-
Notifications
You must be signed in to change notification settings - Fork 0
/
PruneCluster.ts
622 lines (486 loc) · 15.8 KB
/
PruneCluster.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
namespace PruneCluster {
// The position is the real position of the object
// using a standard coordinate system, as WGS 84
export interface Position {
lat: number;
lng: number;
}
// The point is a project position on the client display
export class Point {
x: number;
y: number;
}
export interface Bounds {
minLat: number;
maxLat: number;
minLng: number;
maxLng: number;
}
export class ClusterObject {
// Map position of the object
public position: Position;
// An attached javascript object, storing user data
public data: any;
// An hashCode identifing the object
public hashCode: number;
}
// Hidden variable counting the number of created hashcode
var hashCodeCounter: number = 1;
// Number.MAX_SAFE_INTEGER
var maxHashCodeValue = Math.pow(2, 53) - 1;
export class Marker extends ClusterObject {
// The category of the Marker, ideally a number between 0 and 7
// can also be a string
public category: number;
// The weight of a Marker can influence the cluster icon or the cluster position
public weight: number;
// If filtered is true, the marker is not included in the clustering
// With some datasets, it's faster to keep the markers inside PruneCluster and to
// use the filtering feature. With some other datasets, it's better to remove the
// markers
public filtered: boolean;
constructor(lat: number, lng: number, data: {} = {},
category?: number, weight: number = 1, filtered: boolean = false) {
super();
this.data = data;
this.position = { lat: +lat, lng: +lng };
this.weight = weight;
this.category = category;
this.filtered = filtered;
// The hashCode is used to identify the Cluster object
this.hashCode = hashCodeCounter++;
}
public Move(lat: number, lng: number) {
this.position.lat = +lat;
this.position.lng = +lng;
}
// Apply the data object
public SetData(data: any) {
for (var key in data) {
this.data[key] = data[key];
}
}
}
export class Cluster extends ClusterObject {
// Cluster area
public bounds: Bounds;
// Number of markers clustered
public population: number;
// Average position of the cluster,
// taking into account the cluster weight
public averagePosition: Position;
// Statistics table
// The key is the category and the value is the sum
// of the weights
public stats: number[];
// The total weight of the cluster
public totalWeight: number;
// The last marker added in the cluster
// Usefull when the cluster contains only one marker
public lastMarker: Marker;
// If enabled, the cluster contains a list of his marker
// It implies a performance cost, but you can use it
// for building the icon, if your dataset is not too big
public static ENABLE_MARKERS_LIST: boolean = false;
// The list of markers in the cluster
private _clusterMarkers: Marker[];
constructor(marker?: Marker) {
super();
// Create a stats table optimized for categories between 0 and 7
this.stats = [0, 0, 0, 0, 0, 0, 0, 0];
this.data = {};
// You can provide a marker directly in the constructor
// It's like using AddMarker, but a bit faster
if (!marker) {
this.hashCode = 1;
if (Cluster.ENABLE_MARKERS_LIST) {
this._clusterMarkers = [];
}
return;
}
if (Cluster.ENABLE_MARKERS_LIST) {
this._clusterMarkers = [marker];
}
this.lastMarker = marker;
this.hashCode = 31 + marker.hashCode;
this.population = 1;
if (marker.category !== undefined) {
this.stats[marker.category] = 1;
}
this.totalWeight = marker.weight;
this.position = {
lat: marker.position.lat,
lng: marker.position.lng
};
this.averagePosition = {
lat: marker.position.lat,
lng: marker.position.lng
};
}
public AddMarker(marker: Marker) {
