diff --git a/examples/java/src/main/java/org/apache/beam/examples/cookbook/BigQueryTornadoes.java b/examples/java/src/main/java/org/apache/beam/examples/cookbook/BigQueryTornadoes.java
index 279626e19c08..b7ef94338d74 100644
--- a/examples/java/src/main/java/org/apache/beam/examples/cookbook/BigQueryTornadoes.java
+++ b/examples/java/src/main/java/org/apache/beam/examples/cookbook/BigQueryTornadoes.java
@@ -63,15 +63,15 @@
*
* See examples/java/README.md for instructions about how to configure different runners.
*
- *
The BigQuery input table defaults to {@code clouddataflow-readonly:samples.weather_stations}
- * and can be overridden with {@code --input}.
+ *
The BigQuery input table defaults to {@code apache-beam-testing.samples.weather_stations} and
+ * can be overridden with {@code --input}.
*/
public class BigQueryTornadoes {
private static final Logger LOG = LoggerFactory.getLogger(BigQueryTornadoes.class);
// Default to using a 1000 row subset of the public weather station table publicdata:samples.gsod.
private static final String WEATHER_SAMPLES_TABLE =
- "clouddataflow-readonly:samples.weather_stations";
+ "apache-beam-testing.samples.weather_stations";
/**
* Examines each row in the input table. If a tornado was recorded in that sample, the month in
diff --git a/examples/java/src/main/java/org/apache/beam/examples/cookbook/FilterExamples.java b/examples/java/src/main/java/org/apache/beam/examples/cookbook/FilterExamples.java
index 1baefbcda101..9187bb83d7da 100644
--- a/examples/java/src/main/java/org/apache/beam/examples/cookbook/FilterExamples.java
+++ b/examples/java/src/main/java/org/apache/beam/examples/cookbook/FilterExamples.java
@@ -71,13 +71,13 @@
*
* See examples/java/README.md for instructions about how to configure different runners.
*
- *
The BigQuery input table defaults to {@code clouddataflow-readonly:samples.weather_stations}
- * and can be overridden with {@code --input}.
+ *
The BigQuery input table defaults to {@code apache-beam-testing.samples.weather_stations} and
+ * can be overridden with {@code --input}.
*/
public class FilterExamples {
// Default to using a 1000 row subset of the public weather station table publicdata:samples.gsod.
private static final String WEATHER_SAMPLES_TABLE =
- "clouddataflow-readonly:samples.weather_stations";
+ "apache-beam-testing.samples.weather_stations";
static final Logger LOG = Logger.getLogger(FilterExamples.class.getName());
static final int MONTH_TO_FILTER = 7;
diff --git a/examples/java/src/main/java/org/apache/beam/examples/cookbook/JoinExamples.java b/examples/java/src/main/java/org/apache/beam/examples/cookbook/JoinExamples.java
index 66980f4ce9f8..f78df0c09461 100644
--- a/examples/java/src/main/java/org/apache/beam/examples/cookbook/JoinExamples.java
+++ b/examples/java/src/main/java/org/apache/beam/examples/cookbook/JoinExamples.java
@@ -58,7 +58,7 @@
public class JoinExamples {
// A 1000-row sample of the GDELT data here: gdelt-bq:full.events.
- private static final String GDELT_EVENTS_TABLE = "clouddataflow-readonly:samples.gdelt_sample";
+ private static final String GDELT_EVENTS_TABLE = "apache-beam-testing.samples.gdelt_sample";
// A table that maps country codes to country names.
private static final String COUNTRY_CODES = "gdelt-bq:full.crosswalk_geocountrycodetohuman";
diff --git a/examples/java/src/main/java/org/apache/beam/examples/cookbook/MaxPerKeyExamples.java b/examples/java/src/main/java/org/apache/beam/examples/cookbook/MaxPerKeyExamples.java
index dec3b70a6667..8760d562d040 100644
--- a/examples/java/src/main/java/org/apache/beam/examples/cookbook/MaxPerKeyExamples.java
+++ b/examples/java/src/main/java/org/apache/beam/examples/cookbook/MaxPerKeyExamples.java
@@ -59,13 +59,13 @@
*
* See examples/java/README.md for instructions about how to configure different runners.
*
- *
The BigQuery input table defaults to {@code clouddataflow-readonly:samples.weather_stations }
- * and can be overridden with {@code --input}.
