRKdR9CxNOjUxUerTzDpiojTEGNQkmvXoNeM3IjUaiKKIo6qOlh0HQ5HVtg48lvbT2ip4rR2I/gCiKEJXerkYDOLxhFwE1TptyJxKqUCqVqKIMaE0G0P9ZuNiQhHfjGR0GSmoEmMHPFsY8HrpLKnEeriwqx7rUL+GR90kXXIu/huu4j8VDt7adiKiQWJafBQXnJPF6vmZzMtNInkANdPNVgf/fP8QL35whJP11vD7ZNbzy7tXc+P5MyN6z6HSUVROwa+epup/6xB76RMqyGSkX3cRuQ/eQfScqaOyX33hdPvYV1jLweL6nnZbRVWWMasXHVG60uj1PjcGb/fNhc7vQePzovF70fh9qAI+VAE/yoAfRdAPIp8RlKFru3DKw1BqNEgFCVKp0DN4VnallQmA2J3E3L3wBwh4vAS9PkR/KANjWGtBNGrks6ZivPFKsr68hvQEI5JhmkQZi8G6KIrYik5St24z9eu20LLzUJ+TR/1hmDKJ7G/cxORbv4TcoEMURewuL60dTlranbS0O2huc9BstdNkddBsDd1v7ro/mJZ0Wp+H3PYm8qyN5FkbSXB1Dnr/h4Ii2kjs0jnELp0b8laYN31QWSOj4Spud3mxdP1/WDqcZ9xvt7uxd3mB9NycoWUk5zGtSk6UTkWUVkWUTkl8tI4ks4FEs45ks4HJySZyUs1EGwb/t413cevx+mlss1PT1EFNs43alg6ay2oxvvUO6UcPI+njvHTCGM+HqVPJj04MO94UhN5PazMz4/nD/ReybObA+0O355eEBO3L67GXVw9oW4laRd6Dt5P33a8iUchp/GQXtW9/Qt17myM2U5Mo5MSvXhwStJevGrS3yGCYELcTnNWcKm7/xCRiGFh6rlcipV2hpl2p7lpqeh5bVDqkqUnMmJPJkpnpZCSaQvVScikqRZdlujJkma7ueqxSyEZllvPzgrO+ieat+2neso+mLXvpLKkctc+WKBVETc3COCMH44wcorqW6sS4AUVLPW3tNH68i5q3Pqb+/S39pggmXXoeaQ9+lfctAZ5fd5gTVb0bJ32WOJOWOTmJ5KTGdE2MaDAZ1Lg9PlptLtpsTmqbbewtrKWsNnJTiIVTk/naFQv48sqpqEbAPKo9v4T8R/9G9asf9HoVl6qUZN51LXnf++qY1tNaO13szq9hx9Eqdh6v5lBxw4gK2e6IpV6jRK389LwSas0Quq9WyJFKQ6JQJpUglQhIJaGlTCpBEAREMSQNg0ERUQx5C7S0OymutlDZYKXe0okYFNH7PCQ4baGby0a8s5MorwuD143e50Y5gLqrsw2JQo4+J4PE85eSede1ROWNXPRgPAzWPW3tNHy0g7r3NlP/wbZBtTaCUAZK5l3XMuWbN6NNT454O58/0CN0u0VvY6udyoZ2KhqsVDRYqW5s77NnZ7TbQZ61kTS7lWRHO0mOjoiNqSKlU6ujIz4RT2oKQmYGmrws9FlpGA0hZ+0onQqTXoVRr8aoUw0ocjbQ74HPH6DT2T2B8KlAtbQ7aDnlvqVrgsHS7sAzTrJFYo0actLMzMpKYH5uEvNzk8lMjo5oTDQcvxe7y0u73U2nw0OHo3vpodMZWjpd3h7/FF8giK/HXyXYZQ7qw+Hy0un0hpaurqXTg8/f+zUg2d7ORdUFLGyuQtqHy0CzSseh2FSOJmYQPX8GnS4vBRXhr//RBjWPfPU87rhk7oDadNlKKqh6ZT3VL6+no7As4u26EWQysu6+lvSbLqP9yAkaN+yk4eNdEfdglkfpSbrkXFKvXEPiBcuRG8amz/yEuJ3grGao4jYSXFIZLWo9brOZ+GmZzFw+i5zls4mamoXCODinyS8qAY+Xpk27Q6ZTm0dXzEaKMsYYErozpxA9dxrR86ZhyJ0ckXlJwO2hYcMOyp99jbp1W/qMMiVdeh4zHv4GZRoTr27M543NBTRZw5s8jRYxBjW3XjyH2y6eQ3bq0FOprEdOkP/o36h5oxenSULOqNn33kDed+8Y1ZndbhwuL5sPVbDx4El2Hq0mv6JpyMFBhVxKSqyBtPgo0uKNpCVEkRijJ9qgJsagxmRQ9/QXHO56+ROVLby5tZB3Pz6Ku6CYTJuFJEcHCU4b8a7OiFuznPUIAsoYI4a8TOJXLiT12oswTc/pf7thYjyI21MJ+ny07DxE7bubqHtn46DSlwWphJQvryXvO7djXjR7WPbL5w9Q22yjsLKZXz6/laNl4WsZT41uaX2eHqGb5OxA7/WgDPhQBvwog6GMAmXAjyrgxyeRYpOr6FQo6ZQrsctVdMqVdCpUNKv1VA/CiVUhl6JRylGr5GiUcrSq0H1FVwqvAAhdhm3BYJC21lYEQSA21oxMKkUQBNzeUHcFR1cktXs5XoTqcGHUqVg2K51V8yaxat5kclJjwk4eR/p7CQSCVDd1UFxtobjaQkl1K8U1FkqqLbS0D732fChEux2cX1vEivoyVMG+W5m1q7QciEnhYGwqpVGxiEJIwEokAnddPp+f3b4y4ki4vbKW6lc/oOrl9VgPFw5u5wWB2KVzUSfH07rnKI6quog31aQkkHzFalKvXEPsivlIFWNviDYhbic4qxkNcdsXqqQ4jFOzTq8NnZGDXD82s1XjEb/DSf2H26l5cwP167bgs42N1f1QkKqUGGflEj1vWo+BSNS0rD5P4vaKGkqffpnyZ1/H29be63rJl53HjIfvI2r2VLYfreL1zQV8uLeMupbBRVn6IsmkJN6o4Hi1o99o5MKpydy0dhZXnzdtwOlmrQeOk//Lp6h7d1Ov68i0GrK/cSN5D96BKm7oQro//H4/7e3tdHZ2Yne6abE6aG4PpU721kapP9RKGfqusgOduivyqpCNWuukbuwuL80NrXQ2W5E6nWj8PpQDNFE6WxGkEiQyGRKlAplWjcJkQBljQqYb296fwWCQlpZQVCY2NnbY0p2HC7/dibu5FXdTK95BRHRlWjW6zDTUibHDWg/fYOmkuMaCxxte5GnVClISYrB7obzBTm1LJ3UtNuotndS32Giy2sdFF4MJwpNk1nPJkhwuX5bLitkZKOSh0qDexK3PH2B3fg3rdhaz5VAlJTWWcT0BYI7SMD81ihW1JcRv2wZ9XPu76ZCrOGJOQTFlMjfcupaZ585Gk5YUtmzKZ3dgPVRI675jXbfjEQtRQSoNW6YgUSkIugc26WmckdMjaE1zp407P5gJcTvBWc2p4vbZjGXEBCQE3F6CHi8Bry/khDgG3zNdVjqmWbmhRuuzcjHNykWTmjjuTgAjhdvSRsMH26h56xMaPtzeZ3uXzyI36EKuk7HRKM2m026K6CgkilCdtNDVvsTr9XLw4EEA5syYiUyQEPR48dsdeFq7anZbrLgamnFU1mGvrBuSQ2Y3EoUc44ycHqdM0+w8jDNykGlPH1T77A5K//YSJ377LB5L+NpXgOTLVzHj4fuInjsNURQpqGjmo71lbDxwkkPF9XQ4PAPeR61KzsKpKZw3bxJr52dQeSJ0nGbMW8LLGwt5dt0hGix917Qp5FIuXpzDTWtnsnZhVs9gJBwtuw+T/8unaPhgW6/ryPRaptx/C1O+dSsq8+i4MjudLgqLS7HZ3fgD3a1zBvYeoZIE2agbrfSG3+vD1ekk4PIgDfiHtQ9q7whdvz1AEEKfKAi9C7d+D0/vK/T8/0hCadeCRIIglSDIZAgyKRK5bFyZjH0WURRxuUKpfGq1elyf+8VAIGTq53QRcHsGeM0UkKqVyPQhv4Ph+DuDQRGbw4PN6YFTvteiGHrN6fFhjtKQnhRLenraad8/ry9AQ2tI8Na1dFJvsfXcr+u632DpHJJj7XhFKZf2mK91+3qYjVqi9Sr0WmXID0StRK9RdHmDhJZKhQyJICCVSpAIAoFgKE3XHwji9vpDab1dLWasNhcNrZ00WOzUW2xUN3Vwst4acemGNBggzmUnydlBhs/BdJOSDL2caEmAtpo6UMhJmDmNRpWew7YAG+sdnBQVuGRjHw0E0KjkpMQaSI2PIqXL/DM1LoqUOAM5aWZSYg09v4GAx0vlf97hxB+ex3aifECfI5HL0U1OQZeVjj47HX+ng9Z9x+goKOvVryIc6uR4lGYT7UeLBvT5n0WQSIhdNo/kK1aTcsVq9JlpQ3q/kWZC3E5wVnOquC0pKSE7O/u014OBAPby6lAPu6NFWI8WYz1yAlcvNu4jicIUhXHWFEyz87qEbx6GvMzPRU87URSxHjlB/ftbqF+/DcueIxEPkORReuJWzCdu5TmhXoazcgdk9DTQ9D8xGMTdZMFWdJL24yU9t4780qG3KxIEdJlpmGblYpyZg3FmLqZZU9BmpOB3OCl96n+c+N1zEYvcboJBkYoGK4eKGzhW3khjqz3Us87mpM3mQq2QEx0VSnM1R2mYkmZmyYw0ZmTG99SHhTtOPn+A93eV8I93DrD5UEW/f545SsM1q6Zz0wUzmZuT2FPr2bRpDwW//jtNG3f3uq3caCD3W7cy5f5bUJhG3tVcFEWOlTfxxqbjpESJxOiVpMZHIZVIupRT34NwqVRAJpF01bpKxkUUNOgPEPD6EP0BhJG8fkoEBKkUiVSCIJUiSCWEmw3w+0Opd7Ih9hv9vHK2Hp+g3x9qo+YP0GdB7GcRCE06yGVD7kELofOeu6tfcgix57ricHux2lykJpqZMyN3QKI6EAjS3O4IZW9YHbS0O2iyfvrY0u7AanfT3ummvdOF1e4eExd0jUpOrFGL2aghtkuomruEa2yY+zq1YkwmUXz+AJUN7T0O8geK6jlYVE9jaycxbgfZHS1k2VrI7mgmwWlDNohzV6dMSYtaR5U+moPmVIqN8QT7mNzSquQYdCoMmpCYj9Kp0KoVKOVS5NKQd4pCJkUmk/TcV8ql6DTK04S/Xq1Aq1ag1yiJNoSusQM5xodLGvj6797FeriQuS01zGupIdE1/FlZpyJRyJHpNAQ8XgKOgZu6daOKN5Nw/hISzl9K0kUrUMWOzmT0cDAhbic4q+lP3PaG19pBy+4jNHywjfoPtkXsJOcXJLilMtR+X5/GAZEiyGRE5U3GeIrgNc6aMmoRraHgrG3EsvswDRt2Ur9+K6765oi3NS+ZQ8qVa0hYvXjAYvazDFdtmxgM4qiso/14MdZjxVgPn8B6qHBAtSe9IdNriZ43jZgFMzDOmEJHYRllz7yKt7W9123Cidyh0N9xKq628Ox7B3nlk+MR1S7lpZm5I9pP+tbNdPZR56OINpL34O1kf+MmFFH6of0REVBRb+XVTfm8/MlxiqosLJ8Wz61rsshMjkauUIJCD5LTv28CfOpsrlagUSnGhTFc0B/A227D3dZBoNMxYlkoMq26q0eoBplOg1TRf3lHMBjEZgsN0gwGw7hLux1rPg/HRxTFUH/w9lAv8IA78uwRQSpBYTSgMBmQG3RDirK3d7qoabbh9QdCv4GAF3x2HC4PNc026m0C37hmGRrVyJUluTw+rJ1ubA43Lo8fh9uLy+3D6fHjdHtxun14fCEnf1EMOX+LIni9XoqLixGB7OwcZDIZQVFEpZCh6xJOuq5b932NSk6MQTOif89I4Xc4ady0h/r3t1Lz/hY8IxRIcMiV1GRNwbd4AbHnLWLK5HhyUs2YjRr0GuWA2+UMN063j0df2MKfXttzepaAKJLk7OA8ZzNrPC0EyyrHbB8/i1StIm7FfBLOX0ri2qVETc8Z1xknfTEhbic4qxmsuP0sttJKGj7cTv0H22jevDeii3i11khpVBxOmZwEVyfJjnbinZ3DInrVyfGh6N+sXKKmZqLPmYQhJ2PMDKwCXi/WI0VYdh/Gsuswlt1HBtQrTZBKiVu5kLSr1pJ8xWo0SfHDtm8jbdzitrR1Cd0C2g4W0HaocMC2+uFQpySgiouhs6SiT4fl4RK5kR4nnz/Ax/vL+e9Hx1i3q/iMiIU0GGBRUyUX1hSS5Ox9BloZG03ed+8g+94bRrwGvanNzhtbCnll43H2FZ4+GXH3RVM4d0Yi6QlGUEaBNDRglEklRGmVGLQqDNqxHwx1IwYCeDs68bR24LN1MlLZxnKDtkd8SOQDH0R/HsTbSPJ5PD4Bjxdvuy3Uo9w1AKErkaAw6pEbDcijdIOazPQHgtRbOmlp7zLd83vA28nJ+jY2Hqlna4GFv3znElbPH9n+mQNlvBmLjQS20krq12+lfv02mrfsJeiNvBf8cCA3Gki5fBWpV19A4tplY54Nt+ngSe774/tUhGnBJwjwtSsX8Is7V6HXKLGVVlL79idYDxXSWVZFZ2kVvo7RaX+lNJuIXjCDmAUziDt3AbFL5g6q3dV4ZELcTnBWM1zi9lT8Thd16zZT8eK7NHy4HdHft+udU65kR/wktiRl06rUkuxsJ9VuJdUeWqY5rKj9w3OyV8ZGY8jJQJ+TgT4rHXVyPOrEWNSJsagSY1FGGwc9Qy4Gg7jqm0Mn2LJq7F3LzrIqOosrBjRrDyDVqElYs5iUK9eQcvkqlDGmQe1Xf4zF4MHbbsN6uJC2Q4W0HSoIXZhKKgdUC3MGEgn0sX386sXkfvs2ki5aMaj/48EcJ2unize3FPKfj45y5GgFyxrLWVtzghhP72Lco9cT89XrWfvze1CNYBsAm8PDu9uLeGXjcTYdqujVFOqXX5nL1PRo4k06lFHxmPRqorRKtGOUwhcOMRjE12HH09aOt70z4ghtEAGkEiTBYL/bCIKA3KBDbjKgMOqHnDb6eRRvw8nn/fgEvD7cjS14LFbEAaQuC4KAPEqHwhSFPEqPRDYwoWt3eqhu6sDl8YGrlaY2OwVVrfzsxcMA3Hj+TP7vG2sxR42toVg3n0dx67PZadqyl8aPd1H/4XbsZVUDfg+JOZpqpY6TQTkOmQKnLFRXq/Z7iXXZiXPbifPYMbmdAyrBUMZGk/ONm8i+94ZRMSo8ldYOJw/97WP+89HRsK9PzYjlr9+9lEXTUk973l5Z25NF2LhxT8RtdwaEVEL03GnEn3cOMV2CVpOWNG6ugcPNhLid4KxmJMTtqbhb2qh+9QMq/vMurXuO9Lv+CWM8m5JzOBKT8mk9iCgS43aQ4Wznwjg5c2VefCUncVQM/29NIpejio9BaTYhUSmRKhVIlAqkKkXP/aDPj89mx9/pwGez4+t0hO532An6hibCdZNTSbpkJUmXnEv8uQtHZRZwvAwe/C43tsIyrEeLaD9WHFoeLcZr7RjWz9HnZJDzzVuYdNNlA6pdHcxxEkWR1n3HKH/mVSr+t45gH8ZgzSodH6ZNZWf8ZPxSKXEmLVetnMZ1a6azMC95WC6iHq+fD/eW8crG43ywuxS3t++JJ4A/f30x09LNmKI05E6ZMuR9GC5EUcRvd+JpteJts0U8MeKVSBFkUuTBIPQz8QYg12lQmk3IjYYBC4m++LyLt6HyRTk+YjCIp7Udd5OFwAAdVwVBQKbXojAZUBgNSOSRTbgEgyJNbXbqa6tosXZSVtfO957b3/N6jEHNb79xATecP2PMB+/j5fo0FIKBAG0H8mnYsIPGj3dh2X2k30n/U1HGGIldNo/YZfPwZWfy1wMNvLizNKI5PFkwwFyTnNvnJDFH6qHhnU9oO5Df73YSpYJJt1xB7rdvI2pqVsT7OhhEUeS1zQV8988fhi3pUcilPHTzch68YSkKuZSA20Pztv3Uf7idhg+2YSs6OfgPFwRUcTFIFHKcdU1hJ8hTvryWRf98bFTKgsYLE+J2grOakRa3p9JZVkXFv9+m/LnX+60vbVVq2JScw/bErDN66EkkAteums73rpiD2WoJiaAjJ0LL4yXD4uQ7Wsij9JgXzQoZDlxyLoYpk0d9MDGeBw+iKOKqa6LtUAGt+4/Tuu84bfuPD4vglSjkJF++iklfuZKkC5f3m1o6kOPkbbdR+d/3KPvHK7QfK+7zfWu0RtanTeNAbFqvBh8ZiUauXTWd61ZPZ+qkgfWyDQSCbD9axSsb83lra2FErtExBjVXrZzGtWumE6fy4Pf7kclkI3p+iJSA2xNy8W5tjyh9TwTcMjlBmQy1ICJxu/tNVZbIZShjjCjNphGbYPqiiLfB8kU7PqIo4ut04G6y4OsYXLs3ebfQjTBVvri4hAZLB/kVltPEbTer50/mz9++hElJI5M1FAnj+frUF/bKWho37KTh4500bdwzoGuWIJMRu3QuSRevIOmiFURNz8HS4eRX/9rGP9cdxOcfXIZTQrSOb1x9DrfOScLy/mZq3tiAZffhfrdLvHA5ud+5nYQ1S4Z9fFLd1MEDj7/Ph3vLwr6+ZEYqf33wUlICbuq7orNNm/cOKDqrjDESd+5CtJNS0CTHo06OQ5OSgCY5HolCzv57H6H2nY1nbCfVqJn/l58y+bYvj/kkz2gzIW4nOKsZTXHbTdDvp+69zZQ+/TKNG3b0ua5XImV3/CQ2JudQpzv9AisIcPV50/jhLSvIy4jtee/OkkqsXWK3I78UW0kljorasP3JRhtDXibmxbOJXTIH8+I5GHInj3k7jrNt8CAGg3QUltG0ZR/Nm/fSvHUfnj6MpSJBqlFhXjyH+JULiV02D31WOnKjHplW03NRczqdbHh/PXh9rFi0BLkIAZcbv9P96dLhpH79NqpeWd9v+6bYZfPIfPCr7NfH8dLHx/l4f3lE/WJzUmM4b+4kVs6dxIrZGWF76IqiyKGSBl755DivbS6gsbX/wbJWJeeyZblct3o6q+dPRt4VpSwtLR1zcRsMBPC2deCxWPFH6F7pksrxymSoZRKUHjeiv//fv8KoD0Vph2jgEwlfNPE2UL7Ix8fvdOFutOBpG/wknlyvQWGK6lPolpaW4vP5abI6ueHXn4Sd+FIrZfzktpXcf82iMamrP1uuTz6bnabNe2j4eBeNG3bSWVo5oO1VCbEhMXvxuSSsWdITJfQHgjzz7gF+8c8ttNvDX1PkMgmXLc0hN9pLQ7uHjYV2qpt6/+7Em7R8/+blfPXSuQSaLdS8uYHq1z6kZcfBPvcxanoOed+9g4wbLx2Uz8CpBAJBnn57Pw8/uwmH+/RJSkEMkhN08cA0Ezk2C5Zdh3BUDsCYUhCIWTCDxItCkwPR86efUacuiiJVL7/PoW89hru59Yy3MM3OY+nLf8QwZfKg/r6znQlxO8FZzViI21PpLK+m7B+vcPKfb/TZ3gWgyBjPJ8lTOGJORhQ+vcgKAnxpxVR++JXlTJ8c3mgp4PXiqKils7QKW0klnSUVOCrrcDW04GpowdPSNmx/k0yrQZeVhj4rHX1WWqjPWmYqxlm5KKONw/Y5w8XZMnjoDTEYpD2/hOYt+2javJfmrfuHLZVZkEqR6bUEvb6QWB3iOVeQSkm+7DxyH7yduGXzT3utobWTVzfm8+qmAg4V10f2fgLMyU5k5dxJnDd3EolmPW9tLeSVjfmU1fb/nZZJJVxwThbXrp7OJYtz0KrPNBIZK3ErBoP4bHY8rZHX0bqlMlwyOUqZFI3fCxFkcUiVilAf6BhjqAf0KPFFFm+RMHF8QlkKrkYL3tZ2hjLe6y2ie+pvWxedwIN//pC3tp4I+x6zshJ46ruXMndK0qD3YzCM1+uTKIpYDxdS9/4WGjfsDKUaD2ACXSKXY146h8S1y0i8YBmm2XlnTKjtOFbFd578kPXu1KAAAIDLSURBVOMnm8K+h06t4P5rFnHPlxagU0p6jtOq1Wv4YF8Ff3xpF0fLendbTo2P4ie3nsuNa2cik0poP15M0eMvUPnf9/rMitGkJpL33TvI/OrVZ/Slj4SCimbu/d177D8REqwan4c0u5WsjhayOlrIdbYh9wzMo0RpNpF4wTISL1pB4tplfbbdsVfUsP/eR2j4KHxwZcq3bmX2b7475sZaY8mEuJ3grGasxW03AY+X6tc+oPhPL9K2/3if61qUWjYl57AjMfOMlOUrlufyo6+sYGZWwoA+P+jz4W5qxdXQjKuhBV9HJwGPj4DbQ9DjPW0pkcuRG7TI9NqQwYxBh1wfeqxJSUAVbz6rUljG6+BhsAQDAdqPFdO0eW+X2N2Hv9MxpvskUSrQTU7FNCcPbXoySrMJVawJZWw0qtholF03mVoFQGlNK69uyueVjfmU1pw5qzxUls1M47rVM/jSuXnE9GMcM5ritruO1m2x4rXa+jQI68YnkeCQKRGkEvSiH0kExm2CREBhikJpNiHTacbk9zoh3vpm4vh8SsDrDUVyB2g+FY5PhW4U5ZUVZ/y21+0s5oEn1lNvOdNxViIRuO+qc/jZ7SvDToSNBOPp+uR3uWnauJu69zZTt27zgNr3AURNzQr1PV27jLgV85HrtGHX63R6+NHTn/Dse+EjqUq5lLuvmM/3blpGrDH0HuGOkyiKbDxwkj+8tJMthyt73a+c1Bh+dsd5fGlFHhKJgKuxhdKn/kfpU//rMytKGWMk54GvkPONmyKauHe5PDz++JtseGkjSbY2Uhwh09C+DBZ7RRCIWTiTpItWkHjRCqLnTevXRTzo91P0+Ascf/jPYTOrlLHRLHrhNyRffO7A9+dzxoS4neCsZryI21Ox7D1K8Z/+TfWrH/ZpuuCRSNnTS8rypUun8KOvrGBOTuJI7+5Zz3gaPIwEQb+ftkOFNG/eQ9PmvbTsOITfMYiL6Sgg02pQJ8WhzUhGm56ENj0Zi0rLtgYHbxZZKHEETstaGAizshK4dvV0rlk1jdS4yI20RlrciqJIwOnC2WLFZ7VBBNGPoCDglMkJSqRoBBGZxxNRZFemVaM0m1CYoobVHOqzZGRkUFVVxebNm1m5cmXYdSbE25msW7eO//u//+PIkSPY7aFU+m3btrF06dKJ4wMEfX7cTRbcLW2IgSE4y3fRLAvi83pRajVMmTa153mbw8PPnt3EP97ZH/ZnlRYfxZ+/cwlrF46s0RCM/fXJWd9E/ftbqXtvE42f7O633ORUlGYTCWuWkLB2KYnnL0WT0v+k+/Yjldz923epbGgP+/q1q6bzy7tXkxZ/+jm8v+N0oKiOX72wtdfaVoDZ2Qn8/M5VPf+vfqeLihffofjxF7AVV/S6nUyrIetr15H51avxO5yhjLj65p7MOFdDCy1lNThLK5EHIjfS+izK2GgSL1hG0kUrSFi7FJW59+jsZ2ndf4x9d/8M65HwmQnJl69i4dM/R504ME+LzysT4naCs5rxKG67cdY3Ufb3Vyh7+uWwNRGncsIYz8YwKcsXL87moVtWsCAveaR396xlrAcPo03Q78d6rJimTXuw7DlC28ECnNUNEUUJx5qARIJFraNBpadRY6BRbaBRY6BJo8cmV4XylMOQHGvg4sXZrJo3mQV5ySSZ9RFHK0dC3AZ8fpxtHXjaO8HhRIjg2IuARyojKEhQCkGkvsgGSRK5DGV0FIoYIzLN6Hy3exO3W7ZsYcuWLcyePZvLL788rLgNBoN89NFHHDhwgP3793PgwAEaGkI9sQ8fPszs2bNH5W8YbTZt2sSaNWsQRZFJkyaRlJSE3+/nqaeeYvbs2RPi9hSC/gCellbcTa0EI6gl740mfDgtrThLqvC+sTnUdu6K1egmh1qt7Cmo4Ru/X0dhZUvY7a9dNZ3H7llDcuzI9Y8fi+uT29JGzesfUfXS+zRvPxBxOYpEISd26VwS1i4jce3SsKnGveHy+PjZs5v46xt7w37c9Mlx/PGbF7J8dkb47SM8TjuPV/Pws5vYeaz3XvPnL8jk1/eez7Qu80IxGKR+/VYKf/MPWnYeiujvGQ60GcnELp1L7NK5mJfMxTgjZ8BeCJ5WK8d/8VdK//LfsI766qQ45v/5p6R86fyzKuNupBlLcTu0JnsTTDDO0STFM/Pn9zPtR/dQ/er6UMpyLxb2ee1N5LU3nZGyvH53Ket3l7JsZhrfvn4JF56TjUQycQL7PBD0+UKtmLraMYXuh5b+7ue7bu6WNtyNFtyNFlwNLcPeXmi0kAaDxDtsxDts0Hq6wYZTKg8JXo2BJrX+tPt1LTaeefcgz7wbSnOLM2mZnZ3A7OxEZmcnMicngfQE44hc3EVRxOcP4Oyw94hZWVfLrEg+zS+REBAkyMUgqghn/QWJBEW0AWW0EZleO+qDlszMTFQqFRrN6SnfW7Zs4ec//zm33norl19+edhtbTYbF1988Wjs5rjiqaeeQhRF7rvvPv785z+fFtme4HQkMinqxDhUcTG4LVbcjRaCfUz2CBIJiGKvdbsi0LxtP83b9nPoO7/GOCOHlCvXkHPlGnb9/S4ef2UXv35xO17f6UL61U35rNtVzPdvWsb91yxCrRy9mvXhxtdpp/adjVS99D4NG3ZG3KpHl5lG8qUrSbxgGXErFgyqBnVfYS13/eYdSsKUoGhVcn5+5yq+duWCYTH0WjojjY+fuJVP9pfz8LObOVzacMY6H+8vZ+PBk9x+0Wy+f9F0FA0N2E/WYJyVS8Djo6OghIBrYDWx/SFRyDHOyg2J2SVzMC+diyYpvIdKJNhKKih+4l+cfOGt8NF2QSD76zcy61ff/kK1+DkbmBC3E3whkCoVTLrlSjJuvoLWvUcp/tOLVL8WPmXZ7HFw7cnDXFF5jN3xk9iUPIU6nZEdx6rZcaya3HQz37p2MdevmYFSMfETGq8E3B46SyvpOFGO7cRJ7CdrcDeHIhXu5la8re0EIqitHK+IgoCoUhIUQeLxIBmGLBxNwMfkzlYmd54+QAoCbUotTRo9jWoDFrWOlhYdJ6pr2LZLj1sWGpAadSryMmJJiNERH60joeuWHStBq5QikUrxdUWJRFFEFEOD4u4BczAo4vUH8Hj8+F1ugi43gteL1OdDEfAjEPlFq/toCIAsGERGBFF1ARQGPYoYIwqjfkxdyDduPLOtRKRIJBJmz57N/PnzT7t93iksLAT4Qgr7wSJIpajjzahio0O9chtbCHjONALqjlgJUgkShZygx9tn7W778RLaj5eQ/8un0KQkcN6Fy1n5pVk8eqyNjUWnmxs53T4eeW4z/1x3iMfuOZ8vn5t31kTAAm4P9R9so+qlddS9tzmia4ogkWBeOpfky84j+bLzhtS+z+P186t/beUPL+8K65S/dGYa//j+5UxOjjz9NhIEQeD8hVmsWZDJW9tO8It/bqGptJoUu5Ukp40kRwdJzg4St77Cju/1325toDg0WuLnTSN10QyMs3IxzcrFMGXSkB2YRVGkedt+iv74PHXvbe414h41PYdznvkl5kWzh/R5E4wMEyPzCb5QCIKAedFszItmM+f336fs6Zcp+/srYVOWlcEAKxvKWNlQRlFUHFuTsjkUm0pRlYV7fvcej/xzM1//8kLuuGRuv4Y6E4w8nrZ2WrYfCLX32bqf9qNFYVOIPi8IoojgciMBvIKEwugkiozx1Guj0Pk9xLgdxLgdmHuWduTi4I6HhNCkj9njYJr1TOdMu0yBRaWjRa2j7YgGm0LFMYWaHXIlNoWa79y/hozUGMwmPcfKm5CIIlIxiFQUkQaDSMUgElFEJgZQBALIgwGGGr+JdKgoSCXIDXoURj3yKB0S2dl/WTQYDBw+3H/vyc8bLleoxdPnvSxiJBAkkpAxndmEt60DV2NL2MiaGAgScHkQBAG5QYvg7IR+avidtY2UP/sa8Bo3SaVcn5PJRwEdB3RxVOlNPWVA1U0d3Pzz11k6M43f33cBs7PHp99FwOOlYcMOql9ZT+27myIyG5QbdCRetILky84j6cLlKGOG3vf3SGkDd/3mHfJPnmlKpZRL+fmdq7jvqnOQjkD7JVdDM20HC2g7WED0gXx+djAfd0P41PPhxKLWoV2+kIvuv56ElYOLcocj6PNR/dqHFP3xedoOFvS6nlSlZPrD95H34O1DFtITjBwTNbcTDJnxXHMbCQGPN5Sy/OS/+zypAXTKlexIyGRrUhYt6lAaikIu5fJludx+yRxWzpn0hUxZHquaW0d1PTVvbKD69Q+x7D4y5DY7g0Iuw6XRYZHIsUiUdChU2BRq3FIZXqkUn0RKQJAgFcWQaAsGkAaDBAWBgESCXwilzHanzgYECTqfm1RHO2l2Kyl2K8pg5DVxXomU49FJHIhN41hMck9UVS4RWJioZ2G0jKnyAKleB0J9PZ3FlXSWVRGMoOXNYEl+8vtoc9JRm2NIGLJsHTpSlQJFlB650YBMqx7zPtHhCFdz21d0Jz09ncrKyl5f7952LGtub7vtNv71r3/x8MMP881vfpNHH32Ud999l9raWhYvXsyWLVt61i0qKuKPf/wjGzdupL6+HoVCwfTp07ntttu44447kJ7iatp9rMJxww038NRTT/XUJDscDp566ineeOMNioqKcLvdpKamcskll/CDH/yAxMQzBdWp/xcxMTH86le/YuvWrTQ3N/PTn/6URx55pGfdjz76iKeffpo9e/bQ2tpKVFQUixYt4tvf/jarVq06470feeSRnjTzZ599lscff5x//etflJeXo9VqWblyJY8++ii5ubm9HtcNGzbwj3/8gz179tDS0kJUVBSTJk3ikksu4a677jrjb4rkGIiiiK+9E1dDM35n7wZITfjw2O2ILg/e1zZR996mflvynYpTJqfMEEtpVCwlUXFU6mPwS6UIAty0dhbfu3EpOWnmiN8vHMNxfQr6fDR+souqVz6g9u1P8HWc6QT9WaQqJcmXnUf6DZeSdNEKpCplv9tEgtNq46//+JCXX9mG3u1A7/MgDQZ7Jg2TzXq+dOEcktMTkOu1yI16NElxaFISkBsNvZ5HejtOQb8f6+FCmrbso2XHQdoO5A/Y5bkvXBotrhgz7phoAuWVpHZG9v2RyOXELJpFwprFJKxeTMzCmREJTlEUcdY20nYgn7YD+bQeyKdt//E+S40EmYz06y5ixs/vR5+ZFvHf9kVmouZ2ggnGkFNTli17jlDy5//0mrKs93m4qKaQi2oKKTAlsDUpmyMxKby+uYDXNxeQnmDkKxfO4paLZg/ITXaCyPG0Wqn873tU/vc9WvcdG743FoRP2zJ13UKtmkLtmhSmKNSJsSjjzZTaA3xQ0sLbxxto8tGrCdOw7JYYJM5lJ83eRqrdymRbK9kdzch6EfKKYIB5lhrmWWoIyGQE5s4i5eoLWHj7FRjMxrDbBAMBnNX12IorsBVX0FlSGVoWV+Cs7b3H4YD/lnCfHRSxOkdOWANIFDJkWg0yjTrUc1ilwAcQAGyuYfucGINmRCe3li5dSnV1NTU1NcTFxZGdnY2/6zyVkpIyYp873LS0tDBv3jxqamrIy8tj6tSpKJWfDvyff/55vva1r+Hz+dBqteTk5NDe3s7u3bvZtWsX7733Hm+++Sayrij7ggULSElJ4cCBA3g8HqZPn05UVOj8m5mZ2fO+J0+e5KKLLqKkpASpVEpaWho6nY6SkhKefPJJXnrpJT7++GNmzpwZdr+3b9/OY489hiAITJ06FaPx0xrzYDDIPffcwzPPPANATEwM06dPp7q6mnXr1rFu3Tp+/etf89BDD4V9b5/Px8UXX8zHH39MTk4OWVlZFBcX88Ybb7Bp0yYOHDjA5MmTT9smEAhw55138sILLwBgNBqZOXMm7e3tHDlyhH379pGWlsZtt902qGOgMBmQG/X4Oh24G1rw9RKhDLg9OEqr6Nx1iKk/+hpRuZk0btxN7dufYC/v3XQIQOP3MbOtnpltob7cPkFCpT6G0qhYTjRVc8Hb21m8dgHfu3n0Oxe4W9po/HgnDR/toG7dFrxt7f1uI8hkJK5dSvoNl5ByxWrket2gP18URRwVtbTsPkz7sWLajxVjOXwCX5OFZODB3jashLoDO6kL85JUrUKTmoA+Kx19djr67IyuZTqS2FA0WQwEaNt/nI49R3sE7VBb4bklMho1Bhq0IRPDZrWeJo2eZrUel+yUllDzphLvtHFOUyXnNFeS4Op9EiHo89Gy/QAt2w9w/OE/I9Np0E1ODbVV7Gqv2N1iUW7QIQYCWA+foO1Afr8Go93IjQayv3YdOffdHJFT9QTjg4nI7QRD5myP3IbDWd9E2dMvU/r0y3ha2vpct12hYkdCJtuSsmhVhS5kggBr5mdy9XnTuHhJDuZBpC37XW7aDuZj2XUYy67DtBeUEXR7CPr8BH1+RL+/574gEdBnZxA1Lev/27vv8Diqc/Hj37N9V1r1Xm3L3dhgg40NxtgGDKb3ACGEkHJDbhKSkHLh/tLLJR2S3NyEBAIkhNBbaKYa29jGuODem3rv23fO749dyZK9klayZEn2+3mefbbNzhyNpNl557znPSSfNoGUaRNIPm0CiSVFfc7bNhiGuufWCIepWraSfQ8/S/lL7/Q6OfzRXAU5JE0pIWnSWJx5WTiy03FkZ0Smc0lxd37xWRJ6n6vU6w/y+Bub+f0za2IW7eiNyaRIctlx2i0oI4jVrLA7EwiGDXyBEIFACF8ghD8YJhRjeg6lwKQUJpPCpBSZZoNz26qZXraf7MMHMMWRfm122Mm95DyKbriE1JlTIwF8cs8/txEM4q2spXXPQRo2bKNpyx7a9h7GU1FNoL6JkMcLcc6X2dFz68pIJ/uontv6Nj+n//CVuNYz0h1+/u7OOSOPV0/Vkrv29D388MNxTwU0knpuzWYzs2bN4sknn2Ts2LFA5BjidDpZvnw5ixcvxmq18tvf/pbPf/7znUHshg0buPnmm9m9ezff//73u/WYwrH7rGtBKZvNxpw5c9i2bRs33HAD999/P3l5eQC0trbyta99jYcffpgJEyawbds2rF16gDrWazabue2223jggQdwu93d2v3jH/+Y733ve4wZM4YHH3yQiy66qPPzTz75JJ/73Odob2/n7bffZtGiRZ3vdfw+rVYrY8aM4dlnn2X69OkAHD58mEsuuYQdO3Zw66238ve//73bz/vf//3f/OxnP8PlcvHHP/6RW2+9tbNH2+/388wzz1BcXMz8+fMB8Pl8nHXWWQPaBxCZ1sVXXU+goblznHxHteT23Ycov+sXQCSAGnPL5Yy/82YsTgeVb6yk4vUV1Cz/cEAZIn6TmfKEFIwxRZy1dB6zLp5D4tgCnPnZmG19z5Ubz/dTRyBZ9+Fm6j/cTO3762jYsD2+bCClyDp/NsU3XUbhdUv6Nb3M0dpLK6l8YyU1yz+k5r0PB/XiYl9MNis6MwVd3wy+gV1wtLgTSDltIslTS0iaOp46dyq/XXOY1/c1ovt5ETgz2clPFo1l6oHdHH7yVXxVQ5/23CFxXCGTvvZpxn3m2h7nEha9k57bk5xSqgj4KnAZUAT4gb3AU8AftdaDMmGmUuom4DPADCAVqAJWAP+rtV4zGNs4Vbjyspnxo7uY9t93Uvr8m+z907+oWf5hzGVTAj4uP7yNSw9vY2taHu/lTWBLWh5vrtvHm+v2YTIpzju9mCvnT+aK+ZN67NENNLVQ9dYH1EaD2cYN2zGC8QVxGmjetofmbXvgqdc6XzfZbSRPm0DO4rPJWTKfzPlnYnE6+r0/hkvr3kPs/9tz7H/0ebzl1X0ub3bYyTh3Flnnzyb7/DmkzpxyXFfOAWoa2/nzC+t48MWPqGvu+1+1MDuZhTPHMHNiLuPz0yjJT6MwOxmrxRzXSVY4bBAKG52BrMmkeg26/fWNlL34Noefeo2qt9f0WKEz7PNT9sJblL3wVrfXlcmEJSkxkqablICyWvFV1uCtqhueNG9x0rNYLDz33HPdeps7/he+853vYBgGv/nNb7jzzju7fW7WrFk88cQTnHXWWdx///3cc8893Xp8e/PII4+wbds25s2bxz//+c/OgBnA7Xbz4IMPsmnTJjZs2MCzzz7LTTfddMw6pk2bxl/+8pduKdFOp5OGhgbuu+8+rFYrzz///DEXDz7xiU9QWVnJ17/+dX7+8593C247BINBHnvssc7AFqCoqIif/vSnXHvttfz73//utnx1dTW//vWvgUhP94033tjtfbvdzic/+clB3QcWl5PEsQUY+dmR6vG1DRA69jsq7PWx76Fn2PfQM6SffToT7ryZBc//AYhUVK58YyWVr6+gZef+Yz4bi90IR4rcbamnactG3vnFHyNvKIUjOwNXYQ4Jhbk4C7Jx5mRiSXBidjmxuByYXU7CZkV4+wEwDKrC72MKhQm2tOM5XEHb/lLa9pfRuvsA/vqmuNrTIXP+mRR94lKKrr8YZ05mvz7bQRsGdWs2RebB/fe7NG3eNaD1DAYjEITy+ANIS6KLtFnTSDvrNNLOjNy7xxcfM8xj/uc0/161m589tpxNe/oO1i1mE3deM5t7P30+KYmR85VZv/4Odas2UPX2aqre+oD6tZvRccxn3l8Z58xkyt13kH/VBSekY0AMDQluh5hS6jLgcaBrROMCZkdvn1NKXaq1ju8oH3sbDuBp4PKj3iqO3m5RSv1Aa/3jgW7jVGW22xhz02WMuekymnfuY++DT3Hgkedjjs0wQWd6VYPNycrcEnak5nDQnc7yjQdZvvEgd//+dc6cnMeV507igtklTMtKpPKVdzn81GtUvrGyXz2S8TD8ARo3bKNxwzZ2/OphzA47WefP7pxDL3nahBFXlTLU7uHws8vY//CzPV5Q6MqWmkzB1RdQdMMlZC+eh9ne95X8eOw6XMfvnlrD48s+xh/s+UtUKVg0ayzXnj+VxWeOY0zu8U2HYzab+lUAxJ6eSskd11Nyx/X4G5ooe+GtPgPdrrRhEGxqIdg0dFOmmGxWTFYrymLGluhGmc2REyCTwuEcvLRgMTpceOGFMdOoy8rKWLt2LXa7nc985jMxPztr1qzO8cXr16/nnHPOiWubzz33HEC3nuCuzGYzV155JRs2bOCdd96JGdx+6lOf6hbYdnj11VfxeDwsWLCgx17xa665hq9//eu8//77hMPhY9Zz+umnM3fu3GM+1/FaU1MT9fX1pKenA/DKK6/g9/spKSk5JrDtyTPPPAMc3z6AyP+zKz8SSNbu3NnrOMf6tR9Tv/ZjPvrKjxlz8+WMu+M6Zv3mHtRv78VTXk3tyvWdt8aPd/bvgprW+Kpq8VXV0rBuS1wfWR3/2mNKn3sGxZ9YStENS3HlD2yaGSMYpGb5Og4/+wZlL7w94B5Jn9WGuzCH1MIczA4bymrFZLWA1oTaPARb2wm1tuOva4w7Dbc3SZPHkbVwDpnnziLtrNNImjg2rnoFSilmT83n1otPZ+bE3Ei2UjCMPxjGHwzhj2Yu+fwh8jOT+OYt53LO9O7jWk1mM1kLZpO1YDYzfvhVgq1t1Lz/EVVvr6b67dUDuihgTUki7cxppJ91GmlnnUb67OkkFOf3ez1i5JHgdggppU4n0jvrAtqA/wHeBZzATcDngUnAK0qp2VrrtgFu6iGOBLbvAg8AFcB04F6gBPiRUqpSa/3XAW7jlJc8uYQzf3MPp//065Q+8zp7//xkj5ORpwW8XHloK1ce2koYRXliCvvd6exPyuBgWxOvLP+AmtpDTG+oxNqPYkHHK+zzR66av7GSjUQmH89dMp+cJeeSc+E5ODIHd7qAeGmtqV/7Mfv/9hwHn/h3n+N7THYbhddcxNhPX03OBfMGrWqh1pr3Nx3kgafW8NqaPb0uO21sFrdecjo3LJpGfmbSoGz/eNnTUo4NdJ9+naq3Vsc95+JAOHIySRiTT+KYfBK63BLH5OMqyuNAWSmhUAiLxYJ7fHG3z3qajm8slxh9pkyZEvP1jz/+GIhMZdQ1rfdo9fWRE/Wysviz3DrWff/99/PQQw/FXKa6urrX9fbV7t27d3emAB+tI43X6/VSX19PVlZWt/d7Gs6TnX0kgGpra+sMbrdtixQ/jBUQ92Qw9kFXHdMCOfOysCe6MN+4lNLn3ox5rAm1trP3wSfZ++CTJE8dz7g7rmPsp66i+BOXUvyJyNRNgeZW6lZvpHbleurXbqZx8y78gxCUHQ9LgovsxWeTe/F55F++cMDBT9gfoOrNVZQ+t4yyF9+Ja/xuhxarnf1JGZQlpFCamEpFYgo33rKI733x4rjnBQ77A3gra/CUVdF+oIzWPYeit4O07D4Y8zs3aUoJ2QvnkLVwDlkLZve7d9rrD/Lyql38c9lm3ly3L+ZURUfbvK+a1VtL+d4dC/n8lWf1OC+v1Z1I/mULyb9sIQC+mnrq120h0NQSmaO+Y976aIAfbGnHCARImjSWtLOmk3bWaSSOKxxxF/fF4JDgdmjdTySwDQFLtNZdLxq+o5TaA/wCmAx8A/hRfzeglDofuCX69GXgGq11R7S0Tin1ErCeSDr0L5RSz2itmwbws4goi9PB2E9dzdhPXU3T1t3s/fOTHHjsBYItsa9NmNEUtTVS1NbIwsq9/dqWMplInj4xMiH5vDOwZ6ZhslhQVgumzpuVYFs7Ldv30bR1D81bd9O8bW9cV2q9FTXsf+Q59j8S6dVInTWN3CXnknvxfDLmzRy0XtBYjHCYulUbKH1uGaXPv4XncEWfn0k7cxoln72e4psuw5Y6eAW7gqEwz763nd89tSbmhPRdXTS7hLtunMviMwc+N+GJ0FOgW7tqQ7+Kg5gddpwFObgKsnHlZ+MqyCFhbEG34PV4Ut3Tk1wcfr7H0iijSnrSyTsl2GuvvcZPf/rTY16fOXMmv//97/u1roSE2GPYmpqagEgAuGrVqj7X4/HEP6KnY92bN/ddhK6n9fbV7qqqKqqq+k67jLX+ntbddRx11xopHWOJU1Pjn1JmMPZBT2xpKcx/8n68lTXs/evT7P3zkz0OJWnevpeN3/w5m/7r1+RduoDimy+n4IpF2JLd5F2ygLxLFnQu662uo2b9dt5+6l12Ll9PWm0NWd5WHMbQXKzzu1w05hfQlFdAQ9EYGouLwGxF1YF6dA0mpVAq0hupFCgi9yaTwmo2Y4lm3lgtJmwBP8k7dpD08WZcH2/B5Ou56nRXOjGBTe5MtiZmsislm0pXUmfRwrF5qTz6nSuZP6O4j7V0Z7bbSBxTQOKYApjffc5rrTW+mnrqtu5m7cuvoxw2Fn/xdlLH9L9InWFoPth6mH8u28yz722npb3/c8k3tfn4xu9e5+F/b+C3X13K/NP7/lkdWemdga4QEtwOEaXUbGBh9OlDRwW2HX5NZIzsFOBrSqn/0Vr3Ny/129H7MPClLoEtAFrrOqXUd4AniIzD/Wx0u2IQpJw2kbN+/13OuO9uDj35Knv//ORxVfANKhO7U7LYk5zFgZRMUmZP5/xzprD4zHEUTMnHaul5DEjWUV9YvtoGmrbsomb5OiqXraLhw819zvvakcK8/b4HMVmtJE+fGBlLM2sqaWdOI2X6pAFPZ2CEwzR9vJOa99dRs3wdNe9/FNfVa3t6CmNuvZJxd1xH6oyep8MYiOqGNh55dSN/eWk95bU9p+XarGZuumA6X71xLtPGRnpcQl4fvqpavJW1+KrqCDQ2E2huI9jcSrClDcMf6Cz4ZQSD6GCIoD+Ar6ISDIMP/u8lLDZrJEXXbEaZVPSxCUwmMIzIyayh0YYR+d3pSBqxEQwR9voiN18geu8n7PUT9kXmoFQWc+fFjyOPLSRNGot70lgy555ByhlTsLoTOtscaG7F8Adw5GRGA9lsbGnHl2bdF5NJDVoRJjF0qqurYwacsdJbByoxMTI+ftKkSezcuXPQ1tux7o6Ky/3p7Yx33QD/8R//wZ/+9KdBXXdPkpIi2SIdAWs8hnIfdHDmZjH9u//JtHv+g/KX32Xvg09S+cbKmOnGOhSi/KV3KH/pHcwuJwVXXUDxTZeSe/F5nRdWndkZFF+6gDsuXUAwFOb593fw7LvbWPnBdlwtLaT5PaT62knze0j3t+MKBrAZYWzhUOe9PXpvKIXfbOm8NducnfNz1zgSqUhIps6ReKT6fakfSnvP4Dlamq+d0+vLmFlXxoSmGixxzi1e7krm4/R8Nqfnsy8pAyNGuu/EonSWnj2BzXurqWlsJyctkdx0NznpiXH34MailMKW7MbidETSjC1mzK74LlhqrSmtaWHttjLWbi/jlQ92cbCyacBt6Wrr/hou+tqj3Lj4NH72xQtHTIaUGPkkuB06V3d5/LdYC2itDaXUY0TSlVOJBMNvxrsBpVQicEH06Zu9VCJ7DmgBkoBrkeB20FkSXJ29ZA0bt3Pg0eepWbGepo939ln0IKRMbEvNYV1WMZvSC/Bau/SW7qll5Z5afvro+7hdNs4/YwyLzxrHBWeOY0Jheq9BhyMzjZzF88hZPI8ZP/wq/oYmqt9ZQ+WyyNQGffWUGsFgZ7C7L/qaslhInjaehKJcbGkp2NNTsKUloxJdhMoOgtNBebtC+YOEWtvxVtXR2jG9TH/mUlWK3IvnU3LHdeRfecGg9iBrrflgayl/efEjnlu+nWCo55OP1EQ7X5pXzBXZNkzlh2n+3gre2H2Q1j2Hep0TLx7VDF/hkIaPtnLo8ZcBSCwpInvxXLIXzyXnwnNwZh/fnJJiaA1XtsDtt9/ebUqZodBRTOnAgQO0tbV1Bo2Dte4VK1awefPmQQ/sOtodT4/oYDnttNMAWL06/lGkQ7kPjmayWCi85iIKr7mI9tJKDjz2Avsffpa2/aUxlw97vBx64t8ceuLfWFOSKLz2Igqvu5jshXOwuCLFxqwWMzcuPo0bF5+GxxfkzXX7eGnFTl5dvZumtvh6RQeb0gZFrY2c3lDOGXVlFLfFP8fvwcQ01mcWsj6ziGpX34Hb7sP17D4cOyMrLclJfkYS+Zlu8jOTyMuI3He9JSVELkwb4TDNW/dQu2p9pHjlxh207DrQ7Vzl1V/9k5wLz6HwmgvJv/KCziFL/kCITXurWLO1lLXby1i7rYyKur7n/AVIcFi59JyJpLmdhA2NYWjChtH5uLapnTfX7Tvmc0+9s5VXPtjFf922gK9cdzZ2m4QuonfyFzJ0zovetxNJC+7J8i6P59OP4BaYA3R0oy3vaSGtdUAptQZYAsxRSlkH0EMcl2AwSCDQ/xLyZrM5ZqGOjnUOdMqqoVqvyWTqscciafpEpv7kLrJWbaT0xbepeOkdfDV1Pa5Lm82oBAdhqwUsPRdn8Pj8vLFmF2+siQRFeZlJLJ41lvNnjmXBzOJeUyJNJhP2tBSKrr+EousvQWtN6+4DVC5bRfmbq6hZ8RGh9njS0DQN2/fQsH1Px1NMoe7Be0cJKG02oY+e89Pae/XBhHFFjP3kFYy59UpSxhbGXCYcDhMeQJXEPaX1PPPuNp58dwcHKo49AVFK4wqHGN9Sx5nhZmab/Ti3lhF8o5WYpUqO+llUMBxzHletFLqX32tfVCiMivFnqhXoXnry+16vgdKatn2Hadt3mH1/eQqApGkTyLliIUXXXUzy9In9DqYsFkuvU9IYcUxbFLO9queq0QNd53CtV2sd97HHMIxu7XA4Ij0qXu+xhbjiWe/R6xvs9sbS09/D0esdM2YMs2bNYsOGDTzwwAPcc889A15vx8/Zsf5rr72WFStW8Ic//IFPfepTvVZZ7mu9R7v00ktxOp2sXr2aFStWcO6558b8fF/7uK+/t66/u6VLl+JwONi3bx9PP/00N9xwQ8x1dt2/119/fdz7oLf2Hr3ejrb39N1vzU5n4rc+y4S7P0PtBxs49OiLlD39OmHvsQGpYTXjb29n799fYO/fX8DssJN53lnkXhwpgpg4LlJoyGKCpWePY+nZ4wiGLmbV5sO8tnYvuw43UFbbQllNM17/kdRli0nHPD7HI6zB0KrjhyXb28qkpmqmNlYxubWGhPCR0ymjl+84A9iflMGmjAI2ZRRQZ0sgrGO3ymzS9Odbo7XNw842DzsPVmEAYePIepU2KGpr5Iy2Ok7z1JHXUI3t6N+VCTAdabthhClbtoKyZSswvvQDKrNy2ZJZxApnFjW2Y881zEoTa4pvpWDBGWP4xAXTueyciSQ4j71QrZTqnHZq5ceH+MbvXmfL/khKu0lpzAoCgQA/+utb/OO1DfzPFy/igrPGHbOe3tZ7tIGeR3Sw9TAFlWEYnXOPD4TVao09Nd8QrVdrTTDOWTli6en7/njXe7wkuB06HZUn9mqte/uL7Jp7FbtaRd/bOHo9PW1nCZHf+QRge7wbic5j25vOma3Xr19PeXmsqcN7V1JSQm5u7Ana165dO+B/kqKiIoqKimK+t2HDhn6PK+qQm5tLSUnJMa8HGpp59/8eoXz9FgxfdKzJhKzIrRf5wPU0cXNjOfVeO/925fFxchZaHTloTEiHjG7Zmy3s2fExe3Z8zF//CVmpCRRnJ1Ock0xBVhK2LoFPcnJytykmAKxFuRR97nqCi2YSKivHW15F+/5S2veXx1290dzuI2Vd7LQtb2EG3jF9V5O0Z6XjnjQG96Rx2LPSqAWaDu3j7JzYPYiVlZXs23fs1d2jGYamvK6V/RWN7K9opLYp8rs+UNH9S7+kpY7p9RVMNreRUpyESom814qiNSV2gB1L6qrtqBhVlUPJLlrO6PuLuCfJ63ZjiTFuKeyy0zx7YoxPxCdp036sMYo5Ne3ez4E1DlavWYMtLZmkqSW4p47HnhHf2L7JkyeTkdH9d9cRZIRCIdraBlY3z26393ii0t7ePuDgy2az9Xii4vF4BhzgWq3WHoMHr9fb54lV1wJEXfdZYWHkb/LDDz+ktfVIj0lHcNHXCZDH44n5OzCbzT3OT+33+wd8DDaZTLhckZPhjp+pazB0dED0ox/9iKuuuorvf//7+Hw+vvjFL3bOKQuR3/U777zD66+/zqOPPhpzm8FgkLa2tm4nWDfffDMPPvggW7Zs4ZJLLuFXv/oVkyZN6vyM1ppNmzbx9NNPc8stt8Ts2ezp79flcnH33Xfzk5/8hKuvvppf//rXXHXVVd0urFZXV7Ns2TIaGxu59957u223t3V31d7e3rmMy+Xiy1/+Mr/61a+444478Hq93Hzzzd3muX366afJzs5m3rx5ANx000386U9/imsfXHPNNSxYsCDmxWHDMDq/O0OhED6fD7/fz+HDh3ttf4fJP/ky039+NxUvvUPZ069T++6Hnb2GjedOPWb5Ok8jO55/GZ5/GWtaMoklhTjzs3HkZGJLjYxHVcBXrpjSeR6htaapzUd5bSsHKupZt/p9DMMgJSUFk8nULUtaa42GyLCPyAtEn0IggLXBi2tvJc79+3HtO4Cly++pafYEGhN6TuE1lMKTkkpbWjrNaekELFYyDM0iw+BQg8GHB7yEYxRampoFyQMsZVDXBo2HW5jSWBW5NVWTEIr8n7VOK6K9ZDz9LePnAuY3VXDpB6s4lJjKhoxCNmYUUp6QDEoxJhVyu3Q+pyc5OW1cFlPHZOJ22YB6PvowdpaBy+Vi1qxZAJw5MYu3H7iVR17dxE//vpJki4+ilK5LN/CbvzzJS6+lsXjWmM6pgmKxWq2cffbZMd+L9zyiJz0VjqurqzuuIRVz5syJ+X3U3NzMli3xVQSPZebMmTHH9be3t7Nx48YBr3f69OkkJx9b/yQQCLB+fW/9ekNLgtshEJ2ap+PsrteSg1rrRqVUO5AAxH8mHdF1+b5KG3bNBSqkH8HtUZ/tVVlZGe3t/a9+Wltb22NBjerq6gGfYFZXV/d4oKmtrR3wlbCjD4y6pZ3gyysI/nsVLZPyMFIGlk6nQiHG7t7PV9hBKNnNvomTeDOtmI3+vr/lahrbqWlsZ93OCpSCtEQrWUk2spJsZKclUFkZu1BSc3PzkSC/MAMKM7AGQuimFnRjK0ZDK7qxBVoHZTpmcLswZaagMlNRmakYCQ6agebWRmiN9KiaTCaam2On/ba3t3cWU+kqEDJobAvS0B6koS1IXWuQUPjYkwZ7KMiMhnJOryvntIZK3KFI4OjPTKaNAYzpMZvAYcdUUoDJbkO5HCiXHaxWsJgwnDZMGYlgUqBM0XsF6MilfK0jj3X0zEpHH0evslpzsrGE9ZHPKcBsxuSwYU6xg9kcaYPZFB2vGz0Z7ei10hoMI3qvwR/EqGmEPZXQR6XiQEMzdSs3ULdyAyQnYirKxlSYjXL3nCVQX19/TJCUnp6O0+nE4XDgi7OoytGCweCQZGEEg8Ee23Q86w0EAvj9sYuphEKhPo9pHdsNBALd2nfOOeeQnp7OwYMHGTNmDBMmTMBms5GVlcWDDz7Yud7bbruNdevWHbPeyy+/vNt+3LFjBxD5n+spgI2nvT1RSnUeZzvW7/f7aWlpidl7Mnv2bP7whz/wjW98g5/85Cf84he/oKSkBKfTSVNTE4cOHSIcDpObm3vMcaCjjV6v95jfqVKKf/zjH9x22228//77zJkzh8LCQjIzM/H5fBw6dKjzu+vCCy/stu7e1tvhy1/+MrW1tfz5z3/mM5/5DG63m3HjIkXnampqqKiIDAO54YYbuq27428kHA73+b/h9/u7LfONb3yD0tJSnnzyST796U9z1113MXbsWFpaWigtLSUQCPDAAw8wc+bMzs/Euw/OP/98Wltb++yV6ehR8ng8cQcLnceIbCd8+Rqct15E6IPNhFZs6vOzwYZmGhuaaVy3NfKC1YJKcaPS3FS53STk56CSE1CJLpQtcjHMDkzIcUV/jzF6l4MhtC+AbvdCmxfd5kW3tqOb2sDjw3mwGtfBmrh+NgBsFlRuJqaCDKw56dgtFlI5csLmDxl8fLCVmkZftx7WDtMKE7jqDBdGKEgwpAmEDfxBA1/QwBsI4wsa+AIGvmCYcPTf0mKEyfS2ke1tJae0gtyP+1e8soPHbMURDvbaa1zc1khxWyPXHNxMtdPNhowC6hPHk56cTrrbRnaKjdQEK+CjprKUvvacxWKhrq57dluRHX55y3heWXeY+sZjv+/3ljWwv7yBSXkJTMpLwByj23gg5xHx6qljxOv19msc/NFaW1tjfs/5/X4aGhoGvN7m5uaYF4eDweAx+74/GhsbY17EDYfD/apmP9gkuB0a7i6P4+mm6Ahu+xsR9Wc7Xc9iB28g0ylOt7QTfPF9gq+sAl8f6dguB6b8TFReBnj9GIer0dUNPc7rZ2luZdK6j5jERxgTijg05gwOpaZS2Rb5cuu1XRrqW4PUtwbZUd5Oi78Jr25kYl4Ck/JcTMxNICWhlwIUNgsqKw2VlXbkSy4UQje2oZvb0IEgBIKY2nyYsaBbPeg2L3j9YLeiXA5MhRmo/HRUohPldqHcCagkFxzH+FmtNW2+EPWtQdp8IVq80ZsnhCfQ8z4xGwZZ3lby25u55YPV2Ps7/ZLdhkp1R38OF7hdkSDWaQdr5DDqyMqKHXz5/ZiP40vJmpHR45eSqY8vpZ7S8EwTCnFefj6WigaMLXsJb9lLeNuByO+vJ81tGFvaMLbsg0Qnpqw0VHYapqxUcAxdVW3RXWJiIs8//zz33Xcf69atY8OGDYTD4c4e3Q6tra0xT4Z6OtkbSa699lpmz57NQw89xHvvvcfhw4cJh8OdvZALFy7ksssu6/d6CwoKeP311/nXv/7FSy+9xPbt29myZQupqamMHz+eWbNmsXTp0h7TinujlOJHP/oRV155JY8++ihr1qxh165dWK1WcnNzWbp0KZdccgmXXnppv9fdE7PZzO9+9zuuvvpqHnvsMdavX8/WrVtJTU1lxowZXHTRRSxevLjbZ+LdB/HOHzwYVEoi1kvPwXrpOVj2HUCXVmOU16Lrmvue9zYYQtc2omsbCe6pwFfeZUyq3RoJct0ugrPGoa2WyIW+sBG5+OcPgj8Queh3vNwuTLkZke/4zJQjRamOUlbvY9PBVvwxaj24bCY+dX4eC6em0dDQQCDQeyK1bm4jVF5HuLIOU30zKrqvbKH4hoa1W2w02F002l0025y02hyETCYs4TDZ3lZyPc1keVux9PI7yPa2srR0B+2OZnyhXEwFWZgsmeBMI2aecj8kuSxcPiuT0ioLmw610tDW/eKboWFHeTuHar3MKHaTnzbwqv3i5KKOZxyNiE0pVQh05Of8XWt9Wx/LHyZyUW+f1np8P7bzEHBH9GmJ1np/L8veQWQ+XIBPaa3/0Y/txJOWvA7gscceIycnp4/FjzXa0pIzXImEnl/O/j/9i3B797FvLWeMJRjtuXXkZpI4cQzuCcXYs9KPWU/Y66N11wFad+yn/WA5tpom3Ntip3a1TisimJuGe9JYKBlDhdnBweoWSqubCYZ7D3abfbClqvsXzdjcFM6anMvkLBPpzjCZKQnR9KH4daQT+Xw+3n//fQAWLFiAw+Hg8OHDcaepdaW1xhMwcKSP4UBlEwcrm9hf0cjBqshjtyVAybG78hgmwyDb20peezPZ3pbOL+j092Kn9vgzk2mbVgQmE868LFxFuThyM3HmZmFJ6ruabzzpRKFQiEOHDgFQXFwcV6XZE5VOZIRCNG3YzuGX3ubjfbsJNsefPmzLTCVhTD6u4nxOX3AOeeO7p2F3BCdKKfLzBzZP5KmWltwTi8XSOe7WMIzONNXExMS40pJ7ciLSko8WKy05XkqpHrN9gsEgfr8frXVnz6jdbo97/HhPhaw6UnAHyuVyxewJDYfDMcdQx8vpdMa8sDZU6+2allxeXo7X68Xv98c95CDW0IUOK1eu7Hwc9vlpP1BG+75S2vYdPua79mgJeypwdA1uu2g4d0okuB2AWD239qx0MhfOpunsyViKsrEmu3v4dERjq4831+3jYNWRi0uVLbCvIfI3uWT2OH7zlSXkZUTWs2XLlmMuROmwQfvBMtr2HKJt72FCPUw/aKttjnkeYS7Mo/H8mbTkZ+JJTKZdmfAGQgSCYUJhg2AojNfnx6QgJSmBBIeNBKuJxJYmnNU12HfsJ2nNjpjbbJ+Qhy//yBezyWEjcXwx7oljSSgpxNTLvu+alny0jvMIrSPVk5d/fAiPL/axqDgnmQvOHEtGcuR4I2nJRwxHWvJLL73Ebbd1hj+FvRS9HXQS3A4BpVQmdGZiPKm1vqmP5auBLGCr1np6b8se9bn/Bb4UfTpFa93jf5RS6k7gj9Gn12utn413O3G0o4Bo6vK2bdsYPz7u+LzTaCko5attYNcDj7L3T0+ie5gr1LCYKbz+Yqb+1xdInnLsuNwe113XSNmzb3D40RdoWL8txnpN3a4GOwtyGHPL5eTfeBm7gmaWbzrE+5sOsmFXBaGjgt2jC0x01bUQRIrbweTiTKaOyaQkP428aNXFvIwkslJcmI+aUL2jYIPX62XZsmUALFmyBKfT2WPBBl8gRGVdK+W1zZTXtlJW20J5bQsVda0crGziUHVT5Mu2h/Z2FJiIxRI2mNpUyazaUmY0lOMIH3uib4oxLjb5tInkXHoemYvmknH2DCwJ/Z+vNJ5CEF6vl7fffhuACy64oMdgIp71DmUhiEAgQMNHWzn8zOuUPbcMb2V8Y7ABVNjAkZ5K0sQxuCeNJWnSWMLnTMeU5MLmcFAygOMDnLoFpXpbr2EYnal1SUlJKKUGZb2D2V6Iv6DUYK/XMIzOcclut7vXQmf9We9AxVugaTStd9++fZ1DBsaOHRvXensrOtfTxQ5tGDR9vJOKN1ZS/+FmmjbuwFfbPZBVYQPVQy9sb4We+mI2m0mZMp70s2eQec5MMs89k4SxBSil+jyP8AdC/P6ZtfzmX6sIHPXdY2hISnTyqy9fws0XTe+2rzuGAoS8PqreWk35i29R8er7BFviqEysNaaQgSMnk5wL55FzwTyyL5hHQmFur0MM+vx+MgwaV2+i9Pm3KHv+TTxlR+Z0NsymHntqzQ47ORfOI++KC8i7dAH2o+ao70/hp+Z2H794fCV/ffGjmGOVLWYTd1xxJt+65VzSklxSUKqP9Q7lecSOHTuYNm1ax0sS3I520TG3HZcYX9FaX97H8m1E0pLXaK3n9WM79wHfiT6drbX+qJdlvwn8Mvr0Eq31G/FuJ452dAa3u3fvZsKECYO16hHDW1XLjl8+xJ7/eyJmhUcAZTJRdNOlnPbfd5I8dWAn8B2atuxi/yPPc/AfL+GriX0luqvM+Wcy5pNXUHjdxYQSE1m1+RDvbjjAexsOsnlfVZ+ZXfEwmxS5GW7yMtwkuew4HVacNisuhxWrGaoqyrBaTBQWFWNoRSBk4PUFaWzz0tjipanN1zkueDBZjDBTGyqZU3uIM+rKcYb7PlArs5nsxXMpvOZC8i49n4TigfUm9lesiwAjnTYMaldt4NCTr1L6zBv4qvs/Pif/gW+TMLEYV0Y6uVYnJqsFZYnMu2uymFFWCyaL5ah7c2TORdGjo4PbeIO3U4Xsn6G3Z88eQqEQFovlhH73a63xVtTQsGEbjRu207B+Kw0btuMtrx7wOq0pSbhLCkksKSKxpIjkaeNJPX0ySZPGYuohSOqtfS+t3MU9f3ozZnV+gCvmT+KBr11Kbnr3Xt9gWzsVry6n9Jk3qHj1/ThnMgCTzUrW+XPIu3QBuUvmkzSlpF/V7vvz/aS1pmH9Vsqef4vS59+kZUd8vaDKbCbtrNPIXnQ22YvOJvPcWQO6mLztQA13//51lm88GPP9tCQn3719IZ+78kwsZvm/Hw579uxh4sTOopcS3J4MlFK1RIpKfay1PqOX5VKBjoFRT2utb+zHNr4M/D769Bqt9Qu9LPsA8NXo02la6/4UlOqrHSdtcOutrGH7L/7K3j/9i7Av9nhEZTJRfMvlnPb/7iRp0sCr4sZiBINUvL6C/X97jvKX30X3ceWuI2gr/sRSCq65CHtaCi3tfj7cXsaabaWs3lrKh9vLafMOLBVwpHCa4Xzdypy6wxTs2YU5jtQ7ZTKRvXguRTcupeCaC3FkpJ2AlnY3GoPbrrRh0LRlN9XvrKHqnTXULP+QUA8ZDF11DW6zif8kUZlN0QC4SzDssGF22DE77Jhssa9GnyokeOud7J+hN1zBbU+McJhgUwv+hmYCDc3465toq6ply+q1YBhMmT4dR1IiJrsNW0oS9sw0HJmp2DPTsCb2PfwkHlv3V/OtP7zBez0EXnkZbn7z1aVcOX9S5/Er0NRC+cvvUPrsMirfWNnj+cbRXIW55F26gLxLzyd78dzj+hmO5/upZdf+zh7d+g/jn+/ZZLWSPmc6WdFgN2PeTCzO+MbOaq159r3t/Nf/vUl5beziUFOKM/n5ly7iojnH1+Eg+k+C25OQUup9InPdtgMpPU0HpJSaB3wQffojrfX3+7GNxcDb0af3aK3v62XZN4hMBRQCErTWgxbdnIzBbdOWXez87SMcfPxljEDsnkBlNjPm1iuZdu9/kDQxvnSs4+GrbeDQE/9m/9+eo3FT7HEv3dpnsZC75FyKblxK3mXndwZzobDBtgM1rNlaypZ91Ww9UMP2AzW0ekZWwJvotFGSn8bYvFRK8lMZl+oi78AezGs+ountDwj2MN6oK2UykXX+bIpuXErhtUtwxBj3fCKN9uD2aEYoRMNHWzuD3bpVG2KelA00uO2LMqkjgW703pLowmwbvG2MZBK89U72z9AbacFtLCfquHuoqomfPrqcx5dtxoiRMmsyKf7z2jl89zMLcbvs+OoaKHvhbUqffYPqt9dgxJkemj73DAqvvoC8yxaSPG3CoF3gG6z95CmrouzFtyl9/k1q3jsyzVM8TFYryadNIG3WVNLOnEbqrGmkzJjUa8Db7g3wi8dX8sBTq/HHGHYEsHTuBO678yImFsUe6y0GnwS3JyGl1M+Ajhno52qt1/aw3H8B/xN9erHWelk/tuEG6gAb8LrWemkPy9mAWiAJWK21HtQyiCdLcKu1pvKNFez8zSNUvbmqx+WU2czY265i2r1fxD2++AS28IjGTTvY/8hzHHz8Zfx1sVOeulGKjLlndF7hTZ05tdsXotaaw9XNbN1fzdb9NWw/UEtZdExsRV0LwRiVHY9XUoKdgswkCrOTKchMoiAriaLsFMblpzIuL43MFBf+ukbKX3qb0uffouqtDzD8cQTgSpF13lkUfSIS0DpzMge97QN1sgW3RzOCQdoOlNGy6wCtuw923jtuXoKjOHfQg9uemGxWrIkuLIkuLAkuzC7HSdnDK8Fb72T/DD0JbqGqoY2f/2MFD728vsfvynmnFfKbr17CpEQzpc+/SemzyyKBXxzj+pXJROZ5Z1F43RIKr7kIV0H/i3bGYyj2k7+hifJ/v0fZ829GeqR7GNbVG2U2kzy1hNRZ00g9YzJJU0pInlKCqzC323H9YGUj//3nt3lueezERIvZxBeuOot7blvQWXRKDB0Jbk9CSqk5QEdA+2et9RdjLGMCtgJTgCYgS2vdr5HdSqlXgaVEemTHxvrjUUrdBDwRffptrfUvj17meIz24Dbk9XHw8ZfZ9dtHaN7e89xwymJh3KevZtq9XyRxXH+nJB4a4UCAilff59C/XqH85XcJe+KrjOnMzSR36QJyL55P5rln4srP7nFZw9DUNrVTUddKeW0LlfWttPuC+PxBPL4g3kCI1nYv+w+WEgwZFBbk4XLYsVnN2KwW0twOUtxOUt1O0pOd0UA2maSEYyvJGuEwjRu2UfXmB1S8voK6VRvi+vKHyLjjohuXUnjdElx5Pf88J5phaCrrW2lp91Pb2MJ7K1YTDBmcM3c2aSlu3E4biS47bpcNt8t+Uo4P2rNnD8FAAIvZwpjcPHQwhBEMYYRC6GCIcDBEKBCEUBiOo8hHT5TJhCXBicXtwupOxJLgPCnG80rw1jvZP0PvVA5uD1Q08sDTa3jstY14/bGHDBVkJfGTq2cwo/IQZc8to/aDjX1Pb0TkfCN78VyKrltCwdUXnpCso6G+CBDyeKldtYHqd9dS/e5aGtZt6Vev7tEsCS6SJo8laep4kqeURIPecXzcBt/+81ts2lMV83NJCXbuvukcvnz9XFyOUyPLZzhIcHuS6pKaHAIWaK1XH/X+t4BfRJ/+UGv9g6Pevx34W0/vR5fpmpr8EnCt1jrc5f0MYD1QRCSAHqe1jqOrL36jNbht/Hgn+/76NAf+8RLBpp4n8zbZbYz79DVMvecLJI7pa1ak4RNq91D+ynscfvI1yl95L75ezihXYS4Z886I3maSOnMK5h6qAcYy0C9FIxikcdMOaj/YSO3K9VS/s5ZAQ1Pc282YN5OiGy+h6PpLhuxqdn9orfl4bxUrPj7Etv01bD1Qw46DtT1OXRCLw2YhJdFBTnpiZ6Xq3PRE8jKSyMt0k5vupiAriVT36On17XoCXFA0Bo8/iNcXjN6HCHW5gKEAk9aYtYFJG5iNI48t2sAaDmM1DEwcRxVYkwlrUgLWpESs0fF3o7FnV4K33sn+GXqnYnC7flcF9z+5mueWb4+ZfgwwJuzlP7M14/bvpmnDsbMfxGKyWclZMp+i6y8m/4pF2NNSjqud/XWiM4uCrW3dgt3G9dvivpjdG5PVSuKEIppS03mvLsgek4tKVxJVriSC5iNTEuVmuPnu7efzqUvOOCkvKg+34QxuBzbpl4jXXcAqwAksi6Yqvxt9fhPwhehyu4FfD2QDWut3lFL/iq7vSuBNpdT9QAUwHfhvIoEtwH8NdmA72gSaWzn0xL/Z99enY06305U9M42J//lJJtx5c+dVU48vSEOrl4ZmD42tXoIhg+KcFMbkpmC1DHyqgcFgSXBRfOOlFN94KcHWNspeeofDT71G1Vur++zR9ZRWcri0ksNPvQZEAvqU0yZE5qkbX4R7fDGJ44twlxThyMnsdyBghMP4a+pp2X2Q5q17aNq6m+Ytu2nYsL1faUrKYiF70dkUXnMh+VddMCJ6aL3+IMs+3Mfra/bw+to9VNXHPz9sLL5AiKqGNqoa2nq88gyQnGCnOCeF4twUxuSkMCY3lTHRx8U5KSQ4+zdn8WDTWnOwsol1O8txGq24nRbcCU62H+x9WiENhJUirMyAGXr4t7IYBhYjjNUIY+tyb4rjgq02DAJNrQSaItNqmGzWzkDXmpSAKY75h4UQp47mNh9Pvr2Vv72yIeZxWWmDcS31zGyqZKG/HmdFBRDpUeiN2eUkb+kCCq9bQv5lC7EmxZ5j+WRkdSeSd8kC8i5ZAECwpY2Gjdu7Vb9u2bk/rp7uroxgkJbt+zCxj8XA4o7XgYqEZPYmZbIvOZO9ngy+9MuX+f3Ta/nR5xdz2TkTR+VFTnEs+QYfQlrrjUqpTwD/IDLe9WcxFtsNXKa1jmPysh7dEV3/pcCi6K0rA/ix1vrPx7GNUcsIBql+dy0H//lvDj/1Wp/BVPLU8RR88RZ2jJ/CA5sO8/E9T1PfEpnOxheInXpkNimKc1IYX5BGSX464wvSmFKcwbkzirEdx/x6A2V1JzL2k1cy9pNXEvb5qXl/HRWvLqf8leW07T3U5+cNf4CG9dtiXgAwu5zY01OwJLqwuhOwJLpQTge+1iaUzcpH/3oPAiFCHi+Bpla85dV4K2oGnH7U8eVfcM2F5F+2EFtK0oDWM5i01mzYXcmjr27kqbe30tweX2XLwdTc7mfzvmo274s99UVmiit64eVI0DsmN/I8L8ON0z546Vht3gAHKxs5UNHEpj2VfLSznPU7K6hviVxU+eVnZzOhIAV3H+vpj5DJRMhkwtdlDK8CrEYYeziEPRzEHg5hjaMnwAgE8dc1do5ft7gckUA3ORFLguukSGEWQvRPmzfAsg/38tKKnby0cucxqceOUJBpjZWcXlfO9IZykoLxfQ9Y3AnkX7GIousuJveS87C4Rk8WzlCyJiWSff4css+f0/lasK2dpo930rAhEvQ2b99L8459cVXpP5oJKGhvpqC9mYWVkSForVY7e7dm8vCK9/jnzGn85723cu6swZ31Qpx4EtwOMa31y0qpGUR6cS8DCoAAsBd4GviD1jq+Scx63oYXuEwpdQtwO3A6kAJUAyui21jd4wpOQuFAgOp31nD46dcpe+HtuFJdneecxYG55/Anj52Pnt+H1vHN2wYQNjT7KxrZX9EIHPlcSqKDK+dP5rpFU1k0a+yw9O6aHXZyl8wnd8l8zrz/v2nZc5CKV5dT+foK6lZvItjcv+sqYY8XTy89waXH22AgadJYci46l9yL55N9wby4pwYYah5fkH8u28yfX1zH1v01/f68y27FZtZYLSYwWWjzBnocq3W8aps81DZ5+GhnRcz3UxId5Ka7yUlPJCc9sfNxZkoC5l6CueY2HwerGjlY2cTBqiYOVTZR13xchzAgUuzDZbdis5ixWEyYzSYsR91MShE2DIIhg1DYIBQKEwxHHgdDYTy+IAEgYDLTao2M6TZrA3s4hCMcwhEKYjP6vsgS8vgIeXx4q+pQJhW5iBPt2TU77HJ1X4iTUChssHlvFau3lvLO+v28/dH+btV3lTYobGticlM1pzVUMKmpBouOL43WlppMwVUXUHjdEnIuOhezfXgza0YLa2ICmeeeSea5Z3a+1jHHccuOfZ3BbsuO/bTs2Ievpr5f63cH/cysL2NmfRns38SOF55i+YSJzPns1Sz4/DXYkgfzkqw4UWTMrThuI2XMbajdQ/V7H1L6zBuUvfg2gcbmPj9jy83k4IxZPBpKYW94aK/1pCU5ueq8yVy/aBoLzhgzIsZ4aMOgZed+6lZvpG71JupWb+q1qNZQSZpSQuY5M8k4dxY5F8wjoSjvhLehN1UNbTz4wjoefPGjzt7I3ozNS+W8GcVMG5fFtLGZTBmTRVZqAsGA/5gxTeGwQZs3QKs3QJvHT6snQEOLh4q6VirrWqmI3irrI/c1jf2/Yj3cOnpuM1Lc4EzDZjHjclhx2q247FacDgs2i/m4g0atNf5AiFZvgFaPnzZPgGC4+8mnWRs4Q0Ec4SDOUBBzP78DTVZLlxTmREzW4btGLGNKeyf7Z+j1Z8yt1hp/MIwvEMIXCOGPZkIppVAqek9kypxYj5VSkecxHisFJqViPvb5fCxbtoxQ2GDe/PMJaTOtHj+HqprYV97AvvJGdh6q5aMd5bR3qY/gCAUpbm1gTGs9E5prmdhcQ0Io/loWjqx0Cq65kMLrLiZ74RxM1pFdvOhkqObvb2iKBr37okFvJPBtP1Te73UZJhMJZ5/B1Fsuo+CKRSQU5w9Bi09eUlBKjGrDFdxqw6Bp8y4ql62kctkqald81OOctF0pi4WkC87lveyx/Kk0QEj3/4RaKUhzO9FAQxzBztGyUxP40rVz+I+rZ5OcODJ6JTsEmlpo+GgrrXsO0rr3MK17D9G29zCt+w73q0hVLCablaQpJaRMn0jKaRNImTGJ9LNPP+GFM+K17UANv3tqDf96ewuBHubPg8jfw3mnF3PpvIksnTuBCYXpMQO1wTh5CATDlNU0c7CqKdJ7WtkY6UGN9qJWj7DgNzPFxS8/O4fibDfJbhfjx48/YRkMWmt8gRCtngDNbT5aPf5jylDZjDCOUBBnOIgjFKS/RwOL0xFJX06KVGE2mU9cdoYEb72T/TP09uzZg8frp80XYkdVmKqGVirr2qhqaKWqvo3KhjbavQF8gVCvx9ChpiBmCTqlDdwBP6kBD9meVnI9LeR4mslvbybX00x//2KSp44n7/KF5F+xiIx5M0/o8eB4nQzBbU9C7R4aP94ZuYj/wUZqV23AV13Xr3WknjGF4lsuZ8wnrxgR9T5GOgluxah2ooJbbRi07D5A3epNVL+9mqo3P+hXCkr6nBno8+by92Ayz22OnarZldNuYeHMsVxw1jjGF6SRluQiLclJWpKT5AQHJlPkNLix1cu+8gb2ljV03u86VMfGPZV9biM5wc4Xr5nNl6+fO+LnXdOGgae8mvaD5QRb2wm1tRNqbSfY5sHX2MyeLdvQgSBjJ03E4U7E7LRjSXThzMvGVZCNqyAHR1b6iB+/qLXm7Y/288BTq3nro/29Lluck8Jtl5zOJy8+neKclD7XfSJOHjy+IIeqjgS9ByujgW/0cVNb/+cZjFdOeiLj89M4a0o+Z03O56zJeRRlJ7N3794RUVHVHwhR1+yhvtlzTI8ugNIaeziEKxwkkTCmOC6WHc3icnTOr2tJdGGyWYcsjVmCt97J/hlcoVAYrz8UqXLuD0YeN1VT19TKnrImvvXQuqHZsNY4wiESQn5cwUDnhShHdLiBPRzsvLeFw1i0gcUwMOtwpPCcNjBH7yOvG1iNMO6gH3fAh/k4Kq+brFayFs4h//KF5F++aMRMEzgQJ3NwezStNe0Hy6j9YCPVK9az+/UPsBw6HNdnlclE9gXzGHvbVRRecxGWhJF97jZcpFqyEDEEGpupW/sxdWs+pn7NJurWbu51yp5Y0ueeQdENl1A9dRo/eW07q9YfBnru2ZpSnMlFc0pYMqeEc2cU47D1/S+S6nZGT+S7p6yU1jTz/PIdPPPuNtbtiJ0S09zu5+f/WMnvn1nLZy+fxdc+cQ55GSNzjIcymUgozCWhMPeY97xeL4eiX4qnjdIvRY8vyBNvbuZ/n/2QHYd6r+i7ZE4JX77ubC44q6TzIsdI4XJYmTImkyljMmO+39zmo6qhjcq6Virr26I9La2dr/WVieCwWSjqKE7VpUhVUXbyoBapGgp2m4X8zCRy0900t/uoa/LQ4jlSBEYrhc9ixWex0gBYHZBtN+EyQoRa2+PKDOkYrwsNQCSNORLsOjE7HVicDpTVIuN2xYgXDIVp9URS/Fs9/m7jTwckGqQmBbwkBX24A34SQn4SggFcoQAJoeh91+fRx8cTgA62xPHFZC+cQ+4l55F70bmnVIXjk4VSisSxhSSOLWTsJ69kLtCwv4xn7nuM8pfeYVxNOdYexlNrw6DqzVVUvbmKdQkuCq9bwtjbriZr4ZxR1VN/MpPgVgy7QFNLZGzE9r00R4sCNG/fS/vB/o+RUGYzGfPOoPC6JRRedzEedxL3/ukt/vHz13v8jMth5Y7LZ/Gla+YwNi/1eH6UbgqzkvnqDXP56g1zOVTVxLPvbefZd7exYfexPboeX5DfP7OWP7/4EZ9eegb3fvp8ctLkC/NEKKtt4cEX1vHQvzf0GtjZrGZuuWgGX7n+bKaOzTqBLRxcyYkOkhMdTCrKGO6mDBuTSZHqdpLqduILhKhraqeuyUP4qEymoIYyn4HVbCGnMJ80hyWSrdDcRrC1Pa45GY1giEBjC4HGIxfmTBYzZqcds9Nx5OawoczHP+5YiIEKGwbt3gAt7ZGA1uPvX+ZCkt9Lur+ddF/05m8nzechOeAlKeAjKeiLq6DbSKIslsjwmdmnkTn/TLLOnxPzAq8Y/dLGFfCFB+/F87tv8dcnV/D6H59l7KF9nF5fTmIPY61D7R4OPPYCBx57AVdBDuM+cy3jPnMtiWNHbw/+yUDSksVx65qWvHPrNsbmFxD2+gj7/IS9fkIeL77qeryVtXgra/BW1OCrrMVTUYOntApfVe+9ZH1JLCkid0mksm7WwrOxJbsxDM3fXtnAd//yNo2tsdMwU90OvnTtHL54zZwTmhK8cXclv3h8JS+u2NHj9G0JDivfvOVcvnrDPFyOkd0bBqMznenD7WX84dm1PL98B6EYKaodMpJdfOGqs/jCVWeRfZwXHEbjfhoM/Sk6M1yCoTBV9W3UNrf3+H/psFoozE4mKcGONgxC7V6CLW0EW9oIebyxB/X1gzIpTDYrJquV6Rcs4HB5GW889wILFy2KBL4mE5gUymRCmUxoNC1tbSilJO02BklL7lsobNDc5qOpzUdLux+jj3NCs9ZYjXDnHNPtwTY8dQ14dx2k4q6fn6BWDz5lMuEqziNp8jiSJo0ladJYUs+YQsrpk0dMtf6hdqp+P/XE4wvy4Esfcf/jK0g9dJB51Qc4s/YwznDfMxzkXHgOJZ+7gYKrLzxlK2NLWrI4aSw77XLSGdpgzJmXRca8meRcMJecJfNxlxR1e3/z3iq+ev+rrN0W+/8oL8PNXTfO447LZ5HoPPEHnZkTc3nihzew81Atv3x8FU++vYWw0f2Eot0X5IcPv8dfXlrPjz63mJsvmjHi0l9Ho2AozAvv7+QPz67hw+29ZwZMKsrgK9efzS1LZoz4dFtx/KwWM4XZyWSlJlBZH0nPPvo03xcMsaesnvQkF/mZbqzuBKzuBMjPRocNQh4voTZP5NbuwQj1r5dKG5qwL0DYF+jsFfbWNNC698hYsJXr17Fq/TqmT5zEpQsv6Hy9qUuPr2EYvLN6FZt2bGPjtq1s3LGN6rrIRcT3Hn+G6ZMmd99wZ8CsIBo4d31sslowWSwoqwWTzYrZbouMJZZgcVQKBMM0tfl6LLIGoHRkzmibEcJmhLGFQ1iN8DHVxX1ozNpAnaC0YWUyYU1J6pxjvet865ZEFxaXE1P077PjZpgUew/sB4uFqTOm43AnoKwWbKnJOHMzceZmYs9Mk5RS0Y3LYeVrN87j81ecycOvbOAPz6zl8Yp6zqgr45zq/UxrqMLUw9991VsfUPXWB9jSUhj7qSsp+ez1pEyfdIJ/glOXBLdiRDM77KSdOY30uWeQMfd0MuaegasgJ+aybd4AP/7be/zvs2uPCRYB3C4b379jEZ+/8ixs1uH/EptcnMlD917N/7v9fH775Ac8+tqmY6pJVtS18rn7XuR/n/2Qn3/pIs47Y8zwNHaUa2jx8vArG/jT8+sor+193PZIHk8rhp7dZmFMbipZqYlU1LXQ3O4/Zpn6Fg8t7T7ys5JIczsjU46YTUeCXSIFSwx/gGA02A17fYS9PnSMY1MsY/ILsdtsuBzde41WrV/HL//yf9x02ZXdgtuuWVgtba184q47Y65Xa80xGVthje4le6EnZrsNs8OOOcGJJcEZCSyGcWok0TOfP0hTtIe263Q3EKkkbA2HsRtB7OEw1nAkoB3Ko58lwYUjOx1begq21GRsqUnRW/JR90nY01I6X7O4E/qdut+1JsRY6ZEU/ZTgtPGV6+dy5zVzeOH9Hdz/1Gru3zmGZL+Xs2siPbpFbY0xPxtoaGLXA4+x64HHSJ8zg5LP3UDxTZdidcuws6Ek30JiRFAWC+4JxSRPKSFpaknkfkoJydPGY7b13bu6asthPn/fixyoiH2AuX7RNH7+pSUjsljT2LxUfvf1y/jOrefx47+9x2OvbzomLXLjnkqWfP0xrpg/ifu+eBHj8tOGp7GjzOHqZn739Br+9soGPL6ex4+5HFZuXXI6X7puzik9FlUc4XJYGV+QTpvHT1ltyzEBQTBscLCyiYZmL0XZydiPKj6nlIoEfg47ZETG8ncEvGGvn7DXR8jrizz2HRtAP/9/fx1w203KxPSJkzl9yjTOmDqVM6ZM48Lbbhrw+noS9gcI+wPQ3Nr5mtlh65wD2OJOkN6wYaK1xuMP0tQa6aH1Bo6kUloMA5sRwh4+chusQFZZLLgKc0goziOhOJ+Eolyc+dk4sjNwZKfjjN5LhVkx2ljMJq5fNI3rFk5l1ZbDPPDUGl75wMmywikUtjZwXtU+5lYf7HEu5PoPN1P/4WY2fP1/KPrEUko+ez0Z82ZKnYUhIMGtGHImmxV7egqO3CyceVmRNKCO+9xM3BPG4B5fNKAJzv2BED98+F3uf2p1zHFyJflp3H/XUi6cXTIIP8nQys9M4k/fvpIvXTuHe/70Ju+sP3DMMi+v3MUba/fy1Rvm8p1bzxuWtOrRYNuBGn7zxAc89c7WXsfT5mcmcec1s/nMZbNIS5Kr+eJYiS47k4oyqGv2UF7bckxWSIvHz/aDteSmu8lKS8DUy4lKt4A3NanzdW0YGMEQRiCIEQxG7gNBjECo87k2DIiz19edmMi7jz89sB/4OEXSqhvw1USqRVvdCdjSkrGlJEmv7hALGwatngAt7T6a2/wEomnxViOMu2PKnFAISw9VYPvD7Ij02pu8rdjTU3HOTWV22fs4cjLkgoY4qSmlmD+jmPkzitlTWs8fnlnLP5Z9zD/daTw9biaz6ko5r3IfU5qqY34+1O5h/8PPsv/hZ0maUkLJ525g7KeuwpEpnRaDRQpKiePWtaDUpmXvMmHK5EglUIcdk8M+ZF90H++t4rM/e4FtB2qOec9mNfOtW87lm7fMj2s6n5FGa80ba/dyz5/eZOeh2BON56Qn8tMvXMhNF04f9vTZkVKIYtWWw/zmiVW8unpPr8vNnVbAf153NledNxmr5cSdiI2U/XSijYaCUvEIBMOU1jT3OFewy26lOCdlUIrAjRkzhkOHDvHuu++ycOFCgF6v8BcXFbF3+84e37cmRnrK1n2wmjNmnN7lHY02oqnKhoGO3jB05HE4Enjr4JFAu79jiTt89ac/4J8vPMv3vvs9vnrXV/nJT37CSy+9RFlZGfPmzeO9997j4MGDjB07NtKyHs5Pbr/9dh599FG+//3v84Mf/KDz9ffee49FixZRXFzMwYMHeeaZZ/j1r3/Ntm3bMAyDmTNncu+997J06dIBtX+k0VrjC4RoaffT0u6nzRtAa401Ov9rx9yvR4+T7Q+TzYLF6cTscmBxOTA57Jjtts7x1qPhf/tUPe72l+yngWv1+Hn23e088trGznovmd5W5lfuY37VflICvU+xZ7JaybvsfMZ88gryLlt4UhQxk4JS4qThGpPf45jYwRIKG/zmiVX85NHlBEPHXoGed1ohf/72lUwoTB/SdgwlpRSXzJ3AhbNL+NsrG/jx396jtsnTbZmq+jY++z8v8OcX1/Hrr1xyzDy7p4qOCwE//8cK1vRQRAzAbFJct3AaX77+bGZPOTX3lTg+NquZkvw0mlq9lNa0dPaMdfD4g+w8HOnFzUlLHPR0s3PPPZfDhw9TWlpKVlYWEyZMIBSKpJsWFBRgSej7ZNTidMS1XG+MUCiSXu3zE/L4CLd7CXm8fY4nNoKR1O6ynbuZdfoZlFVWMGXKFKZOnYrdbj+uNh3tBz/4AT/84Q/Jzc1l3Lhx7N+/n5UrV3LZZZfxzDPPcO211w7q9k4Ew9B4/UHavQHafUHavAGCwRB2I4w9HCQzHMIeCvVY5KYvZpsVc4ILS4IDiysyL7P0tgvRN7fLzu2XzeT2y2ay81Atj722iceXbeZ5p5sXx8xgekMF51XuY0Z9ecw5m41gkLIX3qLshbdQiS4Kr1lCyaeuJHvxXMmEGAA5aolRZW9ZPZ+778WYlZBtVjPf+8xCvnbjPMzmk6OKp8Vs4vNXnsWNi0/jZ4+9zx+f+/CYNNsPt5dz3p0PcevFp/P9zy6iIDOph7WdfN7fdJDv/fWdHitjAzjtFm6/dBZ33TiX4pyUE9c4ERdtGPjrm4a7Gf3iAMYlmKmq91Lf4uk8VTGnJIHJREVdK81tPopzUga10vbKlSs7g7alS5fy8MMPd5vq5kQxWSLVky0JLuzRa4haa8IeL8GW9sjUSG2eHnteH33uaWZMmsLz//sXSiaMx56VhuHoObg1DE0wHCYUMgiGDHzR8aOtHj+lNc0YhsYwdGexuIqKCn75y19y/x8f4oIllwIQDAa45+4v88arL/OVr97FaWedh9lsxqQUZrMJiyl6bzZhNpswm1TnY4vJdEKzY7TWhMIG/mAYfyCEJxrQev0hMAzs4RCOcJC04xgvq0ymSBGwRFfkPsE5oKFBQojuJhdn8rMvXsQPP7eY19fs5dHXNrLsQwsfZxSQ7PdyTtV+zqvaR7a3NebndZuHw39/gcN/f4GA241p0blMuO1qJl10NqnRAoYnimFoWjx+Gpo91Ld4aWz1Ut/spaHFE3nc4qXNE8AfDOEPhgkEIvf+YIjm+mOzKk8UCW7FqKC15sEXP+LeP78VszDQ9HHZPHTv1UwvyR6G1g295EQHP//SEu64fBbf/t83WPbhvmOW+ccbH/PMu9v4yvVnc/fN55KcOPrTWnry0c5yfvDQu7z90f4el0lLcvLFq2dz57Undh5j0T/++iaey5o33M0YFCUfPI8lLQWITOe181AduelustP6X+F1tFFKYUlwYUlw4czNRIfDBJrbCDQ2E2xu7darazGbefQXvyUvO4eQx0foYAXKbCKclkJLU1vncrsP1+EPhgmGwt36Otq9kYItrZ4ANY3tna+3RV8PBoP8x1e/xfzFl+DvyO5RFr5x74955803qCgvY/3GTUycPC3un88cDYLNZoXFdCToNZsV5m73Jkwqsj9UdL9EfvWRe8PQhA2NYRiEuzzuDGaDIQKBMOHohQGzNnCEIunFydEqxgNhslq6TZtjdjpO+r9JIYaT1WLmivmTuGL+JFra/by5bh+vfLCL19ek8lrRVCY217Cgci9n1pb2+H9ta22Fl17nwEuvs97uYntWIVUTJhGaMY283DQKspIoyEwmPdmF3WbGZjFjtUbubdF7q8VEIBimzRvA4wvS7gvQ5g3i8QVo9wZp8/ppaPHS2OqjoSUaxLZ4o695Y84+Eg/taz6e3XdcJLgVI155bQtf/MVLvBUjkDGZFHffdA7//enzj6lWejKaVJTBC/fdwutr9vDtPy5jb1lDt/d9gRC//Ocq/vbKRu65bQGfu+LMETHt0WDZdqCGHz78Li+v3NXjMgVZSdx1wzxuv2ymFNwSJ9TRoYKhNeV1LTS1eRmTk4LjFJovWZnN2NOSsaclo8MGgeZWTLbIz79gzlzysrsPX9Fhg0BtA+GKI/NPt3kDA5499bpP3HrMa+kZmeTmF3D44H5KDx3sV3Ab1ppwKAyhvpc9HlYjjDPaM2sPh7AaAyv+ZLbbIr2ybhfWxARMdpsEs0IMk6QEO9ctnMp1C6cSChus2VrKvz/YxSsf7ObxA1WcWXeYudUHmdRUTU95h2l+D/NLd0HpLvzvvcL21FyWZ+SzOT2fFpuMj+7q5I8GxKiltebJt7fy9Qdei1nAZVxeKn+952rmnVY4DK0bPkopls6byAVnlfCHZ9dy39/fp9XTvfR8XbOHu3//On987kN+9PnFXLNgyqg+sdlX3sBPHlnOk29viVkVG2BMbgr33raAmy6cfkKLRAnRYXx+GpVhU2fabId2X5Ad0V7crNSEYS8Ad6IpswnlTsCIztk7dvxEQsrUZ9Xe/LYmWm122qx2wir+oSYpqWm4k5Jjvpeekcnhg/vxetpjvn8imbSOTskTjk7JM/DiTxanHYs7AUtitGfWdupcSBFiNLGYTcw/vZj5pxdz351L2H24jhUfH+KjnRWsWL+LlPXrmVN1kDFtDT2uw26EmVlfxsz6MgzgoDudPclZ7E7JZG9SJm22kzdzLx4S3IoRqb7Zw1d/+yrPLd8e8/0vXHkWP/vihSScwj1zNquZb9x0DrdefDo/e3Q5f315/THpI/vKG/jkD57h9PE53H3zuVx7/pRRNR65rLaF+x57n0de3dhjakxOeiL3fGoBt18686TqpRajj8tpY0p6ChV1bdQ0tnXrdezoxW1o8VCYnYzbNbgFlIbaa6+9xk9/+tNjXp85cya///3vj3ndMDRt3si0NC3tfryBUGfasE5IojwxBWcogDvoxxmKPQe1RRuk+r2k+L14LDbabXbCdgeW6DHMabeQkeTCZFKYTKpz+IE7MZExOSlorfF6I1VKOyq/doyBTkl0kJfhjqQJhw1ChkE4HBnrGo6mCQ80HS+WSCAbxhYOYTdC2I6jV1Yphdnl6EwxtiS6MFnkdE6I0WhiUQYTizL47BVnAlfQ7g2wcU8lG9/6iIYX3yR9w3rS2lp6/LwJGNdaz7jWei4u2wFAhSuJPclZ7EnOZE9yJnWORDjODg6b1UxakpM0tzNyn+wize0kKcGOw2bBbjVji97brRaa6ir5zprfHNc2B0qOhmJEMQzNP5dt5v89+BbVjcdeWc/NcPPnb13BRXPGD0PrRqas1ATu/9qlfOnaOXz3r+/w0opjpwP5eG8Vt/34WX7wUCpf/8Q53HrJ6SN6iqSaxnZ+9c+VPPjiR/iDsceipCc5ufuWc/ni1bMHtWiPOLHs6SlcW7N6uJsxKOzpKSiTiYKsJFIS7RyqasYX7N6L6w2E2F1aT3qSk/zMpFGTZVBdXc2qVauOed3SJajyR6elaW730eYJdI4bjUUDHosNj8UWmYc16Ccx6O+WYaK17hy7mhAKkBAKYAp4wBsZl5uS6KA4N6Vz+fRocGsyKdKTXRiGQQuRwDkpyYnJZOrc38mJDnLT3b3+zB2FncJG9L4zCI4EwpEgOHIfjgbHRiiEORzGEgphNUJYwmGs4TDm45hbVplMkfGyia5I72yCs3MqHiHEySXBaeucR5dvXIfWmrqPd7HrqTeoevU9Apt30GMKW1Sep4U8TwvnV+4FoNVqpyoxhbqUNBrTMmnLyMSTk4M5NZkEl52URAdpSU7Sk12kRoPX9CQnqUlO0pJcpCc5cTms/coA3LNnD985rj0xcCP37FacctZsK+Wbf3iD9TsrYr7/iQtO47d3LSXVLWMLYplYlMGTP7qRVVsOc++f3uTD7eXHLLO/opGv/PYVfvrocr58/dl8/sqzSEoYOT1I5bUt/PbJ1Tz87/WRyqAxuF027rpxHl+5fu6IarsYGGUynZST1ye67Ewek0FFXSu1je3HjB2tb/HS3OYnL9NNRrIr7pOG4RpecPvtt3P77bd3e80wDNq8AUprmmlp9x+Tjt0Xs0mR4LDhclhJcNhw2sz4E4/8T9fU15OdkdF9m6Ewe/dETth8VXW07j2MNSkBizshMj/vIFJKYbWYsRIJdHUojBEKoZXGMEIY4ei8v4EA4UDksQ4ffxs6iz8lurAkJmB2SfEnIU5VSikyz5hM5hmT4Wd34attoOLV5ZS//C6Vb6wg1Obpcx3uoB93YzUTGqvhwI7O1+3pKSRPm0DCmHyceVk4dTYuVxZOVzbOLCfOnIxRWUVdglsx7MprW/juX97miTe3xHw/LcnJA1+7lOsXxV/841R27vQi3vvDHTz//g5+8NC77CmtP2aZqoY2/t+Db/OLx1dy7flTuenC05g/o3jYUpb3lNbzh2fW8shrGwn00FPrsFm485rZ3H3zuZ09NEKMZGaTicKsZNLcTg5XN+Pxd0+/DRkGh6ubqW/2UJSdjMvR9zCLjvTajnTbE80XCHWmGrd6Ahj9GCPaEaAlJ9iZUpyJ0245JmgrmDSe1NRUGhsb2Xx4H0syM7tNKbRu8ya27okUlNNaE2hqIdAUSdlr3XMo8nooTHtpJZhMGMEAmBT+QBjFkbl2A82teKtqQWu0oSOBsWGgw0bncx0OHwloByFojb1TInMPm13OzoBWij8JIXriyExj3KevYdynryHsD1C7cj01Kz6idsVH1K35mLAn/u8Gf30TNe+vg/fXxV5AKewZqViT3ViTErG6EzovJkYeJ2J2OTFZLZgsZpTFgrKYMVkslNXXDdJP3H8S3Iph4/UHeeCp1fzyn6tiTu8DcOm8Cfzh7sv7TB8T3SmluPb8qVw1fzIvrdzFr/65kg27K49ZrqXdzyOvbuSRVzeSl+HmhsXTuOnC6Zw+PmfIT67CYYPX1uzhTy+s63VKH4vZxGcvn8W3bz2PvAz5OxCjT4LTxuTiDGqbPFTUtRwzlrNj2qDkRAeZKQm4XT0HuSUlJQB8+OGHtLcPfVGkYChMqydAq8dPq8ff4zCBWBTgclhJSnCQnGAnLSkSmCc4I721Pbnsssv4xz/+wU9/fz/nvPwymc5EAvVNbN68mf/84f/DarEQDB3bS9yxV7Vh4KvuflHPQxMAYV9k3G+goRlPWXXcP8tgsTjtmBOcWFzOSEDrckiKsRBiQMx2GzkXzCPngsh0ekYwSOOmHdSsWE/tysjNX9tzYao+aY2/tmFA66gn9nn9iSDBrTjhdh6q5ZFXN/LPZZupbYqdTjGxMJ2ff2kJl8ydcIJbd3Ixm01cc/4Url4wmXc3HOBX/1zFuxsOxFy2oq6VB55awwNPrWFSUQbXnD+FudMKOGty/qD1lBqGZu32Ml54fwfPLd9OWU3PRRIsZhO3XDSDe247jzG5qYOyfSGGi1KKrNQEUtwOymtaaGjtfnVdA01tPprafDjtFoweihktWbKEjIwMDh48SHFxMePHj8dms5Gfn8+TTz7ZudxVV10Vc4zsokWLMJuPjPOtq+t+dT0UCtPqDdDqCdDmiRSC6g+r2URSgp2kBDtul31AY4p/+MMf8sorr7B161bGT5zI5MmTCQQC7Nq1i0XnLWDWaTN45tWX+73eE0Uphclhw+ywY3baMTsckXu7TQJZIcSQMVmtpM+eQfrsGUz5xmfQWtO2v5Tmrbtp3r6P5m17aN62l5ad+wn7/MPd3CEjwa04Idq8AZ55ZxuPvLaRtdvKelwuOcHOvZ8+ny9ePVsq3w4ipRSLzxzH4jPH8dHOcn79xAe8uGJHjzUJdh2u476/r+h8Pr4gjTlTCpgzNZ/ZU/IZm5dKcoKjzylNgqEw2w/Wsn5nBR/tLOf1tXuprGvt9TM2q5lPLz2Du28+l+KclP7+qEKMaDaLmbF5qaS3uyitaY45TtXrDxGKpsHWNrUTCIawWSNf1263m7feeovvf//7rF69mg0bNhAOhykuLu62jubmZurrjx2S0NTU1O25xxeg3RfE4w3S7gv0O5hVRHpiOwJal71/RUdiGTduHB988AHf/e53eeedd9i9ezdjx47lZz/7Gd/85jf5/Oc/D4AtxY09LZlgaztGcIgnoO1CmUyRNDy7FZPNislmw2zreBy5SRArhBhuSincJUW4S4oouOrCzteNcJj2A2U0b9tDy+6DeMur8VbU4K2owRN9bASGr+f1eCk9wDnVhOiglCoASoHISci4Ekqrm9lf0cD+ikY+2lHBs+9to72H1OPIOuCOy2bxvTsWkZWacKKafkorrWnmqbe38uRbW9myv//peSaTIjXRQVqyi+QEG2F/G06rGVdSKs3tAZrafJRWxz55jyUtycmnl57Bf153NvmZSf1uz2jg9XpZtmwZEOmB6xg/ebLbs2cPoVAIi8XChAmSjdHBMDTVjW1UN7T1Ou2MAhJdNhw2Kw6bBYfNjMNmwWxStLZGLhYlJSVhihFQaa0Jhgz8wRCBYJhAMIw3EMTrD+EPhI4pdBUPq8VEssuBOxrQWkbA9GJGKETY6yfs9RH2ByJjZcNhQv4AGAZmS3R8rwJQkS8dBQqFMpvApFAmUyQoNZlQJoUym6PjxyJjyUzR5xK4HjEa/rdP1eNuf8l+Eh201gQamvCUV+OvaSDY0kawtZ1gSxuh6H3H87DHhw6HMUJhdCgUvQ9T2drEbRv+3bHKQq11zz1bg0x6bsWguvRbT1DVZursdYjHollj+Z87L+L08TlD2DJxtMKsZO6++Vzuvvlcth2o4cm3tvDk21s5XN0c1+cNQ1Pf4qW+5ejiBU39asesibl88ZrZXL9omkzpI04pJpMiN91NVmoC9c1eapvaY14M0hAd9xro9rpZKSxmhdWsaGhvQhM5KQl3zN0avR3vJWyzSZHotOF2RVKNYxWCGm4miwWT24LVfeTiqGEYtLREhj64ewj+hRBCdKeUwp6eij194EPC9uzZAxP/3feCQ0CCWzGoSqubUY7kPpfLTk3gkxefzqeXnsHEoow+lxdDa9rYLH70+Qv4wWcXs2ZbKS+v2sWH28vYsKuy39N7xGNKcSZXL5jM1QumML0ke8SdKAtxIplNJrJSE8hMcdHi8VPb2E5ze9/jocJaEw5p/CHAH3+hpz7boxQJncGsrd/zGwohhBDDRYJbccKYTYpL5k7g00tncsnc8QMqNCKGlsmkOGd6EedMLwIiY2a37q/hw+1lfLi9nA93lLG3rP9V88blpTJrUh5nTs5j6dwJTJILGkIcQylFcoKD5AQHPn+QmiYPDc0ewkM8fMhhteByWklwWHE5bLjs1j7H0wshhBAjkQS3YsgkJ9gZl5fG2LxUzpycx00XTpepXEYZq8XMzIm5zJyYy39cPRuITOFU1+yhocVLYzQtubqumQ83bsEXMDhj+mSy0pJIcTvITHYxbVx25xQgQoj4OOxWirKTyctw0+rx4wtExsj6orfexujGYlIKm9WM3WrGbrXgtFtw2K04bZZhm99aCCGEGGwS3IpB9YsvXci8s2YwLi+VtCSnpLKdhJx2K4VZyRRmHUk/93q95FtrAFiy5GwpRCHEILGYTaS6u/8/dRSJ8voDNLW0EQprHHY7JpMpMg2NSWExm47cLCasZpMcj4UQQpz0JLgVg2rp3PFMmJA/3M0QQoiTlor2wlrMdnQoMjY3KcktBZOEEEKc8uSbUAghhBBCCCHEqCfBrRBCCCGEEEKIUU+CWyGEEEIIIYQQo54Et0IIIYZUx1jQcDiMHuJpbYQQJ4ZhGITDkfmVzWaZ2k8IMTJIcCuEEGJIORwOIFLl1+v1DnNrhBCDoa2trfNilVTIF0KMFBLcCiGEGFIJCQmdj2tqaggEAsPYGiHE8TAMg5aWFqqqqjpfc7tlDnshxMggUwEJIYQYUm63m7q6OoLBIF6vl3379mE2m2Xe1UEQCoUAqK2tHeaWjEyyfwbf0cMLnE5ntwtYQggxnCS4FUIIMaTMZjMFBQUcPHiw86S4Y6yeGLiuad5Op1MuFhxF9s/QczqdFBUVyb4VQowYEtwKIYQYcg6Hg/Hjx9PU1ERra2tnj5oYOMMwOoO3xMTEzsJdIkL2z9Awm804nU7cbjcJCQkS2AohRhQJboeYUsoF/CdwAzAesAGlwCvA77TWh49z/RZgEbAEmAtMBlKAdmA/8A7wf1rrfcezHSGEOF4Wi4WMjAwyMjKGuyknBa/Xy86dOwE488wzpajPUWT/CCHEqUeC2yGklCohEsROOuqtydHb55RSt2itXx3g+jOBHUB6jLeTgZnR21eUUt/WWj8wkO0IIYQQQgghxEgnOTpDRCmVCPybI4HtX4ALgHOA/wbaiASgTyulZgxwM3aOBLabgB8ClwJnAouBXwI+Ir3F9yulvjDA7QghhBBCCCHEiCY9t0Pnm0R6ZwG+rbX+ZZf3Viul3gXeB1zA/USC0f7SwJvA97TWa2K8/65S6lngXcAJ/EIp9YTWunUA2xJCCCGEEEKIEUt6boeAUsoK3BV9ugP49dHLaK1XAw9Fny5SSp3Z3+1orcu11kt6CGw7llkL/DH6NBm4sL/bEUIIIYQQQoiRToLbobGQSFEngEe11kYPyz3S5fG1Q9ied7s8LhnC7QghhBBCCCHEsJDgdmic1+Xx8l6W+4hIVWOA+UPXHOxdHvcUaAshhBBCCCHEqCXB7dCY0uXxzp4W0lqHgI4peqb0tNwgOD+e9gghhBBCCCHEaCUFpYZGYfS+XWvd1MeypcAMIFMpZdda+wezIUqpXOAz0ad1dE9RjncdBX0skt/x4NChQ/1dvTgJ+P1+6urqANi3bx92u72PT5yaZD+JwSR/T72T/SNA/g7iJftJDKaj4gHzidy2BLdDwx29b4tj2fYujxOBQQtulVIK+FOX9vxYa+0dwKpK413woosuGsDqhRBCCCGEECehTOCE9X5JWvLQcETvA3Es2zWYdQ5yO+4Frow+fhf4wyCvXwghhBBCCCF6knUiN3ZK99wqpSxAcBBW9Rmt9SNdnvui97Y4Pts172MgvaoxKaU+Cfw4+vQgcEsvVZv7UtjH+0XAqujjuUD5ALcjRq8cYF308WygahjbMpLJfhKDSf6eeif7R4D8HcRL9pMYTPlAx1SlJ7Tezykd3A6h1uh9YhzLJnR5HE8ac5+UUpcBfwMUUA1cpLUe8EFKa13Wx/a6Pi3va3lx8jnqb6BK/gZik/0kBpP8PfVO9o8A+TuIl+wnMZiO+nuKJ5N10JzSwa3WOqSUGowqxZVHPS8DzgYSlFIpfRSV6ugVrR2MYlJKqYXAM4AVaASWaK33Hu96hRBCCCGEEGIkO6WDWwCt9VB0lW8Hros+nsyRbvluomnRJdGnO453o0qpOcDLRMb8tgFLtdabj3e9QgghhBBCCDHSSUGpobGyy+Pze1wKzuJIWvKqXpbrk1JqBvA6kVRoH3CF1nrt8axTCCGEEEIIIUYLCW6HxntAc/Txp9VRiedd3N7l8fMD3ZhSaiKwDEglUiDrOq31ewNdnxBCCCGEEEKMNhLcDgGtdQD4XfTpFOCbRy+jlJoHfDb6dLnWel2MZcYopXT09l6sbSmlioC3gGwgTKQq8qvH/1MIIYQQQgghxOhxyo+5HUK/BD4BTAR+oZQaD/yLyHQ/i4jMQWuJPv/aQDaglEonEth2FKX6NbBTKXVaLx9r1FrLVD1CCCGEEEKIk4oEt0NEa90anZLnVWAC8IXorasW4JNa600D3Mz06Lo7fDt6682jdE+HFkIIIYQQQohRT4LbIaS13quUmgn8J3ADMB6wAaVEgt4HtNaHhrGJgyI6F1pP44rFKUD+BuIj+0kMJvl76p3sHwHydxAv2U9iMA3n35PSWg/HdoUQQgghhBBCiEEjBaWEEEIIIYQQQox6EtwKIYQQQgghhBj1JLgVQgghhBBCCDHqSXArhBBCCCGEEGLUk+BWCCGEEEIIIcSoJ8GtEEIIIYQQQohRT4JbIYQQQgghhBCjngS3QgghhBBCCCFGPQluRb8ppRYqpXQ/b7cPd7vF8Ynxe29VSrni+JxTKdV81GcXDn2Lh99R++wHfSybrZTa2mX5/1NKqRPUVDFKyPE3fkqp+UfthwXD3SZxYvTn2HuqGci+UUr94FT7/hbHZziPvxLcCiEGKhG4Oo7lrgKShrYpo5tSKhd4D5gWfekBrfWdWms9fK0SYtS7rY/nQgghhsawHX8tJ2pD4qT1f8Af41iubKgbIk4oH+AAPgX8s49lP3XUZ0QXSqkC4B1gQvSlX2mtvzWMTRKjhxx/e6CUsgM3RJ+2EbkYd4NS6itaa+/wtUwIIU5uw338leBWHK8arfXW4W6EOOFeAm4ELlJK5Witq2ItpJTKApZEn74IfOIEtW9UUEoVA+8CY6Mv/VRr/f+GsUlidJHjb8+uAlKij+8CHiKSQXIV8K9hapMQQpwKhvX4K2nJQoiBWAZUAWbg5l6Wu5nIRbRq4M0T0K5RQylVArzPkcD2BxLYCjFoPh293661fhjYHn0uqclCCDG0hvX4K8GtEGIgwsAT0cef6mW5jgPZP6OfEYBSaiKwHCiKvnSP1vqHw9gkIU4aR2WM/CN6/3j0folSKvvEt0oIIU5+I+H4K8GtEGKg/h69n6mUmnb0m0qpqcCso5Y95SmlphAJbPOjL31Da33fMDZJiJPNJ4lkjGiOnFQ9Hn1ujr4vhBBi8A378VeCWyHEgGitNwId4/1i9d52vLYtuuwpTyk1nUhV5BwiB/qvaK1/O6yNEuLk05ESt0JrfRhAa30IWBl9XVKThRBiaAz78VeCWyHE8ejokf2kUqrzeBKdn/WTRy1zqjudSPGoLCKB7X9orf8wvE0S4uQSvYB0evTpP456u+P56dHlhDjVZSmlTuvrRuR7S4hejZTjrwS3Qojj8ThgAAXA+V1eXwgURt97/NiPnZKuBtKjj7+ktf7LMLZFiJNVR6+BH3j6qPeeir7edTkhTmV3AlviuN05XA0Uo8qIOP5KcCuEGDCtdTmR3kjonprc8fg9rfUpN8dmD3SXx1cqpWzD1hIhTkJKKTNwS/TpK1rrpq7vR5+/Gn16S3R5IYQQx2kkHX8luBVCHK/HovfXK6WcSikncF30NUlJPuL/OFIOfynwhFJK5hoXYvAsAXKjj49OieOo13OBC4e8RUKMbD/UWqu+boBU8xd9GTHHXwluhRDH6znAA7iJTNB9NZHJur3As8PXrBGnlsjBfG/0+bXAo13HKgshjktHoZIm4JUelnkl+n7X5YUQQhyfEXP8lZMqIcRx0Vq3Ac9Hn36KIynJL2itW4enVSOT1roSWAwcir50C/CXaAEuIcQAKaWSiFxcA0gB/EopffQN8EXfB7haKeU+8a0VQoiTx0g7/kpwK4QYDB2pyUuAi6KPJSU5Bq11KXABUBF96Q7gd8PXIiFOCjcCzn5+xgVcPwRtEUKIU8mIOv7KeC8hxGB4G6jkyHiLamDZ8DVnZNNa71NKXQAsJzLFwpeVUl6t9beHuWlCjFYdKW6VwDfiWP7nQFH0c38bqkYJIcQpYEQdfyW4FUIcN611WCn1d+Cu6Ev/0FqHh7NNI53WeqdS6iIi1abTgG8ppTxa6x8Mb8uEGF2UUmOB+dGnz2qt/xXHZ84C7gbOV0oVaa0PD2UbhRDiZDQSj7+SliyEGBRa6+9orR3R2zeHuz2jgdZ6M3Ax0BJ96ftKKem9FaJ/PgV0jFt/Js7PdCyn6D6NmRBCiPiNuOOv9NwKIcQw0lp/pJS6FHgDSAB+Hu3B/cMwN02I0aLj5KgGWBHnZ9YCZUBB9PM/HYJ2iZHhDKXU7XEst1JrvbfvxYQQXYy4468Et0IIMcy01quUUlcSKZPvAH4XHYP70DA3TYgRTSl1LjA++vR5rbURz+e01lop9RzwVWCSUupsrfXaoWqnGFZXcaSSa28+w5Gp2oQQfRipx19JSxZCiBFAa/0OkblvA0RSdR5USn1yeFslxIjXda7E/s6r3XV5mfNWCCH6Z0Qef5XWejDXJ4QQQgghhBBCnHDScyuEEEIIIYQQYtST4FYIIYQQQgghxKgnwa0QQgghhBBCiFFPglshhBBCCCGEEKOeBLdCCCGEEEIIIUY9CW6FEEIIIYQQQox6EtwKIYQQQgghhBj1JLgVQgghhBBCCDHqSXArhBBCCCGEEGLUk+BWCCGEEEIIIcSoJ8GtEEIIIYQQQohRT4JbIYQQQgghhBCjngS3QgghhBBCCCFGPQluhRBCCCGEEEKMehLcCiGEEEIIIYQY9SS4FUIIIYQQQggx6klwK4QQQgghhBBi1JPgVgghhBBCCCHEqCfBrRBCCCGEEEKIUU+CWyGEEEIIIYQQo54Et0IIIYQQQgghRj0JboUQQgghhBBCjHoS3AohhBBCCCGEGPUkuBVCCCGEEEIIMepJcCuEEEIIIYQQYtT7/3AMBeTFU8ZpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(5,2), dpi=200)\n", + "\n", + "e_fermi_ref = [14.7437]\n", + "for (fermi, n_iter, path_w90, cycle, label) in [(e_fermi_ref, [1], path, cm.GnBu_r, 'reference'), (e_fermi_run, [1], './', cm.RdYlBu, 'run')]:\n", + "\n", + " col_it = np.linspace(0, 1, len(n_iter))\n", + " for ct, it in enumerate(n_iter):\n", + "\n", + " # compute TB model\n", + " h_loc_add = - fermi[ct] * np.eye(n_bnd) # to center bands around 0\n", + " tb = TB_from_wannier90(path=path_w90, seed=f'ce2o3_it{it}', extend_to_spin=False, add_local=h_loc_add)\n", + "\n", + " # compute dispersion on specified path\n", + " k_vec, k_1d, special_k = k_space_path(k_path, num=n_k, bz=tb.bz)\n", + " e_val = tb.dispersion(k_vec)\n", + "\n", + " # plot\n", + " for band in range(n_bnd):\n", + " ax.plot(k_1d, e_val[:,band].real, c=cycle(col_it[ct]), label=f'it{it} - {label}' if band == 0 else '')\n", + "\n", + " \n", + "ax.axhline(y=0,zorder=2,color='gray',alpha=0.5,ls='--')\n", + "ax.set_ylim(-0.2,0.8)\n", + "ax.grid(zorder=0)\n", + "ax.set_xticks(special_k)\n", + "ax.set_xticklabels([r'$\\Gamma$', 'M', 'K', r'$\\Gamma$', 'A', 'L', 'H', 'A'])\n", + "ax.set_xlim([special_k.min(), special_k.max()])\n", + "ax.set_ylabel(r'$\\omega$ (eV)')\n", + "ax.legend(fontsize='small')" + ] + }, + { + "cell_type": "markdown", + "id": "fcc962ef", + "metadata": {}, + "source": [ + "### Convergence" + ] + }, + { + "cell_type": "markdown", + "id": "192ebb20", + "metadata": {}, + "source": [ + "To check the convergence of the impurity Green's function and total energy you can look into the hdf5 Archive:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "57fbd7ae", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive('./ce2o3.h5','r') as h5:\n", + " observables = h5['DMFT_results']['observables']\n", + " convergence = h5['DMFT_results']['convergence_obs']\n", + " \n", + "with HDFArchive(path + 'ce2o3.h5','r') as h5:\n", + " ref_observables = h5['DMFT_results']['observables']\n", + " ref_convergence = h5['DMFT_results']['convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fae94579", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWYAAAGsCAYAAABejH5GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AADGPElEQVR4nOzdeXxU1f3/8ddnskMSQLYgqyCKa7WKiguiuH1dqtYFa9VitXX5trW0/aq17U+0WrXVutVqxYVatXVrtVWrIoiIoqLVqqhsCogSdgiB7HN+f9yZZGYySWbCzJ1J5v18POYxc++ce89JJsrNO+d+jjnnEBERERERERERERH/BDI9ABEREREREREREZFco2BWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGcKZkVERERERERERER8pmBWRERERERERERExGf5mR6ApJ+ZFQF7hTbXAk0ZHI6IiIh0P3lA/9DrD51zdZkcjOQmXfOKiIhImqX8mlfBbG7YC5if6UGIiIhIThgLvJPpQUhO0jWviIiI+CUl17wqZSAiIiIiIiIiIiLiM82YzQ1rwy/efvttBg0alNKT19TUMGfOHADGjx9PSUlJSs8v2UOfdW7Q55w79FnnBj8+51WrVnHAAQeEN9e211YkjXTNK2mlnwHRz4DoZyC3peOaV8FsbmiurzVo0CCGDBmS0pPX1NTQr18/AIYMGaL/MXVj+qxzgz7n3KHPOjdk4HNWXU/JFF3zSlrpZ0D0MyD6GZAIKbnmVSkDEREREREREREREZ8pmBURERERERERERHxmYJZEREREWD+sg2+HiciWWz5PH+PExERkZykYFZERCQHpDt09CPUTGcft85YxBn3zOPu2UuTOvfds5dyxj3zuHXGopSNZXuOU7gskgKv3AAPHgdzb03uuLm3ese9ckN6xiUiIiLdjoJZERGRDnT1MC3doaMfoWY6+5i/bAO3z1wMwE0vfJpwH3fPXspNL3wKwO0zF3f4eXSHz0Gk21s+D1690Xv98tTEw9m5t3rtwTteM2dFREQkAQpmRUQkrRRqZjZMS3fo6Eeome4+xo7YgSuOG9O8nUgfkecGuOK4MYwdsUPGvga/wmWRbm/4ODhqast2IuFsZCgL3vHDx6V+bCIiItLtKJgVEclhCjW7f6iZ7tDRj1DTjz4umTAq4T7infuSCaPaHU93+BxEcsahUxIPZ+OFsodOSd/YREREpFtRMCsikqMUauZGqAnpDx3Tff5s6qOz5/bja/DjeySSM+KEs/lv3hndRqGsiIiIbKf8TA9ARETaNn/Zhk7NYOvouNhQE0golIkNNQ8d3a/D0DHcPpF+OhNqpuv8YeHzJdJPZ8O0dJ6/vX4aGhoYnsbzx34d2xsGZrqPVISZ6f4a0v05i+SUcMgaCl8LXr2enXc8kyUDTiB/7s3w+s0tbRXKikgX5pxj69atVFVVUVtbS1NTU6aHlLWCwSB9+/YFYMWKFQQCmu/YFeXl5VFcXEx5eTk9e/bEzDI2FgWzIiJZ6tYZi7h95uKkQ5Nw6HLZxNFMOXqXuG0UamZX6OhH4Bivn9/PXMpJw4yjBjumzV3O72e2zK68/NhdufCwnahtaCLoHE1BRzAITc7RGAw2vw4GvfeanOOo3QawdkstD7y+rLmfLzdt4+R9BvOP/6zk0be/aD7/pP2Hsufgcl5dtJagc+Ag6Bwu/Iz3S4K3DQ5H0MGOvYs5ce9BPPvBquY+Pli5icNG9+eVhauZ8fGa5j4OHtWXqtoGrnv2YxqagjQEHQ2NQRqDjvqmII1NQRqanPde6HVjU5D6JkffnoWs31rf3MdvX/gUF/G9HFBWxIsLKnnl0zUU5gcozA9QkGcU5udRmBegMN8ozAtQkBeIeD9AUX6AnkV5HLdHBS8sqGw+/9K11Zy8z448/8Eq/jq/5fv03UN24ujdB7J8/Vby8wIUBIz8vAD5eUZ+wMgPeP1GXkwm8zkrlBXpQEw4u8dXj7P7V48T9eubQlkR6cKCwSArVqygpqYm00PpEpxzlJSUANDU1EQwGMzwiKQzGhsbqaurY/PmzZSUlDBs2LCMhezmnOu4lXRpZjYE+ALgiy++YMiQISk9f01NDS+99BIAxxxzTPP/pKT70WcdLV2zWcNtzrinZUXnRMOT2PDuiYvHtdtXvLBv8oE7tvqctzcU7Oj4bD+/c46GJscfZy/htpcXN+8/b9xwTt5nMH//z0oeeWtF8/6zxg7lhL0HtYSMoedg83bL66AjtO14+eM1PPfhqubzHLdHBYeO7scrC9cw85OWwHHcyL7sPaRXc6jYGAxS3xj9ujEYChsbHQ2h141NXiC5vrqOzTWNkV8hkLm/Esv2ywt4QW1BRGhb2xCkuq7lczYcLuJzTmUou3LlSoYOHRreHOqcW5mSE4skIa3XvC9fC3Nvab1foWxO0bWwdLefAeccy5cvjwplzYy8vLwMjir7NTZ611f5+Zrr2FU1NTURmYeWlJQwfPjwDmfOpuOaVz9FIiKdkM7ZrJDZGa3puO05Xj+NTUG+c8gI7n/tM26fuaS57aUTRnHS1wbxxYZt3izNUGjZFKR55qZz3mxN77Xj68N6c9bYofwtNNPQm4G4haN3r+DZD77iX/9tCTsP2bkvm2rqufqZj6htCFLT0ERtQ1Pzc+S+2oYmauqbqG0M0hRs/YfMh+Yt56F5y1vt/9v8L5rHsj1eWFDZPKsy0rzP1jPvs/Xbff4WCmW7uqbQzOW6xrZnbaQrlBXJCUf8HDf3luj/WxaVK5QVkS5t69atzaFsXl4eFRUVlJaW6vb8dgSDQaqqqgAoLy/X96qLCgaDVFdXU1lZSVNTEzU1NWzdupXS0lLfx6JgVkQkSX7UZ408p9+36Sdy23NtQxNbahvZUttAVeh5S8RzVU14f8R7dQ30LilgU00DALfMWMQtcRYQ++PspfwxyQXJ4nny3S958t0vW+1/fcl6Xl+SylBTpGvpUZinUFYkWfP+0PpPWHVV3gJgCmdFpIsKB4wAFRUVlJeXZ3A0Iv4JBALNP+9ffun9zrhlyxYFsyIiXYFfs1kjz5nq2qO1DU1srmmgqqaBzTUN7FpRGlW3818r8vj3F45G1xKQ9ulRwH2vfcatMxZR36RaStK2vIBBaFZzrJKCPHoW5WFmGBAww6zlufl16D1C2wEDI9zG215fXU9lVW2rPkb178mo/qUU5Hs1WQvyAlGv8/MCFOZ5tVoL8rwarQWh1/l5Xm3YVxau4Zn3v2o+Z2lRflRZgBP2GsT4XfpR3xikrtGrT1vf6JWMqG8KUt8Y8Rze3xj9XkNTkMrNtayrrm/1NeQHvK+1oSn1Jae21Tdx9+ylCmdFEjX31uYas62E9yucFZEuqLbWu44ys4wEUiKZVlpaipnhnMtYnWUFsyLSbaWzBqxfs1nb6ss5x7cPHM7dry7hnlc/a277P3tWkBeA3734KVU1jV74WtsQEcI2UlXbQH07tzuHNbrouUEbtzUkPOZcVVIQoEdhfnNw2BwomhEIeMFiwKLDyNhgMmDGui11rGojcBw9oCwmZLTmBabCNUYjX8e2LcwL8PInq3nqPy2ziYvzHLVNLZ/3dw8ZwbcOGEZewMgLeGNs9Tr0NbXeZ61+5nv3KGBT6OenpqGJH00cvd2hYHt9LF27ldP3G9rpPu6evTQqlA3/NxvZ53MfrmLPwb226+to72toDDquOG4MFx8+kqagozH8CC9SFvRqBjc0eWU2wvvCC5g1Bh1Pv/clT7zbUvaqMOCoD3qfczKz/UVyWnuhbJjCWRHpopqamgCvjIFuyZdcFAgEyMvLo7Gxsfm/B78pmBWRbindNWCh87NZLz58JLUNTVTVNlBVE3H7f0QZgHjb/UsLWRuaWffbFxfy2xcXthrTvz+q5N8fta5J2l2Y0Rz+BcKvQ9t5oX019U1srW/9j+rQPiWMGlBKcX4eJYV5FBfkUVwQoKTAe11SkEdxYR7F+QFKCvOa9ze/V+Dt/+tbK7hjVktN3OjQMciPJo5MW1i3vYFj+PyRoexJw5o4arBjeY9dm8tWPPD6MvqXFXeqn7b+EBG5f3tDwXT20d4fUpL5g0yqv4b8JNfguHv20qhQNt7nrHBWpAMxoWzTwL3IW/1hy/tDD4Iv3vReK5wVERGRTlAwKyLdjl81YCPPGxmkvLNsAzv168nbn2/ggy83N7ftrqUACvMDlBfnU1ZcQFlxPmXF+ZQ3v45+nrd0Pf94ryUULC/Op6q25fbwHx25MxccNrI5ZA3PKA1vd7RKZnuh5hcbazj7wOHbHWpGhrKpDh3THWrGnv8nE0cxfJsX8H/v0OEUFBRsVz9+hJrp7COR2e2p+DrS/X1K9+cskhNiZ8oeNZXglnXRwWz5jnDU1JZ2CmdFREQkSQpmRaTbSXcN2G31jSxaXc3CyioWVlazcHUVPQrz2BaapTnz0zVxj8vWUgA9C/MoLymgsSnYPCMXIN9cVDmDU/bZkdP3G9ocvobD1uKCxKby3T17aVQoGy90vGPWEkoK87tEqJnuMM2P808+cEdeeqll5vX29ONHqJnOPpIpOZLN36d0f84iOSFOKMuhU3Bzbo9uV72mJYRVOCsiIiKdoGBWRLqlVNSAbWwKsmz9Vj6t3MLCyi18WrmFRau3sGLDNuKsaZRRJQUBBpYXU15SQK+SAspLCigvDr/O955D2+H3e5V4wWpBXqDV9yDebc9Pv/8Vu1aUK9TEnzDNj/PHK3DfmX78CDXT2cf8ZRuSrgMdr4/9R/Rpd5Z9ur9P6f6cRXLC8nlxQ1kAeg6Iblu92nuOF84OPQiGj0vfOEVERKRbUDArIhmRzoW5wjpTA3bCLv1ZtHoL/3P7ayxdU+1LyYHiggBlxQVR5QC8YLWlJEB5SQFvf76BZz9Y1XxcZBmAmoYgk8YO63K3t4d1xVAznmwMNdMdOvoRaqa7j7EjduCyiaOTrksd2cdlE0e3+/+m7vA5iOSE4ePg8Cvh1RujQ1nAlbYRzEJ0OHv4lQplRUQi+PG7X3cQDAa57bbbuP/++1m6dCl1dXX06tWLTZs2ZXpokkYKZkXEd34szBUWL3hYuXEbYyrK+Pt/vuS9LzZFtZ+9aG3C40nUkWP6c+weFaGQ1ZvBGhnEFuZ3vALq3bOXRoWyqbpNPxtub9+efhRqdhympTt09CPU9KOPKUfvklBd6Xh9JBJmdofPQSRnHPFzGDmhVbjqYmfM1lVB/TYo7OFtHzpFM2VFRGL4+btfV3fttddyzTXXEAgE2H333enVqxdlZWWZHpakmYJZEfGVnwtzba5pYMFXm8kLwG6Dyvhk1RYAHnlrxfZ8CQAEDEb07cmuFWXsMrCM5eu38vT7XzW/H7no1KxP1zJ2RF8mjR3Wqb7SdZt+um97VqiZPWFaukPHdJ/frz46G0omelx3+BxEckaccLXVjFmArWugcES7x4mI5Co/f/fr6pxz3HXXXQA8/vjjnHbaaRkekfhFwayI+CpdC3Nt3FrPR19t5sMvN7Pgyyo++mozy9dvS8mYB5QVsWtFGWNCIeyYinJGDyxtXvTq7tlLo0LZVC46la7b9BVq5laoCekPHdN9fr/6SLfu8DmI5KzCMhqtkHzXslAmW1ZDnxEZG5KISDZL96LM3cnatWtZt24dAMcff3yGRyN+UjArIr7b3oW5Tt9vCK8sXMOCL70g9qMvq/hyU+tZnskqLcpnl4Gl7FpRzpiKMnatKGPXgWX06VnY5jHpXHQqnbfpK9TMvVBTRES2kxl1Bb3Ir48oexRZZ1ZERFrZ3t/9cmVh0si7FktKSjI4EvFbx4UNRUTS4JIJo7jiuDHN2ze98Cl3z14a1ebu2Uui/mHeuX9P/vzGMsZe/zLnPzifm19axIsLVm93KHva1wcz94oj+HDqMfz90kO44Zt78Z2DR3DQyL6dDmWT+Trj6eyM1ti+5i/b0Gb7KUfvwhMXj0v6YueSCaN44uJxCdd6UqgpIiLdRV1Br+gdCmZFRDqU2O9+XSOUHTlyJH369GHu3Ll8+OGHnHXWWQwaNIi8vDymTp3a3O7FF1/k1FNPZdCgQRQWFtK/f39OOukkZs2aFXW+ZcuWYWaMGDGieZ+ZNT+mT58e1f6LL75gypQp7LbbbvTs2ZPS0lL2228/br75Zmpra1uNN3x+MwPgmWeeYeLEifTt2xczY/bs2c1tGxoauPfee5kwYQJ9+/alqKiI4cOHc8EFF7BkyZK4348JEyY0j3PdunX84Ac/YNiwYRQVFTFs2DAuu+yydhcva2hoYNq0aUycOJF+/fpRVFTE0KFDOeaYY7jnnnuoq6trdUyy34NspxmzIpIx8f56unRtNYN6FfPcB6v4bN3WqPZL1m5tdY6OFOYF2LWijIDBf1dubt4fWQP2qf98yc4DyrZ70axULjrl14xWhZoiIiKJq83vHb1DwayIdFPBoGPjtvqOGybozP2HsK2+kTtneQHfTS98yrb6RiYfPILpbyxr3g/wwyN35sz9h7C+unUo11l9ehQSCFjKzjdv3jzOOOMMzIzdd9+d3r17Y2YEg0Euvvhipk2bBkDfvn3Zc889WbFiBc8++yzPPvssN9xwA1deeSUAxcXFHHLIIdTV1fHOO+8AcMghhzT3M3DgwObX//73vznzzDOprq6muLiYkSNHUldXx/vvv89//vMfnnzySV566SXKy8vjjvl3v/sdl19+Of369WPUqFFRM3PXrVvHiSeeyFtvvYWZMXjwYIYNG8bixYt54IEHeOyxx5pD3XhWrlzJvvvuy+rVq9ljjz0oKCjg888/54477uCNN97gjTfeoKCgIOqY1atXc+KJJzZ/3YMHD2bkyJGsWrWKmTNnMmPGDI477rio0Hp7vwfZSMGsiMQ1f9mGToVvyR538j478t6Kjbz0sfeLzZPvrky6z7Ci/AC7DSpnz8Hl7DW4F3vs2ItdBpZx/9zP44aona0B60d9VtBCPiIiItlGM2ZFJFds3FbPfte9nNY+7py1JCqQ7Wj/9nj3l0fRt7QoZee76aabOPfcc7njjjsoKysDvHIE119/PdOmTWPEiBHce++9HH300c3HPPbYY1x44YVcddVVHHjggRxxxBFUVFQwd+5cli1bxk477QTA3LlzW/W3cOFCzjjjDLZt28a1117Lz372s+ZgdenSpZxzzjm8+eab/OhHP2o1yzbsl7/8JXfeeSeXXnopgUAA5xz19V74ftZZZ/HWW29xxBFHcPfdd7PrrrsCUF9fz7XXXsv111/PpEmTWLhwIX379m117muvvZZjjz2WBx54gP79+wPw6quvcsIJJ/DOO+/w0EMPccEFFzS3d85x+umn88477zBq1CgeeughDj744Ob3165dy/Tp0+nZs2dKvwfZSKUMRKSVW2cs4ox75iV0y32ku2cv5Yx75nHrjEVttmkKOt5dvpGbX1zI/9z+GgffOKs5lE1GSUEe+w/vw+SDR/C70/fmhR8fxoJrjuXp/z2E607Zi0ljh7Hn4F5thrLQ+TID4dmssefrSGR/icxmDffVGQplRUREUq+2VTC7JjMDERGRjBozZgz33ntvcygLXjB74403UlBQwD/+8Y+oUBZg0qRJ/PrXv8Y5x0033ZRUf1dffTVbt27lZz/7Gb/61a+iZruOGjWKJ554gp49e/Lwww/z5Zdfxj3H9773PX7wgx8QCHhRoJlRVFTECy+8wMyZMxk5ciTPPPNMcygLUFhYyHXXXcfJJ5/M+vXrm2cCx+rTpw+PPPJIcygLcPjhhzeHsc8++2xU+2eeeYa5c+fSo0cPZsyYERXKAvTv35//+7//izpfKr4H2UgzZkUkyvxlG7h95mIguVmkkbNPb5+5OGqmZ1VtA3MWrWXWp2uYvXAtG7Ymd0tMaVE+e+xYzp6DezXPht2pXyl5HdyKkmgNWEh+gS7NZhUREck9KmUgIiLghax5eXlR+55//nm2bdvG+PHj2WeffeIed+qppzJlyhTmzJlDU1NTq3PEU19fzz//+U8ALr744rhthgwZwtixY5k9ezavvvoqZ599dqs2kydPjnvsk08+CcA555wTFTTHjvuZZ55h1qxZzWUYIn3rW9+KWz7goIMO4o477mhVo/bvf/874M3UDc8Ubk+qvgfZSMGsiEQZO2IHrjhuTFJBZbwAtG/PQu577TNmfrKG+cs20Bh0nRrP9w8byZX/MybpekDprgELms0qIiKSa1qVMtiiYFZEJBftskvrhZD/+9//ArBo0SIOPfTQuMc55/1eXFNTw/r16xkwYECHfS1evJiamhrMjPPOO6/NdosWeXeurlwZvzzgbrvtFnd/eNyPPfYYM2fOjNsmvIBXW+cePXp03P3hGrnV1dVR+xcsWADAuHHj4h4XK1Xfg2ykYFZEWmkrqJx84I6t2sYGoPsP78Nj81dE7etIcX6A2sZg83bkwlz3vvYZfXoWJrUwl181YEVERCS3tApmt66BYBACqhAnIt1Lnx6FvPvLo1J+3tiFvnqVFLC5pqF5+4dH7szkg0ekvN8+PQpTer7I2qdh4fCysrKSysrKDs+xbdu2hPoKn9c5x+uvv97p88Ybc+T5Fy5cyMKFC1N67nDZhHAgHVZVVQV4JRASkarvQTZSMCsiccULKhsaGhge0ebmFxfyh1eib0l4Z/nGhM6/y8BSjhgzgC21jTz61orm/du7MBe01IC9febipGvAhvtLtAasiIiI5I5WpQyCjVCzEXq2XghFRKQrCwQspYtlgTepJzKUjfe7352zltCjMD+piTnZorS0FICLLrqIe+65J+XnLSoqora2NmXnjT3/X//6V84666yUnz+ecNmDcODakXR/DzJJf9oVkTbFLo71+5lLeepz48WVxhG3vt4qlG1PYV6A8bv055pv7MFrlx/BS1MOp3dJYdxQNl7fiS7MFTbl6F144uJxSf+DfsmEUTxx8TimHN361hQRERHJbXUFrevnUd3xrCgRkVzXXqm57f3dL1vstddeAHzwwQcpPe8uu+xCUVERdXV1zbfqp1K6xt2ePffcE4A33ngjofbp/h5kkoJZEWnXJRNGMeWolnoxcyrzeP6LPCqr6jo8dkBZEWeNHcq95+7He//vaB767gF85+ARDN2hR8ILc23PP9CqASsiIiKp5CyfuvyYhVG0AJiISLv8+N0vG5x44omUlJQwb968hG63T1RJSQknnHACADfffHPKzht2xhlnAPDggw+yYcOGlJ8/ntNOOw3w6touW7asw/bp/h5kkq/BrJnlmdl+ZnaymV1oZleY2Y/M7FtmdpSZDfRzPCLSvmXrtnLtvz7mvrmfJ3zM14b0YspRu/CvHxzKmz+fyI2n7c0xe1TQs6ilckqyC3N19X+gRUREpPtoVc6gek1GxiEi0hXk0u9+AwYM4KqrrgLg5JNP5vHHH6epqSmqTWVlJffccw/XX399Uue+7rrrKC0tZdq0aVx22WWsW7cu6v36+npefPFFzjzzzFZ9duSkk07iqKOOorKykokTJ/L222+3avPJJ59w9dVX8/TTTyd17vb6POyww9i6dSvHHnss8+bNi3p/3bp13Hzzzaxdu7Z5Xzq/B5mU9hqzZjYamARMAA4CSjpovxR4DXgOeNY5V5/uMYpIi2DQ8eritTz0xjJmL1pLTI3uVnoW5nHY6P4cOWYAE8b0Z0BZcbvttTCXiIiIdGV1Bb2g9ouWHVtUykBEJJ5c/N3vF7/4BRs2bODWW29l0qRJlJeXM3r0aAKBAKtWrWLlypUAfPvb307qvLvtthvPPPMMZ555JnfccQd33XUXu+yyC7169WLTpk0sXbqUhgZvEbVHH3006XE//vjjnHbaabzyyisceOCBDBo0iKFDh9LQ0MCyZcvYuNFbS2batGlJnzseM+OJJ57ghBNO4N133+Xggw9m6NChVFRUUFlZyZdffkkwGOT000+nf//+vnwPMiVtwayZnQZcBhwS3pXgoTsDo4DJwGYzux+40zm3ot2jRHLI/GUbOvUPU3vHVdU28MQ7K/nLvGUsW5/4CoYXTxjFD48c3XHDEC3MJSIiIl1ZXX6v6B2aMSsiElcu/u5nZvz+97/nzDPP5O677+a1115jwYIFFBYWMnjwYE455RROPPFEvvGNbyR97iOPPJJPPvmEu+66i+eee45Fixbx2WefUVFRwYEHHsiRRx7JKaecQn5+8lFfnz59ePnll3niiSf4y1/+wrvvvst7771Hr169GDZsGKeccgonn3wyxxxzTNLnbsvAgQN54403uO+++/jb3/7Ghx9+yOrVqxk4cCBHHXUUp512GjvuuGPUMen8HmRKykdqZqcCvwZ2oyWMrQXeB94G3gXWABuAjXgzaHcA+gC7AGOBA4ChQG/gJ8APzewB4BrnnIo4SU67dcaipP9hg5ZbSC6bODpqYatFq7fw0Lxl/P0/X7KtPrHp/j3yHdsavf+8b3lpEfmBQFJjmXL0Lhw6ul/S/8BeMmFUl/prqYiISKaZ2QC8a+sD8K6zxwJ9Q2//2Tk3OUX9TAWuTrD5Ec652anoNxNqC3pH71CNWRGRNnW33/0+++wzqqqqOmx30EEHcdBBByV83hEjRuA6ul0V6N+/P1OnTmXq1KkpPS9AIBBg0qRJTJo0KaH2ALNnz273/QkTJrTbf2FhIZdeeimXXnppwn0m+z3IdikNZs1sFnA4XiBbCzwPPAI8l2xJAjPbGTgb+BawK3ARcLaZneOcezaV4xbpKuYv28DtMxcDLbd2JBKIRtb1uX3mYsaN3IFNNY08NG8Zbyxd3+6xRfkB6hqDzdsnDWviqMGO5T125fczlyY9ljAtzCUiIuILpYYpVlsQO2NW32IRkfbodz+RtqV6xuwEYB1wK3CXc67jPyO0wTm3BLgWuNbMDgV+BRwNfB1QMCs5aeyIHbjiuDFR9Xag/UA0ttj64bv056dPfMCXm2ra7WvXgWWM6NeTFxe01E37ycRRDN+2EIDvHTqcgoKCpMYiIiIiGfUF8AmQuvsQ49urg/cTX1U0C7UuZaBgVkRERDon1cHsFXiBbOIFKhPgnJsLHGtmY4F+qTy3SFcTrxh65P5IsaFsXsB4ddHaVu0i3z92j4GcN24E763YyE0vLGx+74rjxjD5wB156aWWfcmMRUREJFeZ2SjgfLw7y0YD4WRvM7AYmI1XVmBJGrq/FpgPzHfOrTazEaQ5GHXOfZTO82eaShmIiIhIqqQ0mHXO/S6V54tz/vnpPL9IV5FIIPqHWYu5+aVFUcc1BePXdunbs5BvHTCMsw8cxo69S0KBbnQoe8mEUdTUtJ5lq3BWRESkbWZ2JXANUBDatQ74MvS6HG+h3EOAy83saufcjans3zmXaN1XSVBdbCmD2s3QUAMFJZkZkIiIiHRZXWeZMhGJ0lYgetrXBzPl8fd5fUn7tWMB9h7Si++MG8EJew+iuCAP8OrYRs6yTWSRsXhjycZC7SIiIn4ys28BvwEW4C2O+5JzblNMm97AsXhlu643s2XOub/5PFRJQm1sKQOA6jXQZ7j/gxEREZEuLeXBrJn9E3gI+GeyC36JSHLiBaKRoWo8BXnGiXvvyHnjhrPvsD6t3h87Ygcumzia22cuTiiUjTeWyyaOVigrIiICPwY+Aw5yzm2N1yAU1D5mZs8D7wNTAAWzWawxrwcuvxhrrG3ZqWBWREREOiEdM2ZPBE4ANpvZ48BfnHOvp6EfEQEuPnwkH325mec+XNVuu4HlRXz7wOF864Bh9C8rarftlKN34dDR/ZIOVy+ZMEozZUVERFrsAfyxrVA2knNui5n9Hbgk/cNKLzObgbdgbxmwCfgYeAH4k3Nu43acd0gHTSrCL2pqauKWYNoetbW14YEQ7NGPvKqVze/VbVhBsN+eKe1Psk/zz0DMa8kd3e1nIBgM4pxrfi0di/w+6XvWfTjnCAaDHV47pPraAtJXysCA3sD3gO+Z2ed4s2gfds59lqY+RXLO2i11XPWPD5nxcduLThwwYgfOO3g4x+5RQUFeIOFzdzZcVSgrIiLSrJ6Whb4SUR46pqs7KuJ1f7xFzw4HrjCzyc65Zzp53i8SbThnzhz69UvfmsGbG4uIvOL5dP6rLFumKnG5ZM6cOZkegmRYd/gZ6Nu3LyUlJZgZVVVVmR5Ol1NdXZ3pIUgKNDY2Nv9B99NP278Ded26dSnvP/GUJnE74y1wsAQvoDVgJ+BqYLGZvWZmF5pZMhepIhLjuQ9Wccytr7Ybyk4+eASPXzyOE/feMalQVkRERFLiTeAsM9u7o4Zm9jXgW8C8tI8qfT7Eq6V7ErAfcBDwHeCl0Pu9gafM7H8yMroUqi3oHbVd1Lg5MwMRERGRLi3lf9YNzYi9BrjGzA4CzgUmQfMflQ8OPe4ws2fxZtL+2znXlOqxiHRHG7fW8//+uYB//feruO8X5BkNTd7tKNPfWMbA8uKE68SKiIhISl0NvAa8aWaPADOAxUA4xesFjAaOAc7GmzRxdQbGmQq3Oeemxtn/FvCQmV0E3APkAfeZ2c7OuWTvBxzawfsVwHyA8ePHM2RIR5UPklNbW9s8Q26HYbvBh+82v7fzwFKGH3NMSvuT7BP5MzB+/HiKi4szPCLxW3f7GVixYgVNTU3k5+dTXl6e6eF0CcFgsHmmbGlpKYGAJkB1dWvXrqWkpITS0lL222+/dtuuXLmy3fc7I6332zjn3sS7EP0xcDxeSHsCUAQUA6eFHuvM7FG8erT/SeeYRLqymZ+s5sq/f8jaLXVx3z9138HcOmkf7p69NGpBMEDhrIiIiM+cc/PN7DjgPuAC4LttNDW8RcIudM6949f4Uim0iFl77//JzPYHLgR2BL4JPJJkH+3+NmRmza9LSkooKSlJ5vRJyes1KGo7v2Y9+WnsT7JPcXFxWn/GJPt1h5+BQCDQXCdVAWPyAoGAvm/dhJkRCAQ6/G86Hf/N+1IIyTnXADwDPGNmvYEz8ULaQ0JN+gM/An5kZp8AfwYecc7FnxIokmOqahv49b8+5ol32/595IdH7sxPj9kVaAlhFc6KiIhklnNutpntChwJTMCbIRsu6bUZbwbtq8DMHLiD7E94wSx4NWeTCmazies5MHpHddulpURERETa4nuF+tBf0+8F7jWznfAC2m/jXaQC7AbcCPzGzF4B/uyc67IXbSLba+7idVz+5H/5anPbq35ecdyuXDJh56h9CmdFRESyQyhwnRF65LKPI14PztgoUsCVDojeoWBWREREOiGjc66dc5875651zu0KjAPuBjbg3c6Vh7ei60MZHKJIxmyta+RXT3/EOfe/1UEoO6ZVKBt2yYRRXHHcmObtm174lLtnL035WEVERHKJmeWZWWGmx9EFWcdNugbXs3/0juo1ELodWERERCRRWVMMwzn3lnPuf/Fq0C4AXIaHJBkyf9kGX4/LRvOXbeD4O17jL28ub7edF8q2PwM2Xjjbnb5XIiIiGfAjoNrM3jezM2LfNLNSM9vHzHy/Oy3L7R7xukuXLGtVyiDYALWbMjIWERER6bqyIpg1sx3N7P/M7ANgHtEXbfrTcw65dcYizrhnXtKzOu+evZQz7pnHrTMWddjWj+C3s328vmQd1z/3MWf+aR7L129r9f7Bo/py/iEjgMRC2bDIcPayiaMZO2KHTo1PREQk14XC1ivwSoI1Av+M02w48B+88PZdM7vPzC41s3Fm1sPH4WabiyJev5qxUaRCz36t922p9H8cIiIiSZo8eTJmxtSpUzM9FCEDNWbDzKwncBpejdkJtITE4VucPgX+EnpIDpi/bAO3z1wMJFcP9e7ZS5vb3z5zMYeO7tdm8HjrjEXcPnNxUqFmZB+XTRzNlKN3abdtZ/v4f898xEPz4s+QLSnI4+fHj+GcA4cTCBjH7zUo6XD1kgmj2H9EH4WyIiIi2+cYYADe3V2XOefq2mlbCOwTepwf2hc0s8XAfODC0CK5Wc3MJgMPhjavcc5NjXl/L6DGObeknXNcBFwQ2qwE/pH6kfoorxBKdoCaiD/GV6+Ggbu3fYyISK5aPg+Gj/PvOOmUZcuWMX36dHr37s2Pf/zjTA8nZ/gazJqZ4V3MngucApSE3wo9rwcew1vwa76fY5PMGztiB644bkxSi1VFhrLgzSJtK3j0I/jtTB/1jUEmP/g2byxdH/f9/Yb34eYzvsZO/Xo27+tsuKpQVkREZLudEHqe55x7vYO2DvgCGBaxLw8YA+wKzAWmpXyEEczsUCCyGH3kVM+dQ6FrM+fc9E50sx9wX2jh3n8DH+Jd1+fjfa3nAEeH2jYBFznntnain+xSVhETzK7J3FhERLLVKzfAqzfCUVPh0CmJHzf3Vnh5Khx+JRzx83SNTiIsW7aMa665huHDhyuY9ZEvwayZ7YMXxn4LCBdkCoexDcDzwJ+B57rCrAFJn3CImUg4Gy+UbS8ETXfw25k+PllVxXkPvM3aLa0n2xTmB/jZMbtwwaEjyQt0m7UyREREurr98ALXfyXS2Dk3wsx60zJzdh/gUGAkMIU0B7PAhcB32njvkNAj0vRO9hNeuPeodtqsBy5wzsUr/9D1lA6ANR+3bFerlIGISJTl87xQFryQFRILZ8OhLHjHj5ygmbPSbaUtmDWzwcC38QLZ8D09kenSfOAh4K/OuYyuRGRmw/AWcTgBb0ZDHbAEeBz4o3OudbHPzvd1FN6sgUOBQXi1yVYDHwAzgb8456pT1V9XlEg4m2wom8y5/eijsSnIn+Z8xi0vLSQYZ5m7vQb34vdnfo3RA8s67E9ERER8tVPo+b+JHuCc2wTMDj0ws53xynbtamZ7OOcWpHaIvnser0zBOGBfvIkYffGu/Tfgfa9eAKY756oyNciUK41ZAEwzZkVEog0f582UDYesiYSzkaEseMcrlJVuLOWLf5nZd8zsZWA5cANeKGuhxxfAjcBuzrkDnXN3ZUEoewJeKPpTvFutegB9gLHA74D/mNnIFPTTx8yeBmbgzVoYFeqrHBiNV2/3j0TfapazIherAi/cDC8I1tnANJFzh6WzjyVrqjntnnn87sXWoWx+wPjJ0bvw90sPVigrIiKSnXqFnjudwoVqsc4JbZ643SNqv6/JzjlL9NHGOaZHtJka5/01zrkHnHPfc87t75wb6pzr4Zwrcc4Nds4d75y7o1uFshAnmF2dmXGIiGSzQ6d44WrYy1O98DWeeKFsMuUPfDBy5Ej69OnD3Llz+fDDDznrrLMYNGgQeXl5UYtpvfjii5x66qkMGjSIwsJC+vfvz0knncSsWbPaPPcTTzzBMcccQ//+/SkoKGCHHXZgzJgxnHfeebz44otRbadOnYqZMXny5DbPZ2aYGcuWLevw65owYQJHHHEEAMuXL28+NplzSOekY8bsg3i3d4Uv7LYCf8ebHTvLORdnfmBmmNnX8GbF9gCq8YLkV/Bq354FfA+v/tdzZja2szNZzawXXiC7X2jXc8Df8Gbl5uGt3DsWOL3TX0w3FG/m6e9nLKShqeVHaJ+hvflqUw1XP/MRgYCRZ0ZewPsfR14A8iz8Orzf21eQZxw5ZgCzPl3TfO7/frGJI8cMYPbCNTz/UcutaCfvsyMj+vbgxQWVBELnNfP6CpgRCBDabwTMex0w47DR/VhdNYLpbyxr7mP+svW8vmQ9dY3BVl/vrgPLuOXMr7Hn4F6t3hMREZGsUQ8UAD07aBNu15YX8RbA3a+dNpLNYoPZLSplICISVzhcbW/mbBcIZSPNmzePM844AzNj9913p3fv3pgZwWCQiy++mGnTvEpFffv2Zc8992TFihU8++yzPPvss9xwww1ceeWVUef7xS9+wW9+8xsABgwYwNe+9jW2bdvGypUr+ctf/kJVVRXHHnts2r6evfbai/Xr1/PRRx9RVFTE/vvvH/V+cXFx2vrOdekqZeDwAs4/A0+lshRAit2GF8o2Asc45+ZFvDcrtGLub/Fm0v4EuLaT/dyJd9HdCJzjnHss5v3XgUfN7Cd4Qa2EXDJhFJtr6rnn1c8AokJZgPe/2MT7X2xKSV8vLKjkhQWtL6ifef8rnnn/q5T0MevTta32Gd7XedlRoynK18cvIiKS5dbjhbKD22rgnFtsZqW0lPOK54PQ814pHJv4SaUMRKQ7CwajFzjcXvueC/XbYM5vve2Xp3rbB14Eb/2pZT/A+Mu99lvXpa7/kh0gkLqbxm+66SbOPfdc7rjjDsrKvLtda2pquP7665k2bRojRozg3nvv5eijj24+5rHHHuPCCy/kqquu4sADD2yeobpu3Tpuuukm8vPzefTRRzn99NMxa7mJ5c0332Tp0ui7fFPtzjvvZPbs2RxxxBFUVFQwd+7ctPYnLdIRzF4FPOycW5mGc6eMmY3Fm6UAcH9MKBt2C3A+sBvwYzO7IdnFyUIr4Z4b2rwuTijbLDSbuDGZ8+eCIX16ZHoIabNDjwLumzyWrw/rk+mhiIiISGI+wFuT4Gi8O6Dics410hK+xhNO8fqnbmjiqzKVMhCRbqxmA/wu8XJ+nTLnt9GBbEf7t8f/LYWe/VJ2ujFjxnDvvfdSUNByc0xNTQ033ngjBQUF/OMf/2CfffaJOmbSpEmsWrWKKVOmcNNNNzUHs0uWLKGpqYl99tmHM844o1VfBx10EAcddFDKxi7ZJeU1Zp1zN2Z7KBtySsTrB+M1cM4F8UowgFd3dkIn+vlB6LkaL+iVJD33QWpmq2abovwAr185UaGsiIhI1zIb74aXb5rZ9hSED9c1UlH5rip2xmztJmiozchQRETEX5MmTSIvL/qO1+eff55t27Yxbty4VqFs2KmnngrAnDlzaGpqAmD48OEALFq0iP/85z/pG7RkpXSVMmiTmQXwAs5xQAVeKYFfOudWRbQpDI2tyTlXl6ahHBZ63gq82067VyNeH4pXKzYhoa/j5NDmv8M1as0sH+/2NwdUOufqEz1nrrl79lLmfdb27RNfH9ab3XcspykIwaCjyTmCzoVe0/I66AiGtr3Xrvn1yo01rNxY0+rc/UsL6dOzsPm4YOgcTUGHc+G+CO13of1EjCHUn/P2x6prDDL9jWVJLSomIiIiGfcX4Hq8BVxvAy7o5HkqQs/ZWvJLOlI6oPW+rWug9zD/xyIiIr7aZZddWu3773//C3gB66GHHhr3uPCySzU1Naxfv54BAwYwaNAgzj33XP7yl7+w//77N5c5OPjggxk/fjzl5eXp+0Ik43wNZs3sBOAOYETMW7cAqyK2LwD+AFSb2Y7Oua1pGM5uoecloVvN2vJpnGMS9TUgXCF5nplV4C0wdgYtC0bUmtkreGUO3kjy/ACY2ZAOmoQv/KmpqaGmpnUIuT1qa2vjvt5e0+Yu5/czW9dRGb9zX+YsWQ/Af1ZsYsLovnzv0OGd7yMi+O1Vks/mGu/HYW11PeceOLTT547qI+LriOzjphc+paGhYbv78Eu6PmvJLvqcc4c+69zgx+ec6muLbOacW2dmf8Rbf2CymS1wzv2+E6cK/8bWPW8NygXFvSGvCJoi5pFUK5gVEckFPXu2XgN006ZNAFRWVlJZ2fGCkNu2tfxt9v7772fPPfdk2rRpvPnmm7z55psAFBYWcsYZZ3DzzTdTUVHR1qmkC/MtmDWzC4E/4d36BbAO6Ic3azTW/cB1QG/gVODhFI+lONQ3QLtlF5xzG81sK16QOjTJriIXfCgGPozoN3L//wDHmtlPnXO3JdkHwBeJNpwzZw79+qWurkq886fCy18a/1oRfyGsnWwNvYbR/P7vZy5l8eJFHDU43o9S4n2cNKyJowY3Ru3v7Ln97CNTUvVZS3bT55w79FnnhnR9zuvWpXBxjq7hl8DxeAvE/s7MhgI/d84llHyHSiB8F+86+PW0jVLSy8wrZ7B5Rcu+LR3/Ii4i0iWU7ODVZU212IW+int7pWDCxl/uLQiWaiU7pP6cMUpLSwG46KKLuOeee5I6tqCggMsvv5zLL7+cFStWMHfuXGbOnMkTTzzBI488wscff8xbb73VXNM2vDiYi3d7LrB1azrmN0o6pLzGbDxmtjNwV2hzFrC7cy7OvT+e0K39T+GFuMekYUiRtbyqE2gf/okuTbKfyP/yr8YLZZ8F9scLZAcClwJVeJ/F783sf5Lso9uJDTPzLPp/NL0KHUcNdpw0rKl5379W5PHyl0ai4gemXj/be24/+xARERH/hQLYY4AleNerPwI+NrNzzayovWPNrCfeomHhAqWPpHOskmax5Qy0AJiIdBeBgLdYViof7/0lOpQ9aipcudx7DpvzW69dqvsOpD/+2muvvQD44IP21v7s2LBhwzj77LO5//77ee+99ygqKuK9997jrbfeam4TnrG7enX8f3cWL16cdL/hsFf85deM2R8DBcBHwPEJ1lR9DbgQ2CcN4ymOeJ3IWML3J5Uk2U/k3PYi4F/AKaFFxcBbjfduM/sQr5ZtAPitmb3g2vqzR3wdzeStAOYDjB8/niFDOqp8kJza2trmGTjjx4+nuLi4gyPaNm3ucv61ouWvcpcePoI/vrosqs03jjqMwb1LOAYYHVEm4F8r8hg9elSHZQFi+/jJxNbHdPbcfvaRCan8rCV76XPOHfqsc4Mfn/PKlV1h3dfUcs6tNLPDgZl4M2eHA9OB28zs33gzYT8B1gMNeNdj44HvATvizZZ92Tn3auuzS5dRFnNbafWazIxDRCTbzb0VXp7asn3UVDh0ivc6/Bx+P/wc3t9FnHjiiZSUlDBv3jxef/11DjnkkO0+56hRo6ioqGD58uV89VVL9aPRo0cD8P7771NfX09hYWHUcXfffXfSfZWUeJFXLpWoygZ+BbMT8S4+b0tioatwqpWOIk2Rt5kVttmqRXjmQ7I/nbG3s/1fRCjbzDk318z+DpwO7Bl6fJhoJ865dn8bivyrR0lJSfN/bOlQXFzc6fPPX7YhqhbrFceN4Ygx/VsFs8P696Yw3/tr14+OHkNBQQE3veCVAv79zKWMGz2AsSPi36Zw9+ylrfpoa/GteOcuKCjocLEuP/rIBtvzWUvXoc85d+izzg3p+pxz9WfHObfKzPbDK23wU7zryj7At0KPthiwCPh22gcp6dVqxqxKGYiItNJeKBvWDcLZAQMGcNVVV/GrX/2Kk08+mT/+8Y+cdtpp5OW13ElbWVnJ008/zfr16/nFL34BwMsvv8xzzz3Hd77zHfbZZ5/mtk1NTdx3330sX74cM+PrX/9683tHHHEEPXr0YPXq1Vx55ZXcfPPNBAIBgsEgf/rTn3jooYeSHv/IkSMBWLNmDQsWLGCPPfbo5HdCkuFLKQNaZnS+n8Qx4fIBPVI7FAC2RLxOpDxBeOZrImUP2urnc+fcwnbavhjxemyS/XQLY0fswGUTvb/6hMPMVZujs+1+pUXNoWzYJRNGccVxYwC4bOLoNkPZ+cs2NAegkX20J/Lc4C3WNX/Zhjbb+9GHiIiIZA/nXI1z7hfAXnjrItTiBa9tPRzwKHCQcy7nivN2O6UDo7c1Y1ZEJFoioWzYoVOiyxq8PNU7vgv5xS9+wZQpU1i/fj2TJk1ihx12YP/99+eAAw5g6NChDBo0iEsuuYRPPvmk+Zjq6mpuu+029t13X/r06cPXv/519t9/fwYOHMjFF18MwDXXXMPOO+/cfEx5eTnXXXcdALfeeiv9+/dn7NixVFRU8IMf/IC77rqLZPXr149jjz0WgP3224/999+fCRMmMGHChIQWM5PO8WvGbPi2/GQKVvQPPVeleCw452rNLLz4WLv39ZtZH1qC2YQX2YrTvqN7/CLbtll/t7ubcvQuHDq6X3O4WhkTzA7qFf/2y0smjGL/EX3aDGWhJfi9febihALTyHODF5i2F/z61YeIiIhkH+fcYuA8M7sEOAI4EBiNN4O2CVgLvAs865z7LGMDldRqFcyqxqyISLPl8xIPZcPizZwdehAMH5f68aWBmfH73/+eM888k7vvvpvXXnuNBQsWUFhYyODBgznllFM48cQT+cY3vtF8zGGHHcZdd93FzJkz+eCDD1iyZAk1NTUMGDCAb37zm1x66aVMnDixVV9Tpkyhf//+3HbbbSxYsIDFixez//778/Of/5yJEydywQUXJD3+hx9+mF/+8pe88MILfPDBBzQ0NABeaSxJD7+C2a+AnYFd8C5IE3F46HlZOgaEV/PrMGBnM8t3zjW20W5MzDHJWBDxOq/NVq3fb2ssOSEylIydMVvRRjAbe1xbYoPfRCUS/PrZh4iIiGQn59xWvMVen830WMQHscHsFgWzIiLNho+Dw6+EV29MLJQNiwxnD78yq0LZzz77jKqqjucPHnTQQRx00EEJnbNv375ceumlXHrppUmP55xzzuGcc86J+15bSxdNnz6d6dOnx32vX79+3HPPPUmPQzrPr2B2Dt6MgbOBv3bU2Mz6ARfhzbSdlaYxzcULZnsC+wFvtdHu8IjXryfTgXNuuZmtwKuT29HUycj3v0ymn+6scnN0Wd+2Zswmo7PBZzLH+dGHiIiIiGRYvBmzzoFWthYR8Rzxcxg5Iflw9dApXWqmrEhn+VVj9t7Q8/Fmdn57Dc1sCPA8XpmBpohjU+3piNdxx2RmAeC80OYm4JVO9PNU6HmgmR3cTrtvRrx+rRP9dEvJzJgVEREREfFVWUwwG2yAmo2ZGYuISLbqbLiqUFZygC/BrHNuPnAPXo3Z+8zsCTM7M6LJ3mY2yczuBxbizWB1wC3OuSVpGtPbtASgF5hZvP/ifwrsFnp9u3OuIfJNM5tsZi70mNpGV7fhLQIBcIeZ9YxtYGbnABNCm8855zqqR5szEq0xKyIiIiLiu579W+9TnVkRERFJkF+lDAB+iFc24Fy82aHfpGVRsEci2oXv+5kOXJXmMV2GV56gBHjJzH6DNyu2BDgL+H6o3SLgls504JxbYWb/D/gtXuD8tpn9FvgI6IX3fbg41LwKSLDoSm6IDWYryksyNBIRERERkRj5RVDSJ3qWbPVqGLBb28eIiIiIhPgWzDrnmoDvmNk/gZ8DX2+j6cfAdc65v/kwpvfMbBLwMFAO/CZOs0XACc65LdvRz+/MbAfgCmB3vNA51hrglNCKvgJsqW1gS130OmiaMSsiIiIiWaW0IiaYXZO5sYiIiEiX4ueMWQCcc08BT5nZjsD+wAAgD1gPvOecW+rzeP5lZnvjzZ49ARgC1ANLgCeAPzjntqWgn5+HQulL8BYdG4RX4mAR8E/gTufc5u3tpztZXVXbap9qzIqIiIhIVikdAGs/adneUpm5sYiIiEiX4nswG+ac+wovkMw459xy4CehRzLHTSf+7Ne22s8D5iXTRy6LXfirT48CigvyMjQaEREREZE4SmMWAFONWREREUmQL4t/iXRGbDBb0Uv1ZUVEREQky5TFBrMqZSAiIiKJUTArWSt24S/VlxURERGRrNNqxqxKGYiIiEhiUhrMmtn/mVmPVJ4z5vwHmNnx6Tq/ZJfWM2YVzIqIiIhIlmkVzGrGrIh0DXl5XqnApqYmgsFghkcj4r9gMEhTUxPQ8t+D31I9Y/Ym4PNQQFuaqpOa2cFm9m+8+qz7p+q8kt0qN9dEbQ8qVzArIiIi2c3MAmZ2pJn9wszuNLP7zWxQTJtCM+thZkWZGqekkGrMikgXVVzs/Y7tnKO6ujrDoxHxX3V1Nc45AEpKMlM+M9XB7GygP3AjUGlmj5rZCWaWdOxsZiPN7Jdm9gnwGnAssAV4J5UDluylGbMiIiLSlZjZCcBiYAZwLXApMBnoE9P0Arzr2jVm1tPPMUoaxAazNRuhsS4zYxERSUJ5eXnz68rKSqqqqjRzVnJCMBikqqqKysqW8kNlZWUZGUt+Kk/mnDvSzL4JXAeMASaFHlvN7D/AfOA9YA2wMfQoAXbAu2DdBRgLHAAMC53WgHrgfuAa55zuDcoRlVWxNWa1+JeIiIhkJzO7EPgT3rUrwDqgH+DiNL8f73q5N3Aq8LAPQ5R0KR3Qel/1Gug91P+xiIgkoWfPnpSUlFBTU0NTUxNffvklZpaxW7q7isbGRgDWrl2b4ZFIZzU1NTXPlAVvtmzPnpn5W3lKg1kA59zfzewfwOnAj4FxQCkwHjgswdOEL2g3AQ8AtzvnvkjtSCWb1dQ3sWlbQ9Q+zZgVERGRbGRmOwN3hTZnAT9wzn1qZnGnHTnn6s3sKeBC4BgUzHZtJX0grxCa6lv2KZgVkS7AzBg2bBgrVqygpsYrJeicaw4epTXnXPP3qqSkBDPr4AjJdiUlJQwbNixjn2XKg1kA58XOTwBPmNmuwJnAEcCBeDNk2/MZXumC54B/Oed0H1AOip0tCwpmRUREJGv9GCgAPgKOd87Vt98c8K53LwT2Sd+wxBdmXjmDzRHzSKor224vIpJFAoEAw4cPZ+vWrWzZsqV59qzEFwwGm4PZ0tJSAoFUVwgVP+Tl5VFSUkJZWRk9e/bMaMCelmA2knNuIfBr4Ndmlg/sCwzBq0W7A1ALrA09PnTOrUr3mCT7rYpZ+KusOJ/SorT/uIqIiIh0xkS8kgW3JRjKAiwNPQ9rt5V0DaUDYoJZLQAmIl2HmVFaWkppacrWcO+2ampq+PTTTwHYb7/9MrZglHQfviZdzrlGvDqz8/3sV7qeytiFv8o1W1ZERESyVvie9feTOGZr6LlHaociGVFaEb1drWUxREREpGOacy1ZaVVsMKsyBiIiIpK9wqtHJHMfXP/Qc1WKxyKZELsA2BaVMhAREZGOKZiVrBQ7Y3aQglkRERHJXl+FnndJ4pjDQ8/LUjsUyYjSgdHbmjErIiIiCVAwK1mp9YxZ1W0RERGRrDUHb7bs2Yk0NrN+wEV4M21npXFc4pey2GBWNWZFRESkYwpmJSutrtKMWREREeky7g09H29m57fX0MyGAM8D/YCmiGOlK2s1Y1bBrIiIiHRMwaxkJdWYFRERka7COTcfuAdv1ux9ZvaEmZ0Z0WRvM5tkZvcDC4H98GbL3uKcW+L/iCXl4gWzzsVvKyIiIhKSn+kBiMSqbwyyrrouap9mzIqIiEiW+yHQEzgX+GboEU7mHoloF14gbDpwlV+DkzSLDWab6qF2E5T0ychwREREpGvQjFnJOrFlDAAGlavGrIiIiGQv51yTc+47wBnAe3gBbLzHx8DZzrnvOqcpld1G6YDW+7aonIGIiIi0TzNmJetUxgSzJQV5lJfoR1VERESyn3PuKeApM9sR2B8YAOQB64H3nHNLMzk+SZP8Iiju7c2SDateDQPGZGpEIiIi0gUo7ZKsE1tfdlCvYsysjdYiIiIi2cc59xXwz0yPQ3xUVhETzK7J2FBERESka1ApA8k6lZtrora18JeIiIiIZL3YcgbVlZkZh4iIiHQZvsyYNbODnHNv+tGXdH2xM2YVzIqIiEg2M7MyYEpo817nXLuJnJkNAr4X2vydc66mvfbSRcQuAFatGrMiIiLSPr9mzL5hZgvM7KdmFqcyvkiLyjilDERERESy2CnAVODbHYWyIZXAt4GrgZPSNyzxVatgVqUMREREpH1+ljIYA/wW+MLM/m5mJ5mZSilIK61nzJZkaCQiIiIiCfkm4IDHE2nsnHPA3wADzkjjuMRPscHsFpUyEBERkfb5FYxeBryPd/FZAJwMPA2sNLMbzGwXn8YhXUCrGbPlmjErIiIiWW1M6PmNJI6ZF3rePcVjkUzRjFkRERFJki/BrHPuTufcfsA+wJ3AeryQtgK4HPjEzOaa2flm1tOPMUl2amwKsmaLasyKiIhIlzIk9LwqiWPC0ykHp3gskillqjErIiIiyfG1lIBz7gPn3GV4F6CnA88BQbyQdhxwH7DKzO4zs0P8HJtkh7XVdQRd9D7VmBUREZEsFww990jimHBbXxbjFR/Ezpit2QCN9ZkZi4iIiHQJGanx6pxrcM793Tl3EjAU+DmwEC+gLQXOB+aY2Sdm9n9mNrCd00k3EltftjAvwA49CzM0GhEREZGEhGfK7p/EMeG2KkTaXcQGswBbVc5ARERE2pbxxbecc5XOuZucc7sDh+DNmq3GC2l3BW7EWzDsaTM7LoNDFR/E1pet6FWMmWVoNCIiIiIJeQ3v2vVSMyvoqHGozaV4C4bNTfPYxC8lfSAQ8/GrnIGIiIi0I+PBbIxCoAjIw7tQBe8iNx84CXjOzN4zs4MyND5Js9gZs6ovKyIiIl3Ag6Hn0cCjZtZmSYPQe38FwovfPthWW+lizFrPmt2iYFZERETalvGaVmY2DPgOMBkYEd4NNAH/Bv4C7BVqMxT4GjDbzA53zr3l93glvSo310Rtq76siIiIZDvn3Btm9jfgLOCbwIFmNg2Yg1fmwAE7AuOBC/EWC3PAk865VzMzakmL0gFQtbJlWzNmRUREpB0ZCWbNrBjvovV84Ai8IDZ8v/pnwAPAg865cL2uJ8xsKt7F7m1AP+Ba4Fj/Ri1+0IxZERER6aK+i3eNehTeQrdT22gXvuadgTfxQLqTsoro7WrVmBUREZG2+RrMmtmBeGHsJKA8vBuoA54G7nPOzYx3rHMuiHdrWAB4CNgv7QMW38XWmB1UrmBWREREsp9zrtbMjgV+BPwML5yN5wvgd8BdzjnXRhvpqkoHRG9Xa203ERERaZsvwayZ/R9eILtreFfoeQHeYl9/cc5tSPB080PPfVI3QskWrWfMlmRoJCIiIiLJCQWtt5vZHcA+wL54s2gB1gH/Af6rQLYbi60xqxmzIiIi0g6/ZszehFdHy4CtwGN4s2Pf7MS5GlM5MMkewaBjdVXMjFmVMhAREZEuJhS8vhd6SC5pFcyqxqyIiIi0zc9SBu/gzY79q3OuurMncc4tBQIpG5VkjXVb62gMRk8gUTArIiIiIl1GbDC7RcGsiIiItM2vYPZrzrkPfepLuqjY+rL5AaNvaVGGRiMiIiIikqR4M2adA7P47UVERCSn+RLMKpSVRMTWlx1YXkxeQBexIiIi0rWYWRmwE1AG5HXU3jk3J+2DEn+UxQSzTXVQuxlKemdkOCIiIpLd/CxlINKu2BmzFSpjICIiIl2ImX0PuBTYO4nDHGm8JjezAcABocfY0KNv6O0/O+cmp6HPs/AW/t0bb8HeSuA14K5OrjHRdfQc0Hpf9WoFsyIiIhKXL8GsmY3vxGEOqAU2A8ucc/WpHZVkm9gZswpmRUREpCswszzgKeCk8K4MDieWb0VOzawYeAI4Meat4aHH2WY21Tn3a7/G5LuCYiju5c2SDateDf13zdyYREREJGv5NWN2Nl7Q2lmNZvY+MB24zznXkIIxSZap3FwTtT2oXMGsiIiIdAkXA98IvV4NPAi8C2wAgpkaVBxfAJ8Ax6Tp/PfTEsq+AtwOfAXsBVwFjAKuNbNVzrn70jSGzCutiAlm12RuLCIiIpLV/CxlsD0zBwrwbrvaH7jEzE50zq1IzbAkW2jGrIiIiHRR54WePwYOc85tzORgYlwLzAfmO+dWm9kI4PNUd2JmhwNnhzb/BZzqnGsKbc83s3/ihdXDgN+a2ZPOuU2pHkdWKB0A6xa2bG+pzNxYREREJKv5FcwegReu/ho4EO8v508A7wBrQ2364wWvZwA7Am8BVwMlwJ7ApNDznsDzZraPc67Rp/GLDyqrooPZQb1KMjQSERERkaTshnd32K+zLJTFOXe1T11dHnpuAi6NCGXD41hnZlcAf8WrO3sBcItPY/NXacwCYNW+VZMQERGRLibgRyfOuVeBH+EtOnAnMMo5N8U594hz7qXQ4xHn3BS8W5zuwgtwf+yce8Y5d71zbm/g+tApd8NbUEC6CeecZsyKiIhIV7ew4ybdj5mVAhNDmzOccyvbaPp3oCr0+ptpH1imtApmVcpARERE4vMlmDWz8/HqTT3vnLvMOVfXVlvnXJ1z7ofA88CxZvb9iPd+BbyKVxah+17M5aCN2xqob4wuwTZIwayIiIh0DYtDzztkdBSZcwBQFHr9aluNQov5vhk+xswK0j2wjCiLDWZVykBERETi8yWYBb6Ld3vXvUkc8ye8APY7Mfunh56/tv3DkmyxKmbhr4BB/7KiNlqLiIiIZJW/4V23nthRw25qt4jXn3bQNvx+PjA6PcPJMM2YFRERkQT5VWM2fLHW1m1N8YTbjonZ/0noOVdnJHRLlTFlDPqXFVGQ59ffDURERES2yx3At/EWqf2Hc+61TA/IZ0MjXnd0vf9FzHEfJ9qJmQ3poElF+EVNTQ01NTXttU1abW1t3NexAgW9iZxe4LZUUpvisUhmJPozIN2XfgZEPwO5LdXXFuBfMBu+J30o8F6Cx4QvvGKnTTaEnnV10420qi9brjIGIiIi0jU45+rM7Bi8GqozzOwO4FHgU+dcLvzWVhbxurqDtlsjXpcm2c8XHTfxzJkzh379+iV5+sTNmTOnzffKalZyZMS21WxgxgvP4wJ+/eolfmjvZ0Byg34GRD8DuWfdunUpP6dfUxI/Cz1/L4ljLgo9L43Zv2Poee12jUiyyuoqLfwlIiIiXZOZNQGrgHFAIfBT4F1gq5k1dfBozOTYUyTywq2+g7aRa02UpGEsGVdX0KvVvqLGqjgtRUREJNf59WfbJ4E9gePN7Dbg8lDx/1bMrBD4HXA8Xl3aJ2KaHBJ6XpKeoUomxM6YHdSrW16ni4iISPdkHWx3d5EXcoUdtI28Gy7ZO+CGdvB+BTAfYPz48QwZ0lHlg+TU1tY2z44aP348xcVtTCRwQdyCy7BgS+Z++H5jcIP2Sel4xH8J/wxIt6WfAdHPQG5buTKZCq2J8SuYvRk4FxgF/BA4zcwex5tJEK6GPwDYHziDllmxS4FbwicxszzgbLzA9kVfRi6+iK0xqxmzIiIi0oVck+kBZNiWiNcdlSfoGfG6o7IHUZxz7f42ZNaSh5eUlFBSkr4/9BcXF7d//tKBUPVlS/uGTZDG8Yj/OvwZkG5PPwOin4Hck47P25dg1jm3zcyOBJ4H9gAGAz9uo3n4iuoj4ATnXORf0ocAD4ZeP5mGoUqGrNocPWFikIJZERER6SKcc7kezEYGpkOAd9ppGznrNeGasV1O6YCoYJbq1Zkbi4iIiGQt35a9d859AXwdr+bWQrwANt5jUajNfqFjIs+x3Dl3TejxJSliZsPM7GYz+8TMtprZBjN728x+ZmY9UtVPTJ+DzGyTmbnQY3Y6+ukKnHNa/EtERESk6/o44vWYDtqG32+kO5cmKx0YvV29Jn47ERERyWm+Lg3qnGsAbgVuNbMd8erO9gm9vRFYkMrANRFmdgLwCBBZpb8HMDb0uNDMjnfOfRbv+O1wZ0yfOWtLXSPb6pui9qnGrIiIiEiXMR9v0a9C4HDgxniNQmtJHBQ+pq01J7qF2GB2S2VmxiEiIiJZzZdg1sz+X+jlW865FwGcc18BX/nRf1vM7GvA43hBbDVwA/AK3gqxZwHfA3YFnjOzsc65pOpgtdPvScBpePV1B6TinF1ZbH1ZgAHlRXFaioiIiGQ3MwsAE4BxeItR9QB+6ZxbFdGmEO86vMk5V5eJcaaSc26Lmc0E/gc4ysyGtFEP9ptAeej1P3wbYCa0mjGrUgYiIiLSml+lDKYCVxO9Cms2uA3vYrkROMY59xvn3Dzn3Czn3PeBy0PtxgA/SUWHZlYK3BXa/FkqztnVxZYx6NuzkOKCvAyNRkRERKRzQndiLQZmANcClwKTablDLOwCvAWz1phZT7KcmU2OKL81tY1mN4ee84G7Qov2Rp6jH3BTaHMTcF86xpo1SmPmXqiUgYiIiMThVzC7PvS8wqf+OmRmY/FmMwDc75ybF6fZLcAnodc/NrOCFHT9G7xFD15xzv0lBefr8ipjFv6q0MJfIiIi0sWY2YXAP4Gd8NZNWE/Lorax7scLJ0uBU9M8rkNDwepkM5sMnB7x9s6R74Xe7xTn3Czgb6HNbwAzzOwbZra/mZ0PvAkMC71/pXNuY2f76hLKKqK3q1XKQERERFrzq8bsEuAAvNu5ssUpEa8fjNfAORc0s4fwShz0wQtyZ3S2QzM7APhfvBpcl3T2PN1N7IzZQQpmRUREpAsxs51puSNqFvAD59ynZhaM1945V29mTwEXAscAD6dxeBcC32njvUNCj0jTt6Ov7+KVKjgeOCL0iBQEfu2c+9N29NE1xFv8yzmwtrJ6ERERyUV+zZh9DG/GwJk+9ZeIw0LPW4F322n3asTrQzvbmZnlA/fifc9vcs4t7Oy5upvYGrOaMSsiIiJdzI+BAmABcLxz7tMEjnkt9LxPmsbkO+dcjXPuBODbeJMZ1uBNSPgCeBQ41Dk3NXMj9FFsKYPGWqirysxYREREJGv5NWP2j3h/qT/PzF51zv3Zp37bs1voeYlzrrGddpEX1ru12apjPwO+BizFK2eQMmY2pIMmzTOVa2pqqKmpaa9t0mpra+O+TtSXG7dGbffrkZ/yMUpqbO9nLV2DPufcoc86N/jxOevfbSYCDrjNOVef4DFLQ8/D2m21nZxzk/Hq3G7POaaTxExa59yjeEFs7oqdMQuwZTUU9/J/LCIiIpK1/ApmK/Buo7ofeMDMvo13sfYBsBFoau9g51xKa9OaWTHQL7QZb8XYyL43mtlWoCdebdjO9DcS+H+hzUudc6n+reiLRBvOmTOHfv36ddywk+bMmZP0MUu+zCOyBNvaFYt56aVFKRyVpENnPmvpevQ55w591rkhXZ/zunXr0nLeLiR8jfh+EseE/zLdI7VDkaxQUAJFvaBuc8u+6tXQf5fMjUlERESyjl/B7DK8WQTgJXATQ49EOFI/zrKI19UJtA8Hs6Wd7O9PQAnwmHPupU6eo9vaFDOvpHdhZsYhIiIi0kmR17mJ6h961v3t3VXpgNbBrIiIiEgEv4JZiL5QzXTV+8giponcblYXei5JtiMzOw84Cu+ie0qyxyeoo5m8FcB8gPHjxzNkSEeVD5JTW1vbPANn/PjxFBcnXiN2a30jNfOiZ++ccOQh7NRXk0ey0fZ81tJ16HPOHfqsc4Mfn/PKle3egJQLvgJ2Bnah/bULIh0eel6WjgFJFiirgPWLW7YVzIqIiEgMv4LZ833qJ1GRpQQSmZ9ZFHpOqoCamfUDbglt/sI5tyqZ4xPlnGv3tyGLWP21pKSEkpKk8+WEFRcXJ3X+r6pbT1geMaAXJYV+/s1AOiPZz1q6Jn3OuUOfdW5I1+esnx3mAKOBs4G/dtQ4dI14Ed5M21npHZpkTOwCYApmRUREJIYv6VeWLPYVaUvE60TKE/QMPSdS9iDS7/Fq2b6DtwCaxKjcHF1ut1dJAT0UyoqIiEjXci9wAXC8mZ3vnHuwrYahRVv/jneN2Bg6Vrqj2AXAqtdkZhwiIiKStXIyAXPO1ZrZOrwL4nbv6zezPrQEswkvsmVmOwLnhjZnAWdGzlyNY4CZnRV6/blz7q1E++rKVsUEs4N66TbarLF8Hgwf599xIiIiXZRzbr6Z3QNcDNxnZscDT0Q02dvM9gKOAc7CK6vlgFucc0t8H7D4IzaY3VKZmXGIiIhI1srJYDbkE+AwYGczy3fONbbRbkzMMYmKLJFweQLtd6Pl1rc/AzkRzFZujq4OUaFgNjHpDk1fuQFevRGOmgqHJlEaee6t8PJUOPxKOOLnyY9PRESk6/oh3h/zzwW+GXqEFwV7JKJd+C/104Gr/BqcZIBmzIqIiEgHAn53aGYBMzvSzH5hZnea2f1mNiimTaGZ9TCzorbOkwJzQ889gf3aaXd4xOvX0zec3KQZs53wyg3w4HFeCJqMubd6x71yQ/vtls/zQlnwQtZE+wmHsuAdv3xecuMTERHpwpxzTc657wBnAO/hBbDxHh8DZzvnvuucc22dT7oB1ZgVERGRDvgazJrZCcBiYAZwLXApMBnoE9P0Arw6sGvMrCfp8XTE67iLk5lZADgvtLkJeCXRkzvnljnnrKNHxCGvRuyfnNyX0nXF1pitKO8mi4d0NpTs6Dg/QtPh47yZsmGJ9BN5fvCOVzkDERHJQc65p5xz++OVyzoF+D5wCXAmMNo5t6dz7m8ZHKL4pawienvbOmhqyMxYREREJCv5Fsya2YXAP4Gd8GYLrKflVq5Y9+MFoaXAqekYj3PubeC10OYFZhYvRfopXokBgNudc1FXUmY22cxc6DE1HePs7rrljNl0zmj1KzQ9dEri/cQ7fzLlD0RERLoh59xXzrl/Oufuc879yTn3pHNuaabHJT6KLWUAsHWt/+MQERGRrOVLMGtmOwN3hTZnAbs75wa01d45Vw88hRfcHpPGoV0G1ODV2n3JzH5uZgeZ2RFm9ifgt6F2i4Bb0jiOnFVZFTNjtqsHs37MaPUrNI3TT/6bd6bu/CIiIiLdWckOEIhZ0kPlDERERCSCX4t//RgoAD4Cjg8Frx15DbgQ2Cddg3LOvWdmk4CHgXLgN3GaLQJOcM5tSdc4clVtQxMbtkb/KHT5GbPhGa3hsDL83F5Y2dkZrZHnj9fP9oamwSCMvRBqt8Bc7+8SBa9ez759DmFt+Z4UPP88fBhxJ6ZCWREREZEWgQD0HABbvmrZt0XBrIiIiLTwK5idiLcq7W0JhrIA4Vu9hqVnSB7n3L/MbG+82bMn4NUDqweWAE8Af3DObUvnGHLV6pjZsuDTjNnl8zpX/zTR4xIJTcO2d0ZrbD/OwX6T4fXb4fXbWtrudQb06Adv3g111VC/Beq2hF5Xe6/rq73t8Ov66rjdDtv4OsM2xqyDp1BWRERymJl15nrVAbXA5iSuj6WrKY0JZjVjVkRERCL4FcwODT2/n8QxW0PPPVI7lNacc8uBn4QeyRw3HZi+nX23VWe324utL1talE9ZcUF6g9NXbvBKBSQbJIYD1MOvhCN+3nH7VM9ord8KWyqheo13QR9+bFkNfXeG9Uu8djOv8R6xPnzCe6SDQlkREZHPt+dgM1sJvAlMd879OzVDkqwQW2e2ek1mxiEiIiJZya9g1oWekwkh+4eeq1I8FskSlZvj1JdNZ3AaW/8VEusjtv7ryAnbP3M2NpTd5xzo2R9eu8W7YI8NYduYvZpxJX0UyoqIiCR3jRvPULy7tk43s5eBs5xzG7d/WJJxZbHBbGVmxiEiIiJZya9g9itgZ2AX4N0Ejzk89LwsHQOSzIudMXt48ZL0Bqd+1X8Na2qA3b4B6xbD+4+09Dnz1+Caotu+/7D3yGaW13rcNRu975HCWRERyW3nh54vBg7EK1HwIvAOsDb0Xn9gf+BYoAh4G7gXb52DPYGTgX7AUcDTtFwLS1fWasasShmIiIhIC7+C2TnAaOBs4K8dNTazfsBFeDNtZ6V3aJIplZtrorar+u8Pe09Nb3Ca6vqvjfWwaQVsWAobPvMe60OvN61oHWRC/H3pklcIPfpCYSkUlYaey7xH874y77m9fe88CLOubT5tfV5PCptC1UaSCdFFRES6Iefcn83sHuAA4BngIudc3HvWzWwAXiB7ErDAOXdhaP8PgXuA84BDzWySc+4xX74ASR+VMhAREZF2+BXM3gtcABxvZuc75x5sq6GZDQH+jjdjoDF0rHRDsTNmB/Uq9mfhrM7Ufx33A+i/G8z7Y3QIu2kFuGDHfaZKQQ/vAr+swltMorQC1i+GpRF/vyjuBbWbvddN9XDgRdsXms69NSqUXbDjmSwZeCLHly+k4NXrvZ0KZ0VEJIeZ2SnA94E3gG8651xbbZ1za8zsVGAucL6ZveSce9w5V2tm38WbPbsvcBagYLariw1mt6iUgYiIiLTwJZh1zs0PzSK4GLjPzI4HIlci2tvM9gKOwbsILcabLXuLc26JH2MU/1VWxdaYLfFepHrhrFjOwYEXQ0MNvHpTSx+bV8LOR3mzQxe/GHGAwbw/eI+0MK++bOlArw5Z6cCW0LV0QCiEDe0vKo0+dO6t8PafWrbD34fI78/2hKYx3+eGw3/BkqpdAWg86IcUFBSkph8REZGu7VK8a9fb2wtlw5xzzsxuwwtevw88HtofNLNpwN14ZQ+kq4s3Y9Y5sJxd/1dEREQi+DVjFuCHQE/gXOCboUf4wvWRiHbhq5TpwFV+DU78F3fGbFi8cHbdEhh2IHz6b1j0fEvboQfChs/hqe9BYw001EJjrRe8NtRE7AtvR/fbbP593qOVDn+/al9+idd3WEEPaNjWsn3kr2D8T5M/b3vhdDIzj5M4f+N+F8NLL7XsS0U/IiIiXd/eoedkJhSE2+4Vs/+D0HPf7RqRZIfSAdHbjTVQtwWKyzMzHhEREckqvgWzzrkm4Dtm9k/g58DX22j6MXCdc+5vfo1N/FffGGRddV3UvorIYBZah35tLZD1xVveI5N69IUdRoYeo1peL36xZVYuxJ/ROutaCAS2OzRtdfz2hKZtnb+mpnVbhbMiIiLhlK1/EseE25bF7A//Y9uwXSOS7BA7Yxa8BcAUzIqIiAj+zpgFwDn3FPCUme2Id4vWACAPWA+855xb6veYxH9rttQSe6PfoNhgFrxw76v/wsf/8Gdg7enRD/pGhK7Nj52gpE/r9nNvjR/KQnpC03g608/yecmXiYjXz9CD2l+ITUREpPv4AtgZ+DbwUgdtw84NPa+I2R+eYrk2BeOSTCvsAUXlUFfVsq96NfQbnbkxiYiISNbwPZgNc859BfwzU/1LZq2OqS9bXBCgV0lB/MY9M3Qn36gjYd9zWgLY4l6JH5uuGa1+hKbDx8HhV8KrNyZXuzeyn8OvVCgrIiK55J/AT4FzzOw959xt7TU2syl4Ia6j9fXwgaHn5akepGRI6YDWwayIiIgIGQxmJbe1ri9bgrW1CMLCF+Lv7z8GKvaGgmKvjmvzc+iRXxzxOvb90Ot3H4ye1VrSB2o2eq+XzoKdxsOepyX3xaVzRqtfoekRP4eRE5IPVw+dopmyIiKSi24EvoNXF/YWM/s28BDwLrAm1GYA3t1i59JS0mtt6NhIZ+EFtjPSPGbxS2kFrI8oP1y9pu22IiIiklMUzEpGVMYEswPLi+I3fO33ULUy/ntrP4WvndX5WqZtlRqIDFaTrZfqx4xWv0LTzoarCmVFRCTHOOfWm9nRwAvAQLzgta31FMBb7LYSOM45t6F5p9lI4O3Q46n0jVh8FbsA2JbKzIxDREREso7vwayZfQ04DBiJt9hBXgeHOOfcBWkfmPgq3ozZVubeCjOvab1//OUw57fe684uNNXerNbtqf/q14xWhaYiIiJZxTn3XzPbDbgGOA9oqwbSZrzZtFOdcxtjzvEZcH5aByr+i10ATDNmRUREJMS3YNbMdgUeAA5K5jC8W7kUzHYzsTNmK2IX/ooNTsPKB8ORv/AWUujsrNZ01X8NUxkAERGRnOSc2wRcZmaXA/sBewLhFUI3AguAd5xzdZkZoWREWWwwqxqzIiIi4vElmDWzwcAcoB9e2ApQjXeBGvRjDJJdVm2uidoeFBnMthXKAgz6mvfc2eA0nfVfI2lGq4iISM4ws/NCLxc6594KBa9vhB6S61rNmFUwKyIiIh6/Zsz+AuiPN/v1PuBm59win/qWLNRqxmx5KJiNDU57j4BNy1q2w8EsJB+c+lH/VURERHLRdLzr3G8Bb2V2KJJ1YmvMKpgVERGRkIBP/RyHd7H6kHPu+wplc1tT0LF6S/QdfIN6lbQOTideDTUbog+ODGbBC06Pijjm5aneeeIJ13+F5Ou/hvtIpP6riIiI5JrNoefFGR2FZKfSiujtreugqTEzYxEREZGs4lcwu2Po+SGf+pMstq66jqagi9pX0au4dXC6xylQVxV9cMXerU+YTHB6xM/h/BeSXyzs0CnecUf8PLnjREREJBd8Hnru024ryU2xpQxwsHVtRoYiIiIi2cWvUgYbgQHAJp/6kyy2KqaMQUGe0bdnobcRuXDWgn9EH9ijH5TvSFzJLJyl+q8iIiKSWv8A9gFOAmZldiiSdXr0BcsD19Syr3o1lA/K3JhEREQkK/g1Y/ad0PMuPvUnWawyZuGvgeXFBALWsiMcgK76b/SBg74GZrRJwamIiIhkxu3AcuASMzsy04ORLBMIxKkzuyYzYxEREZGs4lcwewdgwPd96k+yWOyM2UG9ittoGCeYFREREckyzrkq4GjgU+BFM7vXzCaY2Q5m7f1VWXJGq2C2MjPjEBERkaziSzDrnJsB/BY4wszuNrMCP/qV7FQZE8xW9Cpp3cg5WPVB9D4FsyIiIpKFzKwJWAjsBeQBFwAzgbVAo5k1tfPQKlC5ILbObPXqzIxDREREsoovNWbN7DzgY+ANvFmzJ5nZk3izCrZ1dLxzTouGdSMJzZit+gq2rYveNyjOwl8iIiIimRc7K1azZCVaq2BWpQxERETEv8W/pgMuYnsQ8MMEj3WAgtlupNWM2fI4wWxsGYOiXtBnpzSOSkRERKTTrsn0ACTLxQazW1TKQERERPwLZkEzByRkVVX04l9xZ8y2qi+7d/sLf4mIiIhkiHNOway0TzNmRUREJA6/gllNdRQAgkHH6s11UfsqEgpmVV9WRERERLqoMtWYFRERkdZ8CWadc8v96Eey34Zt9dQ3BaP2DYq3+FelFv4SERERkW4i3uJfzumOMBERkRznZykDkVb1ZfMCRv+youhG1Wuh6svofRVa+EtERESyn5kFgAnAOKAC6AH80jm3KqJNId51eJNzri7eeaSbKR0Qvd2wDeqroagsM+MRERGRrKBgVny1KiaYHVBWRF4gZqZAZUwZg/wS6Dc6zSMTERER2T5mdgJwBzAi5q1bgFUR2xcAfwCqzWxH59xWf0YoGRM7Yxa8OrMKZkVERHJawO8OzWxnM7vWzGaY2YdmtsTMdo5ps6eZHW9mh/s9Pkmvys3RC38lVF+2Yi8I5KVxVCIiIiLbx8wuBP6Jt7aCAetpe/Hb+4FNQClwqh/jkwwr7AmFMSHslsrMjEVERESyhm/BrJkFzOx3wCfAL4CJwB54F6+FMc2HAs8CM8xssF9jlPSLnTE7SAt/iYiISBcXmmRwV2hzFrC7c25AW+2dc/XAU3jB7THpH6FkhdhyBloATEREJOf5OWP2T8BPgDzgK+DJtho65/4NfBZqe7ovoxNfxNaYrSiPs/DXKi38JSIiIl3Kj4ECYAFwvHPu0wSOeS30vE+axiTZpqwiert6TWbGISIiIlnDl2DWzCbg1dIC+A0wwjl3ZgeHPYE3i+CI9I1M/NbhjNmaTbDx8+h9g7Twl4iIiGS1iYADbgvNhk3E0tDzsPQMSbJOqxmzKmUgIiKS6/xa/Ovi0PPzzrlfJnjM26HnPdIwHsmQyqqYGbOxwWzlh9HbgQLov1uaRyUiIiKyXYaGnt9P4pjwgl89UjsUyVqxC4BpxqyIiEjO86uUwTi8WQT3J3HMytBzRbutpMtwzrEqZvGvVjNmY+vLDtwd8mNLEIuIiIhkFRd6bmuxr3j6h56rUjwWyVatglnVmBUREcl1fgWz4ft2Pm+3VbTG0HNBisciGbK5poHahmDUvlYzZrXwl4iIiHQ9X4Wed0nimMNDz8tSOxTJWrHB7BYFsyIiIrnOr2A2PE0ymVu1wvW2NqZ4LJIhsfVlzWBAWWwpAy38JSIiIl3OHLzZsmcn0tjM+gEX4c20nZXGcUk20YxZERERieFXMBueKbtvEsecGHr+OMVjkQypjAlm+5UWUZgf8SNYvxXWLYo+qELBrIiIiGS9e0PPx5vZ+e01NLMhwPNAP6Ap4ljp7spigtlt6yDYlJmxiIiISFbwK5h9CW8WwffNrMM+zWw/4Fy8WQQvpHls4pPYGbOt6suuXgAuotSBBWCg1n4TERGR7Oacmw/cg3e9e5+ZPWFmZ0Y02dvMJpnZ/cBCYD+869xbnHNL/B+xZETsjFkXhK1rMzMWERERyQp+BbN/wCtnsBcwzczarBtrZqfhhbGFeIshaBZBN1EZs/BXRXkH9WX77QqFWqhYREREuoQfAn/BC2e/CfyVlkXBHgEeBSYDJaE2fwau8n2Ukjk9+noTDyKpnIGIiEhO8yWYdc59CfwI7yJ0MvCZmf0xoskFZna3mS0GHgf64l3Ift85t9mPMUr6dThjdtX70duqLysiIiJdhHOuyTn3HeAM4D286954j4+Bs51z33XOubbOJ91QIA96DojeV70mM2MRERGRrJDvV0fOufvNzAF3AINpWfAA4MehZws91wEXO+ee8Gt8kn6VVdHBbEWvkugGq7Twl4iIiHRtzrmngKfMbEdgf2AAkAesB95zzi3N5Pgkw0oHQHVly/aWyrbbioiISLfnWzAL4Jx7wMxewgtivwHsHNPkS+CfwO+cc8v8HJukX7szZhvrYM0n0QcM2tuHUYmIiIiknnPuK7zrWpEWsXVmVcpAREQkp/kazAI451YCPwN+ZmblRMwicM6t83s84p/Vm2NnzEYEs2s+gWBD9AEVe/kwKhERERERn5TFBrMqZSAiIpLLfA9mIznnqvAW+JJubkttA1vqGqP2Rc2YjV34a4eRUNzLh5GJiIiIbB8z+1/gMU0ykA61mjGrUgYiIiK5zJfFv0RWx9SXBRhY3k4wq/qyIiIi0nXcCXxlZs+Z2dlm1iPTA4rHzIaZ2c1m9omZbTWzDWb2tpn9bHvHbGZTzcwl+JiQmq+oC2oVzGrGrIiISC7L6IxZyR2x9WV36FlIcUFey45KLfwlIiIiXVo+cFzosc3MngEeAV5yzjVldGSAmZ0QGk/kLUk9gLGhx4Vmdrxz7rNMjC9nqMasiIiIRFAwK76IDWajZss2NULlR9EHVGjhLxEREekyDgTOBiYBFUBP4Fuhxzozewx41Dn3ZiYGZ2ZfAx7HC2KrgRuAV4AS4Czge8CuwHNmNtY5V72dXXa0UMDn23n+ris2mN2iYFZERCSXKZgVX1TGBLNR9WXXL4bGmugDNGNWREREugjn3Hxgvpn9FDgS+DZwKlAO9Af+F/hfM1sGPAz81Tn3qY9DvA0vlG0EjnHOzYt4b5aZLQZ+C4wBfgJcuz2dOec+6rhVjiodEL3dsBXqqqGoNDPjERERkYxSjVnxReyM2Yr2Fv4qHwI9+/kwKhEREZHUcc4FnXMvO+fOBwYCZwLPAA2AATsBvwQWmNk7ZvZjMxuUzjGZ2VhgQmjz/phQNuwW4JPQ6x+bWUE6x5TTYmfMgsoZiIiI5DAFs+KLys3RM2IHaeEvERER6cacc3XOuSedc6filTf4PjAbcHgh7dfxAtHlaR7KKRGvH4zXwDkXBB4KbfahJciVVCsqhcKY2bEKZkVERHKWglnxRfszZrXwl4iIiHRfzrlNzrn7nHNHAsOBK4BNeAFtXnvHpsBhoeetwLvttHs14vWh6RuOtCpnoGBWREQkZymYBcxsmJndbGafmNlWM9tgZm+b2c/MrMd2nrvczM4ys2lm9h8z22Rm9Wa21sxmh/ronaIvJWtVVsXWmC3xXgSDUBkbzGrhLxEREel+zGxP4Ad4NWd7+dTtbqHnJc65xnbaRda83a3NVgkwsxlmtj50zbsmdM17pZn12Z7zdhulFdHb1WsyMw4RERHJuJxf/MvMTgAeIfriuAcwNvS40MyOd8591olz/w/wD6Aoztv9gMNDj5+Z2becc68k20dXUFPfxKZtDVH7mmfMbvwc6qqiD9CMWREREekmzGwY8C28BcH2CO8OPW/Dq0Gbrr6L8a45AVa219Y5t9HMtgI9gaHb2fVREa/703LNe4WZTXbOdeprNrMhHTRpTjxramqoqalpr23Samtr475OVkFJ36hfwho2rqQxxWOV9EjVz4B0XfoZEP0M5LZUX1tAjgezZvY14HG8ILYauAF4BSgBzgK+B+wKPGdmY51z1Ul20RcvlA0CM4AXgP/i3bo2BO8CfRLe4hDPmtkhzrn3t++ryj6xs2UhIpiNrS/bsz+UpXUNDBEREZG0MrMdgDPwrvUOxgtiw2FsE/Ay8DDwtHNuaxqHUhbxOpHr2HAwW9pRwzZ8CDwNvA18BRTgXUt/GzgG6A08ZWYnOef+3Ynzf5Fowzlz5tCvX/oWk50zZ06nj91rQy0jI7a/WvQe79e9tP2DEl9tz8+AdA/6GRD9DOSedevWpfycOR3MArfhhbKNwDExq9TOMrPFwG+BMcBPgGuTPH8D8CfgN865FTHvvQf8y8xeB+4IjeMWYGKyX0S2WxWz8FdZcT6lRaEfvXgLf5khIiIi0pWYWQlwMnA2cCwt19nhC5u38e7S+ptzbq1Pw4oo6k99Au3rQs8lnejrNufc1Dj73wIeMrOLgHvwaureZ2Y7O+dycppobX7vqO3ixs2ZGYiIiIhkXEqDWTOblcrzhTjnXMrDSjMbS8uKs/fHhLJhtwDn49XZ+rGZ3eCca4jTLi7n3GPAYx20udPMzgP2ByaYWV/n3PpE++gKKjfH1peN+B2hVX1ZlTEQERGRrsXMHgJOwZttCi1h7GLgUeAR59ySDAwt8iKsMIH24fJbSQemzrlNHbz/JzPbH7gQ2BH4Jl5QnYyOSixUAPMBxo8fz5AhHVU+SE5tbW3z7Kjx48dTXFzcwRHx5X2wHlY90bzdvzjIMccck5IxSnql6mdAui79DIh+BnLbypXtVobqlFTPmJ0AOFouRrdH+DwuBeeK55SI1w/GHYBzwdCF9g1AH7yvb0YaxjIbL5gNADsB3SqYXRUTzFaEF/5yrvWM2Qot/CUiIiJdzjkRr9fg/WH+Yefc/AyNJ2xLxOtEyhOEg+Vky3cl6k94wSx4NWeTCmadc+3+NmQRd12VlJRQUtKZib+JKS4u7vz5d4jOlwPb1qZ1rJIe2/UzIN2CfgZEPwO5Jx2fd6qD2TmkL0hNtcNCz1uBd9tp92rE60NJTzAbuThYMA3nz6hWM2bLQ39RqvoStsVk0JoxKyIiIl3PVrwFXx8BZjjnsuJ6zjlXa2br8BYAa3f6qJn1oSWYTbiWa5I+jng9OE19ZL/SgdHbW9dCsAkCeZkZj4iIiGRMSoNZ59yEVJ4vzXYLPS9xzjW20+7TOMek2uGh50YgE7e5pVXrGbNtLPxV1Av6jPBnUCIiIiKpMyCL66V+gjchYWczy2/nundMzDHpoIUEoHUw64KwdR2UDYzfXkRERLqtnFz8y8yK8WYOALR7S5RzbqOZhVeo7aiuVWfGcgIQvn//RedcVSfO0VEBrYrwi5qaGmpqUvt7Q21tbdzXYV9t2ha13bdHHjU1NeSveIeCiP1NA/ekPs7xkj06+qyle9Dn3KKpqYmtW7dSU1NDfX09znWVm0IS09TURN++fQH4/PPPycvTbK3uKNnPORAIUFJSQmlpKUVFRe22DUv1tUVXk8WhLMBcvGC2J7Af3mJc8Rwe8fr1NI1l94jXX6Wpj+zXsx9YwAtkw6pXK5gVERHJQTkZzAJlEa8TqaEVDmYTqc2VMDPbAbgrtNkE/KqTp0r4drM5c+bQr1+/jht2UrgIdqQV6/KInCDx1eIFvLTuIw5Y+gqDItp9XlvOgpdeStvYJLXifdbS/eTy55yfn0+vXr3Iy8sjEAiQl5cXVb+wuwjXScr1YK27S+Zzds6xfv16nHNUVVUl9AeadevWbfcYuxMzK8NbN6AM6PAvHs65dP7P9mng56HX5xMnmDWzAHBeaHMT8EqaxnJRxOtX22zV3QXyoGd/L4wNq16TufGIiIhIxuRqMBu5bF59Au3rQs8pq/JrZnl4dciGh3Zd55x7L1XnzxaNQahuiA4yehV5M8561yyL2r+5ZDgiItkgEAjQp08f8vLyKCkpIRAINO/vjuGsSJhzjmAwiHOOuro6ysvLaWxspLGxvapPEmZm3wMupeVuqEQ40nhN7px728xew5s1e4GZ/dk5Ny+m2U9pKdl1u3OuIfJNM5tMy2K51zjnpsa8vxdQ45xrsySXmV0EXBDarMSryZu7SgfEBLOVmRuLiIiIZEzGgtlQMNkHL+xs97dc59yKFHcfOfWjMIH24fv4Ujmd6I/AcaHXzwG/3o5zdVRioQKYDzB+/HiGDOmo8kFyamtrm2fVjR8/nuLiltx75cYaeCv62v+bxx1BedMmSt7bGLV/j6POZvd+u6R0bJJa7X3W0n3oc4aNGzeyceNGzIySkhIGDBhAcXFxtwtlg8Eg1dXejSOlpaXNAbR0L8l+zk1NTaxevZqqqiqccwwdOrS5FEJbVq5stzJUtxe6rn0KOCm8K4PDiecyvPIEJcBLZvYbvFmxJcBZwPdD7RYBt3Ti/PsB95nZK8C/gQ+B9Xi/a4wBzgGODrVtAi5yzm3t3JfSTZQOxPs2hUSGtCIiIpIzfA1mzawf8EPgFLwaU4n8BpiOWQRbIl4nUp4gvEJtImUPOmRmN9ByATwXOMM519TZ8znn2v1tKDJIKCkpab6dMR2Ki4ujzr+xMjrL7lGYx4DeZdiSt6MPLOhB8eA9tRptFxL7WUv3lKufc2VlZXN4NWTIEAoKCjo4ousLBAIKZnNAIp9zIBBg0KBBbNmyBTOjvr6+w/8P5OL/J2JcDHwj9Ho13uzSd4ENQLCtg/zinHvPzCYBDwPlwG/iNFsEnOCc2xLnvUTkAUeFHm1ZD1zgnPtnJ/voPkorordVykBERCQn+RbMmtnBwN+B/mR4FoFzrtbM1uEtANbu9FEz60NLMJtwLdd2zncFcGVo8z/AiVm+YMR2WbU5+kur6BWacbbq/eiGFXsplBWRrBG+bTsvLy8nQlmRWHl5eeTn59PY2EhTU6f/dpxLwvVZPwYOc85tbK9xJjjn/mVme+PNnj0B7xq4HlgCPAH8wTm3rZ1TtOd5vDIF44B9gYFAX7xr/g3Af4EXgOmdWei2WyodEL29RaUMREREcpEvwayZ9QWewbtAqwbuw1tYYCrejNgL8coa7A+cjFcD9nXg/jQO6xO8Wls7m1m+c66t4mljYo7pNDO7FLgx4lzHOuc2b885s13l5ugFQwb1Ct0SXflBdMNBX/NpRCIiietupQtEJG12w7um/XU2hrJhzrnlwE9Cj2SOmw5Mb+f9NcADoYckonRg9LZmzIqIiOQkv2bM/gAvlK0DxjnnFpjZHnjBLM658GICmFkF8ChwODDPOXdFmsY0Fy+Y7YlXF6vVCrUhh0e8fr2znZnZucAfQpufAUc557r9EsarYoLZivLQrY6r/hvdsCKZNTJEREREstLCTA9Auoiy2GBWNWZFRERykV/F5P4HbxbBA865Be01dM5V4t1etRT4mZkdmaYxPR3x+vx4DcwsQMutaZvwFklImpl9E6/WmAErgYnOua86c66uJu6M2ZqNsHFZdEPNmBUREZGua3HoeYeMjkK6jlYzZhXMioiI5CK/gtmdQ88vR+xz4RehlWxb3vBqrt6KF2RenI4BOefeBl4LbV5gZuPiNPsp3q1pALc75xoi3zSzyWbmQo+p8foxs2OAv+ItiLAGb6bsshR8CV3CqqqYGbO9iqHyw+hGeYXQfwwiIiIiXdTf8K5bT8z0QKSLiA1m66uhLiXrDIuIiEgX4lcpg/LQ8/KIfZGJXRnejNRI74SeD0zTmMBb/OB1oAR4ycx+gzcrtgQ4C/h+qN0i4JZkT25mBwH/AAqBBmAKUGBme7Zz2Ern3KZk+8pWlTGLfw3qVdy6jMGA3SG/0MdRiYiIiKTUHcC3gUvM7B/Oudc6OkByXGwwC7B1DRSV+j8WERERyRi/ZsyG//wbGQRviHg9Is4xoVWiGBDnvZRwzr0HTAKqgFLgN8A8YBbRoewJzrktnejiOKBH6HUB8AjwYQePUzrRT1ZqaAqyZktd1L6KXsWwSgt/iYiEzV+2oeNGKTyuKwoGg/z+979njz32oLi4GDOjd+/emR6WSDPnXB1wDPAuMMPMfmtm+5hZcQeHSq4qKoWCntH7tqicgYiISK7xK5hdEnoeFt4RmhVaGdo8Is4xB4eet6ZvWOCc+xewN17phEXANrzZu+8AVwD7OueWtHkCadPaLXU4F71vUK+S1jNmB2nhLxHJTbfOWMQZ98zj7tlLkzru7tlLOeOeedw6Y1GaRpZdrr32Wn7605/y6aefMnr0aA455BDGjYtXgUgkM8ysCVgFjMO7U+qneCHtVjNr6uDRmMmxSwaVxsw/UZ1ZERGRnONXKYO3gP2AscCTEftfACYDl5vZc865RQBmdgBwOV4d2vnpHpxzbjnwk9AjmeOmA9PbeX8qMLXzI+vaVsUs/FWYH6BPfj2siwkSBu3j36BERLLE/GUbuH2mt17QTS98CsAlE0Z1eNzds5c2t7995mIOHd2PsSO673pDzjnuuusuAB5//HFOO+20DI9IJC7rYFuktbIK2Ph5y3b1msyNRURERDLCr2D2ReB/gW/izUIN+z1wDl65go/M7L94t/7vgrdYlgNu92mMkmKVMcHsoF7F2OoFRKz7BpYHA/fwd2AiIllg7IgduOK4Mc0hayLhbGQoC3DFcWO6dSgLsHbtWtatWwfA8ccfn+HRiLTpmkwPQLqgVjNmK+O3ExERkW7Lz2D2ISDPzHZyzn0O4Jz7yMwuAe4OjWW/mOOmOude8GmMkmKrYhb+qiiPs/BX/12hoMTHUYmIZI9wCJtIOBsvlE1khm1XV1PT8m9JSYn+vZDs5JxTMCvJi10ATKUMREREco4vNWadcw3OucnOuXPDoWzEe/cDewE3Ac/ilTe4EzjAOfdrP8Yn6RFvxiyVsfVltfCXiOS2SyaM4orjxjRv3/TCp61qznaFUHbEiBGYGbNnz+bDDz/krLPOYtCgQeTl5TF16tTmdi+++CKnnnoqgwYNorCwkP79+3PSSScxa9asqPMtW7YMM2PEiBHN+8ys+TF9+vSo9l988QVTpkxht912o2fPnpSWlrLffvtx8803U1sb/e9R5PnNvDvOn3nmGSZOnEjfvn2bv46whoYG7r33XiZMmEDfvn0pKipi+PDhXHDBBSxZEr8M/YQJE5rHuW7dOn7wgx8wbNgwioqKGDZsGJdddhmbNm1q8/vZ0NDAtGnTmDhxIv369aOoqIihQ4dyzDHHcM8991BXV9fqmLa+B7fcckvc74GIZFirYFalDERERHKNXzNm2+WcWwj8PNPjkNSqrIr+JbCiVwksjwlmK7Twl4h0LcGgY+O2+pSe88z9h7CtvpE7Z3kh300vfMq2+kYmHzyC6W8sa94P8MMjd+bM/Yewvrp1MJesYDBInnMELHXlMF977TV+85vfYGbsvvvu9O7dGzMjGAxy8cUXM23aNAD69u3LnnvuyYoVK3j22Wd59tlnueGGG7jyyisBKC4u5pBDDqGuro533nkHgEMOOaS5n4EDWwKNf//735x55plUV1dTXFzMyJEjqaur4/333+c///kPTz75JC+99BLl5eVxx/y73/2Oyy+/nH79+jFq1Kiombnr1q3jxBNP5K233sLMGDx4MMOGDWPx4sU88MADPPbYY82hbjwrV65k3333ZfXq1eyxxx4UFBTw+eefc8cdd/DGG2/wxhtvUFBQEHXM6tWrOfHEE5u/7sGDBzNy5EhWrVrFzJkzmTFjBscdd1xUaN3R9+Dxxx/nqaeeavN7ICIZEBvMblEpAxERkVyTFcGsdE+xM2YHlwVgzSfRjTRjVkS6mI3b6tnvupfT3s+ds5ZEBbId7e+sWT86gB16FHTcMEHXXHMN5513HrfffjtlZWWAV47g+uuvZ9q0aYwYMYJ7772Xo48+uvmYxx57jAsvvJCrrrqKAw88kCOOOIKKigrmzp3LsmXL2GmnnQCYO3duq/4WLlzIGWecwbZt27j22mv52c9+1hysLl26lHPOOYc333yTH/3oR61m2Yb98pe/5M477+TSSy8lEAjgnKO+3gvfzzrrLN566y2OOOII7r77bnbddVcA6uvrufbaa7n++uuZNGkSCxcupG/fvq3Ofe2113LsscfywAMP0L9/fwBeffVVTjjhBN555x0eeughLrjggub2zjlOP/103nnnHUaNGsVDDz3EwQcf3Pz+2rVrmT59Oj179kz6e3DllVfy8MMPd/AJSqqY2UBgTyBcCHoD8JFzTveri0czZkVERHKeL6UMzCxoZo1mtnsSx4wKH5fOsUn6rIoJZndmBQRjPs6KvXwckYiIpNsee+zBtGnTmkNZ8ILZG2+8kYKCAv7xj39EhbIAkyZN4te//jXOOW666aak+rv66qvZunUrP/vZz/jVr34VNdt11KhRPPHEE/Ts2ZOHH36YL7/8Mu45vve97/GDH/yAQMC7LDIzioqKeOGFF5g5cyYjR47kmWeeaQ5lAQoLC7nuuus4+eSTWb9+ffNM4Fh9+vThkUceaQ5lAQ4//PDmMPbZZ5+Nav/MM88wd+5cevTowYwZM6JCWYD+/fvzf//3f1Hn6+h78Nhjj9GzZ08ef/zxNr8HkhrmucjMPgS+Al4C/hZ6vAR8ZWYfmtn3zVI4VV26prKYYHbrWgg2ZWYsIiIikhG+BLMhnb341EVrFxQMOlbHlDIYWrs4utEOo6BYt1SKiHQn5557Lnl5eVH7nn/+ebZt28a4cePYZ5994h536qmnAjBnzhyamhILJurr6/nnP/8JwMUXXxy3zZAhQxg7dixNTU28+uqrcdtMnjw57v4nn3wSgHPOOScqaI437tgauWHf+ta34pYPOOiggwBa1aj9+9//DngzdcMzhduT6Pdg3333bfd7INvPzPoArwF/BHbHu4aN99gdb+HbOWbWOyODlewQO2PWNcG29ZkZi4iIiGRENpcyCAeyLqOjkE5Zt7WOxmD0R7fDlk+jG6mMgYhIt7Pbbru12vff/3r1xRctWsShhx4a9zjnvH8zampqWL9+PQMGDOiwr8WLF1NTU4OZcd5557XZbtGiRYBX7zXRMUeO+7HHHmPmzJlx24QX8Grr3KNHj467P1wjt7q6Omr/ggULABg3blzc42Il+j1YuHAhgGbMpklo9uszQHiK83rgceAtoBLvunYgcABwJtAv1PYZ4HC/xytZokc/vB+NiGvm6tVQ2vH//0RERKR7yOZgNlyobWtGRyGdEltfNj9glKz7KLrRIC38JSJdT58ehbz7y6PScu7Yhb56lRSwuaahefuHR+7M5INHpKy/YDBIXlNtxw2TEFn7NCwcXlZWVlJZ2fHiNtu2bUuor/B5nXO8/vrrnT5vvDFHnn/hwoXNwWaqzh0umxAOpMOqqqoArwRCIlL1PZDtdjZwKF7C9ihwqXNuS5x2D5nZlcBdwLnAoWb2LefcX/0bqmSNvHzo2R+2RtSWrV4NqNSXiIhIrvA7mE1o9quZ9QR+GNpcmr7hSLrE1pfdsawAWx0bzGrGrIh0PYGA0be0KOXnvXv20qhQ9orjxnDJhFHcPXspN73g3XFw56wl9CjM55IJo1LSZzAYpKqqLiXnak9paSkAF110Effcc0/Kz1tUVERtbWoD5sjz//Wvf+Wss85K+fnjCZc9CAeuHUnke+B9zlVR55eUOzv0/Kpz7tz2GjrnqoHvmNkwvNmy5wAKZnNV6cDoYHaL1oYTERHJJWmpMWtmn0U+It56Kfa9OI8vgU3At/CC3H+lY4ySXrEzZr9euhYaY35hrFAwKyICRIWv0BLKAlwyYRRXHDem+b2bXviUu2d3rb9Z7rWXN/vrgw8+SOl5d9llF4qKiqirq2suV5BK6Rp3e/bcc08A3njjjYTap/t7IAn7Ot516x+SOObO0PO+qR+OdBmxZQuqFcyKiIjkknQt/jUi5gFeAaXBcd6LfQwC8kLt3wJ+m6YxShrFzpjdt2B5dINeQ6FnX0REcl17oWxYVw9nTzzxREpKSpg3b15Ct9snqqSkhBNOOAGAm2++OWXnDTvjjDMAePDBB9mwYUPKzx/PaaedBnh1bZctW9Zh+3R/DyRhO4SeP0/imHDbHdptJd1bWUX0dvWa+O1ERESkW0pXMPvnmAd4swieifNe5GM6cA9wNXA0cIhzTjVmu6DKzTVR22OCMb+nqIyBiEhCoWxYVw5nBwwYwFVXXQXAySefzOOPP05TU1NUm8rKSu655x6uv/76pM593XXXUVpayrRp07jssstYt25d1Pv19fW8+OKLnHnmma367MhJJ53EUUcdRWVlJRMnTuTtt99u1eaTTz7h6quv5umnn07q3O31edhhh7F161aOPfZY5s2bF/X+unXruPnmm1m7dm3zvkS+BzNnzuT8889P+nsgCdscet4xiWPCbatSPBbpSlrNmO24DreIiIh0H2mpMeucOz9y28y+E3r5C+fcx+noU7JL7IzZYfWLoxtUaOEvEclt85dtSDiUDQu/Hz7uphc+Zf8RfRg7Ivsn3P3iF79gw4YN3HrrrUyaNIny8nJGjx5NIBBg1apVrFy5EoBvf/vbSZ13t91245lnnuHMM8/kjjvu4K677mKXXXahV69ebNq0iaVLl9LQ4C2g9uijjyY97scff5zTTjuNV155hQMPPJBBgwYxdOhQGhoaWLZsGRs3bgRg2rRpSZ87HjPjiSee4IQTTuDdd9/l4IMPZujQoVRUVFBZWcmXX35JMBjk9NNP///t3Xl8VNX9//H3hySsAdnC4gLIoihYNxCwyFIVbV2qVsWvVarWunXxS9sv+tWfit3U1orW+hWl7rV1aSu17oKCosFiXVoXFpcgKDuGLSGQ5Pz+uHcyS2YmM8nMnWTm9Xw85jF3Ofeec5kZ5pPPnHuOysrK0v43iJ1sDBnznrzxYs+X9HSKx1wQcSwKVWnf6HV6zAIAUFCy1WM21vWSfiaJSKNArN0aTsya6tV7e8xs1vSYBVDgRg/qqcuPHiYptaRsSGTP2cuPHtYmkrKSl3C85ZZbVF5ermnTpqlXr156//33tWzZMnXt2lWnnHKK/vCHP2jWrFlpn/trX/taQ8/VQw89VJ9//rnefvttVVdXa8yYMbr22mv11ltvqbg4/d+je/TooXnz5umRRx7RCSecIOec3n77ba1atUoDBgzQ+eefr7lz56adUE6mb9++ev3113XHHXfoqKOO0rZt2/Tuu+9Kko455hjddddd2nPP6I6ZTf0bzJgxQwsXLmzWvwFS8hd5w3CdamYzzcwSFTTPTEmnyruj7PFgmohWqVFiljFmAQAoJIFE586564OoB62Dcy6qx+xAW6eS2pgRKUjMAoCmH7ufxg/rnXZy9dJJQ1pdT9lUxkOVpLFjx2rs2LEpn3fQoEEp9fIsKyvTzJkzNXPmzIyeV5LatWunqVOnaurUqSmVl6QFCxYk3T9p0qSk9bdv316XXXaZLrvsspTrTPRvUF9fr61buVs+y+ZI+oGk4ZKukfQtM7tf3nwJ6+QlYPtJGiPpO5JG+Mct9Y9FoYpNzG4jMQsAQCHJWbcJvyfBYIUnPNgs6VPnXH2u2oTM+LJqt3bVhl/GkVYRXaBLn8YTHQBAgWpucrU1JWWBQuec221mX5f0kqR9JR2o5BPYmqRPJH3dOVcbQBPRWsUmZndtk3btkNp3yU17AABAoIIayqCBmR1nZv+QN9HBckmL/cdySVvM7EkzmxJ0u5A5a2Im/hrZriK6QP+DpcR3+AEAALQ5zrmVkr4i6bfyJgOzBI8tkm6WdIhz7rPctBatRte+jbcxziwAAAUjsB6zZtZe0gOSzgxtilOsi6QTJJ1gZo9KOs85tyugJiJD1sZM/HVoyWfeDXwh/Zn4CwAA5B/n3A5J/2NmV0s6XNJIRd8d9p6kfxHfokH7Uqmks7S7Krxt+zqp5765axMAAAhMkEMZ/EneJAcmqVbSi/LG3Vrrb+sr6QhJx0oqkTTVb9+Z8U6G1mtNVGLW6QB9Gl2A8WUBAEAe8xOv5f4DSMxMKu0jfVkR3sYEYAAAFIxAErNmdoKk0+T1m3xZ0gX+7V7xyg6QdK+kr8mbOOEbzrlngmgnMiOyx+ye2qRuLmbCERKzAAAAgKe0X0xilqEMAAAoFEGNMXue//yupOMTJWUlyR9r6+uS3vE3nZ/VliHjInvMjmwX01u24x5S94EBtwgAACB7zKyrmV3rP5qc4dTM+keU7xREG9GKlfaJXt+2NjftAAAAgQsqMTtWXm/Z3zrndjdV2C9zs7whDsZmuW3IsLVbw5N/jWgXk4Nn4i8AAJB/TpE0U9K3nXOpZNXWSvq2pOsknZS9ZqFNKI2ZAIyhDAAAKBhBJWbL/OcP0jhmqf/cO8NtQZZF9pgdYTE9Zvsx8RcAAMg7oSG7HkulsHPOSXpEXieEM7LYLrQFXWMTswxlAABAoQgqMbvDf+6VxjGhGWyrkpZCq+KcixpjdmS7iugC/Q8JtD0AAAABGO4/v57GMaGJwQ7McFvQ1jTqMctQBgAAFIqgErPL/OepaRxzVsyxaAO21dSqaledJKlMlepnX0YXYOIvAACQf/b2n9ekcUwo+7ZXhtuCtqZRYpYeswAAFIqgErNPyrtV63wzO6+pwn6Z8+XdEjY3mw1DZq3dWtOwPCK2t2xJF6nXkGAbBAAAkH31/nPnNI4JlS3OcFvQ1sRLzNbXxy8LAADySlCJ2dvl9SAwSfeY2dNm9i0z29vMSvzH3v62ZyTd45f9QtLvA2ojMmBdRGL2QKuI3tnvIKldUbANAgAAyL5QT9lRaRwTKst964UuNjHr6qSqTblpCwAACFQgiVnn3A5JJ0qqlJdwPV7e5AgrJe30Hyv9bcf5Zb6UdKJzjjFm25DIHrONx5dl4i8AAJCXXpUXv15mZiVNFfbLXCbv7rBFWW4bWrsuZfLePhG2r8tJUwAAQLCC6jEr59zbkg6S9Fd5t3tZgke9pL9I+opz7t2g2ofMWLc1YuIv+zR6J+PLAgCA/HSf/zxM0p/MLOGQBv6+P0vaL+ZYFKqiYqlL7+htJGYBACgIgY5p5Zz7QtIZZtZP0mRJIyX19HdvlvSepAXOuXQmTkArEuox203bNaDdhuidJGYBAEAecs69bmaPyJu89jRJY8xsjqRX5A1z4CTtKWmCpAvlTRbmJP3FObcwN61Gq1LaV9oRETuTmAUAoCDkZLIB59xaeT0FkGdCY8yOaLcyekdRe6lseA5aBABAas477zw98MADuu666zRz5sxcNwdtzwWSeks6RtJekmYmKBe6Z/1FSd/JfrPQJpT2kSJzsSRmAQAoCIEMZWBmE/xHpzSO6Rg6LpttQ2aFesyOiJ34q+8IqajJIdcAoPCsLA/2OKStoqJCM2fO1K233prrpqAVc87tlDdXwnR5E9gmGrZrlaQfSTrePwaQSvtFr29fn5t2AACAQAU1xuwCSS9J2jeNY/aKOA5tRKjH7Mh2MePL9mPiLwBo5OUbpPuOlxbNSu+4RbO8416+ITvtQpSKigpdf/31JGbRJOe5TdIASYfLG7bgSv9xoaTDJA1yzv3eOedy11K0OqV9ote3rc1NOwAAQKCCHMrAmi6S0eMQsJ110raaWknSyNges4wvCwDRVpZLC2/0lufN9J7HT2/6uEWzwuUX3igNniQNHJeFBgJoLj/p+rb/AJpW2jd6nR6zAAAUhKB6zDZHqG11OW0FUrZll/fcWTs12GLmb+t/SODtAYBWbeA46ZiZ4fV5M5vuORuZlJW840nKAkDb1zU2McsYswAAFILWnJgd5D9vyWUjkLrKGq9z8wG2Uu0s4u48K5L6HpijVgFAKzZ+eurJ2XhJ2VR62AZk0KBBMjMtWLBA//nPf3TWWWepf//+KioqippI6/nnn9epp56q/v37q3379iorK9NJJ52kl15KPHLR448/rilTpqisrEwlJSXq2bOnhg8frmnTpun555+PKjtz5kyZmc4777yE5zMzmZkqKiqavK5JkyZp8uTJkqSVK1c2HJvOOQCgSY16zJKYBQCgEGRlKAMzG5BgV38z297E4R0kDZH0c0lO0vuZbBuyJ9RjdkS7iugdZcOlkpTnfQOAwhJKroaSrvGGNWjlSdlIr776qn71q1/JzHTggQeqe/fuMjPV19frkksu0Zw5cyRJvXr10siRI/XZZ5/pqaee0lNPPaUbbrhBV155ZdT5rr76av3qV7+SJPXp00cHH3ywqqqqtHr1aj300EPaunWrjjvuuKxdz0EHHaRNmzbpvffeU4cOHTRq1Kio/R07dsxa3QAKSGxitmartKtKat85N+0BAACByNYYs5/G2WaSXmjGuR5sYVsQkEo/Mdt4fFkm/gKQR+rrperNmT3noed6f4C/8mtvfd5Mb33MxdIbd4W3S9KEGV75HRtbXm99veSKJcvcDTTXX3+9pk2bpttuu01du3aVJFVXV+uXv/yl5syZo0GDBunuu+/Wscce23DMo48+qgsvvFBXXXWVxowZ09BDdePGjbrppptUXFysP/3pTzr99NNlFh56fvHixfr4448z1vZ4br/9di1YsECTJ09Wv379tGjRoqzWB6B1WFKxWaMH9QzsuEaJWUnasV5qPyj9cwEAgDYjW4nZRBN2pTOR105Jv3PO3ZuB9iAAlbu8l3dkbI9ZJv4CkE+qN0u/GZL9el75dXRCtqntzdBOkl30llznXhk5nySNGDFCc+bMUVFRUcO26upq3XjjjSopKdETTzyhQw45JOqYqVOnas2aNZo+fbpuuummhsTsRx99pLq6Oh1yyCE644wzGtU1duxYjR07NmNtBwBJmvXict02f4WuOH64Lp2U+v/3dy74WDc9t1SXHz1M04/dL71KO3SVijtJtdXhbdvWST0GpXceAADQpmQrMXt+zPp98oYluEbS50mOc/ISsmskve2ca2rYA7QilbukDtqlYbY6egeJWQAoGOeee25UUlaSnnnmGVVVVWnChAmNkrIhp556qqZPn65XXnlFdXV1Kioq0sCBAyVJy5cv11tvvaXDDjss280HUOCWVGzWbfNXSJJuem6pJKWUnA0lZSXptvkrNH5Y7/R6zppJpX2kypXhbYwzCwBA3stKYtY590Dkupnd5y/Odc59kI06kXuVNab9bLVKrC56R7+DctMgAEDgDjjggEbb3n33XUlegnX8+PFxj3POmzSyurpamzZtUp8+fdS/f3+de+65euihhzRq1KiGYQ6OPPJITZgwQd26dcvehQAoSKMH9dQVxw9vSLKmkpyNTMpK0hXHD2/ecAZd+5GYBQCgwGSrx2ysyf5zvLFnkScqd0lHxQ5j0Guod2sWAKAgdOnSpdG2yspKSdLatWu1du3aJs9RVVXVsHzPPfdo5MiRmjNnjhYvXqzFixdLktq3b68zzjhDN998s/r165eZxgOAwknY2OTseWP2bFQ2XlI2neEPopT2iV4nMQsAQN4LJDHrnFsYRD3Ind310o5a08jimNx7Pyb+ApBnOvWU/idLE07FTvTVsbu0szK8PmGGNyFYhtTX18vVZj8UKC0tlSRdfPHFmj17dlrHlpSUaMaMGZoxY4Y+++wzLVq0SPPnz9fjjz+uhx9+WB988IHeeOMNlZSUSFLD5GChHrixduzY0YIrAVAo4iVnd+/erQHOG3VAynBSVmo8ARiJWQAA8l5QPWaR57bs8p6Z+AtA3mvXTurSO/PnXTQrOil7zExp/HRv+7yZ3rZXfi217+xtz4T6emnr1sycK4mDDvKGtPn3v//dovMMGDBAZ599ts4++2xdddVVGjFihN5++2298cYbDUMkhHrsrlsXP6GxYsWKtOsNJXsBFJbY5Owt8z9Wt5IifWvfeq1cVKFb5n/SULbFSVlJKo3p/b99fcvOBwAAWr12uW4A8kNljVSsWh1gn0XvIDELAE2LTL5K4aSs5D0fE7Fv3kyvfBty4oknqlOnTiovL9drr72WkXMOGTKkYQiDL774omH7sGHDJEnvvPOOdu3a1ei4O++8M+26OnXqJMkb/xZAYbl00hBdcfzwhvWtu033LS/KfFJWajyUwbamh34BAABtG4lZZETlLtMQ+0IdbHf0DhKzAJBcsqRsSBtPzvbp00dXXXWVJOmb3/ymHnvsMdXVRU8UuXbtWs2ePVu//OUvG7bNmzdP06dP1zvvvBNVtq6uTnfddZdWrlwpM9Nhhx3WsG/y5Mnq3Lmz1q1bpyuvvFL19fWSvGEb7rzzTj344INpt3/w4MGSpPXr1+v9999P+3gAbdulk4bou+P3jbtvYK/OOnJIr8xU1GgoA3rMAgCQ70jMIiMqd0kjrCJ64x4DpM7NmJEWAApFKknZkDaenL366qs1ffp0bdq0SVOnTlXPnj01atQoHXHEEdpnn33Uv39/XXrppfrwww8bjtm+fbtuvfVWHXrooerRo4cOO+wwjRo1Sn379tUll1wiSbr++us1dOjQhmO6deumX/ziF5KkWbNmqaysTKNHj1a/fv30gx/8QHfccUfabe/du7eOO+44SdLhhx+uUaNGadKkSZo0aVJKk5kBaPuK28Uf0mTlpip9847XdOkf/6WP1m9vWSVdYxKzO9Z7Q84AAIC8RWIWGVG5y+KML8vEXwCQ0Mry1JOyIfGSsyvLM9+2LDAz3XLLLSovL9e0adPUq1cvvf/++1q2bJm6du2qU045RX/4wx80a1Y42XzUUUfpjjvu0GmnnabevXvro48+0rvvvqsOHTrotNNO07x583TNNdc0qmv69Ol66KGHdPjhh6uqqkorVqzQV77yFb3wwgu64IILmtX+P/7xj7r44ovVr18//fvf/9bChQu1cOFC7dy5s9n/JgDaju6dS5Luf/a9tZoya6Gu+Mu/9UVlM4c9ie0xW18rVW9u3rkAAECbwORfyIjKGmkEE38BQOoGjpMmXiktvDG1pGxIqNy8md7xA8dlq4VpqaioSKnc2LFjNXbs2JTK9urVS5dddpkuu+yytNtzzjnn6Jxzzom7zzkXd/v999+v+++/P+6+3r17a/bs2Wm3A0Dbd+eCj3XTc8sa1tu3c9pV37gHbb2THn1zlZ5453N9Z9xAXTZpqHp0aZ/85CvLw/+PdymTZJIi/o/avi7+hJORxwEAgDaLHrPIiC01rvFQBiRmASC5yf8rnf9c6knZkPHTveMm/2922gUAkBRKyi5tWD9pQJ1+M6ZOP5ocf8xZSdpVW685r36qCb9+WbfPX6EdNbXxC758g3Tf8eFhaYpKpM4x49VuX9f4uEWzvONeviHdy8mu5t7Bke5xQdUDAEAASMxKMrMBZnazmX1oZjvMbLOZ/dPMfmpmnTNYz1lm9ryZrTGznWZWYWYPmVlqXYdasT12r1OpxdzOSWIWAJrW3B5P9JQCkCZi3vTEJmV/fPQQHbOX15v10gn76orjhyc9fltNrX774nJN/M3LeuD1Cu2qjRgvdmW5d8eEFD1meOxwBttiErORY5MvvDH1ZGO2k5mxSeZUpZtkDqoeAAACUvCJWTM7QdK/Jf1E0nBJnSX1kDRa0m8kvWVmg1tYR0cz+4ekP0uaIqmfpA6SBko6R9JrZtZ4kLxW6MM3nm+0bVddvQbWVURtq+3cR+raL+lxAAAACAYxb3pik7JXHD9c3xs/MKrMpZOGNErOxpsjbOP2Xbruyfd19C0LNPftz1Vf77wf1+JN6FjaJ/rgyB6z8SaMTOVHumwnMxMlmVM5fzpJ5qDq8S2paN74vukel0/15NO1UE/zjsuna6Ge5h2XT9cSlIJOzJrZwZIek7SHpO2SrpZ0pKSjJc3xi+0v6WkzK21BVfdIOtFfflnSKZKOkPRdSR/Lex1+ZmYXtqCOrCu/56c64NkzVf5gdDy9YVuNRrZbGbXN9TsofNyD13jH3fPTQNoJAACAMGLe9MRLyl46aUjcsrHJ2XonHdi/a9yyqzZX678ffUff+N2remnpOs2q/oZu3H1WuMC8mY0n+9q+3nuOScreuPsszao+oemLCSKZOXCcXh34g/B6KvXEXM+rA3/QdJI5qHokzXpxuc6YXa47F3zcZNlIdy74WGfMLtesF5enVD6f6smna6Ge5tWTT9dCPc2rJ5+uJUgFnZiVdKu83gK1kqY4537lnCt3zr3knLtI0gy/3HBJP25OBWY2UdLZ/uo/JB3rnPu7c26Jc+5eSWMlfebv/7WZdW/epWTXh288r3GrvLh93Ce/i0rOrttaoxH2aVT54r0OleQlZcd98jvvuFVz6DkLAAAQvFtFzJuSJRWbU07KhsQmZz9Ys02/Pv0gTd6/LG75pWu36YL739Rt8z/S7LqTo5Oza96NLrx9bdyk7Oy6k3Xb/BVN9vxZ4vZvnPxNM5l54+6ztMTtn7iOis06d9mRqdcT5/znLjuy6WsJsJ7b5q+QJN303NKU//CPTOin9NrkUT35dC3U07x68ulaqKd59eTTtQStYBOzZjZa0iR/9R7nXLyfgX8r6UN/+b/NrKQZVYUC3TpJlznn6iJ3Ouc2SrrCX+0hr0dBq3PAmONUPvhHDeuRydm1W3ZqZLuKqPLW/+CopKwklQ/+kQ4Yc1wg7QUAAAAxb7pGD+qpy48eJim1pGxIZHL28qOH6cxRA3Tf+Ufo0YvG6vCBPZIe2yg5G+nTV6OSizftnqrZdSc3tG/0oJ5NXs8ex85oUTJzj2NnJK1n9KCeuuL44Y2vI149CZLMqV5LkPWEpPKHf7xe1oVUTz5dC/U0r558uhbqaV49+XQtQSvOdQNy6JSI5fviFXDO1ZvZg5JukBdATpL0YqoV+LeCHe2vvuicW52g6N8kbZXUTdJp8oLjVmfctJ+r/EGFe8B+8juVPyjt6HW0etj2qLJvlc/XuFX3N6yXD/6Rxk37eZDNBQAAADFv2qYfu5/GD+ud9h9tl04aolGDekQdN2ZwL/3lknGa/+F6/eb5ZVq2blvcY0PJ1itLHonesWN91OpPix/TBcXPyUr7qveqfaQn+nrj0pb28SYOi3zu2F0y06WThuhOzdCNL0acP5S0HD89fPIESdlUktOhMjc9p+jrmDdTqtkmHXqu9Oa90uvhTht31Z6g5+tH64YJHfVfI+ulDaFbS53/5BqtX3qA1HN7ke577RCV1Vbqu8XPhevZtlY65GzpnYelN+6Kuo5QUjadRLt3PUujns8bs2ejsukMfZFqPfGOb+315NO1JKuH90BhXEuyengPFMa1BKmQE7NH+c87JP0rSbmFEcvjlUaQKm9MrQ5xzhPFObfLzBbLmyThCDMrcc7tTqOewMRLzu78/L2oMjVqr8NIygIAALQGxLzN0NyeNPGOMzMdc2BfTR7eR0+++7l++8Jyrf6yulG52XUnax9br28Xv5Tw/EXmVKYt0o4t0sdNjJFX1F7q4iVtLy3tqw8GdNRrqw/UV4s+8PbPmylVbZYOmyYtmROVzHyydpzGjNxPkzvNk179u7S7Wtpd5T9HLlc1LF+6u0rTum1XXc0O1TlTkfkJ1Vd/6z1iXFz8tC4uflr6p7xHiqZKmtohzo43ZnuPCM1JyobE+8N/9+7dipwCLhN/8KeSYGgr9eTTtSSqh/dA7uvIdT28B3JfR5D1BMFcwy+RhcXMNkjqLeld59whScr1kBQafOJx59yZadTxfUm/91dPdc7NTVL2NkmhsQJGOOc+SLWeFNqxt6RVkrRq1SrtvffeLT5n7DAFCcuRlM0r1dXVeuGFFyRJU6ZMUadOnXLcImQDr7O0YsUK1dbWqri4WMOGDct1c7Kmvr5eW7dulSR169ZN7doV7AhHea25r3M6n4PVq1drn332Ca3uk6THJAJGzJs5mfp+rKmt05/f+Ey3v/SRNu3YFbWvg3bpww7nq50V5t9omRRKyk7ar0xjh/RKWC7Rn8PO76n7xiebtHD5xobtw7vXa2g3p8qSMi36ODxG4cT9emvM4MT1NCW2non79dbYwb21+JNNWrh8Q8P2SfuV6cihXj0m854t+lzmb7CGdTWsL/poo+Z9GO6JfeyBfTRhWJleWbFBL37QeHujk4fOmeA6zKRXlm/Q8++va9h23Ii+mrBfWaPtUw70tjd6CWJeFJdg16srNkRdyzEH9NH4ob0bXWNoe3PFnm9kj3rtv4fT5vZ99PLyTVmr5+iI65kfZ7uU+P0bKbbIax9t1EtLw+f72vA++urQ3o22h+oJv4+i328N74E477fY1/r4Ef00cf8yLVy2Qc+9vzZq+4T94o/H7bU9/gWGrvuV5Rv0wgfR76mj/PfaixHbj/Xfa4krSv4PGfv5GNmjXsO7O21u31cvLQt/bpv7uZESf3Ym7tdHC5dv0PMx/24T9y+LOl9klaaolUZteHnpej3zXvh83ziov742vI9eWrpez/xnTXj7yH6aPLyPpMbvo9gNsa/VgmUb9Ox70W2etH+ZFsR5D0xKMCZ7KhKdL3Z7ppKy2Yh5CzIxa2YdJYV+pn7aOXdiE+W3S+oiabFzrulpPMPH3ajwWFqjnXNvJin7U0m/8VePd86lPEuWH4Qm00/SEklavnx5xoLUtx75ub668o6E+18b+H0ddtY1Cfej7dm5c6deeeUVSdKECRPUsWPHHLcI2cDr7H3h7t69W2amYcOG5W3Csr6+Xtu3e0PRlJaW5u11FrrmvM7OOa1YsUL19fUqLi6ODEDjWr16tfbbb7/QKonZVoKYN7OJ2Ux/P+6oqdUDi1fp3tc/045d3pC8lxQ92Xg4A0n1TmqX7C96RNnuOmpkzb25bgYAoBX48dFD9L3xA5sumIJsxLyFOpRB14jl7QlLhe2QF6SWZrGeHRHL6dazKtWCr7zyinr3bv6veFF6jtHfN27UN3c82mjX37tMlXqOaehVgPwT+sME+a1QX+euXbuqS5cu6tKli9avX6/OnTvnuklZF0rcIb+l+jrX1NSotrZWO3bsUFVVlT788MOk5Tdu3Jh0P3KGmDdLMvX9OFTSVV+RXvy8nQ7c8JRmFIeTsl+60oZ5HNqZdPvuU/Rs/RHqbVtUpi0qs0qVmf+sLd52q1R325Ggtrav3nnZ6fDosyaTCw+b4Cu1nbqk6MmGsXsBAIXppAF1Gli1TC+8sCwj58tGzFuoidnIn7d3JSwVVuM/p3u/Ujr11EQst5n7hosHfVV6Pzoxu9V1lvY7IUctAoCWq6mpUadOnVRbW6svv/xSktSpU6eGW7iAfFZbW6stW7aovr5e9fX12rUrlVAJrRQxbxtQWiL9T6cnNaL4sYZtodvwI3vQ/rBkrnbs7thksrG9dqu3n7j1krVbVKZwEre3bdEQfaGe7Rrn0Le5jtrk9lC12munOqjatVe1OsRdr3Ydwvucv80vc2LRYp1fHO4MXem6RCWMf7P7TN1dd2JUgjX0HLst2c2/sT2MI5PZoe0kZwGgMHUocjpmr9Y/SkChJmZ3Riy3T6F8aHj5xqP0Z66eyCHs060n+f2FEbd1TZgwIaO3db3z0JWNtnWzKvXe/AbDGOQhbnEvDLzO3m3ca9as0c6dO2Vmqqys1JYtW1RUVJRXyVnnnOrqvNtn8+3aEJbO6+ycU21tbUPZnj176qCDDlJRUVHSOlavZuSCVoqYN4Oy9f1YvPh2lbzdOCkrhZOKoSTjlSWPaMSeXTW/53+p3vlj+jk1LDvnDZXotKecv32DnDZElPn6lkc1ekv4Nv8vXRf18JOmXW2nnt7jbD3V1RtiOPF/F/F3tDPpzK2PauqWcFI2XpL5f0oe04DepXq629SE/y5Njbh3wtZHddbWcFI2Xj1XljyiQb066+luU5NcS/LxUkM+21ytTzZWNSozuHdnDeiZud8YEtUzqFdn7dOjk0L9hUP/Pg2JbH9DeD36+Nj9X1Tu1OrKnYq1V/eO6r9Hx6hjUhVbfO3WGn2xpXEde+7RUf26dUj+msTsTDSWpiSt2bJTq75sXM8+PTppr+6Zi2M/r9ypVXEm7msL9cT7t/68cqc+25y8nkTvq9j3nWL2h8qsS/Ae6N+tg/p26+C3rXHj4r01kr1f1m6t0edNvJ8zYc2WnSnX05JhQxNdz557dFTfbh2izp1oDOZ47Ygtu2F7jdZva/x7ap+u7dWna+NZFmNfglT+dtiwrUZrttY02t6/Wwf16RZvJsfmWb+1cT01daaVnffP2DAGUnZi3kJNzG6LWE7lFqou/nO693mmU0+XiOW06mlqTIvID0unTp0yNpFP+YPXaNwX9zesV7pSdfd/of7qyjtU/ngRE3/lsY4dOxbkpFCFppBf53333VefffaZqqvDAWsouZUvnHMN10eP4PyV7usc2t+uXTsNHDgwpeRTof4/0QYQ82ZJxr4fF82SFv6yYTUyKdu9c4kqq3Y3Ss6etGGOTjp4L2n89ObVNy+clL1x91l6pMO3dFbNXxvOf9bWe3XWEQMydv7ZdSere+cSza6Kvo6pW+7V1NHZr6dF1+O7c8HHWrA8PLN352Knqlrv/fbJxiqdMWpARiaVia0n9B6QpIpNVZo6OnP1RM5UHlnP55U7dc7YQS2uJ1kdX2zZqXPHtbyOpupZ9WW1zh4zMCv1RL4HsllPUNeTjXqS1bFma42mHblvm3k/x6sn8j2QzXpy8dlZv22Xzv/q4Lx4D9wy/2OVlJRkpB4pOzFvQc7y4ZzbKSk0METSn9L9GWpDAWTK41r5IoPHpn6yj+wBkG49gSt/8BqN++R3Det/7zJVCw/7P7028PsN28Z98juVP0ivWQBtUygptc8++6h79+7q0KGDiouL8+pRVFSk6upqVVdXq6ioKOft4dE6XueOHTuqrKxMQ4cOLcge8/mEmLeVWzRLmjezYTUyKXvF8cP1zrVTdMXxwyV5PWdv3H1W+Nh5M73jW1jfHsfO0DvXTtEex87Iyvln150cdS3Zuo6s1OOL/YP/pAF1umF0nX58dPiP/JueW6o7F3zcrPMnqif2PdCW6smna4lXD++B1lFHLuvhPdA66giynmwq1B6zkvShpKMkDTWzYudcbYJyw2OOSccHCc6TrJ5aSR+lWU+gYpOyrw38vtRzjCTpsLOu8XrK+vu95KzoOQugTTIzlZaWqrQ03flp2obq6motXeoFMocffji9HvMUr3PBI+ZtjVaWJ03Khnr2hJ5vem5po56zmjdT2mesNHBc0/UlSMpG1nOnZujGF2POL6XW0zRJsrTxtajxdbS2enyxf/D/+OghGljlTSDzvfEDVVJS0rA/9NycXlnxEgvx3gNtoZ58upZ49fAeaB115LIe3gOto44g68m2guwx61vkP3eRdHiSchMjll9Ls44lCk+AMDFRITNrL2ls6BjnXKudZSM2KVs++EeNxpIdN+3nKh/8o/A6PWcBAAByhZi3NRo4Tpp4paTESdmQSycNid9zduKVGUnKRtbTrJ6zCZLMya4lbo/WleWtox5fvD/4Y8cpjHxtpOb1ykqWWGhr9eTTtSSqh/dA7uvIdT28B3JfR5D1BKGQE7NzI5bPj1fAzNpJmuavVkp6OZ0KnHPbJM33V48xs0S3dp0mqZu//EQ6dQQpXlI2UU9YkrMAAACtwtyIZWLeVuROO1On11ybNCkbEpucPb3mWt1pZzZdSZxkZrykbGQ9cZOzyZKZA8dpycCLGs6fKFkaey2RSdMlAy9qOskcVD1K7Q/+2HpC0vnDP5/qyadroR7eA9TDeyBIBZuYdc79U9Kr/up3zSzeN/RPJB3gL9/mnNsdudPMzjMz5z9mJqjqZv+5WNIdZhY1rbGZ9ZZ0k79aKekPaV1IQD584/mUk7Ih8ZKzH77xfJIjAAAAkEnEvK3TkorNuum5pXrTeX8sJvujMiTyj8s33XDd9NxSLanYnLwet79urT1NUtNJ2ch6IpOzt9aepiVu/6TXcsaySQ1J5nSuJZRkPmPZpKavJcB6Uv2DP7aekJRemzyqJ5+uhXqaV08+XQv1NK+efLqWoBVsYtZ3uaRqeQHkC2b2v2Y21swmm9ldkn7tl1su6bfNqcA595KkR/zVkyW9aGYnm9koMztf0mJJA/z9VzrnvmzuxWTTAWOOU/k+35OUWlI2JDI5W77P93TAmOOy1kYAAADERczbyowe1FOXHz1MUmp/VIZE/nF5+dHDNHpQzybrcRP/V6fXXJtSUjaynj2OnaHTa66Vm/i/SesJXcubbnizruVNNzzlawmyHin7r02+1JNP10I9zasnn66FeppXTz5dS+CccwX9kHSSpC2SXILHMklDExx7XkS5mUnq6CTp6SR11CU7PgPXuHeorlWrVrmW+GDxc422VVVVublz57q5c+e6qqqqlI9D25PKa422j9e5cPBaF4YgXudVq1ZFxjV7u1YQ4/FoFA8S87ZQNj5L//x0UyDHBVFPPl1LovKpvAfa0vVk+rh8upZE5XkP5L6OXNfDeyD3dQRZT6xsxLyF3mNWzrl/SPqKpFnyeglUybu96k1JV0g61DnXohljnXPVzrkTJH1b0ouS1subIGGVpD9JGu+cm9mSOoLS3B6v9JQFAADIHWLe1qm5PXbSPS6IevLpWqinecfl07VQT/OOy6droZ7mHZdP1xKU4lw3oDVwzq2U9GP/kc5x90u6P43yf5IXlAatYYyvNWvWZPzk1dXV2rhxoyRp9erV6tSpU8brQOvAa10YeJ0LB691YQjidY6JL4oSlUNuEfO2DP9ngvcAeA+A90Bhy0bMa8677Qd5zMxGSVqS63YAAICCMNo592auG4HCQ8wLAAAClJGYt+CHMgAAAAAAAACAoNFjtgCYWQdJB/mrG+RNvJBJ/RTunTBa0toMnx+tB691YeB1Lhy81oUhiNe5SFKZv/wf51xNFuoAkiLmRQB4D4D3AHgPFLaMx7yMMVsA/DdK1m4pNLPI1bXOudXZqgu5xWtdGHidCwevdWEI8HVemaXzAikh5kW28R4A7wHwHoAyHPMylAEAAAAAAAAABIzELAAAAAAAAAAEjMQsAAAAAAAAAASMxCwAAAAAAAAABIzELAAAAAAAAAAEjMQsAAAAAAAAAASMxCwAAAAAAAAABMycc7luAwAAAAAAAAAUFHrMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMwCAAAAAAAAQMBIzAIAAAAAAABAwEjMAgAAAAAAAEDASMyiRcxsgJndbGYfmtkOM9tsZv80s5+aWedctw8tY2YuxceCXLcViZlZHzM70cx+ZmbPmtnGiNfu/mac73gz+5uZrTazGv/5b2Z2fBaajxRl4nU2s/PS+Nyfl90rQiJmdpiZXeW/zqv8z+F2M1tuZveb2VFpno/PNNAEYt7CRCyc34iRQfyM1qA41w1A22VmJ0h6WNIeEZs7SxrtPy40s2845z7JRfsANFiXiZOYmUmaLemimF17STpV0qlmdrekS5xzLhN1Ii0ZeZ3RupnZQkkT4uxqL2mY//iOmT0k6ULn3K4k5+IzDaSAmBfIW8TIIH5GzpGYRbOY2cGSHpMXlG6XdIOklyV1knSWpO9J2l/S02Y22jm3PVdtRUbcKen/kuzfEVRD0GKrJH0oaUozjv2FwgHn25J+LeljSUMkzZB0qL9/g6T/1+KWoiVa8jqHHCfpiyT7V7fg3Gi+vfznLyQ9LulVSZ9JKpI0TtJP/DLnyovzzk5yLj7TQBOIeeEjFs5/xMggfkZOkJhFc90qL0CtlTTFOVcese8lM1sh7wtpuKQfS/pZ4C1EJq13zr2X60ag2X4maYmkJc65dWY2SNKn6ZzAzIbKCywl6U1JE5xz1f76EjN7UtJCSaMkXWFm9znnPs5I65GqFr/OMZY75yoy0TBk1FJJV0n6q3OuLmbfYr+n7GuS9pP0X2Z2p3Pu1diT8JkGUnariHlBLJyviJFB/IycY4xZpM3MRkua5K/eExOghvxW3q9NkvTfZlYSRNsANOacu84595RzriW36kxX+Me8H0YEnKE6qiT90F8tlvTfLagLzZCh1xmtnHPuROfcY3GSsqH9G+X1mg05PcGp+EwDTSDmBfIbMTKIn9EakJhFc5wSsXxfvALOuXpJD/qrPRQOagG0Mf64Wd/0V5c65xbHK+dvX+avnuIfByB4CyKWh8Tu5DMNpOyUiGViXgBR+D4FkAkkZtEcodmed0j6V5JyCyOWx2evOQCybF+Fx7VcmKxgxP69JQ3KVoMAJNU+Yrk+zn4+00BqiHkBJMP3KYAWIzGL5jjAf/7IOVebpNzSOMegbTrDzJaZWbWZbTOzFWb2gJlNznXDEIjIz+/ShKUa7+dz37bdb2brzGyXmW00s8Vm9gsz26vpQ5FjEyOW431m+UwDqSHmRQixMOLh+xSxiJ+RNhKzSIuZdZTU219NOqOgc+5LhWco3Seb7ULWHShvIpmOkkolDZU0Td6kF0+Y2R65bByyLvLz29RMoqsSHIe2Z6KkPpJKJPWSNEbS1ZI+MrOLc9kwJGZm7SRdGbHpsTjF+EwDTSDmRQxiYcTD9yliET8jbcVNFwGidI1Y3p5C+R2SusgLYND2VEl6UtJ8eb/ybpdUJu8L5xJ5XzanSPq7mR3rnNudo3Yiu9L53O+IWOZz3zZ9IulvksoV/iNisKRvyZtIqqOk2WbmnHN356aJSGK6pCP85Secc2/GKcNnGmgaMS8kYmEkx/cpQoif0WwkZpGujhHLu1IoX+M/d8pCW5B9eznnKuNsf9HMbpf0rKRD5QWnl0r6XYBtQ3DS+dzXRCzzuW97npD0gHPOxWxfIulRMztRXtBZImmWmT3pnFsbdCMRn5lNlHSjv7pe3v/L8fCZBppGzAuJWBjJ8X0KifgZLcRQBkjXzojl9glLhXXwn6uz0BZkWYJANLRvnbxf/0JByA+DaBNyIp3PfYeIZT73bYxzbkucoDJy/1OSrvdXO0v6biANQ5PMbIS8PwyK5f3xd6b//3Q8fKaBphHzglgYTeH7FMTPaDESs0jXtojlVG7B6OI/p3ILGNoY59wnkl70V4ea2Z65bA+yJp3PfZeIZT73+WmOpFDwOTFZQQTDzPaV9IKkHpLqJP2Xcy7Z7NB8poGmEfOiScTCBY/vU6SK+BkJkZhFWpxzOyVt9Ff3TlbWzHoo/AW0KllZtGkfRCwz22R+ipzMIOnnXtGTGfC5z0POufUKfw/wmc8xPwkwT9Ke8gL+C5xzTzRxGJ9poAnEvEgDsXDh4vsUKSF+RjIkZtEcH/rPQ80s2TjFw+Mcg/xjuW4Asi7yD47hCUs13s/nPn/xuW8FzKy3vJ5ag/1NP3TOPZjCoXymgdQQ8yIVfCcWLr5PkQ7+r0BcJGbRHIv85y6SDk9SLrKL/mvZaw5y7MCI5S9y1gpk06cKv7ZN3XozwX/+XFJFthqE3DGzPvJmoZb4zOeMme0h6XmF/w++0jl3R4qH85kGUkPMi1QQCxcuvk+REuJnJENiFs0xN2L5/HgFzKydpGn+aqWkl7PbJOSCmQ2WdKy/+olz7vNctgfZ4Q9m/3d/dbiZjY1Xzt8e6g3w92SD4KNNu0jhX/yTjWOKLDGzzpKelnSYv+mXzrmbUj2ezzSQsrkRy8S8aIRYuLDxfYo0ED8jIRKzSJtz7p+SXvVXv2tm4+IU+4mkA/zl25xzuwNpHDLGzE5KdtuemfWV9BdJJf6mVHtqoW26VVKtv3y7mXWK3Omv3+6v1vrl0YaY2SAzO7SJMidKusZf3Snpvqw3DFHMrL2kJyR91d90m3Pu/zXjVLeKzzSQFDFvYSMWRopuFd+nBYv4GZmQbKwkIJnL5d2q1UnSC2b2K3k9BDpJOkveL0KStFzSb3PSQrTU7ZJKzOyvksrl3XJTLam3pEmSLlH4doxFIhhttcxsvKShEZt6RywPNbPzIss75+6PPYdzbrmZ3SzpSkmjJL1mZjdJ+ljSEElXSAoFJb9xzq3I2AUgJRl4nQdJetnMyiX9Q9I7ktbL+3V/sKTT/Ufo1/6f0jMoJ/4saYq//JKke8xsZJLyu5xzy2M38pkGUkbMW7iIhfMcMTKIn9EaGL3o0VxmdpKkP0rqlqDIckknOOc+Cq5VyBQzq5A0MIWif5V0oXOuMqsNQrOZ2f2SvpNqeedc3IHp/ds150i6IMnh90i6yDlXn04b0XItfZ3NbJJSuwW3StJ059zdaTQPGWJm6QZuK51zgxKci880kAJi3sJELJz/iJFB/IzWgB6zaDbn3D/M7CvyehKcIGlvSbskfSTpcUm/d85V5bCJaJnvyBvEfpy8X/t6y/uDZLukVZJel/SAc648Zy1EoPxA8rt+z5GLJI2W977YKGmJpLucc8/msIlomX9JOkfeZ36UpP7yXt9iSV9Kel/SfEl/cM6tz1UjkTl8poHUEPMWLGJhpITv04JG/IwWo8csAAAAAAAAAASMyb8AAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmAQAAAAAAACBgJGYBAAAAAAAAIGAkZgEAAAAAAAAgYCRmASAHzGySmTn/MSnX7WnNzGxQxL/VebluDwAAAFJDzJs6Yl6gMJGYBYAYZjbCD4hqzaw0YnuRmW3z943LZRsBAACAliDmBYDcIzELAI2N95/fcc5tj9h+qKRSSTsl/SubDTCzmaFfzLNZTy5F9AiYmeu2AAAAFCBi3gAQ8wJIpjjXDQCAVigUpL4as32C//xP59yullTgnFsgyVpyjkLhnKsQ/1YAAACZRszbihDzAoWJHrMA0FgoSF0Us/2oBNsBAACAtoaYFwByjMQsAEQwsz0lDfJXY4PRRMErAAAA0GYQ8wJA60BiFgCihQLRFc65daGNZnaApN6S6iW93tJKEs1Qa2bn+WNsXRexzcV5DIpzTjOz083sr2a2ysx2mtmXZvZPM7vGzLonac/9/nkr/PX+ZnaTmb0fMflDZDt7mNn5ZvZHM/vAzLab2S4zW2tmz5vZRWbWPkFdFTHjiF0X5/rujyif0gy1ZtbezC4zs5fNbENEe54xs3PMLOF3Xpzr725mP/Ovf4eZVZrZK2b27UTnAAAAaEOIeUXMS8wL5B5jzAIoWH7Ac1+C3cNiAqmQdpIqzaKGf9rXHxMqZ8ysTNITkr4as6uDpNH+4/tm9k3n3BtNnGuspH/IC8oTeVvSwDjb+0qa4j8uMbNvOOfWpnYVzWdmAyU9K+mAOO35uv+42L/+zU2ca7h/rkExu46SdJSZjXPO/SAjDQcAAMgyYt6E5yLmJeYFco7ELAC0LnMlvSnpMkmX+tsOilPu89CCmXWRtFBegLZLXuD9jKRVkrrIm8Dhx/ICtmfN7FDn3MoE9ZdK+qukjpJ+KelFSVV+G9ZElCuS9Iakp+QFrOsktZe0r6RzJB0vb0bfRyRNiqljil/2P/76nZL+L6bMlwna14iZlUp6SdJgf9NcSfdK+sJvzw8kTZTXM+QpMzvKOVeX4HSdJT0pqZekX0iaJ2m7fy3XSdpbXrD/D+fc86m2EQAAAFHmiphXIuYFCh6JWQCF7AlJiyPWe0p6zV+eIi/IC1koqY+k78sLiCJ9rgxxzlXK652wPmLbe00cdqO8AHWLpGOcc2/G7F9kZg9LKpfUX17wdW6Cc/WSF5SNd869G7F9SUy5rznnVsQ5/nVJD5vZ+fICxYlmdrRzbn7E9SyXpIgeGOtTuMZkrlM4QP2Fc+6aiH3/MrO/SnpI0rcljZN0kbzAOJ4ySSWSxjnn3o85zwJ5gXVHeX9EEKQCAIC2gJi3MWJeYl6gVWCMWQAFyzm3xTm3NPSQF6BJXtD0YsT2bfICVEn6W+Qx/mN3Ti5Akpn1lnShv3ptnABVkuT3Fvi5vzrVzDonOe2vYwLUeOeLF6BG7r9PXq8CSTolWdmWMLMOCl//B5JmxmmLkxdUbvI3NXVL1rUxAWroPB/J65kghWcrBgAAaNWIeRMi5iXmBXKOxCwAhIUCj9ditofGsPo4iLGj0nScvF+zJemxJsq+4j+XSDo8SbmH02mAPwFDPzPbz8xGhh7ybquSpIPTOV+aDpfU3V++P9HtWs65rQr/+xxoZv0TnM9J+lOS+v7lP/dINrEEAABAK0bM6yHmTYyYFwgIQxkAQFhodtpFMduPTLC9NRgVsbwmZoKGZPol2L7dOfdJKicwsxPkjQk2QVLXJEWTTajQUiMjlpNO8ODvD41hNlLR44eFbHTObYqzPSRyEoWukiqbaiAAAEArQ8xLzEvMC7QSJGYBQJKZdVT4F/XYYDTUeyC2V0Fr0KfpInEluq2rsqkDzYuE50j6bop1dUqxXHP0jFhe10TZyJ4fPROUqWriHPURy0VNlAUAAGhViHkbVDZ1IDFvA2JeIItIzAIoSGZWIWlggt1vJPgV/m4zuzti/QHn3HkZblq6QoHSLiW/VSvW6gTbE83cGukChQPUdyTdKu+X+c8lVYVurTKzB+VNuJByl4YWck3sD6odAAAArQIxLzEvgNaNxCwAtG2hW5DaS9rknIt3q1Kmfc9//ljSkc656gTlegTQlsjbrPpJWp6kbN8ExwEAAKB1I+YNI+YF8giTfwEoVFMkHRTxKPe3/yZm+4P+9mdith8k6eostq+pX8JD3o5YnpKNhsQxwn/+e6IA1b/167AA2vJexPKYJsoekeA4AACAfEXM23zEvACyjh6zAAqSc67hV2YzayfpQH/1CefcexH7hvmLz0ZuD8DOiDZ0cM7VJCj3rKTd8madnW5mDzvnarPcttB3R6IxuyTpZEl7NnGenfJm1+3Qgrb8S94YYd0lfcfMbok3S62ZdZV0pr/6QUC9LAAAAHKKmLdFiHkBZB09ZgFAOkTSHpKqJb0Z2mhmnRSeAfaVgNsUGUQNSVTIOfe5pPv81YMl3WVmCX90M7M+ZnZhC9u2wn8+ycwa3bplZkMk/V8K5wldY8Lra4ofvP/BXx0h6bo47TFJv1d4ptzfN7c+AACANuwQEfOmg5gXQNaRmAUAaYL/vNg5tzti+zh5v8pvlvSfgNv0esTyLDObYGbDzGyo/4gMRH+i8G1KF0h618wuN7PxZnaImU0ys++b2ROSVkm6pIVtC93qtpek183sfDM7wm/jTHm/6PeU9FaK13iymV1sZiMjri+dmXd/JukTf/kaM/ubmZ1oZoeZ2bckvSRpmr+/XNLd8U4CAACQ54h500PMCyDrGMoAAKSJ/nNsD4FQ8LrIOZfq+FcZ4Zz7yMwek3cr0hQ1HktrX0kVftntZjZR0sOSjpd3i9qtSU6/tYXNu03SsX6bhku6N2Z/tbyg8AQlH3PrZkmny7uta3bMvgcknZdKY5xz28zsaHm3uA2XdKr/iPWapJPj3fYFAABQAIh500PMCyDr6DELoKD5t/yM91djg9SjEmwPyjmSZkj6p6QtkuoTFXTObXbOfV3S0fJu81ohabukWnm9H5ZIukPSN+QFmM3m97A4QdKP5N0GVyUvMP1IXrB5mHPu8RTO8468Hhp/lvSZpERjiqXSpgp5t7X9QNJCeTP37pa0TtJzks6VNME5x8y0AACg4BDzpo+YF0AQLOAfxAAAAAAAAACg4NFjFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAkZiFgAAAAAAAAACRmIWAAAAAAAAAAJGYhYAAAAAAAAAAvb/AU6bFe764KKWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,2, figsize=(8, 2), dpi=200)\n", + "\n", + "ax[0].plot(ref_observables['E_tot']-np.min(ref_observables['E_tot']), 'x-', label='reference')\n", + "ax[0].plot(observables['E_tot']-np.min(observables['E_tot']), 'x-', label='result')\n", + "\n", + "ax[1].plot(ref_convergence['d_G0'][0], 'x-', label='reference')\n", + "ax[1].plot(convergence['d_G0'][0], 'x-', label='result')\n", + "\n", + "ax[0].set_ylabel('total energy (eV)')\n", + "ax[1].set_ylabel(r'convergence $G_0$')\n", + "\n", + "for it in range(2):\n", + " ax[it].set_xlabel('# iteration')\n", + " ax[it].xaxis.set_major_locator(ticker.MultipleLocator(5))\n", + " ax[it].grid()\n", + " ax[it].legend(fontsize='small')\n", + "\n", + "fig.subplots_adjust(wspace=0.3)" + ] + }, + { + "cell_type": "markdown", + "id": "4952537b", + "metadata": {}, + "source": [ + "Note that the total energy jumps quite a bit in the first iteration and is constant for the first two (three) one-shot iterations in this run (the reference data) as expected. Since the HubbardI solver essentially yields DMFT-convergence after one iteration (you may try to confirm this), the total number of iterations necessary to achieve convergence is relatively low." + ] + }, + { + "cell_type": "markdown", + "id": "9afd381d", + "metadata": {}, + "source": [ + "This concludes the tutorial. The following is a list of things you can try next:\n", + "\n", + "* improve the accuracy of the results by tuning the parameters until the results agree with the reference \n", + "* try to fnd the equilibrium lattice paramter by repeating the above calculation of the total energy for different cell volumes" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/NNO_os_plo_mag/INCAR b/tutorials/NNO_os_plo_mag/INCAR new file mode 100644 index 00000000..5244a9c5 --- /dev/null +++ b/tutorials/NNO_os_plo_mag/INCAR @@ -0,0 +1,29 @@ +System = NdNiO2 + +EDIFF = 1e-10 +ENCUT = 450 + +NELMIN = 30 + +ISMEAR = 0 +SIGMA = 0.1 +PREC = Accurate + +# the energy window to optimize projector channels +EMIN = -5 +EMAX = 15 + +NBANDS = 64 +LMAXMIX = 6 +NEDOS = 3001 + +# switch off all symmetries +ISYM = -1 + +# project to Ni d +LORBIT = 14 +LOCPROJ = 3 4 : d : Pr + +# write WAVECAR, CHGCAR +LWAVE = .FALSE. +LCHARG = .FALSE. diff --git a/tutorials/NNO_os_plo_mag/KPOINTS b/tutorials/NNO_os_plo_mag/KPOINTS new file mode 100644 index 00000000..3bdc16ba --- /dev/null +++ b/tutorials/NNO_os_plo_mag/KPOINTS @@ -0,0 +1,4 @@ +Automatically generated mesh + 0 +Gamma + 9 9 5 diff --git a/tutorials/NNO_os_plo_mag/POSCAR b/tutorials/NNO_os_plo_mag/POSCAR new file mode 100644 index 00000000..a737904e --- /dev/null +++ b/tutorials/NNO_os_plo_mag/POSCAR @@ -0,0 +1,16 @@ +NdNiO2 SC +1.0 + 5.5437150002 0.0000000000 0.0000000000 + 0.0000000000 5.5437150002 0.0000000000 + 0.0000000000 0.0000000000 3.3099985123 + Nd Ni O + 2 2 4 +Direct + 0.000000000 0.500000000 0.500000000 + 0.500000000 0.000000000 0.500000000 + 0.000000000 0.000000000 0.000000000 + 0.500000000 0.500000000 0.000000000 + 0.250000000 0.250000000 0.000000000 + 0.750000000 0.750000000 0.000000000 + 0.750000000 0.250000000 0.000000000 + 0.250000000 0.750000000 0.000000000 diff --git a/tutorials/NNO_os_plo_mag/config.toml b/tutorials/NNO_os_plo_mag/config.toml new file mode 100644 index 00000000..e2c9f594 --- /dev/null +++ b/tutorials/NNO_os_plo_mag/config.toml @@ -0,0 +1,47 @@ +[general] +seedname = "nno" +jobname = "NNO_lowT" + +enforce_off_diag = false +block_threshold = 0.001 + +n_iw = 2001 +n_tau = 20001 + +prec_mu = 0.001 + +h_int_type = "density_density" +U = 8.0 +J = 1.0 + +# temperature ~290 K +beta = 40 + +magnetic = true +magmom = [-0.3, 0.3] +afm_order = true + +n_iter_dmft = 14 + +g0_mix = 0.9 + +dc_type = 0 +dc = true +dc_dmft = false + +load_sigma = false +path_to_sigma = "pre_AFM.h5" + +[solver] +type = "cthyb" +length_cycle = 2000 +n_warmup_cycles = 5e+3 +n_cycles_tot = 1e+7 +imag_threshold = 1e-5 + +perform_tail_fit = true +fit_max_moment = 6 +fit_min_w = 10 +fit_max_w = 16 +measure_density_matrix = true + diff --git a/tutorials/NNO_os_plo_mag/plo.cfg b/tutorials/NNO_os_plo_mag/plo.cfg new file mode 100644 index 00000000..239325a3 --- /dev/null +++ b/tutorials/NNO_os_plo_mag/plo.cfg @@ -0,0 +1,17 @@ +[General] +BASENAME = nno + +[Group 1] +SHELLS = 1 +NORMALIZE = True +NORMION = False +EWINDOW = -10 10 + +[Shell 1] +LSHELL = 2 +IONS = 3 4 +TRANSFORM = 0.0 0.0 0.0 0.0 1.0 + 0.0 1.0 0.0 0.0 0.0 + 0.0 0.0 1.0 0.0 0.0 + 0.0 0.0 0.0 1.0 0.0 + 1.0 0.0 0.0 0.0 0.0 diff --git a/tutorials/NNO_os_plo_mag/tutorial.html b/tutorials/NNO_os_plo_mag/tutorial.html new file mode 100644 index 00000000..1171f3fa --- /dev/null +++ b/tutorials/NNO_os_plo_mag/tutorial.html @@ -0,0 +1,1261 @@ + + + + + + + 4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+
[1]:
+
+
+
import numpy as np
+np.set_printoptions(precision=6,suppress=True)
+from triqs.plot.mpl_interface import plt,oplot
+
+from h5 import HDFArchive
+
+from triqs_dft_tools.converters.vasp import VaspConverter
+import triqs_dft_tools.converters.plovasp.converter as plo_converter
+
+import pymatgen.io.vasp.outputs as vio
+from pymatgen.electronic_structure.dos import CompleteDos
+from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType
+
+import warnings
+warnings.filterwarnings("ignore") #ignore some matplotlib warnings
+
+
+
+
+
+
+
+
+Warning: could not identify MPI environment!
+
+
+
+
+
+
+
+Starting serial run at: 2023-11-24 09:49:44.156139
+
+
+
+

4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2

+

In this tutorial we will take a look at a magnetic DMFT calculation for NdNiO2 in the antiferromagnetic phase. NdNiO2 shows a clear AFM phase at lower temperatures in DFT+DMFT calculation. The calculations will be performed for a large energy window with all Ni-\(d\) orbitals treated as interacting with a density-density type interaction.

+

Disclaimer: the interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!

+

This tutorial will guide you through the following steps:

+
    +
  • run a non-magnetic Vasp calculation for NdNiO2 with a two atom supercell allowing magnetic order

  • +
  • create projectors in a large energy window for all Ni-\(d\) orbitals and all O-\(p\) orbitals

  • +
  • create the hdf5 input via the Vasp converter for solid_dmft

  • +
  • run a AFM DMFT one-shot calculation

  • +
  • take a look at the output and analyse the multiplets of the Ni-d states

  • +
+

Warning: the DMFT calculations here are very heavy requiring ~2500 core hours for the DMFT job.

+

We set a path variable here to the reference files, which should be changed when doing the actual calculations do the work directory:

+
+
[2]:
+
+
+
path = './ref/'
+
+
+
+
+

1. Run DFT

+

We start by running Vasp to create the raw projectors. The INCAR, POSCAR, and KPOINTS file are kept relatively simple. For the POTCAR the PBE Nd_3, PBE Ni_pv and PBE O pseudo potentials are used. Here we make sure that the Kohn-Sham eigenstates are well converged (rms), by performing a few extra SCF steps by setting NELMIN=30. Then, the INCAR flag LOCPROJ = LOCPROJ = 3 4 : d : Pr instructs Vasp to create projectors for the Ni-\(d\) +shell of the two Ni sties. More information can be found on the DFTTools webpage of the Vasp converter.

+

Next, run Vasp with

+
mpirun vasp_std 1>out.vasp 2>err.vasp &
+
+
+

and monitor the output. After Vasp is finished the result should look like this:

+
+
[3]:
+
+
+
!tail -n 10 ref/out.vasp
+
+
+
+
+
+
+
+
+DAV:  25    -0.569483098581E+02   -0.31832E-09    0.42131E-12 29952   0.148E-06    0.488E-07
+DAV:  26    -0.569483098574E+02    0.75124E-09    0.25243E-12 30528   0.511E-07    0.226E-07
+DAV:  27    -0.569483098574E+02   -0.12733E-10    0.17328E-12 28448   0.285E-07    0.826E-08
+DAV:  28    -0.569483098578E+02   -0.41837E-09    0.17366E-12 29536   0.151E-07    0.370E-08
+DAV:  29    -0.569483098576E+02    0.22192E-09    0.19300E-12 29280   0.689E-08    0.124E-08
+DAV:  30    -0.569483098572E+02    0.38563E-09    0.27026E-12 28576   0.388E-08    0.598E-09
+DAV:  31    -0.569483098573E+02   -0.92768E-10    0.34212E-12 29024   0.218E-08
+ LOCPROJ mode
+ Computing AMN (projections onto localized orbitals)
+   1 F= -.56948310E+02 E0= -.56941742E+02  d E =-.131358E-01
+
+
+

let us take a look at the density of states from Vasp:

+
+
[4]:
+
+
+
vasprun = vio.Vasprun(path+'/vasprun.xml')
+dos = vasprun.complete_dos
+Ni_spd_dos = dos.get_element_spd_dos("Ni")
+O_spd_dos = dos.get_element_spd_dos("O")
+Nd_spd_dos = dos.get_element_spd_dos("Nd")
+
+
+
+
+
[5]:
+
+
+
fig, ax = plt.subplots(1,dpi=150,figsize=(7,4))
+
+ax.plot(vasprun.tdos.energies - vasprun.efermi , vasprun.tdos.densities[Spin.up], label=r'total DOS', lw = 2)
+ax.plot(vasprun.tdos.energies - vasprun.efermi , Ni_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Ni-d', lw = 2)
+ax.plot(vasprun.tdos.energies - vasprun.efermi , O_spd_dos[OrbitalType.p].densities[Spin.up], label=r'O-p', lw = 2)
+ax.plot(vasprun.tdos.energies - vasprun.efermi , Nd_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Nd-d', lw = 2)
+
+ax.axvline(0, c='k', lw=1)
+ax.set_xlabel('Energy relative to Fermi energy (eV)')
+ax.set_ylabel('DOS (1/eV)')
+ax.set_xlim(-9,8.5)
+ax.set_ylim(0,20)
+ax.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_NNO_os_plo_mag_tutorial_8_0.png +
+
+

We see that the Ni-\(d\) states are entangled / hybridizing with O-\(p\) states and Nd-\(d\) states in the energy range between -9 and 9 eV. Hence, we orthonormalize our projectors considering all states in this energy window to create well localized real-space states. These projectors will be indeed quite similar to the internal DFT+\(U\) projectors used in VASP due to the large energy window.

+
+
+

2. Creating the hdf5 archive / DMFT input

+

Next we run the Vasp converter to create an input h5 archive for solid_dmft. The plo.cfg looks like this:

+
+
[6]:
+
+
+
!cat plo.cfg
+
+
+
+
+
+
+
+
+[General]
+BASENAME = nno
+
+[Group 1]
+SHELLS = 1
+NORMALIZE = True
+NORMION = False
+EWINDOW = -10 10
+
+[Shell 1]
+LSHELL = 2
+IONS = 3 4
+TRANSFORM = 0.0  0.0  0.0  0.0  1.0
+            0.0  1.0  0.0  0.0  0.0
+            0.0  0.0  1.0  0.0  0.0
+            0.0  0.0  0.0  1.0  0.0
+            1.0  0.0  0.0  0.0  0.0
+
+
+

we create \(d\) like projectors within a large energy window from -10 to 10 eV for very localized states for both Ni sites. Important: the sites are markes as non equivalent, so that we can later have different spin orientations on them. The flag TRANSFORM swaps the \(d_{xy}\) and \(d_{x^2 - y^2}\) orbitals, since the orientation in the unit cell of the oxygen bonds is rotated by 45 degreee. Vasp always performs projections in a global cartesian coordinate frame, so one has to +rotate the orbitals manually with the octahedra orientation.

+

Let’s run the converter:

+
+
[7]:
+
+
+
# Generate and store PLOs
+plo_converter.generate_and_output_as_text('plo.cfg', vasp_dir=path)
+
+# run the archive creat routine
+conv = VaspConverter('nno')
+conv.convert_dft_input()
+
+
+
+
+
+
+
+
+Read parameters: LOCPROJ
+0  ->  {'label': 'dxy', 'isite': 3, 'l': 2, 'm': 0}
+1  ->  {'label': 'dyz', 'isite': 3, 'l': 2, 'm': 1}
+2  ->  {'label': 'dz2', 'isite': 3, 'l': 2, 'm': 2}
+3  ->  {'label': 'dxz', 'isite': 3, 'l': 2, 'm': 3}
+4  ->  {'label': 'dx2-y2', 'isite': 3, 'l': 2, 'm': 4}
+5  ->  {'label': 'dxy', 'isite': 4, 'l': 2, 'm': 0}
+6  ->  {'label': 'dyz', 'isite': 4, 'l': 2, 'm': 1}
+7  ->  {'label': 'dz2', 'isite': 4, 'l': 2, 'm': 2}
+8  ->  {'label': 'dxz', 'isite': 4, 'l': 2, 'm': 3}
+9  ->  {'label': 'dx2-y2', 'isite': 4, 'l': 2, 'm': 4}
+  Found POSCAR, title line: NdNiO2 SC
+  Total number of ions: 8
+  Number of types: 3
+  Number of ions for each type: [2, 2, 4]
+
+    Total number of k-points: 405
+  No tetrahedron data found in IBZKPT. Skipping...
+[WARNING]: Error reading from EIGENVAL, trying LOCPROJ...
+[WARNING]: Error reading Efermi from DOSCAR, trying LOCPROJ...
+eigvals from LOCPROJ
+
+  Unorthonormalized density matrices and overlaps:
+  Spin: 1
+  Site: 3
+  Density matrix                                                  Overlap
+   1.1544881   0.0000000  -0.0000000   0.0000000  -0.0000000       0.9626619  -0.0000000   0.0000000   0.0000002  -0.0000000
+   0.0000000   1.7591058  -0.0000000   0.0000000  -0.0000000      -0.0000000   0.9464342  -0.0000000   0.0000000  -0.0000000
+  -0.0000000  -0.0000000   1.5114185   0.0000000  -0.0000000       0.0000000  -0.0000000   0.9548582  -0.0000000   0.0000000
+   0.0000000   0.0000000   0.0000000   1.7591058  -0.0000000       0.0000002   0.0000000  -0.0000000   0.9464339   0.0000000
+  -0.0000000  -0.0000000  -0.0000000  -0.0000000   1.8114830      -0.0000000  -0.0000000   0.0000000   0.0000000   0.9495307
+  Site: 4
+  Density matrix                                                  Overlap
+   1.1544881  -0.0000000   0.0000000   0.0000000   0.0000000       0.9626621   0.0000000  -0.0000000  -0.0000001  -0.0000000
+  -0.0000000   1.7591058  -0.0000000  -0.0000000   0.0000000       0.0000000   0.9464343  -0.0000000  -0.0000000   0.0000000
+   0.0000000  -0.0000000   1.5114185  -0.0000000  -0.0000000      -0.0000000  -0.0000000   0.9548582   0.0000000   0.0000000
+   0.0000000  -0.0000000  -0.0000000   1.7591058   0.0000000      -0.0000001  -0.0000000   0.0000000   0.9464344   0.0000000
+   0.0000000   0.0000000  -0.0000000   0.0000000   1.8114830      -0.0000000   0.0000000   0.0000000   0.0000000   0.9495307
+
+  Generating 1 shell...
+
+    Shell         : 1
+    Orbital l     : 2
+    Number of ions: 2
+    Dimension     : 5
+    Correlated    : True
+    Ion sort      : [3, 4]
+Density matrix:
+  Shell 1
+Site diag : True
+    Site 1
+     1.9468082    -0.0000000    -0.0000000     0.0000000    -0.0000000
+    -0.0000000     1.8880488    -0.0000000     0.0000000     0.0000000
+    -0.0000000    -0.0000000     1.5912192     0.0000000     0.0000000
+     0.0000000     0.0000000     0.0000000     1.8880488     0.0000000
+    -0.0000000     0.0000000     0.0000000     0.0000000     1.1979419
+      trace:  8.512066911392091
+    Site 2
+     1.9468082     0.0000000    -0.0000000    -0.0000000    -0.0000000
+     0.0000000     1.8880488    -0.0000000    -0.0000000    -0.0000000
+    -0.0000000    -0.0000000     1.5912192    -0.0000000    -0.0000000
+    -0.0000000    -0.0000000    -0.0000000     1.8880488    -0.0000000
+    -0.0000000    -0.0000000    -0.0000000    -0.0000000     1.1979419
+      trace:  8.512066911289741
+
+  Impurity density: 17.024133822681833
+
+Overlap:
+  Site 1
+[[ 1. -0. -0. -0. -0.]
+ [-0.  1. -0. -0. -0.]
+ [-0. -0.  1. -0. -0.]
+ [-0. -0. -0.  1.  0.]
+ [-0. -0. -0.  0.  1.]]
+
+Local Hamiltonian:
+  Shell 1
+    Site 1 (real | complex part)
+    -1.5179223     0.0000000     0.0000000    -0.0000000     0.0000000 |    -0.0000000    -0.0000000    -0.0000000    -0.0000000    -0.0000000
+     0.0000000    -1.2888643     0.0000000    -0.0000000    -0.0000000 |     0.0000000     0.0000000    -0.0000000    -0.0000000    -0.0000000
+     0.0000000     0.0000000    -0.9927644    -0.0000000    -0.0000000 |     0.0000000     0.0000000    -0.0000000     0.0000000     0.0000000
+    -0.0000000    -0.0000000    -0.0000000    -1.2888643     0.0000000 |     0.0000000     0.0000000    -0.0000000     0.0000000     0.0000000
+     0.0000000    -0.0000000    -0.0000000     0.0000000    -1.0828254 |     0.0000000     0.0000000    -0.0000000    -0.0000000     0.0000000
+    Site 2 (real | complex part)
+    -1.5179223    -0.0000000    -0.0000000    -0.0000000    -0.0000000 |     0.0000000     0.0000000    -0.0000000    -0.0000000    -0.0000000
+    -0.0000000    -1.2888643     0.0000000    -0.0000000     0.0000000 |    -0.0000000    -0.0000000     0.0000000     0.0000000    -0.0000000
+    -0.0000000     0.0000000    -0.9927644     0.0000000     0.0000000 |     0.0000000    -0.0000000     0.0000000    -0.0000000    -0.0000000
+    -0.0000000    -0.0000000     0.0000000    -1.2888643     0.0000000 |     0.0000000    -0.0000000     0.0000000    -0.0000000     0.0000000
+    -0.0000000     0.0000000     0.0000000     0.0000000    -1.0828254 |     0.0000000     0.0000000     0.0000000    -0.0000000     0.0000000
+  Storing ctrl-file...
+  Storing PLO-group file 'nno.pg1'...
+  Density within window: 42.00000000005771
+Reading input from nno.ctrl...
+{
+    "ngroups": 1,
+    "nk": 405,
+    "ns": 1,
+    "kvec1": [
+        0.1803844533789928,
+        0.0,
+        0.0
+    ],
+    "kvec2": [
+        0.0,
+        0.1803844533789928,
+        0.0
+    ],
+    "kvec3": [
+        0.0,
+        0.0,
+        0.30211493941280826
+    ],
+    "nc_flag": 0
+}
+
+  No. of inequivalent shells: 2
+
+
+

We can here cross check the quality of our projectors by making sure that there are not imaginary elements in both the local Hamiltonian and the density matrix. Furthermore, we see that the occupation of the Ni-\(d\) shell is roughly 8.5 electrons which is a bit different from the nominal charge of \(d^9\) for the system due to the large hybridization with the other states. For mor physical insights into the systems and a discussion on the appropriate choice of projectors see this +research article PRB 103 195101 2021

+
+
+

3. Running the AFM calculation

+

now we run the calculation at around 290 K, which should be below the ordering temperature of NdNiO2 in DMFT. The config file config.toml for solid_dmft looks like this:

+
[general]
+seedname = "nno"
+jobname = "NNO_lowT"
+
+enforce_off_diag = false
+block_threshold = 0.001
+
+
+n_iw = 2001
+n_tau = 20001
+
+prec_mu = 0.001
+
+h_int_type = "density_density"
+U = 8.0
+J = 1.0
+
+# temperature ~290 K
+beta = 40
+
+magnetic = true
+magmom = -0.3, 0.3
+afm_order = true
+
+n_iter_dmft = 14
+
+g0_mix = 0.9
+
+dc_type = 0
+dc = true
+dc_dmft = false
+
+[solver]
+type = "cthyb"
+length_cycle = 2000
+n_warmup_cycles = 5e+3
+n_cycles_tot = 1e+7
+imag_threshold = 1e-5
+
+perform_tail_fit = true
+fit_max_moment = 6
+fit_min_w = 10
+fit_max_w = 16
+measure_density_matrix = true
+
+
+

Let’s go through some special options we set in the config file:

+
    +
  • we changed n_iw=2000 because the large energy window of the calculation requires more Matsubara frequencies

  • +
  • h_int_type is set to density_density to reduce complexity of the problem

  • +
  • beta=40 here we set the temperature to ~290K

  • +
  • magnetic=true lift spin degeneracy

  • +
  • magmom here we specify the magnetic order. Here, we say that both Ni sites have the same spin, which should average to 0 at this high temperature. The magnetic moment is specified as an potential in eV splitting up / down channel of the initial self-energy

  • +
  • afm_order=true tells solid_dmft to not solve impurities with the same magmom but rather copy the self-energy and if necessary flip the spin accordingly

  • +
  • length_cycle=2000 is the length between two Green’s function measurements in cthyb. This number has to be choosen carefully to give an autocorrelation time ~1 for all orbitals

  • +
  • perform_tail_fit=true : here we use tail fitting to get good high frequency self-energy behavior

  • +
  • measure_density_matrix = true measures the impurity many-body density matrix in the Fock basis for a multiplet analysis

  • +
+

By setting the flag magmom to a small value with a flipped sign on both sites we tell solid_dmft that both sites are related by flipping the down and up channel. Now we run solid_dmft simply by executing mpirun solid_dmft config.toml.

+

Caution: this is a very heavy job, which should be submitted on a cluster.

+

In the beginning of the calculation we find the following lines:

+
AFM calculation selected, mapping self energies as follows:
+imp  [copy sigma, source imp, switch up/down]
+---------------------------------------------
+0: [False, 0, False]
+1: [True, 0, True]
+
+
+

this tells us that solid_dmft detected correctly how we want to orientate the spin moments. This also reflects itself during the iterations when the second impurity problem is not solved, but instead all properties of the first impurity are copied and the spin channels are flipped:

+
...
+copying the self-energy for shell 1 from shell 0
+inverting spin channels: False
+...
+
+
+

After the calculation is running or is finished we can take a look at the results:

+
+
[8]:
+
+
+
with HDFArchive(path+'/nno.h5','r') as ar:
+    Sigma_iw = ar['DMFT_results/last_iter/Sigma_freq_0']
+    obs = ar['DMFT_results/observables']
+    conv_obs = ar['DMFT_results/convergence_obs']
+
+
+
+
+
[9]:
+
+
+
fig, ax = plt.subplots(nrows=4, dpi=150, figsize=(7,8), sharex=True)
+fig.subplots_adjust(hspace=0.1)
+# imp occupation
+ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][0]['up'])+np.array(obs['imp_occ'][0]['down']), '-o', label=r'Ni$_0$')
+ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][1]['up'])+np.array(obs['imp_occ'][1]['down']), '-o', label=r'Ni$_1$')
+
+# imp magnetization
+ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][0]['up'])-np.array(obs['imp_occ'][0]['down'])), '-o', label=r'Ni$_0$')
+ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][1]['up'])-np.array(obs['imp_occ'][1]['down'])), '-o', label=r'Ni$_1$')
+
+# dxy, dyz, dz2, dxz, dx2-y2 orbital magnetization
+ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,4]-np.array(obs['orb_occ'][0]['down'])[:,4]), '-o', label=r'$d_{x^2-y^2}$')
+ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,2]-np.array(obs['orb_occ'][0]['down'])[:,2]), '-o', label=r'$d_{z^2}$')
+ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,0]-np.array(obs['orb_occ'][0]['down'])[:,0]), '-o', label=r'$d_{xy}$')
+ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,1]-np.array(obs['orb_occ'][0]['down'])[:,1]), '-o', label=r'$d_{yz/xz}$')
+
+ax[3].semilogy(conv_obs['d_Gimp'][0], '-o')
+
+ax[0].set_ylabel('Imp. occupation')
+ax[1].set_ylabel(r'magnetization $\mu_B$')
+ax[2].set_ylabel(r'magnetization $\mu_B$')
+ax[-1].set_xticks(range(0,len(obs['iteration'])))
+ax[-1].set_xlabel('Iterations')
+ax[0].set_ylim(8.4,8.6)
+ax[0].legend();ax[1].legend();ax[2].legend()
+
+ax[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')
+
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_NNO_os_plo_mag_tutorial_18_0.png +
+
+

Let’s take a look at the self-energy of the two Ni \(e_g\) orbitals:

+
+
[10]:
+
+
+
fig, ax = plt.subplots(1,dpi=150)
+
+ax.oplot(Sigma_iw['up_2'].imag, '-', color='C0', label=r'up $d_{z^2}$')
+ax.oplot(Sigma_iw['up_4'].imag, '-', color='C1', label=r'up $d_{x^2-y^2}$')
+
+ax.oplot(Sigma_iw['down_2'].imag, '--', color='C0', label=r'down $d_{z^2}$')
+ax.oplot(Sigma_iw['down_4'].imag, '--', color='C1', label=r'down $d_{x^2-y^2}$')
+
+ax.set_ylabel(r"$Im \Sigma (i \omega)$")
+
+ax.set_xlim(0,40)
+ax.set_ylim(-1.8,0)
+ax.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_NNO_os_plo_mag_tutorial_20_0.png +
+
+

We can clearly see that a \(\omega_n=8\) the self-energy is replaced by the tail-fit as specified in the input config file. This cut is rather early, but ensures convergence. For higher sampling rates this has to be changed. We can also nicely observe a splitting of the spin channels indicating a magnetic solution, but we still have a metallic solution with both self-energies approaching 0 for small omega walues. However, the QMC noise is still rather high, especially in the +\(d_{x^2-y^2}\) orbital.

+
+
+

5. Multiplet analysis

+

We follow now the triqs/cthyb tutorial on the multiplet analysis to analyze the multiplets of the Ni-d orbitals:

+
+
[11]:
+
+
+
import pandas as pd
+pd.set_option('display.width', 130)
+
+from triqs.operators.util import make_operator_real
+from triqs.operators.util.observables import S_op
+from triqs.atom_diag import quantum_number_eigenvalues
+from triqs.operators import n
+
+
+
+

first we have to load the measured density matrix and the local Hamiltonian of the impurity problem from the h5 archive, which we stored by setting measure_density_matrix=true in the config file:

+
+
[12]:
+
+
+
with HDFArchive(path+'/nno.h5','r') as ar:
+    rho = ar['DMFT_results/last_iter/full_dens_mat_0']
+    h_loc = ar['DMFT_results/last_iter/h_loc_diag_0']
+
+
+
+

rho is just a list of arrays containing the weights of each of the impurity eigenstates (many body states), and h_loc is a:

+
+
[13]:
+
+
+
print(type(h_loc))
+
+
+
+
+
+
+
+
+<class 'triqs.atom_diag.atom_diag.AtomDiagReal'>
+
+
+

containing the local Hamiltonian of the impurity including eigenstates, eigenvalues etc.

+
+
[14]:
+
+
+
res = []
+# get fundamental operators from atom_diag object
+occ_operators = [n(*op) for op in h_loc.fops]
+
+# construct total occupation operator from list
+N_op = sum(occ_operators)
+
+# create Sz operator and get eigenvalues
+Sz=S_op('z', spin_names=['up','down'], n_orb=5, off_diag=False)
+Sz = make_operator_real(Sz)
+Sz_states = quantum_number_eigenvalues(Sz, h_loc)
+
+# get particle numbers from h_loc_diag
+particle_numbers = quantum_number_eigenvalues(N_op, h_loc)
+N_max = int(max(map(max, particle_numbers)))
+
+for sub in range(0,h_loc.n_subspaces):
+
+    # first get Fock space spanning the subspace
+    fs_states = []
+    for ind, fs in enumerate(h_loc.fock_states[sub]):
+        state = bin(int(fs))[2:].rjust(N_max, '0')
+        fs_states.append("|"+state+">")
+
+    for ind in range(h_loc.get_subspace_dim(sub)):
+
+        # get particle number
+        particle_number = round(particle_numbers[sub][ind])
+        if abs(particle_number-particle_numbers[sub][ind]) > 1e-8:
+            raise ValueError('round error for particle number to large!',
+                             particle_numbers[sub][ind])
+        else:
+            particle_number = int(particle_number)
+        eng=h_loc.energies[sub][ind]
+
+        # construct eigenvector in Fock state basis:
+        ev_state = ''
+        for i, elem in enumerate(h_loc.unitary_matrices[sub][:,ind]):
+            ev_state += ' {:+1.4f}'.format(elem)+fs_states[i]
+
+        # get spin state
+        ms=Sz_states[sub][ind]
+
+        # add to dict which becomes later the pandas data frame
+        res.append({"Sub#" : sub,
+                    "EV#" : ind,
+                    "N" : particle_number,
+                    "energy" : eng,
+                    "prob": rho[sub][ind,ind],
+                    "m_s": round(ms,1),
+                    "|m_s|": abs(round(ms,1)),
+                    "state": ev_state})
+# panda data frame from res
+res = pd.DataFrame(res, columns=res[0].keys())
+
+
+
+
+
[15]:
+
+
+
print(res.sort_values('prob', ascending=False)[:10])
+
+
+
+
+
+
+
+
+    Sub#  EV#   N        energy      prob  m_s  |m_s|                 state
+4      4    0   9  3.640517e-01  0.310283 -0.5    0.5   +1.0000|0111111111>
+0      0    0   8  0.000000e+00  0.125113 -1.0    1.0   +1.0000|0101111111>
+5      5    0   9  3.640517e-01  0.083760  0.5    0.5   +1.0000|1111101111>
+20    20    0   8  8.851884e-01  0.074717  0.0    0.0   +1.0000|0111111011>
+2      2    0   9  2.739907e-01  0.044306 -0.5    0.5   +1.0000|1101111111>
+55    55    0  10  7.125334e+00  0.038609  0.0    0.0   +1.0000|1111111111>
+3      3    0   9  2.739907e-01  0.035831  0.5    0.5   +1.0000|1111111011>
+51    51    0   8  2.745626e+00  0.033932  0.0    0.0   +1.0000|0111101111>
+1      1    0   8  4.903654e-09  0.031693  1.0    1.0   +1.0000|1111101011>
+21    21    0   8  8.851884e-01  0.019748  0.0    0.0   +1.0000|1101101111>
+
+
+

This table shows the eigenstates of the impurity with the highest weight / occurence probability. Each row shows the state of the system, where the 1/0 indicates if an orbital is occupied. The orbitals are ordered as given in the projectors (dxy, dyz, dz2, dxz, dx2-y2) from right to left, first one spin-channel, then the other. Additionally each row shows the particle sector of the state, the energy, and the m_s quantum number.

+

It can be seen, that the state with the highest weight is a state with one hole (N=9 electrons) in the \(d_{x^2-y^2, up}\) orbital carrying a spin of 0.5. The second state in the list is a state with two holes (N=8). One in the \(d_{x^2-y^2, up}\) and one in the \(d_{z^2, up}\) giving a magnetic moment of 1. This is because the impurity occupation is somewhere between 8 and 9. We can also create a nice state histogram from this:

+
+
[16]:
+
+
+
# split into ms occupations
+fig, (ax1) = plt.subplots(1,1,figsize=(6,4), dpi=150)
+
+spin_occ_five = res.groupby(['N', '|m_s|']).sum()
+pivot_df = spin_occ_five.pivot_table(index='N', columns='|m_s|', values='prob')
+pivot_df.plot.bar(stacked = True, rot=0, ax = ax1)
+
+ax1.set_ylabel(r'prob amplitude')
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_NNO_os_plo_mag_tutorial_33_0.png +
+
+

This concludes the tutorial. This you can try next:

+
    +
  • try to find the transition temperature of the system by increasing the temperature in DMFT

  • +
  • improve the accuracy of the resulting self-energy by restarting the dmft calculation with more n_cycles_tot

