-
Notifications
You must be signed in to change notification settings - Fork 2
/
monitor_cpu.c
executable file
·760 lines (647 loc) · 25.4 KB
/
monitor_cpu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/**
* Ryzen SMU Userspace Sensor Monitor
* Copyright (C) 2020 Leonardo Gates <[email protected]>
*
* This program is free software: you can redistribute it &&/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
**/
#define _GNU_SOURCE
#include <math.h>
#include <sched.h>
#include <ctype.h>
#include <fcntl.h>
#include <cpuid.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <signal.h>
#include <unistd.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <libsmu.h>
#define PROGRAM_VERSION "1.0"
#define PM_TABLE_SUPPORTED_VERSION 0x240903
#define READ_SMN_V1(offs) { if (smu_read_smn_addr(&obj, offs + offset, &value1) != SMU_Return_OK) goto _READ_ERROR; }
#define READ_SMN_V2(offs) { if (smu_read_smn_addr(&obj, offs + offset, &value2) != SMU_Return_OK) goto _READ_ERROR; }
// Ryzen 3700X/3800X
typedef struct {
float PPT_LIMIT;
float PPT_VALUE;
float TDC_LIMIT;
float TDC_VALUE;
float THM_LIMIT;
float THM_VALUE;
float FIT_LIMIT;
float FIT_VALUE;
float EDC_LIMIT;
float EDC_VALUE;
float VID_LIMIT;
float VID_VALUE;
float PPT_WC;
float PPT_ACTUAL;
float TDC_WC;
float TDC_ACTUAL;
float THM_WC;
float THM_ACTUAL;
float FIT_WC;
float FIT_ACTUAL;
float EDC_WC;
float EDC_ACTUAL;
float VID_WC;
float VID_ACTUAL;
float VDDCR_CPU_POWER;
float VDDCR_SOC_POWER;
float VDDIO_MEM_POWER;
float VDD18_POWER;
float ROC_POWER;
float SOCKET_POWER;
float PPT_FREQUENCY;
float TDC_FREQUENCY;
float THM_FREQUENCY;
float PROCHOT_FREQUENCY;
float VOLTAGE_FREQUENCY;
float CCA_FREQUENCY;
float FIT_VOLTAGE;
float FIT_PRE_VOLTAGE;
float LATCHUP_VOLTAGE;
float CPU_SET_VOLTAGE;
float CPU_TELEMETRY_VOLTAGE;
float CPU_TELEMETRY_CURRENT;
float CPU_TELEMETRY_POWER;
float CPU_TELEMETRY_POWER_ALT;
float SOC_SET_VOLTAGE;
float SOC_TELEMETRY_VOLTAGE;
float SOC_TELEMETRY_CURRENT;
float SOC_TELEMETRY_POWER;
float FCLK_FREQ;
float FCLK_FREQ_EFF;
float UCLK_FREQ;
float MEMCLK_FREQ;
float FCLK_DRAM_SETPOINT;
float FCLK_DRAM_BUSY;
float FCLK_GMI_SETPOINT;
float FCLK_GMI_BUSY;
float FCLK_IOHC_SETPOINT;
float FCLK_IOHC_BUSY;
float FCLK_XGMI_SETPOINT;
float FCLK_XGMI_BUSY;
float CCM_READS;
float CCM_WRITES;
float IOMS;
float XGMI;
float CS_UMC_READS;
float CS_UMC_WRITES;
float FCLK_RESIDENCY[4];
float FCLK_FREQ_TABLE[4];
float UCLK_FREQ_TABLE[4];
float MEMCLK_FREQ_TABLE[4];
float FCLK_VOLTAGE[4];
float LCLK_SETPOINT_0;
float LCLK_BUSY_0;
float LCLK_FREQ_0;
float LCLK_FREQ_EFF_0;
float LCLK_MAX_DPM_0;
float LCLK_MIN_DPM_0;
float LCLK_SETPOINT_1;
float LCLK_BUSY_1;
float LCLK_FREQ_1;
float LCLK_FREQ_EFF_1;
float LCLK_MAX_DPM_1;
float LCLK_MIN_DPM_1;
