forked from Earthmark/msdfgen
-
Notifications
You must be signed in to change notification settings - Fork 1
/
edge-segments.cpp
504 lines (454 loc) · 16.3 KB
/
edge-segments.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#include "edge-segments.h"
#include "arithmetics.hpp"
#include "equation-solver.h"
namespace msdfgen {
void EdgeSegment::distanceToPseudoDistance(SignedDistance &distance, Point2 origin, double param) const {
if (param < 0) {
Vector2 dir = direction(0).normalize();
Vector2 aq = origin-point(0);
double ts = dotProduct(aq, dir);
if (ts < 0) {
double pseudoDistance = crossProduct(aq, dir);
if (fabs(pseudoDistance) <= fabs(distance.distance)) {
distance.distance = pseudoDistance;
distance.dot = 0;
}
}
} else if (param > 1) {
Vector2 dir = direction(1).normalize();
Vector2 bq = origin-point(1);
double ts = dotProduct(bq, dir);
if (ts > 0) {
double pseudoDistance = crossProduct(bq, dir);
if (fabs(pseudoDistance) <= fabs(distance.distance)) {
distance.distance = pseudoDistance;
distance.dot = 0;
}
}
}
}
LinearSegment::LinearSegment(Point2 p0, Point2 p1, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
p[0] = p0;
p[1] = p1;
}
QuadraticSegment::QuadraticSegment(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
if (p1 == p0 || p1 == p2)
p1 = 0.5*(p0+p2);
p[0] = p0;
p[1] = p1;
p[2] = p2;
}
CubicSegment::CubicSegment(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
if ((p1 == p0 || p1 == p3) && (p2 == p0 || p2 == p3)) {
p1 = mix(p0, p3, 1/3.);
p2 = mix(p0, p3, 2/3.);
}
p[0] = p0;
p[1] = p1;
p[2] = p2;
p[3] = p3;
}
LinearSegment * LinearSegment::clone() const {
return new LinearSegment(p[0], p[1], color);
}
QuadraticSegment * QuadraticSegment::clone() const {
return new QuadraticSegment(p[0], p[1], p[2], color);
}
CubicSegment * CubicSegment::clone() const {
return new CubicSegment(p[0], p[1], p[2], p[3], color);
}
Point2 LinearSegment::point(double param) const {
return mix(p[0], p[1], param);
}
Point2 QuadraticSegment::point(double param) const {
return mix(mix(p[0], p[1], param), mix(p[1], p[2], param), param);
}
Point2 CubicSegment::point(double param) const {
Vector2 p12 = mix(p[1], p[2], param);
return mix(mix(mix(p[0], p[1], param), p12, param), mix(p12, mix(p[2], p[3], param), param), param);
}
Vector2 LinearSegment::direction(double param) const {
return p[1]-p[0];
}
Vector2 QuadraticSegment::direction(double param) const {
Vector2 tangent = mix(p[1]-p[0], p[2]-p[1], param);
if (!tangent)
return p[2]-p[0];
return tangent;
}
Vector2 CubicSegment::direction(double param) const {
Vector2 tangent = mix(mix(p[1]-p[0], p[2]-p[1], param), mix(p[2]-p[1], p[3]-p[2], param), param);
if (!tangent) {
if (param == 0) return p[2]-p[0];
if (param == 1) return p[3]-p[1];
}
return tangent;
}
Vector2 LinearSegment::directionChange(double param) const {
return Vector2();
}
Vector2 QuadraticSegment::directionChange(double param) const {
return (p[2]-p[1])-(p[1]-p[0]);
}
Vector2 CubicSegment::directionChange(double param) const {
return mix((p[2]-p[1])-(p[1]-p[0]), (p[3]-p[2])-(p[2]-p[1]), param);
}
double LinearSegment::length() const {
return (p[1]-p[0]).length();
}
double QuadraticSegment::length() const {
Vector2 ab = p[1]-p[0];
Vector2 br = p[2]-p[1]-ab;
double abab = dotProduct(ab, ab);
double abbr = dotProduct(ab, br);
double brbr = dotProduct(br, br);
double abLen = sqrt(abab);
double brLen = sqrt(brbr);
double crs = crossProduct(ab, br);
