-
Notifications
You must be signed in to change notification settings - Fork 0
/
dev_led_controller.c
949 lines (847 loc) · 30.6 KB
/
dev_led_controller.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
// Pico
#include "pico/stdlib.h"
// For memcpy
#include <string.h>
// Include descriptor struct definitions
#include "usb_common.h"
// USB register definitions from pico-sdk
#include "hardware/regs/usb.h"
// USB hardware struct definitions from pico-sdk
#include "hardware/structs/usb.h"
// For interrupt enable and numbers
#include "hardware/irq.h"
// For resetting the USB controller
#include "hardware/resets.h"
// Device descriptors
#include "dev_lowlevel.h"
#include "pico/stdlib.h"
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "apa104.pio.h"
//#include "apa104.h"
#include "led_param.h"
#include "hardware/gpio.h" //for gpio irq
#include "led_controller.h"
#include "pico/sem.h"
#include "pico/critical_section.h"
#include "hardware/vreg.h"
#define usb_hw_set hw_set_alias(usb_hw)
#define usb_hw_clear hw_clear_alias(usb_hw)
//struct semaphore led_frame_sem;
critical_section_t c_s;
int force_refresh = 1;
uint32_t test_pattern = COLOR_WHITE;
bool b_color_test_mode = 0;
int width_interval = 0;
int height_interval = 0;
int LED_WIDTH = 80;//40;
int LED_HEIGHT = 12;//24;
void gpio_callback(uint gpio, uint32_t events);
int32_t gpio_irq_enable(uint32_t gpio, void* callback, uint32_t condition);
int i_led_test_color = 0x0;
int64_t alarm_callback(alarm_id_t id, void *user_data) {
printf("Timer %d fired!\n", (int) id);
//timer_fired = true;
gpio_irq_enable(15, &gpio_callback, GPIO_IRQ_EDGE_RISE );
// Can return a value here in us to fire in the future
return 0;
}
void gpio_callback(uint gpio, uint32_t events) {
gpio_set_irq_enabled_with_callback(15, NULL, false, NULL);
printf("%s\n", __func__);
if(test_pattern == COLOR_WHITE){
test_pattern = COLOR_RED;
printf("RED!\n");
}else if(test_pattern == COLOR_RED){
test_pattern = COLOR_GREEN;
printf("GREEN!\n");
}else if(test_pattern == COLOR_GREEN){
test_pattern = COLOR_BLUE;
printf("BLUE!\n");
}else if(test_pattern == COLOR_BLUE){
test_pattern = COLOR_WHITE;
printf("WHITE!\n");
}
add_alarm_in_ms(2000, alarm_callback, NULL, false);
}
int32_t gpio_irq_enable(uint32_t gpio, void* callback, uint32_t condition) {
gpio_set_irq_enabled_with_callback(gpio, condition, true, callback);
}
// add for LED apa104 control
const int PIN_TX_0 = 4;
const int PIN_TX_1 = 5;
const int PIN_TX_2 = 6;
const int PIN_TX_3 = 7;
const int PIN_TX_4 = 16;
const int PIN_TX_5 = 17;
const int PIN_TX_6 = 18;
const int PIN_TX_7 = 19;
//PIO pio_0 = pio0
//PIO pio_1 = pio1
static inline void put_pixel_by_panel(uint8_t panel_id, uint32_t pixel_grb) {
switch(panel_id){
case 0:
pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
break;
case 1:
pio_sm_put_blocking(pio0, 1, pixel_grb << 8u);
break;
case 2:
pio_sm_put_blocking(pio0, 2, pixel_grb << 8u);
break;
case 3:
pio_sm_put_blocking(pio0, 3, pixel_grb << 8u);
break;
case 4:
pio_sm_put_blocking(pio1, 0, pixel_grb << 8u);
break;
case 5:
pio_sm_put_blocking(pio1, 1, pixel_grb << 8u);
break;
case 6:
pio_sm_put_blocking(pio1, 2, pixel_grb << 8u);
break;
case 7:
pio_sm_put_blocking(pio1, 3, pixel_grb << 8u);
break;
default:
printf("error!no such panel id: %d\n", panel_id);