if (Cluster.ENABLE_MARKERS_LIST) {
this._clusterMarkers.push(marker);
}
var h = this.hashCode;
h = ((h << 5) - h) + marker.hashCode;
if (h >= maxHashCodeValue) {
this.hashCode = h % maxHashCodeValue;
} else {
this.hashCode = h;
}
this.lastMarker = marker;
// Compute the weighted arithmetic mean
var weight = marker.weight,
currentTotalWeight = this.totalWeight,
newWeight = weight + currentTotalWeight;
this.averagePosition.lat =
(this.averagePosition.lat * currentTotalWeight +
marker.position.lat * weight) / newWeight;
this.averagePosition.lng =
(this.averagePosition.lng * currentTotalWeight +
marker.position.lng * weight) / newWeight;
++this.population;
this.totalWeight = newWeight;
// Update the statistics if needed
if (marker.category !== undefined) {
this.stats[marker.category] = (this.stats[marker.category] + 1) || 1;
}
}
public Reset() {
this.hashCode = 1;
this.lastMarker = undefined;
this.population = 0;
this.totalWeight = 0;
this.stats = [0, 0, 0, 0, 0, 0, 0, 0];
if (Cluster.ENABLE_MARKERS_LIST) {
this._clusterMarkers = [];
}
}
// Compute the bounds
// Settle the cluster to the projected grid
public ComputeBounds(cluster: PruneCluster.PruneCluster) {
var proj = cluster.Project(this.position.lat, this.position.lng);
var size = cluster.Size;
// Compute the position of the cluster
var nbX = Math.floor(proj.x / size),
nbY = Math.floor(proj.y / size),
startX = nbX * size,
startY = nbY * size;
// Project it to lat/lng values
var a = cluster.UnProject(startX, startY),
b = cluster.UnProject(startX + size, startY + size);
this.bounds = {
minLat: b.lat,
maxLat: a.lat,
minLng: a.lng,
maxLng: b.lng
};
}
public GetClusterMarkers() {
return this._clusterMarkers;
}
public ApplyCluster(newCluster: Cluster) {
this.hashCode = this.hashCode * 41 + newCluster.hashCode * 43;
if (this.hashCode > maxHashCodeValue) {
this.hashCode = this.hashCode = maxHashCodeValue;
}
var weight = newCluster.totalWeight,
currentTotalWeight = this.totalWeight,
newWeight = weight + currentTotalWeight;
this.averagePosition.lat =
(this.averagePosition.lat * currentTotalWeight +
newCluster.averagePosition.lat * weight) / newWeight;
this.averagePosition.lng =
(this.averagePosition.lng * currentTotalWeight +
newCluster.averagePosition.lng * weight) / newWeight;
this.population += newCluster.population;
this.totalWeight = newWeight;
// Merge the bounds
this.bounds.minLat = Math.min(this.bounds.minLat, newCluster.bounds.minLat);
this.bounds.minLng = Math.min(this.bounds.minLng, newCluster.bounds.minLng);
this.bounds.maxLat = Math.max(this.bounds.maxLat, newCluster.bounds.maxLat);
this.bounds.maxLng = Math.max(this.bounds.maxLng, newCluster.bounds.maxLng);
// Merge the statistics
for (var category in newCluster.stats) {
if (newCluster.stats.hasOwnProperty(category)) {
if (this.stats.hasOwnProperty(category)) {
this.stats[category] += newCluster.stats[category];
} else {
this.stats[category] = newCluster.stats[category];
}
}
}
// Merge the clusters lists
if (Cluster.ENABLE_MARKERS_LIST) {
this._clusterMarkers = this._clusterMarkers.concat(newCluster.GetClusterMarkers());
}
}
}
function checkPositionInsideBounds(a: Position, b: Bounds): boolean {
return (a.lat >= b.minLat && a.lat <= b.maxLat) &&
a.lng >= b.minLng && a.lng <= b.maxLng;
}
function insertionSort(list: ClusterObject[]) {
for (var i: number = 1,
j: number,
tmp: ClusterObject,
tmpLng: number,
length = list.length; i < length; ++i) {
tmp = list[i];
tmpLng = tmp.position.lng;
for (j = i - 1; j >= 0 && list[j].position.lng > tmpLng; --j) {
list[j + 1] = list[j];
}
list[j + 1] = tmp;
}
}
// PruneCluster must work on a sorted collection
// the insertion sort is preferred for its stability and its performances
// on sorted or almost sorted collections.