float LCLK_SETPOINT_2;
float LCLK_BUSY_2;
float LCLK_FREQ_2;
float LCLK_FREQ_EFF_2;
float LCLK_MAX_DPM_2;
float LCLK_MIN_DPM_2;
float LCLK_SETPOINT_3;
float LCLK_BUSY_3;
float LCLK_FREQ_3;
float LCLK_FREQ_EFF_3;
float LCLK_MAX_DPM_3;
float LCLK_MIN_DPM_3;
float XGMI_SETPOINT;
float XGMI_BUSY;
float XGMI_LANE_WIDTH;
float XGMI_DATA_RATE;
float SOC_POWER;
float SOC_TEMP;
float DDR_VDDP_POWER;
float DDR_VDDIO_MEM_POWER;
float GMI2_VDDG_POWER;
float IO_VDDCR_SOC_POWER;
float IOD_VDDIO_MEM_POWER;
float IO_VDD18_POWER;
float TDP;
float DETERMINISM;
float V_VDDM;
float V_VDDP;
float V_VDDG;
float PEAK_TEMP;
float PEAK_VOLTAGE;
float AVG_CORE_COUNT;
float CCLK_LIMIT;
float MAX_VOLTAGE;
float DC_BTC;
float CSTATE_BOOST;
float PROCHOT;
float PC6;
float PWM;
float SOCCLK;
float SHUBCLK;
float MP0CLK;
float MP1CLK;
float MP5CLK;
float SMNCLK;
float TWIXCLK;
float WAFLCLK;
float DPM_BUSY;
float MP1_BUSY;
float CORE_POWER[8];
float CORE_VOLTAGE[8];
float CORE_TEMP[8];
float CORE_FIT[8];
float CORE_IDDMAX[8];
float CORE_FREQ[8];
float CORE_FREQEFF[8];
float CORE_C0[8];
float CORE_CC1[8];
float CORE_CC6[8];
float CORE_CKS_FDD[8];
float CORE_CI_FDD[8];
float CORE_IRM[8];
float CORE_PSTATE[8];
float CORE_CPPC_MAX[8];
float CORE_CPPC_MIN[8];
float CORE_SC_LIMIT[8];
float CORE_SC_CAC[8];
float CORE_SC_RESIDENCY[8];
float L3_LOGIC_POWER[2];
float L3_VDDM_POWER[2];
float L3_TEMP[2];
float L3_FIT[2];
float L3_IDDMAX[2];
float L3_FREQ[2];
float L3_CKS_FDD[2];
float L3_CCA_THRESHOLD[2];
float L3_CCA_CAC[2];
float L3_CCA_ACTIVATION[2];
float L3_EDC_LIMIT[2];
float L3_EDC_CAC[2];
float L3_EDC_RESIDENCY[2];
float MP5_BUSY[1];
} pm_table_0x240903, *ppm_table_0x240903;
static smu_obj_t obj;
static int update_time_s = 1;
void print_memory_timings() {
const char* bool_str[2] = { "Disabled", "Enabled" };
unsigned int value1, value2, offset;
READ_SMN_V1(0x50200);
offset = value1 == 0x300 ? 0x100000 : 0;
READ_SMN_V1(0x50050); READ_SMN_V2(0x50058);
fprintf(stdout, "BankGroupSwap: %s\n",
bool_str[!(value1 == value2 && value1 == 0x87654321)]);
READ_SMN_V1(0x500D0); READ_SMN_V2(0x500D4);
fprintf(stdout, "BankGroupSwapAlt: %s\n",
bool_str[(value1 >> 4 & 0x7F) != 0 || (value2 >> 4 & 0x7F) != 0]);
READ_SMN_V1(0x50200); READ_SMN_V2(0x50204);
fprintf(stdout, "Memory Clock: %.0f MHz\nGDM: %s\nCR: %s\nTcl: %d\nTras: %d\nTrcdrd: %d\nTrcdwr: %d\n",
(value1 & 0x7f) / 3.f * 100.f,
bool_str[((value1 >> 11) & 1) == 1],
((value1 & 0x400) >> 10) != 0 ? "2T" : "1T",
value2 & 0x3f,
value2 >> 8 & 0x7f,
value2 >> 16 & 0x3f,
value2 >> 24 & 0x3f);
READ_SMN_V1(0x50208); READ_SMN_V2(0x5020C);
fprintf(stdout, "Trc: %d\nTrp: %d\nTrrds: %d\nTrrdl: %d\nTrtp: %d\n",
value1 & 0xff,
value1 >> 16 & 0x3f,
value2 & 0x1f,
value2 >> 8 & 0x1f,
value2 >> 24 & 0x1f);