  • +
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/NNO_os_plo_mag/tutorial.ipynb b/tutorials/NNO_os_plo_mag/tutorial.ipynb new file mode 100644 index 00000000..1d3cd1f9 --- /dev/null +++ b/tutorials/NNO_os_plo_mag/tutorial.ipynb @@ -0,0 +1,846 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "40ad917b-d7a1-4950-8593-abb9b4934e8a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2023-11-24 09:49:44.156139\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "np.set_printoptions(precision=6,suppress=True)\n", + "from triqs.plot.mpl_interface import plt,oplot\n", + "\n", + "from h5 import HDFArchive\n", + "\n", + "from triqs_dft_tools.converters.vasp import VaspConverter \n", + "import triqs_dft_tools.converters.plovasp.converter as plo_converter\n", + "\n", + "import pymatgen.io.vasp.outputs as vio\n", + "from pymatgen.electronic_structure.dos import CompleteDos\n", + "from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType\n", + "\n", + "import warnings \n", + "warnings.filterwarnings(\"ignore\") #ignore some matplotlib warnings" + ] + }, + { + "cell_type": "markdown", + "id": "c24d5aa3-8bf2-471e-868d-32a0d4bb99f7", + "metadata": {}, + "source": [ + "# 4. OS with VASP/PLOs and cthyb: AFM state of NdNiO2" + ] + }, + { + "cell_type": "markdown", + "id": "aed6468d-cb0b-4eee-93b4-665f4f80ac2d", + "metadata": {}, + "source": [ + "In this tutorial we will take a look at a magnetic DMFT calculation for NdNiO2 in the antiferromagnetic phase. NdNiO2 shows a clear AFM phase at lower temperatures in DFT+DMFT calculation. The calculations will be performed for a large energy window with all Ni-$d$ orbitals treated as interacting with a density-density type interaction. \n", + "\n", + "Disclaimer: the interaction values, results etc. might not be 100% physical and are only for demonstrative purposes!\n", + "\n", + "This tutorial will guide you through the following steps: \n", + "\n", + "* run a non-magnetic Vasp calculation for NdNiO2 with a two atom supercell allowing magnetic order\n", + "* create projectors in a large energy window for all Ni-$d$ orbitals and all O-$p$ orbitals\n", + "* create the hdf5 input via the Vasp converter for solid_dmft\n", + "* run a AFM DMFT one-shot calculation\n", + "* take a look at the output and analyse the multiplets of the Ni-d states\n", + "\n", + "Warning: the DMFT calculations here are very heavy requiring ~2500 core hours for the DMFT job.\n", + "\n", + "We set a `path` variable here to the reference files, which should be changed when doing the actual calculations do the work directory:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6dde4dcd-c06a-45e0-9c06-ca11be265713", + "metadata": {}, + "outputs": [], + "source": [ + "path = './ref/'" + ] + }, + { + "cell_type": "markdown", + "id": "b1356ed1-b4a6-48d2-8058-863b9e70a0be", + "metadata": {}, + "source": [ + "## 1. Run DFT \n", + "\n", + "We start by running Vasp to create the raw projectors. The [INCAR](INCAR), [POSCAR](POSCAR), and [KPOINTS](KPOINTS) file are kept relatively simple. For the POTCAR the `PBE Nd_3`, `PBE Ni_pv` and `PBE O` pseudo potentials are used. Here we make sure that the Kohn-Sham eigenstates are well converged (rms), by performing a few extra SCF steps by setting `NELMIN=30`. Then, the INCAR flag `LOCPROJ = LOCPROJ = 3 4 : d : Pr` instructs Vasp to create projectors for the Ni-$d$ shell of the two Ni sties. More information can be found on the [DFTTools webpage of the Vasp converter](https://triqs.github.io/dft_tools/unstable/guide/conv_vasp.html).\n", + "\n", + "Next, run Vasp with \n", + "```\n", + "mpirun vasp_std 1>out.vasp 2>err.vasp &\n", + "```\n", + "and monitor the output. After Vasp is finished the result should look like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bf1b811e-af03-4714-a644-ad7a7b57c42b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DAV: 25 -0.569483098581E+02 -0.31832E-09 0.42131E-12 29952 0.148E-06 0.488E-07\n", + "DAV: 26 -0.569483098574E+02 0.75124E-09 0.25243E-12 30528 0.511E-07 0.226E-07\n", + "DAV: 27 -0.569483098574E+02 -0.12733E-10 0.17328E-12 28448 0.285E-07 0.826E-08\n", + "DAV: 28 -0.569483098578E+02 -0.41837E-09 0.17366E-12 29536 0.151E-07 0.370E-08\n", + "DAV: 29 -0.569483098576E+02 0.22192E-09 0.19300E-12 29280 0.689E-08 0.124E-08\n", + "DAV: 30 -0.569483098572E+02 0.38563E-09 0.27026E-12 28576 0.388E-08 0.598E-09\n", + "DAV: 31 -0.569483098573E+02 -0.92768E-10 0.34212E-12 29024 0.218E-08\n", + " LOCPROJ mode\n", + " Computing AMN (projections onto localized orbitals)\n", + " 1 F= -.56948310E+02 E0= -.56941742E+02 d E =-.131358E-01\n" + ] + } + ], + "source": [ + "!tail -n 10 ref/out.vasp" + ] + }, + { + "cell_type": "markdown", + "id": "3364605b-c105-4ad8-9350-6569b506df07", + "metadata": {}, + "source": [ + "let us take a look at the density of states from Vasp:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3529d644-40f5-4b6b-98f0-2d3a6acdb524", + "metadata": {}, + "outputs": [], + "source": [ + "vasprun = vio.Vasprun(path+'/vasprun.xml')\n", + "dos = vasprun.complete_dos\n", + "Ni_spd_dos = dos.get_element_spd_dos(\"Ni\")\n", + "O_spd_dos = dos.get_element_spd_dos(\"O\")\n", + "Nd_spd_dos = dos.get_element_spd_dos(\"Nd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5fec0ad8-7ab4-4a02-bd72-b679f6ce6ed4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAIyCAYAAAAzNWwJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9foH8M9JR9qme5eWJauILFERRUVxIYgo4gIUFb3oHSg/r6hXvSpuQRFxe70O9KosEcGtIMgSEGSPMkqhdM+0TdLk/P4oaXO+J0kzTrryeb9evCQn55ycYtvkOc/zfR5JlmUZRERERERERK1A19oXQERERERERMGLQSkRERERERG1GgalRERERERE1GoYlBIREREREVGrYVBKRERERERErYZBKREREREREbUaBqVERERERETUahiUEhERERERUathUEpERERERESthkEpERERERERtRoGpURERERERNRqGJQSERERERFRq2FQSkRERERERK2GQSkRERERERG1mnYZlNbU1ODLL7/EnXfeiQEDBiA2NhYGgwEDBw7EU089herqapfHfvTRRzjnnHMQHR2NxMREXHXVVVi3bp1P12Gz2TB37lz0798fkZGRSElJwYQJE7B7925fvzQiIiIiIqKgIsmyLLf2RXjrvffew1133QUA6NevH04//XRUVlZi3bp1qKqqQnZ2NlavXo3U1FTFcTNmzMArr7yCyMhIXH755airq8NPP/0EWZaxcOFCXHvttR5fgyzLuOGGG7Bo0SLEx8dj5MiRKC4uxq+//oqIiAj88ssvGDp0qKZfNxERERERUUfTLoPSjz76CBs2bMD999+PXr16NW7Pz8/H6NGj8ccff+Dmm2/Gp59+2vjczz//jJEjRyIpKQnr169vPG79+vUYMWIEIiMjcfjwYSQkJHh0De+//z7uvPNO9OrVC2vWrEFaWhoAYPHixbj++uvRo0cP7N27F6GhoRp+5URERERERB1LuyzfvfXWW/HGG28oAlIAyMjIwOuvvw4AWLJkCcxmc+Nzc+bMAQA8+uijiuOGDRuGadOmoaKiAu+//77H12A/34svvtgYkALA+PHjMXbsWOTk5GDZsmXef3FERERERERBpF0Gpe4MHDgQAGAymVBSUgIAjWW6AHD99derjrFvW758uUevcfjwYezevRuRkZEYPXq03+cjIiIiIiIKVh0uKD106BAAICwsDImJiQCAvXv3wmQyISUlBVlZWapjzjzzTADAn3/+6dFrbN++HQBwxhlnICwszOX57PsRERERERGRcx1uweOrr74KALjyyiuh1+sBALm5uQDgNCAFAIPBgPj4eJSVlaGqqgoxMTFuX6O589m32/drTr9+/Zxu37dvHyIjI9GlSxePzkNERERERNTScnNzYTAYcPLkSZ+O71CZ0pUrV+I///kPwsLCMGvWrMbt9hExUVFRLo81GAyKfd1p7nzenMsdWZZhsVj8OgcREZGvbDYbdu/ejd27d8Nms7X25RARURtlsVhgNBp9Pr7DZEr37NmDSZMmQZZlvPTSS41rS4GG4A4AJElyebw3TYg9OZ83du3a5XS7PYPq6nkiIqJAMhqNiI6OBgBs3ry58aYrERGRI1eVn57qEJnSvLw8XHnllSgrK8OMGTMwffp0xfP2clx30XtNTQ0ANL75utPc+ezbPTkXERERERFRMGv3QWlxcTEuu+wy5Obm4vbbb8fs2bNV+9jXZObl5Tk9h9FoRHl5OeLj45tdT+rJ+ezbuRaUiIiIiIjIvXYdlFZVVWHUqFHYu3cvrrvuOrz77rtOS2r79OkDvV6PoqIip4Hk1q1bAQADBgzw6HXtpcE7d+50uubT2/MREREREREFq3YblJpMJlxzzTXYvHkzrrjiCvzvf/9DSEiI030jIyNxySWXAAAWLVqket6+bcyYMR69dvfu3dG3b1/U1tZixYoVfp+PiIiIiIgoWLXLoNRqteLmm2/GL7/8ggsuuABLlixBeHi422NmzJgBAHj66adx4MCBxu3r16/H22+/jdjYWNx5552KYzZt2oTs7GyMHDnS5fkefPBBFBYWNm5fsmQJvvrqK3Tv3h3jxo3z9UskIiIiIiIKCu2y++78+fOxdOlSAEBycjLuvfdep/vNnj0bycnJAIBLL70U06dPx6uvvopBgwbhsssug9lsxg8//ACbzYZPPvkEiYmJiuNramqwb98+1NXVqc59xx13YOXKlVi6dGlj4FpcXIzVq1cjIiICCxYsQFhYmMZfORERERERUcfSLoPSsrKyxr/bg1NnnnjiicagFADmzp2LQYMGYf78+fjhhx8QFhaGkSNH4tFHH8Xw4cO9ugadToeFCxfi1Vdfxfvvv4+vv/4aBoMB1157LZ566im/2yITERERUccky7JX4wiJWookSZqNvfTqdWX+RLRZnFNKREStyXFOaXV1NeeUEvnBZrOhoqICZWVlMJlMrX05RC6FhoYiJiYGcXFxiIyM9OgYf+OWdpkpJSIiIiJqL2RZxsmTJ1FRUdHal0LUrPr6epSVlaGsrAyZmZmIjY0N+GsyKCUiIiIiCqCqqqrGgDQ1NRWxsbEup0YQtSabzYa6ujqUlZWhuroax48fR1hYmMcZU18xKCUiIiIiCqDKykoAQGJiIpKSklr5aohc0+l0iI6OhsFgQF5eHqqrq1FRURHwoLRdjoQhIiIiImovampqAAAxMTGtfCVEnpEkCQkJCQAaMv2BxqCUiIiIiChAZFmG1WoFAOj1+la+GiLPRUREAGhYYxro3rgMSomIiIiIAsTxw3xrjNog8pVO1xQqMiglIiIiIiKiDotBKREREREREbUaBqVERERERETUahiUEhERERERUathUEpEREREROTEqlWrIEkSpkyZ4vExI0aMgCRJjX9CQkKQkJCAnj17Yvz48Xj99ddRUVHR7HksFgvefPNNXHzxxUhNTYVer0dmZibGjx+Pr7/+2u2x5eXleOyxxzBo0CAYDAZERkaiS5cuuPDCC/Gvf/0L27Zt8/jraQmhrX0BREREREQUXI4cOYLu3bvjoosuwqpVqzQ556pVq3DxxRfjtttuwwcffKDJOf1xxRVXID09HUDDrM9jx45h+fLlWLJkCR5++GHMmzfPZbB79OhRXHXVVdi9ezciIyMxfPhwJCUl4ejRo/jyyy+xZMkSjB8/HgsWLGgc3eJ47IUXXojc3FzExMTgvPPOQ2pqKoqLi7F582asWbMGJSUleOuttwL9T+AxBqVEREREREQae+ihhzBixAjFtoqKCrzyyit4+umncfvtt8NiseCuu+5S7TNixAgcOXIEN954I958800kJCQ0Pr93717cdNNNWLx4MWw2G5YsWaI4/m9/+xtyc3MxZswYLFiwAHFxcY3P1dfX44cffkBBQYH2X7AfWL5LRERERETUAuLi4vDEE080ZnL/8Y9/qALEmTNn4siRI7j88svx6aefKgJSAMjOzsaPP/6I9PR0LF26FJ9//nnjc7W1tfj2228BAHPnzlUEpAAQGhqKUaNGeVWO3BIYlBIRERERUYt54okn0L17dwDA6tWrFesvxWBp9+7dmDhxIjIyMhAeHo7MzEzceuut2Ldvn2K/KVOm4OKLLwYAfPjhh4pzPvHEE437rVixAnfccQf69u2L2NhYGAwGDBw4EM8++yxMJlNAv25HkyZNwvDhw1FXV4d33323cXtJSQk+/PBDAA1BpU7nPFxLTk7G448/DgCYM2dO4/aysjLU19cDAFJSUgJ1+Zpj+S4RERERUSuw2WSU1Zhb+zJ8khAVDp1O8unYQYMGYfz48Vi8eDHS0tJw5ZVXNj43fPjwxr//9NNPuPrqq1FbW4szzzwTI0aMwN69e/Hxxx9j6dKlWLlyJS644ILG406ePInvvvsOPXr0UJxn0KBBjX+/8847YTQa0a9fP/Tv3x+VlZXYtGkT/vWvf+Gnn37C999/j5CQEJ++Lm/ddNNNWLt2LX755Rc8+uijAIBffvkFdXV1GDRoEPr27dvs8X/961/x+++/o6SkBElJSUhOTkZERATq6urw1ltv4cEHH2yJL8VvDEqJiIiIiFpBWY0ZQ57+sbUvwydbHr0USdF6n44dN24cBg0ahMWLFyM7O9tpUyKj0YiJEyeitrYWb775JqZNm9b43CuvvIIZM2bglltuwcGDB6HX6zF16lT07NkT3333HYYPH+6y0dFbb72Fyy67DAaDoXFbVVUVbrnlFnz99df45JNPcOutt/r0dXnLHizv2bOncZu9K+6QIUOaPT4hIQGnnXYacnJysG3bNowcORLh4eGYPHky3n33XcycORMLFy7EVVddhWHDhmHYsGGqct62guW7RERERETUpnzxxRcoKCjABRdcoAhIAeD+++/HkCFDkJeXh6VLl3p13nHjxikCUgCIiYnBK6+8AgBYtmyZfxfuheTkZAANJbd2JSUlAIDU1FSPzmEv0S0uLm7cNnfuXEyePBmSJGHz5s146qmnMGrUKCQlJeHiiy/G999/r9WXoBlmSomIiIiIqE1Zs2YNAGDixIlOn580aRK2bNmCNWvW4KabbvLq3AcOHMDKlStx8OBBGI1G2Gw2yLLc+FxLsb+mJEmqbfb/+nKOqKgofPTRR/jXv/6FRYsWYe3atY0lvqtWrcKqVaswZ84czJgxQ6svxW8MSomIiIiIqE05ceIEAKBbt25On7dvt+/nCVmW8cADD+CVV15xGfRVVVV5dZ3+sGc3ExMTG7fZs6eFhYUenaOoqAgAkJSUpHquT58++Ne//gUAsNlsWL9+PR5++GGsWbMGM2fOxPjx49G1a1e/vgatMCglIiIiImoFCVHh2PLopa19GT5JiApvkddxzAD68ryjzz//HC+//DKysrIwd+5cDBs2DCkpKQgLC4PZbIZer/c4Q6kF+/rR008/vXHbwIEDAQBbtmxp9vjS0lIcPnxYcZwrOp0O559/Pr799ltkZ2fj2LFj+O6773D33Xf7ePXaYlBKRERERNQKdDrJ52ZBHV2nTp0AoDHoEh09ehQAkJGR4fE57etP33zzTYwZM0bx3KFDh3y5TL989tlnANA4ygYALrnkEuj1emzfvh27d+9WBKzOjpdlGWeddVZjhrU5UVFROOecc3Ds2DHFOtTWxkZHRERERETUosLDGzKt9pmaIvuol08++cTp8/bt9v08Oae9oVDnzp1Vz33xxReeXLZmFixYgN9++w1RUVGYOnVq4/akpKTG7r/3338/bDab0+OLi4sxa9YsAPB6bWhOTg6ApsC/LWBQSkRERERELSo5ORlhYWHIycmB1WpVPX/DDTcgLS0Na9aswTvvvKN4bt68efj999+RlZWFa6+9tnG7Pcjat2+f09fs3bs3AOCdd95RlOmuWbMGL730kt9fkycqKirw5JNPYsqUKQCA+fPnN3bQtXvhhRfQpUsXfP/997jlllsU3XmBhq/v0ksvxcmTJzF27FjcfPPNjc+Vl5dj6NChWLp0KSwWi+I4i8WCp59+Gtu2bUNkZKRiPmxrY/kuERERERG1qPDwcFx55ZVYvnw5Bg4ciDPPPBPh4eE4//zzcfvtt8NgMOCTTz7B1Vdfjb/85S9455130Lt3b+zduxd//PEHDAYDPv30U+j1TeXP3bp1w4ABA7B582acc8456NevH0JCQjB27FiMHTsW//jHP/DBBx/gjTfewKpVqzBgwAAcP34ca9euxf/93/9h9uzZmn6Nzz//fOO81OrqauTl5eGPP/6A2WxGbGws5s+fj8mTJ6uOS0hIwKpVq3DVVVfh888/x1dffYULLrgASUlJOHr0KDZs2ACbzYZx48bh008/VR2/adMmXHfddYiNjcWQIUOQnp6O8vJybNu2Dfn5+QgJCcGbb76J9PR0Tb9efzAoJSIiIiKiFvfee+/hgQcewA8//IBPP/0UVqsV9fX1uP322wEAI0eOxO+//45nnnkGP//8M/78808kJydj0qRJePTRR9GnTx/VORcvXox//vOfWLNmDbZs2QKbzYasrCyMHTsWvXv3xu+//46ZM2di48aN+Oqrr9CnTx+8/fbbuOuuuzQPSr/77jsADU2GYmJikJSUhDFjxmDkyJGYNGkSYmNjXR7bvXt3bN++He+99x6++OILbNmyBZWVlUhOTsbYsWNx++23Y+zYsarj4uLisG7dOnz77bdYtWoVDh06hN9++w0hISHo0qULRo8ejb///e8YMGCApl+rvyS5JVtMkVf69esHANi1a1crXwkREQUjo9GI6OhoAA13+cWB80TUPJvN1lhO2qdPH+h0XD1H7YM337v+xi38qSAiIiIiIqJWw6CUiIiIiIiIWg2DUiIiIiIiImo1DEqJiIiIiIio1TAoJSIiIiIiolbDoJSIiIiIiIhaDYNSIiIiIiIiajUMSomIiIiIiKjVMCglIiIiIiKiVsOglIiIiIiIiFoNg1IiIiIiIiJqNQxKiYiIiIiIqNUwKCUiIiIiIqJWw6CUiIiIiIhanCRJkCQJCQkJKC8vd7rPE088AUmS8Pzzzzvd/sEHH2h2PSNGjIAkSThy5Ihm5yTPtNugdMuWLXj++edx3XXXITMzE5IkISIiwuX+9m96d38uueQSj19/ypQpbs/11ltvafFlEhERERF1aOXl5XjllVda+zKoFYW29gX4atasWVi2bJnH+992220un1uxYgWKi4txwQUXeH0dV1xxBdLT01Xb+/Tp4/W5iIiIiIiCiU6nQ2hoKObOnYv77rsPCQkJHh33t7/9DTfddBMyMjICfIXUEtptUDps2DAMHDgQZ599Ns4++2yngaEjV6n98vJyfPbZZwCASZMmeX0dDz30EEaMGOH1cUREREREwS4sLAx33nkn3njjDbz88suYNWuWR8clJycjOTk5wFdHLaXdlu/OnDkTTz75JMaMGYO0tDSfz7Nw4UKYTCace+656NWrl4ZXSEREREREzXnkkUeg1+vx6quvorS01KNj/FlT+s4776B///6IiIhAZmYm/v73v6OiosLr85B22m2mVCsLFiwAAEyePLmVr4SIiIiIgorNBtR6FoS1OZGJgE6b/FZmZibuuusuzJ8/H3PmzMEzzzyjyXmdeeCBBzBnzhzo9XpccskliIqKwieffILffvsNer0+YK9L7gV1UJqbm4s1a9YgLCwMN954o0/nWLJkCRYvXgyr1Yru3bvj6quvRnZ2tsZXSkREREQdTm0p8FKP1r4K3/wzBzBoVz778MMP47333sNrr72GGTNmICkpSbNz261btw5z5sxBYmIifv31V/Tr1w8AUFJSgksuuQQbNmzQ/DXJM0EdlH7yySeQZRmjRo3y+Rv/tddeUzyeOXMm7rnnHrz66qsIDfXsn9f+AyHKyclBjx7t9BcVEREREZGHOnXqhLvvvhvz5s3D7Nmz8dxzz2n+GvbpGP/3f/+n+PydlJSEl156CVdccYXmr0meabdrSrXgT+nu4MGD8dZbb2H//v2oqanBoUOH8PrrryM+Ph5vvPEG/vnPf2p9uUREREREHdZDDz2EiIgIzJ8/H8XFxZqff+3atQCAG264QfXc5ZdfjsTERM1fkzwTtJnSrVu3Yvfu3YiPj8fVV1/t9fHTp09XPO7evTvuvfdeXHjhhRgyZEhj6UHnzp2bPdeuXbucbneVQSUiIiIi6mgyMjIwbdo0zJ07Fy+99BJeeOEFr45/7733GgNPu+TkZMyePRsAcOLECUiS5PLzeZcuXTxutETaCtqg1J4lnTBhgqaLms844wyMHTsWixYtwo8//ojbb79ds3MTERERUQcSmdiwNrM9igxMVnHmzJl4++238frrr+OBBx7w6ti1a9fiww8/VGzr2rVrY1BKbVdQBqVWq9Wv2aTNsY+Wyc/P1/zcRERERNRB6HSaNgvqCNLT03HPPffg5ZdfxosvvgiDweDxsR988IHbETEZGRk4cuQIjh07hp49e6qez83N9eWSSQNBuab0p59+Qn5+Prp27YoLLrhA8/OXlZUBAKKjozU/NxERERFRRzZz5kxERUXhjTfeQEFBgWbnHT58OABg4cKFqud++OEHlu62oqAMSu2lu5MmTYIkSZqe22QyYcWKFQCAIUOGaHpuIiIiIqKOLjU1Fffeey9qampU5bj++Mtf/gIAePnll7Fnz57G7aWlpXjwwQc1ex3yXtAFpTU1NVi6dCmA5kt3N23ahOzsbIwcOVKxfd++fVi2bBmsVqtie1FREW666SYcO3YMAwcOxHnnnaftxRMRERERBYEHH3wQBoMBtbW1mp1z+PDhuO+++1BcXIzBgwdjzJgxmDBhQuPSu3PPPVez1yLvtNs1pStWrMCsWbMU28xms+Kb6bHHHsPo0aMV+3z55Zeorq7G2WefjezsbLevUVNTg3379qGurk6xPT8/H+PGjUNSUhKys7ORmZmJwsJCbNmyBVVVVcjKysIXX3yheRaWiIiIiCgYpKSk4K9//StefPFFTc/78ssvo0+fPpg/fz5++OEHJCUl4YYbbsBzzz2HcePGafpa5Ll2G5QWFRVh48aNim2yLCu2FRUVqY5zLN31Ve/evXHfffdhw4YNyMnJwaZNm6DX69G7d29cffXVmD59OhISEnw+PxERERFRRyfLstvnX3jhBZdjYZ544gk88cQTXr+mJEmYNm0apk2bpnpu1apVXp+PtCHJzX03UKuxzyl1NceUiIgokIxGY2PTvurqaq+6YBJRA5vNhn379gEA+vTpA50u6FbPUTvlzfeuv3FLu82UEhERtRfrcorx2aZjyEyIxNTh3ZEUrd18bCIiovaOQSkREVEA/X6kFBPf2wh7XdLaA8VYfM95CA9ltoSIiAgIwu67RERELem1nw/CcaHMjuMV+HbXyda7ICIiojaGQSkREVGAlFSb8NvBYtX2n/ZoNwyeiIiovWNQSkREFCCbj5bBalP3E/wzr6IVroaIiKhtYlBKREQUILtOVDrdfrTEiDqLtYWvhoiIqG1iUEpERBQgu084z4jaZCCnqLqFr4aIiKhtYlBKREQUIPsKqlw+d6CAQSkRERHAoJSIiCggLFYbTpTXuXw+r6ymBa+GiIio7WJQSkREFAD55XVOmxzZHXcTsBIREQUTBqVEREQBkFvqPhOaX1HbQldCRETUtjEoJSIiCoBjzZTn5jNTSkREBIBBKRERUUCImdLYiFDF4xPMlBIREQFgUEpERBQQx4SgdOhpSYrHVXX1MJrqW/KSiIjapOLiYjz22GMYPHgw4uPjERUVhZ49e+Luu+/Gzp07W/vyqAUwKCUiIgqAY2XKTOigzvGqfUqN5ha6GiKitunHH39Er1698PTTT+P48eO46KKLMGbMGISFheHdd9/FoEGD8Pzzz7f2ZVKAhTa/CxEREXmrsFK5ZrRPWgzCQ3QwW22N20qMZnROjGrpSyMiahN+//13jB49GhaLBc899xweeOABhIY2hScrV67EpEmT8PDDDyMqKgr/+Mc/WvFqKZCYKSUiItKYzSajqMqk2JYWG4FEQ7hiW0m1ch8iomAhyzJuu+02mM1mPPXUU3jooYcUASkAXHXVVfjyyy8hSRJmzpyJo0ePttLVUqAxU0pERKSx0hoz6oUZpamxeiRFh+OkQwa1hOW7REHNJttQbipv7cvwSbw+HjrJ9/zWN998gz179iAzMxMzZ850ud+FF16ICRMm4IsvvsDrr7+OF1980aPzjxgxAqtXr8bhw4exdu1avPLKK9izZw+io6MxatQoPPvss8jMzPT5+klbDEqJiIg0ViCU7uokIMkQ7iRTyqCUKJiVm8px0ecXtfZl+GT1jauRGJHo8/ErV64EAEyYMAFhYWFu973lllvwxRdf4JtvvvE4KLWbPXs23njjDVxwwQW45pprsGHDBnz00Uf4+eefsX79emRlZfn8NZB2WL5LRESkscJKZVluUrQeoSE6JEfrFdtLjSzfJaLgtG3bNgDAkCFDmt3Xvs/u3bthsVi8ep23334bX3/9NVavXo3//e9/2L9/PyZOnIi8vDyuUW1DGJQSERFpTMyUpsU2BKPMlBIRNSgpKQEApKamNrtvSkoKAMBms6G0tNSr17nhhhtw1VVXNT4OCwvDq6++CoPBgGXLluH48eNenY8Cg0EpERGRxgrFJkcxEQCApGghKOWaUiIKUrIsK/7ryb4AIEmSV69z0003qbYlJSXhsssug81mw7p167w6HwUG15QSERFpTMyUpp7KlCYblOW7JSzfJQpq8fp4rL5xdWtfhk/i9fF+HZ+cnIx9+/ahsLCw2X2LiooANASkCQkJKC4uxgMPPKDab+rUqRg+fLhiW9euXZ2es1u3bgCAEydOeHnlFAgMSomIiDRWIKwpTT2VKRXLd0tZvksU1HSSzq9mQe3ZwIED8dtvv2HLli2YPHmy2323bNkCAOjXrx/CwsJQXV2NDz/8ULXfiBEjVEGpK55kaKnlsHyXiIhIY2IGNDnm1JpSlu8SEQEARo0aBQBYtGhRs82LPv30UwDAlVdeCaAhyynLsurPlClTVMe6mm2am5sLAOjUqZOvXwJpiEEpERGRxsqEYDPpVIY0PlI59sBUb0Odxdpi10VE1FZcddVV6NOnD44fP44XXnjB5X6//vorFi1ahPDwcPz1r3/1+nU+//xz1bbS0lJ8//33kCQJw4YN8/qcpD0GpURERBoTM6D2st24SPUsvopa78YbEBF1BDqdDh988AHCwsLw+OOP44UXXoDVqrxJ980332DcuHGQZRnPP/984zpQb3zxxRf47rvvGh/X19fj/vvvh9FoxNixYzmntI3gmlIiIiINWaw2VNXVK7Y1F5SmxUa0yLUREbUl5557Lr766ivcdNNNeOihh/Dyyy9j2LBh0Ov12LFjB/bs2QOdTodZs2bh/vvv9+k17r77bowaNQoXXnghOnXqhA0bNuDw4cPo1KkT5s2bp/FXRL5ippSIiEhDYuku0BSUhoboEK1X3g9mppSIgtmVV16JAwcO4F//+hcyMjLw888/46uvvkJdXR2mTp2KP/74A48++qjP53/ggQfw3//+FxUVFVi6dCkqKysxefJkbNy4EV26dNHwKyF/MFNKRESkodIaZVAqScq1pHGRYag2NWVSK2oYlBJRcEtJScHTTz+Np59+OiDnv+2223DbbbcF5NykDWZKiYiINCSOeYmLDENoSNPbbaxQwlvOTCkREQU5BqVEREQaEjOl4mxSsQMvy3eJiCjYMSglIiLSUKnYeTdKGZSKzY4YlBIRUbDjmlIiIiINqYJSg/ugtJJBKRGR5latWtXal0BeYKaUiIhIQ2JQmhQtBKVRwprSGnW3XiIiomDCoJSIiEhDJUJQmsDyXSIiIrcYlBIREWlInFPaXPkug1IiIgp2DEqJiIg01Gz5LoNSIiIiBQalREREGhKDUpbvEhERuceglIiISCOyLKO8RhlkelK+K8tywK+NiIiorWq3QemWLVvw/PPP47rrrkNmZiYkSUJERITL/Z944glIkuTyz0MPPeT1NdhsNsydOxf9+/dHZGQkUlJSMGHCBOzevdufL42IiNqpOosNZqtNsS0+UhmUxgvddy1WGbUWa8CvjYiIqK1qt3NKZ82ahWXLlnl93Pnnn4+ePXuqtg8ZMsSr88iyjBtvvBGLFi1CfHw8Ro8ejeLiYixevBgrVqzAL7/8gqFDh3p9fURE1H45K8WNjVS+1YqZUvtxUeHt9i2ZiIjIL+32HXDYsGEYOHAgzj77bJx99tlIT0/36LipU6diypQpfr/+f//7XyxatAi9evXCmjVrkJaWBgBYvHgxrr/+ekycOBF79+5FaGi7/ScmIiIvVdapg9KYiDDVY0kCHCt2y2ssyIiLDPTlERERtUnttnx35syZePLJJzFmzJjGgLAlzZkzBwDw4osvKl5//PjxGDt2LHJycnzK5BIRUfslZkpj9KEI0UmKbSE6CdF65Q1LNjsiomBkX0aXkJCA8vJyp/vYl+A9//zzHp/3yJEjkCQJI0aM0OZCHa7jgw8+0Oyc1KTdBqWt6fDhw9i9ezciIyMxevRo1fPXX389AGD58uUtfWlERNSKKoXgMtZJqS6gLuEVjyMiCibl5eV45ZVXWvsyqBUFXW3pzz//jG3btqGurg5ZWVkYNWqU1+tJt2/fDgA444wzEBam/sBx5plnKvYjIqLgIGY83QWleWW1Lo8jIgoWOp0OoaGhmDt3Lu677z4kJCS09iVRKwi6TOnHH3+MV199FW+//TYee+wxnHXWWbj++utRXV3t8Tlyc3MBAFlZWU6ft2+370dERMFBDC7jIp3f+42N4KxSIiIACAsLw9SpU1FZWYmXX365tS+HWknQBKU9e/bE7NmzsWvXLlRXV+PYsWP45JNPkJmZicWLF2Py5Mken8sewEZFRTl93mAwKPZrTr9+/Zz+ycnJ8fiaiIio9VXW1isei8Gnnap8t67e6X5ERMHgkUcegV6vx6uvvorS0lKPjysuLsZf/vIXpKenIyoqCoMHD8ZHH33k17WsXr0aI0aMQHR0NJKSknDttddi7969fp2Tmhc05buTJk1SPDYYDLjllltw8cUXo3///vjyyy+xbt06nHfeec2eyz7kXJKkZvYkIqJgos6Uck0pEbkm22ywumjw09aFxMdD0mmT38rMzMRdd92F+fPnY86cOXjmmWeaPaakpATnn38+9u/fj6ysLIwdOxYnT57E7bffjmnTpvl0HcuWLcP48eNhtVpx3nnnoUuXLti0aROGDh2Kq6++2qdzkmeCJih1JSMjA7fffjtmz56N7777zqOgNCYmBgBgNBqdPm/fHh0d7dE17Nq1y+n2fv36eXQ8ERG1DeJIGJdrSqNYvktEgLW8HAfOO7+1L8Mnvdb9htDERM3O9/DDD+O9997Da6+9hhkzZiApKcnt/o888gj279+Pa665Bp9//jn0ej0A4JtvvsHYsWO9fv2qqipMnToVVqsVn376KW6++WYAQH19PaZOnYoPP/zQ+y+KPBY05bvu9OrVCwCQn5/v0f5dunQBAOTl5Tl93r7dvh8REQUHTzOlsREcCUNE5KhTp064++67UVVVhdmzZ7vdt7q6Gh9//DFCQ0Mxb968xoAUAEaNGoUJEyZ4/foLFy5EcXExLrvsssaAFABCQ0PxyiuveJxsIt8wKAVQVlYGwPPM5sCBAwEAO3fuhMWi/iCxdetWAMCAAQM0ukIiImoPVN13I5wXJLF8l4hI7aGHHkJERATmz5+P4uJil/tt3boVtbW1GDp0qNMkkGNQ6am1a9cCAG644QbVcwkJCbj88su9Pid5LuiDUlmWsXTpUgDweDRM9+7d0bdvX9TW1mLFihWq5xctWgQAGDNmjHYXSkREbZ4YXIplunZiWS8zpUREDcvqpk2bhurqarz00ksu9ztx4gQA11WJzravXbsWU6ZMUf2xB7++nJO0ExRrSouLi7Fy5UrceOONivR+dXU1HnjgAWzcuBHp6em49tprFcdt2rQJt956KzIzM/HTTz8pnpsxYwbuuusuPPjggzjvvPOQmpoKAFiyZAm++uordO/eHePGjQv410ZERG2HGJR62n2XQSlRcAqJj0evdb+19mX4JCQ+PiDnnTlzJt5++228/vrreOCBB5zu40vT0YMHDzpdF/rEE08gOTmZjUxbWbsNSlesWIFZs2YptpnNZpx77rmNjx977DGMHj0a1dXVuO222/D3v/8dffv2RZcuXVBeXo6tW7eipKQE8fHxWLRokWrES01NDfbt24e6ujrV699xxx1YuXIlli5diuzsbIwcORLFxcVYvXo1IiIisGDBAoSFOf8wQkREHZM42sXlmlIGpUQEQNLpNG0W1BGkp6fjnnvuwcsvv4wXX3yxcdSio06dOgEAjh496vQcubm5qm32zKgrvpyTtNNuy3eLioqwcePGxj9Aw10Tx21FRUUAgKSkJMycORODBw9GXl4evvrqK/z2229IT0/H//3f/2Hnzp04/3zvOp/pdDosXLgQc+bMQadOnfD1119jx44duPbaa7F582aPuvgSEVHHUW+1odokzCn1cCSMqd6GOos1YNdGRNSezJw5E1FRUXjjjTdQUFCgen7IkCGIiIjAxo0bcezYMdXzn332mdevOXz4cAANDY9E5eXl+P77770+J3mu3QalU6ZMgSzLbv/Y74bExMTg+eefx6pVq5CXl4e6ujoYjUbs3LkTs2fPRmZmptPXGDFiBGRZxpEjR5w+HxISghkzZmDnzp2ora1FcXExFi9ezFEuRERBqErIkgKezykF1ONkiIiCVWpqKu69917U1NQ4LbmNjo7GxIkTUV9fj+nTp8NkMjU+9/333+OLL77w+jUnTJiAxMRE1fFWqxX/93//h+rqat++GPJIuw1KiYiI2hJnJbiuR8I4CUpZwktE1OjBBx+EwWBAbW2t0+eff/559OzZE0uXLkWvXr1w880345JLLsGoUaNw1113ef16sbGxeOedd6DT6XDjjTdi+PDhuOWWW9CnTx8sWrQIEydO9PdLIjcYlBIREWlAzHSGhUjQhzp/mw0P1SEyLESxjetKiYiapKSk4K9//avL55OTk/Hbb79h6tSpMJlM+PLLL1FSUoJ3330XDz74oE+vOX78ePzwww+44IIL8Mcff+Cbb77B6aefjvXr16Nnz56+finkAUm2t5qiNsdeBrxr165WvhIiImrOupxi3PLuxsbHCVFh+ONx13Ptzn32J5ysbGqk998pZ+Pi7NSAXqO3jEZj4wzv6upqpw1HiMg9m82Gffv2AQD69OkDnY45IWofvPne9Tdu4U8FERGRBowmZaMig959g3uOhSEiImrAoJSIiEgDNWZlo6NoBqVEREQeYVBKRESkAXEcTFR4iIs9G8RGKoNWBqVERBSsGJQSERFpwCgEpc2V74ozTNl9l4iIghWDUiIiIg2Ia0pZvktEROQZBqVEREQaEDOlUeEMSomIiDzBoJSIiEgDRlWjo2bWlEYI5bt1DEqJOiJJkhr/brPZWvFKiLxjtTZVADl+HwcCg1IiIiIN+D8Spt7FnkTUnkmShPDwcAANs3+J2ovKykoAgF6vD3hQ6v4dk4iIiDzittGRzQqUHgKiU4GIOADqoJSNjog6rpiYGJSUlKCgoAAAYDAYoNMxN0RtjyzLMJlMqKqqQmlpKQAgISEh4K/LoJSIiEgD4kgYg30kTOlhYMF1DUFpeDQw7g3g9GsQF8U1pUTBIikpCUajEXV1dThx4kRrXw6Rx+Lj4xEXFxfw1+EtGiIiIg3UmF2U7y7/R0NACgDmamDpPUB1kWpNabWpHvVWrjcj6ohCQkLQpUsXJCUlNZbyErVVISEhiI2NRWZmJtLT01skq89MKRERkQaclu+W5ACHf1XuaDECOxchru/tqnNU1dUjwcAPrEQdUUhICFJTU5GamgpZliHLcmtfEpGKJEkBXz/qDINSIiIiDajKd/WhwK6lznc+vAZxZ96t2lxRa2FQShQEWuuDP1FbxfJdIiIiDYjlu9H6ECB3vfOdj/6GiFAgPET5Nsx1pUREFIwYlBIREflJlmXVnNKoMB2Q97vzA+rKIZUfRWyksmCJs0qJiCgYMSglIiLyU43ZCnF5WHztMaCuwvVBxQcRq5pVyqCUiIiCD4NSIiIiP4lZUgCIrjrk/qCSA6pZpQxKiYgoGDEoJSIi8pPRZFVti6g46P6gYgalREREAINSIiIiv4njYEJ1EkJLD7g/qDRHNau0sladcSUiIuroGJQSERH5ydmMUql4v3KnzCHKxxXHmSklIiICg1IiIiK/iWtKDWE6oFjIlPa4RPm48jjiIoTuuwxKiYgoCDEoJSIi8lO1sKY0K7waMFUqdzrtYuXj+jqkhhoVm5gpJSKiYMSglIiIyE81Qvlut9AS5Q66MCDrLEBSvu2moVjxmHNKiYgoGDEoJSIi8lO1EJR21hUpd4jLAkL1QHS6YnOyTRmUMlNKRETBiEEpERGRn8SRMJ0gBKXxnRv+G5uh3GwtVTxmUEpERMGIQSkREZGfaoRGR+k2MVPapeG/hlTF5ph6ZVBaWWuBLMuaXx8REVFbxqCUiIjIT2L5brK1QLlD/KmgNDpFsTnSrAxKbbL6XERERB0dg1IiIiI/iXNKE+vFoPRU+a6QKY0wCw2RwBJeIiIKPgxKiYiI/GQ0O64plRFnOqncIe5UUBqtDEpDa4qhk5S7MiglIqJgw6CUiIjIT46Z0lgYEW6rVe4Ql9XwXyEolYyFiI0MU2yrrGX5LhERBRcGpURERH5yDEpTpAr1DjGnuu4K5buoLkScEJSW15i1vjwiIqI2jUEpERGRnxzLd1OlcuWTEXFAWETD34VMKcxVSItUdtstq2H5LhERBRcGpURERH5yzJSmokz5ZHR6098Nyu67ANBVb1Q8LmOmlIiIggyDUiIiIj85jnFRZUpj0pr+HhEHhIQrns4Mq1I8LjMyKCUiouDCoJSIiMgPsiyjxqF8V7WmNNohKJUk1brS9NBqxeNSZkqJiCjIMCglIiLyg6neBqutaV1oqiSW76YpH0clKB6mhCiDUmZKiYgo2DAoJSIi8oNj6S4ApKJcuUNMuvJxVJLiYaKkXFNaykZHREQUZBiUEhER+aHGZFU8Vq0pjRaC0shExcM4uVLxmJlSIiIKNu02KN2yZQuef/55XHfddcjMzIQkSYiIiHC6r81mw5o1a/Dggw9i6NChSE1NhV6vR48ePTBt2jQcPnzY69efMmUKJEly+eett97y90skIqJ2QMyUprhrdASoMqXRNiEo5ZpSIiIKMqGtfQG+mjVrFpYtW+bRvocOHcKFF14IAMjMzMR5550HnU6HTZs24e2338ann36KlStXYvjw4V5fxxVXXIH09HTV9j59+nh9LiIian+M5qagVA8z4qQa5Q6qNaXKoDSqvlzxuKquHharDWEh7fa+MRERkVfabVA6bNgwDBw4EGeffTbOPvtsp4GhnSRJuOKKK/DII480BqcAYDKZMG3aNHzwwQeYOHEiDh48iLCwMK+u46GHHsKIESN8/TKIiKidc5xRqsqSAk6CUmX5rt4idOtFQ7Y0NcZ59Q8REVFH026D0pkzZ3q8b48ePfDtt9+qtuv1erz55ptYunQpcnNzsW7dOlx00UVaXiYREXVwRoc1paomR6ERDbNJHQmZ0tA6oVsvgDKjhUEpEREFjaCvDYqIiEDv3r0BACdOnGjlqyEiovbGMVOaJCnXh8KQ2jCb1FGkciSMVFuCuEhllQ7XlRIRUTBpt5lSrVitVhw9ehQA3JYAu7JkyRIsXrwYVqsV3bt3x9VXX43s7GytL5OIiNooxzWlCVKV8kmhVLdhmzJTippSJESGoqK2aRQMO/ASEVEwCfqg9LPPPkNhYSFSUlJw3nnneX38a6+9png8c+ZM3HPPPXj11VcRGurZP2+/fv2cbs/JyUGPHj28viYiImo5jpnSBFQrnxQDUEAdqMpWZEZZcKS0aVMpM6VERBREgrp899ixY7jvvvsAAE899RT0er3Hxw4ePBhvvfUW9u/fj5qaGhw6dAivv/464uPj8cYbb+Cf//xngK6aiIjakmqHNaU+ZUoBdNbXKR4zU0pERMEkaDOlRqMR1157LYqLizFu3DhMmzbNq+OnT5+ueNy9e3fce++9uPDCCzFkyBC89tprmDFjBjp37tzsuXbt2uV0u6sMKhERtR01Zi8zpWFRQIgesJoaN3UKrwEQ2/i41GhRH0dERNRBBWWm1GKxYPz48diyZQuGDx+OTz/9VLNzn3HGGRg7diysVit+/PFHzc5LRERtU7XJzZrSSCeZUklSBatpYcrZpuUs3yUioiASdEGpzWbDpEmT8N1332HgwIFYvnw5IiMjNX2NXr16AQDy8/M1PS8REbU9RndBqbPyXSfbk3XK47imlIiIgomm5btHjhzBmjVrsH37dhQVFaGiogJxcXFISUnBoEGDcMEFF6Br165avqTX7r33XnzxxRfo3bs3vv/+e8THx2v+GmVlDTPnoqOjNT83ERG1LTVmhzWlqvJdz4LSRCiDUq4pJSKiYOJ3UFpWVoYPP/wQ7777Lvbu3QsAkGVZtZ90ak5b3759cdddd+HWW29FQkKCar9AeuSRR/D222+jS5cu+OGHH5Camqr5a5hMJqxYsQIAMGTIEM3PT0REbYtj+W68JASlzsp3AVX5bqwQzDJTSkREwcTnoLSmpgYvvvgi5syZA6PRiMjISAwfPhznnHMOsrOzkZiYiNjYWFRUVKCsrAx79uzBpk2bsHnzZtx///149NFH8cADD+CBBx6AwWDQ8mty6uWXX8Zzzz2H9PR0/Pjjj+jSpUuzx2zatAm33norMjMz8dNPPzVu37dvH/bu3YsxY8YgJCSkcXtRURHuvvtuHDt2DAMHDvRpxAwREbUv9vJdCTYkQCzfddLoCFAFqzG2CsXjcjY6IiKiIOJzUNqjRw8UFBTgiiuuwKRJkzBu3DiPgkuj0YglS5ZgwYIFePLJJ/H222/jxIkTXr/+ihUrMGvWLMU2s9mMc889t/HxY489htGjR2Pbtm144IEHADR0yX3mmWecnnPq1KkYPnx44+Oamhrs27cPdXXKVv35+fkYN24ckpKSkJ2djczMTBQWFmLLli2oqqpCVlYWvvjii8bsMBERdVzGUyNhYlCDEEmoFHJZvqsMVqPqlUFplake5nobwkODrvUDEREFIZ+D0qFDh+Lf//43Bg8e7NVxBoMBkydPxuTJk7F161ZVYOmpoqIibNy4UbFNlmXFtqKiIgBAeXl5Y0nx+vXrsX79eqfnHDFihCIodaV379647777sGHDBuTk5GDTpk3Q6/Xo3bs3rr76akyfPr3FS5OJiKh1GE+NhEkUmxwBbsp3ldv15nLVLuU1ZqTGRvh7eURERG2ez0Hpl19+6feLn3nmmVi6dKlPx06ZMgVTpkzxaN8RI0Y4Xefq63GdOnXCK6+84vX5iIio47GX76qaHIVGAuFRzg8SMqWhpjJIEuD4llNiZFBKRETBwee6oOrq6uZ3IiIi6sDM9TZYrA2RpKrJkavSXUCVQZVqSxEXGabYVsZmR0REFCR8DkrT0tIwceJErFy5EjabTctrIiIiahccZ5SKY13cBqXiczUlSBSC0vIaNjsiIqLg4HNQWltbi//973+4+uqr0alTJ9x3333YvHmzltdGRB2Mud6Gz3/PxTu/5qCcWSDqAJTjYISg1NV6UkDdlddWj05R9YpNpZxVSkREQcLnoPTIkSN45pln0LdvXxQWFmLevHkYOnQosrOz8eyzz+LIkSMaXiYRtXeyLGPqR5sxc/EOPLtyL0bPW8vAlNq9GrO18e8J3pTvOnkuS1+reFzGoJSIiIKEz0Fply5d8PDDD2Pnzp34448/MGPGDHTq1An79+/HY489hh49euCiiy7Cu+++i/Lycg0vmYjao98OluDX/UWNj4+X1+Kj9Udb8YqI/OeYKY1BjfLJiDjXB4ZHAyHhik0Z4crjS3nThoiIgoQmA9AGDhyI2bNnIzc3Fz/++CNuu+02xMTEYM2aNZg2bRoyMjJw/fXX48svv4TFwjUyRMFo9f5C1baf9qq3EbUnjmtKYyRlphP6WNcHSpKqvDc91Kh4zEwpEREFC02nckuShEsuuQTvv/8+CgoK8Pnnn2PMmDGQZRlLlizB+PHjkZ6ejnvuuUfLlyWidmBPvnqG4978StRb2SiN2q8as7tMqZugFFCtK00OUZb/lrLRERERBQlNg1JHer0eEyZMwLJly5Cfn4/XX38diYmJKCsrwzvvvBOolyWiNupgoXqMlKnehiMlRid7E7UP1aamNaWxkhCU6t2U7wKqdaWJEjOlREQUnEID/QJ//vknPvnkE/zvf/9DaWkpACAkJCTQL0tEbUi91YbCqjqnz+06UYmeqTEtfEVE2lCU70Io3202U6oMSuPkSsVjziklIqJgEZCg9NixY/j000/xySefYNeuXZDlhsHiAwYMwOTJkzFx4sRAvCwRtVHF1WbYZOfPHS5mppTaL6O78l13a0oBVflutE0ISpkpJSKiIKFZUFpRUYGFCxdiwYIFWLt2LWRZhizL6NSpE2655RZMnjwZ/fv31+rliKgdKah0niUFgLyyWpfPEbV1ykZH/q0pjaovV57bbEWdxYqIMFYXERFRx+ZXUGo2m/H111/jk08+wcqVK2E2myHLMqKjo3Httddi8uTJGDlyJCRJ0up6iagdOuk2KK1x+RxRW2dsXFMqI1os320uUyp039Wby1W7lNdYkB7HoJSIiDo2n4PSu+66C4sXL0ZFRQVkWUZISAguu+wyTJ48Gddeey2ioqK0vE4iaseYKaWOyp4pjYIJoZLQSVrfzFppIVMaaiqDToKi1L3UaEZ6XIQWl0pERNRm+RyU/uc//wHQMKN08uTJuOWWW5Cenq7ZhRFRx1FYaXL5XH5FHeqtNoSGBKwZOFHA2NeUqtaTAkCEd913pZpSxEeFo9RhLSmbHRERUTDwOSj95z//icmTJ+OMM87Q8nqIqAMqr3X9wdpqk3Gysg5ZCayuoPbHPhJGtZ4U8CBTqgxKUVuKhMhQBqVERBR0fA5KX3jhBS2vg4g6sIraerfP55XVMiildqnmVPlurJgpDYsCQsLcHyyU78JqRkakFTkOm9iBl4iIgoHm9XLffPMNxo0bh8zMTOj1etx5552K52bMmIETJ05o/bJE1IaVN5PtOVbKZkfUPlWfCkpjJC+bHAGqRkcA0DlCeZ5So8XnayMiImovNA1K7733XowZMwZfffUVqqurYbFYGmeUAkB8fDzmzp2Lzz77TMuXJaI2rqLW/Qfr/ArXjZCI2rIa86nyXTFT2tw4GKChvFenzKZmhCuDUpbvEhFRMNAsKH3//ffx1ltv4ZxzzsG2bdtQUVGh2mfYsGHIzMzE8uXLtXpZInKw83gF/r1sJ+b/fAC1ZmvzB7SQ8hplUJoSo1c8PlHODrzUPtm770b7kimVJNW60rRQo+JxKct3iYgoCPg1p9TR22+/jcTERHz99ddISkpyuV/Pnj1x6NAhrV6WiE7Zd7IKE95aj1pLQzC6/lAJFtw5tE3MCRbLd0/PiMXqqqLGx8cZlFI71Vi+60umFGhYV1pd0PgwJaQaQGrjY2ZKiYgoGGiWKd21axeGDRvmNiAFgPT0dBQWFmr1skR0yqs/7W8MSAHgt4Ml2HCotBWvqIHVJqOyTtno6PROyg/szJRSe1RvtcFU3zCbVNV915NMKaBqdpSAKsVjBqVERBQMNAtKdTodbDZbs/udOHECBoNBq5clIjQEfr/uL1ZtX7W/9W8AVTpZT9o3QwxK6xTrz4naA6NDiXwMhBsrnmZKIxMUD+NkIShloyMiIgoCmgWl2dnZ2Lx5M2pqXHfRLCkpwbZt2zBgwACtXpaIAOQUVTeWETraeVy9trulVdY5CUrTlfMbay1W1bpTorbO6PAzF6tRpjRarlQ85ppSIiIKBpoFpRMnTkRRURH++te/or5e/eFYlmX84x//QHV1NSZPnqzVyxIRgMPFRqfbdx6vbPUMpNGkbLikk4CuSQaIS11PVLCEl9qXGnPTe516TWmcZycRgtIoS7nica3FijpL22laRkREFAiaBaX33nsvhg8fjg8//BB9+/bF3/72NwDAn3/+iQceeAB9+/bF//73P1x88cW47bbbtHpZIgJwtMR5UFpRa2n1JkKOH9wBICo8FOGhOqTFRCi2nyjnWBhqX6pNbsp3Pc6UKrvv6i3q6gZnJfBEREQdiWZBaVhYGL799ltMmzYNubm5eOONNwAAW7duxcsvv4ycnBzceeedWL58OXQ6TcejEgW9IyWuy+Zz3TzXEmqE0TRR4SEAgE7xYlDKTCm1L47lu6pGR95033UQWqduTuasBJ6IiKgj0WwkDABERUXhjTfewJNPPonVq1fjyJEjsFqtyMrKwsUXX4xOnTpp+XJEdIqrTCkA5JbW4LwWvBaR66A0Eltzyxu3Myil9qaqzk35rqeZ0khlplSqLUVUeIji56aCmVIiIurgfA5K161bh2HDhjmdgZiSkoLrr7/erwsjIs/luyl9PVra2plSdfkuAGTGRyq2t3aZMZG3ApEpRU0J4iJCFUFpZa26TwMREVFH4nMd7fDhw5GWlobbb78dS5YsQXV1tZbXRUReKKo2uXwut9WDUteZUkfMlFJ709TxWvZ9TalBCEqtZqRHKDOjLN8lIqKOzuegdNasWejRowc++ugjTJgwASkpKRg1ahTeeOMN5ObmanmNRORGncWqKCMU5bV6UKq8tkgXQWleGYNSal/sQWkEzAiThA65nmZKDamqTV3ClTd5Wb5LREQdnc9B6b/+9S+sX78e+fn5eOedd3D55ZdjzZo1+Nvf/obu3btj0KBBePzxx7Fp0yYtr5eIBMVusqRA65fFiplSw6ny3c6JyqC0sMrkdNYqUVtl/35VrScFAL2HI2HCo4DwaMWmTmFVisfsvktERB2d321wU1NTceedd2LZsmUoKSnBV199halTp6K4uBhPP/00hg0bhoyMDNx9991Yvnw5amuZDSHSUnG1udnna82tN+fQVflutyQDdMKS9ENFXAZA7Uf1qQqFWHE9KeB5phQADCmKh2khlYrHzJQSEVFHp+lsFr1ejzFjxuDtt99GXl4efv/9d/zrX/9CRkYG3nvvPYwbNw5JSUm4+uqr8e6776KoqEjLlycKSsVVykxpXGSYap/WzJaqGh3pG4LSiLAQdE6MUjyXw6CU2pGmTKnw8xUaCYSofw5dilaW8KZIyqCUjY6IiKijC+jA0CFDhuCpp57C1q1bkZubi9deew0XXnghfvzxR0ybNg1vvvlmIF+eKCiITY66JEYhIUr5gbh1g1IxU9rU9LtHirJs8WAhg1JqPxqDUl8779oJmdIkuVzxmJlSIiLq6AIalDrKysrCvffei2+//RbFxcVYuHAhhg0b1lIvT9RhiZnSlBg9MhOEcSut2ESoxuS8fBcAeqYqg9KcQtfzVonaGnv5rs8zSu2ETGm8EJSy+y4REXV0Ps8p9YfBYMB1113XGi9N1OGIjY6So8MRFiJh5/GmEsDj5a3XgbfG4joo7ZFiUDy3r6AKVpuMX/cXoaLWgstOT4NB3yq/poiaZTTbM6XiOJgY704kdOCNqS9TPGamlIiIOroW/7T3/vvvIy8vD48//nhLvzRRhyQ2OkqO1iNaryzfbc1xKzVCR13H8t3TM5QdSg8XG3H1a2uxO78hoM6Ii8DHd56DnqlefsgnagEuM6Xelu9GK8t3DZZSxWNmSomIqKNrsfJdu3fffRdPPvlkS78sUYclZkqTottY+a6L7rsA0DcjBtFCJtQekAJAfkUd/rV0Z2AvkMhHVa7WlHpbvitkSiPMJYrHFTUMSomIqGNr8aCUiLQllvYlRIUhSwxK21L3XYegNDREhyFdE9wev/FwKY6WcK0ptT3GU0FprN+ZUmVQGl5XrHhcZaqHzSZ7fX1ERETthc/lu4WFhT4dZ7Hwji+RlsSgNC4yDGmxEYptBZV1sFhtCAtp+ftQ7rrvAsDoARlYvd/9eKhfDxRjcpLB7T5ELclqkxu/t9VrSuOcHOGG0H1XV1+LKNShBg0/x7LcEJg6G/dERETUEfgclKanp0OSJK+Pk2XZp+OIyDlnQamYKbXJwMmKOtVc0JZQ66Z8FwDGDuyE2d/tQ6HQRdjR7hMVAbk2Il9VO6yV9n9NaapqU7JUgVy56eZSZa2FQSkREXVYfqdNunTp4tWf8PBwLa4bW7ZswfPPP4/rrrsOmZmZkCQJERERzR730Ucf4ZxzzkF0dDQSExNx1VVXYd26dT5dg81mw9y5c9G/f39ERkYiJSUFEyZMwO7du306H5G3LFabKhMZFxmGuMgwGITg71hZy3fglWW5sUOpnZgpjQgLwWs3D0ZKjB4AEB6iQ7qQ6d2dXxXYCyXyktFdUOrtmtLwaCBUeSMpTVepeMwOvERE1JH5nCnt3r07jhw5grVr1yIzM9Pj44YNG4ZNmzb5+rKNZs2ahWXLlnl1zIwZM/DKK68gMjISl19+Oerq6vDDDz/g+++/x8KFC3Httdd6fC5ZlnHjjTdi0aJFiI+Px+jRo1FcXIzFixdjxYoV+OWXXzB06FBvvywirzj7oBoXGQZJkpCZEIn9BdWN21uj2ZGp3gZxKZyYKQWAoaclYdUDI3C0pAYpMXrsPVmJyf9p+j2xN78SVpuMEB2rLKhtUGRKxUZH3mZKJamhA295buOmzuFV+N3hR7aSQSkREXVgPmdKzznnHADA5s2bNbsYbwwbNgyPP/44li9fjpMnTza7/88//4xXXnkFSUlJ2L59O7788kt8++23+PXXXxESEoLbb78dZWVlzZ7H7r///S8WLVqEXr16Ye/evVi0aBFWrVqFhQsXora2FhMnTkR9fX3zJyLyg7OgNPZUiV9mfOs3OxKzuAAQpVcHpQBg0Ifi9E6xSInRo0+6cgSMqd6Ggsq6gFwjkS+U5bvimlIvg1JA1YG3U6iyOqDaxPcTIiLquHwOSocOHQpZlrFx40avjpNlbToIzpw5E08++STGjBmDtLS0ZvefM2cOAODRRx9Fr169GrcPGzYM06ZNQ0VFBd5//32PX99+vhdffFHx+uPHj8fYsWORk5PjdSaXyFtiUBoRpkNEWEPQl5WgXD/aGplSsfMuoC7fdSYlWo+IMOWvp9actUokss8oBTTIlAKqdaVpIcqgVCyDJyIi6kh8DkqvuuoqTJ8+XRHgeeLNN9/Ezz//7OvL+qSurg4//fQTAOD6669XPW/ftnz5co/Od/jwYezevRuRkZEYPXq03+cj8pWzJkd2qlmlbSRTGhnmPFPqSJIkJ5nell8TS+RKU+ZS9n9NKaDqwJsqKZt7VZvUP0tEREQdhc9rSnv37o1XXnnF6+MGDx7s60v6bO/evTCZTEhJSUFWVpbq+TPPPBMA8Oeff3p0vu3btwMAzjjjDISFqbsh2s9n348oUMR1ZoqgVAjqWiPTKAalEWE6j9eFZiZEIaeoaT5pXikzpdR22INSPSwIl4SAMcLLkTCAKlOaJAaldcyUEhFRx+VzUNqe5OY2NI9wFpACgMFgQHx8PMrKylBVVYWYmBin+3l6Pvt2+37N6devn9PtOTk56NGjh0fnoODkTaY0v6IWNpsMXQs2CxLLdz0p3bUTx9q0RqaXyBV7kBgrZkkBTdaUJtjKFY+NXFNKREQdmN8jYdqD6uqGDqRRUa5nNBoMBsW+/pzPm3MR+aOixnVQmiVkSi1W2e0s0ECoMbmfUeqOmOk9yUZH1IbYM6XRkpObJT6tKVWW78YJQSkbHRERUUfmc6Z07969yM7O9vsCtDqPO/bmSpLkOkPkTQMmT87njV27djnd7iqDSmQnZkpjHYLS5Gg9wkN1MNfbGrcdL69Belzz83y1UmPxPShNjlbONC41mjW5JiIt2EvnVetJQ/RAqN77E0YrG/bF1JcqHjMoJSKijsznTOkZZ5yBiRMnYufOnT4dv23bNtx0003o37+/r5fgMXs5rtFodLlPTU3DB4vo6Gi/z2ff7sm5iPzhrnxXp1M3C2rpdaU1Jt/LdxMNyg/2JdUMSqntsP/sadJ5F1AFpXpbDSLRVB3A8l0iIurIfA5KH3vsMSxfvhwDBw7EmWeeiTlz5mDz5s2wWJwP+DaZTNiwYQOee+459O/fH0OGDMHKlSvx+OOP+3zxnurSpQsAIC8vz+nzRqMR5eXliI+Pb3Y9qSfns2+370cUKO6CUqD1mx2JjY68yZQmCZnS4mqTZiOliPxVWWfPlGowoxRQNToCgGSHZkfMlBIRUUfmc/nuv//9b9xzzz145pln8NFHH+Gf//wnJElCWFgYunXrhoSEBMTExKCyshKlpaU4evQo6uvrIcsy4uLiMH36dDz88MNISUlp/sX81KdPH+j1ehQVFSEvL0/VoGjr1q0AgAEDBnh0voEDBwIAdu7cCYvFourA6+35iHzVXFDaOVEZlOYUtew6Z38aHSULmVJTvQ1GsxXR+qDoz0ZtXGVtw/e2ZpnS8GggLAqwNJ0vBRU4hoYMKoNSIiLqyPxqdJSamopXX30VJ06cwH//+19cd911SExMxP79+7Fx40b8+OOP2LRpEw4ePIikpCRcf/31+OCDD5Cfn4+XX365RQJSAIiMjMQll1wCAFi0aJHqefu2MWPGeHS+7t27o2/fvqitrcWKFSv8Ph+Rr5oLSvukKTP/u09UBvyaHGmZKQWAkuqWbdRE5Io9U6rqvutrplSSVNnSFKm88e8s3yUioo5Mk+67kZGRuO2227Bw4UKcOHECBQUF2LFjB9auXYsdO3agoKAAJ06cwOeff45bb70VEREt12jFbsaMGQCAp59+GgcOHGjcvn79erz99tuIjY3FnXfeqThm06ZNyM7OxsiRI12e78EHH0RhYWHj9iVLluCrr75C9+7dMW7cuAB8JURNmgtK+2Uq5yUeKKxGndB8KJD8CUqjwkMQEab8FVXMdaXURmi+phRQrStNcSzf5ZxSIiLqwAJSB5eSkhLwLOiKFSswa9YsxTaz2Yxzzz238fFjjz2G0aNHAwAuvfRSTJ8+Ha+++ioGDRqEyy67DGazGT/88ANsNhs++eQTJCYmKs5XU1ODffv2oa5OPYrijjvuwMqVK7F06dLGwLW4uBirV69GREQEFixYoCrrJdJac0Fp34xYSBJgX4pptcnYX1CFAVnxLXJ9/pTvSpKEJINeMZ+UHXiprWjqviuuKY1zsreHDMr3TcdMKct3iYioI2u3i7OKioqwceNGxTZZlhXbioqKFM/PnTsXgwYNwvz58/HDDz8gLCwMI0eOxKOPPorhw4d79fo6nQ4LFy7Eq6++ivfffx9ff/01DAYDrr32Wjz11FMc50IBZ7HaVJnI+ChlUBqtD0W3JAMOFzd1it51orIFg1LfM6VAQwmvY1DK8l1qC2w2GVWngkTVSBgtM6Uob/y70WyFLMuajSIjIiJqS9ptUDplyhRMmTIloMeNGDHCbbfPkJAQzJgxo7GUl6gliVlSQDmn1O70TrGKoPTPvArcfE5AL62RKijVexmUGpTrSkuYKaU2oNpc31h9oCrf9XVNKeC2fNdqk1FnsSHSyxs7RERE7YEma0qJqOU5C0rF8l0AGJilLCf8M688UJekoirfDfM2U6rswFtUxUwptb5Kh589VaZU3/xYMZdUjY4qFI9ZwktERB0Vg1KidkoMSiPCdNCHqoM+sVR378mqFmt2pM6UeleckShkSp0F4kQtzfH7MEYS1pRqWL6bLASl7MBLREQdFYNSonaquSZHdv0z46BzWIZmtcnY1UKjYfxdUyp+TZUMSqkNsM8oBZxlSrULSlNRDqBpCQkzpURE1FExKCVqp8QAzVVQatCHomdqtGLb9mPlgboshRrhQ7TBi+67ABAbodyfmVJqC+wzSgGtR8Ioy3fDpXrEomk9OINSIiLqqBiUErVTnmZKAWCgUMLbUutKa4QyYW+btIiNmxyDAaLW4nhDKFbLkTBCUAoo15WyfJeIiDqqgAelBw8exIYNG5CbmxvolyIKKhU1ngelAzrHKx5vz6twvqPG/C3fFYNSZkqpLbB/H4bDAr0kfE/6kykN1QMR8YpNqZxVSkREQcDnoLSgoABffPEF1q1b5/T53377DdnZ2ejTpw/OP/98dO/eHWeffTZ27tzp88USURMxQHM2DsZukJApPVxsDPgH3HqrDeZ6m2JblJflu+o1pfxQTq2vss7FjFLAvzWlgJNZpU03kBiUEhFRR+VzUPrxxx/j5ptvxr59+1TPHThwAFdeeSUOHDgAWZaRmJgIANiyZQtGjhyJ4uJi36+YiAB4V77bKy0akqTcdsRhdmkgiKW7gA+Z0gjl11RrsaoCXaKWZi/fVa0nBfzLlAJOxsKUN/6d5btERNRR+RyUrl69GhEREbjhhhtUzz3xxBMwGo3o0qULduzYgaKiIpSUlGDs2LEoLi7GvHnz/LpoIvIuKI0IC0GnuEjFtiMlAQ5KTeqg1NtGR86+Jq4rpdZm/x6MEdeT6sKA0Aj/Tu5mVmm1k58pIiKijsDnoHTv3r0YMmQIDAaDYrvFYsGXX34JSZIwe/Zs9OvXDwAQHx+PDz74AAaDAd9++61/V01EKBeC0ng3QSkAdEuOUjwOeKbUrM7qeN/oSB3EciwMtTaXmdKIWKhKErwllu86ZEprnfxMERERdQQ+B6WFhYXo0qWLavvmzZtRW1uLyMhIjBkzRvFcfHw8zjnnHBw4cMDXlyWiU1QjYaLcB6Xdk5U3kA4XOyk91JDY5CgsREJ4qHe/cvShIYgIUx7DZkfU2spONRmLFdeUCk2KfCJmSlHe+HejmZlSIiLqmHwOSk0mEyorK1XbN2zYAAA488wzodfrVc+npaWhpiawH4aJgoE35bsA0CVRmSk9WVnrYk9tiEFpZJh3WVI7cV2pvckMUWspM5oBALGSUG0Q4cc4GDshU5osNb3P1jIoJSKiDsrnoDQrKwvbt2+HzaZsOvLTTz9BkiQMGzbM6XEVFRVITk729WWJ6BRvg9K0WOVat/yKOs2vyZFYvmvQe7ee1E78upgppdZWWnMqKFVlSrUISl03OnJWEk9ERNQR+ByUXnzxxcjLy8Ozzz7buG3Dhg347rvvAEBVumv3xx9/ICsry9eXJSIAFqtNlYlsLijNEBodnayogyzLml+bnSpT6uV6Ujtx1A3XlFJrqrfaGm+MOF1T6i8hU5qISujQcPNX/JkiIiLqKHwOSv/5z39Cr9fj3//+N7p164azzjoLF110EaxWK8455xxccMEFqmM2bNiA/Px8nHvuuX5dNFGwc5YtdDenFAAy4pSZ0hqzNaClsOIHaG/HwdgxU0ptSXmtBfZ7OYHJlCqD0hBJRhIaSnhZvktERB2Vz0Fp7969sXjxYiQlJSE3Nxdbt26FxWJB37598b///c/pMXPnzgUAXHnllb6+LBHBeWDWXKY0NVa9xvtkAEt4xVLDKC/HwdjFRiiP40gYak329aRAgNaURiUBkvKt2V7Cy0ZHRETUUfn2KfGUUaNGITc3F2vXrkVRURGysrJw/vnnQ6dzHutOnDgRN998M0aOHOnPyxIFPTEojQjTQR/qPhOpDw1BkiEcJQ4fqk9W1qFPekxArjFQmVKW71JrKnUMSgORKdWFAFHJgLGwcVOqVI7dMkfCEBFRx+VXUAoAERERuPTSSz3a9+qrr/b35YgIQEWNOKM03KPjkqP1iqC01GjS9Loc1ZiERke+ZkpVQSk/mFPrKatxzJQGYCQM0NDsyCEoTUAVAK4pJSKijsvvoFRktVpRWloKSZKQkJCAkBDfsiNE5Fp5rVnxOL6ZGaV2SdHhQEHT45Jqs+ud/aRVoyNVppTlu9SKSo1N33+xCED5LgBEJigeJkoNQSnXlBKRp2RZxn/WHsaSrceRHheBf199OromGZo/kKiV+Lym1NGxY8fw0EMPYeDAgYiIiEB6ejrS0tKg1+sxcOBAPPTQQ8jNzdXipYgIQLmYKfU4KFWuKy0OZFBqUX6ANvjafTeCjY6o7XCsLlBnSjUKSqOSFA/jpWoAgNFcH9CO2UTUcXy57TieXrEHu/Mr8fPeQkz6z0aY6nlji9ouv4PS+fPnIzs7Gy+99BJ27NgBq9UKWZYhyzJsNht27NiBl156CX369MG8efO0uGaioFfmY/lukkG5X0uW70ZqVL7LoJRakzJTGqigNFHx0F6+a5MBU73N2RFERAoLNiiTQcdKa/Hj7kIXexO1Pr+C0hdeeAHTp09HXV0dJkyYgC+//BLHjh1DXV0damtrkZubi6VLl2L8+PEwm824//778dxzz2l17URBq6LGt/Ld5GhlUNqS5bu+NjoSu+9WBXCMDVFz7GtKdbAhRqpVPqlZ+a4QlJ4q3wVYwktEzTPVW7Ejr0K1/df9Ra1wNUSe8XlN6a5du/Doo48iISEBS5cudTqXNCsrC1lZWbjmmmvw66+/Yty4cXj88cdx9dVX44wzzvDrwomCWXmtWL7rWaY00SCU7xrbQVAqZEqr6iyQZRmSJPl8bUS+snffjRazpEDAyncTUN349xqLFQni/kREDvbmV8FsVVdV7DiuDlSJ2gqfM6Xz5s2DzWbDggULnAakogsvvBCffPIJrFYr5s+f7+vLEhH8WVMqZkoDWL6r0ZzSGCFTarHKqLOwhJFahz1TqlpPCgSufFeRKWWlABG5t/OE8+Bzf0EV6iystqC2yeeg9Oeff0Z2djauvPJKj48ZNWoU+vbtix9//NHXlyUiAOVi+W6kZ0FporCmVBwtoyUxU2rQa9PoCGjIlhK1BnvJe5yYKZVCgLAobV5EzJRKTZlSo4kfKInIvWOltU6319tkHCiodvocUWvzOSg9ceIE+vfv7/Vx/fv3R35+vq8vS0RwVr7rWVAqjlepMtXDagtMN0/VSJgw34LS6Ah1hpVjYag1yLLcWL4bKzkZB6NVSbm4phTVABp+TjmrlIiac6LceVAKAIdLjC6fI2pNPgel4eHhMJm8L/0zmUwIC/PsAzQROacu3/VsTakYlAJAZYC62Yrluwa9b+W7YSE61XrUSjY7olZQbapH7anSt4B13gWAKOWqUb1kQRQa3m9rLfzeJyL3jrsJSo8UMyiltsnnoLR79+5Yv349bDbP13bZbDasX78ep512mq8vSxT0rDZZlSn0NVMKBG7EiipT6mOjI0C9rjRQgTSRO4VVjjNKnWRKtSKU7wJNY2GYKSWi5hwvcxOUMlNKbZTPQeno0aNRVFSEOXPmeHzM7NmzUVRUhDFjxvj6skRBr7LWAlmouPV0TmlEWAjCQ5U/9oEISm02uTGjZGfwsdERoF5XyrEw1BoKKusa/x7QTKk+FtApf17iT60rZVBKRO5YrDYUVNW5fP5oiZMmbURtgM9B6X333YfY2Fg8/PDDeO6552C1un6jtFqtePbZZ/Hwww8jLi4O06dP9/VliYKeuJ4U8DxTCqizpYEISuvqrarA2deRMICTTCnXlFIrKHLIlMZJQrMQLYNSSVKtK0081YG3xsQbMkTkWqnRrHr/dXSUmVJqo3xOXSQlJWHhwoUYM2YMHn30Ubz55puYMGEChgwZgtTUVMiyjMLCQmzZsgWLFi3C8ePHERoais8++wxJSerSJCLyjNh5NyJMhwgvmgjFRYYpPlw7C3L95Syb40/5rnpWKT+YU8srrGz6uXGcHQpANcbFb1GJgLFQ9Xo1HOdARG4UNzPqrbjajKo6C2KcdLYnak2+19MBuPTSS7FmzRrcdttt2Lt3L+bOnavaRz51u6ZPnz744IMPMHToUH9ekijoqTrveli6a9cSmdIaJ2Mr/CnfFd88uaaUWoNj+W6CmCmN1DgoFTvwnsqU1rJ8l4jcsI+tsouJCEW1qV6RPT1aUoMzMjWs7iDSgF9BKQCcffbZ2L17N7755husXLkS27ZtQ0lJCWRZRnJyMgYOHIhRo0bhqquugqRVu3yiICbOFvWmdBdQB6WBCPBqhA6hktSQ0fVVrFC+y0wptQbHRkfxpxoPNQpEptSBPSjlmlIicqfEqMyUdoqLRLWpXtGRl0EptUV+B6V2o0aNwqhRo7Q6HRG5UCaU7/oblAYiU2o0qWeU+nNTSpUp5ZpSagWFVS2YKRWC0niw0RERNU/MlCZFhyPREK4MSku5rpTaHt9TF0TUKsqMQlDqb/luTSDWlGozo9QuNpKZUmp9jmtK48WgVOtMqdA4KUZq6Jgp/mwRETkqET4jJBrC0TUpSrEtlx14qQ3SLFO6bt06/PLLL9izZw/KysogSRISExNx+umn4+KLL+ZaUiKNFAtvOMkx3gWlYtOgwGRKlR+co/0MSrmmlFqbLMuKTIOq0ZHWmVIhKLWPoGGmlIjcKREaHSVH65EWG6HYxrEw1Bb5HZT++eefuOOOO/DHH38AaGpsZGcv2TvnnHPwn//8B6effrq/L0kU1MQ3nESD3qvjW6J8t1oo3zXofe+8C3BNKbW+4mozTPU2AIAeZkRJQodLzTOl8YqHsacypWx0RETulAnVTwlR6kwpx8JQW+RXUPr777/jkksugdFohMFgwKhRozBo0CAkJydDlmUUFxdj27Zt+Pbbb7Fx40YMGzYMq1atwuDBg7W6fqKgUypmSqP9K98NxEgYMVPqT+ddAIjlmlJqZXllTZmFODj5QBfwTGnDa7J8l4jcESuJ4iJD0SVRGZTmV9bBVG+FPtS/G8ZEWvL5k6LVasXEiRNhNBpx5513Ys6cOYiNjXW6b2VlJWbMmIH3338ft9xyC3bt2gWdjstZiXyhamLgZaZUnXUMRKZU2/Jdriml1naszKF0VxI670ICIuO1fUExKLVnSi02bV+HiDqUSuH9MTYyTJUplWXgWGkteqZGt+SlEbnlc2S4bNkyHDx4EDfeeCPeffddlwEpAMTGxuK9997DhAkTsH//fixfvtzXlyUKeuJg7ESDf2tKAxHgqTKlGq8prTbVw2qTXexN5L1dJyow4a116P3oNxj3+m/4M69c8bxjplTVeTciDtBpnHEQGx3BXr7LGzJE5JqYKY2NCENMRJjqs0IuO/BSG+NzULp8+XLodDo8++yzHh/z3HPPAWgIaInIe+Z6m+ouqLfluzFOMqXiWnB/aR2UiuW7AFDNbClp5HCxETe9vQG/HymDud6GbcfKcdM7G3CgoCkjmueQKY0XmxxpvZ4UcJIprYUONtRauKaUiFxTle+eGhunXlfKZkfUtvgclG7ZsgV9+vRB9+7dPT7mtNNOQ3Z2NrZs2eLry/ps1apVkCSp2T9PPfWUR+fr1q2b2/Ps3bs3wF8RBSNxPSkAJEV7W76rDPBsMmDUuHmK2Ogo2s9GR2IgDXBdKWnnyeW7UCXcSKkxW/H4sl2NN2zy3JXvar2eFAD06uqjaNSw+y4RuWS1yarfZfb3/K6JDEqpbfM5fZGfn4/hw4d7fVzv3r2xdu1aX1/WZ+np6bjtttucPme1WrFgwQIAwAUXXODVeV2dMy4uzul2In+UGJWluzoJiI9UZxHdcZZ1rKqz+L3u05GYKY3ys9FRVHgIQnSSomSXQSlp4UBBFVbtK3L63PpDJfgzrwIDO8fjcHFTdlQ1DqYFMqVAw7rSk+YY7V+LqA0xmurxwMLt+HV/EbomGTDv5sFc++ghZxVE9p4MXZIMiu2Hilm+S22Lz58UKyoqfAq8YmNjUVlZ6evL+iw7OxsffPCB0+e++eYbLFiwAJ07d8ZFF13k1XldnZMoEMQmR4mGcOh0klfniHaWdaytR4aG91GMZm0bHUmShJiIUJQ7tLqvrGX5Lvlv4ZY8t89/9vsx9EqLVpbvimtKA5EpDTcAUgggN2VG41CDPJsMi9WGsBA2C6SOafb3+/DNzpMAgN35lbj748344f6LEOLle10wcnaz1n4jupcQ2O/Jb/nP4kTu+PyuVl9f71MHXZ1Oh/r6tvVh0p4lnThxIrsCU5smZkq97bwLACE6CYZwZTmt1h14xe67/q4pBdQZ3kB0DabgYrPJWPrHcbf7fLXtOHYer4TjsmtV+W4gMqWS5GRdqX0sDEt4qWOqt9qwSLhRdKjIiM1HSlvpitoXce54iE5C1Kn3+36dlEsCiqpMKKyqa7FrI2pO0EdgRqOxsfHSpEmTWvlqiNwrrFQGpckx3jU5sgt0B151oyP/O5OK60rFhk9E3tp5ogJFVcqfqY/uOAeOCRmj2Yr5vxxU7NMpvFbxOCCZUsDJrNKGNWB1bHZEHdTu/Eqn70cbDzMo9YSYKY2NCIUkNfxC65ZkaAxQ7XadYLaU2g6/0hcffvghPvzwQ62upVUsWbIERqMRgwcPRr9+/bw+/qWXXkJOTg70ej369euHa6+9FikpKQG4UiLgZKXyrmZabIRP54mJCEV+RdNjrddnGlWNjpgpJd/YbDKOl9ciJUaPiDBtx66sFtaSnpZswIW9U3B+z2SsOVDcuP3X/cr9MkKrAMdvcUOSptfViJlSCjL7ToozgN1vJyVxWYvjDWidTkLfjFhsOVrWuG33iUpc3Ce1xa6PyB2/Pin6OkbCftemLbCX7k6ePNmn4x988EHF4/vvvx/z5s3DnXfe6fE5XAXDOTk56NGjh0/XRR2TmCn1PShVBnhaZx0DUb6rypRyTWmHd6y0BlP+uwk5RUYkR4fjhfEDMLJvmmbnXy0Emxf2briheO3gTEVQKkpGhXKDIUAf6lxkSms4q5Q6qINF1U637znJjJ4n1JlS5Xv96UJQ6vh3otbmc/muzWbz+Y/V2jbu8p48eRI//fQTQkJCcPPNN3t17NixY7FkyRIcPXoUNTU12LlzJ2bMmAGTyYSpU6fiyy+/DMxFU1ATM6XpPgalsU5mlWpFlmVV+a4mmVJVyTEzpR2ZLMv426dbkVPUkB0srjbjr59uxYny2maO9Eyt2Yptx8oV2y7q0xCUXtEvHZEus7IyouuFUsLolglKYySW71LHllPovCPskWIjv+89IM4otXfetTurW4Li8YZDJTDX2wJ+XUSe0G4GRDv06aefwmq14sorr0R6erpXx86bN0/xuF+/fpgzZw769OmDv/zlL5g5cybGjRvn0bl27drldLsv5cTUsRWoyne9b3QEOMmUaph1NNXbUG9TVlEEJFPKoLRD23G8AtvzlBnJOosNr/9yEM9c29/v82/PK1d8n+ok4JxuDWtDDfpQXN4vDcu2nVAdl6a3QGdVVizAEKAlGxHKxiRNmVJ+OKeO6VCx80ypTW6YFczRMO6pglLhvX54z2RIEhobt9WYrVhzoEjTChQiXwV1oyN/S3edmTp1KlJTU7F//34cPnxYs/MSybKsYflu4DKlYpYU0KbRkfjmyvLdjk1cx2m3eGseKmr8/34Vy9b6ZsQqbp5MHNrV6XETsp3cCApYpjRe8TBWYlBKHZcsy8gvd90N9rhGVRIdmbgUJ06oMEqK1mNQ53jFtv9tyg30ZRF5JGiD0j179uCPP/5AdHS0xxlNT+h0usZ1oPn5+Zqdl6isxgKzVVlm42tQGsjuu2KTI0Cb8l1VIG0KfKa0ss6CtQeKUVjJtvktbcfxCqfb6yw2LN6ah1KjGe/8moPHvtyJ9TklXp9/qxCUDumqLGs7p3siruynrKAJD9Hhpr5Cx+vw6IaZooGgWlPaUNrIMkbqiKpM9ah1872dV1bTglfTPqnLd8NU+4w/M0vx+Mc9hfgjl2tLqfUFbVD68ccfAwCuu+46REVFaXrusrKGH+7oaJaZkHZOVigDI0kCUmJ8Ld8NXCmseK4QneRmfZ7nxDfXQGdKtx0rx/nP/4xJ/9mIEbNXYcnWvOYPIs3syHMelALAqz8dwNj5a/Hsyr34eMNR3PzuBqzc4flNQFmWsSXXfVAKAC9NGIDrh2RBH6pDt6QovHfbWcgKE8oLA1W6CzjpvstMKXVcYiWQ6HgZM6XNcTYSRnTNoE6Ij1K+nz7/zV6fm5cSaSUog1JZlvHpp58C0LZ0F2hYH7pv3z5ERUUhOztb03NTcBPXkyZH6xEW4tuPsLimVMtMqbs5af4IZHMmUb3Vhvs++6Px36XGbMVDi3ewfKyFlNeYcaLCdXa6otaCPOED6hNf7YLF6lnDjkPFRpQLJcBndlEHpTERYZg9YSD2PT0KvzwwoqE7r1EoKw5U6S7gsvtuLYNS6oCaq0gRf+ZJzd1IGLuYiDD8dURPxbaNh0uxap/zJRNELSUog9I1a9bg6NGj6NSpEy655BKX+82fPx/Z2dl4+OGHFdu/++47bNmyRbX/n3/+iQkTJkCWZUydOhXh4eGqfYh8JZYuZcT5VroLBDbA86R8yBeqNaUaj7Fx9MPuAhwpUf57m602LNnCbGlLyC1V/tvrJKBbkvuKlsIqEzYc8qyMV1xPmhqjR1ZCpNtjGm+sVBcqnwhkpjRcWW1jQMOHcncljkTtVWGV+0yp2H2e1JobCWM3eVhXdBI+Q7y5Kidg10XkiaAMSu0NjiZOnAidzvU/QXFxMfbt26daG7p+/XqcddZZ6NatG0aOHImbbroJQ4cOxZAhQ7Bnzx5cdNFFeO655wL6NVDwOSoESV0SfS87D2TToAohKBUbLfhKnd21BKzc6Mc9hU63rz3oenYlaedYqTIj0ik+ElPO69bscb8f8Wxd1J955YrHZ3ZJ8DybbxS+NwKZKdXHKF9Kavh34ZxS6ojEaiBRcTNBKzU/EsYuIiwE91/WW7Ft05FSHCysCti1ETUn6IJSk8mERYsWAQAmTZrk0zmuuOIK3HHHHYiNjcX27duxePFiHDx4EMOHD8e7776Ln376SfN1qkRHhexR12YyR+4EsvtuoIJS8c3VYpVRZ9F+vposy/jNRfD5R245SydbgJgp7ZwQhZvO6YLTM2JdHNFADDZd2X2iUvF4QOc4F3s6UXVS+Tg6gKMU9MpMaTQaPrTXmjlXkDqeAmFNaWa8snqhuUwqqSuIXGVKAeCaQZlIjlb2pfj6TzbopNYTdHNK9Xo9SktLm98RwBNPPIEnnnhCtX3YsGEYNmyYxldG5N6xUg0zpUKgaDRbUW+1IdTHNaqOxKBUq/JdMVMKNATTkeH+N1FydLy81mWZmNlqw76CKlVLfdLWsTL193pEWAgWTB2Kp7/ejU1HStEtyYAzMuPw1uqmkrPtx8ohy7LbrKfVJmNPvjIb0Fywq1B5XPk4NtPzY70VrsyU6iULwlCPWgszpdTxFFYpf++ekRmrWMdfbapHjbkeUeFB99HVI/VWG6pNza8ptQsP1WHswE54/7em8YXf7SrAfZf2dnkMUSAFXaaUqD2SZVmVPeqS6PsYCjFTCkD1ZuYrVaMFN3dqveHsmrXsGmy376T78qUDBSxvCjSxy6Z9vWeiIRwv3zgIa2deggVTh+Kmszsr9iursaCsmRmmR0qMqjWZ/Tp5kSmtPKF8HNvJ82O9JZTvAg3rSpmtp45I7L57hpOfyyJmS11y1rCwufffK/opKz325Fei1GjW9LqIPMWglKgdKKo2qcZAdPGjfNfZG5VWHXgDVb4bFqJTjZYJRLOjvc0EpQcLq90+T/4TP3i6mseblRCJUJ0yK3q0xOj23LuE0t2UGL3no5UsdUCN0EwpkJlSvXqsWLRUx5Ew1CEVVyt/7rslG1S/8xmUuubsJq2rNaV2Z3ZNUP0bbz7iWTUhkdYYlBK1A7lCk6PwEB3SXXxQ90RUeAhChA/zYjDpq0AFpYD6DVZs6qCF/c1kQpt7nvwnfjh1FTSGhuiQKXTNFSsKROJ60n6dvCjdrTqh3hbITGmYAYDy5zQatey+Sx1SufD7PNEQrvrZ57pS18QqpbCQ5meEh4XocGbXeMW23xmUUithUErUDuwTAqGuSVGqoNIbkiQhWi82OwpMprS5O7XeCOR8VTuxfFdcP9pc0EP+sdlklAjlY2IzDkfi2mrxBo5o14kKxWPv1pMKQWl4DBDhxfHe0umcjoVh+S51NDabjPIa5c99fFQYUoWglJlS15yNg/Gkq/hZXRMVjzd52MWcSGsMSonagb1CY5Zsbz5IuyAGi1p14C0xKj80JBm0m9crzlfVek1pvdWGnCJlee6lfZUjP46X1wZsFA01ZEusNuW/b3KM6+8hsQu12CTJkSzLTjKlbXQ9qZ3YgZflu9QBVdXVQ/ixR0KUs0wpZ5W64uuM8LO7KYPSPfmVqLeywze1PAalRO3A3pPKD9LZ6eoGKN6K0QuzSjXKOpZUe57l8lagM6X5FXWwWJWfjC7qrQxK6yw2NoIIIGeZkCSD6++hjDhl+a44VsJRcbVZlYU93ZvyXVXn3ZYISoVZpahFHct3qYMpq1H/TmWm1DvqTKlnVUriEgZzvQ2Hi92vzScKBAalRG2cud6GHceVJYd9MzQISgMwq7TGXK/K4iRpGJSKd361XlOaJ3R9NYSHoG9GjKpU2nFMAWlLXE8aHxWG8FDXb1ViE6QCF+N8AKiy4PpQnXejlSrylI8D2eTITizflWqZKaUORwxKw0MbGtulCj/fXFPqmqrzvYeZ0gRDuKpHxe78Shd7EwUOg1KiNm7niQrUWZSlNIM7J/h9XvENS4uso5glBYCkaO3Kd9WBtLaZUrH0MyshCqFOmkqJI0tIO2JQ2lym3ZtMihiUdk82eLc2u/Sw8nFCV8+P9ZWQKY1BLWrMnFNKHUu5MMopIaphPWRKNDOlnnK2ptRT4o3u5rrQEwUCg1KiNm7dwWLF495p0UjQYJ2mGOBpkXUUA4rwUB1i9No1OhLfZMVujf4SM6X2+Zid4pVB6Uk32Tjyj/ihU/xQKkqNVT5fYjTD4mI9VE6hsiStR6p65IpbpYeUjxNP8+54XwhBqQF1qptURO2dmClNiGp4j0uJdd9992iJEeNe/w19Hv0Gd3zwOyqamVPckfnTZFDsU7GHmVJqBQxKidowWZbx9Z/5im3DTkvS5NxigBeITGmyIdyj7n+eSjQor7lM47WdeapMaUNQmhrDErKWUix+DzUzQ1T8fwO4zqaImdIeKaeCUlkGNv8XeKU/8EwnYPFUoLpIebDVApTnKrcldHd7bZpwUr5rttrYiIQ6lDIhmIyPavhdL96UKqk2NTZCs9lk/OXjLdh2rBymeht+3luIR5ftbJkLboNUjY68yJSKfSoOFHAeN7U8BqVEbdh3u06qymhG9c/Q5NxiE4Qqk/93mIuETKmW60kBIFFoeKN1wyExU9r51HpDsQMkS8gCR12+674qICEqDGEhyhsfrm4aqINSQ8Nf1swBvr4PqMgFLEZgx0Lgg6sAk8P+FccAWVjLmdgCQamT8l0AnFVKHYo4DsaeKRUrIWxyU4f3zUfLVO+PK3fkq84VLMRmhZ6uKQUcbtCdcqKCDdWo5TEoJWqjft1fhOmfbVNsy4yPVLVv95XYyVZskuALca2l2ITGX2KmVOugVLx+e6aUA9xbjri2LDHKfVAqSZI6k+2kvLrWbFU1qOqREg0U7AJ+eVZ94uL9wM9PNz0WS3cj4oEobX4W3dKLmdKGr42zSqkjEct340/93CcZ9BCXfRee6rC9VljaAgBWm4yNh0sDc5FtnK8jYYCG9fWOZJkzuanlMSglaoM2HCrB1I82w1SvLNH7x8ie3jVmcSMQ3XfF8tfOiZEu9vSNs0ypVjNDrTZZtVY0M74hU8qxBC1H1azDgw9Wntw0OFxshPitclqKAfj1JXUG1G7LB0DNqQ+4YpOjlsiSAqry3ehTmVJ24KWORCzfTThVvhuik1QVN/bfv1uPljk9lziLOFj4OhIGAAz6UNX73KEijoWhlsWglKiNKa8x495PtsIsBKSj+2dgwpDOmr1OILrvHhPLXxO8GLfhgSShwZPZaoNRow/nJcamtUp2aadKx9Tlu2x0FCji3f44D4JS8cOUs0ypOHevU1wEokwlwO6vXJ+4vhbY/H7D34v2Kp9riSZHAKBXNiCJlli+Sx2Pq/JdAKru5ycr62Czyfgj13lQGqxNetSNjjzPlALqbOmREgal1LIYlBK1Ma/9fFBVlnrNoE549aZB0GmUJQWcdN/VIFN6rFTMlGoblDrrOlzqZAyNL+wlYXY6qWlNrFgeWmI0s9FMgKhL0Jq/2y+uOyty8j1xotzJeuGdi5RZ0jAD0OsK5YFbPgRstoYyX8WLnt7sdWlCLN9FQ8DNTCl1JGVG542OAPUykJMVdcgrq3V5Q3LPyeAMSlVzSr1odASog9LDzJRSC2NQStSG1Jjr8fnvxxTbRvRJwcs3DEJoiLY/rqo1pX5mSivrLKqySfuaTK0YwkMQHqr8d7A3vfCXsyZN9lJpMVMqy9qvZ6UG4t1+TzKl4ixTsVkSANV60syESODPL5Q79b0aGDFTuKBc4Miv6qA0vX+z16UJodGRvXyXTUioI3GbKY1T/nwXVNbhYJHrOZrHy2pdjoXqqMz1NlX1hCe/Ox2pglJmSqmFMSglakO+/jMf1aam4FAnAbOuOUOzdaSOxPUm5nqbXx90/zxWoXgcHqJrWLOnIUmSVCW8YoMMXxUJmVLHktBEQ7jq/wGbHWnP4qQc25MPVuKaM0+C0j6RVUD+NuVOA28EOp0JpPZTbv/pKcAkZF/Szmj2ujThZCQMwEwpdSyqNaUOTe3SYtTlu+5GltjkhmxqMHFW6eTNnFIA6CJUNomN/4gCjUEpURuydOtxxeOLeqdoXgJrJ2ZKAd/Xldaarfhpb4Fi2+mdYqEPDfHpfO4kCN1YxdmovioU1ok6BqUhOnUwLO5P/nP2/edJCVpKdPPfE+IHrEHmrcodIuKAbhcCkgQMnigcvEX5ODoNiO3U7HVpwsVImBqz/2vAidqCOotVleWLd/g9nxanLt89UOh+jqY43qujE5c9AN6X72YKlU0nK+u4TIVaFINSojaiss6C348oW9nfcJZ2jY1E4ppSwPsOvDXmejy85E8MfPJ7/Pe3I4rnBneJ9+PqXEuKDkymVMx8iutIxRLeYo2CYWoilu4CnjXr8CRTeqJC+SH1tIp1yh1OuxgIOfUzMeBGQOcmy9D1/IbgtSUIQWmEZEEo6lm+Sx2Gs597d42OCqtMHgSlwTXORPw31IfqEBHm3U3hzHhlUGq1yShgRRC1IAalRG3EbweKUe/Q/TU8RIcLe6cE7PUiwtTrM73NlN7/+Tb8b9MxmJ3cTb24T6pf1+dKopCxLNFobafY6EgMQsV1i1plaKmJrx+sxP83NWarIpNoNNUr5p+GwIrEk0JQ2vPSpr8bkoHeV7p+wW7Dm70mzQjlu0BDsyOW71JHId5YlCRl2X66kCktNZqxRxj7EhaivEkUdJlS4b3b2867QMN7a0SY8jMBS3ipJTEoJWojVu0rUjweeloiDHrv1oR4S1xX6k0H3t+PlOK7XQVOnzs9IxbDeyartu8q2YVpP0zDLStuwfKc5d5d7Cli+a5m3XfF8l2ho6uYoXWWjSP/+Dr8PTla3ZXZ8aaB2Hl3gHQIIWZhjahjUAoAgyc7f7GQcOD0cR5dlyb0zoNSjoShjkLsvBsbEaZYwy923wWguhF6kXADt8DJWKiOzJdRWiJJktBJyJYeLw+ujDO1LgalRG2EWLorvskGgriu1JtM6YINR51uz06PwZuTzlSNrzlpPIm7vr8Lv534DTuKd+CRtY9g2cFlXl9zoBodqct3m8uUMijVmi+ddwEgWh+qyvo7dlPOE4LSiyIOKk+Qkg3EZii39bxU3fAIaAhIDUkeXZcmwtTNwgxSHWqZKaUOQt15V/lzHxsRCkO464qJGH0oBmTFK7YFWyM61YxSJ8tzPCGW8J4oD67gnloXg1KiNqC42oRDxcr260O7B/6Dr/jG5emaUovVhp/3Fiq2TRzaBT/930VY8Y8L0DVJ/UH6832fo8qsbOP/1va3YJO9a6SQKDa10aB8V5ZlFFWJ5bvKu/NiMKxV2TA1ETP1nn6wkiQJKW7Kq8VM6bCw/coTdD1PfdKQUGD8e0BkYtO2+C7AZU95dE2aCQkFQpUfFFm+Sx2J2Hk3TqiGkSTJ6XuKXa+0aNVNxGBrRCf+7vQlUwqox7gFWxk0ta7A1gYSkUe2HC1TPI4KD0HfjBgXe2tHNau01rNM6dajZaqs6t8v6aVa++No7fG1qm151XnYUrAFZ6ef7dHrAkBiALrvVtbVw1SvDI6by5Sy0ZH2fM2UAg3l1Y5jXxzLqx3XRUmwoV/9HuXBXYY5P2na6cC9G4D93zQEhn1GARGxHl+TZvTRQH3T12CQalm+Sx1Gea37TCnQMENzd36lajsA9E6LUS23KKgM8kypj0GpmCkVR2kRBRIzpURtwGahdHdwl3iEhgT+x1PswOtppnTbsXLF474ZsW4D0pLaEuwt3ev0udXHVnv0mnZiA6KiKhNkWXaxt2eKnNxVF1+Ha0oDz5+g1F15teMHqx7SCUTbhA+3Xc51feKYNGDIlIYZpq0RkAJAuDJLFA2W71LHUS7OKI1SrxHvmuR6NFqvtBhVt/SSahOsNv/eF9oT8Yayr5lScSzM8SDrYkyti0EpkYdKjWasyykOyJ3DzUKmdEjXRBd7akucYyZ28HNle1654vGZzYx/cRWQAsDGkxs9ek07selFrcWKKpN/MxvFzruxEaGqrq9i0FNqNMMWRB96WoL4wcqbu/1is6NiF+W7Z+mE0t3YrIay3LYsXFk1EYU6zimlDkNcU+osoOqW7Lp8t4+TTKlNDq51/6omcV7OKLXLjFcG/8fLa/2+6UvkKZbvEnlg4eZjePTLnTDV26CTgPsu7Y1/jOylybktVht2HVdmbs7qmqDJuZsjZko97b67/ViF4vFAocmE6FDFIZfP7S3di9K6UiRGeBaIixlMACisrPP5TRhw0uTISbdHMVNqtcmoqLUgwaC+q0++8aeDpDirtMhF+e4ASfhe7HyOF1fYSoQOvAapDiUWDrWnjsGTTKmr9xidBAzsHIeo8FDopIZg1K6wyuT0d3lHpNWa0k7xyn+vOosNFbUWxDv5f0KkNWZKiZqx72QVHlqyo3HNoU0GXv5hP77dma/J+Q8WVqva2w/IitPk3M3xpftuUZVJlS0e2Dne7THuglIA2HRyU7OvaxcRFoJ4Yc2Rv+uHVONgnAS+SQb1thKj89e1WG3YX1CFihrPR+yQs0ZH/pfv1lttOOkwHqKf7ojywE6DvbvI1qAq361FLTOl1EGIQan4+x0AeqVGO218dkZmHGJOjZARfwcEU7Mj9Tgt33JOYhk0EHzrc6n1MCglasbbv+Y4XZvy9Io9mqxZ2S0MAc+Mj2yxu5LiG5cna0r3nVR20I0MC0HPVPUsRUeHKw67fX7zyc3Nvq6jdOHu98kK/z58iOW7zoLS8FCd6kNRUZW62dHBwipcPHsVLn/lVwx97kcs2pLn17UFE//WlDov3z1ZWdeYPQlFPbKlXOWBGQO9v9CWFq78+YqSOKeUOg6x0ZGzoFSnkzD0NHVH+gt6Nc3DFkt4xd/rgVJUZcLuE5WtuoZVPRLGt0xpeKhO1Wn+ZJDNfKXWw6CUyI0acz2+/tN5RjSvrBY/7inw+zV2CUFpv04t10zFl+67h0uUo2t6pBoUg86dOVF9QvF4QMoAxePfT/7e7Os6EkuyCvy8I15U3Xz5LuAkGydkSm02GX/79I/GNvp1FhtmLv4TBwuVgTw5508HSVeZUsc5e72k49BLwvd4hvJ7sU0SynejORKGOhBxJIyrm7J3Du+ueK8xhIdg4tCujY/ThCxfS8wqXb79BM57/idcNW8NRs9boxot1lLEfhD2G3o2oxE1v/8Oc26us8OcEvs2FPh505fIUwxKidzYeKgU5nrXa7dWuAhYvbHrhHJ95uktGpQKmVJT85nSw0XKoLSbm/lxAGC1WVFYo5xpOva0sYrHhyoOoaS2pNnXtksTZ9L5W77rQaYUUK8rFcfRbDxcir1CJtlqk/Hx+qN+XV+w8KcETQxKy2ossFhtOF7e1D3yDJ2QsY/vCkS2zPptvwiZUgO771IHIcuyaplDvIubUeeeloT5Nw/GWV0TMLR7Ij684xx0chhhosqUBrh8t6rOgkeW7IDF2pAh3XuyCvN+OhDQ13RGlmWnN/TMecdx6JpxODr5VuRcfgWK337Ho/OlqcbrMCillsGglMiNtQeL3T7/y75CWKy+NxyRZVk1e61fp5ZZTwqoS3w8WVN6RMiUnuamKyIAlNSVwCorP0CP6DwCUaHKLn+bCzwv4VXdyfXzTVP88OKsmRLgfuwIAHy366TT477afsKv75NgIMuyy7v9nhBvGAANHZIdM6X9pCPKHdpD6S6gDkpZvksdRI3Zquqp4KzRkd2o/hlYdM95+Pwvw3BWN2VzvBQxUxrg8t31OSWqzu9f/3mixbuy15itqtLhuMgwFM6ZDUte0/KRorlzUbdvv3i4ijjejeW71FIYlBK5sSNPmcW8+Rzl6Iiqunr8LswY9UZeWa0qEGzZ8l1xTWl9s+3fDxcLmdJmgtICo7LEOVQXipSoFAxOUzaYsZfwyrKMVcdWYdb6WViwewFq69UjeLS+kyuWebkKSsXAp0jIlP66v8jpcWU1FlWZNilVm+pVH6y8WReVEBUOsYq8uNrUWEoNAH0kYX1veyjdBdTdd1HL8l3qEMpr1dU5cU7WlHpCrHApCHAp7fpD6uqeshoLDhVXB/R11a+p7m0QDQuqf/5FuVGWUbFkcbPnU9/0ZaMjahkMSolckGUZe04qA4lL+6aif6Yyk7nuoOdlpyIxwIuJCEVGXMu1sBczUVab7PbDrsVqw7FS5TDtZoPSGmVQmhaVBp2kw9lpZyu2b8zfCFmW8dhvj+HvP/8dX+z/Ai/8/gLu+PYOmKzu13z686ZZZ7Gqbgw460AIqDvwOmZKK2osOCT8/3S00ckHGGribEauNx9OQ3QSEg3qZkeOM0p76JRrm5HS17uLbC1OMqXmelurNlYh0kKZURlQhegkp112PSEGU4UBzvBtzS13uv1AQQsHpUZlYB+qkxCyZRNkk/p90bhufbPn07oSichTDEqJXDhers5i9s2IxXCHbn8AsOVomc+vcVQohe2ebIAkuW8apCUxUwq4L+HNK6tFvfBBuLnyXWdBKQCck66cD3mk8gieXP8kluUsU2zfWbITC3YvUJ5D/PBRVefzgG9nJV7i2iQ7scNricMHqj+Pl7t9nd+P+P59EgzEdWU6CYgO9+7DqVheXewwvigWRqRK5cIBvb2+zlbhZE0pAJbwUrvnrOO2r++BYlf2wipTwEppZVnG4SLnwafYDDDQxIZ7CYZw1O3c5XRf04EDqC9yXtFjp+puz6CUWgiDUiIX9uYrG9bEnspiDumibIyy7Vg56n1cL3ikRJl17NpM06DmLN6/GDd/fTPu+fEe7C7Z3ez+0Xr1h35xVqSjI0ImMD4qrNnxNWL5rj0o7ZfcDxmGDMVziw84Ly1aenCpIugU3zQtVhmlRnUJkyfE9aQRYTrEOPl3AdyvKd1xvELcXWFPPst33RG/72IiwqBrpquzSBWUVpsaM6WnSUJTMl0okNjd+wttDary3Ybv2RrOKqV2Tiw9dTYOxlPisg6rTVbcONRSWY3FaXUHoH6fDDTx3zAxKhym/a7Xjtbu3On2fOJN2eJqk8+fcYi8waCUyAUxiOibEQtJknBmV2VQWmuxYk++byM/xExpt6QoF3s274t9X+CJ9U9gZ8lOrD2+FlO+nYIjFUfcHhMaooMhPESxTeyA6kgsN+7eTJYUAE7WKJv/pBkaglKdpMOY08Y0ezwAHK08igPlTV0Nk6PV6wfzfWxbL64nTYuNcHmnPkkV9DR9GMgpVP7bDBG+T46X16qyAtTEnxmlduKa35yi6sZy9J6648qdE7oDIb5/AG5R4cqfM4N0auSQmR8UqX0r97DzrieSovWq8WSOpad1Fite/mE/Rrz0Cyb/ZyMOFPg+qkt8L3R0pLjG5XOBUCqU7yYa3Aelpr173Z5PvOkry+qxaUSBwKCUyAVxfWCf9BgADb/wxZLVbcd8K80UM6XNjVdxxWw14/Vtryu21dbX4u0/32722AQn6/BcUQWlHlyvOA4mNSq18e/X9LwGOsmzX0Ob8jc1/j00RKda9+lrUCqul3E1DgZQBz3VpnrUnSqhFJtbXHZ6GsJClB+Q9p3kvFJXtAhKxUzpHw5rvnpI4nrSPl6fv9WExygeGtDwAbHGwkwptW/lQpbPXefd5oToJKREux4L8+iXOzHvpwM4UlKDNQeKcdM7G3yeKyreUHZ0rKxlg1JxXW5qmA2W48dd7A3U7d3n9nyJhnDVexebHVFLYFBK5ILY0MextHZAlrLZ0W4fMqVWm4xcMShN9i1TurlgM0rr1F2Avz38Lcrryt0eK3aadXdHVBwH01yTIwCq60qObFqT2zW2Kyb3naw6pm9iX4zqNkqxbUfxDsXjTvHKoNSxoY03xEypqyZHAJBsUAesJUYzZFnGoSL1TYweKcqyS5bwuubPjFI78abBgcKmGwWqoDS5l9fnbzVC+W6UZIIONs4qpXZPzJT62nnXTizhPVnR8Pv9UFE1Fm1Rdt8uMZrxn7XC7GIPubsJWhTAtazOlAqBfabZ/VKS5jKlkiSp3gdP+njTl8gbDEqJXBDvdnZOaBrS3TdDObZFnDXqifyKWtV8Nl/XlK47vs7p9nq5HutOOH/OTryzXOzmzrEYeHlSvisGpQkRyrLW6UOm4+bsmxEqhSJECsGV3a7EO5e9g7PSz1LsJwalGQ5D0wHgRIVvQakqU+qiyRHQECiJd5CLq0woMZpVmb4eydE4Xfg+2XuSQakrYlCqRabUkToobSdNjgBVoyOgYV0pg1Jq78SRMP5kSgFnndkbfr+v+DPf2e74dOPRxmoXb7jr7Ftvk1WBYiCVCtVNGTXux9SZc3NhM7pf9yrOKmUHXmoJDEqJnKizWFXlKp0Tm7KYpwuzRPedrPR6PMNRIUsarQ9FksG3N+RNJze5fG7N8TVuj032MFNaZ7GqAr/mgtJ6Wz0qTMq7tokRyoHnYbowPDL0EWyauAnrbl6Hly56CfER8Tgj+QzFfseqjsFoaXoj7SS8aeaX+/amKZZvucuUSpKkHgtjNKmC9fBQHTITItE7XVl2mVPUsg0w2hOxaUjjjFJTFbB7GZC3GbC5X0Mp3mCxk2BDZ0lZRo6knj5fa4sLV/+cRaGOs0qp3RPLd/1ZUwqoM6X28t3vdxc42x2VdfVYta/Q6XPuNFfO2pJBnBgAJ1Urg1J9nz5AiEPvCFmG6eBBt+cU15UyKKWWEFRB6YgRIyBJkss/3377rVfnKy8vx3333YeuXbtCr9eja9eumD59OsrLywPzBVCLOe6kFNQxKBUzpXUWm9vGB86IpbBdk6J8aoVfb6vHwXLXbzBrj6+F1eb6w6v4Qd7VGptjpTUQp640V75bbipXbRODUruwkDBEhTX9G/eI76Fab3q4oqnUKiNOmSnN9zFTKo6EET/UiMQS0eJqMw4JowG6JxkQopNUa4Rbuitje+J0TenxLcAr/YAvbgXeGwl8MRmwum4WJf6/sUtFOcIl4Wcgvqvf19xi9DGqTdFSLUfCUJtls8nIKapGlZtu7oCTRkc+3pi1UwdTJhhN9dh1wnVJ67JtJ1w+50pBlfsgzdmosUAR15TGVRYrHoef1h3hXZW/70wHDsAdsWLI37EwNpuMn/cW4H+bcvk+SC75NqG4nRs/fjyio9XlUJmZmR6fo6SkBMOGDcOBAwdw2mmnYdy4cdi1axfmzZuHlStXYsOGDUhKStLysqkFietJE6LCFONTkqP1SI3RK9Yj7smvRM9U9feVK2Km1NcmR0crj8Jic/3GX24qx96yveiX1M/p8+Ka0mIXmVKx8VNKjN7pSBlHzta5xuvj3R5jpw/RIys6C7lVuU3XUHGoMYOqXlPqY6OjKrHRketMKaDuwFtSbUapMCfutJSG/5diJrmwquEDkqGZf7dgJAalsREhwJf3AnUOHyb3fg38/DRw2ZNOz+Hq/12mpPyQhhA9YEjx63pbVEhYwzVbm77PWL5LbVVhVR3u+nAztudVQJKAKed1w2OjT3c64kk1EsbPTKlYvnuyog5/5lXAXSHTT3sLUVlnaarO8EBzQWdLZhbFf0NDmXIOaVinToBNhvnQocZtzQWlWmZKq+osuPODzdh0pOHzQKhOwksTBuDawVk+n5M6pqDKlNrNnj0bH3zwgepP//79PT7H/fffjwMHDuC6667Dvn378Pnnn2Pnzp34+9//joMHD2LGjBkB/Aoo0I6VKbNujllSO7GE19t1peLdwq4+joPZV6rspJcalYpusd0U2zbmb3R5vKrRkYtMqXi9nqwnLatTdiWO08chVOd5QHZa/GmKxznlOY1/FzOlBZV1XpdQm+qtqjv17taUAg3jaBwVV6vLd+1BqbP/p2KGnBqIa0r7Vm8Aipw05NjwBlB+zOk5UmP0iAhTv61lScKw+PjOgK6dvf2pxsLUMVNKbY7NJuPuj7Zge17DzSRZBv772xF8uinX6f6qTKnfjY6UwVRhVR225irfhzonRip6A5jrbfhup3J0mTuyLKvmW4vr2cUGeoFis8koE/4NwyvLFY/D0tKg76Vs7FbnZmQMoF5T6k+jo38v29UYkAINa24fXrIDeS3cpZjavnb2rtw2nDx5Ep988gnCwsLwxhtvIDS06UP2Sy+9hJSUFHzyyScoKHC+hoHavuNCUJqVEKnaR9Xs6ISXQalqRqlvmdL9Zco3lz4JfTA0Y6hi24YTG1weL76ZFlWZIIt1uvBtHIyqyZE+wcWeznWP6654fKyqKRjJEDKl9TbZZZbXFWd3u9OayZSK/14l1SZVFvm05IaMeURYiGrta0vPsGsvxEzpaaUu1kJbzcDq550+pXNSMg0AWWKmNK6zT9fYqoQOvAauKaU2aMWOfGw7Vq7a/tbqHNQLjf2sThoCiWv2vSVm+Iqrzdh4WPk+dHGfVFzUO1Wx7avtnpfwltVYYLEq3yP7ZihL7EuNLdPoqMRoVt2MDSlXfr2hycmqoNR0wP2aUjG493UkzM7jFVjyh3o8TZ3FhrdW5zg5goIZg1IffPPNN7DZbLjwwguRlpameE6v1+Pqq6+G1WrFN99800pXSP4Ss4XpseqgVOys6k2m1GaT1eW7HmQenRGD0t4JvXFuxrmKbVsLt8Jkdf6mIs7lNNXbUG1Szz8Ug1JfxsG4Wk/qSla0srwnr6qppX+yQa/qhOvtWBjxbnZ4qK7ZUSRiM6r8ijrkCuXePRzKuMV/J2ZKnROD0tRi19l9bPsUKHJ+p99ZUKoq343v4vX1tTrVrNJa1Jo5p5Talo/XH3W6Pa+sFhsOKd8PymrMqj4FyTH+rSnNdHID+df9ykqJM7sk4JpBnRTbfjtYjGXbjuP5b/birdU5bm9wiqWskgT0SQtMUNrQdLHO6Y1iZ9eikwCUlii2hSQnQ99bGZRai4tRX+q6S2+GcDO12lTf7PpgZz5Yd8Tlc19tO+FT52PquIIyKP3Pf/6De++9F3/7298wb9485OY6LytxZfv27QCAM8880+nz9u32/aj9ETvQiiWugLp8t6jK5LZNvKOCqjqY6pV3jbv5WL7rmD0EGhoEnZ1+NiQ0BWwmqwnbC51/Pzobo+HsrqgqU+pD+a6/Qenx6qY7rjqdpCoxcjc7zpkioQQrLVbfbLMpcU3ppiOlqjvV9vJdQB2Uuhu6HswqHT7wJKMCUdXOP9wCAGQb8OO/ofpEC+c3S5yW77Y3qvJdE8t3qU3JK6tRlGmKfhG63IqBnyQBiX6OhInWh7odDQUAg7vE49K+aTCEN3WktcnA9M+24a3VOXj+m724cu6vLhvyiDczkwzhqmUf4jpPX6zckY+znv4RQ5/9Cde9uQ4lTgJl8QZ6pwgJtmpl473Q5BSEd+kCKVz5b+suWypmSgHv319rzVaXo3iAhs7H63NKXD5PwScog9Knn34ab775Jl5//XVMnz4dPXv2xKxZszw+3h7EZmU5X6Rt3+5psNuvXz+nf3JyWNrQWsRf9M6C0u5JBsWbGgDs8rCEVyzhjAwLcfoazbHarMirVg4E7xzTGXH6OJyedLpi+28nfnN6jsjwECQI63jEtR7VpnrVG7EvM0q9DUozY5TNxyrNlag0N/0bi+tKvc2UHheaIzVXuguoGyyJcVFqjF7RMEMs/XbW2TnYmeqtqLM03aTpoxN+d4ZGAsPvV27btxJ48zzgp1lAbdPNj0Gd41XnV2VK49phplRVvlvL8l1qU5Zvdx2AAOqMZYkwXzMhKhyhIf5/LHV3gzfJEI4uiVGIDA/BFf3SXe5XXG3Gg4v+dJqhVM22jolAojgqrNq/oLSwqg7/98X2xqqlP3LL8eTy3c1ey2mh6sA1NCUZUkgIwnv2UGx31+woIizEaVWQN37ZV6i4caaT1P9vVgvfExTcgioovfDCC/Hxxx8jJycHNTU12LdvH5555hmEhobi8ccfx6uvvurReapP3YWKinL+i89gMCj2o/ZHzKA5Cxh1OkmVLd153HXbeUditszXcTAFNQWotylL+DrHNGSBxBLe7458B5vsfM5jF6GRk1iOelho5CNJnjVmEjOlCRHerSnNMGQoMr4AcLyqKVuqmlXq5Zum2GXZ2dphUecE91+32IE5M14MnDnvTVRZq/wezpaERkap2cD59wGRwk2Nwt3AmtnA2xcBlQ0fiIf1SIKyyafcQcp3ld9X0Wx0RG3Mz3uVfTSyhTnNB4uqFRURYqbU1zndoq5u+h2c2TWh8b327otOQ7ibIHjTkVJsPlqm2i5WRKXG6pFoUN7Y9TdT+tW2E6qf7xU78lX/ZmJVU1cob3pKej10p6ZNRKjWlTbTgVfV7Mi7G6pilvS8HskYf6YymfPbQeF3MwW1oApKn3rqKUyaNAmnnXYaIiMj0bt3bzzyyCP48ssvAQD//ve/UVvb/A+d/c6ZqyDCVe2/K7t27XL6p0ePHs0fTJqrt9pQIqwHEWd52vXrFKd4vNPNLDRHRzQaByOW7kaGRjZmIy/vdrniuePVx/FH4R9OzyN2F84Vri9HmMOZlRCJiDBlltgZVaMjL4PS8JBwpEYpG1I4lvBmCAGft7NK8zzosizKiItAiJPRBnZiUOosU2rzsktwRyeuJ+0jBqVp/YDIeGDcGwCc/NuXHwW++juAhvmm5/dMbnwqCZWIlIQPiO2yfFf5fRXFkTDUhlTUWrA1t1yx7f7LeivW/csysDOv6T2yWMgmupoz7C3H5ROiIV2b3oOy02Px6k2DEBXu+r1syVZ1kx6xaigtJgIJQtlxqdHs9WdBRyt3qLPOVpuMdUK5qzjSrJOsfE8LTU5u/KyqbnbkPigV15V6c0PVZpOx5oAyC3pV/wwM75Ws2HagsFr1+5+CV1AFpa5cfvnlOOuss1BRUYENG1x3KbWLiWm4+2c0Ol9vUFPT8IHe2SxUavsa3kyU21yV1p6RKQSlxz0r31VlSpO1WU/aOaZz4xtQ38S+OC1OOVLlw10fOj2PmPU8KmQQDwlBaY8Uz763xaA0KcL72b2Z0coSXsegVMyUiuW4zRHLlJvLggJAaIhO1eHRkfhvkxmvPKe53oZio2+dDDsq8UNJjxChc3lK34b/9hkF3PQpEJOhPsnBH4D8PwEA/7769Mby8l4RQqZDF+r8+LaO5bvUhq07WKxYWx8eqsOFvVJUXeq3K4JS5e/B5taCemqwkxJ+O8egFABG9c/AbzMvwad3DcWiacMw47Leiud/3lugCi7Fktm0WL2qa7Cp3ubzz6ep3oodLqqu1ucoM4tiB/kUi7ietCkIdBaUugucxeUx3oyF2V9Yhco6ZQXMxdkp6NcpDuGhytBju5NuzRScGJSe0uvUD2t+vvs1EQDQpUtD6VdeXp7T5+3b7ftR+yLeBQ3RSUh0UVZ0RqbyDfd4eS3KPOi6p+pkq1Gm1F66CzRk8q/peY3i+V+O/YJ1J9apziOW74plrTkuRp40p8zkX/kuAGTFuG521EnMlHqxXlOWZXX5bmLz5btAw5w7V8RMaWqMukuwOHIo2FUKXR07S8qGKEjo1vT37KuA+3YAExcBkcL30x8fAwB6psbgm+kX4If7L8SH1wrrxmIzAV3zWf42h+W71Iat2qfMig3tnojI8BAMzIpXbHcMQMTGPVoFpQM6x8NZMUtUeAj6CzeSASDBEI7zeiTjrG6JGD1AecOqoNKker8WS2ZTYiOQIJTvAr534N2bX6UaOWO3+YjyPVWcl5pkUgalIY5BaW9lwG2rqkL9SdfzWVWNBD1s5AgAvwtjeLISIpERF4nwUJ3q/8EfQoadgheD0lPKyhp+0D3Jbg4cOBAAsHXrVqfP27cPGDBAo6ujliR23k0yhLss1+yZEg29cNevuWZHsuxkHIyPQanjiBRAGZQCwA29b0C8Pl6x7ekNT6OuXvnmoirfLa1R3EHNKRQypanNX6/FZkGFSXm319tGR0DDulJHJ41Nb6LindyiahPM9c7XzYrKaiwwCneyPcmUAg1lX66ImQGdTlJdJ5sdKVU6ZErDYUEyhOymuAY0JAzodRlwzl+U2w983/jXiLAQ9EqLgb5aKL9rj+tJAVX3XZbvUlshy7KqYc1FvVMAAAOyXC9xEct3kzUq343WhzoNPi8/Pa3ZZSenJRtUY9LWH1KWzIqNENNi9IjWh6puPvoalP7ppjfFoWKjYoyKmLWNqVUe65gpDU1Pb1xfale3d6/L1xLLd71ZU7pJCJ7P6db03i9msrfmqtftUnBiUAqgqKgIa9Y0DGp3NebF0ZVXXgmdToc1a9agsFB5R99kMmH58uXQ6XQYNWpUQK6XAsuTzrt2oSE6ZKvKk8qbPb+Y4eimYfmuo+jwaPx98N9Vx7y7413FNrExRI3Z2ng32GaTVXeKPcmUigEp4Fum1F1Q6qwTrvgm7YqYJQ3RSao3YVf6dXIelHZPNjjNqovNjpgpVXIs382QSqCDkCVwFUj2vVr5uOwIUCJ0LS8XOvm216BUr2waEy3VoYZzSqkN2F9QjZPC790RfRqCUnGJS15ZbePPu5gpFcdt+WPSuV1V2yY62SaSJAlDT1MuM3FsYGizyarsZFpsBCRJXVFV6mOzo4MFVS6fs9pkHChouElcZ7GqKruiql0HpZIkISI7W/F87VbnfSYAJ5lSD5fHyLKsypSe3b0pKB3UJV7x3I7jFX6tv6WOI2iC0g0bNuCXX35RfeMfOXIE1157LYxGI8aOHasY8zJ//nxkZ2fj4YcfVhyTkZGBm2++GWazGffeey/q65s+GDz44IMoKirCLbfcgvR01+3Gqe3yJigFgEHCneC1B9x3kxObHOlDdR6NIhHJsqzKlIqlrgBwfe/rMTDl/9k77/A2qqyNv6MuWe69O7ZTbKf33huQQCD0HghLX1hKaLvA0r+lLL1sgAChhEBCIBAS0nuvThw7dtx7t2WrS/P9IRfdO6Nmyy2e3/PwkLkzGo1taeaee97znhHE2OqM1Wg2tQeakX4KqOUS4pjWB3FJvY7TUzXJiZFEK3Q9KQBO1tYd6KC0rLldYu+vlEJJrXy768BLB9pRAQq32xHQE61WRlEP21bohu5CppSkQdselHJ6iir8bSZHfISnAepwcqzoMHVyyjTJvw+aHAEc+a4PdEQbHQGBnmL3BXJxPjpA2VZbnxSq5mQQM8tsaiJaBust+S4ALB0dg3tnJEIiYqCWS/D8olSMS3BPqTOMKsuxVz/VaY0caW1rj1KO2ZGDtjBWK4uaJgPMFv7vb66D/qitnG/5/RXXaTn+F/LGemJbEkoaCynHjCG2tcePO3yfKErhozGYodG7NiUqrtNxFinsf/e0pLu22Sg8EwUA9KOgNDMzE7Nnz0Z0dDRmzpyJG2+8EVOnTkVKSgr279+PtLQ0rFxJZo+qq6uRlZXFW2f67rvvIikpCevWrcOQIUNw4403YtiwYXj//feRlJSE//73v931owl4GU5Q6uJBOXVgKLF9rKDWaQYjn6cdjMiJm6sjGgwN0JjIFVU6UwoAIkaE5yc9DzHTHrzpzDpsK9jWfoyI4WT/WiVEF6hVW1+5xK2eqnRQGiAPgEQkcXC0YyLU5OJOvaEeWpMtsGcYBpFUttRdB97WB3srg8J8HRzJZVC4L2/7gpmDw3iO5msLIzyA7bHPlMbSQamzzCbDALHjybHSU+R2PRWU9kXnXYBHvmsQMqUCvQJaujt9UGib4Z5MIkIydW89X9YIs8XKyTi6q1RxB5GIwTOXpeDCK5fh1PPzcNfUAW6/dijlqp9ZroGpJYCkA2mGaQ+mafdgvrYw2RUazHlnN8a8sg2z3t6FMzzKKrpchiaj5dlFt24LUcvA1pCL4vaZUgBQjSWDUn16Oqx6/oVcOlMKuKdEOkJlSYN8ZMRCdkygEgFUb/T0YseSZYH+Q78JSidMmID7778fkZGRyMjIwLp163D27FmMHDkSb7/9No4ePYqwMP4JJR8hISE4evQoHn74YRiNRvzyyy9oaGjAQw89hCNHjiCEuhEI9B08zZROTAyCxC6oNFlYHMipcXg8t0epd0yOJIyEk1VsZVDgIEyJnkKM7SzaSWzTtT/pLQ9L2gUwJdLPrZ6qne1R2kqEiqs4KNfaSXj96YDPvUxpBhWU0rWgzhCLGNw2iZSCRQcoMT81nPd4OiilW9H0d+yDUk6mNMCF5C6SVAGg7HT7v1n2EpLv0kZHOsHoSKDHaTaYcTSPvNe3SndbSaXurRlljajQGEB3xqKN67yBSMS4rYBphe4/bjRbkdMSKNItWIJ9ZJC2nJ+vLYw9LMvi4R9Otql0imp1uHf1caJGVGs0o5RS+1w2lHwGtj67aG+KuEAlzNXOg1LlqFGAqP33wZpMDrOlCqkYgVTw6M7z9Wg+GZSOtesNC9gWk+maX2d1tAL9h34TlKakpODjjz/G8ePHUVlZCZPJhPr6ehw8eBCPPfYYlEruzfDFF18Ey7L46quveM8ZGBiI999/H4WFhTAYDCgsLMQHH3yAoCDPzVwEeg+eBqW+CilGx5EB10/HixwczdejtGP1pMVNpHQ3wifCaSZyXvw8Yvt4xXFY2Xb50DBKUnOm2FbnQa9gDovhl67S0JnSjpgcAYBKquLIfsub7M2OPM+UWq0sx5CKDkotVgs+T/8c1228Djf/cTP2FO8h9j84KxnLpw5ATKAS4xOC8OWd4xyaaHBcgj2w1u8P2AelUQy1oOMqiIwcRW6XnwGsLZM8fT1gpOqz+qx8l8w2+UAPvckq9LwV6FEOXqyB0U6GKhExmJxE1mSmRNKZUg3HNEcuEXECoJ4iQCXj9JdufV5UUPdu+2wip6aUCkpPFzcgs5y8H5U16LHlXPvzjC4rYRhb2xp7sso1vIaJyT4MWCP5nuIQcoFArFZDkZZGjGm2bYMjIvzpZ5fr5ysdlI4fwH3200HpWSEoFUA/CkoFBNyFdt8Nc6Pec9EI8qHxV0YFjhfwO8rlV3snU+rKeZdmXMQ4YrveUI/c+ty27RFUsFnTbMS50kbOCiadUXWEt4JSwHldaSRHGus64Dtb2sCZMNA/14enPsR7J95DZm0m0qvT8dD2h4h2OlKxCP9clIp9T83G2vsmYXCEY/kvLTFu0JkE6aUd9XZBaSjqyZ2+Lmrz6UypSQtUtzSFp7OkYGwtYfoiPPJdBlYhWyrQo9DS3THxgfBVkMElnSnNqtCgqJYMbiL9FW4pcLoLzjWX24JSekExwq/9+UMHpTXUM2bzWf72K3+mt49frKK8DvyVHLfaBp0J5Y16jnw3ScLtfy0J4fYG9507l9jWbNsG1spf30qrfOi/G01Nk4HzM/DV8tLP29ZFcIH+jRCUCghQeJopBYAlo6LhI2vPkrEssPzro8im6jFZlutk2+F2ME2uTY7siVZHI8KHkgHVZrT9Oy5Ixem/+e2hAs7vg89qnw9vBqX0ddsHpVFuZkotVhZvbcnCjDd34soP9xP7EkN8iLY4xZpifHXuK+IYFizeO/FeRy6ft1ZKyJa2Y98SJpShVsxpIyMadSg30Kw4a/s/XU/qFwVIvNN2otuh5LsihoUSRiEoFehR9uWQctHpg0I5x9AqFKPZir2UISDdNsuq06H50CEYixyrjrqSIdQiY2uGs5yTKW2fH9BBKd2z/Egef1nPnuyqNtOj3CqynjQx1AcxgUqOEWFmmYbjTxEH8tkn8vWFSMF99vjOI1VTlqpqNB84yHtttJKLfk+ao1QrGJVMzOtWTyuzGnQmlwGvwKWPEJQKCNihNZrRZCAzWO4EpX4KKR6cnUyM1WlNuPnzw0SQVN6oh5bqLehOz08+3HHepRkSRNrBX6i90PZvhmEwL4UM/tYcJScEfgqJ20F0ra5nMqWOgr3XNp3HhztzOJInAJhB1UD9fOFnmK3cTGZGTQayarPcvu5WVDIJ/JVk9sBde/3+gL18N4QOSn24k1wOYankdmXLYgudKe2r0l2AI98FbA68Qq9SgZ6iuE7LWWSdPpD7fQ30kXEW5v48SxpI2i+I6rMuIPeqJSi8cxkuzl+Ami9XefGq3WNwBJ0ptQWlZZTRj30w7Uy+a7GyOF/G3+pFa7Qgq2UBm84yJoWqwTAMJ0g+WVTPUV1FWclnG11P2oo8cQDkgwcTY3VrfuA9Np4KSvmen/bQ0t3RcYG8Nb1R/gqOWeCZknqn5xa49BGCUgEBO+isIOBeUAoA90xLxNRk8iFQpTHg6XXpbbKUi5XkQ0QlEyPCr2OOg5ygVO06KB0cSD6IsurIAGueA6OeVqYPCnXbKbjO4B2jI8BFr1JqslPbbCSMIwAgp7IJX+7P4z23iAFumdBupsOyLDbnb3Z4LTuKdrh93fZ0pPa1v9AalIphQRCoiZurTCkAhFNBaUVLUFqXT44HJnTo+noFMu5ikA+jFzKlAj3GfipLGqiSOuzhTGdL6cXZxJYWMizLovTpp2EqbFlQYllUvvkm9JmZXrpq96DLMSo1BtQ2G7k1pX6Oa0rt5bt51c1Ov6ut5T60826ra+0Qqi73t1MlhFEUwwDhZnJ+4SgoBYCAG64ntpt27ISpnCsvpsuL8muancps6aDUURsehmE4/hSCA6+AEJQKCNhBB6VKqZiQ5TpDKhbhs9vGYDTVq3L3hSocyrXdqHMqyQl36yqop5gsJsKBFnAvUzo4iAxKc+pziO3xA4I4NST2zElx36Haq/JdtWP5Lp0pBbgtV9afKOb0c2vl6cuGIDmsXRqZ25CLkqYSh9dyvNxxXzdncINSIVMK2KR8rRPUIDRCxFB/KLUbnzlHmdJLKSiVyAHKyMwHXOWFgEB3QUtwJyeHOFy0pGs0aQaE2IIffXo6DOfPkztZFvXr13f8QjtAQrAKMgk5Rc4sb+QsJtobHQX7kAvYDTpTWysZurUazfGCOlitLHKrqaC05dk0hMrccg0TfSCqI5+5Yp560lb8r7wSjMouC2q1on7tT5zjaGWURm9GvZa/V2mzwcwxEByX4Hgxmi4Fop3+BfofQlAqIGAHXz2pJ0Gjj1yCVXeORxiVXV2512YoREtz7IMhTyhrLiOccwH3gtIBfmSvtmpddVvPT8DW6uRuB/3cAlVSLEhzYTpjR1caHZU3l7f9/Gq5BH4KcrJOB3yb0kmpWLifHCsWDsavD07B36YnEfuOVzgPOk9VnYLJ4rqBOA1XZixkSgFSuhtGS3cZEaByPLFqfyEVlNYXAAYNT1Dqor1Mb4ZhABnVFgZ6wTBLoEewWlkcuEjWSNJKIXtctdxKbAlKm/bs5d2v2bqtW41wJGIRBlLP55OF9WjUk983Z+67QHuvUley1+MFdSht0EFvIp/ryS0ZZNrBmCYl0penHYzj0gexWg3/xYuJsfpffgFrIRe5ogIURMs7wHFd6YnCOljs0rcSEYNRcZ4FpYKbeP9GCEoFBOygnXfdle7a46+S4uE5A4mx3ReqUKnR42IVvzTHU2jprp/MD34y1302+QJX2jDp1onxvKva985IgkrmuOWMPSaLCRqqFYc3g1KT1UQEvXTLFftMaXmDnrOqvPL2sXhgZjJGUK6GAHCs4hixPT1mOrFtsBiQ25ALT+EaMgmZUsBFPakqBBC5oVQIGQQw1HGV523BqT19OVMKAHJyYqpi9BypuoBAd5BR1shxMHcWlDqS9QKATCxCXEvtYvP+/bzHmMvK2iW93QSdndydVcU5xl6+y9fSpvV3RDvl0s+e4jpdm6KqFV+5pG0OkhblD5mTfqtj44Nc9iilCaQkvOayMjQfPESeQyzitMehF9dbOZpHXv/QaH8onSjNhlNmRxq9mQh4i2q1WHusCAcv1gjOvP0EISgVELCDzpTSGU93uWZUNFR2N2OLlcWGkyUcaUtSaMcypZ4677aikCgQpiTlkEUa0sxIJhHhq2XjMG1gCBgGkIoZ3Dk5AfdMS3T7+uh6UqBzNaUhyhBOD9ayJjsJr5OA7whV4+KrkCAtit9BmGVZTqZ0VuwsTlCcXZ/t/sW3wOn3JhgdAaCCUtDOu27KxaUKIJjMeOPiTsBM/Y77elBK1ZWqoRPkuwI9Au26Gx+sIhzMaeKDVZyFuVaGxfhDLhGDNZuhP3fO4Tl0p0937GI7CG0uRD9L/JVS+Ni54krEIgRQgWltky0oLaKC0rlDwjilQT9T/c2TwtrLexRSMUbyLKK2MiHR86BUkZoKeUoKMdawfh3nuIHhdJ/ZRs4xANd5l68/qT3hfnLOwv/BXFv2/aOdOZjx5k6s+PkMblp5CH9bfVxYgOsHCEGpgIAdHWkHw4ePXIKFQ0mp6ztbLxATcACcQn936YjJUduxVABb1Mi13A/zU2D13RNw8l/zcPxf8/DilWkQu2lwBHCluyJGBH9Zx37W1teHq0jDG+cOvO2Z0tNF9cS+sfGBDn+WSm0lKrWVxNjo8NEYGEhmvrPrPA9K6QlZqSDfBQA06NqzLaFMPbnT3aAU4Ep4s/4gt8VyQO2+/LxXQsl3fRi94L4r0CPQJkfOsqSAzdhmioNjxsTbFiwNublgjUbeYwBAd+qUZxfZSZz1ngaAhBCu0smR2RGdKU0I8eFkS+lMKb1oPTmZv5QhRC3HkAg/mKvJTK4k1PnfBAACrrmG2NZs3wGrlrxWWjmVUcoNSo1mK04WkUGpI5OjVhiGwaRE8mfacb4Sv54qwZtbsggjp60ZFfjPZs+d7wX6FkJQKiBgRyUdlKo7FpQCwLWjyeCPrhUJUcucmgo5o6OZUgCI9SXbYtCZUnsCVDL4KbiSJFfQQWmAPABid2SYTnDWFoYT8NllIVut/Fuh+6PZQ7sRqyQqJPglYGBA54NSOnDW6Lnth/ojztvBeBCUhqeR22VUViUgDhD18Uce1avUB4L7rkD3ozdZcISSak4b6DoAunJkFO9462s5Bkf0+2Z2b1BCZ0ppBgRzM8N0m5PaZiPMFitKKPO9uCAVRlGmiDQDw8nv+9LRMeCzuFg6Jhoi1gpLDfk3kYS6bqflt+gKQGzXY91gQPNBsmcpLb3OKGvkyGnTSxo4c5yx8a7VUbR54vbMSjy2lj8j/s3BfE7GWeDSoo8/oQUEvIu3MqUAMDEx2GnQOSImoEPOu0DHepS24klQ2lG8aXLUirO2MHTjdftMaWY5uarrbKJB9yAdHDQYIkbEzZR2RL7L0/qnXMiWosHOyTGUDko9ypSmON8fOtj5/r4AnSkV3HcFeoBTRfUwmNsDEBEDTEp0HZROTQ7hZAeHRPhiclJLUJpDusHTi0iGixe7tbYw1FfOWyfairuZ0rIGPWEABNiC0tFOTIAAYDilpIoNUuHyYeRzUCUT4/ZJCbDU1gJWMih0Jd8FAElgIFRjxhBjmh1k27NUKiht0Jk4QfbBi2TmfHC4LwJ5jJ9oZgwKBS1con9XrZitLH465v35ikDvQQhKBQTs8GZQKhIxWDo62uH+mYNdr2LywbIsJ5D0RL5LB6XO2p90lFpdFwSlaseZ0sgAqqa0JVNa3WRAdRMpB3MmyaIzpa19XemgtLy5HM0mfrMHRyhlYs4ERzA7Ahp07dniDteUAlz5Lme/i6C1L8CR7+oE+a5At3OMqq1MifSDv5PgrRWGYfDxLaMxLiEQIgaYMCAIX945rq2cwlhMLrb6zp1LbFsbGmCu4poNdRUMwzh9XgxwIyitbTZwpLu+cgkCVFKnNaKAzSiI5vVrhuGa0dGQiUVIDPXBqjvHITpAyaknhUgEcZB7z1317FnEdtPOXYQLb3SAkuNwf7KwnthurQVtZVKSG67psKmxpg10fy607kSJYHp0CSMEpQICLVitLKq94L5rz3VjYzmrgK3MSQnn3+GCRmMjmkyki68nmVI6uKvQVnj9Jk9nSjtjctSKc/kuJY01mKHRmzjSXblExOm7Zg9fphQA4v3iwYD8Q9LZanfgZHQFsyPUO60p9eA7EjgAkDiRw18KQakg3xXoBdCGNq5qB+2JDlDip/smI+fVy/HjvZMI53RTEXlPVU0YD0ZJfqeNdDa1i3FkigdwW5oA3KC0rtnECUpjg1RgGAbBarnD/q0Dw9S8pTN+CineuX4ksl5ZiO2PzcCElppMOlgXBweBEbtXMuM7ezaxbamtJQynGIbBaEqKax+EGswWHKM+ExMT3QtKAeD+mUm848lhavx83yRirKReh+zKJt7jBfo+QlAqINBCvc4EMyUb6WxQGhukwg3jYjnjs4eEcdqYuEteQx6xLWEkiPBx38CFNgwyWAyoN9R36FocUaUjH5AhStcyIlc4k+9G8Lg6ljXokUkFpYPCfR2aHBktRhRqyJYDrZlSuViOMBWZtaOPdQfaJVgwO3JVU+qBmkAkAsKGON4fluZ4X1+Bct8VjI4EuhuLlcWJAs9cVvkQ8dyHTVSmVBYXB3ki6fpuyLno8Xt1BkcGToEqqYNMKTlnqOHJlMbZuRTPTeVfeJvnYLwVhmGI8h9zlfs9SmlkcXGQDSD7k2uPHiW2J1OZzz0XqtoWs/fnVBNyboYBJia6/5mYmBiM5VR/9BC1HJ/cMhpj4gM5ZVC7skgzQoFLByEoFRBogZbuArYbY2d5emEKYRQQF6TCv6/s+ASZDkpj/WIhFblvRhSqCuVk/Sq0FR2+Hj7o89EBXUegg9JafS30LS0/FFIxx2CitF6HTMq63pkUq7CxEFaWrMkZ4N/+oIzziyP2daQWl5YZlwvyXdS31JRKYEYQQ62Ae5IpBYC4SfzjqmBbL9O+joz8/KqFmlKBbiazvBEayqDNHUMbV1iammCpryfGpNExkCcnE2OcutMuZkJiEG9/0NFxgbyeEHxGR5yg1M4gacnIKF7zIrp21BV0ptQd5117VBPGE9vNR44Q21OTySC3uE6HUy3O9n+mlxP7RscFIkDlup7UnueuSMGnt47G9WNj8PfZyfjzkWkYGO4LhmEwfRD53rt4+sUKXBoIQamAQAuVGjJACPKRQeqkWbW7+Kuk2PDgFHx66xi8d+NIbHpkmtN+bq7IbcglthP93e8fCgBSkRShSvImb5919AZVWvKh4Y2glC8bTJgdBXAdeLMqyEypM5Oj/MZ8YjtUGQq1XQ0fXYtb2NiRTCm54lsqBKVtLROCwdP7zpOaUgBInsM/Hj+l7zvvAhz5rgp66EyCg3NfRKM34adjRfjtdGmfynbTMs34YBXCeEzcPIXOkgKANDoK8oFUUHqxezOlKpkEC4Zynz2LR/A7CXNrSo0cx1j7539iqBp3TSGzhNeMjuatJ3UGt0epZ54VqnHjiG3d8RNgze33lpRIX05mePXBAuhNFmw9Ty5CX8bz+3IFwzBYODQS/7l2BB6bP5hQqdH+G8cL6mCyWOlTCFwCSFwfIiDQP+CYHHkhS9qKVCzi9C3tKJ0NSgEg3Ccclbp2CUxFs3czpXSvT1oy3BFUUhX85f5oMLRLPMuay5DgnwDAVqt0tqQ9sMmrbsIFTlDKX78DcIPS1vO2QgeljmpKjRYjPj39KXYX74afzA+PjH4EI8NGAuDKd8vqBflubbPte8eR7jJiQOmhLDB+CiD3BwzUuQYt6MQV9iI48l3B6KgvUqUxYMlH+9scTFMj/bD2vklQy3v/lOwoZXI0Nr7zJnYANyiVhIdDJJdDlkTWGxpycsCybIed6zvCigWDcSi3pm2OMDU5xGFQSqurapqNnO9oHLUo/c8rUpAS6YcDOdUYHuOPWyfGe3yN3Exp54JSa1MT9OczoRw2FIAtaLx6VDTe2Xqh7ZgNp0rAol3t0oq35jqtTKDk4QazFRmljRwnZ4G+zyWwdCwg4B286bzbleTWk0GpvcTUXeisY7nWe5lSrUnLMWLyRqYUcF5XSjca336+ktM3zZl8N78hn9hO8EsgtuN8Sfmuo5rSfx/8N1amr8SFugs4VnEMd225CycrT9qun8qUCvJdoLbFHZljcuQT6nl2U6oEpv2DHAtKAoZe2/EL7E1Q7ruCfLdv8taWLKKlRkZZIz7e2b2y1I7AsiwnKB2X0HnpLgAYKZMjaYzNvE8+kHQ+724HXsCW2fzzkWn4v6XD8NHNownHYBra34BlgWbqOxpPBaUMw+DaMTF454aRuHPKAEg6oNDiZko9k+9Kw8K4daXHjxHbt06Mh1Labp5kZYFfTpLu/VOTQxAT2HElGB8BKhmSQskFueNUXbPApYEQlAoItNAXglK9Wc9p4ZIY0IFMKZW59KZ8l68+1VtBKR1M2zvw0kFpbjXZsiXUV+70b0pnSuP9yNVqOlNa3lwOo4VsN3Oy8iR+u/gbMWaymvDSwZdgZa2cTGmrS3B/RW+ytE3YuD1KO9YyCZMfAea9DMROAIYuBW7/FZB2Xl7YK5CTiyoqRg+94L7bp6htNmL9Sa7K4ufjxbA66M/YW6hoNKCikXxOjvXAedcZHJOjlqBUGhXl1IGXtVpRt+ZHFD/8MKre/wBWXdeoT0LUctwwLg5XDI+ETOJ46hyokjrdLxYxiA7smMmhM8zVnaspBQDVWLJfqf5MOrEd5CPDQ7NJOTXNfTP4nXQ7yxiqbvl4oRCUXooIQamAQAuVfSAoLWgsAAty4jLAr/OZUm8aHdHSXV+ZL5TOWnV4gLO2MElhavpwgrQox9JdgBuU0hloOihlwaK4iZxI/ZD5A++5c+pzsLtot0OX4P5KndauHQynR2kHJd8iETDl78DdfwHXfgkEcN2v+yyUfFfIlPY99mZXwWThBp+VGgPSSxp4XtF7OFdKXp+vXIJEHgfajmAsJo3jWjOljEjE48DbHpRWvPoayl98EZqt21D98ccovHMZUQvZ3TAMw1l8tCc6QOkVrwoajvuuh/JdAFAMHUZs686e5Rzzt+mJDh2JrxkdjakDO++0zwcdlNIO0AKXBkJQKiDQAm10FNYLg9KL9aTJQ5RPFFRSz6UyXZkp7Yp60lacBqWhzidHjvrBAUCdvo6oVQW48l21TI0gBZkVsK8r1Zl12FW0y+F7bMzdyOsS3J+D0pqm9qCU2w7GO9n1SwoZ3adUB61BMDrqS+zNrnayr3e7ip4rJc3IUqL8eFu7dARTMakAksa2997mOvDanoOG7GzUffcdsU93+jQ0f/3llWvqKOFOjJ/ig70rbQUAS1MzWC1ppuSpfBcAlMPJoNRUWAhzHRn8ScUirLx9LG6w68HOMMANY2Px2tXk673J6DgyKC1r0KNMaKl2ydH7q+oFBLqJvpApzazNJLaTAjomleFkSpsrvGYeQWddaaffzuCsptRXIUW4n5wjL2sl1UmmlM6SSkQSRKm5RhaxvrGo1bfXVNk78J6uOg2d2fFDcnfRbujMOkT4K9ocZ4H+bXZUa/d74NSUeuq82x+g3HfFDAvW1H8/P32Rk05kh6eL+1am1JX6xF1YlnUo3wXAdeBtyZTWfrOa93x1P6yB3+WXe+XaOoKzTGlXBKXmCu6isiTM8/unPDkZjFwO1tD+DNWfPQv1tGnEcUqZGP937XA8Pn8QCmu1iA5UcvwSvE1SqBq+cgnRjuhsSWOXv69A9yJkSgUEWqikghlnq509RUZtBrGdEpzSofPQQanRakSdwTtyGLp/J19w11Ho6y5pKoHZ2v6QGhTu2MgoLcqxxT5tchTnGweJiLtmR5sdFTQWtP37ZMVJzrFipt0Uwmg14kTFCaEtjB32QWkI3RJGCEq5yLgSdcbUzHMgP2uOFGLhu3sw5Y0d+GTXRbBs765hvNQwWawoqNE63H+qqL5X/03oTKmze6onmKuqiEAIAKSx7bJ7GU+vUtZshmbrVt7zaY8fh0Wj4d3XHcQ4qRmND/KO3NkeU2kZsS0ODIRI6XmwxkilUKSmEmO69HQHRwNhfgqMTQjqlsBQJGKQFk0ugvR2ubuA5whBqYAAAK3RjCZKBtfb5Lssy+J8zXliLDUo1cHRzglRhkDEkF9/b7WFoYPSOL84B0d6Dl3nabaaifcb58B0I8JPgQQnK9SuTI5aoX8WIiitJIPSmbEzMSyElDMdKD2AKKqfank/liDZZ4w58t2O1pReyvAEpWJzs1uBzJZz5Xh6fToyyzUoqdfh/zZn4qsD+V1wkQKOKKhphtmJmVGVxsAx3OstNGhNKK4j71XeypTSWVJGJiNqImn5rrWxEY1//AFLfT3/Ca1WaI8e9cq1dYSBYY4XRxNdlJl0BFNZKbEtjYx0cKRrFC0tYFrRp3PrSnuKodQiyDkhKPUqDVoTNp4uxdH82h5bHBOCUgEBcLOkALzSENyblDSVoNFIrlSnBncsKJWIJAhRkjUn3qortZe0AlyDoM7gL/fn1HXa922dlBTM+7qpA0OcSpPtg0uA26PU0XhrMGu2mnG66jSxb1TYKEyOmkyMHSg9wDE76s81pa09SgEHLWEESKRKsNRikg/0nNZHNBYri5d/z+CMv7stu1e7P9c0GfD6n+ex9JMDeP3P832+J2tOJdkqK0QtJ1ps8B3Dh95kwQ9HCvHSxgx8tT+Ps6DaFZwrIwMAmUSEZBfmcu5CB6XS6Ggwdu2gpFFREKnIRcXK995zek7t0WNO93clzn4vQ6O9k122x1RGZkolUR0PSpVDqaD0/HkHR3Y/w2LI352QKfUexwvqMPOtnXj4h5O47tODeOKnMz3iBi4EpQICACoaycDARybudY3M06tJGU2APIAjZ/WECJX3e5UaLAaO0REtee0sdB2tfd/WkbEBvLXAVwxz/pDmBKWUyVErtNNxWXMZdGYdLtRdgNZMyvJGho3EpKhJxFhOfQ4C1eTEuj8Hpa1GRzKYEMBQMlQhU8qFYcBKyUyLD3RoNjoPSg7n1XCyXADQoDPhr3Pec972JiaLFXesOoLPdufieEEdPtudi8fWnurpy+oUdMA5MEzNyZxluwhKq5sMWPLRfjyzPh1f7s/DixszcPl7e1Fc51gW7A0yKOnu4HBfr7nIGumg1K6eFLA58CqoYMlMSVbpnsb6DO4iTHeRFKoG3xpoqK+8S8qC6N+FNLLjJTOKFLIkyFxeDnNtrYOjuxdaLl6pMaCysf8+P72F2WLFEz+dRp22fYFy3YlibDxT6uRVXYMQlAoIgGty1NuypABwrJxc+R0eOrxTxkThPuSk3xvy3Zz6HE7LGm9mSgEg0Z9sD2CfKZWKRXh64RBi/7SBIZg52HHWzWK1cLK7juS7fD9LYWMhR7ob7xePEGUI0oLTIBVJiX16Jp/YLqvX9eo6sq6k9XsXTNeTAkJNqQMYyuxIzeih0TsPSjell3VoX0/yw5FCnC0hPxd/ni3H6aL6nrkgL0AHpclhagyksmrOMqUsy+IfP55CZjlZL1lYq8X9356A2eI8Y94ZuPWk3pHuAoCpiDI5io3hHKMcMcLpOUIfeYTY1p8/32P3VaVMjORQbrZ0eBdkSQHAVE4uKHdGvisbMACMnFzY1Wf0jmxpYogPfGSksoD+XAp4zh/pZcir5noTfL43r9uvRQhKBQTQN5x3j1aQNTLjwsd16nyctjBeyJRm1pDuwHG+cR1qWeMMOiil2+QsHRODL+8ci5snxOHpy4Zg5e1jnQbv5dpyGK1GYsxRUKqSqjjZ6bzGPE5QOipsFABAKpYiJYhcea42kdfbbLSg0UVQcanSqlDg1JOKJIAioPsvqA/AyMl6NRX0aNQ5l+AeuFjjcN/B3BqYujCY6Qgsyzqsd914uvtX771FThU3KKWlns6C0q0ZFQ5byqSXNGDtsWLefd6gq5x3AT75Lk9QOmqUw9fLEhLgv3gRMWZtbISppMTBK7qe2UO4i2oL0jqubHIGLd+VdkK+y0gkkA8ZTIzpz/dc1tkekYjhuOgLEt7O82c6/9wvvaQB+TzBalciBKUCAuj9PUqrddXIayBXrcZFdC4opYOrsqbOZ0zO15IrqkOChjg4suMkBpBBaX5jPqwsOamePSQcr109DPfNSIKCqtmiKWggpbtqqRrBCv7aVIAr7c1vyOc477YGpQCQFpJGvl8zd9W5vJ9KeFvb93DrScM4cjyBFmSUfNdFprRKY0BuleOJhdZo6XUTuzPFDQ6veev53ik3doXVyuJiJfkz8QalVfxBKcuy+HBnjtP3WLk3t0vqwPQmCy5Sfw9nLbY8xZV8FwB8Jk0Eo+BXMPnOmwdJZCTEgWQvS/25ngum7p46ACHq9p7UKZF+uHKk95zoW2EtFpjpoLQTmVKAK+E1eKGu1HDxIirffhsV//cfNO3e3eEsNi3hPdvL7l09QbPBjF9PlWDz2XIYzJ7V3RvNVuzLcdw72dm+rkB46gsIoPe3g9lZtJPY9pH6YHDQYAdHu0e0OprYLmvufFB6vOI4sd3RljXOSPIna0p1Zh1KmzqePaGddxP8EpxmVuks6oHSA6jUkXW09kEp7cB7ruYsgu0mKwBQ2g8deE0WK2pajI64zruCyZFDKAdeNXROzYqO5ZP1YD4yMaeO8VCu40xqT7Ajs9LhvoIaLdFKqK9Q2qCDzkROGJNCuUFplcaABi3373m8oA5nqD6mS0eTwVtedTO2O/nddZTMcg0sdsEuwwBDIrzUo9RohJmSn/LJd0VKJdTTp3NPIBIh4IbrwTAMp51JT9aVhvkpsOHBKXh83iD884oUrL13ossF0o5gKisHayI/L9LoaAdHu4cihf49di4orf9lA3KvWoKalZ+jdtUqFN17Hypefa1DgemwaCEotae22YjL3tuLR9acwn3fHsfNKw9Db3I/MD2WX+vUKO3ARSEoFRDodnp7pnRL/hZie2r0VN4+mp4QqSZXUyu0FTBZO+7EWdJUgpx6ciW/s9lcPkKUIfCTkROirNqsDp+PNjmK9+eX7rZCt6WhpbuB8kAimzo0hDToqNZVIyyADELL6vtfprS6yYDWOUkoqImFj1BP6hA5+dlXQ4dGJ0HpESooHZMQhKnJpPP2odzeYWTSiqvV+TPF9d1zIV6EzjSq5RKE+8kRH+wDiYhcBMup4vbYXHeClKLGB6vwf0uHYUgEKedef8L7El5aujsgxAc+XjICNJWWAlRwwpcpBYDge5ZzFBT+Vy+BrOV4RSqV4csky0m6m5hAFR6eMxDLpyXCVyF1/YIOYMzPJ7ZFvr4QBztW+rgD/Xs0FhTA0tQxGaf2xAmU/fOfgJkMfOq+/RaNv/3m8flo9+LSBj3qtX1vkcpbvL89G4W17SZnxwvq8M3BfLdff9DFgiS9ENbVCEGpgAC4mdIwv94TlFY0V+BoOVlPuiBhQafPG+VDSomsrJXjnOsKk8WEny78hMd2PYZrf7uW2BcgD8DQ4KEOXtlxGIbh1GmeqznX4fNxglIH9aStDAwY6HT/yLCRRKY13i8evlJy4qj2JX/P/bFXqb1kmSPf9RWcdx2iICdlfozWqXyXNgIZGx+ICQPISeuJgjoiE9aTNOpNOOXCzCi9mydK3oCuFU0KU4NhGEjFIiSE+Dg9Vm+y4HfKCfP6sbGQiEW4fVICMb49s9LpIkVH4Jocec+wx1hMBtsif3+I/fizsMphwxD97n8hiYgAJBL4L1mCiH/+s22/fDBZLqLvpqDUqtXCVFraI8ZKxoJ8YluW4Fzp4w7yQYMAsV1Wl2VhyPL8d8maTCh/4QXAwp+5q3rvfbBGzwLKxFAfyCjX5/Nl3EWc/oDOaMG649xFqJ95xhxB32unDyJVSsV1um4N+oWgVKDfw7IsSuvJoKA3yXe/OvcVUTOplCgxNXpqp88bIA+AUqIkxjyRwTabmnHnljvx0sGXsLVgK5pM5ERqQcICiEXelysB3P6sGbUdl2nxyXddvTcDxw/9MeFjiG0RI8LAQDKQFStIuVppP6wprbBbCAqjg1J11xiCXBLQQSm0Do2OWJbFeR7X1HEDyNq7JoMZmeW9w8Xy4MUaIkCWiUW4YSzpeu2o7rI3w3HetXNnpR14syvIYw/l1hALDwwDLBllk2heNjQCUnH7/chotmKrl9v8dKnzbnERsS1zIT31mz8fA3ftxJDTpxD1xusQKdufYYoUMig1V1R0eTuTxq1bkT1jJnJmz0HelVdxTIe6GmM+uagqS0jo9DlFcjnkSWSZTEckvPU//wxDtuM6aFNpKTQ7d3l0TqlYhIHh5PflfFnvuHd1N0fza6Hhkd5eqGhCmRsL3VYrywlKrxsTA5mEDA270+FYCEoF+j0NOhOaqabsMQHedYztKIfLDuOHzB+IscWJiznBZEdgGAaRPqSE15O60pcOvoQzVWd498lEMtw19K5OXZ8z6KD0fE3H7P8NFgMnEHeVKVXL1BwHYHvo3qQAOEGpUUy+pzsPkEsNe8k8J1Mq9Ch1jDKA2PRjmh26NxfX6TiTltQoP4T5KpAQTN7jjub1Dgnv3uwqYnvcgEAMjSaDIGcOtb2VizztYFrhBKXUsXSN7ajYAEQH2J4BgT4yTB8Y6vT4zmC2WJFZ1pVBKWVyFOteCzFGzF3wlCUkcMyQulLCa6qsROmKp2DV2DJ1huxslP3zX132fnzQ8l1ZgvPnl7vQZkd6D82OWLMZNZ9/QYzJU1OgGEZ6LNSvX+fxtaVEkp+/3rKg1t0cK6hzuM+RS7c9eTXNHJXN2IRApFAlAd1ZtysEpQL9HrqpPMMAEf49myllWRY/ZP6A+7bdBwvbHjBLRVLcOfROr71PlJqU8JY0uWehf6ryFDblbeLdJxVJ8dKUlzjn9iZ0UFqrr0WF1vPswMX6i5y+qq6CUoCbDW0lTBnGK+8dFDiI2G6wkH1RS+r6X1BaZi/fpWtKhR6ljuHJlDqS79Ir3IEqKSJaVCBjE4KIfUedTHC6k33UZGpqciiSqJ6PuVXNXeIy25XwtYNp+3c4OQnMrmiXI7Isywky56SQizbzUsntPReqvNbmJ7e6GQYzeS6vyncLyUypNKbjJj2MWGyTntqhP991QWnDhl/B6sh7d/P+/TAWFDh4hfcx5pGu/LL4BK+cl64r9TQo1WzdymnJE77iKQTedBMxpj1w0ON6VbqOur/Kd084uWefcyOQpHs+h/vJEemvRBpVtytkSgUEupESWrrrq+DIF7oTo8WIFXtW4LXDr8FsJSeb9wy/B7G+7q0kuwNdV+puW5jVGauJbZVEhUdHP4rXp72OLUu34IrEK7x2jXzE+sZy6jQ7UldKGyTF+sbCR+rj4Oh25iXM4x2/PPFy3noeOlNaYygG0P63LarTwWjuXb0iu5p2cwaWK9/1FeS7DuHUlDY7rCHMoDJcqVF+bZ/PcQmkhPdYfm2Ha+JYlkVWuQZFdoYbHaGoVov8GvIc0waGIInKJOpMFpQ19h3Je22zkeMYbB+UDqLkiKUN+jZH5ezKJs7CKd0Dcxa1rTGYcSzfO4sMGdSENNJfgSAfmYOjPcdYSC7QyeI7l+lTDKZ6bHagFtJdmnbt4h1vPnCgy97THotGw8k0ywYkeOXctJOxITsbVg/qPxt+JU2MFCOGQzVhPHznzwMk7SZZrMmE5gP7Pbq2VCpTeqFCA3Mv67XcHVyocByMuxNIZpaTrx8WHQCAG/Rf7MZyCSEoFej30Fmq6MDOS2M7itlqxlN7nsLm/M2cfXPi5uBvw/7m1fejHXhLm13XlNbqa7GjaAcx9sDIB3D3sLuxKHERQlVd386DYRhOu5mz1Wc9Ps+FugvENp3RdMTY8LGcxQEJI8H1g67nPT45IJnYtrAWiOTtMkWLlUVhbfc2qe5pCluCDx/ooWJIozEhU+oE3kypg6CUmpik2LXxGEdlSisaDZzgxx1K6nW47L29WPDuHkz7z04s//oYdEbPeuW1QkvOgnxkSI30Q5ivHEqqnUZxJwLgBq0JPxwpxJojhV43BeKDlhvLxCLE2j1nBoT4gDLgbXPrpbOkUf4KzqQx3E/BkdTuzPKOhJd23vWmdJdlWW5QGte5oFRO1ZUauihTamlqgu7UKd59zYcOd8l70nCyl1Ip5AOdG/G5i5yS78JshiE7263Xmuvq0LRvHzEWeONNYBgGYrUaqnFjiX1NHtaVDqGCUoPZivya/vX81BktqNQYHO4/X9boUk2SRQWlrfeVZEqZcrGqqduUKUJQKtDvoTOlrbU6fHS1u94HJz/AtsJtnPG7ht6Ft2e87XXjIDpT6o7R0Z95fxIZXLlYjiXJS7x6Xe5A9/90VN/qDDooHRzoXu9XiUiCN6e/iUC5LdskE8nwwuQXEOvHn8X2lflyftcB/qQVe05l/3qoFrRMIjj1pIBQU+oMD9x3aQOQVLuAYkCID4KpjJenPemMZiuWf32MWHHfdr4Cr23qWF/DXVQgNSU5BCIRA4ZhOIuF9H3bXc6XNWLOO7vwzPp0PL0+HXPe3t22QNJV0EHpgBAfSOwcROUSMRKCSYVGq4R3x3nydzJrSBivGoPOnu65UMU5piPQGZdUL0p3LdXVYLXk714WH9epcyqGUG1hcnNhNTievHcUw4VswMqfndOdPMk77ilWrRaVb7+D/FtuRdmLL8JUQZao0H1Y5QOTIZJ5J4stVqshjSP/FgY3JbyaLX8RLWAYuRy+8+a2bfvOmkUc37xvn0dzqyAfGcKpDgn9TcJbVOf8ntVsdK0moYPSwa1BKaVM0ZusHb7feooQlAr0e9zJlJ6pOoM7/rwDI1ePxIwfZ+Cd4+9Ab/aufOxY+TGsOruKGFNJVPhg9gf4x5h/dImTbbQvWb9T1lTmslfpzqKdxPbc+Lnwl3tvouIuw0OHE9tnq8/CYnU/Q8OyLLLqSPnuoCD3MqUAkBaShs1LN+PLBV9i89LNLgNzWsLr708GAN0pkelp6rXGNnOeMNSTO2W+gMy1hLrfwsmUNkOj4066G7QmzkTCPihlGAYTk8jWMNtaAiCr1eZIXtfsXK63/kQxr/Plt4cLkFft2SKL0WzFfqo/6Uy79gT0YmFHsrp6kwX3rj6O6qb2n6tKY8Dzv3musvAEjvMuNenjG8upbEKD1oTjhaQMd04Kv4pgBtXKIbNcw+m/7Sksy3ap8y6dJWVkMkjCO7cgJR80yGYM0YrFYgsgWzebmmFp7HyNnOGiY1dZc2UlzHWdk0+zLIvihx5CzcqV0B0/jvo1P6Lg9tthaWr/LOnPkUGpMi2tU+9JwzE7ctOBt/H334lt9axZEKvbP9/q6dOJ/eaqKuJv5A5DIsjPYX9z4KUX0kLUcqip3sF5VY7vwQ1aE8qpoLU1KA31lcNXQZ6ru+YnQlAq0O+hV5zoyc/xiuO4c/OdOFF5AlbWilp9LVadXYV7t94Lo8U7/ZtMFhNeOPACYbojFUnx4ZwPMTN2plfeg48B/gOIbTNrRlFjkYOjgSZjE45XHCfG5sXx11d2NXRQqjVrcbHhotuvz2vMQ4OBlKYNCRri4Gh+VFIVxkWMc0uyzG0LQ65696egtMDugRrKCCZHHkEFpWKGhUXP/ezQ9aQysYhjGDSHyq7tvlCFNUcKMeOtnZj8xg6Menkr7vuW/L63wrIsvjqQ72Af8NMxx/cRPo7l13Jc0GcMbv9exdCZ0g4EpV8fyCcazbeyK6uKI1P1JrTJEV0jC4DT5iK7sgm7s6uI9jhyiQiTEkN432NEbABnUkoH+Z5SUq9DA9VuyKtBaQEZlErjYsGIOjctFat9IKMyfLrTp2E1GlH+8iu4MGECLoyfgPwbboSBMgnyBGOO46AUgMdBFk3T7t1oPnCQGDMVFKLq/ffbtvXp6cR+ug60s3TEgddUVgbtsWPEmP8i0mNCGh8PKdX6p3m/Z3WlXAfe/pUpLaDuY/HBKgyg+h3nVTueU2RR9ahSMdP2eoZhOM+K7nI87zdBqVarxYYNG3D33Xdj+PDh8PPzg4+PD0aMGIGXXnoJTU2e/cITWhoUO/ovs5uaNgt0DquVRS61mmT/xdab9Xh679O82cMTlSfw9rG3vXIdP2T+gEIN+YD++6i/Y1zEOK+c3xF+Mj+EKMlJTm5DrsPjD5YdJKS7UpEUE6Mmdtn1OSNEGYJoNflg80TCe6LiBLEdpgrjSGy9SVIA2fdNB9KZkO5NeClj/0AV2sF4iIKrSmD0DRz5Gx2UDgxXQ0o1nZ89JIxoRG80W/H0+nQU1bYHfLuz+GWgh3JrnU4Efz1V6pEkj66BHBHjjxB1u0Svs/Jds8XqMIgGgC1e7u1pj7N2MK0MDKMdRRuxi6onnZQUDKWMXzEjFYswicp8773QuaCUzpL6K6VOy1s8xVhI9djsZD1pK8rRo4lt7eFDKHvun6j77jvAYlv40J0+jcJld3U4o2nIcb4AasjKcrrfFXXfrOYdr//pZ1jq62GqqOS0g1EMHcb7mo6iSCODXH1mJliLczVS4ybSlV/k6wsfKjPKMAx8pkwhxpqpGlRXpERyvy/9iUKqhjY+iBuU5jpRq2RRbXSSQsnnA32PEjKlXub777/H1VdfjS+//BJWqxULFy7EtGnTkJeXhxdeeAHjxo1DZaXnxgB33HEH73/+/t0vZxTwnNIGHXQm8iZr/2Vcm7UW5c3lDl//feb3OF/TsfqpVjRGDT478xkxNjx0OG5Lva1T53UXuuems6B0T/EeYnts+Fi33Gq7iuEhZLbUk6D0QCnpkDgmbAxvrZa3oFvFNJorAVG77DKrXNNvHHjtJ+lc510hKHWKzBcsyM+pGlo06si6UtrkiHasBIAAlQyXD+uY0/HXTgI8wBY0OpsU2cOyLDafI++zMwaTWVyufNezOtC/MiqINkQ02zK6JihtNpg5ATRtJAKQ0mrA1jJp/Uly4YquG6WZNpBcYNyXU90pHwQ+6a4375EmjslR5+pJW/GZOIHY1mzdhsaNGznHmcvLicyjJxioTCkjlRLbdMDoCZbGRjQfOcK7j9XpUPfTT9AePkSMi3x9OW1cOgudKWV1Opftbhp+/4PY9l0wn7fOlQ5KtceOwap3X25OZ0rLGvSo13pHudYXoBUfsTxBqbMSCjpTOpgyT+MEpd3kedFvglKZTIb7778fFy5cwNmzZ7F27Vps3rwZWVlZGDVqFDIzM/Hoo496fN6vvvqK97/IyEjXLxbocWhJgq9cgjBf2+o8y7JYl002dlaIFRAz5Er1Byc/6NQ1rLuwDo1G8uG/YtyKLqkh5cPdoNTKWrG3eC8xNiN2RpddlzvQEl53g1KNUcMJsLs645vgn8D57Ihk7RNho8WK7Mr+IUGyz+KF0jWlQqbUOSIRoCAnZH5oRk0zWVdKZw7oSVwrD85KdrsF1pE8mzlXcZ0Wf2WQQeTzi1I55iPumu2cLKonsrMAMJ/qvRkTqCK2S+v1HjlCfrU/3+n+8+WNLp14d2ZV4vlfz+KD7dmobnLPPIdW4jAMkBjKXchLDlVz6rhoZg12HpROTSaD0kqNARc6ocDI6ELnXQAw5lOZ0k6aHLWimjiJrCt1Qv1PP8NU6trgzx6LRgMzZTqknjOH2KbrZT2h+cABwiiIpv6HNWj86y9iTDV+PBixd+cMkpAQSELJ0hRndaWGnByOGZL/okW8x/pMmmi7l7XAGo3QHuMvFeBjQIgPofIA+pfZEZ98l76vOA1KHZgctUIvnNElCF1FvwlKb7/9dnz88ccYSNllR0ZG4qOPPgIArF+/HkYP+jAJ9A0a9Sb8dKwIv50uhZ7KitJBaVKYum0lOKMmgxOgfTz3Yzw48kFibG/JXuTUOa8vcYTJasJ3md8RY3Pj5mJE6IgOna8jJAaQQenFen5ZUmZtJmr0pGPs9OjpvMd2F3RQerHhIifAb4VlWfx28Tcs27wMk3+YDIOlfVIpYSSYEzeH93XeQi6WI86PnHSFBpHSsbNuNLy+FLAPmCKYWnKnEJS6hOFx4LXvg2k0cxc4UqP8gPoi4OgXQOYfgMmWlRgY7os3rx1OTPD8FBI8uWAw/Kgg6ZXfz8NksWL1wQLYx4M+MjGuGxuDaQPJCay7QekGKiOYGOLDCYDomlKjxYoqNwPDsyUNOJJPfs7+c+1wSMXtgQvLcpvJ2/O/PRexbNVRfHOwAG9vvYBF7+9zK1ubU0X+HWIDVVBIucGDSMRgVFwgZ7yVgWFqxAapHO4HbBN1OqO8N7vjLrxniumg1H0FGGs0ouG331D57rto2LgRLBVksWYzDBfJZ40sIaHD12qPNDzMFvS4g9mM2q+/9uj8dJYUEgnHvIcvKGVZFjVffInsadORPWs26tau5T2/9shRYltEKe9MpaVo2radGPOdNdO9i/cQeSpdV5rh4Eig4Q8ySyoJDYVqHH8JktjPD8rh5PPbEwmvVCzi1GH3FwmvxcqimFrEiw9WcRy8i2q1vOqr1r7S9gwOJ4NSuu6dr9dyV9BvglJnjBhhCwAMBgNqampcHC3QlzhTXI9Zb+7Ckz+fwd9/OIl5/92NXLsVn4vUKra9ZIHuFRqtjsaY8DG4JeWWtlYgrazJWtOh69tZuJMjD75z6J0dOldHoXtoZtdlQ2viTrb2l5BGBPF+8Q5boHQXQ4KGQCoiZVN8/UpZlsWrh1/Fc/uew7GKY5z9s+JmdYuDMP27Dggg7zfp/SAorWs2Es6pUQx1z/WP6eYr6oNQQak/mlFjN2G4WNUEk4XMIg7THgE+HAv88Riw5mbgy/mArh4AcNXIaGx/fAbeuX4E3rpuBPaumI0HZyXj8flki6Tsyia8u+0Cvj1EZriuGxsLX4UU0ykH2KP5dYRRDx9NBjPWnyCD0sUjojgy0VC1nJMZcdeBl5Yah/rKsWRkNCfIOlFQz/v6jNJGvPEn6RNR3qjHYz+edimPdcd5txXaQdeeq0a6rndnGIYj4aV7v7pLRaOe0wdxeIx790hzVRXyrr8BpSueQs2nn6H0yRUoXH4PrLr2v5exoAAs1apFPsQzozlnBN5+O+94wE03IvDWW4mxupY6TXehg1JZfDzkyaRngKmkBKyJzLzXff89Kt98E+aqKpjLylD+/Ato/PNPzvm1p8iWMsF33w2FM2ddsZiTqfUWtHmS7gR/uxuWZdFISXf9Lr/cafaWU1fqodkR7cCbWd4/gtKKRj2MFjLYjA3iBqVWlr/2vrxR3+Z+3wqdKY0NVHLut91RVyoEpQByc23ZMKlUiqCgIBdHk7z55pu477778Mgjj+B///sfqqq80xtMoPPoTRbct/o4MVkrqtURzd1pMxB7x7GDpaTz3eUDLoeIEUElVeHaQdcS+zZe3MgbyLnirwJSgjM8dHi3ZkkBIC04jZCVWlgLztWc4xy3r4RcxZwSNYVzTHcjE8uQEkyu5PJJePeV7MOPWT/ynkMuluPhUQ93yfXR0HWlIjkpATvuYFJ8KUFmrFhE0plSP9K8SoAHJbkoFsA0EavYdD3pIH8rfP54ALBvY1V2Gtj5attmbJAK14yOwbVjYuCvsi303DIhjjNZ+WjnRcIlV8QAt0+yGdRMHEA+P5sMZpfZi7VHi9BkaJ8giRjg2jHchQmRiEFUgIIYcydTWa814tfTpDzz1gnxkElEGBkbQIxnVfBf6+d7c8EXWx/Jr8WOTOdeFHRGgs7u2OOovlcsYrBklHvfi6lUUHo4rwYGs/utslqhs6S+cgln0ssHa7Gg5B+PwUCZPWoPHULF//1f27ae2i8JC4Mk0HGm2FN8Z85E4C23EGM+kycj/KmnEHTnnYBdsMRqtaj9/nu3z22kTI7kSUmQxVMmTRYLTCXtiy1WoxE1n5LeEQBQ9d77YO36nVqbm2HIJE2SVKNHIfC2W+mXtuE7d65Xf3fke5OmUbrTp3kDeN3JUzAVkY7bfg6ku634TCXnEIbsbJgq3Pd24Zod9Q/5bgHVDkYpFSNULYe/SopAFblIn1/DlfDSBnVquYSjsJCIRUgIIZUZtGFbVyAEpQDee+89AMDChQshl8tdHE2yYsUKfPbZZ3j//fdx7733IiEhAV988YVH50hLS+P97+JF5+5uAs5Ze6wIpTzGFrnVzfhwZzb0JgunZqZ1JbhWX8vpYTk1emrbv68ffD1ETPvXR2vWcjKrrjBajJwazauTr/boHN5AJVVhUCDZn/N01WliW2PUcIK9KdE9H5QC7pkdfXTqI97XBimC8M7MdzitcbqK5EAyU6qxkg/xzPLGS96s4XBuexDqj2aoGEqCKWRKXaMiXVaDmEYiKKUDwQdU2wEdFfwDwLFVgMaxkZtELMILi52bp1w1MhqJLYt5YX4KjtnG4Tye921Bozfho51k1mlOSrhDmSrtwFta79oY5ZeTJYSETSpmcNMEm8JjCBVw87kJ600W/JFe5vD8zhx9Ae5EOSXCcV1mpL8Sc1O48vXrx8ZyamodMSUphCin1JusOF7AdZht1Jvw6e6LeGztKaw+mM8JXNOL64ntodH+EIlc12k2bNjAaQnSSv2aH6HPugAAnMBLPmQw30s6Rfg/n0P0B+8j+J57EP3B+4hd+T+IFArIYqLhd/nlxLF1q79122iHzpTKk5Mh9veHmJLZ2kt4m/fvh5knaWHMz0fzwfYFcN2ZM4BdkAqJBIqhQ+G/aBHkA5M5rwfDIPiee9y67o6gGjcOjMJuMchqRRNPRrPhl/XEtiw+HoqhzvumKocNg8iX/A7aZ0uN+fmo37ABTXv2wMpTWkebt2VVaGC2cOWqlxqFtWSgGRekalOWxFELRwU8daUXqPvcoHA1r4EZX+/krqbfB6WbNm3CF198AalUipdfftnt11155ZVYv349CgoKoNVqcfbsWTz22GMwGAxYvnw5NmzY0HUXLeAW644XO9y3cm8eNqWXERI3hrH1egOAI2Wk851KosKw0Ha79QifCE49JW2K5IpDZYegNbeveDFgurQnqTNGho0ktul2KUfKjsDMkq1gxoaP7Y5LcwmdWT5TfYaQ1GXWZnIyv7ek3IKvF36Nbddtw/SY7quLpeW7DcZaKOTt8hqWdT6J7+uwLIstdi6rHOkuGMCv69ryXDKoyGxYIDSoabLLlNoFpQysmKXdwn8eqwk4u55/Xwuj4hyrh+QSER6dS2b/xyeQx7eaI/Hx6e6LhJIFAP42PdHB0VwH3lIXbWFYlsWPR8mFnwVpEQjztU2y6SxwfnUzx3cgvaQBBieu2Huzq1HAk40AbIEfLZ+j35Pm5SVpSLIzLBkRG4CnL3Nf1hroI8OwaDI4oiW85Q16LHp/H974MxPrT5TgX7+ew80rD0NrbL/HnynhX7B1htVgQNUHHzo9puYzW7aQzpQqBns/KGUYBn7z5iHs8cfgN28eISUNvvsu4lhLXR3qf3bvGU7XwrZKd6UJZLbU3sjJkewVADRbt7b9W3uSPE6RmgqRQgFGIkHUm29C5EcGYqGPPgqli+CvM4gUCqgmjCevdzN5P7HqdGjcRMqQ/a++2qVTMyORwGciWfvb+McfsBqNKPvXv3Bx4WUoe/oZFP3tXuQuvAy6c+RznDZvM5qtbjt+92Vo59244PYFq4RgcvEqv4arJuGaHPEvlNG9SgX5bhdz/vx53HrrrWBZFm+++WZbbak7vP/++7j66qsRFxcHpVKJtLQ0vP322/j4448BAE899ZTb5zp37hzvf0lJSa5fLMBLRaMep4sd1+cZzVY8tpbMBg4O921rPn6yknwwjAkfw6ldvGbgNcT2maozyK5zv2H2jsIdxPbIsJGcnqHdxaiwUcT2obJDaDK234D2lJBOtaPDR0MldW/lvquhzY4aDA1Ez9fNeWQGO1wVjifHPonR4aM5f9OuJtY3FjIRaY8/JI6ctB7KvXTq2uu1Rhy8WIMjebWo1OixP6eGmKRH0kGpOhwQd+/fpE9CZUqDGQ1qW9x3WZYlMqWjmBz4G5y4i55zHpQ6Qixi8NZ1IxBPrcyPH0AHpbW8dZdlDTp8vjePGJubEo5xCY6D4CgqKHXVq/RMcQMn+3nDuPY6+EGUuYeV5WYDjlCLRImhPvBXkp/R7w/zO63SGQmJiNuUnibSX4lNj0zDt3dPwNp7J2HdfZM47+cK2oV3n11QyrIsHv3xJGdie7ygrq1u1mplOaZPw9wISuu++x7mcjLzrqTmVY1//glDbh50dPCV4jwj720UQ4bAZ9o0YqzitddQcOcylP7zn2g+dIj3dRaNhvMzypJti410n1X7TKnu1CmH19K0fUebhFd3kjxONWokcc2JG35B0B23w/+qqxDz0YcIufdvDs/rLXxnzSK2NTt2EDLbht9/h7XZLhgUieC/5Cr3zj2XrIVt3r8fF8aOQ/1PPxPjptJSFN51NyGJDvSRIdKflPTTpQuXIrR8N95OWULfj+nvOcDTDsZBSQF9r+oOB95+G5QWFxdj4cKFqKurw2OPPYZHHnnEK+ddvnw5wsLCcOHCBeTl5bl+gUCXsP08WZfgq5C01T05Yqad3f75WtLWnM4kAsC0mGkIVZLGFOuz3ZvgWawW7CzaSYx1tfurM6ZET4FE1O60abKa2q7PZDVheyHp9DctmnyY9ySRPpGcYN5ewru/lJQaXZF4Rbe126GRiCQct+PIEFJad/Bi3wxKrVYW9VojCmu0+PVUCe7+6ijGvrINN608hOs/O4jxr27HrV8cJl4z3Jd6yPkL9aRuQQWlgYymLeNY3qhHnbbdYGW62EWbpJLjgI4r7+Tj+cWpmJcajtsmxmP9/ZOxeAQ3q00HpXVaE6/s6+2/LhAZSLGIcZkRpINSV5nSnym1THSAElOS2u8VPnIJ4iipMJ1FOEa59k5LDsHS0aTE/KfjxZwMKwCcp86VGOrjVvsduUSMqQNDMH5AECRiz6dptAvy2dIG1LV8PnZlVeFQLr8a49tDBcirbkZmuYb4DAHAiJgAp+9paWxsy4K2oho/HrH/+wwiH7uJMsui9KmnYG0iPxPKsd2vvAm+Zzk5YLVCe+gQGn5eh8I7l6Hijf/jLKhwnHfFYshbXIPpPqvGQlumlDWboTvLNeBrxVxVBX16OlirlRO8KkeRC8bSqCiEP/MMov7vDfh2kbkRjd8VV4BR2n33LBbUfmkrU2NNJk6trM/kyZBGuNf/2HfBAk72l3XQBcPa0ICy518gxmgJb39w4PUsU0pmjs0WK7Kp+7GjTCkt3y2u0/He57xJvwxKq6urMW/ePBQWFmLZsmV46623vHZukUjUluEsK3NchyLQtezLIWs3Zg4Ow+PzByPYh9vEuZUFabZaHitrRWYtKS1KCeKu4kpEEixJXkKMbczdSLQaccSZ6jOo1ZMTg1mxsxwc3fX4yfwwOWoyMfbzhZ/BsiyOlh1Fg4HMOs+Nn9udl+cUhmE4daWtNbFV2irO37I75bp80BJeqYpcQMks16DGzVYXvYEmgxkv/nYOI1/6CyNf2orpb+7EI2tOYXtmJcwunFfnRlN9IQWTI/fwoWpKoWmrKaUnZdPFlGnZuHsAiV12gbUC+e61YrhpfBxW3j4WLy8Z2lbqQBMTqEQUlb2gJek5lU1Yd4IMGG8cF+vUmRYAYuhMqRP3XauVlIoDttpMui6SltPaZxGsVhbHqHrMcQOCcPMEMviobTbiz7Pc5/0J6rX0BLqrGB0fAKVd2xmWBfZfrIbVyuL/Nmc6fJ2VBT7Yno39OaTcNz5Y5bIdTfWnn8HSQD4nwh5/DGJ/fwTceAMxrk9PJ7ZlCQmQhjnvwdoV+IwfD/8lSxzur/3qK9Sv/YkYM9JtbOLjwchs8woZLd8tsAWl+qwssDrysyqmjIk0O3fCcOECrBpyIUM5cqTLn6OrEfv6wn/RFcRY7TerUbv6W1T8500iewkAQXfc4fa5RQoFgu7gd0rmo3n/fiKLnUq1jqLNKy9FOEEpkSklv6dFtVrCAT2/htsmxlFJAd33lGWd9z71Bv0uKNVoNLjsssuQmZmJa665BitXrnSpe/eUujrbg0itdv6AFeg6aGv/aQND4K+U4skF/HUrw6L925wYCxoLoDOTDxDa4bUV2piowdCATbmbXF7f9gIy85gckMzpYdndLExYSGyfqDyBg2UH8XM2KaMZHjIc0ereFTzQEt70atukh86SqqVqzrHdDR2U1puKoJKRmduDfUTCqzNacMvKQ/jqQD7HYt4VQ6P9kKqkMnT+PdtiqM/gxOjI3lhHDS1GMFRJwaCFQBzVwzF3l9cujWEYXgmvPR/syIZ9AkolE+MRqjaVDzpTqjGY0ag38R57pqSB09Jk0YhIznF0fz57uW9WhQYa6nM9Nj4IyWFqTE4i/wbfHuJKeI8VkD/3GCfSZG8il4gxIZF8rx3nK7HxTClHzhzuR5o7/nq6FN8dJlv+TE5yXlZiLCpC3erVxJjvvHlt0t2g228HpI4lyD7Te055E/nSv21Bs4N5YOWbb8LS2B7oGLK5Jket0JlSU7GtLQyd/ZTGx8H/GnLu0LRrN7RHSYMoaWys2xnHriZ4+XIw9n9DlkXFq69y/u7KkSM5rrouz33XXZAPGsQZl0RGIn71N5BQCxbVH7YbF9J1pRmljS7bNPVlGnQm1FMqBnvJLi3fNVlYQlFygZLuhqjlCHKQrFHJuK68XW121K+CUoPBgKuuugrHjh3DggUL8MMPP0DspIdSRzh37hyysrKgUqkwxIs9twTcp7Reh/JG0kVvdEtT8uvGxnImE2IRg+cXp7YtTpyvIaW7Ycowh7WesX6xmBAxgRj78NSHaDY5Xk1iWRY7ish60p6U7rayMGEhInzIB+C9W+/F1oKtxNhlAy7rzstyCzrQvFB7ATqzjtNbdWLkxG6vI6UZGEhOvi825GDcAHLVnM5U9Fbe3XbBae12K3JKsjgqLgBf3jEOotpc8sCg7nFB7vNQRkcBaEaNRgeLlcVZO4Oa8aJMiGG3Ki6SAvGTgMSZ5Pm8GJQCwPgB5D3Wvq40p7IJv1EtWpZNSWgzH3JGZAD3GEcS3r+oLGliqA9vPSedJbCvA6Wlu7FBSkS0ZIFvnUhmxY4X1OGUXR1mRaMeRVSD+7HxXdO2g4/plIR3/ckSPL2OzFAOClfjj79PIxbFLFaWY44yJZn8e9rDsiwqXn2N7MkplSLsicfbN8PD4X/lYofn8HfROqQrYWQyRL74IpK3bUXUm28i8PbbiP3WpibUr13btq2/QLkG2welLTLeNiwWGIuKuXWiI0dx6jQNmZlo2LiRPK4HJM2OkMXHI/SRvzs/SCJB+HPPeZzoESmViFv1JfyuuAKQSsEoFPC7cjEGrPsZqnHjEPLAA8Tx2mPH2lycafVBTbMRVZq+ozTylCIqSypiSAO4YB9ZmzdKK/Y1qPSiFO1ATkNnS7va7KjfBKUWiwU33XQTdu7ciWnTpmH9+vWQyRxLOQHgww8/xJAhQ/DMM88Q41u2bMHx48c5x585cwbXXXcdWJbF8uXLXZ5foGs4WVhPbPsrpUhsaVMgFjH4/I6xeGBmEpJCfTAxMQjf3DWeMNeg60kdZUlbuT2NlJ5Uaivx0PaHUKnl77eVXZ+NIg3pCDk7brbT9+gOpGIp/jbcuWmCUqLElclXdtMVuU9acBrRosfMmnG2+iwOlB4gjrNv69NTJAWQBmaNxkaMjCdvxftzen+mtLrJgFX783n3qWRizBocireuG4H0F+fj/EsLsfvJmfhq2Tj8/vBUrL9/MsJ85UAtVXcf5Nh5VcAOKlMqYlj4WDWo1OiJ+99UEVXHFjsBkPlwg9KaHKCBlOB1BjpTWm4XoL2/ncySquUSLJ/q3t9dLhEj1JfM7DmS8G47T/YAnp/Kn3GiJ2XljXo0tGQijuZT0l2758S81HDbZ9iO1zadbwu+acMyX7mEY6zUlSweEQUZVY+qo+rBnlwwBCFqOW5z4regkIowfVCow/0Nv2xA065dxFjQzTdz+naG3Hsv2VqkBeXo0VAMG8YZ726k0dHwX7wIEc8+C98FC4h9td+sBms2g2VZp61sxP7+EAeT301j7kWeOtGRUI4cCRHVQkZ/hqz/7k1BKQAE3X23U6ltxPP/gnLY0A6dWxIcjOi338KQM6cx5NRJRP/nP5AE2b5vAddcDXEIuRBXt+YHADbpqg+lNDp3CUt4aZOjSH8lUafOMAxHwltg10KGNl9z5Qbe3W1h+k1Q+uGHH+KXX34BAISEhOCBBx7AnXfeyfmvuro9Q1FdXY2srCxObejBgwcxduxYJCQkYM6cObjxxhsxYcIEjBkzBufPn8eMGTPw+uuvd+vPJ9DOiUJyIjEyNoCoI1LJJFixcAi2Pz4Ta/42CVMop0I6UzokyHnGe1r0NEyIJLOlxyqOYdEvi/B5+uewsqR+n3bdjfSJ5K1Z9ZimKmD9vcCH44AfbgKqLnh8imuSr8G4iHEO99+Zdif8ZN1TF+UJfL1Wv834Fo1G8uHUG3qrRvpEQiUhHxoRofXEdmGtlrMi2ttYe6wIRruecFIxg+/vmYBz/16Ac/9egFXLxuPaMTHwVUghEjGID/bBzMFhGBrtb1tJ19YAVK0yggXHcbdQcWWgQYwGxwvqCJXIFDoobQ1GI4YDCspNNZ/smdwZkkJ9OPX7h/NqkFOpwcYzZJb0zskJCHRS60/jjtlRlcaACxXk5GleKn/NYkKIDyd4yyy3SQCPUplS+6BUKhbh7qlkZv9IXm2bo/Dms2SmdmxCIMRu9Pn0FqG+cl4jqlYmJgZhbortd3LPtEQopPzTwcuHRcJPwa8uMVVUoIKa64hDQhBy/32cY2VxcYh8+WVA1P4+Il9fRL70b6+XUHWW4OV3E9vmyko07d0Lc1UVLHXk/EJBKeLkieQCS/ORIzAVk/XTypEjwUgkUE937m9At2LpaRiGQfgzzyDmow+hHD3a9rdkGCiGD0fs558j8PrrvfIenDGZDAHXLiXGGn/9DVatFiIRgyH9yOyogOpRSgegfGP2gSzXedd5UEqrS2gjOG8jcX3IpUGd3Y2kNTjl48UXX0RIiPP6iQULFqCoqAhHjx7F6dOn0dDQAD8/P0ydOhW33HILli1b5nVZsID7nKSC0lbprjuwLIuM2gxizFWmlGEYvDDxBdyy6RbUGdrfW2fW4b0T7yG7LhuvT3u9LZNHO9nOjpvd+YeyxQx8ew1Q3rLSWn0BKDkBPHCQdwLrCLFIjDemvYE7/rwDxU3kg3R4yHDcPexuB6/seYaHDCdMjWiJ9MDAgRx5ck8gYkRIDkjGmer2VXE9U4Ign+i2ukAAOHCxGjcE9WydsTP+OEMu1l05Itpl7RkBLd0VSQG/GP5jBUgkckDuBxjaJ19B0OD30+1/k1DUYbCI6tXcGpSKxEDCNCDz9/Z9eXuAETd65fJa60r/tAvMdl2owu4LVdws6TTPJNsxAUqiXUkxT1B6mOqNqpZLHLrHSsUiJIb6ELK2CxUaRAcqUdZAloGMSyCfJXdMTsA3BwuI1jSvbjqP8kY9J1O7cGj333vun5mEjWdKOcYmEhGD5xeltT13QtRyPDx7IN7cQmYBZRIRHppF1sC3wrIsyv/9EseYJ/LfL0IcEMD7Gv/FiyAfmAzN9u1gjSYEXHcdZDG9y58AAJTDhkExYjj0p9vv0Q3r14ORkFNmkUoFaQx5z5IlJkJ79Kjd637hvEY+0FbC4Tt7FhopyW4r8tQUyGJ65/3Qd84c+M6ZA9ZoBAtA1A2qwMDrr0fN/1YCLa1zrFotNDt2wn/RFUiN9MNxO1OxS7ktDL1YTbuHA9y60vwWcyK9ycJx43WVKaVrdi9WNUFntEAp65oYp99kSl988UWwLOvyvwS7moDW13z11VfEuSZNmoQvvvgCZ86cQXV1NUwmE2pqarBz504sX75cCEh7EIPZgrMl5A1pVFyA268vaSqBxkg+ZFODUl2+LtYvFp/M/QTBCm7tzaa8TfjwpK2heF5DHscN1iv1pGd+bA9IW2kqB3a84vGpwlRh+P6K77F04FL4Sn0RpAjCDYNvwGfzPoNcLHd9gh7ClYHR9Oiedd21h64rPV+TgUlUrXNvlvAW12lxjnrwXzvGwwlUDeliicAEQNxv1kk7D7XYFMI0YLNdHeUUEeW6K/cDouzaSwygvg95ewAvGoTQCpQ/zpThd2ohY9mUBASoPJvQRlF1paX1es4xdFulcQmBTlur0BLezHINjlHS3UCVlJM1UEjFeO2aYRyPnC/25cFkaf9dSsUM5jmQD3clyWFqvHHNMNgnaMUiBv+5djjHtfS+GUm4elR7gCgVM3j96mFIdNBXtWn7djTtIBf+/K5c7LJNiWLIEIQ++CDC/vForwxIWwm4hszMaXbuQvM+0qVaPmgQGBH5uZInkZlSuvWNYvhwMC1zRPXs2RwX3lb8Lut93g00jEzWLQEpYGuF4zOZ7BDQ+LttUY1jdnQpZ0op+W4cT6aUbgvT+prsiibiFs8wwEAHPUpbSYn0Je5vVtamJOkq+k1QKtA/OFfaSEgKGQYY6UFQSteTBsgD3M6upYWkYcNVG7B04FKivhEAVqavxJ7iPdicv5kYD1YEY3TYaLevzyFHV/KPn/oe0NV7fLpARSBenPwiDtx8ALtv2I1/Tvwn1LLe7SbtMijt4VYw9gwLIWuoTlWdIvonArZMaW91ETxATfoDVVJOFsklNZQrrFBP6hm+pDQzkiGlplPFlHQ3YRoZ9NNBaUMRUOe93tqXD4uExIlc1Vch4chf3YF2g+ST79L1nBMTHRv1ANw+fVnlGo50d2xCEK+iZcagUDw2l+scas91Y2MdOlx2NdeMjsHGh6fib9MTcd+MJGx8aCquGc1dQBKLGPz3hpH47aEp+OSW0dizYhaWOlhoYs1mVL79Dvn6oCCEU/4bfRm/Ky4na2DNZtR+/Q1xjCKVq6KSDXB+H1OOHNH2b5Fczts+Rezvj8AbvaNauJTwo9rSNO3bB3NdHWeBJa+62aErd1+HDkrjg3w4x8RRYwW1zWBZliPdjQtSQSVzvhCskknaPFlaoRekvYkQlApcUtAmR8mhaof1MHzQ9aQpQSkeSWsDFAF4cfKL+HD2hxAzZMb8qT1P4dPTnxJjCxIWQCzqZGa9oQQoPcm/z6wDzq3v3Pn7CAl+CQ5b1YSrwjEidATvvp6Avpay5jIMjiZNSKqbjLhY1bU9wTrK4Vxywj4pKdhpJoqXcipoCnU+sReg8KODUvtAjHVcT9pK6BDAhzKwySadtjtDkI8M81t6P/Px4Kxkj7OkALemlDY6qtToOd8bV0EpnSnNKtdw2tg4W3R5aHYynpjP//kNUcvx6BzX7W66krQofzx7eQqevmwIZwJPMzwmAJcNi0Skv9LhMY1//AFjHrmAEf7MM5A4yPr1RcRqNfwowyMa1Tiu/4LCzviI9zWjRhHbwcvvhnp2u9EhI5Ui4uWXIPbtPlOsvoLv3Llg5HZqLbMZms2bkRLpS9SFsyxwipoLXgoYzVaUNZD3Oz75bkIIOaY3WVGpMSCLynC6a7yWFkX6D5wrde2431GEoFTgkoI2OfKknhTw3HnXEdNipuHJcU8SY02mJo7p0eWJl3fo/AQ525zvz/yj8+/RB2AYBtcOupZ339JBSzsf/HuRxIBE+ErJB0KVKYvTM9C+dq43cSSfzERNGOB80s9LOdmeAhG9Z9GgT+BPLsDYB6VJTCknc8oJShkGSKKklhm/evECgUfmDOI190kOU+POyQkdOicdlFZo9DDZqWPoBRO1XII0F4HYkEjyu6gxmJFNuUyOddJjlGEYPDR7IL69ewIG2cnhUiL98N3yCQjzc93upq/Asiw3Y5iWBr8rvPAs62X4L73G6X6+oFQSGgpptANZslgM5ZgxxBAjkSDmow8R8/FHiHz1FST+vhF+8+d3+JovZcRqNdSzyVY6jVv+glwixtBo8jtOzwUvBUrqdbBS4ik++W64r4LThi2/utnjdjCtcH63BfVuva4jCEGpwCXFyQIqKI0PcPu1LMsio8YzkyNn3DzkZsyLn+dw//DQ4Rge4lxy6hZlp5zvz90N6C/dGgt7rh98PUKVZPYnWh2NW1Nu7aEr4kfEiDA8jPzbHy4/zDFjOV1c330X5SZlDTpO/0W6BYhLmqsBDenCioiebwvRp6BMoeyDUE4rGN8oIIQnW5dKtXcq2G/LYBccBM6stZmldUJCPjjCF68sGUrUNEYHKLHy9rFQSDu2SBQTSAalLAuU2xkS0SZHrupJASDCT4EIJ4GjUirGUCpbwMfUgSHY8uh07HtqFg4+Mxub/j7VpZFIX0N38hT0GeRzMuSB+zm1lZcCqnHjII3nN5tTjhgBiQNTTOXIkbzjitRUiNXcMhiGYeA7ezYCli7ltNIRIPG7nFz80B49CktDAycBcbzg0gtKaZMif6UU/kquEtDmdk8Gq/k1zZxFbroW1xFj4snne1aFBvVao4OjO8eldxcR6LeUN+hRSrkljvIgU1qlq0Ktnlxld8fkyBEMw+Dfk/+NGDV/Xc6jox/1jhV+GWVwNO1xm5NpK1YTcJF0/L1U8ZP54dN5n2J02Gj4Sn0xKmwUVs5bCV9Z75sYToyYSGzvLd6LEbHkxLc3ZkrPFJPSHV+FxKWtPAfalEuiAIL5XT4FHOAkUzpdRP1+E2eC48YD2DKlSmpB4dMpwKqFwPp7gJWzgNVXd+oybxofh98fnoYn5g/C/y0dhi3/mI4BIdw6KHfxV0qhopwf7R0pj+aRk9EJLqS7gO1e7WwBc/yAIKIXoKtzxQSqEOmv7HWtTrxBw8bfiG1pTAzUM2f2zMV0MQzDOGxzEnAdvyoHANQz+P0LfOc5XqQWcA/1lCmkhNdiQdOePRgdT871ThXVw0qnFfs4eVRZgrP7aALlwPvXuQo06s3E2IjYALfed1i0P6dlFG0EBwDrjhc77BvtLkJQKnDJQLeC8ZVLkOzAOZAPup7UR+qDGN/OWbL7ynzxzsx3EKQgJ37/GPMPp/1A3cZqASool834KcCAaeSYF2vFejuDAgfh68u+xoGbD+Cby75BrF9sT18SL9NiyL9RhbYCYUHkZzijrBF6quF9T0ObHAyN8if6ALtFyQlyOyxVcN71FKqmNBx1EMMCGUyYJCIzWUh24IgqVQDjXLR5KjrsfL/FBKT/DGx+Bjj8P0BbyzkkNcoPD80eiBvGxUEt79zfmWEYzoTrYpVNaluvNXLMPMY5kd3aM97JcVOTPWh1dAnDms3QbPmLGAu4dmmbm+ylSOCtt0KRlkaMyQcNgt+VVzp4BeA7fz7E/lRmXSqF/5KruuIS+xUilQo+kyYRY5odOziZUo3ezLkX9HVyq8mSgsRQx0EpXTu+PbOS2A5RyxHl715ZgUwiwkgqgKUVKQCwM6sSWmPn5itCUCpwybAvp5rYHhkX4NFkme5POiRoCMdFtyOkBKdg/ZXr8fT4p3Hv8Hvx46IfcdfQuzp9XgBAdbbNzMieyBHAoIXkWPZfbf29BHoHif6JiPIhA4ti02EioWWysL2uEXgGZXLgql6Pl/y95HbM2E5cUT+Fku+KGRZhqMcY0QWoGIPdHgZIJOuwCCY/DPi7uXBDS3mbqoDP5wLr7gYOfQz8+STw0QSuiZWXSQojFxtbjY3o1XuFVIRh0a5ltwAwP82xy3pP9BjtjTQfPgxLLbnoQMspLzVEcjnivvgcgTffBEVaGgJuvAFxX37htBWKSKFA+HPPEuqEsEcfhTQsrDsu+ZKHritt3rMXYUoRR9q/N7uqOy+ry8mrJjOltCuuPa7KDUbGBnik5BhP+UZsO19JdAewWllOK66OIASlApcELMti9wXyBuTp6jannjSo4/WkNMHKYNyScgseGvUQUoM7LgnmQMsgfaMAnxAgeS453lzluvZUoFthGAYzY2cSY1sL/0QStfp58LjewgAAifZJREFUtqTrnO46Ap0pTYv2MCg16YFCKvuWMI3/WAHH+IQAVN/gQYo6PBBTQB4XNRLwcSJhVfgDN6+19Yl1xdmf2/9tNgDfX8+9rzRXAj/cCBi6LktBK2ByWkyJjlBtXEbFBrotu40KUPLWRk9NDkEsj8Nlf0SzeQuxrRg6FLI4/prLSwlxQAAinn8eA9b9jMgXX3RYS2qP/5VXYsD6dQh//l+I/+F7BN/tpYVoAfjOmkUE/NbmZmgPH8G0gaSfxJ4L1fRL+zRc+a5jJeCwGFdBqXuLda3MTSEXVPKqm9vuu4CtzrSmufN1pkJQKnBJkFfdjGJKyz59UKiDo/mhg1KvBo9dRdlpcjuyxTwnOIlbo9ePJLx9hUWJi4jtIk0RYiIqiLGMst4jQaptNqKMqtum7eJdcnEHld1ngISpnb+4/gbDcALJrxf7Y5qIuickzYZLwlOBh44Bt/8KXPcV8Gg68OhZbr3pln8CjS0GVZufAUpPcE4FwNbzdO87/Pu8QDInU9oSlNJtXDw04Hr6siGQitsnu3KJCCsWOm/x0V9gWRZN+/cRY36XLXRwtAAAKFJSEHTzzZw2MAKdQxIaCuVw0ihQs2M7ZgwiFwuO5NdC10k5aW9BZ7RwPFOc1ZSG+yk4Zkf2TB3o2fx4WLQ/xwxu45mytn/vz/HOAoAQlApcEmw8XUZsh/nK3ba7BoAqbRUqtaTmPi0kzcHRvQhOUGrXVmMgZSufTdYCCfQ8Q0OGIsEvgRhrlh8gtnuTfJfuT6aQipxKiHg5s4bcjp8MqDx07xWwEUapOS78xW21Q7d9cYRYajNESrsaCIgDAmKBxe+Rxxgagd8eBk6sBo594fx8R1Z2PltacgL47jrg7RRg7R1AfREAICmM/MyVNehR0ajnqAqc1YnyMTouEL8+OBXXjYnBVSOjsPbeSRhOOWL3V4x5+TCXks9Z9YwZPXQ1Av0d9Rzyvta0cxcmJQUTLaiMZisO5XZeUtobaF14s8eVYdx0B4FnkI8Mw90sa2iFYRgsoPpO/3CkEEazrSxsb7YQlAoIAAD0JgvWHC0kxuanhXukl6ezpCqJihMs9DpYlivfjbBbPaSD0pLjtlYcAr0GhmGwJHkJMZarPQCI2ldEs8o1sPQSF8GzJWSAPCTCz2W7DYLK88D5jeRY6pLOX1h/JYxSc2RRPYmVQUDshI6fP/VKII3q1ZizDfjtIXJMogSu+xqwr8E3aoBT33f8vYuOAqsusy2maUqBjA3AV1cA+kYMCPEBbRewck8uzHbfE5lY5FFLsFZSo/zw5nUj8N6No9x2p+wPNO/fT2xLwsMhS0rqoasR6O/4UnWl5vJyyAvzMDougBjflE4upPRV6AXh+GAVlDLnBmOOauGvHBHluTkhgBvGkVL9Ko0B604Uo7bZ6LVMqWB3KNDn0OhN+DO9HOklDahuMuBsaQNHUnjdGM8cV/n6k3rD5KhLqS8E9FS9YaRdUBo/GZD6AKbWOgTWNqEccWO3XaKAa65KvgofnvwQZtZm12606iH1OwVTva1ljM5kQUFNMxI9cJLuKugHY5vJkdloW/SovQg0VQBNlUBjCVCZafucimWAMhDQ1gCsneGWTA0M52+5IOAGdKaUJmVR512NF7wC4Gvnxyx6B0hbAqT/BGT+3j5+bBUw4V7P39NssJknmcn7OuoLgL1vQz7v3xgc4UeoCD7fl0ccOn5AEFQyYYrjLeig1GfKlEuy5Y1A30CWlARpTAxMxcVtY007d2FB2jwctTM823yuHK9cPRRySdc7RB8vqMWnu3PRpDfj6lHRuG5sjNe+Ixm0l4MbBoOTk4IxJj6Q6Nkql4iwfNqADl1DapQfxicEEbX7/9mciQsVGmJBsDP08lm3gICtlqWu2YgThXV48bdzmPDadqxYdwarDxXgz7PlKKola0knJgZhuIsib5pzNWRblbTgPiDdpbOkigDSRVMit8nx7BEkvL2OEGUIZsSSMjhl8DFiO7O8d9SVch+M/kDmH8C7w2y9LX99ENj+EnD4U1tGtCYbsBhsWbOGQrsFkhYm3AsoA7rvB7jUcJUFTfFCCwqli17Pkx8GRt5s+/f4v5H7qs5zW1a5w7EvbQEo775VgEmPMS6yoDMHe1YzJeAY1mhE85EjxJjPlMk9dDUCAjaVES0fb9q9G1cMjyTGNHpztxgeHc6twQ2fHcLWjAoczK3BinVn8MGOHK+dn2Mw6IaXA8MweP+mURgUblvQDveT4/2bRiEmsOPGbQ/PIb1K6rQmrNqf3+Hz0QjLiAK9Er3Jgq8O5GPz2XJcqNC43ftILhHh+UVpHq1OsSyLM1VkgNc3TI6ooDRyOOFIBwAYNJ+U9OVsByxmoSdkL2PpwKXYXri9bZuVFUMkL4HVEA3AVld6+bBIRy/vFpoNZuTVkEHlZON+YM39ADqwSho+FJj+pHcuro/AsiyOVRzD8YrjsLAWDA4cjGkx0yCnXHTdxjccCB8GVKRz9/nFcBelOovcF2BbapsYMTDtMWDms+37E6YBftG2LHkr6T8B4R4s8lkttvYyjjA0ABc2Y0z8WHx7qNDhYTMHC+03vIX21CmwWm37AMPAZ7IQlAr0LOqZM1D33Xdt27rTpxFj1XOyeb+dLsW81HC+U3gFq5XF0+vTOdnC/267gLkp4ZyeoR05P+0t4e45owOU2PzIdJQ16hGilnU6YzxtYCguGxqBP8+Wd+o8jhBmpgK9jsIaLe786ghyKftrV/gqJHj/xlEe3wAu1l9EnYHsbzcybKRH5+gRnNWTtpI8j9zW19t6RCY56Vso0O1MjpqMCJ8IlDe33+ilAUdhqGgPSnua82WNRJvKMFEj4vc/hQ4FpEmzgWtWAlKl62MvEap11VixZwWOlh8lxv1kflg6cCluGnITItUdWHgYfBl/UDr+Hu8vPj14BKg8ZpPXxk2ymSHZIxIBQ5cCB95vH0tfB8x+3rbPHS5stkm+ifNKAaupfTt7K2bMuxwSEcMrGxsR489x6BXoOM37SfM1RWoqJIEuMugCAl2Mavx4MEolWF2LWs5qRfPevVg8YjgRlG7LqIDWaO4yOf/u7CpOD1HAZvvx4c5sfHzLmE6d/3x5I5qpxIwn/cFFIgbRAd571r6yZCjOljZwVIoA4K/s3O9YkO8K9Cpqmgy49YvDLgNSsYjB3JRwPDw7Gc9cNgT/vWEE9jw5C7OGeL46frSCnCRG+kQiWh3t8Xm6HU6mdAT3GP9oIHIkOWbfa1CgVyAWiXF18tXEmNT/FMDY+n6d7wVtYWhn0yfUW8HQNc2BCbaFkJG3AFMeBRa/D9y1xfbfDd8BS78A7j8I3PaLrc9mP0Fj1OCuLXdxAlIAaDQ2YtW5Vbhs/WX4x85/YE/xHpitZvdPPv4eW69Re0IGAxPu6+RV86AMAFKvstUB0wFpK8OuI7cbCoHiI/zH8nH4U3I7ciQw/xVyLG83glRSh22/bp5w6ffO7E746kkFBHoakVwOn0mTiLGmXbtx2bBIwghNZ7Jg+/lKdBW/n3ZspvTn2XKin2dHoE2EEoJVCPNVODi66wlWy7Hmb5M4RnCLR0QhtJPXJWRKBXoNLMvi2V/SUVir5d0vYoBIfyXmp4Xj7qkDOqWLt4eeKI4NH+uV83YpzdU2R0p7+DKlgC1zYd/gPmMjcMU7tppTgV7DkuQl+PT0p2BbMo+MWA+JXzrMDWNQUq9Dg9YEf5W0x64v3c551w9NuNK8iTwgdYmtx6VgfkLAsixeOPAC8hrynB5nYS3YVrgN2wq3IUwVhodGPoQlyUtclyKow2xB/oYHgKosmwpi0X8BaQ9NWiKG2YLi6qz2sTNrgbiJrl9bnQPk7SHHJtzHXXBrKALq8vHo3IHYfaGKcKdOi/LD0tEx/Oe3WoGjK201q41ltmua+4Jn8mIvYWlqgvbYMUiCgqAYNqzXmgaZ6+qgP0fWBQvSXYHegnrGDDTt2NG23bRvH6IUYkxJDiHalGxKL8PiEVFef3+WZbEvp8rJfmDV/jy8evWwDr/Hvhyyrc2U5J5f0I0OUGLDA5NxorAehbXNSIvyx6BwX6S94vq1zhAypQK9hr8yKrDlXAUxNihcjS/uGIu9K2Yh65XLsP/p2XhhcZrXAlKjxYgDpaQ0aWxEHwhK6f6kEiUQMpD/2KFUSwdDg82FV6BXEaWOwuRocrIn9TvZ9u+MHpbw2mdKrxAfhsJqJ91hRMCc54WAlIffLv6GrQVbibEgRRCGhzpYRAJQqa3E8weex7/2/wsWqxv19NFjgAcOAc/X2gLUwIROXnUnYBhutvTsOpvk1xUnKJdfZZDt/hWWAqioiVj+XgyPCcBHN4+Gv9K2WDM+IQif3TaGv00Ry9qMuP5cAVRl2u6D2VuAL+YD5Wc9+AE7T/OhQ8iZOQvF992P/OtvQMnf/w6rwY3fTw+gPXQI9rp9RqmEcvSoHrwiAYF21DNJsyNrYyN0J0/iCsqDYUdmJZoMHihQ3CSnsgkVjeR3dz5Vv7ruRDHqmo0dOn+TwYwjeWRQOrUXBKWAzUhpTHwgrh4Vg0Hhvl45pxCUCvQKzBYr/m9zJjEW5CPDt3dPwJyUcMQGqSD1pB9iCwaLAV+e/RLLNi/D3Vvuxtfnvobers3AwdKDaLZzBGXAYFr0tI7/IN0FXU8angaIHBSw+8cAcdTKdvpPXXNdAp2ClvCKffIAke2B15NBqc5oQXZlu4T4KjG5kIPBlwPBQs9CGq1Ji3dPvEuM+cv98cMVP+C7y7/DxiUbcdOQm6CU8Nf7/HrxV7xx5A333oxh3K/b7GroNj/6eiDrT+evMRuAU9+RYyNvtik6GAZImEruKzkOwNaL79Tz85D58kKsvW+S4wXLQx8Dp3n6phqbgPV/sxksdQOm0lIUP/x3WJvaJX2ardtQ8drr3fL+ntJ8gPyuq8aNhUgm66GrERAgkYaHQ55CtsZq2r0bC9IiILHT8BrMVmw/X0G/vNPQ0tpIfwVeumoo8d56kxXfH3FsyuaMzWfLoTe1t1ETixhMSgru2MX2AXrJE0ygv/PT8WJOHekLi1MR5tdxCVqzqRnLNi/Df4//F8cqjuFI+RG8dewt3PTHTShrstUAbMojJYgjw0YiVNUHWgnQmdJIx1kXAMCwa8ntrM2AoefrFAVIpkZPhUTUXlXBMBZIfLIBcHuEdifnyxvRqpAMQx3GM+QCEobf0P0X1Qf4PP1zVOvIScu/J/8bUWqbjCzBPwHPTngW26/bjn9N/BeGBg/lnGNN1hrsKd7DGe/VBMbbnHjtoQNOmszfbX1s7RlzZ/u/oymzkNJ2FQHDMFBInbhK1lwEtr7geH/lOeDcL86vz0tUf/IprBruvbf+p59gyPFeCwlvwLIsmuh6UkG6K9DLUM+YTmw37d6NQB8ZR+b6xxnHtZ8d5VRRPbE9OSkEEf4KTmuabw7mQ2/ybOGLZVl8QfVfnjEoFAGqS3dRSAhKBXocndGCd7ddIMaGx/jjyk7q/1859ArSq7mulDn1Obhl0y3YnL8Zf+WTfTvnxs3t1Ht2G3RQ6qietJXUJYBdsAOzDsjc5PDwLsGkA/a/D3yzBFhzC3B2PSELEwB8pD4YE05OvsU+tto8ukdod2Iv3Z0hPg0RY/d3k/sBA+f3wFX1bsqayvBNxjfE2JToKZgTN4dzrK/MF9cPvh4/LPoB/535X0hFZO3wq4dehcli4ryuVzPiJnI7eytQdYH/WAA4/hW5nTCNLEmIoiSjFRmASQ+32PYi6d7rzvt3Aea6OtRv2MC/02pF3Q9ruvwaPMGYnw9zKTmRVwsmRwK9DN+ZM4ltQ3YOjMUlWEQFhrsuVEGj9+59NJ0yABwZFwAAuHvqAGK8otGAz/fmenTuHZmVHOf968Y4qJe/RBCCUoEeZ9WBPI4m/6mFQzpl/JBdl43fc393uL9KV4Undz8JM9teY6AQK7A4aXGH37Pb0NYCtdTNLWqk89f4BNvacNjTnRJeQxPw1RXA1n8BuTttWZGflwG/3AeYO1ZrcakyPZpc9ZWoswCwyK5s8nil1VukF7c/eGeKTpE7k2b1nKlOL+b9k+/DYGm/r4kZMZ4c67ov69z4uXhuwnPEWGlzKX7J6Z5MntdIvYpyBWaBff/lP7b0FNfgyD5LCnDNjqwmW4bTFUVHgfO/kWMTHwCu/ZIcy9/LbUXjZTRbtwImx5Piht9/d7u21KLRoG7tWlT8503UfLkKxuIS1y9qQZ+ZiZrPP0f5K6+i6v0PoEvnr6lt2r2b2JaEhUGWnOz2+wgIdAeKYcMgploUNe3ehfmpEZCK2+eRRrMVWzO8J+FtMpiRS7WCGdrSqmV4TAAmUzLbD3fmoLCG38iThmVZfLCDVE4khfpgflpEJ6649yMEpQI9Sl2zEZ/sukiMTRsY0ml3sS/OfkFsixgRghRBTl+zdNBSBCr6QO81O9kaAEAsB8K5sj8OtPnIxR02F9/uYMszbTVgBGfWAOvuBizeNyDoq0yLIWWPImkjRPIKWKwssis6Zy3fUVpXg8WwYJqImsAm9xF1QTdyvuY8Z1HsukHXISnAvbrbawZeg1FhZGZw1dlVsLJWB6/ohcjVwNi7ybHT3wNFPO1h9rxJbquCgSGLyDGFHxBMmbnR90I+DrxHbisDgRkrgMFXcFvppHdtu6zGTWRdrSKNdP21NjRAs821CV3D738gZ85clD//Amq//BKV//kPLi5YgPJXX4NVx+0dCABWgwH1GzYg7/obkLfkalS+9Tbqvv0W1R9/jPzrrkPp089wXqv5izTo8pk6tde6BAvwozVpUa+vB3sJq5IYsRjq6eRzs2n3bvirpJg2kCzH+vUU1bWgE2SUkr27xSIGKZHt/UOfvTyF8P7Tm6x45pczbv0tDl6s4UiDH5yVDLHo0v7+CUGpQI/y4c4caPRkQPLUwiGdOmeRpgh/5pEP//uG34fflvyG8RHjeV8TrY7GQyMf6tT7dhulJ8jtyOGA2I1WIYMvt7n0tsJagIwNXr00XirOASdWO95//jfg1wds7RoEkOCXwOmT2yrh7Ym60ka9CRcqbDVwo5hs+DHUSq8QlBKwLIu3j79NjKmlatw/8n63z8EwDOd+VNxUjEOlh7xyjd3GhPsAqQ859tMyMiNZeMimnLBn0oP82XdawlviIiitywcy/yDHpj5mC0ylCiCNNBZDNhmEeRNTZSW0hw8TY8F/+xtUk8hWOY0bHSt8AKD2m9UofeIJWBspOb/FgrrVq5G39Foi82nIzkbF//0HOTNnoezpZ6A/Q5nktdCwYQOKHnigLVNrqqiE7iT5+/WdP8/ptQn0Hoo0RXhw+4OY9MMkTPtxGq769Spsyd/S05fVZagpCa/20GFYtVpOGdi+nGpUN3nH6Zru3T0wTE3Utg+N9setE+KJY/bn1OCnY8Uuz/3JbjJZExuk7HRJW19ACEoFeoz04gZ8dSCfGLtqZBSGRvvzv8BN6IyCUqLEzSk3w1/uj0/nfYo70+6EhGmvr0wJSsHK+Suhlqk79b7dRgkVlEaNdu91cjUw+DJyrIszAwBasiAuVgbP/Aj88Q+hxhS2gGRKFFm3JVG3mh11f13p8fy6NpOjGWLa9Xko4HfpPyg9YV/JPhwuI4OPu4fd7VKpQTMuYhwGBQ4ixtZeWNvp6+tWfMOBmU+RY43FwKfTbPXleXuBdfeQ+xUBwDhqrBU6KLXvv8zHkZWAfXZZ5kvKggdfTh5fdBjQ1Ts/Z1UW8O21wCvhwDtpwO433VJ6aLb8RdzfRCoV1DOmw//Kq4jjmvbtg7mujvccTfv2o+IN527Mxtxc5F9/PfJvvgUXL7scuYuvRO2qVbA4OKc92oOHUPbMM2CtVtT//BN5vWq1YHLURyhsLMStm27FnuI9bXOhvIY8PLH7Cbx44EWirOBSwWfKFEDcHhCyRiMaN2/BvNRwKO0CRYuVxcbT7dnSZoMZlY36DmWS6aB0GM/cdcXCwYj0JxfYXvkjA5Uax/XwGaWNRI9VAPjb9CT+VleXGJf+TyjQ4xjNVqw5UohH1pzEY2tP4fO9udiZWYn7vj1OND2Xihk8Pm9wp96rUluJDTkbiLEbBt8Af7ntZiEVSfH42Mex/frt+GzuZ/hx0Y9Ys2gNYn1jO/W+3QbLcmWwtCulM2gJb+FBoNF7chYOzTXAeWrlf+YzwJ1/ABIqE3L8K1sPwb5m6NIF0P1Kxco8gDHgTEn3Z0oP59W2/ZtTT5rMNe3pz1isFrxz/B1iLFwVjltTbvX4XAzD4PpBZGuVXUW7UKOr4X9Bb2XiA0AsmQ2Evt5WX/71IqCBquOc/oRNqssHHZRWngeMDmq0LGbgDBXEj76dPHfCNFv5QyusxVbz7ojqHOCLeUDOVsCstwXYO18B1t/jUunRuIk0llPPnQORQgHfeXPByO2uwWyGZvNmzuuNhYUoefxxzvsoRgwnXw8ALAvdiRMw5pHOnfZIIiLgt2gRRD5kJrtx05+ofPtt1K0hTZd8588XWsH0AViWxfMHnketvpZ3/7rsdbj9z9tRpCnq5iuzZW/fPPombv/zdtzz1z346NRHqNRWeuXcYj8/+Ewhn5v1P/0EH7kE89PIvqHfHCyA1mjGvzeew5hXtmL8a9sx481d2JftWTkTbXI0LIYblPoqpHj1arK8qlFvxsc7L3KObWXdCTKTGqKWXfIGR60IQalAl1LXbMTSTw7g6fXp+PVUKdafKMErf5zHsq+OoqSerF95aNZAxAU76DHnJt+c+wYmO5dFqUiK21Nv5xwXpAjC5OjJSA1OhYjpQ1+DunygiSrU9yQoTZ4DyKkb57kNnb0qx6SvJV0vxXJgwr22noM3fAdQLqM48j/gs+lAIZlp6m9MiJhAZPMZkQVin1xklDZ0u9nRwVxbEBSCBgwT5ZM7kwU5nz0/X/gZOfWkOcXDox6Ggl6AcZMrEq8gephaWAu2FbiuOexViKXAjd8BIW4sOMZOsAWxjogYBtjfr1kLUMFv0oO8XUAzNeEdu4zclqmABMpNNtvB79dqBX65F9DzLAydW8+ti7XDVFrKkcL6XXY5UF8EseYi1DPIergGSsJr1WpR/NDDsDaQ7x3y0EMY8OOPGPDLek59qiNUkyYi+oP3kbxtK6LfehNx33zNCUxrv/gSlipygh50m+cLKwLdz++5v+N4BY9/gx0ZNRm4fP3lmPnjTExdMxUTv5+Iq3+9Gu8ce6etXZ43YVkWn57+FIt/WYxvMr7BycqTOFR2qG3s5ws/e6XmNeBasvWd7uRJGLKzcS0V0OVVNyP1+S1YtT+/rQdoYa0Wd311FKepOk5HaI1mXKwiPR4cqfxmDwnHVSNJRdHaY0Wo13JNHq1WltO65qbxcc5bXl1C9KHZuEBfw2plcd+3xzmrSXyMiA3A/TPdMwFxRLWumiNvW5K8pG/0HXUXehVfFQIEJbr/eokcGHIFOdZV/flYlltLmrLYVs8FAAPnAtd9BTDUzbYyA/hyvs2Zt6mqa66tl6OWqTEijHQblfhcgMnCuv3Q9AaVjfq295suotoQydS2IEIAgE2l8e6Jd4mxwYGDsShxEf8L3EAtU2NmzExibEtBH6wL8wkBlm8F0q5xfExYGnD9akDkZPIlV3ODW0dmR6d/JLejRpMtZlqh2xnlbOMvI8jcCJQcc3xte/4DlDmo16SCTJGPEuozTwDvDgU+mw5/PVlGoTtxAsZiW7aEZVmUPvccDBfIdjq+8+cj5EFbAC9PTETCmh8Q8veHIVJzy1DEoSEIvmc5EjdtQvyqVfCbNw+MxLbopUxLQ/S7/wVEjqeDqokToUhJcfyzC/QKGgwNeOvYW8RYlE8Unhr3FLG41UqNvgYNhgY0m5qRU5+DVedWYfGGxVh1dhUsVu8sfurNejy550l8dOojWFjuObVmLf598N94ZOcjqNO7lpg7w3fWLIhDSJPMmi9XYWpyCK+0lsZoseLZX9LdCpAzStt7dwM2k6PUSAcKDwBPLhhMmBRpjRbe2tLjhXUobySlvYv7QS1pK0JQKtBlfH+kkJD+OSIp1Adf3DEWMknnPo7/O/M/6Mzt2VcRI8KyocucvKIPcpEKShNnOp1M8EKbexQfAeq7QMpTdopo2WA1M6jJDUfB7Xeg4PY7UP3JJ7DEzACu+R83MAWA0z8An07tt1lTbl2pbVJ6rKBzD25P2Hq+PSs/U0wFpYkzAYkg52vljSNvoMlErpyvGLcCYmdBlhssSFhAbB8rP4YqbR9crFH4A9etAu7eCgy91ragBgC+kcCkh4C7NttqUF1BS3hLT3GPMTRxzZOG38B/Pjrb31RuM2drQXv0KIofeRR59z+PsqP+MDY5+HtazTbDNqr8gGVZNPxGtqTxC68GU5fdtq0O10IsI2W5jb/brr/m88+h+ZOU88oHJiPq9dcIJ1xGKkXoAw8geddOxHz0IcJWrEDEiy8g4aefMHDXLoQ9/jjkiWTvxLb3nzYN4f98jncfI5UiwsE+gd7FByc/4Mh2n53wLG5NvRXfX/49EvwSXJ7DYDHgnePv4B+7/gGtyb32JY4obSrFHZvvcMtgaWfRTly54Uq8fextbM7fjIyaDDQZPXObZ6RSBFy7lBhr+O03mEpK8cgcngUpHs6VNmJnlmtJMZ1soU2OaGICVbh8GNk3lZbpAuBkSQeFqzEo3Nfl9VwqCEGpgMe0ygue+yUdr206z2nuCwB6kwUfUj2Wgn1kuGZ0NOJbJLohahnunjoAGx6cghC1nHMOTzhQcgBrMskamMWJi/tOrag7mI1AHtk3DkmzPD9P4kybmYg9XeHCe/Lbtn+a9SLk74xE5Ze/QHvkCLRHjqDqvfeRu/hK6JgUWxYlYhj3HE3lwNeLbe1r+hlTosmgVCSrASOtwaHc7qsp/P207QEpghXTROnkTsF1t42NFzdiawHp3HpV0lUYH8nv9u0JU2OmQiVpL2tgwXLeq08ROx649gtgxUXghXrg8UxgwauO60hpOEEpT6Y083fAfkLNiIGhDrK0wUlAAOmQiRybhLdu7VoU3HY7NFu2QF9hRP1FH+RtCYWuWgpcsxKYTvWdLU8HDrxPDOnPZcB4kawf808gS1cYMeAbR47Vr/0JjX/+iap3yN6uIj8/xHz4IUdy24pYrYbvnDkIvmsZAm+8EcphQ8GIXS+MBN18M8JWrAAk7WUDIh8fRL/3LuRCb9Jez7nqc1ibRSrFZsXOwozYGQCA5MBk/HDFD1iSvIQoDXHEzqKdWP7XcmiMGo+vhWVZbC/Yjht+vwEZNRnEPhEjwvWDrudVkNQb6vHVua/w5O4nccPvN2DSD5Mw48cZWP7XcmzK3QSz1bWhWNDtt4NR2JVLWCyo/ugjzE0Nx+2T4jnHJ4Zwv0c/HnW9SE8Hpe4YdN40jpyPZpZrkGFnXmixsvgjnQxKrxjWf7KkAOD6kykgYIfRbMUD353ANrsMyud7c/HSVUNx68T2L/zaY0UcCcJ7N47C1IG21XGrlYXIzX5LZqsZZc1lKGosQoGmAFm1WThfe75tRdBqtaJSR65sSUVSPDjywQ79jL2WnK3ceqbEDgSlEhmQsogIGnF2PTD54c5dnz0mPZD+E4AWb6YDgTDwxFLm8nIU3HYbYj74AOp7dtlqSne9DhjsFjosBuCHm4A7NtomtP2EIUFDEKQIIla+JeoLOJwbimaDGT7yrr19Z5Vr2upJRzI5CGSoVeuBQj0pAGTVZuHlQy8TY4HyQDwx9gmvnF8ulmNW3Cz8kdve2mRL/hbcnHKzV87fo3Sk5yUdlFZn2TKjcjvZ6hlKups0G1CHOb6G5LnAMbve1jnboA+9DOUvvcw53GoSoWhfCBL/NQ2S1CW2ljOVdhPvXf8HDFkMhNqck+u++454vdTHDGUot5bMP16H+pz2CbKptBQl/3iMc63Rb70JWTx3cu0Ngu9aBr+FC9B88CAgEkM9YzokQZ65Rgt0P2arGS8degmsncu9QqzA0+OfJo5Ty9R4ecrLWDFuBbLrsmG0GiFhJLCyVmzJ34KfLvxEnCO9Oh1/3/F3fDrvU8jFrhMHFqsFu4p24euMr3GykrtYpJaq8faMt9uM/C4bcBn+tf9fDk2ZAKBWX4vDZYdxuOwwPjn9CV6c/CLGhDv20ZAEBSHwhhtQ+/XXbWMNGzYg8NZb8O8r05Aa6Yc/0sugM1owJyUcd05OwC8nS/DsL+2LrtvPV6KmyYBgJ8mSM8WunXdpJiYGI8pfgdKG9rnxLyeLkRqVCgA4ml+LKg3pjHzFcDK7SsNaLNCnp8NcXw9FSiqk4Q7uc30EIVMq4BFv/5VFBKQAYGWBf/16tk3yoDdZOM5ikxKD2wJSAE4DUpZlcajsEF488CIW/7IY474dh8vXX457t92L1w6/hnXZ65BRk4Hy5nKUN5dzAlIAeGjUQ4hUO/8y9zlOk5lgxE0C/KP5j3UFXdtVesJmouQtsv5oC6Drsn2grXR8c2d1OhTdfz8at24HJj0APHTMls21x6wHfrwN0FTwnuNSRMSIMDmKcuH1uQCjxYp9OZ65BHaEj3a2Kx1miU+RO0NTAP/+4QbojGJNMe7fdj9RNgAAz058FgG0GqETLExYSGyfqDyBiub+810giBhKyv1Zqy1D2YqmHMjdRb5mxI3Oz0ll/dn8Qyh77jnAzJ+ZsegZlD3/b7BiKXDlh6T5ksUA/PYwYLXCWFyCho0bidf6J+hssbhEYaupfzQd8I+FMsQIZYjzVh2hj/0D6unTnf8snUQaFYWApUsRcPWSTgek9fp6VOuqiRZtAt7n63NfczKS9464F1Fq/iybr8wXo8NHY2LkRIyNGIvxkePxr0n/wufzP4efjFQsHKs4hhW7VzitMdWatFiTuQZXbrgSj+56lDcgTfBLwHeXf0c4y0+PmY6fF/+M2bGz3fo58xvzsWzzMnye/rnTus/g5XdDpLIzzWRZVL7xfwCAG8fHYfXdE/Dz/ZNx/8wkKGViLBoRCbld+ZjZymJTumPDpyYD1+RoOI/zLo1IxGDJKHLO9uup0rYuFL+fITshDInwRXKY41aF+sxM5F55FfJvvAnF992PnFmzUP7Kq2BNfbeDgRCUCrjNqaJ6/G9vLu8+lgX+8eMplDfo8f3hQk6W9JG57un5ixqLcNeWu3DPX/dgXfY65Dfmw8y6lmzYMyduDu5Mu9Oj1zhEWwuc+gHY91/g/EbA3EP9vWpzuU3gh1/Pf6w7DJgOKKkJhzddeE98AwCwGBlUnSXrIcRBQZDTphkmE0oeewzV/1sJqzwQuGWdre7MnqZy4Kc7+lXLGDoolaguAjDjTycPTG/wx5ky/NbWy43F5SKqrnegIN09UnYEt/15G6p0ZH3ndYOu4wSRnWVy1GSopeTkxJ06rd6O/vx5lL/6GooeeBDlL70Ezc6dYB0Egm1IlUBYKjlWate7Of0nqjepmtuPlGbANMIJvO6CFPqz55y8AGjavRv1a38CYsZwHYOLDoHd+y7Kn3+eCGwZsRWBA5ttG0s+AZu6BHp1GHDjd2DEEoSPbgQj4p9s+19zDYKXL4ferHdLxthTWKwW/JL9C67acBWm/TgNs9bOwuy1s/G/M//r1dfdVzlTdQYfn/qYGEv0T8QdqXd4fK7xkeOx+vLVCFYEE+M7inbg9SOvcwJBk9WE1RmrMX/dfLx6+FUUaqj2Ti3Mjp2N76/4HokBXFPGUFUo3pv9HtZfuR73DLsHEyMnIsonCgz4ExcsWLx34j28eexNh4GpJDQUwX/7GzGmPXoUmm38ztp+Cinmp0UQY7SM1p704gbCC00qZpDixOTInmtGk0FppcaA/TnVMFus+DO9nNjnzODIkJuLgjvuJEsDrFbUffstSh5/AqyLFlW9FUG+K+A2b/+VxWtK2Eq91oS7vz6K4joyazApMRgTE4MdvKqd7QXb8cy+ZzhZB3dRSpS4I+0O3Dv83s63eWFZ4PCnwI5XAPtie99I4PK3bPLX7sJqBTY9aWt/0IpUBaQu6fg5xVKbE+6JdokLzv4MTH204+dspTy9LVNRk6mG1Uj+LaLfeQeq0aNQ+syzaPzDLtC2WlH1zjuo+fRTyAcNgjw5CYrmUVDLTkOqbLnBFh4EdrwMzHup89fZB6CDUkZshFiVj01nZfhnk6HTtdh8bEovwz9+PNW2PYQpQpKIekCnXOX19+0rWKwW/C/9f/j09KecDNDosNFYMW6F199TJpZhdtxs/Hax3TDnj7w/cHsat91VX4C1WlH133dR8/nnhNNt3fc/QBIRgYDrr0PANdcAjAiGnGwYc/PAGvSQhIdDNW4cpFEjgQq77Gj+fmDSgwDLwnLoW5jqbVMbmdoM0YjFttYvzpD7AnETgfy9MDWLUXWGnGDKfM2Im1mNvL9CYTG0Z2kr/u//4DNxAmSznrPVsdblw9gkhqZEgYY/P4ahgWx5FZCkhURhRdaUB/BF7SHs+eE/aDY1I1wVjnnD5mB5+lZETapD6eEAsOb2+6bk1qX4fJYEO3+ajWpdNSSMBEOChmBR0iJcM/AaXmfVnqBaV42n9z6Nw2XkIlaNvgYfnPwAB0sP4oPZH0Atc5z96WmqtFU4XnkcVqsVsb6xSA1OdWhWVqOrweqM1ThYdhBmqxnjI8Zj2dBlCFN5R0JZ3lyO33N/R5GmCBE+EZgdOxuDg9rdpwsbC/HIzkdgtLbLwUWMCC9NeQlSsZTvlC5J9E/Ep/M+xbLNywjjth+zfkSQIgj3j7gfALC3ZC/eOvYW8hoc98KN8InAP0b/A5cNuIww5eJjYOBADAxsT14YLUaUNJXgbPVZrM5YjfO154njV2esRpgyDHcOvZP3fEF33oG6tT/CXNr+7Kp88y2oZ8zg7be7aHgkNp5uz1QezqtFpUaPMF9uO6/TxfXE9pAIP7dbtiSH+WJYtD9Rk/rLyRJYWRY1zaSs/4ph/Go/1mhE8cN/57SIakXz11+o+eILhNxzj1vX1JtgWG80BxLoEtJa+o6dO+d8xbY7OJpfi+s+PUiMPblgMM6WNODPs+UOXmXj5/smYWyCcxnQ9+e/xxtH3iDqGWh8pb6I84tDgn8CUoJSMMB/QFvwqZQokRqc6p2HM8sCf66w1Tc6YvoKYNazHauJchdDE1B4CDi6ErhANVOf/DAw/5XOnT93F/ANFVws3w7EjO3cedfeDmT8CrNOhJzfw8Ba2idXvvPmIeYDmxEIa7Gg/JVXUP/DGkdnsiECApOaETa8ESJpy+fjph+Bwd7NRvVWrt94PfFANtWPhr7setwyIQ6vXs1jDtVBWJbFqv35ePmPDGLx6VnJd/ibxG7xwD/WJjnsys++m7BWKwxZWbA2NUE+eDDEfm6a5XQQR5NuwDap+mrhVxz5m7fYX7If9227jxj79apfebMP3qS5uRnqljYjTU1N8HFgsOMJ5a+9hrpvVrs+kA+Ggc+IJAT6HoY60gDWCugaAtAc9xCadu+AISff7lgW6gkjEfLYs1AOHw4AMFlMOF55HBfrL0IlUWFi5ERbqceBD8Bu/icKdwVzyg3iZlfDJ8yIplI5ivaQC6yy+HiE//M56PdvgubXtdDX8TtSSxQWDLi8EquGTcZHplLe9hgBLIPnqqowp1qPphIF9CyDX6aPx0plgUPFULAiGI+PfRyLEhe5nPh3JYfLDuOpPU+hRu/ciG1CxAR8PPdjyMS9w7nbylqRU5+D3UW7sbNoJ9KrSUO3CJ8ILB+6HEsHLYVE1J7HOVZ+DE/sfoLz8/rL/fHh7A8xMmyk0/fVm/WQiWUOF9DXZq3Ff47+BwYLqc6aEzcHy4ctR6OxEc/tew7VOrKUY1naMjw2lqpF7gBHy4/i3q33En3fAWBM+BiYLCacqeZvfwQAKUEpuD3tdixIWAAp3Yu8A1isFqw6twrvn3ifmCMyYPDZvM8wKWoS7+sa/vgDpY+Ttf1hTzyO4OXLOcfqTRaMeXkrmo3t38uXrkrD7ZMSOMc+8N1xbLLLanr6LP5iXx5e/r1dbq2UijExMQg7s9pVN8Oi/bHx4am8r6/5/HNUvvW28zeRSJDw4xoo3exfrDVpcbziOCq0FQiQB2Bs+NgOlaB0Nm4RgtJeTG8KSm/5/BD257TffEN95djz5CwYzVZc9t4eonDbnvmp4fjf7Y6DHIvVgrePv43VGdwJSpRPFG4achNGhY9CvG88/OX+3fPQ3fs2sN2NTNzIW4HF79qyjt5CW2trhZK5CSg6ZGszQKMOBx483N7vs6NYzMB7I4BGO1vyoUuBa7/s+DlztgHf2izZy4/5o87OuAMiERI3/gZ5Uns/WpZlUf3BB6j++BOXp5aqzYidXgO5n8X2s9+7Fwi4hNyVHbDq7Cq8c/ydtm3WKkVT9rOAVYkbx8ViQVoE0qL8EOor7/D3Q2e04LkN6Vh/ooQYV8CAEz5/h8pi58A4+e/AfK4BTHfTtG8/yl9+CaYCm2SMkckQdPddCH3oIbfcRj2BZVlsL9yOVw+/ypkEAjan5DemvuHVOlIas9WMeT/PI95/+bDleGT0I132noD3g9KG3/9A6RPeMYGCiAVYAKyLzz3DwP/apTh8VTI+zv8WzVVlmHaWxdRzVsRWAxJGBFlQMFBfAYuBDBL8BzQjakJLRiIgDvlVl0O37jeeN3Hy9mIWUTNr8H9jB+A3kWsl0ESdDqP0Rqz1VaNG4t5neUr0FLww8YVu91KwWC1Ymb4Sn5z+xO3a0SuTrsQrU15xeL/KbcjFrqJd0Bg1SApIwuzY2VBJXWS73cRoMWJH0Q6crjyNjJoMZNVlodnU7PJ1yQHJeG7CcxgVNgrfnv8W/z3+X96FBcBWs/nVwq8wKHAQMW62mvH9+e+x9sJaFDQWQCFWYGr0VCwfthxpIbb5Hsuy+OjUR/jszGce/2wTIyfik7mfEMFzZ9icvxlP7n7S9YEtTI+ZjttTb8f4iPFdMlfbeHEjnt33LDEWqgzFz1f+jCAFN/HBsiwKbroZulOn2sYYmQwDfllPzENaeXTNSWw41Z4tHT8gCGvvJQNelmUx5Y0dxJz3P9cOx/Vj3Z+LVGkMmPj69rZaUj4cBcSmigrkXnY5rNp2d/G8cODnqSI8vs5K1GTKkpMwYN06iOSOFVVGixHfnv8W3xz7H6BpglECaJSARCzFjYNvxMOjHvbouycEpZcwvSUoPZZfi2upLOkLi1OxbIqt59nh3Brc8vlhmKkvWKBKij/+Pg1RAfzZy7KmMvz74L+xv3Q/Z9+VSVfiuQnPee1B5DbpPwPr7uaOBw4A6nhkKslzgeu+Jp0fO4C1MhdNnz8L3bFDMDbYHB7FMiukPhYoAk1QBhshVVvAiCXAreuBxBmder829v0X2Pai3QAD3LeXvz2LMwwaW83rphWAoQGGRjFy/wwjJov+S69B1Kuv8r5cd/o0Kt/5L7SHnfckFcstiJtZA0WgGYgeY3PklXU+cwPAJpPO3QFc+AtoLAHkfkDcBFugLu+5PmHVumrM+2kekSkxVM+GsWo+cVywjwxDIn0xJMIPaVF+GB7jjwEhaqJhN8uyKKnXIaeyCSX1OtRrTajSGLA1owIl9dzJ8geJh7G49D1y8OETtjYaPQTLsqj+8CNUf/wx+OoJ/K++GpGvveqVSZHJYsLRiqP46uxXOFh2kLNfzIjx8KiHsWzoss6XDLjBm0ffxDcZ37RtR/pEYvPSzV363t4MSk3l5ci98ipYG+3ctSUSBFy9BPrMLOjT0x2/2As0y4GyICChApC4ET9JVGYkLqyCWGb7nP008XZ8WH4Ez33eiFg3vcakPmYET67HM6NisF/ctTWVKokKj455FDcMvqFbPo8X6y/i+QPP40wVN2sWZjbj+epaqFgWT4SFoJZaKFoxbgVuS72NGNOZdXj98OvYkLOByIgFK4LxzIRnOD17Adv9IK8hD+XN5QhSBmFQ4CCHP/vm/M14+9jbKG92ru5yhlKidKvEKFwVjjWL1iBEaTN41Jq0eHLPk9hTvIf3+MWJi3FL6i34/vz3hEzfXVKCUrBy/kr4y10b7njCmsw1ePUw/3O7lbTgNDw9/mmX2WFv8Hn653jvBPlMmhkzE+/Pfp/3nq87fRr5N95EPCtkyUmIfPllGHNzoT+XAdZshnLECBxNHIt7fmy/BzEMcOiZOQj3a5fwFtZoMf1Nsl/81n9Mx0APe4ku//oYxzS07frEIhx5bg4CVFw1QckTT7b1MAYAK4Dn7hDjYhSDG3ZbsPQA+UwMWrYM4U9xS0qMxcW4+N1K5Oz6DeFlevja5ZXqVcDRQQx+Hy+CX/IQfDTnI4T7uNFDGkJQeknTW4LS2744jL3Z7U/gMF859qyYRWjod2RW4PG1p1GntUk9YgKV+OSWMUiL9sVfBX/hj9w/kF2XDStrhUqigkwsQ1ZdFu/K6gMjH8B9w+/rfilS4SFbT0yLva6fAZZ+bgtMjn5uk/XS1xw5ErjlJ8ctB5xgqS5F9QsPon7PeVhNzn9ekYyFMi0FiokzoRw2DMphwyAJDfX4PQm0tcC7w8i62bhJwJ1/AA7qaADYbvDFx4CsTUDeHluvwJZVY5YFivYEobms/UbOyGRI2rIZ0kjnq/jmqiroMzJgyLkIXXo6mnbuBGsg5UsiqRWx02qhCjParvX61YC6E78Hq9X2c+x6g6xTa0XhD0z9BzDpIe9mxT3gid1PEMY2rFUKbd7DsBqdf+ZUMjGGRvkjOVyNZoMZR/NqHaoaaJ6dHoJ70m8Ao6trH0yaA9y2vkM/gzew6nQoe+6faNy0yelxES+/hMDrruvQe2hNWuwo2oFdRbuwv2Q/UVdlT5gqDG9OfxOjw0d36H06QmZtJq7bSP5cX8z/wiv9UB3hTlDKsiwaDA3QW/QIVYby1uCxVisK774b2oOHiPHI119HwNVLAAD1p49j74f/ROzBfMhb4je9FCgOAZrlDAaWsVB1k9ccI2IRN6sGqpb2LZ+FReFDH1sGKqCJxfPfWxDjSKmqlsM/xgTf0CoYByjxaEI8TpnqiEMYMLhn+D2YFj0N32R847L3rJRlcWuDBoubmlEpEWO1ny/2q/gXfEeHjcaLk1/EAP8Bnv3QblKtq8Znpz/DTxd+4s0WTtPq8GpVDQJbzFYyZFIsiwyHVtQeLIogwqfzPm2TXlY0V+DvOx5GBlU7aM8Ng2/AU+OeglQsBcuy2FuyF++eeBfZddltx4SrwvHAyAewJHlJW3Bqspjw1rG38H3m9279fEqJEv5yf7eD1zHhY8CyLE5UniDGh4cMx5cLv4TGqMGD2x/kOOS6y5SoKThXcw71hnre/eMixuG9We/BV9Y1i6fbC7fj5YMvc6TKkT6ReHDkg1ictLhbFkEAm9z6ge0PYH8Jmcx4evzTuCXlFt7XVLz+BtEixhGS2Fj8Pe1mnFe0zydeXJyKO6e0f49+PFqIp9a1zxNC1DIcfW4uGIaBpakZupMnYK6pgTQiEsphQx32Ez5eUIuln3AXOgHg5glxeI1HDqw9ehQFt5E+AttHMPjsctv9Vmxh8erXFiTaxboswyD+66/gM972jDBXV6P6k09R++MaMGbHjsoAYBIDa6aLcHRmBD5buBKJ/q5LRYSg9BKmNwSlu7Iqceeqo8TY84tScddU7sNOazTjTHEDrCyL8QlBaDDW4fHdj+N4xXG33ksikuDFSS/iquQeMFGpPA98dQWgpWYZ818FJj/Uvp25Cfj5Llh0emgrZTA1SyASs1BEKSFfeC+YtCuBkEHOAzrY6ik1/3sBFSt/hlnb8eBbEhkJRUoKJKGhEAcFQhIQAJG/P2RxcVCkpTmVbbSx+z/ATmoldMJ9wMI3uHWDJj1wcjVw4AOgvoD3dLUXfFBxglytDb5nOcIef9yTHw0AYCwo+P/27ju+ifp/4PjrkibpLp20tEBLGQWk7L0KKEsUZAiIWsSBIiCIoPgDBTciOBC3oCgggogCKl9FhghlCLJnh1BKgdK9Mz6/P0IiIemi0Ej5PB+PPAr3ubu8c7kk977P4uzkpyk8YvtjrqgFoZ3S8QotAo9A6DkDmt9nnoPVEZMRzv4FZ3ZC7gXzjQdFZW4enbDFPNdhWWo2g4EL7OdJrAIJmQnc8+M9NjdxTAZPis7fhSG7GddzIHUPrZp3Bjfgjn0T4Z9ttoVjNpgHhKlihrQ0cn7byKVFi9CfdjzC45UUNzfqrV2LNqz8UyZlFWWx6NAiVhxfUWZzvq6hXXm1y6v4ulayCX0FCSEY/ONgTmX+O11PTO0YFvRccMOes7SkNDErkW+Pf8v6hPVkFJmTLjcXNzrX6szIqJG0DW5rvbmY/uWXnH/9DZt9ew8YQOhbcwE4kXGC5/54jpMZJ3ExCPyzwaCGdG/zhRWArljQ6ajgjr0m6l+ZLygCV189HsFFeAQX4e5fjKnJMI6k1sGwaDmuFRyw28XdQK0OmXgEmRPSxT5ezPezfa91xYK7d5roeFTglwPpXnCkjsKOKIWjdRTa1upAbc9abDyz2XpsLNxc3Hiz25vE1I4BzO/rhn828OauN+1GcwaIyctnWnoGta+6iPzd3Y1X/H256GLfXFOr0vJEiyeIbRp7Xfr1gbl10xeHv+C7k9/Z9XUEUAvBhIxMHsrK+fcbSa0FYzEb3d2YVNP25qG3xpMP7/gYvbGYKb9P4FIJN4CudJtfE/pHDmDzmc3sSt1V4notg1oyu9NstGotz259lv0X95e63xCPELqHdadHnR60rdkWjVrD7tTdvLn7TY6lHytxu8ebP87j0Y+jN+l57NfH7KZDaeTbiMyiTM7nV3wKJ5WiYkaHGQxrOIyc4hxWHF/BiuMrrMlyuHc49ze+n6ENh5Y4GNP1kq/PZ0PSBk5mnkSr0tIiqAWda3W+5gGVKiOtII0hPw6xncNb5cLX/b62NoO+kqmwkMShQyk+FW9XdrV8Tx/Gd3iCc57mGu624b6sfPzfAQef+mYfP1zRxHdAdAgLRrTg0uefc+mjjzHlXfHbodHg3rw57p064tGxI27NmqFc8VmdvOJvvt9n22XGx03D/yZ3s6mdBfPgRgmDB9u8hjwdPDVWTbaHQiPfRjQLbEbcnyt5Y7ER7RVfFaaaAYTPeYv8XTu5tPgLREHFBhP9s7HCsiH+LOj7kcPjeyWZlFZjzk5KM/KKuev9bTaj6fp7ann1PliX+APHM47jqnalVc1W3NvwXpuT9VTGKcb/Pp6zuWcd7dqOn6sfb8e8XaW1DlZJf8K3D9gnpG0fMY+0e0ViZioqIu2NmaSv/BFhsE3YXNyMeNYqxKsuuDeujSowHPwiwK8e+EVebvKoULzjB1Lf/pi8f+wnUL+eFI0Gt9at8ezWDc/u3dDWq+e49rk4Dz7oAJm2F/ui8WCKm01An5aL4UIqxoO/YTy+FVNeHiaDylqzq9aZcHE1odKaKM52ITPeHa4Yzl0dEEDkT+uveRAaY24uyU+MI3/3brsy34a5BN6WY25e5xEErWOhVey/fU2zU+DvpbBnsblJbmUpauj6NHSbCi7Xf+Tb0rwS9worjq+wWy6Ka1J4sQeG7Ggqm5y2C/djfoc8wrY9b5+oNxkI9y5xvOENoE9JIWP5cnL/2EbRsRIuCtVqgp55Bk1oLc5OtO1b6dG9G7U/+qjMFhcFhgKWHl3KokPmGo3SBLgFMK3tNPqG93XaoDJLjy7ljV22yV15BjwSQnAk/QjbkrdxNvcsHhoPmgc1p3OtzqXWsFydlOrcdGw+s5lvjn/jcMCnK7UIbMGElhNodkFH0v0PwBXz57kEB1PvhzXk6ARLjixh8eHFDqcMGdxgMA80foA3dr9h83ye+YJHM70Zee4EWi8Das0VlzJqLVuHvM+UvW/hnlHAA7+b6HzU9lJH0ekQ3dvznv9eUjUF+OQLvPMh0wPuqu3DsBTz7+7X3t7M8a9hF1f3sO5kFGU4bLpaGh+dDx/0+oDowGi7sjx9HqtOrGJP6h7yDHnUdvGm//kk2p/6w/H4AkC2SmG+ny/feTnuQtIsoBlzus2htte1979PyEpg0cFFrE9YX+KAS3X1el6+eImWRZbfNcV8s7DLZDj5P1g9lg/dBB/41ijXc7qbTNQv1nPA9cZ8z7YMakmnWp1o7NeYJh61CMxJg4vHIOecuTWUdy0IaoIxpCXfxq/mo/0f2SRBkT6RPN/+edoFtTTf1M5JJUOlMPLvuZzNK33KLh+dDzM6zOBszlk+O/iZw9YY7i7uvNb1NXrV6WWzXAjBxYKLqBU1fq5+Th3cypn+SP6DcRttp2IK9Qxlaf+l+LvZz/agT0nhn/sfQJ+SYld2tVM+oUzuPgHD5b65cdN7Eezjit5oou2rv5GZ/+/32Gt3NabbqgXk/PxLSbuzUnl64tWrF/5jx6KrF0F+sYGnvvmbX4+Yb1gEeGr5+IHWtK5r3z/24vsLSXv/fZtli+5Q8UsbFbU8arFiwApquNbgw78/5PQn7/Pg79d3SpjDdeCDe7144873S22ZI5PSaswZSanBaOKf9HyOncthwe8nOZZ6xUWaKp+WrX/mVK59cgDmO/bjmo8jMSuRl+JeKtfgAe4u7twdeTdPtnjyhg4SYkcI89x2exabk5arm+TWvwNGfgPqf+9qFSUmcvbpKRQdLbl5kYXiYsLdX4+LhwGNuxGNuxFFLchLdSUryc3xwByKwL2eP27d+qGuGYYxPYOikycpOHAA46XSRzQsD5eQEHT166OrF4E2IgJtuPmvS1AgypldiEX9KMpQyEt1JfecjoI0LcJU+R+8sA8W4tWzfJNjl8RUWMjZp6eQ+/vvdmUqrQn/Rrn4Nsiz9v3Cv4F5cvoLh+3f2zII/4YYat2O8Z8jiMQ/UdQCjYfR9qI3qAkM+sC+1tRkMidzmafBUAjuAeb+ua6VH5G1wFBA7M+xdkPjWwTqwmjmPoK8jKYcOptlN1fwlbxcXQj39yDAU4uvu5ZAbx13+aXQ9OSHKKccNCP0CoGxW6+piXpFGTIyuPTJp2QsXYooLvnGjcrDg9B33saza1cAzr3wIpnffmuzTujb8/Hu18/h9rnFuXx74lu+OvKVw8GLrtTUvykD6g1gSMMh5R7hW5hMFB46RO4ff1B06hSmrGwUnQ6XoCB0kfVwa9Ua1yaNUVQVu5GQr8/njlV3kF38b7/M3nV7My+m5NEYD148yPy/5rPn/B67Mq1KS486Pbir3l10Cu1krVXTG/VkFGVwJu0MbeqaB6ubtmEqR5N3Yrh0iRp5ghp5UCMPfPIENXLBowgueUF8iMLJWgpnA6DeOZjxnYJHrm0y89fzd7GtVja7z+22mdLCwt3FnVmdZtEvwvz+5enzuG/9fSRk/TtXtoLCR2lZdMrJtNl2XcfRzDy/1SaBCswU9E8LZUTY3XhHNMCjUyfUnp7sSd3Do78+apMQqxU18xrFcuzSET66aNvcGOD59s8zMmokYL4B+9XRr1gbv9ZupNKrBbkF8fEdH1Pft36p69nJT4ekbZCRBAUZ5u4WRbnm75qz5pZIca46ZgX4c1ZjX2vqofEgtkksjf0b809WEkfP7eJ4+lHOFWfhqXalkU8k3evfRc86Pa19IAGOXjrKp/s/5Lczm0scGV9nMhGblcMjWdm4WS4nNR4w+BPbqdMuHMX09RCedi1io0fpY0XU0etZcP4iEXoD6zzdecnfj8IyPic6VBRR9ne9VqVlRugd3FMkzMnkxWOQW0otpmsNaNgXQ9OBHPIOIl2fTbBHMI0LC1H2fQWHvze/J5eddHXngZCa5OG4aWSoZygf3v6htWl1WkEaH/z9AesS1lFgKMBFcSGmdgxPtXqKcJ/wMl/PrWz+X/NZfGixzbKGvg35vPfnDq8nDZcucfHd98j++WdMOTmoAwNwb90G/enTdq2xVtaPYdFt5vPX0jrQUcvB31Rx6FevqlDcikZDzf97nhrDh6MoCv9cyuNsRgHNa9fAQ2f/+c35fRPJTz5p0y82IRimx6pxcdGypN8Sbgu4DTDftHh1x8s0fnE5Tc6UHkexGjY1V/Do0oX7ej+Da1AwxvR00pctI+Orr+3GbEjxg7dGuPJQn+kMaTDEpnbelJfHhY2/0P7BWDxD68qktLwKCwt5/fXXWb58OadPn8bPz4++ffvy0ksvERYWVqF9ZWZmMmvWLL7//ntSU1MJDg5m0KBBzJ49mxo1alQ61qpKSjPzi1n1VzI/H0rlcEoWhXr7L3ZFk4Zfva8oVlW8CQqYh1Uf13wc/m7+5BbnUmgsJMg9iFZBrW78YEZCmAcpSvnbPIdm6gHzv/NLuBANa2fuN3fF4DZZP/5I6qzZNiOeXU8ekZ4EvzIXbcsYuzIhBIZz5yg4cJDCQwcv/z103WJReXigCQ3FcC4ZY871fX0B48cTOP7J67IvYTBwbuYLZH3/vcNylcY8Mb1fwzxcXCuYiBohrzCS7NzG5B5Iwngp3W4dtdaIq78e94Bi3IOKcQsworQaCeHdIP8SImkbxhPbKb6Qh6FQBQJULgIXd9A2bo6qxVCIvrdSoybnFOcwdctUh4ODWYxqPIopbaaQmWfi0NksDiRncTo9H0+dmvpBnnSI8KO+5iJK2gnzRW5GEpzZZb5J44ibLzzw/Q1vtmwqKCD9q6+59OmnmHJKr7F0a96ckDdeRxfxbzcCY3Y28XfeifHiv59rdUAAkevXofbxQQjBiYwTxJ2LY3vKdv46/5fDJohgbjbXMaQjt9e9nW5h3co976AhI4O8bX+S+8dW8rb9iTHd/jy6kktgIF69e+Pdtw9urVqVe9Tg9/a+x6cHP7Vd1uM9etTpYbMsrSCNd/56hx/ifyh5Z0IQnAEeheDu4oaLlw+p6lwuqHPxLIDQZCPfvmGuqf6jaUP8DeVPoovV4GK0r7//vqPC8piSX2sD3wbM6z7Prk/ksfRj3Lf+Ppvkz9vFg6VZRsIvnEC4+/N1dD/ePG8/mEyX0C7M6z7P4e/ND6d+YMafM8r1mqa2mepwfti0gjSWHV3GiuMrbG4YWPSq04sZHWbYJH3Xxek4+OU5SNlHvqLwvq8PX3t7WZs8V4QKaOEVQQOvuhxLP8b+wpL7VLoIwV25eTyRkUWI8YoErEZdGP41hNjXBJN1lvylQ3hKlUacm+ObO53zC5ijCsan0yRwqwH7V3Ds+BqmBPlzWmPfVLSmwcBT6ZncmZfPDjdXXgkMIrmEUytM5cq81PM0yXM8v2OZXH0gOBqykh0PfHjZAZ2WSUGBXLxq5OS2wW15s9ubDs8By00gb603ri72c2NK9vQmPWN+GcPfF/+2WR7mGcb09tPpEtrFYV9XIQSiqAiVq/k4G3NzSRoxwqZprAmF57o8zsGASFrVqcHqcZ15+tu/bUaofzxjHwO3LLXbvyYsDH1qKhhKH9isxr33EjxzBoqD8xpA6PWkf72UC/Pn27QyMSnwfKyahBDF5gaZhdFkZOaacfR8ayuhDn6CTApsaabwXVcNj94xneGNhtvVuOf+sY3kp55CXHWdme0GX/VUEd82hH41e9AiEXy2H8Zl10FUxQbuSkxAV7++TErLo7CwkF69erF9+3ZCQkLo2rUrSUlJ7Nq1i8DAQHbs2EGkg2GiHbl06RIdO3bk5MmT1KtXjzZt2nD48GEOHz5M/fr1iYuLw9/fvglBRdzopNRoEizd+Q9zNxwnp7DkD4/a8xjuod+AqnwDpFytWUAz3uv53vX/MS6N0QDJu8wjwh7/GdLL7ksAQGRP88A5l0fTNebkkPrSy2SvXWu/rkqFW3Q0hvNn0Z+z7wdUHi4eUHPCQ3jFTq1QMxxhNFKckEDBgYMUJ5/BmJ6BMSMDY1YWhrQ0ihMSHI5MWlUUrZbASZPwe2j0dW1eJIQgY+kyLsydazcAkvW51QLvuvl41ylE62FACDAUqDEUqjBqayFcgzGZVAiDEaE3oc9TyDtxEVNexfpZqFxMuPrqUetMGItVFGW5YCwq4WpIEei8DbgFGXFv3Qr3QePQtOjleN0yCCH4/czvfPD3B5zIOOFwnTY12zC3+1zzZ85QbL4RczoOTu8w96vNK+f5GtIChnwOARWs2akAY2YmWT/+yKVPP8NwseS4CrTwdz2Fzc0Uitvdxl3176ZbaDdCvUKtFx7Zv2zg7KRJtvu/ozM/PdCA305v5FwZzeoA+ob3ZXzL8dT1rlvmuoa0NAr+/pv8ffso2PMXBQcPmmvLr4E6MADvO3rj3a9vmQlqZmEmA9YMIKvo34trD40Hb3R9g86hnYnPjGdd/DpWnlhJvsH2okIxCYKyIOqMoFmS+eFbSqOWfJOJNifN59meBg1xr2DN7tUO1lV4dYQKk8r+e0GlqBjddDTjWoxDp3bcbPPLw1/y1p63bJb5u/ozssFQ/krbz45z9jWbd9W7i9mdZ5fat/Ldve/y2cHPSo39qVZP8Ugz+zkOr5Svz+fPlD85ePEg2cXmWrWY2jFE+UWVul2lmIywdwlsnA0FGezXafm/QH/+KeFitzJ0JhNDcvKIzc6m1tUDpUQNgLsXgHsp85IXZKL/YTyfpG5liY+XdfCjGkYjDxVriO30f6hvGwpXnmfn9lP8vxf4Pm0Pm93dSHVRE2ww0icvn755+bhe8VuXryh8UsObFd4+5F7ehVbAPTk5PJWeiVcV/S5mqVSs9PLkkIc37jWb0a3Zg/SO6PtvkpR7AdITzN/Faq15tHfPIPAKvn4jyt8CzuedJ/aXWIddxQLcAuge1p3e4b1pF9yu1KlyCo8dI2nYvYgrkr/zbr6M6zmFfI0rC0a2ZMq3+yk2mr/fW1w4wWtxn6Fc8X2v6HSEfbAQz86dMeXlkb9nD3nbd5C3YwdFJxz/Vnt07kzoO2+j9vq3EsRUWEjmd9+R/vkih82Nl8ao+KGjin7h/ZjTbY7Da6xCQyFT142j3rdxdD0s8CgyDxq3u4HC6s4qDHWCmdNtDq1rti75mBw9yumxYzFeKP/1rUxKK+CFF17g5ZdfpmPHjvzvf/+z9pOZP38+U6ZMoVu3bmzZsqVc+3rwwQf56quvGDx4MCtWrMDlcufliRMnsmDBAh588EG+LMdoX6W5kUnpgeRMZqw5xIHkq+8YmlDU+SguuSiadDTef6Pxse8z4+/qz9jmY8kuymbp0aV2AzlY3B15NzM7zLxxd/5Mxn+bMhVkwLn95mZOJ36BgtJrKWy4uEHMs9DpKVCpMKSnk/X991z67HOMGfavTVs/ktB583FtZJ6HrCghgdzffyfn1w0UHDhcZkKouCj43tmFgP+bi9r7+g7hDuZkOn/XLnK3bCV361YMqdc+BL5aa8TF3YSLzoTKLwB1eEtUQRGoPD1BCAyXLmFMT8eYk4PKzQ3XxlH4DB6MtoItDyqiKCGRi++8Q87//nfDnuNGc/FS4xrVELcOvdA1boI2PBxt7bAS75pezSRMbD6zmY/2f+SwSW+giyfzVMG0TIgDfQVrwD0Cods0aPtwmYN2lRpjXh6GixfRX7iA4eJF8+OC5a95WfGZMzZ3ga9kUMHGFgrbmqo4FQJGtf2Pr5uLG7U8alHLsxahHrWIeX8Hfn8l2Kzze7TC8u4qsjyv2l4INAZwK4bONVoRGzGMCE0IpoICTPkFmAryEdZ/F2DKz8eYnk7x6dMUnz6NMa2c84JUkDowAO/efUqtQV19cjUvbn+x9P0YBY2SzYlnWBqEpAtCMkFTgZlJrmdSeqQ2vDFMTaHuqv74igt9I/ryaLNHy+wbaxImpmyewm+nfyvXc97f+H6mtp1a5uigJmFi6pap/O8f++8UlaLiuXbP2dVI/Ofkp5sT07++JF+B1/19WVNCX9OK8jSZGJmdw6isHPyvvPGiqCCiO3R+CiJ7lLyDq539i6Jj64jPOIla50O9+v3RNOxj02XGTtI2+Hs5xP8OOaX3DSxS4KRGiwDq6fV4lHWpq9KAf/1/p7u6FA8Xy+6qY+VZE/LSrKPQ2/EIMtce6wsg7STkXSh5X1ov84jyGg/z2AVuNaDmbVC7PUR0K98UdEY9XDgCZ/eamygX5YJdy5DLn0ONq/k73/oI+Pff7v6V+g2oCsk5yYz+ZXSpg0n56nzpVbcXd0feTYvAFg4TuUufL+LC3Lk2y34Pa8Xc1iNtxhapnXOe+Vvfx1NveyO71ltv4dbvDoqMRagVtU2rDP2FC+ZuKV9/bfe8ugYNqPXWXFTu7mSvX0/6V1+X2GVrU7TCR/1V1PWJ4JsB3+ChKfkGhsFk4NMDn/L1oSUo2TnkuIHaRcvdkXczufXkck0fpE9N5czYxyk6Xo7BIJFJabnp9XqCgoLIzMxk7969tGxp2xStefPmHDhwgD179tC6dcl3DgBSU1MJDQ1FrVZz5swZatb8d/6eoqIiateuTXp6OmfPnrUpq6gbkZSezy7krQ3HWbU3GaEUoXZLQu2egNo1FZU2DUWTgaKUfqc/yi+KBT0XEOwRDJj7+iw9upQlR5ZY79xH+EQwNnos/SP6l11TZtSb7xrmpJoHGypIN/8tzLrqkW3+W5RtHpynOA+umC9MmMBkUDDpVRj1ivnfBhXCoCCEeYh/RQFUoCgCRQWKTyjUj8EU3gd9eh5FCYkU7N1LwaFDJTa98BkymOAZM1CV0PzIcOkSeXFx6JPPok89hyHlHPpz5xCF+bgE18SzWwzed92NpuaN758H5pq1opMnKTp+guLERIqTEilKTKI4MRFRaF/7rQkLw6NLZzzbtcQ9WKAmx/yjGNbWfBf3P6Tw+HHSPvjQnJxe768ylco8GEoFR6qrFLUabViYOUGNMPf5dW0cha5hQ2tTo6sJIVhzag2vxL1M8VV92tRCMDI7h8czs/EpTw2eRxB0nghtxiA07ojCQmuCJgryMVxKx3DhPIYLF9Cfv2BOLC9cwJSbg9AbEIbLD6MBkZdfqSbm25oorOim4rxvxWra/bME8z8z4uagO2q2GxRpQGMErR60hvLNV1kZ2nr18OjcGU1wMKbCAvTJZynYu5fifxyPXn01SxNfr149cY1ujtrTfBEihGD6tumsT1hvs75PrqBFgqBVvKB5YuWnUCkpKVX7+uISEIA6wB+XgEBc/P1ReXhQFB9Pwf79GM79Wytd7ObCli41WNNBQaXV4qnxpJZnLcJ9wokOiKZzaOmDLdnFpM9n9C+jS+xfbTGh5QQebfZouVtr6E16Pj3wKUuPLrU2wY0OiGZS60m0DW5b7vic7uxfsP4ZSNnLca2G5V5e7HfVkqtS4Wc00rhYT2PFjQiPWlzIP88WkccWdzcKHNxw8DcYGZWTxwjfaLxC25gHAHL1MXdvcfM196+/Dn3mK6woB7LPQW4qnD8Mfy8ztwgpD0VlnmM8tA0ENoKgxuYBCa8eSTYrGY6ug8OrzS1MruZTG1o9CNHDwbcu5F2CuIXm0emNJfeHrxS1Fup2hoZ9oHY783e2SW++KX/xOJw7YH7/Uw+YxzWoNMWcmF6drNr9P8Bc06v1NA/KZSgEQ5HtX0Vljt9FZ/6rqM014oranPgqalC5XP53xb73U/NSeWbLM2WOsgzmUYt71OlBI99GeGo8cXNxw0vrhafaneLx0yneYzuC8g/1uvDpbXdhVKlpmpbAzF1f4lNs27zk5N3RfNXVxPH049b+1+4u7gS5BxHkHkSgeyDB7sE0+vsSdd/9AaW4YkOCm4C17RWW9VAR7FmLz/t8Xu7BywoNhdYRpBv6NjQny0KYP0M558w3U/QF5pvXlr+Kyvz5dvfHqPLk3JyPydm4qdTnMSrQ90wCPnVlUlqmTZs20bNnTyIjIzl16pRd+csvv8wLL7zAiy++yKxZs0rd1+LFixkzZgy9evXit9/s79Y+/PDDLFq0iMWLFzN69OhrjtmSlO7dsxuDSY8wCAxCjzAYMJqMGE1GTEYDRqPJ/NdkxHT5YTQaEUYDeoOR9NwC4tPS2Xc2mSMXkzBpz4PuAormEmohUJnMF2Yq0+X+PyZQC/Nddp0edHpw1YNbEUQrAcSoa6EqKMSUV4AwgcpVi8rdFaF1IVdtwkWjwVMoiMJ8REE+oqgIoddj0hsQxQaE3nB58BkjikkPxkIUxXwaCqGAMH9ehMnyb8X8iVQuf0+pBJjAeHkEWJP+8t8K9HW6FiovL0Jmz8K7f/8b+jxVRZhMGFJTKUpMxJB6HnUNH3T166OpU+emG9GvKCGBS598Sta6dWX24yiNW8uWePXpjWf37mjr1kVRqTAVFqJPOUfR8WPk791H/s6dJTbFAfMgBi4hISgaDcasTIxplR+kCpUKXZ1QXBvVR9eoAWofL1SKHsWQi7iUhOnMQc5eSOJXFw+UIgXPQvAoALdiYU7ADOBlELgahLWPn6JSQO2ColYjVC6g1iBUWiguhoJCKKyiCSGv8neEwvIYFWl1vJnYciL96/XndPZpNiRtYF3CujIHJQJofdLE1O9MqJzw66a4uuLRoQMe3bri2a1biS0GiuLjyd6wgZwN/yv3XWhUKnSNGuHesgXaiHoIbw+WnVxB4pmDhKUJGp8RhJdSAVMqnQ4hTHYXSwUuLrQ+fAiAlB9+IKBNG1wCA8us0defP09xfDwqT090jRqVb3qqCsgpzuGZLc+wPWW7XZm/qz+zO82me+3u17Rvo8lISl4Kbi5uVdvt5HoSwtxc//D3cP4IFOeAVy1zItPgDnPNm6KY1zt/mMKjP7I94Wd2F52nAIGP2o2WvlF0jhqCpmFfcyL6XyYEnNoIW990nEACeIeZR2hvMQp8yj9dFACZZy5PKXbe3Ly2VivzMXTUciDtFPw81Vyje8tRoIRBsSq2G5V5sEIXV9C4Xf7rbq7VtSzTuJlbuWlcQa3DKATri87yeX4CCcayB9p0JCBLMM/BTc00d3eydB5EZtg3ZY1rpPD2Papy9+NucFYwbZURn3Lesz1RC5b2UHO0jkKU1o93fdtTy2CwrbQpslTa5JiTfp23uUbdcnxc3ABhrvDJvwS5F6Ecg5FeKeecJ5eOe1NwRcO7Yg2cqK1wrJEaJVLDoleP4OYXKZPSsrzzzjtMnjyZYcOG8e1VIzQCrF+/ngEDBjBo0CC+L2EgFYtJkybx7rvvMnXqVN5880278oULFzJ+/HgmTZrE22+/fc0xN23alKJTp1gbUfaEtdKN5dmjB8Ez/g9NaAV/yKQqpb9wgazvviN38xYKjhyxNgtVeXuba3V8fVF5eqDS6lB0OhSt1tzkuEljPLp0QVPOlg2GixfJ37cPffJZjDnZqD090dSpg2uDBmjCwmzmIjPm5lF04jgFcX+Qv3k9+cdPYyq6uZL+G61YDXvrK6xvq+J4bYW7I+/m6dZP2w3tbzAZiDsXx4/xPxKXElditwGAjkdNPLHeVOE5KitK5e6Oa/No3Fq0wL11G9zbtqlwAlaUkEjOhl/I/mVD+RPUSlL7+ODerh0enTri0amT9WaUqbgYU1YWxuxsVO7uFHl64nV5Oqer5yl1NiEEW5O38nPSz5zJOYOP1oeY2jHcWe/OUpu1SdWYEJC41dzHNu24uVluzabmKa0ie1ZdU1Qh4OSvsOUN6wjJdlxczc1+henfUZWl6yLJxYXfPdz4n4c7hyv4fdz2hImnV5tQlyM7OhkCs0epKdZU7Dc9KEPw3EojYaXcs/47QmFNR4UjdRR8TCYeyM5hTGY2VT8zrC1jkYK+QI2igNbLwJU9I5p+kAuBUdeclJbSeL96OX15wvWSRti1LD9djonZr+e+4N8a0asdO3YMtRDclZjgsFy6wRQFtacnah8flK1boHf5+htL/yGWwVTycs2Pf5KcGg4AQoUoyETkZWEqKkYYFYRJcea4VDecUMCosn2YVIr138UuIPaAbp+OALcA1risYQ1rytyvURgpNhZjMBkwmAzoTXqMl/t0rVG58LNJjWtOsXkEwfI0X1YUFEVlPm8Ulbk2WaUyL7/8F5UKRaP591FUCLt2mR98UrkDBQiTEVNuLqacXEzF16e2WqXTobi5odJqUbRacy1nbg78vtH8KIXpiuPWpk0bVJUc6OhG28IWZjPb2WFI/ykXgNKbHt5QxiBzs0iTwVwDqHL5twmrdeqYGiC8zeuYDObxMoTA3CxMf7lZZQEVroVUa8y1ZCqXkpvEmvs+mZ/TZDT/u6S+sTeVTAD0QK5KRY5Khb4ctZkngTVF4JdT+rEu1MKlbAVRetf+Ep/jbgHe+eZBiFSXv2ZNChToINdVQZ8DrvsFXiYTRpOJ94D3Kv5UVSo+3YSmoHy5jyO3TFKam2u+A+Xu7nj6EcvdX8t6VbWv0iiKgs7dHV2dOpXajzPEx5tHuy3vaMZS5clj7sANboZ8TcdcUVA8fVE8fe2mypDKduUxVyvqsucNvckqzBSNBrWvL2rfa5866HpSqVToLtc0/NcT0upEfp9XvRt2zNXaywloGSx9LsuzbjVRFee5BvC9/KiQMhpO6YBKN2p3EJQbUMr41ZV2I4+5puB0pVrT3DJJqaWVckl95SrSivl67gtu/DykzlBVc6xK/5LHvOrJY1715DGvevKYVz15zKuePOZVTx7zqvdfPua3zG1Pr8tzAOXlOe7Ym395lEjLNDFVtS9JkiRJkiRJkqRb2S2TlNa53AQ2OTnZYblleZ1yNJW9nvuSJEmSJEmSJEm6ld0ySWnz5s0B2Lt3r8Nyy/Lo6Ogq3ZckSZIkSZIkSdKt7JZJSjt37oyPjw/x8fHs27fPrnzVqlUADBgwoMx99e3bF5VKxR9//MGFC7aTwhUVFbF27VpUKhX9+vW7PsFLkiRJkiRJkiRVU7dMUqrVahk/fjwA48ePt+kPOn/+fA4cOECXLl1o27atdfn7779PVFQU06dPt9lXSEgII0eOpLi4mHHjxmEwGKxl06ZN4+LFi9x3330EBwff4FclSZIkSZIkSZJ0c1NERYeKvYkVFhYSExPDzp07CQkJoWvXrvzzzz/s3LkTf39/4uLiqF+/vnX9WbNmMXv2bGJjY/niiy9s9pWWlkaHDh2Ij48nMjKSNm3acPjwYQ4dOkRkZCRxcXEEBARU8SuUJEmSJEmSJEm6udwyNaUArq6ubNq0iZkzZ+Lu7s6aNWtISkoiNjaWffv22SSkZQkICGD37t1MmDCB4uJivv/+e7Kyshg/fjy7du2SCakkSZIkSZIkSVI53FI1pZIkSZIkSZIkSdJ/yy1VUypJkiRJkiRJkiT9t8ikVJIkSZIkSZIkSXIamZRKkiRJkiRJkiRJTiOTUkmSJEmSJEmSJMlpZFIqSZIkSZIkSZIkOY1MSiVJkiRJkiRJkiSnkUmpVGUKCwt57bXXaN68OR4eHri6utKgQQMmTpxIamqqs8Or1latWkXv3r0JCAjA1dWVOnXqMHjwYLZt2+bs0Kq9l156CUVRUBSFb775xtnhVDvHjh1jzpw59OrVizp16qDT6QgODmbw4MH88ccfzg7vplZYWMiLL75Iw4YNcXV1pVatWowZM4bk5GRnh1bt5Ofns2bNGh5++GGio6Px9vbGw8OD5s2b89JLL5Gbm+vsEKu99PR0goKCUBSFqKgoZ4dT7aWmpjJ58mQaNmyIm5sbfn5+tG7dmmnTpjk7tGopLi6OIUOGEBwcjEajwc/Pj169erFq1Spnh2Yl5ymVqkRhYSHdu3dn165d+Pn50bFjR7RaLbt27eLs2bMEBwezY8cOwsPDnR1qtWI0GnnwwQdZtmwZHh4edOnShRo1anD69Gn++usvZs6cyYwZM5wdZrV1/PhxmjdvTnFxMUIIli9fzogRI5wdVrUSFhbG2bNn8fb2pn379vj6+nLkyBEOHTqEoijMnz+fSZMmOTvMm05hYSG9evVi+/bthISE0LVrV5KSkti1axeBgYHs2LGDyMhIZ4dZbXz22Wc8+uijADRt2pQmTZqQnZ3N9u3bycnJISoqii1bthAUFOTkSKuv0aNHs2TJEoQQNGrUiGPHjjk7pGprx44d9O/fn8zMTJo0acJtt91GTk4OR44cITk5GYPB4OwQq5WVK1cyYsQITCYTbdq0ITIykpSUFP78809MJhPPPvssb7zxhrPDBCFJVeDdd98VgGjfvr3IysqyLi8sLBTDhg0TgHjwwQedGGH1NG3aNAGI/v37i0uXLtmUpaenixMnTjgpsurPZDKJbt26iZo1a4qBAwcKQCxfvtzZYVU7d9xxh1i2bJkoKiqyWf7RRx8JQKjVanH48GEnRXfzmjlzpgBEx44dRU5OjnX5vHnzBCC6devmxOiqny+//FI88cQTdt/JKSkpomXLlgIQI0eOdFJ01d9vv/0mAPHYY48JQDRq1MjZIVVbZ8+eFTVq1BBubm5i9erVduU7d+50QlTVl16vF4GBgQIQ33zzjU3Z9u3bhaurq1AURZw6dcpJEf5LJqVSlRgyZIjDD4QQQuzbt08AonHjxk6IrPo6ceKEUKvVok6dOiIvL8/Z4dxyPvnkEwGIr7/+WsTGxsqk1Al69+4tADFr1ixnh3JTKS4uFjVq1BCA2Lt3r115dHS0AMSePXucEN2tZ/v27QIQOp3O7uaLVHn5+fmifv36okmTJuLEiRMyKb3BHnjgAQGIBQsWODuUW8LBgwcFIKKiohyWW26ar1ixooojsyf7lEpVQqfTlbmOn59fFURy6/jss88wGo08/vjjuLu7OzucW0pqairTpk2jV69ejBo1ytnh3LKaN28OQEpKipMjubls27aNzMxMIiMjadmypV350KFDAVi7dm1Vh3ZLspzHRUVFXLp0ycnRVD+zZ88mPj6eDz/8EI1G4+xwqrWMjAy+/fZbfHx8eOSRR5wdzi2hPNff8N+4BpdJqVQl7rjjDgDeeecdsrOzrcuLi4t57bXXAIiNjXVKbNXVxo0bAfOxT0xM5LXXXmPs2LFMnz6d3377zcnRVW8TJ06koKCADz/80Nmh3NISEhIACA4OdnIkN5f9+/cD0KpVK4flluWW9aQby3IeWwYnka6fAwcOMG/ePB566CG6devm7HCqvT///JOioiK6dOmCRqNh1apVTJo0iSeffJIFCxZw/vx5Z4dY7dSrV4969epx7Ngxvv32W5uyHTt2sGHDBiIiIv4T57+LswOQbg0PPPAAP/30EytXriQiIoJOnTqh0WjYtWsXOTk5vPrqq9ZBHqTr4/DhwwDs3LmTKVOmUFRUZC174403uP322/nuu+/w9vZ2VojV0rp161i5ciWzZ8+mQYMGzg7nlhUfH8+6desAuPvuu50czc3l9OnTgHkQKUcsyy3rSTfWu+++C0Dfvn3LXeshlc1kMvHoo49So0YN3nzzTWeHc0uwXJfUrFmTrl27smPHDpvy6dOns3jxYoYNG+aM8KoltVrNF198wV133cXw4cOZO3cukZGRnDt3jm3bttGuXTu++uortFqts0OVNaVS1VCr1SxfvpxnnnmG9PR01q1bx/fff8/Zs2dp0aIFXbp0cXaI1UphYSGFhYUATJo0ie7du3PgwAGys7P59ddfiYiI4LfffuOxxx5zcqTVS25uLuPGjaNhw4Y8++yzzg7nlmUwGBg9ejRFRUUMHz6c1q1bOzukm4pl+pGSmv17eHjYrCfdOD/99BOff/45Go2Gl19+2dnhVCsLFixg165dzJ07F39/f2eHc0vIyMgAYMmSJRw4cIDPP/+cixcvkpiYyNNPP01eXh73338/Bw4ccHKk1UvXrl3ZsmULERER7NmzhxUrVrB161Y8PDy4/fbbqVWrlrNDBGRNqVROQ4cO5dChQxXaZsmSJbRr1w4wfxHdc8897N69m3fffZchQ4bg7u7O1q1bmTBhAr169WLlypUMGjToBkR/c6rMMTcajdZloaGhrF271noX7Pbbb+eHH36gRYsWfPvtt7z88suyRu+yyp7nzz//PGfOnGHjxo2yRqOcKnvMHZkwYQLbtm2jXr16fPDBB5UN8ZYjLs8UpyhKqeXSjXX06FHuv/9+hBDMnTvX2rdUqrwzZ84wY8YMunfvzujRo50dzi3Dcm1iMBhYuHAhY8aMASAgIIB58+Zx+vRpVq1axZtvvsnXX3/tzFCrleXLl/PQQw/RoUMHvvnmG5o2bUpKSgpvvfUWr7zyChs3bmTLli1O71Mtk1KpXJKSkjh+/HiFtsnPz7f+e/LkyWzZsoV33nmHiRMnWpcPHDiQ0NBQ2rdvz1NPPcWAAQNwcZGnJVTumHt4eKBSqTCZTNx///12zTKaNWtGmzZt2LVrF1u2bJFJ6WWVOea7du1i4cKFPPDAA/Ts2fNGhFctVfa75WovvfQSH330ETVr1mTDhg2yD9418PLyAiAvL89hueX4e3p6VllMt5rk5GT69u1LRkYGTz/9NE899ZSzQ6pWxo0bR3Fxsez3X8Us3y0qlcrhOCJjxoxh1apVbN68uYojq75OnjxJbGwsNWvWZP369daWLg0aNODjjz/m3LlzrF27lsWLFzu99Zy8+pfKZc+ePde8rdFoZPny5cC/ozZeqU2bNkRERBAfH09CQgINGza85ueqTipzzAHq1q1LYmIidevWdVgeHh7Orl27uHDhQqWepzqpzDH/6aefMJlMHDx4kJiYGJsyyyTsloRp6NChjB8/vjKhVhuVPc+vtHDhQl588UV8fHz45ZdfqF+//nXb962kTp06gDkxcsSy3LKedH2lpaVxxx13cPr0aR566CHeeustZ4dU7axbt44aNWrwxBNP2Cy3dHs5ffq09Xt83bp18gbMdRIeHg6YB59z1JrIUi6vS66fb775Br1eT9++fa0J6ZXuvfde1q5dy+bNm2VSKlV/Fy5coLi4GKDEQXUsy9PT06ssruquZcuWJCYmlnhMLVMLyB/b6+vvv/8usezo0aMcPXqUFi1aVFk8t4qlS5cyYcIE3N3dWb9+vTzGlWBpJrp3716H5Zbl0dHRVRbTrSInJ4d+/fpx7NgxBg8ezKefflpiM2qpcjIzM9myZYvDsoKCAmuZwWCoyrCqNcsUUxkZGQgh7M5teV1y/VluIt4M199yoCPphvPz87M2H3VUK5KdnW1tvldSrZ5UcZYRRzdt2mRXlpOTY72wLGnaB6liZs2ahRDC4cPSTGn58uUIIXjnnXecG2w189NPPzF69Gg0Gg3ff/89nTt3dnZIN7XOnTvj4+NDfHw8+/btsytftWoVAAMGDKjq0Kq1oqIiBg4cyJ49e+jTpw/Lly9HrVY7O6xqqaTv6sTERAAaNWpkXVajRg3nBluNNGvWjIiICAoKCti5c6dduaXZrrwuuX4sU6KV1Cpp9+7dwL+11M4kk1LphtPpdPTt2xeAp59+mnPnzlnLCgsLGTduHPn5+XTu3JmQkBBnhVntjBgxgvDwcDZs2MCXX35pXW4wGHjqqafIyMjgtttukxfw0k3tzz//tHYLWLFiBb1793ZyRDc/rVZrbV4+fvx4m76l8+fP58CBA3Tp0oW2bds6K8Rqx2g0MnLkSDZt2kTXrl1ZvXr1f2KKBkm63iwj00+cOJG0tDTr8r/++ot58+YB8Pjjjzsltupo4MCBAGzdutWuD3VcXBxvv/024Lh7XVVThBxGT6oC8fHxdO7cmfPnz+Pl5UXHjh1xc3Nj9+7dpKSk4Ofnx5YtW7jtttucHWq1EhcXx+23305eXh6tWrUiPDycvXv3kpSUhL+/P5s2baJZs2bODrPaGz16NF9++SXLly9nxIgRzg6nWvH19SUzM7PUyb+7dOnCI488UsWR3dwKCwuJiYlh586dhISE0LVrV/755x927tyJv78/cXFxss/udfTuu+8yadIkAO65554Sm9q99dZbBAQEVGFkt5akpCQiIiJo1KiRdSwA6foymUyMGDGClStX4ufnR6dOncjNzWX79u0UFxfz6KOP8sknnzg7zGpl6tSp1r7pTZs2pUmTJqSkpLBjxw5MJhOPPfYYH3/8sZOjBIQkVZHU1FQxefJkERUVJVxdXYVOpxP169cXTz75pDhz5oyzw6u2Tpw4IUaNGiVq1qwpNBqNCAsLE48++qj4559/nB3aLSM2NlYAYvny5c4OpdoBynzExsY6O8ybUn5+vpg5c6aIjIwUWq1W1KxZU8TGxorTp087O7Rq58UXXyzXuZyYmOjsUKu1xMREAYhGjRo5O5RqzWg0ioULF4qWLVsKd3d34eHhITp16iSWLFni7NCqrdWrV4vevXsLf39/4eLiInx9fUWPHj3E0qVLnR2alawplSRJkiRJkiRJkpxG9imVJEmSJEmSJEmSnEYmpZIkSZIkSZIkSZLTyKRUkiRJkiRJkiRJchqZlEqSJEmSJEmSJElOI5NSSZIkSZIkSZIkyWlkUipJkiRJkiRJkiQ5jUxKJUmSJEmSJEmSJKeRSakkSZIkSZIkSZLkNDIplSRJkiRJkiRJkpxGJqWSJEmSJEmSJEmS08ikVJIkSZIkSZIkSXIamZRKkiRdpihKmY/Ro0c7O8xbRkxMDIqikJSUdMOfS1EUwsPDb/jz/JeFh4eXeu7fbMenKs8f6V89e/akbt26FBcXX9P2GRkZuLq6olKpOH36dJnrjxkzBkVR+L//+z8A9u3bh6IozJ0795qeX5Ik53BxdgCSJEn/NbGxsSWWdenSpQojka6HzZs306NHD2JjY/niiy+cHU65zZo1i9mzZ7N48eIqvRkyZMgQPD097ZYHBARUWQzSzWn9+vVs2rSJDz/8EK1We0378PX15c4772T16tUsW7aM5557rsR1CwsLWb16NQD3338/AC1btuTuu+/mtdde4+GHH8bPz++a4pAkqWrJpFSSJOkqN1PiIl0fR48eRaPRODuM/4S33nrrpqsVdWTJkiXk5+cTGhrq7FBuGc8//zxBQUGMGTOmUvt54IEHWL16NV9//XWpSenatWvJysqidevWNG7c2Lp8+vTp/Pjjj8yZM4c5c+ZUKhZJkqqGbL4rSZIk3fKioqKIjIx0dhjSdVSnTh2ioqLkzYYq8ueff3LgwAFGjBhxzbWkFv3798ff35/Dhw+zf//+EtdbunQpYE5ir9ShQwfq16/PokWLrrkZsSRJVUsmpZIkSZVg6WtnNBp58803adiwITqdjtq1a/Pss89SVFTkcLvc3FxeeuklmjVrhru7O97e3nTv3p01a9bYrZuUlISiKMTExJCdnc2UKVOIiIhAo9EwadIk63r79u2jX79++Pj44OPjQ58+fdi9ezdffPEFiqIwa9Ys67q33XYbiqJw4sQJh/ElJSWhUqlo0KABQogyj8OV/feWLVtGhw4d8PLyokaNGtZ1hBB8+eWXdOvWjRo1auDm5kZ0dDRvvfUWer2+zOew+OOPPxg/fjzR0dH4+vri5uZGVFQUzz33HJmZmTbrjh49mh49egDw5Zdf2vSRvPJ4XN1n8rvvvkNRFEaMGFFiHOPGjUNRFD799FOb5RV5b0sSHh7O7NmzAXjooYds4t68ebPNul999RVdunTB29sbd3d3oqOjef311yksLCz3812LpKQkxo4dS3h4ODqdjsDAQIYOHcqBAwfs1r3yHDxx4gQjRoygZs2aqFQq1qxZY3OO5+Xl8fTTT1O7dm3c3Nxo1aoVa9eute5r5cqVtGvXDg8PD2rWrMnEiRMpKCiwe85r7VO6bds27rnnHoKCgtDpdISHhzNx4kQuXrxot+7o0aOt78nWrVvp2bMnXl5eeHt7c+edd3LkyJESn2ft2rX06dMHf39/XF1dadiwITNnziQ3N7fU11LS5ys3N5dnnnnGetyaNGnCe++9hxDC7vyeO3euTT9MR3r06IGiKGzbtq1cx+2zzz4DYNSoUSWuc/DgQUaNGkVoaCg6nY5atWrx0EMP2b1HWq2We++9F4Cvv/7a4b7S09P5+eefUavVDj+nI0eOJC0tje+//75c8UuS5GRCkiRJEkIIAYiKfi0Com7dumL48OHCw8ND9OjRQwwYMED4+PgIQIwaNcpum9TUVNGkSRMBiNDQUHH33XeL22+/XXh4eAhAvP766zbrJyYmCkC0a9dOtGjRQvj6+opBgwaJwYMHi1mzZgkhhPjzzz+Fm5ubAETLli3FiBEjRHR0tNBqtWLs2LECEC+++KJ1n++9954AxNSpUx2+rhkzZghAvPHGG+U6Dt27dxeAeOyxx4RKpRJdu3YVI0aMEJ07dxZCCGE0GsWwYcMEILy9vUWvXr3EwIEDRXBwsABE//79hdFodLjPxMREm+Xt27cXOp1OtG7dWgwePFjceeedIiQkRACiadOmIicnx7rup59+Kvr06SMAERkZKWJjY62P77//3rqe5X20KCwsFD4+PsLNzc1mfxZ6vV4EBAQIrVYr0tPTrcsr+t6WZMqUKaJ58+YCEJ07d7aJ++jRo9b1HnvsMQEIV1dX0b9/fzF06FAREBAgANGxY0eRn59frucTQoi6des6PN6O/PHHH8Lb29t6zIcOHSo6duwoFEURbm5u4vfff7dZf/HixQIQI0aMEN7e3iIiIkIMHz5c9O7dW6xbt856jnfs2FG0b99eBAQEiAEDBoiYmBihUqmEWq0Wv/76q5g/f75wcXERHTt2FIMGDRL+/v4CEPfdd59djCWdP6V59913haIoQq1Wi44dO4qhQ4eKqKgoAYiIiAiRkpJis35sbKwAxNNPPy3UarVo3ry5GDJkiGjYsKEAhL+/vzh37pzd8zz99NPW961bt25i8ODB1uPfunVrkZub6/C1lPT5KigoEO3atROACAwMFEOHDhV9+/YVWq1WTJw40e78vnjxotDpdCIkJETo9Xq7+E6ePCkURRFRUVHlPnZBQUHCw8PD7nNssWrVKqHVaq2vcejQoaJly5bW43To0CGb9bdv3279HDna50cffSQA0a9fP4fPt3HjRgGIBx54oNyvQZIk55FJqSRJ0mXXmpQConHjxjYXvwkJCcLX11cA4tSpUzbb9OvXTwBi2rRpori42Lo8Pj5eREZGCrVaLfbv329dbrlgt1y0Z2Rk2OzPaDRaL4LffPNNm7KXXnrJuu2VSWlmZqZwd3cXQUFBNjEIIYTBYBChoaHCxcVFpKamlus4WC6aXV1dxebNm+3K58yZIwBxxx13iAsXLliX5+bmirvuuksA4v3333e4z6uTivXr19skgkKYk0hLgjZ79mybsk2bNglAxMbGlhj/1RftQggxZswYAYglS5bYrb9+/XoBiEGDBtksr+h7W5oXX3xRAGLx4sUOy1etWmW9aD958qR1eVZWlujSpUupNx0cKW9SmpWVJYKDg4VGoxErV660Kfv111+FVqsVoaGhoqioyLrckpQCYvz48cJgMNhsd+U5HhMTY/P+WratX7++8PPzE1u3brWWnT17VgQFBQlAxMfH2+yzoknpjh07hEqlEnXr1rV5j0wmk/VzNHToUJttLEmpSqUSy5Ytsy43GAxiyJAhAhAzZ8602WbFihXWm0dXxlZcXGw9h5955hmHr6Wkz9fLL79s/X7IysqyLt+/f7/1e+jq8/u+++4TgFizZo3d/p599lkBiHnz5pV8wK5w9OhRAYhu3bo5LE9ISBDu7u7Cx8dHbNmyxabsyy+/FIBo27at3Xb169cXgNi4caNdmeUcX7p0qcPnzM7OFiqVSoSHh5frNUiS5FwyKZUkSbrMclFc2uPK2rUrt/ntt9/s9jdhwgS7pGLfvn0CEJ06dRImk8lumzVr1ghATJgwwbrsygv23bt3223z66+/CkBERUXZ7dNgMIiIiAi7pFQIIR566CEBiFWrVtksX7t2rQDE4MGDSzpUdiwXzU8++aRdmaVW0cvLS1y8eNGuPDU1Veh0OtGsWTOH+yxvUpGfny9cXFxEq1atbJZfa1JqqWnp06eP3fqjRo0SgE1Sdi3vbWnKSkq7desmAPH555/blR04cEAoiiK8vLxsksPSWJLSkh779u0TQgjx9ttvC0BMnz7d4X4mTZokAPHdd99Zl1kSy8DAQJGXl2e3jeUcV6vVNgm2EOabLoGBgQIQL7zwgt22kydPdnicKnr+DBw4UABiw4YNdmUmk0m0bNlSqFQqm3PYkpTef//9dtv89ddfAhDdu3e3WW6pAT927JjdNgUFBSI4OFjUqFHDpnawtM+XEEKEhYUJQOzYscOu7IUXXnB4fm/ZskUAYsCAATbL9Xq9CA4OFlqt1uHn1RFLov3oo486LH/qqacEID7++GOH5YMGDRKA+Ouvv2yWz5o1SwBizJgxNsuTkpKEoijC09PT4flkERoaKgCbRF2SpP8m2adUkiTpKrGxsSU+6tSpY7e+RqMhJibGbnnDhg0BOHfunHXZr7/+CsDAgQNRFMVuG8uUM7t377YrCwkJoU2bNnbLt2/fDsDQoUPt9qlWqxk8eLDD1/n4448D2PWJtPz/0Ucfdbhdae6++267Zfv27SMtLY0uXbo4nFakZs2aNGjQgEOHDjnsG+jI2bNn+eijj5g0aRJjxoxh9OjRPPHEE2i1Wk6ePFnhuB2JiYkhNDSU3377jQsXLliX5+fn88MPP+Dt7c2AAQOsyyvz3laUXq8nLi4ORVG477777MqbNWtGdHQ0OTk5pQ4U48iQIUMcnvuWqTUsr3PQoEEOty/tdd5+++24u7uX+Nzh4eHUr1/fZplKpaJu3boA3HHHHXbbWAaouvJzVlEmk4mNGzfi5eVFr1697MoVRaFz586YTCb++usvu/LevXvbLXP0+b9w4QL79++ncePGNGrUyG4bV1dX2rRpQ2ZmpsPz2NHn6/Tp0yQnJxMWFkaHDh3syocNG2a3DKBbt240adKEn3/+mbNnz1qXr127ltTUVO65555yTwNk+Xz4+vo6LL/ys+FISeeMZQCj7777zqaP9NKlSxFCMHjw4FLPJ8s566g/sCRJ/y1yShhJkqSrVHRKmJCQENRqtd1yy1yPVw52ZBnQ49lnn+XZZ58tcZ9paWl2yxwlxAApKSkA1K5d22F5Sdu1a9eOli1b8uuvv/LPP/9Qt25dzp07x08//USdOnUcXmiXxdFzWV7zzz//7DBZu1J6enqZU3jMnz+f6dOn3/BRNVUqFSNGjGDevHmsWLGCCRMmAPDjjz+Sm5vLQw89hKurq3X9yry3FXXp0iWKi4sJDg62ieFK4eHh7N+/33p+lFdZU8JYXmf79u1L3U9FzmGLkt57Dw+PEsstZSUNKlYely5dsg4w5OJS+qWRo9cVFhZmt8zR5/+ff/4BzFMQlfVZSEtLs0tcHR2/a/38Azz22GNMmjSJRYsWMXPmTODabkplZWUB4OXl5bDccs4EBweXup+rj229evXo1KkT27dvZ926dQwdOhQoedTdq3l7e9vEJ0nSf5dMSiVJkiqprIvLKxmNRgC6du1KvXr1SlzPUQ1FSclHWXGIUkbPHTt2LI8//jiLFi1i9uzZLF68GIPBwMMPP4xKVfHGNI5itLzmBg0a0KlTp1K31+l0pZbHxcUxZcoUfHx8+OSTT4iJiSE4ONi6Xa1atSpVY3a1UaNGMW/ePJYtW2ZNSpctW2Ytu1Jl3ttrVZ5zryLnZ3lYXuewYcNKraVylLRe6zlc3vJrZXlNXl5eJbYssLDU2l5LXJbnCQkJKfOmj7+/v92y0o7ftRyb2NhYpk+fzqJFi5gxYwbJycls2LCBevXq0bNnz3Lvx8fHB4Ds7GyH5UajEUVRePDBB0vdT9OmTe2WPfDAA2zfvp2vv/6aoUOHsm/fPo4cOUKtWrXKjNGSjFrikyTpv0smpZIkSVXIUqMydOhQJk6ceF32GRISApib8Tly5syZErcdNWoUU6dOtdaUfP7556hUKsaMGXNdYoN/X/Ntt91W4Vroq1mmd3jllVeIjY21KSsoKCA1NbVS+79ay5Ytady4MXFxcSQkJODr68uGDRsICQmxTjVjcSPe25L4+/uj1WpJTU2loKAANzc3u3UstXKW8+N6CQsL4/jx48yYMYPo6Ojrum9nCQgIQKfTodFoKn2OlsZyjgQHB1+35ynr81/ScoAaNWowfPhwvvjiC3799Vd27NiByWTikUceqVCSGxQUBJhbOjgSFhZGfHw87733nrX2sryGDx/OU089xc8//0xGRoa1lvS+++4r88ZZRkYGAIGBgRV6TkmSqp7sUypJklSFbr/9doAKzVlZFkvt43fffWdXK2oymUqdp8/T05P77ruP5ORkpk6dSkJCAv369XPYHPFatW3bFh8fHzZt2lRiTUp5WS4yHTVVXLlypcNaYa1WC4DBYLim57TUiC5btoyVK1dSXFzMyJEj7S6Ir/d7W1rcGo2GDh06IIRg+fLlduWHDh1i//79eHl50bx58+sSj8WNOIedzcXFhZiYGNLT09m6desNe56wsDAaNWrEgQMHSExMvC77rFu3LrVq1SI5OZmdO3fala9atarU7ceOHQvAxx9/zKJFi3BxcWH06NEVisFyjh07dsxheWXOGV9fX+68806Ki4v55ptvrOf7/fffX+p22dnZpKSkEBERUeFEWJKkqieTUkmSpCrUoUMHevXqxaZNm5g8ebK1H5uFyWTif//7X7knrAfo2bMn9evX5+jRo7z99ts2ZW+88QYJCQmlbm8Z8Oidd94Brm2Ao9LodDqeeeYZMjMzGTJkiLUG70oHDhxgxYoVZe7LMnjM559/jl6vty4/cuRIif04a9WqBcDx48evJXzrQEJLly4tsekuXP/3tqy4Lc2JX3zxRZv3OCcnh/HjxyOEYOzYsdbk9noZO3YsgYGBvPbaayxevNjuRkBeXh5LliwhOTn5uj7vjfb888+jUqmIjY11+B6lpKSwcOHCSj/PjBkzMBqNDBkyhEOHDtmVx8fHs2jRogrt05JYTpkyhZycHOvyQ4cOsWDBglK37dChA82bN2f16tWcPn2aAQMGVLh2vVGjRgQFBbF3716HN1GmTJmCm5sbkydPZu3atXbl6enpfPDBByUOdGbpOzpz5kxSUlJo1qxZmTdbdu/ejRCCrl27Vui1SJLkJM4b+FeSJOm/hctTX8TGxpb4uHrOQRxMtWBhmQbj6qlYUlNTRXR0tACEn5+f6Nmzpxg+fLjo0qWLdeqLt99+27q+ZbqMq6eWuNIff/whXF1dBSBatWolRo4cKZo3by60Wq149NFHBSBeffXVErdv166dAERISIjQ6/VlHSo7ZU2/YTQaxciRIwUgdDqd6Nixoxg+fLjo1auXdcqagQMHlrnPtLQ0ERwcLAAREREh7r33XnH77bcLjUYjhg0bZp3W5GqW4922bVsxevRo8fDDD4sffvjBWl7a+yiEEJ06dbKeH1FRUSWuV9H3tjRnz54Vrq6uQq1Wi759+4oxY8aIhx9+2GYqEcu8lm5ubuLOO+8Uw4YNsz5Phw4dSp0u42rlnadUCCG2bdsm/Pz8rMftzjvvFIMHDxZt2rQRHh4eNlPICFHyZ8GirHO8tPOrpH1XdEoYIYRYsGCBUKvVAhDR0dFiyJAh4s477xS33XabUKvVwsfHx2Z9y5QwmzZtcri/ks6radOmWafAadOmjRg2bJjo06ePiIqKEoBo3rx5hV5Lfn6+aNOmjXXanWHDhol+/foJnU4nxo8fLwDRoEGDEl/3Bx98YD2/169fX8oRKtno0aMFILZt2+aw/LvvvhNubm4CEI0aNRKDBg0SAwcOFC1atBBarVYAdnMwWxQVFVnPN0DMmTOnzHhmzJghAPHNN99c0+uRJKlqyaRUkiTpMssFT2mPqy8WryUpFcJ8ETl//nzRvn174eXlJXQ6nQgPDxe9e/cWCxcutJkfsDxJqRBC7NmzR/Tp00d4eXkJLy8v0atXL7Fjxw7xyiuvCEB89NFHJW47ffp0AYjnn3++1OcoSXkTgFWrVom+ffuKgIAAodFoREhIiOjQoYOYNWuW3byNJe3zzJkz4r777hOhoaHC1dVVNG7cWLz++uvCYDCUmJSePHlSDBo0SPj7+wuVSmX3vpSVlC5cuNB6Drz00kulvsaKvLdl2bBhg+jcubPw9PS0Pv/VCdCSJUtEp06dhKenp3B1dRVNmzYVr776qsjPzy/38whRsaRUCHPSPGXKFBEVFSXc3NyEp6enaNiwoRg+fLhYsWKFzfyoN0tSKoT5czRq1ChRu3ZtodFohJ+fn4iOjhZPPvmk2Lx5s82615qUCmGeB/eee+4RwcHBQqPRiKCgINGqVSsxdepUu/k6y/NasrKyxOTJk0VoaKjQarWiUaNGYt68eeLMmTPWmxQlOX78uABEWFiYMBgMJa5Xmj///FMAYty4cSWuc+LECTF27FhRr149odPphI+Pj2jcuLF46KGHxLp16xzO72vx+OOPC0CoVCpx5syZMuOJjIwUAQEB5Z6nV5Ik51KEKGVYRkmSJOmm169fP3755Rfi4uIcjogqhCAqKoqTJ09y6tSpUkeOlSTp5rJixQpGjBjB448/zocffuhwnddee43/+7//48UXX2TWrFnX/FwtW7YkOTmZ5OTkMkfSvpF27NhBp06dmDZtGnPmzHFaHJIklZ/sUypJklQNpKen2/XVFEKwYMECfvnlF+rXr0+7du0cbrtq1SpOnDhB//79ZUIqSTepv//+G5PJZLPs4MGDTJs2Dfi3b/TVsrOzef/999FqtTz22GOViuHVV18lLS2Nzz//vFL7qaw33niDGjVqWF+7JEn/fbKmVJIkqRqIi4ujU6dOREdHU69ePYxGI4cOHSIhIQE3Nzd++uknYmJibLZ55JFHyMzMZN26dRgMBnbt2kWrVq2c8wIkSaqUqKgosrOzadasGb6+viQlJbFnzx6MRqPDWtLFixezZcsWtm7dSmJiIpMnT2b+/PmVjqNnz56cOnWKU6dOXfdBtspj3759tGrVijlz5sikVJJuIjIplSRJqgYuXLjArFmz2LRpEykpKRQUFBAUFET37t157rnnaNasmd02iqLg4uJCw4YNefnllxk8eLATIpck6XpYuHAh33zzDSdOnCAjIwN3d3eio6N5+OGH7eb0BRg9ejRffvklgYGBjBgxgrlz5zq1ya0kSbc2mZRKkiRJkiRJkiRJTiP7lEqSJEmSJEmSJElOI5NSSZIkSZIkSZIkyWlkUipJkiRJkiRJkiQ5jUxKJUmSJEmSJEmSJKeRSakkSZIkSZIkSZLkNDIplSRJkiRJkiRJkpxGJqWSJEmSJEmSJEmS08ikVJIkSZIkSZIkSXIamZRKkiRJkiRJkiRJTiOTUkmSJEmSJEmSJMlpZFIqSZIkSZIkSZIkOY1MSiVJkiRJkiRJkiSnkUmpJEmSJEmSJEmS5DT/D/U0LNbB8mAeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,dpi=150,figsize=(7,4))\n", + "\n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , vasprun.tdos.densities[Spin.up], label=r'total DOS', lw = 2) \n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , Ni_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Ni-d', lw = 2) \n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , O_spd_dos[OrbitalType.p].densities[Spin.up], label=r'O-p', lw = 2)\n", + "ax.plot(vasprun.tdos.energies - vasprun.efermi , Nd_spd_dos[OrbitalType.d].densities[Spin.up], label=r'Nd-d', lw = 2)\n", + "\n", + "ax.axvline(0, c='k', lw=1)\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.set_xlim(-9,8.5)\n", + "ax.set_ylim(0,20)\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7d42627e-84c4-4386-92bd-f1193e9fd8fd", + "metadata": {}, + "source": [ + "We see that the Ni-$d$ states are entangled / hybridizing with O-$p$ states and Nd-$d$ states in the energy range between -9 and 9 eV. Hence, we orthonormalize our projectors considering all states in this energy window to create well localized real-space states. These projectors will be indeed quite similar to the internal DFT+$U$ projectors used in VASP due to the large energy window. " + ] + }, + { + "cell_type": "markdown", + "id": "19285c12-c23a-4739-b5b1-56aa724bfb7f", + "metadata": {}, + "source": [ + "## 2. Creating the hdf5 archive / DMFT input\n", + "\n", + "Next we run the [Vasp converter](https://triqs.github.io/dft_tools/unstable/guide/conv_vasp.html) to create an input h5 archive for solid_dmft. The [plo.cfg](plo.cfg) looks like this: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "825c6168-97a7-4d2d-9699-b1d1e9af95dd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[General]\n", + "BASENAME = nno\n", + "\n", + "[Group 1]\n", + "SHELLS = 1\n", + "NORMALIZE = True\n", + "NORMION = False\n", + "EWINDOW = -10 10\n", + "\n", + "[Shell 1]\n", + "LSHELL = 2\n", + "IONS = 3 4\n", + "TRANSFORM = 0.0 0.0 0.0 0.0 1.0\n", + " 0.0 1.0 0.0 0.0 0.0\n", + " 0.0 0.0 1.0 0.0 0.0\n", + " 0.0 0.0 0.0 1.0 0.0\n", + " 1.0 0.0 0.0 0.0 0.0\n" + ] + } + ], + "source": [ + "!cat plo.cfg" + ] + }, + { + "cell_type": "markdown", + "id": "2c3f2892-bb0a-4b8d-99af-76cff53b194b", + "metadata": {}, + "source": [ + "we create $d$ like projectors within a large energy window from -10 to 10 eV for very localized states for both Ni sites. Important: the sites are markes as non equivalent, so that we can later have different spin orientations on them. The flag `TRANSFORM` swaps the $d_{xy}$ and $d_{x^2 - y^2}$ orbitals, since the orientation in the unit cell of the oxygen bonds is rotated by 45 degreee. Vasp always performs projections in a global cartesian coordinate frame, so one has to rotate the orbitals manually with the octahedra orientation. \n", + "\n", + "Let's run the converter:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "8c687309-93f0-48b0-8862-85eca6c572e5", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Read parameters: LOCPROJ\n", + "0 -> {'label': 'dxy', 'isite': 3, 'l': 2, 'm': 0}\n", + "1 -> {'label': 'dyz', 'isite': 3, 'l': 2, 'm': 1}\n", + "2 -> {'label': 'dz2', 'isite': 3, 'l': 2, 'm': 2}\n", + "3 -> {'label': 'dxz', 'isite': 3, 'l': 2, 'm': 3}\n", + "4 -> {'label': 'dx2-y2', 'isite': 3, 'l': 2, 'm': 4}\n", + "5 -> {'label': 'dxy', 'isite': 4, 'l': 2, 'm': 0}\n", + "6 -> {'label': 'dyz', 'isite': 4, 'l': 2, 'm': 1}\n", + "7 -> {'label': 'dz2', 'isite': 4, 'l': 2, 'm': 2}\n", + "8 -> {'label': 'dxz', 'isite': 4, 'l': 2, 'm': 3}\n", + "9 -> {'label': 'dx2-y2', 'isite': 4, 'l': 2, 'm': 4}\n", + " Found POSCAR, title line: NdNiO2 SC\n", + " Total number of ions: 8\n", + " Number of types: 3\n", + " Number of ions for each type: [2, 2, 4]\n", + "\n", + " Total number of k-points: 405\n", + " No tetrahedron data found in IBZKPT. Skipping...\n", + "[WARNING]: Error reading from EIGENVAL, trying LOCPROJ...\n", + "[WARNING]: Error reading Efermi from DOSCAR, trying LOCPROJ...\n", + "eigvals from LOCPROJ\n", + "\n", + " Unorthonormalized density matrices and overlaps:\n", + " Spin: 1\n", + " Site: 3\n", + " Density matrix Overlap\n", + " 1.1544881 0.0000000 -0.0000000 0.0000000 -0.0000000 0.9626619 -0.0000000 0.0000000 0.0000002 -0.0000000\n", + " 0.0000000 1.7591058 -0.0000000 0.0000000 -0.0000000 -0.0000000 0.9464342 -0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 1.5114185 0.0000000 -0.0000000 0.0000000 -0.0000000 0.9548582 -0.0000000 0.0000000\n", + " 0.0000000 0.0000000 0.0000000 1.7591058 -0.0000000 0.0000002 0.0000000 -0.0000000 0.9464339 0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -0.0000000 1.8114830 -0.0000000 -0.0000000 0.0000000 0.0000000 0.9495307\n", + " Site: 4\n", + " Density matrix Overlap\n", + " 1.1544881 -0.0000000 0.0000000 0.0000000 0.0000000 0.9626621 0.0000000 -0.0000000 -0.0000001 -0.0000000\n", + " -0.0000000 1.7591058 -0.0000000 -0.0000000 0.0000000 0.0000000 0.9464343 -0.0000000 -0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 1.5114185 -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.9548582 0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 -0.0000000 1.7591058 0.0000000 -0.0000001 -0.0000000 0.0000000 0.9464344 0.0000000\n", + " 0.0000000 0.0000000 -0.0000000 0.0000000 1.8114830 -0.0000000 0.0000000 0.0000000 0.0000000 0.9495307\n", + "\n", + " Generating 1 shell...\n", + "\n", + " Shell : 1\n", + " Orbital l : 2\n", + " Number of ions: 2\n", + " Dimension : 5\n", + " Correlated : True\n", + " Ion sort : [3, 4]\n", + "Density matrix:\n", + " Shell 1\n", + "Site diag : True\n", + " Site 1\n", + " 1.9468082 -0.0000000 -0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 1.8880488 -0.0000000 0.0000000 0.0000000\n", + " -0.0000000 -0.0000000 1.5912192 0.0000000 0.0000000\n", + " 0.0000000 0.0000000 0.0000000 1.8880488 0.0000000\n", + " -0.0000000 0.0000000 0.0000000 0.0000000 1.1979419\n", + " trace: 8.512066911392091\n", + " Site 2\n", + " 1.9468082 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 1.8880488 -0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 1.5912192 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 1.8880488 -0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -0.0000000 1.1979419\n", + " trace: 8.512066911289741\n", + "\n", + " Impurity density: 17.024133822681833\n", + "\n", + "Overlap:\n", + " Site 1\n", + "[[ 1. -0. -0. -0. -0.]\n", + " [-0. 1. -0. -0. -0.]\n", + " [-0. -0. 1. -0. -0.]\n", + " [-0. -0. -0. 1. 0.]\n", + " [-0. -0. -0. 0. 1.]]\n", + "\n", + "Local Hamiltonian:\n", + " Shell 1\n", + " Site 1 (real | complex part)\n", + " -1.5179223 0.0000000 0.0000000 -0.0000000 0.0000000 | -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 -1.2888643 0.0000000 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " 0.0000000 0.0000000 -0.9927644 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000\n", + " -0.0000000 -0.0000000 -0.0000000 -1.2888643 0.0000000 | 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000\n", + " 0.0000000 -0.0000000 -0.0000000 0.0000000 -1.0828254 | 0.0000000 0.0000000 -0.0000000 -0.0000000 0.0000000\n", + " Site 2 (real | complex part)\n", + " -1.5179223 -0.0000000 -0.0000000 -0.0000000 -0.0000000 | 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -1.2888643 0.0000000 -0.0000000 0.0000000 | -0.0000000 -0.0000000 0.0000000 0.0000000 -0.0000000\n", + " -0.0000000 0.0000000 -0.9927644 0.0000000 0.0000000 | 0.0000000 -0.0000000 0.0000000 -0.0000000 -0.0000000\n", + " -0.0000000 -0.0000000 0.0000000 -1.2888643 0.0000000 | 0.0000000 -0.0000000 0.0000000 -0.0000000 0.0000000\n", + " -0.0000000 0.0000000 0.0000000 0.0000000 -1.0828254 | 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000\n", + " Storing ctrl-file...\n", + " Storing PLO-group file 'nno.pg1'...\n", + " Density within window: 42.00000000005771\n", + "Reading input from nno.ctrl...\n", + "{\n", + " \"ngroups\": 1,\n", + " \"nk\": 405,\n", + " \"ns\": 1,\n", + " \"kvec1\": [\n", + " 0.1803844533789928,\n", + " 0.0,\n", + " 0.0\n", + " ],\n", + " \"kvec2\": [\n", + " 0.0,\n", + " 0.1803844533789928,\n", + " 0.0\n", + " ],\n", + " \"kvec3\": [\n", + " 0.0,\n", + " 0.0,\n", + " 0.30211493941280826\n", + " ],\n", + " \"nc_flag\": 0\n", + "}\n", + "\n", + " No. of inequivalent shells: 2\n" + ] + } + ], + "source": [ + "# Generate and store PLOs\n", + "plo_converter.generate_and_output_as_text('plo.cfg', vasp_dir=path)\n", + "\n", + "# run the archive creat routine\n", + "conv = VaspConverter('nno')\n", + "conv.convert_dft_input()" + ] + }, + { + "cell_type": "markdown", + "id": "bee3bf4f-0b75-445c-b3d3-7402f778fff4", + "metadata": {}, + "source": [ + "We can here cross check the quality of our projectors by making sure that there are not imaginary elements in both the local Hamiltonian and the density matrix. Furthermore, we see that the occupation of the Ni-$d$ shell is roughly 8.5 electrons which is a bit different from the nominal charge of $d^9$ for the system due to the large hybridization with the other states. For mor physical insights into the systems and a discussion on the appropriate choice of projectors see this research article [PRB 103 195101 2021](https://doi.org/10.1103/PhysRevB.103.195101)" + ] + }, + { + "cell_type": "markdown", + "id": "18739e80-3c9e-4bea-9e0b-677421ec99aa", + "metadata": {}, + "source": [ + "## 3. Running the AFM calculation\n", + "\n", + "now we run the calculation at around 290 K, which should be below the ordering temperature of NdNiO2 in DMFT. The config file [config.toml](config.toml) for solid_dmft looks like this: \n", + "\n", + " [general]\n", + " seedname = \"nno\"\n", + " jobname = \"NNO_lowT\"\n", + "\n", + " enforce_off_diag = false\n", + " block_threshold = 0.001\n", + "\n", + " \n", + " n_iw = 2001\n", + " n_tau = 20001\n", + "\n", + " prec_mu = 0.001\n", + "\n", + " h_int_type = \"density_density\"\n", + " U = 8.0\n", + " J = 1.0\n", + "\n", + " # temperature ~290 K\n", + " beta = 40\n", + "\n", + " magnetic = true\n", + " magmom = -0.3, 0.3\n", + " afm_order = true\n", + "\n", + " n_iter_dmft = 14\n", + "\n", + " g0_mix = 0.9\n", + "\n", + " dc_type = 0\n", + " dc = true\n", + " dc_dmft = false\n", + "\n", + " [solver]\n", + " type = \"cthyb\"\n", + " length_cycle = 2000\n", + " n_warmup_cycles = 5e+3\n", + " n_cycles_tot = 1e+7\n", + " imag_threshold = 1e-5\n", + "\n", + " perform_tail_fit = true\n", + " fit_max_moment = 6\n", + " fit_min_w = 10\n", + " fit_max_w = 16\n", + " measure_density_matrix = true" + ] + }, + { + "cell_type": "markdown", + "id": "26910f2d-fd3d-4d72-adc5-99e79f72452d", + "metadata": {}, + "source": [ + "Let's go through some special options we set in the config file: \n", + "\n", + "* we changed `n_iw=2000` because the large energy window of the calculation requires more Matsubara frequencies\n", + "* `h_int_type` is set to `density_density` to reduce complexity of the problem\n", + "* `beta=40` here we set the temperature to ~290K\n", + "* `magnetic=true` lift spin degeneracy\n", + "* `magmom` here we specify the magnetic order. Here, we say that both Ni sites have the same spin, which should average to 0 at this high temperature. The magnetic moment is specified as an potential in eV splitting up / down channel of the initial self-energy\n", + "* `afm_order=true` tells solid_dmft to not solve impurities with the same `magmom` but rather copy the self-energy and if necessary flip the spin accordingly\n", + "* `length_cycle=2000` is the length between two Green's function measurements in cthyb. This number has to be choosen carefully to give an autocorrelation time ~1 for all orbitals\n", + "* `perform_tail_fit=true` : here we use tail fitting to get good high frequency self-energy behavior\n", + "* `measure_density_matrix = true ` measures the impurity many-body density matrix in the Fock basis for a multiplet analysis\n", + "\n", + "By setting the flag magmom to a small value with a flipped sign on both sites we tell solid_dmft that both sites are related by flipping the down and up channel. Now we run solid_dmft simply by executing `mpirun solid_dmft config.toml`. \n", + "\n", + "Caution: this is a very heavy job, which should be submitted on a cluster. \n", + "\n", + "In the beginning of the calculation we find the following lines:\n", + "\n", + " AFM calculation selected, mapping self energies as follows:\n", + " imp [copy sigma, source imp, switch up/down]\n", + " ---------------------------------------------\n", + " 0: [False, 0, False]\n", + " 1: [True, 0, True]\n", + "\n", + "this tells us that solid_dmft detected correctly how we want to orientate the spin moments. This also reflects itself during the iterations when the second impurity problem is not solved, but instead all properties of the first impurity are copied and the spin channels are flipped: \n", + "\n", + " ...\n", + " copying the self-energy for shell 1 from shell 0\n", + " inverting spin channels: False\n", + " ...\n", + "\n", + "After the calculation is running or is finished we can take a look at the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f42d62cc-f8b4-4fc7-af76-cdf7ba13e8ea", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(path+'/nno.h5','r') as ar:\n", + " Sigma_iw = ar['DMFT_results/last_iter/Sigma_freq_0']\n", + " obs = ar['DMFT_results/observables']\n", + " conv_obs = ar['DMFT_results/convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "65dba97b-a64c-4d88-b7cc-3607605a9aa3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7oAAAQACAYAAADP8iXwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeViU5f7H8ffMMOyLgCjgiqiRa2ppVpZmHT25lGnZ0U62Wtm+Wv1atNM5Vm5Zltmm7ZZbZdpyKtfE3bTcUlLRA6igIDszzPz+GEAQUJaBGcbP67rmgrmf+3nu7+MgzHfuzWC32+2IiIiIiIiIeAijqwMQERERERERcSYluiIiIiIiIuJRlOiKiIiIiIiIR1GiKyIiIiIiIh5Fia6IiIiIiIh4FCW6IiIiIiIi4lGU6IqIiIiIiIhHUaIrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOieZt26dQwfPpzIyEjMZjNhYWH079+fBQsW1Oh6+/bt46677qJ169b4+voSERHBJZdcwuTJkyusb7PZeO211+jcuTN+fn5ERERwww03sHPnztrcloiIiIiIyDnDYLfb7a4Owl3Mnz+fm266CZvNxoUXXkhsbCxJSUn8+uuv2Gw2xo8fz8svv1zl6y1evJhRo0aRn59Pt27daN++PWlpafz+++8EBASwb9++MvXtdjs33ngjCxYsoFGjRvTv35/U1FRWrVqFr68vy5cvp1evXs6+bREREREREY+iRLeI1WolOjqaY8eOMW/ePEaOHFlyLD4+niuvvJL8/Hz27t1LbGzsWa+3bds2evbsSVBQEF999RWXXXZZyTGbzcaWLVu48MILy5zzwQcfcMcdd9CuXTtWr15N06ZNAVi4cCEjRowgNjaW3bt34+Xl5aS7FhERERER8Twaulxk9+7dHDt2jLi4uDJJLkDv3r0ZMGAAdrudzZs3V+l6DzzwAAUFBcydO7dMkgtgNBrLJbkAU6dOBeDVV18tSXIBhg8fztChQ0lISODrr7+u7q2JiIiIiIicU5ToFvHx8alSvbCwsLPW2bVrF6tXr6Z9+/YMHjy4Stfdv38/O3fuxM/Pj0GDBpU7PmLECACWLFlSpeuJiIiIiIicqzQGtkibNm1o06YNu3fv5ssvv+TGG28sORYfH88PP/xATEwMl19++Vmv9fPPPwNw9dVXk5eXxxdffMGmTZswGAx06dKFG2+8keDg4DLnbNu2DYBOnTphNpvLXbN79+5l6omIiIiIiEjFlOgWMZlMzJ07lyFDhjBy5EgmT55MbGwsycnJrFmzhp49e/Lxxx/j7e191mvt2LEDAD8/Py644AL27NlT5vjTTz/NwoULyyTNiYmJADRv3rzCaxaXF9erio4dO1ZYvmfPHvz8/GjZsmWVryUiIiIiIlKfEhMTCQgIICUlpdrnauhyKX369GHlypXExMSwadMmvvjiC1atWkVAQABXXXUV0dHRVbrOiRMnAHjttdc4fvw4ixYtIj09nT179jBq1ChSU1O57rrrSE5OLjknKysLAH9//wqvGRAQUKZebdjtdiwWS62vIyIiIiIiUlcsFgvZ2dk1Olc9uqV8/vnn3HbbbVx88cXMmzePjh07kpSUxJQpU3jppZf4+eefWblyZYVDi0srLCwEHCs5f/LJJ/ztb38DICQkhE8//ZS9e/eyceNG3nzzTV566SXAkXwCGAwGp91Pcc/y6Yp7eis7LiIiIiIi4mqVjVCtCvXoFtm7dy9jxowhIiKCpUuX0rNnTwICAmjXrh2zZ89myJAhxMfHM2fOnLNeKygoCIBmzZqVJLml3XbbbQCsWLGi3DmVfWJRXB4YGFit+xIRERERETnXKNEtMm/ePCwWCwMHDiwZJlxa8eJUpZPTyrRu3RqAVq1anfH40aNHS8qK58sePny4wnOKyzWvVkRERERE5MyU6BYpTiRPXw25WHH58ePHz3qtbt26nbFuWloaULZ3tmvXrgD88ccfFc6f3bJlCwBdunQ5a/siIiIiIiLnMiW6RSIjIwHYtGlThcc3btwInOqNPZP+/fsTEBBAQkIChw4dKne8uFe4eMsggJiYGM4//3xyc3NZunRpuXMWLFgAUOV9eUVERERERM5VSnSLXHvttQCsWrWKWbNmlTm2bt06pk+fDsCIESNKymfOnElcXBxPP/10mfr+/v488MADWCwW7r333jLzbr///ns+/PBDDAYDY8eOLXPeo48+CsCTTz5ZZljzokWL+Oabb4iJieG6666r/c2KiIiIiIh4MK26XKR79+48/vjjTJkyhXHjxvHmm2/SoUMHkpKSiI+Px2azMXbsWK666qqSc1JTU9mzZ0+ZbYKKvfDCC6xevZqlS5fSrl07evXqxdGjR1m3bh02m41///vf9OzZs8w5t99+O8uWLWPx4sXExcXRv39/UlNTWblyJb6+vnzyySdnXfFZRERERETkXKce3VImT57MokWL+Nvf/kZKSgqLFy9m586dXHHFFXz66afMnj27ytfy9fXll19+4d///jeNGjXiu+++Y8eOHfTr149vv/2WZ555ptw5RqOR+fPnM3XqVKKjo/n222/5/fffGTZsGJs2beKSSy5x5u2KiIiIiIh4JIO9eANXOWdoH10REREREXF3tclb1KMrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOiKiIiIiIiIR1GiKyIiIiIiIh5Fia6IiIiIiIh4FCW6IiIiIiIi4lGU6IqIiIiIiIhHUaIrIiIiIiIiHkWJroiIiIiIiHgUJboiIiIiIiLiUZToioiIiIiIiEdRoisiIiIiIiIexcvVAVTF/v37Wb16NcnJyeTn51dYx2Aw8Nxzz9VzZCIiIiIiIuJu3DrRLSgo4M477+TTTz8FwG63V1pXia64i9SUQ+z9/k0Ck9fjXZhDgcmf7KjetB14L40jW7g6PBERERERj+fWie7zzz/PJ598QmhoKDfffDPt27cnMDDQ1WGJVCgvJ4vt791Dt7Rl9DYUnjpgBQ5swTLrbdaHD6LrXW/j6xfgsjhFRERERDydWye6n332GY0aNWLLli20atXK1eGIVCovJ4uE1wbSs+B3MFRcx2wopNfxb9gxfT+xD3+Pr78+tBERERERqQtuvRjV0aNH6dOnj5JccXvb37uHjgW/c4bR9QDY7dCx4He2vXdv/QQmIiIiInIOcutEt1WrVmRnZ7s6DJEzSk1JpFvaMgAMlfTmFis+3j1tKakph+o4MhERERGRc5NbJ7p33HEHGzZs4NAhJQTivvZ+/xbm0nNyq8BsKGTf97PqKCIRERERkXObWye6jz/+OIMGDeLvf/87K1asOOOqyyKuEpi8vkbnBSTHOzkSEREREREBN1+Mqm3btgAcPHiQ/v37YzabiYqKwlDB+FCDwUBCQkJ9hyiCd2FOjc4LshwjPy8HH19/J0ckIiIiInJuc+tE98CBA2WeFxQUcPDgQdcEI1KJApO/YwuhamptO0TepJb84duRzMiLCe3QnzYXXI63j6/zgxQREREROYe4daJrs9lcHYLIWWVF9YIDW2p0rq/BQqf83+Dgb3DwbXKW+bDbrxPZUb0J69if2K6X4WX2dmq8IiIiIiKezmDXxNdzTseOHQHYsWOHiyPxDKkpiTSa1RUvQ9U/mLHZIR8zfgbLGetl2f1I8O9MbnRvwjtdRZvOl2DycuvPp0REREREnKI2eYveMYvU0v92rSeMqn1eZLc7thjaGD6UC8bOZudvq8jYtZzg5Hja5u/E57TEN9CQS9fcDZCwARJmcPJrf/7y70pes0uI6HwVMR17YTSZ6uK2REREREQarAbRo/vHH3/w1ltvsXr1apKSkjAYDERFRXH55Zdz77330qlTJ1eH2KCoR9d5dm/8iVbf/gM/Q0GVz9nh3ZnYR37A1y+gTHlebjYJW1ZwcvcvhKSso23BLrzPsm1ROoHsD7iA/OaX0rRLf1rFXajEV0REREQ8Qm3yFrdPdGfMmMETTzxBYWFhhdsLeXl5MXnyZB566CEXRNcwKdF1jgO7NhH6xVBCyAYgy+7Ln4EX0TlrbYX76lrsJraED6LrXW+XS3Irkpudyb7Nv5C15xdCj6wn1vLnWffrPUEw+wMvwNLiMiK7Xk3L9hdgMLr1LmIiIiIiIhXy2ET3v//9LwMGDMDf35977rmHf/7zn7Ru3RqDwcCBAwf4+OOPefvtt8nJyeHHH3+kf//+rg65QVCiW3spiXsxfvA3mnAcgAK7F39ePYdOlw0lNeUQ+76fRUByPN6FORSY/MmO6k3bgffSOLJFjdvMzkwnYfPPZO9ZQfixdcRa9mIynPm/byqNOBjUHWvLy4ju9jeat+lY7cQ3NeUQe79/k8Dk9U69HxERERGRM/HYRPfvf/87P//8MytWrOCSSy6psE58fDyXX345V199NcuWLavnCBsmJbq1c+JYMpmz+tPS9j8AbHYDv/V+je4Db63XODIzjvPX5h/J3bOCxqkbaGP9C+NZEt+jhJEY3B1bqz406zaA6NbnVZr45uVksf29e+iWtswpPdQiIiIiItXhsYlueHg43bt357///e8Z61199dVs2bKFtLS0eoqsYVOiW3PZmen8b8bVtLf+WVK2vuNz9LrhcRdG5ZBx/Bh/bfqB/H0raZK6gTa2A2c9J4UIDoX0gJg+tOg+gMiW7QBHkpvw2kA6Fvx+1mvs8O5M7MPf4+sfWNtbEBEREREp4bGrLufk5BAREXHWehEREeTk5NRDRHIuK8jPI+HN6+lSKsmNb3UPvd0gyQUICYug299uhr/dDEB6agr7N/9Awd6VND2+kda2xHLnRHKMyIzv4bfv4bf/43+GpvwvpAcBOYfpWPB7ySrRlbHboWPB76x/7156PfhxXd2aiIiIiEi1uHWPbvv27bFYLOzbtw9TJSvJWq1W2rVrh9ls5s8//6ywjpSlHt3qsxUWsvW1EfTI/KWkbH3j4fQc916DWewp7chhDmz+AWvCKqJObCwZeu0MFruJjHu3ac6uiIiIiDhNbfIWt36Hfu2113Lw4EHuvPNOTp48We74yZMnueuuu0hMTOS6665zSpvr1q1j+PDhREZGYjabCQsLo3///ixYsKBa1yleNKuyx+7du8udc+utt57xnLffftsp9yjVY7fZ2DjrrjJJ7uagK7no3ncbTJILEN60OT2uuYNeD3xIy+d3cmzsNjb1eJUNYUM4bIiq1bXNhkL2LpmG3WZzUrR1KzXlEPFzn+L3Sf3Y81Ivfp/Uj3VznyE15ZCrQxMRERERJ3DrHt3jx49z0UUXceDAAYKDg7nmmmtKEsj9+/ezdOlSTp48SZs2bdi4cSOhoaG1am/+/PncdNNN2Gw2LrzwQmJjY0lKSuLXX3/FZrMxfvx4Xn755Spdq3Xr1hw8eJAxY8ZUeHzSpElERZVNLm699VY+/PBDBgwYQGRkZLlzxowZQ79+/ap/Y6dRj271xM8ZT++Dpz5k2O7bg7hHluHt4+vCqJwv5dA+Dm35kdZbXyWCEzW6Rq7dmzRjGCfNEeT4NMEaEAnBUZgbRRMQ3oLgpq1oHNXKZf92WmBLREREpOHw2MWoAJKSkrj77rtZunRphccHDRrE7NmziY6OrlU7VquV6Ohojh07xrx58xg5cmTJsfj4eK688kry8/PZu3cvsbGxZ71ecaJbnX/e4kR3+fLl9O3btya3USVKdKtu/fwp9Nrxr5Lnf3q1p9lD/yUgqJHrgqpje17qxXnW8iMOnOk4wZwwNSbLuzH5fk0pDIzCFBKNT1hzgiJaEtq0JY3Cmzq1x1wLbImIiIg0LB67GBVAdHQ0S5YsYf/+/axZs4akpKSS8ssuu4yYmBintLN7926OHTtGXFxcmSQXoHfv3gwYMICvv/6azZs3VynRlYZvy/dzufCPl6BoMaZEYzMaj/3Ko5NcgAKTP1jrto0wThJWeBJy/4JcKNqOuIx8u5k0YxgZXo3J8W2CxT8SgiLxCm2Gf3gLQpq0IjyqZZV7Xre/dw89tcBWg6I9nEVExN3ob1PD4faJbrGYmBinJbUV8fHxqVK9sLCwOotB3Mcfvy6hU/xjmIr2pT1KGOYxiwlr0szFkdW9rKhecGBLtc+Lb3YbTS6+iaxjieSf+B+FGUmYspLxyT1CYMExwgrTCKX8XPvK+BgsRNuPEG05ApYdkAkcKV/vBEGkG8PJ9I4gz68JhYFRGIOj8Q1vRkB4C0IjW2GzWumWtgwMZ05y4dTx7mlLSU05pD9aLlB6iHnv0kPMrcCBLVhmvc16DTEXEZF6pL9NDU+DSXTrWps2bWjTpg27d+/myy+/5MYbbyw5Fh8fzw8//EBMTAyXX355ta47efJkEhIS8PHxoWPHjgwbNuysWyYtWrSIhQsXUlhYSExMDEOGDCEuLq5G9yXVt2/bGlr/eBfeBke3ZgYB5IycT+tW57k4svrRbuA4LLPeqXAOa2UsdhPthjxWlBReXGm9/Lwc0lIOcfLIQbLTDmE58T/ITMErOwX//KMEW47R2JaGr8FS5bZDySTUlgl5ByAPKppebLUb8DJUb5aG2VDIvu9n0fjW/1TrPKmd4iHmPQt+LxlNcTqzoZBex79hx/T9GmIuIiJ1Tn+bGia3mqP70UcfATBs2DCCgoJKnlfVLbfcUqv2V69ezZAhQ8jIyChZjCo5OZk1a9bQs2dPPv74Y9q2bVulaxXP0T2dv78/r7/+OnfccUe5Y8VzdE9nMBi49957mTFjBl5eVf9sonhM++kSEhKIjY3VHN0KHNr3OwGfXENYUc9jrt2bg4M/J+6iq1wcWf3a8PrN9Dy+pErDfA0GWB821GnDfO02GydPHOP4kUQyjyaSf/ww1owkjFnJ+OQ4eocbFaYRZs/AWM3ktboOGyJJ6nI/fuEtHQtpRbd226HrnjKUypU/eyIiIhXR3ybX8ZjFqIxGIwaDgV27dtG+ffuS52djt9sxGAwUFla9B6oy27ZtY9iwYezfv7+kLCgoiIceeoinn34af3//Kl3nwQcfpF+/fvTo0YOIiAj++usvPvjgA2bMmEFhYSGLFy8utyXSjBkz8PX15corr6R58+akpKTw3Xff8eyzz3LixAkefvhhpk+fXuV7UaJbPalJByl49yqi7UcBsNqN7LhiNl2vvPEsZ3qeai/c9MgP9T5Mx1KQT1pKIulHDpKTdpiCE//DfjIJc3YKfnlHCbakEm5Lw9+Q79R2T+LPcWNjTnpHkOfblMKgaEwhzfAJb0Fwk5aERbUhuFF4vW095UkrSaemJBIy64JqjyZoSHs4e8oHEtKw6OdOpObOhb9N7sxjEt0JEyZgMBh44IEHCAsLK3leVS+88EKt2v/888+57bbbuPjii3n11Vfp2LEjSUlJTJkyhXfeeYfevXuzcuVKzGZzjdt45513uPvuu2nfvj179uyp0jl//PEHPXr0oLCwkP3799OiRe3+02jV5fIyTqSS9kZ/2tgOlJRt7DaJi64d57qgXCwvJ4tt791L97SlDTaBsttsZJ48QdLMQcRZd9Vbuzl2H9KM4Y5tlvyaYg2IwhjSDJ+wFgQ2aUloZGtCG0dhNJlq1U5DX0naUpBPVsZxsjPSyM06wYkVb9EzfVm1rxPfciy9b59cBxE6jyd9ICENhyf/3Cl5l/oSP/cpeh+YVe3z1rW+j4s1/anWPCbRdaW9e/fSsWNHmjZtyu7duwkIKPsLf+jQoSxZsoTZs2czduzYGrdjs9mIiori6NGj/PXXX1VeYOuGG25gwYIFfPDBB9x22201bh+U6J4uLyeLv6YPoIPlj5Kyde0e4+LRz7swKveRmnKIfd/PIiA5vsG+majpH6n9xlbkmwJoZDlGuP14tT7NPZsCu4lUYzgZXhHk+DbFEhAFwdF4hzXHv3ELQiNbE960BV5m70qv4cqhVFZLAdknT5CVcZzczOPkZ6VTkH0Ca04GhbkZ2PMyMORlYCzIxMuSiZc1C19rJr62bPxt2QTYc/AzFDglFoBsuy8ZxhCyTCHkmkMp8Amj0DcMAhpjDGyMd3AT/EKaEBgWRUjjSAICQ+q1170hfyAhDZOn/tx5cvLuiRrSBxKFVitpRw6RfuQgWccOUXD8EPaTybRN/oYI0qt9vb+MrSi4ZjqNo9sS1rR5rT/cPld59PZC9WXevHlYLBYGDhxYLskFuPHGG1myZAkrVqyoVaJrNBqJjY3l6NGjJCcnVznRbdeuHQDJyck1blvKs1oK2DXzBrqVSnLjo2+ht5LcEo0jWzT4BZlqusBW0NilxBT9IbYVFpJ67H+cSD5A1rFECo4fwpaRhDk7Cb+8I4RUcyEtb0Mh0fajRFuOnlpVOqVsnUK7gaOGUE54RZDt05SCgEgIjsarUTNMZv8aryQd2jiKrMx0R09q5gnys05QkJ2ONSedwtwMbLnpGPJOYihKUs2WLLytWfjZsvCzZRNoz8bfkE8IEFLlf9HTg6rpiRULMOQRYM8D6xHHCpi5Z66fbzeTbggm09SIHHMjCrxDsfqGYfcPxxgQgTm4CX6NmhAQ2pSQ8CiCGjWu8ZsUT9/aqiG9ka0qT7gnT/y504JADYe7rVCck5VBWvIBMo4mkpd2GMuJwxgzk/HOPUJA/lEaWVMJt5+gicFOEye12cZ2EL69HnD8zTlqjCDdO5Jc/2gKQ1pgDmtFQNM2hEbHEhHVGlM11uFxNk/4nVcRt050TSYTt956K++///4Z6911113MmTMHq7Xmm38ePnwYgODg4AqPF5cfP17Bhp/VdOKEY1nYwMCq//KtyTlyZnabjS1vjqFnztqSsg2NruHiO2e4MCqpC40jW7Ih/Jpq9X5uCR9Er1K/3I0mE40jW9I4smXl59pspB8/SlryAbKOHSAv7TC2jP/hlZWMb24KwZZUGhceI8CQV6W4TQY7TThOE+txsO6BbOBoqQrVTBbNhkKCZl2AyWB1qyS10G4g2+CPt72gWitu14aPwUJT0mhamAaFOFbsPsPuV1a7kROGIDKNIWR7NSLfOxSLbzg2v3CMgY3xCorAJziCgNCmBIVH0Sg8Ei+zN6kpiR67tZW7vZF1Bk+5J0/9ufPE5L00T0k26vMDCbvNxonUZI4nHyAr9RD5xw9jL1rA0jfvCMEFxwizpRFMNv7AGf8Vnfy3rTQfg4UW9iRa5CdB/hbHDhEHTh232E0cMTbmhDmSHP9orMEtMIW2JKBJUSLcLAazd9W2Qq0OT/mdVxm3TnTtdjtVHVld2xHYkZGRAGzatKnC4xs3bgQcqynXxo4dO9izZw/+/v5V3jIoPz+fpUuXAtCjR49atS+nrHv3IXqXmg+41f8Sut/3Yb0NZ5T61eXOt9nx2oGzDuMzGBzD+Lre9Xa12zAYjTRqHEmjxpGcaZulzIzjHE/az8mjB8lLO4Q1/X+YspLwyT1CUP5RwmypNCKr2u1XhY+h5h8IVibT7ke2IYBcYwB5pgAKvIKwmIMoNAdi8wkGn2CMfiGY/Bth9m+ET0AjfIJC8QsKJSA4jIDAEIJNphoPMY+P+idNeo8iJ/0I+RlHsWYew56dijE3De/84/gUpBNQmE6wLYMQe1aNVuv2MtgIJ4NwWwYUJEIBnO0lyiAAE4ZqD3lvCFtbeWLPWkO6p+KpA9knTzimDmRnFI3KcEwd8PvrexrX4Ocud/bf+M2vFTaDF3ajF3aDFzajGbvJDAYv7CYzdqMXGM1gMmMwmsHkBSZvDCYzBpOj3GgyY/AyYzB5Y/RyPDeavTF5eWM0mTGZvTF5mTF6+eBlNmPy8sbL2wcvL29MZm/MZm+8zN6YTF4lf5M9NXkHz0s2nPWBREF+HqnJBx1bEqYmYkn/H5xMxpyTgn/eEUKsqTS2HSfMYCXMifGfJIA0Y2MyvSPI822Cf85hOhVsr/Z1jhGKNwWEkH3WumZDIdH2I0QXHIGCbZAOJJ46Xmg3kGII54S5Kdl+0ViCmmMKa4VfRGsaRbelSfNYfHyrtmBusYb0O6+m3HqOrtFo5NZbb+WDDz44Y70bb7yRb7/9lpycnBq3tWXLlpIk8q233uLee+8tObZu3TquuuoqsrOz+e9//8tVVzm2mpk5cyYzZ85k2LBhTJo0qaT+Dz/8QOPGjcslpdu3b+emm25i165dPPjgg8yYcarncM+ePezevZvBgwdjKjU87tixY4wdO5avvvqKrl27snXr1mot0FURzdGFdZ9O5OK900qe7zR3os0jPzS4/8BSPQ1pga3c7ExSkw+QceQAuamHsKYXDbPKSSEw/yitrfudMmc42+5LtsGfHGMAecZA8r0CsZqDsHoHYfMOwuATgsEvBJNfCF4BjfAOaIRvYCh+QY0ICGlMYFAjp807qo+VLa2WAjKOHyXzeArZx4+Ql3EUa+ZRbNlpGHNS8co/jk/BCQIs6QTZ0gmxZzp1bnZVFdhNHDM2Js8YQL4pgAJTAFZzIIXmAOzmQOw+QRh8gzH6BuHlF4zZPwRv/xB8AxvhGxiCf1AoAYEhdTYnzBO32qiPe7LbbORknyxKUE+Qm3WCgqx0LDknKcxNx5Z3EnveSQz5mSXz283WLHwKs0vmt/vbc52+mrw7K7CbsOKFEVuNRnxs8b8Ue6cbMPsH4x3YCL+ARvgFh+Ef1Khe5+pXxtPmUtfk97jVbmRj1CiMlsySbQTDCo+VbPXoLIV2A2mGUNK9GpPl0xSLf1NsQdGYG0UXbSPYksZRrfELCKr1PZX+25SZcZzUw3vJSNlP/rH92NMP4Z11iMC8FBpbU5x2n8cI5bhXU7L8oikIbI4xtCW+Ea1pFBVLkxbtyt1XQ/k97lFzdBMTE8s8z8rKKldWzGq1smfPHn788UdiY2Nr1W737t15/PHHmTJlCuPGjePNN9+kQ4cOJCUlER8fj81mY+zYsSVJLkBqaip79uwpN282Pj6eiRMn0qpVK2JjY4mIiGD//v1s2bIFq9XKFVdcUSYxBsfc2+uuu47w8HDi4uJo1qwZR48eZfPmzWRmZtK8eXO+/PLLWie5Ahu/fqtMkvuXsTXNxn3t1n84xDl8/QPp9eDHZ1xgq5ebfPLvFxBEi7adadG2c4XHf5/Uj875W6p93T1ecQSN/pCAkHACg0MJ8PLCXfoHnDHE/Gy8zN6EN21OeNPmVapvt9nISE/jZFoS2SeOkpt+BEvmMQqzjmHIScMrNw3vghP4W04QWJhBI3uGU4ZfexsKaWY/4hhWXfze6izzjiuSZfcjx+BHrtGffKM/+aYALF6BFHoFYPMOLPowIwiDbxAm32C8/EMw+4fgExCCb0CI4wON4FB8fPw8umetJvfUI+1bNix+A4PBiC3vJLa8DChKUE0FWZitmXhbs/AtzMHPlo0/OQTYcwgw2Gv3f+4cexvgbSjEm5p/2NQ951fY8GuFx2x2A5kGP3LwJ7foQ6X8og+VrOYg7N5BJR8qmYo+8PMOCMEnoBG+QaH4BTYiMCSszP+P6nLn4dh2mw2LpYC83GwK8rIpyM3BkpdNQX4O1qJHYX4uhQU5FBbkYrfk4vvXj9UeTeBlsNE75ZNaxVp+t4NIjMHRmEObExjhWOAxrElzmnh5VXsObm3/NgWFhBEU0gs69qo49qwMjh1OICP5L3KP7ceWnoh35mECcpMJt6YQwYkqxRnBCSKsJyBzt2Pdj9OW9TlOMGleTcn0jaLAJ5SL0pZ61O/xirhdj27pvXOL98c9G7vdzmuvvcaDDz5Y6/YXL17M22+/zebNm8nIyCAoKIgLLriAO++8k1GjRpWpO2HCBCZOnMiYMWOYO3duSXl8fDzvvfceGzduJCkpiYyMDIKDg+nSpQujR4/mtttuK9NrC5CUlMTkyZNZt24dBw4cIC0tDR8fH9q3b8+QIUN46KGHCA0NrfX9wbndo7vtl3l0XHkvXgYbAEmGpnjf9V8aR7dycWQi1eOp2x00hD2czyYnK4P01BSyjqdgXPowbQv/cnVItVZgN5Fj8COnaC514xqsQLrT3JGT4ReA3VbyMGA/9Rw7BrvN8U6x9LFS5QZsju+xO54XHy+pYzv1fanyMmXF1yl1PKTweJXfTLqb4lEZucYAxwgAr0Ca5e0lnIxqX+ugoTnJ7W6CQgsUWrHbLI7vbRYMNiuGQgvYHV+NNgsGuxWDzYrRbsVos2K0WzDaCzHZLBjtVkx2KyYKHV+LvvfCiheFeNmteGHF2wUjJpytwG5yjIwx+JNXNIXD4hWI1SuQwqLRMfgEOaZw+AY7Rsf4h1BotRD3063V7in8300/4RsY7Eg683Kx5GeXSTptBbmOhyUXuyUPLLlgzcVgzcdYmIfRmoexMB+TLQ+vwny8bPl42fPxtuVjthfgQwE+9nx8KMBUg6kezpZGCCdMjcnyjiDfvym2wChMjZrhF9acoCYtCYuKISg4tE575135tykvN5tj//uL9KS/yD32F4UnEjGfPIR/bjJhlhQi7Gn19jq54j2ER20v1Ldv35LkduXKlTRt2rTSuaze3t5ER0czdOhQhg0bVp9hNmjnaqK7e8N/abV0VMmWJmmEkHvzMpq37eTiyESqz5M3sG9IQ8zPpqYfSKwPuxb/C4ZhzT2JJedkmSGtBks2JksWXpYsvAuz8S7McQxrtecQYM/Fp54W9JLaKbB7kVUqOco3BVLgFYDVHIStaH67wSeoaOpA8Kn57YEh+AWF4RcUSmBQowpXam1IH4TZbTYKC61YLQVYLAUUWgqwWguwFuRTaC3AarFgs+ZTsPgBzrPuqfb1MwjgmCkSX1sO/vZs/R9xU+kEsrvpEAiOwhzanIDwFgQ3bUV4ZItqzz2tK+76t8lSkM+x/+3nRFIC2UcdibDXyUP45yTRyJJCE1uq06bg/O7Tnc5PL3fKtarKoxLd0qo6R1eq51xMdA/s2kToF0NLFgTIsvuRcv1C2na91MWRidRcQ5lfU1OesIezKz6QKMjPIycznZzMdHKz0snPdswBteRmUJhzEnv+ScjLhIIsxzxQaxZe1my8rY6E2deWgz85BNpza7Rw17kk1+7NQe+2RcNdg7CaA0sNd3UkqF7+jTD7B+MTGIpf0fz2wJCwOn3z7okfhDkzec/PyyH75AlyTp4gLzudvKwTWLIzsOZkFH2olIk9PwNjQRamAsc8ae+iudLFw9AD7Tlu0dtZ3/LsZvIN3uTjQ4HBG4vBB4vRB2vRo3nenzWac+qKBKqmGtrfpkKrldSUgxz/3z6yj+zHcvwA7Q98VqNRH3u84jjv2fV1EGXlPGqObmn79+/XdjpSa8kH9+D/xQ0lSW6B3YsDf3uXTkpypYGrj5WkXckT9nCuj3nHp/P28cXbp3j175qz22zk5GSSczKdnKwT5GVlUJCTgd8vzxNr21/t6x0hnAONrwAM2A1Gx80ajDgmiRmxG0yO+acG46lH0TEMBgwGE/aicwzF55a6jqH0eQbDqedGx3UMBqNjaGNRmQEDGEwYjAZCNrxWo3va59vJLd+cu+Lnrq7VdD/0tgPvLVfu4+uPj68/YU2a1Tie4v8f2SdPkJPp+EApP+sElpwMCnMyKCyzsNhJvCxZeFmz8LE6Fhbzs2UTbj9Rq2TZYjeRjzf5Bm8K8MZiLEo8DT5YTT4UGn0oNPlQaPLFZvLF7uV44OWHweyLweyHweyH0dsPo7c/Xt5+mHz8Mfv6Y/bxw+wTgLdfgOPfq+irr9GI7xliqukHEtlRvWv871DfGtrfJpOXF02bx9K0+an1jH6ftJ7wGqzzUWByj971qnLrRLdVK82blNo5fvR/WOdeRxSO/Y8L7QZ2XDKNbpcOcXFkIrXn6x9I7MPfs94Nh1LJKQ31AwmD0Yh/YAj+gSHAqb/H8fvWEluDN7L7W9/ktvPD41N21+ie3PnNeUP9uauMuyXvZf9/1ExNFxX8w7srcU/8hNnsjRlwpy4hZ34gIXUnK6oXHKj+z547/86riFsPXS6Wk5PD8uXL2bt3L5mZmRXumWswGHjuuedcEF3Dc64MXc46eYLk16+mnXVvSdn6js/T64bHXBiVSN1oaEOpzjXuOrerJjxxWKwn3hN41s8deMZidaU1pLnU1eHp02o8QUP6neexc3QB5s6dyyOPPMLJk6fG+5++GnPx88LChr9yX304FxLd/Lwc/px+DZ3zt5aUxbe+l963vuzCqETkXOcpH0h44htZT7ynYp7ycweelbw3pGSjOjztAwlP1VB+53lsovvTTz8xYMAAQkJCuO+++1i+fDnx8fG8/fbbJCQksHjxYvbu3cv9999Pjx49GDNmjKtDbhA8PdG1FRay9bXh9Mg8NW9qfcQIet77rss3hhcR8QSe+EbWE+/Jk3lK8t5Qko3q8qQPJDxVQ/md57GJ7t///nf++9//snnzZrp27cptt93GRx99VNJzW1hYyBNPPME777zDunXr6NRJ28RUhScnunabjQ1v3Umv1IUlZZuC+tP94fkYT9u7WEREas4T38h64j2Je2soyUZNecoHEp6qIfzO89hEt3HjxsTFxbFmzRqAcokugM1mo23btnTr1o2FCxdWdikpxZMT3fg54+l98NSCGtt9exD3yDK8fc60RqCIiNSUJ76R9cR7EvfVEJIN8Wzu/DvPY7cXysrKomXLliXPfX0dyUpmZiZBQUGAY6/dXr168fPPP7skRnEf67+cXCbJ/dOrPbH3LVKSKyJShxraVhtV4Yn3JO7L1z+QXg9+fMZkw523fpKGz1N/57l1ohsZGUlqamqZ5wB//vknPXr0KCk/fvw4ubm59R6fuI8t383hoh3/duzBCBw0Nifi7m8ICGrk0rhEREREqsJTkw0RV3HrlXni4uL4888/S55fcskl2O12XnnllZIthtauXcsvv/zCeeed56owxcX+WPMNndY9jrFo0/UjhONz61eERkS5ODIREREREXEFt050Bw0aRGJiIuvWrQOgf//+dOnShYULF9KsWTN69OhBv379sNlsPPzww64NVlxi72+rifnvXXgbrABkEEDeyPlEtmzn4shERERERMRV3DrRveWWW/juu++IinL0zBmNRpYuXcrVV1/N0aNH2bp1K/7+/rz00kvcfPPNLo5W6tuhfb8T/tUoAgx5AOTYfUge9BGtzu9xljNFRERERMSTufUc3ZCQEAYMGFCmrFmzZnz//ffk5OSQkZFBkyZNMGnbmHPOsaQDmD69njBOAo4VCff2fZOuF13l4shERERERMTV3DrRPRN/f3/8/f1dHYa4QMbxY2S9N5QY+9GSsm09/sOF/W5wYVQiIiIiIuIuGkyim5yczNq1a0lKSgIgOjqa3r17Ex0d7eLIpD7l5WSRNOtazrcdLClb1/5xLh56jwujEhERERERd+L2iW5SUhIPPvggX3/9NTabrcwxg8HAtddey4wZM2jevLmLIpT6YrUUsHvmCC6wnNowOj56DL1HPefCqERERERExN24daKblJRE7969OXToEAEBAVx99dW0bt0au91OYmIiP/74I4sXL2bjxo2sW7dOvbsezG6zsfXNW7goJ76kbEPoIC6+8zXXBSUiIiIiIm7JrRPdZ555hkOHDjF69GhmzJhBWFhYmeMnTpzg4Ycf5uOPP+b//u//mDNnjosilbq27t0H6J3+Xcnzrf6X0n3cXAxGt144XEREREREXMBgt9vtrg6iMk2bNiUwMJA///yz0pWVCwsLad++PZmZmRw9erTCOlJWx44dAdixY8dZarqHdZ+8wMX7Xit5vsO7M7GP/ICvX4DrghIRERERkTpVm7zFrbvDsrKyuPjii8+4fZDJZOLiiy8mOzu7HiOT+rLxqzfLJLkJphhajPtaSa6IiIiIiFTKrRPd888/v2SV5TNJSkoiLi6uHiKS+rTtl3l02/psyfP/GZoSctc3BDcKd2FUIiIiIiLi7tx6ju7DDz/MmDFj+OGHHxgwYECFdX788UdWrVrF3Llz6zc4cYrUlEPs/f5NApPX412YQ4HJn+yo3vg070Tc6ofwMjhW2k6lEfxzMY0jW7o2YBERERERcXtunehefvnljBs3jqFDhzJy5EhGjhxJq1atADh48CBffPEFX375Jffddx9XXHEFiYmJZc5v2VJJkbvKy8li+3v30C1tGb0NhacOWIEDW7DvB4PBUZRp9yP9+s9o26ajS2IVEREREZGGxa0XozIajRgMBux2O4birOc0lR0zGAxYrda6DrFBcvViVHk5WSS8NpCOBb+fta7NbuD3vu/Ttd/weohMRERERETcRW3yFrfv0a0swZWGa/t799Cz4Hfs9lO9thWx28FosJP3+1egRFdERERERKrIrRPdFStWuDoEcbLUlES6pS0Dw5mTXDh1vHvaUlJTDtE4skXdBygiIiIiIg2eW6+6LJ5n7/dvYS49J7cKzIZC9n0/q44iEhERERERT6NEV+pVYPL6Gp0XkBzv5EhERERERMRTufXQ5RdffLHKdQ0GA88991wdRiPO4F2YU6/niYiIiIjIucetE90JEyaUrLpckeKFqopXXlai6/4KTP6OLYRqcp6IiIiIiEgVuHWiO2fOnArLbTYbhw4d4ocffiA+Pp777ruPCy+8sJ6jk5rIiuoFB7ZU+7zsqN51EI2IiIiIiHgit95HtyomTZrEv//9b+Lj4+ncubOrw2kQXLmPbmpKIiGzLqjWglQWu4mMe7dp1WURERERkXNIbfKWBr8Y1dNPP03z5s155plnXB2KVEHjyJZsDb8GcOyTeybFx7eED1KSKyIiIiIiVdbgE12Azp07s2bNGleHIVXU5c632eHduUr76O7w7kzXu96un8BERERERMQjeESim5CQgNVagxWOxCV8/QOJffh71ocNxWI3VVjHYjexPmwosY/8gK9fQD1HKCIiIiIiDVmDTnTT09N57LHH+O233+jZs6dTrrlu3TqGDx9OZGQkZrOZsLAw+vfvz4IFC6p1ndatW2MwGCp97N69u8LzbDYbr732Gp07d8bPz4+IiAhuuOEGdu7c6Yzbcxu+/oH0evBjMu7dxrrW9/G7T3f2eMXxu0931rW+j4x7t9HrwY+V5IqIiIiISLW59arLbdq0qfRYVlYWaWlp2O12/Pz8mDRpUq3bmz9/PjfddBM2m40LL7yQvn37kpSUxIoVK/jll18YP348L7/8crWuOWbMmArLQ0JCypXZ7XZGjhzJggULaNSoEYMGDSI1NZWFCxeydOlSli9fTq9evWp0b+6qcWQLGt/6H1eHISIiIiIiHsStV102GivvcDabzURFRXHFFVcwfvx4OnToUKu2rFYr0dHRHDt2jHnz5jFy5MiSY/Hx8Vx55ZXk5+ezd+9eYmNjz3q91q1bc/DgwUr3AK7IBx98wB133EG7du1YvXo1TZs2BWDhwoWMGDGC2NhYdu/ejZdX7T6fcOWqyyIiIiIiIlXhsasu22y2Sh/5+fkcOHCADz/8sNZJLsDu3bs5duwYcXFxZZJcgN69ezNgwADsdjubN2+udVuVmTp1KgCvvvpqSZILMHz4cIYOHUpCQgJff/11nbUvIiIiIiLiCdw60a1PPj4+VaoXFhZWJ+3v37+fnTt34ufnx6BBg8odHzFiBABLliypk/ZFREREREQ8hVvP0a1Pbdq0oU2bNuzevZsvv/ySG2+8seRYfHw8P/zwAzExMVx++eXVuu7kyZNJSEjAx8eHjh07MmzYMCIiIsrV27ZtGwCdOnXCbDaXO969e/cy9URERERERKRibt2j+/rrr2MymVi2bFmldb777jtMJhNvvfVWrdoymUzMnTuXkJAQRo4cyUUXXcRNN93EFVdcwWWXXcYFF1zAjz/+iLe3d7Wu++STTzJ79mxef/117r77blq3bs37779frl5iYiIAzZs3r/A6xeXF9URERERERKRibt2ju3DhQqKjo7nmmmsqrTNw4ECioqJYsGAB48aNq1V7ffr0YeXKlQwbNoxNmzaxadMmAIKCgrjqqquIjo6u8rWGDh1Kv3796NGjBxEREfz111988MEHzJgxgzvvvJPw8HCuu+66kvpZWVkA+Pv7V3i9gICAMvWqonjy9ukSEhKqtKCWiIiIiIhIQ+TWPbp79uyhU6dOZ6xjMBjo3LlzpfvSVsfnn39Or169aNmyJevXrycrK4s///yTf/zjH7z00ktcddVVWCyWKl3r9ddfZ9iwYbRs2RI/Pz86duzI1KlTS3qex48fX6Z+8erMBoOh1vchIiIiIiJyLnPrHt309PQqLf4UGhrK8ePHa9XW3r17GTNmDE2bNmXp0qUlPajt2rVj9uzZJCcns2TJEubMmcPYsWNr3M6dd97Jc889x59//sn+/fuJiYkBHL3GANnZ2RWeV1weGBhY5bYqW4a7sp5eERERERERT+DWPbqRkZH8/vvvZ633xx9/0Lhx41q1NW/ePCwWCwMHDixJcksrXpxqxYoVtWrHaDSWDBtOTk4uKW/ZsiUAhw8frvC84vLieiIiIiIiIlIxt050+/Xrx44dO1i4cGGldRYtWsQff/xBv379atVWcSIZHBxc4fHi8tr2HAOcOHECKNs727VrV8CRtFc0PHrLli0AdOnSpdbti4iIiIiIeDK3TnSffPJJvL29GT16NA8//DA7d+4kLy+P/Px8du7cycMPP8yoUaPw9vbmySefrFVbkZGRACULUJ1u48aNALRu3bpW7ezYsYM9e/bg7+9PXFxcSXlMTAznn38+ubm5LF26tNx5CxYsAGDw4MG1al9ERERERMTTuXWie/755/PRRx9hNBp544036Ny5MwEBAQQEBNC5c2def/11jEYjc+fOpXPnzrVq69prrwVg1apVzJo1q8yxdevWMX36dABGjBhRUj5z5kzi4uJ4+umny9T/4Ycf2Lx5c7k2tm/fzg033IDdbufOO+8st1XRo48+CjgS/KNHj5aUL1q0iG+++YaYmJgyKzWLiIiIiIhIeW69GBXADTfcQLdu3Zg2bRo///wzhw4dAqBFixZcddVVPPzww7Rr167W7XTv3p3HH3+cKVOmMG7cON588006dOhAUlIS8fHx2Gw2xo4dy1VXXVVyTmpqKnv27Ckz1xYgPj6eiRMn0qpVK2JjY4mIiGD//v1s2bIFq9XKFVdcwaRJk8rFcPvtt7Ns2TIWL15MXFwc/fv3JzU1lZUrV+Lr68snn3yC2Wyu9b2KiIiIiIh4MrdPdAHatm1bsi1PXZo8eTKXXHIJb7/9Nps3b2bPnj0EBQVxxRVXcOeddzJq1KgqXWfAgAEcOnSIjRs3sm3bNjIyMggODuayyy5j9OjR3HbbbZhMpnLnGY1G5s+fz4wZM/jggw/49ttvCQgIYNiwYbz44otaLVlERERERKQKDPbiDVzlnFGcMFe2/ZCIiIiIiIir1SZvces5umvXruX2228nPj7+rHXWr19fj5GJiIiIiIiIu3LrRPfNN9/kiy++4Pzzz6+0zvnnn8+8efPqZWiziIiIiIiIuD+3TnTXrVtHt27daNSoUaV1QkND6d69O7/++mv9BSYiIiIiIiJuy60T3aSkJFq2bHnWei1btiy38rGIiIiIiIicm9w60Q0ICCA1NfWs9VJTU8vtSSsiIiIiIiLnJrdOdLt27cqaNWs4fPhwpXUOHz7M6tWr6dKlSz1GJiIiIiIiIu7KrRPd22+/nby8PIYMGcLWrVvLHd+6dStDhw6loKCA22+/3QURioiIiIiIiLvxcnUAZzJ69Gi++uorFi5cyEUXXUT37t2JjY3FYDCwb98+tmzZgs1mY9iwYYwZM8bV4YqIiIiIiIgbcOtEF+CLL77gP//5D9OmTWPTpk1s2rSp5FijRo145JFHeOaZZ1wYoYiIiIiIiLgTg91ut7s6iKqwWCxs2rSJQ4cOAdCiRQsuvPBCzGaziyNreDp27AjAjh07XByJiIiIiIhIxWqTt7h9j24xs9lM79696d27t6tDERERERERETfWYBJdq9XKtm3bSEpKwmAwEBUVRdeuXfHyajC30ODZ7XYayACAc4LBYMBgMLg6DBERERERt+P2WWJ+fj4vvPACb7/9NpmZmWWOBQUFcc899zBhwgR8fX1dFKFnKywsJC0tjczMTAoKClwdjpzG29uboKAgwsPDMZlMrg5HRERERMQtuHWim5+fT//+/YmPjwegS5cutG7dGoCDBw+ybds2Jk+ezJo1a/j555/x8fFxYbSep7CwkMTERPLy8lwdilSioKCAtLQ0srOzadmypZJdERERERHcPNGdPn06a9eu5bLLLuOtt96iU6dOZY7/8ccf3H///axevZrXXnuN8ePHuyhSz5SWlkZeXh4mk4mmTZsSEBCA0ejWWy+fU2w2G9nZ2Rw5coS8vDzS0tJo0qSJq8MSEREREXE5t151uWvXrqSkpJCQkEBgYGCFdbKysoiNjaVp06Zs3769niNsmKq6ellCQgIFBQVER0cTEhJSH6FJDWRkZJCUlIS3tzexsbGuDkdERERExClqs+qyW3fP7du3j759+1aa5AIEBgbSt29fEhIS6jEyz2e320vm5AYEBLg4GjmT4tenoKBAi4WJiIiIiODmia6Xlxc5OTlnrZeTk6PVl52sdMKk4crurfTro0RXRERERMTNE93OnTvzyy+/sH///krr7N+/n19++YUuXbrUY2QiIiIiIiLirtw60b377rvJzc2lb9++fPjhh2W2t8nPz2fu3Ln07duXvLw87rnnHhdGKiIiIiIiIu7Crcf7/vOf/2TNmjW8++673H777dxxxx00bdoUg8FASkoKdrsdu93O3XffzejRo10droiIiIiIiLgBt+7RBZg9ezbz58/nsssuw8vLi+TkZJKSkvDy8qJPnz7Mnz+fWbNmuTpMERERERERcRNu3aNbbPjw4QwfPhyr1UpaWhoA4eHhWoBKREREREREymlQmaKXlxdNmzZ1dRgiIiIiIiLixtx+6LKIOzIYDBgMBkJDQ0lPT6+wzoQJEzAYDLz88svlzm3dunXdBykiIiIico5qUD264rmOZebzxcZE1u8/Tla+lUAfLy5uE86NF7YgIsjH1eFVKj09nenTpzNx4kRXhyIiIiIiIkWU6IpL5VkKmbhkBws2H8ZSaC9zbPXeVF776U9G9GjBC0M64Gs2uSjKihmNRry8vHjttdd4+OGHCQ0NrdJ5u3btwmw213F0IiIiIiLnLg1dFpfJsxQy5oMNfL7hULkkt5il0M7nGxIZ88EG8iyF9RzhmZnNZu68805OnjzJtGnTqnxeXFwcsbGxdRiZiIiIiMi5TYmuuMzEJTtYv/94lequ33+ciUt21nFE1ffMM8/g4+PDjBkzOH68aveiOboiIiIiInVLia64xNHMPBZsPlytcxZsPsSxzPw6iqhmmjVrxl133UVmZiZTp051dTgiIiIiIoISXakFu91ORq6lRo+P1h6sdLhyZSyFdj6KP1DjNjNyLdjt1WuzKp5++ml8fX154403SvZ5FhERERER19FiVFJjJ/OsdJ34Y722+cYv+3jjl301Pn/bC38jxM+5C0FFR0czduxYXn/9daZMmcKkSZOcen0REREREameBt+je/XVV9OmTRst7iMu9dRTT+Hr68vMmTNJTU11dTgiIiIiIue0Bp/oHj58mAMHDnDgwAFXhyLnsKioKO655x6ysrKYPHlyja7x448/0qNHD3x9fWnWrBnPPvsshYXutdK0iIiIiEhD0OCHLn/00Ufk5OS4OoxzUrCvF9te+FuNzn131V/MXF79IcgPXNmWO/u0qVGb4Ii5rowfP57Zs2fz5ptv8vjjj1fr3K1btzJ48GDuu+8+PvnkE3bu3Mkdd9yB1Wrl5ZdfrqOIRUREREQ8U4NPdC+66CJXh3DOMhgMNZ7vesslrZi9KqFaC1KZTQZu6d3a6XNsnSUyMpJ7772XadOm8eqrrxIQEFDlc6dMmULnzp2ZPn06AOeffz7/+9//eOqpp3j22WcJDAysq7BFRERERDxOgx+6LA1TkyBfRvRoXq1zRvRoQUSQTx1F5Bzjx4/H39+ft956iyNHjlT5vF9//ZVrrrmmTNmgQYPIzc1l8+bNzg5TRERERMSjNZhE12KxsHnzZpYsWcKSJUvYvHkzFovF6e2sW7eO4cOHExkZidlsJiwsjP79+7NgwYJaXXfv3r34+flhMBgYOHBghXVuvfVWDAZDpY+33367VjG4mxeGdKRXTFiV6vaKCeOFIR3qOKLaa9KkCePGjSMnJ4cPP/ywyuclJycTFRVVpiwyMhKApKQkp8YoIiIiIuLp3H7ocnZ2Ni+88ALvv/8+J0+eLHMsKCiIO+64gwkTJhAUFFTrtubPn89NN92EzWbjwgsvpG/fviQlJbFixQp++eUXxo8fX+P5knfffTf5+flVqjtgwICSJKe08847r0Ztuytfs4kPb+/JxCU7WbD5UIXDmM0mAyN6tOCFIR3wNZtcEGX1Pfnkk8yaNYvs7OxaXcdgMJT5KiIiIiIiVePWiW5GRgZ9+/Zl+/btAHTt2pXWrVtjt9tJTEzkt99+47XXXuOnn35i1apVhISE1Lgtq9XKfffdh81mY968eYwcObLkWHx8PFdeeSWvvvoqd911V7W3Mnr//fdZvnw5Y8eO5Z133jlr/aeeeoq+fftW9xYaJF+ziUnXd+bRq9vz5aZDrPsrjax8K4E+XlzcJpwbL3T/4cqni4iI4L777uPVV1+t8jlRUVEkJyeXKSt+fnpPr4iIiIiInJlbD11+/vnn2bZtG/369WPHjh1s2bKFRYsWsXjxYjZv3syOHTu48sor+eOPP3j++edr1dbu3bs5duwYcXFxZZJcgN69ezNgwADsdnu150sePXqUJ554gquuuop//OMftYrRk0UE+XBfv7Z8fEcvFo+7lI/v6MV9/dq6bZJrt9vJy8ur9Pgrr7yC3W7Hbrfz1FNPlTv39O2wLr30Ur777rsyZcuWLcPPz48ePXo4LW4RERERkXOBWye6CxcuJDIykm+++Ya4uLhyx+Pi4vj6669p2rQpCxcurFVbPj5VS6jCwqo2p7TYgw8+SG5uLrNmzapJWHKOeOyxx9i+fTuPPfYYu3btYtGiRTz//PM8+OCDWnFZRERERKSa3DrRTUtL44orrsDf37/SOv7+/lx++eUcP368Vm21adOGNm3asHv3br788ssyx+Lj4/nhhx+IiYnh8ssvr/I1ly1bxhdffMEzzzxD27Ztq3zeokWLeOCBBxg3bhyTJ09m9+7dVT5XGqbu3buzZMkSli9fzgUXXMD999/PuHHj+Pe//+3q0EREREREGhy3nqPbpk0bTpw4cdZ6GRkZxMTE1Kotk8nE3LlzGTJkCCNHjmTy5MnExsaSnJzMmjVr6NmzJx9//DHe3t5Vul52djbjxo3jvPPOY/z48dWK5Y033ijzfPz48dx7773MmDEDL6+qv2QdO3assDwhIaHa84yl7g0YMIABAwa4OgwRERERkQbPrXt0x44dy4oVK/jtt98qrfPbb7/xyy+/cOedd9a6vT59+rBy5UpiYmLYtGkTX3zxBatWrSIgIICrrrqK6OjoKl/r2Wef5eDBg8yaNavKyXG3bt14++23+fPPP8nJyeGvv/7izTffpFGjRrz11ls88cQTNb01ERERERGRc4Zb9+g+9NBD7Nu3j379+vHAAw8wcuRIWrVqBcDBgwf54osvmDlzJnfffTePPPJIrdv7/PPPue2227j44ouZN28eHTt2JCkpiSlTpvDSSy/x888/s3LlSsxm8xmvs2nTJt544w1uueUW+vXrV+X2H3rooTLPY2JiGDduHJdffjk9evTgjTfe4NFHH6VFixZVut6OHTsqLK+sp1dERERERMQTGOx2e/nNS92EyeTYN9Vut1e6l2hlxwwGA1artcpt7d27l44dO9K0aVN2795NQEBAmeNDhw5lyZIlzJ49m7Fjx1Z6HavVykUXXURiYiK7d+8mIiKi5NiKFSvo168fAwYM4Pvvv69ybAA33HADCxYs4IMPPuC2226r1rmnK050K0uEAWw2G3v27AEc+/cajW7d+X9O02slIiIiIp6oKnlLZdy6R7dFixaVJrjONm/ePCwWCwMHDiyX5ALceOONLFmyhBUrVpwx0T18+DC//fYbkZGR3HDDDWWOpaenA7Bhwwb69u1LYGAg3377bZXia9euHUC5vVZFRERERESkLLdOdE/fa7QuHT58GIDg4OAKjxeXV3V155SUFFJSUio8duLECVauXElISEiV4ytelEtbzYiIiIiIiJyZxjgWiYyMBBzzayuyceNGAFq3bn3G67Ru3Rq73V7hY/ny5YBjdV273V7Sw3s2+fn5LF26FIAePXpU6RwREREREZFzlRLdItdeey0Aq1atYtasWWWOrVu3junTpwMwYsSIkvKZM2cSFxfH008/Xev29+zZw9dff01hYWGZ8mPHjnHTTTdx6NAhunbtyiWXXFLrtkRERERERDyZWw9dLnbgwAFWrVpFcnIy+fn5FdYxGAw899xzNW6je/fuPP7440yZMoVx48bx5ptv0qFDB5KSkoiPj8dmszF27FiuuuqqknNSU1PZs2ePU+bNJicnc9111xEeHk5cXBzNmjXj6NGjbN68mczMTJo3b86XX35Zb3OWRUREREREGiq3TnTz8vK46667+OyzzwDHCsuVqW2iCzB58mQuueQS3n77bTZv3syePXsICgriiiuu4M4772TUqFG1uv6ZtG/fnocffph169aRkJDAhg0b8PHxoX379gwZMoSHHnqI0NDQOmtfRERERETEU7j19kIPPfQQb7zxBk2aNGH06NHExsZWuCJysTFjxtRjdA2XthfyLHqtRERERMQTeez2Ql988QWNGzcu2a5HRERERERE5GzcuusnKyuLPn36KMkVERERERGRKnPrRLdjx44cOXLE1WGIiIiIiIhIA+LWie7jjz/Ohg0bWLt2ratDERERERERkQbCrRPdG264gVdeeYVrr72WF198kbVr13Lw4EESExMrfIjUF4PBgMFgIDQ0lPT09ArrTJgwAYPBwMsvv1zu3NatW9d9kCIiIiIi5yi3XowKoEuXLoSGhjJx4kQmTpxYaT2DwYDVaq3HyMSpso7Clg/hwK9QkAXegdD6Muh+CwQ2cXV0lUpPT2f69Oln/NkUEREREZH65daJ7rfffsv111+P1WolIiKCVq1anXF7IWmALLnw3Xj47TOwWcoe+2s5rHgZuo2Gga+A2dc1MVbCaDTi5eXFa6+9xsMPP1zlfY537dqF2Wyu4+hERERERM5dbp3ovvDCC9jtdubMmcMtt9yCwWBwdUjiTJZc+GQEHFxTeR2bBTbPhdR9cPMCMPvVW3hnYzabueOOO3jrrbeYNm0a//rXv6p0XlxcXB1HJiIiIiJybnPrObq7du3i8ssvZ8yYMUpyPdF348+c5JZ2cA18/1TdxlMDzzzzDD4+PsyYMYPjx49X6RzN0RURERERqVtuneg2btyYwMBAV4chdSHziGO4cnVs/dQxl9eNNGvWjLvuuovMzEymTp3q6nBERERERAQ3T3RHjBjBunXrOHnypKtDkYrY7ZCbXrPHhnfKz8k9G5vFcV5N28xNd8TsZE8//TS+vr688cYbpKWlOf36IiIiIiJSPW49R/ell14iPj6e66+/nnfffZeYmBhXhySl5WXAK63qt81Vkx2Pmhp/EPwaOS0cgOjoaMaOHcvrr7/OlClTmDRpklOvLyIiIiIi1ePWie7gwYMxmUwsX76c8847j9atW9OsWbMK5+saDAZ+/vlnF0QpAk899RTvvPMOM2fO5LHHHqNx48auDklERERE5Jzl1onuihUrSr63Wq3s27ePffv2VVhXi1WJK0VFRXHPPffw2muvMXnyZF555ZVqnb9q1SqmTp3Kb7/9RmJiIi+88AITJkyom2BFRERERDycWye6+/fvd3UIcia+IY6hwDWx9g1YPaX6513+BPS+v2ZtgiPmOjJ+/Hhmz57Nm2++yeOPP16tc7OysujQoQOjRo3i4YcfrpsARURERETOEW6d6LZqVc/zP6V6DIaaz3ftORZ+nVG9BamMZsd5Tp5j6yyRkZHce++9TJs2jVdffZWAgIAqn3vNNddwzTXXAI6EWUREREREas6tV10WDxbUFC4YVb1zuo2GwCZ1E4+TjB8/Hn9/f9566y2OHDni6nBERERERM5JSnTFdf7+CrS6rGp1W10GA6s379UVmjRpwrhx48jJyeHDDz90dTgiIiIiIuckt0p0TSZTjR9eXm49ClsqYvaDmxdAj1sdw5IrYjQ7jt+8EMy+9RldjT355JMEBASQm5vr6lBERERERM5JbpUd2u12l5wrLmT2gyEzoN//wZaP4MAaKMgC70BofRl0v8XthyufLiIigvvuu49XX33V1aGIiIiIiJyT3CrRtdlsrg5BXCWwCVz+uOPRAJztg5VXXnml0i2G9KGMiIiIiEjdcqtEV+RclZWVVbJHdEFBASkpKfz22294e3vToUMHF0cnIiIiItKwKNEVcQObNm2iX79+Jc9nz57N7NmzadWqFQcOHHBdYCIiIiIiDZASXRE30LdvXw1pFhERERFxErdadVlERERERESktpToioiIiIiIiEdRoisiIiIiIiIeRYmuiIiIiIiIeBQluiIiIiIiIuJRlOhKhQwGQ8n3Wg3YvZV+fUq/biIiIiIi5yolulIhg8GAyWQCID8/38XRyJkUvz4mk0mJroiIiIgISnTlDPz9/QHIzMx0cSRyJsWvT0BAgIsjERERERFxD16uDkDcV3BwMJmZmRw/fhwvLy+Cg4NLennF9QoLCzl58iTHjx8HICgoyMURiYiIiIi4ByW6UqmgoCBCQkLIyMjg6NGjHD161NUhSSUaNWqkRFdEREREpIgSXamUwWAgMjISPz8/Tpw4obm6bsjHx4fQ0FBCQkI0P1dEREREpIgSXTkjo9FIaGgooaGh2O12rcDsRgwGg5JbEREREZEKKNGVKlNiJSIiIiIiDYFWXT7NunXrGD58OJGRkZjNZsLCwujfvz8LFiyo1XX37t2Ln58fBoOBgQMHVlrPZrPx2muv0blzZ/z8/IiIiOCGG25g586dtWpfRERERETkXKFEt5T58+dz6aWXsmjRIlq0aMHw4cPp1KkTK1as4IYbbuCpp56q8bXvvvvus85xtdvtjBw5kkceeYTDhw8zaNAgOnbsyMKFC7nwwgtZv359jdsXERERERE5VyjRLWK1Wrnvvvuw2WzMmzePjRs3Mm/ePFatWsWaNWvw9fXl1VdfJSEhodrXfv/991m+fDl33XXXGevNmTOHBQsW0K5dO3bv3s2CBQtYsWIF8+fPJzc3l9GjR2O1Wmt6iyIiIiIiIucEJbpFdu/ezbFjx4iLi2PkyJFljvXu3ZsBAwZgt9vZvHlzta579OhRnnjiCa666ir+8Y9/nLHu1KlTAXj11Vdp2rRpSfnw4cMZOnQoCQkJfP3119VqX0RERERE5FyjRLeIj49PleqFhYVV67oPPvggubm5zJo164z19u/fz86dO/Hz82PQoEHljo8YMQKAJUuWVKt9ERERERGRc40S3SJt2rShTZs27N69my+//LLMsfj4eH744QdiYmK4/PLLq3zNZcuW8cUXX/DMM8/Qtm3bM9bdtm0bAJ06dcJsNpc73r179zL1REREREREpGLaXqiIyWRi7ty5DBkyhJEjRzJ58mRiY2NJTk5mzZo19OzZk48//hhvb+8qXS87O5tx48Zx3nnnMX78+LPWT0xMBKB58+YVHi8uL65XFR07dqywfPfu3ZjN5kqPi4iIiIiIuFpCQkKFnYBVoUS3lD59+rBy5UqGDRvGpk2b2LRpEwBBQUFcddVVREdHV/lazz77LAcPHuSXX36pUnKclZUFgL+/f4XHAwICytSrDYPBUOMfmLpSvMhXbGysiyNxHk+7J0+7H9A9NRS6p4ZB9+T+PO1+QPfUUOieGgZ3vCez2VySB1WXEt1SPv/8c2677TYuvvhi5s2bR8eOHUlKSmLKlCm89NJL/Pzzz6xcufKsSeKmTZt44403uOWWW+jXr1+V2rbb7YAjCXWWHTt2OO1ada24d7khxXw2nnZPnnY/oHtqKHRPDYPuyf152v2A7qmh0D01DJ52T5qjW2Tv3r2MGTOGiIgIli5dSs+ePQkICKBdu3bMnj2bIUOGEB8fz5w5c854HavVyl133UVISAhTpkypcvtBQUGAY8hzRYrLAwMDq3xNERERERGRc5F6dIvMmzcPi8XCwIEDK+wev/HGG1myZAkrVqxg7NixlV7n8OHD/Pbbb0RGRnLDDTeUOZaeng7Ahg0b6Nu3L4GBgXz77bcAtGzZsuT8yq5bup6IiIiIiIhUTIlukeJEMjg4uMLjxeXHjx+v0vVSUlJISUmp8NiJEydYuXIlISEhJWVdu3YF4I8//sBisZQbHr1lyxYAunTpUqX2RUREREREzlUaulwkMjISoGQBqtNt3LgRgNatW5/xOq1bt8Zut1f4WL58OQADBgzAbreX9PACxMTEcP7555Obm8vSpUvLXXfBggUADB48uLq3JiIiIiIick5Rolvk2muvBWDVqlXMmjWrzLF169Yxffp0AEaMGFFSPnPmTOLi4nj66aedEsOjjz4KwJNPPsnRo0dLyhctWsQ333xDTEwM1113nVPaEhERERER8VQGe/Fyv8ITTzxRsoBUx44d6dChA0lJScTHx2Oz2Rg7diyzZ88uqT9hwgQmTpzImDFjmDt37lmvv2LFCvr168eAAQP4/vvvyx232WyMGDGCxYsXExoaSv/+/UlNTWXlypX4+Pjw888/c8kllzjtfkVERERERDyRenRLmTx5MosWLeJvf/sbKSkpLF68mJ07d3LFFVfw6aeflkly64LRaGT+/PlMnTqV6Ohovv32W37//feSfX2V5IqIiIiIiJydenRFRERERETEo6hHV0RERERERDyKEl0RERERERHxKEp0RURERERExKMo0RURERERERGPokRXREREREREPIoSXREREREREfEoSnRFRERERETEoyjRFREREREREY+iRFdEREREREQ8ihJdERERERER8Sherg5A6l9kZCTZ2dm0bNnS1aGIiIiIiIhUKDExkYCAAFJSUqp9rnp0z0HZ2dlYLBZXhyEiIiIiIlIpi8VCdnZ2jc5Vj+45qLgnd8eOHS6OREREREREpGIdO3as8bnq0RURERERERGPoh5dERERERGRc1XWUdjyIRz4FQqywDsQWl8G3W+BwCaujq7GlOiKiIiIeDJPfBPriffkifQ6uTdLLnw3Hn77DGynrd/z13JY8TJ0Gw0DXwGzr2tirAWD3W63uzoId5KXl8ekSZP4/PPPSUxMJCwsjIEDB/Liiy/SvHnzKl+ndevWHDx4sNLju3btIi4urly5zWbj9ddf5/3332ffvn0EBgbSt29fJk6cSIcOHWp0T6crHuuuOboiIiIe7ExvYgGM5ob3JtYT78kT6XVyf5Zc+GQEHFxz9rqtLoObF4DZr+7jOk1t8hb16JaSl5dH//79Wbt2LVFRUVx77bUcOHCAOXPm8O233xIfH09sbGy1rjlmzJgKy0NCQsqV2e12Ro4cyYIFC2jUqBGDBg0iNTWVhQsXsnTpUpYvX06vXr1qdG8iIiJyDqnKm1ibBTbPhdR9LnsTWy2eeE+eyNNfJ0/ppf5ufNWSXHDU+/4pGDKjbmNyMvXolvL888/zr3/9i969e/Pjjz8SGBgIwLRp03jssce4/PLLWblyZZWuVdyjW51/3g8++IA77riDdu3asXr1apo2bQrAwoULGTFiBLGxsezevRsvr9p9PqEeXREREQ/3zYOON+NV1eNW938T64n3VJqnJFCe+jp5Ui915hGY3rHi+6iM0QyP7qz3n8Xa5C1KdItYLBaaNGlCeno6W7ZsoVu3bmWOd+3ale3bt7Np0yZ69Ohx1uvVJNHt2LEjO3fuZPHixVx33XVljl177bV88803LFiwgOHDh1f5mpW1A0p0RUREKtTQE44G9Ca2yjzxnoopgXL/16mBDPM9K7vdcS+rJsOaadU//8rn4PLHnR/XGWjoshOsWbOG9PR0YmNjyyW5ACNGjGD79u0sWbKkSolude3fv5+dO3fi5+fHoEGDKmz/m2++YcmSJbVOdEVERKQCnrIwy9aPqpdogKP+j8/C+UPBXgi2QrDbHA9bYamyUsdOL7fbwGarZd3C8uV2GxzfX7N7WvYEdP0H+IY4Hn6NHF/N/mAwVO96daEhD/O12SD/JORlnPq6+cOavU5f3QvtBoCXD3j5VuGrL3h5O74aver+tazPYb52O1hyoCAHLNlFX3OgINvxKP6+zNeq1C06Ri36OA+sqfdEtzaU6BbZtm0bAN27d6/weHF5cb2qmjx5MgkJCfj4+NCxY0eGDRtGREREpe136tQJs9nstPZFRESkCtw94bDbHclE7gnITS/6egLySn1fXH6gim/IT7f9C8fDk+z8yvE4ndHrVPJb8mhUcZlfBeVevs5Jrlw5T9KSVzZJLX6UPD9ZwfFSZfknnRMHwL6fHI+aMBirlhybvEslyVVNqL0dCeJvn1Yvpi0fQ3hbMJjKJ6AVJqZZp7635NTs36E+FGS5OoJqUaJbJDExEaDSlZWLy4vrVdWTTz5Z5vkjjzzC66+/zh133FHn7Rd39Z8uISGh2otqiYiIeLT6SjisBZUnqGcsz3D0bopz2KyQk+Z41ITJ+wzJcUgFyfFpz718HMN8f/useu1u/RT6/R/4Nz6VbFaYlJ50/CydKXEtLKjZvbsbu839EkR7oWOEhKfxDnR1BNWiRLdIVpbjEwp/f/8KjwcEBJSpdzZDhw6lX79+9OjRg4iICP766y8++OADZsyYwZ133kl4eHiZebjObl9ERESqqKYJR7cxYDRWnpwWJ6ilj1my6+AGnMQcAGFtHD2VRpOjN6rMV2P55+XKKqhbpo6xgrrF5RUdKzp33Sw4trv69+QTDEFRp3okrbnO+bcqLIDsY45HTXj5Oe6rJsN8p3cqSlLdaJkd70BHAl/Tn/GAxhDdHax5jg+DrHlgza/ga64jsT2XmP0dD29/x/9R7+LngaW+D6igzhnqbngXVr1a/VhaX+b8+6tDSnSLFC8aZahkGEp11+x6/fXXyzzv2LEjU6dO5bzzzuPuu+9m/PjxZRLds7VfE5VN2q6sp1dERKTaGvrCTQAb36tZwvFev7qJ52xKhtSGFj1Kfe/bCA6th93fVv+6fR513/l32cfgl5eqf96lD5W9J2v+qZ7NvPRTvZ6lH7kVlBXXd1YvaG0S7sJ858RQrHgYt09w0c9W0VefkNOen3681FdTUUqxanLNXqde91b9Z6/QWjYBLsyvJCmu7GsV6xYWJdzpiTV73X2CHAtTeVeUeAZUkqCeVtfLz/EhkLNddCesmV79RcO63+L8WOqQEt0iQUFBAGRnV/wpVE6OYzhE8ZZDNXXnnXfy3HPP8eeff7J//35iYmKq1H5xeW3bFxERcQp3XrjJZnMkJVlHi3rdjkLWsVPfZ6cWHSv63hVDHk3eZZPTypLW08t9Qxw9gWeSeQT+/MGz3sR2uwVWvFL7e/LygcAIx6MmLLkVJ8HFvfcVJceln9usNWv3TLwDK09Ci5+XlDUqX8fs57zFnJz1Op2JyQtMgeBTT++JP7rO8TutuppdCKPmOT0cpwhqCheMqt42UN1GN5wPL4so0S3SsmVLAA4fPlzh8eLy4no1ZTQaiY2N5ejRoyQnJ5ckuvXVvoiISK25YuGmQosjKS2XtB4rel7q+5zUukkoKuITXCoJbVQqMT1L0lqXq/564ptYd7kns5/jERRZ/XOLV9MtTnq/GgdJW6p/neYXwvXvle9NdQfu8jo5U+tLa5bouvsw37+/AmkJVd8yaeArdR+Tk7nR/wzX6tq1KwBbtlT8C6e4vEuXLrVu68SJE0DZ3tni9v/44w8sFku5lZed2b6IiEitOGvhpoLsop7V4gS21PenJ7C5J5x7D87Qpi/c8rWro6iYJ76Jbej3ZDAUDU0NgOBoiLumZolu+79DWIzz43OWhv46na4+eqldwezn+BDy+6ccaw409D2cK6BEt8ill15KSEgICQkJbN26tdxeugsWLABg8ODBtWpnx44d7NmzB39/f+Li4krKY2JiOP/889m1axdLly4tM3/Xme2LiIjUSk0WbtrykWPrjIKsogS2KHmt6yHDRjMEFA1TDYiAgCYVf//7Qvh1evWv37qP82N2Fk98E+tp96QEqmG8Tp7YS13M7Of4ELLf/zl+Tx9Y03DXWqiAwV7dVZY82LPPPsu///1vLrnkEn788ceSlY6nTZvGY489xmWXXcbq1atL6s+cOZOZM2cybNgwJk2aVFL+ww8/0LhxY3r06FHm+tu3b+emm25i165dPPjgg8yYUfbT7ffee4+77rqLdu3asWbNGpo0cfxgLVq0iOHDhxMTE8OePXsq3Ge3OooXo6pssSoREakjDXHhJrvdMcyyeE7rxvdgx2LXxeMdWJSoRjj+zQIaFyWtpb4vTm59G1VteHDmEZjesfoJx6M73fd1Ky3rqOe9ifWUe/rmweolUD1udd4+uvXBU16nqkzXKNbqMrh5ofsn8A1EbfIWJbql5OXl0bdvX9avX09UVBR9+vTh4MGDrF+/nvDwcNatW0fbtm1L6k+YMIGJEycyZswY5s6dW668VatWxMbGEhERwf79+9myZQtWq5UrrriCZcuWldtKyGazMWLECBYvXkxoaCj9+/cnNTWVlStX4uPjw88//8wll1xS6/tUoisiUs/OtHATuKZ3Iz/r1HDhrCNFX4u+zz5WtszZq7yezi+sKFGtLIGNOPXwrngbvlrz9IRD3JMSqIbDkus5vdQNSG3ylnobulxYWIjFYsHX131feF9fX5YvX86kSZP47LPP+OqrrwgNDWXMmDH861//okWLFlW6zoABAzh06BAbN25k27ZtZGRkEBwczGWXXcbo0aO57bbbMJnKr5hoNBqZP38+M2bM4IMPPuDbb78lICCAYcOG8eKLL2pbIBGRhqg+F26y5JVKXkslsNmnJ7NH638/18BIuOT+05LZCPBv7B6L6XjavEJpGDxtmK8n8/Bhvp6oXnp0v/nmG0aNGkV+fj4PPPAA06ZNY82aNXz77bdERkYyZswYQkND6zoMKaIeXRFpEBriMN+K1LansNByal5rSY9r6US2VO9rfobTwy9h9HL0sOafdLwe1dWmH9zyldPDcir12IgrecowXxEncvuhyxdccAFhYWEMGjSIWbNmccstt/DSSy/h4+NDdnY2rVq1YtOmTYSHh9d1KIISXRFxc+44zLemajL302CAFhdDbrojoc1Jq7PwwOAYIhzYtKiHtWiocPHz4u8Dmji2xTEaYdVk+OWl6jd15XNw+ePOv4W6oIRDRMQtuH2iGxAQwPr16+nUqRObNm3i4osv5umnn+Zf//oXSUlJXHvttVx99dX85z//qetQBCW6IuLGqj1fzQn7s1aX3e7YFicvw9G7mXey1PelvuadhEPr4cgf9RsfOJLSMslr6cS1VJl/ePWHDXv6wk0iIuI23H6Obm5ubskKwj169MBoNDJy5EgAoqOjeemll3jssceU6IqInOuctT9rZex2sOY5ktCShPS05LRc8nrSMSS45Hgm2Atrdn+14RNcqoc1oih5Lf5aqiwgAry86y4OT95qQ0REPEa9r/5gMBjw8fEps+Jwhw4dSExMrO9QRETEndRkf9atn0CzCx3Dfc+YnJZKXqvTE+kqjVrBwEmlhhI3qf+e6zPRwk0iIuLm6i3RnTBhApdffjkXXXQRBoMBQ6l97by9vcnOrufVH0VExH0UWmDt69VPQm1W+Ob+uompKrz8wDfY0dvqGwy+Iae+9wmG3UvhxP7qXzesDcQNcn68zqKVYkVExM3VS6I7evRoli9fzuzZswGw2+3ceuut9O7dmwsvvJBmzZrVRxgiIp7LnVcottsh5zhkHIKMw3Dyf6e+zzgMGf+DzGSgnrd1N5pLJakhp30fUnnyWvr42YYI+zWq2cJNrS+r0S3VK221ISIibqxeFqMqlpmZyaZNm9iwYQMbN25k48aNHDp0yBGIwUBhoQvmPJ2DtBiViAdxhxWKLbmOZPVMiaw1t27aBkfCFd29koS1dG9ro7IJq9nPMeS5LmnhJhERkRpz+8WoigUFBdGvXz/69etXUnb06FE2bNjApk2b6jMUEZGGryorFNsssHkupO6r2QrFtkLHHq3lEtnDp57X6fY3VdDiYvfdn1ULN4mIiLiE0xPd+Ph4unTpQkBAQJXqN2nShMGDBzN48GBnhyIi4tmcsUJxXsapXtfSvbDFvbInkxzzYJ3BHAAhzSt/bP8SVkyq/nXdfZivFm4SERGpd05PdC+99FKMRiOxsbFccMEFZR5RUVEl9caOHUuPHj24++67nR2CiIjnq8kKxVs+Akueowe2uFc2/6Rz4jGYICjqzImsb6MzDxXucRusmlL9Yb7db6l1+HVKCzeJiIjUO6fP0R09ejTbtm1jz549JXNui1dYbty4MRdccAGxsbHMnz8fLy8vkpOTndm8VIHm6Ip4gJWTYXkNFjmqKb9QCD5DEhsYCSYnfHb6zYPVG+bb49bq7aPrallHtXCTiIhIFdUmb6mzxajy8/P5/fff+e2330oeGzduxGKxYDAYsNvttGjRgoMHD9ZF83IGSnTlnOfOKxQXy88qtajT/0oNKS76enw/Tlul2OTtSFaDm0FIi1IJbNHz4GbgE+icts6mKvOOi7W6DG5eqB5QERERD+WWiW5FMjIymDNnDv/3f/9H586d+eijj2jfvn19NS9FlOjKOcsdVigGx56xmcll58aeLJXMZhyGvPS6aTuwKVz6cFES29yRyPo3BqOxbtqrCUuuhvmKiIhIw1l1OSQkhIcffpjY2Fiuu+46fv/9dyW6IlI/6mOFYijaMzat/KJOJUntYchKAbutxrdSK006QO9xrmm7qrQ/q4iIiNRSvfboltahQwf8/PzYvHmzK5o/p6lHV85Jzpr7WZBdQS/saVvvWPOcE7PRC4KjT5sbWzSceO9PsPGd6l/zyufg8sedE5+IiIhIHWowPbqltWnThl9++cVVzYvIuaRGKxR/DP4RjiHEpefG5p5wXlwBEUXzYk9b2Kk4sQ1sAkZTxedGXQCb53jeCsUiIiIiTuD0RPehhx6iW7dudOvWjY4dO+LlVXETCQkJREZGOrt5EXG2hrBw09ls+qB6CSGAvRBWT655m2X2jC21qFNJMtusdvNLg5rCBaOq10vdbXTDec1EREREasHpie4bb7xRsp2Q2WymY8eOJYlvp06d8PHx4ZNPPuHPP/9k1qxZzm5eRJzlTAs3/bUcVrzsugWB7HZHz2r2sVOPrGNln5cuL8h0bvsGU1HS2qzUasVFCzsVl51tz1hn+PsrkJZQ9RWKB75St/GIiIiIuAmnJ7qLFi1i69at5R6G097wtW3blrS0NL7//nu6d+9OkybqZRBxG/W1cFNp1nzIToXso0Vfjzl6k7OPlSovSlxzUsFmrV17VeHbCLqMLNsrG9LcsXJxZUOK65PZz/FvrxWKRURERMqo88WoUlNTyyW9+/btw2azlUl+o6Ki6NGjB19//XVdhiNoMSqpAmcs3GS3Q15G2SS1sp7XrGOQn+HUW3CKNv3glq9cHUXVZB3VCsUiIiLiURrMPrrFsrOz2bZtW5nkd8eOHVgsFgoLC+s7nHOOEt061tDntGYegekdqzen1WCE8691DBEu6YE9BoUFdRcnOFYlDog49QhsAgGNi543KfraGHYsgl8rWEH5bLRCsYiIiIjLNLhVlwMCArjkkku45JJLSsqsVqsSL2nY3HlO65lY84uGCB919Kxu/bgGCzfZYOdi58TjE1yUrBYlrYFNyiazJUltRNXnwQZFQfxbWqFYRERE5Bzhsu2FTufl5UXXrl1dHYZIzbhiTuvZ4ime35p1pNT3pRLa4q91PWTYYCrVy1pZz2up43XxIYBWKBYRERE5p7hNoivSoH03vmor34Kj3vdPlZ/Tejb5WaclqWdIXp29ynBVBEXBZY+U6o0tSlz9QsForP94TqcVikVERETOGUp0RWor84hjuHJ1bP0U+j7j6L08a+JaVG7JqZv4i/mGOBLU7GOQl1798yPioNfdTg/LabRCsYiIiMg5Q4muSG1t/aj6c1ptFpjeoe63yPELdSSvxfNcA5s65raWKSv66uXjOGfVZPjlpeq31foy58ZeF8x+jp70fv+nFYpFREREPJgSXZHaOvBrzc6rUZJrAP/w05LUJpUnryZz9ZvodguseMWzF24KbOJYTVkrKouIiIh4JCW6IrVVkFW780sWayqdsFaUuDZxJLmmOv5vq4WbRERERKSBU6IrUlvegTU7r3lP+Mfn4BfmHos1laaFm0RERESkAauzRDcnJ4dNmzaRnJxMfn5+pfVuuaUBDXcUqUjrSx375FZX+wGOnlx3pIWbRERERKQBM9jtdruzL/r8888zffp0cnIqXyXWbrdjMBgoLCx0dvNyFh07dgRgx44dLo7EQ2QegWnng70aP8tGMzy6s2EM9806qoWbRERERKTe1SZvcXqP7quvvspLL72El5cXgwcPpn379gQG1nBopwvk5eUxadIkPv/8cxITEwkLC2PgwIG8+OKLNG/evErXSE9PZ9myZXz77bf89ttvHDx4EKPRSIcOHRg1ahTjxo3DbC6/SNCtt97Khx9WPi9y1qxZ3HPPPTW+N6kjKdvBbqveOQ1pTqsWbhIRERGRBsbpie67776Ln58fq1evpnv37s6+fJ3Ky8ujf//+rF27lqioKK699loOHDjAnDlz+Pbbb4mPjyc2Nvas15kyZQr//ve/MRqNdOvWjSFDhnDs2DF+/fVXNmzYwIIFC/jhhx/w9/ev8PwBAwYQGRlZrvy8886r9T2Kkx3eDF/eAlRjYITmtIqIiIiI1CmnJ7qHDh3iyiuvbHBJLsB//vMf1q5dS+/evfnxxx9LeqKnTZvGY489xu23387KlSvPep3AwECeeeYZxo0bR7NmzUrK9+7dy1VXXcWaNWt46aWX+M9//lPh+U899RR9+/Z1yj1JHUrdB5/dAJaiIfrmAIi9Ev78XnNaRURERERcyOmJbkU9kQ2BxWLhjTfeAODNN98sM9z60Ucf5cMPP2TVqlVs3ryZHj16nPFaTz31VIXl7dq14+WXX2bUqFF8/vnnlSa60gBkpsAnwyAnzfHcaIabPoXYfprTKiIiIiLiYk5PdG+66Sbee+89Tpw4QWhoqLMvX2fWrFlDeno6sbGxdOvWrdzxESNGsH37dpYsWXLWRPdMunbtCkBSUlKNryEulpcBn4yA9MRTZcPediS5oDmtIiIiIiIu5vREd8KECaxdu5brr7+e9957r0pzWt3Btm3bACodcl1cXlyvpv766y/gzD3fixYtYuHChRQWFhITE8OQIUOIi4urVbviJJY8mDcajvx+qmzAJOg8wnUxiYiIiIhIGU5PdK+55hpsNhu//vorcXFxtG7dmubNm2MwGMrVNRgM/Pzzz84OoUYSEx29c5WtrFxcXlyvpmbMmAHAtddeW2md4iHUxcaPH8+9997LjBkz8PKq+ktWvBz36RISEhrMBxBuxVYIi8fCgdWnyi59CHqPc11MIiIiIiJSjtMT3RUrVpR8X1hYSEJCAgkJCRXWrSj5dZWsrCyASldCDggIKFOvJt5++21++uknGjVqVOE83m7dutG7d2+uvPJKmjdvTkpKCt999x3PPvssb731Ft7e3kyfPr3G7Ust2O3w3XjY+fWpsq7/gKsmui4mERERERGpkNMT3f379zv7kvXCbndsD1NZ8l18vKZWrlzJQw89hMFg4IMPPiA6OrpcnYceeqjM85iYGMaNG8fll19Ojx49eOONN3j00Udp0aJFldqsbGPlynp65QxWT4GN75563vZqGPoGuNGHNSIiIiIi4uD0RLdVq1bOvmS9CAoKAiA7O7vC4zk5ji1kSq/GXFXbt2/nuuuuo6CggNdff51hw4ZV6/xOnToxdOhQFixYwE8//cRtt91W7RikFrZ8BL+8dOp5dHe48UMwmV0Xk4iIiIiIVMro6gDcRcuWLQE4fPhwhceLy4vrVVVCQgIDBgwgPT2dCRMm8MADD9Qovnbt2gGQnJxco/OlhvZ8B0tK9bSHxcLo+eAd4LqYRERERETkjJzeo1vahg0bWL16NUlJSRgMBqKioujTpw89e/asy2ZrpHjbny1btlR4vLi8S5cuVb5mUlISV199NSkpKTz00EO88MILNY7vxIkTQM16lKWGDm2A+beB3eZ4HtgU/rkIAhq7Ni4RERERETmjOkl0//zzT2655RY2btwIlJ//2rNnTz766KOSXkp3cOmllxISEkJCQgJbt24tt5fuggULABg8eHCVrnfixAkGDBjA/v37ue2222q1iFR+fj5Lly4FqNUevlINx/bAZzeCNdfx3CcYbl4Ioa1dGpaIiIiIiJyd04cuJycnc8UVV7BhwwaioqJ48MEHmT59OtOnT+ehhx4iOjqa9evX07dvX7cahuvt7c39998PwP33319mru60adPYvn07l112GRdddFFJ+cyZM4mLi+Ppp58uc62cnByuueYa/vjjD2688Ubefffds64wvWfPHr7++msKCwvLlB87doybbrqJQ4cO0bVrVy655JLa3qqcTcb/4OPrIdfRi47JG276DCI7uzYuERERERGpEqf36L700kscOXKERx55hEmTJuHt7V3m+CuvvMLTTz/NtGnT+M9//lNuz1hXevbZZ/npp59Yu3Yt7dq1o0+fPhw8eJD169cTHh7OnDlzytRPTU1lz5495RL2//u//2PdunWYTCa8vLy44447Kmxv7ty5Jd8nJydz3XXXER4eTlxcHM2aNePo0aNs3ryZzMxMmjdvzpdffulWWzJ5pNwT8MlwOFk8V9sA178LMX1cGpaIiIiIiFSdwV7bfXNOExMTg6+vL7t27aq0jt1up0OHDuTl5bnddkS5ublMmjSJzz77jEOHDhEaGsrAgQP517/+VW5bnwkTJjBx4kTGjBlTJmm99dZb+fDDD8/aVul/+qSkJCZPnsy6des4cOAAaWlp+Pj40L59e4YMGcJDDz1EaGioU+6xeHuhyrYfOmdZcuHjYZAYf6rsminQ8y7XxSQiIiIico6qTd7i9ETX19eX4cOH8+mnn56x3ujRo1m4cCF5eXnObF6qQIluBQqtMH8M7P72VFmfx6H/c66LSURERERqxG634+Q0R2rBYDDUaGRqbfIWpw9dDg4O5tChQ2etd+jQIYKDg53dvEj12e2w7LGySW63f8KVz7ouJhERERGplsLCQtLS0sjMzKSgoMDV4chpvL29CQoKIjw8HJPJVOftOX0xqt69e7N27Vq+++67SussW7aMX3/9VQsriXtY8TJsnnvqefuBMPg10HxoERERkQahsLCQxMRE0tLSlOS6qYKCAtLS0khMTCy3AG9dcHqP7lNPPcWyZcu47rrrGDVqFKNGjaJ169YYDAb279/Pp59+yueff47JZOKpp55ydvMi1bPxfVj58qnnzXvCiDlgqtMtpkVERETEidLS0sjLy8NkMtG0aVMCAgIwGp3epyc1ZLPZyM7O5siRI+Tl5ZGWlkaTJk3qtE2nv5vv3bs3c+bM4e677+bDDz/ko48+KnPcbrfj5+fHO++8w8UXX+zs5kWqbtcSWPb4qeeNz4NRX4C3v+tiEhEREZFqy8zMBKBp06aEhIS4OBo5ndFoLHldkpKSyMzMbHiJLsDNN99M3759effdd1mzZg1JSUkAREdH06dPH+64445yKxiL1KuDa2HBHWC3OZ4HRcPNC8E/zLVxiYiIiEi12O32kuHKAQEBLo5GzqT49SkoKMBut9fp1ql1Nj6zefPmTJw4sa4uL1JzR3bC5zdBYb7juW+II8ltpA9fRERERBqa0qsra7iyeyv9+tR1oqufBDm3pB+CT4ZDXobjuckH/jEPmnZwbVwiIiIiIuI0te7RbdOmDQaDgZ9++omYmBjatGlT5XMNBgMJCQm1DUGkanKOwyfXQ6ZjKD0GI4z4AFpp9W8REREREU9S60T3wIEDAFgsljLPRdxKQQ58diOk/nmqbNA0OH+w62ISEREREZE6UetE12aznfG5iMsVWmHBbXB446myvk/Dhbe5LiYREREREakzmqMrns1uh28fgj+/P1XW4za4YrzrYhIRERERkTqlRFc82y//gq2fnHoeNxgGTYU6XOFNRERERERcy+mJ7u23384HH3xw1npz587l9ttvd3bzIqesfwdWTz31vOUlMPw9MJpcF5OIiIiISD0yGAwYDAZCQ0NJT0+vsM6ECRMwGAy8/PLL5c5t3bp13QdZB5ye6M6dO5c1a9actd6vv/7Khx9+6OzmRRx2LIbvnjz1vEkH+MdnYPZzXUwiIiIi0uAdy8xn5i97+ef76xn21q/88/31vLl8H8cy810d2hmlp6czffp0V4dRb2q9GFVNFRQUYDKpZ03qwP5VsGgsULR5eHBzGL0A/EJdGpaIiIiINFx5lkImLtnBgs2HsRTayxxbvTeV1376kxE9WvDCkA74mt0rzzEajXh5efHaa6/x8MMPExpatffFu3btwmw213F0dcMlc3TtdjtbtmwhIiLCFc2LJ0v5HeaNhsICx3O/UPjnIghp5tq4RERERKTByrMUMuaDDXy+4VC5JLeYpdDO5xsSGfPBBvIshfUc4ZmZzWbuvPNOTp48ybRp06p8XlxcHLGxsXUYWd1xSo/ulVdeWeb5999/X66smNVqJSEhgZSUFP75z386o3kRhxMH4JPhkH/S8dzLD0Z9CRHnuTQsEREREWnYJi7Zwfr9x6tUd/3+40xcspNJ13eu46iq55lnnuH9999nxowZPPLII4SFhZ31HIPBQKtWrThw4EDdB+hkTkl0V6xYUfK9wWAgJSWFlJSUSuubzWYGDx7MlClTnNG8CGSnwsfXQ9YRx3ODCW6YCy16ujQsEREREWnYjmbmsWDz4Wqds2DzIR69uj0RQT51FFX1NWvWjLvuuouZM2cydepU/v3vf7s6pDrllER3//79gGNIcps2bRgxYgSTJ0+usK63tzeNGzdusGO9xQ3lZ8GnN8DxhFNlQ1+H8wa6LiYRERERcRt2u52TedYanfvR2oOVDleujKXQzkfxB7izT5satQkQ7OuFwclbYj799NO89957vPHGGzz66KOEh4c79fruxCmJbqtWrUq+f+GFF+jWrVuZMpE6U2iBL2+BpC2nyq58Drrd7LqYRERERMStnMyz0nXij/Xa5hu/7OONX/bV+PxtL/yNED/ndg5GR0czduxYXn/9daZMmcKkSZOcen134vTFqF544QWGDh3q7MuKlGezwdf3Q8LPp8ouugv6POa6mERERERE3NhTTz2Fr68vM2fOJDU11dXh1Jk6WXXZbrfzySefcMMNN3DBBRcQGxtLmzZtyj0a6gpe4iZ+ngDb55163uFa+Psr4OQhHiIiIiIiniIqKop77rmHrKysSqebns2PP/5Ijx498PX1pVmzZjz77LMUFrrXStNO30e3oKCAQYMG8csvv2C3VzyW3WAwVHpMpEri34JfZ5x63roPDHsHjO61Z5mIiIiIuF6wrxfbXvhbjc59d9VfzFxe/SHID1zZttZzdOvK+PHjmT17Nm+++SaPP/54tc7dunUrgwcP5r777uOTTz5h586d3HHHHVitVl5++eU6irj6nN6jO3XqVH7++WcGDx7M3r17+ec//4nBYCA/P59du3YxYcIEAgICeOKJJ7DZbM5uXs4Fvy+AH54+9bxpZ7jpUzD7ui4mEREREXFbBoOBED9zjR63XNIKs6l6IwbNJgO39G5d4zZD/MxOX4iqtMjISO69916ys7N59dVXq3XulClT6Ny5M9OnT+f8889n+PDhvPjii7z++utkZWXVUcTV5/RE94svviAsLIzPPvuM2NhYjEZHE2azmfPOO4/nn3+epUuXMnXqVD744ANnNy+eLuEXWHzPqeeNWsLNC8A3xHUxiYiIiIjHahLky4gezat1zogeLdxqa6GKjB8/Hn9/f9566y2OHDlS5fN+/fVXrrnmmjJlgwYNIjc3l82bNzs7zBpzeqK7b98+evbsSUBAgKOBokS39JjtPn36cOmll/LWW285u3nxZElb4Yt/gs3ieO4fDjcvhqBI18YlIiIiIh7thSEd6RUTVqW6vWLCeGFIhzqOqPaaNGnCuHHjyMnJ4cMPP6zyecnJyURFRZUpi4x0vB9PSkpyaoy14fRE12QyERwcXPK8OOE9duxYmXrNmjVjz549zm5ePNXxvxx75RYUDYcw+8Oo+dC4rWvjEhERERGP52s28eHtPflHz5aVDmM2mwz8o2dLPry9J77mhrFuzJNPPklAQAC5ubm1uk7xMOu6HG5dXU6f4dysWTMSExNLnrdt60hE1q1bx3XXXVdSvn37dgIDA53dvHiirKPw8TDILvqwxOgFN34MzXu4Ni4REREROWf4mk1Mur4zj17dni83HWLdX2lk5VsJ9PHi4jbh3Hih+w9XPl1ERAT33XdftebpRkVFkZycXKas+PnpPb2u5PRE9+KLL2bhwoXk5ubi5+fHNddcwyOPPMJDDz2Ej48PzZs355133mHXrl0MGTLE2c2Lp8nPhE9HwIkDp8qGzoR2V7ksJBERERE5d0UE+XBfv7bc169hjCw82243r7zyCq+88kqVz7300kv57rvv+Ne//lVStmzZMvz8/OjRw306opw+dHn48OH4+/vz3//+F3D06D788MMcOnSIwYMHc8EFF/Dmm2/i7+9f6T+oCADWAvjiZkjedqrsqolwwT9cF5OIiIiIyDnsscceY/v27Tz22GPs2rWLRYsW8fzzz/Pggw+61Yhdp/foDho0qFxX9tSpU7nooov46quvOHHiBO3bt+fBBx+kXbt2zm5ePIXNBl/dC3+tOFV28Ti49CGXhSQiIiIicq7r3r07S5Ys4emnn2bmzJmEh4czbtw4XnzxRVeHVkbd7UJ8mptuuombbrqpvpqrsby8PCZNmsTnn39OYmIiYWFhDBw4kBdffJHmzau3rHh6ejoTJkxg8eLFpKSkEBkZyXXXXcfEiRNp1KhRhefYbDZef/113n//ffbt20dgYCB9+/Zl4sSJdOjg/qu3VVdqyiH2fv8mgcnr8S7MocDkT3bUxXQJysT/jwWnKnYaAX/7N7jRBHcRERERkXPRgAEDGDBggKvDOCOD/WyDts8heXl59O/fn7Vr1xIVFUWfPn04cOAAGzZsICIigvj4eGJjY6t0rbS0NHr37s3evXtp06YNF154ITt27GDHjh20bduWdevWER4eXuYcu93OjTfeyIIFC2jUqBH9+/cnNTWVVatW4evry/Lly+nVq1et77Njx44A7Nixo9bXqqm8nCy2v3cP3dKWYTYUnrlym76OFZa9vOslNhERERFpOGw2W8luLuedd17J9qbifqr7WtUmb3H6T4HRaMTb25tp06adsd5tt92Gl1e9dShXyX/+8x/Wrl1L7969+fPPP/niiy9Yv349U6dO5dixY9x+++1VvtYjjzzC3r17uf7669mzZw9ffPEFf/zxBw888AD79u3j0UcfLXfOnDlzWLBgAe3atWP37t0sWLCAFStWMH/+fHJzcxk9ejRWq9WZt+wSeTlZJLw2kJ7Hl5w1yc3Fl7whs5XkioiIiIhIldXJxx1Wq5UnnniC2267DYvFUmk9d+pMtlgsvPHGGwC8+eabZSZSP/roo3Tp0oVVq1axefPms14rJSWFTz/9FLPZzFtvvVUmoZ88eTIRERF8+umnHDlypMx5U6dOBeDVV1+ladOmJeXDhw9n6NChJCQk8PXXX9fqPt3B9vfuoWPB75zt5bfbwY88tn38RP0EJiIiIiIiHqFOEt2BAwfSs2dPPvzwQ/r27cvRo0frohmnWrNmDenp6cTGxtKtW7dyx0eMGAHAkiVLznqt7777DpvNxuWXX14mYQXw8fFhyJAhFBYW8t1335WU79+/n507d+Ln58egQYNq1b47S01JpFvaMuDs022Lj3dPW0pqyqE6jkxERERERDxFnSS6kZGRrFixgtGjRxMfH0/Pnj357bff6qIpp9m2zbGFTffu3Ss8XlxeXM/Z1yr+vlOnTpjN5lq17872fv/W2efknsZsKGTf97PqKCIREREREfE0dTZJ1sfHh48//phOnTrxf//3f1x22WXMnTu3pGfS3SQmJgJUurJycXlxPWdfy5ntFyuevH26hISEKi+q5WyByetrdF5AcryTIxEREREREU9V50uSjR8/nq+++gqj0cjIkSOZMGFCXTdZI1lZWQD4+/tXeDwgIKBMPWdfy5ntuzPvwpx6PU9ERERERM499bLs8eDBg1m3bh1DhgzhX//6F7///rvbLftdvDCWoZKJo9VZOKsm1zrbOTVR2TLclfX01ocCkz/UYOHoAlPFHwCIiIiIiIicrt729+nQoQObNm1i+PDhLF682KkJnTMEBQUBkJ2dXeHxnBxHj2Lp1Zidea2znVNcXpX23VlWVC84sKXa52VH9a6DaERERERExBM5vVu1ZcuWNG7cuMJjoaGh/Pe//+Wee+5xq62FwBE3wOHDhys8XlxeXM/Z13Jm++6s3cBxWOymap1jsZtoO/DeOopIREREREQ8jdMT3QMHDvDqq69WetxkMvHWW2+RmJjIX3/95ezma6xr164AbNlScW9jcXmXLl3q5FrF5/zxxx8V7j1cnfbdWePIlmwNvwagSvvoAqxvdA2NI1vUcWQiIiIiIuIpXDZRtnnz5rRq1cpVzZdz6aWXEhISQkJCAlu3bi13fMGCBYBjvvHZDBw4EKPRyOrVq8vtIZyfn8+SJUswGo38/e9/LymPiYnh/PPPJzc3l6VLl9aqfXfX5c632eHduUr76K6znc+EgptJzcqvn+BERERERKTBc68VoVzI29ub+++/H4D777+/zFzZadOmsX37di677DIuuuiikvKZM2cSFxfH008/XeZaUVFR/OMf/6CgoIBx48ZhtZ5afenJJ5/k2LFjjBo1isjIyDLnPfrooyV1SifIixYt4ptvviEmJobrrrvOaffsKr7+gcQ+/D3rw4ZWOoy5wG7iM+uVjCkYz74Thdw+dyPZ+TVYxUpERERERM45tV6Mqk2bNhgMBn766SdiYmJo06ZNlc81GAwkJCTUNgSnefbZZ/npp59Yu3Yt7dq1o0+fPhw8eJD169cTHh7OnDlzytRPTU1lz549JCcnl7vWa6+9xrp161i4cCFxcXFceOGF7Nixgz/++IPY2FimT59e7pzbb7+dZcuWsXjxYuLi4ujfvz+pqamsXLkSX19fPvnkE8xmc53df33y9Q+k14Mfk5pyiH3fzyIgOR7vwhwKTP5kR/Wm7cB7ObErn/wf9gCw/XAG93yymffHXIS3lz6fERERERGRytU6Yzhw4AD79+8vmVd64MCBKj/2799f6xtwJl9fX5YvX85zzz2Hv78/X331FQcOHGDMmDFs3bqVtm3bVvlajRs3ZuPGjTzwwAMUFBSwePFiMjIyuP/++9mwYUOFC3YZjUbmz5/P1KlTiY6O5ttvv+X3339n2LBhbNq0iUsuucSZt+sWGke24OJb/0Pnp5dz3rPr6fz0ci6+9T80jmzBuL6x3HrJ/7N33+FRVfkbwN+ZyUwmZVJIhQRI6BJqQjWAAiIuRRBYRFFQlLVg3/UHKy5NiiDgsroWRAEVkI6CykqRDgmhRYqUQAiQRkJ6Mpn6+2Myk06mJTNz836eJ09m7px77/eaROadc+45Eaa2h69m4f+2nINO51wTmREREREROSuRSASRSAR/f3/k5ubW2GbOnDkQiUT48MMPq+0bERFR/0XWA5He2aY/pnpnXEe3tnV2nYlOp8frP5zBz4nlveZT+0di5vCODqyKiIiIiJyFTqfD5cuGUYDt27eHWFzPo/8KM4HTa4Hko4CqEJB5AxH9gOhJgHdw/Z7bChWXdZ01axbmzp1brc2cOXMwd+5cLFq0CDNmzKi0b8uWLZGcnGyXWiz9WdmSWxpsHV0ia4jFIiwf3xU5RSocS8oGAHx1+AaCFXJMHWD+MHkiIiIiIpuoS4BfpwNn1wO6KqukXP8dOPAh0H0i8NhiQCp3TI21EIvFcHNzw7///W+89dZb8Pf3N2u/S5cuueytk3b/uGPKlCn45ptv6my3Zs0aTJkyxd6nJwFyd5Pgy2dj0LGpj2nbgl8uYceZOw6sioiIiIgaDXUJ8P04Q09u1ZBrpFMDp9YA3481tHciUqkUL774IvLz87F8+XKz9+vQoQNat25dj5XVH7sH3TVr1uDIkSN1tjt69CjWrl1r79OTQCnkUqyZ0hPNm3iYtv1j8zkcunLXgVURERERUaPw63TgZt0ZB4Ch3e4ZdbdrYO+99x7c3d2xYsUK3Lt3z6x9XPkeXYdNX6tSqSCR1Ly0DFFNghVyfDulNwK8ZAAAjU6Pl78/hcTbuY4tjIiIiIiEqyDDMFzZEmfWGe7ldSJhYWGYOnUqCgoKsGzZMkeXU+8cEnT1ej1Onz6NoKAgR5yeXFhkoBdWP98TnjLDhyTFKi2eX30SN7KK6tiTiIiIiBotvR4oybXuK35l7cOVa6NTG/az9pwluYaa7eyf//wn5HI5PvnkE2RnZ9v9+M7ELpNRDRo0qNLz3bt3V9tmpNFokJSUhPT0dDz77LP2OD01Ml3C/fDFMzGYsuYkNDo9sotUmPRNHLa+8iCCFc514z8REREROQFlHrC4ZcOe89BHhi9rTb8JePjZrRwAaNasGf72t7/hP//5D5YuXYpFixbZ9fjOxC5B98CBA6bHIpEI6enpSE9Pr7W9VCrFiBEjsHTpUnucnhqhAe2CsPSvXfHWxrMAgFv3SvDcNyex8aU+UMhdc2Y4IiIiIqL6NmPGDKxcuRKffvop/v73vyMwMNDRJdULuwxdvnHjBm7cuIHr169Dr9dj3Lhxpm1Vv+7cuYPCwkL8+OOPgv2PSg1jdPcwzBz2gOn5xbR8vPTdKZRqtA6sioiIiIjIeTVt2hQvv/wyCgsL8dFHlvc4Hzp0CKNGjULLli0hEokwZ84c+xdpB3bp0W3ZsnwYwOzZs9G9e/dK24jqy9QBrZCRr8SqIzcAAMeSsvHOpnP4ZEJ3iMWiOvYmIiIiokZB7msYCmyNY58Ah60YiTrgXaDva9adEzDUXE+mT5+OL7/8Ev/973/xj3/8w6J9CwsL0bFjRzz99NN466236qdAO7BL0K1o9uzZ9j4k0X29N+wBZBWWYsfZVADAz4lpCPJ2x+yRHSESMewSERERNXoikfX3u/b6G3B0hWUTUomlhv3sfI+tvYSGhuKVV17B8uXLsWTJEnh5eZm977BhwzBs2DAAhsDsrOpt1mWNRoMdO3Zg5syZeOmll/DNN9+YXktNTUViYiI0Gk19nZ4aEbFYhCXjuqJ/2/Kh8GuOJePzg0kOrIqIiIiIBEERAnR72rJ9uk8EvIPrpx47mT59Ojw9PfHZZ58hIyPD0eXYXb0E3YMHD6JVq1YYO3YsFi1ahFWrVuHIkfIFlvft24fu3bvjxx9/rI/TUyMkcxPj82di0DmsfIjHkt2XsTnhlgOrIiIiIiJB+MtioGU/89q27Ac8trh+67GD4OBgvPrqqyguLsbatWsdXY7d2T3o/vHHHxg2bBgyMzPx5ptvYvPmzdBXWQNq7Nix8PT0xNatW+19emrEvN3dsPr5nogI8DRtm7HtD/z+p3Mt1k1ERERELkbqATyzBYh5zjAsuSZiqeH1Z7YCUtdY8vL//u//4OXlhZKSEkeXYnd2v0d33rx5KC0txW+//VbrWrqenp544IEHcObMGXufnhq5QG93fDulN8Z8fgxZhaXQ6vR4dd1prJ/aG91b+Du6PCIiIiJyVVIPYOQKYOBM4PS3QPIRQFUIyLyBiH5A9CSnH65cVVBQEKZNm4YlS5Y4uhS7s3vQPXjwIPr06VNryDVq0aIF9uzZY+/TE6FFgCfWPN8TE1aeQGGpBiVqLaasOYktrzyI1kHeji6PiIiIiFyZdzAw4B+GLxdQdXRtVYsXL8bixTUPta5rX2dm96HL+fn5CAsLq7NdaWkptFqud0r1o1OYL1Y+GwOpxDDrck6xGpO+jkdGvtLBlRERERERua7CwkKcPXsWZ8+ehUqlQnp6Os6ePYuLFy86urRK7B50mzZtikuXLtXZ7vz581xrl+rVg20CsXx8NxhXGLqTW4LJ38Qjr8SCqeGJiIiIiMgkISEB3bt3R/fu3ZGWloYvv/wS3bt3Ny055CzsHnQfffRRXLhwAdu3b6+1zZo1a3Dz5k0MHz7c3qcnqmRk12aYNaKj6fmf6QWY+m0ClGqOJiAiIiIistTDDz8MvV5f7Ss5OdnRpVVi96D73nvvwdvbG0899RT+9a9/ISEhAQBQXFyM8+fPY/78+Xj11VcREBCAd955x96nJ6rm+dhIvPJwa9Pz+Bv38NYPZ6HVue49B0REREREVDu7B92WLVvi559/hr+/PxYsWIDevXtDJBJh8+bN6Nq1K2bNmgWFQoEff/wRoaGh9j49UY3+b2h7jI0ONz3ffSEds38679I32BMRERERUc3sPusyAPTr1w9XrlzB119/jb179yI5ORlarRbh4eF45JFH8NJLL8HPz68+Tk1UI5FIhA/Hdsa9olL8fvkuAOD7EykIVsjxxuC2Dq6OiIiIiIjsqV6CLgAoFAq89dZbeOutt+rrFEQWkUrE+O/EaDz9VRzO3soFACzfcwXBCndM6NXCscUREREREZHd2H3oMpEz85S54ZvneqJVkJdp23vb/8CeixkOrIqIiIiIiOyp3np0i4uLkZCQgLS0NJSWltbabtKkSfVVAlGNmnjJ8O2UXhjz2TFkFpRCpwdeW38a617sjR4RTRxdHhERERFZQGRcSxKATqeDWMy+PGel0+lMjyv+3OpDvQTdWbNm4eOPP0ZxcXGtbfR6PUQiEYMuOUS4vyfWTumF8V8eR4FSg1KNDi+sTcDml/uiXYjC0eURERERkZlEIhFkMhlUKhWKiorg6+vr6JKoFkVFRQAAmUzmekF3yZIlmD9/Ptzc3DBixAi0a9cO3t7e9j4Nkc0eaOqDryb1wKRv4qHS6JBXosbkb+Kx9ZUH0czPw9HlEREREZGZFAoFsrOzkZFhuB3Ny8uLPbtORKfToaioyPTzUSjqv2NJpLfz+ipt27ZFamoqDh8+jOjoaHsemuwkKioKAHDhwgUHV+Icfv0jDa+uPw3jX0LbYG9sfrkv/Dxlji2MiIiIiMyi1WqRkpICpVLp6FKoDnK5HC1atIBEIqmzrS25xe4fc9y6dQsPPfQQQy65jL90bop5ozqZnl/NLMSLaxOgVGsdWBURERERmUsikaBFixYICAiATMbOCmckk8kQEBBgdsi1ld2HLoeGhtr7kET17tk+LXE3X4n/7L8GAEi4mYPX1p/BF89Ew03CYS9EREREzk4ikSA4OBjBwcHQ6/Ww88BVsoFIJKr3e3KrsnvQnTBhAlatWoWcnBz4+/vb+/BE9ebtIe2QWVCKH07eAgDsvZSB93ecx6IxnRv8D5OIiIiIrOeIYEXOxe5dVXPmzEHHjh0xZswYJCUl2fvwRPVGJBJh/uhOeOSBENO2H07ewsd7rjiwKiIiIiIispTdg+6wYcOg0+lw6NAhdOjQAW3btsXAgQMxaNCgal+DBw+29+ltduzYMQwbNgxNmjSBt7c3evXqhbVr11p8nFOnTmHOnDno378/mjVrBnd3dzRv3hzPPPMMEhMTa9wnOTnZ9OlTTV8cFl7/3CRifPJUd8S0LB+N8J/91/DdiZsOrIqIiIiIiCxh91mXLZnGWyQSQat1ngl/tm/fjr/+9a/Q6XQYMGAAAgMDsW/fPuTm5uLtt9/G8uXLzTqORqOBVCoFAAQGBqJXr17w9PTEmTNnkJSUBKlUivXr12PcuHGV9ktOTkZkZCRCQkLw2GOPVTuur68vVqxYYfN1ctbluuUWq/DXL47jamYhAEAkAj6fGI3HOjV1cGVERERERI2DLbnF7kH35k3Ler5atmxpz9NbLScnB5GRkcjLy8PWrVsxZswYAEBGRgb69euHa9euYf/+/Rg4cGCdx9JoNOjXrx/+9a9/4S9/+Ysp/Ot0OsyaNQsLFiyAQqHA9evXERgYaNrPGHQfeughHDhwoF6uE2DQNVdqbgnGfn4MaXmGaeplbmJ8O6UX+rQKcHBlRERERETC51TLC7Vs2dKiL2exatUq5OXlYdSoUaaQCwAhISFYsmQJAJjdo+vm5oYTJ05g+PDhlXq4xWIxPvjgA3To0AEFBQX4+eef7XsRZFfN/Dywdkov+MgNc7apNDpM/TYBf6bnO7gyIiIiIiK6H66bUmbXrl0AUG04MQAMHz4ccrkce/futXkRapFIhM6dOwMAUlNTbToW1b92IQp881xPuLsZ/lQKlBpM/iYet3OKHVwZERERERHVxu7LCx06dMisdsYFg9u0aeMUU38bJ4iKjo6u9ppMJkOnTp2QkJCAy5cvo2vXrjad6/r16wBqX3M4IyMDs2fPRlpaGnx9fdG7d288/vjjXPzaQXpENMGnT0fjpe8SoNMDGfmlmPRNPLa8/CCaePFnQkRERETkbOplMipLgquXlxcmTJiABQsWICgoyJ6lmC0/Px++vr4AgLy8PPj4+FRr88QTT2DHjh346aefMHLkSKvPdeTIEfTv3x8ymQzJyclo2rR8ciPjPbo1adGiBTZt2oTevXubfS7jmPaqkpKS0Lp1a96ja6Ef4lMwY9sfpufdmvth/dTe8JTZ/fMiIiIiIqJGz6nu0Z00aRJGjhwJvV4PkUiE6OhojB49GqNGjUJ0dDREIhH0ej1GjBiBwYMHQy6XY9WqVejbty+ys7PtXY5ZCgsLTY89PT1rbOPl5VWtraXy8/MxZcoUAMDbb79dKeQCgLu7O1555RUcOHAAGRkZyMvLw/HjxzFs2DCkpKTgscceQ3JystXnJ9tM6NUC7wxpZ3p+9lYupq07DbVW58CqiIiIiIioKrv36GZmZqJPnz6IiorCihUr0KpVq0qv37hxA2+++Sb++OMPnDhxAgqFAi+99BLWrVuHd999F4sXL7bqvOPGjcP58+ct2ufbb79Fr169cOfOHYSHhwMA1Go13Nyq99BNnDgR69evx/r16/HUU09ZXJ9Wq8WoUaPw888/o1evXjh8+LBFQ5GN5586dSpWrlxp8fkr4qzL1tPr9Zj144VK6+qOjQ7H0r92cYoh+EREREREQmFLbrH7mMsZM2ZAo9Fg69atNQa5yMhIbN68GW3btsWMGTOwevVqfPHFF/jf//6Hn376yeqgm5ycjMuXL1u0T3GxYUIhhUJRaVtNQ5eNbb29va2q729/+xt+/vlntG/fHj///LPF99u+9957WL9+Pf73v/9ZdX6yD5FIhDmPR+FuQSl2X0gHAGw9fRvBPu6Y/lgHB1dHRERERERAPQTdX375BYMGDbpvkHN3d0dsbCx+/fVXAIZhwd27d8eRI0esPm9CQoLV+/r4+MDX1xd5eXm4ffs2OnbsWK3N7du3ARjulbXUu+++i2+++QbNmzfHnj17Kq2da662bdsCANLS0izel+xLIhbh3xO6YdI38Yi/cQ8A8PmBJAQr3PF8bCTuFpRi48kUxN24h8JSDbzd3dCnVQDG92iOIIW7g6snIiIiIhI+uwfd/Px8ZGVl1dkuOzsb+fnl65H6+/s7dOhn165dcejQIZw+fbpa0FWr1Th//jzc3d3Rvn17i467aNEiLF26FMHBwdizZw+aN29uVX05OTkArO9RJvuSSyX4alIPPPnlcfyZXgAAmLvzIvZczMDJ5HtQayvfEXD4ahb+vfcKxsU0x+yRHSGXShxRNhERERFRo2D3yaiioqJw4MABHDt2rNY2x48fx++//15pVuDbt28jODjY3uWYbfjw4QCALVu2VHtt165dUCqVpsmzzLVy5Uq899578PPzw//+9z+LQ3JFW7duBQDExMRYfQyyL18PKdZO6YUwPw/TtmNJ2dVCrpFaq8eG+BRM/iYeSrW2ocokIiIiImp07B503333XWg0GgwZMgTTpk3D77//jmvXriEpKQm///47pk2bhkceeQQ6nQ7vvvsuAEMv8KlTp9CnTx97l2O2F198ET4+Pvjxxx+xbds20/bMzEz83//9HwDgnXfeqbZfhw4d0KFDB9y5c6fS9i1btuCVV16Bt7c3fvnlF3Tr1q3OGr799lvTEOmKtm3bhhkzZgAAXn31VUsui+pZiI8ca6f0gkxi/miEuBv3MHfnxXqsioiIiIiocbP7rMsA8O9//xszZsyASqWqNhxZr9dDKpVi4cKF+Pvf/w7AMBPzpk2bMHjwYPTo0cPe5Zht69atGD9+PPR6PR566CEEBgZi7969yM3NxRtvvIEVK1ZU28d4fTdu3EBERAQAQzhu3rw5VCoVOnfujOjo6BrPN3r0aIwePdr0/OGHH8bhw4fRoUMHREREQC6X4+LFi/jzzz8BGD5EWLJkic3XyVmX7SuzQIm+i/ZDqzP/T0kqEeHYjMG8Z5eIiIiIqBZONesyALz11lsYNWoUvv76axw/fhypqakAgKZNm+LBBx/E888/j9atW5vaR0ZGYvr06fVRikXGjh2LQ4cOYf78+Thx4gRUKhUeeOABTJs2Dc8//7zZxykuLoZKpQIA/PHHH/jjjz9qbBcREVEp6E6dOhVBQUE4e/Ysjhw5gpKSEgQFBWHMmDF45ZVX8Mgjj9h0fVQ/Np28ZVHIBQzDmDcl3MK0gW3qqSr74eRaRERERORq6qVHl5wbe3Tt69mv43D4at0TsFXVNtgb/xzWAYHe7qYvmZvd7yawmlKtxdydF7Dl1O0a7zuWSkScXIuIiIiI6o3T9egSNSaFpRqr9ruaWYgpayovi+Ujd0Ogwh1B3u7l371l5WFYUf68PsOlUq3F5G/iEVe2fFJNjJNrXb9biLVTejHsEhEREZHTYNAlspG3u/3+jPKVGuQrNbh+t6jOtgp3t0rBtzwMlz8PKnvuKbOsxrk7L9w35FZknFxr0ZjOFp2DiIiIiKi+1EvQ1ev1WLduHX788UdcvXoVBQUFqGmEtEgkQlJSUn2UQNRgekc2sWrocpifHDI3CbIKSlFgRa9wQakGBaUa3MiqOxR7yiRl4VdWoWfYHUFVngd6y1Ci0mLLqeqzf9/PllO38M6Qdrxnl4iIiIicgt2DrkqlwvDhw7F///4awy1gCLi8NZiEYnzP5lix72qt6+fWRCoRYce0fqZgqFRrkVVYiqxCFbIKSsseG57fLSytsE2FvBK1xTUWq7RIuVeMlHvFdbZ1E4ugEfDkWgAn2CIiIiISOrsH3WXLlmHfvn0YOXIkli9fjnnz5uH777+HUqnE9evXsXHjRixduhSvvPIKFi9ebO/TEzW4YIUc42LCsSH+ltn7jIupHKjkUgnC/T0R7u9Z574qjQ7ZRaXIKlAhq7DUEIQLy59XDMn3ilQWX4+lIdfoq8PXkZRZiICyXuIAb3cEeMsQVPa9iZcM7m6OvY/3fhNsHb6ahX/vvcIJtoiIiIgEwO5Bd+PGjWjSpAnWr18PLy8viMWGWWSlUinat2+PWbNmYeDAgRg4cCDat2+PKVOm2LsEogY3e2QUrt8tMuu+1t6RTTB7ZEerzyVzE6Oprwea+nrU2Vat1eFekQp3K/QIZ1XpITYG43tFKliZcQEAucVqbDtz575tfORuZSFYZvoe4FU2dNpLhoCy4dMB3u7wkbtVW4fbFpxgi4iIiKjxsHvQvXbtGgYMGAAvLy8AMAVdrVYLicTwprF///6IjY3FZ599xqBLgiCXSrB2Si/M3XkRW07dcprleKQSMUJ85AjxkdfZVqvT416RCn/7LgFnUnLrpR7TZFtm3Fcsk4gNQdgYhk0huEKPsZcMQQp3NPGSQSq5/9JMnGCLiIiIqPGwe9CVSCTw8fExPTcG3rt37yI0NNS0PSwsDDt37rT36YkcRi6VYNGYznhnSDtsSriFE9ezXer+T4lYhCCFOwZ3CLYq6A5+IBhRzXyRVViK7MJSZJf1FmcXqqyabEul1SEtT4m0PKVZ7X09pKbeYOOkW4beYhncxGJsSuAEW0RERESNhd2DblhYGFJSUkzP27QxTE5z4sQJjB492rQ9MTER3t7e9j49kcMFKdwxbWAbl5mYqSprJ9f6cEyXWkOhUq1FdpHKFIDvln3PLhs2nV2kMg2jvlekgtaKMdR5JWrklaiRZMbSTOZwtQm2iIiIiKic3YNunz59sHXrVpSUlMDDwwPDhg3D22+/jTfffBPu7u4IDw/HypUrcenSJYwcOdLepyciG9ljcq2q5FIJwvw8EOZX933FOp0eeSVq0z3Ehom3KofhbONrhaUoUmnNrtNSK/ZewZ6LGQjz80AzPzma+nqgWdnjZn4eCPCS2fU+YltwJmkiIiKiciK9ndf5+fnnn/Hiiy/iyy+/xOOPPw4A+Pvf/46PP/7Y9IZQr9fDy8sLCQkJaN++vT1PT2aIiooCAFy4cMHBlZCzMmfiJqPekU0cOnFTiUpr6hXOrjDjtGnodFEpTt3MgVKts/u5ZW5iNPM1hN6mvh4IKwvATf0Mj5v6esDLvV6WKze530zSgGPuDSciIiKyB1tyi92Dbm1++OEH7NixAzk5OWjXrh3eeOMNtG3btiFOTVUw6JI5DAHKuSbXstazX8fh8NUsh5zb10Nq6AU2BmI/eVkPsQea+homCqtrIq3auNIHEkRERESWcomgS86DQZcscbeg1CUn16ro0/1XsfS3KxbvN75HOHpHBiA1twSpeUrD97Ivew2ZFosMw8WNw6ErhmLjl7+ntMYh0v/clmjREPOnerXgTNJERETkMhh0ySIMutTYZBYoEfvhfosn2Do2Y3CNYV6v1yNfqUFaniH03slVIs0YgssCcXqeEhpbFiauQC4Vo5lveS9wMz8PKOQSLPr1skUTd93vmoiIiIicjS25pd5uHktOTsahQ4eQlpaG0tLSGtuIRCL861//qq8SiIgA2H+CLZFIBF8PKXw9pOgQ6lNjG61Oj6zCUtwpC8BpuUrcyS0pC8eGMJxdpDKrFqVah+tZRWatP3w/nEmaiIiIGgu79+gqlUpMnToV69evB2Do+aj15CIRtNr6mzGVasYeXWqMnPF+VqVaa1grOLekLBArkZZXUhaIDWG42M6zSvvI3TCwQ3DlybN8DTNi+3i4Oc0s0gBnkiYiImrsnGro8ptvvolPPvkEwcHBmDhxIlq3bg0vL69a20+ePNmepyczMOhSY+VqE2zp9Yallow9wIYQbHi8788MFJXaNwR7ySSVZo02DZcum0Ar1FcOd7f6/+/CmaSJiIgIcLKgGxoaCp1Oh8TERISGhtrz0GQnDLrU2Alhgi1HzSQdpHCvNllWxecBXjKIxdb3CjtjzzsRERE5hlPdo1tYWIihQ4cy5BKR0wpSuGPawDYufa9q78gmVgXdoVEh6BDqUzZxVvn9wqUa89YZvltQirsFpTh3O6/G12USMZpW6A2uOJu0OWsLz915wayQCwBxN+5h7s6LLjWTNIdjExERNQy7B92oqChkZGTY+7BERFTB+J7NsWLfVYtnkp4/unO1QKXX63GvSGUIvXklFZZRKn+eWVAKc8b/qLQ63Mwuxs3s4lrbGNcWNgZfYyD2lEmwOeG22dcDAFtO3cI7Q9o5fUi833Dsw1ez8O+9Vzgcm4iIyI7sHnT/8Y9/YOLEiTh27BgefPBBex+eiIhg35mkRSIRArzdEeDtjs7hvjXuq9LokJGvrNYTbArEuSUoKNWYVUdeiRp5JWpcSss3u/baqLV6rI9LwZuPtLX5WPXFnOHYaq0eG+JTcP1uIYdjExER2UG9rKP78ccfY+HChXj99dfxyCOPICwsrNaZPFu0aGHv01MdeI8ukTA42/2s+Uo10spCb8WllIyP03Ltt7ZwVe5uYijkUvh4uBm+y93gI5dCIXcr+zJsU5i2Gdoa23i7u8FNIq6X2v65LdGiDySe6tXCpYZjExER1RenmowKAPbt24dXXnkFSUlJ9z+5SASNxrweALIfBl0i4XClmaQrri1cMRCnli2ndCktv96CsDm8ZBJTEPbxkNYYkH2qvVYepr1kbtUm4sosUCL2w/0WDzE/NmOw0w/HJiIiqm9ONRnVrl27MGbMGGg0GgQFBaFly5b3XV6IiIisJ5dKsGhMZ7wzpJ3TzyQtEYsQ4iNHiI8cqGEwj6NmkjYqUmlRpNIi3coR1SIRoHCvGIqlyC4qtSjkAoZhzJsSbrnMZGmcYIuIiJyR3Xt0Y2JikJiYiFWrVmHSpEm1Dlkmx2GPLhE5o0/3X8XS365YvN9LD7XC2OhwFCjVyC/RIF+pRoGy/HuB8XmJ8Xn5a4Vm3lfc0EJ83DEuJhxB3u4IVLgjyNsdQQrDY4W7m1P828r1jomIqL451dBlT09P9O3bF/v27bPnYcmOGHSJyBk5YpivVqdHYWnFEKxGfoVwXPF5vrJyO2NgVqrNW5rJXtzdxIbQawy/Zd+DFO4I8paVfZcjUCGDp8zuA7cAON/94UREJExONXQ5MDAQ3t7e9j4sEREJnD1nkjaXRCyCr4cUvh5Sq4+h0uhqDMv5SjW+OJCE61lFVh+7JqUaHW7nlOB2Tkmdbb1kkmph2PTY2FuscEegtwzubuYHUaGvd0xERK7P7kF33LhxWLduHfLz8+Hj42PvwxMRkYDNHhmF63eLzO4pnD2yYwNUdX8yNzGauMnQxEtW7bXMfKVVw7F7RTZBiyaeyCosxd0Cw1d2kQpaCyfrKlJpUZRdjOT7rGts5CN3qx6GqwTjIIU7dDo9tpwS5nrHREQkHHYfulxcXIzBgwfDy8sLX331FSIjI+15eLIDDl0mImfmSjNJ18Wew7F1Oj1yilW4W1iKrAIV7hYqcbegFFmFKlMYNgbje8Uq2H9NBdu8O7Q9J9giIiKLONU9uoMGDYJKpcLx48chkUgQERFR6zq6IpGI9/I6AIMuEbmCuwWlTj+TtDkcsY6uRqvDvSIVMgtKy4Kx4Xt5MC4PyXklapvOZS5fDzf0bxuEQG/DUOkAb3fT48Cyxx4yx35wwQm2yJH4AQtRdU4VdMVisfknF4mg1WrteXoyA4MuEVHDcfaJm0o1WmQVqgxhuMZgXD58ukhVv/9me8kkZQG4PAgHVXgcUBaKg7zd4eNh39mnnf3nRMLFD1hcCz+QaFhOFXRv3rxpUfuWLVva8/Q2O3bsGObPn48TJ05ApVKhY8eOmDZtGiZPnmzRcdasWYPnn3++1teffPJJ/PDDDzW+dunSJcyaNQsHDhxAYWEh2rRpgylTpuDNN9+06IOE2jDoEhE1LKEMxy5WaTDp63gk3MxxdCmQSkQI8CoPvxV7h6tua+Ilg5vk/v9+OqLnvaHwjbnz4gcsroMfSDiGU8267GzB1RLbt2/HX//6V+h0OgwYMACBgYHYt28fnnvuOZw7dw7Lly+3+Jhdu3ZFt27dqm3v3bt3je1PnDiBwYMHo7i4GL169UJERAQOHTqEd955B0ePHsXmzZudYv1EIiIyn1wqwaIxnfHOkHYuPRzbU+aGh9sHWRV0H+0Ygs5hvsguMtxnnF1oGDqdXViKnGLLh0+rtXqk5yuRnq80q72/p9QUfk09wwp3BHjJIJWIsSlBeBNs3e+N+eGrWfj33isu+8ZcKOFd6DOYC+XnZM4HEmqtHhviU3D9biE/kHASdu/RdVU5OTmIjIxEXl4etm7dijFjxgAAMjIy0K9fP1y7dg379+/HwIEDzTqesUd39uzZmDNnjln7aDQadOjQAUlJSVi+fDnefvttAEBhYSEeffRRHD9+HN988819e4rNwR5dIiKyVn2sd6wuu6c4q0L4NT6uui27UAWNhbNP15eJvVvghX6R8POUwUfuVmevcUMSak+hkHrVHLF2eEMR0s8JEPaID8C5P5Bwqh5dV7Vq1Srk5eVh1KhRppALACEhIViyZAnGjBmD5cuXmx10rbF9+3YkJSWha9euppALAN7e3vjvf/+L6OhoLF++3OagS0REZK36WO9YKhEjxEeOEB95ncfS6/XIK1FXCsLZpkBcfVtxPd5XvC4uBeviUkzPFe5u8PWUws/TsDazn4cMvqbH5dt9PWTlbTyl8JBK7D5aS4g9ha7Yq6bT6VFQts52Xoka+Uo18ksM62z/kphmUcgFDNf33vZEjOwaBh+5GxRyKXw9DN995FLIpWKHj/xzxZ/T/WQWKAW7pJqQR30ADLomu3btAmBYB7iq4cOHQy6XY+/evVAqlZDL6/6H2N41dO/eHa1atcL58+eRnJyMiIiIeqmBiIioLo5c71gkEsHPUwY/TxnaBNfdvlilQXahcbh0WSAuW5fYOIT6TEouSjU6m2srKNWgoFSD2zklFu0nk4jhUxZ6/TzKwrBnWVA2bveUGtp4SOHnadheWy+yUN+YOyK86/V6FJZqkK80hNX8ErXpcdXgWr6trK1SjcJSjd2X+tpzMRN7LmbW+JqbWAQfDykUcjf4yMu/+1QIwwq5W7U2vmXPFXIpJGLbgrIQPmTR6/VQaXUo1eiw+kiyVR9IbEq45dRLqgntA4maMOiWSUxMBABER0dXe00mk6FTp05ISEjA5cuX0bVrV7OPe+rUKbz77rvIz89HaGgoBg0ahIceeqjGtufOnau1BuP269ev49y5cwy6RETkMHKpBGun9HKJCbY8ZW7wbOKG5k08a23z7NdxOHw1y+JjS8Ui6ABobRxKrdLqTD3SllLI3ar1IN+6V2zVG/N1cTfx6sNtIBGLIBbB4T2DFVkb3t9+pC285W6Vwmi+siyQlpQH0vwSTXlwrRJenWSkvFk0Oj3uFalwr0hl9TG8ZJLqYbnS84rBubxX2UcuhVKts8uHLFqdHiqNDqUaLUo1OpSqKzzWaMueV9xW9qWu+Lx6O5UF7Wy17LfLWH00GV7uEnhIJfCUSeApc4OHzPhYAg+pm+F7hW2esorbyh5X2N9evfZC+ECiLgy6APLz85GbmwsACA8Pr7FNeHg4EhISkJKSYlHQ3bVrl6mnFgDmzZuHhx56CBs3bkRISEiltikpKXXWULFdXYxj2qtKSkpC69atzToGERFRTYQywRZg6HW2Jui+NaQdXn24NQpLDSEpt9gQoIyPc0sM6xTnFVd8rkFesQq5JWq7DKsuUGpQoNTgFizrRa7Jv/dexb/3XjU9F4kAiUgEsVgEiUhkCsASsfFx1e+o0rbsu1gESdl+xm3Gx+Iq26vvb3j9Ymq+VeG9z6J9ThNUFe7lgdHXQ4qrmYVWBVI/DylaBngiX6lBQVkoV2ltD2ZGRSotilRapOXZ7ZD3pdbqMWjpAUjdxChVa6HS6iz+WTsjnR5lH2DZ97giESoF34pB2RicK4dnN3hIJYbALXODp1QClUYryAn4qmLQhWGyJyNPz5o/8fXy8qrW9n6aNm2KOXPmYNSoUWjVqhVKSkoQHx+P//u//8PBgwcxfPhwxMXFQSIp/5TbeGx71UBERFTfghTumDawjVMP0avL+J7NsWLfVYsnBRrfozlEIhEUZb1c4f6WnVel0ZUFY1V5OC5WI7csLBsDcfUQrWqQ8KbXAxq9Hk6TFK1gz9I9ZZKyIeOGHk3Dd0Ovpq+H8XHl14ztveVu1YYEf7r/Kpb+dsXiOqYOaFXt702p1iJfqUZB2bDpAqXG1DNdUNZLXfW1is8LSjU2/bexVUGpBrB8QEOjpNcDxSpt2Qdl1vfcW8oVhmNXJZigO27cOJw/f96ifb799lv06tUL5kw8benk1EOHDsXQoUNNz318fDBy5EgMHDgQMTExOHXqFDZu3Iinn3662r61DUewtIbaZierraeXiIioMaqPCbbMIXMTI0jhbvFxdDo9ClUa5BVX7z3OLVZjfVwK7uTa3sMrNHKpuFI4NQZTQ0itGFwNz8tDraEXVmrnWbVt+YClKrlUArlUgmCFdbVodWX3ItcQhGsNyVXa1HcvrLub2PAllcDdTQyZmxjubpJq292N26UVHpva191OLq28z+qjyVix72rdBVYxuW9LPN6tGYpKDaG0RK0xfC8LqYbHhm3FauN2DUrKetSNz4tVWrvMIWAPJ65nM+g6QnJyMi5fvmzRPsXFxQAAhUJRaZuPj0+tbb29vW2o0rD/G2+8gddeew3/+9//KgVdb29v5OTkoKio6L712loDERERVebICbYsJRaLDAFMLkX1yGP4YNyansJXHm6NyX0joNXrodPpodXpodMbvrQ6mJ5rdfpKbQyPYXityr5aHWpoq4dOjxraVtwfFdrq8dO5VIsn+QKAmJb++OKZGCjkbk43kY6jPmCpiUQsKpsRXGrV/nq9HqUandlLWlXVJcwXc0dFVQ+eZY9lEsfNJj2xTwt8duCaxR9IvDaord1+VlqdHiXq8iBcHpTLtqm1ZYG67HV15aBs2kdtCNfJWUVQWfHBRKGDe/4tJZigm5CQYPW+Pj4+8PX1RV5eHm7fvo2OHav/43X7tmEce4sWLaw+j1Hbtm0BAGlpaZW2t2jRAjk5Obh9+za6dOlSrzUQERFROVeaYKsu1vYUTomNdNr77zxlEqvC+6AOwU57TYBrfcByPyKRCHKpBP3bBloVdId2CkX3FhaO/W8gzvCBhEQsgre7G7zd7RPdrJ2Az17nbyjOs7K5gxknmDp9+nS119RqNc6fPw93d3e0b9/e5nPl5OQAqN4ze78aKm6vKQQTERGRbYwTbB2bMRjvDm2P/m0D0b2FH/q3DcS7Q9vj2IzBWDSms1OHXKD8jbkl6qun0F7G92wOqcSyHr3ahvk6E+MHLE/1alHr9UklIjzVq4VLLO8i1J/T7JFR6B3ZxKy2zvyBhJG511JVn1YBdq6kfjHolhk+fDgAYMuWLdVe27VrF5RKJQYPHmyXNXS3bt0KAIiJiTG7hjNnzuD69evo2LEjIiMjba6BiIiIamacYOu7F3pj+6ux+O6F3pg2sI1TB8GqhPbGXIjh3UgoH7AAwv058QMJ1/hAoiqR3tIZjgTq3r17iIyMRH5+PrZu3YoxY8YAADIzMxEbG4tr165h7969GDx4cKX9OnToAADYt28fwsLCTNv/85//YMqUKZV6bdVqNRYuXIg5c+bAw8MDV69erbSPWq1G+/btcePGDSxfvhxvv/02AKCoqAhDhgzB8ePHsWrVKrzwwgs2XatxMqraJqsiIiIi16dUawUxFNtIqdaafQ9o78gmLhE4hEjoP6e7BaUuv6QaAPxzW6JFw7Gf6tXCIevo2pJbGHQr2Lp1K8aPHw+9Xo+HHnoIgYGB2Lt3L3Jzc/HGG29gxYoV1fYx3hh/48YNREREVNru4eGBjh07omXLllAqlTh79ixSU1Mhl8uxbt06U5iu6NixY3jkkUdQUlKC3r17o2XLljh8+DDS0tIwevRobN26FWKxbR3xDLpERESNh1DemAPCC+9CxZ+T83OVDyQYdO3o6NGjmD9/Pk6cOAGVSoUHHngA06ZNw/PPP19j+9qC7uzZs3H8+HH8+eefyMrKgl6vR3h4OAYPHoy33377vvf6XrhwAbNnz8aBAwdQWFiI1q1bY8qUKXjrrbcqrbtrLQZdIiIicmVCCu9Cxp+Tc3OFDyQYdMkiDLpERERERAQ49wcSDLpkEYVCAbVajdatWzu6FCIiIiIioholJSVBKpWioKDA4n0563Ij5OXlBanUugXB60tSUhKSkpIcXYZdCe2ahHY9AK/JVfCaXAOvyfkJ7XoAXpOr4DW5Bme8JqlUCi8vL6v2ZY8uOQUhDqcW2jUJ7XoAXpOr4DW5Bl6T8xPa9QC8JlfBa3INQrsm9ugSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaBw1mUiIiIiIiISFPboEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaAw6BIREREREZGgMOgSERERERGRoDDoEhERERERkaC4OboAanihoaEoKipCixYtHF0KERERERFRjVJSUuDl5YX09HSL92WPbiNUVFQEtVrt6DKIiIiIiIhqpVarUVRUZNW+7NFthIw9uRcuXHBwJURERERERDWLioqyel/26BIREREREZGgsEeXiIiIiIjs7m5BKTaeTEHcjXsoLNXA290NfVoFYHyP5ghSuDu6PCoj1J+TSK/X6x1dBDUs4xAADl0mIiIiVyTUN+ZCoVRrMXfnBWw5dRtqbfWoIZWIMC6mOWaP7Ai5VOKACglwjZ+TLbmFQbcRYtAlIiJqPIQUCl3hjXljp1RrMfmbeMTduFdn296RTbB2Si/+rBzAVX5ODLpkEQZdIiIi4RNaKHSVN+aN3T+3JWJD/C2z2z/VqwUWjelcjxVRTVzl52RLbuFkVEREREQCYwyFG+Jv1RhyAUCt1WNDfAomfxMPpVrbwBVabu7OC2aFXACIu3EPc3derOeKqKrMAiW2nLpt0T5bTt3C3YLSeqrI/u4WlOLT/Vfx7NdxeOKzo3j26zj89/drLnUNjeHnBHAyKiIiIiLBsSYUOnOvmrVvzN8Z0s7lhme7sk0na/9gpTZqrR6bEm5h2sA29VSVfdxvhMThq1n4994rTjdCokSlxb1iFXKKVLhXpEJO2eP/XcgQ7M+pIgZdIiIiIgGpj1Co0+mh1euh1emhM