//
// However the insertion sort's worst case is extreme and we should avoid it.
function shouldUseInsertionSort(total: number, nbChanges: number): boolean {
if (nbChanges > 300) {
return false;
} else {
return (nbChanges / total) < 0.2;
}
}
export class PruneCluster {
private _markers: Marker[] = [];
// Represent the number of marker added or deleted since the last sort
private _nbChanges: number = 0;
private _clusters: Cluster[] = [];
// Cluster size in (in pixels)
public Size: number = 166;
// View padding (extended size of the view)
public ViewPadding: number = 0.2;
// These methods should be defined by the user
public Project: (lat: number, lng: number) => Point;
public UnProject: (x: number, y: number) => Position;
public RegisterMarker(marker: Marker) {
if ((<any>marker)._removeFlag) {
delete (<any>marker)._removeFlag;
}
this._markers.push(marker);
this._nbChanges += 1;
}
public RegisterMarkers(markers: Marker[]) {
markers.forEach((marker: Marker) => {
this.RegisterMarker(marker);
});
}
private _sortMarkers() {
var markers = this._markers,
length = markers.length;
if (this._nbChanges && !shouldUseInsertionSort(length, this._nbChanges)) {
// native (n log n) sort
this._markers.sort((a: Marker, b: Marker) => a.position.lng - b.position.lng);
} else {
insertionSort(markers); // faster for almost-sorted arrays
}
// Now the list is sorted, we can reset the counter
this._nbChanges = 0;
}
private _sortClusters() {
// Insertion sort because the list is often almost sorted
// and we want to have a stable list of clusters
insertionSort(this._clusters);
}
private _indexLowerBoundLng(lng: number): number {
// Inspired by std::lower_bound
// It's a binary search algorithm
var markers = this._markers,
it,
step,
first = 0,
count = markers.length;
while (count > 0) {
step = Math.floor(count / 2);
it = first + step;
if (markers[it].position.lng < lng) {
first = ++it;
count -= step + 1;
} else {
count = step;
}
}
return first;
}
private _resetClusterViews() {
// Reset all the clusters
for (var i = 0, l = this._clusters.length; i < l; ++i) {
var cluster = this._clusters[i];
cluster.Reset();
// The projection changes in accordance with the view's zoom level
// (at least with Leaflet.js)
cluster.ComputeBounds(this);
}
}
public ProcessView(bounds: Bounds): Cluster[] {
// Compute the extended bounds of the view
var heightBuffer = Math.abs(bounds.maxLat - bounds.minLat) * this.ViewPadding,
widthBuffer = Math.abs(bounds.maxLng - bounds.minLng) * this.ViewPadding;
var extendedBounds: Bounds = {
minLat: bounds.minLat - heightBuffer - heightBuffer,
maxLat: bounds.maxLat + heightBuffer + heightBuffer,
minLng: bounds.minLng - widthBuffer - widthBuffer,
maxLng: bounds.maxLng + widthBuffer + widthBuffer
};
// We keep the list of all markers sorted
// It's faster to keep the list sorted so we can use
// a insertion sort algorithm which is faster for sorted lists
this._sortMarkers();
// Reset the cluster for the new view
this._resetClusterViews();
// Binary search for the first interesting marker
var firstIndex = this._indexLowerBoundLng(extendedBounds.minLng);
// Just some shortcuts
var markers = this._markers,
clusters = this._clusters;
var workingClusterList = clusters.slice(0);
// For every markers in the list
for (var i = firstIndex, l = markers.length; i < l; ++i) {
var marker = markers[i],
markerPosition = marker.position;
// If the marker longitute is higher than the view longitude,
// we can stop to iterate
if (markerPosition.lng > extendedBounds.maxLng) {
break;
}
// If the marker is inside the view and is not filtered
if (markerPosition.lat > extendedBounds.minLat &&
markerPosition.lat < extendedBounds.maxLat &&
!marker.filtered) {
var clusterFound = false, cluster: Cluster;
// For every active cluster
for (var j = 0, ll = workingClusterList.length; j < ll; ++j) {
cluster = workingClusterList[j];
// If the cluster is far away the current marker
// we can remove it from the list of active clusters
// because we will never reach it again
if (cluster.bounds.maxLng < marker.position.lng) {
workingClusterList.splice(j, 1);
--j;
--ll;
continue;
}
if (checkPositionInsideBounds(markerPosition, cluster.bounds)) {
cluster.AddMarker(marker);
// We found a marker, we don't need to go further
clusterFound = true;
break;
}
}
// If the marker doesn't fit in any cluster,
// we must create a brand new cluster.