READ_SMN_V1(0x50210); READ_SMN_V2(0x50214);
fprintf(stdout, "Tfaw: %d\nTcwl: %d\nTwtrs: %d\nTwtrl: %d\n",
value1 & 0xff,
value2 & 0x3f,
value2 >> 8 & 0x1f,
value2 >> 16 & 0x3f);
READ_SMN_V1(0x50218); READ_SMN_V2(0x50220);
fprintf(stdout, "Twr: %d\nTrdrddd: %d\nTrdrdsd: %d\nTrdrdsc: %d\nTrdrdscl: %d\n",
value1 & 0xff,
value2 & 0xf,
value2 >> 8 & 0xf,
value2 >> 16 & 0xf,
value2 >> 24 & 0x3f);
READ_SMN_V1(0x50224); READ_SMN_V2(0x50228);
fprintf(stdout, "Twrwrdd: %d\nTwrwrsd: %d\nTwrwrsc: %d\nTwrwrscl: %d\nTwrrd: %d\nTrdwr: %d\n",
value1 & 0xf,
value1 >> 8 & 0xf,
value1 >> 16 & 0xf,
value1 >> 24 & 0x3f,
value2 & 0xf,
value2 >> 8 & 0x1f);
READ_SMN_V1(0x50254);
fprintf(stdout, "Tcke: %d\n", value1 >> 24 & 0x1f);
READ_SMN_V1(0x50260); READ_SMN_V2(0x50264);
if (value1 != value2 && value1 == 0x21060138)
value1 = value2;
fprintf(stdout, "Trfc: %d\nTrfc2: %d\nTrfc4: %d\n",
value1 & 0x3ff,
value1 >> 11 & 0x3ff,
value1 >> 22 & 0x3ff);
exit(0);
_READ_ERROR:
fprintf(stderr, "Unable to read SMN address space.");
exit(1);
}
void append_u32_to_str(char* buffer, unsigned int val) {
char tmp[12] = { 0 };
sprintf(tmp, "%c%c%c%c", val & 0xff, val >> 8 & 0xff, val >> 16 & 0xff, val >> 24 & 0xff);
strcat(buffer, tmp);
}
const char* get_processor_name() {
unsigned int eax, ebx, ecx, edx, l;
static char buffer[50] = { 0 }, *p;
__get_cpuid(0x80000002, &eax, &ebx, &ecx, &edx);
append_u32_to_str(buffer, eax);
append_u32_to_str(buffer, ebx);
append_u32_to_str(buffer, ecx);
append_u32_to_str(buffer, edx);
__get_cpuid(0x80000003, &eax, &ebx, &ecx, &edx);
append_u32_to_str(buffer, eax);
append_u32_to_str(buffer, ebx);
append_u32_to_str(buffer, ecx);
append_u32_to_str(buffer, edx);
__get_cpuid(0x80000004, &eax, &ebx, &ecx, &edx);
append_u32_to_str(buffer, eax);
append_u32_to_str(buffer, ebx);
append_u32_to_str(buffer, ecx);
append_u32_to_str(buffer, edx);
// Trim whitespaces
p = buffer;
l = strlen(p);
while(isspace(p[l - 1])) p[--l] = 0;
while(* p && isspace(* p)) ++p, --l;
return buffer;
}
unsigned int count_set_bits(unsigned int v) {
unsigned int result = 0;
while(v != 0) {
if (v & 1)
result++;
v >>= 1;
}
return result;
}
void get_fuse_topology(int fam, int model, unsigned int* ccds_enabled, unsigned int* ccds_disabled,
unsigned int* cores_disabled, unsigned int* smt_enabled) {
unsigned int ccds_down, ccds_present, core_fuse, core_fuse_addr, ccd_fuse1, ccd_fuse2;
ccd_fuse1 = 0x5D218;
ccd_fuse2 = 0x5D21C;
if (fam == 0x17 && model != 0x71) {
ccd_fuse1 += 0x40;
ccd_fuse2 += 0x40;
}
if (smu_read_smn_addr(&obj, ccd_fuse1, &ccds_present) != SMU_Return_OK ||
smu_read_smn_addr(&obj, ccd_fuse2, &ccds_down) != SMU_Return_OK) {
perror("Failed to read CCD fuses");
exit(-1);
}
*ccds_disabled = ((ccds_down & 0x3F) << 2) | ((ccds_present >> 30) & 0x3);