break;
}
}
static inline void put_pixel(uint32_t pixel_grb) {
pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
pio_sm_put_blocking(pio0, 1, pixel_grb << 8u);
pio_sm_put_blocking(pio0, 2, pixel_grb << 8u);
pio_sm_put_blocking(pio0, 3, pixel_grb << 8u);
pio_sm_put_blocking(pio1, 0, pixel_grb << 8u);
pio_sm_put_blocking(pio1, 1, pixel_grb << 8u);
pio_sm_put_blocking(pio1, 2, pixel_grb << 8u);
pio_sm_put_blocking(pio1, 3, pixel_grb << 8u);
}
static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {
return
((uint32_t) (r) << 8) |
((uint32_t) (g) << 16) |
(uint32_t) (b);
}
static int32_t pio_initial() {
//pio0 4 sm port
PIO pio = pio0;
int sm = 0;
uint offset = pio_add_program(pio, &ws2812_program);
ws2812_program_init(pio, sm, offset, PIN_TX_0, 800000, false);
ws2812_program_init(pio, sm+1, offset, PIN_TX_1, 800000, false);
ws2812_program_init(pio, sm+2, offset, PIN_TX_2, 800000, false);
ws2812_program_init(pio, sm+3, offset, PIN_TX_3, 800000, false);
//pio0 4 sm port
PIO pio_1 = pio1;
int sm_1 = 0;
uint offset_1 = pio_add_program(pio1, &ws2812_program);
ws2812_program_init(pio_1, sm_1, offset_1, PIN_TX_4, 800000, false);
ws2812_program_init(pio_1, sm_1+1, offset_1, PIN_TX_5, 800000, false);
ws2812_program_init(pio_1, sm_1+2, offset_1, PIN_TX_6, 800000, false);
ws2812_program_init(pio_1, sm_1+3, offset_1, PIN_TX_7, 800000, false);
return 0;
}
// Function prototypes for our device specific endpoint handlers defined
// later on
void ep0_in_handler(uint8_t *buf, uint16_t len);
void ep0_out_handler(uint8_t *buf, uint16_t len);
void ep1_out_handler(uint8_t *buf, uint16_t len);
void ep2_in_handler(uint8_t *buf, uint16_t len);
// Global device address
static bool should_set_address = false;
static uint8_t dev_addr = 0;
static volatile bool configured = false;
// Global data buffer for EP0
static uint8_t ep0_buf[64];
// Struct defining the device configuration
static struct usb_device_configuration dev_config = {
.device_descriptor = &device_descriptor,
.interface_descriptor = &interface_descriptor,
.config_descriptor = &config_descriptor,
.lang_descriptor = lang_descriptor,
.descriptor_strings = descriptor_strings,
.endpoints = {
{
.descriptor = &ep0_out,
.handler = &ep0_out_handler,
.endpoint_control = NULL, // NA for EP0
.buffer_control = &usb_dpram->ep_buf_ctrl[0].out,
// EP0 in and out share a data buffer
.data_buffer = &usb_dpram->ep0_buf_a[0],
},
{
.descriptor = &ep0_in,
.handler = &ep0_in_handler,
.endpoint_control = NULL, // NA for EP0,
.buffer_control = &usb_dpram->ep_buf_ctrl[0].in,
// EP0 in and out share a data buffer
.data_buffer = &usb_dpram->ep0_buf_a[0],
},
{
.descriptor = &ep1_out,
.handler = &ep1_out_handler,
// EP1 starts at offset 0 for endpoint control
.endpoint_control = &usb_dpram->ep_ctrl[0].out,
.buffer_control = &usb_dpram->ep_buf_ctrl[1].out,
// First free EPX buffer
.data_buffer = &usb_dpram->epx_data[0 * 64],
},
{
.descriptor = &ep2_in,
.handler = &ep2_in_handler,
.endpoint_control = &usb_dpram->ep_ctrl[1].in,
.buffer_control = &usb_dpram->ep_buf_ctrl[2].in,
// Second free EPX buffer
.data_buffer = &usb_dpram->epx_data[1 * 64],
}
}
};
/**
* @brief Given an endpoint address, return the usb_endpoint_configuration of that endpoint. Returns NULL
* if an endpoint of that address is not found.
*
* @param addr
* @return struct usb_endpoint_configuration*
*/
struct usb_endpoint_configuration *usb_get_endpoint_configuration(uint8_t addr) {
struct usb_endpoint_configuration *endpoints = dev_config.endpoints;
for (int i = 0; i < USB_NUM_ENDPOINTS; i++) {
if (endpoints[i].descriptor && (endpoints[i].descriptor->bEndpointAddress == addr)) {
return &endpoints[i];
}
}
return NULL;
}
/**
* @brief Given a C string, fill the EP0 data buf with a USB string descriptor for that string.
*
* @param C string you would like to send to the USB host
* @return the length of the string descriptor in EP0 buf
*/
uint8_t usb_prepare_string_descriptor(const unsigned char *str) {
// 2 for bLength + bDescriptorType + strlen * 2 because string is unicode. i.e. other byte will be 0
uint8_t bLength = 2 + (strlen(str) * 2);
static const uint8_t bDescriptorType = 0x03;
volatile uint8_t *buf = &ep0_buf[0];
*buf++ = bLength;
*buf++ = bDescriptorType;
uint8_t c;
do {
c = *str++;
*buf++ = c;
*buf++ = 0;
} while (c != '\0');
return bLength;
}
/**
* @brief Take a buffer pointer located in the USB RAM and return as an offset of the RAM.
*
* @param buf
* @return uint32_t
*/
static inline uint32_t usb_buffer_offset(volatile uint8_t *buf) {
return (uint32_t) buf ^ (uint32_t) usb_dpram;
}
/**
* @brief Set up the endpoint control register for an endpoint (if applicable. Not valid for EP0).
*
* @param ep
*/
void usb_setup_endpoint(const struct usb_endpoint_configuration *ep) {
printf("Set up endpoint 0x%x with buffer address 0x%p\n", ep->descriptor->bEndpointAddress, ep->data_buffer);
// EP0 doesn't have one so return if that is the case
if (!ep->endpoint_control) {
return;
}
// Get the data buffer as an offset of the USB controller's DPRAM
uint32_t dpram_offset = usb_buffer_offset(ep->data_buffer);
uint32_t reg = EP_CTRL_ENABLE_BITS
| EP_CTRL_INTERRUPT_PER_BUFFER
| (ep->descriptor->bmAttributes << EP_CTRL_BUFFER_TYPE_LSB)
| dpram_offset;
*ep->endpoint_control = reg;
}
/**
* @brief Set up the endpoint control register for each endpoint.
*
*/
void usb_setup_endpoints() {
const struct usb_endpoint_configuration *endpoints = dev_config.endpoints;
for (int i = 0; i < USB_NUM_ENDPOINTS; i++) {
if (endpoints[i].descriptor && endpoints[i].handler) {
usb_setup_endpoint(&endpoints[i]);
}
}
}
/**
* @brief Set up the USB controller in device mode, clearing any previous state.
*
*/
void usb_device_init() {
// Reset usb controller
reset_block(RESETS_RESET_USBCTRL_BITS);
unreset_block_wait(RESETS_RESET_USBCTRL_BITS);
// Clear any previous state in dpram just in case
memset(usb_dpram, 0, sizeof(*usb_dpram)); // <1>
// Enable USB interrupt at processor
irq_set_enabled(USBCTRL_IRQ, true);
// Mux the controller to the onboard usb phy
usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS;
// Force VBUS detect so the device thinks it is plugged into a host
usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
// Enable the USB controller in device mode.
usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS;
// Enable an interrupt per EP0 transaction
usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS; // <2>
// Enable interrupts for when a buffer is done, when the bus is reset,
// and when a setup packet is received
usb_hw->inte = USB_INTS_BUFF_STATUS_BITS |
USB_INTS_BUS_RESET_BITS |
USB_INTS_SETUP_REQ_BITS;
// Set up endpoints (endpoint control registers)
// described by device configuration
usb_setup_endpoints();
// Present full speed device by enabling pull up on DP
usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
/**
* @brief Given an endpoint configuration, returns true if the endpoint
* is transmitting data to the host (i.e. is an IN endpoint)
*
* @param ep, the endpoint configuration
* @return true
* @return false
*/
static inline bool ep_is_tx(struct usb_endpoint_configuration *ep) {
return ep->descriptor->bEndpointAddress & USB_DIR_IN;
}
/**
* @brief Starts a transfer on a given endpoint.