+ *
The BigQuery input table defaults to {@code apache-beam-testing.samples.weather_stations } and
+ * can be overridden with {@code --input}.
*/
public class MaxPerKeyExamples {
// Default to using a 1000 row subset of the public weather station table publicdata:samples.gsod.
private static final String WEATHER_SAMPLES_TABLE =
- "clouddataflow-readonly:samples.weather_stations";
+ "apache-beam-testing.samples.weather_stations";
/**
* Examines each row (weather reading) in the input table. Output the month of the reading, and
diff --git a/examples/java/src/main/java/org/apache/beam/examples/cookbook/MinimalBigQueryTornadoes.java b/examples/java/src/main/java/org/apache/beam/examples/cookbook/MinimalBigQueryTornadoes.java
index 8d57fdfbad5e..60b5c02a5f46 100644
--- a/examples/java/src/main/java/org/apache/beam/examples/cookbook/MinimalBigQueryTornadoes.java
+++ b/examples/java/src/main/java/org/apache/beam/examples/cookbook/MinimalBigQueryTornadoes.java
@@ -58,14 +58,14 @@
*
*
Concepts: Reading/writing BigQuery; counting a PCollection; user-defined PTransforms
*
- *
The BigQuery input is taken from {@code clouddataflow-readonly:samples.weather_stations}
+ *
The BigQuery input is taken from {@code apache-beam-testing.samples.weather_stations}
*/
public class MinimalBigQueryTornadoes {
private static final Logger LOG = LoggerFactory.getLogger(MinimalBigQueryTornadoes.class);
// Use a 1000 row subset of the public weather station table publicdata:samples.gsod.
private static final String WEATHER_SAMPLES_TABLE =
- "clouddataflow-readonly:samples.weather_stations";
+ "apache-beam-testing.samples.weather_stations";
/**
* Examines each row in the input table. If a tornado was recorded in that sample, the month in
diff --git a/examples/java/src/main/java/org/apache/beam/examples/snippets/Snippets.java b/examples/java/src/main/java/org/apache/beam/examples/snippets/Snippets.java
index 6eb533aaf242..808b55a92fac 100644
--- a/examples/java/src/main/java/org/apache/beam/examples/snippets/Snippets.java
+++ b/examples/java/src/main/java/org/apache/beam/examples/snippets/Snippets.java
@@ -172,7 +172,7 @@ public static void modelBigQueryIO(
Pipeline p, String writeProject, String writeDataset, String writeTable) {
{
// [START BigQueryTableSpec]
- String tableSpec = "clouddataflow-readonly:samples.weather_stations";
+ String tableSpec = "apache-beam-testing.samples.weather_stations";
// [END BigQueryTableSpec]
}
@@ -212,7 +212,7 @@ public static void modelBigQueryIO(
}
{
- String tableSpec = "clouddataflow-readonly:samples.weather_stations";
+ String tableSpec = "apache-beam-testing.samples.weather_stations";
// [START BigQueryReadTable]
PCollection maxTemperatures =
p.apply(BigQueryIO.readTableRows().from(tableSpec))
@@ -224,7 +224,7 @@ public static void modelBigQueryIO(
}
{
- String tableSpec = "clouddataflow-readonly:samples.weather_stations";
+ String tableSpec = "apache-beam-testing.samples.weather_stations";
// [START BigQueryReadFunction]
PCollection maxTemperatures =
p.apply(
@@ -242,7 +242,7 @@ public static void modelBigQueryIO(
BigQueryIO.read(
(SchemaAndRecord elem) -> (Double) elem.getRecord().get("max_temperature"))
.fromQuery(
- "SELECT max_temperature FROM [clouddataflow-readonly:samples.weather_stations]")
+ "SELECT max_temperature FROM [apache-beam-testing.samples.weather_stations]")
.withCoder(DoubleCoder.of()));
// [END BigQueryReadQuery]
}
@@ -280,7 +280,7 @@ public static void modelBigQueryIO(
// [END BigQuerySchemaJson]
{
- String tableSpec = "clouddataflow-readonly:samples.weather_stations";
+ String tableSpec = "apache-beam-testing.samples.weather_stations";
if (!writeProject.isEmpty() && !writeDataset.isEmpty() && !writeTable.isEmpty()) {
tableSpec = writeProject + ":" + writeDataset + "." + writeTable;
}
@@ -403,7 +403,7 @@ public WeatherData(long year, long month, long day, double maxTemp) {
})
.fromQuery(
"SELECT year, month, day, max_temperature "
- + "FROM [clouddataflow-readonly:samples.weather_stations] "
+ + "FROM [apache-beam-testing.samples.weather_stations] "
+ "WHERE year BETWEEN 2007 AND 2009")
.withCoder(AvroCoder.of(WeatherData.class)));
@@ -461,7 +461,7 @@ public TableSchema getSchema(Long destination) {
.withWriteDisposition(WriteDisposition.WRITE_TRUNCATE));
// [END BigQueryWriteDynamicDestinations]
- String tableSpec = "clouddataflow-readonly:samples.weather_stations";
+ String tableSpec = "apache-beam-testing.samples.weather_stations";
if (!writeProject.isEmpty() && !writeDataset.isEmpty() && !writeTable.isEmpty()) {
tableSpec = writeProject + ":" + writeDataset + "." + writeTable + "_partitioning";
}
diff --git a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/BigQueryTornadoes.kt b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/BigQueryTornadoes.kt
index f4547bc8cbe9..ec56bc659970 100644
--- a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/BigQueryTornadoes.kt
+++ b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/BigQueryTornadoes.kt
@@ -60,12 +60,12 @@ import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.collect.Lists
* See examples/java/README.md for instructions about how to configure different runners.
*
*
- * The BigQuery input table defaults to `clouddataflow-readonly:samples.weather_stations`
+ * The BigQuery input table defaults to `apache-beam-testing.samples.weather_stations`
* and can be overridden with `--input`.
*/
object BigQueryTornadoes {
// Default to using a 1000 row subset of the public weather station table publicdata:samples.gsod.
- private const val WEATHER_SAMPLES_TABLE = "clouddataflow-readonly:samples.weather_stations"
+ private const val WEATHER_SAMPLES_TABLE = "apache-beam-testing.samples.weather_stations"
/**
* Examines each row in the input table. If a tornado was recorded in that sample, the month in
diff --git a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/FilterExamples.kt b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/FilterExamples.kt
index e8c670e4d0fe..2625f5bfec10 100644
--- a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/FilterExamples.kt
+++ b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/FilterExamples.kt
@@ -65,12 +65,12 @@ import java.util.logging.Logger
* See examples/kotlin/README.md for instructions about how to configure different runners.
*
*
- * The BigQuery input table defaults to `clouddataflow-readonly:samples.weather_stations`
+ * The BigQuery input table defaults to `apache-beam-testing.samples.weather_stations`
* and can be overridden with `--input`.
*/
object FilterExamples {
// Default to using a 1000 row subset of the public weather station table publicdata:samples.gsod.
- private const val WEATHER_SAMPLES_TABLE = "clouddataflow-readonly:samples.weather_stations"
+ private const val WEATHER_SAMPLES_TABLE = "apache-beam-testing.samples.weather_stations"
internal val LOG = Logger.getLogger(FilterExamples::class.java.name)
internal const val MONTH_TO_FILTER = 7
diff --git a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/JoinExamples.kt b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/JoinExamples.kt
index 3b7f3c4c3582..2f2215e1d96a 100644
--- a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/JoinExamples.kt
+++ b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/JoinExamples.kt
@@ -60,7 +60,7 @@ import org.apache.beam.sdk.values.TupleTag
object JoinExamples {
// A 1000-row sample of the GDELT data here: gdelt-bq:full.events.
- private const val GDELT_EVENTS_TABLE = "clouddataflow-readonly:samples.gdelt_sample"
+ private const val GDELT_EVENTS_TABLE = "apache-beam-testing.samples.gdelt_sample"
// A table that maps country codes to country names.
private const val COUNTRY_CODES = "gdelt-bq:full.crosswalk_geocountrycodetohuman"
diff --git a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/MaxPerKeyExamples.kt b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/MaxPerKeyExamples.kt
index 74d392de4e29..11418d3933cf 100644
--- a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/MaxPerKeyExamples.kt
+++ b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/cookbook/MaxPerKeyExamples.kt
@@ -60,12 +60,12 @@ import java.util.ArrayList
* See examples/java/README.md for instructions about how to configure different runners.
*
*
- * The BigQuery input table defaults to `clouddataflow-readonly:samples.weather_stations `
+ * The BigQuery input table defaults to `apache-beam-testing.samples.weather_stations `
* and can be overridden with `--input`.
