-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
223 lines (190 loc) · 10.5 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
from utils.augmentations import letterbox
import numpy as np
class YoloDetect:
def __init__(self,
weights=ROOT / 'weights/conesbest.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
save_txt=False, # save results to *.txt
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
self.weights = weights
self.source = source
self.data = data
self.imgsz = imgsz
self.conf_thres = conf_thres
self.iou_thres = iou_thres
self.max_det = max_det
self.device = device
self.save_txt = save_txt
self.nosave = nosave
self.classes = classes
self.agnostic_nms = agnostic_nms
self.augment = augment
self.visualize = visualize
self.project = project
self.name = name
self.exist_ok = exist_ok
self.line_thickness = line_thickness
self.hide_labels = hide_labels
self.hide_conf = hide_conf
self.half = half
self.dnn = dnn
self.vid_stride = vid_stride
self.source = str(source)
self.save_img = not nosave and not self.source.endswith('.txt') # save inference images
# Directories
self.save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(self.save_dir / 'labels' if save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
self.model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, self.names, pt = self.model.stride, self.model.names, self.model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
self.dataset = LoadImages(self.source, img_size=self.imgsz, stride=self.model.stride, auto=self.model.pt, vid_stride=self.vid_stride)
# Run inference
self.model.warmup(imgsz=(1 if pt or self.model.triton else bs, 3, *imgsz)) # warmup
def run_test(self):
import glob
directory = self.source
png_files = glob.glob(directory)
for idx, img_full_path in enumerate(png_files, 1):
cv2_image_bgr = cv2.imread(img_full_path)
self.run(cv2_image_bgr, idx, img_full_path)
def run(self, cv2_image_bgr, img_num=1, full_path='img.png', stride=32):
im = letterbox(cv2_image_bgr, self.imgsz[0], stride=stride, auto=True)[0] # padded resize
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
dt = (Profile(), Profile(), Profile())
s = str(full_path)
self.__run_on_image(im, cv2_image_bgr, img_num, dt, full_path, s)
@smart_inference_mode()
def run_test_original(self):
seen, windows, dt = 1, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in self.dataset:
self.__run_on_image(im, im0s, seen, dt, path, s)
seen += 1
# Print results
if self.save_txt or self.save_img:
s = f"\n{len(list(self.save_dir.glob('labels/*.txt')))} labels saved to {self.save_dir / 'labels'}" if self.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
def __run_on_image(self, im, im0s, seen, dt, path, s):
with dt[0]:
im = torch.from_numpy(im).to(self.model.device)
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.visualize else False
pred = self.model(im, augment=self.augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, self.classes, self.agnostic_nms, max_det=self.max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for _, det in enumerate(pred): # per image
p, im0, frame = path, im0s.copy(), getattr(self.dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(self.save_dir / p.name) # im.jpg
s += '%gx%g ' % im.shape[2:] # print string
annotator = Annotator(im0, line_width=self.line_thickness, example=str(self.names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if self.save_img: # Add bbox to image
c = int(cls) # integer class
label = None if self.hide_labels else (self.names[c] if self.hide_conf else f'{self.names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
# Stream results
im0 = annotator.result()
# Save results (image with detections)
if self.save_img:
cv2.imwrite(save_path, im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image {(1, 3)}' % t)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights/conesbest.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'images/*.png', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.6, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
yolo_detect = YoloDetect(**vars(opt))
# yolo_detect.run_test_original()
yolo_detect.run_test()
if __name__ == '__main__':
opt = parse_opt()
main(opt)