37Xodq2Sq/r9dDqUPl1vd5wLJ0eOj1q2V62X4Vtv11MbxRvzF1NiUqL1LwSpOaW4E5OCTaeNH8obEVfHkzC6Zs58PGQwkfuBl8PqeGxhxQ+cil8PMq2yQ3bFO5uEItFdr6a2pkzbN44QuL63cJ6GTavVGuRU1wWWIvUhtBqeq7CvWK1KdDmFqtwr1gFpVpn1xpOXM92qb8nBl0iIiIiAbG2V63/kv2QSsSmUFsxyLqqVYev49a9YoT4yBHiI0eorzuCFXKE+srRxFPWoGGpLs42aZher0d2kcoUYu/kliA1V4k7ucVIzVUiNbcE2UUqu5wrX6nBvj8zzW4vEgEKdzf4eEgrBODKYdgQlt3gI5eWB+eyx3KpGCKR+T97e4+QKNVokVusrhBSVcipEFRNAba4PNQWqxx/e0FhqcbRJViEQZeIiIjIBRUo1biZXYyb2cVIzi7CzewiJGcX42xKjlXHU6p1du8BcrScYjV+qKWXUSoRIVghR7CPO0LKwm+wjztCy0Kx4csdCrm0Xmt01JDYUo0W6XlK3CkLslVD7J3cEpRqnPP3Qa83hON8pQa3c0os3l8qEZlCscIUlmsOzjqdHpsSLBshselkCvw83FCq0VcOrWXBtaEDo0LuBn9PGfy9ZGjiKcWF1HxkWnG/rbe7a0VH16qWiIiIqJ45U89abrGqQpAt/34zuwhZhfbpTbM3kQiQiEQQi0WQiESQiEUQiwCJ2PjY8CURiyAW19TW+JoIkrL9LqcXIF9p33Cg1uoNIS/3/kHJSyapFHxDfOWmYBzi444QHzmCFXLI3Cyf47W+hsTq9XrklagrhNgSpOYpK/TMllgVdGoiEYsQ6iNHMz85CpUaXEovsPgYf+kUil6RTZBXokZ+iQb5SnXZY8P3AqUG+SVqFNgpIKq1emQVqurtb0irBz4/eL1eju0lkxgCq5cM/p4Vv0vh51llu5cUfh6yar+bn+6/iqW/XbH43H1aBdjrMhoElxdqhLi8EBERUXWOWI7HODz0ZnYRkrOKTb2yxu95JWq7nMcc3Zr7Yf7oTpUCqaQsgIrFqPC4wveKr5e1t2RIqLmsfWM+sH0Q2oUokJGvRHq+Epn5pUjPV9bLMNAALxmCfeQILQu/5gyXtnaJF7VWh4x8Q3A13COrxG1joC0L7/a6Ri+ZBGH+Hgjz80Czsq9w//LHIQp3uEkMQSqzQInYD/dbNHReKhHh2IzBZn2IpNHqUFiqQX6JxhCEKwTi8sfVg3J+WVB2th5qD6nEFEgrhlZjcDX0wMpMwdbPUwp3N9v/31PfPyd7siW3sEeXiIiIGr36nGxGr9cjs6AUyVlFNfbO2jKMUS4Vo2UTL7QM8EREoOH72ZRcbLZwMioAGNIxBJ3CfK2upT6N79kcK/ZdtfiN+ZJxXau9Mdfr9Sgs1SAjX4mM/FKk5ymRUaBERl7Z83wlMvOVyCwohcaC+5Ozi1TILlLhUtr9azIOl/b3kOLAlbtmHx8AfohPwb5LGcgqLIU9bp0WiYBghbspxIb5eSDM3wPNfMue+3vAR+5m9ocXwQo5xsWEWxTex8WYP1LCTSKGn6cMfp4ys49fkVKtRb5SXSko55uCsqZKODa0u5xeAJXW8oDs7ynF412blfeymkKr1BRoHTU7c33/nJwFgy4RERE1erZONqPT6ZGWr8TNrIo9skWme2hLbFin1ksmMYXYlgFeiDB990Kwwr3ahEpDOoZgx9k7FofC8T2aW11jfbPnG3ORSASFXAqFXIo2wYpa99fpDL3thkBs6BHOyC81BOICJdLzDGH4ngUTMpk7XLo2esCiIcdyqbhyiK3SKxviY92Q6/uZPTIK1+8WmfX31DuyCWaP7GjX89+PXCqBXCrBfX7s1Tz7dRwOX82y+Fydwnwxd1Qni/drKM78c7IXBl0iIiJq1KxZjmfjyRSIyvZNzi5Gyr1iqGwYFukjd0NkoFflIBto+B7gJbNoOLBQe2sa+o25WCxCkMIdQQr3+/Z0l2q0yMwvLe8hLusRTi8LyMZeY1s+7KhNoLesUnit2jPr7ymtl6Hk9yOXSrB2Si/M3XkRW07VPAN4fdwGUF96RzaxKug6+/2sQvs51YT36DZCvEeXiIionLX3f1oqwEtmGGIc4FUpyEYEeFo9FLM25gzFNuod2aRe1v2sD4b7qF3vjbler0dBqcYQgPMMoXjpb5eRlqe0+Fhtgrzx1eQeaOord6prrMndglJsSriFE9ezHT6xm7Vc6X5Waznzz8mW3MKg2wgx6BIRUWOn0+mRmleCqxmFmLfrAm5kFdvluMEK97IgW37PbESAF1oEeMKnnpepqcpVQ6E5nPmNubmsHRLbv20gvnuhdz1URLWxdtIwsh0noyIiIiKqgVanx+2cYlzNKMTVzEJczSzAtcxCXMsstHlW2gAvGaYOaGUaatwywBOeMud5ayWXSrBoTGe8M6Sdy4fCqoIU7pg2sA2mDWzj6FKsJtQhsULUGO5nFaJG0aOr1WqhVqshl8sdXYpTYI8uEREJjUarQ8q9YkOYzSgo+16IpLuF9bakCHvWyBaNYUiskAh5hIQzY4/uffz00094+umnUVpaitdffx3Lly/HkSNHsGvXLoSGhmLy5Mnw9/d3dJlEREQu6W5BKTaeTEHcjXsN0luo0uhwM7vIFGSNPbTX7xZZtQRImJ8HpBIRkrMtH7rMnjWyhVAnDRMqIY+QECrB9+h269YNTZo0wfDhw/H5559j0qRJmD9/Ptzd3VFUVISWLVsiISEBAQHW/2OlVCqxaNEibNiwASkpKWjSpAkee+wxzJs3D+Hh4VYf9+rVq+jSpQuUSiWGDh2K3bt3W32sitijS0REtjL0blzAllO366V3o1SjxY2sItOQ42uZBbiSUYjkrCKL1jY1at7EA22DFWgb7I22IYbvrYO94e3uxp41chihThpGZC/s0b2Pq1evIi4uDp06dcJDDz2EPn364J///Cc++OADpKamYtSoUVi2bBkWLlxo1fGVSiUGDx6MY8eOoWnTphg1ahSSk5OxevVq7Nq1C8ePH0fr1q2tOvZLL72E0lLz10ojIiJqCOa8OVdr9dgQn4Lrdwvv++Zcqdaa7pm9mlmAqxmGx8nZRbA0z4pFQMsAL7QJ9i4LtN5oG6xAqyCv+947y541cpTGsMQLkaMIPuiWlJQgODgYABATEwOxWIwnn3wSANCsWTPMnz8ff//7360OugsXLsSxY8fQt29f/Pbbb/D29gYALF++HH//+98xZcoUHDx40OLjfv311/j999/xt7/9DStXrrSqNiIiovowd+cFs3qgACDuxj3M3XkR7w9/AEl3Cyv10F7NLETKvWJYOrZMIhYhIsDT0EMbUt5DGxnoZXUQ4GQz5CgcEktUPwQ/dFksFiM9Pd0UdhUKBc6dO4dWrVoBAG7duoWoqCjk5+dbfGy1Wo3g4GDk5ubi9OnT6N69e6XXu3btisTERCQkJCAmJsbs42ZmZqJDhw6IiYnBzJkzMXDgQA5dJiIip2DNMF9rSSUitAr0RpuQsh7asmAbEeAFmZvY7ufjZDNERM6FQ5frMGfOHAwYMAA9e/aESCSCSCQyvSaTyVBUVGTVcY8cOYLc3Fy0bt26WsgFgHHjxiExMRE7d+60KOi+8cYbKCkpweeff47bt29bVRsREVF92HSy5hBoC5mbGK2DjGG2rIc2xBstmnhCKrF/oK0Ne9aIiIRD8EF34sSJ+P333/Hll18CAPR6PZ577jn07dsXPXr0QFhYmNXHPnfuHAAgOjq6xteN243tzPHLL79g48aNmDdvHtq0acOgS0REDqfR6pB0twgXUvOwPj7F6uN4SCWm+2fblN0/2zbYG82beEIiFtV9gAYihDVaiYgaO8EH3e+++w4AUFBQgISEBMTHx+PkyZPYsGEDlixZAgCVengtkZJi+Me+tpmVjduN7epSVFSEV199Fe3bt8f06dOtqqkiY1d/VUlJSVZPkEVERMJWqtHiakYhzt/Jw/nUPJy/k49Lafk2r0Ub1cwHO1/rB7ETBVoiIhIuwQddI4VCgYEDB2LgwIGmbZmZmYiPj0dCQoJVxywsLAQAeHp61vi6l5dXpXZ1ef/993Hz5k3s378fMpnMqpqIiIjMVazS4FJaAS6k5hmC7Z18XM0sqJf7b5t4yRhyiRoRvV4PgU8FRBaoevtoQxBU0D1+/Di6dOliCph1CQ4OxogRIzBixAirzmf8463th2bJH3dCQgI++eQTTJo0qVIYt0VtN23X1tNLRETClVeixsXU/PJQm5qP63cLzV7CRyIWoW2wNyQiES6kWT6BY59W1q9XT0SuQavVIjs7GwUFBVCpVI4uh5yMTCaDQqFAQEAAJJL6n9BPUEE3NjYWYrEYrVu3Rrdu3Sp9NW3a1NTub3/7G2JiYvDSSy/ZdD6FQgEAtU5mVVxcDACmJYdqo9FoMHXqVPj6+mLp0qU21URERM7rbkEpNp5MQdyNe/U6yVFWYSkupObj/J28smCbj5R7xWbvL3MTo0OoAlHNfNEpzAedmvmifagCcqnEqlmXpRIRxvdobs2lEJGL0Gq1SElJgVKpdHQp5KRUKhWys7NRVFSEFi1a1HvYFVTQfeqpp3Du3DlcvnwZV69exebNm029rYGBgejWrRtat26N7du3Y+fOnTYH3RYtWgBArRNGGbcb29Xm9u3bOHv2LEJDQ/HXv/610mu5ubkAgPj4eDz88MPw9vbGrl27bKqbiIgalmHZmgvYcup2tYB4+GoW/r33ilXL1uj1eqTnK3H+TnmovZCaj7Q8899oesok6NjUB53CfBHVzPC9TbB3rbMdByvkGBcTjg3xt8w+x7gYzlZMJHTZ2dlQKpWQSCQICQmBl5cXxOKGmzWdnJtOp0NRUREyMjKgVCqRnZ1tWv61vggq6K5btw4AUFpaij/++ANnz541fZ08eRJ79uzB3r17odfr0by57Z8sd+3aFQBw+vTpGl83bu/SpYtZx0tPT0d6enqNr+Xk5ODgwYPw9fW1olIiInIUpVqLyd/EI+7GvVrbqLV6bIhPwfW7hVg7pVeNYVev1yPlXrEh1JYNP76Ymo/sIvOHB/rI3dApzLdSqI0I8LJ4xuPZI6Nw/W7Rfa/JqHdkE8we2dGi4xOR6ykoKAAAhISE8P0qVSMWi02/F6mpqSgoKGDQtYa7uzt69OiBHj16mLbl5eVh9erVmDlzJjp37oxvv/3W5vPExsbC19cXSUlJOHPmTLW1dLds2QIAdd4DHBERUev9vAcOHMDAgQMxdOhQ7N692+aaiYioYc3decGsQAgAcTfuYe7Oi5g/uhOu3y00zXps7KktUGrMPm+gt8wQapuVh9pwfw+7TAYil0qwdkovzN15EVtO1byurlQisqqXmohcj16vN92Ta+5cOdQ4GX8/VCoV9Hp9vU5QJcigWxNfX1+89dZbaN26NUaPHo0//vgD7dq1s+mYMpkMr732GhYsWIDXXnsNv/32m+mHt3z5ciQmJqJfv37o2bOnaZ9PP/0Un376KZ544gksWrTIpvMTEZFzyyxQYsspy9ZD/yE+BdtP34bSguV8wvw8ENXMp/ye2jBfBCvc6/UNhFwqwaIxnfHOkHbYlHALJ65n1+t9x0TkvCp22HC4Mt1Pxd8PBl07GzlyJNq3b4+FCxdi7NixNh/v/fffx969e3Hs2DG0bdsW/fv3x82bNxEXF4eAgACsXr26UvusrCxcvnwZaWlpNp+biIic26aTNfd23o8euG/IjQz0QsdmhgmiOoUZwm0TL8ctSRekcMe0gW0wbWAbh9VARERUVaMLugDQqlUr7N+/3y7Hksvl+P3337Fo0SKsX78eO3bsgL+/PyZPnowPPvjALvcCExE1Rg01Q7E96PV63C0sxZ2cEtzJLUFqbgnu5JRgZ2Kq1ccUi4A2wd6GocdhvujUzAcdm/lAIZfasXIiIiJhEukFtJLzm2++ie7du6N79+6IioqCm1vNOf6BBx5AaWkprl+/3sAVOgfjOrq1rbNLRORI95uhGHDMvZ9qrQ7peUrcrhJk7+SWf6ksGGpcl3Yh3vhxWj94yHhvKxE5P51Oh8uXLwMA2rdvz+HLVCtLf1dsyS2C6tH95JNPTOO8pVIpoqKiTMG3U6dOcHd3x/fff48rV67g888/d3C1RERUlb1mKLZUsUqDOzkluF01xJZ9z8hXQteAHwuH+MgZcomIiGwgqKC7bds2nDlzptpX1Zuc27Rpg+zsbOzevRvR0dH1PrU1ERGZx5oZiheN6Xzfdnq9HjnF6rLQWow7ucoKjw1hNqdYbY/yoZC7IczPw/Dl74HkrCIcuppl8XH6tAqwSz1ERESNlaCC7ujRozF69GjT86ysrGqh99q1a7h69Sref/99U7umTZsiJiYGP/74owOqJiIiwLoZirecuoW3BreFVq+v1ANb8XFqbgmKVVq71BikcK8UZCs99veAT5X7ZzMLlIj9cL9FE1JJJSKM78H5HYiIiGwhqKBbVWBgIIYMGYIhQ4aYthUVFeHcuXOVwu+FCxewa9cuB1ZKRETWzFCs1urR98N9dhlW7CYWoamfHGF+Hmjm54FwU5j1RJi/B5r6yi0eJh2skGNcTDg2xN8ye59xMc432RYREdWv8ePHY/PmzYiLi0OvXr0cXY4gCDro1sTLywsPPvggHnzwQdM2jUbDiZmIiBzM3CHLVZkbcj1lElPva7Oynthw//Ie2WCFHBKx/dfzmz0yCtfvFpl1fb0jm2D2yI52r4GIiJzb6dOnIZFI0Lnz/W/HIfM1uqBbEzc3N3Tt2tXRZRARNTpqrQ4XU/NxOiUHf9zJs+lYTbxkZb2xclMvbMUw6+cprdeF6Wsjl0qwdkovzN15EVtO1dxr7YiZpImIXJUrLT9njtzcXCQlJSEqKgoeHh6OLkcwGHSJiKjBZBWW4vTNHJxOycXpmzlIvJMLpdq2ZXliWvrhuxd6w1PmvP+kyaUSLBrTGe8MaYdNCbdw4nq2IN6cERE1pPstP3f4ahb+vfeKS35oePr0aQBA9+7dHVyJsDjvuwIiInJpWp0el9MLcColB2du5uBUSg5uZhfb/TyDOoQ4dcitKEjhjmkD22DawDaOLoWIyKU4avk5e9q9ezeWLl2K+Ph4SKVSjBw5Eh9//DFOnToFAIiOjnZwhcLiGu8MiIjI6eUWq3AmJRenU3JwOiUHZ1NyUWTGbMcyiRidwnzQIVSBjQm3obVgZinOUExE1DjUx/JzDWn27NmYN28e3N3dMXDgQEilUmzfvh3nz59HREQEAPN7dK9cuYIXX3wRWVlZkEgkePnllzFt2rR6rN6566gNgy4REVlMp9Mj6W4hTt00hNpTN3OQdLfIrH2DFe6IaemP6Bb+iG7pj05hPnB3M3zqrgc4QzEREVVi7fJz7wxp5xT/Rnz//feYN28eYmJisGPHDoSHhwMAbty4gR49epiGLnfr1s2s47m7u+Ozzz5Dp06dUFhYiJiYGDz88MOIioqqr0tw6jpqw6BLRCQA9T0xR4FSjXO38kyh9kxKDvKVmjr3k4hF6NjUBzEt/dG9hR9iWvojzM+j1kmhOEMxEZHw6PV6s/7NqM23x25atfzct8eT8WL/Vlaf10fuZvMkhnl5eXjjjTfg4+ODnTt3omnTpqbXIiMjMXXqVCxevBiRkZHw8/Mz65gtW7Y0Pfb29ka7du2QkpLS4AHTWeqoDYMuEZELq4+JOfR6PW5mF1fqrb2SUWDWMj5NvGRlPbV+iG7hjy7hvhbdP8sZiomIhCdfqUHXub81+Hk/2X8Nn+y/ZvX+52Y/Cl8PqU01fPnll8jJycHMmTMrhVyjNm0MczZYe39uUlISTp06hT59+thUp62cpY6KBBl0i4uLkZCQgLS0NJSWltbabtKkSQ1YFRGRfdlrYo4SlRbnbpfdW3vT8P1ekarO84tFQLsQhWkYckxLf7QM8LT502/OUExEREKxa9cuAMCECRNqfL2wsBCAdTMu5+XlYezYsfj000/h7+9vfZE2cpY6qhJc0J01axY+/vhjFBfXPrOnXq+HSCRi0CUil2bNxBwLn+iEO7klZcOPc3HqZg4upeVDY0Z3rY/cDd3LAm10C390be4Lhdy2T7rvhzMUExGRqzt79izc3d1rHc6bkJAAwPKgW1paitGjR2Py5MkYM2aMzXVay1nqqImggu6SJUswf/58uLm5YcSIEWjXrh28vb0dXRYRkd1ZMzHHD/Ep2HMhHVlm9NYCQJtgb0SX3Vcb3cIfrYO8IRbb1ltLRESNj4/cDedmP2r1/l8duo5Pf7d8CPLrg9rYfI+uLdRqNQoKCuDr61vjaKfMzExs27YNQOWgu2fPHjz66KM4cuQIYmNjAQA//fQTnnzySWzevBnDhg3D008/jd69e+Ptt9+2qcb7eeCBBzBixAh89NFHpm0qlQqdOnXCxIkT8a9//atB6rCWoILuV199BQ8PDxw+fJjrUBGRoG06WfP9q/ejB2oNuV4yCbq18DPNhNy9uR/8PGV2qJSIiBo7kUhk072ukx5siS8PJVn0755UIsKkvhE232NrC6lUCn9/f+Tk5CAjIwMhISGVXl+6dClKSkoQEhJS6f7dIUOGYOjQofjnP/+JQ4cO4eDBg3jqqaewatUqjBgxAj///DO2b9+OLl26YPfu3QCAefPm4fHHH7dr/bGxsThx4kS1mjUaDaZPn45ff/21QeqwlqCC7q1btzBo0CCGXCISPHOHLNemZYAnYlr4o3tLf8S08Ef7UAUk7K0lIiInFKyQY1xMuEsuPxcdHY19+/Zh1qxZ+OKLL0w9u19//TWWLVtmalPVRx99hG7dumHhwoVYvHgxlixZgokTJwIAhg8fDp1OZ9b57927h3v37v+ewcfHB8HBwdW2x8bGYv369dBoNHBzc8OtW7ewYMECrF+/HnK53KI6HEFQQTc0NNTRJRAR1Yu8EjXO38nDudu5+ON2Hk5cz7bqOK0CvbDp5b4I9Hb8P/5ERETmctXl52bNmoX9+/dj5cqVOHr0KKKionD+/HlcvHgRvXv3RlxcXI3353bu3BkTJkzAzJkzMW/ePEybNs2q8//nP//B3Llz79tm8uTJWLNmTbXtsbGxKCkpQWJiIqKjo/H2229jwIABGDVqlFW1NDRBBd0JEyZg1apVyMnJcaoZv4iILFGs0uD8nXwk3s5F4u08/HEnDzeyiuxy7DB/D4ZcIiJyOa66/NyAAQOwefNmzJ07F3/++SdSU1MRHR2NDz/8EIcOHao16J47dw6//PILpFIpgoKCrD7/rFmz8P7779+3jVgsrnF7u3btEBgYiBMnTiArKws7d+7E+fPnra6loYn0er1lN3k5MaVSiUcffRQSiQSrVq1C69atHV2SUzLO+nbhwgUHV0JESrUWf6YXmEJt4u1cXMssNGvNWmu8O7Q9ZzEmIiK70ul0uHz5MgCgffv2tQYne7lbUCro5eeuXbuGfv364YUXXoCbmxu+/PJLXLt2zSGT7I4aNQqenp44c+YMnnjiCSxatMim41n6u2JLbhFUj+6wYcOg0+lw9OhRdOjQAREREQgPD69xljORSIR9+/Y5oEoiaqzUWh2uZBSUBdo8/HEnF3+mFZi1tA8A+HpI0SXcF13CfdEywAvvbfvD7H0Bwyfd43s0t7Z8IiIipyDk5efu3LmDIUOGYPTo0ViwYAEKCgrw2Wef4aOPPqpzCHJ9iI2NxYwZMxAWFlZnz7CzEVTQPXDggOmxVqtFUlISkpKSamxbU/glosbhbkEpNp5MQdyNe/X2SbBWp8f1u4WmXtrEO3m4mJqPUo15kzZ4ySToFOaLrs390DnMF13D/dC8iUel/3edSclxyYk5iIiIqLrs7Gw8+uij6NGjBz777DMAgEKhwMyZM/H+++/j5ZdfrjQ7c0OIjo6GXq/HsmXL4OXl1aDntpWghi7fvHnTovYtW7asp0qcG4cuU2OlVGsxd+cFbDl126739uj1etzMLkbinTwk3jKE2gt38lCk0pq1v7ubGFHNfNAl3M/UY9sqsO41a5VqLSZ/E2/2xBxrp/RymnuWiIhIOBp66DI1nGeffRZ37tzB/v377XI8Dl22UmMNrkRUN3NCoVqrx4b4FFy/W1hrKNTr9UjLU1a4p9bQY5uv1JhVh1QiQodQH3QO90WXMF90CfdD2xBvSCWWvylw1Yk5iIiIyHlptVpkZ2dj69at2L59O86cOePokqwiqKBLRFSbuTsvmL32bNyNe5i78yIWjemMuwWl+ONOLs7dMsx+nHg7F1mFKrOOIxYBbYMV6Bzui67hvugc7ocOoQq7Bk65VIJFYzrjnSHtBD0xBxERETWMgwcP4pFHHkGrVq2wefNmtG3b1tElWUWwQTc+Ph6HDx9GamoqRCIRmjZtiv79+6NXr16OLo2IGlhmgRJbTt22aJ8f4lOw/1IGMgpKzd6nVaCXoae2bAhyx6Y+8HJvmP/NCnliDiIiImo4gwYNgk5n3pwizkxwQffKlSuYNGkSTp48CcAwzBAon3yqV69e+Pbbb132kwkistymkzUP670fPXDfkBvm54GuzX3ROcwPXcN9ERXmC18PqY2VEhEREZE9CCropqWl4aGHHkJGRgaaNWuGv/71r4iIiABgmKhq8+bNiIuLw8MPP4yEhAS7zVqmVCqxaNEibNiwASkpKWjSpAkee+wxzJs3D+Hh4WYdQ6PRYP78+Th58iQuXbqEu3fvQq1Wo3nz5nj00Ucxffp0tGjRwi71EjUmucUq/HYxw6ZjBCnc0bWsp9Z4b22AN4cDExERETkrQc26PG3aNHz++ed4++23sWjRIshkskqvq9Vq/POf/8Ty5csxbdo0fPLJJzafU6lUYvDgwTh27JhpeHRycjLi4+MRFBSE48ePo3Xr1nUep7CwEAqFAt7e3ujSpQuaNWsGlUqFs2fPIiUlBb6+vti/fz+io6NtrpmzLpMQFZVqcDWzEFfSC3A5owBXyr4y8s0felxVq0AvrJ/aB6G+cjtWSkREJCycdZnM1ZCzLgsq6EZGRkIul+PSpUu1ttHr9ejYsSOUSiVu3Lhh8zlnzZqFDz74AH379sVvv/0Gb29vAMDy5cvx97//HQMGDMDBgwfrPI5Go0FcXBx69+4NN7fyjnatVot//etfWLRoEXr37o0TJ07YXDODLrkypVqLpLuFZUG2PNjezimx+7n6tw3Edy/0tvtxiYiIhIRBl8zFoGsluVyOsWPHYt26dfdtN3HiRGzduhVKpdKm86nVagQHByM3NxenT59G9+7dK73etWtXJCYmIiEhATExMVafR6PRQKFQQKlUorCw0ObFmhl0yRJ3C0qx8WQK4m7ca9DZfNVaHZKzinAlo9DQQ5tu6KFNzi6CzsL/a8ncxFBpLJ9U4d2h7Tm5ExERUR0YdMlcXEfXSj4+Prh161ad7W7dugUfHx+bz3fkyBHk5uaidevW1UIuAIwbNw6JiYnYuXOnTUFXJBJBLBZDLBZX6u0lqk9KtRZzd17AllO3q03kdPhqFv6994pd1mfV6fS4lVOMy+kF5b20GQVIulto8QRSHlIJ2oV4o22IAu1DFGgXavguFgGxi/dbdDypRITxPZpbejlERERE5AQElZr69u2Ln3/+Gb/++iv+8pe/1Njml19+wdGjRzFy5Eibz3fu3DkAqPW+WeN2Yztr6PV6fPjhhyguLsYjjzwCd3dOgEP1T6nWYvI38fddd1at1WNDfAqu3y3E2im96gy7er0eaXlKXM4owNWMAlxONwTaa5mFKFFrLapPJhGjVZAX2ocq0C7E8NU+RIFwfw+IxaIa9xkXE44N8XV/EFbenuvPEhEREbkqQQXdGTNm4JdffsHo0aPx9NNP4+mnn0ZERAREIhFu3LiBdevWYcOGDZBIJJgxY4bN50tJSQGAWmdWNm43tjPX9OnTkZGRgfz8fCQmJiIpKQkdOnTAypUrLTqOsau/qqSkJLMmyKLGa+7OC/cNuRXF3biHuTsvYtGYzqZtWYWlVSaFMtxLW1CqsagOiViEiABPtA9VoG2wwhRsIwI84SaxbFjU7JFRuH63yKzr6h3ZBLNHdrTo+ERERETkPAQVdPv27YvVq1fjpZdewtq1a/Htt99Wel2v18PDwwMrV65Enz59bD5fYWEhAMDT07PG14330hrbmWvr1q1ISkoyPe/UqRPWrVuHyMhIKyslMl9mgRJbTt22aJ9NJ1Og1eqQklOMKxmFuFeksvi8LZp4ol2It6F3tizYtgrysmlYdEVyqQRrp/TC3J0XseVUzevqSiUiuwzHJiIiIiLHElTQBYBnnnkGDz/8ML766iscOXIEqampAIBmzZqhf//+eOGFF9C8uX3uuzPO4yUS1TxU0tp5vq5duwYAyMrKwqlTpzBz5kzExMRg1apVmDx5stnHqe2m7dp6eokAYNPJmkPg/Wj1wCYzw3Goj7zs3tnye2nbBHvDy73+/3ckl0qwaExnvDOkHTYl3MKJ69kNOsEWERERETUMwQVdwDBkeO7cufV+HoVCAQAoKiqq8fXi4mIAMC05ZKnAwEAMHToUffr0QZcuXfDKK69g0KBBdgvqVD8cNUuxNUo1WqTnKZGWp0RaXgnS8pRYF2fZUPvaNPGSoV2Id6VJodoGK+DrKbXL8W0RpHDHtIFtOKMyERERkUAJMug2lBYtWgAAbt+uuSfLuN3Yzlq+vr4YMWIEPvvsM+zZswdTpkyx6XhUPxpqlmJzlWq0yMwvRWpuCdLzlUjNLQ+zaXklSM9TIqvQ8iHGtQnwkuG1QW1MwTbQ27lCPRERERE1Hi4ddFu1agWRSIS9e/ciMjISrVq1MntfkUhU6T5Ya3Tt2hUAcPr06RpfN27v0qWLTecBDL27AHD37l2bj0X2Vx+zFN+PWqtDep6yLMAawmt6nrJSqM0qLLX6+Nbo2MwHz8fyPnIiIiIicjyXDrrJyckAALVaXel5Q4mNjYWvry+SkpJw5syZamvpbtmyBQAwYsQIm8918OBBAOBsyU7K1lmKK1JrdcgsKEVabglS85RIzytBaq6ybIixYVtWYSmsvAW8GpEICPR2RzNfOUJ95cgsKMWZlFyLj9OnVYB9CiIiIiIispFLB12dTnff5/VNJpPhtddew4IFC/Daa6/ht99+M820vHz5ciQmJqJfv37o2bOnaZ9PP/0Un376KZ544gksWrTItP2nn36CVCrFY489Vmlyq+LiYixYsAAHDx5EaGgoHnvssYa7QDKLVbMUJ9xC5zAfFJVqTUOJjaH2bkEpdHYKsUBZiPWTI9RHjmZ+Hgj1laOprxxNfT3Q1FeOEB85ZG7lS/VkFigR++F+iyakkkpEGN+D944TERERWWP8+PHYvHkz4uLi0KtXL0eXIwguHXSdwfvvv4+9e/fi2LFjaNu2Lfr374+bN28iLi4OAQEBWL16daX2WVlZuHz5MtLS0iptP336NObOnYtmzZqhe/fu8PX1RXp6Os6ePYt79+7B19cXmzZtsnpiK6o/Vs1SrNPjve3nbT53oLesLLh6mMJrxVAb7OMOdzfLhkgHK+QYFxOODfG3zN5nXIzzTbRFRERE5CpOnz4NiUSCzp1rHvFHlmPQtZFcLsfvv/+ORYsWYf369dixYwf8/f0xefJkfPDBB2bPkDxmzBgUFBTg8OHDOHnyJO7duwcPDw+0adMGL730El5//XU0bdq0nq+GrGHukGVLNfGSVep5bepXvSe2via1mj0yCtfvFpl1bb0jm2D2yI71UgcRERFRNYWZwOm1QPJRQFUIyLyBiH5A9CTAO9jR1VksNzcXSUlJiIqKgoeHh6PLEQyR3trFXp3QlClT0K9fvzpnJV6zZg0OHTqEb775poEqcy7GdXRrW2eXLPPEZ0etuqfVQyrBg60DygKsR6UQG+pbfyHWXIZZpC9iy6mae6ylElGDziJNREREzkmn0+Hy5csAgPbt20MsFtexh5XUJcCv04Gz6wGduvrrYinQfSLw2GJAKq+fGurB/v37MXjwYDzzzDP47rvvHF1OvbL0d8WW3CKoHt01a9YAQJ1B9+jRo1i7dm2jDbpkX97u1v0Z9Yjwx9fP9ay7oYPIpRIsGtMZ7wxph00Jt3DierbTrwtMREREAqUuAb4fB9w8UnsbnRo4tQbIugY8swWQOlfv6O7du7F06VLEx8dDKpVi5MiR+Pjjj3Hq1CkAQHR0tIMrFBZBBV1zqVQqSCTsgSL76B3ZBIevZlm8n6vMUhykcMe0gW0wbWAbR5dCREREjdWv0+8fciu6eQTYPQMYuaJ+a7LA7NmzMW/ePLi7u2PgwIGQSqXYvn07zp8/j4iICACotoJLTa5cuYIXX3wRWVlZkEgkePnllzFt2rR6rt41Nbqgq9frcfr0aQQFBTm6FBKI8T2bY8W+q5ylmIiIiKg+FGQYhitb4sw6YOBMp7hn9/vvv8e8efMQExODHTt2IDw8HABw48YN9OjRA6dPnwYAdOvWrc5jubu747PPPkOnTp1QWFiImJgYPPzww6YhvlTO5YPuoEGDKj3fvXt3tW1GGo0GSUlJSE9Px7PPPtsQ5VEjwFmKiYiIiO5DrweUedbvH7+y5nty70enNuzX9zXrzyv3BSos+2mNvLw8vPHGG/Dx8cHOnTsrTS4bGRmJqVOnYvHixYiMjISfn1+dx2vZsqXpsbe3N9q1a4eUlBQG3Rq4fNA9cOCA6bFIJEJ6ejrS09NrbS+VSjFixAgsXbq0AaqjxmL2yCicuH4PN7KK6mzLWYqJiIioUVHmAYtb1t3O3g59ZPiy1vSbgIefTSV8+eWXyMnJwcyZM2tcQaVNG8OtYdbcn5uUlIRTp06hT58+NtUoVC4fdG/cuAHAMCS5VatWGDduHD76qOZfaJlMhsDAQEil0oYskRoBdzcxJHVMMMhZiomIiIgal127dgEAJkyYUOPrhYWFAMy7P7eivLw8jB07Fp9++in8/f1tK1KgXD7oVuy+nz17Nrp3715pG1FDOJ6UjWuZ5b25U/pF4GpGIWcpJiIiImrEzp49C3d391qHFickJACwLOiWlpZi9OjRmDx5MsaMGWOXOoXI5YNuRbNnz3Z0CdRIrT6WbHr8ULsgzBrB+ySIiIiIABjudZ1+0/r9j30CHLbitsMB79p+j64N1Go1CgoK4OvrC1EN9/pmZmZi27ZtACoH3ZUrV+Kll16q1r5z5844e/Ysnn76afTu3Rtvv/22TfUJnaCCLmAYwrxu3Tr8+OOPuHr1KgoKCqDXV58NVyQSISkpyQEVktDculeMvZcyTM+fi41wXDFEREREzkYksu1e115/A46usGxCKrHUsJ+N99jaQiqVwt/fHzk5OcjIyEBISEil15cuXYqSkhKEhIRUun/36aefxuOPP256vnfvXkydOhXTp0/Hr7/+iu3bt6NLly7YvXs3AGDevHmV2pOBoIKuSqXC8OHDsX///hrDLWAIuLW9RmSNb48nw/grFRnohYfacukqIiIiIrtRhADdngZOrzV/n+4TnWJpoejoaOzbtw+zZs3CF198YerZ/frrr7Fs2TJTm4q8vb3h7e0NAPjpp5/w6quv4rvvvsO4ceMAADqdrgGvwHXVMX2Oa1m2bBn27duHESNG4OrVq3j22WchEolQWlqKS5cuYc6cOfDy8sK7777LXxCyi6JSDX44Wb6s0OS+LSEW2zYNPRERERFV8ZfFQMt+5rVt2Q94bHH91mOmWbNmQSQSYeXKlejcuTOefPJJREVF4cUXX0TPnj0B1H5/7g8//IBnnnkGGzZsMIVcMp+ggu7GjRvRpEkTrF+/Hq1bt4ZYbLg8qVSK9u3bY9asWfj555+xbNkyfPPNNw6uloRg+5k7KFBqAADe7m4YGxPu4IqIiIiIBEjqATyzBYh5zjAsuSZiqeH1Z7YCUnlDVlerAQMGYPPmzejcuTOuXLmCPXv2oGnTpvjpp5/Qv39/ADUH3a+//hovvfQSduzYgeHDhzd02YIgqKHL165dw4ABA+Dl5QUApqCr1WohkRiWc+nfvz9iY2Px2WefYcqUKQ6rlVyfXq/HmgqTUI2LCYdCzqWriIiIiOqF1AMYuQIYOBM4/S2QfARQFQIybyCiHxA9ySmGK1c1duxYjB07ttr2kSNH1rgs6ooVKzB37lzs3r0bffv2bYgSBUlQQVcikcDHx8f03Bh47969i9DQUNP2sLAw7Ny5s8HrI2E5ci0L1zINa5+JRMDkByMcWxARERFRY+AdDAz4h+FLYBYvXoz58+dj06ZNiIyMRHp6OgDAw8MDvr62zQLd2Ahq6HJYWBhSUlJMz9u0aQMAOHHiRKV2iYmJphu8iay15miy6fHA9sGIDPRyXDFERERE5NL0ej0WLlyIwsJCDBs2DE2bNjV9ffjhh44uz+UIqke3T58+2Lp1K0pKSuDh4YFhw4bh7bffxptvvgl3d3eEh4dj5cqVuHTpEkaOHOnocsmFJWcVYf/lTNPz59ibS0REREQ2EIlEyMvLc3QZgiGoHt2xY8fC09MTe/bsAWDo0X3rrbdw69YtjBgxAt26dcN///tfeHp6YvFi55iJjVzTt8dvmpYUah3khf5tAx1bEBERERERmQiqR3f48OFIS0urtG3ZsmXo2bMnduzYgZycHLRr1w5vvPEG2rZt66AqydUVlmqwOaF8SaHnHowwrYlGRERERESOJ6igW5sJEyZgwoQJji6DBGLb6dsoKDUsKaRwd8OYaC4pRERERETkTAQ1dJmovul0lZcUGt+zObzcG8XnRURERERELkNQQVcsFkMmk2H58uX3bff888/DzY3hhCx36OpdXL9bBKBsSaG+EY4tiIiIiIiIqhFU0AUAjUaDd999F88//zzUanWt7fTGmYSILFCxN3dwhxC0CPB0XDFERERERFQjwQXdxx57DL169cLatWvx8MMPIzMzs+6diMxw/W4hDly+a3r+fGyE44ohIiIiIqJaCS7ohoaG4sCBA5g4cSKOHz+OXr164ezZs44uiwTg2+M3TY/bBnvjwdYBDqyGiIiIiIhqI7igCwDu7u747rvvsGjRIty+fRv9+vXDli1bHF0WubACpbrykkKxXFKIiIiIiMhZCTLoGk2fPh07duyAWCzGk08+iTlz5ji6JHJRW07dRpFKCwDwkbvhie5hDq6IiIiIiIhqI/iph0eMGIETJ05g5MiR+OCDD/DHH39ALBZ0vic70+n0WFthEqoJvVrAUyb4Px0iIiIiIpfVKBJfx44dkZCQgIceegjbt2/Htm3b7Hp8pVKJ2bNno127dpDL5WjWrBmmTJmC27dvm32M3NxcrF+/Hk8//TQ6duwILy8vKBQK9O7dGytWrLjvDNJUvw5cyURydjEAQCwCnu3T0sEVERERERHR/Qgq6LZo0QKBgYE1vubv7489e/bg5ZdftuvSQkqlEoMHD8a8efNQWFiIUaNGoXnz5li9ejWio6ORlJRk1nGWLl2KiRMnYuPGjfD09MTIkSPRq1cvnDt3Dm+99RYGDRqE4uJiu9VN5lt9NNn0eEjHEDRvwiWFiIiIiIicmaCCbnJyMpYsWVLr6xKJBJ999hlSUlJw/fp1u5xz4cKFOHbsGPr27YsrV65g48aNiIuLw7Jly3D37l1MmTLFrON4e3vjvffeQ0pKChISEvDDDz9g3759+OOPP9CiRQscOXIE8+fPt0vNZL5rmQU4fDXL9Py5ByMdWA0REREREZlDpLdn92Yjo1arERwcjNzcXJw+fRrdu3ev9HrXrl2RmJiIhIQExMTEWH2eDRs24Omnn0ZERARu3Lhha9mIiooCAFy4cMHmYwndv3acx3cnDMsKdQhV4Nc3+3O2ZSIiIqIKdDodLl++DABo374958OhWln6u2JLbuFvoQ2OHDmC3NxctG7dulrIBYBx48YBAHbu3GnTebp27QoASE1Ntek4ZJm8EjW2ni6/z/q5B7mkEBERERHZ3/jx4yESiRAfH+/oUgTDpaeObdWqFUQiEfbu3YvIyEi0atXK7H1FIpHZ98/W5ty5cwCA6OjoGl83bje2s5ZxmHVoaKhNxyHLbE64heKyJYX8PKUY1Y1LChERERE5WlZJFrZd3YaE9AQUaYrg5eaFnqE98UTbJxDoUfN8Pc7u9OnTkEgk6Ny5s6NLEQyXDrrJyckAYJqR2Pi8oaSkpAAAwsPDa3zduN3YzlorVqwAAIwaNcqi/Yxd/VUlJSWhdevWNtUkdFqdHt8ev2l6PqFnC3jIJA6siIiIiKhxU2qU+DD+Q/yY9CM0Ok2l146nHcdn5z7D6DajMaPXDLhL3B1UpeVyc3ORlJSEqKgoeHh4OLocwXDpoKvT6e77vL4VFhYCADw9a56F18vLq1I7a3zxxRfYu3cv/Pz8MGPGDKuPQ5bZ/2cmUu4ZZrmWiEV4ti+XFCIiIiJyFKVGiVf2voKEjIRa22h0Gmy5sgXJecn4/JHPIXeTN2CF1jt9+jQA1HgrJFmP9+jawDiPV233bdo6z9fBgwfx5ptvQiQS4ZtvvkGzZs0s2v/ChQs1frE3t25rjpVP+jU0KgRhfvx0jYiIiMhRPoz/8L4ht6KEjAQsPrm4niuy3O7du/HII4/Ax8cHAQEBeO6555CTk4NTp04BqP12SLKOoILulClT8M0339TZbs2aNWYv+3M/CoUCAFBUVFTj68Z1b729vS0+dmJiIkaPHg2VSoUVK1bgiSeesL5QssiVjAIcvZZtes4lhYiIiIgcJ6skCz8m/WjRPjuu7UBWSVbdDRvI7Nmz8Ze//AVHjhxBbGwsYmNjsX37dgwZMgRxcXEA2KNrby49dLmqNWvWAECdIfbo0aNYu3atWaH4flq0aAEAuH37do2vG7cb25krKSkJQ4cORW5uLubMmYPXX3/dpjrJMmuOJZsed2zqg54R/o4rhoiIiMjF6fV6FKgLrN5/w58bqt2TWxeNToMNf27A5KjJVp9XIVXYZcWN77//HvPmzUNMTAx27Nhhmsfnxo0b6NGjh2nocrdu3Ww+F5UTVNA1l0qlgkRi+8RCxmV/jL+cVRm3d+nSxexjpqamYsiQIUhPT8ebb76J2bNn21wnmS+vWI1tFZcUiuWSQkRERES2KFAXIHZDbIOfd2XiSqxMXGn1/kefOgofmY9NNeTl5eGNN96Aj48Pdu7ciaZNm5pei4yMxNSpU7F48WJERkbCz8/PpnNRZYIaumwOvV6P06dPIygoyOZjxcbGwtfXF0lJSThz5ky117ds2QIAGDFihFnHy8nJwdChQ3Hjxg08//zz+Pjjj22ukSyzMSEFSrVhUrMmXjI83tWy+6KJiIiIiIy+/PJL5OTk4PXXX68Uco3atGkDgPfn1geX79EdNGhQpee7d++uts1Io9EgKSkJ6enpePbZZ20+t0wmw2uvvYYFCxbgtddew2+//WaaaXn58uVITExEv3790LNnT9M+n376KT799FM88cQTWLRokWl7cXExhg0bhvPnz2P8+PH46quv2JPYwLQ6PdYeK19S6KlezSGXckkhIiIiIrLOrl27AAATJkyo8XXj6iy8P9f+XD7oHjhwwPRYJBIhPT0d6enptbaXSqUYMWIEli5dapfzv//++9i7dy+OHTuGtm3bon///rh58ybi4uIQEBCA1atXV2qflZWFy5cvIy0trdL2mTNn4sSJE5BIJHBzc8MLL7xQ4/mM9yGT/e25mIE7uSUADEsKPdOHSwoRERER2UohVeDoU0et3n/thbVWDUH+W5e/2XyPrq3Onj0Ld3d3REVF1fh6QoJhJmkGXftz+aB744ZhGRi9Xo9WrVph3Lhx+Oijj2psK5PJEBgYCKlUarfzy+Vy/P7771i0aBHWr1+PHTt2wN/fH5MnT8YHH3yA5s2bm3WcnJwcAIBWq8X69etrbcegW38qLin0l06haOrLJYWIiIiIbCUSiWy61/WpDk/hm/PfWDQhlZvYDU91eMrme2xtoVarUVBQAF9f3xpHamZmZmLbtm0AKgfdPXv24NFHHzXN0AwAP/30E5588kls3rwZ7777LkaMGFEp86hUKnTq1AkTJ07kHD9lRHpbF3t1InPnzkX37t3x+OOPO7oUp2b8ROnChQsOrsR5XErLx19WHDY93/pKX8S0bOLAioiIiIhcg06nw+XLlwEA7du3h1hs/2mA5hybg61Xt5rdfly7cZjd1/GBr0mTJsjJyUF6ejpCQkIqvfZ///d/+OijjxASElJtROpjjz2G4uJiHDp0CAcPHsSwYcOwcuVKTJw4ES+++CIuX76Mw4fL37suXLgQq1atwsWLFyGXyxvk2qxh6e+KLblFUJNRzZ49myGXrLK2wpJCncN8Ed2CSwoREREROYsZvWagR0gPs9r2COmBGb1m1HNF5jFOMjVr1ixU7F/8+uuvsWzZskptKvroo49w9OhRLFy4EI8//jiWLFmCiRMnAjBMiHvq1CloNIYe7lu3bmHBggX4+OOPnTrkNjRBBV0jjUaDHTt2YObMmXjppZcqrZebmpqKxMRE0y8GUU6RCtvP3DE9f+5BLilERERE5EzkbnJ8/sjnGNduHNzENd996SZ2w7h24/DFkC/gLnFv4AprNmvWLIhEIqxcuRKdO3fGk08+iaioKLz44oumCWtruj+3c+fOmDBhAmbOnIl//OMfmDZtmum12NhYlJSUIDExEQDw9ttvY8CAARg1alTDXJSLcPl7dKs6ePAgnn32Wdy5cwd6vR4ikQhqtRpTpkwBAOzbtw/PPfccNm3ahLFjxzq4WnIGP5y8hVKNYUmhQG8ZRnStPvU7ERERETmW3E2O2X1nY1q3adh+dTtOpp9EkaYIXm5e6BnaE0+0fQKBHoGOLrOSAQMGYPPmzZg7dy7+/PNPpKamIjo6Gh9++CEOHTqEuLi4GoPuuXPn8Msvv0AqlVZbFrVdu3YIDAzEiRMnkJWVhZ07d+L8+fMNdUkuQ1D36P7xxx/o06cPtFotXn31VcTGxuKvf/0rnnvuOVOvbnFxMUJCQjBy5Mj7TvokZLxHt5xGq8OAJb8jNU8JAHhjUBu882h7B1dFRERE5Doa4h7dxuTatWvo168fXnjhBbi5ueHLL7/EtWvX4O3tbWozatQoeHp64syZM9WWLXVmvEfXSvPmzUNpaSl++eUXLF++vMYeW09PTzzwwAM4c+aMAyokZ7PnYoYp5LqJRZjIJYWIiIiIyEHu3LmDIUOGYPTo0ViwYAH+8Y9/QKvVVltVJjY2Fhs3bkRRURHef/99B1Xr3AQVdA8ePIg+ffpg0KBB923XokULpKamNlBV5MxWH002PR7epSlCfHgDPxERERE1vOzsbDz66KPo0aMHPvvsMwCAQqHAzJkzsWzZMqSlpZnaRkdHQ6/XY9myZfDy8nJUyU5NUPfo5ufnIywsrM52paWl0Gq1DVARObPzd/IQn3zP9Py5ByMcVwwRERERNWoBAQE1DtF966238NZbb1XatnbtWgwcOBDjx49voOpcj6CCbtOmTXHp0qU6250/fx4tW3KIamNXcUmhrs390J1LChERERGRk9JqtcjOzsbWrVuxfft23opZB0ENXX700Udx4cIFbN++vdY2a9aswc2bNzF8+PAGrIycTXZhKX48Vz58/Xn25hIRERGREzt48CBCQ0OxbNkybN68GW3btnV0SU5NUD267733Hn744Qc89dRTePfdd01rSRUXF+P8+fPYsWMHFi5ciICAALzzzjsOrpYc6YeTt6AqW1IoSOGOYZ25pBAREREROa9BgwZBp9M5ugyXIage3ZYtW+Lnn3+Gv78/FixYgN69e0MkEmHz5s3o2rUrZs2aBYVCgR9//BGhoaGOLpccRK3V4bvjN03PJ/ZuAZmboP4UiIiIiIgaNUH16AJAv379cOXKFXz99dfYu3cvkpOTodVqER4ejkceeQQvvfQS/Pz8HF0mOdD/LqQjPd+wpJBUIsLTvVs4uCIiIiIiIrInwQVdwDANd02zkxEBlZcUGtGlGYIVXFKIiIiIiEhIOF6TGpXE27k4dTPH9JxLChERERERCY8ge3SLi4uRkJCAtLQ0lJaW1tpu0qRJDVgVOYM1FZYUim7hh67N/RxWCxERERER1Q/BBd1Zs2bh448/RnFxca1t9Ho9RCIRg24jc7egFLvOpZmePxcb6cBqiIiIiIiovggq6C5ZsgTz58+Hm5sbRowYgXbt2sHb29vRZZGT2BCfApXWMCV7iI87/tKJM28TEREREQmRoILuV199BQ8PDxw+fBjR0dGOLoeciEqjw/cnypcUeqZ3S0glvEWdiIiIiEiIBPVO/9atW3jooYcYcqmaX8+nIbPAcL+2TCLGU1xSiIiIiIhIsAQVdENDORSValZxSaGRXZsh0NvdccUQEREREVG9ElTQnTBhAuLj45GTk1N3Y2o0zqTk4OytXNPz52MjHFYLERERERHVP0EF3Tlz5qBjx44YM2YMkpKSHF0OOYm1FZYU6hnhj05hvo4rhoiIiIiI6p2gJqMaNmwYdDodjh49ig4dOiAiIgLh4eEQiUTV2opEIuzbt88BVVJDysxX4uc/Kiwp9CCXFCIiIiIiEjpBBd0DBw6YHmu1WiQlJdXas1tT+CXhWReXArVWDwBo6ivHo1EhDq6IiIiIiIjqm6CC7o0bNxxdAjmRUo0W6+JSTM+f6cMlhYiIiIjI+YwfPx6bN29GXFwcevXq5ehyBEFQQbdly5aOLoGcyC9/pCGrsGxJITcxnurFJYWIiIiIXJ0mKwu5W7agOP4kdEVFEHt5wbNXL/iNGwu3wEBHl2eV06dPQyKRoHPnzo4uRTAEFXSJjPR6faUlhUZ3a4YmXjLHFURERERENtEplchYsBC527cDGk2l14qOHcPdTz+F35gxCJn5HsTurrOUZG5uLpKSkhAVFQUPDw9HlyMYggq6hw4dMqudTCZDQEAA2rRpY5d7dZVKJRYtWoQNGzYgJSUFTZo0wWOPPYZ58+YhPDzc7OMcPHgQBw4cQHx8POLj45GVlYX27dvjzz//tLnGxuZ0Si4Sb+eZnnMSKiIiIiLXpVMqcWvq31B88mTtjTQa5G7aBNWNG2j+1UqI5fKGK9AGp0+fBgB0797dwZUIi6CC7sMPP2xRcPXy8sKECROwYMECBAUFWXVOpVKJwYMH49ixY2jatClGjRqF5ORkrF69Grt27cLx48fRunVrs4715ptv4ty5c1bVQZWtqbCkUO/IJujYzMdxxRARERGRTTIWLLx/yK2g+ORJZCxchKbz5tZzVZbZvXs3li5divj4eEilUowcORIff/wxTp06BQCIjo52cIXCIqigO2nSJOTm5uKnn36CWCxG9+7d0aJFC+j1ety6dQtnzpyBTqfDyJEjUVJSgrNnz2LVqlXYv38/4uLiEBAQYPE5Fy5ciGPHjqFv37747bff4O3tDQBYvnw5/v73v2PKlCk4ePCgWcd69NFHMX78ePTs2ROBgYH8ZbdSep4Sv1ZYUuj52AjHFUNERERENtHcvWsYrmyB3G3bEPTG605zz+7s2bMxb948uLu7Y+DAgZBKpdi+fTvOnz+PiIgIAOzRtTdBBd0lS5agT58+GD58OFasWIFWrVpVev3GjRt48803kZiYiBMnTkChUOCll17CunXrsGTJEixevNii86nVanzyyScAgP/+97+mkAsA77zzDtauXYtDhw7h1KlTiImJMat+o+TkZItqoXLr4m5CozMsKRTm54FHHuCSQkRERESOotfroSsosHr/e+vWV7snt04aDe6tW4+A55+z+rxihcIutzl+//33mDdvHmJiYrBjxw7TrY03btxAjx49TEOXu3XrZvO5qJyggu6MGTOg0WiwdetWyGTVJx6KjIzE5s2b0bZtW8yYMQOrV6/GF198gf/973/46aefLA66R44cQW5uLlq3bl3jJzDjxo1DYmIidu7caVbQJdsp1Vqsr7Ck0LN9W8KNSwoREREROYyuoABXevVu8PNmf/45sj//3Or928XHQeJj2+1veXl5eOONN+Dj44OdO3eiadOmptciIyMxdepULF68GJGRkfDz87PpXFSZoBLAL7/8gn79+tUYco3c3d0RGxuLX3/9FYDhPt3u3bsjJSWl1n1qY7yftrYhxsbtvO+24exKTEN2kQoAIJeKMaFncwdXRERERESN1ZdffomcnBy8/vrrlUKuUZs2bQDw/tz6IKge3fz8fGRlZdXZLjs7G/n5+abn/v7+Vg1LMIbj2mZWNm63JkTbQ1RUVI3bk5KSzJ4gy5UYlhS6YXr+RPcw+HlySSEiIiIicoxdu3YBACZMmFDj64WFhQDq5/7cJUuWYNeuXWavTCM0ggq6UVFROHDgAI4dO4YHH3ywxjbHjx/H77//XmkM/O3btxEcHGzx+Yy/mJ6enjW+7uXlVakd1a+Emzm4kFr+AQaXFCIiIiJyPLFCgXbxcVbvn/3NamR/8YXF+wW88orN9+ja6uzZs3B3d6+1AyohIQFA/QTdbdu21RqwGwNBDV1+9913odFoMGTIEEybNg2///47rl27fnLzdwAAiCtJREFUhqSkJPz++++YNm0aHnnkEeh0Orz77rsADL3Ap06dQp8+fSw+n15vmPCott5g4+uOcuHChRq/hNibCwBrjiabHj/YOgDtQ23/nxMRERER2UYkEkHi42P1V5OJTwNuFvbPubmhycSnbTqvrRNRqdVqFBQUQC6X13iszMxMbNu2DUDloPvAAw+YsoqRSqVCu3btMHfuXKxcuRIikajaV5cuXUzt79y5g5MnT2LMmDEAgD179kAkEuHo0aOmNj/99BM8PDxMvc7mHNeVCKpHd/z48UhNTcWMGTPw+eef44sqn/zo9XpIpVIsWbIE48ePB2AYxjxnzhwMHjzY4vMpyj7lKSoqqvH14uJiAKg0GzPVj9TcEuy+kG56/tyDEY4rhoiIiIjsxi0oCH5PPIHczZvN3sdvzBiHLy0klUrh7++PnJwcZGRkICSk8kogS5cuRUlJCUJCQirdvxsbG4sTJ05Ua6vRaDB9+nRoNBo8/vjjptf27t2LqVOnYvr06aZt27ZtQ3R0NFq0aAEAGDJkCIYOHYp//vOfOHToEA4ePIinnnoKq1atwogRIwAATz/9dJ3HdSWCCroA8NZbb2HUqFH4+uuvcfz4caSmpgIAmjZtigcffBDPP/98pR7NyMhIq394xl+c27dv1/i6cbuxHdWf70/chLZsSaFwfw8M5pJCRERERIIRMvM9qJKTUXzyZJ1tPXv2RMjM9xqgqrpFR0dj3759mDVrFr744gtTz+7XX3+NZcuWmdpUFBsbi/Xr10Oj0cDNzQ23bt3CggULsH79esjlcgDlHWk//fQTXn31VXz33XcYN26c6Rjbtm3D2LFjKx33o48+Qrdu3bBw4UIsXrwYS5YswcSJE02ve3t713lcVyK4oAsYwuv8+fPr/Txdu3YFANPaV1UZt7tqd7+rUKq12BBfPuHX5L4RkIhtX/OMiIiIiJyDWC5H869WImPhIuRu21bzurpubvAbMwYhM9+D2N294YuswaxZs7B//36sXLkSR48eRVRUFM6fP4+LFy+id+/eiIuLq3Z/bmxsLEpKSpCYmIjo6Gi8/fbbGDBgAEaNGlWp3Q8//IC//e1v2LBhA4YPH27anpWVhcOHD+PLL7+s1L5z586YMGECZs6ciXnz5mHatGk11lzbcV2NIINuQ4mNjYWvry+SkpJw5syZar+kW7ZsAQDTcACqHz+dTUVOsRoA4CGVYHwPLilEREREJDRiuRxN581F0BuvI3fLVhTHx0NXVASxlxc8e/WC37ixDh+uXNWAAQOwefNmzJ07F3/++SdSU1MRHR2NDz/8EIcOHaox6LZr1w6BgYE4ceIEsrKysHPnTpw/f75Sm6+//hrvvPMOduzYgUGDBlV6bceOHXjggQfQrl27StvPnTuHX375BVKpFEFBQTXWe7/juhoGXRvIZDK89tprWLBgAV577TX89ttvppmWly9fjsTERPTr1w89e/Y07fPpp5/i008/xRNPPIFFixY5qnTB0Ov1WH0s2fR8THQYfD2ljiuIiIiIiOqVW2AgAl9+CXj5JUeXYpaxY8dWG0YMACNHjsRHH31U4z4PPvggDh8+jP/85z9455130LZtW9NrK1aswNy5c7F792707du32r5bt241TUJldO3aNQwdOhSvvvoq3NzcMGfOHDzzzDOV5hKq67iuRnBBV6/XY926dfjxxx9x9epVFBQU1Dj7sUgkQlJSks3ne//997F3714cO3YMbdu2Rf/+/XHz5k3ExcUhICAAq1evrtQ+KysLly9fRlpaWrVjrVq1CqtWrQIAlJaWAgBu3rxZaUbozz77jAtKVxB34x4upVVcUijCccUQEREREdlBbGwsZsyYgbCwMLz//vum7YsXL8b8+fOxadMmREZGIj3dMBmrh4cHfH19kZeXh/379+PDDz807XPnzh0MGTIEo0ePxoIFC1BQUIDPPvsMH330EebOnWvWcV2RoIKuSqXC8OHDsX///lqX9hGJRHZd9kcul+P333/HokWLsH79euzYsQP+/v6YPHkyPvjgAzRvbv4w2tu3byMurvIaY0qlstK2/Pz8qrs1ahWXFOrfNhBtQ7ikEBERERG5tujoaOj1eixbtsw0YlSv12PhwoUoLCzEsGHDKrWfMWMGFi1ahF27dqF58+amuYSys7Px6KOPokePHvjss88AGFaOmTlzJt5//328/PLLCA0NrfO4rkikd/Rir3a0aNEizJw5EyNHjsTy5csxb948fP/991Aqlbh+/To2btyIpUuX4pVXXsHixYsdXa7DGBesvnDhgoMrsc3tnGIMWPI7yiZbxteTe3C2ZSIiIqIGptPpcPnyZQBA+/btIRaLHVyR63v22Wdx584d7N+/36L9xowZgzZt2mDJkiX1VJltLP1dsSW3CKpHd+PGjWjSpAnWr18PLy8v0384qVSK9u3bY9asWRg4cCAGDhyI9u3bY8qUKQ6umGzx3YmbppDbMsATA9sHO7YgIiIiIiIrabVaZGdnY+vWrdi+fTvOnDlj8TH69u1bbXbmxkpQH7dcu3YNvXr1MnXvG4OuVqs1tenfvz9iY2NNXffkmkpUWvwQf8v0fFLfCIi5pBARERERuaiDBw8iNDQUy5Ytw+bNmytNQGWud999t9psy42VoHp0JRIJfHx8TM+Ngffu3bsIDQ01bQ8LC8POnTsbvD6ynx1n7yCvxLCkkKdMgr/2CHdwRURERERE1hs0aBB0Op2jyxAMQfXohoWFISUlxfS8TZs2AIATJ05UapeYmFhpKm1yLXq9vtIkVONiwuEj55JCRERERERkIKig26dPH1y4cAElJSUAYJo17M0338Svv/6KP/74A6+//jouXbqE3r17O7JUssHxpGxczigwPZ/MJYWIiIiIiKgCQQ1dHjt2LH799Vfs2bMHjz/+ONq0aYO33noLH3/8MUaMGAHA0Bvo5eXVqGdddnWrjyWbHj/ULgitg9g7T0REVKvCTOD0WiD5KKAqBGTeQEQ/IHoS4O2iEzkK8ZqIHEWrBoqzgdJCQK8FRBLA3RvwDAAkrjtqUlBBd/jw4UhLS6u0bdmyZejZsyd27NiBnJwctGvXDm+88YZVN3eT4926V4y9lzJMz5+LjXBcMUREJExCCVHqEuDX6cDZ9YBOXfm1678DBz4Euk8EHlsMSOWOqdFSQrwmI6H83lUkxAAlpGvS6YD820DxPQBVVpxVFQAF6YBnE8AnHHDBJaMEtY4umceV19Fd8PNFfHX4BgAgMtAL+955iLMtExGRfdwvRAGAWOo6IUpdAnw/Drh5pO62LfsBz2wBpB71X5cthHhNgCB+76qtjQrUHqAAACLXC1D3C4UAXO6adDrgXpLhQ5W6yLyBJq3tcl0NuY6uC/wUiAyKSjX44WT5kkKT+7ZkyCUicrTCTODQR8C3o4FVjxi+H1pq2O5KjCHq9NqawwZg2H5qDfD9WEN7Z/brdPMCIWBot3tG/dZjD0K8JoH83olE5e/HdBqNIUAVZ6PmQAjD9uJsQztXmGXYGAqFdE35t80LuYChXf5tu5y24qzSFX9v6oOghi4bJScn49ChQ0hLS0NpaWmNbUQiEf71r381cGVki+1n7qBAqQEAeLu7YWwMlxQiIhcjpKGJQhtCak2IGrmifmuyVkGG4ediiTPrgIEznff3UIjXBAjm904kEkEmk0GlUqHo7k34iiwMUH4t6rdAW1kTCp35mrTqsp5pCxTfAxRNbR6eXVRUBACQyWQMupZQKpWYOnUq1q83/I/wfqOyGXRdi16vx5oKk1CNiwmHgksKEQkbQ6HzMmcIqbEXKuua8w8hdfUQpdMCOo3hzatODcR9UXvvYK3HUAO/LwS6PQ2Y3j+VfTfruSVtKz5H+fP7tb2w3bprOvQR0PNFQOxmeIMudjMMBZYYvxu3SSw7tj24+u9dFQqFAtl3M5BxrxjwEsFLBpg18K4oG/AKcd77W7VqQ4219uTWwNZrMv5N1fT9fq+Z2uhqeA3l+6sKy9pYVBRQmAUoQqy6JJ1Oh6KiImRkGObaUSgUVh3HEoIKutOnT8e6desQHByMiRMnonXr1vDy8nJ0WWQHR65l4Vqm4ZM0kYhLChEJGkOhc4dCQBi9UDodoFUB2lLrg+Gut4BWA8uCprosaJY9NgVPTeUQqtPW8FhTtr+mlsdVj6upfA5L3oDfz6nVhi8hiV9p+KqTqCz0GkNwlSBsfE0sqdDOGJLdamjnVkOYdqt8juQj1v3e/fQG0Lrs906vrfBdV+X5fbZXa3O/Y+hqaV95e4DIDUUR46H0a4fUUn/D/8fM6rHTA9m13X8puu/TOtvXSVT3bnqddaEw+2KF69dXe7nmv1snnzrpXgbglmvzYeRyOQICAmyvpw6CmowqNDQUOp0OiYmJCA0NdXQ5TssVJ6N6Yc1J7PvTcL/XoA7B+Oa5ng6uiMjJCKX3U4iTzfz0huFnY66Y55wvFFZUkAF8HGXZG3SxFHjzHCD3NYRLTakhYGpUVb6XVnjdHu3u097SgEFEddJKPJAdPgQFQTFQebjQvz1kHpkXENjO+t1lMigUCgQEBEAiMW8UhS25RVA9uoWFhRg6dChDrsAkZxVh/+XySU2eY28u2UoooRAQXu+nEHoKK6rvoYk6XXmPn1ZV4buqvNewpu1mt1dX3yf9D+t6oT7uaNk+1PDEUsOssQDKe7pE5j839YpZsa/peS2v5aYA6iILLwiGpV/EbobfQYt75chSEm0Jgm/+hOCbP0EPMfRiQUUN52AcJWAaRSCr8FxWPnLA9CUrH0VgfH7jkGHpIEtFPgTEbrKqbJFIVO/35FYlqN++qKgo07hvEo5vj9803VrQOsgL/dsGOrYgcl1CC4VCGxLryPvV9PryIGccNmp6rK4QAtV1t9OqyoeUXttrXShc+TDgFVR3ENVpbLtuso3cHwiPqT58terw14rDWKs9rmH46/2OVW1YraT6sY7/Fzi0xPLreXgGMOAf9v/vZA+HPgL2z7d8v4HvlV+TTldlOHjF4eXG4eJVhoqb/u6qDiWvZWh6tX0rDlvXVD5H8hGgOMvya/JoAoT3NPzsReKy75Iq3++33c2CthZsF0uAPXOAtDMAABF0EOlU5l1Ts+7AkA/KhwnrdWX3k2qrbNNVGDKtr7K9alt9+RDrGtvpqxyvhvPodcClnUD+Hct/Tk1aG+4Prxg4JcYgKqshiFZsZxziLisLqBXa2CMsWvv31LKPayydVEZQQfcf//gHJk6ciGPHjuHBBx90dDlkB4WlGmxOKF9S6LkHIxr806BGTyi9n0ILhYBr9H7qtDUMMa1lqGniRutC4XdPAAFtqodRUyjUVH5cU0h1tsCYf8e6N1auRiIDJO6AW23f3Q1tKn23R/sq7eK+AA4utrz+B19zzmDY80XgyMeWDy+PnlR/Ndmq+yTgwGLbrkksNvR4QWb38qxibdjoO805f+8A4IHhpqBrkQ4jgMj+9q/HHrwCrfs5dXsa6Puq/euxB3v8PbkAQQXdv/71r7h9+zZGjRqF119/HY888gjCwsJqDUYtWjjxtN8EANh2+jYKSg1vQBXubhgTzSWFGozQej9dIRRawqrez++B1oMN99hYfR+khfdD6rX1c/0VZZw3fFEFovIQV63HQFble4WehhrbVml/bgNw77rlJbV4EHjyu8oB01k+uOzxAnB4uXDe9ClCDG+yLbk3vPtE5/7wUojXJMSwwWsycPZrEuLfUw0EFXQBoEuXLvD398fcuXMxd+7cWtuJRCJoNE72CT5VotNVXlJofM/m8HIX3K+scxJa76cjhsTqtIBGCaiVgKbEEPrUJYZt9tied8uK3k8NsOlZ666nMTMNEa04tKzKc3GV4Gh87VY8UJRZ9zmqCu4IPDTd+jBan0uliETW9W60GWzoGXFGQnzT95fFQHaS+RO7PWZFj3ZDE9o1CfH3jtdk4OzXBAjv76kGgkoNu3btwpgxY6DRaBAUFISWLVtyeSEXdujqXVy/a5h4QiQCJveNcGxB5hLCUF8h9X7qtEDC19YNid3yAhDW3czwWaUNZ3StnUhS89DS/DTrJpvxjwRiJleZcENWQxCtaWKOGu6NMk3kUfbYll5Ha4cmdhoLRI22/rz1SYi9G4Dw3vRJPQwfQu6eYfjgrqafl1jqWiNzhHhNQvu9A3hNrnJNQvx7qkJQywvFxMQgMTERq1atwqRJk3gvZy1cZXmh51bH48DluwCARx4IwarJPRxcUR3uN9QXcJ3/WVi7dMg7F2sO8np92TBWpSEEmgJiheem71Uf19SmrmNU/F7ifPdeOppEBviGm3FfY4UQKpFafs/j/drV1ttobSgc9C/nvV/N3n9PzkJoSyYZqUuE+aavMBM4/a1h8iNX/QC2KiFdkxB/73hNDV+fLZz478mW3CKooOvp6Ym+ffti3759ji7FqblC0L1+txCDlh00PV/3Ym/EtnHSIW+A66/9qdcb/semzAeOrgDiv7T8GN6hhjUyjb2aFUMnGXoxpR6Am9zwJZUDbh6G4GfabnzsbnhNKq/Qvsr2wx8DGX9YXkergcCkHXa/PLtgKDRwhVBo8f/ztrrWGz8nftNHAibE3zteE9mI6+iWCQwMhLe3t6PLIDv49vhN0+O2wd54sHWAA6sxg6OH+qqVQGk+oMwzhNXSvAqP82t5XLFNge2TBhWmG76ExDsU6DCs9rDpJq8juFbYLrHz/27vXbcu6Eb0s28d9sT7oDjkzVl4BxtGCTjrSAESJiH+3vGayIEEFXTHjRuHdevWIT8/Hz4+Po4uh6xUoFRXXlIo1smXFLJ1oiOtpkIAzSt7nF/D47zq2437ac1cp85ZSGSVQ6Kbe83fpXW8Xuv+VXpHT34NHFlueZ29pjrvP2S8T5Kh0NGkHoYP7AbOZO8GERE5HUENXS4uLsbgwYPh5eWFr776CpGRkY4uySk5+9Dl1f/f3p3HRV3nfwB/fWcY7vv24BLBAxHxwPu+0jKP1LK1MLd27Xar327beuaWXbZW21bblpqbpVnqWlaWtyl44ImiiKAoKrdyM8N8fn8AI8ggzDDMd2Z4PYsHzOd7zPvjlxm+7/l8vu/vb+lYuvUMAMDd0Q4Jr4yGs70FfyZj7HWF9m7VNyI3pvhOa5IU1XEZKqAHMHpx/aRTNwJaJwlVOpj/ZuOcElvNGqbEArwOioiIiABw6rLOfffdB6VSiV27dqFLly4IDQ1t9D66kiTxWl4LpNUKrKlzS6GH4oItM8kVovqENScFOLHeuH1UFpk2JqC6QqyDe/W1so7udX720NPufkd7zc8H3jMucY+aCkSOM32fTIFTYq1n9BOw7ZFCTnmzCprcXBRu3IjSQ4ehLSmBwsUFznFx8Jz+AOx8LbheRBvCY0RETbGpEV2FAaNEkiShqqqF1yRaKUse0d2Vko3HVh8GACgkYM//jUSQt7N8AdVNaHNSgOyzQM45IOcsUFZg4ieTbiegepPVO3/2aNiucmrZrVCABqOfmnIFCtOcUZptD61GAYWdFs7+lfAML4WdY83IrzWMftYpntNkn6ypeE7N6KfmwDoUXrBv2KfOlbAb9LBVjn7a4oks+2TZtOXluPHa6yjctAnQ6KnYbmcHz2nTEPC3V6BwcDB/gEbiMbIOtnScarFP1sGS+8SqyzUuXbrU9Ep1hISEtFIkls2SE91HPkvEvtRcAMD4qAB88oiZbimkS2hrEtnss7eTWwMT2mYlhgDQPhaY/OHt5NbezfxTehvzv+egPbQGN5I8UJjuDAg9ybMk4NmpFAG9b0IRN8cqpsRqiwpw45kZKDx8BdDq6ZNCwLNfEAI+3AiFq4f5AzSCLZ70sU/skxy05eXIfOIPKD18uMl1nfv1Q9Cn/4bC0bI/POIxsvxjBNjecQLYJ/bJdJjoyqy8vBzLly/HV199hcuXL8Pb2xv33HMPXn31VXTs2NGgfRUWFmLJkiXYtGkTrl+/jsDAQEyZMgVLly6Fp6enSeK1pET33PG9SPrXArhl5EGlFqhUSbji74ENATPx+lOPYKCpqy2bMKEFADj7AvYuQOElaDWoTgwznBtPosJqEkMlLPren9qiAmROG4XSzKZvDeQc5Iig73ZB4ebZ+oG1gC2eINlqny49/jjKjxxtcl3Hfn0Q8ul/2CcZ2OLv3rWFi1D4zTfNXt9z5ky0e3VpK0bUMrZ8jASAu81dql1u6ccIsM3jZKt94vu4PMeJia6MysvLMXr0aBw4cADt2rXD0KFDkZGRgUOHDsHPzw8HDx5EeHh4s/aVl5eHgQMHIjU1FZ06dULfvn2RnJyM5ORkdO7cGQkJCfDxaXniZwmJbkHOVex46j50SS6HnZ66RxoFkBLlhLEf/wBPn3aGP0FrJLT+3QC/roBfl9s/u/gCRTegfTsKl3a7ozy76U+7HP0rEDLiFhR/ttypvrZ4MsE+WUefriz4G4o2ftfsPrnNeAAdlxlxTbkZ2WKfbO13T5OTg9SRo/SPaDTGzg4Ru3fJPq2vMTxGsPhjBNjecQJss098H5fvODHRldGiRYuwbNkyDBw4ENu3b9fdx/fdd9/Fiy++iGHDhmHPnj3N2tejjz6KtWvXYtq0aVi/fj3s7KqLMD333HP44IMP8Oijj2LNGgOK6TRC7kS3IOcqDs4ai7ArTf/qpXeUMPCrX+Dl10H/CnUT2uyU28mssQmti19NMqsnob2LK4+ORtGhrOa/AfZvj45rLLMYmi2eTLBPNaygT+dGDIeiqvl/lrRKCV327GWfzMhcv3tCiOr3+NovrRYCALRaXZvQCgC3l0OI+ttptTWPUV1NXteG6u1qtsn/ch0KvvjCoH8HAPB69FF4PfQgdO/8Em4XwKz7vV6bVOfHxtap3Vltk9TEuvWfV5OXj4v332/wMQrbshl2Xl71/t11/36ofzzq/ds3Z/07j2fddUXDfd25/s3NW1C4cWPz+1PDc9ZD8HxgOiSFVH15kEIBqeY7JKnOzwpISn3tNT8rldX/xrX7kO7YnxGs+X28sdenJicHaePvMbhP4T9uu90nPa8h3W+6vteXnu+mvC0l38dryPS7x0RXJmq1Gv7+/igsLERSUhJiY2PrLY+JicHJkydx5MgR9OnT5677un79Ojp06AClUonMzEwEBATollVUVCAoKAj5+fm4evVqvWXGkDvR3TgjFlGnypudFJ6OdsKMDUf1J7TZZ4HyQsODqJvQ+tcmtt0AF8NHzC35DVBotYBGA6HVQmiqAG0VRFUVUFUFUaUFqjR3rKNB4fr1KPjSwPsCA/CYOhXu995714Pa5B+euy1v8o9W48tvbt2Km99+28T2DblPnAjXkSNr/t20+r/r/l2NWF5Vczz0tWvrfK85PnXb1dnZqMrNNbhPCldXKFxcmreyqU4UmrmfqqJbEMWG325LcnOFndsd905v7DlN1t5Yc/0F6sICiJu39K98F5KHO+z0Xa5y59vMnX/C9f1Jb8Y64s4d3+V5tMXF0BYXN3yeJkj29pDs7esnMXWT1jtOmomsir4EuPbnRpJkbUmJUa8lhYcHlO7utz/cQZ0PDOp+WAABaPV8wADoTVLvXE+3bp3Xqd73GGug7wOiO5PjuuvW+S6qNIDGiAK2dnbV73l3utu/YWPLjNnmLsuqzz0Mf5/1mz8fvvP+aPB2LcHbC8lk//79KCwsRHh4eIMkFwCmT5+OkydPYuvWrU0muj/++CO0Wi1GjhzZIJF1cHDApEmT8Pnnn+PHH3/EnDlzTNkNszp3bDe6JFdf99nctKVrchluLA1BAG4a/HzCyQ/CJxLwjoTw7gzh2RnCMwywd4PQaHRfKNVAXMyCUF+G0KirE4q6yzUaCE11G6pq2tUaiCoNCvbsNCjJBQBFlcDFRx+BU1h4nSRGUy/5EdoqQKMn0dElqjXrVGnrtdX9bk43N23CzU2bzPqcre3Wtm24tW2b3GGYlLFJiiUTRcVQF9lYn27egtqIBNmSicpKiMpKucMgah1a7e2EsUZrpYTamzehvWn4OVGb1owk3eTHq/Yc0oYUJvxm9kS3JZjotsCJEycAAL1799a7vLa9dr2W7uvzzz9v1r4sWdJHi9DLwA+Q7LRA2jZnnHNygiQAhbb6S9ICCq1U87MEhZDqtAMKrYAkACC95utn03eoBaouZqD4YobcYRARtVlCqv6StE1/+KqPVgK0ijqjQTVnylLtD+L2fiUrHQhrDi0ASDWDijUdFjWP67brawP0b1e7fm2bWylgb8TntxoFUGZffRwUWkAhqo+FJO742biuE7UpeXlX0FnuIAzARLcFLl++DACNVlauba9dz1z7qlU71H+ntLS0ZhfIMjW3jDyjtvO6JQG3mjoNseGziFZWJQFaBVClAFQaQGnEP2W5HVDg1vjylpzkNTn638S+PUsAeyM+VC21B674Vv/b1J7QaqXan6u/VynqLJfqrtvEd92/uaS3XVvnmOhrf+A3LUKzDe/ThXbAmtHKJtcz1dVNhhz3R3ZUofN1w58jLRBYO+r2aWqjsTcSS2PrG/o7q2/9h3dr0emGYfsBgIsBwLoRCr139rrTnevoDbsZ64gmppjXPs+jO6rQ+VrTcd3pfHvg03uUehOZ2kL1dZMhfT/r1pXqbFN33UaSKu0d21a33+7v1N+0mLXX8Gl864cpsGmQESmSELcPSSPJcO3P9RPou6xTZ18vfVuFHs0/XdA5FQK8Nb36/aHRpLTev63proNsirHH6JuhzTxGQjRMfhv5boplkgDifzXyPS8A+HKU4o7jUzPNtu7vfb3laLC8yQ8g6q7T1PKatue3VKF7puF9Sg4C/jFVWe93ueYpG7y36vu9r/tY3/rNXldP+7xtVehytTm9qO9cB+DfE/T/vb3bn5fmvO8bso2+53ryhyp0NaJPBYoywzeSERPdFiiumf7n7Oysd7lLzXVwxc2YJmjKfVkyldpyklEtgCpldSJR76tOm6YmidF9V1YnJrXLtQog4qqAZ6nhz5/lBWzvrdCfMNVNcO74+fa60u2fa5fdkRjp9qmnrXY9IcEkJ3ybBht5wmcGxvZpy0DL7VP7PCA02/A+HY5U4FyQaU9OlZKy+kuhhEJSGPRYKd1uO5V1Cp2vG/5H9FR3Z/gNHgiB6us8df+J+o+r/6/+TytqihQB9ber811bZz8Aqre5o616vcb3dfTGVXS6oTa4T4ldFTjb2UG3f62wnGtWD0co0Pma4fEcjVDgUoD5EiND7IyRMGM/9N4FoDEaRfV2RpF0Y763E28TOhWqQI/Lhh+j06EKVNi30WMkSRASYM6Lfg5HKtD5uuHH6VBXBU6HWubfphNhCnTPNLxPJzspcMvFMn/3ksIV6HLV8D4ldVYg088y+3QsXIGuRvTpYrj+PMVSMdFtgdoTm8YK7BhS58uU+6rV2EXbjY30moNaJcGYP+lZPkDhw+MhlAoIOyWEQgKUyurHSgWESgmhUEDYKQCFsvq7UgmtsrqtdplQKAA7JYRSCSgk3b933QIy9X7WczzuXJ7w8ce4Z3u+wX06GeeDvk8/D6n2P0nS7bv2Z71tddul2/HUba+7rF67dPd1AeA/qreh2X/W4JOJqyO64rMRfwFwO5kAoDvpr1lw9+U16rbV+7nOfuq21U0ydN/rPNdXyo+g2Z9qcJ/Sh3bC6wP/0PyNzGiD8t/Q7L9gcJ+ujOiCz0f+VZdg2ins6iWfCoUCdlKdtprk1E6yg0JRJ0mt2V4hKUxW3XKVyz+g2fNvg/vU7qFH8Ndh800Sg6mt8vsHNHsN71On3z2BpDv6pBVaXYKuhRZV2ipd0l7bXiUaaauTMNf9qrvuXdvq7HuV3bvQ7D9n1OvptYFP6Nrq/l2r+x7Q2N+7xtZp8P5wt3008pzrzq7D7p4XMOZ4devdfqNrl+/qKcGnfTj+1P1RAGjRe3iDdY18D69t+7fqTaPex6+N7I6vxy7RG5MhfdAXU934G/ShkX7p2iUJa5LXYPe+jww+Rg8O+CMe6f7I7Q+47vjbUvshUt3HdT8Yq/sBV4M2PR+CQej/UKzuNrXfP1G9YdRxujwsEv+s8/6g729oo8vuPAdr8LDx9e98Xelbd53dv4z6e3t5eCQ+HPan6r8pNce+9meFVJ3U6/7m1Pk9qf0bpPu5dlvUtNf5WQEFINXsB4p6v39323Zd8IfQ7F9tcJ9CHp6Lo0Oerfc7V/ffrbF/T73nNPrWb8Z6jf1uLHF6Hpr9xwzu0/lBQc3fwAIw0W0BN7fqeZolJfqrhJaWVg/z1d5yyFz7smRFoT7A5RyDt8uO8sesp1eaPiATWDU9F5pfDT+R9XpgOmZEzmi9wIx0qsc92N0zxeCTiQFR9yCuXZx5gjRQZlEmdvdcaXCfhvW8H5PCJ5knSANdK7lmVJ8GRk1Av8B+5gnSQJP6PYL1PT/DqONVze7TnhglHuo32zwBGsGUfao9ydNpegZ6q0iJTsHunueNej3dH36/eYI00K3KW/h4zPtol1+FqCam/EoAkoOB1WMVeLLTfXgg8gGzxGiIE0a+j8d1H4coH/k+DL+bWV1nYeK4z9Auv6LZx+i/4+2xrdsseDp6miNEgx038jgNjp6I4UHDzROkgS7fumzU36bBPSZiWMdh5gnSQNMG/B7re641/H08Lh72Sj1Vly1ATNcR2N3zuMHHKSpysHkCNBHLnPdgJYKDgwEAV65c0bu8tr12PXPty5L1fvJVaAz8rdMogN5PLWudgExgUr9HsLdnzTVNTaxbu3xPjBL3WejJ+bSIaVg7zh7Jwc24Nha3TyamRkw1R3hGYZ+so0++Tr7InzfFoD4VPDkNvk6WeZ9CwDb7ZIu/e9MipkE4qPD6TCV+6SU1+ndKowB+6SXh9QeVEPYqi+2TLR4jXydfTOw6xaBjdG/XqXwtmZkt9onv49ZxnPRhotsCMTExAICkpCS9y2vbe/bsadZ9WbIusSNwLsoRQPOTwpQoJ3TpZZmf8gG29wZoiycT7JN19AkA/m/IAvz8TFyz+vTTs3H48+C/mTdAI9han2zxd8/XyReTwydDrZLw6QQlnnxGia+GK3AiVML59sCJUAlfDVfgyWeU+HSCEmo7CVM6T7HYPtniMQKAl+NeRkzHfs06RjEd+uHluJflDvmubPE42WKfAL6PW8txupMkjLn4kwAAlZWV8Pf3x82bN5GUlNTgXroxMTE4efIkDh06hH797j5V8Nq1a+jYsSPs7OyQmZkJf39/3bKKigoEBQUhLy8PV69eRWBgYIvibsmNl02hIOcqDs4ai7ArTf/qpXeUMGj9Dnj6tDNDZMYr15Tj2W1/RPS6wxh5UuidxqxRVE/7OPm7fvhw4r/hoHQwf6DNVK4px5O/PokjN47Ao0Rg1AmB7pcEnCoFyuwlnAmRsDNGwk0XCX0D+uLjsR9bdH8A9sla+gRU9+vNw29i5/FNGH5c3aBPe3qpMKrXVLwc97JV9AewvT7Z4u9e3T41xRr6ZIvHCLj9Wtp8YTM02obl9O0UdpjSeQpfSzKyxT4BfB+X6zi1JG9hottCCxYswGuvvYZBgwZh+/btuurI7777Ll588UUMGTIE+/bt063/z3/+E//85z8xdepULF++vN6+Zs+ejS+//BIPPPAAvv76a9jZVV9C/fzzz+P999/H7NmzsXbt2hbHLHeiC1Qnu78+NQldk8saTQpTopww9uMfLD7JrWWLb4C2dDIBsE/W0qdauWW52JS6CYevH0aJpgQudi7oF9gPUyOs71PlWrbUJ1v83bO1Ptlaf+ria8my2WKfavF3z7yY6MqovLwcI0aMQGJiItq1a4ehQ4fi0qVLSExMhI+PDxISEtC58+1bKy9ZsgRLly5FfHw8Vq9eXW9fubm5GDBggO4+t3379kVycjJOnz6N8PBwJCQkwNe35S8gS0h0a507vhdJ/1oIt4xcqNQCapWEolBf9H5qmUVPV74bW3oDBGyvPwD7RGRKtvi7Z2t9srX+2CpbPE622CdbZMnHiYmuzMrKyrB8+XKsW7cOmZmZ8PLywj333INly5YhKKh+Ge67JboAUFBQgMWLF2Pz5s24ceMGAgICMHnyZCxduhTe3t4mideSEl0iIiIiIiJ9mOiSQdzc3KBWqxEeHi53KERERERERHqlpaVBpVKhqKjI4G1ZdbkNcnFxgUqlkjuMetLS0pCWliZ3GCZla32ytf4A7JO1YJ+sA/tk+WytPwD7ZC3YJ+tgiX1SqVS6GkiG4oguWQRbnE5ta32ytf4A7JO1YJ+sA/tk+WytPwD7ZC3YJ+tga33iiC4RERERERHZFCa6REREREREZFOY6BIREREREZFNYaJLRERERERENoWJLhEREREREdkUVl0mIiIiIiIim8IRXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvCRJeIiIiIiIhsChNdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbIqd3AGQ+QUGBqKkpATBwcFyh0JERERERKTX5cuX4eLiguvXrxu8LUd026CSkhKo1Wq5wyAiIiIiImqUWq1GSUmJUdtyRLcNqh3JTU5OljkSIiIiIiIi/aKioozeliO6REREREREZFM4okuyyimqwPrDl5GYno/iCg1cHewwoJMPZvYNgp+bg9zhERERERGRFWKiS7IoV1dh6dZkbDx6BeoqUW/ZvtRcrPz1PKb3CcLiSd3hqFLKFCUREREREVkjJrpkduXqKsR/fgiJ6fmNrqOuEvjq0GVczCnGmrlxTHaJiIiIiKjZeI1uG1FYWIiMjAxkZGRArVZDq9XKFsvSrcl3TXLrSkzPx9KtZ1o5IiIiIiIisiVMdNuIlStXIiwsDGFhYUhNTUVeXp4scWQXlWPj0SsGbbPxaCZyiipaKSIiIiIiIrI1THTbiPnz5yM9PR3p6emIiIiAj4+PLHFsOJzZ4JrcpqirBDYcyWyliIiIiIiIyNYw0W0jPD09ERoaitDQUKhUKigU8hz65k5ZvlPCRXlGoImIiIiIyPow0SWzKq7QmHU7IiIiIiJqe5joklm5OhhX6NvY7YiIiIiIqO1hoktm1T/M26jtBnSS55piIiIiIiKyPkx0yaxm9guCSikZtI1KKWFm36BWioiIiIiIiGwNE10yK383R0zv09Ggbab3CYKfm0MrRURERERERLaGiS6Z3eJJUc2ewtwv1AuLJ3Vv5YiIiIiIiMiWMNEls3NUKbFmbhxmxQU3OY25X6g3HFVKM0VGRERERES2QBJCCLmDIPOKiooCACQnJ8scCZBTVIENRzKRcDEPxRUauDrYoVxdhcMZBQAAezsFfvnTMIT4uMgcKRERERERmVNL8hYmum2QJSW6+hRXaDB6xW7cuFUBABjd1R+fzeknc1RERERERGROLclbOHWZLI6rgx1emdhN93hHSjZ2nL0hY0RERERERGRNmOiSRbo/pn29glVLt55BubpKxoiIiIiIiMhaMNEliyRJEl6d3ANKRXWxqsv5pfhkz0WZoyIiIiIiImvARLeNKCwsREZGBjIyMqBWq6HVauUOqUldAt0wZ1Co7vG/dl9AZn6pfAEREREREZFVYKLbRqxcuRJhYWEICwtDamoq8vLy5A6pWeaPiYCfmwMAoEKjxavfn5E5IiIiIiIisnRMdNuI+fPnIz09Henp6YiIiICPj4/cITWLm6MKr0zsqnv8y5kb2HUuW8aIiIiIiIjI0jHRbSM8PT0RGhqK0NBQqFQqKBTWc+in9OqAuNA6han+l4wKDQtTERERERGRftaT7VCbJUkSlk6O0hWmysgrxad7WZiKiIiIiIj0Y6JLVqFbO3c8MiBE9/ifuy7gSgELUxERERERUUNMdMlq/GlsJHxd7QEA5Wot/v79WZkjIiIiIiIiS8REl6yGh5MKf53QTff4p+Tr2Hs+R8aIiIiIiIjIEjHRJasyrXcH9A3x0j1ewsJURERERER0Bya6ZFUkScKrk3ugpi4VLuaW4LP96fIGRUREREREFoWJLlmd7u3rF6b6YMcFZBWWyRgRERERERFZEia6ZJVeGNcFPi7VhanK1FV47QcWpiIiIiIiompMdMkqeTip8JcJXXWPfzh1DftTc2WMiIiIiIiILAUTXbJa03t3RGywp+7x4v+dRqVGK19ARERERERkEZjoktVSKCQsm9wDUk1hqrScEqz6jYWpiIiIiIjaOia6ZNV6dPDA7/oH6x6/tyMV12+WyxgRERERERHJjYkuWb2XxnWBl7MKAFBaWYXXtrEwFRERERFRW8ZEl6yep7M9/nLP7cJUW09k4UAaC1MREREREbVVTHTJJszsG4SYIE/d48VbkqGuYmEqIiIiIqK2iIku2YTqwlRRusJUqdnFWHMgQ9aYiIiIiIhIHkx0LdTevXsxefJkhISEQJIkLFmyRO6QLF7Pjp54qN/twlQrf01F9i0WpiIiIiIiamuY6Fqo4uJidO/eHW+99RYCAwPlDsdq/Hl8F3jWFKYqrtDgdRamIiIiIiJqc5joAjh69CjeeOMNTJs2DR06dIAkSXB0dGxyu/LycixevBiRkZFwdHRE+/btMXfuXFy5cqXFMU2cOBHLly/Hgw8+CAcHhxbvr63wcrHH/43vonu8+XgWEi/myRgRERERERGZGxNdAMuWLcNf//pXbNq0CVlZWc3apry8HKNHj8arr76K4uJiTJ48GUFBQVi1ahV69+6NtLS0Vo6aGvNQv2BEd/DQPV78v2RoWJiKiIiIiKjNsJM7AEswcOBAxMTEoF+/fujXr1+zpgq//vrrOHDgAAYOHIjt27fD1dUVAPDuu+/ixRdfxNy5c7Fnzx7d+vn5+cjPz7/rPt3d3eHv79+yzhCUCgmvTo7C1H8dAACkXC/CFwcvYe6QMJkjIyIiIiIic2CiC+Avf/mLQeur1Wp88MEHAIAPP/xQl+QCwAsvvIA1a9Zg7969OHr0KPr06QMAeP/997F06dK77jc+Ph6rV682LHjSKzbYCw/2DcL6I5kAgH/8ch73xbSDv1vTU9KJiIiIiMi6ceqyEfbv34/CwkKEh4cjNja2wfLp06cDALZu3aprW7RoEdRq9V2/Pv/8c7P1oS348z1d4O5Y/VlOUYUGb/yYInNERERERERkDhzRNcKJEycAAL1799a7vLa9dj0AUCgUUCjM+7lCVFSU3va0tDSEh4ebNRY5+Lg64P/Gd8HCLckAgO+SruLhuGD0DfWWOTIiIiIiImpNHNE1wuXLlwEAHTt21Lu8tr12PWMUFxfj+PHjOH78OCorK3H9+nUcP34cZ86cMXqfbdHD/UMQ1d5d93jhFhamIiIiIiKydRzRNUJxcTEAwNnZWe9yFxeXeusZ48iRIxg5cqTu8SeffIJPPvkEISEhyMjIaNY+kpOT9bY3NtJri6oLU/XAAx9VF6Y6e+0Wvky8jPhBofIGRkRERERErYYjukYQQgAAJEm66/KWGDFiBIQQDb6am+TSbX1CvDC9z+3R93e2n0NucYWMERERERERUWtiomsENzc3AEBJSYne5aWlpQBQrxqz3AoLC5GRkYGMjAyo1WpotW1r+u7LE7rCrbYwVbkGb7IwFRERERGRzWKia4Tg4GAAwJUrV/Qur22vXc8SrFy5EmFhYQgLC0Nqairy8vLkDsmsfF0d8OLYSN3jb45ewdFLBTJGRERERERErYWJrhFiYmIAAElJSXqX17b37NnTbDE1Zf78+UhPT0d6ejoiIiLg4+Mjd0hmN3tACLoGuukeL/7faVRpWz7NnIiIiIiILAsTXSMMHjwYHh4eSEtLw7Fjxxos37hxIwDgvvvuM3dojfL09ERoaChCQ0OhUqnMfqsjS2CnVGDZlB66x6ev3sK6Q8ZXxiYiIiIiIsvU9rIdE7C3t8czzzwDAHjmmWfqXav77rvv4uTJkxgyZAj69esnV4jUiH6h3pgW20H3+J2fzyG/pFLGiIiIiIiIyNR4eyEAP/zwA5YtW1avrbKyEgMGDNA9XrhwIe69917d4wULFuDXX3/FgQMHEBERgaFDh+LSpUtITEyEj48PVq1aZbb4m6OwsBCFhYUAALVaDaVSKW9AMnp5Ylf8cuYGiio0uFmmxls/peCNByxnmjkREREREbWM2RPdL774wuT77NWrV4uuh83JyUFiYmK9NiFEvbacnJx6yx0dHbFr1y4sX74c69atw+bNm+Hl5YX4+HgsW7YMQUFBRsfTGlauXImlS5fqHvv5+ckYjbz83Rwxf2wkln1/BgCw/kgmHooLRq8gT3kDIyIiIiIik5CEKW76agCFQtHo/WcNJYSAJElYvHgxFi1aZJJ92qq6I7rjxo2DUqnE2bNn5Q1KRpoqLe59fz/O3SgCAPTs6IFNTw2GUmGa300iIiIiImqZqKgoAEBycrLB25p9RLc1pvT26tXL5Pu0NZ6envD09AQAqFQqeYOxAHZKBV6dHIUH/50AADh55SbWH87Ew/0t55ZQRERERERkHLMnuvHx8eZ+SiK9+nfyweRe7bHleBYA4K2fUzChRyC8XOxljoyIiIiIiFqCVZfbiMLCQmRkZCAjIwNqtRparVbukCzCKxO7wcW+ujBXYakab28/J3NERERERETUUhad6C5btsziqhdbq5UrVyIsLAxhYWFITU1FXl6e3CFZhAB3R8wfE6l7/NWhyzh5pVC+gIiIiIiIqMUsOtH9z3/+o7d68ebNm7Fv3z4ZIrJe8+fPR3p6OtLT0xEREQEfHx+5Q7IYcwaHIsLfFQAgBLBoSzK0WrPWaCMiIiIiIhOy6ET3+vXr6Ny5c4N2SZLw0ksvyRCR9fL09ERoaChCQ0OhUqmgUFj0oTcrlVKBpZOjdI+PZxbim6OZMkZEREREREQtYdHZTvv27XH+/PkG7dHR0W361jhkeoPCfXFfz3a6x2/+dA6FpZUyRkRERERERMay6ER3ypQpWLp0KTQaTb32mzdvws7O7AWjycb97d5ucK4pTJVfUokV2xt+yEJERERERJbPohPdJUuWoKCgAIMGDcJPP/2kqxy8YMEC9O3bV+7wrAqrLjetnYcTnhsdoXv8ZeIlnL56U8aIiIiIiIjIGBad6Hp4eGD//v3o3Lkz7rvvPvj4+CA8PBxJSUl466235A7PqrDqcvPMHRyGcD8XAIBWAIu2nGZhKiIiIiIiKyMJIaziLD4nJwfHjh2Dvb09+vTpAzc3N7lDsiqFhYUoLCwEAIwbNw5KpZLXOTdif2ouZn+WqHv89vSemNG3YfVvIiIiIiJqPVFR1QVjk5OTDd7W4i901Wq1SElJQUVFBYYNGwZHR0e5Q7JKnp6e8PT0BACoVCp5g7FwQyJ8MTE6ENtOXQcAvPFjCsZFBcLDif9uRERERETWwKKnLl+8eBE9e/ZEjx490KdPH3h5eeGRRx7B9evX5Q6NbNyCe7vDSVVdmCqvpBL/+IWFqYiIiIiIrIVFJ7rPPvssQkJCcOLECZw9exZffPEFzp8/j8GDByM3N1fu8MiGtfd0wjOjbt/D+YuDGTiTdUvGiIiIiIiIqLks+hpdT09PJCQkoGvXrro2IQSmT58OPz8/fPzxxzJGZ71aMte9LanQVOGelfuQnlsCAOgX6oUNfxwISZJkjoyIiIiIyPa1JG+x6BFdBweHBvfQlSQJCxYswJYtW2SKyjrx9kKGc7BTYsn9UbrHhzMKsOnYVRkjIiIiIiKi5rDoRHfixIl45513GrS7uLigpKREhoisF28vZJzhkX4YHxWge/z6thTcKlfLGBERERERETXFohPd1157Db/88gvuu+8+7NmzB/n5+cjMzMSSJUvQu3dvucOzKvPnz0d6ejrS09MREREBHx8fuUOyGgvv6w5HVfVLJbe4Ait/SZU5IiIiIiIiuhuLTnTbt2+Pffv2obKyEiNHjoSfnx9CQ0Oxf/9+vPfee3KHZ1U8PT0RGhqK0NBQqFQqKBQWfegtSkcvZzw94nZhqjUHM5BynYWpiIiIiIgslcVnO506dcL27dtx6dIlfP/999izZw/OnTuHmJgYuUOjNuSJYZ0Q4uMMAKjSCizakgwLruNGRERERNSm2ckdwJ1CQkLQp08f9O7dW/cVGBiIoKAgBAUFyR0etVGOKiWWTIrCY6sPAwAOpefjfyeyMLlXB5kjIyIiIiKiO1nciO6LL74IDw8PfPPNN5gyZQo6dOiADh06YNKkSVi8eDG2bNmCzMxMucOkNmhkV3+M6Xa7MNVrP5xFEQtTERERERFZHIu+j25FRQVOnjyJpKQkHD16FElJSTh9+jQqKyvh6+uL7OxsuUO0SryPrvEy80sx5t09qNBU357piaFh+Nu93WWOioiIiIjI9rQkb7G4qct1OTg4oF+/fujXr5+uTaPR4NSpUzh27JiMkVFbFeTtjCdHhGPlr9WVl1f9loGZfYMQEeAmc2RERERERFTL4qYuN8XOzg6xsbGYO3eu3KFYlcLCQmRkZCAjIwNqtRparVbukKzWvOHhCPJ2AgBoWJiKiIiIiMjiWNSI7uHDh5Genq53Wa9evRAZGWnmiGzHypUrsXTpUt1jPz8/GaOxbo4qJRbfF4XHvzgCADh4MQ/fn7yGSTHtZY6MiIiIiIgAGa7RFUIgNjYW6enp2L17N2JjY3XLHnvsMXzxxRd6t+vRoweOHz8OSZLMFapNKSwsRGFhIQBg3LhxUCqVOHv2rLxBWbm5qw9jZ0r1deKB7o7Y8eJwuDhY1GdHRERERERWy6qu0f3hhx9w8uRJPPfcc/WS3FpCCMTHx9drO3/+PBISEvDjjz9i4sSJ5grVpnh6esLT0xMAoFKp5A3GRiye1B37L+SiUqPF9VvleH9nKv46oZvcYRERERERtXlmT3S/++47SJKEF154Qe9ySZKwatWqem2XLl1CeHg4vvnmGya6ZDFCfFwwb1gnvL/zAgDgs33pmNEnCJ39XWWOjIiIiIiobTN7MarExERERUUhODi42duEhIQgNjYWhw4dasXIiAz35IjO6OB5uzDVkv+xMBURERERkdzMPqKbmZmJsWPH6l0mhGg0SejYsSN27tzZmqERGczJXolFk7rjj2uPAgD2X8jF+sOZyC2uQGJ6PoorNHB1sMOATj6Y2TcIfm4OMkdMRERERGT7zJ7oVlRUwNHRUe+y1atXY/Xq1XqXOTk5oaKiohUjIzLOuO4BGB7phz3ncwAAL393qsE6+1JzsfLX85jeJwiLJ3WHo0pp7jCJiIiIiNoMs09d9vHxQVZWlsHbZWVlwcvLqxUiImoZSZLw1wld0VQ9cHWVwFeHLiP+80MoV1eZJTYiIiIiorbI7IludHQ0Dh06hJKSkmZvU1xcjEOHDqFHjx6tGBmR8dYczEBzr8xNTM/H0q1nWjUeIiIiIqK2zOyJ7n333YeysjIsX7682du8/vrrqKiowKRJk1oxMiLjZBeVY+PRKwZts/FoJnKKOBWfiIiIiKg1mD3Rffzxx9GuXTu88cYbePvtt5tc/80338Sbb76JgIAAPPHEE2aIkMgwGw5nQl1lWKVldZXAhiOZrRQREREREVHbZvZiVE5OTti4cSNGjx6Nl19+GR999BGmT5+O2NhY+Pr6QpIk5ObmIikpCRs3bsSlS5dgb2+PjRs3wsnJydzh2ozCwkIUFhYCANRqNZRKFkMylcT0fKO2S7iYh6dHdjZxNEREREREZPZEFwAGDhyIAwcOYPbs2Thz5gxWrFihdz0hBLp164a1a9eid+/eZo7StqxcuRJLly7VPfbz85MxGttSXKEx63ZERERERHR3siS6ANCrVy+cPn0a27Ztw48//ogTJ04gNzcXQgj4+voiJiYGEyZMwMSJEyFJTdWzpabMnz8fc+bMAQCMGzeOI7om5Opg3MvI2O2IiIiIiOjuZD/TnjhxIiZOnCh3GDbP09MTnp6eAACVSiVvMDamf5g39qXmGrzdgE4+rRANERERERGZvRgVka2Z2S8IKqXhsw7Sc0pwq1zdChEREREREbVtFpnobtmyBa+++qrcYRA1i7+bI6b36WjwdhuTrmD0ij3434ksCGFY1WYiIiIiImqcRSa6mzdvrlc4icjSLZ4Uhf5h3s1a11F1+2WXU1SB5746hkc/P4SM3JLWCo+IiIiIqE2xyESXyNo4qpRYMzcOs+KCG53GrFJKmBUXjMOvjMH/je8CB7vbL799qbkYt3IvPtiRigpNlbnCJiIiIiKySbIXoyKyFY4qJZZPi8YLYyOx4UgmEi7mobhCA1cHOwzo5IOZfYPg5+YAAHh6ZGfc17MdFm5Jxt7zOQCASo0WK345j03Hr+K1KdEYGM5iVURERERExmCiS2Rifm4OeHpkZzw9svNd1wvxccGax/rhh1PX8OrWM8guqgAAXMwpwaxPEzCtdwf8bWI3+Lg6mCNsIiIiIiKbYZFTl4UQLM5DbYIkSbivZ3v8+uJwxA8MQd1bRn+XdBWjVuzB14cuQ6vl64GIiIiIqLkkwYyyzYmKigIAJCcnyxwJ3enklUK8sukUTl+9Va+9b4gXXpsajS6BbjJFRkRERERkXi3JWyxyRJeorerZ0RObnxqMxZO6w9Xh9pUFRy4V4N739+GNH1NQWqmRMUIiIiIiIstn8SO6P/30E/bu3QshBPr27Yt7770Xjo6Ocodl1Tiiax2u3yzH0q3J+PH09XrtHTydsGxKFEZ1DZApMiIiIiKi1mezI7pLlizBxIkT8c0332Dr1q2YNWsWOnfujJ9//lnu0IhaXaCHIz6a3Qefz+mLjl5OuvarhWWYu/oI5q09ims3y2SMkIiIiIjIMll0ovvxxx/jzTffRGpqKk6fPo3c3Fz8/ve/x+TJk5GYmCh3eERmMaprAH7503A8OSIcdorb1ap+Sr6OMSv24LP96dBUaWWMkIiIiIjIslj01GU3NzecOnUKoaGh9dqXL1+OLVu2ICEhQZ7ArFBhYSEKCwsBAOPGjYNSqcTZs2flDYoMdu56Ef626RSOXCqo1x7V3h2vT41GTJCnPIEREREREZmYzU5dHjRoEA4ePNigfdasWThx4oQMEVmvlStXIiwsDGFhYUhNTUVeXp7cIZERugS6YcMfB+LNB6Lh6azStSdn3cKUf/2GRVtO41a5WsYIiYiIiIjkZ9GJ7tChQ/Hcc89hz5499drPnj2L4OBgmaKyTvPnz0d6ejrS09MREREBHx8fuUMiIykUEh7sF4wdLwzHA7076tqFAL44eAmjV+zB1hNZvBc1EREREbVZFj112cnJCRUVFZAkCXFxcejTpw+0Wi22bduGzz77DKNHj5Y7RKvEqsu25WBaHhZsPoW0nJJ67cMi/bBschRCfFxkioyIiIiIyHgtyVssOtHVaDRITk5GUlKS7uvEiRMoLS2Fj48PYmNj0atXL8TGxmLWrFlyh2s1mOjangpNFT7dexEf7LyACs3twlQOdgo8M7Iz/jC8ExzslDJGSERERERkGJtNdPXRarVISUlpkPwWFBQ0vTEBYKJryy7llWDB5tPYl5pbrz3czwWvTY3GgE6csk5ERERE1sGmE93c3FzcuHEDISEhcHV1lTscm8BE17YJIfD9yWt49fszyCmqqLfsgd4d8crErvBxdZApOiIiIiKi5rHZqssrVqxAu3bt0LNnT3h6eqJr16743e9+h3fffRd79+6VOzwiiyRJEibFtMeOF4fj0YEhkG7fehffJl3B6Hf3YP3hy9BqLfozLiIiIiIio1n0iK6vry/mzZuHuXPnIi0tDceOHUNSUhKOHTuGtLQ0aDQauUO0ShzRbVtOZBbilU2nkJx1q157v1AvvDY1GpEBbjJFRkRERETUOJuduuzv74/ExESEhYU1WFZcXMypzEZiotv2aKq0+OLgJazYfg4llVW6djuFhCeGdcJzoyLgZM9iVURERERkOWx26vJDDz2E3bt3613GJJeo+eyUCswdEoZfXxyOCT0Cde0arcBHu9Mw9h97sCslW8YIiYiIiIhMx6JHdIuLizFjxgw8+eSTuP/+++UOx2ZwRJd2ptzAws3JuFpYVq99Qo9ALJ4UhUAPR11bTlEF1h++jMT0fBRXaODqYIcBnXwws28Q/NxY1IqIiIiIWofNTl3esGED5s2bh5s3byIwMBADBw5Enz59dF8+PrxVijGY6BIAlFZq8P6OC/jPvovQ1ClM5WKvxIvjumBm3454bdtZbDx6Beqqhm8TKqWE6X2CsHhSdziqOO2ZiIiIiEzLZhPdDh06YPDgwZg9ezYuXbqEo0eP4ujRo0hJSYFWq0VVVVXTO6EGmOhSXSnXb2HBptM4cqn+vaid7ZUorWz6NdY/zBtr5sYx2SUiIiIik7LZRNfd3R0nTpxoUIyqrKwMx48fx8CBA2WKzLox0aU7abUCG45kYvmPKbhZpjZ4+1lxwVg+LboVIiMiIiKitspmi1FNmDABJ0+ebNDu5OTEJJfIhBQKCQ/FBWPni8Nxb3Q7g7ffeDQTOUUVrRAZEREREZHhLDrRHTVqFBYtWoSzZ8/KHQpRm+Dj6oBu7Qy/r666qnpEmIiIiIjIEtjJHcDdPPPMM6iqqkLPnj0xZMgQDB48WFeIKjg4WO7wiGxSYnq+UdslXMzD0yM7mzgaIiIiIiLDWXSiW1RUhBMnTiApKQlJSUn48ccf8c4776CyshI+Pj7IycmRO0Qim1NcoTFqu8JSw6/tJSIiIiJqDRad6Do6OqJ///7o37+/rk2j0eDkyZM4fvy4fIER2TBXB+PeFk5fvYnHVh3ClNgOGNs9AM72Fv32QkREREQ2zOKu0Y2OjsatW7cAAD/99BOys7PrLbezs0Pv3r0xd+5cOcIzm1WrVmHkyJHw8/ODm5sb+vTpgy+//FLusKgN6B/mbdR2AsCuczl4/uvj6Pv3XzH/62PYdS4b6iqtaQMkIiIiImqCxQ25zJo1C5IkAQAmTZoErVaLdu3aoXfv3vW+OnbsKHOkrWvHjh24//778dZbb8HLywubNm3CI488Ajs7Ozz44INyh0c2bGa/ILy3IxXqKuPvPFZaWYXNx7Ow+XgWfFzscW/PdpjcqwN6B3vqXt9ERERERK3Fou+jW15eXu8a3aSkJCQnJ6OyshK+vr4NRnuNdfToUfzyyy84dOgQEhMTkZWVBQcHB5SXlzcZ3/Lly/HVV1/h8uXL8Pb2xj333INXX321VRLxiRMnwsnJCd9++22L9sP76FJT/vrdSXx1qPlVlB/qF4T7Y9pj8/Gr+PHUdRQ1cp1vsLczJvdqj8m9OqCzv6upwiUiIiIiG9SSvMWiE1196l6ja6rpy1OmTMGWLVvqtTWV6JaXl2P06NE4cOAA2rVrh6FDhyIjIwOHDh2Cn58fDh48iPDwcJPEV2vQoEGIjo7GJ5980qL9MNGlppSrqxD/+aFmVWDuH+aNNXPj4KhS6rbdlZKNzcevYldKDiobmbrco4M7pvTqgEkx7RHg7mjS+ImIiIjI+rWpRLc1vPnmmygtLUW/fv3Qr18/BAYGNpnoLlq0CMuWLcPAgQOxfft2uLpWj069++67ePHFFzFs2DDs2bNHt35+fj7y8++eNLi7u8Pf31/vsjVr1uCJJ55AQkICevfubUQvb2OiS81Rrq7C0q1nsPFopt5pzCqlhOl9grB4Unddknunm6Vq/Hj6GjYfv4rE9Hzoe7eRJGBQuA8m9+qAe3oEwt1RZequEBEREZEVsplE9/Dhw0hPT9e7rFevXoiMjDRLHJIk3TXRVavV8Pf3R2FhIZKSkhAbG1tveUxMDE6ePIkjR46gT58+AIAlS5Zg6dKld33e+Ph4rF69ukH7li1b8OCDD+Kjjz7CY489Zlyn6mCiS4bIKarAhiOZSLiYh+IKDVwd7DCgkw9m9g2Cn5tDs/dz7WYZtp7IwuZjWThz7ZbedeztFBjTzR+Te3XAiC5+cLDTn0ATERERke2zqkRXCIHY2Fikp6dj9+7d9ZLExx57DF988YXe7Xr06IHjx4+bpZBNU4nurl27MGrUKISHh+PChQsNli9btgyLFi3C4sWLsWTJEgCAVquFVnv36rMKhQIKRf1C2F9//TXmzJmDjz/+GHPmzDGqP3dioktyS71RhM3Hr2LL8SxcKSjTu467ox0mRlcXseof5g2FgkWsiIiIiNqSluQtZq+6/MMPP+DkyZN47rnnGoyEAtWJcHx8fL228+fPIyEhAT/++CMmTpxorlAbdeLECQBodApxbXvteoD+JLYpn376KZ599lmsXr0aDz30kMFx1v5i3CktLc3k1w8TGSIiwA3/N74rXhrXBUcvFWDz8av44eQ1FJSqdevcKtfg68OZ+PpwJtp5OOL+mOoiVt3aubFyMxERERHdldkT3e+++w6SJOGFF17Qu1ySJKxatape26VLlxAeHo5vvvnGIhLdy5cvA0CjlZVr22vXM8a7776LP//5z/jwww8xYsQIXL9+HQCgVCrh5+dn9H6JLIkkSegb6o2+od5YPCkKe8/nYMvxLGw/cx3l6tszIK7dLMcney/ik70XERngism9OmByr/bo6OUsY/REREREZKnMnugmJiYiKioKwcHBzd4mJCQEsbGxOHToUCtG1nzFxcUAAGdn/SfZLi4u9dYzxvvvv4+qqirMmzcP8+bN07WHhIQgIyOjWftobIi/sZFeIjmplAqM7haA0d0CUFKhwfYz17H5WBb2X8hFlfb2FRbnbxTj7Z/P4e2fz6FfqBcm9+qAe6PbwcvFXsboiYiIiMiSmD3RzczMxNixY/UuE0KgsUuGO3bsiJ07d7ZmaM1WG2Nj0ydNcdlzc5NZIlvk4mCHqbEdMTW2I3KKKvDDySxsPp6F45mF9dY7nFGAwxkFWPK/ZIzo4of7e3XA2G4BcLK/exGrnKIKrD98GYnp+S0qsEVERERElsnsiW5FRQUcHfXfM3P16tV6qw4DgJOTEyoqKloxsuZzc3MDAJSUlOhdXlpaCgC6Ww5ZgsLCQhQWFgKorhqtVLKaLVkHPzcHzBkchjmDw5CRW4Itx7Ow5fhVXMy9/frTaAV+PZuNX89mw8VeifFRgZgc2wGDw31gp7x9bXz1LZOSsfHolQa3TNqXmouVv55v8pZJRERERGT5zJ7o+vj4ICsry+DtsrKy4OXl1QoRGa522vWVK1f0Lq9tN2R6dmtbuXJlvdsb8Tpfskahvi54fkwEnhvdGaev3sLm41fxvxNZyCm6/SFYSWUVvjt2Fd8duwpfVwfc17MdpsR2QJcAV8xZdRiJ6Y3fz1pdJfDVocu4mFOMNXPjmOwSERERWSmzJ7rR0dHYv38/SkpKdNeyNqW4uBiHDh3C4MGDWzm65omJiQEAJCUl6V1e296zZ0+zxdSU+fPn625PNG7cOI7oklWTJAnRHT0Q3dEDr0zshoNpedh8/Cp+On0dxRUa3Xq5xRVYfSADqw9kwM3BDkV1lt1NYno+lm49g+XTolurC0RERETUigy7340J3HfffSgrK8Py5cubvc3rr7+OiooKTJo0qRUja77BgwfDw8MDaWlpOHbsWIPlGzduBFDdV0vh6emJ0NBQhIaGQqVSGXyrIyJLpVRIGBLhi3dmxODIgjH48OHeGNs9ACpl/Wvom5vk1tp4NLPeSDERERERWQ+zZzuPP/442rVrhzfeeANvv/12k+u/+eabePPNNxEQEIAnnnjCDBE2zd7eHs888wwA4Jlnnql3re67776LkydPYsiQIejXr59cIRK1SY4qJe7t2Q6fPtoXh/82BsunRaN/mLdR+1JXCWw4kmniCImIiIjIHCRhihLBBjp48CBGjx6NiooKhISEYPr06YiNjYWvry8kSUJubi6SkpKwceNGXLp0Cfb29tixYwcGDRrUKvH88MMPWLZsme5xYmIiJElCXFycrm3hwoW49957dY/Ly8sxYsQIJCYmol27dhg6dCguXbqExMRE+Pj4ICEhAZ07d26VeI1RtxhV7dTls2fPyhsUkZnM+PgADmcUGLxdRy8nvDA2EpEBbgj3c22ymjMRERERmU7tbVEbu23q3Zj9Gl0AGDhwIA4cOIDZs2fjzJkzWLFihd71hBDo1q0b1q5di969e7daPDk5OUhMTGzw3HXbcnJy6i13dHTErl27sHz5cqxbtw6bN2+Gl5cX4uPjsWzZMgQFBbVavMZgMSpqyzRa4z7Pu1JQhhc2nAAASBIQ5OWMCH9XRAS41Xx3RWd/Vzjby/JWSkRERESNkGVEt65t27bhxx9/xIkTJ5CbmwshBHx9fRETE4MJEyZg4sSJjd6vlpqPI7rUlj3yWSL2pea22v47ejkhUpf8Vn/v7O8KFwcmwERERETGasmIruyJLplfS35hiKzRP3em4p3t5w3erls7NygkCReyi1Gh0Rq8fQdPJ0QEuCIywA2d/W9/d22FBDinqALrD19GYno+iis0cHWww4BOPpjZNwh+bg4mfz4iIiKi1sZElwzCRJfamuyicgx+YyfUVc1/u1MpJRx4eTT83BxQpRW4UlCK8zeKkZpdhNSa7xeyi1GuNjwBbu/hqBv5jQxwQ+cAV0T4u8LNUWXwvsrVVVi6NRkbj17R2z+VUsL0PkFYPKk77wtMREREVsXqrtEl86s7dVmtVvM+utSm+Ls5YnqfjvjqUPOrKE/vc3skVKmQEOLjghAfF4ztHqBbR6sVuFJQhtTsonpJ8IXsYpSpqxrdd9bNcmTdLMee8/Wv/W/n4agb+dVNgw5whXsjCXC5ugrxnx9CYnp+o8+lrhL46tBlXMwpxpq5cUx2iYiIqE0w+4juF198YfJ99urVCz179jT5fm3JkiVLGhSjys7OljEiIvNqTlJYq3+Yd4uSQq1W4GphmS7xPX+jGBeyi5CaXYzSysYT4MYEujvqCl/pkmB/N7zx01mDkvdZccFYPi3a4OcnIiIikoNVTV1WKBQmKy4lhIAkSVi8eDEWLVpkkn3aKhajIqqd5nsGG49myjLNV6sVyLpZppv6nHqjGOezi3HhRhFKjEiADVV3OjYRERGRpbOqRHfNmjUm32evXr0QExNj8v3aKl6jS21dTlEFNhzJRMLFPIso3CSEQNbNcqTeuH39b2p2MVJvFKO4QmPS5/q/8V3w9EjLucc3ERERUWOsKtEl+THRJbIOQghcv1Veff3vjeriV+drkuEiIxPgoRG+WPv7/iaOlIiIiMj0WIyKiMgGSZKEdh5OaOfhhOGRfrp2IQQmfbAfp7NuGbzPwxn5eOPHFIzu5o/YIE/YKRWmDJmIiIjIIjDRbSNYdZnIdkiSBC8Xe6O2LVdr8fGeNHy8Jw2eziqMiPTDqG4BGB7hBw9nw29vRERERGSJmOi2EStXrmxQdZmIrFf/MG/sS81t0T4KS9XYfDwLm49nQamQ0DfEC6O7+WNU1wCE+7mYrHAgERERkbnxGt02glWXiWxLdlE5Br+xU2/16MbYKSQ8NzoCh9LzkZied9dtQ3ycMaqrP0Z3DUBcmDfs7TjFmYiIiMyL1+hSkzw9PeHp6QkAUKk4PZHI2vm7OWJ6n44G3Ud3Rt8gPDc6AgBQVK7G/tRc7EjJxu5z2cgtrqy37qW8Uqz6LQOrfsuAi70SQyP8MKqbP0Z28eftiVogp6gC6w9fRmJ6vkVU/CayVnwtEVFTOKLbBrHqMpFtKFdXIf7zQ0hMz29y3f5h3lgzN07v/YG1WoGTV29i59kb2JGSjeQmilzFBHlidFd/jOrqj6j27pzi3AzV93BOxsajV2S5h3NrYsJB5mTLryUiaoi3FyKDMNElsh3VJ31nsPFopslO+q7dLMOulBzsTLmB/RdyUa7WNrpuoLsjRnb1x+iu/hjc2RdO9jyxvJOpPpCwNEw4yNxs9bVERI1joksGYaJLZHtyiiqw4UgmEi7mmXRUrVxdhYNpediRcgM7z2Yj62Z5o+s62CkwKNwHo7oFYFRXf3TwdDL6eW3JX787adAU81lxwVg+LboVI2o5JhwkB1t8LRHR3THRpSaxGBURtZQQAinXi7AzJRs7zt7AscxC3O0vSNdAN10V515BnlAqDJvibAtTYo0pGqZSSjjw8miL7iMTDjI3W30tEdHdMdGlJi1ZsqTB7YWys7NljIiIrF1ecQV2n8vBzpRs7D2fg6IKTaPrervY19yz1x/DIv3g7th4UTxrnRIrhEBxhQa5xZXILa5AXnEFvjl6BTvOGv5e6+NqD383R6iUEpQKCXYKCXYKBeyU1T8rFQrdMpVSUfO9dl1F9frK2u9S/ccKCUqlAiqFvu1vP4ddIz/fLFPjoX8nQKNlwkHm88+dqXhn+3mDt/u/8V3w9MjOrRAREZkDE11qEkd0iag1qau0OJyRj51ns7EzJRsXc0saXddOIaFfqHfNaK8/Ovm56pZZ2pRYrVagsEyNvOIK5BRXVCexRRXIK6lAblF1Qptb215cgQpN49czt3VMOKglHvks0ah7hwd7O2PZlB7o1dETHs686wSRtWGiSwbhNbpE1Nou5hRjZ0p10nsoPf+uo39hvi419+z1x+bjWdhwpHWnxGqqtMgvqWyYuNb8nFNcgbyaxDW/pNKgkUtqnIeTHSb36oCIADdE+rsiMsANXi72codFVmLqv37DscuFLdpHJz8XxAZ5ITbYE72CPNE10A12St4jnMiSMdElgzDRJSJzulWuxr7zudiRcgO7z+Ugv6Sy6Y2aqXZKrJujnW5kNa/OKGtOUQXySqoT2NrR14JStcmeXx+FVD1V29fVAddvlqOwzPDn697OHc+PiYCmSkCj1UJTJVClFVBrtdXfqwSqtNqa7wKaKi00WlH9VbtN3fba7auqt69eV1uzrtCtW3cd3b612nr7vVsVbkP5ujogMqA66Y2o+R7p78aRN2rgd58m4Le0PJPu00mlRHRHD8QGeSI22BOxwV4IcHc06XMQUcsw0SWDMNElIrlUaQVOXCnEzrPZ2JGSjbPX7n7P3uawVypQWdW6U4btlQr4uFYnr741331qfvZzc6h5XN3u5WyvK7xli9cVGjuF1BD+bg71k98AV0QEuN312m5TsoVCaLYkOesm4j8/hNxiwz8kC/N1RkGpGoXN/ICrvYcjegV76kZ+e3TwsKhaAERtDRNdMggTXSKyFFcLy7CrZorzrnPZd63ibGrO9soGiaufqz18axNXl9s/uzvaQZIMqxoN2GalWGOT91Fd/RDo4YTUG0U4f6MYN40Y6Q50d2yQ/Eb4u8LNRAmwtRZCs1XqKi0+2p2G93ekGnUJQe1rydfVHpfySnEsswDHLxfiWGYhzmTdatY+7RQSurVz1013jg32QqiPs1HvB0RkOCa6ZBAmukRkiSb/cz9OXLnZon14OKl0iWvdJNbX7Xbi6lcz+upsb2eiyO/O1m7FY4rkXQiBnKIKnL9RjPM3ipCaXaT7uai88erdjWnv4Vh97W9N8htZkwC7ODT/GFtaIbS2LvVGEV785gROtuA94W6vpXJ1FZKzbuLY5UIcu1yI45mFuFpY1qz9ejqrqpPemlHfmCBPeDi1/MMWziQgaoiJLhmEiS4RWSJjp8TGBnnio9l94O1iD3s7yyssY4sJVGsl70II3LhVgfM3iqoT4BvFOJ9d/b34LrevakwHT6c61wBXJ8Kd/V31fshhax9IWKsqrcB/9l3Eil/Oo7JOFfP2Ho74+5RofLI3rdVeSzduleuS3mOXC3Dyyk2UqauatW24nwtig71qRn090SWg+YWuOJOAqHFMdKlJvL0QEVk6W7yetVb1iewZbDyaaRMnsuZO3oUQuHaz/Hbye6MI57OLceFGEUoqm5eI1JIkoKOXE7rUSX59XRzw2OrDvDewzNJzS/DSNydw9FJBvfaZfTtiwX3d4e6oMutrSVOlxfkbxTiWWaBLgC9kFzdrWyeVEj07euiu9+0d7Al/PYWubPGDMCJTYqJLTVqyZAmWLl2qe+zn54fs7GwZIyIiqs8Wr2e9U05RBTYcyUTCxTyrn5poCcm7ViuQdbPsdvJ7oxipNSPAzR2Jawlr+JDFGmi1AmsTLmH5j2frVfX2c3PAmw9EY1TXgAbbyPVaulmmxonM26O+xzILDSp0FRt8+/ZGPTp4YOnWZM4kILoLJrrUJI7oEpE14PRR62OJybtWK3C1sOx28nujCOezi3Ahu9ikt0caGuGLtb/vb7L9tUWZ+aX488aTOHix/q2DJvdqj6X3R8HT2bLvtSyE0BW6qh31bW6hK6UEaAVgyIm4tX24R9RSTHTJILxGl4gsFafxUWuq0gpcKSi9XQSrJhE+e+2WQclGrdhgT2x6arDJ42wLhBBYfzgTy74/U2/6ubeLPV6b0gMTotvJGF3LlKurcPrqzXrX+2bdLDfZ/jmTgNqSluQt5ik5SURE1AyOKiXWzI2TfUos2SalQkKIjwtCfFwwtvvt6bCz/5OI/RcML4TmakBVZ7rtxq1y/OXbk9h9Lqde+/ioALw2NRq+rtY9WumoUqJvqDf6hnrr2moLXdXe4siQQld3SriYx0SXqBn4Dk1ERBbFUaXE8mnReGFspMVNiSXbNKCTt1GJrr2dAuXqKn7g0kxCCGw+fhWLtyTjVp3bSLk72uHVyT0wuVd7m70/bYC7I+7pEYh7egQCqC50dd8H+5FyvcjgfR29VIDl284iLqw6mTbFrY2o+XgbKOvBqcttEKcuExER3WZMIbRa/m4O+OPwcDwcFwwneya8jcktrsDfNp3Cz8k36rWP6OKHN6b1RKBHw4rEts7YW6rVJUlAt0B3xIV5o3+YN/qFeVv9iLil4m2g5MFrdMkgTHSJiIjqM7QQ2p18Xe3xxNBOmD0gBC6c0lzPtlPXsGDzaeSXVOraXB3ssPC+bpjZN8hmR3GbYuwt1ZrS2d9Vl/j2D/Npkx8imBrrR8iHiS4ZhIkuERFRfYacyMYGeyKqvTs2HLmCSk39Ks5ezio8PrQTHh0YAjfHtj2ltLC0Eou2JON/J7LqtQ8K98Fb03uio5ezTJFZBmNmEtgpJDw3OgJnsm7hUEZ+vQ8PGhPs7Yy4MG/EhXljQJgPgryd2uyHC8biHQHkw0SXDMJEl4iIqCFD7w2cfasc/957Ef9NvNTgtkXujnaYOyQMjw0Kg4dz20t4d6bcwF++PYWcogpdm5NKib9O7IrZ/UOgUDDRAlqWQAkhcCG7GInp+TiUno/E9DzcuFXRxB6AQHfH24lvJ2+E+7ky8b2LtnCPd0vGRJcMwkSXiIiocYbeGzi3uAKf7ruItQcvobSyfiVdNwc7xA8Kxe+HhMHLxbLvCWsKt8rV+Pv3Z7DhyJV67X1DvPDOjBiE+rrIFJllMuWUWCEELueXIjE9H4kX83EoIw+Z+WVN7tfHxR79QqsT3/6dvNE10B1KfhChY+wUc94GyjSY6FKTCgsLUVhYCAAYN24clEolzp49K29QRERENiS/pBKf70/HmgMZKKrQ1FvmYq/E7IEheGJoJ5stFrQ/NRd/3nii3j1j7e0UeGlcJH4/pBOTp0YYOpPAEFmFZTickY+Ei/k4lJ6HtJySJrdxc7RDv9Dqa3zjwrzRo4MHVEqFQc9by9oqFKurtMguqsCNW+W4cbMcN26V4z/703GloOkPDO40NMIXa3/fvxWibFuY6FKTlixZgqVLl+oe+/n5ITs7W8aIiIiIbNPNUjVWHUjH5/vT691GBwAcVQrM7h+CPwzrBH932ygSVFKhwRs/pmBtwqV67T07emDFjBhEBLjJFJl1MXQmgTFyiytwOD2/etQ3PR8p12+hqUzASaVEnxAvXeIbE+TZZMJtaRWKtVqBgtJKXL9VjuxbFbh+qzqJvXGrJqmt+corqWzy36O5YoM9sempwabZWRvGRJeaxBFdIiIi8yoqV+OLg5fwn30XUVCqrrfM3k6Bh+OC8cfhndDOw0mmCFvuUHo+XvrmBC7nl+ra7BQSnh8dgXkjwo0eCSTzuFmqxuGMfBzKqE58T1+9iSrt3VMDe6UCvYI80b9TdeLbO9irXqVxc1coLq7Q3B6BLapOXq/fLEd2UTmu36x+nF1UbtTtw1qCI7qmwUSXDMJrdImIiMynpEKD/yZcwqf7LiK3uH6VXHulAjP6dsSTI8KtqgpxuboK7/x8Dp/9ll5vBKxroBtWzIxBVHsP+YIjo5VUaHD0UgEO1RS4Op5ZiMoq7V23sVNI6NHBQzfiu+3UNXybdLXZz9lYheJKjRY5xTVJ663ymlHY2yOwtaOzxXdcJmAKns4qBLo7wt/dEfnFFTiddcvgffAaXdNgoksGYaJLRERkfmWVVVh36DI+2ZOG7KL61XHtFBIe6N0RT40MR4iPZRdsOp5ZiBc3HK93vadCAp4cEY7nRkfAwY73D7UV5eoqHM8s1FV1PnqpoEGF8ZZSShIeGxyKkkqNbgS2dhqxqTmqFAh0d0RAzVeghyP83Rx0Pwe4OcLf3aHeCDOrLsuLiS4ZhIkuERGRfMrVVdhwJBMf7U7DtTqFmwBAqZAwuVd7PD2yM8L9XGWKUL9KjRbv70jFR3vS6k1vDfdzwYqZvdAryFO+4MgsKjVanM66WZ34XszDkYyCBoXX5KBUSPB3c4C/uyMC3R10iWz1l4NudNbd0c6oWynxPrryYaJLBmGiS0REJL8KTRW+PXoVH+66gKuF9au6KiTgvp7t8cyozoi0gGJOZ7Ju4YUNx5FyvUjXJknA7weH4aXxXcxSUIgsT5VW4Oy1W7oR3x1ns6Fp4hpfQ3k5q/QmrbqRWQ8H+Lg4tGpVb3Nfd0y3MdElgzDRJSIishzqKi02HatOeC/lldZbJknAhB6BeGZkBLq3dzd7bJoqLT7anYb3d6bWm7oZ7O2Md2bEIC7M2+wxkeWa+uFvOJZZaPB2Xs4qzOgbVC+ZDXB3hJ+bg8UkjK15GyhqHBNdMggTXSIiIsujqdJi68ksfLDzAi7qud/p2O4BeG5UBKI7mqfQU+qNIrz4zQmcvHKzXvsjA0Lw8oSu9SrtEgHAI58lYl9qrsHbWVOFYnPcBopua0newncoIiIiIgtgp1RgamxH3B/TAT+cuoZ/7kzF+RvFuuW/nLmBX87cwMgufnh2dAR6B3u1ShxVWoHP9l/EO9vPo1Jzu/BQew9HvDU9BkMifFvlecn69Q/zNirRHdDJpxWiaR1+bg54emRnVlS2AhzRbYM4oktERGT5tFqBn5Ov4/2dF3D2WsPbmwyN8MVzoyPQL9R004czckvw0jcncORSQb32GX06YuGk7nB3VJnsucj2sEIxmRpHdImIiIhsjEIhYUJ0O9zTIxC/ns3GBztT600j3peai32puRjQyRvPjY7AwE4+eivK5hRVYP3hy0hMz290qqVWK/DfxEtYvi0FZeoq3bZ+bg54Y1o0RncLaP0Ok9Xzd3PE9D4dDapQPL0Pp/xS6+CIbhvEEV0iIiLrI4TA7vM5eH9HKo5dLmywvF+oF54dFYGhEb6QJKmmeE4yNh69ctfiOY8PDcXCzck4kJZXb/n9Me2x9P4oeLnYt1aXyAaxQjGZEotRkUGY6BIREVkvIQR+u5CH93ek4lBGw2SiV5An5g3vhFW/ZTQr2VBIQN07wni72OO1KT0wIbqdKcOmNoQVislUmOiSQZjoEhER2YaEi9UJ752jscYaHxWA16ZGw9eVU0mp5VihmFqKiS4ZhIkuERGRbTmSkY/3d17A3vM5Ru9j2eQozB4Qovc6XyIiObAYFTWpsLAQhYWFAAC1Wg2lktNEiIiIbEXfUG98MTcOxzML8cL647iY2/A+vE25Va5hkktENkMhdwBkHitXrkRYWBjCwsKQmpqKvDzTTHEiIiIiy9EryBMdvJyM2jbhIs8NiMh2MNFtI+bPn4/09HSkp6cjIiICPj7Wc2NuIiIiar7iCo1ZtyMiskScutxGeHp6wtPTEwCgUvFm70RERLbK1cG40ztjtyMiskQc0SUiIiKyIf3DvI3abkAnzvYiItvBRJeIiIjIhszsFwSV0rCiUiqlhJl9g1opIiIi82OiS0RERGRD/N0cMb1PR4O2md6H9zUlItvCRJeIiIjIxiyeFNXsKcz9w7yxeFL3Vo6IiMi8mOgSERER2RhHlRJr5sZhVlxwo9OYVUoJs+KCsWZuHBxVSjNHSETUulhej4iIiMgGOaqUWD4tGi+MjcSGI5lIuJiH4goNXB3sMKCTD2b25XRlIrJdTHSJiIiIbJifmwOeHtkZT4/sLHcoRERmIwkhhNxBkHm5ublBrVYjPDxc7lCIiIiIiIj0SktLg0qlQlFRkcHb8hrdNsjFxQUqlUruMOpJS0tDWlqa3GGYlK31ydb6A7BP1oJ9sg7sk+Wztf4A7JO1YJ+sgyX2SaVSwcXFxahtOaJLFiEqKgoAkJycLHMkpmNrfbK1/gDsk7Vgn6wD+2T5bK0/APtkLdgn62BrfeKILhEREREREdkUJrpERERERERkU5joEhERERERkU1hoktEREREREQ2hYkuERERERER2RRWXSYiIiIiIiKbwhFdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbAoTXZJVeXk5Fi9ejMjISDg6OqJ9+/aYO3curly5IndoBjt69CjeeOMNTJs2DR06dIAkSXB0dJQ7LKOVlpZi8+bN+P3vf4+ePXvC3d0dLi4uiImJwauvvori4mK5QzTKu+++i2nTpiEiIgIeHh5wcHBASEgI4uPjkZycLHd4JpGfnw9/f39IkoSuXbvKHY5RRowYAUmSGv366aef5A7RaNevX8ef/vQnREZGwsnJCd7e3ujTpw/+/Oc/yx2aQXbv3n3XY1T79eqrr8odqkESEhLwwAMPIDAwECqVCt7e3hg9ejQ2btwod2hGS0hIwOTJk+Hr6wtHR0dERkZiwYIFKC0tlTu0Rhn7N/WLL75AXFwcXF1d4e3tjYkTJ+LAgQNmiLhphvYpMzMT//rXvxAfH49u3bpBoVBAkiQkJCSYMeq7M6RPWq0W+/btw5///Gf0798f/v7+cHBwQHh4OObNm4f09HQzR6+focfpf//7H+Lj4xEdHQ1fX1+oVCr4+/tj4sSJ+OGHH8wYeeNMcY46ZswY3fv69evXWylSExNEMikrKxODBg0SAES7du3EzJkzRVxcnAAg/Pz8xIULF+QO0SCTJ08WAOp9OTg4yB2W0T799FNdP6KiosSMGTPE+PHjhZubmwAgunbtKm7cuCF3mAbz8fERjo6OIi4uTkydOlVMnTpVREZGCgDC3t5ebNu2Te4QWyw+Pl5IkiQAiC5dusgdjlGGDx8uAIgHHnhAxMfHN/g6efKk3CEa5cCBA8LT01MAEN27dxczZ84UEyZMECEhIUKpVModnkHOnj2r99jEx8eL2bNn694/du7cKXeozbZhwwahUCgEANG3b1/x4IMPiqFDh+ra/vKXv8gdosH++9//CqVSKQCIPn36iKlTp4qgoCABQMTExIhbt27JHaJexvxN/dOf/iQACCcnJzF58mQxfvx4YWdnJ5RKpfjuu+/MFHnjDO3TP/7xjwbrAxAHDx40Y9R3Z0ifUlNTdet06NBBTJ48WUydOlV06NBBABBubm5i3759Zu5BQ4YepwceeEBIkiR69OghJk6cKB588EHRv39/3bYLFy40Y/T6tfQcddWqVQKA7tzi2rVrrRit6TDRJdksXLhQABADBw4URUVFuvYVK1YIAGLYsGEyRme4N954QyxatEhs3bpVXL9+3eoT3TVr1ognn3xSnD9/vl57VlaWiI2NFQDErFmzZIrOePv37xdlZWUN2v/1r38JAKJ9+/ZCo9HIEJlp/PrrrwKA+MMf/mATiW56errcoZjM1atXhaenp3ByctJ70p2YmChDVK1j27ZtAoAICgoSVVVVcofTLGq1Wvj5+QkA4uuvv6637MCBA8LR0VFIkmRVH8JmZmYKR0dHAUB8/vnnuvby8nIxY8YMAUDMmzdPxggbZ+jf1B07dggAwsfHp97frQMHDgh7e3vh4eEh8vPzzRF6owzt05YtW8Sf/vQnsW7dOpGamqp7X7SkRNeQPl24cEGMHz9e7Nmzp157eXm5mDNnjgAggoODRWVlpTlCb5ShxykpKUnk5uY2aE9ISBCurq5CkiSRnJzcmiE3qSXnqNnZ2cLHx0eMGzdOhISEMNElakplZaVuVCMpKanB8p49ewoA4siRIzJEZxrWnujezYEDB3T9q6iokDsck+ncubMAIPsfJGOVlpaKzp07i+7du4vz588z0bUwjzzyiAAgPvjgA7lDaXUPP/ywACBefvlluUNptlOnTulmq+hTOyKyfv16M0dmvGXLlgkAYuzYsQ2WZWdnC2dnZ6FSqfSepFuapv6mTpw4UQAQ//jHPxose+655wQA8c4777RihIYz9DzBEhPdOxl77lNWViY8PDwEALF79+5WiMx4LTmfe/zxxwUA8eGHH5o4qpYxpE8PP/ywcHR0FBcuXLC6RJfX6JIs9u/fj8LCQoSHhyM2NrbB8unTpwMAtm7dau7QqBliYmIAABUVFcjLy5M5GtNRKpUAAHt7e5kjMc7SpUuRlpaGjz76CCqVSu5wqI6CggJs2LABHh4eePzxx+UOp1WVlJRgy5YtAIDZs2fLHE3zOTg4NGs9b2/vVo7EdI4ePQqg+pr3O/n5+aF79+5Qq9XYtm2bmSMzrfLycuzYsQPA7fOHunhOYflqrx0HgKysLJmjMR1rP6/4+eefsW7dOvztb39DeHi43OEYzE7uAKhtOnHiBACgd+/eepfXtteuR5bl4sWLAKAr1GILvvjiC5w7dw6RkZHo1KmT3OEY7OTJk1ixYgUee+wxDBs2DBkZGXKHZBKfffYZ8vLyoFAoEBkZiSlTpiA4OFjusAz222+/oaKiAmPGjIFKpcLGjRuxf/9+qNVqdO3aFTNnzkRAQIDcYZrEd999h5KSEsTGxiIqKkrucJqtU6dO6NSpE1JSUrBhwwbMnDlTt+zgwYP4+eefERYWhmHDhskYpWFKSkoAAF5eXnqX175/nzhxAo888ojZ4jK1lJQUVFRUwM/PDx07dmywvPac4uTJk+YOjZqpqqoKly5dAgAEBgbKHI1pnDx5EuvXr4dKpcLo0aPlDsdgpaWlmDdvHrp27Wp1xRJrMdElWVy+fBkA9P5Bqtteux5Zlvfeew8AcM899zR7FMTSvP3220hOTkZJSQnOnj2L5ORktG/fHuvWrYNCYV2TXbRaLZ544gl4enrirbfekjsck/r73/9e7/FLL72EhQsXYuHChTJFZJzait4BAQEYOnQoDh48WG/5X//6V6xatQozZsyQIzyT+u9//wsAVpc4KZVKrF69GpMmTcKDDz6It99+G+Hh4bh27Rr279+PuLg4rF271qpGZvz8/ABAl0Dcqbbd2j8Ya+qcwsXFBZ6enigoKEBRURHc3NzMGR41w9dff43s7Gz4+flh0KBBcodjlK1bt+Lbb7+FWq3G5cuXceDAAahUKvz73/9GWFiY3OEZbOHChcjIyMCuXbus6n2vLus6myObUXtrGmdnZ73LXVxc6q1HlmPbtm347LPPoFKpsGzZMrnDMdrPP/+MNWvWYOPGjUhOTkZQUBDWrVuHPn36yB2awT744AMcOnQIb7/9Nnx8fOQOxySGDRuGtWvXIi0tDaWlpTh37hxee+012NnZYdGiRboPW6xFQUEBgOqZAydPnsRnn32GnJwcpKen44UXXkBJSQlmz55t9SNO169fx44dO6BUKjFr1iy5wzHY0KFDsWfPHoSFheHIkSNYv3499u7dCxcXF4wZMwbt27eXO0SDDB8+HADw1VdfobKyst6yhIQEnDt3DgBQVFRk9thMqalzCoDnFZYsMzMT8+fPBwC8+uqrVvsB+okTJ7BmzRqsW7cO+/fvh729Pd577z08+uijcodmsKSkJLz33nuIj4/Xe+mDtWCiS7IQQgAAJEm663KyLGfPnsXs2bMhhMDbb7+tu1bXGv36668QQqCgoAB79+5Fly5dMGLECLz22mtyh2aQzMxMLFiwAMOHD8ecOXPkDsdkXn31VcyePRudOnWCk5MTIiMj8corr2Dz5s0AgMWLF6OsrEzeIA1QVVUFANBoNHj33Xcxd+5c+Pr6IjQ0FCtWrMD06dNRWVlp9SPy69atQ1VVFcaOHWuV0w+/+uor9O/fH8HBwUhMTERxcTHOnz+PWbNm4e9//zvGjBkDtVotd5jN9rvf/Q7BwcG4fPkyJk+ejOTkZBQVFeGnn37CjBkzYGdXPbHP2max3Kmpc4q665BlKSkpwdSpU5Gbm4spU6Zg3rx5codktAULFkAIgbKyMpw6dQpz587Fk08+icmTJzf4oMmSVVVV6WaJvfPOO3KH0yLW/c5GVqt22lDt9UN3qr2Jvaurq9lioru7cuUK7rnnHhQUFOCFF17A888/L3dIJuHp6YmhQ4di27Zt6NOnDxYuXIjDhw/LHVazPfXUU6isrMRHH30kdyhmMW7cOPTt2xc3b95EQkKC3OE0W+17nkKhQHx8fIPlc+fOBQDs3r3bnGGZnLVOWwaA1NRUxMfHw8/PDz/88APi4uLg4uKCiIgIfPLJJ5g0aRIOHjyIVatWyR1qs7m4uOD7779HcHAwfvrpJ/To0QPu7u6YMGECFAoFXnjhBQCNX8NrLZo6pwB4XmGJ1Go1HnjgARw9ehRDhgzBunXr5A7JJBwdHdGjRw98+OGHePbZZ/H999/jgw8+kDusZlu5ciWSkpLw1ltvwdfXV+5wWoSJLsmitpjMlStX9C6vbbfGojO2KDc3F2PHjsXly5fx2GOPWf0nfPqoVCo8+OCDEEJYVWXO77//Hs7OznjyyScxYsQI3ddDDz0EoPratdo2W5myFxERAQC4du2azJE0X2hoKIDqIiv6puXVLs/OzjZjVKZ19uxZHDt2DK6urpgyZYrc4Rjs66+/hlqtxj333KOb5lpXbXEqa/swIjo6GikpKVizZg2effZZPPnkk/j4449x+vRp3TrWVDRMn6bOKUpKSlBYWAhPT09en2shtFotZs+ejZ9//hkxMTHYunUrnJyc5A7L5Gorz9dWorcGW7duhSRJWLNmTb3zihEjRuD69esAgGnTpmHEiBHYv3+/zNHeHYtRkSxqp7wmJSXpXV7b3rNnT7PFRPoVFRVhwoQJSElJwbRp0/Dpp5/edXqYNav95DInJ0fmSAxTWFiIPXv26F1WVlamW6bRaMwZVqupvd7VmkZmam+jVlBQACFEg9dQ7W26rKlPd1q7di2A6hOgu10raalqkyR3d3e9y2vb8/PzzRaTqTg5OeHRRx9tcK3gr7/+CkD/7YesSZcuXeDg4ICcnBxcuXKlQVEqnlNYnqeeegobNmxAZGQktm/fDk9PT7lDahXWel4hhMDevXsbXV5bUDE3N9dcIRmFI7oki8GDB8PDwwNpaWk4duxYg+UbN24EANx3333mDo3qqKiowOTJk3HkyBGMHz8eX331le6ecLaoNiG0pnvFCSH0fqWnpwOoPgGsbbOFE4mcnBzs27cPQOO3J7NE0dHRCAsLQ1lZGRITExssrx0ltKY+1SWE0E07tMZpy8DtW5ocOXJE7/LaSxpqR9+t3Z49e5CUlISoqCgMHjxY7nBaxMnJCaNGjQJw+/yhLp5TWJZXXnkFn3zyCYKDg/HLL7/A399f7pBajTWeV+zevbvRc4uQkBAA1TOqhBCWP3tHEMnkb3/7mwAgBg0aJIqLi3XtK1asEADEkCFDZIyu5QAIBwcHucMwmkajEVOnThUAxNChQ0VJSYncIbXY3r17xddffy3UanW99srKSvH+++8LhUIhnJycxOXLl2WK0HTS09MFANGlSxe5QzHYwYMHxc6dO4VWq63Xnp6eLgYPHiwAiPvvv1+m6Iz38ccfCwCiX79+IicnR9d+5MgR4enpKQCIb775RsYIjbdnzx4BQLRv315UVVXJHY5Rjh49KgAIAOJf//pXvWUHDx4ULi4uAoD45ZdfZIrQOMeOHWvwnnf06FHRvn17IUmS2Llzp0yRGaapv6m//PKLACB8fHzE+fPnde0HDhwQDg4Owt3dXeTl5Zkj1GYz9Dxh+PDhAoA4ePBgK0bVMk31qfYcLzAwsN5xsmR369ONGzfEO++8IwoKChos2759u/Dz8xMAxMaNG1s5SsMYe44aEhIiAIhr1661QlSmx6nLJJsFCxbg119/xYEDBxAREYGhQ4fi0qVLSExMhI+Pj1UV/ACAH374ocHtdiorKzFgwADd44ULF+Lee+81d2hG+ec//4lNmzYBqJ5689RTT+ld75133rGaYgVpaWl47LHH4Ovriz59+sDHxwe5ubk4deoUrl27BkdHR6xevRpBQUFyh9qmpaSk4LHHHkO7du0QGRmJwMBAXLlyBUePHkV5eTmioqLw6aefyh2mwZ544gns2LED33zzDbp06YJBgwahuLgYBw4cQGVlJZ544glMnz5d7jCNUluE6ne/+53VVvDt3bs3XnrpJbzzzjt46qmn8OGHH6J79+7IysrCwYMHodVq8Yc//AFjxoyRO1SDzJ8/H2fOnEGvXr3g6+uLjIwMJCYmQqFQ4JNPPsHIkSPlDlEvQ/+mjhkzBs8//zzee+899OrVC2PHjkVlZSV++eUXaLVafPnll/D29jZrH+5kaJ+uXbuGqVOn6padOXMGAPD444/rLnO49957Zb2vuCF9On78OF566SUAQFhYWKN3OXj88ccxZMiQ1gu6CYb0qbS0VHd/9759+6Jjx44oKSnB+fPnkZKSAgD405/+hAceeMCsfbiTrZ2jNpvcmTa1baWlpWLhwoUiPDxc2Nvbi4CAABEfH2+VI2qrVq3SjQY09rVq1Sq5w2y2xYsXN9kfACI9PV3uUJvt4sWL4pVXXhGDBw8W7dq1EyqVSri4uIioqCjx7LPPitTUVLlDNBlrHtE9c+aMePLJJ0Xv3r2Fn5+fsLOzEx4eHmLAgAFixYoVorS0VO4QjVZVVSU+/PBDERsbK5ydnYWLi4sYNGiQ+OKLL+QOzWjl5eXCy8tLABAnTpyQO5wW++6778S4ceOEj4+PsLOzE15eXmLkyJHiyy+/lDs0o3z66adi+PDhws/PT6hUKtG+fXvx8MMPi2PHjskd2l0Z+zd11apVok+fPsLZ2Vl4eHiI8ePHi3379pm/A3oY2qfa9/G7fcXHx8vWHyEM69OuXbuadV4h97mSIX0qKSkRb731lpg4caIICQkRTk5OwsHBQYSGhoqHHnpI7Nq1S9a+1DLVOaq1jehKQvDGYkRERERERGQ7rHN+EREREREREVEjmOgSERERERGRTWGiS0RERERERDaFiS4RERERERHZFCa6REREREREZFOY6BIREREREZFNYaJLRERERERENoWJLhEREREREdkUJrpERERERERkU5joEhERERERkU1hoktEREREREQ2hYkuERGRhZAkCZIkyR1Gq5kzZw4kScLu3bvlDoWIiGwcE10iIiILlpGRAUmSMGLECLlDaVJoaKhNJ+pERGQ9mOgSERGRWSxfvhxnz55FXFyc3KEQEZGNs5M7ACIiImob2rVrh3bt2skdBhERtQEc0SUiIrJQS5YsQVhYGABgz549umt4JUnCnDlz6q2bk5ODl156CV26dIGjoyO8vLwwYcIE7N27t8F+d+/erdvH9evX8fjjj6Njx46ws7PDypUrAQDXrl3DW2+9heHDh6NDhw6wt7dHYGAgpk2bhsOHD+vd36VLlwCgXpyhoaG69e52jW5mZib++Mc/IiQkBA4ODvD399f7XED96dxlZWV4+eWXddt17twZb775JoQQep/j6aefRpcuXeDs7Axvb29ERUXhj3/8I86dO3e3Q0FERFaGI7pEREQWqlevXnjggQfw7bffIiAgAPfcc49u2ZAhQ3Q/p6SkYMyYMbh69SrCw8MxceJE5OXlYefOndi+fTvWrl2Lhx9+uMH+c3Jy0K9fP2g0GgwZMgTl5eVwdnYGAGzZsgV/+ctf0LlzZ0RHR8Pd3R0XLlzApk2b8P333+P777/HuHHjAACBgYGIj4/Hxo0bUVJSgvj4eN1z+Pr6NtnPU6dOYdSoUcjNzUXXrl0xbdo0XL58GZs2bcLWrVuxbt06zJgxo8F2lZWVGDduHJKTkxEXF4du3bphz549ePnll1FUVIS///3vunWvXLmC3r17Izc3Fz179sSkSZNQXl6OS5cu4dNPP8XAgQPRpUuXZhwVIiKyCoKIiIgsAgBx55/m9PR0AUAMHz5c7zYajUb06NFDABDvvfee0Gq1umVJSUnCx8dHuLi4iBs3bujad+3apXuuqVOnirKysgb7PXnypDhx4kSD9p9++knY29uL8PDwes8lhBAhISEN4q8rPj5eABC7du3StWm1WhEdHS0AiL/+9a/19vnNN98IhUIh3NzcxPXr1xv8mwAQQ4cOFTk5Obplhw8fFnZ2dsLZ2VkUFRXp2hcvXiwAiBUrVjSIKyMjQ1y4cKHRuImIyPpw6jIREZEV27p1K06fPo1Zs2bhueeeq1f1ODY2FgsXLkRJSQn++9//NtjWwcEBH3zwARwdHRssi46ORs+ePRu0jx8/HjNmzEBaWhpOnz7d4vh3796NU6dOISwsDMuWLasX//Tp0zFlyhQUFRVh1apVDbZVKBT4z3/+U2/UuG/fvpgwYQJKS0tx5MgRXXt2djYAYNSoUQ32ExISgvDw8Bb3hYiILAcTXSIiIiv2yy+/AACmTJmid3ntFGd917r27t0bHTp0aHTfFRUV2LJlC/72t7/hD3/4A+bMmYM5c+bg1KlTAIDU1NQWRg/s27cPAPDggw9CqVQ2WP7II4/UW6+u0NBQREZGNmivbbt27ZqurU+fPgCAp59+Grt27YJGo2lx7EREZLl4jS4REZEVy8jIAFCdKD744IONrpebm9ugLTg4uNH1T506hfvvv1+3f32KioqaHWdjsrKyAKBe0aq6attr16urY8eOerdxdXUFUJ2o15ozZw62b9+ODRs2YNSoUXB2dtaN/s6dOxf+/v4t6AUREVkaJrpERERWrKqqCgAwYcKEuyZrXbt2bdCmb8oyAAghMHPmTGRkZGDevHmYN28eOnXqBFdXV0iShFdeeQXLly/XW9nYWHWnLDd3eVPb1KVUKrF+/Xq8/PLL2LJlC3bt2oWEhATs3bsXy5cvx88//4wBAwYYHDcREVkmJrpERERWrHZUc968ebj//vtNss+UlBSkpKSgb9+++Oijjxosv3jxokmeBwDat28PAEhPT9e7vPaWRaa6/25sbCxiY2OxZMkS3Lp1C0uXLsW7776L559/HomJiSZ5DiIikh+v0SUiIrJg9vb2ANDoNaVjxowBAGzevNlkz1lQUABA/9TggoIC3XXBd2oqVn2GDh0KAFi/fr1udLqu2iJateuZkru7O15//XVIkqS77piIiGwDE10iIiIL5uvrC5VKhbS0NL2J4PTp09G1a1esXr0ab775JtRqdb3llZWV+O677wxK5Dp37gyFQoGdO3fWKzhVXl6OefPmIT8/X+92taOz586da/ZzjRgxAtHR0UhPT8eiRYvqTYfevHkzvvvuO7i6umLOnDnN3qc+a9eu1Vsl+qeffoIQ4q7XKxMRkfXh1GUiIiILZm9vj3vuuQdbt25FTEwMevfuDXt7ewwePBiPPfYY7OzssGnTJowfPx4vv/wy3nvvPfTs2RPu7u7IzMxESkoKCgsLsWnTJkRHRzfrOf39/fH73/8en376KWJiYjBq1Cg4OTlh3759qKqqwpw5c7B69eoG291///3Ys2cPRo8ejZEjR8LFxQW+vr544403Gn0uSZLw5ZdfYuTIkXj99dexadMm9OrVC5cvX8Zvv/0GOzs7fP755wgMDDT2nxAA8O233+LRRx9FeHg4oqOj4eTkhIyMDCQkJECpVOL1119v0f6JiMiycESXiIjIwv3nP//BI488gry8PKxbtw6fffYZ9uzZo1vetWtXHD9+HEuWLIG/vz/279+PH374ATk5ORg2bBhWrVqlm+LcXB999BFWrFiBsLAw7NixA/v27cOYMWNw5MgRhISE6N3mueeew4IFC+Dq6opvv/0Wn332Gb7++usmnys6OhpJSUl44oknUFxcjI0bN+LcuXOYMmUKfvvtN8yYMcOg2PV54YUX8PTTT8PNzQ379u3Dpk2bkJ2djVmzZuHw4cOYNm1ai5+DiIgshyRMWTKRiIiIiIiISGYc0SUiIiIiIiKbwkSXiIiIiIiIbAoTXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvCRJeIiIiIiIhsChNdIiIiIiIisilMdImIiIiIiMimMNElIiIiIiIim8JEl4iIiIiIiGwKE10iIiIiIiKyKUx0iYiIiIiIyKYw0SUiIiIiIiKbwkSXiIiIiIiIbAoTXSIiIiIiIrIpTHSJiIiIiIjIpjDRJSIiIiIiIpvy/07+2NTaDbtFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(nrows=4, dpi=150, figsize=(7,8), sharex=True)\n", + "fig.subplots_adjust(hspace=0.1)\n", + "# imp occupation\n", + "ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][0]['up'])+np.array(obs['imp_occ'][0]['down']), '-o', label=r'Ni$_0$')\n", + "ax[0].plot(obs['iteration'], np.array(obs['imp_occ'][1]['up'])+np.array(obs['imp_occ'][1]['down']), '-o', label=r'Ni$_1$')\n", + "\n", + "# imp magnetization\n", + "ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][0]['up'])-np.array(obs['imp_occ'][0]['down'])), '-o', label=r'Ni$_0$')\n", + "ax[1].plot(obs['iteration'], (np.array(obs['imp_occ'][1]['up'])-np.array(obs['imp_occ'][1]['down'])), '-o', label=r'Ni$_1$')\n", + "\n", + "# dxy, dyz, dz2, dxz, dx2-y2 orbital magnetization\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,4]-np.array(obs['orb_occ'][0]['down'])[:,4]), '-o', label=r'$d_{x^2-y^2}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,2]-np.array(obs['orb_occ'][0]['down'])[:,2]), '-o', label=r'$d_{z^2}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,0]-np.array(obs['orb_occ'][0]['down'])[:,0]), '-o', label=r'$d_{xy}$')\n", + "ax[2].plot(obs['iteration'], abs(np.array(obs['orb_occ'][0]['up'])[:,1]-np.array(obs['orb_occ'][0]['down'])[:,1]), '-o', label=r'$d_{yz/xz}$')\n", + "\n", + "ax[3].semilogy(conv_obs['d_Gimp'][0], '-o')\n", + "\n", + "ax[0].set_ylabel('Imp. occupation')\n", + "ax[1].set_ylabel(r'magnetization $\\mu_B$')\n", + "ax[2].set_ylabel(r'magnetization $\\mu_B$')\n", + "ax[-1].set_xticks(range(0,len(obs['iteration'])))\n", + "ax[-1].set_xlabel('Iterations')\n", + "ax[0].set_ylim(8.4,8.6)\n", + "ax[0].legend();ax[1].legend();ax[2].legend()\n", + "\n", + "ax[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5d0d0238-d573-4e18-9785-79408d6ac73d", + "metadata": {}, + "source": [ + "Let's take a look at the self-energy of the two Ni $e_g$ orbitals:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "daf0c1d8-a1fe-413d-a7b2-2eed78258e9f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAKPCAYAAADHbpOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3zU9f3A8ddl770TEkImJCFh77CHbAHRKlVcbdXWqm21rdVWq60L/Wnt0OLCVQVEAQVl74CMAAkkgUDIJHsnl3F3vz++5JJwl5BA5vF+Ph55NPf9fr7fe19Nwr3v8/m83yqdTqdDCCGEEEIIIUS/YtbbAQghhBBCCCGE6DxJ5oQQQgghhBCiH5JkTgghhBBCCCH6IUnmhBBCCCGEEKIfkmROCCGEEEIIIfohSeaEEEIIIYQQoh+SZE4IIYQQQggh+iFJ5oQQQgghhBCiH5JkTgghhBBCCCH6IUnmhBBCCCGEEKIfkmROCCGEEEIIIfohSeaEEEIIIYQQoh+SZE4IIYQQQggh+iFJ5oQQQgghhBCiH5JkrgW1Ws2f//xnwsPDsbGxwc/Pj/vuu4/s7OxO36usrIzHHnuMoKAgrK2tCQoK4te//jVlZWVdH7gQQgghhBDipqPS6XS63g6iL1Cr1UyfPp2DBw/i6+vLpEmTyMjI4MiRI3h6enLo0CFCQkI6dK/i4mLGjRvHuXPnGDRoECNHjiQ5OZnk5GRCQ0NJSEjA3d29m1+REEIIIYQQwpTJzNwVf/vb3zh48CDjxo0jLS2NL774gsOHD7Nq1SoKCwu57777Onyvxx9/nHPnzrFkyRJSU1P54osvSEpK4le/+hXnz5/niSee6MZXIoQQQgghhLgZyMwc0NDQgJeXF2VlZRw/fpxhw4a1Oh8bG8upU6c4evQoI0aMaPdely9fxt/fH3Nzc7KysvD29tafq6urY8CAAZSUlJCTk9PqnBBCCCGEEEJ0hszMAfv376esrIyQkBCDRA5g2bJlAGzatOma99qyZQtarZb4+HiDZM3a2poFCxag0WjYsmVL1wQvhBBCCCGEuClJMgecPHkSgOHDhxs933S8aVxP3UsIIYQQQggh2iLJHJCZmQlAQECA0fNNx5vG9dS9hBBCCCGEEKItFr0dQF9QVVUFgJ2dndHz9vb2rcb11L2aREVFGT2empqKra0tgYGBHb6XEEIIIYQQontkZmZib2/P5cuXe+T5ZGYOaKoBo1Kp2j3f0/fqyHM11FZRV1vdZfcUQgghhBBCXJ+Ghgaqq3vuvbnMzAGOjo4Abf4fX1NTA4CDg0OP3qtJcnKy0eNRUVFQmMJ/3nmTSTMXdfh+QgghhBBCiK7X1oq67iIzc6BfppidnW30fNPxjixn7Mp7dVRReWWX3UsIIYQQQgjRP0gyh9JHDuD48eNGzzcdHzp0aI/eq6NKKjq+/04IIYQQQghhGiSZAyZMmICzszPp6emcOHHC4Py6desAmD9//jXvNWfOHMzMzNi3bx8FBQWtztXV1bFp0ybMzMy45ZZbuiT2Rp05h8qcu+ReQgghhBBCiP5DkjnAysqKX/7ylwD88pe/bLXf7fXXX+fUqVNMnDiRUaNG6Y+//fbbREZG8oc//KHVvXx9ffnJT35CfX09Dz/8MI2NjfpzTz75JIWFhdx55534+Ph0SewXdb7sK7TvknsJIYQQQggh+g8pgHLFn/70J7Zv387BgwcJCwtj0qRJXLp0icOHD+Pu7s4HH3zQanxRURGpqank5eUZ3Ov//u//SEhIYP369URGRjJy5EiSk5NJSkoiJCSEN954o0tjr9OZUVPfiJ2V/OcUQgghhBDiZiEzc1fY2Niwa9cunnnmGezs7Pj666/JyMjgnnvu4cSJE4SGhnb4Xh4eHvz444/86le/or6+ng0bNlBeXs4vf/lLjhw5goeHRxdHryIxs6yL7ymEEEIIIYToy1S6rmx8JnpUVFQU5/Kr8HvgXzw1J5KHpoT0dkhCCCGE6Md0Ol2X9sQVor9SqVRt9o1uT1NrgrZai3U1WZfXzwWb5RGrOktavn9vhyKEEEKIfkij0VBcXExlZSX19fW9HY4QfYaVlRWOjo64u7tjbm7e2+EYJclcP2eBBhtVPReLeq7TvBBCCCFMg0ajITMzE7Va3duhCNHn1NfXU1xcTHV1NYGBgX0yoZNkzgSYoyW7tKa3wxBCCCFEP1NcXIxarcbc3Bxvb2/s7e0xM5OSCkJotVqqq6vJz89HrVZTXFyMl5dXb4dlQJI5E2CBhtKaht4OQwghhBD9TGVlJQDe3t44O0vfWiGamJmZ6X8ncnNzqays7JPJnHz0YgLM0aLR6iiqrOvtUIQQQgjRT+h0Ov0eOXt76VkrhDFNvxv19fV9sjiQJHMmwBKlMfmu1IJejkQIIYQQ/UXLN6aytFII41r+bkgyJ7qFOVoAjlws6eVIhBBCCCGEED1FkjkT4K9SZuQaNNpejkQIIYQQQgjRUySZMwFeqnIA0gulPYEQQgghhBA3C0nmTIAFGgDS8itplNk5IYQQQgghbgqSzJkAS5WSzNU1askoltk5IYQQQgghbgaSzJkAjY2b/vszeZW9GIkQQgghhBCip0gyZwJ2WUzSf/990uVejEQIIYQQQvSk5cuXo1KpOHLkSG+HInqBJHMmILfRUf99yuWKXoxECCGEEEL0pOPHj2Nubk5MTExvhyJ6gSRzJiDUSaP/PrdM3YuRCCGEEEKInlJWVkZ6ejqRkZHY2tr2djiiF0gyZwJi3Ju70dc2aCitru/FaIQQQgghRE84fvw4AMOGDevlSERvkWTOBIy2zmr1+ExueS9FIoQQQgjR/+3evRuVSsXKlSuNnl+5ciUqlYrdu3frj2VkZKBSqZgyZQoVFRX8+te/ZsCAAdjY2DB48GDeeOMNtNrrayG1detWZsyYgZOTE+7u7qxcuZLS0lKOHTsGwPDhw6/rvqL/k2TOBIRVHGr1+MeM0l6KRAghhBDi5lZXV8e0adNYs2YNo0ePZubMmVy6dIknnniC+++/v9P3+/Of/8wtt9zC/v37mTBhAhMmTGDDhg3MnDmTw4cPAx2bmUtLSyM+Pp4hQ4YQExPDP//5z07HIvoei94OQNw4G5UGG0sz1A3Kpz1HMyWZE0IIIcSN0+l0VKgbezuMTnGysUClUvXa8yckJDB06FDOnTuHh4cHAOnp6cTHx/Phhx9y6623snDhwg7d65NPPuH5559nxIgRfP311wQEBABw8eJFRo4cqV9mGRcXd817WVtb869//Yvo6GiqqqoYMWIEU6ZMISoq6vpeqOgTJJkzBbpG/F1sSS9UGoanXZZec0IIIYS4cRXqRmKf+6G3w+iUk3+ehbOtZa/G8Nprr+kTOYCQkBCeeeYZHnroIf75z392KJkrLy/n0UcfxcnJiU2bNuHr66s/FxwczIMPPsjLL79McHAwLi4u17xfUFCQ/nsHBwfCw8PJzMyUZK6fk2WWpkDTyGBfJ/3Dwso61A2adi4QQgghhBDdwc3NjZkzZxocv/POOwE4ePAgOp3O4PzV3nnnHUpLS/nVr37VKpFrEhoaClzffrn09HSOHTvG2LFjO32t6FskmTMFOg0jglybHwIpMjsnhBBCCNHjWs6AteTk5ISLiwtVVVVUVFy7L/DmzZsBuOOOO4yer6qqAjpfybK8vJylS5fy9ttv4+rqeu0LRJ8myyxNgVbTamYO4HR2GXEDXHonHiGEEEKYBCcbC07+eVZvh9EpTjbd//b2eqtSdmRGrkliYiLW1tZtLoM8evQo0Llkrq6ujsWLF3PPPfewZMmSDl8n+i5J5kyBTkO4tyN2VubU1CvLK0/nXPsTHyGEEEKI9qhUql7ff9YbrKysgObZr6tlZWUZPQ6QmZlp9HhFRQXl5eXY29vj5ORkdEyThoYGKisrcXZ2NlrMpaCggK+++gponcy9++67/PznPzcYHxMTQ2JiInfeeSdjxozh8ccfb/f5Rf8hyyxNgVaLm70Vz8wfoj+UclmSOSGEEEKI69G0Ry0tLc3gXHFxsb6KpDHFxcVs377d4Pjnn38OwPjx469ZbdPS0hJXV1fKy8vJz883OP/aa69RW1uLt7d3q/10d955J3l5efqvjz/+GBsbG5566im2bNnChg0b2Lp1K3FxccTFxbFx48Z24xB9nyRzpkCnzMZF+TV/ypNyuZIGzfUtARBCCCGEuJkFBwcTGBjI6dOn+eabb/THq6urefDBB6+55+13v/sdxcXF+scXL17kr3/9KwAPP/xwh2JoKmzy7LPPtlqe+d5777Fq1apWY5o4ODjg4+ODj48PR44c4eGHH+bjjz/mrrvuYt68eWi1WhITE/VfHW2RIPouSeZMgVZJ5sK9HbEwUz7pqW/Ucr7A+NIAIYQQQgjRvr/85S8ALF26lGnTprFw4UJCQkJISkpqNwkaO3YsZmZmhIWFsWzZMhYuXEh0dDQ5OTmsWLGCxYsXd+j5n332WVQqFe+++y4xMTHcfvvtREVF8cADDzBq1Cig7f1y//vf/1ixYgWff/45y5Yt69TrFv2LJHOm4EoyZ2NpTpi3o/5wcq4stRRCCCGEuB733nsvH3zwAYMHD+bAgQMcOXKEBQsWcOjQoXarQFpbW7Nz505+8pOfcOjQIb7//nsGDBjAa6+9xocfftjh54+Pj2ft2rXExMSQlpbGtm3b8PX1ZePGjUyaNAkwnsy99957/PznP+frr79m3rx5nX7don9R6TpTVkf0KVFRUVCYQvJ/H4JFb9Og0fKzNUfZlVoIwD3jgnhuUXQvRymEEEKIvkir1ZKamgpAREQEZmbyGf+NyMjIIDg4mMmTJ7N79+5eieHNN9/kueee49tvv2XcuHG9EoOp6ezvSVP10eTk5G6PDaSapWmwcQagtkGjT+QAErPKeikgIYQQQgjRk15++WVeeOEFvvzyS4KDg7l8+TIAtra2ODs793J0orvIRzCmQKcUOnGyscTdwUp/OOVyJVqtTLwKIYQQQpgynU7H3/72N6qqqpg7dy6+vr76r5deeqm3wxPdSGbmTMGVPXMAg32c2H++CIC6Ri0ZxdUM8nTorciEEEIIIUQ3U6lUlJeX93YYohdIMmcKdM3J3BC/5mQOICm3QpI5IYQQQohuNnDgQKQUhehpsszSFFzYrf82vEU1S4DkHPmURgghhBBCCFMkyZwpqGluShnu3XoW7qQUQRFCCCGEEMIkSTJnCq4UQAEI9XJA1eLU6ZxyKYIihBBCCCGECZJkzhS0WJ9tZ2VBgKut/nF1vYZLJTW9EZUQQgghhBCiG0kyZwpazMwBRPg4tXp8KrusB4MRQgghhBBC9ARJ5kzBVcncYN/WRVBOZ0sRFCGEEEIIIUyNJHOmwCCZaz0zd1oqWgohhBBCCGFyJJkzBVf1NJkQ6sFrt8XqHydJERQhhBBCCCFMjiRzJqH1zJyzrSW3RPugulLWsrpew4Wi6l6ISwghhBBCCNFdJJkzBTrDWTd7awtCPZt7ziXJUkshhBBCCCFMiiRzpsBIMgcQE+Cs//6UFEERQgghhBDCpEgyZwqsHY0ejvZrLoRyOqesh4IRQgghhBBC9ARJ5lo4ePAgc+fOxc3NDQcHB0aPHs1HH33U6fscO3aMv/zlL0yaNAk/Pz+sra0ZMGAAK1as4NSpU10fuN8wg0PJueW8vu2c/nFSTjkaKYIihBBCCCGEyZBk7ooNGzYQHx/P1q1bGTp0KHPmzOHcuXOsXLmSJ554osP3aWxsZOTIkTz33HOkpKQwbNgwFi5ciLW1NZ9++ikjR45k3bp1XRu8TmNwyN/Flqq6Rv3j2gYtFwqruvZ5hRBCCCFEr1q+fDkqlYojR470diiiF0gyB5SWlnLvvfei0WhYt24du3fvZt26daSkpBAaGsobb7zBrl27Ony/MWPGsHnzZvLz8/n2229Zu3YtaWlpPP300zQ0NHDfffdRVFTUdS9AqzU45GJnha+zTatjJ2XfnBBCCCGESTl+/Djm5ubExMT0diiiF0gyB6xevZry8nIWLVrEkiVL9Me9vb155ZVXAHj99dc7dC8LCwsSEhKYN28eZmbN//eamZnx17/+lcjISCorK/n222+77gUYmZkDiPRpvZfuZFZZ1z2nEEIIIYToVWVlZaSnpxMZGYmtrW1vhyN6gSRzwObNmwFYtmyZwbl58+ZhY2PD9u3bUavVN/Q8KpVK/6lJbm7uDd2rldpy0DQaHI70dWr1OFGSOSGEEEIIk3H8+HEAhg0zrJ8gbg6SzIG+KMnw4cMNzllZWREdHY1arSY1NfWGn+vChQsA+Pj43PC99ArPQF2FweHBVyVzZ/MqUDcYn8UTQgghhBCK3bt3o1KpWLlypdHzK1euRKVSsXv3bv2xjIwMVCoVU6ZMoaKigl//+tcMGDAAGxsbBg8ezBtvvIHWyNaYjti6dSszZszAyckJd3d3Vq5cSWlpKceOHQOMv4cVNweL3g6gt1VUVFBWVgZAQECA0TEBAQEcPXqUzMxMYmNjr/u59u/fz7Fjx7CysmLOnDkdvi4qKsro8fT0dEKa8jWtYZI2+Kpllo1aHcm5FYwIcu3wcwshhBBCiI6rq6tj2rRppKenM23aNOrr69mxYwdPPPEEp06d4oMPPujU/f785z/z/PPPY21tzdSpU7G0tGTDhg0kJSUxcOBAoOMzc2lpaTzwwAMUFRVhbm7OL37xCx555JHOvsQb1lfiMAU3fTJXVdVc4dHOzs7oGHt7e4OxnVVRUcF9990HwOOPP46vr+9138soreEyy2APe6wszKhvbP4UKDGrTJI5IYQQQohukpCQwNChQzl37hweHh6A8gF8fHw8H374IbfeeisLFy7s0L0++eQTnn/+eUaMGMHXX3+tn3i4ePEiI0eO1C+zjIuL69D9rK2t+de//kV0dDRVVVWMGDGCKVOmtDlx0F36ShymwCSSuWXLlpGUlNSpa9asWcPo0aPR6a7de60jY9qj0Wi48847OXfuHKNHj+b555/v1PXJyclGj0dFRUFhivLASDJnYW5GuLcDSTnNSzBl35wQQgghOkynA3U/q4Zt4wwqVa+G8Nprr+kTOYCQkBCeeeYZHnroIf75z392KJkrLy/n0UcfxcnJiU2bNrWaCAgODubBBx/k5ZdfJjg4GBcXlw7FFRQUpP/ewcGB8PBwMjMzezyJ6itxmAKTSOYyMjI6vZ+tpqYGAEdHx1bHnJyc2hzr4OBwXfH97Gc/49tvvyUiIoJvv/0WKyur67pPu4wkcwBDfJ1aJXNS0VIIIYQQHaYuh5eDrj2uL3nqEti69NrTu7m5MXPmTIPjd955Jw899BAHDx5Ep9OhukbC+c4771BaWsrTTz9tdEVXaGgocP375dLT0zl27Bhjx469ruu7Sl+Jo78yiQIoR48eRafTdeprypQpADg5OeHs7AxAdna20fs3HQ8MDOx0bL/73e94//33GTBgANu2bWv1KU2XMrJnDpRkrqXMkhqKq+q6JwYhhBBCiJtcy1mnlpycnHBxcaGqqoqKCsPCdVdrqrZ+xx13GD3ftP3neipZlpeXs3TpUt5++21cXXtv+01fiaM/M4lk7kY1FTVpWnfcUkNDA0lJSVhbWxMREdGp+/7973/ntddew8vLi23btjFgwIAuideoNmbmJoZ58OTsCJxsLPXHTmaXdV8cQgghhBAm7nqrUnZm605iYiLW1tZtLj08evQo0Plkrq6ujsWLF3PPPfe06q/c0/pKHP2dSSyzvFHz5s1j7969rFu3jhUrVrQ6t3nzZtRqNXPnzsXGxqbD93z33Xf54x//iIuLC99//32nE8FO0zYYPRzq5UiolyPHM8vYfjYfgMSscqZFendvPEIIIYTo/2yclWWL/YmN8w3fomlLTFvF77Kystq8NjMz0+jxiooKysvLsbe3N7qtp6WGhgYqKytxdnY2uhyzoKCAr776CmidzG3bto1Zs2axf/9+JkyYAMDGjRu5/fbbWbt2LXPnzuXOO+9kzJgxPP744+3GcCMGDx7M/PnzefXVV/XH6uvriY6O5q677uKZZ57pkThuBjIzBzzwwAM4OTnxzTff6H8xQPlFefLJJwF44oknDK6LjIwkMjKSnJycVsfXrVvHQw89hIODA999912HKwzdkDZm5prEDWj+wyZFUIQQQgjRISqVsv+sP311QfGTpj1qaWlpBueKi4uNruZqeX779u0Gxz///HMAxo8ff839cpaWlri6ulJeXk5+fr7B+ddee43a2lq8vb1b7aebOXMms2fP5g9/+AMAe/bs4Sc/+QmrV69m/vz5bNmyhQ0bNrB161bi4uKIi4tj48aN7cZyPSZMmEBCQoJBzI2NjTz11FM9FsfNQGbmUDaqvv/++yxfvpxly5YxefJkPDw82L59O2VlZTz66KNMnz7d4LqmoisNDc2zYgUFBdx1111otVqCg4N55513eOeddwyuXbx4MYsXL+66F9HGnrkmcQOa1yGfzCrr0MZbIYQQQoibUXBwMIGBgZw+fZpvvvmGRYsWAVBdXc2DDz54zT1vv/vd79i+fTvu7u6A0krgr3/9KwAPP/xwh2IYPnw4O3bs4Nlnn+U///mP/n3be++9x6pVq/Rjrvbqq68SFxfH3/72N15++WVeeeUV7rrrLkBZjdbRJaIlJSWUlJS0O8bJyQkvLy+D4xMmTOCzzz6jsbERCwsLsrKyePHFF/nss8+wsbHpVByifZLMXbF06VL27t3LCy+8QEJCAvX19QwePJhHHnmEe++9t8P3qampob6+HoDTp09z+vRpo+MGDhzYxclc+zNzQ1vMzJXXNnCxqJpBntdXnVMIIYQQwtT95S9/4b777mPp0qXEx8fj4ODAkSNHcHJyYuHChW3OJI0dO5b6+nrCwsJaNQ2vqalhxYoVHX7/9+yzz7Jz507effddDhw4QFRUFElJSZw5c4YxY8Zw+PBho/vlYmJiuOOOO3j66ad5/vnnr7sZ91tvvcVzzz3X7ph77rmHDz/80OD4hAkTqK2t5dSpUwwfPpzHH3+c+Ph4fVIsuo4kcy1MmDCBLVu2dHi8sU2sAwcOvOG+dJ1m7QjuoW2ezi6tYdUPaViZm1GvUT4FOZ5ZJsmcEEIIIUQb7r33XlQqFatWreLAgQO4urqyYMECXnrpJX7zm9+0eZ21tTVbt27lj3/8I19//TVFRUX6vnCPPfZYh58/Pj6etWvX8txzz5GSkkJubi7Dhw/npZdeYu/evW0mcydPnuS7777D0tIST0/P63npgJJM/ulPf2p3jJmZ8R1b4eHheHh4kJCQQFFREZs2bep0T2jRMSpdj2ceoqs0NQ1P/k0gPHWxzXEFlWpGv7ij1bGfjB7A35cM7e4QhRBCCNFHabVa/ZaRiIiINt+Yi47JyMggODiYyZMns3v37l6J4fz580ycOJH7778fCwsL3nnnHc6fP3/dvZJvxKJFi7Czs+PEiRPceuut/P3vf+/xGLpCZ39PmqqPJicnd3tsIAVQTIOu/f1yXo42eDpatzp27FJpd0YkhBBCCCF6UE5ODjNnzmTx4sW8+OKL/Pa3v0Wj0bSqKNmTJkyYwBdffEF1dfU1Z/jE9ZNkzhR0YAPp1c3D0/KrKK8x3s5ACCGEEEL0H8XFxcyaNYuRI0fyr3/9CwBHR0eefvppVq1aRV5eXo/HNHz4cHQ6HatWrcLe3r7Hn/9mIcmcKbjGzBxAlJ9hP5PjmTI7J4QQQgjR37m7u5OcnMzatWtbLQN87LHHqKqqatW+oKd89NFHTJ06leXLl/f4c99MpACKKWhUQ9aPMGBUm0Oi/AwbaB69VMLUSMNyskIIIYQQonN6pQheH6PRaCguLmb9+vVs2LCBEydO9HZIJk+SOVOg00J5ZrvJ3BAjM3NHM2RmTgghhBBCdI09e/YwY8YMBg0axNq1awkLC+vtkEyeJHOmQtN+n7kgNzscrC2oqmsedzK7jAaNFktzWW0rhBBCCCFuzLRp06QZeA+Td/GmQtt+MRMzM5VBERR1g5YzuRXdGZUQQgghhBCim0gyZyo0165MGRNgbN+cLLUUQgghhBCiP5JkzlR0IJkbaiSZO3appDuiEUIIIYQQQnQzSeZMhab+mkOGBrgwIsiVaS0qWB67VHrTV14SQgghhBCiP5JkzlR0YGYu2MOe9Q+N55VlQ/XH8ivqyC6t7c7IhBBCCCGEEN1AkjlTcY0CKC15OFgT7GGvf3xM9s0JIYQQQgjR70gyZyo6sMyypeGBrvrvj8q+OSGEEEIIIfodSeZMxTX6zF1t5MAWyZw0DxdCCCGEEKLfkWTOVJhbdmhYo0bL5lO5nMhsTuBS8yupVHd8maYQQgghhBCi91n0dgCii4y8r0PDzM1U/PGr01Som2fydDo4kVlGfLhnd0UnhBBCCCGE6GIyM2cqdJoODVOpVNI8XAghhBBCCBMgyZyp0HYsmQOI8XcxOCbNw4UQQgghhOhfJJkzFR2cmQOI8TecmTuRWUajRtuVEQkhhBBCCCG6kSRzpqK64zNrQ40ss6yp15ByubIrIxJCCCGEEEJ0I0nmTMX+1zo8NMDVFhc7w+qX0jxcCCGEEOLaVq5ciUqlYvfu3b0dSq9Yvnw5KpWKI0eO9HYoNz1J5kxFY12Hh6pUKmIDXAyOSxEUIYQQQghxLcePH8fc3JyYmJjeDuWmJ8mcqehEMgcQN8DF4NixDCmCIoQQQggh2lZWVkZ6ejqRkZHY2tr2djg3PUnmTEUXJHO55WqyS2u6KCAhhBBCCGFqjh8/DsCwYcN6ORIBksyZDk19p4bHGknmAA6eL+6CYIQQQggh+r/169czevRobG1t8fb25u677yY3N7fdaw4dOsSiRYvw9PTE2tqagQMH8vDDD7e6Tq1WY2NjQ3BwsMH18+fPR6VSMXXqVINz0dHRWFhYUFFRoT+WkZGBSqViypQp1NbW8vvf/56goCCsra0JDQ3l5ZdfRqfTdfq1b926lRkzZuDk5IS7uzsrV66ktLSUY8eOATB8+PBO31N0PUnmTIWmczNzbvZWBLnbEehmR5C7nf74gfSiro5MCCGEEKLfefvtt1m2bBnHjx9n/PjxTJkyhe3btzN27FiKi41/+P3JJ58wadIkNm3aREREBEuWLMHa2pp///vfDB8+nJSUFABsbGwYM2YMGRkZZGRk6K/XaDTs378fUJJCtVqtP1dUVMSZM2eIi4vDycnJ4Lnr6+uZNWsW7777LoMHD2bq1Knk5OTw+9//nmeeeaZTr/3Pf/4zt9xyC/v372fChAlMmDCBDRs2MHPmTA4fPgx0fGYuLS2N+Ph4hgwZQkxMDP/85z87FYtonyRzpqKxczNzAFt/Hc/eJ6fy1JxI/bGD6cXX9emNEEIIIYSpyMjI4Le//S3W1tZs376dHTt28MUXX3D+/HkiIyPZvHmzwTVZWVn87Gc/Q6VSsXHjRvbv38/nn3/O2bNneeyxx8jPz+fuu+/Wj58yZQpAq4qYJ06coLy8nKioKOrq6khISNCf2717NzqdTn/d1Q4dOoRKpSItLY2tW7eydetW9u3bh4WFBW+88QZVVVUdeu2ffPIJzz//PCNGjOD8+fNs2bKFjRs3kpiYyMWLF/nqq68AiIuL69D9rK2t+de//sWZM2c4dOgQb731FsnJyR26VlybJHOmopPLLAFsrcwBGDfIHZVKOVZYWcf5go79sgshhBDi5qBu0FBe29DhL2MfDFeoO359bb3G4Pr6Rm2716gbDK+5Xu+//z51dXXcfffdrZInOzs7/vGPf6BqeuPUwurVq6mtreUnP/kJ8+fP1x83MzPjpZdews/Pjx9//FGfoE2ePBlonczt2bMHgGeffbbNc20lc2ZmZqxevRoPDw/9sZEjR3LLLbdQU1PD0aNHr/m6y8vLefTRR3FycmLTpk0EBATozwUHB/Pggw+i0+kIDg7GxcXlmvcDCAoKIjo6GgAHBwfCw8PJzMzs0LXi2ix6OwDRRa4jmWviam/FEF8nknOV9dcHzhcR5u3YVZEJIYQQop/79+503txxrsPjT/55Fs62rXvaTnhpJ5Xqxg5dv3R4AKuWx7Y69k1iDr9bd6rNa349PYzHZ4Z3OMb2NC11XL58ucG5iIgIhg0bpi8E0mTfvn0A3HXXXQbXWFtbc9ttt/Hmm2+yb98+xo4dy/jx47G2tm6VsO3evRsXFxeWLVtGQECAwTkzMzMmTpxoNOaBAwcSHm74+puO5eXltf+igXfeeYfS0lKefvppfH19Dc6HhoYC179fLj09nWPHjjF27Njrul4Ykpk5U3EDyRzAhNDmT3EOpEsRFCGEEELcvJqKlQQGBho9b+x40zUDBw40ek3T8aZxNjY2jB49mkuXLpGRkYFWq2X//v3Ex8djZmbG5MmTSUhIQK1WU1RURHJyMnFxcW3OiLWcRWvJwcEBgLq6a9dXaFo+escddxg937RU83oqWZaXl7N06VLefvttXF1dO329ME6SOVOhabiuy2rqGzlysYTymuZkMOFCMY0abVdFJoQQQgjRrzQtEzW2nPJarnVNy/Mtl1omJiZSVlamX0Y5ZcoU/b65vXv3trtf7npjvVpiYiLW1tZERUUZPd+0VLOzyVxdXR2LFy/mnnvuYcmSJTccp2gmyyxNxdDbr+uyl7aksObQJQBUgA6oVDeSlFthtBedEEIIIW4+D00J4b6JhmX02+JkY/gW88Dvp9HRGmtW5obzDYvi/JkV5dPmNdYWXTdH4efnR1paGpcuXSIsLMzgvLE9X35+fqSmpnLx4kWjyx0vXVLeb7VcvjhlyhReeOEFdu/eTUlJif5Yy/9tea4p+esODQ0NVFZW4uzsbDQxLCgo0Bc/uTqZe/fdd/n5z39ucE1MTAyJiYnceeedjBkzhscff7x7gr+JycycqQifc12XxQa46L+3tmz+cThwXloUCCGEEEJhY2mOs61lh7+MJQNONh2/vqlIW0tWFmbtXmNjaXjN9Wral7Z27VqDc2lpaSQmJhocnzRpEgCffvqpwbn6+nr9vZrGAYwfPx4rKyt2797N7t27cXV1JTZW2SsYGhqq3zfXtF8uPj7+hl9bWywtLXF1daW8vJz8/HyD86+99hq1tbV4e3sb7Ke78847ycvL0399/PHH2NjY8NRTT7FlyxY2bNjA1q1biYuLIy4ujo0bN3bb67jZSDJnKnTXV8EpLtBF/726oXlp5UHpNyeEEEKIm9S9996LlZUVa9as0Rc2AaitreXXv/41Wq3hdpT7778fW1tbPv/8c7799lv9ca1Wyx//+EdycnIYNWpUq+Iftra2jBo1ikuXLrFt2zb9frkmkydP5tChQyQlJREbG9vhCpLXq6mwybPPPtuqIul7773HqlWrWo1pycHBAR8fH3x8fDhy5AgPP/wwH3/8MXfddRfz5s1Dq9WSmJio/1q4cGG3vo6biSRzpkJ7fclcsLu9QbUpgKMZpV1a4lcIIYQQor8YNGgQL7/8Mmq1mqlTpzJjxgzuuOMOQkNDSUpKatV6oElgYCDvvvsuOp2OBQsWMGnSJO68806GDBnCqlWr8Pb2Zs2aNQbXNS2nVKvVBnvipkyZQn19PTqdrluXWDZ59tlnUalUvPvuu8TExHD77bcTFRXFAw88wKhRo4D298v973//Y8WKFXz++ecsW7as2+MVksyZDt31FSwxM1MxrMXsnIWZsiyirlHL8UulXRGZEEIIIUS/89hjj/Hll18SFxfH/v372bFjB1OmTCEhIQF3d3ej16xYsYK9e/cyf/58zp49y7p166itreWhhx7i2LFjREZGGlzTMoEzlsy1da47xMfHs3btWmJiYkhLS2Pbtm34+vqyceNG/fLQtpK59957j5///Od8/fXXzJs3r9tjFQqVzlhXR9EvREVFQWEKyQ87QNgsWPwfsDf+x6U9/9hxjlXb0gBwtbOktEapjPnI1BB+N9vwj44QQggh+j+tVktqaiqg9E5rubxPiM548803ee655/j2228ZN25cb4fTpTr7e9JUCTQ5ObnbYwOZmTMd536AmuvrDzc8qLnXR01989LKA+el35wQQgghhGjbyy+/zJ/+9Cc+/fRTgoODuXz5MpcvX6a8vLy3Q7spSDJnShrV13VZ7AAXrqyupK6xebnmqewyKtTX179OCCGEEEKYNp1Ox9/+9jeqqqqYO3cuvr6++q+XXnqpt8O7KUifOVPSWHddlzlYWxDh48TZvAoA7KzMqanXoNXB4QslzBzi3ZVRCiGEEEIIE6BSqWQGrpfJzJwp0VxfMgcwIshF/72bvZX+e2lRIIQQQgghRN8kyZwpuc5llgDDA5V9c442Fvg62+iPH5R9c0IIIYQQQvRJsszSlFznMkuA6ZHe/PB4PKGeDlwqqWHqa7sBSM2vpLCyDk9H6y4KUgghhBBCCNEVZGauhYMHDzJ37lzc3NxwcHBg9OjRfPTRR11y7/vuuw+VSoVKpSIhIaFL7mngBmbmnO0sCfd2xMxMxUB3O/xazs7JUkshhBBCCCH6HEnmrtiwYQPx8fFs3bqVoUOHMmfOHM6dO8fKlSt54oknbujeu3bt4oMPPkClUnVRtG1orO+S26hUKsaHeugfy1JLIYQQQggh+h5J5oDS0lLuvfdeNBoN69atY/fu3axbt46UlBRCQ0N544032LVr13XdW61W8/Of/5yoqKjub6J4AzNzVxsf0tx8fP/5IqS3vBBCCCGEEH2LJHPA6tWrKS8vZ9GiRSxZskR/3Nvbm1deeQWA119//bru/de//pXz58/zn//8B0tLyy6Jt003sGeuiVar43xBJSXVzbN8OWW1pBdW3fC9hRBCCCGEEF1HCqAAmzdvBmDZsmUG5+bNm4eNjQ3bt29HrVZjY2NjMKYtSUlJvPrqq9x3331MnDixy+Jt0w20JgBo1GgZ+/edFFUp9xnkYc+FomoAdqYUEOrleMMhCiGEEEIIIbqGzMwBp06dAmD48OEG56ysrIiOjkatVpOamtrhe2q1Wh588EGcnZ31s3vdasrTMOHXN3QLC3Mzgtzt9I/9XJoT110phTd0byGEEEIIIUTXuumTuYqKCsrKygAICAgwOqbpeGZmZofv+89//pOEhARWrVqFm5vbDcd5TV1UW2V0cHOsdY3N++R+zCihQt3QNU8ihBBCCCGEuGE3/TLLqqrmvWB2dnZGx9jb2xuMbU92djZPP/00U6ZM4e67777hGKOiooweT09PJ8TpygOt5oafB2D0QDf+TToA5wsqcbG1oKy2kUatjgPnirglxrdLnkcIIYQQQghxY0wimVu2bBlJSUmdumbNmjWMHj26Q1UaO1vJ8ZFHHqGuro5///vfnbruhui6JpkbMdAVlQp0OiitaWBahCc7U5UlljtTCiSZE0IIIYQQoo8wiWQuIyOjU/vZAGpqagBwdHRsdczJyanNsQ4ODte87/r169m4cSPPPPMMkZGRnYqpLcnJyUaPR0VFQWGK8kCrAa0WzG5s5ayTjSWDfZw4k1cBgLujtf7c7rRCtFodZmbd3C9PCCGEEEIIcU0mkcwdPXr0uq91cnLC2dmZ8vJysrOzGTJkiMGY7OxsAAIDA695v02bNgGwbds29u7d2+pcYmIiAA8//DBOTk788pe/NFpB87rsfwPKMmHZezd8q9HBbvpkrlLdiJkKtDoorKwjObeCmADnG34OIYQQQgghxI256QugAMTGxgJw/Phxg3MNDQ0kJSVhbW1NREREh++ZkJDAnj17Wn2Vl5cDcOLECfbs2aNPEruG7oZbEzRpWQQlMbOMYQNc9I93pRZ0yXMIIYQQQvRXK1euRKVSsXv37t4OpVcsX74clUrFkSNHejuUm54kcyi95ADWrVtncG7z5s2o1WqmT5/eoR5zH374ITqdzujX5MmTATh06BA6nY7HHnusS19HVzQNBxg1sDmZu1yhZniQq/7xzhRJ5oQQQgghbmbHjx/H3NycmJiY3g7lpifJHPDAAw/g5OTEN998w1dffaU/XlBQwJNPPgnAE088YXBdZGQkkZGR5OTk9Fis7WpUd8ltPB2tGeRpr3/saGOp//5kdhnFVV2TNAohhBBCiP6lrKyM9PR0IiMjsbW17e1wbnqSzAFubm68//77mJmZsWzZMqZOncptt91GREQE58+f59FHH2X69OkG16WmppKamkpDQx/pv9ZFM3OgtCgAsDRXYaYCHydlVlKngz1p0kBcCCGEEOJm1LQtadiwYb0ciQBJ5vSWLl3K3r17mT17NomJiXz33XeEhITw/vvv8+abb/Z2eB3TRTNzAHePG8jnD47l9F9m88tpYUyN9NSfk6WWQgghhLgZrF+/ntGjR2Nra4u3tzd33303ubm57V5z6NAhFi1ahKenJ9bW1gwcOJCHH3641XVqtRobGxuCg4MNrp8/fz4qlYqpU6canIuOjsbCwoKKigr9sYyMDFQqFVOmTKG2tpbf//73BAUFYW1tTWhoKC+//HKn22wBbN26lRkzZuDk5IS7uzsrV66ktLSUY8eOATB8+PBO31N0PZOoZtlVJkyYwJYtWzo8vrO/GN2+SbaxvstuNcSvdYuGKRFefH4kC4C9aYU0arRYmMtnAUIIIYQwTW+//Ta/+tWvMDc3Z/LkyXh4eLB9+3bGjh2rL553tU8++YSVK1ei1WoZP348AwYM4Pjx4/z73//mq6++Yvfu3URGRmJjY8OYMWPYu3cvGRkZDBw4EACNRsP+/fsBJSlsSvoAioqKOHPmDMOHDzfaSqu+vp5Zs2aRnJzM6NGjGTx4MHv27OH3v/89lZWVvPDCCx1+7X/+8595/vnnsba2ZurUqVhaWrJhwwaSkpL0sXZmZi4tLY0HHniAoqIizM3N+cUvfsEjjzzS4eu7Sl+JoyvJu3FT0oUzc1ebGOqBpbnSX65C3cjxzLJuey4hhBBCiN6UkZHBb3/7W6ytrdm+fTs7duzgiy++4Pz580RGRrJ582aDa7KysvjZz36GSqVi48aN7N+/n88//5yzZ8/y2GOPkZ+fz913360fP2XKFKD1h/0nTpygvLycqKgo6urqSEhI0J/bvXs3Op1Of93VDh06hEqlIi0tja1bt7J161b27duHhYUFb7zxBlVVVR167Z988gnPP/88I0aM4Pz582zZsoWNGzeSmJjIxYsX9fUl4uLiOnQ/AGtra/71r39x5swZDh06xFtvvdVmH+Xu1Ffi6EqSzJmSLtwzdzV7awvGBLvrH0uLAiGEEOIm0qCG2rKOfxlbvaQu7/j19TWG1zfWt39NQ9d9qP3+++9TV1fH3Xff3Sp5srOz4x//+AcqlcrgmtWrV1NbW8tPfvIT5s+frz9uZmbGSy+9hJ+fHz/++KM+QWuqct4ymduzZw8Azz77bJvn2krmzMzMWL16NR4eHvpjI0eO5JZbbqGmpqZDfZnLy8t59NFHcXJyYtOmTQQEBOjPBQcH8+CDD6LT6QgODsbFxeWa92sSFBREdHQ0AA4ODoSHh5OZmdnh67tKX4mjK8kyS1PSTTNzBZVqEjPLmBrpxf7zRQDsSingqTmR3fJ8QgghhOhj9r8Be17q+PinLoGtS+tjb8RAXXnHro+9E279d+tjp9fCNw+3fc3k38PUP3Q8xnY0LXVcvny5wbmIiAiGDRtm0J943759ANx1110G11hbW3Pbbbfx5ptvsm/fPsaOHcv48eOxtrZulbDt3r0bFxcXli1bRkBAgME5MzMzJk6caDTmgQMHEh4ebnC86VheXl77Lxp45513KC0t5emnn8bX19fgfGhoKHBj++XS09M5duwYY8eOve57dIW+EseNkpk5U9LFM3MV6gamr9rN6Bd38LOPjxHdYh9dyuVKcstqu/T5hBBCCCH6gqZiJYGBgUbPGzvedE3TnrKrNR1vGmdjY8Po0aO5dOkSGRkZaLVa9u/fT3x8PGZmZkyePJmEhATUajVFRUUkJycTFxfX5oxYy1m0lhwcHACoq7v2+8Sm5aN33HGH0fNNSzWvt5JleXk5S5cu5e2338bV1fXaF3STvhJHV5BkzlTYusGo+7v0lk42ltRrtPrHeeVqBrrb6R/LUkshhBBCmKKmInfGllNey7WuaXm+5VLLxMREysrK9Msop0yZot83t3fv3nb3y11vrFdLTEzE2tqaqKgoo+eblmpeTzJXV1fH4sWLueeee1iyZMkNxXkj+kocXUWWWZoKOzeY9dcuv+3YYHeySrIBSLhQzJQILz48mAEoSy3vGhPU5c8phBBCiD5m4uMw9qGOj7dxNjz2+Gnje+mMMbcyPBZzG0TOa/saC5uO3bsD/Pz8SEtL49KlS4SFhRmcN7bPys/Pj9TUVC5evGh0ueOlS5cAWi1fnDJlCi+88AK7d++mpKREf6zl/7Y815T8dYeGhgYqKytxdnY2mhgWFBToi59cncxt27aNWbNmsX//fiZMmADAxo0buf3221m7di1z587lzjvvZMyYMTz++OPd9hoGDx7M/PnzefXVV/XH6uvriY6O5q677uKZZ57pkTh6kszMmYpuKn4ydlBz0ZOEC8VMH+ylf7zvXBE19Y3d8rxCCCGE6EMsbZQ9cB39MjZLZOPc8eut7Ayvt7Bq/xrLrkvmmvalrV271uBcWloaiYmJBscnTZoEwKeffmpwrr6+Xn+vpnEA48ePx8rKit27d7N7925cXV31bQ9CQ0P1++aa9svFx8ff8Gtri6WlJa6urpSXl5Ofn29w/rXXXqO2thZvb2+D/XQzZ85k9uzZ/OEPyp7FPXv28JOf/ITVq1czf/58tmzZwoYNG9i6dStxcXHExcWxcePGLn8NEyZMaFUBtCnuxsZGnnrqqR6LoyfJzJyp6K5kLqQ5mcsoriHIzQ5Hawsq6xqpa9SyN62IOdE+3fLcQgghhBC94d577+WVV15hzZo1rFixQp+A1dbW8utf/xqtVmtwzf3338+rr77K559/zu233868ecosolar5Y9//CM5OTmMGjWqVcENW1tbRo0axYEDB8jPz2f27NmYmTXPtUyePJm1a9fS0NDQ7n65rjJ8+HB27NjBs88+y3/+8x/9DN17773HqlWr9GOMefXVV4mLi+Nvf/sbL7/8Mq+88oq+GMy8efOM/n9mTElJiX4msi1OTk54eXkZHJ8wYQKfffYZjY2NWFhYkJWVxYsvvshnn32GjY1Np+LoL2RmzlR0UzLn72JLoFvzp2PHr1S1bPLDmcvd8rxCCCGEEL1l0KBBvPzyy6jVaqZOncqMGTO44447CA0NJSkpqVXrgSaBgYG8++676HQ6FixYwKRJk7jzzjsZMmQIq1atwtvbmzVr1hhc17ScUq1WG+yJmzJlCvX19eh0um5dYtnk2WefRaVS8e677xITE8Ptt99OVFQUDzzwAKNGjQLa3i8XExPDHXfcwdNPP81vf/vb627G/dZbbxEWFtbu15NPPmn02gkTJlBbW8upU6cAePzxx4mPj2fRokXXFUt/IMmcqaivhoNvQ21pl9967CA3/feH0ouZFeWtf7zjbAGNGtP6hEMIIYQQ4rHHHuPLL78kLi6O/fv3s2PHDqZMmUJCQgLu7u5Gr1mxYgV79+5l/vz5nD17lnXr1lFbW8tDDz3EsWPHiIw0bOvUMoEzlsy1da47xMfHs3btWmJiYkhLS2Pbtm34+vqyceNG/exkW8ncyZMn+e6777C0tMTT0/O6Y3j22WdpaGho9+v99983em14eDgeHh4kJCTwww8/sGnTJt56663rjqU/UOl0Hd2JKvqaqKgoKEwh+WGH5oMPHwavru3/9tXxbJ748iQAA9xs+e7RSYz463Z9pcvPHhzD+BCP9m4hhBBCiD5Gq9WSmpoKKL3TWi7vE6Izzp8/z8SJE7n//vuxsLDgnXfe4fz58/q2CD1p0aJF2NnZceLECW699Vb+/ve/39D9Ovt70lQJNDk5+Yaet6Pkt9bUdEPj8JaJWlZJLaXVDUwIbf5E6odkw02yQgghhBDC9OXk5DBz5kwWL17Miy++yG9/+1s0Gk2ripI9acKECXzxxRdUV1fzpz/9qVdi6EmSzJmabtg75+NsQ4invf7xgfQiZkU1Fz3ZdiYfmeAVQgghhLi5FBcXM2vWLEaOHMm//vUvABwdHXn66adZtWoVeXl5PR7T8OHD0el0rFq1Cnt7+2tf0M9JMmdqumFmDmBiaPPs3MWiaqYP9tJXHc4pqyU5t6JbnlcIIYQQQvRN7u7uJCcns3bt2lbLDx977DGqqqoMWhj0hI8++oipU6eyfPnyHn/u3iCtCUxNN1W1vG3kAEYOdGN8iDvuDtYADA905dglpeDKD8mXifY30iBUCCGEEEKIbqTRaCguLmb9+vVs2LCBEydO9HZIPUZm5vq9q5pydtPMXLS/Mwti/fSJHMCsIc1VLb+XfXNCCCGEEKIX7NmzBx8fH1atWsXatWsJCwvr7ZB6jMzM9Xeqq5I5TX2PPfXsKB/+viUFgNT8StILqwjx7PmqRUIIIYQQ4uY1bdo0k2sG3lEyM9fv9czMnDEDPewZ4uukf7w1SRqICyGEEEII0VMkmevvVFf9J+yBZK66rpFdqQWoGzTMjWmuavnd6Z6vWCSEEEIIIcTNSpK5/u7qZZbdVAAFQKfTsfKDI8Q9/wP3fvAjxzNLmRPdXKUoObeCzOKabnt+IYQQQgghRDNJ5vq9nltmqVKp0OmgQaP0lDtwvohQLwfCvZv3yW1Jktk5IYQQQggheoIkc/1dy5m5W16B0T/r1qdr2W9u/7ki5WlbzM59J/vmhBBCCCGE6BGSzPV3LffMWTuBtWO3Pt3EsOZk7lROOSXV9cyNaU7mTmaVkVNW260xCCGEEEIIISSZMwEtZuZ6oPhJpI8jXo5KrzmdDvadKyTc24FBHvb6MVukEIoQQgjR56larO65Wcu6C3EtLX83VFfXqugDJJnr71r+UHVj8ZPmp1MxOdxT/3hPWiEqlYpbWlS13HQyt9vjEEIIIcSNUalUWFlZAVBdXd3L0QjRNzX9blhZWfXJZE6ahvd3KhWgFCTpqR5zkyM8WXssG4C9aUVotToWxvrzz13pAJzMLudCYRWDpIG4EEII0ac5OjpSXFxMfn4+APb29piZyWf9Qmi1Wqqrq/W/G46O3buV6XpJMtfvtUjm9r0OpRmw4P+69RknhnpgpgKtDoqq6jiTV0G0vzODfZ04m1cBwNeJuTwxM7xb4xBCCCHEjXF3d6e6uhq1Wk1urqysEcIYGxsb3N3dezsMo+Sjl/6uZQGUunKoKuj2p3SxsyJugIv+8Z60QgBuHeanP/b1iRx0Ol23xyKEEEKI62dubk5gYCDu7u76JZdCCIWVlRXu7u4EBgZibm7e2+EYJTNz/d3Va3c13b9vDmByuBfHM8sAJZl7ZGooC2P9+fuWFHQ6yCyp4XhmGSOCXHskHiGEEEJcH3Nzc7y8vPDy8kKn08mHsUKg7Cnti3vkribJXL93ddPwHkrmIjx5Y3saAIWVdTRotPg42zA+xJ0D54sBZXZOkjkhhBCi/+gvb2CFEApZZtnfXf0Ht4eKoMT4O/P8oih2/mYyO38zGUtz5UdpUZy/fszmU7k0aKTUsRBCCCGEEN1Bkrn+TnXVf8IeSubMzVTcPW4ggzwdWn2CNyfaB2sLJabSmgb2pBb2SDxCCCGEEELcbCSZ6/d6Z5llW5xsLJkxxFv/eO2xrF6MRgghhBBCCNMlyVx/Z7DMsneTOYBlIwL03+84W0BBRc/MFgohhBBCCHEzkWSuv+sDyZxGq+PHjBL2XmlREB/mib+LrRKOVqdvMC6EEEIIIYToOpLM9Xu9s2euya7UAka9uJ3b/nOIv29JAZT9dLeNbJ6d++LHLLRaKXMshBBCCCFEV5Jkrr/r5Zm5IDc7SqrrATibV0F2aQ0Ay0cOwOxKaJklNRy6UNyjcQkhhBBCCGHqJJnr71omc1YOEDm3R59+kKcDgzzt9Y93nC0AwM/FlikRXvrjnx/J7NG4hBBCCCGE6G6V6gYSLhSzet8Ffv2/E1wqru7R55em4f1ei2TO3hOWvd/jEcwc7M07hRcA2H42n3vGDwTgjlED2JmiJHffJ1+muKoOdwfrHo9PCCGEEEKIG1WpbiApp4KknHJO55STlFPOxeJqdC12E9U39uzWIknm+ruWM3O9VMlyxhBv3tmrJHMJF4qpUDfgZGPJtEgvvBytKaiso0GjY8OJHB6YNKhXYhRCCCGEEKKjaus1nMkr52RWOaeyyziVXc6Fop6ddesISeb6u5ZNw3u4+EmT4YGuuNpZUlrTQINGx960QuYP9cPC3IylIwL49+50AL5JzJVkTgghhBBC9CkNGi2plys5mV3GqaxyTmaXca6gCk0HC/g5WlsQ5e9EjL8z76y16eZoW5Nkrt/r/Zk5czMV0yK9WX9caUGw/Uw+84f6AXDrMH99Mnc6p5zzBVWEejn0SpxCCCGEEOLmptHquFBYxclsZcbtZHY5Z/MqqG/Uduh6RxsLov2ciQlwJtrfmRh/Z4Lc7DC7Uvnvsyd7Nr2SZK6/a7nMsqEWkr6C0Blg49SjYcwc4qVP5namFNCg0WJpbka4tyNDfJ04k1cBwDeJOfxmVkSPxiaEEEIIIW4+Op2OrJJaZcbtSuKWnFNOdb2mQ9fbWpoT468kbkMDnBka4NIqcesLJJnr71ous0QL6+6Fhw6BzZAeDWNSmCdW5mbUa7RUqBs5mlHKuBB3ABYP82uRzOXyxMxwVFe3VBBCCCGEEOIGFFSoScxS9redyinndHYZpTUNHbrW0lzFYF8nfdIWG+BCqJcD5n0ocTNGkrl+z8gPWC/snbO3tmBciDt70goB2HE2X5/MLYz15+9bUtDplJ5zxzPLGBHk2uMxCiGEEEII06Bu0HA6p5zEzDJOZJWSmFlGbnnH3gObqSDMy1FJ3Aa4EBvgTISPI9YW5t0cddeTZK6FgwcP8sILL5CQkEB9fT1DhgzhkUce4Z577rmu+2m1Wt577z0++ugjkpOTUavV+Pr6Mm7cOP74xz8SFRV140Ebm+HqxaqWe9IKcba1xMK8ecbQx9mGscHu+sbh3yTmSDInhBBCCCE6RKfTcbGomhOZZSRmKclbSl4ljR0sUDLQ3Y6hAS4MDXAmdoALUX5O2FmZRhpkGq+iC2zYsIHbbrsNrVZLfHw8Hh4e7Nixg5UrV3Ly5Elef/31Tt2vpqaGBQsWsHPnTlxdXZk4cSI2NjZcvHiRL774gltuuaUbk7neqWo5N9qHMC8HRga5tkrmQFlq2ZTMbT6VxzPzh2BpLj3rhRBCCCFEa2U19UrSdiV5S8wqo7y2Y8slfZ1tWi2VjPF3xtnOspsj7j2SzAGlpaXce++9aDQa1q9fz5IlSwDIz89n4sSJvPHGGyxYsICpU6d2+J733nsvO3fu5L777uMf//gHdnZ2+nN5eXk0NHTsB/LaVFe+Wnwy0Uszc+4O1m02BZ8T7csz3yRT36ilpLqevWmFTB/s3cMRCiGEEEKIvqRBoyUlr5LErFJ98tbRfm62luYMDXAmLtCFYQNcGRbogrdTz7YG6G2SzAGrV6+mvLycRYsW6RM5AG9vb1555RWWLFnC66+/3uFkbufOnXz55ZeMGjWK//73v5iZtZ6B8vX17dL4sbCBxtrmx700M9ceZ1tLZgz24rvTlwH48miWJHNCCCGEEDcRnU5HXrn6StKmJG+nc8qp62BbgDAvB+IGuOiTt3BvB4PVYDcbSeaAzZs3A7Bs2TKDc/PmzcPGxobt27ejVquxsbl2tv/OO+8A8Pjjjxskct3Cwrp1Mqep7/7nvA7LRw7QJ3M7zhZQUKnGy/Hm+vRECCGEEOJmUd+o5UxeBcculXL8UinHLpVyuaJjkw5u9lYMG+BC3AAXhgW6MnSAM042prtc8npJMgecOnUKgOHDhxucs7KyIjo6mqNHj5KamkpsbOw177dz504AZsyYQVJSEmvXruXy5cv4+Phwyy23MHbs2K59ARZXJUR9YGYuo6ia7WfzCfVyYEqEF6C0L/BztiG3XE2jVsdXx3P4xeSQXo5UCCGEEEJ0hZLqeiVpy1QSt5NZZR2adbM0VzHEz5lhA1wYdmXWbYCbrbSy6oCbPpmrqKigrKwMgICAAKNjAgICOHr0KJmZmddM5vLz8ykqKsLV1ZX33nuPp59+Gq22+Yf4+eefZ8WKFbz//vtYWnbs04W2CqWkp6cTEhKizMy11Et75pr83/Y0/m/7OQCmRXrpkzlzMxW3jRzAmzuUc1/8mMXP4wfJL6oQQgghRD+j1eo4X1jFsSszbscvlXZ4r1uAqy3DAl2VmbdAF4b4OmFj2f/aAvQFN30yV1VVpf++ZZGSluzt7Q3GtqW0tBSAyspK/vCHP/DTn/6UP/3pT3h5ebFjxw5+8Ytf8Mknn+Dv789LL73UBa+APjczN3qgm/77fecKqVA36KfFbxsZwFs7z6HTwcWiao5cLGHMIPfeClUIIYQQQnRAVV0jJ7PKmpO3zFIq1Y3XvM7K3IyYAGdGBLkyPNCV4UEuJrXN5nK5mhOZpVdaJpSRW1aLn4ttjz2/SSRzy5YtIykpqVPXrFmzhtGjR6PTXbs/RUfGNNFoNAA0NjYybtw41qxZoz+3dOlSbGxsmD9/Pm+99RZ//OMfcXJyuuY9k5OTjR7Xz9hdPTPX0MvJXLAbbvZWlFTX06DRsf1MPkuGK7OeAa52TArzZO+V5uJf/JglyZwQQgghRB+TW1bLjxklHM1QkreUyxV0pK2bh4M1I4NcleQtyJVof6d+2YzbmPpGLcm55RzPLON4ZiknLpUaNCqvrdf0aEwmkcxlZGSQmpraqWtqamoAcHR0bHXMWHLVNNbBweGa9215v/vuu8/g/Lx58/D29iY/P58jR44wY8aMTsVtVMtkbsofYPjdN37PG2BhbsbsKB8+P5IJwHenL+uTOYA7Rg3QJ3Pfns7jzwuiTLr/hxBCCCFEX9a0ZPLIxRKOZpTwY0YpOWW117zOTAURPk6MCHJhRJArIwLdTHKv21fHs/n0cCanc8qpv8YewA72Me8yJpHMHT169LqvdXJywtnZmfLycrKzsxkyZIjBmOzsbAACAwOveT8/Pz+srKyor68nKCjI6JigoCDy8/MpKCi47rhbabnM0skfHHu/5P/cmOZkbu+5QirVDTheWWo5Y7C3fuaurlHLVyeyuXdCcG+GK4QQQghx06hv1JKUW86PF0uU2bdLpZTVXLsHsqO1BcOCXBkRqMy8xQ5w1r+/6+8aNFrO5FZgYa4iys+51bniqnqOXSpt81o/ZxtlD2CgC3/7queWWIKJJHM3KjY2lr1793L8+HGDZK6hoYGkpCSsra2JiIi45r0sLCyIjo7m+PHjlJSUGB1TXFwMdGymr0Nazsz1gUqWAGMHueNiZ0lZTQP1jVp2phSwKM4fACsLM24bEcA7ey8A8EnCJVaOH2hyn+IIIYQQQvQFVXWNHL9UytGMEo5klJCYVYa64dpVJgPd7Bg50JWRQW6MCHIl1MsBczPTeL9WWFnH8Uxl79/xS6Wcylb63c0f6svbd7aucD88yEX/vZWFGTH+zgwPdLmyB9C1VaPyN3q4kIskcyhLH/fu3cu6detYsWJFq3ObN29GrVYzd+7cDvWYA1i4cCHHjx9n165d3H777a3OZWRkkJGRAcCwYcO6JP5WM3O9XMmyiaW5GbOH+PDF0SwAvj2Vp0/mAO4cE6hP5tILqzl0oZjxIR69EqsQQgghhCkprKzTJ25HM0pJzi2/5vI/lQoifZwYPdCVUcFujAxyw8fZNAqVNGi0pORVNidvmaVklRhfRnois8zgWJSfM8/MH8LwQBeG+PWtPYCSzAEPPPAAL774It988w1fffUVS5YsAaCgoIAnn3wSgCeeeMLgusjISAB27NiBv39zovLwww/z+uuv88EHH7B06VJmzpwJKNUwH3roITQaDfPmzWPAgAFd8wJazsxp+kYyB3BLTHMytzutkKq6RhyslR+5IHd7Jod7sufK3rlPEzIlmRNCCCGEuA7ZpTUkXCjhyMVifswo5WIHWgRYWZgRF+DCqGBXRg5UZt5MtSn3vR/8yP7zRdccZ2VuhpeTNTX1jdhZNadJNpbm3D+xb24JkmQOcHNz4/3332f58uUsW7aMyZMn4+Hhwfbt2ykrK+PRRx9l+vTpBtc1FV1paGi9xtjT05MPP/yQ5cuXM2fOHMaOHYuXlxcJCQlcvnyZ4OBg3nnnna57AS1n5n5cDTnH4Y5Pu+7+12l8iAdONhZUqBv1Sy0Xxvrpz/90bJA+mfs++TIFFWq8nEzjEyAhhBBCiO6g0+nIKqkl4WIxCReKOXyhpEPFSpxsLBg50I2RA10ZPdCNmADnPjXDdCPyymv5MUNZRjpjsDfx4Z6tzg8NcDaazPk42TA8SFkuOSywf1belGTuiqVLl7J3715eeOEFEhISqK+vZ/DgwTzyyCPce++9nb7frbfeysGDB3nxxRfZv38/R48eZcCAAfzmN7/hD3/4A+7uXViOv+XMXEUuqPrGf1YrCzNmRfmw7phSQGbTydxWydzUSC/8XWzJKaulUavjfz9m8ej0sN4KVwghhBCiz9HpdGQU13D4wpXk7WIJeeXXrpHg62zDqIFujLqybDLcyxEzE9jvptXqSCuo1CdvR6+qvKkCg2Ru1EA3LM0vEOXnrO91NzzQtUf7wXWXvvGuv4+YMGECW7Zs6fD4a/WfGzVqFF9//fUNRtUBVzcNryvv/ufsoAWxfnx1PJsJoR7Mi/Ftdc7cTMWdYwJ59XtlhvOzw5k8PCUEC3Oz3ghVCCGEEKLX6XQ60gurOXyxmIQLJRy+UExB5bW30QR72DN2kNuVBM6NAFfTaRFw5ErVzR8zSjh2qf1m5T9mGFadnBDqwem/zMamh4uT9ARJ5kyBuVXrx3WVoNMpO1l72YQQdxL+OB0vR+PLJ5ePHMD/bU+jQaPjcoWa7WcLmBPt08NRCiGEEEL0Dp1Ox7mCqiszbyUcvlhCUdW1k7cQT3vGDnJnzCB3xgS7taqoaGqe3nCacwVV7Y4Z4GbLqCA3Rge7GZyzsjDdiQJJ5kzB1TNzOi3UV4N1F7U+uAEW5mZtJnIAno7WzIn2ZdPJXAA+PXxJkjkhhBBCmCydTsf5gioOpjcvmyyprr/mdeHeDkryFuzO6GA3PB2tr3lNf1BQoebwxRKOXCzh8MVi/rIwyqAo3siBbq2SOTMVDPFzYmSQMgs5cqCrSSez7ZFkzhRYGPllrqvsE8lcR6wYE6hP5vadK+JiUTXBHva9HJUQQgghxI1rKlhyML2Ig+nFHEwv7tDMW6SPI2MHueuXTro7mEbyll1aoyRuF5TWCVdX3jx8ocQgmZsQ6k5mSbU+eYsLdNFXSL/Zyf8LpuDqmTmAugrA1/B4H6DV6lptwB0d7Ea4twNp+conLp8mXOJP84e0dbkQQgghRJ92uVzNoQtFHDyvJG/XqjapUsEQXyfGBCvJ2+hgN1zsrNq9pr9o0GhZfyz7yszbtStvHrlYYnBs/lA/5g/1MzJaSDJnCtqametD1A0adqUU8E1iLiXV9Xz5i3H6cyqVihVjg3j2m2QA1h7L5rezI0xyk6oQQgghTE9JdT0JF4r1s28XCtvv89aUvI0b5M64EHdGDnTD2bb/93jTanWoVLQqvGJhpuLV71Mpbmcpqb+LLWOClSR27KAurPh+E5BkzhS0OTPXd1wqruGhT4/rH1+9lPLWYf68tCWFmnoN5bUNbDqZy20ju6ipuhBCCCFEF6pUN3DkYol+2eTZvGu/7wr1cmB8iDvjQ5R9b672/X/mTaPVcTavgoQLxfqKk58+MJYhfk76MSqVitHBbmxJuqw/Fuxhz+iBboy5MgsZ4GrXG+GbBEnmTIGxmTl130rmInwcifB2JDVfmTHccDybJ2ZF6M872liyeJg/nx3OBOCThEuSzAkhhBCiT1A3aDiaUaqfeTudU45G236LqgFutowf5MH4UHfGDXLHywQKdGi1OlLzKzl0JYk9crGYiqvaBBy+WNwqmQO4JcYXdwcrffGWm7VYSXeQZM4UGJ2Z61vLLAFuHa7MvgGsP57DYzPCW+2dWzEmSJ/Mncwu52hGCSMHGpaXFUIIIYToTlqtjjN5Few/X8T+c0X8mFFCXaO23Ws8Ha2ZEOLO+BAPxoW4M8DNNGabauobWX8sm0NXWidcq/LmkYsl3DshuNWxhbF+LIyVPW/dQZI5U9ByZs7cGgJGgV3fS4KWDPPn1e9T0Wh15JTVcuhCMRNCm6sVDfFzYnSwm37j63/2pLNakjkhhBBC9IDcslr2nyti3/kiDp4vanePF4CLnSXjBinLJseFeBDiad/vm3TrdDqD12CmUvHXb89S30Yya26mIsbfmTGD3Bgb7M6Iga49Eaq4QpI5U9AymXPwhnu/7b1Y2uHlZMPkcE92phQAsO5YdqtkDuChySH6ZG772QJSL1cS4ePY47EKIYQQwrRVqhs4lF6sn327UNR+0RI7K3NGB7sx4crM2xBfp1YrjPqrrJIaZdbtSt+7DY9MaLUM0sbSnBGBrhy6UAwoPd6i/Z0ZN8idsSHujBroJm0CepH8P28KWi6zbFT3XhwdsGxEgD6Z25KUx3OLonCyaa7eNCXCk0gfR1IuK8tE/7MnnTduj+uNUIUQQghhQho0Wk5mlbHvXBH7zxeRmFXW7r43MxUMDXBhUpgHE0M9GBboipWFWQ9G3D3yyms5lF6sfF0oJru0dauAQ+nFLB7m3+rYrcP8GezrxLgQZc+bKVTeNBWSzJmCljNzmms3oexN0wd74WJnSVlNA+oGLd+eyuMnowP151UqFQ9NCeHX/0sEYOPJXJ6YGW4y686FEEII0TN0Oh0XiqqVpZPniki4UExVXWO71wx0t2NimAcTQz0ZN8gdZ7v+n7SoGzTsSSvkwHklib1W24SD6UUGydzyUVKUrq+SZM4UtJqZ69vJnLWFOYti/fjo0CVAWWrZMpkDmBfjy2s/pJJVUotGq2P1vgs8tyi6N8IVQgghRD9SXtPAgfQi9qQWsu9cIbnl7a9YcrGzZEKIx5UEzsMkPzyuqmvk5x8fa3fMIA97xoYoVTelz1v/IsmcKWg5M9eohoz9SiGUAaN6L6Z23DZygD6ZO3aplPTCKkI8HfTnLczN+Fl8CM98nQTA/37M4pFpoXg5ShlbIYQQQjTTanWczilnT1ohe9IKOZFZSnsdA6zMzRg50JWJYR5MCvUkyq//73vTanWkXK7kwPkiDqYX8c+7hmNn1fwW38PBmsG+Tq164Q1ws9U3LB83yAMfZ3mP1V9JMmcKrm5N8OE88B8JD+7onXiuIcrPqdW+uH1pha2SOYDbRgTw5vZzFFXVUdeoZfW+i/xx7uDeCFcIIYQQfUhBpZp9aUXsSVNm30prGtodH+njqOx7C/Nk9EA3bK3MeyjS7pNdWnNl2WSxQeXNIxdLmBLh1Wr8vBgfQjztmRjqwQQTnYHsE+qrlS8r+x57SknmTIG5leGxur7VNLwllUrFfRODSS+oYtmIAMK8DatV2lia8/P4Qbz43VkAPj50iZ/FD8LDwUiDdCGEEEKYrAaNlmOXStmTVsjetEKSc9t/j+PhYMWkME/iw5W9b56O/f+9Q3lNAwfTlT1vB84XkVFc0+bYA+eLDJK5X04L6+4Qb071NZB9BC7ug4x9kHMMysvAM7LHQpBkzhT0k6bhLS0fee2NtHeNDeQ/e9Iprq6ntkHD6n0X+f0tPffLIYQQQojekVVSo0/eDqa3X7jE3EzFiEBXJkd4Mjnc02RaBjTJKqkh/tVd6NpZPmqmgpgAFyaFejBziHfPBXezaVBD9o9K4nZxH+QcBU37/Qi7myRzpsDCyCdO6r47M9dRdlYWPBg/iJe2pACw5lAGP4sfhJu9kZlIIYQQQvRbtfUaEi4Ws/fK3rdrVVz0d7ElPlxJ3saHurdqc9RfXSquZv/5In4yKrBVMhrgaouPkw15VxVzGeRhz4QryyZNpfJmn6NphLxEuLALLuyBrCPXrhyv6tn2FZLMmQIzczCzBG2LNeMN1aDVKOf6sZ+ODeKdPemU1jRQU6/hvf0X+N1smZ0TQggh+ruskhp2phSwK7WAQ+nF1DVq2xxrZWHG2EHuTA73ZHK4ByGeDqhU/Xv2raqukUPpSgK791whl64snYzxd2ZogIt+nEqlYkKoB7tTC/TJ24RQD/xdbHspchOm00FhipK4XdyjFBW81tYlKwcIHAfBk2DgJFj7056J9QpJ5kyFhQ3UX7UBuK4CbF17J55O0Gp1HL5Ygk6nY3yoR6tz9tYWPDBpEK9+nwrAhwcyWDk+2CTWvwshhBA3kwaNlh8zStiVUsDOlALSrzH7FuJpz+RwL+LDPRgT7N7vC5dotTrO5FXol48ezyylQWO4dnJvWmGrZA7gLwujsLca2u8T2D6pLLM5ebu4F6ry2x9vaQ+BY2HgRAiOB984MO+9lEqSOVNhYQ31V+2Tq6vs88nc3rRCnv76NFkltcQGOPPNLycajLl7XBCr912gtKaB6noNb+5I44XFMb0QrRBCCCE6o6BSze7UQnalFLD/XBGV7ex9c7C2YHyIO5MjPIkP8zSZiosl1fX8dfMZ9p0rpKiq/f1VYV4OONsZbidxsJa37F2muvhK4rZHSeJKL7Y/3swSBoyG4MkwaDL4jwDzvrOkVX4yTIWxIij9YN+cp6M1WSW1AJzMLiflcgWRPk6txjjaWPKraWE8v/kMAJ8fyWLl+GBCvRwM7ieEEEKI3qPV6jiVU87OlAJ2pxZwKru83fGhXg5Mi/RiSoQnI4PcsLLo2f1GXa1Bo8XSvPVrcLC24Ifky1TXawzGO9taMjHUg/hwDyaFeeInSye7Xl0VZB6CC7uVBO7y6WtcoALfoc3JW+C4Hm010FmSzJkKY0VQ+nhFS4DBvk7E+DtzOkf5Y/9pQiZ/XRxtMG7F2CA+OpTBpeIaNFodL29N4b93j+zpcIUQQghxlfLaBvadK2RnSgF7Ugtb9Ty7mpWFGeND3Jka4cW0SC+TmH3LK6/Vzz4eOF/E1sfiW70uKwszxoV4sP1sPmYqiBvgQny4J/HhnsQGuGBuQpU3+wRNI+Qeh/SdSgKX/SNo254RBsAtREncgicrSyft3Hok1K4gyZypMJrM9f2ZOYAVYwN5ar3yKclXx7N56pZIg+UEVhZmPDk7kkc+Ow7AtjP5HL5QzJhB7j0erxBCCHEz0+l0nCuoYueVvW/HLpWi0bZdN9/fxZapkZ5MjfBifIhHv9/71qjRciKrjF0pBexKLeRsXuv3W3vPFXLXmKBWx+6fGMytw/yZGOohVSe7Q+klJXlL3wEX9kJd+zPCOPg0J2+DJoNzQM/E2Q0kmTMV/XRmDmBhrD8vfHuWSnUj1fUaNpzI4adjgwzGzY3xYVigCycyywD425YUvn54vGwGFkIIIbpZfaOWIxdL2H42n+1n88kurW1zrLmZihFBrvrZt3Dv/l95sriqjj1pyuzj3rRCKtRtz/QcOF9kkMyNC5EPn7tUXaVSafL8DiWJK0lvf7y1s1KwpCmB84yAfv4z2USSOVPRcs/cqAcgfA74DO29eDrB1sqc20YM4P0DygbUTxMusWJMoMEffpVKxdNzB7PsP4cAOJlVxu60QqZGePV4zEIIIYSpK6upZ3dqIdvP5rMntbDd4iVu9lZMCfdkaqQX8WGeJjX7VFXXyJi/7aCxndnHAW62TIvwYkqkF+Nk1VDX02qVfm/pO5WvrMPtL500s1QqTg6aAoOmgm9sr1ac7E6m+apuRi1n5nxiIGxm78VyHe4aG6hP5lIuV3L0UimjBhquVx450I0pEZ7sTi0E4M3t55gS7tnvP/ETQggh+oKMomr97NuPGe0vn4zxd2ZqhJLADTWBvV/ltQ3sP1fE5AjPVts9HKwtiBvgwtFLpfpjluYqxgS7M+XK6x/kYS/vRbpaeY7SrDt9J6TvgtqS9se7h0HodAiZBkETwPrmKJQnyZypaDkz13iNzvR9UIinAxNC3TlwvhiAjw9dMprMAfx6epg+mUvMKmPvuSImh3v2WKxCCCGEqdBodZzILGXb2Xy2n8lvt/ebtYUZE0M9mD7Ym+mDvfB2MlJJux/R6XSk5VexK7X13r//rBjBnGifVmOnRnqRXVrL1EhPpkR4MSHUQ9oFdLX6Grh0sHn2rfBs++NtnJWZt5DpEDIVXAJ7JMy+Rn4KTUXLmblGde/FcQN+OjZIn8xtScqjoGIwXkb+oRgW6Ep8uCd705SE7v+2pxEf5iGfiAkhhBAdUF3XyL5zhWw7U8Cu1AJK2qk+6eFgxfRIb2YM8WZCqDt2Vv37rWNdo4aECyXsOJvPjrMF5JQZ7v3bnVpgkMw9MCmYh6eEyHuNrqTTQfF5OPcDnNumJHKadiYkVOYQMKp59s1vGJj172I6XaF//0aKZi1n5hra3pTcl80Y7I2Pkw2XK9Q0aHR8eDCDJ+dEGh376+lh+mTuRGYZ+84VES+zc0IIIYRReeW1bD9bwPYz+RxKL6Zeo21zbKSPI9MHezFjsDexAS6Y9fPlkxqtjq9P5LD9bD570wqN9ntr4m5vhZOt4X4/awtJGrpEfQ1k7FOSt3M/QNml9se7Drwy8zYNgicps3F9mbpc6WvXg0s8JZkzFdaOzd+fXgfZR8E7CmY+13sxdZKFuRn3ThjIG9vTWD5yALePGtDm2BFBrkwK82DfuSIAXt6awvgQdyzM+3ezUSGEEKIr6HQ6UvMr+SE5n++TL5Oc23a7IgszFWMHuesTOFPo/daSmQre3HGOzJIao+eHBjgzNcJL2fvn79zvk9c+RaeD4nQ4v01J4DL2tz/7ZuWo9HkLnaYkcG6Dei7W69FYr/Sxu7BL6WmXcwwqKsDT+GREd5BkzlRYOzV/X3xO+eqHyy1XjA1i2YgA3B2MtFq4ymMzwvXJXHJuBe8fuMjP4kO6O0QhhBCiT9JodRzPLOWH5Mv8cCafS8XGkxcAZ1tLpkZ4Mn2wN5MjPHGy6d/VJxs1Wo5eKmX7mXxuHe5PlF/zDI5KpWL6YC8+OJABgI2lGZPCPJkxWEngvBz7996/Pqe+5krbgCsJXOnF9sd7x0DYDAidCQNGg3k/+FlM/hpOfAKXDkBD279nPUGSOVPRcmauifoaDRP7IHtrC+w7uKF4RJAry0YEsO5YNgCvb0tjdpQPQe723RmiEEII0WeoGzQcSi/m++TLbD+bT1FV2/vfBrrbMWOwsv9tZJBrv1/NUqFuYE9qITvO5rMrtZDy2gYArC3NWiVzAPOH+qJu0DJziNK43MZSlk12qeJ0JXE7f2X2rb0JBWsnpXBJ2EwInQFOfj0W5nXRasHsqt+VwhTltRqj6tmfLUnmTIWNk+GxftI0/Eb8ad5gdqcWUFRVj7pByx83nOaT+8fIBmUhhBAmq0LdwK6UAn44k8/ulIJ294DFDnBh1hBvZkd5E+LZ/5t3ZxbXsP1sPjtS8jl8ocRo77ftZwr43ezWy9xGBLkxIsh4lWxxHRrrIfMQpH0PaVuv3bTbK0pJ3sJmwoAxfXv2rbEeshKuNCTfoRRdmf9G6zGDpsLuvyvfW9hA4LgrlTWnwto7ezRcSeZMhbWxZK7t9fH9hVar42B6MeND3I2uYXexs+IvC6P45WcnADhwvpi1x7JZPrLt/XZCCCFEf1NQoeaHM/n8cCafQ+lFNGiM939r2v82O0qZgfN1tu3hSLvHv3af5+sTOaTlV7U5xsrcjHEh7swY4o1Wq5O9b12tuliZjUrdorQOaO99ppUjDJoMYbOU2Tdn/56Ls7N0Oii50Jy8XdwHDS1adKjLlTEtPwjxHwGTfqsUZRkwFix7b6muJHOmwmgy179n5tYezeKdvRc4X1DFv+8azi0xvkbHzYvx5evBuWw/mw/Ay1tSmBPt0+/X/wshhLi5XSis4oczSgGTE5llbY6ztTRnSoQns6K8mRbhjbOd6f37l5xbYTSRc7O3YlqkFzMGezExzFN6v3UlnQ4Kziozb2nfQ/YR0LVdBRWvIUriFjZLmX2zsOq5WDtLXQ4X9ypJ6fkd7VfVLMtUkj33FnUZzC1g+jPdH2cHyE+8qTC2Z05TrzQQt7h2MZG+aMfZAs4XKH+4X9+WxqwoH8yNfMqmUqn46+IoDpwvorZBQ3F1Pf/YcY6n5w3p6ZCFEEKI66bT6UjKqWBrch4/JOdzrqDtWShXO0tmDPZmdpQPE8P6/x4wdYOGvWmFfJ+cz/gQd5aOCGh1ftYQb749lQdAmJcD0wd7M3OIF3EDXI2+NxDXqbFOaR3QtHyyLLPtsebWyuxb+BwlgXPpR6uidvwVfvxv2+ctbGHgBKUtQuj0Pl1VU5I5U2FszxyAugIc+mf/tcdnhvP9mcvodHCuoIpNJ3NZPMz4NL2vsy2PTA3htR/SAPjgQAZ3jA4kxLPn+nwIIYQQnaXV6jiRVcbWpDy2JF0mu7TtXrH+LrbMjvJhVpRpFDApr2lgZ2o+3yflsyetkNoGZe9ffoXaIJmbGunF03MHM3OINwM9pNBZl6oqUHq+pW6B9F2tlxhezcEHwmdDxC1KCwGrPvzfoiJPmXmzsoOoW1ufC51umMx5DVHaIYROh8Dxvbp0sjMkmTMVxmbmQFnP3E+TuQgfRxbG+vFNYi4A/7c9jXlDfbFs4x+vByYN4vMjWeSU1dKo1fHit2d5f+WongxZCCGEuCaNVsfRjBK2JF1ma9JlLle0Xfkv0sdRn8AN8XXq9wVMLper2XbmMt8n55NwodhoAZOEC8WU1zS0Wi7qZGPJg/F9d3akX2laPpn6rZLA5Rxrf7zfMGX2LXwO+Ma23jvWl2gaIeeokpie+wEun1aO+w03TOYGTlQS04ETlAQuZFrfr6rZBknmTIWxPXPQ74ug/Hp6GJtP5aHR6sgoruGr49ncPirQ6FgbS3OenjeYhz89DsDOlAJ2pRYwNcKrJ0MWQgghDDRotBy+UMJ3SXn8kHy5zRYCKhWMCHRldpQPs6N8CHQ3jQbe3yTm8MGBDBKzytoc42BtwZQIT2ZH+WBt2b9nHfscrQayDkPKt8pXe73fLO2Uao3hs5UvR5+ei7OzqgqVoiXnflD2vqnLDMfknlCKt9i7Nx+zdoTfpPTdxLQTJJkzFW3OzPXvIiiDPB1YOtyfL48qveTe2nGeJcMD2pyduyXah9HBbhy5WALAs98k8f1j8dhZyY+6EEKInlXXqOHg+WK2JOXxw5l8ymoajI4zU8GYYHduiVESOG+n/rG8qzPyK9RGEzl3eytmDlH2/o0Pdcfaon/v/etT6mvgwi5I+Q7StkBNcdtjnQIg4srs28BJfX+JYfIGOPgPyDkOGK/sCoBLkLJs0ljfOxNI5ECSOdNhbql8ktLUhd7RB+w8wKz//yd+dHoYG07k0KDRkVNWy8bEXIO19E1UKhV/WRDFgrf3o9HqyCqp5fUf0vjTfCmGIoQQovupGzTsSStka9Jltp/Jp7Ku0eg4CzMV40M9uCXah1lDvHF36J/FyprodDpOZpez5XQe1pbmPDEzvNX52VE+/O27FAAGuNkye4gPs6N9GB4oBUy6VHWxUrgk5Vtlv1hj23sw8RsGEfOU/W/eUX03uTHWtLuuyvjyUDNLZelk2Czlyz20776uLtL/3+mLZtaOzcncbR9B4NjejaeLBLjasTjOn7XHlNm5/+xJ59Zh/m32jxni58TP4wfxr91KA8v3D1xk3lBfhgW69ljMQgghbh7VdY3sSi1gS9JldqUUUNNGE28rCzPiwzyYE+3LzMH9v4WAUryllO9OX2bL6Txyy5XZD1c7Sx6dFtqqQEuQuz1/WTCE0cHuDPZ17Pd7//qUkotK8pb6ndLIu632AWYWyqxb5DyImNt3e7/pdJCf3Lz3zc4d7vi09ZjQGc3fO/opzcjDZytFWdparWaiJJkzJdZOUKX0Wuvvyyuv9vPJg1h3PFtf2XJHSgEzh3i3Of7R6WFsTbrMhaJqtDr4/frTbPrVRKwsZA2+EEKIG1ehbmDH2Xy2nL7MnrRC6hqNv4G2sTRjaoQXc6J9mBbphWM/74HasnjLlqQ88ivqDMaU1jSQcKGEiWEerY6vnBDcU2GaNp0O8hKv7H/7DgqS2x5r5agkOpHzlATI1qWnouycuiq4sPtKArcNKnObz1nYQoO69dJPJ19Y8Cb4j+zbs4o9QJK5Fg4ePMgLL7xAQkIC9fX1DBkyhEceeYR77rmn0/cqLS3lpZde4ptvvuHSJaUR4aBBg7j11lt58skncXJqo2DJjWj5SYS6vOvv34tCvRyZNcSb75OVZPXdventJnM2lua8tHQoy985BEBqfiX/3p3Or2eE9Ui8QgghTE95bQPbz+Tz7ek89p0rpEFjfK+OvZU50wd7c0u0D5MjPE1i3/b5gio+OpjB1uTLFFYaJnCgvJ8ePdCNuTG+RPreXLMj3U6rVQqYnN2kfJW30//N0VdZOhk5T5mJ66v9hsuylCWhqVuU3nYa40WBaKyFS/tbz8YBjFjZ7SH2B/3/r0sX2bBhA7fddhtarZb4+Hg8PDzYsWMHK1eu5OTJk7z++usdvldhYSHjxo0jPT0dPz8/5syZQ2NjI4cOHeLFF19k/fr1HDp0CBcXl659ES17zZnYzBzALyaHsDu1kOUjB/DgpGuXJx4d7MaKsYF8kqD8wXt71zluifEh3Fv+gRFCCNExleoGtp/N59tTeexNK6JeY3wGzsnGgplDfLgl2jSaeF+tsLKOjxMuGRw3U8G4EHduifZlVpQ3Xo59vHBGf6JpVJKYMxshZXPz6itjPCOvLJ+cp+yFu3qPWV/z42r49jftDFCB//Are99mgu+wHgutv+m2ZK6hoYHU1FQKCwspLy/H2dkZT09PIiIisLTsW0sMSktLuffee9FoNKxfv54lS5YAkJ+fz8SJE3njjTdYsGABU6dO7dD9/v73v5Oens6tt97K559/jrW18olIZWUlc+fOZf/+/bzxxhs899xzXftCWs7MVeRA3ilAp/QEMQHDAl05/MfpuNhZdfiap+ZEsuNsAXnlaho0Op5af4p1vxgvm62FEEK0qaqukR1n89l8Ko89aYXUt7GE0s3eitlR3syJ9mXcIPd+v5S/vlHLwfQijl8q5YlZEa3OjQ52w93eiuLqen3xlrnRPsw0geItfUpjHVzYA2e/UZZQ1pa0MVAFA8YoCVzkPHAP6dEwO6y+BkougE906+MDxhiOtXFWZt/CZkHI9H7bJ7mndWkyV1hYyIcffsi3337LkSNHqKsznIa3sbFh9OjRzJs3j3vuuQdPz97/D7V69WrKy8tZtGiRPpED8Pb25pVXXmHJkiW8/vrrHU7m9u7dC8BTTz2lT+QAHB0d+c1vfsP+/fv58ccfu/ZFAFg7twjiVeXLfyQ8uKPrn6uXdCaRA3C0seTFW6O578OjAJzILOOjgxncN1HW7QshhGhWXdfIjpQCvj2Vy67UthM4d3sr5kT7MC/Gl9HBbq2KfPRHDRot+88XsflkHtvOXKZCrVTfXDzMn0GeDvpx5mYqHpsRhrWlObOGeHf632PRjvoaOL8dzm6EtO/b7hGsMleaXQ9ZCJHz+27/t4o8Zflk2lZlH5ytKzxxtvW+Nu9opR2ChbWyJDTiFhgwFsxl0WBndcn/Y+fOnePZZ59lw4YN1Ncr6109PDwYMWIEbm5uODk5UV5eTmlpKSkpKezZs4c9e/bwpz/9iSVLlvD8888TGhraFaFcl82bNwOwbNkyg3Pz5s3DxsaG7du3o1arsbG59vKBlglcW9zc3Dof6DWf2MjywerCrn+efmZapDeL4vz4JlHZTPvq96nMHOLNADfTaMQqhBDi+tTUN7IzpYBvT+WxM6WgzSImrnaWzIn2Zf5QX8aYQAKn0epIuFDMppO5bE2+bLT/3ZakyzwytfV7s5+OG9hDEd4E1BVKsY8z3yiJXFM18quZWykNvAcvUGbg7Lrh/eON0ung8ilI3ar0s8s90fp8ZZ5SsMWvxVJJlQp+sa9vvp5+5oaTuV/96le8++67aDQapk6dyp133smUKVMIDm575uPChQvs2rWLzz77jC+//JL169fzs5/9jH/84x83Gs51OXXqFADDhw83OGdlZUV0dDRHjx4lNTWV2NhrL1mcOXMmBw8e5OWXXzZYZvnaa68BXFdRlWuyMVJUxYSTOa1Wx3dJeQS42hE3wKXdsc/OH8K+c0WUVNdT26DhuU1nWH3PyJ4JVAghRJ9RW69hV6qSwO1IyUfdYDyBc7GzZE6UD/OG+jJ2kDuW/TyB02p1HL1UyuZTuXx3Oo+iKuPFJqwtzJgS4Um0v7PR8+IG1JYp7QPOfKP0gGur4IeFLYTNgMGLIHyWsvywr9E0wKUDzRU1K7LbHmvlqLRP8Ltq35skcl3ihpO59957j4ceeognn3wSPz+/Dl0zaNAgBg0axP33309OTg6vvPIKq1ev7pVkrqKigrKyMgACAow3og4ICODo0aNkZmZ2KJn77W9/y65du9iwYQODBg1izJgxNDY2cvDgQczNzXnvvfeYOXNmV74MhbGZuYYaqK8GK/uuf75elHChmL9sTCblciVjB7nxv5+Na3e8u4M1z8wfzONfnARg+9l8dqUUMDXSqyfCFUII0YvUDRp2pxaw+VQeO84WUNtgvA+ck40Fs68kcBNCPfp9AtdSeW0Dd/43gUatYQVOKwszpkV4MW+oL9MivbC3lqVuXUZdoVRrTN4A6TvaTuCsHJU+aUMWKvvG+vr7tvRd8NltbZ93CVKWTobPgaAJYCHLcrvLDf+2XrhwAR+f61+z6+/vz5tvvskf/vCHGw3lulRVVem/t7MzvuzO3t7eYGx7HBwc2Lp1Kw8++CCffvopGzZs0J9buHAhI0aM6FSMUVFRRo+np6cTEtJiw6t1G+0Oqgv7/h+FTtLqdKRcVip2Jlwo4WB6EeNDPNq9ZnGcP58fyeLIRWUz8XObkhkf6o61hWlVHBNCCKEkcHvTCvn2dB7bz+RT3UYjb0cbC2YN8WH+lQSuvxcx0el0nMmrINjDvlVLBFd7KyaGebA7VVmxY2muIj7Mk/mxvswY7N3v+9/1KXWVyt635A1KzzSN8VYO2Loq1SeHLIRBU/pmC4HqIqUR+eAFrY8Hx4OVA9Q3vTdWQcAoiJijNCT3jLype7/1pBtO5m4kkeuq+yxbtoykpKROXbNmzRpGjx6NTme8R0xLHRnTUmZmJvPmzSMvL481a9YwZ84cALZs2cLjjz/OxIkT2bZtG2PHju3Ufa+p5cycyhx0V/7hqi4C14Fd+1y9bHyIB2MHuZFwQUnMXv8hjXG/cEfVzh8OlUrFcwujmP+P/Wi0OjKKa1i976LBngAhhBD9U1Mxj02JufxwJp+qukaj4xytLZg5xJt5Q32ZGOZhEh/qncuvZNOpPDafyuVCYTVv3hHHojj/VmMWx/mj0epYMNSP2VE+ONtJAtdl6quvJHBfKQlco9r4ODt3GLwQhixSipmY98H/BqUZV5ZPfqskcjqtUsDEqcUKPEsbJcGrLVX28oXfItUne0m3zaOXlJRw+fJltFot3t7e3Vq1MiMjg9TU1E5dU1OjbDR1dHRsdcxYM++msQ4ODgbnjLnnnntISkri66+/ZtGiRfrjd999Nw4ODixdupQnnniCgwcPduh+ycnJRo8bzNi13DOnMmuRzJnmvrknZkbom4IfvVTKvnNFxIe3/3M22NeJn44N4sODGQD8Y+c5FsX5EeAqxVCEEKI/0mh1HLlYwqZTuWw5nUepkWIeoDTyVhI4PyaZSB+4jKJqNp/KZfOpPP1qlSabTuYZJnPD/Fk8rPUxcQPqa+D8Nkj6SknkGmuNj7N1VRK4qFuVJt59rWKjTgeXT19J4DZDvpEJkpRvYfSDrY8t/rfMvvUBXf7TdOutt3Lw4EGKiopaHffz82PGjBncddddzJgxo42rr8/Ro0ev+1onJyecnZ0pLy8nOzubIUOGGIzJzlY2dQYGBl7zfllZWezevRtra2sWLFhgcH7RokVYW1uTkJDQ4eqYHdbWMsuqgq57jj5kdLAbk8I82HdO+VlbtS2NSWEe7c7OATw+M5zNp3IpqqpH3aDlqfWn+Pi+MZhJ7zkhhOgXdDodiVllbDqpzEQVVBpfxmZnZc6MwcoM3ORwT5NI4C6Xq9l0MpeNJ3M5nVPe5rhKdQNarU7+betqDWql+mTyV0r1xoZq4+NsnJWZq6hbIXhy35uB02ogM0FJ3lI2Q1lm22Md26iJIYlcn9Dlydw333wDgLm5OU5OTmi1WsrLy8nJyeGjjz5izZo1jBs3jjVr1jBo0KCufvrrEhsby969ezl+/LhBMtfQ0EBSUhLW1tZERES0cYdmTYmfvb09ZmaG6+7Nzc2xs7Ojrq6OsrKyLlumCrRO5nQt9gaY6MwcKIlZUzJ3MquMnSkFTB/s3e41zraWPD2vuRjKgfPFfJxwiXvGD+zucIUQQlwn3ZW90ptO5rLpVC5ZJcZnQZqKeSyM82NqhBe2Vv0/gWvyu7UnWXc8m7Z2f0T7OzF/qB/zYnyl/U5X0jQoBT9Or1WKmdRXGh9n7awsOYy69coeuD5c9KO6ED6cB7Txw+QZ2dyQ3G+4JG59WJcnc+vWrWP48OEEBgbqk5na2lpOnjzJ999/z5o1azh48CDx8fEcOXKkwxUwu9O8efPYu3cv69atY8WKFa3Obd68GbVazdy5czs0i9aUnJWUlHDx4kWDFg3p6emUlpZib2+Ph0f7BTs6reUyS12LUsvVRYZjTcTwQFemRniy68qG7te3pTEt0uuas3OL4/zZmnSZ75PzAfj7lrNMDPMgxLNjS2mFEEL0jItF1UoCdzKXcwXGC5GZm6mYFObBgqF+zIoy3WIevs42BolcuLcDC4b6MT/Wj2AP0yp21qu0Wsg6rCRwyRugtsT4OCtHiJyrJHAh0/peEZPGeri4R1neadnifayjDwwYA1kJzccCRl9J4OaDh9QT6C9Uus5W97hBGo2GZ555hpdeeon77ruP1atX9+TTG1VSUkJwcDAVFRWsX7+eJUuWAFBQUMCECRM4f/4827dvZ/r06a2ui4yMBGDHjh34+zevQY+NjeXUqVPMnDmTtWvX4uys9AcpKytj2bJl7Nixg7vuuotPPvnkhuJu2jOn31NXVwl/N9JeIXoZLHvvhp6rLzudXc6Ct/frH/9nxQjmRF97xrO4qo7Z/7dX32sndoAL638xrt83gxVCiP4ut6yWzady2XQyr82lhCoVjAl2Y0GsH7dE++Jm34dnQTqoqZn3N4k5BLja8ej0sFbnzxdUMeP1PQxws2VRrD8LYv2I8DHSlkhcH51O2S92eh0krYfyLOPjLO2VsvvRSyBkeuskqS9oqFX62J35RlkKWlcOd3yuJJ0tHfmv0vdu8AKlAqVjF64Wu4kZvD/vZj2ezDUZN24cGRkZ5OXl9cbTG1i/fj3Lly9Hp9MxefJkPDw82L59O2VlZTz66KO8+eabBtc0zf5cvHiRgQMH6o8fPnyYGTNmUFVVhYeHB2PGjAEgISGB4uJiBg4cyIEDB254VtLgh0Wng+dc0U+ZT35KmSb3CAOfmBt6rr7uZ2uO8sMZZZYt0seR7x6d1KF9Aj8kX+ZnHx/TP/7NzHB+ddU/nkIIIbpfUVUdW07nsfFkLj9mlLY5LnaACwtjlaWEPs597E30ddDpdCTlVPBNYg6bTuWSX6Hs//N1tuHAU9MM/i1Lyiknys/pmitQRCeUXISkdUoSV5hifIy5tdIHLmYZhM0CS9uejfFa6quVKppnvoFzP7RoGXBF7E/g1v/0Tmw3mZ5O5nqtnI67u3un2wl0p6VLl7J3715eeOEFEhISqK+vZ/DgwTzyyCPce++9nbrXmDFjSExM5OWXX2bHjh1s374dMzMzgoODefDBB/nd736Hm1s3dL1XqZR9c3VXPsWMmAt+cV3/PH3Q4zPD9clcemEVybkVxAQ4X/O6WVE+LBsRwLpjyl7HN3ecY2qkF9H+175WCCHEjSmvbeD75MtsOpnLgfNFGOlnDSgf0i2I9WPBUD8C3U1jL9il4mq+Sczl68QcLhQaFtHIK1dz+GIJ40LcWx2Xf5+6SFUBJH+tLKPMPmJ8jMpMKV4ScxsMnq8UNelL1BVKFc2z38C57W1X07SwVVpWCZPU7clcYmIiL730EuHh4Xh6eqLRaDh06BDfffcdU6dO7e6n75QJEyawZcuWDo9vb1IzJCSEd999tyvC6hybFslcXRsbdE3QYF8nFsb6YWdlziNTQzu18fvZBUM4lF5MTlktjVodj3+RyKZfTTSJqmdCCNHX1NQ3sv1sAZtO5rIntZB6jdbouCB3OxbG+rEg1o9wb9NYSlhcVcemk7l8nZhLYlaZ0TEWZiriwz1ZFOdH7IA+ljz0d+oKpXLj6bVwYU/rYnEtBYxSErghi8Gx/aJqveq/U6H4vPFzVg7KDOKQRRA2E6xkP6Wp6vZkrqqqii+//BJoXpYYHR3NHXfcwd///vfufvqbT8vG4XUVvRdHL3jzjrjrWnbiZGPJq7cN5c7/HgbgXEEVq35I5el5hm0qhBBCdF5do4Y9qYVsOpXH9jP51DYYfxPt42TDglhfFsT6EePvbHJLCY9dKuUvm84YPTcyyJVFw/yZF2Ma+//6jMZ6Zdnh6S+v9IJro5m3RwQMvQ2il4Jb36i2rldXBdoGpV9dS2GzWydz1s7KXr4hC5ViLH1tKajoFt2ezE2cOJG8vDwOHDjA5s2bWb9+PTU1NSxfvpygoKDufvqbT8v2BDfRzBxwQ//ojw/x4L4Jwbx/4CIAq/dfZP5QP2IHuHRRdEIIcXNp1Gg5dKGYjYm5bE2+TKW60eg4N3sr5sb4sDDWn5FBribRF02j1XHGyHL/yRGeONlYUHHl/4twbwcWxfmzMNZPWgl0JZ0Oco7Dyc+VQiZtVaJ0CoCYpcosnHd03yq/X1+jJKHJX0HaDzD+VzDt6dZjhixUXmPkPGUGLnhy326HILpFjxdAqaio4De/+Q0ffPAB69atY/HixT359CbF6AbLT5bB+W3K98FTwN5D6SUy/w1wD+nxGPsTdYOGeW/tI/3K3oXRA9344udjTe6TYSGE6C5arY5jmaVsTMzlu9N5FFfXGx3naG3B7GgfFsT6MSHE3WSqCKflV/LV8Ry+PpFDQaWaQ3+YjrdT6yItr/+QSp1Gy6JYfwb7Osq/MV2pLBNOfQEn/9f28kNbV6WNQMxtMGAsGOkJ3Gvaa0juHga//LF1wqnVKq2ozHutBIYwot8XQBk5ciRvvfUW48ePN3reycmJ//73vyQnJ/P8889LMtfVWvaayz3evNSyIuemSuZ0Oh3fJ+fz2ZFM/nv3CKwtrr3/zcbSnOcWRrPiPWW55ZGMEr5Pzu9QmwMhhLhZNVVj3HQql80nc8ktN76MzcbSjBmDvVkQ68fkcE+T2ZdcVFXHxsRcvjqRTVJO6+0N3yTm8LP41v/2PjEroifDM33qCqWC46kvIGOf8TEWNsrsVczyK73g+tDsVWO90kYg+StI+a7thuTVBVCZB04tKqGbmQF9KBkVvaLLk7njx48zadIkZs6cyW9+8xtmzpxpdJyLiwt79uzp6qcXLffMWdg0J3PVhb0TTy/QaHX85N0EjmQoyyo+Scjk/onB17hKMTHMo1UT8pe2nGVapBdWFvLHUgghWjqXX6k08z6Vx8Uiw2qMAJbmKiaHe7Ig1o8Zg72xtzaNGQR1g4btZ/P56ngOe9IK0Rgpw2lhptK3GRBdTNMIF3YrSwxTNre9Dy5oIsTeoSxH7GuVKAEOvwu7XgC18V6KzQ3Jl/S9JFT0GV3+V/XAgQP84he/4IcffmDbtm34+voyY8YMhg8fTkBAAFqtlp07d/L999/Lnrnu0HLPnHmLX/rqop6PpZeYm6kY7OuoT+b+ues8y0cG4Ghj2aHr/zh3MHvPFaHR6sgoruGThEvc18FkUAghTFlWSQ0bT+ay6WQuKZeNzyCYqZR9yAtifZkT5YuzXcf+9vYHGq2OP32dxOZTuW3uARwa4MySYUpDb3cH6x6O0MRdPq0soTy9FqryjY9xD1USuJjl4NrH32fauhomcpb2EDFHSeBCZ/S9huSiz+nyZG7cuHEkJibyySef8NJLL3H27FnWrFnDxx9/rB/TtE3vl7/8ZVc/vWiZzJm1WMJSVdDzsfSiX04LY+2xbGrqNZRU17N630UenxneoWvDvB25Y9QAPj2cCcBbO8+xdHiASb0hEUKIjsqvUPPtKaWZd1vl9EGpxrgg1o+5Mb54OppmEmNupuJ8QaVBIufrbMPiYf4sGeZPmIm0UegzKi8rydvJ/0F+G/2JbV2VKpSxPwH/EX2nkIlOp8R86kulKN2C/2t9PmKOsooKFYTPUhK4sFlgJcVwRMd1y3oHlUrFT3/6U376059y+PBhvv/+exITE8nKyqKhoYHAwEDuuusubr/99u54+ptbyz1zLf+Y3UTLLAE8Ha15YGIwb+1UNkCv3neBn44LwqODn5I+PjOcbxJzqaprpKymgX/sPMef5kurAiHEzaG0up4tSUoz74SLxbRVKi3a34kFQ/2YH+uHv4vplEEvq6ln86k8Bvs6MSKodTn4JcMD+DGjFDsrc26J9mXJcH/GDnLH3ASqcPYZjfWQtgVOfKIUBNEZ6UVoZgnhs5UELmxW31qCWHIRktbB6XVQmKIcM7OA6c+CnVvzOGtH+OkG8BkK1g69E6vo97p98fqYMWMYM2ZMdz+NaNJyz1zLf31vomWWTR6MH8THCZcorWmgul7D2zvP85eFUR261sPBmoemhPDq96kAfHQog5+OCyLIXZpuCiFMU1VdIz8kKwncvnNFNBrZBwYQ4mnPwlh/5sf6EuJpOm9AGzVa9qQVsu5YNjvOFlCv0bIw1s8gmZsb44uNpRmzo3ywszKNPYB9xuUkJYE79UXb7QQCRinLKKOWtE6MeltVISRvUGYRs48Yntc2wpmvYeR9rY8HGS8YKERH3fBfoUcffZTRo0ezbNkybGxkXW+va7nMUttiGchNNjMH4GhjySNTQ3nh27MAfHr4EvdPDO5wL5/7Jwbz2eFMcspqadDoeHlrCv+6a0R3hiyEED1K3aBhV0oBG0/msjOlgLpGIzMgQICrLQti/Vgw1M/kyumn5Vey7lg2Xx3PoaiqdcGS75MvU6luaLXn2tnWkluHBfR0mKartlSZwTrxCeQlGh/jHAixt8PQO8AjtEfDa1ddFZzdpCRwF3aDTmN8XMAoZQ9f5IIeDU/cHG44mXv77bdRqVSMHj2a8PBwZs+eTVxcHEOHDiUuLo7IyEjMzU2j/HC/0HJmrrFFf5+bMJkDWDE2iPf3XyS3XE2DRscb29J4/fa4Dl1rY2nO72ZH8NgXiQB8d/oyRzNKGDmwD30SKIQQndSg0bL/XBGbTubyw5l8quqMF/LwdLRmXowvC+P8GDbAxaQSuPKaBjaezGHdsWxOZhuvJOjhYMWiOH/q20hwxQ3QapTkJ/FTOLsZNEaqflrYKI2wh61QqlL2pX5wTSpy4OtfGD/nEQFDb4PoZeAmRdRE97nhZG7Tpk38+OOPODsrJV+3bdvGtm3b9H/0raysGDJkCHFxccTGxuq/XFxcbvSphTEt98w11jZ/fxMuswQlIXtsZjhPrjsFwIbEHH42eRCRPk7XuFKxMNaP9w9c5NSVf+z/uvkM6x8abzINboUQNweNVsfhi8VsOpnHlqQ8ymoajI5ztrVkbowPC4b6McZE94F9+WMWf/omyWiSZmmuYuYQb5aNCCA+zFP+1ne1kouQ+JnyVZFtfIz/CCWBi17ad9oJaLXK0smA0a2TSs8IZb/bZeU9Bk7+StxDl4N3dN8pxCJMmkqna2tb8/W5dOkSiYmJJCYmcvLkSRITE8nIyGh+wis/2AMGDCAuLo6vv/66K5/+pmK0w3xxOvxj+JUHZkCLf6yevgyWprNBvaM0Wh1z/m8v5wqqAJgx2IvV94zq8PVHLpaw/J1D+scrxw/s8N47IYToLTqdjsSsMjaezOXbU3kUVBrveWZvZc6sKB8WxPoyMdTT5PtqnswqY9E/D7Q6Fu3vxG0jBrAw1g9X+z5USMMU1NfA2Y3KMsq2mnrbeSj74IatAK/BPRtfe4rTlSqap/4HZZmw8jsYOKH1mKMfQN5JiLkNAsf1zRlE0aOMvj/vRl2+czcoKIigoCAWLVqkP1ZRUaFP7JqSvOTkZDZt2tTVTy9a7plDqyRv9p7KV331TZnMmZup+O3sCH7+8TEszFT4ONvQqNF2+BPX0cFuLBnmz1cncgD48GAGYd4O3DWmj/evEULcdHQ6HSmXm5p555JVUmt0nJWFGdMivFgY58fUCC9srUxrO0SFuoFvT+Xx48USVi2PbbVEdGiAM+HeDhRX1bN4mD/LRgQw2LdjqzVEB+l0kHMMTnwMp9dDvZGehCpzpRpl3F3K/5r3kfY/NSVKIZOT/zMsZHLyc8NkbuS9PRebEEb0SBkmJycnJk2axKRJk/THNBoNKSkpPfH0Nxfrq/rb/OoEOPn2Tix9yKwh3vxqWihLhwcw0KPzFSlfvDWGcwVVnM5Rllv++ZtkBnk4MC7EvatDFUKITrtYVK0kcCdz9asQrmZhpmJimAcLhvoxK8q7VVEPU6DV6jiYXsy6Y1lsTb6MukFZmXLP+IHEDnDRj1OpVKy+exS+LjZYyjLKrlVbpvRUO/5R2z3hPMKVGbihd4Cjd4+G16bGeji/TUnW0r4HTb3hGJWZ0itOiD6m12rqmpub66chRReytAFzq+Y/RHWVgCRzKpWK38yKuO7rba3M+e/dI1n49n4KKuto1Or41ecn2PfkVJP7RFsI0T9kldTw3ek8Np/K03/QdDWVCsYEu7Eg1o9bon1xM8ElhJeKq1l3LJv1x7LJLVcbnF97LKtVMgcQ6C5NmbuMTgdZR+DYh8qMVqOR2WArR4heoiRxAaP61l6yHc8rSyXbaoXgNUTpZRdzm3w4LvqkG07mUlJSiIyMvOFAuuo+AmV2rqZY+b6uondjMSE+zja8e/dIlr9ziPpGLUVVdaw7ns1Px8pySyFEz8gpq+W7U3lsPp3HyayyNsfFDXBhQawf82J88XE2vbZBVXWNfHc6j3VHszmSYfxNuIudJYvj/LltpLQR6Ba1pfD/7N13WFTX1sDh3wy9dwQURVHBCjbsxiQm0dhiYnoxMb2Ynpt+b25y86XdJDe9N1M1RZOYYoy9V7BXBAQEAekdZub7YwMzwwwIwgxtvc/Dwzlnn3Nmgwizzt57rd2LVBCXfdD6OT3HwfAbYOAscG6ndVpLsi0DOY8gVUog5ioIGdK+gk8h6mlxMDd48GCuvPJKHn/8cQYPHtzs6xMSEnjxxRf58ccfqaqynl1LNJOLtzGYK7f+tFaoKTknC8ro4df0J7Sx4b5cPSqcLzanAPDx+uNcE9ezU2Z8E0K0Dyfzy/h9bwa/7c0g/kR+g+dFh3jV1YLrzCNPFdU6Jr28mtwSy6lwWg1Mjgrm8hE9OG9AMC6OMnOiVRkMcGIz7PxCFcCuthwJxc0fYq+B4fMgqL/du2hVRZGqB+fiBQPq1XobehXsWqhKIURdrEbhIs8DBykILzqGFv+kPv3007z66qt89913xMTEcO2113LOOecQExODk5PlfPyKigri4+NZvXo133zzDQcOHMDDw4N//vOfLe2KqGW6bq68EIqzVBYmfTX0HNN2/WonDAYDa49k8/Kfhyksr2LVQ5Oblb3tlol9+HJLCnoDpJwu5a/9mUwbIlMvhBCtJ7OgvC6A25mS1+B5kUEeTB8axoyhofTv5tXgeZ2Ji6MDE/oG8svuk3XH+gZ7cvmIHswZ1p1g7843EtnmSnPVerKdn0POEevnREyEETeqYMnRxZ69s85ggJRNKovmgaVQVQqhMZbBXM+xMOcDiJrWfkohCNEMrVKaICsri+eff56FCxdSUFCARqPBycmJiIgI/Pz88PLyorCwkNzcXFJSUqiursZgMODj48NNN93E448/TlBQUGt8PV1Kg6lPP59hTP877AaIX6i2w4bBbWvs18F26mR+GZNeXk21Xv3oPz1jIDdPaF5Bz7u/2cVvezIANVq35K5xnaqgrhDC/k4VqgDu970ZbE9uOIDrE+jB9KGhTB8aSlQ3r075u6dap2ftkWwWbU/lokEhXDbCfKrkpmM53P7VTmbFhHH5yHBievh0yu9DmzIYIGWjCuAO/Gw9KYh7oHEULrCv3btoVUE67P4G4r+GvCTL9ru2tK/yB6LT6ZClCYKDg3njjTd48cUXWbx4McuWLWPjxo0cOWL59CYkJISJEycyffp0rrjiClxd5Qlaq3PzNW6bThPIS7F7V9qjMF83rooL56stJwB4c+VRLhveHV/3picGuH1Sn7pgLiE1nx0peYyK8LdJf4UQnVdWYTl/7MtUafRTcmno8WpEgDszhoZx8ZBQBoR2zgAOIDmnhMU7UvlxVxqnClVdvNMllRbB3Jg+AWx/cgquTjKNstWVnFbB0M7P4fQx6+f0maxG4aKmg2M7SKpTVQ6Hf1ejcImrACv/kVx9VEFvR3nfKTqXVp0Q7Obmxrx585g3bx4A2dnZZGVlUVBQgI+PD8HBwTICZw8eJt9jvUnR8LJcNW+8fvmCLuj+Kf35Of4kRRXVFJRV8cbKo/xrZtOzqw7t4cuYPv5sOa4WTb+16hhf3DSq077BEkK0npP5ZSzfn8kf+zLZntxwANfT350ZNSNwA0O9O+3vl7JKHX/sy2DR9lS2JlkmM9mZksexrGL6BnvWHdNqNbhqJZBrNQYDpO2A7R+rjJQ6KwXmPYJh2LUqoYl/H/v3sSFJ62HRdVCeb6VRA5HnqiyaUdNVxm8hOhmbru4MCgqS4K0tmAZzVWXmpQryT0A3KQkR6OnC3ef15cU/VK3DLzencN2YXkQGeZ7hSqPbJ0XWBXPrjmTz8vLDPDpVMrIKISwl5ZTw575M/tyXwe60hhNThfu7MX2IWgM3KKzzBnAGg4G96QUs2p7KL7tPUlRebXGOk4OGKQO6ccWocHqfRX1Q0QSVJbD3e9j+CWTusXKCRiUDGXGjWlPWXgp7mwoeqL4OU34REHudykbpG94m3RLCXiRVT2dkGsyV5oBPOOQmqv28FAnmatw4LoKvtqSQlldGtd7AC78f5ON5o5p8/Tn9g5jYL5D1R3MAeG9NImE+rlw/NsJGPRZCdBQGg4GDGUX8uT+T5fsyOXyq4WLD3X3d6kbghnTvGmu/vt2WyhNL9lpt6xfsyZWjwpkzrDsBnu0gkUZnlH0EdnwCCd9ChZWHCx7BMPx6NQrnF2H37lnQVavpk3u/h5lvgLNJtlaPABVoHvsbBs5Wo3A9x4FWCsKLrqHFwdz8+fOZMGEC8+fPb9Z1L730EsuXL2fVqlUt7YKozyPQuF2SDX69jMFcvqybq+Xq5MDj0wZw9ze7APj7YBZrj2RzTv+mjSZrtRreuXY4V7y/mUOZ6o3av37ZT5CXK1MHh9is30KI9kmvN5CQls/yfZn8uT+TlNOlDZ4bEeDO1MGhTB0c0iWTd0wZEMzTP2vQ1SSi8nB2YGZMGFeMCmdYuG+X+37Yha4KDv2mplLWJkmrr9cEGHUzRM9oH2vhTieqdXC7v4UitU6dvlMg5krz8y76P5j9Drh627+PQrSxFgdzn3/+OUCzg7lDhw6xdu3alr68sMZ0ZK4kB7qPMO7nn7B/f9qxi4eEMLKXHztqUn8/tXQvf91/Dm7OTVuL4e3qxGc3jWLOO5vILCxHb4B7vtnFG1cNY/pQKVcgRGdXrdOzLTmX5fsyWb7/FJmFVupu1YgO8WLq4BCmDQ6lfzfPTh+wpOeX8cOONFYeOsX3d4w1q/kW7O3KuVFB5JdWccWocKYPCcXDRSYL2URBOuz6QtWGK860bHf2UtMRR93cPrI8VleomnC7voCkdZbt8V9aBnMylVJ0YTb9zZmbm4u/v2T4szuzYC4bfHsa9yWjpRmNRsOzswcz8+0N6PQGUnPL+N/KIzw+rel/0EJ93Ph8/iguf38zReXVVOsNLPh2F2VVMcytl4FNCNHxFZVXse5IDn8fPMWqQ1kUlFU1eG5suC9TB4cwdVAIEV1g3VdFtY6/D2SxaEcq649m1yV3+ftAlsUDrneuHS5FvW3FYICktWoU7tDvYNBZntNtsArghlzePhKjZR9RAVzCNyphW31aRzWdctj19u+bEO2YzYK5//73vzz99NM88cQTPPnkk2hl7rL9mGWzrDLfl2mWFgaGeXPrxD68v1ZNRf1hRxoLzuuHZzOeEkeHePP1LaO54dNt5JdWoTfAw9/vpqxKx/Vjetmq60IIO0nPL2PlwVOsOHCKLcdPU6WznoJSq4G43v5MHRTCRYNDCPVxs3NP28bhzCIWbU9lSXwaeaWWwe3iHakWwZwEcjZQUQx7voNtH0H2Ict2B2cYeIkK4sJHQ3sZHf7xFrUezprAKLV2L+Yq82UkQgjABsGcTqfjjjvu4NNPP8VgMPDMM8+wfPlyvvrqKyIiIlr75YQ1rr6gcTA+iTN94pZ/Qj2xay+/wNuJ+87vx+97M4gN9+XpGQObFcjVGtrDl+9uG8N1H28jp1ildX566T7KK3XcOqkdpXEWQpyRwWBgX3ohKw6e4u8DpziQUdjguU4OGsb3DWTa4BCmDOjWZZJ2FJVX8evuDBbtSGV3ar7Vc3oFuHPFyHCZpWBrucdh28dqfZm1hCY+PWHkTWpUy7MdZhkPqFdw3NENBs2BEfPaV9ApRDvUqsFcbm4uc+fOZc2aNfTr149XX32Vp556ik2bNhETE8Obb75ZV4NO2JBWq55eFZ9S+w4mbywqCqEsD9xl+qspN2cHfr1nAj7uLUu7HB3izeLbx3Dtx1vJKFBrZ57//SDFFdXcc15fnBxkhFqI9qqkoprNiadZfTiLlQezGl3/5uvuxHlRwUwZ2I2J/QLxcm2HKdttyGAwMOvtjSTllFi0uTppuXhwKFeMCmd0b/9OvzawzRgMKsPjtg/hyHKsFsruOwXiblOf27ouX2UJ7PtJPWgecaN527DrYO1LEDxIBXBDLgc337bopRAdTqsFc0eOHGHGjBkcO3aM8847jx9++AFfX18uuugiHn/8cV5//XXmz5/PsmXL+PDDD1vrZUVDPIKMwZyuEqa+qEoU+PZsH3Pj26GWBnK1+gR5svj2sVz78VZO5Kpsdm+sPMp7axLpE+TBgFBvokK8iArxYkh3HwIbeIpfrdOz4VgO3bxdGRBqzNC1KTGHn+NPUl6tw9lBi5uzA+MiA5gyoBuOEiwK0WQGg4FjWcWsOZzNmiNZbE/Ko1Knb/D8iAB3LhjYjSkDujGil1+X/v+m0WiYNjiEd9ck1h0b2sOHK0aGMys2DO8uFtzaVUUR7P4Otn4Ap49atjt7qeLeo26FwL6W7fZ2MkGthdvzPVQWqbIHsdea16zz6QF3b4eASBmFE6KZNAaDwfrE/ybSarXExMRw4sQJ8vLyuP3223n77bdxcDB/ArRy5UrmzZtHRkYGoaGhBAcHs3v3bnQ6K4tyRZMMGqTqxe3fv9+yceFsOL5GbU9/Tc2PF812LKuI8io9g7v7NPvazIJyrv14C4nZlk+ua2k1MLFfEFeMDGfKwOC6NSS5JZXc8dVOtiWpReDjIgO4bkwvlsan89eBU1bv1d3XjevH9uKa0T3ljZQQDSipqGbjsRzWHMlm7eFs0vPLGjxXo4ERPf2YUhPARQZ5dKlRpmqdnjWHs1m0I5Uh3X249/x+Zu3JOSVc8u5GLontzhUjwxkYJmnhbep0oloLl/C1mmVTX0A/GH27WlvW1g9tK4rVGridn0NGgmX7lV/BgJn27pUQdtHo+3MbaJVgTqPRoNVqefXVV7n33nsbPDcvL49bb72Vn376qe4PogRzZ6/RHxbTxcSTn4DJj9qxZ53D3wdOcf+iBLxcHfnt3on4ezS/5k5OcQWP/biH1Yez6+opNcTX3YlLYrszoW8gzy47UDeq11zdvF14eW5Mk+vlCdGZGQwGjpwqZu2RLNYczmZ7cm6DyUsAvFwdmdgvkMlRwZwXHdzgyHlnlpRTwuIdqfy4M42sIrX+N9THlQ2PnoeD1jyYrdLpZfq4Len1airl1vfh2AorJ2ig34UqiOtzbtsXys46CNs/USOHlUWW7S7eagrl6DsgqL/9+yeEHXTIYM7b25tFixZx0UUXNemaTz/9lPvuu4/S0lIJ5lqg0R+WPx+HLe+q7VG3wvT/2rFnHd/J/DLOeWV13Zu+86OD+XjeyLN+Kl9RrSMxq4TDpwo5lFnEoYwiDmQUkl3zRqm5hvf05dyoYKp0ehJzSli+L5PqesHitaN78uT0Abg7S+0m0bWk55ex8VgOG4/lsCnx9Bn/nw0K8+ac/kFMjgpmeE/fLjl9sqxSxx/7Mli0PZWtSVbSwgNf3hzHxH7ykMguKktUoewt71ufSunirZKZxN0C/u0gwVb+CVhyB6RstN7eI06tkxt0CTh3/hIdomuzdzDX4nd5en3D6wsaMn/+/GYXGRfNZJq+tyS77frRQYX5uvHo1Gj+89tBAFYeyuKTDUncMvHs/mi6ODowMMzbbBqSXm9ga1Iu3+9M5fe9GZRXmf9f0mjg0anRxPTw5d01x1h/NIfuvm78Y2oUs2LCzALLzIJyvticzCfrk+rW/Hy99QT7Txby7a1jmlwEXYiOKK+kks3HT9cFcMmnGx/V9nZ1ZGL/ICb3D+Kc/kEEe7vaqaftS23Gzu+2n+CXhJMUVVRbnOPkoOGCgd24clRPxkVKWnibKzypEprs+AzK8y3bA6Ng9G0w9Cpw8bR79xrk2c2yFIKLN8RcrYK4bgPbpFtCdAUtHpkTbafRyH/XQvhlgdruNQFmvAZrX1Z15hxc4Kbf7NjTjslgMHDzFztYdSgLUG9qfrxzHEN7+Lb6axWVV7FsTwbf70hl14l8vFwdefXyGC4cFFJ3TkFpFV6ujmi1DY8OHsos5IFFuzlokkb9woHdeO+6ERbTo4ToqLKLKtienMu2pFy2JuVyKLOQxv6SaTQwOMynZvQtiNjwrjn6Vt/fB05xy8IdVtv6d/PkipHhzBnWvcuUWmhTJ+Nh87uw/yfQ1w+qNdB/as1UysltmyBEr4fElRAaa1ni4O9nYMPrEDIURt0CQ+bKKJzokjrcNEvRdhr9YTn8B3x7ldoOjILLPoYPJqp9Rzd4MkMyRjVBbkklF7+xvi5FeXdfN765dTS9Amz3ByqrqBw3J4ezTnVeWa3n6aX7WLQjte7Y/PG9+edMeTIqOqa0vFK2JeXWfRy3kg6/vt6BHozvG8D4yEDGRgbg6978Na+dicFgsJgmXl6lY/T/raSgTBX59nB2YGZMGFeMCmdYuG+XSvbSJvQ6OPy7CuJObLJsd/JQKftH366yPLalkhxVw27Hp+qh8HlPw6SHzc8pPKk+uo+Q9xeiS+tw0yzr0+v1vPvuu/z4449kZGQQHBzM4MGDiY2NJTY2lqFDh+Lq2jWntNiVh8kTs5Js8Otl3K8uU8c8g+3frw7G38OZN66K5eqPtqA3qLU4c9/fzML5cWblAlpTsFfL/n84O2p5fs5gcoorWFkzqvjpxiR6B7pz/diIVuihELZTXqVj/8kC4k/kE5+aT3xKHicLGq73VivIy4XxkQGM6xvI+L6BdPd1s0Nv27+MgjJ+2JHGkvh0Ft0+liAv4yibq5MDc4Z1Z296AVeOCmf6kFA8XGSNrc1VFKnAaOv7kJds2e4TrmrDDb+hbWutGQyQulUlNDmwVJU5qrXzc5jwgHntOu8w9SGEsKtW/639zDPP8Pzzz1M74HfkyBE2bNhQ94RPq9XSr18/YmNjGTZsGI888khrd0GA+Zq5slz1hM/V1zgHPy9ZgrkmGt0ngH/NHMS/flFPWLKLKrjig818euMoRkW0z+Lrjg5a3rpmGFd+sIW96QWAKl4+OSqYcH/3Nu6dEIrBYCApp4SE1HwSUvOJP5HPwYxCi2Q+1oT6uBLX2199RPjTN9hTRpJqVFbrWXXoFN9tT2XdkWxqv50/7Urj9nPMR3iemj5AppzaS16KWg+3a6H10gI9RsGYu2DALHBow6C6ohj2LFJBXJaVkQWNFkJjoCwfPALs3j0hhLlWn2YZERFBRkYGX3/9NVOnTiU/P5+9e/eSkJBAQkICu3fv5tixY+j1ejQajWSzbIFGh3ErS+D/TJ6QPXQEvrsa0neq/dnvqOkbosm+35HKYz/trSsx4OSg4f3rRnD+gG5t3LOGZRWVc/EbG8gpVtn8LhjYjY9uGNnGvRJdUWW1nmNZxRzIKORgRiEHThZyIKOwborfmfQO9CAuwr8ugOvh5ybBWz3HsopYtD2Vn3alc7qk0qK9X7AnKx48pw161sWl7YBNb8LBX8FQL2mcxgEGzoIxd0P4qLbpX63cJBVsxn9lPdj0DIER82D4PPDpbv/+CdFBdPhplrm5uUydOpW5c+cC4OnpSY8ePZg2bVrdOaWlpezZs4fdu3e39suLWs4e4OQOVTVZ3Uqy1dq52mAu+3Db9a2DunxkOD5uTtzzbTyV1XqCvVwZ3tOvrbvVqGAvV56cHs0Di9T/tRUHTrHy4Kl2HYCKjs1gMJBVVEFiVjGHMlUJjgMnCzmaVdRofTdTbk4ODOnhw7BwX2LDfRnRy6/LZpw8k5KKan7bk8GiHansTMmzek64vxtXjAhn7sgedu5dF6bXw5E/VRB3YrNlu4sPjLgB4m4H33D798+a42uMJY1M9Z4EI2+G6OngcHZruYUQttPqwdyQIUPO+LTU3d2dMWPGMGbMmNZ+eWHKI1DVfgEVzAVFGdskmDsrFw4K4ZtbRvPA4gTeu3YEfmdRSNzeLontznfbjLWjnvl1P+P7BuLqJOUKxNmrqNaRcrqUxKxiErOLOZ5dQmJ2MYnZJRRbSXHfmL7BnsSG+zKspwreorp5ydS/Jrrlix1sPn7a4rizo5Zpg0O4cmQ4Y/oENJoFV7SiqnLY8x1sett6fTi/3jDmToi9Bly87N+/Wroqy8Bs6BUqI2V5viorEHstjJwvxb2FaOdaPZi7++67ueOOO8jJySEwUGrStCmPYJNgLsc8mMuRYO5sjYzwZ9VDk3Gy8mbzZH4ZYe0s8YJGo+G5SwZz8RvrqdYbSM0t47UVR3ji4gFt3TXRjpVV6kjPL1MfeWWk55dyMr+8ZruMjIIymrC0zYyTg4a+wV4MDFU1F2s/+7jJ0/6msJaRcmZMmFkwNzDUmytHhXNJbHd83OX7ajelubDjE9j6IZRkWbaHj4FxCyBqmnnSEHvLOaqmUu5fCvdsAzeT2SXOHjD5MdA6qvpw7amOnRCiQa0ezF1zzTX8/vvvzJ49m59++olu3WQ6V5upn9Gy+3Djfl4KVJWBU/sKPDoKa4Fcck4JM97awPQhofxr1kDcndtPVrj+3byYP6E3H647DsCH647TL9iTy0e2k+k97ZxOb6CkspqSCvVRXKGjslqtfam/7NhBq8HZUas+HLS4ODng7KD2XWqO2XOUxGAwUFGtp6SimtJKHSWV1eSVVJFbUkluSQU5xZU125WcLqngdHElOcUV5JU2bS1bQwI9nYkM8jQL2voFe+HsKCNuzVFZrWflwVN8vzMNP3dnXr0ixqx9Zkwob6w8wgUDu3HVqJ4M7u7TRj3tovKSVWmB+C+NyxrqaGDADBh3L4THtUXvFL0ejq2ArR+oGnG1dn0J4+81P3fMnfbtmxCixWzybvPf//43U6dOZciQIdxyyy3MnDmTYcOGSUkCezPNaFmSDX4RqmC4rgIwqCd0oUPbqnedSmW1ngXfxlNcUa3WrpzI4+1rhhEdYpvyBWfjvvP7sepQFseyigF4/Ke9deuQ/tqfSbXOwB2TI+kd2PWKvFZU6zh6qphjWeojJbeUzIIyMgrKOV1cSVlV6yZqcjQJ+JwctDhpNTg6aHF00OCkrfnsoMXJQYOjyb5Wo8FgMKAzGNDpDehrP+upO1ZZraesSlcXvJVWVjd7BK05X0evAHcigzyJDPakT6AHkcGeRAZ6yqhQC+1LL+CHnWn8nJBeF1i7Omn516yBeJvUoPRydWLTY+fjINMo7etkPGx8U6Xsr5/UxNFVTVEce3fb1ocrL4D4r2H7R5B73LJ97/eWwZwQosNp9WDuzz//5NJLL6WiogKDwcCLL77ISy+9hFarJSoqimHDhtWVJYiNjcXfv+1Tu5eUlPDTTz+xbds2tm7dyu7du6msrOSFF17gscceO+v7Llu2jFdeeYWEhAQMBkNdKYYZM2a0Yu8bUX9kTusAgf3g1D51LPuwBHOtpKCsyuzN1LGsYma/vZGnZwzk2tE920XWPQ8XRz67cRRz3t1ITnEl1XoD8z7dZnbO0oR07j2/H7dN6mN19LGzqKjWsfV4LhuO5bAzJY+9aQVU6vRnvrCVVOsNVFfqKK1s39l8HbUaQnxc6e7rRnc/N/W5ZruHnzs9/Nw69c+JvZ0uruDnhJN8vzONgxmW2QTLq/T8tf8Uc0eYJzKRQM5ODAY4ukIlNUleb9nu5q/qw8Xdav4w1d6yD6uplAnfQlWJZXvQABh9Gwy90v59E0K0ulYP5h5//HHKy8u5+OKLmTp1KgUFBezevZuEhAQOHjzIgQMH+OabbwC1lqe6unkL5W3h6NGj3HDDDa16zzfffJP77rsPR0dHpkyZgouLC3/99RczZ87kjTfe4N577fA0zCyYy1Gfw+PA2VOtn/Ptafs+dBFBXi58f8dYXv3rCO+vTQSgolrPU0v3sfFYDi9eNrRdrAsK93fn43mjuOrDzZRXWQYvFdV6Xll+mJ9rgrppg0M7zRvFap2eVYey+DnhJGuPZDc7SUctZwctHi4OuDg6UBujm36HqvVqWmNltZ5Knb6ulEV74eqkxdfNGX8PZwI8nQnwcMbfw8VkWx0P9XGjm7drp/n3b6+qdHrWHs7m+52prDqUZTXjp0tNMpPLR4Yzto/U9bI7XRXs+wk2/g+yDli2+/WGcfdAzDXg3MZ1PH+9TxX0rk+jhaiLYfTtEDER2sEDRiFE62j1YO7w4cPExMSwbNkyi7bi4uK6wC4+Pr7dlCbw8vLi5ptvJi4ujlGjRvHjjz/y/PPPn/X9jhw5wkMPPYSLiwurV69m7NixdcfHjRvHQw89xLRp0+jXr19rfQnW1R+ZA5jxum1fswtzctDy2LRoxkUG8ODiBHKKVZ2nP/ZlsietgA+uH9Eu1rPEhvvyvyuHcfc3u9DpDTg7apnUL5DdaQVkF6l6dEdOFXPPN/H0CjjMrRP7MHdED7Psl7XrxNrDiOOZZBdV8OWWFBZvTyWzsLzB85wdtUQGedK3Zrpgd183QnxcCfJywdPFEU8XRzxcHJu95qt26mNltZ4Knc64XfO5Wq+nSmegWmegSq+nWmegWqcCwWqdwaRdj84ADhrQajVoNRoctBocNBq0Wg0OWtBqNDg7aHF3ccTD2QE3Zwc8nB1xd3HA3dkRNycHCc7amQMnC7ll4Q6rbcN7+nL5yHCmDw01m1op7KSyFBK+ViNxtcnETHUfqaYpRs9o26QmpoIHme+7+qracCNvBr9ebdIlIYRttXowFxISwoAB1rPkeXp6Mn78eMaPH9/aL9sikZGRfPzxx3X7P//8c4vu98Ybb1BdXc3dd99dF8gB9O/fnyeffJIHH3yQN998k7feeqtFr3NG9dfMCbuY1D+I3++byIOLdrPhmBoRTc8v45qPtrDw5tHEhvu2bQeBqYNDWH7/RNLyyhgZ4Y+niyMFZVW89OchvtlqfNOScrqUp5bu439/H+Gm8b1xd3ZgxYFTbEvKpX83Lz64fgTh/m38JLoB+aWVvL/2OF9sSra65s3VScuEvkGMjQxgRC8/BoZ62yQ5h4NWg1tNYAXyhrwryy+txMfNyewhyNAePvQL9uRozVrWYC8XLh3eg7kjetA3WLIJtomyfLXObMv7UJpj2R51sUpq0nNM241wFWVCxh7of6H58dhrYPV/wCdcTfkccnnbjxYKIWyq1YO5OXPm8Msvv7T2bTuU2lHJ2sLppi6//HIefPBBfv31VzsEc1amWQq7CPZyZeH8ON5bm8hrK46g0xsoLK/muo+38vlNoxgZ0fZrRfsGe9E32FjnyMfNif+bM4TrRvfi/bWJLNtzsi5xRk5xJa8sNy9ncSCjkKs+3MLXt4wmwNOZt1cd47e9GYzpE8DTMwa22bRSnd7A55uS+d+KIxTVm0rp5KDhwkEhzIntzoR+UmtP2F5FtY5VB7P4KT6dNYez+P6OcWYPdDQaDdeM7sn25FwuHxHOxH6BUmOvrRRlwuZ3YMdnUFlk3qZ1VGvMxt9nXubH3jJ2q+yZ+35UiVYePACuJom2XDzh9vVqGUUHmDkhhGi5Vg/m/vnPf/LTTz/xwgsv8Pjjj7f27du9/Px8TpxQIxvDhg2zaO/RoweBgYGkpKRQUFCAj48Np92ZBnNVJVBZourICLvQajXcfW5f+gV7cvc3u6jSGajU6Vs9M2JrGxjmzZtXD+ORi6L4aP1xFm1PpaLaenKQ9PwyrvhgMwaom6L5w840thw/zdvXDLf7KGRidjH/+GEPO1PyzI4HeDhz88TeXDEynEBPF7v2SXQ9BoOBHSl5/LQrnd/2nKSw3PhQYcmuNIv/FzeN781N43vbuZeizulENZUy4RvQVZq3ObnD8HkqM6VvG5Vy0evhyJ+w5V3zxCuVVaokwti7zc+X6ZRCdCmtHsxddtllDBs2jKeeeoqDBw/y5JNPEhXVhk+x7Kw2kPPz88PDw3rg1KNHD3Jycjhx4gRDhgyxXWfc6y2UL8lRwdzpRMjcA9lHoO/50GOk7foguHBQCB9eP5IF38bz5tWxTOwXdOaL2oFwf3eenT2Ye8/vxxebkvltTwYOWg3nDQjGzcmB//19FICsmiDOVFpeGXPf28TlI3swuncAo3r7071eMXWDwUBRRXWrrQX6ZusJnvl1f139NwBvV0duPyeSG8dF4OHSfur+ic7peHYxS+LTWRKfTlpemdVzthzPtVr8W7SBjN2w4X/Wywu4+qpkIXG3g0cbJZ2pLFEB5pb3IDfRst0rDFy8LI8LIbqUVn93s2rVqrrtr776iq+//pq+ffsycuRIhg0bVleSICCgc2bkKi5W6x7c3Rueo14b5NWeeyaDBg2yejwxMZHIyEZq2Dg4qlTJZblqvyRHPbFb8U84VJOgRqOVYM4Ozo0OZsOj5+Lr7tzWXWm2QE8XHrowiocuNH8o083blSeW7KW2ZraLo5YLBnbj970Z6A0qq+O321L5dlsqABP7BfLPGQPpG+zJn/syef73g5zML2P++N48OX3AWb+5rdLpeW7ZARZuTjE7PismjGdmDcLfo+N9z0XHsmj7Cb7Zlsru1Hyr7W5ODlw0qBtzhvdgfGSABHJtyWCAlI2w4XU49rdlu1cojL1HJQ1pq0CpIB22faCyUpYXWLaHDVN9HDgbHGQdrhBdXasHc0lJSSQkJJCQkFCXufLo0aMcPXqUb7/9tu6PWPfu3Rk2bFiLk42AWpu2b9++Zl2zcOFC4uLiWvza9TUly1/tOXbhEWQM5opPqc9BUcZgLvuQ/frSxVkL5HR6A1lF5YT6uFm5on27Oq4nPm5OvLvmGP27efHgBf3p4efOtqRc7v023iJz5PqjOUx9Yz0DQr3Yl26sofXxhiQqdXr+PWtQs9/kFpRWcdc3O9l47HTdsUBPF56fM5iLBoW07AsUook2J562COQ0GhgfGcicYd25aHAInjIy3LYMBji2Eta9AqlbLNv9I2HC/WpdnGMbTsU2GGDhLDh9zPy4RgvR02HM3W2beEUI0e60+l+XXr160atXL2bPnl13rLCwsC6wqw3y9u/fb7V8wdlITk7m8OHDZz7RRGlpaau8dn1eXupJXkmJlUKd9V7b07Npmcr2799v9XhDI3ZmvEMhp+Z7U5CmPgdFG9uzm/d9E62nSqfnocW72Zp0msW3j6VXQMdbz3jxkFAuHhJqdiyutz8rHpzEH3sz2Zacy/bkXFJOq595nd5gFsjVWrg5Ba1Gw79mDmxyQFdQVsV1n2xlb7rxyfXQHj58eP1IQnxcW/BVCWGpSqdnw7EcHDQaJvU3nyo9Z3gPliacBCA6xIs5w7ozO7a7/By2B3o9HP5dBXEZCZbtoTEw4UEYMLN9lBfQaFQZgeU1OQecPWHY9WrKp7+sqxRCWLLLo0Jvb28mTpzIxIkT647pdDoOHWqdUaEdO6zX6GkLPXuqQtx5eXmUlJRYXTeXlpZmdq5N+UUYt/NrpqEF9jceO30U9Lr28UesCzEYDCz4Jp4/92cCcM1HW/n+jrGE+Xa8ETprvFyduGJUOFeMCsdgMLDiwCn+89tBTuQaH6JM7BdIYXl13YjG55uSqdTpeXbWoDNm8yuuqObGz7aZBXIzY8J4Ze5QyVApWo1Ob2BbUi6/7jnJH3szyCutYlhPX4tgbnxkAAvO68u0waEMDPNu4G7CrvQ62L8E1r9qvdB3xESY+CD0ObdtRrmqK2Dv91BVBnG3mrcNu07Vt4u5GoZfD65tX59UCNF+tTiYe+GFF4iJiSEmJobu3bs3+ToHB4emjSx1ML6+vvTs2ZMTJ04QHx/PhAkTzNrT0tLIycmhZ8+ets1kWdchk6xWecnqc2B/QAMYoLoccpMgsK/t+yLqaDQaJkcF1QVz6fllXPvxVj67cRQRgR1vhK4xGo0qBzCpfxBfbUlh14k8Zg4NY+rgEArLq7n+k63sSVNB2TdbT5CWV8Y71wzDq4HEKKWV1cz/bDvxJ/Lrjs0f35unZ5z9ujshahkMBnanFfBLwkl+23uSU4XmCX7iT+STmltqVl/R0UFrsaZUtBFdFexZDBtes5yqCNDvQpj4MPQcbf++gapht/MzVcOuOBNcfCDmKvP1ea7ecMcGmUophGiSFgdzTz75ZN0bKH9//7rArvZj0KBBODp2rbUC06dP57333uOHH36wCOa+//57AGbMmGGfzpiOzNUGc87uENgPco6o/RObJZhrA1fF9aSsSse/f1VPjZNySpj+5nqeu2Qwlw7v0ca9a32uTg7cMrGP2TEfNye+nD+aeZ9tI6FmhG7dkWwuf38zC+fHEextPk3NYDDw0OLdbEvOrTt2/ZheEsiJFjEYDBw+VcSvu0/y6+4MsxFkU86OWs6NCqK8nZcX6ZKqKyD+K5WdsuCEZfuAmSqIC4u1d8+UgjSVlXLnF+Y17CoKYNdCy/IC8vtMCNFELY6y7rrrLvbs2cOePXs4ffo0q1atYtWqVXVvrBwdHRkwYEBdcBcbG0tMTEynyGYZHa3Wnq1cudJsVPK+++7jww8/5P333+eqq65izJgxABw9epTnn38eBwcH7r33Xvt00iyYS1GLqzUa6DXeGMylbFRTOYTd3TS+N2VVOl7+U61dLKnU8eDi3aw6lMWC8/oRFdL50077uDvx3W1jeHBxAr/vVSOVhzKL+PeyA7xzzXCzc99bm8gf+zLr9q8aFX5WiVOEMPVzwknuX5Rgtc1Bq2FC30BmxoRx4aBurVZKQ7SSylKV9XHTm1CUYd6m0cLgy9SauG4D26R7ZO6DTW/Bvh9AX23e5uCiRuX6XdQ2fRNCdAoaQyumVkxKSmL37t11HwkJCSQnJxtfzOQNV2hoKLGxsa2WBKWl5syZQ0aG+kOQlpZGeno64eHhhIWFAaq/S5YsMbum9utJSkoiIiLCrO3111/nwQcfxNHRkQsuuABnZ2f++usvysrKeO2113jggQda3OfaaaoNJUgBoDQXXjZZNP3IcVUzZ+8P8OPN6phPT3hgb4v7I87e73szeOzHPWbFhQHG9gngtkl9ODc6uI16Zj96vYEX/zzEh+uOA+Co1bDp8fMI9lKjc+uOZHPjZ9vQ1/zGOqd/EJ/eOAoHrQRyomn0egNJp0uIDDJPPpVTXEHc83/X/WxpNBAX4c/MmDAuHhIq5S3ao/JC2PEJbHobSnPM27SOMPQqmPBA28w6MRggaR1sfAMSV1q2u/rCqFtUUhPPzv+7XYiupknvz1tRqwZz1hQVFZkFd7WZLMvKytBoNOh07WO6SkREBCkpKQ229+rVyywwhcaDOYBff/2VV155hfj4eABiY2N55JFHmDVrVqv0uUk/LAYDvNgTKmoyCN6yCnqMgKJMeNVkjcd9e1QNOtFm0vPLuP+7eLYn55kdD/F2ZfXDk3Fz7vyJPXR6AxNeWkVGgSpr8MhFUdx9bl/S8kqZ8dYG8kurAAj3d+PXeyZ0yLp9wr6qdXq2JuXy575Mlu/PpLC8ivinL7T4/3TVh5spq9Izc2goM4aGSSbK9qq8UNVg2/Q2lOebtzk4q8yP4+9r279nuip4IxYK08yP+/SEsXepPro0LZu1EKLjsXcwZ/PFbF5eXkyYMMFs7Zher+fIkSPs3r3b1i/fZPUDtaY4Uxw8c+ZMZs6ceZY9aiUajfqjllkz8paXpII5rxAI6GtcIJ6yUYK5Ntbd141vbx3Dkvh0Pt+UzP6TKgD/v0sHd4lADtSUtitHhfO/v48C8N32E9xxTiT/+GFPXSDn6qTlg+tGSiAnGlRepWPjsRyW789kxYFT5NX87NRaeySLqYPNS2p8flOcZEJtzxoL4hzdYOR8GLdAleNpaw5OMOZO+OtJtR8yVAWYAy8Bh66VQ0AIYXtt8ltFq9USHR1dt+ZM2JhfhDGYyzcZfew1XgVzAf3apFvCkqODlstHhjN3RA92puSxPTmP86K7WZxXWa3H2bHx9P0d1RUjw3lz5VH0BkjNLeOhxQlsSjQWBX/+kiGS/l1YyCosZ+WhLFYePMWGYzmUV+mtnueg1ZCYbVkHVAK5dqqxIM7ZU6X1H3M3eAZZvdymSnNh6wcq+2T9BCYj5qnkYnG3Qu9zJKGJEMJm5BFRV2AtoyXApIfh3CfUKJ1oVzQaDSMj/BkZ4W/RlllQzqXvbuTu8/py9aieaDvZmrEwXzfOjQpm5aEsgLpizABTBnTj0uFNL4EiuobU3FImvry6wXZnBy0T+gUydXAIFwzohp+sgWv/Gg3ivNR6s7F3g7vl70ibKzyp+rXzc6gqUWvghs8znzrp4gVXfW3/vgkhuhwJ5roCa7XmAHztULRctCqDwcCTS/ZysqCcJ5fs49fdJ3nx0qGdrjbd1XE964K5Wl4ujvznksGSubILKyitYmNiDhcM7IaTSWH5Hn5uRAS4k3zaWFLAw9mBSf2DmDo4hHOjgyULZUfRnoO404mw4XXY/R3oTabulufDri8sR+eEEMIOJJjrCvxMslmaBnOiw0nLK2NHijFBypbjuUx9Yx0PXRDF/Am9O01mx8lRQYR4u5JZWF537InpAyQpRRdTrdOzOy2fdUdyWHc0m92p+egNsPj2scT1Nr6Z12g0nBfdjeX7M5kyIJjzB3RjdB9/XBxl6mSH0Z6DuIzdKojbvxSot1bezR9G3wExV9u/X0IIgQRzXYPpNMuCdJVpy0GeUndE4f7urHhwEv9cup8/96t6a+VVep7//SC/7c3g5blD6d+t49emc3TQclWcMRHKmD7+XDUqvI17JWzNYDCQfLqUzYmnWX80m43HcizKdQCsP5ptFswB/GNqlBSP74jaaxBnMEDKJtjwGhz727LduzuMvUetjXPuXDMjhBAdiwRzXYFvOKABDGDQQUEa+JuM1lWVQeo2yNyjsoGJdi3Yy5X3rx/B73sz+OfP+8gprgQgITWf6W+uZ2ZMGOdGBTOpXxA+7h03aL9rcl/yS6sorqjm8WnR8ia9EyuuqObJJXvZcvw0pworGj030NMZR61l8h9JYNLBtNcgrpauCn64CYpPmR8P6Avj74ehV4KjrL0UQrQ9Cea6AkcX8A6DwnS1n5dsDOZKcuC1AaBTAQGDLgUfSTDREVw8JJSxfQJ4btkBfopX/7ZVOgM/7Urnp13pBHm5sO2J8ztsEOTsqOWZWYPauhuiFen1BhKzi4kM8jRL3OPh7MCGozmcLqm0uMbJQcPIXv5M6h/ExH6BDAz17nRJf7qU9h7E1XJ0Vv1Y8U+1HxoDEx6EATNBKw8OhBDthwRzXYVfhDGYMy1P4BGoAr3atXQpG2HoFfbunThLfh7OvHZlLDNjwnhiyd66YtsAE/oGWgRyX25O5r01iVwyrDvzxkXQzVvWoAnbySmuIOFEPgmp+cSn5rEntYCiimp+v3eiWXkJjUbD6D7+/L5XTR3uF+zJuMgAJvUPYkyfADxc5E9Vh1dZAts+go3/g7I887a2DOKqyiHha1U6YOR887aR8yGlprxA5HlSXkAI0S7JX8iuwi9CBWpgmQSl1wTjseT1Esx1QOdGB7PyoXP4+2AWaw5nse5INpOjLOsuZRdVcLKgnHfXJPLR+uPMjAnjqlE9GdnLDwOw5nAWP+xMw0Gr4R8XRdMzwN3+X4zokArLqzicWcSetAISUvNJSM0jNbfM6rlbk05b1AqcNzaCGUPDiOvtT6Cniz26LOyhqlyl8F//KpSYZ6ht0yCuohh2fAqb31ZTKd381dRJ0/VvLl5wzXf27ZcQQjSTBHNdRUPlCQAiJkDCV2o7eaPduiRal7uzI7NiwpgVE4Zeb0BnMFick2Myjc10SmYPPze0Gg0nco2p3U8VlrP49rEddpqmsA293mAxzTHldAnnvLKmSddrNVgN8kb3CWiN7on2QlcF8V/BuleMs0JqOXuqDJBtEcSVF8C2D2Hzu1CWazxelgu7FsKYO+3bHyGEaCEJ5rqKhgqHA0SMN27nJkJhBniH2qNXwka0Wg1aLIOwe87tSy9/dz7flGw2JTMtz/zNtYezAy9eNlQCuS6sqLyK5JxSjucUk5RTQnJOCceyi8ksKGfbE1PMAroefu64Omkpr9Jb3CfYy4XYcF9ie/oSG+7L0B6+eMq0yc5Lr4M9i2Hti5Z/axzd1JTF8feDh52D99Jc2Pq++igvMG9zcIHh10PUNPv2SQghWoH8Re0qzIK5FPM2357qI/+E2k/ZCEPm2q1rwn7CfN24/ZxI5k/oze97M/hhZxobjuVQO4in1YCTg5aHLowiMsizbTsr7GbXiTz+2JvByfxy0vLLSM8rrcuSak16fhnh/sYpuA5aDVHdvDieXUJ0qJcK3sL9GNbTl1AfV3ko0BXo9XBgKax5AXKOmLc5OMOIm2Dig+AVYt9+FWerqZTbP4bKYvM2Jw8YdbMqMeDVzb79EkKIViLBXFdhGsyV5aonk64+xmMRE9UicFDr5iSY69ScHLTMju3O7NjuZBaU89eBTKp1Bi4c1I0eftbXyRWUVuHm7ICzo2Va+Fo6vaFDFS7PLqrgaFYRx7NLSM0tJbuoguziCvJKKymr1FFepaeiWkdFlZ7yah37/n2RRSHq819dQ0mFDlcnLa5ODrg4OeDqqK377OrkUNcW08OXy0b0MLs+NbeU+NR8k3ON57s4auu+33qDqsMW7OVq8W+w60QeReXVVFTpKK3UUVheRWFZFUXl1TXb1ZwuqeB0cSUT+wXxz5kDza4/klnER+uTmvx9O5hRaBbMASycPxpvN0cJ3LoagwEO/wGrn4dT+8zbNA4w7DqY9EhNiRw70+vho/Og4IT5cRdvtVZv9J32HyEUQohWJsFcV+EZrKa4VNdMp8tLVqmWa/UabxLMybq5riTEx5UbxkY0ek5BWRXXfrKF0godM4aGEhnsiZerIzo9lFZWE38iny3HT3Mos4ixfQJ46bKhHSJ5ymsrDvPtttQmn19epbcI5rKLKqwWtrbmktgqi2Bue3IuDy7e3eQ+LL9/ElEh5oXhH1yUQPLp0gauMNfT3/Lfpbufm9Vz3ZwciAj0oHegO70DPYgI8CA6xJt+3SxHbTtyTUNxFgwGSFwFq/4DJ3fVa9SoZCLn/AMCItukewBotTDyJlj5b7Xv5gdj7lZTPd18265fQgjRiiSY6yo0GvVHtfbJadZB82AuYoJx+/RRKMq0/3QY0S6VVFRz02fb2JdeCMCbq441ev7OE3mUV+vs0bUzMhgMxKfms2RXOudGB3FetPlUqj6BzZtKWlGtA8yDlmq9ZaKZhlgrbG1tnVljDFi+Xv0AszE5xZZFufsEeXJ1XDjdfd0Iq/mICPCgm7eLjLQJS8kbVRB3YpNl28BLYPLjEBxt3z6dToTcJOg3xfz4qFtg97cQe62aUuniZf16IYTooCSY60pChhqDuZMJEHOVsc2vF/iEQ0HNKEXyBplqKQA1JbM59egevrA//bu17Rum8iodP+1K56stKRzIUEFoYXmVRTDXO9CDQE8X+gR5EBHgToi3K0HergR4OOPm5ICLkxYXR+O0R393Z4vX+vbWMZRX6Siv1lNR87m8SkdFlY6Kmu3yKvU5tqevxfW+7k7E9PBR55hM6ay9rj4rSUrp4edGpU6Pi6MWN2cHvF2d8HZzwsvVEW9X9dnfw5lATxfCfC3/Lbv7uvHCpUOb+N0VXVbaDhXEHV9t2dZ/Gpz7BITa+eco+7Aqe7D3e3APgPv2gLPJ6LOrN9y9TWrECSE6LQnmupKwWNj9jdrOsDKtK2KCeoLpHggVRXbtmmi/nB21vHvtcNYeySb+RD7HsotJyi6hUqfHQaPBQauhd5AHY/sEoDcYuHZ0L4t7bDqWQ7i/u8U6q9am0xv4cWcar604QmZhuVnb6kNZVOn0ODkY15udPyCYHU9NqX+bZokJ923R9RcPCeXiIdazxxoMBqp0BrQaVVhbg/X3pJ/cOKpFfRCiUVkHVRB3aJllW59z4bynoMdI+/Ypc58qe3DgZ6gdrS7Jhl1fWJYXkEBOCNGJSTDXlYTGGrcz96jF4VqTRAoTHlApo4Oi5I+fMKPRaJgcFczkqOBmX1tepeOh73dTVqXjw+tHEtfbNnWlthw/zdNL93E0q9iibXRvfy4b3gN9vWGt9j6FUKPR4OzYvvsoOrH8E7D6BdjzHRjqjRL3HKuCONMp+vaQuRfWvgQHf7Vs8+8DXlJWRwjRtUgw15WEDAaNVv1RriyG08cgqL+xPSiq7fomOi3TmnbXfbyVV6+IYWZMWKvdv7xKx2srjvDR+uNmUxCdHbRcOSqc68f2avNpn0J0KMXZaurijk9AV69ERWgsnP80RJ5v34d+jQVxgVEw6WEYdCk4yNsaIUTXIr/1uhJnDwjsD9mH1H7GbvNgTggbCPVRqfQrq/VU6vQs+DaerKIKbp7Qu8X3Tsop4Y4vd3L4lHFasEYDc2K78+CF/RsssyCEsKK8UNVk2/yOZU22gH4qiBswy/4zN36+B+K/tDzebbAqezBglvksEyGE6EIkmOtqQmNMgrkEGHp5m3ZHdH6zY7vT3deNWxfuIK+0CoDnlh0gxNuV6UNbNiXKy9WRsipj5szIIA9euyK2xevYhOhSqsrVKNy6/6o6pKa8u8PkxyDmmrYb9fKttw6322A451GIniFBnBCiy5Pfgl2N6bo5a0lQQK2ly9gD2z+2njpPiGYaGeHPT3eNJ9zfWM/swcUJ7DqR16L7Bnq68PlNo/D3cObGcRH8du9ECeSEaCpdNez6Et4aAcufMA/k3PzgwudhwS4YfoP9ArnyQstjo28DV18VxF3xJdy+HgbKaJwQQgBoDAZ5t95RDRo0CID9+/c3/aLkjfD5xWrbxRseTTH/g1hRBG/EQOlptb9gV9sWfRWdSmJ2MZe+u4mCMjVCF+jpzJK7xrc4y2VBWRU+blK0WogmMRjU2rNVz0HOEfM2Jw8YezeMuwdcfezXp8x9ak1c+k71d8epXgmNnKPgHykBnBCi3Tur9+ctIL8VuxrTGkAVhZCXZN7u4gUeQcb9pHX26ZfoEiKDPHn/uhE4Oag1NznFldzw6TayisrPcKWyKTGHgpqpmqYkkBOiiY6vhY/Ph8XXmwdyWicYfQfclwDnPWm/QC5zHyy6Ht4fDwd/gcJ02LXQ8rzAfhLICSGEFfKbsatx8YKAvsb9jATLc3qfY9xOWmvzLomuZWxkgFmB6qScEq77eCvFFdWNXrfl+Glu/Gw7V3ywmcyCpgV/Qoga6btg4WxYOEuNftXRQMzVsGAnTHsJPJtffuSs1A/iTB39yz59EEKITkCCua7IdN3cyQTL9j6mwdw6tYZOiFY0d0QP/jHVWArjgoHd8HB2aPD8I6eKuPWLHVRW6zl8qoj5n29Hr5cZ4kKcUfYRWHwDfHQuHF9j3hZ1Mdy5Cea8D369rF7e6hoL4mrXxF2z2D59EUKITkCyWXZFoTGw7we1bS0JSq/xxnp0pachaz+EDLFvH0Wnd9fkvpRV6nB1cuDuc/tatJdXqbbSymru+noXRTUjdy6OWv49exBarRTTFqJBBemw5gVI+Nqy4Hev8TDlGQiPs19/Tu2HNS9aBnAg2SmFEKIFJJjrisJijdsZu9VieNO6QW6+avTu5C61f3ytBHPCJh660Hqh+p0pedz51U7evHoYS+PTOZZlrHn11tXDGBXhb68uCtGxlBfAhtdhy3tQXW86csgQOP8Z6Gvngt8AB362PhInQZwQQrSIBHNdUYhJEpTyfJUExb+P+Tl9zjEGc0lrVWYzIexgZ0ou8z7dTnFFNTd8so1KnXFU4fZz+nDhoJA27J0Q7VR1Jez4VGWErF8rzq83nPcUDLq07YKmMXeqALOiEIIHqdp1EsQJIUSLSTDXFbn5qhTPuYlqP22HZTDX+xz1dBfUOovCk+AdZs9eii6qolpPdc06TdNALjbcl4cbGMkTossyGGD/Elj5b8hLNm/zCFZB0/AbwMFOGV/zkmHbR3D+v8DR2XjczQ8ufE59jp4pQZwQQrQS+W3aVYWPNm6nbrNs7zUevGqCN10lbPifXbolxLjIQD6ZNwoXR+OvJy8XR966ehhODvIrS4g6yRtVmYEfbjIP5Jw8YPITcG88jLrZPoFcQRr8ep8qQL75bYj/0vKcETfCwNkSyAkhRCuS36hdVfgo43aalWDO0RkmPGDc3/k5FGXavFtCAIzvqwI6X3cnXBy1vHpFTIsLiwvRaWQdgm+ugs8vNi8zoHGAkTerIG7yo+Diafu+FGXC7/+AN4epvxP6mhIj6/4LVVJCRAghbE2mWXZVPUyymGXug8oScPYwP2f4DbD+VdU2+jZwdLFvH0WXNqFfIJseOw+DATxc5FeVEBRlwur/U6Ne9TNURs9QUxuD+tunLyU5air+9o8tE6349IRz/gFa+X8rhBC2Jr9pu6rgAeDsBZVFYNCpgrK9J5qf4+QKV36pioy7S/ZAYX/uzvIrSggqimDTW+qjqtS8rccouOA56DXWPn0pzVX92PoBVJWYt3mFwaSHYdj15uvlhBBC2Iy8U+qqtA7QY4SxiGzqVstgDuxbh0gIIYSRrgp2faHqs5Vkm7f591G14gbMsl+ZgcRVsHieykhpyiMYJj4II25SDwGFEELYjQRzXVn4aGMwl7a9TbsihBCihsEAh5bB38/A6WPmbe6BKkPliBvtl6GyVkiM+fRON3+YcD+MuhWcZU2rEEK0BQnmujLTdXOp2yyLh1uj10FhOvj2tG3fhBCiK0rdBn89DalbzI87usHYu2H8feDqbft+VJWB1gkcTN4meATA6Dtg+0cwboHadvGyfV+EEEI0SIK5rqzHCON2WS6cToTAvtbPrSiCXV/Ctg9Ao4V7dkp6aSGEaC05x1StuIO/mB/XaCH2Wjj3CfvU+qyugJ1fwPr/wnlPw/DrzdvH36cCOTdf2/dFCCHEGUkw15W5+UFQNGQfUvtp2xoO5kpz4a8njVNsjq2A/hfZp59CCNFZFWfD2pdg52fGtP61+l2k1sV1G2j7fuiqIP4rVVKgME0dW/syDL3SPJmJPUYFhRBCNJkMrXR1PUzqzVkrHl7LrxdEXWzc3/q+7fokhBCdXWUJrH0F3oxV0xZNA7nQWJj3K1y72PaBnF4HCd/C2yNh2f3GQA6g+BScjLft6wshhGgRGZnr6sJHq5pF0HgwB2p9xKFlajtxFWQfhqAo2/ZPCCE6E101JHyt6sUVZ5q3+faC8/8Jgy61/TR2vR4OLIU1L0DOEfM2rZNKsDLxIfAOtW0/hBBCtIgEc12daemBrANQlt/wWoiICRA8CLL2q/1tH8L0V23dQyGE6PgMBjj6F6z4F2QfNG9z9VVFtkfdAo4utu/HkT9h1fNwaq95m8YBhl0Lkx6RJFdCCNFByDTLri6gn0p1DYABjq9u+FyNBkbfZtw/9Jt6YyCEEKJh6bvgi5nwzRXmgZyDi0oocl+CylRp60AOoCQHvr+pXiCnUWvjFuyAWW9JICeEEB2IBHNdnVYLfacY94+uaPz86BnG7aIMy+k5QgghlNwk+GE+fHQuJK83adBAzNWwYCdc8KxKRmUvnkEQd6txf+BsuGsLXPqhKkQuhBCiQ5FplgL6XQB7vlPbR1eotRQNrdfwCISQIZBZ81T3+BpZNyeEEKZKc2HdK7DtI9BXmbdFngdT/g2hQ23fj5MJUFEIvSeZH5/wAOQlqzVxYbG274cQQgibkZE5oKSkhC+//JIFCxYQFxeHi4sLGo2GF1988azut3PnTp555hkmTpxIWFgYLi4uhIeHc91117Fnz55W7n0r6Hu+qmUEUJIFGQmNn99nsnH7+BobdUoIITqYqjLY8Dq8EQtb3jUP5LoNget+guuX2D6QyzoIi66HD8+BX+9TZQdMufvDlV9KICeEEJ2AjMwBR48e5YYbbmiVe1VXVzNy5EgAAgMDiYuLw93dnfj4eL7++msWL17MN998w9y5c1vl9VqFm5/Kanlis9o/ugK6D2/4/D6TYdNbajt5g8rO5iA/SkKILkqvgz2LYdV/zFP7A3j3gPOegqFXgNbBtv04nahq1u1ZDNSsZ849DgnfwIh5tn1tIYQQbUJG5gAvLy9uvvlmPvjgA3bt2sWTTz7ZovuNHj2aZcuWcerUKX777Te+//57jhw5wpNPPklVVRXz588nJyenlXrfSvpdYNw++lfj5/YcCw41RWQrSyDnsO36JYQQ7dmxlfDBObD0DvNAzsVHTadcsANir7ZtIFeQBr/cC2+Pgj2LqAvkQE2L9+tlu9cWQgjRpmQ4BYiMjOTjjz+u2//555/P+l6Ojo5s2bLF4rhWq+W5557jxx9/5NChQ/z222/Mm9eOnpT2uxBWPqu203eqjGcegdbPdfZQi/Z9e0HEeHD1sV8/hRCiPcjYAyv+aZkBWOsEcbfBpIfVdEZbKjoFG16DHZ+CrtK8LTAKzn0CBsyyfc06IYQQbUaCOTvSaDQMGTKEQ4cOcfLkybbujrlug8ErDIpOAgY49jfEXNXw+WPutFvXhBCi3chPVdMp64+AAQyeC+c/DX4Rtu/H6hdg05tQVWp+3LcXTH7cPtM6hRBCtDkJ5uzs+PHjAISEhLRxT+rRaNRUy11fqP2jfzUezAkhRFdSlq9Gwba8D7oK87aIiWq2QmNrjVtbeb55IOcVBuc8AsOuBwcn+/VDCCFEm5Jgzo42bNjAzp07cXZ2ZurUqU2+btCgQVaPJyYmEhkZ2VrdU1Mt64K5v6GiCFy8Wu/+QgjR0VRXwPaPVamBsjzztqABKojrd4F6IGZPEx6EXQvByV2VGBg5H5xc7dsHIYQQbU6COTspLCxk/vz5ADzwwAOEhoa2cY+s6DMZnDygqgQqCmDbh+pNwpmU5UHhSehmPegUQogOR6+H/T/Byn9D/gnzNq9QtR4t9lrbTmWsroCdX8ChX+H6peav5dUNrlkEYcPBxdN2fRBCCNGudYpgbu7cuezbt69Z1yxcuJC4uDgb9cicTqfjmmuu4ejRo8TFxfHss8826/r9+/dbPd7QiN1Zc/GE0berqUQAG9+EUbc0nOAkbQf88Q84GQ/ugfDAfnB0bt0+CSGEvSWtg7+etqy56ewFE+6DMXepRFC2oquG3d/A2pehIFUd2/sDxFxpfl79YuBCCCG6nE4RzCUnJ3P4cPPS45eWlp75pFZy22238dtvvxEVFcVvv/2Gs3M7DnjGLYBtH0FlkVqTseV9mPyo9XP9ekPmPjDoVbHxg7/AkHZUP08IIZrj1AH4+xk4utz8uNZRTWOc9A/wDLLd6+v1sO9HWPN/qj6cqY3/U0lN7D2dUwghRLvWKYK5HTt2tHUXGvTII4/w6aefEh4ezooVKwgMbCDdf3vh7q8yVa57We1vfgdG36YKi9fnEQCDL1NPkEFNy5RgTgjR0RSehNX/Bwlfq4dTpgbOhvP/BQGtuD65PoMBDi1Tfcg6YN6mdYIRN6pSBxLICSGEqKdTBHPt1QsvvMB///tfgoODWbFiBeHh4W3dpaYZexds/UCtm6sogM3vwnkNFFKPu9UYzKVuhYzdEBpjv74KIcTZKi+ADf+DLe9BdZl5W/gYuPA5CLfhdHyDQRUdX/Wc5ZROjRZir1GjgVL0WwghRAOkkqiNfPjhhzzxxBP4+vqyfPlyoqKi2rpLTefmB+PuMe5v+xB0VdbP7T4cuo80Ofcj2/ZNCCFaqrpSBXBvxKo1wqaBXEBfuPJrmP+nbQM5UHXivr6sXiCnUfXq7t4Os9+RQE4IIUSjJJhrgejoaKKjo0lPTzc7/sMPP3DnnXfi6enJ77//TmxsbNt0sCVG3w4OLmq7PB9SNjZ8btxtxu2930Nprk27JoQQZ0WvV4lE3hkFfz4GZSa/qzyCYfprcNcWGDDDPlMaB881/p4FiJoOd26EuZ9AYF/bv74QQogOT2MwGAxt3Yn2YM6cOWRkZACQlpZGeno64eHhhIWFARAaGsqSJUvMrtHU/LFPSkoiIiICgKysLMLDw6msrGTIkCEMH269iOwll1zCJZdc0qI+12azbCjbZYt9fYUxEcCoW2H6f62fV10Brw2E0hy1P+UZmPCAbfokhBBnI2kdrPinyr5ryskDxt8LY++xbYr/zH0QPBC09Z6h/vkEZB+E856C7iNs9/pCCCHswubvz+uRNXM14uPjSUlJMTuWmppKaqpKC92rV9OmupSWllJZWQnA3r172bt3r9XzIiIiWhzM2dyAGcZg7tBvMO1lyzciAI4uaoH++ppgb9PbKviT2kdCiLZ2aj+s+BccW2F+XOOgfm9Nfgw8g233+pl7Yc2LKsHJ3E9V0ihTFzwLDvKnWAghxNmRvyA1kpOTm32NtUHNiIgIq8c7pKiLQXOfyu5WdFI90e7RwJPj0bfDlnehqlSN0G3/SEbnhBBtpyCtJkPlN0C938kDZqkMlbacynjqAKx9EQ78bDy25kUYeIl58W8J5IQQQrSArJkTDfMIVBndah1a1vC5nsEqs2WtjW9AZYnt+iaEENaU5auRuLdGqFIDpoFcz7Fw8wq48kvbBXLZh+GH+fDeOPNADsDRFYpP2eZ1hRBCdEnySFA0bsAMOLFJbR9aBlP+1fC54+6D7Z9AyFA49wlw9rBPH4UQoroCtn8M616BsjzztsD+ai1v1MW2S2yScwzWvqSSQNUfCew2GCY/DtHTpVacEEKIViXBnGhc9AxY/oTazjkC2UcgqL/1cz0CVCY2317yhkUIYR96Pez7EVY9C/knzNs8u6kgatj1tpvOWHgSVv0Hdn9rWXA8KFq9/oBZ1tcbCyGEEC0kwZxonF8vCBmiFvEDHPoVgh5q5PwIu3RLCCE4vkZlqMzYbX7c2RPG3wdj77b9DAF9NexZbB7IBfRTiVUGzTFfHyeEEEK0MgnmxJlFzzAGc3t/hAkPNm/kraoMnNxs0zchRNeTuVeti0tcaX5c6wgj58Okf4BnkH364tsTRsxTUzz9+8A5j8GQuRLECSGEsAuZ9yHObOAlxu2s/XBkedOvTVoPb8RCciNFx4UQoilyj8OPt8D7EywDuYGXwN3b4OJXbBPIFZ6E3x+BQ79btk18CGa/C3dvh5grJZATQghhNzIyJ84sOBr6T4Ujf6r9dS9D/4vOPDoX/zX8sgAMOlh8g1pP5xVi+/4KITqXokyV2GTn52pao6le41Wtth4jbfPa+amw8X+wayHoKtWDqf5TzdfAeYfBsGtt8/pCCCFEI2RkTjTNpH8Yt9N3Wj4VtyYo2viEujRHTUMSQoimKsuHlc/Cm8PU7w/TQC5oAFz9Hdz4m20Cubxk+OVe42vrKtXxrP2Nl2kRQggh7EiCOdE0PUZA5PnG/bUvw5mKo/cYYR4EHv7DNn0TQnQuVWWqVuUbMbD+VagqNbb59oQ5H6iR/qhprZ8593QiLL0L3hwOu74AfZWxzSsMpr0C/S5s3dcUQgghzpJMsxRNd86jxhG51K2QtA76nNP4NYPmwOr/qO1T+9TTbsl4KYSwRlcNCV/BmhehKMO8zT0QzvkHjLgRHF1a/7Wzj8D6/6o6cfVLDPiEw4QHYNh1tnltIYQQ4ixJMCearudo6H0OJK1V+xteO3MwF9hXFezNOaL2D/8BY+60bT+FEB2LXg8Hf1b12k4fM29z9oLx96rfGy5etnn90lyVVEVXYX7ctxdMehiGXgWOzrZ5bSGEEKIFZJqlaJ5Jjxi3j6+B7MNnvibqYuP2od9avUtCiA7KYIBjK+GjyfD9jeaBnIMLjL0H7tutRuRsFcgBuPtDzFXGff9IuOQ9WLATht8ggZwQQoh2S4I50TwRE6DbYOP+to/OfE30dON2yib1FFwI0bWlboMvZsJXl5oX/dZo1XTGBTvhoufBI6B1Xzd9F5zYYnl84oMQPAgu/UiVOIi9BhycWve1hRBCiFYmwZxoHo0G4m4z7u/+FsoLG7+m+0jwCFbbBh0cXWG7/gkh2reT8fD15fDJBZC83rxtwEy4awvMfgd8w1vvNQ0GOL4WFs6Gj86F3x62TODkF6GSqgy9AhxkBYIQQoiOQYI50XxDLgdXH7VdWawCusZotRA11bh/WKZaCtHlnNoP310LH06Go3+Zt0VMhFtWwZVfQVBU672mXg8HfoGPzoOFs9TUcIBTe61n123tzJhCCCGEjcnjR9F8zu4w7HrY/Lba3/YhjLrVvIhufVHTVdFdUGtkqiskK5wQXUH2EVjzAuxfAtQbDes+Es57Evqc27qBVHUl7F0MG/4Hp49atocNNz6QEkIIITowCebE2Rl1C2x+BzCopAXHV0Pf8xs+v8850HMsRJ6nEqI4SEIBITq13OOqHuWeRZap/kOGwnlPqXptrRnEVRSr2nCb3oaik5btfc5VJQZ6T5JROCGEEJ2CBHPi7Pj3hv4XwZE/1f6WdxsP5pzcYP6f9umbEKLt5KfCulcg4WvQV5u3BQ2Ac59Qa+NaO5iqKoe3RkBxZr0GDQycDRPuh7BhrfuaQgghRBuTYE6cvdF3GIO5Y3+rjHShMW3bJyFE2yjKhPWvws7PQVdp3hbQFyY/DoPmgNbBNq/v5Ar9LoD4L9W+1glir4Zx96l6l0IIIUQnJMGcOHt9JqvgrTat+IbX4fLPz+5eBoNMexKiIyrJUf/3t38M1eXmbb494ZzHYOiVrZshMnWbWnfbe6L58fH3wYGfYcQ8GHMXeIe13msKIYQQ7ZAEc+LsaTQw8SFYfIPa378Uzj3WtKfgej2UZIFXCOz4FP76J0ROhssXNp5IRQjRPhRnwaY3YfsnUFVq3ubdHSY9DLHXtV7Bbb0ODv6qEi+lbVf1Lu/YYP4QKLAfPHRYJWkSQgghugAJ5kTLRM+EgH41GeMMsPF/MPvths/PTYKNb6jpmW5+KhX5bw9DzzHg1xvK88Hd306dF0I0W1EmbHxTPYSpLjNv8whWD3hG3KimPbaGiiKI/1qty81PMR4/tQ+S1qoZAqYkkBNCCNGFSDAnWkarVdnhfr5L7e/+Tq2N8elu/XyDHnZ+praLMuDHW1Qh8ayD6mm+m599+i2EaJ7Ck+pBzM7PLadTugeoKY6jbm29YCo3SU3d3PUlVBRYtvcaD45urfNaQgghRAclwZxouSGXw+r/g8I00FfBqudgzvvWzw2IhKBoyD6k9k/uUp/LciFqmqybE6K9KUhTa+J2LbRMbOIRBOPuhZHzwcWz5a9lMEDiKtj2UU1ypXp16TQOMOgSGHsPdB/e8tcTQgghOjgJ5kTLOTqrp/J/PKL2d38L0TNgwAzr50ddbAzmavWaoDLdCSHah7wUFcTFf6Ue0pjy7Kb+z4+4qXWnNZblwXfXWI78uXjD8BtUBl3f8NZ7PSGEEKKDk2BOtI6R82HPd5C+U+3/eh+EjwbPIMtzo6fDhteM+xotTHtRRuWEaA9yj6sgLuEbyzpxXqFqWvXwG1TtyJaqn8XW3R8Gz4WEr9R+QF+Iuw1irgZX75a/nhBCCNHJSDAnWoeDI8z5EN6foJIilOaogO6qry2DtLDh4BliLO474kb15H3P9yoYjJ5umXJcCGFbJxNUAqMDP6u1raa8u6sgbtj1LU9sUl2hslLu/BwGXwYjbzJvH32b+v0Rdxv0OVey2wohhBCNkGBOtJ7AvnDhc/D7w2r/8G/w24Mw9UVwdDGep9Wq85beCaGxcN7T6rz9S1S7g5NlMFdeqGpL9RzTOmtzxNmrKoMjyyEoCoIHtHVvREsYDHB8jQrijq+xbPcJh4kPQuy15v+Hz0b2Edj1hRrxK8tVxyoKLYO50Bi4ZlHLXksIIYToIiSYE61r5M1w6Dc4vlrt7/gU0nepYuL+vY3nDb1CPZUH0DpA9xHGYC59l/k9K4rhnTiV/bLPuXDDUlt/FaIxK5+DLe+oZBT37wGfHm3dI9Fcep0agdv4P8jYbdnu3wfG36+mN7akTlxVGRz4RY3Cndhk2Z6xGzL3QsiQs38NIYQQoguTYE60Lq0WLv0Qvr4cMhLUsYwE+HAy3L4O/HqZnOtg3O4+0rh9Ml692axtd3BW6+8OLFVBYmEGeIfa9usQDdvyjvps0MHW9+HC/7Rtf0TTVZVBwtew6S3IS7ZsDxumgrgBM83/fzaHwaCCtN3fqlIl5fmW5zi6qYc5I25Uxb+FEEIIcVYkmBOtzzMY5i+Hv55UdaJAvaHb8p5KdGJNaIwa6THooKpEZbvsNki1OTpD2nbjuSd3gfd0m34JogG6elkNDQbr54n2pSxP/V/c+gGUZFu2R54PE+6HiIktT0S0ZxEsud16W7fBKoAbcjm4+bbsdYQQQgghwZywESdXmP4qeIXAqpqRm0PLYOoL1t8sOrtDt4FqyhWoRCi1wRyomlKF6Wo7bYdKkiLsryDVfH/8/W3SDdFEBemw5V01zbGy2LxNo4VBl6oSA6FDz+7+umqV/MhUvwtB62QsZ+DkXjMKd5P6fyxZa4UQQohWI8GcsK1hN8Cq5wGDCgQyEtRULmu6jzQGc78sUEkXaqd6dR+pMuCBsfyBsL/cJOO2dw/rpSdE28s+DBvfgD2LLWvEObqqrJTj7gG/iObfW1cFSWth7w9wbCXcG2+elMjdH/pfBCU5EHOlKjUgZQWEEEIIm5BgTtiWVze13i11i9o/+GsjwdwI2PmZcX/pnXDJe8YEKbVOxoNeLynL20KeSTBnmtBGtA8ntqqkJod/t2xz9VXp/kffDh6BzbuvrgqOr4UDS1SCo7I8Y9uhZRBzlfn5cz9rWeIUIYQQQjSJBHPC9gbMNAnmlsH5/7R+Xo+R5vt7Fqm1PDFXQlgsoAEMKp356aMqNb6wr1wJ5todvR6O/qWCuBObLdu9e8DYu1Wh7+aU9aiuVCNw+5eqgM1aIhNQWTHrB3MSyAkhhBB2IcGcsL0BM1QyFICcw2oKmLVALLA/eAQZEzSMvkOVMABw8YKgaMg+qPbTd0ow1xZMgzk/CebalK5KTXXc+Ibx/4WpoAFqPdyQuap2Y1PpdfDLvXDoVygvsH6Ogwv0nQJDL4f+086u/0IIIYRoMQnmhO35Rag6UrXr4Q7+aj0Q0zqoaZWb3oKoaSqYM02W0GOEeTAXe43Nuy7qMZ1mufLfKvCe+kLb9acrqiiGXQth8ztQmGbZ3nOcykzZ78KmJRsxGMzP0zpA5m7LQM7BBfpdAAMvUWviZB2cEEII0eYkmBP2MWCWMZg7tAwmPWz9vH4XqA9ruo+A+K/UtiRBsT+DwXxkDiD/RNv0pSsqyVF1/bZ9ZH3KY9R0FcSFxzV+H10VnNgCR5fDkeUqGO87xfyc/lPV/1dHV9U2aI4K4Fy8WuurEUIIIUQrkGBO2MeAmbD6ebV9Ml4FAb49m3cP0yQomfugqlyVQBD2odfBzDdgxT+hOFMdqyxp2z51BblJsPlt9SCjuty8TesEQ6+E8fc2PO1Yr4dT+yB5PSSth5SNat1prSN/WQZzQ65Q05r7T23eOjshhBBC2JUEc8I+gqLBPxJyE9X+in+qjHfNqTkVPBCcPdW0ze7DVd0sCebsx8FRJaPBYCwKXVXapl3q1DL2qKQm+5eAQW/e5uypim+PuQt8ultem3UIktZB8jpI3mCefbK+I3/CtJfM/y8G9VcfQgghhGjXJJgT9qHRQNyt8Odjan//Eoi62JjgpCkcnOCRRAng2pqTu3FbgrnWZTCoIGzj/yBxlWW7R5BaSzrqZnDza/g+310Nuccbbndwgd4T1chbU9fWCSGEEKLdkWBO2E/cbSr5ScpGtf/bw9BzLPiGN/0eEsi1PWeTYK5SgrlWodep/xsb/6emIdfn1xvGLYCYq6EoQ02NTNsO6TvgvKeh7/nm5/eeZB7MabSqvmPERNXWcww4e9j0SxJCCCGE7UkwJ+xH6wBz3of3xqs1OxUF8NOtcMVC8Axu696JppKRudZTXanqKW543TgF2VRgfzWC5uCigr1V/4GyXPNzUrdaBnN9JkP6LhW49Z6kHppI9kkhhBCi05FgTtiXb0+4+BXjmqsTm+HNYWrUYezdZ58tT6+D3x+BnCMw5RnLAuSi5X57GPTV5skzJJg7O5WlEP8lbHzTenkBJ3eV7CTniPpoTNp2y2OD5qgPIYQQQnRq2rbuQHtQUlLCl19+yYIFC4iLi8PFxQWNRsOLL77Yaq8xf/58NBoNGo2GLVu2tNp9O6ShV8KQy437lcWw5gV4bxyctjI6UV9lCRxbCSv+BUf/Vsf2fg87PlEZ+768FLKsFFEWLbPvB9j5Gez70XhMplk2ncEA2Ydh6Z3wSiT88Q/zQE6jVQHYbWvBPdAy6YmpwP4Qcw1Mfw0u/I/t+y6EEEKIdklG5oCjR49yww032Oz+q1ev5rPPPkOj0WAwGGz2Oh2GRgOXvA9hw2HdK8ZpY/kn4LNpcMPPEDyg4ev/fBx2faG2S7Kh3xQ1Ba1WRQF8fTncshK8utnu6+hKyvKsZ0TUV6m6ZQ5O9u9Te1ZeqB4oZO2HUwcgYzdk7rEsLQCgcYBh18L4+yEgUh3rNhAKTqg6b0FREDxIHes2SK19ayz5iRBCCCG6DAnmAC8vL26++Wbi4uIYNWoUP/74I88//3yr3Lu8vJzbb7+dQYMG4ePjw6ZNm1rlvh2egyOMvUu9iV3/mkr8AFB8Cj67GK5fAmGx1q+NmGgM5pLWqXpziavNzylIhc8vVtn/sg+BVyhc/a0qayCar36xcFNVpeDgY7++tHcHl8Gia5t+/nlPwcQHzY+d/y814ubfR601FUIIIYSwQoI5IDIyko8//rhu/+eff261ez/33HMcO3aMdevW8dRTT7XafTsNVx+44N8Q2A9+WaCmlpXlwpdzYMFOcPe3vKb3RON2QSqkbAD/3qowskZrnJ52+pj6ADWqtPkdtV5PNF+eSTAX0Ff9uzm5q4/GpgN2NqW5KuFIyiaVddLVB6762vyc2tG1BmnArxdEng/dR0DEBMtTug1stS4LIYQQovOSYM6G9u3bxyuvvML8+fOZMMHKGzZhNOw6cHKDn25TSTbKcmH9q3CRlRFSrxAIjIKcw2q/IA3u3Ah5KWpq2/HVsPV94/mhsXD5Zyq9u1D0elj1nJraev7TZx6xNB2ZC4q2DGA6q6JTah1myiaVrCfrgHm7q49aC1dbp628EPb9ZP1eLt4w+naV7MdVRjKFEEII0XISzNmIXq/n1ltvxcfHh5dffrmtu9MxDL4M8pJh5bNqf9tHMOZO8OlheW7vScZgLmk9jLhRjXb49YJ+F6jRo9zj6nPwAPAKk8LIpg4sgQ2vqe2SLJj3a+Pnm47M+XfyoPjUfjjwCxxdbr3mm6nyAhUQe4XC9o9h3cuWawvd/GHC/TDqVvMafUIIIYQQLSTBnI288847bNmyhS+++AJ/fytTBYV1o+9UQVxRBugqVJbL2e9Yntd7Emz/SG0nrTMfHdE6QNyt9utzR7TZ5HuatO7M5xeeNG779Gz9/rQnuxaaj+zW5x6oim73HAOhMZC+U41ymhbpBjX6Nm4BjL7j7EtuCCGEEEI0QoI5G0hLS+PJJ59k8uTJrZIlc9CgQVaPJyYmEhl5pvU5HYyzO5zzKCy7X+0nfANjF0BwtPl5ERMADWBQI0vZhy3PEQ1zdG3e+ZUlxu3OMkVQVw3FmZYjv4Pnmgdz3j3Uz1uvsdBznFrfqdGoUbvlT0LKRvPrnT1hzF2qbqKbr82/DCGEEEJ0XZ0imJs7dy779u1r1jULFy4kLi7OJv25++67qaio4L333rPJ/Tu9YdfD5rdV8hKDXk27vPob83Pc/SFkiEr3DpC48szBnK4aTh9tvOxBV+Hg3LzzTYM5Z3eVbr80B6rK1L+Dd1jz+5CxB07ugoGz7ZtqX1cFu7+D9f9Vgelta82n4PYYCQNmQffh0H+qWiNo2l6cDSueht3fmt9Xo4URN8Hkx8EzyD5fixBCCCG6tE4RzCUnJ3P48OFmXVNaaptixz/++CO//PILTz/9NNHRrTNStH//fqvHGxqx6/AcHFW69u9vVPuHf1NJJQZfan5et0HGYG75E2rNnVeI5f1KcuCHmyBtB1RXwGMnwMWzaX0pzgb3ANBqz/rLaZfqj8yZTlO1prLYuO3soTKPpu9Q+5d+DEMvt35dQ4qz4JMLVN2142tVghpb0+thz3ew+gVVw61W+i7oMcK4r9HAlV9aXm8wQMLXajSuPN+8re8FcOFz8qBACCGEEHbVKYK5HTt2tHUX6vz6q0oksWLFCtatM1+LlJCQAMBdd92Ft7c399xzD3PnzrV3FzuGgZdA+BhI3aL2l90P4aPBp7vxnCFzjaMjAX3Bs4EC4W5+cDJB1UMDFYT0mXzmPqz6jypqHjYcbl6hgszOwrHeyFxlcePruly81ChWRbGaRujkZmyrOosHI0f/MhbQPlOSkdaQvhN+/4cxAK2lcYCMePNgzprTibDsAUhaa348eKCqB9f3/NbtrxBCCCFEE3Sid6fty5YtWxpsi49Xb14vueQSO/WmA9JoYM778P4EFWiUF8DSO+D6n42jZJHnq4QpqVvVqEhDI0taBwiPg2N/q/0TW88czFWWqEAO1FTA5PUQeW6rfGntwoz/wYGaeopaRxWkNRbM3bFBfTYY1GdnD2Pb2QRz+mrjtrVspa2lqgxW/Au2fQgYjMe1jhBztSrW7d+n4et1VWrK75oXjcEnqID2/H/CqFukqLcQQggh2owEc63s888/5/PPP7faNnnyZNauXcvmzZsZM2aMfTvWEfn3hmkvw893qf2kdbD5LRh/n9rXaGDai027V/gYk2Bu85nPd3RT68p0lWo/L7lZXW/33P3hqWzLEbozqQ2YnUxS7Juup2uq4mzjtoeN1pdl7IGfboXsQ+bHB86GC549c229rEPw0y2Qudf8eP9pMP2/tg1ChRBCCCGaoJMtBLKv6OhooqOjSU9Pb+uudF6x16hkFLX+/jccX9P8+/Q0CZ7TtqtkKI3RatVUz1oFac1/zfauuYGcKdNgrqqs+deXZBm3PYPPvh8N2fk5fHSeeSAXFA03/AJXLGw8kDMYVHmMD88xD+Q8guHyz+HqbyWQE0IIIUS7ICNzNebMmUNGRgagSgsAvPvuuyxduhSA0NBQlixZYnZNbdKVqqoq+3W0q9FoYOYbKnlJ0Ukw6GDxPLh1FQQ0oyxD9xFqap2+Wk3bzNqvaoQ1xrQ4tmnRbGFe/PpsplmWmI7MBba8P/W5B5pP5Ry3AM57GhxdGr+uLA+W3gWHfzc/PvwGNZpnz6ybQgghhBBnIMFcjfj4eFJSUsyOpaamkpqaCkCvXr3aolsC1JTAq7+BT6dBdZnKJPjNlXDL302v4+XsDiFD1fo3gJRNZw7mTEdvOts0y+aorlTBl7OHWivm4NjyBCim0yxX/Uet2bvg3y3va60BM1TwtfkdtfayKesdM3bDoush3+T3gEcQzH4X+l/Yen0TQgghhGglEszVSE5ObvY1BoPhzCeZWLNmTbNfQ9QIGwZz3jOWKzh9FN4bB2PvgRHzzBNyNCRivDGYO/AzjLnT+nmluWoExs9kZC63DUbmDAaVdMM0cGotn06D/BNq5HPKM9DnXPAIsH5u9iH4YKLadvGGx1PByeT7XdnCkTmA1G3Nv8eZjFsAw69v2mhawjcqW6VpkpO+F8Al79pmGqgQQgghRCuQNXOi4xg0RxVkrlWYDssfh9cHw9G/m3C9SZ26E5sbHm379ip1z01vGo+V5aqMmvaUkQCv9IW/nga97uzvk30Edi8yT1RSdBIK06AgFX68WSWWaYhZwfCaIK7F0yyzzPdbMo21sgR2fGrMtFlLozlzIKfXw9/PwNI7jYGcRqsyVV6zWAI5IYQQQrRrEsyJjuWcR2H8/aB1Mh4ry1VFwQvOkIgmbBgE9DPu7/ne8pzSXJUgpTDNct2UraZa/vmEGin77lo4usJ4fPcitb5v05twfPXZ3bs4Cz6eAktug5/vMR6vn7SkLK/he1gL5loyzVJXZfl6RRlnl0ilqkwF38seUMW8mzNaXlWmfm42vG485h4A1/0EEx/qfIXihRBCCNHpyLsV0bFoNGpt1f171BRLx5qgoqJQFRZv7M28RgMxVxr3T+2zPOfY32DQq23PbhAYZWyzVTCXsRtObIJDy6DwpDpmMMDW94znZB85u3tv+B9U1Iwo7v/JeLz+1Miy/IbvUVls3K4L5lowzbIkx/rxvBTrxxui18NPt6mSFQBb3oG9PzTt2rJ8WDgbDiw1HgseCLet6Vz1BIUQQgjRqcmaOdExeYfBRc9D8AD4+W517OhfsPs7iL264euGXqmCj6FXQnC0ZfuR5cbtfhdAyWnIUVlLbbZurvS0cbs2s6NGA0OugL2L1X5RxtndO3Wr5TGDwXI0rckjc57qc8R4leLfyaP52SjrT7GslZdk/d+kIev/Cwd/Me4PvRIGX9rw+XWvnwNfXmJediDyPLj8C3D1bvrrCyGEEEK0MQnmRMcWey3s+wkSV6r9Px8FfZWqCRbYz7J8gW9PmPIv6/cyGCB5vXG/34VwMkElCvGLOHOR6bNVajJS5W6ShMS/j3G7KPPs7n1qv/m+Xq9S9hvqrcErz2/4HtamWfr2VB9nIzAK7tiogrov5xiPNydYPvQbrH7euB95vso6qXVo/LrCk7DwEmOADqrswPTXwMGpwcuEEEIIIdojCeZEx6bRwKw34Z0xUFmkkpT8ssDYPuN1GDm/afcqSIXiU8b9XuNh4OyGg7/WoNerdXq13E1GubxCjNtnOzI36y346RbjflWJ9WQqjY7MWZlm2RJOrhAyWG2PvBl2fKK2m5oEJfuwml5Zyz8S5n6iSiY0pugUfD4dco8bj41bABc8p36OhBBCCCE6GFkzJzo+nx5w0X+sty1/Uo2sNUXaduO2X2/bFLOurzzffJTMtDyAV6hx+2yDuQEzzPcrS6wnLGl0zZyVkbnW4t/M8g/VlfDjLcYA09kLrv72zFkrS3PV1ErTQG7yExLICSGEEKJDk2BOdA7D56lRuAGz1Iha7dquqlL4/RHriVH0OkjbAUf+UvtpO4xtPUbZvs9gvl5O4wCuvsZ9b9Ng7iynWTq6qvvWqii2njWyohB01dbvYW3NXGsxreV3Mh5ObGm8DMP6/0LmHuP+pR9AUFTD5wNUFMHXcyHrgPHY+f+CyY9KICeEEEKIDk2mWYrOQaNR0ylrp1QmfAtL71DbR/6Eg7/CwFnG85PWw+Lr1fRC317Qb7f5yJy9grmSeuvlTIML05G5ymIoL2x+gg6NRgVgtRktK4sbXldWXmC9cLi1aZalufDrvSqZTFUZzPv1zNMcrTEdmSvNgU8vUqNs0dPh/GfAM8jYfjIe1v3XuD/iRnVeY3RVquRD+k7jsYkPwcQHm99XIYQQQoh2RkbmROcUcxVETDTu//GoedHvgEjjOrH8FMg6qEoE1Oox0ridnwqJq2D7J5BztOHXzE+FA7+o0a+mspbJspZ7IGhNAqSzHZ0znRpZWdJwPbeGkqBYm2ZpMKgAOXGlKqvQnFpzP90GH0yCry5T5QgcXc3by/Ig/itYXW/q7OoXjFNSfXvChQ1Mra1lMKhR2aS1xmNxt8F5Tze9r0IIIYQQ7ZgEc6Jz0mjUtEsHZ7VfdBI+Og/SdqqAbOmd5ud/eA7oKtW2oyt0G2xsW3KHyrr424MqMMhPhU1vw+lE4zlleSpAWXw9/HxX0/vZUCZLUEWrPc8yCcrJBJUU5pd7YejlcNcWuH+fClJdfWDwXIi62Pya2uC2LM98xHDolWpa4sSHIXyMOubsbn5tc4K5UwdU4Hzsb/U9H3a99fNMC6iDSnIy4kZAozJXung1/jpbP4Cdnxn3B18GU1+SqZVCCCGE6DRkmqXovAL7qQBkzf+p/dPH4JMLQKNV5QtM1QZyERMhKBocnY1t/hGQskFtH18LK59Vo3w7PoG7t6mU9geXQVlNVsoDP6vROZcmrC+rP82yPq8QNXrnFWLZ58akboXsg+qj+0i44FljW1CUCoxATVs06NXURp8eKtj99EL1PZq3DHqOhqip6sOUoyugAWrWIpqO3p1JSbZx2yMIck2CYo3WWLS9MF0lLKkt0eDiBTPfUMXiA/s1/hpH/4bljxv3u4+E2e+oAFkIIYQQopOQYE50bpMeVun4N74JGNQ0vfo11kydPgbX/Wh+zDRJR22R6qFXwejbjbXJ6qfVT9umClGfiVcI9Byrgjprdezm/QpObs0fTTItFh4+uuHzJj1svv/huaoOHcBvD8GdG6xfp9GAk7v63kLDUzfr0+vNgznPYPMRztpArtbyJ1W2SlNnCuTyU+HHm4338u4BV32jvo9CCCGEEJ2IPKYWnZvWQY1K3fS7SnRSyycc5n6mAhJTRRmwZ5H5MWtB1p7vzNPcnzpg3u7UxBT+w66D+X/Cgh1wwb8t253dz25aYOo243bPRoK5+qpMRthO7W38XNOplk2dZlmWZx5Mu/o0Xjri8O9qOmZT6apUIFe7/s/JHa75Dry6Nf0eQgghhBAdhARzomvoNQ7u3AQXPg/TXoG7t8LgSyFiguW5G/5nnh7fNONirWHXw5C5xv1Mk8Dn6kXNC6DOhsEAecmQut38uF4PK59TBdBrNTYyV9+UZ4zbpglkrDENhJs6zdJ0VM7BGUpOUzdVE43xuKmvLoOq8qbdf/Xz5qOS01+DkCFNu1YIIYQQooORaZai63DxhHH3mB+LPB+O/mV+LDdRTaccNEft+9UL5gL7w7SXjPuluVCYZty3ZfBwfC1s/J/KrgkQ0E+N6oGa6rj0Tti/xHh++GhI+EaNNlaWwPAbVOKT7ENq2qFvLwgxSfbi5m/crh3d+utpNcLp7AEjbjJm3TQN5po6zbIky7hdf71cQCRc/jksvsF81BPg1Si4f48ayWvIsb9hw+vG/ZhrIPbqpvVLCCGEEKIDkmBOdG19z7d+fP1rMPASNcXRzQ8CoyDnsEr8MfczY4r+qnJV/6yWewB4h7VuH3VVqixB6Wk17bA2kAM4fVSNbrn7w6LrzKckBkXDpR/Btg9V8AZQnKVKCqx9Ue37R6oRxrI8CB6oAqpapXlqBHDzO8apkYMuNQZzZzPNsrixYK6vCoQ9QyyDufC4xgO5snz42SRQD+wPF7/StD4JIYQQQnRQEsyJri2gr/XjmXtUsfGoaSqgu3Yx7FkM/S6EboNg2YMqyUnWQZXmv1bIEPM1bgaDCr7yU9RIkVO9mmqH/1SBmHuAGiWrX3g7+wi8U1PA3MHZ+pTJtG0qMDIN5CLPU6Ncrj716swVmycCyU2EtTWjjFEXQ48njG1leVBdYb7GzfRe1qZZVpaqpDC1iWHqM83e6RGkEs7Uqv238DIpx9B9pEp4cuHz1u9X66+njKUbHJxVwN2UbKJCCCGEEB2YBHOia9NoYOqL8Odj4OINocMguabI9N/PQN8LVIDlFwHn/MN4Xdp24zq5Pd8Zj3cbrI6nbFbBUMEJVQAbIG0HXPKu8dzKUvj2SuP+Q4fNAxlQ2R5r6SohZZPl15C6Vd2rVo9RcM1iY0DlbBLUVBab77v5GevLHf7dfJ1cVYmxrZZpAFd/muXKZ2H9q4AGPLupIHXcveZTHU2nWdbPZFk7KugVajwWGgMzXrP8mk0lroL4L4375zxqPnVUCCGEEKKTkmBOiDF3Qt8paqSoIBXenwgY1NTE3d+odWb1hcWq0bu6/eGQdUCtM3u/JqmKac00UGvXJjxgTK1vWjAcrNeZc/WpKQFQE6xZK6twYqt5kDTsevORMbORuRLz9W3e3c0DNtPabGCeSKX+vXy6q/WEzh4qscn6V2saDFCcqT6W3qGmQI6+XdV4qz/N0nQ00b82mDMtlJ5p+fWaqiiGX+4z7ocMgfH3NXy+EEIIIUQnItkshQAVYLn5qmAg5irj8dX/Zz7qVSs01rjdfQTcthoeT4cL/wPammck9WumYTAJeDCfcujqY31qokZjOVpX38ldcOtquGIhDJwNA2eZt7t4Gbcris3Xt51pfZ9p2QBHN5UIpdaM1+G+BLh9HRxd3vA9lj+mCpFnH4bgASrpTMgQ8A6F4lPG8+qmWZqMzNVOnWzI6v9To5+gvu+z3214iqcQQgghRCcjwZwQ9Z37JDi4qO2iDNjwmkpCYios1riduU+1OziqaYseQQ3fe/ciY3KP0lzjcffAhq8xDW5qdR9h7GN1OeQcUYHcFQtVH0w1OjJ3hmDOdGTOuYHaeTs/My/NMOsty3PStsPn09X6wut/gjs2QPgYY7uTu/HrbOrIXPYR2PaBcX/8/RA6tOHzhRBCCCE6GQnmhKjPN1xNC6y17hX4vzD4YJIKxkCtjdPWjADpKozZInVVUF7QyM31KlMmmE+ztDbFspa1YC5kKHQfbtw/saXh682CuSLzkTmvBoK5qS/BVd+Ab0/r96lVclrVtas19CroNR40DlbOzVbTLvU1I5amyU/8I9U0TDD/eotPGc+vb/kToK9W2749YdIj1s8TQgghhOikJJgTwpqJD4Krr3FfVwkZu1Udt4I0cHRRUwZrnUxQnw/+apmm3yPYfH/3t2r6ollmx8ZG5qxMswweYJ7Z0rRQdn3OJtMsLUbmrASKXqEw5g6Inq5KMdTdx0p2yDX/Z6xH5+wFFzyrEpmYJi3xMQkIE1fBlpokMNaSnwB4dTNuG3SWawsBjq6AYyuM+xf+xzJTqBBCCCFEJyfBnBDWuPnB3E9VNkWtSZ4ggw4O/6G2TadaHvhZlSHY/rHxmHuAusdV36ggx6u7Oq6vhl/vN08GUlmiAhSDwbIv1kbmgqKhp8k0xdSt1q8FURbkyQAAJmNJREFUK9MsTYJNN3/zgA3MyzXUlhyofx+AiiJVrqHW5MeMgVjwIOPxkhyImm7c//sZFRiblSUwCeZcvMwDx/rr5nRValSuVq8JMKDeOkEhhBBCiC5AgjkhGtL3fJXc44mTMOIm4/HaYC7EZH3WsRUqsEnZaDx29SIYfBmEj1IZFieblDZIXAmHlhn3k9bC13NV4e/60zStjZ4FD4Qeccb9iiLzZCJb3oNPp6k6dqZBWHU5VBQa953cVEkGU7XZNkGVMqhlWiQcVDFx03sNu86kf9Emr1mqpkDWjhCGj4bcJMuC4aYaWze341O1RhAADUx9wby2nxBCCCFEFyHBnBBn4uiigrJayetV8NStXi2z5A3G7ZCh0GOkefuwG2DgJcZ902Cm1qFl8OFklVSlVv2ROfcA8AwCjwBj2YSeY4zTOU8nqrp5JzbBT7eqkcVeE6D/VPV1lJsEYPmpUHba/P4BJsFcdYVxu/40S9Pg0dFVZQOt5eKliqDXKjoJV38DaCBlA6x72XrBcGtfs+nIXFWZeUbQ4TdI0hMhhBBCdFlSZ06Ipug5Rq2hK89X6+cSV0P0DBUkpWxQtd32/2Q8P+5Wy9EirRbmfKCmHaZsoEG5x+GTC9WoYGBfyzVz1/5g3J71Fpz7lCrAXft6iauM7RWFatTwpt+Mx07tVyUKji6HP/4B+nq160pz4Od7VP25wP7wzzxVQLz+eYUnjdumUzWrylVfug2G/BTja57zD1XM/NjfMGgOfDbVeE1TR+Z2fGoMIh1d4dwnEEIIIYToqmRkToimcHCCfhcY94/8qYKzG5fBAwdUiv/aKYmuPioFf0Nir7HMIjn6Dpj8BFATkFWVwOaaFP9eYTDpH6qu29XfqRptpry6mQeOyevN23d+Yb7fbZDq6/pXVSbO+jQOEP+lGiVM2aS+Thcv85E3gLwU47ZpbbdNb8F/guHIH8Zjp/arz/0vhItfNi9y7uoL7v71viYrwVxlKWz4n/H4yPlnrsEnhBBCCNGJycicEE3Vfyrs/V5tH1muRqq0DmqEaPM7xvNG32G5vgzg+FpYfL1aE+cRDH3OVQlG+k1RUzC9Q1VQ8/vD6vy9P8JFL6h7nfdk0/qo15tP9wRI36GmbYbUTAutKIJf7zO2O3upkgW1PE2ySZaZ1MIzex2dWvdWxyT5Su06OtOi6VkHjNu6KvNyBhETLO9vNs2yJpjb+ZkxCHR0VXXlhBBCCCG6MBmZE6Kp+k4xZrYszYG0HWp74+smo3K+MPZu69d3G2TMDlmSBePvhVtWwDmPGpOcxF5jTBRSWQQHf2leH7MPQulpy+O7TEbnVj5rLAaudYL5f4Bfb2O7aQKW0gaCuezDoCs37ptOwawosjz/9DFjSYSdn8Ppo2pbo1VF2uszDSiLMqyMyt1sXsJACCGEEKILkmBOiKZy84Ve44z7R/6AwgzY9pHx2IT71TRLazwCod+Fxv3d31me4+wBgy817sd/1bw+Jq0zbmtM/nsnfK3KJ6z+P9j2ofH4xIfUtM0Qk2QupolNSnOsF+0+uct8v9Kk3IFpMFdbPNygVwFgeQGsecHYPux66DbQ8v71R+Z2fm4yKuemsoMKIYQQQnRxEswJ0Rz9pxm3t7yvEpVU14xQeQRD3G2NXx9zlXH74K/WR7GGXW/cTl6vEqI0VZLJerkRN4JTTVmCyhJYfAOsfcnY7uQBEx5Q28EmAVV+qvk9n/WD/+sBCd8aj6XXC+Z0FcbRuYoGpmxmHYANrxtHDp08Gk5gYroWriQLtr5n3B85X0blhBBCCCGQYE6I5okyycBYXQYFJ4z7kx62LKxdX/+pxpG7qlIV0NXXY6QqCl4r/uum9U2vM8+SGXUxDLms4fMNOnCqyUIZPMB4/PQx6hKx1KosUusDa9UfmQNjMXLTYM63p3F701uw8U3j/vj7Gk5gYnrcoIf8mu+zxgHG3mX9GiGEEEKILkaCOSGaw7+PSnBSn19vNRJ2JvVr1i29E9a9Yn6ORmNegDvhG8uyANZk7jWud9M4qHIKI+djEZjVMq0bZzoyl5tofapoSTYUpKvac6Z18GpVWgnm/E3W4mUdUAEkqGmU4+5p+Gtx9gAXK30YOAt8ejR8nRBCCCFEFyLBnBDNNe0l+EcS3PQHTH8Npvwb5v2qArWmiLnafH/P95bnDL3SmGyl6CQcWHrm+5qul+s+XJUTCBsGl39unuCklpNJxk3/PioZCqiAq36BcIDlT8AbQ2tq01VZtteNzJkUJQ/sb3medw9VYuFMo5jWRu3GyKicEEIIIUQtCeaEOBvu/ioZyqibVdIT3/CmX9tjlPl+dbnlOZ7BED3duP/X06rQd2NM68v1nmTcHnQJ9D3f8nwnN+O2g5N54OXgbP019NUqGUktn3CY+SZc+jG4B6hjpiNzoTHGoBSg7wVwx3oIi238awHLdXHdR1h+74QQQgghujAJ5oSwN40GLnjWuN9Q0pTz/2UMqgrTYf1/G76nrhpSNhv3Iyaat1sbBTMN5sB83Zxp3bjG9J8KI+bB0MvB1RsMBss1c9Nehu4j4cLn4ZrFlgXCG2Ka0RLUqJymgSmjQgghhBBdkBQNF6ItjK1ZL6arqlnXZkVAJIxbAOtfVfub3oaYayDIytTFrP3Gwt9aRwgfbd5eW7vOlFO9wuamwZyuEtz8oCzPeMzBRSVnSdloPNZjpPk9qivMp2C6eKnRy1E3W/8aG2M6zdIrFAbObv49hBBCCCE6MRmZE6ItaB1UNsdJD4Oze8PnTXxITWUEFST98Yga/aqvtoA5qLpx9e/ZpJE5kyQoWkfLtX1T/qXWBp77JLh4Q484GHhJvZsaYPLjKlgdfkPDNfeaot9Fxu1z/qGmggohhBBCiDoyMidEe+bsAVNfgEU12S2Pr1FlAbqPMD8vfadxu3u90bLa+1gca2RkLj8Ftrxr3j7yZhWEnvMPFWSaliqo5eQGkx9r8MtplojxcMcGlSWz5+gzny+EEEII0cVIMCdEexc9A0JjISNB7Z+Mtwzm0rYbt+tPfQRwsZKdsv40S99e6lhtVkpTWkfzbJ21gdzBXyFxFZTkQL8L1GhcawoZ0rr3E0IIIYToRGSapRDtnUajSg3Uyjpo3l6WDzlHjPvWMj5aKzVQf5qlVmterNzseg/ryUdSt8KOT+HgL+ZTPYUQQgghhM3JyJwQHYHperb6wdzJXcZtNz9VM66+7iPg2h9hz3dw7G+VZdK3l/XXqb2fxkEFhgad9ambAB5Bxu3S0037WoQQQgghRKuQYE6IjsB0PVvWAZUEpXakLM10vdwI6yNoHoHQb4r6aMzw6yHhKxXIGXSQukVlwrzlb+vnuwcat0ty1BTQI8tVFkv/SIia2rSvTwghhBBCNJtMswRKSkr48ssvWbBgAXFxcbi4uKDRaHjxxRdbdF+9Xs9HH33EhAkT8PPzw83NjT59+nDttdeyf//+Vuq96BKCTIK5sjwoPmXcN10v19AIWlP1HAMPHoQbfzMeqyyC6krr53uYBnPZaqrlmhdg+ROw/aOW9UUIIYQQQjRKRuaAo0ePcsMNrZu4obS0lJkzZ7Jq1Sr8/PyYMGECrq6uJCUlsWjRIqZNm8agQYNa9TVFJ+YRAJ7djEFc1gFVh81ggHSTtWrW1ss1l3eYKj1gqiwPvLpZ6ZdJMFeaY14w3MVKbTshhBBCCNFqJJgDvLy8uPnmm4mLi2PUqFH8+OOPPP/88y2650033cSqVauYP38+b731Fu7uxsyBGRkZVFVVNXK1EFYEDzAJ5g5C5HmQl2y+Vs00UUpLOHuAg7MqHg5Qlms9mDOdZlleYN4XCeaEEEIIIWxKgjkgMjKSjz/+uG7/559/btH9Vq1axeLFixk1ahQfffQRWq35bNbQ0NAW3V90UcEDVZ05UCNzYF5fzj8S3P2tX2swwNeXQ9JaFaBd9Q1ETGi4qLdGYwzkAA79Zr5ur5bpyByo4LJW/dE9IYQQQgjRqmTNnA188MEHADzwwAMWgZwQZ80sCUpNRkvTcgDW6svV0mggZZMxQPvuGmNg2BT1C4jXcvYwr1dnFszJyJwQQgghhC3JyJwNrFq1CoApU6awb98+vv/+ezIzMwkJCWHatGmMGTOmjXsoOiSz8gSHQK+vVyz8DOvlnD2gqsS4X79oeGOqKxpucw+EghNqOzfJeFyCOSGEEEIIm5JgrpWdOnWKnJwc/Pz8+OSTT3jyySfR6/V17c8++yzXXXcdn376KU5OTk26Z0OJUhITE4mMjGyVfosOICjKuF1VogK5jN3GY91HNH69iyeUZBn3mxPMObo23OYRYAzmTINFCeaEEEIIIWxK5gC2sry8PACKiop4/PHHufbaazl8+DB5eXn88MMPBAYG8tVXX/H000+3cU9Fh+PipYp911p2P+hrEul4hULIkMavd/Yw33dya/z8i14wbl/SwDRLAI9gtfYuoK9lf4UQQgghhM10ipG5uXPnsm/fvmZds3DhQuLi4lq9LzqdDoDq6mrGjh3LwoUL69ouu+wyXF1dmTFjBm+++SZPPPEE3t5nThLRUE06KW3QBQUPhPyaUbDaJCgA4xaAwxlGep09zffPNDI36mZw9VaJTPpe0PB5V38HtWtD3xwOuYlqW4I5IYQQQgib6hTBXHJyMocPH27WNaWlpTbpi5eX8Q3s/PnzLdqnT59Ot27dOHXqFNu2bWPKlCk26YfopIIHwJE/zY+5+cOIG898bf2RuDONzDm6wLDrznxf0yQ/ZnXmJJulEEIIIYQtdYpgbseOHWc+yU7CwsJwdnamsrKSXr16WT2nV69enDp1iqysLKvtQjTINAlKrTF3WU6htEZb7797c9bMNZUUDRdCCCGEsJtOEcy1J46OjgwePJhdu3aRm5tr9ZzTp1VhZU9PT6vtQjSofq03F2+Iu7Vp12rqLZF1tkEw92iyCugqCsGnR+vfXwghhBBC1JEEKDYwa9YsAFavXm3RlpycTHJyMgDDhg2zZ7dEZxDYHzQOxv1Rt4Cbb9OurR/MOZ5hmmVTGQxQXgi5xyHnCHgGQUCkmqYphBBCCCFsRoK5FoiOjiY6Opr09HSz43fddRfe3t589tlnrFixou54cXExd955JzqdjunTpxMeHm7vLouOztEF+k9V257dYOzdTb+2fjDXWgXtT8bDi+Hw5jD4Ykbr3FMIIYQQQpyRTLOsMWfOHDIyMgBIS0sD4N1332Xp0qUAhIaGsmTJErNrapOuVFVVmR0PCgri888/54orrmDq1KmMGTOG4OBgtmzZQmZmJr179+aDDz6w8VckOq25n8Lx1RAyFDwCm36dm59t+mPah/IC0FWdObOmEEIIIYRoMQnmasTHx5OSkmJ2LDU1ldTUVIAGk5k0ZM6cOWzatInnn3+eDRs2sGPHDsLDw3nooYd4/PHHCQgIaLW+iy7GyRWipjX/ugv/A9EzoKoUMLRef9zrBZSlp8ErpPXuL4QQQgghrNIYDIZWfFcn7Km2zlxDdeiEsJvnw6CqxLgfeT5c/1Pb9UcIIYQQog3Y+/25rJkTQrScR72R5vL8NumGEEIIIURXIsGcEKLl6k+1lBpzQgghhBA2J8GcEKLlPILM9yWYE0IIIYSwOQnmhBAtVz+rpot32/RDCCGEEKILkWBOCNFy7vXWzMnInBBCCCGEzUkwJ4RoOZlmKYQQQghhdxLMCSFazmKapQRzQgghhBC2JsGcEKLluo8w35dgTgghhBDC5iSYE0K0XFCUeUAnCVCEEEIIIWxOgjkhROuoKDJuy8icEEIIIYTNObZ1B4QQncTgy6AgVQV1PuFt3RshhBBCiE5PgjkhROuY/Fhb90AIIYQQokuRaZZCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0IIIYQQQgjRAUkwJ4QQQgghhBAdkARzQgghhBBCCNEBSTAnhBBCCCGEEB2QBHNCCCGEEEII0QFJMCeEEEIIIYQQHZAEc0BJSQlffvklCxYsIC4uDhcXFzQaDS+++OJZ3zMvL49HH32U6Oho3NzccHNzY9CgQTz11FMUFha2Yu+FEEIIIYQQXZFjW3egPTh69Cg33HBDq90vOzubsWPHkpiYSFhYGFOnTqW6uprNmzfz/PPP8+OPP7J582Z8fX1b7TWFEEIIIYQQXYuMzAFeXl7cfPPNfPDBB+zatYsnn3yyRfd74YUXSExMZM6cORw/fpwlS5bw66+/kpSUxIQJEzh06BCvv/56K/VeCCGEEEII0RXJyBwQGRnJxx9/XLf/888/t+h+69atA+DRRx/FxcWl7riXlxcPPfQQGzZsYPv27S16DSGEEEIIIUTXJiNzNmAawDXE39/fDj0RQgghhBBCdFYSzNnABRdcAMBLL71ERUVF3fGioiL++9//AjBv3rw26ZsQQgghhBCic5Bpljbw8MMPs3r1apYsWUKfPn0YPXo01dXVbNq0CQcHBz755JO6gE8IIYQQQgghzoYEczbg6enJn3/+ya233srXX3/NkiVL6tpmzZrFiBEjmnW/QYMGWT1+6NAhnJycGmwXQgghhBBC2E9iYiJOTk52e71OEczNnTuXffv2NeuahQsXEhcXZ5P+nDhxgunTp5ORkcHChQuZOnUqAH/88QcPPPAAEyZMYMWKFYwZM6ZFr6PX66mqqmqNLosmSkxMBFTSHGEf8j23P/me2598z+1Pvuf2J99z+5Pvuf1VVVVRXV1tt9frFMFccnIyhw8fbtY1paWlNuqNWg+3b98+li5dyuzZs+uO33DDDXh6enLZZZfx4IMPsmnTpibdb//+/VaP147INdQuWp98z+1Pvuf2J99z+5Pvuf3J99z+5Htuf/I9tz97z5jrFMHcjh072roLdVJTU1mzZg0uLi7MnDnTon327Nm4uLiwZcsWysvLcXV1bYNeCiGEEEIIITo6yWbZytLS0gDw8PBAq7X89jo4OODu7o7BYCA/P9/OvRNCCCGEEEJ0FhLMtbKQkBAAcnNzSUpKsmhPTEwkLy8PDw8PAgMD7d09IYQQQgghRCchwVwLREdHEx0dTXp6et2x3r17M3ToUABuv/12CgoK6try8/O5/fbbAbjkkktwdOwUs1yFEEIIIYQQbUCiiRpz5swhIyMDME6VfPfdd1m6dCkAoaGhZiUGgLqkK/UzSn744YdMmTKFFStW0LdvX0aPHg3Ali1bOH36NBEREbz88su2/HKEEEIIIYQQnZzGYDAY2roT7UFERAQpKSkNtvfq1Yvk5GSzYxqNBoCkpCQiIiLM2hITE3nppZdYuXIl6enpaLVaevfuzaxZs3jkkUfw9/dv7S9BCCGEEEII0YVIMCeEEEIIIYQQHZCsmRNCCCGEEEKIDkiCOSGEEEIIIYTogCSYE0IIIYQQQogOSII5IYQQQgghhOiAJJgTQgghhBBCiA5IgjkhhBBCCCGE6IAkmOtgysvL+de//kX//v1xdXUlLCyM+fPn1xU6F61v8uTJaDSaBj/+/PPPtu5ih7Rz505efPFFLr30Urp3745Go8HV1fWM1y1cuJC4uDg8PT3x9/fn4osvZtOmTXboccfX3O/5M8880+jP/mOPPWbH3nc8paWlLF26lJtvvpmhQ4fi7e2Nh4cHMTExPPvssxQXFzd4rfycn52z+Z7Lz3nLvfbaa1x66aX069cPHx8fXFxc6NWrF/PmzWP//v0NXic/52evud9z+TlvXbm5uQQHB6PRaIiOjm70XFv/nDu22p2EzZWXl3P++eezadMmQkNDmT17NsnJyXz22WcsW7aMzZs3ExkZ2dbd7LQuu+wyPD09LY537/7/7d19TJXlH8fxjyCSaEAgKqhsCsGKogmtmQS6Mh+yMh9WtmrKysq2yqlbWwWuYeUSZtRvudWcIokucdZ82NRkPqKUglr41BRFpiwgQAQBiev3R+PkCeTIw7nxxvdr4w+u67rd93z3cfrlnPtmWA9UY38pKSn66aefOnTNwoULtWLFCvXv318TJ05UfX29du3apZ07d2rjxo2aPn26m6rtHTrTc0mKi4tTeHh4q/XY2NjuKKvXysrK0rx58yRJUVFRmjx5sq5evarc3FwtWbJE69ev1969ezV48GCn68h553W25xI574rPPvtMtbW1io6O1sMPPyxJKiws1Nq1a7Vhwwb9+OOPmjJlitM15LxrOtNziZx3l4ULF6q8vPy2zrk95wa2kZSUZCSZxx9/3NTU1DjW09LSjCSTkJDQg9X1XuPGjTOSTFFRUU+X0qssW7bMJCcnmy1btpjS0lIjyXh7e9/y/O7du40kExgYaM6ePetYz83NNf369TN+fn7mr7/+sqJ02+poz5csWWIkmdWrV1tXZC+SkZFh5s+f75RXY4y5fPmyGT16tJFkXn75Zac9ct41nek5Oe+6AwcOmOvXr7da/+abb4wkExISYpqamhzr5LzrOtpzct59fv75ZyPJvPnmm0aSiYyMbPOcVTlnmLOJxsZG4+/vbySZ/Pz8VvvR0dFGkjly5EgPVNe7McxZw9Vg8cwzzxhJZsWKFa323nvvPSPJpKamurHC3odhrufk5uY6+t/Q0OBYJ+fuc6uek3P3Cg8PN5JMYWGhY42cu1dbPSfn3aOurs6Eh4ebBx980Jw9e7bdYc6qnHPPnE0cOHBAVVVVCgsL0+jRo1vtz5o1S5K0ZcsWq0sD3K6+vl67d++W9G/Wb0b+YTePPPKIJKmhoUEVFRWSyLm7tdVzuJ+np6ckqV+/fpLIuRX+23N0n08++UTnzp3TypUr5eXldctzVuace+Zs4vjx45KkmJiYNvdb1lvOofutWrVKFRUV8vDwUEREhF544QWFhob2dFl3hdOnT6uhoUFBQUEaPnx4q/2W/J84ccLq0u4KOTk5OnbsmOrr6zV8+HBNmTKF+yu66Pz585IkLy8vBQQESCLn7tZWz29Gzrvf2rVrdebMGUVERGjUqFGSyLm7tdXzm5Hzzjtx4oTS0tKUmJiohIQEXbhw4ZZnrcw5w5xNFBcXS1Kbgbh5veUcut/SpUudvl+8eLGSkpKUlJTUQxXdPVzlf8CAAfL391dlZaVqamp07733Wller5eZmen0fVJSkmbOnKk1a9a0+VAguJaeni5Jmjx5sry9vSWRc3drq+c3I+ddt3z5chUWFqq2tlanTp1SYWGhQkJClJWVJQ+Pfz4MRs671+30/GbkvHOam5s1b948+fv764svvnB53sqc8zFLm2h5nLKPj0+b+wMGDHA6h+6TkJCgzMxMnTt3TnV1dTpz5ow+/fRT9e3bV8nJyY7/IMB9XOVf4u+AO4SHhys1NVWFhYW6du2aLl26pHXr1mnYsGHatGmTXnvttZ4u0Za2b9+uVatWycvLSykpKY51cu4+t+q5RM67044dO5SRkaHs7GwVFhZqxIgRysrKcnrnh5x3r9vpuUTOu+rrr7/WL7/8ouXLlyswMNDleUtz3uW77mCJN954w0gyH3/8cZv7LTdhRkREWFzZ3WvHjh1GkvHz8zN1dXU9XY7tqZ2HcXz//fdGknniiSdueX1ISIiRZC5fvuyuEnud9nrensuXL5vAwEAjyRw8eNANlfVeJ0+eNPfdd5+RZL788kunPXLuHu31vD3kvPMqKyvNvn37zIQJE4wks3TpUsceOXeP9nreHnLuWnFxsRk4cKAZN26c03pRUdEtH4BiZc55Z84mWt5+ra2tbXO/rq5OkniL3EITJ07Uo48+qurqah0+fLiny+nVXOVf4u+AlYKDg5WYmCjpn58K4/aUlJRo8uTJqqys1MKFC/X+++877ZPz7ueq5+0h553n7++v+Ph4bd++XbGxsUpKStKvv/4qiZy7S3s9bw85d+2dd95RY2OjVq5cedvXWJlzhjmbaHnQRklJSZv7Les8kMNa999/vyTpypUrPVxJ7+Yq/7W1taqqqpK/vz/3V1iE7HdMeXm5nn76aRUXFysxMVGpqamtzpDz7nU7PXeFnHeNl5eXXnrpJRljHE/tI+fu1VbPXSHn7du6dat8fHw0f/58jR8/3vE1e/ZsSf/cH9ey1vKRSStzzgNQbKLlkcr5+flt7resR0dHW1YTpMrKSkn89NDdIiMj5e3trbKyMpWUlLS6oZj8W4/s376amhpNmTJFp0+f1owZM/Tdd9+pT58+rc6R8+5zuz13hZx33aBBgyRJZWVlksi5Ff7bc1fIuWtVVVXau3dvm3vXr1937DU1NUmyNue8M2cTcXFx8vPz07lz51RQUNBqPzs7W5L07LPPWl3aXausrEz79++XdOtfGYHu0b9/fz355JOS/s36zci/tYwx2rx5syTxSGsXGhoaNG3aNB05ckSTJk3S+vXrHb8D6r/IeffoSM/bQ867R8t/csPCwiSRcyv8t+ftIeeuGWPa/CoqKpL0z+DWsubv7y/J4px36Y47WOqjjz4ykszYsWPNtWvXHOtpaWkub7JE5xw6dMjk5OSY5uZmp/WioiITFxdnJJnnn3++h6rrXeTiYRy7du0ykkxgYKA5e/asYz03N9d4e3sbX19fU1FRYUWpvUZ7PS8rKzMZGRmmvr7eab2mpsa89dZbRpIZOnSoqa2ttaJUW2pqajLTp083kkx8fPxt9Yqcd01He07Ou27fvn1mw4YN5saNG07rjY2N5quvvjIeHh6mf//+pri42LFHzrumoz0n5+7R3gNQjLEu532MMabrIyGsUF9fr/HjxysvL0/BwcGKj4/XxYsXlZeXp8DAQB0+fFjh4eE9XWavsmbNGiUmJio4OFgREREaOnSoSkpKdPToUdXX1ysqKko5OTkaPHhwT5dqO9u2bXN6RHheXp769Omjxx57zLGWlJSkqVOnOr5fsGCB0tPT5ePjo6efflqNjY3atWuXmpub9cMPP2jmzJmWvga76UjPL1y4oJEjR8rX11cPPPCAQkNDVVVVpfz8fFVUVMjf319bt25VXFxcT7wUW0hPT9eCBQskSdOnT5evr2+b51JTUx0fi5LIeVd0tOfkvOta/p0cNGiQYmNjFRgYqPLycv3222+6cuWK7rnnHmVkZOjFF190uo6cd15He07O3aOlr5GRkTp9+nSbZyzJeZfHQViqrq7OJCUlmbCwMNOvXz8zZMgQM2fOHKefeKH7nDx50syfP9/ExMSYoKAg07dvX+Pn52fGjBlj0tLS+JUEXbB69Wojqd2v1atXt3ldbGys8fHxMX5+fmbSpElm//791r8AG+pIz69evWo++OADM27cODNs2DDj7e1tfHx8TFRUlFm0aJEpKSnp2RdjA0uWLHHZb0mmqKio1bXkvHM62nNy3nXnz583H374oYmLizPBwcHGy8vLDBgwwERFRZl3333X/PHHH7e8lpx3Tkd7Ts7dw9U7cy3cnXPemQMAAAAAG+IBKAAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAAAAGBDDHMAAAAAYEMMcwAAAABgQwxzAAC40aFDh+Th4aGYmBg1Nzff8tymTZvUp08fTZs2zcLqAAB2xjAHAICbNDc36+2335YxRunp6fLwuPU/uzExMZKk3Nxcq8oDANgcwxwAAG6ybt06nThxQhMmTFB8fHy7Z0NDQ+Xp6any8nKVl5dbVCEAwM4Y5gAAcJNly5ZJkhYtWuTyrKenp3x9fSVJpaWlbq0LANA7MMwBAOAGhw8f1smTJxUcHKyJEyc67e3fv18FBQWtrmm5p669e+sAAGjBMAcAgBvs2LFDkjRhwgSne+VKS0uVkJCgzz//3Ol8XV2dqqurJUlDhgyxrlAAgG0xzAEA4AbHjh2T9O+DTVocPHhQkhQREeG0fvz4cUlSSEgIwxwA4LYwzAEA4AaXLl2SJA0fPtxpfdu2bZKkoKAgp/WdO3dKkp566inHWm1trTw9PbVmzRrNmTNHAQEBCggIUEpKijtLBwDYBMMcAABucOPGDUnO979VV1crOztbkvT333871puampSRkSFJevXVVx3rx44dU3Nzs1asWKHnnntOR44c0eLFi5WcnKzz589b8TIAAHcwhjkAANwgNDRUkpSTk+NYW7x4sYKCgvTQQw/p0KFDjvXk5GQVFRVpzJgxTg9LKSgokIeHhzIzMzVr1iyNGjVKr7/+uiTpzz//tOiVAADuVH17ugAAAHqjV155RVu3btW3336rixcvqqqqSnl5ecrOztbGjRu1YcMGTZ06VRUVFcrLy9PQoUOVmZnp9Gfk5+dr7Nixio6Odqy1vCMXFhZm6esBANx5GOYAAHCD2bNnq6SkRP/73/+0Z88eRUZGauPGjZoxY4ZiYmJUWlqqPXv2aODAgZo7d65SUlJa3V9XUFCgSZMmOa0dPXpUI0aMaHXPHQDg7tPHGGN6uggAAOCssbFRAwcOVFZWlmbNmuVYnzt3rqqrq7V58+YerA4AcCfgnjkAAO5Av//+u27cuKHY2Fin9aNHj7ZaAwDcnRjmAAC4AxUUFCggIEAjR450rF2/fl2nTp1imAMASOJjlgAAAABgS7wzBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADbEMAcAAAAANsQwBwAAAAA2xDAHAAAAADb0fyCvjlT/pwbbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,dpi=150)\n", + "\n", + "ax.oplot(Sigma_iw['up_2'].imag, '-', color='C0', label=r'up $d_{z^2}$')\n", + "ax.oplot(Sigma_iw['up_4'].imag, '-', color='C1', label=r'up $d_{x^2-y^2}$')\n", + "\n", + "ax.oplot(Sigma_iw['down_2'].imag, '--', color='C0', label=r'down $d_{z^2}$')\n", + "ax.oplot(Sigma_iw['down_4'].imag, '--', color='C1', label=r'down $d_{x^2-y^2}$')\n", + "\n", + "ax.set_ylabel(r\"$Im \\Sigma (i \\omega)$\")\n", + "\n", + "ax.set_xlim(0,40)\n", + "ax.set_ylim(-1.8,0)\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2a07a928-e69f-4ad1-91ea-0386024ed5de", + "metadata": {}, + "source": [ + "We can clearly see that a $\\omega_n=8$ the self-energy is replaced by the tail-fit as specified in the input config file. This cut is rather early, but ensures convergence. For higher sampling rates this has to be changed. We can also nicely observe a splitting of the spin channels indicating a magnetic solution, but we still have a metallic solution with both self-energies approaching 0 for small omega walues. However, the QMC noise is still rather high, especially in the $d_{x^2-y^2}$ orbital. " + ] + }, + { + "cell_type": "markdown", + "id": "8b22265a-4138-4d9c-8315-917320f27cb3", + "metadata": {}, + "source": [ + "## 5. Multiplet analysis" + ] + }, + { + "cell_type": "markdown", + "id": "d3c2f507-757a-4880-b9dc-1f254c78c512", + "metadata": {}, + "source": [ + "We follow now the triqs/cthyb tutorial on the [multiplet analysis](https://triqs.github.io/cthyb/unstable/guide/multiplet_analysis_notebook.html) to analyze the multiplets of the Ni-d orbitals: " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c00e89e4-cf2e-4fca-84b1-11cb42072217", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "pd.set_option('display.width', 130)\n", + "\n", + "from triqs.operators.util import make_operator_real\n", + "from triqs.operators.util.observables import S_op\n", + "from triqs.atom_diag import quantum_number_eigenvalues\n", + "from triqs.operators import n" + ] + }, + { + "cell_type": "markdown", + "id": "fe674d6b-dae6-4497-82f5-6b8004afb275", + "metadata": {}, + "source": [ + "first we have to load the measured density matrix and the local Hamiltonian of the impurity problem from the h5 archive, which we stored by setting `measure_density_matrix=true` in the config file: " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "786a549c-9306-4099-a4f0-3f19d2bdbb36", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(path+'/nno.h5','r') as ar:\n", + " rho = ar['DMFT_results/last_iter/full_dens_mat_0'] \n", + " h_loc = ar['DMFT_results/last_iter/h_loc_diag_0']" + ] + }, + { + "cell_type": "markdown", + "id": "585625be-0888-460e-879b-2a60215a69bb", + "metadata": {}, + "source": [ + "`rho` is just a list of arrays containing the weights of each of the impurity eigenstates (many body states), and `h_loc` is a: " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "efeafafa-502b-4acd-8e76-4f7eab6eb9c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(h_loc))" + ] + }, + { + "cell_type": "markdown", + "id": "72450efb-b8b8-4169-9c01-6fb6259a3178", + "metadata": {}, + "source": [ + "containing the local Hamiltonian of the impurity including eigenstates, eigenvalues etc." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "d767053a-f785-44d1-8a82-eafc5c8b9911", + "metadata": {}, + "outputs": [], + "source": [ + "res = [] \n", + "# get fundamental operators from atom_diag object\n", + "occ_operators = [n(*op) for op in h_loc.fops]\n", + "\n", + "# construct total occupation operator from list\n", + "N_op = sum(occ_operators)\n", + "\n", + "# create Sz operator and get eigenvalues\n", + "Sz=S_op('z', spin_names=['up','down'], n_orb=5, off_diag=False)\n", + "Sz = make_operator_real(Sz)\n", + "Sz_states = quantum_number_eigenvalues(Sz, h_loc)\n", + "\n", + "# get particle numbers from h_loc_diag\n", + "particle_numbers = quantum_number_eigenvalues(N_op, h_loc)\n", + "N_max = int(max(map(max, particle_numbers)))\n", + "\n", + "for sub in range(0,h_loc.n_subspaces):\n", + "\n", + " # first get Fock space spanning the subspace\n", + " fs_states = []\n", + " for ind, fs in enumerate(h_loc.fock_states[sub]):\n", + " state = bin(int(fs))[2:].rjust(N_max, '0')\n", + " fs_states.append(\"|\"+state+\">\")\n", + "\n", + " for ind in range(h_loc.get_subspace_dim(sub)):\n", + "\n", + " # get particle number\n", + " particle_number = round(particle_numbers[sub][ind])\n", + " if abs(particle_number-particle_numbers[sub][ind]) > 1e-8:\n", + " raise ValueError('round error for particle number to large!',\n", + " particle_numbers[sub][ind])\n", + " else:\n", + " particle_number = int(particle_number)\n", + " eng=h_loc.energies[sub][ind]\n", + "\n", + " # construct eigenvector in Fock state basis:\n", + " ev_state = ''\n", + " for i, elem in enumerate(h_loc.unitary_matrices[sub][:,ind]):\n", + " ev_state += ' {:+1.4f}'.format(elem)+fs_states[i]\n", + "\n", + " # get spin state\n", + " ms=Sz_states[sub][ind]\n", + "\n", + " # add to dict which becomes later the pandas data frame\n", + " res.append({\"Sub#\" : sub,\n", + " \"EV#\" : ind,\n", + " \"N\" : particle_number,\n", + " \"energy\" : eng,\n", + " \"prob\": rho[sub][ind,ind],\n", + " \"m_s\": round(ms,1),\n", + " \"|m_s|\": abs(round(ms,1)),\n", + " \"state\": ev_state})\n", + "# panda data frame from res\n", + "res = pd.DataFrame(res, columns=res[0].keys())" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "54f249f9-15b8-4b1c-bebb-7b63952e875e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Sub# EV# N energy prob m_s |m_s| state\n", + "4 4 0 9 3.640517e-01 0.310283 -0.5 0.5 +1.0000|0111111111>\n", + "0 0 0 8 0.000000e+00 0.125113 -1.0 1.0 +1.0000|0101111111>\n", + "5 5 0 9 3.640517e-01 0.083760 0.5 0.5 +1.0000|1111101111>\n", + "20 20 0 8 8.851884e-01 0.074717 0.0 0.0 +1.0000|0111111011>\n", + "2 2 0 9 2.739907e-01 0.044306 -0.5 0.5 +1.0000|1101111111>\n", + "55 55 0 10 7.125334e+00 0.038609 0.0 0.0 +1.0000|1111111111>\n", + "3 3 0 9 2.739907e-01 0.035831 0.5 0.5 +1.0000|1111111011>\n", + "51 51 0 8 2.745626e+00 0.033932 0.0 0.0 +1.0000|0111101111>\n", + "1 1 0 8 4.903654e-09 0.031693 1.0 1.0 +1.0000|1111101011>\n", + "21 21 0 8 8.851884e-01 0.019748 0.0 0.0 +1.0000|1101101111>\n" + ] + } + ], + "source": [ + "print(res.sort_values('prob', ascending=False)[:10])" + ] + }, + { + "cell_type": "markdown", + "id": "2af9aa9e-481b-48fb-952e-0d53080236c3", + "metadata": {}, + "source": [ + "This table shows the eigenstates of the impurity with the highest weight / occurence probability. Each row shows the state of the system, where the 1/0 indicates if an orbital is occupied. The orbitals are ordered as given in the projectors (dxy, dyz, dz2, dxz, dx2-y2) from right to left, first one spin-channel, then the other. Additionally each row shows the particle sector of the state, the energy, and the `m_s` quantum number.\n", + "\n", + "It can be seen, that the state with the highest weight is a state with one hole (N=9 electrons) in the $d_{x^2-y^2, up}$ orbital carrying a spin of `0.5`. The second state in the list is a state with two holes (N=8). One in the $d_{x^2-y^2, up}$ and one in the $d_{z^2, up}$ giving a magnetic moment of 1. This is because the impurity occupation is somewhere between 8 and 9. We can also create a nice state histogram from this: " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "52d1d26d-587f-4b4d-a46a-f71850423b7d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyMAAAIqCAYAAAA3q5W5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAABY+klEQVR4nO3deVxWZf7/8feNsggiLuCCu6QyUZiYpampmallg5rNd7QmFHWcjDJpfpozmqilzbg0rm2TaI2Wk5UzWma55DIgqZgkKRoh6KgTIiiLgMj5/dH35hsDKMuB4w2v5+PB4yHXdd3X9TkyjefNOdc5NsMwDAEAAABADXOyugAAAAAAdRNhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYIn6VhdQV7Rs2VLZ2dlq166d1aUAAAAApklJSZGHh4cuXLhQ4c9yZaSGZGdn69q1a1aXAQAAAJjq2rVrys7OrtRnuTJSQ+xXROLj4y2uBAAAADBPQEBApT/LlREAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEvwaF8HYBiGDMOwugz8L5vNJpvNZnUZAAAADo8wcou6evWqLl++rMzMTBUUFFhdDv5L/fr15enpKS8vLzVo0MDqcgAAABwSYeQWdOXKFf373/+2ugzcQEFBgdLT05Wenq7WrVurUaNGVpcEAADgcAgjt5irV68WBZGGDRuqSZMmcnNzk5MT23tuFYWFhcrNzVV6erqysrL073//W87OzlwhAQAAqCDCyC3m8uXLkn4KIm3atGFvwi3IyclJDRs2lIeHh86ePausrCxdvnyZMAIAAFBB/Lr9FpOZmSlJatKkCUHkFmez2dSkSRNJ//dzAwAAQPkRRm4hhmEUbVZ3c3OzuBqUh/3nVFBQwBPPAAAAKogwcgv5+ckse0Qcw89/ToQRAACAiuGMFwAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGIElau3atbDab1q5da3UplTJgwAAehQwAAOBgHDqM5Obmas6cOerSpYvc3Nzk6+ur0NBQnT17tkLzdOjQQTabrcyvEydOVNMRAAAAAHWXw76BPTc3V4MGDVJUVJRatWql4OBgnT59WpGRkdq6dauio6Pl5+dXoTlDQkJKbffy8jKjZAAAANxIhIXnXBGXrVu7DnPYMLJgwQJFRUWpd+/e+uKLL9SwYUNJ0tKlS/XCCy8oNDRUe/bsqdCcjnqLEgAAAOCIHPI2rWvXrmnFihWSpFWrVhUFEUkKDw9XYGCg9u7dq8OHD1tVYq1w+vRp2Ww2DRgwQNnZ2QoPD1fbtm3VoEEDBQUFacuWLUVjP/zwQ91zzz3y8PBQixYt9Nxzz+nq1atVWn/79u0aMmSI2rRpI1dXV/n6+qpv376aO3duVQ8NAAAAtwCHDCP79+9XRkaG/Pz81L179xL9o0ePlqRiJ8uovPz8fA0aNEjvvfee7rrrLvXq1UtHjx7VyJEjtWPHDr322msaO3as6tevr4ceekjXr1/XihUrNHHixEqv+cYbb2jo0KHas2ePfvGLX+ixxx5TQECATp8+rYiICPMODgAAAJZxyNu0jh49KkkKCgoqtd/ebh9XXosWLVJiYqJcXV0VEBCgkSNHysfHp2rF1gLR0dEaMGCATp48qSZNmkj66Za28ePH6+mnn9alS5e0a9cu9evXT5J07tw5de/eXRs2bND8+fPVqVOnCq/56quvqlGjRjp69Kg6dOhQ1G4Yhr766iszDgsAAAAWc8gwkpKSIklq06ZNqf32dvu48po+fXqx76dNm6bly5drwoQJ5Z4jICCg1PbExMQKb6i/VdSrV09vv/12URCRpKeeekrTp0/X999/r5deeqkoiEiSr6+vnnjiCb322mvau3dvpcLIjz/+qC5duhQLIpJks9k0cODASh8LAAAAbh0OeZtWVlaWJMnd3b3Ufg8Pj2LjbuaXv/ylPv74YyUnJysnJ0fHjh1TeHi48vLyNHHiRG3evNmUuh1Vhw4ddNtttxVrc3JyUvv27SVJgwcPLvEZe/A6f/58pdbs0aOHjh49qhdffFGJiYmVmgMAAAC3Noe8MmIYhiSV+ZI7e395LV++vNj3AQEBWrJkibp27arJkydrxowZGjFiRLnmio+PL7W9rCsmjqB169altttDX2n99r68vLxKrblq1SqNGDFCf/rTn/SnP/1Jvr6+6tevn0aPHq1Ro0bJyckhczQAAAB+xiHP6Dw9PSVJ2dnZpfbn5ORIUrGnbFXGxIkT1bx5c508eVJJSUlVmsuR3ezN5tXx5vPAwEB99913+uSTTzRp0iQ1bNhQGzdu1OOPP67+/fsrPz/f9DUBAABQsxwyjLRr106SynzTur3dPq6ynJycqny7ESrPzc1NI0aM0FtvvaWEhATFx8crMDBQ+/fv1zvvvGN1eQAAAKgihwwj3bp1kyTFxsaW2m9vDwwMrPJa6enpkqp+lQVVd/vtt+uZZ56RJH377bcWVwMAAICqcsgw0qdPH3l5eSkxMVFHjhwp0b9p0yZJ0vDhw6u0Tnx8vBISEuTu7i5/f/8qzYXyy8nJ0fLly5WRkVGsvbCwUF988YWkql/1AgAAgPUcMoy4uLgoLCxMkhQWFlZs78jSpUsVFxenvn37qmfPnkXtK1eulL+/v2bOnFlsru3bt5f6pva4uDg9/vjjMgxDEydOlIuLSzUdDf5bfn6+pk6dqhYtWqh3794aM2aMHnvsMXXs2FEfffSROnXqpMmTJ1tdJgAAAKrIIZ+mJUmzZs3Sjh07FBUVpc6dO6tfv35KTk5WTEyMmjVrpsjIyGLjL168qISEhBJ7P6KjozV37ly1b99efn5+8vHxUVJSkmJjY1VQUKD+/ftr4cKFNXlodV7Dhg21atUq7dy5U0ePHlVcXJxcXFzUvn17TZo0SWFhYWrcuLHVZQIAAKCKHDaMuLm5affu3Vq4cKE2bNigzZs3q0mTJgoJCdH8+fPVtm3bcs0zZMgQnTlzRgcPHtTRo0d1+fJlNWrUSH379tUTTzyh8ePHq169etV8NLemDh063PAxyTd6E/q4ceM0bty4Sq1bv359TZkyRVOmTKnU5wEAAOAYHDaMSFKDBg00b948zZs376ZjIyIiFBERUaK9d+/e6t27dzVUBwAAAOBGHHLPCAAAAADH59BXRuA4ynvLlre3txYvXly9xQAAAOCWQBhBjVi3bl25xrVv354wAgAAUEcQRiBJuuuuuzRnzhzddddd1TL/jTbCm2HcuHEaMGBAta4BAAAAcxFGIOmnMFJdQaQmVPbJXQAAALAOG9gBAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjewO6gOL35qdQk3dfrVR0yfMzc3VwsXLtT777+vlJQUNW3aVEOHDtW8efPUpk2bCs2VkZGhiIgIffLJJ7pw4YJatmypESNGaO7cuWrcuLHptQMAAKA4rozAYeTm5mrQoEGaN2+esrKyFBwcrLZt2yoyMlJBQUFKTEws91xpaWm65557tGzZMtWvX18jRoyQp6enli9frp49eyotLa0ajwQAAAASYQQOZMGCBYqKilLv3r118uRJbdy4UTExMVqyZIlSU1MVGhpa7rmmTZumU6dOadSoUUpISNDGjRt17NgxPfvss/r+++8VHh5ejUcCAAAAiTACB3Ht2jWtWLFCkrRq1So1bNiwqC88PFyBgYHau3evDh8+fNO5Lly4oPXr18vZ2VmrV69W/fr/d7fiokWL5OPjo/Xr1+s///mP+QcCAACAIoQROIT9+/crIyNDfn5+6t69e4n+0aNHS5K2bNly07m2bdumwsJC3X///WrRokWxPldXVz366KO6fv26tm3bZk7xAAAAKBVhBA7h6NGjkqSgoKBS++3t9nE1NRcAAAAqjzACh5CSkiJJZT4xy95uH1dTcwEAAKDyCCNwCFlZWZIkd3f3Uvs9PDyKjaupuQAAAFB5hBE4BMMwJEk2m+2G/TU9FwAAACqPMAKH4OnpKUnKzs4utT8nJ0eSij1lqybmAgAAQOURRuAQ2rVrJ0k6e/Zsqf32dvu4mpoLAAAAlUcYgUPo1q2bJCk2NrbUfnt7YGBgjc4FAACAyiOMwCH06dNHXl5eSkxM1JEjR0r0b9q0SZI0fPjwm841dOhQOTk5ad++ffrxxx+L9eXl5WnLli1ycnLSsGHDzCkeAAAApSKMwCG4uLgoLCxMkhQWFlZsv8fSpUsVFxenvn37qmfPnkXtK1eulL+/v2bOnFlsrlatWmnMmDHKz8/XlClTVFBQUNQ3ffp0paamauzYsWrZsmU1HxUAAEDdVt/qAoDymjVrlnbs2KGoqCh17txZ/fr1U3JysmJiYtSsWTNFRkYWG3/x4kUlJCTo/PnzJeb6y1/+ogMHDuijjz6Sv7+/7r77bsXHx+vYsWPy8/PTa6+9VlOHBQAAUGcRRhzU6VcfsbqEGufm5qbdu3dr4cKF2rBhgzZv3qwmTZooJCRE8+fPV9u2bcs9l7e3tw4ePKg5c+Zo8+bN+uSTT9SiRQuFhYVp7ty5atq0aTUeCQAAACTJZvBShRoREBAgSYqPjy9zTGFhoRISEiRJXbt2lZMTd9Hd6viZAQBgoggvC9e+bN3aDq4857ll4cwJAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACh5Kbm6s5c+aoS5cucnNzk6+vr0JDQ3X27NkKzdOhQwfZbLYyv06cOFFNRwAAAAC7+lYXgEqK8LK6gpuLuGzqdLm5uRo0aJCioqLUqlUrBQcH6/Tp04qMjNTWrVsVHR0tPz+/Cs0ZEhJSaruXlwP8/QIAADg4wggcxoIFCxQVFaXevXvriy++UMOGDSVJS5cu1QsvvKDQ0FDt2bOnQnOuXbu2GioFAABAeXCbFhzCtWvXtGLFCknSqlWrioKIJIWHhyswMFB79+7V4cOHrSoRAAAAFUQYgUPYv3+/MjIy5Ofnp+7du5foHz16tCRpy5YtNV0aAAAAKonbtOAQjh49KkkKCgoqtd/ebh9XXosWLVJiYqJcXV0VEBCgkSNHysfHp2rFAgAAoFwII3AIKSkpkqQ2bdqU2m9vt48rr+nTpxf7ftq0aVq+fLkmTJhQiSoBAABQEdymBYeQlZUlSXJ3dy+138PDo9i4m/nlL3+pjz/+WMnJycrJydGxY8cUHh6uvLw8TZw4UZs3bzalbgAAAJSNKyNwCIZhSJJsNtsN+8tr+fLlxb4PCAjQkiVL1LVrV02ePFkzZszQiBEjKlUrAAAAyocrI3AInp6ekqTs7OxS+3NyciSp2FO2KmPixIlq3ry5Tp48qaSkpCrNBQAAgBsjjMAhtGvXTpLKfNO6vd0+rrKcnJyKXpx4/vz5Ks0FAACAGyOMwCF069ZNkhQbG1tqv709MDCwymulp6dLqvpVFgAAANwYYQQOoU+fPvLy8lJiYqKOHDlSon/Tpk2SpOHDh1dpnfj4eCUkJMjd3V3+/v5VmgsAAAA3RhiBQ3BxcVFYWJgkKSwsrNjekaVLlyouLk59+/ZVz549i9pXrlwpf39/zZw5s9hc27dvL/VN7XFxcXr88cdlGIYmTpwoFxeXajoaAAAASDxNCw5k1qxZ2rFjh6KiotS5c2f169dPycnJiomJUbNmzRQZGVls/MWLF5WQkFBi70d0dLTmzp2r9u3by8/PTz4+PkpKSlJsbKwKCgrUv39/LVy4sCYPDQAAoE4ijDiqiMtWV1Dj3NzctHv3bi1cuFAbNmzQ5s2b1aRJE4WEhGj+/Plq27ZtueYZMmSIzpw5o4MHD+ro0aO6fPmyGjVqpL59++qJJ57Q+PHjVa9evWo+GgAAANiMir6gAZUSEBAg6ac9CWUpLCxUQkKCJKlr165ycuIuulsdPzMAAEwU4WXh2nXvF71mKc95blk4cwIAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsATvGQEAALhF3LnuTkvX/zbkW0vXR93DlREAAAAAliCMAAAAALCEQ4eR3NxczZkzR126dJGbm5t8fX0VGhqqs2fPVmneU6dOqUGDBrLZbBo6dKhJ1QIAAAD4OYcNI7m5uRo0aJDmzZunrKwsBQcHq23btoqMjFRQUJASExMrPffkyZOVl5dnYrUAAAAA/pvDhpEFCxYoKipKvXv31smTJ7Vx40bFxMRoyZIlSk1NVWhoaKXmfeedd7R7925NmjTJ5IoBAAAA/JxDhpFr165pxYoVkqRVq1apYcOGRX3h4eEKDAzU3r17dfjw4QrN++OPP+r//b//pwcffFBjxowxtWYAAAAAxTlkGNm/f78yMjLk5+en7t27l+gfPXq0JGnLli0Vmve5557T1atX9frrr5tSJ8xz+PBhvfrqqxo1apRat24tm80mNze3Ss+XkZGh559/Xu3bt5erq6vat2+vqVOnKiMjw7yiAQAAcEMO+Z6Ro0ePSpKCgoJK7be328eVx2effaaNGzdq3rx5uu2226q8Cb66Wf0c8vIw81nl8+fP1z/+8Q9T5kpLS1Pv3r116tQpderUSSNGjFB8fLyWL1+uzz77TAcOHFCzZs1MWQsAAABlc8gwkpKSIklq06ZNqf32dvu4m8nOztaUKVPUtWtXzZgxo0q1BQQElNqemJgoPz+/Ks1dl/Xu3VvdunVTz5491bNnT7Vs2bLSc02bNk2nTp3SqFGjtHHjRtWv/9N/Bs8995xWrFih8PBwrVu3zqzSAQAAUAaHDCNZWVmSJHd391L7PTw8io27mVmzZik5OVm7du2Si4uLOUXCVFUNiXYXLlzQ+vXr5ezsrNWrVxcFEUlatGiRPvjgA61fv15//vOf1aJFC1PWBAAAQOkcMowYhiFJstlsN+wvj0OHDmnFihV66qmnNHDgwCrXFh8fX2p7WVdMULO2bdumwsJCDRw4sETYcHV11aOPPqo1a9Zo27ZtGjdunDVFAgAA1BEOuYHd09NT0k+3V5UmJydHkoo9Zas0BQUFmjRpkry8vLR48WJzi8QtqTr2GwEAAKByHPLKSLt27SSpzE3m9nb7uLKcPXtW33zzjVq2bKnHH3+8WJ/9qUpff/21BgwYoIYNG2rr1q1VrBxWM3u/EQAAACrPIcNIt27dJEmxsbGl9tvbAwMDyzXfhQsXdOHChVL70tPTtWfPHnl5eVWiUtxqzN5vBAAAgMpzyNu0+vTpIy8vLyUmJurIkSMl+jdt2iRJGj58+A3n6dChgwzDKPVr9+7dkqQhQ4bIMAzeP1FLmLnfCAAAAFXjkGHExcVFYWFhkqSwsLBie0eWLl2quLg49e3bVz179ixqX7lypfz9/TVz5swarxe3DrP2GwEAAKDqHPI2Lemnx/Hu2LFDUVFR6ty5s/r166fk5GTFxMSoWbNmioyMLDb+4sWLSkhI0Pnz5y2qGLcCs/YbAQAAoOoc8sqIJLm5uWn37t2aPXu23N3dtXnzZp0+fVohISE6cuSIbrvtNqtLxC3I7P1GAAAAqDybwU3yNcL+npGy3kMiSYWFhUpISJAkde3aVU5OZWfFO9fdaW6B1eDbkG+rbW6bzSZXV1fl5uZW6HPnz59XmzZtVL9+fZ05c0bNmzcv6svLy1Pbtm2Vlpamf//73+V6y3tFfmYAANyM1f++V+e/3eUSYeEDgyIuW7e2gyvPeW5ZOHNCrVTWHqFWrVppzJgxys/P15QpU1RQUFDUN336dKWmpmrs2LHlCiIAAACoGofdM4K65dNPP9X8+fOLteXn56tXr15F38+ePVuPPPKIpBvvEfrLX/6iAwcO6KOPPpK/v7/uvvtuxcfH69ixY/Lz89Nrr71WvQcDAAAASYQROIjU1FTFxMQUazMMo1hbampqueby9vbWwYMHNWfOHG3evFmffPKJWrRoobCwMM2dO1dNmzY1tXYAAACUjj0jNcTsPSO4NfAzAwCYiT0j7BlxROwZAQAAAOBwCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAS9a0uAJVz3P8XVpdwU784cdy0uQ4fPqwvv/xSX3/9tWJiYnTu3Dm5uroqNze3wnN16NBBycnJZfYfP35c/v7+VSkXAAAA5UAYgUOYP3++/vGPf5g6Z0hISKntXl5epq4DAACA0hFG4BB69+6tbt26qWfPnurZs6datmxZ5TnXrl1b9cIAAABQaYQROIQZM2ZYXQIAAABMxgZ2AAAAAJbgygjqrEWLFikxMVGurq4KCAjQyJEj5ePjY3VZAAAAdQZhBHXW9OnTi30/bdo0LV++XBMmTLCoIgAAgLqF27RQ5/zyl7/Uxx9/rOTkZOXk5OjYsWMKDw9XXl6eJk6cqM2bN1tdIgAAQJ3AlRHUOcuXLy/2fUBAgJYsWaKuXbtq8uTJmjFjhkaMGGFNcQAAAHUIV0aA/zVx4kQ1b95cJ0+eVFJSktXlAAAA1HqEEeB/OTk5yc/PT5J0/vx5i6sBAACo/QgjwM+kp6dLkho2bGhxJQAAALWf6WFk27ZtGjFihFq3bi1XV9diTybatm2bwsPDde7cObOXBaosPj5eCQkJcnd3l7+/v9XlAAAA1HqmhpEpU6Zo+PDh+uc//6msrCxdu3ZNhmEU9Tdu3Fh/+ctf9MEHH5i5LFDCypUr5e/vr5kzZxZr3759uw4fPlxifFxcnB5//HEZhqGJEyfKxcWlpkoFAACos0wLI2vWrNEbb7yhe+65R998840uX75cYkzv3r3VunVrbdmyxaxlUUd8+umn6tWrV9GXJOXn5xdr+/TTT4vGX7x4UQkJCSX2fkRHR+vuu+9Whw4dNGjQIP3617/Wvffeqx49euj48ePq37+/Fi5cWKPHBgAAUFeZ9mjfN998U02bNtXWrVvVrFmzMsfddttt+uGHH8xats76xYnjVpdQo1JTUxUTE1OszTCMYm2pqak3nWfIkCE6c+aMDh48qKNHj+ry5ctq1KiR+vbtqyeeeELjx49XvXr1TK8fAAAAJZkWRuLj4zVw4MAbBhFJatmypQ4cOGDWsqgjxo0bp3HjxpV7fEREhCIiIkq09+7dW7179zavMAAAAFSaabdpOTk5qbCw8Kbjzp07Jw8PD7OWBQAAAOCgTAsj/v7+OnTokHJycsock5aWpm+++UaBgYFmLQsAAADAQZkWRp544gmlpqbqmWeeUUFBQYl+wzD03HPPKSsrS7/5zW/MWhYAAACAgzJtz8iUKVP00Ucfad26ddq/f7+GDBki6adHpv7+97/X1q1bdfLkST3wwAMKCQkxa1kAAAAADsq0KyPOzs76/PPP9bvf/U4pKSlavXq1JCk2NlZLly5VYmKiJkyYoC1btsjJiRe/AwAAAHWdaVdGJMnd3V2rV6/W3LlztWfPHp0+fVrXr19XmzZtNHDgQPn6+pq5HAAAAAAHZmoYsfPx8dHo0aOrY2oAAAAAtQT3SwEAAACwRKWvjMybN6/Si9psNs2ePbvSnwcAAADg+CodRiIiImSz2WQYRrF2m81W9Gd733+3EUYAAAAAVDqMREZGlmiLiorS22+/rXbt2mn06NFq166dJCklJUUfffSRkpOTNWnSJN13332VrxgAAABArVDpMPLf7wo5cOCAJk+erNmzZ+ull15SvXr1ivX/6U9/0vz58/Xqq69q3LhxlV0WAAAAQC1h2gb2l156SV27dtXcuXNLBBFJqlevniIiItS1a1fNmTPHrGUBAAAAOCjTwsjXX3+tO+6446bj7rjjDn399ddmLYs6IicnR5s3b9aECRMUGBioRo0aycPDQ926ddO8efOUlZVV4TkzMjL0/PPPq3379nJ1dVX79u01depUZWRkmH8AAAAAKMHU94ycOHHClDG4uVW/22V1CTf1zBsPmDbXhg0bNGnSJElSQECAhg4dqitXrigqKkpz5szR+++/rz179qh58+blmi8tLU29e/fWqVOn1KlTJ40YMULx8fFavny5PvvsMx04cEDNmjUzrX4AAACUZNqVkb59++qbb77RokWLyhyzePFiHTlyRH379jVrWdQRLi4uevrpp3Xy5EkdO3ZMf//73/X5558rISFB3bt314kTJ/T888+Xe75p06bp1KlTGjVqlBISErRx40YdO3ZMzz77rL7//nuFh4dX38EAAABAkmQz/vvZvJUUFxen++67T1evXlXXrl2LnqZls9mUnJysjz76SCdOnFCDBg0UFRWlwMBAM5Z1GAEBAZKk+Pj4MscUFhYqISFBktS1a1c5OZWdFevalZEbiY6O1n333SdXV1dduXJFLi4uNxx/4cIFtW7dWvXq1dOZM2fUokWLor68vDy1bdtWly5d0r///e9ifaWpyM8MAICbuXPdnZau/23It5aurwgvC9e+bN3aDq4857llMe02rcDAQO3cuVPjxo3TiRMn9PLLLxe9X8Sed7p06aK1a9fWuSCC6tWtWzdJPwWJtLQ0tWrV6objt23bpsLCQg0cOLBE2HB1ddWjjz6qNWvWaNu2bTz5DQAAoBqZumfk3nvv1XfffaevvvpK+/fv17lz52QYhnx9fdW3b18NHDiw2AsQATP88MMPkiRnZ2c1bdr0puOPHj0qSQoKCiq1PygoSGvWrCkaBwAAgOphahiRfnrb+sCBAzVw4ECzpwZKtWzZMknS0KFD5erqetPxKSkpkqQ2bdqU2m9vt48DAABA9eAGdzi0zz77TO+8846cnZ01f/78cn3G/hhgd3f3Uvs9PDyKjQMAAED1MO3KyLvvvluh8U899ZRZS6OOOn78uJ588kkZhqFFixYV7R25GfseprJuGTTpmQ4AAAC4CdPCyLhx48q1H8QwDNlsNsIIquTs2bMaOnSo0tPTFR4erqlTp5b7s56enpKk7OzsUvtzcnIkSQ0bNqx6oQAAACiTaWHkpZdeKjWMFBYW6syZM9qzZ4+SkpI0btw4tW/f3qxlUQddvHhRgwcPVkpKisaPH6/FixdX6PPt2rWT9FOgKY293T4OAAAA1cO0MBIREXHD/mvXrun555/Xpk2bdPDgQbOWRR2TmZmpYcOG6cSJExo1apTefvvtCj+hzX47V2xsbKn99nYeQQ0AAFC9amwDu7Ozs5YtW6YGDRroxRdfrKllUYvk5eUpODhYhw4d0pAhQ/T++++rXr16FZ5n6NChcnJy0r59+/Tjjz+WWGPLli1ycnLSsGHDzCodAAAApajRp2nVr19fPXr00JdfflmTy6IWuH79usaMGaPdu3erX79++vjjj2/6pvWVK1fK399fM2fOLNbeqlUrjRkzRvn5+ZoyZYoKCgqK+qZPn67U1FSNHTtWLVu2rJZjAQAAwE9Mf8/IzVy4cKHMjcNAWVauXKlPPvlEkuTt7a0pU6aUOm7x4sXy9vaW9NPekoSEBJ0/f77EuL/85S86cOCAPvroI/n7++vuu+9WfHy8jh07Jj8/P7322mvVdzAAAACQVINhpLCwUKtWrVJ0dLTuueeemlq21nrmjQesLqFGpaenF/3ZHkpKExERURRGbsTb21sHDx7UnDlztHnzZn3yySdq0aKFwsLCNHfu3HK9yR0AAABVYzNMeqnCAw+UfXKclZWlpKQkXbp0STabTVu2bKlz9+MHBARIkuLj48scU1hYqISEBElS165d5eTEOylvdfzMAABmunPdnZau/23It5aurwgvC9e+bN3aDq4857llMe3KyFdffXXDfmdnZ/Xt21cvvfSSBg0aZNayAAAAAByUaWEkKSmpzD4XFxd5e3vL2dnZrOUAAAAAODjTwggvMgQAAABQEabd4B4aGqo1a9bcdNzatWsVGhpq1rIAAAAAHJRpYWTt2rXav3//Tcf961//0rp168xaFgAAAICDqvFH/+Tn51fqrdmlyc3N1Zw5c9SlSxe5ubnJ19dXoaGhOnv2bLnnKCgoUEREhB555BF16tRJnp6ecnNzU+fOnfXMM88oJSXFlFoBAAAAFFejYcQwDMXGxsrHx6fKc+Xm5mrQoEGaN2+esrKyFBwcrLZt2yoyMlJBQUFKTEws9zxz587V3r171apVKw0dOlRDhgxRfn6+Vq9ercDAQMXGxla5XgAAAADFVWkD+3+/W+Tzzz8v830jBQUFSkxM1IULF/Sb3/ymKstKkhYsWKCoqCj17t1bX3zxhRo2bChJWrp0qV544QWFhoZqz549N53Hzc1N+/fv17333qv69f/vr+P69euaPXu2Fi5cqClTpujAgQNVrhkAAADA/6nSSw9//oI3m82mm03l7OysoUOH6p133inXW7LLcu3aNTVv3lwZGRmKjY1V9+7di/V369ZNcXFxOnTokHr06FHpdQoKCuTp6anc3FxlZWXJw8Oj0nPx0sPaiZ8ZAMBMvPSQlx46Isteemh/t4hhGOrUqZNGjx6tRYsWlTrWzHeN7N+/XxkZGfLz8ysRRCRp9OjRiouL05YtW6oURmw2m5ycnOTk5FTsqgkAAACAqqvSGfbP3y0yZ84cde/evUbeN3L06FFJUlBQUKn99nb7uMowDEOvvvqqcnJy9OCDD8rV1bXScwEAAAAoybRf98+ZM8esqW7K/oSrNm3alNpvb6/ok7BmzJih//znP7py5Yri4uKUmJgof39/vfXWW+Wew36Z6r8lJibKz8+vQvUAAAAAtZlD3nuUlZUlSXJ3dy+13763wz6uvD766KNiT+G64447tH79enXs2LGSlQIAAAAoS6XDiH0vxXfffacuXbpU6N0hNptNBQUFlV26aKO8zWa7YX9Fff/995Kkixcv6vDhw/rjH/+oHj166K9//atCQkLKNUdZG3fKumICAAAA1FWVDiPt2rWTzWYr2pDetm3bMsOB2Tw9PSVJ2dnZpfbn5ORIUtHjfivK29tbQ4YMUa9evRQYGKinn35aDzzwgNq2bVu5gqvBkv8ZbnUJN/XCxq2mzZWTk6MvvvhCW7Zs0cGDB3X69Gldv35dt912mx577DGFh4dX6OfdoUMHJScnl9l//Phx+fv7m1E6AAAAylDpMHL69Okbfl+d2rVrJ0llvmnd3m4fV1leXl4aPny4Vq9erS+//FKhoaFVmg+Vt2HDBk2aNEnST1eZhg4dqitXrigqKkpz5szR+++/rz179qh58+YVmresK15eXhY+WhAAAKCOcMg9I926dZOkMt+Mbm8PDAys8lr296GkpqZWeS5UnouLi55++mlNmzZNnTt3Lmo/f/68HnnkER05ckTPP/+8NmzYUKF5165da3KlAAAAKC+HfENbnz595OXlpcTERB05cqRE/6ZNmyRJw4dX/VYm+1vceRKWtZ566imtXr26WBCRpFatWmnVqlWSpI8//lj5+flWlAcAAIBKqPSVkYo+Nve/VeUWKhcXF4WFhemVV15RWFiYvvjii6InaC1dulRxcXHq27evevbsWfSZlStXauXKlRo5cqQWLlxY1P7Pf/6z6M3wP9/zkpOTo1deeUV79uxRy5YtNXTo0ErXi+plv1KWl5entLQ0tWrVyuKKAAAAUB6VDiMdOnSo9Ib1qj5NS5JmzZqlHTt2KCoqSp07d1a/fv2UnJysmJgYNWvWTJGRkcXGX7x4UQkJCTp//nyx9tjYWM2dO1e+vr7q3r27vLy8dOHCBX3zzTe6dOmSvLy89Pe//73Sm+FR/X744QdJkrOzs5o2bVqhzy5atEiJiYlydXVVQECARo4cKR8fn+ooEwAAAP+l0mHk/vvvr7GnZ5XGzc1Nu3fv1sKFC7VhwwZt3rxZTZo0UUhIiObPn1/uJ1+NGjVKmZmZ2rdvnw4ePKhLly6pQYMGuu222zR58mQ9++yz/Kb9Frds2TJJ0tChQ+Xq6lqhz06fPr3Y99OmTdPy5cs1YcIE0+oDAABA6WxGZV/KgQqxv2ekrPeQSFJhYaESEhIkSV27dpWTU9lbeurao33L8tlnn2n48OGqX7++Dh48WHTL1s0899xzGjhwoHr06CEfHx/98MMPWrNmjZYtW6br16/rk08+0YgRI246T0V+ZgAA3Myd6+60dP1vQ761dH1FWPg0y4jL1q3t4MpznlsWh3yaFiD99C6QJ598UoZhaNGiReUOIpK0fPnyYt8HBARoyZIl6tq1qyZPnqwZM2aUK4wAAACg8qr117iZmZnKzMysziVQR509e1ZDhw5Venq6wsPDNXXqVFPmnThxopo3b66TJ08qKSnJlDkBAABQOtPDyNatWzVs2DB5eXmpcePGaty4sRo1aqRhw4Zpy5YtZi+HOujixYsaPHiwUlJSNH78eC1evNi0uZ2cnIoe4/zfDzsAAACAuUwLI4ZhaMKECQoODtb27duVmZkpLy8vNWrUSFlZWdq+fbtGjBihcePGiW0qqKzMzEwNGzZMJ06c0KhRo/T222+b/iCF9PR0SeIJagAAANXMtDCybNkyRUZGqlWrVnr99dd1+fJlXbp0Senp6bp8+bJef/11tWrVSu+9917R04+AisjLy1NwcLAOHTqkIUOG6P3331e9evVMXSM+Pl4JCQlyd3eXv7+/qXMDAACgONPCyFtvvSV3d3ft27dPkydPlqenZ1Gfp6enJk+erH379qlBgwZ66623zFoWdcT169c1ZswY7d69W/369dPHH38sFxeXG35m5cqV8vf318yZM4u1b9++XYcPHy4xPi4uTo8//rgMw9DEiRNvOj8AAACqxrSnaSUlJemhhx5Sx44dyxzTsWNHDRo0SF988YVZy6KOWLlypT755BNJkre3t6ZMmVLquMWLF8vb21tS2S+6jI6O1ty5c9W+fXv5+fnJx8dHSUlJio2NVUFBgfr376+FCxdW7wEBAADAvDDi4+NTrt8ku7i4FJ0sovJq4h0etxL7Pg5JRaGkNBERETf939eQIUN05swZHTx4UEePHtXly5fVqFEj9e3bV0888YTGjx9v+u1fAAAAKMm0MDJy5Ej97W9/U3p6upo0aVLqmEuXLmnXrl0aO3asWcuijoiIiFBERIQpn+ndu7d69+5tTmEAAACoNNP2jLz88svq1KmTHnjgAe3atatE/65duzR48GB16tRJCxYsMGtZAAAAAA7KtCsjwcHBcnFx0eHDhzV48GA1bdpU7du3lySlpKQoLS1NktSrVy8FBwcX+6zNZtPOnTvNKgUAAACAAzAtjHz11VdFfzYMQ2lpaUUB5Oeio6NLtJn9nggAAAAAtz5Tn6YFAAAAAOVlWhix35IFAAAAAOVh2gZ2AAAAAKgI066M/FxKSorOnz+vvLy8Msfcf//91bG0Q/v53pnr16/LyYmseKu7fv160Z/Z+wQAAFAxpoaRd955R6+88oqSk5NvOvbnJ3H4ic1mk6urq/Ly8nTlyhU1a9bM6pJwE1euXJEkubq6EkYAAAAqyLQw8vrrryssLEyGYah79+7y8/OTh4eHWdPXGU2aNNGFCxf0448/qqCgQJ6enpzo3mIMw1BeXp4yMzN16dIlSSrzRZ8AAAAom2lhZOnSpXJxcdGnn36qBx54wKxp6xwvLy/l5uYqIyNDly5dKjrZxa2rcePG8vLysroMAAAAh2NaGDl79qwGDhxIEKkiJycntWzZUh4eHsrMzFR2dja3tN2C6tWrJw8PD3l6esrT05MrVwAAAJVgWhhp166dDMMwa7o6zWazqVGjRmrUqJGkn24L4u/21mGz2QgfAAAAJjAtjISEhOjPf/6zzp8/r1atWpk1LcTJLwAAAGon054dO2PGDA0YMEBDhw7V3r17zZoWAAAAQC1l2pWRevXq6c0339SgQYM0cOBAubi4qGXLlqX+Rt9msykxMdGspQEAAAA4INPCyPHjxzVw4EClpqYWPfq0PO8bAQAAAFA3mXab1gsvvKAff/xRISEhiouLU1ZWlgoLC8v8AgAAAFC3mXZl5F//+pcCAwO1Zs0as6YEAAAAUIuZdmXExcVFnTt3Nms6AAAAALWcaWFk4MCB+uabb8yaDgAAAEAtZ1oYefXVV5Wenq7p06ezJwQAAADATZm2Z+Rvf/ubhg8friVLlmjz5s0aMGCAWrduXeajfWfPnm3W0gAAAAAckGlhJCIiQjabTYZh6Pvvv9f3339f5ljCCAAAAADTwkhkZKRZUwEAAACoA0wLIyEhIWZNBQAAAKAOMG0DOwAAAABUBGEEAAAAgCVMu01LkgzD0Pr16/WPf/xDp06dUmZmpgzDKDHOZrMpMTHRzKUBAAAAOBjTwkh+fr4eeeQR7dq1q9QAIqnoaVsAAAAAYNptWkuWLNHOnTs1fPhwnTp1Sr/5zW9ks9mUl5en48ePKyIiQh4eHvp//+//8VJEAAAAAOZdGdm4caOaNm2qDRs2yMPDQ05OP+UcZ2dnde3aVS+99JIGDhyogQMHqmvXrgoNDTVraQAAAAAOyLQrI99//73uueceeXh4/DTx/4aR69evF43p16+f+vTpo9WrV5u1LAAAAAAHZVoYqVevnho1alT0vT2UpKamFhvXunVrJSQkmLUsAAAAAAdlWhhp3bq1UlJSir6/7bbbJEkHDhwoNi4uLk4NGzY0a1kAAAAADsq0MNKrVy/Fx8fr6tWrkqSHH35YkjR16lRt27ZN3377rZ599lkdP35c9957r1nLAgAAAHBQpoWRxx57TO7u7vryyy8l/XRl5Pnnn9eZM2c0fPhw3XXXXVq1apXc3d31pz/9yaxlAQAAADgo056m9cgjj+j8+fPF2pYsWaKePXtq8+bNSk9PV5cuXfTcc8+pc+fOZi0LAAAAwEGZ+gb20vz617/Wr3/96+peBgAAAICDMe02LQAAAACoCMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlqu09I2lpaTp37pwkqVWrVvL29q6upQAAAAA4IFOvjBiGoZUrV+oXv/iFmjdvrrvuukt33XWXWrRooV/84hdasWKFCgsLzVwSAAAAgIMy7cpIXl6eHn30Ue3cuVOGYahJkyZq3769DMNQSkqKEhIS9Pzzz+uf//yntm7dKldXV7OWBgAAAOCATLsysmDBAu3YsUMBAQHatm2b0tLSFBsbqyNHjigtLU3btm3THXfcoV27dmnBggVmLQsAAADAQZkWRv72t7+pcePG2r17t4YMGVKif8iQIdq5c6e8vLz03nvvmbUsAAAAAAdlWhg5d+6cBg0apGbNmpU5xtvbWw888IDOnz9v1rIAAAAAHJRpYaR169bKz8+/6bhr167J19fXrGUBAAAAOCjTwsgTTzyhnTt3Kjk5ucwxycnJ2rlzp8aOHWvWsgAAAAAclGlhZNasWRo0aJDuv/9+rVmzRtnZ2UV92dnZWrNmjfr3769BgwbppZdeMmtZAAAAAA6q0o/27dSpU4k2wzB09uxZTZo0SZMmTVKTJk0kSenp6UVjbDab/P39lZiYWNmlAQAAANQClQ4jp0+fvumYS5culWi70W1cAAAAAOqOSocR3qQOAAAAoCpM2zMCAAAAABVBGAEAAABgCdPDyLFjxzRlyhTdeeedatasmby9vXXnnXfqmWee0bFjx8xeDgAAAICDMjWMLFu2TEFBQXrzzTcVHx+v9PR0Xbp0SfHx8Xr99dcVFBSkZcuWmbZebm6u5syZoy5dusjNzU2+vr4KDQ3V2bNnyz1HRkaGNmzYoLFjx+r222+Xh4eHPD09de+992rZsmW6du2aafUCAAAA+D+mhZEvv/xS06ZNk4uLi6ZNm6YjR44oPT1dGRkZ+uabb/TCCy/I1dVV4eHh2rlzZ5XXy83N1aBBgzRv3jxlZWUpODhYbdu2VWRkpIKCgsr96ODFixfriSee0MaNG+Xu7q5HH31U99xzj44eParnn39eDzzwgHJycqpcLwAAAIDiTAsjS5cuVf369fXFF19o8eLF6tatm7y8vNSoUSMFBgZq0aJF+uKLL+Tk5KQlS5ZUeb0FCxYoKipKvXv31smTJ7Vx40bFxMRoyZIlSk1NVWhoaLnmadiwof7whz8oJSVFhw4d0gcffKCdO3fq22+/Vbt27bR//369/PLLVa4XAAAAQHE2wzAMMyZq1qyZgoKC9OWXX95w3ODBgxUbG6u0tLRKr3Xt2jU1b95cGRkZio2NVffu3Yv1d+vWTXFxcTp06JB69OhR6XXef/99jR07Vh06dFBSUlKl55GkgIAASVJ8fHyV5gEAALXXnevutHT9b0O+tXR9RXhZuPZl69Z2cFU5zzXtykhOTo58fHxuOs7Hx6fKtz3t379fGRkZ8vPzKxFEJGn06NGSpC1btlRpnW7dukmSzp07V6V5AAAAAJRkWhhp27atoqOjdf369TLHFBQUKDo6Wm3btq3SWkePHpUkBQUFldpvb7ePq6wffvhBktSyZcsqzQMAAACgJNPCSHBwsJKTkzVx4kRduXKlRP+VK1c0adIkpaSkaMSIEVVaKyUlRZLUpk2bUvvt7fZxlWV/8ldwcHCV5gEAAABQUn2zJpo5c6Y+/vhjvfvuu9q8ebMefvhhdejQQTabTUlJSfr000915coVderUSTNnzqzSWllZWZIkd3f3Uvs9PDyKjauMN954Qzt27FDjxo314osvlvtz9nvm/ltiYqL8/PwqXQ8AAABQ25gWRpo2baq9e/fqd7/7nT799FO9//77JcY88sgjevPNN9WkSZMqrWXfc2+z2W7YX1l79uzR1KlTZbPZtGbNGvn6+lZpPgAAAAAlmRZGJKl169basmWLkpKStH///qKN376+vurbt686duxoyjqenp6SpOzs7FL77RvkGzZsWOG54+LiNGLECOXn52v58uUaOXJkhT5f1lMEyrpiAgAAANRVpoWRoKAg+fn56cMPP1THjh1NCx6ladeunSSV+aZ1e7t9XHklJiZqyJAhysjIUEREhJ599tmqFQoAAACgTKZtYE9ISJCzs7NZ092Q/ZG7sbGxpfbb2wMDA8s957lz5zR48GBduHBBU6dO1Zw5c6peKAAAAIAymRZGOnfuXKUXGVZEnz595OXlpcTERB05cqRE/6ZNmyRJw4cPL9d86enpGjJkiJKSkjR+/Hi99tprptYLAAAAoCTTwsiECRO0Z88enThxwqwpy+Ti4qKwsDBJUlhYWLG9I0uXLlVcXJz69u2rnj17FrWvXLlS/v7+JZ7klZOTo4cffljHjh3Tr371K7399ttlbowHAAAAYB7T9ow8++yzio+PV//+/fXiiy/q0UcfVbt27eTi4mLWEsXMmjVLO3bsUFRUlDp37qx+/fopOTlZMTExatasmSIjI4uNv3jxohISEnT+/Pli7X/84x914MAB1atXT/Xr19eECRNKXW/t2rXVchwAAABAXWVaGKlXr56knx6r+/vf/16///3vyxxrs9lUUFBQpfXc3Ny0e/duLVy4UBs2bNDmzZvVpEkThYSEaP78+eV+y3t6erok6fr169qwYUOZ4wgjAAAAgLlsRlVfyvG/7C84LK+kpCQzlnUY9kf7lvXoXwAAgDvX3Wnp+t+GfGvp+orwsnDty9at7eCqcp5r2pWR06dPmzUVAAAAgDrA1JceAgAAoPIyj79qdQlAjTLtaVqlyczMVGZmZnUuAQAAAMBBmR5Gtm7dqmHDhsnLy0uNGzdW48aN1ahRIw0bNkxbtmwxezkAAAAADsq0MGIYhiZMmKDg4GBt375dmZmZ8vLyUqNGjZSVlaXt27drxIgRGjdunEzaMw8AAADAgZkWRpYtW6bIyEi1atVKr7/+ui5fvqxLly4pPT1dly9f1uuvv65WrVrpvffe07Jly8xaFgAAAICDMi2MvPXWW3J3d9e+ffs0efJkeXp6FvV5enpq8uTJ2rdvnxo0aKC33nrLrGUBAAAAOCjTwkhSUpIGDRqkjh07ljmmY8eOGjRoUJ17xwgAAACAkkwLIz4+PnJxcbnpOBcXF3l7e5u1LAAAAAAHZVoYGTlypHbt2qX09PQyx1y6dEm7du3SiBEjzFoWAAAAgIMyLYy8/PLL6tSpkx544AHt2rWrRP+uXbs0ePBgderUSQsWLDBrWQAAAAAOyrQ3sAcHB8vFxUWHDx/W4MGD1bRpU7Vv316SlJKSorS0NElSr169FBwcXOyzNptNO3fuNKsUAAAAAA7AtDDy1VdfFf3ZMAylpaUVBZCfi46OLtFms9nMKgMAAACAgzAtjPCELAAAAAAVYVoYsd+SBQAAAADlYdoGdgAAAACoCMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlHDqM5Obmas6cOerSpYvc3Nzk6+ur0NBQnT17tkLz7NmzR3PnztUjjzwiHx8f2Ww2+fv7V1PVAAAAACSpvtUFVFZubq4GDRqkqKgotWrVSsHBwTp9+rQiIyO1detWRUdHy8/Pr1xzTZ06VUePHq3migEAAAD8nMNeGVmwYIGioqLUu3dvnTx5Uhs3blRMTIyWLFmi1NRUhYaGlnuuhx56SK+88oq++OILxcbGVmPVAAAAAOwc8srItWvXtGLFCknSqlWr1LBhw6K+8PBwrVu3Tnv37tXhw4fVo0ePm8735z//uejPp0+fNr1eAAAAACU55JWR/fv3KyMjQ35+furevXuJ/tGjR0uStmzZUtOlAQAAACgnhwwj9v0dQUFBpfbb29kHAgAAANy6HPI2rZSUFElSmzZtSu23t9vH1aSAgIBS2xMTE8u9oR4AAACoCxzyykhWVpYkyd3dvdR+Dw+PYuMAAAAA3Hoc8sqIYRiSJJvNdsN+K8THx5faXtYVEwAAAKCucsgrI56enpKk7OzsUvtzcnIkqdhTtgAAAADcWhwyjLRr106SynzTur3dPg4AAADArcchw0i3bt0kqcwXFNrbAwMDa6wmAAAAABXjkGGkT58+8vLyUmJioo4cOVKif9OmTZKk4cOH13RpAAAAAMrJIcOIi4uLwsLCJElhYWHF9o4sXbpUcXFx6tu3r3r27FnUvnLlSvn7+2vmzJk1Xi8AAACAkhzyaVqSNGvWLO3YsUNRUVHq3Lmz+vXrp+TkZMXExKhZs2aKjIwsNv7ixYtKSEjQ+fPnS8z117/+VX/9618lSXl5eZKk5ORk9erVq2jM6tWry3zJIgAAAICKc9gw4ubmpt27d2vhwoXasGGDNm/erCZNmigkJETz589X27Ztyz3X2bNnFRMTU6wtNze3WNuVK1dMqx0AAACAZDOsfClHHWJ/z0hZ7yEBAADo8OKnlq5/+tVHLF1fEV4Wrn3ZurUdXFXOcx1yzwgAAAAAx0cYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxR3+oCAAAAfu64/y8sW/sXJ45btjZQF3FlBAAAAIAlCCMAAAAALMFtWgAAAIDFOrz4qaXrn371EUvW5coIAAAAAEsQRgAAAABYgjACAAAAwBLsGQEAALeUX/z6nNUlAKghXBkBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJZw6DCSm5urOXPmqEuXLnJzc5Ovr69CQ0N19uzZCs+VkZGh559/Xu3bt5erq6vat2+vqVOnKiMjw/zCAQAAADhuGMnNzdWgQYM0b948ZWVlKTg4WG3btlVkZKSCgoKUmJhY7rnS0tJ0zz33aNmyZapfv75GjBghT09PLV++XD179lRaWlo1HgkAAABQNzlsGFmwYIGioqLUu3dvnTx5Uhs3blRMTIyWLFmi1NRUhYaGlnuuadOm6dSpUxo1apQSEhK0ceNGHTt2TM8++6y+//57hYeHV+ORAAAAAHWTQ4aRa9euacWKFZKkVatWqWHDhkV94eHhCgwM1N69e3X48OGbznXhwgWtX79ezs7OWr16terXr1/Ut2jRIvn4+Gj9+vX6z3/+Y/6BAAAAAHWYQ4aR/fv3KyMjQ35+furevXuJ/tGjR0uStmzZctO5tm3bpsLCQt1///1q0aJFsT5XV1c9+uijun79urZt22ZO8QAAAAAkOWgYOXr0qCQpKCio1H57u31cTc0FAAAAoPzq33zIrSclJUWS1KZNm1L77e32cTU1lyQFBASU2n7ixAk5OzuX2Q8AgF1iRvkfwlId/Br7Wbq+UrOsW/tDa/+dPvcfC49dUsCWhjcfVJ342VumKj/7xMREOTs7V+qzDhlGsrJ++mG5u7uX2u/h4VFsXE3NdSM2m63SPyQz2J8u5udn8T8wFqjLxy7V7ePn2OvmsUuOf/xVCQOOfuySJB//Sn/U0Y+/c4uqnRBKjnvskir9s68Nx+7IP3tnZ+eic+aKcsgwYhiGpJ9O8G/UX9NzSVJ8fHyFxtcU+xWZW7W+6lSXj12q28fPsdfNY5fq9vHX5WOX6vbxc+x189glxz5+h9wz4unpKUnKzs4utT8nJ0eSij1lqybmAgAAAFB+DhlG2rVrJ0llvmnd3m4fV1NzAQAAACg/hwwj3bp1kyTFxsaW2m9vDwwMrNG5AAAAAJSfQ4aRPn36yMvLS4mJiTpy5EiJ/k2bNkmShg8fftO5hg4dKicnJ+3bt08//vhjsb68vDxt2bJFTk5OGjZsmDnFAwAAAJDkoGHExcVFYWFhkqSwsLBi+z2WLl2quLg49e3bVz179ixqX7lypfz9/TVz5sxic7Vq1UpjxoxRfn6+pkyZooKCgqK+6dOnKzU1VWPHjlXLli2r+agAAACAusVmVPRxUbeI3NxcDRgwQDExMWrVqpX69eun5ORkxcTEqFmzZjpw4IBuu+22ovERERGaO3euQkJCtHbt2mJzXbx4Ub169VJiYqL8/Px09913Kz4+XseOHZOfn58OHDggb2/vGj5CAAAAoHZzyCsjkuTm5qbdu3dr9uzZcnd31+bNm3X69GmFhIToyJEjxYLIzXh7e+vgwYN69tlnlZ+fr08++USXL19WWFiYvv76a4IIAAAAUA0c9soIAAAAAMfmsFdGAAAAADg2wggAAAAASxBGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGGkFsvNzdWcOXPUpUsXubm5ydfXV6GhoTp79qzVpVW7w4cP69VXX9WoUaPUunVr2Ww2ubm5WV1WtcvJydHmzZs1YcIEBQYGqlGjRvLw8FC3bt00b948ZWVlWV1itVu6dKlGjRqlzp07y8vLS66urmrfvr1CQkIUHx9vdXk16tKlS2revLlsNpv8/f2tLqfaDRgwQDabrcyvzz//3OoSq92FCxc0bdo0denSRQ0aNFDTpk3Vo0cPTZ8+3erSqs1XX311w5+7/WvevHlWl1ptDhw4oMcee0wtW7aUs7OzmjZtqkGDBmnTpk1Wl1btDhw4oODgYHl7e8vNzU1dunTRrFmzlJOTY3Vppqjs+cy7776re+65Rw0bNlTTpk318MMPKyoqqgYqrjjeM1JL5ebmatCgQYqKiip6Q/3p06f19ddfy8fHR9HR0fLz87O6zGozYsQI/eMf/yjW5urqqtzcXIsqqhl//etfNWnSJElSQECAbr/9dl25ckVRUVHKzMyUv7+/9uzZo+bNm1tcafXx9vZWdna2AgMD1bp1a0lSfHy8Tp48KRcXF23evFnDhg2zuMqaMW7cOL377rsyDENdu3bViRMnrC6pWg0YMEB79uzRY489poYNG5bof+GFF3TnnXdaUFnNiI6O1sMPP6yMjAzdfvvtuuOOO5SZmanvvvtOZ8+eVUFBgdUlVosTJ07o1VdfLbXv+vXr+tvf/iZJ2rVrlwYOHFiTpdWIDz/8UL/+9a9VWFiou+++W35+fjp37pz+9a9/qbCwUDNmzCjz78fRrV+/XiEhIbp+/bp69Oihdu3a6dChQzpz5oy6deumffv2ydPT0+oyq6Qy5zPh4eF67bXX1KBBAz300EPKzc3Vzp07ZRiGPvzwQ40cObK6y64YA7XS7NmzDUlG7969jczMzKL2JUuWGJKM+++/38Lqqt+rr75qvPTSS8aWLVuMCxcuGJIMV1dXq8uqduvWrTOefvpp4+TJk8Xaz507Z3Tv3t2QZIwZM8ai6mrG/v37jatXr5ZoX716tSHJ8PX1NQoKCiyorGbt2LHDkGT89re/NSQZXbt2tbqkate/f39DkpGUlGR1KTXu3//+t9G4cWOjQYMGxscff1yiPyYmxoKqrPfZZ58Zkoy2bdsa169ft7oc0127ds3w8fExJBkffPBBsb6oqCjDzc3NsNlsxvfff29RhdXnzJkzhpubmyHJWLNmTVF7bm6u8fjjjxuSjN/97ncWVmiOip7P7Ny505BkNGvWrNi5QFRUlOHi4mJ4eXkZly5dqonSy40wUgvl5+cbjRs3NiQZsbGxJfoDAwMNScahQ4csqM4adSWM3EhUVFTR30NeXp7V5VjitttuMyQZ8fHxVpdSrXJycozbbrvNuP32242TJ08SRuqA3/zmN4YkY8WKFVaXcksZO3asIcl48cUXrS6lWnz77beGJMPf37/U/uDgYEOSsXHjxhqurPrNnz/fkGQMHjy4RN+PP/5ouLu7G87OzsbFixctqK763Ox85uGHHzYkGa+99lqJvueee86QZCxevLgaK6w49ozUQvv371dGRob8/PzUvXv3Ev2jR4+WJG3ZsqWmS4OFunXrJknKy8tTWlqaxdVYo169epIkFxcXiyupXnPnzlViYqJef/11OTs7W10Oqll6err+/ve/y8vLSxMnTrS6nFtGdnZ20e0tTz75pMXVVA9XV9dyjWvatGk1V1LzDh8+LOmn2zP/m4+Pj26//XZdu3ZNn332WQ1XZh377VjS/53r/dytev5X3+oCYL6jR49KkoKCgkrtt7fbx6Fu+OGHHySpaHNjXfPuu+8qISFBXbp0UadOnawup9rExcVpyZIlGj9+vO6//36dPn3a6pJq3DvvvKO0tDQ5OTmpS5cuGjFihNq1a2d1WdXmX//6l/Ly8vTggw/K2dlZmzZt0v79+3Xt2jX5+/vrV7/6lVq0aGF1mTXu448/VnZ2trp3766AgACry6kWnTp1UqdOnXTixAn9/e9/169+9auivujoaG3fvl0dO3bU/fffb2GV1SM7O1uS1KRJk1L77f/OHT16VL/5zW9qrC4rnThxQnl5efLx8VGbNm1K9NvP/+Li4mq6tBsijNRCKSkpklTq/xB/3m4fh7ph2bJlkqShQ4eW+7dpjmzRokWKj49Xdna2jh8/rvj4ePn6+mrDhg1ycqqdF4ULCws1adIkNW7cWH/+85+tLscyL7/8crHvf//732v27NmaPXu2RRVVL/tT4lq0aKF+/fopOjq6WP/MmTMVGRmpxx9/3IryLGPfuF6bT0Tr1auntWvX6tFHH9X//M//aNGiRfLz89P58+e1f/9+3XPPPXrvvfdq5dVgHx8fSVJycnKp/fb2uvQLmZud/3l4eKhx48ZKT09XZmbmLbO5v3b+i1zH2R/f6u7uXmq/h4dHsXGo/T777DO98847cnZ21vz5860up0Zs375d69at06ZNmxQfH6+2bdtqw4YN6tGjh9WlVZsVK1bo66+/1qJFi9SsWTOry6lx999/v9577z0lJiYqJydHCQkJeuWVV1S/fn299NJLRYG8tklPT5f009W/uLg4vfPOO0pNTVVSUpLCw8OVnZ2tJ5988pb7bWh1unDhgnbu3Kl69eppzJgxVpdTrfr166c9e/aoY8eOOnTokDZu3Ki9e/fKw8NDDz74oHx9fa0usVr0799fkvT+++8rPz+/WN+BAweUkJAgScrMzKzx2qxys/M/6dY8BySM1ELG/z6t2Waz3bAfdcPx48f15JNPyjAMLVq0qGjvSG23Y8cOGYah9PR07d27V127dtWAAQP0yiuvWF1atThz5oxmzZql/v37a9y4cVaXY4l58+bpySefVKdOndSgQQN16dJFf/jDH7R582ZJ0pw5c3T16lVri6wG169flyQVFBRo6dKlCg0Nlbe3tzp06KAlS5Zo9OjRys/Pr1NXyzZs2KDr169r8ODBatmypdXlVKv3339f9957r9q1a6eYmBhlZWXp5MmTGjNmjF5++WU9+OCDunbtmtVlmu6JJ55Qu3btlJKSouDgYMXHxyszM1Off/65Hn/8cdWv/9PNP7X1Snhpbnb+9/Mxt5K68xOqQ+yX3ez3U/43+4uASnsOP2qXs2fPaujQoUpPT1d4eLimTp1qdUk1rnHjxurXr58+++wz9ejRQ7Nnz9bBgwetLst0U6ZMUX5+vl5//XWrS7nlPPTQQ7r77rt1+fJlHThwwOpyTGf//3wnJyeFhISU6A8NDZX008sB64q6cIuWJJ06dUohISHy8fHRp59+qnvuuUceHh7q3Lmz3nzzTT366KOKjo5WZGSk1aWazsPDQ1u3blW7du30+eef64477lCjRo00bNgwOTk5KTw8XFLZe0pqo5ud/0m35jkgYaQWsm/ULOtN6/b22ryhE9LFixc1ePBgpaSkaPz48Vq8eLHVJVnK2dlZ//M//yPDMG65J4mYYevWrXJ3d9fTTz+tAQMGFH39+te/lvTTvcT2tlvp8nxN6dy5syTp/PnzFldivg4dOkiSWrZsWep+MHv/jz/+WINVWef48eM6cuSIGjZsqBEjRlhdTrX64IMPdO3aNQ0dOrTo9pufs29or61B9M4779SJEye0bt06Pfvss3r66af1xhtv6NixY0VjauvDC0pzs/O/7OxsZWRkqHHjxrfMfhGJDey1kv02nNjY2FL77e2BgYE1VhNqVmZmpoYNG6YTJ05o1KhRevvtt2942bau8Pb2liSlpqZaXEn1yMjI0J49e0rtu3r1alFfbX0T943Y91XcSr8NNIv9Ee7p6ekyDKPEf+v2R3nXxmMvzXvvvSdJGjVq1A3vna8N7CedjRo1KrXf3n7p0qUaq6mmNWjQQE899ZSeeuqpYu07duyQVPqjf2urrl27ytXVVampqTp79myJjey36vkfV0ZqoT59+sjLy0uJiYk6cuRIif5NmzZJkoYPH17TpaEG5OXlKTg4WIcOHdKQIUP0/vvvF71fo66zn4z7+flZXIn5jJ9eYlviKykpSdJP/0jZ2xo3bmxtsTUsNTVV+/btk1T2I88d2Z133qmOHTvq6tWriomJKdFv/614bTz2/2YYhjZs2CCp9t+iJaloP8yhQ4dK7bffkmq/OlZX7NmzR7GxsQoICFCfPn2sLqfGNGjQQA888ICk/zvX+7lb9vyvxl+ziBrxxz/+0ZBk3HfffUZWVlZR+5IlSwxJRt++fS2sruapjryBvaCgwBg5cqQhyejXr5+RnZ1tdUk1au/evcYHH3xgXLt2rVh7fn6+sXz5csPJyclo0KCBkZKSYlGFNS8pKalOvIE9Ojra2LVrl1FYWFisPSkpyejTp48hyfjlL39pUXXV74033jAkGT179jRSU1OL2g8dOmQ0btzYkGR8+OGHFlZYM/bs2WNIMnx9fY3r169bXU61O3z4sCHJkGSsXr26WF90dLTh4eFhSDK+/PJLiyqsXkeOHCnx//eHDx82fH19DZvNZuzatcuiyqrPzc5nvvzyS0OS0axZM+PkyZNF7VFRUYarq6vRqFEjIy0trSZKLTdu06qlZs2apR07digqKkqdO3dWv379lJycrJiYGDVr1qxWbmb7uU8//bTEI2zz8/PVq1evou9nz56tRx55pKZLq1YrV67UJ598IumnW5KmTJlS6rjFixcX3bJUmyQmJmr8+PHy9vZWjx491KxZM128eFHffvutzp8/Lzc3N61du1Zt27a1ulSY7MSJExo/frxatWqlLl26qGXLljp79qwOHz6s3NxcBQQE6O2337a6zGozadIk7dy5Ux9++KG6du2q++67T1lZWYqKilJ+fr4mTZpU6huZaxv7xvUnnniiTjxFKSgoSL///e+1ePFiTZkyRatWrdLtt9+uc+fOKTo6WoWFhfrtb3+rBx980OpSq8Xzzz+v7777TnfddZe8vb11+vRpxcTEyMnJSW+++aYGDhxodYlVVtHzmQcffFBTp07VsmXLdNddd2nw4MHKz8/Xl19+qcLCQq1fv/7We/Gx1WkI1ScnJ8eYPXu24efnZ7i4uBgtWrQwQkJC6sRvhSMjI4t+W1TWV2RkpNVlmm7OnDk3PW5JRlJSktWlVosffvjB+MMf/mD06dPHaNWqleHs7Gx4eHgYAQEBxrPPPmucOnXK6hJrXF25MvLdd98ZTz/9tBEUFGT4+PgY9evXN7y8vIxevXoZS5YsMXJycqwusdpdv37dWLVqldG9e3fD3d3d8PDwMO677z7j3Xfftbq0GpGbm2s0adLEkGQcPXrU6nJq1Mcff2w89NBDRrNmzYz69esbTZo0MQYOHGisX7/e6tKq1dtvv23079/f8PHxMZydnQ1fX19j7NixxpEjR6wuzTSVPZ+JjIw0evToYbi7uxteXl7GkCFDjH379tX8AZSDzTBuwQcOAwAAAKj1av81TAAAAAC3JMIIAAAAAEsQRgAAAABYgjACAAAAwBKEEQAAAACWIIwAAAAAsARhBAAAAIAlCCMAAAAALEEYAQAAAGAJwggAAAAASxBGAAAAAFiCMAIAcGg2m002m01NmjRRRkZGqWMiIiJks9n06quv1mxxAIAbIowAAGqFjIwMvfbaa1aXAQCoAMIIAMDhOTk5ycXFRX/5y1+Unp5udTkAgHIijAAAHJ6zs7MmTpyoK1euaOnSpVaXAwAoJ8IIAKBW+MMf/iBXV1ctW7ZMly5dsrocAEA5EEYAALVC69atNWnSJGVmZmrJkiVWlwMAKAfCCACg1pg5c6bc3Ny0YsUKpaWlWV0OAOAmCCMAgFrD19dXv/3tb5WZmanFixdbXQ4A4CYIIwCAWuXFF1+Um5ubVq5cqYsXL1pdDgDgBggjAIBapVWrVvrd736nrKwsLVq0yOpyAAA3QBgBANQ6M2bMUIMGDbRq1SqlpqZaXQ4AoAyEEQBArdOyZUs9/fTTys7O1p///GerywEAlIEwAgColWbMmCF3d3etXr1a//nPf6wuBwBQCsIIAKBWat68uaZMmaKcnBytW7fO6nIAAKUgjAAAaq3p06fLw8NDV69etboUAEApCCMAgFrLx8dHzzzzjNVlAADKYDMMw7C6CAAAAAB1D1dGAAAAAFiCMAIAAADAEoQRAAAAAJYgjAAAAACwBGEEAAAAgCUIIwAAAAAsQRgBAAAAYAnCCAAAAABLEEYAAAAAWIIwAgAAAMAShBEAAAAAliCMAAAAALAEYQQAAACAJQgjAAAAACxBGAEAAABgCcIIAAAAAEsQRgAAAABY4v8DeAtWBguUaZ4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# split into ms occupations\n", + "fig, (ax1) = plt.subplots(1,1,figsize=(6,4), dpi=150)\n", + "\n", + "spin_occ_five = res.groupby(['N', '|m_s|']).sum()\n", + "pivot_df = spin_occ_five.pivot_table(index='N', columns='|m_s|', values='prob')\n", + "pivot_df.plot.bar(stacked = True, rot=0, ax = ax1)\n", + "\n", + "ax1.set_ylabel(r'prob amplitude')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f5111521-4e2b-4bce-8270-654883a31cd6", + "metadata": {}, + "source": [ + "This concludes the tutorial. This you can try next:\n", + "\n", + "* try to find the transition temperature of the system by increasing the temperature in DMFT\n", + "* improve the accuracy of the resulting self-energy by restarting the dmft calculation with more n_cycles_tot " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/INCAR b/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/INCAR new file mode 100644 index 00000000..a82aba30 --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/INCAR @@ -0,0 +1,16 @@ +SYSTEM = PrNiO3 +ICHARG = 1 + +EDIFF = 1E-10 +ISYM = -1 +NELMIN = 10 + +ISMEAR = -5 + +LMAXMIX = 6 +KPAR=2 +LORBIT = 14 + +LWAVE = TRUE +LCHARG = TRUE + diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/KPOINTS b/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/KPOINTS new file mode 100644 index 00000000..3bca6a83 --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/KPOINTS @@ -0,0 +1,5 @@ +Automatic kpoint scheme +0 +M +6 6 4 +0 0 0 diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/POSCAR b/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/POSCAR new file mode 100644 index 00000000..8603ee76 --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/1_dft_scf/POSCAR @@ -0,0 +1,28 @@ +PrNiO3 +1.0000000000000000 + 5.4402908379016592 -0.0000000000000001 0.0000000000000000 + 0.0000000000000003 5.4197165967367118 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 7.6865924864886876 + Pr Ni O + 4 4 12 +Direct + 0.9925004811478786 0.0360095115625612 0.2500000000000000 + 0.0074995188521214 0.9639904884374388 0.7500000000000000 + 0.4925004811478786 0.4639904884374388 0.7500000000000000 + 0.5074995188521214 0.5360095115625612 0.2500000000000000 + 0.5000000000000000 0.0000000000000000 0.0000000000000000 + 0.0000000000000000 0.5000000000000000 0.0000000000000000 + 0.5000000000000000 0.0000000000000000 0.5000000000000000 + 0.0000000000000000 0.5000000000000000 0.5000000000000000 +0.7244596839579465 0.2829997850927632 0.0379419462321593 +0.7176953261668324 0.2762354273016492 0.4620580507678369 +0.2755403160420465 0.7170002449072392 0.9620580797678429 +0.2823046738331605 0.7237646026983533 0.5379419202321571 +0.2176953261668395 0.2237645726983508 0.9620580797678429 +0.2244596839579535 0.2170002149072368 0.5379419202321571 +0.7823046738331676 0.7762353973016467 0.0379419462321593 +0.7755403160420535 0.7829997550927608 0.4620580507678369 +0.5682970898526349 0.0063067516834749 0.7466178211044430 +0.0682971188526338 0.4936932483165251 0.2466178211044430 +0.9317029101473651 0.5063067816834774 0.7533821788955570 +0.4317028811473662 0.9936932183165226 0.2533821788955570 diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/dmft_config.toml b/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/dmft_config.toml new file mode 100644 index 00000000..42227590 --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/dmft_config.toml @@ -0,0 +1,48 @@ +[general] +seedname = "vasp" +set_rot = "hloc" + +csc = true + + +prec_mu = 0.001 + +h_int_type = "kanamori" +U = 2.50 +J = 0.50 +beta = 40 + +g0_mix = 0.95 +n_iter_dmft_first = 4 +n_iter_dmft_per = 2 +n_iter_dmft = 26 +h5_save_freq = 5 + +dc = true +dc_type = 1 +dc_dmft = true + +calc_energies = true + +[solver] +type = "cthyb" +n_l = 33 +length_cycle = 1000 +n_warmup_cycles = 10000 +n_cycles_tot = 2e+6 +imag_threshold = 1e-5 +legendre_fit = true +measure_density_matrix = true +measure_pert_order = true + +[dft] +n_iter = 4 +# as of openmpi ver 4.0.7 there is a problem running with more than one core +# use OMP_NUM_THREADS instead +n_cores = 1 +dft_code = "vasp" +dft_exec = "vasp_std" +mpi_env = "default" +plo_cfg = "plo.cfg" +projector_type = "plo" +store_eigenvals = true diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/plo.cfg b/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/plo.cfg new file mode 100644 index 00000000..deea85c0 --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/plo.cfg @@ -0,0 +1,16 @@ + +[General] +DOSMESH = -1.5 2.5 3001 + +[Group 1] +SHELLS = 1 +NORMALIZE = True +# fermi = 4.9951850 +EWINDOW = -0.4 2.5 +# band window 88 96 +BANDS = 88 96 + +[Shell 1] +LSHELL = 2 +IONS = [5 8] [6 7] +TRANSFILE = rotations.dat diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/rotations.dat b/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/rotations.dat new file mode 100644 index 00000000..a6e9087f --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/2_dmft_csc/rotations.dat @@ -0,0 +1,16 @@ +# site 0 +0.934903328236 0.158756134373 0.24446845897 -0.0832730502507 -0.184534626354 +0.241735350757 0.0675036811638 -0.923852038988 0.280885007209 -0.0678844312449 + +# site 1 +0.886420310595 -0.155063632081 -0.374797078314 -0.130782073983 0.18065852369 +0.373255694678 -0.0970829976258 0.874072833311 0.277991821882 0.0998614389929 + +# site 2 +0.920463359629 -0.164443872384 0.281060719559 0.102020995995 -0.190530849766 +0.278741259742 -0.079548854677 -0.908551705266 -0.289951275964 -0.0802330746182 + +# site 3 +0.89603649378 0.14856834824 -0.36187736207 0.117578327229 0.173971720414 +0.360062242083 0.0880637654722 0.884495740853 -0.268172655037 0.0913819814928 + diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.html b/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.html new file mode 100644 index 00000000..e2fbe557 --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.html @@ -0,0 +1,960 @@ + + + + + + + 2. CSC with VASP PLOs: charge order in PrNiO3 — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+
[1]:
+
+
+
import numpy as np
+import matplotlib.pyplot as plt
+
+from h5 import HDFArchive
+from triqs.gf import BlockGf
+
+
+
+
+
[2]:
+
+
+
plt.rcParams['figure.figsize'] = (8, 4)
+plt.rcParams['figure.dpi'] = 150
+
+
+
+