*/
object MaxPerKeyExamples {
// Default to using a 1000 row subset of the public weather station table publicdata:samples.gsod.
- private const val WEATHER_SAMPLES_TABLE = "clouddataflow-readonly:samples.weather_stations"
+ private const val WEATHER_SAMPLES_TABLE = "apache-beam-testing.samples.weather_stations"
/**
* Examines each row (weather reading) in the input table. Output the month of the reading, and
diff --git a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/snippets/Snippets.kt b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/snippets/Snippets.kt
index 2ba7b3742e16..d2f58c215a56 100644
--- a/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/snippets/Snippets.kt
+++ b/examples/kotlin/src/main/java/org/apache/beam/examples/kotlin/snippets/Snippets.kt
@@ -84,7 +84,7 @@ object Snippets {
pipeline: Pipeline, writeProject: String = "", writeDataset: String = "", writeTable: String = "") {
run {
// [START BigQueryTableSpec]
- val tableSpec = "clouddataflow-readonly:samples.weather_stations"
+ val tableSpec = "apache-beam-testing.samples.weather_stations"
// [END BigQueryTableSpec]
}
@@ -104,7 +104,7 @@ object Snippets {
}
run {
- val tableSpec = "clouddataflow-readonly:samples.weather_stations"
+ val tableSpec = "apache-beam-testing.samples.weather_stations"
// [START BigQueryReadTable]
val maxTemperatures = pipeline.apply(BigQueryIO.readTableRows().from(tableSpec))
// Each row is of type TableRow
@@ -118,7 +118,7 @@ object Snippets {
}
run {
- val tableSpec = "clouddataflow-readonly:samples.weather_stations"
+ val tableSpec = "apache-beam-testing.samples.weather_stations"
// [START BigQueryReadFunction]
val maxTemperatures = pipeline.apply(
BigQueryIO.read { it.record["max_temperature"] as Double? }
@@ -132,7 +132,7 @@ object Snippets {
val maxTemperatures = pipeline.apply(
BigQueryIO.read { it.record["max_temperature"] as Double? }
.fromQuery(
- "SELECT max_temperature FROM [clouddataflow-readonly:samples.weather_stations]")
+ "SELECT max_temperature FROM [apache-beam-testing.samples.weather_stations]")
.withCoder(DoubleCoder.of()))
// [END BigQueryReadQuery]
}
@@ -167,7 +167,7 @@ object Snippets {
// [END BigQuerySchemaJson]
run {
- var tableSpec = "clouddataflow-readonly:samples.weather_stations"
+ var tableSpec = "apache-beam-testing.samples.weather_stations"
if (writeProject.isNotEmpty() && writeDataset.isNotEmpty() && writeTable.isNotEmpty()) {
tableSpec = "$writeProject:$writeDataset.$writeTable"
}
@@ -259,7 +259,7 @@ object Snippets {
}
.fromQuery("""
SELECT year, month, day, max_temperature
- FROM [clouddataflow-readonly:samples.weather_stations]
+ FROM [apache-beam-testing.samples.weather_stations]
WHERE year BETWEEN 2007 AND 2009
""".trimIndent())
.withCoder(AvroCoder.of(WeatherData::class.java)))
@@ -297,7 +297,7 @@ object Snippets {
.withWriteDisposition(WriteDisposition.WRITE_TRUNCATE))
// [END BigQueryWriteDynamicDestinations]
- var tableSpec = "clouddataflow-readonly:samples.weather_stations"
+ var tableSpec = "apache-beam-testing.samples.weather_stations"
if (writeProject.isNotEmpty() && writeDataset.isNotEmpty() && writeTable.isNotEmpty()) {
tableSpec = "$writeProject:$writeDataset.${writeTable}_partitioning"
}
diff --git a/learning/tour-of-beam/learning-content/io/big-query-io/read-table/description.md b/learning/tour-of-beam/learning-content/io/big-query-io/read-table/description.md
index 23344989d0aa..a3f1c1993d96 100644
--- a/learning/tour-of-beam/learning-content/io/big-query-io/read-table/description.md
+++ b/learning/tour-of-beam/learning-content/io/big-query-io/read-table/description.md
@@ -35,7 +35,7 @@ The `logOutput` struct is defined as a custom `DoFn` that implements the Process
{{if (eq .Sdk "java")}}
```
PCollection pCollection = pipeline
- .apply("ReadFromBigQuery", BigQueryIO.readTableRows().from("clouddataflow-readonly:samples.weather_stations").withMethod(TypedRead.Method.DIRECT_READ))
+ .apply("ReadFromBigQuery", BigQueryIO.readTableRows().from("apache-beam-testing.samples.weather_stations").withMethod(TypedRead.Method.DIRECT_READ))
```
The `BigQueryIO.readTableRows()` method is called to create a `BigQueryIO.Read` transform that will read data from a `BigQuery` table.