ccds_present = (ccds_present >> 22) & 0xFF;
*ccds_enabled = ccds_present;
if (fam == 0x19)
core_fuse_addr = (0x30081800 + 0x598) |
((((*ccds_disabled & ccds_present) & 1) == 1) ? 0x2000000 : 0);
else
core_fuse_addr = (0x30081800 + 0x238) | (((ccds_present & 1) == 0) ? 0x2000000 : 0);
if (smu_read_smn_addr(&obj, core_fuse_addr, &core_fuse) != SMU_Return_OK) {
perror("Failed to read core fuse");
exit(-1);
}
*cores_disabled = core_fuse & 0xFF;
*smt_enabled = (core_fuse & (1 << 8)) != 0;
}
void get_processor_topology(unsigned int* ccds, unsigned int *ccxs,
unsigned int *cores_per_ccx, unsigned int* cores) {
unsigned int ccds_enabled, ccds_disabled, core_disable_map, logical_cores,
smt, fam, model, eax, ebx, ecx, edx;
__get_cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
fam = ((eax & 0xf00) >> 8) + ((eax & 0xff00000) >> 20);
model = ((eax & 0xf0000) >> 12) + ((eax & 0xf0) >> 4);
logical_cores = (ebx >> 16) & 0xFF;
get_fuse_topology(fam, model, &ccds_enabled, &ccds_disabled, &core_disable_map, &smt);
*ccds = count_set_bits(ccds_enabled);
if (fam == 0x19) {
*ccxs = *ccds;
*cores_per_ccx = 8 - count_set_bits(core_disable_map);
}
else {
*ccxs = *ccds * 2;
*cores_per_ccx = (8 - count_set_bits(core_disable_map)) / 2;
}
*cores = logical_cores;
if (smt)
*cores /= 2;
}
void print_line(const char* label, const char* value_format, ...) {
static char buffer[1024];
va_list list;
va_start(list, value_format);
vsnprintf(buffer, sizeof(buffer), value_format, list);
va_end(list);
fprintf(stdout, "│ %46s │ %47s │\n", label, buffer);
}
void _print_core_line(const char* label, const char* value_format, ...) {
static char buffer[1024];
va_list list;
va_start(list, value_format);
vsnprintf(buffer, sizeof(buffer), value_format, list);
va_end(list);
fprintf(stdout, "│ %7s │ %86s │\n", label, buffer);
}
#define core_print_line(core, value, ...) { \
char buffer[1024]; \
\
sprintf(buffer, "Core %d", core); \
_print_core_line(buffer, value, __VA_ARGS__); \
}
unsigned int get_max_cpu_freq(smu_obj_t* obj) {
smu_arg_t args;
smu_return_val err;
if (obj->codename != CODENAME_MATISSE)
return 0;
memset(&args, 0, sizeof(args));
if (smu_send_command(obj, 0x6E, &args, TYPE_RSMU) != SMU_Return_OK)
return 0;
return args.args[0];
}
const char* get_pbo_scalar(smu_obj_t* obj) {
static char buf[16] = { 0 };
smu_arg_t args;
smu_return_val err;
if (obj->codename != CODENAME_MATISSE && obj->codename != CODENAME_VERMEER)
return 0;
memset(&args, 0, sizeof(args));
if (smu_send_command(obj, 0x6C, &args, TYPE_RSMU) != SMU_Return_OK)
return "?";
sprintf(buf, "%.fx", args.args_f[0]);
return buf;
}
void start_pm_monitor(int force) {
float total_usage, peak_core_frequency, core_voltage, core_frequency, total_core_voltage,