*
* @param ep, the endpoint configuration.
* @param buf, the data buffer to send. Only applicable if the endpoint is TX
* @param len, the length of the data in buf (this example limits max len to one packet - 64 bytes)
*/
void usb_start_transfer(struct usb_endpoint_configuration *ep, uint8_t *buf, uint16_t len) {
// We are asserting that the length is <= 64 bytes for simplicity of the example.
// For multi packet transfers see the tinyusb port.
assert(len <= 64);
//printf("Start transfer of len %d on ep addr 0x%x\n", len, ep->descriptor->bEndpointAddress);
// Prepare buffer control register value
uint32_t val = len | USB_BUF_CTRL_AVAIL;
if (ep_is_tx(ep)) {
// Need to copy the data from the user buffer to the usb memory
memcpy((void *) ep->data_buffer, (void *) buf, len);
// Mark as full
val |= USB_BUF_CTRL_FULL;
}
// Set pid and flip for next transfer
val |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
ep->next_pid ^= 1u;
*ep->buffer_control = val;
}
/**
* @brief Send device descriptor to host
*
*/
void usb_handle_device_descriptor(void) {
const struct usb_device_descriptor *d = dev_config.device_descriptor;
// EP0 in
struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP0_IN_ADDR);
// Always respond with pid 1
ep->next_pid = 1;
usb_start_transfer(ep, (uint8_t *) d, sizeof(struct usb_device_descriptor));
}
/**
* @brief Send the configuration descriptor (and potentially the configuration and endpoint descriptors) to the host.
*
* @param pkt, the setup packet received from the host.
*/
void usb_handle_config_descriptor(volatile struct usb_setup_packet *pkt) {
uint8_t *buf = &ep0_buf[0];
// First request will want just the config descriptor
const struct usb_configuration_descriptor *d = dev_config.config_descriptor;
memcpy((void *) buf, d, sizeof(struct usb_configuration_descriptor));
buf += sizeof(struct usb_configuration_descriptor);
// If we more than just the config descriptor copy it all
if (pkt->wLength >= d->wTotalLength) {
memcpy((void *) buf, dev_config.interface_descriptor, sizeof(struct usb_interface_descriptor));
buf += sizeof(struct usb_interface_descriptor);
const struct usb_endpoint_configuration *ep = dev_config.endpoints;
// Copy all the endpoint descriptors starting from EP1
for (uint i = 2; i < USB_NUM_ENDPOINTS; i++) {
if (ep[i].descriptor) {
memcpy((void *) buf, ep[i].descriptor, sizeof(struct usb_endpoint_descriptor));
buf += sizeof(struct usb_endpoint_descriptor);
}
}
}
// Send data
// Get len by working out end of buffer subtract start of buffer
uint32_t len = (uint32_t) buf - (uint32_t) &ep0_buf[0];
usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), &ep0_buf[0], len);
}
/**
* @brief Handle a BUS RESET from the host by setting the device address back to 0.
*
*/
void usb_bus_reset(void) {
// Set address back to 0
dev_addr = 0;
should_set_address = false;
usb_hw->dev_addr_ctrl = 0;
configured = false;
}
/**
* @brief Send the requested string descriptor to the host.
*
* @param pkt, the setup packet from the host.