Disclaimer: charge self-consistent (CSC) calculations are heavy. The current parameters won’t give well converged solution but are tuned down to give results in roughly 150 core hours.

+
+

2. CSC with VASP PLOs: charge order in PrNiO3

+

Set the variable read_from_ref below to False if you want to plot your own calculated results. Otherwise, the provided reference files are used.

+
+
[3]:
+
+
+
# Reads files from reference? Otherwise, uses your simulation results
+read_from_ref = True
+path_mod = '/ref' if read_from_ref else ''
+
+
+
+

PrNiO3 is a perovskite that exhibits a metal-insulator transition coupled to a breathing distortion and charge disproportionation, see here. In this tutorial, we will run DMFT calculation on the low-temperature insulating state. We will do this in a CSC way, where the correlated orbitals are defined by projected localized orbitals (PLOs) calculated with VASP.

+
+

1. Running the initial scf DFT calculation

+

(~ 2 core hours)

+

To get started, we run a self-consistent field (scf) DFT calculation:

+
    +
  • Go into folder 1_dft_scf

  • +
  • Insert the POTCAR as concatenation of the files PAW_PBE Pr_3, PAW_PBE Ni_pv and PAW_PBE O distributed with VASP

  • +
  • Goal: get a well-converged charge density (CHGCAR) and understand where the correlated bands are (DOSCAR and potentially PROCAR and band structure)

  • +
+

Other input files are:

+
    +
  • INCAR: using a large number of steps for good convergence. Compared to the DMFT calculation, it is relatively cheap and it is good to have a well converged starting point for DMFT.

  • +
  • POSCAR: PrNiO3 close to the experimental low-temperature structure (P21/n symmetry)

  • +
  • KPOINTS: approximately unidistant grid of 6 x 6 x 4

  • +
+

Then run Vasp with the command mpirun -n 8 vasp_std.

+

The main output here is:

+
    +
  • CHGCAR: the converged charge density to start the DMFT calculation from

  • +
  • DOSCAR: to identify the energy range of the correlated subspace. (A partial DOS and band structure can be very helpful to identify the correlated subspace as well. The partial DOS can be obtained by uncommenting the LORBIT parameter in the INCAR but then the below functions to plot the DOS need to be adapted.)

  • +
+

We now plot the DFT DOS and discuss the correlated subspace.

+
+
[4]:
+
+
+
dft_energy, dft_dos = np.loadtxt(f'1_dft_scf{path_mod}/DOSCAR',
+                                 skiprows=6, unpack=True, usecols=(0, 1))
+
+
+
+
+
[5]:
+
+
+
fermi_energy = 5.012206 # can be read from DOSCAR header or OUTCAR
+
+fig, ax = plt.subplots()
+ax.plot(dft_energy-fermi_energy, dft_dos)
+ax.axhline(0, c='k')
+ax.axvline(0, c='k')
+ax.set_xlabel('Energy relative to Fermi energy (eV)')
+ax.set_ylabel('DOS (1/eV)')
+ax.set_xlim(-8, 5)
+ax.set_ylim(0, 50);
+
+
+
+
+
+
+
+../../_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_6_0.png +
+
+

The DOS contains (you can check this with the partial DOS):

+
    +
  • Ni-eg bands in the range -0.4 to 2.5 eV with a small gap at around 0.6 eV

  • +
  • mainly Ni-t2g bands between -1.5 and -0.5 eV

  • +
  • mainly O-p bands between -7 and -1.5 eV The Ni-d and O-p orbitals are hybridized, with an overlap in the DOS betwen Ni-t2g and O-p.

  • +
+

DFT does not describe the system correctly in predicting a metallic state. In a simplified picture, the paramagnetism in DMFT will be able to split the correlated bands and push the Fermi energy into the gap of the eg orbitals, as we will see below.

+

We will use the Ni-eg range to construct our correlated subspace.

+

Note: with the coarse k-point mesh used in the tutorial the DOS will look much worse. We show here the DOS with converged number of kpoints for illustration.

+
+
+

2. Running the CSC DMFT calculations

+

(~ 150 core hours)

+

We now run the DMFT calculation. In CSC calculations, the corrected charge density from DMFT is fed back into the DFT calculation to re-calculate the Kohn-Sham energies and projectors onto correlated orbitals.

+

With VASP, the procedure works as described here, where the GAMMA file written by DMFT contains the charge density correction. In the VASP-CSC implementation, we first converge a non-scf DFT calculation based on the CHGCAR from before, then run DMFT on the results. The VASP process stays alive but idle during the DMFT calculation. Then, when we want to update the DFT-derived quantities energies, we need to +run multiple DFT steps in between the DMFT steps because the density correction is fed into VASP iteratively through mixing to ensure stability.

+
+

Input files for CSC DMFT calculations

+

We first take a look into the input file dmft_config.toml and discuss some parameters. Please make sure you understand the role of the other parameters as well, as documented in the reference manual of the read_config.py on the solid_dmft website. This is a selection of parameters from the dmft_config.toml:

+

Group [general]:

+
    +
  • set_rot = "hloc": rotates the local impurity problem into a basis where the local Hamiltonian is diagonal

  • +
  • n_l = 35: the number of Legendre coefficients to measure the imaginary-time Green’s function in. Too few resulting in a “bumpy” Matsubara self-energy, too many include simulation noise. See also https://doi.org/10.1103/PhysRevB.84.075145.

  • +
  • dc_dmft = true: using the DMFT occupations for the double counting is mandatory in CSC calculations. The DFT occupations are not well defined after the first density correction anymore

  • +
+

Group [solver]:

+
    +
  • legendre_fit = true: turns on measuring the Green’s function in Legendre coefficients

  • +
+

Group [dft]:

+
    +
  • n_iter = 4: number of DFT iterations between the DMFT occupations. Should be large enough for the density correction to be fully mixed into the DFT calculation

  • +
  • n_cores = 32: number of cores that DFT is run on. Check how many cores achieve the optimal DFT performance

  • +
  • dft_code = "vasp": we are running VASP

  • +
  • dft_exec = "vasp_std": the executable is vasp_std and its path is in the ROOT variable in our docker setup

  • +
  • mpi_env = "default": sets the mpi environment

  • +
  • plo_cfg = "plo.cfg": the name of the config file for constructing the PLOs

  • +
  • projector_type = "plo": chooses PLO projectors

  • +
+

The plo.cfg file is described here. The rotations.dat file is generated by diagonalizing the local d-shell density matrix and identifying the least occupied eigenstates as eg states. This we have limited k-point resolution wie also specify the band indices that describe our target space (isolated set of correlated states).

+
+
+

Starting the calculations

+

Now we can start the calculations:

+
    +
  • Go into the folder 2_dmft_csc

  • +
  • Link relevant files like CHGCAR, KPOINTS, POSCAR, POTCAR from previous directory by running ./2_link_files.sh

  • +
  • Run with mpirun -n 32 python3 solid_dmft

  • +
+
+
+

Analyzing the projectors

+

Now we plot the DOS of the PLOs we are using to make sure that our correlated subspace works out as expected. You can speed up the calculation of the PLOs by removing the calculation of the DOS from the plo.cfg file.

+
+
[6]:
+
+
+
energies = []
+doss = []
+for imp in range(4):
+    data = np.loadtxt(f'2_dmft_csc{path_mod}/pdos_0_{imp}.dat', unpack=True)
+    energies.append(data[0])
+    doss.append(data[1:])
+
+energies = np.array(energies)
+doss = np.array(doss)
+
+
+
+
+
[7]:
+
+
+
fig, ax = plt.subplots()
+
+ax.plot(dft_energy-fermi_energy, dft_dos, label='Initial DFT total')
+ax.plot(energies[0], np.sum(doss, axis=(0, 1)), label='PLO from CSC')
+#for energy, dos in zip(energies, doss):
+#    ax.plot(energy, dos.T)
+ax.axhline(0, c='k')
+ax.axvline(0, c='k')
+ax.set_xlim(-8, 5)
+ax.set_ylim(0,)
+ax.set_xlabel('Energy relative to Fermi energy (eV)')
+ax.set_ylabel('DOS (1/eV)')
+ax.legend()
+pass
+
+
+
+
+
+
+
+../../_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_10_0.png +
+
+

This plot shows the original DFT charge density and the PLO-DOS after applying the DMFT charge corrections. It proves that we are capturing indeed capturing the eg bands with the projectors, where the partial DOS differs a bit because of the changes from the charge self-consistency. Note that this quantity in the CSC DMFT formalism does not have any real meaning, it mainly serves as a check of the method. The correct quantity to analyze are the lattice or impurity Green’s functions.

+
+
+
+

3. Plotting the results: observables

+

We first read in the pre-computed observables from the h5 archive and print their names:

+
+
[8]:
+
+
+
with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5', 'r') as archive:
+    observables = archive['DMFT_results/observables']
+    conv_obs = archive['DMFT_results/convergence_obs']
+
+
+
+
+
[9]:
+
+
+
observables.keys()
+
+
+
+
+
[9]:
+
+
+
+
+dict_keys(['E_DC', 'E_bandcorr', 'E_corr_en', 'E_dft', 'E_int', 'E_tot', 'imp_gb2', 'imp_occ', 'iteration', 'mu', 'orb_Z', 'orb_gb2', 'orb_occ'])
+
+
+

We will now use this to plot the occupation per impurity imp_occ (to see if there is charge disproportionation), the impurity Green’s function at \(\tau=\beta/2\) imp_gb2 (to see if the system becomes insulating), the total energy E_tot, the DFT energy E_dft, and DMFT self-consistency condition over the iterations:

+
+
[10]:
+
+
+
fig, axes = plt.subplots(nrows=4, sharex=True, dpi=200,figsize=(7,7))
+
+for i in range(2):
+    axes[0].plot(np.array(observables['imp_occ'][i]['up'])+np.array(observables['imp_occ'][i]['down']), '.-', c=f'C{i}',
+                label=f'Impurity {i}')
+    axes[1].plot(np.array(observables['imp_gb2'][i]['up'])+np.array(observables['imp_gb2'][i]['down']), '.-', c=f'C{i}')
+
+    axes[3].semilogy(conv_obs['d_Gimp'][i], '.-', color=f'C{i}', label=f'Impurity {i}')
+
+# Not impurity-dependent
+axes[2].plot(observables['E_tot'], '.-', c='k', label='Total energy')
+axes[2].plot(observables['E_dft'], 'x--', c='k', label='DFT energy')
+
+
+axes[0].set_ylabel('Imp. occupation\n')
+axes[0].set_ylim(0, 2)
+axes[0].legend()
+axes[1].set_ylabel(r'$G(\beta/2)$')
+axes[2].set_ylabel('Energy')
+axes[2].legend()
+axes[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')
+axes[3].legend()
+
+axes[-1].set_xlabel('Iterations')
+fig.subplots_adjust(hspace=.08)
+pass
+
+
+
+
+
+
+
+../../_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_15_0.png +
+
+

These plots show:

+
    +
  • The occupation converges towards a disproportionated 1.6+0.4 electrons state

  • +
  • Both sites become insulating, which we can deduce from \(G(\beta/2)\) from its relation to the spectral function at the Fermi energy \(A(\omega = 0) \approx -(\beta/\pi) G(\beta/2)\)

  • +
  • convergence is only setting in at around 20 DMFT iterations, which can be also seen from the column rms(c) in the Vasp OSZICAR file, and more DMFT iterations should be done ideally

  • +
+

Therefore, we can conclude that we managed to capture the desired paramagnetic, insulating state that PrNiO3 shows in the experiments.

+
+
+

4. Plotting the results: the Legendre Green’s function

+

We now take a look at the imaginary-time Green’s function expressed in Legendre coefficients \(G_l\). This is the main solver output (if we are measuring it) and also saved in the h5 archive.

+
+
[11]:
+
+
+
legendre_gf = []
+with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5') as archive:
+    for i in range(2):
+        legendre_gf.append(archive[f'DMFT_results/last_iter/Gimp_l_{i}'])
+
+
+
+
+
[12]:
+
+
+
fig, ax = plt.subplots()
+
+for i, legendre_coefficients_per_imp in enumerate(legendre_gf):
+    if len(legendre_coefficients_per_imp) != 2:
+        raise ValueError('Only blocks up_0 and down_0 supported')
+
+    data = (legendre_coefficients_per_imp['up_0'].data + legendre_coefficients_per_imp['down_0'].data).T
+
+    l_max = data.shape[2]
+
+    ax.semilogy(np.arange(0, l_max, 2), np.abs(np.trace(data[:, :, ::2].real, axis1=0, axis2=1)), 'x-',
+                c=f'C{i}', label=f'Imp. {i}, even indices')
+    ax.semilogy(np.arange(1, l_max, 2), np.abs(np.trace(data[:, :, 1::2].real, axis1=0, axis2=1)), '.:',
+                c=f'C{i}', label=f'Imp. {i}, odd indices')
+
+ax.legend()
+
+ax.set_ylabel('Legendre coefficient $G_l$ (eV$^{-1}$)')
+ax.set_xlabel(r'Index $l$')
+pass
+
+
+
+
+
+
+
+../../_images/tutorials_PrNiO3_csc_vasp_plo_cthyb_tutorial_18_0.png +
+
+

The choice of the correct n_l, i.e., the Legendre cutoff is important. If it is too small, we are ignoring potential information about the Green’s function. If it is too large, the noise filtering is not efficient. This can be seen by first running a few iterations with large n_l, e.g., 50. Then, the coefficients will first decay exponentially as in the plot above and then at higher \(l\) starting showing noisy behavior. For more information about the Legendre coefficients, take a +look here.

+

The noise itself should reduce with sqrt(n_cycles_tot) for QMC calculations but the prefactor always depends on material and its Hamiltonian, the electron filling, etc. But if you increase n_cycles_tot, make sure to test if you can include more Legendre coefficients.

+
+
+

5. Next steps to try

+

Here are some suggestions on how continue on this type of DMFT calculations:

+
    +
  • change U and J and try to see if you can reach a metallic state. What does the occupation look like?

  • +
  • try for better convergence: change n_cycles_tot, n_iter_dmft and n_l

  • +
  • play around with the other parameters in the dmft_config.toml

  • +
  • analyze other quantities or have a look at the spectral functions from analytical continuation

  • +
  • try other ways to construct the correlated orbitals in CSC, e.g., with Wannier90

  • +
  • apply this to the material of your choice!

