-
Notifications
You must be signed in to change notification settings - Fork 65
/
valid.py
394 lines (335 loc) · 14.8 KB
/
valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
from tqdm.auto import tqdm
import sys
import os
import glob
import copy
import torch
import soundfile as sf
import numpy as np
import torch.nn as nn
import multiprocessing
import warnings
warnings.filterwarnings("ignore")
from utils import demix, get_metrics, get_model_from_config, prefer_target_instrument
def proc_list_of_files(
mixture_paths,
model,
args,
config,
device,
verbose=False,
is_tqdm=True
):
instruments = prefer_target_instrument(config)
store_dir = ''
if hasattr(args, 'store_dir'):
store_dir = args.store_dir
use_tta = False
if hasattr(args, 'use_tta'):
use_tta = args.use_tta
extension = 'wav'
if hasattr(args, 'extension'):
extension = args.extension
if 'extension' in config['inference']:
extension = config['inference']['extension']
if store_dir != '':
os.makedirs(store_dir, exist_ok=True)
# Initialize metrics dictionary
all_metrics = dict()
for metric in args.metrics:
all_metrics[metric] = dict()
for instr in config.training.instruments:
all_metrics[metric][instr] = []
if is_tqdm:
mixture_paths = tqdm(mixture_paths)
for path in mixture_paths:
start_time = time.time()
mix, sr = sf.read(path)
mix_orig = mix.copy()
# Fix for mono
if len(mix.shape) == 1:
mix = np.expand_dims(mix, axis=-1)
mix = mix.T # (channels, waveform)
folder = os.path.dirname(path)
folder_name = os.path.abspath(folder)
if verbose:
print('Song: {} Shape: {}'.format(folder_name, mix.shape))
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mono = mix.mean(0)
mean = mono.mean()
std = mono.std()
mix = (mix - mean) / std
if use_tta:
# orig, channel inverse, polarity inverse
track_proc_list = [mix.copy(), mix[::-1].copy(), -1. * mix.copy()]
else:
track_proc_list = [mix.copy()]
full_result = []
for mix in track_proc_list:
waveforms = demix(config, model, mix, device, model_type=args.model_type)
full_result.append(waveforms)
# Average all values in single dict
waveforms = full_result[0]
for i in range(1, len(full_result)):
d = full_result[i]
for el in d:
if i == 2:
waveforms[el] += -1.0 * d[el]
elif i == 1:
waveforms[el] += d[el][::-1].copy()
else:
waveforms[el] += d[el]
for el in waveforms:
waveforms[el] = waveforms[el] / len(full_result)
pbar_dict = {}
for instr in instruments:
if verbose:
print("Instr: {}".format(instr))
if instr != 'other' or config.training.other_fix is False:
try:
track, sr1 = sf.read(folder + '/{}.{}'.format(instr, extension))
# Fix for mono
if len(track.shape) == 1:
track = np.expand_dims(track, axis=-1)
except Exception as e:
print('No data for stem: {}. Skip!'.format(instr))
continue
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.{}'.format('vocals', extension))
track = mix_orig - track
estimates = waveforms[instr].T
# print(estimates.shape)
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = estimates * std + mean
if store_dir != "":
out_wav_name = "{}/{}_{}.wav".format(store_dir, os.path.basename(folder), instr)
sf.write(out_wav_name, estimates, sr, subtype='FLOAT')
track_metrics = get_metrics(
args.metrics,
track.T,
estimates.T,
mix_orig.T,
device=device,
)
for metric_name in track_metrics:
metric_value = track_metrics[metric_name]
if verbose:
print("Metric {:11s} value: {:.4f}".format(metric_name, metric_value))
all_metrics[metric_name][instr].append(metric_value)
pbar_dict['{}_{}'.format(metric_name, instr)] = metric_value
try:
mixture_paths.set_postfix(pbar_dict)
except Exception as e:
pass
if verbose:
print("Time for song: {:.2f} sec".format(time.time() - start_time))
return all_metrics
def valid(model, args, config, device, verbose=False):
start_time = time.time()
model.eval().to(device)
store_dir = ''
if hasattr(args, 'store_dir'):
store_dir = args.store_dir
extension = 'wav'
if hasattr(args, 'extension'):
extension = args.extension
if 'extension' in config['inference']:
extension = config['inference']['extension']
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.{}'.format(extension)))
if len(part) == 0:
if verbose:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
if verbose:
print('Total mixtures: {}'.format(len(all_mixtures_path)))
print('Overlap: {} Batch size: {}'.format(config.inference.num_overlap, config.inference.batch_size))
all_metrics = proc_list_of_files(all_mixtures_path, model, args, config, device, verbose, not verbose)
instruments = prefer_target_instrument(config)
if store_dir != "":
out = open(store_dir + '/results.txt', 'w')
out.write(str(args) + "\n")
print("Num overlap: {}".format(config.inference.num_overlap))
metric_avg = {}
for instr in instruments:
for metric_name in all_metrics:
metric_values = np.array(all_metrics[metric_name][instr])
mean_val = metric_values.mean()
std_val = metric_values.std()
print("Instr {} {}: {:.4f} (Std: {:.4f})".format(instr, metric_name, mean_val, std_val))
if store_dir != "":
out.write("Instr {} {}: {:.4f} (Std: {:.4f})".format(instr, metric_name, mean_val, std_val) + "\n")
if metric_name not in metric_avg:
metric_avg[metric_name] = 0.0
metric_avg[metric_name] += mean_val
for metric_name in all_metrics:
metric_avg[metric_name] /= len(instruments)
if len(instruments) > 1:
for metric_name in metric_avg:
print('Metric avg {:11s}: {:.4f}'.format(metric_name, metric_avg[metric_name]))
if store_dir != "":
out.write('Metric avg {:11s}: {:.4f}'.format(metric_name, metric_avg[metric_name]) + "\n")
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
if store_dir != "":
out.write("Elapsed time: {:.2f} sec".format(time.time() - start_time) + "\n")
out.close()
return metric_avg