diff --git a/learning/tour-of-beam/learning-content/io/big-query-io/read-table/java-example/Task.java b/learning/tour-of-beam/learning-content/io/big-query-io/read-table/java-example/Task.java
index 206a0c0b8ee0..63f5afd23575 100644
--- a/learning/tour-of-beam/learning-content/io/big-query-io/read-table/java-example/Task.java
+++ b/learning/tour-of-beam/learning-content/io/big-query-io/read-table/java-example/Task.java
@@ -65,7 +65,7 @@ public static void main(String[] args) {
*/
PCollection pCollection = pipeline
- .apply("ReadFromBigQuery", BigQueryIO.readTableRows().from("clouddataflow-readonly:samples.weather_stations").withMethod(TypedRead.Method.DIRECT_READ));
+ .apply("ReadFromBigQuery", BigQueryIO.readTableRows().from("apache-beam-testing.samples.weather_stations").withMethod(TypedRead.Method.DIRECT_READ));
final PTransform, PCollection>> sample = Sample.fixedSizeGlobally(5);
diff --git a/learning/tour-of-beam/learning-content/io/rest-api/description.md b/learning/tour-of-beam/learning-content/io/rest-api/description.md
index 3ebdd2d0afe3..8f7d9ed7f567 100644
--- a/learning/tour-of-beam/learning-content/io/rest-api/description.md
+++ b/learning/tour-of-beam/learning-content/io/rest-api/description.md
@@ -31,7 +31,7 @@ PCollection weatherData =
})
.fromQuery(
"SELECT year, month, day, max_temperature "
- + "FROM [clouddataflow-readonly:samples.weather_stations] "
+ + "FROM [apache-beam-testing.samples.weather_stations] "
+ "WHERE year BETWEEN 2007 AND 2009")
.withCoder(AvroCoder.of(WeatherData.class)));
diff --git a/playground/backend/internal/fs_tool/ExampleData.scala b/playground/backend/internal/fs_tool/ExampleData.scala
index 4283394c400f..e7cdfabce4ba 100644
--- a/playground/backend/internal/fs_tool/ExampleData.scala
+++ b/playground/backend/internal/fs_tool/ExampleData.scala
@@ -26,8 +26,8 @@ object ExampleData {
"gs://apache-beam-samples/traffic_sensor/Freeways-5Minaa2010-01-01_to_2010-02-15_test2.csv"
val GAMING = "gs://apache-beam-samples/game/gaming_data*.csv"
- val WEATHER_SAMPLES_TABLE = "clouddataflow-readonly:samples.weather_stations"
+ val WEATHER_SAMPLES_TABLE = "apache-beam-testing.samples.weather_stations"
val SHAKESPEARE_TABLE = "bigquery-public-data:samples.shakespeare"
- val EVENT_TABLE = "clouddataflow-readonly:samples.gdelt_sample"
+ val EVENT_TABLE = "apache-beam-testing.samples.gdelt_sample"
val COUNTRY_TABLE = "gdelt-bq:full.crosswalk_geocountrycodetohuman"
}
diff --git a/sdks/go/examples/cookbook/filter/filter.go b/sdks/go/examples/cookbook/filter/filter.go
index 68d81af98bbf..56b18390a70b 100644
--- a/sdks/go/examples/cookbook/filter/filter.go
+++ b/sdks/go/examples/cookbook/filter/filter.go
@@ -32,7 +32,7 @@ import (
)
var (
- input = flag.String("input", "clouddataflow-readonly:samples.weather_stations", "Weather data BQ table.")