average_voltage, package_sleep_time, core_sleep_time, edc_value, total_core_C6;
const char* name, *codename, *smu_fw_ver, *scalar;
unsigned int cores, ccds, ccxs, cores_per_ccx, max_freq, if_ver, i;
ppm_table_0x240903 pmt;
unsigned char *pm_buf;
if (!smu_pm_tables_supported(&obj)) {
fprintf(stderr, "PM Tables are not supported on this platform.\n");
exit(0);
}
if (!force && obj.pm_table_version != PM_TABLE_SUPPORTED_VERSION) {
fprintf(stderr, "PM Table version is not currently suppported. Run with \"-f\" flag to ignore this.\n");
exit(0);
}
name = get_processor_name();
codename = smu_codename_to_str(&obj);
smu_fw_ver = smu_get_fw_version(&obj);
max_freq = get_max_cpu_freq(&obj);
scalar = get_pbo_scalar(&obj);
get_processor_topology(&ccds, &ccxs, &cores_per_ccx, &cores);
pm_buf = calloc(obj.pm_table_size, sizeof(unsigned char));
pmt = (ppm_table_0x240903)pm_buf;
switch (obj.smu_if_version) {
case IF_VERSION_9:
if_ver = 9;
break;
case IF_VERSION_10:
if_ver = 10;
break;
case IF_VERSION_11:
if_ver = 11;
break;
case IF_VERSION_12:
if_ver = 12;
break;
case IF_VERSION_13:
if_ver = 13;
break;
default:
if_ver = 0;
break;
}
while(1) {
if (smu_read_pm_table(&obj, pm_buf, obj.pm_table_size) != SMU_Return_OK)
continue;
fprintf(stdout, "\e[1;1H\e[2J");
fprintf(stdout, "╭────────────────────────────────────────────────┬─────────────────────────────────────────────────╮\n");
print_line("CPU Model", name);
print_line("Processor Code Name", codename);
print_line("Core Configuration", "%d (%d-%d-%d)", cores, ccds, ccxs, cores_per_ccx);
if (max_freq)
print_line("Maximum Frequency", "%d MHz", max_freq);
print_line("Overdrive Scalar", scalar);
print_line("SMU FW Version", "v%s", smu_fw_ver);
print_line("MP1 IF Version", "v%d", if_ver);
fprintf(stdout, "╰────────────────────────────────────────────────┴─────────────────────────────────────────────────╯\n");
total_core_C6 = total_usage = total_core_voltage = peak_core_frequency = 0;
package_sleep_time = pmt->PC6 / 100.f;
average_voltage = (pmt->CPU_TELEMETRY_VOLTAGE - (0.2 * package_sleep_time)) /
(1.0 - package_sleep_time);
fprintf(stdout, "╭─────────┬────────────────┬─────────┬─────────┬─────────┬─────────────┬─────────────┬─────────────╮\n");
for (i = 0; i < cores; i++) {
core_frequency = pmt->CORE_FREQEFF[i] * 1000.f;
if (peak_core_frequency < core_frequency)
peak_core_frequency = core_frequency;
total_usage += pmt->CORE_C0[i];
total_core_C6 += pmt->CORE_CC6[i];
// "Real core frequency" -- excluding gating
if (pmt->CORE_FREQ[i] != 0.f) {
core_sleep_time = pmt->CORE_CC6[i] / 100.f;
core_voltage = ((1.0 - core_sleep_time) * average_voltage) + (0.2 * core_sleep_time);
total_core_voltage += core_voltage;
}
// AMD denotes a sleeping core as having spent less than 6% of the time in C0.
