-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ablation_memes_fix_reset.py
executable file
·271 lines (242 loc) · 8.33 KB
/
train_ablation_memes_fix_reset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import logging
import time
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, Tuple
import hydra
import jax
import jax.numpy as jnp
from hydra.core.config_store import ConfigStore
from qdax.core.map_elites import MAPElites
from qdax.types import RNGKey
from qdax.utils.sampling import sampling
from core.containers_metrics.metrics_mapelites_repertoire import (
MapElitesRepertoire,
compute_euclidean_centroids,
)
from core.emitters.memes_fix_reset_emitter import (
MEMESFixResetConfig,
MEMESFixResetEmitter,
)
from core.stochasticity_utils import reevaluation_function
from initialisation import set_up_default_metrics_dict, set_up_envs, set_up_metrics
from main_loop import main_loop
@dataclass
class ExperimentConfig:
"""Configuration from this experiment script"""
alg_name: str
# Env config
seed: int
env_name: str
episode_length: int
policy_hidden_layer_sizes: Tuple[int, ...]
# ME config
num_evaluations: int
num_iterations: int
batch_size: int
num_samples: int
fixed_init_state: bool
discard_dead: bool
# Grid config
grid_shape: Tuple[int, ...]
# Emitter config
iso_sigma: float
line_sigma: float
crossover_percentage: float
# others
log_period: int # only for timings and metrics
store_repertoire: bool
store_repertoire_log_period: int
# Stochasticity config
num_reevals: int
log_period_reevals: int
# ES parameters
sample_number: int
sample_sigma: float
sample_mirror: bool
sample_rank_norm: bool
num_generations_sample: int
num_in_optimizer_steps: int
adam_optimizer: bool
learning_rate: float
l2_coefficient: float # coefficient for regularisation
novelty_nearest_neighbors: int
use_novelty_archive: bool # if 1, use repertoire for novelty
use_novelty_fifo: bool # if 1 use fifo archive for novelty
fifo_size: int # size of the fifo buffer
proportion_explore: bool
scan_batch_size: int
scan_novelty: int
@hydra.main(config_path="configs", config_name="ablation_memes_fix_reset")
def train(config: ExperimentConfig) -> None:
# Setup logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger().handlers[0].setLevel(logging.INFO)
logger = logging.getLogger(f"{__name__}")
# Choose stopping criteria
if config.num_iterations > 0 and config.num_evaluations > 0:
print(
"!!!WARNING!!! Both num_iterations and num_evaluations are set",
"choosing num_iterations over num_evaluations",
)
if config.num_iterations > 0:
num_iterations = config.num_iterations
elif config.num_evaluations > 0:
num_iterations = (
config.num_evaluations
// (
config.batch_size * config.sample_number * config.num_in_optimizer_steps
)
+ 1
)
# Init a random key
random_key = jax.random.PRNGKey(config.seed)
# Setup environment
(
env,
scoring_fn,
policy_network,
construction_fn,
init_variables,
reward_offset,
behavior_descriptor_length,
genotype_dim,
random_key,
) = set_up_envs(config, config.batch_size, random_key)
# Setup all metrics
(
metrics_fn,
reeval_metrics_fn,
) = set_up_metrics(config.episode_length, reward_offset)
# Wrap the scoring function to do sampling
me_scoring_fn = partial(
sampling,
scoring_fn=scoring_fn,
num_samples=config.num_samples,
)
# Compute the centroids
logger.warning("--- Compute the CVT centroids ---")
minval, maxval = env.behavior_descriptor_limits
init_time = time.time()
centroids = compute_euclidean_centroids(
grid_shape=config.grid_shape,
minval=minval,
maxval=maxval,
)
centroid_time = time.time() - init_time
logger.warning(f"--- Duration for CVT centroids computation : {centroid_time:.2f}s")
# Define emitter
es_emitter_config = MEMESFixResetConfig(