  • +
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb b/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb new file mode 100644 index 00000000..f53ec5dc --- /dev/null +++ b/tutorials/PrNiO3_csc_vasp_plo_cthyb/tutorial.ipynb @@ -0,0 +1,471 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "a661f418-c4f0-435e-8db9-ff074ad58b49", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from h5 import HDFArchive\n", + "from triqs.gf import BlockGf" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "55c5a91d", + "metadata": {}, + "outputs": [], + "source": [ + "plt.rcParams['figure.figsize'] = (8, 4)\n", + "plt.rcParams['figure.dpi'] = 150" + ] + }, + { + "cell_type": "markdown", + "id": "0275b487", + "metadata": {}, + "source": [ + "Disclaimer: charge self-consistent (CSC) calculations are heavy. The current parameters won't give well converged solution but are tuned down to give results in roughly 150 core hours.\n", + "\n", + "# 2. CSC with VASP PLOs: charge order in PrNiO3\n", + "\n", + "Set the variable `read_from_ref` below to False if you want to plot your own calculated results. Otherwise, the provided reference files are used." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1e21a834-d629-43a6-8c93-6f7e786aeca0", + "metadata": {}, + "outputs": [], + "source": [ + "# Reads files from reference? Otherwise, uses your simulation results\n", + "read_from_ref = True\n", + "path_mod = '/ref' if read_from_ref else ''" + ] + }, + { + "cell_type": "markdown", + "id": "13dd34fd", + "metadata": {}, + "source": [ + "PrNiO3 is a perovskite that exhibits a metal-insulator transition coupled to a breathing distortion and charge disproportionation, see [here](https://doi.org/10.1038/s41535-019-0145-4).\n", + "In this tutorial, we will run DMFT calculation on the low-temperature insulating state. We will do this in a CSC way, where the correlated orbitals are defined by [projected localized orbitals (PLOs)](https://doi.org/10.1088/1361-648x/aae80a) calculated with VASP.\n", + "\n", + "## 1. Running the initial scf DFT calculation \n", + "\n", + "(~ 2 core hours)\n", + "\n", + "To get started, we run a self-consistent field (scf) DFT calculation:\n", + "\n", + "* Go into folder `1_dft_scf`\n", + "* Insert the POTCAR as concatenation of the files `PAW_PBE Pr_3`, `PAW_PBE Ni_pv` and `PAW_PBE O` distributed with VASP\n", + "* Goal: get a well-converged charge density (CHGCAR) and understand where the correlated bands are (DOSCAR and potentially PROCAR and band structure)\n", + "\n", + "Other input files are:\n", + "\n", + "* [INCAR](1_dft_scf/INCAR): using a large number of steps for good convergence. Compared to the DMFT calculation, it is relatively cheap and it is good to have a well converged starting point for DMFT.\n", + "* [POSCAR](1_dft_scf/POSCAR): PrNiO3 close to the experimental low-temperature structure (P21/n symmetry)\n", + "* [KPOINTS](1_dft_scf/KPOINTS): approximately unidistant grid of 6 x 6 x 4\n", + "\n", + "Then run Vasp with the command `mpirun -n 8 vasp_std`.\n", + "\n", + "The main output here is:\n", + "\n", + "* CHGCAR: the converged charge density to start the DMFT calculation from\n", + "* DOSCAR: to identify the energy range of the correlated subspace. (A partial DOS and band structure can be very helpful to identify the correlated subspace as well. The partial DOS can be obtained by uncommenting the LORBIT parameter in the INCAR but then the below functions to plot the DOS need to be adapted.)\n", + "\n", + "We now plot the DFT DOS and discuss the correlated subspace." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f4a4fc12", + "metadata": {}, + "outputs": [], + "source": [ + "dft_energy, dft_dos = np.loadtxt(f'1_dft_scf{path_mod}/DOSCAR',\n", + " skiprows=6, unpack=True, usecols=(0, 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f1c5c3ca", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAIyCAYAAACzVnNbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAD1HUlEQVR4nOzdd3wb9f0/8JeW5W3Hzl5kJxBIAmEFAgTCHi20UNpSCpTSL9BBmy/doS0to/0BZZSWL2WUTVsoK0CBsFcgJAESsgjZw0kcx9uWrXG/PxxJn/vc56STdDoNv56PRx+1pNPpYiT5Pu97D5emaRqIiIiIiIiIqN9x5/oAiIiIiIiIiCg3GBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcYFCAiIiIiIiLqpxgUICIiIiIiIuqnGBQgIiIiIiIi6qcKNigwZ84cuFwu0/+99NJLyuc99NBDOPzww1FZWYm6ujqcfvrpeP/99x0+eiIiIiIiIqLc8+b6ADL11a9+FZWVlYb7R4wYYbhv3rx5uPXWW1FWVoaTTz4ZgUAACxcuxCuvvIInnngC55xzjhOHTERERERERJQXXJqmabk+iHTMmTMHb731FjZu3IgxY8Yk3f7111/H3LlzUV9fj0WLFmHixIkAgEWLFmHOnDkoKyvDxo0bMWDAgCwfOREREREREVF+KNjygVTdcsstAID58+fHAgIAMGvWLFx++eVobW3F/fffn6vDIyIiIiIiInJcvwgKBAIBvPbaawCAc8891/B49L4FCxY4elxEREREREREuVTwPQXuu+8+NDU1we12Y9KkSTj77LMxevRo3TZr1qxBT08PBg0ahJEjRxr2ccghhwAAli9f7sgxExEREREREeWDgg8KXHfddbrbV199Na655hpcc801sfu2bNkCAMqAAABUVFSgtrYWzc3NaG9vR1VVVcLXnDp1qvL+tWvXoqyszBCUICIiIiIiIsqGLVu2oKKiAjt37kzr+QVbPnDsscfi4Ycfxvr169HV1YW1a9fi+uuvh9frxW9+8xvcfvvtsW07OjoAAOXl5ab7q6io0G2bDk3TEAwG034+ERER9T8b9nRi3a6O2P82NXXm+pASikQiWLVqVex/kUgk14dERNSvBYNBdHam/7ejYKcPmHnllVdwyimnoKamBg0NDSgrK8Ojjz6Kb33rW5g9ezbeeecd5fNGjBiBHTt2YMeOHRg2bFharx3NIFi5cmXax09ERET9y+HXv4rd7T2x22MHVuCNq+fk7oCSaGlp0U1ram5uRm1tbe4OiIion8t0HVqwmQJmTj75ZBx66KFobW3FBx98AACxcoBE0ZOuri4AQGVlZfYPkoiIiGgf+epMkV2vISKiPFd0QQEAsZGDDQ0NABCr8d+2bZty+87OTrS0tKC2tjZpPwEiIiKibGJIgIiInFSUQYHm5mYA8av+kydPht/vR2NjozIwsGzZMgDAtGnTnDtIIiIiIgByYgATBYiIyElFFxRobGyM9Q2IjhosKyvDCSecAAB48sknDc+J3nfmmWc6dJREREREahpzBYiIyEEFGRT44IMP8MYbbxhq7jZt2oRzzjkHnZ2d+NKXvqQbQThv3jwAfSMM161bF7t/0aJFuPvuu1FdXY1LL73UmX8AERERUYz+fIaZAkRE5CRvrg8gHWvWrMEll1yCYcOGYdKkSRg6dCi2bduGpUuXIhAIYOrUqbjnnnt0zznxxBNx1VVX4fbbb8eMGTNw0kknobe3FwsXLkQkEsGjjz6Kurq6HP2LiIiIiIiIiJxXkEGBI444AldccQU+/PBDrFq1Cu+99x4qKiowY8YMnHfeebjiiitQVlZmeN5tt92GGTNm4M4778TChQvh8/kwd+5czJ8/H7Nnz87Bv4SIiIj6O/YUICKiXCrIoMD++++Pv/3tb2k99+KLL8bFF19s7wERERERERERFaCC7ClAREREVCzkxAC5ZxIREVE2MShARERElEcYEiAiIicxKEBERESUQ3JmABMFiIjISQwKEBEREeURjbkCRETkIAYFiIiIiIiIiPopBgWIiIiIcijCkYRERJRDDAoQERER5VBE7imQo+MgIqL+iUEBIiIiohyKRNhokIiIcodBASIiIqIckssHmCtAREROYlCAiIiIKIcM5QOMCRARkYMYFCAiIiLKIfYUICKiXGJQgIiIiCiHjNMHGBYgIiLnMChARERElENypgAREZGTGBQgIiIiyhFN0ww9BBgiICIiJzEoQERERJQjxskDbDRIRETOYlCAiIiIKEdUpQPsKUBERE5iUICIiIgoR8KKVAGGBIiIyEneXB8AERERUX+zcNUuvPfFHnzt0FHGBxkVICIiBzEoQEREROSghtZuXPbQEgDA88sbDI8zJkBERE5i+QARERGRg17+bGfs5z0dPTk8EiIiIgYFiIiIiPIKGw0SEZGTGBQgIiIiSqKzJ4TvPPAR5t7yJpZu3pvV12JIgIiInMSgABEREVESD7y/Ca+v2Y31jZ341r2Ls/paTBQgIiInMShARERElMRrq3fFfu4OhjPal8vlSvi4xlwBIiJyEIMCRERERElEpHX6rrZA1l6LmQJEROQkBgWIiIiIkpDX6e+s2+PYaxEREWUTgwJERERESYTCEd3t7t5Qjo6EiIjIXgwKEBERESUh9xHI6tV8pgoQEZGDGBQgIiIiSqInqM8UyGbdPxsNEhGRkxgUICIiIkpCzhSIZBAVSDJ8gI0GiYjIUQwKEBERESXR3asPCgSlHgN2YkyAiIicxKAAERERURKBkJwpkL3X0pgqQEREDmJQgIiIiCgJeZ2e3Z4CREREzmFQgIiIiCiJrx4yUnc7m80AmShAREROYlCAiIiIKIlKv0d3mwt3IiIqFgwKEBERESURlqIArPsnIqJiwaAAERERURLysIFsxwQYdCAiIqcwKEBERESUREQaN5DJkt1lYRvGBIiIyCkMChBRQdI0DU8t24Y//neN4WSdiMhuxvKB7L4ev9WIiMgp3lwfABFROu55ZwNueHENAODhRZuw8ven5viIiKiYGTMFsrts7ysfsJJTQERElBlmChBRQYoGBACgszecwyMhov5AzhTIKEHJlXyxz0wBIiJyCoMCREREREmE5SgAi/6JiKhIMChARERElERE7imQ5ddjzIGIiJzCoAARERFREnKmQPYbDTIqQEREzmBQgIiIiCiJcER/O/uNBrO6eyIiohgGBYiIiIiSMJQPcNFORERFgkEBIiIioiTk8oGMpg9YwKADERE5hUEBIioK8gxxIiI7GRsNZrl8gD0FiIjIIQwKEFFRCDEoQERZZBxJmP6+XBa2YaYAERE5hUEBIioKoUgk+UZERGkyTB/I0XEQERHZjUEBIio4muISWjDMU3Qiyh5jo8Fslw8QERE5g0EBIio4hjRek/uIiOxiqB7IeqNBfqcREZEzGBQgooKj6h8QkoeIExHZyOnyAYYEiIjIKQwKEFHBUQUFgswUIKIskssH5Nt2Y6IAERE5hUEBIio4qqyAMHsKEFEWGTIFMpk+YGn8QPr7JyIiSgWDAkRUcFRNBYOcPkBEWeR03xKNUQEiInIIgwJEVHBU4wd7QwwKEFH2OD19gIiIyCkMChBRwVFdsesOhnNwJETUXzjeaJAxByIicgiDAkRUcFSVAgEGBYgoixwfSZjd3RMREcUwKEBEBSesOBtnUICIsknOFMhk+oALyTsNsjyBiIicwqAAERUc1cm4qvkgEZFdHC8fyPL+iYiIohgUIKKCE1H0FHC6MzgR9S/GRoPZfT0mChARkVMYFCCigqMqHwgxKEBEWWQMPGb3O4cjCYmIyCkMChBRwVFlBYRV3QeJiGzidKYAERGRUxgUIKKCo1r/h9hTgIiySA5GPv3xdmzd25W9F+RXGhEROYRBASIqOKpGgywfIKJskoMCPaEIvnTnu+gJpT75xJV8+ABjAkRE5BgGBYio4LCnABE5TfUV09wVxBtrdmfl9VieQERETmFQgIgKjnL6QJg9BYgoe8wmnGRrHCobDRIRkVMYFCCigqM6OWemABFlkypDKZuYKUBERE5hUICICo5q/a/qM0BEZBdVhlI28RuNiIicwqAAERUcVQCAiQJElE3OZwrwS42IiJzBoAARFRxV+YBZvS8RUaY0TbM1nd/C8AEiIiLHMChARAVHdcWOV9WIKFsSBR2tjBdMB7/SiIjIKQwKEFHBUQUAOHyAiLLFidIBN9MHiIgoRxgUIKKCowoAsNEgEWVLxIGgY215ie42v9KIiMgpRREU2Lt3LwYPHgyXy4UpU6Yk3Pahhx7C4YcfjsrKStTV1eH000/H+++/79CREpEdVKm8DAoQUbY48f1SU+bTlSJonD9AREQOKYqgwLx587Bnzx5L21100UX47LPPcOKJJ+Lwww/HwoULceyxx+Lpp5924EiJyA7q6QM8gSai7LC7fEDVh6Cq1KtrQMivNCIickrBBwVee+01PPjgg7jssssSbvf666/j1ltvRX19PT799FM888wzeOmll/D222/D4/HgkksuQXNzs0NHTUSZUAUA2FOAiLIlYvN0E6/bePpVVeqFS4gWMCZAREROKeigQHd3Ny6//HIccMABuPrqqxNue8sttwAA5s+fj4kTJ8bunzVrFi6//HK0trbi/vvvz+rxEpE9VOUDnD5ARNli98jTEq8iKOD3cVQhERHlREEHBa699lqsX78ed911F3w+n+l2gUAAr732GgDg3HPPNTwevW/BggXZOVAispU6U4BBASLKjkTlA640lvJexaiB8hKP7jYDnURE5JSCDQosX74ct9xyCy655BIce+yxCbdds2YNenp6MGjQIIwcOdLw+CGHHBLbJxHlP/X0AeePg4j6B7vX56rd+TxuqdEgERGRM7y5PoB0RCIRXHbZZaitrcX/+3//L+n2W7ZsAQBlQAAAKioqUFtbi+bmZrS3t6Oqqirh/qZOnaq8f/369Rg/fnzS4yGizKjqe9lokIiyxYnvF5/XtS/roO+1+JVGREROKchMgb/85S9YvHgxbrrpJtTX1yfdvqOjAwBQXl5uuk1FRYVuWyLKX5w+QEROsjsTSfV15XW7oa9E4HcaERE5o+AyBbZu3Yr58+fjuOOOw8UXX2zpOdG6PJdqBpC0jRUrV65U3m+WQUBE9lLV9zIoQETZ4kR9f4nXzZGERESUEwWXKXDllVeit7cXd911l+XnRMsBOjs7Tbfp6uoCAFRWVmZ2gESUdaryAY4kJKJssb+ngHGHPo+LPQWIiCgnCi5T4Pnnn0dtbS2uuOIK3f2BQABAX/+AOXPmxLatrKzE6NGjAQDbtm1T7rOzsxMtLS2ora1N2k+AiHKPIwmJyEmO9BTwuNOaZEBERJSpggsKAEBLSwveeust5WPd3d2xx0KhEABg8uTJ8Pv9aGxsxLZt2wwNB5ctWwYAmDZtWhaPmojsoqrv5UhCIsqWRDGBBJWJKe3P53En3YaIiCgbCq58QNM05f82btwIoC8AEL2vtrYWAFBWVoYTTjgBAPDkk08a9hm978wzz3TmH0FEGVE3GszBgRBRv+BMpoBcPsAvNSIickbBBQXSNW/ePADAddddh3Xr1sXuX7RoEe6++25UV1fj0ksvzdXhEVEKVFkBbDRIRNniRNCxr3wgjl9pRETklH4TFDjxxBNx1VVXoampCTNmzMDZZ5+N008/HcceeyyCwSDuv/9+1NXV5fowicgCTh8gImfZ+/2i2luJ162bksSvNCIickq/CQoAwG233YZ//OMf2H///bFw4UK8//77mDt3Lt566y189atfzfXhEZFFqpNl9hQgomzJ9teL3+vGWdOH6zMFWD5AREQOKchGgypjxoyx1H384osvxsUXX5z9AyKirFFPH8jBgRBRv5Cw0WBa+9Pv8MnLj0J1qU+3M36nERGRU/pVpgARFQdVUICZAkSULdksTzp4dC0OGlkDIL0AAxERUaYYFCCigqOePsCgABFlh1PfL6505hsSERFliEEBIio4DAoQkZOy+fViFgbgVxoRETmFQQEiKjjhiPE+Vg8QUbbYvUA325+YKMBGg0RE5JSiaTRIRP0HMwWIKJvaAkH8/a0NqK8swbdnjcnq94tYMuAWfmagk4iInMKgABEVHDYaJKJsuvHF1Xh88VYAQH2lH6Prym3dv1kWgFs3fYDfaURE5AyWDxBRweFIQiLKpmhAAABueGF1wkyBdHoDirsTAwEuZgoQEVEOMChARAVHdQWNmQJElA0et8v2q/bi15W+fEDcht9pRETkDAYFiKjghNlTgIgc4nLZn4kkfl+JgQCPmCnAQCcRETmEQQEiKjjq6QM8gSYi+3ncLltT+TVNw91vrY/dFpsLsnyAiIhygUEBIio4qitoPIEmomxwu1y2Bh3fWLsb6xs7dfuP/SyclTHQSURETmFQgIgKjupkmT0FiCgb7C4fuPedjYb9R+lHEvI7jYiInMGgABEVHFVPAY7vIqJscLvsbTTYG9LXP4klAx6WDxARUQ4wKEBEBUdVPqAKFBARZcrjciHxt0tqMwl7paYo+pGE8Z+ZKUBERE5hUICICk5Yca4cUTQfJCLKlNttb08BOVNA11OA0weIiCgHGBQgooKjOkHnVTUiyga3y95U/pC0M91IQjfLB4iIyHneXB8AEVGq1NMHeAZNRPbzuFPrKRCJaLj/vY3o7g3j0mPGorxEf6oVDJv3FHCx0SAREeUAgwJEVHBUkwY4fYCIssHlcqU0feC+dzfi+hdXx27/cO5E3eOhsHmmgPgzyweIiMgpLB8gooKjuoLGi2pElA195QPWv2DEgMAjH242PC5nCpj2FOB3GhEROYRBASIqOKqsAKbaElE2uFPMFBDtausx3GcsHxBey83yASIich6DAkRUcFRX0DiSkIiyweNKPH1AXNRb6T0QlMoHXLpMgfj9DAoQEZFTGBQgooKjnD7AkYRElAVut/VU/kUbmpJuY718gEEBIiJyBoMCRFRwWD5ARE7pW6hb+375fGd70m0SjiQUgwIMdBIRkUMYFCCigmMWFOgNRXDd86vwvYeWYOOezhwcGREBQHdvGO99sQcdPaFcH0rG3C6X5UyBgVV+w33yFAH5+8utG0koPI+BTiIicghHEhJRwVGdK4cjwDOfbMe9724EAGxt7sZ/rzrG4SMjIgC46P7FWLxpL6YOr8bzP5ytq5svNG534p4Cokq/8bSqKxhW3h8l/mZYPkBERLnATAEiKjiqpoKapuHxxVtit1c3tDl5SES0T2tXEIs37QUArNzRhk1NXTk+osy4XdZHnobCxg27ehNnS3iE+gG3cFbGkYREROQUBgWIqOCoygfCmobCvRZJVDzkoF1vqLCL491Jpg+I5H4BANDVE074HK+HjQaJiCi3GBQgooKjnj6gFXSKMlGx0iw26ctXbpcrYaaA+K0TUnQH7OpNHBTQZQroggKWD5GIiCgjDAoQUcFRBgU0MFOAKA/In8NCv+DtcVsPbKjKB7qDicsHvELNgDiJQG5QSERElC0MChCRo9Y3duCP/12DpZub095HWJGNzFRbovxQ6Ak7cnmS3+uxPB5QVT7QmaR8QCRmDfA7jYiInMKgABE56lv3foj/e2s9zv2/95M24DKjuoIWjmgFvxghKkaFtrYNBPWL+FKfO2GegPiYaiEvlg8s22IMhorfWy6WDxARUQ4wKEBEjmpoDQDoWyh8vKUlrX2opw8ALhYQEOWc/DkstJ4C3YaggCfhVfv/eXgp3li7u++GYrNo+cCGxg589a73E742yweIiCgXGBQgIsdoNl0yVPcUYFMBorwgfQ4LLVMgKNUned3upN9dVz6yDID6u6ljX/nADS+uTvq74PQBIiLKBQYFiMgxdl34UpYPcCQhUX4o8LWsvBZ3uZIHNqLZBarNPtq4FwDQ1q0ulxK/z9xulg8QEZHzGBQgIsfYlSlgVj5ARLlXaOUCMvnoXbC+QFdd3S/x9p1q9ao6pELfR4CZAkRElAsMChCRY+QT63Sv7Jt1AucpNFH+KbS1rSp4aWWBHo5oyn9raF8woDeUfIQBewoQEVEuMChARI6x6wqiPDIs2f1E5Bx5YVwMmQNW/gWBYFi5XXDf95LcqyBKzA7wcPoAERHlAIMCROQYu64Yml21k0eJEZHzCn0tq/p6sVL61BuKKLcL7ssQCJms8iv8ntjPLpYPEBFRDjAoQESOkc9xxfndqWBQgCh/2dU7JF9omrVU/p5QRF0+sO+5Zr+Xcw4eEftZVz5QZL9HIiLKXwwKEJFj5JPc7z60BJ9tb015P2ZlAoFg8ppdInJWoa1tVeUPVv4JPaGwOlNgX9mAmAUQ9aevHoRxgypjt9lokIiIcoFBASJyjOoU94ePf5zyfsyCAj0hZgoQ5Zr86Sy0pa0qBGClvr8nFFFuFwqbP/mo8QN1tzmSkIiIcoFBASJyjOrK18Y9nSnvx+wCWnea5QhEZB/DlfYCv+Ktadb+DT3BiDIAEto3LsXKtBWWDxARUS4wKEBEjrHrHDds1lPAwsgvInJWoS1t1Y0Gkz/PvHxg332KqIBcUaArH2CqABEROYRBASJyjF1XDK2OJGztCmLFttaCv1JJVEjk9PtC+vjtbA3g/L8v0t2naZqlq/bmjQbNMwXkPgMelg8QEVEOMChARI6x4yRX0zTTed+yU29/G2fd+S6uXbAq8xcmImsKeDH7u+dWYldbj+4+Dfp/0tTh1crn9oTCyn4EiXoKuKVIgYvlA0RElAMMChCRY1RX7OWT4mSCYc1ycKGhNQAAeOD9Tam9CBGlrZCXsi+t3Gm4T9P0C/SxAyuUz+01aTTYm2D6gEvKH2D5ABER5QKDAkTkGNU5bok3ta+hbE0Y+O+KBvz66RX4fFd7VvZP1H8V9uJWg6YrC3C5XJgwuNKwXURTl0pEMwXU5QP62/pGg2kcLBERURq8uT4AIuo/VKm1Pk+qQQH7mwnubA3gikeXAQAWrW/C61fPsf01iPoL4/SB3ByHncQsJ7PspnBE3XsgFMsUMD5Hvks/krAIfnFERFQQmClARI5RneP6U8wUCAT1mQInTBmcySEBAF76rCH284Y0RiQSUZyh0WCOjsMufeUD8dtul5z038dsER+MRDMFkkcFdOUDhf6LIyKigsGgABE5RnXOvKejN6XpAGKmQInHje8dOy7j4yr1eXS3zaYbEFFyxXaBW4N+wW/WBkXT1H1Tor0BVJkCbpfcU8D4PCIiomxjUICIHGN2Je3NtY2W9yFmCvi9bpSXeBJsbY3fp/8q7OoNZbxPIupT6EECTeoV4HK5lAv8vvIB4/2hBIt7eTceF8sHiIjIeQwKEJFjzE5xL3ngI8v7EDMF/D43vO7Mv8bktN5EI8SIKDH505NKJlB+0iz1FIhomjIAkuiKvzyRwMXyASIiygEGBYjIMXakw/YEhaCA1wOvJ8WZhhYEw/Y3MyTqL+QgQKGvbeWeAi6Xuj+ApqmbqYZi5QOqkYR6bmYKEBFRDjAoQEQFJRSJL9i9Hhe8ZpftMtDLoABR2optLSsv9uU+AFFhTV0+ENbMRxLK+xKHsbC3CREROYVBASJyjB1XvsQTZY/LZUv5gHzyHWT5AJFtiiFIEJF6Cqi30ZT/2Oj3i/L7T54+IAQ5w8XwiyMiooLAoAAROcaOC1/iibXb7bKlfEAuF2D5AJF9VCn1hUSDpp8+4FJPEoho6u+4cKSvJ4EyJiDtR9dokJkCRETkEAYFiMgx4Ujmi21xvd6XKWAtKJCo2ZkcBOgNMShAlC75o1boF7w1DbrGCKaNBiOaaQAkoqmv/HsM5QNCpgCDAkRE5BAGBYjIMWajuUq81r+KxBPlvkwBa89NdIItlwswU4DIPgUfFIA+Q0nVZBAwnz4ARMcVGh+UR6oyKEBERLnAoAAROcbsJLc3FLF8AiyeWHvc+pPoxM8zf8xYPsCTcaJ0yVfLC72LvtwqwHwkofn3TDiiKcsB5P4EHvYUICKiHGBQgIgck2jhbzVlX2406LPYUyDRwoQ9BYjsYygfyM1h2Kavp0D8tsvlUjYb1DTz8gGzyQQycRoBMwWIiMgpDAoQkWPE8gG/VDIQCIYt7UNuNGg1U2B7S7fpY3JmAEcSEqVPXsoWeqYANBgaDar0NRQ0eSysWVrki99nBf97IyKigsGgABE5RkyfrfB7dY/1pJEp4HW74LM4kvBvb6w3fUzODAixfIDIPkX2cXK7XMo+KBHNvKFpWNMSNjuN8jBTgIiIcoBBASJyjJwpIF7kt5opIO7D7XLp5non0hYIWtonwOkDRJmQF7+FfsVbbjTodgGDq/yG7RI1GgxFIpZ6BOgyBfg1REREDmFQgIgco7vK73Gh1BfvvG01U0DMNrBaOgAk7oAuBwHY4IsoffKnp9A/TpqmSeUDLgysVAQFIuZ9AyKRxM1Oo8TvtBCjAkRE5BAGBYjIMc1dvbGfPS6Xrq9AT8hapkBYSy8okCiHWS4fUHUJJyJr5CDACysacnMgNtGg/ze5XEBVqdewXUQzTl6ICmvG6QOq7y+3bvpAesdLRESUKgYFiMgRmqbh729viN0eUFECvzeeKRAIpp4pEO3UPWNUrYXXN39M7iHAWl4i+zz98XYs3bw314eRNk0aNeg2mXqSqHwgHNYMZRReRVBA7CnA4CQRETmFQQEicsSane1Yvq01dvu0A4ei1JdGpoCifGDcoIqMjk3OFGBQgCgTxs/PTS+vzcFx2KMvU0AoHwBQ4vEYtoskaCYY1ozTB3we4ymYeBe/h4iIyCkMChCRI9bt7oj9XFHiwXdnj9NlCvRYzBQIS1fsAON4QxWz0+u/vfkFnvp4u/QaPBknSlexfXw0KQPA7XJBVbkU0cyKB4BwJGL4vXgV2QZuF0cSEhGR8xgUICJH7G4LxH4+clw93G4X/EKmQMBipoC+0WDf/5corrjJVFfwPtveiv/3kvEKJq/QEaWvGD898vQBlzIoYL6QD0eMwUZV+YAYKJCnohAREWULgwJE5IjG9p7Yz4Or+zp3l6aVKWAsH1DNDJepTq8XrW9SbssrdET2ciGVpqD5pW8koXCHy4W6CvX0AbOvjmA4ougpYPzecrOnABER5QCDAkTkiLZAKPZzTVkJAOgyBayOJNT3FOh7vqo2V6Y6WVdd7QOMjQeJyLpUPmsFQZoq4HYBXzlkBIZU6wMDicsHNMgTBlUlCB7d9AF+DxERkTMYFCAiRwSC8fKAMl9fhoDYC0B8PBFdUGDf+bOVTIFUMFOAKH3mS+PCpEGfAeCCC6U+D17/3zmYLkw+iWjqMiUACEWMmQKdvcbvPHH6AMuYiIjIKQwKEJEjunrjmQLlJfuCAj6hfCCNTAF3CuUDY+rLLe1ffg0iylwhx9k0zdhTAAAq/F4cMro2dn84YfmAZrjy/8MTJhi2c7tZPkBERM5jUICIHNEt9AwoKzFmClgdSSienEevqllpNHjA8GrDfS6TnGam7RKlT/Xx2bin0/kDsYmm6f9N4sJd7AGgaZppllEorA8YHDdpEC44Yj/DdiwfICKiXGBQgIgc0S1kCkTLB0qFTIGA1UaDup4CKTQaTOH8OsyeAkRpU33WPKoC+gKhwXyxL/67Ipr590xvWB/0vOErB8WCo2b7Y8YSERE5xWvnzjZt2oR33nkHn376KRobG9Ha2oqamhoMGjQIM2bMwDHHHIP99jNGxomo+HUJ9bPlGWQKiFfPolfsrDQaTOX8mlfoiNKnWkAXclAA0E8vEbMDxGSjcIJGg/J0FY9JlhJ7ChARUS5kHBRobm7Ggw8+iHvuuQdr1qwBoG60E03T3X///XHZZZfh29/+NgYMGJD26/75z3/Gu+++ixUrVmD37t0IBAIYOnQo5syZg5/97GeYOnWq8nkPPfQQ7rzzTqxatQolJSU48sgjMX/+fBx11FFpHwsRJdctNBIsjQUFUu8pEIkYywesrDdUp+tmT2MtL1H6VEGBQp4+oEkNBMXvG3mEoFlGQW9Y//1m9p3FTAEiIsqFtIMCXV1d+H//7//hlltuQWdnJ8rKyjB79mwcfvjhmDJlCurq6lBdXY3W1lY0Nzdj9erVWLx4MZYsWYKf/OQnmD9/Pq6++mpcffXVqKioSPn1b7jhBnR2dmLatGk46KCDAAArV67EQw89hH/+85945plncNppp+meM2/ePNx6660oKyvDySefjEAggIULF+KVV17BE088gXPOOSfdXwcRJdEtZgrEygfSmT4Q/zl6Am1lBjozBYicofqsFfJEDw3QjRMUAxxeXfmABrNUATlTwG0SFdAFGQr3V0ZERAUm7aDA+PHjsWvXLpxyyin41re+hbPPPtvS4r6zsxNPPfUUHnnkEVx77bW4++67sWPHjpRf/9lnn8XMmTNRWlqqu/+uu+7ClVdeie9+97vYsmULPJ6+xcfrr7+OW2+9FfX19Vi0aBEmTpwIAFi0aBHmzJmDSy65BHPmzMkoe4GIzImZAmWZZAqIjQajQQErVyFTuHoZtnYoRKSgusIdKeDP1MJVu3DK1CGx2+LCXfw5lCBToMeQKWBSPsBMASIiyoG0Gw0eccQRWLp0Kf773//iggsusHy1v6KiAhdeeCFefvllLFmyBEcccURar3/00UcbAgIAcMUVV2DChAnYsWMH1q5dG7v/lltuAQDMnz8/FhAAgFmzZuHyyy9Ha2sr7r///rSOhYiSS9pTwHKmgCookDwqkMrpdbiQVzBEOaYqISzkTAGgb6RglPh945VGCJr3FNB/v5n2FBDOypixRERETkk7KPDMM8/g4IMPzujFDznkEDz99NMZ7UMlmh1QUlICAAgEAnjttdcAAOeee65h++h9CxYssP1YiPq7QDCMr/ztPfQKmQDRqQN+n9ho0OL0AV1tb7R8wGjmfgMwYXBl7LaqT4BZKIGZAkTpU13hLvSr3p098ekp4veGx6PPFDCfPqD/UnGZnH153PEHCv13RkREhSPtoEBHR4edx2Gbhx56CGvXrsWkSZMwbtw4AMCaNWvQ09ODQYMGYeTIkYbnHHLIIQCA5cuXO3qsRP3BA+9vwrItLbr7ykv6KpdKPGkEBcJipkDf/6suuv3q9P0xpr48djuV0+tCv6pJlEvqngLOH4edAsL3k9gOQJ4WYFo+wOkDRESUx9LuKTBkyBCcffbZuOCCC3DqqafC7U47vpCRm266CStXrkRnZydWr16NlStXYvjw4Xjsscdix7RlyxYAUAYEgL6ShtraWjQ3N6O9vR1VVVUJX9NsssH69esxfvz4DP41RMXnj/9dY7gvWj5QIpQPbGjstLQ/MVMgPn3AeILdd1d6Tbt4Mk6UPtXCuNADbQGh/ElsEij3ADBrICg3UvV61NvJp1KRBPskIiKyS9or+e7ubjz++OM466yzMHz4cPz4xz/GkiVL7Dw2S15++WU8+OCDePLJJ7Fy5UqMGjUKjz32GGbOnBnbJprVUF5ebrabWE+EfM2AICom0V4C4uJ7T0ePpeeKZQDuBI0GXdBf0XtiyVZdCnDf89Qn2yEGBYjSpgoAFHqgrStoUj4gBQXMxpmKPVUAwGdyIcUjBQDYV4CIiJyQdlBg06ZNuP7667H//vtj9+7duOOOO3DEEUdgypQpuOGGG7Bp0yYbD9Pcq6++Ck3T0NzcjLfffhuTJ0/GnDlzcP3118e2iTY9StSMTNUYyczKlSuV/2OWAJHRGdOG6W67XPHP4qdbW3SPWfkcqjIFVFwuly5YsGZnO+b9+xPDsaiYndgTUXKqAMCgKn8OjsQ+IQuNBkMRzTT4IU5fcbvMRxLK32mFHkwhIqLCkHZQYPTo0fjlL3+Jzz77DB9//DHmzZuH4cOH4/PPP8c111yD8ePH47jjjsM999yDlpYWGw9Zrba2FscccwxefPFFzJw5E9dccw0++ugjAIiVA3R2mqcnd3V1AQAqKytNtyGi1I2sLdPdFk+izz54hO4xKyfAYWWmgKJ8AIBLaiX48spdSfcP8OocUSZUH5/TDxzq/IHYSPzeEb9uxMaAEU0zLVMSgwI+j/mpl5wpUOhlF0REVBhsaQQwffp03HzzzdiyZQteffVVXHTRRaiqqsI777yDyy+/HMOGDcO5556LZ555BsFg0I6XNOXz+XD++edD07TYNIHRo0cDALZt26Z8TmdnJ1paWlBbW5u0nwARpUZesHuFk+gRA/QBAytp++JJcjTAoLrm5nIZ63MN25i9Bq/OEaVNFdzz5KjvkF0iiqkngH6EYChs3mhQ7EmQSlCApUxEROQEW/9Ku1wunHDCCbj//vuxa9cu/Otf/8KZZ54JTdPw1FNP4atf/SqGDh2KK664ws6XNRg4cCAAoLGxEQAwefJk+P1+NDY2KgMDy5YtAwBMmzYtq8dF1B/J579igy2vtFBINVMgegKtbDQIF/xeT+KdsacAke2KsdGgLkPJJFMgbLF8wKzJIGAsK2CAkoiInJC10L3f78d5552HZ599Fg0NDfjrX/+Kuro6NDc34+9//3u2XhYA8NZbbwFArMa/rKwMJ5xwAgDgySefNGwfve/MM8/M6nER9UdyCr+4UJfrZ60sxsVx39FggLLRoAso9aX3FcfyAaL0qQIAhf6J0pUPQN1TIKzpMwXEkatio0E5GCpiTwEiIsqFrOfzLV++HH/84x9x4403Yu/evQAAjyfJ1bsk3nnnHfzrX/9CKKTvJB4MBvGXv/wFDz/8MMrKynD++efHHps3bx4A4LrrrsO6deti9y9atAh33303qqurcemll2Z0XERkJC+w/cIYQo8n9RNg8aTbk6B8oO+1jN814pW33lDE8Li8DRGlRvXxSaWZbz5qCwjTB4QvHLfUaFD8fhK/67p15QPmmQKcPkBERLngzcZOt27disceewyPPvooVq5cGTsZmDZtGi688EJccMEFGe1//fr1uOSSSzBw4EDMnDkT9fX12LNnD1asWIGGhgaUlpbigQcewKhRo2LPOfHEE3HVVVfh9ttvx4wZM3DSSSeht7cXCxcuRCQSwaOPPoq6urqMjouIjOQFtnii7JVPgC0sxkPKRoPG7dwuF8pKjEGB3nAEpe6++8t86gAlr84RpU/1+Smmta3bZPpAOBJBOBL/fvP73GjfN2nVcvmASy4fyPRoiYiIkrMtKNDa2oonnngCjzzyCN59911omgZN0zB8+HB885vfxIUXXoiDDjrIltc67rjj8Ktf/QpvvfUWli9fjj179qCkpARjxozBueeeix/96EeYMGGC4Xm33XYbZsyYgTvvvBMLFy6Ez+fD3LlzMX/+fMyePduWYyMiPXmBUCJmCqQRFBCDDPFUW0VPARdQqsoUEFYnteU+9WsU0wqGyGHF2FNApJ8+IAYF9It4MVPJ6vQBOVAaYlSAiIgckFFQoLe3F88//zweffRRvPjii+jt7YWmaaisrMQ555yDCy+8EHPnzlWOC8vE2LFjcf3116f13IsvvhgXX3yxrcdDROYSlg8YegokPwHWNxrs+3/VyG+zngI7WgKYMLhv9KjZOoWNBonSV4w9BUS66QMufaaArqeA8F2nmz6QoKeAsdFgRodKRERkSdpBgcsuuwz/+c9/0NraCk3T4PF4cNJJJ+HCCy/EOeecg/LycjuPk4gKlHz1v6a8JPaz2+2CyxVfnFuaPqAYDaYKPLqgLh/4xj0fYPGv+oKVmslSheUDROkLKxayRZsp4NH3FAib9RSwWD4A9GUfRL+D2FOAiIickHZQ4L777gMATJ8+HRdeeCG++c1vYujQobYdGBEVh+auoO72MRMG6m573S4Ew/tOgFMsH4ieXKtOsfsyBYxBgcb2HrR1h1BT7jPNFCimBQyR05SfnyL6SLlMegpEIpru+0kMCoR031uJezx7XC6EYf07kYiIKFNpBwV++tOf4sILL8SBBx5o5/EQURHZ3RbAgk936O67+OgxutueFIMC6kwB43Zulws1ZeqeAdEogtmr8UScKH2q6R3FFGgTM/zF8gE5U0AsHxD5VPVO4v7dAPYlFhTT742IiPJX2kGBP/3pT3YeBxEVoUc+2Ky7fd3ZBxqabPXN7O7LN7ZSy69rNJhw+gDMgwL7mI1JY1CAKH3qkYTOH0e26HoK6BoNagiF4/9QVaYSkLjRICD3KSiiXxwREeWtxH+Z0vDf//4XZ599NkaMGAG/349LL71U99i8efOwY8eOBHsgomKxqqFNd1s1AlC8aJZqpoAnQU8Bj9tlOl0gWe9TnogTpU9VB18oHylfknp/QF+uJPYHCEc0BIWGCmYjT630FBD3SURElG22BgWuvPJKnHnmmXjuuefQ0dGBYDCouxJXW1uL2267Df/85z/tfFkiylPVSa7UA/r6WiuZAmITs2inbtUpttvlQp3Q1FDFLDU3zPNworSpMnDMmnrmG3lMqooYhHS75KBA/N9Z4VcnYybNFGBQgIiIHGZbUOD+++/H//3f/+Hwww/HJ598gtbWVsM2s2bNwogRI7BgwQK7XpaI8ph8peyQ/QYYtkn1BDgszOhKlikwqMqP/YdVGx6Lbm3aaJAn4kRpU32OC6V8INmCHdBnN3nd+qCmLlNAMf2k7zkpZAoUyi+OiIgKmm1Bgbvvvht1dXV4/vnnMW3aNNPtJkyYgA0bNtj1skSUx8TT2YGVfowdWGHYxptyUEDRU0Cxncftgsvlwj8uPsz0uMzOt61kLBCRmrqnQGF8pqwEBVwmPQUiUlCgPM2eAmL2AQOURETkBNuCAitXrsSsWbNQX1+fcLuhQ4di9+7ddr0sEeUxcSHwtUNHKrdx67p3KwacS8RzZHeCRoPR+4bWlCqOa9//m70GT8SJ0qaePpCDA0mDlfIB3fQBt/j9paE3JAQFzDIF2FOAiIjyTNrTB2RutxsRCyf0O3bsQEWF8WohERUf8SvBbdLdT27UlYwuU2DfPlX79iTqJqhFj8+spwBPxInSperVUSg9BXqC4aTbuEyCAmFNQziUvKeAWHKgoutTwO8iIiJygG2ZAlOmTMGSJUvQ1dVluk1TUxM++eSThOUFRFQ8xMWB2Ro99Z4C1ssHzEQXKGYn3MwUIEpfIU8faAuEkm4jlg+I5U/BcESXKVBZqg4K+H2JT71SDZQSERFlyragwAUXXIDGxkZ8//vfRyhk/KOqaRp+9KMfoaOjAxdeeKFdL0tEeUw8n1U1AwRS7ykgBhpiC3/Frt2JggKa8fXY3IvIHsGQIlOgAD5S1z2/ytJ2bpOeAvK/sapUPX3F700yfcDFoAARETnLtvKBK6+8Ev/5z3/w4IMP4t1338Upp5wCAFi+fDmuvvpqPP/88/j8889xwgkn4KKLLrLrZYkoj4k9BczW6B53qiMJxYV83/+7FFGBROUD0T2IAYYSjxvdkb7U4RBnEhKlTWy2F5f/n6l7391oaTvxmyVRRlKVSflASZKggBjQNBubSkREZCfbMgV8Ph9eeuklXH755diyZQv+9re/AQCWLVuGP//5z1i/fj0uvfRSLFiwAO4k9XREVBwiuqCA+uRZbMSdaqaAOzaSULXfRJkCmuH1fB6eiFN+Ui+y81ev4ngttBwqGG6T8gFZdZlZpoC6AWGUPlMgxYMjIiJKg22ZAgBQXl6Ov/3tb7j22mvx1ltvYdOmTQiHwxg5ciSOP/54DB8+3M6XI6I8Jy6ts5MpYN5o0EKfQd2+xKt3TNmlfPHcpzvwq6dWYOrwajz63SPgtTAyL9fEuvqoQmk0aIX4XWZWpuR1u1BpkimQrHzAzekDRETksLSDAu+//z5mzZqlrBMeNGgQzj333IwOjIgKX6o9Baw0+BNPkhNmCiQqH4hOH9DETIH4iTozBShf/OjxjwEAH27ciwfe34TvHjMux0eUnDJToJg+UsJXi1mmQJnPg1KThoLJggJelg8QEZHD0r7kMHv2bAwZMgSXXHIJnnrqKXR0dNh5XERUBKyVD+jnfCdj5/SBUEQdFLByHEROW7S+KdeHYElPUJEpkMOP1PaWbny2vdW2/Zk1GhT5fR6U+dRlAqn0FOB3EREROSHtoMAf/vAHjB8/Hg899BDOO+88DBo0CKeddhr+9re/YcuWLXYeIxEVKEuNBnX1s8kLaMOK6QNyvMHlMs9M6Duwvv+LsHyACkhTZ2+uD8GSzh71BKJc+GJ3B+be8ibO/Mu7eHjRJlv2aSUoUOn3wG8SFEg+fSD+M8ejEhGRE9IOCvz617/GokWL0NDQgL///e84+eST8c477+AHP/gBxo4dixkzZuA3v/kNFi9ebOfxElEBEdf4ZpkC4kxuK1fFxH3GT8j1+05UOgCIPQXi9+nKB3giTnlob6EEBXoVQYEcHAcA/P75VQjsy1y45tmVtuxT/HoxDQqUek3LB5JlCnjYU4CIiByWcceiwYMH49JLL8Wzzz6LpqYmPPfcc/jud7+LPXv24LrrrsOsWbMwbNgwfO9738OCBQvQ3d1tx3ETUQEQywfM1umpngDrMgVc0UaD+m3MAhBR0V2EdSMJheNgHS/loaaOnlwfgiWqTIFc1cY3tFg750glk0H8vjELQFb6vSjxuJUZUsmmD4jfX/wuIiIiJ9jaxtjv9+PMM8/E3XffjW3btuGjjz7Cr3/9awwbNgz33nsvzj77bNTX1+Oss87CPffcg8bGRjtfnojyjLjGN1uoi1foVV3LZcqeAtK+k009jfYUEMsVWD5A+a6zN5zrQ7Bk2ZYWw335vrZN5SPvslQ+4IPL5UKpooQgaflAis1XiYiIMmXrSELZzJkzMXPmTPz+97/Htm3b8Nxzz+G5557Dq6++ihdffBENDQ34zW9+k81DIKIcstJToLwkftLclWTRI58gu00aDSYtH9i3GzEIUVYS/zpkUIByKRAM48pHl2Fbc1euDyVlQcXkASB3mQJJvgpiUskUEHfpcrngcbsM3xlVpX3fJ6U+j+F7LZXyATYaJCIiJ2Q1KCAaOXIkrrzySlx55ZXo7OzEyy+/jKqqKqdenohyQF8+oD47LxcW48mCAnIqrcdkJKHZ7PCo6F6C4fj+ynziSMK+RULCZoVEWfLIB5vx+prdysdau4KoKffZ8jqhcATbW7oxckB5wmkdqWgPGEsHgPwfrZfK0clZTx6XC2FpD9EMAdUEgmTlAx6OJCQiIofZWj5gVUVFBb7yla/gpJNOysXLE5FD9OUD6m30mQLqBUWUfDUuWibgkhsNJgsK7DvR7hEyBeQ0X16go1x5ZdUu08cOu/5VLNm015bX+d7DS3HcTW/iykeX2rI/QN1PAMj/7JtU1t5yrFD1fRMtEfArmg0mzRTQTWTJ798bEREVB8eDAvfffz9+//vfO/2yRJQDHcICQVVbC6RYPmA1UyCd8gHp+HgyTrmSqOa8NxzBFY8uy/g1Glq7Y9kIL6/chZYueyYbqCYPAPn/eUrlirz8/eLzmAcF1JkCiU+93Jw+QEREDnM8KHDPPffg2muvdfplichhmqZhQ2NH7PagKr9yO7F8oDtJUECur403GtRvlywoENUbNs8U4Mk45UqyhpuN7ZlPIZADcFaafFphtp9iqo2Xv14SNRNUPZZKpgDLB4iIyAmO9RQgov4logHNXcHY7VF15crtxEwBs6uMsX2aBQUM5QOJjy02klCYPiCn+XIUGDkpEAzj8keWYuveLmzc0+n469v1bhf7dIhyFWSTvxvMpFQ+IO2zrMR84V+qKB9IZfqASd9GIiIiW6UdFNi9W90EKZlgMJh8IyIqeHIX8iq/+uumTFE+sKstgFdW7cKxEwdiv/qK2OPywsIsU0CePnDmtGF4fnlD7HZ0JGFIWMD4pUgCMwXISfe8vQFvrnVuTG+2WmiGTFax+f550lIIi8gjT0sVjQNLEpQPpDJ9QAxcEhERZUvaQYGhQ4em1ZmbHb2J+gezBbxMzBTo7g1D0zR898ElWLG9FfUVJVj0y7mxk2j56r3b4vSBbx4xWh8UiGUKxPcnn6hzPjg56cXPdlreNp//hJqVCeR7+UAmmQLqbIC+7zV/htMHmClAREROyLh8YPTo0Slt39DQwGwBon5AXgR4TXL6K4SeAp29ITS0BrBieysAoKmzF5ubOjFxSN/4UvmiWfTk2TAiTAoKHDV+oO52bCShcIzyiXq+L2KouGgprEorTbJuMnt9e/YjZwhF5ax8wGIAJZXaffn7JVHfAFUWQdJGg+L0AZYxERGRA9I+sxg7diw2bdqEd999FyNGjLD8vFmzZmHx4sXpviwRFQg5jdhrkilQVRr/GmrrDqEtoA8aiifF8glybPqAtE9Vo0Gv2xVb6EcXYGJqriFTgCfjlKd8+wJs3b1hBIJhDKgoSXkf2crYC5n0FMj3IFsqR2cpKLDvv1FZiWIkYZKmJ+LDzFgiIiInpD194PDDDwcALFmyxLaDIaLiYbV8oLY8vqBp7e41zDkPhoSggLDgcLniZQLG6QPG1xG3ie5FXMDIQYF8r4Gm/svtcmF3WwDH3/wmZl63EM98vD3XhxQTMqmBz/fFbSoxQDnAmahvgJwpUOJxG8qbZLryAQYniYjIAWkHBY444ghomoYPP/wwpeelkiJJRIVLvjLoM7k6Vlvui/0cDGuGcWvi2EDxBFl/Yp64fKBvi/h9yp4CbDRIOZTKn0aPG7jzjS+wsy2AiAb8+F+fpPF62Xl/m00fyPdMgVRSBeTvl3LF9IEKf999chZBsiaDgD7TKd+DKUREVBzSLh84/fTTsXnzZkycODGl5911111oa2tL92WJqEDIacRmF8dqyny623JQQKxRFtP9xRNned+q8gF93GDf9AHhhNvrccHt6hul2PdaPBkn56TS/d7jcuHzXe1ZPJr0mWUK5HsX/VR+/3KmQLnfGBSIfq/J4wqtBAXE/ed9MIWIiIpC2kGBSZMm4dZbb035eQcffHC6L0lEBURcHHjdLtMaZp/HjUq/Fx37ygYMmQKh+H50i3jhxFnetzpTIE6VKeDzuOFxuxDZF8xg2i7lK7fbZZp5Y1W2egoUaqaAfHiPfvcIXHCvOhNS/n4Rm6VG1ZT1lUXJTQVVpQYyt276QH7/3oiIqDhkdlZBRGQiLF2FT0TMFmjs0AcF/v72BuU+xRNzK40GlT0FpP0xbZdyJZXFn8ftStqsLlfMGg3m++JWLqc4eHSt6bZyUEDOBgCAQZV+5WOqbQ37F7+HGJwkIiIH5OdZBREVPPGKoded+KtG7CsgZwq8+8We2M+mQQG5fMByTwF9NgMbfFGudPaEU9o+00wBWSrp84mIGUKlvvgxmgUL8oV8dC5DqDEuWaZAiceN6rK+++TMAFX/gUT7z/dgChERFYe0zyrWrFljywHYtR8iyi9mC3gVXVCgo9d0O/2V/fjXl3wCr0pM0GcKGHsKeKSgQL4vYqi4dEhTNxIJRzT4LNSmJ5Kd4gF9MFBssperK95ymcSLKxqU28mHl6i6Qg5yyj0F6itLYq9bVarvmZJq+QAzBYiIyAlpn1UceOCBuOCCC/DZZ5+l9fxPPvkEX//613HQQQelewhElMfEK4a+JOUDtWXxsYR7pEwBUUS3iI/fL5/AW+0pEJKyGcSU7HyvgabiEYloKQUFIhEt6WcqV0JCY1BxHF++fJ6ufHSZ8n65fCBRUED+fqn06zMFBu4rHQCA6lL9Y1YyBbzMFCAiIoelHRS45pprsGDBAkyfPh2HHHIIbrnlFixZsgTBYFC5fU9PDz744APceOONOOiggzBz5ky8+OKL+M1vfpP2wRNR/pKvwidSI2QK7G4PWNqneLVOPoFXpf6KVww1rW8RsGVvl+4YxZRsscEhUTZ1BVMrHQhrmu09Bey6IC1+RsXygXxf3KrKB8yu6svTB+TygdF15fHH/HJQIHl/Z7G3Sb4EU4iIqLilPX3gt7/9La644gpcf/31eOihh/DTn/4ULpcLPp8PY8aMwYABA1BVVYW2tjbs3bsXmzdvRigUgqZpqKmpwVVXXYVf/vKXGDRokJ3/HiLKE/JV+EQqhKtnZt3LgUQ9BfQn6ckmEmrQ8O8lW3WPez0u+LzxrcRRiETZ1BGwniUAAOGIsaeApmkpTRTI0vAB3edGLB8I5fnnSVU+8Pdvz8T/PLwUXb36oI3cs6RSygY4cERN/DEpKFBqoXxA/G5jw1MiInJC2kEBABg8eDBuv/12/PGPf8S///1vPP/883jvvffw+eefG7YdOnQojjnmGJxxxhn42te+htLS0kxemojyXCrTB7wWr3pmMn1A3EjTgJ//Z4XuYbmje2+eL2KoeHT06DPsSn1uBILm7z9N0wxBgd5wBH5v8gVntoVMegokCvY5TRVAkRstugAcM3EQFv/6RJxxxzvY3NQFM/LCf+LgytjPcqaAlWCMvuFp8u2JiIgylVFQIKqsrAwXXXQRLrroIgBAY2Mjdu/ejdbWVtTU1GDw4MHMCCDqZ4JCT4Fk5QO+BI/XVcT7DVifPmDcT7JzcS/LByhHdrTES2bqK0qw9JqTMOYXL5huH9Y0XVYLAPSEMgsK2LX2FD/34mI5n4JsXb1hw2JdLm+IBhYr/d6kkx7koIDYOFV+zEqZBkejEhGR02wJCsgGDRrEIABRPxfWlQ+knykgNlTT9xSI3++Rr/opzqPlngLG13HDL3R0Z/kAOeWml9fGfm7q7Ju+UeJ1mwamwhFjT4GeYATIIAFPbrSXLjFToELoyh+OaAiFI5azguyi+ubp7AklDAq4XfoSAbE3gsoAIXAp35afa+X3LP6K8r0XAxERFQdn/zoTUb9h1hRQJdGVODHtWH/iHj9plxca6qCA8LjiuujgKj8zBSgnVmxvNdznTzByMBLRDJ+pnlBqzQrlZpy2NRoUgmnywrsnTz5TqkkP4veM/H1S7kt8/aSmzIfvHz8eVX4vzp05EuMHxcsHXC4XhtXEozWzJw5MenziuFU2GiQiIidkJVOAiEgcSZisp0Ci8WpBYSFh1qdA3n9YscIRt1AtCuoqSnRBAWYKUC75vR60Q92AMKxphpKZVBfcqsCYHYLCZ1ROnQ8EjWn7udCuaOwYNslCAoAyC2MEf3rKFFx98mRls8dfnDYFt7zyOWZPHIhzDh6RdF/i11nErmgNERFRArn/60xERcms/l8lUaaAWIssBhrETAGfO3mKrniy3tjeo3y8xCs2GuTJOOWOnClQUeJB574u+JGIcbHYk6AxoZPETAF5pF8uUuFVjf0e+WAzNu7pxF/f+AJfnjEcPzhhoi4IKH9flVsICvS9lvp77sszRuDLM5IHA1Svz/IBIiJyAssHiCgrxNpiedEuG1LtN32sNxyJLfLFhZB4NU/OFFCdR4tbbGvu1j02sLLv9Vk+QPlCDgo8/6NjYj+HNc3wHk+1fECOm9lXPhDfUYn0b8jF+lb173pi6Tb8+F+fYN3uDtz8yue44N4PsL0l/p0gBymdzm4Q+xkwU4CIiJzAoAARZUUohekDEwZXmT6mafGrZeKCQ9ynnO6b7ET6060tutv3X3woALDRIOUNt/SeFptphiOaIRsm9fIB+bY9i08xs0cObKjKerJN9V1QLzUGfO+LJty6MD5KWf6++t6x4xC9a/aE5D0BMiX/tyYiIso2BgWIKCtCJvX/KuMHVWDcoArTx6NNwMxHElrIFBA2aeyIlw9cNGs/TBtZC0DfLX3vvi7wuRCOaPj10ytw9l/fw5JNe3N2HOS8eSdNAgB8/bBRsfuOmTjQkAYvN6DLtImfI5kCOVjgqoJ7YwYav2vW7GyP/SyPSJ00pAp3fWsmLp09Fjecc5D9Bylxs3yAiIgcxqAAEWVFosZdMpfLhf85dpzp49Grj+KVxkTZB+rFR3z7tu5g7OfqsvhM8WE1ZbGfd7fFZ8c77aXPduLRD7fgk60t+Nrdi3J2HOSMEbXx991hY+oAAN86cj+cuP9gTB5ShatPnmx4vwelIEBPMNXyAf1nxK6lp67BqNsNd46b5qm69+9sTfzZVo1NPGXqUFxz5gEYXV9u27GZvj6DAkRE5LCsF8p98cUX2LNnD4YPH47Ro0dn++WIKE8Edan+yeOPZ0wbjl8+tUJ5lT96tc9qoEG1+BCvtLZ2x7uPV5XGvwbFTIHuFBdZdnptza7Yz1wTFD/xKn/06nqpz4N7Lzosdv8uKUgld9DPuHzApgW7+Ln3eVxwu1yxz2MuFrghRcPQ3e2JgwK5npCgazTIngJEROSAtDMFdu3ahX//+994//33lY+/9957mDJlCiZPnoyjjz4aY8eOxWGHHYbPPvss7YMlosIhpu2WeBNnCgB948vMTsaj+zLrKSBL1miwLSBkCpTGMwXKSuKv353Lbu5cB/QrvUKTQLkOP8ot1Q+0CtkuQBpBAbnRYErPNqcfReqWmubZ9CIpUJUPBJNMFqmwOG0gW8T/1rkouSAiov4n7aDAww8/jG984xtYu3at4bF169bh1FNPxbp166BpGurq+tIhly5dirlz52LPnj3pHzERFQRxNFmikYOiihJ1UCA6CSBisXxAPZLQuD8AqBQyBcQRat296hnxTtjblbt+BuS8RM35ouT3e0OrfoJGIMPMFrsuSIsLbq/blZflA8mUM1OAiIj6mbSDAm+99RZKS0vxta99zfDY7373O3R2dmL06NFYsWIFGhsb0dTUhC996UvYs2cP7rjjjowOmojyX68ujdjaV43ZPPBYpoCufMB8n/JVVQBwQR1EKBGOTXz9XJYPvLm2MWevTc7SNE0XpJKb80V5pPf07vYe3e3UGw0a5w/YQQ4G5rqTvtx7wYpyX/5kCnAIChEROSHtoMCaNWswc+ZMVFTou/gGg0E888wzcLlcuPnmmzF16lQAQG1tLR544AFUVFTgpZdeyuyoiSjvBXWLg+TlA4D5lILekLEmWR7Zlmw/ijhB37EJizAxU6CrN3dBAeo/QhFNl1ZvFhSQY2ByEKAnlGqjwcS30yVPHdGXDzgfFOhNY1Vd6sttD2YxU4DlA0RE5IS0//Lt3r1b2ThwyZIl6O7uRllZGc4880zdY7W1tTj88MOxbt26dF+WiApEOuUDZg0JU200qCotMNvaJ7xmmZApEMhRUKBRugJMxa1XWtyXmHxW5Pe0XC7Qk2EPjD+9tCaj50fpywfcUn28LS+RknSyE8py3FNA/G4L5eKXRkRE/U7aQYGenh60tbUZ7v/ggw8AAIcccgj8fr/h8SFDhqCrqyvdlyWiAhFMo3zAbKGvKh+QSwTExVR9hfG7x2WSKiBmFegyBWwsHwgEw/hka4thAaiytZnfj/2J/J7wm6Suy+93OShw+2vrsHDVLlglL5VfXb0b767LvN9PSMoQ8uQ4UyCdngKluS4fyHFzRiIi6n/SDgqMHDkSn376KSJSFPu1116Dy+XCrFmzlM9rbW3FwIED031ZIioQvWlkCpiVBPTGMgXEGej6bc87dGTfPlzAFXPGWz5OsbRB11PApkyBSETDt+9bjLP/+h7O//uipOnAXT0sW+hP5PR2q5kCqrfRZQ8tsZxpolqfX/HoUkvPTURfPqDPFCiUpnllOQ4K5LoPAxER9T9pBwWOP/54bNu2DTfccEPsvg8++AAvv/wyABhKB6I+/vhjjBw5Mt2XJaICITb4KrHaU8AsKBCKBgXi93mkff72rKn4yzcOxoIfzsbM/QYY9mHWU0BsWCheIewJRWw5Id+wpxOLN+0FAHy8pQXrGzsSbt/RE0z4OBUXOe3frP+G3GjQzEf73mvpaA9kPnFD10tEnj5QIAvc3GcKxH9mUICIiJyQdlDgpz/9Kfx+P377299izJgxOPTQQ3HcccchHA7j8MMPxzHHHGN4zgcffICGhgYceeSRGR00EeU/+YqhFWZjBqOlCGJqsrxIKvG6cdb04Zg6vEa5D9OggEmmAJD5mDcA6OzRL7Q+3tqScHs7FmZUOHrD8fdYiddtWuZiMSZguUGmZtO0AVkorP/ce3KcCm+1yakonzIFclFyQURE/U/aQYFJkybhP//5D+rr67FlyxYsW7YMwWAQ+++/Px5//HHlc2677TYAwKmnnpruyxJRgUinfCCVngJW9xllNpJQ3I/cYMyOCQRyo7BPkwQFOnoYFOhPxCkC/gTvaZdLf9XdTFu3tUyTbK01xfe71+OSxus5v8D9+mHGhsjJlOa40aAYSGGmABEROcGbyZNPO+00bNmyBe+++y4aGxsxcuRIHH300XCbdBC/4IIL8I1vfANz587N5GWJqACI5QNWr9bJzdRi+9oXFEhnzGGUeflA/IFSr/2ZAmLDRQBY3WBs0CrqYKZAvyI2GvQnGYXncbsQCSdeJAYsjiZUBQXsuEKuazDqdutS4QPBMFZsa8XU4dUJR4raqbI09dOcnGcKMChAREQOyygoAAClpaU48cQTLW171llnZfpyRFQgxAW82ex1mVmqbHThFEpjokGU6UhCYT9utwulPjcC++q8u20ICsgn9cu2tCAS0UwXRcwU6F96db03Er+nfR43guHE78lwkqBBIlVpLKBlYomP1+PSpcJf8sBHAIBzZ47EzedNz/i1rEgnIyKvggIsHyAiIgekXT5gJhwOo7GxEXv27EE4yckLERWvgNBAzZ9hUCB69TEoLThSYWUkIQCUl8QXRnaUDwSl7vIAsKmp03T7dikoUF9RkvExUP4SyweSBc8GVRlHbcqsjuBT9RSos+G9FtSV+LiUwa8nl26DlseL3dIkGRvZluuSCyIi6n9s+cu3detW/OIXv8D06dNRWlqKoUOHYsiQIfD7/Zg+fTp+8YtfYMuWLXa8FBEVCPGKd4Xf2hXIiHH9DADo3ZcSHcyop4CaVyp3Eq8S2jGWMKS4cmsWoACM5QNcEhS33hSCAkOrS5Puz+oiUrUmN2v0mQpdpoDbbVoSZEcWjhXpNFTMp0yBQpnYQEREhS3joMCdd96JKVOm4KabbsKKFSsQDoehaRo0TUMkEsGKFStw0003YfLkybjjjjvsOGYiKgCdaQQFzFJlVdMHzJoSmjLZXO5NIDYb7A5mnsovNxoEEncUl8sH2H28uIkNOf3exIvRYTXJgwJWMwVUMr0qHYlougkDcvmAyLEpG2n8k/Kq0SA//0RE5ICMggJ/+tOfcNVVVyEQCOC8887DM888g61btyIQCKC7uxtbtmzB008/ja9+9avo7e3FT37yE9x44412HTsR5THdYsfiVX2zBU2vstGgTZkCnkSZAiapCymQGw0Cxtn0IkNQgFcKi1oqmQIjBpTpblcqgm1hs3QbCzIJKABAUHptn8dt2uBT/Hfnm3zKFGD5ABEROSHtoMDKlSsxf/58DBgwAG+++Sb++c9/4ktf+hJGjBiBkpIS+P1+jBw5El/+8pfx73//G2+88QZqamrwm9/8Bp999pmd/wYiykPiyazVtGSzBXB8+oC+XjkVpj0F3OaZAl292ckU6EnQId5QPsA1QVFLpdHgaQcO071fZ08YaNhGFYRSUb2vMl2AyqUyXrfL9LPf41BQIJ1/UXWZz/bjSIWHPQWIiMhhaQcF7rjjDkQiETzyyCM45phjkm5/7LHH4tFHH0U4HMadd96Z7ssSUYFIKyhgWj6wb/qAbga6/dMHAP1VwmyMJAQSXyVl+UD/IgaIkmUKHDiiBvd8+1DMGlePbxw+Gj84YYJhm0wWkaoAVkrPl4MCHrfpZ9+pTIF0GhoOs9C7IZt0PQW09P4NREREqUh7/tDrr7+OKVOm4NRTT7X8nNNOOw37778/Xn311XRflogKhLiYtTqT3GxBE5s+EMqg0aDiEFwuY8CiXJcpkJ1Gg4mukspBAS4Hilsq0wcA4Pgpg3H8lMEAgK17uwyPZzJ9IMOYgKJ8wGWaodOrmMqRDa+t3p3S9l63emKCk+TXj2hAiolRREREKUk7U2DHjh046KCDUn7eQQcdhIaGhnRflogKhLg4sdoU0CwoEL2qKC46Ui4fUOQK+NzGr0B9o0EbggKKlVbCTIEAMwX6E32jwdT+JJcrGuI9vngLXl65M+lzVW8r2zMF3G7TxaxTmQIb9piP/1RJddRpNsjNGVlCQERE2ZZ2UKCkpAQ9PT0pP6+npwc+X27r9Ygo+8QTWbOxZImeI4ouVsRFhzxKMBnVIagWAHaPJFQ2GhQWRLvbAnjkg83Y1tyFnlDYcAWV64HilkqjQVl5iTrZ7/JHluKTrS0Jn6t6W2W6+AyGjZkCuS4fSJUqUOg0+RAYGCQiomxL+6/f2LFjsWjRIkRSuLIQiUSwaNEijBs3Lt2XJaICIS4wrF59k7ury/vSTx/I/IqeKoOh3O5MAUWadG+4b7+apuHif3yE+c98hgvu/RBt3cbGhqwnLm5igCjVTIFSn3p7TQPuevOLhM9VLTQznT4QkvqIuFyJygcy/2zZQQ5aePIgU0AOeGb634WIiCiZtIMCZ5xxBhobG3HLLbdYfs7NN9+MxsZGnHnmmem+LBEVCF2jQYuZAkeNN3ZTB+IZAhmNJFQcg2ofYqaALT0FFCf00ZGEbYEQVjW0AQA2N3Vh6eZmw7ZcDxS3VKYPyMwW3IC6XEZ068LPDfeFLU4uMCMGwKIBN1WJA5A/mQIDK0t0t1PNQMoGlg8QEZHT0v7r9+Mf/xjV1dX45S9/iRtvvBHhBFH/cDiMG264Ab/85S9RU1ODq666Kt2XBQB0dXXhmWeewaWXXopp06ahuroaFRUVmD59On7/+9+jo6PD9LkPPfQQDj/8cFRWVqKurg6nn3463n///YyOh4iM0mk0+I3DR+ErB4/A2TOG48Ij94vdH963r1Aa2QdRqq2V5QNCSrY9mQLm5QNyFkBbd9CwLTMFiks4ouHddXuwvaUbgH7CRalPvYBOh9liHOh7T72zbo/h/kyvSPcqgnYVfnWJgxMjCa0spne1yWWQuf+8yd9LqmwjIiIiO6U9faC+vh5PPPEEzjzzTMyfPx933XUXzjvvPMycORODBw+GpmnYvXs3li5diieffBLbt2+H1+vFP//5T9TX12d00I899hguu+wyAMDUqVNx6qmnoq2tDe+//z5++9vf4vHHH8dbb72FwYMH6543b9483HrrrSgrK8PJJ5+MQCCAhQsX4pVXXsETTzyBc845J6PjIqK4dBoN1paX4M/nzwAA3Pn6utj90ZP7THoKqGqb1ZkC8fvs6CmQqNGg3G+gLWAMCvAiYXH5/YKVeHDRZlT6vXj7Z8cjEBTKB2wMCgQTvHEaWgPK+zO9Iq37fO5b2FblMCiQLKhX4nEbenjkw1V5+XtJ1ZeEiIjITmkHBQDgxBNPxDvvvIOLLroIa9aswW233WbYJnqVa/LkyXjggQdwxBFHZPKSAPqaHF5xxRX4yU9+gokTJ8bub2howBlnnIGPP/4YP/7xj/HYY4/FHnv99ddx6623or6+HosWLYo9b9GiRZgzZw4uueQSzJkzBwMGDMj4+Ij6u0hE03U3t9poUCRmF0QDDOIJfIk3tX2qshVUQQGxeVtXr7HGP1XqRoN9ixU5YNAWUL+epmkJU8WpcDy4aDOAvtGTD7y3EYGQmClgX+p6ooDWmp1tyvsznj4QEcsH+v4tlSZBASfKB5J9fitLvdjb2au7b8ao2iwekTVyv5R8KbUgIqLilfEZyGGHHYZVq1bhhRdewJVXXomjjjoKkydPxqRJk3DUUUfhyiuvxIIFC7Bq1SpbAgIA8O1vfxt/+9vfdAEBABg2bBj++te/AgCeeuop9PbG/9hHex/Mnz9f97xZs2bh8ssvR2trK+6//35bjo+ovwtLKe/pjPkSswsisUwB46LDKtUhqJoVVpbGFzHtJov0VKhSf6NXSYMh/e/p/S+MKd0AswWK1d6u3lh/CQDwe1PPFPjJiZOU9wcSXCX/7XMrYz9PHlIV+zmiZVauIgbAop8t8fMkcmKhKwdGbv/6DN3tqlIvfnnaFN19vz1rarYPKymXy6XrLyFnMxAREdkto0wB0WmnnYbTTjvNrt2lbfr06QD6Rh82NTVh2LBhCAQCeO211wAA5557ruE55557Lu644w4sWLAA//u//+vo8RIVIzkF12qjQd1zhEV/SFU+kGKgQRVEUN03oDzeeKxZuoqYDlWdtirzAQCWKBoNAn39GTxJGsdR4QlHtFjWCJBepsCP5k5AU2cPHtqXgRBlljq/obEDW/d2x25PHVGNtbvadcckf7Y0TUNPKAK/150wY0X1+TTNFHBgoSs3Cp04uEp3u6rUi28duR9eWrkTH29pwe1fn4ExAyuyflxWlHjjpQ3MFCAiomyzLSiQLzZs2AAA8Pl8qKurAwCsWbMGPT09GDRoEEaOHGl4ziGHHAIAWL58uXMHSlTE5HFnVhsNisR1SVhVPpBip3ZVYoEqU6CuIh4U2NuVeVBAnt0O9GUPaJqGlTtaLe2Dc8qLUzii6RsNppEp4HK5MG1kLQApKGBSPvDKql262wcOr8FTy7bHbociGuTD+NXTK/D44q04/9BR+NO500yPJSiUD/jyoHxADIwMrCyBXwq6VPl9qPB78fSVR2f9WFIlfjepvkOIiIjsZFtQ4P3338cbb7yB1atXo7m5GS6XC3V1dTjggANw/PHH21Y6kMztt98OADj11FPh9/sBAFu2bAEAZUAAACoqKlBbW4vm5ma0t7ejqqpKuV3U1Knq9ML169dj/Pjx6R46UdGQr45bbTQo8ngUmQK66QPZaTQ4oMIX+zkQjKC7N4yyBJ3ck1FNHwhFNFz/wmrc++5GS/tgTKA4hSKartFgutMHVJ8vs/IBuZxlyjD93zv5s9vc2YvHF28FAPxryVb8/LQpusCZft+KTIE8KR8oK/HA79V/3iv89jV2tFuJl+UDRETknIyDAsuXL8d3vvMdfPzxxwCM9YjRVMPDDz8c9913Hw444IBMX9LUiy++iPvuuw8+nw9/+MMfYvdHRxSWl5ebPreiogItLS3o6OhIGhQgosQikcwzBeSeApGIpitLSDXQoGp2qCpBEMsHgL5sgRElZSm9liioaN4WCmv4xwebLO+DQYHiZMgUSLPRoOrzJafOR5VIC+MpQ6sNxyTq6NH31ejsCSUICqTQaNCBha74uy3zeQxBl3R6ODhFDFgGWT5ARERZllFQ4KOPPsIJJ5yAzs5OVFRU4LTTTsOMGTMwcOBAaJqGPXv24JNPPsFLL72EDz/8ELNmzcKbb76Jgw8+2K7jj1m9ejW+9a1vQdM03HTTTbHeAkA8UJGoFjKV5korV65U3m+WQUDU39iSKSB8XkORiGFxLS9uku7PYqaAz+NGVak31mSwubMXI2rTDwqoMgXkhVYyvaFIRtkKlJ/CEU03fSDdRarq82XWU6C1Oz728uDRtYbPkRzQkyVqDyKOQfTt229VDjMFAlITRzlTINXvECeJx9bDTAEiIsqytIMC4XAYF1xwATo7O3HppZfilltuQXV1tXLbtrY2zJs3D/fffz+++c1vYuXKlXCn2Dk8kW3btuHUU09Fc3Mz5s2bh6uuukr3ePTKf2dnp+k+urq6AACVlZW2HRdRf2XIFEir0WD8OeGIZlhcpxpoUG2vCgoAfdkC0aCAPLIsVaoxb4s37k1pH79bsBK3nj8jo+Og/BOOaLrpA2lnCig+X2bj+Brbe2I/Hzmu3tAEVA7opZKlImYK+NzRRoM+5bY9jgQF9FkYctDFLIshH5QwU4CIiByU9sr82WefxRdffIHzzz8f99xzj2lAAACqq6tx77334rzzzsPnn3+OBQsWpPuyBnv27MFJJ52ELVu24JJLLsHNN99s2Gb06NEA+oIHKp2dnWhpaUFtbS1LB4hsII8kVF2lT0ZM7VcGBVJtNKgqHzA5rgFCenRzhs0Gg4pMge0t3YotzT398fbkG1HBMZYP2JcpEAxrygZ1YlBgUKXf8NmUm1pqUJcEqqh6CtSUqYMCjmQKhPS/W7mxaHkeZ9+wpwARETkp7aDAggUL4Ha7ccMNN1h+zo033gigL6Bgh/b2dpx22mlYs2YNvvKVr+Cee+5RnrBMnjwZfr8fjY2NysDAsmXLAADTppl3VSYi6+QFfHojCfVBAbl8QDU5wOr+YvswSR+uK48vZDLNFJBrtK0oS3NxSIWlr3wg80wBs6Cbqq9AY4cQFKgyBgWSZQok+tTppg/sC9rVlpsEBRzpKaAvH5DPD8YPzt/MQF1PAQYFiIgoy9IOCixduhSTJ0/G2LFjLT9n3LhxmDJlCpYuXZruy8b09PTgy1/+MpYsWYJTTjkFjz/+ODwe9Yl0WVkZTjjhBADAk08+aXg8et+ZZ56Z8XERkf5qo8uV7khCsaeAhu3N+qvrZqn/ZlTH4LOSKZBhUCCdE3qzOmwqLl29Yd0Vc7NU+2TMYm6qEgIxU2BwlR/yR0Au/ZFDWonie7pMgX07Nst+6A2pex7YSdXE8TdnHgCXCxg3qAJfmj4868eQLrF8wImsCiIi6t/SDgo0NDRg0qRJKT9v0qRJ2LFjR7ovC6Cvn8E3vvENvPHGGzjmmGPw1FNPoaRE3Q05at68eQCA6667DuvWrYvdv2jRItx9992orq7GpZdemtFxEVGfTKYERMmZAr99Tt/gM9X9qrIVzAILdcIEgr1plg+EwhH8z8NL8M66PSk/l0GB/qGps0d32+yqejLiFXGRKlOgIxAPFFSX+eByuXSfNTlTQOZKkCsgBsDE8h5VVo8TC90eRWnGd2aPxUe/PhELf3Jc2uUaTvDpygc4foSIiLIr7TPP1tZW1NTUpPy86upqtLW1pfuyAIA777wTTz/9NABg4MCBuPLKK5Xb3XzzzRg4cCAA4MQTT8RVV12F22+/HTNmzMBJJ52E3t5eLFy4EJFIBI8++ijq6uoyOi4i6iMGBdJpMggYewp8srVF93ii2mbl/hRBBLO+BPpMgaBym2QWrtqFl1fuSuu5fWMRzRujUnHY0xEPOKlG5lll1veiWxEUEBf90cW6x+2KfWblcpdUJvOo9g0A5SVe3dQDwKHyAZPSjIGV/qy/dqbYaJCIiJyUdlAgFAqlNUHA7XYjFEptHJesubk59nM0OKDyu9/9LhYUAIDbbrsNM2bMwJ133omFCxfC5/Nh7ty5mD9/PmbPnp3RMRFRnNhoMJ0mg4A+mJBOXb5hf8rpA+pjE+ewp9tT4JVV6QUEgPSvGFNhEd9bAzL4bz5n8iC4XYD8MelUjL4UF+6efX/DPQk+a/InT248KNqytyv28wAh26bSrwgKOD19IM1xj7lS4o3/N2GjQSIiyrb8HdKbwO9+9ztompb0f2PGjDE89+KLL8aSJUtiEwdeeuklBgSIbCbWFqcbFPAKQcdkKc1WpFI+IC5o0p0+kMmJvPj61D/UZvDffFhNGf7yjUNwwRGjdfd3BfWZApqmKUt7vO4EQQHpo5cocaC1K77wHzGgLPazavSfEyMJ9eMeCywowEwBIiJyUEaFqw8++CAefPBBu46FiIpExIZMAbmnQKZUmQJeC5kC6QYFMjmRL7QFDGVuQEVm2SFnTBuGM6YNw/JtrVixvRUA0NWjDwrIwbXo+9+d8LOWOHNA1CFkJoiBgAq/8f3s9EhCv8mkkXwlBiyZKUBERNmW0V9JK1frVf8jouJmR6NBuadAplRJASVmjQaFBdqutp60vrcyOZGfMao27edSYcokU0BUVhJfgMvTB+RRodFsHF2mQJL3utlnYXVDG976vDF2u6JEDAoYrz84MWYvoGg0WCj0jQYZFCAiouxKOygQiUTS/l84nP1RRESUO3Y0GnS7rHdEt0JVPuA16YtSV6FvRPbSZztTfr1AML3vuSPH1eHM6cPSei4Vrkx6CojKhaBAt/QeDEb0i0ufMlNAv42V8oGte7tw1l/e1d0nBgJUV+mDDnTUDwTVjQYLAUcSEhGRkwrrryQRFYRwxI6eAvHnRWzIMPIoAgCJygfGD6qI3b7i0WVoD6Q2haC1O7WGql87dCQ2/fEM/PN7s+AvsKZoZE1zgqaVg6tKbXkN8Qp9p1Q+EJYW4h5lTwH9/uR4nOqj+JfX1xkCd2L5gKp3h9OZAv4CyxQoEQIpTvyuiIiof2NQgIhsZ0dQQDc73YaTYlWlgNn0AQD4yiEjdbd/8q9PU3q91hR7EZg1PaTisbMtYPrYkGp7xuSJ5QPdUvmAWGMPIBZ80mfl6D9rckBONX1ADj4A+j4Cw2vLDI87EhQIFUejQWYKEBFRtvEslIhsZ8dIQkcaDSYYq3rRUWN0t19dvQtbhZFrybR0p5ZZwKBA8ZPH8okGV9uVKSD2FNAv1sXbXrcrdjVazJiJGDIFEk8jANSBAjFT4AfHT9AdF+DMQrdHN5KwsD5f4veBE6UWRETUvxXWX0kiKgh2lw9kbySh+bFV+r2GEW8vr7TWW6AnFDYsyJJJdCxUHBIGBarsyhSIL8bFaQAA0C28J8WMAk+CTAFDTwGLxyH2FBhQUYK3f3Y8bvzKQbH7nOkpULiNBsXyAWYKEBFRtjEoQES20wUF0mw06LG9p4BqJGHir8DffWkqpg6vjt2+6831lrIWuk0CAgeNqIn9XCV1ZGemQPFr7TIPCuxXX2H6WCrE4MKOVn25gth4UGxImOizluw2oM4ekCcO1Ff6ceS4+thtJ8oHegq4fEAMEnL6ABERZRvPQonIdvZkCsS/nmzJFFAcR7Jj83ncuOyYcbHbTZ29+OmTyXsL9Jhc2bv5vOkYO7ACU4ZW4bavz9A9phrbRsXFLFNg4uBKXbp9JkbVlcd+3iaVu4jZK+VCRoG+f4ccBNDvXxUAUAUK5HIBQL/QDUU0RGz4XCeiazRYYOUDfmYKEBGRgwrrryQRFQQ7ggJiub8NiQIplw9EyVcYn1q23XRWe5TZOMLJQ6vw+v8eh5d+fCymDKvWPZYsoSLbCyjKvpbuePPJg0bUoMrvRU2ZD78+Y3/bXmNUXbyp37bmbt37Rmw8KL6vU8kUaLMwhaPU51Zm4ZRI98kjEu2mH0lYaJkCnD5ARETO4aUpIrKdHY0GEzUBPOOgYSnvL9VGg1F+xXzzlq4gBlSUmD7HLFMAAFz7Vv/DpMZy8rg4WVjT4Ab7DhSqPzy/Cve9uzF2+8hxdXjqyqMQCmu6+v5MjRwQzxToDUewp7MnNu5QnymgDgrIWTlyAOwX/1mOV35ynLSN/hjMsh7kEplgWEO2EmQ0TdNNWyhVfI7zGXsKEBGRkwrrryQRFQS7RxICwMDK+CL8giNHy5unvD/AWqaAKu24PRBSbBnXE0x+Eu92uzBn8iAAQJnPg6/OHJlwezsmMFBufLG7QxcQAIC6Cj98HretAQGgb0FeXRpfae9oifcVsNJTQH6fyW+7z3d1JM2UMSuF8UmfpWAWF7u94YguWMFMASIiInMMChCR7exuNAjoU4HlNGRL+1Mch6VMAUVQIFkKtTwP3sxN507H/DP2x2OXHWGY5X7YmAG623Y0W6Tc+GJ3h+G++gSZJpkS30s7WrpjP+umD/jU0wcMQQFFMKqps1d3W96iosQsU0D/GczmYjfQq993oQUFdIEafvaJiCjLGBQgItuJCwtV2r4VclBAvMqZbGqAlf0BgMdCpsABw2pQVapf5KgyBYLhCH76xKc4+6/v4YP1TZaOaVCVH989ZhwOHj3A8NiP5k7U3XYqU+CDDU348p3vYv4zK9jHwCadPcb3S51DQYHtzfGggJXygWSZAvI+gRTKB6QgXDa76suBuUIrH0jU/NFO76xrxFl/eRe/X7AqaQYIEREVL/YUICLbiQsLb9o9BfTPE/dpJe1fpiwfsJApUFbiwYIfzMacm9+M3deuyBR47pMdeGLpNgDAJ1tbUj4+2fRRtbrbWe7JFvP1v38AAPh0WyuOmTgIp0wd6swLF7Hmrl7DfbXlvqy93ggxKNCiDgqUWQwKqBaKTZ09CV+/wq++Ku92u+B1u2J9C4JZXOyKzT5drvSyi3LJm+C/iZ0uvG8xAGDF9laceMBgHDV+YNZei4iI8ldh/ZUkooJgR6PBRM+TG5ZZoWw0aDG4MGZgBQ7dL341X5UpsHDVroT7OGJsnaXXipLLHXKRQvzOukbHX7MYtSneL9VlWQwKDNBPIIgSMxYqTEYSyu8z1XrUOFpRv1Gi8ZpO1crrJg94PbEGn4UiF+UDizfudeR1iIgo/zAoQES2i2Sh0aAonaBAuiMJo8QSAlWmQCJuF3DJ0WNTeo78789Fo0FmE9ujzbCIBqpLsxcUGDlAnSnQKYwkFBfuicsHjG8CuZGm1fIBQP+Zy2ZXfTFToNBKBwB9vxOnPvv8vBMR9V8sHyAi24XsaDSY4HnplQ8Y77PSaDCqSljEqTIFNEO7tT77D6vGPd+eqRsVZ4X8z89Fo0GuEeyhakxZXZa9P79i+cC25q7Yz1098YWymOKfKFVd9b4TF9wq5SaNBgH9qL1sZgqIPUjKCqzJIOBcTwEiIiKAmQJElAV2NBp0u10we2pa5QOKIEMqWQy6TAFF4zgzw2pKUw4IAIryATb9K1ht3cb3SzYXqmL5QHsgFEv3FzMFxIW7W5o+8P4Xe/Dwok3o7g0rrx73SFf45U0qTXoKAHL5gDM9BQpt8gCgL23iZ5+IiLKNmQJEZDvx6mK6jQb79qO+P52ggKp/QIli3KAZsQZcVT7ggvrfqRppaAXLB4qH8v2SxRr3QZV++L3u2OJ9455OzBhVq+8pIGYKCJ+NDzbsxfUvroamAat3tmPulMGG/QcM5QP53VPAX4BBAV2mAIMCRESUZcwUICLbhWzIFEgknfIBVaZAKh3JxUwBVeM4M+lepXS5XLoSglyUD7CAwB7y++XaL03N6uu5XC5MHV4du710czPaAkGs2N4au6+2LD4SUfxsvLp6VywY9NiHW5SBuZ5Q4vKBxEEBoadAFoMC4jEWYk8Bjy57w5nRI/y0ExH1X4X3l5KI8l7Ehp4CiaTVaFA1kjCFq/hVfrHRoPWgQLqZAoC8MGCmQL75YncH5t7yJsb84gVccO8HpotlsdHg/DP2x7dn7Zf1YztsTHzaxR+eX4Vj/vSGLl1fLDFIlM2j7imQrHzAYqZAFhsNdgvjF0u9zBQAgM1NnfjrG19g7c52W/ZHRETFg0EBIrKdeAEw3ekDiaRTkqAKTqSWKZC4fMBMJkEBMcsiJ40GGRQwFYlo+P6jy7C+sRMA8N4XTXjukx3KbcVGg0eOq3dkPN7xUtq/PEZwuNCMMFEZjVwaABgzBeQ1a6JMAX2jQad6ChTeqY5Y0hGxISigaRq+++AS3PTyWlz8j8VZnfxARESFp/D+UhJR3hPTXe0OCrhdgDedRoOK40i3fKDDgfIBQM4USHs3aTObqEDA6p1tWLtLf8VVdQU2EtHQIdTyZ3MUoUjMFFARr+YnCgqoyweS9RSw2mgwiz0FhGMsKym8TAGvzZkC3cEw1u3uAAA0tAawYnuLYZvsh6qIiChfMShARLYLa9krH0indABQZxek0miwMhflAwlGxTmBmQLmPt3aarhvU1On4b6O3pDu9ygGl7LJ43bhyzOGW9q2xGO+aLYyklDeJHH5gDM9BXSZAgVZPhD/3rDjsx8M6feRSl8UIiIqfgwKEJHtxHN9uxsNphsUUB1HKg0Lk5UPmMU+Mul87s5xo0HGBMw98/F2w30b9xiDAm1S2r5TQQEA+Nqho5T3/+iECbrbiYJjqjRzOVNAfm/mw/SBbiEoUIjTB+RMAVUZRyp6wvpATlhRusHPOxFR/8WgABHZzq6RhCpiKnYq5IyFVMsQxMVcZ28Y8/79CfZ09CR9HjMFis+rq3Zh8aa9hvu37u02/HcSG975ve60Sl/SNXFIpeG+EbVl+N5x43X3JQoK7GozvsflTAH5dqJMgRKHGg2KwZiKAiwfkMuuMv34y/0bwvxwExGRgEEBIrJdSDgBzUajwXTIx5FqxoFcC/7Usu244YXVSZ+XyVVKXVAgJ5kCXDjINjd14rsPLYndrimLvy96wxHsaOnWbd8lBAWcrm0fVOk33PfcD442LNoTBa62NXcZ7pMzBeRyGuuZAtl7f23dG//vMFKYtFAo5O+rUIZjCeWMj2xmaRARUeFhUICIbCdmCrgd6LRuhXwcqfQTANTN055SpJDLMpo+4LK3A3nK9r1kOKJhV1sg4xTmQvfJ1hYcd9Obuvtu//oMDK0ujd2W+wqIaezlDqexu1wuHDNxYOz2QSNqUK8IFCR6j65v7DDc1yNlBsjZO4n+neIY0Gz2FNgqBDNG1ZVn7XWyRQ4KZJopJAcBeoIMChARURyDAkRkO/EE1sFs6YS8Uv+AVCYP9D3fjfIEV3rNTtrzpXxg8ca9uO75VVi3K/UZ5Zc++BGOuOE1/OI/KzI6hkJ308trdLePnlCPOZMHY8zA+KJz0x7zoEBpDtLYf3vWATh4dC2GVPvx81OnKLdJFCD7YIOxTELOFJAzAxL1ERH7eGTranU4omF7czxTYHQBBgXksqtMJxCEpKwM+b8hANYLERH1Y3lyuk5ExUQ3fcCdH18z8kl2qpkCQOImcWZXPTMZSShmCmRSPtDVG8I37/kA9767ERfet9jy8zQAX+zuwJtrGwEA/1qyFaF+mna8Ylsr3vuiKXZ7dF05/vy1GQCAsQMrYvdvatKn24s9BRIFlbJlwuAqPH3l0fjgl3MxW8gaEKUaIJMXlEeMTTz+0Oy1VE0M7dDQ2q1bRI8cUHhBAUNPgQyDAnIzSLkPBBER9W/OtUEmon4jHM6/TAG5h0A6UwyqSn3KxmuAfvEnsitTIJ2S4k17OvHrZ1ZgQ2NnbJG0sy2ASESzNBVC0zS0dvfq70v9MArapj2d+OHjH2PF9vgIwumjavHMlUfBtS9os199PCiwWS4fEHsK5LALvitBGU+qATJ5QSmuVy+XmhjKnJg+IPYTGFTld7yXgx28UjA100wBOSigzBQgIqJ+i0EBIrKdLlMgT3oKyEGAdDIFEnVVN5v77c9gRnqmjQYvuPdDbJca3wF9WQ2l7uTHpXrF/pZh/PP/LNcFBADgy9OH6xbZo4Qr0dtbArptdeUDeToaL9XPgrig3NDYgccXb4ndThZrE18rW5kCW/cK/QQKsMkgYH9PAfn5zBQgIiJRnlzDI6JiEonkYfmAJ7PpA0Di8gF5Hn1UqS+TRoPxn1NNHw5HNGVAALB+lbAvAKD/vSWaSKBpGhpau4uqs/mHG4019fKov+G18UaD8vSBXJcPWCGXD1RL7/NSnxvP/eDo2G1xQfmdBz7SbZssCFjiQKNBsclgIfYTAOzvKcBMASIiSiQ/ztaJqKiE8rDRoLzwkRdvVshjCUWtJkEB2zIFUlwUJPr39YSsXSVMNVPg2gWrMOvG1/G1uxcV9aQCsYcAAIyojV+Nbu0O6rrxi5kCuSwfSETOFDhx/yG625ccPRZVwntfXFDKPRSSlaWIn8NsLUx1mQIFGhRwu10Q4yvhDMc3yvEXVaZA8X5iiYgomTw5XSeiYiKmulupXXeCvKg2W8QnYlY+EApHDGPZovwZZQqkXz6Q6N+X2jgy66/7wPubAAAfb2nBovVNiTcuYPUV+rF+Ayv9uq76DUJARhcUyNdMASkoMLSmFBceuR+Avpr8S44ao8t4CUc002yQlDIFshQU2KIrHyjMoACg/12G0mkqImCmABERJcKeAkRkO135QJ70FBgizJIH0kvlNisfMAsIAJnVkesbDaYWFOhMcExW07ZVV/utxiYaO9QNGQtdiddtKAlxu10YVlMWW4xub+nGxCFVAORGg/n5J1duhul2ufD7L0/Fd48ZiyHVpSj1ebC3U99wsicUUZbgpJIpkLWeAsI4wkLNFAD6Pv/RrKtMewrI3x9Ws4WIiKh/YKYAEdkurCsfyI+ggHyVNp1U7uoydflAl8nkAcC+6QOpZgokOiarmQKqV5SvOJo+t0hzkWvKfMpO/mJfgW3ColQXFCjJzz+5csCsoycEl8uF/eorYkEt+X1s1qgu2ec92z0FunvDaGyPB6RG1RVmo0FA31cgk5Gkquenli1ERETFLj/PUIiooNkVFLjp3Gl2HI5SOsc1oKJEeX93gk7emQQFdOUDKV4pTJS9YHkxpmw0qCZfibQaPCg0Zhkm+9XF+wxs3BMfS9hVAD0FxJ4IAPDxlmbDNvL72Cz9PNflA9uEJoPefRkchUr8jgpl3FOAmQJERGSOQQEisp1uJGEGQYGZ+w2w43CU5O7eVshd2aO6E2YK2FQ+kOIiO1H5QI/FcWR9kwb0r2vWQFDujp5htnPeMlucjRsUDwpsaOwAALR09WLBpzti95eV5Gf5gJz5oPoXej1u3WfG7D2U6/IBcfLAiAFleZOplA6v8Luye/pAQJEpUKRxPCIisoBBASKynXhVyp1BT4F0xgZa5fGkflzy1dLoIsksVd/tgq4BXao8ukyB1J7bmah8wOJi7MUVO/HBBv1IPrN1g3wlslgzBczS5scNio8pXN/Ylylw68LPddvka6YAAFx39oGxn3952v7KbcT+GKpFJQAke7tnu3xgS1PhjyOM0k8fybDRoPR0ZgoQEZEoPy9bEFFBExeI6VyRjz03gwV10n27Uw84mAUpzMoH/F6Psv7cKvEQbW00mMIV2pteXqu7rZk81dAdvThjAhhY6VfeP17IFNjW3IWeUBgPLtqs2yad5pZO+fphozC8thSVfh8OG6PO0PF73Yj2jzRbVKbUUyArmQLxfg4jC3jyAAD4hN9lMNPyAU4fICKiBBgUICLb6TIFMggKqBbh4hXNTJSkkYXglZ4TTent7rV/HCGQWaPBhOUDGSwINJPVvqHnQeFmbSf0pRnDlfePqiuHd1+3+IgGrN/dadgmk0kU2eb1uHHClCEJtxEzZcwyBZKWD2Q5U0DsKVDITQYBfTaT3dMHzDJeiIiof2L5ABHZTkwdz2QkoU9xNX/6yNq09yeSZ7Nb4VMseO5/d6Np+UBpBv0EgGw2Gkx/QWAWm8i05jlfHTmuTnf7/MNGKbfzedwYXR+/Mn3tgpWGbfI5U8AKMahhmimQ5PPuz3JPgdbuYOzngRXqrI5CIX7/BTMMoFjJFDAL+BERUfFjUICIbKcrH8igBMDnNT43gxiDft82lSb8/vlV5uUDNmYKpFqj3xZI1Ggwk0wBNTloUSyJAmK5wE9PmWxaPgAA4wbG+wp8uHGv4fHacvVIy0JRYnemQBaCAp098c9iub+wgzDid2cm0wc0TcMrK3fp7mOmABERiRgUICLb2dVoUFX3b1dQIJ1MgXJ/atMHMhlHCMiNBlMMCghXTGVmCwIrVyOtTh/IpJdCPhH/ucney+MHVyR8vLZMPdKyUFjJFEjWQyTb5QOdQilPhcnntVB43PZMH7jrrfV4TpiCAagzBVxFE8ojIqJUMShARLazaySh6mq+XSeuJWmk9k8bUYPpo2oN9+/t7FVun8k4QkB/1TXVoEB7IB4UuPrkSbrHuk2u8r702c6k+zU7jLB0JbNYpg+IKdXJ4hwHDKtO+PjQmlI7DilnxCCXWV+KZCUS2c8UiAcFKgs8KCB+/xkaeabg7rc2GO5jpgAREYkYFCAi24kXADPJFHC5XIYrj2kMDVBKp9Gg2+3Cv//nSDx+2ZG6+3e19Si3L8uwhlzMFMikfGD/YdU4aERN7Paba3ejLWDMJHhxRUPS/ZrVHcuLllSnJeQrfaZA4m2PnzJYmR3icbvwg+MnpJWdkk90mQImi8qyksQLcV+WewroygcKvIeD+N2XbvmApmm6PgtRPaGIadYPERH1P4V9hkJEeSli00hCwJg2a9d5bImiX4EVfq8HR46r0/27drcHlNtmOpdeP6c8teeKmQLVZT4cPLo2dvvDjXsx7Xev6I47EtHw7hd7ku/YLFNA+u+U6rSEfCUGY5JlqVSX+vCzU6fo7nt13nH47Hen4OpTJmfl+JxkJVOgIlmmgEefEm9n8EjTNF35QKFnCnhtKB9YuaNNeb+mGcccLtrQlNZrEBFR4WNQgCiP7W4P4Py7F+FLd76L9Y0duT4cy8SrxpmUD6jYNV/72ImD0n6uy+VCVWl8wbHbLFMgw6CAO5NGg93xxVF1qU+ZtfC3N9bHft7e0o32BM0Jo8yOQl5g2J0pEApHsHTzXnSZjH/MFvHXbiXp5dLZY3Htl6bi8DF1+PuFMzFhcGXGGSP5wi+8n83Sz5P9W+VMCjv7CnQHw7r/XoXeU0DfaDC939P3H1tm+lhA6guxdHNzWq9BRESFj0EBojz2p/+uxYcb92L5tlbM+/enuT4cy8T1YLJu5KnKpBb2kUuPwNiBFThj2jCcd6h6tJxVVaXxTvK7zDIFMi4fiP+cSk+BQDCsm4hQU+ZDhSKt+/Nd7bGfX1u9y/C4illwQj4+u0cUXvyPj/DVuxbhlNvedrQeOqILClh7L1901Bj8+/JZOHnq0CwdVW6UWuopkHghLpdQ2BXkA4xjOFXv+ULi9WSeKbC5qcv0MdUUEvYaICLqnwr7LyZRkfvPsm2xnz/d2pK7A0lR2MbyAVkmJ62zJw7EG1fPseU4xEyBli51p/9MgwLpNhpsbI9nLrhcQH1libK+Wpw2sFYIECRilrAg9xRItTFiIk0dPbHShq17u/Huuj048YAhtu0/MXGShkMvmafEEZtmn8Ok5QNSUMDKxAurxM+h1+1CaYYjQXNN31PA/v4Lqv+GTZ29GFFbZvtrERFRfivsv5hElJfsGkmocuS4elv3ly4xKGAm454CaTYaFHsF1JWXwOdxY0y9cVye2IBsdYM+KHDi/oMxXNEt3+wo5CCAndMHmqWgy+52dblGNugyBRx71fxU6hVHEqoXqckCYXKDTzubDW5o7Iz9PLquvODHYuqCAmkE2ZI1ElT9N2zqcO6zRURE+YNBASKynbhAzLSngPz00gwX2nYRywfM2Nto0PqiYFtzd+znIdV9C/s5kwcZrgBGgwLhiIa1O+NBgaevPAr3XnQYZo0faNi32UJDXrTYWT7Q2q0f+bi3MzsLlz0dPbjjtXV49pPtsfvEf2+hLzIzJWYKqFLPgeTlA16PW/eZtjUosCfed2XcIGMQrNDoegqk8XkSvwdUekKKTIEO9XhVIiIqbiwfICLbiZ3n05j8p+N1u21tRmYXS5kCdpYPpHDlfb1wxXTsvsWR1+PGbV+fgfP+b1HssWhQYENjR6wHgdsFTB5aBaDvaqvM7DAMmQI2BgXk8ow9WVq4/ORfn+CddX1lCgPKS3DspEH6/hj9OyagyxSQm9RFWQkClnjdCOwLKtj52d4ovu8HFkFQQJw+kMbvafHGvQkfDygCO1v2mvcgEDV3MnhARFRMmClARLaL6DIFMvuaOWhkTaaHkxXVDmQKiOnDTy/bju5ea/0UNu6JL47GC4ujw8bUYdEvT4jdDgQjCATDWL6tNXbfpCFVsau9EwZXGvZt3lNAGkkYiW6vZTwPXQ4K7M3CgkTTtFhAAACeWrYNn21vxVufN8Y3YqZA7GezTAErxBICezMF4u/7cYOM791CI2YKyNM9rNjU1JnwcdUkjxdXNAAAtjV3YXuLeabB9S+uTvl4iIgofzEoQGSz1u4gVu1oy3ghBBTuGkRcIHoy/EecLDSUu+CI0Rnty05OZAqIVwp3t/fgBosn4huE8ZVjpTTqmjJ9MKOtO4gV2+NBgYNGxIMwh44ZYNi3ZtJVICw3GtQ0fLK1BUf98XWcfOvbGY3UbOmWMwXsLx9olV7jmU924AfSOLf+ningT5Ip8H/fmmlpPyUWehOkQ3zfjyuKTIH0yoeixM/Jd2ePxS3nTdc9Lr/nAeDDjXvxz8VbMPtPb+CYP72Ojzapsw1eWbkz5eMhIqL8xaAAkY26e8M49ba3cfod7+D6FzK/klKoaxAxUyDDRAFccvRYXDFnPP7n2HH4+WlTMjwy+8iLaxVVx/9UiFcKAeDhDzYnfY6mabpMgXED9VdMy3we3ZXa1u4glm9rid2eJmRmRPsR6Pevft1QWM4UiOAn//oEDa0BrNvdgcc+3JL02M20dOkzA1SLmUyp6q83SePcfJm+mQtcaZJMganDqy3tp0R4X9uVKdDc2atrSFkcmQLx33cwkvrvSZxCMrSmFF+dORKzJ8T7hJhNTfnFUysA9DXZ/ON/16T8ukREVHj69xkOkc2eXLoVDa19nd/vfXdjxvsr1MZmYv27N8OFVInXjZ+fOgW/PH1/Syn7TrESFBilqMlPRTrjHHe19aBLKDOQG665XC5UC8fe1NmLlTvaYrcPGlmr235Unb45odn1Srl8oLkrqAtOfCZkI6RKXrzI8+jtkKwpGwCMKYKrz5mQMwXSzYYSxxLa1VNAbDJYVerFwMoSW/abSz7dSMLUf9dtgfjnJPp9JX5vWQmuLd3cnPLrEhFR4WFQgMhGTo5Ky2e68oEi/ZYZUK5edPzPseNQ5vPgyzOG4+BRtRm9RjpBgSahM3+l36ucklBTFi99WLWjLZbC7XIBU/Y1GYw6/cBhuttmowbloECntHCv9Kff11YuH+gIZCMokLjB2mkHDsXM/YzlFP2JnCkgvxWsxjB1QQGbMgXE5prjBlUWbEBVJPZjSad8ICgEXKK/czEgKGfgqBRDcIWIiJLj9AEiG6Vz4laMdOUDRXByrlJbblxs+zwu/OK0KfjZqVMyHsUI6NOHrWrrNl4dlIn3i1fza8t8hpGPP5w7EXe/vSF2O2hyZVfuKSBvl8kVYXnx0p6FoIBZU7XBVX688pNjUWsSBOpPDJkC0uNWF+LZCApsaFQ31yxkPl2jwdR/T7qgwL7vkhpdUEAfbJs6vFqXNQTY2/OBiIjyV5FewyPKDbtjAoW6nNaPJCzUf0ViqqBATZkPLpfLtn+z3FMASB54ElOCzZohilkOX+zuUN4fVen3YnhNvLeAOPatLRDE0x9vw+qGNkN6s9wtPZPFn5zm3BuOKGespyMQDON///0p/vHeJuXj35k9lgGBfeTpA3L5gNV3vW76QNie/44bhfIBuWSmUImf/3TKB4Kh+HN8qqCA9LlSlWe1B0KWp54QEVHhYqYAkY3MUqvTVYgX2SMRTZdWXKxBgZoy40JxcJWxMV8mVI3tuoPhhKn4bYH4iX61SabAyAHxPgFik0FVoAMApo2sxY7Wvm7ja3a247SDhiEc0XDR/Yvx8ZYWeNwu/OD4CbrnyHPVM8sUMNY+d/aEdVeu0/Xk0m34z7JtuvsuOXoMtjR14YDh1bjsmHEZv0ax8EtTA4yZAtb2I2YKiAvXTIiZAmMHFn6TQUBfPiCX51ghZgpEAwxiUKBRKncbVqv+/trT0ZNxfxQiIspvzBQgslG65QNvf96IhxZtQiCovyLjKsBcgbAUGCnWoEBdRYlucQMAQ6r9tr+GLNlVuzbh6p9ZY0bxBL9T2N/ASvXxTxb6DKxu6Esv/nBjEz7e0gKg732/eKN+dJkcBFi5XZ+WbFUgGMbOfc07dfu3Ka35jTW7DfedNX047rv4MPzvyZOL9v2bDrGnQCAYNvYUsPh9pRtJaEOjwXBEw2ZhUkSxZAroGg2mMX1AnFigKh9oaNWXzFxy1Fjdf+OoxiyMACUiovzCoACRjdLJFPhseyu+ff9i/ObZlbhRnkNfgOsROTDiKcR0Bws8bhfG1Ouvno0YUGaydXpUIwFTCQqY9RTYr169aJosNRmMOnBEfEzhsi0t0DQN732xR7dNs1T339mjP87ecERXqmDVss3NyiyDVMoHekJh3PP2Bjy8aJPh/bmn09hsbWStvf8di0V5STxDpas3BE3KFbCcKeCxt6fAtuau2HvE5QLGFklPAbGnSMblA15jUGBXW3yx73YBB46oxlNXHI1LZ4/V7UfOKCAiouLDoACRjSJpZArcIAQCHlyUfA59vpMDI8V8pfWo8QN1tw8eZW93elXmQVcwcZM9cQxZdZm6zGC/enUq8In7D1HeL3bd39PRg81NXbjnHf3ITTkosFex2DYEvZIIhiO46631ysdSaYB2z9sbcP2Lq3HNsyvxn6X6UgFVB3azjIn+rrwkfoU/ohn/G1j9pPttbjQolg4MrykzNMssVN5MMwWEYFq0p4BZiVB5iRculwsHDK/GNWcegKPG18ce28NMASKiosegAJGN5NR5K+SSAVEhLqcNmQJFHBS4cs742MiukQPKcMqBQ23d/2BFpkCXDeUDEwZVYoR0NbzU58a0kTXK7esqSjBhcLxO+4YXVxsWc81S3X+zIijw2prdyvvN/P3tDXhn3R7lYz1B64ukm1/5PPbzz/6zPPZzJKJhh2LqgLuI37OZKCvRL7YXrW/Sb5CjkYTrG4uvySCQeaPBXl1QoG9fqpIkQB/wAYBBVfHAGDMFiIiKH4MCRDZKp6VAoj4EhZh5L/97inmBNbi6FC//+Fjcdv4MPHXlUQkbAKajWjE9IGn5QCB5+YDb7cJjlx2huy8QjCQcKTdzdDxb4JVVuwyPy4u79h51RsMnW1tMX0O2Yltr7OcRtWW6K/h2TB/Y3d5jmJLwlYNHZLzfYlUmXYH/n4eX6m5b7ilg8/SBDcJYzfGDiqPJICBnCmTWaDCaKSAu9kUV0neX+FljpgARUfFjUIDIRnL5wLpd7Rj7yxdw2u3vYEOjup460cleQTYa7Cc9BaLqK/04++ARtk8eAPrmvh89oV53X7JMAXF8n9n0AaCvr8A3Dh8Vuz3vpEkJ9zttlDqLIFWrGqw3HBRLEi6fMx5lJfZeYW7q1C92jhpfj1+cPiXj/RYrnyfxKYPVj7rPG9/QnvKBYs0UEKcPpP57ErMLov/tfB53LLtJJAcgmSlARNS/MChAZCN5QXzSrW9D0/o6ts9/5jPlcxKlhRbiRfb+Mn3AKTeeM013u6s3SU+BbqGngCLTQPTL0/fH2TOG48szhuNbR+6XcNvpI2sTH6hF6QYFBlf5DSPxMiWW7gys9OOxy47MSnCnv7D6SS/xxP872hEU2ChkCowrknGEgD5TQM5oSSYS0XQBZ59QiqB6j8tNUgdVMihARNSf2JvrStRPfb6rHY99uAVPSE3MRO/L9bf7JLoC1JnkqnA+6k89BZwwur4csycMxLv7uv3LXf1lVsoHoqpLfbjt6wdbOo4pQ6swckAZtjXHa/Cr/F7TMgEzq4WgwJamLgysKtF1tReJfQrqKkp0DersKB8ICH0JxCwESk+i8hORrqdAhiMJO3pCui76Y4sqUyD++0x13G1Q+rsilmwMry0zBOdGDtA3Hx1YJZYPWO8DQsVtfWMHQmHNdFINERUuBgWIbPC9h5ZgkzAnOxVmJ3uq2nFN0yyfeOdKfysfcILYBCxZpoDV8oFUeT1u3H3hTNzyyudo6erFuEGVOHJcPa5+4tOU9rNxTyc+2dqCs//6HoC+wMWz3z8aY6Qxcpqm6SYDDCj3SUGBzK8wi5+xUm9xdKzPJblZnZkSG/87bhQmD5T63BimaM5ZqLxucSRhar8nObNALP2YNKQSr67W9wWRG48yU4BkH25owjfv/RDhiIb/+9YhOPXAYbk+JCKyES+NEGVod3vAUkDA7ITZLC10d3vAcF+mV9WcIF6gcrmKu9GgU8QmYIkyBYLhiK7ngJ1BAQCYOrwG9198GJ668mjcfN50w0LCTF1FCSr2vf81DbGAANAXxPjrG18YntPZG9Z9NmrLS/TlAylMHzATELIN5M76lBq/1215FKCdIwk37In3Exg7sLKovm/ElP9UywfkIIKYdTB74kB5c4yUygcGVsX7DnQHw+hMMSOIis8PH/84FvS//JFlOT4aIrIbgwJEGVrT0G5pu9F16tnwZpkCqumGARsWQtkm9hRgloA9KvzxxZZYHiBrD+hP3JP1FMhUlcX9e9wuTB1u3qjw+eUNaE0y0rC2zAe/z97yAV2mQJHMts+2U6YOUd5vNupORUxlD2YY6FwvZAoUU5NBAPAImQKplg/IAWQxU2DWuHocPLpW9/h+9frfXX2FX9fThtkCtJvvAaKixqAAUYZWW2ycZjZlwOz+gGLR0xPM/x4DYSFVoJiu2uVSfUU8lbcpwXiwNqF0wO2C7SMSZWY9C06YMlh3u8TjxoEjzIMC3cEwHvlws+6+FiFIUFXqhdfjtr18QGw0yKCANf978mTl/UNSSNsvsTNTQJg8MH5gcQUFxKv7co+AZBKVD7hcLlxy9NjYbY/bhTH1+qC1x+3SBXo4lpCIqLgxKECUIctBAZMrYmZXPDsCxnTNgsgUEA6RmQL20I0HS3ByLvcTyHb/CbNMgclDq3D712egdN+V/TOmDcPM/QbothlYWYLvCAuTRz7YHPuMbG/pxmOL40GC+n2LEzumD4i/km4xKODln0MrJg2pUgaDhtWkGRTIMFNggy5ToHgmDwCAT9dTIMVGg8Lnw+N2GRq+nn7gUJwwZTBcLuD7x0/QjT+MGsi+AkRE/UbBNhpcunQpFi5ciMWLF+PDDz/Ejh074Pf7EQgY67BFDz30EO68806sWrUKJSUlOPLIIzF//nwcddRRDh05FZs1O62VD6hqQjfu6TSkfCfarx0p09kmprl6mSlgC6szw3VBgVJ7+wmomGUieN0ufHnGCBw7cRBauoMYU1+OcETDcZMG4a3PGzG6rhx//tp0jK4vx0OLNiEU0dDQGsCbaxtxxLg6fPnOd3Udz+v3LU50mQI2ZM2Iv6/a8uz/vopFmc+j+90BKWYKeOzJFNA0TT+OsOjKBzKYPiAEW8TeBFFejxv3X3wYunvDpv00BlX5Y3+HmClARFTcCjYo8Ic//AHPPvtsSs+ZN28ebr31VpSVleHkk09GIBDAwoUL8corr+CJJ57AOeeck6WjpWLVG4rgi90dyTeEevTgDx4zb9azZqcxA6GpsxcTrR9eTkSEngIsH7CH1aCA+NjASus13unyetwoL/HomhsC8cXMgIoSDNh3ld/rceGBSw5Da3cQNUIWw8lTh+DFFTsBAI9+uBlfNHYYRqDFMgV8mZcPiO/IvZ3xhe2AFGri+7tSn/Gq8tB0MwUyCArsbAvosj3GFln5gL7RYPrlA2LGgSxRg01OIMgfu9sDmP/0Z3C5gOvPOUiXxUFEZIeCDQrMmjUL06dPx2GHHYbDDjsMQ4cOTbj966+/jltvvRX19fVYtGgRJk7sW1otWrQIc+bMwSWXXII5c+ZgwIABCfdDJNrR0m3aE0CmSv9cucO89ODzXcZgw8odbThyXL31A8wB8fchp6xSesST8+auIILhiK5GOKqhtTv287Aaa5MBMlXh9xqCAmYZIi6XC7Xl+sX3BUfsFwsKvPl5I95Y22h4XjxTwI7ygfixic0M68oZFLBK1X8hlfIB8b2bSW8IsXRgUJUfVQ5kxzhJTOm3+ncmSpcpkGZpjL5sqTfBlpRt1z2/Gq+s6hsjWV7ixa3nz8jtARFR0SnYIsqf//znuPbaa3HmmWdiyBB1N2TRLbfcAgCYP39+LCAA9AUXLr/8crS2tuL+++/P2vFScdrbZf1EKdUrPbvbjKUwn2xtSWkfuSCmubrZU8AW4sk5ADSZnKA3tMbfM6lcuc2EqoTAk+DKpGzWuPrYFV7VxA0gnvWgbzSYXvmAPlMg/ntkpoB1fkVQYLjF8ZSANJIwg54CYpPBcUWWJQDog2tmPWnMJCsfsII9BfLHc5/uiP389Mfbc3gkRFSsCjYokIpAIIDXXnsNAHDuuecaHo/et2DBAkePiwrfXmFxNrgqcTpfqld69nYaF34fb2lOaR+5IJYPsKeAPUp9Hl1TP7MT9F1CIGloCjXemShXpB+nsghxu1340dwJCbdRNRrs7EkzKCAcmhjUY6aAdXWK/gsjUggK2FU+sHFPV+znYusnAOinD6T696NXFxTIPFOAPQWIiIpbvwgKrFmzBj09PRg0aBBGjhxpePyQQw4BACxfvtzpQ6MCJy4qxtQnPim12j1a0zQEwxG0KRoQbmvuzvuTM/HfyfIB+4iN8OQmb1Hie6bGocZ5FYpMAX+K6cpnzxiBYycNMn184L7FybDaeKBja3OX2eYJuaAuH2CmgHWj6ozj65IFRUV2BQU2NcXLB5J9/xYifaZAquUD8e1L0gwKpJIpEEkxaEFERPmlYHsKpGLLli0AoAwIAEBFRQVqa2vR3NyM9vZ2VFVVJdzf1KlTlfevX78e48ePz+xgqaCIV/PrkiwqrM6Zbu8JISDVaJd43LErP9ubu/O6yZC+0WAOD6TIiFfJe8Pqq+TdwvtGdQU/G1TlAyUpBgVcLhf+dsEh+M2zn+GpZcbU2ImD+76TxRRxset8ai/W93+RiIbmLuufX4obOUCfFbBffblypJ0Z3fSBDMoHNgnvgTFFWT4g9hRI7fcklht40ywfkEehappmOuY009GSRESUW/3ilL2jo6/usLy83HSbiooK3bZEVshXGudMNr/aqWnWxkr94LGPcecbX8Rul/rcuk7y3TaMYssm/UjCfvEV4wi/haurXb3xTIGKEmdivgMUafepBgWAvuDCn782A+//4gTd/W5XPDVc7C7f0hVUltgkE13StAWCED+OLB+wLhqkiZqVYvNTOzIFQuEItuyNZ4sU2+QBQL+Yj2ipXY0P2lA+IAbKekMRQ0NRUYfJaF0iIioM/SJTQNt35dIswi1uY8XKlSuV95tlEFDxahIWJfUVJbhq7kQceeNrptsHwxF43Imv4L79eSPeFm6PqC3TNWAL5HtQQMwUYPWAbUq8yTu2i5kCiUaN2Wl0nTHYWuJJ/7XlPhSTh1bHFjV1FSWoLvXGyiQ27ulAXUVdSvuP/hkQxx563C5dzwZK7JiJA/H1w0bhhRUNOGJsHa6am9qgVPG9nGpafNR2YfKLy6V+HxY6Oagaimgosfil2iuOJEwzKDBAKkHa0dKNiUP6AkJDq0uxVXjs1NvfxqfXn6MsJyIiovzXLy7jRcsBOjvN0027uvquOFRWVjpyTFQc5EyBoTWlOGPaMNPtU20WBQDHThqkGwGW90EB9hTICl3n/aBJpkDQ+fKB/eqNi7FUewqI5PfM0ePjV6FdLhfGDop/R4sj6VK1dmd77OcRtWVw871qmdfjxh+/Og0rfncK7r3oMAxOsamlXD6QSlA+SiwfGV5TphyTWOjktP9USgiCQuAw3Z4CcknIba+ui/0sjznsDUXw2prdab0OERHlXr8ICowePRoAsG3bNuXjnZ2daGlpQW1tbdJ+AkQiOVMAAEq95ienYp2nlVICAJg7ZYjuqm/elw9oHEmYDSXC+6rHpH63q8f5oIDcdA5Ir3wgqrLUqzv2C47cT/f4+Az7CkQbDf7zoy2x+6aNrEl5P5Q++cp1MI1sgc1N8dKBMQOLL0sAAHzu9H9PYgDB57Xne/iFFQ2xn1WZl6t2tNnyOkRE5Lx+ERSYPHky/H4/GhsblYGBZcuWAQCmTZvm9KFRgVM1Giz1mX+sxJM6K4v7ihIPDh9bp9tnwOQqcb4Q617TbXBFRvpMAeN7JxSO6Jp9lTnUU0A1Hz6ToIDf68EN5xyEWePqcfvXZxhqxcdmGBRwu/pGe76zbk/svvMPG5X28VLq5JGVwTSa1In/7Ytx8gAAeKTfk9VAMqAvH8hGb5euHmMPgS1708/cISKi3OoXQYGysjKccEJf86onn3zS8Hj0vjPPPNPR46LC16wMCiTIFBCu3ohN4cwcMa4eJV43yoR9dido9pQPxBIJDzMFbKNrNKhYRHVJgYIKhzIFBlSUYPIQfYZVJkEBADj74BF4/HtH4sszRhgeGzsow0wBlwv3vbsxdvvg0bWYPWFgegdKaZFTzxkUUJP7a4RS+D2J5QPp9hQA4k0+RbvaAsrRuFv3dqf9OkRElFv9IigAAPPmzQMAXHfddVi3Ll4Xt2jRItx9992orq7GpZdemqvDowLUEwqjXbhaYiVTQGyqFehNfoJ3+Ni+Jmp+X+GUD+hHEjIoYJeSJD0FxNIBwLlGg0Bf4zlRJj0FkpEzBaKZKYFgGH9e+Dn+7631CTvad/SE8NJnO2O3/+fYcQmb0JL95Br3VMfZLd/Wgrc+b4zdnjCkOHsBGcos0pw+UJJB+cCN5xwk7MeNUDiCj7e0KLfd1tylvJ+IiPJfwQYFXnjhBRx55JGx/wFAb2+v7r4XXnghtv2JJ56Iq666Ck1NTZgxYwbOPvtsnH766Tj22GMRDAZx//33o64utS7W1L+1dAV1t+ss9BQQT9S6gskzBQ4bMwAAUFsW7wLdnMYYNifpRxJysWUXv9hTQLHoFTNPvG5X2s3F0nGkNJKupsxnsmXmxKvCPaEIdrT2XZ3843/X4I7X1uGP/12D55fvSLiPaDbLiNoynLj/kKwdK6ll0lMgEtFwwb0f6u6TM1WKhfz1GU7h92THSEIAmD6qNvY93huKYM3Odny8tVm5bXNXEB2KsgIiIsp/BTs7prGxER9+qD8x0DRNd19jY6Pu8dtuuw0zZszAnXfeiYULF8Ln82Hu3LmYP38+Zs+e7chxU/FoEkaalZd4YmUDicsHhJ4CFsoApo2sBQAMrPTH7lOlbeYTMSjARoP2qfTH31edihPvLmkcoZNXv4+eMBDDakrR0BrAxMGVGF5TlrXXqvB7MbymFDtaAwCA1Q3tGDmgHA+8vym2zQvLG/CVQ0Ym3deFs/YzdFin7PO4XfC4XbHvimCCzA7Z7vYetAf07/9hNalNPygULpcLPo8rFjQJpjJ9wIaRhEDf37MDhldj+bZWAMCfXlqj68ch29bchSlDq9N+PSIiyo2CDQpcfPHFuPjiix17HpHso017Yz9HswSAZI0G4yd1yYICvz3rgNjJ3KCqeFCgsYCCAhxJaJ+q0vjV97ZA0PC4GBSocKjJYFRZiQePXXYk3lq7GydNHZr1spFpI2uxo7WvBOCTrc04eHSt7nErmQp+rxvnH8oGg7ni88SDAqmUD2xu0veR+MohI4q6/MPjjgcFQmlnCmT2+zll6tBYUCBRQAAAdrR0MyhgA03T0NwV1J1bEBFlEy+REKUoEtFw9ROf4rfPrYzdJ/7hHlRlftVKPKnrShIUEE+sdJkC7XlePqAxKJANVaXxhb58pRQAOoXyAafGEYrGDqzAxUePxYja7GUJRM0QggAfb2nB2p3tusdrypMHBc45eAQG8IQ7Z8Sr14l6QMg279XXrf/itCm2HVM+EscShlLKFLCnfAAAvnP0WMslGtub2WwwE5qm4U8vrcHYX76IQ/6wENc9vyrXh0RE/QSDAkQpWralGU8u1Y+2FIMCctM1kXhSl6xhoLieHlQV33++lw9EmCmQFWKmQLsiU6BDCBRUlhZsEpglM0bVxn5evq0VO1r0C5Fk3exdLuC7x4zNxqGRRWLPi1SmD2xpigcFzp4xHIMTBGGLgTjWNbVMAXvKB4C+TKAnr5iFn54yOem221sCGb1Wf7d8WyvuenN97Pa9727U/U0lIsoWBgWIUrRud4fhPjEoUOH34ryZ6npm8UQtWfmAmII9qDJ+4ru3qzel0VROC3MkYVZUJ8kUEEsKqoo8KDBtZE2s+VlHTwiLNjTpHg+G9CfRQ6v1C8crjhuPCYOLszldofDpggLWFz3bhQDQqLpyW48pH3nSzBTotTFTAOgLSn7/+Am4/eszEm63vYWZApkQyxKjWrqNQWAiIrsxKECUInnqAACMlFKmf3X6/rho1n64+Kgxuvpm8UqPmCkwqs6Yci026RsoZApoGrA3jycQiM0UOZLQPrqeAoqTRDFQUOXPXvf/fFBe4sUh+w2I3X5xRYPu8Z6QPuAmZqzcd9Gh+NmpxZ1yXgjEEZupZAo0tMYXncOy2NAyX/jSzRQQSjJKMuwpIPrS9OE4ekK96eNfKILmZJ2qh8DezvzODiSi4sCgAFGKVKnbR0gj2QZUlODaLx+I331pKuor43/kgyblA9NG1OK3Zx2g24e4ni4v8aJCqBPf3Z6/JwkRjSMJsyFZTwHxfVldVtyZAgBw3KRBsZ8DQf2icsX2Vt1tcdEpBlcod8TFbiqNBne2xtPTi3XqgEgsH2hoDeAvr63D4o3Gq8ky8XcqBmAy5XK5cN9Fh+H6cw5UPv7F7vaUgjykJ3+XAcCejvy9CEBExYNBAaIUyZ3fRw4ow+Fj60y31zWKMmk0WOrzYPJQfTqzPM5vYFVhjCUUzweZKWAfMeOkozdkqDPVZQr0g4WvGBSQrW/sxMY9nft+7tAF0TLtxE72SKfRoKZpaBCCAkOq+0FQQPj78eN/fYJbFn6Ob9zzQdJsMfF3akf5gKjU58FZ00fo7otm4wTDGtY3MlsgXapeQ/mcGUhExYNBAaIUtXXHF18lHjce+s7hCU+6xCs9gWAYf35lLa7658dYtyveMb2sxG2ov5eb9A0RGmqJJ8b5JixkQ7CngH3ETAFNA9p79NkC+qBA8WcKHDCsWjeVQ/ba6l0AgPvf3Ri7b1CVH1OH12T92Ci5dMoHdrYF0CMsdkcMKP7yAVW2VTii4dlPtid8XjBLmQJmRtfH+ztcdP9iXPHIUmyVJkVQcgFFUKApjy8CEFHxYFCAKEVimvavTp+CcYMqE27vFQIGz326A3e8/gWe/WQH/vvZztj95SVeQxDAL53IjRT6Dmxuyt+TLfH8ntMH7FPp1y/05TKWdl2jweLPFHC7XTh56hDTx1/dFxR4fc3u2H1XnzzJkQUSJedLY/qAWK8+qMqvy54pVl6TgLOcSSYTgydOvOeHC/0ddrX14L+f7cQ1z36W9dctNqoGxCwfICIn8OyIKImPNu3Fl+98F9c88xk6ekJ4Y21j7LFqCyelPmFhvHDVLuU2pT4Pxg2qjF0VmjC4EuOlYMNoodP2f5bpRyLmk7DGkYTZ4PW4US70lZD7CrT1s0wBADj9wGGmj320qRm72wO6rJqjxpuPCyVn6XoKWCwfWLsznl01aUjiYGyxMOvLkqw0K5vlAypDa4xZO29/3qjYkhJRZQqwfICInNA/zhyJ0tQbiuAHjy3DrrYefLqt1TD6rNrCFVmvhRrmMp8HdRUl+Of3jsSHG/fi/MNGGU76xPrZxvYeBIJhlPo88q5yLsKRhFlTXeqL9aKQJxCIQYLqfhIUmDW+HlOHV2PljjYAwJShVdjT0YM9Hb0IRzQ8vGhzbFuP29UvGtMVCr83/t21da+1MXarGtpiP+8/tNr2Y8pHZn8/kn23itkXctZZNgytLgOgb/BZW27spE/Af1c04O63N+CIsXX4xWlT4BL+W6r6BTVx+gAROYCZAkQJvLl2N3a1xf8gy+OW9h+e/MTUylWa6BXgQ8fU4fvHT1DWSs+eoL/KGW2klm84kjB7xKkCbQG5p0D/Kh8A+hb6t399BsYNrEBtuQ9XnzwZc6fESwr+8voXsZ/3qys3TcUm55X64v8t7nzjC7z0WUOCrfusbohnCuw/rH8EBcRGtaJkX6266QOOZAoYA27JShz6o0hEw5WPLcMnW1tw99sbdO9pAFi7y9ikkeUDROQEniERJfDUMvNmTsdNGoQRtckbXVkZy1dm4Yr/qLpyXVr4ujydB82RhNkj1lC3dOlPFMXMgf5SPgAAEwZX4bX/PQ6f/OZknHjAEHzjiNHK7U6YMtjhI6NE5Cynyx9ZlnD73lAEX+zuf0EBsxKsfCsfGK74WxiKcDShLBAKQ/gTiQ174n/HQ+EI1iv+rrN8gIicwKAAkQlN0/CWSU3k8JpSPHDJYZb2Y+XqZGmJtTKAY4UxbHLWQr4IR9hTIFvEoECrEATQNA0dPf1rJKFITL+dMaoW4wZW6B73eVy44Mj9nD4sSqDUm1rp0+e72hHcN9LV53FhwuB+0lPApHwg2VX4XocbDY6XPnMAELTYK6I/6QnqfydiwGZHS0CX4RHF6QNE5AQGBYhM9IQihpnBIweU4aenTMZbPztetxBJxMpc9HKLvQEmCM0Hxatm+UQMCjB91F5iY0sxM6AtEILwa8eA8v4VFJDd8Y2DdbevP+cgjFUsWih3xPKBKPG7Q7ZsS3Ps5wOGVfebKRKmjQaTfLVGAyiAM0GBuko/po+q1d3Xqeik39/1SIESsbRjY5O6JLC5K6i8n4jITv0nx5QoRU9/rC8dWHntKajwp/6R8ZrUhIrKLGYKiFfHCiNTIIcHUoRqy+KNu8RMgWYhvdTtstYAs5gdOKIGH/5qLjbt6cS0kbWWP1/kHFWT1B0t3RglTFkRLd0cDwocst+ArB1XvjHLNEu20O9xuHwAAO676FA8+P4mXS+Pfy7egq8fri7p6Y96QvpAiRg33yT0CZo+qhafbm1x6KiIiJgpQKR091vr8cunVsRuV/m9lur+VaxMH7A6RUAcU7ipqSvhlbVc0Y8k5FeMncTygQeFzvpNQlBgQHkJGzyib1rHEePqGRDIU37Fd96WvV3Y0NiBC+79AOf87T18tGkvgL7mbB8Ik18OGd1/ggJmmWbJgs29wuLTiekDADCw0o8fnzgJU4ZWxe67ZeHnefl3KlfkTAHxN7NJyBQ4YFi1MpuGiChb+I1DJLn3nQ248b9rYrfLfB5cc+YBaS+0zLpHi8otLlzEFOjeUATbm62N8nJShJkCWbNlb5futrYvACNmCgyo4Bgwyn+qIOvqhjZc/I+P8N4XTfh4Swsuf3gp2gJBLNncHJsC43G7cNT4eqcPN2fMAqualnihrZs+4GCphcftwgOXHB4LZjS29+C5T80b9vY3ck8BMSrQ0BKI/TxyQBnqK4xTiIiIsoWn7ESCnlAYt7zyeez26LpyLPjh0fjaYaPS3qeVTAGrWQhlJR7dxIP1jflXQiCOJEw2S5tSI5YMAEDXvprdvcIkgjrOBqcCMKTauOC57oXVusBXU2cv7nh1HZ5YsjV231Hj61GvGNlarMwyBZJdfNf1FHA4Oju0phTHT45P+7h2wSp20N9HLh8Qp/U0tMWDAsNrS1Ffye9yInIOgwJEgs+2t+maC/7ze0diwuCqBM9Izko9ZyopzuMGxbMF8jEoIGYKMI3dXt86Ul+b27IvSCBmCtQxU4AKwH711ho/3vvuRjyxdFvs9lcOGZGtQ8pLlSZ9bMIJMgXCEU2Xsu/LQVPGa848IJYB19IVxD/e2+j4MTghkmJphFw+ID59Z2s8829odRnq+V1ORA5iUIBIsGpHa+znw8YMUM5eTpVZ92hRKkEBsa/A+kZ1t+JcEk9WrfzbybrjhJGUQDwYIGYKsHyACsGBI6oxtLo0pecMqynFmdOGZ+mI8lNtmbppaKLFaG+CDvdOGVVXju8fPyF2+4H3N6EtkF4X/Q83NOGhRZvw4YYmtOawE7+mabjjtXX4n4eXYHVDG65/YRXG//pFXP3Ep0nLOaLMMgV6QmE0tsdHDw6rKUUdyweIyEEMChAJGjvii6tRA9RdsFNl1j1alEoTw/3q48e1vSX/egqEmSmQNS6XS1c+0qrMFOjfkweoMPi9Hiz44Wxc+6WphsdG1Jbhv1cdY2iQ95OTJjnWST9fVJsFBRIsQg1BgRyNb7xw1n6o2pfp0B4I4cH3NqW8j0Xrm/D1ez7Ab55difP//gHm/vlNbGnqSv5EhR0t3Xhl5U7DwtyqDzbsxZ8Xfo6XV+7CV+96H/e8sxGaBjy5dBv+YfHfJvcUiAYTNu3pimUNeN0ujBhQholDKuWnExFlTf/660qURFNHPFJvVz2fWU1olNftSulEd1hNfFHYkOdBAfYUsF9teXyR0LLvqtnezvjVswHsKUAFYlCVHxcdNQY/EK4oA8APT5iA/YdV489fm4GKEg8q/V7870mTcN7MkTk60typMQkKJOroLzYZBHKTKQD0jUb99lH7xW7f/to6vP15o+Xna5qGm19ZCzH+saejF99/bBmC0r8xma7eEE6/4x187+GlmPfvT1N6btTybS3C/vSBhT/+dw06ekJJ92FWPiCOGB4zsAI+jxvnzhypDOhk889qV28o5ZIIIioODAoQCfYIQQG7UveSjY5KdWTa8Np4yu2Olm7LaYtO0QUFmClgO3HR37yvbKC5iz0FqHBdcvQYjKrrC3ZeNGs/nL+vsesZ04bhs2tPwfLfnowfzp0IVz8MMtaaBPkSfe0bggI5yhQAgEtnj8PAfQH2UETD5Y8sxbvr9lh67ssrd2Lp5mbD/Su2t+JXT61I6W/f8582xIKoLyxvsPw80ee7zHv49IYj+O+K5Ps1Kx9Yt7s9dt/EwX0ZAgMr/fjSdGO5jKYlnz6Rqi92t+Osv7yLA37zMg65biH+/Mra2N/yNTvbcOF9H9r6ekSUf9QdbIj6qVUNbbGfR9fZVT6Q+ES2NIXSAaCvs3NUZ28Ynb1h02ZUuSCmtTIoYL8aIVMgWj4gdvZmpgAVmvpKP16bNwfNXb0YIvUZcLlcWb0ymu9MMwUslg943K6cfg/XVZTgvosOw9f//gG6g2F09YZxyQOLcev5M0z7QzR19ODxxVtw5xtfmO73iaXbMLy2DD85aZKl42i3cBU/mY827U34+Gurd+O8QxNPKpIzBTRFpsCEwfGygVOmDsWTQqPNqHBEszTZyIrW7iAuvG8xGlr7ph+0dAVxx+tfwO/zIBiO4I7X1hmmXZi9L4mocDFTgGifxvYebN0bT8c/eHStLftNVj6Q6oK+vES/vVw/mmshZgpkldh4rKWrF5qmYYdQRiIvqogKQYnXzfeugtniK1FPATG1PtnfHydMH1WLe759aKx3TjCs4YePf4xbF34eO9ZgOIIPNjRh3r8+waw/vo6bX/kcAaH+fsLgSl3pFADc+84GhCyWEWR6Zb2htVs3LlPlnXWN2Jpkm0DQJFNglzoocOh+A5T7SRQUStXf3vwiFhDQ3f/GF7jtVWNAAAAOGFZt2+sTUX7In8uLRDn2ydaW2M9Dqv0YVmPPCWqy8oEKf2qZAvJJntWTIqeITe9Kvan92yg5sfFYeyCExo4e3dWnEQMyn5hBRPlBXghHJar71gcF8uPaz+yJA/HYZUfgOw98hOauIDStr8fACysaMGlIJT7csBdNwt+OqCq/F3/86jScMW0YAGBbcxdm/+kNAH2Zcqsb2nHQyJqkr5/pGvqjTcYyBqAvE6K1O4hwRENnbxjn/O19PPSdw3HAcPWiuSOgz1jQNKCjJ6QrH5gyNP5cs2kyEZv+7PeEwnhk0ebY7TOnDcPz+8orOoW+CSVeN+ZMGoRXVu0Sjl3rlyU9RMUqP/5aEOWBZVvif/QPHjXAtj92ya7UVJSkFpvzSUEGuX40W1q7g3hz7W5saDSvq+zuDWPljngJhtmJEaWvqjT+fmkLBLF+d3wsZW25j2mdREUknUaD4mP5NBb24NED8MTlR8X6RwB9afMvrthpCAgMqvLjqrkT8fbPjo8FBABg5IByXRbfks2JU/qjEmVWiNY3duDKR5fizws/12UXfLQx/jpfOWQEVl57Ct68eg6WXXMSfn7q5Nhjezp68K37PsTmJvW44DYpKBDRNDy8aHPsanx1qTfWUyDqsmPGGvZjV6bAhxv2xhb/ZT4P/t+503DU+HrDdqPrynHi/kNitxdtaMJh17+Kz7a3Gra1S0tXLy6870Mcd9MbeH3NruRPIKKMMChAtM+HG5piPx+yX61t+002kjDV8gG32wXxPC8Uzn6jwRXbWnH8zW/i4n98hLl/fgt3vbleud3HW5tj5QMVJR5MGVqV9WPrb6pK9ZkCa3bGgzD8fRMVl1KfR9koMFGD+Hwu4ZowuBL/vepYnK+ovS/xuHH0hHr85RsH472fn4CfnDRJeaV8xqja2M+rhT5AiVhtqP/nVz7Hiyt24o7X1uGpZdtj94v9BA4bU4cKvxdjBlYAAL537Hj8v3Onxf4u7+3sxd/f3qDc/14p+DHv35/iTy+tid0+9cChhlG+Pz5xEuZJvRMSBYVS8cba3bGfZ08ciPISL85SNDccUu3XBaSBvkkQ97+70ZbjUHly6Ta8s24PNjd14WdPLs+7rEiiYsOgABGAzp4Qlm+LR7xnjRto276TXampSKNJoBhoCNmVR2iiNxTBDx5fFjuZ0TTgTy+tweKNxis0r62On2AcOqYuaUCEUletyxQI4bPtYlCAmRlExWaAooQg0ZXvfJ8AU+n34k/nTsPTVx6FU6YOwcTBlfjO0WPx4a/m4tHvHomzpg9PODFhf+F7bnVDu+l2Ig3WFtEvCBME/vpmX6PD1u4g1u6Kv85hY+oMz/vaoaPw7VljYrcf/XCLst/P7nZj7X7UiNoy/Or0/Q33V/i9uOToMbr77BobKE6COG7SIADAaQcONWx38gFDccykQZg1Tp9F8KkwptFuYhbCno5efLbDWgCIiNLDM3YiAEs2x69wV5V6bU17T1bTWVmaelBAnDvdG8pupsC/lmzF5iZj86TfPrdSd/KpaRoWCvWGJx4wxPAcyly1kCmwaU8n/rMs3pl6/2HMFCAqNqoGjFaDAsl62uTSwaMH4O4LD8XCecfhN2cdYFo/L9tfaHK3dle7pSvI6WTbR3szLN28N/b8uooSjB9Uodz+VGkx/YfnVxm22d3WY7gP6Pubfsc3DjYdQSkHd+woH9jVFsA6YerBMRP7LobUlpfgijnjY/cPqynFV2eORKXfi8cuOwL/961DYo9taurKWrPj5VJpwhqLWSFE/7+9+w6PqkzbAH7PpPceEtIJpABJCL0TqVI+QIhLpEhRQBERQURcXIoKIoKiix0RliJLkV0QCyBlqaFJbyZACCFSkpBe5/3+gDmZyZT0zCRz/66L62JOm2dmTpI5z3ne56WqYaNBIgD/u3Zf+n+HINcavbtS3rRBVZlO0Mpcjuwn3y3Sch53oN96+g4+3XsdDtbm+Pr5tvBxrn7DudzCYny697r0ONzbUSrXvHw3E79dTEX/iMfjPY/fSFPrztw73LPaz0+aVEs4lVMSKrFSgKjheZwUUL9A0ncdbOyVAtXVrJE95LLHQwIKixW48SAHzRrpT4iWvbNekSZ5RU8S7vuvln4/aBugu99QhyBXWFvIpVkT/nXsFrqHeKDPkwR5iUIgOT1PY7+pTzVF3xaNEOnrrDMWeZnnrIlKgQMqr8vXxUZtGuZZfUMxoKU33B0s4eVoLb1mmUyGXuGNYC6XoVghUKIQuPWw/Pe/sk7dSkfiffW+DKoJDCKqecabQiaqQwdUkgLdn5TQ1ZRyZx+oZKNBAGjhU9ptedvpZCz55Sre2HwWSWm5uJiSiTe3nK32FEwAsPrwTdzPepx9sDKX4/vx7TAworTp088XUgE8/oL11YHSPgPdmrnD24ld8GuDak+BskJq+IsZERmeVyUrBYqNtNFgTbG2MEOwR2kzvosVKCsv+25V5Jq6qEQBhUJg/fEkaVn7IM2hA0oymQxvPR2mtuzfJ29L/z9/55FGY2BbSzO80S9Ub0IAqJ1KgZ0qQyWeCvVUS3bI5TJE+DrB28lGIwliYSaHv1tpAmHt0Vs1Ot7/Smomxq+O11h+44H25o1EVDOYFCCTl5lfpJaB7t6sZpMC5c4+UMkpCQFgiEojoG1n7uDLA+qN/w7/+RBHEh6W3a1SMnIL1Y47vksQGjlaqzUh2nflHgqLFVh3PAn7VO46jOkYUK3nJt3KNntSZWPJKSCJGhovLdPj6rtTXKLSZ6YhVgoAQIhKU1XVCjVdyiZRKjIbgUwGXEnNUqu8eCpMfwXcuC5BeGdQc+nxgWv3pRl7Dl2/r7H94mER5cYBAGZlLsyr22jwflYBDv9Z2k9gkMoMDxWhmpT517Fb6PbhPny+/0+1KYmr4u6jPIxZFa8xSwPApABRbWNSgEze1dTSBkIOVuYIUMmA14Sann0AAIa0aowmOsY1Kv3njzt615fniwMJyHryh9nB2hwv93g8xrB7iDusnjSByiooxrLfrmLBfy9K+3UOdpPKJanm6UoK1HSFCxEZB22VAvruFKvOSNNQkwKuKmPvl+++Vu72Za+hK3pRffxGaXLd0dpc7WJYl9Ed/eH8pDlkYbECz355FEkPc5GoclHbLtAFP07pjCGtfCoUR9kZCarbX/iz369L70EjRyutzRP1KZtEuPsoHx/+chUdF+/FnG3ncC45o9LVioXFCkxZf1qqTpTLgFn9Sqd7TErLlfo8EFHNY1KATN4VlaRAqJdDueMMK8uilmYfeKNvqMZyb5U7Sqk6GhpVxF+Z+fj+8E3p8Us9guH05EuOraW51KUYAL46mCiVqzZytMInI1rV+HtIpeytzKWkjKqR7f0NEA0R1TatlQJ6rrcaek8BQHPWndt6qgXyCks0KisqVikgw8mb6dLjEe00p1HUxsrcDO8MLK0WeJhTiBfWnMBBlWGKz7b1Q7S/S4WOp6T6WVZn+EDi/WxsUBkSMbFbE42kQ3kGRzXG12PaoF+LRmrVkAXFCmyMv43B/zyMfp8cxNcHE/TOuKDqvZ8u4UxShvT43aEt8WK3IGmqR2X/AiKqHUwKkMlT7WgbVgvd2/VNrQQATja6x4jrMyDCG38fEA5vJ2s421ogrp0fZquMZ0zLqXpS4JM911DwpKOwu72VxnRIL3ZrorGPpbkcX41pC08td7Wo5shkMgS5a1aJeDpaGSAaIqptWmcf0JMVaOg9BQBoJJ6PJmofLvefP+6g1cLf8M99f6otL65ApYAMwJmk0qRAm4CK300f3sYXS4aXDg24fi8bD7JLS+ube1e+KazqEILqDB/48Jer0uv3c7XBmE6VH+4nk8nQt4UXvhrTFodn98S0Xs3gbq8+c8K1v7KxaNcVdFr8OyZ8fwK7zt9FQXGJ1uPtOJuCtUdvSY/j2vlhVIcAWJmr94/YGH9b2+5EVAOYFCCTd1WtUqDmu7fbltNI0LWC0zBpM7F7Exyd0wt//KMvPhgeqfbl8WF21cb2/XkvG5tOlP7hfa1XU43X0D7IFSPaqt81+WBYBFr5OVfpOalygj01S1gbs7EjUYOkvVJA90Wh6rqGWilgWWZY3pcHErSWlr/2wx9SgltVtpYx62XdyypAyqPSu9yt/Z0rFeOIdv6YojK1n1JTT3uEelX+BoTqZ1mRSgdtTt5Mwy8XU6XHs/qFwcq8er1oPB2tMaNPCA7N7omPno1C+zJDEUoUAr9fuYcp60+j/ft78Y//XMCRhAdSc0KFQuBjlSEgET5OmD+4hfT4mdalQyx2qTRHJKKaxSkJyaQJIdSSAuFV+ENdHttymr9VJylQlmqm/uGTqQorU8p/LzMfvZcfkB4HutkiTkdZ+uJhEejazB3X72WjezN3tK3kmESqurBGDvgJpV+OzOUyeDiwUoCoIdLWd6aiPQXKm/2mvnq6pRe+P3JTepx4Pwfrjt3C+C5B0jJ9Y9of5RWhcSWm7fVxtqlSFdwbfUPxILsA/z6ZDACI9nfGJyNawaKcXkPaqA0fqEKlgBACi3Zdlh5H+Trh/yrZYFAfawszxLbxRWwbX9x8kINtp5Ox9fQd3MkonYbxUV4R1h69hbVHb8Hd3hLNPB3wMKdArd/C4mERsLYo/d4U29oXH/5yFcDj3gUpGXmV+uyIqGKYFCCTlpqZj6yC0jsGIbWRFChndoGaTAqoHquwWIHsgmK9U9gpCSEwZlU8Dql0IwYe30XQ9eVFLpepzURAdafsWFRPB6sGe0eQiDTpu1FsCj0FOjZxw7SeTfHp76XDApb+ehX9W3pLlRWqf9vLyswr0limb0hGdCWrBJTkchk+jI3CiHb+SM8pREyoR7nNh3UeS+WjrExSICO3EKeT0pGVX4zTKmP23x4QXmv9fwLd7TCjbyim9w7B0cSH2HIqGT9fuIv8otKqjQfZhXiQrT7so2eYJ1qqTLkMPK5E8HO1we20x8mFU7fSmRQgqgVMCpBJu6fSjM/JxgKOFbiArqzyhg+oZsSry8XWEmZymfSF4X5WQYWSAj+euaOREHCzs8SACK8ai41qTpSf+pcmD/ZxIDIp+i4Ki00gKQAAM/qG4vnOgYhZuh/ZBcXILSxB96X78EpMU0x5Khj3MnU3uHukJSlQpKelf2WbApbVJqB6+wNVGz6gUAg88/kRjen8eod7okMTt2rHVB65XIYuTd3Rpak7Fg5pgV3n7+Kn86k4mvAARSXqryEm1AMr4lppPU4bfxcpKfDH7QzekCCqBUwKkEl7qNKMz60G79irstFz0e9QhZkH9JHLZXC3t8RfT5Id97MK0KScKZT+yszHgh2XNJavHt+OswgYKQdrC7QLdMGJJ52xa7IElIiMz/K/RWHGv89Kj/VdFJaoXNw25KQA8LgR7uTuTbDsyZj0wmIFPt5zDbmFxXqnac3U0lOg7EWqqrLj5A2hKsMHbqfnaiQEAGB675Aai6uiHKwtMKKdv1Q1ceJmGh5kFyKnoBiRvk5oH+Sq8ztHSx8nbP8jBQBwMeVRXYZNZDKYFCCTptqMz82+dpICZnIZrC3kamVzSrVRAufhYCUlBS7dzdR7N0AIgbe3nVe7a/Le0JaIbeNboxUMVPMWD4vAir1/wsfZBqM7Vr57NBHVH89E+2Dt0Vv443YGAM4+oOqVp5qiqESBrw4mSk0F1x27BT9XW537aKsUKNbSqBB4PCyvReOab0JcWXJZ5SsFsrQkPwZGemuU6Nc1FztL9G1R8UrEFo1L472UklnpfklEVL6G2YGGqIIe5pQmBWpybH9ZuoYQBLrr/tJSVZ4OpaXkC3Zc0ptV33IqGXuv3JMeLx4WgdEdA5gQqAeaejrgs+ei8Vb/MH5eRA2cTCZD+6DSu9X6Gg2aQk8BVXK5DDP6huLQ7J5SEiSnsATrjt3SuY+2ngKFOpICkb5OkBvB+6heKVCxfbLL9FVwsDbHzD51XyVQXc1VkjKZ+cVITs/TszURVQWTAmTS0nJUKwVqr3u7rhkIBkTUfNl3szLT1f168S+t26Vk5GGhyrCBbs3cEdfOT+u2RERkWOp3inVvp5oUMDcz/MVsXfFwsEJsG1/p8RWVmYXK0l4poP1NDdBTcVCXVD//8oYP3MvKx8WURxqVAj+92q3cIYXGyMnGAn6upZWVHEJAVPOYFCCT9iC79nsKALqTAoMia75ZzgvdgtQe52rpwJySkYcX15yUujM7WJljyfBIluMRERkp1ZvVFR0+YNZApyTUZVhrX63LW/k5Y5jKfPfaKgWKdNx+j/JzrpHYqquiPQUS72fjqaX7MfDTQ5i99Zy0vE2AC/zdjCPBURUtvEuHEFxMyTRgJEQNk2n9tSAqQ3X2gdpMCjjbaB57cFTjWint9HSwxuQeTaTHeUUlautTMvIwdOVhXLpb+kd13uAWnOKHiMiIVbT7vNrwARPL87YLdFG7o6w0umMAmnurlqBXLCkQ7GFnNJ3uXWxLZxLaee5x071jiQ/xf58dwsvrTiGv8PHf+m2n7yDnyf9VqyHta7ixcV1T7etw+S6TAkQ1jUkBMlm5hcU4dStdetzU06HWnktbE8PavClva1H6x3/v5Xu4nZYrPf7+yE3cyypNhkzu3kSt5JKIiIyPTFaxMeWmXCkgk8k0KvBkMqBtgAucbEovqrVOSahl+MCsfqGwMDOO9zC2benwvn+fvI0Ldx5h2sYzOH/nEX6+kIqN8UkQQmDPZe1DBu2t63dSIMSr9Dva9XvZBoyEqGEyjt90RAbw+5V70l10BytztAuq/jzCutTWzAa69Ar3lP6fmpmP5745hlsPc3A1NQtfH0yU1g2M8MacAeF1GhsREVWemUpSQFRwSkJTmH2grG7N3NUeB7jaItDdDo4qSYHMPG1TEqpnWlr5OaNv84p3yK9tce380MTdDsDjnhKDPjukluD/5WIqvj9yU2cvhZqeArmuhTQqTQokpeVKlRFEVDOYFCCT9d8nc94CQJ8WjWBlXnsd3N3sNJsY1uZXtZY+TnhvaEvpcXJ6HgZ+egj9Pjmott0gzm9PRFQvqF7f6599oPT/ZqY2fgCPx86rUk5NWNlKgdXj2hnFrANKFmZyvUn8+BtpWKDSPLgsLydrnevqA39XW1iZP75sEQJIuM9qAaKaxKQAmaRHuUXYf/W+9HhIKx89W1efu9bhA7X7ZWN0xwDM+7/m0uOyUxN1a+aOp8I8y+5GRERGSPUCv1hPozlTrxSwMjfD+8+UJsV7Pvk752itUilQTk+Bxk7WcKnFPkNV1ad5owr1OPB0sMLIDv7SY1tLMwyLrt/DBM3kMgSrzJxw/Z7u2SWIqPLqdy0RURX9cvGuNCexm50lugS71erzeTkZponf+C5B8HSwxptbzkqNh5T+9UIHg8RERESVZ6HSH6BEx/R5QNmeAqaXFACAUR0C4OVojdzCEgx8MvWvk0qjvtzCEhSVKNT6BahOSWhhbrz3zN4b0hLXUrNw9S/tF8XWFnJ883xbBHvaIzk9D8npuXh3SMt6PfOAUrNG9lKT5IR7OQaOhqhhYVKATNJ/VIYODIr0hnktNxLy1zLPcV19VRsY6Y1QLwfM3X4eJ26mo0Qh8MpTwXX07EREVBNUL/CLFbo7DarPPmCaSQEA6BXeSO2x6vABAMjILYKHQ+nQPtVKAWOusHCytcDWKZ3x3z9SEOhmi9YBLnh723n8+McdeDtaY9GwCGkaxbUT2hs22BrmozJLUmpmvgEjIWp4mBQgk3PzQQ6OJj6UHg+u5aEDALROkVRnWQEATT3t8cOkTigoLkFeYQmcbY2vLJKIiHQzr+DwAbVKARPsKaCLnaUZLMxkUu+AjNxCtaRAoUpSwFhmHNDF3spcbXjA8hGt8MHwSFgacYVDTVDti/AXkwJENaph//Yg0mLdsVtQ9mgK9rBDa3/nWn9OW0tzrX0F6pqVuRkTAkRE9ZC56vABfUmBenLHu67JZDK1v3/puep9BdSGDxh5UkCbhp4QAABvlaGYSSpTLRNR9TX83yBEKnILi/Hvk7elx2M7B9Z6wz8lvzJDCGR1WSpARET1muoFftnp81TlF5Wus7GovVl16iNXtaRAodq6IrVKAf59NkbNPEsbDSal5SK3UHNqSSKqGiYFyKRsOnEbmfmP/4jYW5ljWOu668Zbtq+ACQ/1JCKiSlIdPqCvUiCvqLSprDWTAmqcVZoNZuhJCtR2nyGqGj9XW1hblE5LeP0vTktIVFP4W49MRm5hMVbu+1N6HNvGF/ZWdddWw8+l/nf+JSIiw1BvNKg7KZCvkhSwsWRSQJWLSqVAWo768IEileEDlkwKGCUzuQwhjRykx7pmYCCiyuNvPTIJxSUKLNxxCQ+yH98ZsLaQY0pM3Xbg16gUqNNnJyKi+ky1p0CxnikJ81Smn+XwAXUudrorBVRndDDn8AGjpZYUSGVSgKimcPYBavAu383Euzsv4UhC6YwDYzsHwtPRWs9eNS9YZSwcAOj+SkdERKSuorMPqA4fYFJAnbOengKFxfVn9gFTFuZVmhS4xkoBohrDpAA1SEIIxN9Iw6pDN/Dbpb/U1rX0ccTUp5rWeUzNGqknBTidDhERVZRqo8FiPY0G1XoKcPiAGlc9sw9w+ED9oFopcIWVAkQ1hkkBanB+u5iK93ddxq2HmtPVDIzwxtJnI2FrWfenvqO1hdpjNsghIqKKUm1+p6/RYD6HD+ikr9Gg2lSOHD5gtFQrBe5nFSAtpxCudpxqmai6mBSgBkMIgY9+u4qV+xI01oV5OWBar2bo39KrzqYgLE8qKwWIiKiCzCvYaJDDB3Rz0VMpkF9c+r5ZmbNSwFh5OFjB2dYCGU8+v6upWegU7GbgqIjqPyYFqEEoUQjM3X4eG+NvS8tkMqBrU3eM7hiAPuGNIJcbPhkQ7GGHhPs5AIC2AS4GjoaIiOoLsyoMH+DsA+pcVO4o/5WZDyGEdKMgv6j0PeVUjsZLJpMhtJEDjt9IAwBcupvJpABRDWAqlOo9hUJg1uazagmBZp722P16D/zrhQ7o18LLKBICAPDduHZwtbOEs60F5g5qbuhwiIionrCoQKNBhUKoXdyyUkBdU5WGv1n5xWrDDFWncmRSwLhF+DhJ/79w55EBIyFqOFgpQPWaEAILdlzEtjN3pGVtAlzw3bh2cLKx0LOnYQS42SH+7V4oKhG8g0NERBVmpjoloY6kgGoJPMBKgbKcbCzQxMMOiU8q9s4mZyDQ3Q5AmUoBDh8wahG+pUmBc8kZhguEqAHhbz2q11bsvY41R29Jjzs1ccO/XmhvlAkBJXMzOb+oERFRpVRk9oHs/GK1x/ZWvPdTVitfZ+n/Z2+X3mVW6ynASgGjplopkPggB9kFxXq2JqKKYFKA6q1fLtzFJ3uuS4+jfJ3wzdi2BplZgIiIqDapdsTXNfuA6sWRuVzGhnlaRPk5S/8/q3KXuYA9BeqNQDc7ODxJeAkBXOQQAqJq418Lqpf+vJeFmf8+Kz0O9rDD9+Pb864IERE1SKqVAkUVSArYW5sbzWw7xkQ1KXDhziMUPam6KChW7SnAr8fGTC6XoYWPo/T4PJMCRNXG33pU75xLzsBz3xxHzpO5mB2szPH1823VugoTERE1JOYqPQV0VgqoDB+wY9WcVuHeDlLTxoJiBa6mZgEo02jQnJUCxi5SZRjIuWQmBYiqi0kBqjeEEPghPgl/++oo7mcVSMuX/S0KwR72evYkIiKq31SnJCxRCAihmRhQrRRwsGZSQBsrczM09y69y6wcQpD+ZN57AHA04r5E9JhqXwFWChBVH5MCVC/czyrAi2tO4q1t56UOweZyGT4cHom+LbwMHB0REVHtsjBT/8qmbQYCteEDHE6nk1pfgdsZUCgE7mbkScs8HKwMEBVVRpRKpcCNBzl4kF2ge2MiKhf/YpBRu5eVj3VHb2HVoRvScAHg8bRCn49qjS5N3Q0YHRERUd1QrRQAHlcLlO2Hp5oUsGNSQKfHF5SPZy46e/sRktPz1L5jNPVk9aGx83O1QSNHK/yV+TgZcOJGGvpHeBs4KqL6i38xyOg8yivCrxdTseNsCg7/+QBlb4Z0D/HA0thINHK0NkyAREREdcy8TFKgqESh0SW/bKNB0k61UuDavSycuJkmPQ5ws2WVRT0gk8nQIcgN/z2bAgA4zqQAUbXwtx4ZjZyCYnyxPwHfHb6BXJWMvZKTjQXe6BeK0R382VGZiIhMiuqUhID2ZoOqjQYdeGGrUxP3x1PaZRUUQwjg64OJ0rpwL0c9e5IxaR/kqpYUIKKq418MMgqX72bilQ2nkXg/R2NdYydrjGjnj/FdA+FozeY/RERkelRnHwDK7ynA4QO6yeUytAtyxe9X7gEArv6VJa0L92ZSoL7o2MRV+v+V1Eyk5RTClTNREVWJyTUazM/Px7x58xASEgJra2s0btwYEyZMQHJysqFDM1l/3M7A3748qpYQcLa1wOiO/tg0qSMOze6J13o3Y0KAiIhMVtlKgeISzaTAozyVDvr8m6nX671DNPo0AEBLHyYF6otgD3t4PmkKKQSw70mSh4gqz6SSAvn5+ejVqxcWLlyI7OxsDBkyBH5+fli9ejVat26NhIQEQ4docs7ezsCYVceR9eTuhkwGTO7RBIdm98R7QyPQoYkb5Fr+aBMREZkSszLD5ooVCo1tHmYXSv93tecdU30ifJ2wcEgLjeVtA1y1bE3GSCaToVd4I+nxnst/GTAaovrNpJICixYtwpEjR9CpUydcu3YNmzZtwvHjx7Fs2TLcv38fEyZMMHSIJuVc8pOEwJMxkBZmMnw1ug3m9A9nkx8iIiIVcrkMqjlybT0FHuaUJgXcWEZdrlEdAvD5qNbS415hnnCyZYVFfdK3eWlS4MC1+ygs1kyWEVH5TCYpUFRUhM8++wwAsHLlStjbl043M2PGDERGRuLgwYM4deqUoUI0KadupWH0t8eRqZIQ+HxUG/Rt4WXgyIiIiIyTuVnp17YiLcMH0nJK52pnUqBiBkR448hbPfHFqNZY8Vy0ocOhSuoU7CYly3ILS3DroWZvKiIqn8kkBQ4dOoSMjAwEBwcjOlrzl35sbCwAYMeOHXUdmkkpLFbg64MJiPv6mJQQMJfLsHJka/RRyfYSERGROtVpCctWCgghkKZaKcDhAxXW2NkG/SO8WaVYD1lbmMHbyUZ6vCE+yYDRENVfJvPb7+zZswCA1q1ba12vXK7crqoUCgUyMjKqdYyG5lLKI/xx+xGu38vEgasP8CC79E6GmVyGD5+NQnsfa75vREREesgKc6B4klBftfc83J80WQOAtOxCFOSUdtG3KM5DRobm9L414dGjR3ofE9WlASEO+OrgfQDAqr0XcO9BGgLcbA0cVfVM6BKkVhlEVB6FQgG5vOrnjMkkBZKSHmcOfX19ta5XLldup0+LFpqNaQDgypUrUCgUcHFxqWKUpmn4x4aOgIiIqH5ZWs76wBV1Esbj5woMrLsnIyrH54YOoAbMNnQAVC+pDo+vLJNJCmRnZwMAbG21Zw7t7OzUtqsKZYYmLCysyscg06Sc+SI4ONjAkVB9xPOHqornDlUVzx2qKp47VFU8d3RLSkqSrmerwmSSAkI8Hnsnk2mf3k65viIuXryodbmygkDXeiJdeO5QdfD8oariuUNVxXOHqornDlUVz53aYzKDVRwcHAAAOTnau5Lm5uYCqF7ZBREREREREVF9YjJJAX9/fwBAcnKy1vXK5crtiIiIiIiIiBo6k0kKREVFAQBOnz6tdb1yeWRkZJ3FRERERERERGRIJpMU6NKlC5ycnJCQkIAzZ85orN+yZQsAYNCgQXUdGhEREREREZFBmExSwNLSElOnTgUATJ06Va23wPLly3Hu3Dl07doV7dq1M1SIRERERERERHVKJirTdr+ey8/PR0xMDI4fPw5vb29069YNt27dwvHjx+Hm5oZjx46hadOmhg6TiIiIiIiIqE6YVFIAAPLy8rB48WJs2LABt2/fhouLC55++mm8++678PPzM3R4RERERERERHXG5JICRERERERERPSYyfQUICIiIiIiIiJ1TAoQERERERERmSgmBYiIiIiIiIhMFJMCRERERERERCaKSQEiIiIiIiIiE8WkABEREREREZGJYlKgluXn52PRokWIioqCnZ0drK2t0axZM0ybNg2pqamGDo/qgS1btqBv375wd3eHtbU1/P39MWzYMBw6dMjQoVE9sXDhQshkMshkMvzwww+GDoeM1JUrV7BkyRL06tUL/v7+sLKygpeXF4YNG4b//e9/hg6PjEB+fj7mzZuHkJAQWFtbo3HjxpgwYQKSk5MNHRoZsdzcXGzfvh0vvPACIiMj4ejoCDs7O0RFRWHhwoXIzs42dIhUT6SlpcHT0xMymQxhYWGGDqdBkQkhhKGDaKjy8/PRo0cPxMfHw9XVFZ06dYKlpSXi4+Nx584deHl54ejRowgMDDR0qGSESkpK8Pzzz2PDhg2ws7ND165d4ezsjKSkJJw6dQrvvPMO5s6da+gwychdvXoVUVFRKCwshBACGzduRFxcnKHDIiPk6+uLO3fuwNHRER06dICLiwsuXbqECxcuQCaTYfny5Zg+fbqhwyQDyc/PR69evXDkyBF4e3ujW7duuHnzJuLj4+Hh4YGjR48iODjY0GGSEfr2228xceJEAECLFi3QvHlzZGZm4siRI8jKykJYWBgOHDgAT09PA0dKxm7cuHFYu3YthBAIDQ3FlStXDB1SwyGo1qxYsUIAEB06dBCPHj2Slufn54tnn31WABDPP/+8ASMkY/bmm28KAGLAgAHi4cOHauvS0tLEtWvXDBQZ1RcKhUJ0795dNGrUSAwZMkQAEBs3bjR0WGSk+vTpIzZs2CAKCgrUln/55ZcCgDAzMxMXL140UHRkaO+8844AIDp16iSysrKk5cuWLRMARPfu3Q0YHRmzNWvWiJdfflnje0tKSoqIjo4WAMRzzz1noOiovtizZ48AICZNmiQAiNDQUEOH1KCwUqAWxcbGYuvWrfjhhx8wYsQItXV//PEHoqOjER4ejkuXLhkoQjJW169fR3h4OHx8fHD58mXY2toaOiSqh7755htMmjQJ69atw+7du7FmzRpWClCV9OvXD7/99hvmz5+PefPmGTocqmNFRUXw9PRERkYGTp8+jejoaLX1UVFROHfuHE6ePIk2bdoYKEqqj44ePYrOnTvDysoKmZmZsLS0NHRIZITy8vIQGRkJS0tLbN++HSEhIawUqGHsKVCLrKysyt3G1dW1DiKh+ubbb79FSUkJXnrpJSYEqEpSU1Px5ptvolevXhg1apShw6F6LioqCgCQkpJi4EjIEA4dOoSMjAwEBwdrJASAxzdBAGDHjh11HRrVc8rfLQUFBXj48KGBoyFjtWDBAiQkJOCLL76AhYWFocNpkJgUqEV9+vQBAHzyySfIzMyUlhcWFmLRokUAgLFjxxokNjJue/fuBfD4HLpx4wYWLVqEyZMnY86cOdizZ4+Bo6P6YNq0acjLy8MXX3xh6FCoAUhMTAQAeHl5GTgSMoSzZ88CAFq3bq11vXK5cjuiilL+brGwsOCNMtLq3LlzWLZsGcaPH4/u3bsbOpwGy9zQATRkY8aMwa5du7B582YEBQWhc+fOsLCwQHx8PLKysvD+++9LjVeIVF28eBEAcPz4ccycORMFBQXSug8++AC9e/fG1q1b4ejoaKgQyYjt3LkTmzdvxoIFC9CsWTNDh0P1XEJCAnbu3AkAGDx4sIGjIUNISkoC8LgZpTbK5crtiCpqxYoVAICnn366QhW2ZFoUCgUmTpwIZ2dnfPjhh4YOp0FjpUAtMjMzw8aNG/HGG28gLS0NO3fuxI8//og7d+6gVatW6Nq1q6FDJCOUn5+P/Px8AMD06dPRo0cPnDt3DpmZmdi9ezeCgoKwZ88eTJo0ycCRkjHKzs7GlClTEBISgtmzZxs6HKrniouLMW7cOBQUFGDEiBEcL26ilFPG6RrOZmdnp7YdUUXs2rULq1atgoWFBd59911Dh0NG6LPPPkN8fDyWLl0KNzc3Q4fToLFSQI/Y2FhcuHChUvusXbsW7du3BwCkp6fjmWeewYkTJ7BixQoMHz4ctra2OHjwIF599VX06tULmzdvxtChQ2shejKk6pw7JSUl0jIfHx/s2LFDarzTu3dv/Oc//0GrVq3w73//G++++y7vBDcw1f298/bbb+P27dvYu3cv77qYmOqeO9q8+uqrOHToEJo0aYLPP/+8uiFSPaXsSS2TyfSuJ6qoy5cvY/To0RBCYOnSpVJvASKl27dvY+7cuejRowfGjRtn6HAaPCYF9Lh58yauXr1aqX1yc3Ol/7/++us4cOAAPvnkE0ybNk1aPmTIEPj4+KBDhw547bXXMGjQIJib86NoSKpz7tjZ2UEul0OhUGD06NEanXgjIiLQtm1bxMfH48CBA0wKNDDVOXfi4+OxcuVKjBkzBj179qyN8MiIVfdvVlkLFy7El19+iUaNGuHXX3/leF8T5uDgAADIycnRul55Htnb29dZTFR/JScn4+mnn0Z6ejpmzJiB1157zdAhkRGaMmUKCgsL2RupjvBKVI+TJ09Wed+SkhJs3LgRQGlXXlVt27ZFUFAQEhISkJiYiJCQkCo/Fxmf6pw7ABAQEIAbN24gICBA6/rAwEDEx8fj3r171XoeMj7VOXd27doFhUKB8+fPIyYmRm2dctoe5YVebGwspk6dWp1QychU9/eOqpUrV2LevHlwcnLCL7/8gqZNm9bYsan+8ff3B/D4Yk4b5XLldkS6PHjwAH369EFSUhLGjx+Pjz76yNAhkZHauXMnnJ2d8fLLL6stVw6xTUpKkr7r7Ny5k0nJamJSoJbcu3cPhYWFAKCzGZxyeVpaWp3FRfVDdHQ0bty4ofPcUE7bw1+ApM0ff/yhc93ly5dx+fJltGrVqs7iofpl/fr1ePXVV2Fra4uffvqJ5wpJpd2nT5/Wul65PDIyss5iovonKysL/fv3x5UrVzBs2DB88803OoekEAFARkYGDhw4oHVdXl6etK64uLguw2qQ2Giwlri6ukpl39ru3mRmZkplnrruBpPpUnb43rdvn8a6rKws6QuYrumhyDTNnz8fQgit/5TTn27cuBFCCHzyySeGDZaM0q5duzBu3DhYWFjgxx9/RJcuXQwdEhmBLl26wMnJCQkJCThz5ozG+i1btgAABg0aVNehUT1RUFCAIUOG4OTJk+jXrx82btwIMzMzQ4dFRkzX95kbN24AAEJDQ6Vlzs7Ohg22AWBSoJZYWVnh6aefBgDMmDEDd+/eldbl5+djypQpyM3NRZcuXeDt7W2oMMlIxcXFITAwEL/++ivWrFkjLS8uLsZrr72G9PR0tGzZkl/YiajGHD58WBrutmnTJvTt29fAEZGxsLS0lIYbTZ06Va23wPLly3Hu3Dl07doV7dq1M1SIZMRKSkrw3HPPYd++fejWrRu2bdum0S+JiAxLJtgyttYkJCSgS5cu+Ouvv+Dg4IBOnTrBxsYGJ06cQEpKClxdXXHgwAG0bNnS0KGSETp27Bh69+6NnJwctG7dGoGBgTh9+jRu3rwJNzc37Nu3DxEREYYOk+qJcePGYc2aNdi4cSPi4uIMHQ4ZIRcXF2RkZCAoKAjdu3fXuk3Xrl3x4osv1nFkZAzy8/MRExOD48ePw9vbG926dcOtW7dw/PhxuLm54dixY+w9QVqtWLEC06dPBwA888wzOofVfvTRR3B3d6/DyKg+unnzJoKCghAaGir1S6LqY0+BWhQcHIyzZ89iyZIl+Pnnn3Hw4EEIIeDn54dXXnkFb731Fnx9fQ0dJhmpjh074syZM1iwYAH27NmD8+fPo1GjRpg4cSLmzp3Lhk5EVKMyMjIAADdu3JDKM7VhUsA0WVtbY9++fVi8eDE2bNiA7du3w8XFBWPHjsW7774LPz8/Q4dIRio9PV36/48//qhzu/nz5zMpQGQgrBQgIiIiIiIiMlHsKUBERERERERkopgUICIiIiIiIjJRTAoQERERERERmSgmBYiIiIiIiIhMFJMCRERERERERCaKSQEiIiIiIiIiE8WkABEREREREZGJYlKAiIiIiIiIyEQxKUBERERERERkopgUICIiIiIiIjJRTAoQERERERERmSgmBYiIjJxMJiv337hx4wwdpsmIiYmBTCbDzZs3a/25ZDIZAgMDa/15jFlgYKDec7++vT91ef5QqZ49eyIgIACFhYVV2j89PR3W1taQy+VISkoqd/sJEyZAJpPh73//OwDgzJkzkMlkWLp0aZWen4ioNpkbOgAiIqqYsWPH6lzXtWvXOoyEasL+/fvx1FNPYezYsfj+++8NHU6FzZ8/HwsWLMDq1avrNBk1fPhw2Nvbayx3d3evsxiofvrpp5+wb98+fPHFF7C0tKzSMVxcXDBw4EBs27YNGzZswFtvvaVz2/z8fGzbtg0AMHr0aABAdHQ0Bg8ejEWLFuGFF16Aq6trleIgIqoNTAoQEdUT9enCkWrG5cuXYWFhYegwjMJHH31U76oCtFm7di1yc3Ph4+Nj6FBMxttvvw1PT09MmDChWscZM2YMtm3bhnXr1ulNCuzYsQOPHj1CmzZtEB4eLi2fM2cO/vvf/2LJkiVYsmRJtWIhIqpJHD5ARERkpMLCwhAcHGzoMKgG+fv7IywsjMmeOnL48GGcO3cOcXFxVa4SUBowYADc3Nxw8eJFnD17Vud269evB/A4iaCqY8eOaNq0Kb777rsqD2MgIqoNTAoQETVAyrHWJSUl+PDDDxESEgIrKyv4+flh9uzZKCgo0LpfdnY2Fi5ciIiICNja2sLR0RE9evTA9u3bNba9efMmZDIZYmJikJmZiZkzZyIoKAgWFhaYPn26tN2ZM2fQv39/ODk5wcnJCf369cOJEyfw/fffQyaTYf78+dK2LVu2hEwmw7Vr17TGd/PmTcjlcjRr1gxCiHLfB9Xx2xs2bEDHjh3h4OAAZ2dnaRshBNasWYPu3bvD2dkZNjY2iIyMxEcffYSioqJyn0Ppf//7H6ZOnYrIyEi4uLjAxsYGYWFheOutt5CRkaG27bhx4/DUU08BANasWaM2Rl71/Sg7Zn7r1q2QyWSIi4vTGceUKVMgk8nwzTffqC2vzGerS2BgIBYsWAAAGD9+vFrc+/fvV9v2X//6F7p27QpHR0fY2toiMjISixcvRn5+foWfrypu3ryJyZMnIzAwEFZWVvDw8EBsbCzOnTunsa3qOXjt2jXExcWhUaNGkMvl2L59u9o5npOTgxkzZsDPzw82NjZo3bo1duzYIR1r8+bNaN++Pezs7NCoUSNMmzYNeXl5Gs9Z1Z4Chw4dwjPPPANPT09YWVkhMDAQ06ZNw/379zW2HTdunPSZHDx4ED179oSDgwMcHR0xcOBAXLp0Sefz7NixA/369YObmxusra0REhKCd955B9nZ2Xpfi66fr+zsbLzxxhvS+9a8eXN8+umnEEJonN9Lly5VG4evzVNPPQWZTIZDhw5V6H379ttvAQCjRo3Suc358+cxatQo+Pj4wMrKCo0bN8b48eM1PiNLS0v87W9/AwCsW7dO67HS0tLw888/w8zMTOvP6XPPPYcHDx7gxx9/rFD8RER1QhARkVEDICr76xqACAgIECNGjBB2dnbiqaeeEoMGDRJOTk4CgBg1apTGPqmpqaJ58+YCgPDx8RGDBw8WvXv3FnZ2dgKAWLx4sdr2N27cEABE+/btRatWrYSLi4sYOnSoGDZsmJg/f74QQojDhw8LGxsbAUBER0eLuLg4ERkZKSwtLcXkyZMFADFv3jzpmJ9++qkAIGbNmqX1dc2dO1cAEB988EGF3ocePXoIAGLSpElCLpeLbt26ibi4ONGlSxchhBAlJSXi2WefFQCEo6Oj6NWrlxgyZIjw8vISAMSAAQNESUmJ1mPeuHFDbXmHDh2ElZWVaNOmjRg2bJgYOHCg8Pb2FgBEixYtRFZWlrTtN998I/r16ycAiODgYDF27Fjp348//ihtp/wclfLz84WTk5OwsbFRO55SUVGRcHd3F5aWliItLU1aXtnPVpeZM2eKqKgoAUB06dJFLe7Lly9L202aNEkAENbW1mLAgAEiNjZWuLu7CwCiU6dOIjc3t0LPJ4QQAQEBWt9vbf73v/8JR0dH6T2PjY0VnTp1EjKZTNjY2Ijff/9dbfvVq1cLACIuLk44OjqKoKAgMWLECNG3b1+xc+dO6Rzv1KmT6NChg3B3dxeDBg0SMTExQi6XCzMzM7F7926xfPlyYW5uLjp16iSGDh0q3NzcBAAxcuRIjRh1nT/6rFixQshkMmFmZiY6deokYmNjRVhYmAAggoKCREpKitr2Y8eOFQDEjBkzhJmZmYiKihLDhw8XISEhAoBwc3MTd+/e1XieGTNmSJ9b9+7dxbBhw6T3v02bNiI7O1vra9H185WXlyfat28vAAgPDw8RGxsrnn76aWFpaSmmTZumcX7fv39fWFlZCW9vb1FUVKQR3/Xr14VMJhNhYWEVfu88PT2FnZ2dxs+x0pYtW4SlpaX0GmNjY0V0dLT0Pl24cEFt+yNHjkg/R9qO+eWXXwoAon///lqfb+/evQKAGDNmTIVfAxFRbWNSgIjIyFU1KQBAhIeHq118JCYmChcXFwFA/Pnnn2r79O/fXwAQb775pigsLJSWJyQkiODgYGFmZibOnj0rLVdeMCkvmtLT09WOV1JSIl2EfPjhh2rrFi5cKO2rmhTIyMgQtra2wtPTUy0GIYQoLi4WPj4+wtzcXKSmplbofVBetFhbW4v9+/drrF+yZIkAIPr06SPu3bsnLc/Ozhb/93//JwCIf/7zn1qPWfai7qefflK7EBfi8UW88gJ5wYIFauv27dsnAIixY8fqjL/sRZMQQkyYMEEAEGvXrtXY/qeffhIAxNChQ9WWV/az1WfevHkCgFi9erXW9Vu2bJEumq5fvy4tf/TokejatavepI82FU0KPHr0SHh5eQkLCwuxefNmtXW7d+8WlpaWwsfHRxQUFEjLlUkBAGLq1KmiuLhYbT/VczwmJkbt81Xu27RpU+Hq6ioOHjworbtz547w9PQUAERCQoLaMSubFDh69KiQy+UiICBA7TNSKBTSz1FsbKzaPsqkgFwuFxs2bJCWFxcXi+HDhwsA4p133lHbZ9OmTVLyTjW2wsJC6Rx+4403tL4WXT9f7777rvT74dGjR9Lys2fPSr+Hyp7fI0eOFADE9u3bNY43e/ZsAUAsW7ZM9xum4vLlywKA6N69u9b1iYmJwtbWVjg5OYkDBw6orVuzZo0AINq1a6exX9OmTQUAsXfvXo11ynN8/fr1Wp8zMzNTyOVyERgYWKHXQERUF5gUICIycsqLEn3/VO8uq+6zZ88ejeO9+uqrGhd1Z86cEQBE586dhUKh0Nhn+/btAoB49dVXpWWqF0wnTpzQ2Gf37t0CgAgLC9M4ZnFxsQgKCtJICgghxPjx4wUAsWXLFrXlO3bsEADEsGHDdL1VGpQXLa+88orGOuVddQcHB3H//n2N9ampqcLKykpERERoPWZFL+pyc3OFubm5aN26tdryqiYFlHca+/Xrp7H9qFGjBAC1i+KqfLb6lJcU6N69uwAgVq1apbHu3LlzQiaTCQcHB7WLc32USQFd/86cOSOEEOLjjz8WAMScOXO0Hmf69OkCgNi6dau0THlh7+HhIXJycjT2UZ7jZmZmagkOIR4nvTw8PAQA8Y9//ENj39dff13r+1TZ82fIkCECgPj111811ikUChEdHS3kcrnaOaxMCowePVpjn1OnTgkAokePHmrLlRUgV65c0dgnLy9PeHl5CWdnZ7W74/p+voQQwtfXVwAQR48e1Vj3j3/8Q+v5feDAAQFADBo0SG15UVGR8PLyEpaWllp/XrVRJjomTpyodf1rr70mAIivvvpK6/qhQ4cKAOLUqVNqy+fPny8AiAkTJqgtv3nzppDJZMLe3l7r+aTk4+MjAKglSoiIDIk9BYiI6omxY8fq/Ofv76+xvYWFBWJiYjSWh4SEAADu3r0rLdu9ezcAYMiQIZDJZBr7KKc8PHHihMY6b29vtG3bVmP5kSNHAACxsbEaxzQzM8OwYcO0vs6XXnoJADTGxCsfT5w4Uet++gwePFhj2ZkzZ/DgwQN07dpV67R2jRo1QrNmzXDhwgWtY8O1uXPnDr788ktMnz4dEyZMwLhx4/Dyyy/D0tIS169fr3Tc2sTExMDHxwd79uzBvXv3pOW5ubn4z3/+A0dHRwwaNEhaXp3PtrKKiopw7NgxyGQyjBw5UmN9REQEIiMjkZWVpbdRmzbDhw/Xeu4rp3ZTvs6hQ4dq3V/f6+zduzdsbW11PndgYCCaNm2qtkwulyMgIAAA0KdPH419lA0iVX/OKkuhUGDv3r1wcHBAr169NNbLZDJ06dIFCoUCp06d0ljft29fjWXafv7v3buHs2fPIjw8HKGhoRr7WFtbo23btsjIyNB6Hmv7+UpKSkJycjJ8fX3RsWNHjfXPPvusxjIA6N69O5o3b46ff/4Zd+7ckZbv2LEDqampeOaZZyo8DaXy58PFxUXretWfDW10nTPKBoJbt25V65Gxfv16CCEwbNgwveeT8pzV1g+CiMgQOCUhEVE9UdkpCb29vWFmZqaxXDnXu2qzQWVDrdmzZ2P27Nk6j/ngwQONZdoSEgCQkpICAPDz89O6Xtd+7du3R3R0NHbv3o1bt24hICAAd+/exa5du+Dv76/1Qqc82p5L+Zp//vlnrRfLqtLS0sqdQm758uWYM2dOrXcVl8vliIuLw7Jly7Bp0ya8+uqrAID//ve/yM7Oxvjx42FtbS1tX53PtrIePnyIwsJCeHl5qcWgKjAwEGfPnpXOj4oqb0pC5evs0KGD3uNU5hxW0vXZ29nZ6VyvXKerqWdFPHz4UGrwZ26u/yubttfl6+ursUzbz/+tW7cAPJ4Cs7yfhQcPHmgkDrS9f1X9+QeASZMmYfr06fjuu+/wzjvvAKhaUvDRo0cAAAcHB63rleeMl5eX3uOUfW+bNGmCzp0748iRI9i5cydiY2MB6J51oCxHR0e1+IiIDI1JASKiBqq8L/eqSkpKAADdunVDkyZNdG6n7Q6drou/8uIQemYPmDx5Ml566SV89913WLBgAVavXo3i4mK88MILkMsrX+SmLUbla27WrBk6d+6sd38rKyu9648dO4aZM2fCyckJX3/9NWJiYuDl5SXt17hx42rdMS5r1KhRWLZsGTZs2CAlBTZs2CCtU1Wdz7aqKnLuVeb8rAjl63z22Wf13qXVljSo6jlc0fVVpXxNDg4OOitrlJRVC1WJS/k83t7e5Sbd3NzcNJbpe/+q8t6MHTsWc+bMwXfffYe5c+ciOTkZv/76K5o0aYKePXtW+DhOTk4AgMzMTK3rS0pKIJPJ8Pzzz+s9TosWLTSWjRkzBkeOHMG6desQGxuLM2fO4NKlS2jcuHG5MSqTAcr4iIgMjUkBIiKS7ijGxsZi2rRpNXJMb29vAI/LiLW5ffu2zn1HjRqFWbNmSXcKV61aBblcjgkTJtRIbEDpa27ZsmWlqzDKUk4v9t5772Hs2LFq6/Ly8pCamlqt45cVHR2N8PBwHDt2DImJiXBxccGvv/4Kb29vaapDpdr4bHVxc3ODpaUlUlNTkZeXBxsbG41tlHelledHTfH19cXVq1cxd+5cREZG1uixDcXd3R1WVlawsLCo9jmqj/Ic8fLyqrHnKe/nX9dyAHB2dsaIESPw/fffY/fu3Th69CgUCgVefPHFSiUZPD09ATyu9NHG19cXCQkJ+PTTT6W79xU1YsQIvPbaa/j555+Rnp4uVQmMHDmy3MRleno6AMDDw6NSz0lEVFvYU4CIiNC7d28AqNSc9eVR3n3funWrRlWAQqHQO0+3vb09Ro4cieTkZMyaNQuJiYno37+/1nLoqmrXrh2cnJywb98+nXcSK0r5JV9bqfTmzZu1VkVYWloCAIqLi6v0nMqKgA0bNmDz5s0oLCzEc889p3FBUtOfrb64LSws0LFjRwghsHHjRo31Fy5cwNmzZ+Hg4ICoqKgaiUepNs5hQzM3N0dMTAzS0tJw8ODBWnseX19fhIaG4ty5c7hx40aNHDMgIACNGzdGcnIyjh8/rrF+y5YtevefPHkyAOCrr77Cd999B3Nzc4wbN65SMSjPsStXrmhdX51zxsXFBQMHDkRhYSF++OEH6XwfPXq03v0yMzORkpKCoKCgSiciiIhqC5MCRESEjh07olevXti3bx9ef/11aRyzkkKhwG+//YZDhw5V+Jg9e/ZE06ZNcfnyZXz88cdq6z744AMkJibq3V/ZcPCTTz4BULUGg/pYWVnhjTfeQEZGBoYPHy7dwVZ17tw5bNq0qdxjKZu3rVq1CkVFRdLyS5cu6RzH37hxYwDA1atXqxK+1Mhv/fr1OocOADX/2ZYXt3I4w7x589Q+46ysLEydOhVCCEyePFlKLtSUyZMnw8PDA4sWLcLq1as1EjE5OTlYu3YtkpOTa/R5a9vbb78NuVyOsWPHav2MUlJSsHLlymo/z9y5c1FSUoLhw4fjwoULGusTEhLw3XffVeqYygv7mTNnIisrS1p+4cIFfPbZZ3r37dixI6KiorBt2zYkJSVh0KBBla4uCQ0NhaenJ06fPq01iTVz5kzY2Njg9ddfx44dOzTWp6Wl4fPPP9fZaFTZO+Cdd95BSkoKIiIiyk12nThxAkIIdOvWrVKvhYioNnH4ABFRPaHvLpm/vz8WLlxYreOvX78effv2xSeffIK1a9eiVatW8PDwwJ07d3D16lXcv38fH3/8sdSRuzxmZmZYvXo1+vTpg5kzZ2L9+vUIDQ3FpUuXcPnyZUycOBHffPONzovDVq1aoX379oiPj4e3tzcGDhxYrdenzdtvv41Lly5h48aNCA0NRevWreHv748HDx4gMTERN27cwJAhQzBixAi9xxk/fjyWLVuGHTt2IDQ0FO3atUNaWhoOHDiAoUOHIj4+XiPpEBgYiMjISJw8eRLt27dHixYtYGZmhsGDB2vt5l5WUFCQ1OzsypUrCAsLQ+vWrbVuW5Ofbd++fWFtbY2PP/4YFy5cQOPGjSGTyTBr1iyEhoYiNjYWkyZNwtdff42WLVuiZ8+esLW1xf79+3H//n107NgRCxYsKPd5KsvFxQU//vgjBg8ejAkTJmDBggVo2bIlrKyskJSUhMuXLyMnJwdnzpyp0YqT2ta9e3esWLEC06dPR7du3RAZGYlmzZohPz8ft27dwuXLl2Fvb49XXnmlWs8zevRonD9/Hh9++CFatWqF6OhoBAUFITMzE7du3cKVK1cQFRVVqSE8s2bNwo4dO3D48GEEBwcjJiYG2dnZ+P333zFx4kT885//1Jscmjx5MqZMmQKg6knBAQMG4Pvvv8fx48fRpUsXtXXNmjXDunXrMHr0aAwePBihoaEIDw+HEAK3bt3CpUuXUFhYiJEjR2odCjNw4EC4urri4cOHAMqvEgCA/fv3S3ERERkNg02GSEREFQI9c7Qr/0VFRWnsU3b+byXl3Ozz5s3TWJebmyuWL18uOnToIBwcHISVlZUIDAwUffv2FStXrlSbH1w5h3vZ+c7LOnnypOjXr59wcHAQDg4OolevXuLo0aPivffeEwDEl19+qXPfOXPmCADi7bff1vsculR0TvgtW7aIp59+Wri7uwsLCwvh7e0tOnbsKObPn68xb7uuY96+fVuMHDlS+Pj4CGtraxEeHi4WL14siouLRUBAgND2J/f69eti6NChws3NTcjlco3PRd/nKIQQK1eulM6BhQsX6n2Nlflsy/Prr7+KLl26CHt7e+n59+3bp7bN2rVrRefOnYW9vb2wtrYWLVq0EO+//77Izc2t8PMIIaT3rrzPUOnOnTti5syZIiwsTNjY2Ah7e3sREhIiRowYITZt2iQKCgqkbfX9LAhR/jmu7/zSdeyKnpNlnTx5UowaNUr4+fkJCwsL4erqKiIjI8Urr7wi9u/fr7bt2LFjtX4mSvrOq71794pnnnlGeHl5CQsLC+Hp6Slat24tZs2aJU6dOlXp1/Lo0SPx+uuvCx8fH2FpaSlCQ0PFsmXLxO3btwUA0bFjR537Xr16VQAQvr6+ori4WOd2+hw+fFgAEFOmTNG5zbVr18TkyZNFkyZNhJWVlXBychLh4eFi/PjxYufOnUKhUOjc96WXXhIAhFwuF7dv3y43nuDgYOHu7q52HhIRGZpMCD3tn4mIiGpJ//798csvv+DYsWNaO8ILIRAWFobr16/jzz//1Ns5n4jql02bNiEuLg4vvfQSvvjiC63bLFq0CH//+98xb948zJ8/v8rPFR0djeTkZCQnJ5c7k0htOnr0KDp37ow333wTS5YsMVgcRERlsacAERHVmrS0NI2yeSEEPvvsM/zyyy9o2rQp2rdvr3XfLVu24Nq1axgwYAATAkT11B9//AGFQqG27Pz583jzzTcBlPbGKCszM1MaXjBp0qRqxfD+++/jwYMHWLVqVbWOU10ffPABnJ2dpddORGQsWClARES15tixY+jcuTMiIyPRpEkTlJSU4MKFC0hMTISNjQ127dqFmJgYtX1efPFFZGRkYOfOnSguLkZ8fLzOsfJEZNzCwsKQmZmJiIgIuLi44ObNmzh58iRKSkq0VgmsXr0aBw4cwMGDB3Hjxg28/vrrWL58ebXj6NmzJ/7880/8+eefNd7ksiLOnDmD1q1bY8mSJUwKEJHRYVKAiIhqzb179zB//nzs27cPKSkpyMvLg6enJ3r06IG33noLERERGvvIZDKYm5sjJCQE7777LoYNG2aAyImoJqxcuRI//PADrl27hvT0dNja2iIyMhIvvPACxo4dq7H9uHHjsGbNGnh4eCAuLg5Lly41aMk/EZEpYFKAiIiIiIiIyESxpwARERERERGRiWJSgIiIiIiIiMhEMSlAREREREREZKKYFCAiIiIiIiIyUUwKEBEREREREZkoJgWIiIiIiIiITBSTAkREREREREQmikkBIiIiIiIiIhPFpAARERERERGRiWJSgIiIiIiIiMhEMSlAREREREREZKKYFCAiIiIiIiIyUUwKEBEREREREZmo/wfy4xfgJAF0LgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fermi_energy = 5.012206 # can be read from DOSCAR header or OUTCAR\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.plot(dft_energy-fermi_energy, dft_dos)\n", + "ax.axhline(0, c='k')\n", + "ax.axvline(0, c='k')\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.set_xlim(-8, 5)\n", + "ax.set_ylim(0, 50);" + ] + }, + { + "cell_type": "markdown", + "id": "892a15f1", + "metadata": {}, + "source": [ + "The DOS contains (you can check this with the partial DOS):\n", + "\n", + "* Ni-eg bands in the range -0.4 to 2.5 eV with a small gap at around 0.6 eV\n", + "* mainly Ni-t2g bands between -1.5 and -0.5 eV\n", + "* mainly O-p bands between -7 and -1.5 eV\n", + "The Ni-d and O-p orbitals are hybridized, with an overlap in the DOS betwen Ni-t2g and O-p.\n", + "\n", + "DFT does not describe the system correctly in predicting a metallic state. In a simplified picture, the paramagnetism in DMFT will be able to split the correlated bands and push the Fermi energy into the gap of the eg orbitals, as we will see below.\n", + "\n", + "We will use the Ni-eg range to construct our correlated subspace.\n", + "\n", + "Note: with the coarse k-point mesh used in the tutorial the DOS will look much worse. We show here the DOS with converged number of kpoints for illustration." + ] + }, + { + "cell_type": "markdown", + "id": "afb54167", + "metadata": {}, + "source": [ + "## 2. Running the CSC DMFT calculations\n", + "\n", + "(~ 150 core hours)\n", + "\n", + "We now run the DMFT calculation. In CSC calculations, the corrected charge density from DMFT is fed back into the DFT calculation to re-calculate the Kohn-Sham energies and projectors onto correlated orbitals.\n", + "\n", + "With VASP, the procedure works as described [here](https://triqs.github.io/dft_tools/latest/guide/dftdmft_selfcons.html#vasp-plovasp), where the GAMMA file written by DMFT contains the charge density *correction*. In the VASP-CSC implementation, we first converge a non-scf DFT calculation based on the CHGCAR from before, then run DMFT on the results. The VASP process stays alive but idle during the DMFT calculation. Then, when we want to update the DFT-derived quantities energies, we need to run multiple DFT steps in between the DMFT steps because the density correction is fed into VASP iteratively through mixing to ensure stability. \n", + "\n", + "### Input files for CSC DMFT calculations\n", + "\n", + "We first take a look into the input file [dmft_config.toml](2_dmft_csc/dmft_config.toml) and discuss some parameters. Please make sure you understand the role of the other parameters as well, as documented in the [reference manual of the read_config.py](https://triqs.github.io/solid_dmft/_ref/read_config.html) on the solid_dmft website. This is a selection of parameters from the dmft_config.toml:\n", + "\n", + "Group [general]:\n", + "\n", + "* `set_rot = \"hloc\"`: rotates the local impurity problem into a basis where the local Hamiltonian is diagonal\n", + "* `n_l = 35`: the number of Legendre coefficients to measure the imaginary-time Green's function in. Too few resulting in a \"bumpy\" Matsubara self-energy, too many include simulation noise. See also https://doi.org/10.1103/PhysRevB.84.075145.\n", + "* `dc_dmft = true`: using the DMFT occupations for the double counting is mandatory in CSC calculations. The DFT occupations are not well defined after the first density correction anymore\n", + "\n", + "Group [solver]:\n", + "\n", + "* `legendre_fit = true`: turns on measuring the Green's function in Legendre coefficients\n", + "\n", + "Group [dft]:\n", + "\n", + "* `n_iter = 4`: number of DFT iterations between the DMFT occupations. Should be large enough for the density correction to be fully mixed into the DFT calculation\n", + "* `n_cores = 32`: number of cores that DFT is run on. Check how many cores achieve the optimal DFT performance\n", + "* `dft_code = \"vasp\"`: we are running VASP\n", + "* `dft_exec = \"vasp_std\"`: the executable is vasp_std and its path is in the ROOT variable in our docker setup \n", + "* `mpi_env = \"default\"`: sets the mpi environment\n", + "* `plo_cfg = \"plo.cfg\"`: the name of the config file for constructing the PLOs\n", + "* `projector_type = \"plo\"`: chooses PLO projectors\n", + "\n", + "The [plo.cfg](2_dmft_csc/plo.cfg) file is described [here](https://triqs.github.io/dft_tools/latest/guide/conv_vasp.html). The [rotations.dat](2_dmft_csc/rotations.dat) file is generated by diagonalizing the local d-shell density matrix and identifying the least occupied eigenstates as eg states. This we have limited k-point resolution wie also specify the band indices that describe our target space (isolated set of correlated states).\n", + "\n", + "### Starting the calculations\n", + "\n", + "Now we can start the calculations:\n", + "\n", + "* Go into the folder `2_dmft_csc`\n", + "* Link relevant files like CHGCAR, KPOINTS, POSCAR, POTCAR from previous directory by running `./2_link_files.sh`\n", + "* Run with `mpirun -n 32 python3 solid_dmft`\n", + "\n", + "### Analyzing the projectors\n", + "\n", + "Now we plot the DOS of the PLOs we are using to make sure that our correlated subspace works out as expected. You can speed up the calculation of the PLOs by removing the calculation of the DOS from the plo.cfg file." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2bba493e", + "metadata": {}, + "outputs": [], + "source": [ + "energies = []\n", + "doss = []\n", + "for imp in range(4):\n", + " data = np.loadtxt(f'2_dmft_csc{path_mod}/pdos_0_{imp}.dat', unpack=True)\n", + " energies.append(data[0])\n", + " doss.append(data[1:])\n", + " \n", + "energies = np.array(energies)\n", + "doss = np.array(doss)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4ffe8e91", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAIqCAYAAABc0/OtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAD/q0lEQVR4nOzdd3wUdfoH8M/sZrPpPRCK9CpSBERRwNBUEBUVKyog+jv07vDkzjv10LOdHcFyoCdwiL2ioqIiCKIEERARpEZ6SyF1k2yd3x9hNzOzM9tr8nm/Xt5ld2dnJ2WX+T7zFEEURRFERERERERE1OLoon0ARERERERERBQdDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAwKEBEREREREbVQDAoQERERERERtVAMChARERERERG1UAnRPoDmpKCgACaTCR06dIj2oRAREREREVELcOjQIaSmpuLEiRMBPZ9BgRAymUywWq3RPgwiIiKisHE4HNi1a5frdq9evaDTMfmUiCharFYrTCZTwM9nUCCEnBkCO3bsiPKREBEREYVHZWUlsrOzXbeLioqQlZUVvQMiImrh+vTpE9TzGdYlIiIiIiIiaqEYFCAiIiIiIiJqoRgUICIiIiIiImqhGBQgIiIiIiIiaqEYFCAiIiIiIiJqoRgUICIiIiIiImqhOJKQiIiIiKiFE0URoihG+zCIWjxBECAIQkRfk0EBIiIiIqIWyOFwoKqqChUVFTCbzdE+HCI6zWg0Ijs7G5mZmdDpwp/cz6AAEREREVELI4oiTpw4gaqqqmgfChEpmM1mnDhxAg0NDSgoKAh75gCDAkRERERELUxNTY0rINCqVStkZGRAr9dH+aiIyG63o7q6GiUlJaisrERqaioyMjLC+poMChARERERtTDV1dUAgJycHOTm5kb5aIjISafTITc3FzabDadOnUJNTU3YgwKcPkBERERE1MLU1dUBANLT06N8JESkxvneNJlMYX8tBgWIiIiIiFoQURRht9sBNDY0I6LY43xv2u32sE8GYVCAiIiIiKgFkS4wIj36jIh8I31vMihARERERERERGHBoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERFRlK3ZXYLPth2DwxHeZlJE5JkgCCFrvtipU6eA9hXo85TWrFkDQRAwdepUn59TWFjo+hkIggC9Xo/s7Gx069YNV199Nf7zn/+gqqrK5+er/XfgwAGv2yj/KywsDPrnEStC9fsNpYRoHwARERFRS7Z610ncumQTAODBCWbcOqxzlI+IiMLlwIED6Ny5My688EKsWbMm2oej6eKLL0ZBQQEAoKamBocPH8by5cvx0Ucf4b777sMLL7zgMdggfb5SWloapkyZ4nb/l19+iZMnT+KCCy5At27dZI/16tXL6zEXFhZi7dq12L9/Pzp16uR1e1906tQJBw8eDHv3/2hjUICIiIgoima+vdX19SOf/cagAFEzsWrVKlit1og9L5Tuvfdet6vzVVVVmDt3Lh577DFMmzYNVqsVt99+u8/Pl1qyZInbfYWFhTh58iRuu+02v7IbKHgsHyAiIiKKolqzLdqHQERh0LVrV5+ucIfqeeGWmZmJhx56yLWgnzlzJk6ePBndg6KQYFCAiIiIiIhIg7MGvrCwEPX19bj33nvRsWNHGI1GdOvWDU899ZRqermydvyhhx5C586NmUBr166V1cxLr4xr1Zx//vnnuPXWW9G7d29kZGQgNTUV/fv3x+OPPw6z2Rz6b1zDTTfdhGHDhqGhoQGvvvpqxF5Xi/P3s3btWgBA586dZT9bqbq6Ojz66KM466yzkJycjMzMTIwYMQLvvPOObDtnP4aDBw8CgGx/0tKEffv24aGHHsLQoUNRUFCAxMREtG/fHrfccgv27NkT3m88hFg+QERERERE5IXFYsFFF12EHTt2YMiQIejduzfWrl2Le++9FzU1NXjsscc8Pn/AgAG4+uqr8eGHH6J169a45JJLXI8NGzbM6+tPnz4dJpMJffr0Qd++fVFdXY2NGzfin//8J1atWoWvv/4aer0+6O/TF9dffz2+//57fPvtt5g9e3ZEXlOLs0eBsyfB1VdfjbS0NLftampqMHLkSGzevBn5+fmYMGECTCYTVq9ejXXr1mHDhg2YN28eAKCgoABTpkzBBx98AJPJJOuBkJeX5/p64cKFeOqpp3DmmWdi8ODBSEpKwm+//YbXX38dn3zyCdatW4d+/fqF/WcQLAYFiIiIiIjIRRRFVDfEX1lLRlJCWLu6FxUVYfjw4dizZ49rYbhp0yYMHToUc+fOxb333qu6GHWaOHEiBgwYgA8//BC9evVSrav35OWXX8bYsWORmprquq+mpgY33ngjPvvsM7z55pu45ZZbAvre/DVgwAAAwM6dOyPyep7k5eVhyZIlrp4Ezz77rGqjwfvvvx+bN2/GmDFjsGzZMtfvateuXbjwwgvx/PPP46KLLsL48eNdv581a9bAZDJp/q4mTpyI22+/HV27dpXd/7///Q+33nor/vKXv2D16tWh/pZDjkEBIiIiIiJyqW6wof/DX0f7MPz2y78uQmayIWz71+l0WLhwoexK8eDBgzFu3DgsX74cmzZtCuvovIkTJ7rdl56ejrlz5+Kzzz7DJ598ErGggPNnUFFRofr4yJEjVe9ftmyZ6vcRbiaTCYsWLYJOp8P8+fNlwZtevXph9uzZmDlzJl544QWMHz/e5/2ed955qvdPmzYNixYtwpo1a1BVVYXMzMygv4dwYlCAiIiIiIjIi06dOqFHjx5u9zvvO378eNiPYe/evfjiiy+wb98+mEwmOBwOVz+DvXv3hv31nZyvqZWZoTWSsEOHDmE9Li2bN29GfX09zjvvPHTv3t3t8ZtvvhkzZ87EDz/8AFEU/co4qa2txfLly7F161acOnXKNTni+PHjEEURxcXFGDhwYMi+l3BgUICIiIiIiMiL9u3bq97vvOoczmZ/oijib3/7G+bOnava1BBoLCWIlLKyMgBATk6O6uPeRhJG2rFjxwBAtawAALKyspCZmYmqqipUV1f7fGV/9erVuP7661FaWqq5TSR/L4FiUICIiIiIiFwykhLwy78uivZh+C0jKbxLm3D2K/Dm3XffxXPPPYf27dtj3rx5GDp0KPLz82EwGGCxWGA0GjWDBeGwdetWAMCZZ54ZsdcMBV9+h77+nmtra3HttdeivLwcDzzwAG644QZ07NgRycnJEAQBN954I95+++2I/l4CxaAAERERERG5CIIQ1tp88t+yZcsAAAsWLMCECRNkj/3+++8RPx7nCD+t3gGxpm3btgCA/fv3qz5eVVWFqqoqpKamIj093ad9rlu3DuXl5bj66qvxyCOPuD0ejd9LoHTRPgAiIiIiIqKWIDExEQBgs/k33cHZ0O+MM85we+y9994L/sD88MYbb+CHH35ASkoKbrvttoi+tieefraDBg1CcnIyNm7cqNp74Y033gDQOBpSmingaZ+efif79u3Dli1bAvguooNBASIiIiIiogjIy8uDwWBAcXEx7Ha7z89zNjP873//K0tHX7duHZ555pmQH6eaqqoqPPzww5g6dSoA4KWXXkJ+fn5EXtsXzmyA3bt3uz2WmpqKW2+9FQ6HA3/84x9hMplcj+3ZswePPfYYAODPf/6zz/t0/k4++ugjWU+ByspKTJ8+3dVwMB6wfICIiIiIiCgCEhMTcckll2D58uXo378/Bg4ciMTERFxwwQWYNm2a5vNmzpyJJUuWYP78+VizZg369euHo0eP4vvvv8df//pXPPvssyE9zieffBJLliwB0Fg7f+TIEfz888+wWCzIyMjASy+9hJtvvjmkrxmsyy+/HK+99hpuvPFGXHTRRa5mgQsXLgQAPPHEE9iwYQNWrlyJLl264MILL4TJZMLq1avR0NCAmTNn4tJLL3Xb59q1azF69GiMHDkSqampyMvLw5NPPonBgwdj7NixWLlyJXr06OFqrLhmzRrk5eXhiiuuwCeffBLRn0GgmClAREREREQUIQsXLsTNN9+M8vJyvPXWW1i0aBHWrl3r8Tk9evTATz/9hMsuuwxlZWX49NNPUVtbi1deeSUsmQJfffUVXnvtNbz++uv45ptvUFpaigkTJuA///kPDh8+HHMBAQC46qqrMHfuXLRv3x7Lly/HokWLsGjRItfj6enpWLt2LR5++GHk5eXh008/xbp16zB48GC89dZbeP755932OXPmTMyePRtpaWn48MMPsWjRIlc/BQD45JNP8M9//hP5+flYsWIFNm/ejOuvvx4bNmxAVlZWJL7tkBDEeGiHGCf69OkDANixY0eUj4SIiIjiRad7P5fdPvDkpRpbxobKykpkZ2e7bldUVMTVyS8BDofDlQ7ds2dP6HS8TkgUa/x5nwa7DuUnABEREREREVELxaAAERERERERUQvFoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERERERFRC8WgABEREREREVELxaAAERERERERUQvFoAARERERERFRCxX3QYETJ07g7rvvRo8ePZCcnIycnBwMGjQIf//731W3X7p0KYYMGYK0tDTk5ORg/PjxWL9+fYSPmoiIiIiIiCj64jooUFRUhN69e2PevHkwGAy4/PLLcd5556G8vBzPPfec2/azZs3ClClTsH37dowZMwZDhgzBypUrMWLECCxbtiwK3wERERERERFR9CRE+wACdezYMYwfPx5msxkfffQRrrzyStnjGzdulN1evXo15s6di9zcXBQVFaF79+4AGgMLhYWFmDZtGgoLC5GdnR2x74GIiIiIiIgomuI2U+Dee+9FZWUlnn76abeAAAAMGTJEdnvOnDkAgNmzZ7sCAgAwdOhQzJgxA1VVVVi8eHF4D5qIiIiIiIgohsRlUKCiogLvvfceMjMzcdttt3ndvqGhAatWrQIATJo0ye1x533Lly8P7YESEREREVHcEARB9p9Op0NWVhaGDx+OhQsXQhRF2fYPPfQQBEHAQw895PNrWK1WLFiwACNHjkSrVq1gNBrRrl07XH311fjss88CPva3334bgwYNQkpKCgRBQKdOnQLeVywSRRHvvfcerr76apxxxhlISkpCeno6+vTpgzvuuMMtUxwA7HY7Xn31VYwYMQLZ2dlITExEmzZtMGjQIPzxj3/0+PMuLy/Ho48+iqFDhyI/Px8GgwF5eXm48MIL8fTTT6O0tDSc325ExWX5wA8//ACz2YwxY8bAYDDggw8+wPfffw+r1YpevXrh2muvRevWrV3b79q1C2azGfn5+Wjfvr3b/gYOHAgA2LZtW8S+ByIiIiIiik1TpkwB0LioLC4uxg8//IDvv/8eq1atwttvvx3wfg8ePIjx48fjt99+Q3JyMoYNG4bc3FwcPHgQH3/8MT766CNcffXVeOONN5CUlOTzfn/66SfcdNNNSEpKwkUXXYSsrCzk5eUFfJyx5uTJk7jyyitRVFQEvV6PQYMG4fzzz4fFYsGOHTvw8ssv4+WXX8YjjzyCBx54AABgsVhw2WWX4euvv4Zer8e5556LM844Aw0NDdi6dSvmz5+PVatWYcKECW6v9+mnn+KWW25BVVUVsrKycO655yInJwfl5eXYsGEDvvvuO/z73//G+vXr0adPn0j/OEIuLoMCO3bsAAC0bt0aw4cPR1FRkezx++67D//73/9wzTXXAAAOHToEAKoBAQBITU1FVlYWKioqUFNTg/T0dI+vr/WLLy4uRteuXf36XoiIiIiIKLYsWbJEdnvlypUYP3483nnnHUyePFl1IelNVVUVCgsLceDAAVx33XVYsGCBrJ/Zrl27cP311+PDDz+Ew+HARx995PO+ly9fDofDgRdffBG33nqr38cWy2pra1FYWIhdu3bh0ksvxfz589GhQwfZNps2bcLf//53FBcXu+578cUX8fXXX6NTp0745ptv3NZpP//8Mz7//HO31/vqq69w5ZVXQqfTYc6cOfjzn/8Mg8HgetxiseCNN97A/fff32yyBeK2fABoHC+4bds2LFq0CKWlpdi/fz9mzZoFk8mEm266yXXlv7a2FgCQkpKiuc/U1FTZtkRERERERAAwduxY3HzzzQCAjz/+OKB9/OMf/8CBAwdw0UUX4a233nJrcN6rVy988803KCgowLJly/Duu+/6vO8jR44AALp06RLQscWy++67D7t27cKYMWPwySefuAUEAGDw4MH45ptv8Ic//MF1nzOoMnv2bNULt2effTZmz54tu6+urg633HILHA4HFi5ciFmzZskCAgCQmJiIW2+9FZs3b242JRpxGRSw2+0AAJvNhueeew633nor8vLy0KlTJ8yZMweTJk2CxWLB008/DQCu2h9BEDT3qawP8mTHjh2q/zFLgIiIiIioeTr77LMBAIcPH/b7ueXl5XjttdcAAPPmzYNOp74My8vLw4MPPgigqVG6J0uWLIEgCPjf//4HABg5cqSrH4Iz22Hq1KkQBAFr1qzBV199hZEjRyIrKwuCIKCyshJA47rqxRdfxKBBg5CWloa0tDQMGTIECxYscK29pAoLCyEIAg4cOIB3330X55xzDlJSUtCuXTv8/e9/h8ViAdCYSX3DDTegVatWSElJwahRo/wq2T516hQWLVoEAHjhhReg1+s1t9XpdBg6dKjrtvMqfn5+vs+vt3TpUpSUlODcc891lZBoadeuHYMC0eRM79fpdKq/LGfKzJo1a2Tbm0wmzX3W1dUBANLS0kJ5qERERERE1AzU1NQAAIxGo9/P/fbbb9HQ0IABAwagd+/eHre9/vrrIQgCfvrpJ5SXl3vctlu3bpgyZYrr4uTFF1+MKVOmYMqUKejWrZts27feegvjxo2DyWTCuHHjcM4550AQBNjtdlxxxRWYOXMm9u3bhzFjxmDMmDHYtWsX7rzzTlxzzTVwOByqr//888/jpptugsFgwMUXXwyLxYJnnnkGt99+O/bu3YvzzjsPGzduxPDhw9GtWzd8++23GDlyJE6ePOnzz62+vh5nn32215+bkrN0fNGiRbDZbD49x1lOcOONN/r1WvEuLnsKOCMyBQUFqm9K5+MlJSUA4EoxcabVKJlMJlRWViIrK8trPwEiIiIiomZNFIGGqmgfhf+SMgEPmcHBEEXR1am+X79+fj9/69atAIBBgwZ53TY7OxtdunRBcXExtm7ditGjR2tuO2zYMAwbNgxTp05FcXEx7r33XhQWFqpu++qrr+Kdd97BddddJ7t/zpw5+OKLL9C3b1988803aNWqFQDg+PHjGDlyJJYtW4aXX34Zd955p9s+Fy1ahNWrV2P48OEAgBMnTmDAgAF4/fXX8dNPP+GWW27BM888A51OB1EUMXXqVCxduhTz58/Hww8/7PVn8fPPPwNoagzvj9tuuw3ffvstPv30U3Tt2hVXXnklzj//fJx//vmaveaCeb14FpdBAWfqTkVFBURRdCsLcEbUnFf9e/bsCaPRiNLSUhw5csTtj2DLli0AAnuDExERERE1Kw1VwFMdo30U/vvHQSA5K6S7tNvt+P333/H444+jqKgIRqMR06ZN83s/zvWJc8HtTX5+PoqLi1FWVub3a2m59NJL3QICQGNaPtBY1iA9vjZt2uCZZ57B5ZdfjhdeeEE1KHD33Xe7AgJA40XbyZMn47nnnoPFYsFTTz3lKpUQBAF//etfsXTpUqxdu9anY3b+3PwpAXC68cYbcfToUfzrX//CoUOH8Pzzz+P5558HAPTu3Rt/+tOf8Ic//EFWkhDM68WzuCwf6Nu3Lzp37oz6+nr8+OOPbo87ywacEZ7k5GSMGjUKAPDBBx+4be+8L5AuokRERERE1Lw46/ITEhLQo0cPLFmyBOnp6Xj77bcD6iPm7F/max8zX3qi+evyyy93u+/QoUM4dOgQCgoKXOslqQkTJiArKwu7d+9W7bQ/duxYt/uczQ4LCwuRkCC/Bu382R0/ftynY/an75uae+65B4cOHcKCBQtw7bXXujLKd+7ciT/+8Y+YNGmSZmlESxKXQQGgsXsnAMycOVMWQdu8ebOrKceMGTNc98+aNQsA8Nhjj2Hv3r2u+4uKivDKK68gIyMD06dPj8ShExERERFRDHPW5U+bNg133XUXFi5ciIMHD+LKK68MaH95eXkAmsqbvXEuwHNzcwN6PTVqXfuPHTsGAJoN8wRBQMeOHWXbSrVr187tPudUN0+Pmc1mn47Z+XMLZvRfXl4eZsyYgXfffRf79+/H7t27cfvttwNonCTx9ttvu7Z1/ryby6hBX8Vl+QAA3H777Vi1ahXef/999OzZE+effz5qa2uxfv16WCwW3H777Zg0aZJr+zFjxuCuu+7C888/jwEDBmDs2LGwWCxYuXIlHA4H3nzzTeTk5ETxOyIiIiIiigFJmY2p+PEmKTNku3J27g+V/v37A2i8gOnNqVOnsH//ftnzQiEpKUnzMV8yEtS28fS8UGQ5DBgwAEBTuXco9OjRA//9739x6tQpfPjhh/j8888xefJk1+sdPXoUW7ZswbBhw0L2mrEuboMCOp0O77zzDgoLC7Fw4UKsXr0agiBg8ODBmDFjhmuOqNS8efMwYMAAvPTSS1i5ciUMBgNGjx6N2bNnt6hfOhERERGRJkEIeW1+Szdq1CgYjUb88ssv+O2333DmmWdqbvvOO+9AFEUMHjzYdaU8XNq2bQsAriCEmkOHDgFo7DEQaaNGjUJSUhJ+/vln7Nq1C7169QrZvgsLC/Hhhx/Kss4vvfRSfP7553j77bcxc+bMkL1WrIvb8gGgMTBw5513YsuWLTCZTKitrcUPP/ygGhBwmjp1KjZt2uSaOPDll18yIEBERERERGGTm5uLW265BUBjcz6tOvaysjI8+uijAJrKn8OpQ4cO6NChA06cOIHVq1e7Pf7555+joqICPXv2jErzvZycHNe4+T//+c+w2+2a24qiiA0bNshue1JcXAygKTACALfccgvy8/OxYcMGvPbaax6ff+zYMRw4cMDbtxAX4jooQEREREREFA+eeuopdOjQAV9//TVuvPFGVFRUyB7fvXs3xowZgxMnTuDyyy/HDTfcEJHj+vOf/wygMVghraU/ceIE7rnnHtk20fDkk0+ie/fu+OabbzBx4kQcPnzYbZtffvkFF110EV5++WXXfZdffjlefPFFVFZWum2/YsUK17ZXXXWV6/7U1FQsWbIEOp0Ot912G+bOnQur1Sp7rs1mw9KlSzFo0KBmExSI2/IBIiIiIiKiWLBw4UJ8+eWXqo+lp6dj5cqVyM7Oxpo1azB+/Hi8++67+PTTTzF8+HDk5ubi4MGD2LBhAxwOByZOnIi33norYsd+9913Y/Xq1VixYgW6d++OUaNGQRRFrFq1CjU1NZg4cSLuuOOOiB2PUnp6OtauXYuJEyfis88+w4oVKzB48GB06tQJFosFO3fuxK5duwA0NpV3Onz4MGbOnIm//vWvOPvss9GpUydYrVbs2rULO3fuBADcdtttblMZxo8fjw8++ABTpkzBrFmz8Mgjj+C8885DTk4OysvL8eOPP6KyshJZWVk+j5iMdQwKEBERERERBeHo0aM4evSo6mOZmU0NEDt37oxffvkFCxcuxHvvvYfNmzejuroaeXl5uPzyyzFt2jTV0YHhpNfr8emnn2L+/PlYsmQJvvrqKwDAmWeeiWnTpuEPf/gDdLroJpi3adMGRUVFeO+99/Duu+/ip59+ws8//wyDwYCOHTvijjvuwPTp0zFo0CDXcz744AN8/vnnWLlyJfbs2YPffvsNFosFrVq1wpVXXolp06bhsssuU329K6+8EsOHD8d//vMfrFixAhs3bkR1dTUyMzPRr18/XHbZZbj11lubTaN6QQx2+CO59OnTBwCwY8eOKB8JERERxYtO934uu33gyUujdCS+qaysRHZ2tut2RUUFsrKyondA5DeHw4Hdu3cDAHr27Bn1BR8RufPnfRrsOpSfAEREREQxpMJkifYhEBFRC8KgABEREVEMefTz36J9CERE1IIwKEBEREQUQz7aol6XTEREFA4MChARERERERG1UAwKEBEREUVRp9yUaB8CERG1YAwKEBEREUWRTidE+xCIiKgFY1CAiIiIKIp0AoMCFFmC5G+O08mJYpP0vSmE+d8JBgWIiIiIooiJAhRpgiBAr9cDAMxmc5SPhojUON+ber2eQQEiIiKi5oyZAhQNKSmNvSxqamqifCREpMb53kxNTQ37ayWE/RWIiIiISBODAhQNGRkZqKmpwalTp5CQkICMjAxX9gARRY/dbkd1dTVOnToFAEhPTw/7azIoQERERBRFOuZtUhSkp6cjMzMTVVVVKCkpQUlJSbQPiYgUsrKyGBQgIiIiau6YKUDRIAgCCgoKkJycjIqKCvYWIIohRqMR2dnZyMzMDHs/AYBBASIiIqKoYlCAokWn0yE7OxvZ2dkQRZGTCIhigCAIEQkESDEoQERERBRFeo4foBgQjYUIEcUGVrERERERERERtVAMChARERFFEVO2iYgomhgUICIiIooihgSIiCiaGBQgIiIiIiIiaqEYFCAiIiKKIlYPEBFRNDEoQERERBRFjAkQEVE0MShAREREFE1MFSAioihiUICIiIgoihgSICKiaGJQgIiIiIiIiKiFYlCAiIiIKIpYPUBERNHEoAARERFRFIksICAioihiUICIiIgoipgpQERE0cSgABEREVEUMShARETRxKAAERERERERUQvFoAARERFRFDFRgIiIoolBASIiIqIoElk/QEREUcSgABEREREREVELxaAAERERURQxUYCIiKKJQQEiIiIiIiKiFopBASIiIqIoEtlqkIiIoohBASIiIqIoUpYPpCbqo3MgRETUIjEoQERERBRFyjyBbq3To3IcRETUMjEoQERERBRL2HmQiIgiiEEBIiIioigSFUEAhgSIiCiSGBQgIiIiiiJlEICJAkREFEkMChARERFFk6i8yagAERFFDoMCRERERFHETAEiIoomBgWIiIiIYgiDAkREFEkMChARERFFERsNEhFRNDEoQERERBRF7uUDDAsQEVHkMChAREREFEXKGABjAkREFEkMChARERFFkXLaAKcPEBFRJDEoQERERBRDmClARESRFLdBgcLCQgiCoPnfl19+qfq8pUuXYsiQIUhLS0NOTg7Gjx+P9evXR/joiYiIiBq5lQ9E5zCIiKiFSoj2AQTr6quvRlpamtv97dq1c7tv1qxZmDt3LpKTk3HRRRehoaEBK1euxNdff433338fV155ZSQOmYiIiMjFvacAwwJERBQ5cR8UePbZZ9GpUyev261evRpz585Fbm4uioqK0L17dwBAUVERCgsLMW3aNBQWFiI7OzvMR0xERESkjSEBIiKKpLgtH/DXnDlzAACzZ892BQQAYOjQoZgxYwaqqqqwePHiaB0eERERtVBumQGMChARUQS1iKBAQ0MDVq1aBQCYNGmS2+PO+5YvXx7R4yIiIiJSYkyAiIgiKe7LBxYtWoTy8nLodDr06NEDEydORIcOHWTb7Nq1C2azGfn5+Wjfvr3bPgYOHAgA2LZtW0SOmYiIiMhJGQRwsKcAERFFUNwHBR577DHZ7b/97W944IEH8MADD7juO3ToEACoBgQAIDU1FVlZWaioqEBNTQ3S09M9vmafPn1U7y8uLkbXrl39OXwiIiJq4dwbDUbnOIiIqGWK2/KBESNG4PXXX0dxcTHq6uqwe/du/Pvf/0ZCQgIefPBBPP/8865ta2trAQApKSma+0tNTZVtS0RERBQJoiJXQHmbiIgonOI2U+CRRx6R3e7Rowfuv/9+DB48GBdffDH+9a9/4f/+7/+QnJzsauAjCILm/vwZ/7Njxw7V+7UyCIiIiIh8xUwBIiKKpLjNFNBy0UUXYfDgwaiqqsKGDRsAwFUOYDKZNJ9XV1cHAEhLSwv/QRIRERGdxvIBIiKKpmYXFADgGjl4/PhxAHA1Hjxy5Ijq9iaTCZWVlcjKyvLaT4CIiIgolBgDICKiaGqWQYGKigoATVf9e/bsCaPRiNLSUtXAwJYtWwAA/fr1i9xBEhEREUEtU4BhAiIiipxmFxQoLS3FunXrADSNGkxOTsaoUaMAAB988IHbc5z3TZgwIUJHSUREROSkbDRIREQUOXEZFNiwYQO+/fZbt0j6gQMHcOWVV8JkMuHyyy+XjSCcNWsWgMYRhnv37nXdX1RUhFdeeQUZGRmYPn16ZL4BIiIiIg0OZgoQEVEExeX0gV27dmHatGlo06YNevTogYKCAhw5cgSbN29GQ0MD+vTpg1dffVX2nDFjxuCuu+7C888/jwEDBmDs2LGwWCxYuXIlHA4H3nzzTeTk5ETpOyIiIqKWio0GiYgomuIyKHDuuefijjvuwI8//ojffvsNP/zwA1JTUzFgwABcc801uOOOO5CcnOz2vHnz5mHAgAF46aWXsHLlShgMBowePRqzZ8/GsGHDovCdEBERUUunjAEwJkBERJEUl0GB3r17Y/78+QE9d+rUqZg6dWpoD4iIiIgoQMpySGYKEBFRJMVlTwEiIiKi5sI9BsCoABERRQ6DAkRERERR5HAwU4CIiKKHQQEiIiKiKHIoGw1G5zCIiKiFYlCAiIiIKIrsbpkCDAsQEVHkMChAREREFEV2RRBAmTlAREQUTgwKEBEREUURMwWIiCiaGBQgIiIiiiK3oECUjoOIiFomBgWIiIiIokQ5eQAAowJERBRRDAoQERERRYmynwDAmAAREUUWgwJEREREEXaovA6fbD0Kk9nm9hh7ChARUSQlRPsAiIiIiFoSk9mGS19ch5oGG4Z1y3N7nCEBIiKKJGYKEBEREUXQp78cQ01DY4bA9/vK3B5nogAREUUSgwJEREREXtgdIl797nfM/vhXnKxuCGpfZqvd4+MicwWIiCiCWD5ARERE5MWqnSfx7y92AgCOVzZg0dRzwvZaagMJiIiIwoWZAkREREReLFhb7Pp61a6SoPYlCILnDRgUICKiCGJQgIiIiMgLZZ3/5oOnwvdajAoQEVEEMShARERE5IVdkdP/2/GasL0WGw0SEVEkMShARERE5IXJbJPddoSx8J8xASIiiiQGBYiIiIi8qFUEBcQwXs4P576JiIiUGBQgIiIi8kKZKWBjpgARETUTDAoQEREReWGy2GW3gwkKeB0+wKgAERFFEIMCRERERF50yk2R3XaEeeXOEgIiIooUBgWIiIiIvLiwR77sdjBrdi+JAkHvn4iIyB8MChARERF5YVes0sN9JZ8xASIiihQGBYiIiIi8sDuUQYHwvh7LB4iIKFIYFCCiuHTKZMGgR1ei072fY9uRymgfDhE1cza7fJEexuEDAJgpQEREkcOgABHFpbvf3YpykwUAcPlLP0T5aIiouXPLFAjzsp2JAkREFCkMChBRXFq7pzTah0BELYhyBGH4MwUYFSAioshgUICIiIjIC/eeAsGMH/A+f4CZAkREFCkMChARERF5YXM4ZLe5aCciouaCQQEiIiIiL5SZAo4wRwXCvX8iIiInBgWIiIiIvFD2FAhmye69eICZCEREFDkMChBRs6C8ikdEFEqRzhTgJxoREUUKgwJE1CxYbA7vGxERBchmVyzTwz19gKkCREQUIQwKEFHcUTtZttgZFCCi8GGmABERNVcMChBR3LEqr9gBsDIoQERhpJw+EO6KJSYKEBFRpDAoQERxRy0AwKAAEYWTMlMgmEW74FOnwcD3T0RE5A8GBYgo7qj1D2BPASIKJ+X0gfCXDzAqQEREkcGgABHFHbWsADODAkQURpGecMKBKkREFCkMChBR3LGqnC2bzLYoHAkRtRQRzxRgUwEiIooQBgWIKO7YVRoN1lnsUTgSImopQtlTwBcMCRARUaQwKEBEcUfZBRxgpgARhZf79IFwZwqEdfdEREQuDAoQUdxRq+1VpvYSEYWSMkMpmI8cAd7HD7DRIBERRQqDAkQUd+wql9A4kpCIwsk98Mj6ASIiah4YFCCiuGNT6SlgVbmPiChUlBlKb288jG1HKgPal+A9UYAxASIiihgGBYgo7qiVDzBTgIjCSa1E6dpXisLWz4Q9BYiIKFISQrmzAwcOYN26dfjll19QWlqKqqoqZGZmIj8/HwMGDMDw4cPRsWPHUL4kEbVAaifnNgYFiCiM1IKRDVYHVu8qwWX924b89dhTgIiIIiXooEBFRQVee+01vPrqq9i1axcA9dm6wulcud69e+P222/HLbfcguzs7GBfnohaILWu3xaWDxBRGKlNPQkn9k4lIqJICTgoUFdXh6effhpz5syByWRCcnIyhg0bhiFDhqBXr17IyclBRkYGqqqqUFFRgZ07d2Ljxo3YtGkT7r77bsyePRt/+9vf8Le//Q2pqamh/J6IqJlT6ynATAEiCie1TIFwUrvAQkREFA4BBwW6du2KkydP4uKLL8ZNN92EiRMn+rS4N5lM+Oijj/DGG2/g4YcfxiuvvIJjx44FehhE1AKpnZyrTSQgIgoVrbGnvjQNDAQ/0oiIKFICbjR47rnnYvPmzVixYgUmT57s89X+1NRU3Hzzzfjqq6+wadMmnHvuuYEeAhG1UGppvA7m2hJRmDgcYkgX6WGKIxAREQUk4KDAxx9/jLPPPjuoFx84cCCWLVsW1D4A4NSpU2jVqhUEQUCvXr08brt06VIMGTIEaWlpyMnJwfjx47F+/fqgj4GIIketpwCrB4goXLSyBEJJr5OHCpgpQEREkRJwUKC2tjaUxxGUWbNmoayszKftpkyZgu3bt2PMmDEYMmQIVq5ciREjRoQkOEFEkaHWU8Ae4SZgRNRyRKKfQH6aUVaKwOkDREQUKQEHBVq3bo3Jkyfjiy++gCOKJ+OrVq3Ca6+9httvv93jdqtXr8bcuXORm5uLX375BR9//DG+/PJLfPfdd9Dr9Zg2bRoqKioidNREFAz2FCCiSAr15AG1PgQ5qYmysgJ+pBERUaQEHBSor6/H22+/jcsuuwxt27bFX/7yF2zatCmUx+bTMcyYMQNnnnkm/va3v3ncds6cOQCA2bNno3v37q77hw4dihkzZqCqqgqLFy8O6/ESUWiopfKyfICIwiXUmQIGvfvpV05qInSSaAFjAkREFCkBBwUOHDiAf//73+jduzdKSkrwwgsv4Nxzz0WvXr3w+OOP48CBAyE8THUPP/wwiouLsWDBAhgMBs3tGhoasGrVKgDApEmT3B533rd8+fLwHCgRhZR6TwFGBYgoPELdUyDJoHe7LyvFIMsgUPucIyIiCoeAgwIdOnTAfffdh+3bt+Pnn3/GrFmz0LZtW+zZswcPPPAAunbtigsvvBCvvvoqKisrQ3jIjbZt24Y5c+Zg2rRpGDFihMdtd+3aBbPZjPz8fLRv397t8YEDB7r2SUSxT72nQBQOhIhaBE+ZAkKIZgmkJOpl+2JMgIiIIiXgoIBU//798eyzz+LQoUP45ptvMGXKFKSnp2PdunWYMWMG2rRpg0mTJuHjjz+G1WoN+vUcDgduv/12ZGVl4emnn/a6/aFDhwBANSAANI5JzMrKQkVFBWpqarzur0+fPqr/FRcX+/eNEFFA1E7QeVWNiMIlEp8vxgS9YlYhP9OIiCgyQhIUcBIEAaNGjcLixYtx8uRJvPvuu5gwYQJEUcRHH32Eq6++GgUFBbjjjjuCep0XX3wRGzduxDPPPIPc3Fyv2zsnJaSkpGhuk5qaKtuWiGKXWipvqBuBERE5ecwUCCBRQC3GkJigY6NBIiKKioRw7dhoNOKaa67BNddcg4qKCrzzzjt48MEHUV5ejv/+979YsGBBQPs9fPgwZs+ejQsvvBBTp0716Tni6X9ZBQ//cot+/Ou7Y8cO1fv79Onj8z6IKHBqkwZYPkBE4eLpFCGQxbvauEFjgk4xkpCIiCgywhYUcNq2bRvefPNNvP322zh16hQAQK93b7DjqzvvvBMWi8WvoEJ6ejoAwGQyaW5TV1cHAEhLSwv42IgoMuwqEQBHBOaIE1HLFInygcZMAfYUICKiyAtLUODw4cN466238Oabb2LHjh2uq/D9+vXDzTffjMmTJwe8788++wxZWVluJQgNDQ0AGvsHFBYWurZNS0tDhw4dAABHjhxR3afJZEJlZSWysrJcAQQiil3q5QM8gyai8PD08RKq8gFjgl6RKcDPNCIiioyQBQWqqqrw/vvv44033sD3338PURQhiiLatm2LG2+8ETfffDP69u0bkteqrKzE2rVrVR+rr693PWaz2QAAPXv2hNFoRGlpKY4cOeLWcHDLli0AGoMWRBT72GiQiCIp1J8vantjTwEiIoqWoBoNWiwWWQPBP/zhD/juu++QkpKCm266CV9//TUOHz6Mp59+OmQBAWewQfnf/v37ATQGAJz3ZWVlAQCSk5MxatQoAMAHH3zgtk/nfRMmTAjJMRJReKn3FOAZNBGFRyTKk9pnJ0MnsHyAiIgiL+BMgdtvvx0ffvghqqqqIIoi9Ho9xo4di5tvvhlXXnmlx07/0TBr1iysWLECjz32GC699FJ0794dAFBUVIRXXnkFGRkZmD59epSPkoh8YbczKEBEkRPqjxdlc+N+7TMxpndr2UhCZj8REVGkBBwUWLRoEQCgf//+uPnmm3HjjTeioKAgZAcWamPGjMFdd92F559/HgMGDMDYsWNhsViwcuVKOBwOvPnmm8jJyYn2YRKRD9T6BzAoQETh4mmBHkBLAZl2Wcn48I7zodcJQe+LiIgoEAEHBe655x7cfPPNOOuss0J5PGE1b948DBgwAC+99BJWrlwJg8GA0aNHY/bs2Rg2bFi0D4+IfKQWAFArKSAiCoVwXrVvlWGEQd9YzSmwfICIiKIg4KDAU089FcrjCFqnTp3c0vHUTJ06FVOnTg3/ARFR2LCnABGFm/OcQhAEONynoAa576avpdkBnD5ARETREFSjQTUrVqzAxIkT0a5dOxiNRlmd/ooVKzBr1iwcO3Ys1C9LRC2IaqYAgwJEFCJFxeXo99DXKHx2DU5UNYQ1U0CaHSBtNMiPNCIiipSQBgXuvPNOTJgwAZ9++ilqa2thtVplV++zsrIwb948vPPOO6F8WSJqYWwqjQbZlIuIQmXywg2oMdtwsLwOT3+1K+SfL1r707HRIBERRUHIggKLFy/Gyy+/jCFDhmDr1q2oqqpy22bo0KFo164dli9fHqqXJaIWyK6Sy6sWKCAiCoT0Kv2G4nKPV+2FALoDSvenl+xAL4kKMPuJiIgiJeCeAkqvvPIKcnJy8NlnnyE3N1dzu27duuH3338P1csSUQuk2lOAV9WIKAz0esGnnkX++O1YtetrneTyjDRAwKAAERFFSsgyBXbs2IGhQ4d6DAgAQEFBAUpKSkL1skTUAqmdLDt4Ak1EYaAXhJAu0A+V12HxD/ub9i/JDtBJvuZnGhERRUrIggI6nQ4OH9rzHjt2DKmpqaF6WSJqgdRKBWw8gSaiMNAJQkib/j36+W9u+3eSlQ8w+4mIiCIkZEGBXr16YdOmTairq9Pcpry8HFu3bkW/fv1C9bJE1AKpZgrwBJqIwkCvC235QHmtWXZbFhRg+QAREUVByIICkydPRmlpKf74xz/CZrO5PS6KImbOnIna2lrcfPPNoXpZImqBVHsK8ASaiMJAr/OWKeBfp0GzTZ5VKZ04ICsfYKCTiIgiJGSNBu+88058+OGHeO211/D999/j4osvBgBs27YNf/vb3/DZZ59hz549GDVqFKZMmRKqlyWiFkitVIBBASIKB71O8DuVv7LOAptDRF6a0e0xZVBAWjIgzxTw80CJiIgCFLJMAYPBgC+//BIzZszAoUOHMH/+fADAli1b8Nxzz6G4uBjTp0/H8uXLodOF7GWJqAWyq/QUYFCAiMKhMVPA98+XTQdO4fwnV2PoE6vw3Z5St8fNNrvstiCoNxrkZxoREUVKyDIFACAlJQXz58/Hww8/jLVr1+LAgQOw2+1o3749Ro4cibZt24by5YiohVLNFGCqLRGFgU7wr6fA41/sRJ2lceH/5o8HMaJHvuxxizJTQNZosOl+lg8QEVGkBBwUWL9+PYYOHSqLcDvl5+dj0qRJQR0YEZEWtZNlXlUjonDQ6wT4MFzJZcuhStfXX+046fa4W08BSSCAjQaJiCgaAs7jHzZsGFq3bo1p06bho48+Qm1tbSiPi4hIE3sKEFGk6AXfewpU1Vm9bqPMFNBplA8wU4CIiCIl4KDAo48+iq5du2Lp0qW45pprkJ+fj3HjxmH+/Pk4dOhQKI+RiEjGrnLZznE6KNBgtaO6wfuJORGRL/wZSfjZr8e8buM+faApEJAgCQrYVHqnEBERhUPAQYF//vOfKCoqwvHjx/Hf//4XF110EdatW4c//elP6Ny5MwYMGIAHH3wQGzduDOXxEhGpZgXYHCJKahowes5aDHxkJZb/4v3knIjC4/Ntx3Hjqxvw4eYj0T6UoHkbSSitokxPMrg9rvy8Ut6WTh+QBgjYJ4WIiCIl6DEArVq1wvTp0/HJJ5+gvLwcn376KW677TaUlZXhsccew9ChQ9GmTRv83//9H5YvX476+vpQHDcRtWBqQQGHKOLFVftwtLIeNoeIP7/9cxSOjIgsNgf++NYWrC8ux1/f/wU1cZ6548/0gXSje6um2gabx+dIgwrSAIGDJVFERBQhIZ0NaDQaMWHCBLzyyis4cuQIfvrpJ/zzn/9EmzZtsHDhQkycOBG5ubm47LLL8Oqrr6K01H1UDxGRN1o9BXYcq4rC0RCRlDIIcKyyIUpHEhpeMwUkX1vs7qVN3sqZEiUjB6RBAWYKEBFRpIQ0KKA0aNAgPPLII9iyZQsOHTqEF198ESNGjMA333yDGTNmYMGCBeF8eSJqprTKB9SmoRBRZCnfhyLie3GrEwSPV+2lj1gDCAoYJEEBafkAMwWIiChSAh5J6K/27dvjzjvvxJ133gmTyYSvvvoK6enpkXp5IooRB8tN+HDLUYzp3Qr92mcFtA/V8gGHCIYEiKJP+T6MtwveyqaCBr3v5QNqQYEaL+UD0uwAWaYAgwJERBQhEQsKSKWmpuKqq66KxksTUZRN+99P+L3MhIXrfseWB8YiyaD3ex9qJ8t2UQQTBYiiT/k+jLegQL3VLrudakzwWD7w9Y6TGNO7NfQ6QXViQHV9Y6aAKIpYsLbY42vLGw36cdBERERBCGv5gJrFixfjkUceifTLElEMEEURv5eZAAB1Fjs2H6wIaD9aPQUE5goQRZ3yfRhv5QMmsyIokKj3mCnw4ZYjeGT5DgDqARBnpsDqXSV4+svdbo/LGw02fc3yASIiipSIBwVeffVVPPzww5F+WSKKAcoT5kCX8KqZAg4x8B0SUdjEW6aAsgTAoNd5XaC/VnQQAFSDBz/sKwMA/Pe731WfK30KGw0SEVE0RDwoQEQtl691ud6ojyRkTIAoFsRbZoCS2tH7etFebTvnQr/B5t5vAJD3MJCVDzBTgIiIIiTgngIlJSUBPc9qje95xUQUuFCd42qdLPPCGlH0Kd+H8fa+VDYaFOFbQFMURdXtzKeDAWZFrwIn6bQGaaYAyweIiChSAg4KFBQUBDT+SxQ5NoyopQpVpoDNoX7FzWxTP+kmoshRvsvjLXNA7WNKGShQ02B1qG5nOR0UsGhkCqQam5qtSoMCar1TiIiIwiHo6QMdOnTwa/vjx48zW4CohVKeL79WdACDOmXDmODfBAKtTAGThUEBomhzu9Ie52tbUfQty8lksalu5+xRoBUUHdWrtetrveSiSaiCqERERN4EHBTo3LkzDhw4gO+//x7t2rXz+XlDhw7Fxo0bA31ZIopjypPcr3acxMc/H8V15/gXXNQMCpg9zwMnovBzzxSIL27lDxB9qu+vt9hVF/KW00EBtSzJKUM7YmCHLNdtWaNBZgoQEVGEBNxocMiQIQCATZs2hexgiKh5Uzth/seHv/q9H620WgYFiKIv3i9wK8sdGjMFvH9TWpkCzp4CaoWTtw3vIgsW6Dh9gIiIoiDgoMC5554LURTx448/+vU8X+ryiKh5CnejQZYPEEWf+6I6fv7dF0URK387qXK/9+eazHaPPQXUogLK5AFZ+QAzBYiIKEICLh8YP348Dh48iO7du/v1vAULFqC6ujrQlyWiOBaqxYHNrr4fZbDgzjc3Y8Pvp/DAhN648uz2IXltIvLCLf0+fny27Tge+3yn7D6tqQJKdRabavDA4iFTQKeICsjLB7wfLxERUSgEHBTo0aMH5s6d6/fzzj777EBfkojiXCgufNnsDleNrjdf/HoCAHD3u7/4FBSw2BxITAg4gYqIoNJTII6iAn9++2e3+0TIU/lH9szHt7tL3bYzmf3vKaAMCujYaJCIiKKAZ79EFDFqaf9GPxfhdRqzvoMhiiKmL/kJ/R7+Cq8XHQj5/olaEve1bHwvbh2iKPue0pIM6NYqzW07u0NUDXx6yhRwKx+QfByy0SAREUUKgwJEFDFq5QNJBv/GEdaHoW/A9/vKsGpXCRqsDjzwyY6Q75+oJVFr1BfPRFFe368X1Bf4do0yA1dQwIeeAmw0SERE0RBwUGDXrl0hOYBQ7YeIYp/aha+qeqtrjrcvpBMG9DoB/7ikV9DHdfhUvew2G3wRBc59pF98EyH/7FKm/Ds5HKJq4NP5+SaohBLcegqw0SAREUVBwEGBs846C5MnT8b27dsDev7WrVtx/fXXo2/fvoEeAhHFGa0a2Tc3HPR5H3WSTIEUgx7DuuUFfVwpifJshVoLRxsSBSqeewqoUY4kFARB9aq/VvmAc4SqaqaA4ra00aDW6FUiIqJQCzgo8MADD2D58uXo378/Bg4ciDlz5mDTpk2wWq2q25vNZmzYsAFPPPEE+vbti0GDBuGLL77Agw8+GPDBE1F80QoKPLT8N5/3US/pKZBi1MOQoH7Vzh/Kk3XXCDEi8pvyank8jSRUJy8L0Gl85GiVD9g8ZEJ5mj7ATAEiIoqUgKcP/Otf/8Idd9yBf//731i6dCnuueceCIIAg8GATp06ITs7G+np6aiursapU6dw8OBB2Gw2iKKIzMxM3HXXXbjvvvuQn58fyu+HiGJYKNYGZmvTCXZigg4Gfehbo5gZFCAKWLMrH1BkCuh1gmopQGP5gPvzra5MAffnKO9KYE8BIiKKgoCDAgDQqlUrPP/883jyySfx3nvv4bPPPsMPP/yAPXv2uG1bUFCA4cOH49JLL8W1116LpKSkYF6aiOJQKEZs2RxNC3aDTofEEAQFrHb5cZnDMOGAqKWK97WtQ5SXBagt7oHGdH+1rAjnFAG1x5T70uuaPs9YPkBERJESVFDAKTk5GVOmTMGUKVMAAKWlpSgpKUFVVRUyMzPRqlUrZgQQkdviOxDSMV0JesHnTAFRFDVP5s02u+I2MwWIAuWWKRDnUQFlpoBOUO8PoAweONlPBwvUgqLKUgRppoCnsgMiIqJQCklQQCk/P59BACJyozV3W6tGV4306plep4NB79uTHWLjKDE10pIEgEEBomAoRxLG+wVvEfL6fq3pA42NBtW/WatdVL3yn5ooPw1LkHxIaX1eEhERhVroi3GJiDRojR50iNqPKdkk2QYJOgGGBN8+xqRlB0oWxWuzfIAocMp1cSjKhqKpMVOg6bZeI4qpNX0AaPz8UWscqFPsK4HTB4iIKAoYFCCiiPF0kisdNeh5H00LeL1O8LmnQFmtRfMxZgoQhU/cBwUU0wcEQb2vgENU7ykANH72+bLIl/UUCEG5FRERkS8YFCCiiJHWyGanGGSP1fsYFJCm1Br86Cnw6ne/az7GngJEoaNcysZ5TAAQ5d+DThBUy5bsDu0AiM0u+jRiUJ4pwM8hIiKKDAYFiChipI0GUxITZCfAJovNp33IewoImqm8Skcr6zUfs9iUmQIsHyAKlPJqebxnCjhEURaM1AlAu6xk1e00ywfsDp9GDLKnABERRQODAkQUMUcq6lxfG/QCkhP1rtuBZAok6Hz/CPN0Pq7MDODJOFHglO+e+WuK4/o9JUI5fUBAQab7WGWbXdT8nLE5RLefgVo8U8+eAkREFAUMChBRRJhtdryweq/rdmZKoqzzts89BezyngK+8jQWTZkZwFpeosAp32qbD1bgm50no3MwIaBsNKjTCW5TAwDArjF2EGj8TFEGBRJVmqQmsKcAERFFAYMCRBQRG/efwuFTTSn81w5ujxRJpkAg5QPO8oNJg9p7fZ7W6fUXvx7He5uOKF6DtbxEgXN/t/3vh/1ROI7QECEPKuoE9QW9w6HdaNDqcLhd+VfrhyItH2CmABERRUrYgwL79u3Dhg0bcOjQoXC/FBHFsN9LTa6vu+SnYvK5HYMvHzh9Ap1k8P5RpnayfvhUHe58c4vb/TwZJwqc2rpYgO9ZPbFGVGQA6FQmDwDOTAH1fag1GlSbnCLts2JncJJi2dEtwL5vmkEnUSICgggKnDx5Eu+99x7Wr1+v+vgPP/yAXr16oWfPnrjgggvQuXNnnHPOOdi+fXvAB0tE8evwqaZ+Aud2zgGAwMoHVHoKJBv0Wpu7qJ22fLn9hOq28Vz/TBRtze3dI6JxsoCTIAg4I0el0aBDu3zAqtJoUC1TQNZTgOUDFKsObwReHQW8cTWwYUG0j4aIQiDgoMDrr7+OG264Abt373Z7bO/evbjkkkuwd+9eiKKInJzGBcDmzZsxevRolJWVBX7ERBSXquqtrq9zU40AoMgU8K18wK6YPgAASb4EBdSuXmpcvLTyZJwoYP681+KCKM800gsCLuvXFr0K0mWb2R3amQJWu8Mt2Kg2jUDWU4DBSYpVn/4ZrvDfV/dF9VCIKDQCDgqsXbsWSUlJuPbaa90ee+ihh2AymdChQwf8+uuvKC0tRXl5OS6//HKUlZXhhRdeCOqgiSj+1JqbFv3pSY0ZAvKeAr5lClgll+wS/AgK5KYm+rR/gGm7RMEQm1mugMOtfABI0OvwxczhGN+3wHW/XdTuKWCxuQcFLjqztdt2HElIcaG+ItpHQEQhFnBQYNeuXRg0aBBSU1Nl91utVnz88ccQBAHPPvss+vTpAwDIysrCkiVLkJqaii+//DK4owbw3HPP4aqrrkL37t2RmZkJo9GIjh07YsqUKdixY4fm85YuXYohQ4YgLS0NOTk5GD9+vGYJBBGFjjQokOYKCvhfPqDWU8Co0vRLacjpkgVfMFOAKHBq6+IDZSb3O+OE2vQB5/+3yWwqI/BUPmC2OWT7SE3U464x3d22k/YUkAZAiYiIwingoEBJSQk6dOjgdv+mTZtQX1+P5ORkTJgwQfZYVlYWhgwZgr1797o9z1+PP/44VqxYgZycHIwePRqXXnopkpKSsHTpUgwcOBArVqxwe86sWbMwZcoUbN++HWPGjMGQIUOwcuVKjBgxAsuWLQv6mIhIW02DJChgdM8U8LV8wCYrH2j8CPOpfEDlPkGrYRiv0BEFTG1hrNfHb/2ACFGW6i/92JAu4m0OUbPnWoNVHvRcOetCtEpPcttOr2OmABERRZ77oF0fmc1mVFdXu92/YcMGAMDAgQNhNBrdHm/dujXq6urc7vfXJ598gkGDBiEpSf6P6oIFC3DnnXfitttuw6FDh6DXNy4WVq9ejblz5yI3NxdFRUXo3r0xQl9UVITCwkJMmzYNhYWFyM7ODvrYiMhdTUNTT4FgygfsKiMJDT4sONQWKlrPYi0vUeDUFrNaHfvjgSgqRxI2fS86ySLe4WH6QL0iKCANJkhJmw/yc4hiV/y+n4lIXcCZAu3bt8cvv/wCh6L2dtWqVRAEAUOHDlV9XlVVFfLy8gJ9WZcLLrjALSAAAHfccQe6deuGY8eOyZogzpkzBwAwe/ZsV0AAAIYOHYoZM2agqqoKixcvDvq4iEidvKeAAYC8fMDXkYTSjtzOq2paV/yl/Dm/tjFtlyhgakGBeL7qfaSiHtJTHb3k8yZBMS1Aq6eA8vNNpxEUYKYAERFFQ8BBgZEjR+LIkSN4/PHHXfdt2LABX331FQC4lQ44/fzzz2jfvn2gL+sTZ3ZAYmJjY7GGhgasWrUKADBp0iS37Z33LV++PKzHRdRSORwiTpksrttq5QN1PpcPNJ2dOzMEfLkKqXayrvU0nowTBU4tK8cRx++p345XeygfkF/Z1+opoMwU0Gt8+LCnAMWH+H0/E5G6gIMC99xzD4xGI/71r3+hU6dOGDx4MC688ELY7XYMGTIEw4cPd3vOhg0bcPz4cZx33nlBHbQnS5cuxe7du9GjRw906dIFQGNTRLPZjPz8fNWAxMCBAwEA27ZtC9txEbVUp0wWdLn/C1nzPmdQIFkWFPAxU0Clp4AviYyqY9J8eA0i8o9NpVGn2vi9eFItGakqDUJKpwVY7Q6fywe0eiwkSMoHGJwkIqJICbinQI8ePfDhhx9iypQpOHToEA4dOgQA6N27N95++23V58ybNw8AcMkllwT6sm6eeeYZ7NixAyaTCTt37sSOHTvQtm1bvPXWW9CdXjA4j00rQyE1NRVZWVmoqKhATU0N0tPTVbdzck5UUCouLkbXrl2D+G6Imp97P3QPtjl7CiRLGgRW1lndtlNjt7v3FNCphDffvv08LPr+d3yzswSARk8Bjat1LB8gCpxaACDeF7jSoKU081/az8RmF5Gg0fO0zuxbTwH3xoWiT+VRRJHFv0mi5ibgoAAAjBs3DocOHcL333+P0tJStG/fHhdccIFrMa40efJk3HDDDRg9enQwLyvz1VdfuUoDAOCMM87A66+/jkGDBrnuq62tBQCkpKRo7ic1NRWVlZWora31GhQgIt99/dtJt/ucmQLS+tlfj1b5tD95psDpngIqJyhJBp3sZPql1fswvm8btM5w70Xi6TWIyD9qAYB4f09JG6VKP7fk5QMOzfMfaU8VAEjUq2+nVwQL7A5Rlo1AREQUDkEFBQAgKSkJY8aM8Wnbyy67LNiXc/PNN98AACorK/Hrr7/ikUceQWFhIR577DH885//BNBUS+wp2q7VHEjNjh07VO/XyiAgasku7JGPtXtKZfc5U2R/L62V3e/LVTFpT4EEV6NB9+0EQZBd0Ss3WXDfR79i8dRzJNtovIZK+jMR+UYtKJCf5j6NKJ6YbU2fO9LPKIOsfECEXqf+2SENCugEeZmAlDKDwObQzj4gIiIKlYB7Cmix2+0oLS1FWVkZ7HbfaoRDISsrC8OHD8cXX3yBQYMG4YEHHsBPP/0EAK4r/yaTSfP5zjGJaWlp4T9YohakV4E880Z6heySs9rIHrP6sBiXXnF0nlirNRrUCe73r95VIrvNngJEoadWqjPurIIoHEnoSD8T5D0F5JkCWmUStQ1NQYHEBO1TL2WwIN7LLqiZYkkLUbMTkqDA4cOHce+996J///5ISkpCQUEBWrduDaPRiP79++Pee+911fWHm8FgwHXXXQdRFF3TBDp06AAAOHLkiOpzTCYTKisrkZWVxdIBohBTpsNKr6y1ypBfPbQ5vNfyq/UUUM0UgCCb+e0Puw/HQUTq1DJttEbwxQtpnxHpt6JXjCTUCihKMwW0SgeU+3Puk4iIKNyCDgq89NJL6NWrF5555hn8+uuvsNvtEMXG5jgOhwO//vornnnmGfTs2RMvvPBCKI7Zq7y8PABAaWljynLPnj1hNBpRWlqqGhjYsmULAKBfv34ROT6ilkR5tV46ccCgqL/1N1PAeQKtlikgCECqMbC8WyuvzhEFTHUkYZy/pSrq1KcPyBoNOkTZlX3p4r9GGhTwUA/gXj7AACXFoDifJkJE7oIKCjz11FO466670NDQgGuuuQYff/wxDh8+jIaGBtTX1+PQoUNYtmwZrr76algsFtx999144oknQnXsmtauXQsArkkAycnJGDVqFADggw8+cNveed+ECRPCfmxELY2yE3mSZOKAsoGWL13/pVfxnc9XuwgpCEBqonvbFOlrSOuEZa/Bq3NEAVO7Wu5P355Yp9NqNGiXlw9IA6C1kkaFRo/lA+6NBomIiMIt4KDAjh07MHv2bGRnZ2PNmjV45513cPnll6Ndu3ZITEyE0WhE+/btccUVV+C9997Dt99+i8zMTDz44IPYvn17UAe9bt06vPvuu7DZ5N18rVYrXnzxRbz++utITk7Gdddd53ps1qxZAIDHHnsMe/fudd1fVFSEV155BRkZGZg+fXpQx0VE7pQL/ZRED0EBH06AZT0FXCfkaj0FBKQY3YMCFsnxtMlM9voaROQftYWsWvZAvNIaSWi1yzMFpJ91JslIQo89BRTZU/wsopjEngJEzU7AQYEXXngBDocDb7zxBoYPH+51+xEjRuDNN9+E3W7HSy+9FOjLAgCKi4tx/fXXo02bNrjkkkswefJkXHzxxejYsSNmzpyJxMRELFmyBGeccYbrOWPGjMFdd92F8vJyDBgwABMnTsT48eMxYsQIWK1WLF68GDk5OUEdFxG5U57UJhs8lQ94zxSwqfQU0MoUSFMpH3h5TbH312DKLlHAmmP5gJSs0aBOu9Gg9LPO154Cys8y9hQgIqJICHgk4erVq9GrVy9ccsklPj9n3Lhx6N27t2uMYKAuvPBC3H///Vi7di22bduGsrIyJCYmolOnTpg0aRJmzpyJbt26uT1v3rx5GDBgAF566SWsXLkSBoMBo0ePxuzZszFs2LCgjomI1JXUmGW3O+Smur7W6RrHBjrPo305Abar9BRQG2MoQECqSqbAC6v34c6R3ZBk0EOE+usxZZcocGrv4+aUKSD9uJFmO9nsoqxcKkkrKOAhU0AQBBj0gqu/CgOUREQUCQEHBY4dO4bLLrvM7+f17dvXNRUgUJ07d8a///3vgJ47depUTJ06NajXJyLfHD5Vh8+3HZfd99exPWS3DXqdq7bflxNgm489BXQCkJ2SqLoPs9WBJINe8+qlLxkLRKROLQDQjGICsgkB0gknVkWmgLR8QMpTUMC5f2dQgAFKik0sHyBqbgIuH0hMTITZbPa+oYLZbIbBYAj0ZYkojrzx40HZ7RuGdECnvFTZfdKTaostsEwBtekDCXod8tONbvcDcJ3PaDU/44k4UeDU6uAdzeg9JS8fkGcKWCTNS9V6mgCeywca9ykJNLB8gIiIIiDgoEDnzp1RVFQEhx+pbQ6HA0VFRejSpUugL0tEceRQeZ3s9tkdsty2kaXf+vB5YpX1FDj9EaZy0SJBJyAvTSMocJrW1Us29yIKnFoAIF7eUt6u4gPyzKQEvXwBL51okp6kERTwIVPAiQFKik38uyRqbgIOClx66aUoLS3FnDlzfH7Os88+i9LSUo7+I2ohslPl6fvdW6W5bePvVTG7bPqAdqaAXiegXVYyMlROzJ2ba/UUYHMvosDF8/QBo5er+IC8h4lBEdQ0W5umDKh99gDegwLKfRIREYVbwEGBv/zlL8jIyMB9992HJ554Ana7XXNbu92Oxx9/HPfddx8yMzNx1113BfqyRBRHlOuAAWdkuW0jOwH2ZfqA5CRZ76GngF4nIDFBh6XTz9Xcl9b5NjMFiAKn9v7RKtWJNb5kCui1pg/YRTRIMgUyktRLJf3JFOBnEcUm9hQgam4CbjSYm5uL999/HxMmTMDs2bOxYMECXHPNNRg0aBBatWoFURRRUlKCzZs344MPPsDRo0eRkJCAd955B7m5uaH8HogoRkkXAn8c2VV1SoC8fCCwTAFB5QTFeWKtFogQT5+3a129tPPqHFHA4nkkoS+HKZ2kKg1qWu0O2feuVT7gLRtBGWggIiIKt4CDAgAwZswYrFu3DlOmTMGuXbswb948t22ci4KePXtiyZIlOPdc7at2RNS8yJoCqgQEAMAgKx/wJVPAvaeAWqZAgtqdpznLBrSCEDwRJwqcaqPBOMgUOHyqDqdMFq/bSYOb0p4CFrsDYtPkQbfyKSejQX0qQdM+2VOAiIgiK6igAACcc845+O2337BixQp88cUX2Lp1K8rLyyGKIvLy8tC/f3+MGzcO48ePV71KSETNl3Rmt9b7Xznn2xvpNs7nqu1b7ykocHoX0sWLfDY4T8SJAmW2ugf34uEtdflL3/u0ndb0AWXcQ2skqtaoQid5+QCzligG8XyeqNkJOijgNG7cOIwbNy5UuyOiZkB6kqy1SJelyvpwAmxTGUmodn4i3a+S86qlXZKZYEzQw2pvvMznS28DokgQRRG/Hq1Cx5xUZKbExzjfBpt7j6F46ClQUWf1aTvpR5nBQymAVlAg2VumgM6/QCkREVGwAm40SETkjTT1VevCvSHB3+kDTQt2b9MHtDhfRRpgSDJIgxM8EafYMHflHlz+0g+48NlvUeXjojXa1DMFms97StZoUK8V7BSQnaoexEn2minAzyKKcc3o/UxEjUKWKbB+/Xp8++232LlzJyoqKiAIAnJycnDmmWdi5MiR7CVA1AJJFwI6jUW6wc9UWV8zBXwpH5AGLYwJTSfqrOOlWPHC6n0AgMo6K+at2oN/XdYnykfkXYPVPVMgmm+pkpoGVNfb0E1lJGogZCMJNTKSUhL1SE1UP8VK8pIpYGBPASIiirCggwLbtm3Drbfeip9//hmAe4qg8x/PIUOGYNGiRTjzzDODfUkiihOyoIAPPQV8yxSQ9gHQbjToISbg+pySBhiMBv8aHhJF2o6j1dE+BJ/UmG1u90UrU2B/mQmXvfg9as02PHV1X1x3Toeg9yn9bNHKFEhPMiDNqH6KxZ4CFPfYU4Co2QkqKPDTTz9h1KhRMJlMSE1Nxbhx4zBgwADk5eVBFEWUlZVh69at+PLLL/Hjjz9i6NChWLNmDc4+++xQHT8RxTCfpg/o/Ru/Jd2mKVNAvu8EneCxsalzD9LjS2KmAMW4Y1X10T4En1TXu5c5RCvb+N+f/4ba00GKf3z4q2ZQwJ+eB9KsJ62gQFaKAakaQQH2FCAiolgTcFDAbrdj8uTJMJlMmD59OubMmYOMjAzVbaurqzFr1iwsXrwYN954I3bs2AGdhyZgRNQ8SNfWmuUD0pFeKg3KlGwqPQWUe/ZUOgBIpg9IMgISE1jHS7FDFEW3lPvjVQ3RORg/rdtb5nZftDIFDpbX+bSdP4cnnz6gfi6TnZKIxASdbKqJk7fyAek+GaAkIqJICDgo8Mknn2Dfvn247rrr8Oqrr3rcNiMjAwsXLkRNTQ0++OADLF++HFdccUWgL01EccLhQ6NBaSqtyeI5KOBwyBdKeo1GgwleggLOBYrZ1hQUkKb6MihA0VRrtuGG/27AsUp5ZkA8LBC1jjFah+5rlrM/hyf9eNHrBAiCe1Ah6/SkiFRjAioVDSK9NRqUlVSxfICIiCIg4Mv1y5cvh06nw+OPP+7zc5544gkAjQEFImr+pFcHta7eZyQ3deiubvDcXd2uOPNu6ikg37dWVoKTcy/ShmipRnn5QDyMUKPmackP+/Hr0SqUmyxuj92/7FdUqaTnB+LL7cdx22ubsPK3kyHZHwBU1LkfMyCfGhKL/MlkUH7eqDUbTE86HRRQaTboT0+BeAgEUUvEngJEzU3AQYHNmzejZ8+e6Ny5s8/P6dKlC3r16oXNmzcH+rJEFEekV+K1ggLpSU0nzTUN7g3KpJQnyFrTB7xlCjgX/PWyoID85J3ZAhQt64vLNR9768dDWLju96Bfo85iw4w3tuCbnSdx+9JNMPtQuuML5VVxJ1+aiEZTUEEBlb4CzoW/NNjo5L2ngH99Vogij3+XRM1NwEGB48ePo0ePHn4/r0ePHjh27FigL0tEcUIURew5Weu6nZ9mVN0uI0mSKeDlCqhyKkCCRlBA76VnifP8v8GqXj4A8AodRd7hU3XYuP+U1wXqi6fHFAZD2Z+gSmMx7696jRIgW4xP9PAnMUj5eZOskg3gXPirNRv03lOAmQJERBRZAfcUqKqqQmZmpt/Py8jIQHV1fIxVIqLA2R0iymrNrttd8lNVt8tQyRSw2BzYfaIG3VunyU6gNTMF4LmnQMfcFFnDMecCQBpkSElkpgBFz4EyE0bNWRO12vtQsdg1ggJR+saUnw1a/AkKKLOe0ox6lNXKt3H2DVAbS+i1fIA9BSjmsXyAqLkJOFPAZrMFNEFAp9PBZvOcIkxE8U+ZLpyZnKi6XbokU6DmdE+BP7+9BZe99D0m/ucHWbNC5cLC1VNA8VGkPGkf27u17LZ4OvVRGhRQpvTG+pVNal4e/ey3qAYEQvXSFpv6niy22H4/BVM+oJYN4MoU8JBFoEWWKcDyASIiigDOBSSisLAoFtWJevWPG2lPgap6K0qqG/DVjsbGZ7tO1ODgqaYr/FqZAsqTdGVQYEZhV9lthytToGl/yYny42OmAEXSkYp67xudpnb12V/K63yh6qupfN87RS1TIAzTB5QfZapBgdPZAClqPQW8TR/QcTwqERFFVlBnFq+99hpee+21UB0LETUjyvp/Q4L62XlOalMGwSmTBaWSkgNAXqOs3KdecJYPyCnLB/LSjEjQCa4TbGejQU+ZAqzlpViVmKCD3SHiiS924kB5He4b3wtd89P82ofg62rZT1oZAbGeeeNPpkCCIjUpVWWR7/w8UQZwBAEwJni+HiP9/LKxfICIiCIgqKBAoCO7wnUyQkSxQ9k126CRKZCf3tSAsKLOivJa+UgzaVd06T71OsE1elD5maI26aAxm+B0UEBlf0ZFUEAZgCAKJ9GPa9V6nYBPfzmKhd/vB9DYoPCru0eE69D8ohUUiPXpA6Ifb/cExbSBNEkJlFNyonqjwWSD3us5kLSnADMFiIgoEgIOCjgYvSYiD7QmBShJgwIAcEhSLgDIxxpKr5pJ96fcter4Q8ldzoCmNNXZmKCDTmgqLWCmAMWqBJ2Ad3867Lq9+2RNFI9GTrvRYGyfM/gTlFEGOKXNUp1yT2dAKbMIvE0eAAADewoQEVGEsacAEYWFdMGdqNdpXh0zJuiRmdx0pe1whTwo8MO+MtfX0quN0hNz5b6VV/IAeYmB2vQBg14nSwuO9Sub1Lz42/3emOB9cenX64eo1aB2+UBsv5+UMcC/jtUeuawMcGYku2cKOIOdykwBX/pB6NlTgIiIIoxBASIKC+mCW22RLiXNFlA2XJPOZJcuLKT7dMsUUAlASJsRqpUPGPQ6WYYBMwUokuos6lfY1SToBCR6qUv3JlxFfBbJe0raXFSrAWGkOTTe18pyyNuGd9HchyFBmSkgDwoIAtAmMxmAe1AgXSWrQClBz54CFONYBkzU7DAoQERhYbWpX9VX08pDUEC2T83yAe89BaSbOFQaDRr0guxknD0FKJIq6yzeNzrNLopem9VFizRTQNp5P1qZAsosohdW71XdThkr8LTmMSgaDWYkyxf6rdKNrqBNliKLwKegAIOTREQUYbF5VkFEcc+iSM33RJYpoOgpICXLFNBp71M1KCD5WhQbrwz+XmaSHaN0oWWO8bnq1HxYbA6Y/MgUsNtFn2rTo0EaFEhNbFoAx8oV73nfqAcFlJkCnoICysynTMXCv11Wsuvr3LRE2WPpKk0J3fYvnT4Q42UXRETUPDAoQERhYZX1FPCcaigdS1hu0r5iatMoSdApggDKzAHlfaIIfLTlqOzxxqBA00JLOvWAKJz8yRIAGuvMlZkCgU4Danp+UE93kQUFJJkCsd6jQ3l0OkHAXaO7q26r7CmQlSxf+J/dIbvpsRRFUIA9BYiIKAYxKEBEYSGr1/eS6uzrVU+rQ6PRoGI7taAAFOUDf33/F9nDCXoBSQZJpoA1Nq5sUvNXWW+V3e7eKs3j9naH6NZo0N/MlnCVBEunD0jr6bUaEEaDWl8BhzJTAMDtI7rg3nG93LZVliRkpciv/vdrn+n6WplFoAxgqkngSEIiIoowBgWIKCyUnf09SfTweLbkhFuWKeChp4BaZYG3U3GDjpkCFB3/+2G/7PZXfxnhcXubQ4TRIP8jr/ej/EBNqJae0owAaQO+eqtds8lfpNU02NzuU6bp63UC0owJmHFhV/Ro7TlIowwKdMhJcX2tDAr48jOQ9xSInWAKERE1XwwKEFFY+NNTwFMndemC3yqbPtD0HIOiPEHtPFp6dU95VRAActISZZkCDcwUoAh5e+Nh2W2dTnCbby9lVykfqLcGGRQIUf2ANCNAuVhuiEKgTS0YWFnvXq7haYSqtzGCbTKTXYGA9KQE9CxIdz1m0OuQIWku2CU/1esxS3uixHrZBRERNQ8MChBRWCg7+3viqZO6NC1a2qxMuk9leYJdZYEjzdqtrLO6Pd4mI0lWxtAQ5CKLKBjJidoLUZvDAUGx3PVnpKGaUPUUkL5flVfJgz3GUNl6uBKHT9XhP9/uw69HqgB4/rzy1hxQrxPw/oyhePzKvvj0T8OQovjd3Ty0IwCgc14qbj6vk9fj4/QBin0cSUjU3HjveENEFAB/ygeUs7ylpItz+fSBppMSZfmBWoqu9MrfwXKT2+M6ncDpAxQzUhSZAh1zU3CwvHEyh90hugW+/C0fUAYBwtNoUP6+jsYCV613wqvrfocAAb8ercIzX+3GDUM64KIzW7seT1B8nvgyRrB1RhJuPLeD6mP3XNwLt17QGVkpiaqTUZSkr8+eAkREFAnMFCCisLDapE0BPZ8I92mbofmYzSG6eglYZdMHmj6+lEEBtUwB6RFs+P2U7LG/X9ITAGIqU6CkugGbD1aELK2b4otyQf36ree6vrY5RLe/izqLe528J8q/KjFEXQWkafjJigai0VjgqgUith+txq9Hq1y33954CM9+vdt1WxnEHN+3jetrT59VnuSmGX0KCADsKUBERJHHoAARhYU/PQX6tM1Ep9wUzced+7I51AMNyo7e3jIFDlfUub7u3z4TM0Z0BSAfH3asst7jMYdTea0ZY55bi6sXrMczX+32/gRqNmZc2Pi3ePN5HV33jeyZD73k710U3WvN6/wMYimDCqHLFGg6jiSD9wyecJN+DjmpLex3HKt2fa0coTrurAL84cIu6Nc+E/+4xH0aQaixpwAREUUagwJEFBb+lA/odQIeueIszcedTf/k0we096maKSA5zy+vbWo0NqZ3a1dQoX12ctM2Jv9mx4fSf9f9jurTHdLnrymO2nFQZBRkJLm+Ht27FQDgmsHtccOQM3BBt1zcP7637OoxAJjM8swAv8sHvNwOlHQRm6jXyRa40cgUUBuFePhUncqWTZIVpRuCIOC+cb3x6Z+GYUSP/JAenxrpSEL2FCAiokhgTwEiCgvpybinRoJOw7vnISVRr9qMzDke0KrRU0BJ5eKgrHygrNbs+jonrSk7QFo7rDa2LFJKq83eN6JmQzo5wJlyb9Dr8MRV/Vz3l9bI/yakf8OA/038lHEztYkcgZC+7xMT9NDrBNfCNhoLXLWgQLWX97ayQWKkSQOe7ClARESRwEwBIgoLs59BAUEQkC1J35ft63SmgHRRkeChT4FamrJ0tKH02KSvKR09VmuOXlBg+bZjUXttijxpUECZcu+kDILtK6mV78PPngLK3IBwNBpMTNBBL0T3qrda+YA3GVEPCkiyKwI4fiIiIn8xKEBEYWGW1BYbE7Rnrksp03adnPPNrQ71RoNKagEDtS7kjcfWtB/p6LHaKGYKsI645bA7RNlCOsmg/h7QK/6mK+rk5S3BjvsLVaaA2S4PCkR7vJ5apoA3aR6moUSCniMJKdZxIiFRs8OgABGFhax8QOPqp5JWSYDZ1VNA0mjQQ/mAWg8Dra0TJUGBWMgUKKluiMrrUnRIg2eAe8d+J+V7QxkE+PVolayPhzfKGMBFc78LycQNWaaAXpA1AWVQwDcGjiQkIqIIY1CAiMLCLFsc+PZRo9WQ0Lkvm8ZIQgDonJfq+npgh2y3fQgaqQLSY5P2FKhusPpwxL55ZW0xLnhyNeav2ed120NemqBR86JsEKiVLaMcZ6cMCny27Ti6/3OFz4tgtaXmS6u9/316Y/WUKRCF8ZqBLKqV4yAjTc/yASIiijAGBYgoLJxX9wE/MgU0+gQ4r2BaNUYSAsCMC7sgQSegfXYybh/R2W0fWuUDnjIFlGPbAlFS3YAnVuzC0cp6PP3lbhyp8Lzor6gLXTCCYl+94up8kkapjadpG1I/7i/3aTu1P+2Xvg0+KCDPFNArMgXiY4Eb7aBAQpQnNhARUcvD6QNEFBaB9BQwaCx8nJkCVpv2SMLrzumAy/q3RbJBr5oV4EtQQJopIIqNV2ODXSAcr5KXA6zZXYqbJDPolZS14tS8SVP2ExN0skW0lIdqGZkTVb6Vn4ghG0Iop2w0KO8pEJaX9CjNmOB3KVCa0bfPq3CRZkGxpwAREUUCMwWIKCykXb99mT4AaGcKOAMM3vaZkpigWSag86F8IC1JHgAIRV8BZZ336l0lHrevZFCgRam3NP19aPUTABrLXzyN4XSq9DHTRC1TQCtw5g+LonxAmgpfb7Vjx7GqkGTg+GrSoPZ+PyfNGN3pA3pmChARUYQxU4CIwkJWPuBjUEBrUdJwel/Kq5D+8KXRoDFBj0S9zrWwqWmwoXWGXy/jRlnjvXpXCURR1AxesHygZWmQZNR4CgoAjUEzb4tEX0fwqa3LM0Mwis+i6CUiXeBOWbwRAHDNoPZ45pr+Qb+WL7SmOXiSGu1MAfYUICKiCGOmABGFhUkyN12reZqSTWMUnytTIJiggFamgGI/0myBmhA0GzSrnNQfKNfuK6DMFIh2J3QKL2mjQW/vk9YZSV7353ujQff3Wqt0o0/P9fj6skwBwa1BIgC8v/kIHBG6Ah5ImUS033PMFKDYx5mERM0NgwJEFBbSNObM5ESfnqM1K92ZKWAOKiigfr9yMkKoxxJaVRZpntKnK0zyQISyoSI1L9JGg94yaqQTNrTYfGzmp/YnqPexmaH2PkW3RoN6jTdeVX3sZsREu9GggT0FiIgowhgUIKKwkC6ofb3ypnVVzJkpEMiYQydfygcAebPB2obggwJq6dyeUryVjQa5KGjepI0GvWUK+BIUsGpk2/gi2FR15WsrewpIhSLg5pMAfhwxlSkQxO+TiIjIVwwKEFFY2D2MD/TlOVLO/gSyRoN+1gprlQ8YPGQK1IRg4aKWzq2cMS+lbBQXhdHuFEGyoICXv+nxfdvIbl/cp7XbNj6XD6j8XSmbYvpLGezyFBSQTicJp0DePrlpvmU2hYt8JCF7ChARUfgxKEBEYSG9apjg41V9raucDa6eApJUaz8zBbQatyszDtJlPQVCP30AABo8BAXcMgUYFWjWZD0FvAQFzumUg8VTB2N49zzcMrQj/jKmh9s2PpcPqCyXg8kyANwDEsqRhFLSqQvh9OP+U35tLwhAgQ+9G8JJOoXFISJi/ReIiKjlYgcrIgoLu2Rx4ssoNeVzpMwhmT7gfgwGveA2F17WUyAU5QMqV26ldeRA40m/TidAFEW3TAGtPgvUPNRLpnT40il/VK/WGNWrMUOgtMbs9vgbGw5BLwh48LI+mlfpAfVMgWCvSiv/1g169UaDgHzqQjj9crjSr+0Nep1mVlGkJCh6O9gcIhJ9/AwlIiIKBDMFiCgsbLJMAd9OaJUnw07Oq+3KGej+UDvPV+tLkJ7UNJat1hyC6QNeggIvrNqLfg9/jSe+2Il6q90tBZvZw82b9G/B3/F50qwWqdeKDuKzbcc8Plct1BRs/boyK0Y5klCq3kO2TDT5m4EUDsqfGfuKEBFRuEX/X78A1NXV4eOPP8b06dPRr18/ZGRkIDU1Ff3798cjjzyC2tpazecuXboUQ4YMQVpaGnJycjB+/HisX78+gkdP1DJYZZkCvn3UnN81V/V+52LFbA2i0aBKVEAtsCAdSRiS6QMqCy1nT4EGqx3PrdyDWrMNr3z3O3Yer3HblpkCzVuDLCjg39+0pyDCh1uOenzu0vUH3O7z1ADTF8pGoIIgaAbvGqyxERTIUARW/A02hoMys4p9BSjmRDmbhohCL/r/+gXgrbfewpVXXonFixfD4XDgkksuwfDhw7F//37861//wjnnnIOSkhK3582aNQtTpkzB9u3bMWbMGAwZMgQrV67EiBEjsGzZsih8J0TNl/Tqlq+ZAhPPboeURD2SDXqc3SHLdb8zwBBUpoDKfcomg4C8fKA6TOUDzgWRcmFUXOIe0GRQoHnZV1KLu9/diiU/7IcoiqizNP2NhXIUXnaKQfMxh0PERz+7Bw2CzRRQK+/JTFY/DmUJTTj4coVd+R6PhbWOQfHZ5mvzSCIiokDFZU+BxMRE3HHHHbj77rvRvXt31/3Hjx/HpZdeip9//hl/+ctf8NZbb7keW716NebOnYvc3FwUFRW5nldUVITCwkJMmzYNhYWFyM7Ojvj3Q9TciKIou0Ju8DFT4Kx2mfjx/tEAgNfWH8DPhyoBNC1WpCfH3ma6K6kFJowqV2ZDP5LQffHjTJ1WXpktN1nctnWIjT/PaNc5U2j84fVNKC41YdnPR9HvjCzUmZv+PlK8jCT0h9Z4TwDYfdI9I6XxOaGbPuAMCmSlqHfyl2b9hIu392+yQR+R4IS/khSfbWolSERERKEUl5kCt9xyC+bPny8LCABAmzZt8J///AcA8NFHH8FiaTrBnjNnDgBg9uzZsucNHToUM2bMQFVVFRYvXhyBoydq/pTrEb2PmQJAY01/epJBNrHAuVgJptGgWm2zek+BpqBAZX3wPQU8lQ8oF0bf7Dypug8mCzQfxaUm19fLthyFSZopkOh/nH5Ej3zV+z0tiO94Y7Pq/Va7CDGIPzbp+9M5hjQripkCNYqeIFcMaCu7nZOaiOHd82T3TT2/U7gPy6sEvXxqQ6yUWhARUfMVl0EBT/r37w8AMJvNKC8vBwA0NDRg1apVAIBJkya5Pcd53/LlyyN0lETNm7LhmCGAztnSk2KrSqaAv0EBtWwFY4L7ldlW6U3jyEqqG/x6DTVqqb/OK6rKK4CbD1ao7oNjCZsnm8PhChABQIrR/0yB+8b1Ur1fqx/GnpM1OFBe57p9ab82imNy/1vbdaIaz361GzuPV3s8FqtKpkC2RqZARIICisDIbcO6yG5npxrwwIQzXbfPyEnGHYXdwn5cvpBmQjVEIKuCiIhatrgsH/Dk999/BwAYDAbk5OQAAHbt2gWz2Yz8/Hy0b9/e7TkDBw4EAGzbti1yB0rUjClreT2NRtMirfe3qSyi/S0fUM0UUNlHa8mM8pIaM+wOMaDjd1JL/bXaHPji1+O4880tPu2DfQWaJ6tdlAUFAskU6N0mA3Ou6Y+/vv+L7H6TRlBg5W/ybJQLuubh823HXbdtdhHS/oV2h4gbX/0Rp0wWvPnjQWyaPVbz/WCxuTcCzdTobRCJq9/SwEirdKOsiSjQGLDo0Todux+7BHaHiJQAfv7hkmTQw+RsSBqh8Y1ERNRyxc6/gCHy/PPPAwAuueQSGI1GAMChQ4cAQDUgAACpqanIyspCRUUFampqkJ6e7vE1+vTpo3p/cXExunbtGuihEzUbyoZlCQGM+ZL2ALA5GtOaZTXLev+uqqr1FFALChRkNgUF7A4R5bVmtJIECvylzJpw3udrQADgWMLmymZ3yBbvgfYUUPvbVl4l13JelxzZbavDgWQ0HcexynqcOt3roqLOimOV9TgjJ0V1X7LpA6ezcKKZKSAtoUhLSnD7+TqDMGoZQ9EmnSwRif4LRETUsjWr8oEvvvgCixYtgsFgwKOPPuq63zmiMCVF/UQGaAwMSLclosBZFatYgx89BVzPkaT7W2wOt6Z8/pYPKMd8AerZBmnGBNkEghNBlhColQ+U1bo3FPRk08FTQR0DxSabQ54pEOiVarUpGjUN6v0wlGUFyoBXMBMI1BoNak1BiMRCV9qvIc3oHhTwdwRkJEmboDJTgIiIwq3ZZArs3LkTN910E0RRxDPPPOPqLQDA1TjJU/duf5or7dixQ/V+rQwCopYmFOUDykwB5eLa//IBtZ4C6vtonWFEbWnjguJEVQP6qScZ+UQtKPD5r8dVttR286KNOPDkpYEfBMUkm10+kjCQngKAesCr1myDwyFCp3jsSEW96+u7Rnd3e65yAoHyn0bl/qTk5QON22WnamQKWMK/0FVOdlAGXbQmI8SCpARppgCDAhRrOA2HqLmJ3TC5H44cOYJLLrkEFRUVmDVrFu666y7Z485yAJPJpPZ0AEBdXWPjpbS0tPAdKFEL4d5oMJDyAXlPAeXiOhSZAlr7kJYQnAwyU0CtfMCbQDIrKP7YHA6YzMH1FADUywccovxKudPhU01NBs/ISXEPCigyBZT9LDz9Zao1As1PN6puG4mr38rJDsrgZOe81LAfQ6CkWQxsNEhEROEW90GBsrIyjB07FocOHcK0adPw7LPPum3ToUMHAI3BAzUmkwmVlZXIysry2k+AiLyTZgoIgueri1oMiukDPx2Qp9D7HRRQWThp1RJLmw0GUz7wzW8nsWpXid/P06rDpualusEmq63P1Bjf541WFpxaX4GjlU2ZAu2zk90WysGUD8imD5wO6qUb1QMdEckUkE12aDwO58jBdGOC24jCWCL9bDKzfICIiMIsrssHampqMG7cOOzatQtXXXUVXn31VdWTo549e8JoNKK0tBRHjhxxazi4ZUtjw69+/fpF5LiJmjurZGERSJYAoMgUcDgw4w15Yz61K/8e96eWKaDRALFAGhSoMvv1Ok47j1fjtqWbAnpubpoRJTWBvS7Fj2OSBbogAHlpgQWDKuvUe1SoBQWkjQ2zUxIhCAIMesH1nlX2A1GGCHQeyvCki1dn0E4QBCQZdG5XuxtUympCTfq9pp7uJ/DPS3vj4j4F6NYqLbbLB5gpQEREERS3mQJmsxlXXHEFNm3ahIsvvhhvv/029BrdyJOTkzFq1CgAwAcffOD2uPO+CRMmhO+AiVoQaV2y2hV6X8h6CqhcvfTUI0SNWk+BcJYPLPv5aEDPAxrHp1HzJw0K5KUZA5rSAQDdW6lnuFWrNBuUpvg7y1Sk2QLKfiD+jMM8fKrp+0mVZAhkJbsvvhsinSlwujTDoNdhaNdczbKGWCGdPhCJ8Y1ERNSyxWVQwG6344YbbsC3336L4cOH46OPPkJioueI/6xZswAAjz32GPbu3eu6v6ioCK+88goyMjIwffr0sB43UUshXcQH0mQQkGcYKK9eBrQ/1fIBrUaDwZcPHKmo876RBgYFWgbp+rt1RuC/87PaZWLK0I7oki+vkVdOIHA4RNgkL+qcWiB7r9k9Nxr0FCQoq23Kbuma39SfR60sIhIjCWWZAgE2cYwWeVCAmQJERBRecVk+8NJLL2HZsmUAgLy8PNx5552q2z377LPIy8sDAIwZMwZ33XUXnn/+eQwYMABjx46FxWLBypUr4XA48OabbyInJ0d1P0TkH7WFh7+8ZQr4Sy04oZkpIAkK7CsJbExpMCfyWnPgqflqnZ7kfSMPHr7iLADAlfN/wM+HKgEA1fXy8gHlWE9nUMzze823zIHNByuwYvsJ1+1cydSBTJWxhJGokw/FuMdokZYPsKcAERGFW3z9K3laRUWF62tncEDNQw895AoKAMC8efMwYMAAvPTSS1i5ciUMBgNGjx6N2bNnY9iwYWE9ZqKWxC65sh9wpoBe3mgwWP5MH2iTKV+gfbD5CCYN8m8uYaCN1IwJOlwxoC2eW7knoOdT7PI0+rZVEJkCUulJTQtwZaaA21QQvTMoIO/fIaU8ZLVvYX+ZCZNeXi+7T5od4KznlzJHoqeAJX4zBaSNBpkpQDHHz/I9Iop9cRkUeOihh/DQQw8F9NypU6di6tSpIT0eIpKTNxoMsKeATnuhEtD+VDIWtIIC+elGdM1PRXFp4xjTv73/CwQAV/sRGCg3+dco8LrBZ2DyeR2Qn25Em8xkv55L8cFTKUr77NBkh6QnNf2zXq1oNKgc62lwZgrotDMF7IoogFpQ4MVVe93ul2YHqE35MEdgoVtnjt9MAaO00SAzBYiIKMzisqcAEcU26cIi0OZpoS4f8Gf6gCAIuHtsD9l99330K8prfV/o+zs9wGjQoV/7LAYEmrHjVdpBgQ4hKhnJkGQKKBsN1kpq7AUBSDldty57rykbDSrW7qLbPAL1Ras0U+Cqge3cHo9ESrwsU0AlWyGWJSWw0SAREUUOgwJEFHKy6QMBlw9oNz8LhFoZg1ajQQC4tG8bnNkmw3XbYnfg/c1HfHoti82Byjr3zu+eeDoWah7KPASKOuaGKijQdEW80iT/G5SOKExLTIDu9HvCU6NBZQ8Bh0p8Ti17QDrub+yZrfF/I7rI+gxEonxA1lPAGF+ZAtJGg5H4WRERUcvGs1AiCjl5pkCg5QPaVy+D3Z+TpyaIgiDgv7cMkt335Ipd+MCHwID0iqzUjed2cH19docs2WNqKdbUvJR6yDTp1ipN8zF/tM9uyjQpLpU3yZQFBSTBA72n8oEARxRKMwUEQcD943vjwzvOd90XkZ4C5jjOFJA2GmSmABERhRmDAkQUctJFvF4X2MeMdMGuXJgEQq2MwdtkhPbZKZg/eaDsvidX7PTYMA4A6izqQYG/jO6O8X0LcNXZ7fDw5X1kjyV7WbR4e02KbVa7A9/tKVV97IoBbUNW896zoCm7ZffJGtnfjTRYJe09IG806LmnwEmVvgjKP80EnaC6CJde/bY7xJBkAHkSz9MH2GiQiIgiKb7+lSSiuCAtHzAEming4Xl92mZoPqbFn5GEUsrFelmtBVX1Vll6tFKdxuSBVhlJmD+5MfvAvRO855+TzSEG/LOk6HI4RExasB6/HKly3TdlaEdkpybC7hBx+4guIXutngXprq9rGmwoqTGj9ekRm9JpBNIpBQZZTwHl9AH5iv9Pb/2MLQ+MlW+j6DOQlWKAoNKdXFkiY7Y5Ah5Z6o0oirKeAilxnCnAngJERBRuzBQgopCTlQ+EYPoAAGRLupnfP753APvzr3zAKdngvpgoN1k8PkcrKKB87XFnFQBorAO/YoB7MzapUGRLUHRsPlQhCwgAwBk5KfjLmB7460U9Zc0Bg5WZbEB+etN4w30lTSUE0kyBNEmNvcfpA4qL1KdMFrcmgco/zYxk9e9H2lEfCG9afL3VLstgSI2zngLSgKUlzBkVRP5jgJqouWFQgIhCTpqCrFzc+0o5GcAkGS/mLdVejVr5gC/N/TrkpEAZT6hQCQrYHSJmvv0zLpq7Fmt2l/h0TM9e0x8v3HA2PvnTMNfVXKcbhnSQ3Q5FXwVfrN51EiOe/hZ/fGsLbFyMhMTRinq3+8I5ZaJrfqrra2lQQNpTQFY+4KHRoFowqrjEJLutLB/I0ggKKN/T4ewrIP28AORBkHggb7Qavvf+l9uPY9hTqzHr3a1wMPBIRNRiMShARCEnXUwG3GhQ8Tzp1bJAOvUHminQNisZ91zcS3afWqbA+5sO49NfjmHPyVrM+2avT8eUakzA5f3bonNeqttjf7+4p+y2PYwLA6lbl2zCoVN1+HzbcXz+6/GIvGZzV6oydaBVhlFly9Domt/UtFAaFKiuVy8fkL7XfGkseLTSPcghlakRFEjQ62Tvw3AGBaR9PXSCPB0/HshKOsIYnJvxxhYcqajHRz8fxVqNnhdERNT8xde/kkQUF2SZAgHWDHsKJgQSFAi0pwAA3FHYFed1yXHdPqUSFPjWS3aA8sq/N8pUa2WtdyT8dOBUxF+zOSozuQcF8tLCFxTo0bqpr8CekzWur6slPQWkC3fpe9TqQ1Cgsk7596/sKaDdb0P63lWWIYRSrWzyQIJqj4NYJs3eiFSW0C9HKiPyOkREFHsYFCCikJNlCgTYU8DgoewgkPF9ak36/Gncl5vatIhTCwoIHmosB3bIwvRhnX1+LcA9iBGNngIceBAap2rd/15y07QXzsHq3lo9U6BKkimQkdyUTm/QaV+VVvu7q1f0AlD+nWhlCgCAUdKjwxzGrvqyyQPG+GoyCMiDopYIjG8E+H4nImrJ4qvIjojigrynQGBBAZ2H5wWWKeD/SEKp7NSmhY5aUEDL6F6tsGjqOT5v76TsxRCpq4VSLDEODbW/l/Qw1rh3b9WUKVBusqCs1oy8NCOq65uunksX7tIAVIXJgskLN2BfSS2entRfNVNAWa+v3MJjUECWKRC+xa4sUyDO+gkA8s+maGQJERFRy8JMASIKOXn5QOjTdn1N+5dSC04kqUwW0JLjJVNASyBNEQG4NTeMzvQBRgW8EUURFpvDY5O2MsXfS6+C9LCms+elJcrKE9YXl6Oq3oof95e77pMu3KUL0JfX/o4f9pXjZLUZC9bsc5s+AAD1knp9wL3EICvF16BA+MoH6iSBi9TEOA8KRKifCBERtVwMChBRyNlDMH3Ak0DKB9SCE/40H8uRLHQq3GqqtQU6H10QBPmoOJYPxJzVu07izAe/Qo/ZKzByzhqVWvtGpxQ9BeZdPyCsxyUIAkb2zHfdnvn2z+j/8NeyLvYdc5qaW0rLaKQNPTf8fko1U8DbyE3PmQKRKR8wyTIF4rB8QPLeV06ECNTK307i5kU/4pOtR0OyP2rB4qxHBxF5x6AAEYWcNQQ9BTwJVaaAP8GF7NSmGnC1kYRaUoK4SilN67ZHIYWYQQFtNQ1W3PXOVld9/cHyOny4RX2xJe0p8PnMYehVkBH247vy7HYeH+/aqiko4Ol9oJYBYVIEBZSbeMoUkAbiGsKYKWCyyBsNxptQjyS0O0TcvnQT1u0tw13vbFXNduLbnYio5WJQgIhCTpopoNb1PxgGvRDQPtV6CviVKSAJCpyKQKYAgOhnCnCZoOn7vWWoaZCn0W8/WuW2XYPVLltESxtWhtPQrrkeH5cGqzyVuNhVIkPK8gFRsU3sZQrEX1BAmtkUip4CdYrf2W/HqoPeJxERNR8MChBRyEmvbAU6klBLoEEG9fIBPzIFJGPWDp+qx/Eqz7PanYIJCuhlXeHZaDBWWGwOvPLd72737zjmHhRQXpGVNqwMJ0EQMOea/qqPXX/OGbLbyvGXUmqd75WZAsp+F5nJHkYSGiLTaFB6jPEYFJBOX7HaRbfAi78aFAGYBmv4sjSIiCj+MChARCEnTXUPdfmA8uTWV8rj0OsEv6YPSDMFAGDoE6uxetdJr89LDiJ1WRpQiU6jQVKqabDi5kU/YuvhSrfH9pXUol6xYK5uaBoDmJKoD6gfRqBG9mqlev/M0d1lt5M9BMcOnapzu0/5PUqvygP+TB8I38L0RFWD62tP5QyxShnEDPb9rwwCqGWAsF6IiKjlYlCAiEJOnikQGw2JlBkGSX72JZBmCjjdumST62utvkshyxSIYqPBqjor1uwucVsMtjQ7j1djzHNr8eP+U677BnXMRuLp4I1DBHaekKdl10pKDNIifMU6JzURbTKTXLdTE/XY9eglaJuVLNvOU1Bgh0qauTIVXVlO43P5QBgzBXadqHF93aN1WtheJ1yUActg3//KAAwzBYiISIpBASIKOfn0gdgICihPsv0pHQAa6649LZ60ruSFqqdAsFcKX1q9F6OeXYP3Nx32+Tmi2Ji2fNWCHzD1fz/h1iU/BXUM8cxqd2DWe7/gZHXTJIH22clYeusQ9G2f6bpvh6KvQI3kKnpaUuTT2P80qpvr6+nDOqv+3Xt6L6z8zT0bRjl9QJn94KkRqCxTIEw9Bax2B/aVNAUFerYOf2PHUDMogqmWICcQKJsVmswMChARUZP4K7QjopgnvaoV6p4CgVIGBYwBTDDISU3E0Ur1XgL1GlfeQjV9IJBmYzUNVsxfUwyHKOKVtY018Pd8sA2TBrWH4MNIKRGNV4qLS00AgKLfy2G1O/wqu4h3NQ1WzF25F+9vOixb4LfJTMKrtwxGqjEBfdpmYPPBCgDA9qPamQLpUahtn3xuR5zfNQ9ltWYM6pCtuo2nYJcaZVBgSOcc7Cup9em5xghMH9hfZnItgvU6QTZpIV4oPzeD7SmiDCoqsz2I/BMbwX4iCh0GBYgo5GxhHkkYCGUQwN9MAaCxSZxWUKC63qp6fzQzBf7x4TZ88esJt/utdhGJCT4EBUTRLe24pZUdP//NXiz+Yb/svqsHtsez1/RzBVbObNN0JXr3yRrZtrVRzhQAgM55qeicp70w9tRoUI10Qbn1cCXe+vGQ6/YfR3b1+FxpVkG4UtilpQNd8lIj2schVJSfm7YgMwWU5QfKwA6Rf1rYPwRELUDLudxDRBEjLx+IjY8ZZVDAU4qzFrW+Ak5ltepjCj2Ne/NGerXQ35riBqtdNSAAuDeK06L2ip7GFO45WYOHPt2B7/aU+rT/eLDw+/1u903o10aWadGtVVPNenFpraxTfDR7CvhKmSmg9t7469gerq+lC8rrXimSbac2+lP2WonSoEB4ygd2S/o69GoTf6UDgHtmkzXI8iG7ItOIQQEiIpKKjbN1ImpWrI7YazSoPMmWXk30lXICgZMoiiitMas+FqpMAX/Th49UuHeNd9IqdVBqXNsKKvepu33pJixZfwC3LN6ICpN6kKQ56NNWvtCUBgVqGmyyvwVZTwFjbHbBVwaurhzQThZEmzW2B64Y0M51u95qh+P0e1zZLNBbZlBSJDIFjje9t3sVpIflNcJNrxMg/VFag2zKqEw0qGf5AAUlNv5dJ6LQYVCAiEJOelVK2fU/WoJZnDtpZQrUmm2ajcBSQ9RTQHmlz5vKOvVyBsCPoIDkf133eQgKHCxvCkR8t7f5ZAtI6XUCctOMsvuyUhKRl9b0tyGtr5f1FIhS+YA3ylKavPREPD2pHzrnpeLy/m3xfyO6yAIHoqjdD8Db+z1J2lMgAuUDPVvHZ1AAUGYKBVs+IH++SSVTgAnhREQtV2yeoRBRXJONJIyRoIByIZercdXf4z40nlPdoH3VLajygSBGElZp9DgAfG8yJqpEABw+NhXwdbt4k5OaqLrw7ZqfhrLaxlGFu0/W4PxueQCAWnPT7yFWywcKMpJkt8tqLLjn4nay7ADl77POYldtount/S4vHwh9UKCmwSrr+9EzTjMFAMCgE+DMt1FOD/CXsidJSx8vSkREcswUIKKQC9VIwnnXDQjB0agLpKyhtWLx5FTrISgQTIaCPohGg56CAr4uxtTW9VpHoTy+ZhoTQKLG5IUzJSUFvx5pHEtYa7bhvU1HXPdHq9GgN+2zk2W3i34vd9smSdGsr05jpJ3XTAHJfnzNWPHHHkmjxzRjgtv3Fk+kmQLWEDcaNLF8gIiIJGLzDIWI4lqoRhIO1BihFgqBjNVTpn87F0DSq8FKysWUP6RNGv3tKeApKFBv8W2B8fmvx92CGloZAMpFSyDTEuKB1kK2f/ss19e/HKkEAMz5erdsm1jNFBAEAWN6t8Y3O08CAP48qpvbNjqdgGSD3vX911nVF5XegoCykYRhaDS4U9JPoGdBuk+jN2OVQRYUCO795PBh+kBzDeRRGMTx+4qI1MXmGQoRxbVQjSQMZEKArwIJCihHtzkXvlrlAymJeuiC+P7DlSngzxXa9zcfkd0WNdZxyp4KzXWBMaRTjur9/dpnur7+vcyEmgYr/vfDAdk2sdpTAACevLovHv8iAenGBEzo11Z1m1SjJCigkX7uLQgonXQQjvKB3SfkQYF4lijJZgp1poCvJUREqprrBzxRCxa7ZyhEFLdClSmgFhR44YazA96flLK5mi8S9e7P+XL7cc2reME2N5SWOESjp4AarZGEbpkMzeRCkiDIz38Le+arbtcpNxXpSQmoabBBFIGXVu9z2yaYppPhlpdmxHPXDvC4jbQfgFb5gNfpA2EOChw81dTssrtkKkQ8kn7+BRsUUAYVNUcSOuzAsZ+BvB5AUnyOcyQiIv+xpwARhVw4MwW65KUGvD+pJIP/H39q38o9H2xDjUamQDBNBoHgpg+c8jASMJjFmFZsQrloaSYxAYw7q8D1dWqiHpMGtVfdTqcTZNkCr3z3u9s2OWn+N7eMJdKghlZgyfv0AWlQIPTlA1V1TX/3WiNE44U0m8kSxEjC0hoz7nn/F9l9WkEdfHwHsHA08N9CwM5sAiKiloJBASIKOVmjwQAa+jkZVYICoSplVNu3N+lJ7nPmaxpsqG5QvyqfYgjuynAw0wc8BQVMGguCw5KrrFp87SnQXAiS8MafRnX3mPnST9JXQI1Wo8p4IQ1yaZWgeCvLkZYPhKPRYKUkQyYz2f39Gk8MIWo0+PSXu9xGEKoFdUSIwLZ3G2+cKgaKVwf8mtTMsacAUbPDoAARhVyoRhIm6AS3cw9diE5GkgMoH+jTNgNXDWzndv9xyQg0qRRjKDMF/AsKlNc2BQWeuKqv7LHnVu7BvpIa5VPw8tpir/vVKiVVllA0l5JTaRDE25/yiO7qpQUA0C4rGW3iPCggLYfRCix565uQJGs0GPqggLRsJislzjMFJIFLSxCNBpV9QQAfAzKW2oBfk4iI4guDAkQxbvPBCvywr0x1Znyski5g9brAP2YEQXBbXIbqxxBITwGdTsBz1w7ArkcvkS3YD2pcYQ+227xs+kAQmQKd81Jlae+1ZhvGPPedrCmb3SHi01+Oed2v1t+hTXEl0+pnuUOskgcFPEcFzuuSgwu65cruu7x/W1wzqD1evPHsoJpOxoIUH8oH1LJppKTvO7PN4dYVPxgOh4jqZpQpYAxB+cB3e0pV77faRbd9LvpeUfKiCy6oSURE8YNBAaIYtm5vKa5esB6TF/6I9ze5X+2JVdIFYTDlA2qCSTnulJvi+vrqgeq14b5IMuiRLbkKeahcPSgQbLf5QDMFRFGUBQXy0hKRn2502+7NHw+6vl5fXKbZG0FK6zCU0wdCPZLwtfUHMPzp1fj357+FdL/eSL8Nb0kqgiBg8dRz0LtNBhL1Otw9pgdeuOFsPHNN/7CO14wUaaaAVqO6jGRvmQLyhaY5iFp5pVqLTfb7iveggCEh+OkDtyzeqPlYveJ3aLMqyqAEniKSlvgOcBKRu9hthUxEuPvdra6v//7hNlx7zhnROxg/yHoKhPjqaDCd8+dPHoQ5X+9Gn7YZGN27VVDHkZNqQFmtGUA4MwUkPQX8SB8urTXLFumtMpJUAxTSTIFvd6lfUVTydfpAsHPVpUxmG/79xU5YbA68um4/LjmrDQZ1jMwiW/QjUwAAjAl6rLhreDgPKWrkmQJa5QPeMgXkC80Gqz3ohpxOFYo+GhkxPALSF6HqKaDFpPgsNUDx2cqgAGmKn8xFIvJNfP+LSdTMldVqN4uLZTZZT4HQnlj2bZfpfSMNZ7bNwKKp54TkOKSZAlpXxdOMwV2pDHT6gLRhYFaKARlJBnTISXHbrrKu6crgpoOn3F5b7fvydfqAv9MSPDle1SBLdd55vDpsQYHjVfXISDIg9XRAR/r9xnn2f9CkmQL1muUD/mUK1FvtCNVvcufxatfX7bOTgxqHGgsSgywf8FaaoQzsGKAI9AgsHyAiaini+19MIopJthCWDygXYrHSPMyXcWdpQV6plP7s/Okp8NvxpgyATrmNIxzHntka3RRz20tPZzpU1Vux/WiV6/6P/3gBNt4/GjcM6eC2b62eAsrMgFBmCpTWmGW3T1Y3hGzfUi+t3ouhT6zGBU+tdgVWZJkCLTwqIGs0qJEpkJbo+W/eoNfJMmBC2WzwlyNNf8P9vUyCiAfyRoP+BwU2Hazw+Lgy6ypBGRTw0FMgmBGJREQUexgUIIph8Tr1J5TlA2cFkRkQTr4EBdJD2Ghw/ppinxfD2w5Xur7u177x52dM0OP16UNwXpcc12MVdRbY7A4UFZe5rojnpiaiX7tM5KYZcWbbDLd9a08fUO8psPN4NY5UeB916ElJjfz7PlYZnqDA/344AKAxg+LNHw9h88EKfLu7qaxCiNc3ZIhIyweU9ehOvgROpNkCDdbQLS63Hal0fd23fWx+bvhDmilgtfkfZNu4v9zj47UNnssHfjpYpZlt8J9v9/l9PNSctOzPQqLmiEEBohBbWnQAf3xrC3Ycq/K+cTNlDWH5gHTM2xUD2ga1r1CKRKaAcub7o5/51mTvV8lV/36SK6ZtMpOxWFI+IYqNUwrW7ilz3Tese55rYXehyog9h2amgHxxZ3OIeGPDQYx7fh2GP/0t1mp0QfeFMlPgmMYIyGCU15pRLqlJf3ltMa5esF62TQtPFFBkCriXD9w2rLNP+5EGBYJpHColiiK2HZH+3cd/UMCgD67R4CFJGVFemhGDFSU3ZYoeDAZB/rt4fvU+LN+mPpHkfz/s9/t4iIgodjEoQBRCO45V4cFPduDzbccxZfFPQe/Pl8ZmsUiWKRBk+cAdhV1x9cD2mDigLe4f3zvYQwuZvDT3bv5K2SnB9RSQdh8HgM+2Hff6nDqLDXtONpUP9FcsjlISE5AqWdyV1JhlY8uGSwIBHXLd+xBoZwrIHzBb7Zj98XbXcz7XWFz4QhkUKDeZNbYM3J6T3meyp3pJjW/ukr1MH5hyfief9iNtNmgOUVDgQHmdbHpGML1HYkVikOUD0oyamaO74YM7zkdhz6b3t/J9pcwUECDihVV7/X5dIiKKPy37DIcoxL7afsL1tbMzfTDiMyQgv6oVbPlAqjEBc67tH+whhVwrlRF/QGOwoKzWjDRjAs7plKO6ja8SA2iUdvhUvasUIDFBhy75aW7b5KUbYTo9RnHHsSoclVx5H949T7btRWe2xte/nXTd9jVToMTt6n7gKf/KfVXUWTW2DNy+khqPjycm6DC0a27IXzeepCrKB5T9JXyNYcrKB2yhCQpISwe65Kd6nYIQDwxBNhqU9gxwjmeUBjNPVdXg8YSFyBcq8YjtZreeAno4ZNkGRC5xesGCiLQxKEAUQv40g2vOpJkC+maac52vEhRI1Ouw7M7z8dWOEzi/ax5yfcgm8ERZPuCLckkwKj/NqPrzz0sz4uDpoIC0OVt2igGtM5Jk2z50eR9ZUMBkblo4iKKI0hozMpINsuaSAGBWLPaCOYdUXtGsrLNAFMWQ1fiv21uKZ77arfn4nYVdMb5vG7efTUujLB9Qftz5+vtIlpYPWELTU2BbM2syCCh6CgSQKWCWBBKMp7MOpEGBjkeW49qE1QCA1kIF5qb8GZDE7nRwwKDXhfS9Rs2EVsoYEcUtBgWIQkhrNF2g4vE8TBRFWXAkkIVtPGiV7r5AzE834oycFNw2vEtIXkPtZ2e22WFM0O4KXioJCuSlqfc9aJPZdOw//t7UjExt0ds2KxlZKQbX+MKfD1egb/tMiKKI+z76Fe/8dBjts5MxXVFPblY0kFPe9oey0aDVLsJksSMtyEaOQGNA4OZFGzUff3pSP1w7+IygX6c5kI8kVMkU8HE/0vKBUE0fkDUZbAalA4CifCCATAF5UKDxdycNZp5T9pHr6366/eiYaVAEBUSkWsrR8PUjSO40BOg5zu9jICKi+NA8z9aJoiSQTAFRFPGfb/fhr+/9IpsvDwBCHBYQKAMjzTVToFWG0a3xXEeVGvxgOFN+pZQdw5XKa5uah2llKvQqSHd9XVxqcn1dkKl+Jfyqs9u7vv7x91MAgC2HKvDOT4cBAEcq6mVd+gH5ggQANh445fG4tVhsDtXSgzqz55+DksMhqo5T/GSre6+DedcNwD0X98SiKYMZEJBIlQRhas02KH+avvZACXX5gN0hYvvRatft/mc0j6CAIehMgaafbaIrU6ApUHjSni7bfmA7eamRHnY8a3gZyUXPAW9fD5QX+30MREQUHxgUIAqhQDIFvtpxEs98tRsfbjmCf3y4Tf5gHK6nlYGRYBsNxqokgx7dW8lPqru1cq/fD4ZakKHWy2JY2oQvV2NCQu827qMGAaCfxhVWaS392j2lMNvsmP+tfIFwXDERoKreve7/S0nPDV+9vuGg6ves1uhOy7YjlRj42EoMfWI19peZZI/9dqzabfsLuuXhjyO7YXTv1n4fb3MmzcwwmW1un3eB9BTQGm3oj30lta4pBnqdgDPbNMeggP//tkizc5zlA/mSQOFJa7Js+wl95D0zXkmchwv1kn+Tflro+vISnXZ2DbUA8ZjGSEQeMShAFEKBBAUWff+76+v1xfK50vH4z65bUCDIkYSxbNKg9rLbY88M7SJSLShQE4JMgb7tMlUzOK7RuCo+rFueK+W71mzDy2t+x6pdJbJtTlTLr+Yfr3K/un/fR9tg8uMK//JfjmmOYfQnKPCH1zejss6KE9UN+OeyX133i6Ioa7LopFV20dJJR2w6RGDTgQrZ476XDzQFBZQZJYGQlg50b5Umm5IQz6QjCQOZPiB9jlr5QIUoD2LqXr/c8w7Fpv09nfiq38dDRESxq/merRNFgVr5wCmTBcWl2uPOLB6uAMVjMN5ubxmZAgBw67DOmHZBJ7TLSsZdo7tjWLc870/yQ5vMZLf7qhs8d94vkwQFtBa3rTKSMHNUd7f7z8hRL39ITtTjwh5No8zmfrPHbRtlsEJt+kZFnRVFisCXJ54yC/yZby8NUEgDb2W1FreMhuHd89hUTUN6kryHw21L5WNXff25JUlq5UORKdAcmwwCTVf3gQB7CkgyBZId1cBb16HL8qvRWzgIAKiCn5lNjtD0fyAiotjDoABRCNkVHdiHP70aAx9didFz1uLNHw+qPsfm4QpQPPYUsCp+BsGOJIxlep2Af13WBz/cOwp3j+0R8sWkXie4jQisrvejfMDDFe+7xnTHNZJMh79f0tPjfkf2bOXxcV8ps2E8kWYf3FHYFR0kQYtQLCZPKrIbCjKScNdo92AJNVI2uGxQNI/09c9feiU/FI0Gtx1tCgr0bd88SgeA4HoKiKIo6ymQs/s9YM+X0B/5EQ8nvQUAsIh+NuoUGRQgp+b77zpRS8WgAFEIbD9ahXs/3Ib3Nh2R3X/4VFNq8j+XbVd9rqeTPX+uhsYKZQlFcy4fiIQnr+4nu+0tU0BWPpDqeSTioxPPwtTzO2HK0I646byOHre9sGd+SDJX1heXAWhc1K/49Tj2ldRobiudOjC0S66s+710BnugpL0K2mQmYcP9ozG4U07Q+22pAikfCLbRoMXmwE5JX4jmlCkQTFDA5hBlIyPTDqx0fT1EbCyhEdxaRXohhmZ8JMWv9cVl+HZ3CUR//3aIKOZxJCFRkERRxIw3NuNIhXttsi+0GkipXQmNh3nRypPX5pwpEAntspIxpndrfLPzJACgWqWBn1R5rW+ZAkDj4uyhy/v4dBxtMpNxZ2FX/Od0g0GDXsANQzpgaZF6BoyWXSdq8J9v9+GZr3YDaOyK/sb0czGks3wxLooiTlY3fS+tM5JkV5hDETCT9jdIDcF4w5YuJdG3n6G8fCC4hebuEzWu2vlEvQ49C9K9PCN+BDOSUNmrQW86LrudBDN0yoVdz0uB478A1fLgtgvLB1q0VTtPYvprmwAAv+RZ0XxycogIYFCAKGjFpSafAgJai2Otkz1lajPQeKInvcoWi6SZAoIA6BgUCJp0NKGnoEC9xQ6TJJiUp9FoMFD3XNwLNwzpgOp6G9plJWP3yRqfggJ5aUbodXAt8p0BAaDx7//h5Tvw6Z+GyZofVtVbZe+N1hlGRaZA8AuUWgYFQibZoPe5wV9SYugyBbYdrXR93btNumwhHe+kmQKees+oUf67Ihjk/UnyhCroBMW/PZe/CKTkAIIA62tXwrB/tfxxlZGe1HLc8eYW19cnqxuQ2XzeakSEOC4f2Lx5M5588klcddVVaNeuHQRBQFKS+oxtqaVLl2LIkCFIS0tDTk4Oxo8fj/Xr10fgiKm5+nG/bzXSXfJTVe/XSgtVu9+fzu3RIs18MLB0ICRks8Wr3Rv4OUn7CQBAdkrou+i3z07BmW0zkJliQI7GyEMlvQ4Y0T1f8/Edx6rx1sZDsvuk32digg6ZyQYkG8IXFEgzxnawLVb8YUQX1fvbZ7s3xdSSJOlNYA4y42Pb4aZ+Av2aUekAACQmNAXJ/C0fMCuCLYIi9f+aHgZZ+YCl+6VAaq6rMURCrsrv2dlTgMGBFkkaaBLZU4Co2YnbM/ZHH30U9913H5YtW4Zjx4759JxZs2ZhypQp2L59O8aMGYMhQ4Zg5cqVGDFiBJYtWxbmI6bmasPvp3zaTi0jwOEQUVKjvsiTdpF3CsVCKNykmQJqY+/If9IF1+GKOs3tpP0EMpMNYb9qmqsRFLh9eGeMO6vAdbtvuyxc1KdAtk2iXoczcpq+r+e+3u3ql7D4+/24eN53rscKMpIgCAKSJenpoWhQVyuZmJDqY+p7S3fPxeoNKTvlqQc91UiznYItA2muTQaB4HoKSCcP6HUCBJs88+zWASlIk2RsJKZlyx4X1IICzvIBu/u/TUREFN/i9ixo6NCh6N+/P8455xycc845KCgo8Lj96tWrMXfuXOTm5qKoqAjduzd2mC4qKkJhYSGmTZuGwsJCZGdne9wPkZQoivjxd98yBdSCAu/8dFhz+00H3IMN3prMxQKbZPpAcx5HGEnts5u67nsqVZEGmLz1EwiFzGQD9DrBrblkskGP+ZMHYs2eUhyrrMeEfm2RkqjHOZ2y8dOBCuSlJeLxK/tiQIcsjHxmDUwWOyrqrFiwphgX9ynAI5/9Jttf26zGLLAUQ/CNBqUtOUolP6+89NCWWjRXCXod2mUl42il/O+wsx9BgeTEpsWucoKBP+otduw52dSosjk1GQQaA2dOwfQUMCboAEVQIN1WgesGtwM2nr5DUAQQc9QyBU7v06odmKTwaLDa8cra3yEIwP+N6BLzZYREFH/iNijwj3/8w6/t58yZAwCYPXu2KyAANAYXZsyYgRdeeAGLFy/GX//615AeJzVvJ6obNK/0K6nVhN6/7FfN7X86WOF23y+Hq9CnbWxfDbNJvk82GQwN6RX1Y5X1sDtE1SyM/WW1rq+l4/vCRacTkJlswCmT/Mphgl4HQRDcxhi+94ehqDHbkJaY4Oo18X8jumLuN3sANGYILFhT7PY6bbMav//kEPQU0EmiAtKRhwUZ3svPqFGqSqlFp1w/MgUk5QPBjJb87Xi1KyCVbNCjW6u0gPcViwwJQWQKSMoHElWCAqgtQZpB+hmi+DzJ7uy+U2f5gEUlKMCSgrD673e/uz4ndQLwp1EcnUpEoRW35QP+aGhowKpVqwAAkyZNcnvced/y5csjelwU/45VujcD1GLxs6HWwXKT233f7i7xax/RYJNcNU7Qt4iPmLBrl9W0wLc5RNliVmp/WdPfTJe8yCyQpE0QnbQyRARBQEaSQdZ88vYRnZF/+iq9smO6UzuVoECgi0npkZ1kUCAgalMGumr0TFETqpGEvx6pdH19VruMZleuFNJMAaviM8NUAtRJstySFMHmrA7uO3VmCpTtdn9s46t+HR/557mVe1xfP/v1Hg9bEhEFpkWcse/atQtmsxn5+flo37692+MDBw4EAGzbti3Sh0Zx7kRV04lWFy/psxY/rvSIoojjVe4Lv+/3lrk1kIo1Nsn3yUyB0EhO1MuaDR7VKCGQlhZ0zA1/pgAAZKgEBaRXgr1JSUzAYxPPgqdJm85MgYykptdSm87hC+nrSN9jrTMZFPCVs5xDyp+r9NKggDmI8oHtx6pdX/dtlxXwfmKVbCShn5kCsskd+hrArshoqzwElEoW99mdFC+eArMxT36fs6fA4Z/cXk/c+F+OLCQiimMtIihw6FBjV2u1gAAApKamIisrCxUVFaipqVHdRqpPnz6q/xUXu6e9UvN2vKppEeat0ZavV3pOmSw4ZbKobl9vtWPvyVqVZ8UOuyxTgEGBUJEuvk0a9fTVksZ5WSnui/VwUMsU8HU0ndPFfQrw2MSzoBVD6prfuODs1aZpBv2vR6shBpCyLJzOFRBFESWSCQfMFPBdj9bpstt5aYnI9WP8ZZKh6dQjmEaD2yVNBs9qlxHwfmKVvNGgf3/rzuDxZP03+LR+qvsGh38CSiS9O1r3cdvElnGG/A5npsCRjW7bCqYS4NhWv46RiIhiR4sICtTWNi6iUlK0r5ylpqbKtiXyhTRToCAzCSN6aI9dc4hwa8imZuCjKzHosW9ct5MNerSVXMWsaYjtsYRWaVCAIwlDJsWH1PkaSSNK6VX1cGql0qAvOYAmWJPP7Ygv/zICN54rT1tO0Anod7qrfN92TSnOZbVmj+MZNZ0OPJwyWWRXXxkU8J2yoZ+yd4Q3svKBAIMCDVY79pY0/Xt9VrvY7rUSCIMkqGp3iD79++HkzMD4t2GxxgZVgOX0z0/QA63OdNskIbeT7LbVZgMcDtVMAQDACWZbthQcSUjU/LSIM3bn1STBQ36qP1ecduzYofpf165dgz5Wii/HJSnMbTKS8PTV/Txu729dKAD0aZuBVGNTDa/JHNtBAbtDPgqLQkO60NYKCkhH7KUlRaaPbK+CdLf7Au2M3aN1Ou4e00N23zmdclz7y0szygJk2yQ15b5y/knulnStT0nUIyM5bvvuRtzw7nmYfG4HdMpNwdgzW+NvGmMKtcjKBwL4TASAXSdqXIvkJIPOa/lWPEpU9GTxp9mg2eZAFrxnPgIAOpwHJLlnWiQqggLHK01Axf7GgIKKkr2bfD4+IiKKLS0iKJCe3njSajK5N25zqqtr7Kablta8uhdTeCkzBQoyk3DVwHaa20uDAr5e9bn2nDPkQYEAR7FFipXTB8LCl9nu0iyS9AgFBXq3cV9M+Fs+IJWSqJeVEdwytKPsceksemn6uK8ECHA4RMz7Zq/rvoEdsj0GjUkuQa/Dv6/sizX3jMSrtwxGaz+zLIySWnm7Q/S7sz4g/933bpPRLJuaSnsKAP71FTDb7HjB8JJvG3cbrXq3kC1/7+0vqQFqT2q/5vEdPh8fERHFlub3r6iKDh0a01GPHDmi+rjJZEJlZSWysrJcAQQiX0iDAm0yG5uhpap05nYy25sWc74s7tONCZjQrw3SJEGB2pjPFGBPgXBI9pJybbU7ZMGC9AiVD5zZJsOtSWAg5QNOqcYETB/WGcYEHaZd0AmXnFUge1xaQrAtkKCAALzz02Fs3H/Kdd9N53X08AwKNWUmSSDZAjuOSfoJxPiY1kAZlJkCfvycLDYHRui1R97KdBurfr9iAkGmYAJ+Wqi5m+zafRxNSEQUp1pEUKBnz54wGo0oLS1VDQxs2bIFANCvn+fUbyIph0OUjzQ7ndacojLD20l6Fb3Wh94AF59VgJTEBNlc8FgvH7Cxp0BYeBvHp/y7kAaSwik7NRHnd82V3RdMUAAA/nnpmdj92Dj867I+blfw+0rq2bcfrXKVfjVY7Xhu5R4sWFPssUynzmLHs183dV0f37fALfBA4WVUXAE3+9lXYNuRSry98bDrdnNsMgioBAX8aDaoGmjpfjFw61dAiuT9mlYAFPRV34liIsEAXTGw/UPN10xzeM4kICKi2NUiztiTk5MxatQoAMAHH3zg9rjzvgkTJkT0uCi+lZnMsgWwMyjgKVNAuljxpWHguNOLleyUpnF05bUWv481kjiSMDykC22TSlBA+fcUqaAAAEwcIC+ZCWd9vrzZoAXHTmfrPLx8B15YtRdPfbkLn/5yzOM+Tpka30MpiXo8OMG96zqFl1tQwI8r4A6HiBv+u0F236CO2SE5rlhjUGRa+dOTxu1n2v0iYPJ7jf0DxjwMV8fNwn9Acx5opvrEJk/qj273+zlERBR9LSIoAACzZs0CADz22GPYu7eplrSoqAivvPIKMjIyMH369GgdHsWhncebmjilGxNci7AUD/XU0pO6WrNVczunYd0b50S3Oz2nHZDPoo9FNpYPhIV09F9VvfvfTmWddPJAQkSbPI7///buOz6KaosD+G+2pveE9EIgCS0JvUPoVUCIgoJSlGJDBFHxgbT3UCwIKnZBUEAUBKUoAtJ7CYReUoAktJBeN7t73x/Lzu5kS3o2yZ7v55PPZ3fuzOzd3Ukyc+bcc1v5oJGTZhaCUE97BLianumlqtzsZQh00+3/yM10KFVqwZ3jownp5drXK72a8ME8UnskYpEgYFiRGQhuZRQYBMUaezTMWkAcxwmKDVaopkDp4WkDP9A9bvMcMD0OeO0s0G6S6Z1Iyj/NpFZG0rkKb0OM42ttFOXADw8t2xlCSINXb8st79ixA4sXLxYsUygU6NSpE/983rx5GDJkCACgb9++eP3117FixQpER0ejX79+UCgU2L17N9RqNdatWwc3N7dafQ+k/nrvj4tYe+wW/1z/wsLcVHAVyRRYPKIl5BJNgMHfTT8oUFDh/tYmpYqGD9QEV3tdtkhGvuFUfBkFugwSN711a4O9XIJfpnTGwesP0bd5I4hqOCDRI8wDPx+/DQD498oDgxkQyjP7QYCbLV7oFlIj/SNlk0tEUD6+uK9IpsDltBzB87cGhtf48WZJUjEHbQykIgUZVYpSwWNZqdkZ3Mp57L90DPiqM/90pXIYDqtbIbtYBeBdg9X9TiwGHERAh8mAvIHUaEo7B2x9GXBsBMSuBmxdauylGGP4cNc1fLU/AQCwIMYFE84+jSM2eZiheBlb1d1q7LUrgipHENLw1NugwMOHD3HixAnBMsaYYNnDh8LI6vLlyxEdHY0vvvgCu3fvhlQqRZ8+fTB37lx061Y3/tCSuu9iarYgIAAIgwJdmriX3oSn0Cs0WFZQIMxLd/fLz0V3Z7SuZwrQlIQ1w00QFDAcQpKpt8y1loMCABDiYY+QWpoWrneEFx8UOHwzHTHhnoL28hx2c4c0r/TUiaTq5FIxf8e/QkGBu7oCgxwHvNSzYU8FLJWIoI0KVGT4gLg4U7jAtpI3PRo1B57ZiHv/LMOWzGB8onwCaoigZnmmt9m7EDi3Hnj5GCCunYKnNWrDM0BuGvDgEnBkOdB3QY291PmUbD4gAAAuR/4LiDWf9XLZl9haROeqhJCaUW+DAhMmTMCECRNqbTtCtM7ezjRY5qMXFPB3tcOY9gH45dQdg/UUSr1Cg2UUDNS/oPZ31WUKPMpXoFChqtK0bzVJvxhW6TGxpPLcywgK6C9zs6v9oEBt6hLqAVupGIUlKuQVK/HraeHvWnGJ8OLJ1U6KTL3hFc90CMSAFlRc0JJs9OoKVKTQYMID3dTCM/qENfipJPWHD1QkU0CiFxQoFtlBLqnC34TwgfAOH4ipagaX03cw5/dyzGrw6AZw/xLgG135160rcvVqlFzaWqNBAf1ZNQCgKZdaY69FCCH6KLeXkApKN1LoLyrARfD8vSea483+YVg4rIUgYKA/JlR/9oEOwYZ3cfRTYhs52QjG4KZm1d0hBPpTElKmQPVxLStToMCymQK1yUYqxuBWPvzzs7ezBO3X7+cKnuvXuVgxJhpLnmxZo/0jZZPrT7FZgTvgyY90QYHGnrWTmWJJ+jMQXL6bgzm/X8C2MgppAgCn0N3JV0iqJ41fJOLwTIdAvNKrnNkZJXX3/1SlsYpPn1kRpYvzlpS6d+eJrBp9fUKI9aKgACEVVHo8t6NcgqGtfAXL7GQSvNq7KcZ3CRbUGFAo1bj9qACnkzOQW6S7c+nvZov1L3YU7EOsdwdMLOLg46ILLtzJqLtDCEr0hg9IxPQnprroZwpkFZYIgi9AqUyBBh4UAICn2pmujH4+JRsXUzV33I7cTBcM1Ql2t2/wd5frA3klMgWUKjWS0nVBgdoarmJJMr3P6b0/LmHDydt4bUNcmbVlOIXuc1JKbM2sWXGzB0Tg4OxeZa7HSuru/6lKq+GgQF6x8HdBUSoo8LLkjxp9fUKI9aIzdkIqqPRd2h8mtIeznelxk/onddfv56L/8gOI/foYPvv3Jr/cUS4xuIAufZc92F13AnzzgZnxnBamEhQapIuv6qJ/oc8YkFUgPA71Zx9wMXM8NhQdQ9wQ5G56loN1JzR1P5bvuc4vC/GwR0u9KQ2J5ehnCpS3psD1+3n8uhIRh1DPhjnrgD5TQ7D2XL5vdjtO7y69SlL9s4G4lAo8rrcZY7DO7uNnq/11La6GgwL5pYYVdhBdEzwfID4FMco/3IYQQsqLggKElGHXpXvo+sG/mPbTGTzMLcbOC/f4tqWjWqFDiPkCTvondR/tuoaiEsOTCgcbCVxLXcgFlrrg0a+wvmLvDdRVgikJafaBauMglwiOpdLBKWuqKQBopmsb3znYZPvWuDRk5Ctw7k4Wv2zJk61oSEsdoZ8pUN4pCePu6MbJN/NxqrN1VaqTflBZX1nHsUipCwqoqzlTwJirfiOxXinMHuh/879AXgObSk9dzgvyzGTg/C9AoWENIsYYbj8qMHrclw4KlObLZSDB5jlg7XCgIKN8fSGEkHKgM3ZCzHiUV4yZG88hNasQf1+6hw5L9gja3e3LnsfZ1EmdPge5FE28HPBcpyCEetpjxZhog6kNG+vdFcsrVgqGH9QlSv3hA3QBVm04jhNkCzwqFRSwppoCWk+3DxDU7PBzsYWzreb3prBEhXd/v8AXvhSLOLQJcrFEN4kRdnoX9LM3xSM9z3CazdJOJekugloHutREt+ocqYkhWOIyAq5i/aCAtOaHWfh6eeJd5WQkqRsJG059X+OvXavKkylwYROwIgrYMhXYMs2g+Z3NF9Djo30YvOKQQWBAf3YhJ5jJCEzcr5km0WLofzshDQ0FBQgx49tDify0WYAmbVtfeU5MZZKy72Y52EjAcRwWj2iJvbNiMDzaz2Cdvs2EJ1vxKdkG69QFgkwBmn2gWnk46IJQj/LMZApYSVDAQS7BqgntEeJhD1c7KRaPaIHR7QP49r8v6bJ6Wvo6QV6O30VSO+xlwrHS7++8anZ9xhgO33zEP+/U2PTUrw2J6aCA+e0kKt3FJZNW//CB0kIeD287pm4hbDi/HlDXbMp9rWJlZApc3wVsfkHv+d9ARiL/VKFUY+Pj2VIS0/NxQi/QxRjDqWTd8xYi4dTHhq/1V/n7TQghZaCgACEmMMaw0ci0glorxkTD3aEcmQLlKLbnKC97dlBPR7kgCBFnZGrEukBJNQVqjH5Q4GFuEf+YMSbMFLCC4QNazXycsO/NGMS91x+9IxrhpZ6hRlOrJ3YNsUDviCl2pVL/N59NMbv+1Xu5fDYBxwFdQq0jKCA3kWkmKqNYplQvUwC1kCkQ4aMZ3rZE+SzWK3vrGrJuA9d21Pjr15qyMgWOrDBc9ser/MMChXB4QKHe83s5RXiQq8uYacEl84+LmIk6MYkHzPeHEELKiYIChJiQW6wUFG/TahPogr9ndDd6N98YUyd1+hzKERQAgB5NPfnHcaWmYasrhFMS0p+Y6qQfFNCfGjOroIRPkwcAz3IEqxoqV3sZPhvTWrDs6Xb+GB7ta2ILYgn2Rv7mmastcOiGbmx6pJ8zXKwk8GUqU6CsLCypWpcpwMlqPigQ6GaHpl4OyIMd3lW+iN2qNrrGXe8ClZmJ4FECsGqQ5iezjLvmtcVc1sO1v4FbRwyX3zoCZCQB0Axr0ieXiIHzG4EVUSjaOU/Q1lwvU2CHWjg7EW/7jHJ1mxBCylK+KxFCrMyey/exaPtlwbJ/3ugBF1spvJxsTGxlnKnq0focbMr3qxitlylwPiULjLE6N71aiUp30lSe907Kz9NRd7H/7aFEvDkgHABwN1uXNWAjFcHJ1rr/tA+J9EGwRzf8ffEeBrTwphkH6iB7ueFQjhv38+BiJ8Wne64jp1CJGX2b8t/dn+fT+PV6hHkabNtQmfobalPGUBipSpcpwMlrfpYGjuOwakJ7rD2WjO8OJWGpcgxiROch5VSabIHtbwDDPgfE5ZwZpSAD+HkUkKm5mMbWl4GmfYGsO0DnVwD30Jp7M+aYyhR4eB3YMNr0dn+9DYz9FQUKYVBAxAHYMgUAEJL5HcK4JrjOAtAr3BMRSbpMxcOqVugvOgNHrlRwJaRHZd4FIYQYsO4zR0KMWLb7Oj4rVd2/c2N3hDVyNLGFeeUrNFi+X8Uofxf+cXqeAmnZRfBzqfnK0hUhzBSgoEB1ytErLqlQqvmg0P0cXVDA28mmzgWKLKGFrzNa+FIwoK4ylilw8MZD/Hz8Fh/kOpn0CFte6Yr03GJcTM3h1xsWZT1ZH6YyBcr6FZepi/hcUJG85msKAECAmx3+M6Q5nG2l+PgfYLVqIKZIHg8dOL8ByE4BRn4LOJXj+/v3v7qAAADcOqz5AYBLvwPjtwPeLav/TZTFVE2BQx8Ln/eeB4jEwJ4Fmuc3dgHFuShUCIMKouIcwfMI7jauswBE+Tqgya1Ufvk1FoAk5o1ILkmwPuSVOy8hhJDSKLeXED0Z+Qp88a8uICAWcXihWwi+fb5tpfdZnqCAYzkzBdzsZQhw0wUBzutNt1ZXCAsN0p+Y6lQ6vTqnSDMe9Z5eUKBRBTNZCLEEY8HMj3ZdE2S95BQp8fwPJ/Hahjh+WftgVzStZIC2PjJVHFP/72xpjDHYMN3nKK7lC8dXezdFTLgnPlWOwil1mK4h+RCwshNwbCVQUmR848JM4PBy4PQPpl+gMBNYNQC4/k+19rtcjGUKMAYkHdQ9dwkCus8CurwuXC/poEGmgCw/VfBcDM3+W9mlQwbN33clE+Em80MCMxJMKcoxXNZQpd8ATn6nyTwhhFQ7OmMnRM+hGw+hf661Y3o3zBvaHI425Ux5NEImLsfsA+XMFACE2QJ1MiigoikJa8rMfmGC59pig/f0LqS8nSkoQOo+/b9j5qRmFQqKr80eEFFDPaqb3OyN/+9RmQkKKFRq2EIvKGBT8zUFSvtwVCQ83FwxTvEutqq66BqKszU1Br5oB5xdCxRmaS6qU05rhgh8EgHsmV/2CyjygN9fNB1cqCEqlRKvrD+LCynZ+HL/TbT77x58teUfIPeubqXJ/2pSOUQiILi7bvmf01GSc1+wP2n+XcFzCacJGjRV6WYsSGI+UECKG2ojdYyKLDMLEavtKQnz04HvegM73wS+76c5bggh1YqCAoToSUrP5x8PjfRBhLdTlfcplVRfTQEAaKU3Pvra/dxK9akm0ZSENcffVZgGrL1YEgQFKFOA1APBHvaY3ruJ0UKsDnIJpvZobLB8dLsAdAhxq43u1Rn6dUT0mQsKFJWoYc/pAikSm9rPrPByssEXz7RBCSfDjJJX8HbJZBSK9IIT2XeAP18DlgYBC12A7/sA59YBSr2LfBtnHOn+E+aVTOAX3WJ6U/MWZQN3z5e7T7+euoPpG+JwMbXyF9JMrcaO+LsYvvIwPvz7GtLzipF5ZotuBc8IwN5D93zQUkDy+G9yQToC4j4R7E+enyZ4LgKDiAN8cuL5ZfFM87uw01ixwWLLZApwqOVpJq/v0r3XvHvAlT9r9/UJsQIUFCBET1qWroiPn2v1jNWXl5FCLxOLKjR/eqinrmhU4sN8M2taBk1JWLOi/HVBoYfaoEAOZQqQ+mdm/3BcXTwQ03oKi8bN6NsU7wyKwOLhLWAj1fz9fCLKFwuGtbBENy3Kw8RMIuaCAsUlKthCFxSQ2lpmuEVUgAsmd28MgMNGVS90L/gYf9kNAxOVkXln5w50fR2p4w7j5cM2+EnVH/2KP8STxQvRs/hTnFU30a1beiy/Ccnp+Xhrczz+PJ+GcT+cqPR7knCai2Htx9+US8G70g26FYK6Cjdo1ALo8x7/1P/WFjhAVwRSXiDMFBBDjbBGjpCmneSXnX48BCOZ+WCF8knh/qspUyCnqAQf77qGsd8fx+u/xGHf1Qeau/FFOcjIV+Cr/Qn8um25a2gmMj1dc414JKzzhNQztfv6hFgBKjRIiJ5Labqoe+m7spVVVk2BimQJAEColy4ocCezAMVKVYWCCjVNkClAUxJWO09HGwCaE8EHOZoT/9KFBgmpLziOw/Q+TXD1Xg4upmZjWs9QvNhdc2f0uc7BeLKNP1RqBmfbyg/hqs8qnSmgN3xAalv7wwe03ugXhpPJGYi7nYV0OOOljDFoIu2HLwL2ITzrILiCdN3K/h2gaj8ZJ226YueVTGz65jI/hd8N5s+vdkTdEm1ENzVP7l3QDD8oo/Liv1cf8I+NTTVcWVPE24ULgrsartRhCnDwY6AwAyKmRBfRJfyjbg8AsDEICqjQr1EucO0Cv+yMXl2GT5WxKGYyvCXdqFlQDTUFcopKEPvVUVy/nwcA8MNDPHXpFUB8CQCQwfzwl2IaPOGG96Q/4Qnx8Sq/ZoWd/Un4/N7F2u8DIQ0cBQUIeexedpEgKNC5cfWkqZYVFChvkUEt/ZNExoD84roWFNCrKUDDB6qd/vf/MK8YajVD8iNdxkh1ZbgQUlvsZBL8OLGD0baK1FtpiExmCjAzQQGlCu6cLijAySxXmNFGKsaGyZ0w5/cL2BKnKap3s8QdAxNj0dJnAma1LUALLgnnCtzxR05THPkjHVkF58zu829VB7wm2ap5knsXeJQAeDQxXLGkCMhJBdwaQ23m86qKUJEw/X/DoyYYrWYQ6WfJiaVA4xjNrAkAeojiTQYFFkt/BK79yD8vcQvD9TR/vTU4QZBAMNyikub/cYkPCDghD+tkSxAs0tU+aMKlYrXsQ2QyRzQp9X4BAA7eVe6DWSe/A/SDRwDw4AqgVmvqNhBCqgX9NhHy2L5rujsJgW52gjT9qpCVMXzApYJ3wErvT6GsnbF9hQoVztzKENyVLo0xhuv3dHUOrPXuXk3ycJDxjx/lKZD8KB9FJbpjoIlXzc9JTgipHZXJFFAo1bDTGz4AWe1MSWiKjVSMZU9HYfnoaLjZ6/5+Xbybh4m71ejwTxCmHHbAjvi7BnfxbaVizBvaHCff7YO/Z3TH2kkdcIkF4z5z0a10eQsMFGQAn7cFPm8D/PVWuYMC2QUlWLnvJv6+eK9c69txCv7xZlV3zPkrBeNXnxRMHwsACO3NPxwkPgkZSsBBDY9Hp83uX9rlJaBUUb8S6N0EUBajKu5kFGDrOd0MCB822iMICGi5c7nGAwKAZoz/t72A+5er1JfSSlRq/Lr5V6h2vm2kMR/IulWtr0eItaOgACGP7bygi9j3jvCqtrnepWVkCjjbycy2G+yv1N332ggKnE7OQNel/2LUV8fQ+f29WPbPNTAjJ1nnU7KR9rjoHccBXUI9DNYhVeOqd7xk5BfjVHIG/7yJlwPsZNZ9Z5WQhsTVTgZjpVnMBQVKlErY6l2sQmr57CGO4zCitR/2zOyJkW2MVNHXIxOL0CvcE0tHtcKJ//TBC91C4OVkgwhvJ/QI88TgVt7YqtJL0//3v4BKKdxJ/K9ATorm8clvIS7JK1c/3//rCj7adQ3Tfj6D44mPjK7zSq9QnHuvH/Y844wITjc93pfKYQCAQzfSMf+PS8KNmg3lCw66c7l4TvwPRokPme9MxFCg9fNYMSZasLgYesF2lQJV8dvpO9D+Kw9zl2FAyV6+7WvlE9is6m50u7GKOcIFaWeBvQur1JfS/joWh5j42RBDM4SEOXgD+vUormyr1tcjxNpRUIAQAI/yinE0QXcCMKhl9aXDVXemAMdxgiEJCpXKzNpVdyejABN/PIWMfM3Jh5oBn/17Ez+fMJwr+Ofjush9uyBXk3e5SOW5O+gHBRR4e7Nu7GlHK6vMTkhDJxZxRocQmAsKqEtP0ye1bKaAPjd7GZY9HY0/X+2KZzoEwF6muevdyEmOF7qF4MuxbXB6Xl+sntgBo9sHwsnIdMBdQj1wQV1qdoorfwifp18XPHUqKN/c9r+c0hXQm7fV+Lj1QS194GInQ5MUXYZCiW87MHddWv+WuFTczdYVLoatKxD1DP90tuRXfCz9xngnWsYCQz8Fnv4JEEswPNoP+9+M4ZsV1RQUUKsZfo/TZQnMDr4JrkBzHlTEpPhS+QRWKocbbHdBHYzT6nCksFJB/8QDVc5c4CkVaHl4Ory4LACAgolxpceXQPSzunWOfQGoa/b8hxBrQkEBQqDJEtCeZDVykqN9cPVdXJVVU6AyKfb6MxrkFinBGMPB6w8xfUMc5m69YJi6WEmMMfxn60XkFikN2hZtu4TrelMipmUV4s/zuvTCcZ2CqqUPREg/U+B8irDytLVN10aINQhyN7yoNxcUUCkKhAskda/4aKS/C94fGYnTc/th76yeOPpOH8wb2hyDW/kYDQTo69TYHUUolWF34htAP3stJ1XQLFZpAiVylP8iukBh/IKzha8ToMgH4n/jl0nbjcdnz7QWrNf5/X+R8FCXocB6z0UmNNMc23CG/6PvN44Fpp8DYn8A2k0SjJfXn1WmuoYPnEzOQEqmJnDBcUCPnB18W6JXX+TAAYnMF4fFwnofN1rMQDFkGFj8AWYppun1pRBIOVXp/ujL/eNNNC7SBWUWKCdgf0EQ0H2WbqW8+0DauWp5PUIIBQUIAQD8ejqFf/xEpK+wSFAVGZuHW5+LXcWDAvrF5H46fgv/23EFz686iT/Pp+Hn47fxyrqzUJs5aSyvredScfD6Q/75u4Mj4PX47n+JiuH7Q4kAgKISFWZvOs8PZfB0lGNQS58qvz4xpD8mt7SOIe612BNCSG0IdjecPUBpLlNAUShcUAeGD5hiKxMj1NMB4gr8zw31tIetTan3dOcEcHGz7nneA0EzpyzG99KPcEH+AiaLt5fr/2OxUgWlynB4HsdxwP73geLHQVmZI9DiSbT0c0aEt7Co47LduoyFy9lSTC1+HTlM2PcHrm1w7437aPT8D4BbiNG+6E/vq2B65wxMVem75T8cTuIfjwwshvyObjhDs6HT8e+snjj3Xj90e/NXoOM0wCUImPQPnnx6Ajwc5MiDHTare+CSTVvdTn8cAmx/QzNbwP1LhsM6yuHS7jVwvLCGf75RGYP1qt64kJINuAYBgZ11Kyf+W+H9E0KMo6AAsXoPc4txIVV3x/WpdgHVun9pGcMHKpMpoN/H38+m4nu9f+6AZkzjprMppTerkISHeZi3VTcusmeYJyZ3b4w5gyP4ZX+cS8OdjAKMX3USR27qhl/M7h9eZoYEqRxzQQH9u0mEkIYh2MMwKGDuolatlymghFhT/b4B4TgOvr7+hg07ZgJZj9P/S4SBkci0jegrjoOMU+E/0vVmZ2/Qpz+skJdyGjj6he5563GAXBMMWD2xPTroZRruiL+Lj3ZdhVKlxq5L93GSNcNIxUJsV3VELrNFgdwTXqM/K/Nvt37QRDB8AKjUEIJTyRnYfVlXUHCm/U5do2cEuMDOaOzpABc7mWbow6ClwIx4ILAjOI5DdIALv/q23KbCnZ9eBfz5KvBVF2CJL/BtDLBlGnDoE+Dyn8CDq4DSeJ+3nbwCu8NL+Ofx6hC8p5wAgEO8NjOucS/dBgn7K/zeCSHGUUUqYvVO6xVq83G2QVij6q3eXhPDB8Z3DsL2+DTE3c4yuc6/Vx7g6UoGOPKLlZj60xnkFWui/A5yCf47oiU4jsPgVj74344rSM9ToFipRvcP9wm2HRLpg9i2Rk7YSLUwFRQY2KKGp4UihFhERTMFmEJXU6AY8gZ5opfn1gInbkego+iqbmFRNrBxHPDiHqBEOIQiNOOg4LlKzSAtcyZfDnuu3EcUs4Mzp7e/VQMAPP783ZsCvf/DN/k422L95I7ou+wAkh9ptlm5LwFnbmUi8aFm6tibzB/LXf8Drm8YBrb0htFKkqV7wnEQizio1AyK0t+osrhC2SAZ+Qq8tj6Ofz7CPRW+Sb/rVug4TTOewIypPRvjwPUHKFEx/KqKwTPifxEkemC4oqoYSIvT/AjekBhwDdbc+Zc7AnYeSEi7j46ph/k6AgBwvcNiFB/WnEOlZhUiPa8YHqG9gP2PAwd3TmiGcsgMf0cIIRVDt/KI1TuRpAsKtA92q7ZZB7TkEvNnHubu/JoiEYuwfHQ0n8oPaKZuGtcpkH8uKHJUQfP+uIibD3RjIT9+KgoBbppxrXKJGJO6GU9xHNXGHytGR1fr8AsiZCMVI8DN8ATw+S5Uw4GQhijYw7CmgLkp9lhJPv9YwVX8/0t9oGLAGMVc9C7+GG+WTNU13D0H3PgHUJqeOhfQTHdXFo4D/r36AIUoVehR/TglnhMBTyznswS0JGIRvn2+neDv9PHEDDzI1Y3/XzisBYZE+lRo2IR2XUFNAf3+lINazTDr13O493hqYR9RFj5SfwSOPR6C4BqiyXwoQ/tgN+yZ2ROzB4QjrHEwBqo+wZDi/2FOyQvYoOyFy+oglDAz5z5MBWQkAAn/Apf/AE7/gNC07YKAwKMWEzBqyFBBoc2v9icAvm0AudPjN1SiydwghFRZQwwgE1Ih+lO61UShNkcb879mlU35DnK3xz9v9MC+aw9QVKJGTLgnbj0qwM/HNVWWtVMDVoRKzfDWpnj8flZXpOnlmFDN3Qw9k7s3xoFrDwUBlQldgvHe0OYUEKgFkf4uuJMhDPqEelZvhgshpG6oaKYA9GYfKOYa5pAiRxsJGERIZL5IVPngackhdOAuaxrPrTcYPlBaVkEJHMsoaPjw8UW8WG4igNB7LhDczWhTWCNH7JrRA+9sviAowAsAgW52aBvkava1jZGIOCgAlJQ+da/A8IHvDiVi3zVNnSAplNji+S2k2Y/v8IskwJNfl3u4SZC7PV7p1QSv9GqC7MIS7L58Hzsv3MWCm+koVqghhwJNuRQ0E91GY+4uQrk0hHJpCOQeQMqZroOggAR57V+H++B5AMfhqXb+mmAAgE1nUvDOoAhI/doCiY+zFFNOAo17lvszIIQYR0EBYtVyi0pw+W4O/7wmpnQrKyjg41z5IlAudjI82VqXql+i1J0opucVQ6FUl2tsP2MMH/x1Fd8cTBQsbxfkipn9wgzWl4pFWPtCB/x66g4SHuajWxMP9G3eqNLvg1RMpxA37Ii/yz93kEsEWSOEkIbDXm74P8RsoTy91PkSUcPMFBjfJRjfHdLW0uHwZclQdJA9Dgpc3V7m9o/yivnsNy1mIvtCBCNBAb92QNcZZl/DTibBijHRaOnnhI93XYdCpUaPME+8N7Q5bMoeu2BAmymgLJ0pUEZQICNfgZNJj+BkK8VHu67xy7/22gzv7HO6FQd+AAR2qnC/AM0wyNi2/oht64+iEhVOJ2fi4I2HOHjdHb/dE04fKYESgdwDhHJpaMRlwhGFcOeyoYAUqfDClElTENQ4nF9/Ws9QfH8oESUqhuzCEpxOzkTngA66oMCd6pnxgBBrR0EBYtWS0wv4WYzsHldBrm5OZdQMcK3E7AOmeDvbgOM0MzMxppkm0FiRqtI+//emQUAAAFY80xoSE4US5RIxnuscXNUuk0ro3awR5v2hKwIZ6GZX7cNeCCF1l7kpCZlepkAJ1zCDhf6udvhlSics2nYZl+/m4JC6FR4wF0H6uTkZuQUAhHfrS1TGP1Nx6aBAYGdg5LeAqOwLe47jMKVHKJ5qG4CswhKElOP/sSm6GQg4qEUyiNSPgwEq01MQq9QMo746iqR0zZASN+TgKfEBtJWnoE+ObrYBRI8F2r9Y6b7ps5GK0a2pB7o19cC7g5vhQU4RDt1Ix6EbD3HoRjoe5UOT4cF8BdvJxCK8P7IVghoLaxI520rRtYkH9j/OcNh37QE6h+lNk5hySnPCQ/8DCakSCgoQq5amN+7e18W2RlLfHWQS/kK9NGdbabVezMkkIng72eDu46EDSen5ZQYFNpy8LZg2Sev759vBz6XuTmVlzfxcbNE+2BWnkjMBAKOosCMhDdoHI1vhnd8v8M/NDR/glLr/ayWihjl8AAA6NXbHzte7490tF7D+xG1sUXXFVMmOcm2bkZtvsKxYaTylXZApMPUQ4BNZ4b662svgWon6QfrEIl2AnomkAB8UMJ0pkPwonw8IAMCH0m/QVxwHQZzDJwoY8kmNXVR7OdlgVFt/jGrrD7Wa4eq9XJxKzsD5lCxkFZSgUKFCuLcjnuscZPLGTM8wTz4ocDQhHejVTtdYmAE8SgA8mtRI/wmxFhQUIFbtbpbu5MmnhqZzE4k4OMglyC0yLAYU6ln9FXMDXO34oMDEH0/h4OxeCHQ3LFQFAP9cuof/bLkgWLbkyVbo08wLjZwa7slkQ/Dp6Ggs230dfi62GN+ZigwS0pA93S4APx5NxtV7uQDMFxrk9IrslYgaZqaAvoXDWsDf1Ra7jw7B+OJ/YMOZvnOulZFrWHNAoTReO0DG6S0XWe60WaJ304Lp98NMUCCrQL+NCWdrAACJLTDy+wrNXlAVIhGH5r5OaO7rVKHtujbx4B9fSstBFrODi2cE8PDx+0k9TUEBQqqIZh8gVu2uXjE+3yqM7S+Lk4mCRkMifY0ur4pQL2Gkfeu5VKPr/Xv1Pl7bEAftDadGTnIcfrsXnu0YSAGBesDf1Q7Lno7GrP7hJod4EEIaBpGIQ89wT/652UwBvSJ7SisICkjFIrwc0wS/zXkW77m8j72q1tii6ooRxYtMbpOZV2CwrNhEUEDM6X3W5RgyUFP0ZypQi/TOKVTCGw6MMaw6nIS5Wy8gPiUbAIMtiuCOHDhypYIhsasAT8O6QXVNUy8HeDhoMi0YA44nPtLMQqBVespDQkiFUaYAsWqp+pkCLjV3IexkKxW8lpb+FILVZXL3EGw4eZt/nlkgvItQqFDhP1svCGYYcLSRYM2kDvB3NZ5RQAghxLL07xSbKzQoVukXGrSeIWAcx+GJoSPw3A+aYLsMpjMGsvMM/x+bDAro59pzlgsKSMS6779IZAftYISj21fjZrQnnusUBI7j8NfFe1i0XVN00R6F2C5bjDDuDs7btAe0syJKbIHZNwymU6yrOI5D51APbHs8k8PRhEcY6N0KOP94hUc3Ldc5QhoIur1ErFaxUiWYUs/YtE/VpZGT4d2aIa18IJdU/wlGY08HvNZbl0a3+/J9XErL5p9/tOuaICBgJxPjh/HtEeFdsXQ+QgghtUesN+bbXKaASG/2AYXYugK93Zp4IMrfGQCggBQPmIvR9XIKDDMFjA0f6NusETimV2tAZLnT5kh/F/7xL/m6u+Qd763HH3/+jl3HzkH9z3xk/70YdtBkQY4W70dLUTJknArti4/rduYVUW8CAlqdGutmhzqdnAk469XSyUkzsgUhpCIoKECs1ta4VH4eYplEhG5NPcrYovJ8jRTs04/6V7ewRrp/9imZhXjyy6P4cv9NfHMgAauOJPFtIg74bVpndKiBqRgJIYRUH/1Cc+YyBSRKXWE5pcS6ggIcx+GlGF1QPI0Z/9+WYzRTQFho0NVOig9HtQQHvc/agpkCbw8Mh9PjKY6XFQ9HotobgGZ4w2b5Qgz8Jwaio8vxTP46LJauQgR3GzMkm43vzKX6sxRrWrsg3Xd59V4OChwCdI3pNwC9WTcIIRVHQQFilVRqhq/2J/DPR7Xxh4dDzY29NFbFvyYnzxka6YPpfZryxYQVSjU+/Psa3v9LWGToh/Ht0cLXuQZ7QgghpDrolw4pMRsU0KspYGWZAgDQt5kX//gucze6Tk5B2YUGf53aGW62pYIAFiw06O9qh4+figIAFEGON0umQcGMBylGiQ/jb/k7cOIMMyIAAM4BxpfXYU29HOD4OCiiZsC5Im9A8njYp7oEuH/Rgr0jpP6joACxSjsv3EXyI80/SxEHTOvZuEZfz9/VSFCgBufU5TgOM/uF4adJHU0GO6b3aYoeYZ5G2wghhNQtUr2ogFJlfPw7AEj0agpYW6YAAEjEIvw6tTOcbaV4wBnPAMwvLIKqVGBFv6aAv6stmjZyBNSlpim0YKFBAOjfwhuLR7QEAJxlYZhdMhVqZv5cQmWsvfnwmuhejRKJOLQJdOWfn03J00ynqJV6xgK9IqThoKAAsToqNcPKfbqiNE9E+SKoBusJAMJ0fq2azBTQ6tbUA3tn9sSELsGCysW9wj0xs1+YYBkhhJC6Sz8oUGImKCDVCwqorDAoAAAdQtxwbE5vjO7b2Wi7iKnwKL9YsEw/U0AuefxZs1JBAQsOH9B6rlMQlj0dhfBGjsgPH4X4Ht8gngvDZXUQflT2hwq6PqpFUhxr/SEKJx8BbN0AqR3wxGdAQAcLvoPK05/KMDE9H/Brp2tMOW2BHhHScNDsA8TqbDpzh5/rGQBeigmt8dcM9XSARMQJi0PV0vW4s50UC4a1wKu9m+BSWg6KS1SUIUAIIfWMVKILCihUZoYPCDIFajbgXZfZySSAbwujbRKo8CCnGF6OulmH9GsKyLRFgOtYpoDWyDb+GNlGW2ivHQq6j8LJpAx0draFuOQKcHo1IJZA1P5FdNPeTX/zOqAsqncFBvUFu+uCXIkP84FmetMSUqYAIVVCQQFiVXKLSvDRrmv88+HRvrVSdV8mESHU0wHX7uuCEVxtRQUe83CQoycFAwghpF6S6RWnNTd8QKrSGy8vs96gAAAgoJPRxRKo8CC3CICupk5xuTIF6maCrZ1MgphwbS2FDsYzAcRSzU89Fq53vnY5LQfFjVqDHyCZkQAUZAB2VDiZkMqom3/dCKkhi7ZdRnqeAgBgIxXh7YERtfbaET71NzpPCCHEsiozfEBi41Cjfarz5A5Aq6cNFkugwv0c4fABo0GBOpopYK1a+DrBVqr5DhQqNc7nuQB2esUk0+Is0zFCGgAKChCrUKJS44t/b+C3Myn8spdjmhidKrCmhHsLgwI1WGeQEEJIA6MfFDA3fECu1gUFpLYUjMaIL4GnfxIsknIq3M8RTmGnX1NApg0KlJSq3i+pvXMGYkgqFqF1oAv//NStTMCvrW4FGkJASKVRUIA0aPdzivDjkSQMXnEIH/9znV8eFeBSK7UE9LWkqf8IIYRUkiBTQGk6U8BGrbvYldnV/PC4Ok8sBZoPA1xDdIvKzBR4nBGQ91C3gswBENOoW0trF6wbHnA6OUMYFKBig4RUGv11Iw3OvewirDtxC/9efYBLaTkG7Z6OcqwYHS04waoN0XrRbQBITs+v1dcnhBBSf8kkuvQyk8MH1CrIobvYldtTUIAn0p3ySqHCAzOZAvzwgfsXdCt4NK3R7pHyaR+sm5bw9K1MqLq20823cOcEoFYDIrrnSUhFUVCANBgqNcP3hxKxfM8NFJaoDNo5DhjTPhBvDQiHq72s1vvnZCMs8BN3J6vW+0AIIaR+KldNgaJswVMbe5ca7FE9o1dkTw4FUnOFQYEivfMGPihwN163gndkjXaPlE/rQFeIOEDNgNwiJW7KWyKcEwFMDRRlAQ+vAI2MzzpBCDGNggKkQUjLKsTMX8/heGKGQVuAmy0Gt/LBk639amWmAXMcbSTILVICAFr50XACQggh5SMMCpioKaAXFFAzDraOrsbXs0bOAcCDywCAMC4Fxx4VQKVmEIs0GRgFCiW/qr388enxPb2ggA8FBeoCB7kEzX2dcDFVkwl65I4C4d6RwN1zmhVuHaWgACGVQPk1pN7bd+0BBq04JAgIuNvL8PbACOyZ2QMHZ/fCnEHNLB4QAIBfpnSCVMxBJhbhrQHhlu4OIYSQekJYaNB4poCyIJN/nAtbONjWflZcneXbmn8YKUpCTpESF1J1QZR8hS5TwE4uBlRK4N5F3fbeUbXSTVK2rqEe/OPDN9OBoK66xltHLNAjQuo/yhQg9RZjDD8cTsKSnVeg1rtpMqSVD5Y82QrOdnVvPt4Wvs44M68fihQqeDnZWLo7hBBC6glZOYYPFGY/gna+gWxmDxcbOs3j+bXhH0aKEgAA+689QHSACwCgoFgvU0Am0WQVKAs1C0QSwLtVrXWVmNe9qSe+OZgIADiW8Agl7TtBenylpvHWUYAxmuKJkAqiTAFSLzHG8MFfV/HfHbqAgJ1MjI+fisIXz7aukwEBLScbKQUECCGEVIhUv9CgidkHCnLS+cc5cICjnIICPL1MgUZcFryQif3XdLMLCDIFZGIgVa+SfaOWgJT+b9cV7YJd+boPhSUqnEMzXWPefSAj0UI9I6T+oqAAqXce5RVj5q/n+SgxAPi52GLTtC6IbesPjqLDhBBCGpjy1BQoytUNoysQ2dP/Q30OXoCTP/80UpSI8ylZyMhXABDWFHCQS4AUvTnv/dvVWjdJ2WykYnRs7M4/33dHBXjqBQaSD1ugV4TUbxQUIPVGfrESX/x7AzEf7ceWuFR+eTMfJ2x9pSua+1q+ZgAhhBBSE2SlagowZhgYUOXc5R/nStwM2q2ebzT/MFKUAMaAQzc02QJZBSV8m4ONRJgp4EdBgbqmR1NdXYGDNx4CwXp1BRL2WqBHhNRvFBQgdV5KZgE++ecaeny4Dx//cx25euP+2gS64JfJneDpKLdgDwkhhJCapZ8pAABKtZFsgdz7/MM8mYdhu7XTu+PfS3QOALD/2kMoVWokp+fzbX62SuDhNaPbkbqhR5gn//hiag4e+fTQNSbsA1QlRrYihJhCg81InZNfrMTRhEc4fOMhDt1MR+LDfIN1nGwkeL1vGMZ3DoJETLEtQgghDZtULBwKUKJSGwQKxPm6oECRjVet9KteCR8M7FkAAGglSkYIdxcHr8sQn5rN1xSQiUVorr4B4HHQxcYZcAu1TH+JSU29HBDiYY+kx8GcbTlNMEEsB1TFQHEOcPs4ENLdwr0kpP6wuqupoqIizJ8/H2FhYbCxsYGvry8mTZqElJQUS3fN6l27l4uZv55D60W7MXntaaw5dssgICCXiDCtZygOvdUbL3QLoYAAIYQQqyCVCP/flSgNMwVsC3XDB0psKShgwDMcaKSbReAJ0TE8ylfg7U3x/LLoABfIU47qtvHvAIjoXKOu4TgOg1p688+3XckWBgFu7LJArwipv6zqr1xRURH69OmDRYsWIS8vD8OHD0dAQABWr16NNm3aICEhwdJdtEoqNcPKfTcx5LND+P1sqtH5l0M87PHOoAgcm9MH7wyKqNOzCxBCCCHVTVYqCG7wv5IxOBfe0bU7BtZGt+qfliP5h8PERwEw3HiQxy/r1NhNWKiO7jbXWYNb+fCPz9zKRIZvT13jle2aqQkJIeViVcMHlixZgqNHj6Jz5874559/4ODgAABYtmwZZs2ahUmTJuHAgQMW7qV1ScsqxBsbz+FEUoZguZONBN2aeqB7U090a+KBADc7C/WQEEIIsbzSQwVKSgcF8h9Cri7knzL3JrXRrfqn5Uhg70IAQBNRGppzt3CZBfPN3YPsgON6Mw8EU1Cgrmrh64RQT3skPM4qXZ8ThVe1jZlJmroQXhEW6x8h9YnVZAqUlJTg888/BwCsXLmSDwgAwMyZMxEZGYmDBw/izJkzpnZBqtmO+LsYtOKQICDg52KLFWOicWZeP3w5ti2e6RBIAQFCCCFWTyziINIrK2AQFHiky3bMZA7w8KThA0a5BgP+7fmnY+UH+cfeTjZoo44H1I+L1MmdAO/IWu4gKS+O4zCuUxD//Pv4YjCPcN0KaXEW6BUh9ZPVBAUOHz6MrKwshIaGonXr1gbtsbGxAIBt27bVdteszo37uZj602m8sv4ssgt11WGHRPpg5+vdMTzaz+COCCGEEGLt9P83lqhKpUZnJPIPk5k3fJxta6tb9U/0WP7hsw7nMLZjINoGueLzZ6IhPvGVbr3GMYDYqpJq652RbfwheRwtyyoowX1bvaKQhz8FFAUW6hkh9YvV/KU7f/48AKBNmzZG27XLtetVllqtRlZWVpX20dBcSMlGfEoW7mQUID41GxdTswXttjIx5gyKwPBoP7DifGQVW6ijhBBCLKMgE4j7SfNYcK3Lyn7MamJ5Ne6juvrIGGaXpEChUoMDcOvHdbgnFYN73N7i/p/8FpdUbohGUY2dj2RnZ5t9Xud5dgCKHn+uRXcxO/w3wB/A3/9D1q1DuvWajQXonK7Oa+rC4VJaLgDg5ettsIrboWlIuYr0D7oiyb0HGMeZ2YPGlUYjUCx1rMmultukrlRMm1SMWq2GqApFUa0mKHD79m0AgL+/v9F27XLteua0aNHC6PKrV69CrVbD1dW1kr20XhM/snQPCCGEkIZiD/CxX629WnBwcK29Vs1YbHzx0kG12w1SZXcAbBEsOff4pzxWVG9nquBtS3eA1Ev6w+MrymqCAnl5msqydnbGx6fb29sL1qsMbYQmIoKKmpCK0c58ERpKcyGTiqPjh1QWHTuksujYIZVFxw6pLDp2TLt9+zZ/PVsZVhMUYI9T8TgT6UOsAtOWXLp0yehybQaBqXZCTKFjh1QFHT+ksujYIZVFxw6pLDp2SGXRsVNzrGawiqOjZoxQfn6+0faCAk0hkqqkXRBCCCGEEEIIIfWJ1QQFAgMDAQApKSlG27XLtesRQgghhBBCCCENndUEBaKiogAAZ8+eNdquXR4ZSfPREkIIIYQQQgixDlYTFOjatSucnZ2RkJCAuLg4g/ZNmzYBAIYOHVrbXSOEEEIIIYQQQizCaoICMpkMr776KgDg1VdfFdQWWLZsGeLj49GtWze0b9/eUl0khBBCCCGEEEJqFccqUna/nisqKkJMTAxOnDgBHx8fdO/eHbdu3cKJEyfg7u6O48ePo0mTJpbuJiGEEEIIIYQQUiusKigAAIWFhXj//fexfv163LlzB66urhg4cCAWL16MgIAAS3ePEEIIIYQQQgipNVYXFCCEEEIIIYQQQoiG1dQUIIQQQgghhBBCiBAFBQghhBBCCCGEECtFQQFCCCGEEEIIIcRKUVCAEEIIIYQQQgixUhQUIIQQQgghhBBCrBQFBQghhBBCCCGEECtFQYEaVlRUhCVLliAqKgr29vawsbFB06ZNMX36dNy7d8/S3SP1wKZNm9C/f394eHjAxsYGgYGBGDlyJA4fPmzprpF6YtGiReA4DhzH4ZdffrF0d0gddfXqVSxduhR9+vRBYGAg5HI5vL29MXLkSBw6dMjS3SN1QFFREebPn4+wsDDY2NjA19cXkyZNQkpKiqW7RuqwgoICbN26FS+88AIiIyPh5OQEe3t7REVFYdGiRcjLy7N0F0k9kZGRAS8vL3Ach4iICEt3p0HhGGPM0p1oqIqKitCzZ0+cPHkSbm5u6Ny5M2QyGU6ePInU1FR4e3vj2LFjCA4OtnRXSR2kUqnw/PPPY/369bC3t0e3bt3g4uKC27dv48yZM5g3bx7mzp1r6W6SOu7atWuIioqCQqEAYwwbNmzAmDFjLN0tUgf5+/sjNTUVTk5O6NixI1xdXXH58mVcvHgRHMdh2bJlmDFjhqW7SSykqKgIffr0wdGjR+Hj44Pu3bsjOTkZJ0+ehKenJ44dO4bQ0FBLd5PUQd9//z0mT54MAGjRogWaN2+OnJwcHD16FLm5uYiIiMCBAwfg5eVl4Z6Sum7ChAlYu3YtGGMIDw/H1atXLd2lhoORGrNixQoGgHXs2JFlZ2fzy4uKithTTz3FALDnn3/egj0kddlbb73FALDBgwezR48eCdoyMjLY9evXLdQzUl+o1WrWo0cP1qhRIzZ8+HAGgG3YsMHS3SJ1VL9+/dj69etZcXGxYPnXX3/NADCxWMwuXbpkod4RS5s3bx4DwDp37sxyc3P55Z988gkDwHr06GHB3pG6bM2aNeyll14yOG9JS0tjrVu3ZgDYM888Y6Hekfpiz549DACbMmUKA8DCw8Mt3aUGhTIFalBsbCw2b96MX375BaNHjxa0nTt3Dq1bt0azZs1w+fJlC/WQ1FU3btxAs2bN4OfnhytXrsDOzs7SXSL10HfffYcpU6bg559/xu7du7FmzRrKFCCVMmDAAPzzzz9YsGAB5s+fb+nukFpWUlICLy8vZGVl4ezZs2jdurWgPSoqCvHx8Th9+jTatm1roV6S+ujYsWPo0qUL5HI5cnJyIJPJLN0lUgcVFhYiMjISMpkMW7duRVhYGGUKVDOqKVCD5HJ5meu4ubnVQk9IffP9999DpVJh2rRpFBAglXLv3j289dZb6NOnD8aOHWvp7pB6LioqCgCQlpZm4Z4QSzh8+DCysrIQGhpqEBAANDdBAGDbtm213TVSz2n/thQXF+PRo0cW7g2pqxYuXIiEhAR89dVXkEqllu5Og0RBgRrUr18/AMDy5cuRk5PDL1coFFiyZAkAYPz48RbpG6nb9u7dC0BzDCUlJWHJkiWYOnUq5syZgz179li4d6Q+mD59OgoLC/HVV19ZuiukAUhMTAQAeHt7W7gnxBLOnz8PAGjTpo3Rdu1y7XqElJf2b4tUKqUbZcSo+Ph4fPLJJ5g4cSJ69Ohh6e40WBJLd6Ahe+6557Bz50789ttvCAkJQZcuXSCVSnHy5Enk5ubif//7H194hRB9ly5dAgCcOHECs2bNQnFxMd/2wQcfoG/fvti8eTOcnJws1UVSh23fvh2//fYbFi5ciKZNm1q6O6SeS0hIwPbt2wEAw4YNs3BviCXcvn0bgKYYpTHa5dr1CCmvFStWAAAGDhxYrgxbYl3UajUmT54MFxcXfPjhh5buToNGmQI1SCwWY8OGDXjzzTeRkZGB7du3Y8uWLUhNTUV0dDS6detm6S6SOqioqAhFRUUAgBkzZqBnz56Ij49HTk4Odu/ejZCQEOzZswdTpkyxcE9JXZSXl4eXX34ZYWFhePvtty3dHVLPKZVKTJgwAcXFxRg9ejSNF7dS2injTA1ns7e3F6xHSHns3LkTP/zwA6RSKRYvXmzp7pA66PPPP8fJkyfx0Ucfwd3d3dLdadAoU8CM2NhYXLx4sULbrF27Fh06dAAAZGZm4sknn8SpU6ewYsUKjBo1CnZ2djh48CBee+019OnTB7/99htGjBhRA70nllSVY0elUvHL/Pz8sG3bNr7wTt++ffHHH38gOjoav/76KxYvXkx3ghuYqv7deffdd3Hnzh3s3buX7rpYmaoeO8a89tprOHz4MBo3bowvv/yyql0k9ZS2JjXHcWbbCSmvK1euYNy4cWCM4aOPPuJrCxCidefOHcydOxc9e/bEhAkTLN2dBo+CAmYkJyfj2rVrFdqmoKCAf/zGG2/gwIEDWL58OaZPn84vHz58OPz8/NCxY0e8/vrrGDp0KCQS+ioakqocO/b29hCJRFCr1Rg3bpxBJd5WrVqhXbt2OHnyJA4cOEBBgQamKsfOyZMnsXLlSjz33HPo3bt3TXSP1GFV/Z9V2qJFi/D111+jUaNG2LVrF433tWKOjo4AgPz8fKPt2uPIwcGh1vpE6q+UlBQMHDgQmZmZmDlzJl5//XVLd4nUQS+//DIUCgXVRqoldCVqxunTpyu9rUqlwoYNGwDoqvLqa9euHUJCQpCQkIDExESEhYVV+rVI3VOVYwcAgoKCkJSUhKCgIKPtwcHBOHnyJB48eFCl1yF1T1WOnZ07d0KtVuPChQuIiYkRtGmn7dFe6MXGxuLVV1+tSldJHVPVvzv6Vq5cifnz58PZ2Rl///03mjRpUm37JvVPYGAgAM3FnDHa5dr1CDElPT0d/fr1w+3btzFx4kR8/PHHlu4SqaO2b98OFxcXvPTSS4Ll2iG2t2/f5s91tm/fTkHJKqKgQA158OABFAoFAJgsBqddnpGRUWv9IvVD69atkZSUZPLY0E7bQ38AiTHnzp0z2XblyhVcuXIF0dHRtdYfUr+sW7cOr732Guzs7LBjxw46Vgif2n327Fmj7drlkZGRtdYnUv/k5uZi0KBBuHr1KkaOHInvvvvO5JAUQgAgKysLBw4cMNpWWFjItymVytrsVoNEhQZriJubG5/2bezuTU5ODp/maepuMLFe2grf+/btM2jLzc3lT8BMTQ9FrNOCBQvAGDP6o53+dMOGDWCMYfny5ZbtLKmTdu7ciQkTJkAqlWLLli3o2rWrpbtE6oCuXbvC2dkZCQkJiIuLM2jftGkTAGDo0KG13TVSTxQXF2P48OE4ffo0BgwYgA0bNkAsFlu6W6QOM3U+k5SUBAAIDw/nl7m4uFi2sw0ABQVqiFwux8CBAwEAM2fOxN27d/m2oqIivPzyyygoKEDXrl3h4+NjqW6SOmrMmDEIDg7Grl27sGbNGn65UqnE66+/jszMTLRs2ZJO2Akh1ebIkSP8cLeNGzeif//+Fu4RqStkMhk/3OjVV18V1BZYtmwZ4uPj0a1bN7Rv395SXSR1mEqlwjPPPIN9+/ahe/fu+P333w3qJRFCLItjVDK2xiQkJKBr1664f/8+HB0d0blzZ9ja2uLUqVNIS0uDm5sbDhw4gJYtW1q6q6QOOn78OPr27Yv8/Hy0adMGwcHBOHv2LJKTk+Hu7o59+/ahVatWlu4mqScmTJiANWvWYMOGDRgzZoylu0PqIFdXV2RlZSEkJAQ9evQwuk63bt3w4osv1nLPSF1QVFSEmJgYnDhxAj4+PujevTtu3bqFEydOwN3dHcePH6faE8SoFStWYMaMGQCAJ5980uSw2o8//hgeHh612DNSHyUnJyMkJATh4eF8vSRSdVRToAaFhobi/PnzWLp0Kf766y8cPHgQjDEEBATglVdewTvvvAN/f39Ld5PUUZ06dUJcXBwWLlyIPXv24MKFC2jUqBEmT56MuXPnUkEnQki1ysrKAgAkJSXx6ZnGUFDAOtnY2GDfvn14//33sX79emzduhWurq4YP348Fi9ejICAAEt3kdRRmZmZ/OMtW7aYXG/BggUUFCDEQihTgBBCCCGEEEIIsVJUU4AQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIIYQQQgghxEpRUIAQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIIYQQQgghxEpRUIAQQgghhBBCCLFSFBQghBBCCCGEEEKsFAUFCCGEEEIIIYQQK0VBAUIIqeM4jivzZ8KECZbuptWIiYkBx3FITk6u8dfiOA7BwcE1/jp1WXBwsNljv759PrV5/BCd3r17IygoCAqFolLbZ2ZmwsbGBiKRCLdv3y5z/UmTJoHjOPznP/8BAMTFxYHjOHz00UeVen1CCKlJEkt3gBBCSPmMHz/eZFu3bt1qsSekOuzfvx+9evXC+PHj8eOPP1q6O+W2YMECLFy4EKtXr67VYNSoUaPg4OBgsNzDw6PW+kDqpx07dmDfvn346quvIJPJKrUPV1dXDBkyBL///jvWr1+Pd955x+S6RUVF+P333wEA48aNAwC0bt0aw4YNw5IlS/DCCy/Azc2tUv0ghJCaQEEBQgipJ+rThSOpHleuXIFUKrV0N+qEjz/+uN5lBRizdu1aFBQUwM/Pz9JdsRrvvvsuvLy8MGnSpCrt57nnnsPvv/+On3/+2WxQYNu2bcjOzkbbtm3RrFkzfvmcOXPw559/YunSpVi6dGmV+kIIIdWJhg8QQgghdVRERARCQ0Mt3Q1SjQIDAxEREUHBnlpy5MgRxMfHY8yYMZXOEtAaPHgw3N3dcenSJZw/f97keuvWrQOgCSLo69SpE5o0aYJVq1ZVehgDIYTUBAoKEEJIA6Qda61SqfDhhx8iLCwMcrkcAQEBePvtt1FcXGx0u7y8PCxatAitWrWCnZ0dnJyc0LNnT2zdutVg3eTkZHAch5iYGOTk5GDWrFkICQmBVCrFjBkz+PXi4uIwaNAgODs7w9nZGQMGDMCpU6fw448/guM4LFiwgF+3ZcuW4DgO169fN9q/5ORkiEQiNG3aFIyxMj8H/fHb69evR6dOneDo6AgXFxd+HcYY1qxZgx49esDFxQW2traIjIzExx9/jJKSkjJfQ+vQoUN49dVXERkZCVdXV9ja2iIiIgLvvPMOsrKyBOtOmDABvXr1AgCsWbNGMEZe//MoPWZ+8+bN4DgOY8aMMdmPl19+GRzH4bvvvhMsr8h3a0pwcDAWLlwIAJg4caKg3/v37xes+9NPP6Fbt25wcnKCnZ0dIiMj8f7776OoqKjcr1cZycnJmDp1KoKDgyGXy+Hp6YnY2FjEx8cbrKt/DF6/fh1jxoxBo0aNIBKJsHXrVsExnp+fj5kzZyIgIAC2trZo06YNtm3bxu/rt99+Q4cOHWBvb49GjRph+vTpKCwsNHjNytYUOHz4MJ588kl4eXlBLpcjODgY06dPx8OHDw3WnTBhAv+dHDx4EL1794ajoyOcnJwwZMgQXL582eTrbNu2DQMGDIC7uztsbGwQFhaGefPmIS8vz+x7MfX7lZeXhzfffJP/3Jo3b47PPvsMjDGD4/ujjz4SjMM3plevXuA4DocPHy7X5/b9998DAMaOHWtynQsXLmDs2LHw8/ODXC6Hr68vJk6caPAdyWQyPP300wCAn3/+2ei+MjIy8Ndff0EsFhv9PX3mmWeQnp6OLVu2lKv/hBBSKxghhJA6DQCr6J9rACwoKIiNHj2a2dvbs169erGhQ4cyZ2dnBoCNHTvWYJt79+6x5s2bMwDMz8+PDRs2jPXt25fZ29szAOz9998XrJ+UlMQAsA4dOrDo6Gjm6urKRowYwUaOHMkWLFjAGGPsyJEjzNbWlgFgrVu3ZmPGjGGRkZFMJpOxqVOnMgBs/vz5/D4/++wzBoDNnj3b6PuaO3cuA8A++OCDcn0OPXv2ZADYlClTmEgkYt27d2djxoxhXbt2ZYwxplKp2FNPPcUAMCcnJ9anTx82fPhw5u3tzQCwwYMHM5VKZXSfSUlJguUdO3ZkcrmctW3blo0cOZINGTKE+fj4MACsRYsWLDc3l1/3u+++YwMGDGAAWGhoKBs/fjz/s2XLFn497feoVVRUxJydnZmtra1gf1olJSXMw8ODyWQylpGRwS+v6HdryqxZs1hUVBQDwLp27Sro95UrV/j1pkyZwgAwGxsbNnjwYBYbG8s8PDwYANa5c2dWUFBQrtdjjLGgoCCjn7cxhw4dYk5OTvxnHhsbyzp37sw4jmO2trbs33//Fay/evVqBoCNGTOGOTk5sZCQEDZ69GjWv39/tn37dv4Y79y5M+vYsSPz8PBgQ4cOZTExMUwkEjGxWMx2797Nli1bxiQSCevcuTMbMWIEc3d3ZwDYs88+a9BHU8ePOStWrGAcxzGxWMw6d+7MYmNjWUREBAPAQkJCWFpammD98ePHMwBs5syZTCwWs6ioKDZq1CgWFhbGADB3d3d29+5dg9eZOXMm/7316NGDjRw5kv/827Zty/Ly8oy+F1O/X4WFhaxDhw4MAPP09GSxsbFs4MCBTCaTsenTpxsc3w8fPmRyuZz5+PiwkpISg/7duHGDcRzHIiIiyv3ZeXl5MXt7e4PfY61NmzYxmUzGv8fY2FjWunVr/nO6ePGiYP2jR4/yv0fG9vn1118zAGzQoEFGX2/v3r0MAHvuuefK/R4IIaSmUVCAEELquMoGBQCwZs2aCS4+EhMTmaurKwPAbt68Kdhm0KBBDAB76623mEKh4JcnJCSw0NBQJhaL2fnz5/nl2gsm7UVTZmamYH8qlYq/CPnwww8FbYsWLeK31Q8KZGVlMTs7O+bl5SXoA2OMKZVK5ufnxyQSCbt37165PgftRYuNjQ3bv3+/QfvSpUsZANavXz/24MEDfnleXh574oknGAD2xRdfGN1n6Yu6HTt2CC7EGdNcxGsvkBcuXCho27dvHwPAxo8fb7L/pS+aGGNs0qRJDABbu3atwfo7duxgANiIESMEyyv63Zozf/58BoCtXr3aaPumTZv4i6YbN27wy7Ozs1m3bt3MBn2MKW9QIDs7m3l7ezOpVMp+++03Qdvu3buZTCZjfn5+rLi4mF+uDQoAYK+++ipTKpWC7fSP8ZiYGMH3q922SZMmzM3NjR08eJBvS01NZV5eXgwAS0hIEOyzokGBY8eOMZFIxIKCggTfkVqt5n+PYmNjBdtogwIikYitX7+eX65UKtmoUaMYADZv3jzBNhs3buSDd/p9UygU/DH85ptvGn0vpn6/Fi9ezP99yM7O5pefP3+e/ztU+vh+9tlnGQC2detWg/29/fbbDAD75JNPTH9geq5cucIAsB49ehhtT0xMZHZ2dszZ2ZkdOHBA0LZmzRoGgLVv395guyZNmjAAbO/evQZt2mN83bp1Rl8zJyeHiUQiFhwcXK73QAghtYGCAoQQUsdpL0rM/ejfXdbfZs+ePQb7e+211wwu6uLi4hgA1qVLF6ZWqw222bp1KwPAXnvtNX6Z/gXTqVOnDLbZvXs3A8AiIiIM9qlUKllISIhBUIAxxiZOnMgAsE2bNgmWb9u2jQFgI0eONPVRGdBetLzyyisGbdq76o6Ojuzhw4cG7ffu3WNyuZy1atXK6D7Le1FXUFDAJBIJa9OmjWB5ZYMC2juNAwYMMFh/7NixDIDgorgy3605ZQUFevTowQCwH374waAtPj6ecRzHHB0dBRfn5miDAqZ+4uLiGGOMffrppwwAmzNnjtH9zJgxgwFgmzdv5pdpL+w9PT1Zfn6+wTbaY1wsFgsCHIxpgl6enp4MAHvvvfcMtn3jjTeMfk4VPX6GDx/OALBdu3YZtKnVata6dWsmEokEx7A2KDBu3DiDbc6cOcMAsJ49ewqWazNArl69arBNYWEh8/b2Zi4uLoK74+Z+vxhjzN/fnwFgx44dM2h77733jB7fBw4cYADY0KFDBctLSkqYt7c3k8lkRn9fjdEGOiZPnmy0/fXXX2cA2DfffGO0fcSIEQwAO3PmjGD5ggULGAA2adIkwfLk5GTGcRxzcHAwejxp+fn5MQCCQAkhhFgS1RQghJB6Yvz48SZ/AgMDDdaXSqWIiYkxWB4WFgYAuHv3Lr9s9+7dAIDhw4eD4ziDbbRTHp46dcqgzcfHB+3atTNYfvToUQBAbGyswT7FYjFGjhxp9H1OmzYNAAzGxGufT5482eh25gwbNsxgWVxcHNLT09GtWzej09o1atQITZs2xcWLF42ODTcmNTUVX3/9NWbMmIFJkyZhwoQJeOmllyCTyXDjxo0K99uYmJgY+Pn5Yc+ePXjw4AG/vKCgAH/88QecnJwwdOhQfnlVvtuKKikpwfHjx8FxHJ599lmD9latWiEyMhK5ublmC7UZM2rUKKPHvnZqN+37HDFihNHtzb3Pvn37ws7OzuRrBwcHo0mTJoJlIpEIQUFBAIB+/foZbKMtEKn/e1ZRarUae/fuhaOjI/r06WPQznEcunbtCrVajTNnzhi09+/f32CZsd//Bw8e4Pz582jWrBnCw8MNtrGxsUG7du2QlZVl9Dg29vt1+/ZtpKSkwN/fH506dTJof+qppwyWAUCPHj3QvHlz/PXXX0hNTeWXb9u2Dffu3cOTTz5Z7mkotb8frq6uRtv1fzeMMXXMaAsIbt68WVAjY926dWCMYeTIkWaPJ+0xa6weBCGEWAJNSUgIIfVERack9PHxgVgsNliunetdv9igtqDW22+/jbffftvkPtPT0w2WGQtIAEBaWhoAICAgwGi7qe06dOiA1q1bY/fu3bh16xaCgoJw9+5d7Ny5E4GBgUYvdMpi7LW07/mvv/4yerGsLyMjo8wp5JYtW4Y5c+bUeFVxkUiEMWPG4JNPPsHGjRvx2muvAQD+/PNP5OXlYeLEibCxseHXr8p3W1GPHj2CQqGAt7e3oA/6goODcf78ef74KK+ypiTUvs+OHTua3U9FjmEtU9+9vb29yXZtm6minuXx6NEjvsCfRGL+lM3Y+/L39zdYZuz3/9atWwA0U2CW9buQnp5uEDgw9vlV9vcfAKZMmYIZM2Zg1apVmDdvHoDKBQWzs7MBAI6OjkbbtceMt7e32f2U/mwbN26MLl264OjRo9i+fTtiY2MBmJ51oDQnJydB/wghxNIoKEAIIQ1UWSf3+lQqFQCge/fuaNy4scn1jN2hM3XxV1Y/mJnZA6ZOnYpp06Zh1apVWLhwIVavXg2lUokXXngBIlHFk9yM9VH7nps2bYouXbqY3V4ul5ttP378OGbNmgVnZ2d8++23iImJgbe3N7+dr69vle4YlzZ27Fh88sknWL9+PR8UWL9+Pd+mryrfbWWV59iryPFZHtr3+dRTT5m9S2ssaFDZY7i87ZWlfU+Ojo4mM2u0tFkLlemX9nV8fHzKDLq5u7sbLDP3+VXmsxk/fjzmzJmDVatWYe7cuUhJScGuXbvQuHFj9O7du9z7cXZ2BgDk5OQYbVepVOA4Ds8//7zZ/bRo0cJg2XPPPYejR4/i559/RmxsLOLi4nD58mX4+vqW2UdtMEDbP0IIsTQKChBCCOHvKMbGxmL69OnVsk8fHx8AmjRiY+7cuWNy27Fjx2L27Nn8ncIffvgBIpEIkyZNqpa+Abr33LJlywpnYZSmnV7sv//9L8aPHy9oKywsxL1796q0/9Jat26NZs2a4fjx40hMTISrqyt27doFHx8ffqpDrZr4bk1xd3eHTCbDvXv3UFhYCFtbW4N1tHeltcdHdfH398e1a9cwd+5cREZGVuu+LcXDwwNyuRxSqbTKx6g52mPE29u72l6nrN9/U8sBwMXFBaNHj8aPP/6I3bt349ixY1Cr1XjxxRcrFGTw8vICoMn0Mcbf3x8JCQn47LPP+Lv35TV69Gi8/vrr+Ouvv5CZmclnCTz77LNlBi4zMzMBAJ6enhV6TUIIqSlUU4AQQgj69u0LABWas74s2rvvmzdvNsgKUKvVZufpdnBwwLPPPouUlBTMnj0biYmJGDRokNF06Mpq3749nJ2dsW/fPpN3EstLe5JvLFX6t99+M5oVIZPJAABKpbJSr6nNCFi/fj1+++03KBQKPPPMMwYXJNX93Zrrt1QqRadOncAYw4YNGwzaL168iPPnz8PR0RFRUVHV0h+tmjiGLU0ikSAmJgYZGRk4ePBgjb2Ov78/wsPDER8fj6SkpGrZZ1BQEHx9fZGSkoITJ04YtG/atMns9lOnTgUAfPPNN1i1ahUkEgkmTJhQoT5oj7GrV68aba/KMePq6oohQ4ZAoVDgl19+4Y/3cePGmd0uJycHaWlpCAkJqXAgghBCagoFBQghhKBTp07o06cP9u3bhzfeeIMfx6ylVqvxzz//4PDhw+XeZ+/evdGkSRNcuXIFn376qaDtgw8+QGJiotnttQUHly9fDqByBQbNkcvlePPNN5GVlYVRo0bxd7D1xcfHY+PGjWXuS1u87YcffkBJSQm//PLlyybH8fv6+gIArl27Vpnu84X81q1bZ3LoAFD9321Z/dYOZ5g/f77gO87NzcWrr74KxhimTp3KBxeqy9SpU+Hp6YklS5Zg9erVBoGY/Px8rF27FikpKdX6ujXt3XffhUgkwvjx441+R2lpaVi5cmWVX2fu3LlQqVQYNWoULl68aNCekJCAVatWVWif2gv7WbNmITc3l19+8eJFfP7552a37dSpE6KiovD777/j9u3bGDp0aIWzS8LDw+Hl5YWzZ88aDWLNmjULtra2eOONN7Bt2zaD9oyMDHz55ZcmC41qawfMmzcPaWlpaNWqVZnBrlOnToExhu7du1fovRBCSE2i4QOEEFJPmLtLFhgYiEWLFlVp/+vWrUP//v2xfPlyrF27FtHR0fD09ERqaiquXbuGhw8f4tNPP+UrcpdFLBZj9erV6NevH2bNmoV169YhPDwcly9fxpUrVzB58mR89913Ji8Oo6Oj0aFDB5w8eRI+Pj4YMmRIld6fMe+++y4uX76MDRs2IDw8HG3atEFgYCDS09ORmJiIpKQkDB8+HKNHjza7n4kTJ+KTTz7Btm3bEB4ejvbt2yMjIwMHDhzAiBEjcPLkSYOgQ3BwMCIjI3H69Gl06NABLVq0gFgsxrBhw4xWcy8tJCSEL3Z29epVREREoE2bNkbXrc7vtn///rCxscGnn36KixcvwtfXFxzHYfbs2QgPD0dsbCymTJmCb7/9Fi1btkTv3r1hZ2eH/fv34+HDh+jUqRMWLlxY5utUlKurK7Zs2YJhw4Zh0qRJWLhwIVq2bAm5XI7bt2/jypUryM/PR1xcXLVmnNS0Hj16YMWKFZgxYwa6d++OyMhING3aFEVFRbh16xauXLkCBwcHvPLKK1V6nXHjxuHChQv48MMPER0djdatWyMkJAQ5OTm4desWrl69iqioqAoN4Zk9eza2bduGI0eOIDQ0FDExMcjLy8O///6LyZMn44svvjAbHJo6dSpefvllAJUPCg4ePBg//vgjTpw4ga5duwramjZtip9//hnjxo3DsGHDEB4ejmbNmoExhlu3buHy5ctQKBR49tlnjQ6FGTJkCNzc3PDo0SMAZWcJAMD+/fv5fhFCSJ1hsckQCSGElAvMzNGu/YmKijLYpvT831raudnnz59v0FZQUMCWLVvGOnbsyBwdHZlcLmfBwcGsf//+bOXKlYL5wbVzuJee77y006dPswEDBjBHR0fm6OjI+vTpw44dO8b++9//MgDs66+/NrntnDlzGAD27rvvmn0NU8o7J/ymTZvYwIEDmYeHB5NKpczHx4d16tSJLViwwGDedlP7vHPnDnv22WeZn58fs7GxYc2aNWPvv/8+UyqVLCgoiBn7l3vjxg02YsQI5u7uzkQikcH3Yu57ZIyxlStX8sfAokWLzL7Hiny3Zdm1axfr2rUrc3Bw4F9/3759gnXWrl3LunTpwhwcHJiNjQ1r0aIF+9///scKCgrK/TqMMf6zK+s71EpNTWWzZs1iERERzNbWljk4OLCwsDA2evRotnHjRlZcXMyva+53gbGyj3Fzx5epfZf3mCzt9OnTbOzYsSwgIIBJpVLm5ubGIiMj2SuvvML2798vWHf8+PFGvxMtc8fV3r172ZNPPsm8vb2ZVCplXl5erE2bNmz27NnszJkzFX4v2dnZ7I033mB+fn5MJpOx8PBw9sknn7A7d+4wAKxTp04mt7127RoDwPz9/ZlSqTS5njlHjhxhANjLL79scp3r16+zqVOnssaNGzO5XM6cnZ1Zs2bN2MSJE9n27duZWq02ue20adMYACYSididO3fK7E9oaCjz8PAQHIeEEGJpHGNmyj8TQgghNWTQoEH4+++/cfz4caMV4RljiIiIwI0bN3Dz5k2zlfMJIfXLxo0bMWbMGEybNg1fffWV0XWWLFmC//znP5g/fz4WLFhQ6ddq3bo1UlJSkJKSUuZMIjXp2LFj6NKlC9566y0sXbrUYv0ghJDSqKYAIYSQGpORkWGQNs8Yw+eff46///4bTZo0QYcOHYxuu2nTJly/fh2DBw+mgAAh9dS5c+egVqsFyy5cuIC33noLgK42Rmk5OTn88IIpU6ZUqQ//+9//kJ6ejh9++KFK+6mqDz74AC4uLvx7J4SQuoIyBQghhNSY48ePo0uXLoiMjETjxo2hUqlw8eJFJCYmwtbWFjt37kRMTIxgmxdffBFZWVnYvn07lEolTp48aXKsPCGkbouIiEBOTg5atWoFV1dXJCcn4/Tp01CpVEazBFavXo0DBw7g4MGDSEpKwhtvvIFly5ZVuR+9e/fGzZs3cfPmzWovclkecXFxaNOmDZYuXUpBAUJInUNBAUIIITXmwYMHWLBgAfbt24e0tDQUFhbCy8sLPXv2xDvvvINWrVoZbMNxHCQSCcLCwrB48WKMHDnSAj0nhFSHlStX4pdffsH169eRmZkJOzs7REZG4oUXXsD48eMN1p8wYQLWrFkDT09PjBkzBh999JFFU/4JIcQaUFCAEEIIIYQQQgixUlRTgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVIUFCCEEEIIIYQQQqwUBQUIIYQQQgghhBArRUEBQgghhBBCCCHESlFQgBBCCCGEEEIIsVL/B9WmHgU+JXPjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.plot(dft_energy-fermi_energy, dft_dos, label='Initial DFT total')\n", + "ax.plot(energies[0], np.sum(doss, axis=(0, 1)), label='PLO from CSC')\n", + "#for energy, dos in zip(energies, doss):\n", + "# ax.plot(energy, dos.T)\n", + "ax.axhline(0, c='k')\n", + "ax.axvline(0, c='k')\n", + "ax.set_xlim(-8, 5)\n", + "ax.set_ylim(0,)\n", + "ax.set_xlabel('Energy relative to Fermi energy (eV)')\n", + "ax.set_ylabel('DOS (1/eV)')\n", + "ax.legend()\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "2a2a3293-3ef7-4457-942d-8a6bdcaabe29", + "metadata": {}, + "source": [ + "This plot shows the original DFT charge density and the PLO-DOS after applying the DMFT charge corrections. It proves that we are capturing indeed capturing the eg bands with the projectors, where the partial DOS differs a bit because of the changes from the charge self-consistency. Note that this quantity in the CSC DMFT formalism does not have any real meaning, it mainly serves as a check of the method. The correct quantity to analyze are the lattice or impurity Green's functions.\n", + "\n", + "## 3. Plotting the results: observables\n", + "\n", + "We first read in the pre-computed observables from the h5 archive and print their names:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d353c296-868a-45b5-bda6-2481d4df74ed", + "metadata": {}, + "outputs": [], + "source": [ + "with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5', 'r') as archive:\n", + " observables = archive['DMFT_results/observables']\n", + " conv_obs = archive['DMFT_results/convergence_obs']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ad578719-aa61-4560-baba-f01a4f28b726", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['E_DC', 'E_bandcorr', 'E_corr_en', 'E_dft', 'E_int', 'E_tot', 'imp_gb2', 'imp_occ', 'iteration', 'mu', 'orb_Z', 'orb_gb2', 'orb_occ'])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "observables.keys()" + ] + }, + { + "cell_type": "markdown", + "id": "bd150f57-3a8c-418a-a088-470180c86d87", + "metadata": {}, + "source": [ + "We will now use this to plot the occupation per impurity `imp_occ` (to see if there is charge disproportionation), the impurity Green's function at $\\tau=\\beta/2$ `imp_gb2` (to see if the system becomes insulating), the total energy `E_tot`, the DFT energy `E_dft`, and DMFT self-consistency condition over the iterations:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "41e955de-7a19-4e1f-bf27-f6973a8855d1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAS/CAYAAAC5X2fcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUVf4G8PdOTW+UJEBo0iUgVRAQUEHBAliwUxZcdNVFLKurS9HVVdZ1FQsqEor6Q0AFpKksSlWQAAqh10BCQiCQXqbe3x93ZjKTTDKTycydm+T9PM995s5t50wISt6c7zmCKIoiiIiIiIiIiIiISBFUwe4AERERERERERERVWBgR0REREREREREpCAM7IiIiIiIiIiIiBSEgR0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2BERERERERERESkIAzsiIiIiIiIiIiIFYWBHRERERERERESkIAzsiIiIiIiIiIiIFISBHRERERERERERkYIwsCMiIiIiIiIiIlIQBnZEREREREREREQKwsCOiIiIiIiIiIhIQRjYERERERERERERKQgDOyIiIiIiIiIiIgVhYEdERERERERERKQgDOyIiIiIiIiIiIgUhIEdERERERERERGRgjCwC6L9+/fjX//6F0aNGoWkpCTo9XpERESgU6dOmDRpEnbs2OH3NpcvX45bb70ViYmJCAkJQdu2bfHoo49i9+7dfm+LiIiIiIiIiIhqTxBFUQx2JxqjoUOHYvv27R6ve/TRR7Fw4ULodLo6tVdeXo777rsP69evd3tepVJhzpw5mDlzZp3aISIiIiIiIiKiuuEIuyC5cOECAKBFixaYPn06vvnmG+zZswe7du3Cf//7X7Rs2RIA8MUXX2DSpEl1bm/KlCmOsG748OFYs2YN9uzZg5SUFFxzzTWwWq2YNWsWFi5cWOe2iIiIiIiIiIjIdxxhFyR33HEHJkyYgHvuuQdqtbrK+dzcXAwaNAgnTpwAAGzfvh1Dhgzxqa1t27Zh2LBhAIA777wTq1evdmkzNzcXffr0wfnz5xEbG4szZ84gJibGp7aIiIiIiIiIiKhuOMIuSNavX4/x48e7DesAoGnTpnjnnXcc77/55huf2/r3v/8NAFCr1Zg/f36VNps2bYq5c+cCAPLy8pCSkuJzW0REREREREREVDcM7BTMPioOAE6fPu3TM4qLi/HTTz8BAEaMGIFWrVq5ve7uu+9GVFQUAGDVqlU+tUVERERERERERHXHwE7BjEajY1+l8u2Pas+ePTAYDACkhS6qo9PpMGDAAMc9JpPJp/aIiIiIiIiIiKhuNMHuAFVv27Ztjv0uXbr49IyjR496/YwuXbpg06ZNMJvNOHnyJLp16+ZVG5mZmTWeLy8vx7FjxxAfH49mzZpBo+G3HRERERERERHVf2azGZcvXwYAJCcnIyQkxC/PZXKiUFarFW+99Zbj/fjx4316TkZGhmO/unJYu6SkJJf7vA3snO8jIiIiIiIiImqM9uzZg379+vnlWSyJVah3330Xe/bsAQCMGzcOffv29ek5RUVFjv2IiIgarw0PD3fsFxcX+9QeERERERERERHVDUfYKdC2bdvw0ksvAQCaN2+Ojz/+2OdnlZeXO/Z1Ol2N1+r1esd+WVmZ1204j+Kr7vwNN9wAQEqbExMTvX42EREREREREZFSZWdno3///gCAZs2a+e25DOwU5vDhwxg3bhzMZjP0ej1WrlyJ+Ph4n5/nXDvtvIiFO/bFKQAgNDTU6zY8ldo6S0xMrNX1RERERERERET1gT/n7GdJrIKcPXsWI0eORF5eHtRqNb766qsaV3b1RmRkpGPfU5lrSUmJY99T+SwREREREREREQUGAzuFyMrKwi233IKsrCwIgoBFixZh3LhxdX6u82g2T6u5Ope2ciEJIiIiIiIiIqLgYGCnALm5uRgxYgTOnDkDAPjggw8wYcIEvzzbeaXXY8eO1Xit/bxGo0GHDh380j4REREREREREdUOA7sgKygowK233oojR44AAN566y08+eSTfnt+v379HItNbNu2rdrrjEYjdu/eXeUeIiIiIiIiIiKSFwO7ICotLcXtt9+O/fv3AwBeeeUVvPjii35tIzIyEjfffDMAYPPmzdWWxa5atQqFhYUA4JdSXCIiIiIiIiIi8g0DuyAxGo0YN24cfvnlFwDA9OnT8frrr9f6OUuWLIEgCBAEAXPmzHF7zfPPPw8AMJvNePLJJ2GxWFzO5+bmOoLCmJgYTJ06tdb9ICIiIiIiIiIi//DferNUKw8++CA2bdoEALjpppswZcoUHDp0qNrrdTodOnXq5FNbN910Ex544AEsX74ca9euxYgRI/DMM8+gRYsWSEtLwxtvvIHz588DkEpyY2NjfWqHiIiIiIiIiIjqjoFdkKxatcqx//PPP6NHjx41Xt+mTRukp6f73N6iRYtQWFiIjRs3YsuWLdiyZYvLeZVKhZkzZ2LatGk+t0FERERERERERHXHkthGIjQ0FBs2bMD//d//YcSIEWjevDl0Oh2SkpLw0EMPYefOndWW1BIRERERERERkXwEURTFYHeCGrbMzEwkJSUBADIyMtCqVasg94iIiIiIiIiIqO4ClXlwhB0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2BERERERERERESkIAzsiIiIiIiIiIiIF0QSr4cLCQhQVFcFisXi8tnXr1jL0iIiIiIiIiIiIKPhkDez+97//Yf78+dixYwfy8vK8ukcQBJjN5gD3jIiIiIiIiIiISBlkC+z++te/4qOPPgIAiKIoV7NERERERERERET1iiyB3bJly/Dhhx8CAEJCQjB27Fj06dMHcXFxUKk4jR4REREREREREZGdLIHdp59+CgBISkrCzz//jGuuuUaOZomIiIiIiIiIiOodWYa3HTx4EIIgYPbs2QzriIiIiIiIiIiIaiBLYGcymQAAvXr1kqM5IiIiIiIiIiKiekuWwK5t27YAgOLiYjmaIyIiIiIiIiIiqrdkCezuvvtuAMBPP/0kR3NERERERERERET1liyB3XPPPYfWrVvjvffew7Fjx+RokoiIiIiIiIiIqF6SJbCLjo7GDz/8gPj4eAwaNAjz589HXl6eHE0TERERERERERHVKxo5Gmnfvj0AoLS0FHl5eXj66afx17/+FU2bNkVYWFiN9wqCgNOnT8vRTSIiIiIiIiIioqCTJbBLT093eS+KIkRRxKVLlzzeKwhCgHpFRERERERERESkPLIEdhMnTpSjGSIiIiIiIiIionpPlsBu8eLFcjRDRERERERERERU78my6AQRERERERERERF5h4EdERERERERERGRgshSEutOTk4ODh06hKtXrwIA4uLi0L17d8THxwerS0REREREREREREEna2AniiIWLFiADz/8EEeOHHF7Tbdu3fD000/jscce4wqxRERERERERETU6MhWEpuXl4chQ4bgL3/5C44cOQJRFN1uR44cwRNPPIEbb7wR+fn5cnWPiIiIiIiIiIhIEWQZYSeKIsaMGYNff/0VANCkSROMHz8e119/PRISEiCKInJycrBnzx6sXLkSubm5+PXXXzFmzBhs27ZNji4SEREREREREdWZ1Sqi3GxBiEYNlYqVg57w6+WeLIHdsmXLsHPnTgiCgIceegjz589HZGRklesmTJiAt956C08++SS++OIL7Ny5E1999RUefPBBObpJREREREREROSTI1mFWLjzDL5Pu4gykwWhWjVGJSdg6uD26NYiKtjdU1wwpvSvV7AJoiiKgW7k9ttvx/fff49hw4bh559/9uqe4cOHY9u2bRg1ahQ2bNgQ4B5SIGVmZiIpKQkAkJGRgVatWgW5R0RERERERET+890fF/DcygMwW6tGLBqVgHfG98SY61oGoWfKDMaU/PWqrUBlHrLMYbd//34IgoCnnnrK63uefvppAMDvv/8eqG4RERERERERkQdWq4hSoxlWN+FKMCmlX0eyCqsNnwDAbBXx3MoDOJJVKHPPpGDsrg93YtX+CygzWQAAZSYLVu2Xjn/3xwXZ+6Tkr5eSyFISe/XqVQBAu3btvL7Hfq39XiIiIiIiIiKSjxJHZsnVL6tVRGG5CXmlJuSXGpFfakJ+mRF5Jbb3ZRXn0jILqg2f7MxWEXd9uBPRoVroNSroNCroNWrotSro1KqK1yrHpPfO90ivzpvzsYr9c1dK8OzKA7DUEIw9u/IAYsO0aNc0AkaLFSaLFWaLKO2brTBbXfdNFiuM7vbN0r0m237l+5z3D13w7uuVsvMs3hnf0+c/w/pOlsAuOjoaV65cQVZWFnr16uXVPVlZWQCAqCjWLRMREREREVHDp6Q5xtyVLNpHZq39IytoJYu17Zcoiig2mKXArdSEPFvYZg/h8uxhXKkReaUmFJRJxwrKTPD3BGJmq4grJUb/PrSOLFYRExalBrsbbm1My8bb9/YI+t+FYJElsOvevTu2bduGxYsX4/bbb/fqnkWLFjnuJSIiIiIiImqogj2SzWyxosRgQbHRjOJyMw5dKMDfvjkISzWJldkqYsaKP3DoQgESokMBAAIAwZarSPvSG0GQ3tvfuF4nVLqn4jjcPCs7vwzvbj6B6gZnma0inln+BxZsPw2DWXSEcp5Gc5EylZksKDdbEKaTJbpSHFk+9b333outW7di9erVmDNnDmbPnu34C1eZKIp49dVXsXr1agiCgPvuu0+OLhIREREREVEj0RBGshnNVpQYzCi2bSUGM4psryUGM4rKzSgxWFBitO+7Xuv8Wm6y1rrfVhH4bMfZOn32QBABHM4qCnY3yA9CtWqEaNTB7kbQyLJKrMlkQs+ePXHs2DEIgoBu3bph0qRJuP766xEfHw9BEHDx4kX89ttvWLp0KQ4fPgxRFNG1a1ccOHAAGk3jTFMbCq4SS0REREREShDskWyAVIJYVG5CYZkZf2TkYcaKA9WOZAOkEWbdWkTCKgooNpikkXAGM4zm2ods5Bu9RoXYMB1iwrTSFqpDbLgWMWE6xIRqselwDvadz/P4nGGdm+HPQ9rDYLHCYLLCaLHCYLLAYJbmgqt4tbjs2895Oub8vi50ahW0agEatQpatQo6x74Are2Y/byumn2tm+vt+xvTspF2ocBjP+7p3apezGEXqMxDlsAOAM6dO4ebbroJZ8+erXZ0nZ0oimjfvj1+/vlntG7dWo7uUQAxsCMiIiIiomBzN5LNTqMSvJ6TzWSxoqjcjMIyk/RabkJhmcn26vze3TXSiDYKDo1KsIVuUtAWE6ZDrD2EswVyjmDOHsqF6hCqq3mU15GsQtz14c4aS281KgFrnxosSzAsitIiD89/fQDrDmR7vP6uni0w954e0KoFqFWCx8ymrpT29aqrQGUesg1da9OmDQ4ePIg5c+YgJSUF+fn5bq+LiYnB1KlTMWvWLERERMjVPSIiIiIiImqgjmQVVhvWARVzsh3IyEeoTo3CMrM0Cs4WujmHcaVGi8y9Vy6VAAxs3wQQ4FigQRQBEaLTvo2b4/bxQyKc7kfFG+fjVtGKI9lFXi0EoVULePu+nogL07mMjIvQawISRnVrEYV3xvf0GAjLFT4JggC9Ro0nhnbA92kXPQZjjw+9xmMo6U9K+3oplWwj7JwZjUbs27cPhw4dwtWrVwEAcXFx6N69O/r06QOdTid3lyiAOMKOiIiIiKhxCsZccRariEtF5cjKL8OF/HJcyCvD13szcCa3RJb2g0EQgHCdBhF6DcL1akToNYgI0TiORYRoEK637esr76sRaTsfrpfueeGbA1i1/4LHduUuWXx25R+K7JfdkaxCpOw8i41p2Y6S69HJiZgyuF3Qwid/jSwNBCV+vXxR70tiqfFiYEdERERE1LgEcq64UqMZWfnluJBfJoVyebZX23axoLzBrQqqVQt48+5kRIVo3QZwoVr/BqJKLVlUar8qU9KiJoDygzGlfb1qi4Ed1VsM7IiIiIiIGo+6jOgRRRG5xUZHAOcI4vLKkFUgveaVmgL9EbymVQuIDtUiKkSLyFAtokI0iArRIirU/mo7Zr/GaT8qVIN/rD6EVb8rc8SYUkdmKbVf9UF9D8aUqt7PYUdERERERESBoZQfxL2ZK+7ZlQdQajBDo1a5hHL2UXPBXP1UJQCjuicgOkxXQ/BWcUyvUdVpTrSpQ9pj7YEsjyPGpgxu53MbvhpzXUt0bB6puJFZSu1XfaBSCQjTMQaqL/w6wu7zzz937E+YMMHtcV84P4vqH46wIyIiIiIKjECWnnpDFEUUG8zILzUhr9SIuT8cwy+nrgS8XW/oNSq0jAlFi5hQZOSV4tyVUo/3cCSbe0oJhCtTar+ocakXJbEqlfTbBUEQYDabqxz3qYOVntWQXLp0CXv27MGePXuQmpqK1NRUXLki/c9t4sSJWLJkiV/amTNnDl599VWvrt2yZQuGDRvml3btGNgREREREfmfv4OecpMFBWVS8JZXYkJ+qRH5tvf5pSbklUjv80uNyCu1nS81BW2+uLhwHVrEhDhCuZa2rUVMKFrGhqJJuM7xc6jS5z5T+hxjRFS9elMSW13+x6nyqoqPjw92F4iIiIiIqB7ytvTUbBERE6Z1CdjyKr3aA7gyk0XmT1E9jUpAQnSII4RrGSsFcS0coVxIrUr7urWIwjvje3oMOIMVjtn79/a9PThijIgA+DmwO3v2bK2OU4WkpCR07doVmzZtCmg7aWlpNZ5v107+uRGIiIiIiOqLYJXgWawirhQbcKnIgMtFBnzw80mPI9ssVhHPfX1Aph7WXuf4CLSMDXMZFdcyJgQtYkLRPDIEaj9/fevD3GecY4yI7Pz6X4I2bdrU6nhjN2vWLPTr1w/9+vVDfHw80tPTAx6Yde/ePaDPJyIiIiJqiAI1V1y5yYJLhQZcLi7HpcKKQO5SUbnTvgFXig0IUuWp1zQqAWqVAIMXi0YEY644gCPZiKj+YHQfRN7OK0dERERERMHjbq64MpMFq/ZfwNo/sqrMFSeKIgrKTK7hWzVhXFG5Mufrjg7VIiZMi5gwHWLDtIgN0yE6VHqNDZeOx9jex4RpERuuQ7hOjaPZRV7NFReMVU+dcSQbESmdLP+F+tOf/gRBEPD6668jMTHRq3suX76MF198EYIgICUlJcA9JCIiIiIiJVHK6o/ezBX3zIo/sHzPeZSZrLhsC+KMFs+jzOSSGKVHbLheCtbsAZvt1R7IxTgdjw7V+lyOqvS54oiI6gtZArslS5ZAEAQ899xzXgd2hYWFjvsY2BERERERNQ6BKj2tjtUqIr/M5AjaLheXV+wXGfDL6Sse54oTRWDXmat+75s7KgFoGqGHwWxFQZnJ4/XBKD2tD3PFEREpHccANzIjRozA/v37UVRUhJiYGHTr1g233XYbpk2bhtjYWJ+emZmZWeP57Oxsn55LRERERI1LbUtPqyOKIkqMFlwuMiC32OASwEmhXMV+brHBYyAnhxCtCs0jQ9AsUo/mtk3aD0GzKD2aRejRPEqPJuF6qFUCjmQVKrr0lHPFERHVjWIDu/LycgCAXq8Pck8als2bNzv2L1++jG3btmHbtm2YO3culixZgjFjxtT6mUlJSf7sIhERERHJqD6Vnj638gBiQqXyzcrBW+X3ZSaLzJ/AvZgwrUv4Zt93vI+S9iP1GgiC91//+lJ6yrniiIh8o9j/cv7yyy8AgPj4+CD3pGFITk7G2LFj0b9/f7Ro0QImkwnHjx/H//3f/2HTpk3Iz8/HPffcg3Xr1mHUqFHB7i4RERERBZjcpafulJssyCs1Iq/EhDe/P+pxpJvZKmLi4lRZ+lZbGpWAWXd2Q3yUFMo1jwpB0wgd9Bp1wNpk6SkRUcMliKLo9/Hfr732msv7OXPmQBAEPPHEE2jevHmN9xoMBpw+fRpr166FwWDAgw8+iC+//NLfXVSk9PR0tGsnDVmfOHEilixZ4pfn5ufnIyYmptrzn376KR5//HEAQIsWLXDq1CmEhoZ6/XxvSmL79+8PAMjIyECrVq28fjYRERER+Z+70lM7+8gsb0pPnZUZLbhaakReiRF5pUZcLTEiv9RkezXiaqlJenU6rpRRcHaxYVrH6LdmEdLr7jNXkHah0OO9wZgrzplSRkoSETU2mZmZjspDf2YeARlhZw/onImiiI8//tjrZ4iiiJCQELzwwgv+7l6jU1NYBwDTpk3D3r17sXDhQmRlZWHVqlV4+OGHvX4+AzgiIiIi7yghVPG29DQqRIsmETrklZocIZz0asLVUlsIV1IRwhnMylkV1Vm4Tl0RwjkFcRXvpXnj4sJ10GlUVe5X+lxxdiw9JSJqWAL2X3TngXv28M6bwXwhISFITEzEDTfcgOeffx49ewbvt1SNybRp07Bw4UIAwLZt22oV2BERERFRzYJRfmq1iigqN6OgzIT8MiMKykwoKDNh4Y6zXpWeTl6izNJTANCo4FigoWmVAK5iv2mEHuH6uv3IU1/miiMiooYlIIGd1er62zWVSgVBEHDo0CF069YtEE1SHTn/uVy4cCGIPSEiIiKqOyWMZLOry8qn9tVOC8qkkWwFZSYUlpmQX2pyBHD5ttfKxwvLTfD/5DeBIQiAViXAaPHc4Tt7JuL9B3rVaoGGuuJccUREJDdZxky3bt0agiBAp9PJ0Rz5IABTGRIRERHJTgkLKVTuj6fy0xkr/sD/juRArRIcgVthWUXw5mk0nNKoVQJiw6SVXOPCdIgJ0yIuXCe9D684HhuuRWyYDrFhOkSFanH8YpFXpadPDO0ga1hnZx9p9/a9PRQTBhMRUcMlS2CXnp4uRzNUB0eOHHHst2jRIog9ISIiovqkoYxkq4nBbEFRuRmFZSbptVx6LSo3obDM9up03Pm6nMJyj4GbVQTWH8yudb/koBaAuAg9YsMqwrXYcCl4q3jvei5Sr/Hpe6G+lJ5yrjgiIpID/09DAKSVYu2GDh0axJ4QERFRfVAfR7I9u/IAyk0WxIXrbaGaawBX8WpGUVlFCGdU6GIKtaFVC4gO1SIqVOtYLMKTu3q2wLwHrmPpKRERURAwsKvnlixZgsmTJwMAZs+ejTlz5ricT0tLQ2hoKDp06FDtMz799FOkpKQAABISEjBu3LiA9ZeIiIjqv0CNZHNmslhRYjCjqNyMYoNtq7Rf5Dhmwi+ncj2OZLNYRbz4bVqd+hVMKgGICtUiOlSLGFv4Fh2qRUyY9Cod17k9HqZTO4I3b1c9fXzoNSw9JSIiChLZA7stW7ZgzZo1OHDgAHJzc1FWVlbj/GmCIOD06dMy9lA+O3fuxKlTpxzvc3NzHfunTp3CkiVLXK6fNGlSrdvYt28fpk6diuHDh2PUqFFITk5GkyZNYDabcezYMXz55Zf43//+BwBQq9X49NNPER4e7tPnISIiosBRSumptyPZwrRqxEeHVArWqoZvRbbArXIgV26q/6PaakOtEjBlcFvEhOkQE6qrCOBsoVtUqNbnUtPKWHpKRESkfLL9H/DSpUt44IEHsG3bNgDVL3IgCILLuWD8Vk8uCxcuxNKlS92e++WXX/DLL7+4HPMlsAMAi8WCzZs3Y/PmzdVe06RJE6SkpOCuu+7yqQ0iIqKGQinBmJ1cpadWq4gSo60c1GmONnuJqH1eth8PX/RqJNtjX+zzW9+URKdWISpUg8gQLaJCbK+hGkTqtYgM0UjBWogGUSHS6xe7z2HHyVyPzx17XUu8PLqbDJ9AwtJTIiIiZZMlsDOZTBg1ahT++OMPiKKIXr16oUWLFtiwYQMEQcAjjzyCvLw87N+/H1lZWRAEAb1790b37t3l6F6DNnr0aKSkpGDXrl34/fffkZOTgytXrkAURcTFxaFnz5647bbbMGnSJERF8R9mRETUeCltTjbA+9JTURRRYrS4BG3OIVtRpRDONZST5mkrNpjRWBaNbxkTgqhQXUXg5iZocwRxTsFcZIgGIVp1rdpqFRuGXac9l59OGdyurh+r1lh6SkREpFyCWFM9qp989tlnmDZtGgRBwKJFizBx4kQcPnwYycnJEAQBFovFce13332HJ598Enl5efj8889xzz33BLp7FGCZmZlISkoCAGRkZKBVq1ZB7hEREZErd8GYnb08sK5zslUmiiLKTBaUGCwoMZhRYjRL+0YzSg0WnMwpwvs/n4SHwWyI0GtQajR7vK4+EwQgQqdBRIgGEfqK18gQDcJtx3edvoJjF4s8Puue3q3wzvieMvS6QjC+v4iIiEgegco8ZBlh9+233wIAbrvtNkycOLHGa8eMGYPu3bujb9++mDRpEnr06IGOHTvK0U0iIiKSkVJKT72Zk+25lQfQtkk4WseFVQnWig1mlBrNttDNFr4ZLCg1mm3nKq6puF663x+/Ni02mOv+kADRqgVEhWgR4RSsRepdg7dIvbQfbgvgIvRal0AuQq9BqNbz94i3CykEYyQby0+JiIiotmQJ7A4cOOAofXVHFEWXuequueYaTJ8+Ha+99hrmzZuHDz/8UI5uEhERNUhKCcbsglV6ajRbUVBmQkGZEfmlJuSVmpBfasTnu855nJPNbBUx5qNfarymoYnQa1xKQe1lomkXCnA2t8Tj/eN6tcC79/eSoacSpS+kwPJTIiIiqg1ZArurV68CANq1q/iNpk6nc+yXlpZWWZn05ptvxmuvveZYwZSIiIhqpz7PyVYTo9mK/DIjCkpNyC8z2cI3+3spjMuvvF9qRInRUuNzG5IwnbrKfGzO87JFOYdwlRZLiAzRIkKvgbqaMMnbkWyPDbkmUB+vWvVhJBtXPiUiIiJvyPKvBZ1OB7PZ7BLSOS9wcOHCBXTq1MnlnpCQEMc5IiIiqh1/BGP+5k3p6YwVf+BgZj70GjXyy0wosIVx+aUmFJQ17OBNJQDheql0NFSnQvqVUq9KZvUaFb55YiBiQnWOElKNWhWwfnIkGxEREVHgyRLYtW7dGseOHUNOTo7jWHx8PCIjI1FcXIzffvutSmB3+PBhAHAplSUiIlIypZSeehOMPbvyAEK0aiTFhsFoscJotm0WC4xmKwy2reJ41X2Dy3tLlesMld7nlRo9lp5aRSBlZ3oAvir+F6pVSwGbXo1wnfQappMCszBdxbmqxzQIt+/rNAjTqxGh10CvUbn8u+fZlX9g1X7Pv7i8o0cLJLeMCeAnrYoj2YiI3DMajSguLkZJSQmMRiOsVmuwu0REHqjVaoSEhCAqKgrh4eGKyaFk+VdM7969cezYMfz+++8YNWqU4/iNN96IDRs2YN68eRg/fjz0ej0AoKCgAP/+978hCAK6desmRxeJiIh8JnfpqdliRZ5t5NmVYiOulhhxtdSIq8VGXC0x4KdjlzwGYxariGlf7PN73+qLCL0G0aFaxIRpcanIgMtFBo/33HptPF4b0x3htkUQqisZ9Zepg9tj7R9ZilxEAeBINiIiZ6IoIjc3F7m5ucHuChHVktlshsFgQEFBAUJDQ9G6dWuoVIGrVvCWLIHdzTffjP/7v//Dhg0b8PLLLzuOP/7449iwYQN+//13JCcnY8yYMSgtLcW6deuQmZkJQRAwYcIEObpIRETkE3+UnpYZLbhSYkBeiQlXSgxSAFfdZisPJUmkXoPoMCl4iw3TOUK4mFCd9BqmQ4z9WJgW0bbjWqeSUW/nZJt+cyfER4XI8bEAKL/01I4j2YiIgOzsbBQUFLgcEwQBarU6SD0iIm9ZLBaItnlIysrKcP78ebRp0yboI+0EUfRmdpS6yc/Px3XXXQdRFPHzzz/jmmsqJiGeOnUqFi1aJHXG9sWwd+nWW2/Fhg0bFJFsku8yMzORlJQEAMjIyECrVq2C3CMiqu+UVHrqKehRCcBTwztAr1VXG8KVmRrmnGy+UgnA6ORExIZVH7rFhmkRFeoavNWFu+DVzh6MyT3nn92RrEJFl54SETV25eXlOHv2rON9kyZNEBUVBb1eH/Qf+InIM6vViuLiYly8eBEWi/Tv8qSkJERERHh1f6AyD1kCO09SUlKwcOFCHD58GGazGR07dsSECRMwffp0aDT8jW19x8COqP5SSjBmJ2fpqSiKKDFakF/quupoXqkJBbZjm47k4PzVUr+2KzcBgF6rgk6tgk6jhl6jgk5jfy9t1R5zeq9Tqyv2NSro1ZXu1ajw2fYz2H7Sc6nQPb1b4Z3xPQP/4StRejCmtL+PREQkuXjxIvLy8gAAzZs3R5MmTYLcIyLyRWFhoWPh05iYGCQmJnp1X4MO7KhhY2BHVP/IPSebN3wdASWKIkqNFuSXmZBXYkRBmeuqo3klRuSX2QK50or9gjIjTBbl/y8yKkSDuHCdbdMjLlyLPzLycSKn2OO9d/dqif/ef13gO2njbenp2qcGBzUgYzBGRES1cebMGRgM0lyonTp1YhksUT1ltVpx4sQJiKIIvV6P9u3be3VfoDIPDl8jIlIAJQUE/piTra6sVhFGixUm2wqjR7IK8ezKA7DUsOrpMyv+wPoDWYAgVIyKKzOhoNQEo6V+rNCmUQmIDdchLswWwEVU7DeJ0CE2TIcmTsdjw3VuS0K9DcamDvHuHyH+wjnZiIioIbKX0Gk0GoZ1RPWYSqWCWq2G2Wx2/L0OJv5rlIgoiJQ0kk0URRzIyPcYjM1Y8QdOXipCk3A9TBYrTBYRBnNFuGZ/NdrOGc0W26t0zH5NxfVV7/e0wqn7/gP/O3qprl+GgBAE4MaOTdEkQi8FcBFS8BYbJgVxceHS8ahQjV/mulFyMDbmupbo2DxS0aWnRERERETBJntJrNlsxnfffYfNmzfj0KFDuHr1KgAgLi4O3bt3xy233IIxY8Zw7roGhCWxRO75Y5J7q1VEqcmCEoMZxQaz9Fpu2zeaUWywoLjc7HK+xGhGke1YicGCYqdzvgRljYFaJTgteiAtgBAdpsXBzAKcuuS59JRzsrmnpJGlREREvjp58iTMZjM0Gg06duwY7O4QUR348ve5Qcxht2bNGjz99NPIyspyHLM37zyiIDExER9++CHGjh0rV9cogBjYEVXl7eqio7onQq9RocgethnMTvsWlBjN4Eyk3rMHb9FhWsSEahEbprPtS6uOxoRpER1m2w/VOVYljdC7H/nGOdmIiIiIgR1Rw6GkwE62YWzvvvsunn/+eQBSSCcIAtq2bYv4+HiIoohLly4hPT0doigiKysL99xzD9555x0888wzcnWRiEgWV4oN+Of6Ix5Hs1lFYENatky9ahg0KgFP39QBceE6RNtGwsWEVQRzkdUEb75ScumpM87JRkRERERUv8jyr/fdu3fjhRdegCiKiIqKwiuvvILJkyejadOmLtfl5uZi8eLF+Ne//oWCggK88MILGDhwIK6//no5uklE5HdWq4hTl4ux71yeYzubWxLsbtWZSgD6t42DXquGVq2CXqOCVi1Aq1ZBp1E5Hat4r9OooFMLjvcVx1yv0aqFKve+uu4w1h3wHF6Oua4lpt/SSYavgGubnJONiIiIiIj8SZbA7r///S+sViuio6Pxyy+/oFu3bm6va9q0KV544QXccccduOGGG1BYWIj//ve/WLFihRzdJCKqs2KDGQcy8h3h3P7zeSgqN8vWvk6tQkSIBuF6NcJ1GkToNbb3GkTobK8hGkTo1dK+bbPvv//TSWw6kuOxnXG95J2T7YmhHfB92kWPpadTBreTrU/O7CPt3r63B0tPiYiIiEjxtm7diuHDhwMAtmzZgmHDhgW3Q1SFLIHdzp07IQgCXnzxxWrDOmddu3bFiy++iJdffhnbt2+XoYdERLUniiIy88pcRs8du1gIf67boFYJmDKoLSJCtLZQTY0IvRbherVL0Gbf12lUdWrvmVs64edjlxQXjLH0lIiIiIgA16Bp9uzZmDNnTnA7RLK7cuUK3n//faxZs8YxtVq7du0wduxY/PWvf0WTJk2C3UW/kOWniry8PABw/KXyhv3a/Pz8QHSJiBqpuky+bzBbcOhCIfbbA7rzebhcZPCpH2pBgMWL1SLGXtcSL9/u+Rcd/qLkYIylp0RERERE8pgzZw5effVVABWLhSpBamoqxowZg+xs1+lyDh48iIMHD2LhwoX47rvv0Ldv3yD10H9kCewSExNx7tw5n+8lIqqrI1mFWLjzDL5Pu+gIekYlJ2Dq4PbVBj2XiwyOstZ95/KQllkAo8XqU/stY0LRu00s+rSOQZ82cRAh4u75vypuJBug7GCMpadERERERHU3bNgwRQVx3rhw4QLuvPNO5OTkQKPR4Nlnn8Udd9wBAFi/fj3++9//IisrC3fccQf27duHli1bBrnHdSNLYHfLLbcgJSUF27Zt83oBia1btwIAbrrppgD2jIgag+/+uFBlxFiZyYJV+y9g7R9ZeGd8T9zRowVO5BRJAZ1t9Ny5K6U+tadRCbi2ZTT6tI5Fnzax6N0mBonRoVWuU+pINkD5wRhLT4mIiIiIGpdXXnkFOTnSfNvLli3Dfffd5zg3ZMgQ9O3bF+PHj0dOTg5mzpyJRYsWBaurfiHLTzvPPfccli1bhrfeegtjx45Fp041r+B34sQJzJ07F+Hh4XjhhRfk6CIRNVBHsgqrDcUAwGwV8czyP/DSt2koM1l8aiMuXIfetnCuT5tY9GgVjRCt2uN9Sh7JZsdgjIiIiIiIgi0nJwdffvklAODWW291Cevs7rvvPtx666348ccf8fnnn+PNN99EfHy83F31m7rNTu6lzp0745tvvgEADBgwAO+99x6uXr1a5bq8vDzMmzcPN9xwAwBg5cqV6Ny5sxxdJKIGauHOMzWWnQKACHgd1gkC0Dk+Eg/2b43/3NcTW54fhn3/uAULJ/bFE8OuQf92cV6FdXb2kWyHX70VR167FYdfvVURiycQERERUf1ntYooNZph9eeqaAq3detWCIIAQRCwdetWiKKIlJQUDB48GE2aNEFUVBT69++PL774wuU+o9GITz75BAMGDEBcXBwiIyMxaNAgrFy5stq20tPTHW0tWbIEAPD111/jlltuQfPmzREaGoouXbrgpZdecszt786kSZMgCALatm1b42dbsmSJo7309PQq59u2bQtBEDBp0iQAwL59+zBp0iS0a9cOer0eglBRMVP561S5Dfv8dQAc1zlv6enpOHjwoOP93Llza+w7AHzwwQeO63/99VeP1ztbu3YtLBbpZ7bJkydXe539s1ssFqxdu7ZWbSiNLMMm7GWtzZo1w8mTJ/Hcc8/h+eefR7t27dC8eXMIgoCcnBycPXvWUUPdsWNHvP3223j77bfdPlMQBPz0009ydJ+I6plykwWHLhQgNf0q1vx+oU7PCtep0at1rDT/XJtYXJcUg+hQrZ96WoEj2YiIiIjIX3yZv7khMplMGDNmDNatW+dyPDU1FRMmTMDevXsxb9485OXlYezYsdi+fbvLdb/++it+/fVXnDp1Ci+//LLH9qZMmVKlDPP48eOYO3cuPv/8c2zevBndusmzoNwnn3yCp59+GmazOWBt9OjRA/369UNqaioWL16MF198scbrFy9eDEAa1GUfqOWtHTt2OPaHDh1a7XXO53bu3InHHnusVu0oiSw/HdqTWztRFCGKIk6fPo3Tp0+7vefkyZM4efJklUkQBUGAKIouzyOixu1SYbm0aqtt7rlDFwpgsvj2W8TWcWG2eedi0ad1LDonREKtoLnbiIiIiIhq4s38zWOuq9+T8Xtr5syZ+O233/Dwww/joYceQkJCAk6cOIE5c+bg+PHjeP/993HnnXfigw8+wK+//oonnngC48aNQ5MmTfDHH39g5syZyMrKwqxZszBmzBhce+211bY1f/58pKamon///pgxYwY6duyIS5cuYenSpVixYgWys7Nx66234vDhw4iKCmxompqaii+//BJJSUl4/vnn0adPH1gsFpfQqzpjx45F3759MX/+fHz88ccAgLS0tCrX2Rd0mDp1KlJTU3H8+HHs2rULAwcOdPvcAwcO4PfffwcA/OlPf6r1Zzp69CgAIDo6GgkJCdVel5iYiKioKBQWFjruqa9kCexuvPFGBmxE5BdmixXHc4qw/1we9tpCusy8sjo/V6dWYfuLw5AQVXVxCCIiIiKiurJaReSVGgPaxomcIjy78gAsNczf/OzKA2geqUen+MiA9iU2TBf0Rct+++03vPfee5g+fbrjWO/evTFs2DB07twZhYWFeOihh5Cbm4tVq1Zh7NixLtf17dsXvXr1gsViwYIFCzBv3rxq20pNTcXo0aPx3XffQaOpiFpGjRqFa6+9FrNmzUJmZib++c9/VltJ6C9HjhxBcnIytm/fjpiYGMfxQYMGebw3JiYGMTExaN68ueNY9+7dq73+wQcfxLPPPouSkhIsXry42sDOPvJQo9FgwoQJXn6SChkZGQCAVq1aebw2KSkJhw8fdtxTX8k2wo6IyBcFZSb8fr5i5dY/zuejxOjb4hA1ubNnC4Z1RERERBQweaVG9Hl9c7C7AYtVxIOf/Rbwdvb94xY0idAHvJ2aXH/99S5hnV1CQgLGjRuHpUuX4vLly3jggQdcwjq7Hj16YPDgwdi+fbvH0Wl6vR6fffaZS1hn98orr2DlypU4dOgQUlJS8Prrr0OvD+zX5qOPPnIJ6wIlMjIS999/PxYtWoQVK1bgvffeQ1hYmMs1RqMRy5YtAwCMHj26xhFy1SkqKgIAREREeLw2PDwcAFBcXFzrdpRElkUniKjx8WWCW1EUcTa3BN/sy8TfV6Vh5LvbcN1rmzBpcSre//kUfjl1xeuwTiUAXROjcHtyAjz9Yk+jEjBlcDuv+0lERERERMr3wAMPVHuuR48ejv3777+/2ut69uwJADhz5kyNbY0cORItWrRwe06lUmHixIkApMU29+/fX+Oz6iopKQlDhgwJaBvOpk6dCgAoLCzEqlWrqpxft24dcnNzAfhWDgsA5eXlAACdTufxWnsYWlZW90qsYOIM50TkV7WZ4LbcZMHBzALH/HP7z+fhaolvZQKReg2uax2DPm1i0bdNHHomRSMyRFocwt08HnYalcBVWYmIiIiIGqBOnTpVe8559Jk319lHeFWnX79+NZ7v37+/Y//QoUPVlo76g3MYKYeBAwfi2muvxeHDh7F48WI88sgjLufti03Ex8fj9ttv96mNkJAQlJaWwmj0/POiwWAAAISG1u8KKgZ2ROQ3nia4nXVnNzSN0DsCusNZvi8O0bZJmGPl1j5tYtGxefWLQ4y5riU6No9Eys6z2JiW7QgSRycnYsrgdgzriIiIiIgaoMqlmc5UKlWtrrNarTW25Tznmzvx8fGO/atXr9Z4bV3FxsYG9PnuTJ06FTNmzMCWLVuQnp6Otm3bAgCys7Pxww8/AAAmTJjgtmTYG5GRkSgtLfWqzLWkpASAd+WzSiZLYFd5aeTauvHGG/3UEyIKlCNZhdWOYgOkCW5nfXfYp2frNCr0aBntCOd6t4lF01rOh9GtRRTeGd8Tb9/bA+VmC0I06qBPgktEREREjUdsmA77/nFLQNuY9d1hbEjL9njdHT0S8epd1a946g+xYZ5LFxsSTwttiqJvAxV8oVarZWvL7tFHH8VLL70Eg8GApUuXYvbs2QCAzz//HBaLNK2Rr+WwgLTYRE5ODjIzMz1ea19sIikpyef2lECWwG7YsGE+rxIrCALMZrOfe0RE/mS1inhv84lqw7raahapR1+ncO7aFlHQa/zzPx2VSkCYjoOLiYiIiEheKpUQ8EUYnhzeAT8evljjv8s1KgF/GdYh6AtCNDQ5OTk1nr906ZJjPy4uzuWct6P47CPHlKhJkyYYO3YsVqxYgSVLlmDWrFkQBAFLliwBIJXNdunSxefnd+vWDfv27UNBQQEuXrxY7cIV2dnZKCwsBAB07drV5/aUQLafWuVMk4kCwWoVOTIL0t/l7IJyHMzMx4HMAuk1Ix/FBt9WblUJQJeEKMfouT5tYtEqNtTnkJ+IiIiIqLGyV5Vw/mb5paamen2+e/fuLuciIyMBAPn5+TU+4/jx4751zge+/Dw2depUrFixAunp6di6dSv0ej2OHTsGoG6j6wBg8ODB+OKLLwAA27Ztq3ahkG3btjn2Bw0aVKc2g02WwG7Lli0erykpKcHx48fx1VdfYe/evbjhhhvwz3/+06WunCgYarOIQkN0tcSIA5n5OJhR4AjpcosNdXrm4A5N0b9dHPq0iUXPpBhE6DnijYiIiIjIHzh/c3Bs2rQJ2dnZSExMrHLOarVi6dKlAKT55Xr37u1yvl27dgCkhS2OHz+Ozp07V3mG0WjEt99+G4CeuxcSEuLYNxgMjpVXa3LzzTejffv2OHPmDBYvXuy4Jzw8vMaVeL1x11134YknnoDVasXixYurfZ59RJ9KpcJdd91VpzaDTZafkocOHerVdaNHj8aMGTPw1ltv4eWXX8Znn32GZcuWBbh3RNXztIjCO+N7Ysx1LYPYQ/8qNpiRZhs1dzCzAAcy85GZ59+lsEO1anz+p/6NepQiEREREVEgcf5m+RkMBkybNg2rV6+uMofcW2+9hbS0NADSSLPK4ZdzZvLOO+9gwYIFLudFUcT06dORlZUVoN5X5Rw8nj59Gt26dfN4jyAI+NOf/oR//OMf+Pbbbx1fh/vuu88xitBXCQkJePjhh/HFF1/gxx9/xDfffIN7773X5Zqvv/4aP/74IwBpTr3qymbrC0UOa3nppZewZ88erFixAnfeeScefPDBYHeJGiFvFlF4buUBdGweGdTfUvlaqltusuBodqEjmDuYWYDTl4sR6Or10cmJ/McCEREREZEMOH+zfPr27Yt169Zh0KBBmDFjBjp27IhLly5h6dKlWL58OQBp4YSZM2dWubdXr14YMGAAdu/ejc8++wxGoxETJ05EdHQ0Tp48iU8++QRbt27FwIEDsWvXLlk+zw033ODYnzFjBl555RUkJiY6SmXbtm3rdsXXyZMnY/bs2SgtLXUcq2s5rN0bb7yBH374AZcvX8aDDz6IvXv34o477gAArF+/Hu+88w4AoFmzZnj99df90mYwKfZv7qRJk7BmzRosWLCAgR0FxcKdZzwuomC2inhq2X6MSk5AbJgO0aFaxITpEBumRUyYFtGhOsSEaaFV+7+0uzalumaLFScvFbvMO3f8YhFMFt/TuagQDXq0ikGPVtHo0SoGYToV/rRkr8cJbqcMbudzm0REREREREr05JNPYtu2bViyZAkeeOCBKucTExPx448/Ijo62u39ixcvxtChQx0hn72E1u7ZZ59FcnKybIFdhw4dMH78eKxcuRKbNm3Cpk2bXM6fPXsWbdu2rXJfixYtMGrUKKxfvx4A0KlTJwwZMsQvfUpKSsK6deswduxYXLx4EXPnzsXcuXNdrklISMCaNWvQqlUrv7QZTIoN7Fq3bg0AOHToUJB7Qo2R1Sri+7SLXl17JrcEH205XeM1EXqNLczTSsFemBYxodK+FOzVLujzVKr70qguaBapxwHbvHOHswpRZvJtUQgACNGq0L2FFMz1TJJe2zYJqzIRKSe4JSIiIiKixmrx4sUYOXIkFixYgLS0NBQXF6NNmzYYO3YsXnrpJcTGxlZ7b5cuXbB//3688cYb2LhxI7KzsxEdHY0+ffrg6aefxujRox3zs8nlyy+/RN++ffHNN9/g+PHjKCoq8riSLSCVo9oDu8mTJ/u1T9dffz3S0tIwb948rFmzBunp6QCkeQDHjBmDZ555Bk2aNPFrm8EiiApdvvXHH3/EqFGjEBIS4jKUkuqfzMxMJCUlAQAyMjLqRdJdajSj26wfg90NR9AXG65FTKgU9IlWET8cvggPg/98plEJ6JIYKYVzttFzHZtHQOPlKMEjWYWc4JaIiIiIGo2TJ0/CbDZDo9GgY8eOwe4OySg9Pd2xYMTixYsxadKk4HZIIWbOnInXX38darUaGRkZbhfiUCpf/j4HKvNQ7Ai7jz76CEDFSDsiOYVo1AjVqus0Ks0fig1mFBvMuJDv34Uf7AQBuKZZBHq0ikZPW3lr18QohGjVnm+uBie4JSIiIiIiapwsFoujnHfUqFH1KqxTGkUFdnl5edi7dy/effdd/PDDDxAEAXfffXewu0WNkEolYFRyAlbtv+Dx2vZNw9G1RRQKSk3IKzUiv9SEgjITig1mGXpaO61iQx3BXI9WMejeMgqRIdqAtMUJbomIiIiIiBqXFStWICMjAwDw+OOPB7k39ZssP01XXtLYWx07dsSLL77o594ox6VLl7Bnzx7s2bMHqampSE1NxZUrVwAAEydODEh9+vLly7F48WIcPHgQeXl5SEhIwJAhQ/Dkk09iwIABfm+vPps6uD3W/pHlcRGFDx/q7bbU02i2oqDMhIIyKcTLKzUhv9SIgrKKYC+/zBTQoG9Yp2bo1ToWPZKi0aNlNJpE6D3fREREREREROSlU6dOwWw2Y+/evZgxYwYAIDk5GaNHjw5yz+o3WQK72k6Tp9FocO+99+K9996rdgWVhiA+Pl62tsrLy3Hfffc5Jn60O3fuHM6dO4dly5Zhzpw5bpeYbqzspZ2+LqKg06jQLFKPZpG1C8lqCvqulhjw6fazsHgxgV2oVo1Fk/qxHJWIiIiIiIgCpvJcb1qtFh9//HGVRQqpdmQJ7GbPnu3xGpVKhcjISLRr1w6DBg1C06ZNZeiZciQlJaFr165Vlkr2lylTpjjCuuHDh2P69Olo0aIF0tLS8K9//QunT5/GrFmzkJiYiKlTpwakD/XRmOtaomPzSFkXUfAU9F0sNHhVqjs6OZFhHREREREREckiNjYWvXv3xmuvvYYbbrgh2N2p9xS7SmxjMHv2bPTr1w/9+vVDfHy8ywoz/iyJ3bZtG4YNGwYAuPPOO7F69WqXMuXc3Fz06dMH58+fR2xsLM6cOYOYmBi/tA3Uz1Vi3bFaRUUsonAkqxB3fbjTY6nu2qcGc1VWIiIiIqIA4yqxRA2HklaJVfnlKeSTV199FXfccUfAS2P//e9/A5DmEpw/f36VOQWbNm2KuXPnApAW/khJSQlof+or+yIKwR61Zi/V1VTTD0+lukRERERERESkbAzsGrji4mL89NNPAIARI0ZUm/TefffdiIqSAp5Vq1bJ1j/yzZjrWmLtU4NxT+9WCNVKAWyoVo17erfC2qcGY8x1LYPcQyIiIiIiIiLylSxz2JWXl2PlypUAgFGjRqFZs2Y1Xn/58mV8//33AICHHnoIGo0s3WyQ9uzZA4PBAAAYOnRotdfpdDoMGDAAmzZtwp49e2AymaDVauXqJvnAPtLu7Xt7KKJUl4iIiIiIiIj8Q5YRdhs3bsSkSZPwyiuvIDY21uP1sbGxeOWVVzB58mT88MMPMvSw4Tp69Khjv0uXLjVeaz9vNptx8uTJgPaL/EcppbpERERERERE5B+yBHZff/01AOD+++/3arScRqPBgw8+CFEUHSPzyDcZGRmOfU8TH9onSax8nyeZmZk1btnZ2bXvOBERERERERFRIyVLrWlaWhoEQcCNN97o9T1DhgzBf/7zHxw4cCCAPWv4ioqKHPsRERE1XhseHu7YLy4u9roN56CPiIiIiIiIiIjqRpYRdpmZmQBqF+zYR4NduHAhIH1qLMrLyx37Op2uxmv1er1jv6ysLGB9IiIiIiIiIiKi6skyws5sNgOAY/EDbxiNRgBAaWlpQPrUWISEhDj27V/T6jj/+YSGhnrdhqfy2ezsbPTv39/r5xERERERERERNWayBHbx8fFIT0/HoUOHMGDAAK/uSUtLAwCPK8pSzSIjIx37nspcS0pKHPueymedeZobj4iIiIiIiIiIvCdLSewNN9wAURTx2WefeX3Pp59+CkEQvA74yD3nMM1emlwd55FynJeOiIiIiIiIiCg4ZAnsHnroIQDA3r17MX36dIiiWO21oihi+vTp2Ldvn8u95Jtu3bo59o8dO1bjtfbzGo0GHTp0CGi/iIiIiIiIiIjIPVkCu1GjRuGmm26CKIr48MMP0b9/f3zxxRc4d+4cjEYjjEYjzp07hy+++ALXX389PvzwQ8eqsmPGjJGjiw1Wv379HItNbNu2rdrrjEYjdu/eXeUecmK1AsYS6ZWIiIiIiIiIKEBkmcMOAFauXIlhw4bh0KFD2L9/PyZNmlTttaIoIjk5Gd9++61c3WuwIiMjcfPNN+P777/H5s2bkZmZ6XbOuVWrVqGwsBAAMG7cOLm7qWwX04BdHwFHvgNMpYA2DOg2Bhj4JJCQHOzeEREREREREVEDI8sIOwCIi4vDb7/9hunTpyM0NBSiKLrdwsLC8Oyzz2L37t2Ii4uTq3v11pIlSyAIAgRBwJw5c9xe8/zzzwOQVut98sknYbFYXM7n5ubixRdfBADExMRg6tSpAe1zvZL2DbBgGHDgKymsA6TXA19Jx9O+CWbviIiIiIiIiGpt69atjixh69atwe4OuSHbCDsACA0NxbvvvovZs2djy5Yt+P3335GbmwsAaNq0KXr37o3hw4cjOjpazm4Fzc6dO3Hq1CnHe/vXAgBOnTqFJUuWuFxf06jEmtx000144IEHsHz5cqxduxYjRozAM888gxYtWiAtLQ1vvPEGzp8/DwB46623EBsb61M7Dc7FNGD1NMBqdn/eapbON+vMkXZEREREREQy2Lp1K4YPHw4AmD17drUDV6jhyc/PR2pqKvbs2eN4zc7OBgAMHTq0wQWPsgZ2djExMRg3blyjL71cuHAhli5d6vbcL7/8gl9++cXlmK+BHQAsWrQIhYWF2LhxI7Zs2YItW7a4nFepVJg5cyamTZvmcxsNzq6Pqg/r7KxmYNd8YNzH8vSJiIiIiIiIKMDmzJmDV199FQBqXDhUTr169UJ6enqwuyGboAR2JL/Q0FBs2LABy5Ytw5IlS3DgwAHk5+cjPj4eQ4YMwVNPPYWBAwcGu5vKYbVKc9Z548BXQHgzoPNtQKv+gJp/rYiIiIiIiEi5hg0bppggzlvO/Y2Pj0e/fv2wfv36IPYosGRLFuwll/Hx8dDr9TVeW15ejkuXLgEAWrduHfC+BcuSJUuqlL3W1qRJk2o18u6hhx7CQw89VKc2GwVzWcWcdR6JwK/zpC0kBuhwM9DxVqDDLUB4k0D2koiIiIiIiKhReOqpp9CuXTv069fPkRUJghDkXgWOLIHdzp07ceONNyIyMhLp6ekeA7uysjJ0794dpaWl+PXXX9G/f385uklUQRMqrQbrdWhnU54PHPpW2iAArfpK4V2nkUBCD6AB/8eEiIiIiIiIKFDsC2o2FrKsErtixQoAwNixY71a0CA2Nhb33HMPrFYrli9fHujuEVWlUgHdxtTxISKQmQpseR349Ebgv12BtU8DR9cBhiK/dJOIiIiIiKhaVitgLJFeG4nKq5+KooiUlBQMHjwYTZo0QVRUFPr3748vvvjC5T6j0YhPPvkEAwYMQFxcHCIjIzFo0CCsXLmy2rbS09Mdbdmr577++mvccsstaN68OUJDQ9GlSxe89NJLyMvLq/Y5kyZNgiAIaNu2bY2fbcmSJY723M3l1rZtWwiC4KjC27dvHyZNmoR27dpBr9e7jEarbpVYexv2+esAOK5z3tLT03Hw4EHH+7lz59bYdwD44IMPHNf/+uuvHq9v7GQZYbdr1y4IgoARI0Z4fc/IkSOxdOlS7Ny5M4A9I6rBwCeBtK9rXnhCUAM9HwKyfwdyDtX8vKJsYP/n0qbSAm0H2Ubf3Qo0uca/fSciIiIiosbrYpq0iN6R76SqIW2YNCBh4JNAQnKweycbk8mEMWPGYN26dS7HU1NTMWHCBOzduxfz5s1DXl4exo4di+3bt7tc9+uvv+LXX3/FqVOn8PLLL3tsb8qUKVi0aJHLsePHj2Pu3Ln4/PPPsXnzZnTr1q3uH8wLn3zyCZ5++mmYzR4WUqyDHj16oF+/fkhNTcXixYvx4osv1nj94sWLAQCdO3fGDTfcELB+NRSyjLDLyMgAIP2heKtDhw4AgAsXLgSkT0QeJSQD4z4FVNXk2ioNcPcCYOyHwBO/ADOOAHe8B3QeLf0PsSZWE3BmK/Dj34EPegPv9wK+fwk4/TNgNvj7kxARERERUWOR9g2wYJi0OJ59ih9TqfR+wTDpfCMxc+ZMrFu3Dg8//DA2bNiAffv24auvvnJkE++//z42b96MSZMm4ddff8UTTzyBTZs2Yd++fUhJSUGLFi0AALNmzcLhw4drbGv+/PlYtGgR+vfvj6+++gp79+7Fxo0bcf/99wMAsrOzceutt6KwsDCwHxpSIPnUU0+hVatW+PDDD7Fr1y7s3LkTb775psd7x44di7S0NDzxxBOOY2lpaVW2li1bAgCmTp0KQAomd+3aVe1zDxw4gN9//x0A8Kc//akuH6/RkGWEXUFBAQBArVZ7fY/92itXrgSkT0ReSb4XaNYZ2DUfOLLG6bdTY4GBf3H97VR0S6DvZGkzlQPndgIn/wec+BHIO1tzO1fPAL99LG3acOCa4UDHEUDHkUBUi5rvtVqlRTI0oVIpLxERERERKY/VCpRdDWwbl44Cq6dVXyVkNUvnI+KB5l0D25fQuKD/fPLbb7/hvffew/Tp0x3HevfujWHDhqFz584oLCzEQw89hNzcXKxatQpjx451ua5v377o1asXLBYLFixYgHnz5lXbVmpqKkaPHo3vvvsOGk1F1DJq1Chce+21mDVrFjIzM/HPf/4Tb7/9dkA+r92RI0eQnJyM7du3IyYmxnF80KBBHu+NiYlBTEwMmjdv7jjWvXv3aq9/8MEH8eyzz6KkpASLFy/GwIED3V5nH3mo0WgwYcIELz9J4yZLYNe0aVNkZ2fjzJkz6N27t1f3nDlzBgC8mvOOKKASkoFxHwNjPvI+GNOGSKvEdrgFuO0t4MopKbg7+SNw7teay2xNJcCx9dJmb99eOtuyD6CyBd8c5k5EREREVH+UXQXeVsBUOFYzsPSOwLfzwmkgvGng26nB9ddf7xLW2SUkJGDcuHFYunQpLl++jAceeMAlrLPr0aMHBg8ejO3bt2PHjh01tqXX6/HZZ5+5hHV2r7zyClauXIlDhw4hJSUFr7/+usfFOOvqo48+cgnrAiUyMhL3338/Fi1ahBUrVuC9995DWJhrxZnRaMSyZcsAAKNHj0ZCQkLA+9UQyBJ3X3fddQAqFp/whn2xiZqSXCJZqVSALrz2vyUSBKBpR+CGp4CJ64C/nQXGfwH0ekT6zZYnF9OAHf8BUkYAb3cAvn0M2PgCh7kTERERERHV4IEHHqj2XI8ePRz79rJVd3r27AmgYlBRdUaOHOkooa1MpVJh4sSJAIC8vDzs37+/xmfVVVJSEoYMGRLQNpzZy2ILCwuxatWqKufXrVuH3NxcACyHrQ1ZArsxY8ZAFEWsWrUKX3/9tcfrV65ciVWrVkEQBLcpN1G9FhIFdLtLGrH37DHgz9uA4a8ALfsCEGq+t+wqkLYS2LPA8zD3i2l+73qtNMIVqYiIiIiISDk6depU7Tnn0WfeXFdUVFRjW/369avxfP/+/R37hw55WLCwjpzDSDkMHDgQ1157LYCKhSWc2Y/Fx8fj9ttvl7Vv9ZksJbGTJk3Cm2++ifT0dDz00EPYvXs3nnnmGSQlJblcl5GRgXfffdex1G9SUpIjqSVqkFQqoMV10jb0b0DxZeDUZql09tTPgKHAt+dazcAXdwOtBwBhTYCwONtrE2kuCcexOEAfJY0C9BeW6hIRERERkQJULs10pnKqnPLmOquHgQjOc765Ex9fUV119Wpg5zIMxtRiU6dOxYwZM7Blyxakp6ejbdu2AKTFNn744QcAwIQJE9yWDJN7snyltFotVq1ahRtvvBHFxcV477338N5776F169ZITEyEIAjIysrC+fPnAQCiKCIiIgKrV68OeF03kaJENAOue1DaLGYg4zcpvDuxCbh8tHbPKrkEHF3r+TqVxinEawKExboJ95wCvrAm1Yd8ad9UneTWXqqb9rW06m7yvbX7HEREREREDUFonDSvWyBtfB44vNrzddfeDYwO7MIHCI0L7PMVRvAwCEIURZl6UrsFP/3l0UcfxUsvvQSDwYClS5di9uzZAIDPP/8cFosFAMtha0u2aPO6667D7t278cgjj+CPP/4AAJw7d84lpLPr06cPvvjiC3Tp0kWu7hEpj1oDtB0kbSNeA/LPA0fXAT++7N92rGYp3Cu55P09jpDPabSeCOD4BkCs5jdP9lLdZp050o6IiIiIGh+VKvCLMAx5TvqZoaZF7lQaYMizQV8QoqHJycmp8fylSxU/b8XFuYaZ3o7iKykp8bF3gdekSROMHTsWK1aswJIlSzBr1iwIgoAlS5YAkMpmmfHUjqxjEbt164b9+/dj06ZN2LBhA37//XfHxINNmzZF7969ceedd+Lmm2+Ws1tE9UNMa+D6J4CfX69YaCJYfAn57PetegzoPw2IawfEtgOiW1WsfEtERERERL5LSJaqWipXvdipNNJ5/gLd71JTU70+X3lxzcjISABAfn5+jc84fvy4b53zgacRg+5MnToVK1asQHp6OrZu3Qq9Xo9jx44B4Og6XwSleHjkyJEYOXJkMJomqt9UKmk+uANfeb62RR+gw81A6RVpsYrSK0Bpnu31CmAxBL6/7lw6Cqx/puK9SiuFkfYAL7at676u+vkkfGK1AuYyQBNa+xV/iYiIiIiULvleqapl13zgyBqneaXHAgP/wrAuQDZt2oTs7GwkJiZWOWe1WrF06VIA0vxyvXv3djnfrl07ANLCFsePH0fnzp2rPMNoNOLbb78NQM/dCwkJcewbDAavpiu7+eab0b59e5w5cwaLFy923BMeHl7jSrzkHmf7I6pvBj4pzQfnaZj7XfOq/5+xKEr/47aHd6VXbZtzuFfpeKBCPqsJuHpa2tyJSKgI8Cq/hsV5v2AGF8MgIiIiosYiIRkY9zEw5iP+slomBoMB06ZNw+rVq6vMIffWW28hLS0NgDTSrHL4NXToUMf+O++8gwULFricF0UR06dPR1ZWVoB6X5Vz8Hj69Gl069bN4z2CIOBPf/oT/vGPf+Dbb791fB3uu+8+xyhC8l5QAzuz2Yy8vDwAUsrM1UKIvOCPYe6CAOjCpS2mtXftOkI+pwCvzDZiryQX2PnfmkNEXxVflLbzu6qe00dJo/CcR+W5K7XlYhhERERE1BipVNK/+Sng+vbti3Xr1mHQoEGYMWMGOnbsiEuXLmHp0qVYvnw5AKBVq1aYOXNmlXt79eqFAQMGYPfu3fjss89gNBoxceJEREdH4+TJk/jkk0+wdetWDBw4ELt2ufm5KABuuOEGx/6MGTPwyiuvOBYNBYC2bdu6zXAmT56M2bNno7S0Yhonf5XD/vHHH441ESq7ePGiY748u3vvvRcRERF+aTsYZE/Ijh49ivnz52Pz5s04efKkY7EJQRDQsWNHjBgxAo8//rhX6S1RoxWMYe4uIV9S1fMFGd6V6kYnAaExwNV0wFhUtz4ZCoGLB6WtMnupbXhTIHOPFDi6w8UwiIiIiIiojp588kls27YNS5YswQMPPFDlfGJiIn788UdER0e7vX/x4sUYOnSoI+Szl9DaPfvss0hOTpYtsOvQoQPGjx+PlStXYtOmTdi0aZPL+bNnz6Jt27ZV7mvRogVGjRqF9evXAwA6deqEIUOG+KVPa9aswauvvur23PHjxzF58mSXY8OGDWNg562///3v+M9//gOr1VplSWNRFHH8+HGcOHECH3/8MV544QX861//krN7RPWL0oa5e1uq++BXUt9FURqdd/UskHe26mtxzasseeSp1NblWjOw4x3g3sXel9gSERERERE5Wbx4MUaOHIkFCxYgLS0NxcXFaNOmDcaOHYuXXnoJsbGx1d7bpUsX7N+/H2+88QY2btyI7OxsREdHo0+fPnj66acxevToKiPIAu3LL79E37598c033+D48eMoKiryuJItADz66KOOwK5yiEbeE8TKyVmAPP3005g/f74jqOvatSuuv/56JCQkQBRF5OTkYM+ePThy5IjUMUHAU089hXnz5snRPQqgzMxMJCVJI7IyMjLQqlWrIPeIAsZd6amdvVTX29JTYwmQd859mJd/PjDlt2FNpTAxIRlI6CG9NukAqFmuT0RERETunTx5EmazGRqNBh07dgx2d0hG6enpjgUjFi9ejEmTJgW3Qwoxc+ZMvP7661Cr1cjIyHC7EIdS+fL3OVCZhyw/hf7yyy/46KOPIAgCunXrhgULFrjUQzvbtWsXHn/8caSlpeHDDz/E/fffX+21RKQw/izV1YUD8d2krTKLGSjMdDM6L116NRb71v/SXODMFmmz04QAzbsBCd0rQrz4awE9J00lIiIiIiJyZrFYHOW8o0aNqldhndLIEth9+umnAKSlin/55Zdqa7YBYODAgdi+fTv69OmDs2fP4pNPPmFgR1SfyFGqq9ZULDaB4a7nnEttr54GvntKKo/1lbkcyNovbc7i2leMxou3vUa18L2k1mpVRmkzERERERGRj1asWIGMjAwAwOOPPx7k3tRvsgR2O3bsgCAIeOmll2oM6+yio6Px4osvYtq0adixY4cMPSQivwvWilSCIC00Ed4USOoHnNnq3WIYtXX1jLQd+a7iWGhc1ZLaph0Btbb651xMA3Z9JD3HMSJxjDQnoBIWwWCQSERERERENTh16hTMZjP27t2LGTNmAACSk5MxevToIPesfpMlsLt48SIAaalib/Xu3RsAkJNTx4nniahx83YxjPFfAlajFKDZt8ILtWur7Cpwdpu02al1QPOuriFe/LVASLT7Of9MpVLAmPZ17eb88zelB4lERERERKQIled602q1+PjjjyFwQb86kSWwCwkJgdFoRElJidf3FBdLc1Dp9fpAdYuIGoOEZCn48rQYRpdR0vtuYyrOlVwBcuwB3iHp9fIxQLR4377FCGQfkDZnkYlA0UUA1az7YzVLfW7WWf6ATMlBIhERERERKVJsbCx69+6N1157jVOb+YEsgV27du1w4MABrF27FjfeeKNX96xbtw4A0L59+0B2jYgaA18XwwhvArQfJm12pnIptHMeiZdzCDAU1q5PRdmer7GagSV3SmW1Gr1tC5FG7WlCAI39VQ+o9dVc43Rcra/mmNM9lw5XH27a+xSsINGlHyzVJSIiIqLgatu2LUSxml/ANyL8GgSGLIHd6NGj8ccff+DDDz/EqFGjcPPNN9d4/U8//YQPPvgAgiCw5pmI/MNfi2FoQ4AW10mbnSgC+edcQ7yLaUBBRt37XZ4HZO6p+3O8JagA0VrzNVYz8N2TQJ/JQGgsEBpje40FQmKkFXQDNfxd6aW6DBKJiIiIiMgPBFGGKDQ3NxcdOnRAUVER1Go1HnvsMfzpT39Cr169oLL9QGO1WvH7778jJSUFCxcuhNlsRnR0NE6dOoUmTZoEuosUQJmZmUhKSgIAZGRkoFWrVkHuEZFMSq8COYddQ7zLR2ueT68hENTugzz7vv145WMhMdKoweq4K9W1s5c2c84/IiIiktnJkydhNpuh0WiqzOVFRPWLL3+fA5V5yBLYAcCmTZtw1113wWg0OiYe1Ol0iIuLgyAIuHLlCoxGIwBpOKVOp8P69etxyy23yNE9CiAGdkROzAbg0lEgZYQ0vx250kU4BXkxFeGe1QwcWF7z6D+VBnj4WyCxh7Qyr0orlfkGeqSbkoNEO478IyIiChgGdkQNh5ICO1lKYgFg5MiR2L17N/785z9j7969AACDwYDs7KrzOPXr1w8LFixAz5495eoeEZE8NHqpnLb7PdIiDp4kDQCue1AK+szlgNkovVoMbo7ZXs2Gis1iqHrMXI5qF7sINmOxtBVm1v5eqxn4YkzV44JaCu7UWtums4V52qrHnYM+t+d1Ughn3y/NBVIXVh8kWs3A6j8DYXFAyz6ANhxQy/a/XuWP/GOQSERERETklow/NQDXXXcd9uzZg9TUVGzevBmHDh3C1atXAQBxcXHo3r07brnlFvTr10/ObhERyW/gk9KKqzWVx6o0wO3/8X+wIopSu+4CwP/NBk7+6PkZkYlAVEugPB8oy5M2T3PfBYtokUIhc1lw2rdagC/GVbzXhEgjCXXhFa965/c1nat0jT5CCgHdhV1KXu1X6UEiEREREVGQyRrY2fXr14+hHBE1bgnJUmDiqZQyEOGFIFSMGtNXOnfzTOD0T56DxIe/du2bKAKGoorwzjnIK8uvdDzf9bipxN+fUNnM5dJWmuu/Z2rDXMM8QFq9uLqRlFYzsOoxoOgi0LyrdK82zPacsIrnqbX+66OdkoNEO478IyKiWlCr1TCbzbBYLBBF0TEFFBHVL6IowmKxAIBjvYVgCkpgR0REkEKJZp2BXfOBI2ucRhqNBQb+JTgjjXwNEgUBCImSttg2tWvTbKw54Cu9CuxdJI2UI/dMpdJWctn7e0QrsOmVmq9RaW0BXjigDa3Ydw713AV9jvdO12rDpJWTq/veAmwlxNOkvxfB+P5X+sg/BolERIqk0+lgMBggiiJKS0sRHh4e7C4RkQ/sf48B6e91sMm26AQ1Xlx0gsgLSvtB/GKasoLE1Y97N+df93uAW9+U5vOzGKUAyL5vMdk2277Vab/yeavztUbAYq76TLMBOP49g8RAiEwEWvWtCAq1YU6BoW3fcS7UFhKGVgSD9n2NXgqTvaHkxUOUHiQSETVyhYWFuHDhAgAgIiICrVq14ig7onro0qVLuHLlCgAgPj4ecXFxXt1X71eJpcaLgR1RPaaUIPFiGrBgmOdS3T9vlTfAqE2QOOI1wFgCGGwLaxhLbFtRxb7Bab/KueKKRTlq+jpQBUHlFOCFugaAOqdgz1QGHF1b8zyMghq4ewGQ0MM1RNSEBPbvhpKDRDul/HeCiChIrFYrTpw44RiZExERgbi4OISFhTG4I6oHLBYL8vPzcenSJcexa665xutRdvV+lVgiIqqHVCpp9FKwBXPOv5p4u3jI4BlAtB9/WWE2VoR3lUNAQxGw7q/SKECPBCC8uRS2GEsa3mhB0VrxdarzsyzAt1Pcn9OEuoZ4LluYm/2wqqGfu3P551hCTERUD6hUKrRs2RIXLlyAKIooLi5GcXExBEGAWq0OdveIqAbO89bZNWvWjCWx1DhwhB0R+Y3SSnUBZY6A8nbkX8+HgHEfS/uiKIV8xhLbnHhlFfvGUmlxEGNpxXx51R4rrXSf00aBEZ0EtLvRaSXhcEAf6X5VYV04oIusKCP2deSHEr/vK+PIPyKSWVFRkSO0I6L6KTo6GomJibUaHcuSWKq3GNgRkd8p7QdxpQWJSiwhtlqB1X+WRiR6ktgL6DxKCgRNZU7hX5lTAOjmuNUU+M/RkAgqp5DP6VXvFPzZwz290/mSK8D/ZtY8IjMYJep2HPlHREFktVpRXFyMwsJCGI3GKiN3iEh51Go1wsLCEBMTg5CQkFrfz8CO6i0GdkTUaCgpSFTiCKhAB4kWU6XRgWW2rYbgz1gC/PYJ5wUMBH0kENfetlpwpU0b5hQS2vbtqwzrImzHwiuOe7uAiBK/74mIiKhB4xx2RERESqeUOf8AKZRo1llZI/8CPRehWguoo4GQ6NrdV3rF+xLiu953CgJLXffN5a6j/9xd4/Lq7npbwFjTAhj1haEIyD7gn2cJ6moCP6dgz1Qmfa9X97UL9px/jn4oKNgnIiIixeIIOwo4jrAjIgoypQUELCGumShKowXXPA4c+tbz9fHdgXZDXRciqbLqsO1cQwgC60ofBST2BCLibVvzitfIBGk/NM7/f1dYqktERNQgsSSW6i0GdkRE5JaSgkQlllL6O0gURWkUoGNV4eKKMM/gFPQZnYK+ytcaioCcwwAa+D8fBbVTkBfvuh9Z6Zg3o2qV+P3lTEl/F4mIiOoZlsQSERFRw8IS4pr5u4RYEKSVYbWhAJr53i9vVyFuOxi47pGKsM8+Z6CxWJpL0FhiW2m40qaEVYVFC1CULW2e6CJqHq1nKKz+zxAIbqkuR/0REREpFkfYUcBxhB0REdUrShtt1BhLiK2WikVCXAI/p7DPWFwRAhqKgT2f1u/FQ+LaA9fcDGhDAE2ItNCGJsR1czkX6nSNXgpi7e/VOs+LdCh91B8REVE90ahG2LVv396xLwgCTp8+HcTeBN758+fx/vvvY8OGDTh//jz0ej06dOiA8ePH4y9/+QvCwsJ8fvacOXPw6quvenXtli1bMGzYMJ/bIiIiahCUNPIPsI20+xgY85EygsRALx4CACq1tMqsPhJAvHf3lF31buRfmxuALncAxTlA8SXptShHei3N9b3PdXX1jLT5heA+yLMHfRYTkLUf1ZY2W83A6j8DYU2BdkOkP49gUFp4TkREJCNFBnbp6ekQBAGiKELw9NvBem7Dhg14+OGHUVBQ4DhWWlqK1NRUpKamYuHChdi4caNLiElERESNkJKCRCWWEA98Ekj72vPIv1H/rr5/FhNQkmsL85y3S0DRxYqArzgn+GW7NRKloMtcBpTn+/YIqwX4YgwgqIDw5q5lvvbXyvvaEP90n6W6REREygzsAKAxVOoeOHAA48ePR2lpKSIiIvD3v/8dw4cPR1lZGZYvX47PPvsMx48fx+23347U1FRERETUqb20tLQaz7dr165OzyciIqJGpCGO/FNrgahEafPEUFw11HMerWffL8nx/TMpgWgFii9K28WDNV8bEuO0MEdCxWvlY/qo6kt23ZXqmkql0ZNpX7NUl4iIGg1FBnZWqzXYXZDFM888g9LSUmg0GmzatAkDBw50nLvpppvQsWNH/O1vf8OxY8fw3//+F7NmzapTe927d69rl4mIiIhcNdaRf/oIaWtyTc3XrZoGHFzu+XlNO0vlumaDtJqvYzMApjKn4wbb6DnbeyXN21eeL225x2u+ThPqtNqu0yg9qxnY9m9p0Q93grlAh0s/WKpLRESBx0UngiQ1NRX9+/cHAEybNg2ffPJJlWusViu6d++Oo0ePIjY2Fjk5OdBqtbVqx3kOu2D9UXPRCSIiIpKdUkKVQC/SYTG7D/LM5YCpvOo5Uynww0tS+W991ayLFM6Gxkqj+kJjbZttXx8dmD9zluoSEZEbjWrRicZgzZo1jv3Jkye7vUalUmHChAn4+9//jry8PGzduhUjRoyQqYdERERE9ZhSRv4FepEOtQZQ20b7eStzr3cLdFw7Dhg8w1bme9Gp3Pei6zGLwbe+++ryMeDn12u4QABCoqsGedUFfM7Hq5uHj6W6REQkMwZ2QbJjxw4AQHh4OPr06VPtdUOHDnXs79y5k4EdERERUX2jtEU6vF2gY8hzUt9qmtJPFIHyAtucfRddX12O5QCGghoe5E9iRXlu3tna3aoJrRrkAcCJ76X5/NxRSqkuERE1KEEJ7EwmE/bv349Dhw7h6tWrAIC4uDh0794dvXv3rnXZZ3109OhRAECHDh2g0VT/x9ClS5cq9/hqxIgR2L9/P4qKihATE4Nu3brhtttuw7Rp0xAbG+vzczMzM2s8n52d7fOziYiIiBoEJS3S4c9Rf4JgC7hipMCqJqYyp4U5Ko3YK7wInPlJCgCDyVwGFJUBRbX896vVDHwxDmg7GIhsIc3LF5kovUbZ3gd6xKdSysCJiMgvZA3siouL8c9//hMpKSnIy8tze01sbCymTJmCf/zjH4iMjJSze7IpLy9Hbm4uAHisbY6NjUV4eDhKSkqQkZFRp3Y3b97s2L98+TK2bduGbdu2Ye7cuViyZAnGjBnj03PttdpERERE5IFSSnWDMepPGwrEtpU2d1Y/7l2pbmw7qe9l+UBZXsVmDfK8fCWXgcOrqz+vj7IFeQlVQ71I2+rEEfGARl+7djm3HhFRgyRbYHf06FHcdtttyMzMrHHxg6tXr+I///kPVqxYgR9//BGdO3v4TV09VFRU5NiPiPA834g9sCsuLvapveTkZIwdOxb9+/dHixYtYDKZcPz4cfzf//0fNm3ahPz8fNxzzz1Yt24dRo0a5VMbRERERFTPKGnUH+B9qe79X1QNokRRCqvK8lyDvHKnfbfH8wFDYcA+kgtDobTlnqj5urAmrkGey75txF54M0Cl5tx6REQNmCyrxObn5+Paa691lEZ2794dEydORP/+/REfHw9RFHHp0iWkpqZi6dKlSEtLAwC0bNkShw4dQnR0dKC7KKuMjAy0bt0aAPDoo4/i888/r/H61q1bIyMjA9dccw1OnTpVq7by8/MRExNT7flPP/0Ujz/+OACgRYsWOHXqFEJDQ2vVhjclsfYVcblKLBERERFVy10AZWcv1fV3AGUxS/PwuQv4Sq8CO96uOUQMBkEFhMYBpbk1X1eXFYiJiMgr9XqV2Llz5yI7OxuCIOC1117Dyy+/DEEQXK7p3LkzhgwZghkzZuDNN9/EP/7xD2RlZWHu3Ln417/+JUc3ZRMSUrH6lNFo9Hi9wSCtvFXbIA1AjWEdAEybNg179+7FwoULkZWVhVWrVuHhhx+uVRsM4IiIiIjIL4JRqqvWAOFNpM2d/HTvSnVb9AHaDZEW2ijKtm0XAzOCT7R6DusAKWhMGQnEXyuNzotIqFqKG5kgLbBR6eczv+HcekREPpFlhF3Xrl1x4sQJ3H///Vi2bJlX9zz44INYsWIFOnfuXOfFFpSmvLzcEb7dfvvtWL9+fY3XR0REoKSkBAMGDMCuXbv83p+9e/eiX79+AIDHHnsMCxYs8OvzA5U2ExEREVEDppSg52IasGCY51Ld6kayGYpti21kA4VOQZ7jNUt6NZcH6hN4ptYDkfEVAV6VYM+2hcR4H+xxbj0iaiTq9Qi7c+fOAQAmTpzo9T2TJk3CihUrHPc2JCEhIWjatClyc3M9lpPm5eWhpKQEQOAWd+jWrZtj/8KFCwFpg4iIiIioVpSyQEddV9XVR0hbk2uqb0MUpXJce5DnNtizvYoWv3wsFxYDkH9e2mqiCakI8iLiq47Us28nNgFrHufcekREdSBLYBcZGQmDwYDmzZt7fY/9Wm8WZaiPunbtih07duDUqVMwm83QaNz/URw7dszlnkCQYZAlEREREVH9FehSXUGQylJDY4HmNfyb32orhS28AKTcKgVtcjKXA3np0uYrqxlY9WdAHwm0HRy8UFYpIziJiKohS2CXnJyMLVu24OTJk+jVq5dX95w8edJxb0M0ePBg7NixAyUlJdi3bx+uv/56t9dt27bNsT9o0KCA9OXIkSOO/RYtWgSkDSIiIiKiek0Jq+qqVEBEc2nrfrd3c+u1vRG4doxtlJ7zlu3dPHiBIFqAZeOlfW0YEN5UWvk2vFml/Urvw5oAam3d2mapLhHVE7IEdtOmTcPPP/+M9957D/feey9UHv7HZrVa8e6770IQBPz5z3+Wo4uyGzt2LN58800AwOLFi90Gdlar1bGCbExMDIYPHx6Qvnz66aeO/aFDhwakDSIiIiKiBkEppboDn5TKSz3NrXfbv6oPosxGoOSSm9LbHNf3ZVcD8xkAKTTzphzXLiSmmnDPTdAXEuMaqrpbhVhppboc+UdENrIEdvfddx9++OEHLF68GGPHjsWCBQuQkJDg9tqcnBxMmzYNv/32GyZPnoz7779fji7Krn///hgyZAh27NiBlJQUTJw4EQMHDnS55p133nEsuDF9+nRota6/TVqyZAkmT54MAJg9ezbmzJnjcj4tLQ2hoaHo0KFDtf349NNPkZKSAgBISEjAuHHj6vrRiIiIiIgo0Oo6tx4AaHRAdCtpq4nZYFs4w0OwV55fp4/klfJ8abty0vO1Kg0QZgvyNHrgwj4A1UwHZDVLX8u49kDL3n7ssJc48o+IKpElsPv8888xdOhQHDp0COvXr0f79u0xcuRI9OvXD82bN4cgCMjJyUFqaio2bdoEg8GAfv36YejQoY4RZu5MmDBBju4HzLx58zBo0CCUlZVh5MiRePnllzF8+HCUlZVh+fLljtVaO3XqhOeee67Wz9+3bx+mTp2K4cOHY9SoUUhOTkaTJk1gNptx7NgxfPnll/jf//4HAFCr1fj0008RHq6A3xYSEREREZFngZ5bz06jB2JaS1tNjCXAv9sHd8VbZ1YzUHxR2ry9/rPh0qq5IVHSPHt622tItOt7faTtmiinayrdo1J71259GPlHRLITRBlWHFCpVBCclv8WRdHlvbOazjkTBAFmcw3Dv+uJdevW4ZFHHkFhYaHb8506dcKGDRvcjpLzNMLO+XxNmjRpgpSUFIwZM6b2H8ALgVrimIiIiIiIbJRSSrn6ce/m1ut+LzD8ZaAkFyi5bNuc9ktzK96XXgFEa+D77m+6iEqhn3OgFyW9NxQDuz+q+fOpNMCftwZ3pJ1Svr+IFChQmYcsI+yAqiuR1pQTNqZVS++8804cPHgQ8+bNw4YNG5CZmQmdTocOHTrgvvvuw1NPPYWwsDCfnj169GikpKRg165d+P3335GTk4MrV65AFEXExcWhZ8+euO222zBp0iRERUX5+ZMREREREZFs6tvceoOfAZpcI22eWC1AWZ5TsHe5+qCv5ApgKPDbx6kTY7G0FWXX7TlWM7D0LqlUNzQOCIuTXkNjbftOr6FxUijoxSAYryi9VFepQaJS+0X1iiwj7M6dOxeQ57Zp0yYgzyX/4gg7IiIiIqJGxF2Jp519br1AlniaDU4hXq40/9666YDVFLg2lUSlrRrihcVWCvncBH8avetzgv3nWBOlBolK7ZedUoNEpfbLS4HKPGQJ7KhxY2BHRERERNTIXEwL/Nx6teFtqW6XO4AhzwKGIqC8UHo12F7LCyq9r3TeUIRqF7WoD7ThthAvBlDpgKz9qPHzCGrgnhQgsYc0ulMbKv05q7XV3+MPSg0SldovQLlBolL7VUsM7KjeYmBHRERERNRIKWXkzMU0YMEwz6W6dZkrzmqVSmCrhHqF7kO+8gLg+Mb6OT9fTVQaKXixB3iOfdt7nZtjHq+zvealA0vvDOyfoy/k+P7ylVKDRKX2ywf1fg47IiIiIiIiamSUMrdeQrIUAHgKCOoSpqhU0kISIVEAWnp3j7cj/1r1B7qMBkqvAmVXgbL8in37a01hkZys5oqQMljtL7oNiEwAIACCSprTT1A5vUel95XPC5XOVX5f6dqLaZ6//lYzsOoxoMudgFonjUR0edUBGl3FvvNxl/1qrnEXiF9Mq/573t6n1dOk1ablDjiV2C+FYWBHREREREREDV/yvVIAoKRSXW8X6bjjvzX3TxSl0X0uIV6etFUO9pyPlStkgQ5/MxYDV04FuxdVXToqbYEgqKsGf+X53gWJX4wDmnT08HxfFjKp5p7cE971a9d8YNzHPrTbMMhaEnv06FEsWLAAO3bswJkzZ1BUVASrtebhv4IgwGxWyG8KyCcsiSUiIiIiIkVRSqkuENzSQItZCu2cA72SXGD9jMazSAcplzYM+PuF4P8d9aDel8S+9dZbmDVrFiwWCzhtHhEREREREQWNUkp1geCO/FNrgPAm0ubs3C/eler2fBC44z2pz6Yy26vTvtH5uJvz3l7X0Ob5I++YSqVgXSl/V2UmS2D39ddf4+WXXwYAqFQqDBkyBD179kRMTAxUCk9KiYiIiIiIiAIqIVkq/RvzkTJG/nlbqjvwSUAbIm2BIoqAxSiFN2unA0e/83xP2yFA/z/bgj5RehVFaYPttco5d+/h3bWHVwMXD3ruV2xboEVv6fNYTIDFYHs1Oh2rtG+2vzf4+AWsx7Rh0t+FRkqWwG7evHkAgJYtW2Ljxo1ITm68kwYSERERERERuaWUkX9yLNLhLUEANHppG/oCcHyD5yDxtjflnZOw4wjvVom9/0vf+yWKgNVSTbhndH985zwgfbvnZ7fqJ42WrL5x3/pbnQNfARf2eX5Gt7GKL4cNJFkCu4MHD0IQBPzzn/9kWEdERERERESkdEpcpENJQaLc/RIEqYRZrQEQ5t09EfHeBYl3vCvv16z1AO/6NfAvsnVJiWQJ7LRaLQDguuuuk6M5IiIiIiIiIqorpZXqAsoMEpXar8YccDYAsqwSO3DgQOzZswebNm3CzTffHOjmSGG4SiwRERERERH5nZJW+3WmtH5dTFNWkKj0ftVSvV4lduLEifjtt9+wZs0aBnZEREREREREVHdKmfOvMqX1S4kjJZXcL4WQ5SsxZcoUDBkyBAsWLMC6devkaJKIiIiIiIiIiOzsQaLSQjGl9ivIZJvD7rvvvsPEiRMxbtw4PPDAAxg/fjw6deqEsDDPkyW2bt1ahl4SEREREREREREFnyyBHQDExMTgr3/9K3bv3o2vvvoKX331lVf3CYIAs7mGlUOIiIiIiIiIiIgaENnGGz7zzDMYOXIkcnNzIYpirTYiIiIiIiIiIqLGQpYRdl9++SXef/99AEBUVBTGjRuHHj16ICYmBirWKBMRERERERERETnIEth98MEHAIAuXbpgy5YtiI+Pl6NZIiIiIiIiIiKiekeW4W3Hjh2DIAiYM2cOwzoiIiIiIiIiIqIayBLYabVaAECnTp3kaI6IiIiIiIiIiKjekiWw69KlCwDg4sWLcjRHRERERERERERUb8kS2E2ePBmiKOKrr76SozkiIiIiIiIiIqJ6S5bAbsqUKbjjjjvw5Zdf4sMPP5SjSSIiIiIiIiIionpJllVit2/fjr/+9a+4fPkypk+fjmXLluGBBx5Ap06dEBYW5vH+G2+8UYZeEhERERERERERBZ8sgd2wYcMgCILj/W+//YbffvvNq3sFQYDZbA5U14iIiIiIiIiIiBRFlsAOAERRlKspIiIiIiIiIiKiekuWwG7Lli1yNENERERERERERFTvyRLYDR06VI5miIiIiIiIiIiI6j1ZVoklIiIiIiIiIiIi7zCwIyIiIiIiIiIiUhAGdkRERERERERERAri9znsXnvtNX8/ErNmzfL7M4mIiIiIiIiIiJRIEEVR9OcDVSoVBEHw5yNhsVj8+jySV2ZmJpKSkgAAGRkZaNWqVZB7RERERERERERUd4HKPAKySqw/M0B/h39ERERERERERERK5vfAbsuWLf5+JBERERERERERUaPh98Bu6NCh/n4kERERERERERFRo8FVYomIiIiIiIiIiBSEgR0REREREREREZGCMLAjIiIiIiIiIiJSEAZ2RERERERERERECsLAjoiIiIiIiIiISEEY2CnA+fPn8fzzz6Nr164IDw9HXFwc+vfvj//85z8oLS31WzvLly/HrbfeisTERISEhKBt27Z49NFHsXv3br+1QUREREREREREdSOIoigGuxON2YYNG/Dwww+joKDA7fnOnTtj48aNaN++vc9tlJeX47777sP69evdnlepVJgzZw5mzpzpcxs1yczMRFJSEgAgIyMDrVq1Ckg7RERERERERERyClTmwRF2QXTgwAGMHz8eBQUFiIiIwBtvvIFff/0VP/30Ex577DEAwPHjx3H77bejuLjY53amTJniCOuGDx+ONWvWYM+ePUhJScE111wDq9WKWbNmYeHChX75XERERERERERE5DuOsAui4cOHY+vWrdBoNNi+fTsGDhzocv7tt9/G3/72NwDAq6++ilmzZtW6jW3btmHYsGEAgDvvvBOrV6+GWq12nM/NzUWfPn1w/vx5xMbG4syZM4iJifH5M7nDEXZERERERERE1BBxhF0Dk5qaiq1btwKQRsBVDusA4LnnnkPXrl0BAO+99x5MJlOt2/n3v/8NAFCr1Zg/f75LWAcATZs2xdy5cwEAeXl5SElJqXUbRERERERERETkPwzsgmTNmjWO/cmTJ7u9RqVSYcKECQCkMM0e8HmruLgYP/30EwBgxIgR1aa8d999N6KiogAAq1atqlUbRERERERERETkXwzsgmTHjh0AgPDwcPTp06fa64YOHerY37lzZ63a2LNnDwwGQ5XnVKbT6TBgwADHPb6M5CMiIiIiIiIiIv9gYBckR48eBQB06NABGo2m2uu6dOlS5Z7atlH5OTW1YzabcfLkyVq1Q0RERERERERE/lN9UkQBU15ejtzcXADwOBlhbGwswsPDUVJSgoyMjFq143y9p3bsEyTa7+vWrZvX7WRmZnrdj+zsbK+fS0RERERERESkZM45h9ls9ttzGdgFQVFRkWM/IiLC4/X2wK64uDhg7YSHhzv2a9uOc9jnSf/+/Wv1bCIiIiIiIiKi+uDy5cto27atX57FktggKC8vd+zrdDqP1+v1egBAWVlZwNqxt+FLO0RERERERERE5D8cYRcEISEhjn2j0ejxevvCEaGhoQFrx96GL+14KtUtLy/HsWPHEB8fj2bNmtU4Z59SZWdnO0YH7tmzB4mJiUHuEVHg8fueGiN+31Njw+95aoz4fU+NEb/vA8dsNuPy5csAgOTkZL89t/4lJw1AZGSkY9+b8tOSkhIA3pXP+tqOvQ1f2vE0Px4gLa7RUCQmJnr1mYkaEn7fU2PE73tqbPg9T40Rv++pMeL3vf/5qwzWGUtigyAkJARNmzYF4HnBhry8PEeYVpu54gDXIK02C0PUth0iIiIiIiIiIvIfBnZB0rVrVwDAqVOnalxF5NixY1Xu8ZbzSq/Oz6mpHY1G06BGwxERERERERER1TcM7IJk8ODBAKRS1H379lV73bZt2xz7gwYNqlUb/fr1cyw24fycyoxGI3bv3l3lHiIiIiIiIiIikh8DuyAZO3asY3/x4sVur7Farfj8888BADExMRg+fHit2oiMjMTNN98MANi8eXO1ZbGrVq1CYWEhAGDcuHG1aoOIiIiIiIiIiPyLgV2Q9O/fH0OGDAEApKSkYNeuXVWueeedd3D06FEAwPTp06HVal3OL1myBIIgQBAEzJkzx207zz//PABp1ZInn3wSFovF5Xxubi5efPFFAFIoOHXq1Dp9LiIiIiIiIiIiqhsGdkE0b948hIaGwmw2Y+TIkXjzzTexe/dubNmyBdOmTcPf/vY3AECnTp3w3HPP+dTGTTfdhAceeAAAsHbtWowYMQJr167F3r17sXjxYgwYMADnz58HALz11luIjY31z4cjIiIiIiIiIiKfaILdgcasV69eWLFiBR555BEUFhbi5ZdfrnJNp06dsGHDBkRGRvrczqJFi1BYWIiNGzdiy5Yt2LJli8t5lUqFmTNnYtq0aT63QURERERERERE/sHALsjuvPNOHDx4EPPmzcOGDRuQmZkJnU6HDh064L777sNTTz2FsLCwOrURGhqKDRs2YNmyZViyZAkOHDiA/Px8xMfHY8iQIXjqqacwcOBAP32ihqlVq1YQRTHY3SCSFb/vqTHi9z01Nvyep8aI3/fUGPH7vv4RRP6JERERERERERERKQbnsCMiIiIiIiIiIlIQBnZEREREREREREQKwsCOiIiIiIiIiIhIQRjYERERERERERERKQgDOyIiIiIiIiIiIgVhYEdERERERERERKQgmmB3gBq+8vJypKWlAQCaNWsGjYbfdkRERERERERU/5nNZly+fBkAkJycjJCQEL88l8mJApw/fx7vv/8+NmzYgPPnz0Ov16NDhw4YP348/vKXvyAsLMwv7SxfvhyLFy/GwYMHkZeXh4SEBAwZMgRPPvkkBgwY4Jc23ElLS0P//v0D9nwiIiIiIiIiomDbs2cP+vXr55dnCaIoin55Evlkw4YNePjhh1FQUOD2fOfOnbFx40a0b9/e5zbKy8tx3333Yf369W7Pq1QqzJkzBzNnzvS5jZqkpqYysCMiIiIiIiKiBo2BXQNx4MAB3HDDDSgtLUVERAT+/ve/Y/jw4SgrK8Py5cvx2WefAQC6dOmC1NRURERE+NTOww8/jGXLlgEAhg8fjunTp6NFixZIS0vDv/71L5w+fRoA8Nlnn2Hq1Kn++XBO0tPT0a5dOwDSN29iYqLf2yAiIiIiIiIiklt2drZjkNLZs2fRtm1bvzyXgV0QDR8+HFu3boVGo8H27dsxcOBAl/Nvv/02/va3vwEAXn31VcyaNavWbWzbtg3Dhg0DANx5551YvXo11Gq143xubi769OmD8+fPIzY2FmfOnEFMTIzPn8mdzMxMJCUlAQAyMjLQqlUrvz6fiIiIiIiIiCgYApV5cJXYIElNTcXWrVsBAFOmTKkS1gHAc889h65duwIA3nvvPZhMplq38+9//xsAoFarMX/+fJewDgCaNm2KuXPnAgDy8vKQkpJS6zaIiIiIiIiIiMh/GNgFyZo1axz7kydPdnuNSqXChAkTAEhhmj3g81ZxcTF++uknAMCIESOqTXnvvvtuREVFAQBWrVpVqzaIiIiIiIiIiMi/GNgFyY4dOwAA4eHh6NOnT7XXDR061LG/c+fOWrWxZ88eGAyGKs+pTKfTOVaJ3bNnj08j+YiIiIiIiIiIyD8Y2AXJ0aNHAQAdOnSARqOp9rouXbpUuae2bVR+Tk3tmM1mnDx5slbtEBEREREREZHCWa2AsUR6VRKl9ivIqk+KKGDKy8uRm5sLAB4nI4yNjUV4eDhKSkqQkZFRq3acr/fUjn2CRPt93bp187qdzMzMGs9nZ2d7/SwiIiIiIiKies1qBcxlgCYUUClgnNTFNGDXR8CR7wBTKaANA7qNAQY+CSQks18KxcAuCIqKihz7ERERHq+3B3bFxcUBayc8PNyxX9t2nMM+IiIiIiIiokZJiQFU2jfA6mmA1VxxzFQKHPgKSPsaGPcpkHwv+6VADOyCoLy83LGv0+k8Xq/X6wEAZWVlAWvH3oYv7RARERERERHJTkkj2ZQUQFnM0tcl64+qfXJmNQOr/gwYioDYNoBoBUTR9mqt5r3TMbg753xNNecLs4DUz2zPqKZfq6cBzTo36pF2DOyCICQkxLFvNBo9Xm9fOCI0NDRg7djb8KUdT6W62dnZ6N+/f62eSUREREREROSW0kayXUzzHIytngaotEBMEmAut20GwFQmvTqOeThuLgdMzu/Lqh4XLd73XbQA65/xy5fBr6xmYNd8YNzHwe5J0DCwC4LIyEjHvjflpyUlJQC8K5/1tR17G76042l+PCIiIiIiIiK/8PdINrMRMBZLzzCWuG4m+35ppWuKbcdKpGM5h6sP6+ysZuDrCb595sbqyBpgzEfBHz0ZJAzsgiAkJARNmzZFbm6uxwUb8vLyHGFabeeKcw7SMjMz0bdv32qvdR4lxznpiIiIiIiISHG8Gcm26jHg9BZAF14pdHMO4mwBnLHEc9BGwWMqlUYQ6sI9X9sAMbALkq5du2LHjh04deoUzGYzNBr3fxTHjh1zuac2nFd6dX5OTe1oNBp06NChVu0QERERERFRAybXXHFWC1B8CSjKrtgKs4Gii0BRFnBhn+eATbQCf3wZuD42VOHxgEoNCCrbJlR6rbxVOg5317k5BgCnf/aubFcbJn3PNVIM7IJk8ODB2LFjB0pKSrBv3z5cf/31bq/btm2bY3/QoEG1aqNfv37Q6XQwGo3Ytm0bXnrpJbfXGY1G7N692+UeIiIiIiIiauT8NVecKALl+bbwrZowrugiUJxT/UIEDYVaD2hDAU0IoLHv6yvea5zea0Ocjoc4bZWe4facHtg0Cziy2nOfej4k71xxqx+XSpg96Ta20ZbDAgzsgmbs2LF48803AQCLFy92G9hZrVZ8/vnnAICYmBgMHz68Vm1ERkbi5ptvxvfff4/NmzcjMzPT7Xxzq1atQmFhIQBg3Lhxtf0oRERERERE1NB4O1ecqcwpfLNvF6WVQIsuVrw3lwXvs9SGJkQKJnURUimmLkx61Ybb3jtt9usOfQNk/Ob52T0fBMZ9EvjPYHfjc8CxdTWPSlRpgIF/ka9PgBT4pn2tvH4pjCCKohjsTjRWN954I3bs2AGNRoPt27dj4MCBLufffvtt/O1vfwMAzJ49G3PmzHE5v2TJEkyePLna8wDw888/4+abbwYA3HXXXVi1ahXUarXjfG5uLvr06YPz588jJiYGZ86cQWxsrB8/pTR/nn1evIyMDC5SQUREREREpGQX04AFwzyXn+oiAWORLF2qFUENXPcwoI90Ct0ibAFbuC2McxPEacMAtQ/jmrz5eqk0wJ+3yr+Krbvg1blPtV2ko6H3yweByjw4wi6I5s2bh0GDBqGsrAwjR47Eyy+/jOHDh6OsrAzLly/HggULAACdOnXCc88951MbN910Ex544AEsX74ca9euxYgRI/DMM8+gRYsWSEtLwxtvvIHz588DAN566y2/h3VERERERESkUKYyID8DyD8H5KUD+eel/bPbvVuMIVBhnUoDRCQAUYlAZAIQmShtJ34EMnZ7vr/H/cCYDwLTN3cSkqWAyVMAJXdYB0ihV7POwK75EI+sgWAqhagNg9BtrDSCLRh9svXrNFrhyuZ30T1/C8IEA0pFPQ7FDEeTW2bgmuQBwemXgjCwC6JevXphxYoVeOSRR1BYWIiXX365yjWdOnXChg0bEBkZ6XM7ixYtQmFhITZu3IgtW7Zgy5YtLudVKhVmzpyJadOm+dwGERERERER1ZG/F3cwG4GCjIogLv88kHeuYr84p+5t1FZYEyCyhRTERSVWhHGRiRXvw5q6//wdR3g3ki0YpZRKDcYAHLG2wULTNPxQfidEUxkESyhuM7XAVGsbdPN8e0B898cFPLfyKszWCRDwCEJgRDl0EHNU0Hx1Fe9YLmDMdS2D1DtlYGAXZHfeeScOHjyIefPmYcOGDcjMzIROp0OHDh1w33334amnnkJYWFid2ggNDcWGDRuwbNkyLFmyBAcOHEB+fj7i4+MxZMgQPPXUU1XKcYmIiIiIiEgmvi7uYLUAhRecgjhbMGffL8qSbxEHbXilAC4BiLIFc/aALjJBWgzBV0oeyQYlB2MHYLbaZ0MLAUwiVu2/gLV/ZOGd8T1lD8aOZBW69EmECmUIcZw3W0U8t/IAOjaPRLcWUbL2TUk4hx0FHOewIyIiIiIiqoanubxuewtI6OEUxDmNkCvI9K50NVA0euDP26VgLkTGYOViGrBrPnBkjVPAOTaoI9mqBmMVNCpBlmDMahVhtFhhMFthNFtxOKsAU5buhcVNn+xUAvDciM5oFqWHyWKF2SLCZLHCZHs1W6wwWkSYLVbpuFWEyey6b7ba75Hus99jv99kqThvtogoMZpRQ5cc7undCu+M7+nHr1BgBCrzYGBHAcfAjoiIiIiIyA1vF3cItLAmQExrIKYNENsGSP8FuLDX8309HwLGfRz4/lXDarGgvKwYIaERUDktrii3I1mFuOvDnW7DOjuVADw7ohOaRephNEuhmskiwmi2wmixSK9mq0vgZn/vbt/g5lxNwVx9FKpV4/Crt0KlEoLdlRpx0QkiIiIiIiKihsBqBS4dAdb+VZ6wTh8NxNoCuZg2UjgXa99PklZTdebtqqfBmCsOUkC2cOcZfJ92EWUmC0K1aoxKTsDUwe39UkJZbrKgoMyEvFIj8ktNyLe/2o4VlFacKygzIf1KSY1hHQBYReA/m07UuW+NSZnJgnKzBWG6xhldNc5PTURERERERCQXUQQuHQXSdwLp26URbGVX/fd8bZibIM6+3xoIja3d8xQ8V5y70tMyk8XtnGwGswUF9qCtxIj8MlNF2FbmFMTZjtlDunKTTPP+UY1CtWqEaII3cjLYGNgRERERERER+ZMoArkngLPbgfQdUkBXmlu3Z8a1B2LbuQZxMW2l/bAmgODnskGnVU+VMldc5cUKKjNbRUxf/gdeX38EJUYLSo0WmXtYPwkCkNwiCjqNGhq1AK1aZdsEaNQq6NQqaFQCtBrXfa1KulZju9Z+n0YtQFdpv+K5Aj78+RS2HL/ssV+jkxMVXw4bSAzsiIiIiIiIiOpCFIErp2wB3U5pK7nkv+drw4Cn9gEqlf+e6Y2EZGmOujEfAeYyQBMqax+uFBtwIqcYJy8V4UROEb5Pu+ix9BQALhcbZehd7dmDMb1WDZ0t/NJpVNBp1I59vUZV6Zzrvt7jObXj/Zy1h7H2QJbHft3dS97FHV64tQt2nMyt8c9SoxIwZXA72fqkRAzsiIiIiIiIiGpDFIGrZ6TRc2d3SAFd8cXaP0cbDphKPF/Xbaz8YZ0zlQrQhQfs8fmlRpzIKcaJnCKczCnC8ZwinMwpxpWS4AdvUSEaxIbrEBOqRXSYDrFhWsSEahETpkNMmBYxYVp8vTcTv56+4vFZcgdjjw+9BhvTshUXjHVrEYV3xvf0uKquP+YjrM8Y2BEREREREVHjYrXWbsSYKAJ5Z6Vgzh7QFXkeuVRFdBLQdgjQbgjQdjBQXqDoxR3srFYR5WYLQjTqOpUoFpabcDKnyCmcK8bxnCJcLjL4sbfuRYZoEBOmRWyYDtG2wM1d+BYTpnMciw7VQu3F5+0cH+VxlVgGY67GXNcSHZtHImXnWWxMy3YsHjI6ORFTBrdr9GEdAAiiKDasdX9JcQK1xDEREREREVGtXEwDdn0EHPnOaU62McDAJ6vOyZZ3zjb/nC2kK8ysfXtRLV0Duti2Va9J+8bz4g7J99a+bT/wdTXWYoMZJ22B3ImcIpy4VIwTF4twsbBcln7rNCr839T+iAvXSyPjQrXQqAM7QtHdYhh29mDMvhiG3I5kFSo6GPNXIBwsgco8GNhRwDGwIyIiIiKioPMUjI38FxASWRHQFZyvfRuRiVJA13awFNLFtvNuMYiLaYpa3AHwLoAa0S0epy4VS/PM5UjzzJ3IKcaF/DK/9UOnUaFDswh0io/AyUvFOJxV6PGee3rLW3pqx2CscWJgR/UWAzsiIiIiIgqqi2meS099ERHvFNDdKK3kWpfVWmtbqhsgR7IKPZZ4+ptWLeCaZhHoGB+JTs1tr/ERaNMk3FGW6k2/NCoBa58aHNSAjMFY4xKozINz2BEREREREVHDtusj/4R14c2kcK7tECmga9KhbgFdZQFe3MEbBrMFb/94LGBhnUYloG3TcHSOj0TH+Ah0cgrmtB7KVpU8J5szlUpAmI5xC9UNv4OIiIiIiIioYbKYgLPbgbSvfbs/rElFQNd2CNCss38DuiAzmq04kVOEg5kFSLuQj7QLBTiWXQizte7PVglA2ybh6BgfYQvnItEpPhLtmoZDp/F99CAXK6DGgoEdERERERERNRzGUuD0T8DR9cCJH4Dy/Nrd33kU0P4mKahr1iWopan+ZLJI4dyhCwW2gK4Ax7KLYLTUPZ1r0yQMHZtLI+U6J0SiY/NItG8WjhCt2g89r8o+0u7te3uw9JQaLAZ2REREREREVL+V5QEnfgSOrgNO/STNA+cLbRhw/7J6H9KZLVaculyMg5kFjoDuSHYhjP4YOudEr1Fh/z9GIDwkONECS0+pIeN3NhEREREREdU/hdnAsfXSlr7TP3PUdft/9u47LKozbQP4PQ2GDlKkKqgooIA9urFG01CjRmNM2WjW9L5JzCbbUr5ssokxbWOyKUZj6qrRGKPGGDuJiRVBURABpQsW6gBTzvfHkZEyDZhygPt3XXMxM6c9gzgOt+/7PrNcGtZ1pFmB3iAg93I4l1Ek3o4XV6Jea99wzpTpSeEuC+uIujv+zSIiIiIiIqKu4fxpcRTdyR+AwgO2HxccB1RkA4KFEEuuBMY+1PkaOyCzuAqfpOZiS0apcU22GxNDcc+4fi3WZDMYBOSdr0VGYaVx3bnjxVWoa9R36vrRgZ5IjPRHUoQfEiP9oJTLMP+j36x2Y100LqZT1yUi8xjYERERERERkTQJAlCaLq5Hd2IjUH7CtuNkCqDvH4D4m4C4FMAvEshYC6y/3/RIPLkSmP0hEJpo3/ptsCGtqE3XU41Wj3WHi7AhrRh3XNUH7ko50gsrcby4CjUNnRtJ2KeXJxIvB3NJEX4YHOEHPw9Vm/26QjdWou6MgR0RERERERFJh0EPFPx+ZSTdpbO2HadUA/2vAeKmi40jPHu13J44V+zyuu99IPM7QFsnrlmXMEscWeeCsC6zuMpsKAaI011X7TvT4fNH+HsgKVIM5xIjxJu/p5tNx7IbK5FryQRBMD/GlcgOCgsLERUVBQAoKChAZGSkiysiIiIiIiKnMBjEBhBKD8trw+kagNzdwMmNwMnNQF2Fbed39wUGXi+GdAOmAu7e9q3LgXR6AxZ9dhC7s8vtcr5wPzWGRPhdDuj8kRjhh15etoVz1nRkbT2insJRmQdH2BEREREREZF9lWYA+5YBmRuajWSbCYx9+MpItoZq4NQ2cSTdqW1AY7Vt5/YKAeKmAfHTgegJgLIDoZRcDrh5tf+4Tjp7vg57TpVj76ly/HKqAjUdXHuut687EiPEUC4p0g9DIvwQ7ONu52qvYDdWIufj3zgiIiIiIiKyH1NrxWnrgKNfAxlrgKF3ANWlQO4uQN9g2zkDosVRdPEzgMhRgFzhiMrtrrpei32nz2PvqQrsPVWO/PN1HT7XQ5P6Y0TfACRG+CHEV23HKolIihjYERERERERkX2UZphv7ACIzx/+zLZz9R5yOaSbLt6XSX8qpt4g4FhRJfaeKsee7AocPnvRYqdVW3moFHj6ukGcjkrUgzCwIyIiIiIiIvvYt8x8WGeVDIgaLY6ii5sG9Opn19IcpaRSg73ZFdhzqhypORW4VKe1+zVSEsMY1hH1MAzsiIiIiIiIqPP0WuDYuvYdI1cCMRPEkG7QNMCnt2Nqs6O6Rh1+z7tgDOlyztW06/hALzeMjw3C+Nhg9PZ1x8IVByyOwlPKZVg0LqazZRNRF8PAjoiIiIiIiDru/Gkg7Usg7Svb16QDgJveE4M6D3+HlWZOe7qeCoKAEyXVxmYRB/IuolFvsPlabgo5RkYHYHxsMMbHBiEhzLfFNZfOS8ZTq4+aDO2UchmWzktGQriv7S+OiLoFBnZERERERETUPg01QOZ3wJEvgbO/tv94lafYfEIut3tplmQWV+GT1FxsySiFRquHh0qBGxNDcc+4fi1CsfLqBqTmiOvQ7T1VgYqadgSRAPoHe2HCwGBMiA3GVf16WeywOnNoBGJDfLA8NQ+bM0qMdaUkhmHRuBiGdUQ9lEwQhM6vgElkQWFhIaKiogAABQUFiIyMdHFFRERERETUboIAnN0nhnTH1wPa2o6fK/l2YPYH9qvNBhvSiiyOZLt/Yj/oDAL2ZFfgRElVu87t56HCuAFB4lTXgcGI8PfoUI3tGflHRNLgqMyDI+yIiIiIiIjIvMoi4OjX4rTXC7mdP59cCYx9qPPnaYfM4iqzYR0A6AwClu08bfP5FHIZhvfxN05zTYr0h8IOAZtcLrM4Go+Ieg6+ExAREREREVFL2nogazNw5AsgdycgWFmzzaMXkHQrMOwOoDwLWH+/6W6xciUw+0MgNNExdZvxSWquxcYOtujTyxMTBorNIsb2D4SvWmWn6oiI2mJgR0REREREROKU15I0ccprxhqg/pLl/WVyYMC1Ykg38EZA6SY+H5oIBA8C9r0vrnOnrRPXrEuYJY6sc3JYZzAI2JJR2u7jvN2VGNs/8PJadEHoG+jlgOqIiExjYEdERERERNST1VYA6avFKa9lx6zvHxgrhnRJ8wHfMNP7hCaKa9TNXAboNIDSw+kNJgCgXqvHyl/yodHqbT7mgYn9MCW+N4ZG+UOlcH7NREQAAzsiIiIiIqKeR68Dcn4G0r4Asn4EDFrL+7v5AENuBobdCUSOAmQ2rtcmlwNuzh+ZpmnU48vfz+DDPbkor7a9w6uHSoFnro9jwwcicjkGdkRERERERD1FebYY0h39Bqgps75/9HgxpIuf4ZLgrb3qGnX44rcz+GhPLipqGtt9fEpiGMM6IpIEBnZERERERERdncFgfuppfSVwbJ045bXwgPVz+UUBQ28Hkm8DesU4pl47q23Q4fPfzuDjPbk4X9v+oA4AlHIZFo3rGq+XiLo/BnZERERERERdVWkGsG8ZkLmhWXOHmcBVDwINlWKX18zvxTDPEqVaHEU39A4gZqJL1pvriJoGHVbty8cne/NwwUJQNz42CCP6BOC9nTkmu8Uq5TIsnZeMhHBfR5ZLRGQzBnZERERERERdUcZaYP39gEF35TltHXD0a/Fmi4gRYkg3ZA7g4e+QMh2hul6LVfvO4OO9ubhUZ379vYkDg/HYlFiM6BsAALhucCiWp+Zhc0YJNFo9PFQKpCSGYdG4GIZ1RCQpDOyIiIiIiIi6mtKMtmGdrbyCgeT5YlAXEm//2hyoql6Llb/kY3lqHio15oO6yYPEoG5Yn4AWzyeE+2LpvGQsmZuEep0eaqWCa9YRkSQxsCMiIiIiIupq9i1rX1gnVwIDbxBDuthrAYXKcbU5QKVGixW/5OHT1DxU1Zt/3VPiQvDYlFgkR/lbPJ9cLoOnG38dJiLp4jsUERERERFRV1FfCaSvBtL/Z+MBMuDal8QGEt7BDi3NESrrtFj+Sx5W/JKHagtB3bUJvfH4lFgMifBzYnVERI7DwI6IiIiIiEjKBAE4uw84vAo4/p31BhItDwZGLQLcvBxVnUNcqmvE8tQ8rPwlH9UN5oO66wf3xmNTYjE4nEEdEXUvDOyIiIiIiIikqOYckPYVcORz4HxOx86h8gSUHvaty4Eu1Dbik725+OzXfNQ26s3ud+OQUDx6TSwbRRBRt8XAjoiIiIiISCr0OuD0dnE0XfaPHWsq0VzCLEAut