double h = sqrt(abab+abbr+abbr+brbr);
return (
brLen*((abbr+brbr)*h-abbr*abLen)+
crs*crs*log((brLen*h+abbr+brbr)/(brLen*abLen+abbr))
)/(brbr*brLen);
}
SignedDistance LinearSegment::signedDistance(Point2 origin, double ¶m) const {
Vector2 aq = origin-p[0];
Vector2 ab = p[1]-p[0];
param = dotProduct(aq, ab)/dotProduct(ab, ab);
Vector2 eq = p[param > .5]-origin;
double endpointDistance = eq.length();
if (param > 0 && param < 1) {
double orthoDistance = dotProduct(ab.getOrthonormal(false), aq);
if (fabs(orthoDistance) < endpointDistance)
return SignedDistance(orthoDistance, 0);
}
return SignedDistance(nonZeroSign(crossProduct(aq, ab))*endpointDistance, fabs(dotProduct(ab.normalize(), eq.normalize())));
}
SignedDistance QuadraticSegment::signedDistance(Point2 origin, double ¶m) const {
Vector2 qa = p[0]-origin;
Vector2 ab = p[1]-p[0];
Vector2 br = p[2]-p[1]-ab;
double a = dotProduct(br, br);
double b = 3*dotProduct(ab, br);
double c = 2*dotProduct(ab, ab)+dotProduct(qa, br);
double d = dotProduct(qa, ab);
double t[3];
int solutions = solveCubic(t, a, b, c, d);
Vector2 epDir = direction(0);
double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir);
{
epDir = direction(1);
double distance = (p[2]-origin).length(); // distance from B
if (distance < fabs(minDistance)) {
minDistance = nonZeroSign(crossProduct(epDir, p[2]-origin))*distance;
param = dotProduct(origin-p[1], epDir)/dotProduct(epDir, epDir);
}
}
for (int i = 0; i < solutions; ++i) {
if (t[i] > 0 && t[i] < 1) {
Point2 qe = qa+2*t[i]*ab+t[i]*t[i]*br;
double distance = qe.length();
if (distance <= fabs(minDistance)) {
minDistance = nonZeroSign(crossProduct(ab+t[i]*br, qe))*distance;
param = t[i];
}
}
}
if (param >= 0 && param <= 1)
return SignedDistance(minDistance, 0);
if (param < .5)
return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize())));
else
return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[2]-origin).normalize())));
}
SignedDistance CubicSegment::signedDistance(Point2 origin, double ¶m) const {
Vector2 qa = p[0]-origin;
Vector2 ab = p[1]-p[0];
Vector2 br = p[2]-p[1]-ab;
Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br;
Vector2 epDir = direction(0);
double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir);
{
epDir = direction(1);
double distance = (p[3]-origin).length(); // distance from B
if (distance < fabs(minDistance)) {
minDistance = nonZeroSign(crossProduct(epDir, p[3]-origin))*distance;
param = dotProduct(epDir-(p[3]-origin), epDir)/dotProduct(epDir, epDir);
}
}
// Iterative minimum distance search
for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) {
double t = (double) i/MSDFGEN_CUBIC_SEARCH_STARTS;
Vector2 qe = qa+3*t*ab+3*t*t*br+t*t*t*as;
for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) {
// Improve t
Vector2 d1 = 3*ab+6*t*br+3*t*t*as;
Vector2 d2 = 6*br+6*t*as;
t -= dotProduct(qe, d1)/(dotProduct(d1, d1)+dotProduct(qe, d2));
if (t <= 0 || t >= 1)
break;
qe = qa+3*t*ab+3*t*t*br+t*t*t*as;
double distance = qe.length();
if (distance < fabs(minDistance)) {
minDistance = nonZeroSign(crossProduct(d1, qe))*distance;
param = t;
}
}
}
if (param >= 0 && param <= 1)
return SignedDistance(minDistance, 0);
if (param < .5)
return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize())));
else
return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[3]-origin).normalize())));
}
int LinearSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