if (!clusterFound) {
cluster = new Cluster(marker);
cluster.ComputeBounds(this);
clusters.push(cluster);
workingClusterList.push(cluster);
}
}
}
// Time to remove empty clusters
var newClustersList: Cluster[] = [];
for (i = 0, l = clusters.length; i < l; ++i) {
cluster = clusters[i];
if (cluster.population > 0) {
newClustersList.push(cluster);
}
}
this._clusters = newClustersList;
// We keep the list of markers sorted, it's faster
this._sortClusters();
return this._clusters;
}
public RemoveMarkers(markers?: Marker[]) {
// if markers are undefined, remove all
if (!markers) {
this._markers = [];
return;
}
// Mark the markers to be deleted
for (var i = 0, l = markers.length; i < l; ++i) {
(<any>markers[i])._removeFlag = true;
}
// Create a new list without the marked markers
var newMarkersList = [];
for (i = 0, l = this._markers.length; i < l; ++i) {
if (!(<any>this._markers[i])._removeFlag) {
newMarkersList.push(this._markers[i]);
}
else{
delete (<any>this._markers[i])._removeFlag;
}
}
this._markers = newMarkersList;
}
// This method is a bit slow ( O(n)) because it's not worth to make
// system which will slow down all the clusters just to have
// this one fast
public FindMarkersInArea(area: Bounds): Marker[] {
var aMinLat = area.minLat,
aMaxLat = area.maxLat,
aMinLng = area.minLng,
aMaxLng = area.maxLng,
markers = this._markers,
result = [];
var firstIndex = this._indexLowerBoundLng(aMinLng);
for (var i = firstIndex, l = markers.length; i < l; ++i) {
var pos = markers[i].position;
if (pos.lng > aMaxLng) {
break;
}
if (pos.lat >= aMinLat && pos.lat <= aMaxLat &&
pos.lng >= aMinLng) {
result.push(markers[i]);
}
}
return result;
}
// Compute the bounds of the list of markers
// It's slow O(n)
public ComputeBounds(markers: Marker[], withFiltered: boolean = true): Bounds {
if (!markers || !markers.length) {
return null;
}
var rMinLat = Number.MAX_VALUE,
rMaxLat = -Number.MAX_VALUE,
rMinLng = Number.MAX_VALUE,
rMaxLng = -Number.MAX_VALUE;
for (var i = 0, l = markers.length; i < l; ++i) {
if (!withFiltered && markers[i].filtered) {
continue;
}
var pos = markers[i].position;
if (pos.lat < rMinLat) rMinLat = pos.lat;
if (pos.lat > rMaxLat) rMaxLat = pos.lat;
if (pos.lng < rMinLng) rMinLng = pos.lng;
if (pos.lng > rMaxLng) rMaxLng = pos.lng;
}
return {
minLat: rMinLat,
maxLat: rMaxLat,
minLng: rMinLng,
maxLng: rMaxLng
};
}
public FindMarkersBoundsInArea(area: Bounds): Bounds {
return this.ComputeBounds(this.FindMarkersInArea(area));
}
public ComputeGlobalBounds(withFiltered: boolean = true): Bounds {
return this.ComputeBounds(this._markers, withFiltered);
}
public GetMarkers(): Marker[] {
return this._markers;
}
public GetPopulation(): number {
return this._markers.length;
}
public ResetClusters() {
this._clusters = [];
}
}
}