sample_number=config.sample_number,
sample_sigma=config.sample_sigma,
sample_mirror=config.sample_mirror,
sample_rank_norm=config.sample_rank_norm,
num_generations_sample=config.num_generations_sample,
num_in_optimizer_steps=config.num_in_optimizer_steps,
adam_optimizer=config.adam_optimizer,
learning_rate=config.learning_rate,
l2_coefficient=config.l2_coefficient,
novelty_nearest_neighbors=config.novelty_nearest_neighbors,
use_novelty_archive=config.use_novelty_archive,
use_novelty_fifo=config.use_novelty_fifo,
fifo_size=config.fifo_size,
proportion_explore=config.proportion_explore,
)
es_emitter = MEMESFixResetEmitter(
config=es_emitter_config,
batch_size=config.batch_size,
scoring_fn=scoring_fn,
num_descriptors=env.behavior_descriptor_length,
scan_batch_size=config.scan_batch_size,
scan_novelty=config.scan_novelty,
total_generations=num_iterations,
num_centroids=int(jnp.prod(jnp.array(config.grid_shape))),
)
# Instantiate MAP-Elites
map_elites = MAPElites(
scoring_function=me_scoring_fn,
emitter=es_emitter,
metrics_function=metrics_fn,
)
# Init algorithm
logger.warning("--- Algorithm initialisation ---")
start_time = time.time()
repertoire, emitter_state, random_key = map_elites.init(
init_variables, centroids, random_key
)
init_time = time.time() - start_time
logger.warning("--- Initialised ---")
logger.warning("--- Starting the algorithm main process ---")
# Define a reeval function
metric_repertoire = MapElitesRepertoire.init(
genotypes=init_variables,
fitnesses=jnp.zeros(config.batch_size),
descriptors=jnp.zeros((config.batch_size, env.behavior_descriptor_length)),
extra_scores={},
centroids=centroids,
)
reevaluation_fn = partial(
reevaluation_function,
metric_repertoire=metric_repertoire,
scoring_fn=scoring_fn,
num_reevals=config.num_reevals,
use_median=True,
)
# Set up metric dicts
(full_metrics, full_reeval_metrics, timings,) = set_up_default_metrics_dict(
init_time=init_time,
centroid_time=centroid_time,
num_iterations=num_iterations,
)
def additional_metrics_fn(
metrics: Dict, repertoire: MapElitesRepertoire, emitter_state: Any
) -> Dict:
return metrics
# Function to count number of evaluations
count_evals_fn = (
lambda iteration: iteration
* config.batch_size
* config.sample_number
* config.num_in_optimizer_steps
)
# Main QD loop
map_elites_update_fn = partial(map_elites.update)
def update_fn(
repertoire: MapElitesRepertoire,
second_repertoire: MapElitesRepertoire,
emitter_state: Any,
random_key: RNGKey,
) -> Tuple[MapElitesRepertoire, MapElitesRepertoire, Any, Dict, RNGKey]:
repertoire, emitter_state, metrics, random_key = map_elites_update_fn(
repertoire, emitter_state, random_key
)
return repertoire, None, emitter_state, metrics, random_key
full_metrics, full_reeval_metrics, timings, random_key = main_loop(
logger=logger,
init_time=init_time,
centroid_time=centroid_time,
behavior_descriptor_length=behavior_descriptor_length,
num_iterations=num_iterations,
update_fn=update_fn,
repertoire=repertoire,
second_repertoire=None,
emitter_state=emitter_state,
count_evals_fn=count_evals_fn,
reevaluation_fn=reevaluation_fn,
metrics_fn=metrics_fn,
full_metrics=full_metrics,
full_reeval_metrics=full_reeval_metrics,
timings=timings,
additional_metrics_fn=additional_metrics_fn,
reeval_metrics_fn=reeval_metrics_fn,
log_period=config.log_period,
num_reevals=config.num_reevals,
log_period_reevals=config.log_period_reevals,
store_repertoire=config.store_repertoire,
store_repertoire_log_period=config.store_repertoire_log_period,
random_key=random_key,
)
if __name__ == "__main__":
cs = ConfigStore.instance()
cs.store(name="validate_experiment_config", node=ExperimentConfig)
train()