// Source: Ryzen Master
if (pmt->CORE_C0[i] >= 6.f) {
core_print_line(i,
"%4.f MHz | %4.3f W | %1.3f V | %5.2f C | C0: %5.1f %% | C1: %5.1f %% | C6: %5.1f %%",
core_frequency, pmt->CORE_POWER[i], core_voltage, pmt->CORE_TEMP[i],
pmt->CORE_C0[i], pmt->CORE_CC1[i], pmt->CORE_CC6[i]);
}
else
core_print_line(i,
"Sleeping | %4.3f W | %1.3f V | %5.2f C | C0: %5.1f %% | C1: %5.1f %% | C6: %5.1f %%",
pmt->CORE_POWER[i], core_voltage, pmt->CORE_TEMP[i], pmt->CORE_C0[i],
pmt->CORE_CC1[i], pmt->CORE_CC6[i]);
}
fprintf(stdout, "╰─────────┴────────────────┴─────────┴─────────┴─────────┴─────────────┴─────────────┴─────────────╯\n");
fprintf(stdout, "╭────────────────────────────────────────────────┬─────────────────────────────────────────────────╮\n");
average_voltage = total_core_voltage / cores;
edc_value = pmt->EDC_VALUE * (total_usage / cores / 100);
if (edc_value < pmt->TDC_VALUE)
edc_value = pmt->TDC_VALUE;
total_core_C6 /= cores;
print_line("Peak Core Frequency", "%8.0f MHz", peak_core_frequency);
print_line("Peak Temperature", "%8.2f C", pmt->PEAK_TEMP);
print_line("Package Power", "%8.4f W", pmt->SOCKET_POWER);
print_line("Peak Core(s) Voltage", "%2.6f V", pmt->CPU_TELEMETRY_VOLTAGE);
print_line("Average Core Voltage", "%2.6f V", average_voltage);
print_line("Package C6 Residency", "%3.6f %%", pmt->PC6);
print_line("Core C6 Residency", "%3.6f %%", total_core_C6);
fprintf(stdout, "╰────────────────────────────────────────────────┴─────────────────────────────────────────────────╯\n");
fprintf(stdout, "╭────────────────────────────────────────────────┬─────────────────────────────────────────────────╮\n");
print_line("Thermal Junction Limit", "%8.2f C", pmt->THM_LIMIT);
print_line("Current Temperature", "%8.2f C", pmt->THM_VALUE);
print_line("SoC Temperature", "%8.2f C", pmt->SOC_TEMP);
print_line("Core Power", "%8.4f W", pmt->VDDCR_CPU_POWER);
print_line("SoC Power", "%4.4f W | %8.4f A | %8.6f V", pmt->SOC_TELEMETRY_POWER,
pmt->SOC_TELEMETRY_CURRENT, pmt->SOC_TELEMETRY_VOLTAGE);
print_line("PPT", "%4.4f W | %7.0f W | %8.2f %%", pmt->PPT_VALUE, pmt->PPT_LIMIT,
(pmt->PPT_VALUE / pmt->PPT_LIMIT * 100));
print_line("TDC", "%4.4f A | %7.0f A | %8.2f %%", pmt->TDC_VALUE, pmt->TDC_LIMIT,
(pmt->TDC_VALUE / pmt->TDC_LIMIT * 100));
print_line("EDC", "%4.4f A | %7.0f A | %8.2f %%", edc_value, pmt->EDC_LIMIT,
(edc_value / pmt->EDC_LIMIT * 100));
print_line("Frequency Limit", "%8.0f MHz", pmt->CCLK_LIMIT * 1000.f);
print_line("FIT Limit", "%f %%", (pmt->FIT_VALUE / pmt->FIT_LIMIT) * 100.f);
fprintf(stdout, "╰────────────────────────────────────────────────┴─────────────────────────────────────────────────╯\n");
fprintf(stdout, "╭────────────────────────────────────────────────┬─────────────────────────────────────────────────╮\n");
print_line("Coupled Mode", "%8s", pmt->UCLK_FREQ == pmt->MEMCLK_FREQ ? "ON" : "OFF");
print_line("Fabric Clock (Average)", "%5.f MHz", pmt->FCLK_FREQ_EFF);
print_line("Fabric Clock", "%5.f MHz", pmt->FCLK_FREQ);
print_line("Uncore Clock", "%5.f MHz", pmt->UCLK_FREQ);
print_line("Memory Clock", "%5.f MHz", pmt->MEMCLK_FREQ);
