- Linux (Windows is not officially supported)
- Python 3.5+
- PyTorch 1.1 or higher
- CUDA 9.0 or higher
- NCCL 2
- GCC 4.9 or higher
- mmcv
We have tested the following versions of OS and softwares:
- OS: Ubuntu 16.04/18.04 and CentOS 7.2
- CUDA: 9.0/9.2/10.0/10.1
- NCCL: 2.1.15/2.2.13/2.3.7/2.4.2
- GCC(G++): 4.9/5.3/5.4/7.3
a. Create a conda virtual environment and activate it.
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
b. Install PyTorch and torchvision following the official instructions, e.g.,
conda install pytorch torchvision -c pytorch
c. Install other third-party libraries.
conda install faiss-gpu cudatoolkit=10.0 -c pytorch # optional for DeepCluster and ODC, assuming CUDA=10.0
d. Clone the DenseCL repository.
git clone https://github.com/WXinlong/DenseCL.git
cd DenseCL
e. Install.
pip install -v -e . # or "python setup.py develop"
f. Install Apex (optional), following the official instructions, e.g.
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
Note:
-
The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
-
Following the above instructions, DenseCL is installed on
dev
mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number). -
If you would like to use
opencv-python-headless
instead ofopencv-python
, you can install it before installing MMCV.
It is recommended to symlink your dataset root (assuming $YOUR_DATA_ROOT) to $DENSECL/data
.
If your folder structure is different, you may need to change the corresponding paths in config files.
Assuming that you usually store datasets in $YOUR_DATA_ROOT
(e.g., for me, /home/xhzhan/data/
).
This script will automatically download PASCAL VOC 2007 into $YOUR_DATA_ROOT
, prepare the required files, create a folder data
under $OPENSELFSUP
and make a symlink VOCdevkit
.
cd $DENSECL
bash tools/prepare_data/prepare_voc07_cls.sh $YOUR_DATA_ROOT
Taking ImageNet for example, you need to 1) download ImageNet; 2) create the following list files or download here under $IMAGENET/meta/: train.txt
and val.txt
contains an image file name in each line, train_labeled.txt
and val_labeled.txt
contains filename[space]label\n
in each line; train_labeled_*percent.txt
are the down-sampled lists for semi-supervised evaluation. 3) create a symlink under $OPENSELFSUP/data/
.
At last, the folder looks like:
DenseCL
├── openselfsup
├── benchmarks
├── configs
├── data
│ ├── coco
│ │ ├── train2017
│ ├── VOCdevkit
│ │ ├── VOC2007
│ │ ├── VOC2012
│ ├── imagenet
│ │ ├── meta
│ │ | ├── train.txt (for self-sup training, "filename\n" in each line)
│ │ | ├── train_labeled.txt (for linear evaluation, "filename[space]label\n" in each line)
│ │ | ├── train_labeled_1percent.txt (for semi-supervised evaluation)
│ │ | ├── train_labeled_10percent.txt (for semi-supervised evaluation)
│ │ | ├── val.txt
│ │ | ├── val_labeled.txt (for evaluation)
│ │ ├── train
│ │ ├── val
│ ├── places205
│ │ ├── meta
│ │ | ├── train.txt
│ │ | ├── train_labeled.txt
│ │ | ├── val.txt
│ │ | ├── val_labeled.txt
│ │ ├── train
│ │ ├── val
Here is a full script for setting up DenseCL with conda and link the dataset path. The script does not download ImageNet and Places datasets, you have to prepare them on your own.
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
conda install -c pytorch pytorch torchvision -y
git clone https://github.com/WXinlong/DenseCL.git
cd DenseCL
pip install -v -e .
bash tools/prepare_data/prepare_voc07_cls.sh $YOUR_DATA_ROOT
ln -s $IMAGENET_ROOT data/imagenet
ln -s $PLACES_ROOT data/places205
If there are more than one openselfsup on your machine, and you want to use them alternatively, the recommended way is to create multiple conda environments and use different environments for different versions.
Another way is to insert the following code to the main scripts (train.py
, test.py
or any other scripts you run)
import os.path as osp
import sys
sys.path.insert(0, osp.join(osp.dirname(osp.abspath(__file__)), '../'))
Or run the following command in the terminal of corresponding folder to temporally use the current one.
export PYTHONPATH=`pwd`:$PYTHONPATH
- The training hangs / deadlocks in some intermediate iteration. See this issue.