*/
void usb_handle_string_descriptor(volatile struct usb_setup_packet *pkt) {
uint8_t i = pkt->wValue & 0xff;
uint8_t len = 0;
if (i == 0) {
len = 4;
memcpy(&ep0_buf[0], dev_config.lang_descriptor, len);
} else {
// Prepare fills in ep0_buf
len = usb_prepare_string_descriptor(dev_config.descriptor_strings[i - 1]);
}
usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), &ep0_buf[0], len);
}
/**
* @brief Handles a SET_ADDR request from the host. The actual setting of the device address in
* hardware is done in ep0_in_handler. This is because we have to acknowledge the request first
* as a device with address zero.
*
* @param pkt, the setup packet from the host.
*/
void usb_set_device_address(volatile struct usb_setup_packet *pkt) {
// Set address is a bit of a strange case because we have to send a 0 length status packet first with
// address 0
dev_addr = (pkt->wValue & 0xff);
printf("Set address %d\r\n", dev_addr);
// Will set address in the callback phase
should_set_address = true;
usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), NULL, 0);
}
/**
* @brief Handles a SET_CONFIGRUATION request from the host. Assumes one configuration so simply
* sends a zero length status packet back to the host.
*
* @param pkt, the setup packet from the host.
*/
void usb_set_device_configuration(volatile struct usb_setup_packet *pkt) {
// Only one configuration so just acknowledge the request
printf("Device Enumerated\r\n");
usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), NULL, 0);
configured = true;
}
/**
* @brief Respond to a setup packet from the host.
*
*/
void usb_handle_setup_packet(void) {
volatile struct usb_setup_packet *pkt = (volatile struct usb_setup_packet *) &usb_dpram->setup_packet;
uint8_t req_direction = pkt->bmRequestType;
uint8_t req = pkt->bRequest;
// Reset PID to 1 for EP0 IN
usb_get_endpoint_configuration(EP0_IN_ADDR)->next_pid = 1u;
if (req_direction == USB_DIR_OUT) {
if (req == USB_REQUEST_SET_ADDRESS) {
usb_set_device_address(pkt);
} else if (req == USB_REQUEST_SET_CONFIGURATION) {
usb_set_device_configuration(pkt);
} else {
printf("Other OUT request (0x%x)\r\n", pkt->bRequest);
}
} else if (req_direction == USB_DIR_IN) {
if (req == USB_REQUEST_GET_DESCRIPTOR) {
uint16_t descriptor_type = pkt->wValue >> 8;
switch (descriptor_type) {
case USB_DT_DEVICE:
usb_handle_device_descriptor();
printf("GET DEVICE DESCRIPTOR\r\n");
break;
case USB_DT_CONFIG:
usb_handle_config_descriptor(pkt);
printf("GET CONFIG DESCRIPTOR\r\n");
break;
case USB_DT_STRING:
usb_handle_string_descriptor(pkt);
printf("GET STRING DESCRIPTOR\r\n");
break;
default:
printf("Unhandled GET_DESCRIPTOR type 0x%x\r\n", descriptor_type);
}
} else {
printf("Other IN request (0x%x)\r\n", pkt->bRequest);
}
}
}
/**
* @brief Notify an endpoint that a transfer has completed.
*
* @param ep, the endpoint to notify.
*/
static void usb_handle_ep_buff_done(struct usb_endpoint_configuration *ep) {
uint32_t buffer_control = *ep->buffer_control;
// Get the transfer length for this endpoint
uint16_t len = buffer_control & USB_BUF_CTRL_LEN_MASK;
// Call that endpoints buffer done handler
ep->handler((uint8_t *) ep->data_buffer, len);
}
/**
* @brief Find the endpoint configuration for a specified endpoint number and
* direction and notify it that a transfer has completed.
*
* @param ep_num
* @param in
*/
static void usb_handle_buff_done(uint ep_num, bool in) {
uint8_t ep_addr = ep_num | (in ? USB_DIR_IN : 0);
//printf("EP %d (in = %d) done\n", ep_num, in);
for (uint i = 0; i < USB_NUM_ENDPOINTS; i++) {
struct usb_endpoint_configuration *ep = &dev_config.endpoints[i];
if (ep->descriptor && ep->handler) {
if (ep->descriptor->bEndpointAddress == ep_addr) {
usb_handle_ep_buff_done(ep);
return;
}
}
}
}
/**
* @brief Handle a "buffer status" irq. This means that one or more
* buffers have been sent / received. Notify each endpoint where this
* is the case.
