-
Notifications
You must be signed in to change notification settings - Fork 200
/
train_derived.py
executable file
·297 lines (256 loc) · 12.4 KB
/
train_derived.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cfg
import models_search
import datasets
from functions import train, validate, save_samples, LinearLrDecay, load_params, copy_params, cur_stages
from utils.utils import set_log_dir, save_checkpoint, create_logger
# from utils.inception_score import _init_inception
# from utils.fid_score import create_inception_graph, check_or_download_inception
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.utils.data.distributed
import os
import numpy as np
import torch.nn as nn
from tensorboardX import SummaryWriter
from tqdm import tqdm
from copy import deepcopy
from adamw import AdamW
import random
# torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
def main():
args = cfg.parse_args()
# _init_inception()
# inception_path = check_or_download_inception(None)
# create_inception_graph(inception_path)
if args.seed is not None:
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# weight init
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
if args.init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif args.init_type == 'orth':
nn.init.orthogonal_(m.weight.data)
elif args.init_type == 'xavier_uniform':
nn.init.xavier_uniform(m.weight.data, 1.)
else:
raise NotImplementedError('{} unknown inital type'.format(args.init_type))
# elif classname.find('Linear') != -1:
# if args.init_type == 'normal':
# nn.init.normal_(m.weight.data, 0.0, 0.02)
# elif args.init_type == 'orth':
# nn.init.orthogonal_(m.weight.data)
# elif args.init_type == 'xavier_uniform':
# nn.init.xavier_uniform(m.weight.data, 1.)
# else:
# raise NotImplementedError('{} unknown inital type'.format(args.init_type))
elif classname.find('BatchNorm2d') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0.0)
# import network
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
gen_net = eval('models_search.'+args.gen_model+'.Generator')(args=args)
dis_net = eval('models_search.'+args.dis_model+'.Discriminator')(args=args)
gen_net.apply(weights_init)
dis_net.apply(weights_init)
gen_net.cuda(args.gpu)
dis_net.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.dis_batch_size = int(args.dis_batch_size / ngpus_per_node)
args.gen_batch_size = int(args.gen_batch_size / ngpus_per_node)
args.batch_size = args.dis_batch_size
args.num_workers = int((args.num_workers + ngpus_per_node - 1) / ngpus_per_node)
gen_net = torch.nn.parallel.DistributedDataParallel(gen_net, device_ids=[args.gpu], find_unused_parameters=True)
dis_net = torch.nn.parallel.DistributedDataParallel(dis_net, device_ids=[args.gpu], find_unused_parameters=True)
else:
gen_net.cuda()
dis_net.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
gen_net = torch.nn.parallel.DistributedDataParallel(gen_net)
dis_net = torch.nn.parallel.DistributedDataParallel(dis_net)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
gen_net.cuda(args.gpu)
dis_net.cuda(args.gpu)
else:
gen_net = torch.nn.DataParallel(gen_net).cuda()
dis_net = torch.nn.DataParallel(dis_net).cuda()
print(dis_net) if args.rank == 0 else 0
# set optimizer
if args.optimizer == "adam":
gen_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, gen_net.parameters()),
args.g_lr, (args.beta1, args.beta2))
dis_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, dis_net.parameters()),
args.d_lr, (args.beta1, args.beta2))
elif args.optimizer == "adamw":
gen_optimizer = AdamW(filter(lambda p: p.requires_grad, gen_net.parameters()),
args.g_lr, weight_decay=args.wd)
dis_optimizer = AdamW(filter(lambda p: p.requires_grad, dis_net.parameters()),
args.g_lr, weight_decay=args.wd)
gen_scheduler = LinearLrDecay(gen_optimizer, args.g_lr, 0.0, 0, args.max_iter * args.n_critic)
dis_scheduler = LinearLrDecay(dis_optimizer, args.d_lr, 0.0, 0, args.max_iter * args.n_critic)
# fid stat
if args.dataset.lower() == 'cifar10':
fid_stat = 'fid_stat/fid_stats_cifar10_train.npz'
elif args.dataset.lower() == 'stl10':