if ((y >= p[0].y && y < p[1].y) || (y >= p[1].y && y < p[0].y)) {
double param = (y-p[0].y)/(p[1].y-p[0].y);
x[0] = mix(p[0].x, p[1].x, param);
dy[0] = sign(p[1].y-p[0].y);
return 1;
}
return 0;
}
int QuadraticSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
int total = 0;
int nextDY = y > p[0].y ? 1 : -1;
x[total] = p[0].x;
if (p[0].y == y) {
if (p[0].y < p[1].y || (p[0].y == p[1].y && p[0].y < p[2].y))
dy[total++] = 1;
else
nextDY = 1;
}
{
Vector2 ab = p[1]-p[0];
Vector2 br = p[2]-p[1]-ab;
double t[2];
int solutions = solveQuadratic(t, br.y, 2*ab.y, p[0].y-y);
// Sort solutions
double tmp;
if (solutions >= 2 && t[0] > t[1])
tmp = t[0], t[0] = t[1], t[1] = tmp;
for (int i = 0; i < solutions && total < 2; ++i) {
if (t[i] >= 0 && t[i] <= 1) {
x[total] = p[0].x+2*t[i]*ab.x+t[i]*t[i]*br.x;
if (nextDY*(ab.y+t[i]*br.y) >= 0) {
dy[total++] = nextDY;
nextDY = -nextDY;
}
}
}
}
if (p[2].y == y) {
if (nextDY > 0 && total > 0) {
--total;
nextDY = -1;
}
if ((p[2].y < p[1].y || (p[2].y == p[1].y && p[2].y < p[0].y)) && total < 2) {
x[total] = p[2].x;
if (nextDY < 0) {
dy[total++] = -1;
nextDY = 1;
}
}
}
if (nextDY != (y >= p[2].y ? 1 : -1)) {
if (total > 0)
--total;
else {
if (fabs(p[2].y-y) < fabs(p[0].y-y))
x[total] = p[2].x;
dy[total++] = nextDY;
}
}
return total;
}
int CubicSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
int total = 0;
int nextDY = y > p[0].y ? 1 : -1;
x[total] = p[0].x;
if (p[0].y == y) {
if (p[0].y < p[1].y || (p[0].y == p[1].y && (p[0].y < p[2].y || (p[0].y == p[2].y && p[0].y < p[3].y))))
dy[total++] = 1;
else
nextDY = 1;
}
{
Vector2 ab = p[1]-p[0];
Vector2 br = p[2]-p[1]-ab;
Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br;
double t[3];
int solutions = solveCubic(t, as.y, 3*br.y, 3*ab.y, p[0].y-y);
// Sort solutions
double tmp;
if (solutions >= 2) {
if (t[0] > t[1])
tmp = t[0], t[0] = t[1], t[1] = tmp;
if (solutions >= 3 && t[1] > t[2]) {
tmp = t[1], t[1] = t[2], t[2] = tmp;
if (t[0] > t[1])
tmp = t[0], t[0] = t[1], t[1] = tmp;
}
}
for (int i = 0; i < solutions && total < 3; ++i) {
if (t[i] >= 0 && t[i] <= 1) {
x[total] = p[0].x+3*t[i]*ab.x+3*t[i]*t[i]*br.x+t[i]*t[i]*t[i]*as.x;
if (nextDY*(ab.y+2*t[i]*br.y+t[i]*t[i]*as.y) >= 0) {
dy[total++] = nextDY;
nextDY = -nextDY;
}
}
}
}
if (p[3].y == y) {
if (nextDY > 0 && total > 0) {
--total;
nextDY = -1;
}
if ((p[3].y < p[2].y || (p[3].y == p[2].y && (p[3].y < p[1].y || (p[3].y == p[1].y && p[3].y < p[0].y)))) && total < 3) {
x[total] = p[3].x;
if (nextDY < 0) {
dy[total++] = -1;
nextDY = 1;
}
}
}
if (nextDY != (y >= p[3].y ? 1 : -1)) {
if (total > 0)
--total;
else {
if (fabs(p[3].y-y) < fabs(p[0].y-y))
x[total] = p[3].x;
dy[total++] = nextDY;
}
}
return total;
}
static void pointBounds(Point2 p, double &l, double &b, double &r, double &t) {
if (p.x < l) l = p.x;
if (p.y < b) b = p.y;
if (p.x > r) r = p.x;
if (p.y > t) t = p.y;
}
void LinearSegment::bound(double &l, double &b, double &r, double &t) const {
pointBounds(p[0], l, b, r, t);
pointBounds(p[1], l, b, r, t);
}
void QuadraticSegment::bound(double &l, double &b, double &r, double &t) const {
pointBounds(p[0], l, b, r, t);
pointBounds(p[2], l, b, r, t);
Vector2 bot = (p[1]-p[0])-(p[2]-p[1]);
if (bot.x) {
double param = (p[1].x-p[0].x)/bot.x;
if (param > 0 && param < 1)
pointBounds(point(param), l, b, r, t);
}
if (bot.y) {
double param = (p[1].y-p[0].y)/bot.y;
if (param > 0 && param < 1)
pointBounds(point(param), l, b, r, t);
}
}