*/
static void usb_handle_buff_status() {
uint32_t buffers = usb_hw->buf_status;
uint32_t remaining_buffers = buffers;
uint bit = 1u;
for (uint i = 0; remaining_buffers && i < USB_NUM_ENDPOINTS * 2; i++) {
if (remaining_buffers & bit) {
// clear this in advance
usb_hw_clear->buf_status = bit;
// IN transfer for even i, OUT transfer for odd i
usb_handle_buff_done(i >> 1u, !(i & 1u));
remaining_buffers &= ~bit;
}
bit <<= 1u;
}
}
/**
* @brief USB interrupt handler
*
*/
/// \tag::isr_setup_packet[]
void isr_usbctrl(void) {
// USB interrupt handler
uint32_t status = usb_hw->ints;
uint32_t handled = 0;
// Setup packet received
if (status & USB_INTS_SETUP_REQ_BITS) {
handled |= USB_INTS_SETUP_REQ_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_SETUP_REC_BITS;
usb_handle_setup_packet();
}
/// \end::isr_setup_packet[]
// Buffer status, one or more buffers have completed
if (status & USB_INTS_BUFF_STATUS_BITS) {
handled |= USB_INTS_BUFF_STATUS_BITS;
usb_handle_buff_status();
}
// Bus is reset
if (status & USB_INTS_BUS_RESET_BITS) {
printf("BUS RESET\n");
handled |= USB_INTS_BUS_RESET_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_BUS_RESET_BITS;
usb_bus_reset();
}
if (status ^ handled) {
panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
}
}
/**
* @brief EP0 in transfer complete. Either finish the SET_ADDRESS process, or receive a zero
* length status packet from the host.
*
* @param buf the data that was sent
* @param len the length that was sent
*/
void ep0_in_handler(uint8_t *buf, uint16_t len) {
if (should_set_address) {
// Set actual device address in hardware
usb_hw->dev_addr_ctrl = dev_addr;
should_set_address = false;
} else {
// Receive a zero length status packet from the host on EP0 OUT
struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP0_OUT_ADDR);
usb_start_transfer(ep, NULL, 0);
}
}
void ep0_out_handler(uint8_t *buf, uint16_t len) {
;
}
uint8_t tmp_buf[64];
//uint8_t id = 0;
int8_t get_id_num(uint8_t *buf){
int8_t id_tmp = -1;
if(strncmp("cmd:", buf, 4) == 0){
printf("got cmd!\n");
return -2;
}else if(strncmp("Hello", buf, 5) == 0){
printf("got Hello!\n");
return -3;
}else{
if(strncmp("id0:", buf, 4) == 0){
id_tmp = 0;
}else if(strncmp("id1:", buf, 4) == 0){
id_tmp = 1;
}else if(strncmp("id2:", buf, 4) == 0){
id_tmp = 2;
}else if(strncmp("id3:", buf, 4) == 0){
id_tmp = 3;
}else if(strncmp("id4:", buf, 4) == 0){
id_tmp = 4;
}else if(strncmp("id5:", buf, 4) == 0){
id_tmp = 5;
}else if(strncmp("id6:", buf, 4) == 0){
id_tmp = 6;
}else if(strncmp("id7:", buf, 4) == 0){
id_tmp = 7;
}else{
id_tmp = -1;
return id_tmp;//follow ori id
}
}
if(panel_id != id_tmp){
data_offset = 0;
panel_id = id_tmp;
}
return id_tmp;
}
char* parser_cmd(char *cmd){
char *reply = malloc(64);
char *tmp0 = malloc(64);
char *tmp1 = malloc(64);
memset(tmp0, 0, 64);
memset(tmp1, 0, 64);
if(strstr(cmd, "set_port_res")){