0tpjnS+pgEf783Dqn35qDMT1MlkQMqQMDw6ZQDiQhnUEVH3xsCOiIiIiIjI1S7mA0e+AI58CVQXW95XrgT6/gHI/wUQzI9Cg1wJjH3IrmXaW0VNAz7ek4vPfztjMaibnhSOR68ZgIG9fZxcIRGRazCwIyIiIiIicgVtPXDyB3E0Xd5u6/sHxgLD/3i5gUQIkLEWWH+/6VF4ciUw+0MgNNH+dbeDwSCgXqeHWqmAXC4zPn+uuh4f7c7FF7+fQb3WYPJYuQyYkSwGdQNCGNQRUc/CwI6IiIiIiMiZyo6LIV36/wDNRcv7Kj2AwbOB4XcBfcaIw82aJM4FggcB+94HMr8DtHXimnUJs8SRdS4M6zKLq/BJai62ZJRCo9XDQ6XAjYmhuHlYBHacLMeXv59Bg858UDdzaAQeuWYA+gd7O7lyIiJpkAmCILi6COreCgsLERUVBQAoKChAZGSkiysiIiIiInKy+irg2LdiA4miQ9b3Dx8mhnRD5gBqGzqgGgxi91ilh8vXrNuQVoSnVh+FztC+XzUVchlmDg3HI5MHoB+DOiLqIhyVeXCEHRERERERkSMIAlCwXxxNd3ydOALOErUfkDRfnPba3tFxcjng5tXxWu0ks7iq3WGdQi7DzcMi8PDkAYgOcv1rICKSAgZ2REREREREtrJlJFttBXD0azGoq8i2fs6YCcCwu4D46YDKw771Otknqbk2h3VKuQxzhkfi4ckD0CfQ08GVERF1LQzsiIiIiIiIrCnNAPYtAzI3NFsrbiYw9mFxNJxBD5zeCRxZBZzcDBi0ls/nEwYMvQMYdgfQq59zXoODGQwCNmeU2LSvQi7D9qcmom8gR9QREZnCwI6IiIiIiMgSU91YtXXiKLqMNcCgFKDoMFBVaPk8MgUw8AZxbboBUwFF9/l1rOBCHd75Odtsx9fW9AYBwT7uDq6KiKjr6j7/QhAREREREdlbaUbbsK45gw448b3lc/TqJ4Z0ybcDPr3tX6MLnTlfi/d25GDdkSLo27FunYdKAbVS4cDKiIi6NgZ2RERERERE5uxbZj6ss0SpBhJmiUFd3z8AMpndS3OlvAoxqPsurX1BXZOUxDDI5d3re0JEZE8M7IiIiIiIiEyprwKOfdu+Y8KSgWF/BBJvATz8HVKWK+Wcq8GynTnYkFaEDuR0AMRmE4vGxdi3MCKiboaBHRERERERUZOac0DWFuDkJrGJhKHR9mP/tBXoM8ZxtbnQqbJq/GdHDjamF0MwE9SpVXLceVVf9A30xIsbM012i1XKZVg6LxkJ4b4OrpiIqGtjYEdERERERD1bxSkxoDu5CSg8AKADQ8dUnkDkaLuX5mpZpdV4d8cpbM4oMRvUeagU+OPYvrh3fD9jI4kRfXtheWoeNmeUQKPVw0OlQEpiGBaNi2FYR0RkAwZ2RERERETUsxgMQNEh4OQPQNZmoCK78+dMmAXI5Z0/j0ScKKnCu9tPYcuxUrP7eLopcNfYaNw7PgaB3i07viaE+2LpvGQsmZuEep0eaqWCa9YREbUDAzsiIiIiIur+tPVA3h4ga5M45bWmzLbjZApAMMDiqDu5Ehj7kF3KdLVjRZX4z45T2Hrc/PfH212JBX/oi0Xj+qGXl5vF88nlMni68ddOIqL24jsnERERERF1T5qLwKlt4ki6nO1AY41tx7n5ALFTgbjpwICpQM7PwPr7TXeLlSuB2R8CoYn2rd3JMgor8c72U/j5hPmgzsddibuvjsafxsXA39NyUEdERJ3DwI6IiIiIiLqPSwXiNNeTPwBnfjUdspniHQrEpQCDpgEx4wFlsymeiXOB4EHAvveBzO8AbZ24Zl3CLHFkXRcO69IKLuHd7aew4+Q5s/v4qpX407gY3P2HGPh5qpxYHRFRz8XAjoiIiIiIpMdgAHQaQOlheW04QQDKjl1pGlGabvs1guOAQSniSLrwYZavE5oIzP4AmLnMtrok7vDZi3jn51PYnV1udh8/DxUWjYvBwquj4atmUEdE5EwM7IiIiIiISDpKM4B9y4DMDc1Gss0Exj58ZSSbXgec/RU4uVkM6SrP2nhyGRB1FRA3TbwF9m9/fXI54ObV/uMk4mD+Bbyz/RT2nqowu4+/pwr3ju+Hu8b2hQ+DOiIil2BgR0RERERE0pCxtu1acdo64OjXQMYaYPS9QN1FIPtHoP6SbedUqoF+k8WAbuANgHewQ0qXuv15F/DO9mz8knPe7D69vNxw7/h++OPYvvB256+KRESuxHdhIiIiIiJyvdIM840dAPH53z6w7VweAcDAG8U16fpf06VHxNnKYBBQr9NDrVRALpcZn993+jze2Z6N33IvmD02yNsN903ohzuu6gsvBnVERJLAd2MiIiIiInK9fctsbxBhin/fK1Ndo8YAip7xq05mcRU+Sc3FloxSaLR6eKgUuHFIKEZGB+C7tGLszzMf1AX7uOP+y0Gdh5vCiVUTEZE1PeNfMSIiIiIikiZtPZC3R5zy2l5hyWLDiEEpQO/BgExm/ZhuZENaEZ5afRQ6g2B8TqPVY92RIqw7UmT2uBAfdzwwsT9uv6oP1CoGdUREUiSpwK6iogJFRUUoLy/H+fPn4eHhgeDgYAQHB6Nfv36Qd+EuTEREREREdFl1KXDqJyDrRyB3p7hOXXtc9y9g8CzAL9Ih5XUFmcVVbcI6a0J91XhwUn/cOiqKQR0RkcS5NLCrrq7Ghg0bsGvXLuzduxc5OTlm9/Xy8sKYMWMwfvx4TJs2DcOHD3dipURERERE1GGCAJQcBbK3ig0jig93/FwqT2DMQ2K31h7sk9Rcm8O6cD81Hpw8APNGRsJdyaCOiKgrcElgd+jQIbzzzjv49ttvUV9fDwAQBMv/2NTU1GD79u3Yvn07XnjhBQwaNAgPP/wwFi5cCC+v7r+ILBERERFRl9JYB+TtFgO67K1AdYl9zpswq8eHdQaDgM0Ztn0/VQoZtj81ER5ukppcRUREVjj1XfvQoUP4+9//jp9++gnAlZAuLCwMo0aNwogRIxASEoJevXohICAAGo0GFy5cwMWLF5GdnY0DBw4gPT0dWq0WJ0+exGOPPYYXXngBixcvxuOPPw53d3dnvhwiIiIiImqusuhKQJe3G9DV23acTA6EDAbOHQcEg/n95Epg7EP2qbWLqtfq8cGu06jXWvg+NaPVC7B90iwREUmF0wK7u+++G59//jkMBvEfluHDh+OOO+7AnDlz0KdPH5vP09jYiD179uCrr77C+vXrcf78eTz33HP44IMP8Pnnn2PcuHGOeglERERERNScwQAUHwGyt4hBXWmG7ce6+wIDpgADbwAGXAt4BQIZa4H195vuFitXArM/BEIT7Vd/FyIIAr4/WozXf8xC0SWNzcd5qBRQcxosEVGX47TA7rPPPoObmxsWLFiAp556CgMHDuzQedzc3DB16lRMnToVH3zwAdasWYNXXnkFJ0+exI4dOxjYERERERG1h8EA6DSA0sO2qaYNNWKjiKwfgVNbgdpy268VEAMMulEM6fqMBZRuLbcnzgWCBwH73gcyvxObUag8xWmwYx/qsWHdoTMX8fKmTBw5e6ndx6YkhkEu71ndc4mIugOnBXYPPvggnnvuOURG2q+Tk7u7O+68807ccccdWLNmDfR6vd3OTURERETUrZVmAPuWAZkbmgVjM4GxD7cNxi6eudwwYguQnwroG227hkwhBnMDrxeDusABgMxKeBSaCMz+AJi5rH1BYjdUcKEOr/14Ej+kd2z9P6VchkXjYuxcFREROYNMsNbtgaiTCgsLERUVBQAoKCiwa2hLRERERB1gberprA8A/z7iNNesH4HyE7afW+0PxF57earrFMAjwG5l9xTV9Vq8v+s0lqfmoVFneq26Mf16YXxsMN7alm2yW6xSLsPSecmYOTTC0eUSEfVojso82CqIiIiIiKgnKc0wH9YB4vPr7m3fOYMGiaPoBt4ARF0FKPhrRkfoDQL+d6AAb27LQkWN6VGM0YGe+GtKPK5N6A2ZTIbJg0KwPDUPmzNKoNHq4aFSICUxDIvGxSAh3NfJr4CIiOyF/5ISEREREfUk+5aZD+tsJVcB0VeLAd3A64Fe/exTWw+291Q5/rXpBE6WVpvc7qtW4vGpA/HHMX3hprwyRTgh3BdL5yVjydwk1Ov0UCsVXLOOiKgbYGBHRERERNQTCAJQkQ0cW9ux4z0DgdjrxJCu/zWAmqO37CHnXDX+tekEdmaZbt6hlMtw55i+eHxKLAK83EzuAwByuQyebvz1joiou+A7OhERERFRd1VZBOTtBvL2ALm7geri9h0fHA/EpYghXcQIQK5wTJ090IXaRrz9cza+/P0s9CbWoAOAqfEheC4lHv2DvZ1cHRERuZrLArtffvkFa9euxenTpyGXyxEXF4d58+Zh+PDhVo89deoUrr/+eshkMpw+fdoJ1RIRERERdQF1F8RwLm+PGNSdz+n4uZQewIO/9tgOrY7SoNNj1a9n8O6OU6iuNz01OS7UB/+YnoCrBwQ5uToiIpIKpwd2Wq0Wd999N77++usWz2/cuBFLlizBzTffjPfffx/BwcFmz9HY2Ij8/HzIrLWEJyIiIiLqzhpqgLO/AXm7xBF0pRkATI/WarfBsxnW2ZEgCNh6vBSvbjmJM+frTO4T5O2OxdcPxNwRUVBwHToioh7N6YHdPffcg6+++srs9nXr1iE1NRVr1qzBuHHjnFgZEREREZHE6RqBooNiOJe3Gyg8CBi07TuHZxBQdx4Wgz25Ehj7UKdKpSsyCivxf5sysT/vgsnt7ko57h3fDw9M6g9vd65aRERETg7sUlNT8fnnn0MmkyE2NhZLly7FpEmT0NjYiF27duG1117D/v37UVZWhuuuuw7ffPMNbrrpJmeWSERERETkOAYDoNOI001tGb1mMACl6WI4l7sbOLsP0JoenWWW2h+IGQ/ETBRvQbHAsW+B9feb7hYrVwKzPwRCE9t3HWqjtLIeS7ZmYd2RQghm8tGZQ8PxzA1xiPD3cG5xREQkaU4N7JYvXw4AiIiIwK+//opevXoBALy8vDB79mzMmjULb775Jp577jnU19dj7ty5WLFiBe644w5nlklEREREZF+lGcC+ZUDmBjFwU3kCCTOBsQ+3DMYEQVx3LneXGNLlpwKai+27lsoT6DMWiJkA9JsIhCa1bRaROBcIHgTsex/I/K5ZTbPEkXUM6zqlrlGHD3fn4qM9udBo9Sb3GdE3AH+fFo9hfQKcXB0REXUFTg3sfv31V8hkMjz11FPGsK65pm0jR47EzTffjIsXL2LBggWorq7GAw884MxSiYiIiIjsI2Nt29Fs2jrg6NdAxhrg+lcBd+/L01z3tL+Tq1wJRI4SA7qYiUDkSEDpbv240ERg9gfAzGXtG/VHZhkMAtYdKcKSrSdRVtVgcp/IAA88e2McpiWGcU1uIiIyy6mBXXGx+OFj7NixFvebOHEi9uzZg+uvvx7FxcV4+OGHUVNTg6efftoZZRIRERER2Udphvmpp4D4/JbF7T9vaKIYzvWbJI6mc/fueI1yOeDm1fHjexiDQUC9Tg+1UgF5s8YQv+eex/9tysSxoiqTx3m7K/Hw5AG4++poqFUKk/sQERE1cWpgp9WKC+IqFNb/gRo8eDD27t2LqVOnIi8vD3/5y19QXV2NF1980dFlEhERERHZx773zId17dGrvzi9NWYiED0e8Ars/DmpXTKLq/BJai62ZJRCo9XDQ6XAjYmhSBkShrWHCvHj8VKTx8llwPzRffDnqQMR7GPDyEciIiI4ObALCQlBUVERzp49ixEjRljdPyYmBnv37sW1116LEydO4OWXX0ZNTQ3+9Kc/OaFaIiIiIqJ2aqwDio8AhQeAgv1A1qaOnccn7PIIuoniVFe/SPvWSe2yIa0IT60+Cp3hSucIjVaPdYeLsO5wkdnjxscG4e/TEjAo1McZZRIRUTfi1MBuyJAhKCoqwt69ezF79mybjgkPD8eePXtw3XXX4ciRI3j77beRnp7u4EqJiIiIiKwQBOBiHlBwQAzoCvcDpccAwXSTAasG3Qj0nyJOcw0cAHB9M0nILK5qE9ZZMyDEG3+bFo9JA4O5Th0REXWIUwO78ePH48cff8SaNWuwdOlSm//xCgwMxM6dO5GSkoJff/0VO3bscHClREREREStNNQAxYfFkXOFB8WQrq7CPudWeQK3fsWmDxL0SWquzWFdgKcKT147ELeN7gOlgn+WRETUcU4N7G644Qb87W9/Q3FxMdatW4c5c+bYfKyvry+2bduGWbNmYdu2bQ6skoiIiIh6PEEAzudcmdpaeBA4dxwQDI65XsIshnUSZDAI2JJhem261pRyGXY8PQkBnm4OroqIiHoCpwZ2w4YNw/jx41FcXIzPPvusXYEdAHh4eOCHH37A/PnzsX79egdVSURERERdnsEA6DSA0sO2IKy+Eig6JAZzBfuBooOA5mLHri1TAL0HA5GjAN8wYNe/LTeekCuBsQ917FrkUPvzL0CjtW2Ks84gwF3J0JWIiOzDqYHdoUOHsHv37k6dQ6VS4dtvv7VTRURERETUrZRmAPuWAZkbAG2dONU0YSYw9mEgNFHcx2AAKrLFNecKD4hr0JWfBGD7GmUteAUDkaOByJFA1GggfBjg5nVle0AMsP5+06GdXAnM/vBKbSQJ2WXVeGNrFn7KLLP5GA+VAmqlwoFVERFRT+LUwG7UqFEIDw/H9OnTMWPGDEyZMgVqtdqZJRARERFRd5Wxtm0wpq0Djn4NpK8G4lKAxlqg8BDQUNmxa8iVYrgWOepKSBcQbblBROJcIHgQsO99IPO7ZkHiLHFkHcM6ySi4UIe3fz6F9UcK0Y4eEwCAlMQwyOVsMEFERPYhEwShg/+V2H7yy9MRmppNqNVqXHPNNZgxYwamT5+O8PBwZ5VCTlRYWIioqCgAQEFBASIjI11cEREREXU7pRnAR5MsTz3tCO9QIGrUlYAuLBlw8+z4+do7VZecory6Act25uDL389Aq2//r0dKuQzfPzIOCeG+DqiOiIikzFGZh1NH2BUWFuKHH37Axo0bsWPHDmg0GmzatAmbN2/Ggw8+iKFDh2LGjBmYMWMGRowY4czSiIiIiKirEASgqhioyAIqTgHlWcCJjZ0P6+QqMZCLujxyLnI04BdpefRcu68hbzldllyqql6Lj3bn4tNf8lDXaHqtugBPFSYODMYP6SUmu8Uq5TIsnZfMsI6IiOzKqSPsmtNoNPj555/xww8/YNOmTSguLhYLuvyBKDQ0FNOmTcOMGTMwdepUeHh4uKJMsgOOsCMiIqIO0WuBC3nienMVWUB59uX7p4DG6s6f3zfyyrpzkaOA0CRAxeVaegJNox6f7cvHB7tOo1KjNbmPl5sCi8b3w73jY+CjViGzuArLU/OwOaMEGq0eHioFUhLDsGhcDMM6IqIezFGZh8sCu9YOHTqEjRs34ocffsDhw4cBcOpsd8HAjoiIqBuzxxTPhporQVxFljhiruIUcOG0/ae4AsDNHwPR4wBffqbsabR6A1YfLMC720+hrKrB5D5uCjnuHNMXD0/uj0Bv9zbbDQYB9To91EoF16wjIqLuH9g1V1xc3GbqLHAlwOPU2a6FgR0REVE3ZEs31uYEAagtF4O58qzLAV22OGquqtB5das8geeKuH5cD2MwCNiYXoy3tmUj/3ydyX3kMmDO8Eg8PjUWkQGdWKeQiIh6lB4V2DVXX1+Pn3/+GRs3bjQ7dXb69Ol46KGHkJyc7MpSyQwGdkRERN2MqW6sTeRK4NqXgMABl4O5ZuvM1V+ybx0qLyAoVuzAei5TDBGtSb4dmP2BfesgyRIEAbuyyvH61iycKKkyu9+NQ0Lx1HUDMSDEx4nVERFRd9Atmk50hFqtxvTp0zF9+nQA4tTZptF3R44cQUlJCT755BNEREQwsCMiIiJytNIM82EdID6/9a/2vaZXMBA06Eo4FzRQ/OoTfmWknC1dYuVKYOxD9q2NJOtA/gW8/uNJHMi/aHafcQOCsPj6QUiO8ndeYURERDaQfGDX2ogRIzBixAg8//zzxqmzP/zwAzw9u+aw9bq6Oixbtgxr1qxBTk4OGhsbERUVhWnTpuGxxx5Dnz59On2NnJwcHDhwAPv378f+/ftx5MgR4zTjFStWYOHChZ2+BhEREXVDBj1QWQBU5ADnc4Dzp+zTjdUkGRDQt1Uwd/m+Zy/rh4cmArM/tDzyb/aHpqfrUrdyvLgSb2zNws6scrP7JEf54y/XD8IfBgQ5sTIiIiLbSX5KbHd2+vRpTJs2DVlZWSa3+/n54auvvkJKSkqHr7F7925MmjTJ7HZnBHacEktERGQH9mjuYE7dBeD8aTGQqzglfj1/WrzpTS/M32EKdzGEC4oVA7nggeKIucABgMqj8+cvzQD2vQ9kftdsbb1Z4sg6hnXdWn5FLd7clo3vjxab3Sc2xBtPXz8I1yX0Ni6xQ0RE1Bk9dkpsd1VTU4Pp06cbw7p7770X8+fPh4eHB3bu3IlXX30VlZWVuOWWW7Bv3z4kJSV16DrN81i5XI74+Hh4eXlh//79dnkdRERE5GDtbe5gjq4RuJjXLJDLuTxy7hRQd94xtYePAHrHXx4pN1AM5/z7AnKFY64HXB5p9wEwc5njAk6SlLKqeryz/RRWHyiAzmB6LEKEvweevHYgZg2LgIKdXYmIqAtwamCXmpqK5557DgcOHIAgCOjbty8mTpyIOXPm4IYbbmixb1VVFdasWYOzZ88iNDQU48ePx5AhQ5xZrkO98cYbOHnyJADg9ddfx+LFi43bxo4di8mTJ2PChAmoq6vDE088gR07dnToOhEREViyZAlGjRqFESNGwNvbGytXrmRgR0RE1BWYau6grQOOfg1krBGneCbOvbJNEIDq0mYj5ZqNmrt0BhAMzqtd5Qnc87PrwjK5HHDzcs21ySku1TXig12nsfLXfDToTP9sB3m74ZHJA3DbVX3grnRgUExERGRnTgvsMjIycN1116GhocE46isnJwenT5/Gp59+iuHDh+Obb75B//79cfLkSUydOhUlJSUtzjFw4EA8++yzWLBggbPKdgitVot33nkHABAfH4+nnnqqzT5jx47FokWL8OGHH2Lnzp04dOgQRowY0e5rxcbG4umnn+50zURERORktjR3WHcfcOYXoL7qyjTWxhr71+LuK05ZDYq1vRtrwiyObKNOMRgE1Ov0UCsVkDcbFVfboMOKX/Lw4e5cVDeY/vvh467E/RP74e6rY+DlzklFRETU9TjtX6+lS5eivr4eCoUCt912GwYNGoTi4mJs2bIF+fn5OHToEK666irs378fd955J4qL2649kZWVhT/96U9Yv349Vq9eDTc3N2eVb1e7du3CpUuXAAALFiyA3MyH2YULF+LDDz8EAKxbt65DgR0RERF1QQY9sGeJ9eYOgh44+Kl9rilXAgHRQGAsEDRADOgCL6815xUMNK33xW6s5GCZxVX4JDUXWzJKodHq4aFS4MbEUCwY2xdHzl7CeztzUFHTaPJYd6UcC/8QjQcm9keAV9f8XYGIiAhwYmC3Z88eyGQyPPHEE1iyZInxeUEQsGrVKjz66KO4ePEiJk2ahMLCQshkMjzwwAN49tlnIZPJ8Msvv+CDDz7Anj17sHHjRtx///1YsWKFs8q3q7179xrvT5w40ex+I0eOhJeXF2pra5GamuqM0oiIiMiRzR2aaOuBykKxA2tlAXDp8tfKQuDSWaCyCBAc0YkVgFeIGMIFDrgyai4wVuzQqlBZP57dWMmBNqQV4anVR1usRafR6rHucBHWHS4ye5xCLsOto6Lw2DWxCPVTO6NUIiIih3JaYNc0vbV1x1OZTIYFCxYgPDwcN9xwA4qKiiCTyTBhwgQsW7bMuN+tt96KW2+9FUuWLMFf/vIXrFq1Cg8++CBGjx7trJdgNydOnDDej4uLM7ufUqlE//79kZ6e3uIYqSksLLS4vfXUZiIiIkmyV3MHQQDqL5kI4ZqCuUKg9pzDXgYAMWwMHNBqpNzl+2q/zp8/cS4QPIjdWMmuMour2oR1trgpORxPXjsQ0UFcs5CIiLoPpwV2CoW4yKufn+kPiddeey1uuukmbNiwATKZDHfffbfJ/RYvXoxdu3bhxx9/xKefftolA7uCggIAgJeXF/z9/S3uGxUVhfT0dJSXl6OhoQHu7u5OqLB9mtoXExERdVntae5g0IuNHZpGyF062+z+5ZDOEevImSOTAyPvETuwNo2a841w/Ppx7MZKdvZJam67wrrJg4Lx9PWDMDjcDiE0ERGRxDgtsIuMjMSpU6eQlpaG4cOHm9zn5ptvxoYNGwAAo0aNMnuuhQsXYsuWLfjll18cUqujVVdXAwC8vb2t7uvldeV/CmtqaiQZ2BEREXVptjR3+PYeYN97QN0FoKrI+tpyzpQ0H5i2xPp+jsJurGQHer0Bm9Jtm5UhlwFf3TsGY/oFOrgqIiIi13FaYDdp0iRkZ2fjjTfewG233QYPD482+wwcONB4v0+fPmbPNWDAAADA2bNn7V+oE9TX1wOATU0zmgd0Go3GYTV1RtOIQXNKSkq65EhIIiLqhgQB0FxsOSru0AobAjgBKD5i/3rUfoBfH8A/CvCLAvwiL9/vAzRUA1/OYXMH6tbKqxuw7nAhvj5wFg06g03HGAQgKZKj6oiIqHtzWmD3yCOPYPny5cjKysLUqVOxfPnyNuu3DR48GO+++y4OHjzYYmRZa00j1BwdYOl0OqhUNiy+bMWKFSuwcOFC42O1WlwIt7HRdHer5hoaGoz3TYWcUhAZGenqEoiIqCtyRHMHvQ6oLr6yVlzl5WDO+LgQ0Nba51pWyQCfsGYhXFSzYO5yOKf2tXwKNnegbkhvELAnuxzfHDiL7SfOtXvNOg+VAmqlwkHVERERSYPTArshQ4bgX//6F5599ln89ttvGDx4MMaOHYtJkyZh+PDhGD58OKKjo/HII49YPdeuXbsAmF8PT+p8fHwAiFNcramtvfJLhS1TaImIiCSvM80dGqqbBXDNmzpc/lpdDAi2jdLpNIV7yzCuRSAXKa4jp7Q+mt4iNnegbqTgQh1WHyzAmoOFKK2q7/B5UhLDIJfL7FgZERGR9DgtsAOAZ555BkFBQXj66adx6dIl/Prrr9i3b59xu5+fH4YOHYphw4Zh+PDhGDZsGOLi4iBv9r/ux48fx1tvvQWZTIahQ4c6tF6lUmmX7qxhYWEtHkdGRuL3339HbW0tLl26ZLHxRNN00+DgYK5fR0REXZ+15g43vAaED205ZbV5QFd/yVWVA3IVcPOHgH+0GMx5BjmnyQKbO1AXVq/VY+vxUqw+WIBfcs53+nxKuQyLxsXYoTIiIiJpc2pgBwB/+tOfcPPNN+Ozzz7Dhg0b8NtvvxnXdLt06RJ27dqF3bt3G/dXq9VITEzE8OHD4efnh/fffx/V1dWQyWR49NFHHV5v62m79pCQkIBvv/0WAHDy5EmMGTPG5H46nQ6nT58GAMTHx9u9DiIi6iEcMfW0vXSNQP4eYN19gKA3vY9BB2x+yjn1yOSAT7g4Eq66BLh0xvoxibcAQ+Y4vjZz2NyBupDM4iqsPliA9UeKUKnRWtxXrZIjJTEM80f1QcklDZ5ac9TkNFmlXIal85KREG5lKjkREVE34PTADgD8/f3x+OOP4/HHH4der8eJEyeQlpaGtLQ0HDlyBEePHsWFCxcAiOvU7d+/HwcOHDAeL5PJ4OHhgTVr1iArKwtJSUlITExEeHi4K15Ou40bN854f/fu3WYDu4MHDxqnxF599dVOqY2IXEQKgYopUq2LbNOZqae2aqwDakqB6jLLX+s6P7KmXVSerZo4RIqNHJoe+4QBisvr1JZmAB9NYnMHok6qqtfi+7RirD5YgPTCSqv7J0X64dZRUZiRHA5f9ZV1o2N7+2B5ah42Z5RAo9XDQ6VASmIYFo2LYVhHREQ9hkwQhPat8uokBQUFxhCvKcjLz89vsY9M1nLtil69eiExMRHJycl46623nFht+zQ2NiIkJASVlZWIj4/H8ePH27wWAHjggQfw4YcfAgD279+PUaNG2eX6K1euxN133w2gbUMMRygsLERUVBQA8c+VTSqImnFGoNKd6pI6KQWcpqaeNmlqVpA41/SxgiBOPbUYwl2+NVQ59GWY5RXcLJC7HMQ1f+wRAJj4t9Wszny/iHowQRBwIP8ivjlwFpszSlCvtbyGpJ+HCrOHRWDeyCir4ZvBIKBep4daqeCadUREJFmOyjwkG9iZUlVV1SLES0tLQ2ZmZptuqzKZDHq9mek2EvHPf/4T//d//wcAeP3117F48eIW2/ft24cJEyZAp9Nh4sSJxkYbzeXn5yMmRlzDw9w+pjCwI5IIqQYEUq1LyqQWcNoyYkymACYsBhTKtoFczTlA1/EF4e3Cv68YvJkK43zDAZUDOqeXZrC5A5GNzlXXY93hIqw+UIDcCuudl68eEIh5I6Nw/eBQqFXs8EpERN0HAzszdDodjh8/3mIkXnp6unFKrVRVV1dj5MiRyM7OBgDcd999mD9/Pjw8PLBz50688sorqKmpgYeHB3799VeTDTZsDezWrl3boiNtamoqli9fDgBYtGhRiym6oaGhuOGGG+z0KkUM7IhMsHUK3qJtQHCcuJ9BBxj0ze6bemzqZuYYvbbt9spC4MDHlrtsyhXAHzcAff8g3neF7jKSzRKDHmisFYMjbZ049VRbd/k5TbP7rbZr64DTO21bk02qVJ7Ac0Wu+7OV0s8XkYTo9Abszi7H/w4UYPvJc9CbWGeuuVBfNW4ZGYlbRkShT6Cnk6okIiJyLgZ23VBOTg5SUlJw6tQpk9t9fX3x5ZdfYvr06Sa32xrYRUdH48wZ235xa89IPVsxsCMyYf0DYlfMrkwmBzwDxamJXkGXv7a+3+yxm3f7piiaIrWRbMVHgU+usTKSTQ6Mvg9w920VuNW2DNlaB3L6Bue9DntQeQE+vQHvUPNf9ywBjq+zfq7k28WuqETkFNamnp45X4vVBwuw9lAhyqosvzcp5TJMiQ/B/FF9MGFgMBScykpERN2cozIPlzSdINGAAQNw5MgRLFu2DGvWrEFOTg4aGxsRFRWFlJQUPP744+jbt6+ryyQie6suA46tdXUVnScYgNpy8WYLpdpKuNfsvmcQoHRrebypkWzaOjH4zFhj+0g2XQPQUCOuvdZYI95vrAEaqq98bagBGqubbWva3uo5rfVpYBAMwO//te17JEVqf8AnFPDubebr5UDO3cf6ucY/CZz4ns0diCQis7gKn6TmYktGqbG5w42JobhnXD/0C/bCj8dK8b8DBdiXa71pTL9gL9w6Mgo3D49EsI+7E6onIiLq3pw2wm7NmjW45ZZbHHb+wsJCnD17Fn/4wx8cdg3qGI6wI4IY7pzcBGSsBnJ2ALC8KDcBUPtdCfAUKiB/r9gMwRyZHBh8sxgMWgrbDFrnvQapk8mAflMA36bgrVUg590bUKnte02ukUgkCRvSivDU6qPQmZjWKpMBaqUcGisNJDxUCkxLCsOto6Iwsm+AySZqRERE3V2XH2F366234qWXXsI///lPuwZ3Z8+exauvvooVK1bgr3/9KwM7IpIOXSNweocY0p3cLK6J5SgyhRh2GG9WHiuUbbfLFEDuLkCQSNOe+krxdj7Htv0FQ/cYuWiWTJwC7OYpNlxQeV2+79ns+cvP5e0Fyk9YP2XSbc6fepo4FwgexOYORC6UWVxlNqwDxP8bsRTWJUf549aRUZiRHAYftcpRZRIREfVoTgvsYmNjcfz4ccyfPx+LFy/G7bffjjvuuAODBw9u97lqa2uxfv16fPnll9i+fTv0ej3kcjkGDBjggMqJiNrBYAAKfhOnaB5fD2gudu58cTOA61+2EsYpO782XBNb19YbPBsY/9TlKbEV4teac1fuG5+XQLdRKZDJgbjp4jp+bUI2T8DNy3IIp/IQb7b+Odva1MRVU09DE8WgcOYyNncgcoFPUnPNhnXm+HuqMHtYBG4dFYW4UF8HVUZERERNnDYlVqfT4d1338W///1vVFRUGIfMx8bGYsyYMRg1ahSGDRuGkJAQBAQEICAgABqNBhcuXMDFixeRnZ2NAwcOYP/+/di/fz/q6+vRVPqNN96I1157DUOGDHHGS6F24pRY6hHKjoshXcZaoLLA+v5KtbiWGiy8BcuVwH27nDviyNagx9a6BEFsotA82GsR6LW6X1dhuUOt3cnEtdfcvAF37ytf3X3bPufmI+5rfM4H2PsmkL3F+mVc0USBU0+JyIT6Rj2SXvwJjXrb3muv7h+I+aP74NqE3lCrXNQZnIiISMK6TZfY2tpavP/++1i2bBnOnj0rFtGOkSFN5SoUCsycOROLFy/GVVdd5ZBayT4Y2FG3demsGIpkrAXOHbe+v0wBDJgCJN4CDEoBsn+UZqDiyqDHYBBHJTYP9mrOAT/93ba15+QKYNR9rYI1XxPB2+XATeXZudGJ9g447a00g1NPiQgAUFZVjy9/P4uvfj+DippGm4/LfOl6eLqxTx0REZE53Sawa2IwGLBt2zasXr0aO3fuRH5+vtVjPDw8MHr0aEybNg233347wsPDHV8odRoDO+pW6i6IU10z1gBn99l2TNRVYkg3eLbYCbU5qQYqUqvL1qm6HMlmmsHAqadEPZAgCPg97wI+33cGW4+XtnsarIdKgeMvXg+5nM0kiIiIzOl2gV1rRUVF+PXXX1FYWIjy8nJcuHABarUawcHBCA4ORmJiIkaOHAmVigvbdjUM7KjLa6wDsjaLIV3Oz5ZHUzUJjhNDusS5QEC09f2lGqhIpS6OZCMislltgw7rjxTh831nkFVW3eHzzBkeiaXzku1YGRERUffT7QM76r4Y2FGXpNcBuTvFkO7ED4C21voxvhHAkDlA0jyg9xD7NYIgEUeyERFZlHOuBl/8dgbfHipEdYPl/1ySweIqqlDKZfj+kXFICGeDCSIiIksclXlwQQoi6lksBSqCABQeEEO6Y+vEBgjWqP2BwbPE0XR9/sCQxpES5wLBg6Q9kk0uFzu+EhE5iU5vwPaT5/D5vjNIzbH875aHSoFZwyLwxzF9cepcNZ5afdTkNFmlXIal85IZ1hEREbmQ0wM7vV4PvV4PNzc3Z1+aiHqy0gxg3zIgc0OzoGcmMPZhQOEGpK8Wg7pLZ6yfS6kGBt0ohnQDpgJKd8fXT6LQRHGNupnLOJKNiHq08zUN+OZAAb787QyKK+st7hsT5IU7x/TF3BGR8PMQl5dJCPdFbIgPlqfmYXNGCTRaPTxUCqQkhmHRuBiGdURERC7m9Cmxb731Fv7yl78gISEBf/vb33DLLbe02F5TU4OcnBwMGTIESiUHAHYHnBJLLmdpKqWtZHKg3yQgcR4QNw1Q8xcZIiJyLkEQkFZwCav2ncGm9BI06g1m95XJgClxIbhrbDTGDQiy2DjCYBBQr9NDrVSwwQQREVE7dYspsTqdDq+99hp0Oh2USiVuuummNvucOXMGw4cPh5ubGwYPHoxhw4Zh+PDhGDZsGJKTk+Hp6enMkomoqyvN6FxYFzFCDOmG3Ax4h9i3NiIiIhvUa/X4/mgxPt93BhlFlRb3DfBU4dZRfXDHVX0Q1cu2z81yuQyebvyPciIiIilx6r/MP/30E86dOweZTIZ33nkH7u7mp5E1NjYiLS0NaWlpWLFiBQBALpcjNjYWo0aNwieffMKOsURk3b5l7Q/rAgeIIV3iXCCwv2PqIiIisqLgQh2++O0M/newAJfqtBb3TY70wx/HRmN6UhjUKoWTKiQiIiJHcWpgt2nTJgDA2LFjcfXVV1vcVyaTISoqCmfPnjU+p9frcfLkSWRlZWHcuHG49957HVovEXVh9VVAxmog/X82HiADxjwEJN0ChA1lh1ciInIJg0HA7lPl+HzfGezMOgdLi9e4KeWYnhSGu8ZGY2iUv9NqJCIiIsdzamB36NAhyGQyzJgxw6b98/PzcenSJeNIu7S0NKSmpiI3NxdvvfUWAzsiakkQgKLDwKEVYpdXbW17Dgau+Rs7fBIRkUOZWy+usk6LNYcK8MVvZ5B/vs7iOSL8PXDnmL64dVQUenmxkRsREVF35NTALi8vDwCQnJxs8zH+/v6YNGkSJk2aBADIyclBXFwcsrKycPz4cQwePNgRpRJRV1JfKXZ5PfQZUJbRsXOoPMWOo0RERA6QWVyFT1JzsSWj1NiR9cbEUEweFIxfcs7ju7Qi1GvNN5EAgPGxQbhrbDSuiQuBgs0hiIiIujWnBnaVleIiuSEhHV+4fcCAAZgwYQJ2796NH374gYEdUU8lCEDhAeDQSnE0nU7TufMlzALkcntURkRE1MKGtCI8tfoodIYr81s1Wj3WHS7CusNFFo/1USsxd0Qk/jimL/oFezu6VCIiIpIIpwZ2bm5u0Gq1qK01P03Nzc3NuJ85119/PXbt2oVDhw45okwikjLNReDo/4DDnwHnMi3vK1MAfa8GzvwCCHrz+8mVwNiH7FsnERERxJF1rcM6W8SF+uCusdGYNSycHVyJiIh6IKf+6x8YGIja2loUFZn/n8TY2FjU1NQgM9P8L+JJSUkAgIyMDk59I6KuRRCAs7+Jo+kyvwN09Zb39+8DDF8ADLsT8AkFMtYC6+833S1WrgRmfwiEJjqiciIi6uH+s+OUzWGdUi7DDUNCcdfYaIyKDoCMDZCIiIh6LKcGdklJSTh79iy2bduG+fPnm91PqVQaQzlTmqbUlpeX271GIpKQugvA0W/EoK4iy/K+ciUQN00M6vpNbjm9NXEuEDwI2Pe+GPhp68Q16xJmiSPrGNYREZEdlVXVY3NGCX44WoxDZy/ZdIxSLkPqXyYj1I/rqRIREZGTA7tJkyZh48aNWLduHd5++234+Ph06Dzyy7+IV1dX27M8IpICQRCnsB5aCWR+D+gbLO8fEAOMWAAMvQPwtrA+ZmgiMPsDYOYycb07pQfXrCMiIrs5V12PH4+V4oejJThw5gKE9s2Ahc4gwNdD5ZjiiIiIqMtxamD3xz/+EX/7299QVVWFJ554AsuXL+/QeUpLSwEAnp6e9iyPiFyptgI4+rUY1J3PsbyvXAXEzwBGLASix7cveJPLATevzlRKREQEAKioaRBDuvRi/J7X/pCuOQ+VAmqlwn7FERERUZfm1MAuKCgIDz30EN58802sXLkSgwcPxpNPPtnu86SmpgIAwsPD7V0iETmTwQDk7xVDuhMbAYP5ZjMAgF79xZBu6O2AV5AzKiQiImrhQm0jth4XQ7p9p8+jnb0kzEpJDINczjXriIiISOT0llMvv/wyNm/ejJMnT2Lx4sUoKCjAq6++CrVabdPx1dXV+PTTTyGTyXD11Vc7uFoi6jCDwfzU05pzQNqXwOFVwIVcy+dRuAEJM8W16aLHAVyAm4iInOxSXSN+Ol6GjenF+PX0eehtSOm83ZW4LqE3kiL98PKmExYbTyjlMiwaF2PPkomIiKiLc3pgp1ar8dNPP+Gaa65BTk4O3n33XWzYsAEvvvgi5s2bB3d3d7PH1tbWYv78+SgrK4NMJsMdd9zhxMqJyCalGcC+ZUDmhmbNHWYCVz0IaM6Lo+lObjLdsbW5oIHiaLqk+YBXoDMqJyIiMqrUaPHT8VJsyihB6qkKmzq9erkpMDWhN6YnhWN8bBDUKnGKa4CXG55afdTkOZRyGZbOS0ZCuK/dXwMRERF1XTJB6MxqGx1XUlKCKVOm4OTJk8aW9f7+/rjxxhtx9dVXIz4+HoGBgVCpVCgtLcWePXvw8ccfo7i4GAAwdepUbN261RWlUzsVFhYiKioKAFBQUIDIyEgXV0QOk7EWWH+/9TDOHIU7MHi2GNT1GcPRdERE5FTV9VpsyyzDpvQS7DlVDq3e+sdkTzcFpsT3xrTEMEwaFGwM6VrLLK7C8tQ8bM4ogUarh4dKgZTEMCwaF8OwjoiIqAtzVObhssAOADQaDV5++WUsXboUjY2NYkFWfkEXBAEDBw5EamoqgoK4hlVXwMCuhyjNAD6a1LGwLjj+8mi6eYBnL3tXRkREZFZNgw7bT5Thh/QS7M4uR6POYPUYtUqOKXG9MS0pDJMHhcDDzfZmEQaDgHqdHmqlgmvWERERdQOOyjycPiW2OQ8PD/zrX//CwoUL8X//939Yu3Yt6uvrze4vl8tx22234b333oO/v7/zCiUi6/Yta19Yp/QAhtwsrk0XNZqj6YiIyK4sBWN1jTpsP3EOm9JLsDPrHBpsCOnclXJMHhSCaUlhuCYuBF7uHfsYLZfL4Onm0o/gRERE1AVI4tNCbGwsVq1ahQ8++AA7d+7E77//jlOnTuHixYtQKBQIDg7GiBEjMH36dPTr18/V5RJRa9Wl4nRYm8iAG18Dkm4FPPwdWRUREfVAmcVV+CQ1F1sySo1TT29MDMUfx/RFSWU9NqWXYPvJMtRrrYd0bgo5Jg4KxvSkMEyJ7w3vDoZ0RERERO3l0imx1DNwSmw3VnYc2Pc+kP4/wKC1/bi/FgNuXo6ri4iIeqQNaUVmmzvYSqWQYUJsMKYlhWFqQm/4qlV2rJCIiIi6m245JZaIuiCDATi9XZwCm7uz/cerPMXpsERERHaUWVzV4bBOKZdhXGwQpieF49qE3vDzYEhHRERErsXAjohso9WII+n2vQ9UZHX8PAmzALncbmUREVHPVa/VI6OoEofOXMRnv+a3K6xTyGX4Q/9AzEgKx3WDe8Pf082BlRIRERG1DwM7IrKs5hxw4BPxVnfe/H5y1eWmExZ+WZIrgbEP2b1EIiLqGUoqNTh05iIOn7mEQ2cvIrO4Elp9+0bUyWXA/80aghuHhKGXF0M6IiIikiYGdkRkWtP6dBmrAX2j+f08g4BR9wCjFgF5e4D195vuFitXArM/BEITHVczERF1G1q9AZnFVTh05iIOnb2II2cuoriyvtPnNQjA7GER7NRKREREksZPKkR0RXvWpwuOA8Y+DCTOA1Rq8bnEuUDwIDHoy/wO0NaJa9YlzBJH1jGsIyIiM87XNODw2UuXR9BdRHrRJZs6ubaXh0oBtVJh9/MSERER2RMDOyJq3/p0/a8Rg7r+UwCZrO320ERg9gfAzGWATiM2mOCadURE3ZbBIKBep4daqYBcbuLfBRP0BgHZZdU4fPaiMaDLP1/XoevLZUBcqC/qtXrkVtRa3T8lMczmOomIiIhchYEdUU9m6/p0CncgaR4w5iGgd4Jt55bLATcv+9RJRESSk1lchU9Sc7EloxQarR4eKgVuTAzFPeP6ISHct8W+lRot0grE0XNHzl7EkbOXUNNgYvkEG/iqlRjeNwDD+wRgRN8AJEf5w9tdicziKtz0XqrFxhNKuQyLxsV06LpEREREzsTAjqgn6sj6dN4hzquPiIgkbUNaEZ5afbRFOKbR6rHucBG+TyvGX26Ig7+nyjiC7tS5Ggjt6w1h1D/YCyP6iuHc8D4B6B/sbXKEXEK4L5bOS25TVxOlXIal85LbhIlEREREUsTAjqin6Oz6dERERBBH1pkLxQBAZxDwr80nOnRuD5UCQ6P8jQHdsD7+8Pe0vZPrzKERiA3xwfLUPGzOKDGO/EtJDMOicTEM64iIiKjLYGBH1N3Zc306IiLq0S7VNeLVLScsTjttj6heHsaprcP7BCAu1AdKRefWPW0aabdkblK719YjIiIikgoGdkRdncFgurmDzevTuV1en+5h29enIyKibk0QBBRd0iCzuArHi6uQWVKFzOIqFF3SdPicbgo5EiP9Lodz/hjeJwAhvo4bxS2Xy+Dpxo+6RERE1DXxUwxRV1WaIU5vzdwAaOsAlSeQMBMYeCOQ8xOQzvXpiIjIOq3egNzyWhwvrmwR0FVqtJ0+97UJIbgqJhDD+gRgSIQv3JUKO1RMRERE1P0xsCPqijLWAuvvBwzNOuxp64CjX4s3S4LjxG6vSfMAlYdj6yQiIrsxGIROT/GsbdDhZOnlUO5yOJdVVo1GncHO1Yrr0X1450hORyUiIiLqAAZ2RF1NaUbbsM4WXJ+OiKhLyiyuwiepudiSUWpsonBjYijuGdfPYhOF8uoGcdRciRjMnSiuQt752g53a20ilwG2LGGXkhjGsI6IiIiogxjYEXUFmktAyVHxduBj28M6rk9HRNSlbUgratORVaPVY93hInyfVoyl85IxIykcZy7UtZnSWl7d0Onr+6qVSAj3xeBwPySE+WJwhC8adQbc/P6vFhtPKOUyLBoX0+nrExEREfVUDOyIpKbuAlCSJoZzxWni/Yv57T+PXAU8kQH4hNq3PiIicorM4qo2YV1zOoOAJ75Jw1/WpqPeDlNaw/3USAj3uxzQ+SIhzBeRAR6QmRiVvXRestnalHIZls5Ltjj6j4iIiIgsY2BH5Eq1FWIg1xTMlRwFLp21z7kNWsDdxz7nIiIip/vv7tMWR7EBgAC0O6xTyGXoH+xlHDWXcDmcC/Bys/kcM4dGIDbEB8tT87A5o8Q4VTclMQyLxsUwrCMiIiLqJAZ2RLYyGACdBlB6AHJ5+4+vLrs8rTXtckB3FKgqtHeVV6g8xVqJiEjyLtU14nhxFY4VVeJYcRWOFV5C3vm6Tp/XQ6VAfJhPi2mtg0J9oFZ1vltrQrgvls5LxpK5SZ1uhkFERERELTGwI7KmNAPYtwzI3CB2YlV5AgkzxQYOoYlt9xcEoLqk2ZTWyyFddUnn6lC4ASEJQEM1cOG09f0TZnUsWCQiIoc6V12P40VVOF5ciWNFVThWXInCi5pOnzfI202c0np51NzgcF9EB3pB4eAQTS6XwdONHymJiIiI7ImfrogsyVjbtiOrtg44+jWQsQaY9V+g79iWU1qL04Dac527rsIdCB0ChA0FwocCYclAcDygdBMDxI8mWW48IVcCYx/qXA1ERNQpgiCguLIex4oqcbxp5FxRJc7ZoRlEc25KOfYsnoTevmqT680RERERUdfDwI7InNKMtmFdcwYdsO6ezl9H6SGO1GsK5sKGAsGDAIXK9P6hicDsD83XJleK202N/iMiIqsMBqHdUzwNBgFnLtRdntJaaRxBd7FO6+BqgRlJ4Qj14xIIRERERN0JAzsic/YtszyKrSNUXkBYkhjKhSWLIV1gLKBo51/FxLliqLfvfSDzu2ZTdWeJI+sY1hERtVtmcRU+Sc3FloxSYxOFGxNDcc+4fi2aKOj0BuRW1Irh3OUprZnFVahp6Ny/GW5KOeJDfZAQ7ochEb7wclPi6TXmu8QCYkfWReNiOnVdIiIiIpIeBnZEphgM4pp1neHmcyWUaxo5F9gfkHd+oW8Al0fafQDMXNa5ZhhERIQNaUV4anXLcEyj1WPd4SJsSCvGLSMioVTIcKyoCidKqtDQzs6srXm6KZAQ5oshEX4YHC5+HRDiDZWi5fu4TIY2dTVRymVYOi+ZHVmJiIiIuiEGdkSm6DTiqDVbufu2DObChwEBMc4J0ORywM3L8dchIuqmMourzIZiAKA3CPjmQEGHz++rVmJIhF+LcM7WZhAzh0YgNsQHy1PzsDmjxDjyLyUxDIvGxTCsIyIiIuqmGNgRmaL0EKeY2hLaKdXAX/LtN3KOiIgcQqc3oPhSPfLP14q3ijrkn6/F/rwLFqedtkeQt5sYzoVfCeciAzw61QwiIdwXS+clY8ncpHavrUdEREREXRMDOyJT5HIgYabYDdaawTczrCMi6oCONHewRqc3oOiSBnkVtThzvu7yV/F+wcU6aPX2CeYAINxPjcGXw7khEWI4F+Lj7rBOrXK5DJ5u/OhGRERE1BPwUx+ROWMfBjLWWG48IVeKTR6IiMhmtjZ3MEerN6DwoubyKDkxjGu6X3hRY7fRcqb8eepADO/rj8Hhfujl5eaw6xARERFRz8bAjsic0ERg9ofA+vtNh3ZypbidHVmJiGxmqbnD92nFWDovGTOHRqBRZ0DhxboWo+TyztfhzHkxlNM7MJQzx0OlwKPXDOB0VCIiIiJyOAZ2RJYkzgWCBwH73gcyvxPXtFN5AgmzxJF1DOuIiGxmrbmDziDgiW/S8OrmkyivaXBYKOejViImyAvRgV6IDvTEr6fP4+CZi1aPS0kMY1hHRERERE7BwI7ImtBEYPYHwMxlYvdYpYdzur8SEdmJI9aKs0bTqEdpVT1KKjUoraxHSWU9vj1UaHW6qgCgtKq+09f3bQrlgrzQN9ALMUGe6BsohnQBnqoW68zdUFyFm95LtVibUi7DonExna6LiIiIiMgWDOyIbCWXA25erq6CiMhmnV0rzhRBEFBVr0NZlRjClVZqUFJZ3+yx+LVSo7Xzq2nL31NlHCUnhnJe6BvoiZggL/h72r6+XFMXVnOj/5RyGZbOS+7w94yIiIiIqL0Y2BEREXVDtq4V15zBIOBCXSNKm4K3KtOBXF2j3mmvI8BThWjj9FUvRBtHynm2K5SzZubQCMSG+GB5ah42Z5QYA86UxDAsGhfDsI6IiIiInEomCILzV22mHqWwsBBRUVEAgIKCAkRGRrq4IiKi7i3Thimechkwe1gEGvUCyirrUVKlQVllAxr1BidWapqbQo7VD4xBTKA3/DxVTr++K6YQExEREVHX5KjMgyPsiIiIugmd3oCiSxq8vCnT6lpxBgH49nCRw2vyUSsR5qdGb181zl4Qu75aMyM5HEOjAhxemzlyuQyebvyIRERERESuw0+jREREXYggCKioaUReRS3yKmqQW16L3Ipa5FXU4sz5Wmj1zhs4H+jlhlA/NUJ91Qj1UyPMT41QPw/j41A/Nbzdr3zUsGXkH5s7EBERERExsCMiIrIbe06lrG3QXQ7lapFbLoZzeRViOFddr7NTxabJZUCIz5UQrrdvUxinRtjlQC7E1x1qlaJd52VzByIiIiIi2zCwIyIi6qSOdmPV6Q0ovKhBbvORcuViSFdaVe/wuhVyGf50dTTC/DxaBHJB3m5QKuQOuSabOxARERERWcemE+RwbDpBRN2ZqW6sTZRyGZbekoyxAwKR12zqqhjO1eDs+Tqra811hEohs2lq7JzhkVg6L9nu17cVmzsQERERUVfHphNERESXSSXoySyuMhvWAYDOIODx/6U55NpuSjliAr0QE+SFfsFXvvYL8kZJZX2XWCuOzR2IiIiIiEzjp2QiIuoyOjr11FaCIKCuUY8LtY24WNdo/HqxVtvi8YVa8bn887UOGSHXRCYDIvw9xDAuyAv9gr0REySGc+H+HlCYCSsDvNy4VhwRERERURfGwI6IiLoEU1NPNVo91h0uwvdpxVg6Lxkzh0a0OEbTqMeFukZcbBG0NeJCnfby16ZtVx436gzOfmkI8FS1COP6B3shJsgbfQM9293YoQnXiiMiIiIi6rq4hh05HNewcyypTA0kcqTM4iqrUzxlAIb28UejzmAM3+q1zg/fzHFTyNAv2Ns4fTUm6PL9QC8EeLk59Np8nyAiIiIicgyuYUdELTh6aiCRK2n1Bpy9UIfT52pwurwW3+w/a3XqqQDgyNlLTqmvvdQqOY49fz2USsd0XrWGa8UREREREXUt/PRO1AV1ZGogkRRV1mmRU16D0+U1yC2vxenL9x3VPbU9VAoZAjzd0MvL7cpXLxV6ebrB//LjNYcK8EvOeavnmpYY7rKwjoiIiIiIuh4GdkRdjC1dKZ9afRSxIT4caUedZo+plHqDgMKLdS1DuXPi1/O1jXau2DSFvCl8UyHAUwzgAryuPBbDODf0unzf31MFb3clZDLLr3lgb58u0Y2ViIiIiIi6FgZ2RF3MJ6m5Vkce6QwClqfmYem8ZCdVRd1NR6Zc1zTokHt5hFxTIJdbXou8ilo06p2zlpxKIcPLs4YgyNvdGMAFeLnBV209fOuIhHBfdmMlIiIiIiK7Y2BH1IUYDAK2ZJTatO/3R4vwz+nx8PN07GL21P1Ym3L99+nx6BfkbZy+2jRqrqyqwe61BHm7o1+wF85VNSD/fK3V/W9KjsCto/rYvQ5L2I2ViIiIiIjsjV1iyeHYJdZ+qjSNSHpxm837q5VyTEsKx62jojAqOsAhI4yoe7GlG6u9KeUy9A30RP9gb/QP8Ua/IC/0D/FG/yBv+HmqbK5LKZfh+0fGuTQgYzdWIiIiIqKehV1iiXq4EyVVWLzmaLuOqdcZ8O3hQnx7uBAxQV64ZWQk5gyPRG9ftYOqpI5yZtBTVa9F8SUNii9pUHSpHkUXNcbHx4srHRbW+XmoMCDEG/2DvdAv2FsM6IK9ENXLEyqF5YYMXWXqKbuxEhERERGRPfC3CiKJa9QZ8N7OHLy/M6dTQUpeRS1e/zELb2zNwuRBIbhlZBSuiQuBGztXulRH1oqzRKc3oKy6oVkgp2kWyNWj+JIG1Q06B7wSkVwG9OnleTmQ82oxaq6Xl1unRnly6ikREREREfUUnBJLDscpsR13tOASnlmbjqyy6nYdJwMgkwHW8r1ALzfcPDwC80ZGIba3T8cLpQ4xtVZck6YRYzOHRrR4vvXoOOP9y6FcaVW91T93exkS7ouBvX1aTGPtG+gJd6XC4dfm1FMiIiIiIpICR2UeDOzI4RjYtV+9Vo+3tmXj4725JsOX3r7uqKhphN5C0DO2fyDWHy7C/w4WILfc+mL9w/r4Y97IKExPCoOPWmWPl0EW2LImm1wG3DgkFBqtwRjKOXJ0XHt4qBQ4/uL1DMuIiIiIiKhH4xp2RD3EgfwLeGZtOvIq2oZsCrkMD03qj0euGYDT52qtTg28f2J/3DehHw6fvYjVBwqxMb0YdY16k9c9cvYSjpy9hJc2ZiIlMQzzRkZidEwvNqpwAINBwDvbs61OcTYIwCYbuwJ3RLCPO8L9PRDhr0aEvwfC/T2w9Xgpfsu9YPXYlMQwhnVEREREREQOwhF25HAcYWeb2gYdlmzNwmf78mHqb2VCmC9en5uEIRF+LZ5vz9TA2gYdNmWUYPWBAhw8c9FqTdGBnrhlZBTmjmCjio6qrtciq7QaJ0qrcbKkCidKqnCypAp1WoNDr6tWyS+HcR7GME68ieFcqJ/a5NTVrtKNlYiIiIiISAo4JZa6LAZ21qWeqsCz69JReFHTZpubQo7HpgzA/RP7W+2k2R6ny2uw+mABvj1UhIqaBov7ymXApEEhmMdGFWYZDALOXKgTQ7nSajGYK61CwYW2f6b2YGp0XHizcC7AU9Xh0ZEdWVuPiIiIiIioJ2JgR10WAzvzquq1eGXTCXxzoMDk9qFR/lgyN8mhDSG0egN2Z5XjfwcLsOPkOZPr4jUX6OWG2cMicOsoy40qpNoUwB51VdVrcbKkGidLq3CiRAznskqrodGanm7cGQq5DI9dMwARAZ5WR8fZU2ZxFbuxEhERERERWcHAjrosBnambT9Rhr+tP4bSqvo229yVciy+fhDuvjoGCieGXeeq69vVqGJolD9uHdWyUUVmcRU+Sc3FloxSY9BzY2Io7hnXz6VBT0fq0hsE5J+vbRbOiQFd0SXHjJozZc7wSCydl+y067Um1eCViIiIiIhIChjYUZfFwK6li7WNeOmHTKw/UmRy+1UxvfDanCREB3k5ubIrBEEwNqr4Ib0YtWYaVTRpGn0V4a/G+7tOS24qpS1TPCcNDMGJUnF9uZOXp7RmlVWj3g5rzSnlMvQP9kZcmA/iw3wRF+oDpVyGhSsOcK04IiIiIiKiLoyBHXVZDOyu2JxRgn9uOIaKmsY227zcFHg2JR53jO4jqZFMTY0q1hwswIF8640qLHF2AGUwCDhWXImb3//VakdWewn0cjOGcvFhvogL88GAEG+TU1i5VhwREREREVHXxsCOuiwGduJU0+c3HMeWY6Umt4+PDcKrNyciMsDTyZW1z+nyGqw5WIhvDxeivNpyowpzQn3VGBTqA4MgQG8Qb4IA6C8/bv68wfgcrtw3CJf3bfucQRBgMFw5lyOpFOKoudbhXIhP+7rpcq04IiIiIiKirouBHXVZPTmwEwQB36UV4cWNmbhUp22z3VetxN+nJ+CWEZEd7ujpCjq9Abva0aiiqwvydkf85ems8WE+iAv1Rf9gb7t2y+VacURERERERF2PozIPpV3OQkRtlFRq8Nd1GdiZVW5y+9T43vjX7CHo7du+EVlSoFTIMTWhN6Ym9Ma56nr8b38Blm7LdnVZnaaUA7G9xVAuPtQX8WG+GBTqg2Afd4dfWy6XwdONb8lERERERETEwI7I7gRBwNf7C/Dq5hOobtC12d7Lyw0v3DQYM5LCutSoOnNCfNR4ePIAvL/rNDRay80ppMxdKUf689fBXdV2rTkiIiIiIiIiZ2JgR2RHZ8/X4dl16fj19HmT22ckh+OFGQkI9Hb8iC1nkstluDExFOsOm+5829yQcF/MSA6HQi6DXCYTv8plUMhkkMtgvN/8eYUcLfaVyy7vL4eJfZudVwa8vjUL2zLLrNY1PSmcYR0RERERERFJAgM7IjswGAR8ti8fr/+YZXKUWbCPO16eNQTXDw51QXXOcc+4fvg+rdhiN1alXIbX5yY7tZnCn6cOxM6T56zWtWhcjNNqIiIiIiIiIrLEfiumE/VQp8trMO/DfXhxY6bJsG7uiEj8/OeJ3TqsA4CEcF8snZcMpZmGCUq5DEvnOTesk3JdREREREREROZwhB2RjVp38dTpDfh4bx7e+jkbjTpDm/3D/dR4dU4SJg4MdkG1rjFzaARiQ3ywPDUPmzNKoNHq4aFSICUxDIvGxbgsFJNqXURERERERESmyARBMD9PjMgOHNXi2Fkyi6vwSWoutmSUGoOeqwcEIv98HXLO1Zg85s4xffCXG+Lgo1Y5uVrpaB1wSoVU6yIiIiIiIqKux1GZB0fYEVmwIa0IT60+2mL9M41Wj59PnDO5f99AT/z75iSM7R/orBIlSy6XwdNNem8xUq2LiIiIiIiIqAnXsHOxuro6LFmyBKNHj0avXr3g7e2N+Ph4PP300zh79mynz6/T6bBt2zYsXrwY48ePR3BwMFQqFfz9/TF8+HA8/fTTOH36tB1eSfeTWVzVJqwzRyYD7hkXgx8fn8CwjoiIiIiIiIg6hVNiXej06dOYNm0asrKyTG738/PDV199hZSUlA6dv7y8HPHx8Th//rzF/dzc3PD666/j8ccf79B1rOmqU2KfXJ2GdYeLrO7no1bisz+NxvA+AU6oioiIiIiIiIikwlGZB0fYuUhNTQ2mT59uDOvuvfdebN++Hb/++iv+9a9/wdvbG5WVlbjllluQnp7eoWs0NDQYw7qhQ4fi+eefx+bNm3Ho0CHs2LEDixcvhlqtRmNjI5544gl89NFHdnt9XZ3BIGBLRqlN++r0AoZG+ju2ICIiIiIiIiLqMbiQk4u88cYbOHnyJADg9ddfx+LFi43bxo4di8mTJ2PChAmoq6vDE088gR07drT7GjKZDNdeey1eeukljBkzps32yZMnY86cOZg8eTI0Gg2eeeYZ3HbbbfDx8en4C+sm6nV6aLR6m/bVaPWo1+m5LhoRERERERER2QVH2LmAVqvFO++8AwCIj4/HU0891WafsWPHYtGiRQCAnTt34tChQ+2+TkREBH766SeTYV2Tq666Cg899BAAoLKyEj///HO7r9MdqZUKeKgUNu3roVJArbRtXyIiIiIiIiIiaxjYucCuXbtw6dIlAMCCBQsgl5v+Y1i4cKHx/rp16xxWz+TJk4332YBCJJfLcGNiqE37piSGQS6XObgiIiIiIiIiIuopGNi5wN69e433J06caHa/kSNHwsvLCwCQmprqsHoaGhqM982Fhz3RPeP6QWkliFPKZVg0LsZJFRERERERERFRT8B0xgVOnDhhvB8XF2d2P6VSif79+7c5xt52795tUz09TUK4L5bOSzYb2inlMiydl4yEcF8nV0ZERERERERE3RlXyXeBgoICAICXlxf8/f0t7hsVFYX09HSUl5ejoaEB7u7udq2lpKQEK1asAAAEBQW1mB5rq8LCQqvX6KpmDo1AbIgPlqfmYXNGCTRaPTxUCqQkhmHRuBiGdURERERERERkdwzsXKC6uhoA4O3tbXXfpimxAFBTU2PXwE4QBDzwwAPGev7xj3/Aw8Oj3eeJioqyW01S1DTSbsncJNTr9FArFVyzjoiIiIiIiIgchoGdC9TX1wMA3NzcrO7bPKDTaDR2reOVV17B999/D0BsPPHII4/Y9fzdjVwug6cb/8oQERERERERkWMxfbBAp9NBpVJ1+jwrVqxo0fFVrVYDABobG60e27whREdGv5nz5Zdf4h//+AcAIDo6Gl999VWHG040TfE1p6SkBKNHj+7QuYmIiIiIiIiIehoGdi7g4+MDQJziak1tba3xvi1TaG2xadMm3H333RAEAb1798a2bdsQGhra4fNFRkZa3K7T6Yz3u/J6dkREREREREREzTXPOZrnH53FwM4CpVJpl+6sYWFhLR5HRkbi999/R21tLS5dumSx8UTT6LXg4GC7rF+3a9cuzJ07F1qtFgEBAfjpp58wYMCATp/XkvLycuN9jrQjIiIiIiIiou6ovLwc0dHRdjkXAzsr4uLi7H7OhIQEfPvttwCAkydPYsyYMSb30+l0OH36NAAgPj6+09fdv38/ZsyYgfr6enh7e2PLli1ISkrq9HmJiIiIiIiIiMh+GNi5wLhx44z3d+/ebTawO3jwoHFK7NVXX92pa6anp+OGG25ATU0N1Go1Nm7ciKuuuqpT57RVYmIi9u/fD0AcKahUdr0fu+br8O3fv7/NqEmi7og/99QT8eeeehr+zFNPxJ976on4c+84Op3OOLMwMTHRbufteslJNzBp0iT4+fmhsrISn332GZ555hnIZLI2+61cudJ4f/bs2R2+XnZ2Nq677jpcvHgRKpUK3377LSZNmtTh87WXWq3GqFGjnHY9RwsLC7O6bh9Rd8Ofe+qJ+HNPPQ1/5qkn4s899UT8ubc/e02Dba5jbUGpU9zc3PDYY48BAE6cOIE33nijzT779u3D8uXLAQATJ040GXjl5+dDJpNBJpOZDeDOnj2LqVOnoqysDAqFAl999RVSUlLs92KIiIiIiIiIiMiuOMLORRYvXoz//e9/yM7OxjPPPIOcnBzMnz8fHh4e2LlzJ1555RXodDp4eHjg7bff7tA1zp8/j6lTpxobVzz11FOIi4vDsWPHzB4TEBCAiIiIDl2PiIiIiIiIiIg6j4Gdi/j4+GDTpk1ISUnBqVOn8NFHH+Gjjz5qsY+vry++/PJLDB06tEPXyMjIwKlTp4yPX3/9dbz++usWj1mwYEGLqbhERERERERERORcnBLrQgMGDMCRI0fw2muvYeTIkfD394enpycGDRqEP//5z0hPT8f06dNdXSYRERERERERETkRR9i5mJeXF5555hk888wz7T42OjoagiCY3T5p0iSL24mIiIiIiIiISHo4wo6IiIiIiIiIiEhCGNgRERERERERERFJiEzgnEkiIiIiIiIiIiLJ4Ag7IiIiIiIiIiIiCWFgR0REREREREREJCEM7IiIiIiIiIiIiCSEgR0REREREREREZGEMLAjIiIiIiIiIiKSEAZ2REREREREREREEsLAjoiIiIiIiIiISEIY2BEREREREREREUmI0tUFUPdXX1+PjIwMAEBwcDCUSv7YEREREREREVHXp9PpUF5eDgBITEyEWq22y3mZnJDDZWRkYPTo0a4ug4iIiIiIiIjIYfbv349Ro0bZ5VycEktERERERERERCQhHGFHDhccHGy8v3//foSFhbmwGiIiIiIiIiIi+ygpKTHOKmyef3QWAztyuOZr1oWFhSEyMtKF1RARERERERER2Z891+znlFgiIiIiIiIiIiIJYWBHREREREREREQkIQzsiIiIiIhIcgwGA2pra2EwGFxdChERkdMxsCMiIiIichKGUNYdPXoUCxYsgI+PD7y9veHj44MFCxbg6NGjri5N0vizRUTUvTCwIyKSAH7IJiLq3qQcQknp36Cvv/4aI0eOxKpVq1BXVwcAqKurw6pVqzBy5Eh8/fXXLq5QWt8vQNo/W4D0vl9ERF0FAzsi6lGk9qFR6h+yiYiskdr7ahMp1SXVEEpq/wYdPXoUd911F3Q6ncntOp0Od911l0vrk9L3C5DuzxYgze9Xc1J6jyAiMkUmCILg6iKoeyssLERUVBQAoKCgAJGRkS6uiHqio0eP4s0338TatWtRV1cHT09PzJ07F08++SSSk5NdUtPXX39t9hcTpVKJVatW4bbbbnNBZUQ9m8FggEajgYeHB+Ry6fzfptTqkuL7qhTrOnr0KEaOHGk2hALE9/yDBw86tT57/huk1+tRV1dnvNXW1rZ4bOpmap/ff/8dJSUlVq8XHh6OMWPGwNPTs8XNy8urzXOmbk37tefvkjP+zRYEAY2NjWhoaLDplpWVhWeffRZ6vd7sORUKBT777DOMGDHCGJp5e3tDoVB0qlZrpPwZR2rvEUTU9Tkq82BgRw7HwM6xpPYLXBMp1SXFD41S/QWOuicp/X1sTmp1SfWXOCnWJcX3VWfXpdVqUVtbi5qamja35s+vXLkSaWlpVs/Xv39/jB8/HnK5HHK5HDKZrMP3re1XWlqKt99+2+LIIrlcjhkzZkCtVlsN2hobG+3yPXUFtVptNdzTaDT4/vvvrX6/5s+fD19fX5sDt9Y3Z34fPTw8WgR41r5a20etVkMmkwGQ9mccqb53EVHXxsCOuiwGdo4hxV/gpFhXRz40CoKA+vr6NjeNRmPxsS37ND3OysrChQsXrNZ/zTXX4J133kF0dDS8vb3t9n3p6qQW9DSRWl1S+/so5bqk+kucFOuS6i/jttb11VdfISIiok2wZu3Wet+GhganvTYiqVMoFMZgr7q6GlVVVVaPSUxMxOzZs6FSqaBUKqFUKlvcb/24s/dPnDiBCRMmSO69qzWpfZYgIusY2FGXxcDO/qT4C5w96xIEAQ0NDS2CrtaPbb1t3rwZ2dnZVq+pVqvh7u5uvJYUBQYGIjo6usUtJiYG0dHR6Nu3r0MCPal9aJRi0CPVurr7+4Q9tSeASkpKAiC+TzXdmj82d78j2zIyMnDttddareubb75B//79odPpoNfrodPpjLfmj+21bevWrcjKyrL6fe3Tpw+GDRsGg8EAQRBgMBiMN2uPO3LMuXPnUFtba7UuIiJLkpOTcf/996N3794ICQlB79690bt3b/j4+BhHETqCFD9LNCe1z4REUsLAjrosBnb2ZcsvlnK5HE8//TTCw8Nb/ELoyFtZWRk+//xzi9NFZDIZxowZAzc3N4shm1QDM6kLCgpqE+g13dob6EnxQ6MUgx5n1dW0rlFdXR00Go3xZu5xTk4OlixZYnX61iOPPII+ffpApVJBpVLBzc3NeL+zj5VKZZtfbNoTjA0ePLhTYX17wv78/HxUV1d36s+IiFry8PCwaW255ts2bNiAgwcPWj33iBEjcNNNN7Vrzby6ujrU19c74ZU7hkqlgru7u/Hm5uaGM2fOgL/KOY9arTaGd82DPFPPBQQEtCvUkupnHECanwmbY5BIUsDAjrosBnb2tWDBAqxatcrVZVAX1BToNY3Kax3oeXl5AZDmh0Zbg57NmzcjISEBACwGzJ3Z3nxbVlYW7rzzTqsLfj/zzDMIDAw0GbTZGsJ1xX+ulUplixCvtrYWGo3G6nEymaxLvl7q2dzd3Y1TApvfsrOzUVBQYPX4wYMH44YbbmgxctDSqMKObjMYDNi2bZvF960mSqUSzzzzDLy8vGwO3Tw9PaFWqzv0i7Ojp1vr9Xrj+6qtDTFqa2uxZMkSizU1r+3ee+81jtq3dLNln+bhnKnvp62fCRcsWICPP/4YtbW1qK6uRk1NTae/1tTUsLuqBUql0hjgmQr3mj9fVFSEMWPGSHKqrhQ/EzaRepBIPQsDO+qyGNjZj8FggI+PD+rq6lxdSo+kUqmgVqvh4eEBtVrd4tbe51atWoVffvnF6jXVarXTRgQEBwcjJCQEmZmZFsMShUKB1157DeHh4WhsbGzXTavVtvuYppFl/OeKiOzFy8urxWL6nbk1hVkqlcrktaS45l97gp6VK1c6vqBmpBgQSPX75cqfLUEQoNFoWgR4TfdfffVV7Nmzx+o5YmJiMHLkSGi1WuOUe1vuW9pmSxDdVY0YMQJ33nkn3Nzc7HJTKBQWp/hK8b2riRTfJ1qT6sg/1uUYDOyoy2JgZz+1tbU9uvGAXC43GYJZuqWmptq01tK1116Lf/7zn23O3/TY3d0dCoXCbq+lPR+CBg4ciDNnziA/P9/krayszG51EVHXpFAojFORFQqFcaH15vctbWvPMXv27LFpbdChQ4dizpw5LTqXWutm2pHHTc+988472LFjh9W6GEJJ+xdxQKzvrbfewpo1a4wjZ2655Rb8+c9/7jINrJxFaj9bgGu/XwaDwbjuZutQ77HHHsO6deusniMqKgqRkZEoKytDWVlZt10bUyaTWQz0SkpKbGqQ1q9fP1x99dVQKBRQKBSQy+V2vd/6ucLCQvzjH/+wGM66+v1LiiP/WJdjMbCjLouBnf20Z4SdXC7HxIkTjb/IOPIGAN98841N/6upUqmwdOlS45SZplvT9BBLN6VS2e7vWU/4kF1XV4ezZ88aA7y8vLwWgd65c+ccUT5JgFqthqenJzw8PIzrRanVahw8eNCmqUoKhQJTpkyBVqttcWsaDWnpsaumQtnyXmHpZur4jz76CLt27bJ67ZkzZ+KVV14xvu81fw9s/Z5oj22PPfYY1qxZY7WunjSqpyvW1URqIZQUg57WpDTiQsrfL6n9bAHS/H519D2itrYWZWVlOHfunDHEa35r/vylS5ec8ErIFm5uboiMjERAQAB69epl8Wvz+15eXh1uLiLFn3vW5RwM7KjLYmBnX1KdliHVugBp/2PgjA/ZdXV1FkfoMdCzTetgBYDNU2/kcjmmTJnSJlwzdd/WbWq12uwHSmf8fTQYDO0K+LRaLV555RX8/PPPVs89Y8YMvP76622CNXPrOHWWVIMeqdYFSPd9Vap1NSelEEqKQY+USf37JaWfLUCa3y9Hv0c0NDTg3LlzJsO91s9VVFRwuQ8JUqlUVkM9U9sKCgrwhz/8wS7/ZguCYBwZ2nRr/djUzdQ+p0+fxvPPP2/xM6tcLsc//vEPREdH2zTK0R7bT5w4gZSUFEl+xukIBnZdSE1NDQ4fPoz9+/dj//79OHDgAPLz8wEAffv2Nd7vqHnz5rX4H/e8vDxER0eb3Fen0yEjI8NYx/79+5GZmWn8C2vpWHthYGdfUv0FTqp1NZHih8bmXPkhu7a2FmfOnEFubi7mzJmDxsZGq8fIZDIkJCQYF8N2xK2p66ibmxtefvllbNq0yWpd8+fPx/vvv29y9JK5kUy2bDdHqkG1VP8+SrUuQLpBj1TrAqT7virVuqRMakGP1PH71T5S+35J5T1Cp9Ph/PnzuPfee7Fx40ar+0dERCA+Pt7m9X8bGhoYCEqQv78/QkJCLIZttjS56SlcMdijIxjYdSGTJ082O7Wms4Hdpk2bMH369BbPWQrdXnzxRbzwwgtmz8fArmv6+uuvcccdd5j8R5i/WFomtQ+NUsMAqnvUBUj376NU6wKk80tcV6mriVTfV6VaFxFJg1TeIxz5WUKv13eo2VdjYyP+85//2NQgbciQIUhJSYFer4derzeuI+iI+zqdDunp6QwiexBPT09UV1dL/t9xh2UeAtndxIkTBQACACEgIEC49tprBW9vbwGA0Ldv3w6ft7q6WujTp48AQAgJCTFeIy8vz+wxzz//vHE/tVotjBkzRujfv79Nx9pLQUGB8XoFBQUOv15PERQUZPy+AhDc3d2FBQsWCGlpaS6tKy0tTViwYIHg6ekpABA8PT0lURfZJi0tTVAqlS1+tlrflEqlS/48v/rqK7O1KZVK4auvvnJ6TVKuSxCk+/dRqnU10ev1Qk1NjaDX611dSgtSrYuIiDpHip8lpPqZ8K677rJYU9Pt+uuvF9avXy8sX75ceOONN4S//vWvwoMPPijceuutwnXXXSeMGjVK6N+/v9CrVy9BJpPZdE7eXHOrqalx6s9YRzgq8+AIOwf46KOP4O3tjdGjR2PAgAEAgOjoaJw5c6ZTI+yeeOIJvPPOO5gyZQoiIyPx2WefAbA8Sm7r1q3Iz8/HqFGjkJSUBKVSiYULF9p0rL1whJ39lZWVITQ0tMVzx48fR0JCgosqaksq/2tJ7ccRUN2nriZS/fso1bqIiIicTYqfJaT4mdARIxINBgOqqqpw4cIFXLx40fi1+X1z22pqauz10tpNqVRCpVK1uDV/TqlU4uTJkzY1CpPL5Rg2bBgMBoPJ0Y0dfa6zevoIOwZ2TtLZwO7gwYMYM2YMlEol0tPT8corr3Q4dGNg1/Vt3boVN9xwg/Gxp6cnqqqqoFAoXFgVdSdS/NDYnFSDHqnWRURERF2D1D5LSPEzoZSCRK1Wi4sXL+K+++7Dhg0brO4/YcIEPP744ybDNlOhm7ntSqXSpm62rl7uxlwA+MADD+Cbb75xWV325qjMQ2mXs5BD6XQ63HvvvdDr9fj73/+OgQMHurokcrEjR460eJyUlMSwjuwqOTkZK1euxKeffiqpD41N5HI5vLy8XF1GG1Kti4iIiLoGqX2WkOJnwttuuw0JCQmSCBJVKhVCQkLw4osvYtOmTVZH/r377rtOre/JJ5/EV199ZbWuP//5zw65vlwuh1wuh1LZMnp69tlnsXbtWpfV1VVI57cvMuvNN99EWloaYmNj8dxzz7m6HJKA1oHdsGHDXFQJdXdNHxpd/cGMiIiIiFxHap8Jm4LE6upq1NTUoLq6GitXrnTZqL/k5GSsWrWqTTDVpGnkn7PrY11dmzT+tpFZeXl5ePHFFwEA77//Ptzd3V1cEUkBAzsiIiIiIurppBQk3nbbbTh48CAWLFgAT09PAOLSRQsWLMDBgwddtgY06+q6OCVW4h544AHU1dXhtttuw9SpU11djkmFhYUWt5eUlDipkp6huroaOTk5LZ4bOnSoa4ohIiIiIiIiANKcQsy6ui4GdhL2xRdf4KeffoKfnx/efPNNV5djVtPiiuQc6enpaN4rRqFQIDEx0YUVERERERERUROprUXYhHV1LYwuJerChQt48sknAQCvvPIKQkNDXVwRSUXr6bDx8fFQq9UuqoaIiIiIiIiI7K3HjrDT6XRQqVSdPs+KFSuwcOHCzhfUypNPPony8nKMGjUKDzzwgN3Pb08FBQUWt5eUlGD06NFOqqb74/p1RERERERERN1bjw3spGzHjh347LPPoFAo8OGHH0p+DndkZKSrS+hR0tLSWjzm+nVERERERERE3UuPDeyUSiVOnDjR6fOEhYXZoZqWXnvtNQDAyJEjkZWVhaysrDb75OXlGe9v3LgRwcHBAID58+fbvR6SDq1Wi2PHjrV4jiPsiIiIiIiIiLqXHhvYAUBcXJyrSzCpoaEBAPD777/b1Mr4scceM95nYNe9ZWZmorGxscVzHGFHRERERERE1L1Ie64lEbXQev266OhoBAQEuKgaIiIiIiIiInIEBnYStGvXLgiCYPG2YMEC4/55eXnG56l7a71+HafDEhEREREREXU/DOyIupDWI+w4HZaIiIiIiIio++nRa9g5Sk5ODlJTU1s8V1NTY/y6cuXKFttuuOEGhIaGOqSWmpoarF27tk19TdauXYugoCDj46FDhzIEkiiDwcARdkREREREREQ9AAM7B0hNTcXdd99tctv58+fbbNu5c6fDAruKigqztQDA4sWLWzx+/vnnGdhJVF5eHqqqqlo8x8COiIiIiIiIqPvhlFiiLqL1dNigoCBERES4qBoiIiIiIiIichSOsHOAhQsXYuHChQ69xsqVK9tMrTUlOjqazSi6idbTYYcOHQqZTOaaYoiIiIiIiIjIYTjCjqiLaD3CjtNhiYiIiIiIiLonBnZEXQQDOyIiIiIiIqKegYEdURdQVlaGkpKSFs8xsCMiIiIiIiLqnhjYEXUBrdev8/T0RGxsrGuKISIiIiIiIiKHYmBH1AW0ng6blJQEhULhomqIiIiIiIiIyJEY2BF1AVy/joiIiIiIiKjnYGBH1AUwsCMiIiIiIiLqORjYEUlcdXU1cnJyWjw3dOhQ1xRDRERERERERA7HwI5I4tLT0yEIgvGxQqFAYmKiCysiIiIiIiIiIkdiYEckca2nw8bHx0OtVruoGiIiIiIiIiJyNAZ2RBLH9euIiIiIiIiIehYGdkQSl5aW1uIxAzsiIiIiIiKi7o2BHZGEabVaHDt2rMVzbDhBRERERERE1L0xsCOSsMzMTDQ2NrZ4joEdERERERERUffGwI5IwlqvXxcdHY2AgAAXVUNEREREREREzsDAjkjC2HCCiIiIiIiIqOdhYEckYa0bTnA6LBEREREREVH3x8COSKIMBgM7xBIRERERERH1QAzsiCQqLy8PVVVVLZ5jYEdERERERETU/TGwI5Ko1uvXBQUFISIiwkXVEBEREREREZGzMLAjkihT69fJZDLXFENERERERERETsPAjkii2CGWiIiIiIiIqGdiYEckUQzsiIiIiIiIiHomBnZEElRWVoaSkpIWzzGwIyIiIiIiIuoZGNgRSVDr9es8PT0RGxvrmmKIiIiIiIiIyKkY2BFJUOvpsElJSVAoFC6qhoiIiIiIiIiciYEdkQRx/ToiIiIiIiKinouBHZEEMbAjIiIiIiIi6rkY2BFJTHV1NXJyclo8x8COiIiIiIiIqOdgYEckMenp6RAEwfhYoVBgyJAhLqyIiIiIiIiIiJyJgR2RxLSeDhsfHw+1Wu2iaoiIiIiIiIjI2RjYEUkM168jIiIiIiIi6tkY2BFJDAM7IiIiIiIiop6NgR2RhDQ2NuL48eMtnhs6dKhriiEiIiIiIiIil2BgRyQhJ06cQGNjY4vnGNgRERERERER9SwM7IgkpPV02OjoaAQEBLioGiIiIiIiIiJyBQZ2RBLC9euIiIiIiIiIiIEdkYSkpaW1eMzpsEREREREREQ9DwM7IokwGAxtAjuOsCMiIiIiIiLqeZSuLoCIRHl5eaiqqmrxHAM7IiIiIqLOEQQBtbW1qKqqQn19PfR6vatLW1vtUAABAABJREFUIiIJUSgUUKvV8PX1hZeXF2QymatLAsDAjkgyWq9fFxQUhIiICBdVQ0RERETU9RkMBpw9exYajcbVpRCRROl0OjQ0NKCyshIeHh7o06cP5HLXT0hlYEckEabWr5NKsk9ERERE1NUIgtAmrJPJZFAoFC6sioikRq/XQxAEAIBGo8HZs2fRt29fl/8+7vTA7t///jcWLFiAsLAwZ1+aSNLYIZaIiIiIyH5qa2uNYZ1CoUBoaCi8vb0lMXKGiKTDYDCgpqYGpaWl0Ov10Gg0qK2thbe3t0vrcvo71V//+lf07dsXM2bMwHfffQedTufsEogkiYEdEREREZH9NF8fOjQ0FL6+vgzriKgNuVwOX19fhIaGGp+rrq52YUUil7xb6XQ6bN68GXPmzEFERASefvppHD9+3BWlEElCWVkZSkpKWjzHwI6IiIiIqOPq6+sBiNNgXT1Shoikz9vb2zgNVgrrXjo9sMvIyMATTzyBoKAgCIKA8vJyvPXWW0hKSsKYMWPw8ccfSyLJJHKm1uvXeXp6IjY21jXFEBERERF1A03dYBUKBUfWEZFVcrncuMalFLpJO/1da/DgwXjzzTdRVFSEdevWYcaMGVAoFBAEAQcOHMADDzyAsLAwLFiwALt373Z2eUQu0Xo6bFJSEhfDJSIiIiIiIuqhXPbfDEqlErNmzcKGDRtQWFiI119/HfHx8RAEAXV1dfjiiy9wzTXXYMCAAXjllVdQVFTkqlKJHI7r1xERERERERFRE0mMCw4JCcHTTz+NY8eO4bfffsN9990HX19fCIKA3Nxc/OMf/0B0dDRSUlLw7bffQqvVurpkIrtiYEdERERERERETSQR2DU3evRo/Pe//0VJSQlWrVqF0NBQCIIAvV6PrVu3Yt68eYiIiMCzzz7bZpF+oq6ouroap06davEcAzsiIiIiIiKinktygR0A5Ofn47XXXsM///lPlJWVGbt0CIIAQRBQUVGBJUuWYMCAAXjzzTddXC1R56Snp7d4rFAoMGTIEBdVQ0RERERERESuJpnATqPR4IsvvsCUKVMwYMAAvPTSS8jPz4cgCIiLi8Mbb7yBsrIy/Pzzz7jtttugVCqh0WiwePFifPHFF64un6jDWk+HjY+Ph1qtdlE1RERERERE1NoLL7wAmUxmHFBE5GguD+z27duH++67z9gZdteuXTAYDPDw8MDChQuRmpqK48eP48knn0RwcDCuueYafPnll8jKysKwYcMgCALeeustV78Mog7j+nVERERERNQV5efnG0OsztyIqC2XBHYlJSV47bXXEBcXh3HjxmH58uWoqqqCIAgYPnw4PvjgA5SUlODTTz/FH/7wB5PniI6Oxr///W8AQHZ2tjPLJ7IrBnZERERERETts3LlSmPgl5+f7+pyiOxO6ewLTps2DT/99BMMBgMEQQAA+Pv74/bbb8e9996L5ORkm88VExMDAKirq3NIrUSO1tjYiOPHj7d4bujQoa4phoiIiIiIqB0iIiKQkZFhdvv111+P4uJihIeHY+vWrU6sjKjrc3pgt2XLFuP9CRMm4J577sHcuXM7tGaXp6cnJkyYwCG01GWdOHECjY2NLZ5jYEdERERERF2BSqWy2DBPpVLZtB8RteX0wC4kJAQLFizAPffcg9jY2E6dKzw8HLt27bJPYUQu0Ho6bHR0NAICAlxUDRERERERERFJgdPXsCssLMRrr73W6bCOqDvg+nVERERERD2PwWBAbW0tDAaDq0txKYPBgC+++AIpKSkIDQ2Fm5sbgoODMXnyZLz//vttZiMBwK5duyCTyXD33Xcbn4uJiWnTyKL14J7ffvsNf//73zFp0iTjtXx9fZGQkIAHH3wQmZmZjn65RnV1dXj77bcxefJk9O7dG25ubggJCcF1112HFStWQK/Xmz02OjoaMpkMCxcuBACcPHkS9957L6Kjo+Hu7o7evXtj9uzZ+O2332yqpbCwEM899xyGDx+OgIAAqNVq9OnTB7feeit27txp9rjmDUdWrlwJAFi3bh1SUlIQHh4OpVKJSZMmtThGEAR89tlnmDBhAgICAuDt7Y3ExES89NJLqKqqAgDjOV944QXjcVqtFqGhoZDJZLjxxhutvqZjx44Zz/PKK6/Y9H2QIqePsFMqnX5JIslKS0tr8ZjTYYmIiIiIuq+jR4/izTffxNq1a1FXVwdPT0/MnTsXTz75ZLvWc+8OLly4gJtuugm//PJLi+crKiqwa9cu7Nq1C++99x62bNmCvn37dupaK1eubBHwNdFqtThx4gROnDiBjz/+GO+++y4eeuihTl3LmgMHDmD27NkoKipq8Xx5eTm2bduGbdu24b///S++//579O7d2+K51q1bhz/+8Y8t1vU/d+4cvvvuO2zcuBFffvklbr31VrPHL1++HI8++ig0Gk2L5wsKClBQUIDVq1dj0aJF+O9//2sxyxEEAXfddRc+//xzs/s0NjZizpw5+OGHH1o8f+zYMRw7dgxffPEFtm3bZvJYlUqFu+66C0uWLMFPP/2EoqIiREREmL3Wp59+CgBQKBRYsGCB2f2kziVdYolI/N+k1oEdR9gREREREXVPX3/9NUaOHIlVq1YZA5a6ujqsWrUKI0eOxNdff+3iCp1Hr9dj+vTpxrBu4sSJWLNmDQ4ePIjvv/8es2bNAiCu+T1lyhTU1NQYjx01ahQyMjLw8ssvG5/bunUrMjIyWtxGjRpl3K7T6RAQEIAFCxbg008/xd69e3H48GH88MMPeOmllxAUFAS9Xo9HHnkEO3bscNjrzsjIwOTJk1FUVISQkBA8//zz+Pnnn3HkyBFs3boVDz/8MJRKJfbv34+ZM2dCq9WaPVd6ejruuOMO9O7dG++99x5+++037Nu3Dy+88ALUajX0ej3uu+8+lJeXmzz+008/xT333AONRoMhQ4bgP//5D1JTU3H48GF8++23SElJASCGen/5y18svq63334bn3/+OcaPH4+vvvoKBw8exM8//4w//vGPxn0effRRY1iXkJCATz/9FAcOHMD27dvxyCOPIDc3F/Pnzzd7jXvuuQeA+Hv0qlWrzO6n1WrxxRdfAACuu+46i8Ge1MmEplatTvLSSy+1+xiZTAa1Wg0/Pz/ExsZixIgR8PX1dUB15AiFhYWIiooCICb1kZGRLq5IGk6fPo0BAwa0eI7fHyIiIiIi+zh16hR0Oh2USqXZJZkMBgPOnz/v8FqOHTuG6667Djqdzuw+SqUSP/30k0ObMwQGBkIud964nejoaJw5cwZ9+/ZFfn6+8flly5bhkUceAQDcddddWLlyZZtmkn/729+M0xmfeeYZvPbaay22Nx81l5eXh+joaLN1FBUVISAgAJ6enia3V1ZWYsKECUhPT8e4ceOwd+/eNvu88MILePHFFwGII8raSxAEDB06FOnp6UhOTsbPP/+MoKCgNvv9+OOPmDZtGgwGAz755BMsWrSoxfam7ykAjBgxAtu3b4efn1+Lfb788kvceeedAIA333wTf/7zn1tsLygoQFxcHOrq6rBgwQJ88sknJkfQNf0ZyOVynDhxAgMHDjRuy8/PR0xMjPGxuT9HADh8+DBGjhwJQRAwevRo7Ny5s82fxdq1a3HLLbcYHz///PMtpsUCYrC7Z88exMbGIjs7u811AGD9+vW4+eabjeecM2eOyf3MseV9ozWHZR6Ck8lkMkEul3fq5u7uLsybN084deqUs8unDigoKBAACACEgoICV5cjGWvWrDF+XwAIQUFBgsFgcHVZRERERETdQnZ2tpCZmSlkZ2eb3efcuXMtPpN399u5c+ec+CcgCH379hUACH379m3xfHx8vPF3oKqqKpPH6nQ6IS4uTgAgBAQECPX19S22r1ixwvi68vLyOl3rd999ZzxfRUVFm+3PP/+8cXtHbNy40Xj80aNHLe47b948AYBw9dVXt9nW9D21dB6DwSCEh4cLAITZs2e32f7UU08JAITw8HBBo9GYrUOr1QoRERECAOFvf/tbi215eXnGOvz9/c3+OQqCINx///02vfbZs2cb93v++efbbF+1apVxe2pqqslzzJgxw/iz1dDQYPZa5tjyvtGaozIPl0yJFQTBmEg33Td3M7VPY2Mj1q5di6FDh2L79u2ueAlEnWZqOqyp/40gIiIiIiLqLoqLi3HixAkAwLx58+Dj42NyP4VCYRxBd/HiRRw+fNhuNdTW1iI/Px/Hjx83rqGmUqmM248ePWq3azXZsGEDAGDQoEFISkqyuO+ECRMAiOvdmWtAkZiYaPY8MpnMuNxSbm6u2VpmzJgBtVpttg6lUomxY8cCAPbt22d2vxkzZpj9cwRgzG2GDh1q8bXfddddZrcBwNy5c+Hv7w8AWLFiRZvtZWVl2LJlCwDgzjvvhJubm8XzSZ3TAzuDwYD8/HyMGTMGgiBg9uzZWL9+PQoKClBfX4+GhgYUFBRg/fr1mDVrFgRBwFVXXYXTp0/j4sWL2Lt3Lx588EHI5XLU1dVh7ty5ThnCTGRvrTvEsuEEERERERF1d8eOHTPev+qqqyzu23x78+M6oqKiAn/9618xaNAg+Pj4ICYmBkOGDEFiYiISExMxbdq0Fvva28GDBwEAWVlZbTratr41TRdubGzEhQsXTJ4vLi7O4vV69eoFAKiurm7xfGVlJXJycgAAH374odVa1q5dCwAoLS01ey1LIVx9fb3xeiNGjLBY88iRIy1u9/DwwO233w4AWL16NWpra1ts//zzz43Tzv/0pz9ZPFdX4PTArrq6Gtdddx0OHjyINWvW4Ntvv8XMmTMREREBNzc3qFQqREREYObMmVi3bp1x4cnrrrsOAHD11Vdj2bJl+OGHH6BQKFBVVYVly5Y5+2UQdVrrwI4NJ4iIiIiIqLtrHkBZ64IaGhpq8rj2OnToEOLi4vDqq68iOzvb6hp0rbum2sO5c+c6dFzzDrDNmVuPr0nTWoWtR+jZuw4ACAgIMLvt0qVLxvshISEWrxEcHGy1jnvvvReAmC19++23LbY1jbobNWoUEhMTrZ5L6sz35XWQt99+G9nZ2Xj00UdtWvxvzpw5ePDBB/Hee+9h6dKlxqYV119/Pe644w6sWrUKW7ZswT//+U9Hl05kN2VlZSgpKWnxHAM7IiIiIiLnCgwM7HCA0R6PPPIIVq9ebXW/W2+9Ff/5z38cVkdgYKDDzt0R1pYEshas2aKxsRHz5s3D+fPnoVKp8Oijj2LmzJkYOHAgAgIC4O7uDkCcOtq/f3+7Xbe1puDs6quvxn//+1+bjwsPD3dIHQDwxBNPtGlqYY6l6aUKhaLTdQHWfx4AcWbaiBEjcOjQIaxYscI4jfb3339HZmYmgO4xug5wQWC3Zs0ayGQyzJ492+Zjbr75Zrz33ntYt25diy6zM2fOxKpVq4zDK4m6itaj6zw9PW3uQENERERERPYhl8ttGtXTWX/961+xbt06q11in3vuOafU40pNUzUBy9MsAXGgg6nj2mPHjh3GddyWLVtmHKHV2sWLFzt0flsFBgairKwM5eXlDu0EbEsdTerq6hxeS9Oac4D10X22huf33HMPDh06hN27dyM3Nxf9+vUzjq7z8PDAbbfd1uF6pcTpU2Lz8vIAAL6+vjYf07RvU+viJn379gUAVFVV2ak6Iudo3XAiKSnJbv8rQURERERE0pKcnIxVq1ZBqTQ9ZkapVGLVqlVITk52cmXO1zwg+v333y3uu3//fpPHAbaNxgKA48ePG+/Pnz/f7H5Na8w5StOMquzs7DbZhjMFBwcjIiICAPDzzz87ZDRhc2q12jhy0dr32NY/g9tvvx2enp4QBAGfffYZNBoNvvnmGwDigC8/P7/OFS0RTg/smjqvZGRk2HxM077Nu7YAYgMLoGViS9QVcP06IiIiIqKe5bbbbsPBgwexYMEC4/pjnp6eWLBgAQ4ePNhtRgVZEx4ejvj4eADiDLzWTRGa6PV6rFy5EoC4Rtrw4cNbbG/e3bShocHs9ZqPajS3DpvBYMBHH31kU/0dddNNNxnvv/766w69ljVNteTm5hqbSjjSlClTAIjdd9PT083ut2rVKpvO5+vri3nz5gEAPvvsM6xduxaVlZUAYPMU367A6YFdYmIiBEHAG2+8gfr6eqv7azQaLFmyBDKZrM2igadPnwZg28KERFLCwI6IiIiIqOdJTk7GypUrUV1djZqaGlRXV2PlypU9YmRdcw8//DAAoLy8HI8++qjJUV4vvviicU2y/2fvvsOaOtswgN9J2HsqIigOXIh7g9WqddU66mrrrFqrHVatrXa4OqWt/WqHsyqO1qqtVq111C2KiiKKuFBBQUEQQfZKzvdHJBJIIEAm3L/rymVyxnueQIjk5h1vvPGGYq65InXq1FHcL8oGVCk+9dCGDRtUHvPRRx8hPDxc8ydQCcOHD1cElStWrMDatWvLPP7KlSvYs2ePTmr54IMPFF/PadOmlduz7d9//y0zaCvP1KlTFT0i33jjDZXB6V9//YWdO3dq3OaUKVMAyEdifvjhhwCABg0aoGfPnpWu09joPbArmvzv6tWr6NWrl1L31JKuXLmCXr16KX5ISyalhw4dgkgkKnMJYSJjk5GRgejoaKVtDOyIiIiIiGoOsVgMW1tbxUqeNc20adPQtWtXAPIQrVevXvjzzz8RHh6OvXv3Yvjw4fj8888BAI0aNcL8+fNLtdG2bVtFL7v58+fj4MGDuHnzJm7duoVbt24pVnrt16+fYnXSTz75BG+//TYOHDiACxcuYOvWrejTpw+++eYbBAQE6PQ5SyQSbN26FXZ2dhAEAVOmTEH//v2xceNGnD17FuHh4di/fz++/vprBAQEwN/fH8ePH9dJLQ0aNFAsfPH48WMEBARgypQp+PvvvxEeHo5z585hx44dmDdvHho3bowXX3wR9+7dq/T12rdvr5g78Ny5c+jYsSOCg4Nx4cIFHD16FDNmzMDo0aPRqVMnxTnlDXkOCAhQBKBFcyG+/vrrGg+VNgV6X3RiwoQJ+PPPP7F3716cPXsWrVq1UqzyUfRDlJSUhPPnz+PSpUuK8wYNGqRY/QMAnjx5gu3bt0MQBAwYMEDfT4Oo0kr+ZUIikRh00lEiIiIiIiJ9kkgk+OeffzB48GCcOnUKx44dw7Fjx0od17x5c+zbtw92dnal9tnb22PGjBn45ptvEB4ejn79+intP3r0KHr27AlbW1ts3LgRQ4cORW5uLpYvX47ly5crHduzZ0/8/PPPOv9c5u/vj1OnTmHEiBGIjo7GgQMHcODAAbXHV2Tu/4qaOHEirK2tMXXqVKSnp2Pt2rVqe/0VBcxV8dNPP+HBgwf4559/cPXqVbz++utK+xs0aIDff/8djRs3BqA85FmdyZMnY86cOYoaJ06cWKUajY3eAzsA2LFjB9555x38+uuvEAQBERERpSbhB+RLKYtEIkydOrXU0taFhYXYtWsXAKBDhw76KJtIK0oOh23evLlGb0ZERERERETVhYuLC06cOIHff/8dv/32Gy5evIjHjx/DwcEB/v7+GDFiBN544w1YWFiobWPJkiXw9fXFxo0bERUVhSdPnkAqlZY6rl+/fjh//jyWLFmCI0eOIDk5GU5OTmjRogXGjBmDyZMnV6kHWUW0atUKV69exe+//46dO3fiwoULSE5Ohkwmg6urK5o2bYrAwEAMGzas1Lx92jZ69Gj07dsXq1evxv79+3H16lWkpqbC3NwcHh4e8PPzw/PPP48RI0bA29u7SteysLDA7t27sWHDBqxduxaRkZEoKChA/fr1MWzYMMyZM0epd5wmC0eMGzdOEdi98MILVa7R2IgEXS8JUoaLFy9i9erVOHz4MG7duqW0r1GjRujduzemTp2q8xcp6VZ8fLziBycuLg5eXl4GrsiwJk+ejHXr1ikejxs3TuPJNYmIiIiISDPR0dEoLCyEmZmZ0jxmRGScQkJC0L17dwDyKdCKFqtQ5/Dhw+jTpw8AYOvWrYqFKKqiMu8buso8DNLDrkjbtm2xYsUKAPJVXdLS0gDIV30tOaEkUXXBBSeIiIiIiIiIlG3ZsgUAYG5ujvbt25d7fFFHGFdXVwwZMkSntRmC3me47NWrF3r16oX169crbbe0tETt2rVRu3ZthnVUbeXn55daaKVNmzaGKYaIiIiIiIhIDx49eqTopKXKgQMHsGrVKgDA4MGD4eTkVGZ7sbGx2L59OwD5YhPVMUfSew+7kydPQiaTqVzlhai6u3btGvLz85W2MbAjIiIiIiKi6uzKlSsYMmQIRo4ciT59+qBRo0YQi8W4e/cudu/ejc2bN0MqlcLa2hpfffWVyjbu37+P7OxsxMTEYN68eSgoKICVlRVmzpyp3yejJ3oP7GrVqoXExMRy01Ki6qjkcFgfHx84OzsbqBoiIiIiIiIi/ShvNVoHBwds374dTZo0Ubl/zJgxOH78uNK2zz77DHXr1tV6rcZA70NiW7duDQC4efOmvi9NZHCcv46IiIiIiIhqmg4dOiA4OBijR49G8+bN4ebmBjMzM7i4uKBTp05YsGABbt26hb59+5bblo2NDdq0aYPg4GB88MEHeqjeMPTew27KlCnYv38/Vq5cidGjR+v78kQGFRERofSYgR0RERERERFVd3Z2dpgwYQImTJhQ6TaOHTumvYJMgN572L388ssYO3Ysjh8/jkmTJiErK0vfJRAZhEwmKxXYcf46IiIiIiIiIipJ7z3sNm7ciN69e+Py5cvYsGEDdu3ahZdeegmtWrWCs7MzJBJJmeePHz9eT5USaVdMTAzS09OVtrGHHRERERERERGVpPfAbuLEiRCJRIrHqamp2LRpk0bnikQiBnZkskrOX+fm5lZtJ8ckIiIiIiIiosrTe2AHAIIglPmYqDpSteBE8fCaiIiIiIiIiAgwQGAXExOj70sSGQXOX0dEREREREREmtB7YFe/fn19X5LIKKjqYUdEREREREREVJLeV4klqokePnyIhIQEpW0M7IiIiIiIiIhIFQZ2RHpQsnedjY0NfH19DVQNERERERERERkzgyw6UeTWrVvYuHEjQkNDkZiYiJycHOzfvx+NGzdWHHPlyhXcu3cPtra26NGjhwGrJaq8kvPXtWrVChKJxDDFEBEREREREZFRM0hgJ5PJMHfuXPzwww+QyWSKVWJFIhHy8/OVjo2Li8OgQYNgZmaGmJgY1K1b1xAlE1UJ568jIiIiIiIiIk0ZZEjsm2++ie+//x5SqRSenp4YMWKE2mMHDBiAhg0bQiqV4s8//9RjlUTaw8COiIiIiIiIiDSl98Du2LFjWLt2LQDg448/RmxsLLZt21bmOSNHjoQgCDh69Kg+SiTSqoyMDERHRyttY2BHREREREREROrofUjsypUrAQADBw7EF198odE5nTp1AgBERUXprC4iXbl8+bLSY4lEgpYtWxqoGiIiIiIiIiIydnrvYRcaGgqRSITJkydrfI6XlxcAIDExUVdlEelMyeGwzZs3h5WVlYGqISIiIiIiIiJjp/fALikpCQDQoEEDjc8xM5N3BCwoKNBJTdqWmZmJEydO4LvvvsOoUaPQoEEDiEQiiEQi+Pj4VLn9UaNGKdoTiUSIjY1Ve2x6ejr++OMPvPHGG2jXrh2cnJxgYWEBd3d39OzZE9999x3S0tKqXBOpx/nriIiIiIioujt27JjS59Sim5mZGVxcXNCgQQM899xzmDVrFv76669SC06q4+Pjo7JdVbeePXuqraMiN218bieqKr0PibW2tkZ+fj6ys7M1PufevXsAAGdnZ12VpVUvvfQSjh07ppO29+7di+3bt2t07L59+zBs2DDk5eWV2vfo0SMcP34cx48fx3fffYctW7bg+eef13a5BAZ2RERERERUc0mlUqSmpiI1NRWxsbE4efIkfvjhB7i7u2PGjBmYN2+eopMOET2j95+KBg0aICIiAhcvXkTXrl01Oueff/4BALRo0UKXpWmNIAiK+87OzujQoQNCQ0ORmZlZpXYzMzPx1ltvAQBq1aql6K2oTkpKCvLy8iAWi/HCCy+gf//+aN26NZycnBAfH4/ffvsNW7duxcOHDzFo0CCcOnUKbdq0qVKNpCw/P7/U3IsM7IiIiIiIaoaQkBAEBgbq7TxjMX36dMVnV0D+WTY1NRWXL1/G4cOHcejQISQnJ2P+/PnYs2cP/vnnH7i7u5fZpqenJw4cOFDmMba2tqhVqxYiIyPVHuPv7w8A6NChA9avX6/yGAsLizKvQ6QPeg/s+vbti4sXL2L16tWYNm0axOKyR+VeuHABmzZtgkgkQv/+/fVUZdW89tprmDp1Kjp16oTGjRsDkHfjrWpg9+mnn+LevXvo3bs3vLy8sGHDhjKPNzc3x5tvvomPP/4Y9erVU9rXtm1bvPTSSwgICMCMGTOQnZ2N999/H4cPH65SjaTs2rVrpbp6t27d2kDVEBERERGRvixatAiLFy/GkiVLMHfuXI3PCwoKwrx587Bw4UIsWrRIdwXqUK1atVQutDdgwADMnTsXUVFRGDduHC5evIhz587h5ZdfxuHDh8sMyszNzTVevE+T42xtbbkYIBk1vc9h984778Da2hqRkZF44403ypyX7q+//kL//v2Rn58PBwcHTJ06VY+VVt7UqVPx2muvKcI6bTh//jx+/vlnWFpaYvny5RqdM3r0aKxcubJUWFfcu+++iw4dOgCQzzmQkpKilXpJruRwWB8fH5MZ2k1ERERERJUTEhKCxYsXAwDmzZuHoKAgjc4rCusAYPHixQgJCdFZjYbk5+eHU6dOKUYfhYSEaPw5l6im0HtgV7duXfz4448QBAHBwcFo2LChUlfZtWvXYvr06fD19cWoUaOQkpICkUiE1atXw9HRUd/lGoXCwkK88cYbkEqlmDdvHpo0aaLV9nv27AkAkMlkiImJ0WrbNR3nryMiIiIiqnkCAwOxZMkSxWNNQrviYR0ALFmyxKSHxZbH2tpaMZoOAL777juTWWhSncLCQqxduxYDBw6Ep6cnLC0t4ebmhueeew4//PADcnNz1Z7bs2dPxcIZAHD//n3Mnj0bjRs3hrW1NVxdXdGvXz/s27dPo1pSU1PxxRdfoGvXrnBzc4OlpSU8PT0xZMgQ7Nixo8xzixbfKOrheeTIEYwcORLe3t4wNzdXuSjH7t270a9fP7i5ucHGxgZNmjTBBx98gMTERADPFg+ZOHGi0nnt2rWDSCRC8+bNy31OKSkpsLS0hEgkMpkOXVVhkJkdJ0+eDJFIhBkzZuD+/ftYtWqV4of0hx9+APBsHjhLS0usXLkSI0eONESpRuH7779HREQEfH198dFHH2m9/eKLUpQ3RJkqhoEdEREREVHNVDQMtiiEK/pX1fBYVWFdRYbRmio/Pz+88MILOHjwIO7fv4+wsDB069bN0GVVyu3btzF48GBcvXpVaXtKSgpOnjyJkydPYvny5di7dy98fX3LbCskJARDhw5VGgGXm5uLgwcP4uDBg/j2228xZ84ctef/+++/GDNmDNLS0pS2JyQkYPfu3di9ezdefPFF/PHHH7Czsyuzlk8++QRfffWV2v2CIGD69OlYtWqV0vbo6Gh899132Lx5M/7991+150+ZMgVvv/02rl+/jjNnzqBLly5qj/3tt98UU05NmjSpzLqrA4OlM5MmTcL169cxe/ZsNGrUCIIgKN3q1q2L6dOn49q1a5gwYYKhyjS4mJgYRVfq5cuXw9LSUuvXOH78OADAzMxMq8N4azqZTIaIiAilbVzUg4iIiIio5pg7d265Pe1qalhXpE+fPor7J0+eNGAllZeQkICAgABcvXoV9vb2eP/997Fv3z6Eh4fj6NGj+Oijj2BjY4Po6Gj0798fT548KbOtYcOGQSKRYMmSJQgJCcG5c+fw/fffw8nJCQDw0UcflVrcsMh///2HwYMHIy0tDT4+PggKCsKxY8cQHh6OPXv2YOzYsQCAvXv3lpu17Ny5E1999RX8/f2xbt06nDt3DsePH8fs2bMVxyxZskQR1nl5eeHnn3/G2bNnceLECXzyySd48uQJRowYgezsbJXXGDNmDKytrQFA7SIgRYr2N2/evMxgr7ow6NrJXl5e+O677/Ddd98hPT0dSUlJkEqlcHV1hZubmyFLMxrTpk1DdnY2Xn31VaU3Mm3Zu3cvLl++DADo168fHBwcKtxGfHx8mfsTEhIqVZupi4mJQUZGhtI29rAjIiIiIjJOycnJlT7Xzs5OETqUNHnyZGRmZuKLL74AIA/tMjMzMWPGDPz444+K7YB8ocFJkyYparGxsYGtra3Kdh8/fgypVKpRfeWtwGpI7dq1U9y/efOm2uMKCgpw5coVtfstLCy0Pn2UpqZOnYqHDx/C29sbx44dQ8OGDZX29+zZEyNHjkT37t1x584dfPfdd/j8889VtnXz5k3Ur18fp06dQt26dRXbO3bsiI4dO+K5555DYWEhVq9ejWXLlimdm5WVhXHjxkEqlaJv377YuXMnbGxsFPvbtm2LQYMG4bnnnsPUqVOxY8cOHD58GL1791ZZy+XLl9G7d2/s3btXqfPQc889B0D+Wf+zzz4DADRs2BChoaGoVauW4rju3btj4MCBeP7550stxljE0dERI0eOxMaNG/HHH3/ghx9+UPmzFBERoegQM3nyZJVtVTsC6UX9+vUFAEL9+vU1PmfTpk0CAMHR0VFISEhQ2jdhwgQBgABAiImJqVRNKSkpirokEokQHh5eqXaK6tDkFhcXV6lrmKLt27crPXc3NzdBJpMZuiwiIiIiohrh5s2bwtWrV4WbN29qdHxFPteUvP38889q23Vzc6t0uwsXLlTbbosWLTRuRx+OHj2qUd0lXbx4UXHesGHDSu0v+sxa3k3Tz9pFx/fo0UPjGssSGRmpaHPXrl1lHvvhhx8KAARPT89S+3r06KFoZ/fu3Wrb6NKliwBAaNu2bal9P/30kwBAsLKyEh4+fFhmLZ06dRIACGPGjCm1r6gOsVhcZt7w9ddfa/TcZ82apThuwoQJpfafOHFCsX/z5s0q23j33XcFAIK5uXm5z60qKvq+IQiCEBcXp5PMgxOWGanHjx8rupl+9dVX8PDw0Gr7UqkUY8aMwd27dwHI/5LD3l/apWr+uqK5GomIiIiIiAhKc6iVHKFkCnbt2gVA3hvyxRdfLPPYop5pDx48QFxcnMpjnJycymynffv2AIA7d+6oraVHjx5KPd3KqiU0NFTtMQEBASoXmChy+PBhAICrq2uZNY8fP77MWrp3746mTZsCUD0sNj8/H7///jsA4MUXXyz3uVUXBh0Sa0iFhYUwNzevcjvr168vtcqJNsyePRvJycno2LEjpk2bpvX233rrLezfvx+A/AU/f/78Srel7o2mSEJCAjp16lTp9k0V568jIiIiIiIqW/GQrqwpmurXr4/Y2Fg9VFQx58+fBwBkZ2fDzEzziCUxMRHe3t6ltvv6+pa5GKSLiwsA1eFmUS0HDhzQuLNI0SquqrRq1arMc4uGKLdp0wYSiUTtcf7+/rC0tFRa8LKkyZMn48MPP8SRI0dw9+5d1K9fX7Fv9+7digU4asJiE0UMFtilpKRg8+bNOHnyJO7cuYOMjIxyx9+LRCLcvn1bTxUazpEjR7BhwwZIJBKsWrVK6yu3fvTRR1i9ejUA+XLj27dvL/OHqzxeXl7aKq1a4QqxREREREREZXv06JHiflEYZUqSkpIqdZ66RRiKzzmnSlE+IJPJlLYXFBSUWhW2KnUAgLOzc5nnpqamAkC5Pd4kEgmcnZ3LDAcnTJiATz75BAUFBdiwYQMWLFig2Ldu3ToAQJ06dTBgwIAyr1WdGCSw2759O6ZOnYr09HQA8mWANaHN4YRmZma4du1aldupU6eOFqpRVrRqUIcOHXDjxg3cuHGj1DExMTGK+3v27FFMIvrKK6+U23bRKkXt2rXDP//8o3ZyVKq8hw8fllpsg4EdEREREZHxqmzwAigP6yzp2rVrEASh1AITzs7OisADkE9TNGPGDKVzywpvTp48qfGiE8aseEeHomGRpqToe9CgQQPs3r1b4/MaNGigkzoAYNSoUVUaRVekKh17KqpWrVoYPHgw/vrrLwQHB2P+/PkQiUR48OABDh48CEA+tLYivRhNnd6f6dmzZ/Haa69BJpNBEAR4enqibdu2cHFx0XpPsvI0a9ZMr9fTVFE30bNnz+LVV18t9/jib+plBXbLly9XLBfevHlzHDhwAI6OjlWsllQp2bvOxsYGvr6+BqqGiIiIiIjKo6uVVN3c3BAUFKQU1i1ZsgRz585FUFCQ4jPaF198ATs7O8ydO1ejdk2xN5oq//33n+J+YGCgASupHFdXVwDyThvNmjUzWKBkZWUFGxsbZGdnIy0tDS1bttT5NYt6zZUXdkulUqVwWp0pU6bgr7/+QkxMDI4fP46ePXti48aNijCyJg2HBQwQ2AUFBUEqlcLa2hpr1qzBa6+9pu8SaqRNmzbhnXfeASBfbvnQoUNwc3MzcFXVV8n561q3bq3Xv04QEREREZFxKB7KAc/COgCKf4v2F/2raWhn6q5cuaJYuMDb2xsdOnQwcEUV17ZtW/z777/Izs7GqVOn0KNHD4PWcurUKZw6dQrZ2dnlDq+tKj8/PyQmJiIiIgJSqVTtZ97IyMgy568r0rdvX9SrVw/37t3D+vXr0bNnTwQHBwOQL4DRpEkTbZZv9PS+Suzp06chEokwb948hnVqHDt2DIIglHmbMGGC4viYmBjFdlV27NiB119/HYIgwMvLC4cPH4anp6e+nk6NVLKHHRecICIiIiKqecoK64rMnTtXMW0RIA/tiqZJqs5ycnIwfvx4xefYOXPmmORwxyFDhijuf/PNNwasBBg8eDAAICsrC7/88ovOr9e7d28A8jUK9u7dq/a4jRs3atSeWCxW9KL7888/sW/fPsUUYZMnT65itaZH74Fd0SSI/fr10/ela6SDBw/i1VdfhVQqRa1atXDo0KEyl2Um7eCCE0RERERENZsmYV2RmhbaXb16FYGBgYrPTT169MD06dMNXFXldOzYEX379gUA/Pvvv1i4cGGZx8fGxmLLli06qWXatGmKkXTz58/Hvn37yjz+1KlTOHHiRKWvN2HCBFhaWgIAZs2aheTk5FLHhIaGVig8nDRpEsRiMbKzsxXhnZ2dHUaOHFnpOk2V3uPrOnXq4N69e1pdQMLY3Lp1CyEhIUrbMjMzFf8Wdeks0r9/f3h4eGi9jjNnzmDYsGHIz8+Hubk5/ve//6GgoECx9LIqXl5ecHJy0notNUlGRgaio6OVtjGwIyIiIiKqOUJCQjQO64qoGh4bEBBgkvO6JSUlKX3uzMrKQmpqKi5fvozDhw/jv//+U/Ss69KlC/7880+Ym5sbqtwqW79+PTp06ICEhAR89tlnOHDgACZNmgR/f39YWVkhJSUFly9fxv79+3HkyBEMHTpUo/nqK8rBwQFbtmzBgAEDkJeXh0GDBmH48OEYPnw4GjVqBABISEjAhQsXsHPnTly+fBk//fQTnnvuuUpdz9PTEwsXLsTHH3+MO3fuoH379pg3bx46duyIvLw8HDhwAEuXLoWnpyeysrKQnJxcbhbk7e2Nvn37Yv/+/YpVZUeNGlXmwi7Vld4Duz59+mDdunW4cOECOnbsqO/L60VISAhef/11lftSUlJK7Tt69KhOArv9+/crlmguKCjAmDFjyj1n/fr1mDhxotZrqUkuX76s9Fgikehlwk8iIiIiIjIOgYGBWLhwIRYvXqxRWFekeGi3cOFCkwzrAGDFihVYsWJFmce4u7tj5syZ+PDDD01yKGxxnp6eCA0NxciRIxEWFoazZ8/i7Nmzao93cHDQWS19+vTBgQMHMGbMGCQmJmL79u3Yvn27zmqZN28e7t69i1WrViEuLg5vv/220n43Nzds374dL7/8MgD54hjlmTJlCvbv3694XBOHwwIGCOzef/99bNmyBd999x3GjBkDe3t7fZdApFMlh8M2b95cozclIiIiIiKqPhYtWoQ+ffpUOHSbO3euyfasU0UsFsPe3h6Ojo6oX78+2rdvj+7du2PQoEGwsLAwdHlaU79+fZw9exa7du3C1q1bcfbsWTx8+BAFBQVwcnKCr68vunbtisGDB6N79+46raVXr164ffs21q9fj3/++QeXLl1CSkoKxGIx3N3d0bx5c/To0QPDhw9H06ZNq3QtkUiElStXYuDAgfjll19w/vx5ZGdnw8vLCwMHDsQHH3wALy8vpKenAwAcHR3LbXPw4MFwdHTEkydP0LRpU3Tr1q1KNZoqkaBupQId2rlzJ8aMGQN/f3+sW7cOfn5++i6B9Cg+Ph7e3t4AgLi4OHh5eRm4It2aPHky1q1bp3g8btw4jSfZJCIiIiIi7YiOjkZhYSHMzMzg6+tr6HKIaqzimcCvv/5abo+5W7duKX5mg4KC8OGHH+q8xiKVed/QVeah9x52RZMGNm/eHGFhYWjVqhX8/f3RrFmzcpccFolEWLt2rT7KJKo0LjhBREREREREJFd8kY0uXbqUe/z69esBAGZmZhg/frzO6jJ2eg/sgoODFZMMikQiCIKAyMhIREZGlnmeIAgM7Mjo5efnl1rUg4EdERERERERVUdZWVlIT09HnTp1VO6/ePEiPv/8cwBA+/btyx1hmZ6ejtWrVwMAhg4dqpP5/k2F3gO7evXqVesVYqlmu3btGgoKCpS2tW7d2kDVEBEREREREelOcnIymjdvjqFDh6J///5o2rQpLC0t8eDBA+zfvx9r165FTk4ORCIRvv/+e5VtJCUlIT09HQkJCVi8eDEePXoEkUik8WIt1ZXeA7vY2Fh9X5JIb0oOh/Xx8YGzs7OBqiEiIiIiIiLSrdzcXPzxxx/4448/VO63sLDAmjVr8Nxzz6nc/+GHH2LDhg1K26ZPn44OHTpovVZTYtprJxMZGc5fR0RERERERDVF3bp1sXXrVuzbtw/nz59HUlISUlNTYWNjAx8fH/Tp0wfvvvsu6tevX25bFhYWaNSoEd544w28++67eqjeuDGwI9IiBnZERERERERUU5ibm2PUqFEYNWpUpdsIDg5GcHCw9oqqJsS6bHz27NmYPXs2kpKSVO6XSqW4d+8e7t27V2Y7d+7cQbt27dC+fXtdlEmkFTKZDBEREUrb2rRpY5BaiIiIiIiIiMh06bSH3Q8//ACRSIQpU6agVq1apfZfv34d/v7+EIvFKCwsVNtOTk4OIiIiuFgFGbWYmBhkZGQobWMPOyIiIiIiIiKqKJ32sNOUIAiGLoGoykoOh3Vzc0PdunUNVA0RERERERERmSqjCOyIqgNV89exVygRERERERERVRQDOyItKTl/HYfDEhEREREREVFlMLAj0pKSPey44AQRERERkeGIxfKPu1KplNMwEVG5BEGAVCoF8Oz9w5AMXwFRNfDw4UMkJCQobWMPOyIiIiIiw7GwsAAg/xCel5dn4GqIyNjl5eUpwv2i9w9DYmBHpAUle9fZ2NjA19fXQNUQEREREZGtra3ifnp6ugErISJTUPx9ovj7h6EwsCPSgpLz17Vu3RoSicQwxRAREREREezs7BT3U1JSkJKSohjuRkRURCqVKt4jihR//zAUM0MXQFQdcP46IiIiIiLjYmFhAXd3dyQnJwMAkpKSkJSUBIlEApFIZODqiMgYFJ+3roi7u7tRDInVS2C3fPly1KpVq9T2pKQkxf3PPvtM7fnFjyMyRiUDO85fR0RERERkeK6ursjPz8eTJ08U29jLjojUcXR0hKurq6HLAKCnwG7FihVq9xX9ZWPx4sX6KIVI6zIyMhAdHa20jYEdEREREZHhiUQieHp6wsXFBWlpacjOzmZgR0RKJBIJbGxs4OTkBCsrK0OXo6DzwI7LZ1N1d+nSJaXHEokELVu2NFA1RERERERUkpWVFTw8PAxdBhGRxnQa2B09elSXzRMZhZILTjRv3tyoUnkiIiIiIiIiMi06Dex69Oihy+aJjALnryMiIiIiIiIibRIbugAiU8fAjoiIiIiIiIi0iYEdURXk5+fjypUrStsY2BERERERERFRVTCwI6qCa9euoaCgQGlb69atDVQNEREREREREVUHDOyIqqDkcFgfHx84OzsbqBoiIiIiIiIiqg4Y2BFVAeevIyIiIiIiIiJtY2BHVAUM7IiIiIiIiIhI2xjYEVWSTCZDRESE0jYGdkRERERERERUVQzsiCopJiYGGRkZStvatGljmGKIiIiIiIiIqNpgYEdUSSWHw7q5uaFu3boGqoaIiIiIiIiIqgsGdkSVpGr+OpFIZKBqiIiIiIiIiKi6YGBHVEmcv46IiIiIiIiIdIGBHVEllexhx/nriIiIiIiIiEgbGNgRVcLDhw+RkJCgtI097IiIiIiIiIhIGxjYEVVCyd51NjY28PX1NVA1RERERERERFSdMLAjqoSSgV3r1q0hkUgMVA0RERERERERVScM7IgqoeSCE5y/joiIiIiIiIi0hYEdUSWU7GHH+euIiIiIiIiISFsY2BFVUEZGBqKjo5W2MbAjIiIiIiIiIm1hYEdUQZcuXVJ6LJFI0LJlSwNVQ0RERERERETVDQM7ogoqOX9d8+bNYWVlZZhiiIiIiIiIiKjaYWBHVEGcv46IiIiIiIiIdImBHVEFMbAjIiIiIiIiIl1iYEdUAfn5+bhy5YrSNgZ2RERERERERKRNDOyISggJCVG779q1aygoKFDa1qZNm3LP04bKts+69HOertvXdV1ERERERERkPBjYERWzaNEidO/eHUFBQSr3lxwO6+PjAycnJwQFBaF79+5YtGiRQepSh3WxLiIiIiIiIjJBApGOxcXFCQAEAEJcXJyhy1Hr5MmTijoBCEuWLCl1zIwZM5SOGTZsmLBkyRKlbSdPntR7XaqwLtZFREREREREuqWrzIM97IieCgwMxJIlSxSP582bV6onVMkedpmZmZg3b57i8ZIlSxAYGKj3ukoKCgpiXayLiIiIiIiITJXWoj8iNUylh12Rkj2ainpCSaVSwd7eXmmfquP0XVdlj2NdrIuIiIiIiIiqRleZBwM70jlTC+wEQXVYcuvWLYOFdWXVVZH9rIt1ERERERERkfboKvMQCYIgVLZ3HpEm4uPj4e3tDQCIi4uDl5eXgSvSTMnhiGPGjMFvv/1W6rhXX30VgwcPLrc9Jycn9O/fX+W+y5cv4+rVqxrVtXv3bmzZskXxeNy4cdi4caPK4ZNDhw4tNYxXUyKRCKNHj1a57+7duwgNDS2zrqKvi6rtwcHBsLCwKNVuYmIijh07Vql6AWDgwIFwcHBQ2lby61JWXeq+j71794a7u3up7Tk5Odi1a1elai15/SVLlmDu3Lkqv49z586t1DWIiIiIiIhIt3SVeTCwI50z1cAOKB32VEWrVq1w6dIllfs++eQTfPXVV5Vu28XFBY8fP1Y8Lgp5li1bhpkzZ1aqTTMzMxQUFKjc9/vvv2PMmDGVahcAHj9+DGdn51Lb//vvP/Tt27fS7d64cQNNmjQptX3mzJlYtmxZpdsNCQlBQEBAqe0PHjxA3bp1K93u2LFjsXnzZsXjkt/HwMBAvPnmm2jbti2aNm0KMzOzSl+rPCEhIZWaH6+y5+m6fV3XRUREREREBOgu8+CiE0RlmDt3rtJCAcZKVVhHz7z++uuGLkGll19+Wen1Vfz7aG1tjZCQEIwbNw4tW7aEvb09OnfujGnTpmHVqlU4d+4ccnJytFLHokWL0L1793IXwSgpKCgI3bt3x6JFi7RSh6nUBcgDQX2ep+v2dV0XERERERFVDAM7onL0799f5fBNY+Ti4sKwzsTMnTsXLi4uStucnJxKhXG5ubk4d+4cVq1ahWnTpqFz586wt7dHy5YtMX78ePzvf//DsWPHkJaWVqHrh4SEYPHixQA0W7m2SPHep4sXL9Z64GOsdQHGGyQaa11ERERERFRxuhtfRVQNbNmyBWPHjoVMJlO539vbG05OThq15evrq3Zf7dq14e/vX6HakpOTkZiYqLTt8ePHCAoKUoR2rq6uFW63SFnDL52cnNS2q6ouAPDw8FDMAyeRSFSea2dnV+l6AagNVq2srODh4VFuXerY2Nio3G5mZlaleh0cHBAUFKTUsw6AxqGbVCpFVFQUoqKisGnTJsX2zZs3azxkOTAwEEuWLFGEXEX/lhX8qppnT9vDT421rpJBYnk1qapt8eLF6NOnj1ZrM9a6itdnjEObjbUuIiIiIiKuEks6Z4qrxAqCIERERAhisVjtyrAABLFYLEREROi9tpKriLq4uBjFqqKsS7t1NW/eXPD29i7zNajqFhYWpvJ6OTk5wrx584StW7cKN2/eFKRSqdpa1H1N9L2CrTHWVdFr6as2Y61r4cKFlWq/qL6FCxfWqLoEQRBOnjyp1/N03b6u6yIiIiIyJF1lHgzsSOdMNbBr166dRuFIu3bt9FqXug/Z+g5SWJf+6kpOThYOHjwoBAUFCa+88orQtGlTQSQSqXw9mpmZCTk5OSqvee7cOaVj7e3thcDAQOHdd98V1q1bJ8yYMaPMr4mhvmblXdcQdRljkGiMdZ08ebJS1ylZn7YDH2OtSxCMN0g01rqIiIiIDI2BHZksUwzsvv766wr1aPr666/1UpcxBhesyzB1ZWRkCKdOnRJ+/vlnYfLkyUK7du0ECwsLoVWrVmqvu2rVqnJfyxKJROnx9OnThaSkJMWHdVU1ZWZmCo8eParU7fHjx2rrzc7OVhy3YMECpesvWLBASElJERYtWmSw4LU6v770WU9Vj69OdRlrkGisdRWvT5/n6bp99kgkIiIyLQzsyGSZWmBX8gOGpjdj+dBrrB/GWZfu68rLyyvzZ2zatGmVem2X91qfM2dOpduqX7++2nq/+eabCrcnEokEc3Nzwd7eXm27u3fvFpo1aya0bNlSaNOmjdC+fXuhc+fOQkBAgNCjRw+hd+/eQr9+/YQXX3xRGDJkiDB8+HBh1KhRwmuvvSaMHz9eyMzMVPt96t27t7Bo0SKhT58+Stv79OkjLFq0qMxbamqqynrj4uLKPbfkreT11fXgfOedd4Tr168LDx48EDIzMwWZTKb261YVNfHnUdc16bs2Y63LWHv+GWtdREREpH0M7MhkmVJgV9mwrqZ+UGJdplXXihUrhL59+wru7u5afY0bU2BXdLOyslLb7oYNG6r0c56enq7UXlXfN4pusbGxKus9c+aMVtovOUdiyV6LgHxeTkdHR8Hb21vw8/MTunTpIvTt21cYMWKE8PrrrwvvvfeeMH/+fOGbb74Rrl+/rvZrnJeXV2qbsfX8M+a6jDFINMa6jLXnn7HWRURERLrBwI5MlqkEdiV/wa7IHHY18Rd/1mW6dclkMiE+Pl7Ys2eP8NlnnwnDhg0TfHx8NAp8VDHGwM7Ozk5tu2vXrq10uwCE7OzsUm1qI7TTdWBX8vUXGxtbpTZ27Nihst7CwkIBgGBpaSm4ubkJDRs2FNq0aSN0795daNasmVIbL7zwgrBkyRKhf//+5f58SKVSYcmSJZW+Xbx4Ue1rYtCgQUrX79+/v/C///1PePnll5W2v/XWW8KVK1eEmJgYITk5WcjOzjZYr0QGnJW7Xk35Aw0RERHpDwM7MlmmEtgJgvIQloiICMHMzKzMD6xmZmZCREREjR1aw7qqR11FHj9+LBw5ckRYunSp0KZNG7VBT0nGGNg5OTmpbVeTufzKuqnqPSYIgmBnZ1eldnUV2Dk6Oio9LgpeL1++XKV2//vvP5X1pqWlVandsWPHqmy3oKCgSu2uWrVK7WvCycmp0u3OmTNHbbvz5s0Txo8fL0yfPl344IMPhEWLFgnfffedsGLFCmHTpk3Cjh07hIMHDwqnTp0SLl26JNy6dUtITEwUMjIyFAFl8WupG9qs73DH2Ooytp5/xlyXsc6rZ6x1ERERaUJXmYdIEAQBRDoUHx8Pb29vAEBcXBy8vLwMXFHZQkJCEBgYCADYsmULxo8fj8LCwlLHmZmZYePGjXj11VdLnafruvRxnq7bZ136Oa8ygoKCMG/ePMVjZ2dnpKamKh4vWbIEc+fOVTxOT09HdnZ2pa4lkUjg7u6ucl9WVhYyMjIUj3/++Wd8+eWXisdOTk5IS0tTPJ49ezYmTpyIwsJCCIKAdu3aqWz3zp07CA8PR2FhoeImlUqVHpe1fcmSJRCLxUptlvyaFWnZsiWaNWum0ddi+fLlKr8W0dHR+PjjjzVqo6Tr16/jypUrpbYvWbIEPXv2RPfu3VFQUFCpts+ePYtOnTqV2h4XF4d69epVqk0A2LFjB4YNG1Zqe2FhIczNzSvd7qpVqzB16lSV+5ydnZVeSxWxcOFCLFq0SOW+li1bIioqqlLtvvHGG1i9enWp15aLiwseP36seOzj41Oh/1cHDRqk9PNb3Pvvv49z585p1E58fDxiY2MVj62srJCbm6t4XPx94sKFC7h79y7s7e1V3szMzDSuX52SX6eS71Pl7dcVY6pr0aJFWLx4cYWvUVRjWa/16lgXERGRpnSWeWgt+iNSw5R62KkSEREhTJgwQbCxsREACDY2NsKECROEiIgIQ5dGpHXG1nPG2OtSVUPJueIMNbRN07pyc3OF5ORk4fbt28LFixeFEydOCP/884/w+++/CytXrhS+/fZbYf78+cJ7770nTJo0SRgxYoTQt29fISYmRuV1o6KiqtQTTt1QW2PtYfftt9+qbbd+/fqVbnfmzJlqv5dVuU2ePFltvX379tXKNUq+5stb8MbKykpwd3cXGjZsKLRu3VoICAgQ+vfvL4wcOVL45JNP1NYbGxsrnDt3Trh27ZoQHx+vdtVoQ79PGMP7lzFNy2AKdREREVUEh8SSyTL1wK6IVCoVMjMzBalUauhSiHTC2OamMva6yrp2TQ4I8vLyhBs3bghhYWHC4cOHhb///lvYuHGj8PPPPwtff/218NFHHwldu3ZVGdw0a9ZMOH36tMp2CwsLhUGDBlX6tm/fPrU1jx49Whg0aFCpOfaKbs7OzoK7u7viDzfFb8uXL1fbrpubW6VDr08//VSprZKBq7EGdqrmuhwzZkyl22vfvr3aeufOnVvu+WKxWOmxm5ub0LRpU2HIkCFq2/3++++Fpk2bVurWvXt3lW2W/NkrOeXG4MGDha1btwpHjx4VoqKihOTkZK3/vmGs8+oZa12CYLxDdY21LiKimoqBHZms6hLYEVVnxjjXkjHXpck1GXBqVp+p9UgsLCwU0tPThYSEBCE6Olp4/Pix2ja//PJLYc6cOcL06dOFcePGCS+//LLQt29fISAgQGjdurXQqFEjwcPDQ7CzsxNEIpHar4Op97AbPHhwpdvq2bOn2nrfeuutSrfbunVrte1+/PHHlW7X09NTbbslFzcp7yaRSAQPDw+hVatWQp8+fYS0tDSV7ebm5gqZmZlqr1ucsb6nGmNdxjrvrLHWRURUkzGwI5PFwI7IuBlr7wZjrasi1+KHXs2ua2whoiHqkslkQlZWlpCUlCTcuXNHePTokcoaSgaJQ4cOFVasWKHx7ejRo2pr2LNnj8btDB06VKkOe3t7tV+rqVOnCo0bNxZq166tspdiWbdBgwaprXfcuHEmFdj973//q3S7IpFIKCgoUNnurl27BEA+ZYePj4/QqVMn4aWXXhImT54sfPTRR8L//vc/4bfffhP+++8/4dKlS8Inn3xS5uva2N4fDFGXsQ7VNda6iIhqOgZ2ZLIY2BEZL2P95d9Y61J1DWMJEo21Lk2vx5BA89pMPeAsLCwU0tLShLi4OOHq1avC2bNnhUOHDgl///23sGnTJmH58uVCUFCQ8OmnnwobNmxQW8f48eMFS0tLkwnsKtrDrvjNzc1Nbbtr1qypdLvlfQ+7desmzJgxo1I3mUymst6LFy+qPadbt26lrj9z5sxSvT+NoRd1VY+vbnUREdVkDOzIZDGwIzJuxjq8xhjrMtYg0VjrUncdY+n5Z6x1aXJNBpzP5OfnCykpKUJsbKwwc+ZMpevb2dkpPR4zZozw559/Cv/995/a9iIjI4U///yzUrd//vlHZZslvy62trZKj318fIQmTZqoXQClRYsWauv98ssvqxzYAaV7bw4ZMqRK7akL7LZv316ldmfMmKGy3YcPHwpTpkwRPv74Y2HZsmXCli1bhCNHjghXrlyp9JyAxvoeYax1GevcesZaFxFVHwzsyGQxsCMyfsb6y6wx1mWMQaIx12WsvUGMta6KXIshgWbXNXQPo4rWlZeXJ8THxwvh4eHC/v37hY0bNwp//PGH2vbfe++9SodfJYPD4rX88ssvRhnY3b9/X2W7586dK/O8knMCjhkzRpg1a5awZMkSYd26dUJycnKFvn+a7tcVY6vLWP8PMta6iKh6YWBHJouBHRFVN8YYJFalfV3VZaw9/4y1LlXXMJYg0Vjr0vR61TlUycjIEKKjo4VTp04JO3fuFFauXCl89tlnwjvvvCOMGjVK6Nmzp9CiRQvBzc2t1OImLVu2LNWzrmilX2MN7PLz81W2u2fPniq1GxERobLd+/fvC35+fkrHjhkzRjhy5Ijw5ptvKm1/8803hePHjyvdcnNzVbb75MmTUsdW5JaRkaH29fPRRx/p9fVurO+pxloXEVU/DOzIZDGwIyKquYy1d4Mx1mWsHy6NtS511zGWnn/GWFdBQYGQkJAgXLp0Sfjvv/+EyZMnqwyvlixZIhw9elSYOnVqpW/qArvz58+Xe26nTp1U1uXh4aH2ua1du7ZKgV1CQoLKds+cOVOldtX97nv69OkqtRseHi4IQvkL03h7ewvDhw8XZs6cKSxdulTYtm2bEBoaKsTHxwuFhYUVfAWpZ6yhvrHWRUTVCwM7MlkM7IiIajZj6/lX1fY55Np46jLWD+PGWldZ1ywZ9BgqqKhsXSdPnhTefvttYcSIEcJzzz0nNG3aVHB2dtYo/NJkFV5jDexUfc00vUkkEsHb21vo1q2bMHr0aGHOnDnCpUuXtPa9M4aQ2pjrIqLqg4EdmSwGdkRERJozxiCxKu1zyLVx1FXWtUx1vj9NFJ8TcN++fcKGDRuEb7/9VpgzZ44wfvx4oV+/fkLPnj3Vnl/VVXj1EdgJglAq2KzsbdeuXSrrLSwsFMaOHSvMnTtX+Pnnn4Vdu3YJ4eHhQnJyslJvypo8PL2ijO09tartc+gw1WQM7MhkMbAjIiIiXTDWnn/GWlfxaxhTcGHMdYWFhQkLFiwQ3nzzzVJz2RXdbGxsBFdXV5W3shbJUHeOJrfiPeEq28NOkyCwSHx8vNpzrK2tBV9fX+H5558Xxo8fLzz//PNK+xcuXCjIZLJqGQhXlrG+RxhrXUTGjoEdmSwGdkRERKQrxtobxBjrMtahgcZaV1nXNpUhxEOGDBHmzZsnjBkzRujRo4fQsGFDwcLCQm34pm613NDQ0CoFgfb29iq/XmfPnhUsLS0rfTt//rzKeu/cuaPyeIlEolRHyYVY+vfvL/z222/CnTt3dPY9M9ZeuMZaV/H69Hmerttnj8TqhYEdmSwGdkRERESGZazz6hlrXZpc01R7jEmlUiExMVEICwsTduzYISxbtkz44IMPhLFjx6pdLGTbtm1VCuzU1VPVRT3CwsJU1nv79u0qtbtq1Sq1X/f169cLe/bsES5duiSkpaVV9NsmCILxvu6NtS5j7flnrHUJgvEGicZaV1UxsCOTxcCOiIiIyHCMteeMsdZV1rWMZaiuvuu6cOGCMGvWLGHEiBFC586dhbp16wpisbjCQZiLi4tSu8Ya2O3bt09lu/n5+aWet4ODg9CyZUth4MCBwrRp04SvvvpK2Lx5s3DixAnh7t27ahc0MdaepcZWl7G+TxhrXYJgvEGisdalDQzsyGQxsCMiIiIyLGP9oGSsdRW/hrEEF8ZWV35+vnD37l0hJCRE2LJli/DNN98I7777rjBs2DChQ4cOgp2dncowzBR62EVFRalsNyYmpsJticViwdvbWwgICBAOHTqk1B4DYe3UU9Xjq1NdxhokGmtd2qKrzEMkCIIAIh2Kj4+Ht7c3ACAuLg5eXl4GroiIiIio5gkJCUFgYKDeztN1+7qsKygoCPPmzVM8XrJkCebOnau146tbXeVd18XFBY8fPy5VR1ZWFq5fv17p6zRr1gy2traltufl5eHKlSultgcHB+Pnn39WPLa3t0dGRobisa+vL8RiMcLCwmBvb1/q/BMnTqBHjx6Vrnffvn3o37+/0raSX6vOnTvjhRdewOnTp3HkyBHF9l69eiEgIEBlu9OnT0edOnVKbU9JScGyZcsqVeupU6eUrl/0PStZ78yZM/H+++/DyckJtra2EIlElbpeeTR9Lev7NW+MdRnr+4Sx1qUNOss8tBb9EanBHnZEREREZCqMtSeIsdZV3vVMfc6/4o4fPy506tRJ8PDw0GrPvblz51apR6C61X2jo6Or1O6kSZOUHpdc1KTkTSKRCC4uLkLDhg2Fdu3aCb169RJefvllYdKkScLs2bOFxYsXC8uWLRMiIyO1+j3UdL+uGGNdxtIT11TqqioOiSWTxcCOiIiIiEyJsQ7VNda6Sl7HmIILXdWVm5sr3Lp1Szhy5IgQHBwsfPbZZ8KUKVOEvn37Cs2aNROsra1LBVrp6ekq2zp+/LhRBnYHDhwo9bXRxq2sRT0aNmwo+Pj4CK1btxZ69OghDBkyRJgwYYLw3nvvCQsXLhQGDRqk1NaMGTOEq1evCrNnzy7ze3j9+nXh2rVrlbo9evRIbb3R0dHCtWvXSl1/9uzZwq1bt4SPP/7YYMFTTfp5NDQGdmSyGNgRERERkakx1tUMjbUuY+05Y6i6ZDKZ8OjRIyE8PFz4+++/heXLl6s9dtOmTUYb2AmCUKpnnZOTU5Xa3bp1q9qvWWUWMyl5U/W9s7KyqnR73377rdrvnbe3d4XasrGxEdzc3ARvb29hwYIFatv9/vvvhZkzZwofffSR8Nlnnwnffvut8Msvvwjr1q0TtmzZIuzatUs4ePCgcPLkSeH8+fPC1atXhZiYGCExMVHIyspStFOde7waE11lHmYgIiIiIiIiJZWdH0+X8/1VpX1d1lWRuaaKthcdX/SvoefM0nZdIpEIrq6ucHV1Rdu2bcs8NjAwECNHjsT27dtL7fP390fz5s3LPN/JyUnldjs7O4waNUrjmkuqXbs2goKClOYfBIC0tDQ4OTlBEAQ8efKkwu2qqzczMxMymawypSoY8zxnAJCdnY3s7GwAUJo/saRt27bhzJkzlbrGK6+8gi1btgBQ/br+9NNPUVhYqDje29sbO3fuxM6dO8tst2fPnliyZInKfZ9++ikOHTpUoTq9vb0RFxenqOubb75ROddlTcbAjoiIiIiIiColJCSkwhPDqwoRAgICtBoqGmtdqmzdulUprCu+SEdkZCTGjBlTqeDCw8MDW7durXRdZS0ekpaWhiVLlmDOnDnIyMhAWlqa0u3JkyelthXdPD09VV6vMuFfcba2tiYV8FhbW6vdl5OTo7V2S76ui4d1gHyRhKLgrCx169ZVu+/WrVs4e/ZsRUtVwrCuNAZ2REREREREVCmBgYFYuHAhFi9eXKEP2cVDhIULF2o9FDPWukpS1wuw+HZd9kLUVl3qes1VhJubG44fP65R8BcbG1uq519WVhaCgoJMJujRV2AHyL9HJXuwGQszMzOlENHFxcVkvoe6xsCOiIiIiIiIKm3RokXo06dPhcOtuXPn6rQHm7HWVaSsIbv6HDpsLHVZWVnhueeeq3B9xXv+qasnMzOz0nWJRCK1+2JiYhT3v/nmG3z88ccq6wKA9957D6+++ipycnKQk5ODxo0bq2139OjRuH//vuLY7Oxsxf2Sj7Ozs1FQUKA4V1Vgp2pos7Eo2ePv8ePHJhW86pJIEATB0EVQ9RYfHw9vb28A8u62Xl5eBq6IiIiIiIjIcDSdX68i8/BV57rKu66h6jGWuqRSqSLAs7CwgKOjo9rabG1tkZWVpXg8fPhwDBgwoNxr+Pj4oHfv3ir3HT16FHfu3KlQzfv27cNff/2leFwy4DSlYbE6yzy0tnwFkRpcJZaIiIiIiEiuoith6mvlTGOtS9PrGWqFUWOtq6xrG3o1VmOtq7J0lXkwsCOdY2BHREREREQkCCdPnqxUIFEyyDh58mSNqEvdddTVZ2whoqHq0uSaDDi1h4EdmSwGdkRERERERHILFy6sVBBRFGQsXLiwRtVlrD3/jLWuilyLAad2MLAjk8XAjoiIiIiI6JnK9kTTVQ+2qravq7qMteefsdal6hrGEiQaa13awMCOTBYDOyIiIiIiIqoMY+35Z4x1GWuQaKx1aYuuMg+uEks6x1ViiYiIiIiIqLJCQkIQGBiot/N03b4u61q0aBEWL15c4VVWi1aTXbhwIRYtWlRj6tIGXWUeDOxI5xjYEREREREREemHMQaJVWlf13VVFQM7MlmxsbFo0KABAODcuXOoU6eOgSsiIiIiIiIiIqq6hIQEdOrUCQAQExMDHx8frbRrppVWiMqQnJysuF/0IiYiIiIiIiIiqk6Sk5O1FtiJtdIKERERERERERERaQWHxJLO5ebmIjIyEgDg7u4OMzPT69hZvIsrh/VSTcHXPdVEfN1TTcPXPNVEfN1TTcTXve4UFhYqRhb6+/vDyspKK+2aXnJCJsfKygodO3Y0dBlaU6dOHS6cQTUOX/dUE/F1TzUNX/NUE/F1TzURX/fap61hsMVxSCwREREREREREZERYWBHRERERERERERkRBjYERERERERERERGREGdkREREREREREREaEgR0REREREREREZERYWBHRERERERERERkRBjYERERERERERERGRGRIAiCoYsgIiIiIiIiIiIiOfawIyIiIiIiIiIiMiIM7IiIiIiIiIiIiIwIAzsiIiIiIiIiIiIjwsCOiIiIiIiIiIjIiDCwIyIiIiIiIiIiMiIM7IiIiIiIiIiIiIwIAzsiIiIiIiIiIiIjYmboAqj6y83NRWRkJADA3d0dZmZ82RERERERERGR6SssLERycjIAwN/fH1ZWVlppl8kJ6VxkZCQ6depk6DKIiIiIiIiIiHTm3Llz6Nixo1ba4pBYIiIiIiIiIiIiI8IedqRz7u7uivvnzp1DnTp1DFgNEREREREREZF2JCQkKEYVFs8/qoqBHWmdn5+f0uOCggLF/Tp16sDLy0vfJRERERERERER6ZQ25+znkFgiIiIiIiIiIiIjwh52pHVRUVFKj+Pj4+Ht7W2gaoiIiIiIiIiITAt72BERERERERERERkRBnZEGpLJBGTnF0ImEwxdChERERERERFVYxwSS1SOqw/S8WvIHeyLTEROgRTW5hIM8PfAlMCGaOHpYOjyiIiIiIiIiKiaYWBHVIZdEffx/rZLKCzWqy6nQIod4fexO+IBlo5qjSFt6hqwQiIiIiIiIiKqbjgklkiNqw/SS4V1xRXKBLy/7RKuPkjXc2VEREREREREVJ2xhx1pnZ+fn9LjgoICA1VSNb+G3FEb1hUplAlYGxKDpaNa66kqIiIiIiIiIqru2MOOSAWZTMC+yESNjv03MoELURARERERERGR1rCHHWldVFSU0uP4+Hh4e3sbqJrKyS2UIqdAqtGxOQVS5BZKYWPBHyciIiIiIiIiqjomDEQqWJlJYG0u0Si0szaXwMpMooeqiIiIiIjImMlkMmRmZiI9PR35+fmQSjXrBEBEhiORSGBjYwMnJydYWVkZuhwFBnZEKojFIgzw98CO8PvlHuvv5QixWKSHqoiIiIiIyFhlZGTg/v37EAROl0NkSgoLC5GXl4fU1FQ4OjqiTp06EIkM/xmfgR2RGlMCG2J3xINyF56IiEvFlftP0LKuo54qIyIiIiIiY6IqrBOJRJBIOBKHyNgVFhYq7j958gQWFhZwc3MzYEVyDOyI1Gjh6YClo1rj/W2Xygzt8gsFvLHxPHa/Ewh3e0s9VkhERERERIYmk8mUwjo7Ozu4uLjAxsbGKHrpEFHZpFIp0tLSkJSUBABITk6Gg4MDLCwsDFoXV4klKsOQNnWx+51ADG/nBWtz+V/HrM0laOBmq3RcwpNcTNt8AXmFnKOCiIiIiKgmyczMVArrvLy8YGtry7COyERIJBK4urrC1dVVsS0zM9OAFcmxhx1pnZ+fn9LjgoICA1WiHUU97b4d0Qq5hVJYmUlQKBMw9tezOBf7WHHchbupmP/3FQQNb8X/nImIiIiIaoj09HTFfRcXF34WIDJRDg4OSElJAQBkZWXBxcXFoPWwhx2RhsRiEWwszCAWi2BhJsaKse1Q18la6Zht5+MRfDrWMAUSEREREZHe5efnA5DPWWdjY2PgaoiosiwtLRWBe9HPtSGxhx1pXVRUlNLj+Ph4eHt7G6ga3XG1s8Sa8R0wfMVp5BQ8Gwr7xd5r8K1lj0Bfw09SSUREREREuiWVyj8LSCQS9q4jMmFFC8UUFhZCJpMZuhz2sCOqihaeDvh+VGulbVKZgLd/D0fsoywDVUVEREREREREpoyBHVEVDfCvgxm9fZW2PckpwBsbzyMj17Tn7yMiIiIiIiIi/WNgR6QFM3v7op9fbaVt0UmZmLU1AjKZYKCqiIiIiIiIiMgUMbAj0gKxWITvR7VBMw97pe2HriVh6X83DFQVEREREREREZkiBnZEWmJraYY14zvA2cZcafsvR29j96UHBqqKiIiIiIiIiEwNAzsiLfJ2scHyMe1hJlZeHerDPy8hMv6JgaoiIiIiIiIieubYsWMQiUQQiUQ4duyYocshFRjYEWlZ10auWDjYT2lbboEMUzedR1JGroGqIiIiIiIiMn3Fg6ZFixYZuhwygJSUFCxcuBCtW7eGo6MjHBwc0Lp1ayxcuBApKSmGLk9rGNgR6cC4LvUxpnM9pW0JT3IxfXM48gqlBqqKiIiIiIiIqHyLFi1SBKPGJCwsDP7+/vjss89w+fJlpKenIyMjA5cvX8Znn32GVq1a4fz584YuUyvMDF0AVT9+fsq9ywoKCgxUiWEtfMkP0UmZOBfzWLHtwt1UzP/7CoKGtzK6Nz4iIiIiIiKqGXr27AlBEAxdRoXcv38fL730Eh4+fAgzMzPMnj0bgwYNAgD8888/+P777/HgwQMMGjQIFy5cQN26dQ1ccdWwhx2RpmQyID9L/q8GLMzEWDGmHeo6WStt33Y+HsGnY3VQIBEREREREVH19Mknn+Dhw4cAgN9//x1BQUHo3r07unfvjqCgIPz+++8AgIcPH2L+/PmGLFUrGNiR1kVFRSndjhw5YuiSqiYxEtg5Dfi6LvCVp/zfndPk28vhameJNeM7wNpcorT9i73XEBL9SFcVExERERERQSYTkJ1fCJnMtHpSEZX08OFDbN68GQDQr18/jBw5stQxI0eORL9+/QAAGzduVIR7poqBHVFZIv8EVvcELm0BCrLl2wqy5Y9X95TvL0cLTwd8P6q10japTMDbv4cj9lGW9msmIiIiIqIa7eqDdMzeFgG/hQfQYsEB+C08gNnbInD1QbqhS9O5kqufCoKAtWvXIjAwEK6urnBwcECnTp2wadMmpfPy8/OxcuVKdOnSBS4uLrC3t0dAQAC2bdum9lqxsbGKawUHBwMAtm/fjj59+qBWrVqwtrZGs2bNMG/ePKSmpqptZ+LEiRCJRPDx8SnzuQUHByuuFxsbW2q/j48PRCIRJk6cCAC4cOECJk6ciAYNGsDS0lJpWiZ1q8QWXWPx4sWKbUXHFb/Fxsbi8uXLisdBQUFl1g4AP/30k+L406dPl3t8cbt374ZUKp8P/vXXX1d7XNFzl0ql2L17d4WuYWwY2BGpkxgJ7HwTkBWq3i8rlO/XoKfdAP86eK+3r9K2JzkFmLLxPDJya+Ycf0REREREpH27Iu5j8M8h2BF+HzkF8oAjp0CKHeHy7bsi7hu4Qv0pKCjAkCFDMGXKFJw6dQqPHz9GRkYGwsLCMH78eLz33nsAgNTUVLzwwguYPn06zp49i9TUVGRmZuL06dMYPXo0vvrqK42uN3nyZIwaNQqHDx9GcnIycnNzcePGDQQFBcHPzw9Xr17V5dNVUhQ+btiwAbGxscjPz9f6NVq1aoWOHTsCANavX1/u8UXHNG3aFN26davQtU6ePKm436NHD7XHFd8XEhJSoWsYGy46QaRO6C/qw7oiskIgdDkwbEW5zb3X2xc3EjOwPypRse1WUiZm/hGB1eM7QCLmIhRERERERNWVTCYgNVv7oUlxNx9mYPa2S5CqGQJbKBMwe9sl1LK3RJPa9jqtxdnGAmIDf8aZP38+zp49izFjxuC1116Dh4cHbt68iUWLFuHGjRv48ccf8dJLL+Gnn37C6dOnMX36dAwbNgyurq6IiIjA/Pnz8eDBAyxYsABDhgwptcBiccuXL0dYWBg6deqEWbNmwdfXF0lJSdiwYQO2bt2KhIQE9OvXD1FRUXBwcNDp8w4LC8PmzZvh7e2NOXPmoH379pBKpUqhlzpDhw5Fhw4dsHz5cqxYIf+cGxlZupNK0YIOU6ZMQVhYGG7cuIHQ0FB07dpVZbuXLl3CxYsXAQCTJk2q8HO6du0aAMDR0REeHh5qj6tTpw4cHByQnp6uOMdUMbAjUkUmA67u0uzYq38DQ34BxGV3WBWLRVg6qjViV2ThemKGYvvh60lYevAGPuzfrAoFExERERGRMUvNzkf7Lw4ZugxIZQJeXXNW59e58GkfuNpZ6vw6ZTl79ix++OEHRU86AGjXrh169uyJpk2bIj09Ha+99hoePXqEHTt2YOjQoUrHdejQAW3btoVUKsXq1auxbNkytdcKCwvDwIEDsWvXLpiZPYtaBgwYAD8/PyxYsADx8fH4/PPP8e233+rk+Ra5evUq/P39ceLECTg5OSm2BwQElHuuk5MTnJycUKtWLcW2li1bqj3+1VdfxezZs5GVlYX169erDezWrVsHADAzM8P48eM1fCbPxMXFAQC8vLzKPdbb2xtRUVGKc0wVh8QSqVKY82zOuvIUZMuP14CtpRnWjO8AF1sLpe3Lj92uUV3TiYiIiIiIdK1z585KYV0RDw8PDBs2DACQnJyM0aNHK4V1RVq1aoXAwEAAKLd3mqWlJdasWaMU1hX55JNPFKHX2rVrkZeXV9GnUmG//PKLUlinK/b29hg9ejQAYOvWrcjOLv05Oj8/X7GC68CBA8vsIadORoa804udnV25x9ra2gIAMjMzK3wdY8LAjkgVM2vA3EazY81t5MdryNvFBsvHtINZie7hH/55GZHxTypSJREREREREanxyiuvqN3XqlUrxf2iwEmV1q3lCwjeuXOnzGv17dsXnp6eKveJxWJMmDABgHy+vPDw8DLbqipvb290795dp9cobsqUKQCA9PR07Nixo9T+PXv24NGjRwAqNxwWAHJzcwEAFhYW5RwpD08BICdHs441xoqBHZEqYjHQYohmx7YYWu5w2JK6NHTFosHK8x/kFcowddN5JGXkVqgtIiIiIiIiKq1JkyZq9xXvfabJcUU9vNQpWnxBnU6dOinuX7lypcxjq6p4GKkPXbt2Vczvp2rxiaJttWvXxosvvlipa1hZWQGARotnFPVgtLbWvGONMeIcdkTqdH0biNxe9sITIgnQ9a1KNT+2S31cS0jHb2fvKbYlPMnFtE0XsGVqF1iaSSrVLhERERERGR9nGwtc+LSPTq+xYFcU9kYmlHvcoFZ1sHiw+gUUtMHZpvyeULpmY6N+1JS4WKcLTY6TyWRlXqv4nG+q1K5dW3H/8ePHZR5bVc7OzjptX5UpU6Zg1qxZOHr0KGJjY+Hj4wMASEhIwP79+wEA48ePVzlkWBP29vbIzs7WaJhrVlYWAM2GzxozBnZE6nj4A8NWATvfVB/aOXoDtdVPwFmehS/54VZSJs7GPHvDDr+Xhk93XsE3I1pBJOLKsURERERE1YFYLNL5IgxvP98YB6ISUahmlVgAMBOL8FbPxgZfEKK6Ke+zmyCo/55om0Si/84f48aNw7x585CXl4cNGzZg4cKFAICNGzdCKpUCqPxwWEC+2MTDhw8RHx9f7rFFi014e3tX+nrGgENiicriPwKYegxo/ZrqOe3SYoG7pyrdvIWZGMvHtENdJ+WuutsvxGP9qdhKt0tERERERDVPC08HLB3VutR82UXMxCIsHdUaLTwd9FxZ9ffw4cMy9yclJSnuu7i4KO3TtBdfUc8xY+Tq6qpYuCM4OFgRUAYHBwOQD5tt1qxZpdtv0aIFAODJkydITExUe1xCQgLS09MBAM2bN6/09YwBAzvSOj8/P6Vbr169DF1S1Xj4A8NWAB/dB+bek/eqKy7khyo172pniV8ndICNhfJfQb7YexUno5Or1DYREREREdUsQ9rUxe53AjG8nReszeWfMazNJRjezgu73wnEkDZ1DVxh9RQWFqbx/qIVY4vY29sDANLS0sps48aNG5UrrhIqM9qraPGJ2NhYHDt2DKdPn8b169cBVK13HQDFar0AcPz4cbXHFd8XEBBQpWsaGgM7Ik2JxYC1I9BthvL2W/8BiVWbNLR5HQd8P6q10jaZALzz+0XEPDLev6IQEREREZHxKeppF7W4H65+1g9Ri/uxZ52OHTx4EAkJqucPlMlk2LBhAwD5/HLt2rVT2t+gQQMA8oUt1IVy+fn5+Ouvv7RYcdmKFnkAni3iUJ7evXujYcOGAOQLTRQtNmFra1vmSryaGDx4sKInoqqFLYoU9egTi8UYPHhwla5paAzsSOuioqKUbkeOHDF0SdrVdgxgrdyFGad/qnKz/VvWwcw+vkrbnuQU4I2N55GRW1Dl9omIiIiIqGYRi0WwsTCDWM0QWdKevLw8vPnmm4r52opbsmQJIiMjAch7mllaKs8f2KNHD8X9pUuXljpfEAS89957ePDggZarVq9OnTqK+7dv39boHJFIpOhJ99dff2Hr1q0AgJEjRyp6EVaWh4cHxowZAwA4cOAA/vzzz1LHbN++HQcOHAAgn1PPw8OjStc0NAZ2RBVlYQt0mqq87cqfQFpclZue0csXA1oqv6ncSsrEe39EQFrGxLGkOZlMQHZ+IWT8ehIRERERkZZ06NABe/bsQUBAALZu3Yrw8HDs378fr776Kj755BMA8oUT5s+fX+rctm3bokuXLgCANWvWYOLEiTh69CjCw8OxdetW9OrVCytXrkTXrl319ny6deumuD9r1iycOHEC0dHRuHXrFm7duoXCQtULM77++uuQSCTIzs5GRkYGgKoPhy3y5Zdfwt3dHQDw6quvYt68eQgJCUFISAjmzZuH1157DQDg7u6OL774QivXNCSuEktUGZ2mAqeWAYU58seyQuDMcqD/11VqViwW4buRrRHzKAvXEzMU249cT8J3B29gbv/KT9JZ0119kI5fQ+5gX2QicgqksDaXYIC/B6YENuTQACIiIiIiqpK3334bx48fR3BwMF555ZVS++vUqYMDBw7A0dFR5fnr169Hjx49kJSUhA0bNiiG0BaZPXs2/P39ERoaqpP6S2rcuDFGjRqFbdu24eDBgzh48KDS/piYGPj4+JQ6z9PTEwMGDMA///wDAGjSpAm6d++ulZq8vb2xZ88eDB06FImJiQgKCkJQUJDSMR4eHvj777/h5eWllWsaEnvYEVWGrSvQbpzytgsbgOzHVW/a0gxrxneAi62F0vYVx25jV8T9KrdfE+2KuI/BP4dgR/h95BTIu6jnFEixI1y+nV9XIiIiIiKqqvXr1+P3339Hz5494erqCktLSzRp0gQffvghoqKiFCudqtKsWTOEh4dj+vTpqF+/PiwsLODu7o7+/ftj7969KofK6trmzZvxzTffoFOnTnB0dFTMIVeeceOefVZ+/fXXtVpT586dERkZiU8//RQtW7aEnZ0d7Ozs4O/vj08//RRXrlxB586dtXpNQxEJRWvtEulIfHw8vL3lK6vGxcVVi6QbAJAaC/zYDhCKzVHQ61PguQ+00vzZOykY8+tZFBYbumlpJsb2aV3RystJK9eoCa4+SMfgn0OUvo4lmYlF2P1OIHvaEREREVGFRUdHo7CwEGZmZvD19S3/BKo2YmNjFQtGrF+/HhMnTjRsQUZi/vz5+OKLLyCRSBAXF6c0H56xq8zPs64yD/awI6osZx/Ab5jytjMrgYIcrTTfuaErFg/xU9qWVyjD1I0XkJSRq5VrVGeCIOBhei6W7LtWZlgHAIUyAWtDYvRUGRERERERUfUklUoVw3kHDBhgUmGdseEcdkRVETBDvuBEkexHQMTvQMfJWml+TOf6uJaQjs1n7im2JabnYtqmC9gytQsszSRauY6pkskEPMzIReyjbNxNyUJMShbuPspGbEoW7qZkK4a/auLfyAR8O6IVV9AiIiIiIiKqpK1btyIuTr4g47Rp0wxcjWljYEdUFXVaAw2fB+4cfbbt9E9A+4mAWDth2sKX/HArKRNn7jybHy/8Xho+2XkF345oBZHIOAMmmUxAbqEUVmaSKoVgMpmAxPRcxD7KQmzK02DukTyQu/s4C7kFMq3Um1MgRW6hFDYWfFskIiIiIiLSVNGqsefPn8esWbMAAP7+/hg4cKCBKzNt/GRKVFUB7ykHdqkxwLU9gN9QrTRvLhFj+Zj2GPxzCOJTnw23/fNCPJrXccDr3Xy0EoxpS2VWY5XKBCQ8yUGsondcFmKe9pq7+zgb+YXaCeXKYm0ugVUN77FIRERERERUUSXnejM3N8eKFSuMtnOJqWBgR1RVDXvKe9olXHq27dQPQIshgJbeoFxsLbBmfAcMX3Ea2fnPhnl+/s9VBO2/jvxCmUbBmK7tiriP97ddUpozrmg11t0RD/DJwOZoXNuuVG+5uMc5yJfqJpQTi4ByprADADjZmCNfKoOVlnpGEhERERER1STOzs5o164dPvvsM3Tr1s3Q5Zg8BnZEVSUSyXvZ/Tnp2bYHF4HYk0CD57R2meZ1HPD9qDaYtvmC0vai3mfFg7Glo1pjSJu6Wrs2IF/EIa9Qhpx8KbILpMjJlyK3QIrsfClyCqSIfpiBr/69pjYcK5QJWPzPVa3WVMTaXIL6rjbwcbWFj5stfFxtUN/VFj5uNnicmY8hv5wqd+GJhCe5mBQchjXjO8DWkm+NRERERERUNh8fHwiCBr0Dqjl+DXSDn0qJtKH5EMCpPpB299m2U8u0GtgBQP+WHhjbuT42n72r9phCmYDZ2y5BLAI8nazlgdrTUE3xb9F9FduznwZxOfnF7j+9GfJ92MZC8jSQk4dxDVxt5SGdmy1q2Vuq7W5dx9EaS0e1LtXzT5XTt1Mw5tezCH69I5xsLHTxNIiIiIiIiIjKxcCOSBskZkC3d4F/5zzbdusQkHgF8Gip1Utl5xeWe4xUJuDdLRFava4+2FmaKQI5n2I95uq72sDdTn0oV54hberCt5Y91obE4N/IBMXcep0auCAs5jGyi60mGxGXhldWn8HGyZ1Qy95KW0+NiIiIiIiISGMM7Ii0pc0Y4NjXQHbKs22nlgHD12jtEjKZgH1XErXWnqG09HRAA3e7YqGcPKRztbXQ2cSkLTwdsHRUa3w7opXSIh1X7j/B+HXn8DgrX3Hs9cQMjFwZis2TO8PbxUYn9RARERERERGpIzZ0AUTVhoUN0OlN5W1X/gLS7mntErmF8qGpxsJCIoajtTlq21tC05jN2lyC3e8E4qdX2+L9vk0xvL0X2td3gVsVetBVhFgsgo2FmWJF3ZZ1HbHtza6o46jcm+5uSjZGrgzFraQMnddEREREREREVBx72BFpU6c35CvEFmTLHwtSIHQ5MGCJVpq3MpPA2lyicWhnZyGBjaUZrC3k5yn+LX7fQnm7jYUEVk+3K+6bS2BjYQZrcwmsLMSwsTCDlZkYZpJnmf/sbRHYEX6/3JoG+tdRhGXGonEtO2yf1hVjfz2L2JRsxfbE9FyMXBmKjZM6w9/L0YAVEhERERERUU3CwI5Im2xcgHbjgbMrn20L3wD0+FC+r4rEYhEG+HtoFIwNb+eFpaNaV/mampoS2BC7Ix6UubCDmViEyYEN9FZTRXg522DbtK4Yv/Ycric+61WXml2AV9ecwdoJHdC5oasBKyQiIiIiIqKaQm+BXa9evfR1KQDAxIkTMX78eL1ekwgA0OUt4Nwaee86QN7bLuxXeWinBcYajBXNEaduNVYzsQhLR7VGC08HvdZVEbXsrbB1aldMDD6Hi/fSFNsz8woxft05rBzbHs83q2W4AomIiIiIiKhG0Ftgd+zYMX1dCiKRCD179tTb9UiZn5+f0uOCggIDVWIgzvWBli8DkdufbTu7Ur6KrLl1lZs35mBM3WqsA/3rYHJgA6MO64o42phj8+TOmLrpPE7deraASF6hDG9sPI//jW6Dl1p7GrBCIiIiIiIiqu70FtgtXLhQX5cCAPTo0UOv1yNS0m2GcmCXnQJE/AZ0nKKV5o05GFO3GqspsbU0w7qJHTFjy0UciHqo2F4oEzDjj4vIyC3Ea53rGbBCIiIiIiIiqs5EgiCoH1dHpAXx8fHw9vYGAMTFxcHLy8vAFenJppeB24efPXb2Ad65AEi0m5PLZILJBmPGrlAqw9y/IvFXeHypfR8NaIY3ezQyQFVEREREZEyio6NRWFgIMzMz+Pr6GrocIqqCyvw86yrzEJd/CBFVSsB7yo9TY4Fru7V+GbFYBBsLM4Z1OmAmEePbEa0wsZtPqX1f77uObw9cB//mQUREVLPIZAKy8wshK2M+YSIioqriKrFEutLgOaBOGyAh4tm2U8sAv2GAiOGaqRCLRVj4Ugs4WJvjx8PRSvt+OXob6TmFWDzYj4EpERFRNXf1QTp+DbmDfZGJiulIBvh7YEpgQ5OYp5eIiEwLe9gR6YpIBATOVN6WEAHEnDBENVQFIpEIs19ogk9fbF5q36Yzd/H+9ksokMoMUBkRERHpw66I+xj8cwh2hN9HToEUAJBTIMWOcPn2XRH3DVwhERFVNyYR2N24cQMnTpxATk6OoUshqpjmg+Vz1xV36gdDVEJaMKV7Q3wzvBVKdqbbefE+pm8OR+7TX+CJiIio+rj6IB3vb7uEQjVDYAtlAt7fdglXH6TruTIioso7duwYRCIRRCIRjh07ZuhySAWTCOy++OIL9O3bF8nJyYYuhahixBKg27vK224fARIuG6YeqrJRHb3x82vtYC5RTu0OXXuI19eHITOv0ECVERERkS6sOnFbbVhXpFAmYG1IjJ4qIqrZigdNixYtMnQ5pEdpaWn477//8OWXX2Lo0KHw9PRUvBZ69uxp6PK0ziTmsAsJCUH//v1Rr149lftv3ryJhQsXYsaMGejataueqyMqR5sxwNGvgexHz7ad/hEY/qvhaqIqGehfB7aWZnhz03nkFjwbCht6JwVjfj2LDa93hJONhQErJCIioooQBAGPMvNxOzlTfkvKwu3kTNxKysD9tFyN2vg74j5aeTmgfX0XNPOwh5nEJPpGEBGptGjRIixevBgAjGahvbZt2yI2NtbQZeiNSQR2CQkJGDVqlNr9TZo0QXh4OH744QcGdmR8zK2BztOAo18823ZlB9BrPuBc33B1UZX0aOKOTZM7Y9L6MGQU61V3KS4No1edwabJnVDLwcqAFRIREZk2mUxAbqEUVmYSrS3uVCCV4d7jbNxOysTt5KxiAV0m0nOr1kteKhOwcPdVAICNhQRtvJ3Qvr4z2tVzRtt6TvxjHhEZlZ49expNEKep4vXWrl0bHTt2xD///GPAinTLJAI7R0dHZGZmlnlMt27dcPToUT1VRFRBHScDId8DBdnyx4IUCP0FGPiNYeuiKuno44ItU7tgwrpzSMnKV2y/8TADI1aG4rcpneHtYmPAComIiEyPNlZjTc8tUA7lkuTB3N2U7HKHt2pDdr4Up2+n4PTtFMW2xrXs0L6eszzEq++Ehm52XGWeiKgC3nnnHTRo0AAdO3ZUjMAUiarv+6hJBHYdOnTA3r17sXTpUlhZqe6x4uHhgYcPH+q5MiIN2bgA7SYAZ1c82xa+EegxF7B1NVxdVGUt6zpi27SuGPvrWSQ8eTZk5t7jbIxYeRqbJ3eGb217A1ZIRERkOnZF3C+1wEPRaqy7Ix5g6ajWGNKmLgB5D7wHT3LkodzTQE5+y0JyRp6hnoJat5IycSspE1vPxwEAHK3N0a7e01549Z3R2ssJtpYm8fGMTIlMBhTmAGbWgJjDtMm0zZkzx9Al6JVJ/MS+8cYbuHfvHmbPnq32mNu3b6sN84iMQte3AZHk2ePCHCCM89hVB43c7bB9Wlc0cLNV2v4wPQ+jVoXicnyaYQojIiIyIZqsxjprawQmrDuHF388Cb+FBxAYdBQT1p3DZ/9cxW9n7+HMncdVCusszcRo5mGPF1vVwYzevlj2Shv8+EobmJXTE04sAno1rQUfV8171j/JKcDRG8n47uBNvLbmLPwXHcCLP57Egl1XsCviPuIeZ1douJpMJiA7vxAyPfQgrAhjravaS4wEdk4Dvq4LfOUp/3fnNPn2aq7k6qeCIGDt2rUIDAyEq6srHBwc0KlTJ2zatEnpvPz8fKxcuRJdunSBi4sL7O3tERAQgG3btqm9VmxsrOJawcHBAIDt27ejT58+qFWrFqytrdGsWTPMmzcPqampatuZOHEiRCIRfHx8ynxuwcHBiuupmsvNx8cHIpEIEydOBABcuHABEydORIMGDWBpaanUG03dKrFF1yiavw6A4rjit9jYWFy+fFnxOCgoqMzaAeCnn35SHH/69Olyj6/pTOJPOEOHDsWrr76KlStXIj4+Ht988w2aNWum2H/8+HH8/fff6NGjhwGrJCqHkzfgPwK4vPXZtnOr5KvIWnDYpKnzcrbBtje7Yvy6c7iWkK7YnppdgNfWnMWvEzqgS0P2piQiIlLn15A75Q5XlQnA8ZvJVb6Wm50FGrrboZG7HRq526JRLTs0dreDp5M1JCrCOQFQGyaaiUVKPf8eZeYh/G4qLtxLRfjdVFyOf4K8Qlmp81Q9t6gH6Yh6kI6NoXcBAO72lsWG0TqjZV0HWJpJlM7TxhBiXTDWumqEyD+BnW8CsmLzMhZkA5e2AJHbgWGr5J9LaoCCggIMGTIEe/bsUdoeFhaG8ePH4/z581i2bBlSU1MxdOhQnDhxQum406dP4/Tp07h16xY+/vjjcq83efJkrFu3TmnbjRs3EBQUhI0bN+LQoUNo0aJF1Z+YBlauXIl3330XhYVVm5+zLK1atULHjh0RFhaG9evXY+7cuWUev379egBA06ZN0a1bN53VVV2YRGAHABs3boS9vT1Wr16NvXv3onHjxvDx8UFSUhIiIyMhCAI++OADQ5dJVLZuM5QDu+wUIOI3oNMbhquJtMbd3hJ/vNEFrwefQ/i9NMX2zLxCTFh3DivGtkOvZrUNVyAREZGREAQBD57k4sr9J4i6/wSX49Nw7OYjrV5DIhahvouNPJirZfs0nJMHdBVdAGJIm7rwrWWPtSEx+DcyQRFADfSvg8mBDZQCKDc7S/T180BfPw8AQH6hDFcT0nHhrjzAu3A3FYnpmq08m5yRh/1RidgflQgAsJCI0bKuA9rXl4d4yRl5WLznqkZDiPWpIkObaxSZDMh5rNtrJF0rHdYp1VAo329XG6jVXLe1WLsYfBju/PnzcfbsWYwZMwavvfYaPDw8cPPmTSxatAg3btzAjz/+iJdeegk//fQTTp8+jenTp2PYsGFwdXVFREQE5s+fjwcPHmDBggUYMmQI/Pz81F5r+fLlCAsLQ6dOnTBr1iz4+voiKSkJGzZswNatW5GQkIB+/fohKioKDg66Da3DwsKwefNmeHt7Y86cOWjfvj2kUilOnjxZ7rlDhw5Fhw4dsHz5cqxYIZ/SKTKydM/MunXlP8NTpkxBWFgYbty4gdDQULULgV66dAkXL14EAEyaNKmyT61GMZnATiKRYOXKlRgzZgx++OEHHDp0CNHR0QCARo0a4auvvkLfvn0NXCVROTxaAo37ALcOPdt2+ieg/euAxGR+HKkMjjbm2DylM97cdAEno5998MgrlGHqxgs19xdUIiKqsQRBQNzjHFx58ARX7j9B5P0niHqQjsfFFmyqCntLMzSs9bSn3NNQrnEtW9RzsYWFmfbCghaeDlg6qjW+HdGqQqvXWpiJ0cbbCW28nTA5sAEA4EFaDi48De/C76Ui6kE6pBoMGc2XyhB+Lw3h99Kw5mRMmccWygTM3nYJDlbmaOJhD4lIBLEYkIhEMBOL5ffFIohFIkjEoqf7qz55uyZDm9/fdgm+texrXk+7nMfAt40MXYU8tNswSPfX+eA2YOum++uU4ezZs/jhhx/w3nvvKba1a9cOPXv2RNOmTZGeno7XXnsNjx49wo4dOzB06FCl4zp06IC2bdtCKpVi9erVWLZsmdprhYWFYeDAgdi1axfMzJ59thswYAD8/PywYMECxMfH4/PPP8e3336rk+db5OrVq/D398eJEyfg5OSk2B4QEFDuuU5OTnByckKtWrUU21q2bKn2+FdffRWzZ89GVlYW1q9frzawK+p5aGZmhvHjx2v4TGo2k0sIunfvju7duwMAnjx5AkEQlF6AREYvYKZyYJd2F7i2C2g53GAlkXbZWJjh1wkd8N6WCMVfxAH5L6gzt0YgI7cQY7vUN2CFREREuiGTCbj7OFseyj0N567cf4L0XO0NyTITizD/pRbwfTqM1d3eUq+rBIrFIthYVO1jlKeTNTydrPFSa08AQE6+FJfj0xTDaC/cTUVqdkGVa5XKBLweHKbx8SIRFMGd5GmQJxbJgz2JWAyJuNj+YscUD/7iU8tfibdQJmBtSAyWjmpd1adIVKbOnTsrhXVFPDw8MGzYMGzYsAHJycl45ZVXlMK6Iq1atUJgYCBOnDhRbu80S0tLrFmzRimsK/LJJ59g27ZtuHLlCtauXYsvvvgClpaWlX5emvjll1/0kpXY29tj9OjRWLduHbZu3YoffvgBNjbKUz7l5+fj999/BwAMHDgQHh4eOq+rOjC5wK44R0dHQ5dAVHE+gYBnO+BB+LNtIT8Afi/Lf0si3dLTSlmWZhL8/FpbzNsRiT8vxCu2CwLw6d9XkJFbiOk9jeAvrEREpFcymVCh3ln6UNmapDIBMY8yn4Zy6Yi8/wRXH6QjM0938yUB8uGpE7r66PQa+mZtIUHnhq7o/HS+W0EQEPMoC+H30hRDaW8mZaACa1BUiiAAhYIgn1BPx/6NTMC3I1oZzc8BVU+vvPKK2n2tWrVS3B89erTa41q3bo0TJ07gzp07ZV6rb9++8PT0VLlPLBZjwoQJ+OCDD5Camorw8HC1PdG0wdvbW9HRSR+mTJmCdevWIT09HTt27MDYsWOV9u/ZswePHslHH3E4rOZMJrALCwvDp59+itDQUMhkMtSrVw/PPfccxo0bp1G3TiKjIRIBAe8B2yc825Z4GbhzDGj0vMHKqvYSI4HQX4Cru+ST7prbAC2GyFfv9fDXySXNJGJ8M7wV7K3MsP5UrNK+oP3XkZ5bgA/7NdVrrwAiIjIMY5yAvyI1FUpluJWcich4+XDWK/ef4GpCOrLzpVWqwcHKDC3rOsK/riOcbMzx3cGbZQ4NNROLFMNKqzORSISG7nZo6G6HEe29AADpuQWIeBrghcU+xunbKQausmpyCqQIvfMI3Rq58Xch0pkmTZqo3Ve895kmx2VkZJR5rY4dO5a5v1OnTor7V65c0WlgVzyM1IeuXbvCz88PUVFRWL9+fanArmixidq1a+PFF1/Ua22mzCQCu3PnzqFHjx7Iy8tD3bp14eLigsTERKxevRpr1qzBqFGjEBwcrPMupURa0/wlwKUh8LjYX2lOLWNgpysGXClLLBZhwaAWcLQ2xw+HopX2rTh2G+k5Bfh8iHxOCGPrcUFERNphjBPwl1fTrBeawNXW4um8c+m4lpCu0UqnZXG2MVeEc0X/ejlbK4U1nk7W5a7GWuPmPXvKwcoczzVxx3NN3CGTCfBbeAA5BVULTA1tzK/n0LKuAyZ09cFLrT1hZS4p/yRTZu0in9dNl/6dA0TtLP84v5eBgbqdRw3WLrptXwMlh2YWJy422kaT42Syst8Di8/5pkrt2s8Wn3v8WLeLjzg7O+u0fVWmTJmCWbNm4ejRo4iNjYWPjw8AICEhAfv37wcAjB8/XuWQYVLNJL5S8+fPh0gkwn///YfevXsrtkdFRSEoKAibN29Gamqq4kVA6t2/fx/bt2/Hv//+i+vXryMxMREuLi4ICAjAhx9+iM6dOxu6xJpBLAG6vQv8M+vZtjtHgYRLQB3O5aFViZGarZTl3lRnPe1EIhFm9mkCeytzfP7PVaV9v529hxM3k/EoM99oelwQEZH2aDIB/+ytl5CalQ9vFxvFkMfiRwtPNwqKx4o9So9L7hfU7L+fmo1vD9xQO+qxUCbg2wM3NHl6arnZWcK/rgNaPg3nWtZ1hKejVbk9qSqyGmtNJhaLMMDfAzvC75d77NA2nvh8aEvIZIBUECCVCZA9/VdxEwTInv4rlQnFjpVBKoPyOYIAqVTFOYIAqQz4/exdhN9L0/i5XLmfjg/+vIyv913Hq528MbZLfdRxtK7CV8eIicW6X4Sh+/vAtT3qf/cFALEZ0H22wReEqG7Ke38TdD2mvRiJRP/h97hx4zBv3jzk5eVhw4YNWLhwIQBg48aNkErlf1zgcNiKMYnALjQ0FK+88opSWAcAfn5+2LhxI9q2bYv3338fv/76K6ZMmWKgKk3DTz/9hKCgIDRq1AgvvPACatWqhejoaPz999/4+++/sWXLFowaNcrQZdYMrV8Fjn4FZCU/23ZqGTBineFqqo5Cfyn7FxZAvj90OTBshU5LmRzYAPZWZpj312WlD0lxqTmK+4bucUFERFWTnluA20mZuJ2chdvJmfj74v1yJ+CXCgIW7bla5jHGzMPB6mko56DoPVfbwarS7VV2NdaaZkpgQ+yOeFDm68tMLMLU5xrB3spcb3W1qOOAwT+HlPu6L+lxVj5+OXobK4/fQT+/2pjQ1QedGrhwuGxFefjLR4+o+4O12Ey+X0d/qK7JHj58WOb+pKQkxX0XF+Xeh5r24svKyqpkdbrn6uqKoUOHYuvWrQgODsaCBQsgEokQHBwMQD5stlmzZoYt0sSYRGAHlN29dNasWfjjjz+wfv16Bnbl6NSpE06cOFFqAsqTJ0+id+/emD59OoYMGcLhxfpgbg10fhM48sWzbVE7gd4LAGcfg5VVrWSnAFf+0uzYq38DQ37R6UIUADCqgzfsLc3w7pZwlDWyqFAm4P1tl+Bby569CYiIjIxMJuDBkxx5KJeUidvJRbcsJGfkGbo8narrZK0I5vzqOqKlpyPc7XXze6M2VmOtzoqCTWMbQqxJXQP96yD8Xirii/3RsohUJuDfyET8G5mI5nUcMKFrfQxpUxfWFtV8uKw2+Y+Qjx4JXS7/HVcxf/NQoOtbDOt0JCys7BWZi+9v2bKl0j57e3sAQFpaWplt3LhRtd7PFVGZsHzKlCnYunUrYmNjcezYMVhaWuL69esA2LuuMkzif8BmzZrh7NmzZR7Ts2dPrF69Wk8Vma6XX35Z5fbu3bvj+eefx8GDBxEZGYkOHTroubIaquMU4OT/gIKnfykRZPIeYbqeT6I6y0kFru8Fov4Gbh8BBA3ndinIlq8ea2Gr0/IAYIB/HXQ+64pTt8qeLLpQJmBtSAyWjuIwaSKiitLGaqy5BVLEPJL3lLudlKUI5u4kZ5n83GGa6udXG228ndGyrgNaejrC2dbC0CVRMcY6hFiTuqQyAYevPcSG0Fi1vxNdS0jHvB2RWLL/OkZ39Ma4LvXh5ax+rjEqxsNfPnpkyC/y33HNrHX+h+ma7uDBg0hISECdOnVK7ZPJZNiwYQMA+fxy7dq1U9rfoIF8MZ2MjAzcuHEDTZs2LdVGfn4+/vpLw84IWmBl9ayndF5enkadenr37o2GDRvizp07WL9+veIcW1vbMlfiJdVMIrAbN24cZs6cic2bN5dabaRIWloa8vPzdVpHUlISzp07h3PnziEsLAxhYWFISZH/5zJhwgRFV09N3Lt3Dz/++CP27t2Le/fuwdLSEo0bN8aoUaPw1ltvlTnppa6Ym8u7ynMSSD2ydgbaTwTO/PJsW/gmoMdczilRETmpwPV/5T0U7xwDZAUVb8PcRv6LjB7IZALC76ZpdOy/kQn4dkQrDgUiItJQRVdjFQQBKVn5SsNYi27xqTnQ15RDIgCeTlaK93sRnv4rUj5Gvk2k9LjoTvH/KUoeo2hHAKKTMqHJ07I2l2DFmPb8P8jIGesQ4vLqkohF6Ovngb5+Hoh+mIENobHYEX5f5crDadkFWHX8DtacuIM+zWtjYjcfdG3kyuGymhCL9fIHaZKHWm+++SZ27txZag65JUuWIDIyEoC8p1nJ8KtHjx6K+0uXLi3VGUkQBLz33nt48OCBjqovrXjwePv2bbRo0aLcc0QiESZNmoRPP/0Uf/31l+LrMHLkSEUvQtKcSSQzb731Fn777TdMnDgRFy5cwOzZs+Ht7a3YHxUVha1bt6Jt27Y6raP4qi5VsXfvXowZMwZPnjxRbMvOzlaEgL/++iv+/fdfNGzYUCvX08S9e/dw6NAheHh4wN+fXaT1qst04NyqZ3NMFOYA59YAz39k2LqMXU4acONpSHf7aOVCuuK8O+vtr465hVKNe2bkFEhx8Goi+vl58JdSIqJylLfy6dz+zeDjZvu0x9yzYaxPcqr4f0gJErEI9V1s0NDdDvceZ+Hmw8xyz3m5nZfeelTP3hah0WIFA/3rGEXwQ5ox1iHEmtTlW9seXwz1xwf9muHPC/HYGBqLuynZpY6TCcDBqw9x8OpDNKlth/FdffByu7pG+byp5unQoQP27NmDgIAAzJo1C76+vkhKSsKGDRvwxx9/AAC8vLwwf/78Uue2bdsWXbp0wZkzZ7BmzRrk5+djwoQJcHR0RHR0NFauXIljx46ha9euCA0N1cvz6datm+L+rFmz8Mknn6BOnTqKzyQ+Pj4qO/u8/vrrWLhwIbKzn/0Ma2s4bEREBCIiIlTuS0xMLNWJasSIEbCzs9PKtQ3BJN7ZJBIJDhw4gCFDhmDZsmX45Zdf0LBhQ9SrVw+pqam4dOkSZDIZPv30U73V5O3tjebNm+PgwYMVOu/SpUsYNWoUsrOzYWdnh48++gjPP/88cnJy8Mcff2DNmjW4ceMGXnzxRYSFhenlxVVQUIBx48YhLy8P33zzjUFWlKnRnLyBliOAy38823ZuNRAwg38NK0kR0v0tH+6qSUgnNn8ahpbTl+BeKHA3FKjfVQuFls3KTAJrc4nGod20zeHo6OOMOX2bonNDVx1XR0RkmjRZjfXLf69p9Zr2lmZoWMsOjdxt0cjdDo3c7dC4li3qudjCwkysqKu8CfjNxCJMDmyg1drKouliBfqsiQgAHK3NMTmwAV7v5oNjN5MQfPouTtxMVnnszYeZ+PTvKwjafx2jOnhjfNf6qO/K353JcN5++20cP34cwcHBeOWVV0rtr1OnDg4cOABHR0eV569fvx49evRQhHxFQ2iLzJ49G/7+/noL7IpGAG7btg0HDx4slX3ExMTAx8en1Hmenp4YMGAA/vnnHwBAkyZNSs2hX1l///03Fi9erHLfjRs38Prrrytt69mzJwM7fXB0dMSxY8ewZcsWrFu3DqdPn8bNmzcBAP7+/vj888/Rv39/ndawYMECdOzYER07dkTt2rURGxurGGuuqZkzZyI7OxtmZmY4ePAgunZ9Fg706tULvr6++PDDD3H9+nV8//33WLBgQak23NzcFENxNXH06FH07NlT5T6ZTIZJkybhxIkTeOONNzBu3LgKPR/SkoAZyoFdzmPg4m9A56mGq8lY5KQBN/Y97UmnYUgnsQR8XwD8hgFN+gE3D6hfKatIYS7w+yhgwm7AU7e9dcViEQb4e2jUu6FIWGwqRq8+g+eauOODvk3h76X6P3oioprqf4duVHhVSk3VdbJGw6JQ7mlA19jdDu72luX2fjbGhQGMsSai4sRiEXo1q41ezWrjdnImNoXexZ8X4pGZV/p3uYzcQqwNicG6UzHo1bQWJnTzQWBjN/YOJYNYv349+vbti9WrVyMyMhKZmZmoX78+hg4dinnz5sHZ2Vntuc2aNUN4eDi+/PJL/Pvvv0hISICjoyPat2+Pd999FwMHDqzQNFzasHnzZnTo0AF//vknbty4gYyMjHJXsgXk05oVBXYlQzTSnEgQ9DUzh+bOnz8Pf3//Mic1lMlkePz4MaysrAyWmBYP7DSZwy4sLAydOnUCALz55ptYuXJlqWNkMhlatmyJa9euwdnZGQ8fPlTMLVfk3XffRUZGhsZ1zps3T+XyyYIgYMqUKVi3bh3Gjh2LDRs2KJaT1qb4+HjFEOa4uDh4eXlp/RrVwm8jgehif7Vwqge8exGQmEyurj25T5RDOqkG81NKLIHGfZ6FdFYlPmQkRpZeKcvWDUi7p3yctTMw8V+gdvlzNFSFJj0uyjKgpQdmv9AEvrU5FwQR1UyCIOBy/BMciErEvisJiHlUevhcRViYidHQzfZpIPes11xDd1utDLe7+iDd6BYGMMaaiNTJzCvEXxfisSE0FneSs8o8tqG7LSZ09cHw9l6ws9T979LR0dEoLCyEmZkZfH19dX49Mh7FM4H169dj4sSJhi3ISMyfPx9ffPEFJBIJ4uLiVC7EYawq8/Osq8zDKAM7sVgMMzMzNGvWDG3btlXc2rRpo7b7qCFUNLD75JNP8NVXXwEAzpw5g86dO6s8bsmSJfjoI/n8ZQcPHsQLL7ygvaKfkslkmDJlCtavX49XX30VmzZt0tlQWAZ2GooNAYJfVN42fK18WfaaQBHS/Q3cPqxhSGcBNH4B8BsKNOlfOqRTRSZ7tlKWIAW2jgNu7lM+xq428Po+wLVRZZ6JxlTNtVTETCzC6I7eOHYjGffTclSeLxYBw9p6YWYfX3i7cMU0Iqr+CqUynIt9jINRD3EgKhEJT3Ir1U77es5o4mGn6DHX2N0Onk7WkOihR442Vq/VNmOsiUgdmUxAyK1H2HA6FkduJJW5MIydpRlGtPfC+K710dBduZOHNl/3DOxqLgZ2pUmlUjRo0ABxcXEYNGgQ9uzZY+iSKsSYAjuj7LrzwQcfKCYT3LRpEzZt2qQ0sWHxEK9t27Ymk9aePHkSgHxJ4/bt26s9rvgKMSEhIVoP7IqHdaNHj9ZpWEcVUD8AqNsBuH/+2bZTPwAthysvEWcqigdj6npu5qYX60lXkZCuqCedhiFdcUorZYmBkcHyobAxx58dk/kQ2DAYmLRP3tNRR4a0qQvfWvZl9m7IK5Ria1gcfjpyC8kZeUrnywTgr/B47L50H690rId3ezVGLQcrNVcjIjJNuQVSnLr1CPuvJOLQtYdIza7aAhHW5hJsn9bVYMGUMS4MYIw1EakjFovwXBN3PNfEHXdTsrAp9C62no9DRm7p4bKZeYUIPh2L4NOxeK6JOyZ2q4/a9lZYeypG45Wkiahitm7diri4OADAtGnTDFyNaTPK/5mDgoIU9+/fv4+LFy8q3Xbs2IEdO3YoQjx3d3e0bdsW7dq1w5dffmmosst17Zp8ouPGjRurXE2lSPHhq0XnaItMJsPkyZMRHByMkSNHYvPmzVUO6+Lj48vcn5CQUKX2awyRCAh4D9hWbB7BxEjgzlGgUS/D1VVRiZFA6C/A1V3Php62GAJ0fRvw8JeHdDf3y0O6W4cBaV75bUosgEa95SFd0/6AlRZ72ppbAa9uATa9DMSdebY9PR7YOETe087eQ3vXK6FoHqFvR7RS+VdeSzMJxnf1wcj23tgQGosVx26XWs2wQCpg05m72H4hDhO6+mBaj0ZwtrXQWc1ERLqWkVuAozeScSAqEceuJyErX7NFejTBlU+Jqo/6rrb4dFALzHqhCXZevI8Np2MRnaR6VeYTN5NVLmBRfCXppaNaY0iburoum6jauXXrFgoLC3H+/HnMmjULgHytgYEDBxq4MtNmlIFdcXXr1kXdunUxaNAgxba0tLRSId6hQ4dw8OBBow3scnNz8ejRIwAot3uks7MzbG1tkZWVpUimteWzzz5DcHAw7Ozs0KRJE3zxxReljhk6dCjatGmjcZtFXT9JC5q9CLg0Ah7ffrYt5AfTCewi/yy9uENBNnBpC3B5mzywS7pWgZCu19OQboB2Q7qSLGyBMduADS8BCZeebX98B9g4FJi4F7DV7eqs5fVusLaQYFqPRnitcz38euIO1obElPoAm1sgw6oTd/D72XuY0r0hJndvoJd5W4iItOFRZh4OXZUPdT11KwX50vIntQaABm626OfngSa17fDhn5e58ilRDWRraYaxXepjTOd6CL2dguDTsTh07SEqMlVwoUzA+9suwbeWPXvaEVVQyaGj5ubmWLFiRbkLM1HZTPKTnJOTE55//nk8//zzim25ubm4fPmyAasqW/FFIjRZJKMosMvMVP0XosqKjY0FAGRmZqoNN318fCoU2JEWiSVAt3eBf2Y+2xZzHHhwUecrl1ZZYmTZK7EKUiAhouw2xOZA495Ai6HykM7aSctFlsHKERi7Uz6PYHKxnq3J14DNw4AJe3QbGmrIwcocs/s2xYRuPlhx7DY2nrmL/ELlD7UZeYX436Gb2BAai+k9GmFc1/qwMuewdyJTVx3nGYtPzcbBqIfYH5WI87GPNf5w7efpgH5+Hujf0gO+tewUHwgkYhFXPiWqwUQiEbo1dkO3xm6Ie5yNzWfvYmtYHNI0HEpfKBOwNiQGS0e11nGlRNWTs7Mz2rVrh88++wzdunUzdDkmzygXnTAVFVl0Ii4uDvXqyefCGjduHDZu3Fhm2/Xq1UNcXBwaNWqEW7duaa1mXdBkSGzR6rhcdEIDBbnAD/5AVtKzbX4vAyPXG64mTeycJu9JV1Fic+WedPoM6VTJSATWD5D3rivOuwswbkex+e+MQ8KTHPx4+Ba2nY+DVM0n3doOlpjR2xejOnjDXKL9laCJSLeuPkjHryF3qsV8S4Ig4FZSJg5EJWJ/VCKu3E/X6DyRCOhY3wV9/Wqjn59HmQvtcOVTIiouJ1+KvyPi8fHOK2UuUFHEXCLCuU/6wNlG8+lFuOgEUfXBRSdqICurZxPB5+eXP7F+Xp58yKC1tbXOatIWBnBaZm4FdJkGHP7s2barfwOP5wMuDQ1WVplkMvmcdZoSmQGNi0K6gYYP6Yqz9wDG75aHdk+KDUmPOwP88Rrw6lb598hI1HG0xtcv++PN5xrif4duYvelB6V+GX2YnodPdl7B6hN3MKtPE7zU2lMvKyESUdWpWk3a2OZbKq/nnyAIuBT/BAeiEnEgKhF3krM0atdcIkK3Rm7o39IDfZrXhru9pUbnlTc3KBHVLNYWEgxpUxcf7bii0fEFUgHdvj6MEe29MaFbfTSuZa/jComIVDO6wC47Oxvnz58v8xhra2t07NhRTxVph739szd6TYa5ZmXJf5nVZPgsVUMdJgEnvwfyn75WBJl8IYcXlxq2LlVkUiB8k3yuOk3NvAw4GvGEvk7ewPhd8tAu8+Gz7XeOAdsnAqM3ARJzQ1Wnko+bLZa90hbTezbC0oM38d/Vh6WOuZuSjZlbI7Di2G3M7tsEfVvU5rwSREbs6oN0tcM7AcPPt1RWz78mte1wLvYxDlxJxMGrD5HwJFejNm0sJOjZ1B39/DzwfLNacLCq/HstVz4loiJWZhJYm0uQU6DZAjY5BTJsOnMXm87cRXdfN0zs5oPnm9Zi+E9EeqX332JCQ0Px+eefAwAmT56M4cOHK+2PiYlBz549y/0QeerUKXTp0kVndWqblZUV3Nzc8OjRo3KHkKampioCO1Nc0MHPz0/pcUGBZnNGUDHWzkD7iUDoz8+2XdwM9PwIsHUzWFlKBAG4sU/eEzC5AqsZm9sA9nV0V5e2uDYCxv0NBA8EclKfbb+5D9gxFRj+q3zOQSPTzMMBa8Z3wMV7qfju4A2cupVS6pgbDzPw5qYLaO3thA/6NkVAY1cGd1pSHecYI8P5NeROmQsoAPLQ7sO/LmFke29YmYthZS55djMTw9qi6L4EVhZixX1ziahKP/dl9fzbGX4fNhYSjVd2dbIxR5/m8qGu3X3dOOcmEWmdWCzCAH8P7Ai/X+FzT0Y/wsnoR6jvaoPxXX0wsoNXlf6YQESkKb0Hdh9//DGOHz8OPz8/vPTSS2qPK29qvblz5+L48ePaLk+nmjdvjpMnTyqWPDYzU/3lv379utI5VEN1eQs4u/LZIg6FucC51cDzHxu2LgCIPQUcWgTEn6v4uS2GAmITmUetdgtg3E5gw2Agr9g8S1E75MHj4J+M9rm0reeM36Z0welbj/DtwRu4eC+t1DGX4tIwdu1ZdG3oijn9mqJ9fWf9F1pNVKc5xshwBEFAzKMsXLyXhvB7j7HzomYfLK/cT8eV+1EVupZELIKVWfGA79l966ePLYvdtzKTKMK/tOx8rA2JUbtAhACUG9Z5OFih39P56Do1cIEZ59ckIh2bEtgQuyMelPmHEBHkc2aqOuRuSjY+/+cqlh68gRHtvTC+qw8a1+JoKCLSHb0GdtHR0Th+/DhEIhG+/vprWFion8hTJBJhwYIFpbanpqbixx9/REhICK5fv45mzZrpsmStCgwMxMmTJ5GVlYULFy6gc+fOKo8rHkQGBAToqzytiYpS/tBQfAJGqgDHuoD/KODS78+2nVsNBLxnuIUPEi7Le9Td+q9y54vNgK5vabcmXfNsC7y2Ddj8svKw34jN8u/DgCD5b3ZGqltjN+xo5IrD15Lw3cEbuJ6YUeqY0DspGL7iNHo3q4X3+zZVCpjYY6x8pjDHGBmnJ9kFiIhPw8V7qbh4Lw0RcWl4kqOfXulSmYCsfKnGveC0oYGbrWJl11Z1HfmeQkR6VTS/ZXkrSXf0ccHmM3ex5dw9pKpYXTY7X4qNoXexMfQunmvijte7+cCLHYOJSAf0Gtjt2LEDANC0aVMMGjSo3OMXLlyocvuZM2cQFhaG7du3Y/78+VqtUZeGDh2Kr7/+GgCwfv16lYGdTCZTrCDr5OSE559/Xq81kpEJmKEc2OWkyueL6zJNv3Wk3AaOfgVc+VP9MbVbAo16A2d+edYrsDixGTBsFeDhr7s6daV+V+CV34HfRwHSYovGnFslD+36qH6vMhYikQh9WtRGr2a1sOfyA/zvv5uITSk95+Dh60k4fD0JL7X2xOBWdbAvKpE9xsph7HOMkfEolMpw42EGLt5Lk9/iUjVefMGUtahjjwEt66BfSw/41rLj8HsiMqghberCt5Z9uStJf9i/GWb09sXuSw+w/lQsriWoXtH6xM1knLiZjE+fc4V/HRs4WAFSqRQSCRM8IlMkk8kglcr/mGkMP8d6DexCQ0MhEonw4osvVqmdYcOG4dy5czh3rhLD8QyoU6dO6N69O06ePIm1a9diwoQJ6Nq1q9IxS5cuxbVr8vnA3nvvPZibc36EGq1Wc6BJf+Dm/mfbQn8GOk7Wz6IHGYnA8W+A8A2qQzgAcPYBnv8UaDlcPjy01UggdLl8ZduCbPnQ0RZD5T3rTDGsK9LoeWDURmDrWOWvRcj38tDuuTmGq01DYrEIQ9rUxUD/OvjrQjyWHY5WORH8nksPsOfSA6Vt7DFWmlQm4Kcj0RrNMbY2JAZLR7XWU2VkDJLScxH+NJiLuJeGy/FPNJ7svKJqO1iigZstcgpkyCuQIrdAipwCKXILZMgtkCKvUKaT62riz+nduPADERkVTVeStjKXYFQHb4xs74Ww2FQEn47BgaiHkKr4fz/yYS6cLUVo4CZGzIMkeHnU4nycRCYoMzNTMT2btbW1gavRc2AXGRkJoOrDPFu3ln/oKTn0UtdCQkJw69YtxeNHjx4p7t+6dQvBwcFKx0+cOLFUG8uWLUNAQABycnLQt29ffPzxx3j++eeRk5ODP/74A6tXrwYANGnSBO+//75OngeZmID3lAO7J3FA1N/yYExXctKAU8uAMyuAwhzVx9jWAnp8CLSbAJgVG97u4Q8MWwEM+UV+rpm10c7zVmFNBwAvrwb+nAz5LE1PHfkcsLDTf8/HSjKXiPFKp3oY2rYufjt7D8uP3kJKVn75J+JZj7HGtezg5+mo40rV09dQ3Sc5BYh7nI24x9m49zgbcanZuPc4B/FPtxWUE9YV2XkxHiIIaOJhD9/a9mhS2x6ejlY1vreRsQ65rmhduQVSRD148rTnXBoi7qXhfpqa904NuNtbol09J3g6WmNj6F1Iy5jX10wswvqJncrswSmTCcgrlBUL8uRhXk6BVB7wFT59nP/sfq7iOOXwLye/EEdvJKudv64466cLXBARGSNNV5IWiUTo1MAFnRq44EFajsrhsmfjc9HNy0o+rcHjFFzLyYO9vSPcHW3hYG1e4/+/JzJ2MpkMmZmZSExMVGyzt7c3YEVyIqG81R20yNHREZmZmQgJCSnVs6zI1atX0apVK4jFYuTnq/4AGR4ejg4dOsDBwQFpaWk6rFjZxIkTsWHDBo2PV/el3bNnD8aOHYv0dNVdq5s0aYK9e/eicePGlarT0FStEhsdHQ0AiIuLg5eXlyHKMl2CAKx9AYgPe7attj8w7aT2504ryJHPk3fyeyA3TfUxlg7yELHLdMPNpWdo4ZuA3e+U3j74J6DdeP3XU0VZeYVYfyoGq07cQUaump6UJYhEgKejNWo5WKK2vRVqO1iiloMVatlboraD1dObJRy1/Euqthd3yC+U4UFaTrEwLvtpQCffpsv5xGwtJGhc2x6+tezQpLYdfJ/er+tkXe1/sTfWRTo0qUsQBNx7nK2Yc+7ivVRcTUhHgbRyv05ZmInhX9cRbbyd0LaeE9rWc1YKc1XNkVikaL4lffd4nb0tQqOVFoe382LPUiKqlnILpNgd8QDrTz8bLjuqhR3a17GEi60FnG3MIRb9v737Dm+y3P84/k6a7hYKlE3ZVKAgG5kCDpSjMkTR40AQ8biPW0GPuDc/9aCiHBD1eFzgQEQFF1OQVTbIKpsCZbSlu01+fzx0BJI2bTPbz+u6ejV9cufJNyWk7Sf3fX9NYDJhNpsJtpgJDjJTtX+6iwSugoICu/wmPDycZs2aufw7ecl9+92ZeXg1sAsNDSU/P5/Vq1fTpUuXCp8nMTGRbt26ERwcTE5OjhsrLJ27AjuAvXv38tZbbzFv3jwOHDhASEgIrVu35tprr+Wee+4hIiLCHSX7hAI7D9g611iKWdJNX0HrS9xz/oJ8o4nCwpch/bDjMZYw6Hk79HsAImq7534D2Z/vw4+PnnXQBCOnQ8drfFJSZZ3IyKHnC7+WucSzPEIs5hIhXij1osNKhHzFQV+NMEuZPxArElzYbDZSTuey/+SZWXLHSwZzWRxOzXJpppA3eSLI86eZbP4YQJVVV5DJxOUd6pOdZyVx/ylOuDgj1ZFmdSKMcC7OCOfaNaxBiKX0WchbDqWVud+SN205lMbQt5eW+lphMZv47p5+2rtRRKo0m83GyqQTfPjHHuZvTmZQ83AGt4zAZDJmGYdYzEZwB5hNEBFiISo0SJ2xRfxYeHg4TZs2xVyOVWJVIrBr0KABx44dY/78+VxyScWDhl9++YXBgwdTr149uymL4p889eStVqxWeKcHHC9ekk2LC+GWuZU/79Y58Nvz9ucuyRQEXW6CAY8ZnWul2JLJRtfckkxBcN1/oW3l9ur0hczcfNo/Nd8n9x1qMdsFePULg70z4V56Tj53/29tqQFBkMnEbf1bkFtgtZsl56l9w7ytIkGev81k82TQU2C1kVdgJd9qI7/ASl7Bma8LbORZz3wusBaNKbquwEpSSgYv/rDV7eFtVKiFznExRbPnOsfFUCcqtMLnU/AqIuK/Dp7K4r/L9zJ/4wEaRpiIrxNMnfAgwiznvl7Xjgyhca1w6kSGODiT8TMtyI+2ihCp6oKCgggPDyc6OprIyMhyv0nuqczDq3vYFQZ2iYmJlQrsNmzYUHQ+kWrBbIY+98Hc+4qPJS2Gg2uhcdfyn89mg92/wy/PwOF1zse1Hw4XPQmxbcp/H9VB/4cgN8MI7grZCmDWGLjhC2h1kc9Kq4gwSxDhwUE+Cbhy8q3sO7NPXEUV2Gy8v3i3G6symEzQsEYYcbUjaFo7wu5zdl4Bt3ywsswg8dZ+zUnPzmf7kXR2HDlNeo5rS49LysgtYP3+U6zff8rueGRIEK3rRZ3ZGy+KNvWiaVM/ijV7TvLQLPtAxV3NQ/ILrGTnFzc0yM4rICfPSna+/eec/AK7Md8mHnKpScfoD/6keZ1I8orCN0fB25nrzozx9UxJkwnOqx9tt7S1Vd0ot/7B5ep+S97gaqdFEZHqonFMOI8Pacv9l7RhzrqDzFy2h23Jp0q9TYvYSG7p3YyR3Zqw/0SWX73JJiK+59UZdnfddRfvvfce/fr1Y/HixRU+z8CBA1myZAm33347U6dOdWOF4gmaYecmednw1vlw+kjxsfbDYZTry7QBOLAGfn3aCPycaTkILn6qYmFgdWOzwU+Pw5/v2R+3hMPNX0OzPr6pq4Jc3ZtqUNt6XN8jjqPpORxNy+ZIWjZH0nI4kpbNsfQcl5tY+IsaYRaa1okgrlZxGFcYzDWKCSO0lI3zyzvTyGazcSQtxwjvjp5mx5H0SgV5FWU2wbBOjYgKC7YP3hx8NhoTFH921CGvuqkTGVIUzHWJi6Fjk5pEh1XPzu7+NPNPRMRf2Gw2/kw6wYfL9rBgS3KpbyyFWszkFlhx9Je5Zi2L+L8qsSR2zpw5jBgxApPJxIIFC7j44ovLfY5FixYxaNAgTCYTX3/9NcOGDfNApeJOCuzcaOkb8MvTxV+bzHDPaqjTquzbHvvL6Ga6tZRltI26wiWToOXAylZavVitxuzHxP/aHw+Jhlu+C6jg011LFnPzrRw7bQR4R9OyOZqeYxfqHU3L4Uh6NqcyPdfUoaTgIBONY8LPmSXXtLYR0tWMqFzQ4o49xhwFeTuOnmb7kXSXm4GI5716TUd6t4ylSa2q3xxERETc48DJTD5ZsY/PV+2r0O8+2hdUxL9VicDOZrORkJDAtm3bqFu3LkuWLCE+Pt7l2+/evZt+/fpx5MgR2rRpw9atW/XLsh9S0wkPyjoFb3SA3PTiY93HwZX/5/w2qQdg4Uuw7lOwWR2PqdPGmFHX7ir3d56tLqwF8PV42PSV/fHwWjDmB6jf3jd1VYA396bKzivgWHoOR9NLhHnpJUK9tGySU7NIz3Ftma7ZBFee35BmdSKNWXK1ImhaJ4IGNcK8sheMJ2YaFQZ5O46ms/3IaXae+awgr/yCg0xYzGYsQSaCg8xYzCYsZhOHU7Nx5Zeh8OAgNj9zmWaRiYhIhWTlFjBn3UE+/GMP25LTy75BCeq8LeK/qkRgB/DDDz9w1VVXARAZGckLL7zArbfeSmRkpNPbZGVl8eGHHzJx4kRSU1Mxm83MmTOHK64IvE3dqwMFdh624En4Y0rx10GhcPcqiIkz9rorlHEclv4frPwPFDjpplyjMQycAJ3+DkH+sS9SQCvIgy9Hw18/2B+PrAe3/uTaTEg/4W9dKf/5eSJz1h0qc1x1+mXWZrNxNN2YkVcyyPsrOY3TLgac7mQ2QVhwEGHBQYRazEWfQ4ODCDvzeceRdA6nZpd5rk5NanJt9zhCgoxwzRJkJth85nPJsK3E12eHccFnbht85pjFbHL6Jp+rS8Gr0/NLREQ8x2azsWL3CWYu282CLUdduk1IkJmNTw8mNNj5Nh0i4htVJrADeOWVV5gwYULRL85RUVH079+frl27UrduXaKiosjIyODYsWOsXbuWJUuWkJ6eTmGpzz//PBMnTvR22VJBWhLrZmmH4M3zwXrWdPrgCGg/DLqNhaRFsOzf9jPxSgqvBf0fhh63QXCY52uuTvKy4bPrYPdC++M1msCtP0JMU5+UVVH+sjeVJ7uLVjUFBVYSnp5Pdp6TGbUlBJlNXN+jCeHBFkKDzYRZgozPDkO3oFLHBAeZy7w/f/139Ne6RESkasvMzaf9U/NdHl8nMphrusdxXfc4WtaN8mBlIlIeVSqwA/j444+58847ycrKMgopZRleYYnh4eG88847jBkzxhslipsosPOAmX+DvcvKf7vgCOh9N/S5F8Jqur8uMeRmwH+vhv0r7I/XamHMtItWh+uK8OZS3UDnzzPG/PXf0V/rEhGRqstqtZEwaT5ZeeWfGd+zRW2u7xHHkA4NCQ/RrDsRX6pygR3AoUOHmDx5Mv/9739JSUlxOq5OnTqMHj2aBx98kMaN9ctyoFFg52bJG2HaAGPPNFeZg6H7WLjwEYiq57napFh2Knw0FA6vsz9et62xp11kHZ+UFej8bamuv/L3GWP++u/or3WJiEjV5eqbbM5Eh1oY1qUR1/doSofGekNexBeqZGBX0ubNm9mwYQMpKSmkp6cTHR1NnTp16NSp0zl7oklgUWDnZt/cAes/c3GwCc4fZexTV7uFR8sSBzJPwIdXwNEt9scbnA+3zIXwGJ+UVRX4y1JdfxYIM8b89d/RX+sSEZGqx5U32UzgUnOkhEY1uL5HHEM7N6ZmeLDbahSR0lX5wE6qLgV2bmS1wkuNIS+z7LGmILh9ITQ83+NlSSnSj8DMy+HEbvvjcRfAzd9AiPOGOyKVpRljIiIi/s+VN9kSGtXgi1X7+WrtQU5k5JZ6vlCLmb91bMh1PeK4oEXtUrefEpHKU2AnAUNdYj0oNwNebOT6+ImHFAj5g1P7YeYQSN1vf7zFALjhSzX+EI/TjDERERH/5uqbbLn5Vn7deoTPV+1n8Y5jlPXXfIvYSEZ1j2Nkt8bUi9bvnCKeUO0Cu0OHDvHkk09iMpmYMWOGr8uRclBg50HlmWEXHAETDoK57M6N4gXHdxmh3ekj9sfjL4frPjFmROZngSVc/2YiIiIi1VR53mQ7eCqLWav3M2v1AQ6eyip1bJDZxMVt63F9zzgubFMXiwvd3UXENdUusNu8eTMdO3bEZDJRUFD+rjniP7Qk1s1c3cOu0w0wYqrn6xHXHd1qdPjNOmF/vGYcZB43gtjgCGg/zOjm26Cjb+oUERERkYBRYLWxdGcKX67az4ItyeQVlP4nfv0aoVzbLY5R3eNoWifCS1WKVF0K7CRgKbBzs+SNMG0gWPOdjzFbjP3rFPj4n0OJRvfYnLTSx5ktMOJ96HiNd+oSERERkYB3/HQO3yQe5PNV+9l59HSZ4/u2rsN1PZoyuH19woKDvFChSNXjqcxD82BFAk2DjkaQY7Y4vr4w6FFY558adYEbZ4GljD1ErPnwzT+MgFZERET8h9Vq7Ctstfq6EpFz1IkK5bb+Lfn5gQv56s7eXNutCeGlBHHLdh7nvs8S6fXSrzz93Wa2JTt+U9lqtZGZm4+1lG62IuJemmEnHqcZdh6SvBGWvwtbvi2xlHI49L5LYV0g+Hg47P697HFa2iwiIuIfkjfC8ndgyxxtYyEBJT07j+83HObzVftZv/9UmeM7xcVwfY84rurUiH3HM5m+dDc/bkwuaoYxpGMDbuvXUh3nRc7QklgJWArsPMxqVbOCQKPmISIiIoFl42xj5rujLUm0jYUEkK2H0/hi1X6+STxIalZeqWNDgkzkWW0OO9FazCYmj+rEsM6NPVSpSODQklgRccxshpBIBTqBJD/LtbAOjHH5pXf9EhEREQ9K3ug8rANtYyEBpV3DGjw9NIE/J17MW9d3pk+rOk7H5hY4DusA8q02HvpyPVsOlbEvs4hUmN/+hV+rVi1Gjx7N6NGjfV2KiIh7WcKNmXOuWv4O5Od4rh4RERFxbvk7pTf7AuP65e96px4RNwgLDmJY58Z8Or4Xix8ZxD2DWlO/Rmi5zpFvtTFjaZKHKhQRv10SK4ErISHB7uu8vDx27NgBaEmsSJFv7oD1n7k+vk4buGIytBzguZpERETEXnoyvNkRCnLLHmu2wHX/g2Z9IEx7e0ngyS+wsmj7MT5buY9fth516TZhFjNbnr0cs9nk4epE/JeWxIqIVCW973be6deR4zvg46Hw1W2QfsRzdYmIiFRnNpuxtHXRa/Cfi2Hyea6FdWDMsvvsOnilGbw/AH6aCNvmQeYJz9Ys4iaWIDMXt6vPv//exeXbZOdbueN/q9lw4JTnChOppgJqht2KFSvYtm0beXl5xMXF0b9/fyIjI31dlpRBTSdEnChtA2uT2fijAQcv0aE14eJ/QfdbwRzk8TJFRESqtPwcSFoC23+E7fMhdb+b78AE9ROgWV9o3tf4HBnr5vsQcR+r1UbCpPlk5ZWv+WPf1nW4Y0Ar+rWOxWTSjDupPqpdl9iSDh06xLXXXsuKFSsAsNlsmEwmQkJCuPnmm3nmmWdo2LChj6sUZxTYiZQieaOx582Wb40GE8ER0H449L4LrAXw/QNwaK3j2zbqAlf8HzTu6s2KRUREAt/pY7BjPvz1I+z6HfIyvHv/ddsaS2eb9YXm/SC6gXfvX6QMD365jq/XHqzQbTs0rsEdA1oxpENDgrRUVqqBah3YjRw5km+++Ybzzz+fG2+8kTp16rBv3z5+/PFHVq1aRb169Zg1axb9+/f3danigAI7ERdYrUY3WEu4fcdfawGsmQm/PAs5qQ5uaIIet8FFT0J4jLeqFRGRqsTZz6CqxGaDo1uMgG77T3BgNQ5nsTtiiTjTsb2U8SYz1O8Ix7a6voS2pNqtzsy+62cEeTFx5T+HiBttOZTG0LeXkm+teFzQvE4E4y9syciuTQgL1qoQqbqqdWBXo0YNWrRowZo1a7BY7Pd8WrRoEbfccgsnTpxg9erVxMfH+6hKcUaBnYgbnD4KC/4FGz53fH1kPbjsBeh4LWgJgoiIuCJ5o9EBdcucErO8hxn7rDbo6OvqKi8/B/YsNQK67T/BqX2u3zamKcQPgfMuN0K0rd8538bCbIER70PHayAvCw6ugT3LYO9S2L/qTNhXTjFNjfstXEJbq3nZP9/9NXj117qkTHPWHeShL9c7DO0sZhPPj+jAyYw8PliWxLH0HKfniY0KZVy/FtzYqyk1woI9WbKIT1TrwC4qKoo777yT1157zeH1e/bsoVOnTlx55ZX873//83J1UhYFdiJulLQE5j0EKX85vr7FhfC3yVBXb16ISDWnkKB0pe2jWjKACjQZKbBjwZmlrr9B7mkXb2iCJj2MgC5+CNRrd25AVto2Fs4CzvxcY2uLPUth7x+w/89y1FRCjcZGcNesj7GEtk7r4vr8NXj117qkXLYcSmPG0iR+2HiYrLwCwoOD+FvHhozr14L2jYxuyNl5BXy99iDTFu9iz/FMp+eKDrVwY69m3Nq3OfVqhHnrIYh4XLUO7Lp370779u35+OOPnY4ZO3Ys33//PceOHfNiZeIKBXYibpafC8unGB3sHL1rbw6Gvv+ECx+G4HDv1yci4ksKCcqWvBGmDXQc1hUyW+D2hb79nrkSutpscGxb8VLX/StxealrSBS0GmQEdG0GQ1Rd99XlTEE+HF5vzL7bswz2LYectPKdAyCqvhHeBUcYs++tDpoD+DJ4raqBcDVmtdrIzi8gzBKE2cm+dAVWGz9tSua9RbvYeNDRVi6GkCAzI7s14fYLW9IiVk0kJfBV68DunXfe4bHHHmPDhg20bNnS4ZhHHnmEqVOncvp0Bd6xEo9SYCfiISf3wI+PGX+gOBLTDP72OsQP9mpZIiI+o5CgbFYrfHkzbPu+7LE146DVRRBRG8JrOf9w95tDZYWu+bmwd5nx8++vH+HUXtfPXTMO4i83ZtI17w+WUPfWXl7WAuPx7l1mzMDbuwyyTrrv/CYz9LoTohoAtuIO9Od8pozrHX12dBuMhh6bZoHN6rwufwiExWNsNhvLdh5n6qKdLNt53Ok4kwn+1qEhdwxoRccmNb1YoYh7VevA7vXXX2fGjBlkZmby6aef0rdvX7vrCwoK6NatGzExMSxcuNA3RYpTCuxEPMhmg23zjOAu7YDjMW2vhCGvQE393xORKixQZo15U24GHNkCyRvgyCZIPvOR73zJWoVYws8K8WKKL5cW9gVHnLvstLTQ1WSGRl0hZXs5ZqWZoHG34qWu9RP8e69Xq9VoXFG4B97ePyCjiq4giqwH7YcaHXNj46HuecbMQX/+95Fy23DgFO8t2sWPm5IpLXno1zqWOwa0om/rOpj0HJAAU60DO7PZjMlkwmazYTKZ6NWrF4MHD6Zp06akpqby2WefkZSUxPz58+nSpYuvy5WzKLAT8YLcDFj0ijEjwdEfOcGRMPBx4132IG32KyJVTHYafH4D7FlS9th6CcaeY7VbGh9VISCw2SDtoBHGHdlohJfJm+DEblxeHuoLQaH2AZ4pyAipKltzcIQxMzD+coi/DKLquaVcn7DZIGVH8RLavcsg/bCvq/KcsJoQe56xF2/dtmcun2fMjNRelAFt97HT/GfJbr5ac5DcAuezLzs2rsmdA1txWUIDgpwsvRXxN9U6sPv+++9Zt24diYmJJCYmsmfPHgC75L1Pnz4MHDiQTp060blzZ1q3bu2jaiUhIcHu67y8PHbs2AEosBPxuCNbjKYU+/5wfH299nDlG9C0l3frEhFxp4J8oxPn7t9h1+9n9i0rZfldaYIjoFYLqN2iOMSr3dL4ukZjMAe5tfRKN8PIzzH2bEvedGbW3EbjszuXUQaiGo3PLHUdYix1Da6iG9rbbEYQu+s3+OFhX1fjPcERRqONum3tw7zaLSr+RqQa0/jE0bRsZixL4n8r9nE6x/mM6Baxkdx+YUuu7tqYUIubX4dF3KxaB3ZnS01NJTEx0S7E27ZtG/n5+UUhXmRkJOeffz5Lly71cbXVjwI7ER+z2WDdp/DzvyDTyb4hXW6CS56FyDrerU1EKq46/3Fps8HxXcUB3Z4lFduov7yCQqBW8+IQr1aL4jAvpmn5goKKNMPISCkO5ApnzaX8VfqyX3eq3wGa9jbCwKKPE8bnbOcbyntNo65GQBd/ufE9DPSZkuVhtcJLjY3nUllMZmgx8MzrhunM98nZZ8q4vozPNmCjkyYYnmAOhjqtipfUFi6vjW3jfG9FNabxC6lZefzvz718sHQPKadznI6rGx3KuH4tuPGCpkSHnfua60ozDBFPU2BXhpycHDZu3FgU4q1du5aNGzeqCYUf0JJYER/JPAG/PA1rP3J8fXgtuPRZ6HxT9fvjXySQVNc/LjOOQ9JCI6DbvRBS9/u6InumICO0KwzwSs7Oi2lmP8OrrGYYw6dCw04lwrkzAd3pZDfUaYY6bYznSoMOUL+jcZ//G1m5/f6sBUZoZxfmnTR+9px9zC7sO4Vblunel2h8r6uzb+6A9Z+VPa7TDTBiqufrKeRqXQ3ONwK2Y9uMZb/5WW4swgS1mhUvqS0M845uge8fUGMaP5KdV8BXaw8wbfFu9h53HkBHh1m4qVczxvZtTr3oMLYcSmP60t38uDGZrLwCwoODGNKxAbf1a0n7RjW8+AhEFNhVSOGed+JbCuxEfGz/KuOX0yMbHV8fdwFc8X/GH3JSNVXnmVmBrjp1Pc3Lhn3Li2fRJW8o3+1N5tK7Uhaq0QRCo+FkEuRnV6zWsosxlmjWbgFhMfDXPNdqq6zQGsasuAYdjKCtfgeo187xTCNfPbesVsg5O+g7ZcwIn/8EWPPKPkdwBEw4qNczf220UpG6rFYjlD/2lzGL9Ng2OLbduOzN2ZzVrTGNHymw2vhx02GmLtzF5kPOZ1CHWMx0b1aLP5NOUGA9N8qwmE1MHtWJYZ0be7JcETvVPrBbuHAhP//8M6dPnyYuLo5OnTrRtWtX6tTRci5/p8BOxA8U5MPKafD7C5DrYOaxKchoSDHwceMP2UIKegJbdZ2ZVVX46x/j7mK1GrPJCgO6fcvLH6DVS4BWg6DlIAirATOHuP79slqNGWwndjv4SHL8WulPYpqdmTV3Jphr0NGY8VeeN6uTN8Lyd2HLtyVeI4YbTTl88Zzy1xlj/sxfQ3131WWzwekjZ4K87WeCvL+Mj4yj7q8b9PzyMZvNxtKdKUxduIs/djnZ2qUMFrOJ7+7pp5l24jXVOrCbMmUK999/PyVLLZw517hxY7p06ULXrl3p0qULQ4cO9VWZ4oQCOxE/knYIfppg/HHmSHQjuPwlY5nRincV9AQyf/0jLhD4Iqi22SD7lPF/NO0wpB+CP6c5nxlbUtPeMGgiRDeE6Ab2obs3lOf7lXqwOKBLWgQZx8p3X1ENigO6lgMhur799e4MCTJSzg3yTiYZn73Z4MESZjQMatDBWEJYvwPUTzACSnfxlzdnqnpI7Sn+Frx6q66sk8YsvGPbzoR5Z4K81H2VO29QCDyy0+hYKz61fv8p3lu0i582J1Pe1GJk1yZMHtXJM4WJnKVaB3YtWrTgxIkTvPvuu3Ts2JEDBw6wfv36ooYTu3fvLlr+WlDgpQ1OxWUK7ET80M5fYN7Dxh+fDplwuMeQgp7S6Y/ewOapGYkF+cYMkbRDRhBXGMiVDOfSDrtv/6bgSCO4Kwzwij4aFn+Oqg+hUZW7H1e+XznpsGfpmX3ofjf+qC7vY2ne1wjoWg0y9qAqawaZN8KLzBNnwrvCjxKhXmVm/UTVN0K5Bh3OzJo739hQ392dav2Z3myoOH/5GXQ2b9eVm3EmwDuzpPbYX3B0K5zY5fo5giOh0/XQY5wRkItP7Tp2mv8s3s1Xaw6Q52AZrCMmE1zdpTHtGtagXcMatG0QTZ2oUA9XKtVVtQ7soqOjGTNmDFOmTHF4fXp6elHX2Pvuu8/L1UlZFNiJ+Km8LFj6hvFRkOv67RT0nMvbS08L8o39njKOGeFARgqcPnrm62Ow6zdIP1z2eTpeCyOnu7++QFTRkCDntPG9Tjt0ViB3GNIOGpczjnpn/7LyCok+K8yrf26oF90QQiLOvW1p3y9TELS90njcB1aVr6OpyQyNuhQHdE16giWkYo/PV+FFTroR4p1MguM74fcXXfseBIfDhEP+FbT4ir/OGJPAVZ6uumeL62UEd+2HgUWBjy/tSclg4OsLK3z7utGhtG0QXRTgtW1Qg9b1ogix6HVXKqdaB3a9e/emY8eOTJs2zdelSAUosBPxc8d3wbyHjNkvrtL+LsXcNRskN9NB+OYgjMs4ZszucUeXRYDaraFRZ2h4vtGlssH5EFHbPecOFK7MSDSZjY7KtoIzwdyZkC7H+cbYVUZoTfuZeuYgWP+5+0LIWs2LA7oWFxodrKsS7ctWcf46Y0wCk6v/F52JqANdboJuY42GMuJ1VquNhEnzycpz36o6i9lE63pRRoB3Jshr17AG9aJDK9XA0mq1kZ1fQJglCLNZjTCrumod2H322Wc8/PDDbNmyhZo1tZdAoFFgJxIAbDbYNBu+Go9LQZA69BlcWnoaBFe8YSw/dBS+ZRyD08cgL8NrZZepZtPiAK/wI7qBr6tyv+xUYybU/Imwd5mvqykWEQs1GhqzKNMOlT0+tAZgMjpvBoKwGGg5wNiDruWgqv+Hr5aoi/gHV/4vUhislPa7kAlaXwzdx0H8ZdVrybofePDLdXy99qDH76dWRDBtG9SgbcNo2p35HF8/mrDg0v+9txxKY/rS3fy4MZmsvALCg4MY0rEBt/VrqSYYVVi1DuwA7rzzTrZt28YXX3xBvXr1fF2OlIMCO5EAkZsBLzZyffyEg5XfAyvQVfbd+kASWa9EgHcmzItpVr6OlGfz9OwZq9WYCXcyCU7uKV6mWPjZm40DwNjIPLqB0dylxpmP6IZGOFd4LLpB8ZKr8gY9uZlG19P0ZONxpx858/nM16ePGJe9PSvQHAxNexkBXatB0LBz9fsDV/uyifgHV/4vNu0Faz6CtR8Zr5ulqdEEuo2BrqPPbYIjHrHlUBpD315Kfil72QWZTNzWvwUnM3PZlpzOX8np5ORXfla42QTNYyONAK/EjLwmtcIxmUzMWXeQh75c77A2i9nE5FGdGNa5caXrEP9T7QO7qVOn8vjjjwMwdOhQLr74Yrp27UpCQgJBQdXsl74Ao8BOJECUd3+Xpn3goieNDeGro8rsh+M2JmOJTmRdiKprfI6sZ8wWS97g+bsPq2ksoS05E69O67LDGHfu+ZefAyf3lgji9hRfPrUX8rMr/PDKJazmmdCt4ZngrVGJIK4h1GgM4bXLH0x6IujJOX0mvCsM85KLLxceTzvsnlmf130CrS6CkMjKnyvQaV82Ef/g6v/FgjzY9j2smgF7lpR+TrPF2Luzxzho3r9yb2ZJmcobjBVYbew5nsG2w+lsS05j65nPB066p9lTdKiFuNrhbE1OL7WbrcVs4rt7+mmmXRVUrQO7CRMm8Oqrr3J2qSaTidDQUDp06EDXrl3p1q0b48eP91GV4owCO5EAUpEZYy0GwKAnoOkFnqnJH2WdhD/fg4Uvu//cQaHnBnCRsRBV78zXZz6i6hkBUJDl3HO4OjNr+FTIPQ2H18PhDXBkMxTkVK7+4Aiju2XJmXh12xU3DqhIAJV5wj6IO5kEJ/YYx9IO4rb9/MpiCjKWQNV0EMh5MpDyVdCTk37uLL20w7DyfWMvv7Jo6bxj2pdNxD+U5//ise2w+gNY/6mxnUJpYuOh+63Q6e8QHuO2csXelkNpzFiaxA8bDxctPf1bx4aM69fC5UAsLTuP7cnpbE1OZ9vhNLYeTuOv5HQyct23R97ZRnZtwuRRnTx2fvGNah3YNWzYEJvNxuzZszn//PPZu3cviYmJrF27tqg7bHp6OiaTiYICz/3nEtckJNi3Ps/Ly2PHjh2AAjsRv+fS/i5OtL4EBk6EJt3cXpbfOLUPVkw1lsqUd/ZR7VZG101n4Vvh5dBo97wzX5FgrCAPUrafCfDOhHjJG4xQrzLMwVCvHdSMg+0/lt6swGSGTjdC3unicK6sP44qw2Q2/lhz5d/T100B/CXoURMFEamucjNh01ewegYcSix9rCXc+DnbY5zR/Vo8wt3NHaxWGwdOZrE1Oa1oRt625HT2HM8odfacq8KDg9j8zGVqRFHFVOvArkaNGowfP57Jkyc7HbNjxw4SExMZNWqUFysTRxTYiQS40oIek9nYMD7rhPPbxw+BQROMmVVVxeH1sOzfsPkb12YWnc1XwYU7ZmZZrUZodnhdcYh3eH3pzwF/Ywk3OpHWbgG1WthfjmkKKX+pKUB5qImCiAgcXGsEdxu/Mt5MKU2jrkZwl3A1hER4pz5xq8zcfLYfOc22w0aAt+VwGtsOp5GWXf43ub++sw9dm1WxjujVXLUO7AYNGkTTpk356KOPfF2KVICWxIoEoNKCnth4WPsxLJlsLJFzpt1VMHAC1E9wPsaf2Wyw61cjqEtaVPHz+ENw4e6ZWTYbpB4wZt+VDPHSXeho6ikRdYwArjCIKxnORTcoe9aimgKUj75fIiKGrJOw/nNjr7vjO0ofG1YTOt9oLJmNbeN4jL/MppYy2Ww2Dqdms+VwKnd+spa8Atejlb6t63Bbv5YMiK+r2XZVQLUO7H766SduuOEGNm3aRKNG5ehgKH5BgZ1IACvtl8a8LFjzISz5P8g46uQEJkgYYQR3deM9Xa17FOQZy13+mAJHNjkfZzIbIWb9BFj4koILgNPHIHm9fYh3Msk95zaZjSW1tc+EcGeHcmFu2MBZTQHKR98vEZFiNpvRnGLVDKNZRVnbi7S40NgXte0VEBTs3oZM4nUPfrmOr9ceLPftWteLYly/Fozo0piwYDXTDFTVOrB79913WbBgAbt27WLWrFm0bdvW1yVJOSiwE6nicjOMX06XvQmZxx2PMZmh47Uw4DGo08qr5bksOw3WfmTsUZdWyi9cwRHQdTT0utMIikDBRWmyU43vz6FE+HmSa0uKTUFwwR1GIFdy6WpQsOfrBc1uKC99v0RE7KUnw9r/Gm9sph0ofWxUA2jSHbb/pDf/AtiWQ2kMfXupw861rqgTGcLNvZtxU69mxEaFurk68bRqHdiZzWZMJhM2m42goCD69evHxRdfTJcuXejSpYtm3fk5BXYi1UROOqycZiwhzT7leIwpyOiaNuCR4rDL19IOGR1fV8+EnDTn4yLrwgX/MN4Nj6jteIyCi9KpWYGIiFQnBfmwYwGsmm5ss1FR/rC9hpRpzrqDPPTleoehXZDZxOD29Vm15wQpp3OdniPEYmZk18aM69eC1vWiPVmuuFG1DuxmzZrF+vXrWbduHYmJiRw+bOyZZDqzH03dunXp0qULXbt25YUXXvBlqeKAAjuRaiY7FVa8B8vfdh6AmS3Q5Sbo/zDExHm3vkJHthjLXjfOAmue83F1WkOfe+H86yE4zHv1VUVqViAiItXVid3Gm4OJn1SscZPezAoIWw6lMWNpEj9sPExWXgHhwUH8rWNDxvVrQftGNcjOK2DOuoNMX5LEjqOnSz3XoPPqclv/lvRpVaco+xD/VK0Du7OlpKSQmJhIYmIi69atY926dWzfvh2bzUZBQQW694lHKbATqaayThp7sayYCrlOfiEJCoGut0D/B6GGF2ZLF+4vs+zfsPPn0sfG9YK+9xldbzVbzn3UrEBERKqzvGxjn7rVM2D/n67fLjgCJhzU7yQBwmq1kZ1fQJglyGFTCZvNxqLtx5i+JImlO1NKPVe7hjW4rV8LrurUiBCL/v39UbUK7NasWcP5559PcLDre9VkZWWxYcMGLrjgAg9WJhWhwE6kmss4Dn/821gum5fpeExQKPQYB33vh+j67q+hIB+2zjGCusPrShlognZXQp/7IK6n++sQg/b8ExERgf2rYMYlro/vcTt0H2M0vJIqY+vhNKYvSeK79QdL7TRbLzqUW/o058YLmhITEeLFCqUs1SqwM5vNhIaGsmXLFlq0aMHUqVPp3LkznTp1IiIiwtflSTkpsBMRwOgguuxNYx+X/GzHYyzh0HM89P0nRMZW/j5zM4ylJ8vfhlP7nI+zhEHnG6D3Pf7bFKMq0p5/IiJSnVmt8FJj529oOtOoC3S5GTqMhPAYj5Qm3nc0LZuPlu/hkxX7SM1yvl1LeHAQ13Zvwq19W9A8NtKLFYoz1Sqwe/TRR0lMTGT69Ok0a9asqOmEyWSidevWdO7cmS5dutC5c2c6d+5M/foemI0hbqPATkTspB2GpW/AmplQ4GTT3eBI6HWHEaA5a/BQmtNHjRl9q6YbS3OdCa9tBIQ9xkNU3fLfj4iIiEhluNqQyRFLGLQbauwL3Ly/3vyqIjJz8/lqzQFmLE1iz3HnYa7JBIPb1+e2/i3p3qyW9rnzoWoV2J2trKYT9evXLwrx1HTC/yiwExGHUg/Aksmw9r/Omz6E1oBed0GvO+3fQXY2Mytlh9FIYv3nUJDj/L5rNTfCwM43QohmbouIiIiPuNKQyRUxTaHzTcaKAV819BK3KrDa+HXrEaYvSWLlntIblXSKi+G2fi0Y0qEBliAFt95WrQO7s6npRGBRYCcipTq5Fxa/Bus+BZuT1/Cwmkan1uYXGjPztswpsffZMONd5W3z4K8fgFJ+rDXqajSSaDcUzEEeeTgiIiIi5VJWQ6ZLnoHM48ZMvPTDZZzMBC0HGrPu2l6pDvdVxPr9p5ixNIl5Gw9TYHX+u27jmHDG9m3OdT3iiA47tydAWc0wpGIU2JVBTSf8lwI7EXHJid2w6FXY8AXYrO49d/zlRiOJZn2M9QMiIiIi/sSVhkwF+bDrN0j8L/z1o/MVCoXCYuD8UUZ417CThx+AeMPBU1l89McePvtzH+k5zmdlRoVauL5HHGP7taBxTDhbDqUxfeluftyYTFZeAeHBQQzp2IDb+rWkfaMaXnwEVZMCOwlYCuxEpFxSdsDCl2HTV5Q6W64sQSHGL6m974V6bd1WnoiIiIjHuNqQKSMFNnxphHdHt5R93gYdjUYVHa+t2P7A4lfSs/P4YtV+Zi7bw8FTWU7HBZlNnN+4JhsOpjqcmWcxm5g8qhPDOjf2ZLlVngI7CVgK7ESkQo5uhYUvGctfyyO0JvS4FS64A6IbeKY2EREREX9gs8GhREj8xFham5Na+vigEGh7hTHrruUgbRES4PILrPy0OZn/LEli/f5TFTqHxWziu3v6aaZdJVSbwC4zM5PVq1eXOiY8PJwePXp4qSKpLAV2IlIph9fDtEHO97crKSgYHtll7HknIiIiUp3kZcHW741Zd0mLyh5fo7HRpKLzjVC7hefrE4+x2Wys2XuS6UuSmL8lmfKmPCO7NmHyKC2brqgqE9gtX76c5557DoBx48YxcuRIu+s3b95Mx44dy2xJvGzZMnr16uWxOsV9FNiJSKXkZsCLjVwfP/EQhER6rh4RERERf3dyD6z7DNb9D1L3lz2+eX9j1l27oRASce71ri7VFZ/bezyDmcv28MWqfWTlubYvdHhwEJufuUyNKCrIU5mH1/+nTZw4kZ9++on9+/dz1VVXOR1ns9lK/Xjssce8WLWIiPiMJdzYeNkVwRHGeBEREZHqrFZzGDQB/rkBbv4GOoyEoFDn4/csMTrVTj4P5t4PB9YYy22TN8I3d8BLjY03UF9qbHydvNFbj0TKqVmdSJ4emsBvDw10+TZZeQVk57uwmkW8yuLNO9uxYweLFi3CZDLx0ksvERIS4nSsyWTiqaeeOuf4yZMn+fe//83SpUvZtm0bbdtqI3F/k5CQYPd1Xl4Z3YtEREpjNkP7YbD+s7LHth+ud31FRERECpnN0Ooi4yPzhNHUK/G/xpYjjuSkwZqZxkd0IzidDLYSs7TyMo3fyTbOghHvQ8drvPM4pNzq1wgjPDiIrLyyg7jw4CDCLNrP0N94NbD7+uuvATjvvPO48soryxw/adIkh8dXrFjBqlWrmDVrFv/617/cWqOIiPih3ncbvxhanbevx2yB3nd5ryYRERGRQBJRG3qONz4ObzCWy274ArJOOh6ffsj5uaz5xoy8uucZHWjF75jNJoZ0bMDXaw+WOfZvHRtqOawf8uo0hOXLl2MymbjiiisqdZ4RI0Zgs9lYuXKlmyoTd9q8ebPdx2+//ebrkkQk0DXoaLyLa3byPpPZYlyvXxhFREREytbwfBjyCjz0F1z7IbS+BChnYGPNh+XveqI6cZPb+rXEUkYQZzGbGNdPTUf8kVcDu40bjXXuffv2rdR5OnUyupds3ry50jWJiEiA6HgN3L4QOt1QvKddcITx9e0LtSRDREREpLwsoZAwAm76Ch7YBBc9CTHNXL/9lm+NhhTil9o3qsHkUZ2chnYWs4nJozrRvlENL1cmrvDqktiUlBQA6tev73SMyWTCbDZjLmUPonr16gFw4sQJ9xYoIiL+rUFHGDEVhr2jTmUiIiIi7lSzCVz4CPS8A152sctlXqbxO1lIpGdrkwob1rkxbepFM2NpEj9sPExWXgHhwUH8rWNDxvVrobDOj3k1sMvOzgYgLCzM6Zj27duTn1/KHkUYoR5AVlaW+4oTEZHAYTbrF0MRERERTwiJNFYx5GWWPTY4wngDVfxa4Uy71645n+z8AsIsQdqzLgB4dVpCrVq1ADh+/HilzlN4+8LziYiIiIiIiIgbmM3QfphrY9sP12qHAGI2m4gIsSisCxBe/Z/VoEEDABITEyt1ng0bNtidT0RERERERETcpPfdzpt9ldT5Bs/XIlJNeTWw69OnDzabjblz51bqPN999x0mk4nevXu7qTIRERERERERAc7sG/x+2aHd6g+8U49INeTVwO6yyy4DYNmyZfz6668VOseiRYtYvHgxAJdffrnbahMRERERERGRMzpeA7cvhE43GHvVAZiC7Mds/hq2Vm5Cjog4ZrLZbDZv3ZnNZiMhIYFt27ZRt25dlixZQnx8vMu33717N/369ePIkSO0adOGrVu3FjWgEP914MAB4uLiANi/fz9NmrjYcUhERERERER8z2o1usFmp8G7vSD7VPF1kfXg7j8horbPyvM7hd8vS7j2+KsGPJV5ePWZYzKZeP311zGZTKSkpNC9e3emTJlCRkZGqbfLyspi6tSpdOvWjeTkZEwmE5MnT1ZYJyIiIiIiIuJpZrPRPbZGQxjyqv11GUfhx8d8U5e/Sd4I39wBLzWGFxsZn7+5wzguUk5enWFX6JVXXmHChAlFgVtUVBT9+/ena9eu1K1bl6ioKDIyMjh27Bhr165lyZIlpKenU1jq888/z8SJE71dtlSQZtiJiIiIiIhUETYbfHY9bP/J/vjfP4fzhvimJn+wcTZ88w+w5p97ndli7AnY8Rrv1yUe56nMwyeBHcDHH3/MnXfeSVZWllFIKbPlCksMDw/nnXfeYcyYMd4oUdxEgZ2IiIiIiEgVknYI3ukFOanFx6IawN0rILyW7+ryleSNMG2g47CukNli7AnYoKO3qhIvqRJLYksaPXo0O3bs4IEHHiA2Nhabzeb0o06dOjzwwANs375dYZ2IiIiIiIiIL9VoBJe/aH/sdDLMf8I39fja8ndKD+vAuH75u96pR6oEn82wO9vmzZvZsGEDKSkppKenEx0dTZ06dejUqRMJCQm+Lk8qQTPsREREREREqhibDf53Dez8xf74jbOhzaW+qckXrFZjr7q8zLLHBkfAhINqRFHFeCrzsLjlLG6QkJCgYE5EREREREQkEJhMcNVbxtLY3PTi49/dZyyNDavpu9q8KT/LtbAOjHH5WUYDD5EyKNYVERERERERkfKr2QQue97+WPohWPCkb+rxBUs4WEJdGxscYYwXcYECOxERERERERGpmK63QMuB9sfWfgy7fvNJOV53aq+xPNgV7YdrOay4TM8UEREREREREakYkwmu+jeERNkf/+4+yEl3fJuqIjsVPrseCnJdG9/zds/WI1WK1/awu+iii7x1VwCMGTOG0aNHe/U+A8GpU6d46qmnWLVqFUlJSZw8eZLY2FjOO+887r77bq6++mpMJpOvyxQREREREZFAUasZXPoMzHuo+Fjqfvj5KbjyDd/V5UkF+TD7Vji2zfXb7PoVGnfxXE1SpXgtsFu4cKG37gqTycTAgQO9dn+BJCUlhQ8++IBevXoxfPhwateuzdGjR5k7dy7XXHMN48ePZ9q0ab4uU0RERERERAJJt1th87ewZ0nxsdUfGMtAWw7wVVWes+DJczvk1moJTbrBtnlnGlGYgBLLZRe+DOf9Deq392alEqBMNpuri60r55lnnvHG3RQZOHAgAwZUwReFSiooKMBms2Gx2Ge16enp9OrViy1btrBp0ya3duz1VItjERERERER8SMnkmBqH/uuqTHN4M4/IDTK+e0CzeoP4PsH7I9FxML434zZhlar0Q32yBb4YDDYrMXjGnaG236FIK/NnxIP81Tm4bVnyKRJk7x1V1KKoKAgh8ejo6O57LLL2LJlCzt37nRrYCciIiIiIiLVQO0WcMnT8OOjxcdO7YVfn4W/veqzstxq9yKY97D9saAQuP5TI6wDo7FESCTE9YA+98GyN4vHHl4Hf7wF/R9CpDRqOlEOR48e5fvvv+epp55iyJAhxMbGYjKZMJlMjBkzplzn2rdvHw8//DDt2rUjMjKS2rVr07NnT15//XUyMzPLPoGbZWdn89tvv2EymWjfXtNzRUREREREpAJ6jIemfeyPrXwf9izzTT3ulLITvrwZbAX2x4e+DU0vcHybgRMg9jz7YwtfNmbfiZRCczDLoX79+m45z7x587jxxhtJTU0tOpaZmcmqVatYtWoV06dP54cffqBly5ZuuT9HTp06xZtvvonVauXo0aP88MMP7N+/n0mTJtGmTRuP3a+IiIiIiIhUYWYzDHvbWBqbn118fM7dxtLYkAjf1VYZWSfh01FGZ9iS+j8Ena5zfrvgMBj+Lsy4tHhpbEEuzLkLxv2ipbHilGbYVVBcXByDBw8u9+3Wr1/PqFGjSE1NJSoqihdeeIE//viDX3/9lfHjxwPw119/ccUVV3D69Gl3l13k1KlTPPPMMzz33HO8//77JCcn89prr2npsoiIiIiIiFROnVZw0b/sj51Mgt+e9009lVWQB1+OhhO77I+3uwoGPVn27Zt0hz732h87lAh//Nt9NUqVo8CuHJ566inmzp1LcnIy+/bt4/333y/3Oe6//34yMzOxWCwsWLCAiRMn0rt3by666CKmTZvGq68a6/q3bdvG//3f/zk8R8mluK58OOrQ27x5c2w2G/n5+SQlJfHss8/yxBNPMHLkSPLz88v9uERERERERESK9LoTmvS0P7biXdj3p2/qqSibDX54BJIW2x9v2AlGvG/MKHTFwIkQG29/bOFLcHSre+qUKkdzL8uhsp1uV61aVRSejRs3jt69e58z5qGHHmLmzJls3bqVN998kwkTJhAcHGw35u9//zvp6eku32+DBg2cXhcUFETz5s15/PHHCQoK4tFHH+U///kPd955p8vnFxEREREREbFjDoJh78B7/aAg58xBm7EU9I6lEBzu0/Jc9uf7sGam/bGoBnD9Z0ZjCVcFh8Gwd+27xhbkwrd3wbiftTRWzqFnhBd9++23RZfHjh3rcIzZbGb06NFMmDCBkydPsnDhQi699FK7MVOmTPFIfYMHD+bRRx9l4cKFCuxERERERESkcurGw6CJ8EuJrZeO74TfX4TBz/muLlft+AXmT7A/ZgmDv38KNRuX/3xxPaD3PfZLYQ+theVToN8DlatVqhwtifWiJUuWABAZGUm3bt2cjhswYEDR5aVLl3q8rkKHDh0CwGJRjisiIiIiIiJu0PseaHzW37/L34YDq31Tj6uOboPZY4tnwxUaPvXcx1MegyZCnbMaPf7+onF/IiUosPOirVuNtemtW7cuNRRr27btObdxl3Xr1tl1py104sQJJk6cCMCQIUPcep8iIiIiIiJSTQVZjKWgQSHFx2xWo2tsXrbz2/lSxnGjI2xOmv3xgROhw9WVO3dwuBH6mUrEMYVdYwu0n7wU01QqL8nOziYlJQWAJk2alDq2Vq1aREZGkpGRwf79+91ax4cffsj06dMZNGgQzZo1IzIykr179zJv3jxOnz7NyJEjueGGG8p1zgMHDpR6/eHDhytTsoiIiIiIiASyem1hwGPwW4llsMe2waJX4JJJzm/nC/k58MVNcGqv/fEOI2HAo+65j7ge0Ptu+KPEdlcH1xgzD/vd7577kICnwM5LSjaJiIqKKnN8YWB3+vRpt9ZxzTXXkJqayooVK1i8eDGZmZnUrl2bfv36MXr0aK6//npMJlO5zhkXF+fWGkVERERERKSK6ftP2PodHF5ffGzZW9B+KDTq4ru6SrLZ4PsHYd8f9scbdzcaaJTzb+VSDXoC/voJju8oPvb7i3DeEKh7nvvuRwKWAjsvyc4unuobEhJSykhDaGgoAFlZWW6to1+/fvTr18+t5xQREREREREpVVCwsTR22kCw5hnHbAXw7d1w+0KwlP13ssf98W9Y94n9sRpN4PpP3d/VNjgchr8LMwYDNuNYQc6ZrrELjC67Uq1pDzsvCQsLK7qcm5tb5vicHKPtdXi4/7e63r9/f6kfK1eu9HWJIiIiIiIi4msNOsCFj9gfO7oZlrzum3pK2vYD/HzW8tzgSPj7ZxBd3zP3GdfTWBpb0sHVxtJYqfY0w85LoqOjiy67ssw1IyMDcG35rK+VtSefiIiIiIiICAD9H4Stc+HIxuJjSyZD2yuh4fm+qSl5I3x1G0Uz3QAwwdXTPF/TRU/C9p/g+M7iY7+9APFDoG68Z+9b/Jpm2HlJWFgYsbGxQNlNGk6ePFkU2Gl/OBEREREREakygoJh+DtgLjF/yJp/pktqnvfrST8Cn14PeRn2xy+ZBO2u9Pz9B4cb++NRYn+8ghzj+2Et8Pz9i99SYOdF7dq1A2Dnzp3k5ztv17xt27ZzbhNIEhIS7D4uuugiX5ckIiIiIiIi/qJhJ+j3oP2x5I2w9A3v1pGXDV/cCGlnTarpdAP0vd97dTTtde7S2AOrYPk73qtB/I4COy8qbPaQkZHBmjVrnI5btGhR0eW+fft6vC4RERERERERr7rwEajX3v7YolfhyGbv3L/NBt/dYwRjJTXtDVe96d6OsK4Y9ATUbmV/7Lfn4dh279YhfkOBnRcNHz686PLMmTMdjrFarXz88ccAxMTEMGjQIG+U5labN2+2+/jtt998XZKIiIiIiIj4E0uIsRTUVKIbqjXP6JJa4HxFmtssfh02zrI/FtMUrvsELKGev/+zhUQYXWPPWRp7t5bGVlMK7LyoZ8+e9O/fH4AZM2awfPnyc8ZMnjyZrVu3AvDPf/6T4OBgr9YoIiIiIiIi4hWNu0Lf++yPHV4Hf7zl2fvd/A38/rz9sZBouOFLiIz17H2Xpmkv6HWX/bEDK2HFu76pR3xKXWLLYenSpezcWdy5JSUlpejyzp07+fDDD+3Gjxkz5pxzvPXWW/Tt25esrCwGDx7MxIkTGTRoEFlZWXz++edMmzYNgPj4eB566CGPPA4RERERERERvzDgcdj2A6T8VXxs4ctw3hVQr6377+/gWvjmTvtjJjNcOxPq+cEe8hc9Cdt/hBO7i4/99jzEXw6xbXxXl3idyWaz2coeJmAEcB999JHL4519a+fOnctNN91EWlqaw+vj4+OZN28erVu3rlCd/ubAgQNF3W73799PkyZNfFyRiIiIiIiI+I0Dq2HGpWCzFh9r3A1uXQBBbpxnlHYI/nMRpB+2P37ZS9D7Lse38YW9f8DMvwElMoW4C2Dsj2AOcnoz8Q1PZR5aEusDV111FRs2bOCBBx4gPj6eiIgIYmJi6N69O6+88gqJiYkBHdapS6yIiIiIiIi4rEn3c7ukHlwDK9zYJTU3Ez67/tywrtsY6HWnw5v4TLM+cMEd9sf2/wl/vuebesQnNMNO3C4hIcHu67y8PHbs2AFohp2IiIiIiIg4kJcF7/WD48XbUBEUCncuq/xSUKsVZt0CW7+zP968P9z8DQT54d7xuZkwtQ+cTCo+ZgmDO5ZBbOBO8KmKNMNOAoa6xIqIiIiIiEi5BIcbXWM90SV14YvnhnW1W8Koj/0zrAPHXWPzs9U1thpRYCciIiIiIiIivte017nLU/f/CX++X/FzbvgSFr9mfyysptERNqJ2xc/rDc36wAX/sD+2f0Xlvh8SMBTYiYiIiIiIiIh/uOhfUKuF/bFfn4Xju8p/rv0rYc499sdMQXDtR4HTcfXip9z3/ZCAosBORERERERERPxDSAQMe9v+WH4WfHevsRedq07tg89vMJbVlvS3V6HVoMrX6S0hkWeWCpeQnwXf3qWlsVWcAjtxO3WJFRERERERkQpr3g963m5/bO8yWDXdtdvnpMOn10PGMfvjPf8BPW5zT43e1LyvUXtJ+1fAymm+qUe8QoGdiIiIiIiIiPiXiydBTDP7Y788DSeSHA4vYi2Ar8bD0c32x1tdDJe96NYSveqSSVCruf2xX57R0tgqTIGduJ26xIqIiIiIiEilhEbB0Cn2x/Iyyl4a+8vTsP1H+2Ox58G1MyHI4vYyvcbZ0tg5d5dvqbAEDAV2IiIiIiIiIuJ/Wg6AbmPtj+1ZAmtmOh6f+An88W/7Y+G14YbPjc6wgc7RUuF9y7U0topSYCciIiIiIiIi/unSZ6FmnP2xn58ymkqUtGcZzL3f/pg5GK77BGq39GiJXuVsqbCWxlY5CuxERERERERExD+F1YCr3rI/lnsavrvP2K8uNwOO74QvbgJrnv24K98wGjZUJaFRjpfGlreLrvg9BXYiIiIiIiIi4r9aXwxdbrY/tvt3eKEBvNgIpnSHrBP21/e5F7qedZuqokV/6DHe/tjeZbDqP76pRzwigHdcFH+VkJBg93VeXp6TkSIiIiIiIiIuuOwF2PUbpB0sPlaQe+aCzX5s/OVwyTNeK80nLnkadsy3Xxr8y9PQ5tKqtQS4GtMMOxERERERERHxb2E1od8Dro3t9yCYgzxbj685Whqblwlz7tHS2CpCM+zE7TZv3mz39YEDB4iLi3MyWkRERERERMQFB9e4Nm7Nh9D0Ao+W4hdaXAg9boNV04uP7V1mfH3B7c5vJwFBM+xERERERERExL9ZrbBljmtjt3xbfWaZXfIMxDS1P/bLJDiR5Jt6xG0U2ImIiIiIiIiIf8vPMpZ8uiIv0xhfHYRGwdC37Y/lZaprbBWgwE5ERERERERE/JslHIIjXBsbHGGMry5aDoDut9of27MEVs/wTT3iFgrsRERERERERMS/mc3QfphrY9sPN8ZXJ5c+CzXPWhr7s5bGBrJq9gwWERERERERkYDU+24wl9E702yB3nd5px5/EhoNw6bYH8vL0NLYAKbATkRERERERET8X4OOMOJ956Gd2WJc36Cjd+vyFy0HQrex9se0NDZglRFNi5RfQkKC3dd5eXk+qkRERERERESqlI7XQN3zYPm7RjfYvExjz7r2w42ZddU1rCs0+DnY+Quk7i8+9vMkaHMp1Grus7Kk/BTYiYiIiIiIiEjgaNARRkyFYe8Y3WAt4dVvzzpnQqNh6BT47/DiY3kZMOceuPlbKMjR9ytAKLATt9u8ebPd1wcOHCAuLs5H1YiIiIiIiEiVZDZDSKSvq/A/rQZBtzGw5sPiY3uWwIsNoSD3zIzEYcaegNV9RqIfU6QqIiIiIiIiIlKVXPoc1Dxr4kxBrvE5LxPWfwbTBsLG2V4vTVyjwE5EREREREREpCoJqwH9Hih9jDUfvvkHJG/0Tk1SLgrsRERERERERESqmgOryh5jzTcaeIjfUWAnIiIiIiIiIlKVWK2wZY5rY7d8a4wXv6LATkRERERERESkKsnPMvaqc0VepjFe/IoCOxERERERERGRqsQSbnSDdUVwhDFe/IoCOxERERERERGRqsRshvbDXBvbfrgxXvyKxdcFSNWTkJBg93VeXp6PKhERERERERGppnrfDRtnGY0lnDFboPdd3qtJXKYIVURERERERESkqmnQEUa8b4RyjpgtxvUNOnq3LnGJZtiJ223evNnu6wMHDhAXF+ejakRERERERESqqY7XQN3zYPm7RjfYvExjz7r2w42ZdQrr/JYCOxERERERERGRqqpBRxgxFYa9Y3SDtYRrz7oAoMBORERERERERKSqM5shJNLXVYiLFKmKiIiIiIiIiIj4Ec2wE4/Lzy/uSHP48GEfViIiIiIiIiIi4j4lc46S+UdlKbATjzt27FjR5Z49e/qwEhERERERERERzzh27BjNmzd3y7m0JFZERERERERERMSPmGw2m83XRUjVlp2dzcaNGwGoW7cuFkvgTew8fPhw0ezAlStX0rBhQx9XJOJ5et5LdaTnvVQ3es5LdaTnvVRHet57Tn5+ftHKwo4dOxIWFuaW8wZeciIBJywsjB49evi6DLdp2LAhTZo08XUZIl6l571UR3reS3Wj57xUR3reS3Wk5737uWsZbElaEisiIiIiIiIiIuJHFNiJiIiIiIiIiIj4EQV2IiIiIiIiIiIifkSBnYiIiIiIiIiIiB9RYCciIiIiIiIiIuJHFNiJiIiIiIiIiIj4EQV2IiIiIiIiIiIifsRks9lsvi5CREREREREREREDJphJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIiIiIiIiJ+RIGdiIiIiIiIiIiIH1FgJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIiIiIiIiJ+RIGdiIiIiIiIiIiIH1FgJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiZdi3bx8PP/ww7dq1IzIyktq1a9OzZ09ef/11MjMzfV2eiNuYTCaXPgYOHOjrUkVccvToUb7//nueeuophgwZQmxsbNHzeMyYMeU+308//cTVV19NkyZNCA0NpUmTJlx99dX89NNP7i9epILc8bz/8MMPXf6Z8OGHH3r08Yi4Yu3atbz44osMGTKEuLg4QkNDiYqKIj4+njFjxrBkyZJynU+v9+Lv3PGc12u9/7P4ugARfzZv3jxuvPFGUlNTi45lZmayatUqVq1axfTp0/nhhx9o2bKlD6sUERFH6tev75bz2Gw27rjjDqZNm2Z3/ODBg3zzzTd888033H777bz33nuYTCa33KdIRbnreS8SKAYMGMDixYvPOZ6bm8uOHTvYsWMHH330ETfffDPTp08nJCTE6bn0ei+BwJ3PefFvCuxEnFi/fj2jRo0iMzOTqKgoJkyYwKBBg8jKyuLzzz/nP//5D3/99RdXXHEFq1atIioqytcli7jFnXfeyV133eX0+sjISC9WI+IecXFxtGvXjgULFpT7tk8++WTRH29dunTh0UcfpVWrVuzatYtXX32VxMREpk2bRt26dXn++efdXbpIhVXmeV9o/vz5NGrUyOn1TZo0qfC5Rdzh4MGDADRq1Ihrr72W/v3707RpUwoKCli+fDmTJ0/m4MGD/Pe//yU/P59PP/3U6bn0ei+BwJ3P+UJ6rfdTNhFxaODAgTbAZrFYbH/88cc517/66qs2wAbYnnnmGR9UKOJehc/nSZMm+boUEbd46qmnbHPnzrUlJyfbbDabLSkpqeh5fsstt7h0jh07dtgsFosNsHXv3t2WmZlpd31GRoate/fuRT8vdu7c6e6HIVIu7njez5w5s+g2SUlJnitWxA2uuOIK2xdffGHLz893eP2xY8ds8fHxRc/pxYsXOxyn13sJFO56zuu13v9pDzsRB1atWsXChQsBGDduHL179z5nzEMPPUS7du0AePPNN8nLy/NmiSIiUoZnnnmGK6+8slJLBN944w3y8/MBmDJlCuHh4XbXR0REMGXKFADy8/N58803K3xfIu7gjue9SCD5/vvvGTVqFEFBQQ6vj42NZfLkyUVfz5492+E4vd5LoHDXc178nwI7EQe+/fbbostjx451OMZsNjN69GgATp48WRTwiYhI1WCz2ZgzZw4Abdu2pVevXg7H9erVi/POOw8wfn7YbDav1SgiImUr2TBr165d51yv13upasp6zktgUGAn4kBhV53IyEi6devmdNyAAQOKLi9dutTjdYmIiPckJSUV7RNT8vXekcLrDxw4wJ49ezxdmoiIlENubm7RZbP53D+B9XovVU1Zz3kJDPqXE3Fg69atALRu3RqLxXlvlrZt255zG5FAN2vWLM477zzCw8OJjo6mTZs23HLLLfz+++++Lk3Eq0q+rpd8vXdEPw+kqhozZgz169cnJCSE2NhYevXqxZNPPlkUbogEgkWLFhVddvR6rtd7qWrKes6fTa/1/kmBnchZsrOzSUlJAcruhlOrVq2ijpn79+/3eG0i3rBlyxa2b99OdnY2p0+fZufOnXz88cdcdNFFjBgxgtTUVF+XKOIVJV/Xy/p5EBcX5/B2IoFu0aJFHD16lLy8PI4fP86ff/7JCy+8QOvWrXn//fd9XZ5ImaxWKy+//HLR16NGjTpnjF7vpSpx5Tl/Nr3W+yfnU4dEqqn09PSiy1FRUWWOj4yMJCMjg9OnT3uyLBGPi4iIYOjQoVx88cW0bduWqKgojh07xqJFi3jvvfc4fvw43377LcOGDePnn38mODjY1yWLeFR5fh4UvnkD6OeBVAktW7bk6quvpnfv3kUBxe7du/nqq6+YPXs22dnZ3HHHHZhMJm6//XYfVyvi3BtvvMHKlSsBGDFiBN27dz9njF7vpSpx5TlfSK/1/k2BnchZsrOziy6HhISUOT40NBSArKwsj9Uk4g0HDx4kJibmnOOXXnop9957L0OGDCExMZFFixYxdepU7rvvPu8XKeJF5fl5UPizAPTzQALfiBEjuOWWWzCZTHbHe/TowXXXXcf333/P1VdfTV5eHg888ABDhw6lQYMGPqpWxLlFixbx+OOPA1CvXj2mTp3qcJxe76WqcPU5D3qtDwRaEitylrCwsKLLJTfrdCYnJwfgnNbvIoHGUVhXqH79+syePbvol9gpU6Z4qSoR3ynPz4PCnwWgnwcS+GrWrHnOH3AlXXnllUyaNAmAzMxMZsyY4a3SRFy2efNmRowYQX5+PqGhoXz55ZfUr1/f4Vi93ktVUJ7nPOi1PhAosBM5S3R0dNFlV6a5Z2RkAK4tnxUJZC1btuTSSy8FYOfOnRw6dMjHFYl4Vnl+HhT+LAD9PJDqYfz48UV/6JXc3FzEHyQlJTF48GBOnjxJUFAQn332WandX/V6L4GuvM95V+m13rcU2ImcJSwsjNjYWMBo116akydPFv3QLrkBrUhV1b59+6LL6holVV3JjcfL+nlQcuNx/TyQ6qBevXpFvy/p54H4k0OHDnHJJZdw6NAhTCYTH3zwASNGjCj1Nnq9l0BWkee8q/Ra71sK7EQcaNeuHWDMIsrPz3c6btu2befcRqQqs9lsvi5BxGtKBtQlX+8d0c8DqY70M0H8TUpKCpdeeim7d+8GjC08Ro8eXebt9Hovgaqiz/ny0Gu97yiwE3GgX79+gDHlfc2aNU7HlZwW3LdvX4/XJeJrW7ZsKbrcqFEjH1Yi4nktWrQoep6XtQxk8eLFADRu3JjmzZt7ujQRnzt69CjHjx8H9PNA/ENqaiqXXXZZ0e8qL7/8MnfffbdLt9XrvQSiyjznXaXXet9SYCfiwPDhw4suz5w50+EYq9XKxx9/DBib9Q8aNMgbpYn4zO7du/n5558BYz+7xo0b+7giEc8ymUwMGzYMMGZUrFixwuG4FStWFM24GDZsWKkbOItUFdOmTSuadeGOfZJEKiMzM5MrrriCtWvXAvDEE0/w2GOPuXx7vd5LoKnsc95Veq33LQV2Ig707NmT/v37AzBjxgyWL19+zpjJkyezdetWAP75z38SHBzs1RpF3Gnu3LmlLv8+cuQI11xzDXl5eQBuf/dOxF/df//9WCwWAO69916ysrLsrs/KyuLee+8FwGKxcP/993u7RBG32rNnD4mJiaWO+f7773nuuecAY+/fsWPHeqM0EYdyc3MZMWIEy5YtA4zfy59//vlyn0ev9xIo3PGc12t9YLD4ugARf/XWW2/Rt29fsrKyGDx4MBMnTmTQoEFkZWXx+eefM23aNADi4+N56KGHfFytSOXce++95OXlMXLkSHr37k3z5s0JDw8nJSWFhQsX8t577xVNh+/Xr58COwkIS5cuZefOnUVfp6SkFF3euXMnH374od34MWPGnHOO+Ph4Hn74YV5++WVWr15N3759eeyxx2jVqhW7du3ilVdeKfqF95FHHqFNmzYeeSwirqrs837Pnj0MGjSI3r17c9VVV9G5c2fq1auHzWZj9+7dzJ49m9mzZxfNuHj99dc141p86u9//zsLFiwA4KKLLmLcuHFs2rTJ6fiQkBDi4+PPOa7XewkU7njO67U+MJhs2kFQxKm5c+dy0003kZaW5vD6+Ph45s2bR+vWrb1cmYh7NW/enL1795Y5buTIkUyfPp2YmBjPFyVSSWPGjOGjjz5yebyzX4msVivjx4/ngw8+cHrbcePGMW3aNMxmLV4Q36rs837hwoUubfMRERHBG2+8we23317uGkXcqbzLUps1a8aePXscXqfXewkE7njO67U+MGiGnUgprrrqKjZs2MBbb73FvHnzOHDgACEhIbRu3Zprr72We+65h4iICF+XKVJpH330EYsWLWL58uXs3r2blJQU0tLSiIqKIi4ujj59+nDLLbfQu3dvX5cq4nVms5kZM2YwcuRIpk2bxqpVq0hJSSE2NpYePXrwj3/8gyFDhvi6TBG36NatG5988gnLly9n9erVHD58mJSUFPLz86lVqxYJCQlcfPHF3HbbbdSrV8/X5Yq4lV7vpbrQa31g0Aw7ERERERERERERP6J5vCIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIVHsDBw7EZDIxcOBAX5ciIiIiosBOREREpKpauHAhJpMJk8nE008/7etyRERERMRFCuxEREREqqE9e/YUhXkffvihr8vxiDFjxmAymWjevLmvSxEREREpF4uvCxARERER8bWFCxf6ugQRERGRIpphJyIiIiIiIiIi4kcU2ImIiIiIiIiIiPgRBXYiIiIi1YzJZKJFixZFX48dO7ZoP7uymlT89ddf3HfffSQkJFCzZk3Cw8Np2bIlY8eOZe3atU7vs2QDjIULF2K1Wvnggw8YNGgQ9evXx2w2M2bMmKLxVquV3377jYcffpi+ffsSGxtLcHAwMTExdO7cmYcffph9+/Y5vK+nn34ak8nERx99BMDevXvPeXwmk8nuNq52iV26dCk333wzzZs3JywsjJiYGLp06cKTTz7JsWPHXH78AF9++SUXX3wxdevWJTw8nPPOO49HH32UEydOlFrD9u3buffee+nQoQNRUVGEhITQqFEjOnfuzK233soXX3xBTk5OqecQERER/6Y97ERERETEJc899xzPPvss+fn5dseTkpJISkrio48+4l//+hfPPPNMqefJzs7msssu45dffnE65tlnn3V4ntTUVNavX8/69euZOnUqn3zyCSNGjKjYAyoHq9XKfffdxzvvvGN3PCcnh3Xr1rFu3TrefvttZs2axaWXXlrquQoKCrjxxhv59NNP7Y5v376d1157jW+++YYlS5bQoEGDc247a9YsbrrpJnJzc+2OHz58mMOHD7N+/XpmzpzJxo0b6dChQwUfrYiIiPiaAjsRERGRambjxo0cOnSIyy67DIDnn3+eYcOG2Y2pV6+e3ddPPfUUzz33HAB9+vTh1ltvJSEhgeDgYP766y/efvttli9fzrPPPktsbCz33nuv0/t/7LHH2LBhA0OHDmXMmDE0a9aMI0eOkJaWVjQmPz+fhg0bMmLECHr37k3Lli0JCwtj//79/PHHH7z77rucPn2aG264gbVr19KuXbui2951111cc801PPnkk8yZM4dGjRoxf/78Sn3PHn/88aKwrkWLFjz22GN07dqVjIwMvvvuO95++21SU1O58sorWblyJZ06dXJ6rqeeeoo//viD4cOHM3r06KLH/8477zBv3jx27tzJAw88wGeffWZ3uyNHjjB27Fhyc3OpV68e99xzD7169SI2Npbs7Gx2797N4sWL+frrryv1WEVERMQP2ERERESkSvr9999tgA2wTZo0ye66pKSkoutmzpxZ6nlWrlxpM5vNNsD25JNPOhxTUFBgu+mmm2yALTo62nby5EmntQC2f/3rX6XeZ1JSki03N9fp9fv377c1btzYBthuuukmh2NuueUWG2Br1qxZqfdls9lsAwYMsAG2AQMGnHPdhg0bih5/hw4dznlsNpvN9uOPPxaN6dmz5znXn/34n3/++XPGWK1W2+DBg22AzWKx2I4ePWp3/YwZM4puv3HjRqePJSsry5aZmVnmYxYRERH/pT3sRERERKRUr7zyClarlW7duvHss886HGM2m5kyZQqhoaGkp6cze/Zsp+eLj49n0qRJpd5n8+bNCQ4Odnp9kyZNeOSRRwD47rvvsNlsLjySipk6dSpWqxWA//znP8TExJwz5vLLL+fWW28FYOXKlaxatcrp+bp168bEiRPPOW4ymXjwwQcBY4bh8uXL7a5PTk4GoFatWqUudw0LCyM8PLz0ByUiIiJ+TYGdiIiIiDiVl5fHjz/+CMA111xzTrOGkmJiYujYsSPAOWFTSddddx1BQUHlqiMtLY2kpCQ2b97Mpk2b2LRpExEREXbXeUrhXnvt27enV69eTseNHz/+nNs4csMNNzj9Pnbr1q3o8u7du+2ua9iwIQAnT55kzpw5ZRcuIiIiAUt72ImIiIiIU1u2bCEzMxOACRMmMGHCBJduVzgbzJHzzz/fpXPs3buX119/nblz57J3795Sx6akpNCyZUuXzlseOTk57NixA4ALLrig1LFdunQhODiYvLw8Nm3a5HRc27ZtnV5Xu3btosvp6el21w0dOpSYmBhOnTrFiBEjGDhwIFdddRUXXnghnTt3LncIKiIiIv5LM+xERERExKmjR49W6HaFIZ8jtWrVKvP2P/74I+3bt+ftt98uM6wDyMrKKld9rjp58mTR5fr165c6Njg4mDp16gBw4sQJp+MKZwY6YjYX/3peUFBgd12dOnX47rvvaNy4MTabjd9//50HH3yQ7t27U7t2bUaOHMn3339fao0iIiISGDTDTkREREScKhkavfbaa1x++eUu3S4yMtLpdWXNBDt+/Dg33HADmZmZREVF8fDDD3PZZZfRqlUratasSUhICAC//fYbF198MYBH97ArVNpy4EKerqN///7s3LmTr776ih9++IHFixdz4MAB0tLS+Prrr/n666+57LLL+Prrr0sNBkVERMS/KbATEREREacKZ4yBsZ9dac0O3GXWrFmcOnUKgK+//ppLL73U4biSs988peRswNKW+YLRKKJwZl3Jpa3uFhYWxo033siNN94IGHvdzZs3j7fffpvt27czf/58nnjiCd544w2P1SAiIiKepSWxIiIiItWQK7PFABISEopmtC1YsMCTJRXZvHkzYIRezsI6gNWrV5d6HlcfY2lCQ0Np06YNAH/++WepYxMTE8nLywPwSrBZqGXLltx7772sWrWKJk2aAPDll1967f5FRETE/RTYiYiIiFRDYWFhRZdzcnKcjouIiChadrpw4UJWrlzp8dry8/OL6rJarQ7HZGZm8vHHH5d6nsLHWNrjc8Ull1wCGA04VqxY4XTc9OnTz7mNN9WoUYMePXoARhMOERERCVwK7ERERESqoTp16hTNnNu1a1epY5944omi2WrXX399qeMLCgr49NNPOXDgQIVrK5zRlpGRwezZsx3ex2233cahQ4dKPU/Dhg0Bo3HG2R1Xy+POO+8sagZx++23k5qaes6YBQsWMGPGDAB69uxZFJy50/z58zl8+LDT61NTU4sC1RYtWrj9/kVERMR7tIediIiISDVksVjo0aMHy5Yt44MPPqBLly507tyZ4OBgwFiOWrgPW9++fXnqqad45plnSEpKonPnzowbN47BgwfTsGFDcnJy2LNnD8uXL2f27NkcOnSIjRs3Fi3PLK9Ro0YxceJEcnJyGDNmDOvWreOSSy6hRo0abN68mSlTprBmzRr69u3LsmXLnJ6nT58+AFitVu644w7uvfde6tSpUxQ+tm7d2qV6OnbsyEMPPcRrr73Gxo0b6dq1K4899hhdunQhMzOTuXPn8u9//5uCggJCQkJ4//33K/S4y/LZZ59x1VVXcemllzJ48GA6dOhA7dq1SU9PZ9OmTbz99tscPHgQMEJGERERCVwK7ERERESqqQkTJnDVVVcVdWUtadKkSTz99NNFXz/99NPExMTw+OOPc/r0ad566y3eeusth+cNCQmxW3JbXv8lK6QAAAKlSURBVE2aNGHq1KncdtttZGVl8dJLL/HSSy/ZjbnuuusYP358qUtPL7roInr16sWKFSv49NNP+fTTT+2uL09H15dffpmMjAzeffdddu/ezT/+8Y9zxtSsWZMvv/ySzp07u3ze8srLy+OHH37ghx9+cDrm7rvv5t577/VYDSIiIuJ5WhIrIiIiUk1dccUV/PrrrwwbNoxGjRoVza5z5v7772fXrl3861//olevXsTGxmKxWIiMjCQ+Pp6RI0fy3nvvcfDgQZdnrzkzduxYlixZwvDhw6lbty7BwcE0bNiQyy+/nC+++ILPP/+coKCgUs9hNptZsGABTz75JJ06dSIqKqrCjSjMZjPvvPMOixcv5sYbb6Rp06aEhoZSo0YNOnfuzMSJE9mxYweDBw+u0Pld8eabb/LVV19xxx130L17dxo3bkxISAjh4eHEx8czZswYli5dyttvv120hFdEREQCk8lWnrcWRURERERERERExKP01puIiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn5EgZ2IiIiIiIiIiIgfUWAnIiIiIiIiIiLiRxTYiYiIiIiIiIiI+BEFdiIiIiIiIiIiIn7k/wFvfb04F7hV9wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=4, sharex=True, dpi=200,figsize=(7,7))\n", + "\n", + "for i in range(2):\n", + " axes[0].plot(np.array(observables['imp_occ'][i]['up'])+np.array(observables['imp_occ'][i]['down']), '.-', c=f'C{i}',\n", + " label=f'Impurity {i}')\n", + " axes[1].plot(np.array(observables['imp_gb2'][i]['up'])+np.array(observables['imp_gb2'][i]['down']), '.-', c=f'C{i}')\n", + " \n", + " axes[3].semilogy(conv_obs['d_Gimp'][i], '.-', color=f'C{i}', label=f'Impurity {i}')\n", + " \n", + "# Not impurity-dependent\n", + "axes[2].plot(observables['E_tot'], '.-', c='k', label='Total energy')\n", + "axes[2].plot(observables['E_dft'], 'x--', c='k', label='DFT energy')\n", + "\n", + "\n", + "axes[0].set_ylabel('Imp. occupation\\n')\n", + "axes[0].set_ylim(0, 2)\n", + "axes[0].legend()\n", + "axes[1].set_ylabel(r'$G(\\beta/2)$')\n", + "axes[2].set_ylabel('Energy')\n", + "axes[2].legend()\n", + "axes[3].set_ylabel(r'|G$_{imp}$-G$_{loc}$|')\n", + "axes[3].legend()\n", + "\n", + "axes[-1].set_xlabel('Iterations')\n", + "fig.subplots_adjust(hspace=.08)\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "599730cc-8214-48cd-80a6-14676f2e23c0", + "metadata": {}, + "source": [ + "These plots show:\n", + "\n", + "* The occupation converges towards a disproportionated 1.6+0.4 electrons state\n", + "* Both sites become insulating, which we can deduce from $G(\\beta/2)$ from its relation to the spectral function at the Fermi energy $A(\\omega = 0) \\approx -(\\beta/\\pi) G(\\beta/2)$\n", + "* convergence is only setting in at around 20 DMFT iterations, which can be also seen from the column `rms(c)` in the Vasp OSZICAR file, and more DMFT iterations should be done ideally\n", + "\n", + "Therefore, we can conclude that we managed to capture the desired paramagnetic, insulating state that PrNiO3 shows in the experiments.\n", + "\n", + "## 4. Plotting the results: the Legendre Green's function\n", + "\n", + "We now take a look at the imaginary-time Green's function expressed in Legendre coefficients $G_l$. This is the main solver output (if we are measuring it) and also saved in the h5 archive." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "91f19160-3f34-4738-a9fa-8fe9c4289b0c", + "metadata": {}, + "outputs": [], + "source": [ + "legendre_gf = []\n", + "with HDFArchive(f'2_dmft_csc{path_mod}/vasp.h5') as archive:\n", + " for i in range(2):\n", + " legendre_gf.append(archive[f'DMFT_results/last_iter/Gimp_l_{i}'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "50176755-edbb-41ed-9656-5c648a08a6c0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCMAAAIqCAYAAAAekIA6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1gUV/fA8e8uHaQIIipS7BUVKxpU7CZq7L1ETfE1sSVGTVWjSUz5xZ5XY2JJ0VhiNC9GE3sXOzawIcUOgigifff3x7gLyy4KStXzeR4eYe6dmTu7uOycvfcclVar1SKEEEIIIYQQQghRSNRFPQAhhBBCCCGEEEK8WCQYIYQQQgghhBBCiEIlwQghhBBCCCGEEEIUKglGCCGEEEIIIYQQolBJMEIIIYQQQgghhBCFSoIRQgghhBBCCCGEKFQSjBBCCCGEEEIIIUShkmCEEEIIIYQQQgghCpUEI4QQQgghhBBCCFGoJBghhBBCCCGEEEKIQiXBCCGEEEIIIYQQQhQqCUYIIYQQQgghhBCiUJkX9QDEsytXrhyJiYl4enoW9VCEEEIIIYQQQrwAoqKisLOz49atW0+1v8yMeA4kJiaSlpZW1MMQQgghhBBCCPGCSEtLIzEx8an3l5kRzwHdjIhz584V8UiEEEIIIYQQQrwI6tSp80z7y8wIIYQQQgghhBBCFCoJRgghhBBCCCGEEKJQSTBCCCGEEEIIIYQQhUqCEUIIIYQQQgghhChUEowQQgghhBBCCCFEoZJghBBCCCGEEEIIIQqVlPYsRHv37uW7774jODiYqKgopk2bxvTp04t6WEIIIYQQogTRarVotdqiHoYQ4jmiUqlQqVSFek4JRhSiBw8eULt2bQYNGsSECROKejhCCCGEEKKE0Gg03Lt3j7t375KSklLUwxFCPIesrKwoXbo0jo6OqNUFv4hClmk8cvz4cb766it69eqFu7s7KpUKa2vrJ+6XnJzMtGnTqF69OtbW1lSoUIGRI0dy7do1o76vvPIKs2bNon///lhZWRXEZQghhBBCiOeMVqvl1q1b3Lp1SwIRQogCk5KSwq1bt7h9+3ahzL6SmRGPzJw5k7/++itP+yQnJ9OuXTsOHjxI+fLl6d69OxERESxfvpxNmzZx6NAhqlSpUkAjFkIIIYQQL4KEhATu3bsHQNmyZXFwcMDMzKyIRyWEeJ5kZGRw//59oqOjiY+Px87ODgcHhwI9pwQjHmnevDn169enSZMmNGnShHLlyj1xny+//JKDBw/SvHlztm7dSqlSpQCYPXs2EydOZOTIkezZs6eghy6EEEIIIZ5j9+/fB8DZ2RkXF5ciHo0Q4nmkVqtxcXEhPT2duLg4EhISJBhRWKZMmZKn/mlpaSxYsACA77//Xh+IAHjvvff4+eef2bt3L8ePH6dRo0b5OlYhhBBCCPHiePjwIQD29vZFPBIhxPPO3t6euLg4EhMTC/xckjPiKe3fv5/4+HiqVKmCr6+vUXufPn0ACAwMLOyhiQKybH841+OTntjvenwSy/aHF8KIhBBCCPG802q1ZGRkAEjOMSFEgdO9zmRkZBR43giZGfGUTp06BUDDhg1Ntuu26/rlhzp16pjcHhYWJrkpCtiy/eHM2BTCioMR/P6WH+5ONib7XY9PYuCSIKLilE8wRvpXKsxhCiGEEOI5k/VmoLDL7gkhXjxZX2e0Wm2Bvu7IzIinFBUVBUDFihVNtuu26/qBUtozODiY4OBgUlNTuXXrFsHBwYSEhBT8gMUz6VS3HJ7OtkTFPWTgkiCTMySyBiI8nW3pVPfJeUeEEEIIIYQQ4kUkMyOe0oMHDwCwtbU12W5nZ2fQD+DYsWO0adNG//MPP/zADz/8gJeXFxEREU8857lz50xuz2nGhMg/7k42/P6Wnz7YMHBJkMEMieyBiMfNnhBCCCGEEEKIF53MjHhKuilzOU1bMbW+JiAgAK1Wa/SVm0CEKHq6gET2GRISiBBCCCGEEEKIvJGZEU9Jl804pyyjuqzHWatsiJIv+wyJVt/sAi1kaLUSiBBCCCGEEEKIXJKZEU/J09MTgGvXrpls123X9ctv8fHxREREEBERQVpaGhqNpkDOI4xlZGhpX7us8r1GS8ajWTBW5mq2nrvF3cTUohyeEEIIIcQLQaVSPZdJPa9du8bIkSOpUKEC1tbWVK9enalTp5KcnFzUQytRIiIiUKlUBAQEFPi5AgICUKlURjPeVSoV3t7eBX7+kkqCEU+pfv36AJw4ccJku257vXr1CuT8c+fOpVKlSlSqVIlLly4RGxtbIOcRioTkNNYcjaLf4kO0+nYXy/ZHGPW5FP2AzwJDaPrldt5eeZxd56NJz5AgkRBCCCGKNylfXnyEhYXRsGFDli9fjouLC927dycjI4OZM2fStm1bUlJSinqIQuQbWabxlF566SUcHR0JCwvj5MmT+Pr6GrT/8ccfAHTt2rVAzj9hwgSGDx8OQMeOHTEzMyuQ87zIMjRa9l++w58nrvHvuVskp+UusJCWoWXzmVtsPnMLNwcrejWsSN9GFansKkt2hBBCCFG8SPny4mXkyJHExMQwbtw45s2bB0B6ejr9+vVjw4YNfPnll3z22WdFPMqSwd3dndDQ0BwLDhSG0NBQLCwsiuz8xZ3MjHhKlpaWjBkzBoAxY8YY5I6YPXs2p0+fxt/fnyZNmhTI+Z2cnPD29sbb2xsLCwvUankq88ul2wnM2hJKi6928NqyI/wVfIPkNA0jzLZQgTv6fk42Fmx4uwUHPmhLeUdrANQqqMAdRphtAeD2/RQW7Q6j7Xd76LPoIGuORvEgJb1IrksIIYQQIjspX158HD16lL1791K2bFm++eYb/XZzc3MWLVqEhYUFCxYsIC0trQhHWXJYWFhQs2bNAls2nxs1a9akSpUqRXb+4k7uYB/5+++/8fPz038BpKamGmz7+++/Dfb55JNPaNasGQcPHqRatWr0798fPz8/Jk6ciIuLC8uXLy+KSxFPIS4xlRUHwum2YD8d5uzlhz1XuH0/cxrcCLMtTLP4lTVWX1CBO3g62/L3+Jb4epbG3cmGP0a3wNPZlnLaO6y1/oJpFr/yuvk/Buc4FnmXKevP0OTz7Uxce4qgK7Emq64IIYQQQhSWnKqF6ZS0qmFZ8wQkJiby3nvv4eHhgY2NDQ0bNiQwMFDfd926dTRt2hQ7Ozvc3NwYN24cSUnGwRhvb29UKhVarZZ58+ZRu3ZtrK2tcXd3Z9y4ccTHx+fL2Ddt2gRAt27dsLKyMmhzc3OjZcuW3L17lwMHDuTL+R48eMCMGTPw8fHB1tYWBwcHWrduzcaNGw36HT9+HJVKpb9HMuWbb75BpVLx8ccfG2xPTU1l3rx5NGnSBHt7e+zs7GjatClLly41+T5Yl2MhIyODb775hurVq2NlZYWHhwdTpkzJ0zKVnHJGrFixApVKxfTp04mKimLQoEG4urpiY2ND48aNDX5HsluyZAk+Pj7653/s2LHcu3cvx/6PyxkREhLCiBEj8PLywsrKCjc3N1q1aqWfEZNVbp8rndDQUIYOHUqVKlWwtrbG1dWVBg0aMGHCBG7evJnjeAubBCMeiYmJ4fDhw/ovUMpzZt0WExNjsI+1tTW7du3i008/xdbWlo0bNxIREcFrr73GyZMnqVq1alFcisil1HQN/567xVu/HKPZl9uZHhjCmeuGLybmahXta7lRv8MQrqvc8FDdZp3NF6wdUNHgD7G7kw1rB1Rknc0XVOQ211Vu9Bs6mk+61KJmOXuDYyalZbD+xDUGLAki4P92s2DHJW7kYp2mEEIIIURBeB7Ll6emptKuXTt+/fVXGjRogJ+fH6dOnaJnz55s376dOXPmMGjQIMzNzenYsSMZGRksWLCAN954I8djjh07lkmTJlGxYkV9LocFCxbQunVrEhISnnnMp06dAqBhw4Ym23Xbdf2exe3bt2nWrBnTpk3j7t27dOjQgWbNmnH8+HF69uzJV199pe/bqFEjatasyeHDhwkLCzN5vFWrVgEwaNAg/bbExETat2/PhAkTiIiIwN/fn4CAAC5fvswbb7zB6NGjcxzf4MGDmTFjBhUrVqRjx44kJCTwzTff8Prrrz/ztetERETQpEkTDhw4gL+/P76+vhw/fpwePXqwdetWo/7vv/8+o0aN4tKlS7Rt25bmzZuzcuVK2rRpk+dcHuvWraNhw4asWLECe3t7evXqRYMGDQgLC2PChAkGffPyXIGSu7BRo0asXLkSV1dXevbsSbNmzfSBoQsXLuT5sSowWlEi3b17VxseHq4NDw/XVqtWTVuzZs2iHlKJoNFotKeu3tVO3XhG2+Czf7VeUzaZ/Ooyf6922f4r2jsJyVqtVqtduu+KtvmUFdpr06tptdMctNq59bTau1GZB74bpWyb5qC9Nr2atvmUFdql+64YnPOTDWe0PtP+MXk+7w82aYf8FKT9K/i6Nik1vSgeGiGEEEIUQxkZGdqQkBBtSEiINiMjw6hdo9Fo4x+m5stX6M172pe+2qH1mrJJW+XDv7VVPvxb6zVlk/alr3ZoQ2/ey7fzxD9M1Wo0mmd+bABt9tuZ8PBw/faAgABtXFycvm358uVaQFu1alWts7Ozdu/evfq269eva8uWLasFtGFhYQbH9PLy0gJaBwcH7bFjx/TbExIStG3bttUC2nffffeZr8fX11cLaP/66y+T7XPnztUC2vfee++Zz/Xyyy9rAe3kyZO1qamp+u1hYWHaKlWqaM3MzLSnTp3Sb58xY4YW0M6YMcPoWCEhIVpA26BBA4Pto0eP1gLaoUOHahMSEvTbo6Ojtc2aNdMC2k2bNhnso3vuatWqpQ0PD9dvv3LlirZ06dJaQHv58uVcXaPud6F169YG23W/B4B27Nix2rS0NH2b7jFu2bKlwT4HDhzQAlpnZ2ft2bNn9dvv3LmjrVevnv54Wcesux4vLy+DbRcvXtRaW1trLSwstGvWrDFoy8jI0AYGBhpsy+tz9dprr2kB7fr1640ek5CQEO2NGzeMH6xsY3jca05WtWvX1tauXfuxfR5HEliWUHPnzjVIXuPq6lqEoyn+bt1LZmPwddYfv8al6Acm+7jaW9HT153eDStSI9tsBl2SJjPPFrChD9yNgJ+7wmvKdDp+7qpsK+2NWc8/eCPKXL+PSqWiXkUn6lV04uMutdgacpt1x66y//IddLPTtFrYd+kO+y7dwcHanO4N3OnbuCI+7o7PZckqIYQQQuSP+8np1P/M+FPcZ5WuyZxCf+1uEp3n7svX45+a1hFHm4JL7GdmZsaPP/5I6dKl9duGDRvG5MmTuXz5MlOnTqVly5b6tgoVKjB48GDmzJnD3r17qVy5stExx4wZQ6NGjfQ/lypVioULF1KnTh2WLl3KrFmzjJZX5MWDB8p71JwSLtrZ2Rn0e1rBwcFs2bKFFi1a8NVXXxm816xcuTLfffcdPXr04KeffmL+/PmAMlNh6tSprFy5kk8//dTgeCtXrtT30YmOjuann36iUqVK/PjjjwaPi6urKz/88AMNGjTghx9+oEuXLkZjXLBggcHyhkqVKjFkyBAWLFjAvn378iUPg+5azc0zb4nfeecdPvvsM4KCgkhNTcXS0hKAxYsXAzBx4kTq1Kmj7+/i4sK3335Lp06dcn3eOXPmkJyczJgxY+jXr59Bm1qtNiiA8DTPVXR0NABt27Y1OnetWrVyPc7CIMGIEkqqaTxZUmoGW0Nu8cfxaxy4fIcsf1P1rMzVdKxTjt4N3fGvWgZzs5xXLumzRr+2KTP4MK+eEklAC1YO0HQU5SySGOlXw+QxrC3MeLV+BV6tX4Eb8Un8eeIa645fIzL2ob7P/eR0fg2K5NegSGqWs6dPo4r09HXHpdTT/3ETQgghhHiReHt7Gy2ZVqvVeHl5ERMTQ4cOHYz20d3g5rSmfsCAAUbbatWqRf369QkODub06dPPlLxe++hTqpw+iNLmU66xbdu2AdC9e3eT5/L39weUhJo6lStXxs/Pj6CgIE6cOGGwlGT16tWo1WqDx2fPnj2kpaXRuXNnkwGa+vXrY29vb3AOHQsLC6M8DwDVq1cHcn5+8iogIMCo0oW5uTmVK1fm+PHjxMbGUr58eQD2798PYBQ8AOVezNnZmbi4uFydd/v27QCMGjXqiX2f5rlq1KgRW7ZsYdiwYXzyySc0bty42BY7kGBECeXk5ISTkxOAlIvJQqPRcjQijvUnrrH5zK0cK1c08S5N74YVeaVeeRys8/j4WZWCKu3g2FLQZin3mXIf/v1Q+V5lBi5Vwa02lK3z6N/a4OQFj14MKjjZMKZtNd5pU5Uj4XGsPXaNzWdukpSWoT/k+VsJfP53KF9tOU+7WmXp28iDgBqujw2aCCGEEEK86Nzd3U1u180uMNWua8tp/b+Xl5fJ7d7e3gQHB3Pjxo2nGaqevb0yMzdrlb6sHj5UPrwqVerZysVHREQAMGXKFKZMmZJjvzt37hj8PHjwYIKCgli5cqU+GBEUFERYWBht2rShYsWKRudYtGgRixYtyvEcphKGli9f3uQHrbrrzmt+hpxkHe+TznPjxg1UKhUeHh4m9/H09Mx1MOLq1asAJmffZPc0z9WkSZPYv38/gYGBBAYG4ujoSLNmzejatSvDhw/X/54VBxKMEM+FyNhE/jxxnT9PXuNqnOlkkBVL29CrYUV6N3THy8Uu7ydJTYSgRXBgPqTknDUXAG0G3LmgfJ3bkLndshS41jQIUqjK1qFZZReaVXbhs+512Hz6JmuPXeVY5F39bukaLf+eu82/525TppQVvRsqyziqli0+LyZCCCGEKHwO1uacmtbxmY9z814Sb/x8jGt3k6hY2oafXmsMYLStvGP+JLB0sC7Y25AnLXPNz2Ww+TVjwdPTk5MnT3Lt2jWT7brtz1qqMiND+eCrZcuWj70hLlOmjMHP/fv3591332X16tV8++23qNVqfeLKrEs0sp7D19eXevXq5Wl8hbVEuSiXQqtUqlyd/2meKwcHB3bu3MmBAwcIDAxk9+7d7Nixg61btzJr1qx8W+aSHyQYIUqs+8lpbD59k/UnrnE04q7JPqWszHnFpxy9G1akibczavVTvOikp8LxFbD3W0iMNm5XmSnBB0s7cHCHuHDQ5FD/OfUBXD+mfBkM1A3K1qaUWx36la1Nv+61CVdVY92pWNafuGZQZvTOgxR+2HuFH/ZewdfTib6NPOha/ylmeAghhBCixFOpVM+ce+F6fBJv/XKca3eTjKpmrBnVXF9R461fjpeoihr5LTIyEh8fH6PtUVFRgJJ34lnUr1+fv/76ixMnTphs123P6819droZAX369GHcuHG53s/V1ZUOHTqwZcsWdu/eTevWrVm7di1WVlb07t3b5DkCAgKYPXv2M423OChfvjwRERFcvXrVZMVE3e9Abnh4eHDp0iXCwsKoW7fuY/s+7XOlUqnw9/fXL+OIiYlh/Pjx/P7773z00UesWbMm18cqSDLXW5QoGRotuy9EM/b3kzT5fDsf/HnGKBChUkHLamWYN6ABRz9uzzd96tOsskveAxGaDAj+HRY2gi2TjAMR1k7w9hEYfwpKeyszJzJSYcxReDsIei+FlhOh+svg9IQI9oPbcGUXHFoIf70NSwKotKQ6ky8N5lDln9nVOIiPKl2kqtkt1GQuDTkZFc9HG87Q9IvtvLsmmIOX76AxlRwjJ0GLIP7qk/vFX1X6CiGEEOK58qTynTmV/XwRmbqBO3/+PMHBwdjb2z9zkECXyDEwMNBoKcLt27fZt28fjo6O+hvMp9W+fXsANm7cmOd9dTMgVq1axY4dO7h9+zZdunTRLx/XadOmDWZmZmzatEn/6X5JpnvM161bZ9S2bdu2XC/RgMzHf8mSJbnu+zTPVVaurq5Mnz4dgDNnzjzTsfKTBCNKqPj4eCIiIoiIiCAtLQ2NRvPknUqwi7cTmLU5lOazdjB8+VECT90gJd3wmquWLcWUzjU59EE7fn29Gd0buGNj+RSJPbVaCN0Ei16Cjf+B+KyRzkcBDSdP+M9+KFsDnDyUpJalvZWklr/2UJZj+PSBdlNh0GqYcAY+vAavb4Ouc6HpW+DlDzaljU6fOQ4NxF5Gff5/VDo7n7duTme7xXtctH2DbXZT+dZ8Ma+b/Y2/+gz2aXFsOHmNQT8dptW3u5i7/SJX4x7mfGxQggv/fKAk43xcQCL+qtLnnw8kICGEEEI8Z/49eyvHQIRO9oDEv2dvFcFIi97ChQs5efKk/ufExETGjh2LVqtl5MiRBokajxw5Qs2aNWnXrl2uj9+0aVNeeukloqOjDfIDpKen8/bbb5OWlsbYsWON8sVNnz4dlUqlT27/JH5+frRr145du3bx7rvvGlXn0Gg0bN26VZ+0MasePXpgZ2fH+vXrWb58OWC8RAOUnBzDhw/n0qVLDB061Cj/BMDBgwfZvHlzrsZc1HTJJmfPnk1oaKh+e1xcHJMnT87TsSZMmIC1tTWLFy9m/fr1Bm0ajcbgMXma52rx4sWEh4cbnXfLli3Asy/zyU+yTKOEKgmlPZftD6dT3XJPnMp3PT6Jf8/eyqxW8UjsgxT+d+oG609c4+z1+yb3LW1rwav1K9C7UT6VwbyyG3bMgOvHDberzMDSFlISlKDDa5uUIISOLiChq7KhK/uZtY+VPXg0Vb50tFplVsTtcxAdArdDIPocxFyA9GSTQzTXJFONy1Qzv2ywPVZrzwWNBxcSPDi/y5OxOzxwrlSPV5tUp3PdclhbZAvM1OzK/T0LcchpvJAZiLgbwX2bijjU7IoQQgghnh+6919Pes+mC0iYes/2ohgyZAjNmjWjbdu2ODo6snfvXm7dukWdOnUM3peDkmzywoULJCebfj+Xk+XLl9O8eXPmzZvHzp07qV27NkePHuXKlSs0a9aMjz/+2Ggf3YeSeUlqv3LlSjp27MjcuXP55ZdfaNCgAa6urly/fp0LFy4QExPDnDlzjGZh2NnZ0b17d1atWsXq1atxdHQ0WZoTYP78+Vy5coXff/+dTZs20aBBAypUqMCtW7e4fPky169fZ/z48bzyyit5eISKhr+/PxMmTGDu3Ln4+vrSvn17bGxs2LlzJ56envpKI7lRvXp1li1bxmuvvUafPn2oW7cudevW5e7du5w5c4YbN24Y5CHJ63O1ePFiRo8eTe3atalVqxbm5uZcuHCB4OBgbGxsmDZtWoE8Rk9DghElVHEv7blsfzgzNoWw4mDEY9cWZp0aCDDEz4ud56NZf+Iau85HG9S41jFXq2hbsyy9Glakbc2yWJrnwwSfa8dhx2cQvidbgwp8+kJpLyVnhKlAhE72gMT5TeA3+vHnVanAvpzyVTVL5FyTAXFXsgQpHv0bFw6YXobhokqghVkILQjJ3HgDIjeU5eBfnlC2DpXrNMWrVmNULlVZdjadn+5OZp3NF7ibCkhkCURcV7nR9+5k3jibzshnmxkohBBCiGImt8EFdyebFzYQAbBgwQIqVarETz/9RHh4OM7OzrzzzjvMnDkTR0fHfDlHtWrVOHnyJFOnTuWff/5hw4YNeHh48Mknn/DRRx9hbW1ttM+pU6cAGDp0aK7P4+bmRlBQEIsXL2bNmjUcPXqU1NRUypcvj6+vL927dzdZxhKUmRC6xJW9e/c2WboTwNbWlq1bt/Lzzz/z66+/cvr0aQ4fPkzZsmWpUqUK48ePZ+DAgbkec1GbPXs2NWrUYOHChWzbtg0XFxf69evHrFmz6NGjR56ONXDgQGrXrs0333zDrl27WL9+Pc7OztSsWZMPPvjAoG9en6uZM2eyceNGDh8+zI4dO0hNTaVixYq89dZbTJo0yWTOi6Ki0uZX+ldRZOrUqQPAuXPningkmZ60/jB7n3IO1rSo6sLO89HEPzSd/NHH3ZHeDd15tYE7znaW+TPQ6POwc6YSOMiu+svQ9hMo9yixTNAiqNnVdCAiq/iruQtEPI3URIg5/2gGRZYgRWJMng6TrrYkrXQ19sS7cjnZgQEW+yjD3cxgCxgGIpI+xtzZ84VOWiWEEEIUBY1Gw4ULFwCoUaMGarWssi5s3t7eREZG5lvVjPyk0WhwcXGhcePGbNu2raiHI54DeXnNedb7UAlGPAeKYzACHh+QuB6fRL/Fh7gen4S5WmVyBgSAm4MVPXzd6d2wItXd8rGM5d1I2D0LTq9RcjNk5eWv5HrwbJZ/5ytoD2KU5R2Plnlob4egiQ7FLP1pEkyplBkbWo0EIoQQQogiJsGIolecgxHHjx+ncePGHDx4kObNmxf1cMRzoDCDEbJMQxQY3dpCXUBi4JIglg9vwt6LMXz973mS05QgQPZAhJW5mk51ytG7UUX8q5bB7GnKcebkQbSy3OLYcuPym+XrK0GIKu2Um/GSpJQrlAqAygGAkmbTTKOBu+EkXz9D2Lkj3I88jevDMCqpbmKmetwfU62SywJ4mKGmn/0Z+g3rRAUJRAghhBBCFCuNGjUqlkESIXJDZkY8B4rrzAid6/FJ9F18kBvxj0/g09Tbmd6N3HnFpzz21s9WL9tIUjwcnK8stUjLVmXCpZqyHKN295IXhMijyNhENhwN4+Txw7gkXqaG+io1VVepob5KOdXdnHc0t4G6vaDRCKjY+Ll/nIQQQojiQmZGFL3iPDNCiPwmyzREnhT3YATAsYg4+iw+ZLTd09mWXg3d6eVbEU8X2/w/cepDOPID7J8LyfGGbQ4VIeADqD8QzF6sSUIZGi0HLt9h3fFr/HvuFmXSo1ljOQMP9R3StWrUaMhxQopbXWg0HOr1A+v8SdYkhBBCCNMkGCGEKEyyTEM8UXx8PPHx8QCkpaUVu2oa2ZV3skFFZh0ItQoWDmzIyz7lnr0cpynpqXDiZ2VJxoPbhm22LtDyfWg8EiyMMxK/CMzUKlpVd6VVdVfu3wpH9fP72CfdIVJTloGpnwCwzuoz3FWxaFChzlrB4/ZZ2Pw+bJv6aLbESHBvKLMlhBBCCCGEELkmodUSau7cuVSqVIlKlSpx6dIlYmNji3pIOdIlstSi3ARbmKnQaOGrf85z417eai8/kSYDTq2B75soN8xZAxFWDtDmYxh/Cpq//cIGIgzEX8VhTQ/sk65xXeXGwNRPuKUqww3K0DdlGpGasqjRckfrwBWrWob7pj2Ek7/BT23hh5Zw9CdIvl801yGEEEIIIYQoUWSZRgmVdWZEx44dMTMzIzQ0tGgHZYKpihrAE8t+5plWCxe2KGU6o0MM28ytoemb4P8e2Do/23mKSmwYnPgF4qPAyRMaDgOXKs92zPirOZbvvBmfxLBlR3BKvc3vlp/jpY4mUlOWjzPeZGzFMJrc+xd1sokcExZ24NNbyS3h3vDZxieEEEIIWaYhhChUkjNC5ElxzRnxpNKe+RaQCN8LO2bAtaOG21Vm0HAotJ4CDhWe8WqK0Mnf4H/jQJuRuU1lBq/OB98hT3/coEXwzwc5lu+8Hp9Er/8ewOz+dX1A4rO0oSzPeBk3Gy3f1o3E/14g6ijjXCCAUp2k0XDw6QtW+ViWVQghhHiBSDBCCFGYJBgh8qQ4BiNyE2x45oDE9RNKEOLKLuO2un2gzUfPPnugqMWGwcImhoEIHZUZjDn61Nd4PT6J9d9/zOqE+kaBiKx9Bi4JIj0uipfNj7E0vbNBe2VXO758yYJmd/+H6tRq4yShAJalwKePEpio4PtUYxVCCCFeVBKMEEIUpsIMRsirmSgQ/5699cQgg7uTDb+/5Yensy1RcQ/59+yt3B085gKsGQo/tjEORFTrBP/ZD32WlvxAxL3rsP4N04EIULYf/gEy0p7q8P+evcXshHY5BiIg8zkyd/ZkaXpn2tYsi51lZrLUKzGJDNgYz5DrPQkddAR6/gAefoYHSX0Ax1fAkgD4obXyfcqDpxqzEEIIIYQQ4vkgMyOeA8VxZgTAsv3hdKpb7omzHa7HJ/Hv2VuM9K/0+APGR8Hur+HUKtBqDNs8W0C7qeDV/BlHXYjSUyH2EkSHKpUo6vY2bI+/CnPrPv4YpcpB0l0oVxcCPoRqHfI0hKd5jqITkpmz7SJrjl5Fk+XVQ6WC/o09eK9jdco+vKIEHU6thpR7xge0LKUs32g8QlnOIYQQQgiTZGaEEKIwyTINkSfFNRiRbx7EwL7/g2PLICPVsK2cD7SbBlXbF9/SkpoMpfJE9rwJZ/6A9a8r35etDW9ny72g1cLMsqDJds1ZWdhAWpLy/eD1UK29YfuVPUpFkQq+4FwF8vENTOjN+3zxdyj7L98x2G5racbbAVV4o2VlrLUpELIRji2Ha0dMH6hCQyUoUbc3WNrl2/iEEEKI54EEI4QQhUmWaQgBkHwPdn4O8+rD4cWGgQiXqtBnOby1V5kNUBwDEadWK8sSvnSHrZ8at5fNUirzzkVlpkRWKhU0eSPna1OZQUZ65s8VGhj3Ob4c/nwTFjaGXV/k+RIep1Z5B359vSnLhzehimtmEOFhagb/t/Uibf9vNxvP3UVTbyC8sQ1GH4Smb4GVo+GBbpyA/42F/6sBm96DW2fydZxCCCGEEEKI4keCESVUfHw8ERERREREkJaWhkajefJOJUVaEhyYpwQh9n4LaYmZbQ7u0G0+vH0Y6vbK10/68+zGSTjyI2x6Fy5vN25PfQA3gyE9SVmKkZ1LNbCwVWZF1O6u9M/u5Vnw6kIl8JCVygxeXQAf3YC3dkOPxWBXxnj/6ycyvy9fz7g9+Hf4taeSCDRi/+Ou1iSVSkWbmmX5Z0IrZnavQ2lbC33bjXvJTFgTTM9FBzkWEQdudeCVb2FiKHT/HtwbGx4sNQGOLYXF/vBjOzjxK6QmIoQQQghhikqlQlUcP5B6RteuXWPkyJFUqFABa2trqlevztSpU0lOTi7qoeVo+PDhqFQqdu/enet9pk+fjkqlYsWKFbnqHxERgUqlIiAg4KnGmBcBAQGoVCoiIiIMtqtUKry9vQv8/C8K86IegHg6c+fO5bPPPtP/7OrqWoSjyUHQIqjZFZw8Ht8v/iqc36TMAjjxixKASLhp2MfGGVpOVPpYWBfcmLNLSVASZrpUBRsnw7ZD/4Uza5XvreyVpSJZla2d+X3MeWXZRdY/mOaW8MFVMHvCf0PfIeDZHE7+quTNcPIE36GZCTor+JquUpGRDl4twNxamXlhqk/EfgjbqXylJIC3v2F78n1IT4ZSZR87RAszNUObe/NqA3f+u+syyw9EkJqhBMhOXY2nz+JDdPEpz5TONfF0sVOuyXeIMgvi+Ao4vRZS7mce8Pox5evfj6Bef2UZh1udxz9OQgghhBAlXFhYGM2bNycmJoa6devSsmVLjh07xsyZM9m+fTu7du3CysqqqIcpRL6QYEQJNWHCBIYPHw5Ax44dMTMze/wOhS1oEfzzgbK84rVNOQck4q/Cz13hbgTs+QaS4gzbLe2hxRjwexusHQp82AaWvwKRB5TvB66GGi8btmddZhF93nj/cj7Q/b/gVhvK1DC93OJJgQgdlyrQfnru+mY9ds/FyvcpCUrSyOxuZJk5UaGhcfv5TbBxtDIjpU5P6PT4pR6ONhZ8+EotBjXz5Ot/zrP5TGaFlL/P3GRbyG1GvOTNO22r4mBtoTxGXb6DDjPg7Holt0TWMaXch6M/Kl8VmyrlQev0BEvbPDwQQgghhBAlw8iRI4mJiWHcuHHMmzcPgPT0dPr168eGDRv48ssvDT6QfJG4u7sTGhqKrW3RvQ8MDQ3FwsLiyR1FrsgyjRLKyckJb29vvL29sbCwKH7JjGp2hdLeSpDh565K0CG7+Cj4qZ3SBwwDEWZW0HwMjD8FAR/kLRARGwbbpsG6Ecq/sWHGfTLSlMoca1+DhU3hYZxxH6ss54wOMW53bwhe/tDkTajXz8T+9uA7WJmRUNQ3z1b2poMhnb9SEoDWehUqNjFuv3FS+ff+dUiKN25PuKUsqQnfq8yieMTLxY7/Dm7Euv80p17FzBwRqRkafth7hYBvd/ProQjSH82ewNIOGg6Dt3bBqL3QeKQSiMrq2hH4622YXRM2Tza99AWUQJip37fs4q8qfYUQQgghioGjR4+yd+9eypYtyzfffKPfbm5uzqJFi7CwsGDBggWkpT1dWfeSzsLCgpo1a+Lp6VlkY6hZsyZVqlQpsvM/b4rZHax4bjh5KDMicgpInP0TFjRWKj1kpTJTbkrHnVA+hbdzydt5T/4GC5vAgblw7k/l34WNle1Zqc0h6L9KpYc7F0zf2OpmPljYZVasyKpyAIz4G7r8H/j0yds4i4vKraHle9D/VyhT1bj9bmTm9+4mlnlEBcG2qfBzN/ihlVFzE29nNr79EnP616e8Y+bymrjEVJb+bzt/fP0Gt5cNQps1aFS+PnSdAxPPQ7d5xstLku/BkR/gv36wtKOS90L3/Ohm5OQUANPRzcj55wMJSAghhBDZhN9J5Kst5xmz6gRfbTlP+J2Sk8Mpa16BxMRE3nvvPTw8PLCxsaFhw4YEBgbq+65bt46mTZtiZ2eHm5sb48aNIynJ+D2ft7c3KpUKrVbLvHnzqF27NtbW1ri7uzNu3Dji4+PzZeybNm0CoFu3bkZLMdzc3GjZsiV3797lwIED+XK+q1evMmrUKLy8vLCysqJs2bL06tWLo0eP5rjP+vXradq0KTY2Nri5uTFs2DBu3Ljx2PPs2bOHgIAASpUqhYuLCz179uT8eROzip8gp5wRK1asQKVSMX36dKKiohg0aBCurq7Y2NjQuHFjg+c8uyVLluDj46N/PseOHcu9eybK0j/yuJwRISEhjBgxQv94urm50apVK/0Ml6wePHjAjBkz8PHxwdbWFgcHB1q3bs3GjRtNHjs0NJShQ4dSpUoVrK2tcXV1pUGDBkyYMIGbN2+a3KckkGCEKDimAhIX/4Vlr8AfIyAjxbB/nV7wzhElMaNjxbyfLzYM/jcOtBmG27UaZXvWGRIqlWFOB1MzH5q+qczM+PAatP0k7+N5HgxeC++dhwG/Q7VOxu26mRNguppH4h3Ui1vQM3IWewLCeL99ZWwtzehrtpvtlpMYkLoet6i/UR2Yi3ZhE8OgkVUpZVnGW7vhrT3K99mXmlw9DBv/A9/VgC1TwLVWLmbkZFkaVNpbmcUjhBBCCADWHrtK+9l7WLwnjE2nb7J4TxjtZ+9h7bFczDosRlJTU2nXrh2//vorDRo0wM/Pj1OnTtGzZ0+2b9/OnDlzGDRoEObm5nTs2JGMjAwWLFjAG2+8keMxx44dy6RJk6hYsSLdu3fX79O6dWsSEhKeecynTp0CoGFDE0tns2zX9XsWZ86coWHDhixZsgRbW1t69epFtWrV2LBhAy1atGDdunVG+yxcuJA+ffpw4sQJWrRoQUBAANu3b8fPz4/Y2FiT5/nrr79o164de/bsoX79+nTs2JHTp0/TrFkzLl++/MzXkVVERARNmjThwIED+Pv74+vry/Hjx+nRowdbt2416v/+++8zatQoLl26RNu2bWnevDkrV66kTZs2pKSkmDhDztatW0fDhg1ZsWIF9vb29OrViwYNGhAWFsaECRMM+t6+fZtmzZoxbdo07t69S4cOHWjWrBnHjx+nZ8+efPXVVwb9T5w4QaNGjVi5ciWurq707NmTZs2akZqayrx58/RlOEsiyRkhCpYuILGss3Lzt8rEcoaqHaDdp8on4s/ixC/GgQgdbYaSADJr3oV6/ZSEjWVrgUcz430cKjzbeJ4XDuWVL1NcqkCl1nAj2HTOiRsnlUBPdAiWdlsZ8/6bDKymxWn5T5hhWAFGpc0g46+x3HNphLNnLcPjVGgAFeZBx8/hzB9KydKbWf4QJ99T8pMcXqyMI/VBZkAia86S7IGIx+UzEUIIIUqQ5LQMUtKVv62WZmpsLA3ziaVnaEhMVd4nqVQouZuyOXM9ng/XnyFDqzXYnqHR8uGfZ6jr7oC7k7L01MpcjbWF4TlS0zUkpSnnMFersLMyvNXQaLSkZmiM9isIhw4dIiAggIsXL1K6dGlA+QR9xIgRjB49mri4OHbu3EnLli0BuHHjBr6+vqxatYqZM2dSuXJlo2P++uuvHDp0iEaNGgHKp9vdu3dn586dTJs2jdmzZz/TmKOiogCoWNH0h3K67bp+T0ur1TJ48GDu3LnDhx9+yBdffKGvSvLHH3/Qv39/Xn/9dVq1aoWbmxug3Oi///77WFlZ8c8//+hnJzx8+JAePXroZ3VklZCQwBtvvEFGRgarVq1i4MCBgJID44033uDnn39+puvI7ueff2bs2LHMnj0bc3Pld2/evHlMmDCBzz//nI4dO+r7Hjx4kO+++w5nZ2f27t1LnTpKovTY2Fjatm1LUFBQrs976dIlhg0bhkajYc2aNfTrl3m/o9Fo2Lx5s0H/ESNGEBISwuTJk/n888/1OSiuXLlCx44d+eSTT3jllVeoV0+phDd//nySkpJYv349vXr1MjhWaGgoTk5OuX+QihmZGSEKnpMHdJ1rvL28L4zYAkP+ePZABCg5KPLS3ngEtP1YKRHq6P7s538RNRwGr/0PpkRAs1HG7QYzJ3xBpcLl4hqjQISOGRrWL53F97suk5xmIrBkZa88b6P2wpu7lPNb2GU75wlIvAMqtRJ0WNZJCUJIIEIIIcRzbNHuMOp/tpX6n23lk41njdpPX7+nb2/7f3tMHqP3fw8aBSJ0MjRaxq46qT/GsgPhRn3+Cr6ubx+5wniq/53EFBbtNpHLqwCYmZnx448/6gMRAMOGDcPV1ZXLly8zZswYfSACoEKFCgwePBiAvXv3mjzmmDFj9IEIgFKlSrFw4UJUKhVLly7N86fp2T14oJR5zylBo52dnUG/p7V7927OnDlDpUqVmDlzpkF51D59+tCjRw8SEhJYvny5fvuyZctISUlh2LBhBsskbG1tWbBggckSq+vWrePOnTt06NBBH4gAJQfGnDlzKFXKRHL1Z1C5cmW+++47fSAC4J133qF06dIEBQWRmpqq3754sZLkfeLEifpABICLiwvffvttns47Z84ckpOTGTVqlEEgAkCtVtO1a+Ys3ODgYLZs2UKLFi346quvDJJh6safkZHBTz/9pN8eHR0NQNu2bY3OXatWLcqXz+FDwxJAghGicJStaZhAUW0G/X9RSk/mF6cnJLN5Urt4emo1mJsoM1WvP/RYDE1HQa1uyrYnBI3cNNF8++8F2n23h7+Cr6PN4U0R7g2VJT0Tz0OX2Upljqy0jwIe96/DXB+YV18CEUIIIcRjaHL4k6uTlJrDDNRiyNvbm6pVDfNhqdVqvLy8AOjQoYPRPrrEhDmtwR8wYIDRtlq1alG/fn3u37/P6dOnn2nMuvc8pm7ss7Y/q3379gHQv39/kxX5hg4datAPYP/+/QBGN9sANWrUwNfXOLfY4/YpXbq0wUyF/BAQEGBU6cLc3JzKlSuTlpZmsJTkcWPr2LEjzs7OuT7v9u3bARg1ysQHc9ls27YNgO7du5t8nv39/QEM8nboAmDDhg3jyJEjaDSmP9QriSQYIQqe7hNprVZJUKm2AE2GkvQwN1UPcqvhMOX4pqjMwHdo/p1L5E5pL2gwEF75Bho+evyfEBS6pnUF4Hp8EuNXB9P/+10cj7yb8w7WDtDkdRi1D97YCb5DwCL7JwrazCU8fm8rpUqFEEIIYUBt+h5YL/vSj+LM3d3033rd7AJT7bq2nGY46AIZ2ekSGj4pkeOT2NsrlcQSE00nDH348CHAM88o0I0zp0SMpq5H931OlSxMbX+afZ5FTstbdI9X1uf1xo0bqFQqPDxMfziVl7Fdvarcz5ha2pNdREQEAFOmTEGlUhl9lSlTBoA7d+7o95k0aRIBAQEEBgbSrFkznJ2d6dSpEwsWLMiXXCVFSXJGiIJlamo8ZG7Lvqb/WbhUgVfnGyexVJkpn6C7SBmeYqHhMDi4wGR+D63KDG2DIViczCAtQ0t11VWWxkwn8Mfm7Kjcl4E9euDhnEOZVJUKKjZSvjp9CafXwpElcOeiYb8tk+H4CmjzMdTsYrrkqRBCCFHCjA6owkj/SoCSMyK7eu6OnJqmfBKd05++9W+3oMdC00s1zNQqFgzyNcgZkV33Bu50rFMOUHJGZFfGzorRAYXzfiyn2QW5bc+L/Jqx4OnpycmTJ7l27ZrJdt32/LqJz8tj9KRZG6Y8zT7PorDOk9O5c3P+jAzl/W/Lli0fG7zQBSUAHBwc2LlzJwcOHCAwMJDdu3ezY8cOtm7dyqxZs9i3b1+JLTcqwQhRcB63Rv+1TQUTkPAdAp7NlWSV8VHKp/C+QyUQUZw8JmikenUB7/h2okuAUlKs6YVfsFclMch8J6ciImg3uzQjX6rE222qmEy8pWftCNU7w6GFj46tzly2AUpSzTWDlWSXbT+BKm0lKCGEEKJEs7Ywe2xiSHMzNY42j58U7ePuxKzePnz45xkysqzZMFOr+KqXD7XLOz52f0tzNZYmghQ6arUKa3XJmV2RXWRkJD4+PkbbdQklK1R4tuTn9evX56+//uLEiRMm23XbdYkNn5ZunOHhxnk/QLlOwCAXQYUKFbh48SKRkZFUq1bNaB9TSTV159EdLzf7FJby5csTERHB1atXjZbzQN7G5uHhwaVLlwgLC6Nu3bqP7aubvdGnTx/GjRuX63OoVCr8/f31yzhiYmIYP348v//+Ox999BFr1qzJ9bGKE1mmUULFx8cTERFBREQEaWlpxW/t0JOSBZoq+5lfSzZcqihVM/osU/6VQETx4zsExhwF/3ehbm/l3zFHwVdJHOVdxo7Fg30Z5JRZcnVNRhtS0zUs3hNGm29381tQJOmpycryn+yy//6NPw3DAk0nu/ytFyx/BSIPFtz1CiGEECVEv8YebH+vNaMDqtCtfgVGB1Rh+3ut6dtYci2ZuuE7f/48wcHB2NvbP3OQoEuXLgAEBgYaLRW5ffs2+/btw9HRUX9D+rR0iTvXrFmj/6Q+q99++82gH2TmMjBV8vPixYsEBwcbbX/cPvHx8SbLbRaWx41t27ZtxMXF5fpY7du3B2DJkiW57rtx48ZcH98UV1dXpk+fDihlWksqCUaUUHPnzqVSpUpUqlSJS5cu5Vjbt8ic3/TkZIHZAxLnjUsCiefYk4JGajXW4w6j6b6I22WaE2QboG+KTUzlk41nWTb7Ax5+Vx/2z4GE20pjToGwyq3gncOmS7ZGHYTlL8OvveC66U8jhBBCiBdFpTJ2TOlckwUDfZnSuSaVytg9eacXwMKFCzl5MrNSWGJiImPHjkWr1TJy5EisrDKTeR85coSaNWvSrl27XB+/adOmvPTSS0RHRzNlyhT99vT0dN5++23S0tIYO3asUZLG6dOno1KpGD58eK7OExAQgI+PD+Hh4UydOtVgmcnGjRv5888/KVWqlMHxRowYgaWlJb/88otBYsukpCTGjx9v8oPRvn374uzszNatW1m7dq1+e0ZGBhMnTnzmqiDPQpdscvbs2YSGhuq3x8XFMXny5Dwda8KECVhbW7N48WLWr19v0Ja9tKefnx/t2rVj165dvPvuu0aPgUajYevWrfoEm6BU/jA1i2XLli1A/ufeKEwSjCihJkyYQHh4OOHh4VSrVg0XF5eiHpIhv9HQ+asnL7/QBSQ6f6XsI0RWlraofQfhNuYfNk16hXfbV8dGPwVVS7uH/2D7IBK2Tyd210KIv8r9Hzo/fkbOyK1KG5CuzlYBJGwH/NgGVg+G2yEIIYQQQugMGTKEZs2a0blzZ/r370/VqlXZvn07derU4bPPPjPo+/DhQy5cuEBYWN5KmS5fvhwXFxfmzZtHvXr1GDBgADVq1ODPP/+kWbNmfPzxx0b76AIB2YMUOVGpVKxcuRIXFxe+/PJL6tSpw6BBg/D396dnz56o1WqWLVtGuXLl9PtUrlyZr7/+muTkZNq0aUP79u0ZMGAAVatW5ezZswblK3UcHBxYsmQJarWa/v374+/vz6BBg6hRowZ//PGHvpRqUfD392fChAncuXMHX19funbtSt++ffVLUPz8/HJ9rOrVq7Ns2TJAWX7h4+PDwIED6dy5Mx4eHvoZLzorV66kXr16zJ07Fy8vL9q1a8eAAQNo2bIl5cqVo1OnThw7dkzff/HixVSuXJk6derQp08fBgwYgK+vLxMmTMDGxoZp06blwyNSNCQYUUI5OTnh7e2Nt7c3FhYWqNXF8Kn0G527PBBOHhKIEE9ka2nO+PbV2D0pgL6NKlJTfZVKqlv69p6HKrNs6Xwckq5xXeXGrZ5/gH054wM5eXCr5x9cV7lhrkkhpGJ/8Ghm2Of8JljUAta/AbGFUw9dCCGEEMXbggULmDVrFpGRkfz111+oVCreeecd/fKJ/FCtWjVOnjzJ8OHDiYmJYcOGDahUKj755BN27dqFtbW10T6nTp0CMkty5oaPjw8nTpzgzTff5MGDB/zxxx9cuHCBHj16cODAAfr27Wu0z4QJE1i7di0NGjRg//797Nixg4CAAIKCgnL8YLR3795s27aNli1bcvLkSbZs2ULt2rU5dOiQyVwNhWn27NksWrSIqlWrsm3bNg4cOEC/fv3YtWuXwSyX3Bg4cCBHjx5l0KBBxMbGsn79eoKDg6lWrRrz58836Ovm5kZQUBCzZ8+mWrVqHD16lI0bN3Lt2jV8fX35/vvvGTJkiL7/zJkzGTlyJCqVih07dhAYGMjDhw956623OH36NM2bN8+Xx6MoqLT5lf5VFJk6deoAcO7cuSIeiRCF5+z1eyz6azfVbmykouoO76f9B4ARZlv4N6MJZqU92OY6F2tztVLBo2YXMLfienwSA5cEkR4XxQD7U/R+5wvcHa3h0jbYORNuZasRrjKDBoOg9ZT8SbIqhBBC5IFGo+HChQsA1KhRo3h+APWc8/b2JjIyMt+qZuQnjUaDi4sLjRs3Ztu2bUU9HPEcyMtrzrPeh8qrmRCiRKrr7sjC0a9Se+AsvnecqN++PONlblAG4iOwjtoDV3bBHyPg+gl9ICIq7iHmzp5KIMLJRqmkUb0jvLUH+v0CZWpknkiboVRnWdAQNk/OzE0hhBBCCFHETp48SXx8PDNmzCjqoQiRZxKMEEKUWCqVio51yvHvhFZM7VobR5vMtZIvq4/ov39gX5nrDvX1gQhPZ1t+f8sPd/tsayvVaqjdHd4+BD1/0OeWACAjFY78APPqw7ap8DD3WZaFEEIIIQpCo0aN0Gq1JXqqvnhxSTBCCFHiWZqrGelfiT2TAhj5UiXM1SqWZHSlb8pU1mf483VcK/y/2WUYiLBOhTm1IXCCUkEj69RLtRnUHwBjjkHXuWCfpQJHehIcmKcEJXZ/Bcn3C/tyhRBCCCGEKPEkGCGEeG442VoytVtttr7big61y3FUW5OJaW/za0ZHfayhdfUyOFibw5k/4MFtOL4cfuulzHzIzswCGo+AcSeh0yywLZPZlnIfds9SghIH5kHqw8K5SCGEEEIUqoiIiGKZL0KIkk6CEUKI505l11L8OKwx8wc2MGr7NSiKNv+3m9uHVmVurD8QzLNlTdZoMmdLWFhD87dh/CloNxWss2TMTopTlm3MbwCHl0B6Sr5fjxBCCCGEEM8bCUYIIZ5L1+OT+L9/LwJgplIZtN15kErAjbf5P9sJ3HNtBL4mSmFd2goLGsH+ufAgWtlmVQpaToTxp6HVZLAsldn/wW3YMknZ58QvkJFeQFcmhBBCCCFEySfBCCHEcydr1QxPZ1v2TmnDtndbGSS4TMKahXFNqX91IiM2P+BydILhQU78AnFhsH0abJ5k2GbjBG0/VmZKNB8D5llqft+7Cv8bC983VZaCaDQFd6FCCCGEEEKUUBKMEEI8V7IHIn5/yw93JxuqudmzeXxL3J2sjfbZdSGGTnP3MfWvs8Q+SIGku8rMCJ2GJmZOaDRgVwY6faHklGj8OqizVOeIC4P1r8PilyB0k2GCTCGEEEIIIV5wEowQQjw3cgpE6Lg72bD2Py3wdLYFwMo88yUwQ6Pll0ORBPzfbpYcjSPl7aPQegp4+EHlNsYn++cD+LUXnNuoJLbsOhuGrIeytQ37RYfAmsHwY1u4vEOCEkIIIYQQQiDBiBIrPj6eiIgIIiIiSEtLQyNTwYXg37O3cgxE6Lg72fD7W354OtuSkq6hb+OKeLnY6tsTktP5cvN52i8LZ3OZEWhH/qOU+swqLQlOrYawHbDuNTizFk7+Br/2VIIPptw4oVTtWP4KRB7Mz8sWQgghhBCixDEvjJOkpaVx4cIFYmJiuHfvHo6Ojri6ulKjRg0sLCyefABhZO7cuXz22Wf6n11dXYtwNMVL+J1E1hy9yrW7D6lY2pb+TTyoVMauqIclCsFI/0oAdKpbzmQgQkcXkPj37C1G+lciJT2DXw9FMm/HJRKSlcSTV+OSeHvlCZp4l+aTLrWp7+GUeYCL/0LKPeV7y1JQrh4sCQBthomzqYAssyGiDsLyl6FKO2j7Cbg3fKZrFkIIIYQQoiRSaQuoaG5MTAwrVqzg77//5siRI6SkGJe7s7a2pmnTpnTp0oXXXntNbqjzID4+nvj4eAA6duyImZkZoaGhRTuoYmDtsat8+OcZMjSZv9ZmahWzevnQr7FHEY5MlARxianM33GJX4MiDX6HAHr6ujOpUw0qONkoSy0iDyhJLq0dwcIWDszN+cD1BsCDW3Blt3Fbza7Q5mNwq23cJoQQ4oWn0Wi4cOECADVq1ECtlonNQoiCk5fXnDp16gBw7ty5pzpXvgcjLl26xNSpU9mwYQOpqakAlClThho1auDs7IyDgwP37t3j7t27nD9/ntjYWAAsLS3p1asXM2bMoGrVqvk5pOfes/4SPC/C7yTSfvYeo5tIUAIS299rLTMkRK5cjn7ArM2h7DgfbbDdylzNW60q85/WVbCzyjKxbN0IOPdnzges1Q36/wbh+2DnTLh6OFsHFfj0gYAPwaVK/l2IEEKIEk+CEUKIwlSYwYh8XaYxduxYlixZQkZGBm3atGHQoEEEBARQqVKlHPe5cuUKu3btYtWqVaxdu5b169fz1ltvsWDBgvwcmngBrDl61WQgApTkhGuPXWVK55qFPCpRElUtW4qlw5uw/9IdPv87hPO3lLKfKekaFuy8zOqjV5nUsQa9G1XETK0CJ8/HH9DlUYC1UksY+S9c3q4EJW6eetRBC2fWwdk/wXcwtJoMTjKTRwghhBBCPL/yNbS6dOlSRo8eTVRUFNu2bWPEiBGPDUQAVK5cmddff50dO3YQGRnJf/7zH5YtW5afwxIviGt3Hz6hPamQRiKeF/7VyvD3uJZ83duHMqWs9NtjElKYvP40XRfs5+DlO9BwGKjMTB9EpQbfLKVBVSqlOsebu6HfL1CmRmabNkNZ+rGgIWyeDAm3le1BiyD+6pMHHH9V6SuEEELkRQn9O6NSqVCpVEU9jHy1adMmPvroI9q3b4+joyMqlYrOnTsX9bBKpIiICFQqFQEBAQV+roCAAFQqFREREQbbVSoV3t7eBX7+kipfZ0ZcuXKFcuXKPfX+7u7uzJs3jw8//DAfRyVeFBVL2z6hPeeEhkLkxEyton8TT7rUq8Di3WH8uO8KKelK9ZrQm/cZ9NNh2tcqy5dtvqXsrkmGSSxVZvDqAuOlF/tnK2U+23wEbx9SZkXsngV3I5T2jFQ48oMSmPBoCuF74PBieG1TzjMm4q/Cz10zj+E3Ol8fByGEEM+poEVKuWr5O1MsDBkyhHv37hX1MIQoFPkajHiWQERBHEe8WPo38eDHfVdyzBkhCSzFsyhlZc77nWowsJkn3/5zno3BN/Rt20Oj2X2hPOMarOJN+wPYJF5Xlm74DjUORCTFw8GFSjWOX16FbvOg0XCo21spD7r3W7h/XembnqQEIlApb/5WvALDNxu/Ucz6BrG0t5IUUwghhMiNml2VQMTdCOVviamAhPydKTS9e/emVq1aNGnShISEBLp161bUQyqx3N3dCQ0Nxdb28R9YFqTQ0FCpHvkYkgFHPDcqlbFjVi8fZQ1/FmZqFV/18pHklSJfuDvZMHeALxvfeYnGXqX129M1WmafyKDZYX9+cvuE1ICpppNRnt+UWRbUygFqd1e+N7OAxiNg7Ano/BXYZa0u9CjAFh8FP7SEmIuZTdnfID7uUy0hhBAiOycP5W9Hae/MgETWJRvyd6ZQLV26lPfff5/WrVtTqlSpoh5OiWZhYUHNmjXx9HxCbq8CVLNmTapUkeTkOZFghHiu9Gvswfb3WjM6oArd6ldgdEAVtr/Xmr5ZZkWkpGfkmOhSiNxq4OHEuv805/tBDQ2WAN1PTufzv0PpOGcP/5y9hVHBIt8hMGILeLeE5u+ATWnDdgtrqNIWxgVDu6lK6dCsku7Cf/1g99cQGyZvEIUQQjy7nAISJTAQkTVPQGJiIu+99x4eHh7Y2NjQsGFDAgMD9X3XrVtH06ZNsbOzw83NjXHjxpGUZJxjzNvbG5VKhVarZd68edSuXRtra2vc3d0ZN24c8fHxhXiF+efBgwfMmDEDHx8fbG1tcXBwoHXr1mzcuNGg3/Hjx1GpVPj5+eV4rG+++QaVSsXHH39ssD01NZV58+bRpEkT7O3tsbOzo2nTpixdutT4PRKZORYyMjL45ptvqF69OlZWVnh4eDBlyhRSUlJyfX055YxYsWIFKpWK6dOnExUVxaBBg3B1dcXGxobGjRsb/I5kt2TJEnx8fPTP/9ixYx+7rOZxOSNCQkIYMWIEXl5eWFlZ4ebmRqtWrZg3b55R39w+VzqhoaEMHTqUKlWqYG1tjaurKw0aNGDChAncvHkzx/EWtnwv7WlKaGgoXbp04cqVKwV9qheSlPbMveS0DEb/dhwnW0v+r299o1kUQjyN5LQMfj4YwcKdl0lISTdoa1bJmU+71qauu6PxjhnpYJZttVzkIVjeGap3Vkp9lvaGQ99D0H8h9YHpAZSQN4hCCCHy7oll9rRaSM6nHAP3r8PvA5SZeOpHU8s1acrSw4GrwcE9f84DSrD9GZNP6pJXZr2diYiIoFKlSjRv3hyNRkNYWBh+fn48ePCAvXv3olKp+Oeffzhz5gyTJ0+mSZMmuLm5sW/fPmJjYxk0aBArV640OI+3tzeRkZG88847LFmyhICAAEqXLs2ePXu4ffs29erVY//+/djb2z/T9WS3e/du2rRpQ6dOnfjnn3/y9di3b9+mbdu2hISE4O7uTqNGjXj48CGHDh0iMTGRWbNm8cEHH+j716pVi/Pnz3P58mWTn/Q3aNCAU6dOcfbsWf29SWJiIi+//DL79u2jTJkyNG7cGLVazaFDh7h79y6jRo1i8eLFBsdRqVR4eXnh5+fHpk2b9MGiffv2ce/ePQYPHsxvv/2Wq2vU/S60bt2a3bt367evWLGCESNG8Nprr7Flyxasra1p2LAht2/f5tChQ6jVarZs2ULHjh0Njvf+++/z3XffYWVlRdu2bbG1tWXnzp14e3tjZWVFUFAQ4eHhBsEH3fVkT2y5bt06hg4dSkpKCnXq1MHHx4e4uDjOnj3LjRs3DH6n8/pcnThxAn9/f5KTk2natCmVKlUiISGBK1euEBoayq5dux6b1LPElvbMSWpqKpGRkYVxKiFylJyWwX9+O87uCzEAqIBvJSAh8oG1hRmjWlehT6OKzNl+kVWHo9BNvjkcHke3hfvp5VuRSZ1qUM7ROnPH7IEIgN1fKv9e/EfJL/H6v9D2Y2g2CvbPgSM/Qka2TwVsyzx6IyrBCCGEeOEk34OvvfL/uJq0zO/jo2BRi/w9/pRIsHHK32NmcejQIQICArh48SKlSyuzEHU3oaNHjyYuLo6dO3fSsmVLAG7cuIGvry+rVq1i5syZVK5c2eiYv/76K4cOHaJRo0aA8ml19+7d2blzJ9OmTWP27NkFdj35bcSIEYSEhDB58mQ+//xzfV6DK1eu0LFjRz755BNeeeUV6tWrB8CgQYOYOnUqq1at4tNPPzU4VmhoKKdOnaJBgwb6m1OASZMmsW/fPoYOHcp///tf/bKTmJgYunXrxg8//EC3bt3o0qWLwfEiIyOxtbXl7Nmz+hv78PBwGjVqxMqVK/nss8/yZenDzz//zNixY5k9ezbm5sp7snnz5jFhwgQ+//xzg2DEwYMH+e6773B2dmbv3r3664yNjaVt27YEBQXl+ryXLl1i2LBhaDQa1qxZQ79+/fRtGo2GzZs3G/TP63M1f/58kpKSWL9+Pb169TI4VmhoKE5OTrl/kApYvizTmDFjxmO/fvjhh/w4jRDPLPVRFQSApLQMNAU/MUi8QFxKWfF5Dx/+mdCKgBqZOR+0Wlh/4hpt/m83c7Zd5GFquukDJN+DlCyzH9pkqSxkVwY6faEs8VBle+m+fkzJJbHpPXgYl49XJIQQQpRMZmZm/Pjjj/pABMCwYcNwdXXl8uXLjBkzRh+IAKhQoQKDBw8GYO/evSaPOWbMGH0gAqBUqVIsXLgQlUrF0qVL87SEoCgFBwezZcsWWrRowVdffWWQYLFy5cp89913ZGRk8NNPP+m36x6b7LNGsm7T9QGIjo7mp59+olKlSvz4448G+S9cXV3194c53ScuWLDAYIZBpUqVGDJkCAD79u3L6yWbpLtWXSAC4J133qF06dIEBQWRmpqq366bwTFx4kSDgIuLiwvffvttns47Z84ckpOTGTVqlEEgAkCtVtO1a2aC2Kd5rqKjowFo27at0blr1apF+fLl8zTegpQvMyOmT59O+fLlsbS0NNme9YkUoqhYW5ix9LUmjFxxFGc7S+YOaICFmaRNEfmvups9K0Y0Zc/FGL74O4SLt5UAQ1JaBvN2XGL10SgmdapJL1931Fln5lg7wps74eK/cGkrVGpteOD4q8r0Wa0G1OagyUCf3FKrgWNL4ex6aPsJNBpheuaFEEII8QLw9vamatWqBtvUajVeXl7ExMTQoUMHo310n7bntKZ+wIABRttq1apF/fr1CQ4O5vTp0zRp0iQfRl+wtm3bBkD37t31S12y8vf3B+Do0aP6bZUrV8bPz4+goCBOnDhBw4YN9W2rV69GrVYbPD579uwhLS2Nzp07Y2VlZXSO+vXrY29vb3AOHQsLC5PLCKpXrw7k/PzkVUBAgFGlC3NzcypXrszx48eJjY3V37jv378fwCh4ANCxY0ecnZ2Ji8vdB0Lbt28HYNSoUU/s+zTPVaNGjdiyZQvDhg3jk08+0S+PKY7y5Z2qp6cn3377LX379jXZHhwcbBBFFKKo2FiasWx4EyzMVJhLIEIUsNbVXXmpSkvWHrvG7G0XuPNACczevp/C++tOseJgOB+/UpvmVVwyd1KpoEZn5Sur+KtKac9EJdpN9c7g/x6sHggPbmf2S46Hze/DseXw8ldQqVXBXqQQQoiiZe2oLHl4VlnzRehyRIDxtvzKG5E9QXM+c3c3PU47O7sc23VtOc1w8PIyvRzG29ub4OBgbty4YbK9uNHlL5gyZQpTpkzJsd+dO3cMfh48eDBBQUGsXLlSH4wICgoiLCyMNm3aULFiRaNzLFq0iEWLFuV4DlMJQ8uXL4+ZmZnRdt3sivyagZJ1vE86z40bN1CpVHh4mF4S6+npmetgxNWrSrUaU0uBsnua52rSpEns37+fwMBAAgMDcXR0pFmzZnTt2pXhw4fne26TZ5EvwYgGDRoQHBycYzBCl31WiOLAxtL4xQ0gJiEFFztLw0+qhXhG5mZqBjXzpFv98vx3dxhL94frlwudvX6fgT8G0bG2Gx++Uivn8rO6bObxUZnbruyGbvPhjR2woivER6BkQnn0Wht9Dn7uppQO7fi58iZSCCHE80elevbcC/FXYfUg5e9M9qTIwzdnVtRYPajEJEw29SlyXtrzoqTd52RkZADQsmXLx94QlylTxuDn/v378+6777J69Wq+/fZb1Go1q1atAgyXaGQ9h6+vrz6XQW7l53NTHM6T07lzc/6nea4cHBzYuXMnBw4cIDAwkN27d7Njxw62bt3KrFmz2LdvX7EpN5ovwYiJEyfy4EEOWd6BqlWrsmvXrvw4lRAFIjI2kQFLgmhbsyyf96hbpC9O4vlkb23BlM41GdTUk2/+vUDgqcxPT7aG3GbXhWiGNfdmXNtqONpmmTKYtayanStYloK74dDsP2DnArjA8E2ZfSxLGVbdCPlLWfbx0nh4aQJY2hbSFQshhCgRnlS+U1f2U9fn564lJiCR3yIjI/Hx8THaHhWlfFhQoUKFwh7SU9HNCOjTpw/jxo3L9X6urq506NCBLVu2sHv3blq3bs3atWuxsrKid+/eJs8REBBQohJ75qR8+fJERERw9epVo+U/kPk7kBseHh5cunSJsLAw6tat+9i+T/tcqVQq/P399cs4YmJiGD9+PL///jsfffQRa9asyfWxClK+zFNv2bIlL7/8co7tdnZ2tG7dOsd2IYpSVOxD+v8QxM17yaw8HMW0/0mJVFFwPJxtWTDQl/WjW9DAw0m/PS1Dy9L94bT+v10sPxBOWsajZKvnN2W+QXxzF4w9Dj2XQPN3Mg+qe6NoX14JRPgOA/fGme3pybDna1jYBM7+qWTUFEIIIcDw70xOQQbd35nS3krf85sKd4zFhKkbuPPnzxMcHIy9vX2eZwAUlfbt2wOwcePGPO+rmwGxatUqduzYwe3bt+nSpYtRhYY2bdpgZmbGpk2b9J/ul2S6m/p169YZtW3bti3XSzQg8/FfsmRJrvs+zXOVlaurK9OnTwfgzJkzz3Ss/CSL5sULr7SdBeWdMsstVnMrPuuoxPOrkVdpNrzdgvkDfXF3stFvj3+YxmeBIXSas5dtIbfRNvsPQdUncavnH8qbQbUZ1O8Pts6GB3TyIMXBW/n+9Gqo2xt6LIZSbpl97l+DP0YoyzpuFZ8/REIIIYqQ32jo/NWTZzvoAhKdv1L2eQEtXLiQkydP6n9OTExk7NixaLVaRo4caZCo8ciRI9SsWZN27doV+LimT5+OSqVi+PDhuerv5+dHu3bt2LVrF++++67RDHeNRsPWrVv1SRuz6tGjB3Z2dqxfv57ly5cDxks0QMnJMXz4cC5dusTQoUON8k+AUi4zexnL4kqXbHL27NmEhobqt8fFxTF58uQ8HWvChAlYW1uzePFi1q9fb9CWvbTn0zxXixcvJjw83Oi8W7ZsAZT8FsVFgQQjYmJiGDlyZEEcWoh8Z29twc8jm9LQ04kve/ow1K8AanULYYJKpeLV+hXYMbE1kzvXoJRV5sq5K3cSefOXY7T5v90MOO1Lv9XXuB5vnORJJyZkH1bXDyk/ZKSCa3VoMFCZSfHSeFBnWfoRuR9+aCWlQIUQQij8Rudu2YWTxwsbiAAYMmQIzZo1o3PnzvTv35+qVauyfft26tSpw2effWbQ9+HDh1y4cIGwsLA8nWPmzJn4+fnh5+fH22+/DShJInXb/Pz8jKpJaDTKbMrslSEeZ+XKldSrV4+5c+fi5eVFu3btGDBgAC1btqRcuXJ06tSJY8eOGe1nZ2dH9+7diY+PZ/Xq1Tg6OtKlSxeT55g/fz5t2rTh999/p3LlyrRq1YoBAwYQEBBAxYoVeemll9i6dWuux1yU/P39mTBhAnfu3MHX15euXbvSt29fqlWrBihBg9yqXr06y5YtA5TlFz4+PgwcOJDOnTvj4eFh9Hjm9blavHgxlStXpk6dOvTp04cBAwbg6+vLhAkTsLGxYdq0afnwiOSPAglG3L9/n59//ln/H0OI4s7B2oK1o5ozqFnxiRSKF4e1hRlvB1Rl1/sBDGzqSdYcqhGxDwGIintIv8WHTAYkrscn0T8wiY/TRhKtciGlfBOo8uiTGCt76DAD3jkM1Tpm7qQrBTrfFw4vgYz0grxEIYQQosRbsGABs2bNIjIykr/++guVSsU777zDvn37cHTMn+ogYWFhHD58mMOHD+s/gb93755+2+HDh42qSZw6dQqAoUOH5vo8bm5uBAUFMXv2bKpVq8bRo0fZuHEj165dw9fXl++//54hQ4aY3DfrTIjevXubLN0JYGtry9atW/npp59o2LAhZ8+eZcOGDYSFhVGlShW++eYb3n///VyPuajNnj2bRYsWUbVqVbZt28aBAwfo168fu3btyvExyMnAgQM5evQogwYNIjY2lvXr1xMcHEy1atWYP3++Qd+8PlczZ85k5MiRqFQqduzYQWBgIA8fPuStt97i9OnTNG/ePF8ej/yg0hZA+tewsDCqV69OWlpasa1pWtLFx8cTHx8PKLVtzczMDKYMifwTcuM+tcrbS1JLUWjO37rPF3+Hsu+S8ZRGRxsL/hzdgipllbJT1+OTGLgkiKi4h3g62/L7yAa4mycYV89ITYT/NocKDeFmsJIEM6uyteHlr6UUqBBCFDMajYYLFy4AUKNGDXlvXQS8vb2JjIwsllUzNBoNLi4uNG7cmG3bthX1cMRzIC+vOXXq1AHg3Lmny7knr2Yl1Ny5c6lUqRKVKlXi0qVLxMbGFvWQnkt/n75Jt4X7mbXlfLH8AySeTzXLOfDLyKYsH9GEqo+CDjr3ktLoOHcvy/Zf4WrcQ8NAxFt+uJcpbbqM55EfIT4SQjZAWiK0nw6WWfKjRIcopUDXDIW7+VCvXgghhBAF7uTJk8THxzNjxoyiHooQeSYzI0oomRlR8HZdiOaNn4+RoVH+i7zbvjrj21cr4lGJF016hobfj0QxZ/sl4hJTDdpUgBYyAxFZEmEa0Gjgv83gzkXl55fGK0s3Em7DjhkQ/Jthf3NrKQUqhBDFhMyMKHrFeWaEEPlNZkaIJ3JycsLb2xtvb28sLCzkD1MB8PVwosajyhpOtha0q1W2iEckXkTmZmqGNvdm1/sBjGpVGYssCSV0b4lsLMwIuXE/5zdJarVSFrTdNHD0hBbjle32btDje3hzJ5Srn9nfoBToeikFKoQQQggh8p3cwQqRAydbS1a+0YyXqrqw6g0/6rrnT2IiIZ6Go40FH75Si1Vv+pE9fcmF2wm8+csxuszfzz9nb6LRmAgeWJWClu/B+GCwczFsc28EDuXB0g4ssywLuX8N/hgJK7pIKVAhhBAvrIiICJkVIUQBkGCEEI9R2s6SlW/4UbuCQ1EPRQiuxycxcd0ptFowV6vInlI15OZ9/vPbCV6Zv4+/T+cQlFCbmTjwcbj4j5LkMvUB1Ho1WynQA7DYXwlMJEp+GiGEEEII8ewKLBgh0UPxPNNotOw8f7uohyFeINmrZuyZ3Ib9H7SlnIO1Ud/ztxJ4Z9UJOs3dy1/B1/V5T3J05xJY2CnfV/CFfr9Am48ge7jj7HqYUwcO/yClQIUQQgghxDMpkGCEs7Mz06ZNkzwG4rmk0Wj5eONZRq44xvwdl4p6OOIFYFS+81GySncnG9a/3QJPZyXJpI2F4ayHS9EPGL86mA5z9rDh5DXSMzSmT1B/AEw4oySsbPspxF2BnZ+TmZUii/Qk2DIZfmgJV/bk74UKIYQQQogXRoFEC0qXLs20adMK4tBCFLkFOy/z+5EoAGZvu8i6Y1eLeETieZZTIELH3cmG39/yw9PZlqS0DMo7WtO2ZlmDvBJXYhJ5d80p2s/ew7pjV0kzFZSwc4EOn0HVdnDiF9BmPH5g0SHwy6uwZoiUAhVCCCGEEHkmUxeEyKOBzTyo4qpMaW/kVZrOdcsV8YjE8+zfs7dyDEToZA1I3LyXjH/VMmyd0IruDSqQpfgGEbEPmfTHadp9t4c1R6NITc9hpkR8VO4HGBqoVN3Y+YWSc0IIIYQQQohcUGnzMbmDl5cXQ4YMYfDgwdSuXTu/Diue4Fnru4q8i76fzDf/XmD6q3UoZWVe1MMRz7ll+8PpVLecyUBEVtfjk/j37C1G+lfSbwuLecD3Oy+zMfg62VNHuDvZ8HabKvRpVBEr8yxLPLZNgwNzcz5R/YEQexmuHTXc7uAOHWZA3d4YlfwQQgjxVDQaDRcuXACgRo0asgxaCFGg8vKa86z3ofkajFCr1agevQH19fVlyJAhDBgwgHLl5JPjgiTBCCHEk0TcSeT7XZf586RxQsvyjtaMDqhCv8YeWFuYQWyYMtvB1FINlRmMOQqlK8GZtUrg4sEtwz6eLeDlr6F8vQK8IiGEeDFIMEIIUZgKMxiRr69me/bs4Y033sDJyYkTJ04wceJEPDw8ePnll1m1ahUPHz7Mz9MJUezcTUxl/fFrRT0MIYx4l7Hj27712TUxgAFNPDDPsn7j5r1kpv51jtbf7mL5gXCSHbzh1flK4CErlRm8ugBcqoBarSS+7P8LStWNLDMhog7CktYQOEFKgQohhBBCCJPydWaETlpaGps3b+bXX39l8+bNJCcno1KpsLW1pVevXgwePJgOHTroZ1GIZyMzI4qHuMRUBv90mNCb9/m0a21ezzJVXoji5trdhyzaHcbaY1dJyzD8M1CmlBX/aV2ZIdXSsT67Sskh4eQJvkOVQISOVgsrukLkfuVny1KQ+sDwRNaO0OZjaPw6mMmSJiGEyCuZGSGEKEwldmaEjoWFBd27d+ePP/7g1q1b/Pjjj7Ru3ZqkpCR+/fVXXn75Zdzd3Xn//fcJDg4uiCEIUeimrD9N6M37AMzcFMLRiLgiHpEQOatY2pYvevqwZ1IbhjX3wtIs88/BnQcpfP53KP4/RfKDxVASuy2B9tMNAxEAKQmgzjJ7os9yGLweXKplbku+p5QCXewPV3Znbg9aBPG5qEQTf1XpK4QQQmSjUqmeuw83N23axEcffUT79u1xdHREpVLRuXPnoh7WEw0fPhyVSsXu3btzvc/06dNRqVSsWLEiV/0jIiJQqVQEBAQ81RjzIiAgAJVKRUREhMF2lUqFt7d3gZ//RVHgoVUHBwdef/11du7cSVRUFF9//TV169bl1q1bzJ49m0aNGlG3bl2+/vrrgh6KEAVq+qt18HBWEgz+p3UVGnuVLuIRCfFkFZxsmNG9Lnsnt2HES95YmWcNSqQya8t5/L/eyfe7LpOQnGa4s7UDDPsL+v8GjUdC9Y5QrT2MPggdvwArh8y+MaHwS3elFOjOL+CfD+Dnro8PSMRfVfr884EEJIQQQrwQhgwZwqxZs9ixYwf3798v6uEIUaAKdZ5XhQoVmDRpEqdOneLs2bNMmTIFZ2dnQkJC+OijjwpzKELkO3cnG35/04+PXqnJlM41nrtIvXi+lXO0Zlq3Ouyb0oY3W1bC2iLzz8Pdh2l8++8F/L/exYIdl7ifNSihUkGtbtB1TuY2c0toMQb+cwAs7QxPFBoI++cqyzfuRuQckNAFIu5GQGlvqNk1H69WCCGEKJ569+7Nt99+y+7duwkMDCzq4RQr7u7uhIaG8ssvvxTZGEJDQ9mxY0eRnf95UyQLeGNjY9mzZw979+4lLk6msovnR8XStrzVqsqTOwpRTJW1t+bjLrUZ1boKP+67wq+HInmYqlTVuJeUxnfbLrJk3xVGvlSJkS9VwtHWIueDnfodUhOV79VmoHlUnUOTCsmpSkJMXUDitU3g5KG0Zw9EZG0TQgghnmNLly7Vf5+XJQ8vAgsLC2rWrFmkYyjq8z9vCm1mRHJyMmvWrOHVV1+lQoUKjBkzhkOHDuHi4sI777zDoUOHCmsoQhS6YxFxrDkaVdTDECLXypSy4sOXa7F/SlveaVOFUlaZseuE5HTm7biE/9c7+W7rBe4mphofQKOBsCyfHDQbDT1/gFJZSj3rSofejYBlHZUghAQihBCi6MWGKaWb141Q/o0NK+oR5VrWvAKJiYm89957eHh4YGNjQ8OGDQ1mG6xbt46mTZtiZ2eHm5sb48aNIykpyeiY3t7eqFQqtFot8+bNo3bt2lhbW+Pu7s64ceOIj48vxCvMP1evXmXUqFF4eXlhZWVF2bJl6dWrF0ePHs1xn/Xr19O0aVNsbGxwc3Nj2LBh3Lhx47Hn2bNnDwEBAZQqVQoXFxd69uzJ+fPn8zzenHJGrFixApVKxfTp04mKimLQoEG4urpiY2ND48aNHzvDZMmSJfj4+Oifz7Fjx3Lv3r0c+z8uZ0RISAgjRozQP55ubm60atWKefPmGfV98OABM2bMwMfHB1tbWxwcHGjdujUbN240eezQ0FCGDh1KlSpVsLa2xtXVlQYNGjBhwgRu3ryZ43iLuwKdGaHVatmxYwe//fYbGzZs4MGDB2i1WqysrOjduzdDhw7l5ZdfxtxcMqyL59fRiDiGLztC4qNPl/s38SziEQmRe852lkzqVJM3W1Zm2YEIlh8IJyE5HYCElHQW7LzMsv3hDGvhzRv+lXApZaXsqFbDiC1w4mc4vARaT1FyTNTsAvu+g0PfQ0aWIMb9GzCvnjJbQpMmgQghhCgqJ3+D/43LDBgDHFyglHz2HVJ048qj1NRU2rVrR1hYGH5+fjx48IC9e/fSs2dP/vnnH86cOcPkyZNp0qQJHTt2ZN++fSxYsIDY2FhWrlxp8phjx45lyZIlBAQE4OPjw549e1iwYAF79uxh//792NvbF/JVPr0zZ87Qtm1b7ty5Q82aNenVqxdRUVFs2LCBwMBAVq1aRd++fQ32WbhwIWPHjsXMzIzWrVtTpkwZtm/fjp+fH/Xr1zd5nr/++ovevXuTkZFBixYt8PT05MiRIzRr1oxu3brl6zVFRETQpEkTrK2t8ff35/bt2xw6dIgePXqwZcsWOnbsaND//fff57vvvsPKyoq2bdtia2vLypUrOXDgAFZWVnk697p16xg6dCgpKSnUqVOHFi1aEBcXx9mzZ5kwYQLjx4/X9719+zZt27YlJCQEd3d3OnTowMOHDzl06BA9e/Zk1qxZfPDBB/r+J06cwN/fn+TkZJo2bUrTpk1JSEjgypUrzJs3jx49elC+fPlne/CKirYAHD9+XPvee+9pK1SooFWr1VqVSqVVq9XaVq1aaX/88UdtfHx8QZz2hVW7dm1t7dq1i3oYwoT0DI22zf/t0npN2aT1mrJJW+OTzdrb95KKelhCPLX4h6naudsuan2m/aP/vdZ91fxki/aLv0O00feTDXfKyDA+0J3LWu3/1dRqpzkYf00vrdXGRRTOBQkhRDGXkZGhDQkJ0YaEhGgzTL2e6qQmabUP7ypfKYnG7elpme1JObwXv35SeQ3O6bX55unMY6SaeD+TlpLZnpxg6mJM7/eUAG3225nw8HD99oCAAG1cXJy+bfny5VpAW7VqVa2zs7N27969+rbr169ry5YtqwW0YWFhBsf08vLSAloHBwftsWPH9NsTEhK0bdu21QLad999N9+uS2fXrl1aQNupU6d8Pa5Go9H6+PhoAe2HH36o1Wg0+rZ169Zp1Wq11t7eXnvr1i399vDwcK2VlZXWyspKu2vXLv32xMREbYcOHfSPeda2+/fva8uUKaMFtKtWrdJvT0tL07722mv6fZYvX56rceue29atWxts1z2vgHbs2LHatLQ0fdvcuXO1gLZly5YG+xw4cEALaJ2dnbVnz57Vb79z5462Xr16+uOFh4cb7Adovby8DLZdvHhRa21trbWwsNCuWbPGoC0jI0MbGBhosO3ll1/WAtrJkydrU1NT9dvDwsK0VapU0ZqZmWlPnTql3657rNavX2/0mISEhGhv3Lhh/GA9g1y/5mif/T40X5dpfPHFF9SuXZsmTZowd+5cbt68SfXq1Zk5cyZXrlxhz549vPHGGzg6OubnaYUotszUKpa+1oSy9lZYmqv5YWhjyjpYF/WwhHhqjjYWjG9fjQMftGVSpxo4ZckZkZSWwZK9V2j5zU5mbgoh+n6y0mCqPnXCTUh4NK1Tla1dm6FMDY65UEBXIYQQz6H9c+BrL+Xr74nG7TdOZrYvaGz6GEs7Gs6IyEqbAX+MzDxG0H+N+5xZl9m+qr9xe2KMMs5CYGZmxo8//kjp0pnVzYYNG4arqyuXL19mzJgxtGzZUt9WoUIFBg8eDMDevXtNHnPMmDE0atRI/3OpUqVYuHAhKpWKpUuXkpKSUkBXk792797NmTNnqFSpEjNnzjRIut6nTx969OhBQkICy5cv129ftmwZKSkpDBs2zGCZhK2tLQsWLDCZuH3dunXcuXOHDh06MHDgQP12c3Nz5syZQ6lSpfL1uipXrsx3331nMOv+nXfeoXTp0gQFBZGamjkjc/HixQBMnDiROnXq6Le7uLjw7bff5um8c+bMITk5mVGjRtGvXz+DNrVaTdeumUm4g4OD2bJlCy1atOCrr77CwiLzfZRu/BkZGfz000/67dHR0QC0bdvW6Ny1atUqubMiyOecEZ9++innz5/X54E4fPgwoaGhfPzxx3h5eeXnqYQoMSqVsWP1W34se60Jrau7FvVwhMgX9tYWvNOmKvuntGVK55o421nq25LTNCzdH47/N7uY/r9z3LxnvP6Wgwszv1ebWKp34zj8t4VSBjQtuQCuQAghhBGt5vHtqQ8LZxz5wNvbm6pVqxpsU6vV+nuSDh06GO1TpYqShDynNfgDBgww2larVi3q16/P/fv3OX369LMOu1Ds27cPgP79+2NmZmbUPnToUIN+APv37wcwutkGqFGjBr6+vkbbH7dP6dKljZZNPKuAgACDm3tQAh+VK1cmLS2N2NjYXI2tY8eOODs75/q827dvB2DUqFFP7Ltt2zYAunfvbjKA4+/vD2CQt0MXABs2bBhHjhxBo3nC/9MSJF+DEX379uV///sfN27cYP78+TRp0iQ/Dy9EiVXZtRT+1coU9TCEyHelrMwZHVCF/VPa8PErtShTKjMokZquYcXBCFp/s5tPNp7henxmUOJn92kkNPwPoFJyR5T2hjd2QNV2mQfXpsPeb7g3pwlc2VN4FyWEEC+q7DPVsrO0LZxx5AN3d3eT2+3s7HJs17XlNMMhpw9XdQkNn5TIsbjQjTOnRIymrkf3vaen6dxnprY/zT7PomLFiia362ZgZH1eb9y4gUqlwsPDdG6qvIzt6lWlRHnlypWf2DciIgKAKVOmoFKpjL7KlFHuF+7cuaPfZ9KkSQQEBBAYGEizZs1wdnamU6dOLFiwgISEhFyPszjK18yRa9asyc/DCfHc+2FPGOUcrenewPQfTCFKCltLc95sVZkhfl6sOhLF4j1hxCQof/RTMzT8FhTFmqNX6dPIA9dSlvyx8wjtbTZgj9YwWeWQP+H4LxA4DmW5Jjg+jIJfXoX6A6HjF2DnUnQXKoQQxZX/u+A3WvnezNK4vYIvTIlUvjfxiSwAr2+FH9uaXqqhMoM+y8Dx0c2buYllpz59lUTFYHrWm52rMs5CYOpT57y054VWq823YxWmvDxGumvMy+P2NPs8i8I6T07nzs35MzKU/1stW7Z8bPBCF5QAcHBwYOfOnRw4cIDAwEB2797Njh072Lp1K7NmzWLfvn36WT0lTaGUsUhPT2fTpk0cPXqUO3fu0KxZM0aOHAkoUak7d+5Qu3ZtqaohXijf77rMt/9eQK1SXsBerV+hqIckxDOzsTTjdf9KDG7myZqjV1m0O4xbj3JHpGVo+f1IFBVVd1ht9QXu2ttcV7lh1vMPymWtmlG7G5qtn6BOyVZa69TvcPFf6Pg5NBiU85tpIYR4EVlYK185MTMHG6fHH6NCA6VqRvZqGiozeHUBlPN5/P7mlspXTtRqUJfc3FmRkZH4+Bg/BlFRSvn2ChVKxns53TjDw8NNtkdGKkGrrLkIKlSowMWLF4mMjKRatWpG++geA1Pn0R0vN/sUlvLlyxMREcHVq1eNlvNA3sbm4eHBpUuXCAsLo27duo/tq5u90adPH8aNG5frc6hUKvz9/fXLOGJiYhg/fjy///47H330UYmdFJCvyzRM2bNnD5UrV6Z3797MmjWLn376Sb9GB2DHjh34+vry119/FfRQhCg24hJTWbZf+QOg0cK87RdJTX9+1n8JYW1hxmstvNkzOYDPe9TF3clG39ZBfRRP1W0iNWXpm/QxPVdGGSzhSNj+jT4QYfS/IikO/nobfu4Gdy4VwpUIIcQLxncIjDmqzGCo21v5d8xR8B1c1CMrcqZu+M6fP09wcDD29vbUq1evCEaVd7rEnWvWrNF/Up/Vb7/9ZtAPMnMZrFu3zqj/xYsXCQ4ONtr+uH3i4+PZunVr3gefTx43tm3bthEXF5frY7Vv3x6AJUuW5Lrvxo0bc318U1xdXZk+fTqglGktqQo0GHHmzBleeeUVoqOjGT9+POvWrTOaxtS7d29sbW1Zv359QQ5FiGLF2c6SlW82w9nOkkpl7Fj5hh+W5gUeGxSi0FmZmzHEz4td7wcwq5cPFUvbsDzjZT5LG8rA1E+4QRlu3kumw+w9HLgcw/X4JAaENOfn9A5koCax8Rjo+CV0mgUWdpkHjtgHi1rA7q8hvWRkLxdCiBLDpQq0n64sy2g/XflZsHDhQk6ePKn/OTExkbFjx6LVahk5ciRWVlb6tiNHjlCzZk3atWtn6lD5avr06ahUKoYPH56r/gEBAfj4+BAeHs7UqVMN7s82btzIn3/+SalSpQyON2LECCwtLfnll18MElsmJSUxfvx4k0kV+/bti7OzM1u3bmXt2rX67RkZGUycOJEHDx7k/WLziS7Z5OzZswkNDdVvj4uLY/LkyXk61oQJE7C2tmbx4sVG97QajYbNmzfrf/bz86Ndu3bs2rWLd9991+gx0Gg0bN261eDD+8WLF5ucxbJlyxYg/3NvFKYCXRcxY8YMUlJS2Lp1q8lSJKCUg6lVq5bBf+zn2datW/nwww85d+4cLi4ujBgxgs8++8xkJlvxfKtZzoHf3/TDydYCNyn3KZ5zluZqBjb1pE+jimw4eZ3vd9lyIzYzK/vD1AwG/3QElQq0WjOWOr9D514f4eZdB8wfvbmr/SpsngQXHv1Rz0iF3V/C2T+g61zwfqnwL0wIIcQLY8iQITRr1oy2bdvi6OjI3r17uXXrFnXq1OGzzz4z6Pvw4UMuXLhAcnLeKkLNnDmTv//+G4D79+8DEBQUhJ+fn77Phg0bDJZQ6AIB2StJ5ESlUrFy5UratGnDl19+yYYNG2jQoAFRUVEcOHAAc3Nzli1bRrly5fT7VK5cma+//pp3332XNm3aEBAQQJkyZdi3b5++fOWmTZsMzuPg4MCSJUvo168f/fv3Z/78+Xh6enLkyBFiYmIYPHgwK1euzNPjk1/8/f2ZMGECc+fOxdfXl/bt22NjY8POnTvx9PTEz8+PoKCgXB2revXqLFu2jNdee40+ffpQt25d6taty927dzlz5gw3btwwCPisXLmSjh07MnfuXH755RcaNGiAq6sr169f58KFC8TExDBnzhz97I3FixczevRoateuTa1atTA3N+fChQsEBwdjY2PDtGnTCuQxKgwF+lHsnj178PPzyzEQoePp6Vliss8+i5MnT9K1a1datWrFyZMnmT9/PgsXLuTjjz8u6qGJIlKjnL3JQERJTYT0ogu/k8hXW84zZtUJvtpynvA7iUU9pGLHwkxNv8Ye7HivNbP71adyGTuDdt2vvrOdBWfT3NGos6w9dqwI/VeCWx2DfbhzEVa8An+9Aw9zP61SCCGEyIsFCxYwa9YsIiMj+euvv1CpVLzzzjvs27cPR0fHfDlHWFgYhw8f5vDhw/pP7O/du6ffdvjwYaNqH6dOnQIyS3Lmho+PDydOnODNN9/kwYMH/PHHH1y4cIEePXpw4MAB+vbta7TPhAkTWLt2LQ0aNGD//v3s2LGDgIAAgoKCcHExnVy6d+/ebNu2jZYtW3Ly5Em2bNlC7dq1OXTokMlcDYVp9uzZLFq0iKpVq7Jt2zYOHDhAv3792LVrl8Esl9wYOHAgR48eZdCgQcTGxrJ+/XqCg4OpVq0a8+fPN+jr5uZGUFAQs2fPplq1ahw9epSNGzdy7do1fH19+f777xkyZIi+/8yZMxk5ciQqlYodO3YQGBjIw4cPeeuttzh9+jTNmzfPl8ejKKi0BXjXY21tTffu3Q3WV6nVaoYPH86yZcv027p168auXbuKdKrO8ePH2bZtG0eOHOHw4cPcuHEDKyurJ0Yzk5OTmTVrFr///jtRUVE4OzvTuXNnZsyYYVReZvDgwZw/f57jx4/rt82fP58PPviA6OhofdmZvKpTR3ljfu7cuafaXxQvyWkZvLPyBP2beNCxTrkn7yCKhbXHrvLhn2fI0GS+pJqpVczq5UO/xqbLRgnI0Gj55VAEnwWGmGyv4mrHGy0r09PXHWsLMwgNhDVDTPYFwLYMdPoS6vWTBJdCiOeCRqPhwoULANSoUQO1WpZ1FjZvb28iIyOL5YdFGo0GFxcXGjduzLZt24p6OOI5kJfXnGe9Dy3QV7Py5csbrMHJydmzZ3Os21tYZs6cyYcffsiGDRtyPUsjOTmZdu3aMWPGDB48eED37t3x8PBg+fLlNGzYkLCwMIP+Bw4c4JVXXjHY1qVLF5KSkgwCFOLFlZyWwZu/HGPH+WjeWXWC7SG3i3pIIhfC7yQaBSJAudGe8sdpftx3xWgfrVZLWoYkLb11P5nlByIAJXiTPXwQFqM8tv5f72T+jkvEO9WBOj2Vxirt4PUd4JYls/nDO7DhLfi1B8SGIYQQQjzPTp48SXx8PDNmzCjqoQiRZwUajOjYsSPnzp1jw4YNOfZZsWIFkZGRdOnSpSCH8kTNmzdn6tSpBAYGcuvWrVzt8+WXX3Lw4EGaN2/OxYsXWbNmDYcPH+a7774jJiZGX75U5+bNmwbruwD9WqwXYZmKeLKouIecuhoPKGUQN5+5WbQDErmy5uhVo0CEjhZYfsA46VBsYirVPt5C3Wn/8tJXO0lOM85mvf74NX4/EsWWMzeJSSj8JI0FvezkenwSA5cEERX3EE9nW/ZObsP+D9ri5mA8NfLOg1Rmb7uI338v8KnF+9zq8Qe8/A14NIa3dkOHmWBhm7nDld3w3+aw91tIT83XcQshhBDFRaNGjdBqtSV6qr54cRVoAsuPPvqI1atXM3DgQCZNmkT37t0BJaHL2bNn2bhxI19++SUuLi689957BTmUJ5oyZUqe+qelpbFgwQIAvv/+e4MlFu+99x4///wze/fu5fjx4zRq1CjH46geTSNWyXRiAVR3s+fX15sxZOlh2tQoyzd9lBJR4XcSWXP0KtfuPqRiaVv6N/GgUra19qLwJSSn8d3Wi5y5fu+x/UwkmCb+YRoAD1LSSUnPwMpENZUFOy8R8SjJ488jm9La3tWgfc62iwSevoGTjQU9G1ZkqJ/hDLPohGTOXb+Po60FZeys8HSxJbdMLTv5cd+VfFt2kj0Q8ftbfvryn3++/ZK+rZSVOanpGaRmKONITtPwa1Akvx2GTrXv8WarOBp5OcNL46B2d/itF8ReVk6SkQI7P4czjxJceskbNSGEEEKI4qJAgxFeXl78/fff9O3bly+++IIvv/wSlUrFunXr9GU+XV1d2bBhg0G21pJg//79xMfHU6VKFXx9fY3a+/Tpw+nTpwkMDNQHI8qXL8/Nm4afdOt+zj5jQry46ns4sfGdl/BytsXcTF3gN4Xi6RwKi2X86pNEJ6RgZ/n4ajhVyhoHju4lZX5a72hjaTIgGZ+UlqWPcYbsa3eTuBKjzFZ4qWoZo/YTkXf5z28nAKhV3oEt41satKemaxix4ghONpY42Fjw0Ss1sbe2eOyykw//PEMTb+dnCoY9LhAB4O5kw+9v+en7VCxtQ+c65dhw8jqxicrjptXCP+du8c+5WzT0dOKtVpXpUNEMs/smZpnFnIflnaHRcKVEnU3ppx67EEKIF09ERERRD0GI51KBBiNAKZty8eJFli5dyvbt24mIiCAjI4OKFSvSvn17Ro0ahZOTU0EPI9/pstY2bNjQZLtuu64fwEsvvcSWLVuYOXOmftvmzZuxsbF57OwJHV2CkOzCwsKoUkXqPz9PqrgqM20K+qZQPL1yjtb62Q2JqRmPSlIa9zNTq/i8h4/R9noVnTjwQVviH6aSkm46d4R/1TLEJaYS/zANFztLo/Z7TwhW6MYH4GSi/V5SGgcux+p//rRrLeDxy04yNFrWHrvKlM41Tbbnxr9nb+UYiNDJHpCo4GTDgQ/asuHkdX7cd0UfhAE4ERXPf347QYvS95hdqjbl7h4DWxeo/jIEr0RZLAMcXwHnN0PnWVC3tyS4FEIIIYQoQgUejACwt7dnwoQJTJgwoTBOVyiioqIAjCpm6Oi26/oBTJw4ET8/PyZOnMgbb7xBaGgoU6dOZdy4cU9dSUM83wr6plA8vUpl7PhPQBUW7wljTJuquJSyZOpf54yqaXzVy8dkwMjCTI27k43JG3GdhYNMBzt1JnWqwaBmHtxLSqNuBeOSYpbmaiqXsSM+KQ2XUqaCGZmzMyzN1NhYKDM8rt19+NjzXrublOUYadhZmmFulvsURCP9KwHQqW65x16/LiDx79lb+n0GNvWkf2MPdp6PZsm+KxwJzyzlefCuI368S1+b47Su6EKzdm/i2ug1CBwP0Y+qdSRGw/rX4d+PoMYr0GIsuEgwVwghhBCisBVKMOJ5pCtDamtreg22nZ2dQT9QZksEBgby4YcfsnDhQlxcXHj77bdznf02p5IpOc2YECVfXm4KRcHZfSGa6m72VMh24/x2QBV6N3THy0X5/96iShnWHrvKtbtJVCxtQ7/GBZvbo0Y5e2qUs8+xvVfDivRqaDpgCuBiZ8WXPX2IT0olNV2jXypSsfTjc0tULJ35OHy15TybTt/gpSplGNbcixYmlouYogsuPIm7k41RX7VaRfvabrSv7Ubw1Xh+3HeFLWduosSBVKxLasy602AZspNevu680fNvql5eoeSP0D5KFPrgNhxfrsyW6DYPGr2Wq/EIIURhy7qMT6PRSGlPIUSB0mRJdlbQeQ3zNRhx/vx5atZ89k9p8+s4BUlXZzinJyinOsSdOnWiU6dOBTYu8XzJy02hyH837yUxc1MIm8/colMdN34Y2tig3drCTB+IAGW2REmaqVLazpJBzTyNtvdv4sGP+66YnJVjplbpc5VotVr2XowhITmdf87dokNtN6P+Wq22QP+QNfBw4vtBDbka95BlB8JZc/QqD1OVgENquobVR6+y+uhVBlX24gtthlHpUNBC4DiwcoC6PQtsnEII8bRUKhWWlpakpqaSmJiIo6PxTDghhMgviYnKUlhLS9M5zfJTvgYj6tatS//+/fnwww+pW7dunvcPDg7mq6++Yv369aSlpT15hyJkb698Gql7srJ7+FD5RFuWX4hnkdubQoDgq/HULu+ApYmqDOLpHLgcy+YzSqnff8/dZuf527StaXzD/bypVMaOWb18jPKVZF92cvt+CtEJyfr2ltWMZ0V8teU8J6PiaVmtDC/7lKdq2YJ5TfRwtmVatzpMaFedlUciWXEggugs5VBrRP2O6nF/8f4YDpH7od1UsJY3+kKI4sXe3p7Y2Fhu374NKDNwZYaEECI/aTQaEhMT9a8zuvvdgpSvwYhPP/2U7777jtWrV1O/fn0GDx5M69atqV+/PhYWxsnTUlJSOHnyJLt27WLVqlWEhIRgZ2fH1KlT83NYBcLTU/k08dq1aybbddt1/YR4Grm9KYxJSGHQj0GUKWXFux2q8Wp9d8zUkpzvWfVu6M7ao1c5EhFHI6/SRss0nmf9GnvQxNv5sctOyjlaEzy1I4fDYwm9mUBZB2uj4+w4H83l6AcciYijtJ1lgQUjdBxtLXg7oCqv+1fif8E3+HHfFS7efoCzKuHJOx/9CUI3wctfK2VCJcGlEKKYcHFxITExkeTkZG7cMFE1SAgh8pG1tTUuLi4Ffp58DUZMmzaN0aNH88UXX/DLL78wadIkVCoVFhYWeHt7U7p0aezt7bl//z5xcXFERkaSnp6OVqvF0dGR8ePH8+GHH+Lq6pqfwyoQ9evXB+DEiRMm23Xb69WrVyDnj4+PJz4+HoC0tDTMzB5fWlCUXLm5Kfx+12UepmYQFfeQmZtC6VC7HKWsJCVMXtxNTMXBxsIgiKNSqZjZoy7BV+/St5EH6hcswJObZSd2Vua0relmcsbIjfgkLkdn5s1pVc34tX3FgXAiYh/SqnoZ/Cq7YGuZP7+3VuZm9G3sQZ9GFdlzMYaETV6QEPTkHR/cgnWvQbVO0OX/wEkCykKIomdmZoanpyexsbEkJCSQmpr65J2EECKPLC0tsbe3x8XFpVDuL1XanJIbPKOkpCTWrl3Lpk2bOHDgALdu3TLqU65cOVq2bEmXLl3o168f1tbGn6oVFZVKhZWVFcnJySbbU1NTKVu2LPfu3ePEiRP4+voatNevX5/Tp09z5MgRmjRpku/jmz59Op999pn+Z1dXV6Kjo/P9PKJkmP6/c/waFEmGRssnXWrxRsvKRT2kEkOj0bLu+FW+2nKedztUZ1hz76Ie0nMjQ6PlzPV77LsYw4XbCSarg3RbsJ8z1+8B8PErtXizVQH97saGoV3YBJUugWUW6Vo1F7UVqa2OMmywsIU2H0Gz0WAmwT0hRPGh1WpzzE8mhBBPQ6VS5TlHhK6QQk6FFp54zoIKRmQXExNDdHQ09+7dw9HRkbJlyxbrGRBPCkYAfPLJJ3zxxRe0aNGCrVu36itozJ49m4kTJ+Lv78++ffsKZHxZZ0Z07NgRMzMzQkNDC+RcomSIuJPI0v3hfNylFtYWhpHM09fi0WiVZH/C0Lztl5iz/SIA9tbm7JjYmrL2xScw+jyLfZBC4y+2o/sr9O+EVkbVQbaeu8X95HRaViuDm4llIHly8jf437jMihoogYiZ6UOYYr4GW1WK6f3K+SgVN9wbPdv5hRBCCCGeIyUmGFHc/f3338ycOVP/8+HDh1GpVDRt2lS/7dNPP6VLly76n5OTkwkICODw4cOUL1+eli1bEhkZyeHDh3FxcSEoKIiqVasW+Nif9ZdAPN+0Wi09/nuQU1fj6VTHjSmda1LZVRKr6sQkpND2u90kJKdjZ2nGwsENaVOjbFEP64WQkJzG/07dYN/FO4TFPGDru62MIvL9Fh/iSEQcADO712Hos85ciQ2Dk79CfBQppSryl6oNc09osLwfzkzz5VRQxbIovRsfWvyOS9Y8Eyo1NH0L2nwM1g7PNgYhhBBCiOfAs96HyrzTR2JiYjh8+LDBNq1Wa7AtJibGoN3a2ppdu3Yxa9YsVq1axcaNGyldujSvvfYaM2fOxMPDAyGK2r/nbnPqarz++7daVSnaARUzrvZWTO5Ug0NXYvm0a23KO744SSqLmr21BYObeTG4mZfJEqAJyWmciLqr/9mnopPRMU5fi8fCTE3Ncva5m1roUgXaTwfACugH9GyvYfOZmszaXZ3oW9e4gyPbUxrxkfkq+pnvUfbTauDwYgj5H7zyLdTq+nQXLYQQQgghAJkZ8VyQmRHicY5GxDEjMIQz1+/RvlZZfnot/3OYlASRsYnMCAxhUuca1Cxn+Mm2qRthUfSiE5KZu/0Sey/G8CAlneOfdDCqEjNs2RH2XozB1d6K6d3q0KVe+ac+n1ar5VBYLEv2XWH3BSX47KcOYY7595RX3zXsXKMLvPINOFZ86vMJIYQQQpRkMjPiBSXVNERuNfF25n9jXuKfs7eoYqKsYvzDVJbuD+cN/8o42hqX4H0e/BYUyYxNIaSma7iXlMbaUc0NKmNIIKJ4KmtvzZc9fdBqtcQmphoFIpLTMjh8JRZQltu4lLI0Osbt+8k42ljo86iE30lkzdGrXLv7kIqlbenfJLMyjUqlokXVMrSoWoYLtxL4ad8V/g1OQaNSGw/uwt9kXNmNWbtPleUbajOW7Q+nU91yuD+hBOz1+CT+PXuLkf6VnuZhEUIIIYR4LsjMiBJKqmmI/DJrSyg/7LmCvbU5EztUZ/hLz98N0q4L0YxYflT/87LhjU2WohQlS1TsQ8auPsnpa/HYWJgRPLUjluaGgYNRvx5jz8UYmlVyoWY5e37aH06GJvPPnplaxaxePvRrbHpZXfTdBEI2fk2zyCWYa9M5p/WigfqKQZ/7peuys+pHnDq4hTP2rZj3n245BiSuxycxfnEgPgl78Xh5ogQkhBBCCFFiSQLLF5RU0xD54fb9ZFp/u4vkNA0AkzrV4J02BZ90tSiM/u04xyPvMrVbbbr4lJfZEM+Ru4mpXIp+QNNKzgbb0zM0+M7YRkJKOgBqFWhM/MUzU6vY/l5r/QwJUx5Gh3N072Y+CauJ3/1/+Mh8FaVVD/TtGlSo0RKlceU92y9NBiR0gYjvHn6Mlzqa+NYzcWoz7hmuXAghhBCi6EgwQkjOCPHUHqams2x/OD/svYKVuRl7Jwdga1lyV2+lZ2hYd/waPX3djcqb3nmQgpW5Gnvr53MpijB2OTqBbgsOkJSWkWMgQqeHbwVm921gsHzHlPQMDf+eu83q3SfoEfNfepvtN+oTrXVktPW3zB/9qj4gkT0Qke7ohfmI/2fvvsOjqrY+jn9nJj0EAiGQkEJCkw6hVwWkCSgKiqKCiBUr9qvXguWKet+LiAVFQCxYQKSIhSaGXkIHQVoSAqElMBDSMzPvHyNJJpNCySQh/D7Pk4fM2fucs8brxTlr9l7rF/BXoWMRERG5MikZIUpGyGUzp2Vx4OQ52tZ1/GbZZrPx4k876HFNIP2aBVXo1QRbDp3m33N38tfRszzRqwFP972mvEOSCiAzx8Km+NOM/3UPO46cKXbu/93WilvbXlhBSpvNxsa401T94WYaZ2xzGk+1eTKa13hm1B2EVPdRIkJEREQqnSuugGXdunVp27Ytbdq0yf0JCgoq6zBEJB9/Hw+nRARA9N6TfL8xge83JtAytBoz7+9YYVcW/LrjKH8dPQvAp9EHuTkqhHqBzgU75eri6WaiS/2adG1Qs9hkhNEA1zeu5XQ8NTMHX0/n/1QaDAY6hHhCDRMk2o/l2Ay4Gez5fV9DJt/Z/s2EqZuZZ+3GTPe3lYgQERERyaeQEuGu9cwzz1CtWjVmz57NzTffTEhICCEhIdx444289tprzJ8/n4SEhLIO64pjNpuJi4sjLi6O7OxsrFZreYcklYzNZmPCkr25r6t5u1fYRATA2N6NCKrqBcBNretQzbvixipl7/b2YU7dOPLrXC+A6r6O3ThsNhs3fbSKwR+vZvqqWM6kZTue5OEL9y+FAf8H9a8nZdRyjvi1yh02Gmw86/4jKzzGUtd4gkRjEH90nEa2X0ipvjcRERGRK1G5btPIzMxk+/btbN68mU2bNrF582Z27txJVlYWNWvWVHeIYqibhpSFPcfO8r/Fe1ny13EWPNaVlqH+DuM2m61ctm4cO5NBUDUvp+Mr953E083kVMhQBGBWTAIv/rTDqZvGO0NaMKRNqFOyYueRMwz6MK8mxMrnexJWw6fwi9tsYDCA1UrWxhlYF7+MlyXVYfgLSz/eybmT6lWrMLJzBHd1DMffx7kdqYiIiMiVoNLVjMjJyWHHjh1s2bKF0aNHl3c4FZa6aUhZOnjyXKFbHiYu3UtcUipP97mG8IAiHtJKUWpmDpOW7WPaqli+vq8jnesHuPyeUrnEJqUyKyaBw6fTCa3uzbB2YUV20Zj85wHe/X0PAG3rVmfOmC5Oc1buO0m7ujXw9sgrmHrEnM6rk2fyecYzFFyMsd9ah39l30+MrTFe7kaGtgnl3q6RNKilLUUiIiJyZalwyYisrCw8PPRNT1lSAUspD8nnMrn2veWkZllwMxr4bERbrm9S26X3fOCrGJb8dRyABrWq8OsT3fFwK/PdZnKVsNls7DmWwoJtiTQO8mNwa8ftFQmn0uj+3nJ8PUz0axbEW7c053Ra9j/FKl+irvFkkdf+KqcP7+XczjnsSbwe1wRyX7dIujWoWaELxYqIiIicd7nPoaX6KT4nJ4drrrmG8PBwNm3a5DC2dOlSfv/9d44dO1aatxSRcvL9xgRSsywAVPFyo30ZbI14vFcDzj+nZWRbOHw6zeX3lKuXwWCgSXBVXujf2CkRAfDzdnvlytQsC1sPmzmVmpWva8ZJcqoEQ0hbcPfB6u64+mKk2xKWeD7P9Ub7fyv//PskI6ZtoN/EFXy/4RAZ2RbXv0ERERGRclSq3TTmzp1LfHw8I0eOpG3btg5jM2fO5KuvvgLs9Q1at26d+9OrVy9q1XKuYi4iFdfD19UnqKoX7y/dy8jOdalaSHHLjGwLXu6mQs6+NC1D/RndNRJvdxOP9mzgsDRepKxl5Vip4unGucwcel5Ti7GfLXRo35k6fB6TN2dwa5d06ocEYvm8D6bUvIR8sOEU0zz+x0JLJ8Zl30MS1dh7/Bz/+mkH7y36m7s7hnN357rU8nOujyIiIiJypSvVbRp33XUX33//Pfv37ycyMtJh7N577+XLL7+kZs2aJCUl5QVgMNC3b19+++230grjqqNtGlKeMnPs3+B6ujkmBtYcSOKJ77bwaM8G3Nkx3Gm8OGv2JzFx6T6mjGyrAn9SoWVkW/hjzwmOxO2l78b7Hdp3frfXxos/7QCgS/0Avr0thJzpA3A7eyi33uV55wxVGJd1Fz9argXyBjxMRm5sVYfR3SJoVqdaGb87ERERkaJVqG0aGzdupHnz5k6JiPMMBgMnTpzgyJEj/Pbbb7zzzju0atWKxYsXq/iiyBXK083klGiw2Wz8d9HfJJ3L4vWf/+KZWdsu+Hov/rSDO6euZ0PcKd79/e/SDlekVHm5mxjQIpgHAv9ySETgH8aCrYm58xrV9gP/MNxG/0pO1XAKloWoYjvH/7l/xtKaE2jontcZKctiZc7mwwyctIo7pqxlyV/HHbqBiIiIiFypSnWbRmJiIv379y9xXnBwMMHBwfTr14+2bdvSp08ffvzxR1555ZXSDKdSy99NIzs7G5NJy9Wl4jiYlMqeoym5r0d1iXCaE5uUyg8bEzh8Oo3Q6j7c3t7e1SAiX1eOWTEJPNarASH+3mURtsil6zQGALfGg8A/DJvNxg0tgsjIsbDlkJmbWtexz/MPw23UAvj1OSwHozFZs8gxeuBmzQKgwblNLPb8izUNH+S5hK4kpuTk3mLdwVOsO3iKugE+3NslgtvaheHrWar/GRcREREpM6W6TcPb25ubbrqJH374wWns4YcfZsqUKVitVqexkJAQmjVrxuLFi0srlEpv3LhxvP7667mvAwMDOXHiRDFniJStEykZfPzHfo6dzeCzEe0cxmbFJPCvOdvJ/wWvyWhg/JAW3BIVwsBJK/FyN/Gfm1vQIlRL0+XKlnAqjdDq3k5dMl6dPp9qBxbwo+U6ptb8lmbn1jqM24Ja8WfjV3l/pxfbD59xuq6flxvDO4RzT5cIJexERESkzFWo1p7h4eEEBwezfv36QscTExOpU6eO0/GePXuyb98+Dh8+XFqhVHr5V0b07dsXk8mkrS5SIdlsNoeHsNikVHr/LxpLIX/1mIwGlj59Hd7uJgL9PDEZ1eJQKqeUjGzavrWUrBx7gn76PW3pZVkNvz4PaXl1lWwYoeuTbIp8kGnrjrJo1zEK7tIwGQ30bxbE6G6RtK1bvSzfhoiIiFzFKlTNiHbt2rFp0yYSExMLHS8sEXH++KlTp0ozlErP39+fiIgIIiIicHd3x2gs1f8pRUpNwW+Df9iYUGgiAsBitTErJoGgal5KREil5uvhxrf3d2Rk57rUD/SlW8Na0HwoPLYRglrmzjNgxbD6fVouuIHJXdOIfq4n93WLpEq+7RkWq41fdhxl6OQ13Pzxan7elki2xXkVooiIiEhFUqpPsMOHD8dqtfLcc89d1HkpKSlODywiUjkdPp1Wwnh6GUUiUn6MRgPtImrwxuDmLH36Ojzc/vnPsZc/mJw7yHicjYMvBxG26gVeub4Oa1/sxauDmhJWw3F7xtYEM49/t4Vr31vOp9EHOJOW7fo3IyIiInIJSjUZMXToUKKiovj+++957bXXLuic7Oxs1q1bR3h4eGmGIiIVVGh1nxLGtfddri4OyXijEUb/TmKHl4i31eaLnL5YbPnGN38FH3fA7+BvNAmuyvD24RS2iOjomQze+W0PncYv45V5Ozl48pzr34iIiIjIRSjVZITRaOTbb78lMDCQt956i5tuuonY2Nhiz3n77bdJTk6mT58+pRmKiFRQt7cPK3ILhsloYFi7sDKOSKSCMblTZ8AL+D+/Dd+bJzCnzZdQu0Xe+LnjMGsEGd8MZ8aidU41JPJLz7bw9bp4rp8QzX0zNrJmfxKlWCpKRERE5JKVagHL8/bu3UufPn1ISEjAZDLRp08fbrjhBtq1a0ft2rVz53zxxRf8+OOPeHt7s337durVq1faoVwVLrdwiEhZmxWTwIs/7cCS7ynKZDTwzpAW3KZkhIgzSzas+RCWvw3WvK0XZ23eTMkZiK8hg1BDEodtgfxg6UGcLRhPNyOZOc61IxoH+TG6WyQ3taqDl7vaQouIiMilqVDdNPI7e/Ysr776Kp988gk5OTmF1oSw2Wx4eXkxc+ZMbrnlFleEcVVQMkKuRLFJqcyKSeDw6XRCq3szrF0YkTV9yzsskYrLZoOPO0LS38VOy7EZeTHnfo5G3soNzYP4Yk0c+084b9OoWcWDuzvV5a6OdQn083RV1CIiIlJJVdhkxHkJCQl8//33zJ8/n3379pGUZF8iGhwcTL9+/XjhhRe45pprXBlCpadkhIjIVeLoNvh5LCRuJsvgiYcts9BpOTYjvbP+i2etRtzXLZKAKh7MWBPHyn1JTnM9TEYGt67Dfd0jaRxUNff49FWx9GseRIh/8XVcjpjTWbTzGKO7RV7WWxMREZErS4VPRhSUk5MDgJubWwkzpThmsxmz2QxA3759MZlM7N69u3yDEhER17NaIH41ZzbNodrOGUVO+yTnJt7LuYPwGj4sf7YHJqOBvcdT+GJ1LD9tPlLoFo6uDQIY3TWSuKRU3vxlN+E1fPjuwU5FJiSOmNMZPmUdh06l8eqgpkpIiIiIXEUuNxlRqgUsL4Sbm5sSEaVg4sSJREZGEhkZyb59+0hOTi7vkEREpCwYTRB5LdVsZ4ud1tcYgzcZ3N89MrdobKPafowf0pK1L17Ps30bUavA9ozV+5O578sYvlwTR3Ufdw6dSmP4lHUcMTu33M2fiAiv4UO/5kGl9x5FRESk0ivzZISUjrFjxxIbG0tsbCwNGzYkICCgvEMSEZGy5F98S+wGxkRWV32ZYTX2OY39+fcJ9hxLYfLdbZkwrBXN6lR1GD90Op3TadkYDHDoVBq3fbrGISFRMBFR3OoJERERkcIoGXGF8vf3JyIigoiICNzd3TEa9T+liMhVpc1IMBTfDaNGViJe390Kc8dA2inAXjz60+gDLNx+lKGT13AyJZOFj3fjhwc70bdpbfLXmz6/kTPRnEGfCdEs+eu4EhEiIiJSKrRfQkRE5EoUUB9umgQLngCbJd+AARr0hgN/5B3f9i3sWww3vMtqz+vYezyvu8b1TWpjMBjoWC+AjvUCiE9OZcaaOGZtTCA1K++6aVkWHvgqBgNgAyUiRERE5LIoGSEiInKlirobwjvDlq/BfMi+dSNqhD1RcXQ7LHgcjm61z01Lgjn30bVBH7645SUmbUonwNeDBrWqOFyyboAvneoFcG/XCBbvOs4Xq+Mctmicr3qdY7Gy9K/j3NYuFB8PfZwQERGRi1Pm3TSk9Km1p4iIFMqSA+snw9I3wJqVd9zdB/q8QVqre/Dx9HA45Yg5nWvfW46HyciwdqGM7d2QX3Yc45V5OynsA0M1b3fu7hTOPZ0jqFXVy7XvR0RERCqMK66bhoiIiJQRkxt0fgwCGzkez06DX5/F55tBcGKPw9AXq2KxWG2kZ1tYtucEZzNzmLLiIDbAzWhwqCkBcCY9m4+XH6Dbu8t5bvY29h5Pce17EhERkUrBpcmI0aNHM3369BLnzZgxg9GjR7syFBERkauTwQD3/grt7geTO3j45Y0lrIfPusOf70KOfeVEraqe1PC1r5a4tW0oI6ZuyC1WGf18T6Kf60lwNXtL0Px5iSyLldmbDtP3/RXcM30Dq/cnocWXIiIiUhSXbtMwGo2MGjWqxITEAw88wPTp07FYLMXOk8Jpm4aIiFyQlOP25MRvL8CunxzHajSAWyZDWAcysi1MXx3Lt+sPcfh0ukOxyp82H+b9pftIzcjhVFoW/t7uuJkMJJ3Lcrpd0+CqPHBtJINa1sHdpMWYIiIilUml2KaRlZWFyVR8ezIRERG5TH61oUotuO0LGP49VA3JGzu1H6b1gV+e5dTpU+Ss/gTr6QSHRITNZmPKioMknErjVFoWVTzd8Ek/ygjDr7wysAmNg/wcbvfX0bM89cM2rn1vOZ9FH+BsRnYZv2ERERGpqMq9/LXNZmPz5s0EBgaWdyhXFLPZjNlsBiA7O1vJHBERuTjX3AB1u8Kn3cEcl3d84+cEbPmBJ3LOMtS7NqY7fiHon/adfx09y9/5akJMvyWIkPmPE5J9nHUJAYx+8t+s3p/MlJUHWbH3ZO68o2cyGP/bHj78Yz93tA/j3m6RagkqIiJylSv1bRq9evXK/f3PP/8kKCiIxo0bFzo3JyeHAwcOcOzYMUaMGMGMGTNKM5RKbdy4cbz++uu5rwMDAzlx4kQ5RiQiIlccmw22/wC/PgeZZwufUy3cXnPCPwyAuKRUpq+OxXL6EP858yKcjuOsdyhVH/od/MP4ck0czUOq4uvpxtSVsczfeoRsi+NHDZPRwMAWwTzQvR4tQqu5+l2KiIiIC1zuNo1ST0YYjXk7PwwGQ4nFq9zd3enfvz/Tpk2jZs2apRlKpZZ/ZUTfvn0xmUzs3r27fIMSEZErU2oyxEwDSzaseh+sBbZT+NaEB5aDf7j9tTkB25eDMJyOg+oRcM9C8A/j6Jl0ur+7nByrjTbh/nx8VxuMBgNfronjm3XxnM3Icbp1p3o1ePDaevRoVAuj0eA0LiIiIhVThUtGxMfHA/btF/Xq1ePWW2/lv//9b6FzPTw8qFmzJu7u7qUZwlVHBSxFRKTUHP8LFjwOR2Icj5s8YeQCqBYCXw6CAokIgPG/7uazFQcBCPH3Jvq5Hrj9U7gyNTOH2TEJTFsdS8KpdKfb1g/05YHu9bg5KgQvd209FBERqegqXDIiv9dff52oqChuuukmV91CUDJCRERKmdUCG6fCopfBWqBLhsEENotTIgIgeu9JPl6+nw2xp3h5YBPu717P4dRsi5VT5zKJiTczZeVBtiWYnW5ds4oHIztHcHenurktRkVERKTiqdDJCCkbSkaIiEips9lgxkCIX13IoAHunAWN+hZ66tYEM/UDffHzclz5OG/LEZ6fs52hbUK5r1sEp9Oy+XzFQZbsPk7BTyNe7kZubRvKfd3qEVnTt5TelIiIiJSWKyIZkZaWRkxMDEePHiUzM7PIeSNHjnR1KJWSkhEiIuISVivETIc/3oKM0wUGDdD5UejxInhWKfFSNpuNgZNW8ddRe6HMIW1CmDCsNQAHT55j2qpYftx0mMwcq+NdDNCnSW0evLYebetWx2BQXQkREZGKoMInI1599VXef/990tLSipxjs9kwGAxYLBZXhlJpKRkhIiIuY06wr5Awx4PBCDbHZAE+gTD4Q3ur0GIkmtMZ/PFqTqbYv5T4fWx3GgdVdZiTfC6Tb9Yd4ovVsZjTs52uERXuz4Pd69G3WRAmFbsUEREpV5f7HOpWmsEU9N577/HWW2/h5ubGoEGDaNSoEVWqlPztiYiIiFQA5gR7sUpzfF6NiENrYd4YsP7TGSPtJHx3BzTqD4Peh6p1Cr1UHX9vVr3Qk/lbE9l55IxTIgJgxpo4Ek6lkZLhnIgA2HLIzJiZmwmv4cN93SK5rV0oPh4u/SgjIiIiLuLSlRENGzYkMTGRlStX0qZNG1fd5qqnlREiIlLqziciCumawcm98EkneyHL/Dz84PpXoP39YLy4jhjHz2bQ9Z1lFNilUaxq3u7c3SmcezpHUKuq10XdT0RERC7P5T6HGkszmIISEhK47rrrlIgQERG5khSXiAAIbAS3fwPGAq25s1Lgt+dh6vVwdNtF3XLGmrgSExENalVx2J5xJj2bj5cfoNu7y3lu9jb2Hk+5qHuKiIhI+XFpMiIoKMiVlxcRERFX2LOw6ETEeY0HwKMbwDfQ/trNO28scQt8dh38/iJknrugW97VMbzErhm1q3ry57PXcV+3SHw98lZeZFmszN50mL7vr+Ce6RtYvT8JNQsTERGp2FyajLjjjjvYsGEDp08XrMAtIiIiFVanMdD/naITEecF1IMHltvnjt0BLW/PN2iDdZ/ApCj4+7cSbxla3Yd+zYr/EmP1/mQe+24r7SNqsObF6/nXDY0JKrA9I3rvSe6aup6Bk1Yxd8thsi15yy2mr4rliDm9xFiOmNOZviq2xHkiIiJy6VxaMyIjI4O+fftiMpmYOnUq9evXd9WtrmqqGSEiIhXGgeUwexRkmB2PNx4EN7wH1UKKPDU2KZXeE6KxWIv/aHJz6zpMvCMKgKwcKwu3J/L5ylh2/9M2NL/gal6M6hKBxWbjvd//JryGD9892IkQf2+nuWBPRAyfso5Dp9J4dVBTRneLLDYWERGRq1WFbu3Zq1cvsrKyWLt2LUajkYiICEJDQwvtEW4wGFi2bJmrQqnUlIwQEZEKw2aDn8fC5hnOYx5VoNcr0OGBIgtczopJ4MWfdjgkJEwGAxE1fThwMhWAX5/oTtM6jt04bDYbq/cn8/nKg0TvPel0XR8PEyajgZSMnCITEvkTESUlLURERK52FToZYTRe+C4Qg8GAxWIpeaIAYDabMZvNALmrT3bv3l2+QYmIiJwXtwqWvg4Y4PB6x7E6UXDjBxDcqtBTY5NSmRWTwOHT6YRW92ZYuzAia/qy/bCZlfuSeLRnA6dzxi3YRY7Vyv3d6pGRY2Hqyljmbz1CtqXwjzlBVb2Y80iX3GSDEhEiIiIXp0InI+Lj4y9qft26dV0USeUzbtw4Xn/99dzXgYGBnDhxohwjEhERKYTVCltnwuKXC2zdMEDHMdDr3+BZ5bJucSIlg27vLCfLYsVggJn3daRLg5ocP5vBl2vimLn+EGfSs53O83Qz8tbNzehUryZ3TV2vRISIiMhFqNDJCHEdrYwQEZEryrmT9oTE9u8dj1cJhkET7N05LtEHS/fx/tK9gL3jxsrne+Hhlrc6MzUzh9kxCUxbHUvCqaILWCoRISIicuEuNxnh0m4a4jr+/v5EREQQERGBu7v7RW2JERERKXNVAmHIZ1DzGsfj547C98Ph+7vgzJFLuvRD19Vj/JAW1Kvpy71dIx0SEQBe7iaq+biz6Mlr+eSuNrQK8y/0OkYDbE8wqy2oiIhIGSiTlRE5OTksXLiQjRs3kpSURMeOHRk9ejQAiYmJJCUl0bRpU9zc3FwdSqWkApYiInLFSDkOvz0Hf80Hgwls+epFXUCBy+JYrTayrVY83RzP/WX7UR79djM1q3jyQPdIHry2Hr/tPMajMzdT2Ieg5iFVeabvNfRoFFho0W0RERG5/OdQlz/9R0dHM2LECI4cOYLNZsNgMJCdnZ2bjFi2bBmjRo1i1qxZDB061NXhiIiISHnyqw3DvoKTf9tf/zwWDq2x/551Dn5/ATZOg9B2kJMB/uHQZiQElNwe3Gg04FkgiWGz2Ziy4gAASecy2Zl4lsQzGbzz2x5sgJvRgMVmI/9XMzuPnOXeLzbSrm51nul7DZ3rB5TCGxcREZH8XLq2f8eOHQwYMIATJ07w5JNPMnv2bKelj0OHDsXHx4c5c+a4MhQRERGpSAKvsf+M+gVu+gi8q+eNJe+Fbd/Crp9g9UT4qD1s+eaSbpOZY6VZSLXcrRu3RIU4dM2Ifr4nfz7Xg+BqXk7nxsSfZvjn67hr6jo2Hzp9SfcXERGRwrl0ZcQbb7xBZmYmixcvplevXoXO8fHxoUmTJmzZssWVoYiIiEhFZDRCmxFwzQ0wpQecSXCeY7PAgicgvPMFrZDIz8vdxNu3tODpPo2Ys+kw4xbscuqa8eJPOwjx9ybHYuPkuUy83I1kZFtzr7F6fzKr96/h+sa1eLpvI5rVqXaZb1pERERcujIiOjqaTp06FZmIOC88PJzExERXhiIiIiIVmW9NqFGv6HGbBdZ9csmXz8yxMnP9IadERNK5TOZsPkxM/GlOnsskwNeDjGwrtat60irMMemwbM8JBk5axaPfbmb/iXOXHIuIiIi4OBlx9uxZQkJCSpyXmZmJxWIpcZ6IiIhUYj4l1GaI+QLWfQrWi//MsGjnMadEBMCvO46SlWNfBRHo58mPY7oQXsOH42czGdyqDl/f14FWoY5JiV+2H6Xv+9E8M2sbh5LTLjoWERERcfE2jeDgYHbv3l3ivJ07d1K3bl1XhiIiIiIVnX948eM2i73A5ZavYfBHUCfqgi89ulskAP2aB+UmIgBGdKpLo9p+TFlxkHYR1Yms6ct3D3Zi0c5jjO4WicVqo09TM3d1qsv0VbHsOZYCgNUGczYfZv7WI9zePozHezUkqJC6EyIiIlI4l66M6Nu3L7t27WLu3LlFzpkxYwbx8fEMHDjQlaGIiIhIRddmpL3dZ0mO74QpPeH3FyHzwrdLjO4W6ZCIADAYDHSqF8D0Ue0Zc529HkWIv3du8mLJX8f5v8V7+ffcHbQIqcYHd7SmXk3f3PNzrDZmrj/Etf9dzpsL/yLpXOYFxyMiInI1c2ky4qWXXqJKlSoMHz6cV155hZiYGADS0tLYuXMnb731Fo888ggBAQE8/fTTrgxFREREKrqA+nDTJOeEhMFk77zhwGavIfFxR9jzS6nc3mAwON7BZuOzf9qCZltspGVZGNw6hMVPXct7t7Z0SGxk5ViZtiqWa99bzn8X7eFMWnapxCQiIlJZGWwFe22WslWrVnHbbbdx/PjxQv8jHxgYyNy5c+nSpYsrw6jUmjVrBsCuXbvKORIREZFSkHzAvhXDfMi+dSNqBPjXhfWfQvQ74FUdzhxyPKfxILjhXagWWmphWKw2vlgdy/RVsSSeyWD+o11pFeafO56VY+XLNbFMWXGQk+eyHM7183Ljwe71uLdbJFU8XborVkREpFxc7nOoy5MRACkpKUybNo2lS5cSFxeHxWIhNDSU3r1789BDD+Hv7+/qECo1JSNEROSqkZUGBiOsmgArJ4A13woENy/oPQ46PAjGC9jucYGyLVZW70+ixzW1nMZenreD5XtO0qxOVTbEJmNOz3EYr+HrwSM96nN3p7p4uZdeTCIiIuXtikhGiGspGSEiIlelk3th4ViIX+14vHbziy5weSmSz2XS5Z0/yPynG8e4m5qRkp7NlJUHSclwTErUrurJY70acnu7MDzcXLpLVkREpExc7nOo/msoIiIiV6bARjDqFwhu7Xj8+E74vNc/BS5TXHb7jXGnyLHav9OpWcWDO9qH8fj1DVn5fE8e6VEf73wrIY6fzeSVeTvp9b8/mR2TQI7F6rK4RERErgRaGVEJaGWEiIhc1RK3woLH4NgO57GqITDgv9B4IKybbK8t4R9W/PXMCbBnIXQaU+Ktj5jT+WJVLEHVvLi/ez2HsRMpGYyctoH9J8+RY3H8uBVW3Zvn+zdmYItgjEbHmloiIiJXggq1TaNevXoYDAaWLl1KZGQk9erVK/mk84EYDBw4cKC0QrmqKBkhIiJXPasF/poP3jXgl6fhVIHPFIGN4eQeqB4B9ywsOiFhToAvB8HpOOj/zgUlJIqy5K/jPPBVTLFzGgf58Uzfa+jdpJZToW8REZGKrEIlI4xG+66PPXv20KhRo9zXF8pq1ZLFS6FkhIiISD7ZGYUXuDyvqIRE/kRESUmLC3Dr5DXExJ++oLmtw/x5tu81dG0QoKSEiIhcESpUzQir1YrVaqVRo0YOry/0Ry6c2WwmLi6OuLg4srOz9c9PRETkPHcv6PkSjFkD1SOdx0/HwbS+9uTDeaWciLDZbDzSsz7B1bwuaP7WBDN3T1vPHVPWERN36pLvKyIicqVQAcsr1MSJE4mMjCQyMpJ9+/aRnJxc3iGJiIhULIGNoOXt9lagBaUkwuQucGJPqSciwL79tFfj2rStW734eQVer489xa2fruWe6RvYcfjMZcUgIiJSkbm0gGVmZibHjx+nevXq+Pn5FTonJSWF06dPExQUhIeHh6tCqXTMZjNmsxmAvn37YjKZ2L17d/kGJSIiUhEd2wGLXgLvmvDXT87jRpO95kQpJSLye+e3PXwaXXJNrMiaPsQmpTkd798siKf7NqJR7cI/R4mIiJSXCrVNo6AJEyYQGRnJtm3bipyzbds2IiMj+eCDD1wZSqXj7+9PREQEERERuLu7X3R9DhERkatGUAu452cY9oX9zxr1HcetFvufN39WqokIgNvbh2EqoVtGgK8Hvz5xLd/e35E24f4OY7/vOka/iSsY+/0W4pJSSzU2ERGR8uTSlREdO3YkOTmZ/fv3Fzuvfv361K5dmzVr1rgqlEpNBSxFREQuQnYGLB0H6yc7Hje6Q48XoMsT4OZZarebFZPAiz/twGLN+8hlMhp47campGTk4OflxsjOEYC91sSff5/kv4v28NfRFIfrmIwGbmsbyuPXNyTE3xuA6ati6dc8KPd1UY6Y01m08xijuxVSQ0NEROQSXO5zqFtpBlPQgQMH6NKlS4nzmjVrxvr1610ZioiIiIhd6knY+5vzcWs2/PEWbPseBvwf1O9ZKrcb1i6M9hE1mBWTwOHT6YRW92ZYuzAia/o6zTUYDPRsXIscq5UHvtrkMGax2vh+YwI/bT7CnR3DqeHrzoQl+5ixJo7vHuxUZELiiDmd4VPWceiUfRuIEhIiIlIRuDQZkZqaiq+v839oC/Lx8eHs2bOuDEVERETEsVilfzg07Asx08FmA/5ZuZC8H76+GZoNgX7/gap1Lvu2kTV9eaF/4wue/1n0wdzfm9epytmMnNxkQpbFyow1cXi6Gajq5cahU2kMn7Ku0IRE/kREeA0f+jUPuuz3IiIiUhpcWmggLCyMmJiYEudt2rSJ4OBgV4YiIiIiV7uCXTNG/QoD/wdjd8CY1eBZoEjkrp9gUhtY+zFYcsosTJvNxqM9G9A+wt6J442bm7Psmet4+5YWDq1CM3NsnM3IwQAcOpXG7Z+t5Yg5PXe8YCKiuNUTIiIiZc2lyYi+ffty8OBBPvzwwyLnfPzxxxw4cIB+/fq5MhQRERG5mhXXvrNaKNRuBmPWgl+BVRA56fZOHJO7QvzaMgn1/FaN2Q934ZcnutEmvDruJiN3dgxn+bM9eHVQU7zc8z7Cna9Ecfh0OgM/WMn+EylKRIiISIXn0gKWCQkJtGjRgpSUFG688UYefPBB6tevj8FgYP/+/UyZMoWff/4ZPz8/tm7dSkREhKtCqdRUwFJERKQE6ybD7/8quX1n/qRFYVrfBX3eAN+aroq0RKdTs+jy7h+kZ1mKnGM0gNWGEhEiIuIyFbqAZVhYGAsWLODWW29lwYIF/Pzzzw7jNpuNmjVrMmvWLCUiRERExHU6jbH/2XhQ8e07/cPsyYrVE2HfEjDHO45vnQl7foHrX4W2o8BoclXERdqaYMb6T2cOf293hncI46u18aTmS06cb9xxc1QINXw8yjxGERGRkrh0ZcR5ZrOZKVOmsGzZMhISEgB7oqJ3797cf//9VK9e3dUhVGpaGSEiIuIC2Rmw/lOoEwWL/g3HdziOB7eGQe9DSJsyD+1kSiYz1sRS3ceD+7vXI/lcJv9bvJdvNxxymluzin3OiE518fV06fdQIiJyFbnc59AySUaIaykZISIi4mKWHNg41d76MyvFcazdfXD9K+Bdfl+u5K8RYSCvjkR+/j7u3N8tkpFdIqjq5V7WIYqISCVzuc+hLi1gKSIiIlIpmNyg08PweAxEXuc4FjMNPmwHW7/9p0Vo2SpYrLJVmH+h88xp2fzf4r10e+cPJizZizktq2wDFRERyUfJCBEREZEL5RcE4Z2dj6clwbwx8MUAOP5XmYVTMBHx7QMdua9bJE2DqwL2LRoAhnznnM3IYdKyfXR7dznv/b6H5HOZZRaviIjIeaW6TaNevXoYDAaWLl1KZGQk9erVu/BADAYOHDhQWqFcVbRNQ0REpIzFrYJfnoHIa2HLN5CdljdmMNkLZvb4F3j6uSyE4tp32mw2NsWfJtjfO3dOVS83LFabQ6FLAG93E3d3CueBa+tRy8/LZfGKiEjlUqFqRhiN9oUWe/bsoVGjRrmvL5TVai2tUK4qSkaIiIiUA6sVjEZ7O9Df/wV7FjqOVwmC/uOh2S1gMBR+jcswfVUsbyz8q8T2nfmTFk/0asDk6ANkW5w//nm6GRneIZyHr6tPUDUlJUREpHgVKhkh5UPJCBERkQpg72L45Wk4k+B4vF5PGPB/ULNBqd9y+qpY+jUPKjIRcd4RczqLdh4jtLo3Y2ZuxmK14eVuxNvdxOm0bIe5HiYjt7ULZUyP+oRW9yn1mEVEpHKoUMmIXr16ccMNN/Dcc88BsGLFCoKCgmjUqFFp3UIKoWSEiIhIBfHLs7Dxc+fjRncIiYIqwVAjEtqMhID6ZR8fcPh0GlNXxlK7qhf3dKnLzHWH+GzFQZIK1I5wMxoY0iaER3s2oG6Ab7nEKiIiFVeFSkYYjUZGjRrF9OnTC30trqFkhIiISAWRdgqWjoPNX0JAA0jeX/g8gwlumgRRd5dpeEXJyLbw/YZDfLBsn9NKCZPRwOBWdXi0VwPqB1YppwhFRKSiqVCtPT08PEhNTS3NS4qIiIhcOXxq2JMM9/8BY9bCDe8VPs9mgQVPQHLFKN7t5W5iVNdIGtV2Lrhpsdr4acsRek+I5rFvN/P3sZRyiFBERCobt9K8WIMGDVi2bBnR0dFERkYCcO7cOQ4dOnRB54eHh5dmOCIiIiLlI7St/c+ziUXPsVlgwWMwYh64eZZJWMWx2WzcEhXCiZRMYpNSefjaevy26xjxyWn/jMPC7UdZuP0o/ZsFcUubELYcMnP4dBqh1X24vX0YkTW1nUNERC5MqW7TmDRpEmPHjsXwT8Vom82W+3uJgRgM5OTklFYoVxVt0xAREamgZt8Lu34qfk5AA3uBy/o9yyamElisNlbvT6J7w5pYrDZ+3p7Ih3/s5+DJ4le/mowGxg9pwbB2YWUUqYiIlKfLfQ4t1ZURTzzxBKGhocyfP5/Dhw+zfPlyatWqRePGjUvzNiIiIiJXBv8LWPWZvB++vhmaDYF+b0PVYJeHVRyT0cC1jQIBcDMZuCUqlJtahfDjpgRe/GkH1iK+xrJYbbz40w7aR9TQCgkRESlRqSYjAIYMGcKQIUMAewHLG264QQUsRURE5OrUZiSs+dC+JcPJ+dWj/zzd7/oJ/v4drn8ZOjwEplL/mHbJTEYDfl7ulLSc1mK18f6SvXxwR+sLXh0rIiJXp1ItYFnQa6+9xs033+zKW4iIiIhUXAH17QUtDSbH4wYTDP4YHvwTQtrmHc9Jg0UvweQucGhdmYZakgEtglny1HWEVfcudt6CbYkM+2wtK/aepBR3A4uISCVTqjUjevXqRf/+/Xn++ecBWLFiBUFBQTRq1Ki0biGFUM0IERGRCi75AGz5GsyH7Fs3okbYExUAViusmQRLX3M+r/Vd0OcN8K1ZtvEW453f9vBp9IV1AWkV5s8TvRrQq3EtrZQQEalkKlRrzz///JM9e/bkvu7Zsyfvvvtuad5CRERE5MoTUB96j4Nbp9v/PJ+IADAaocH1ULOQL2+2zoQP20LMdLAWttWj7N3ePgyT8cISC9sSzNz3ZQyDPlzF7zuPYS2q4ISIiFx1SjUZ4eHhQWpqXqVlm82m5Xn5rFixgsGDB1O3bl0MBgPjxo0r75BERESkIghqAWPWwsAJcO3zULtF3liGGRY+BZO7QeKWcgvxvMiavowf0qLYhESr0GoOr3clnuXhbzZxwwcr+XlbIhYlJURErnqlWhmpQYMGLFu2jOjoaCIjIwE4d+4chw4duqDzw8MvoOL0FezcuXM0bdqUO++8k7Fjx5Z3OCIiIlKRmNyg/X323697ATZOhT/egqwU+7GTf8GUHtDydrjhXfCuXm6hDmsXRvuIGsyKSeDw6XRCq3tzS+sQ/tx7gtikNMYPacHWBDMfLtvHsj0ncs/7+3gKj3+3hYlL9/JYrwbc2LIObiaXljATEZEKqlRrRkyaNImxY8fm7gm02WwXvD/QYDCQk5NTWqGwadMmlixZwoYNG1i/fj2JiYl4enqSkZFR7HkZGRmMHz+e7777jkOHDlGjRg369+/PG2+8QWhoaKnFFxERwahRo0pldYRqRoiIiFRSKcdg0b9h54+Ox31qQt+3IP00NLkR/MOKv445AfYshE5jXBdrEXYeOcP7S/Y6JCXOqxvgw6M9GnBLmxDc/0lKTF8VS7/mQYT4F18o84g5nUU7jzG6W6RL4hYRkeJd7nNoqa6MeOKJJwgNDWX+/PkcPnyY5cuXU6tWLRo3blyat7kgb775JvPnz7+oczIyMrj++utZs2YNwcHBDB48mLi4OL744gsWLlzI2rVrqV+/fskXEhERESkNfkHQfzwc3QrJ+/OOpyXBvIftv6/9CEYvKjohYU6ALwfB6Tj76zJOSDQPqUa9QF+W7XEei09O4/k52/lg2T7G9KhPWlYOb/+6hxlr4vjuwU5FJiSOmNMZPmUdh06lASghISJyBSr1BtZDhgxhyJAhABiNRm644QamT59e2rcpUefOnWnVqhXt27enffv2BAUFlXjO22+/zZo1a+jcuTOLFy+mSpUqAEyYMIFnnnmG0aNHEx0dnTv/1KlTnDp1qthrVq1alVq1al3emxEREZGrV5Va8OhGezHLLV/DsR2QnZY3fvYIfNIJ7l8GtQp8AZQ/EVE9AhoPKsvIAUjPsjB/a2Lu63s61yUlI4f5+WpHHDGn8/K8nQRW8aS6jzuHTqUxfMq6QhMS+RMR4TV86Ne85M94IiJS8ZTqNo2CXn/9daKiorjppptcdYsLZjAYit2mkZ2dTa1atTCbzWzevJmoqCiH8VatWrF9+3ZiYmJo29beD3zcuHG8/vrrxd73nnvuYcaMGU7HtU1DRERELon5EPz+on3bRUHX/Qt6/AsMBudExD0LS97O4SJn0rJ5f+le/vz7BL+PvRYvdxPxyal8svwAczYfJqdAQUujAaw2CKvuzfcPdc5NSBRMRBS3ekJERFzrcp9DXZqMOC8nJ4eFCxeyceNGkpKS6NixI6NHjwYgMTGRpKQkmjZtiptbqS/UyFVSMmL58uX06tWL+vXrs3//fqfxN998k1dffZXXXnstN4FgtVqxWq3F3tdoNGI0OhdmUjJCRERELsveRfDrc2COdzwe2gGufxUWPFYhEhH5ZWRb8HI3ORxLOJXGqC82EJeUhqWQj6X+3u7MfrgzPp5uSkSIiFQgFapmRGGio6MZMWIER44cyS1omZ2dnZuMWLZsGaNGjWLWrFkMHTrU1eEUadu2bQC0adOm0PHzx8/Pg6ITDSIiIiIu16gf1O0KkzvbV0ucd3iDfUUEgH94hUlEAE6JCIB9J1I4cNLeGr6WnyfmtCyyLHlJCXN6Nn3eX5G7WkKJCBGRysGlT9I7duxgwIABnDhxgieffJLZs2dTcCHG0KFD8fHxYc6cOa4MpUTn248W1THj/PELbVNamHPnzrF161a2bt1KVlYWx44dY+vWrfz1118XdH6zZs0K/Tlw4MAlxyQiIiJXMM8q8OR26P8ueFZ1Hk8/A7vmQU5WmYd2IWw2G+/+9nfu6/qBVVj5Qk8e6B6Jd4HExfmdHH2b1qaql8u/TxMRERdzaTLijTfeIDMzk19//ZUJEyYUuvLBx8eHJk2asGXLFleGUqJz587lxlMYX19fh3mXIiYmhqioKKKiojh69CifffYZUVFRDBgw4JKvKSIiIlc5gwE6PQxjVoOxwMqDzDOw5GV4NxzWfQqu3517UQwGA5+PbEefprUxGQ28dlNTalf15t8Dm7LqhZ6M6BTudM7UVbF0e3c5H/2xj3OZpdcWXkREypZL08rR0dF06tSJXr16FTsvPDycJUuWuDKUEp1fsWEwGIodvxw9evS4rOsUtRfn/F4dERERuUqZE+DLG8FqAaM72Cxgy1fXKjsdfn8Btv8AN06E4FblFmpB4QE+fD6yHQdOnqN+YJXc4xk5VqL3JgFgAPJ/gjqTns3/Ld7L1FWxPNC9Hvd0iaCKp1ZLiIhcSVy6MuLs2bOEhISUOC8zMxOLxeLKUErk5+cHQGpqaqHjaWn2Flrn232KiIiIVAgFu2Y8scW+daNaIXUiEjfDZ9fB3DFwNtF5vBzlT0Tk75pxPhHRo1EgVTwdV36Y07L576K/6f7uH0z+8wCpWikhInLFcGkyIjg4mN27d5c4b+fOndStW9eVoZQoPNy+DPDw4cOFjp8/fn6eiIiISLkrqn2nfxjc+xv4n/98lX/lpw22fQuT2sCyNyEjpezjLkb+RISvhyl3RcSWBDOzHu5CaHV74cr87+h0Wjbv/r6H7u8t59PoA6RlKSkhIlLRuTQZ0bdvX3bt2sXcuXOLnDNjxgzi4+MZOHCgK0MpUatW9uWKmzdvLnT8/PGWLVuWWUzFMZvNxMXFERcXR3Z2doktRkVERKSSKSoRcZ5/GIz6xT6GDarUhhoN8sZz0mHl/8F7kfakhLV8V6mCYyIivIYPE25vTYuQagA827cRTYOr8sNDnQmv4YMNqOrlhpd73sfZU6lZvPPbHrq/u5wpKw6QnlX+70lERArn0mTESy+9RJUqVRg+fDivvPIKMTExgH3Lw86dO3nrrbd45JFHCAgI4Omnn3ZlKCXq2rUr1apV48CBA4UW0/zxxx8BGDRoUFmHVqiJEycSGRlJZGQk+/btIzk5ubxDEhERkbK0Z2HRiYjz/MPsY9Uj4NxxaDcaBk0E38C8OdZse1JiYkvYv6xsYi/Cop3HchMR3z3YiX7Ngpj/aFc+HB7FnR3tqzxC/L357sFOhNfw4WxGDsM7hPPQdfUcum8kp2bx9q976P7eH0xdeVBJCRGRCshgK43KjMVYtWoVt912G8ePH3cqDmmz2QgMDGTu3Ll06dLFlWFgMBjw9PQkIyOjyDkvv/wy//nPf+jSpQuLFy/O7aAxYcIEnnnmGbp168bKlStdGueFMpvNmM1mwL4CxWQyXdCWGBEREalE1k2GxoMKT0TkZ06wJy86jbG/zkyBH0bCwT+c5zboDX3fglpNSj/eCzB9VSz9mgcR4u9d7LyE02nc8dk6TqRkMLpbJHd1CGfm+kN8tTae9GzH5EPNKp6M6VGfuzqG41WgZaiIiFya840Uimq0UBKXJyMAUlJSmDZtGkuXLiUuLg6LxUJoaCi9e/fmoYcewt/fv9Tv+csvv/Dmm2/mvl6/fj0Gg4EOHTrkHnvllVcctodkZGTQo0cP1q9fT3BwMN27dyc+Pp7169cTEBDAunXraNCgARXN5f5LICIiIlep7bPh12cg44zjcYMR2oyEHi+BX+3yia0Es2MSeO7H7bmvv32gI13q1yTpXCafRR/g63XxZGQ7bmMN9PNkzHX1uVNJCRGRy3ZFJCPKw4wZM7j33nuLnfPFF18watQoh2Pp6emMHz+eb7/9loSEBKpXr07//v158803CQsr4VuHcqJkhIiIiFwyq8XeZWPJOIhf5ThmMELU3XDDe+Be/EqFsrZs93Fenb+LI+Z0BrQI4pO72jqMn0jJ4LPog3yzLp7MHMekRC0/Tx7pUZ87OigpISJyqZSMECUjRERE5PLZbPD3r7DkVUje7zjm4QcD/w9aDAOjS0uOXZT0LAufRh/gtnahhFb3cRhLzcwhM8dKjsXK5OgDzFx/iKwCSYmgql480rM+t7cPw9NNSQkRkYtxxSQjNmzYwMqVK0lMTMRgMORug8i/bUIunGpGiIiIiEtYsmHRv2HDZ85jwa2h338goluZh3Wx3v19D9+uP8QzfRtxZ4dwklOzmPznAb7d4JyUCK7mxSM9GzCsXaiSEiIiF6jCJyP27t3LyJEj2bhxI2AvWgnkFrPs0KEDX331FQ0bNnRlGJXOuHHjeP3113NfBwYGcuLEiXKMSERERCqVfUtg3iOQlgS2Ai3ErxkI7e+H2GgwHwL/cHuNiYD65RNrAbFJqfR9P5psi/1z56uDmjK6WyQAx85kMPnP/Xy3IYEsi+P7qpOblAjDw63irAAREamIKnQy4ujRo7Rp04bjx49Tp04dbrvtNiIiIgCIj49n9uzZHDlyhODgYGJiYggODnZVKJWOVkaIiIiIy1mtcHwXrPof7Jpb/FyDCW6aZK8xUc4W7zrG07O2cS4zhzrVvFj2TA+8PRxXPBw9k84nyw/ww0bnpESIvzeP9mzArW1DlZQQESlChU5GPProo0yePJmnnnqK8ePH4+Hh4TCenZ3Niy++yIQJE3j00Uf58MMPXRVKpaaaESIiIuJyCRtg0UtweGPRcwwmeGxjhVghcSIlg/d+/5ue19RiYEvnL7yyLVbcTUYSzel8vHw/s2IScldSnBfi783jvRowtG0o7iYlJURE8qvQyYjIyEi8vLyK/cbeZrPRtGlTMjIyiI2NdVUolZqSESIiIlImbDaYeSvsX1r0nK5PQZ9xZRbSpVix9ySvzN/JKwObcn2TWhgMBg6fTuOTPw8wu5CkRFgNbx7v2ZBb2oQoKSEi8o/LfQ516d+m57dpFMdgMNCmTRuOHj3qylBERERE5HIZDOBZtfg5W76ChGJWT5SzrBwr437eRXxyGvd/FcN7i/4GINtio6qXO9c2DKRJsB8mQ945CafSeX7Odq7/XzSzYhLIKbCtQ0RELp6bKy9etWpVEhISSpyXkJBA1aol/IdNRERERMqff3jx42nJMK031G4Ot06HwGvKJq4LFBN/ivjkNACMBhjUMphZMQm8+NMOLNa8FRFGA7SPqM7mQ+bc44dOpfH8j9v5ePl+Hu/VkJtb18FNKyVERC6JS//27Ny5M2vWrOG3334rcs6vv/7K6tWr6dKliytDqXTMZjNxcXHExcWRnZ2N1aoMvYiIiJSBNiPttSFKcnwnfNwBfnkG0s0uD+tCdalfk9+e7E6X+gEM7xCOj4ebUyICwGqDzYfMfDW6A7e1DcVkzFsqEZ+cxrOzt9Hn/RX8tPmwVkqIiFwCl9aMWLt2Lddeey1Go5E777yTO++8k4iICAwGA7GxscycOZPvvvsOm83GihUr6NSpk6tCqXTU2lNERETKzZZvYMETYLPkHTOYoMvjsGEKZKc5zveuAT1ehHb3gsm9bGMtgs1mI8ti5f0l+/g0+kCR88b0qM8L/RsTl5TKR8v3M3fLEafERb2avjxxfUNubFXHIWkhIlKZVegClgDffPMNDz30EOnp6RgMjn8522w2vL29mTJlCnfddZcrw6h01NpTREREylXyAdjyNZgP2bduRI2wd9E4dxLmPggH/nA+J6Ah9H4dGg+w15+oAB77djMLtxddu+zGVnX4cHhU7uu4pFQm/bGPeVuOUCAnQb1AX568viGDWiopISKVX4VPRgAcPnyYzz//nFWrVpGYmAhAnTp16N69O/fddx9hYWGuDqFSUzcNERERqXDMCbD9e1j5PmSnOo751IQbP4Amg8ontnze+W3PBa2MKOjgyXN8+Md+5m91Tko0qFWFJ65vyMAWwZiMBqaviqVf8yBC/L2LjeWIOZ1FO48xulvkJb0XEZGydEUkI8S1lIwQERGRCivlOCz/j30Vha1AbYXIa+HmT6FaSPnEBsQmpdJ7QrTT1gsAk8HA0meuI7Kmb5HnHzh5jknL9rFgWyIFP1U3rFWFlqHVmLP5COE1fPjuwU5FJiSOmNMZPmUdh06l8eqgpkpIiEiFV6Fbe4qIiIjIVc6vNtw0CR5eDTXqOY7FroAP28Ifb0Fmiv3Yusn2VRUlMSfY516myJq+jB/SwmlbhdEA7wxt4ZCIsNls/LjpMJk5ebUy6gdW4YM7oljy1LXc1KqOw+6TfSfOMWfzEdxNBg6dSmP4lHUcMac7xZA/ERFew4d+zYMu+32JiFR0Ll0ZkZmZyfHjx6levTp+fn6FzklJSeH06dMEBQXh4eHhqlAqNa2MEBERkSuC1QrLxsHaT8Ca7TjmWwsiusKuuVA9Au5ZCP5FbOU1J8CXg+B0HPR/BzqNuezQYpNSmRWTwOHT6YRW92ZYuzCnFRHztx7hye+3Uq+mL2/e3JyuDWo6XWff8RQ+WLaPX3YcdVopAVCzigdzH+lKWA0fwDkRUdzqCRGRiqRCr4yYMGECkZGRbNu2rcg527ZtIzIykg8++MCVoYiIiIhIeTMaoc8b8EI8DPyfPQFxXuoJeyIC7EmGGQMLXyGRPxFRPQIal07diciavrzQvzEfDo/ihf6NnRIRZzOyeesXe7Hwg0mpTF15sNDrNKztx0d3tuH3J69lYItgp/Gkc1n0+t+ffLv+EIdPpykRISJXLZeujOjYsSPJycns37+/2Hn169endu3arFmzxlWhVDrqpiEiIiJXvMwUWP0BrPkIcpy3L1A1BEYvylshUTARUdzqiVJ2LjOH/1v0N1+tjcPdZGTJU9cRHuBT4nl7jp3lg6X7+G3nMacxA2ADJSJE5IpUoVdGHDhwgKZNm5Y4r1mzZhw4UHQVY3E2ceJEIiMjiYyMZN++fSQnJ5d3SCIiIiIXx9MPer0Mj2+Chv2cx88egU86wZEt5ZqIAKji6ca4m5qx4LFujB/SotBERPK5TKdjjYOqMvnutvz6RHf6N3OsBXH+G8HBresQXNXLFWGLiFRYLk1GpKam4utbdPXh83x8fDh79qwrQ6l0xo4dS2xsLLGxsTRs2JCAgIDyDklERETk0lQLgbtmwW1fgneBzzRZ5+DzHvBBy3JLROTXPKQaQ9qEOh1POJVG9/eW8++5OziTlu003rROVT4d0ZYv7m2HocDYh3/s566p60kspLiliEhl5dJkRFhYGDExMSXO27RpE8HBznvqpGj+/v5EREQQERGBu7s7RqMao4iIiMgVrtnN8PwBuO0rCGjgOHa+LWiVIHCrWKsIbDYbry3YRVqWhZnrD3H7lLUUthP6iDmd1+b/hQ2cunesPZhMv4krmL/1SBlFLSJSvlz6BNu3b18OHjzIhx9+WOScjz/+mAMHDtCvXyFL80RERETk6mIwQLPB8Mg66PGS83jCOpjQGLbMBKvFebwcnEnPJuFUWu7rh6+rj8HgmGwo2DVjxfM9+fWJbni7m3LnpGTk8OT3W3n8uy2Frq4QEalMXFrAMiEhgRYtWpCSksKNN97Igw8+SP369r+c9+/fz5QpU/j555/x8/Nj69atREREuCqUSk2tPUVERKTSyV8jIrfUYwGBTeD6V+CaAfYkRjnKyrEybVUsMXGnmHpPO4dkRHHtOw+fTmPwR6tJTs1yuF5QVS/+N6xVoe1DRUQqgst9DnVpMgJgxYoV3HrrrSQlJTlliG02GzVr1mTWrFn06NHDlWFUakpGiIiISKVSWLHK0/HwzS1gyXKeH9IOrnvOXgSznJMSNpvNKRFxx2drSTidTs0qHsx/rJtT14wj5nRu+3QNieYMp+uN7hrJ8/2vwSvfCgoRkYqgwicjwN6GcsqUKSxbtoyEBHu/6LCwMHr37s39999P9erVXR1CpaZkhIiIiFQaxXXNMCfAtH6QUkRdBS9/6P8OtB5eRsGWbPqqWN5Y+Ffu695NavPp3W1wMznuls6/esJoAGu+T+gNa1Vh4h2taVanWlmFLSJSoisiGSGupWSEiIiIVAoX0r4z/xx3b8gupANF5HUw4L8QeE0ZBF289CwLbd5cQnq2vb7FbW1D+e9trQqde8SczqKdx+hYrwZP/bCVvcfP5Y65mww83ecaHry2nlPxSxGR8nC5z6FqwXCFMpvNxMXFERcXR3Z2NlartbxDEhEREbk8exaW3L7TP8w+Vj3CnojoOMbeYSO/2Gj4pBPMexTMh8og8KJ5e5j4+fGudKpXA38fd14c0KTIuSH+3ozuFkmzOtVY8Fg37usWmTuWbbHx7u97GD5lnUOxTBGRK5VWRlyhxo0bx+uvv577OjAwkBMnTpRjRCIiIiKlYN1kaDyo8EREfuYEe/Ki0xiwWmHV/2DF/yCnwEoJkwdEjYAuT0KNuq6LuwQ2m41Dp9KoG+DrNDZvyxG6NqhJoJ+n09jq/Uk8O3sbR8/k1ZOo4unGuJuaMbRNiFNNNhGRsqJtGlcps9mM2WwG7C1UTSYTu3fvLt+gRERERMqTxQJ7FsAfb0Hy/gKDBmjQG4Z8Bj4B5RJeYXYeOcNNH62iiqcbz/VvzJ0dwp22YZxJy+aV+TtZsC3R4fgNzYP4zy0tqOHrUZYhi4gASkYIqhkhIiIi4sCSA9u+hT/fgbMFil26eUPPF6HDg/aaE+XIarUxZPIatiaYAYis6cvvY7vj6VZ454z5W4/w8rydpGTk5B4L9PPkv7e2pMc1tcoiZBGRXKoZISIiIiKSn8kN2oyExzfbt2jkl5MOS16FSVEQMx0s2eUTI2ADbokKwc/TDYA3BzcvMhEBMLh1CIvGXkuX+nkrO06mZDLqi428Mm8n6VkWV4csIlJqtDKiEtDKCBEREZFinPgbfrofTv4NlkzHsRr1oOPDUK8XbP3GXvDSP9yezAioXzbhpWSwaOcxRnSOcBo7fjaDWn6eDrUhrFYb01fH8t6iv8nKyStiXq+mL+/f3ppWYf5lELWIXO20TUOUjBARERG5EKnJsGoCbPjcOSlRkMEEN02CqLvLJrZCpGXl0GfCCiJq+vDG4ObUD6ziMP73sRTG/rCV3UfP5h5zMxp44vqGPNKjPm4mLYIWEde5IpIROTk5LFy4kI0bN5KUlETHjh0ZPXo0AImJiSQlJdG0aVPc3NxcHUqlpGSEiIiIyEU4cxii34XN3wDFtEc3mOCxjWW2QqKgd3/fw+Q/DwDg62Fizb+up5qPu8OczBwLE5bsZcqKg+T/VB8V7s/E21sX2r1DRKQ0VPiaEdHR0dSrV4+hQ4cyfvx4pk6dyqpVq3LHly1bRlRUFPPnz3d1KCIiIiIiUC0UbvoQRv0CRvei59kssOXrsosr/61tNg6cOJf7+p4uEU6JCABPNxMv3tCE7x/oRIh/XkHOLYfM3PDBSr7bcAgthBaRisilyYgdO3YwYMAATpw4wZNPPsns2bOd/jIcOnQoPj4+zJkzx5WhiIiIiIg4iugCjQcWP2frt/ZaE2XMYDDw2Yi2fHp3WzpE1ODxXg2Lnd+xXgC/je3OkDYhucfSsiy8+NMOHvhqE0nnStiWIiJSxly6L+KNN94gMzOTxYsX06tXr0Ln+Pj40KRJE7Zs2eLKUEREREREnFWPKH783HH4uANEXgc3f2JfVVFGDAYD/ZsH0b95UKHjL/y4nXqBvozuFom7yUhVL3cmDGtN7ya1eWnuDsxp9k4hS3cfp9/7p3l3aEt6N61dZvGLiBTHpSsjoqOj6dSpU5GJiPPCw8NJTEx0ZSiVjtlsJi4ujri4OLKzs7Fai9nvKCIiIiKFazPSXhuiJLHRMKkNLH4Z0k65Pq4SrNx3kh9iEhj/2x4GTVrFibMZuWMDWgSzaOy1XNsoMPdYcmoW938Vw4s/bSc1M6c8QhYRceDSZMTZs2cJCQkpcV5mZiYWi/oiX4yJEycSGRlJZGQk+/btIzk5ubxDEhEREbnyBNS3d80omJAwmCCwseMxSyas+RAmtoQ/34XMlLKLs4CJS/fl/u7tYaJmFU+H8dpVvfjy3va8MbgZnm55H/m/25DAgEkr2RR/usxiFREpjEu7aURGRuLn58f27dtzjxmNRkaNGsX06dMd5vn4+KgbxEUwm82YzWYA+vbti8lkYvfu3eUblIiIiMiVKvmAvVil+RD4h0PUCHui4tguWDgWTsdB6gnHc7z8oe0o6PEiuHuVabinU7N4b9HfzI5JYN6jXWkeUq3IuftPnOOpH7ay48iZ3GNGAzzWswGPX98Qd7UAFZFLcLndNFxaM6Jv375MnTqVuXPncssttxQ6Z8aMGcTHx/Pss8+6MpRKx9/fH39/fwDc3YupAi0iIiIiJQuoD73HOR8Pagb3L4GsNNgwBVa9Dxlm+1iGGVZPtB+/7l/Q+VEwlU2r+uq+Howf0oLHezWgTr4uGuct/es4Vmxsjjdz+HQanesH0DqsGjPXH8JqA6sNJv2xnz/3nuT921tTP7BKmcQtInKeS1dGxMfH07JlSzIzM3nuuecYPHgwHTp0YNiwYbz88svMmzePt99+G19fX3bs2EFQUOHFeaR4l5uREhEREZELlG62b9VY86F920Z+NRtBz39D08FgMJRLeADJ5zLp9u5y0rMdt0GbjAYevq4eP287yqFTabnHvdyN/HtAE+7uVBdDOcYtIleWy30OdWkyAmDVqlXcdtttHD9+3OkvN5vNRmBgIHPnzqVLly6uDKNSUzJCREREpIztmgc/P5m3SiK/4NZw/atQv5c9KbFuMjQeBP5hxV/TnAB7FkKnMZcV2sNfx/D7ruOFjpmMBhY81pWv18bz/cYEh7HrGgXy31tbUqtq2W45EZErU4VPRgCkpKQwbdo0li5dSlxcHBaLhdDQUHr37s1DDz2Uu91ALo2SESIiIiLlwJIDaz+C+DWwbzFQ4GN1jXpQvzdsnGJvIXrPwqITEuYE+HKQvTZF/3cuKyHx2LebWbj9aJHjt7UNxcfDhJe7iVkxCZz+pwUoQHUfd8YPaUH/5sGXfH8RuTpcEckIcS0lI0RERETK2Ynd8Mdb9pUNBZk8wJJVdEIifyKipKTFBSgpGdE4yI89x+ydQNrWrY6/tzvL9jgW5xzaJpRxNzXFz0u1yUSkcJf7HOrS0rlPP/00b775pitvISIiIiJS/mo1gTtmwv3LILyz45gly/7n6Tj4or89+XBeKSciAEKr+xQ7npqZk/t7twY1mXpPO96+pQXe7nntTedsPsx17y3ntx1FJzVERC6HS5MRH330kUNbTxERERGRSi20HdzxLTS+ESikGOSZwzC5MxzZ7JJEBMDt7cMwGQsvRGkyGri7U10Gt65D7aqedKxXA4PBwJ0dw/ntye60DvPPnXsqLZsxMzfz7u97yMqxXnZcIiL5uXSbRr169YiKimLOnDmuuoWgbRoiIiIiFdLpeNj8Fez+GZL+LmSCAbCVaiLivFkxCbz40w4s1ryP+iajgXeGtOC2dvb72Gw2bDYw5ktc5Fis9Ju4ggMnUx2u1zS4KhPvaE2j2n7EJaUy6Y99dIoMoGO9GtQN8C21uEXkylGha0Y888wzfPnll8TGxuLn5+eq21z1lIwQERERqcCsFtj+Ayx/G84kOI83uxV6vwrV65bqbWOTUpkVk8Dh0+mEVvdmWLswImuWnDj4ZftR5mw+zIq9J8nJl8zwcDPyQv/GeJqMvDx/J2CvP/H72GuLvNYRczqLdh5jdLfIy39DIlKhVOhkREpKCtdddx2+vr5MmjSJqKgoV93qqqZkhIiIiMgVICcTVvwPVrzrPGYwQfOh0O0pqN207GMrRFpWDv/55S9mrndMoPh6mkjNtAD2Qpf/G9bKYTzRnM7bv+6mcZAfM9cf4uiZDF4d1FQJCZFK5nKfQ91KM5iCBg8ejKenJ6tXr6Zdu3YEBwcTHh6Ol5dz72KDwcCyZctcGY6IiIiISPk5dwK2f1/4mM0CO2bZfxr1h25PQ3jHso2vAB8PN/5zS0t6Nw3i+R+3czIlEyA3EQEQvfcER8zphPh75x5bdzCZhduP5nb0CK/hQ7/mQWUbvIhUeC5dGWE0Xnh9TIPBgMViKXmiONHKCBEREZEKrmCxypE/w6G1sOhFSEsu/JywjnDtc9CgNxgKL0hZVk6lZvHiT9tZtOu401hodW9+eKhzbkIif2tRX08Ti5+6ziFZkXQuk5d+2kHHegF0jKxBszpVMZTz+xORi1ehV0bExsa68vJXNbPZjNlsBiA7OxuTyVT8CSIiIiJSPorqmlE9HOp2yRszuYMlO++8hPUw81ao3QK6jYWmN4PJpR/fi1TD14NP727Lj5sO8/rPf3EuX3vQw6fTueXj1cx9tCsAG2JPAeBuMvBM32scEhHnxxf/dZzFfx2ndlVP1r14fdm9ERGpMFy6MkJcZ9y4cbz++uu5rwMDAzlx4kQ5RiQiIiIiTi6kfWf+OR6+kJVayIWA6pHQ9QlodSe4O297LisJp9J4etZWNsaddjhuNNg7dmRbbITX8OG7Bzs5JSIAXp2/k6/WxgMwuHUdPrjDsa7c2YxsnvxuCx3+6dbROtQ/t+NHbFIqP2xM4PDpNEKr+3B7+wsryikipa9CF7AU18m/MqJv376YTCZ2795dvkGJiIiIiKN1k+H3f5XcvjN/QqJ+L4hfA9VCIXm/81zfWtD5UWg3GryqujL6IlmsNj5bcYD3l+wl2+L4OOFmNBD9fM9CExFgXxmxbPdx1sWe4q4O4Qxr7/jP5I89xxk9IwYAfx93Nr/cB6PRUGS70vFDWjCsXem1RRWRC1OhtmmsWLHiss6/9tqi2wKJI39/f/z9/QFwd3cv32BEREREpHCdxtj/bDyo6EQE2MfuWQh7FtrPOXcC3H3AHA+rJsLOOfYilwCpJ2Dpa7BqArR/ADo+DFUCXf5W8jMZDTzSowHXNgzk0W83E5+cljtmsdrIzrEWeW6HyBp0iKxR5Pj6g6fy5kbUwGg0EJuU6pSIOH+vF3/aQfuIGlohIXKFKdWVEUaj8bKKz6iA5aVRAUsRERGRSu5ULKz9CDZOAwp8fHfzgqgR0OVxqF63TMM6Yk7njs/WknA63eG4r4eJRU9dS2h1n4u+5rYEs33lxMFT3NgqmBGdI3jntz18Gn2gyHPG9KjPC/0bX/S9ROTSVaiVESNHjnRKRiQnJ7Nw4UIMBgNRUVGEh4cDcOjQIbZu3YrNZmPgwIEEBASUZigiIiIiIpVHjUhocw9snOo8lpMBGz+HmOnQ4lboOhZqN3V5SEfM6Qyfso6E0+mE1/ChSbBfbreN1CwLAyet4tcnuxe5XaMorcL8aRXm73Ds8Om0wifnjqcXOy4iFU+pJiNmzJjh8Pro0aN06tSJPn368OGHH9KoUSOH8b179/Lkk0+ybds21q1bV5qhiIiIiIhULsEt4b4lsPR1+5aNBn1g/WRIPWkft1lg+w/2n0Y3QPenIayDS0I5n4g4dCott1hlzSoejJi2Ibebxpn0bG76cBULHu920QmJgkpaYRFa/fKuLyJlz6UFLO+55x6WLVvG/v378fIqvOJveno6DRs2pFevXnz11VeuCqVS0zYNERERkauIzQaZKfbildnpsHUmrJ5kry9RUNVQ+9aN0PbQZiQE1L/s2xeWiDifbDCnZTHkkzUcTMrrCFK7qic/PdL1shISsUmp9J4Q7VQzAuz1K5Y+fZ1qRoiUsct9DjWWZjAFLVq0iO7duxeZiADw9vame/fuLFq0yJWhiIiIiIhUDgZDXhcNd29ofz88vhma3uw89+xhiF8NqyfCR+1g8+V/+bdo57FCExEA/j4efHFve2r4euQeO342k2/XH7qse0bW9GX8kBaYjI5bwk1GA+8MaaFEhMgVqFS3aRR09uxZkpKSSpyXlJRESkqKK0MREREREam8DEY4UUKbd5sVFjwOZ49BtyfBzfOSbjW6WyQA/ZoHFbraoW6AL1NGtOXOqevJ+qerxi/bE7mvW6RDkuJiDWsXRvuIGsyKSeDw6XRCq3szrF2YQyJidkwC/ZoHUdVL3eZEKjqXbtPo0KEDW7duZdmyZXTv3r3QOatWraJnz55ERUWxYcMGV4VSqWmbhoiIiIiQnQ4bpsCK/0HmmeLnVgmCzo9Au9Hg6eeScH7elsjj323Jfd2ubnW+ub8jXu6mUr+XzWbj/SV7mfTHftrVrc6Xozvg6+nS711FrnoVepvGCy+8QE5ODv369WPMmDH88ccf7N+/nwMHDvDHH38wZswY+vXrh9Vq5YUXXnBlKCIiIiIilZu7N3R9Ehr0KnnuuWOw5FV4vxksexNSS17NfLFubFWH5/pdk/s6Jv40z/+4HVd8F7rkr+NM+mN/7n3e+PmvUr+HiJQul66MAPjoo4947rnnyMzMdGr7abPZ8PDw4N133+XJJ590ZRiVmlZGiIiIiEiuJa/Za0RcDDdvaDMCujwO/uGlForNZuOFOduZFXM499jjvRrwTN9rijnr4lmtNl6au4PvNybQsFYVZt7fkVpVi65bJyKX73KfQ12ejACIj49n2rRprF69msTERGw2G3Xq1KFbt27ce++9REZGujqESk3JCBERERHJlXwAPmpvb/VZmMAm0LAvxEyHrAJ12wwmaHEbdBsLtZqUSjjZFiujvtjA6v3Jucf+e2tLbmsXVirXP89itTFp2T5Gdq5LQJVLq4chIhfuikhGiGspGSEiIiIiDrZ8AwuecExIGIzgVwdu+wLCOkC6GWKmwbrJkHrS+RrXDIRuT0FY+8sO50x6NrdOXsO+E+cAcDMa+Gp0B7o0qHnZ1xaR8qFkhCgZISIiIiLOkg/Alq/BfMi+9SJqBNSoZ28Nml92Osx9GPb8AtZs5+tEdLevlKh/fd656yZD40HgX8LqBnMC7FkIncaQcCqNWz5ZQ9K5TAD8vNyY+0gXGtRyTQHN89KzLMxcH8/orpEYC7QGFZFLd0UkI9LS0oiJieHo0aNkZmYWOW/kyJGuDqVSUjJCRERERC5Z+mmYFGX/E+ydNs4dc54X1NK+UiLlKCx6CapHwD0Li05ImBPgy0FwOg76vwOdxrA1wcwdU9aSkW1v+Rla3Zu5j3Ql0M812yrOZeZw34yNrI89xZ0dw/nPzc2d6tiJyKWp8MmIV199lffff5+0tLQi59hsNgwGAxZLEfvapFhKRoiIiIjIJds+G3663/67RxV4fDMkboFVEyBhvfP8auGQnQppyUUnJPInIgrM+X3nMcbM3MT5p5DWYf58/2Anl7T8fOPnv5i+Ojb39f9ua8XQtqGlfh+Rq9HlPoe6tPnue++9x1tvvYWbmxuDBg2iUaNGVKlSxZW3FBERERGRi9HyNgioD4v+DQ17g19tuKa//Sd+Dax6H/Ytzpt/5pD9T4PJnmyYMRBG/ZKXkCgmEQHQv3kQL93QhP/8uhuArQlmnvphKx/f2abUt1E807cR2w6b2RR/mqFtQrk5KqRUry8il86lKyMaNmxIYmIiK1eupE2bNq66zVVPKyNERERE5LLZbGC1gKnA95XHdsC3d0C10H9WShTy+OBVzZ508K5ebCIi71Y2Xpm/k2/WHco99tC19XhxQOl08MjvbEY2364/xIPd66lmhEgpqtArIxISEujVq5cSESIiIiIiFZ3B4JyIsNns9SHOHrb/NB0M3jVg60ywZOXNyzgDn3W3d+ywWUusJ2EwGBh3YzMSTqUTvdfeyeOzFQcJD/Dhro51S/VtVfVy5+Hr6pfqNUXk8hldefGgoCBXXv6qZjabiYuLIy4ujuzsbKxWa3mHJCIiIiKVzck9ELc673XUCLhxIozdAV2fBI8CnTBs/3wm7fNWiZ023ExGProzisZBedd4df6u3OSEq+0/cY4fNh4qeaKIuIRLkxF33HEHGzZs4PTp0668zVVp4sSJREZGEhkZyb59+0hOTi7vkERERESksqnVBB5ZB41ugPq9oEFv+3G/IOjzBjy1Ezo/7nzerLth8cuQnVHs5f283Pni3vbUrmrvpmGx2nh05mZ2Hz1b2u/EwZ5jZ7ljylpemLOD7zYoISFSHlxaMyIjI4O+fftiMpmYOnUq9etreVRpMZvNmM1mgNx/xrt37y7foERERESk8spOB3dvx2Mn98KnXf/ZsmHAqZ5EzUZw86cQ2rbYS+88coZhn60lLcveXS+4mhfzHu1K7apepRf/P2w2Gzd9tJodR84AYDIa+OOZ66gb4Fvq9xKpzCp0a89evXqRlZXF2rVrMRqNREREEBoaWmhvX4PBwLJly1wVSqWmApYiIiIiUubMCfBpN8gw21/XbgbX/gvm3AvWnLx5BiN0ewquewHcPIu83LLdx3ngqxis/zydNA+pyg8PdsbXs/TL3MUnpzLss7WcTMnkf8NacUuU2n2KXKwKnYwwGi98F4jBYMBisbgqlEpNyQgRERERKVPmBJgxAMz5tjh0eQL6vmlfLTH1esgssNWiVlO4eTLUaV3kZb9cE8drC/I+0/ZuUovPRrTD5IIuGAdOnmPf8XP0b646dyKXokInI+Lj4y9qft26pVs592qhZISIiIiIlBlzQl77zmqhUKcNxK+BxzeBt3/enGm9IeWY47lGN+j+LHR/Btw8Cr386z/v4ovVcbmv7+0awWs3NnPJWxGRS1ehW3squSAiIiIiUsnsWWhPRORv35luzktEgP3YfUvhk46QlZp33JoD0e/A37/Ya0kENXe6/MsDm5JwKp2lu48D8MXqOOrW8GFU10hXvqtc87YcoVZVT7rUr1km9xO5Wrm0m4aIiIiIiFQyncZA/3fyEhHgmIg470xCXiKiSi3wq5M3dmwHTOkBK/4LlhyH00xGA5OGt6ZFSLXcY28s/Iulfx0v3fdRiO83HOKpWVu5/8sYYuJOufx+IlezMklG5OTkMG/ePP7973/z0EMPMX369NyxxMREtm/fTk5OTjFXEBERERGRCqPTmLxERFGi38v7vVoYPLIW2o7KO2bNhj/egml94OTfDqf6eLgx7Z521Klm76ZhtcHj321h5z8dMFzhREoGr//8FzYbpGVZeO7H7eRYrC67n8jVzuXJiOjoaOrVq8fQoUMZP348U6dOZdWqVbnjy5YtIyoqivnz57s6FBERERERKSu3ToeOD9vrRPR727564sYP4O45jqskEjfDp91h9QdgzStoX6uqF9PvbU+Vf7pppGdbGD1jI4nmdJeEW8vPiykj2+LhZqR2VU8+H9kON5MWkou4ikv/37Vjxw4GDBjAiRMnePLJJ5k9ezYF62UOHToUHx8f5syZ48pQRERERESkLPnUgBvehbE7IbxT3vEGve2rJMI65h2zZMKSV2F6f0jan3u4cVBVPrmrTW43jRMpmYyesZGUjGyXhNy9YSCfj2zHrIc606BWFZfcQ0TsXJqMeOONN8jMzOTXX39lwoQJDB061GmOj48PTZo0YcuWLa4MRUREREREykPV4MKPJ+2z/2nI90hyeAN82g3WTQarfYvEtY0CeevmvEKXe46l8Ni3W1y2heK6RoHUDfB1ybVFJI9LkxHR0dF06tSJXr16FTsvPDycxMREV4YiIiIiIiIVxbpPIP2fApFu3tD4xryxnHT4/V/29qGnYgEY3iGch66rlzsleu9JXl2wy2nVtatYrDbG/7abhFNpZXI/kauBS5MRZ8+eJSQkpMR5mZmZWCyWEueJiIiIiEgl0OUJuO5f9kRE96fhjm9g2Nfgk6+dZvxqmNwVNnwOVisv9GvMgBZBucPfrj/E5ysPujzUbIuVJ7/fwmfRB7lr6nqOnclw+T1FrgYuTUYEBweze/fuEuft3LmTunXrujIUERERERGpKDyrQM8X4fFN0PlR+7GmN8Gj66Hp4Lx52anw67Pw9c0YzyYwYVhrWof55w6//esefttx1KWhrtqXxMLt9nscOpXG+0v2uvR+IlcLlyYj+vbty65du5g7d26Rc2bMmEF8fDwDBw50ZSgiIiIiIlLRVAsBd++817414bYvoVYTx3mx0fBJF7y2f8PUkW0Jq5F3ztgftrLl0GmXhdizcS3+PcAeT/eGNRl3UzOX3UvkamKwuXCjVXx8PC1btiQzM5PnnnuOwYMH06FDB4YNG8bLL7/MvHnzePvtt/H19WXHjh0EBQWVfFFx0qyZ/S/EXbt2lXMkIiIiIiKXaf8y+GZI0eP+dTnn34gf4nz4OvNa4mzB1KziwdxHuhJWw8dlYS3cnkjvJrXxcje57B4iV5LLfQ51aTICYNWqVdx2220cP34cg8HgMGaz2QgMDGTu3Ll06dLFlWFUakpGiIiIiEilkZMFG6dC9LtQpzW0HA6/Pw8ZZ5yn2oy8mHM/sy09aFCrCnPGdKGat3vZxyxyFarwyQiAlJQUpk2bxtKlS4mLi8NisRAaGkrv3r156KGH8Pf3d3UIlZqSESIiIiJS6aSdgswUqF4X4tfAFwMA50eXHJuR3ln/Jc4WTJf6Acy4twMebi7djZ7rxNkMJizZy2s3NsPbo2KtmJi+KpZ+zYMI8fcudt4RczqLdh5jdLfIMopMKosrIhkhrqVkhIiIiIhUakteg9UTix62tOGB7GcAA7e1DeW9W1s6rcoubYnmdO6aup7YpFS6NajJ1HvaVZgtHNNXxfLGwr8Ir+HDdw92KjIhccSczvAp6zh0Ko1XBzVVQkIuyuU+h5ZNylBERERERORSmQ8VO9zHtJlP3D8ggDMs2HSQT5bvc3lIX6+LJzYpFYBV+5NYtOuYy+95ofo1DyK8hg+HTqUxfMo6jpjTnebkT0SE1/ChX3PV75Oy5ebKi69YseKC5nl4eBAQEECDBg1cnsEUEREREZErjH94iVMGmDbQ0bib5ZbWdIveyYHDA6nf+36oE+WSkJ7tew1HTqezYFsiz/e/hsGtQ1xyn0sR4u/Ndw92yk02DJ+yzmGFRMFERHGrJ0RcxaXbNIxG40UlF3x9fbnjjjv4z3/+Q2BgoKvCqnS0TUNEREREKrXkA/BRe7BZLuq0xJaPUGfIeBcFBTkWK3/+fZLeTWu77B6Xo7CkA6BEhJSKCl0zYtSoUZjNZhYsWIDRaCQqKorw8HBsNhsJCQls2bIFq9XKjTfeSHp6Olu3biUpKYl69eqxfv16AgICXBVapaJkhIiIiIhUelu+gQVPOCYkDCa4cRJkp9rrSuQ4bkd4l1Hc/tjbRNT0zTt4eJP9z5A2cBWsys6fkDAa7CVAbTaUiJDLVqGTESdOnKBTp040a9aMDz74gHr16jmMx8bG8uSTT7Jjxw7WrVuHn58fDz30EDNnzuS5557j3XffdVVolYqSESIiIiJyVUg+AFu+tteQ8A+HqBEQUD9vbN4jkLDO4ZRFbj3pOGYK/gG17Ae+HgIHlkG1cOg/HpoMKvUwV+9P4s+/T/DSgCblug39iDmdeVuOMDsmgbjkNIexBY92pWWYf/kEJpVChU5GjB49mqVLl7J//348PDwKnZOZmUnDhg25/vrr+eKLL0hNTSUyMpKAgAB2797tqtAqFSUjREREREQAqwXWTcay9HVM1qzcw6eMAfgN+wT38A7w3wZ5qytG/QIR3Uo1hOV7TvDQN5vIyrHyQPfIMk9InEnP5vedR/lp8xHWx54qcl6vxrWYPqp9mcUllU+F7qbx66+/0q1btyITEQCenp507dqV3377DbDXjYiKiuLQoeIr5oqIiIiIiDgwmqDLY5jGrOaYX7PcwzWsybh/fzu2n5+E0PaAAarUhvDOztdY8iosexOO7bTvZ7gINpuNydEHyMqxAvDNukMcOpVWwlmXLyvHypK/jvPozM20/89SXpizo9hEBMAfe07wY0yCy2MTKYpLkxFnz54lKSmpxHnJycmcPXs293X16tXVVUNERERERC5NYCNqj43ml1oPkmnLayBo2L0AzhyGodPg1un25EV+WWmwYSqs/D/4tCvsX3ZRtzUYDHw+sh3N6lSliqcbX93XgboBviWfeAlsNhub4k/zyryddHx7KQ98FcMvO47mJkLOczPan6vqVPNi5fM9aRFSLXfshZ92sP9EikviEymJS5MRzZo1488//2TNmjVFzlm7di3Lly/PXeIBcPjwYWrVquXK0MrFF198Qc+ePQkMDMTPz4+2bdsyc+bM8g5LRERERKTSMZjc6fPgu7xS+2N2WCPyBs4ehjmjYedPkHnO8aT9S+zFMAE8/ArfwpFa/Jet1bzd+fq+jnz/YCfaR9S4vDdRiLikVN5fspce//cnQyev4et18ZxOy3aYU8PXg6FtQqhd1ZMcq43wGj7MHtOFsBo+/G9YK0z/fO9rsdq45ZM1HDGnF3InEddyaTLiueeeIycnhz59+vDoo4+yfPly9u/fz4EDB1i+fDmPPvoovXv3xmq18txzzwH21RSbNm2iU6dOrgytXCxbtoybbrqJX3/9lS1btnDHHXcwYsQIfvjhh/IOTURERESk0vFwM/Lve4fybLUJTMi+lWxbvpUQMdNgcheIW2V/vW4yVAuDvv+BkHbQeAC4ezle0JIDH7eH/2sE0e9BWuFbIWr4etA83wqEy3UqNYuv1sZxyyer6fF/f/LBsn3EFyhI6elmZFDLYKbd0465j3RhY9xpjp/NdOqa0ai2Hw/3qJ97XkpGDkOVkJBy4NIClgATJ07kX//6F1lZWU5bL2w2G+7u7rz99ts888wzgL3DxqxZs7j++utp167dJd9306ZNLFmyhA0bNrB+/XoSExPx9PQkIyOj2PMyMjIYP3483333HYcOHaJGjRr079+fN954g9DQ0EuOpygDBgzA29ubOXPmXPI1VMBSRERERKRoCafSuPnj1dRO28v/3D+libFAfbq6XSB+DVSPgHsWgn8YWLLB5O44b/ts+Ol+++8GEzx/ELz9LygGm83G+0v2Elrdh2Htw0qcn5FtYdnuE8zdcpg//z5JjtX5sc1ggE6RAdzSJoT+zYOo6mWPd/qqWN5Y+FeR7Tszsi30m7jCIaHx8sAm3N/dsfuhSHEqdDeN82JjY5k2bRpr164lMTERgODgYLp06cK9995L/fr1S7jCxbv55puZP3++w7GSkhEZGRlcf/31rFmzhuDgYLp3705cXBwbNmwgMDCQtWvXlnqsXbp0oUWLFnz22WeXfA0lI0REREREirfl0GnumLIOa04Wj7v9xCNuC3AjX30FoxtYcxwTEvmZE+DTbpBhtr+OvA7uWeA4x2aDDZ9Dwz5QIzLfYRtv/7qbz1fGYjDAxNtbM7h1iFOMVquN9bGnmLflCL/uOEpKZk6h76VR7SrcEhXK4NZ1qFMg0XDe9FWx9Gse5JSIOG/lvpOMmLYh9/XrNzXjni4Rhc4VKcwVkYwoD++++y5paWm0b9+e9u3bExQUVGIy4tVXX+XNN9+kc+fOLF68mCpVqgAwYcIEnnnmGa699lqio6Nz5586dYpTp4qvUlu1atUi6198+eWXPPDAA6xbt442bdpcwru0UzJCRERERKRkv+04ypiZmwFoaTjARz6fE24ppIuff11728/zCQlzAnw5CE7HQdUQaH6rvZ5Eo76O5yVuhSnX2X+v0wbu/Q3cvTiZksnASSs5kZIJQNPgqix4rCtuJvuu+b3HU5i75Qjztxwh8Uzhzyu1/DwZ3LoOt0SF0iTYr1QK/o/9fgvzttq/LK7i6cbSp68jqJpXCWeJ2CkZcYEMBkOxyYjs7Gxq1aqF2Wxm8+bNREVFOYy3atWK7du3ExMTQ9u2bQEYN24cr7/+erH3veeee5gxY4bT8fnz53P77bczefJk7r333kt7U/9QMkJERERE5MJ8Fn2A8b/tAcCTLCYF/05f8ywMNscuFPgFw31L7L+fT0QUtWrivCWvwuoP7L+HdYL7FuUO7Tuewu1T1hFU1Ytv7u9IjsXKgm2J/LT5CH8dPVvo5Xw8TPRvHsQtUSF0qV8Tk7F0Ow4mncvk+v9FcybdXgCzf7MgPh3RtlTvIZXX5T6HupU85fLl5OSwcOFCNm7cSFJSEh07dmT06NEAJCYmkpSURNOmTXFzK5NwCrVq1SrMZjP169d3SkQA3HrrrWzfvp2ff/45Nxnx6quv8vLLLxd7XaPRuUbo999/z6hRo/j0008ZNWpUqcQvIiIiIiIle/DaesQlp/HdhkNk4sFDR2/ijTa9GXn8HUjenzcx5Sh80NJeG8KaXXIiAsA/HAIbw8k90OwWh6GGtf2YOaQWNZc8zq+fd+aT481ItAUQYTjKC25/Emo4yWFbID9aexLWsAW3RIXQp2ltfDxc94xUs4onLw1ozAtzdgDw+65jLPnrOH2a1nbZPUXOc/nTf3R0NCNGjODIkSPYbDYMBgPZ2dm5yYhly5YxatQoZs2axdChQ10dTpG2bdsGUOR2ifPHz88De6KhsGRDcT7//HMef/xxZsyYwR133HFR5+Zvf5rfgQMHXFJ3Q0RERESksjEYDLw5uBlHzOms2HsSgFc3++A1+FuGnZlh76rBP4vHbVb7j9Gt5EQEQPv77T8ndkMV+wN9jsXK6gPJzN18mLC/PuMZ4zbuZhvt3UOZahnAeLepuBnyVmU8bPgVQ+tJ0LqDC969s2Htwpiz+QgbYu3bz1+dv5PO9QOo4ll+XxTL1cGlrT137NjBgAEDOHHiBE8++SSzZ8+m4K6QoUOH4uPjc1ndJErDoUP2vWJFdcw4f/z8vEsxYcIExowZwwcffECPHj04duwYx44d4+TJk5d8TRERERERuThuJiMf3xlF4yC/3GMv/nyAFfWetteKqFbgmcCaA3ErL/j6tsDG7Dxt4o2f/6LT+D+4Z/oG5m1NpB9rc+estjRjvLtjIgLAYLNgXfAEJB+4tDd3kQwGA2/f0hx3k30LyNEzGUxYvLdM7i1XN5emu9544w0yMzNZvHgxvXr1KnSOj48PTZo0YcuWLa4MpUTnzp3Ljacwvr6+DvMuxaRJk7BYLDz88MM8/PDDucfr1q1LXFxciecXtRenqBUTIiIiIiJSOD8vd6aPas/NH6/mREomFquNh7/ZxM8jIqhvMDmfMG8MHNvJkY7/ZtGuE4zuFuk05fDpNOZvTWTuliPsP+H83PBC9oPc7LmBIR4b6VW3Cm7xVqc5AEabhZTFb+M3fNplv88L0aCWH2N6NGDSsn0AzFgTyy1RIbQIrVYm95erk0uTEdHR0XTq1KnIRMR54eHhLFmyxJWhlOj8io2iqtKWRp3PC0k4iIiIiIhI2ajj7820e9oz5JPVZFtt+Gcdx3PmE8Bxe42IjmNg6WuQ808R/HUfc3T9CiamPw7A6G6RnEnP5rcdR5m75QjrYwvvtOduMtDzmloMadOGHtc8jJebkeMf3lpsbDlx60rxnZbskR71WbgtkYNJqVht8OLc7cx7JK/jh0hpc2ky4uzZs4SEOPfPLSgzMxOLxeLKUErk52dfopWamlroeFpaGkBuu08REREREbnytQitxps3N2fST8v5zuMtQjlBojGI6nfOxzswAiK7w7e3w5kEANrZdrDI699szZjMIzNPsXT3CbJyCl/h0K5udW6OCmFQy2D8fTwcxg7bAmlaTFx7PZvRseDBcyfBqxq4eRR2ymXxcjfx1i3NufPz9QDsPHKWL9fGc18hK0BESoNL01zBwcHs3r27xHk7d+6kbt26rgylROHh4QAcPny40PHzx8/PK29ms5m4uDji4uLIzs7Gai38L0ARERERESneHY0M/Or/LnWNJ4i31uLWtJd4YMFxLFYb1G5G4vClbDS2zJ0fzEl6rhyOx64fnRIRkTV9ebpPI1Y815Mfx3Th7k51nRIRALHhQ8ixFf44ZrXBtsj7nAd+fwEmNIbfX3RJTYku9WsytE1evYz/Lf6bI+b0Ur+PCLg4GdG3b1927drF3Llzi5wzY8YM4uPjGThwoCtDKVGrVq0A2Lx5c6Hj54+3bNmy0PGyNnHiRCIjI4mMjGTfvn0kJyeXd0giIiIiIlemPQvxzzhCknsdhme9TCI1WbUviRd/2sG6g8n0/2w7w9Ke59PsgZzfve1lyGaixyeMc5tBLR8Do7pEMO/RrvzxzHU8cX1DwgMKr0V3Xt/uXXnJ8oBTQiLHZuRflofp072b4wnpp2H3QkhLhnWf2Dt2uMC/Bzahuo87AGlZFl6bv7NUtqyLFGSwufDfrPj4eFq2bElmZibPPfccgwcPpkOHDgwbNoyXX36ZefPm8fbbb+Pr68uOHTsICgpyVSgYDAY8PT3JyMgodDwrK4tatWpx5swZNm/eTFRUlMN4q1at2L59Oxs2bKB9+/Yui/NCmc1mzGYzYE/6mEymC1qFIiIiIiIihVg3Gcs1Axn5YyKrDxT9Rd8txpX8x30aPoas3GPW0A4Yh30FVYMv6pazYhL47KfFDDX+SajhJIdtgcyx9uDhIX3pVC+A9GwLjWr/0/Fj/zL4bjhYMsGnJjyzB0zujhdMPgDVI8F4ed85/7jpMM/O3pb7+tO729C/+cW9N6n8zjdSKKrRQklcmowAWLVqFbfddhvHjx93Kg5ps9kIDAxk7ty5dOnSxZVhlJiMAHj55Zf5z3/+Q5cuXVi8eHFuB40JEybwzDPP0K1bN1auvPCWPmXlcv8lEBERERERu9TMHG7+eDX7CumGYTBA53oB3HWNjf67nsN0fEfeoG8tuG0GRHS9qPvFJqUyKyaBw6fTCa3uzbB2YRw1p/Pot5up4uXGz491y9vmkW6GnXPAaoGODzpeKCcLJjQBd29ofSd0fBh8alzcm/+HzWbjzs/Xs/agPSlTu6onS5++Dj8v9xLOlKtJhU9GAKSkpDBt2jSWLl1KXFwcFouF0NBQevfuzUMPPYS/v3+p3/OXX37hzTffzH29fv16DAYDHTp0yD32yiuvOGwPycjIoEePHqxfv57g4GC6d+9OfHw869evJyAggHXr1tGgQYNSj/VyKRkhIiIiIlJ6tiWYGfzxaodjY3rUZ2TnugRX87YfyE6HX56Frd/kTTKYoO+b0OkRe+biEhwxp9Pjv8vJttgf07o3rMlXozsU2fUv1+6f4Ye77b+bPOHZv8G7+iXFAHDw5Dn6f7AytybGPZ3r8vrg5pd8Pal8Lvc5tEz6tPj5+TF27FgWLlzIzp072b17N0uWLOGFF17A39+f2bNnM2nSpFK958mTJ1m/fn3uD9gzfPmPnTx50uEcLy8vli9fziuvvIKPjw/z5s0jLi6Oe+65hy1btlTIRISIiIiIiJSeI+Z0Hv9uCwAmowE3oz0J8Mv2o1jzf43r7g2DP4JBE8H0z8oFmwUWvQQ/joZM55UVFyLE35uxvRsB4Olm5JaokJITEQAn99iTIQBNbnRORNhskLgVLvC76HqBVXisZ97zz1fr4tmaYL6gc0UuRJmsjChJ586d2bBhQ7m397ySqGaEiIiIiEjpOmJOZ/iUdRw6lUZ4DR++e7ATgNOxEH9vxxMPb4JZI+DskbxjgU3g9m+g5sV/oWmz2Xj957+4tW0ozUOqXfiJKcdg2/cQ3hnCCzQGPRwDU6+HmtdAmxHQ+bESV29k5lgY8MFKDpxMBaBJcFV+fqwrbqYy+U5bKrgrYmWElD510xARERERKT2FJSJC/L0J8ffmuwc7EV7Dh0On0hg+ZZ1zu8vQtvBgNER0zzt2cjd83hP2/HLRsRgMBsbd1OziEhEAfkHQbaxzIgJgyz/bSZL+hr9/v6BtJJ5uJt6+pUXu691HzzJ9dezFxSRSBCUjrlBjx44lNjaW2NhYGjZsSEBAQHmHJCIiIiJyRSoqEXHeBSUkqgTCiHnQ9cm8Y5ln4fs7Yenr9qKTpeCSF7afO5H3e9TdhY8X0i60Y70Abm8Xlvv6/SX7SDiVdmkxiOSjZMQVyt/fn4iICCIiInB3d8d4me17RERERESuVot2Hit+GwbOCYlFO485X8jkBn3egGFfgUeVvOOrJsA3QyH10lcz22w2pq48yH1fxmCxXkJCYvi38MQWuO5f0PQm5/GN0+CTTvB5L9g1z2HoxQGNCfC118VIz7bw6vydl54UEfmHnmBFREREROSqNrpbJK8OalpkIuK88wmJVwc1ZXS3yKIv2HQwPLAcajbKO3ZwOUy5Do5svuj4snKsPPXDVt76ZTd/7DnBfxf9fdHXAKBGPej5Inj4Oh63WmHrt/bfj2yCUwcdhv19PHhlUNPc18v/PsmvOwpJrTRgPAAALgxJREFUxohcBCUjRERERETkqje6W2SxiYjzQvy9i09EnBfYCB74w56YOO9MAkzvD5u/uqjY3E0GsizW3Nc/b0vkbEb2RV2jWOeOg88/3TcMRmg13GnK4FonuDkyb6vJuJ93cSa9FGOQq46SESIiIiIiIq7g6Qe3fQl93rQ/5ANYMmHB47DgCcjOuKDLGAwG/ntrK66p7UenejVY8FhXqnq5l16cVYPhoRXw8CoY+D/764Ix/PYc7x8dyUyP8bQwHORkSib/XbSn9GKQq45baV7MZDKV5uWkGPlbe2ZnZ+ufvYiIiIhIRWQwQNcnoE5rmH0vpCXZj2/+Eo5th2Ffg39YsZcA8PV04+v7O1DdxwN3V7XWDGph/yno5N9weCMGoKtxBxbsKydmrj/ELVGhtK1b3TXxSKVWqv8W22y2S/6Ri6PWniIiIiIiV5DIa+2rD0La5R1L3AKfXQsHll/QJWr5ebkuEVGcc8ehRn0ArLVbkFOrOQA2G7z00w6yLVbY8yuk/pNoST4AS16zJ1+WvGZ/LVKAwaZMwBUp/8qIvn37YjKZ2L3buRWPiIiIiIhUIDmZ8PuLEDMt75jBCL1egW5P2VdSXISMbAtLdx9nUMs6pRxoATYbHFoHORlscmvF0Mlrc4de7VWL0ev621/UagbHd4ItXytTgwlumlR4S9ErRGxSKj9sTODw6TRCq/twe/swImv6lnxiJdasWTMAdu3adUnnl+o2DSk7/v7++Pv7A+DuXor7xURERERExHXcPGHQBAhtBwufgpwMsFlh2ev2ThY3Twavqhd0qcOn03jo603sSjyLzQY3tnJhQsJggLqdAWgL3NkxnG/XHwLg2MqvwJRjn3dsm/O5Nou9TobJ3b4yJKC+6+J0gVkxCbz40w6HlqqfrzzI+CEtGNau5C02UjgVsBQRERERESlrre+E+xaDf3jesT0L4fOecOLCVjw/N3s7uxLPAvD8j9vZf+KcKyIt1Av9G1OziicAaVYTp0wBxZ9gs8JPD8KXNxY+vuQ1WPU+bP0OMs6WcrSXLjYp1SkRAWCx2njxpx3EJqWWU2RXPiUjREREREREykNwK3gwGhr0zjuWvB8+vx52/lTi6eOHtKCql32x++3tw6gb4OOqSJ1U83bntRubAvCNpQ/tUj8gKaBdCWcBVWo7H8tOh9UTYek4mPcwZKY4z/n9JfjuTvtqksMxlxX7xfhhY4JTIuI8i9XGrJiEMoulstE2DRERERERkfLiUwPunAXR79p/ALJT4cd77ds2er8OpsIf2yJq+jJpeBQnUzK5rRy2CwxqGcyczYf58++TWDGy8FQooygmUeDuC1UL2Upy7rjj6yq1nOfErYBjO+y/R3S3b3PJb8X/wfpPoUoQNB8C3Z92HM9Ks9/HLwjcvUt+c/84fDrNfkvDUW43/Umo4SSHbYH8YOlBnC2Yw6fTL/ha4kjJCBERERERkfJkNEHPl6BOG5j7IGScsR9f+xEkboXbvij8AR3ocU3hx8uCwWDgzcHN6fN+NBnZVmZkdGeE5wJMWAuZbIKHV0KNes5jJg9o/wCcO2ZfJWEqpCZeSr6EhV+Q8/jZREg9af+J7O48nrAevr7Z/nutpvDIWuc5O34E30D79WvUIzndSmh1H24z/cl4t6m4GfLe1wOmX3gx535qVr/P+TpyQZSMuELl76aRnZ2NyWQq34BEREREROTyXNMfHvwTfhhh70gBEL/K3v5z2FcQ1uGCL5VtsZZJG9CwGj481bsR43/bQ5wtmH9l3897HtMwOHXT+LDowpVV68DA/yv+Rv3ehpREOHei8IRG/tUVhW0FyT/uXsh2lqxUmJOXWFhx40rGzE9kXDdPni2QiABwM1gZ7zaVow1GFh+3FEnJiCvUxIkTef3113NfBwYGlmM0IiIiIiJSKmrUg/uWwM9Pwo5Z9mMpR+GLAdB/PLS/v8T2n2sPJPPs7G18PrIdTetcWGeOyzG6WyRztxxhz7EUZlt6cMKnDdNb7cF0NsFeoDNqxOV30Gh5W/HjN7wHnR+zJx1qNXUeTzfn/V7YyoqUY7m/2jAw+sc4cmwmTq+ajpuxkJUe2BMSYXFzoEGLC3gDUpDBZrMVXo1DKrT8KyP69u2LyWRi9+4Lq7orIiIiIiIVnM0GGz6HRS+CNSfveMs7YND74FF4scpv1x/ilfk7sVhthNXwZsGj3aju6+HycLccOs2QyWs4/3T5TJ9GPH59Q5ff96JYsu3bOKwW8C9QY+PEHpg3Bs4dJ8dqo13aB5jTspns+RE3GNYUfc3mQ+HW6a6Nu4Jq1qwZALt27bqk89VN4wrl7+9PREQEERERuLu7YzTqf0oRERERkUrDYICOD8KoX+1FGc/b/j1M6wunYgs9rY6/F9Z/MgLHz2ay7bC5DIKFqPDqjOhUN/f1h8v3V7y2lyZ3+5aQgokIgFqN4cHl8PRfuD3zF5/d3ZbImr50iGpd/DXzt2aVi6InWBERERERkYoqvCM8tALCu+QdO74DplwHexc7Te9xTS2e63cNQVW9mP1Q5zItcPlsv2uo5ecJQFaOlX/P3cEVuRDfYKBjvQAWP3UtAd3vt9e8KHSeyb4FRS6JkhEiIiIiIiIVmV9tuGcBdHo071jGGfh2GCz///buPDyqKl/3+FupzIGkyABkYEgYJQwiiCgi2GIQpVUGp24Q0VYazrHlgrflqAjYaOMVHOg+tuLAoK0oKjiDCi2CDA0CAmkgGAgkEKaEIiHzsO4fRUJCEpJAqirD9/M89WitvXft39btetwva6/1V6m4/JwGEwd10MrJA9Wrjc2lZQb6emnW7bGl3zckpmn59iMuraG2dqbY9X+X/aLCoorzQnhZPRxzXdw+v2IgUd2knKgWE1gCAAAAQH1n9ZJueV6KvEr6/FGpIFuSkdbOkY5uk0a8IfkHS3IsuWnzd/48EZW5pXtr3dS1pVbvPSFJmv3VHg3u0lLBLpi3orZW7j6myR9uV25BsQJ8PDWzTJBSTu8xUttrpe3vSvbDdTcpZxPHyAgAAAAAaCh6jJYeXiMFl3kQ3v+ttGCwlLqzysOMMfpwy2Gdzsp3ankWi0XP3tld/t6OkQTpWfn669f1b6J9Y4w+23FEuQWOERHvbTqk/cczqz4gpIM0ZKZjssohMwki6gBhBAAAAAA0JC2vcEy22OW28232Q9LbN0u/LK2we25BkR5ftlNPfLJLf1q6vdJXEupSpM1PU27uXPp92c8p2piY5tRz1pbFYtG8u3upR2SQmvt6atH4furUqrm7y2pSCCMaKLvdrqSkJCUlJamgoEDFxc7tUAAAAADUI75B0j3vSTc9I1nOPdYV5krLJ0hfTZUKz4+A+PyXo/pkW4okad3+U3rth0Snl/fAde0VGxFY+v2p5buUV1jk9PPWhr+3p94e11efTrxO13cKdXc5TQ5hRAP1yiuvKDo6WtHR0dq/f7/S0upX0ggAAADAyTw8pIFTpTGfSH7B59u3vCX9rY+UslWSdFefKN3WM1ySdHX7FrqvX5nlKO3J0qZ/1HlpnlYP/XVkD3lYHN8PnMrSa/9yfghSlZTT2fr1xNkK7S0DfRkR4SYW0yDXWoHdbpfdbpckxcXFyWq1as+e+vcuFgAAAAAXsB+WPhwrpe4432bxkEa9LXUfqez8Qi38KUkPD4yRt+e5P5O2J0uLh0unk6Rb5kj9J9Z5WbO+iNfCn5IkSd5WD3392EB1bNmszs9zMTuS7frD4i3y87Zq+aQBCm3m49LzN1axsY4JP+Pj4y/peEZGNFA2m03t27dX+/bt5eXlJQ8P/lUCAAAATZatrfTgKscqDyVMsfTxeGn1bPl7WfVfN3asPIho0V7qOtwpZU2N66LwIF9JUn5RsZ5avkuu/PPwE5m5um/BJp06m6/k9Bw9smSr0+fMQM3wBAsAAAAAjYGXr3TH36Xfzpc8vM63r3tRev8eKe/cawplgohiW3sVjv1csrVxSknNfDw1q8ySmZsPpmvZzylOOVdlWjb31eQhnSRJnh4W3duvrTytPAbXB/xbAAAAAIDGpM846aFVUvPw8237V0lv3CAdXFcaRBQGtdPDlhl6cVO2U8uJi22tuG6tSr8///UepZ3Nc+o5y3rkhhg9ckOMljzUT3f3dU7ogtojjAAAAACAxiayj/THn6S2/c+3pSeWBhFF3s31TsbV8jm+XVvWrdS3G3+WigqdVs6sO2IV4G2VJNmzC/TcV86Z766gklcwLBaLnrz1Cl3XgRUz6hMmsGwELnfiEAAAAACNVHGR9PWfpa1vVb+vxUNq1koKjDj3iSz/1+bhjr96XtoEkAt/OqhZX/yn9Pt7D11TuyU1N/3DMbdFFa+UJKdn66HFW/TnawM0RFucMiEnzrvc51DPuiwGAAAAAFCPeFil6ydL2xY6gomLMcVSZqrjc+TnqvfzD70grLgwuAiXvAMqHHb/te21fPsR7Uw5I0l6esUurZx8g3y9rNVfx6Z/SCunSZtfl8Z9WSGQ2JFs10OLtsgn66g6fzNbspxwbCCQqLcIIwAAAACgsSqZrLK4yDGppSmWTJHk3VyK6K3i7HR5ZB6VctJr/pvZpxyfYzur3sc3qEJYYQ2M0Py+Nv0xNVVHioKVlGb09zW/6vGhXao/Z9fhjiDidJLjei4IJAJ9PRVWfEJveM9WW8sJnfGNUpCTVghB3eA1jUaA1zQAAAAAVHDh8p3jvnS0X9hmayMV5EgZR8t8jjj+mpl6/u/PnpBUd4+PZ42vjitYraNiFBDatvJRFv7BksVS9fWUBBL2ZOW+dat8zx7WWf82avbIN05bIQQOl/scShjRCBBGAAAAACinmgf3KrdJ2pKUrrSzebqle3j53yzMl84eKx9WXPjJTHWMvKgrVp8yIUWE5NNMiv/MMZKjebh07/uSf4i05HbHxJxB7WUdX/E1DtQ95oxooux2u+x2uySpoKBAVmsN3rMCAAAA0PhVEzbI1sbRVrLPudceTFCU3tt0SLO++I88rRZ9Euyv2Iig88d5eku2to5PVYqLHCMoygUWR86NsCjTVpRfs2spypNOH3R8LpSZKr154/nv3s1l7TtOyjopBYRJXr41OwfcgpERDdTMmTM1a9as0u9hYWE6ceKEGysCAAAAUC+UTPZYWRBRVtnQ4pY5OtX9Qd00b63O5BRIkmLCAvTt5BvkafWo2/qMkbLT9PzS75WYmKBwS7raedk1ppuX/HKOnw8tCrIv/RwenlLYFVJ4L8cn4kqpVWylE2vi0vCaRhNVdmREXFycrFar9uxxzlq9AAAAABqYapbBLGVPlvZ+WbrqxI8JJ/XAwn8rtJmPXh/bR1e1beG0Eo9n5GrIvLXKzCuUJN3eK0Lz7+vt2GiMlHumwhwWm3/ZpZy0FEVZTqiDJbV0OokasXhIoZ3PBxThvaTWPRyTbaLWCCPAnBEAAAAA6sxnO47o2pgQtQx0/msO725M0vTPzj/HLBp/tQZ3aVnl/tn5hfqv1z7TzPRpaudxQsbDSxYZqbhQ8mku2dpLpxIcr3fUVHBM+YAi/ErHxJm4KMIIEEYAAAAAaJCKi41G/mODdiTbJUltgv307eRB8vOuYk48e7IKF94mzzOHql4hZOwKxyseqb+U+eyUCrJqXlhQWym8pyOYKAkpmre65OtsjAgjQBgBAAAAwKmMMTqdXaDgAO86/+09qRn67d/Wq7DY8Wj6x0EdNG1YV+UVFulkZp6iWvg7dryMFUJUXCSlHzgXTOyQju5wBBR5Z2peaLPWF4yg6CUFRal274pc4BJfp6kPCCNAGAEAAADAafIKi/TMinit//WUvnj0eqcEEnO+2avX1yZKkjw9LHr/4Ws0d1WCUjNytGLSAIUUnrh42CBVH0hcyBjHvuVGUOyQstNqXrhfcPlJMsN7SS2iaxZQXOJEo/UlkCCMAGEEAAAAAKcoLCrWPQs26edDpyVJAzqGaPH4fnW+wkZOfpHiXlmr5PQcSZKPp4fyCoslSX3atdDSntvl9d2Tzn9wN8YxYeaFAUVmas1/wyfo3CseZUZQhHSUPC549cSerIw3blFgTkqNApYMvygFTlhZ/SgKF7nc51DPuiwGAAAAANB4eFo9FNetVWkYkVtQrLN5hbL51+3oCD9vq/5yR3c9sHCLJJUGEZIUHRogc81EyepR/SsNtjaOh/pLfaXBYpGCIh2frreeb888Lh3b6QgmSkIK++HKfyPvjJS0zvEp4eXvWLmjTECxMMFHb57+s5b5PafI00mO0KGKV0+OWFrprtN/1h92F+rB62t/WfURIyMaAUZGAAAAAHAWY4z+tHSHmvt6auZvY+XtWbejIsp69IPt+uKXo5IkLw+L/nBDjP48tIsslzMvg7Nkp58LKMqMokj7tcaHG6uP9po22pvfSjd67pJNGZKtnfTAV44dygYROU/JM7itPnikvyJtfk66oNrhNQ0QRgAAAABwqsKi4jp/NaMyJzJzNWTeWmXkFkqSbusRrv/9/VVOP2+dyc2Qju0qH1Cc2ieZ4uqPLWVxjNAwxfU2iJB4TQMAAAAA4GTOCiJyC4o07ZOdurlba93WM1wtm/tq2rAr9OTyXZKkr3alatTe4/pN1wayrKZvoNR+gONTIj9bOh5f/hWPE3uk4oIqfsRIxqhYlnobRNQFwggAAAAAQK0dz8jVmz8e0LRhXS8prEg7m6cJ7/6srYdO65vdxxRu89VVbVvo3qvb6NNtKdp6bp6K6Svi1X9KiPy9G+jjq7e/1OZqx6dEYZ4jkDg3QWZe8nbp+C75qLB0F2OkCJufXm2EQYQkOX+cDQAAAACgUdmalK7hf1uvt9Yf1Asr917Sb5zJKdD+E2clOSasXPRTkiTJw8Oi50f2kKeHY56II/YcvfxdQp3UXV8UWry0vbCdXsscoPtP3KdbU/+g48XBjm3GQ0XGIqvFaKnPbEXqlJurdY4GGi3BbrfLbrdLkgoKCmS1Wi9+AAAAAADUkfc3H9bJzDxJ0pvrDurWHuHq3bZFrX4jJqyZXh/TR/e/s1kje0dp9ojupds6t2quCYNi9L//SpQkvfNTku64MlLdI4Pq7iJcqLCoWPFHM7TpQJo2HkjTloPpysovkiRF6JQ+8J6tth4ndKi4pe7Lf1qS9IH3bLU7c6jiKhuNBBNYNlAzZ87UrFmzSr+HhYXpxIkTbqwIAAAAQFORnV+oka9tUOLJs5p5e6x+f027S/6tfccy1blVsworZuQWFGnoKz/qUFq2JKlnVJCWTxogq0c9XFnjAkXFRntSM7QxMU2bDqTp3wfTlZlXWGG/kiCiXZkg4pglVBaLRa2KTzqW/TTHpRbt610gwWoaTVTZkRFxcXGyWq3as2ePe4sCAAAA0GQkp2freEau+rYPrnbf4mKjFTuO6I4rI2sVJqzff0pj3t5c+n3mb7vpgQHRl1SvMxUXG+05lqFNB9K1MTFN/z6YVroiSFXaWtP0ke/zal2UqhS10t255yerlKT7FmxSYfrhehtIsJpGE2Wz2WSz2SRJXl5e7i0GAAAAQJPTJthfbYL9q90vt6BIU5f9oq92pir+aIamD+9W43Nc3ylUI3pHavn2I5KkF1ft09DurRUe5N4JHYuLjRJOZJaOfNh8MF327KpWx3Dw9LDoyjY29Y8J0bUdQnT1sQ/l/X2qjlha6e5KVs344JH+um+BdFf6U45A4nSStPdLqf9EF1yh8xFGAAAAAADqTMrpbEW1OB9SzF+9X1/tTJUkvb3+oHpEBunO3pE1/r2nbrtC/9p3QvbsAmXlF2nm5/F6Y2zfOq/7Yowx2n/irGPOh0RH+JCelX/RY6weFvWMCtK158KHPu1alFsR5Ejog/pkbaKWZvaqdPnOSJtfuUDi3ua/aFTXB1Tzf3L1G2EEAAAAAKBOvL/5sGZ8tls3dAmTn5dVUS38dXuvcK1NOKn4oxka2ClUv7miZa1+M7SZj54cdoX+/MlOSdKq+OP6Nv6Y4mJbO+MSJDnCh8STWdp44NzIhwNpOnX24uGDh0XqEWVT/5hgXRsTor7tg9XMp+pH7lW7j+mlzJvUNti/QhBRomwg8VJ6qJrtPqYHr69/r6lcCuaMaAQu910dAAAAALhcr/3wq/7fyn0V2q0eFv3PsK5Kz8rX/7m5s7ysHrX+bWOMBr34gw6nOyazDA/y1XdTBlX6sH/EnqNVtXxoN8bo4Kksx5wP5wKIktVCquJhkWIjgnRthxD1jwnW1e2D1dy3dq/Qv7P+oIZ2b11pEFHWpVyTszFnBAAAAADA7a6MslXaXlRs9Ndv9ur7KYMuKYiQpIU/JZUGEZKUeiZX877dpxm/jS233xF7ju5bsKl036oe3o0xOpyeXTrnw8YDaTqecfHwwWKRuoUHOuZ8iAnR1dHBCvK7vPn7ahouRNr86lUQURcIIwAAAAAAl+3H/aeq3FZUbPTR1mQ9cUvXS/rtod1ba9GG8oHE4g1JGtE7Uj3PhSBlg4i2wf4a2r38axzJF4QPqWdyqz1v19bNz418CNE10cGy+XtfUv2oiDACAAAAAHDZUk5nV7M955J/u2TuhHvf2Kjkc79TbKT/+XSXPvuvATqemVcuiChZHvPjn1NKA4gj9urP36VVc8ecDx1CdE10iFoEED44C2EEAAAAAOCylV1Bo/Ltl7ccZ6TNT0snXKsR//uTTpybzyH+aIZeXb1fn+04qsPp2QoJ8FaPyEDdu2CjktOrDx86tmyma2POjXyICVZoM5/LqhE1xwSWjQATWAIAAABwt4OnsjTkpbUqKq74iGn1sOj7KYMUHRpw2ec5Ys9R3EtrlZVfVOtjY8ICSud8uCYmWC2b+152PU0VE1gCAAAAANwuOjRAfx3ZQ//z6a5ygYTVw6I5I3vUSRAhOUZIfPTHa3Xb/PXV7ts+xL90zof+MSFqFUj4UF8QRgAAAAAA6sTdfdvo6vbB+mhrslJO5yiqhZ/u7tumzoKIEjZ/b1ktFhVdMNC/bbB/6ZwP/WNCFB50ea+GwHkIIwAAAAAAdSY6NOCSV82oiZJVM4qMkdVikZFRsZEibL764JH+irQRQDQEl7bIKwAAAAAALnbh8p0/PnGj1j3xG7UN9tdRe67uW7CpRqtmwP0IIwAAAAAA9d6FQUTJKIiSZT/bBvvrcHo2gUQDQRgBAAAAAKjXqgoiShBINDyEEQAAAACAem3V7mNVBhElLgwkVu0+5oZKUVNMYAkAAAAAqNcevD5akjS0e+uLTlBZEkis2n2s9BjUT4QRAAAAAIB6r6bhQqTNjyCiASCMaKDsdrvsdrskqaCgQFar1b0FAQAAAABQQ8wZ0UC98sorio6OVnR0tPbv36+0tDR3lwQAAAAAQI1YjDHG3UWg9sqOjIiLi5PVatWePXvcWxQAAAAAoEmIjY2VJMXHx1/S8bym0UDZbDbZbDZJkpeXl3uLAQAAAACgFnhNAwAAAAAAuBRhBAAAAAAAcCnCCAAAAAAA4FKEEQAAAAAAwKUIIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFzKYowx7i4Cl6d58+YqKChQhw4d3F0KAAAAAKAJSExMlJeXlzIzMy/peEZGNAIBAQHy8vJydxk1kpiYqMTERHeXgXqC+wFlcT+gLO4HlMX9gLK4H1AW94P7eHl5KSAg4JKPZ2QEXCo2NlaSFB8f7+ZKUB9wP6As7geUxf2AsrgfUBb3A8rifmi4GBkBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAAAAAADgUoQRAAAAAADApVhNAwAAAAAAuBQjIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCPgdLm5uZoxY4Y6d+4sX19fRURE6MEHH1RKSoq7S4MbDB48WBaLpcrPypUr3V0i6tjPP/+sOXPmaOTIkYqMjJTFYpGvr2+1xy1ZskT9+vVTs2bNFBwcrFtvvVUbNmxwQcVwptreDzNnzrxonzFt2jQXVo+6lJ2drRUrVuihhx5Sz549FRgYqICAAPXq1UvPPvuszp49W+Wx9A+Nz6XcD/QPjd9LL72kkSNHqlOnTgoKCpKPj4/atWuncePGKT4+vsrj6CMaBosxxri7CDReubm5uummm7RhwwaFh4dr4MCBSkpK0r///W+FhYVp48aN6tChg7vLhAsNHjxYa9eu1ahRo9SsWbMK26dOnaoePXq4oTI4y5133qnPPvusXJuPj49yc3OrPGbKlCl6+eWX5efnp7i4OOXm5mr16tUyxmjZsmUaMWKEs8uGk9T2fpg5c6ZmzZqlAQMGqGPHjhW233bbbbrrrrucUiuc66233tLDDz8sSYqNjVW3bt2UkZGhDRs2KDMzU127dtXatWvVsmXLcsfRPzROl3I/0D80fqGhocrKylLPnj0VGRkpSYqPj1dCQoK8vb21YsUKDRs2rNwx9BENiAGcaPr06UaSufbaa01mZmZp+7x584wkc8MNN7ixOrjDoEGDjCRz8OBBd5cCF5kzZ4555plnzBdffGGOHTtmJBkfH58q91+9erWRZEJCQkxCQkJp+4YNG4y3t7cJCgoy6enprigdTlDb+2HGjBlGklm4cKHrioRLLF682EycOLHcf+fGGHP06FHTu3dvI8ncd9995bbRPzRel3I/0D80fuvXrzc5OTkV2l977TUjyURERJjCwsLSdvqIhoUwAk6Tn59vbDabkWS2bdtWYXvPnj2NJLN161Y3VAd3IYxAdQ+ft956q5FkXn755Qrb/vSnPxlJZu7cuU6sEK5EGIHKbNiwofTeyMvLK22nf2iaqrof6B+ato4dOxpJJj4+vrSNPqJhYc4IOM369etlt9vVoUMH9e7du8L20aNHS5K++OILV5cGoJ4qGUopne8jyqLfAJqGXr16SZLy8vKUlpYmif6hKavsfgCsVqskydvbWxJ9REPk6e4C0Hj98ssvkqSrrrqq0u0l7SX7oWl5++23lZaWJg8PD3Xu3Fl33nmn2rZt6+6y4GZ79+5VXl6ewsLCFBUVVWF7Sb+xc+dOV5cGN1uzZo127Nih3NxcRUVFadiwYerTp4+7y4KTHDhwQJLk5eWl4OBgSfQPTVll90NZ9A9Nz5IlS7Rv3z517txZMTExkugjGiLCCDjN4cOHJanSzqBse8l+aFpmz55d7vvjjz+u6dOna/r06W6qCPVBdf1GQECAbDabTp8+rczMTDVv3tyV5cGN3n333XLfp0+frlGjRmnRokWVToaLhu3VV1+VJN1yyy3y8fGRRP/QlFV2P5RF/9D4vfjii4qPj1dWVpb27Nmj+Ph4RURE6P3335eHh2OwP31Ew8NrGnCakiWY/P39K90eEBBQbj80DTfccIPeffddJSYmKjs7W/v27dNzzz0nT09PPfPMM6X/w4Gmqbp+Q6LvaGo6duyouXPnKj4+XmfPnlVycrL++c9/KjIyUp988onGjh3r7hJRx77++mu9/fbb8vLy0l/+8pfSdvqHpqmq+0Gif2hKVq1apcWLF+vjjz9WfHy82rRpo/fff7/cCBj6iIaHMAJOY86tGmuxWC66HU3Ls88+qzFjxigmJkZ+fn7q3LmznnzySa1YsUKSNGPGDOXk5Li3SLhNdf1G2X3QNIwZM0ZTp05Vt27dFBAQoKioKP3ud7/Tli1bFBISohUrVrB2fCOyZ88ejRkzRsYYvfjii6VzBUj0D03Rxe4Hif6hKfn+++9ljNHp06f1448/qkuXLho8eLCee+650n3oIxoewgg4TcnQp6ysrEq3Z2dnSxLD5yBJiouLU9++fXXmzBlt2rTJ3eXATarrNyT6DjiEh4dr/Pjxkhx/YoaGLyUlRbfccotOnz6tKVOm6LHHHiu3nf6haanufrgY+ofGy2azaeDAgfr666/Vp08fTZ8+XVu2bJFEH9EQEUbAaUomI0xJSal0e0k7kxaiRKdOnSRJqampbq4E7lJdv5GVlSW73S6bzca7nqDPaEROnTqlm2++WYcPH9b48eM1d+7cCvvQPzQdNbkfqkP/0Lh5eXnpnnvukTGmdHUM+oiGhzACTlMylG7btm2Vbi9p79mzp8tqQv12+vRpSaTVTVmXLl3k4+OjkydPVvo/E/QbKIs+o3HIzMzUsGHDtHfvXo0cOVJvvvlmpcOs6R+ahpreD9Whf2j8QkNDJUknT56URB/REBFGwGkGDBigoKAgJSYmavv27RW2f/zxx5Kk4cOHu7o01EMnT57UunXrJFW9HCwaPz8/P/3mN7+RdL6PKIt+AyWMMVq+fLkksYRfA5aXl6c77rhDW7du1dChQ/XBBx/IarVWui/9Q+NXm/vhYugfmoa1a9dKkjp06CCJPqJBMoATPfXUU0aSue6668zZs2dL2+fNm2ckmeuvv96N1cHVNm7caNasWWOKi4vLtR88eNAMGDDASDK33367m6qDq0gyPj4+VW7/7rvvjCQTEhJiEhISSts3bNhgfHx8TGBgoElLS3NFqXCBi90PJ0+eNIsXLza5ubnl2jMzM82ECROMJNO6dWuTlZXlilJRxwoLC82IESOMJDNw4MAa/Xukf2i8ans/0D80fj/++KNZunSpKSgoKNeen59v5s+fbzw8PIyfn585fPhw6Tb6iIbFYgxTisJ5cnNzNXjwYG3evFnh4eEaOHCgDh06pM2bNyskJESbNm1Sx44d3V0mXGTRokUaP368wsPD1blzZ7Vu3VopKSn6+eeflZubq9jYWK1Zs0YtW7Z0d6moQ1999VW55dg2b94si8Wifv36lbZNnz5dt912W+n3yZMn69VXX5W/v79uvvlm5efn67vvvlNxcbE++ugjjRo1yqXXgLpTm/shKSlJ0dHRCgwM1BVXXKG2bdvKbrdr27ZtSktLk81m05dffqkBAwa441JwmV599VVNnjxZkjRixAgFBgZWut/cuXNLh2NL9A+NVW3vB/qHxq/k/xtDQ0PVp08fhYSE6NSpU9q1a5dSU1Pl6+urxYsX6+677y53HH1EA+LuNASNX3Z2tpk+fbrp0KGD8fb2Nq1atTLjxo0rl2KiafjPf/5jJk6caK666ioTFhZmPD09TVBQkOnfv7+ZN2+eyc7OdneJcIKFCxcaSRf9LFy4sNLj+vTpY/z9/U1QUJAZOnSoWbdunesvAHWqNvdDRkaGeeKJJ8ygQYNMZGSk8fHxMf7+/iY2NtZMnTrVpKSkuPdicFlmzJhR7b0gyRw8eLDCsfQPjU9t7wf6h8bvwIED5sknnzQDBgww4eHhxsvLywQEBJjY2Fjz6KOPmv3791d5LH1Ew8DICAAAAAAA4FJMYAkAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCMAAAAAAIBLEUYAAAAAAACXIowAAAAAAAAuRRgBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAADgNhaLRRaLxenneeCBB2SxWPTDDz84/Vy19c0338hisWjSpEnuLgUAAJchjAAAAHCj7du3S5J69+7t5koAAHAdwggAAAA3IowAADRFhBEAAAButG3bNnl6eqp79+7uLgUAAJchjAAAAPVKUlKSLBaLBg8erJycHE2bNk3t2rWTj4+POnbsqBdeeEHGmEqP/eSTT9SvXz/5+fmpVatWuv/++3X06NFqzzdhwgS1b99ePj4+CgsL0+jRo7Vz584K+95zzz2yWCx64oknKmzbu3ev/P39FRgYqAMHDtToWs+cOaODBw+qW7du8vX1rdExAAA0BoQRAACgXsrPz1dcXJwWLFigK664QjfeeKOOHDmiadOmafr06RX2//vf/67Ro0dr27Ztuu666zR48GB9//336t+/v9LS0io9x/r169WrVy8tWLBAzZo10+23365OnTrp008/Vf/+/fWvf/2r3P6vv/66oqKiNHfu3HKTYRYUFOh3v/udcnJyNH/+fMXExNToGnfs2CFjDK9oAACaHMIIAABQL23cuFEWi0UJCQlauXKlVq5cqXXr1snT01Mvv/yyzp49W7pvUlKSHn/8cfn4+Oj777/X6tWr9eGHH+rXX39V165d9eWXX1b4/YyMDN11113KycnRsmXLtHv3bi1btkwbNmzQt99+q6KiIo0dO1b5+fmlx7Ro0UJLliyRJN1///2y2+2SpKefflrbt2/X6NGj9cADD9T4GpkvAgDQVBFGAACAesnDw0NvvfWWQkNDS9v69u2rYcOGKTs7W1u3bi1tf+edd5SXl6f7779fgwcPLm339/fX3/72t0qXD33nnXd07NgxPf744xo9enS5bUOGDNGkSZN05MiRCkHGjTfeqKlTpyo5OVmTJk3SDz/8oLlz5yoiIkJvvPFGra5x27ZtkggjAABND2EEAACol9q3b6/OnTtXaC9pS01NLW1bv369JOnuu++usH+XLl0qfdj/7rvvJEl33nlnpee//vrrJUlbtmypsG327Nnq3bu3PvjgA91xxx0yxmjx4sUKDg6u5qrK2759uywWi6688spaHQcAQENHGAEAAOqlqKioStubNWsmScrLyyttK5mksm3btpUeU1l7UlKSJOmaa66RxWKp8CkZLXHq1KkKx3p7e2vRokWSHK97/Pd//7eGDBlSsws7Jzc3V3v37lWHDh0UGBhYq2MBAGjoPN1dAAAAQGUqe7WiKiWra9TmmKKiIknSXXfdJX9//yr3u+aaaypt//DDD0v/fvv27SouLpaHR83/nGfXrl0qLCzkFQ0AQJNEGAEAABq8iIgIJSQk6NChQ+rUqVOF7YcPH67QFhUVpX379unpp59Wz549a3W+devWac6cOYqIiFDXrl21Zs0azZkzR08++WSNf4P5IgAATRmvaQAAgAavZH6HZcuWVdiWkJCgHTt2VGgvea1ixYoVtTpXRkaGxo4dK2OMFi5cqPfee08hISGaOXNmuUk1q1OyksZVV11Vq/MDANAYEEYAAIAGb/z48fL29taSJUu0bt260vacnBw99thjKi4urnDMhAkTFBYWpueff14LFy4sfdWjRFZWlpYsWaKUlJRy7ZMmTdKhQ4f06KOPKi4uTuHh4XrzzTdVUFCg3//+98rOzq5RzSzrCQBoyggjAABAgxcTE6MXXnhBubm5uvHGGzVkyBDde++96tixo3bv3q3hw4dXOKZFixZavny5AgIC9OCDDyo6OlrDhw/XqFGjdPXVV6tVq1YaN25cuQksly5dqn/+85+KjY3VCy+8UNo+YsQIjR8/XgkJCZoyZUq19RYVFWnXrl2KiIhQy5Yt6+YfAgAADQhhBAAAaBQmT56sjz76SFdeeaXWr1+v1atXa/Dgwdq0aZNCQkIqPWbAgAHatWuXpk6dKj8/P61Zs0bffvutMjIyNHz4cH344Yfq1q2bJCk5OVkTJ06Ut7e33nvvPfn6+pb7rfnz5ysmJkZvvPGGPv/884vWunfvXuXk5DAqAgDQZFnMhWMSAQAAAAAAnIiREQAAAAAAwKUIIwAAAAAAgEsRRgAAAAAAAJcijAAAAAAAAC5FGAEAAAAAAFyKMAIAAAAAALgUYQQAAAAAAHApwggAAAAAAOBShBEAAAAAAMClCCMAAAAAAIBLEUYAAAAAAACXIowAAAAAAAAuRRgBAAAAAABcijACAAAAAAC4FGEEAAAAAABwKcIIAAAAAADgUoQRAAAAAADApf4/7FJWuqqEdCAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "for i, legendre_coefficients_per_imp in enumerate(legendre_gf):\n", + " if len(legendre_coefficients_per_imp) != 2:\n", + " raise ValueError('Only blocks up_0 and down_0 supported')\n", + "\n", + " data = (legendre_coefficients_per_imp['up_0'].data + legendre_coefficients_per_imp['down_0'].data).T\n", + "\n", + " l_max = data.shape[2]\n", + "\n", + " ax.semilogy(np.arange(0, l_max, 2), np.abs(np.trace(data[:, :, ::2].real, axis1=0, axis2=1)), 'x-',\n", + " c=f'C{i}', label=f'Imp. {i}, even indices')\n", + " ax.semilogy(np.arange(1, l_max, 2), np.abs(np.trace(data[:, :, 1::2].real, axis1=0, axis2=1)), '.:',\n", + " c=f'C{i}', label=f'Imp. {i}, odd indices')\n", + "\n", + "ax.legend()\n", + "\n", + "ax.set_ylabel('Legendre coefficient $G_l$ (eV$^{-1}$)')\n", + "ax.set_xlabel(r'Index $l$')\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "8308345c-3f72-476c-8f58-583f9aeb1ccf", + "metadata": {}, + "source": [ + "The choice of the correct `n_l`, i.e., the Legendre cutoff is important. If it is too small, we are ignoring potential information about the Green's function. If it is too large, the noise filtering is not efficient. This can be seen by first running a few iterations with large `n_l`, e.g., 50. Then, the coefficients will first decay exponentially as in the plot above and then at higher $l$ starting showing noisy behavior. For more information about the Legendre coefficients, take a look [here](https://doi.org/10.1103/PhysRevB.84.075145).\n", + "\n", + "The noise itself should reduce with sqrt(`n_cycles_tot`) for QMC calculations but the prefactor always depends on material and its Hamiltonian, the electron filling, etc. But if you increase `n_cycles_tot`, make sure to test if you can include more Legendre coefficients.\n", + "\n", + "## 5. Next steps to try\n", + "\n", + "Here are some suggestions on how continue on this type of DMFT calculations:\n", + "\n", + "* change U and J and try to see if you can reach a metallic state. What does the occupation look like?\n", + "* try for better convergence: change `n_cycles_tot`, `n_iter_dmft` and `n_l`\n", + "* play around with the other parameters in the dmft_config.toml\n", + "* analyze other quantities or have a look at the spectral functions from analytical continuation\n", + "* try other ways to construct the correlated orbitals in CSC, e.g., with Wannier90\n", + "* apply this to the material of your choice!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "550fa534-c187-49d7-96e4-0848f53dd854", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/SVO_os_qe/tutorial.html b/tutorials/SVO_os_qe/tutorial.html new file mode 100644 index 00000000..6763ffd3 --- /dev/null +++ b/tutorials/SVO_os_qe/tutorial.html @@ -0,0 +1,439 @@ + + + + + + + 1. OS with QE/W90 and cthyb: SrVO3 MIT — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +

Disclaimer:

+

Heavy calculations (~ 800 core hours): Current tutorial is best performed on an HPC facility.

+
+

1. OS with QE/W90 and cthyb: SrVO3 MIT

+

Hello and welcome to the first part of the tutorial for solid_dmft. Here we will guide to set up and run your first DMFT calculations.

+

To begin your DMFT journey we will immediately start a DMFT run on strontium vanadate (SVO). SVO is a member of a family of material known as complex perovskite oxides with 1 electron occupying the t2g manifold. Below, we show the band structure of the frontier (anti-bonding) t2g bands for SVO.

+svobands +

In these materials, the electrons sitting on the transition metal ions (V in this case) are fairly localized, and the fully delocalized picture of DFT is insufficient to describe their physics. DMFT accounts for the electron-electron interaction by providing a fully interacting many body correction to the DFT non-interacting problem.

+

If you want to generate the h5 archive svo.h5 yourself, all the necessary files are in the ./quantum_espresso_files/ folder. We used quantum espresso in this tutorial.

+
+
+

1. Starting out with DMFT

+

To start your first calculation run:

+
mpirun solid_dmft
+
+
+

Once the calculation is finished, inspect the /out/ folder: our file of interest for the moment will be observables_imp0.dat, open the file:

+
it |        mu |            G(beta/2) per orbital |               orbital occs up+down |impurity occ
+ 0 |  12.29775 | -0.10489   -0.10489     -0.10489 |  0.33366      0.33366      0.33366 |     1.00097
+ 1 |  12.29775 | -0.09467   -0.09488     -0.09529 |  0.36155      0.35073      0.36169 |     1.07397
+ 2 |  12.31989 | -0.08451   -0.08363     -0.08463 |  0.33581      0.34048      0.34488 |     1.02117
+ 3 |  12.29775 | -0.08282   -0.08296     -0.08254 |  0.32738      0.34572      0.34479 |     1.01789
+ 4 |  12.28973 | -0.08617   -0.08595     -0.08620 |  0.33546      0.33757      0.33192 |     1.00494
+ 5 |  12.28825 | -0.08410   -0.08458     -0.08510 |  0.33582      0.33402      0.33759 |     1.00743
+ 6 |  12.28486 | -0.08474   -0.08549     -0.08618 |  0.32276      0.33028      0.32760 |     0.98063
+ 7 |  12.29097 | -0.08172   -0.08220     -0.08118 |  0.32072      0.33046      0.33529 |     0.98647
+ 8 |  12.29497 | -0.08318   -0.08254     -0.08332 |  0.34075      0.32957      0.33089 |     1.00120
+
+
+

The meaning of the column names is the following:

+
    +
  • it: number of the DMFT iteration

  • +
  • mu: value of the chemical potential

  • +
  • G(beta/2) per orbital: Green’s function evaluated at \(\tau=\beta/2\), this value is proportional to the projected density of states at the fermi level, the first objective of this tutorial would be to try and drive this value to 0

  • +
  • orbital occs up+down: occupations of the various states in the manifold

  • +
  • impurity occ: number of electrons in each site

    +
  • +
+
+
+

2. Looking at the Metal-Insulator Transition

+

In the following steps we will try to drive the system towards a Mott-insulating state.

+

Inspect the script run_MIT_coarse.sh, we iterate the same type of calculation that was performed in the last step for a series of value of U {2-10} and J {0.0-1.0}.

+

Run the script, sit back and have a long coffee break, this is going to take a while (about 6 hours on 30 cores).

+

Once the run is finished run

+

python3 ./collect_results_coarse.py

+

The script will produce a heatmap image of the value of G(beta/2) for each pair of U and J. The darker area corresponds to an insulating state.

+coarsegrid +

Do you notice anything strange? (hint: look at the bottom right corner and check the output file observables_imp0.dat for U = 2 J=1.0. )

+

We have seen that for 1 electron per system U and J are competing against each other: larger J favor the metallic state. The coulomb integral U wants to repel neighbouring electrons while J would like to bring electrons together on one site,. When the latter component dominates the resulting phase is known as a charge disproportionated state which is also insulating. What is happening in the bottom right corner is that the J favors here charge disproportionation but the unit cell has a single +site, therefore the system has trouble converging and oscillates between a high occupation and a low occupation state.

+
+
+

3. Refining the diagram

+

In order to get better resolution in terms of the diagram you can run the script run_MIT_fine.sh and plot the result with

+

python3 ./collect_results_fine.py

+

The result is also visible here:

+finegrid +
+
+

4. Plotting the spectral function

+

The spectral function in DMFT represents the local density of states of the impurity site. In order to plot it we need to use one of the scripts that implements the maximum entropy method ( Maxent ), while in the folder run (be aware that you need to substitute /path_to_solid_dmft/ with the path where you have installed solid_dmft) :

+

mpirun -n 30 python3 /path_to_solid_dmft/python/solid_dmft/postprocessing/maxent_gf_imp.py ./J0.0/U4/out/svo.h5

+

and plot the result by running in the docker container:

+

python3 read_spectral_function.py

+Afunc +

Take care to edit the values of J and U in the python file. What is happing to the spectral function (density of states) as one cranks U up?

+
+
+

5 Visualizing the MIT

+

We will now plot the spectral function at different U values for J = 0.0 eV:

+

Run the script run_maxent_scan.sh.

+

Then collect the data:

+

python3 read_spectral_function_transition.py

+MIT +
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/SVO_os_qe/tutorial.ipynb b/tutorials/SVO_os_qe/tutorial.ipynb new file mode 100644 index 00000000..ee54edd7 --- /dev/null +++ b/tutorials/SVO_os_qe/tutorial.ipynb @@ -0,0 +1,194 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "845b8205", + "metadata": {}, + "source": [ + "*Disclaimer:*\n", + "\n", + "Heavy calculations (~ 800 core hours): Current tutorial is best performed on an HPC facility.\n", + "\n", + "# 1. OS with QE/W90 and cthyb: SrVO3 MIT" + ] + }, + { + "cell_type": "markdown", + "id": "dd661dbd", + "metadata": {}, + "source": [ + "Hello and welcome to the first part of the tutorial for solid_dmft. Here we will guide to set up and run your first DMFT calculations. \n", + "\n", + "To begin your DMFT journey we will immediately start a DMFT run on strontium vanadate (SVO). SVO is a member of a family of material known as complex perovskite oxides with 1 electron occupying the t2g manifold. Below, we show the band structure of the frontier (anti-bonding) t2g bands for SVO.\n", + "\n", + "![svobands](./ref/bnd_structure.png \"SVO band structure\")\n", + "\n", + "In these materials, the electrons sitting on the transition metal ions (V in this case) are fairly localized, and the fully delocalized picture of DFT is insufficient to describe their physics. DMFT accounts for the electron-electron interaction by providing a fully interacting many body correction to the DFT non-interacting problem.\n", + "\n", + "If you want to generate the h5 archive `svo.h5` yourself, all the necessary files are in the `./quantum_espresso_files/` folder. We used quantum espresso in this tutorial.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "a707e94e", + "metadata": {}, + "source": [ + "---\n", + "## 1. Starting out with DMFT\n", + "\n", + "\n", + "To start your first calculation run:\n", + "\n", + "```\n", + "mpirun solid_dmft\n", + "\n", + "```\n", + "\n", + "Once the calculation is finished, inspect the `/out/` folder: our file of interest for the moment will be `observables_imp0.dat`, open the file:" + ] + }, + { + "cell_type": "markdown", + "id": "8be4eba3", + "metadata": {}, + "source": [ + "```\n", + " it | mu | G(beta/2) per orbital | orbital occs up+down |impurity occ\n", + " 0 | 12.29775 | -0.10489 -0.10489 -0.10489 | 0.33366 0.33366 0.33366 | 1.00097\n", + " 1 | 12.29775 | -0.09467 -0.09488 -0.09529 | 0.36155 0.35073 0.36169 | 1.07397\n", + " 2 | 12.31989 | -0.08451 -0.08363 -0.08463 | 0.33581 0.34048 0.34488 | 1.02117\n", + " 3 | 12.29775 | -0.08282 -0.08296 -0.08254 | 0.32738 0.34572 0.34479 | 1.01789\n", + " 4 | 12.28973 | -0.08617 -0.08595 -0.08620 | 0.33546 0.33757 0.33192 | 1.00494\n", + " 5 | 12.28825 | -0.08410 -0.08458 -0.08510 | 0.33582 0.33402 0.33759 | 1.00743\n", + " 6 | 12.28486 | -0.08474 -0.08549 -0.08618 | 0.32276 0.33028 0.32760 | 0.98063\n", + " 7 | 12.29097 | -0.08172 -0.08220 -0.08118 | 0.32072 0.33046 0.33529 | 0.98647\n", + " 8 | 12.29497 | -0.08318 -0.08254 -0.08332 | 0.34075 0.32957 0.33089 | 1.00120\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "f795444f", + "metadata": {}, + "source": [ + "The meaning of the column names is the following:\n", + "\n", + "* **it**: number of the DMFT iteration\n", + "* **mu**: value of the chemical potential\n", + "* **G(beta/2) per orbital**: Green's function evaluated at $\\tau=\\beta/2$, this value is proportional to the projected density of states at the fermi level, the first objective of this tutorial would be to try and drive this value to 0\n", + "* **orbital occs up+down:** occupations of the various states in the manifold\n", + "* **impurity occ**: number of electrons in each site\n", + "---\n" + ] + }, + { + "cell_type": "markdown", + "id": "fa14d3d7", + "metadata": {}, + "source": [ + "## 2. Looking at the Metal-Insulator Transition\n", + "\n", + "In the following steps we will try to drive the system towards a Mott-insulating state. \n", + "\n", + "Inspect the script `run_MIT_coarse.sh`, we iterate the same type of calculation that was performed in the last step for a series of value of U {2-10} and J {0.0-1.0}. \n", + "\n", + "Run the script, sit back and have a long coffee break, this is going to take a while (about 6 hours on 30 cores).\n", + "\n", + "Once the run is finished run \n", + "\n", + "`python3 ./collect_results_coarse.py`\n", + "\n", + "The script will produce a heatmap image of the value of G(beta/2) for each pair of U and J. The darker area corresponds to an insulating state.\n", + "\n", + "![coarsegrid](./ref/MIT_coarse.jpg \"Coarser grid\")\n", + "\n", + "Do you notice anything strange? (hint: look at the bottom right corner and check the output file `observables_imp0.dat` for U = 2 J=1.0. )\n", + "\n", + "We have seen that for 1 electron per system U and J are competing against each other: larger J favor the metallic state. The coulomb integral U wants to repel neighbouring electrons while J would like to bring electrons together on one site,. When the latter component dominates the resulting phase is known as a charge disproportionated state which is also insulating. What is happening in the bottom right corner is that the J favors here charge disproportionation but the unit cell has a single site, therefore the system has trouble converging and oscillates between a high occupation and a low occupation state." + ] + }, + { + "cell_type": "markdown", + "id": "d9b0cbe7", + "metadata": {}, + "source": [ + "## 3. Refining the diagram\n", + "\n", + "In order to get better resolution in terms of the diagram you can run the script `run_MIT_fine.sh` and plot the result with \n", + "\n", + "`python3 ./collect_results_fine.py`\n", + "\n", + "The result is also visible here:\n", + "\n", + "![finegrid](./ref/MIT_fine.jpg \"Finer grid\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "4a2c0e61", + "metadata": {}, + "source": [ + "## 4. Plotting the spectral function\n", + "\n", + "The spectral function in DMFT represents the local density of states of the impurity site.\n", + "In order to plot it we need to use one of the scripts that implements the maximum entropy method ( [Maxent](https://triqs.github.io/maxent/latest/) ), while in the folder run (be aware that you need to substitute `/path_to_solid_dmft/` with the path where you have installed solid_dmft) :\n", + "\n", + "`mpirun -n 30 python3 /path_to_solid_dmft/python/solid_dmft/postprocessing/maxent_gf_imp.py ./J0.0/U4/out/svo.h5`\n", + "\n", + "and plot the result by running in the docker container:\n", + "\n", + "`python3 read_spectral_function.py`\n", + "\n", + "\n", + "![Afunc](./ref/A_func_J=0.0_U=4.jpg \"Afunc\")\n", + "\n", + "\n", + "Take care to edit the values of J and U in the python file. What is happing to the spectral function (density of states) as one cranks U up?\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "171f01ad", + "metadata": {}, + "source": [ + "## 5 Visualizing the MIT\n", + "\n", + "We will now plot the spectral function at different U values for J = 0.0 eV:\n", + "\n", + "Run the script `run_maxent_scan.sh`.\n", + "\n", + "Then collect the data:\n", + "\n", + "`python3 read_spectral_function_transition.py`\n", + "\n", + "![MIT](./ref/A_func_transition.jpg \"MIT\")\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/correlated_bandstructure/plot_correlated_bands.html b/tutorials/correlated_bandstructure/plot_correlated_bands.html new file mode 100644 index 00000000..4adba4d3 --- /dev/null +++ b/tutorials/correlated_bandstructure/plot_correlated_bands.html @@ -0,0 +1,900 @@ + + + + + + + 5. Plotting the spectral function — solid_dmft documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + + +
+

5. Plotting the spectral function

+

In this tutorial we go through the steps to plot tight-binding bands from a Wannier90 Hamiltonian and spectralfunctions with analytically continued (real-frequency) self-energies obtained from DMFT.

+
+
[1]:
+
+
+
%matplotlib inline
+from IPython.display import display
+from IPython.display import Image
+import numpy as np
+import importlib, sys
+import matplotlib.pyplot as plt
+from matplotlib import cm
+from timeit import default_timer as timer
+
+from ase.io.espresso import read_espresso_in
+
+from h5 import HDFArchive
+from solid_dmft.postprocessing import plot_correlated_bands as pcb
+
+
+
+
+

1. Configuration

+

The script makes use of the triqs.lattice.utils class, which allows to set up a tight-binding model based on a Wannier90 Hamiltonian. Additionally, you may upload a self-energy in the usual solid_dmft format to compute correlated spectral properties. Currently, the following options are implemented:

+
  1. bandstructure

    +
  2. Fermi slice

    +
+

Basic options

+
+
We start with configuring these options. For this example we try a tight-binding bandstructure including the correlated bands (kslice = False, 'tb': True, 'alatt': True), but feel free to come back here to explore. Alternatively to an intensity plot of the correlated bands (qp_bands), you can compute the correlated quasiparticle bands assuming a Fermi liquid regime.
+
The options for \(\Sigma(\omega)\) are calc or model, which performs a Fermi liquid linearization in the low-frequency regime. The latter will be reworked, so better stick with calc for now.
+
+
+
[2]:
+
+
+
kslice = False
+
+bands_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}
+kslice_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}
+config = kslice_config if kslice else bands_config
+
+
+
+
+
+

Wannier90

+

Next we will set up the Wannier90 Input. Provide the path, seedname, chemical potential and orbital order used in Wannier90. You may add a spin-component, and any other local Hamiltonian. For t2g models the orbital order can be changed (to orbital_order_to) and a local spin-orbit coupling term can be added (add_lambda). The spectral properties can be viewed projected on a specific orbital.

+
+
[3]:
+
+
+
w90_path = './'
+w90_dict = {'w90_seed': 'svo', 'w90_path': w90_path, 'mu_tb': 12.3958, 'n_orb': 3,
+            'orbital_order_w90': ['dxz', 'dyz', 'dxy'], 'add_spin': False}
+
+orbital_order_to = ['dxy', 'dxz', 'dyz']
+proj_on_orb = None # or 'dxy' etc
+
+
+
+
+
+

BZ configuration

+
+

Optional: ASE Brillouin Zone

+

It might be helpful to have a brief look at the Brillouin Zone by loading an input file of your favorite DFT code (Quantum Espresso in this case). ASE will write out the special \(k\)-points, which we can use to configure the BZ path. Alternatively, you can of course define the dictionary kpts_dict yourself. Careful, it might not define \(Z\), which is needed and added below.

+
+
[4]:
+
+
+
scf_in = './svo.scf.in'
+
+# read scf file
+atoms = read_espresso_in(scf_in)
+# set up cell and path
+lat = atoms.cell.get_bravais_lattice()
+path = atoms.cell.bandpath('', npoints=100)
+kpts_dict = path.todict()['special_points']
+
+for key, value in kpts_dict.items():
+    print(key, value)
+lat.plot_bz()
+
+
+
+
+
+
+
+
+G [0. 0. 0.]
+M [0.5 0.5 0. ]
+R [0.5 0.5 0.5]
+X [0.  0.5 0. ]
+
+
+
+
[4]:
+
+
+
+
+<Axes3DSubplot:>
+
+
+
+
+
+
+../../_images/tutorials_correlated_bandstructure_plot_correlated_bands_14_2.png +
+
+
+

Depending on whether you select kslice=True or False, a corresponding tb_config needs to be provided containing information about the \(k\)-points, resolution (n_k) or kz-plane in the case of the Fermi slice. Here we just import the \(k\)-point dictionary provided by ASE above and add the \(Z\)-point. If you are unhappy with the resolution of the final plot, come back here and crank up n_k. For the kslice, the first letter corresponds to the upper left corner +of the plotted Brillouin zone, followed by the lower left corner and the lower right one (\(Y\), \(\Gamma\), and \(X\) in this case).

+
+
[5]:
+
+
+
# band specs
+tb_bands = {'bands_path': [('R', 'G'), ('G', 'X'), ('X', 'M'), ('M', 'G')], 'Z': np.array([0,0,0.5]), 'n_k': 50}
+tb_bands.update(kpts_dict)
+
+# kslice specs
+tb_kslice = {key: tb_bands[key] for key in list(tb_bands.keys()) if key.isupper()}
+kslice_update = {'bands_path': [('Y', 'G'),('G', 'X')], 'Y': np.array([0.5,0.0,0]), 'n_k': 50, 'kz': 0.0}
+tb_kslice.update(kslice_update)
+
+tb_config = tb_kslice if kslice else tb_bands
+
+
+
+
+
+
+

Self-energy

+

Here we provide the info needed from the h5Archive, like the self-energy, iteration count, spin and block component and the frequency mesh used for the interpolation. The values for the mesh of course depend on the quantity of interest. For a kslice the resolution around \(\omega=0\) is crucial and we need only a small energy window, while for a bandstructure we are also interested in high energy features.

+
+
[6]:
+
+
+
freq_mesh_kslice = {'window': [-0.5, 0.5], 'n_w': int(1e6)}
+freq_mesh_bands = {'window': [-5, 5], 'n_w': int(1e3)}
+freq_mesh = freq_mesh_kslice if kslice else freq_mesh_bands
+
+dmft_path = './svo_example.h5'
+
+proj_on_orb = orbital_order_to.index(proj_on_orb) if proj_on_orb else None
+sigma_dict = {'dmft_path': dmft_path, 'it': 'last_iter', 'orbital_order_dmft': orbital_order_to, 'spin': 'up',
+              'block': 0, 'eta': 0.0, 'w_mesh': freq_mesh, 'linearize': False, 'proj_on_orb' : proj_on_orb}
+
+
+
+

Optional: for completeness and as a sanity check we quickly take a look at the self-energy. Make sure you provide a physical one!

+
+
[7]:
+
+
+
with HDFArchive(dmft_path, 'r') as h5:
+    sigma_freq = h5['DMFT_results']['last_iter']['Sigma_freq_0']
+
+fig, ax = plt.subplots(1, 2, figsize=(10,2), squeeze=False, dpi=200)
+
+orb = 0
+sp = 'up_0'
+freq_mesh = np.array([w.value for w in sigma_freq[sp][orb,orb].mesh])
+
+ax[0,0].plot(freq_mesh, sigma_freq[sp][orb,orb].data.real)
+ax[0,1].plot(freq_mesh, -sigma_freq[sp][orb,orb].data.imag)
+
+ax[0,0].set_ylabel(r'Re$\Sigma(\omega)$')
+ax[0,1].set_ylabel(r'Im$\Sigma(\omega)$')
+for ct in range(2):
+    ax[0,ct].grid()
+    ax[0,ct].set_xlim(-2, 2)
+    ax[0,ct].set_xlabel(r'$\omega$ (eV)')
+
+
+
+
+
+
+
+../../_images/tutorials_correlated_bandstructure_plot_correlated_bands_22_0.png +
+
+
+
+

Plotting options

+

Finally, you can choose colormaps for each of the functionalities from any of the available on matplotlib colormaps. vmin determines the scaling of the logarithmically scaled colorplots. The corresponding tight-binding bands will have the maximum value of the colormap. By the way, colormaps can be reversed by appending _r to the identifier.

+
+
[8]:
+
+
+
plot_config = {'colorscheme_alatt': 'coolwarm', 'colorscheme_bands': 'coolwarm', 'colorscheme_kslice': 'PuBuGn',
+               'colorscheme_qpbands': 'Greens', 'vmin': 0.0}
+
+
+
+
+
+
+

2. Run and Plotting

+

Now that everything is set up we may hit run. Caution, if you use a lot of \(k\)-points, this may take a while! In the current example, it should be done within a second.

+
+
[9]:
+
+
+
start_time = timer()
+
+tb_data, alatt_k_w, freq_dict = pcb.get_dmft_bands(fermi_slice=kslice, with_sigma=bands_config['sigma'], add_mu_tb=True,
+                                                   orbital_order_to=orbital_order_to, qp_bands=config['qp_bands'],
+                                                   **w90_dict, **tb_config, **sigma_dict)
+
+print('Run took {0:.3f} s'.format(timer() - start_time))
+
+
+
+
+
+
+
+
+Warning: could not identify MPI environment!
+
+
+
+
+
+
+
+Starting serial run at: 2022-08-01 11:33:20.627842
+
+
+
+
+
+
+
+H(R=0):
+     12.9769  0.0000  0.0000
+      0.0000 12.9769  0.0000
+      0.0000  0.0000 12.9769
+Setting Sigma from ./svo_example.h5
+Adding mu_tb to DMFT μ; assuming DMFT was run with subtracted dft μ.
+μ=12.2143 eV set for calculating A(k,ω)
+Run took 0.588 s
+
+
+

That’s it. Now you can look at the output:

+
+
[10]:
+
+
+
if kslice:
+    fig, ax = plt.subplots(1, figsize=(3,3), dpi=200)
+
+    pcb.plot_kslice(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], tb_config,
+                    tb=config['tb'], alatt=config['alatt'], quarter=0, **plot_config)
+
+else:
+    fig, ax = plt.subplots(1, figsize=(6,3), dpi=200)
+
+    pcb.plot_bands(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], dft_mu=0.,
+                   tb=config['tb'], alatt=config['alatt'], qp_bands=config['qp_bands'], **plot_config)
+
+    ax.set_ylim(-1.25,1.75)
+
+
+
+
+
+
+
+../../_images/tutorials_correlated_bandstructure_plot_correlated_bands_30_0.png +
+
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright Copyright (C) 2018-2020, ETH Zurich Copyright (C) 2021-2022, The Simons Foundation authors: A. Hampel, M. Merkel, A. Carta, and S. Beck.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb b/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb new file mode 100644 index 00000000..691622bc --- /dev/null +++ b/tutorials/correlated_bandstructure/plot_correlated_bands.ipynb @@ -0,0 +1,480 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "50bbc308", + "metadata": {}, + "source": [ + "# 5. Plotting the spectral function" + ] + }, + { + "cell_type": "markdown", + "id": "e8d5feac", + "metadata": {}, + "source": [ + "In this tutorial we go through the steps to plot tight-binding bands from a Wannier90 Hamiltonian and spectralfunctions with analytically continued (real-frequency) self-energies obtained from DMFT." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0d69c4d5", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "from IPython.display import display\n", + "from IPython.display import Image\n", + "import numpy as np\n", + "import importlib, sys\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import cm\n", + "from timeit import default_timer as timer\n", + "\n", + "from ase.io.espresso import read_espresso_in\n", + "\n", + "from h5 import HDFArchive\n", + "from solid_dmft.postprocessing import plot_correlated_bands as pcb" + ] + }, + { + "cell_type": "markdown", + "id": "c3ce4f44", + "metadata": {}, + "source": [ + "## 1. Configuration" + ] + }, + { + "cell_type": "markdown", + "id": "42a860c4", + "metadata": {}, + "source": [ + "The script makes use of the `triqs.lattice.utils` class, which allows to set up a tight-binding model based on a Wannier90 Hamiltonian. Additionally, you may upload a self-energy in the usual `solid_dmft` format to compute correlated spectral properties.\n", + "Currently, the following options are implemented:\n", + "
    \n", + "
  1. bandstructure
  2. \n", + "
  3. Fermi slice
  4. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "b8d962f9", + "metadata": {}, + "source": [ + "### Basic options" + ] + }, + { + "cell_type": "markdown", + "id": "b652e03a", + "metadata": {}, + "source": [ + "We start with configuring these options. For this example we try a tight-binding bandstructure including the correlated bands (`kslice = False`, `'tb': True`, `'alatt': True`), but feel free to come back here to explore. Alternatively to an intensity plot of the correlated bands (`qp_bands`), you can compute the correlated quasiparticle bands assuming a Fermi liquid regime.\\\n", + "The options for $\\Sigma(\\omega)$ are `calc` or `model`, which performs a Fermi liquid linearization in the low-frequency regime. The latter will be reworked, so better stick with `calc` for now." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b8f73a48", + "metadata": {}, + "outputs": [], + "source": [ + "kslice = False\n", + "\n", + "bands_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}\n", + "kslice_config = {'tb': True, 'alatt': True, 'qp_bands': False, 'sigma': 'calc'}\n", + "config = kslice_config if kslice else bands_config" + ] + }, + { + "cell_type": "markdown", + "id": "3c6ece97", + "metadata": {}, + "source": [ + "### Wannier90" + ] + }, + { + "cell_type": "markdown", + "id": "6d0ce79b", + "metadata": {}, + "source": [ + "Next we will set up the Wannier90 Input. Provide the path, seedname, chemical potential and orbital order used in Wannier90. You may add a spin-component, and any other local Hamiltonian. For `t2g` models the orbital order can be changed (to `orbital_order_to`) and a local spin-orbit coupling term can be added (`add_lambda`). The spectral properties can be viewed projected on a specific orbital." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "27a94d47", + "metadata": {}, + "outputs": [], + "source": [ + "w90_path = './'\n", + "w90_dict = {'w90_seed': 'svo', 'w90_path': w90_path, 'mu_tb': 12.3958, 'n_orb': 3,\n", + " 'orbital_order_w90': ['dxz', 'dyz', 'dxy'], 'add_spin': False}\n", + "\n", + "orbital_order_to = ['dxy', 'dxz', 'dyz']\n", + "proj_on_orb = None # or 'dxy' etc" + ] + }, + { + "cell_type": "markdown", + "id": "57f41c87", + "metadata": {}, + "source": [ + "### BZ configuration" + ] + }, + { + "cell_type": "markdown", + "id": "f23d7e3a", + "metadata": {}, + "source": [ + "#### Optional: ASE Brillouin Zone" + ] + }, + { + "cell_type": "markdown", + "id": "fc7b2fac", + "metadata": {}, + "source": [ + "It might be helpful to have a brief look at the Brillouin Zone by loading an input file of your favorite DFT code (Quantum Espresso in this case). ASE will write out the special $k$-points, which we can use to configure the BZ path. Alternatively, you can of course define the dictionary `kpts_dict` yourself. Careful, it might not define $Z$, which is needed and added below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c6e46f88", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G [0. 0. 0.]\n", + "M [0.5 0.5 0. ]\n", + "R [0.5 0.5 0.5]\n", + "X [0. 0.5 0. ]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dZ1hUV9eGnxl6RxBB6SAoHRQw2IXYDfYu9p7ymcSoURLR2KJRo76aqAliD8FGjEkU1KAgioIIioKINBUEpddhzvp+TOSNr6CUmTkzw7mvyx9hztnrOWEWa6+z116bR0Tg4OCQPfhsC+Dg4GgYzjk5OGQUzjk5OGQUzjk5OGQUzjk5OGQU5Xd8zr3K5eCQPLyGfshFTgWjtrYWxsbGuHPnDttSOFoJ55wKxoEDB/D8+XN8/fXXbEvhaCW8dxQhcNNaOaK2thampqYoLCyEmpoa7t27B1tbW7Zlcbwbblqr6Bw4cABVVVUAgLq6OgQGBrKsiKM1cJFTQfh31HyFuro67t69y0VP2YeLnIrMv6PmKwQCARc95RgucioADUXNV3DRUy7gIqc8ERsbC0dHR4wbNw4pKSlvvbahqPkKLnrKL1zklDGICJs3b8aKFSsAADweD0QEJycn2NnZYfPmzbCzs3vtHg8PD9y7dw8qKioAgKqqKqirq4PH40EoFIJhGJSVlUFNTU3qz8PRJBqMnJxzyhB5eXlYuHAhwsPDYWFhgR9++AHOzs44deoUtm7ditzcXCgpKWHQoEEYMWIEJkyYgPbt26O0tBRlZWX143h6euK3335Dp06dAABqampo3749W4/F8W4adE4Q0dv+cUiJNWvWkJKSEqmoqNB3331HtbW1BIDWrl1bf01ERAStWLGCzM3NCQDxeDyaOXMmXbx4kYRCYf11pqamlJOTw8ZjcLSMBv2Pc06WKS4uphkzZhAA0tTUpHPnzhERkUAgoG7dutHGjRvfuEcoFNL3339P/fr1Ix0dHQJAGhoaNGjQILp79y7nnPIH55yyxrZt20hfX5/4fD4FBgZSdXV1/Wd1dXVkY2NDu3bteusYFRUVdPDgQTIyMiI+n08ASEVFhYYMGULJycmSfgQO8cA5p6xQWVlJS5YsqXeky5cvv3ENwzBUUFBAFRUVTR43Ly+Pvv/+e1JWViYAxOfzaciQIRQcHEwFBQVifAIOMcM5pyxw8OBBsrGxIQA0f/58ys/Pb/C6urq6N3LOpmJqakoHDhygZcuW1eenAGjChAkUGRlJdXV1rX0MDvHCOSeb1NbW0qpVqwgAqaur0/nz5996vUAgIA8PjwZzznfx75xTKBTSjz/+SO7u7qSrq0sASFdXl3x8fLhpr+zQoP9xRQhSICoqCr169cL69esxcOBApKSkYNCgQW+9h8fjobq6Gnp6eq2yzefzsWDBAty+fRt5eXn45ZdfoKenh+vXr8PFxQUeHh6YNWsWkpKSWmWHQwI05rXERc5WIxQK6bPPPiMApKWlRb/++muT72UYhp48eUKlpaXNttuUt7XPnj2jHTt2kIeHR/2yzODBg+nw4cP0/PnzZtvkaBXctFaaZGZmkq+vLwEgGxsbun37drPub23O2ZyllN9//50++ugjsrCwqM9PBw4cSBEREVx+Kh0455QGDMPQxx9/THw+nzQ1NWnfvn3EMEyzx6mtrSU3N7dW55zNQSgU0uHDh8ne3r5+/bR9+/bk5eVFsbGxzR6Po8lwOaekKSgowLhx47Br1y5oa2sjMjIS8+bNA4/XcHXW2+DzRb8aAwMDcct8q81p06YhNTUV+fn5CA0NhaGhIW7evAkfHx+4u7tjyZIlSExMlJqmNk1jXktc5GwWq1atIh0dHVJVVaXNmzeTQCBo1XgMw1BGRga9fPmy2feKu0IoJyeHdu7cSV5eXvXT3kGDBtHhw4eppKREbHbaMNy0VhKUlJTQrFmz6svvEhMTxTKuNHPO5nDu3DmaOXMmWVpa1r9I6tGjB124cIHLT1sO55ziZseOHWRubk58Pp+WLFnSojerjVFbW0suLi60YcOGZt8rjdpaoVBI4eHh1KVLF9LS0iIAZGxsTJ6ennThwgWJ2lZAOOcUF1VVVbRo0aL6Bf2YmBix26irqyNvb2/66aefmn2vtAvfq6qq6NdffyVPT8/6aa+rqyutWrWK4uPjpaZDjuGcUxycP3+eHB0dCQCNGDGCnj17JhE7DMPQgwcPWlQTy+aulIcPH9KuXbvI29u73lH9/Pzo0KFDYp1ZKBicc7YGgUBAAQEBBIAMDQ3pzz//lKg9Wc05m8Nff/1FY8aMISsrKwJASkpK5OTkROfPn+fy09fhnLOlPHjwgHr06EEAyN7entLT0yVus7a2lhwdHWU252wOQqGQoqKiyMHBgdTV1QkAdezYkXr16kVnzpxhW54swK1zNheGYTBt2jQ4OjoiNTUVx48fR2pqqlQ62fH5fBgYGKBjx44StyVp+Hw++vbti5SUFBQVFSEsLAwODg6IiYnBqFGj4Orqig0bNiA+Pp5tqbJFY15LbTxy5uTk0MCBA+urZFJSUqRqn2EYSkpKanRL2duQtcjZGA8ePKBt27bVz0oAUI8ePejgwYNUVlbGtjxpwk1rm4JQKKRFixaRpqYmaWpq0p49e17rzyMtFCHnbA4XL14kX19fsra2rt+Ebm1tTefOnWt1QYccwDnnuygoKKCxY8cSAGrXrh09fPiQNS0CgYC6du1K69evb/a98uicr2AYhq5evUpeXl6koqJCAMjExISGDx9OoaGhLapTlgO4nPNtrFu3Ds7Ozvjtt9+watUq5OXloXPnzqzp4fF46NSpE8zNzVnTwAY8Hg+9e/dGXFwcysrKcOLECXh5eeHcuXOYOHEiXF1dsXnzZiQnJ7MtVfI05rXURiJnaWkpjR8/vr7CRVzld62FYRi6efMmPXnypNn3ynPkbIy0tDRat24dvffee/X5qZOTE4WEhCjC+ik3rf1fwsPDydramng8Ho0ePVqmirjbWs7ZHK5du0Z9+/at33+qpqZGlpaWdPToUXnNT7lp7StqamowfPhwjBw5ErW1tbhy5QpOnToFXV1dtqXVQ0Sws7Or3zrG8V98fHwQFRWFzMxMREdHo2fPnsjJycHUqVNhZmaGyZMn4/jx42AYhm2praMxryUFjZwJCQnk7OxMAMjZ2blF00ZpUFdXR0OHDqVjx441+15Fj5wNUVlZSSdPnqRRo0YRj8ern/Zu2rSJ0tLS2Jb3Ltr2tFYgENDQoUOJx+ORsbFxfWd1WYVhGIqJiaHs7Oxm39sWnfPfpKWl0YoVK8jHx6c+P7W0tKQDBw7Ian7adp3z4cOH9b8oMzMzys3NZVvSO+FyTvFw9+5d6t+/P3Xs2LH+2AorKyvas2ePLOWnbS/nZBgGU6ZMgbOzM+7fv48jR44gKysLpqambEt7J0QEGxsbLudsJU5OTrh8+TKePHmCa9euYfDgwcjKysLixYthZmaGefPm4ejRo7KZnzbmtSTnkTM3N5f8/PwIgFxGkrq6Oho5ciSFhoY2+155fF5pUlJSQidPnqTRo0fXny9jb29PGzdupMePH7Mhqe1Ma5cvX076+vqkoaFB69evZ6X8rrUwDEOXLl1q0ZeFc86mk56eTosXL6ZevXrV56dGRkYUHBwszaU1xXfOFy9e0IABA+p7xaamprItqcVwOaf0SU9Pp/fff58MDAzqj81wdHSkb7/9VtL5qWLnnKGhoXB2dsaVK1cwadIk3Lt3D/b29mzLajFEBAsLixa11eRoGba2toiIiEBhYSGuXbuGyZMn4/79+1i+fDlMTU3xySef4OjRo8jPz5eOoMa8luQkcpaVldW/ibW3t6eEhAS2JYkFoVBIEyZMoBMnTjT7Xi5yio+ysjL65Zdf6jdEvPon5vY0ihc5Y2Ji4O7ujtjYWHh5eeHGjRvw8PBgW5ZY4PF4mD17Ntzd3dmW0qbR1tbGxIkTMXDgwNfenKurq0vctlw6Z3V1NXr27InevXtDKBQiKioKcXFx0NfXZ1ua2GAYBkOGDMGxY8fYltKmKS8vR8+ePbFw4ULweDx07twZenp6UvmuyZ1zJiUloUePHoiNjYW9vT1u376Nvn37si1L7BAROnXqxLaMNs3JkydhZGRU/13LzMxE+/btUVZWJhX7cuOctbW1GD58ODw9PZGXl4czZ84gNTVVoaLlv+Hz+fD19YWLiwvbUtoctbW1GDZsGMaNG4eamhqsXLkSqampMDMzg76+PpSVlaWiQzpWWklGRgYmT56MuLg4dOnSBVevXoWRkRHbsiQKj8fDhAkT0KVLF7altCn+/vtvjBw5EqWlpejYsSMuXrwIBweH+s+7dOmC2NhYqWiR6cjJMAyWLFkCFxcXpKamYvv27UhJSVF4xwREz+7v74/Q0FC2pbQJGIbB9OnTMWDAAJSWlmLBggXIzc19zTGljcxGzmfPnmHYsGFITEyEu7s7fvvttzbVsoOI0KFDB1GlCIdEuXPnDgYOHIiCggK0a9cO586dg4+PT4PXxsbGtu2c88CBA/XF6jNmzMDNmzfblGMCopxzxIgRCrM0JKt8/vnn8PDwQEFBAcaMGYPnz5836pgAYGho2DZzzqKiIvTu3RspKSno1q0bjh49iq5du7ItixV4PB6GDh0qlQbWbZHHjx/D19cXmZmZ0NTURFhYGIYNG/bO++zt7XHt2jUpKJShyBkREVGfW/bv3x/R0dFt1jEBUQ40fvx4nDx5km0pCsemTZvQuXNnZGZmYsCAASgoKGiSY0ob1iNncXEx+vbti+TkZDg4OODMmTPw9PRkWxbrEBHatWsHoVDIthSFoaCgAH5+fkhOToaqqir279+P6dOnN2uMmJgYlJaWSkjh67AaOa9fvw4vLy8kJyfD09MT8fHxnGP+A5/Px6RJk+Dt7c22FIXg559/hqmpKZKTk+Hh4YFnz5412zEBwNjYGKqqqhJQ+CasOGd5eTn69++Pnj17ora2FhEREbh58yY0NDTYkCOz9O7dGxYWFmzLkGvKy8vRp08fzJ07FwzDYOvWrUhISICBgUGLxuvcubNU6moBlpzTy8sLUVFR4PP5WLNmDd5//302ZMg0RISpU6fi9OnTbEuRW8LDw9GhQwdER0ejc+fOyMjIwGeffca2rCbDinOqq6uDx+NBKBRi1qxZ0NDQwIgRI5CQkMCGHJmEiKCtrY26ujq2pcgddXV18Pf3x6hRo1BdXY0VK1bg4cOHYpmFREdHK3bOmZOTA01NTdy/fx/jx4+HkpISzp07h+7du8PQ0BALFy5EXl4eG9JkBj6fjzlz5qBnz55sS5EroqOj0b59e5w9exYmJiZITk7Gxo0bxTZ+x44dFTvntLGxgZmZGbp27Ypff/0V5eXl+PPPP9G7d2+UlpZi79696NixI2xsbLBx40bU1tayIZN13NzcYGxszLYMuYBhGMyaNQt9+vRBSUkJ5syZgydPnsDJyUmsdmxtbRU75zQwMHhjN8mQIUNw9epVVFdX4z//+Q+6du2Kx48fY+XKldDQ0ICnpyd+/fVXNuSyAhFh9uzZOHv2LNtSZJ67d+/C1NQUISEh0NfXR3R0NH766Se5byvKivrKykpUV1c3+JmSkhI+/PBD3L9/H0VFRVi6dCk6dOiA+Ph4TJw4ERoaGhg+fDhu3bolZdXShYigpqYGgUDAthSZZvny5XB1dUVeXh5GjRqFgoIC9OrVS2L2rly5IrWck5UeQoaGhqSlpdWse1JTU2nChAmkra1d38fFwMCA5s2bJ+5+LjKBUCikZcuWUWRkZLPvbQs9hLKyssjGxqa+i3t4eLhU7Pr7+5O6urq4h5WdHkK2trbNLmS3t7dHaGgoysrKcP78efTp0welpaXYv38/OnbsCGtra6xfv77RiCyP2NjYKOxm8tawZcsW2NjYICMjA3379kVhYSH8/f2lYtva2hpqampSscWKc7Zr1w56enotvn/QoEG4cuUKampqsHv3bjg4OCArKwuBgYHQ0tKCp6cnQkNDZbPFfhMhIixcuBB//PEH21JkhpcvX8LDwwPLli0Dn89HcHAwoqKioKmpybY0icCKc1ZUVKCqqqrV4/D5fCxevBgpKSkoLi7GF198AWNjY8THx2PSpEnQ1NTEsGHDcPPmTTGoli5EBB6P12bfVP8vBw8eRMeOHZGYmAg3Nzc8ffoUs2bNkrqOqKgolJSUSMdYY/NdkrGcszmkpaXRpEmTXstP27VrR3PnzpXZ8zj/F6FQSIGBgXT58uVm36tIOWdFRQX169ePAJCSkhJ9++23rOoZOXKkYuecnTt3hqWlpcTGt7Ozw/Hjx1FWVoaIiAj07dsXZWVl+Omnn2BqagorKyusW7dO5vPTDh06KOyUrSn8/vvvMDIyQlRUFGxsbPDo0SMsW7aMVU1WVlaKnXPq6+tDR0dHKrbef/99REVFoaamBj/++CMcHR2RnZ2Nr776ClpaWujevbtMHlHOMAw++eQT/PXXX2xLkTp1dXUYM2YMPvjgA1RVVWHp0qV49OiRRP+gNxVpfk9Y25VSWVkpVZt8Ph8LFizAvXv3UFxcjGXLlsHY2BgJCQmYMmUKNDU1MXToUJnLT9vaOmdsbCyMjIxw+vRpdOjQAYmJidiyZQvbsuq5evUql3NKi/T0dJo8eTLp6Oi8lp/OmTOH1fxUKBTS2rVrKSoqqtn3ymPOKRQKae7cufW/gxkzZsjk0Y2jR49W7JzTzs4OVlZWbJh+A1tbWxw7dgylpaW4ePEi+vfvj7KysvrNuVZWVli7di0r+amGhgZUVFSkblfa3Lt3D2ZmZvjpp5+gq6uLqKgohISEyGT5nYWFhWLnnHp6etDW1mbD9Fvx9fXF5cuXUVNTg71798LJyQnZ2dlYvXo1tLS06puOSSPvYBgGX3zxBc6fPy9xW2yycuVKuLi44NmzZxgxYgQKCgpk+ngNaW7hY8U5y8rKUFFRwYbpJsHn8zF//nzcvXsXpaWlWLFiBUxMTHD79m1MmzYNmpqaGDJkCG7cuCFxLaSgfWtzc3Nhb2+PjRs3Ql1dHadOncLZs2elth2rpcTExHA5pyzy6NEjmjJlymv5qb6+Ps2aNUvsOZ5QKKRvv/2WYmJimn2vrOec27dvJyUlJQJAvXr1orKyMrYlNZkxY8aQhoaGuIeVnZyzS5cusLa2ZsN0q7CxscHRo0dRWlqKy5cvY8CAAaioqMCBAwdgbm4OS0tLrFmzRmz5aV1dncwt8bSG4uJidO/eHZ9++in4fD7279+P6OhomUxxGsPc3FyxN1vr6OhAS0uLDdNio3///rh06RKqq6uxf/9+ODs7IycnB0FBQdDU1ISHhweOHDnSYudiGAarVq1CRESEmJWzw5EjR2BiYoKEhAS4uLggNzcXc+fOZVtWsxEIBFJLNVhxzpKSEqmdNyFp+Hw+5s6di+TkZJSWluLLL79Ep06dkJiYiICAAGhoaGDw4MEtPplKFt9YNofq6mr4+fkhICAAAoEAGzZsQFJSEjp06MC2tBZx7do1bj+nvJORkUFTp04lXV3d+vxUT0+PZs6cSdnZ2e+8XygU0vbt2+n69evNti0rOecff/xBWlpaBIAsLS0pIyODbUmtZty4cYqdc3bt2hU2NjZsmJYa1tbWOHLkCEpKShAVFQVfX19UVlYiJCQEFhYWsLCwQFBQ0FsrpYqKimS+/rch6urqMG7cOAwbNgyVlZVYsmQJMjMz5fI9w/9iamoqvTfKjXktSTByDh48mHr06CGp4WUWoVBIP/30E7m4uBCPxyMAxOPxyM3NjUJCQl6riBEIBASAAgMDm22Hzch5/fp1MjAwIABkZGREt2/fZkWHpFi4cCHp6uqKe1jZiZzFxcXSm7fLEK/aXSYlJaG0tBQrV65Ep06dcOfOHcycORMaGhoYOHAgYmJiwOPxAEDm1/1ewTAMFi1ahPfeew8vX75EQEAA8vLy4O7uzrY0sXL9+nUu52xLZGZmUkBAwBv5aY8ePejs2bPNHk/akfPBgwdkampKAEhHR4cuXrwoNdvSZvz48Yqdczo4OHDnTv4LS0tLHDp0qD4/9fPzQ0VFBW7cuIEPPvgA5ubm+Prrr6W+k6cpfP3113B0dMSTJ08wdOhQFBYWwtfXl21ZEqNTp06Kvc6ppaXFHVrUCH379kVkZCQqKiqgpKQEIyMjPHnyBN988w20tbXh5uaGkJAQsRYn8NbwoLFeA+rr1GH8nTGyirPeec/Tp0/RtWtXfPPNN1BVVUVYWBj++OMPuZmGt5Tq6mrFXucsKiqSXn2inKKkpAShUIiPP/4Y5eXlCAwMhKmpKZKSkurPl3n//fcRHR0tFntVq6pQHVgNbVVtzP3t7cUBu3btgqWlJVJTU+Hj44P8/HyMGzdOLDpknRs3bnA5Z1vn1ZvdhISE136emZlJ06dPJz09vfr8VFdXlwICAigzM5OImp9zIui/v+rJJyaT026nBq8rKioiT09PAkDKysq0Z8+eFjyZfDNx4kTS1NQU97Cyk3M6OTmhc+fObJiWK1JSUlBYWPjazywtLXHw4EEUFxfj6tWreP/991FdXY3Dhw/DysoK5ubmKCkpadGun9q6WlzJuoJJzpPe+Oz48eMwMTHBrVu34OjoiJycHCxatKjFzyavmJiYSG2PLSvOqaGhIbXDYOQVhmGwd+/et05be/fujYiICFRVVSEkJASurq548uQJysvL4eDgAFdXVwQHBzcpP9VYrwG19WqoFFRiWc//NtGqrq7GoEGDMGXKFAgEAqxZswb37t2DiYmJWJ5T3qisrJTeZoTGQipJcFrr6elJXbp0kdTwCkFdXR0BoLVr1zbrvoqKCtLW1qaOHTvWT3tVVFTI19eXrly50uA9r6a1WcVZpLtRl8b8MoaIiC5cuFDfXtTc3JzS09Nb91AKgLu7O4ncRqw06H9czimjCIVCOnToEN25c6fZ977KObOysmjGjBlv5KfTpk2jx48f11//75zzWNIxUlqjRGMnjq2vYPr444/F8UgKweTJkxU753R2doadnR0bpuWKGzdu4MmTJy2+38LCAiEhISguLkZ0dDQGDhyI6upqHDlyBNbW1jAzM8OqVateu8euxg5MBYOT5SdhaGiIuLg47Ny5s7WPojB06NBBsXNOdXV1qTVJklcYhsHRo0fF1gqlV69euHDhAqqqqnDw4MH6Iw02bNgA3hoevu5ojpN6vfCjlxdoM2Gy7mQ8f/4cnp6eYrGvKJSXl0st51SWipX/obCwUGH2c0oKHo+H4uJiKCkpiXVcPp+P6dOnY/r06aisrMTmzZtRu20nduYlowR60EMJ7nwYBNf/fC9Wu4pCfHy81L67rETOzMzMVk3X2gI8Hg+hoaEYO3asxGxoamoiaOJETKnrjBLoAeChBHrgh1wHnj6VmF15xtHRUWpdPFhxThcXF9jb27NhWq6IjIxERkZGs+7hreHhyawn6BzSGRrrNTDl5JTGLz52DPDygiPvPvRQAoCghxI41twGunUDrlxp3QMoIEZGRlBWls6EkxXnVFNTU/gazNbCMAxOnz6N+Pj4Zt9resAU6TPTUbWqCsfGHnvzgupqYOFCYOpUwMMD/LQHSG1nj6twwalJH4KfmADo6QG+vsD33wMK2p6zJZSVlUEoFErFFivOWVBQgJcvX7JhWm7g8XgoLCwUfw+h9HTAxwfYuxdYvhy4fBkwNUWNvjbqcA+pfXsDTk5AXBzwwQfAp5+KnFiG+wxLk4SEBJSXl0vFFivOmZWVhadcTvNW+Hw+Tp8+jfHjx4tv0JMnge7dgaws4OxZYNMmoLEpmp6e6PoNG4DQUOC994CHD8WnRU5xdnZW7JzT1dUVXbp0YcO03EBEOH36NFJTU1s/WG0tsGQJMG4c0LUrcPs2MGLEu+/j84EvvwT++gt49gzw9BQ5dRvG0NBQsXNOVVXVNnFAT2tgGAYRERFISkpq3UBZWUCfPsCOHcD//R9w9SrQ3HMuBw4E4uMBOzvA3x/46itASnmXrFFSUqLYOefz58/x4sULNkzLDTweD8+ePWvdIL//Dnh4AA8eACdOiF7utPRFnKUlEB0NzJ4NrFsHDB8OtMH3BomJiYqdc2ZnZ7f+i6fg8Pl8/PHHH5g8eXKz7z3UZwBees8G88EHIqeKjwfEsV6qrg789JPoZdLly6L89fbt1o8rR7i4uCh2zunu7o6uXbuyYVpuICIcOnSo2dNagfb3GPPLLrg9Ow8DFKFu5lxAnHtneTxg/nzR9LiuDujZEzh4UHzjyzgGBgaKnXMqKytL7QHlFYZhEBMTg5SUlCbfk5eXh7vB116r9klYeRDlx48D4j6+3ttbFJF9fICZM4HFi0UvnhSc4uJixc458/Ly3tjhz/E6PB4POTk5TWomRUT4+eef4ezsDNVBZq9V+zhVJUB7yhSUaGsjY/hwCGJixFdU0KEDcOEC8MUXwA8/AP36AQpelnnnzh3Fzjlzc3ORl5fHhmm5gc/nIzIyEtOmTXvrdXl5efD398euXbtw+fJlOG7fisIJHyIZLnj59Q5o1VSh/PhxFLq6wvTPP6HSuzfyDQyQs2AB6PHj1gtVVgY2bwbCwoC7d0Vlf1FRrR9XRnFzc5PakYWsOKeHhwccHBzYMC03MAyDPXv24NatW41ec/LkSbi7u8PV1RVxcXFwcXEBAChv2wxn3ANfTQVQUYH2pEmwvXkTai9fomDjRlTr68N83z7wbGyQZWWFgg0bwGvtNqhx40RVRe3aAX5+wLZtCln2p6+vL/adQo3S2C5s4s5KYRWBQEBWVlb0zTffvPFZUVERBQQEUOfOnenatWsND9CjB5GnZ6PjM48fU/aiRfSsXTsigIQA5QN0auZMopqalgsvKSEaPVrUZGPiRCI5OrW6KQQEBEiii4fsdEJ49uwZCgoK2DAtN/B4PGRmZr6Rc168eBGurq7Q1tZGYmIifHx8Gh5g9Gjg1i0gJ6fh8a2sYL5nD0xevEBdbCyKNTSgD2B0SAhKdXSQMWwYBNHRzY9+urqisr9Nm0RT3ffeA9LSmjeGDJOcnNyizoYtojGvJa6HEKswDENXrlyhrKwsIhI17vrkk0/I1NSU/vrrr3cPkJoqil47dzbJXpa1Nf0N0KnZsyndy4uq+XwigPL09Chr3jxiHj1q/kNERBAZGhLp6hKdOdP8+2WQmTNnkra2triHlZ3I2a1bNzg6OrJhWm5gGAbffvstrl27hps3b6Jbt24oKChAUlISBg8e/O4B7O0BR0fg9Okm2yQAeZ6esI2Lg9rLlyj89ltUGRjAYv9+8GxtkWVpiefr1wNFRU0b8P33gYQEkZZRo4BVq+S+7E9PT09qOScrzsnn8+X+OHVJQ0R48OAB9u3bhxEjRmDNmjU4duwYDAwMmj7I6NGiN6ctWbbS00P7ZctglZEBysxE7uLFUCsrQ4fAQNQaGuJRt24oO3Lk3WubFhaigoW5c0U7XIYNA+S4dPPFixeoq6uTjrHGQipJcFrr4uJC1tbWkhpeIUhOTiYAZGdnR0+ePGnZILduiaa2wcHvvDTL2pouA28/YoFhSBAbSxkffEDFampEAJWoqtKjIUOoJiqKiGHebmT/fiJVVSJLS6L4+EYvu55znZTXKlP6C1Gf3IyXGaS8Vpmis6Lf+RyShutb24YRCoW0ZcsW0tDQoM8//5zu3btHH374IZ05c4aYd335/xeGIbKwIPrgg3de2iTn/De1tVT+66+U7u39en46Zw4xb2s+HRdHZG5OpKb21j8aQ48Mpa67uhIRUdf/dKVBhwY1TZeEmT17ttRyTm4pRYbIzMykfv361XdZDw4OpsjISFJSUiIAFBcXR3l5efUHFjWJTz4ROcI7ljSa7Zz/pqSECjZvpkxra9FXCqAsc3N6/s03RC9fvnn98+dEfn6iaxcsIKqufuOSipoKUv9GnUYdH0Vq36hRWY1sLMn83//9H+np6Yl7WNl5IcTxOkSE4OBguLu7Y+jQodi1axdWr16NGTNmwM/PDw8fPkRISAg8PT2xa9cu2NjYoF+/fhAIBO8u7xs9GqipEW2YlhS6umj/xRew/Fd+qlpeDqOvvkKtoSEyPDxQdvjwf/NTIyORnuXLRTtc+vUDcnNfG1JTVROBfQNxJvUMgvoHQVtVOlU576KgoECxc04nJyeysrKS1PByRX5+Pg0bNoxUVVVJVVW1fumkMR4/fkyzZs2iuXPnEpFomtWnTx+KiIho+AaBQLScMWXKW8dtVeRsCIah2hs36JG/PxX9k5+WqqjQo8GDqebvv/+bn548SaStTWRkRHTp0mtDuP/oTvw1fBp5fKR4NIkBaeac3GZrFgkPD4erqyscHBzg6OiICRMmwMzM7K33WFlZITg4GPv37wcAtGvXDnfu3EFYWBgAYMuWLThz5sx/I6qysqh7wblz0t01wuNBxdsbNuHh0C8vR0VYGJ57eMA0IgKq/fvjub4+sufMAbm6AjdvAoaGoo4L330HECH0bijuF9xH9Kxo/J72OxKfJUpP+1vo3r07dHR0pGOsMa8lLueUGMXFxTRp0iRSUVEhPz8/IhK9CGopNTU19OLFC8rLyyNVVVXCPxFQIBCIIvHZs6L87i3FC2KPnI3xT3762MaGhK/yUzMzKli2jMjXV1RKOH4saa/Xoo1XNxIR0djQsWS53VKyupoIl3MqMJcvX4abm1t9Lxpzc3PRL6IV676qqqowMDCAsbEx0tPTsWPHDvj7+yMyMhKWlpbwXrkSjJZWswoSJMY/+anVo0fgZWUh96OPoFJZifabN0Nw+TIAYHrdSbQrrsYKo9EAgGNjjuF5xXPsuL6DTeUARLM+gbj3xjZGY15LEoycjo6OZGlpKanhZZLKykpasGABqamp0bZt24iImvfWtQXk5uZSQEAAeXl5Ud2YMVShq0v9+/ShsLCwN5ZlpBY5G+JVfjpyJBWpq9e/8RWAT3dMB5Pwh73S19QICp9zFhYWoqipJWAKQHx8PLp3744//vgDtbW19YXTls3tgtdMTE1NcejQIcTFxUFp3DholpZC484dBAUFAQDOnDmDv/76691vfCXNq/z0zBnol5Wh4sQJlKtroz1ewO3JnzBYNAH3l65gXycALy8vqeWcrPQK8fDwQHFxMRumpYpAIEBQUBB27tyJH3/8Eb1798a9e/cwbNgw6YsZNgxQUcHZOXOQ9dFHAIBPP/0UeXl5mDFjBlZKX1HD8HjQyszE3WrL19qt3NxzCcNP2WLatGkICAhg7XxXTU1NqZWecjmnhEhNTYWPjw+2b9+O8vJyGBkZwdLSkh3HBEQd3P38oBQeDhtra/B4PNy4cQOrV6/GxIkTIfxns3VQUBBiY2PZ0ZiZKTqfZelSOLoov9ZuZeq2uQgLC0NpaSl69+6N9957D7t375Z6u5u8vDzFzjkdHBzIwsJCUsOzilAopO+//5709fVp9+7dtGXLFtq4cSPbskTs3SvK5xo4yj7D0pIuA2RoaEi3bt2iO3fu0NChQ2n//v1UW1srWV0MQ/Tzz6L1Th0dogMHRHW8u/dSss+8N3JOgUBA586do0mTJpGuri75+/tTWFgYVVVVSVYntYHaWmNjY0m8jmad7Oxs6tWrF6moqJC+vj4VFxezLel18vKIeDyioKA3Pnr1Qmj37t3EMAydPn2atLW1SUlJifLz8+n27dt06dKlVi35NKrpgw9EX8X+/Yma+ZKspKSEgoODacCAAWRgYEDz5s2jK1euiF/nPyxYsIB0dXXFPazsvBBStL61RKIes926dcOAAQNgbm6OgIAA6Orqsi3tdYyNRX1m37KkwuPxwOPxMGrUKBQWFiImJgYdOnTAhg0bMHToUPTr1w8AUFVV1Xo9p04Bzs6iDn7btwMXLzb7qAhdXV3MmjULly5dQmJiImxsbLBw4ULY2triq6++QpqYuzCoq6uDx+OJdcxGacxriStCaBIFBQU0ZMgQUlVVpenTpxMRUV1dHcuq3sJ334miVEbGaz9+11JKcXExrV69mnbv3k1Eoumdo6MjnWlJh4OiIqKAAJGObt2I7t1r/hhvgWEYio+PpyVLlpCxsTF5e3vTrl27qKCgoNVjjx8/njQ0NMSg8jVkJ3JmZWUpxLHzZ8+ehaurK4RCIYRCITp27AgA0uvO1hJGixb2m1uQoKenh6CgICxevBhCoRD+/v4oLi7G48ePUVtbi4CAAGzbtg217yoRvHgRcHUVnar99dfA9euijg1ihMfjoVu3bti+fTtyc3MRFBSEa9euwdbWFv7+/ggLC0N1dXWLxn748KF4Zg1NoTGvJQlGThMTE9LX15fU8BKnpKSEJkyYQJqamnTs2DFiGIYeP37Mtqym4+pK1Lv3az9qSRECwzAkEAgoOTmZdHV1CQCdPXuWCgoK6OrVq6/nfRUVou1rAJG9PdGNG+J6miZTUlJCBw4cIF9fX2rXrh3NnTuXoqKimpWfLly4ULFzTjc3N7k9n/PKlStwd3fHlStXUF1djcrKSvB4PFhZWbEtremMGQPExAD5+a0ahsfjQVlZGc7Oznj27Bl+++03DB48GIcPH0afPn1ga2uLoqIiCK9fFzWb3rkT+OQT0eFH3t5iepimo6uri5kzZ+LixYtISkpC586dsXjxYtjY2CAwMLBJZ6GqqalxOaesUVVVRYsXLyY9PT06e/Ys3blzhy79zxYnueHOHVEE2/vfJQpxlu8VFxfTl19+SQvnziX6+muq4/HoqbIy/fn5560eW9wwDEMJCQn06aefkomJCXl5edHOnTvp+fPnDV4/bty4N3LO2tra1r4dlp2llC5dupCZmZmkhhc7CQkJ1LVr1/odH4mJiWxLah0MQ2RjQzRkSP2PxF5bm5JC1L07EUAPvL3JydSUxo0bR0RE69evpx07dlBNa5pXSwCBQEB//vknTZkyhfT09GjEiBEUGhpKlZWV9dc0tM45a9Ys8vb2fu26ZiI7ztmpUydq166dpIYXGwKBgNauXUsGBgZ0+PBhWrZsGe1sYh9Ymefzz4lUVIj+WYsVm3MKhUTbt4taoxgaEp04QUSiCFVWVkZVVVVkbGxMfD6fAgMDiWEYiouLk9i6ZEspLS2lkJAQ8vPzo3bt2tGcOXPo77//pkWLFr2Wc1ZVVZGmpiapqanRgAEDWvoHR3acUx6mtWlpaeTm5kbKyspkaWkpc3/lW010tOjXf+wYEYnJOTMzRYUEANGIEUTPnjV4WVVVFYWFhdGjR4/oxo0bBICMjY3p1q1bzW9iJgVycnLo22+/JWdnZ9LR0SE1NTW6f/8+ERGFhYWRjo4OASANDQ0aMWJES5bSOOdsCgzD0K5du8jQ0JDWrFlDnTp1ojVr1rAtS/wIhUTGxkTjxxNRK52TYUQldzo6ohK8n356d5vMfygtLaVVq1bRgAED6OXLl/TLL7+Qk5MTbdq0Seb+IDIMQ35+fqSsrEwmJibk6elJdnZ2BFE/bgJAmpqaNHny5ObOBGTHOe3s7KhTp06SGr7F5Obmko+PD6mpqdGqVauISDS1VVjmzxc5U1VVy50zP59o1CjRV6lPnzeKG5rLiRMnyMzMjDp16kR1dXV06tQp+uGHH2TGUV/lnAKBgEJDQ4nP57/mnK8cdP78+c2ZBcjOUkplZWWLF4ElARHh+PHj8PDwgJqaGoRCIdq3bw8Ain0C9+jRQHk5EBnZsvvDw0Xld3/8Ier9c/kyYG3dKkljx45FdnY24uPjoaSkhO3bt+Pzzz/HyJEjAQCPHz8WRRWW6NWrF/T09KCsrIznz59DXV39jWsqKytx6NAhLFu2rHXGGvNaaiPT2sLCQho8eDDp6OhQZGQk1dTUSLxDgcxQU0Okq0sIApl/rlQfOasEVcQL4lGHzR0avq+4mGjmTFG0dHcnSk6WmMTa2lo6dOgQRUREUGVlJeno6JCxsTGdPn1aYjbfxr97CDk4OLwRNf/336JFi5oybIP+p8Bh4d388ccfmDt3Lqqrq1FRUYHKykqoqqpKvEOBzKCqCgwfDtBxFGgwKP0nCGyO2Qw1ZbWG77l8GZg5U9RndtUqUQmeqqrEJKqoqCAgIAAAUF1djdWrVyM0NBTa2trIzs7G2LFj8f7772PFihXQ09OTmI5XZGdno6amBo8fP8b9+/ehq6sLhmFQVVUFDQ0NGBsbw8LCAnZ2dtDS0sLAgQNbbItHb58iSGT+YGdnh4qKCjx9+lQSw7+T8vJyLFiwABcuXEBYWBiUlZWhpKTU+FmXikxYGHj3JsAzXwXWGQIMGLUH39V+B3tDeyQ8S0D+F/9UEVVViZxx+3bAzg44dEh09iaLXL9+HWPHjsXTp0+RlpaGqqoq3L59G2PHjpXY0fAeHh5ITExEeXk5zpw5AxMTE5ibm8Pc3BwaGhotHbbhkqPGQipJcFprZmZGhoaGkhr+rURHR5OFhQWpqKiQkpIS5ebmsqJDZigrI6wGHeqmQe0/A333n+9IfZ06bY/d/t9p7a1bRA4Oomnshx8SlZezq/lfMAxTv6zxySefkLKyMpmampJAIKDCwkKxL818/PHHUmuNycq01snJSeo9hGpqarBy5UocPnwY+/btw++//46ePXvC1NRUqjpkjn8izOQ7tZg3BDhZfhIeJh7/fEjA2rXAN9+I9oKePw8MGsSe1gbg8Xj1e4O3bt0KFxcXCAQCKCsrY/z48UhLS8PKlSuxePFisdiT5tGVCpNzZmVlwcTEBGpqb+ZKd+7cwdixY5GVlQV3d3eMHDkSo0aNkr5IWYUHKAuFcH4CxKrG4oTPCeQ8vCU6JHfjamDKFOA//wHatWNb6VtRVlbG3Llz6/97xowZ2Lp1KwoKCsAwDMaPHw8LCwsEBgbC0NCwRTYyMzNRU1MjLslvp7GQShKc1trY2JCJiYnYxisvL6d27drVb3Z+RV1dHa1fv57at29PQUFB1KFDB3b6sso4CAIxAIV3ArltcCXauZO291aiDst4RKGhbMtrNQzD0NOnT8nW1pYAUEhICJWWltLx48eppKSkWWMpfA8hCwsLat++vdjGCwwMJHV1ddLU1KRz584REVF6ejo5OTmRuro6/fjjj0Sk4AUFrQBBoAq+KiXCiQqMjIkA2j7LgTpsEt/vSBYQCoUUHx9PZWVldOTIEQJAOjo6lJ6eTlVVVU3KTxX+OAYHBwfY2tqKZay8vDxs3bq1fm/l1KlTsXXrVrz33nvQ1tYGwzD1vXwUuqCgFQiM9qITkw93JKNzwQPUTZmOJT/fQ/7yAraliRU+n49u3bpBW1sbEydOxO7duzFjxgxYW1tjw4YNMDY2RmBgIKtFDv9G7r+ty5cvf+28xOLiYnz55Ze4ceMGbG1tUVFRUd8+hKNhHhy5hRLMw6sGzg8eq8FZWhuKWUJZWfm1l0Tdu3dHp06dcOPGDfB4PKxbtw6lpaVYtmxZfbUYIKpQklp1W2MhlSQ4rbW2tiZjY+NWj3Pv3j3S0NBosDIjqIH2jxwNI/xhL+mhiACG9FAkU2eTSJva2lpiGIa8vLxIWVmZ5s2bR0REkZGRVFZWRh4eHsTj8cRttkH/Y6UIwcrKCpWVlXj+/HmrxvH19UVUVBSYf7qV/xttbW08ePCAWyppIr+NHIunv6XCfpIbfI8fZVuOTHDz5k3o6+uDx+PBzs4OGhoaGDRoEP7++29xLwU2OE1hJefs2rUrbGxsWjXG5cuXce3atQYdExCVen344YetstGWSPHxwiLcQ2rf3mxLkRm8vLxgZ2cHa2trBAcHw9zcHBcuXHhtmitJ5DbnHDNmDGpqaqCpqVmfA5iYmMDGxgZOTk5wcnJC797cF42j9VRUVCA6OhppaWlQV1fH8ePHpWKXFedMTU1FZWVli++/dOkSysrK4Obmhq1bt8LW1hbm5uay3S+WQy7ZsWMHtmzZgmfPnuGLL75AYGCg1Dr5y1XkZBgGfD4fNTU1MDQ0xKpVq+Dn58e2LA4FpLq6GitWrMCOHTugpaWFq1evomfPnlLVwErO2aVLF1g3c1NueHg4bGxscO3aNQwdOhS5ubkYP368hBRytGXCw8PRvXt37NixA+PGjUN6errUHROQo8i5Z88e5Ofn10+HVVRUWFbEoWjU1dXhww8/xL59+6Cvr48///wTQ4YMYU0PK855//79Jp03cf78eZw6dQp79uzBwYMHoaKi0uKCZQ6Ot5GSkoLZs2fjxo0bcHFxwenTp8VWxdZSWJnWKisrv3PrTXFxMUaNGoWDBw/i4cOHMDEx4RyTQ+wwDIOZM2fC2dkZqampOH78OJKSklh3TIClyGlnZ9foIm5aWhry8/PRp08fHDhwAM7Ozgp1lieH7JCbm4vZs2cjIiICRkZGiIyMhKurK9uy6pGpnDMmJgYDBgxA+/btkZ2djUmTJrEtiUMBYRgGH3/8MYKDg8Hn8/HDDz9gwYIF0jugqImw4pwpKSmv5ZwvXryApqYmnJ2d4efnh6VLl3I7SDgkQmFhIRYtWoQTJ05AV1cXN2/ehL29PduyGoSVnFNVVbXe+X799VeYm5sjMDAQenp6+PPPP7m1Sw6JEBQUBCcnJ4SHhyMoKAgFBQUy65gAS5Gzc+fOKCoqAgCUlZVBT08Pw4YNY0MKRxugrKwMixcvxpEjR2BoaIibN2/Czc2NbVnvhJXIWVBQgISEBNy9exezZ89GVlYWFy05JEJoaCjc3Nxw9OhRTJ06FRkZGXLhmABLzpmdnY26ujr07t0bH330Ef76669Gd5dwcLSEmpoajB07FpMmTUJVVRWuXLmCI0eOSK0uVhyw4pyPHz/Gvn37MGTIEAQHB2PkyJEwMDDA2rVrkZGRwYYkDgUiPj4enp6eOHXqFLp164aEhAS53KHEinNqa2tj3rx5+OWXX5CdnY1Zs2bB2toaq1evhq2tLfT09LBs2bL6vJSDoynU1dXB398fXl5eKCwsxLlz5xAfHy+3bWpYcc5/Y2RkhODgYNy+fRtZWVn46KOPUF1djS1btsDExARDhgzBl19+ifLycralcsgw6enp6Nu3L86ePQtTU1PExsbK/UtG1p3z31hYWGDXrl2oqqrCzZs3sWjRIkRHR2PTpk2wsLDA4sWLERkZyeWnHPUwDIMpU6bA2dkZ9+/fx9GjR5GdnQ0rKyu2pbUamXLOV/D5fHh6euL7779HYWEhvv/+ewwePBgHDhzAwIEDoaWlhTVr1uDRo0dsS+VgkSdPnmDo0KE4fvw49PT0kJycjClTpshcpU9LkUnn/Dfq6ur4v//7Pxw/fhz5+fmYN28eLCwssGbNGnTu3BnGxsZYuHAhXr58ybZUDiny2WefwdnZGVevXq3vVGBmZsa2LLEi8875b3R1dbFv3z6kpqYiKysLq1evRklJCfbu3YuOHTti1KhR+PLLL1FaWsq2VA4J8fLlSwwfPhzbt2+Hjo4OEhMTsXTpUqkeMCQt5PaJzM3NERQUhMrKSty4cQOLFy9GVFQUNm3aBFNTUyxatAhXrlzh8lMF4uDBg3B2dsaFCxcwe/ZspKWlyXT5XWuRW+d8BZ/Ph7e3N7Zv345nz55h7dq1GD58OA4ePIh+/fpBTU0Ny5cvR3p6OttSOVpIeXk5BgwYgJkzZ0JTUxNxcXH4+eefoa6uzrY0ydJYt2mSYMd3aVBaWkqffvopmZqaEo/HIwBkZWVF06ZNo8LCQrblyRwbN24kADJ3CtvVq1fJ1taWeDwe+fj4UFFREduSJIHsHGQkDXR0dLBt2zbk5uYiOzsbmzZtQkFBAY4cOYKOHTti9OjR2LBhA5efyig1NTXo06cP+vTpA6FQiL///hvXrl2Dvr4+29KkhsI6578xMzPD8uXLUVpaipiYGHz00UeIiYnBqlWr6t/2RkdHc/mpjJCUlARvb29ER0fD3t4ecXFx6Nu3L9uypE6bcM5X8Pl89OzZE9u2bUN2djbWrVuHwYMH4/Dhw+jTpw/U1NQwf/58PHz4kG2pbZLa2loMGzYMnp6eyMvLQ3h4OFJTU2FkZMS2NHZobL5Lcp5zNofS0lL6+uuvycDAoD4/dXR0pIkTJ9KTJ0/YlicV2M4509PTycfHhwCQjY0NPX/+nBUdLNG2cs7moKOjgzVr1uDFixfIzs7Gt99+i7y8PISGhsLKygqjRo3Crl27uPxUAjAMg/nz58PNzQ0pKSnYs2cPHj582Haj5b9pzGupDUXOhhAKhXTx4kX67LPPyMTEhACQsrIyzZ8/n65evdqkI8rlCTYi59OnT+m9994jAOTg4EDZ2dlSsy1jcJGzOfD5fPj6+mLr1q3IycnBhg0b0L9/fxw5cgR9+vSBuro6xo8fz+WnLeSHH36As7MzEhMTsWjRIiQlJcHc3JxtWbJFY15LbTxyNkZZWRlt3779tfzUw8ODxo8fT+np6WzLazHSipwvX74kNzc3AkBubm50//59idqTE7jIKQ60tbWxZMkSvHjxAjk5Odi8eTOeP3+OsLAwdO3aFSNHjkRwcLC4Tz5WCP766y+4uLjg3r178PX1RWxsLNcw/C1wztkKTE1N8cUXXyA3Nxfh4eFYsmQJbt68iTlz5sDAwABz587F1atX2/z6aXl5OVxdXTF06FDo6uoiNjYWFy9ehIaGBtvSZBrOOcWEv78/tmzZgpycHGzZsgXe3t745Zdf0LdvX+jp6WHIkCFIS0tjW6bUuX79Orp164bk5GR069YNN2/ehKenJ9uy5ALOOcWMkpISli5diuvXryMvLw8hISFQV1fHhQsX0KVLF/To0QNTp05Famoq21IlSnl5Ofr06YNevXqhpqYGFy9eRHx8PLS0tNiWJjdwzilBtLW1MWPGDBQUFCAnJwffffcdioqKcOzYMTg5OcHf3x/Hjh1TuPz07t278PHxQXR0NNzc3JCUlARfX1+2ZckdnHNKCVNTU3z++edIS0vDiRMn8NFHHyE+Ph5Tp05Fu3btMHHiRLnff1pbW4vp06eje/fuyM/PR0hICBISEqCnp8e2NPmksde4xC2lSJy6ujravXs3OTg4kJaWFgEgAwMD6t27t9SXGFq7lJKRkUEODg4EgHx8fCg/P1/MChUabilF1lBSUsLixYuRkpKC/Px8HDlyBJqamoiOjoaDgwO8vb3x4Ycf4v79+2xLbRSGYbB161a4uroiNzcXn376KaKjo9GhQwe2pck9nHPKCFpaWpg6dSpycnKQnZ2NrVu3oqamBnv27IGTkxM++OAD/PrrrygpKWFbaj15eXno3Lkzli5dCg8PDyQnJ2Pbtm0K2c+HDbj/izKIubk5PvvsM9y5cwenTp3C3Llzcfv2bUycOBH6+voYPHgwoqKiWM1PT5w4AWdnZzx58gSjRo3CpUuXYGlpyZoeRYRzThln9OjR2LdvH7KysnDo0CHY2toiJiYG/fv3h6mpKXr16oW4uDip6SkoKICtrS3Gjx8PKysr3L59G6dPn+YOO5YAnHPKCUpKSggICEB6ejry8/Nx9OhR6Onp4dq1a+jRowe8vLzw5Zdf4t69exLTEBkZiW7duuHx48fo378/YmNj4ejoKDF7bR3OOeUQLS0tTJkyBQ8ePMCjR4+wbds2CIVCbNq0Cc7OzhgxYgRCQ0NRWVkpFnuFhYXo3r17fbf969ev4/Lly1BRURHL+BwNwzmnnGNjY4NPP/0UCQkJOHPmDCZNmoQ7d+5g0qRJ0NHRgY+PD/7+++8W56dxcXHo0aMHEhISMGDAACQkJMDb21vMT8HREJxzKhAjR47E8ePHkZmZifDwcFhbWyMxMREDBgyApaUlevbsiUuXLjVprMrKSkyaNAk9e/aEQCBAWFgYLl26BE1NTQk/BccrOOdUQJSUlODv74/09HS8ePECx44dg4mJCWJjY+Hn5wdPT0+sW7eu0fw0JSUFXbp0QWhoKIYOHYrk5GSMGzdOyk/BwSOit33+1g855Iu7d+8iIiICR44cQUJCAgBg0KBBmDVrFtLS0rB69Wr4+voiJiYGOjo6WLBgAdatW8ey6jZBg8eicc7ZRjl79ix+/PFHJCUlITc397XPhg8fjp9//hnGxsYsqWtzcM7J8SYMwyAqKgr+/v4oLy9Hr169cOXKFa7KR7pwzsnxdqqrqxX/cCDZhHNODg4ZpUHn5OYuHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyCuecHBwyyru6MjVYVsTBwSF5uMjJwSGjcM7JwSGjcM7JwSGjcM7JwSGjcM7JwSGjcM7JwSGj/D+YYxCd4Xe9YQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "scf_in = './svo.scf.in'\n", + "\n", + "# read scf file\n", + "atoms = read_espresso_in(scf_in)\n", + "# set up cell and path\n", + "lat = atoms.cell.get_bravais_lattice()\n", + "path = atoms.cell.bandpath('', npoints=100)\n", + "kpts_dict = path.todict()['special_points']\n", + "\n", + "for key, value in kpts_dict.items():\n", + " print(key, value)\n", + "lat.plot_bz()" + ] + }, + { + "cell_type": "markdown", + "id": "31956a53", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "e47c2a48", + "metadata": {}, + "source": [ + "Depending on whether you select `kslice=True` or `False`, a corresponding `tb_config` needs to be provided containing information about the $k$-points, resolution (`n_k`) or `kz`-plane in the case of the Fermi slice. Here we just import the $k$-point dictionary provided by ASE above and add the $Z$-point. If you are unhappy with the resolution of the final plot, come back here and crank up `n_k`. For the kslice, the first letter corresponds to the upper left corner of the plotted Brillouin zone, followed by the lower left corner and the lower right one ($Y$, $\\Gamma$, and $X$ in this case)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "68c0f047", + "metadata": {}, + "outputs": [], + "source": [ + "# band specs\n", + "tb_bands = {'bands_path': [('R', 'G'), ('G', 'X'), ('X', 'M'), ('M', 'G')], 'Z': np.array([0,0,0.5]), 'n_k': 50}\n", + "tb_bands.update(kpts_dict)\n", + "\n", + "# kslice specs\n", + "tb_kslice = {key: tb_bands[key] for key in list(tb_bands.keys()) if key.isupper()}\n", + "kslice_update = {'bands_path': [('Y', 'G'),('G', 'X')], 'Y': np.array([0.5,0.0,0]), 'n_k': 50, 'kz': 0.0}\n", + "tb_kslice.update(kslice_update)\n", + "\n", + "tb_config = tb_kslice if kslice else tb_bands" + ] + }, + { + "cell_type": "markdown", + "id": "bf58de16", + "metadata": {}, + "source": [ + "### Self-energy" + ] + }, + { + "cell_type": "markdown", + "id": "67e42361", + "metadata": {}, + "source": [ + "Here we provide the info needed from the h5Archive, like the self-energy, iteration count, spin and block component and the frequency mesh used for the interpolation. The values for the mesh of course depend on the quantity of interest. For a kslice the resolution around $\\omega=0$ is crucial and we need only a small energy window, while for a bandstructure we are also interested in high energy features." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "70fd0787", + "metadata": {}, + "outputs": [], + "source": [ + "freq_mesh_kslice = {'window': [-0.5, 0.5], 'n_w': int(1e6)}\n", + "freq_mesh_bands = {'window': [-5, 5], 'n_w': int(1e3)}\n", + "freq_mesh = freq_mesh_kslice if kslice else freq_mesh_bands\n", + "\n", + "dmft_path = './svo_example.h5'\n", + "\n", + "proj_on_orb = orbital_order_to.index(proj_on_orb) if proj_on_orb else None\n", + "sigma_dict = {'dmft_path': dmft_path, 'it': 'last_iter', 'orbital_order_dmft': orbital_order_to, 'spin': 'up',\n", + " 'block': 0, 'eta': 0.0, 'w_mesh': freq_mesh, 'linearize': False, 'proj_on_orb' : proj_on_orb}" + ] + }, + { + "cell_type": "markdown", + "id": "6e314f15", + "metadata": {}, + "source": [ + "__Optional__: for completeness and as a sanity check we quickly take a look at the self-energy. Make sure you provide a physical one!" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e7cb04b5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrAAAAGtCAYAAABePTTsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACzxklEQVR4nOzdd5hb1bX38d/WNE3vxfa4dxsXMMZgwECooaQBCeGmkAJpN73f1Js3nfRySQ9JSA8EQjEBAtg0GxsXbNy7x/b0XjRF2u8fmhnPOdPHozrfz/Pokc4+R0eLgzE6Wnutbay1AgAAAAAAAAAAAKKFJ9IBAAAAAAAAAAAAAH2RwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBBYAAAAAAAAAAACiCgksAAAAAAAAAAAARBUSWAAAAAAAAAAAAIgqJLAAAAAAAAAAAAAQVUhgAQAAAAAAAAAAIKqQwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBBYAAAAAAAAAAACiCgksAAAAAAAAAAAARBUSWAAAAAAAAAAAAIgqJLAAAAAAAAAAAAAQVRIjHQBCwxiTImlJ92aVJH8EwwEAAADCIUFSYffrHdba9kgGg+jHfRMAAAAmmJi6ZyKBFb+WSNoU6SAAAACACFkpaXOkg0DU474JAAAAE1XU3zPRQhAAAAAAAAAAAABRhQqs+FXV82L9+vWaOXNmJGOJO21tbVq/fr0kac2aNUpNTY1wRPGHaxxaXN/Q4vqGFtc3tLi+ocX1Da3Dhw9rzZo1PZtVQx0LdOO+KYT4Oy+0uL6hxfUNLa5vaHF9Q4vrG1pc39CKtXsmEljxq7d3e0lJiUpLSyMZS9xpa2tTQUGBJKm0tJS/SEOAaxxaXN/Q4vqGFtc3tLi+ocX1Da22tra+m6xlhJHgvimE+DsvtLi+ocX1DS2ub2hxfUOL6xtaXN/QirV7JloIAgAAAAAAAAAAIKqQwAIAAAAAAAAAAEBUIYEFAAAAAAAAAACAqEICCwAAAAAAAAAAAFGFBNYAjDFFxpjrjTFfMcasNcZUG2Ns9+PuMZzvGmPMfcaYMmNMe/fzfcaYa0IQPgAAAAAAAAAAQExLjHQAUapiPE5ijDGSfibpDteuKZJeL+n1xphfSHqvtdaOx2cCAAAAAAAAAADEOiqwhndc0mNjfO9XdTp5tVXSmyWd1/28tXv8Dkn/70wCBAAAAAAAAAAAiCdUYA3sK5I2Sdpkra0wxsyQdHg0JzDGzJH0qe7NzZLWWGvburc3GWP+JWmdpHMlfdoY81tr7cFxiR4AAAAAAAAAACCGUYE1AGvtl6y1D1lrz6SV4Ed1OkH4wT7Jq57PaJX0we7NREkfOYPPAgAAAAAAAAAAiBtUYIVA99pXr+3e3GOt3TDQcdbaDcaYvZLmS3qdMeZDrIUFAACAsXhg2wn9bN0hpSZ5dPHcQt18bqlKc9MiHRYAAAAAhMT6fVX6zmN75U1M0BdvWKSzpmRHOiSMMyqwQmOmpCndr9cNc2zP/lJJM0IVEAAAAOLXP7eW6cN/2abdpxq15Vi9fvif/brmB8/omf1VkQ4NAAAAAMbd1mN1etfvNunlsga9eKRWH/rLVlEbEn+owAqNhX1e7xnm2L77F2qEa20ZY0qHOaSk50V7e7va2tqGOhaj5PP5BnyN8cM1Di2ub2hxfUOL6xtaXN/QCsX13XKsXp/6x8v9xpvbu/Tff9qie+9YqSk5qePyWdGuvb090iEAAAAACLGa5na9956X1Ok/nbA6VNWiV042UoUVZ0hghcbUPq/Lhjn2+CDvG87x4Q8J2rhxow4ePDiKU2M01q9fH+kQ4h7XOLS4vqHF9Q0trm9ocX1Dazyub8BKX9+WoE6/GXB/Q1uX3vGr5/WRs/xKnAC9F6qrqyMdAgAAAIAQ+/oje1TR2H/y2lN7KklgxZkJcBsbEZl9XjcPc2xLn9cZIYgFAAAAcep4s1TlGzh51XtMi9GzFUMfAwAAAACxIBCwWrvz1ID7ntpbGeZoEGpUYIWGt8/rjmGO7ZsqHk1vl+GqtUokbZKkVatWafbs2aM4NYbj8/l6Z02vWbNGXq93mHdgtLjGocX1DS2ub2hxfUOL6xta4319f/Cfg5KO9m5Pz0vVX999rt70q806Wnu6hfRTFV599k0XKNMb31//6ToAAAAAxLeyuja1dvgH3Lf1eL1qWzqUl54c5qgQKvF9Bxs5fRc0GO6/lpQ+r0e8UJW1dsjWhMacnmWbkpKi1NSJse5BJHi9Xq5viHGNQ4vrG1pc39Di+oYW1ze0xuP6Pr2/1rF9zZJJKsnL0vfedLZuvOv53vH6tk79YdNJffyq+Wf0edEuJSVl+IMAAAAAxKw95Y2D7rNWemZ/lV67fEoYI0Io0UIwNJr6vB6uLWB6n9fDtRsEAAAAJEnHalq1t6LJMXblwmJJ0orpubpqUbFj36+eOazaluGaAwAAAABA9Npb3jTk/qf20EYwnpDACo2+1VGlwxzbtxXg8RDEAgAAgDj0+O4Kx3Z+erLOnpbbu/2pa+bL02fpq7ZOv37/wpEwRQcAAAAA42+PaxKfx7Xc7+5TQye4EFtIYIXGrj6vFwxzbN/9u0MQCwAAAOLQ064Fil+1oEgJfe7e5hRl6nWu1hm/e/6I2gbpFw8AAAAA0c5dgXXd0smO7bK6VllrwxkSQogEVmgclnSy+/Ulwxy7pvv5hKQjoQoIAAAA8WX3KWfv90vnF/U75o5LZjm261o79bfNFP0DAAAAiD3tXX4drm5xjF2x0Hkf1NLhV11rZzjDQgiRwAoBG0zxPtC9ucAYc/5Ax3WP91RgPWBJDQMAAGAE6lo6VN3sXM9qwaTMfsctKMnSZfMLHWO/fOaQuvyBkMYHAAAAAOPtYGWL/AHnT+iXzCt0dKKQglVYiA8ksELnB5K6ul//2BiT2ndn9/aPuze7uo8HAAAAhnWgqtmxnZRgND0vbcBj33PJbMd2WV2bHt5xKmSxAQAAAEAo7K1wdqGYkpOqnLRkTcr2OsaP17aFMyyEUGKkA4hGxpiLJM3pM1TQ5/UcY8xtfY+31t7tPoe1dp8x5juSPiPpXEnPGWO+JemgpNmSPi3p7O7D77TW7h+3fwAAAADEtf0VzgTWzIJ0JSYMPDdt1cw8LZ+ao23H63vHfr7ukF6zbLKMMQO+BwAAAACizR7X+lcLSoJdKKbmpqms7nTSigqs+EECa2DvlvT2QfZd2P3o6+5Bjv2cpCJJ71QwWfWXAY75taTPjz5EAAAATFQHKp0JrLlF/dsH9jDG6L2XzNJ779nSO7brVKOe2V+tNfMKB30fAAAAAESTQ1XO9a/mdSewSnMdzc90nARW3KCFYAhZawPW2ndJuk7BNbFOSurofn5A0rXW2ndba1mEAAAAACO2v9I583B2UcaQx1+5qESzCtIdY7985tC4xwUAAAAAoVLe4HNsT+tuoz7V1U69bzUWYhsJrAFYa2+z1pqRPkZwvkesta+z1k6x1qZ0P7/OWrs2HP88AAAAiC8H+1VgDZ3ASvAY3b5mlmPsmf3V2utqwQEAAAAA0eqUK4FVkhVc+6pfBVYtFVjxggQWAAAAEEOafJ066bpxmzNMAkuSXn/2FOWnJzvGfv0sVVgAAAAAol9HV0A1Le2OsZLsYAJroAosa23YYkPokMACAAAAYshBV993j5FmutoDDsSblKC3nD/dMXb/1pOqamof5B0AAAAAEB0qm3xy56Qm9SSwcp0JrPaugKqauc+JBySwAAAAgBhywNU+cFpemrxJCSN671vOn67kxNO3AB3+gP6w4ei4xoeJwRhTZIy53hjzFWPMWmNMtTHGdj/uHuE5buvznuEet4X2nwgAAADRzL3+lTfJo+zUJElSUWaKkhOcqQ7WwYoPJLAAAACAGOJOYM0pyhzxewszU/S65ZMdY/dsOCpfp39cYsOEUiHpQUlfkHSNpPzIhgMAAIB4Vt7Yf/0rY4wkyeMxmsI6WHGJBBYAAAAQQ8obnDMJp+enDXLkwN510SzHdm1Lh/659cQZx4UJ7bikx87wHFdLWjLE4/4zPD8AAABimLsCq2f9qx6lrgQWFVjxITHSAQAAAAAYuYpG18LFWd5BjhzY/JJMXTy3QM/sr+4d+/Wzh3XLyqm9MxiBEfiKpE2SNllrK4wxMyQdPoPz7bPWHhmPwAAAABB/TrkSWJOynQmrKTnO7QpXxRZiExVYAAAAQAypbHLeiBVlpYz6HO++2FmFdaCyWev2VZ1RXJhYrLVfstY+ZK2tiHQsAAAAiH/uFoLFrol8BRnO+6LqZufEP8QmElgAAABADKl0VWAVZY6uAkuS1swt0NyiDMfYr589k+IZAAAAAAgddwvBSdnuBFayY7u6qSPkMSH0SGABAAAAMaKlvUtN7V2OseIxVGAZY/Tui2c6xp7ZX6095Y1nFB8AAAAAhMJwa2AVZFKBFY9YAwsAAACIEZVN/W/Cika5BlaP1y6fom8/ulc1LadnJv76mcO68+ZlY44POAN3G2MWSsqV1CjpgKQnJN1lrT0x1pMaY0qHOaSk50V7e7va2ljsezz5fL4BX2N8cH1Di+sbWlzf0OL6hhbXN7QGur4Ba/utaZXnNY7vbplJzvNUNfHdbiDt7bGV2COBBQAAAMSIStdNW3pygjJSxvaV3puUoLecP10//M/+3rEHtp3Up65ZoMLM0Vd1AWfokj6v87sfqyR93BjzEWvtz8d43uMjPXDjxo06ePDgGD8Gw1m/fn2kQ4hrXN/Q4vqGFtc3tLi+ocX1Da2e69vYIXUFnPc9u7ds0Mmdp7fLW6W+6Y6m9i49/OhjSqIHnUN1dXWkQxgV/vUBAAAAMaLCVYHlXrh4tN5y/nQlJ56+JejwB/SHDUfP6JzAKB2S9B1JN0o6r/txi6S/S7KSvJJ+Zoy5I2IRAgAAIKLqXctZeYztV3Hl3pakps7QxYTwoAILAAAAiBHuCqyiMax/1VdhZopev3yK/rr5dJHKPRuO6v2XzpY3KeGMzg2MwD8l/c5aa13jmyT91RhzvaT7JCVJ+r4x5l/W2vJRfsbUYfaXdH+eVq1apdmzZ4/y9BiKz+frnTm9Zs0aeb1nlnSHE9c3tLi+ocX1DS2ub2hxfUNroOv7nz1V0o4dvccUZ3l1zdUXOt5nrdWXtjytzsDpr5aLzzlfS6ZkhSfwGBFrHQdIYAEAAAAxwr0G1plWYEnSuy6e6Uhg1bZ06L4tJ3TrqmlnfG5gKNbahmH2P2SM+V9JX5WUJuldkr42ys8oG2q/Mab3dUpKilJTU0dzeoyC1+vl+oYQ1ze0uL6hxfUNLa5vaHF9Q6vn+tb6Ao7xSdmpA173/IwUlfeZ9NfUKf79uKSkxFa7eFoIAgAAADHCvXBx0TisVTWvOFMXzy1wjP18/UF1+QODvAMIq18q2EpQcq6TBQAAgAmiutnZQ3CwiXwFmcmu97UPeBxiBwksAAAAIEa4E1jjUYElSbdfPMuxfbSmVQ++fHJczg2cCWttpaSelaanRDIWAAAAREaNKxGVn5E84HEFGc4Jfu7EF2IPCSwAAAAgRlQ2Om/cisYpgXXx3AItLc12jP3kyQPyB9xLEwERYYY/BAAAAPHKXUmVnz5wJwp3AquqiQqsWEcCCwAAAIgR/dbAGocWglJwHaAPvmquY+xgVYse3Vk+LucHxsoYUyQpv3uTskAAAIAJqMZVSVUwwgqsmhYqsGIdCSwAAAAgBjS3d6m5vcsxNl4VWJJ0xcIiLZyU5Rj78ZP7FaAKC5F1h05XYK2LZCAAAACIDHciKj9jsAos1xpYVGDFPBJYAAAAQAyodK1/JUlF41SBJQWrsP77sjmOsT3lTXpid8W4fQbQwxgzwxhz9jDHXC/pC92bPkm/DXlgAAAAiDr9WwgOXIFVmOleA4sEVqxLjHQAAAAAAIbnbh+YmZKo9JTx/Tr/6rNKNKcoQwcqm3vHfvzkAV25qFjGsAwRTjPGXCSpb8azoM/rOcaY2/oeb62923WKGZKeMsa8IOlBSdskVSpYbTVL0k3dj54/eJ+w1p4Yn+gBAAAQK9q7/GryOTtRDFaB5V4biwRW7COBBQAAAMQA9wLE7tmF48HjCVZhfeSv23rHdpxo0OO7KnTV4pJx/zzEtHdLevsg+y7sfvR19yDHXtD9GEyrpI9aa38xqugAAAAQF2oHWMdq0DWwMp3jda2d6vQHlJRAI7pYxb85AAAAIAbUt3U6tnMHaZtxpq5fOkkzC9IdY995bK/8rIWF8fWSpLdI+qmkjZKOKZis6pBUIelJSZ+TNJPkFQAAwMRV0+xMYCV6jLK8SQMeWzBAZdZACTDEDhJYAAAAQAxoaHXeeOWmDXzTdqYSEzz6yBVzHWP7Kpp1/1a6t+E0a+1t1loz0scA72+y1v7RWvvf1trzrbXTrbXp1toUa22JtfZya+3XrbWVkfjnAwAAQHRwtwHMS0+WxzNwe/PctGS5d7k7WSC2kMACAAAAYkB9q7MCKzs1NBVYknTD0slaUJLpGPve4/vU3uUP2WcCAAAAgJu7Amuw9a8kKcFjlMc6WHGFBBYAAAAQA9wtBHNCVIElBdfC+vQ1CxxjJ+rb9KeNx0L2mQAAAADgVtPiTEANtv7VYPvrWmkhGMtIYAEAAAAxwF2BlZMaugSWJF06v1DnzchzjP3kyQNqbu8K6ecCAAAAQI9+FVjDrAWcm+bcX9vSOciRiAUksAAAAIAYUO+aORjKCixJMsboU9fMd4zVtHTol+sPhfRzAQAAAKBH9ShaCErBNbL6qmuhAiuWkcACAAAAYoC7hWB2WujWwOpx7ow8XbGwyDH28/UHVVbXGvLPBgAAAAB3C8H8YVoI5qY7J/rV0kIwppHAAgAAAGJAuFsI9vjk1QvkMae3fZ0Bfe3h3WH5bAAAAAATm7uFYEH6MBVY7haCzSSwYhkJLAAAACDKWWvV0BbeFoI95pdk6r9WTXeMrd1ZrucOVIfl8wEAAABMXDXNo63AciWwqMCKaSSwAAAAgCjX2uFXp986xnJSQ99CsMfHr5qnXFfC7Ev/ekWd/kDYYgAAAAAwsVhrVd3CGlgTGQksAAAAIMq517+SpJz08FRgSVJOWrI+efUCx9iBymb97vkjYYsBAAAAwMTS0uFXR5dz0lx++tAT+folsKjAimkksAAAAIAoV++66UrwGGWmJIY1hjetnKqzpmQ5xn74xH6VN/jCGgcAAACAiaFmgOqpYVsIprkTWJ0KBOwgRyPakcACAAAAolx9q7MCKzs1ScaYsMaQ4DH639ec5Rhrau/SZ+97WdZyQwgAAABgfNW2OO+D0pITlJY89EQ+dwWWP2DV5Osa99gQHiSwAAAAgCjnTmDlpIavfWBfK6bn6sZzSh1jT+2t0t9fKotIPAAAAADil7sCa7jqK6l/BZYk1dJGMGaRwAIAAACiXH2b84YrOy0yCSxJ+sL1C1WY6Vw4+f89uEsn69siFBEAAACAeFTrTmClpwxy5GmpyQlKTUoY8jyIHSSwAAAAgCgXLRVYkpSTlqxvvH6JY6ypvUufuW8HrQQBAAAAjBt3BVbBCCqwpP5tBElgxS4SWAAAAECUa2hzJbAGaIsRTlcsKu7XSnD9vir96cVjEYoIAAAAQLxxr4E1kgosqX8Cq44EVswigQUAAABEuXpXz/bsCFZg9fjiDYtUnOVqJfjQLu0tb4pQRAAAAADiibsCK2+EFVi57gos1sCKWSSwAAAAgCjXr4VgBNfA6pGdmqRv3rjUMebrDOgDf9qi1o6uCEUFAAAAIF70XwNrhC0EXfdLVGDFLhJYAAAAQJSrd7UQzI1wC8Eel80v0tsvmO4YO1DZrC/c/0qEIgIAAAAQL2pcLQQLMkbWQrBfBRYJrJhFAgsAAACIcu4WgtFQgdXjf65bqLOmZDnG7t1Spn+8VBahiAAAAADEg34VWCNsIZjnmvBXRwvBmEUCCwAAAIhy7haC0bAGVo+UxAT95M3nKCMl0TH+hft36pWTDRGKCgAAAEAsC1ipznUflJ9OBdZEQwILAAAAiGLW2n4tBHOipIVgjxkF6frmjUscY22dft3+u82qbPJFKCoAAAAAsaqlS7KusYKRVmCRwIobJLAAAACAKObrDKijK+AYy4miCqwe1y+drP9aNc0xdrLBpzt+/5J8nf4IRQUAAAAgFjV19h9zV1YNhgRW/CCBBQAAAESxhrb+d27R1EKwry/esEjnzchzjG07Xq9P3/uyrHXPnwQAAACAgTV3Gsd2TlqSkhJGls5wJ7AafV3q9AcGORrRjAQWAAAAEMWa2/snsDK8iQMcGXkpiQm66y3nqDQ31TH+wLaT+sET+yMUFQAAAIBY0+y6DcofYfWVJOUO0HLdva4wYgMJLAAAACCKNfq6HNupSQkjnnkYCfkZKfr121cqI8WZZPvhf/br7ucORygqAAAAALHE3UIwPyNlxO/NSevfsaKulTaCsSh673wBAAAAqNmVwIrW6qu+5pdk6kdvXi7j7PqhLz+4S/dvPRGZoAAAAADEDHcLwYKMkVdgJSV4lOW6b2IdrNhEAgsAAACIYk2uBFZmDCSwJOlVC4r1ldee1W/843/frid2VUQgIgAAAACxol8FVvrIK7Ck/utg1ZHAikkksAAAAIAo5l4DKzMlNhJYkvTW86frE1fNc4z5A1bv/9MWrdtXFaGoAAAAAES7fmtgjaICS+qfwKohgRWTSGABAAAAUax/BVb/fu7R7AOXzdG7LprpGOvoCuj232/W03srIxQVAAAAgGjW5GohOJo1sCQqsOIFCSwAAAAgirkTWBkxVIElScYYfe7ahbppRaljvKMroDt+/5Ke2kMSCwAAAICTuwKrIH10FVi5ac7ja1tJYMUiElgAAABAFIvVNbD68niMvvmGJXrt8smO8Q5/QO/5w0usiQUAAADAwb0GlruiajhUYMUHElgAAABAFHOvgZURgwksSUpM8Oh7b1yu1589xTHe4Q/oPfe8pL9vPh6hyAAAAABEkw6/1B5wthAsyBxdC8HcdHcFVucgRyKakcACAAAAolisr4HVV4LH6Ds3L9MbXEksf8Dqk/94WT9fdzBCkQEAAACIFu7qK0kqGO0aWGlUYMUDElgAAABAFGtudyWwYmwNLLcEj9GdNy/Tza41sSTpG2v36KsP7VIgYCMQGQAAAIBo4E5gJSd4lDXKThT9KrBIYMUkElgAAABAFGuMgzWw3BI8Rt++aanec8msfvt+9exhvfeel9TiStwBAAAAmBiaO13tAzOSZYwZ5OiB9VsDq5UEViwigQUAAABEsWZffKyB5WaM0WdfvVCfu3Zhv32P7arQzT97Qaca2iIQGQAAAIBIcldg5Y+yfaDUP4HV2uGXr9N/JmEhAkhgAQAAAFEsntbAGsjta2bpuzcvU6LHOaNy16lGveYnz2n78frIBAYAAAAgItwJrIKM5IEPHIJ7DSyJNoKxiAQWAAAAEMXca2BlxPgaWAO5cUWpfv/O85Sd6kzOVTW1640/f0EPvXwyQpEBAAAACLemfi0ER1+BlelNVIJrkhwJrNhDAgsAAACIUl3+gFo7nG0uRrt4caxYPadA/3z/as0qSHeMt3cF9N9/2qpvrN2tLn8gQtEBAAAACJfxaCHo8RjlpjknyLEOVuwhgQUAAABEqZb2/j3a42UNrIHMKszQP99/oVbPzu+37+frDum/frVRlU2+CEQGAAAAIFzGo4WgJOW62ghSgRV7SGABAAAAUarR19lvLN7WwHLLTkvS7955nm5dNa3fvo2Ha3Xdj57VhkM1EYgMAAAAQDg0u1oIFmaOvgJLknLTnQmsOhJYMYcEVogYY+wIH09HOlYAAABEJ/f6V8ZIaUkJEYomfJISPPra687SV167WEkJzpvXqqZ23frLDbrr6YMKBGyEIgQAAAAQKv1aCKaPLYGV70pg1bb2nyCI6EYCCwAAAIhSTT5nAisjJVEe10LE8coYo7ddMEN/e88FmpztdewLWOlbj+7RO+7eREtBAAAAII50+gNq6XLe8xRkjrGFoDuB1dI+5rgQGSSwQu8uSUuGeLwjcqEBAAAgmjW3O2cIZqbE7/pXgzl7Wq4e/tDFumReYb996/ZV6ZofPKPHXimPQGQAAAAAxlvdAFVSBRljq8DKS3O3EKQCK9ZMvDvg8Ku01u6MdBAAAACIPe4KrHhf/2owuenJ+u1tK/WTpw7o+0/sk+3TObC2pUN3/OElvfm8qbp1wdhubAEAAABEhxrXOlUeI+WmjVcFFmtgxRoSWAAAAECU6tdC0Dtxv757PEYfunyuVkzP1Uf/uk2VTc72H39+8bie2twcoegAAAAAjIeaZmeSKS89WQljbKOel+6cAEgCK/bQQhAAAACIUv0rsCZuAqvHhXMK9OhH1ujqxcX99pXVsx4WAAAAEMvcFVhjbR8oSXnpzve6z43oRwILAAAAiFLuNbAyJuAaWAPJS0/Wz96yQt+6cYnSkhMiHQ4AAACAcVLjWqcqP2Ns7QMlKd/VQrCutUOBgB3kaEQj7oBD72ZjzJslTZPUJalc0vOS7rbWPjXWkxpjSoc5pKTnRXt7u9ra2sb6URiAz+cb8DXGD9c4tLi+ocX1DS2ub2hxfUNrtNe3rtl5TFqi4XtdH685q1DLJq/Up+7bpZdPNEY6HAAAAABnyN1C8EwqsNzv9QesGto6+62NhehFAiv0Frm253Q/3maMuV/SbdbahjGc9/hID9y4caMOHjw4ho/ASKxfvz7SIcQ9rnFocX1Di+sbWlzf0OL6htZIru/+wx71bZpQfapMjz12LIRRxabbSqUnPEYP72I2JQAAABDLqsexhWCuaw0sSappaSeBFUNoIRg6rZL+Iul2SRdLOlvSVZK+Jqmm+5jXSXrAGNP/vyQAAABMeG1+57Y3kQTNQBI80tWlVncs8A9/MAAAAICoVetKYJ1JC8GUxIR+6whXN7MOViyJWAWWMaZA0hRJhZLyJbVJqup+HLLWBiIV2ziZYq2tH2D8cWPMjyWtVTCpdYmk90n60SjPP3WY/SWSNknSqlWrNHv27FGeHkPx+Xy9s6bXrFkjr9cb4YjiD9c4tLi+ocX1DS2ub2hxfUNrtNf3j6e2SHX1vdvLFy/QVauG+xo4cc0+eFCfj3QQAAAAAMasZhwrsKTgOlhNvq7ebXeCDNEtbAksY0ympNdKulTBiqQ5QxzeYozZIOkZSQ9ba7eEPsLxNUjyqmdfhTHmJkm7JSVL+qBGmcCy1pYNtd8Y0/s6JSVFqampozk9RsHr9XJ9Q4xrHFpc39Di+oYW1ze0uL6hNZLr29LhnNOVl5nGv5MhpKSc2c0tAAAAgMhyV0gVnmkCKyNFR2pae7drmtvP6HwIr5AnsIwxKyR9WNKNknqmmJrB3yFJypB0effjy8aYvZJ+Kulua21LqGINJ2vtIWPM45KukzTHGDPZWnsy0nEBAAAgejS3dzm2M1JYwhYTopsFAAAAJqBAwKqutdMxNh4VWH3RQjC2hOwOuDtx9VUF132STietTinY2u4lSZWSaiXVSUqVlCcpV9I8SSslLZWUJGmBghVKXzbG3Cnph9baeEiV7lIwgSUFb0BJYMWghrZO/WVLuR56+ZTKG3xKTDCalpemy+YX6dolk1SSTeslAAAwNi0ksKCJ180CAAAAE1NDW6e6As51f89kDayB3k8LwdgSkjtgY8xvJb1Vkqd7aIukP0q611p7bBTnSZa0RtKtkl6v4OzCb0h6nzHmrdbaZ8c18PAbrhINUe6VOqMv/OgFNfqcPy4drWnVM/ur9Y21u/WmlVP1wVfNVXEWiSwAADA67gqs9JSECEWCSKCbBQAAACaS6gHa+51xAivdWcFV0xIPdTETR6imcL5dUoek30n6rrV231hOYq3tkPSEpCeMMe+TdLOk/1GwIutVkmI9gbWoz2uqr2LMzjqj3+z1yG+7Bj2m0291z4Zjun/rSX322gV688pp8njIWwIAgOF1+QPydTo7wVGBNTHQzQIAAAATkbu9X5Y3USmJZzaJL8/VQrCGFoIxJVR3wHdJ+oa1tmy8Tth9k3WPMeaPCiayYnr6qTFmlqQruzcPWWtPRDIejM7Ok43dyauRJaOa27v0uX/u1KM7y/X9Ny0/496tAAAg/rV0+PuNpZPAint0swAAAMBE5a7AciefxsJdwVVDC8GY4hn+kNGz1n5gPJNXrnNba+3frLV/DsX5x4Mx5gZjzKC/LhhjiiX9Q8EZkVKwpQdihLVWX127r1/yatXMPH335mX64S3LdeM5pUpO7P+f1zP7q3XtD5/RhkM14QoXAADEKPf6VxIJrAni7ZK6JP1S0gJr7bnW2u+PJnklBbtZWGufsNa+U1KJpLdJ2itpuoLdLAAAAICo4k5g5acnDXLkyLkLCWoGaFOI6MUdcGj8WFKSMeZeSS9IOiKpTVKBggsvv1fBGZBSsA0iCawY8siOcm0va3SM3XhOqb5901IldLcHfO3yKfrk1fP1ncf26h8vOXO5lU3tuvWXG/TRK+bp/ZfN6X0PAABAXwMmsJJjugkBRoZuFgAAAJiQ3O39Cs5w/SupfxVXfVunuvwBJSaEpLYH44wEVuhMlvTB7sdg7pX0bnrQx46OroC+/e89jrFpuan6xhuW9EtElWR79Z2bl+k1yybrE3/frsqm0/+aA1b67uP7tPFwrb7/puUqzKSlIAAAcGp2JbC8SR5usiYAa+0HQnhuK+lvoTo/AAAAcCb6tRBMG/8WgtZKda2d/B4bI7gDDo23S/qSpEcl7VNwceUuSfWSdkj6uaTV1tqbrLX1EYoRY/DoK+U6WtPqGPvYFbMHbBfYY828Qj3y4Yt18dyCfvuePVCta39ES0EAANBfS7tzDawM2gciihhjiowx1xtjvmKMWWuMqTbG2O7H3WM43zXGmPuMMWXGmPbu5/uMMdeEIHwAAABEoX4tBMejAmuAJFhNC/UksSLsd8HGmBmSVkiaI2mSpGRJrZKOSXpJ0iZrbUyvpGatXSdpXaTjwPi7b4uzk8v0DKurFhYO+76CjBT97h3n6a51B/Xdx/YqYE/vq+puKfjxq+brfZfMloeWggAAQP0rsFj/ClGmYjxOYowxkn4m6Q7XrimSXi/p9caYX0h6b3cFGQAAAOJUtbuFYPqZJ7ASEzzKSUtSfWtn71htc0ynHyaUsN4FG2OOK9habyg+Y8xaSb+x1j4ShrCAEals8umZ/dWOsYtLAgrecw/P4zH6wGVzdO70XH3oL1tV0ehsKXjnv/fqxe6Wgu7erAAAYOJxr4GVnkwCa6KL4smAxyXtlnTVGN77VZ1OXm2V9G1JByXNlvQpSWd376+S9PkzjhQAAABRq18LwXH6jTQ/PdmRwKpuIYEVK8J9FzxlBMek6vRMuy2S3mGt3RnasIDh/WvbSfn7lE4le6yW5o1+EuiqWfl65EMX66N/2671+6oc+9btq9J1P3pGP37z2Tp3Rt4ZxwwAAGJXS4czgUULwYktCicDfkXSJgWTZhXdybXDozmBMWaOgkkqSdosaY21tq17e5Mx5l8KdrY4V9KnjTG/tdYeHJfoAQAAEFWstf0SWAXj0EJQkvLTU3SwqqV3u6aZFoKxItxrYG2T9CtJH5V0s6TLJF0i6VpJ71GwdcRuSab7sULSi8aYK8McJ9DPfVtOOLaX5VmlJIztXPkZKbr7tpX65NXz5e4YeKrBpzf9YoO+//g+dfoDY4wWAADEuv4tBMf4xQPxYopO3ycN9uiZDPigMWaTMeasUAVjrf2StfYha+2ZtBL8qE5Pqvxgn+RVz2e0Svpg92aipI+cwWcBAAAgirV2+OXrdP4Wmp+eNC7ndq+lVUsFVswI6zROa+05IznOGLNA0oclvUuSV9I/jDELrbUnQxkfMJhjNa3adarRMbay8Mxa8Pe0FDxnWrClYFXT6cy/P2D1w//s15N7KvW9Ny7T3OLMM/osAAAQe9wtBNOowJrotilYpfSKpDJJ1ZICktIlTVWw1d4lkhZ2H98zGfC11trHwx7tMLrXvnpt9+Yea+2GgY6z1m4wxuyVNF/S64wxH2ItLAAAgPjjrr6Sgq3/xoM7gdX3d1hEt3BXYI2ItXaPtfZ9ki6V1CQpQ9InIxoUJrT1+52t/vLSkjQ3e3zumy+YHWwpuHp2fr99O0406LofP6v/e/qAOrqoxgIAYCJpafc7tjNYA2tCs9aeY629w1r7Q2vtvdbaddbaZ6y1j1prf2mtfb+1drGkRZJ+LqlLpycDDtd6MBJm6nSL+XXDHNuzv1TSjFAFBAAAgMhxJ7CSPFZpyePThaIwwzvkZyF6RfVdsLX2eWPMFyV9X9J1CraYAMLuGVcC68LZefKYE4McPXqFmSn6w7tW6SdPHtCPntzvWGuroyugbz+6V/dtOaGvvHaxVs8uGLfPBQAA0ctdgZVOBRZGwFq7R9L7jDF/kLRWpycDRtu91MI+r/cMc2zf/Qs1irW2jDGlwxxS0vOivb1dbW1tQx2LUfL5fAO+xvjg+oYW1ze0uL6hxfUNLa5vaJysbXZsZyYFv58FC/fPTI7XeY6KhrYJ+72vvT22knexcBf8XPfzcDceQEh0+QN6/kCNY2z17DypYvwSWJKU4DH68BVz9aoFRfrY37Zpf6XzL+0Dlc269Zcb9brlk/U/1y1UUaZ3kDMBAIB40NLhTGBlsAYWRiEGJgNO7fO6bJhjjw/yvpE4PvwhQRs3btTBgwdHeXqM1Pr16yMdQlzj+oYW1ze0uL6hxfUNLa7v+Hmuwkg6fc+TmTR+1/d4rfPcx6sb9dhjj43LuWNNdXV1pEMYlahsIehyfffzxEyJIuK2l9WryTUDevWsvJB93pLSbD34wYt0+8UzNdAEg/u3ndTl31mn3zx7mLaCAADEsWZXC0EqsDAG0TwZsO8ir82DHhXU0ud1RghiAQAAQIQ1dTi3M5PGb9nTLNe5mjolVlWNDVFxF2yMuUfSeZL2KTj7rkXBG5OVkpZJsgq2vwDCbv0+Z1Z6QUmmijJTQvqZ3qQEfe66Rbp+6WR9/v6d2nGiwbG/qb1LX3lol373whF94qr5um7JJHk8Z15OCwAAogctBDEOonkyYN92Ah2DHhXUt89J6ig/Z7iKrRJJmyRp1apVmj179ihPj6H4fL7emdNr1qyR10sXifHE9Q0trm9ocX1Di+sbWlzf0Hj+oT1S2cne7ayk8bu+Jxt8+t7O53u3/dZo1ZrLlJOadMbnjjWx1nEgWu6CEyTNkeS+WzAKJq/+LelD4Q4KkPqvf7VmXmHYPnvZ1Bzd/4EL9acXj+nbj+5Rk8/5Q9bRmlZ98M9b9ctnDunDlwfbD45HX1gAABB57gRWBgksDCCGJwP2XTAieZhj+84eG1Uyzlo7ZHvCvt+dU1JSlJo62vwYRsrr9XJ9Q4jrG1pc39Di+oYW1ze0uL7jp6bV2YEiK9mO2/UtTer/dbO502hS3sT7d5eSEtrCjPEWLXfB35X0iqTVktZISlPwRmudpE9aazdHMDZMYL5Of7/qpwvnFIQ1hgSP0VvPn65rFpfoG2t3674t/dfeermsQe/63WbNL87U+y6dreuXTlJiQix0CAUAAINppgILIxOrkwGb+rweri1gep/Xw7UbBAAAQAyqavI5trOHm+I0CimJCcpOTVJDW2efz2vX3OLMId6FaBAVv3Bbazdba79qrb1WUr6kmxRMXl0iab0x5p0RDRAT1o4TDer0n26I6jHSium5EYmlMDNF33vjcv39vRfonGk5Ax6zt6JJH/nrNl36naf1hxeOqK3DP+BxAAAg+vVvIZgwyJGY4L4r6YsKJqraFExcScH7qVXW2muttbWRCm4IfSujhlujq28bwOMhiAUAAAARVtHY7tjOGufufoWuJWGqmtsHORLRJKwJLGPMsJ9nrW231t5nrX2VpDcqOGvwl8aYV4U8QMBl85E6x/aCkqyIt+9ZOSNP975vtX72lhWaVZA+4DFldW36wgOv6Pxv/Edff2S3jtW0hjlKAABwplranRNRIv0dBNEphicD7urzesEwx/bdvzsEsQAAACCCAgGraldCKTvZDnL02BRmuBJYTSSwYkG4K7C2GWMuHenB1tp/SPqMgrMI/ydEMQGDeumoM4EVqeorN2OMrjmrRP/+6Bp95+ZlmlM0cNeVhrZO/WL9IV3ynaf0jt++qIdfPiVfJ1VZAABEu46ugDr8AccYLQQntjicDHhYUs8q3ZcMc+ya7ucTko6EKiAAAABERm1rh7oCzoRV1ji2EJQGqMAigRUTwp3AOkvSf4wxDxpjVo7wPS90P58XopiAAVlrteWYM4F17ozoSGD1SErw6KYVpXrsI2v0i7eu0PKpOQMeZ6301N4qfeBPW7Tya0/os/ft0KYjtbJ2fGcyAACA8eFuHyhRgYX4mgxog19EH+jeXGCMOX+g47rHeyqwHrB8gQUAAIg7FY3O9a+MrDLGuYVgEQmsmBTuBNZuBW+grpW0wRizzhjzNmNM1hDvubb72QxxDDDuDle3qLalwzF2zrToSmD18HiMrlpcon++f7X+fPv5unR+4aDHNvm69OcXj+nmn72gS+58Wt96dI92lDWQzAIAIIo0D5DAogJrwovHyYA/kNTzh/3HxpjUvju7t3/cvdnVfTwAAADiTKUrmZSZJCWMczaANbBiU7jvgpdJ+qSkz0lKk3RR9+PXxpgtkrZKOiipXlKGgq0iblCw9cWeMMeKCc7dPrAoM0WluamDHB0djDG6YHa+Lpidr8PVLfrDC0f195eOq8nX/0cwSTpW26q7nj6ou54+qNLcVF27ZJJefVaJlpXmyOMhZwwAQKS0dPT/f3daUkIEIkEU2S1poYIT/K41xjwr6deS7rfWNg7ynpBNBjTGXCRpTp+hgj6v5xhjbut7vLX2bvc5rLX7jDHfUbBS7FxJzxljvqXgPeFsSZ+WdHb34Xdaa/eP2z8AAAAAokalqwJrvNsHSrQQjFVhTWBZa7skfcMY8xsFk1i3S0qRlKDgDcu5A7zNKJjAuitccQKS+rUPXDE9V8bETlJnZkG6vnjDIn38qnl6eMcp/XPLCW04XKPBCq3K6tr0i/WH9Iv1h1SQkaI18wp0ybxCXTy3UHnpIfi/BgAAGJS7hWB6cgKTSxBtkwHfLentg+y7sPvR192DHPs5SUWS3qlgsuovAxzza0mfH32IAAAAiAWVjc5kUlbS+HeKIoEVmyLSh8RaWyHpQ8aYL0t6h6SbJa1QMJHl1i7p69ba34QvQkDadrzBsR2t7QOHk56SqDeeO1VvPHeqTtS36f6tJ3TfljIdrGoZ9D3Vze26b8sJ3bflhIyRlpXm6JJ5hbpkfqGWTslWYkK4u48CADCxNLf7Hdu0D0S8Tga01gYkvcsYc6+kOyStVLCaq1rSJkk/t9aujWCIAAAACDF3C8HsMFRg1bZ2qNMfUBK/c0a1iN4JW2trJX1X0neNMZmSFivYhiK7+5Djkp4eoiUGEBJtHX7tq2hyjC2bmhOZYMbRlJxUfeCyOXr/pbO180SjHt5xSmt3ntLRmtZB32OttO14vbYdr9cP/7NfGSmJOndGrs6bmadVM/O1tDSbv+gBABhn7gqsDBJY6BYtkwGttbdJum0cz/eIpEfG63wAAACIHRXhaCGY4UxgWSvVtnSoOMs7/h+GcRM1d8LW2iZJG7ofQETtOtUgf+B0qarHSGdNyYpgROPLGKMlpdlaUpqtT18zX7tONWrtjnI9svOUDg1RmSUFF5V/em+Vnt5bJUlKTUrQsqnZOntars6emqPl03JUlMlf/AAAnIlmdwtBElhwYTIgAAAA4oW7AisULQRz05KV4DGO33yrmtpJYEU57oSBAbjbB84rzlRacnz+52KM0eLJ2Vo8OVufuHq+jlS3aN2+Kq3bV6XnD1bL1xkY8v1tnX5tOFSrDYdqe8em5KRq+bQcnT01R0tLc7RgUqayvEmh/kcBACBu9FsDK2Wg4hogiMmAAAAAiGXu9ahC0ULQ4zEqyEhWRZ/1tiqbfDo9/wvRKD5/kQfO0Mtl9Y7tpaUT5y+yGQXpmlGQrrevniFfp1+bj9Tp6b2VenpflQ5UNo/oHCfq23Sivk0Pv3yqd6w0N1ULJ2Vp4aQsLZqUqYWTsjQ1N40F6QEAGAAtBAEAAABMBNba7kTSaVnJ41+BJUlFmV5nAquxfYijEQ1CcidsjLnZWvv3UJy7+/ylkqZZa58P1WdgYtt+vN6xvbQ0JyJxRJo3KUEXzS3QRXML9HkFZyW8eLhWLx6u1cZDtdrrWidsKGV1bSqra9Pjuyp6x9KTE7RgUpYWdie05hRmaHZRhvLTQzDNAgCAGNLc7nds00IQAAAAQDyqa+1Up9+ZsMoOUSOn4iyvdpw43XnrVINviKMRDUJ1J/xXY8wXJX1lPBNZxphpkj6r4GLFX5dEAgvjrqG1U0dqWh1jy6fmRCaYKFOU6dX1Syfr+qWTJUl1LR3afLRO247Xaeuxer1c1tBvzY6htHT49dLROr10tM4xnp2apJn5qUpp96g41Spxb5UWTsnT1Lw0JSV4xvWfCQCAaOSuwIrXVsboj8mAAAAAmEgqGp1JJCMpM0Rz20uyU4b8bESfUN0J71dwEeG/GGPulPQnSX+01r4y2hMZY9IlvV7Sf0m6XFKCpICkA+MXLnDayyfqHdvJiR7NL8mMTDBRLjc9WVcuKtaVi4olSf6A1YHKZm09Vqdtx+u17Xi9DlQ2qyswurLfhrZObSvrlBRMVv3r2A5JUqLHaHp+mmZ3V2rNzE/X1Lw0TctPU0mWVwm0IwQAxIn+LQRZA2sCYTIgAAAAJgx3EikvPUkJZuQT5EdjUnaqY7ucBFbUC1UCa7GkD0n6jKRpkj4t6dPGmP0KLiy8SdJWSZWS6rofqZLyJOVKmidppaTzuh9eBZOvkrRW0qettTtDFDsmOHf7wMWTs6j6GaEEj9H8kkzNL8nULedNkyR1dAV0oLJZu081avepRu3qfq5r7Rz1+bsCVgerWnSwqkXq04pQkpISjEpz04IJrbxUTctL07S8nu00ZXpDVHsMAEAIuCuaaSE4oTAZEAAAABNGuauNX0mWV1JbSD6rOMs75Gcj+oTkTtha2yXpe8aYn0t6v6QPKJjImidprqS3jvBUPUkrv6QHJN1prd04zuECDtvLGhzbyybo+lfjJTnRo0WTs7RoclbvmLVWFY3tjoTWgcpmHapuUUdXYEyf0+m3OlzdosPVLQPuz/QmakpOqqbkpGpy78Pbu12UmaJEEpUAgCjR0uGuwCKBNYEwGRAAAAATxsl+CayUQY48cyXuBBYVWFEvpHfC1toWSXcaY74r6UpJb5R0maQZI3h7m6QXJT0s6U/W2pOhihPo6+Wyesf20tLsyAQSx4wxKsn2qiTbq8sWFPWO+wNWJ+radLCqWXtO1mn9tn2qbDOq8yerdgwVW301+bq0p7xJe8qbBtyf4DEqyfJqco5Xk3NSVZLlVXHvI0XFWV4VZqbIm0QLJwBA6DW3+x3bVGBNHEwGBAAAwERS3uCstioOZQIr25nAqm/tlK/Tz+99USwsd8LW2oCkf3c/ZIyZImm1pFJJhQrOFvRJqup+7JC02Vp7Zr9YA6NU3uBTRWO7Y2zZ1JzIBDMBJXiMpuUH17Q6f3qmJjftkSRdddXFarcJ3e0Dm3WwqlmHqlp0vLZVx2pb1drhH+bMw/MHrE7Ut+lEfZuCE5kHlpuWpOIsr4qyvCrOTFFRVooKMoKP/IxkFXa/zk5Nkoc1uQAAY+ReA4sE1sTDZEAAAABMBKcGqsBqDc1nuRNYUvD34BkF6aH5QJyxiNwJW2tPSBq3BYmB8bLdVX2VmZKomfn8BRYNctKStWJ6slZMz3WMW2tV09KhozWtvQmtnsfx2tZ+/xM8U3Wtnapr7Ry0kqtHoscoLz05mNzKTFFBRvfr3udgwqsgI0W5aclKTqR9IQDgNHcCKyOFGYETFZMBAQAAEM/6J7C8IUtgZaQkKiMl0bHmcHkjCaxoxlROoI/tx+sd20tKs6miiXLGmN6EkDu5JUm+Tr9ONfh0sru66mTvw9dbcTXWdbeG0hWwqmxqV2VTu3Rq+OMzUxKVl5Gs3LRk5acnKzf99HNeerLy0pKVl3H6OTMlUcbwZxMA4lWzuwIrma/tCGIyIAAAAOJJuSuBVZyVovry0H1eSbZXByqbB/18RBfuhIE+Xi5rcGzTPjD2eZMSNLMgXTMHmUnRU8HVk9g6UR9MdlU2tauiwaeKJp8qGn3ydY5/kquvpvYuNbV36WjNyKaYJCUY5aZ1J7f6JrzSkpU/QCIshyovAIgZ1tp+7XFpIQgAAAAg3jT5OvtN3ivJSlF9CD+zJMuVwGokgRXNQnYnbIz5YvfL/7PWVp/BeWZI+o0ka629fDxiAwYSCFi97GohuKw0OzLBIGz6VnAtLc0Z8BhrrRp9XapsDK6RVtHoU3ljMLFV3dyu6qaO4HNzuxp9XQOeY7x1+vtUeI1QpjexN+GV7U1QW51H6UnS8eeOqignXfnd+/LTU5SbnqQMqrwAICLauwLyB6xjLIMEFgAAAIA4M9DSH8VZKdoTws90r4NFBVZ0C+Wd8JclWUn/kDTmBJakdEmXdp8LCJnDNS39kg+DJTQwsRhjlJ2apOzUJM0tzhzy2PYuv2qaO1TTHExqVXUntnq2exJeNS3tqmnpkA3j32xNvi41+fpWeQUrsp48eXDA45MTPcGWhenBqq683gRXsvLSU3q3e8ayU5NouQkA48A9A1GiAmuiYTIgAAAAJgJ3Ais/PVkpiaFd/7ckiwRWLOFOGOj20pE6x3ZRZoomuTLywHBSEhM0OSdVk3NShz3WH7Cqb+1QbUufR2uHapuDz3UtHapp6VBd91hNS4faQ7Be12A6ugIq7642G4kEj1FuWlKfpFYwyVWQkaKCzOBzYWaKCrsr3lKTQ/uFBABiVcsACSwqsCacL4vJgAAAAIhz5Q1tjm13dVQoFLsrsGghGNUieidsjJkl6ai11j/swUCIbTpS69heOSOP9mkIqQSPUX5GivIzUkb8ntaOLmfCq8+jrjVY+VXX2p34aulQfVtn2Kq8/AGr6uYOVTd3jOj49OQEFWam9LZwLMpKUVFmioqyvCrO8qooM0XFWV7lpiXx3yKACcVdgeUxkjeJdQwBAAAAxJeT9c7kUTiKCSa5KrAqSGBFtYglsIwx10n6s6Q9xphbrbUHIhULIEkvHXVWYK2YnhuhSIDBpSUnKi05UaW5aSM6vssfUENbZ78qr4r6Fm3ffVDNXZI3u0D1bcHEWE1LhzrCVOXV0uFXS02rjvS2NBxYcoJHhZnBBFdxpjf43J3gCia7guM5JLoAxImWdufcrnTWJMQAmAwIAACAWOdu3xeOCiz3Z1Q2tcsfsEpgWYyoFJEEljHmQ5K+q+ACLCskbTXGfMRa++tIxAPUNLfrUHWLY2zljLwIRQOMn8QEz4BVXm1tbXrMt1+SdNVVy5WaGmx5aK1Va4e/N5lV2xJcv6sn+dVT2VXTJyE20Fot46nDH9CJ+jadqG8b8rieRFdxVoqKMoOJraI+lVw9SS8SXQCinbuFIO0D4cZkQAAAAMSDU43uCqzhl+Q4U+4Elj9gVdXUHpbkGUYvrHfDJviL4Y8kvV+SkdQoKVPB3uy/MMa8WtLt1tq6wc8CjL/NruqrtOQELZyUGaFogMgxxig9JVHpKYmamjeyKi9fp7+3fWHfVobBhFe7qpo6VNXcruqmdlU3t4dsHa8RJ7oSPcHqrT6JrcLe1yma0r2GmTeJNboARIZ7YkA6CSz0wWRAAAAAxItTrt9wwtFCMD89WSmJHsfvUyfqW0lgRamw3Q0bY9Il/U3SNQomr16RdIOk+ZLullQs6fWSVhlj3matfSpcsQHu9oFnT8tRYgJrTQAj4U1K0KTs1BHNkrHWqqm9qzuZ1aHq5nZVNZ1+VDT5VNnYrsom34jX0hqtjq6AyuraVFY3dKKrKDNFpbmpKs1Ncz2T4AIQWu4KLBJYkJgMCAAAgPgTiRaCxhhNyU3VoarT3bjK6tq0YnrIPxpjEJa7YWNMqaSHJC1R8GbrMUlvtNY2SjpijFmiYBLrWklTJD1ujPmupM+FIz5g85Fax/aK6bQPBELBGKMsb5KyvEmaVTj0sZ3+gKqa2lXZ1K6KRp8qG32nXze1q6KxXZWNPtW0hCbRVdn92VuO1Q+4vygzRVPzTie1SnPTNCUnVQUZKcpICshvpQQ6FQIYA3cFVkYKCfOJjsmAAAAAiDcNbZ1qct37hKOFoCRNyemfwEJ0CkcCa6Wkr0sqUfBm6/8kfbjvYsPW2mpJ13e3w/imJK+kT0i6XNI3whAjJrCGtk5tL2twjJ07PTdC0QDokZTg0eTudn5D6egKqLr5dGKrstEXTG41BZ97xmvHOdHVk+ByV3D2MEpQWqL04wMbNaswQ/OKMzW3OPg8uzBDyYlUeQIYWEu737GdnkwF1kTGZEAAAADEoxOupJEx0uQcrwKdoZmo3FdprnPZjLK61pB/JsYmHHfDv1awP7tf0settT8a7EBr7Y+MMU9J+pOkxZLOlvSXMMSICey5A9XyB2zvdnKiRytnUIEFxIrkxJEnuqqanQmuyu4EV0V34utUg08NbZ3jEpeVUUuXdKCqRQeqWvTYrorefYkeo9mFGZpfkqnJOakqzExRQUayCjNTVJiRouJsr7K8SeMSB4DY09LhrsAigTWBMRkQAAAAccmdNCrO9ColMUHj9LPMkEpznb8hUYEVvcJxN+yR1CTpFmvt2uEOttbuMMacK+l7kt7X/X4gZNbtrXJsr5qZp9RkWvUA8SY50aMpOamaMkyiq9HXqRPda2SV1bW6ntvGJcHVFbDaW9GkvRVNgx6TmZLYnZjz9iboJud4NTU3TdPz01WQkazgcigA4o27hWAaLQQnMiYDAgAAIC4ddyWN3EmlUHJ/lrsaDNEj1AksI+mYpOuttTtH+iZrbbukDxhj1ip40zbMSinA2FhrtW6fM4F16fyiCEUDIBpkeZOUNSlJCydlDbjfneA6Xtv9XNemykafals7ZO2Abx2VpvauIZNc6ckJmp6frhkFwYTWjPye53QVZabI4yG5BcSqFlcCK50KrImMyYAAAACIS+4KrEgmsMrq2xQIWH5LiUKhvBu+rPt5p7W2ZiwnsNY+ZIw5S9Ki8QsLOG1PeZPKG32OsUvnky8FMLjhElxd/oBO1TbpocefVlOn0ZS5i3W0vkP7Kpq0v6JZJ+rHZ1ZPS4dfu041atepxn77vEkeTc9L1/T8NM0sSNfMgnTNKszQrMJ05adTuQVEO3cCK4M1sCYqJgMCAAAgbrnb9rnXpQol92f1rK9elOUNWwwYmZDdDVtr143Teaokjcu5JqrjdW2a2umXN4n2M25Pu9oHluamalZBeoSiARAPEhM8KshI1uR0SbK66uzJSk09PbOn0depfeVN2lPepINVzapqald1c3v3c8e4tCj0dQYGrd7KTk3SrMJ0zSoIJrRmFwaTW9Pz05SSyP8ngGjgbiFIBdaExGRAAAAAxDV3AmtqXvgqsAozUpSc4FGHP9A7dryujQRWFOJueAJ4291blXjf8eAPqt3rv/Q8T8lN7V0TJictacLNyn9w+0nH9qXzCyfcNQAQXlneJJ07I0/nzsgbcL+v06+KRp9O1LfpZL1PJ+vbgo8GX3Atrto2xxes0Wpo69TWY/XaeqzeMe4xwRlIzuRWhmYXpqswM4W/G4Ewamn3O7YzSGBNOEwGBAAAQDyz1qqs1t1CMHwVWB6P0ZTcVB2ubukdO1HfphXTc8MWA0aGu+EJpLq5Q9XNHXq5rGHA/WnJCY7E1tTcNE3NS9W0vDRNy0tTdmp8Jbh2nmjo13rr6sUlEYoGAIK8ScG1rabnD1wN6g9YlTf6dLS6RUdqWnWkpkVHqlt0tPt1e9fYklsBKx2rbdWx2tZ+1anpyQmaWZiumQUZwXaE3W0JZxSkKzs1aUyfB2BwrIEFAAAAIJ41tnWpyXXfE841sCRpSo4zgeVekwvRIWJ3w8YYj6RLJV0gqURSmqTPW2tP9TkmWcEY/d293BFCrR1+Hahs1oHK5gH3Z3oTNS0vTVNz0zQtP01TuxNbU3ODCa9Yaz31j5fKHNuTs71aPbsgQtEAwMgkeExv5ezqOc59gYBVZVO7jtS06GhNiw5Xt+pwdbMOVQUTXGOt3Grp8GvniUbtPNF/va2CjOTedbZ6E1yF6ZqWl0brWmCM+rcQ5L8lAAAAAPHjuCtZZIw0KTu8CSx3wszd0hDRISIJLGPMdZJ+JGmGa9d3JZ3qs/0uST+R1GyMmWytbREipsnXpVdONuqVk/1/wDRGmpTl1dS8NM0sSNecogzNLsrQnMIMTclJlccTXZVb7V1+3b/thGPsxhWlSoiyOAFgNDweo5Jsr0qyvTp/Vr5jnz9gVVbXqkNVLTpY1axD1S06VBVMblU2jX2OSE9176YjdY5xY4KzmfpWbM0szNCsgnRNzknl71tgCO4KLFoIAgAAAIgn7mTRpCyvkhM9YY2BBFZsCPvdsDHm3ZJ+Lqnnl6tqSQWS7ACH/1rSVyXlSHq9pHvCEGLceeQDq5RaMEVl9W06URdcS+VEn9fljT4FBrr6o2CtdLLBp5MNPm08XOvY503yaFbB6YTW7KJggmtmQXrEqrb+te2k6ls7HWM3rSiNSCwAEA4JHtPbmvCyBUWOfU2+Th2ubtGhqmBS62D368PVzfJ1jq1qy9rgl7+yujY9s7/asS85waPp+WndSa1ggmtGfrAlYRHrbWGCCwSsWjqca2DRQhB9GWMSJV0n6WJJsyRlShruS7W11l4e6tgAAACAkXC36wvn+leDfaZ7TS5Eh7DeDRtj5kj6affmk5L+21q7xxgz4K9j1toOY8y9kt4t6SqRwBqT1OQEzS3O1NzizAH3d/oDKm/w9Sa2TtYHf3A8XhdcC+VkvU/+M8hw+ToD2nWqsd96Uwkeo9mF6Vo4KUuLJmVp0eTgc35Gypg/a2Tx+PX9x/c5xlbNzBt0vRkAiHeZ3iQtLc3R0tIcx3ige72tw9UtOlTdosPdSa3D1S06Xtc25v83dPgD2l/ZrP0DtKz1Jnl6116clpeu6fnBtrXT89JUmpsW9hlZQLi1dvr7jVGBhR7GmEsl/VbStL7DQ7zFdu8/w+lqAAAAwPhxVzuFe/0rSZqa50xgHa9rVZc/oMQEfneIJuG+G/6IpCRJOyVda63tGMF7nlEwgbU8dGFNbEkJHk3NS+v3H22PTn9Ap+p9OlYbTGj1JLaOd2+7K5lGyh+w2lfRrH0VzXpg28ne8eKslN6k1uLJ2Tp7Wo4m54zfX2K/ee6wTjb4HGPvvWT2uJ0fAOKFx2M0OSdVk3NSdeEc5xqBHV0BHa9r7U5qdSe4upNbFY1jb0no6wz0/r+hXzzdPbFLc1LkafUo32sVeKVScyflaFp+mrK8SWP+XCBauNsHSlRgIcgYs1zSWknJCialfJL2S6qXNLZyWQAAACAC+ldghT+BNbPAWczQ6bc6We/TtPzwV4NhcOG+G75cwdl/Pxhh8kqSDnY/TxvyKIRMUoJH07pnwA+k0dep490JrSM1rTpY2awDVc06UNmsJl//H2GGU9HYrorGKj29t6p3rCTLq7On5XQ/crVkSra8SaNvP/jKyQb95MkDjrHVs/N16fzCUZ8LACay5ESPZhdmaHZhRr99Le1dOlzd4nj0rLk1lv8v9AhYBVvg1rdJCs6IeujYzt79uWlJwcqt/HRNzztduTU9P9iaMNrWYwQG0jxgAisyLZcRdb4sKUVSu6SPSfqttdY35DsAAACAKHS0xpXAGqSwIpRy05KU5U1UY5/fKQ5VN5PAijLhTmBN7X7eNor3tHQ/8ycnSmV5k7R4crYWT852jFtrVdXcrgOVzTpY1aKDlc062J3YOtUwunvt8kaf1u4s19qd5ZKkpASjRZOztWJars6ZnqMV03M1KXvoTP2hqma947eb1NpnXQljpP+5diHrrQDAOEpPSdRZU7J11pT+/1+obenoU7HV0lvBdaSmRe1dZ1ZAUNfaqbrWBm0va+i3LyWxT2vCPomtaflpmkprQkQRdwVWUoKJ2JqhiDoXKTgZ8GvW2rsiHQwAAAAwFv6A1VHXelPuaqhwMMZoZmGGth+v7x07Ut0izQ97KBhCuBNYPb3XR5Mt6CmNaRzyKEQdY4yKMr0qyvRq9Wxn66nm9i7tLW8Kro11slG7TzVqT3mjfJ0j+/Gy02+1/Xi9th+v12+eC45Nzvbq7Om5WjEtV8umZmtKTpqSEoyqmtu1dke5fvnMIUfySpJuWTmt3w+sAIDQMMYoPyNF+RkpOndGnmNfIGBV2dSuozUtOlrbqmM1rcHn2lYdq2lR3Rjb1fZo7xp83a0Ej9HU3FTNLEjXrMKM4HNBumYWpqsky8skB4SVuwKL9oHow9v9/GhEowAAAADOwMn6NnW4JrDOyA9/AkuSZuanORNYrsowRF6474hPSpojaZ6kl0b4nku6n4+EIiBERkZKolZMz9WK6bm9Y/6A1eHqFu06FUxovXKyUduP16uhbWQ/Wp5s8Onky6f08MunRnT8qpl5+vJrFo0pfgDA+PJ4jEqyvSrJ9mrVrPx++xt9ncGkVk2rDlbU64UdB1Ttk1pMmsobfQrYAU46Qv6A1ZGaYBvcp/q0r5Wk1KQEzexOZs0qSNeswnTNLszQnKIMpSWTWMD4a2l3TrZJ588ZTjsiaaGCawoDAAAAMelITYtjOyMlUQUZyRGJZYar8utQdcsgRyJSwn1HvF7SXEm3SvrzcAcbYwokvUfByq0nQxsaIi3BYzSnKPij4GuWTZYUnJF/uKZFW4/Va+uxOm05Vq+95Y1n9EOlJM0rztAv3nouLXkAIEZkeZN62xK2teVoeus+SdJVV61WQlKKyupaT1du1bTqWG1LsHqrtnXE1b0Daev0B6uFTzkLwY0JLjI7ryhT80oyNa84Q3OLMjWnKGNMazQCPdwtBDOowMJp9yuYwFoj6YXIhgIAAACMzRFXkmhmQXrEOp+4Wxe6Y0PkhfuO+BeS3iXpWmPMO6y1vx3sQGNMqaT7JBVI6up+LyYYj8dodmGGZhdm6KYVpZKCrXW2H6/XS0fr9NLROm09VudYbG84t66aps+8eoGyvExeBYB4kJzo0azCDM0qzOi3LxAIrsd4tKZVR2uCSa2j3e0Jj9e2qralY0yfaa10vLZNx2vb9J89lb3jHiNNy0vT3OJgUmtecabml2RqTmGGEhNYZwvD699CkIQoev1Q0m2SPmGM+au19khkwwEAAABGz13l5K6CCid3AqusrlUdXQHWyY4iYU1gWWs3GWN+Jum9kn5ljLlW0t/7HLLUGLNE0lWSblGwz7uV9F1r7YFwxorolZGSqAvnFOjCOcF1tQIBq4NVzb0JrS3H6nSstlWd/tNlWlNyUnXRnALdct5UnT0td7BTAwDijMdjVJzlVXGWV+fNzOu3v6GtU4erW3S4ulmHq1p0sLpFh6tadLi6RW2d/gHOOLSAVW87wsd3VfSOJyd6tLAkU4unZGvx5CydNTlb80syqdZCP+4EVgYTbtDNWlvVff/0kKSNxpjPSfq7tbYhwqEBAAAAI9avAis/LUKR9E+eBax0rLZVc4r6T5BFZESiJ8kHJaVLequkN3Q/ejINf+xzXE/d4N2S/idcwSH2eDxGc4szNbc4U7ecN01SMKlV29qhgLVKS06k/Q4AYEDZqUlaPjVHy6fmOMattapobNehqmYdqg4mtA5VNetgVYuO17XKjrKVbUdXQNvLGrS97PTvzAkeo7lFGVo8OVtnTcnSWd3JLdbWmtjcLQQz+Q6DPqy1Lxtj1kjaKOnnkn5mjKmWNNxq09ZaOzvkAQIAAADDOOxOYBVGrgIry5ukgoxkVTef7s5ypLqFBFYUCfsdsbXWL+ntxph/SfqspHMGOXSXpK9aa/8StuAQNzweo4KMlEiHAQCIUcYYlWR7VZLt1eruit8ebR1+Haxq1r6KJu2raNb+iibtq2zS8dq2UX2GP2C1p7xJe8qbdO+W4FiCx2hBSabOmZarc6bn6JxpuZqWlxaxfuAIvyYfa2BhcMaYGyX9WlKmghP+jKSiEbz1DFeQBQAAAM5cpz+g43XOe+cZ+ZFLYPV8viOBVcM6WNEkYnfE1tp7Jd1rjJks6VwFb7wSJNVI2mqtPRip2AAAAAaTmpygs6Zk66wp2Y7x1o4uHahs1r6KnuRWk/ZXNOtE/cgTW/6A1SsnG/XKyUb9YcNRSVJBRrKWT83VeTNztXp2gRZNypLHQ0IrXvVvIUgCC0HGmAsk/UXBeyZJOirpZUn1kgIRCgsAAAAYsbK6NvkDzrlV7nWowm1mQbo2H63r3T5YRQIrmkT8jthae1LSvyIdRygZY6ZJ+pCk6yRNk9Qu6YCkv0n6P2vtcC0/AABAlEtLTtTS0hwtLc1xjNe3dnQnpRq080Sjdp5s0OHqlhG3Iaxu7tATuyv0xO7gmlo5aUm6YFa+Vs/O1+o5BZpVkE6FVhxppgILg/u8gsmrBkm3WmvXRjgeAAAAYFQOVzc7tnPTkpSTlhyhaIJmFTrbBR6obIpQJBhIzNwRG2Nu7K7aiinGmOsUXNur7zTtNEkrux/vNsZca609FIn4AABAaOWkJevCOQW6sE8rwpb2Lu0+1aidJxq0s7vial9FU7+ZaAOpb+3U2p3lWruzXJJUkuXVhXMKdPnCIl00t0BZ3qSQ/bMg9NwVWJlUYOG0FQq2AvwSySsAAADEosPVzjqOGRGuvpKk+SXOBNbe8iZZa5koGiWi+o7YBP+U3CrpfyTNV5TH62aMWaZglVWapGZJ35D0lKRUSbdIul3Bf66HjTErrbXNg50LAADEj/SURJ07I0/nzsjrHWvr8OvlsnptOVavLcfqtOVonWpaOoY4S1B5o0/3binTvVvKlOgxWjkjT5cvLNJlC4qozopBTe4WglRg4bSeu/tnIxoFAAAAMEYHq5w/f0e6faAkzSvOdGw3+rpU0diukmxvhCJCX1F5R2yMSZT0dkmfkTRLwcWJY3Hh4R8omLzqknSVtfaFPvueNMbsl/RtSQskfUzSV8IeIQAAiAqpyQlaNStfq2blS5KstTpW26otx+r04uE6vXCwWkdqhu463BWweuFQjV44VKOvPrxb0/PTdPmCYr16SYlWTMtl7awY0OzrdGyzBhb6OCxpsYL3FwAAAEDM2V/hbM83tyhzkCPDZ0pOqtKTE9TS4e8d21vRRAIrSoT8jtgYky7pDklXSpqqYDLniKS/S/qrtdbf51gj6TZJX+o+Vgomrzok3R3qWMeTMWalpEu7N3/tSl71+K6kd0haKOkjxphvWGs7BzgOAABMMMYYTc9P1/T8dL3+7FJJ0on6Nj1/oFrPH6zRcweqVdnUPuQ5jta06jfPHdZvnjuswswUXb24WK8+a5JWzcxTYoInHP8YGCV3C0EqsNDHfZLOknS1qMICAABAjLHWal+FswJrXnHGIEeHjzFG80oytfVYfe/YvvImXTKvMHJBoVdI74iNMUslPSJpkmvXUkmvkfQ+Y8yrrbXNxpi5kv4k6Zyet0vySfq1pG9Za8tCGWsIvK7P698OdIC1NmCM+b2CrQVzFUx4PR7yyAAAQEyakpOqm8+dqpvPnSprrQ5WteiZ/VV6ck+lNh6qVYc/MOh7q5radc+GY7pnwzHlpiXpykXFevWSSbpwdoGSE0lmRYuWdr9jmzWw0Md3Jb1ZwYlvD1hrN0c6IAAAAGCkqpra1dDmrN2IhgosSZpf7Exg7XVViiFyQnZH3F159YCkyUMctlrST4wxd0pap2ASx0hqkfRzSXdaaytCFWOIXdz93CLppSGOW9fn9UUigQUAAEbAGKM5RRmaU5Shd1w4Uy3tXXr2QLWe2lOpp/ZWqqJx8OqsutZO/W1zmf62uUyZ3kRduahYrz97ilbPLgjjPwHcAgE7QAVWUoSiQbSx1jYZYy5XsJPFemPM9yX9VdI+a60vstEBAAAAQ3NXX6UmJag0NzVC0TjNda2DtY8EVtQI5ZTOt0maruDaVU9J+rKkLZL8khZJ+qSkWxScRbhCUp6kgKS7JP2vtbYqhLGFw8Lu5wPW2q4hjtszwHuGZYwpHeaQkp4X7e3tamtrG+mpMQI+n2/A1xg/XOPQ4vqGFtc3tLi+A/NIWjMrW2tmZeuLr56j3eXNenJvlR7bXaX9lS2Dvq/J16X7tpzQfVtOqCAjWVcvyNekdqk0nesbCkP9+XUnryQpUV18jxuF9vah22rGMmNM3/I8o+B6wZ/p3jfc2621lnI+AAAARIw7KTSnKCNq1mme70pg7a9oViBgoya+iSyUNzE3dD/vk3SNK4mzVdKtxpgcSdcouBhxh6Q3WGsfCWFMYWGM8UrqmcI8ZOtDa22dMaZFUrpOr/s1EsdHeuDGjRt18ODBUZwao7F+/fpIhxD3uMahxfUNLa5vaHF9hzZP0rzZUuVkaXut0fYaj463DP4FvLq5Q3/cfEpSoopTrR478YzOLbDKZ+3akHD/+a1vl9xfz198br3SSDuMWHV1daRDCCX3f7zcTQMAACBm7K90JrDmRsH6Vz3mlThjaev0q6yuTdPy0yIUEXqE8nZ4iYLVV98bogLpawomsKyk38RD8qpb35Rt86BHndaTwIqe/2oBAEDcKEqVrpxideUUv2p8p5NZR5oH//27os3okeMJWnvcakGO1UXFVotyrZiAFjo+f/+xlITwx4Go9b+RDgAAAAAYK3cLwXnF0bH+lSQVZqQoNy1Jda2n1+jaU95IAisKhDKBld/9vHeIY3b3ef2vEMYSbn3nKXeM4PieXiejafo5XLVWiaRNkrRq1SrNnj17FKfGcHw+X++s6TVr1sjrZWr6eOMahxbXN7S4vqHF9T1zb+5+rmhs19pXKvTgjgrtOjVwj28ro931RrvrpUlZKbp5xWTdePZkFWWmhC3eeDLUn99tZQ3S9tNLp6YmefTqq68Ke4yxLJ67DlhrSWABAAAgJllr+7UQnBdFFVjGGM0rztTGw7W9Y6+cbNRVi0uGeBfCIZQJLK+ClVWD9vGw1tb26dd+MoSxhFvfBQ2SR3B8zy9AI17gwFo7ZGvCvn3wU1JSlJoaHQvixSOv18v1DTGucWhxfUOL6xtaXN8zMyM1Ve8rztH7XjVfByqb9MC2k/rnljKV1Q+89tWpxnb96KnD+r91R/Sa5ZP1njWzNb8kembNxRr3n99O65yRmOFN4s/3KKWkkFgFAAAAok1FY7uafM4mbXOLoute8qwp2a4EVkMEo0EPT6QD6GOwNoOxqG86eSSp5PTu55G0GwQAABh3c4oy9fGr5uuxD12gj5zVpQuLA8pMGXiuU1fA6r4tJ3T1D9brnXdv0sZDNbLWhjni+NPc7vw6PNj1BwAAAIBY4q6+SktO0JSc6Jqst2RKtmN7xwkSWNGAu+IQsNb6jDHVkgoklQ51rDEmV6cTWMdDHRsAAMBQjDGamSnNzAzox5ddqCf21umPG49qe9nAX96f3FOpJ/dU6uxpOfrQq+bq0vmFjkpwjJw7gZXh5av6RGWM+eJ4n9Na+5XxPicAAAAwEq+cbHRszyvOlCfKFlg+y5XAqmhsV2WTT0WZLFsQSeG4K36/MaZyPI6LsZuu3ZIuljTHGJNorR2swmyB6z0AAABRITUpQW9cOVVvXDlVO8oa9MeNR3X/thPydQb6Hbv1WL3ecfcmnTczT5++Zr5WTM+LQMSxrdnVUiODCqyJ7MsKtmMfT7F0LwUAAIA44m7Ht3hyVoQiGdzMgnSlJSeotcPfO7bzRINetYAEViSF4674fcPs77kxG+44KbZuup5VMIGVLmmFpI2DHHdJn9fPhTooAACAsVhSmq1vli7Vp65ZoN89f0S/e+GI6ls7+x334uFa3XjXC7piYbE+efV81sgahX4VWCSwJrrxnJJKj08AAABEzC5XBdbiydmDHBk5CR6jxZOztOlIXe/YjrJGvWpBcQSjQqjviifyTdf9kj7b/fodGiCBZYzxSHpb92a9pKfCERgAAMBY5aUn66NXztN7Lpmlv206rl8+c1gn6tv6HffE7gr9Z0+F3nB2qT59zXwVZTFrbTi0EEQfl0U6gHAxxoz0Pm+dtfbSUMYCAACA8dfS3qXDNS2OsWiswJKCbQT7JrB2nmQdrEgL5V3xhLnpGoi19kVjzDMKVmG9yxjzO2vtC67DPi5pYffrH1pr+09jBgAAiEJpyYm67cKZesv503X/tpP6/uP7+iWyrJXu3VKmf79Srg++ao7eceFMJSd6IhRx9GtytRDMpAJrwrLWrot0DAAAAMB42H2qUbbPlKUEj4naTh1nuSrDdp4ggRVpIbsr5qZLkvRhBdsCpkp6zBjzdQWrrFIl3SLpju7j9kn6bkQiBAAAOAOJCR7dtKJUNyybpD9uOKafPHVAtS0djmOa27v0jbV79NdNx/XFGxbp0vlFEYo2ulGBhQnuLkn/N8T+liH2AQAAIEq94mofOKcwQ96khAhFM7Qlpc4E1qkGn6qa2lWYmRKhiMBdcQhZa7caY94k6R5JWZK+PsBh+yRdZ61tCmtwAAAA4yglMUHvvGim3rhyqn71zCH9cv0htfRZ/FaSDlW36LbfbtIVC4v0v689S1NyUiMUbXRq9jmL8TNSkiIUCRARldbanZEOAgAAAOPrFVcbvmhtHyhJswszlJacoNY+97Jbj9XpqsUlEYxqYqOHS4hZax+UtFTS9xVMVrUquN7VZkmflnS2tfZAxAIEAAAYRxkpifrIFfP01Ccv1c0rSgc85ondlbr6++v15xePydpYW+Y0dFranQk/KrAAAAAAxDp3BdaiKE5gJXiMlk/NcYy9dKxu4IMRFiSwwsBae9Ra+zFr7Xxrbbq1Ntdau9Ja+21rbWuk4wMAABhvRZle3XnzMv3z/au1zHUDIAXb5X32vh16669fVFkdX4ckqamdNbAAAAAAxI+OroD2VzQ7xha71pmKNium5zq2txwlgRVJJLAAAAAQMmdPy9U/37dad960VAUZyf32P3ugWld/f73u2XBUgcDErsZqbne2EEwngQUAAAAghu061agOf8AxFs0VWJJ0jiuBtb2sQR1dgUGORqhxVwwAAICQ8niMbj53qq5aXKKvPbxLf9tc5tjf0uHX5+/fqcd2Veh7b1ymgoyJuUBus89ZgZVBAgsTy83GmDdLmiapS1K5pOcl3W2tfWqsJzXGDNzL9LTeBQ3a29vV1tY21o/CAHw+34CvMT64vqHF9Q0trm9ocX1Di+s7chsPVDq2ZxekKVldamvrGuQdkb++Cwu9ju2OroC2HK7UstLorhwbqfb29kiHMCrcFQMAACAsslOT9O2blunaJZP02ft26FSD82Zk/b4qXfvDZ/TDW87WBbPzIxRlZFhr1exuIcgaWJhYFrm253Q/3maMuV/Sbdbahn7vGt7xkR64ceNGHTx4cAwfgZFYv359pEOIa1zf0OL6hhbXN7S4vqHF9R3av/d51LcJXIFp1mOPPTbi90fq+pakJqi8zfRu/+WJF1UxOT46hlRXV0c6hFGhhSAAAADC6tL5Rfr3R9folpVT++2rbGrXf/1qg37wxL4J1VKwvSugTr/zn5cKLEwQrZL+Iul2SRdLOlvSVZK+Jqmm+5jXSXrAGJMUiQABAAAwNkeajWN7RmZs3OPNdMV5pMkMciRCjbtiAAAAhF2WN0nfvHGprl0ySR//+3ZVNZ1uYxCw0g+e2K9XTjbqB29aPiHWgnJXX0lSBhVYmBimWGvrBxh/3BjzY0lrFUxqXSLpfZJ+NMrz98+UO5VI2iRJq1at0uzZs0d5egzF5/P1zpxes2aNvF7vMO/AaHB9Q4vrG1pc39Di+oYW13dkqprbVfvCc46xW6+6QPOKM4Z8XzRc35Ztp/TCA7t7t8vavbryygtlTOwnsmKt4wB3xQAAAIiYNfMKtfbDF+ujf92mZ/Y7Wxk8vqtCN971vH719nNVmpsWoQjDw73+lUQFFiaGQZJXPfsqjDE3SdotKVnSBzXKBJa1tmyo/X1/hEhJSVFqaupoTo9R8Hq9XN8Q4vqGFtc3tLi+ocX1DS2u7+B2H3J2f05PTtBZ0wqU4Bl5EihS13f13GIFv4IGVbd06ESTX3OLM8Mey3hLSYmtNadpIQgAAICIKshI0e/ecZ4+dc38fjcze8qb9LqfPqeXjtZFKLrwaGjrdGwnJ3rkTUqIUDRA9LDWHpL0ePfmHGPM5EjGAwAAgJHZeqzesb1sas6okleRND0/TZOznZVfzx2IrbWj4gUJLAAAAEScx2P0/kvn6J53rVJOmnOZm+rmDt36yw16YldFhKILvUafM4GVncpSP0Afu/q8nhKxKAAAADBiW445JyGePS0nMoGMgTFGq+cUOMaeP1gzyNEIJRJYAAAAiBoXzM7X/e+/ULML0x3j7V0Bveeel/S3TccjFFlouSuwslj/CugrNqbqAgAAQJLk6/Rrm6sC65xpuZEJZoxWz853bG84VCN/wEYomomLBBYAAACiyoyCdN33/gu1Zl6hY9wfsPrUvS/rJ0/ul7XxdePQ2OZcA4sKLMBhUZ/XJyMWBQAAAEZky9E6dfgDvdseI62cmRfBiEZv9WxnBVajr0uvnGwY5GiECgksAAAARJ3s1CT9+u3n6qYVpf32feexffr2v/fGVRKrXwUWCSxAkmSMmSXpyu7NQ9baE5GMB6e1dfj16M5T+vvm42pytUEFAAAT2wuHnO32zpqSrSxvbN3jlGR7NcvVGeS5A7QRDDcSWAAAAIhKSQke3XnTUr3/0tn99t319EF969H4SWK518CKtZs7YCyMMTcYYwbtl2mMKZb0D0k9/0H8NCyBYUj+gNUPn9ivVV9/Qu+9Z4s++Y+XdcX31mnzkdpIhwYAAKKEe72oC2blD3JkdLvQVYW1bl9lhCKZuEhgAQAAIGoZY/SpaxboSzcsknGtgvOzdQf1zUf3xEUSy12BRQtBTBA/lnTUGPMjY8ybjTEXGGOWG2OuMMZ8VdIrks7uPvZZkcCKCv/voV36/hP71Og73fq0orFdb/rFBj24nQ6PAABMdC3tXdp+vN4xdsHs2ExgXTzXmcDafKSu370bQosEFgAAAKLeOy6cqW/fuLRfEuvn6w7pW4/ujUxQ46ixXwvBQYtSgHgzWdIHJf1J0vOStkp6XNLnJPX80nGvpBuste0RiRC9ntlfpbufPzLgPn/A6rP37VBNM/+aAACYyDYfrVNX4PQkw0SP0coZsbX+VY+L5hYoOfF0CqUrYLV+X1UEI5p4SGABAAAgJtx87lTdedOyASuxfv3s4cgENU6owMIE9XZJX5L0qKR9kmoldUmql7RD0s8lrbbW3mStrY9QjOjW6OvUJ//+8pDHNLd36cdPHghTRAAAIBo9f7Dasb20NFvpKbE5QS8tOVGrXdVj/9ldEaFoJqbY/JMDAACACemmFaWSpE/+Y7v6dg786sO7VJLl1XVLJ0UosjPTtxWXxBpYmBisteskrYt0HBiZP244pvJGn2PsU9fM1ysnGvXwjlO9Y/dsOKrbVs/QjIJ09ykAAMAE8NQe5zpRq13rSMWayxcU6em9p6uunt5XpS5/QIkJ1AaFA1cZAAAAMeWmFaX61o1LHWPWSh/96zZtOFQzyLuim7uFIBVYAKJJIGD15xePOcYumlOg966Zrf+5bmG/1jpUYQEAMDEdr23Vvopmx9hlC4oiFM34eNXCYsd2fWunthyrj0wwExAJLAAAAMScN547VZ+8er5jrMMf0O2/36z9FU0Rimrs+q+BRQILQPR47mC1jtW2OsY+euU8eTxGU3JSddvqGY59D+84qSYfC5wDADDRPOmqvspLT9byqTmRCWacTMlJ1YKSTMfY2p2nBjka440EFgAAAGLS+y+drbecP80x1uTr0u2/39xvTaloZq1lDSwAUe1PG53VV/OLM3XOtJze7dsvnqUEz+kFCn2dAa3dUR6u8AAAQJRwJ7AunV/o+I4Qq65eXOLYfvjlU/IH7CBHYzyRwAIAAEBMMsbof19zlq5a5GzpcKSmVR/+y9aYuaFo6/SryxUra2ABiBaVTT49vsu5WPmtq6bJmNM/RhVmpuiy+YWOY/7xUllY4gMAANGhpb1LLxx0tnR/VYy3D+xxwzLnWsuVTe168XBthKKZWEhgAQAAIGYleIx+9OaztbQ02zH+9N4qfe/xvRGKanQGqhbLSk2MQCQA0N/fN5c5kuzeJI9ed/aUfsfdtKLUsf3ikVoddbUdBAAA8euZ/VXq8Ad6txM9RhfPLRziHbFjTlGmFk7Kcow9+PLJCEUzsZDAAgAAQEzzJiXoZ29ZoYKMZMf4T586qEd2RH9v8sa2rn5jmVRgAYgCgYDVn190tg+8YenkAducvmpBsXLTnOMP7ajodxwAAIhPD77svPdaOSMvrlqju6uw1u44pc4+CTuEBgksAAAAxLzJOan66a3nKNHVX/0Tf9+uozUtEYpqZNwVWJkpiXHRJx5A7Fu/v0pldW2OsVtXTRvw2OREj25YNtkx9uTe6pDFBgAAokdrR5ee3O1c/+q6pZMGOTo2Xb/E+T2nrrVTT7nW/ML4I4EFAACAuLBqVr6+eMMix1hrh18f+es2dUXxzLhGVwIrK45mKQKIbe7qq4WTsrR8as6gx1/jWuB816km1bWHIjIAABBN/rO7Um2d/t7tBI/Rq88qGeIdsWdafprOmZbjGPvrpuORCWYCIYEFAACAuPHW86f3W4dl67F6/eSpAxGKaHjuCiwSWACiQUWjT0+4ZlLfumqajBm8QnTlzDxleZ1r+O2so6IUAIB495BrPajVs/OVn5ESoWhC500rpzq2n9pbqfIGX4SimRhIYAEAACBuGGP0v69ZrBn5aY7xHz95QFuO1UUoqqE1+pwJrOzUxEGOBIDw+dum4/IHbO92WnKCXrd88hDvkJISPLp8YbFjbEctCSwAAOJZo69TT+2tcoxdH2ftA3tcv3Sy0pMTercDVvrHS1RhhRIJLAAAAMSV9JRE/eCWsx3rSPkDVh/96zY1t3dFMLKBNbY5Y8ryUoEFILL8Aau/uFrivGbZZGWO4O+nKxc5E1gHGo3aou+vXgAAME4e3H5SHV2nW7YneoyuXhxf7QN7pKck9lvz8y+uST8YXySwAAAAEHeWT83Rhy+f6xg7WtOqrz+yO0IRDc7dQjCbFoIAImz9viqdqG9zjN26atqI3rtmXqGSE07/1OC3RrvrqcICACBe/W1zmWP7ioXFyklLjlA0oeduI1hW16bHd5VHKJr4RwILAAAAcen9l87Wium5jrE/bTymFw/XRiiigblbCLIGFoBI++PGY47txZOztGRK9ojem5GSqNVz8h1jtBEEACA+7S1v0vbj9Y6xN64sHfjgOLF8ao6Wljq/F/3m2SORCWYCIIEFAACAuJSY4NEP3rRcaX16lEvSZ+57Wb5Of4Si6s9dgUULQQCRdKqhTU/uqXCM3bpqmowZeRLK3UZwV71Rhz8wyNEAACBW/X2zs+VwUWaK1swtjFA04WGM0TsvnOkYe/FIrXaUNUQoovhGAgsAAABxa2pemj5+1XzH2KGqFv3fUwciFFF/jf1aCCZGKBIAkP666bj6LuOQnpyg1y6fMqpzXLHQmcDy+Y02Hakfh+gAAEC08HX69Y8tzvaBN64oVWJC/Kccrl0yScVZKY6xn68/GKFo4lv8/2kCAADAhHbb6hla5mrxcNe6g9pX0RShiJz6VWDRQhBAhHT5A/rrJudM6tcsn6KMlNEl1ouzvFo2Nccx9uTeqjMNDwAARJEHtp1QfavzXubmFfHdPrBHcqJHb7tghmPs4R2ndKAyOu4x4wkJLAAAAMS1BI/RN96wVAme0+2vOv1Wn7n3ZQX6lhlEiLsCixaCACLl6b1VOtXgc4z916ppYzrXVa42gk/urZa1kf87FwAAnDlrre5+/qhjbM28Qs0qzIhQROH3llXTHZN8rJV+8mT0dPqIFySwAAAAEPcWTc7Se9bMcoxtOVavv7l6toebtVa1rR2Osdz05AhFA2Ciu/v5I47tpaXZOmtK9sAHD8OdwCpvbNcrJxvHGhoAAIgim4/Wafcp5//Xb1s9PULRREZ2WpJuWz3DMfav7Sd1sKo5MgHFKRJYAAAAmBA+dPlczSxId4x969E9qnclkMKptcMvX2fAMVaQQQILQPjtq2jSsweqHWNvWTX2H6LmFGVoWl6qY+yxV8rHfD4AABA9frH+kGN7en6aLp1XFKFoIuddF81UenJC73bASt9+dE8EI4o/JLAAAAAwIXiTEvS/r1nsGKtr7dT3Ht8XoYik2pb+ybM8KrAARMBvnzvi2M5LT9Zrlk8e8/mMMbpifqFj7LFdFWM+HwAAiA57y5v0uOv/6W89f7o8fVq2TxS56cl6u6sK69+vVGjjoZrIBBSHSGABAABgwlgzr1DXLC5xjN2z4aheOdkQkXiqm9sd28mJHkcfdQAIh9qWDv1za5lj7L9WTZM3KWGQd4zM5QsKHNt7ypt0tKbljM4JAAAi6/+edq7zlJ2apDefN7Y1M+PBey6Zrdw05zrGX3tkd1SstxwPSGABAABgQvn89QvlTTr9NThgpS8+8IqsDf8NhrsCKz89WcZMvJmLACLr188ecrQzTfQYveX8M1/HYllptjKSnH+3umdsAwCA2HGkukUPbj/pGHvHhTOUPoEn4WWnJukjV8xzjL1c1qA/vXgsQhHFFxJYAAAAmFBKc9P0gUvnOMZeOlqn+7acCHssNc2uBBbrXwEIs/rWDv3u+aOOsdcsm6ziLO8ZnzvBY3RWrjOB9ehO1sECACBWfeexvepbWJSWnKDbXC30JqJbV03TrELXestr96ii0RehiOIHCSwAAABMOLevmaXp+WmOsTv/vVe+Tn9Y46hxVWDlpaeE9fMB4DfPHVFze1fvtjHSB141Z4h3jM7SPGcCa/PROp2sbxu38wMAgPB4uaxeD718yjH21vOnKyeNSXhJCR79v9ee5Rhrau/S5+/fGZFOH/GEBBYAAAAmHG9Sgr50wyLHWHmjT797/khY46hxrYFVkM7NH4DwqW5u12+ePewYu2HpZM0uzBi3z5ifbZWa4Pzh5pEdpwY5GgAARCNrrb716B7HWJY3Ue+7dHaEIoo+F84p0BvOmeIYe3xXhf62+XiEIooPJLAAAAAwIV02v0irZ+c7xn761AE1tHaGLYZ+a2DRQhBAGH33sX39qq/+exyrryQp0SMtcVVhPfgyCSwAAGLJozvL9dyBGsfY+y+bQ/WVy+evW6Q816TEL/9rlw5VNUcoothHAgsAAAATkjFGn75mgWOs0delu9YdDFsM1bQQBBAhu0426q+bnIuLv375FM0rzhz3zzon35nA2n68XsdrW8f9cwAAwPhrae/SVx7a5RgryfKy9tUA8tKT9c03LHGMtXX69f4/blFrR9cg78JQSGABAABgwlo2NUfXLZnkGPvtc4dV3hCexXbdLQSpwAIQDv6A1Rce2OlYhD01KUGfciX1x8u8bKuc1CTH2L+2nwzJZwEAgPH1o//s1ynX/dHnrlsob1JChCKKblctLtGtq6Y5xvaUN+kz9+5gPawxIIEFAACACe0TV89Xgsf0brd3BfSDJ/aF5bP7tRBkDSwAYfDb5w7rpaN1jrH3XTpbJdnekHxegke6amGhY+zel8r4EQcAgCi39VidfvnMIcfYRXMKdP3SSYO8A5L0+esWal6xc03Rf20/qf97OnzdPuIFCSwAAABMaDML0nXLyqmOsb9tPq6DIe5Tbq1VTbN7DSxaCAIIrQOVzbrz33sdY9Pz03T7xbNC+rmvXVbi2D5U3aItx+oGORoAAESar9OvT/x9u6NiOynB6MuvWSxjzOBvhNKSE/Xzt56rzJREx/id/95LFfookcACAADAhPfhy+cqtU8LjICVfvLkgZB+ZkuHXx3+gGOMCiwAodTS3qX33fOS2rtO/91jjHTnTcuUmhzaNkBnT83WrIJ0x9jfNpWF9DMBAMDYfXPtHh2sanGMfeSKeZpTlDHIO9DXzIJ0/eCW5XLn+j7xt+16Zn9VZIKKQSSwAAAAMOEVZXn1jgtnOMYe2HZCh6tbBn7DOKhxtQ+UWAMLQOhYa/WZ+3Zof6WzuvTtF8zQeTPzQv75xhjduKLUMfbQyydZ0BwAgCj0+K4K3f38EcfY0tJsvWdNaCu2483lC4v1uWsXOsY6/AHd8fuXtOlIbYSiii0ksAAAAABJ7754ltKSw1eFVdvS6dhOTUpQWnLiIEcDwJm589979aCrZc2Ckkx9+poFYYvhxnNK1WfJQbV0+PXANtroAAAQTY7XtuqT/9juGEtJ9Oi7Ny9TYgLphNF610Uz9bYLpjvG2jr9etuvX9TTeysjFFXs4E8cAAAAICkvPVlvu2CGY+z+bSd0tCY0VVi1rgqsPNoHAgiRXz97uN+i4ZneRP38rStC3jqwr5Jsry6ZV+gY+93zR2StHeQdAAAgnFrau3T77zervtU52e5LNyzW3OLMCEUV24wx+tINi3XDssmO8bZOv979u816YNuJCEUWG0hgAQAAAN1uv3imYy0sf8CGrAqr1nVTWED7QAAh8PN1B/X/HtrlGEvwGP3wluWanp8+yLtC5+2rZzi295Q3acMhWugAABBp/oDVx/+2XXvKmxzj1y2ZpDefNzVCUcWHBI/R9964TFcsLHaMdwWsPvLXbfqdq10jTiOBBQAAAHTLz0jp197hvq0ndKymddw/iwosAKEUCFh9c+0efWPtnn77vv76s/SqBcUDvCv01swt1KwCZ+Lst88djkgsAAAgyFqrLzywU4++Uu4Yn1OUoW/euETGmEHeiZFKSvDorreco9ctd1ZiWSt96V+v6HP/3KH2Ln+EooteJLAAAACAPt598Sx5k05/TfYHrP7v6fGvwnKvgZWfkTLunwFgYmpp79IH/rRFP1t3sN++T1+zQG9aOS0CUQV5PKZfFdbjuyt0sKo5MgEBADDBWWv1jbV79KeNxxzjWd5E/fJt5yrTmxShyOJPUoJH33vjct3m+i4kSX/ceExv/PkGnaxvC39gUYwEFgAAANBHYWaK3rLKVYW15YQqG33j+jk1rgqsfCqwAIyDfRVNes1PntXaneX99n3+uoV636WzIxCV040rSpWZkti7ba3006dC064VAAAMLhCw+uIDr+gX6w85xpMTPLrrLSs0syD87Ybjncdj9KUbFuljV87rt2/78Xpd/+NntW5fVQQii04ksAAAAACXOy6ZpeTE01+VO/wB/Xac+5KfanAmxIqzvON6fgATS6c/oJ88uV/X/+hZHaxqcexL9Bh98w1L9O6LZ0UoOqeMlES9bbVzosAD206GpF0rAAAYWKOvU7f/frP+sOGoY9xjpB/eslwXzimIUGTxzxijD10+Vz9403JH9w8p2Gr+7b95UV+4f6daO7oiFGH0IIEFAAAAuBRlenXjOVMcY/dsOKrm9vG7gTjpSmBNyU0dt3MDmFh2lDXohh8/q+88tk8d/oBjX6Y3UXe/4zzdcl7k2gYO5J0XzlRqUkLvtj9g9ZOn9kcwIgAAJo4Dlc163U+e03/2VDrGPUa686ZlevWSSRGKbGJ53dlT9M/3X6jp+Wn99v1hw1Fd+8Nn9NLRughEFj1IYAEAAAADePfFs9R3reImX5f+8uKxwd8wCv6AVNnU7hibkkMCC8DolDf49Jl7X9Zrf/qs9pQ39du/eHKWHv7gxbpobvTNoM7PSNFbzncm1f7xUpl2n2qMUEQAAEwMj+48pdf99DkdqnZWbCclGP3k1nN044rSCEU2MS2clKV//fdFumJhUb99R2paddPPntdn79uhOlcL+omCBBYAAAAwgNmFGbpiYbFj7DfPHlanq7phLOo7pIB1jpVSgQVghBraOvWtR/fokjuf0l82He/394nHSLdfPFP3vm+1pg0wozda3L5mlqMKK2Clrz28W9baId4FAADGor61Qx/5y1a9954t/TpL5KUn6/fvXKVrqbyKiOzUJP3ybefq/712cb+WgtZKf37xmC777tO6Z8NR+d1f/OIcCSwAAABgEO+9xLlezMkGnx5++dQZn7e23Ti205MTlJ2adMbnBRDfyht8+voju3XhN5/UXU8fVHtX/4T6gpJM/fP9F+pz1y2St09yKBoVZXr13ktmO8aePVCt/+yuHOQdAABgLJ7YVaErv79e92872W/fWVOy9OAHL9IFs/MjEBl6GGP01gtmaO2H1+jsaTn99te3durz9+/Uq3+4Xo+9Uj5hJvyQwAIAAAAGsWJ6nlZMz3WM/WzdwTO+Wahzdg/UlNxUGWMGPhjAhGat1bbj9frE37fr4m8/qV+sPzTgenypSQn6+JXz9K//vkjLpuaEP9Axun3NTJVkeR1jX3hgp5p8nRGKCACA+LGnvFFv/82LevfvN6vK1cJckl63fLL+8d7VtDOPIjML0vX391ygz756gdKS+09G2lfRrDv+8JLecNfzev5AddwnskhgAQAAAEO4Y42zCmtPeZOeO1BzRuesdSewuGEE4NLQ2qnfv3BEr/7hM3rdT5/TP14qU6e//w8UCR6j/1o1Tes+eak+ePlcJSfG1m1+WnKiPnXNfMfYqQafvrF2T4QiAgAg9p2sb9On/rFd1/7wGa3bV9Vvf5Y3Ud974zJ9/03Lo75ieyJKTPDoPZfM1n8+fomuWzpwW8etx+p166826g13Pa/HXilXIE5bCyZGOgAAAAAgml25sFizCtIdixzf/fwRXTS3YMzndLcQnEwCC4Ck1o4uPb6rQg9uP6l1+6oGTFj18Bjp2iWT9LEr52lWYUYYoxx/rz97iu7bckLPHqjuHfvTxmO6YmGRXrWgeIh3AgCAvg5Xt+hnTx/UfVsHnvgiSZfOL9Q337BUJdneAfcjekzKTtVPbz1H/3Vetb7y0C7tKW/qd8zWY/W64w8vaV5xhm5bPVOvXT5Z6Snxk/aJn38SAAAAIAQ8HqN3XDhDX3jgld6x/+yp0PHaVk3NSxvTOes6nNtTcklgARNVRaNP/9ldqSf3VOjZA9XydfZf16qvlESPbj63VLdfPEvT89PDFGVoGWP0jTcs0VXfX6+2Tn/v+Mf+tl0Pf+hiqlQBABiCtVabjtTpd88f0dqdpzRYIU5hZoo+dfV83bSilPblMWb1nAI98qGL9eDLJ/Xdx/bpWG1rv2P2VTTrf/65Q19/ZLdef/YUvfm8aVo0OSsC0Y4vElgAAADAMN5wTqm+/eheNXWvO2OtdM+Go/rstQvHdD53BRY/zgITh6/Tr23H6/X8wRo9uadCO080juh9pbmpumXlVN1y3jQVZKSEOMrwm5qXpv+5doFjskB9a6fef89L+ssdFyh1gDUgAACYyBraOvXg9pO6Z8PRAStzeqQlJ+iONbN0+8Wz4qoyZ6LxeIxeu3yKrl0ySX/ddFw/W3dQZXVt/Y5rbu/SHzYc1R82HNX84ky9ZvlkvXb5ZJXmjm3yZaTxJxYAAAAYRnpKom46t1S/fe5I79hfNh3XR66YN+ofVQNWqnetgVVKBRYQt1rau7TlWJ02HqrVi4drte14vTr8Q1dZ9UhO9OjyBUV683nTdNGcAnk88T1b+i3nT9fzB2u0dmd579j2sgZ97G/b9NNbz4n7f34AAIbT0Nqpf+8q19odp/Tsgeoh2w2nJHr0ppVT9d+XzVFRFu0C40VSgkdvOX+63rRyqh56+aTuevqg9lU0D3js3oom3fnvvbrz33u1ckaublg2WbNS2gc8NlqRwAoRY8zTki4ZybHWWr6FAwAARLm3nj/dkcBqaOvUv7af0JtWThvVeZo7pS7rrsCKzdlwAJz8AauDVc16uaxBO8rqta2sQTtPNMg/ikW1PUa6cE6BXrNssq4+q0RZ3qQQRhxdjDH61k1LtetUo47WnG6Ns3Znub784Cv639cspuURAGDCOVHfpqf3VuqxVyr03IFqdQ3zvSIjJVFvvWC63nnhTBVmxl/VNoKSEjx6/dmleu2yKVq3v0p/3HBUT+6pHLSF5KYjddp0pE5djdUDHxClSGABAAAAIzCrMEOXzCvUun1VvWN3P39Ubzx36qh+UK11TXhLSjAq4sYSiDkNbZ3aX9GkvRVN2lfepF2nGvXKyUa1dviHf7NLpjdRl8wr1BULi3XJvELlpieHIOLYkOVN0q/edq7ecNfzavJ19Y7//oWjSvAYffH6RSSxAABxrb3Lr81H6vT03ko9vbdK+ysHrq5xm5GfprecP103nztV2akTZwLMROfxGF02v0iXzS/Sifo2/XnjMd27pUynGnyRDm1ckMAKvc2S3hHpIAAAAHDm3r56uiOBtftUozYfrdPKGXkjPkeda/2rSdmptMUCopQ/YHWqoU3Halp1tLZVh6tbtLe8Sfsqms7oRwGPkRZNztL5M/P1qoVFWjkjT0kJnnGMPLbNLc7Uz96yQm//zYuOWea/fe6Imn1d+voblnC9AABxo9HXqS1H67T5SJ02HQm2G27vGnm74cvmF+q/Vk2fEO2GMbQpOan6xNXz9bEr52nTkVrdv+2kHtlxSg1tnZEObcxIYIVei7V2Z6SDAAAAwJm7dF6RpuWl6Vjt6dZWdz9/ZFQJrArXOrusfwVEh//sqdKTJz06Wd+mo7WtOlbTqrK6thGvVzWURI/R0tJsnTczX6tm5mnFjNwJ1RpwLC6cU6Af3LJcH/rzVkcrnL+/VKbyRp9+dMvZE7pSDQAQmzr9AR2qatHuU43aeizY0m1PeeOgbd8Gkpzo0aXzCnXd0kl61YIiZfKdAi4ej9GqWflaNStfX37NIq3fV62HXj6pdfuqVN0Y6ehGhwQWAAAAMEIej9HbLpiurz68u3fs0Z3lKm/wqSR7ZAsjn2h1zoqcX5I5rjECGJuvrt2vxKy6cTnX5GyvlpRma2lpjpaV5uic6TlKS+b2e7SuXzpZ/oDVR/+6zfHD3jP7q3Xdj57RD9989qgmEAAAEC5d/oBO1LfpUHWLDlW1aM+pRu0ub9S+imZ1jLC6qq+ctCRdPLdQVyws0uULi5WRwvcKjExKYoKuXFSsKxcVyx+wevDZrXr9XZGOauT4kw4AAACMws3nTtV3H9unts7gOjf+gNWfNh7Vx66aP6L3n2hxJrAWTsoa9xgBhEeix2h2YYbmlWRqfnGGFk/J1pIp2SrIYF278fLa5VPkTUrQh/681dFO6WSDT2/8+Qt6+wUz9LGr5lHRBgAIO2ulyqZ2nTwZbDN8uLq5+7lFx2pb1ekfRVnVAJaWZuvSeYW6ZH6Rlk/NUQLtAXGGEjxGiyfF1gRKElgAAADAKGSnJun150zRnzYe6x3704vH9IFXzVFKYsKQ721u71KNaw2sRSSwgKiXlpygaXlpmp6fprlFmd0Jq0zNLEhXciJrMYXa1YtL9Oc7ztcdv39J1c3tvePWBtu4/mv7SX3oVXN066rp/PsAAIyr3vUwa1t1vLZVx2pbdbCySTuPJKiyTerY8Ny4fE5ygkdLS7N17ow8rZyRqxXTc5WTRqtcgARW6C0wxmyStEBSkqRqSS9JulfSn621sbuCGgAAwAT1tgumOxJY1c0demTHKb3+7NIh37e3otmxnegxmlucEZIYAYzOtLxUzZyRr+Isr6bmBpNV0/PTNC0vXQUZyTKGWc+RdM60XD3y4Yv0oT9v1YZDtY59tS0d+vKDu/Tb54/oI1fM1XVLJpPIAgCMSCBgVdPSofIGn8rqggmqnsfx2uB6mF0DLlB1Zt8LJmV7tWhSllbMyNXKGXlaMiVb3qShJ8MBExEJrNAr7n70mNL9+P/t3XuYJVV96P3vry/T3dNzYQYGhts4AoJgkCgC4hsQz1GSE2I0xiiJ9xwvT85JYnI85uJ53wQ5OZiL5tXzenw0YESN8ZZE1CA6XgAxjwreicAgCAgKA8PMwEz39H29f1T1dHVP7+7eu7t6X+r7eZ797FW71q5a9evf9NTqVbXqV4E/jogXp5Run/ebC4iIhf86AlunC6Ojoxw8eHChuqrTyMjIvGWtHGNcLuNbLuNbLuNbLuO7NE/Y2Mu524/g5nv3Hfrs7268m188bfOCf+S+9f7Zz9c56ai1TI2PcdBLmlbE6Ojo4pWkGj74qqfxpCc9qdnN0AKOXt/PR177TP7+a/fw9h07Z00pCHDfo8P84ce/z19edwevPH87v3XuNjYNevW6JFXR8NgEjx4YY8/Q7Neux0d48PERdj02woOPjfDw/pFlT/W3kI0DvZy0ZZCTt6zj9GM3cPqx6znj2A3eXSUtkQNY5ZkCvgx8Dvg+8CiwHng68AbgdOAM4PqIODel9JNaG6rh/qVW/OY3v8ndd99d5+a1VF/96leb3YSOZ4zLZXzLZXzLZXzLZXwX9nNrgpuZuUry9ocO8O5PfonTjqjdAf7q3V3AzF0BG6f2s2PHjjKbWSm7d+9udhMklay7K3jdhSfxvDOO4YrP3c6O23YdVmfX46P8zRd28q4v/4iLTt3CJU891gfeS1IbG5uYYt/wGHuHx9k7PMbeoZny9MDUo0Nj7BkaZc+BMfYMjzEyPrX4hldIf28X248c5KQtgzzxqEGeeNQ6nnjUICcdNeiFFNIyefZWnhellPbN8/lNEfEe4ErgVWR3Z70TeNHqNU2SJEnLdebmxJb+xCMjM3dcfflnseAA1gNDs+/OOm6wvKs9JamTbT9qkL975TO45d49XPG52/nuT/YdVmdsYoodt+1ix2276Ovp4lknH8kFT9rChadu4eQtg04LKUmrLKXEwfHJbPBpaIx9w+PsGR7LBqeG8sGp6YGqoay8b3icA6MTzW76oedhbtu8lmM3rGF4171sGYAXX3wB248+gq4u/0+RylDpAayI6AFWYsKW16SUri5+UGPwanrdeES8FjiP7NlYvxYRx6eUflrHPk9cZP1W4BaA8847j5NPPrmOTWsxIyMjh65Kv/DCC+nv729yizqPMS6X8S2X8S2X8S2X8a3PY0f+lMuu3XloeedjXRx/5nk85dj1h9WdmJrizTffCMwMWr3gwrM5/6TNq9HUSnDWAal6ztm+mX/5nWex47ZdXHXTj7nl3r3z1hudmOL6nY9w/c5HANi6oZ+zt2/i6ds2cfYTNvHkret99ogk1SGlxOMjEzN3Rg3NDD7ty++M2le4S2q6PHf611bR3RVs3dDPiZsHDg1UnZi/b9u8ls2DM8/DPHjwIDt23ANkz7Jy8EoqT6UHsJoppTQREe8H/ib/6NnAP9bx/QcWWl+8kqyvr4+BgYFGmqkl6O/vN74lM8blMr7lMr7lMr7lMr6Lu/SZT+TdN97D7gNjhz577033cdWrzjms7g8e2MfYnPn1f377FgYGnFZkpfT19TW7CVqGiNgG/D5wCbANGAXuAj4BvCelNNzE5qmFRQS/+JSt/OJTtvKDB/bx91+7h2tvfXDBZ5o89PgI1/7gQa79wYMAdAVsP3KQU49Zz6lb1/Pkres5acsg2zavZe0a/3QiqfONjE+yd3iMRw+MzZqab28+PV/xsz1D2SDVxFTrzybQ2x1sHlzD5sE+Ng/2ctS6Po7dOMDWDX1s3TjA1o39HLuxn6PW9dHtQJTUcip9FpYPIp2+Apt6sMHv3VYoH78C7ZAkSdIq6u/t5jX/1xP5my/M3IX1pdsf5vv37+OsE4+YVXfHD2c/p2Xb5gE2Oye+BEBEXAJ8BNhY+HgtcE7+em1E/HJK6cfNaJ/ax1NPOIJ3Xvo0LvvVp7Djtl1c+4MH+be7di/6R9apBD/ePcSPdw/x+R8+NGvdlvV9PCG/Av+EzWs5en0fW9b3cfT6Po7e0M+WdX2s6emqsWVJWn1TKTE0Dgcm4Ns/2cfQxGMzA1HTg1DDY7M+GxqbbHazl2RDfw+bB9dwxNo1bFrbe2hgavNgH0cOrskGq9atYfPa7H19X49TxkptrNIDWAAppTuauHt/e0qSJLW5Vz1rO+//2j3sGZq5C+tvv3gnH/ztc2fV+8KcP4g+97Qtq9I+qdVFxFlkd1mtBQ4AbwOuBwaAS4HXAacB10bEOSmlA81qq9rHEWvX8JJnnMhLnnEi+4bHuOlHu/nqnY9w049289DjI3Vt65H9ozyyf5Rv3Tf/9IQAm9b2cvT6fo7e0MemtWtY39/DhoHe7L2/d3Y5X7eur4eB3m6nnpK0qJHxydmDT8XX8Bh7DswMSO3J75aaSvmffb/3neY2voburuCIgV6OWNs7a0Bq0+AaNk2X167Jl7PyxoFeerq9YECqksoPYDXZGYXyz5rWCkmSJDVsXV8Pb7jwJN523cx1UTfe+QjX73yY55x2NAB3P3KAHz08+2/uzz3dASwp906ywasJ4OKU0tcL674SET8C/prs+cH/Dbh81VuotnbE2jU8/6zjeP5Zx5FS4u5HDvDt+/bynfv28e2f7OWuh5c/Jrp3eJy9w+Ps3LW/7u/29XTR39vNQG83A2u66e/tpr+3K1vu7aZ/TTf9Pd0MrMk+689fPUzx411Bbxdw+8OsG+inuyvo6erK3ruDnjnL2fqYXa8r6C7U7ekKB9WkkkxOJfaPjPPYwcNf+4bHD5u+b/p1cLy1745a093FpsFskOmwAam1+YDUYKGcD/T7u0bSYhzAapKI6AF+u/DRV5vVFkmSJC3PK8/fzpU33cPuA6OHPvvzT/+Q8//wSPp7uw+7+2pDb+KsEzasdjOllhMR5wAX5YvvnzN4Ne0dwGuA04E/iIi3pZTGV6mJ6jARwSlHr+eUo9fz0nO2ATA0OsFdDx9g56793PnQ/ux91352PT66yNZWxujEFKMTUzx2sJG07gbgH+769xVtUwTzD3TNGvDKPu+OIAK6IujqIl8OuqY/K6zv7irUzd+n63Z3za473/ridottmil3zTNQl39eqDtrfffMwF22nJUnxsf42TB0B9y3Z5jBgURv90wserpnx8Y/xHe2qanE0NgEw2OTHBidYGh0ggOjEwyPTjI0NlH4bJLh0QmGxiYOH6QaHmf/6ASpxR8b1RWwaW02Fd+mwZmp+DbnnxU/nx6UWrum22n6JJXCAawSRMRzgO+mlPbVWN8LXEl2BSHAZ1NK969S8yRJkrTCBtZ080e/dBp/9E8/OPTZT/YM844dO3nTxafxz99+YFb9MzcnuuzkSwAvLJQ/MF+FlNJURHyIbGrBTWQDXl8svWWqjMG+Hs468YjDnl14cGyS+/cOc9+jw9z36BA/2TPMg4+NHJpS8OH9I4xPtvhfohuUEoxPpvz4pprdnCbK/mx2xfe+sWjNriAbCOuePXDWW1ieHhzrnlvO34sDZIcNvnXXHpTL9tE1a1Bu7mBg5IOJMwODcwcYF69TXJ6pv/Q6E1OJsYkpxianGD44wr37swHCO3cdYHDtxKH4Tb9PTSUen3O30oGRCcYnE5NTiYmpxOTUFJNTMDk1lS+nwvtU9j6ZmEyFdZMz3537ncnC8sj4zGDVcJs8H2o+a9d0c+S66QGnfBAqLx85OPt9cz5NnwOyklqFA1jleBXwmYj4DHADsBN4HFgHnA28gezqQYCHgTc2oY2SJElaQS9++gl84pb7Zz0j5cqb7uHKm+45rO5TN3fmHzylBlyQvw8B316g3o2F8i/gAJZWwcCabk49Zj2nHrN+3vUpJfYNj/NwPpj18OOjPLx/lMcOjrN/ZJzHRyay94Pj7B+Z4PGR7L2d/xCu2qYSjE1O4Y+3HtmfJd9+681Nbkf76OmKWXc/HTnYx6bB3kN3R2WDUX2s7Zni1lu+zmAvXPJL/4GBgYFmN12SGuIAVnnWAb+Vv2q5Fbg0pXT4XzUkSZLUVrq6gr/4tZ/jkv/9NSanag9QHb82cepGB7Ck3PSFfXellCYWqHdHoXx6zVpzRMQJi1TZOl0YHR3l4MGDS920lmBkZGTecifp74JtG3vYtnEd2Z8BFjc+OcWB0ezOjpHxSUbGpzg4PsnoRPY+Mj516POR8UkOTi9PTM2qf3Bsgocf3cfYFHT3DeR3oRx+N8mhcqvPWyZVTG93sLG/lw0DPWzo72HjQC+bB3vZNDA9NV82MHXE2rw82Mv6vp4lTdU3MjLC/X0zZa2sKvz/1kzGt1yjo6szRfJKcQCrHH8FfA84HzgD2AJsBkaBXcC3gH8CPpVS8tocSZKkDvHkrRu4/AVP4X98av5nkfT3dPHKJ43hrCwSREQ/cFS++MBCdVNKeyNiCBgETqxjN0ueqv2b3/wmd999dx2bVj2++lUf+7xU/flrlgB681fRcdOFA4tuN6VsMsCplL0m57zPLU8xZzkFk3PrJEjMvE/vI00vF8tz182znIhDy4dts1B3KmXlyRrHNHs5DtWZf/2ceDD7u9J8uiPR3w193dDXlb33d6dsOX8NdMPansRAD6ztycpru7PyQA+s6YKIGs++G8pe48Aj+atR/v4tl/Etl/Fdebt37252E+riAFYJUkq3A7cD72xyUyRJkrTKXnbeEzg4NslfXHv7Yeve8p9OZePu+Qe3pAoqzsu2+F/fsz/nDbLU21wkzRIB3WTPHGrMatzB1Vp3iRUHzIqDd/MOfM07GBZMTc0Mis1Xv/agWmTfm/P9RfcPTE7FvAOIxc/mDh7CfAOKhRiQfXnuZ7W2n5g/0YJET1eWhzNxXTgp+7qyQaCBnmxQqKcr0UX23K7u/Plds14c/vmsZdK83+2es43erunBqJQPUM0MVvV0NZRSkqQ6OYAlSZIkrbDXXnASx2zo59Pf+ymPHRynuyt4wc8fzwvP3MKOHQ5gSbniTSZjS6g/Pd9JPQ/yWOxura3ALQDnnXceJ598ch2b1mJGRkYOXTl94YUX0t9/2H1FWgbjW67p+AZw0bONbyNSSvlAW2IqJbq7gp6ubORnbv72ruljcioxPjXFxGQ27WUErOvrobfb0aJ6+fuhXMa3XMa3XO0244ADWJIkSVIJnn/WcTz/rONmfebzdaRZig81WLOE+vnTPFjyP6SU0oJTExafI9LX1+dD7kvU399vfEtkfMtlfMtlfMtlfMtlfMtlfFdeX1/f4pVaiJcwSJIkSZKaYX+hvJRpAQfz96VMNyhJkiSpzTmAJUmSJEladSmlEWD6KdInLFQ3IjYxM4B1f5ntkiRJktQaHMCSJEmSJDXL7fn7KRGx0BT3T57nO5IkSZI6mANYkiRJkqRm+Vr+PgicvUC9ZxfK/1ZecyRJkiS1CgewJEmSJEnNck2h/Jr5KkREF/DKfHEfcH25TZIkSZLUChzAkiRJkiQ1RUrpZuCmfPE/R8T581R7E3B6Xn5XSml8VRonSZIkqakWmmNckiRJkqSyvZFsWsABYEdEXEF2l9UAcCnw+rzencA7mtJCSZIkSavOASxJkiRJUtOklL4bES8F/gHYAFwxT7U7gUtSSvtXtXGSJEmSmsYBrM7VPV146KGHGBgYaGZbOs7BgwfZvXs3AA888IDxLYExLpfxLZfxLZfxLZfxLZfxLddDDz1UXOyuVU+tJ6X02Yh4KtndWJcAJwBjwF3AJ4F3p5SGS9i1/aYS+TuvXMa3XMa3XMa3XMa3XMa3XMa3XO3WZ4qUUrPboBJExDOAW5rdDkmSJKlJzkkpfavZjVBrs98kSZKkCmv5PlNXsxug0hzd7AZIkiRJTeT5sJbCPJEkSVJVtfy5sFMIdq47CuVnAj9tVkM61FZmrtQ8B3hogbpqjDEul/Etl/Etl/Etl/Etl/Et1/HAN/LyHQtVlHL2m8rl77xyGd9yGd9yGd9yGd9yGd9yGd9ytVWfyQGszjVWKP80pfRA01rSgSKiuPiQ8V15xrhcxrdcxrdcxrdcxrdcxrdcc+I7VqueVGC/qUT+ziuX8S2X8S2X8S2X8S2X8S2X8S1Xu/WZnEJQkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUhzAkiRJkiRJkiRJUktxAEuSJEmSJEmSJEktxQEsSZIkSZIkSZIktRQHsCRJkiRJkiRJktRSIqXU7DZIkiRJkiRJkiRJh3gHliRJkiRJkiRJklqKA1iSJEmSJEmSJElqKQ5gSZIkSZIkSZIkqaU4gCVJkiRJkiRJkqSW4gCWJEmSJEmSJEmSWooDWJIkSZIkSZIkSWopDmBJkiRJkiRJkiSppTiAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYHWAiNgWEb8TER+PiJ0RMRQRIxHxQER8OiJ+MyJ6Vnif50fEhyPi3nxfD0bE5yPi0pXcTyuIiHURcWFE/PeI+ERE3BMRKX/du4L7uaiw3cVel63UfpttteI7Z5+Vyd9pEbE2It4cETdHxJ6IOBARt0fE2yNi2wpsvyPzN//9+vY8VkN57G7O83XtCu7n0oj4Qp6LI3lufjginrlS+2hFZcY3Ii6rIycvWpkjar6IODoifiUiLo+I6yJid+E4ry5pn5XJ39WKb4Xz9+kR8ZY8tvdHxGj+/9WdEXF1RFxQwj4rk79VF/aZShX2mUq1WvGds8/K5O+0sM/UkLDPVKoy41vhc077TCVarfhWOH+r12dKKflq4xdwOTAFpEVetwDbVmiffwZMLrCvzwD9zY7NCsb4+gWO9d4V3M9FS/g5Tr8ua3Zc2i2+hf1VKn/zYz4ZuGOBY94H/PIy99Fx+Qtcksem1nHcAZy0zH30A59dYB+TwP/T7Fi0Y3yBy+rIyYuaHY8VjOtCx3n1Cu+rcvm7WvGtYv4CNy7xeD8ErFmB/VUuf6v8wj7TasT4+gWO9d4V3M9Fdfx+vKzZcWm3+Bb2V6n8zY/ZPlNjx2SfqY3jSwXPOfPjXug4r17hfVUuf1crvlXMXyraZ1rRK8zUFMcBAQwBnwK+DPwIGAFOB34fOAd4BvCliHh6SulAozuLiNcCb80X7wauAG7N2/FG4DnA84GrgJc3up8WE4XyXuBbwPnAuhL3+dtkHehaHi5x36tt1eJbxfyNiHXAvwKn5R9dCXwMOEh2vH8KbAQ+GRHnp5R+sAK7bfv8jYizgE8Aa4EDwNvI/nAwAFwKvI4sptdGxDnL+L36fuBX8vL1wLuAnwFnAm8h60hfHhEPppSuanAfLWcV4zvtzEXW37PM7beq+4HbgYtL2n4l87eg7PhOq0r+Hp+//wz4JHAT8BOgm+y84E15nVcAPcBvLXN/Vc/fqrHPVD77TOWyz1Qi+0yNsc9ULvtMq8Y+U7nsM62savaZmj1y6Gt5L+CvgD8C1tdY3w18nJmR0YZHRYEjyE6WE3AfcNQ8+/pMYV8XNjs+KxTj15P9gz+l8Nm9lHs14UXNPu4OjG9V8/eywjG9eZ715wPj+fqvLGM/HZW/zFzlOg6cP8/6NxeO988a3MezC9v4DNA9Z/1Rea4mYA9wRLPj0mbxPZT7zT7eVY7tW8lOMI/Jl7cXYnn1Cu6nkvm7ivGtXP6S/eHwJXNzqbD+KGBnId4XLGNflczfKr+wz7QaMbbP1BnxrWr+XlY4JvtMSz8e+0ztH99Dud/s413l2Npn6oz4Vi5/qWifqemB91X+CzgSGM0T6vvL2E7xP8dLa9Q5AZjI63y22cdeYkzvxc5Yu8W3cvkL9DLTAb0N6KpR772F2Jzd4L46Jn/JrsCePpb31qjTlcd0+j/q3gb2c23+/QnghBp1Li205U3Njk2bxbdyJ7M14lBWZ6GS+buK8TV/54/LrxTi/a5lbMf89TXfz9w+08rHtIxz+o4552zR+FYuf7HP1Gjc7DN1Rnw950z2mdo4vubv/HHpuD5TF+p4KaVHgelb3E9exqZemL8/DvxLjX09AHwpX3xefiu+1ApemL9XKX8vIruKEuCDKaWpGvWuLpRfVGJ72sULC+UPzFchj+WH8sVNZLFesjy3/mO++MU89+bzL2Q5C53zs3lhoVxKfFWuiuevmuuGQrmhc1rzV7XYZ5KAaubvRdhnasQLC2X7TCvvhYWyfaY2VPH8VXPdUCh3RJ/JAazq6Mvfa52MLSgi1gDn5otfTymNLVD9xsI+z2lkf9JKqnD+XlAo31izVjaH/lBe/oXymtM2puM2BHx7gXrFmNYbt3OZ+b1c82eT5+o3pr8TEb117qcVrUZ8Va4q56+aa02h3NA5LeavFmafSZVV4fy1z9QY+0zlss/U/qqcv2qujuszOYBVARFxNNnDiQHuaHAzTyJ7+NtStlFcf3rNWlrIFRHxQESMRcTeiPhuRPy/EXFqsxvWpqqav8X21zzulNIE2QOa536nUe2ev9MxuCuPTS3LyZUl/WzmrO8hy+V2txrxnSUivhgRj+Y5+XBE3BARfxIRm5az3Qqrcv6uOvN3lmcXyo2e05q/mpd9prbU7uecraaq+WufqTH2mcpln6n9VTl/V535O0vH9ZkcwKqGNzNzIvqJBrdxYqFc67bBaffX+J6W7nzgeLL5uI8Afh74A+D2iLgsIqJpLWtPVc3f6fYPpZT2LVJ3+ri3RETfgjUX17b5GxH9ZA+ihEVyJaW0l5mrMOvNlUrm5CrGd67nApvJcnIL2Qnd24AfR8QLlrntKqpk/jaR+QtERBfwJ4WPPKfVSrPP1H7a9pyzRVU1f+0z1ck+U7nsM3WMSuZvE5m/dG6fqWfxKmpnEXEe2UkQZAn3ngY3tb5QPrBI3aFCud3nw15tD5LNH/o14MdkD8rbBjwfeAXZL+I/J7sd9C1NamM7qmr+Th/3YscMhx/3aAP764T8rSdXIIvbIPXnStVzEsqN77RbgWuAm4GfkeXgacDLgIvJ/ljwzxHx/JTSdQ3uo4qqmr+rzfyd7Q+ZmdrqUymlbzW4HfNXh7HP1HY64ZyzFVU1f+0z1c8+U7nsM3WGqubvajN/Z+vIPpMDWB0sIo4B/ons55yAV6WUhhvcXH+hvNBc2DD7JG6gwf1V0S3AE1JK43M+/w5wTUS8D9gBbAT+JCI+kVL63iq3sV1VNX+nj3uxY4blH3en5G89uQIzcas3ZlXPSSg3vgDvTCldNs/n3wQ+FBFvAN4LdANXRcQpKaWDDeyniqqav6vJ/C2IiGcDf5kvPgz8zjI2Z/5qFvtMbadTzjlbUVXz1z5T/ewzlcs+U2eoav6uJvO3oJP7TE4huEoioici0gq8Xr3E/a0HrgVOyD96S0rpK8s4hJFCeU3NWpnirfSr8othteNbhpTS0DwnssX1NwP/NV+MQrl0HRDfqubv9HEvdsywzONu5fytUz25AjNxqzdmLZ2TJVqt+LLYFDAppfcBV+WLxwEvqncfFVbV/F015u+MiHgK8CmywYVR4CUppV3L2KT528LsM5WrA87pW/qcswPiW9X8tc9UP/tM5bLP1Bmqmr+rxvyd0el9JgewOlBk8+V+Gjg7/+hvU0p/ucBXlmJ/obzY7YCDhfJSbnfW0n0ceCwvP3uhipqlqvk7fdxLuYV3NY67HfK3nlyBmbjVG7Oq5ySUG9+lel+h3Ko52Yqqmr+tpuPzNyKeSHYl+iZgEvjNlNKNy9ys+SvAPlOHa4dzzlZU1fy1z1Q/+0zlss/UGaqav62m4/O3Cn0mpxBcJSmliYg4fQU29eBCKyOih+wBbc/JP7oqpfSmFdhv8YFtJ9SslSk+sO3+mrVW0GrFt9ny47wTOIfsga+rud92jm9V8/cB4DxgMCKOWOTqlOnjfiSl1Mhc7otqVv7WI6U0EhG7yR6au2CuRMQmZv6jrjdX5ubkQvMSr3pOlmUV47tUtxXKLZmTLaqS+duCOjp/I+I44EtkV0sm4LdTSp9agU2bvy3MPlO5OuCcfknsMzWsqvlrn6lO9pnKZZ+pY1Qyf1tQR+dvVfpMDmCtopTSHWVuPyK6gA+TPfwTsit33rBCm7+TbBS3G3jyInWL629fof0vquz4tpBoxk7bPL5Vzd/bgF/Py08GvjFfpfyPOCfni2Ufc1Pyt063AxcAp0RET0ppoka95eRK8SRqqTk5AdxV535a0WrEd6naIR9bUZXzt5V0bP5GxFHAF4GT8o9+L6X0oRXavPnb4uwzlavNz+nrYZ+pflXNX/tMjbHPVC77TO2vyvnbSjo2f6vUZ3IKwc7yPuDSvPyvwCtSSlMrseGU0hhwc754fkQsNP/l9C2Zoyw8Qqs65SfNp+aLP2tmW9pJhfP3a4XyQrdKP4OZq7b+razGtFH+TsdtkJlpheZTjGm9cbuFmQdh1vzZ5Ln6zOnv5Lnc7lYjvkt1RqHcyjnZaqqcv62kI/M3IjYCX2Dm+P4kpfR/VnAX5q/sM3W4NjrnbCkVzl/7TI2xz1Qu+0ztr8r520o6Mn+r1mdyAKtDRMTfAq/NF78MvHihh4M26Jr8fQM1HnwXEScAz51uR0pp/3z11LBLyeIPsNz5TKvmmvy9Svl7AzPzp78qImpdefLqQnklbjWupV3y95pC+TXzVciv3n5lvrgPuL6eHeS59eV88bl57s3nRczErMyfzWq6plAuJb51KF5x38o52VIqnr+tpOPyNyLWAtcCT88/+l8ppb9ayX2Yv9Vmn6ky2uWcsxVdk79XKX9vwD5TI64plO0zrbxrCmX7TG2o4vnbSjoufyvZZ0op+WrzF3AZ2TyXieyKi8EGtrG9sI0batTZTPafYgLuBY6cs74b+ExhO89pdmxKjPm903FYifiSPWjvokW2cS6wN9/GFPCMZsehXeKb16lk/gKXF47pzfOsPx8YXyR2lctf4Kt5W8eB8+dZ/+ZCTC6bZ/2rF1qf1/kPhTqfBrrnrD8KuC9fvxfY1Oy4tEt8gTOBUxZpwxsK23iQBv7vbIfXnH+/Vy/xO+ZvE+Nb1fwF1pBdRTh9XO9scDvmr69auXFZ4edun2l1Yn7vdBxWIr504DlnK8U3r1PJ/MU+U6Nxs8/UxvGlouecNY6z+O/36iV+x/xtYnyrmr9UtM/kM7DaXET8HvDn+eJPgT8Cnlj7oiEAdqYGrjRMKe2JiD8G3gs8AfhmRPwv4Fayh8X9ATMPQv5oSun6evfRiiLiFOAX5ny8bvo9Il49Z93nU0oP1bmbjcD1EfEDsittvk32y3US2EY2R/8rgN68/ttTSu0+VQOwavGtbP4CfwO8lGwair/O4/0x4CDZ8b6F7HmIB8li0IhOzN83kv1xawDYERFXkF3RNkB2VeTr83p3Au9oZAcppa9ExMfy7f0q8MWIeCfZbe1nAv+DLH6Q3Q6+t7FDaUllx/ds4KqIuB64juzf+aNkuf5k4OXA8/K6k8AbUkpDjR1Ka4mIXwBOKXx0VKF8ytzfqSmlqxvZT1Xzd5XiW9X8/ShwcV7+CvD+iPi5BeqPpZTubGRHVc3fKrPPVD77TOWyz1Q6+0yNsc9ULvtMJbHPVC77TKWqZp+p2SOHvpb3IrvdPdX52j7PdrYX1t+wyD7fSnY1UK3tXwv0Nzs2KxjjV9cZ34vqje+c9Qu9Jsg639HsuLRTfKucv/kxn0J2UlvrmB8DfmWB71cyf8k6kY8tcDw7qXHFD0u4miWvN5DnXK19TC70/XZ+lRnfOn6v7AZe0OxYrHBcr67nd6r523rxrWr+1hPX/HWv+eurjvy6oYEc2z7PdrYX1t+wyD4rdc5Zx++u6ddF9caXDj3nbJX4Vjl/82O2z9RY3OwztWl86/i90lHnnPmxX13P71Tzt/XiW9X8rSeu+eveTshf78BS3VJKfx4RXwD+K3ABcAzZNAPfBz6QUvpoE5vXrn4G/AbZ1ATnAseTXaHQT3ayspOs431VSune5jSxM1Qxf1NKd0XE08iO+TfIOmdrgPuBzwHvSindt4xddGT+ppQ+GxFPJbvy7RLgBLKHWN4FfBJ4d0ppeJn7OAhcEhG/RXYCcRZwBLALuCnfx9eXs49WVXJ8Pwf8Z7KcfBrZv/MjgQD2kP17/zzZ9AWPL+c4qqzK+Vsy83cVmL8qWxXPOVdBR55ztqIq5q99psbYZyqXfab2V+X8LZn5uwpaJX8jH02TJEmSJEmSJEmSWkJXsxsgSZIkSZIkSZIkFTmAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYEmSJEmSJEmSJKmlOIAlSZIkSZIkSZKkluIAliRJkiRJkiRJklqKA1iSJEmSJEmSJElqKQ5gSZIkSZIkSZIkqaU4gCVJkiRJkiRJkqSW4gCWJEmSJEmSJEmSWooDWJIkSZIkSZIkSWopDmBJkiRJkiRJkiSppTiAJUmSJEmSJEmSpJbiAJYkSZIkSZIkSZJaigNYkiRJkiRJkiRJaikOYEmSJEmSJEmSJKmlOIAlSZIkSZIkSZKkluIAliRJyxARvRGxMyJSRLy02e1ZTES8J2/rB5vdFkmSJEmdzz6TJKlRDmBJkrQ8vwecCtwOfHIlNxwR78s7TikinlPnd/9j4bvvLqx6GzAGvCIizlnJ9kqSJEnSPOwzSZIa4gCWJEkNioh1wJ/mi5enlKZWeBcfKpRfUed3X14of3i6kFK6H/ggEMBfNN40SZIkSVqYfSZJ0nJESqnZbZAkqS1FxJuBvwbuB7aX0BkjIu4CTgb2A8eklA4u4TsDwC5gPbAzpfTkOetPA+7IF89NKd2ysq2WJEmSJPtMkqTl8Q4sSZIaEBHdwO/mix8toyOWm76icD3wgiV+54V5fShcSTgtpbQT+E6++MblNE6SJEmS5mOfSZK0XA5gSZLUmOcB2/LyP5S4nw8D07dLL3VKjOl6idpt+0j+/usRsbHBtkmSJElSLfaZJEnL4gCWJKltRURvRPwwf+juv0dEzxK/9938Oz9dxu5fkr//KKV06xL2eW5EXBkRd0bEgYgYiog7IuL/RMSTan0vpXQP8LV88eKIOHqR/RxD1lEEuDGldF+Nqv+cv/ez9KsUJUmSJLUR+0zz7sc+kyS1CQewJEnt7L8DZ+TlN6aUJpb4vW/l78dFxEkN7vs5+fs3FqoUET0R8R7gm8BrgScBg8Ba4DTgvwA/jIjXLbCZ6SkxeoDfXKRdv5nXK37vMHkn7cF88aJFtilJkiSpPdlnOpx9JklqEw5gSZLaUkRsBf7vfPG6lNKX6/j6DwvlsxvY9wnA9nxxsYf5vh/4nbx8HfBy4FzgHOB1eVt6gb+LiOfX2MYngOkHES82Jcb0+mHgnxapO932CxapJ0mSJKnN2GeqyT6TJLUJB7AkSe3qLWRX5AFcXud3HyiUT2lg388qlL9bq1JE/DrwynzxdSmlX04pfSSldEtK6VsppauAZwBfyev87/mm9EgpPQ58Ol88OyJOr7G/M4Cn54vXpJT2L3Ic387fT1lsmg1JkiRJbcc+0+H7s88kSW3EASxJUtuJiCOB1+eLX0spLTglxTx2F8rHNtCEEwrlhxeo96f5+6fyjtdhUkojwO/mi9upPTVFcWqLWlcUFj+vORVGQbHtxy+hviRJkqQ2YJ/JPpMkdQIHsCRJ7ejVQF9e/vsGvj9VKK9p4PtbCuW981WIiOOZmWrjEwttLKV0OzMdxPNrVNvBzPzrL4uImLO/AF6WLz4IfGmhfeb2FMpbataSJEmS1G5ejX0m+0yS1OYcwJIktaOX5O9TwKfmroyIcyLiYxHxkYiY7/+6wUJ5uIH9by6U5+2MkU1zMe2jEZEWegFH5XW3zrexlNIk8I/54jbg2XOqXAScmJf/Ma+/mGLbj1xCfUmSJEntwT6TfSZJansOYEmS2kpEbGDmKr3vpJT2zVPtl4CXAuellKbmWX9iofyTBpoxUigP1KjT6PzoaxdY98FCee6UGPVOhQGz236wZi1JkiRJbcM+0yH2mSSpzR320ENJklrcU4DuvFzrYcDTDwy+s8b6pxXK365RZyGPFMqbgfke/NtdKL8M+MESt13r6kRSSrdGxPeBs4AXR8TvppQORsQA8Ot5te+nlJa6r+JVkY/UrCVJkiSpndhnss8kSR3BASxJUrs5pVC+e+7KiOgHLswXH6ixjempJEaAWxpoQ7Hjsgm4b546jxbKKaX07w3sZz4fBP4W2AD8KvBx4AX5Miz9SkLI2j7NzpgkSZLUGewz2WeSpI7gFIKSpHazsVDeN8/6X2ZmSomhuSsj4nTg9HzxupTSyNw6S3BroXxqjTrFKx0vbmAftfwjMJGXXzHnvTjn+1JMt30I+PHymyZJkiSpBdhnss8kSR3BASxJUjtbN89nvwekBdb/fqH8gQb3+y1m5j8/Z74KKaW7gNvyxUsjYluD+5q73V3AjnzxFyPi55jp7O1IKT1Ux+am2/6NlNLEgjUlSZIktSP7TPaZJKltOYAlSWo39xfKFxZXRMSLgYuAm/KPzpmz/lnAa/PF7wL/2kgDUkpjwM354rkLVP2L/L0f+JeI2FKrYkT0RcR/yafzWMz0g4l7gI8xMyXwkqfCiIg+4Kn54k0L1ZUkSZLUVuwz2WeSpI4QKaXFa0mS1CIiYiOwC+gju2rwrcDngGcCf0X2IOALgG8AAVxO1ul6FvA/gfXAKHBeSun7y2jHm4G/JpsT/uiU0nwPJSYirgZelS/uBt4H3Eg2f/ogcHLe3heRPSB4fUrpwCL77gceBI4ofPw4sDWldHDeLx2+jecxc1XiOSmlby3le5IkSZJam30m+0yS1CkcwJIktZ2I+DOyTth8Xp9SujIirgN+aZ71B4DfSCl9fpltOJ7sQcTdwKtSSvNeyRcR3cAVwJvyugsZArYspUMVEX8HvK7w0ftTSq+tVX+e738AeDWwM6X05KV+T5IkSVLrs89kn0mSOoFTCEqS2k5K6XKyjsh3gGGyTswNwMUppSvzaq8APkr20OJR4G7g/wNOX25HLG/DT4FP54svW6DeZErpj4EzgHeQTcOxl+zhwfuBHwIfIbvi8NilXg3IzJQY0+qZCqMf+LV88T1L/Z4kSZKk9mCfCbDPJEltzzuwJElqUEQ8E/g6WcfqlJTSvc1t0dJExMuBDwN7gO21pvKQJEmSpOWwzyRJWg7vwJIkqUEppW8A15FNc/GnTW7OkkREF/CWfPHtdsQkSZIklcU+kyRpObwDS5KkZYiIM8mmuJgiu6LwJ01u0oIi4qXAx4D7gdPqmH5DkiRJkupmn0mS1KieZjdAkqR2llK6NSJeDZwCbANaujNGduXjW4Gv2BGTJEmSVDb7TJKkRnkHliRJkiRJkiRJklqKz8CSJEmSJEmSJElSS3EAS5IkSZIkSZIkSS3FASxJkiRJkiRJkiS1FAewJEmSJEmSJEmS1FIcwJIkSZIkSZIkSVJLcQBLkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUhzAkiRJkiRJkiRJUktxAEuSJEmSJEmSJEktxQEsSZIkSZIkSZIktRQHsCRJkiRJkiRJktRSHMCSJEmSJEmSJElSS3EAS5IkSZIkSZIkSS3FASxJkiRJkiRJkiS1FAewJEmSJEmSJEmS1FIcwJIkSZIkSZIkSVJLcQBLkiRJkiRJkiRJLcUBLEmSJEmSJEmSJLUUB7AkSZIkSZIkSZLUUv5//lYMbP10WOMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "with HDFArchive(dmft_path, 'r') as h5:\n", + " sigma_freq = h5['DMFT_results']['last_iter']['Sigma_freq_0']\n", + "\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,2), squeeze=False, dpi=200)\n", + "\n", + "orb = 0\n", + "sp = 'up_0'\n", + "freq_mesh = np.array([w.value for w in sigma_freq[sp][orb,orb].mesh])\n", + "\n", + "ax[0,0].plot(freq_mesh, sigma_freq[sp][orb,orb].data.real)\n", + "ax[0,1].plot(freq_mesh, -sigma_freq[sp][orb,orb].data.imag)\n", + "\n", + "ax[0,0].set_ylabel(r'Re$\\Sigma(\\omega)$')\n", + "ax[0,1].set_ylabel(r'Im$\\Sigma(\\omega)$')\n", + "for ct in range(2):\n", + " ax[0,ct].grid()\n", + " ax[0,ct].set_xlim(-2, 2)\n", + " ax[0,ct].set_xlabel(r'$\\omega$ (eV)')" + ] + }, + { + "cell_type": "markdown", + "id": "8c249dc9", + "metadata": {}, + "source": [ + "### Plotting options" + ] + }, + { + "cell_type": "markdown", + "id": "93d1db24", + "metadata": {}, + "source": [ + "Finally, you can choose colormaps for each of the functionalities from any of the available on matplotlib colormaps. `vmin` determines the scaling of the logarithmically scaled colorplots. The corresponding tight-binding bands will have the maximum value of the colormap. By the way, colormaps can be reversed by appending `_r` to the identifier." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a2d79e6d", + "metadata": {}, + "outputs": [], + "source": [ + "plot_config = {'colorscheme_alatt': 'coolwarm', 'colorscheme_bands': 'coolwarm', 'colorscheme_kslice': 'PuBuGn',\n", + " 'colorscheme_qpbands': 'Greens', 'vmin': 0.0}" + ] + }, + { + "cell_type": "markdown", + "id": "6b2e5a0e", + "metadata": {}, + "source": [ + "## 2. Run and Plotting" + ] + }, + { + "cell_type": "markdown", + "id": "89a67dd6", + "metadata": {}, + "source": [ + "Now that everything is set up we may hit run. Caution, if you use a lot of $k$-points, this may take a while! In the current example, it should be done within a second." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "7e875f21", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: could not identify MPI environment!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Starting serial run at: 2022-08-01 11:33:20.627842\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "H(R=0):\n", + " 12.9769 0.0000 0.0000\n", + " 0.0000 12.9769 0.0000\n", + " 0.0000 0.0000 12.9769\n", + "Setting Sigma from ./svo_example.h5\n", + "Adding mu_tb to DMFT μ; assuming DMFT was run with subtracted dft μ.\n", + "μ=12.2143 eV set for calculating A(k,ω)\n", + "Run took 0.588 s\n" + ] + } + ], + "source": [ + "start_time = timer()\n", + "\n", + "tb_data, alatt_k_w, freq_dict = pcb.get_dmft_bands(fermi_slice=kslice, with_sigma=bands_config['sigma'], add_mu_tb=True,\n", + " orbital_order_to=orbital_order_to, qp_bands=config['qp_bands'],\n", + " **w90_dict, **tb_config, **sigma_dict)\n", + "\n", + "print('Run took {0:.3f} s'.format(timer() - start_time))" + ] + }, + { + "cell_type": "markdown", + "id": "b7780b5d", + "metadata": {}, + "source": [ + "That's it. Now you can look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "1936db33", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDUAAAIcCAYAAADmA5UlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd6DdtnX/v4f3vae997L23tawbEuW5aE4nnFix4md4YxmNGnTpv2lM81s0yRNm7RpRjOd4TjDifdekoe2LGvvvffWW5f4/UGCBEDw7v3OR6YfLwgCIAkSBwfnACSEAMMwDMMwDMMwDMMwTLXhlLsADMMwDMMwDMMwDMMwucBKDYZhGIZhGIZhGIZhqhJWajAMwzAMwzAMwzAMU5WwUoNhGIZhGIZhGIZhmKqElRoMwzAMwzAMwzAMw1QlrNRgGIZhGIZhGIZhGKYqYaUGwzAMwzAMwzAMwzBVCSs1GIZhGIZhGIZhGIapSlipwTAMwzAMwzAMwzBMVcJKDYZhGIZhGIZhGIZhqhJWajAMwzAMwzAMwzAMU5WwUoNhGIZhGIZhGIZhmKqElRoMwzAMwzAMwzAMw1QlrNRgGIZhGIZhGIZhGKYqYaUGwzAMwzAMwzAMwzBVCSs1GIZhGIZhGIZhGIapSlipwTAMwzAMwzAMwzBMVVJX7gIwtQURtQMw2f95DECyjMVhGIZhGIZhmLZOAkAff3+dEKKpnIXJFCKqA9C/BFkdFkK0liAfpkiwUoMpNJMBrCh3IRiGYRiGYRiGiTALwMpyFyJD+gPYV4J8hgDYX4J8mCLB7icMwzAMwzAMwzAMw1QlbKnBFJpjcmfqvB+ioX2vcpaFYXKH/D9E5S1HBSOE4PujIRBUnNh9P0QI/bQ2CNcfJl+4DjERiNttG82NJ7Bm0cfkz2Op4lYq32p3GXpT4bqux0Ur/qZpb8HSY8oLKzWYQhPModHQvhfadehbzrIwTP4Y/VJTiCaQd4zt3tomAhDe/4K6EtQR/1jsvn8Cd8wYJnv4vWFiUapFpM0WxO11lc5315vq0Jvqy10MpkJhpQbDMEwqhL5PIMBF2IGVESyj7QSLwM0yeGWjGVBkYEIhjL/wheZ0+0pFaMsdM+6YMgxTcETMPhQldBoi7Td/psoOJQiOU7gHQS4/1FqClRoMwzDZYmsHbYKT5TwSAGqkE1eLHdJUSqqUUJb7TE3WH6Z0EBHXISYt1vqRkb5a1VTbBimiboUMw5QPVmowDMMUAauVhgAEARChu4JNKLeFkSBPfqogGapiOxOBXiLGLQQpOtRtdH6LclCx9YepClihwZQMoSs5wronjN8e7OJSHKjeATmFu7Hk8kOqJVipwTAMUyrMDrPQXRJi4yFzk9lUVJQ7TLZuHjmmDQDC9QRO1XXIdCNiygN3TJl84PrDlIwYF0PzmPcz//YaYBcYhskGVmowDMOUCptAYtMzpBLS8xCUTHPa8E9uklKuHYqSrfzhW2loZWR3kIqBO6RMPkj3E4YpOaauoQhWfxFlf425r+aCkyA4icJdv5Nsu/eyFmGlBsMwTFtEmzoixh0mg7BcOhVClGjlD5ZXKhpWaDD5wEoxppaJWGkY7qvBalr+Ma2ttrTdtaAApHoCFVCpQQWcdJQpP6zUYBiGacuYq7tYzGrThqnzpWWwzyt/MBLumDL5wPWHaTOYhhu2dll1q7T8ZphahpUaDMMwTEiGLjLaKBCv/MHkAHdImXxg9xOmTWF+KuM+nZnGq0KcBMGpK6D7SS3dHIbn5mUYhmFygzukTD5w/WHyhesQwzAMA7ClBsMwDMMwZYKtNZh84PrDMG0HqgeogJYa/OmoLdhSg2EYhskJNv1m8oE7pAzDMAzDFAK21GAYhmFygjukTD5w/WHyhesQw7QdqMBzakQmW2WqGlZqMAzDMAxTFthag8kHrj8M03agRIGXdHX521FLsPsJwzAMkzVCCHY/YfKCO6QMwzAMwxQCttRgGIZhsoY7o0y+cB1i8oXrEMO0HRyH4BTQUsNJ8vejlmBLDYZhGCZr2FKDyReuQ0y+cP1hGIZhALbUYBiGYRiGYRiGYSoYcgjkFHBOjQKmxZQfVmowDMMwWcNm30y+cB1i8oXrEMMwDAOwUoNhGIbJAWn2zZ0KJle4DjH5wpPNMkzbgRIOKFG4mRMKmRZTfvhpMgzDMAzDMAzDMAxTlbClBsMwDJM1PDrK5AvXISZfuA4xTNvBSRR49ZMCpsWUH1ZqMAzDMFnDrgNMvnAdYvKF3U8Ypu1AVOCJQvnbUVOwUoNhGIZhGIZhGIZhCggR9QUw299m+Vsv//ADQoj7M0ijPYC3AbjBT2c0gC4AzgHYAuBZAD8UQhwqdPmrCVZqMAzDMFnDIxxMvnAdYvKF6xDDtB0oUViXEUoULKlUHMnnZCKaAuA1eEoMkx4A5vjbZ4noo0KI3+WTXzXDSg2GYRgma9h1gMkXrkNMvrD7CcMwVcQ+AJsALMzinK4IFRqvA3gCwEoAJwD0AfBOAB/14zxIROeEEE8XrMRVBCs1SkAhTI8yzOeLAL6QYfQFQohXCpEvwzAMwzAMwzBMsaAEgQpqqVESheiXAawAsEIIcYSIhgHYlcX5LoDfAfiSEGKj5fhzRPQ0gD8BSAD4HyIaLeSoQRuClRqlIS/TI4ZhmEqDR0eZfOE6xOQL1yGGYSoZIUSmg81x578B4I00cR4loj8CeBeAkQCmAXgzn3yrEVZqlJ5cTI9yYXKa49loCRmGYTTYdYDJF65DTL6w+wnDtB2IHJDjFDS9GuJleEoNwFNssFKDKQr5mh5ljRBifTHTZxiGYRiGYRiGKQXkFHhJ1wKmVQG0U/bdspWijLBSowTka3rEMAxTafDoKJMvXIeYfOE6xDAMAwCYr+xvLlspyggrNRiGYZisYdcBJl+4DjH5wu4nDNN2cBJU0CVdjbT6p/uWCCH2FyzzAkJEUwHc4v/cEDOhaM3DSg2GYRiGYRiGYRimrbIigzgVp0ElonYAfgxv5RMA+McyFqessFKjRiGi5wFcDm/d4tMANgJ4BsAPhRCn8kh3cJoo/XNNm2GY6oFHR5l84TrE5AvXIYZpO/CcGla+C2Cmv/+AEOKxchamnLBSo3a5QdnvA8/Xaj6AvyOi+4UQj+aY7r68S8YwTFExlycnImsYhIDIMSxuCXQCgrh57XNnpeZh9xMmX9j9hKkVIm00oLe76X4b7bL5O67NZgJmAThc7kJkAxH9A4CP+j9XAfhUGYtTdlipUXusA/AIgOUADgKoBzAWwH3wlpHtDuBhIrpNCPF0MQsy4OQONPWsw4V23YECLsHEMEx2CNefCNtXUACKgGOGyQ5ClmFQlR+Z7MuyKfsuBMi37hTgzi7DMAzTNgnaWdnuEgAYv4UR348CEf2NGlBqFHlJ18OVOmeGDSL6OIB/839uAfB2IcSFMhap7LBSo7b4thDii5bwZQB+4b8AP4Dnd/VjIholhLiUZR5D0hzvD98v7Z1rfoDeVK91Wlqdelxs6IzjnQZid58J2Nx/Js517JVlERim9rGNqthGJdOGSQEIANmEGjMskzjpzku3bypF/H1S3VUN5Uc6zPvACpHKh58Rky9ch5hKxWzDzTYqpZWR2lYGYcH/lN+2c9P8rmacAruMVOl4KxG9F8D3/J97ANwghDhWxiJVBKzUqCGEEKfTHP8hEc2EZ6o0EMA7Afw6yzxSajFtH2g1pN5tQbfGU+jWeAojT2zA9Zt/DxcOTnfshQ0D52D1ZQtwqX3XbIrEMFWPzexUOaiHu26oEMg2TFUmFKjcOXUq1HNSna9eQ4wiRO5r15zCPSbMljtD5YZdB5h84TrElAthtM2ma4gSMQxT2jRbO13oNpqpPYjodgC/gKeSOQTg+mqyMCkmrNRoe/wQof/VfGSp1CgGDlz0vHgM87Y/jrnbH0erU4/dvcbjpfF341TnAeUuHsOUHAHhm1ZYDtoEnnzC8qDonYk45Ue6/QzMbNm9pfxIn29+DgzDVDNBixPjKhJgfuvS/WY0iryka8VDRNcD+B28/vsJADcKIXaUt1SVAys12h7q2sWDylaKGAieNcfoY2sx6thaXKrvhLWD5+KNUbegub5juYvHMFmR08RcEXNTpljYng93sEsL328mH7j+MMUgq7bb6p4Z/I9hCgIRXQXgUQDtAJwF8DYhxIbylqqyYKVG26NkEsAfLv8kBrYm0bXpFLo2nkLfs/vR4+JRtG+5CEck0xaEAHRsuYA5u57FFbuexZGul+HpyR/AkW7DSlB6hikgtrkk1GNVKphX9Si7EPokpzJYiVK111YlVHX9YSoCrkNMITBXDVEO6Ps2F0imZLTVJV2JaBqAJwF0AnABwM1CiFVlLVQFwkqNtscEZf9gMTM60n0ETnfoaz1GwkXf03tw5c6nMezEJrRrvZRSyUEA+p/di/tf/ypOduyH5ye8F7v7TipKuRmmaJTAJaSUVH1ngizmwRZFB1Mc2P2EyQdeopIpBuFqYcaBTOeCYhgFIpoLYJQS1FvZH0VE96vxhRA/N84fCeBZeKtXAsA/AzhDRKk6QUeFEEdzLHLVwkqNtsfHlf1F5SqEIAdHegzHIzP+HADQruUiJhxYisv3vIzeFw7FKjgIQK+LR3DPym/jXLvueGn8u7F54OySlZthbKQVrm2dZ6YyiJukzVh9hTvexYHvK5MPXH+YYuCtFmYGsnVGuSnykq7F4qMAPhhz7Gp/U/m58XseAHWE+L8yyPNLAL6YQbyaokoXs2l7ENH9RCT87YuW45OJaJTlVDXOxwF8xP95GMCfCl/S3Giq74g3h12Hn8z/Cv7n+m9hybCFaHYaYuMTgK5Np3HHmv/Dx175R/Q5u690hWWYVEi3BtcN92tUoVHTI6XqsxMCQtmYwsD3kskHaenDMNkS+z1XVypJN8knwzAVBVtqlIB8TY8yZAaAHxPRywCeBrAO3sy4dQDGAXgfgBv9uEkAHxdCXMghn6JzsV03LJrwbiwe9y6MProGc7c+ir7n7Z4yBKDnxaP48Gtfwq7eE/HItI+juYEnFGXKhCoEtQEBqOZGSdNdD4/UFRR2P2HygRUaTH4I/7+Y1cb4u1RxVOOcGkKI+wHcn8f5P0fUeoOxwEqN0pCv6VGmJADc4G9xnADwESHEYznmUTKEk8DW/jOwtd/lGH58A65f/xv0vnTEGpcAjDi+AZ958a+wctgNeHnsXUABTdQYRpJSkM5iSVGmwkkxWRwvB1s4+D4y+cD1h8kdQqjYsLibMBVHNSo1mNLBvb7a4Sl4riU/BrAKwH4AlwA0wpsQ9GkAnwEwQgjxaLkKmRNE2NVnEn587Vfw2NQ/w5l23WOjJoSLK3Y9hz9/+XPode5A6crItE0MF4VadjWxwSOlTD5w/WHygd1PmEJhdTdhGKaqYEuNEpCv6ZGfxs+RwoLDn+X2p/5Wm5CDjYOuwOYBMzBj90uYt+WPaBCt1qhdm07jo69+AcuH3YiXJ9xT4oIybQIWgNrsKGlbve5Cw+4nTD5w3WHyg+fMqDbYUoNJBVtqMFWH69RhxYiF+Mn8r2BXr/Gx8QjAFbufxydf+hx6nD9UugIybQMWgNosPDpcOLhTyjBMeQi/PfxFZ5jqh5UaTNVypmMf/Hb2Z/Hk5PvR6LSPjdet8SQ+tvhfMHvH0yUsHcPUPty5Z/KB6w+TD+x+whQKdj+pDjxLDaeAGyvVawlWajDVDRHWDZmLH137VWzrOy0+GgQWbHkY71n2LcC1u6wwTHawANRWR9nb6nUXGr6PTD6w+wlTULguMUxVw0oNpia40L47Hp7xKbw47t1IRtbl8iAAw05swl+89P/Q7YJ9FRWGyRwWgNoqPDrMMAxTO/AXvTogh+AkCrexpUZtwUoNpnYgwooRC/HglX+Hs+17xEbr1HwOH1/8eUzc/0YJC8cwtQd37pl84PrD5AO7nzCFgt1PqgM5UWghN6Z2YKUGU3Mc6DEKP5v7L9jRZ1JsHEe4uHXtT3HT2p+XrmBMjcECUFs1/W6r111o+D4y+cDuJ0xB4brEMFUNKzWYmuRSQxf8fuZf4rVRt8XGIQDT9r+Ge5d8A3Dd0hWOqRFYAGqr8OgwwzAMw5SWwk4S6m1M7cBPk6ldyMFrY+7A41M/giQlYqNddmorPr7oH1HX2ljCwjFM9cOdeyYfuP4w+cDuJ0xB4brEMFUNKzWYmmfDoCvx0OzP4lJ9x9g4PS4dx6df+n/oevFYCUvGMNVNWzX9bqvXXWj4PjL5wO4nTEHhulTx8JwaTCpYqcG0Cfb1GotfXvmPONWxT2yc9q2X8LFF/4zBJ7aWsGQMw1QbPDrMMAzDMAxTObBSg2kznOzcH7+48h9xoPuI2Dh1Iol7l30Tw4+uK2HJGKY64c49kw9cf5h8YPcThmlbEBXYUoOtc2oKVmowbYpL7brgt7M/i709x8TGcSDw7pX/jTGHVpWwZAxTfbRVgaCtXneh4fvI5AO7nzBM24InCmVSwU+TaXM017XH72Z9Bjt7T4yNQxC4883vY+L+N0pYMoZhKoYUI8A8OswwDMMwDFM5sFKDaZO0Jtrh4Rmfxra+U2PjEIBb1/4U0/a8XLqCMdUFUXRrQ7SZzn0bfsbFpM3UH6YosPsJw7QtyCn0ZKHlviKmkPDjZNosyUQ9/nT5J7G5/4zYOATgbRt+jdk7ny1dwZiKhogiW1ulrV07P/PCwveRyQd2P2EYhmEkrNRg2jSuU4dHp30MGwbMjo1DABZs/j2m72aLDSYDWMhmGIZhmMqH2+uqgufUYFLBT5Np8wgngSenfhhb+02LjUMAFm78Nc+xwaSnDZlDs+k3kw9cf5h8YPcTpiCwayHD1ASs1GAYSIuNj2N3r3GxceQcG6MPry5dwZiqpS2I2jVn+q12kGrt2iqQmqs/TElh9xMmV9K5kLaF9rsqsc1jlu/G1Ays1GAYn2SiHg/P+DQOdB8RG4cA3Ln6+xh6bEPpCsZUF34jyU1lDcCCT9HhkXaGYSoGtf3mbxPDVBWs1GCKB5Vhy5OWuvb4/cy/xNEug2LjOBC4Z8V3MPDU9vwzZGqCyEhPGxkJaAsdUp4ctHjwSDuTD+x+whQcttarbKiQK5/UtnzWFqkrdwGY2qUcHQGhGg2mkHUEBChGC9LY0Bm/nf1Z3Lfk6+h58ag1jgMX9y39Jn4y94s42WVAPkVmagSrCashcAvUlgVHTXRIhQgFm1q4niqiJuoPUzLqks3oeukkujSeQn2yCXXJZtS5rWhJtENjfQc017VHU11HnO3QE62JhnIXl6lGiAAhaq6trhUKPbknTxRaW7BSg6kpNEWFvyss2g01nm2050L7bvjdrL/CB5b8Gzo2n7fmlRBJ3P/GV/G9Bf+OxoYu+ReeqV18QYmFpCqAO9olha01GBudGk9jyKlt6H9mD/qf2YM+5/ajU/O5jM4VIJzu2BvHugzC8c4DcbjbMOzpNQ5N9R2LXGqmJiBjyEvKh6oCnGGYioOVGkxtYWlv4iwytDhEEcuOM5374eGZf4H3Lv0m6txW63kNySZ89NUv4HsLvgHX4deJiaFGTaRrtUNai9dUidRq/WFyQLgYdGoHxhxZg+HHN6Dvuf05J0UQ6HHxGHpcPIYxR9YAAFxycKD7SOzoMxk7+07G0S6DuYPKBJjfIaEqMsJIJSwRYyNwGylgekztwL0whpFYvm0He47CE9M+ines/kHsaZ2bzuL+17+Cn179BYBN2RgbNWrSWs0d0uBZVPE1VDvVXH+YwtDz/CFM2f86xh9cjm6NJ4uWjyNcDDm1DUNObcO1W/+Io10GY82Qa7Bh0By24GDiqdG2m2FqEVZqMEwatgychZcvHseCzX+IjdP33AHctep/8IfZn/ECanNgnskH06QVqFkLjmpAexbcuS4bbK3R9iA3iTFH1mD63pcx7MTmrM9vrOuIxvqOaEnUI+nUo6G1CQ2tl9Cu9RLq3ZaM0uh7bj8WbnwQCzb/AZsHzMCK4QtxtOuQrMvCtAHUtpvb7LLCc2owqWClBsNkwPKRN6HHxaOYtndxbJxRx9bhhg0P4sWJ96Wcz4MVHm2HlJOH1oBwVEsd0lq5jmqiluoPk55EsgWTDryBOTufQY+Lx9LGb6zrgAM9RuJw16E40u0ynOzUH2c79EJzXfsgjlmH6lub0PPCIfQ5dwC9zx9E/zN7MfjUtlgX0nq3GZMPLMHkA0uwuf8MvDb6dhxPsfoZ0zaIdUdhGKZiYaUGw2QCEZ6fdB+6XTqB4cc2xEabsfslHOsyCGuHXuudZjFYzHSFFqZtUM1mrdXWIVXvdTXf91qh2uoPkxuO24qp+17FlTueQtfGUynjHu/UH1sGzMTO3hNxqPvwtHNVmXWopa4djnQbhiPdhgVh9a1NuOzkFow4th6jjqyJdXMZd3gVxh5ejU0DZuK10XfgZOf+mV0g03Zgd5SyQk5h58EgNtSoKVipwTAZ4jp1ePTyT+ADr34ldqlXAvC2db/C0a6X4XCPETFxUqzQwkqONgcLRqUjuNc2VyCmLLC1Rg0jBMYeXoX5W/4Y22YCwMWGzlg7+GpsHDgn6wk8Uy3PLmmpa4cdfadgR98peH7CezDs+CZM27cYo4+sQUIktbgEgQmHVmDs4dVYOuImLBl1Cy8Py4T4Fhv8xSoPRAWeKJTbnpqClRoMkwVN9R3xp1mfxvte+1e0SzZZ4zgQeO/Sb+L713/DvtSrbYUWQZFjbO5Y49ga0yp75lXXITXKWlVlr0Gqrv4wGdP37F7cuOFBDDm1PTbOoW7DsHLY9dg8YCaSifqc8slaPUkOdvediN19J6Jj0xlM27sYs3c+j/atF7VoCZHE1TuexIRDy/HcxPuwq8+knMrH1Bjm96rK2myGqWVYqcEwWXK8yyA8Ne0juHPV92LjNCSbcf+rX8YPFnw9sxVR0sll3G7WDCnn2SAAonpcI6qhQ2rey2ooc1uBn0X1oSqibFYS7Vou4Jotf8L0vYvgxDRce3qOxRujb8He3hOCTmI5asKl9t2xZMztWDXseszc9QJm7Xoe7VsvaXF6XDyGe1Z8GxsHzMJzE+9DY0PnMpSUKTexc2ywO0ppcZzCrjLIE4XWFKzUYJgc2DpgBt4YdQuu2v5kbJxul07i7hXfxu+v+GxOebCbShtE0W0whUF1OWEqD7bWqDLUZok000KMPbwKN254EJ2bzlpPPdB9BBaNuwv7eo2NpJUrhag/zfWd8MaYO7Bq+A2Ys/0pzNr1fMQtZcKhFRh8ajsen/Zn2NdrjJ95XtkytQC7ozBMxcBKDYbJkdfGvgP9zuzFyGPrYuMMP7YB8zb/Ea+Oe2f2GbCbClPhVEWHtNLL14apivrTlrG1Qf4/NU7nS6ewcP2vMPrIGmsypzr2waJxd2HLgBmV+T76RWpq6IRFE+7GhiFXYeG6X2LIyW1atK6Np/Depd/EktG34vVRt0E4CQCWVc64Sa55iMiTvWrAjbSaIKKCthnc/tQWbHfDMDkiyMHjl38MJzv2jY1DAK7c/iRGHl5TmEwpzcZUN4FZd3VQqQKBef+kIFSp5W2r8POofNR3J3iHlDZn3MHl+PDif7EqNFqcBiweeyd+Mv8r2DJwZlEUGsWoQ8e7DMKDV34OT025H5fqO2nHHAhcve1x3Lv0G+jceAqgNPeIqVkiz5xhmLLCSg2mJNSq4rqpviP+NPNTaHHiZ0cnAO9Y9X10bDxdlDKQ+s8idDJVRvAMqaJHgYQQFWslxC4n1UEl16FaQ1oTCIi0yvGgo5aiAWnXchG3vvkj3LH6h+jQcjFyfFu/qfjRgq9iyehbc54ENBOKVn/IwbrL5uGn87+E3b3GRQ4PPrUdH3jtq+h/erflXKRuk7l9ZpicIMcp+MbUDvw0maKharAdJzqS4Wm2q79lP951MF6YdG/KOHWiFR94/d8A1y18AeKEUkOo4pGEysX+bsRGLl3BqpU4hRDDtAViFRWAQ06kXUhliWHjsuOb8eFFX8DEA0sjxy40dMUjl38Cf5z5FzjXoVfRLrFUnG/fA7+b8zd4Zdy74JIuMndpOo173/h3jDu4InpinKJIURhpSg+GYdJCDhV8Y2oHVmowRSSdrwQZcauXtUPmYv2gOSnjdLt0Are/+cMSlQjsqlIrKAJvJY1pV5owzi4n1Qc/n8xQrRHU+Rsiczko2JUV+blFJJItWLDxt3jP0v9A18aTkeObBs7Cj6/9CrYMnFUypWIp6o8gB8tG3YxfXfUPON2xt3as3m3BHat/gKu3PAqILAYtuG1mGIYpKKzUYMqKamWfauQo061sUgERnpv8fpzo1D9ltHGHVmLy3ldLVKgoKV1VmMpE6dBU0mOqNNeBSro3TGZUWh2qVNSOu/rNNq0qMnEbyZVuF47hfW98DbN3PgcylCmNdR3w2PQ/w2OXf6LkS56Wsv4c6jECD8z9PPbI1VsU5m57DLes+SnITVrOTI/ZNrPCo4rRBVv9GH/v8oMoXNa1EBsr1WsKVmowZSYTa47Mt0wVJMWQElrq2uPRGZ9AixPvP0wAblr7C/Q4f6hg+WYFC0nVhykgcSNsh+8PU61k0Lxpbgs5uo3kyuhDq3H/q19C/zN7Isf29BqHn87/MjalsVSsFRobOuN3V3wWb142P3Js0oEleMeq7yGRbMk+YXZXqXoyciHlZ8cwRYOVGkyNkakCpDgc6zoEL058b8o4Dly87/WvwXFbi1aOnOC2tqJIOc9GBbiklEu4FjH7ALucVBu1+KyydhXJ0EqxHIpox23FdRsewjtX/S/at17SjrU6dXhxwj14aM7f4FyHnqUrlEE56o/r1OG5ye/H8xPvhWs8kDFH1uCu5d9Gg3G/8sai9OCBieqCbTQKQKHn0+A5NWoKVmowbZJM3V5ykSTfuuwabBh4Rco4HVsu4K7l38nrGgoFu6RUIaZLShlMWsvlOqBWS1JfZKbqqEX3k0pwFSkEXS6dwL1vfB2zdj0fOXaiU388MPfzWDliIUDlFSPLVn+IsHr49Xh41l9GVj8bdmIz7ln6LbRvPl/E/GFvt5nKw2+jyNZW1dj3j2HKCSs1mDZKpu4sdpeWlL1+f36N0x30CcXMpmvY8Y2YuvuVwl1SrthMnQ1hqdZGU2uONvx8uI4yJaXCXUUKwYij6/ChxV/CoNM7I8c2DrwCD8z7PI53HVyGklUeO/tNwe+u+Gs01XXQwgee3oX3Lvlm0RUbkXabv4cVA7ujFB4ip+AbUzvw02SYtKRyX7E3SM31HfDE9I9qpqkEXbFBABZu+DW6Xjxe6ALnT4beO6lm32eKSBtzP0nlcsJUL4WqQ7msDpIPlegqUgjITWLe5j/i7uXfRoeWC9qxVqcOz0x+Px6f/mdoqWtfphJGqYTO+/5eY/CbK/8fLjR00cL7ntuPdy/7LzS0XCxNQUrvccvkgl9nuS1jmMLCSg2GyQGb+4opPRzoORpLR9+in2ek4wgX973x74CbxVJw5UZpiQnELXO5SGXSChTdrLWUrgPsclKbCP9fvthcPgREVMGQx1bp7iL50qnxNN6z9Fu4avuTkWOnOvbBr67+R7w19NqKe+8qxX3pSLehePCqv8fZ9j208AFnduPu5d9BfWtjyctkupaygqOCYHeU3JDzYBRyY2oGVmowTE5EpV6bm8rro2/HoW7DUqbUtfEUbn7rp8Uvcp7EuqRwm1AyMp081Pq7hmAT68oh0qnMSlGAgikeTJcPx3HSWlRks9XyqPdlxzfhQ4u/hMtObokc29L/cjww719wpNvQMpSsujjZuT8evOrvIoqNwae2410r/gd1yebSFoitNSoKdkfJH3Kcgm9M7cBPkykJbcNNISppu04dHp/+MTQn9InEzLsx6cASjDy8piSlzJl0HQuftvGsK5tSPIFiKxXY5aRKsFSBzJUFhVM8cOctB4SLq7Y+jnuWfgudms9qh5KUwIsT3oNHZvw5muo7lqmA6ak0xeaZjn3w0Jy/xfl23bTwoSc2486V/1sZq55V1i1j2B2FYQoCKzWYoqGO6jsxwmsmHeJq7iQTAae79MfLE9+jh5vxANyx+gdoaC6R722hYZeUyqCELinFdj9RS88uJ+Uh8u2NsZDI1T2jFlc/qRY6Np3Fu5f9F+ZtfQSO8ZzPtu+JB6/6O6wccWPFv3OVWH9Ode6P3875G1xs6KyFjzi2Hjet/UXZXAzYHaVC8esDP4r0EFFBl3QthVKUiPoS0a1E9GUiepqIjhOR8Lef55DeTUT0RyLaT0RN/t8/EtFNRSh+VcFKDaZ4ZGMynEL5kalCpDLxCvnWZddie79pKWPWuy24d+k3SlKqQsEuKeWnZl1SDEUGu5yUHgrc6thSopYYfGIL7l/8JQw/vjFybEffyfjZNV/AwR4jy1Cy2uF4l0H47RWfRaNh5TJ5/+u4eutj5SmUKX8Z7TdTJtS2jp9DLXIEwOMAPg/gJgC9ckmEPH4I4GkAdwIYBKDB/3sngKeJ6IfUhl9mVmowlUEuftTquZUOEZ6Z+iFcrNdHbszxmn5n92H2jqdLV658YZeUqqHQT6AYgrBZRlZklB7zXRVA0ZQV/GxLjHAxZ/uTeO+Sb6JL02ntkAvConHvxB9m/SUaDQuDgmVf4I+QEJXnfqJytNtQ/H72X6HF0d1P5257DFP2vlqmUilkIl8xRSPjwQgmhAggp4Bbye/1PgDP5XjuVwF8zN9/E8B7Acz2/77ph38MwFfyKWA1w0oNpmrRGgTFlKxSRxAvtuuKFya/TwsjRDty8zc9jK6XTqAiCp0P7JJSfpReRKFrUsFcB1KUsRJNy2uFONeSfNxJsi4Du5+UjA7N53DX8v/G/M1/jLibnGvXDQ9d+f+wdNQtnqBfJPT+Q/7zqHhz/BVgPhalrS10dTzYYyQeu/zj2vLuAPC2db/A8KPrCptZnrB7SoXA38Ra48sAbgPQXwhxGYCPZ5sAEY0C8Dn/50oAVwshHhJCrBBCPARgrh8OAH9HRG3S1I6VGkxtkYGLSznNpzcPnI0tA2ZGiqziQOA9S76pWCPahK/KlTTYJaWCMM1aK9C8VRPfLC4nTHEgUMrvYxV8apgMGXRyG+5f/CWMPBbtRO/uPQE/v+aL2NdrbJ65ZKtM8M7Jb3OCvPPZ1LbWsQyO5PsibO8/Dc9Puk8Lc4SLd6z6Pvqc3ZdzugXHIjsF4UzpqOD2utwUdD4Nfys2QogvCCGeEEIcySOZvwZQ5+//hRDikpHHRQB/4f+sA/BXeeRVtbBSg2lbZGpuWazvHBGen/z+yARipl6+x8VjuHbD79IUskJJJ0P6sEtK8Ug5z4ZCPk8gH9cBbXTekga7JRSWlNYQZfy08HMuMsLF7O1P494l30DXxlP6IRBeHXMHfnfFX+Niu67RU5U6o1afVFVJaL5KmWz5U5j6k2k5c89rzbAFWDLyZi2sIdmEd674Ljo0n8s53aLCTXRJYXeUDHCcwm8Vjj9Hxh3+z81CiKW2eH64XJf7HW1xbo3Kf5pMTWBrGyutvYx0BJ3ijFZebNcVz09+v543ovdj1s5n0OfMHqOM6lY91hsB7JJSfgrkkpK160BMvsQjUkVHF5CVb12ZvxnsflI8OjSdw7tWfBcLNv8BjnC1Y+fbdcVDc/4Gb4y5HUKpG3GPQrYzcZYM0vKiHK9wKeqPrd3NxZJj8bg7sWHQHC2s+6XjuGPVDypjqVcTQsTyshrEjJqDv5FtneHwJgMFgEVp4srjgwEMK1aBKhVWajDFQ2n0HYsg4ASNZOW2kmlNs3Nky4BZad1QCMC7l34LcF0jNKrIqOBbCCAqGLFZaxkpkEtKtoMAmljmOFq+mViVMDlgmJIHiowq0oMy2TPiyFp8ePG/YNTRtyLH9vQah5/P+yL29h4fOaa1z4666lio2CiF9UXlkfqaUyk8NMUHJfD0lPtxoPsILfWhJzZjwcbflfiaMsS4XGs7zhSFUE7Kv72uFbJzcctsqwLUj/XmNHHV49GPfI3DSo0SQAVeozjDPN9DRM8S0SEiaiSi3UT0SyKak/7sghUi7SbUuMjcoqMseutCWqOS3Q3FnEysU/M53LLmx2mTq3hFfluUgyuMtI15MRQbcW4mfngVCRUVS+xItdHJqsT3jZ9/YalLNuHGdb/C3Su+g85NZ7VjAoTXR9+G3875G5xv1y0MF6TFinchqUwqo/5kruxJJurxp5mfwrl23bUUZu5+EZMrYUWUdKS5RHYrLSxV2AGvZvoT0eBUW5nKNUTZ358mrjpJz5DYWDVKXfooTAHIZ3KYrCCi9gB+D+BW49BQf7uXiL4ohKiIJX+0TzTZjaHjwoKm0xDqhRBF//ib5twyX28nszSkG8odq74fhDm+SKCWfsKBJVg97Doc6jkqpizaL78sahgLGUwG5KAZs75r3jqLkbgskBWHiGtJBXdATUrxrW4r9D+9G7e++SP0unA4cuxCQxc8Mf1j2N1nIoj00axqv/3VUofCIhIuduiBP838NO5d8u+oU9xOFq7/FY53GYRDPUZY06ho/OYjcCut/EdS3djaXXW/Ct6JnKACz4Ohr/a0IpMzCpd5xnRR9s+niXtB2S/O2twVDFtqlJ581ijOhJ8gVGi8DOAd8NYx/giAHfCe+ZeJ6KNFLEPmZGDNEbcFAwSGJls3m/XjlsBkLxc3lS0DZmFbv2l6Oma6AN61/NuGG4oZwzSHtZvEVtKoG6n/eBSiLOgd4uxNXNM+M3YzKT2V9ZqnhIh4To08cdxWXLntCbzv9X+zKjR29J2Cn137ZezpO9FoA9h0rrTo9/hwzxF4dsoHtRh1bivuWP19tG9O12+pHKxtOFehohHbhqrtdhVMfslkRXtlvzlN3CZlv0MRylLRsKVGafgyPA3gCiHEESIaBmBXoTMhovkA7vV/Pg7gTiFE0v+9gogeA7AKwGUAvkFEfxBCnC50OUqO/LDbTN39sDgXlqK0vbo1bxhmKwQRXpj8Pgw9vhkNycYgOEkJJIJHB3RsuYC3v/VTPD09F12ULJAwwiqoMyGLYz6QCipirSMFpMjKJNl2Ok03E1/4kpNCsjIjf2z3UUBUlZWGhOtDeuIGXvuf3oWb1j6AfpZlQVucBrw88R6sGXqtcnLtDaFXc/3ZMORq9D27H7N2PhuEdbt0Eres+SkenvVpcxS5srG14dx+l4yIgthvu2vtjS/0MqxGWrMARDXD5adR2W9IE7edsn8pNlaNUkVfzOqlQGsUZ8Ln/L9JAH+uKDRkOY4D+Dv/Zw941hslogitmzmabBthVi06EGq5YWq5ZSlNV5a8i6ho1eXH2BgMO9ehFxaNf5d2XkIkI3lP2v86+p3KRhdmjrpVmLRhDgyyQqMsmCM+1rk28tli8mFyJ+JyQgSHnKpTarCVRmboukVCQ7IJ1294CO9/7V+tCo1D3YbhgflfxJph1/kd49q1wqjeOuQ9j1fG3429vcZqR0YdfQuzdzyHqmgU49pwEbPPFBS1XbW13RTTHlctRN43rWCbdk8OCyH2p9rKdNXqms/pXEo6KfvVY/JVIFipUSMQUWcA1/s/n0/x8v0RgJxB7J3FLZPaqdddQoINJRCz8nBdKcYKLbb7sGb4dTjQY6QWz5w0lADcldINJZO8zedSWcKuVyd0c1buCJce67uax8YUnvAbqihKq+xWs/uJSfw7JJdSHXF0LT78yucxc9fzcIzeogvCG6Nvx6/n/hNOdh5QpmsoHbVQd4STwBOXfxwXGrpq4fO3PIzBJ7ca7XTli+zsjlJeuC2uSdT+XLrJStXJQaMa7xqn8r+QTKbMRmh2tCgukhCiGcBSeQ4R1RezULZvqBbmt9VhWInXOolTWChhmazQklve4SbIwbNTP4gkJYLDCQi0ku4h1qn5LG5c/8sCZm6GVRCWelJpRWSYYpJqZZNaoZYF7UL2ubtePI7bVv0Ady//NrpdOhE5frTLYPx67j/htXF3wnWqy7M45xUzqDbqz/n2PfD45R+HUF5sR7i4ffUP0KHpnBG7Sq5Xtd7gtpspFA4Vfqt8Nir749LEVY9vKkJZKhpWatQOuaxjXAdgdHGKE+oFbNZv4X7Y4sVbdMRYecToIzISj8yTUxRSbZOl9YZ5fiHcVE50uwzLR9+shdeJ1kja0/a8gj5nclXAmtJFnL1oGTHNWSuwiIxHLYyUVjI2N5Nqt85Qqb76E5bXXGzAht4+qe1c3BbGk1tDyyXM3/h7fPTlf8T4g8sjebQ6dVg87l34xTVfwCHD2q9a0NymDEvCVJtDTlbxPatLaO9MpSxBurfPBLw+5nYtrEvjady85ieAMEWUCn75zfZbwu4oDJMruwAc9Pfnp4l7jf/3AIDdxSpQpVJd6nwmFfmsY7wxLqIJpV+nuX+maXnpZRNbRwiypmEmKYTIb1pMSyFJSrH+MVW9kY+cvmTMbRh7YDl6XginX0lSHepEuOwbAbhr2X/i+wv/K/eMFMLLU65CACx5MOmohVHSqqLGbrd0P6mWeqRO2BkqIbJpxzK/TsdtxdQ9i3D11kfQMWY1jL29xuHZKR/Eqc5ZNbtFR3umZCgtrCfA3hHOIJ9szzHLYitboOgocRO4ZMztGHxyG4YdD0WykUfXYvrul/Dm8Ou1uETqLOQeldhuB/fX/yOEqLnvGFM6vEHOwo3HFzKtYiGEEET0KIBPAhhHRHOEEEvNeEQ0B6GlxqOi+kYN8qbynyaTKaVax3hfmi2TdZ4Lis1iwzS4gCVOoTMXgGc+moebSjLRgOem3a+F1YlWNCf0CY+7NJ3GvI2/zyGHVNisOCpM+qiw4jBMoWlrckjpFRrprS0yscIIFdhxlm9x++mK52L0oVX40Cufx43rf2VVaDTWd8TTUz+Eh678XMkVGpnUT+tcCqluQR6GBznXH1ueZW5fBDl44vKP43y7blr4tRt/i17nDhixC1DXSolpfVmhxWSYCuXbAOTo5v8QkbZcq//7f/yfrX78NgdbatQOFbiOcXFbLZsiwxZHWnTocfylXg35LOPlryyZk5qY77YShGTRUdnXezzWD7kak/a9HoQ1JJsjZbtix9N4c/j1ON+hZ54r9ZknqiWvjA6WaZ4MlG80jQmpplH2asF0OfH+VOM9Tv9RKlX9US0sdGsLwHMJ0T/p8ftxZS2AYkO4GHNoFa7a9jj6WlY0Abylvt8ctgBvjLkDjQ3ZjkdkifL4YpcLTlU/bZdb4EddMEsf4zGZ1gVmG2Ntewq0dubFdl3x9LSP4O5l/xmE1bstuHX1D/GruZ9HMqFOg2bWrwpsDOOKWIFFZaqAQs+DUYI5NYhoLoBRSlBvZX8UEd2vxhdC/NxMQwixlYj+A8DfA5gJ4HUi+jqAHQBGwlvZcrof/ZtCiG0Fu4AqgpUatUOp1jEekuZ4f0hrDdWKQcQIRVmTfUtonXfD5rpSRDeVbNNcNOHdGHVoNdq3ho+nsa4jOrReDH47ELhr+X/h59d+peDyTLxLCgqbUabYqg4LRWWHFRqFx+xAVus9VpUHgHodYe/PUzrLY2qvsEA9xCBvWzmCkILlkwt1yWZM3P8GZu54Fr0uHI6Nt7X/5Vg0/u6SWWao9VCuZiH3c3EVKQYlU6qaYxhmgIBm95yvwn1X38lYOfwGzNz1QhDW7+w+zNvyR7wy4Z74YhrtdjW4owBtzzqNaXN8FMAHY45d7W8qP4+J+08A+gL4MDwFxkOWOD8B8M/ZF7E2YKVG7VCSdYzTrdNsChgE8sRTKb0iHF0xz7OF+XlqKRa6kQ6KZg7OFCAbbeUUITIW1S+274ZXJ9yFG9eGK510aL2IFqcB9W5oiNPn7H5M3r0I64bNL9JAjW2oqsJGhCqsOAyTLWrnrDqsMsIvWZwVROQMYbYPqmK5nIqGwipQMqXbhaOYsncxpu5dFDtnBgAc7jYML0+4B/t6p5v0PkcytMgQMBQI1VBNi00qI0fb7yxYNP7dGHp8E/oobiezdzyDXX0mYU+fiRkUzJxzowIbSZsuk2FSQOSAnLY1p4ZECOEC+AgRPQzgYwBmwbP6OA5vMPmHQoiny1jEssNKjdrBXMd4ZYq4JVnHWB/M0aVd2+hK3IgLERltnSJBpyTeNtTmuqK6qYRx7P7XmaKlmMYlxRx1emvYAkze8yr6n9mtxHEjc6rduP5X2DT4CrTWqR5I+ZJKWktd7pLDglDZKPuzrxEq1+UkvfIiUMaQ/l3NxFVDV3RUwvUWl7rWJow6sgaT9r2G4cc2wGzZVI53HoglY27DpoGzgUII3jHKC80iQ1GsWefFsP0uIxUz0Wyc+4pyLBicybC9Sibq8cTlH8f7X/0y6txwovC3r/kJfnrtV9Fc3zFtQcLJRL3fdmvLEiv14kQLbseZTLBNopdvekVGCHE/gPsLmN5TAJ4qVHq1BCs1aodc1jFuBbC9OMWB4X5CMd+OzBp666mWBK3JCGkbmjqTVG4qkeOZupVksHKKl5yA4ziaVYogB89P/QDet/grgfDbIFpxvqErOjefDeLVua24c8X/4g9X/W14rlqyAgkLdpcU4Wu6Sy+RsBlr+Sl7Z6KKMTtjlT4Krq/2UZiebluoP3XJZgw9vhFjDq7EmMOr0K61MWX8o10GY8mY27BlwMzCKDMsVKo7SbZUhEIjQ8xyZuKicqzrECwafzeu3/CbIKxr4ylct+EhPDPtw5nkavwWoWVqbJwywRaXDMPkCSs1aocV8CYIbYC3jvG/2yIRUQOAOfIcIUS6SUXzIvSZjobpEeE3aLZRg9xGEgg2C4/sWk21rFq5lf50zv1oY9hTRDIBDnUfjreGXYtpu18Owjo3n0WSEkiIZBA27Nh6XHZ0Pfb2neSnqeaDAgsLqq2oKg2XafTHZmkLsIDEVDbG6G5g3l/2eqtaZ6jKaJFGOV0hnaMKoMvFExh+bD2GH12H4cfWoyHZlPacnX0mYcXIm7Cn94T8Rg/jLDJIcS0h5ViVKjQAVHeZM3zPVw2/ASOPvKUt8zpl36vYMmAmdvWbknX24Yo9IvhdJXohhvEnCi2gsrcEE4UypYOVGjWCEOIcEb0I4O0AbiCiwTHzX7wTQFd//0/FLJM+w7z9mCaVkPe/qJIg7qMTHekIPEZUpYPFjzsb1xXbTPhWC45crTdURYalXIvH34XRB1eiU3M4bcql+o7o1HxOk0dvX/k9fPem70Y/+AXrJMXZjUYzKYmgZHmsPLN6aammkdJKI9a9pCy30+5moq4OElK4AtZC/XHcVvQ9uxcDTu3CgNM7MfDUDvS8cCSjcxvrO2L94Kvw1tBrcaLLoIKUx5zgU7pD2CzbqgqKvjHBnF1KmM29M1U9K5c6znTvsbqnCADk4JmpH8KHFn1es/K5ae3P8dNrv4omqxtKXJ7aL+VdL6M7CqJWl2xxyTBMLrBSo0rwl/z5mf/zS0KIL1qi/Qc8pUYdgP8loncKEQ7nE1FvAF/3f54G8ONilTcfMpdxLe4nQkQ8TfJzXbH/sLqqBIKkVqD4tNXixCRMRGhq6IRFE9+Nm9/8SRDeufkczrXrji5Np4OwDi0Xcd36X+OlKe9PIcBl59ebCTbLm2rvqDCZwc85dyp1lRPPzcSmMSxOXtWC47ai+4Vj6HHxCHqcP4IeF46g35k96Ht2rzbnQTpcEPb0noCNg6/ElgEz0VrXLv1JmaAqL0rz+LLG05HpFoqR/ZQJGC4cFmVFxL1TCH1iQSOvcE8UZHLwfPCUNFHh5WzH3nhlwj1429oHgkNdGk9hwYbf4JlpH8kqB+0XhdYacXFKQppxK4YJqMI5NZjSwUqNElCINYozQQjxEhE9BOA9AG4H8DwRfRvAQQCT4S0HdJkf/e+FEKdyySensiEzp5KcxghsJ+TpchG6rmTvx5G3m4qyUor8vWHIXEzdswiDToZToLRrvgAXBEcp0/RdL2H5qJtxvmMvvdgStVwFEhhMc1YZVta2ooDXxzDFwBx3Lr3VQpybifn+Fn7k1nFb0e3CMXS/cBR1bgtcx4GAA9dJwKVwX4DCMHLgkgOXEl6YH6c1UQ+X6rz4RBDkeApm7YJcOMIFCQFHuHBEEvXJJtS3NqEu2eztJ5vRruUSOjafQ8fms+jYdBYdm7z9rpdOouvF49q3NhtcEA70HINt/adj86DZON++R4HupI9NiVGBsrpQrS1sJpCFxOb7GpOX91S9RqOcjlQCQmu7VMXnW5fNx5iDKzH8+IYg/pR9r2HrgJnY2W9qbvmFQkaQadnbboZhmBxhpUZpKNQaxZnwYXjuJTcDWOBvKi6ArwghfphHHhmhjvjF6R0yCQOiJqVxHQDbZHt2ZUJ0Is3AClO1hEy78ko6NxXjL2Ku0SJ4kVpwx8FLU96H973yJYSThrbgWJeB6HPuYBgNAu9c9m38YsFXbLmEFKjDbzNLt5u0yt/FlZZSzjrPFJxacB8oKeYrQFHT65IVpVRuJq6L8QeXYdzBFeh/Zjc6NZ4GBXZtxcM2zU4puVTfCbv7TMTuPhOxo980XGzXNf1JcZDxbYuJUyzU9zyjr3iKdr+QPWbr6ic5KEtU6w7bGdm6tOSCKbsI4Ss0gopMeGbqh/DhRf+suaG8be0D+Ensaijp8tR+pWi7GaZCcAq7pGtB5+dgyg4rNWoMIcQlALcQ0b3wlhCaCqA7gCMAXgXwXSHEktKUpnBmYqZJaSr/WG8ntauITdwKRkm0hOyCWeZNviyv8ivHuTeO9BiBdUOvwZQ9i4KwPucOorG+I9q3XAzC+p7dh3H73sDmIVdZkoy57owKZC2kJY8wPatCqJikyoLltILDCo3s0FxOqLz3r9huJn3O7MM1m3+PYcc2apMal4py18z61kaMOLoOlx3fhKu3PIrWRD1anXok/b/efp3316nXjyfqkaRwvzVhxHHqomHBsXrfeiVRlCF3B8jMhaQEdbtgioU0aaR1aVHKUyhsq6Wc69QLL094D25a+/MgvEvjKVyz+WG8MPn9ueRi5GlzRyk9PMcGEws5KOiqUEVaYYopD6zUKAGFWKPYd0n5eRbxHwTwYD55FhLTfzybMA3r0imW8Lh41jSDzPWwjE7PLGKhVk55dcJdGHNgBdq3hkqMCw1d0K7lomZ1/La3HsDmQbMBJ+YVV29xgV1SbCatXniZR/ULdH0MUyjK/U4Uw82kz5k9uHX1/6H3+YNlVyyUkzqRRF3rJRRoxoyccMlB0qmDSwkknUToukMJL9xJIBmE1XlxgrDwvCQlIJxE4NrjOgkAFLgEqW4/QZgT/hZ+HOlGFIaH8QNLPyColKFbCMIJvwXQvuUC6lsbUd96CfVuK5rqO+JSfWdcbNcFF9t3x7EuA9HS0KnwN9R0abG4ihZcI2DIJ2uHXoOxh1Zg+LHQDWX67pexcdAcHOw5Oq+s4trusiGLYZNXGIZhDFipwRQN3f3EMqKfYRhgtGNxnQDTZUMTjGRC8S1ipHNBxgiBpvSwjHBm7JJC0eOqWWtsCYFL7brijXHvwHXrQ31VrwtHcLzzAPQ+fygIa0g24eY3f4KnZnw8RWoGRRYWyj6qz8JQwSl3p7zaiFhHlOXWFcfNpEPjWbxj5f9g8KntWaVYzjkMah1HuHCSRV21vWJJkoPGhs4416EnDncfjm0DZ+BQz1E5uWmktECxyB02i9F8IUWR8vzU+3H/y/+EBv/ZEgTetvYBPHDNF+HGDWRklIf2yyh+CRtQU7yKilZMW4WosMuwsvxSU7BSgykeBG2UgciY2RueEsMMsyelxAssQSlqlmibZ0NYcshwRCXwIxb6BF5kGcgQQZrqwWhE2zdUyHjpikSENSNvwNQ9r6CXMpdGh8azSFJCM/OesH8Jlo2+FSe6pl4qMLiPqYudMfZbWyEjP0xBYYVGejTFj/pNLCnhkGcxntmU3S/jxvW/TulmkiQHZzr2wb6eY7Cnz0Sc7NQPpzv2RXNDR8B1AbhICBeOm/Qn9fT3EYY5IumHu3BEKxJuKxIiiUSyFQnRCsf1w/zwMC0BQMARSSTcVjgi6bkQAHDcJOpEK+qSLUi4LahzW5FItqDO9TZvv9U7loyGlcO1hklPQrjo1HQWnZrOov/p3Zi2+2UIAOc69MSePhOxfeAM7Ok7Ca2Jhvwzi1mBRSiNoVVeyZEznfrg9bF3YsHG3wZhfc4dwBXbn8KSMbfnkXJluqMwDMNkAis1mKJBIDjkhB1mP8xs3KV1Rjrlhm1CPZvfqfJDOdfHcUJzUXM2z1R5k563ek2mBYfXfVDTtkU0kdoSI5plKnLXqcNLU96Hu1//RhDWqfUC9vUcgyEnt4ZFAXDnsu/gxzd+A+nI+PoyJCyyt75uuEKKmWAJx2lZr8KUG+G72JVBGRTmWbh3rq61Efcs+SYGnt4ZO/fQqY59sWrEQrw5dEH8pGyOA8BBEkAyUZCiGeUQWjuT1b6plIJuUUhuMlRwqIoPXykSKEuSLUi4rfpxTUmixosek+ebx+rdlsLfsBqFAHS9dBKT976KyXtfRYtTj939JmP7gBnYNnAmmus7FCgjCpRmmsWo4q6S7xu4asRCjD+wFP3P7AnCrtz2OLYMnIWTnQfkmXpIRSk0TKsN1qm3OYgcUAHnwShkWkz5YaUGUzQC15MUq5SoSohAULQ1osGhNIoPxbUjNrk83VS8Uywm5MoSJ0FQhm4qauusuaTYygZgT99J2DZgBkYfWhWEDTy1A+fadUeXptNBWI+LRzFl98tYO2xByuuJpSCTh6bSJhRfKuEVUYoHu5+kh4gAsitli5xzcVYz8elx7hDe/9pX0L71UuSYAHCyU388Mf3PcKTHCLNYVuVBMdGUELnsU/Ajgkgk0JJIoKVcs2cIESo7pJVJshkJkQS5rUgIFwk36Vm2BJYwvsWKm/QtWloDS5iE6/0Owv04FCyL61m+kLSmES48KxjjmBHmwDxXaGkCQMemM+jUeCajpXM92xtvTg6ZX7Y1qd5twehDqzH60Grc8NYD2Dx4DtYNX4BD3UfobiS5EGO9EQ58yAvJLReRSODZaR/C+xd9KbhfdW4r3rb2Afzmys+hMBMgUjjxd6DkC0pQgPQzLoX6Qx90YRiG8WGlBlMS4oRXq0BrExylCWc6d5V0DV3QPqdxUynQhF9xo5eReFaXlNQnvTL5vRh+ZC3q/JG6hEjiZOd+6Nx0Wsv3unW/wfrL5uXla1vVpKoTrNvIC1Zo2DFH98t3n4qT78jDb+IdK7+LhN8ZVWlKtMPjl38CO/tPiy+OxeKhYqn0IhIhmfBWP0k5e0aalcNywmJJaMkybZ49zx7A21b+H7o0no6Nc7ZDL+wYeDkO9BqDQz1H4VzHnp5UoaSdSLag88UTGHJsEwae3I7eZ/ah+/nDVsWbSX2yGZP3LMbkPYtxrOtgvDnyRmwYMhfJRH3aczPCvAcFkC+Odh+GVSPfhlk7ngnChpzYgkn738D6IXPzTt/DfHZlaDTjqg+3320PB4WdU4MNNWqKNtrLYUoCAeRQuN66DLb4lsb6m+qDBP5uCosO7dRQERLgeUOkd1OJsZDISBDJ2M0hXcSw3L7XjBb/TKe+WDVyIa7Y9mQQNvTEFuzvOQqDT24PwurdZtz05k/w5IyPZy+fF8hlQ5fnVJcUlTIJS2XyhmHaCGV0OSko/rsxc8fTWLDxd9auzq4+k/DHKz4D4dTbX6MqvwVVAxVWXaR/FpVfiktTOP+UaSGUKmGBGduewtUb/oA6tzVy2AVh65A5WDdsPvb1GR+1PjAakWSiHme69MeZLv2xfkRondj93CGMOrASY/cvQ58ze9NagvQ5ux8L3/wZrtz8KFaMuQXrhl2L1kSDMtYRnp+rbiK4RapLrJFoJs3R6+PuxOhDK9H94vEgbP7G32H7gMvRqE6KWotuG+yOwjCMAis1mOLhkCdcpXA/USUCMhUJquxkS5+UeMGuxZ0FxnHKwk3FKGNE2WEpv1puc3JTNQ0jolZKLZpymilALRt7GybvWYyOzeeCsPqWRrQ6dZqQOGH/Erwx7k6c7twvUm4bGV9LxqRzSSnTkIuZLQtFWcHuJ3YiLiely7mok7lfsfUJXLPl4chVuXDw1PSPYtNlV2WVHtefHMhUYVGk+xq645AWKrPMNNu61ka8bdWPMXb/MuvxLYNmY8mEd+Jkiomu5WBIujp0ussArBx3G1aOuw2dLp3G5F0vYcrOF9G56WzK87pcOonr3volrtj8KFaOuQVrRt6IZKI+uoKZooTIGGNFFdsKKhH5w0JLXTu8MOX9uGvpfwVhnZrPYd6mh/H8lPcjUrA8q0VY7PK5owQU8LqYKoGcArlWKekxNQM/TaZoSAEn1QZ1k+fJTYtLkU07IdiN/rMXLrqRQ9by2AuuHEuVtrWMcktTxgxoru+I1ye8Swvrd24/tve/PFKkdyz/7+wzsF1LLVGr11UiuEOqYBOwi/T+pO7nFDBTJZ8rtz5qVWg0J9rhF9d+IWuFBsD1J2cyalwzI5OuKBk/vDY45yzR9cIxvOeVr1gVGic798dD8z+PJ+f8BU50CRUaVkNOEa1DZjzz94UO3bF0wjvx45u/gyeu+DQOm3O+WOjUdBbz1/0GH3z+7zHqwEoQhFWOUccCsibXmwlgV7+p2Ga0+dN2v4z+p3f5aedSoDhiBLdywJ+Ptkcm375sN6ZmYKUGUzS8lU4cv9MebQiFjANFUZHFRk50i1NWyM0hB45fJvlP/S2PO+TY0wuuTSpeYsou46mKGFsZw4gIpKJAE51KO0JwHC/ddcPm43gXfTRr8MmtON+uuxbW++x+jDmwTMmvMEYXmSzJm3WiRUZTewXPDxUhpzHVSZxLWzHQ5TBV2ZtjgjHWbnL/iq2PY+7WRyKvxrn2PfCDhd/CsW5Dc8yYicWiyKdMrTQsiNhfpiso7PkGgwmU13QQvc/sxXtf/iL6ntlrlIiwcvTN+NUN/4aDvcdC1mv5UVb3bWHkt5lmPNt5AMF16rF18Bw8uOBLeGzOZ3Cyc/+0Ze9+4ShuX/od3PXq19D79B71rmn5OYXsLymJpLrtL02+Fy3K8rQEgRvX/hKO7xoUK3sU7FullLPY3z+j/ea2m2EYgJUaTDGRjbEicKuWF44mqFEQZtvIloalY2oVwtIoRLwiRhUYUWHSkqa8TjJUN7Z4JsZcHpm0zaHAGf4WTgKLJr9Xi9e58TR29Z0UGTx+25s/A7luUEYnC221/T4o9y5Loo8lRoNUDGxyLpM1vIpMiPo+RKzJip87ClWRCeF1OORg4v43cM2WP0ZSPtOhF/7v+q+jqaFzznm12fqTor3SlBcx7VcBCqC0w05EaRGXbeZFsCsS+p/cgXcv+ld0Mtw+Gus74pGr/xavTr0Pybp26e+N8Y6pf7PeHAfbB8/GAwu/gecv/wjOt++W9u5ddmwT3vfi5zFv3W9Ql2xO2ZapzzObJ2fKE1Cu18bZjr2xZMztWtiA07swZc+iaOQCu6OY1130b19c291GPydtCscp/MbUDPw0mRIhPUQjmoPMtgDSd1NttmgpBTJK+U9L19agZiv5ZdnuC8S32bv7T8GuvpO1sHEHl+Ngz1FaWPvWS1iw/sH8BOSC9Z+iD62k/cA0CP8fE0+bdx+wLmWEoijJCt7/j+vYKN+4wSc24eY3fxy5nNMd++DHN3wdbl0D8qHa6o+mhMlkPxX5aw7sZYzLLosipExfuT67UsquYBhybBPuevXf0b7lohb7RJeB+M11X8buAdNSZxxTlkLUIQIAJ4H1I67DLxZ+E+uHzU97jgOBWVufwvte+CcMPL41mqZ5T7PWasQ8FLlvufcrRt2EE4bFybyNf0AHc+6Qgr52cRqGMiBvDbfbDNMmYaUGUzQI8KwhSAo4fvvsUFpZLrKpbibkgAwXktBiwwm3dO4ecvTDIcAvU6q2mWQgGeoPOYKSql1XhJKsXFLCGwC7Kw+Cv4smvxeukkB9shlnO/SEa0yENH3nC+jQaJkgzS9jIcSBXEdg9dPKKyAFyiyWj5gKQO+7qR3G3NITEVMx+W32tu7nD+PdS/4DZLwAZzr0wk+u/1rBloguhbVGnLNFtvsayug5OYq1g6NbPtgsMAr2ZbMUznxeYftrWjikK4X9yvUmynSTtGtG+p/Yhne8/h9oaG3Uwvf3HoeHrvsSTncZkKYspaOpoROen/kxPDzv73GmY++08XueP4x7Fn0V1771K9S1NqWIKRX34Xubzbur3WUib4RZSUQAcJ06vDDlA9p5HVouYN6mP3ppGLKHVe4oijtKaRtRKrPswBQR6Z5dyI2pGfhpMkUjEO4cR99sYdpxb9MUD4FAqAhlvjJCj6f+zNB81Sp42uJF09RkOYuiQxNklfxMacZeNuVaYBNBw1VSiAgnuw/BuuELtBjjDqzAhiH6BH4OBO5QJg01haVsXFJin30e54aUXhCKKKq8A0wMbdZ9wEbJ60l+o6PaNw2kvbNOazPet/jLSIikds6l+o746XX/WlCFRtpvRYbf8VSbU6j9iMIChvI5g012RguBkkzY5mXuTpJdRobSIrbt1GtkrzP7cedr30R9Uu/w7+o3BX+a+zk013eUjU/WGzlOzuema2D39puMXy78OtYOvy6DuyNw+fZnce/LX0DPswfscSL33lByRIuQMgH1HLXd3tt3IjYNmq2dOmXPIvQ9syc+7aKsImJZGa5ImG03wzBtE1ZqMEUjnUIgXsmAIH40UUQFEIqLYNnscpkvnEY34ejlMUUPbUQgZdYWSTKu8U0h3di6kGrYkgnvRFNdeyUpgS4XT+JSfSftnEEntmLAiW1hOeKk3RLLB/otKXXmaTYfNm0NafMCpHr5RagWJdEZWb43977+NXQw3ARanHr8/NqvoFX5vgD5uWRkXH/y7rQWaSvVNyrDihBbzNSJx4RGTwyUJsG/uBS9NLteOIZ3vvrvaN9yQTu+bdAsPH7VZ9Fa1y64hTndfjkJZr6PMYaWuvZ4ccZH8PSsT6Il0S7NfQR6nz2A+176F0zYvTiDZdPt8kdWn9SYC3ll4nvQbEwaet26X8eXqSjVuIRtQ5p2m9vsGoIoHNAsxNbWZZgag5UaTPEgaAoNTVmRohHSRtgcJzKRmXbM30LXFIvQYnFdsfZWjbID/gviJyStQ8wVV2wrqsSlJ3eDLVDkZCaBhveOIE3nlPEaXGzfHSvG3qqdM+z4RqweuTAyGHPriu+lzCtS8JjyBFsqVxogw06f+gz10caUz6uEEIhdUtoy5ouk1tUC109TyadZCOSduD342nUPYoBcCtLHBeHBq/8B5zv2ApCi+vtWCN73IDOXDJhhQOR3m8d/4LZvo/6NTEXMU4u4/Hlb0K6oVpMpktFTIbRrvoA7X/06Ojee0o7t6j8VT17xF0jWNWjuTrlSkLW3Im2Yvm0eNhe/uf7LOJmBm0x9shk3rfoRblr5f6hP6Y4SKUWwmYoaSabXer5DTywbrcsBQ05sxdiDK/Qcjfa7EM2sfuvi2m52R2FyRJF9C7Nx3aglWKnBFI04Cw1bWMrNokgwhSFNeLa5u2S7QUkbYXMcae8tHRzr9SkdEqvmJeb+RTeEf82y+AVaPeomnG/fQwsddXg1jncdrIV1u3QCU3a+lPohFnKoOOO2I9UdrxBtAreDANj9BPBf35Lp3ArR60DkGycZeehNzNz5nBYmADw39YM40mN4mITyTdJcMiDvR8x3ztgEZDuhbOpcASm+j7VIRKFjVVzEKO+zvk1BY6Vt0bYrRY0LDhppQODmZd9Fz/OHtOgHe43Bk1f9FVBXl1l507TTUXcgu9Is25sTvbeee+dvrv8qthmuHXFM2Psa3vvyF9H14nHjI5FZnhL1E5vuKsLHQVg1+u04bcwJcu2Gh9LM+yEzTR8lg1Kg7G03N08M06ZgpQZTNFTFQzYbCF7NVJUEUilgsYbIOu1Im2sJ9OOmHb0gdTfFP1s/PRs5K0V8s91urWuHNya8Uwvrd3oPNlx2dSTugvUPAm5rinzbTociU9iUNSSfEdaqxZDTC63XKVR61noapysE0NB8Abev/F7kM7Np8BysG3at/qyFn7q1Z515naj5+pPtw8xMF5Qu0/jEjX2vXbS7k8StciIs+Zvlm7f2Nxh2ZK0W53i3IXh03t96LifZkK1SLO5mFaCutTR0wJNX/SVWjrklo/i9z+7HvS/+CwYf26KFZ1Mrsiq2ct2tde2waOJ7tMNdL53E7O1PZ5BOFnlmXrhiZ6CkTqXIhikHmXwgs92YmoGVGkzRICIkEgnNTSRwF0mlfHCUv3JLGH/jrDas+gl9ZCdSllhLEE+zYltRxbalH9JCqKAJlB3GtRIFFiaZfnDD6yZIk7oNQ6/B8S6DtHjTd76I7f2na2H1yWbc+NYvItlotzDNiFemo/VVrQzQRsuIR4DaGubzVr8rBZac9VdMfiOyl700wd5X0KrWbSbvef3rqHNbtLCTnfrhyekfCwumfqezK04slW7tI2J/ZbBGinKvw09ojMI9Xwsca1FsDWIqd5KYuU+C9i1sC+Lq0/jdizFj65Na2IV2XfHIvM+hqV2XoO5kZjGZweWmm7tC3eLuvXI/0tZGcvDatPvw0vT74VreJXO1sY7N5/Cuxf+GSbsXBW207gKbvuS5fgO2DpyJvb3HaWGztz+FLhdP2HM05LBCVEm9/1jAep4yU0XOMmVDhmFqFlZqMEVDNiQ2BYCTcOAk7EqClEoQ2ASfDISjbDdrmhahKMPymMqViAImuGnWG6nd0/hyhckJJ4HXJt2jJdPt4nEc6jUaSUpo4ZN3L0LHxtPRPM0t1XM2fsddf65Cha1DUFIpxcyGhSMAld8hLRYk/1eSKkgITdeyO039HqXiiq2Po9/ZvVpYq1OPX17zL6BEQumIIqNvQqZktPpJBUFQv7eqcj4DNwijc2pu+S+KIpUWyl9FEaEqCmKrrXaO7ZpSP/pep/fi+lU/0cKSTgJPXv1ZXOjU239vyO5iFLeluuJMblgGeahKDydyzfayrB29EE9c9Vm0KBNyAoAjXDQbk4omRBILV/0I17z1a5Bww/ugpa0/lehtUOsQZfTpISK8NPm+yFLv12z8ffr7piWUXfToySVur8uYLVNkHKfwG1Mz8NNkika6Tr1VGZDun6kMUOX9mDzSNWzWsvijFLoFhpmxKjjay6OVyyiA+Tv7Gxx/TYIIOwdMx35zlGbrk1g1+iYtzIHAbUv/J3OBOhvJu2ACheXeM2WnmjqkhaTQqpyi6YYyeFV6nDuAuZv+qJcHwOMzPoHmhk66m0mu712+q5+UEbWE8ioy7Y9n0T9PSeyiMkYpNQVL8M+WYMwFqtcXY0wQp8isa23ELUv+G3VJ3drnpZkfxaG+4wCiohi4FaQOZfrgjLx2DpqBP87/RzTVd9DCG5JNuNSgrzgGADO3PYWbVvwAjtuqtGTmU/L2I8ZhER2IlKtSX9fx7kOxdvgCLXjCgaXof2pnihPl6cV8P8v37le11SjDMLGwUoMpHkan3tYvTevGYYknVxtRN9MNxVRQpNxilCzSQkSzFrGeq7inpOlFEChyX7zRIWWVF1seWbqkOADgOFg8+b1aePuWCyBX4FJDZy180MltGHB8a2bPVcQbZKc/10yqsoULU6GWiZKMqT2E7n9UcPRX2u/qEOXeEc7gPPnu3b3kW3CMF3PrgJnYMWhmMCKcMp3YX+o9I22XNAV0jGKZ1Pug75dzK8eLH94+tQx+Z9h0J1GJcS2R9VlA6G1scI3QvvOxX2k/XyLCgjcfQM9zB7XDb41eiI0jFijRVQVBqOzP63mkqD/ZpJHqsWriiKHsONR7DP54zT+gsb6jdk6H5gs416FnJK3xe1/H7W/8J+paG6330tviZIno+5VJE/r6+HdFyrdg/UPh3DgpMOWowrV95Wv703/VmIpFe08KtDE1Ays1mKJhcyNJObdGtu4nFpeVbJQWmQuxWUAUCD7aZhPcLGNp1sbWVgSlXLaOgRzBOdJ7FLYas7VP3/k8Fk16T2Sw7uaVP1DKFs1WFerCfMK/md0f8zIqvEGxKNiYkEpXShUKrfOEHL4LueSXS4XLsozzNv4e3S6d1MIuNnTG47M+lZPQ5+UrvxF2lwxdYSOU71d0U/W42XgsFHsrHrYPjr+R7FCa7UimNUU931fYy0lC01yUmp9ttZuxe17HxF2LtHOO9BiOV6e9P3K+2v6BYLVszGpLc9sy2YKWOK7NNyqA2RYe6T0aD1/7z5HBgi6XTuJo96ERl8/hh9/Cu179d7RrOa8+nQyeZXhEf5fi220AuNSuC5aNuU0LG3xyK0YfXl3yNji8jfo3gRtXJiMKupyrvzE1Az9NpmjEyQb676jiQY4aRQQPh7wa629pFRKWf7kISymVHLZ2mCz52Ex5C9qGU/iH9MRfn3SPJlTVuS0YdHI7jncdoqXQ/eJxTNjzKlQZQ7vc0kr3VUVbNWeteKVUPtgeaQFl73K6nABA10vHMXvbU1qYAPDbuX8PJBKR+LHFtYzoZ6oUqOn6gxRuI2ldSFK1ZzF5pVrtRtknguFaYn+yupGHfbUbAaDLheNYsFKfR6O5rj2eueovkUzUp25fbZlluR+pQ+blZPKeZVJGLX60Qh/rORwPX/vPuNiuixa17+k92N9nPFqMeTYGntiGd7/8leh8VtbCxXyOzGKkKPfqkTfijLHE6/wNv4Pjtpa4Lc/mRjMMw2QOKzWYokGOE0wIGk4MGg1zHH3SUNPtw3EcJBIOHIf8vxarDCn4pXE1Sem6EnH5MP4qI1VpV09RXVJSupVEwyLliz3XcEnRBJNQBDrdpT/WKSbAADBxz2IsNqw1AOC6t34JuG6YSqYdL9Mlxfhts8ipJZkmvqtR27QVS41ioPcj1FHXXBPMLvrdS/4z4nby1rAFONHtsuB3nGuJOtpqWtxlUxAhRJXVoezKGlXghM852IevZchTURx8g4Kkw3aBHGlVEe0g64ul+PEtz5WC+Loa5oblP0S71ktaWV6a9Wc403VgaJFhL7CSrR9PhPuB5US6ffOfeSxVXOOfei+Dcy2b2W7Jnyd6DMWf5v8TmgxXj6FH12PHwOkRS47eZ/fjrsX/hk5NZyyDHsrIQgaurelIJhqweOK7tbAeF45g+s4XdcVk2d7H4uZrPtNakT3aHESFnSS0xhXrbQ1WajBFIxMlg11ZQJEtarpsbAVyNUklwFiPwRKulTHLb6YlrlUozPI7vHzcO7SRIke4mLR3EXb1n6rFa9d6CVdv/EN2iQORiyzFCKzasWIz1tJTXZ3R/Cl2lc65/sp3AJTxezdjx7Podf6QFnaxoQtemPrB2HMcUPC+qQoY29Y2iBveNzZVuRC3Iccvl6m80Nqf+OchFRwR5QVkXzr+wZJSD6bseAGXHVmvpb1x+HxsHT5XbzdTKSD8NtaqSLG18ZluBWjjYx9ppPzhdrznMDx2zeciq6KM27cUm4bOjcyz0evsAdz1ylcjFhvBY8iqXhgyknHulkFX4GCPkdoZV255FO1bLgbXQWlWg0in4MmdYn9gjY1hmJqDlRpM0SC18Y8bNZHCChkCgmMRqAKBxejQGpNX2QQS8gY7UgsoRrk0QUe1LtCu0S58hemHio+IdFnEhlVThBBwoUMPvDnqbVqcsfuXY8XoW+EaPoUztz4VTGJW2R0Um8SpHisdbdH9RFXstQUqWoeThaBe19qIazboSzoKAI/M+Qzg6LYbZMQBclNcxLleyA5YqjiF2i8EQkQvPG2nOfiXQfraZJ6w7ocZy/yVZ0KxsSMPzeZOoiSiKS1NBaYA0PXCEVy95lda+LmOvbB4xv2WrHXlRbBvuTPWe2C07SkVFMY5mXmf6P8yOCF+A3Cwzzg8dfVfR+bSuHzbM1g59lac7txPC+957iDueuVfPcVG2uz952M7YnuUqthChFcm36ud06HlAq7c+phePzJ5wWtMOdAW2/CqJE7hms/G1Ays1GCKRuDykTCsLowwqXAIt+jIjHRT8X47oIQDJ5Hw3FYotPJIJBJBPM11JZGdCwiR7gYiBR0tfiqBSrsR/ggICAVzSVGkCVL+BuWQ90lRtKwaf2tkBvQrtj6Ot0Zcr4UlRBI3rfqxTFG5vni9jJZ3TENR2pH90goomXVZaovqcx3IjsgKEQVKNfZIKe4lEW5f+X3UiVYteMvAWTjYa4wsSfBXUx4rHV6d9OXW+0thbyvXfSFg3U91biG2IL0CuItY75P6Xfc+qhAIv6vC19BHVipRiHMnsVmHePGjq6IACJTztoEHEgI3LP0BGlqbtLxfvOITaGnoFAwMBIMD1uujsNNt2Rd+/dMGOCxXG+mMqm2QL19k/IjDgobXLttuyz/1uoJ/fvl3D5qO56/4ZKTE89Y+iFen3hdRbPQ6dxB3v/Kv6NR01u6eqXXEVHeU9HVQvUMHe47CFmPy8Gk7X0DXi8eVE/L7FuX2LStvW9IW23CGqTVYqcEUjXAuDH3+jIQxj0Z0tZN495PIXBOkn6+vhhKe6wmCTjRNm4IiYjmCrOJpwpAqFMUJl0acCLYgLV9DmaD3IILdpobOWDnudi2dYUfWYtuAGWg2JjEbc2A5ul48Zk3SKEhGecsy1wKmAFsr18XoyHc60xUicsjBUBhmkb7xjUkb3Y/X/9ROjDjylnasJdGAJ2eFnS/vWgHyTdtUhWb6rFL0GJVEzHJnMgKvbqqbQkqXhWJtypXlja+8MO+NvO+2FWBSJqemI8tofqOVhxk+b9LaVbWDrj9GwoRdizD46EYt33WjbsD+gdP0861pxF2r2rZ6gxZkPNvoNTiR8Fyep5lutDykK5JMpYctHIStw+dh0eX3a/epzm3F9St/jGdn/zlOd+6vHet57iDesfjf0dB8MfIcguIFt1ENkM/Trp3R6i0RFk98tzF5eCuu3vhw6oqVBdl+K8m4lwV8u5hag1c/YVLAT5MpGrq1AQK5Vhu5iRVqosJd8P0x5WTHTFPmYwgpkTk8dEsRLT1HzUMvVxDukDVeMPlozHmacGcTjxWBM/UNtmzKIduPN0ctxPn23bVk5m78A16ddE8k6VuXfdeebVXIGkUsZIp+m/ocat2cNdMOdVVR4hVPvN85ZpDFadLV4Pbl342c8sKU90M4ddHkU36G1NH9aCS7IkD+i8arRjT3DDU8g/0A/9I1PYPlueb0JTGUF6mQ1VCQCPLXJwQN02jfeAZXv6m7nZzt1AdvXP6BaHmD6wuVB2mLZNNdmPdJuzyyxo/czxR5qk2y2cHW6ieFO7YardVuP9G3xr0db43RXT87Np3FDSt/hMfm/m1EsdH39B7c/tp/INHarBfOKIMIDtneLON+GffibOe+WGNYaE7Y9wb6nNkbnpgteb3GGT4ohmGYFLBSgykampDgEJyg02+3wogoNGLcT+R5qluJ47u0JNR40sVFcz9xtA1KmOamYuQvlRiyLIlEIn4Ux4EyuqIqURRrlGCESb1hutCXyiUlXbsvYn4k69tj+YQ7tbgDT27H+c69I8qO/qd2YuCxLdG0I0vmxYjcFj9sFdtIWOHkmjIqFPysbUJmLVHL7ic1pZDyOyiXb3sG3S6d0A6d7NwfG4ZdE0TTR0qB2PdIXVIz1PJmrpCVyZSsDuWxZmh61YTSYdRH/uP2YSjZ0xH2pcO0vOyi7QyIlKdnuFD5zziirFd7yj6BhZL6jwhz3/wlOjSf18r3yuw/Q0tDByUPWN1GSBEKYi0sYr6bYTLyGtW45jm6QkYtv93iw9wsmctNdWlRH5Byf00lw+LLP4jdA6ZpSfY6ux/XrPklHr72n3C6U1/t2ODjm3HLku+AXN1NTCtS7JH0CAEsHXs7muraK+kJzNv4B0XBE31+1nIY7bi1/a7Az2m0ToD1KdVARu9vlhtTM7BSgykasvMedOSNJVydhANK+MoHZUs4DhJyPoxg31dk+MoHucSrqrSQ6Un3EyJHMV9FMJ+HNleFTFsVCK0uMKEyQjPRtW0WhUZk1Ef+SZWOkpZJ2vPi8ibC+hHXRYSoq9f9Ds/O+FhkksCbVv7QCDHLh+CvHguRfAMhKQ21rgxgKh9ZB4st72RlpWB0RDNJO3hH3VbMM1Y1EgD+dMVnEErylEbO03pu0Q6pEqNoKJ3i7Dan4PtkbQcKKEdb2wP//noNmjVhT7Hut29+GTUXKvVBGR1xtW3T6pt/7uDD6zF+12KtmNuGXoV9gy/PrA3S6pg/wEFh+6vFs/1T7rGyE6QXnusY5+ibE5u3n6ytnVM2a/0nvZzq/UOiDs/M/Suc6DZEu3fDDr+Fqdufw58W/BMuGIMKIw69iYUr/g8Qrl8dDJnA9rJFKpkZKWzDG9t3w8rRN2unjzzyFgaf2BKtpBlV2BRUYpMeeahMVVDI5VzlxtQM/DSZokEOBUoGVZNvDbO4azgx4TYBJRLHodBlTgoXtjwSfuPtKMKJOckmqXNwIBQEA+WJRXiyuZvI+2Jci0Visp0UESxsQp8qpAZJGCNmbqIOSybdraXV++x+dGg9j2PdLtPCu108hlH7l2tFsMpMmtyUiwQfXpMITR3yoIxSip91TY32W8i0c13NFMKIQLVEMO9X1lYKWQjg6uoWC9/6BerdZu34lkGzcarrIPMMIKLaNIpABNJG8ZUUsnTJgFKHcnHVKOumukJmQN4uJP6WcTqku5NozUncc7U+VUAQ4CRbcO2KH2vhTfUd8drMD1nzDhUEsJZBvT5B0E+I27ckQmZDpJ1j+51B+2S2bUb5g5/m6cG3H5G2uaW+Ix6f/3e42L6bltXMzY+j76ndeOTaf0BjfSft2Pg9r2Hu2ofsZVMLEyl29BmG9yvcVo2+CRfa6eW5Zv1vgw9ftTbBedFG2m+GqUVYqcEUjdAaIrTCSKmgkMqIOKVHytVBjJEXKJOKqm4qidB1JWGsnOJE3E+kpYfUjABQlRd+66eWSZOtMii3ln+sS4oqSFsUIRa0BtnSNm+57MqIAmPOhj/h6VmfjHRpbljz87TPOjpXQIYuKREXldTlTocuq8oOU9yNKpLQwu4nVUtxVjxR8bscRNnq+3KmfeNZTNqjj663OnV4+vKPKe+JLBtMrQP8j5neg4vzb1PPVHp+pLyY+n76ODDairKSgdImDq3karsXt8Wlo94D+fyUdsnr1xvPSUQ72eY55pWo7QwRMGXrM+hx9qBWliWX34eLnXroz0ppG+W1wpKnfhl6fP0bDhCEfd+6mcf032bbKZC+zTDvWaRJUTNQ3VOMh3iuc188Me9vkXT0pV5vXPZ9JJ06PDb/c2hJNGjHZm55ApN3vGjRoGT/7fVOD89rqWuPJePu0OIMPLUDow+u1HMQQv+dCVpTXkXthNp+V1Gx2wqCqOAbUzuUTalBRL2JaCoR3UBE9xDR7UR0JRGNIuLpaGsBxwES2tKt0VVNQlcSm1uJskkXEXWeDZluwthizk0o7jC6QsHiapIgTcliurkEK7ckHKNMiouNqqxQhXI5wGIIsaBomBS0TGyCacYbAJCDJZPu0tLsef4Q+p/Zg319JmjhHZvOYfr2Z5FKi2IWMbbzYYTHXVvumFJrqrS4MWN05HtYvBVPZJ3PpH4a52WYttkpvm3l9+AY0vmysbfBrW8HT8Fi9JeCTpvyTUpVWq1Dm51LhiWJlPHKjabwVa4xYi2Y0Tc4zUVbvpXRdPxnZUygrbUxoHBeKFLC5F+to678VfLs2HgGs9bp7ktHeo3CxjELtXbKfh/ke0WBW4y9bqhtoVKfHAckV0Ix9zPZSB2Y0O9dTs8u5nlqW/D8KJLvkb5jsXjGh7R72dDaiFtf+xZOdB+Kp+Z+VluZBAAWrP4Zhh56y14fTOVU2vdFj7Bu+LU41UlfXnbuxj+A3GR4bUo9T/dSxsk12WDWiWy/lQWjgr49DMOkp2TKAyLqQkTvI6IfE9EWAEcArAbwLIAHAfwJwGsAtgA4TUTPEdHniejyUpWRKSwEpWFHjFAmG0vbhKHm5isrQmuFmHNtE5AaLimKrGHNJ5Ku4+jCDwiqckXL21RiOAiOyVE0TQgJb1goAITSkSJEkBbPtpHtnykP+HnsHDQTR3oM057ZFZv+hGev+ARcozW/ev3vAddVCupR6IF6QqHcT+yplwQ/m6oancqBUOCscoq84omZWTrrFmu9ocwGDVWXExCh15m9uOyYvvTmpfpOWDbuHan7JiL8fuiJy8OR2YK99JTOdSZWPKWqQwWbGlQtqxCR+53plvWXIe6bryI/myJ6P8NnKdsQbaZX/9L89pGibcacNb9Bu5aLWpqvXfGRqD96cI1moZX0Yu+LnqfaIY7dV9pSWzy1LY3UM10LEVOW4GRLW2zENcuPmFNA2DB6ITYNn68Vp+fZg7hx2fexZ+A0vDT7z7RjjnBx8xvfQa/Te6MvbVx9iESyf0Ncpw6vTdQHOHqdP4Tx+5f4p5rXniEWuSP7k/NKJDfaSPtdtciGpmBbDcgwTEDRlRpENIOIfgHgMIAHAHwIwGjEN9MEoDOA6wF8EcAKItpIRJ8iok7RHJhKRWr2w4k2w3kyQqsIf74zbaPIprmQOMpKJ2qY6lYirTXUc5UJPxNKWNQtJBSKwklEASiCUrCai7xORbkRCFWy7HL0EqRNnGoqXKIWJLZJSeXIk1lmu2AIGMvrKZIWOQ6WTn63Frf7+SMYeng9tg6+QgtvSDZh7obfmikqgqJaxhTtRJoVUUyBNOLWkxepXV8KBrufVCWFFWLj0kpfJ7R6Q8jL9eLWlT/QchQAXph2v98ZjXP1Imu4MN97WTaE34HYOyi/OZEOqD28IBuU77i6r8TJZ1/mkQvaszS/edZrickp0Bfo8bTfpMTV2gD48y1B+WCHv6V1Q9+TOzF++0tatltGzMfRPmMDZQn5ivyw/x+2A6TUYa3dS7Gp8TSlBHkKtWDfMeYMUeKpv812Nd09Ttf+aNdmaZfTtldEeHn2n+Foj+Fa8Kh9yzB985PYNHIBlk+8UzvWrvUS7nj1G+h06ZT27qREfwi6Yks+bwBbB83Gke7DtFOv2vQnOClWX8ka9VuSc7uhuH+Vov2uneaNYdoERVNq+MqMpwEsB3AfgA7wvqCHATwG4AsAPgngHgALAdwBT+HxWQA/gGfF0eqfMw7AfwPYTUSfI6J2xSo3UzhCpYK5uokyx0bCMxFV3TUSjh/H/yv3g9VPjBVRTJcQdQlYx3dnCQQlcy4O39UkvfuJE7kOcmSe6kZaJ4RUwcp0QbF0WKJCv03gNYRiIJRFAyFTyUeLpgfsHjAdh3qO0sKu2PQnvDjjQxET2BnbnoHTqk82aBNg1WNK8bROhhTKHPOkGHLvPqRIM4N8s0nLvPeFTJ8pPoWsY6q8rbtkZFfvMokZ18keeHwLep/dr8U93akftg6ZY0tE6+zayqiWX63fsS4ZaucRCN752I9FoTd1dZCYlUIKsqV7Jum28OMdu2nfF/Of2p6o7ZyWvt86qPkGcVQrRP05OwDmrvgZVNuSlrr2WDrzA/59JZiTaoOkkkN1AYlp42yDCo5+P8zvqqroT7sSWdwWGcgw2+3UW/js5X1V28LMNre+HZ6e/zdobNDH6q5660H0PbEDSye/G1suu0o71vXiCdz22reQcFu8e5m23imvtrWeStnEwRsT3qUd637xGCbteTV6jrXGZ0ch2saStK/chFceBbXSkKbbTK1QlKdJRD8DsAzA2+B9Ft4E8DcAhgkhBgkh3iGE+IoQ4odCiN8LIV4QQjwuhHhACPFtIcSfCyFmAegCT+HxcwBnAfQC8DUAm4lobjHKzhQOfdJP2XiSMRGoYqlhCAbh6ifKsbh4RmNurpyiKi0igg1F4xI5enyLW4lUbKiTd6rx/LsQnG8VVKXEgehv//Qgrj7KpgpVelxtk+lCdkAM1w4iLJmsr4TS7cIxjN2/HG+NvEELT4gkbnzzp1qemc/Eb+8MZHp+VayIkqZjUmuw4iZThK/kyL4i5OJyInn76h9ruQkAT836RBhFc1Og0OVECReGm0JwGbrWRskkhUuGhUzqUCFGZFUrk2LvB7/TfQ9s1SHFpartg7YP+X2XH3wlvtKGIuIypDQh/iaMGjN03woMOLpJO2fVlHfhYseeSiL6dVjLqCoE1PwRtk22fbJdk6ZciIbZ4qhlFBARxZB2j03lj6EMibTP2k3wNpI31szfKMu5zv3w3NWf0e57wk3ipte/g4ZkI1648pM42HuMds/6n9yB61b+BKS+ayZm3QquXQ9Qa8Su/lNx0BjgmLPlUSSS+kBGthPkmmXIjxK0N9ykVTiFniSUH3gtUSwV1QfhWVn8CMA4IcRMIcR/CSH2ZpOIEKLZV3h8GEB/AB+AN+fGUADXFbrQTGHRxAYpFGhhCEaIQjcVy0op5qRf0rojsJhQVzXxtkCRkQjDpBWGdFEJJyU1Vj9RLTaccCJTdSLQcPQpFB7VSUG98xJIJBJ2VxNFQVIwlxTLx1kV0oLVYAz3lX0DpuBg77HaebM3PoLXJt0dmYl9/N7X0b7pHKSGmyLSU0jGK6JkQ15JlMj9JH3WNUGtuZ8Uj9ILTcMPr0H3C0e0sKPdhuJIL6XTQv7/1EmGEO9mAqVTalpnQP0e+eGZuPMI/18qtI5wBp1Y2+bAse/HjPrns68qkTPCUAjY2k0tjtEJl59gIgCOsjwqjGeJUAkglSFhekp+8q/r4srVv9SKerZzX6ybeLvX7hntU0SZoDwvtTMfURCQeR1G/BSWFOqzTKWIUNNwHCeiYNDSTjEAobXDjhONr95tqdPQ2mmlPLL9HXw5Vk98h3afu58/ggXLfwLXacCT1/w/nOmsT+Q5YdciTNn+XFjEoJ6E77GGHBMIngtF228ivG5Ya3S9dBJTdr+ihal5xk0cam0XKtz9xHzvUog2DMNUKMVSanwfwCghxMeFEFsLkaAQokkI8SsAEwG8B8C2QqTLFI9AOZCQLiJkuKQYq4QYHfvoqiTG+YaLSiIhhSzZ+Td8oG3pOY62QovV/cTM21GUJOpqLQ4hmBMkEF5guMSEViSmf3YgXBluKlYhLZUAp6VJ6RtmilprdL10ApP2vIalE96phTsQePuKH2TU3puyFZkBGaQRxstduogKl3I0jc0OmdJgq/vxkc26mjZ6hBvX/FwLFwCenvWJ2PPV99nLV3aww7KbHTtViSG/NerIsdopL9iGaIczo82J2S/mJu9BJv/ivve2ThZB/agZ8QHH71CDCP5sIuFz8zvWmtWh8vzU9mf89pfQ48wBra4sn/l+JOvb6S4nWjtphKd5nrb23yYPaKuIqVsiWgara0mafDMtb6Zb8IyUhybfChvLp92Dw4ZFxtg9r2H8rkVo7NANT8z/f2iu072ur3nzlxh0bJNeF6yphwQKkJiS7O0zEXt7j9fC5mx5HPWtTUoipG+2fJRw270JLVkzw2zDi9J+W95fpgJh9xMmBUV5mkKITwkh9qePmVPaQgjxOyHEb4qRPlM4iKC4i4iwYVLCINtFZYsIS4GQ7W8AwrXqzc34VilCYKB0UNJyEtFGN2P3E6k4STiRMNP9RFVgwLg+9brVv/7Z2m8gNG3WBN3A3Fm5ScGl6+fLdFX295uI/X11YWb25kexZszbccnw+R125C10Pa+PAqsZZDOAUhr3k5geR+4J5laEGiPTTnelIkf6oit5FDyn7EcVsxCszZTH7FuKrpdOamEHeo7GyW6DLZn4acS4mQj1+ca4lpheLHrZLG4YCPcj3zdLnMi+7cIzWrqkAOSQT1ynV9v3/1mzIj0dKO1hKmS7qq1I4x8Iza6N5+cfr2ttwqw1D2nBx3qPxM6R8/TrCIqolN9sx20d/gwUS2qbartPcl9T/pjH1H9qe5likxORRpUU4bMIb5VxfY7ShkOPn6oquk4dnpv3V2iq76iFz1/xE/Q4exCnug/FC1d+WjuWEEnc/Pq30eXi8fR5pP2WBJUMb0zUrTU6NZ3BtF0vpEsggwpplCOrpqOM7befBa+GwuQDETUQ0UeI6BkiOkRETUR0noi2ENFPicgy2RWTLayiYoqG3uDbzEQdzWohWGnEnGPDQURwiB1V0RQR6miMonRQJxaV+UasNWSZldEcJ3QVMcthXd1FWqc45E2oppXJa5zVcz3lRziSFueSIoU442Z7wq4U8uREbb6gYSpRIg00EZZO0q01Ol86hck7XsAr0z6gRwVwy7LvGk87jxVRsqHgckVpV0SpJard/SR4N6B0Mi2dy8zJfcWTSErp7qv6zTMOLVj3YKRUT8/+pF4eOTpl3gMn/F4EJbfkZXVRsX2PbdeuBGkd0mLvy2crYjq9mfzLIh+bMjm8BaTdA9lX0/fhr06ifzw9fQQFzwXKpnb+w+dISjugpuH9lat7qW3q1A2PodOlU1qZl826H3AcreOuzielXoMWx9JGq22dbVNdJO33Jl5BESmPo+dpy1fNz1ouw4UlnRWI+jca39E3/9i5Ln3x8pW6NVV9sgkLX/9vOG4rdgy5Aism6paTHZvO4pbX/hOJZDhxKEG57+pErVY3GYkI6sXB3mOwu99k7eisrU+ivuWS7UQliSxdQwrSdPBqKG0O45tXkK3oRaYhAFYC+DG8uSb7A2gA0AnAGHiLZCwhov8kKkGBaphirn7y30Q0s1jpM5WP35fPbHOUvxY3kUQkzLHGi8RPpNscb3WTBMGp8zf/vIQxH0dCXcGlztEVF3UEp85XfMi/Mn0lnmaqmwiVOnKOEKv/sCFApfRjNj+HFiEm7tyD/SZib79JWtxZmx/DjsGzcbZDLy2836md6Hdiu/W5UyDMmm0GRdqPTL/esdeax+ff1nRwe9KGIYQjyPkmleeKJ+niS2WDKZSNObAcXZpOa3H39J2Ec5366J1f2F4fe55mx9mLqbyLZgde7dzK4zblgFLuuG9SMbZMlxVNt2nlTuH2ENf51p5HNhv0b2u4+den1DlSlBVqZ918rqo7Sfumc5i67hGtDuwbfDkODZkW5K/NJxLrPmpfMj2tu4eMm4iea9s0xUWqLWGkadaLmDkvCumWki6tncOvxobRN2r3vu/JnZi1/o8gIiyf8m7sGni5drzfyZ2Yt+ZX2vMMtnRE4nsfwdcn3KVF69h8HjN2PGdPIqjOFJTBcVJ3LagAH1nz8krSdrN4wGQJEdUBeBKA1BSuBXA/gCvhLYTxZQAX/GN/DeBvS1zEmqKYlhqfBrCMiDYS0d+Tp6li2hJ2ySvYhLURjhEgSR+00rbI6inmbylkWQQZxxKeMOfHkCsC6nFVBYsm4FHUJSVhCI6qlYpsi1XBxwuA1jlQG9Q4qw1CVLFhDfPP0/4RYemUd2vxOjWewZQdL+C5WR/TJwcE8PYV3zdC0hEd5sh64MPWG8tR0AhXpCgBNSgMqR2kaqTQ5sT6QGH6FU+s+VMWK55YWLD215F4z8z8GKC96f6xyDsUzCaopyHddOJW+NCSIf04EHy71O9YUBJF4VOKVUnyRUvP8lhTKT6gtWeUvt+ptmcyv9j4QSPit6v65K9eIxYmpr63mpIDwJR1f0JDy0XlmgnLr7g/jGO6jkD/bW1bjHY9VrFkU+qn2bJVUgVlNBVPToqyK9egXbvNjca4p7b89fh6wOuzPxxxFZux/mH0PbENIpHA83P/Eqe6DNCOT932LEbvXRJfR8yKposYxpcBONJzJLYP0JUnM7c/jXbNFxAhIsMpKzLFYPt2ZEvJ2m8/C3Y/qRC8kc/CbsXlDoQKjSUALvdX+lwqhHheCPEFAPMBtPhx/sFXhDA5UOynSQDGAvhXALuI6EUi+gARdUpzHlNr2NoD0wMCoQCntZMwVkkh6aZiCD+GIBR1J4kLs08aFliDJBQXFvXcwMzU4n5CehgsFibwFR3Biipk5q0La+qcHsE9U+KnEtjIuF/BDdceh8DhPmOxe8A0LXzm5sdxtM9YHO+m6yW7nz+MkYdWRcxqU3bkLH0CktdhEY4yohpWRKlReaiq3U+KKhCnT1vL31RgWk9Qvm+Ww6MOrkSXRt1lYG+fCbjYoUd8/oSoy4nSAYeSl6aEoLD8WkeQ9L9aJ0+5xnLs27asll6NS9tRGq3II1O/1Qjiqd8687sXPmO1fljucfBbtXzQ3UmCcvrPL5VCAAR0aDqDSRue0K5hx6hrcKrPiKjFh5PChcQh/b45MeHGOdkoJ8y2Xv2b8WZaYxgWInDgKTuUOHGriJnXmMo9RZM3DKuQ1roGvDjvL5GkRPAMHOHixtf/B3WtTWiu74Snr/nbyMpk1y/7IbqfOxSpgwCChldTtqjPInpCZG6N9i0XMXP7M5DVPi3p3FHY/YTJgUIu5xou61pUrlb2vyaESEauSYhVAOSHtweAccUuVK1STKXGDQB+DuA8/KYfwLUAfgbgMBH9gohupFgJjqkVpLxnbo5hXaEJOuY/izCSyv3EdEWJ3YylYL3NWxElURdugYuJ6qbi79tcTdQwx08zzEcJI1IUG/45FApWMq3AdJcsgpApoEWERF3wDARnqGHh81pmrITSsekspm57Fs/M+XTEWuOG1T9N8+T139rbbhHobWfFp57fp8P25eHPUXbw/bJDlP7eqEK4941MHZ/ChLXKK8+9zmKl8eysj0XiA7IzqXdywu+C8dtQmIIQUbDGfoMUk7m4jqV2fom3lKP8cj6CdJvyjbU1dEF6wffWjGIo662b8uxTuEUEecpyGd949RlFLQwdTH/rYW2lC5ccvDnzvvBe2TrsSmdeba8iHXc1L6XNC10x45YsDwcLQldOfQl2kgMDxpxZWvsZyV+3trQpGuLm4MirXhl1P/KeE+F471FYOVVvh3ucO4Sr3vw1iAinegzF4tkf1Y43tF7Cza99G3XJlvj8/LqRCce7XYYtg6/QwmbseBYdms6lbaQjLb9yrfZyWU5Kg3n7StIWcXPHZI+qfdyZIt4OZb9dbCwmJUVTagghXhJCfBhAPwD3AngaQBLeZ6ETgPsAPANgHxF9nYgmxSbGVDUC/ohYqhni/X9eNGP0PNo31n8qMrsqKJIR0RSipcDpkHqenNvDa2W9+KqQpgtzgWCmhenuJ0E+pqATCGryLilCp1JuRym3gNBmZ1fvR0RYgBRidK2RvD+m6aw850jvUdhp+O1evvlxnOvUGwf66ArkTo1nMGX782kbe6//ZhutSeGSkkZIyW9FFHY/aesU05w4k0lUVSE8H5cTEDD88Bp0uXRCC97fexzOd+yD6AfT2+JGqLxX1XDhIH2kUn7PvW9M9F4GHRWI4DUW0P/K/fDbZr/WwuxnEsO8w0L7BEX3RUx4dD+j9z/2ZLVENvNGPX2zAyn/mp0+9fspINDx4nGM3/i0FmfbmOtwtseg4NlLJUmQttH2AAjdJ9XyGeFhm+1bLcZcUzhvRrwiQCtPTHiofIGlzKSUx7sztrIEQ3OWNjP4p9wTW3yLnj96TX6ZVk9+F470Hq0dmrLlaQw+/BZAwKaRC7BpxHzteJ/TezB/1c8t5dYu0KIRMMrlBywZfydc5WBDayNmbX3CjBwhnftJkEUOyowgD6P9Lpqlhlo+ttQoP0QIfc4LsRVdONuq7I9IEW+k/1cA2Fa84tQ2RXcmEkI0CiEeEkLcAmAwgM8CWI3wczYQ3sQobxHRaiL6DBH1LXa5mNIiBHnKDeE3RuoGxf9aKjckUkZQFQ9Q9o12Wh3ZIjnpqG8BIb9hcj+wFDFHa3wLCs+Kw/EtN5wgjvwdWl84SNRJ6w7HGP3xjqujTJ6Jq+MpUBJylCmhuL44QT6OYkJMCV1ZoitGdMFKHUHz7o0+WqWN2pFvRoxwf7kxt0aH5vOYtvUZPD3n0xCGFDJ33UOA69qeuvJsQklPf0YU36ZkKqSw+0nZYPeT+NSzJZ97ueCtX0Vk72dnfCxlv8H7riqKV/W3o3wnYHQOA4UptHDTDcPaIVX+gmQn0xZe6P3IclrRfW9SBeV+UHCjlM+XtW+o3pfA4gKK5QWUv+Z3WrlngRVG8G3Uv9mhJYFpKWJRnMdZ85ltgr9NW/MH1CWbg2tLOnV4a9Z9oVWO744RuEs6MXnIcsi2xVHcMhOhRQUFlh+ktMH+pl6LmU/MpipBYl1AFCuNsKyEqCtpZpvtPqsrmFmfg2F5Ke+XmSbq6vDiNZ+JuJlc98b3UN/szXmyaPZHccJwC52040WM2rtEf9kj+jphPx5WaIAcnOw6GJsuu1qLOm3ni+h06TTSUpLVUErQ/lRvE8dkT38iGpxqyyHN3wA46+//HZHiV+ZDRNMB3OL/fEgIcdaMw2RGSZd0FUIcFUJ8WwgxE8BEAF8HsA+h3DUVwH8C2E9ETxDRu4mIzXBqAUOqVgfupaLDFSI6EqUYeBh6kPisiNJujqY4sJij+kqLOl9ZEXVRsbiv1Dl+mPe3ro6C84N0/Hh1CUIikYBDTpBOos4JV0QJTGkTYdlI5mUx8TXNbE2BWHsORjeHjL8AjvUcgR2DZ2n39fItT6G1vgO2D9LD27U24sqND1t6TmEABQonUxmln0Syc5UBSrcjJ2zKFNtIIBMP3y87sr6nQnc/IWt8XZFgp9/JXeh+4YgWdrDnKJztrI8N2L4HqiLD5mYS+ZaonUHVLF9xw1Aty8J3XnexCDdfuRt7vHRbwgmVEKoywlEUEdp+3GoiGXbCY9sni4sL1E5+qo6++Zygpx22ewkkEokgvPPFkxi78RmtvmwbvxAXuw9QlBNOoOBQO+GJhK4QkPmHbhx+Oxbkb3f7UK/XSSjx5PLmci4LY18tm6Z0kL+lW6eSLyUcfVPaXIqUUTkv1b1XlRVx7icWRVUqOeVs98FYMuuD2nPpcvEErnrzV3AcB8n6Dnj2mr9BS117Lc51y3+ELhdPZCQL6ZuvCILUTxKWjr8TLoVdhfpkM2ZvfVz7LqnfJvVc+U5ktBpKFk2JfNXC98/79hQdbu7KjiCn4JvCCnh90lRbduUV4hi81U4uwZtfYwV5c0vOIaIbiOgLABbBc1NZA2/gn8mRkio1VIQQm4QQ/yCEGArgOnhzbZyD99moA/B2eBquw0T0QyKaW66yMjkitRUxm2s1+PVNt5V/Xnxom3BFxgP5KmFjmH6LnhMVUKwuKQkKlnUNLTT00StIIdD3KZaNZZhWcDeCES3ZeANAQvH9DQYUHT0tQSLsoGg3QV6fjCivUxcslk3WrTXat1zA9K1P4fk5n9CEHACYueVJwI3Mf5QBUUuJbNxP8vEgYfeTtk1h3E/MWWb80Bj3E02RIes3xZclk3fhhjU/i1hpPH+57m8fZ7KhO2KE1nLm5Hhqp0N+J/QVDAw3E4LyQw2PmjlQnPmDuZ8HObutEKXej7nYuGuN3VesCmxYFdRxmD1M+ddRnrGiiCEQJq95GAm3NTgt6dRj7ez3BuUyn7esx7I40l0TUK6DEHTuvXClzQga1TB9c1PdM73ONqz7XpvpWz0q7Xf4O2ybZZ7qPY3cX1LLR1p5AysaUvMmIw/FZUtVLkk1vPIemm2uVhb/wMbxb8f+AVO0OJO2PoeBh9cDBJzqMRiLjPk12jdfwI1L/heOK0KFqXp/HdKv0THKoTznM537Yf1Q3c1lyq6XQ3c3+bzMqqkEmO+D+W3M/VscyTTHdDLMgq02mBwQQvwJwEwAPwEwDcAD8FZCeR7AFwFchKfMmCuEOFyeUtYGZVNqqAghXhFCfARAf0Tn3+gG4M8AvFK2AjI54Qpvk24nrjDDBFw33GRHwBVC138g7OxGLDXSmG+owkfczOixE4wmwtGkRCI6emMe97aEbrmRcJCo80bEnAT5yojQ2sKRrit1CW2iUW+TLimA7pLiBObh1lEhw7RVNVuWo5IIRvCU0UBAO/9kr2HYdtkc7X5O3/IUHNfFuhHXaeF1bgvmr33QMmqYfkWUWIKlJOOebfSas8+G3U/yoa27n2ir+WjvFUWF/GgBoI7UxuYRZgB1l4jQ7cIx9Du9W4t/vOtgnOw+JF4hEHTeyOjHkFYm1Xw+zrUkGG2WHVqlQxZOUKxakUHbj7hbpNrPY3My2VfyUpfbzng/6PQqnWXVRSTFfk5WGEH7pVjrKSt3qFYZNusGzzqB0KHpNMZu0OfS2D5xIS516avloVs1ytXAwusw55KKumcgnBBUaXfJb590t067pUM6VxBtNRfAcj4p8S2ygWxP1fue0PMwXX8iq6mRE1wngfR7II+Tmab9OTuOp71ZNPdTaKnTjZYXLPk+6pMtAAhbRszH1mG6m8jgIxswffNj/jckxt0k+J36+LLxd6DVCVeZrHNbMWvrk9onJkiCyPrNSjsKlVVTojb0RdY6VG8TV5uoyrhCbSGzAAxJs+VQZKqH17e9DXYJtR+A9wK4Npf0mZCKUGpIjPk3pgPYAMXbr3wlY3IhUFK4AoALQGhhwphcw1NiCO1c/0f419+EP4KYqUuKhjKyEGz+XBvmllBMVz03knAL3Ea0DYFQFsy14XjuJ07C8VdOkYqMUPhJOA7q6jyT4ISjuL7UJYJ5OlSXFFO4jcy1oR7XBCVHGXFSNsDaCVo++W5tDo12LZcwfcuTWDz9fk3IAYCpO56H0yp9sjN5Xb0HYS7zGmzy2jLtJAJyLCx9vODZG52QApuwkvxn5FMr1Nr15IOsT3otThEf9vqQ2aoo3vtw45qfRkT6V6Z9MPIOqWnId52IQuWo+k0wyiW/DwT1XdTdL7RvUaAkoKDjJ9Px8lXN/C0dxXJtiUT+aVg64hkpXmznad/nmM69sTKH7JBHOubymZiui+Rg8po/aXNpuE4C62e+R1MSmMuRa+lItw1V8Z9Q6oHjK/HJCc4NlBvB39QKC11xYeYRKiZi0ze3hBJPDiak2MJ5Bc17atYB8ua+irn/gdJJvn9SkZbq2TuE8137Y9nM92tfgG7nDmP2mw9676bjYPGcj+Ncp95anDlv/RZ9TuoLLqS2bdC/W/KdPdepD9YNX6DFnLzrFX9ujej3yfxmRfKMHKe8JfxCN0Vm2+0HMrXNYSHE/lRbtgkSUScALwD4JwC9AHwDwHh4K5x0A7AQwGvwFCqPE9FnCnY1bZCKUmoQUTsiupuIHoM3meiEcpeJyR3V2sJ1vS21R4ow/oYWGq5hqSGVHmYatjJEAy0HjJ9qIxYqPvQOSygI6Z3kSJgigMkNpApMntAEChUr0upAClKekOS5lAgIrQPiFV9EOibyOiICg+x8BfKLgJAKa6PRPtXjMmwbepUWNm3bM6gXzVgz5u1aeMJNYsGaB8IbahUAzC6YvsKA9kPZ92OmlVyyd0mxjfiYJxdgqMa4/7kYrjD5U0zLkkxWPNHiwx6fjHofd3a75vMYenSjFnq2Yy/s7+s3m7Z6RhRNU8ZRhg+0lTGE0MNJKZv8aMiXjpRw/9sSfG/ktclPa/CNjSpRKpG4Mma0j/T7IvabifAZSaM3I1z75it/tXbMUb75/rNs13gGY9c9rmW1c/wNuNS9f/jMHIT1JmjUgGAZW8i20Xv2qgWPtF4ApIuKcT2Adj1hOxqzmRIrhR3ioCx+Oo5Dwb7cIrdVqZeBtZ/8rdRLTWFHynEnzNvTEcpzRFgGQ2mha+4RDTNWTJGKqw0TbsGhvuO18k/d+AT6Hd8KENDcrhOen/uXmmtoQiTxtte/g/pkuEyv2T7qriG+hGW5VyvH3oakMsdhnduCGduekimkbJqL536ipJFdw585aj3ldrvsCBR4To3id4O/BOAaf/8jQoi/E0JsFkI0CyHOCiGeB7AAwMvwatd/EtGUuMSY1FSEUoOIriGiHwE4DOAheLPA1sN7wGcA/AjAvPKVkMkF4bpwk67iYuL/TrrBnBi6+4l0STHDQ+sONcwVQlFuKJtyTlCWiOLDaJk0wcoXwojCTZqOGpYcUuFgXRFFsdggsq+mErip+BYZgQLEd2VRrS08i45wlRRHjgpJU1fVMsPRBag4hYe/YxXuZNiKKXdFrDWmbn0Gb0y7NzIz+8Rdi1DX2piqVqSvOKoEakqjBVsRJdLbiz05r36wKbzHZ1OVVJv7idZhVjsnBZFUCyTt+nVeWkjEsWDNL2CqKF6d/J7YNEN3B2WU2MhBG520fE/CjiyFr6hDgRuJ1Uw/6BDqlh3qd0l2us39Striymju2yZuVuuadd8JR/dTWitQOFmnanFhtcgwXFFMK49EwsGEtx5FfUv4vXbJwfrZ94bK+cDCQpm8M+EEbpQ2F5IgD8MqJMxbbVd16wmbBYRqUeE4xr5ijSGv2/o7obatnhtownH8CWJDdxrZdqsuNupvMsqsWsdISw3vHintNKn3SX+nbM9ce/e0djmBxdf8BVoT9cr7KrDg9f9Fwk2CyMHh/pOwetKd2jvd49whXP3mr0O3l9hVWQyLo+Ad9b5s5zv2wsZh12hpT935Ijo0eQs1qE2BtV1I0VaY9yV35UEB26MYxVsttNtVTVrNZw5b0YpKBOBD/s+tQogHbPGEEK0APu//dJRzmCwpm1KDiMYS0VeJaBc8DdWH4ZniELz5NJ4CcA+AAUKIjwsh3ihXWQsJEV1GRP9BRJuI6AIRnSSi5UT0t0TUMc+0v0hEIsPt2sJcUTyu6ykePEWGgFAsNTzlhGnN4SkkNDcTX8ERuKbIcMVNRXVACefgCMvh7ad2VCEoozvat04E+462UTBjvup+UpcI59qQ7irB6ieOg7qEv0n3E8dzT1EVISTDEoS6ROh+knCUtHxBLfhbl9CsQQKBThUuA+GZLCNS+uiUKlid7j4EO4y5NaZteQr1ySasHH+7Fu4IFzeu+qkvsFMawSQc+tDKgehpXlh6aUJ2ynLF1r5V6shxJVD196aAo2/yHco8a7LG975FUWFLhhMR4CYxdv9y7filhs7YNuQq7R1Wz1XzjSg6DaWDfd8JlbuKgkONoykklA5gRDmgdOqB8L5FvkEVtmllBGmdRPVaNSWEZd/sHKvzMQT3SXF30O4hRedlsOandMqlkkIqyh3HQUPLJYx961GtDu0Zfx0u9h4SKBMSgVKAgrZJd/EI25lEIlQA6B11ZQBAU8KrioTo/bApAqKrkSASFnUdUdrDuE2W11wxRbtOspZPL4+nBDIVM3GrqgTPUh2oMDr46jt6tscQrLz8vdoz63lmP6ZteCT4vXLau3Gk92gtzpStz2Lw4XX+L70dVdvL6KdQD1kx9vbISigztj0DtQ0H4M/bpaegvkeOk341lGw+yUXumzJMrvQD0NPffzNN3FXK/rjiFKf2KalSg4h6E9FfENFyABsB/AOAoQi/e2/BmwF2sBDiViHE74UQTfEpVhdEdAuAtQD+Bl6l7QigBzxfqm8CWE1EI8pXwsIiXAGR9C0nXN3SwnUF3GQysNyQ1huROIaFRtLfPIWItPZAYN0hlM1N+psroLu/ZD4Lh9Yx0PajDSn5tVifRJQCgUmdn8Mh+HNn6O4qUnlBgXKFgonHghEMmBOfyvw9v+agcyE7GGoHwtfeaMK6VCzIQiiCjOxcrZzyLu2+dGg+jynbnsPyie9Es7Gc3Ji9b6Ch+bxMwbyjMffZiGLc2+zcT1KYcafBZsJaNGsEFsJKTmFWPIlJO4MVT8yyWOOrP4L6rtfpKzc/hoTQVxtaOeZWu5KG1In7lGCQn6z3HQjeG7lKhv+tCN4JgpFO1LVETdPbtcRJocCodNSya9cnlTWOHm610rLej+j1SwWtqvzR0nIQTd//bV3lhJwwbwJGrXsS7ZrOB8kKEDbMuc+PH8azuZAIEdYPIGxnZJygWMq1ait9aSuZyMYKqbcUzyPITD+YIq6RbkxepF4flPLLNsrR66+jtNH6caW+qxZLRJCup7IeBBOMam1wWK71U96JY71Hadc2463fo+vZQwAA16nHC/P+MmJFed2S76G+5SKgpA1EXcpMVxH123Omc19sukyfkHT6zhfQvvm8IofI69FSCALseegEbqQZElrhluAbUvmfqdrG+2gUcCvqA21V9utiY3nUK/utsbGYlKS7yXlDRO0A3AHg/fAmRJF5ypp0CMCDAB4QQqwvdnnKBRFNBfA7eIqM8wC+Bs9CpQOA98Bb4WUsgCeJaJYQ4nxcWhkyOc3xXXmmnxapgPAE3ND3QwjZwOvLshJ5VhGeoE9+PD+MhBLPqzquC6hdgFDgghKmpC+POYAQFDa+MoLw8vGEc0BQeJ4u3AjIs8K9sCiWeU2DBpcE4JILgJBMuoGgREkKJ1AlgITf0fDdcRICcH2lg3SxgSA4JO+VgHBdT/5IOOF9BuDCBTnheYKEN2+r45fZ8cQc13VDAcqb1xWuf1EnegzDzsGzMGL/iuB+Tt/0BNaMXoilk96Fa9b8OrznELhxxY/w5NV/7d9jpTekCR6q2CKfvRJik2oK5n5StJMrLptiIoSois6oJLvxvzi0t15LPW3+ioVUyhwi91We5/26fMezWvxWpx4rx9xiZKZ0lNWONOzh2n5MnEjH21T6UrhP2sc1SDXSudQ6b5WKpWhqx1ONF+k8q8cQ3tOIogKW+qklZdxreDK5EUk7bu57vwGntRnjVz+she8fMxfn+wxDQj3XMc6FrkiHplQnI55SKIuiQJbFdrG5VwXzRGMialVJqCAEhQ2m/K2cE3Sxhdc2h8pIzzRUxhdCIAHy2lkoyh+Qb2HqiUIgAlyvzfPaXQRDjML15sySysGgXRYyuwRenfcpvOORv4EjXABAXbIF1yz9IZ5Y+AUAhLPdBmPpzA9g3rIfB9fR9eJxzHvzl3h5zieCtOV1uZ4wpd4Q630CgOXjbseEPa9BqkobWhtx+Y7nsGTCO7U2PEhCDbRGKCQlaFRroN1mSsZJAGcBdAVwJRHV+a4mNuYr+0Xvn+UDEfUGMAhAH3iTn14CcMzfdgoh3BSnF5WiKTWIaD48RcZdALrIYP/vJQCPAvgFgOfKeQNKyLfhKTRaASwUQixRjr1ERNvgzYo7Dp61ypfzyawiFESy8w1vtRJNcy/8CS+VUQ1PMJDCvKoA0QVvT+BXBW3vkGyXiUQQ7gZCBMLJMAUFccL+CUUE0lBuM8MoUKBol6vsmO22qtyQppeOE1qPEHlaBte3MBEQIH/tW28uEuErV8IwaZFC8JQkqrUKOY6vxHHhCMcLE+RNNCpcCCK4SVcrvVSiBBdK5JXBD1g55S5NqdGx6Swmb38JaybcjtkbHkH7lgvBsVEHVqJ94xk0tu9m3E2rpkLZt8eTKqR08gRlHDPmfIrKWhXd2Sozbf3eeObmWkjq+JaOfjQOYnp1XtiYfUvRvuWidmTz0KtBiYStfxvmG5Q5w33/p/xemRYDQUfL/G5alCGmkkZ2qKRiILAsQPjmZ7tvoqcbfhcy3qdoudXfcfuB8kIqydV0ZRyh3BsZbrmXIQKBOj2iPNIu2vvjOMGN0Y0ZvDSGb34JHc+f0HLYMufewFVFRMoignCzPbaXPRpfuoGG4XbFnfaKRPSHZDx0EV6gjCsVCUHbK7SbIIQAGUbKQp6snqMedyH1EmFe3tX47X0or3jP3SuAOo+X8JUfWhsLAYecoE0nAly/7MKVAyxhueS9ONl3NDZMvBWT1z8WlHHIwbcweter2D5yPoQQWD/u7Ri+ZykGHw5FwYnbX8TOy67AnoHTtRcn9jtuaRBPdx2ILUPmYNy+UISdvv1ZrBr9djTXd1AKKpRkonJVqhbaH1bKuBUPqgArHGoeQeS/X4VLr1gIIVwiehLecq0D4a2A8iUzHhH1APB1JeiJohUqB4ioCzzjhGvhzW85KkX0C0S0FMCrAJ4UQqwufglDiul+8jK8yU66IvyOvQrPIqG/EOJeIcQzbUGhQUSz4FUGAPiJodCQfAvAJn//r8hb17iqkZ3spJwk1NiSSRFurd7cG1pY0p8QNKlsrXJfTkLqIpkMNy9tiwuLMF1b/PIJ+Te6kkq4RVtK+6oFvi5Am5cjNEt1HAQbEfw5NML5OByCP3GodF8BvOXq5PKvupuKkyBvMrhAwPXm7fDMW2Xe4Qz1nmykSInkh5GICMvhNVFwYcd6jfSEIYXLNz+ORGszXp+q+/kSBN62/AfqHQMUM1Yjl2g86MK4F0pBYJzswu4nTCoKN8u+kqLxO/W56VdIiT/qHZm74fdaqAvCoqnvM7QYusuJ2rnXVjPR9sMThD85UcRCI+goG51a/1sS5KV07FXrjMDdgqDNwxHuq+5y2e2bmyybWr6s9tXrRPR35JqM6/O+zf6+o8eR6WuKDk35YG7ejjYhNNlPIGmeGDwPBGXwnouL8csf0q7r6GXTcGrwBKWMsjjyW+z9ClxRzGtS3FJUpYejXTe0feUmK40ndIJnYkQzf8NvV6HGUSIbzytI15jjxaw36vXJdpyUMkurlbCdd4wwB47FRSX4Dd9S02/noaTh+HNXBBN7yn9+mVbNug/njSVcr1r2UzQ0nfeVcg5evvrTEffQBUt+gPZNF7Qw8x2G7xKkXqv6fJaPv0M7v33LRUzb8bwSoq9qpk3aDlknzYetns3uJ0zN8GUAchTii0T0GBG9i4imE9GVRPTXANYgXO3zRSHEc+UoqAkRzSCiX8BbxOMBeH360dC/FubWGcD1AL4IYAURbSSiT5G3tG3RKbb7CQHYAc8i45dCiN1Fzq9SeYey/zNbBF+j9wt4bik94ClBnrfFrRaEcEPTSUX4F76gqwnVPt5IUjjSEriqKPFIk1xkoJqvd9izipCBAJQwIYQ/2V0gtkGQCCe4UoQumZYmiGllDsseHE5IIQ/KX/IbXxdyLpBEIhwVE46nBEoQ4AoCBHnKGAjP2kQAEA4EPKVMIBPUJcIVX1xPHgESvhWH50LiJJxg5EfA67A4juMJoa4UX/VRo/BZeRcpyMWKKXdj6ME3g2vvfOkUJu58GWvHvA1XrvsdOvozoQPAsMNvofOF47rglYWkopkNGzec1KRsncS8+q4lGu6pgVGltul+oqeo/80weiScrIfDW+vt9Dm1B90uHNXi7Os7AS0NHYMTIgoHQOsMqeHafkwciknTTD9OEQACHDjBN13vvJN1v1LQ3EUyiaeGGYoHc19XShhp2bLVzg93gl3fZUF/pkaZHMKgLa+h68l9WvjWq98HJ6FY5CjlkpaOaidXrZdmHQ3S0J6zVgrLHox7oIanuvl6pTLbaJKNvpGW+umlUAgI2n1dLiGlHRegRHjca7uVPAT8477jpuuXQmn3dTnAv6fCc0v1XFt8d1EKO+skyHNbFdLShNDarhPeuPpjWPjcvwUl7dh4BnNW/hKLr/4kiAjnu/TFG7Pux7VLwgGGzpdO4urVD+Clqz7lW9JaFPdC+xNpY090G4Jtg2Zh9IHQcnPGtqexetRCtCTa2U6JUsDBArN+hUkXoZGtgXa7qpFzYRQyvSIihNhMRHcA+A2A3gBu8zcbLwG4u6gFygAimgHgq/CmjADCj+ohACvgTWp6FJ57zSl40yj0hNd3HQNvnsgp8OYJGQfgv+EpdL4J4DvFnCuzmEqN/wPwi1pZtSRP5HK0F6DPcGuySNmfiypXarjJ0P0EgaAmlRtRl5QgVBGaRRKREZ7QdBVBPMD/1sk4/l9pBqSO3gjfZFVOyUEEOEJ4SgSKKkSEIE12kunIdOVfq0uKiO4L4SUcruoi06PAkiQBIBm4pLhItgo4EHAdESgdXFeAkgJEAnD8MBKe+Qk87YZwXZBIeBOx+iNEQri+AsXV5u4I5uqAP2okBFzHK7gs49F+47Cv/2QMCWZSB2ZsfBTrR16PxZd/ADct+W4QTgDetvz7eHjB55WHJCxCgS5ARsOUG60GScFSi2Z5BhEJzY48ld1PMqet35s4RWdsfKXDqofDWsfVTqMAcO3aX2mnCwAvTf+Qno6alyUjdeUBdc4EUoQ7r4PrffAcZeQ/G4WJ+i3X75PIY79UqG4SYd5RNxPZsU21T8G9IL9x8dondd/PwB+R90rgh4uwDQzdQqKKdnLCZx4oOKC0h3742GW/1a70dL9RODZmDhxZ1yi87+E9kG2n0h4LAIp7DaCW0XA3kukodUJzu5EX6WeQ6WfFS0M21AjbaS2S/s4Finpbg6ANQii6jiCqd6YbzIchtPhhHgmvdI4IXVL8dj9UJIRygLfjPXtXwFspznXhOF77DwE4fnwp1AgI7B81F3u2XoGhu5cFeU/Y8iy2jrkOR/qOAxwHm8ctxIg9S3HZwTVBnPE7XsbW4fOwr7996jWp5FD1VUK7BwLLx92hKTU6NJ/H1J0vYeXom71YQTUSQd1R00zVHJvtSvo2XI8v3YvZHaX2EN5XpKDpFRshxAtENA7ARwC8HcBEAN3hTUdwGJ6i4EEAj4mimQZnBhH9DN7UEVIgWA3g1wAeFkLszSKdBgDXALgXwJ3w5t74GoBPEtH7hRCvFbTgPkVTUQkhPsEKjYDx/t/tKSaJAYDNlnNygoieJ6ITRNRMREeJ6BUi+nvyfLfySXdwqg1Afxk36buGtCZdtCaTSLa6vpuJ51qirnzirX5iuKjIFVGUOMlW3d0k6Ye5SRduq+V4a3g86Xpba1IoriqhK4y22orQ3VeE1BXIzr9pOQLLaAekACiVHsbvBCGR8MKlu4njeMvAyhVUpElrXb0TuqQQvGVf/eXmfH2IsoyrYuLqL09H2rKucsm9qNl02IESMTKiwKopuiK5y8UTmLB7EbaNuAbnO+jVa/CxTeh27pCfSty32uymCe2+xhHEtEUkZbNlY0tPSCHIEKjY/YSJIdadJKbKpFrxxF7PwrB2zZcw6PgW7eipLgNwuusA7wfFu5yYZZDvRlDfKbSQ05Z7dkiPL+PIzrPfg4/E8c+X6clvixOzLzvK6fdLtYX3QEU10yc/cuCGQeR/j819xb3Gf06Rffld1tL3doMluElf9SruXkoXiWBif5mWQ+hxYCN679en29p29X1+/tH77hfRvu94iYvgOrza5SjKFU8xElyqclHQVkKR7g5QVw/R7rt9c4iCz3xw3cpx+S6YaUUiqu2FspFaHCVNqeczXUtMJV6w7LG6NKvmPqQ+R29URlvWF9ItJSy/Q/7qKP69Wjrvk2gxXEyuXvJ/cIQL6YayaN6nlfkuPK5d+gPUtTb55Q3dW6Aq8ki2s+pN9N7voz2GY2f/aVqaM7c+hbpks3IP9Hspz1bb7ZStq3wW6u8MKKo7ShGSZGofIcQJIcQ3hBALhBB9hRANQoiOQogRQoh7hBCPlluh4fNBeMqWHwEYJ4SYKYT4r2wUGgAghGgWQrwghPgwvH7hBwBsgbfi6XWFLrSk6KufxEGeev1aAFfCu+COAP5ZCHFIidMAr4zJal3alYjawzM5AoD9qeIKIU4R0QUAnQAMyTPrG5T9PvBm1p0P4O+I6H4hxKM5prsvfRQPqZhQR2YkQQOnD7ODSA+TIzvaPAkUCl9qenKT1h1CCXNd73TPxcQBHCApkySpcBBw4ASjUcJfak2OtMiyqfkGLukR4Vf/qyJnSnf9RtczinDhutI1xgtLJvXJRKUw45I3iahwASQAIOFbffiWFkRA0vEnBfVGfbx54wgufBNWCN/32p+ATvrQyzDNJcUffXM9NcfBARNxsO94DDy6KbimGRsewaYR1+LlmR/Gra9+S31UuGn5D/Db678U3i+rtYbtPqWPk1XEyGhanOtEidqVSmi+8qTa3E8Kj92hRZ14Mujcw95hS4e8x/PWP+R/nUJen3SP1plSO8yqC4DstERK74Th6pLRarhcHUl2yNRzA+s1S6cXsuNlxlHzz/52lB0iKMYjlnuqvA/6M9DjU2THON9rsCKdcwoT0++lY+SrhvvlHb3iD1pel7r2xaHJ1yORUKxxEHY21aIE5dc6+hTeB1JcYZTjZr3XLpcs9yOODCqL9i0y2moVU1GvLXWGsI0OYqiDGPDlABHKA3oT5Fs+yni+ZkC6n8jfrnD9NDz3FCLPHUUIAUeEVj2uEEiQ41lhwrewBAUWGxe79sObs9+H2W+EK530Ob4D47c8hw3jbgKBcKFTbyyd+QFcs+SHQZxu54/iirW/xeszPhiar/gKDWlFI1Q3V7kjXVMhsGz8OzDi8JogzU5NZzB59yKsGbUQUqGlu+AG2QT1WP7WIsWhHM6s7SlCI1sD7XY1I8iBKKDLSCHTqhG+D+BrQoiU/dVs8PvvvyKiX8Nzr0kUKm2Tsig1iOgWeD42w4xD34LnsyP5CIDvAjhPRAOFEBdQfXRR9jNZplUqNTrnmN86AI8AWA7gIDyfprEA7oPnH9UdwMNEdJsQ4ukc88gM39JBNmGmEkI37VVH6HUBwzRv9uKops2+WayUyxQhUk4CH45YEeAIIHBrgd8REIFAIQVzuXSrpydQR5woKINUSgTlMAQpW6MrZU/fs8O7Va5nmaG6pDj+SJjrCrS2eqasIBcJ3yVFrpRCvolr6JLiXQ98E1bXEUDS9WbiV+bR8IQjgMgLc0kqRaT7ibRO8Z+PI81nXaycdjdufy5coKfb+aMYs/t1bB4xH2c79ka3i8eDY/1PbEOvM/twovtlXrlEKkFEE3FCbK4m8lCK1Lx4oYJGC49RRMHQubTtTntq2vq9MTuq9jjplRlqRzU4R8sDGL/3de2cxvqO2DFkNij4kEXzkh1KbRRZ6fyqriix+wkn6OQ4FHZ+HSd0z1A7QiR7/XJffhNJdq79Lo38rlCu+9A/F3H7SHFc/YiQ0mH12wv1e665YfhlSbcfXrcwFAbCfm8QmuqrecnyQHaKzfIHbZYXLJ8N5D6ADmeOYtCGl7RbsuvKu+A0NOh5qrcpyN9wJTLLayiuAmU5wjjyPoeDHAgVRAjvc4QU704uStXQ/UTJwKLw1n8rlUP+ht+miHgliBDqXGK6+wmp7ifCkwEc8tplrz33XWtc11sSRfrA+PfMV5tAuAKbpr4Dozc9hx6nwsHUmSt/iZ0jrkZT+65wBbBp/E0YtfNVDDyyMYgzddOT2DF8Lo70HBmmrZRffZ4irBRB1CO9x2BP30kYejS0/pm19QmsG74AyYTsXhgttaL8kpA/chTXltva8FTPXX1nGYbJHCHEp4qYtgDwu2KlDxR39RMrRPRRAI8BGA7va3cC8c3WTwCchtfBv7MU5SsCql1gcwbxpUVKh5Sx7HxbCDFFCPEvQognhBCrhRDLhBC/EEK8DcAn/HgJAD8molzyGJJmmyUjukkEy44K1424m3hb0t+iK5l4biPC6mqiu6Akva01qbmVJJMuWqU7ihvmZ8aTc1ZEzk0K77xg8yboDFxV3FBoCSwlfIVEuPnCgboFCpbQJcVxQtNh6WaSSFAg2NbV6aukOL77SaLOdzchIOE4qEv44f6M6pTw3FekCbNUEHnnhCawBArKoBY2GGU2OlwHBk7D4d6jtYoxc/0f4bguXp79sYjyYeGy7yu/zBuiBoT7qik0lHsmCfQtaYTaTFdECZ6ZEZHdT5g4MlrNRIkTF1cEx4S1Ok/cvRgNSd1Ycd2I64Jzw3Tk90bVbKjvnOzsUrBKhqqUAEFzOdFcUdQ4ioJE/UaE7hMUdLKdhOIaoeyTI8/PdR/avlwtKrKfCONq+6o7oOqq4YTXoroXpFrJw7avX6t6b0IFRJC+ei5Byyv4dpNv+RJcG/kuh/o3Xs7tJN0ZQZ4iffjyh+G4yaBatNa3x/5Zd/jXLYJ7Ib+zXvZCK1fgZmFeq1wVJKjDpKSj1sXwLyn7aZV+ZN9km2Xu234Hr0EkL2G0ReF+sDqKnK/LkW2Tn4e8H0p9VPMI7ldw32LcTxz/fSQoK9yEq58gsJwifzUUpe44BFFXh2Xz9b5I+6bzmL3iFwD55zgJLJ77KbQmwoX1HOHi2je+h4RIBtetzWsG2X7GPRhg2YR3aEFdLp3EhD2vKjcz+l2LKI0QbXf149E2PNV3l91PahhyCr8xNUNJLTWIaBSA//V/vgTg0/7MsNZlXYUQzUT0MICPwrMy+FVpSlpQGpX9hgzit/P/Xso2IyHE6TTHf0hEM+Hdz4EA3glvAphs8khpkqQ1hsKbJwPQB8jU38I8hxAMiXm7wVhPIChpI1ckTwI8G05AemAACNV2wTrzUiARXhBRcB40QSRcYcRLiyBHK4jkyIw3POW6wh8Z080tA0FPvT9SkI7eOU0Z4o1+uUH+0nJDuqNIpYonmDvh/B+BzOoAvuWFd6WOf81uOI+o44SjPX7GToIAeHOZCN/awzNDDUcW5USrq6a+G7e8+K/BFfQ4dwij9i7B1qFX43SXAehxLjS66nt6N/qd3I6jPUdlYb0ZjWmfdiDDFHPUTRTNGqEGRpHY/US3QIuJEhNufB80xaFyMgFXbHpEO9UlB0sm3mVJUnc/CV1LHKUTacSR+4kw/0QitA4NV8UI3wW106UrObxOmBCyI0jBvrxYp6J7BZYOeGaxZROBQEkr4H2GyYgcWIVYMlDvpWzbrJ1x0toGIjWCMgGnn57T1IihKx7Rsjow4xYku/QAQbUaURsndRJQo56r5Q/+6NcT916Q5R6Tsp8KWxTNYIXMMpD2mSX1GSipCjWMYJwTWqIAACXCuDI4sNQIrDJkuyp/K227n0HgfoLQ/USueOa4BEoovwX57bh0pU1AJH0BxXXhJAhHL5uOXaPnY/i2RUHZx25+HlvGvw1H+4wBgXCm+2CsnnYPZq8KRenep/Zg2oZHsGryu8I6IGUQ3xLFuzR7g3Wgz3js7z0Og4+HU8LN3vI4NgybB9cJuxiaW3GubUbWaRShka2BdpthapVSu5/8FTx3iPUAbhZCZGK58Cq8Tvi04hWrqJxT9jNxKZFr+WbiqpILP4R3PwFvjo2slBrZIC0ePDyhSGiKAdkwSVNHVcmhmBlCEU40odo/TqqppG4mSyIU3gMBT44+uhQKg/5EZZ4PqVdAKder5reOEy4JG44ISYGFIN1UHMdTdlDCM8IVsjxK/ur1ScHfdcM8XUH+kq8CSV9ZkUx62hepxEgmobufJAVaW12Q41uSuC7cJIFcF0gKbyRPSAWICxG4r4RhjiPn4/AUG5pLCuApiITAviEzcbTnCPQ9uTO4llnrH8bWoVfixTmfxLue/xdt4Gvhsh/gVzf/h/dLlRK9K05Tm6LSqFU+tZ5JfrzUMc1OA6AKYizJ2GjbCg1ZZ1Lfg8BdIBIOs9KpRwJ6njmAbhePaWF7+06CqG8XpBF88/x/6qi6lq76Hst9qWww3U9I3zcVJtKtgQjhXDzkWYCp3zvTDUNaLwQ+9kXel8qGdHEDXUSK/ei5/nxEUhkRKCzCT5yMo94PWzqykEHzZ0sT0O4f+coFeb/D5+dFEP7+4BXPoOHSWajsu+a9wSo3EaWGr7wOw4WWQehaEgbrCs7oyil+JPUERelgrJaipg9Y92Uachl2oRzXz9G/3UK/lOBcM07kHCVe8NzM+IqyA8JQCvh/ZRtPxuonrr/6CYQLQf5vX2kBF3AhLTxc36LQP98fdBCOwKp5H8Pg3ctQ39IYXPtVr/0Aj9/5LbiOAxKEtdPeiZG7XkOvk7uD65u59mFsHzYXpzv3k8M3wYWQWiGVOxbeI8KyCXdi8OKvBUe7XTyGcXvfwMZh1wTnkXGzwqY1tNGIa2UzbcOD+Ep1Y2oLQYAooNyR0hua0SCiYQBmABgFYAC8gfqLAPbCW9lzRYb9+qJRarub6+F9t76dxYXv8P9eVpwiFRchRCMAOcHA4FRxyVuZRCo1Mp6QM0s2KvuDipQHANUlQ8CbCNMNwlzfLcU13ECiK6KI8Jjw9oXrwm313EikK4rXwTfScoWyGkq44kqr736SdGWYpwhItvrn+OXyfssyyC10e5F5JhUXmUA5oGz6aI2xcor/1/FHMqXSxHGAhCNXO1FXRAlNTz33EwosQhzyV0rxXVKkMEmJ0ORVigeO3/kIJgck2TmxdMD844JEIOgKLxGsnqqPFvc8sx+j9i3Hob7jcKKbPtdtz7MHMPDIBiVEhJu1YTGVHoYJq7/FDgkG8TJzP4nP2/a7ANISN6ZVT7buJ1o4EHOuHnbt2l9H3oRXLv+g7C0G76cWKdD4Qns/NKUEOUEnQVWKhBZcYSeXlKRI+W5oLiFS6UFhPKjnEMLvEEmT++Lvh+VNHRcZ7EfPVa7Jv98UHNfdClVXDXUFkzCOA9WlQLd+gRIfgTLd/6QbrjfhvXYcr1M89LXfaHXq2LircLHfMC8d5dmoWmjr8yOZp+KuAnWAwquhmrVJmCQC1xWtzoWd1jD99Pvk1z+ZoGxDtXtixDfLpJUtGqxfh/q6GWlaE5L3UNZ3PxG1XLI+ePfXdz8huTpZ6H6i/fZXyZGr68j7QARc6toHa2ffpxWpz7FtGLPlhaBMrlOHRfP+Aq5idl+XbMa85T8OFECqMi28GOMmKc97b9+JOCTn5fCZtfVJeLOZe3HMexSc7iu2Un1F2f2EkciJQgu5Mekhon3w+uO/A/BvAP4CwMcB/DWA/wKwGMApIvoDEd1crnKW2lJD9nLWZHGOnBy0Y2GLUlI2AZgHYBQR1aVY1nWccU4xKNknWSQFRFJq5f3GUsneWyEAQesmwjbSb0PlKJi07vAOCCWFYGRJCl5QzGSDyT290Q0iIAlFCBdukL/jBYQjjPAtL1xAJKTgJwBBvgue8F1CoK1a4rr6CJVnQaEKMfpIHYDAX9cfXFOuzvuf66ctLUJcV1pqyGt24TrkzT8STOjmwCFpzSH8VfOEr3hx4CYF/KlKvbxcAZdcf4QPcOHdG9cFfC+UcEUUIVe0Edg19Aqc6DEUvU7tCco9a/3D2DF0Dl646tO45+m/U2U83Lj8R3jgtu94Fy+HrJBZ586LZ4uWoYIhbTSbhBo/dpQ3NTCKxO4nebifAOnvnduKIUf1JTjPdOqH010HxnbCws5w6HLiWNxJALubiRce+k0k6jx7e9m5UuN4lgAAqS4nskPku5/IfbmKUt4ypNrZKvO+107ITi9JYwsdUv9oP8wo4T0zk/DbjqCjbFh7yPYlKKJSiN7blqLz0d1aevuuvQ+JRNhLzfQV1qJZToq7Rt0Kw5aYkU7G3xQ9nnlacN8A7flFRvyF8XjVPrhyv2WW0rbAdDmFeb6SqOuJMpDuJnI1FBlfTYcEeRODC39wCL7FpPAsMhN+ew/p7uXHcYXA5svfhZEbn0P3U+G42Izlv8DOkXPRVN8BEMDxvqOxcfzNmLTxiSDO0ANvYuS+Zdhx2ZWe9YQvC6hWG+pNCOq8L+Asn3An7njtP4IYvc4dxMiDq7Fj0Eyoz0m95qwxn0s2JxSKGmi3GSYHMhkE7wBv/ss7iWg1gA8JIdanOaeglFqpIT8H2UjBffy/Z1PGqmxeg6fU6ATPdGdZTLz5yv7rMXHyZYKyf7BIeQDwGu2kmwyUE4GPJnxhQ1Awh4aAUAQ0RQAKlBJB91s5pi/1qk5qJ8/1/L71icu8ZVv9ZUt95Ql8f3Jv7gjvZDmC4q0goo+mCUeASMAlgpPwZy533GCULJHwFBFCiMiIkWdZIaUXeX2hWXZ4/zwFCrnhyIPXiRCeYiPpT4rudxbchICTJLQmE3AcF8mEdz1O0kWy1UsHJJ+F669pK/xVUvy/UtlBnsDmwJvkNXCZ8RUc0rQZ5GDV1Lux8JVQmOl9ag+G7V+J3YNn4WjPEeinuKd0u3AEgw+vw/7+k3UpLh8KlQ6TNdWm0FCXWs32zLADqJ9vM2c3yfQ+mdFmbX0KCeFqYSvG36acYKTva0cDRaLUmML7PnpKX1XxEX4DA4sG+AoRx0tQtRwIR+x9SwO577ufhCPSiiuKb7vv+CsvyfKWyv0kdh8pVJbqJ8Xoo9vSk/dEvz6v60uODKcwDhlxgvCwDQjD5fMz8/LCHXkhFKqpFR0LLlv8oHZt5/uPwOlxc8I6oP9Pvw/KPdL25XXDqNvmCbArGmzXod1X5UJSv6+qKiI+zHQDcSL56tNUuq7iIhXcUOXa1Ocsr1HXhHgWWqo+RU6BIdNzvfZdBFNjCDiOA1cIr1l2EViiCGVODfhKDCchBznCPB3XhWhowMoFn8INf/z7oDgdLp3G9NW/xbI5HwIRwRUuVs5+H4bveh2dLp0K4s1d/lPsGzgdLXXtjbsY/hJyFRa1MgDYNWA6jncbgt5nQmXKrK1PYsfAGUYlkN8HeX8L33azSFDLUPoGN9v0mExYA2AlgA0A9sPzQHDh9WuHAJgOrw873o8/A8ByIrpDCPF8qQpZaqXGQXi+OGPg+d9kguzo7y5GgUrEIwD+wd//ECxKDfJ63x/wf54G8HKRyvJxZX9RkfIAgMDFRCoyNLcLX+AiZSI0KUBoigq/dYoITvKYL2gQKDL3gydQJCFNraVgknSTvtJCmnMKJFsRhHmCmkBSSAHT8cvpTd4pXEAkHH9meb+b5MeDfy6kRYb4/+z9d5wlx3Ufjn5PVXffO2HzIuecIwEikAAJkgJzEEVQEpNEUZFKlm1ZP9sf23p+tvz72U9+T5ZtKpAUJdMURYpBDACDSILBjCBIEASIDBB5F9g04Ybuqjrvj1NVXd33TtjFzOwuOGfRmL7V1d3V1dVV53xPqoPsKSUZYQgARwAGkTtMmVmEy3HK2AgD5FiECfZWImRVTP+mFEFpB1P5QKEkgg0RYI20SxQrchxWIqgKY6bgRN8DxUqsNRQJK+VEc8OB8fKcFBHhwZOvwp5Nx2HLvsfiK7r89o/gx8dfjs8/77fx5k/+XsNa48W3vBt//ao/SUqCdUubCxkVO9pCSd2JfgylldvXa13umVgZrIiFwmJS1TqtCh0YoDEOuBhjoTFOvornjx8vobw+1GT+L7m/yQsYleOOU65rAhD+XwAzgrCICOR6MAKJu5mqzdobYIUPAJq6lCjvcpG6qxFCeX39ILRHawKEdNdUC+scfo/ps9XeXwFqWAIuUCNQmFNppC3NdzwKKlB4dWPavrRlkKJ6lE8+cT+23fWNxvHHXvjmRvyUMU2Xn3E9Ci8uXDcANGntenynqX0Xamt9+2adWL7sd1ZXrNeQ0ZNjywNr0fqew35YMtJ4WvK3tegkjvhidTGKbMb+CDEktPAEKvwO3Zp5cEt5iygfHDSsdVrJb4byShIBOMQy1CW/AYaCY4edp16OR069Cic8UL/7c3/wD7j7vJdhZtNx0KxhutP4xlW/jJd88b/EOtO93bj8tg/iG5e/XRQXJNaqkQFBCATMvihZwJTCLWe9Ci/79rti0bG778NxT9+Dx44IRsgBJWp0VGOtXvSTTdbMxdbg+nKrsMiur9vr9BNIzHzpcuoR0dkAfhfAOyDZP/+eiM5h5lVVogdaa2eir0CmhDctpzIRbYcI4QzJlnJYEjN/GxLwFADeQURXjan2z1AjXH/CzFV6kIh+kYjYb3/YPpmILiDJLrMgEdGvQQYaADwJ4GP78Rj7TXU612TjZkwNdhzdVNjWZXCIFgRS38VzG2UhNoc/DkbzusnxEA+jHc8jlMVYHk7ibUidOm5GTCXrY2lIHI46LkcjdocTvMAypL4DrBUtjfNljhseGG1Fj0/d6lO5KkKmJbZGpmXT/neeAXlGyDMFrYFME/JctiwP9XyqVy1pX5WStK9aKWilav/c4OOt6wCBwYeXUINDqV8vdIbvXXRD490ftet+nPj497F30/HYsa05LDfNibWGPCgiM1j75NMIgziujxr12ueMU9OM8FIHLu2siIXCs4AxWrV0t4c4UZQ4w9Y+ngr3yd/wLVEAIJpCWQASiAhH7H0IU4M9jevef9xzYurH5nn+eo3YDapuR1KutY7fttZ1/B3lyymUawE3dKbld6aQ5Vp+Zwo67GuFLK+33JfnufLHNbLMp5vONLJ0y9dwfyW2XNJoh7k07mcSy0hnYV8jy7LGvKt9H2Ra6ja3+h557Kvk3Dh300hZPBbr+zSvmnDCV5qxNKqpzXjqilfG441NNbdojaPqlLGj+yHVuEp+q+Y1WtdVOilL7q+TNugltrD+aV2vhyENelwffd3Rto5uqtWemC53iS0+X6sP07VMrJ5U0pdJP/q+iu8t6cMwpkLf6IwkhbsmqFiu/TEdv1mtNZRW+P6LfgM2yT6incFzv/4eaZd3E3vo9Gvx6HEXN8bIhXd+Glt3PzgCNrTnnMacBQDMuOfEqzAzua1xvcvv+aTfa64V7UuH+VAtxgM0eKTlrMGrsD79ZC55hw6tdDyN9ZgaK0rMfBcz/waAF0ISZUwD+P21uv9av82/8H9fQURvX6wiER0P4EYA2yGhEP5isfqHAf0uJE1rBuBzRPQviehKIrqOiP4cwH/29e4B8McHcP3nALiLiD5PRP+UiH6KiC4loucS0duI6HMA/szXtQB+jZnnF77cM6cRMIJrMGFckFCxgqgBizR4KKegg3ULXsNaW2/O1mVJYNFGPWMlIKi/pjVWAolWFqaSY7ZKyo2DqdLNwlQOlWFUablxMKHMSCBSY1k2D4RYyw3AI3Uxqa1R6i24seQ5kGX1lueETkHodAhFQchzhTwnFLmSrRDmKC903LIgcGQ185TlgSkWQSQcS5k2Shk+74OvtMJ9p1+LfRuObrz/y27/CIgIX7j6t9ouyXjxLe8eHTCesxEmqXYDSpmbFbU6XKdnTIej+8mKXGcsZjZGABjXPX5ML94SwrW3f7BxOgP42sVvGQMCQqw0orWE8u4gAmYo8kCK9pZoXqDSAWDRtXClPHihPBAagg6HuUBFcFXVQmKmGoJYAFuV/xuCGYtQT9AZpDwBZg/K/gICbltYzny7Y/343O2/Naigx9xT+sAL8KoGmpWqBdpwrkp+pwK5vDuMlAdBWicCdTG/D0d++1ONUfXENTeAOxOJJcVi20Lfd5ibEevETaVACGKQU6XqdUOr2upHhePUDJKtdN2Ger/ul/CsKWgRfo+AB1TfM26qeb/RcwAdjlN9vA4+659N1dYloSzdVFzPavy+GRy2vcYnioXwvLoOChrHpwpAGTW+3VBGitDbfiLuec7rG2/uxAe/iWMf/V58VyDC16/5DRidxzqKHV7wjb/wa3Bt4Toyn8Vyig/nVIbvntmMEXjqk7c1XFLCRRpDK+2ExdaUZS43h9mytE7r9KwjZv46gH8L+WpfuVb3XVP3E2b+DhH9GYBfB/BukgipH06qXEhEFwC4HsDPQUxXGMAfM/N9a9nWlSZm/h4R/SyA9wPYCIke26Z7ALySmWfHHFsOaQAv8dtCtAvAO5j5Ewd4j2VTCmi0KZal7gAC9zdcUlJTw5TElzUxP6TabSVqEVDH8KhdUsQKJDXJZlUH3QyWCER1Ozi4n4DAynnf5uB+Ik1UDADiICttc8LsaAWwFzh0MKz03I9P5UYASEs6WfaMDnt/2vB4yp+mVc0QaIhwFSxAyInpsVFiCks2ZTolBghA0gekIMFTCQbkg5QraSM5wASfYwWCgyMCoKLfLzsnz+3bDZ3hexffgBd+9U/jOzrmqbtw7FM/wuNHnIMd207H0bvqT3jT3A6csPOHePSoCxBsgdm1TFUABPfdFE0PKXzTMTHquUKjhYTmeDvg+Arr7ieHKx3o+95vWsiGmkMwYhoZP+mYUs7ghKfubBzfM30M5qa2N+au2v0D8s1TWla7nAQgIxU+o/tJKgjqIEzVdUXQSgQ7L8hE9xPUxxFdTtB01QiySsPd8FAOMtt2ndifdqYgLPmpaJzLxpgzl32b5rUa+/7v0V//CHQ1jOVOZ9jxwjciBJxezj1Gr1+/UKLR9ydDg+uxkBwOa9jIN5gYHqXjBcF1CWG/2Sah+kMLU/6o/F3zGk23hKQJ7T6J8UskKLeCP07eElQnV+cYkiv+ptbvcX+1ruu2rTRlcQ1tC7FXEvcTH7Rc3E4ZzgdT5/DXK5B+9Ly34ZQ7Po9ur7b4uuKrf4ZPvOnP4EBgRZjdfDx+cPENuPS7deyVo5+6G2fe/2Xcc9p1SWekfcMja1d4jh+e8kJceefHMFHOxWOX3fMpfOby38BY95NlELUGeIMf5ORvnFuSyuvuJ88qYoHbVvR667RqFGJDLpr5cyVprWNqAJIGZgrAWwG83m9hivjfSb0w0t4H4F+tVeNWk5j5k0R0IcRq45WQF10CuA8C7vx3Zu4d4OVvhLiWXAUJ2HIUgG2QftwN4DYAnwHwPmZek6CrYnnRDHI3yrWlK1Goww2f1XgapYwE14tLssg0YnQksTlCDIgU9AB5kINrkASqrhNvxy4G2XNMCdDihQh2MZAXk6rBA+80WzM5qYZC/FUlaBlHN5QAaESmKTBS8E3zwkFksiC4iXPercUiCixWS0BRY3ywUkUS1NQSlK0zwwRAwVpJdcIGQAYfo8TBQYX0J4ItOGko+UhmRJIt5f4zrsNzbv1bbJgPGYyBS2//GJ548bn4wvN+C2/6xD9pMJwv/k6IrTEungYWYBzGAWTjqtWF8X03hpoHNA6QOVl3PxE6tAXT1aMlH5kWqDMGzKgP1eWX/+gTUK0Aobec+7oasE2v0xBuE2BD1fupK4rOdGxblut4jSyU+/3wDFmm47V1mJe89jucGwIJh/SgjCDEUr2PhbGe/aH0Giu/T83QF8s8eeSVUrt8eWjGQrX2e6qwBsd85cONol2XvQzV1qMCrN4CeFvNGdlJf4a1UY3UiU9BMhZieTLxU/qs7SEcf49cdAFqv6QxNG5pWaBDYzF7Syr2oIJfx8NgFmUNYp1UR0PJ9ePaP4rXNwCNBrDhLxLjcbKsVqwQgYwQhDwEoVWMOoV8DDzqYKc24vYXvgOX31gH8t68+2GcdceNuOuCV4kSxwE/uPQGnHbvl7Bp5olY76pb/gYPnnAFqmIC4Z2Cm8qAet2WByAi2HwCt51+Pa6886PxWmc/8g38n3PfgNmp7Uu+g/2i9Bpjh8AqLLLPgnV7ndZpjehV/m9/rW645qAGM1sAv0BEn4AEz1wo+MidAP4DM39wzRq3BsTMPwbwT/22P+e9DwLwLHR8J4D3+u2QoKAtCMg6hZXbgwghEFWNSFAiJAkHUS/6be6KaiAC7UMJp0TCIFHCPaWCQa1p9Iu0b2/UcBKBXa0JjRlRbB3gL2g1xQdd2uxYypzlqP1kR3BO+UwpwixlGQFQUIqR+SwqmUa9QGuAmKOwEMxVA1gCCKCR+S/ZeoDDECHzTJfRgLEEZRhWETgjWN9+rRllKbezllBVEnisKiEaNCegDTIARu7ryIEtQErBOCv95AicFbj9op/G1V//y/guTnrsVmzf8yB2bj4JO7edhqN23R+PbZrbgeN3+Ewo7N8pEkapxQw2x9b48kUpHUIJL3awmZRnYjFysOlwAzRWqq/HxAU8oDpAu478uOiBf2zUqXSBH538fAE1g4DRAjPCnNjIcpL6/Tdi5KCezwIgoWrrs/Hm/6jN4lX97mvrjRbYgibgJQJYXb72+03hsa0hX/QdpTtRgOXms6L53Evdc9w++fUpaNtj+fKaGWnTD7+Gzu4nGmVPvvhNjfeRpuoce30KwAM1BjO1n5vqFOYhDWgA34OQn67JYXlPnzVYfaT9EZuxZP/RyLtMfzOoYYnBXLuMhHaHtOv1b65TrFOStt3jjOG3c+F4sw0hqxvgs4WR30nHTzI/0Jhr1PUJxBKDK2QkAhjOAxtgid+liUDkwErDWifuZY7x8KWvwunf/Ti27KgtJS/65vvx4DkvwUB3QJrgqINvPf/XcP2NfxjrTPb34rIffAjfuPwXUSuauIEhEajOhlJrDPD9M67Hc+7+FHJbAhCXlsvuvQlfuvit/j2PT4W7UrSa1x4H7qzT2lGMhbGC11unAyciej+A50I8DR4FMA+Jo3E5gIsgM8ZNa9Weg2GpAQBg5o8A+AgRHQvgMgBHQizqdwH4HjPfv9j563QYkEPDTLHpLpCoNjwReTYr4eIa2ouUGllHYqFUJa4Zf/jFJ7htcJ0GNjDgDK5dUrxAkFpwBGGA4AEOJWlhAyjiPJPEYCinvHuKmIlCKzCL9QYzQXkti9YKzqdqdc4hzwgWBFLStoBrsArMITfcU4Ba+ymhLYTJCYyW0gJSuPgMAoxU8AwcGCgkvgcz4KwDoMBMMMZCZ8q7gxCQKR8BHd7yRrKkgB00e5cULRlR7jr7elxy699hYlAbA116+0fx2Wv/Kb5w1W/h5z/1e5ENIAAv/s578Dev/pOocZI71pzfQhlRlhRODpCrWdzyoNmulXI/WWeM1o4OJfcToBbsQmUiwlG778PkcF/jtPuOf26dkoFqhjqAGUASOwN17Izon6+SmBktN5Paf1+1ykXbLqAtPAgqDaiBDfkt858HgxsAR1N4Y/8AMvR57L7UW/n9Z07NK8naEY7QgvVGaaHBkV67vs5ypjHmBKQAcPTNf9c4PnfiOZg/+fykX1pAzZgGUFor1uFk7FJzHCfjgeIzMAJYTckNU9fKcK1WA+pxNKbNYX9/BEtG2pfNTm27nyhVAyzMiOlToQMoQsm45hHQJGRDYQTXVNTpXf1vnfQHM8fPO14jLDcEbxUqb1iTX3+CBQez8EMMEMl6DM+rAAymDLe/9Hdx7d/8drx+t78X53/3Q/jeVb8ovAppPH7qFXj4pMtx4o+/E+tdeMencNeZL8HeTcfH8RX72z/HSDYUAgbdTfjhqdfhkns/G691/kM345vnvh79YjoZN811fr+X7AZIlGTg4TEVVpjW1+2DRM3JZGWut07PhDQkq+lprfLw8X0WwO+sVWMOGqgRyKd5WfX4Dut0EIjRWk/azBw3yppajta1iJsTGQe5tXm9wFSleekpqIyAkYU5tQpgZigoAUWYoqDt4Lzw4JkFW1+XiADlxC0FDCYHcgSVhWdgcIyzISRBQQMjxB70kLRt2mu6oP0CbRCywtaMYMB8yAci89obxZ7hEiylttqwSIKjKVjnYCpK1nuCUwrG+rRwLBKKUwyyQHCvETNcJSexPLOkkeXIUHA+iR+e/xpcfsv741s57aFvYPPFT2DP1hOxc9vpOKoRW+NJHL/jh3jkqPOSMYHmu2nQaNn4astkZFrVFgcqeJn1lkmrpUlaQ1p3P1mowgK8UlsQTC0Z/P414wKEXvSmhhAZAAxQbSkGggTyDeVZHcEwuJyQInE58ft5lnmAV1xRKN1HvR+EWZ0ED6j3U1DD/4/r2BrPOjrQ4d4QtJZRPQVt08mCm3XqJUyuWzz1KDbd8X+Q0s7rfk7Ws0YLRtuRvsNwvQC6pUBL3E3GMFHtchLiZ4T6wT0pKQKl38iYLqmPLdZfieS/EI1ZCxb0o091LZx0NbdBkbTva/dJ55r1Ug+yUD9eO9lPrVQaFl6U/PbrvgAadX1RYgj/4Ci8BwVHHvx3hN2nXorHz3w+jr3na7E9Z3/3I7jn4tegN7VNgq6Twrev+XUc98j3oJ0BACi2eN4334NPv/Tf1YBBeH+BFfDAUg0wyYPdeuYrcNF9n49udLktcfF9n8M3zg3BS1dgAUwuMX4dWoVF9lmwbq/TOq0g/TGAOwBcDeBaAJOQr+TLAH6fmW9Zy8Y8W9mOdToEiJnhWIKFStDQdhmPKavTtLKrOQlmNMrrlLAubs6nYGXr4gbnwNbCJRs7B5dkSXHO1tcNWVDCMevgjGQ/kSwo/ngVMqSYZD9sBqayqCoLU1pUpUVVGpjS+H2HqrQoS+uzpDgMh/J7WFqUlUNlgLJiVJYls4pJ0sK6EGNUQCECQxEjU7LlmqE1o8gY3YIx0WF0cqDIgU4BTHQUJrqEolDodBXyXKHT1eh2JQ1jpyOZT4pcMqVonxpRKcmYojLl09HpKEiFFHGkCHec+wqU+UQcBwTGJT/8OIgIX3zeaCaU6779l7XWGZEbTrTQaJ2xgnzFISCPr1RGjoNBhxugsZrZT0bvJdTuocXS4CpT4rin726U7d54HPpT2+I3ElK6krfACNZkaZrlYKkRvleJp5OkffSZj1RGMRWr9ilbJQ2qZFHKciVppLPwt97qNJOoU3KGrBwaUXufZnQ4mPsrsUm8Ip+9g8bvL7QlRjUepMfo1ho7qdRPoMbEF60zKD2HceTNHwIlY8xMbMCu574sXi5uNLrFuE2tcUleQI5bmO+pzl4Ss4X4LWQm0bpd3spyopIMJeEc39dyLGnfyD77vm89R6OtiSuWqt9VvF94f+F+Wp5La2mr9s+aZsuJx3U47vtAA5kOGU7gv43abVTrOtMLUX1utEppv5NGhpZwTvjOVGyX9Jn/nWn/jftsRYV86z966TvhqDYHycwQF339fVBaSwYkpTC35VjcccnPNN79CY9/H6c+8i3/vusAwmGgNNx4wwAnYHb6SNx94tWNa118/+eQmUGjbDXcROplaRXWp/i9Hb7r9uFMDLXi2zodODHzLcz8H5j5FZA4jm+AABovAPAVIvqltWzP+ttcp1Wj4HoibgV1WtfllgWwwzE3AA12DLhW2lfnAYy4cQROnGuCJY00sh4IEXCjeT1nXF1uHawLQIiDdQ7WOjnXJGljw/HSwlUBGBFwxBgnIIipU8wGgMNaAWWslfSvVWVhbdp+xJSwDrU2KDAEyjOdgdHKI3MF5BlQ5IwiZ+ReGMlzhW4haV/z3Kch1AJoZJlCnmvPmNUCTxCOtJJ9EYIyATuUMFKkCWZyI+48t5nW7awHvozp3tPYs0WsNVLa7K01IpOQcNyRKVXUZP6S88fK1QcobC8mcB5IvUUpPsvhBQwcznRQ+tpLJI0AiZ7aLnlX3PUPIwFCv3P+62vBIRGigdrlBBDtbPittY4xMrJMwAwBLzL/3QqAEVM65+G7l28/pHjOE4Ajlvutkd7UC7Fpms1a+EmF+TH7YEmK4st4qfoHuP9Mt+W2MaV0LQsk1YJkxHEeD5p79gaMISZVTIXulQCy1AWgH3UdZnBZ4oivfazRhqeufg1sMdm8T3tD2AI0kszFiSWEgAOQ8axq4T26MFENYtUCeajDXsBPUtUmYEgKkOzfPjfK2/UCiNDYT+8XgBaq/0agIEnLG38rD+qpGsgLqYvD8TwjZFrSJsdvxAMHjRS9lAA5fr2OIFAECKU/dQs4DGmESWvvOubX7ZheWCMrMpCS73xw7Kn48XNe3Rgbp97+WWzZ9aBvm8wbt1/+85hPAnoCwJXfei8yVyGAqWOnUWoK+kTALWe9qlFlopzDBQ99OfkSDnipTi8BoD2XPoNrLvvW6+v2Ov3kENHSwUeYecjMH2XmFwF4I2Tx+EsietGqN9DTqoAaRHTDalw3uf7xRHT10jXX6WBSytDJ5saUjdnSf+PKEICQBjfmFzWOzFl6LkJZLK/PCWUuACK2xUxaVzOYARSxTgAXD4BYb+ERLT2c30xr86CFMew350EMh+FQ/srGqCpGOWSUVagrFhrGiEuJc4Tao9j7LXurjdxbahQZI9MCaHQLRrcjf4uckedAkRO6HYVuRyw3Mq+5LToKRUcsNzKtoEi0tTpTTd/7hiZTIfjz33HRT8PoIo4F7QwuvuOTIMKS1hpRU9iw9ZWa45iVtXM/Sest7/L7c+/DkVYE3DkMaTnvP2V6Reil5EfYbe5f8OAXG9codQf3nnINQEkGE0AsNLxwQZqitZTK5fuEkiwnIWZGXmTQWkFnhDz3IEemUBQZ8jxYaGUevBBwM8/Jb2rEQiP8DVr1ILiOaMqRyMVxq+ftELeHknJq1VmRfffM92mB/Xb95lrWBAzCvgtgBqiuGywPG+thAB5qkF7WUYyts/W7n0c+t6cxhp685oYmsN9YU5vgRnhVITYK+XGZWplE8CJYoXhBvbZ8SMEMSsAu5a0MmpYb7Y2ScZRu44h5/Jow7vxx1g/RekQvvmWZ3+I+IcvlO8gzQuG/lbS83jwQmAvwMXo8ASxSqxIPChJqIDNstRVSaH/zOrJW+32NCFrcf/2vwBRNK8qLv/wX0YKLlILrTuG71/xKoz83zu7EhXd8stGmJmiZgl5i0QEQdm85CQ8ec3HjWs+590YoZ7AiC2ByiXX3k58MYqIV39ZpWfR9Inrhcisz898D+L8gy8iaZTBdLUuNvyOi21ca3CCiE4noXZAUqC9ZyWuv08oTI2HSEleTZhmPliWuJXDcssAIriZiwSGWHLIxuGXVkQAPCeDQdlsRN5Vg/TFqASKghXdFSS0+wjV9mbUWzltgOFO7pET3k8pEd5RyaFANDSrvkhLdT4beeqMSl5RhaTEcCuBRlg7DIVBWslVG3FGM9c2HZ0i99iqAG7lm5BkE6NDijjLZYXQLCMjRASa6CpMThE5HYaKrxTWlozExoZEX4p6iM4W8kN/BJSWauIcAhJmYxpcbtuHec36qMR7OuedzmCjnsHfridi5rRlTaPPckzh+5w/9r8hNJ4KgjKiGcBhqL6A1WhYd8Hq2cgvh4WzG+hPvfrIIU53eK9Qf311SeNSu+zA5nGkcue/EK2uz7iBUKg9gJub02mtrCQStBLQgEmBDaw1SQFZob5pOKAqNItfQmtDpaBSFhs5IwMxCQWt4Ky7y1l4iHBEhapjrGBs0+uxcC/Eutbxz9Ras05yfS1PLtMa+W5n9YOGwYvss+8FyL+zLMcR719aAgLMct3oNYTgr9Y3/a5O2W9831t9XXBBH+9JaxpGtAKF7z7gM80edEvs0vXaw8nANZQMJMOPfYbRASUZqmIJrEIubbiFq/H66tZX9qZVKxIm4uY2W+/UeVNeBrIOebWj8jcDNElNA3fbE7YhaQAgBmfKblm8/U4RCE/JgweStJPOstgDJM0Q3FqLauiMoCVILFkLTjQZj9oGmVZRcI1hdeEstb5GVZQrlxu148Nq3NJ73mPu/haMf/p64oShxX3v4nOvw5HEXNOpd/P0PY2q4T0AV3XTnSYGYtB+hCLec/ZrGdTb2duGsR78ZB9Zq4OJ1M1ZhffKXPJzX7XVapwOg8wF8gYg+SUSXL/Ocb/i/z12lNo3QaoEa9wI4D8AHieghIvojIjpvqZPGERFNEdFbiOgmCJjxq5Boq/ctfuY6HWwKQEbgJiLYsERZzbWg1k613U/89VOOJwIeEeiQY2wXdj+JWwBGwtZ2ZQnXsDWYEcpCDA6ODGviupK4nwRrDWOkzBgLU3lXk+C6YizK0qEc2uiCYkNcjYpRGReZdWMZVQJqNNx4CNCaQUosNXLN6OSyCcgh4MZEIeBGngFFRpicUOh0FDqF9polsdgIpujax9IIVhtZpqFQ+/RrJWavIOCHl9wAl1is5WaI8+/8FECELz7/t0etNb71l00GmtDkeDxHJ0KeitqgBW1hsQylSqvCwpYHvMx6+0/rZqxrRyvd1w1z/QR0AMYDPjEOQaLNDALB8+74cFPQA/C1i9+ctLse98EHPriZkDcdD7EysixYYGjknQxFkex3MhQeyOh2BcQoCo1uR6HI/VZ495NMfmtvXi9m+UksAYhbQWox4KKVG2qhnVMhHQ1AQ0CBVDh3DSHcWST7PLLvkjoL7jPHuXSl9mWrwZh0vwYrknPTfQeYBc61pn6uRh0T9sXSr31u9+F7sOm+7zXG2+PX3JAARIjt4AQ4EnDDbwEocKkFCBI0A1GgDqBHFLKjpUVisUFNy4swsKNVSAAdHOBCvKiwjo4Bt2xSHuJLNcAxV58bQCcXxmIKcvgtfca0TeFv2E/jbmhFI+4pee7dRjLv/pkDed50XylyAT6yxEVFJ9druLho1fjdtIgKFjJj4pVkTVeVPJd5IvMuZkWh8fB1b8Fgw7bGOLnwC+8SgMaDnirLcOsL34k0oGpR9XHZLe/3FmPBaiyJr+EjiNZzrABkjx1xNp7Ydkbjfpff/SmENXUc0FuDZ2n8jsXn7uaaXFsX1QGWV2juDwD1+rp9UCikdF3JbZ2WRT+CfESvAPBNIvoyEb2NiDYuck7wQ1+zj2W1sp+cB0nh8n8BOBHAHwD4AyK6F8A3AXwHwPcA7ASwx28TALYC2ALgTEiO2+f6rYu6U24C8AfMHNS663SoUgAuGBgVCseXReEgFi50aVluuV2vUVhbLoihZW1f21iQCBEoCXVBySKpJIk9MeAg4c1VYrYWtKhMDEXC6bMiEBPAzgfzCxHLGYoVWCkoAlhZsJN8cGzZu3YwmMUOl9mJ+XhOcCzqHmYHrQmcycMqJVYbmgjQkrpV+XZK09hr0xiaAMcE6wjO+UBoWiw+SgtQKSbRRARjFYzhtJNgnYOyDgRhJjmTdLlknbfMETN5ENDbfAweOPM6nH73F2JXX3Dnp3Hb+a/D3q0nYee203DUrjpz8+a5J3HCjjvw6FHny/tiHuFj2mCCRI0fk4HDc9zNMbI0ELGw5UFzYB1mBgqrRuvZT/zvJObAUvVHtJkA4ByOf+pHjXN2bzwW5eSW6GYS07R6y4yomc38viafwUQAiLzIBUBJ9rOMUBSZt7gAikJHLXSe18ydVqhd25K2h+DNgkFzBDGCJtxFYFXKgdo1ImR4cByyMjTLQ1/U+8sDGFdSXlmK6vbKXBeE+9CO9n54lrDeEYkwHa+XNJ1Dx47cE0iWLv9/bkxnzMDRX/lw47zhhm3Yef51cW1L2xUMf2JskOQFUKjo7yGH67FAaFleoP4b5txQFprLcdc/cQDhQXEs1c/aLk8uhGb/NXuyvielN0e9jtRQd219Ec6rx2E43hpn8RtH42965WZrkrYmwElqNZICLSEdOyN8G/W3I3XDGkT+Pdb9VD+u54vC2peMUWYBQ6yexoMv+3Wc8+H/GNu7+cl7cNKdX8CPz/8pOEdwlrHvuLNw/3nX4/Q76rSsZ931efzovFfh6W2nQHkLmZD7RBKjUewKDjOIUrjlnNfg1V/743id7TOP4tQnv48Hj7lk5E2O68cDW7vbv8NYWjmFxDqtPUlo/JWb8FfyWs9yugjA7wP415AMJ8/323uI6FaITH8/gL0ApiGZUF4N+eDuWqtGrgqowcwGwH8loj8H8E4AvwkBN84EcAaAty7zUmG0WQD/AOC/MPO3Vri567RKFOJojAqovGhZU1vvmasx125LFkTk16sxAErrmrVHMbzwLxVcOJ+SRdJJGSdlLuFsUn9S9lHtlU/Tys4zRxQ0WEpSpZKLZpxKMawjsawwDlor2MzBOo0sE9DCWQWdOTirvUk4weaAcwrWEYrcp3F1FNg4ZCE4GxE0sQAdRMgUwxHBKkLGQEUEZEDhCANFyA0wrISJMgYgUsiywBwpsSYhwBqCcwyVAc5SBIdKJ6lxoYDbL3tjA9TolPM4757P4rYLXo8vXv3b+LlP/pNUr4PrvvNuvP/Vf1KPg/BOk/cSh0t8n/V7jkOCEl/rKGmMDI1nwOMscyEMQyxKB2OqHMbAwOHW7shoP9PrjE4/XngbD7CxF0TkZ1pHvpuL7vtH6JAr2tP3znl1HGbkwdJg1RHmk7Cvs5AFpQY2BAwVk/JMS6ycoDUWLXCIF1AHeQxpWhmAinOytCGa9zc035xovL1bgxdMbXwc9sIdx/04r3NdHvtjv/dDH9Xl6fWb76MtJO/fvrSXkucI5ZTs1/dvPyt5cL0W1pv1/XLZLGcBjahVn+M+oIfzOPo7n0ZKj1/5WlSkQLZGAdK+SFPuiuVQyHAS9qmu49gD9dK+FBhpvYaGooGT1xSAIJAMJBeBjKRf/bPGsRKn/Lq/Q/3Ruafu08b3hSY4Hp5T9oOLTF0vZKppHG+cl4658X89toc8qwEK6yQbSvhejJWA3s5byVQGyPIa5DBG7s1MCIFhY2+EMcBtkYzCf/LaZBmGxN9iODAyrbHz+a/FiV/5AKZ2PBjPPPdLf4HHzn0BbFYIT2IIP7j2l3HSPV9GXg381RlXfOPduOk1fwQHBUUMNpwiJ/X8FsaKZTxw3KXYtfE4bJt5LN7vsrs/hQePubQBXBFxk19bam0+GBiFv+dKrSXrtE6HA3m5/j8R0XshwMavAOhAPCcu81ubwhf6rrVq52pZagAAmHkewH8hoj8G8FOQaKjXATh5Gaf3AXwbwKcBfICZH1+tdq7T6lDNfKRMazw6oglpMrfhGu0doahdGle3pQllBqjmFj3w4Bm0cC4BjfWJpR7BAxXheqlpub94YKCUUk3hNTKIHvhwACtv2aDFjYKZ4BSLj21sr1hzAMJEOCVWFZkLjRSBhZm8O423HEmYVILXtvrnYI9vay1lSjO0Z7w0KVjPfFMhAd1AgLEhQBljWEq7jGEoEvcSowV4sdaBIM/uHCOzWsyvwZjdfgoePvVqnPjA12PbLrz9E/jhua/C3u0n4amtp+HI3Ym1xuwTOHbHHXjsyHN9/4xBIRbQ2qSa0rFVllG2MMDQHmvLAyIacNwCzNfhBgwczrSqTOhCl17k/TJExrvkvs82yq3KcNepL4ogRhQ2Ve3qFVK3Kq3Efz7THrjw8W/ykKVE4uDEIJ+5EvN5ImSZCLQgmS8abfNBGIMFFjOi60QaX6KOlVG7wblGVo56Xmto2aPwwqg1vNwqX2Qf4cJ139dzqPyKQlJjP6njb7vYfhOg8KtUAmrVaxySZ3Vj6gS5rzUnBCEp2Q8Pw+zi74asF59DAJVjvn0TsuF8fVlS+PFlPw1XMeJCF8ZQ6KhEqx52QvwIUgTlVw25DzWGcdp/aeNEyPaWLP5QMBQJYBfDC/qo+0mOc6N/HNfPJxYH9fipLRXqOmE/NCi8u2B5Ec4LQEV4JyHuRziuFDf6Sbka+JDzJYZIGAzBej1afQCASsaSz6Kq/fekPJChfB8qAljLddi/LpWcz0Bch1PLjRTYqYdUc5HRFO4p35giLd9h3sGDP/1PcP6f/W6sO7n3SZzx3Y/h3qvf5HkeB7P5SPzoijfhwq+9N9Y79vEf4KQffws/PulKOCdKGHacxPSiKPA7dr5DNG49+1X4qW//ebzO8U/fjaN2348dW09DCPLeGFv7ScsDGVYAAYmf0/q6fTBopV1G1t1P9o+YeQeA3yGiPwTwdgA3AHgO4kzXoCGAP2Lm9445tiq0qqBGIBZ1/Wf9BiI6DsDVAI4HcATE7WQA4Cm/3Q7gFmau1qJ967Q6NMLAjdDoojDK/48/v9aSNZGIRFkX2wAKRQl32L5Zqs1Pbs1gKA8kgNByU/HXpsCEsbiaMMDkG0h1HSKCZQvFBHJiSi7uGgw4b/WgFEgxVIj/YVhStGkHl4nu1DkJAOac16KSBoORKSB3BCoA45lTrYCMxe1EuC72zBdH7VOmGJYJxhIqpaAziyzTMIZRGoCG8PKDuKNUVR1UTnyJCdZ47SM7rzUGyAmjcvvlP9sANSb7e3DWvV/EHWe9FF+69nfwxo//LpLuxIu+/Re1tUZ7HBwIt7MftHz3k3WGBlg+uPNso4UeOVptKdWU96hdR6QrRUB3OIPNc082rvPI0ReAMt0IxBdAjBDMr07jmPk5QrKZkBIAo9PJfOYTCQZKJME+i0JFECPPKQq3hFoAbaYPlfI0NoMxHOtYW2fjMDYI9xLbQPblekFYCfsRp0hA4Gf+XmihJcNXwFiQYLlGIePaHp49WFUEwQ4NQKeuM6pdr9uz5PTGNTAT28aM47/+941qO89+HuY3Hglyzgvn4R1Lgyi+dtmXtUvWIyif3aWxPo7pSmr+DTiTgGDyrDHWExABsMX2g7AO1K5MAigt2TGtIdQEOdLnDhY1qSVKapkSgQ/yQAPV7iGAWDcxiQUEEaDiO04sPNC0hAll4flYI4KGwR1Fq9pKg71raHRPsQCpACL6wKiJe1dcP1sTUw2sBfDDSTsVY99FL8C+M56DTfd+N9Y/4+b34bHLX4NBd2MEce69+udw2g8+hamZnbHec7/+bjx60mVgpQEoMDkoR3ABrXEJyOCbdNdJ1+Cq2z+E6f6eeJ3n3Hsjbrzit9MeWuI9t54z8nf+Xkuevvx7rNM6rdPCxMy7AfwxgD8mog2QsBOnA9jkqzwC4GZmnlngEqtCawJqtImZHwPw4SUrrtOzgmTRrTU3qeZudBEeH0dh/GI9ukCJxqZV5prnR4YztcDwzDC3hA8x2QQCFxvqOc8YBe2XnACws7VlBiWm4n5xV0qJ4EAW5KSeI5bgX5bhlIPSBEcEpzVspqCMCDHa+GBzmYAa1se8MEZSs0psDHF5MZbQKSQyu1UKIAcGUHhQg+AzpMCKeToIuQIypWEdoSTAZUDHSnCzMif0BgSbE4rCQSmNzISMBuTdUxhWKwxcBU0ayjO4e48/D4+fcAmOfeR7sW8v+sFHceeZL8HebSfjqW2n4chdTWuN43bciceOOje+/zAo4tttcP9S2igZp+0ZV7jGPM6zzWT1cAM09q//azFpYWGhWT26nzCLXzt5f/P2PaOAqfC82z/UxlLxzYvf1AA/yKdzDZYaTYsN8gH+BOQoCgn2l+Uhk4kEJczz2jpDsi+g1lrDa8ZRu5M4W2fjqIMzyjdvTB0Q1JgAcvrj3tWkNpmHCDv+KSMw0OrH1d1P38H+7qfvvV5L0vs4rsdVo45zcb9RB+Pru6R+815pnWb51kd/iE1P3tto5wOX/TSMEd25CuA64GM+sRe6KQr6ymfUgQKUI3AEYvwzxjgTzX6tx00ytXLtbsSo3ZBS0AseJAvU2HcuCqg27T832k/tt0ShPRFwCd9vXSFaXEBAizpdKuq+SOooXcffIAK0C79lHIfguSq678g1Q3tqICV8ayGQLkWrDQaJO4oHUKx3RwmWlYaAysi3G4BBC4JjjuDHQoBYOk8554EbFgvUh37m93DR/11nQ8kHczjjy+/DPa/5PZQEMDFsdwJ3vOQ38NyP/r9ivY37nsC5d96EOy98LYyx0NBw4pAC6wQgAzOIJWguCOAsx21nvhzPu+0D8TpnPPptbDj/KcxMbo9l+7Ucp59r+L3a67m/x7NtLT9ciAkrmoaV11/hMyZmnoXEy/zmwW7LQQE11uknhBKuyDFAyarL8FYG6UpM43POjysTJqqlm6FQlgoj4WjifsL1NRr3ILRcUti3qdasBTeVYGYrQIjXBpFoZ8UqwzOPLAxScGWxbKFIRTcWVoFRk428BQQpBYaVe1EITFersZSqtTXM7M1KKWAvcEzRH5c1Q1UKBEauPKPtrTUUWLIXgKAY0MQwIGijUXn3ExBBVQrMhMoQDCmgy9AVw9oMprK+HRnIOOSWYY0FMyNDBmcZd1zxpgaosXF2B8546Ou477QX4OZrfxc3fOx3GtYa1337z/H+1/yJfyeUxDUhsQAJHLXXjIKb/MxYBm/s4GpXWVn3kzatM0EHl/an/0eBC8Kir7whXaXzUgqMBGGHoobxzEebYaL6nY3YfcSp8t154ILCfsx6ony6Vp9euchieta8kOxERaF8BgYlmRcySTOZZYiCbhACY+YLFzJKiADazPSBmGmDvVBqfbwG67M+pcFDo9adazcUgMd/m0kXjpNPxsoqy6nc3nfwAQ391t6H1AmuAB53WnK/cZ1E6NkfigE991MwO+k7H2/8nt98DJ445TIJ2gCJ/0RemGdyqIdhDWoQ6WTtqa8VhX9frwH7cPo3zryNGCvBVUmyqghQJtYJnATDlEUrppX1g9LVl6y7I4yjcX2UNi4cT8AK5mB9EeJgcVRAqOhWCh/nqnY/0X4tVRwAlZCFxLuOuJANSI4r5dd1IAbsVPAgSOhTJYUc+5ijpUbdhhqsUMkzMId36l1zvKlGauUS+qYxX5F3MWPhc1gRhmdchKcvfxm2f+czsdqJ/+dDeOyanwVvPhZBIfPYBS/Brm/9PbY9dkesd+G3P4D7zn4JOJsUK1NSYMVgzf49SVDzECCdQLj99Bfh8js+gsIMpa/Y4ZL7P4evXPTmOA6WO/zHBwhf8qxlXHl5l1hfy9dpnQ49Wgc11mn1iINLwhj2boEyROuLZMEYI0lwNKtIgBJu1mgSjRxjHi0bqcbeLDccCAuvamZTkVOdIMgMePtLeOdbD36QhLwlBryVBjnRvka/YW+6qZRocsQlhbwg4/vSeZeUTME55YUI0b4WuYLz8S0YokXq5D5ehxKzU00KOTvxsyWASMANj4lAA8jJodCE0iooChkSFIwBygpRBeWcgs0JlQnOzgA7sTCxxoFgYWDx9CmX4uljzsb2J+ogyBd//8O4//RrsXf7eGuNY3feicePPDfgPaMgGCM5sDK07n6yfKp92n8y+oKClLNonSbIOr7cAwpEOO6pO9Gpeo1r3H3aC2phS9eghm5YY2RivZUrFJ3MlylMTGRQSqEoCBMTkuUkz4BuRz4iRUCma8FQTNgpSXPJqKo6hWpVsU+ZCVSVpFtlJ+lIg7BqTe1+4mwdGLqxz2nWkMQNY4wlwjMwpFh1Gtfm9DsY2Q/4a9LehZ91/+exfDCH4+/8UqPs/kteHS0lgpUKUx38M8RocWgCGCN6Z6qF6RrYSF04mi4QIfCnpGWVdx9S0Aagy/los8GNKVwjup8kbiappU86/aZuiWmPhUgO8XfyvYZdRVIrgPUxXg0QU9GSQQQ6iACramsWpeR3TK0aUqk6b/moCcoFC4vawoNDkFGqW9R2T1EelGAtfZnpZvpZrevv1DqIZad3R7EuWHzwSL80Kcw9vv8IePwNv4Ott/4jlDXSDmtwxmf+J25/6x/F53dW4Y6X/Taufc+vxyt1BzO44NYP45Yrf7Ge63x8Lxl+zr8H/72AURYbcOcp1+Hie2sQ5fwHvoRvnvvTKPPJ+r3WKNbCT3JA685+IobrdAjSymY/OSgLyTqtGq2DGuu0JjR22hhVhUatexOsGF+PWotTrJHUHb84Bq1Ma3HjJl8Z3E+ClUBdBl/WrOf8DVMtLMUAZvVf52NbROEmuKEoMaklLb6pihSUYzgPKDitYLWCzhSUJSiroI2CNYzcZzaQjCQZjGFYK9rZqpKsKMYC1irkmmEUgEJicRRUu6RkxAAsWAG50siVZE7JtcKQNGwG2FyCiVZGmGBjgcJpaAWUpRIzYcvQWqEigIykiLvzyjfj2o/9m9hvW/c8jJMevgUPn3zFeGuNb70bH3jN/zdqPanxXjm+cK9za7w8av5cuHCteJxnIS91OIIZz8RkeBzmOt59jjxoS8mQa2sVZf+qH36k1T7gOxf9rBe4VCJs+YCgmYLKvJVGLr91pr1VhkKeKRQdjSwD8oxR5ApKiRtaCmYQM6wXjsS1BCiNABHGAmUpwqixDJPsW+PAjmGct8zwgmoIChoFVK4F3tAvYfyHlK4AGq6BC4EcC+4n/b+c+itBi98nqYO6PBzglXK7Qb3WnfzDLyDzmSkAwJHCA+e+FDYBmRVJSnH4dcTj0UAQ7n07lW+1WAYk+6ppoVRbaNTWOJIFRwAvxwxr6iCyacwVax3gNffSRr92Wlf3U7Lv7Hj3E/a5StvYVmhz+/tM8I0IzPgfHqQRgIeIojuK8kEzlD8W3FK0lphR4sJFPnuQ/FY+6LdSPggviQWGVmK5oDzIoQggXb+HAHjopH+Nqy0rjCPAu6MA4poiLqj+HRvvKmbl+nZBd5RmjxEAc/RJeOolb8JRn/2bWH7kdz+LLde/HfuOOQNkAGSEuTMuwePnvhDH3nlzrHfO9z+Guy58FfobjoIl6+cEyEjy0VidM/U3qIDvn/UyXHTvZyP/1jF9nP/gzbj1zFfEtsm82fy+kgPjHiwZAAsfXhHy91h3Pzk4tB4odJ0Wo3VQY51Wjxj7r1GrI4Am1xmzSo0DOgID00QmZGFNlp+wmLa1OhzRilDuoRNuMqMIC25gXEPkewrrHce2hAChjQUwMGTMPqioZ6JiyHQACgJyIPg3OzhmqKANI9EIBc2NuLASmBUAK3WVjlYcRBJgVGtpX8aANgpgLS4p7DzI46DI+fSwAGnCBDFy9qCFIRgiTHaBYaVgHGFYQpjYQjqgMhpVZcGW4bQCQMi0wxNnPg97t5+MzU8/FPv94u/9HR4+6bnYu/1k7Np2KrbveiAe2zLzKI54+n48te20hhYUvr/gA5E2XFJQa/1GuJsG6JFoihNhZNxp4wqXKyw1mJ4olCx2n8OHDkdLjZVgQhvfciIoNcYENeeWlFmPmlK2OPbpuxvX3rXlJJjOZO3nr5MsJ5lClmcCZHgLDa0VOl2NotDIMkJ3QqPICXmu0MnF1USEKsS5JYAZ4k4iwlBlGKaS+BiVAYxxMNbBGsAYK9Ya0f3EIQQCdd79RNwKXK2J9xYZQAJAjnyOfoFo481jtPMj+/BzQMPS4eDvj32m1SIinPqDGxtFj512FeYnNoOsq8edcmKRwH49YnjATTo1xoDyZiUSQ0JcKINbRnhA9s9WgxSIYFaIt1IHlPWbldga7MsZqMEwlrUnTr1hzERlgl9P97c/4+PUbiThPQXgggW9idYrwaqGNEGTiuu5UhRdUsCA1pLxw1npE2sIOpPA3QJ6MLS3viQI2JFpubcjscjItPApBO/1RIAmIM3UopT/jph8anZxfXEMUAYYohhPgzIBXrSu45k0ArA2OiYOH1lLAex87a9h21c/hqw3G4+f8qn/iTve+adQyn/zULj35e/E0Xd9FcqJa1NmSlz6rffj69f/MxALD6Odlhg6/v0ppROkyWF247G4/4TLcfoj3473uuTez+J7Z7wMDJW0r/7owziUyyS8QHtgLDlOVuDDDGzIOqCxTut0yNE6qLFOq0aelakXgZbwM04YWm7Z+Bu2F3B/Ppq4Crfqh936NpwcDibGCQfLGO9+QglQEgQ+r4kKgbnqBVH+Jx40cnOHmgkjVmLl4Y8Rk6R5ZdHgkCKQc9BOgVnStGlNyDIF5zSs175mmlAUwjpJejWFXBO6ueSYJxCGlqDZQZOF1hYKDK0Y5GNtaHLIYJGRQUdrlEYBlHnPGo1uIcAGkSQBnJgA8lzBGAdSBlXp4DoayhLued6b8dx/+I+x34/ceQ+O3/FDPHbMhfjKtb+Nn/7Y7zWsNV70rT/Dh175/2m95hZo0WJsRgTMwIi3x8VC42qstqdZuOwxOa7aYQ5m/KTSgsNlgQN1ce2zHwE5AM+55yYodo1zbr3g9dBax2CgWSauJSpTKIocWitkuUJnQvbzQmFyMsTTIExNiiBa5EC3qMFY7acSwxJvxzFQGtH4WssohwxjHKxjDIfe5cQyqsoDGi5o310UVJ33H7DGxjFtfVTIIOgSWi4nYf4MgskBygUHS6AY636SPlOYaNqAx/6C+2MozSQBAFuevg/bdzRBsXvPe7kAA15gRUhj6xAHZGwK1dcMcSaUomiBoLVsAiD5x/GCcoiXEawwnGMYY2XfylgK5WKdkbifwLuW+PFTx1sRUCNdn1NLy7HARgMQY8Sof7GrWr8TICc8f7DUALw7igEsWdRWGhStNJQPxk3koLRYwSgtwby1ho+B44EMW1tsGAtYlrgbIXZG7uOXaPKZVDQjcAxEoqhQ/rkZwf3E9zsD2tbuKJUFlLfUYCVttFRnVklYj2Q8+b8EuI1b8NQr345jPvzf6vF1+1ew9eEfYN8pF8JZAoFQHnsqHrnidTjpG7WF2al3fA73XPYG7N52iswFGUDOu515i6EYD8xJv3/v7Fc3QI2Nvadx5qPfxt0nXLnK6+PYxX2dDiNirKz7ycq6sqzTwaZ1UGOdVpcCszJmVV04+8nSZfsDdPA4k8WWpUfAFkYll6YALcw4xrqfjHVT8UWclDdcUjxDJRq0OmgohZR4WpgJUuKeEszQiQBlFVgrOOPgMg2rCFYTjHHQpYLpOGSZuIkYq5HnGs465DmhNCLcVLm4zeSakClAg8GKoZQV0AIOmgScykCw0OgUCoocTKahKUOlFTo5QRNQ5AozIFTaIc8VFIn2yFph1J646HrM3/weTO2rU1heeOuH8MRrL8Leo8/Cni0nYuueh+Ox7Xsewpa9P8buzSc2BJnRjCjN8ZVqeeABpaDZ5bHc8UEg38TD1Yz1cLLQCLQi7ifNCyK4Ro32R13G3OovIlx43+cbtY3O8cCp14g86tO2QkFcTvx3nxUKWaaRZRqdrricdDsKRYdQZArdAigyhtbikx8EKOtkPpLYGAKMVpXDYCjfpjEOw4HE0TDGohw6OHZwxsFU3jLDuaiNd86B434SOykKoh7U8HGP0swfjmu7uUYWkGew3+r20TrjgIbl7qevexluLiv1TIs+HxFOv/0zjeL5qe149IRLAWvFSs/HcXAIFhc1uCSXZZAXwokAnQVAQ/aVCvfyYAPLX+ctNJxzktrXMhw7D3p5qw1jIwCSup+E+BoCctSLqFvQ5aQeKwtlhlmMasupVllSHL9dqo833U/EglL5tVj5jGYB/JH1mKLbic7kHOlDcU8J2crEPUWUDc73cbCkElcf/y6Ci4oHpgBxSdWZNNJayYhiLIEyQFvAGKAS9gHWCNBhDUBJath2cHUBi+SdP/3St+KIz74f2czuePSEj/0J5v75e5FlSlxwKuChl/0qjrv1JmTDnu9DxsVffTe+csP/I8oZriRoaLAqrVy0hAEpsLPYceRZeHLbGTh6V52159J7bsTdx1+5xPtssXLtgrXALA7zdXud1unZTOugxjqtDaVeHYGW0rwsUhZBgga3MqauRyvGgiUpkxQE5Jbryoj867WLTeZA9kfcVICY9SS0hZmju0mMueEZEVBQNCVR2aE84CGWGi4JvhVdUpS0yXn3E8eA0wylFMAO7OTCYrkhcTTYAT1SsEzIM9+jrFAqBUCjgJiTExiKHBQsoAgGDMMKkzlgmMFQGFSi8eWuaJdLQ6AhwRoGFwqAQ6erUZUESwr3Pv/NuPjTfxy79NhHvoftO+/D00ecga9e+5t4zT/8Qa1FAvDib7wLH37Ff5IfDrXZeQgkF34vxM14ISe8soYry1jXpsYQSIRZGnPKM+CgotXO4ckY/aS6n7QumOzXYGWUpcK4SQQmEGFDbxc2zj/VuNTDx14KaAXSFAOC6kz7TSHLNYqOgJOdrkK3q9EpCBMThG6HUGig2xEwI/juC9ggQYhLQzF2RlUxhiWjLB2qykncHeNQVVZcT4wTwdRnOBHz89TlhKMLAYBojZG6nMSghUHV7PcJ1JjHFtz3wZaXt4/G973ka0vmgNXYT++zrGddxn6wbFFEIFPitHu+2LjXfWe/BA4K5BiOnHexqCGS4GYhQnMIPg1opZFpicmklfxVwUoBXAMaXGfCEcsMF4GuYMVTu574eCtJoFCO4BeitQeAaLEBjInDgub4Wepdjnsn7Tk/rK0hrGj9W0isMpTE9CaAvDLBWpk/lPZKBieLttY+mDiL64S2BKUZGYvywRoVwYgAWLicAFYR1Mgz/27g+QsA0BxdU8jH5gA7yWzm3coyLVliYtBSH0w0xCcXlxX5EhWLBUer9/zoAFx3Cjtf86s49v3/dzy64a5bsPWeb2HmvKtj31XbjsTDL/4FnHrju2K9Yx74Fo56+FY8eeIlcE6UJ845P8Y02EoQdeccSMta/L1zX42Xf/W/xmscvft+HLf7bjy+/exa+bBoMPgxBUsuxyuAeBzm6/bhTowVjqmBlbvWOh18Wgc11mlN6Jm4moxbPAJz3MihMk675hneJe+1gOvKyH193dQSYEE3Fd/2EHOjXgx9U/2a3Yy3kUTUJ4ILxxR5baeqNcNOGFMoMSsnRXDaQbO4pGAgTE6WSWwN65nHPBOXFEZIm6dQaEI3t+KSkgGlBbRy0LBQMNAklhtaWWSskJGDgUVGFhOZxrBS0JR7IU6j7CiUJdDryRM7R9DawRqHJy5/Nc6++a/Qna81Qhd+78P40kv/NXYdewH2bToWm/c9Ho8dues+bJ7dgb0bjk4ApbQvvQEh1QxalHAOhIlpnNYMktd4kev0E0ULycrpPNI0xkjKW8DG1bf/XUtfCnznuW+D1lpcTrI6y0mmNbJcozORIcskhsb0dI48I3Q6wMZpMWkvMsZE4eK9mAHrMyMMDcEaYFAC/YEIpoOhxXDovPuJgTXiclKWNsbNMJUIJwgadxdiaNRxEEJcDUDcT9pa9ijArpUWda3oGVh8pOTFXY/N1pXTtY1R958j4JQHvoHOcK5xnXvOud6fQwHLj2tfeCdK1zEk8kxAaJUBWa6iVUFwOQljKLiQ1NlxbHQ9MX7fWQdb2WgNYL0rSgwOigTU8Psp0FXHfmiWx/0DHDhtl52FLD6VBzWISDwkyDUAESJbg0KWEmsOglNSbirvpqIUtHYwOgT4ddCVuGNqDx5VBqiMi/E2Qpyb8DvE4JDlncVFJQAVMgzAiqGdKDOsE9AjV+KaEgOJOu+K4i05KKz5DLhWlzKAXS/+WWy/8X0odteWlMd+5L+hd+FV/nk1lCLsfNnbcNzXPozOzNOx3oVf+UvsfNu7kHmrUWUVTGUkyLm8UJCr+/yBE6/AzNQRDXD30rtvjKDGCH/3DEmAz7WYhNZpndaJiE70uzPMvHet7rsOaqzTqlGDWWlZSpC3SMByUNIxTOGCKPmCivcxK/gizI7UGV1ShVlkz2GMu3GqtRvTpsjsJupFb2IqOe0pghbBQgMkLiviupKYuivvw0sKyokJLGmCsxpWe02JVrDGwloJMOgsYHLl0zZmKAoRdjo5Y1gSmDMMcwUGkCmLjJQ46ypGR1VegydgR86EDAoZcnSURkYOE3kGTQWGRsHkQKYUikIeuTIS6Gyop/DQNT+Psz/zP2K3nHjv17DleU9g99TR+Po1v4mXf+pfN6w1XvT1/46Pv/yPwM55I41oPiHvJMlkQ9GapvXuxpSNL1wjOsz5q8PJQiPQarqfyHxByZAan/EEAE579DuNy/QmtmBm24kNlxOtNZTWyDribpLlCpOTEhR0okOYmFDIM8ZEzihyybCQKQaIxbXMiFBjDKE/YDFPrxx6fXEVKEuL4dB6TbtFObQ+XoaNLifWOQ9g1NlOAESrDIbzsTOExmnakQiqdXkN4jbM2w50P53QEzm2Lt1fBOKZ7C9NaW2XjMlgyTPukqkrxVl3fbZxvceOuwizG472sRO8m4kKwIQE/SQvFetMi+uEkhhMAcgIW7DwsT5+Azvn0/nWQIYx3g2lst4aQ8aNuCLJ+AouSc66uAY7WysjYuwPRtyPbpyh3MM8jFqRIVca41bk+yatN26OTV1NpArBJX0brX1IjjXBDfL9KAARINlQAMSsKOTj4eis6ZaSGR1jlmitUPiMZToDqkqhyAlZLhYYRS7fbqYF2Mi1fN9KyZMpMKBkfsnIuwMxoSIgJzmvMkBlCfAxPYxmDIc1x2UsYlrd0I8u72Dn69+J49/9b2P/TN5/O7Z8/0vYe+mLa7Zl4wY89tp34tT/9e9jva2P/QgnPfRNPHTylXVEVACVq0T54u8Ts9hkCred80pcc8v74jVOe+y72DT7JPZOH1W/oOT9jSzX7YJF1tQVW+YbY/PwWwMPd1qPqXHY0EOQr7Eior8G8J+Y+aHVvum63c06rSLxgpvwO8EkNGzjzln8OqN1F2iGG60atUWcADAjt+bGxgAQLCnCNlrNM//C4IVrR79zV/+Nxxx7d4pmGfuLs3OQ7ALJ9bwpeDD1dE584K2xsJWDMwxbefPy0qIqDYyxqCqLsnToDyz6fYdhxRiUYp4+P1QYlBkGJkdpNSpLqFwGywqS9I9B7JCxQQcluijRpSEKKjFZDDFZGGyYdJjsWHRyi4kuY6LD6HYVilzMnItc4YnnvwFVZyq+IgLjvFs/DJ1p7DjpUsxuSJgaAMfsvAsb5nYKwEPisxwZTsaItDluNIxlapZwP5Eqq4Q8HGaARmMct34fMnFKlqClmdCFnmOB8xoCVRu0FaGHRArxAg/hhCdvR2EGjcvcddZLYhwNrcXlJMs18kKjKDJ0JzJMTGSY6GaYmlSYmiRMTTCmJxiTHYdu7lBoB61kDrOOYRwwKAn9UlK09gYWvb7DcOgwGBj0BwZlaVEODIYDA1NZVGWFsrR+njCwxtZaeO9SICCp/A4pXp11sW69b8EunZ+CtQf7cuvBEvvM930by6Q51gABAABJREFUotuDa+9zTDu66vu8yL6r5/AYOJND4EyO4FEAktg5P/dzPG/Dvsdx3OM/aIyfu88OVhrJuPTjTWtvhaFVBDGyTALO5oW4NYWU4CGgrYAZwSVJ3JFkfMj6YSqLyo8ZKTcwlbx3U/r378+xxq9L3urHunr8OOsa+864xphhJ8Ba7Qol58Z958ehL3d+PKa/Q5/H+4Qt9LNrtcvWbQljmi3Xv41vdxVizsh3YiqHspTvxpQWprSohgbl0Po12KEaWgwHVr67UuoPB4zB0KGsJEjvoJRNrDlIwEjj07QmGU0UMXLNPuU6I88YncIh14wiYxQ5o5MzsswfzwlFh5DlPpaHDpY84jYbZq/d17wWw6NObIyvIz74J9Ak8bjyXMbQnhe8Dv0jm/XO+eJfIs9krAVgR2dawFogzm/BDepHZ7wEw3wyGbaMS+/7DEjy63ogSclvLOAOjBoMjKATYYEpewXWKQ5tPTyE4cNxnV6nZw0RgALALwO4m4jeQ0SnreYN19RSg4huAHAbM9+zlvddp4NP40z4BfVP/WHrshTQGKchHas1RSpMtA+Mq5sUek3FiDvLSLO9gW/a7jGNCWBE81nqqsxinQH2eqtU+4igXSPAOkktR+TjSUCAkkSTxMRgU1twMEuwTwAxcjs7hrHCFGitkOfkA7opMDIxZS8AlugZgMpRaIVOZkBwyJSGYQfNBAULxQYaBrlzyJHBqAyauxLgTDMmMo1BpTBDGoCGZY2iYFQloT8A+tiIR676GZx689/Evjnljs/jB1f+AuYnt+LbL/xNvPiT/7ZhrXHd1/8nPvHSPwRLYHoxa2UH8rFDap0sRWuNpEsXeKFjqKXtORwtElabUgZJPrnQac+eviJvOYXWo9UxM2qrqvqcuOcFRGG2VcJ0X3HnRxv3YRB+8Jyfi5lO8k6GLBdQY2IylxgaHY2NGzMUGWGiS9i8gZFpRqEdJgrR9TNL4EDLhGFFmB8QjGH0BsD8vIWxwHBgMRgYOMsYliKUsmNUpbifMHMUPiWGRm2dEYRqAC1XAlcDxal1m+PmfOr3Xfg2GRITY1zfp52ZWHakTPnYfcbYe67t/iLH4xhKn6muKX09av0hsRZkbj/zni8gpUFnWrTjqNcNRarpcqIIpIGsEGuBvFDodILlALzLidzTerClHNqY9ndY2hhPpSpNjJsRXE4CoB7mBefHRATsfdua46RePzkpH0u8/2+17kFK1oI6Glf4E7KONYqTbzoEKA0WG+3f0YKDJCCmswRSLqZ4JatgDcFm1mdHIVgjFpTax87JrYIx7EEnicNhLSHPGJkmdHLffs1QRJKdDBQDi4KAjBxYiSuKdRL42/hsLUaJS6kELIWPrSPj0DmZO4LVBuscO97w2zjxf/x+7IPuo/dh09dvxOy1r0aeicUlTXSw42d+Cye/61/Eeht33I9T7r4Zj1zwU7DGoSwrONYgK644xhiJGeQkkKjtTOLOM16CS+78RLzGuQ98GV8/9w0YdqYb73OxdTh+KYsI7W3ecL/5gnU6JIiJVjamxjp/t1r0FcjHNQHgYgi48XYAbwHQWa2brrX7yd8BYCLqAbgdwPeT7QfMPGifQEQ/C+DFAN7DzN9as5au0wrT6MRRu6Asp6x97jgBKkTyHs/aLNmmhfgptM1Zx2n3eeQuCy+VCRfrmdXAmKRNC3E1AMTgoiH1ntSRuBoSpKwJajgSYUQpyaDiXBD+BdQIfrY6E3CjyDXKkuCYkA8IzgLdnFDqDNQtUFqFzV1CTgYaCh22IBAyGGRgib1BFh0qUVCOARfoQkNP5OhkOZTqYDAk2DwEowOeePGbcNLXPghtSgCAthXO+f5H8d3n/wqeOP0q9Ka3Y2qu9tk97okfYHKwF/3uZjjL8b00ep792IjWNMEdoAaYFjVfXUtaxFT2YFNbuBgJtMvsgaNa8OQFHuhQAoWWMhlu45NBKGqfJ8AmMH5eq4VVr2AEQ/z24RyOfqqJ6e/adgq400WWKSitJX2rBzYkZatGkWtMFISpKUInc5jILTre5UT57ETGKQyNBOodVoT5PlCVwLC06PUtTCWZTYYDU7uclCZqxW2VWDYElxN20aKtYW3G9RhJAz02wIUEWGxMjowlx73gGByrI41LtNA1l9pfCWpd+0DHdrNrkm/LJZ8UJfv+tuQszrq3CWrcd/p1sLoQ18SwPhB7AVqkXp17Kw1NyAuNTIf4Gd5lgnzKVZbYC9Y4VIZRlWKpUFXOA2CSDccZB0bIeCJWhNY6SNzWFMiQOC31c6dAxhiwiptKjHTeWWh/tG+bxxy7kbrpb279ju4nrboBxAjZUGK5qv/WsTaUgBskAAcRQRsVlQxKizuKVhIYuMokk1FwDTIdFpeUQuLlmA6hsuKWIlnGfD8jZEmpjfJzJVYczrcl84FIM0MYGuEHLBNUCQxLwGeKhzHixgIAe698OY74xF9i4pF6rjriQ3+K2ateBspz6EzcYnrXvAL9T727Ue+sL/wldlz8ElitAULMfMYaESiFknnVAbj93Ffioh99Kqa3zu0QFz7wBXzn3NeiHSi0rSSSdR71Gr6oO8oov3hA5K95qLqfLLp2PwssNdbdTw4PYuYXhn0i6gC4EsALAVyzmvc9GDE1CMAU5AGvSModEd0LAThu83/vAHA0xHTldAAvWsuGrtPhSE1mKZY2GJvApDSkW4zjgMcGJE3Kw6nyO10/E+ar0br0XqNtr3ep2RRmQBHYBvNKWbxDhHvlw4cxkc/qony7FIgFuFBaQA7JiKLAjqGthlZyrcxp9AjodMRFBExwGWNe52BSKJ20nVFCQ0ORAXlAg+GgYMCokHEOBYOScnBuoYhgkUGTxrAUxpmhUB15NJ587qtx3NfrnPenf/8TuOPKN2FYTOGWa38NL7jxPzbe0HVf+++48fp/IzFGHDWYizqYnmSGSakdIb/Rr4u8hvgOV0MwPxz4i2CNMaaf2B+nNiOZSiVEq9d/B0ArzYQ2BB4gCohItMOUHD/vwS9Bs21c446LXhezneSFRp5nyAuNbjdDt5thckJjcoIwPUWY6jpM5haTHYtMyazETDBWeTBDoT9UGJSM/oAxHDqUpcNwaFCVzpvI164C1jo4E+IiuEaqVhskHAacs3F2dC3LjLb2nUJ5QHOieRqaYyPRvo/FI4LgT1RHNXym++OEnwPdj8Apj4mxFJ6rCYjFdYMS4YMQQYA6SLQfqy0Q5cRHb8V0b3fjHned9RKvtVfRQkMrHbPn5Hm9FZ3Muw+IEJ2CByGzibibWHGX8C4nYawEYMNZjpY9zOKa4bi2zggUrXtiOcf7SRDZBBALLx1ALE76ZrH99kBqHENznNZWZUmfp++M0NDeku/TELcppgcP33ewyODassspB610BD9IhfFDkhpVy/prEssN5zQyw1Ba0r92OxrOSeYUywzHSiwtffpXzhVUxmDyAUWJ4zDMCIBy0I6SQKLeWsIKeEGFVDaOBHjS9RrJrLDjht/Byf/1t2I/FDsewaabP4bZ69/on4OgOwpP//zv4oT//Jux3uSuR3HS9z6Nhy9/HZgBW2SSQclYCVruXHRDI0WYnz4S9510Nc586GvxGhfd+zncevarYJWGj6YeAa/0hY8sS+2C/Vxjl7VWxaF1aKxpC1JqSekStHSd1mmNiZmHAL7st1WltQY1zoWYoVwM4BIAFwE40h/TAM4GcBaAnx1z7mWr37x1OnxosQl69FhzoRq/II61CBljzREDeTYsLlqUWG40DicMcXrRerGuy1IwJQQeJeKomRDXk3BJ5605GFAKTA5kfLBR76sPBgxbOC3ao8xp0a4xUGYKee7gOIOxEiCuyIFuJ+SbF7/WQmXoKC0MkzawqoCCA7GDcgaEErnrIUeBkgpoPSVp3XKNycJgUCrs6wnzZ53G7tf8Eo79xsdAQUtT9nHO7Z/CnVe9BY+f/2L0b/6fmOjtib1y4qPfQ3cwi0Ex7aOqO0l16zMtoO6xwCWPvtFEahobDH1EGTRuPD0rlB7Lp6UYokWOHyqAxoHQQk0f53JCFMrlo1Re8KnN0wkX3X1T4zpWZXjonJeg6BTI8gx5rjE5VQioMaGxZbME853uMrZvNOIvry0mcgNmQuUUhlajsgq9IWHfPKEyjF7fYXbWwhrGcGjQ71fepcCgGhqA4d0IXC2U2tTlxGc58fF/ABEUY8jHFpgRKATyBQLYGH60QK9YZ5S4vb/Aufuzz6iBuRXbTwFr23qSAGq31wpftpiwRcncFean4GZ4TstKY+cRZ2LP9lNB5FO9klgB6Fz7bCYKRTeTWEYeKAvxFLSW7glghrWMoY//YK3FoFdJPAzHKAeVj3EBiW/h37NkOeFo4RP6BUkfxceN1hnyTAu5HtXLKmOhKvtFASBq3yD8agmy9fLs3yE5+bbjb/+dJ4Bm7R7q9y3EBTT5/p1WEeBQ1sFZsaQJcU+ssdAh65HRsJYFgNKEoiMuLGUuQUC7BWAdwToFrRyKDAAkcLDMQAwiseJyLC5GzonbinEEYwnaAJkWFzXjCMNSHtn5uB0zl16H+dMuxNT9dfyW7X//PzF77WuAbjfOd+UV16F/xoWYuLeud+rn342nr34N+uQzrxkLoxUqVHBWS384BioAGvjBBa9rgBrTgz048+Fv4EcnX4N6ADXBqNWgw3mtWpSeRc8l7icr9zzr7ifLIyL6ZWZ+98Fux1K0pqAGM98F4C4AHwxlRHQMBOC42P+9HMCJY06/dw2auE4/sTQ+doeYPatW0fhJcKybSvuC7LOcNBj7UcmaKNHqwTOHJGZ3UbtG3BCYvErYMzQ1wwUHaKfhyMFlDsoKI8WOAa/10VbBVATrHLRSsDZDt6NQVgR2hP5QwW7Q6OaMIXXAHYeSM2wsZtGBBcEhY4uMHbStwMRQJCliO7pCgRIFdzBBPluKzqAVYe7Ek7Dviuux+Zufic9++rc+jPuv/jlQkeO2F/4KrrzxP9f9AsYLvvEufO66PwBbB0UKDmJqLRrkBLSIYBHqvkiAKE4Z1f1EKFYE0BgHqBxqtAh6sywGMIB7hwjjsL8mw2PnBCSCEC+U8SQ8t/LjjJGbIbbte7RxnR3Hng9d5FCaUHREm54VClPTGt2ORrdD2DQNdDOHibxCN3NQxBCRUME6H9y3IgxKhfl5xmAoaTf78waVkUCN5UBiZljrYJKYCCEOQgzMyHXAyiCEjgMwRgTXpL+a/b3Mfl7mO3hG+wvcb6X208JoBbjQUGs3jNJ5PilOTpnq78XJj97SuMxdZ71EbkMCcEuwzxA3I4POBdjodDLkOfkgoeGqFIO9DocM6yR45bBvYH3sjKoUAMNWtUtSDPbKzmc7qQOchpZHSwkk44PbY6XpTtIoH1NnwRe7WN8CEtulXXfkN8b8rt/huDlsxP0kQTeJCI5cA9QI624ENrS3rFGAVUrAqEx7yw0HVVkUPgZKx2QYZoxuR1w3jSWURqHbATKtYJwHNlisMYPVRrDgIIa4wkHCfeeKkCmCqhQyny5eK6A3EBdeZkIJ4Mk3/i5O+0/viM+c796BjZ/9W+x99dtBBGjNIK2w5y3/FBP/7hdjvc7enTj5Wx/Bj1/wJjAYRgFZpkEArLOAUSDtKxtg1xFn4PGjz8OxT94Rr/Gcuz+Nu065Jhi4xNfSXNNbc067YDXW2MNh3QZiX7TnkXVapwOkPyWi2w/1MBAHPaUrMz8B4AkAN4YyIjoPwB9AAoqUAP4HgD85KA1cpwOmwOxQMrkGIm+OnJYuVjZCqzRLcxJw0qMEEEElvXG7QVSb047TAiWNXTjyABqLsVhdtBdwz6wFJphDvWDeKldWTB44qa9jHHv/akRlBzNLyldlwQw4TeCBRZYxdK48AyJB5ywDeaHgnEInc1BUgDoKhiyIh8hcBXIKmgFyFjkB1vv75zDQykFriz5ncLkENiw5hyPC3tf9UgPU6PT24uTbbsR9z3kdHrn4lbj4i3+G7mAmHj/5oW+hMAOUugtmB/K8tCKxUIlaQRJT34ZAVqs+vfkzIuMZOzsVLBKGfMXpcGCMFkFvYqDQxQCLRGg5FICNFTEZTi8xYrFBsUoM1EiikX3ODz8Oar302696K7IiQ9GRrTuRYWIyx9SExvQUsHGasaHrMJVXmCoqcTlhwDiNstKY9+4mvQGhN2DM9yyGQ4fh0GIwqHz6TeczH4mriUkzOjgX42YIoOGiJRiHQJ9BGA3AaqgTJ7LkG0nm+XSee6aWTStgrHHA1HiOxfaj4EWt+zPCyIugGsG7CZIIweEEGnWTC+vKWQ98JcYdAIAq6+CB018g2n5NyHJxOckyhbzIUHQk2Gy3m6MoxN0kdTkJriZVxT4jlrgolT5LlvWZS2IGEJ9VJGZpSV1L0iCyLRAsugem8yvCcBl9UYz2+0vW5JH99C0l48zXa/8OdRDaSKN9Hl2AkncSlQD+VnUdePcTWWvD0hxS6Eb3I0WxLoB4PUc+6Kh20NBwzgfzdA6Z1YBft51ldDoaYIm5IVYach1rfeBOSPwMzQxWBFLBakPGpiaGJsApCdarSAKNVoZgHCDBhilmWslBGFx4FebOuwLTd9RyzPaP/yX2vugG8NQU2A/64cVXonfhVZj8wTdivWM+/W7sfP7rYSe6KJVkhckKjcIWMGTrYLKQ8fSDC17bADW27/0xTth5Bx458nz/voKAXn95wTqoPYbq39gv2h/3k0OF2mM3OSBlYf8QWH9XggLotpLXW6dlUQfA3xPR5cz85P6cSETHeFl/1emQTOnKzHcw89sAvBMSMfV0Zn74IDdrnfaXgvDsEo15WtZghhcuc2imRW1rD1eW0gkuifAf7+sQLLLTspFpMdFKcfJvLKXMXNg49Fld2gjS19ames1Z/TukxHORIXXWwhoDU1WwlREBpzSohhbVoJKtNBgOKvTmKszNVpifrdDrWcz3LPbOMnbNKuyZyzBX5uiZDvZV05gxGzHnplCigCUNaNE+ZTDI3RBdM4eN5S5sc09hG/Zgk5rHdF5hy5TFkZsdNlx8NvoXX93okjO+/rfo5oQsV/jhte9oHFPscM3X3wWVKZCPRRC0YyGdGymVWLAkb2eJ9Uvk0pZGzgshjbL1dXBZFINIcv0tHWyK1k3LADhq5StFc+vwO72e34OKgRpl/CkKmScIZ9//5ca1y2ISu0+9BFmu0J0q0Olm6HY1tmzKsGGasGGCcdTGCpsmKkwWFSb1EBksHBN6JsfQZugNNPbMEub6jLl5i9m5Cv2BuJv0eyXKoXzPw0EJUxlJNzk0korSGBhj6tSWxibpVmurjUYa6SjIuihoIJmPOJ2v2nMXRrc4l485dvA3JM+R7o8+nwvrkRfSItUTeiwP56UWCPWalggo6TgEcPb9X2qMnwdOeR5Mdypq/bMsQ5ZlyIsMnYkceaExMZFJoNlCIc9DGk+GMRJrxRrGoF9h4NP7DgYlqqGBKQ3KfoVqWPl0pQamMj5dr4E1BuzjsdSpUm0zvbgbM4bcmLXcOXBM9ctIFtgafFhkn5O67FrH3Oh5I6nUrRNrjhZY01iLW+dwq36wfGJXpyxm6/uEJX2xtRKbJKagNbIZ61PC+n6vSgMzlFTLg36FYb/CcGAwP28wN1dhbs6g17OYm7OYmWHMzjH6A6A3AOYGGvOlxNexTsExIXInxFCKoZVDphlZ5iTtemExUUha6MkuMDUBTHWBTgYUBWHXm/5JY9xls3uw5dN/A+dC6l/hSfa+ZbTesV/635iczDA1nWFyqkBRZMg7GYqJHHknk5SvWiPLMzx6ypXYu/HYxjUuvvumhhUqqLkWp5aqCabsv5nF5/dxRw8F4P2ZkGSias4jANYZlnVaCfoWgOMgwMayDSKI6DkAvr1qrWrRIQlqBGLmPwPwGQCvIqJ3Huz2rNMzpLZMw8srG+vu4ZnHUQapZi5H+NMDIFkLuFXmRspCW9Kb0gK8cgRkGrxzm5ELz9QuTi/kfwdG0NbMFBwLUxWYzMhEOR+0ywcKNAZVVYnAUxqUg8BECSPV7xnMzRvs22cwO2cx32fM9Ah75zM8NZNhX7/AfJlj1kxgjqcwiw0YUBdOKTAUyBkoM0A+nEVWzmPSzmIT7cP2bA+2dWYwnQ+weXII++ZfaPTnxO7HcdLdN6M7kePR570eZWe6cfy0+78KbYeiBddiuguJbdoUQCOzM16QHfEOGjMGxoFRKyKfHw58xiLMUASNljon0dAeDGCj8f6otS11bks+jcx16w61GT38WPP1PcgxNfc0pnu7Gmc9duqVPnhjjjwnTE9nmJrSmJhgbN3I2DRl0NUDbMj7mMwrODAMi2Z1vk/YPacw1yfMz1vsmxHgsd8zmJ8rMRxUqErJdFKVBqYUANNWXriytfadfQwNx0nmk0RAa4MXoTtrQS/Mh+Pmq8W3tJ+Xs6U8+/7u7//GI/vt68VhlU727TUpEd5rwbqu3hxJ4/eP3HU/trZcl+4+66cAkqCTITZDXmjkhYAY3W6GolAoCoVOR0FrCTRpjIAa/b7BfK/CcGjR7w0x6JWohlbAjIGAGbaysJXxgUKbYycCFxGwqNe2hvIhGUONvksAjLR+CqItvY+R+7kWcNL+3QYpHEv2FrCX0j0o0Wifc00gw9r6Gwn38MddY90NgXhl31oLY0wENOo+lu/TVB5QKiuUwwrl0GAwqDDoV+jPl/K3V6I3V2F+rsR8r8Jcz2Bm3mLfLGOuD8z3CfMDJW5phlBZiaFhxRtGYqoohlaMjBwy7dDJHCYLh25mJbtShzHZZXQLwJx7MeYub8bo3/7pvwLN7oV1DONTxPbPuAi95zbrHXnT+zBtZtDtKExNakxOZeh0xZqo6OQSuLbQAszlGe648LWN80957FZsmnsSBBq73sS1HqgtLsNcDF50jj/glegQX7fXfoVdaxLecqW2Q1wMPpToDQB2ArgK4j2xJBHRGyCpXY9dqu5K0eHwNj8ImUbefrAbsk6HEC0AGABoalXGbFJpDLDwTJrDgalPwIikvGb6R5m+huVJ2p4xEkCb6a4ZQheBFRc2JAyc43hO0CSZkPUgghwOprQxUnllJGjccGBRDi2GA4tB32EwcJjrM+ZLsdiYq3IMjEbfZqhQwOoODHJYBpy1IGugqiFyM0DGQ3TQx4ash81FH1u6PUxlJTqXXghz1vmNPj3pi3+NPFPIMo0fPf9tjWOKHZ7/9b/wJr6ITH3Q6jReaQpmBNNgr0kfy6HwmAGxGpzC4cB9jOuLeGhpkKLRuwdJW7S0RcZCzzD+vAiSJdZARGI2Ttoz2V57Ho5f8YO/a9mAAXdc9w50urm4m0zmmJzU2LyBsHWasbFbYetEHxuLAbpZCUUWzmUYmBz7BjlmBzlm5xX2zDDmehbz82JZNRwYlAODYb9CVVYwVSVgRnQnqDXFQSCtNe2JMMYhzoYVLbQVwS9aq40RFKO2OhUmF9hc8teNKV9oH7z/+2OvdUACNCd9kM69CwEiYTKvQfD0/PS6qUXHCGIC4OwHbm78ntlwNHYed75YZ+Ra3E26OTrdDJ1ujm43R3dCLH+KvP4CrBULjcHAiBVPXyx5qqFFOahQlSWMEYueAGSYynggw8IZK9lx4phIrC3S/bDZAJZxCyxzI/0Z9tN+WnrfNa7R7udx/b6sLcScScEMZ2WLVkyJVUb63FwDHanFSvqNNcCPxMXHVr6/Sw8m+a0ayrdclbIWDwYGg4H/23fo9Sx6fYf+gDEYAr2BZEKqjEJlCJUD2Ltekt8yYmSKkWuGJocid5joCKCRa4dOwZjoAJ0CmHnr7zTikuj+HLZ9+q9hrRi6WCfveM+bW/V6czjmpr/CRFcjy4BuV2NiokCnk0NrQpZlksY201BK4f5zXoJhMZXMtYyL7vlsXOdl6vXWbzHjENWARgA/lKrn51B3WSD2MhblQ3Xd9m2nZP/ZSPUIXrltnZYmZn4MwBsBWAC/TES/ulh9Ivo3EPl9AsCO1W+h0OEAajzi/551UFuxTocWLTYPLXQsaHWCgI8mI7P8xWr0BqPyWs1kpfcIOoSRdsG3J/wLjFu6xYWqBZIEDWlw80mAjMhQBebeM6ch2FvQHAXzYmstqrISwahXYtAXrW9/UGJ2tsS+fZXXCjNm5xm7ZzSemi2wq9fBnJlADxPoZZswn21GL9uESk3AsQKRQ4ESHdfDhJvHlNmHLdUOHO2exNHqKWwv5kBvekujW6YfuxfHPPBNFJ0cj173VlTFROP46fd8EQVZ6Czz2nEFpTVIhb+jQVRH3x033t1y3E+iFWy0CtlP9f9PELU/qUPdvDdljOV3+1hzv3ZJ8edFjaJoz5Ufi6c+3LS+HExtBR93isTQmFDYsiXHpmnCximHYzb3sXWyj6m8xKQeQrOFdYR95STmhh3MDTSe2gvMzDtxOZkpMehVGPZLDHolyoFkOKmGBqZKNMLBPcDYaJ1hrWSviC4ozNHKKwju4PZc095HfNEpgBRSZYa5qznXLgA4r8L+gqD2Au90sf10QHC0TGnfw7Xu13YkGb1umPeBenYPpF2JMx/6P43xc+9ZL4bKBMzQmaRqnZgUzffkVIbpaY1uR6EoJG4CEaMsLXo+5kpv3qA3792TeiUqD3xVQxMFbGM8mBGs/oxrCvvsx4lNhPsYRJTjXwQriJYGYrTf8Az2a2AtrOWN360x2BzHbWqus/X7TJUJ8Wg93hpKBBe/MWlHy7IjrMOJBUzo7+CaYip5HxIPR/4O+0OUA1mTB/0K895io9+zmJursG/GYO+MxVzfYa4PzPYUZgcK/VKhNEpcUlwd84VIYm3kmQAZ3dxisrCY6jhMFA5TEw6bpoDuOWeif+0rGr207TP/C2pmd509xzH6J5yF+Wua9Tbd+H5sHD6NjRsydCc0JqYKTG/qYGpDB0VXXE86nQJFJwdPTOGec65vnH/uA19CYfpi9Ra26BeYvq8mtVeacev4yDmH+Pq0bHq2PMc6HVLEzF8B8C8gX9J/I6Kr2nWIqENEHwDwhxCM4fsArlirNq4pqEFEJxzAaUf4v9VKtmWdfsJoMd7F7zc1Zsm2LBq3iIyeHBjhsVVbW0OoCIxTQ3Mk10oj0De0R4kpbWRGQ5YD66LmLTJWptYOiZZXmKphv8RgvkS/V2HQF9/evfsMdu0x2DtnMd8D9vU0dvW72Dk/hT3DKcyZCcy7SfTVNPrZRlSqC1YaCkBhB+iU+zDRfwpFfw+myr3YjL044roLgRNPanTLyV/8a2zYoJF1NR58QRP00M7i8m+8B9pbc+hMUsWpqEFX8bWkGvVQVus1UuFi3KsZEc3HbO3jy6DDge84EPeTZIC3A5ctSxO2wjT6/lrHxx6m1t+mFq8WlPz5lHzbyThTWuOop+9FUc43rv7IRS9DnmtMTWpMT2WY6ALbNlhsnSzRpT42ZvOYyCpUDhjYDP0yw2wfeHpGY9+cQm/eYu9ei/k50bb356voalINJTZO6rfvrAUb+eajANiOYxC2Vn81BLrofkIN15Q4V6E1Zy1BawYDpm1hPyLGzK9LbdTwP2k/yeh++xKxvAFgI14r9KMEs5SyUx67Fd1yrvE4D5zzU9AeuA0m/EWhMDmVodvRyHNxO1FawVigrCQoaL9v0JsrxfKuX2HQG4r238fSCPEzwpoQALAAeI1a33BrPWqNBfCC3Rn6cNFhkp4w1q8o3KZZr712tu/RGg4t0GL0d7rGBqAjHQfy/K36jsWqxbpoEenCuhvX4mTfujrORlA0+L/VUFxDy6HBcCjuoYNeKd9+v8LcXIm5uRK9+Qrz8wazsxa791rMzAPzPcJ8T2F+QOiXhKFVKK2C8eGOiCCZUkg6Q5FDnjmJtZFZFNpgsuNgfvHXwaoWGfSghyNvel+MrWGMuDY9fcNvgZWO9Wg4wOa//wt0CoXpCY3JSYVuhzA9lWF6OsfEZAaVE/JOhrzIcc8lr4Wj+j5F1ce5D3xFAGJS9Zo0JmZWY7lpFbTXgQNeig7VdTu63Ty7ad1S4+ASM///IBYYBSS+xjHhGBEdBeDLAH4W8qV8FMDzmfmRMZdaFVprS42HiOhpIvpHIvovRPQmIjqXiBZrxxv83y+vRQPX6SebFtTu7RfAsRiFCXQJ1GSRauNNvxcwr0Wb0UQETKJlh0PULJnU/7fyGrvSSRaFGCHfoN83GA4sej3G/IDRHxLmBhq9qoM5M4l5M4GBKdB3BSrVhSu6cCqTRcQaqGqAbDCPTjWHzPXQ5QGmiwpTv/DzjW6Yuuu72PbI7Zjo5njkZb8Ck3cbx8+64zOAs6DE1F8lQUOVdzOJy9a4Y951QIVzl/EWFxeUlzlQDgfuYxHOb2FNZ0JNs5YVbtzyaFxWogO4yNif0bwZ5K0ygslzsBYCLv/+B0dcT378krdjcirH9FSOTRsJ2zY6bJoy2NLpYYOeR44KzA4VdzFvOtjT72Bvr8C+4HIyX6HfrzA/X2E4NNH/PghC1tjErN1Gf/6gZbchJkAAQhd0LcHYOSYAA+3y9n4DABizLQgkr9Q2hlJLjv12RWnMrfW1xiIXnsI5QP29iIJ5NKhfGDvBWkgphXNaAUKfOO4iDLYeiyzX6HR9gNmJHJNTBSa6GbpdhU5HMj85J2DGcGjR71sMY4wGsc4ohwJgB0HamXruD8Ez03HTdDNJ15rx608AA9JAoel1XAN4GO3LGrOQ/TSI50hA0uS9tIN9jryj1n1TRcAIcOPfXTvlsXPh+VruJ8HtKWyJUqHxO6zNaX8kioeQcjl1HQv7En/DehDTYjioUA7kHQ8GYpEzGDj0+ozewKE3ZPQrhdJm4pJiCcapBoADFmBDE0PBIVMhkCijyBzyU09GdV3bWuMDyOf2RGs1Ywn9I0/GzIte36g3edOHkO18DIUHNqYmNPIcyAuNTjdHp5tL0NBMo7/teDxyclOxe+HdN0kDCdG1RCVBm4NL6cjnt8j6tLC1ZeMCoyceyuv2GKAHwDNAcNZppYmIthPRvyCi/0NETxLRkIgeJ6Jvebl4xPrhEKR3APghgGMAfISIciK6BMB3AFwO+ZD+AzO/gZl7a9mwtU7pSgC2AngRgOuS8gER3Q4xU/k+gPsBTAH4GQiosQvAv1zLhq7TOgEivDbT0aF2Z1iCxiuxRQuXrjF1vZaagVrCM4/Xjo+6TMSTpd1R7UeRiRPTcAYxwfm/RAQFJcpaspERU5mKwVqtcdBaoeNq7dVwqNAtvGkrKzh00NUKEzrD5pyhNdDJNoBdBVUNoR2gbAlVDdHVDpoNsoKRKYXOay7HA3++HXbn0/Fpjv3MX2HwT/4HqlLhiet+Did87n3xmLYVLv/23+CWq38J5CR9prMWSnlm3Auboj6TLfYoiXYt9Eu06lji5YYxEbs6eY8/SbzDck11DwWT3v1J5VorAuU7j2kZU42g11gKiCYWQQ0rIeVBDgKOfeL2xvXnjzgJ+fYt2LKlwIZJYNOUwbGbBpjMKnRQYooGMC6DdTn2VNPoVxqzfYWn9gJl6dCbt5idrd0FBr1SgAov8ITsJeJagkYcCXhhDIDMBWE/EbjHzVERzPAHmOo+XdRtg4NVxML97eD26/0sSamJ+XLauB/7KcV51IPH8V5yUqNObE3jUmPt3+M9lVKY6u/FiU/c1qjywPnXQ+fau5oUyHLlXU4yKEXIMy+eMaMcOvT6EhupNy9BJp1lDPtVDBprKlPHODFtUCoBblCDUDWYmY4buW84Ep+O6z6sz0J9zbRPx/Z02j2j72UcsJpmlgEQM3knFZJjY+qiPp4CmKGNFP/nnzucg1DWfrcOdQpxAtiBmOK9mBjkxwoRga1c1Cn5G9ZqZkkPq5yCcgrsGEoRdK5hjYNzQJmJlU5lHIx1yHOFia6CdQTnCHmm0MkIk12HTCHqqokYwbgxaBmZGVpZGO/2Uf3yr4G/dKNYLAFQwx6Ouum92Pnmf+5BHrHY2PG6X8eGmz8OZcTAmkyFjX/7PzDzz/4TOgXQKRS6wwyKHABvUVRa9FUJEOOey38GJz1Yp4fdPPsETnniNvz4+EsF9AkpcknJuh7m7FheY6n1e2yD26MAxuganoy3mkGozzgEFvz2/DS2TYfAGrxStNLWFWtpqUFENwB4F4BtrUPH+O25AM4A8Lo1a1SLiOhfArgNwPeZ+fFxdZi5T0Q/DeAWiGvJjQCuhMjtAwC/xMwfXKMmN2itQY23A7gIwMUALoQAHIAEEnkuBOFpkwXwAQBnEtGAmX+8Bu1cp3USGgfUJ4tkg0bmxtHJUqLkj1+ERtYdHr1GQ6COJWiVBOaqBjICiCGtFiYqMkvw2mamhOlkQDHIEZidMFuemXVWAWBUpRKzZJvDGmHs+0Ogsgobu0ClM4AnYFgDSmESPWitkWcS4yO3ct1MOZDrIa8sjO5gy8+9HE//t/8Vn2f6lpux+al7MX/Mqdj9c7+F4774AShTxuNn3fYJ3Hbtr8AqhWpQgbQwOoExsz7sO6nA5EAyxQQhg1vgUWRQ28SNPyNHa7Rk4UopLbPaQaXlIjU1Z98cyF6oXWtgoylM+rLWt9MURjCm3FNSp74mR2CDwVBK1yBIYjV02sNfh7ZNz8knXnADpqczTHQZ2zZYbOyWmOB5bFRDKDhUTmPIBXpVjrk+sLuXoTcA+n1J41gOxV2gHHpT9dJEDa81tg7AaUXwiEEzgdrVxLe8FsKQjEVKwI6WkBrmqhSpWOh7WGRwN97P6JT4zKiBA7fny/24Ro1FRGq7U42rn1pjNOZlbj7o2E8iVCGAiXHWg1+BYhcPV/kEHjnrWhTdHHkumU6mpjLkhUKRE7SWk4eVQ1U6lJVDr2dQxcCgdVaTamiS4JU1iD3qRoLmeEjak5ZHAMuTS592PzTojb4Y1zetffIA/th6465Frfs713wZiZAsTZUJgZhHyuR6FIHAhRofbkl+hwOQAZKPKazFqp5nZM0lubfzygwNWZPJwRkC53KO8+AGHENlGtYoVKWFtRmKXMNUCmWlYa1GtyCUGcNaAk8QilzalZFkRSEK/AI87wBkPhVwftqJKK9/Jegzn4zPtuUzH8DMa9+OauNWVBVgHFBtPwZ7rv95bLvxb2K9iS98Ar2f/w3g+OORaQCFwtSUD+I5D2SaAcpBCnj65Euw54hTseWpB+L5F/7oU3j4xMvkPbj45pN5hqF8P7Kfn8L8HoDHpYgjz7VI3fQ7T8fjoUYJqPzsgTQOXyKitwH4KwhmuBMCbnwNwG4ARwM4DcCrcfBDLfxHBOmDaBc8wJFsdzGzZeb7iegtAD4BMVQgAE8AeC0z37L2zRZaU1CDmf86/e1jbASQI/w9Fc1vUAP4Lb+BiGYgZi8/CBszfwPrtE6rQOOEMWYeg/r7+mPQ/OWSMItNTpqoxY1xazFN2zSC2C8AlCRrtggqiRDDDqRIgghCzidWUIpglReMtDC8OtNQmbhsWFZgaFhWyDKCcgTXIWidQ+cafU0g1si5D6ssJjKHrCih2AJsoU2F3AzgQDj2pRdg919Nws3WVmtHfvq92Pnb/wGEDE+98PU46h9rEDirBjjvux/C7Ze9EaQVlGNYttEMU7SpvkMCI+RBGulSBkEhCHmBIRrpzGXT4nUbQlaU6xYXEA8aLfHcYxmmQ0Ar1AzuGKA8atVJ/1LEb8Y1n0LFFnBDPhiogGa1pYbONLIiw4W3fbRxHacUZq7/OWzeQNi+CdgyWWGLnsUWNYPCORjSGKoJzFdd7B52sWu+g5keYWbWYmbGYNi3GPRLDAY+9kFlYazx4CLXbiWtGAdisRHGd3OcB41mQ2gDkFp11YVI6nCcj1Kt+XLAirH1V4M8YLlQGxfdb4+XkfGzSLuDgE81qAyIKwrVxaPXSEBvIhrJevLjM65FtmETOp0MnW6G6ekC3S6h0yF0OwRrgcoIoNEfGPTmJS23xGOoJHisMdG1MAUzUveK8O79oyTzwELlyfBIrTrafctNoGkc6NSeCxvvxTX3F3oXab32NeI5oZ/boEjjYRARCde6Bju3MMi1AGIVLDjqw+Hj8yYS1q/tRLJGqRrYYEWAq+cipRRgrF+vGUorQBGUYzhLsFZirrCFj4kCZFqsNYpcMoblhYArWjmQYmhigDjinjIapU1aA1pb4Fd/BdXnbwRZCwBQwz62f+q9eOqtvw9GncH36df+KrZ84cNQw748s7OY+rs/w+Bf/EeQYjhH6BQEeLeRcgg4ywLEdBj3Xf4GXH7jf469d8Ljt2Hr3kexe+NxYGI4iCURkVfSRDBWGJy47hOi1Vg0J0INPo6uuU3wKr7jhT73Q23NDpRaGi20sB2GJKvXyj3LWrw+IjoHwF9AAI2vAng1M+8bU/VPiahYgyYtRgY1NrAdwIshoEWgkojuQA1yfAbAyyFWG69l5ifWrKVjaK0tNRrEEjzkEQCfCmVENAUBOMJ2MYDzAUz6KpsAPA/A1eEyOMjPsU4/WTQW6EACdMisGzW3rbMXu3LjigDALbtZChxx46zWfcYwkw2mslYZyT2jVOOfwwojRZ4xJMVgVmAYOCsAR5ZnwjiCYSuHbKhhuwxrAWcYgw6h29GorJKEhqpAV3XR4T42QEEpIC8MiA3IVEA1BMoedDXAJtXF0a+6Ao//7ZfiI3W/9Gmc8Gu/gn2bjsHOt/4Ojvji30M5E4+f862/xV1X/jxQEKy13py1AkP59+Ik6rtn7pS343DO1doer6WhxKw4vBVuWSy0QS3y/bks7GM8v3to0hKMUDzaHpOHGgO1RHOa5uOUlI/fVwEwQ6JVJYpZd3SuUcBi21P3Ne7TO/UCbNraweYJgxM39zCVD9F1Q0zRHKzNYGgKT7tN6JUZZvoKO3cDg6HDoG8xu28Ia5wEduyX0cVEXE68YGpsFDZrlxMRwGoQItG0hzHO9RBMGflUyI8CaAusWNBVYxlDoDE3rSLtt8tJatET5vbQB6Fv0v8vIEBHMCxeN7lDBNPqDE1EdSrKo/c8gK17m/HVHr74FZicLpDnGpNTGTZs1Mi0uJyE+Xs4tJidszDe5aQ3J2Ol7FeoKuMtekwjeHQaKyIAGhwsGCIQgQiQheeMQiKPPGCrbxHHIsI+WvsL0FLva1H3k3G/W22IFhNRxm0qDSL0sdA143XqNaL93usxUQM+BJV0mwO8O4qsLQImhE9V3FMI1gMpRKJ4kMxi3tXN1u4oNlPQVtxRsswi7+iYpaRfSKBO60QJ0ckYRUaY6jAy7S05W/hMsOEkMNQpx4Ff8UrYT34i1pn+9AcwuOEXMT+1XdrrCG7LNuz+qZ/H9k+9N9br/uMn0H/zO4Fjj0eWAUoBRQ50c43hUIATGWkKOy9/OYY3/zk6vVr2u/CuT+PLV/46SDM0A44CuBQay2J5M6KkGF3HxymmWsv8ovNSmLsOWWrMxTRadpgSM2HUveuZXW8N6E8BdAA8DeD1CwAavj1cLnRsjWgSwHkQ2TtsFwLY4o93AFwK4JLkHIZ4XvxXIroNYt1x20LuK6tJhxwYwMzzAL7uNwAAycxyJkatOo4ZvcI6rdPa0zhtz/LdVBYjbuwzt/yyW5qveP2WqWxcgIO2OZR59mnEJYVJzOiZAU5Mb9kvKjCeiXLICtGwOMcofUAzcAbrhDmRAGUKmwqLDnXg9AZYpcEZYcrOgjRBOQsmDXIidB3z6svw5Ee/Bjf0lnjWovjQX2HbO38X2N7B/POvx4av3BifsRjM4cw7b8KPzn4ZoLQw6GCQdTBsAFZQ5MBaGD/rRMvUBiM4YTMjAzr2rTRLm8xNE4jaL3oGp64GjRMclhImgnXAwQQ2UpBxOe4HEedLq1Ja7r+Z4HLCNbAh7icqCqY60xLg8YefhGr10e7XvQPbNhhsnhiii1lsoh5ybVHZHAPXxZzrYnZIeHq+wFwP6PUtZmdtDOhYDkIchMprNcP3xpJlIYmDEAE7H8wwtLuhCB/3DtNyrsc6pczfssbo8gayDJPlDvoWorKCGrsGpdPpAs8tWuDgQpDUT4VZX7Et4MfnCGOOIGb4BJCSwMVn31eDugAwt/lYzJx+CaY7GlPTkuWkWwSXE6AcMoYlS8rWnqTlLocG1aCCCVk1KhPHibUWYESXEwASc8iDN6klRgi6GR688bZ4zD43v8H2sbHnHiAd0DyT3rfhJ9N632i9Z2DBIZdabqQuSO3bLXjjBDyTecVbj0FcTALYkgKOmkVQZ8VwJOCU8jE3JOgrw2Ua1hiYKoOxDqbKUJaEykj8i4kuocgAZgECOt4dRZN3RfEPkoJ4+S+/A/bGTwPeWoOGA2z+2LtB7/gDwBEsS8ytXa/6RWz93AegyoHUswbF//5zzP/e/1ssQ8QzFcEtdwNrKEXYiwqVnsLDz30dzrj5r2MPnXHvl/Cdy9+KOZoAQ0Fplmglto57xEoB1nkdBdVgXPt9jXkrzOEZlx6YKTB3KK3ZgdqgyyGnaPgJISI6G2LtAAD/nZmfXqz+wSZmNvCgBID48RHRiWgCHRcDODk59VQApwB4Y3LObtTxOf75arY70FpnPzkgYqG7mflDzPyvmPmVzHwcgCMBXL/U+eu0TgeD0qBqcQNjnDC4PEpZpEQ6AVqm5olPdOsMN6aObM3MBgBqBpedZEhhB+ejt8f0dA4+cr5FVRnx4y4d+gOJvj4/YPQGhJm+wkw/Q69S6NkMQ9VFVUyj7GxAlU9KhpS8C1V0oAuNyW1TOOrllzWe3nzy0+jueRzTukT/nX8AbiVNOvdL70HeyZHnGZQmZJlozZWuc9tL5HSqXQa8wEoqyYiC/c+IItozJNtiEdUXoUOEOarb3/w9TlPaPtaudzBofwCN9nlBwKQ4Lurgn/HdelNvIoL28TRUppFlGbTWyPIMZ/7wpsa1Xd7BxItfiG1TFY7IZ7ENezDhemC2KLNJzNE0nh5O46nZCeyZU9i112F2tkKvX2K+N8Sw77+xoYE1PpuJlYwKzvHItx2tNbDA3OAZ/QCAIHz7Yc4K6V6bU80CxCNbvNyYewcrknb2iqX30dgfd9/lbQdGzZgso/P7ouc25gblBa56XgIISkvaysxVOP3BrzXOf+SSl2NyQwcbNhaYnMgwOemznACoDGMwlPgZs7Ml+vMl+r0S/fkhyrJCVVaohlUjfTdb9n99f9o6C05Av0benXPNsZJQXaf5F4xW7I0D7f3x75K5/V737z0va67i0TW2fcuo2IhlzXER+zWWj/82mn2YZkxpWtTE7yKNiWItrM9ilqaHLUuJqzLsGwz6xmdIMZibd5jv+SwpQ4VelWNgMpRWoXICckSDFEi4U4CQnXgCsle9qtFF2T98CBNzT2GiS+jkgFYAtm3H7hf/bKPe1D9+DPbxR2Gt9EWuBEjJc0KeK3S6Wczk8/jzb4BL0sNmZoiz7/0CdKahdbBSERBZJVZT9VqOxlq+2JtOjRkWXrvHjKlDZM0ONG4tblveHc50GKZ0vSHZ/3DYIaItRHQGEbWDhh6SxMwPM/MnmPnfM/PrmflUiOfECwD8LiReyPcBlKg/nm0Q15XfW6t2HhagxkLEzE8z8xcOdjvWaZ3G0QEFqFuUAnOU8pSei2oYatTMcl3m/45b1NLrtZktx3XKV8PgSiLkO2PhjGiMJa2c/C3LCoNehdnZCjMzFebnDObmLPbuA56aybBjtoO9w0nMuknMqa3Ymx+FmeIoDLrbUBUb4CamQUUHmoCTfuYKyTEXmjkYIvvY32FD1sfmIydRXvmCxmN05nbj1Ae+iu5kjonJDrJcI8s1dJ4hL3JkRe416gJsaK1jejiiRHBVlHA4YaMGg9DeIveE5iYM0iHG9awgHcpMUp3Od6E21sATtb6fuJ8cUMk4CWCXUkosjZSC1go619CZwqQqsWH3w427lRdchuO3DbB9eoCpToUp9KCMgTUaT5ut2F1txMywgx27CXv3ibAxO1Ni2KtQDSQ4qClNdDlxPigoWy+Q+rTMacpMxHki+YsgoNSFbTeTpDOWTcwhI1LQYi487hdisvfPTWQhgHYciJL+Xv4zjTZ84eKFLJgWfY4AmikPaCgNlWmc8vit6A7nGtfZeeWrMDmVY8N0hokJjTwXYc+xWGfsmzHo9S16vQq9+VLclIYmjhVrvZVGGCM+pSwzJwB2CmYgPs9SGt8o5C/juQ90WUzXvfHvtQnOR0B+f6XOhaeLpDGowUJvFZj+G2l7fIbFwK/WjZN68Ry/RoePOA3u6lwdJ8UlljnV0MD4sTDol+jND9GbLdGfrzAzW2HPXoM9Mxb75hz2zSvsndeY6WmUBnDsBT9v8u9cEASB4lfeIRFEQ+uHA0x86N3YNOmwcdJhwwTQyYE9P/1LcHmnrmcNpj74lxiWJMFKQZJRrZAsLdOTCls3Z9iyNUfnxGOx46IXI6Vzf/gp5FpcYLM8rxUSmW6k1A6AdLqWL76G+7U/ATNGh3oL6EfrGuu0TqN0pf+7D8CPiOjN3kVjN4B7ADxNRA8Q0b8joumD1soDIGaeZeavMvOfMvM7mPk5AKYh7ipvA/BfAXwJ8qxrQoc1qLFOhzaN08wtZEnwrKRxa9w4ZdJ+KQ+DODLKfMYaY7RJUTM7oi1KGMEYYDDRDCVB5KyzcFxnVhCNX/3XVBZmYFAOJV1gVVr05g1mZkrMzFYYDBx6A2BPP8eOuQns7E1gviowZycwrzZiPt+Kfr4ZNivAOkPnyE046oXnNZ5t7uOfw9bBYzgy3wX6F/+yTsfn6dyb/hRFkflAejm63VzACxKLDa0VdCZadhBBqSZDwv69jQpbSFWtydZ6z63f0tX7Ya2xzhcdMAVhglsg34FeB6iFCaJExlDew1zVFkAq0yKQaoW8k+Ocb39opAn0C7+ICcxjk9qHDboHA40eF5i3Xcz1FXbMdrBrLsdwaDwgWMGUBsOBaNqD5tVWRgSXIMDY5vcaI/Vx/PjrtqfCaTpxcP2si89H4zXl9aXGacwXp7UQBprAYlu7v9+T8Agxp2OFWsfa110A5PAWQUqrEdeTXac9B9lJJ2FiQqMogKKQuERlyej3JY7GoFdhbmaAciCCbNkv43gJlhlpal/2ABQS4T8FpuJ6UT/gmOdurePNbh7XU89gq6+Rjrelhs/C73o591rgEdrP5wGGFGxoWHME65a6Ua21GPE7aigrosYB8dtOLWbiepysycGKMoAapjIwpbivVQODqrQYDisBv+aGGAwM5uct9s447N7nMN9nzPWBub7G/FChNITKkXcn9X0OQB93PPJXv7rRNerjH0Zn3+Po5A6THYvJLkMfcQT2Xf/GRr2NX/go6MnHMTRAvwRKI0+b5+IOM9EBJjvAhqkMu1765sa507M7ccrD35Kg4Jms57Xrll+TwQjL7gigtpw1vH5NjYIFeVZK/q6v4atKq2ypcTQRHb/YdgBNPtf/fQgSW+P9EKE/pVMA/CGAbxDRsQdwj0OGWDKj/JCZ38/M/5yZX8zMR6zV/ddBjXVaPUoWbWqqWZIqLYBjHOjxLAJDau1p65nADT5mcRpdgUdNcDH+PmPApVFt1xjTWNTtFoDDm7w7b7nhmShhrhhVaWEqi7I0KEuH4cBiru/QHxB6Q0K/zDFXdbGvnETPdDCwOSrVgSvEDcVSBseME17XzPJsZ3soP/t5bJ6ocMTxk6CLL2kc7+55Ekc/9F3ojJDlGkprrz0XVxTSYpmhlfjuItXqaOVNVIOWRsVt/1TWyy5M3mLyr2H9sfzbHgw6lL7F+N5Cpy1kQdw6S46P52qjAU7rR9AIQikoLWCGzhSKIkNeaJx8x+cbd+GJSWx9zunYrvZgiuehYWCLCfTVNHZXk3i6N4l98xq79jnMzDoMBwb9XhU17WYoAR6jn7z/bp0XVOX36Pfe+LYTgTYKSkG4XdTNJAUw6jmgnotrkLUp0C89eA/G+EmtEcaB7QcEcCzzOw2PW5u4I8maI/FYpgd7cfwjtzbO23XN69DtakxNKkx0FBTJux8MGb2+weysQa9XYTAwGPRKAZW9MGutg7VN4Td1b3DpWHE1wJ26maSuFfV4WmzNYkgml+ZWD7/R/l9qX853sf/CeFvOGBq14FhM4TJuPV16XIyAc8lzShu40Yfj+JoATobvVtbYWvEQ3D9jfesE6PAuRHA+g0iYJxKAI7geCcghlhvl0GLQtxgOLPo9h0HPYW7OYdBn9AfAsMpR2gzWKlgWZFf5/mcA2Tt+GciS0HzDIbL//V5M5BZ5xugWjIkOoXfDL8PldVIHshU2fvTdMIZRGcA6kvieDHQKxmSX0e1IANzq7Isxc1JTuXHu7Z9AlmUeBPQWGgkoSIk7iryb/VjHx43lBV96cslDfK1ep2XRdyDJKxbb9pe2+r9nA/hNAHsB/DokfEIXwOUAgq/q+QA+TETrsvkB0nrHrdPBoQYj4hd455LlY1xZevqhI0ztDy2olWSgYb66bL66rjiq5UnuGwX1psC2YJsCMxY2z1gFhhiB+TJW/HiNhTPOM9OSPnDYr1AOvVaoL9rn3fsM9s4w9vUIu+Yy7JibwI7+FHabafRVF2VnGsOJLSgnt8B0N2Li9BOw7bJTG03b+8GbsGXwGI7DIzj2X/1S6zmBs//hv2DT5g663QxFR6Po5OhMFOh0O9CZaHcoC+aqOroRKC+gBuCD1MKmqtTyz60hiSYt2/2ExmyHAR3OJre1VTI1TJNT650Q6wCg2p3FC6FKe5cTb/acd3PknRxT1Rwm9zazmuVXX4ENeYVNdjeKcg7OMPa6rdjHmzFrJvDk3gx7Zxi9PmN2dohBr0QVrDQqA+s8aGgDcGjBzi4gmI0R1McByekcsQxtdzrn7i94sRAtVyh95rSAdcSIVnYEd1/m1cebn1Nyv8bY8m5vKt20gK9nPvAVqCRDjelMorzmZZicyFEUGhKrljEsHWb2Vej3rI+fUYqFhg8q64yDMaaOfxTT/dZWPbVw7cEqjL5jKa9jsyyfRgHyUN6+x4HsA/uTOWfhOiNYRBwH6fe0+Pq6FEVgA63vrq4R/x9rJveK+6EdCQAVv/0IXFlZq53ES5E1WsaAqWy02jClwbAv1hrzs0P05kvMzFXYM2OxZ5/DTA+Y6Sns62nMDDTKymdloYiJAscch+w1r208if3oR1DseRJTHYvJDmPjFGPqhCMxePkNjXqbvvD3wM4dGJaE4ZBRVvJwmhgTXcLUhMKG6QxTkzl2v/ytjXOPeux2HDXzEIpuLmu61sgyLVaZQTHg3bliTKQl1nCgBW1HY47UTXEZItPhyZoeNnQYxtSY8n87ACyAlzPznzPzU8w8ZOZbALwKNbBxNYDXr3ajnq20Dmqs08GjqAlabllzW0jzcjhS21JjROhYktouKc2+SC1ExmmLRvu09rdupP4L2j7H0Tc7WGxYa2CsmLuG6PqVZ5wGvRJVZVGWFnM9i117LHbttegPHPpDYLYssKvcgN12AwbUwUBPYFhsRDmxGce96YWNJ62e2ov5f/gcitmnMb2lg/ysJujRfeJBbH/yTkxvyDC9oUCW+xgauUJWZBJIVElA0CCckg8cCoIHORLTVHAUZmMRuGHamsBRz8z9ZByl11vnmBq0PC3tMsv9a5J36N8/xLw9Zh9Q8EFm67GjNCEvMmitUHQynPfN94+87W2//kZszmYlQ5BRGJgc86XGjvlJ7OpNoBwY7JupMDdbwVQWg4EAgyF+hq1EyxoDa0YQQ4TTaAk3AnAu1gGx+iIHg0BFSfnK0sEFxtJ7M5rPvfxnXWjtCQKqgDf+fkmcoDQgrfbpgE+790uNa+y59MXIN0xiokvIMoWyYvQHEkej3zeYmRliOBANfDkoa618SNsawQyW+CvpHB+tJ3zbXTJwGuWoX30jTAWP3ep5D62+bPfToTefEY37MJrjomnJsQyQY0z1dC2WLVmHo4UV4vtpW1SGeuFvWJPrNdpbVLKLwWGtMTDWB/YuDapKMuOUpViG9eZKDPsSm2XfrMPuGXFH6Q3gLSxJ0rb790sEZO/4paa1RlnCvO+vkGlGN7fo5gZFZmDf8nZwlsdqylTY8vF3o6og1hqWYKxkZHEWAAFFAUxPA8NrX4pqc9OC/axbP4qiyJAVWbSckxhHdSylttXjyDpOzfmnvX77EbHE7/07vE6HNF0O4IQltv2lQbL/YWb+ZrsCy2T8+0nRzx/AfVaEiOiGpWs9o+sfT0RXr9b110GNdVobGse4LrdsHI0BOepDTaH+cAA9FgxmuEyeadR8fvR6KbAxYvLa0OimghEn56EBcqRaYglSVpskO+NinA3r95vmrg6DHmPfHGF+QOhVGgPuYqA2YF5vwUBtwFBPwOST2HDpOdh0wUmNZ3n0b29GZ++TKHp7se233jTSEye87z+g2yFkGaHoZMg7ok3Psvqvzr3ZqlZ1tHSK3E9Do9ru3hiAMqlTm7gmVSndao3PfnE+ybuPZuCHCB3s76ntL11r4MZr44FUU7ec6/v3Cm/m7LNWaK2j2XNe5MiLDEUnQ3ciwzG3/WPzGhs34Mgzj0BHDaGKDGU2hb1uCjv7U9jby7FrH7BnxqHfs+jNVxj0qxjgz4XAvDZoZYOpOby2Fh58BNLvNlIb2Iw/xj1tWyitBd/VGnQHe/wsTcts3wJjqf7uvVVKqOfd3eDN5ZWPD3DU3GPY+tQDjWvMv+g1mJpS0JrgHGM4BPo9i9kZg/n5yrsqiZVG5bXw1hgYH8y57XJSj5cw3dc/mgJeDW6MBvpMx8m4NbZ2FQn9UO+vjJVPuNYzH0MH1obaIgrJ9zf+W2mv7wutxfUJFCo2vuGFs5fV1leNNT1kKouuR+zX5hCfx8GUBqbyIEdp0O8b9AcW8z2D+b7D7LxYkPWHhNJolE7DOAUr2aOhjz0G2ete13g+89GPgnfuQJE5TBYWk4VDdtSRGL68qYDe9I8fhnr6SUkva4HKSfwOEzToROgUhOmNHcy8rJlF5cQ7v4jJwV5kWebXdQ2oem5O42wEa41x63hjDU8yXdXAtq9cv70FRgRqi83DyIX08KM6cO1KbK0X9CQzP7rYdgANnk32b1qoEjPfAeAx//PyheqtAf0dEd2+0uAGEZ1IRO8CcB+Al6zktVNaBzXW6dCn/dHkpdzaQtqzQxjcaBAjsQDghfilEUqF6EXrjXFJCfdt7fj6zaJo+toKMOp8GjnjA9SZSoKH9n1U/n7foNevMDtnsWcf46m9GrvncswMOtgznMbT5Rbsslsxi60YZlOoOtM47m0/1WhL79HdmP3arZgaPIWjT5xEdnIzflPnwR9hy96HMD2lMTXdwYYNXUxPd33Mgww6Fw1PVmS1tYb27idZyJCSRFIfY7qajkuK/c6jdRpABqF16v7TIcQkHWz3kxHLlSUwI6LxldLnUMn7VjGKfsvlJAE0siKDzjUmpzrYOnwa+UwzDf3may/CZLkX2hnMZ1sxo7eg5yaxY18Xu2cIc33GzL4hBn1xOSkHFUyZuHW5xOWEa5eTpjDUBCbHuZykfxfsz5G5cXXf79q5nyxNC7miLBfYSN1MRuYKL+ioZFzFDDqZpADOCo3T7/1i45rVlqNgLroCeQZoYhjDmJk16A0sBkOD/nyJcuhTtnqXE1vZGFSyHS+itpQY73JSP/9iz7y8sbSS4MWCLeHlup+sBqXWSynAE8rGVF3wSm3nRU6ujHjhEZuBRkFqvYFmCtok9avzrqLOenfR0geWLQ0GA1mj52eH6M9XmJuVzCi79zFmesDcQGN2kGN+qFEaBecYioDiHb8kUT4DVRXMX70XWjl0M4upjsGGCQu87R3gxKpDVSW2f/I9cE6sNaoK4o5SitWGIqDIGJs2MPD6G8BJXA5tK5x1x40oCo0sF9e/olMkIKFkEqozmy2wji/ymtrg+JJDjbDkGrROz4wcaMW3VaY0DsdSoEioe+QqtWU5dC+A8wB8kIgeIqI/IqLzljppHBHRFBG9hYhugoAZvwpA+/1VoUMC1CCit/ltw8FuyzodJjRudWlyovU+84gLy+HgunKgLiltJnYhNKThktI6N03NOHI9FoY5RmNPthCUjK0wUqINktSv4tPrUA4r9OYr9HqlN311mO0Rdu5V2DmjMT8gzJcZZm0X+7AZc3ojNlx1ASZPPabR/oc/cSuQKeSZxYm/29QAEYAT3vvvccRGKwHHcoVOV6E7maM7kUscBC9c6FzHDCnB/SSYqIphBDeEE9EU+PtE95OwBSADo8YzsY/DEF3mYrrOHDUoHa8LWjgteO6YQkLrfbZcTjxDHDR7SilAQXy5SSHPNbrdHFmhcern/mKkRUf/wivhTIXKKPRMgaeGG/HUYBrDocXefQYzM6JVH/RLDIcVnLO1JjWkaYya16b5ORoCqt8WfFCMmQqa1hlNQW1t6GADYzW1hcoaBFhybUjmUZmnEdcoZm4gwoooWj+EeSgrMnQyjZPuaFr5zL/wVSgmclgDDErvcjIwmJ0pMegb73JSRfcka4zM394NIczVaM/rLnmm5bicjFjxhP5aJtL+E0GjLqALrb/jLDfa6z08GJHyK00eJqzPiMdSd5TobmSbWcxCxhTrlQ/BNcUMffpXY1FVFv2ewfxciXJgMOhbzMw57J5hzA/EamNQEcpKsuWoo49C9rqfbjyT+djH4XbsgPPWXpliTJxwJNwrmvU2f+FDyPbsBEOsNYYVoywZ1obnclBg6K3bMHjhKxrnnvSdf8BkV4klZgCdMx3nlLCWh+4O7l5xHUdz/km/W/nN8dz9XrfH0HL4t3V61tEdyb5esFbzuFmltiyHzgPwzwHsAnAigD8A8AMiuouI3kdEv0lEVxPR6US0jYiUBy9OIKILiegNRPT/ENGXAOwE8NcAXgogA/AZAJcw8wdWq/GHBKgB4H0A/grAMUvUW6d1OjAah8inQIenQwnYeOYuKSkg4UvS5xvHwzdOb4FA8FkXuI6YH81d2fnI7LJsu+jDHWIAQFxRrDBM1liUlcN8z6A/dD62BqHXz7C3X2Cu1BgYhYozuKwD292Ao996faN5c/ftQP+uR9DRDkdddAKKY7Y1jusffh+dvTsxOZVjYkIjzxTyTDTteaaRZRm0D9IXNfE+QrpoVOV3GkU9MkexaMxLGDeGxr6rJTSd6b8xWqVDgQ7G97Icl5PlXQiNmAbkY2WkKrngmgTyFhwqxGcR96Wso5F3MnQnM0xPZ9j8vZsbt8i2b8aG4zfDIsOc7WJXtQl7hxPYPauxe5+4EfTnKxFQS4tqaGAr5600vDDCtWDCKZiYaIQbryEVrlua2zbVgtHqupksRIfSfLswpYjk0lX+/+z9d7wtyXXfh36rqtOOJ948eTAJOYMAKZIACJDEACABkSKpyCSHZ1mWbNNyePbT87OfbVq09PRkBUukRIoEQBAEkQkCBEAkApwZYBAGmMEkTL75pB07VfmP6rj3Punme2ev++m7++xd3V1dXV1Va63fb60pg3v+d0FlE0inRIe5vovjOhw78QCNXh3lM3rzTyGEVR7DUDMYJAz6iaWcDCKiMEvXGcZF6taccpJWs5xUtxmZTQqDWTWjSWGIqdNMqsr7JZGqkl8xFpjJfl4xzFweW8vk+FOff+tGjhlSMTbl2yTdcBJ5MztzWWWrzM/FMRU6itEVOkpu3MhoKFFosy8NBpaOMhymDIeG3gBGY4gim7XEINFG4vzSNFoj+u3fBVRBwXIdg/Mrv1xHa0QhBz7+W0UQ3TQVxKk1cGhtXx8lBY4SjN/112tN5m+e5tgjX8L1HVzfQTkltbRI5S5mUEvlDnPG5JhUGLzLz3OikcLU85zL/uUqDBT6hcr+rbuUzQPEPbtjqYsoxpjEGPN/YNPM/gMsekQAtwN/A/inwBeB72GNFjGwhU1Zez/w+1ijyI8ADeyE8UHg9caYu40xD1zM+l8pRo25zOWSyqRFPpcrUXGsibHW/nOipDBxf6b0HFTPZ8qfK6eveokojR0F7aT0IuvUQueTJLWByjL0Rh4nIInSDGYfMRzEbG1F9PoJvaFmo284vaU41fM4O24wJGAoOwz8VRp3/wTekdXafT3zwa/ikOBHPW7722+u3zOw8n/9z6wuSQ6sOKyuuDRbiqCh8AIXv+nhNV0ct4y1kSuryDJTgeXnTmZDKRdJVVj5lD4zBSuu04N2jLMxCWW9AmGtl+N9mfJ27dous+No1KHF5b6sPBeZG7aqqVtdG2zWcRwaDY9m06MRKA73v4/sb9auvPTW15H6TcbuAmPR4ES/ydmeQ28k2NiKGQ5jwjAlHEUkcZqhmZIy4N9ElpNcSbEvYcnpL5S8AhVQNs2seyy/m1Xy0skVP95SVWLqfW8Swl58VvcnKSfZphwH5dg+5AYenu9y84P1NMDxrXfBrbeRpob+UDMaaUajlNEgtFlxopg4tGi3NCnjZhSKL3UFN69bta5T6L/a4yiNBhMtcm4NeQ5SNWBUq5GH66jVzZT3s9/58WJL6VTI9rfLiDXRtMV95D9POmem/q4fnRuC7HBRQXppbR0ROR0lC0isY21js2R0lCiMGQ0i+r2I4SChN0jY2NKWjjIQjEKHUewQJpL0wBHkRCaU+A8/SHJ6DYNESnCVoXXDQZx3vKNWrvup3yfonbapio0hSSCKIYoFcapIkRgpkHe9kPhFr6wde9NXPmDH4ZZPs+VbOmBu2HCdMmaWkhWkBoVRm8IoXm/P6bm7PlfvhY4y0ylx5Q95c7mw8hGs4g87ZDURQvwIkHvmvnixK7WbGGMGxpj/HWto+Uks8OBJdl6Z5tsY+DzwXwE3GmN+xhjzF5ei3s7uReYyl2tPpuaV3Oszq+yVtvCureOsErObl7rqxardzpRTIjNsiImgcQZMoYiX3uH8unnraa0RArQQCJPxtTPjhxAig6KSUVVM5k0xjMcarWOSxOApcDAMleL0MCCVDtI3OI5h6W+8k5O//ltFvdbue4zeo8fp3rDEwVcc4+HFFvHGoPhd3fsV2tFZhm4XaQxJR+Io6/WMIm1RG56LFClplvZOCgkKtNA2da0xWZtlgf5E5uHMLUXZgltk7VCNE1AsSPMfazLry5kFp2WyWOFZvUalcn/7RmRse0pTnsuYYnGb7SKktGUq9BOpZAFz9nwbSyNoSLptxcH3/Iupmh39pbcRygZreoG1tEU4TlnflAyGxmY5GdnUijo1pTEj86ZWIee5p1dUvNN5tU1VY8rbiqldZn1bwqkvsuY3OWZtI7Vne4X058IgMGMeyPvHZJsLY2z/sQMCUuRUJrKYPSAdm41JSWiphCPf/Xzt3KM3vp00NSSxJhxr+oOY0SgmjlKicZQFYbaGsBzJU2jN2vogc0RddiOlMb/6vWYbY0b1u6lC5yZ77AfV8mbi79r+5ClmzWd7kKkx5YL3vXr75W073aXy8YjyU2R9UEz0wex5iqKoKA/I/zLF487m7/x3gUYXc5jQAmEgIcERTmk4NSVdaghZnAuD0QoprZdbKIGrJI4yOH/zl+DDH7IpTADCkOjf/3vcv/f3UcIghUGgcX/5l0g/8lFIbTkZjln6yL9l7W/9Gmlq0FpgpL3eOMxaRtqnFL/7r+J+5+tFMyw8+nVW1h/n9OLNKGOpKGkiSTQgwSiN0QKjDVIKizMyongIRZOKjI4iRYY4nZ67q3NG+X7sYfysPpri+e18yFxmSxng88Kd72KKMeasEOLfAP8x8BYhxM8bY95XLZOFXvgnla/+1UWt1D7EWBjnn2QbQohj2LSz1wEHgGWsEeN0tn0buM8YE8884UWWOVJjLnOpyjaUlCsx5kYhuWKzi1eq7vXahpIC2y7o8sl/onmqlSjPW+VuZ161uvfZ7sdhTBxbr1CcaKLI0OvDIBSMYkmYuoxMky3dZpA28e/+CdRSt3blp97/56RRhB72ueFnXj150yz88/+JxWZK00sJHF1kRPF9B8dVJf0kCzCGIsuGIgrKQablljSFGRlR7Efm+alGUp9auVZhBZMQgz32sSukK16yd2JGE+6PclJ1Isz4teLByzPZQDVoKCilUDKjL3kOnqcIGg6tpkOnDc37v1w7p3d4Gd1eZDPt0ks7bIw81gYOw5HOspykRd/PDRppktYyF9QoJDnlpGLQKGQSip9TTopC+UtbGkh2hcPvJpXDSwPM7P0qaqA6XtXGrW3K18ff7fbP71Z2lu0GxMquqHh8cx4/IGWZHrpAaoiMvuRk8ViaPtc99mWccFicz0jJ6I1vJ0kMw7GmP7BxDUZDGxg0T8mpkyyldtYO1ewYNWqCtpTBYvCeUJqrD6E0lFUbdJ8L/1nPdId+sO22i+w50OwO15hJ0Zmc88/zVZmcAmbNxfZSExcR9c9qe5UGz53qPut7yj5gwGgympsuUrGnaWqNZrG2RrRsnIqilPFIMxrbdOzjSDAIJaNIEMUGDh3FffvdtXtN/+D96PW14s6kAPe6I6i76+VaH38vbu8M0jJA0UaQaLvFsbV/GG3gR96MWa4jNm/8yh/SbLh4vipQdMpRGa00CxaKxKo81UDfOZJCFu8viGlkZp5JZaaDa4dOMTnVzzrkCpnL53JR5f8FPJXt/3shxP9fCPFGIcSrhBC/CNwDvDz7/V8YY+69DHXckxhjnjXG/IEx5h8bY/5bY8x/ZIz5e8aY/9kY838ZY75yuQwaMDdqzGUudZmYtCYXTFeycWO/kNuZlBTKe64vRvP18Oz2KBZlWRkbXyNXykqYa5pBpdPYpnuNwoRwGBONLU98OMyyomxo1regN3JYH3icHbY4G3Xouass/Fx9MXT6Sw8yPL4BiebYG25Gtfz6jX72TzninOJot89CkNBpaJpNl1bbpdX28AKF4ypUloXAdd1KqldZpu+spH21CsoEHUWWykzZxvWFUYHumHQM7gHKuqNcJq/2pUIxTULkt2vHWVKroph4JrWNyid1ykCWclM6Mouy76JcRbvj0Wkpuo/djxgNa9ddfeurSRLD2ajL2rhFP/JY39QMBinj0AYGTSP7XuSZgvL0m7UAvBNK5pRBsqK8TN171asoLvzYlSuq9g+23Z9cxOf12jFuUPUzP+ekjWaiHsX4dwFFbKvMVL4XpaJUe98z46YUAiVVYTh1XNdmzvEdGi2f677xJ7Xzhi9/PaP2AaLYEIWafj9iPI6JotRmx8moSmmB0sgDg05mO5nWqWrPrCLVfnWhpNbfdugH53P+8x2Ddjze1PvWfubXiatMXHOby21n3KD8s6jHHq4z8/zVeTlPx67LfqSTcq6O45g4jIlGsaWkjGIGg5j+lp2newPNZg82+zAYS6JU4P7SL4OqxEMcj9G/93sVCpedO/2/XS8nxiMWP/G7uMrG0MjrGycwjiGMIU0N0nPhXfVskwf+4hMsqjHdro/vKRzfwQ1cvMDLMlbZ+V1KUR/blbBWlsqYX7JE6g6JSTrKec/Z5Ynnsg+xb8aFjKlxCepszGngJ7BZPxzg7wCfBe7D0jruzIr+FvCfXYIqXbMyN2pcYhE2V+8/EkI8KIQYCCHWhBD3CCH+SyFE8wJe5+eFEH8ihDguhBgLm5rn3wshfuBCXeOaF5PBvWdsO3lHLguyYxvP2E4epqrnrH4CprcsdgaZ16/YKp7AYmFdeJV1kRFFp2XUdZ1F6U+SpPAMxVHCeBgRjiLrJUo0o7Hh7KaxARVDTRhqxrFA/tRPIZpBeSPa8MzHv4X2AnAcrnvXRIrvNCX8jX9MEG6w5A9YCkICz6AUKCUIAhc/cFFKZgsZUBnNAGEXkdaBUyrStuWqHFuAnLpQgRnnTT9r9VNHEmeL2T2ucCaLXZl2tgsmNeVnn97cqdewAG0UK9nau5ob8fLnbBe8tm/kvGzlCJpNB9cRtPyE5T+YRosu/cLb6OsG0ThirSc5uyWIk5TBIGI0iEiTJEvFmZTpWzMlNUczYUyBHtOmmr2izG5Rel8n26T+RQmz3Uujlduu41s1S8Z2+5PtvxepGjb0DvuTw9dkHc9JCa1Uw1THyHr9Sk9+2R7VtimOkAIjDEhsjB7A9SxarDk8w9JDX62devTGdxBGml4/ZThKSOKU0TAkHmdjZpyg0yRTTNPK+GoK5MFkvWr1tRj8otHKsWebh7bH/rAdyqEWpDbfvVKVucn3aJf+te297zhOzRrAq89jYl7O9yf6e/06+XXzNUpe17yczjaTISantzS1cbDSfD8LIJokmQNinBk5opTxMKHXSxiNEqJIMw4NgxHER29A/mQ9S0ny++/DbG6AECRGoI1EXX8dztt+slYu+NDv0Yg3UdIgpb2VNIUktmNfnvpVv/NnMKpkz6toxKGvfhjPEzRaDr6fZzezqCjpZIYLaWNkVTg7dQCFtf7WngiFMcYU84Etu885uypzGso5S04/uZDbpam3eRCLxvg14C+ANSDCpnn9feBNxphfuZwoh2tB5kaNSyhCiLuBbwH/BdYy1wSWgNcA/zvwdSHELdufYU/XCIQQHwXeC7wVOAz4wI3AXwe+LIT478/nGs97mWXomEgZm2tSs40cl8jwMbEAm1oEkU/is+u46+l3W9hpakHrtDZ2wZRvWaT1JLZGjRy5MezHDIcJw6E1bAzGsNFT9EeCMDSIVpuld7+lVpeTn/kWyTBCeS43vv1lyMCt/T7++GfwN0/ijAcoYwgaDo2GwvckUlg2iVQS6WaUE8rgfrNoDoUpo1wDQW78mFJ+qm0ysdid9dD2IlfIQuhyoZZKBNE5XL96SFH/0jhV89blAWEFhcfPcRS+7xAEiqUFyVIzQX7r/tolghsPkS4epKdbnBi02OgLtnopmxsx4TjOlAObPjFJKoFBk5Q0yy5UZCcojIYVA2KtP81WgMqhqHzHa21goPru18aB6veTytlk3xV72N/uUey1/+z3GrsoobUysy43YXCstt/MOlc9ugLIsijZv/OxRCGlzcrgNVxcT9FoOdz00GcROi2vFzTov/pNDIcwHqcM+zGjQUgcJoTjiCSKs8DLpSFMp3ka7e3GYmtkLjqFqCq91Yeaa2wTbbeX/rDDuFZDQ1xAHWLP9JN9nXSP5SbveYbBYUdjT/Uc212ihrwhG+8q7/PUHD/rero8D2QZzKp9Iwsya+rGjTxLSpKklbk6IQpTwjBmNE4YjxP6g5TBUDMONXEqiBOF+MVftZNqLsMh6Xt+DxtZRqCNQZDS/KW/Vn93Bn3af/IHeC4oae8z1YYotWE60hQMAnPwMOZHf6zWVgc/+z4ansZzbVBnx1O14LxVRF6RDWXC2bDd/D313Hf+YvrnySJXyPw9l0srxgbf/EfGmB8wxqwYY3xjzPXGmJ83xnzuctfvYokQ4pLF75wbNS6RCCFeBrwfWAD6wH+HDbbyZuBfZ8XuAD4uhGifx6V+E3h7tv854KeB1wK/AjyGfeb/oxDiV8/jGs8fmelh3wvmfeLv2oJj8qeLbNzIr5PNpIXHwcxev1W9O5PK47RiUPcOUVkkaZ0W+2mcWu9inNotsZ9JGBOPIxtbYxwTjiIGvZDe5pitzZCtrZi1tZiTa5rn1h1O9AJ6aQP3r/08wi3HSROnPP2ph6DZQTgex976kvo9JQnh//kvCXrH6egNDi5LDq0oDq5IOm1JI1C4nsLzXFzPQeaxNjLDBlJMLMxn0R+26Rd5pLZdiszpJ3uT/RoypvjsVBQAAFMxRuUQ5OxfntpXKUtRchxJ0HJptRxageHoUsiBBz5j8xtWpPXOt3JKHGFTdzmxpjizFtPrJQx6Y8KB7e9RGJNGCSax70euRJR0AlMgn+oe2On7F1TeW6qKd1m2aIdcSac+FtVOu3fb5nnJ5eo/haK+7Q3OdqVagE/pua0dUUYcLIDNebwemwZY4rgOjqdotnzabY9u2+HwPR+vnSf6wTcTuT7ra2N6WxGjUcyoH2YZcmwKV52kGQouraTYLpVX2xHyfcCYit19eg6aaKC6wXBSKbuCFDJjzp9+csFkH8YQbXS9D25r3Jg+6a7OhNqWdwVTpFivZSvTZYDZqmHVJNrO01FKGiYkYUwSx0TjiPFgzLAXMuyH9LdCNtcjzp6NObOmWd8SnN6UbCzdgn7Tj9fqHb3nfbC1YYOAGokxEv/WG2m8+S/VyjX+8LdZ8QcstlJavkYJTRLDOIJhJBiGguEYwp/+q7Xj3BNPc9OTX2KxDe2OS6vj0+r6eJ6lnihHFZnMShoiuRVyqr0np/ft6Cc7PvZimTRhEMx/q9gR57I3uQpTuj6vRAhxRAjx40KIX8vYAd8Eepfq+vPsJ5dO/gkWmZEAbzXGfKXy22eFEI8Av45FcPznwP+43wtkKYHykf6jwLuMMbkL6F4hxEeArwE3AL8uhPiAMWbjHO5lLruJAYye1qj0jO8qh+xFznkRN+VwKGfXOhJhRk1yB9+UBzPT2cHC9bMvhZT2GAxCZEqjscG4jLDRxYUU4IAwlrZhUoNMLP/cpiY0JInGC1JcIVFAXwmODwLC7g007v4xhh/6ZFGf4x+7l+t++tWIeMzBN93FMx//BibVxe/9L32L9tufYmEVzOIKA8fFcVOStkQJGI4V4ThBKoGjJLiGJAadQadFBl8lC6w2s4nzhqgqBNiF93bHVNuyduxOMlnsebQ42i8Pv9Zv8zbL+qoASw3IlCMhygj4QtpsN8rJYMyOxG+6eK6iE2iOdELaekz6u78zUUFB+uYf5/igzakNQRQmbG6khCNLNQlHcQbptkY+Y0pUBpkXNddGin0qhorcKGHq9rL8x0LRq/xQU8D3o5ReS32qsCuKia8r498u91sYg4tBLz8+ewVF3peysc5oyIxiIHA9hd9wcR3J4oLDod4TuI99t3aN9TfcTW/LojJ6vYh4HJMmNr2m0Zo0SSqonYqxWZf9o2rUKrtBNQOHhgrsemb/2C7hybXUJy6VTL5zE227nXFtal4W1YF+GkEwOdYZUc3WUTWsVwrmWZ4MGCMs7UPYo7TWSGPTWutU20DaBmSO6Ii1zXKWOll8DoM2Lt1Ggvy5X6T1mU+W41d/QPK+30f96n+ABByhMUDzV/46oz/9Qnkfa2dpfPIPcN7xswhXkaaKKLaqSpJag4YxhsadL8O/9XbkYw8XhzY+9n5W/ps3EGvB2dTGwDKJaxEncZqhNARaCotsojqV5qgfUX8i2VhqqLRfOSyz05y947g7f4/mchWLECIAXgS8dGJbnizKJTSFz5Eal0CEEK8BfjT78zcnDBq5/AbwYLb/94QQ7owyu8l/lX2mwP+jYtAAwBhzBvgH2Z9LWPTGXC6EnCuioyoTiIep7byrONvrU3jmJhAYU+WY8P5MIDnqcGddHEPle13xJuoKr9cGELXw1nAUEY4jwlHMeBQz7IesbySsbWrWe5K1gc+pfofeX/6VWhungzEn/+QbNjCfguWXHa3fQ5zg3/tVji2PeUHnNDe1TnPI36LrDAgcbSkFDc+m6nTyAJGqyHohhF0kSVHCWSdacwZ8dUIh3VX2WO4KWSBdCoTRBZUqEqN4hmVAR6hmPJFZFH0Hx3cJGh7Npsvyss9KR7OUnOHGM/cSfvt7tUs41x3haX2UZ854nF6DE6cjhr0xo8GYcGi97XEUW/RSRsPKY2jkMWfybBVVqkkBw6B8PU1m4Kh2iCqSYMoTfIU9rsvdf/K2KZAJu9anVDOLdJh5gNDK93lQYKmUDRDqSPyGh99w6XR8Dh5usrTocOjeOkojWVzl2Rtew5mzEetnR4wHIcPBmGgUWmpSVA8oOxXbaMZYnD/4+nglyt5htukfV4HSdVHoJxdDJtpyW8eEqW/TaMkJmlP10Kk5uj731mkqlXNX+5DO0WJZH6tkQ8lja8RxQhwlBdpsNIwY9EP6/YjNrYSzawln1w3rq7eQ/siba3Uc/+77aIbrNLwYKTQpkvjOV+D8wGtr5eR7/h3Lco22MyJQCZ5nMwlpA2Fk6A1gMILoHfWAoeqeP6e18RyLiz4HVgMWOi5+I8uI4jko18nSciuEsvM5eYBvsc1zmexfU93tKuh/15BcrTE1rmYRQtwkhHinEOL/KYR4vxDiISz64h7g3wB/F6vjrlCCnPItBh66VHWdIzUujfx0Zf/fzipgjNFCiN8B/hesweFHgU/v9QIZZSWfQT5tjHlmm6IfBLaALvBurDFlLpdK9mHouBTO9ymvt9jLtSvu7m2+KpSwGj5TZ94jgZDW6ZTmXmUhQElI7eIqTWxQRptaTmG0ZjxSDIeKMAnYHMJW81aOve5HCb76uaIaz3zkPg7+5R9GdRa56ZckZ7/xuzZwaSbrH/0Sx37oBtSj30SoBRzVYezdimGVcOUocQxRlNDflIyGsfU8ZRxjEtBJPTiqRtrzS12kroXcuVN6fXIEQNY4uz2Wq0YuF33gvLIm1HQ7URo5cuVUlal8HU+hHIdG06XTdWk3JTccSrg+2CTYXGf0wY9j4prtGP22t/PUZoPTPZvRZ3M9JAqtMhqOIxsINPO4Y0wBBYeKIpLvlzdd3r2pvp176EtXcHe73NQBYUStKat/bn9QieqoZUfIYwjklDUhUK6D47k4rqLVCWh3PBa6ipuuEzQcg/9nf1w79bMvfyunziYMByHD/sgGkI01SWz7ik7zvlJRXCv7gurwMuPBm4r32FSKXaXr+iuKfnKxpfrsyObuyq3Xm8FUlDVT/92IaWRIdm6LRNQF9khIAUaQCoPQAintvCelRCtpA4omKcqROGPHxtsYxwwaiq2exNz9q1z/Z39aXmarR/y+97D8q79ALBwGaUCsXdQv/wrJV+8pyqXPncT5/KdZeevdSNchCBKiVDAKBb0hjMYarQXp697O9e1/iuhn6HZjaH/yA7T/zt9n1DH0h4ZnlULggpQ2JshIgojt+yQNpGCMtuCZapDviXlaUG+3aZTcXOZybYgQ4j+iRF68GOhMFtnmUAN8EvgU8HC2fd+Y6ur44srcqHFpJCcNDrD0j+3k85X9H2IfRg1s3Iw8l+XntytkjImEEF/FBhF9rRDCNfNou1ekTI0ak/yPiyFV40Rlwt4zYaYGycy9xRlqNk93akm+tkhGU0EYctVQSGGNBWiSKEWnBuVYJcHmro8IGgYnNaz95M9ztGLUiNd6nPjCIxx8x+sJ2h1W3nAXZ79UwrvTQcjGp/8CdWiRUXCQMFihuSgwnZhoZZWB6xG7Ake4eK4gSQ1xmCCk9RSl0nrQSQ1IgRQaLTQmLRtJIND5GC7KtsjNGrVWm2rCOf1kplTub38GDTFzd0oxFRQpOKWQKMeidRzXodn28QKXbkdybCnmQBBxkBM0+o/yzJfrDggjJN9/0y8z2oStrTHhMLbIjIxCoFONzukDaZ69xN5g1YNa3DOl4rYtzWSygeayZ9neQLZ9e846poiJIzLUjypRXl7g0mj6BIHL6rLL6pKi7WuaD34dc/JE7TxPvegtbK4NicIEnWgbP6MI5FhHX5jJvlIAebYfP6YMGmx7m1ecbIfI2AtS45oxfNTsnLmxYrt7q3NcbDMJakNGVQTWYCYrk0t2CpFN01qniAzgXdDmMBijisw72ljEYqrhyfYLWHjNm+je+9niMlu//UEWf/6d6GYXhwSHGP3KV5C89MWk33qgLPdb72flHXez7MW4Y8koAkdITCqJYwdjIHS79N78brof/u3yNj7+Idp/55dxAh+h4cCyIDEOUSJIHVEuQ1KN0NrWVQhkFQ1nQObGn4w6ei70k2KckEwZpa5kY/OVLIYyAdaFOt9cpuSfs/0kOMCyCh4AvpNt3wWeyH7/bWPM+y9BHWfKnH5yaeSu7PNRY0yyQ7nqCvmubUvtfI3J8+x0HQe4bZ/XmcvlkouxMJuJtpyAp87yHE+UnwxMNlFgNiUlD1RWjfBORkvRKWmqiwV9NLaKYRzFRGHCeBiztqU5efglDF/06trlnn3f59gQKwy8ZW78L39u6h6f+fQjbD1+nOT4CeSgR8MVLK343HhMcuMhzaElw0LL0GwIGk2XRtvHb3jW6+oqHNdBuWXgseomssCAOUVFSpkFmywpDnnshtpjENWtmip2olz1X/U81zr9ZAZ8e1ZWmuoBeSC4atmi/QGllIUfC4F0VEZbktaz7jl4gUez7dNseaweDDi8JFhRm9zcf4Drtr7DijcgfG6tdtXoxhdwduBx+kzKeBAThjHROCZNk4JaUqRmhUIxNXpCSZ2415l3OEEnmClX+IrtclMHqhSS7fpTQVES01thxJB5/7HjguM6eL5L0PRpNH3a3YBDR1ssLnosdmG1kyL++KO16/QP38LTwXWWejceE0dxZgRLK4EdqxSCGQaKqxy5s2cpOZBlW2y3Xasy1VV3mwS2N9JtR1miQmlhIsBokZ0pyemjNotZNE4Y9iOGw5h+P+axH6uznPXGFqf+4DOENNDSJXANTS+h+at/s1YuefxJos99kZYacaixwarfp+OOCXxN0JA4rn3n1n/8FzDVsbDXQ3z6E3QbCc3A4AeSdsdnebVBd8Gn0XTxgxxB5aCULDaRpXIXUmT7KnvHRX0eqY0DO8zZ1T/F9Pw9l/3LnH5ySaUP/HvgvwHeAdxijOkYY15rjPllY8xvGGM+aYx56vJWs5Q5UuMiSxZMZTX7cztKCADGmHUhxABoAdfv81LV8jteB3h64rjvbldwUoQQ1+1S5PBezzWXneVy+V6nJtvzqcTkTRjr56QawAwQhbEj40hrQGh0AkZmiy6traHDQJoYjHGIY4nzo3+Tl3znvuISydPHefIzD3Hdm+6ktXyEhZffwub9jxe/p8OYwHNoHwnQrRFJsIH0TmAcj6EI6AnFM7qJJzxi4xHFkMQp42HEeBSTGo3UEpNq0lQgEnsXRtpFoNY2OCrGBlqbxKnmC7Caf2fm2nvGl7s9i0u8hr/QC7Mq+mCmF13UP42Z1SS1VWT9Kyo0AWyaVoTIeNbW6OT6No6G33ToLAQ0G4pDK4LruyGt8ZjmqSdQ0XOc+e4aJqn7jJ59/c+w2dMMBpkxI0u9mceOKTzumDKrycV8aHsE/lwuuewL+1r/MJNfTBeq/lwYK61ioxyrADmOg+u7OI6i2W3Qbnu02g6HVh3aDYHrCga9Puazn6ld5YkXv5XxKK5li6Iw8tp+NtMItN9nfIX3iV2lOpYy/f7Xvrvc/esCymyE0AW4v0nUTj5Hg4VYmrzLZASMjHZpY+VqUmMwRmK0BGMItUEnDnGUkCaGuHUz17/wh1j97peKywz+7XsZvv0X6C5Iml6EEgb5I69jeNutpI88VpTr/Zvfo/Pm1+GpFAKLItHCBceQpoI4hfGRGxi8/Ido3//F8vzv/RCNd/xlXF/Sbimk69BoGoZDwbqXo0EFOtU281oUY4yx+NBUI1JBohProNA2kKoRutZGZTwXsdtEXm/fvTyHuczl8kquh7aAY8A/Mcbcf3mrtDeZIzUuvlS5SP09lB9kn/tN67qf6wwq+/u9ztO7bPdOHzKJk99OLtWovlt9zA7ldip/YWUm/WTf9dmp3PZfT3ovJ9OZbS8zTrhH52HVC1kNLKq1ztcRNiNKlBJHMWhNqg1nbnkN/RvqwKbod9/LehjQ101u/s9/Zup6Z79+gqXbj3Dg9gMcWYk5KM+wMHyaxuAEjeEZVsU6B4M+iy3wfUXgKxpNj2bLI/A9lFRlmk/XsV7/TClWedDJnNIgLHUlR2LI3LtT+Y7qNiX1Lyf1mtoTylPP7ni+C9HndzrnduX3BxPP78Nkq+pqXyzL1I4u+6zM4rZU0CwWQVN5HnmqTcd65BzXwc28d42mRxD4hUFjqZmy5PU5yElkmhBGgmc+XbcFGyH5/iveTn8rQqc22n4SJxgMaaor2Skmk8iJnUfFme/99t/vcCbqz3S7fnAu570Ysl09dupfE/dn7P5UDIEcFUUJEZ+2F1T6zkQ/y7/L+5FUEqQs0Fuu6+A3fVxX0el4LC86+J4hCATScRh97iuIQTlNGwSPvuBHMFqTRLHtL5lBo+Y5zytaDfio92IY28uzn3XMxZDzea7UYG2iup/FMal+d+712unv3crt55x7P25q/jVsYxTd6/i7Q10KJ0O1pJlYgmSIs6yo1oY0KVGWaaIz1FHMo2/8xdrpxfoa0Qf+iP5IEMfZGyUkwS9PoDUeeIjBV75FgkOCi3QcOi1NN0hoeCmBm+I7ho0fr6d31Q8/wuBrDxKaAM/3aLcELR+aASx0FQsLFknlugq/4eEFHo7jIGWGuMze4wKlIW0GrHwr+5qcmLNmoS2pfNbbfwq5se28vZf3ez/lrl6Zp3S9JHIrNgCoBt6IzZ75O0KIGy5vtXaXuVHj4ktQ2Y/2UD7MPhsX8TphZX+/1zkHyQeNWX6V7crtRfZqYJj8ruqqmlWfyYloOw/eZPlzrc92301eZhvv4Y712ancNteueSPZYaKdceysQtso6tP87gnlPf9OUATs1JlyaFLDeJzaLdI8+ea/VT/9o48Q3v9dTBCg7ryT5m11gNHoRI9kpHFcByeNcHtn8J59jObpxwl6J5DhAEcIWp2A5UWXTsch8CVuZsRwfQtflUohHRtMsqCgKIXMoKxCZQugCnw1XwzVlPBtoa2T8NYZ3jlh6s+noqxN0VS2fSD77fNZKVN9j7Z7p2aVge36fNkWdt9mI2Gbflhvp5ke9soCs8h4UqGc2ICgeZYTBy/PUtH1WFpwWAgSbmhtcDRYZ6ER02kZZLvD8LHjtXoPrruNUWxTuI5HCWlq48HoLK1wVbEusxmY2d73ifaYuid2j6dR9AEhat+U5Wc9p2oZmH5mk+Vnldn7wnn7e6/e03b7s8pP3F+WAlNkL0W1b5UayOy65/2pfGerBrMK5URao5hS1qjhBi5uli1nYalBs+XQaUmW2uAqQxSB+USdenLyhpez6S4RR4mlJ6VpQefLNcl6NouyvnXlaWYjU3veZvIZz2pLZpTZj0J04Z9rdRzcbkycopwV48Je6it2+JvK35PtslNb7nbOyTpsd86d5tW9XmPW/exk2MjMSdl/RZ8z+fhVFqw5JDQ2U0+qbVyYWHNi9Q5O3/4DtdOr9/028SBGC5fYeGgc3Lf+GOK6Y7VyW7/5XiLTwEgXoQSuAwvNmIVGTNNNcZVh9Kq/RHyoDm5O3/9+klQiMLS8hKVOQrdp8F2B6zo02x5+y8NxFI5SKNfJjJKyeJeVKmmk1QxZtSEVKs6EbJvqs0yMw9lnde6eMW8XDb5rv9mub07Knl6GuTzPxRhzyhjzHwCvwMZ2lMBfAx4SQvxvQoiFy1rBHWRu1Lj4Mq7se3sonwf7HF3E6/iV/f1e5/pdttdsf+heB9TzKXc+3+3nOnstd+7fnb9NfQ/1nlIES0WjxrHdNjLTOUySxpAHQ67yw6uexyLehtY2W0SW9jJNEpv6NUmIwpjxMGbQi3n6tr/E8EDdiDx87x+yli6w6R3iwH//n0xV43v/9ktoLyANQ+L1DeKnHoPnnsA//X1aw1MsiC1WuykrS4KVJcniokOr7eAFTpae0cPzXOvhUaLg5UpZoTOIjJ8rZM2QARRojarncbYhaVuNfvtnsN25Jk4x5cHe6ZyzSu1qLJn83u5XM3jUFNtaPfdy7smDJi+XtXUlBW81tknuWVd5LARHEQQOfmCf9VLX0PYiFuLTLI6foy1HuCuLnH28D0k968lTr31XRjnRJHlQ0Kz/UnmXTH7P5/WC76FtZvWBncpve84LVX5WFS9xXab6VtkPJ40DU/aW7Lgq5SQ3agglMiVIWYNG08MPHDpdl27XwfWUTUmpIT1zhsb9X66d+rE73kySxSUwFcNtrkxWx+SyguXOzjQmURtft22bmd+f23O9VH1sdvaT3f7e7Tp7OeZCXGN/59x+rN5vPfZXvjSiman5usgCliEq86xONmtZQpxlfBqNYr71+r9RO69aO8PwQx/j7DBgK/IZpi5aeTR+qV4u/ouv0f/GQ8TGQQiJp1La7oiOP2KxMabpJ3i+oP/2OlpD/tmnCZ87iTAaTyW0vJTFlmahA92OQ7vj0u341rgRODiuzXbluPY9Rgib+rVmzMgcElVHQfG5XfvuNH9Pjk+z5m1RFJvdB86lL169Mo+pcenEGPOAMeYngJ/ABgQNgP8SeEwI8feEEO5lreAMuVKMGi7gGWMevtwVuQjSq+zvherRyj73QlU51+u0Kvv7uo4x5pmdNuDErieZy55kaqidXEzUAntdQDHTm2Gv15lRZvJ82XdFLDdKj6TRpQJIliGijLButzTRpLEuPEZaG0ah5tEfrC9quP9+Nr71JAPdQLz4pTjX1cO9bH33WYbH14nHCUkYEw9iopEhThRuMqSdbrLgDAiclMDVtBvQaUmaTacIJua4CsexASZzpIWsBAOtUXemHuhkRgsmFPmi2AyZbYjasxTrsMszoZfxVPKUvhTtdR4nLQO6VQwXBfUngxEDpfctR4JIkS1oHVxX0W4pmoGg7SYckBu443Wc/gYqGkKjzfGP1ll2RkieevndxFFKFNpkUlVkUYEw0hq0zt6DaTj3tGyvsO76zGe8x1eiXM5godtTTioe/sKwSNmPKFE/BVpDKRzPRSlpDRodB981NHxB4AuSFMaRRvzpHyPSMl544vg8dsPrSOMUY2z6aKOzsb7wgFPSlybqnyuc9R/KrUR8nH97na/MmrvOZ7sY57yc/XEnmUU/KT739HxnDQjb9xv7dwWPMQnaKfon5XyttUVVauu4SOPUpkHXhjNHXsipm19Vu1zj/f+OjXXNKHYIY0mcgvuOn0QeWK2VG/2b37FZx4xGiRRXJDikKKlpuSkN3zB667vRfglYFmmC+9E/INUmi0lj6+p5knZL4PsKxxV4vsRruCjlFA4Jm9ZblHOKFHU6SjY+5HTG/UvVeLr3/na55uu5PL/FGPMp4OXAfwicBJaB3wC+J4T4uctYtSm5IowaxpjUGJPuXvLqE2PMGDiT/bljkE0hxBKlweHpncrOkGpw0N2CeVZxevu9zlwutxTWgIuz+Jo5ce55Lt2+oKHKbRf1RVm1XBXKSmm4SFNdZERJtY2rEUUJcZyQxilPvPjHGXfriyH9nvewHnfYSNq0/7P/YKpOj/32F0nGEfFGj7TXRw43cJM+gatpLihWllIOLwxZbIUEToIUGqkkfuDieSrj0mdIjCKWxiRPtvS+VBX42Y20jVFoly/3HTDuAnWd81UAqrSAmY6s7Y7aF7S8FFnxupWQ4gyxISWe7xA0HAJfsLoIK62YwAxpn30Cc/JZwn7IGouMHvx+7bxbx+6gHxriOCVJUpuKMzfITaE0MkWsBtkuy1HxqJvaZ10J2e2Zm8q/K1Vme9ovn9QpTBVjW045EbL8GwqDmMxQPq5nUwAHgUOrqTi4omg3Ja4rSY0kSQSNz32sds0nb3odoQwKdE89K1R1q6Atao90hrHjsj/7SQ14VhFzQTZzgc5TnVOvVMNGVUzGDynHlvqaYPsppmIomzndmJoToWjj7Py13wrvBJW+mTkjEou01Kk19MZRwgNvqKMwnLMnEZ/8KFsjxSiUmDTF8wSdX/wrtXLJ579A8sjjCKNxifFVTODEeCrFcSDwJP5Kl/Gb3lE7zv3YBzBJhJIC17FBeq0hQ7HQdei0HXzfQSmB8jIKilQVw/i0M8LADIDFLNroTnPa3sfxieLPe5nH1Lg8YozRxph/jc2Y+T9hUf43Ae8RQtxzOetWlSvCqPE8kAezzxcIIXbKOHPnjGP2KtWodXduW6r+ewI8us/rzOVKkm08TXm0/HOSGWP8LK8Y1vkxq1ITXq+sYM1zqKfK1RTAPF1cRkHRSWK32NJP0timj4vHMeEwYjyO6YeaR1/7s7WaqC99jlPffJZTmz69V7wJubRY+33j/icxUqG6HZxuQLOtaKsRi/osq+GzHO4/xJHw+9xgnuaQe5YVf0yzIQgaWTDJhoPnVbi42ac1dpRenhK2WmnjnYwbuzyPCyXnq/Scq0I6ed39KxHbwXm3KZ0tMnMlWkgb08UGfpNWIXUVnqvotBSdIGXFH3DUO8Wys4Uz7jHa6DNcG/DMpx6ApJ6Z+/HXWOpJHMakcWKNGjqHZFsPfEGnMhMKQ/VdLewZ5TtStNhemqjyjk16669EudgGjf3277yZpvnvdSVRWDdt4cG1GU8szaTZ9llYdGk1JUvthIVmhKsStvqG/kPfp/HYA7Vrfu+WHyaJ44JiZ3QJ5c+NX3UDsH2oJYInp2Iw89lfTKmO12V9deapn9g3uuyH5sKYW4y5ACrJNu9G9b6q9zY1VxXz3KWVSedD1Qlg5+fdWqbsR3UjBbW+U45TmeEkQ2FUKaI6TTFpThFNSbPPJEnsPB3aefqZA3dx8vqX1WrRfN+/5uypkLVNQ28giWJB62ffjuh2auWi3/odjBBoFKkWKClpuJp2kLDcGLHUDFE/U5//5doZ4s99gX6oGMUKpKLhC5Y7cHAx5dCyYXVR0OlY2onne7iBg+M6FsWnVEFBAVPE46kaLWqxNCZppBdKdqSfzGUul06MMQNjzP8A3A78DnakeHWlyOLlqFcuc6PGpZE8l1ULeNUO5X6ksv/lbUvNlnspA4T+yHaFhBAekEdsutcYs5fgpXO5gkVABmkvvU0CphZd57PwEjmyoqoo5Qvr2vf5AlxTLpooF0xVz46ueNty2okuvZLaZPE0Cu+lPU+O1rBcXgvtj8Yx8TjhkZfeTRyU7CthDPJ9/47RMCEaRbh/fQIpZwzPfORb+KtLtA4u01ju0Frw6Yo+C8Pn6K49gXv6WThxnGb/NEtssNBI8VyB54LnKTxfZZx5iZCl97aaOrQeHkIUbTq1SNmzkndt0E8u+nUERSyT6oJTVPjSylEoRxI0XYKmQ9M3HGoOWRTrLEQnWBw8heekJE6TTe8gvT/8k9o1tJA8dMsbiePY8siz9IBpkmaKatmHqSh3k573MjtKXc/K48/YrlGWqRsJzfQ5KfvFlYSGmJSLqRCeN50p57QzbfCQIqOcZP3HCxzaHY/Alyx0JAcWDYFKkSQkkQ1o7H76I7VLjBqLPHnopcRxXNBOSoRPvU+UzzSvS+4h16WHvPLsL4RMeuun9uvNVTRSMSdV982M7y/As7/g/ac6l1LRTysGmVlz7mWntOxpfp51YHWunjpJeW5sf9S5gaOgmpRzcZrF1zBZgOQ0tsYNnaakqXVC3P+qX6hd3T/zHN6ffoTxOGE41gxCiW60afzVetay6JOfwjzzLBpJikeKNSq23IhuENJUY/zbbyJ50ctrxzkf/gP6oUeUuqRa4ClDK4hZaCS03Jh2Q9NtSRoNF8exKZmdLGhoGai6nM/Leb0M+L1/mdNPzlW0ufDbXPYvxpjnjDG/iI2j+LnKT/9cCPEHQogXX456zY0al0Y+VNn/pVkFhB0d83xWG9Q7ya5ijOkBn8n+/DEhxHYUlHcD3Wz/j/ZzjblcwTJLaaksuMrF44Ufwevw+nxBNF2fenWmF3zFmqtiHKlDbO0iqoi1kWjSKKksmlL62uORl7+zdt3mn32M9SfOshm68Pa3I1r1hD+nv/QwLB/CPXodsrtAmhiGJ86y+Y0HOfMnX2D85S8SP/Qd4hMnSMYJzVaD5WWPTtclCBSua5EZru+gXKeMr1GN4zAJTa1C2/OyeSNNNdzMVq/9dbXST3K56Dp3dv58gYoQNvONo3B9G/g1CBRLiy4HuoZWssnyM1+n+fC9OFtnUJ023HQ7484B9KOP1U69dug24kQTjWKSKCGNNWmcoNO05m3P+6/J+/dUG8xuhFnBWGv0glkKi5l17JUnVyb9JN8Xtf1yyzIbORLlSJTrEDQ8GoFHp+Ny/TGbwrXZVHiewGgYjjTHT0Qs//nHa9d75OYfIk4NJjVZgFCdGSmmjV81b3qJ56l9Zn9cEKm+21WKx0y6xyypN+bu++cgF6TvTJ5jr+ecLDerXSrtc7ENG5NtUZ87q3Pz1JH14ybm6fxcNaMW+TRdOi1MriGmJdISAyYzbuhYkyQpzxx6EaeOvLB2zeU/+k3W1hI2R4rNKGBt1IKf/QVoVOZqrRn99nuItWKU+sSpg0hTGqbPKmdYddbpqgH6ne+qndv75j2MH32K3lAQRQZpQpacHkdaW6y2x3QCG2i01QlodgL8IA8aXSIwZYa2lBWHRN7Ktu3386TK4+yxc/rJfmROP7myxBhzvzHmzcBPAd/D2hXeDXxDCPE+IcRdl7I+c6PGJRBjzD3AF7M/f0UI8foZxf4LIH/4/z9jTFz9UQjxi0IIk23/cJtL/aPs0wH+TyGEmjjHKvC/ZX9uYPMQz+UalO3mwAu9rpoFh9z+EjNcRrlDqILW0MZU4Mvlp86NGdmWJAlJYmkoSZRaiOs44tsvejuJKhMAyTTB/8j7eHbD5eSwg3l3HaJqkpTH//BrpO0uqQpI8BhvhPSeXufsfY+yfv9jRA88hPvU4ywMjnO0ucmxlYTrDhgOrQgWuw6tlovnuwSBhxfkxo0s5aNSVgmSZdR0UVkkSVn5rpr6NZeZc+6VMRHvR6moKUkTveS8++WMalSzWRT0E2GybCeWHuR6Lp7n0Gopuh3J6mLK0fYmK2oTeepZ+g8+zNZTp9gQKxxffDFr9z6BSOvhn77zorcXtJM0TdE6rcPV8yB1VWTSxA3nakKdcrKHdjGz38ErpHvsKpeHfrK9QlFHyMwwHGaGSikljsoCy3oOjY7PwpLLQkdyaDHmQDfG9wwbA8mpTclm3yDv/wsa6/U0wA/d9EOZUVbXY7BoU7L2aq7EbWhI1X5wnk06hSy4FCiDc5QrzSi2m5TG+e0MVhdOZgUWrToUtkduTBjOdFm2SjeqUuny+brIgJJRUiapKEmckMQpX3tFHTHZOPMMzmc+wfHThqdPKZ4943BKryB+6qdr5UYf+gRm7SyxEWgjLVrDGJQICWTEgj+m+5Yfwiws1Y7zP/Je+iMYjARhCGkqkErTCmC5azi0LFldURxY9VheDWh3XKQjcT3XpvtWlTgblfnbojVsa+/36eytVAGpnMtcrmgxxnwUeAnwd7BxJCXws8C3hRC/d6nqMTdqXDr5z7CBVRzgU0KI/0YI8QNCiDcKIf4V8OtZuYexUWX3LcaYzwLvy/58J/BpIcQ7hRCvFkL8EvBVIM97+V8bY9bP9WbmcmXL1BxYWfjV0BHnuZA6dzjk9IIrr0/hqSwilmdcbJNnQckXhRrQGHQG9deQGgb+Io++8K210x/40odJNgecHLY48e7/FNx61uMTf/QlotQhGkSMzw4Y91KiASShxBgXt9Wm6aQs6jVW1RqLwZCu6rHUDFnqatodhesrlCtxXQfXd3GzoGNS5Lnuy1SQ5HDWYmEky0+RIzvklIEj19NFBeWxPYF3Qimr/ssXZTsdfqGlaqfJI8tXgqqe6zknDUFCiiIqvSyQMqCUzLxvEsdzrEGj4RA0Pdpth8OLKYfbIw6666yMnsAZbzIcCdZY5vioy/HkIMMP1j3tWigevvmHiaMk45XbvonJvJZFv66jk6bQFRMO75mUk22bQFzVnrwL7sGunG6WUjB9udkZT3JEjxTCKjVKohwH5Ti4rovjugQNj043oNHwWFp0OXLA0PYTfJWgk5TeyOHUmuDk6ZTDX/tk7apr3WMc79xYxiTIvd56UtGtGrwqiK6JPnQ+0PSqF75opLwfX+FyOeJZ7FtqVBUQe0G6XCzJDRQ50mt/B01sdeoo5P2oPldrnRntsrTFTx1+GacO3F67ws1/+u/YWIs5u5ay2dMMBwnjt/9lcMowdCaMGL33D1FopEiRGLR0SIWPVh5aubSXXNx31gOGtj77Ycx4CBgirRgkLrEOCI2PdAM6bYflBUWnCe2mpN22MbNkgcay6A2RZUdBijJmVmWu2S0byuT8PXvyrQ1g5Zy9a/DR54kYuKDpXK+C4eNqEWOTfvxz4AVYnTbE2hl+/lLVYW7UuERijLkf+DlgC5ty9f8LfAX4LJCnZXgYuDujkpyr/DLwiWz/jcCHsfE2fgu4Fev/+X8bY/7VeVxjLlebzIDElgEKr6xRvbo4zxf6hYcyX/hnf+scum1sQMYkSUiimG+8+KfQohzenHDIwqc/QH8I6yOP4Zt/qnZNMwo584l78JdatI50WTjWZvnWBa5/zRGuv6vFsesF1x9NuPnQkBc4T3Jb/BDX6WdYTs/S0GM816XdCWi2LFLDcbJYDZ6yCyIlizSiNpbDdJT0QikXFUWsoqjnSlZ9MTRNTdj278lDLsDCaL984MIYw36NKnvIeFJpm2p7SUfZdHyy3Hdch6DhEwQu3QWflQVFV4y4bvQo1299m1W1yeqKQ/cFN+CsHOC0dz1PbzTxHqvHbz5z4AUZL1eXfPKcd34eXthZlJNdmueqlIviaZ9out0MZ7mntfp+5f1TVhBUUogiGLByHbyGS9D0aHVcjh5tsLzk0mw6dBoGgWY0NjxzImV9I2WwNuDodz5Xu+5DN/1QEZ+Agm6iJ/rKNKqkJBKYWcXOS2qGjasAAXHVoDSulnpOSG5Uq49hk8byannK8rqkpOT7JjWFYeO+l9VjZrTPPs3K1z5Fr59wei3hzJZgq3M9vKXuoBi974O04g0CJ0EpQSI9hrJLJBtIpWg4MQd+4S21NleDLRpf+BNC7RKmHr2owUbUIsZDOYJOQ3P9asjRlYSldkrDE3iBR9D0LVrDsWgN5SiUsnNIjsSkcE7k7TE7E8rs+XsPMjHdTxk55jKXK0yMMT1jzH+NTUrxvt3KX0iZGzUuoWTwnJcC/xhrwBhiaSD3Af8AeIUx5ryykRhjRsaYu4G/BnwaOIUNIPo08B7gh4wx//B8rjGXq1S2UawuqKNoEqa6Lcy1vliqlqstoLKPMoI+BZKjlimgQklJk5SNYJXHb/mh2hWPfeH9rJ/sc+pMzCPv/HsYWR/+nvr9L6OXDyKvu4HG7TfSfdltLLziBSy/6DqWjrXoOAP8049jvvYFuP/PCR6+l+6p77GcnOZAK2JhwWVx0ae74NNq5zQUheu7OJ6LchWy8PZkhg0lS8VrhoEDKBdM+9Rz9yI1Re8czrnfRZXJr7PNYTv3xYnF4Ixz5PBga9iopG9VmTFJCFzPwXEVfkPR6rh025JDnZgltYU6+RTJt+/HnHgOllcZ3/VawhvuoE+L9GMfRug69eTbL7zb9sNEFzER0DrLEFDp18Ud1FQASg98WWi/7+Peva1XnlyMRflUewhAmLLb7EA5Kctn+7JwqxaKjOPa1K1B06Oz4LHQcTi4pDmwCI1AshW5nO059IawuT5m7eyYzre+iB/2a5d58Po3lIGRC3pScROVymx7o+dFOZk2uF2d/eiaUOxmGEEvOgJlu7l6qtBUVSv7mYGtgvAp/SamgtIo415pbZGVjx96OaeWb6md+wWf+21660M2NmJOr2ueWxOc+IlfrF9/c4vwgx/CZ4xrIrQWDLVLpF1SA66JWLquSeP1r6gd1/3k7yOlJExdtkKfjYHDYCxJE01Dhaz4WxxqDzm6FHFgWdBdcOl0fTqLAX7D0lGU6yBdVQYPFWUgUaAyRYmJjV3e0X1M7pM+jX3aSK52meGfO+9tLhdHjDFPGWP+KvC6S3XNS27UEELcJIT4y0KIfyCE+CdCiH8uhPhHQoi/K4T4QWGzc1yzYox50hjznxtj7jDGtIwxS8aY1xhjft0YM9zhuH9njBHZ9g/3cJ33GGPeaow5ZIzxjTE3GGP+mjHmKxf0huZy9cpFoqTYk5TbzjDXeuT16uKqulCq1jPnmQtEid7IFk9oCvj2/S9+V+1K/nCT1S99iH4vYmBceq/84drvyUaf43/xfaL2KvrgDYgj1+MdPoxsNEliw+j0FsMnnqP/4GNsPPQUG4+fYvzcabyt03TUiFZD0mhAq6lothyCpqWgSClswLEs6FiueNvFUPa3FEWKyALOKkSxJtpJzoeSUvP8zIK47nHhVAtYOOOYWoDU3e6lWjnK9qjVeZJyUmmrIjgrNjCoUnYRmiujeWDQZtNleUGyumRY8gcsDZ6G40+zdXyd9YFkTSyzvngLz3k3s2VarP5p3eGQCsUjN/2g5YznQUHTjF9O5X2Cog9X34PJBdV+KCf1VhJXqz4KXMDxJpPzoZzkB+Uw8/xTKZVB0a2RstkJCJo+Cwseh1Yli42UdpAgBQxCjzNbDs+dhihMGPVDrv9GnXryzIE72WyslIZabWpj29QDNeXYN0U5OZ/mq9JMrtI+dFXQT/YgAqYoPxd8Xp4lk3P1nq5THFAzjmQVLTZRKVujoxiNNnDvi99dO+vi2Sc4+O3PEYUJYajZ7MGJhdsYv6Y+V2/+9h9BGBXIOJMKSFNUGtstiVh+91tqx3iPPEDw6LcwGKIIwtigkwTSEJmG+DJCkuBIQ7dtWOjYQOC+pwiaLl7g27FAVhEbZWYUSxfdXzaUwhZSODL2b52YnL+fTwaOuVwdYoy571Jdy9m9yIUTIcTTwNFdio2FEH8M/JYx5hO7lJ3LXOZyrjJj8WKMASEuDix8pkxfow5ntXUUwla3+CRXAqVdM2XmWa01BhBacHrxRp687pXc+MzXi/Pd9ufv4/FX/TRbjuDBd/0ar73v84jKav7pf/YhxBvfQjNdo+VolD8ELyWJQ4anQnqPnGTriTOknS3M0Rj1ggWaxxyCIwEdmTIYwvqmQSeCcOyQNoUNkhYnBQw3V1y01gg0GBuBWxiDEaXabzKDgzHGKuk1DbhsqMpuRTHJd0T1y5ntPfurGV9WT1l8ZYrydi0ltz3nuciufTBvL1EGXC1QGtkCT2aLT+Uo/EaA5yuabZ+lRZ+FIOTG5ga3N09Au49yNsERDIXLmnMdp6MjbIwMz56Juf6Zh2qXPn3gNquDpKaEWBeGOV08rpLmxY6K474pJ7WD91f8SpELNs5MGr32ZDwTpUGwYswoKV+Z8VGpglPv+p7NdNJ0WTnYZGlB0W4mrC6EICSDoeL4aUGvb+j3E9bOjhEbaxx74t7a9b97ww+WEP2KdatUYKHaWWpGw/LLC6PAXAtIh6tNtmvz/PuJuTmfly+FTMVwmqhHPgdnJajOQPn7XJuTJqXo74bHj72as4vXs7LxdPHzi7/6u3z6zh8mSTVpCgjJs2/5W9x67xeKMvFzp9j4zF/Q+Mk3AwpXGmxUfIXGIRVNWm95PerwAdITp4vjOp94D+a/+B/px4pxLFAofMfFSINRAa6v8I1LYHxWD7g0W5peT2DSlJHnIISdz01k0KlEGtDSZGsIWRgJBaI0Tu5oL5ykU56D4WqioYWpG3VrY8Y18KrbVdOFu5ELea65XH651EiNY+zsAxRAA3gX8FEhxL3iMuW6nctcrjmZtSi6CN6fKVTGni9RXdBT80gWvPMsNWYO187h2zpTKnWRfSIl1Slfe9FP167Q2jrJ4fs/xbAfsi4X2Lj1FbXf0+MneebeZ1hLF+iZLrHjo4VEthu4i238gwu0jnToHmqztJCyItc4lDzHDdHD3Og+x03BSW5ob3KwE7O8qGg0HVotn2bLx2u4uL5N+eq4FsYuM5SGEJaKUtJQqvui8AYVcAR5GTwyOyEw9gyznZZ9eSBrymvp5qp6uQqURhbHRMgsfavr4HiSZsuj3VKsdDQHghGd4Qm6z36T5fA4ncNdnBe9FHP0Fnppi6dOKY5vOCx86WNIo2tV+eZdd5OmlaC1hbeyuoo1pYI9CZKZr6XOy6CxY7/JukNhh9sH5STPblLGY5FIR+F4Ll7Dpd316XRcVhclB5ah1ZKEiUNvKBiMDRsbMadOR2xuJYTjiOse+ixKJ8WlEuny8JHXZONbBa5Tq9M292Yq4+s5NN0UteEa6ITXBP1khlwK/Mnu1LXJtp0sb6bm69xIZ4yxSIq8z1UMv5aWkqKN4Z4X/eXaGVfOPM7qg19kNIjp90I21kOeOvBi+jfXVYG13/wD+pGH0BpfDgnkGKU0Wnn0RZux06H9s2+vHSM/80kWx6doOylSCFIchknARtRkLWwwMk2k67HQFhxZjDm8nHJsFZaXHJptB7/pErQ8PD+nk9q5XKqSkiKzTCm1rGaT8S927bLn0ad3mKOvhXfFcOGChBozT+l6rcmlNmp8A5tG9O9jU728EfgR4G3Afwj8S+BBylfyVcA9Qoi3zDrZXOYylwssF2DSm/KS7vmUe0MRgCjQ0kUg0dw7Dpm3xAYle271Lk4cuKN29F1/8V7iKCWODQ/89H81tUyL/49/wnAsGaYOqXTBU6imS/uGLisvPsihVx3h0MtWOPLSZa6/zeG67hqH9DMsjp+jOThBJzrLitNnwU8IAg/XV3i+QxDYtK+O5yAcC2l33AqUNVOmiswgWaaU4lPsLcI6sAsl5XJN4nXqxWzJDBMzKCfFAk1WKTz54pFKW4kCnWENGZZy4gUejaZHt+uwvOyx3EpY1SfpnH0cefIZTH8LtbiEvvF2tg7fSc9ZZqtvWFtPOPaFD9RqmUrFI9e91ho0tEFXdERjqHhct1ccJttg30FXc3zM5Xyk5ynnEztgksc+i+I0SWfaE+VEiIJqohwbVNYPPJotn0bDo9NxObiqWOxoum3wXMkw8VkfeJw4IxkOU/q9kMHWiDTVvOB7n6vV+7GjryD0mtSCgs5qgktCObn6qRvXCv1kUupd9+K84FNz9TZ9bqcz7PRnMVebikEtT1eswWh45NhrWeseqx31snveQxonhOOE0ShmNE556k1/vVZGP/Qwgy/eRxKl+DrCIUaalFQLYu2SaofOu38SHFUeFIZ4f/Ihml6E5wqUI9EohrHPIG4QJgpjoOElLLUiOl5I049Z7Ai6HR8/sCnAvcDF9cq07UrJwoguM6eEHWcyOko2QVXnLlF1TJT2+cp2uefruczl6pNLSj8xxrxyL+WEEHdiU6D+ChAAHxBC3GWMee5i1m8uc3neyyWEuW4ntctnONaah2FGHQ3Gwi6NwejsGGPVya+/+F287XP/a1F26ewTHPzeVzh1xxtI20fpHb2d7nMPl+d68gkGz5yhc8cS2j+EaLYR4wFia52g3aK51C49UekYs34cffY4DecJImeFkXcU6bp4zRVWPI8wTBkOEzCaJNF4votObbA0g82UIQC0QAiDTgGhK87+Cu+m0i47eV1mUVKEmKah1PWB/SkHJTVo//2larSYPr5UVmfFR5g+T6aoVpAuyrGeM+koPM/DdW1gx4VuQKcJh5cSblwe4J8NaQxOEJ88SbJ6Hf2DR9nsvoiNnuL4KGBzSxP2Q7on6vGbT67choUbp2SawHnz3/fVjhWlvAo3vhoVvPPxHu7H+7kfyokQNv2vdKRFaPgufuCyuNKks+DQbBoOLaW4rmEwlpzeUPQGkq1+wpkzIeEoJooSglNPcfj092r1ePC6H0RXYljUAjTm3DrmlJO5VORSzssTaKD9xUGa7prTR9cNmVoI7n3Ru/jxr/yz4rsDpx/h0GP3cPLW1yGEYDSQfP+mN3DTgetpni6pKuPfeQ/xD7yUPBW6MQqNxCAxGJzVFTpv+gF6n/pycUzy4Y/g/ewv0nYNWgtSI4g0JKHCV9B0EwI5JnBjXCMRRtEbKhptD+E4jIcJRmviyBpAjDYkZNQbBEZj6ShG2HVJbnjeaWjO3mtT/bto2zqZx0wWep7JhbbFXoVT5lx2kCsy+4kx5iFjzH8M/CjQw6ZA/bXLWqm5zGUu5yYVWOruGVFme7BneXRrUfvz8+s8+rrJaAGGxw6/nLML19WOtWiNhNEw5us/8fenok6M/um/5HiyynHnKBuN69jq3kS4ehPp4RuQh44gux2E75PGKeGZNfrfe5TNhx4jfvRRnOceY3F8kiPeOiuLcGBZcmBZ0e16tDsejms9PV7g4bgujuvYgJaOQmQenxKJoIqsHVXPdKGITW3soPBMojUmER/7WzTvBc5afWaTBhT7tyg+6y6riSqXF61dv7gPOeFtl6KIg6BcSdB0aQQO3TasdhOWnB6Hkqc4rE7T6jik3WWiYIGtsMlTg0WOjxfpxw6DQcShr35oinryjTvvLvtl5Z7yKha13INh5rxl+rFOyZWaIWW7/lPrN9vVfZt7nr1IrfetIqCeLD2ok5QToSxtyfUdgpZLs+3R7SqWlxTtlgMI4lgTRoaNrZRTZxI2eynROCYchSRRwgse+bNaLUZem8cPvQSKNK51qtLMPnKelJPppri2DBrXAqR+llyON3bWu7azodTU37cJVEbN2FvTRsvAoQbDQ9e9jo32odqZX37fe4nCiCiMGY9CRiPNI6/7uVoZ+bV7OPOtpzgTNuinDULjoZEokeKIBCmh+/PvqB2jn3yazne+zKI/ZCEY03BiFJoohiSFKBHEicQYg5KCVlOytCA5sCRY7DosL7t0uh6NllcEnnY8B+U6FrXhOAipQE3QSicQhbV5W4r6uz01L89RG3OZy17kijRq5GKM+XPgf8C+yXdf5urMZS7XvlzMBWIF0jo7I8okRMNMH1fAtXeiMpQLKa01Rgi+PhFb4/Dx77Dy9LfQqebk6h0MFuvxi53vfJP1kxEbyRJbusMgbTCQC4TeAmmjTWIU40HMcH3I4OyA/qk+o7NDxqGlvQRpn64zYrGZ0vZj2kFKpyVoNRV+4OI4Csex2TicDOaec/llZthQUpX0EWvJ4FwirE+0zMQ3YsIuMjt7yqx1bUH9mfh9uzVwCcnNI7XPKkShdE6mtS2oJdtRTvJMJ0rhODaGhus5BA2PZtuls+jRbUsO+j2O6BMsj46zGJ9hsSvxjx0lXL2ZnrvCet/h5Dr0+ppoHHPzvR+qVTGVDo8efbXNtpNTnbIAtcXavWzwss130VIuBMpiZhT8qhJ/ha2Lt8uMVA9WOH0vBfVmhpSH5oa7Mmhs3leqhowcMi6z99CmbXVwfQ+/4eP7Pu22z/KyS7ejWGgrWk1JYhwGocPZDRiOEnr9kK2NEXEcE0cJ8Tjijsc/X6vbQ9e9jlSounF3sk0mjbe5t/ccu8eUUfgac01ejeikvUhdr700L+1uqIxZR1ipeilMkdRsyrhRmZuL77XGSMW9L3xX7cyHTz3EkWe+SRqnJIlFOT5211sIW0u1cvHvvY9e1GIYB4xij1RLpEhxVYKSKcEPvAL31htqxyQf/CAdP8SXIYGMcEVSyd4siHGIjE8kPFLp0Wg6dDuKVkvQCASttkujYSkoOUXNUZZGKkQZzymPr1FFgJWG/HOT3ebqa11sWNYLu83l2pEr2qiRSY4bu27HUnOZy1zOXwpKwWW5eLFVs0hMlSoW6BOftX0KDdMYw/dueD295krtPC+69/3EcUKSpNz/xv+49psA3H/6v3Ny2Oa50RJn4gWGiUdqJNJxkJ0uTreL22rgOBLXg44XsuAOWGqOOXjAcN3BhFsXz3JDp8dqc0TLi22gyrZHs+3jN2zgypy/77jW0JEjDVBYL4/KvD3SfhapXysByPay1ZTbqbudRnBUF05y5rXkzN/r+9WAp3m/qi/EZtbV/rDt9YqFYoZuEUqiXKfIVOEGLq6n8BserY5Po+GwvCA5umxoyYj25tO4zzyE7vcIG4uMbn4p4+WjnGaV0xuKwdCwtZUQDccsnn681lonVm/DCFFbnJdxXSY8k/uQC5YFZMIwNLVRaedZKI9LuO1Uj1n1LREW7LCOn+xvxbfFfpkph8KQKKRAOU6G7nHwfQ/Pd+guBbS7Ps2m4vAKdJsaKaAfKjaHisEYzpyJGQ2sMWM8jEmTlAOnvsdi/2StZt+5/od2f4TVSptKvc+3e1wjMTSel3IZn9uEbbkm1fm3HoC2ckztgBpYI5+yMdrw4A1vYLN1oHb+V3z9fTZldpwSjmPGRvHIa+qBRf0vfJq1x85yqu/TGymSOMUlQpEiMGghaf+Vd9aOGX32y7ROf58Fp0cgQxypUY7ACEmKQ6w9hmmT1PgoqQg8OLCQcGwlZWVB0/DJEFw+fsNFObKS+lkVxtJt5+nJ72DmGD3bXrHzXL3rOmAuc7mG5WowauThi0eXtRZzmcvzSC70GurcM6JkxQsvY3lskRHF5FeoeH+qC61Uk6L4+p31SOg3PHkPnROPEYUJT9z4OkbNugcouOfznHh2yHpPcGbgczZqs2GW6HnLpI02LK/gHDlE44YjdG45RveGFVYOBqwGI1ai46yefYDFjUdYHX2fI+ZZDgV9jnRjWm1Fq+3S6fo0mh6Npp9l53BxPDdTzJ1C2VIVQ4cAG4is8DLXkRa1P4qNc1CIdtdIpz1FO28lzWSiPiLrH7PqmHvVKwu3TOO1Rg2ytlAZ0iULwCqlxAusUtpoKpYWJIutlIONDQ4Fm7gmJNocEo5S+mmD496NnPKuZ0iD3mbEoJcQRSk33z+d9eRrd9yd9ee6p73Kda7f3gVSSi+U7MXwcQVsE7avKdl5jJo4uHq/FaqSkMKmTs4z5SiB41oEld9waLR8Wi2HxQVFpy3xHYMUGm00m304eUazsaUJxzGjfkg4tgYNnaTc/uif1Wq01jrEiaWbEfsZ/LLqX6n0oStBni+Kmpkwmmo9bfA/72vMpJ9U/5ps68nyM+gos65j8mPL4KGpUNx3Z934cOzEdzj07APEcUwSJ0TjmAdf+DYSNyhrpFOS3/0d1rfgTE+xNXIYxg4xigQHbRSNn/pxRKM8hiSl/0efIBAxHXfMgj+m6SQELggpibRDP1KEiSQ1At9J6PghC42IAwspq4vCZkRpubQ6Ac2WhxfYGDyu46BcWRo3lEIqkWUvs+OOLAwb2by2DR1lb3PHfq3JV7doc+G3uVw7ckUYNYQQvyuEeFgI8TEhxL8UQvyGEOJfCSG+Dvz32NHvjy9zNecyl2tfLtICUUxOpnu+zIyCYuJzCq5d8QBVYh48cOubGHntWtmX3v8BtNYkacq33vC36pcxmqXf/HVGoSFODSM8hqpN1FgkbS6gm13k0ir+0cO0jh2ifXCB5mJAK9C0wrM0N54hOPM06uxJ5OY6nWSTthfTbrkEvsTzJc2mix9kvFxHoRyJ67lZ5gWnFindKl1lClhbyRzBsDslRRQGAlEodOez1tlT5ortfs6VzFzBrNxPUcfJAya8XPlxUlh0iMooPY7n2MCOjSwOQlux0kk41B6y4m2xyBk6sgeex8BdYk0c4Ey4yHO9Jmf7LuMwYTiMiKOE27/18VotEunw/etenVFOypustcOU/W42/aREE8x6CM+Pldb5ZT8p9qga2YSofV2jnFTfFyFslpw8c4FyHFzXwfU8vMAjaHh0uzbbSaft0G1JpBIkKWz1DINBQq+fsLE+ZjxOiKOYeByj0xTiiNue/PNafb97/RssW0mbwjs9o7PUaSmF41ucX5e4hhEa1yr9ZFIE1LLWCCEu+L1PzdPVfrinS20zz9fYKSW6rah+9tJ+58a/RK+xXDvFq77xftDYNLCpYaCaPPrSOht94bMfZHxqnTCEfuQxSAJC7TNOXRKjkJ0Orbe9sXbMxgc+hUk1UkHgatpBgu8kKFK0NiSJINEGYWIcEhoqxpMJDimthqHdUjQCF98TBIENJOxmaV5Vln1LSpkNQ/k8Lst5mHIs2u4xmqrheXLOfr7KhUznaoRt5LlcM3JFGDUABbwA+EngbwN/D/hV4OXZ738C/N3LUbG5zOV5JZeVfjJL8vqIya9qC7BqfAcK5EZezv6eKJ9v3v4TtbPf+tgXaG6cQCeah1/0NiKvWft96csf4/S64czQp5c0GDpd+o3DbLRvote5nrC9im4t4Swv4ywsIF0XE0bEJ08zfvgReOhbOM88jLdxAqkjGk2XA8uS1RXFQkfh+9Yz7AUuXsPF8R2kEhMoDZVBWbNFkij5uVVI6e6e74pyl7fNbl7yCyiTENjis0pRyb+fqI+Ne1BScHLPunTKVHqO46AcB891aLQ9fF/R7bqsLik6bsIBc4ojo8fomj5BU6EOHYPOEhtqhRP9Fv2Ry2Y/ZTTMvILDEUtr36/dw/HVO7JgtDMg1+fWKjABIabgV8xlZymNGLYrVVA8hdJQduIpyknW7ywqqjQoup6i2fItbakpObCiWGhbo1msHQahZBzB2bWEfi8mDDWjQUgSp6RZVqMbnvk6jahfq+13rnt90VfKT6hqfLWMJ5MK5RUzJs/lssnExHyxUSp5P9zPWFerUmHPraMn7ZeVzyy9capc7ruzHtjz+uPfZPXEg+g4JUkSdKr57st+Gi3KMVJFY5wPv5+1vqQfuvTjFhvjFsPYJ0kEipTFX6gbQpKTZxn++X24LjT8hAV/SMcd03AjpNEkWpFoRWochABHGho+BA2J6zu0Wh4rKy4LCx5+wzohPN/D9V0bpFqqwjlRxNiQcnquhR3pKLOe+cWeq+cyl6tVrpSV029gA4L+CZZmkr+inwdeZ4x5mzFm7XJVbi5zeV6JmYCQXohTXij6yXbfZfAMrSdjapBlQbHbN297K7Hyi8Ok0bz4mx8kTVLCKOLBV7yrdg2ZxKx+8F+xNRCcHvgcH7R5ZtjhbNplQyzT8w4xah8i6h5AewFauiRaEo8iwvU+g9ObJGtruBvHWRif4KA5wUpzxIFOxKHFlMWuZGnBwfct5D0IvCwzipsFC5VZnA3rUSZHbSg5BWmtbRUkKzMWRjNlFmBgh8P2wtE11TSyYhuaSY6mqdQz1+1LaC41r7v1smeGHpVBfZWwgVd9he8puh2XVkOy2Ig44PUIwh7i9HHc4TrCD+gdvIWt5ZsYiwbr6wnrW5pxCFGYEIUpt33zo8iJfvf1O+8uDX8VZbTWDJOL0H1DiJ8/sqc+tB+ayeTX+TW2o5xkfcjxLP3L9V2CpoffdGh3HDodh4YHvqtRyjAYw9l12OwZRsOYfi9kPIpsMMM4sdQTrbnzic/XqvPM8m1sNrN4AbX72c5FWxkzz6FbTMc4uHb71fOGfjLru4uNUplml+xyzRlrBzOxQYnW0Db7idHl9u2bfpRBsFg7xau+8X5SnZIm9j1b95Z54vYfrZU5+Jn3sXV6wOl1OL6mWO87bAxcBpFDlAiCF92G/5I7asds/f7HcURCIMY06dOUA9pqRMMNUSJFCjBIEqMYJS6JcXEch24TVhc1i23DyoJkacGlu+DhBg5+4OL7Hq7v2Dg9yhpM87m6iOGjdqejlGC0GX18H3P1tSRFMO4LuM3l2pErwqhhjLnPGPM/GWPeBqwAP4M1aPwI8AUhxC9f1grOZS7PF6kolhfGE52d9rzoJzMwsLvAYqcj/ttt5HV44NY31cre+b1P4w/WQRvuf9VfJVVu7ffDn/t9ohQGoWJj5LI1atILfYaRZJgoxjJAuw2McmxKuCghTjRxmGDSFOko3IZDxxuz6I1YaY5pO2MCGbLQTGkGWEOGJ23QUVfhOJkxw7Gp4awRQxVIjWzlU4G0ygkP9TQlpar+1bxAu3mDtgl2tq+4DPkibebirOwdVcRCcU+5R15m2VMQBXLFLhjzTCcuXuAQNHyaLZeFjuLgkma1GbEsN2iPjyN6m4wj6Mkum63rOCUOcTpZoD+CrV7MYGADx8ZRwh0P1BmPiXR54ugri/5Us6lV++AUHWo2/WSvci3D6/cyvtS7zAyaSf3n+oEF6meaciIyykmeJccLrEGj3fFptz26HYeFtiTwDUoYorFmPDb0BpqNjYjxOLXpJgcRSZKiE41OUrxxj5ufu79Wre9e/4Zd22H6VsT5U04qdIVrVa7l96Mql0Nn3f+8nReoWTCmSk2m+jaUY0GiXO67o46quOnZr7N6+jFrDEmtg+Lbr6gHDPX66yx96aP0BrDVF/THMIo0YSSItUQj6Uykdx1+6T7Sp57CMyGBCHFNjDQxnkjxXIOrDEoaUuOQ4JLgYITE9wXtQNNuanwvpdmERkOWmc08a8iQjrKBvqVEZbQUIStzdXXuZmKcyubdIvC2lMWxxRqNGXP1TvPw88XyMZfnrVxSo4YQYtfrGWNCY8wHjTFvAv4K9r3910KIN+1y6FzmMpfzlW1M2RfKuHEOFaqjVE1dEZqGtZaf5UHUPEFfu/1uUqGKK7hpxAu/8zHSNCVONQ/f8WO1GjjhkM4nf5/BSDMYCdYHDicHLc6MuwxMi1QF0GphVg4jDhzEWV7GbbXw2wGdtqTjhiyqASv+iMPeWW7U3+cG+SyHnbO0xBjXE3Q7Hp0Fn2bbxfNtBgbXd7OUr062GBJZdPWcciFKSkru7ZlB8ZhtkKigIvb6KMTEtt33k2WqHvMcZTFl9KhmUqns55STamyR/P4zeo6NpeHgNz0836XZclhc8mg3NAcaA25onmYxGNFRY4QwJFqyaZY4nhxmM21zduCy1bPojPEoJg4TCMcsrT1Vu/3nDtwxZSzbyxuxX09y3bAzmUEmf7bXOqpju4W5/W3q/vP2otJXqFNOCgUCbPrWjL7kei6Oq/CbHs2WR9BQrC67LHQVnq9wlCJOIErg9FrCVi9lNNb0t0LisYXDp3Fivc7GcNuTX8HRSVG1RDo8dPS12xpgYYc+cr6P+HmCYni+yuVAqVQvOX35cg7eac2wY70NfOuWNzH0O7WvX/XNP0Cn2r5vacrphRt45vpX1soc+8zvMuxHbA00p9cFa1sO/dAhSn2GSRPnrW9FdOtxtTZ//4+RJsU1CYGIaKgE30lpeQmBm6AkaASRdki0wiBwZUo3CDnYCVnppLQCg+c7dLoBrY6fzeHWWOq4dp+COimKwN9lhpQKlXSX8b3qmJCznBI7zcfXwHCgERd8m8u1I5caqfENIcSP7rWwMeYDwH+NfRX/24tUp7nM5fkrsxYXsxYiF56PMnubGdB9VkGy7Cf1r6sZUWyQ0DwtbGn86DWWeejGH6xd4SUP/jFyOMCkmj//gV+u8XUBbvnUb9LrpaxtxJxZi+kNNJtjxdmozWmzwhn3MENvkbB7iPTAMeTRY3g3XEdwcIH2UkDbDWkPT9A68T38k4/TPPsky/2nOKDWOeb36LYlnZbDQtel1XJpdzyb4tVVeL6b7TvFQsgGIlPIjJohpcgygMiCrjGJsNhGFyz1rIr3Z9YTmCVixjGmXqDyQ4VmIicXY6ZQWEsqCsV95JUtFHxZGjYcT+H4tq1abZdm06ETaA60Ijr0aQ+fYyE5i990iJeOMG4fYaQDTq07nNp0GY0F4SgqUnGmScLt3/ook1kqvpZ7DytfVxEmM++5Wv6crUcXZ2W6HdLkYuxvJzvTT6bve+Ypq8azoq9MU04QxsarUda4kadvdVyF3/DxfYdW26HTdWk0BE0fPBfGiWC9L+gNDKNhwtZmyKBv464kkf002majMFpz15NfrFXvsUMvZ+w2mcbgV9ppBkT/vI3IzxODxvOFfjIpk3F9LobTYRZttH6Z3dp+D1TWqpE424+lz9dv+8lasVufuZels98n1Zo0i1/zjZe+q1amtfYs7Xs+zfp6RL+fsNEznNlyOLHlsz526ctF/He8rXbM5h99hjRMSIUABa6T0vJCOqpPQ4UEKkSSEqeQaFtfJTSeTPFVSsdPWWrDgSVJqyXpdOz83ep4mXPCKZwTRXwoqZDSOlaKMVBl83ZmoKUw4M6YX2YaM56f78Fc5lKVS23UeDHwGSHER4UQr9njMV/JPl97keo0l7nMZTe5SBNmbVGGwYi9LM5m1GVS1zN15aG+Z7jvrnrquCDq88KHP40xkCqfJ2/6gdrv/mCDxfs/y3iUMhobRiGMU8lI+PRVl767wqixSugtEDcXYGkVtbyM323j+AqFRvQ2EGdPwoln0GtnSfoDGlGfppvQaUuaDYHnQbPp4AcOnu/geE4WwNDJ0r5aZILM4KyyAmktqSJympIyCcGXM+CtubFgBjJgpkeo0q65h2nWcVUPlKiUL9EI5QOsIhSqcNvcgJEbdGxbZLQBzyUIXJpNl3bLYWlBstI1LLt9VtOTtIZn8OIB0vVIlo6y2TrKWbHKxlCxvgVbfU0UpYRhTBwlaG2448FP1e4zkS5PHn55lrFiRq/agX5SpehcKJvEJJpj542Z+9XnfrH3t9vK5z4LkTHjvifRGRPQ7FrfLvq8yNIqKkTedzwny5JjY9g0Wi6ttk+75VkDY1PguTZGzziE/hDWNhJGo5TxKLKBQaOENNE2eGEWt6ezdZxjZx+p1fk7172+UAZzYyuFsRWqBlfbfUz2jM+zozxPaBnPF/rJpIgZgQEuejaUXHZAHU2eYebhOeek/mWJDMVw/y0/xtht1Yq8+oEPFogoozXPHn4Jp1dfUCtz8+d/l3AUMx5rwtCwNYLNkcsg9BhFEvnTdUNIurHFxqe/ilEuRiqkBF/FtNyIQEY4xDgiJSdvSKGRmQdGSgNS4HvQakraTYXvQyNQBL7CD9wCXamyuduOUxSxscTE/CuEtKgOJsawYlyrt2rN7DtrjJ0xb1/NMo+pMZed5FIbNR7EvntvA74qhPi8EOJvCiG6OxyTm1WvnbdyLnOZy7ay+2J+xqLfzDi2Omnl3qDs77XOUR479uraWV/23Y9ANEanKV/6wf8IMzHk3PXH/4ww0ozGKWs9WOsrNkce/bjBpl7gtDzKunOYobNC4jZx2m1UdwHhNzBGkPQGjJ87iX7mSZxTTxL0TuKpmHZHcXg54chKyoEFbIwNV9FoejSaHn4ji6bu5AENHZSrSkUuC3aIqhgPMsVwiuZRWSTVjA/bKKBVj9DUwilfnOW/5f9Vj5lQOGuZTir1KGgCojSq5NHibWA1VaTJU66NJu84Dl5gA7L5gUOn69FoCpY6mqOLYxYaMU3dw+mfJR1HDGSbM+2b6XvLnE1arPVgNNYMBjFhmKBTQxKnMB6ztPF07dk/e+BO9rGS31bqbct5zGp7QXPkm9xm/0rYdrqf8qddDTfVM1X7lSr7Xk7jkkrhupb77vkujaZFaXQXXTpdhecpPNemWUxT2OjpgnKyuRESjhKSOCUKE9I0waQ2loZONXc++aXaUxp6bR4/9NLZT3Cbce68jRlzed7KBe87E6crsvNU0SG7DInbVWkyG0r1NAKI3QZfu62erey2p77K0sYzQJbiVWu++ZKfrpVZfu4huo/cR6+fsNVLGA6hNxSc3nRZ67uMjt6C89o6bWX9fX+MFgohQJHimpCGGdISA5pyjCNSHGWDBSNyxJhNIe65As+TtJqCA8uSlSVFq6XwfIeg4RG0rOFUZenG7eaWcbKUjZ1VZEepBQ7dZtuJUrrDvH0tGTfmMpdZ4lzi670M+DXgvwOawA9l228KIb4O3A88BmwAbeCHgXdgx7uHLnFd5zKXueRizAWfEA2m7gkygLALpr0YNmyVJowYTBybUx6yK5nMVGG04d4738Gtz95XFG0P17jtsS/w0O1vZuB1OX74hRw98Z3i99b6czQevp/+LS9DSZdcSdQoxlqy6iX4NInFEiJIUa5DwzyH0ZLUNSRiSKohiWNwI/xwg4XwJO0QvJbD2CiaQmASl8AVHNeKOBF4qUJgiB2J1pZKU0DrU2HRAxIkgtQAWtt7zqH4OqtqFWUwIze7bbYMLpz9LMg9GdPP3y7tcrt4eZCo7Jvs79wrX54iK1ssEHMjiK2azOg/uSEEKFAkCDLEikWrBA2XoOHQ8AUrbUPHj+mKdRbVGr6jSXAJRYNh4nM67LAe+QwTSTiMGY5S4sSQJhbSbIzhhd/52BTRIU8zKISoeEMFpYGt4vHJyuzYg8tDn98iqI8BM36vfdZ+m16kl+++KChOJW9d1FBOXuDh+Q6NpqLd9mj6klYgcV1IjWE8hvFYMx5ptjYjwtAaM+IwJk0tOkOn2lJPjAGteeGEUeOho69FS2fPz3pqTNyHTHnpa53y2pXnqxGoMkxnX5gicOTFEjE5bxgwYqc+azBmAnk1o0sarStzAdmcJbj/lrfw6oc/gZ+M7PUxvPqBD/LpH/y7SCUxAh674fW8tnOIbu9kcb5bv/h73HfzK9FaYoQgTgVGSxIf0A4L7/xZuOfrRfnxNx5k9OBjNO68GYlBmhSMRhnwgIZ00AiMcOy0KiSxMWhjjaYNz+A6CcIIlABSMMYh1gYVS7JEJwzz+9QVZI0BYcAgSXVaGryNAHT2XoupdhOibgwq52omC87ev0rFGIGZsX45n/PN5dqRS4rUMMYkxpj/BbgV+GdAhH0XFfBq4G8D/yvwL4F/BLyzUsd/cSnrOpe5zKUiF2EynFoI7fkSk17eiT9rLp/JH0rP0PHlF/DMgbtqp3nFA38EaYrRmi/84H8y5T16xR//Y9JUE0WaODaMY+iPJb2Roh+pItJ6pBokfgsTtEldj0SoAt6qlMDzBEFT0fUGLHgDlp0N2rKHr0d0vJDANQQNB99zUI7AdR3cLCCmcjLEQoZeUEVWlDLeRq68yQryIYe2bo8SKBX0qsd8O3RHnc6w/e9VA4bVYmXt2QghoEjoUqIYyhS1oDLqiXQkrmu9Xp7v4gcuQcOl3XZY6EoWmxGHvU2WxTods0VDjTGNJiNvgQ2xzHrYYq3vc7YnGYWa8TghCmN0bNMF6kRz58N/WmuVWHk8fejFGeR5Z/rJfrxi23ndpp7NRdJLq3z5i72/p3pMIjKq8WB2ESEoodk5rUqUgXXzLDnKVbiBixd4BE2PRsuj1fZotxXttiTwQUpItSAMYbOnGQwSRqOY4SDKKCcJSZRTTgw61aANh88+zOLgVK1e37n+Dds+v4uV8cQ8DzKeVOV5Sz+Z+uIyKGe7XjIvYCa27c9hAJ0hOEKvyddvfWvt99uf+jLdrWczg4AhBb754p+qlTn2+F/QeO5hklgTjlNGY0sbHYcwDBXD1/4YYnW1dszm73/C0kRNijDGGjfQCKnxVEzgJnhOghIJAoM2ilw9cZSm4aW0/ITASQk8QzMQNAIP31O4rsLznGLuytO65nM02XiX01Eya2/2fZVaWh0X5cS2F8rfbs/ryhdtLvw2l2tHLktKV2PMSWPM3wWOYZEb91D6Eye3EPiHxpjfuhx1nctc5nJpZS8oDTFZzlSgsdVF0wyAici95AbuvbMeW2Np6zluevIv0Nqw3jnM2tKN9d9PPoJ34kkG/Zh+L2EwSBmODL0hnO4HnB632EjbjJ02cWeF0eqNRKs3YJYOIVptnKZPs+XQVDFN3aed9uiOT3Jg41GODL7PgeQ4TTMkcA2LXZfFRZdu18UPFI4r8XybHcXNKBiFEaOIGVDSPQoPdVVBrC562G0BlBstZm/V9tx+E0U61/zZ5s+uSo2xWU7s4ixP1yozuomUGR854yR7gYPnu7ieotXxaTQU3bbk4JKh6yd0zAaLvafwoh7CcRkvHSNsLLFpOpzc8ugNBf2BZjiIiaOUcJyQxJmSGo5Y2ny29swnDV/TMt0Y+/aWVma8vUCNL8QmqzSNi7y/120m+2Q/58iUhZySJZ2KMcxzLWXJd2i0fPxA0V3w6HY9gkDRbkpcxypK/YFhawBhaNjcjBiPE5IoJRxGJHGK1qagnOQw+rue/HLtka61DvPcws0ViH1dodu2j5yn4nExPfVzubLlynv2pSNhP9lQqn/ff9uPEzlB8bc0hld/58MF/cRow4O3vpHRRLaUF3zpvYxHMVGYMB4lbG0lrG9peiNBPw2I766nhN36yOeI+xEax64whEBKbdO7yoS2HNESIwIZokjQRmAQSGHwZEJDjVlqhCw1Y9oNTRBIFhYcFhY9Gi0Hx1M2dbvv4vqWCpc7KWwQUVnO3UrW6Jd12mY+pxaNVdt2m7vnMpdrWS6LUSMXY8yaMeY3jDE/ACwDbwD+JvCfZttPA4eMMf+fy1fLucxlLhfD6zcrsrq91O7XqgbWqx2fbbXgo1nE8npgKFvwiUMv4dTCDbXTvOqBD2LSFK01n3/d355Ca7zyE//IeoCilOEgYWsrYmMjYjhK6IeS9ajB6XSR4+kBtkSXobvEuHOYdPUo4vB1OAtt3KaHJ1O8/hm8U08hjz+JPP0czY1nWE7PcNg5w0IrpdOExa6k23XoLri4vsT1csXewfFV4eGxiyNVUDSEyDw/yiI4ikbKjQxyQokUMzTKHTSs7bzodThnZsxATJ3W1K5bP1+hEEuJdBQIUWSqkI7Eb7j4DRfPhaWuoNPULLhDDnobNBlhhkOIImKj2PRWOeMcYmAaDAYxG1sp47EmjhKiMEEnmlRrdKJ5yQMfmaae3PWObZqj9EJONUMB3aifbV9v0SwT/xW4GUy5X/1+D8fWjBnbiIHphbusLtqr39e9nghh07c6DtIReIFNk+w3FO2OTxDYAL2tpn0/4hjCSDMOUzY2I7a24sKYEY4jm3khTUlTa9gwxipVIgm545m/qNX7O9e/nmofmbqpHZzX5yzPQ63lylPkL41MdZmLlAFlf5XYwyGTx5iJOb+WDQVGXodv3FJPs37XE1+gs3XSxrPRmgiHB+6qZzW56aHP4p19jnGGshqNYobDhI2tlFNrhrU3/QxGliqQGY1Z++ifEQuXWDhoUTFsMMYzfTyGBIzwhA0gKkhRUttNGKTQuK6h3TCsdA2dtqDVFCx0Hbrdyvztu7iVuTufvwu0hZrhlJCyMgaC/c9UMZV2ni1EzG7vq1zmgULnspNcVqNGVYwxPWPMV40xv2uM+T+z7SPGmK3LXbe5zOV5Lxdh4SgmNZk9X6KqeG+jERTKQqZ4GDN7A+698x21Qw+tPc71z30DY+D4obvotQ/Ufj/y9DeRvXXSJCWOU6JQE44141AQxpJR6tBPmvR1h75YYEiLyPhov4tqdXGaLaTjYBJN2uuTnj2LPnUSvbVBMhoTJAMaTsJiW9NpaXwnoRmA70v8TClzXInjWlir49n4EjY6ulX6HeUUqStzT4+lrai691+W3qEpiOtEBom9arl5Wet5EoXSKSow22rg0DwQaGGcUQqphKWcqNzLbjO/eJ6L73v4gY2D0O26dFtwqBNxoDmk6/TpmA2k0YyNz6ZYZs2scjZa4NSwwWAIw4Fd3CaxJokT0iIugubORz5be9ax8nn24Ivq/WrGH1MLIyGKFpkM1nqlKJ7bGVv2u1+V8lmLbYLUzmiL3crVzg9yEn5dUQykFCUty7EBQV3PxfEc/MAnaHg0mj6tlke75bDQcWg1Ja4jQEjCBHoDw2CYMhomDPoR4chmxYmjhDRNi8CgRqcYbeket5z4Bo14UGuL7xx7w3SbF0ERZ2c8OW95Hq7Q5/ST/Itcib1Mxo19XHJm/SbPUdE673vBTxArr/hJGs2rv/the4i29/vtOybK6JTb7/tDkigliRLiUBOFmtHIoiu3WocJX/vDtSpsvvfjhKkkNR4GG8tK6BTXJPg6wtMR0sS4RDgyxZMaR6S24sJk4x64DjR86DSgFYDngR+oYv6WjrDBirO5O3dAFIGNmR4XEZRzMplRt2boqBh8d5y75zKXa1euGKPGXOYyl7nAtOdtWgc0xdq9NFDoyULl8btM5A9f9zrW24dr373m2x/ApClow1df+Tcmzmd45Z/8E6JxQhyllsIQpmz2UtZ6ho2+Yit0WQ8bnIxXOMNBNr0DxEEH0e0iVg5gFpYwjSZplBJt9jFrp3HXnqM1OEnDGbPYTDiyMODYwpDDSzHdZkrTF5b/3/Fptnz8IEtpGni4gYcbuEi3NAQoxykWSVLm0PwsUKJUdXhrbuDYVrmUdQNIJfji1PfVOB4iz2KSec+dkhqTxwLJ6QFFerssKrxynSxLhYPrebiehe222h6NwKXVlBxcliw0NAvOkMPmBF0GeC7oZpvUbTAwLU4MF9gKfbaGDlv9hCg2xKGlnBhtbCwNrZHxiMWt52rP+ulDL9yx7xQ9bIYCPgv7m5e5EPSR893khdqv9hvqyIldt23aaqbBbXKr0kxkmbJVOgqlHKSjrDHMUVnaVh+/4dDquHQ6Ln4gaTTAc6xCMo4s7SSKYHMjYThMiKKU0TiyfSTVpJHtM2iTGTTs+PPCp/683m9W7mCruTo1dm2HKni+og3mciGlmBQraIcLbNyY6KbG8j73nQ2l2t+rtNH8n/27lFGwwLduflPtPC984s9oD84Ufw+9Dg++oF7m9gf+GDncJI7TLC5OzGiUMholbPYMJ37k52rlk0e/z+a9jxAbhRYOWigQErRGmQTPRATEeCQ0VETgRLgywVUWMSGlxHOg4Rk6jZTVTszqgmapJWj6knYxf3u4vsrmbhe/4dnsZq4dr5SrShqdmhgH8zk3+02qMt3rzJgaE/Pz1S+W9nOhtrmh59qSa6GHz2Uuc7nYcik8PxXqSB2aPWvS0UyvnmZTUgqaS8XzU+xqgzaCe+6oozWOnnmYY8e/jU41j9z0him+7o2PfBETji00fRwzHkVEUco4NPSHhrObcHpd0B9CP3LY0h023INstI4R+gvEfoekuUDabKODBlqAcASeGdEZn2Rx+ASL6Sm6Zp0VucmB1phD3YhWUxA0JK2WQ6Pt0Wi5FrXhKBzXwctSxgkpQIJyrMc6T7+KEGXsDVVRFnNEhZxQOjOKipmljxYLJzIqQfZ9LWuoKOgDQmZKb36tbD/P0lJduEmVfwpLqVGipNy4kk5X0W5Jml7MSnNAR/aRo028pId0JOPGChv+YQaiydbAcGZLMgxtytbxKCFJNWm2GWOV1Jd++yNTy5v77nxnXTGtWy3Ibq3SJrmuvsP7sh+lf7/bvs7Pxdmvvny7SJVyVG0eZla56FQ1Q0dpVJFlv3EyOLcjbWBQ38HzFc2WSxCojHZiDWqpNiSJIYw0vUHK1lZCFCWMBiHjkTVoJHGSoTMMOs0+M4NGEPa45cQ3avfwneteb9+bizxsTiLPpqwozwN53hqEJu9bT2Dpjbno/W9mNpRd3vtZ9JPapimC3ZaGEsO9t91NIt3iMKVTXvXgR4oAzkZrvnHn29GiVGvceMRt3/goSWSN2HFs42v0e9bAcebW1xIeur5Wnf77PkI/9hkbhxRJYhRaKHK3iRQpnggJxBCXEb4IUSbJo4cghMFzEhpuRNONabkxC62U5QVoNRSNQNJqujSa+dxtUYiu5xaoRUdl6aczpIWS0hqS838Vo0UxT28zd29nR57LXK5FmRs15jKXuewu2Wy4W8CvCyKTMTFmGSumK8hMi/uMrywrpR6877vXv4HNZp1m8prvfNAu0DR87SXvrv0mTcrLv/hvSNKUJNUkiSaO7WY5+YZRCIPQYZw4xMIhctokwQJxe5kk6JAqH/wG0vPwPAffBd+HFgO6usdCeIZ2vI4X9WzwUEfTakqagcRzwXdlEVHdyTw7UlgjhnItBF/ILCNKRj2Z8uRUM0xkiuMU/UTWkReTC6ptEQA1NEceOFJmQUHL80thaTNCWOqAkwVBVa7dd9wswJqnaDQd2l2XdlOy3NGstGIWnSELZp0g6kGaEAmffuMAW84iZ+IOvaFDf6jpDzRRmBZUAp3aOBpaa7Qx3PHI52rPOHJ8jh+6q74Iz/eLVWJuwan3w3o2mOpi8mJrGaUmnRsCdkTfFEaF2fv1+zif/T2iRyqw6YplrDxX1m/ANn0eME86eVBQkfUZu1mqkmtpJy2XZtOh3XZoNiSea/tjkgqGI81goBkMUgaDiHCUKUFZGledpCQZokcbY1MrZ8rWHU9/FWXS4hEk0uF7R149rb1VDbaTXeF8u4XJUgjr7RFr16o8X+knu8rl0GD3eMlZgXO3O4fBZkPpBwt8+6Yfqf324sc/R2Owhs6Qmpvtgzx2w+tqZV74rQ9DHJLm83Rk3+ko0oQJnPrhn6mVTz/3WcZnByTaIzEeKZJUKJCOnSMxKBJ8E+KbCKljpIkQaIQgi7GR4quEhhvjOymu0gQ+NFuSoKlwPfB9S6d03CxmlJKoDGmJoEBcygKRISsUFTufVrft5u6pOfsqF80Fzn5yuW9oLhdU5kaNucxlLnuQ3AtURTtcAu5udvrdJ2OzbTkxsUqaZf4wyuGeO95e++76U9/lyKmH0EbzjdvfRqz82u93PPDH6Ngqx0mScXUHCaORZjSGwdBwtu9weuizFjUZqBb9YJXN9vX0F25ktHCUNGgjmw38to/vGPxkjBf28LdO0Tr5KEvrj7EyepaWHtByE1YWJKtLkqVFRasp8H1J0HRotDwaTRcvsBxdx7GIjTz9a45+UE41Q0oJY809RFVKSmF8qBkpKhHaK5HZ5eRveewOIaaoKMW+UgWEthoHQeWoE99GjHd8h0bDpm9tNByWug7tJiw0Io60N+l6YxoqRukYncJINzmtD9IzHXpRwEbPZrEIxynhyMbQSBNtM1cYm5JThUMWesdrz/eZgy+qrbnri8NKP6q4wapGjEmEwbkq+vvepKxcczbiYXtjwl7SAl64rWy+WXXK+2UOwRY1SLbMKFRFv1EKx3Vxfdf2n8AlaHl4vkOz5dDpuDQCh1ZDEPiglLUBjMaaOIZ+P2Y0sJQTm741o5xkNCUyY0ZubM0Hkxc+Xc968ujhVzB2mrWAxPWRykwbNM5H1zC1TnoeJ5rLtSZXZnco48jsORtK9nnPbXdbA0Mmjo551fc+ClC8m1+/q57RrDlc55YH/5Q4tsbsONZEUcJwENPrJTz1yrvRTokAEXHM8MOfZGia9NMmI9MiMi4aS0WRxuCYBDcdE6RDAj3CNQnKpLgiwRGJ/ZQRgRPTDhI6DU0rsEGtVxYkC12XoKEIMsRGs+2hPBvQ2MnQlvl8bako5VydGzgs2nLCiLHdfFChhl7tMg8UOped5Orv4XOZy1wurMxaCeXJvGuL8Qs/G8yEruYezr0cvR39pIbKLa9Sndi+e+NfotdYqh3+mgf+0JYXggduf0vtNycNeeF97ycOY+IwJkkSksTSGwb9iN5WzDhMGEWCzbHHqVGb44MOG3GDnm4wcJcJF44Sr1yHaLeRgY9wJGLUx2ycQZ8+Sbq+hto6RTc8xWp6ggV/RCdIWWxplrqSxQVB0FC4rsT3HeuVDiysVSrL0S0oKEIgEGU8i6qCncNbq8iNSuT1mTFBc5nYzxekMg94RvadyJ5FETyUQnHNqTI2poYoKDOu7+Bnxo1WW9FqKgIvZbUdseCN8aMtOmYDXyXEXpOBs8DIBGyNHE71GvRCRRglDPoJUWTpJkmcotMyJoJA8IoHPjSlV9774nfPvL/ib1H9uv7DBAo8a4NK+Yuwvzc5Ny2nqmRcyP2qwaeoX9VilEGqBSCybCZTho8sIG6e8lcqaalKnmPT/rY9gsDF9yTNpsBx7bJHa02caIZDzVbP9o/BIGTYt5STOIxJogSjQadpYQRD62JcWegd5+j6Y7W2euDY62t/V4ODZjsTjbtDw+9FsrZ7vq7NrwXv80WRS0A/mb7muRScmLcn5/t8vjaGXmOZB26sB/d86WOfoTHcKOLcnFi6macPvahW5iXf/CN0nFgqWZQQjW2q1zhK6ckOp19Wz66SfPCDrPUUg9ilH3uMtE+IgxbYOAzGIHWK1AnKJLgmIjBjHCJcEeOKBIVBopFC0/RTFpox3YZN97rYhsWOpNFQeL7K0GQujm/nQydLYV6gGbP05lMBvifGQjFBT9lx3p7LXK5BmRs15jKXuZybXITF5CSqYu8T8eyCOdx7Jm1mwlyfSIf7br+7dvxNJ77FwTOPYIzhz1/6V2teIoCX3P+HaG29/WliFeY4tt7eKE4ZjQ3jEMaxoB+69OOAXtpmqJtE2iXxWtBsI7oL4AcWahtGpFt90vU16G+h4xBfD2n6CUvNiG4jpOnGND1Nw5cEvksQ2FgTrqcyZc7FdZWFtDoVj48jS1qKU2aMyGNbVCGsskoRmUU/qcFcs+jtFcoJlawU1SwnUmRpNlU9Ha1QApVlOHE9u9DzPGukaTVd2k2HxY5gtatZ9EKWxTrdZB0/GSKFIWksMHa7rOku6+OAraFgY0swHKWEYcJ4bFEaOt+0JtUpxhhuf/zztecaOQEnV2/L4MYVmEOtc9n/KqaMErEhq9SJuvJ+sfZnIyG2o3DMCvyaBZKbERSWykL6wu6LEk49GRSvGhgvRxtV0BvKtcFApbJ8dMd1siwnFp3hN1xaLY9m06HVUrRbCs+z6A5jIIwNw5FhMNIMhgmDQUwcJoWRUicpaZKlb81RGroSw0IbXvhkHaUx8Dp8/8CLqx1kezlHhXM7CqCwP57bSa9imdNPtpHLYew5p0tuc1ABDK0jQ++5/e563Iw04pXf+3hBK8XA1ycymi1tPMN1378Xk5rsndYkqSaOUqIw4YnXvqtWXj33NOOvfJ1B5BImksi4pNIjFS5pZtgQxiCNRpoUZSIcEeET4ZoYZRIUKUoYXGVwVErTT+kGmpaf4juaRmAdEn7g4LgC11V4rofr25hYjuPgODa2hhCiFli7HOPrY2WZBUoW1NNZ6LirWeZIjbnsJM7lrsBc5jKXuWwrGTR798nYVJS4PZzUgBFTJhS+fdOP8tqHPkIrLDNJv+aBP+JjP/xrJFLyyI2v584nvlT8FoQ9bnrwT3nirh8jiRJ0KnG1g5ApIOhLQRwJ4sQqbEgHdIcARVe5lnfbEOiWix6NYNAjHR9Hx0NMNEIZQ9MkJJ0WDRo01UnGnksPD5W2gICo65EkiihMGQ5jxuPUckW1k3mmJHGSFreutUZoYVEKWbsWsPoMkSNyY1ClgUrloe5Vm3xGhmzfmFLBN6bwMJH9ntNihBRFWjs34xgrR1rqgKcIfMnSokOzYVhopBzpjmjoMa0kpBltoJVL5LbZ9A8xiD36YYuzfSeLa5LY+AiJLpRUrbVNzZndozvq0e2fqvWDp468tPZ39X7qIiqtUe1P4tJ5xWZXq3xMNaSJmPpqV5m89wu6L2tQlkkkh8EUC3MDlUU6BZpHKpvy1yKTFEHTw3EkQUPR6bg4jqDZFPieyO1QjENDHBn6/SSLtaIZDSLiMCmMk6nO4q0kaWlEMHmQYYvYeOEzX6k11YPHXodRLgJTua1tWvtC9I/JFfk1oLTM5cLJ1dAdBNQqaqzJYNuAoxvNA3z3+jfw4qfKefhlj/0p993xdsKgiwGeOPwyzixcz+rm00WZl37jAzx5w6vtuJEIkjCLq2QUJ4+8iP6hW2iffLworz/4Ac6+7A00PWnTtCpIpYciImCAI2KkMECKJA8cHJMKRSocElyUlAiToKQkNQYnSPGVwlMKjUeYugS+JgolPRFjDKSpIk0U4TgGHIyyBtU0Se04mM3T2mjQFPFEcvSYyJFhOTCsMm8LdRV0iLnM5TxkjtSYy1zmcm5yGeknsxZrk8E/p1yhuedHV7w/xddWwU0cn6/d9rbaYbc+9zVW1p4AA3/2ql9CT2gjr7nnd0hzSkOqieOUaJwQjmOSOCGKNcORZmNTs7aZMhhpxrGklwasOwc46x9lGCwz9hcIm8uk7WVMZwnhODi+g6cSmsPTtDafotV7lmBwlk50lhW1yaGgx0IjoREY2m1Bu+3Q7jj4gUS5As93cLOsIdKVGbVDFqgNoUokRu4JEjkqoRZ0rKQL5B7/QnHPYjoaTM24kXvXgcKAkQdAK9AglUBojufabCeutPE0lKTZUDRbDr5vWG6lLLYifDNgUa7TkCMSo4iMR2h8ekmD09ECm3HAeJSy1UsZj9PCI5emGqM1Js3oA5kB5+Xf/qPaEzXAvS+qBIadtQ7M2ic3+lT74yXbr36KzABVjYI/KyL+fiWHMFcoSCILZHfB9jMkRn4/Veh0juZB2kB6RZ/JMps4nlNQrLzAtUYxT9JsW4SP60qaTYXrqMx+YohTw3Cs6fU1YWQYDkNGg5A0TonCmDiKMZkxQ6epDVRcZGPQGDuAcOzsIywOT9ea67vXvT4bh8oHtC2S4HyHT7Od2vf8kmvB+3xRpGKAu2gBviebfnL6nTENT1VzBv1kcptEWH7l9nfU5mEvGfOKhz9Z3i/TaI0jJ7/LgRMPFdmM4sTSUaLIovi+/5o6WiP46mcZP3uS3lCwPvTZCAOGictY+4xNg1D4pDkyz6Q4aYhKQ5x80yHSxDgixhURvhjjiTG+jGh5MUstmxWl1RC0W5J2WxE0FI5j5z8/cHF9i2DM42wUlBRlkRtCVdAYBa1TFM6EyXn70lnaL55oIy74drlECPHrQghT2X70slXmGpG5UWMuc5nLuclFWExOYycqsssCKTdoTC7gphZyNQ22gj/MHNLfuPXNjLx27ZDXfvePMMYQuS2ePvyS2m/twRkOP/ftjM5gCnpDmqTEUVrLijIcG/pjySB2GBuXoWgx9hYYBKuM/QUi6ZP4TYTn4TV8PEfiSoObDmlEWzR6pwiGp3HHPbx0QKBSOi1oNyBwDb4HvifxfRffd6wBQ8kM2upkXF0HpWwaWFXZpCzjElS/K2gjqqSrWCNIHqwx23J4bEYnKfaVQgiJdFURNyNXRC1/2MFzbRwQ13fxAg8/sMEdm03FQluw3IVukLDk9FiRGzQY4YkQXJdINdiky3rcZSvyWB8oBiMIwyx9a2wzV6RxnorTolJyr9ft3/9C7XlGbpOzK7dORZXPDQSm1O8zg1CFgrOPfXk++6qMJ1HQNyqQ4x23SrDN7Tb7vNXUsUraWCxKqouyX6Wi5LBre11Z9Ju8f7meazPkeAov8PB8l6Dp0Gp5BIGi2ZK0WjbejFIWmZTEhtHIxtEYjhKGgygzQCaEYUya2r6SJAnamMIIlsdfyQcKA7zomTr15Ez7CMe7N1LXxnJaSGUMu4Dyf7P33+GSHOl5J/qLyMyqOqYdXMN0w3UDDe+BgR3vHUdDcjhDiUuKlJbS6koraXUprp69d0XtSiuttNJKu1eUxCU1MhSpmeF4bzDADDwa3nTDNFzDA+2PqarMiO/+EWkisqpOn+4+p49Bvv1Un6jIyMhIUxkRb3zv97m639nURiM/GYEltLGvRy+bG0WHPKKDH7BCU+yfPJWdm0PfNVc++wPa/SkKqcpTZ97I1NgJQZnLHv1aHsHIOilKEQHLWF685ENkSac6jDW0vvs1un3NTD9mJm0zk7bpZhE9Sch0glVJHklXUDYjsimRzdD535akJLZPy/Zo0aetU9pRRqINYy1hchwmxoR2SxjraDodJyWNYlWGZ0/aMTr3M+XLSf0+IOirg3d92G9HupnyLRcopS4H/tZSt2O1oZGfNGjQYFmjNEct7SkpV3Lngzr3MtQAvzDdVJBGbR7Y+hFufvLPys3nvXwfJ+zfzb4NZ3LrtX+J3/jW3wgWym+669/w1U3/2g3kIutWhRF6XYXJBGOc53TBckBpen1Nr9MmbsVgLJIkJO1x2jLB2n4PhSFuubUosQJpH/o99KEpxlprUO11ZGsVqtWB8T5rxzSzPcWeSKE1ZDamZWKy1LgJW98gKGIrzqw+086cVetywlaatOpiUGoRzSA5VDeAKWQmikpyUlhreKvu/mqSk5y4SWucRI5s0YrOeMsRMC3FurUJYx2Y7AinrEmZiHpMSpfJdI8jJJSmO3YCXdNmJhvn7Zkxuj2Y6VqmZwxZKmSZkPUNYnLCyeZamfwkOr1DTE6/HZzPS6dfMefqr/KkJYGy4wjTwTXMn/GgoBCO9xXl76D+/FdnNKS9qjDlzlfuRA3uVDuOLzlxt9U75pB2lYxgvfw80sVzVdTvVCnVM1TKlJSqovloRdLKyblE0xlPiKKIdjuXnESKTsdJTgr0+kKaCdMzhulpQ5oaZqZTet0sJyCzMsRvYdVj/clZaYEhRFmPba/cF1znJzbdOJLobSKeLA4aQsPDCn0OCkVadS8Hz6Mm7APgnvM/xYW77y4FgO1slsuf+QH3XvRZFGB0xEPnf4xbHvnjct9zX7yHNftfYWr9GVhVOP51+8+0Ouy+5IOc89C3y/JrfvQVXvvkb6F0CxVH9E1EJ4qhDYkWUAmRSkmyWWLJ0GJQSlBKiBCEDIvGKo0ojcK4kK+JzYmHiImWZqblHHxm4hyH9vsRMzMpaIWJI4xxoWiNVkTWfbfWorQNZHGFHKXoigMrGAEdhT7BViIWmqNbileIcmYzf4Cbg78JnHL8W7E60dB2DRo0ODocr95gmJJk3qa0gx7gi85+sL6qw3xoy4foJuPldoVw7Y5vICIcnDiZN084N9h/w76XWPv2C4gRbCbOOqBvMJlzIJr2DLMzfaYP9en1Mvp9mOoq3jrU4o2DbQ7MJEz3E6ZlkunJ05ldvwlZuwHGJqEzhohg+ynZwUNkMzOo2UNMdN9kQ+8V1qm9TEYzrGvNcOJEn5PXWtZMQLulGBuPGBuPGR+PabUrq42kFZVh41Sk0LHKQ8dV0hDlWwL4zsbyMHLF6FJr5SKn5D4zSm/svs+MmlNQF4ZT08rDzrZaEe2xhDhRjI1rJiYSWglsmBTWT2S01Szr9QEm1AxiDJgMQ8w0Y+xlA4eycbo9y/4pxWxXsMY5B81yfwimIG5K3wjunl/5yJcHpSeX/WIpqSnJmOLfKDLtWNgNVQ3ay2tM6M2+jCSjfHP7ah/8++N/CgdyWpdWHmhQUb67n1aUciT//pHvTy45cn5R6mkquZF2jmAL+cvh0irSQb5v5VNaZuTRAKLY5SUtZ3XUHktotRPi2MmUOp2IJFaMjWlaiS4tGbJM6PaEqSlDv2+ZnXW/xSw1pF3nGLRwIihZLjWxlnwZtnzXFXr2LW88QiebDR6BJ864nvrDUa5TF/MKzyrsmFAQQ8dYzWpAIz+ZJ45Tfx30rfM6pK0VHBINxdteyEv2rjmdp0+/Jqjp6me+T6s/DeJIycfOeR+9eKzcrhAuf+ybWCPOSXTu4Nv0Df0049nLQ8lKa98btO77GfsOWvYdhJkuTHUjDvTG2J+N07MJXWnRV236xFiK12pGlHXRWZfYdElMl8j0iCQlIqWje0zGs0wkM4xFPdZ0+myYdFFROm2VOzZO6IzpygF4O6HVjp0cJc4jpOTvShcWXZdyFIp+utZvrwL1yYAB0kJ8lgB/A7gW2An84ZK0YJWiITUaNGhwdDhOg8kBSUph+z/PveeTVT+XXjzOQ+eGIVy3vXQX6w++iljhp9f8VjAMU8DNd/xrZ9pqqwgbWWbJjCHNDFnmQkh2e5bZnqXfh9keTPdipvptZkyHHglpMoFMrsWuP4lsYi1Z1CKzmqyfIrMz6N40kenRtrNM6Fk26IPlhH9CdxlvGSbHNZMTmk4b2m1Fux05ScpYTKsVEcdOjtJKIpLcy7qKVOmkszRxzWUmA5KUIi/JZQpJWKYgSCJPcpIkCXEcl44dk8SFam13Ylq5XGZ8PGFiPGbtGsWGdbB2LOOEzjQntg8xHs0wxjSxWAwJ0zLBQXUCU2aCvb0OB2a0s9KYtfR6OZmUFhYaNr/NoWXAlufuCO5xrzXB/g1nlwSGb1lSRYUZYuarFiDtSS9GpguiqTBF9iQ/1Se/J3mZaj+XH8UxWhfEUi1d7BcXZfO0f/+956EgHuLEeen3w6qOKl9Px3k74yQun48yrauwxHES0+q08gF+zNhYi3YrZmw8ZnIyYawTMT7ufGjEueNZEWedMdu1zMzmf6dS+rMu6kG/m7poCP2MLE2x1mBsHr7Vj3RSWC7l0qWLXwqlJy+eeAGHxk7kcLO4OeV1R4LiGfbS70T4v+cGh8FS9NdHdcgRO/mLG+KsCu8+/9NBkU46zZXP/sAVU9BvjfPYlg8EZS7Y9VM6M/sQyftq65wCi7G8ddJW9p66LSh/0k+/7JxOd2FqVjHbV0z3E7pZhxkzTs+26JNg4xaiY3dsa9E2I8l6xKaPNimxTYklI5GUhD7jusdk0mUy6dGOU8ZbhvGOYnJc00kUnXYhI3WRzJL8XZkkcS4hjXIrx7gkf52/Ia/vrstL42bKt9RQSm0G/pf8618F+kvYnFWHRn7SoEGDFYn5rtDVyw2bWAyr6cGtH+HqXT+glXUB0AjX7PwWP77ut3njhC0cmNzI+qk3yvKnvfEkrUN76K05AaUUFudXQ0SIIslDSWbMzCiyVJGmAjrCCGjaTEcwGSckHUXU7hBPdlDjM+jOAXT6EjpLiXqzxKYLvQNIv4Xqwtghy7geY0LG0fpEtFbYtWP0M0U/1RyaVkzPOFN/YyDLDGnfOTRVkSLKJ/1xrjGWqAhZaREhl2yEMpRABZ3LCIoJRumDAkorgcLCoIhyEidupUlrRSd3ZJrEirVrY8baivG2ZePajImkz4TqscHsISZDacG0xujToUuHPb01zPYjZvqKqWlIUyFLXfQKa/IVd+O1X0ArjShhbGYPEzN7g3v+4uZryra7nXypiVSygZFaD0bIM/z0aGlHlR5VRg1cb3edi+KqTHsqmXJCU48uMqrtdZlLecz55PvtHXV+Xn6xCltKlaSKcoKCKK6InUJyEsWasbE4t/bRTIzHxLFyH8/Dfy+XIM12M6amnOXU7EzqnPhmxkU7ySOdGM93RrEa7E+Yi+s73j3IOW8+Fly6JzaF+v6RWKh5pf8MvoMtFRpCY/XBvSKrZ7oeDaW0akPx1rrNPH3aNZz/2vay/NXPfI+Htn6EtD2BIDx03ke58pnvEVkXASw2fS7Z+T22X/0FRIEWt0qSpQZrhacu/QQ3vP5UWd+GJ+/CvvwyhzadSWYUs63ImbdFMWkroa1arI0UUQwqitEmza0yMiIxWDEoHSESocQS6RirIozOiOjTilu0VQuFhjhhvBMx24MDhyJQilYSkWYRvW5Gv+8sKo0x2HyRxL2zLFZrZ9FZ9NdD+u04XvlTPk8xtGD1HWf8a2AS+A8iclvjHHRh0dB2DRo0ODpIfSVzkTysDxyXUj4wn8L1coVGvu5dvdCmFp/Z1iQPnxuu8lz4ws/z8J/C7Vf+erBNAe+++9+4AYbJV3uNc0hmjSXtZaS9wnGl0OsJh6YyDhzKmOkaepliKmvxtl3Pm+YkDqp1zMg4M/E60rWnkK3fiJ6cJBrrELdiWr0pkkNvEe17A3VoH8nMPtZlezhR3mZda4qxpM9ky7BuQli/xnlYT1qKdieiMx7TGYtJWs4yI0kiknb+PfGsAfzvUSEJKFbanePKOC6kDVRyljxMq/soksStniexpt2OieOIditibMytQo2NaSYnYtotxdoJy/oJQzvqsS6aYq2aAuNWvBDoRh0O6nUcshP0esL+mYjpWYUxLtpJmrqBXaE7xvNnUERoESVc9fCg9OSBKz7nBtT+RFF5CV1qUgYnk3PKM0ZINZQnyVDKaZ5LXxJRKQOK4thJSXyLjeATlZFkSudwNUdxUexFnfGci0ZefWUEHO151490aTWhcod1OnZRSJJW4qLoxM5Dv4pVmda5rCluxa58lDv61LraN687SZKyLa68Jmpp4pazIHHPpntuOmOxe4aSiPHxiE47IkkUrUSTxG62b0XIjLOKmp429HtCr5sxM9Unywz9fkra62Nt7hQ0nxwUFhoUH++VoPKH5MKX7yISU972VLd46tSr8B6ywY//kB0FBt+t71wio45GfjJPLFv5yeD+c0VDKUjHAndt+4Vg/046w5XP/MD9jgWmxjaw88ybgjKXPPV9dG8Wsdb5mDIGk7kQr7u2vpt+y5OeinDibV9mZiYtnX3vm4J9U4qZnmI6jThkxjlgJ+nSoqfbpLpNptulHEWJRdmUKOsRZ12SdJZWOk2SzRDbPmN0WZdMsy6ZZizusaaTsW7SsHZS02orOh3N2HjsoqMkTrbp5ChRaUlZREfx++mqT3BWmDpqpnxLCaXU54BPAnuB//cSN2dVYuXTdg0aNFgyKABrqwne8RhgHtEhRpuySjlTGbGngu1bPsKVu35EYpyFYCSGq3d8k59e+5d44fQrme6sY6J7oNzn7N33E/Vnse0JZyJrBVHOSWchm8lS41bTEaK+RimY6Sq3UgPMZC2iJGHKGlpaaGOJ4jGSTpd4zRq3ZiWCEgPdWVTfEHUMumOIojad9jjrOn2SRDPb1wgaiEmNRmlIM0uaClE+kc5yiYbJrCMnMovVbgRpjHNoVg4kC32zQO4NtfQZoHRx3XLrDMgnx85SI87NYyONkxK0nF643Y4ZG9OMd2DNuLBmzLC2NcsJ7Rkm1CztbJq27WN1RE+1mYnXM5ONcSAbY3+3zWxPMz1r6HXdqnyar7g5a5PiGZDST4S1Fq005zx/V3C/u+21TG3YjA5W549uIqB8eyA1eiBZTsgGjCbyDO2tTJZ+FEKnor5lyagJntLKW9mv8rVSZbbWOlgNLdJahfnFtSS3soiIynYVaVcm8qw/oiLbe0eE5WMVle0pwrcqrYhzAi2KVO6DRZEkmrGxhChSJAm021X4YCuQZZZ+X+h2hV7PMDub0Zt10Yh6vRTTd3KwLDX56qab2FQWSkOI2lyCculLPw+u7VOnXU3f879TTuqKP551yjFxEcFET6rr6KffYfCtwxocBp6FlPu6ONdsqMSqrtU8TA2DO43e/631Z/LU6dew7VXPWuPZ7/HweR+m35oEgQe2fYKLX6iiXI31DnHBs7fyxAUfR+V9mmiw1pLqNs9d+CEueOQbZfkz7vsmL3z0t+nGCpu4KCKRjpmKFGOJcwoaJ9DGkkgXIUMTgY7y/tISiYAYxBqsUmiJQQtojaLFWBQhkSN3Z/qazMZkEiFo+n2LIsqJVffuMlpAxWhlsUXUNcn7XnHEri7GOfk5RquA1BBRyAKGYa3Vderhfhci8vLRHEcptR74l/nXvysib81RvMFRoiE1GjRocHjM9aJfogHlfAZlqjD3H7rRTw4fiM101vHo2e/l6l0/LLMvfuF27r3oM8yMn8g9F32WDzz478ttWiw33PfvuePmv+Y8kRuLEoVERZx45zTUGsGkOpekCFM6Jk2h29MorbFaAevo0KLTGkOLIWnHyJiGLEX6PWTqENKbRboHSdqzqLEpNEK7peioiH7coati9qpxDugx0GOMG02aKmZ7wuysG+Rkuewkyyxp3xLFUpm0liFQqzmVtba8XqX8hEJyIp7kRALJSRTnE1StaLd17tvDWZCMtRWdluXktSkTccqY6nICe0gkQ5OhIk2mWqS02GfWMZsldLOIQ7M6j2oB/dQ4CUFBJnljYt/Bp9aasak3GJvdH9zuF89+FzrSg6uEo56dw8hMAjmOGi7PKOQXA2UUQ/dVyoUmLXx9iIgjooqmFvITG3IpvnPRin9098y/f5LrVpR/fC9fF5IXpdCKMl2UB6+9umiLV6aWrq4H6MKxHbgVxnz/JImJImfp0enEaK1IYuh0ivDCoPMoPdZCPxWMcWTG9EyGySzd2Yxe7j8j7TnpiTEGkzmLqiLMb/mvZhlRXN9TD7zAyYdeCR6FxzbfPOIhqV/7BURgSfTOndA3hMbRY7HJjepAzjKugPIkfe749XZRSeiGoN5XK+DubZ8JSI1OOsOVz/6Qey78c6AUe9Zu5vnTruCc1x4uy1zx5Ld54rwPY+PYvTCNO6hoYeeFHw1Ijc7UXtY/+BP2XPMR+rF2/SGCtYqZJMZOKogSpBWT0GGS3NpMKZTJiGwfMX20zVDFe9RmaJUS6z6JbhEpS0sbxlotZnVCpMaJo5ixdkSvr5iagZmus1AzmaXft/T7+VjCWIwFm1mMMeV1tJ5Vi1ghaSVHcOPekbh/HmWO9gfzvwOnAnfROAddNDSkRoMGDY4a/lzOZRyHVUNPShD6CBhS1PM5MAgVllPhgKmYpN1/3se5/PlbiW0GQGwzrtn5HW6/8td4bMuHuPnRP6XtRUK44Nnb+Pm7fhvJLRQ0LnKFIcNaZwqKEVDC7EyfNImIItAqAlHsn1J0U41eo5FIYVWbpH0yhgmSliLqTYFqQWpRRsDOusmtSel09yGHMtJYUMl6lI3ZgCFJDForDvXbJBHEESSRZnrG0usrJFaYWBNHTr6RGetWMARMVpAb7hrFRKXjTbcq7VaG3KTbzaR1lEfegFye4lbeWy0XlSKKNeNj2jkxTYS144aJtqUd9VkbTzEuM+isR0IPpRSpTphlglnG6aVwsNfiUE+TZZbZWej3LdaCNYI1vs2/UITqtd7zcsX9fzogPXn4ms+XZET92SkG2MFgu7CiqD9b3vdIRSVpoCOdT+rz/FwKE+nI5es83yMtrLWlnwx3fJX32kXI05xs0FXYVp2TECIuMk0Bl+/aV1po5GmKn21JoFQ/GqUKy408rRTWSpmW3EpHK40x1smQcrJOKRxJl+cPTefRc6wVotxDv1KqdPZZ+M3QWjuZSUujlbPciCJ3bYxxhIa1Qr9v6fUMaWqdDr2XkaaGtJ+S5cRXlmbOIiO30ChZO+uZHjn7Ks9SAy55MXQsu3/sJF46MXQsGDwHxaO4EK/EuWZ6DRrUMYQtGHgUjwMhJEgVRhpHcMztMLcQbXh1SO297PXVIsJbazfx1OnXsu3Vak561TPf46EtH6LXmkQQtp//8YDUWDf1Bue8dC+7zroBi0YwoCKUtexZfyavn3Yxp772RFl+8z1f5Y3LP+jeazNgrUIrnf+NyazAhKWtLRKNY7VCK2fpGIsiUpBIH43K3wuZS8cJiWQoDP2oh2UCVMz6luun9/fGSLQiUpo4UhxSCpvo0odQr2eJRWOtkGWKLK1eEyYnPIp3tV4FjkL9BZaFqm+xoZS6GfhLQAb8FWmcAS0aGlKjQYMGR42Bockyk58UE6uwC6kma3PWmReYGjuBx896N1c8f2u56bLnfsL9F36ambH1PHTeR7l+x9fKbbFNufqRL7H9ys/nsg0LorAoN3TKPEJAaVCWXk9AGaxodM8tPU/1Y4jb2FhoJRMk7ZhZZYjjDoqDRL0uUdRzzr+UQSmDmC46jYhn9qCSPpGawEaCjTVpa5woyeiniq5yJrSiNHECxkA/tUSxIoqEzEiuN3bWHFaqyZ2b4Oly7lfIUZzkRFBKl5NNF/VEozVEWtNqR8QxtFuasQ50WjA5Jkx2DJNxl/WtWcbVNJ1sijEzg1KQRm168QRdGedgOsGB/gQz/ZjprrM4yYyLcOGIl+Je51YjWhNFzrokiqPSZ8KZNenJ7Nh6Ztef7sQQpdlD8RB5z0hdwlF7bnyZgcIjC/JdVeI51dSFSEVQiQra7HYQYh1VdeuqokLeI0h53V0ZXdyUgPBzpEeeVgpRRT1eGaXcimqeP1imIFe8i1Ccp5v9kyivvao4O0F5EpUyLYJqRZUFjVLu5wC5TxBFpBWtVpTLmCgJDa3B+bxz5I01kBpHaMx2LVlq6XYzurOGtJ/R76WkfWeZkWVZ6T/DGhe21YrnINRWXgH8Zz7KUi569Z7gfj+++abR77yFHraOkp+8g9HIT44Mx5vQcMccPE54zw7XjvpLtqgk/H7ntk8HpIaz1vgBd1/4WRSK3SddxBsbzmHjvufLMlc98Q2ePfN6lOQWJBZEu9/7zos/HpAap7zwIK1Xn6N72jmODNaK2VmFsTlhEEVMxS2yCEiEqC20tSWmi7UztFUGKs7HAwYtrrPSqTg5SmTQsUEpS0+3HdGSxKBjuqlGKY3SCUpr0kzo94U41kSRs0zLMkMcabJIY3NrxcgW7zB3wZJ29X5uMBTXAq8vZIVKqRbw73BP6r8QkccOs0uDY0BDajRo0GBFYnAgO79B2rCx3OEiotx33ie49IXbSweBsU25+unv8PPL/jz3XPJZrnnqW6UlB8DlO77NfZd/DhSIUrl5v/PnUDglLMztIaarMozRpH0LxFhxFEg3aTPWilBRhJUxJGmTdNaSqEOMG+gQEeksr0eBzVCzU6j+LGPJAaJkDD1xClEMSSemL236mWaqlXCo2yKJE/pGk2VCP43o9oS0Va3wWOv8E9hidaSQduQDucJU30lOcjlEKTlxA78kcel2yzlzjCJhYhzGWtCKMzaMp4zHKW1mWMc+WjZFk6KUYFVCRsIhtY6utOnaFod6Cb2+yiexEqzSF9YPBaGict4oVo6YUcDEwVfozB4I7vXL591MnETlczU8kscQeQhuIl6ldVkmzB+UebgIH3hSjaL+Khypc+bprBgKOYbYQqrh3NnoqIiQUqVtQUbk5Qv/oyJOxuFWbR1pUL9/TloyKDMJIq748pOi7dbL92Um5b6+RCWsszi/gs/xnc8msSrTcVIQK6o0rS4IOZM/D7MzKdZY+j1Db7bvdPJ9Q5Y6R4AmM4ipwi4P86MBftq9H857/UE66Uzw3Dy+6cbDvm8WxEqjqKecyDWTeGjkJysBdR9AMKzvHg33cx9CjAR+fmDP2s3sPP1aLvCtNZ79AQ9u+Qj99iRKKbZv+wSfuOf/Lrdv3LuL019/nNdOv8xZH4qAuP76+TNv4PrOWjrdg2X5zfd+ncc/8tfL94IVaPUVIhGCwkpEO26RdjSiE9AJsXQY0wkoTaQELQaVpaish7J9NDZ/r2Zo0yeOerR0iyixtGNhPO7Ti2MORB2mY2i3WqQZzPYU3Z7zJ5QZS5pq0tTJSN370eZ9o1C8L9PuypefWBY2+okNv75+tD4z5sDfAy4EXgJ+b4HrblBDQ2o0aNBg4bCE8pN57+5NrII8z6S1ynM5BydO5snNNwZOAi979sdsP/+TzHbWseOsm7n0+dvKbe10hgue/hFPX/Bhl2HBGoMSjdXOUaVYyFKLmJQ4UlgNGYrZGYvJUmIdE7mWsnd2jK61KGA8S8lkHD12MhK1SGJLbHrkDARinM8NK0720unvJ44sSdsyE60nVpooaZOojDgaZypNkBjaiZtA9vrQ7YMiyp0uKrLMER3FNTM5y2Gtyv0Z5KtVmpLMiCI3OU5azgdCFCnabejEkCSWNWMZ44mhE3WZjGYYk1mirEssPTRCpjSpatPV46SZ5pDpMJ0mGCN0+86XBuKcgxbh6xTVpNeZ3FaWDNqCKM2l9/7xgPTksev/AlEclYvh2rPuCdOqGGVXFkAqtzKgeF4Kj6mh5YZWxYUaIs8Qm1sqOIlKYEHhhSgtiBqoWV+UIXQH80X8Mq7BUV6mIGWq+qmsPHJCRKnqJ+2HjC3yS5N2pfN85yTUSVQEXUhwyvzCHDoqZSyOMFLEcfEcFc+SItIEhEdBrpn83lsrdHvOH4xzEJqR9qzzm5FbZtjCf4a1ObFoKhIj9xnj2zWXSVUQQMIlu0PpyYsnXsCB8ZMYieJyL5T8ZMCEqEGDY8BxsvY5vKXG3CgsAcvytZ9A2Xcrxd3bfoFtr26neAN20hmuevb73H3RLwLwzOnXcmDiZNZNVz4ar3ryW3xr48Wu/ihCGcGi6OuIp7d9kMse+WpZ9uxHv8/j7/ktUjWOiHuPIprpXI4SaYU1ClTs+l9l6SiLqHFEQ4QhtmkuRbTEWR+FdeS7ybDKvd8jbRnTkKQp6LVoElRiiLVFaci0phUp2rHmUFchVpMlQj/TdHv5O0vi3FdW3jcqRW+6kZ8Mq2+xoJS6APgf869/XUSmF+9oDaAhNRo0aLCQON6rZnU5wLww1FTjsLh326e5+KU7yIUXtEyPq576Dnde9gVuu/zXuPj528ttANc/+iWe2vYhislIZemQy0/ErdpbNFla5Gl0ZNGRptt3Az+LJo6FKE6YzsawWMaUohWP04oFWn1Mvwu9LsxOozKDpH20mnUrQP2YKImJewdIYkOPNjHjKC0w1iJJNH2j6KcuQkkcO98F1jryIssijMGZ6EvhfCy//LlZq0ixmi55aE6ItDjJSa4NTmJhrC204oxOYphMMsaiLhPxDGPSJTEzdMyMk+joCBuNk+oxZmWcKTtJL0uY6UfM9pz5bZYJmSEfwDkLEdGCFk0Uk6/+O+uYwmeFIJzx7N3Bfe1Onkh2wqlUAVe9x6KwTKAYVOdUQOEUFe0Co5cWHEV+Xqae76V1YfmAoFRc/nS0T4TUfGLU00JIVgxLS5HOz6OwyCjIg+I+RpHnEFRTyouqqDZuglLM0QfIDanKFRKgqkxh5QGF35X6nMqRFi4j0pRym9izmJbcnNpYSkKj33eWGGlq6fUy+j1D1jekaUqaOkehWT+rHIJmhXVGaKFRPEclwVE0UmBydi/nvFWZogM8tjkMEzlUsnRMCJ3dNvKTQTTyk2PAirlmh2mnt/nt3LfGBa/eV+ZdteuHPLj1I/Tak1ileWDrx3j/I/+x3H7Oaw9xwv7d7NtwFlhBPKu6HRd8JCA12t2DnP7ET9l9xUdBKXq93HGzchZ2cRxhEtcorWKm+h2ySGFcIBR6icXYLhGztMQQ2R7izAwduWEMkXQhitFiiaxFxUJPtVHKupDZUUTfaLpphNYxKlKkBrIMkkwTx06OZ0UwRpf9tYjQbuQnxxt/C2gBzwHjSqnPDylziZd+v1Lq1Dz9rYYEOXI0pEaDBg2WN4aMaQqT1tIEVdTIsgPVzVHG99+kylVah/0Tp7Bj841cvPvOsswVu37Eg9s+wWx7Lc+fdiVbXnuw3DYxu4/Nux9g96arEaVAuUgoSinInUEaBUSQ5SvHxth88u0mnyZT9PvOHNa42CZ0Is2YbkOiIR4jjtpEaRfVmyVWbxGh0GkfLQbSWSQCtEVsjyQZp63bJMl64tYGWoliotUmNZpuFjHdT2i3IoyN8qgoin4GxroJqRVnEGJMsUovhfFBHiLWTdbjGLQSklhoJc5h2njL0k4ssTasac0yplNi22NNto8WfZRkxLaP6BhREbPJJH3p0M9aTKUdeiYis4o0c4RQcbOVdpFVjAXQ7qkQR6o4EqaYuAsTbz5PyzMnBnjlovfT6iTlvdf+RElVA9yhchJPtjEg4fCjhugqyklBMDj5SS1SiFdPJcmonGgWMo9CuuTyHdlgxQ2cFRVJQZ4eRl5U6YKY8KKsaI+wYJC8KBdNg32dlYazuigsNobnl2mqMkW0nOI36rif4hoKVtxz534nTmpirSVNXXQTYxy50ev28+hClqxvcv8ZUllpSB4hRywVieHxEMVv3pOfXLL7rnL1F6AXd3jqtKu9F8fg+6PMP8q5Y1lVcCPyvBUzIV1cNITG8scxy09yS66R22vb7tr2C2x79f7AWuPqZ3/A3Rc7a43Hz343N+z4KmP9qXKfq3Z8ix9f/98hWlPoFK2F/ZOn8vIZV7DplYfLslse+ibPX+IWK7RSWJO/L5QBFL1EkVqFEbAktCPFRCvCqhhpRbTUOK14BtBECCIZKsvQ6SzKpiixYDMwGdr0iKMuSdQiSVLakWEsSunrmBndZiZpM24gzRclepmmn2msKIzJLSzFLTpYC/3plT/lW0mWGkA7/3su8CfzKP//8dLnAA2pcYRY+U94gwYNlg+O1wriwNyhRkbMtesQ+UnlGZBy/FRJUvLvSnHPtk9z4e67AmuNq5/6Dj+/7PP8+Krf5NzvPFiWV8At27/IH59xlcuwgign2UDr3ORUEDGoqJJNuJCvbsKpdUSqFIdmNH1jnSl+C4gUB6I1pNJGKUVHOV8Gydh6YhXRNikaAzpCW4N0p5G0jx2DKM7oABEpSZQyE62jFWnaKqatW8yYhNm0hSRgRdHPHJGQGu2kGLjJpbGAVejIjQMj5SbYooRECUkCSjldcDt2prPjSUpH90l0yridomVnibNZJzkRZ/ZriElVh0w0M9JmRjoYsXTTmL5xVzfL3CS3mFAXkVeUFrQStChvQlxMxhUX3P7FAenJs+//DaJIl1IK3zohtDYojSzytHsKnORDV+TBCKlGWUY5vxaFtENr59it9JkxQEIUT5MqrRmcZUxFJpRpcouH3FKilAZBSFQURALVpKE+eVCe3EPraoufX6ZzyxPJS2lVVlwSJwWJkhsq5e0sSIzwvVENXB2xYHMLjcwIJnMERb/vCA1TSE76LjyrSZ30pJCcSEFmGIuILS00CiuMyiojJBJKgu8QIZ8AAJB3SURBVMIIl+6uZGcAO0+7jixql9/L949PPISX89hQXJBmAt9gobBU8hMZQnTMY6FhVL9el47uWXsGO8+4jgtfubcsc9WzP+CBrc63RhZ3eGTLB7l+x9fL7dtevIO7Lv0VZtachBJnoajEvaie2PaRgNQ45bUnWfvqMxw6/XxM5H7wvV7+nlSAaGbRiNVEGiTRiCTOYk5ZjBIMHdAWHWfEpufCv1pDlKYoLFosYvpEGZhEiIyhjaDpo5L1RETEUUqsU6aVYCJNFruFiZl+hOSOvNMM0qwirrtjh7tbDRqsbDSkRoMGDRYOx2nQPTQk3LwPPUdBNSINgLBvzalDrTW2n/9xZsY28OqJ53HGnmfKbesPvcaJe3ax58Qtzvmn0pW5uwWrnH8NmwkZxvl/yCfpad/50DC5o02tFLNdDSai08pJjzhiSgmZjkiiGOKMuJUSTUyibEYe5xRlDKQZkRVUawxlLVoJsYloYemTOFlKZIhjoZ0464zMQhpHZFaT5fPAwmmolWq1XVDEuvChICQRRNoQaUs7tiQqox316eiUlnTpmBna0iVKu8TprCNLdIToBBO16akWs0zSlxY9E9HLEqxVZEa5AWdJLii0FkRys1vr0kpVq/ASSzlh3fhMGL2iu24jsuFkWp7MxLewKMkNIY9WQlkG8se9lJzo/LtAni6sElRJCoThWUvJSSEtUfnAmIqsKODLM0bJNvz8QXmI8tKDVhgj5xgjfi7DfirDiobEkoSviPw+CqpcIRVb8QKF6bTz7WJzB7bi/Gfk4Vn7PRfhxFlqZGQFuWFMHu0m96EROAN1x/Hb6MtQqg1wxr5n2DD9ZnBOA9ITr/yCYpGXEVc6GvnJMWApr5kMEoGj76Gqdgq+D/8KcPe2X+CCV+4rrTXa2axnrSE8dO6HuOap7xDbFIDIGq58+nvcefVfqBoEIMILm69hevwEJmb2lvVvfeTbbN/4N51PrJwbVcqFVy1IW6UVM12FtQorCqVjkmSMTEd0tJMtJonFZl10OksrtugkRUyW60fcx0lQErTNiG1GJJZMt+jplCi2JJGiLxGpiWhFLVoJGGOdRC/WZNaR5gLMjtXcYq5AWFlgR6GL+IoVkd8AfmOuMkqpvw/8z/nX94nIbYvXotWPhtRo0KDByoc3UTxs0XmO5YatMAHcfcGnufDlu11INiAxPa55+rvccdkX+MnVv8Wv/fB3g0ne++77f/jyR/+RW5W2gmCxtYG4VcatrmgpJ7/kEVHiVKOISslFL9G0EhAijAhWxbTp0NITrGvFqKRFPNZCmxSV9lHdKVR3BpXOEvUFZVK0pAgZYnu0k0NkOqEfjTObrGEsGiOLWxiJSCWibxMyG2Eldp7HrSKTYkZcyC2EWIMSIdKGJBKUsrRUSksbtBjGmaYlPbRNaacHXbQYa9G2Dzoik4g0GSPVYxhadG2b1LawosmMzh2fuvsXRS6kp5PFaLS2pfNN5wvEiZOKFX6lYOylp4m7h4Jb+tY1H6HdicsoIIILPVtOxIfISRSFo83C0WdB7hSWEbXySpXORp1lhirbVMkzPKeehQxDCCQcIEH50kqjICry5y00RXG5gpMDVeRHnlbF1sIyREqLj5LY8ScgDEaGqaxZpCRO4MjSVdhBynsIjtQoPPgX/jOMKawznOPPLLX0u5krm1kyp0/CZi7SSWF1MTTKiZ8mNLQo5G2X1hyE7pk4lVc2bOG4IGhQM3GvoyE0Vh4OJ0ep387ifVdZloXkxrAFjj1rTh9prdFrTTLbWceTZ9/CZc9VYdov2fVj7r/ks/Rb4yhxv30rgqiIHed/kGse/lJZdsvOn/DATb9FNrHWhYWWyldFlmmM0c6SUVyEkrG2xojzj9WOY8biBNuOUComiVNiNYsoF65aTIoyGao3jTaZk6SkhshmiOkTZ10ynZC0JkhllvHWBJmK6EVtelGblBYWtxDRNzFGNIIjV7Kx9EhuVYMGKw4NqdGgQYOFw1KZSJcW5DLnAAnCleNBqLCcCgdNIsK+iVN5cvONXPJSNdm5YtcP2X7ex9izbjN715zBiYdeKbdt3PMsk9NvMz15sptAKV2a3YsVLBarVe4NAkxmEcnQuXWGwdLtKjKTlXIFpRQHZ6Bv8ol+kiLETMfrsCpBi6adToFKiEShJSIyGS46iEJnGTJ7CEl7MGaQKKYdp0TSJ2WcXrzGDYRUTF8npDohlZZroYLMRhhx7Y1wshGthQSTy08MiUrRytKyfVrSJbJ92tks2nTRJkWbtLxnhgSjEzI0XdWmJx0X1SLT9E0EIs5SBDeJt1REgLV+lA9VEgEoQQu5Izc458d/OCA9ee2jv0WrFeEIA01AGJTPSGUuUTwLRRlKSUhx7PwZUgXBkIfzrT1rodPPalDvW10UDEUpexlmpaFC44AibG3xbJGTB9YW+4n3E/UdUYo3QRxMQyUHqa6ev69/VQuSRKiICz/tQg66dticrKvqcZ+CyMhDCufkRpYasjwkctbP3LaskJu4fGstYnICwycxCge3kl8oqo+zWPEkJzmRk5heECISciuNUabwQyZsx4Zw1bghNhosGJboeRopRxnZFve+KIuX7/nie0FIhqZmd5//6UFrjWe+z10X/yIisH3rx7n0uZ9W29NZLn72xzx44afyCE15jUrYsfWDXPXIV6qFjHSWs3feynNXfArQpGn+7i3Y65yk1Rpa4lxQW3IfSi2F2BhkDBSMKyGmDdE6lECLGZTSaOdAyC1OiEBOdlhr0VFG2xoS06MvGbGOSXRCS4/R1eMYIogUaRTTNwk2p2inW71juHPLBDVjuoWor8HqQUNqNGjQYOGwlIPuIzx06NRvcMI4tL68wD3bfoGLdt/lWWv0ufaZ7/Lzy3+VW6/8b/iln/1vgbXGe+/9d3z7/X/PHdcKYEHnzh1Fl+QGys3YVe4cMssMEKEyi9KKfuomYe1WEeZSMdOPsNJmLNZoLegkYiZSZPEYUTpDIooEIZYeSmzVLjFIfxbEopI2Ns6IxBBjSCTDqphMxSS6hdEJRrcc0SEKidwgTVAoESzOp4Z2a0TEYogkIzJdYsmIsh5R1iWxqXOAlvVzEwMnOZG4TRa36UcTGNUmlYS+tBC0M9/FWTs4Sw2XjiKIBQr3CAWxUfliKAwVXHrDk3cFt7J30umw4QQSKksHCMOgKm9OWfinKMr4z8tImQc5JeKPt0c8p771Q90SokozkPZsNErLjFJXgm91UZUO4F2zQYKiqjYkQIafQ7WqOthWP18pKY9ZSAiKc3WSk9zixjjLDBEX/jjLnOPPIm2t86FhsgyxuAgnmcUROTaP2COlX426ZUZ1/hJep/zP+a/eT8t0y6IWxRObbhh66R3ft8DvP7+dDaExgEZ+cgxYLtdsoBmHa9cIQlEk+C3uWXsGO854Fxe9UkkOr9r1Ax7c+mF6nbXsX3sqz55+Nee9ur3cfsVT3+Ph8z6KxK2iUgQ4NHESL266inN2V2W3Pf5dnr30E1WrlMKk1nEwuD6818vlKeIcHc3EGms1NgFF4qwNo5iO6oJWxB3BmhZROkuscoI+07mMNHMWHNYS2RixGVoMSiwmamF0iyhOSZIUo2IMEZmK6SQJNifsJ5OZw1zb5Y88WMyC1tdg9aAhNRo0aHDU8Mf0S4qRjVic1u2f3DhgrXH5rh9z/3kfZ/cplzA1toE1s/vKbWe99ghxd5qsM+EyhNJRpFghM4ZI3IRYYlBGkaUZYiO3Ak2cLzALWSsiTTWCJrMKI4qxVsJMrMk6iizKMDqhHY2T0GVMEsZ0gk4iYpOCMaisD1mKEpfW1qCyFG1T4nSWJG4hOiKLEkw8ho1iJEpy6w2FVQmgXFQXASWO4kAMWlJicYMvnXZzmYlBp928TLFCHmOVwsQtsriN1Ql91aFPgiEitW4AiKoEElo7MkMpIHcaWkRkKRxk2vw6FpNvaxUTLzxG3A0die+94VO0kioIb8lf1B6ZkgTyLCeC7Wr0oqeCAeKjSBfwzarLfFWs9qk8vybVoKQr3LmKzSflhSUEuXVGnm+rdkrQgCoSCrncouIywjLFgqmUlh/VNR6WtlZGEjX1dGGZURzLGGeW43xo2DIvSw1iBGssaZo7ATU5+Sd5lBNjy+M7h6A5kVg8dwE5IwiDJEeBy14KpSfPn3wJU50NQTmpi7IX8qXo2903GEBDaBwZlkN/fazRUA5TeV6h+3P3tk9z4Sv3etYaXScVvfTzKGD7+Z8MSI01s3s5/8U72XnuewGcHyzc+/WJ8z8SkBonvb2LE17byZ7TLvAUYgop5Ch5ps0iTObe0yKWflvTS7Trt9B0k4iWjlnXijCqRSfqEdFjjASiBMl6rm/uzaDFLUYomyGS+8vKekQ6xkYJSdIhS1sQxY7YiNtYHYPSWBSH7IGFuc4NGixTNKRGgwYNjhoDQ5Ellp8c/YhtyHBv2AjQO79Ba40e1zzzHX5+6a9yx8W/zMe2/7tyN43wnge/yI9v+O/CyW2uC1A6KieUYoRMDOjcnNVqN5mzglIxNtJkyjLbVRhrUComVm41aEq3ySRBxiKILEYsxOuwUYzKIlQ2Dcaioj5KuzCwOje/RzIknQXTR9sMqzSRjrBRFxsn2LhTXhOrY4zSoKLcP4cTz2jTRwlOXmL7juzIUrfKZCWXryhERxgVuRWmKCHVHXq6gwVSiUlthBJxpE3uH6O4v4XcIypuh+QyHVV9LybI4Mqf+s3qXhS3ds+nfhMd+bmjH55KAjLkyZGqTf69LSQf/kqQ7zuiKD88LXk7vfLim2H7PigqOYf43i9zwsMVy2Ue4qXzMkXI23p+IZFC5SRGUT4oUzVJBDzr6zLaCnm6IJwKTXx5raRQg+TWEjbXsufyE5tZTC4jydJKZmKyzIVTFFvmFaFaKeQmtiCHfOKiIIM8C5RAtO+KnHDoVTbvfQofvoPQRY94UkcjP2lwjAienhUjP6ljftSMiLB3zens2HQ9F718d5l/1XM/4oGtH2F2bD2vnbiFl088n017ni63X7PzW+w4+xYXH5vihaZ46bTLOTh5Mmun3irLbnv8O9yx8fzq3LQFNGSOTNZxHsI9BVSGVlEeIUVxSIEohUiEiQQYc9aPWoi1RhJBTESHgygVE6FAaXTWdWS5M19zxIY26CzFZn100kF0RKI0JkowSTt/GVvG09Cn1EpEaDW4MPUtJUTk7wN/f2lbsXrQkBoNGjRYOKwg+clhdx4pP3GDKmetcROXvFSFe7xi14954LyPs/Ps9/C+R/4znbQy99z24p38+Lr/FpTO56eCinRp9m6NLVetIxXl5IYlisulfEwm9JUhsRFaWbSO6KfCtFK0beGfIWLGtBGgTYQohYoVaQKYjrOY6Dvz1lgsiiLchJTaXRdi1JEWKkqJTISkXecPRCn3V+vcP4gbwEWII0xsisqjrmib5pYc+Yq4jgCN1QkStzBxizQpHJO2SOk4AYtEZBKTu63IiR/QxcQ5l6DEUS4/ya9xfhrYMqyp+7PmsVB60t+4GbVmLQWnIYcZ2QwOpGQEMVBZGxSERmkW7YWYLeqs6vZlGDkZ4udb8Y5VryMnCarbWE64KzVFTphVBaprJrXzD5JV3dUxw7KF3UiV8q02PK5AVa4sBvI9h66F/ARPfuKsNizWGGd9Yyw2K4gPySUnlH40CuuMekQTkeI61CQ0Q87/spdux8dMa5JnN17BABZzUNzIT+ZEIz85BiyXa3bEzZjfDsUzcee2z3DBK/cGUtEbnvomt17x64Cz1th09z8v9zvx4CtsefVBntt8bUD8WKV58vwPcf2D/6Use+6zP+PeG3+LdGwtSqncSgxAHLeR2er9qqCXh7e24giKKNJYC50kRilNpBU2imirHqIUUaJQUURkelilcLyGquQombOILNoZiXUh3HXkHI/GMbGZBRUhAkl35ZMaDRrMhYbUaNCgwVFjfmsmxwGLtjrqrch6hyny7t72KS7afWcwYLruqW9x2xW/xvbzP8HNT3y53DeyGTc+8l+568o/j9LOwafNnVgaMejIORLTaKyxZECkBbEaEldHTwRrY0xmXTQS6+pIU00vVhiThz0VRTcZI9ExvcTJSLKoQzvqEUV9WtEUnfgQkrSITd/NWjOn2cU681YlGnASGDJVEhqluUROLlQzafdR1jhyRJypLEojCkRFoCOsTjCtDiYZw+iEXjROqsZIiejZhExiRDRpHgrP+fEgmDw6YiO/J45XCcboCkXhS2PyoZ+j+5VfBIB97/2l6k4GFhK1219O+Auywt9WWU5UaQGKsH7uuynbZrHGl2cU+YIx9XRdwuEcZVbpgl+T3PohJ0S8cLdGqvCp1kjp46OU5pREhW8NgveQSxXuTgTrmY2XxUoS5nCSE986qeYzpJCuGMkXRp2MBIroJ46ksDaPZoIjNTKTRzmxleSkcBSqxEm1EGcdVPjWqKw2vPPO769/byOTcqkXthngsU03Y6KE44pGfjInGkLj2DCMzF3s67nwznTnxv7JjTx25i1c/mJFUl72/E+5//yPMzVxMs+ddjlvr93ESQdfLrdf8+Q32HXG1ZUJnnU+rXZseR/XPvRficS9h+Ksx7k7fsKOy3+heLm6/tI656B9yYiiCJM4KzhrhSyJ6Keq9A3RaylmI42xLvxqN4lIdMxkrDFJTEePEekeHZVgozY26aJNhs66aNVzDrfdYKIMA+ucnCrIIqzOrUVQJN2p43bdFwurzVKjwcKiITUaNGhw1Fj18hMInK9XEVEc9o+fwuNn3sxlL/6s3O2y525l+3kf577zP8m7dnzdOccstj3zA+68/PNV2Apr3YpMpMvjFU5DFQpRAmIxxm2OFdjcxDXtF5KUiEg7icZsz4WSExQasFGEUh2sSjCqh2iIlMYmGqtjOjpGzLSThkQGnfVRWc+RG+AsJKzJk5UGw43p1OAAWKyTiniTYef8PUbiCIk7mLhNFrXIojH6UZtMxfRokZFgRdE3bnAn4giazKp8UlvFqB9GRHjz02pFHjjx6zXpiVK89bFfqyb6UpFL9QFTJQNxD0Il4agmxpRWG9WE2dVVkBtVvUV+ZaURTrAH0/l3G1xSipMLypfZEraxXqZob3AeVZ2Bz9GgPkrSQeVfnNm4d37edatbY5SXK68Hn4wJ2unO14p1f20lLTHGVDITT3Liopzkz1tu9RH4yii2ldxbeQOqtPc7P/+17YyloQ+WR858N0NRl58cA+a0GFqqd2uD1Ynid2w9Rvg4PF9DQ6XPcdjBJo36jYQFfcLrrvM/xcW773T+nYBIDDfs+Do/vPovA5r7t32Sj93/b8p9T9v7LJveeJJXTr2kWtSwMNPZwHNnvovzXqws/y7a8X2evORTWAon09b1wRm5bFFBpklJ0SomU46on83XBxQaG8PUrMKKGwe4gF/jGBWDniVCYyJn4YiJUCYjihIiFROls24RQVvXV1tTUc/GEtmq31amP/pCN2iwCtCQGg0aNFg4rCb5ybBNQ4rdve0XuPilO6vVG5ty3c5vcOtVv8kTZ7+HK577cVm2ZXpc9swPeeyCj7mxnLeS7UKh5IcRN2E0xqJxWgrnVNRFgYjySaNSkGWabteQJG6UJCjivrMq6CRR7oxdoyONlZiW6pHRRWKNjjViO84HRtojimIirUGcD4x8hkixrF+cfjlo8lfaS5JDI3l0EFEaohirY2zcwiYdUt0ibY2TRR1SWnQZI5UWfRPTNQmZiegbRWo0xiqMgcy4KCjGVvIEK2By3xlukSqnHrxJq80sY08/HNyv2c3nY6J2KelwxIOfJr8nFaFRkQeVhUMoYfCJimLinzvALKUPXp3lDL+K9hHIMPx6VL1dVXup1SlD8gfSYUX5+Q3Z7pWpX4/KYomcnMjJoZLw8Ekc972eDspYR/YopRyJUcwjiqglgBhHakAuP8mlKKX1BUW60uFUhIlvoTF4bvWJ1eU16ckLJ17AvsmNDMUCERqD9dYqbgiNATTykwXAUl+7ozx8PXpZ/TT8Z+LQ2Ik8fPb7uOa5H5V5F7/4c+4//xPsW3M6T226nhuf+ArrZt4ut1+z4xu8vPFizzrNvUOeOP/DAamxYf9uNr76OG9uuqwiyIt3mRHA9aEZEVEkCBYreWh17SzLWon7rrRCiGhFChGFVgoVaxKV0lYREsdInBCZPlE6S6JjiBO0zSBL0XmEFMGtAJRc1bFd6mUFC5UF4QLV12D1oCE1jiOUUuPAXwN+GdgKtIDdwHeAfyUiLx1j/e8FfjrP4r+XO6hp0OCocZhFlsXDkIP6fgnKYqJKomBBMOSED46dyKNnv5crn/9JmXfpC7dz//mf4LZLf5XLnr+1lKcAvOuJr/Loto+Wk15nOWrQWiO2sn6QTNCRdpOxWMC4SV6cRFiry1VnKxmtJCJLlQt/mpu1tluKbqQYzyJMB1LRjMURsU7oRAlp1CKNOrSiPjrOiKMu7WyGKOkRm9RZXJgMbfIoKdY4uYmn4dXeZBLtPKwXjkBFF74zEqyOSOMxbB4edjaeIFNtMomYtmNkkpAZxUyaYK2L6tJNnbWGsdBPKQeMqZvX5tIEN9gs0sVz4AY9ig0/+wa6sDrJ8foH/jxpmltRqMLioZKEBJYQ+U2X0h+GeARDYfEgFBYPRT3GFAPKXEoRSE5UkC+5bKKo0y8vZbqSkBTnXtZTECh5PYXhgP87KMtL8QCHFhqBpURAWbh9pDQLqW0rjhPIXwblJ4GVgZcOfYkUZE51Payfts4hqLPasaV+vXICKqXkhMK6pSSAXB2BmsO3sPDSJxx6jTP3hA5CHznrPdVp167twLkuBETwr3aD4WgIjWPDcnjG6v32YJ99FC30Cd4c9573SS578We0TA9wzrtvfPKrfPu6v4ZREdvP+zgfeOQ/luXPfuMxTtmzizdP3JK3wvk2evnki9i35jQ2HHqtLHvhju/x+mnOqkNrt4BA5s4tyqN4xUrR62XERhNlOeFtXDSzfl/lIaw1/RTiSJGZmNRqeonrs8fjmL5u0Vcd4iijpWZo2VlarR5aDDrrEWc9Z22JoKxF2cxFO8v9cIhayMHQ0mAgJPcC1Ndg9aAhNY4TlFJbcOTFttqmC/LPX1JK/aqIfPe4N65Bg6PEUPkJwxcvF33wOeSghen84Y99bMO7u8/7JJe8+LNSalKat1732zxz+jVse+W+sux47yBbXrqXXWe+q1xF1zry2u/M6ZWq8sQIVgxRHDmTeywmA6SIiOLIhH7flJYBsdYgim7PrfoYUegOZBqsdLC4sG/jWqMxxHGCiVq0TBexs65uXPQSnUdEKaBFwBoM4nxlOONbRMeIEkTH2KgFSmGiNmnUxmpNGo27kK2qRVfa9G1MmsX0bEzfKDKj6WcRmQFjFKlRGCPuex4NwxjJCY58ciuVhUNBSkg+UT/pe/8puE9Wx7x27aegbynCpDqY3NmnmxTbQp6hfOlHTmjkE86AFChDphakR0Fy+FYX+SOWky455+FIidz/hztW4f+hrL1cThI8S5Fiop6TYxUH4e0r3tC+/G0KpUMSaoO60pSiZihQkgM5J+GV8SUnI4eHgWlHiNB5akEmVdfAd/jpSI3CYkbKfWzhHJQwvzxn8c5nKKtRnejlL90W5My0Jnlm45X51ur6+LsuxrtNFW1tJu0NFgnL4smS+tf59tlHVu90ey0PnPshbnjm22XeBa/cy70HPsVb687k8bPfzQ07v8Z4r3Kmec3Ob/HdG//7qioFKMXj532IWx6sCJBzX7ibO6f3kk6eSG6LUb6Pi9PI0hSl4px8V9B327RxFpaz3bzJylklTgGZuAgskXb9dyYRJH200qRak+kYS0JkMnQ0hom6JNGMk6NgUSZDm8wtUCgwrbFju6YNGixzNKTGcYBSahL4NhWh8QfAnwKzwPuA/xFYB3xZKXWDiDy6AIf9TeD+Oba/uQDHaNBgOCQY8R+XQw51PjbvQ8+z4LBiSjE9fgKPnPN+rtn1gzL7opfu4L4LPsVPrvh1zn/lvmDXmx/+Y3ZtfpdXp++jQZUr3zZ3UKZEocR5MLfGIqJBuZm0NpZ+H+LYOSdTCvqpRrAkiZOjCLlpq8S0YksWZ1hJEKXJSIhVRkv1aakE02qRMYa2Bi0pUZwS2cxZa4gFsWgLCuecsbRo0JE7loqwcexCtqoEG7fIiOkrF+GkT0TPtMkkpm8iulnkVqUy6BnnMC1Noe/8QDq/Gpm7PiYnNxBHblip8isZRm6pkfYZfzlccT947mUYUdjUBuXd3yIUbLHY702IGSxTEFJl+aKMDfN9/xID0hL8KCeUMoxih3Ie7kc8sT55UBEYVQsoJ/5+G4pHrZrbD9txjpWrEVYKJR94FAtehdPAkowoeaXiWhYhWnPSxPed4RMfJZEzuIpXWHH493uQjHV/dJZyyXwchB7FuR4VGkJjTjTyk5WPgX57MW6lctXev/VjXPn8T+hks+Wmm5/8Cl+/8W+TRW0e3PrRwLn3eS/fx/pDr7F/7Wk+r8uOc97LDQ//CXGxiGEzLnjmVh694pdcGVuRM6UEJdMY7ZjrwqdRphQiGXGkS/5SxFlquAgpAJokclaYzkGVJtaGRKeO1NAtotgQS49EtzCtDto6y0ptU5fOzdayVugnaCUiIKgXqL4GqwcNqXF88Hdw1hgAvyMi/9TbdrdS6qfAz4Bx4P8E3r8Ax3xeRB5fgHoaNDgiFHOclYdQc69UcSbKLzJ4cvlo5L5tn+LyF35Kkjvj0gg3PPlVvveuv8buky7kzLd3lLusm36TU9/cyeunXIDChYJTWrtBjXL7GjFo0ShRaNFYLJIKURyhRVDKkRhpT5AkwppKRmAlwxhNmipMpslazi9F2oI40rSSmLQNPavpxDGxEpKozVjUdwSHzoi0RWFo6R5aLJFJUZFCiUXnXtBU7mROcNYZLlJJ5HxooElVTKYSrET0TEJGTGYjuqkzrTVW0+1HZNY5OJ3tO6sLY4VeLx8fWiHNKkIhy9xNsrYKb+oiYJR3EWuFzT/8j/mKVYXn3vvr9HpZuQ/4JMSgDKPM96QM1aDKI3S8fSsZiKom3hTyk8LzfxUpZLB8KRDJJ/qhtKOUahTERzEYhkr+kecXEWAGJ+EyYjAXylKwxcDae/DLuovrlE9MyraoYLU1sCgZkh44rlTXzDlbrQgOKfxr+KSN5zlWbEXyBGW8c/JsVAaMNs5//YF5OwgtCJnFwsp9jx4/NITGseGd9IwJ0GtNcP/Wj3HLzq+W+Vtef5jT9j7Layds5ZFzP8C1T32LduaiZSmEq3d+ix9f85fdc5arN7qtCZ456wYufL5yEH7hUz/g4Us/g5LIyT0AUlCRQqyCBLJ+hkTaLTAkEVYgtoLRhfWh68d0pJw/qUyT9hVJDP1WRK+l6WaKRCe04phOktGLY2IUsUpp6ZSEHpEGJYaEFJWlqFihrDDbqcicBg1WIxpSY5GhlEqA/z7/ugP4P+plRORupdQfAr8NvE8pdbWIPHAcm9mgwYJhqCRlqQae8x61FbMbP0yny5lX00WYbq3hgS0f5vqnPfPWl+/l/gs+zY+u+ov85g9/J3DY9b4H/oj/8tF/4gbmuliizlthrYuIkjetiIiiI52nASOIGIgjFyVCCVnmLBASFaHzCCs9rLNoACKt8ygiGivQsQraFq0siXVOOltxho0ylHL5qeoQ65Q4zqoVbSwaZ9ZqiFE4va7JY88a0aQkztLCJvSsRmxE30b0Mo2xEf0sop87AU0zRWpyS4xM8rTzTWFyyYnN5ScFmSHFdSn/VnkCbLzra8EtMkmbN867Aemb8pEs6oF8Py+/uPfWSDlJD6QSnsxBvOesblVRTJhteaBaPYHFREViVJYiXhtHWVfULDbKXI9o8R3eFXkDKJsowfeh8LbZShNzTAidm9qK2Mmf3/KaF/n5PuG9KNmRIctwhT+R4odG8H644sXbgtIjHYSqXPu/iGjkJw0WG8vyyVoMpsWr84EtH+aq537ERL+Smdz0xFf48s2/SzeZ4JFzP8h1Xh9+0Qs/5+6Lf4mZ8ROgJLrhsa0fCkiNdYfe4IyXH+KVzVeDxUlQFGirXYTXzCKxI3qdg+98u3Ymev2++7lrpdDWrW44v08aI5CJiwQmKFJtSW1CJhHjEhMpi1YxqU7o6BilLUoJkTLEUYpGsJGmm6yCkK42dJy9EPU1WD1oSI3Fx3uB9Xn6P4iM/Al9EUdqAHwWaEiNBqsDKyoiihqRnk994sxbn/sJ7dy8VeXWGt+64W/y1rozOeVA5Qv45AMvseHAbvav3zx0tVFEKJ0vaDeJKiQpOhd/gEZZIUuNGwghCBqVahBDFCmS3GRVKTfJi2NoWWfeKoCRiFhrWpHFJJpMIjKJ0fmgKNGWWLXQyqKVmyUrZdFUJgDOjUSEzX13WIkxokitS2dG0zcaIxGpgV7qIpukBvqpG7xlhtKBpzGQZjaXlrgoMCIqdwjqztz51nATdGOria21QjS9n/G3dwfX860t15LlXkZ9SUbhcBJCQsInIewwEkLCdFU+b1duMRGGi/XJgmKk7Vlz+ARJwHV4Fgj+pDx4YLz6h8hB6r46gm3ztsGtrvH8yqojSFdtqZMbBWcTSk7C0LjDzqfMLXmOGinkHfqEQ69x5t6ng3pKB6HDTu14oCE05kQjP1mFWCz5Sf6MpHGHe87/JB94/E/KzWe99SRnvvkEuzdezANbP8JVz/6gkpaI4eqnv8PPrvg1kMJZs+K1E7by9vozOWl/1adfvPMHvHzGVdU5qJBELsO1i0LFzl8UyriIY4VRqIIoUgi6lM1EsaKVT+YF5awtI8EYTWY0cWSJtSXVMWmUoLUlwhJpQ6xsbnUqdGl8ajRY3WhIjcXHLV769jnKbQemgQng5kVtUYMGi4iBacqKXW0csmRUX8mmGiwh0E0m2L7lI9z01NfL7ee9up1T9uziR1f+RX71tt8LrDU+eP8f8OUP/gOwFqU0okAJoPOIFdqZ6ivr9lICRCCiSgfxIoJEEdq6MK46LkxZnbVGYdlgjKtTp4p+Cu22s5BotRSRhkRHdNoQR5ZWrNEKtLK0YmexEWuDJoKS3AClcgehIjlJ4kxtM1FY0WQmJzaspp8pJzMx7viZdYO6NLVk1oXy7PcrM9w0LaQetvSpIeKsUSC3zvDlJ55MYcuP/ii4cwI8ectv0O9noQ8H8nmuJ1OopCgFM5CnPYmK5IUrh58hQRFKKcj5CiktAwJ5RiEnyVcBK6sKn+AIZSHi7etxI6FFhtR8edQiA/lX5/CcRkhE+Ofnb/MnmNUxyZ8VGZkuqlL5ftWphr4wBqxjqBE+tfLlfS3bOoz4cd8vr1lpTLfW8PSpV5WnX7eGWajJdN1qp7x+LNOV9GWEhtA4NqyeZ6wuHQX/zOrvvYfPeh/XPvsD1nb3lnk3P/kV/svJFzHdXsfjZ93CFc/fWm67dNet3HvhZ+i311DEl1IKHt36Qd6//Y/Kcme/vJ3xqbeYmTwJJRpjcglpEeIcwXWhbkEhyt9pVltEIkdaWMp+2xgnt4wjRZooWokmyyCOFXGkaLeglUGsI+LIkkRCEitirV2fHVm0StHKWVMeSlc+qeG91hesvgarBw2psfi40EvvHFVIRDKl1C7gsto+R4t/pJQ6EzgFR5a8ANwG/L6IPD3HfnNCKbXpMEVOPdq6G6wODAySVuygc452e2brdYJje27e6mvzb37iS/zZLb/L/omNbJh+o8w/fc8zTE69xdTkyUDlVwEp/BQUJfMJnVbl5NhiEevCvmrtIpw4vxK5bw6tsCiy1A3qEgGtKcuKOMsMUGitMBFkAq04wlhBIyit6RshjoRES3muBeGhlTOL1bjBQWYVCmetkRqw4ogM5xNDOZlJ5qwsUmPJMrAGMmPIMk9yUspN3HmbPAKGn+c7iSzlKPkgcdOjPwpuV7+zhj2nnIfk8hx/ElyM7Av5SZEur7w/6bTFJD6cWPsYJlEJBt2erV7hJV+8OkdaUtTyC8nHIJFRpfNEuGvAT/iT/pGFGG76UewrwX518oV8b9+4w/czIt5vqbpcNaLCvz614/vER0FC+WcRkBkhB1NWE5k+l7wcOgh9fNNNWB1X51g7/YWeTJcOTHM/NY38ZH5oiI2jx7CrVicAjvu1rb9u5n14XzpaEA/VgoMPEyXcte3TfPSRL5Z5p+/bxZbXH2LXaVex/fyPc9nzP82tEaFlelzxzA+575JfrNhXFE+dfTM3P/zHtLI8TKxYLnzmJ2y/4lewImjPv1AhRXTRwQQMFOSI308rIkTnVnuFn6h8YcA6PQrGaEwMxiqkHZEqIYo0SQRt0Wjt6okjIdaxO4bAbNaa921o0GAloiE1Fh+b87/TIrL/MGV340iNk5VSbRHpHcNxb/DS64Er8s/fUEr9L8DvyfxtjuttbNDgnY1hypR8ANVPxrnvvE/wnie/VG47+60nOPPNJ7j1il/js3f+s9BaY/v/wzfe9/fCysrV/WKgpnAu1XVOblBEUQXJ/T5YkMi6YZhSIAYdKSQSHNGRrw5p50nd2gg38bREWhFFkCTKST+MCyMXaYg1RBFoJbgFJ2dBUqTL/8VZbDirCzeISjOFFReetZ9VFiNpVshMnEVGtSplkdxRqDFuwu+2GQr5iS8zKSUkXn5nzyt0pvYEl/OV827EZH7EE2/wbm055i19aRCu4AwnKry0NwgvrUAK64khK/F1kkLEK++TFFWlQ60sSmInmMj7E/ziPOqExEBVNeuLeqG5uopR5WRorj9rCeQ4XtK/+NZTbI70RVI/3lzNHfLb3fba/B2ELhbKZvmTyGayPidGWx81OCrUr6UqXmyL+BwOGEOKk1r6iwVlW+Zf0eGKP7H5Zt717HfZMF0FArzpyT9j16lXcGDiFJ7a9C4ufPmectuVz/6AB7Z9HJOMUXCc/WScp866mUt3/aQsd9EzP2L7Jb+IxLHzgyXakRgaInHERHF+AhhchDNiUEaRYZ2lRkFGKzCRIhbB4qSkUWTJjCI2jgONIkWsFWkMqRG0hki5RYxIO+JEKWGmX4vitAJhJSTIF6K+BqsHDamx+FiT/52Phx5/VDUJHA2p8RrwVeAO4DkgA84EPgX8GpAA/zPQAv7eiDoaNDhqDAyBjtdq45BDDDO7V0WotMM2aZ6DuSHFHjznA1z13A9Z091f5t38xJf4L+/9+0x1NrCmu6/MP+uNx2jPHKA7tjasxOZESb66g1ZI7v9BiQvRWlhzFM5GJScWxILEgjYKG+WkgRUSG5FphckUtuXIkDjR+eDHWVJEkSKJnfWG1pDEjtCItMqJDIWOKO+rk00UPiW0O5Y44iQzQmYUkkctKSQwqbFYU0QzsaUD0Cx1fhKstWTGjRytWGwuOXHe4auV9yoEa0VqXPizfz8gPXnk+v+GLDNhBJEyNGtpBzDCaVjlcHOUJYJrqHL3yc8X/+HIrUlU3bdF0Y6K7PDrKSQZQYukdNmBx4DV7CtCy5/A8GLoWeb/H9UgT0qLimFWI4OGHxLml20PZTeDVjXipb18z5IjkKWAf6GGGpwAXPHSbcH3oQ5CR+y7kFjk6eOqRGOlsXAY9vwdb2Ohsn/2GlXPmmdNc241OuLObZ/hkw/+uzLvlIO7ueDle9m5+Qbu2/bJgNQY609x6XO38dD5H60qsfDolg8EpMbkzF7O3n0fz599AxhxTkI90lZ77zYpQrkW8hTriHKlFVHhQ8q6vtfEmjgWTCbEseun41iTZZooEiLtfG9EkQsJq4A4yq0zlXu3Tnc1Kx2N/KTBXGhIjcVHJ//bn0dZn8Q4GvHb/cBZIpLW8h8Evq6U+rfAD4F1wO8qpb4kIg8f4TE2H2b7qXk7GrxDsazkJ8NWpAt/EIcdJs2z3cW8zZvEZUmHuy74DB95+ItlsdP2PcfWV+/nZ5f8Cp/Y/m+83YX3PfiHfO/Gv1kNKnOrinyK50Z1kjspKybh+QTcalv6Y3Bmro6x0eKsJPAcYWrtPKtnkUL6uYNNxMlPtAsjF8eOHFG5ZUaW5RYbcWE94NqltfPibkylYc6MCzVbhF4VwOQyExFnjZFmlaTE+GnjnKBaK4iR0vlnJS/Jv5dSE1tJTqSSn5zxTCgjmJ04gUPjJyGlk9Daar9PVgjhxLwwHfYmzQNGD761gZ9PVXeQ7xExtQ15/vB6StLBn/iX5esEjbdv9WXwuAs0oKscc3rXtk6QSFg+ID/ytMVWRIytypZkxlBZkO9Hw78fQ86zTiQBpxx4ic17nwnOZ6iD0ONFaDSSkyNCIz9ZOCzLq3iUjZrPc7Fz0/W865nvcPKhV8q8m5/8Ck+fcS1vrT2T5zZezrlvPFJuu/rp7/DIlg+UsjSAtzacw2snbOW0vc+WeZc+9X2eO+tdpaWLyt9L1rr3G6qKjlI4AcfkbdbO5waZBhG0cpG9MvL3GyCiMMZZRLp+NV+YMG4RIlPu0FGEC++a+zaa7S3LO9ygwYJh5dN2CwSlVKyUkgX4/Eat6m7+dz5itraXPuKA0iIyPYTQ8LffB/y1/Kvy0kdyjJfn+gCvH2mdDRosFg5PXBxm/yPYPRhAifD4mbewdyJc7b35ya/w9ObrmW1NBvnnvbKdOHOvCjdoKVbq/Um3lBYR5UTeusmfZI4IEJPrPkSwmbNwcESBxRpnCZFmliy1ZMaSZZZ+v/qkqdDrWbpdQ7dr6fWEbv6ZnhFmZoXZrvs+2xVmukKvL3S77nuvDzOzNk8Ls7OunjR1dfZ6hix1f/t9Q5YZev2MNE+nvYysb0hTQ9bPMJkrn6V5Ov8YYzCZzdMWYyzWGNa/tpNWLzSKe+689+a+OCzW2JIYCdIFeSI2/24xxmCNu3ZiwvLBR6QcsBYfY0xZjzXVx2QGKdtR+/j3VZwsyG0rngNbPBzB8Qt7XBf6lKEf/3kJjnEs/7zzHmz73J+iTbaIbFLLD9o5ov5g+ZMaGeRZdBTnGZIqFQFy9Qs/Dp6Xqfa6ykHoccRQ+UmDBkuMlfo4Hq7dCoUozR0X/mKQv37mLS5/7ieAcN+2Twbb1szuZdtLd4X8pgiPnPfhoNzmNx7nhH27q/d1/rewuiv7db/vtuKkl6lgMyn7NdfnFf21S6ep+/T7ll7P0usbl+5bZvP+ut/P++keZX/c7a98s4RgcWMhPo2pxqpCQ2osPopg2JNzlnKY8NKLFVD6vwIH8vSQ5agGDY4NA13Eiu00Dj+RyosNhVHRwIDpxEOvcdGLP+fuC/5ckK/F8p6H/mM52xLyybbYcqJNMNGtPhVpYcuQpyYz1Se1mLQgB0xJGqR9Ryz0+45k6HYzer2MXkloGGa7hm7XMDNr6fYss11Lt2vp9sSRF7PCbNcy07X5d8PsrGV21idGbF63CQmUnqXfc+1w7clcJJScrCjbmxlHwqT5eaX5JzNY72NSy2V3/IcB6cnDV30uIBYGPh7xIEY8YiIs4wZBNiAvHOFhEWMQa8p7Qj4Zx5+Ql/nFffSJASnrLyfxVgICqyRegjpzIiZ/bvxt9XIlaSPHng4JiupTEAWhFY1P2oRpymsQEjtlfdaGNzP4beIdI88tEvUZzYjfaKc/xYWv3BvkPXzWe9xKrEcILbSVxuB7Zc5mNpgDjZXGwmHY87fk3fdRH3/u50Lyip899UpeOWFrsO2Gp75J0p/l5RO38fKJ5wfbrtv5TVSNaH1m07uYaYfy0Uue+p73bq/6Zr+/MaYg6PNP/j3Lv2d5P532HcmfpoZ+r/r0upkjNbomX0DIPz3DTL6gMDtrXB896/ruBg1WMxpSI4eIZLioI8f6+Vqt6pfzvxNKqfWHaUYh7XhLjs1J6Ejk51lEPzljMY7R4J2NUfKT+iB+5TDklmKGU0ykAnjyk4DzEOGp06/hjXVnBcVv2PE1Hj3r3fTiTpB/4Yt3ICZ19XjRPeor7VWeN6nLV6ILqwJjLFaktFAwxSS9+J5ZstQRAVlWkCCSEwxue9qvVoPS1JSrQ72e+zhywg2cijK9ns1Xkqp0v2/o91xY1jS1pP1q4OYIDJsTFZU1g7Mwyc8jKwaBprQ88c+ntNTIMk7f/VBwTQ+uPZ3ZZKK0uigHkYUVRp3Y8AmOOoHhWW4M7ltFZimtQqzNSYkqXRIhBUlVWlh40hsrjijxLDCK+259wsNWkVxKYoPh6eDZKa07jiXtEQ/Fr0OE3B46P46Xzn8PpQTG2oG0CIFlSmW5gcsr76p49flEynzIEB/CZS/9nMRWxo1GRTx85nvzrd5vcLEgXsQTPPlJg3lj5fQjyx/Lkh46BvnJ0EUIvCxxB7j9ol8JNo/3D3HtM98F4L7zQ2uNE6Ze5/yX7wkIz0zHPHbu+4NyFzz/M5LudEXceqS4b9lXWq35fZBHqhf7OFJfyj4yS43zWZWZajEgrRYAiv46zfvdft/ST1c+qeF3QQv1abB60JAaHkRk5wJ8DtSqfdJLXzDq2EqpGNiSf92x0OdWP9wi19+gQYXaai611cnlj8P8XLxxk3im+W5Xzc8u+qWg+NrZvVz+wk95YOvHgvzYZtzy2H+tjjpitXlghdzPs9Ugv7LkqMxbnYVDMSEXF0o1LQZFhixzg6Rez9D3B0Z9txrU7xXERmHh4UtYnB+Nft+VzzJXrhhw9fOVpiyzpdykXJHKiQmTZZjMVtYmJXFQEAqhjMQYU5IE5+78MZEN1XePX/LJAWIgIInqlgyexCQkk0IrgiDf1u6HR1ZIfu1LiYg3zvb9hARWFSP+1a0mhso25kgv5Me3IPGfQ/+ZnWsFvR52tqoH72/x3FckhvgkTVGkVi6sc2QTUGK56sWfBnk7T7uG6c660TstFpqIJw2WKVbm4+jeDqEllE+LSvlXEF4+YSvPnHplUMO1u77PRHc/z228nDfWnRlse9fOb4DYYGTw2JYPYFU1pWplPS58/rZam6jIkByVpV2+zes3iqhgjsyQvK+uFgOy1JD2TE5iGNJUSklKsQDR75nye9pf+aRGgwZzoSE1Fh93eOn3zFHuGir5yZ1zlDsm5ORJYU/36mIdp0EDHwNzi6UkNY7p0HPsLLUPbvDywsmX8NJJIZ/5rqe+yfZzP0yqwxBrl+/6kVulh0H/B/5kz5us+qs5hRm/LUgC46Uz40iMzJCmWSlFKWQeaT8j7WfOtLWQpXQz97df6HdNKRkprDWqv7lJbM/kGt+sNJ118hKbfy+ObUuSpfCPkWW+fMZZaTgrDDeoK8iY0ieGkdLfxaUP/1lwLa2KePyCj1TWD/lqWEU4FNeqko2ERIf1yAhbuw81ciOwGBjlY8J6+9iS/BqQddjhaX/QO4pwGZX2iYECYYQiv+yRpWVeaY8QCZ7r6rcjwaSj4Dfqud5pFPegMOc4rOSkmugAbHnjUdbNhqF/HzwnXG09HvT/SqJ3lyMa+cnCYdizeNy76vrP2CMpgz7wCBGcR72vFrj9wl/CpykS0+fGHV8Dpbhn2y8EdZ108BW2vvpAUOeh8RPZdcY1QblLn/6BkyWW775CTjrE4q9mSWjsoDTFGovpu37b5H6n0nzBwElSMvfpOxmp68Orfrm/GkiNwTWyY/o0L+DVhYbUWHzcRuXD4tfV6B74N7z01xaxPZ8HCvHf7Yt4nAYNSiyriCjHdOgji4ji0oqfXRhaa4z3p7ju2e/y6DnvDfITk3LDk3+W+2KoJsH+KnQ+Nas6ZarJoS9/qJu1Fs4ri08pwcgq0iDLCilFJfsoiI9igJVlhjSzpYSksrqw9Gs+MJyprFtRsqbw7WGdnw9TERomMx5ZYao2BCa5lVWGNW5wWGxPZg6yYd9LwbV8beNFCFHo/yKvR4K8Sjbi+ywJ9yO4dv6+g/kheVKRFgTpgrQoJCGl008Znh4gVAp5B1T+OgTPemRIemBQV9RPNcCfI10+c971mFdaZO60hERNMOIsCZL8xkr1xz3+3jWYA8X5Fid1zfM/Cp+XdWfx6rotQ8nJxUQjOTk2SHPtFgyjerfQ4uH4QokKyfz838IeBPauOZ3Hznp3kH3pi7dzwsFXeOb0q3l7TajWvn7H14N3FCI8tDV0GLrh0Gtsfu2RkJCpyVECwsP/7vl4Kvs8Y8p+zxR9TUmKmFxKmvevhUTF91FlzMJetyVAKPNcmE+D1YOG1FhkiEgf+Ff51wuBv1Mvo5S6Afit/OvtIjIQElUpdbYXYeW2Ids3KKXeO1dblFLXAf9X0TTg38xRvEGDBkeLvJ8sOMzXhpi3Xv3s93lgy0cwKgrzn/mem9B6xE+xau2+FANMqcgN601y88FTNWH3fC+Uco5iEu75gDCFP47K10aWW0oUZq5p4bAzt7QoHHn2c2sMU0RWKUiOMl9I0wzjyUZKmYkx1d8sC3TFQdoW/kFM6Ty1mBBf8dCfDgzI77vy86GVwBDLF0cShddtmFVMYBkzl1RkWP2jPrX2cJi0x2IFz5a/kknZ7sOlvTxXGV7Fo9NFe7wLM6+0VGlq+aO2VY2r/pZNLrMGr0ewy1AoTjnwImft2RnkPnj2B1zkZM+a4/B1LRAaa4MGyxG190X1W115mE80lDu3fYY0qgIVarHc8sSXEIG7t306KH/KgRc597UHg9foqydfwNvrNgflLn/6+2EfQvUSE3ziF0cE59aHWCpiI7dQNFn+KdOFTDMPiW6qfjvz03l/bleBT40GDeZCQ2ocH/xTKuec/7tS6t8qpd6nlLpeKfU/Aj8EYlwY1795lMdYB/xUKfWIUur3lFKfVkpdq5S6Sin1GaXUH+KkMOvz8v9MRLYf9Rk1aHAEGBgGLeXq2jEd+sh29idHP7volwPNbWJTbtj5DR47O1wdapke1zz1rYHJbGHSX672B9IIW1t9qDm8rJu2FqFQvTCpWSlPKRyOeeFVMxcKNs01vannb6McNJVSlor4qAZdWWBiW0lJCisRF0XErTyJS9fJjUJu4llFFFYV5z17W3ANu60JXt94YWkNUK721ywrHCFUERaBzGMEGTFXRJBiX+URCBLUNWTVc8RvYS7ZxnwkHEFdxedISJchn4WGUtVko3rUh5xfwef4pIrIwEylbGNR58D1cBuufe6HQe5Uey07Tr9uRCOP/vzqbRt2LVfmFHH5oJGfLB4GfvP++2apcJTHn7Pd+btzemwD288NrS3Oe/0hNr+9g6fOuI49k6cF2wrfGhVhoXh4y4eCMme/+jBrD71W9Q9FfzPUys9zFJqT9yMlKcb1184yIyv737SUk3q+NvIwsP1s5ZMaA7z8AnwarB40pMZxgIgcAj4BPJNn/bfArcDdwD/ChXs9CHxORB4+xsNdBvx/gW8A9wEP4OQsvwkkgAH+PvB3j/E4DRrMG8tKflJg1ILwnCjafZidh5ze3rVn8OhZ7wnyLnnpDh7bfAtGha/i6576FpKZYHJdDijrk+5ilYeC4BA32UeweM41i4gTxcTY9yWRW3WY1I/wIS7KSG7SWhASpYNPY0ppSUFUZJ72N8sqCwuTVYRLZaFRRDCpHJcWgzvjeYivx5Qv/WlY57Byw1u7GOseDK7frrNuCC0qBvxQSHWdagPMIozu0BCmhVSjkIccUUQQl67kGR6xUrbNv9/5fS7vL2V5vDbjnc8oMsZV7GtJ8tH1EaZDcmYhPj4x4z3jFI5U3bna2nUtChWSk6HXrPwZhr/Tydl9XPhqaAz54Nnvx0QJZfHFhDQRTxYSi0G2NXBYlv32MTXBfxcMqVPgvq2fYLq1Jtj8vsf/FAHurVlrnLbvOc564zFyVgQRYceZN9FNxr2qhUufKaRuUln0VUxtma73NWWkFPGlknn/VC4EVJLRIAx5EUnMC/FuVwGp0aDBXGhIjeMEEXkWuBJHJmwH9gMzwFPAvwAuE5FvH8MhXgV+GfjnOIuM54FDQAq8jXM++g+BrSLye9KMBBq8EzBSJDw4+ZvfbCYfhAxMHIcUo24SL9yx7TP0o7bXPOHmnV9j5+Ybgt3b2SxX7vrBPNpTVO2v/kpp1upHQwFCnw9CaRlh8zCwIuRkg2dJYW25OlSULXxlVIMmJzlxJrIuX8owdCYPSefIEF8HHGiG634uvEgkocVCSFZc9+AfB7dZgHsu/5WAwKlPer1bSbFKJ/6AcygxUNwzNdTyYVREkOD+eJ/696K99XG38k0Zyr9H86lDHUW6eP6P3lHo6E9BWLhPKa/xblf9uo6SnFTSHH8XV+CqF24lkkpbnuoWD5/13iHXZ5HRRDxpsAKxEh/Von+v95NVgeKP0Es63LntM8H+Gw+8yCW772LHpuvZN3FKsO36nV8v30kKyOIOT5z9nqDMxc/dRpTOVq/u/JhFf1OSuUV/lL8MfbK6JGut5BaLed9cWyQoP6V/DRMsTKx0LByhPtCdNFgFaEiN4wgRmRaR/11ErhWRDSIyISIXiMjfFpEXD7PvCyKi8s97h2zvi8hXROR/EJFbRORcEVkrIi0ROVlEbhaR/0lEXlis82vQYBQG+o0l7kmk3iIZ0sYjqA2GrxjW82baa7nvvI8Heee8+RhPnXZtIE0BuGHH1waPMmwyWJdUBB+bD4LCSCHikRaFaastSIpSMuINhoIBku/gs9peOjLL6lYYlVVIWaZ0YGkDi4OKsCisStyZ+xPlynBAwBo2vfZocJ32rzmV2c764Pr4A8Tgg2DEBHnlpJrKh4St7VNg1PTfn9CHGD4jqMaz4bECAscnrY7wYa0GcOG1PFJioronR0qIjIIaLOdMF0LipziJoecm3n5Dftt5LkCSdbnypduCLY9vupHZZE11fscBzTh64dDITxYPw/rtJZ8EHtXx6zuNWIjIP4+c+R7enjw92Hzzk18hthn3nv+pIP+MPc9w5huPB3U+suWDiPde66TTbHvhDkr56LC+urAQ9Eh+hKCvrqKamZK4KCWdRT+chURH5vXTWWOp0WCVoyE1GjRosOhYbmasauhE6uhrG5rlLwh5A6jtWz7KVHt9UPymnV/l6dPCcHCddIZLdv04WFIQ728w6RywMHCyAd+CwFoblsvlHqXGVzyiQSqLjsKxaCELKVeB8vwqdKyLnmIK6UpW1WeMUEQQKWQmIlKazbr2eeRD3qbCsqQib7y2Ipy/6zZimwXX7dHzPxYMFpE86kh5PbxrZsV51x8iIUGktMYYKSHxV3sK0qCQpZTkS2gtUBEUPllQfZS7CIDkP5N6On+s8gnG/FaiiucmOI0jS/ucxgIhIGvq173IgyCySVG+TrQEkhPxW1q1+NLdd9JJZ4I23HfOB48roQGN5GQhMYxMbrAwWG79tmvD4lciUcRtF38uyFvT3cc1z3yXJzffyIGxk4JtNz75Z+X7B4QDkxt5/tTLgzKXP/PDqs9AgneO6zcYkBOWIWDFk6D4/XlNohLIUwrn354V5OEiRK0E2HxMs5CfBqsHDanRoEGDBscI5/AwNIUvVoyl+Jd3nmnc5o4L/1yw/8YDL/HSyRdga4Otm574ymEmkmrk+KyY9Pqra75finKSbwsZSEU0hCFMbW5pUREF1aDJlNuNyZyPClMNvgqrjiokXeUrowjLWjn99HxoiFCXmQyzHrjiiW8G52xUxKPnfai65jWphPWcuoVmwCX/EJBDxYVTSg3mF+RRmfbqDCLX1EipwibDSw/QBepw1g9V4wesT4Z+CpLAP4Q6sjSLi+AqeNfeb4dPaAxeMk9ygkfm5NA247rnvh8c85mNl7Nv8tSFPpX5YTlMEBs0OEKslsf2cOfx/CmX8cLJFwd51z7zHTrdg9y9LbTWOH3fLs5+4xGgenXVHYaefOAlznjLi7hUe5WX44WAhK5IjmrxwSPUiz7Z80dVfs8lKmJNbqlpPeJl5cKNTRb202D1oCE1GjRosOgY6EqXmB0fMFE/puYUK+BD6hwyZxURHj/zFt6qx71/+ts8V1vdGe8f4sIXfl5OxMvjSG3Q40/+ayatBRHgr9b4fyvHoNXKTuHss/LBIYETsmKQVJnFCr6/DWcGa7ztxvORUREX+O2WKj+QmQST/yo/7k1z4oHdwfV69eQLEB1Vq/clsUNQnztmZbFRQHn3cEB6UZUK0lW1wwmF+aC6peG+c0Y8Keb9R/Jbmu+EJG9QIIU5hvThrk1wneZzPvM65bDQha/ex7rZvUHe/ed+xCVWyUTtnYhGfrJ4GNZvH/euu357g3f7ILk5PxzmPAREKX56yeeDhYaW6XPLzq/yxOab2D9+crDLTU9+FbGmbOALGy9h38TGoMzlz/wgaHOdKC+sJH1fUr6j78BJtg0XBer9eOmk20jga6NBg9WMhtRo0KDBomOUGWt9gnO8TIkXXX5ymGKiNLfXzFvXzu7lrbWbkFp9737sT6A0J5DagE4KpQK+WWsZMaNczaEml/DyCFeAyoHSCBNWn+goyQ7rBmNFFJTK4sMbmBVmtP5EvVamascQksCXn1jhuke+PHDl7770l4Lr4JMYxSi2tASAyudIOYis6h8lISmvsc8siOVYooYU9RTfy8gfzJEuEkoNH9OPOtg8PgVJc+QalRHpev35tiLyTpBfNv/w74KqjM9aDStouf7Z7wZZL2/Yyu4Tzq92XwTMSW4d99nh6sTx6jPeiThcv72k8Pu8I/4BH6bPzje/vWYzj515S7Dpkpfu4JQDL3HXtl8I8k/d/zznvv6wV0c0YK2x9ZX7mZjekxPqo6NrldfXcxQ64BPKs5oM8mQYuVF9Vjr8/ndBPov18m+wJGhIjQYNGhx/eJPMckKz1IOkY8CA/GQYyjmoK/f8KZfx4kkXBkWu3vUjXjrpgiBvoneQi5+/bY6DD36vImaEB/dXt+qDA4TQiVlpwupWh/AkKUGkEnHlbOYGZGW4uXzAUJRBqMoXK04iYT3eClW5aiUyOKATYdvzPwtOu5tM8NrJFw4duOD9LZ67kkijPvkurqMfnYIaC+E+JbExcCPmEzXE/4S3aiGkIf40f9gx57KwKK7REbdjRLqOUduG7V9/RkdKTnyCqDZQPe/1hzlp6rUg756tHz++tvT+Ow9Wjx1/g3cO6uTkcui3j/Lwc/78iqEJwh0XfJZ+1Kn2Q/jAY3/Mk5uuH7DEuOnJrwa/8R1n30LqRTvTYrls149d3VIcIe+Py/6o6g/Kvlq8/iYnOPD7y6Bf9t7lQ0KiN2iwmtGQGg0aNFgSuD7d62Rrk83FPbbUM46tNplnu/1ySnHbJZ8PLDNapsdsMjFgrXHL4/91aCPLa+hPyL3Vq8CqoPh4fjXcAMmGKz513xY1r+xDP8FxqomoH5Y1IDQ8fxm+LCSYite++lYXJ+x7nrHeweBaPLP5XcE5kl+boXfFzxQ1sCkfQoYT6nmgNuZ3n8DD5jwmsiPDEPv3cJ7WEcV+hznMkcYsWSgopeYvH5Ahv9thhQayhBue/U6Q9eaaTew6+bJh/MfioJlMLBoa+ckion5t68/xEj3XR7q6PviISI0AHfIiyLOm2+u46/xBHxoXvXIvd13wC0H+KQdeZMsrD5R1d5MJdpx1U1DmkuduJTJp3pdRjQm8ftNJUPxIYCFxIdazbKwTG75MVMK+drX41LAL+Gl8aqwuNKRGgwYNlgRL6Vl9QH4Cw8c38xoDBME8R+80JHrlm+vO4tGz3h3kXfDadl4+YWuQN96f4tJdP6mOMWS1zA1aBjW5waqNP2gqCYtwcFTX6RbWGqWfDc+s1be0COQqPqFRG3iNdgAqw/P9laf8780P/ueBq37npZ+rVregkjKUg0Vqx2GAkKnIn2K0U9xPPz2CvPBIl8BL/dxPBXNW6N/nop48XR5jRDq4Bt51WU4ICCOfz/IH4QUxRBFmd371Fjjr7R2cduCFYPvdWz4WPCvHDcvwHqx0LMfn+h2DJSKUgv77KJrgWz5UfcPo8g+c+yH2TZwS5L37iS/x7MYr2DN5WpB/4w7nW6PoZx8694PB9oneQbbuvqdoyPB+fERfyIh83+dG0Jd7Drj9fqFBg9WKhtRo0KDBssJSrrwNyBbmtxfVZLciDYYVUwye388v+Cy9eCzIi01/IBLKzU98uRqAMXpuV6wSFZN1v7Cb+OZ5VCO5csDkD4xqBEhwfrk8xWa2kqkEoVr9ifUgsVJMVKvB5RD5SU2KUliSYDI2v/lEcM77J0+l214bno93XqUlSEBYeZPpoYzWXPYLtXYXn7L0kUUNCY4+YnBbH3kvpBxkqTF4rgQPeND2kacx5NqIcPPT3whK7Rs/hZ218MnHDcv4HjRosCJxxAsPI0rMUcTohFsv+dUgb7J3gOuf+faAb42TD+5m2yv35XUq9qzbzO6TQ5npVU9/ryScq3f/6BMp+hbfosMnZfxyJSmM14d6ffRKx0jy5xg+DVYPGlKjQYMGS4KBrqQ2IT3eGBhUyNwDjWE1DNRYOxeRauBRFJ9pr+XubZ8Oyp124EXeWHdWkDeWTnPlM98vGlYNbupz8Zz4qFQctYmi52yzXAX3V6xq8pMir7RqmMe/AgOmr2W7K/uFQJ5RPxcIaxS4Zse30DXS6L4LPh2U8W+J3x5/ABnmDofPJQS8QtnGESPhwIxkRCVDiAqW6NkPMOxeLNbHP+YxN7Tyr1HgnLceZ9O+Z4O97t3yURchp+EXVgWWM1m36rFc+uqFqPEwVe7aeDm7Nl4W5F3z7A94c92ZA5HMbn7yKyiTlf3/Q1s+HGzfuP8FznhrZ0hWD3k/hv1mQVSEcpT6AoAv8wwIjlqv16DBakRDajRo0GBJsJTyk2FY+IgogxUEKyneKsH2cz7I3prTscnZvQPWGjfu+KoTglaMhWcl4JEo/mS5zPKGNnnaDoSQG+XIMhw8+U5Dh35kLpnJiPxAZlLJYyqyxv25/NkfBtck1Qk7zn63R8x4ZE1+L4oxo08kKFeIWnaNvBg8F1usmg277UMqKceo9WsStFcWXipyhARDcQ+Cc12gdP1TdwwbtHmeJ1VdYsmvmbt+7jXiNt7y1NeDvfePncRjm26a57GOHiNXAJcDabXK0Ky0LiGWg/wERpOlR1DjfDb/9OJfxaiozI7E8N4n/pQ7LvhsUHzD9Jtc+sLtrmkCz552Fftr8pWrn/7uQHuHWqxB1bfLYJmq3x4hP/FJj1XgU8PKwn8arB40pEaDBg2WFVbHypscUUQUiRJuu+TzwaY1/YPsrel1O9ksVz37vbnrKiZ5ftonOHySwB80EQ6mggnoEC/rdZlKQST4zkH9CbObiA6Rn3hpfzXJ/1sc44S9zzMxuy847V2nX40oNTBA9CUIxSR3SKHaxTh2OYlAEE2kXI1j7udhIaQiR2Jya2sEVnGyCxXx5Giinxzu4gaEU+1ehnUqtr7xyIAvjTvP+6SblNSIskWDd+/zRi7yARs0eGei3n8dKeYTDWXv5Ea2nxtaXWx541FAeHXDliD/hp1fJ856rmVK8eDW2n6vPcj6Q6+VPd6c5FzQj1L1TWW/6hG8Mqw/99IrHHMuphzlp8HqQUNqNGjQYEkw0JXUJ+DHGVJv0TE2Y96DiHwwsmvjFbxw8sXBpnVTbwxYa9yw4+uIsd7ErtbmcnAjpQXASIuLnFDA4vnCdOQDki9j5N9t4YR0YDLsPpUjMqlMZPPyLs8jOQYIj7D9Qz/Aux/+4wEHoT+//Av5QK74yCCpkJcODuVPkMu2zHOy7e/sX+shxRdlGutfF8vAdSoGtnNhqLPc44wjin4S4DC/K7Hc/PTXg6y9Ext5/Iwbag04ikMfBqth4rCSsDpI8BUKf5K9hBNnKToA7/tc7RgeDWVEp1MVAYG7z/sUU+11waYPPPZfuKsmIZ3sHeDKZ39Ydg+Pnfluusl4UOaqp79X9rnuGLX+ZAj5PChHCTuysu8eWDyoEawNGqxCNKRGgwYNlgTvRPnJnMWU4tZLfhWrqtdygmGqsz7YpZ11ue6pb+aDnCK3NhAbMi4bKQOwVdjW0KS1nh4iU6lJTgryw0qNWJhDZmJ96wgG21gSJFmfzW89GVyL/ZOncqhzYrVqlX8qaUkx6C5IoOI65BepPO6IafIc5MUwucWCDBxHkDr161dFPJFaxBP3d76RQpYS85sEjZhkMJpA2PbaA2w8uDvIu+O8TyEqOizZs2DwJyoNFg0NibSEqL8blwgLRdBWhP3o0+knY/z04tCqcm13L2e+tYPnT7kkyL/u6e/Q6U8BkCUdHjnn/cH2i1/8GZ3eoYqkkCGyPa+/rLr36vvQfnhUP70KfisjuuRj+jRYPWhIjQYNGiwrrI6Vt/nLTxTVavWetWfw8NnvC4qs7e4bsNa4/ulvgc2gJAH8Tjqf3Jb/GDq5DSZ33oQfBts9UKeUNXtH8VaEqFaKKsuRqr5ApoCq6vAm7/6IQ0R4145vDjoIPf+TRQMZmPgG0hJq10rK5o1mNKpNPkFjvVHQQkYXOZxcZPD05iH7WAU/pfBRCC/CsGsemZT37PyzIO+tydPZcdp1bp9R1jgLhIE2rYr3WYMGrKhnee738aht/nt09N47Tn8XL550UZB3zXM/5NEzbwnyOtkM1z39nfL7w1s+FPjkiG3KZc/92H0Rd/x6u8Pv4aJFQWD7/XJhpVdZq0jwr0GD1YyG1GjQoMHywFwTuiVpzxyf+ewu1aCi+AwbJ9UnrXds+yzTrTVBmTRqBd8T0+d9j/1JbaJXfYJJcEFADCxRQGneSnWdq+te8RIUq/7+p1wJyssVZrGeY07//vlkSHFMYLgUZcgq9xW7fhRcg0wnPHHWu4urWLumtclw+XfIzasb1QxZwhmQkxztMzniearOe+jprFqE8pPD/djmd1GueuFWNsy8FeTdcd4vIIUF1CJJTgbeVytoAriSsTpI8FWCJeqrh03Wj23cIHOfilL88NJfI9NxmaXFcs1zP2LHGdcFRa/c9UMmZ/ciAlOdDezcfH2w/Ypnf0RkekWja6+/kOAXIbSoZNCSoy4nddsHurQVCyuCtQv4WQ0XpUGJhtRo0KDBskE5Yaz1wEtpNhlMWI5gtaNcJfFJAgbPJTAjFaGbjHPbRZ8LyrRNb8Ba44rnf0JiukOOPMwz/DCiyJs0epPryuQ194dR+tWoTdqKctYGfjuK41F3xiUMtKF00jVkxFXKQqyw6fXHGesdDLY/vek60IowgkkxGK3aDFQDF6WquzdA8uT75Mc+JjlJjbAoznV09BNWiMOyUcTD0X3857C6BVJe/+o3ZGttGI5Of4obn/l2kLd7w1aeOvWqYz7zeWGATWN1zCSWMVaDSf2qwXKKhlL8ParH4/DnsXdiI/du/XiQd8beZ3lr7ebAGiOxKbc88eWyOdu3fDTYZ6J3gG0v3T3w3vPll6PkKOWihAzm2SAaiuujm1AfDVY7GlKjQYMGyxf5gHV1rMbNU5ICPLH5JnafcH5t7xCRWD76wB8w/6XnuqSkqrRuvloesLAiqOdZj9rxB46Sr5oVk9PCGsMjgwakFB6vEjTKa++7H/uTAQeht136hbzYMJkJQftCuUvYbIs3kfYmo8cSgSSwfvFu3Lwjgizjx10EbLn6J4dJz/2Bqlx9BjJa2jP64tz09DfpZDNB3q0Xfo7S0miRMOezsireXQ0arDwERPsRYj4/23u2fpJ942Go1muf/T5PbgodEl+8+0427n0ORHhr/Vm8eHJNuvL0d0BMfty55Cdzfxe/Mx3Rd694HKZPOdJPQzqvLjSkRoMGDZYNhnYvvnXAccaAVcYxNmP+chrFjy77tcBpaIRga6/s81/ZztjM3tri8JBVcWd+UMv2rCWKTzEhrZm4Bqs+/orRMAegvkMyb2AVhnmtGjxg+yJhotM9wCn7XwjO+431Z9PtrAvPuxzIDVxK/wYMrKQrb4cjnn7WL7N33strMDnkmTgqywpXmxtHy0B6KFs1rDXBTZIR+UeGE6Ze58oXbwvynjjtOl5bf+68/fYeLRrJydJhdRDeqwQjycvj3IyizyubdaTtqBOtw1/iJkr40aV/IcgbS6dpp9P04k6Q/77H/kvZhu1bPxZsO/HQq2x99cHB4/nEhNdnV31YfTtln+0vVAQSlRUOsQv/abB60JAaDRo0WDYYGhFlCQetSxIRJS/69tpNbN8SxrbX2Fox4ZP3/+tjW60YFfK1lh4gOrClRYIfwWRA8+sPpkoioxijCXgyj/CYjgh5z6ODYVx/dsmvVAROeSwCfWzFjUh4XK89Yo9iRFMMHOtyEs83yOJbXRw5GTFgolyL3HK4dBGady6yYr6OU4ttIrIwzlat8OHH/hNRvtoJkOmY2y/4xaOrb54YmCisgknDSsNqmKitJiio3ulL1oaF6bfnEw3lhVMuZefp1wZ557/+EM/UJG+b9j7N+a9uB+D5jZfx5trNwfbrnvpm3pfNLTcZKkfxJaBI8Jou++fB5YMGDVYdGlKjQYMGywYDA9RiNX1VrMbNX36i8n93bfsMhzobgm113xqb9zzFiQfC8JVHIkkZMGflMNFP8oGUkmrfYhBZXyEKxlCeEUMwQvQmuANjLrGc//J9QdZsaw27T7kY33KgqHgumcnAcYec5+FQDhqH7X8cH9GQIzo8cTWMiJhP9JT5yj6OFkqpBZmUXvzKXZy1Z2eQd//ZH+Rg58RjrnteaCbWS4KG0FhijHp/LnF/Pey5OLoxRNWLzLX7jy/588wmE0He2W8+wYGx8P3znif+K5FJQSnu3fapYNup+57nzDcep/6enVNuUvbLxRs+t97wFxNk4ULeLgc4o1JZwM9Sn1GDhURDajRo0GD5YNjIob4aehwxsLJxjM0IJ5nuMzIiCkIadbj1kl8NtulaqxTwye2/7+07rKFDGh6Ys4bfQxPX0Lx14Fw8s1ckD5lp6/vX1om8pa/AcoLqcIhw1TPfJ7Zp0OwHt3y4MNAIz+wwEUyOeOJZM3gYKi1ZFMzH+mLUfV55OFbCcqx/iPc/+aUg70DnBO7a+snjIzlxXxpiY4mwOgjv1YPgV7BEv4mBZ8Lrn472/T3Xqcy01/GTi8N+erJ/gP0TJwd562fe4qpdPwQRnj79WvZNbAy2X/fUt+pHDccLA+dR62NtbTFhAc67QYOVhIbUaNCgwbLBXPKTpdCEDl3hGJxfDt93KD/jdqpW0YuxiQyWywckT516Nc+dfMmc7Tzp4Muc+eYTeZspJ/3hXCvU2vrnM6ckJWhTjYzwTF9DAoMB+UIgM/H2xw8yUtbhpA71QZ5REfec/4n5yUy8NvsykzmfIanaNUpasrAYJCyq0xgtB3Hl5hcRZDnjmH7P+SV735NfZjydCjb98OI/T1rTtC8aRJZ8ZfqdioWy9GmwcAh+Ccvkd+H3p74scv4YtPurjw2eOON6dp1yaZB31ts7eWvNGUHe9U99k7HuAazS3HteGD3lzLd3cNrbTwd9QDheCOUo/rmFVpE+6+/LU1a+A4n5WCYe6WexoZS6Sin195RS31NK7VZK9ZRSU0qpp5VSX1RK3bLojXiHoCE1GjRosHwxpMNZCnJjoA0+OTBysjsPmYkqPnNHT/jxpX+BNGoFNfuHVMDHHvi3A60caFyw6DNMYZvLSfz2+MRGMcCyNiA7LB5R4dUayjNGyEzK8WLY1i2vPsB4/1DQuqdPvwZ0PD+ZiQxvx7Br7Q92h7d9YJcFg09ghFY8g+04ntKQ44FjmZQKwtlvPcalL98Z5O889Wp2bbx8IZo3JxoLgaXHUvcDDVYGhi1OHNnvtyAQvK5F1Z49pfjhZb8+4CB0rB8Sru1sllue/DIK2LH5pgF5qSPyRzPow+UnXt/lkTaVn43lMW56J0IpdTvwAPAPgY8Cm4AWMAGcB/w68DOl1H9USrVGVtRgXmhIjQYNGixv1KwAytX4JeqgAyJjYEJ6hHXNc9/9Exu5Y9ufC/LqQ7I13f1c8/R3qlV973INhs2sLCIGzeiHrP6U98A7vkccqMLKgqL6ucmo8jZSWVN4JQG45dE/CfcHfnLZr5V1hRXVzuFIUD/0cbDGqFbfqgb490GGXI/ViqMlB8Z7B/nEI38U5HXjMX580RcWollDMXSFryE3lhQNubSMsUQr44dv19EQYkIeABzfesLHobETuf3CzwV5k70D7J0Iw75e9tLPOf3tp8mihO3nhZFQtrz+MCftf6lmrVG1obQ0qY1DEAblJ8VeR+MQe5nCWlnwzyKjMNV5FfiXwC8B1wE3AH8beCXf/mvAFxe7MasdDanRoEGDlYXlGBHlmKOiHB7bt3yYV9efG+TVu+Obn/wzoqyL1GodfrmqhvsrPQOmunOYufp+JkpuIeCePPmGLzPxSBV/oOjqhJP2vsiG6TeC1r584ja6nbUeeXIMMhNq57dgZMYw8qK6FoEcZ8AiAy+98q0w5oMjnlgUl8wKH3/k3zPZOxhsvn3bZ5nqrF+o5s3RDgnJ1gZLgkZ+svwRREPx+5KlxFG/Ug//Xn74rPfw0onbgrwTpt8k1UmQ96FH/wPKGh496z3MtCaDbe/KZZcD/Xa9g6V2LVVVrMyWfMyyKIT98ceQ9a1j/iwydgK/ApwpIn9TRP5MRO4XkXtE5F8AVwBP52W/0EhRjg0NqdGgQYMViaVaoRsm2oCja49Sat4RUVAR37/itzAqqrJqRWLJ+MT2fzvM2HZIad9k1X1kgA4hWNUKVoioJhVSEBO1dFBNIDOpty3c9IFHvjgQxvXHV/yGt4e/SuYTA/OUmSwokTF4jGoMHx5g7vu8esmLUTjSSWlBY131wo/Z+tZjwbZnT76Mh85878I2cC40FgJLDhFpLDVWAuaI4LFUONY21PvtcrFDab53+W/Si9pBeVHhdOvkgy9z9XM/oh93ePDcMHT7tlfu46SDLzMQnWxIk4c5RS37Ys+qI5CoNDhuEJFPisiXRLx44+H2t4H/wcv6pePTstWJhtRo0KDByoJUHfayQLl4cuTtGe5LYXRElLfXns7d5396zjrPe/1BTqiFeK2OU1uhKAZAviQFO3guUi9WOSxz21VFEBSGFzhDjNIaNlgWqQqF7RHGZ/Zy+t5ng8PvnTyNt9ec7llnVEtS4pmPzvseLOijE1plOHgXIUg3qOOwk4vas3fa3l28b+dXgiJT7XV857K/uGhEw4Cp+TKYlDVosBKwLN98RX9de7ccURVD+u0CByZO4Se1qGUt0xvwt3HTjq8xMf02D57zgWCbQrjpyT8b2m/XTyQgLsq+tjrPwrJt9Vhq5GOPhfosj3HkbV56y1I1YjWgITUaNGiwsrAcI6IUOMzAYX4RUSrHXsPqv2fLx3lz7eY52gefue//GmpfaYeQKOFxPKsJb2VnVBSYMioI3qmr2oBvqMxEeU3zV5XgIw/+PwNH++kln6+uVU1mEpz7XNYZeVt9EuTIBnn1AWxFZLhjVOTFO0U+cqwI/blUn/C3UKXXzbzFLz7wfxPbLKjn25f9JrPtNYvd2EZysszQyE+WP0YR9EvZiAGJ5VFYMQz024Tn9dimm3n61KuCfdpZN/jeMl0+8MSf0GtNsH3rR4Nt5732ABv37vL6F7/N1SJA1cdWn4HzaUjY5Q7fQejqcYCyBGhIjQYNGqwsDBkQLRcHZAMOvAYwv8HFXJIUG8V87/LfxKrRr+8Tpt/gohd/VjUjH+zUjIAZMG8t2p4n3VeppCO13QdNX31rhfoFGJSZ1J2ajc/u55w3Hw/2mmqv4/lTrwhrmofMpCRsas04lqgmdWlJ+Mg1A8cjxeh7V3yhvH/tdJpfvv9fMlGLiHPvOR/mhZMvXsRWemgmB8sKjfxk+WNYN7jU92zOhYmjrbPeHyrFDy77Daba64Jy9X5726vbOeeNR9l+7kcGfGvcvOPPakcJO+eRIx6/7z7C81juEBHsAn6Ww7gReI+X3rlkrVgFaEiNBg0arDwss4gowMiV5qOq6jD7vrH+bO7b8tGR2wE++Oh/ApMGVhDDjjEgSxnUmlBESZnrM0xaMpfMpCBZ/NIfefiPULWW/vTiXxmwzpjPdS2NUfD+HjFCiwwGWvwOk5aMsqZYwE9xHN+iJkl7fPaBf81J068HzXnupIu5bdsvHp9zbybPDRocMQZ+NaN+80uJBWhC/VwUitn2Gr53xW8F5bRYbO2qfPiRLwJw39aPB/nnvPk4Z7y1o/zuRzSrPn7jD993N5gTpyqlNs31WegDKqU08Lte1pcW+hjvJDSkRoMGDZY35juZWE6TjuMQEeXO8z/DW2vOGLm9Zfp89OEv5tWNri8wby0JiAEKZMjHUkkuQmmJfx4V31ERT8NKd7oHOff1R4KjTrfWsnPzjQNtPl4yk+raVC1e8dIS/xYiwb2fK12u/HnXeODWj0oPPjrVPfJ5Ie8+Fde505/iV+7/55y196ngNN5ccwZfv/KvIDpicVAj65oJwbJDIz9ZoVg10VAOX8nzp1zKA2d/IMjTtQ5p7exe3vf4n/DQOR8YsOy4ZcefVddrxBGDNYWhCCOMrWQsqD+N/OPhfmD3YT4Ljb+FC/EK8DUR2b4Ix3jHoCE1GjRosPKRT4BWQ0QUt9/h9zVRwreu/itkOh5Z5pLdd3DygRePgGMZJkkp8gfLVuWG117NByWcsA65XB8eYqVx+8W/XO0zJzEzZMB3jDKTUb5GVgNK1bXP+3hj3mHpUlZVxyiOZx6BXpRSc+4z2d3Pr97zT9m0f1eQf6i9ji9f89/TT8bmOMixobAoWvnTgNWLRn6y8uAM3pZfNJRjxaD8pEreftHn5vSDBXDZSz9j856d3HP+p4L8TXue5qw3HxvxHvLZYJmD3Fj513c1Qin1HuAf51/fBP7qEjZnVaAhNRo0aLDyscTykwGNrmeifzSoO/OsLa+XeHvNJn560efnaBf80t3/HDGmWnWuf4Ycd0CSMo/TGFr1CJlJGK9VGJs9wNbXHgrqm2lN8vjmm4O2DR7T85txxNYZw69vJTOZVyXLC96pzC0VYviHWnqEFcXxGCOf++aj/Pqd/yunTL0S5M8mE3zlmr/BobETFr8RSo1cJW3QoMGRY5QcZUlx+K728FUM7bMdsqjFN67+7wain9QP8ZGH/z07T7+WA2MnBvnvfvIrYM3AtbKeJaQE7/wj67tXEhbZUuNaYPNhPgsCpdTFwNeAGOgBnxORNxaq/ncqGlKjQYMGqwPLdbXnMAOkeUdEGTFAeejs9/PsxitG1j/ZO8CHHv1PAFjr6WuLpg0lNqhNggfbUJUp8ooyQ47B8MFssRL+iQd+f8Ak9+cXhuHai1WwAZmJ1/6AXBr6OITkRf08w0HpMkMwXh4uFRH8e8ZwAuNIsMg/qWGTmU5/io8/8kd8bvu/Yk1vf7DtYGcD//n6v8sb685a3IZVDVy+75UGjfxkNWApfl8jDhm8Rw/zshz0kV3vs8F/4e6bPJXvXR7616g3Y013P+974k+5a9tngvyNB17kkpfuAJX3cIdhK0oHmBL2dasBVhb+4+F1EXl5rs9CnINS6hzgh8AGwABfEJHbF6LudzoaUqNBgwYrH0ssPxmGYlBUDpBGTiqPJCLK8A3fu/w3mWqvH7nv5S/+1MlQ/Kghxadead00GPCX60tCIY88VhIBZZF5nE8+whIRTjiwm7PeejLYPNOa5NGz3zvQtqEyk8MSGQOHXd7kxWFQkEXuizdYrZ+OLI6X/4VEcX+TrMemvU/ziUf+kP/XrX+Hy165a6Ds3vGN/Ocbfpc9a04/3s1ssEzRyE9WHoa9cVfmPZy7ze6UwjJPn34N95/74Tn3u/jlu+klHfZMnhbkv/vJL9PqT4cLBSOYiuCowYLDnIducByglDod+DFwOu7u/KaIfG1pW7V6MFqM3aBBgwYrBcUkecimJRswSf2rZ1FwFG1yE3E1lNiYba/hO1f+JX7lnn82dN9ChvL7H/4XoLVXX7U93MELv0q+YO23BRBbFbP+9lGnVrcIyf9+evvvD9T9o8t+vbarBDsFk5mhZiDDjjS0GcsP4idlaH5hhaGUGjSFKdKL9diLpZPOMNafYjydYqw/RSedITE9EtPP//ZIsj6tIm16RDZDi0WJoMSixaLFMNk7wGTvwJyHfO6ki/n25b/FTHvtIp1Ufmr1h0OpFfDANGiwcjBUflIvs9Qkx2H7lHlUkb836qdy+4W/zGn7nmPTvmdH7vuRh7/IrRf/Kp94+A/KvIn+IW7a+TV+eumfD5rpjjHCp1XZFnc6q+FVVi2qLFx9xwtKqZOAHwHn5ll/XUT+43FrwDsADanRoEGD1YFhnVNunrwUg6Shq+SLGBHlxZMv5t4tH+Ndu743dHshQ/nRFSFhEAwqPYlHYNUx5Pop79rOzSk4E/5gTp772Tj79Uc56VDoM2Hf+Ck8fca14WBjYK45H5lJcS71/OUH/3qPJDJqGHkNjvIZi0zKmu4+1nT3sba716Vn9zHZO8B4/xBjOYEx1p8akAotFnpxh59c+Cs8uunm42umvhpG/+8AqCV8vzdYIAwhEpf8nh7FoYfJUUJO1BWwOuabV/9Vfv1nv8dE/+DQusbSaa584Sc8u/Fytr7xSJl/1fM/4bGz3sPbazeVB51PU5tfx9JDKbUO+AFwUZ71uyLy/1vCJq1KNKRGgwYNVh6OYMCzbAa8fsSHwxUdWSQ0Ia3KucTPL/gsm/c8xen7nxu69+Uv/pSHz3kvb83hk6CgA8qVpjkaddhzKSxorEU8PXCx18ce/sMBK43vXPPf5sdVlWznqFD4nFAsSzLDl8Ioz/9FvcwCPb7aZqybeZsNM2+xYeZN1s+8xfqZt1mTExgT/UMLc6AFgFERO0+7htu3fZaDNad5i46G0FgxWPLJb4NFwZLf09IwsOgDi857rp3m369PjZ3AV6/7G3zhrn9MbLOhZU/f/xyPn3EDmY7LMlos73/sj/nSjb8TLhTMo69eLRiMTHbs9S02lFLjwHeAq/Ksfygi/2TRD/wORENqNGjQYPUit0JY8kESBAOlw7dn2Hap/S3GMpUkxeqYr1/7/+LXfv4PWNPdP7TWz931T/n9j/yf2GGhYAuPYjX5yVytOhxcE/MoEl69N+746oDs4NUNW3h9w9Z8v7psZP4TmLp1xpJOfkbJSfxtUju/o5WQiGXd7B5OmnqNE6deY8P0m6yfeZMNM2+xdnbPcbOwOFq8PXEqj226icc23bToUpMCjeSkQYNlhGXaZ6OO1UeRIFL11a9t2MJ3rvzL/MIDvz9yj0teuZunT72K819/sMw76+0dnP/q/Tx9xnUDfWopRxnZhOa9dryhlGrhopzclGf9SxH5n5awSasaDanRoEGD1YvlMDDyseDNGaxwqrOBr1371/nVO/+3oatA4/0pfuWOf8yfvHv+/WohFwmGRMXkrzAXLsp6rfLT/iB1vLufG575dngMFN+4+q8O+M+oDne4i1c3azg2HyYLhdLa5DAGI4eX1HibxbJ+5i1OmnqVEw+9xklTr7r01Osktr8QzZ4X+lGb2dYk3WScftQmjdqkUSv/2yaNXboftTE6xqoIUQqrNKI0FkW3Ncn+8ZPZP34SWdQ+bm0fQDPgX3Fo5CerEKv2Xg6e11OnX8fPpt/k3Tv/bOReZ7/5OFPtdcECwPue+FOeP+VS+rUQsQVGWh+sgnecWLAL6VPDLlhVo/AnQOEd9lbgD5VSl8xRvi8iTy96q1YpGlKjQYMGDRYDQ8ZmxQC8knbMx6z1yPH6+nP5/uV/kU8+9AdDt2/a9yzvefxPuP2SLwxsm9cEIfdPqXJiY5RLh1E1/eI9/ye6Npp45MxbmBrPpQYLIjlZQtmJLy3x845UTiLC2u5eTjm4m1MOvcyJh151VhjTr400Wz5W9KI2h8ZO4GDnBA51NjDVWc90ay2zrUlmWpPMtiaZTdzfLGotShuOP1b+YP+diIbQaLBYEOSY+ufhj2UlHy2237P1E2yYep1LX75zaD0t26fHeJC3dnYvH3jsj/n+VX/pyBu2wrEC5Sef9dLvBx49TPkXgbMXrTWrHA2p0aBBg9WLmpRiyTGgPjhWa4LRs+QnN93IyQdfHuk49NpdP+CV9Vt55oxrjvzY9fAnR4ALdt/DxgMvBHndeJwfXvbrR+FToi7FqfLDCc8COqcY3YTDO/mcowmRSTlp6jVOObTbkRgHd3PKod2MpTML1lSAmWSSfROn5NYRJ3Ng7EQOdTZwqLOBg50T6CdjC3q85YjBgewy9bvSoME7DZ71X4Eld/Q96tVwRM0K5aOVdFTxg8t/g7XdvZz19o6he67p7acXj9HOZsu8S3ffwfMbL+OpM647kkY0aLCq0ZAaDRo0WL1YToQGxz8iys8u/CVOOvQKW94cXBxQwKcf/H3+cP3/xoHJjXMf5TDRT+aLVn+Gjz78RwMikW9d/dug9JADD6tlfpFNwnYt3nNQEhlHMCce6x/ilIMvs/HgS5xy6GVOOfgSJ069TiRmQdrUjcd5e81p7J04lX3jp7Bv4hT2jZ/M/vFT6CXjh6/gOGHJV9pXgTn2OxmN/GSVouYNe7nc44AMPayPjfn7zbI65qvX/g1++Z5/zqZ9zwwt3c5msUoHFo4ffuSLvHrCuRwaO2kerV8dELvAIV0XsK6h9Yss/YP7DkJDajRo0GDVwx+MlGFIl8EgaWFQj4hSyS9Eab511W/zF+74h5w09erAnpFY/sLP/gH/OncceqTX5EjLf+HOfzTg8+GlEy/g+VMuO6J6KpkJFKvsx9UoR/I2lOnhE3Qllg3Tb9asL15mbXffgjRjpjXJ25Onl589k6fx9prTmW6tXXaE3jAs7W+wITRWOpbLZLfBMWAwFuqyfHcFcpQFqtEnNtK4w1fe9bf45Xv/D87Yt2voHnXJZied4eMP/AFfuunvIsMWBRo0eIehITUaNGiwemEHJRLLbrh0TMqIYmJmqVsvFKfdT8b50vV/hy/c/Y/ZMP3mQA3j6TT/zc/+AV+85e8jOh8Y+atQC3TB3v34n3LKwZeDvEzHfO2avz6PvUfJTEDE5iRVUe44yEyGrPC3TY+TD72ckxcvc8qh3Zx86GVa5tgdd3bjMd5cu5m31pwRkBiz7TXHXPc7BY3kpEGDFYhlQnIMEBoy30hmcyF8//STDl9519/mc3f/U06rSTRH4cw9T3HtM9/lvvM+uQwHNwuPlWap0eD4oiE1GjRosDow38HFMhggBViQ5swttZga28Cf3PB3+cJd/4QNM4PExikHd/Obt/9PfPE9/wCjIxRqQFbhLltY9+FWSouJ5Ka3n+K6Xd8PtwHfvOqv0G8dXg6xrGQmVlg3uye3vni59H2xYeatBTnOvvGTeXPNJt5cu9l91mzmwNiJy++5XQAsyUp7IzlZNWjkJ+8ALNd7qxamtwnJVkUvGefL1/8P/Mrd/5SNB1+aVx037/war60/h5dOvsi1ableswYNFhkNqdGgQYMGxwvziIgCoETBAluTTo2dwJ/e+Dt84a5/wvohE/CTpl7jL9/6u/zhe/5XsiQMFSe1mKTFJML9FaxUprl1M911U2/wuXv+2cCpP3HGjTx72tVHeBbHd0IaZ31OOvQKJ3vSkVMO7qbjOWw7WqQ64e01Z/BGTlw4AmPTO8JRZ4FmMtrgWNAQGu8c1C2tlvq+S2FBUkQyW8A+u9ua5E9v+B0+s/3/5qw9Ow9bPhLDZ+/7V3zp+r/DqydudW3yu2zltXmFw+bjjYWsr8HqQUNqNGjQ4J2FZWLOWmJInyrOtvUYIqIMx6GxE/nTG36Hz9/1T1g/+/bA9nWze/jtW3+HP3zfP6LbmhxZZTk4KppnvbQ3iBqf3c9fvP1/Hgg/emDsRL57xW8d9Xks9GQmMiknTL/OSYde5aRDr/z/27v3OMnK+s7j3193z/RlenqYG8xwUVe5GxcBMY7ggm5EIjFqNBA0ZmUNhrCb6Lq6xLC7xH2pLyOY3WyyGFHEuHJ5bVyiiYLBqCjITVyMUVFAFAeGoZkb0z3Tl+mu3/5Rp7pPVZ2qrsupc6vPu1/nVedUnTr1VNXpOs/5nef3PNo49ZQ2Te/Q+oOTdXnMnZgeXrfU+qISxNiz5gj5wGAMpc83TkwBNBSRQpqJ43fUSGYdH7PrNzq3ekx/87L36DXf/6xetP2uFZ+5enFOb77/v+vmbZdrcuI5Vdl1XirObyzpJ2iGoAaA/pKxg3v8I6KU1TZrlcpvff/YJt388st10d0f0bqZ3XXPWzM/pd/72n/Sded8UNOjGxqXMXgNU3Wnq5X51fMH9Y5v/metXpyres6iDepzZ10hDTS/rNV6yknrhhbntGE6CF5M79DGqR3aNP2UDjswqYEYrtiUbEC712xZanXx9MRzNDlxtA4Or+t620WUeECjAFcqsYz0kwJa6bvMyHddd0yMqVjh4/aiDem2Uy7W3rHD9a9+csuKzx05dFC/ee/VuunM92vP+NblomXkMwN6jaAGABRedQea+8c26YYz/1iv/+41kT2tDy/M6NKvvU/3Pf883XnimxoGIBoFOw7f93NddPefanhxtur+kkw3bbtcB0bWNylnuGLX/sgmQ4tzOuzAM1p/YFLrD05q/YFJHXbgaa0/OKmJmb2ymJqbzg6NaXIiaH0RpI/sGj9Si4OrYtl+P+h1ZbuuuXWouTjyj4BGH8pIS8v4R0Np9Dqme49/nZ5ds1nnfe/TWlU61HT9NfNTuvCeq/TF0y/Tjg3H9rx8SXP3WNNoipCSg2UENQD0l+AgFnUoy0wFuSeDeFS/4+nR9brp5ZfrnB99Xi/52e11aw94Sdt+eqtOe/zr+tKLL9FPt57W0quc9tPb9aof3VzX8sEl3XLGH2rHxuMal3ClkU28HHBZO7NHEzO7NTG7VxMzu4PlPVp/YFJr5/a1VM5WuUx7xw5fCmBU0kj2j2zIROU673p+YuqemRMhxI/ARp/JyHedREBjmeuho35ZT697jl774HU6ct9jTddeO7tXb/32h/XA88/VnSe8UQtDwwmVE0gXQQ0A/Sl8Bp2RitKSXo1KWpOSsmhD+vov/Zae2HCczn/w2sirQMMLs/qNB/5C+8Y2684T3qiHt5yu0tDqpe1VTiiO2/GAXvWjmzUxs7uu+C7pSy++RI9teXFkuVYtzGlsfr9GZ/drbH6/xub2a2x+qjzN7dea+SmtndmrtbN7NLwwG7mNODw7ulG7xrcuDZm6e3yrnll7lA4Njaz8ZLQtsRPSrP1/Ixa1HSwDaYr7V6b8+7hcVdm9ZqtuOPP9+uVHb9OZP/mCBtW4vyeT64zH/kEn7PiOvnLKxfrFphNjLl06vOQq0acGGiCoAaC4GpzM1DWESPNKbjsjolj0+p2pfAqmh498iZ6ZOFpvvu/PIocmNUnrDz6jX3/wWrkk14BmV41pemSdRuenNXroQF1noMuvYvrFxhN07OQ/6eQd92n1woxWL8xqeGF2ab7Rc3vBZdo3tkm7l4IXW7Vr/CjtHt9C8CJhvQhohP9nloImnPgWEq00+lBWWl3VFKE3o6HUN9ks2aDuPf51euyIU/SrD35KR0xtb7qFidk9uuC+j8klPTUwoPu6LRKQYQQ1EmBm45JOk/TSYDpD0vOChx939+dFP7Or19wm6TJJr5C0RdJeSf8k6TPufnPcrwfkSV2VKAuVpLCoEVEsqCzFFtUIhmANrgbtHT9C15/zQZ3+6Fe07ZEvabVH5+6WwyAljR2a1tih6RZexVsali5uUyPrtXfscO1dE5pGN2vP+BFaGCg3x+WkKH09+w7cy3s4AY3CoqPQPmTLx63yYkb2gdrUSYtjNJTGLza57hj99dlX6rid39NZP75Fm6d3NH2GSXWdducRo5+gGYIayfh7Seck9WJm9l8lXanqOPGWYHqNmb1F0gXu3rt23AA6lky+bviKdvn20MCQ7j3+dfruC87VqT/7R73iJ1/UkCfXiqId08PrtH9kg6ZGN2j/6AZNja7XvtHN2rvmcO1bs1kLg/V5xO5eVflMvSLc53oZ0ABQQDX/256Rlhu9OGbXvq3adBRpQI9sPU2PbDlVx+78nl75w5u1fqa+pSXQLwhqJCP807RX0gOStkkaj/2FzH5X0geCxZ9K+rCkf5Z0pKR3SXqlpNdJ+pSk34779YE8yFT6SQYdGhzWd477NX33Befp5T++RS997KuJBDcWBoZ0cPWEDg6v1cHVa3VgeEIHVwfzI+u0f3Sj9o9s0PTIYa2PMuKVm+qARiau7vW5uD7/RiknPelvF5nC/3DBRXy/ufi/jqWQ1Rswq95o+Xev3HbykS2n6tEtL9amqSf1S9vv1klP3KPx+Wez/zm1qdzvc5yjn8S2KWQAQY1k3CjpWkn3u/ujkmRmP1fMQQ0zO0zSVcHiLyS9zN13hR7/kqS/VTmo8VYzu9bdvxVnGYA8yHz6SWrCn4OrNDCou06+QHed/JtatTCn507+UCftuE9bnv2Zxmef1WBpQaWBQR0aWK25VaPaN7ZZi4PDWhwYUMkGVRoY1KINaX7ViOYGRzQ/NKr5oWHNDVXmRzU/NKLZVaM6uHpC80Mj8XwXNcGLqoeCk15OhrKh0+BSZMW2knJSKkmW7PgESAfByf5T9W1n/bsPj07es41XlkzPrD1ad7zwQt3xwgu1ZmaPXrT9Lh2x73Ftmt6hudlnpMVelCM57iV5qXEHqZ1sD8VBUCMB7n5tQi91iaTDgvnLwwGNoByLZnaZpNdKGpT0PkkENQAEfKnRyvI5Y/lq0KGhYT165Ol69MjTl9ducEJROeGsNJdNmkd2SiLJuLKbJbGdkNYGOPiOgf6QlVaWtakicplb1bHIZF0GN1Z+cvijODC6Qfce/+tLy3Mzk9JX3thNAYBMI6hRLG8IbvdLuiVqBXd/wsz+UdJrJL3azMbdfeXe/oAi88jTYEkpnQRHvWQ4jWJpNWu8fqcvbfXtZqsDHJWKU+WE1CsXxiO2FV+5OuJB5bLryiR6Ia6ARi6ao6MnCFL2nzz8vy+NVlbh5c5D42w/Vr/ru9zLx+SqFw51Cp53pZiHdI1zW0hf1wMOIRvMbLXKI6tI0j3uPt9k9W8Gt8Mqj8QC9L2lZuvlpM20i9OYL08e/PVeqeqF3csfVankQUUp/Hh4PkGhz6WyvBTQyPDX2c/cva2KdmX92ucwykn/KsKJGtoTlX4S/m3I5D6RWBSm/hhcTrFI4ZgMJIyWGsVxnJa/z5XGTww/fpKkb/SkREDecNVPUbWvqCtC1Y+HV0jnM6wK7gSz5vG3ZEFGkHICICqA0Te/BY3eZ20Ho8X5POIOWmUyAIaOEdQojmNC80+ssO72Bs9bkZkdvcIqW9rZHpAVeRgRZanlwfIdCZ2wtxLoSMFKI5tkoYxoqJXKNiOboJkinbChM5n8LagtUE36aC9SR4F+R1CjONaG5lfqI+NAaL7dEVi2r7wKkD95GBElMh+39kJDJaW2x8WvnGymeVLhyzXF8g0jm+RKo32o5ZFNMhh4RLIY/QSRXVBldb+oHKusJriBlnjJ5TH2gxHntpA+ghrFMRKab9afhiTNheZHe1AWAAmK7GOgDytLmazEojvN0kz4vgFE4FhQTAQ10AxBjYCZDUk6FMOmLnb3z8SwnXbNhuZXr7DucGh+ps3XWSldZYuk77S5TSB1eUg/iRKVklLb8XovpFZpXCnlBLlTyZO2UKd/pJmgFfzPIy+/EVXH6rwUGsgRghrFMRWaXymlZE1ovq3hXN29aX8dVDCQV3lIP4lS13w1oWInmn5S1QdodDCD355kLX3/Wv46WpmP2o5J9aklpJmgBQQzkZf0k7pjtVc9SKCjBa6SSl6KdXsoDoIaAXdfMLOTYtjUUzFsoxPhYMNKnXmGW1vQRwaATIsa2WRphJOMVVz7TVVHnuH7G8yr2f2NUkv4jgG0IS/HhaXfz6W4bT7KDWQRQY0Qd19pKNQse1jSoqRBSSeusG748Yd6ViIgz9wbnoxlqcKU1ogoqXwGHnq/2fkKCiepYe74CtGtLP0WIxuifr+yuJ/UHrtpqLEyL8XbD0aMjT6QAQNpFwDxcPd5SfcHi9vMrFm/GmcHt3OSHuhpwYAcW2oG717fYWFGNBwRJTxJjS+Xdyju8eLrX0CR5TdZ7O+ln1S+t2ZTsGL1vt9oPoayAJ1i/0GtpZS10G9UFveTyHSU2uMegJYR1CiWLwS3E5J+I2oFMzta0q8Ei19z96mo9QAEMniFpxWRJ6o54qG/ulyGfH4l2ROu+NdOEukgAAohiy01ouT9uN1rldFP4pxQHAQ1csLMnmdmHkx3NFjtU5KeDeY/YmYba7YxKOkalVNUJOnqnhQWKIi6w11OKhl1iTMecV+XEuucs7bY+aibZkpkJTkD+zIdvKJb7D+oFXXczkOAIPK4nYNyJ6mVlobtTigO+tRIgJkdK+msmrsrI5SMm9nbax77irvvbPd13H2PmV0u6a8kPVfSfWb2IUn/LOlISe+W9Mpg9Zvc/RvtvgbQTxgRpbGejX7SrLfJfHz8mVBXWcvg8KiJjqCDQsriKBdIF8dtoD8R1EjGWZKub/DYxojHXimp7aCGJLn7J8zsSEn/RdILJH06YrVbJf3bTrYPAL1S3ZJA1fNU8DoXGn4VAPpNXgNfeS13r5RKJZVK8fXuGee2kD7STwrI3a9UOZByo8pDts5LmpT0VUlvcffz3X02xSICuZDX9JM6tR2QVaYujuc9TR0g5aQjjTr8zOpeS/oJusX+g1p5TT+pU0k/ofNQoCW01EiAu39G0me63MbP1UbV3t3vlnR3N68J9Lu8NmNtpKpiZ8HknZ0YxJo6QMpJxyIr6+7LI/eYLY8GkLH9l/QTdIv0E9QqynHbvTzk61JYuovjdVG4x9u5Zy6DXWiIoAYA9LEsVJCWKm0ENLpTW0FjxBIAyMRxrl1Rw7Xn8X0ASSGoAQAN1J1XZ/Bqd6tcXl1JCt5cp1c6u6pcVQ3C0eBKST4/5kSEP7Ol7y+DHYGuhAo6usU+hFpRx21XDveV2uJ6xHE8Z2+pW+4lucfXD0ac20L6CGoAQANFacYqRV/1War9+dJKLesodWCpQYaTH9ymPKeZNEL6CbpF+glqNTpu5/33hnQUoDmCGgDQ55Y7lQwqSC3Ukcyso3zUuoBG3poXZAFpJgDQoqVmictLOfydjE5HSaEgKfJSzH1qxLgtpI+gBgA0UKT0kygul3n1+2nnataK65Bm0pVGrTOKIo8nFsgW9iGsqOTVx5lCpaNEtUxJpjipKMUciCD7pFAIagBAAys1Yy3fld8aRGRKSkULKSkNm36TZtKxpoGMcFCtAAE2UgfQLfYhtK0g+0tkOopWOK4DBUZQAwBaVTm5tOqmrOW7ilGRqHRE1kpKSrP3TJpJDLzmCmPB0kwqKUxF+d8BkA9F+M3px+BFyUsqxdi5Z5zbQvoIagBAG1ySBR0zlu/Id55unciGAkFKSm0lqqpJb/36DdfFykJBpSIrxP8MUsP+g7blNf2kVkQ6SvnGq+5bep8FP5YABDUAoA0mFe6KeVhURa+umWsUKkwda9rhagHSTBqhlQa6xT6EthV9f6k5nHjQp0gnHXtnDR2FopmBtAsAAEVQ5Ip10/dWWyegjtAdd1V9iAXfr4pQ0UY62HfQqSIfr+v00VtFf6OlBgC0IXJEFBUo/aQdXnMrUYHqRuUkrVSsDkGb6bv/GcSK/QdtK0r6SR9yL8lL8fWD4fSpUSgENQCgDY1GROlHNP3uTktXmgv8+bL/oBt0NIuOsL/kFuknaIb0EwCIQT9WrPvxPfdEH6WchJF+gm6w76BTHLuA4qGlBgC0gfQTxGF5yNz+SzkJ438G3WD/QdtIP8kt91KsKSOknxQLLTUAoA2R6Sd9WjniSmmP9Mn+xP6DbtDSBx3pk99XoN/QUgMA2lDXUiPQj1d9+vE990wffpb0iYBusO+gU+w3+VQqSaUY+8GIsc9RZAAtNQCgG+7l5qxcMUQ3+nT/4eQCQKI4XiMFZvYcM7vazB4yswNmtsfM7jez95rZWNrlKwJaagBAGxj9ZBlXStEN9h90g5Y+6Aj7S36V4h3SNammGmZ2vqQbJK0L3T0m6Yxg+l0ze627P5ZIgQqKlhoA0IZG13f6sWLdj++5Z/rws2T/QTcIaKBT7Df55O5Lw7rGMiXQYsfMTpH0f1QOaExLukLSyyX9a0mfDFY7QdKXzWy85wUqMFpqAEAb6qpCjH6COPTRiCcAkBpGP0Gy/ofKrTIWJJ3r7veEHvu6mT0i6aOSTpT0Hkn/LfESFgQtNQCgG4x+AnSE/QfdYPQTdKRPj9dFUBnSNc6pl8zsDEnnBIvX1QQ0Kj4m6aFg/t1mtqqnhSowghoA0AbST5b143vumT78LNl/0A3ST9Ap9hsk5A2h+eujVvByZOWzweJ6LQdB0CbSTwCgDaSfoCdIPwGA3iP9JLcqfWHEub0ee0Vwe0DSd5us983Q/FmSvtqzEhUYLTUAoBuknwAdYf9BN0g/QUf69HiNVJwU3D7q7gtN1vtxxHPQJlpqIG6DlZn52d1plgPomqumZUaTIQS56oN2LJ2McVIGdITGTWhJ7YHcrC+P1zV18sFG62XZ3MyuWId0nZ/bE17cstJ+4e5PtLptMxuRtClYbPo8d99rZgckrZF0TKuvgWoENRC3zZWZ73/799MsBwAAAIBqmyU9nnYh2vX9uy7t5ea/08I67UTD1obmp1tYvxLUYFjXDpF+grgdnnYBAAAAAESirt57I6H5+RbWnwtuR3tQlr5ASw3ELZwX9jJJT6ZVEAA9s0XLVzXOkLQzxbIgn9iH0A32H6A9R0m6N5j/cbMVM2anep+SsUXSM5IWY9zmbGh+dQvrDwe3MzGWoa8Q1EDcwtHIJ9vJPwOQDzV5pzv5P0e72IfQDfYfoD01/zOttBzIhKCDzV7/f/di+1Oh+VZSStYEt62kqiAC6ScAAAAAAMTA3Wcl7QoWj262rpmt13JQY3svy1VkBDUAAAAAAIjPQ8HtsWbWLDvixIjnoE0ENQAAAAAAiM9dwe0aSac3We/s0Py3e1ecYiOoAQAAAABAfL4Qmr84agUzG5D0O8HiPknf6G2RiougBgAAAAAAMXH3+yXdGSy+w8y2Raz2HyWdFMz/ubsfSqRwBcToJwAAAAAAxOtdKqeUjEq63cw+rHJrjFFJvyXpncF6D0v6WColLAiCGgAAAAAAxMjdHzSzCyV9TtKEpA9HrPawpPPdfSriMbTI3D3tMgAAAAAAUDhm9lyVW22cr/IQr/OSHpX0N5L+0t0Ppli8QiCoAQAAAAAAcomOQgEAAAAAQC4R1AAAAAAAALlEUAMAAAAAAOQSQQ0AAAAAAJBLBDUAAAAAAEAuEdQAAAAAAAC5RFADAAAAAADkEkENAAAAAACQSwQ10DEzO8fMvME0Y2ZPmNltZnaZmY2nXV4AnVvh/73R9Pa0y410mdm4mT0e7A+7zGxzC8+5KrQPXZpEOZE9Eb85U2Y21sLzRs3s2ZrnntP7EgPZwTEb/YagBnplRNJRks6T9L8k/cDMTkm3SACAJLn7tKRKYGKjpD9vtr6ZvUTSfwgWvyXpE70rHXJmXNIbWljv9ZImelsUAECWDKVdABTGxyVdE1reJOkESe+RdLyk50q6zcxOcPepFMoHID61/++NPNHrgiD73P02M7tB0lslXWRmN7j7l2vXM7NVkq6TNChpVtIl7u7JlhYZNavyxZK3SbpxhXXfVvMcoN9xzEbhEdRAXCbd/Qc1991hZtdLuk3SqyRtlfROSR9LunAAYhX1/w40825J50raLOnjZvbCiAD3H0n6l8H8B9z94QTLh2z7O0kXSHq1mW1x951RK5nZ4SrvZ5L0RUkXJlQ+IMs4ZqPwSD9BT7n7vKQ/Cd316pSKAgBIibvvUjmwIUnHSPpI+HEzO0nSFcHig5KuTqxwyIPbJe1UuRXPRU3Wu0jlC3ZPS/pqAuUCAGQAQQ0k4f+F5o9JrRQAgNS4+42Sbg0Wf9/MzpIkMxtQOe1kWNKCpHe4+0I6pURGLUq6KZh/W5P1fie4vTF4DgCgDxDUQBLCFQsqqgDQvy6VNCXJJH3SzIYl/YGkbcHjV7v7g2kVDpn2v4PbU83shbUPmtnJkk6rWRcA0AcIaiAJJ4fmf55WIQAA6XL37ZLeHyyeqHIHdh8Klh+W9IE0yoXsC4JdlX4BolprVO77IYExAOgvBDWQhPeG5j+fWikAAFlwjaRvB/MXS1ojyVUe7WQ2tVIhDyotMN4apC1JkszMVB5dJ7wOAKBPENRAT5jZRjM7y8xu1XKnXvdIujnFYgEAUhYM03qJyoGMik+4+7dSKhLy4wZJJUlHSzo7dP85KvfZVQrWAQD0EYIaiMuVZuaVSdIuSXdK+lWV+9H4nKTz3P1QmoUEAGTCmSr3q1GxI62CID/c/UlJ3wgWwykolfk73P2JZEsFAEgbQQ0k4WFJH3X3/WkXBACQLjPbKumqmruvMLPj0ygPcuezwe2bzWzUzEYlvSm4j9QTAOhDBDUQl49LelEwnSrpfEmfkHRI5Y5C7zCzE9IrHgAgI66RdJjK6SfvUzllYFjStUHfCEAzt0g6KGmtpNdLeoOkCUkzkv5vesUCAKSFoAbiMunuPwim77n7re5+qaQ3qlxh3SDpRjMbTLeYAIC0mNmbVT4Jlcr9aFwt6S+D5bMlvSONciE/3H1a0t8Gi2/TcurJF9x9Kp1SAQDSRFADPeXuX5b0V8HiaZLenl5pAABpMbP1kv4iWHxS0uXB/BWSfhHMf9TMjki6bMidSgrKuZJeHcyTegIAfYqgBpLwAUkHgvkrzWx1moUBAKTizyRtCeb/XaWfpeDK+2XB/esl/c8UyoZ8+ZqkpyQNBdPTkm5PtUQAgNQQ1EDPufukyv1rSOUh1/5NisUBACTMzH5Fyy31Pu/uXww/HrTqqwz5fYGZ/VqCxUPOuPuiyi0z5oLpc8F9AIA+RFADSblK0mww/0f0rQEA/cHM1ki6NljcK+kPGqz6Lkl7gvlrzGy812VDfrn75e4+EkzvTbs8AID0ENRAItx9p6TrgsXnS3pLisUBACTng5L+RTD/3uB4UCdo1Vc5OT1G0ocSKBsAAMg5ghpI0p9Kmg/m/9jM2P8AoMDM7KWS/jBY/Lq7f7rZ+u5+vcr9JUjSvw+eDwAA0BAnlUiMu2+X9NfB4omS3pRicQAAPWRmq1RuoTcgaUbSO1t86u8F6w9I+qSZDfWmhAAAoAjM3dMuAwAAAAAAQNtoqQEAAAAAAHKJoAYAAAAAAMglghoAAAAAACCXCGoAAAAAAIBcIqgBAAAAAAByiaAGAAAAAADIJYIaAAAAAAAglwhqAAAAAACAXCKoAQAAAAAAcomgBgAAAAAAyCWCGgAAAAAAIJcIagAAAAAAgFwiqAEAAAAAAHKJoAYAAAAAAMglghoAAAAAACCXCGoAAAAAAIBcIqgBAAAAAAByiaAGAAAAAADIJYIaAAAAAAAglwhqAAAAAACAXCKoAQAAAAAAcomgBgAAAAAAyCWCGgAAAAAAIJcIagAAAAAAgFwiqAEAAAAAAHLp/wNGgn0J0QJPPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "if kslice:\n", + " fig, ax = plt.subplots(1, figsize=(3,3), dpi=200)\n", + "\n", + " pcb.plot_kslice(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], tb_config,\n", + " tb=config['tb'], alatt=config['alatt'], quarter=0, **plot_config)\n", + "\n", + "else:\n", + " fig, ax = plt.subplots(1, figsize=(6,3), dpi=200)\n", + "\n", + " pcb.plot_bands(fig, ax, alatt_k_w, tb_data, freq_dict, w90_dict['n_orb'], dft_mu=0.,\n", + " tb=config['tb'], alatt=config['alatt'], qp_bands=config['qp_bands'], **plot_config)\n", + "\n", + " ax.set_ylim(-1.25,1.75)" + ] + }, + { + "cell_type": "markdown", + "id": "186cf322", + "metadata": {}, + "source": [ + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}