print_line("DRAM Read Bandwidth", "%3.3f GiB/s", pmt->CS_UMC_READS);
print_line("DRAM Write Bandwidth", "%3.3f GiB/s", pmt->CS_UMC_WRITES);
print_line("VDDIO_Mem", "%7.4f W", pmt->VDDIO_MEM_POWER);
print_line("VDDCR_SoC", "%7.4f V", pmt->SOC_SET_VOLTAGE);
print_line("cLDO_VDDM", "%7.4f V", pmt->V_VDDM);
print_line("cLDO_VDDP", "%7.4f V", pmt->V_VDDP);
print_line("cLDO_VDDG", "%7.4f V", pmt->V_VDDG);
fprintf(stdout, "╰────────────────────────────────────────────────┴─────────────────────────────────────────────────╯\n");
// Hide Cursor
fprintf(stdout, "\e[?25l");
fflush(stdout);
sleep(update_time_s);
}
}
void print_version() {
fprintf(stdout, "SMU Monitor " PROGRAM_VERSION "\n");
exit(0);
}
void show_help(char* program) {
fprintf(stdout,
"SMU Monitor " PROGRAM_VERSION "\n\n"
"Usage: %s <option(s)>\n\n"
"Options:\n"
"\t-h - Show this help screen.\n"
"\t-v - Show program version.\n"
"\t-m - Print DRAM Timings and exit.\n"
"\t-f - Force PM table monitoring even if the PM table version is not supported.\n"
"\t-u<seconds> - Update the monitoring only after this number of second(s) have passed. Defaults to 1.\n",
program
);
}
void parse_args(int argc, char** argv) {
int c = 0, force, core;
core = 0;
force = 0;
while ((c = getopt(argc, argv, "vmfuh:")) != -1) {
switch (c) {
case 'v':
print_version();
exit(0);
case 'm':
print_memory_timings();
exit(0);
case 'f':
force = 1;
break;
case 'u':
// TODO
break;
case 'h':
show_help(argv[0]);
exit(0);
case '?':
exit(0);
default:
break;
}
}
start_pm_monitor(force);
}
void signal_interrupt(int sig) {
switch (sig) {
case SIGINT:
case SIGABRT:
case SIGTERM:
// Re-enable the cursor.
fprintf(stdout, "\e[?25h");
exit(0);
default:
break;
}
}
// Checks if the program has the required permissions for the driver.
// If it doesn't, it attempts to re-execute the program using `sudo`.
// If the sudo executable cannot be located, it will bail with an error message.
int elevate_if_necessary(int argc, char** argv) {
static const char* access_paths[] = { "/bin", "/sbin", "/usr/bin", "/usr/sbin" };
char buf[1024], cmd[1024];
int euid, found, i;
if (geteuid() == 0)
return 1;
found = 0;
for (i = 0; i < sizeof(access_paths) / sizeof(access_paths[0]); i++) {
sprintf(buf, "%s/sudo", access_paths[i]);
if (!access(buf, F_OK)) {
found = 1;
break;
}
}
sprintf(cmd, "%s -S ", buf);
if (!found || !readlink("/proc/self/exe", buf, sizeof(buf))) {
fprintf(stderr, "Program must be run as root.\n");
exit(-2);
}
strcat(cmd, buf);
for (i = 1; i < argc; i++) {
sprintf(buf, " %s", argv[i]);
strcat(cmd, buf);
}
system(cmd);
return 0;
}
int main(int argc, char** argv) {
smu_return_val ret;
if ((signal(SIGABRT, signal_interrupt) == SIG_ERR) ||
(signal(SIGTERM, signal_interrupt) == SIG_ERR) ||
(signal(SIGINT, signal_interrupt) == SIG_ERR)) {
fprintf(stderr, "Can't set up signal hooks.\n");
exit(-1);
}
if (!elevate_if_necessary(argc, argv))
exit(0);
ret = smu_init(&obj);
if (ret != SMU_Return_OK) {
fprintf(stderr, "%s\n", smu_return_to_str(ret));
exit(-2);
}
parse_args(argc, argv);
return 0;
}