sscanf(cmd, "cmd:set_port_res,%d,%d", LED_WIDTH, LED_HEIGHT);
memset(reply, 0, 64);
//LED_WIDTH=atoi(tmp0);
//LED_HEIGHT=atoi(tmp1);
sprintf(reply, "OK!%d,%d", LED_WIDTH, LED_HEIGHT);
}else if(strstr(cmd, "set_test_color_stop")){
b_color_test_mode = false;
}else if(strstr(cmd, "set_test_color_start")){
printf("cmd:%s\n", cmd);
unsigned int test_color;
sscanf(cmd, "cmd:set_test_color_start,%s", tmp0);
b_color_test_mode = true;
printf("color:0x%x\n", atoi(tmp0));
i_led_test_color = atoi(tmp0);
unsigned int i_red = (i_led_test_color >> 16) & 0xff;
unsigned int i_green = (i_led_test_color >> 8) & 0xff;
unsigned int i_blue = (i_led_test_color) & 0xff;
printf("r : %d, g : %d, b: %d\n", i_red, i_green, i_blue);
for(int l = 0; l < 3; l ++ ){
for(int n = 0; n < LED_PANEL_COUNT; n++){
for(int m = 0; m < (LED_WIDTH*LED_HEIGHT*COLOR_CHANNEL); m++ ){
if((m%3) == 0){ //0x400000 400000 400000 => red
led_rgb_buf[l][n][m] = i_red;
}if((m%3) == 2){ //0x000040 000040 000040 => blue
led_rgb_buf[l][n][m] = i_green;
}if((m%3) == 1){ //0x004000 004000 004000 => green
led_rgb_buf[l][n][m] = i_blue;
}
}
}
}
sprintf(reply, "OK!%s", tmp0);
}else if(strstr(cmd, "set_pixel_interval")){
sscanf(cmd, "cmd:set_pixel_interval,%s", tmp0);
if((atoi(tmp0) < 0)||(atoi(tmp0) > 10)){
sprintf(reply, "NG!%s", tmp0);
}else{
if(atoi(tmp0) != 0){
width_interval = atoi(tmp0) + 1;
height_interval = atoi(tmp0) + 1;
sprintf(reply, "OK!%s", tmp0);
}else{
width_interval = 0;
height_interval = 0;
sprintf(reply, "OK!%d", atoi(tmp0));
}
}
}else{
sprintf(reply, "unknown cmd\n");
}
return reply;
}
// Device specific functions
void ep1_out_handler(uint8_t *buf, uint16_t len) {
unsigned int pattern = 0;
int n,m;
int8_t res = get_id_num(buf);
if(res == -2){//got cmd!
printf("got cmd!%s\n", buf);
char *reply = parser_cmd(buf);
memset(buf, 0, 64);
sprintf(buf, "%s", reply);
struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP2_IN_ADDR);
usb_start_transfer(ep, buf, 64);
return;
}else if(res == -3){
printf("got hello!\n");
sprintf(buf, "%s", VERSION);
struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP2_IN_ADDR);
usb_start_transfer(ep, buf, 15);
return;
}else if(res == -1){
memcpy((led_rgb_buf[rgb_buf_write_idx][panel_id] + data_offset), buf, len);
data_offset += len;
}else if((res >= 0)&&(res <=7)){
if( res == 0){
//sem_acquire_blocking(&led_frame_sem);
critical_section_enter_blocking(&c_s);
if(rgb_buf_write_idx == 2){
rgb_buf_write_idx = 0;
}else{
rgb_buf_write_idx ++;
}
if(rgb_buf_write_idx == 0){
rgb_buf_read_idx = 2;
}else{
rgb_buf_read_idx = rgb_buf_write_idx - 1;
}
force_refresh = 1;
/*if(rgb_buf_write_idx == 0){
rgb_buf_write_idx = 1;
}else{
rgb_buf_write_idx = 0;
}*/
//sem_release(&led_frame_sem);
critical_section_exit(&c_s);
}
memcpy((led_rgb_buf[rgb_buf_write_idx][panel_id]), buf + 4, len - 4 );
data_offset += len-4;
}else{
//printf("buf : %s!\n", buf);
}
