We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我只有两块3090 N卡(装在同一网络的两台机器上)。 拿到了LLAMA2 70b GPTQ int4量化的模型文件(约35G)了。 想先转换成megatron format, 不知道可不可以? 我自己试了试
python ./tools/checkpoint_conversion/llama_checkpoint_conversion.py --load_path "path1" --save_path “output_path2" --target_tensor_model_parallel_size 2 --target_pipeline_model_parallel_size 1 --target_data_parallel_size 1 --make_vocab_size_divisible_by 1 --print-checkpoint-structure --megatron-path "./Megatron_LLaMA"
转换后,在
进去看, 每个model_optim_rng.pt只有2G, 两个目录下pt文件加起来就4G, 远远小于35G. 但如果用原始的LLAMA2 7B hf (pytorch_model.bin format) , 未经量化的大约是13G, 转换成megatron format后两个目录下pt文件加起来也是13G左右, 看起来很正常。
The text was updated successfully, but these errors were encountered:
LLaMA2 70B 的GQA 还没支持,正在开发
Sorry, something went wrong.
No branches or pull requests
我只有两块3090 N卡(装在同一网络的两台机器上)。 拿到了LLAMA2 70b GPTQ int4量化的模型文件(约35G)了。 想先转换成megatron format, 不知道可不可以? 我自己试了试
python ./tools/checkpoint_conversion/llama_checkpoint_conversion.py --load_path "path1" --save_path “output_path2" --target_tensor_model_parallel_size 2 --target_pipeline_model_parallel_size 1 --target_data_parallel_size 1 --make_vocab_size_divisible_by 1 --print-checkpoint-structure --megatron-path "./Megatron_LLaMA"
转换后,在
进去看, 每个model_optim_rng.pt只有2G, 两个目录下pt文件加起来就4G, 远远小于35G. 但如果用原始的LLAMA2 7B hf (pytorch_model.bin format) , 未经量化的大约是13G, 转换成megatron format后两个目录下pt文件加起来也是13G左右, 看起来很正常。
The text was updated successfully, but these errors were encountered: