-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
98 lines (86 loc) · 3.82 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
import numpy as np
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
if config.dataset != "imagenet2012":
raise ValueError("Currently only support imagenet2012 dataset format")
if config.net_name in ("resnet18", "resnet50"):
if config.net_name == "resnet18":
from src.resnet import resnet18 as resnet
if config.net_name == "resnet50":
from src.resnet import resnet50 as resnet
from src.dataset_infer import create_dataset
elif config.net_name == "resnet101":
from src.resnet import resnet101 as resnet
from src.dataset_infer import create_dataset2 as create_dataset
else:
from src.resnet import se_resnet50 as resnet
from src.dataset_infer import create_dataset3 as create_dataset
def show_predict_info(label_list, prediction_list, filename_list, predict_ng):
label_index = 0
for label_index, predict_index, filename in zip(label_list, prediction_list, filename_list):
filename = np.array(filename).tostring().decode('utf8')
if label_index == -1:
print("file: '{}' predict class id is: {}".format(filename, predict_index))
continue
if predict_index != label_index:
predict_ng.append((filename, predict_index, label_index))
print("file: '{}' predict wrong, predict class id is: {}, "
"label is {}".format(filename, predict_index, label_index))
return predict_ng, label_index
@moxing_wrapper()
def infer_net():
target = config.device_target
# init context
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
if target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id)
# create dataset
dataset = create_dataset(dataset_path=config.data_path, do_train=False, batch_size=config.batch_size,
target=target)
step_size = dataset.get_dataset_size()
# define net
net = resnet(class_num=config.class_num)
# load checkpoint
param_dict = load_checkpoint(config.checkpoint_file_path)
load_param_into_net(net, param_dict)
net.set_train(False)
print("start infer")
predict_negative = []
total_sample = step_size * config.batch_size
only_file = 0
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=1)
for _, data in enumerate(data_loader):
images = data["image"]
label = data["label"]
file_name = data["filename"]
res = net(Tensor(images))
res = res.asnumpy()
predict_id = np.argmax(res, axis=1)
predict_negative, only_file = show_predict_info(label.tolist(), predict_id.tolist(),
file_name.tolist(), predict_negative)
if only_file != -1:
print(f"total {total_sample} data, top1 acc is {(total_sample - len(predict_negative)) * 1.0 / total_sample}")
else:
print("infer completed")
if __name__ == '__main__':
infer_net()