usb_start_transfer(usb_get_endpoint_configuration(EP1_OUT_ADDR), NULL, 64);
}
void ep2_in_handler(uint8_t *buf, uint16_t len) {
printf("Sent %d bytes to host\n", len);
// Get ready to rx again from host
usb_start_transfer(usb_get_endpoint_configuration(EP1_OUT_ADDR), NULL, 64);
}
int main(void) {
unsigned int pattern = 0;
int n, m, l;
//int force_refresh = 1;
int pre_rgb_buf_idx = -1;
stdio_init_all();
printf("USB Device Low-Level hardware example\n");
usb_device_init();
pio_initial();
//test over clocking
//vreg_set_voltage(VREG_VOLTAGE_1_20);
//sleep_ms(1000);
//set_sys_clock_khz(2500000, false);
//sem_init(&led_frame_sem, 1, 1);
critical_section_init(&c_s);
#if 0 //marked gpio irq function
int ret = gpio_get_dir(15);
printf("gpio 15 dir is %d\n", ret); //default is in
gpio_pull_up(15);
gpio_irq_enable(15, &gpio_callback, GPIO_IRQ_EDGE_RISE );
#endif
// Wait until configured
while (!configured) {
tight_loop_contents();
}
//fill initial color
for(l = 0; l < 3; l ++ ){
for(n = 0; n < LED_PANEL_COUNT; n++){
for(m = 0; m < (LED_WIDTH*LED_HEIGHT*COLOR_CHANNEL); m++ ){
if((m%3) == 0){ //0x400000 400000 400000 => red
led_rgb_buf[l][n][m] = 0x02;
}if((m%3) == 2){ //0x000040 000040 000040 => blue
led_rgb_buf[l][n][m] = 0x02;
}if((m%3) == 1){ //0x004000 004000 004000 => green
led_rgb_buf[l][n][m] = 0x02;
}
}
}
}
// Get ready to rx from host
usb_start_transfer(usb_get_endpoint_configuration(EP1_OUT_ADDR), NULL, 64);
// Everything is interrupt driven so just loop here
while (1) {
//tight_loop_contents(); //marked this busy loop
//test pattern
int output = 0;
//sem_acquire_blocking(&led_frame_sem);
critical_section_enter_blocking(&c_s);
/*if(rgb_buf_write_idx == 0){
rgb_buf_read_idx = 1;
}else{
rgb_buf_read_idx = 0;
}*/
if(b_color_test_mode == true){
output = 1;
}else{
output = force_refresh;
}
critical_section_exit(&c_s);
//sem_release(&led_frame_sem);
/*if(pre_rgb_buf_idx != rgb_buf_read_idx){
pre_rgb_buf_idx = rgb_buf_read_idx;
force_refresh = 1;
}else{
force_refresh = 0;
}*/
if(output == 0){
sleep_ms(3);
//critical_section_exit(&c_s);
continue;
}else{
}
for(int j = 0; j < LED_HEIGHT; j++){
for(int i = 0; i < LED_WIDTH; i++){
for(n = 0; n < LED_PANEL_COUNT; n ++){
if((i % height_interval == 0)&&(j % width_interval == 0)){
pattern = (led_rgb_buf[rgb_buf_read_idx][n][(j*LED_WIDTH*COLOR_CHANNEL) + (i*COLOR_CHANNEL)] << 8 )+
((led_rgb_buf[rgb_buf_read_idx][n][(j*LED_WIDTH*COLOR_CHANNEL) + (i*COLOR_CHANNEL) + 1]) << 16) +
((led_rgb_buf[rgb_buf_read_idx][n][(j*LED_WIDTH*COLOR_CHANNEL) + (i*COLOR_CHANNEL) + 2]));
}else{
pattern = 0x000000;
}
//printf("pattern : 0x%x\n", pattern);
put_pixel_by_panel(n, pattern);
}
}
}
//sem_release(&led_frame_sem);
critical_section_enter_blocking(&c_s);
force_refresh = 0;
critical_section_exit(&c_s);
//printf("Apattern : 0x%x\n", pattern);
//sleep_ms(10); //ori
sleep_ms(3);
//sleep_ms(30);
}
return 0;
}