def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict):
m1 = model.eval().to(device)
if proc_id == 0:
progress_bar = tqdm(total=len(all_mixtures_path))
# Initialize metrics dictionary
all_metrics = dict()
for metric in args.metrics:
all_metrics[metric] = dict()
for instr in config.training.instruments:
all_metrics[metric][instr] = []
while True:
current_step, path = queue.get()
if path is None: # check for sentinel value
break
single_metrics = proc_list_of_files([path], m1, args, config, device, False, False)
pbar_dict = {}
for instr in config.training.instruments:
for metric_name in all_metrics:
all_metrics[metric_name][instr] += single_metrics[metric_name][instr]
if len(single_metrics[metric_name][instr]) > 0:
pbar_dict['{}_{}'.format(metric_name, instr)] = "{:.4f}".format(single_metrics[metric_name][instr][0])
if proc_id == 0:
progress_bar.update(current_step - progress_bar.n)
progress_bar.set_postfix(pbar_dict)
# print(f"Inference on process {proc_id}", all_sdr)
return_dict[proc_id] = all_metrics
return
def valid_multi_gpu(model, args, config, device_ids, verbose=False):
start_time = time.time()
store_dir = ''
if hasattr(args, 'store_dir'):
store_dir = args.store_dir
extension = 'wav'
if hasattr(args, 'extension'):
extension = args.extension
if 'extension' in config['inference']:
extension = config['inference']['extension']
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.{}'.format(extension)))
if len(part) == 0:
if verbose:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
if verbose:
print('Total mixtures: {}'.format(len(all_mixtures_path)))
print('Overlap: {} Batch size: {}'.format(config.inference.num_overlap, config.inference.batch_size))
model = model.to('cpu')
try:
# For multiGPU training extract single model
if len(device_ids) > 1:
model = model.module
except Exception as e:
pass
queue = torch.multiprocessing.Queue()
processes = []
return_dict = torch.multiprocessing.Manager().dict()
for i, device in enumerate(device_ids):
if torch.cuda.is_available():
device = 'cuda:{}'.format(device)
else:
device = 'cpu'
p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict))
p.start()
processes.append(p)
for i, path in enumerate(all_mixtures_path):
queue.put((i, path))
for _ in range(len(device_ids)):
queue.put((None, None)) # sentinel value to signal subprocesses to exit
for p in processes:
p.join() # wait for all subprocesses to finish
all_metrics = dict()
for metric in args.metrics:
all_metrics[metric] = dict()
for instr in config.training.instruments:
all_metrics[metric][instr] = []
for i in range(len(device_ids)):
all_metrics[metric][instr] += return_dict[i][metric][instr]
instruments = prefer_target_instrument(config)
if store_dir != "":
out = open(store_dir + '/results.txt', 'w')
out.write(str(args) + "\n")
print("Num overlap: {}".format(config.inference.num_overlap))
metric_avg = {}
for instr in instruments:
for metric_name in all_metrics:
metric_values = np.array(all_metrics[metric_name][instr])
mean_val = metric_values.mean()
std_val = metric_values.std()
print("Instr {} {}: {:.4f} (Std: {:.4f})".format(instr, metric_name, mean_val, std_val))
if store_dir != "":
out.write("Instr {} {}: {:.4f} (Std: {:.4f})".format(instr, metric_name, mean_val, std_val) + "\n")
if metric_name not in metric_avg:
metric_avg[metric_name] = 0.0
metric_avg[metric_name] += mean_val
for metric_name in all_metrics:
metric_avg[metric_name] /= len(instruments)
if len(instruments) > 1:
for metric_name in metric_avg:
print('Metric avg {:11s}: {:.4f}'.format(metric_name, metric_avg[metric_name]))
if store_dir != "":
out.write('Metric avg {:11s}: {:.4f}'.format(metric_name, metric_avg[metric_name]) + "\n")
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
if store_dir != "":
out.write("Elapsed time: {:.2f} sec".format(time.time() - start_time) + "\n")
out.close()
return metric_avg
def check_validation(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
parser.add_argument("--valid_path", nargs="+", type=str, help="validate path")
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory")
parser.add_argument("--extension", type=str, default='wav', help="Choose extension for validation")
parser.add_argument("--use_tta", action='store_true', help="Flag adds test time augmentation during inference (polarity and channel inverse). While this triples the runtime, it reduces noise and slightly improves prediction quality.")
parser.add_argument("--metrics", nargs='+', type=str, default=["sdr"], choices=['sdr', 'l1_freq', 'si_sdr', 'log_wmse', 'aura_stft', 'aura_mrstft', 'bleedless', 'fullness'], help='List of metrics to use.')
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
torch.backends.cudnn.benchmark = True
torch.multiprocessing.set_start_method('spawn')
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
print('Start from checkpoint: {}'.format(args.start_check_point))
state_dict = torch.load(args.start_check_point)
if args.model_type in ['htdemucs', 'apollo']:
# Fix for htdemucs pretrained models
if 'state' in state_dict:
state_dict = state_dict['state']
# Fix for apollo pretrained models
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
model.load_state_dict(state_dict)
print("Instruments: {}".format(config.training.instruments))
device_ids = args.device_ids
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = 'cpu'
print('CUDA is not available. Run validation on CPU. It will be very slow...')
if torch.cuda.is_available() and len(device_ids) > 1:
valid_multi_gpu(model, args, config, device_ids, verbose=False)
else:
valid(model, args, config, device, verbose=True)
if __name__ == "__main__":
check_validation(None)