-
Notifications
You must be signed in to change notification settings - Fork 0
/
defines.h
59 lines (47 loc) · 2.67 KB
/
defines.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/**
* @file defines.h
* @author Alan Jeferson and Levi Moreira
* @version V1.0
* @date 25-August-2016
* @brief This file contains all the global variables that are used on the entire program,
* in both training and predictions modules.
* */
#ifndef UNTITLED_DEFINES_H
#define UNTITLED_DEFINES_H
#define COMMA_ASCII 44 /**< The ASCII code for the comma character. */
#define LINE_FEED_ASCII 10 /**< The ASCII code for the line break character. */
#define TRAINING_RATIO 0.8 /**< The percentage of the dataset that is destined for training. */
#define RANDOM_SETS 0 /**< Indicates if the sets are build randomly or divided in halves. */
#define PI 3.141592653589793 /**< The Pi constant. */
#define DATASET_DIR "../datasets/full" /**< Path where the full datasets are located. */
#define TESTSET_DIR "../datasets/test" /**< Path where the test datasets are locatd. */
#define SUMMARIES_DIR "../datasets/summaries" /**< Path where the summaries are located. */
/**
* MultiFeature dataset.
* */
#define DATASET "mfeat" /**< Current dataset's name */
#define LINES 2000 /**< The number of lines in the current dataset. */
#define COLUMNS 77 /**< The number of attributes in the current dataset plus a class column. */
#define CLASSES 10 /**< The number of classes in the dataset. */
/**
* Urbanland dataset.
* */
//#define DATASET "urbanland"
//#define LINES 168
//#define COLUMNS 148
//#define CLASSES 9
/**
* Libras
* */
//#define DATASET "libras"
//#define LINES 240
//#define COLUMNS 91
//#define CLASSES 10
#define TRAINING_LINES ((int) ((LINES * TRAINING_RATIO) + 1)) /**< The number of lines in the training dataset. */
#define TEST_LINES (LINES - TRAINING_LINES) /**< The number of lines in the test dataset. */
float trainingSet[TRAINING_LINES][COLUMNS]; /**< Matrix that contains the training data, that will be used to make predictions */
float testSet[TEST_LINES][COLUMNS]; /**< Holds the data that will be tested after the training */
float means[CLASSES][COLUMNS - 1]; /**< Holds all the means values used on the training */
float stdevs[CLASSES][COLUMNS - 1]; /**< Holds all the standard deviation value used on the training */
int confusionMatrix[CLASSES][CLASSES]; /**< Holds the confusion matrix values for the dataset */
#endif //UNTITLED_DEFINES_H