fid_stat = 'fid_stat/stl10_train_unlabeled_fid_stats_48.npz'
elif args.fid_stat is not None:
fid_stat = args.fid_stat
else:
raise NotImplementedError(f'no fid stat for {args.dataset.lower()}')
assert os.path.exists(fid_stat)
# epoch number for dis_net
args.max_epoch = args.max_epoch * args.n_critic
dataset = datasets.ImageDataset(args, cur_img_size=8)
train_loader = dataset.train
train_sampler = dataset.train_sampler
print(len(train_loader))
if args.max_iter:
args.max_epoch = np.ceil(args.max_iter * args.n_critic / len(train_loader))
# initial
fixed_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (100, args.latent_dim)))
avg_gen_net = deepcopy(gen_net).cpu()
gen_avg_param = copy_params(avg_gen_net)
del avg_gen_net
start_epoch = 0
best_fid = 1e4
# set writer
writer = None
if args.load_path:
print(f'=> resuming from {args.load_path}')
assert os.path.exists(args.load_path)
checkpoint_file = os.path.join(args.load_path)
assert os.path.exists(checkpoint_file)
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(checkpoint_file, map_location=loc)
start_epoch = checkpoint['epoch']
best_fid = checkpoint['best_fid']
dis_net.load_state_dict(checkpoint['dis_state_dict'])
gen_optimizer.load_state_dict(checkpoint['gen_optimizer'])
dis_optimizer.load_state_dict(checkpoint['dis_optimizer'])
# avg_gen_net = deepcopy(gen_net)
gen_net.load_state_dict(checkpoint['avg_gen_state_dict'])
gen_avg_param = copy_params(gen_net, mode='gpu')
gen_net.load_state_dict(checkpoint['gen_state_dict'])
fixed_z = checkpoint['fixed_z']
# del avg_gen_net
# gen_avg_param = list(p.cuda().to(f"cuda:{args.gpu}") for p in gen_avg_param)
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path']) if args.rank == 0 else None
print(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
writer = SummaryWriter(args.path_helper['log_path']) if args.rank == 0 else None
del checkpoint
else:
# create new log dir
assert args.exp_name
if args.rank == 0:
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
writer = SummaryWriter(args.path_helper['log_path'])
if args.rank == 0:
logger.info(args)
writer_dict = {
'writer': writer,
'train_global_steps': start_epoch * len(train_loader),
'valid_global_steps': start_epoch // args.val_freq,
}
# train loop
for epoch in range(int(start_epoch), int(args.max_epoch)):
train_sampler.set_epoch(epoch)
lr_schedulers = (gen_scheduler, dis_scheduler) if args.lr_decay else None
cur_stage = cur_stages(epoch, args)
print("cur_stage " + str(cur_stage)) if args.rank==0 else 0
print(f"path: {args.path_helper['prefix']}") if args.rank==0 else 0
train(args, gen_net, dis_net, gen_optimizer, dis_optimizer, gen_avg_param, train_loader, epoch, writer_dict,fixed_z,
lr_schedulers)
if args.rank == 0 and args.show:
backup_param = copy_params(gen_net)
load_params(gen_net, gen_avg_param, args, mode="cpu")
save_samples(args, fixed_z, fid_stat, epoch, gen_net, writer_dict)
load_params(gen_net, backup_param, args)
if epoch and epoch % args.val_freq == 0 or epoch == int(args.max_epoch)-1:
backup_param = copy_params(gen_net)
load_params(gen_net, gen_avg_param, args, mode="cpu")
inception_score, fid_score = validate(args, fixed_z, fid_stat, epoch, gen_net, writer_dict)
if args.rank==0:
logger.info(f'Inception score: {inception_score}, FID score: {fid_score} || @ epoch {epoch}.')
load_params(gen_net, backup_param, args)
if fid_score < best_fid:
best_fid = fid_score
is_best = True
else:
is_best = False
else:
is_best = False
avg_gen_net = deepcopy(gen_net)
load_params(avg_gen_net, gen_avg_param, args)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank == 0):
save_checkpoint({
'epoch': epoch + 1,
'gen_model': args.gen_model,
'dis_model': args.dis_model,
'gen_state_dict': gen_net.state_dict(),
'dis_state_dict': dis_net.state_dict(),
'avg_gen_state_dict': avg_gen_net.state_dict(),
'gen_optimizer': gen_optimizer.state_dict(),
'dis_optimizer': dis_optimizer.state_dict(),
'best_fid': best_fid,
'path_helper': args.path_helper,
'fixed_z': fixed_z
}, is_best, args.path_helper['ckpt_path'], filename="checkpoint")
del avg_gen_net
if __name__ == '__main__':
main()