void CubicSegment::bound(double &l, double &b, double &r, double &t) const {
pointBounds(p[0], l, b, r, t);
pointBounds(p[3], l, b, r, t);
Vector2 a0 = p[1]-p[0];
Vector2 a1 = 2*(p[2]-p[1]-a0);
Vector2 a2 = p[3]-3*p[2]+3*p[1]-p[0];
double params[2];
int solutions;
solutions = solveQuadratic(params, a2.x, a1.x, a0.x);
for (int i = 0; i < solutions; ++i)
if (params[i] > 0 && params[i] < 1)
pointBounds(point(params[i]), l, b, r, t);
solutions = solveQuadratic(params, a2.y, a1.y, a0.y);
for (int i = 0; i < solutions; ++i)
if (params[i] > 0 && params[i] < 1)
pointBounds(point(params[i]), l, b, r, t);
}
void LinearSegment::reverse() {
Point2 tmp = p[0];
p[0] = p[1];
p[1] = tmp;
}
void QuadraticSegment::reverse() {
Point2 tmp = p[0];
p[0] = p[2];
p[2] = tmp;
}
void CubicSegment::reverse() {
Point2 tmp = p[0];
p[0] = p[3];
p[3] = tmp;
tmp = p[1];
p[1] = p[2];
p[2] = tmp;
}
void LinearSegment::moveStartPoint(Point2 to) {
p[0] = to;
}
void QuadraticSegment::moveStartPoint(Point2 to) {
Vector2 origSDir = p[0]-p[1];
Point2 origP1 = p[1];
p[1] += crossProduct(p[0]-p[1], to-p[0])/crossProduct(p[0]-p[1], p[2]-p[1])*(p[2]-p[1]);
p[0] = to;
if (dotProduct(origSDir, p[0]-p[1]) < 0)
p[1] = origP1;
}
void CubicSegment::moveStartPoint(Point2 to) {
p[1] += to-p[0];
p[0] = to;
}
void LinearSegment::moveEndPoint(Point2 to) {
p[1] = to;
}
void QuadraticSegment::moveEndPoint(Point2 to) {
Vector2 origEDir = p[2]-p[1];
Point2 origP1 = p[1];
p[1] += crossProduct(p[2]-p[1], to-p[2])/crossProduct(p[2]-p[1], p[0]-p[1])*(p[0]-p[1]);
p[2] = to;
if (dotProduct(origEDir, p[2]-p[1]) < 0)
p[1] = origP1;
}
void CubicSegment::moveEndPoint(Point2 to) {
p[2] += to-p[3];
p[3] = to;
}
void LinearSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const {
part1 = new LinearSegment(p[0], point(1/3.), color);
part2 = new LinearSegment(point(1/3.), point(2/3.), color);
part3 = new LinearSegment(point(2/3.), p[1], color);
}
void QuadraticSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const {
part1 = new QuadraticSegment(p[0], mix(p[0], p[1], 1/3.), point(1/3.), color);
part2 = new QuadraticSegment(point(1/3.), mix(mix(p[0], p[1], 5/9.), mix(p[1], p[2], 4/9.), .5), point(2/3.), color);
part3 = new QuadraticSegment(point(2/3.), mix(p[1], p[2], 2/3.), p[2], color);
}
void CubicSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const {
part1 = new CubicSegment(p[0], p[0] == p[1] ? p[0] : mix(p[0], p[1], 1/3.), mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), point(1/3.), color);
part2 = new CubicSegment(point(1/3.),
mix(mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), mix(mix(p[1], p[2], 1/3.), mix(p[2], p[3], 1/3.), 1/3.), 2/3.),
mix(mix(mix(p[0], p[1], 2/3.), mix(p[1], p[2], 2/3.), 2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), 1/3.),
point(2/3.), color);
part3 = new CubicSegment(point(2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), p[2] == p[3] ? p[3] : mix(p[2], p[3], 2/3.), p[3], color);
}
EdgeSegment * QuadraticSegment::convertToCubic() const {
return new CubicSegment(p[0], mix(p[0], p[1], 2/3.), mix(p[1], p[2], 1/3.), p[2], color);
}
void CubicSegment::deconverge(int param, double amount) {
Vector2 dir = direction(param);
Vector2 normal = dir.getOrthonormal();
double h = dotProduct(directionChange(param)-dir, normal);
switch (param) {
case 0:
p[1] += amount*(dir+sign(h)*sqrt(fabs(h))*normal);
break;
case 1:
p[2] -= amount*(dir-sign(h)*sqrt(fabs(h))*normal);
break;
}
}
}