+ input = flag.String("input", "apache-beam-testing.samples.weather_stations", "Weather data BQ table.")
output = flag.String("output", "", "Output BQ table.")
month = flag.Int("month_filter", 7, "Numerical month to analyze")
)
diff --git a/sdks/go/examples/cookbook/join/join.go b/sdks/go/examples/cookbook/join/join.go
index 25c9fb71c07f..e2e8fb019b80 100644
--- a/sdks/go/examples/cookbook/join/join.go
+++ b/sdks/go/examples/cookbook/join/join.go
@@ -34,7 +34,7 @@ import (
// See: https://github.com/apache/beam/blob/master/examples/java/src/main/java/org/apache/beam/examples/cookbook/JoinExamples.java
const (
- gdeltEventsTable = "clouddataflow-readonly:samples.gdelt_sample"
+ gdeltEventsTable = "apache-beam-testing.samples.gdelt_sample"
countryCodesTable = "gdelt-bq:full.crosswalk_geocountrycodetohuman"
)
diff --git a/sdks/go/examples/cookbook/max/max.go b/sdks/go/examples/cookbook/max/max.go
index fa6c0e2c5359..89b1ca24400f 100644
--- a/sdks/go/examples/cookbook/max/max.go
+++ b/sdks/go/examples/cookbook/max/max.go
@@ -32,7 +32,7 @@ import (
)
var (
- input = flag.String("input", "clouddataflow-readonly:samples.weather_stations", "Weather data BQ table.")
+ input = flag.String("input", "apache-beam-testing.samples.weather_stations", "Weather data BQ table.")
output = flag.String("output", "", "Output BQ table.")
)
diff --git a/sdks/go/examples/cookbook/tornadoes/tornadoes.go b/sdks/go/examples/cookbook/tornadoes/tornadoes.go
index 1810f63e3535..bd327bfba121 100644
--- a/sdks/go/examples/cookbook/tornadoes/tornadoes.go
+++ b/sdks/go/examples/cookbook/tornadoes/tornadoes.go
@@ -29,7 +29,7 @@
//
// --output=YOUR_PROJECT_ID:DATASET_ID.TABLE_ID
//
-// The BigQuery input table defaults to clouddataflow-readonly:samples.weather_stations
+// The BigQuery input table defaults to apache-beam-testing.samples.weather_stations
// and can be overridden with {@code --input}.
package main
@@ -48,7 +48,7 @@ import (
)
var (
- input = flag.String("input", "clouddataflow-readonly:samples.weather_stations", "BigQuery table with weather data to read from, specified as :.")
+ input = flag.String("input", "apache-beam-testing.samples.weather_stations", "BigQuery table with weather data to read from, specified as :.")
output = flag.String("output", "", "BigQuery table to write to, specified as :.. The dataset must already exist")
)
diff --git a/sdks/java/core/src/main/java/org/apache/beam/sdk/io/package-info.java b/sdks/java/core/src/main/java/org/apache/beam/sdk/io/package-info.java
index df4efa1b603b..3f2433c1f264 100644
--- a/sdks/java/core/src/main/java/org/apache/beam/sdk/io/package-info.java
+++ b/sdks/java/core/src/main/java/org/apache/beam/sdk/io/package-info.java
@@ -24,7 +24,7 @@
*
* {@code
* PCollection inputData = pipeline.apply(
- * BigQueryIO.readTableRows().from("clouddataflow-readonly:samples.weather_stations"));
+ * BigQueryIO.readTableRows().from("apache-beam-testing.samples.weather_stations"));
* }
*
* and {@code Write} transforms that persist PCollections to external storage:
diff --git a/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.java b/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.java
index fd445bcfc392..96da67321cbe 100644
--- a/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.java
+++ b/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.java
@@ -268,7 +268,7 @@
*
* {@code
* PCollection weatherData = pipeline.apply(
- * BigQueryIO.readTableRows().from("clouddataflow-readonly:samples.weather_stations"));
+ * BigQueryIO.readTableRows().from("apache-beam-testing.samples.weather_stations"));
* }
*
* Example: Reading rows of a table and parsing them into a custom type.
@@ -281,7 +281,7 @@
* return new WeatherRecord(...);
* }
* })
- * .from("clouddataflow-readonly:samples.weather_stations"))
+ * .from("apache-beam-testing.samples.weather_stations"))
* .withCoder(SerializableCoder.of(WeatherRecord.class));
* }
*
diff --git a/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryClusteringIT.java b/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryClusteringIT.java
index 67777b265885..1b3c844e2a9f 100644
--- a/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryClusteringIT.java
+++ b/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryClusteringIT.java
@@ -50,7 +50,7 @@ public class BigQueryClusteringIT {
private static final Long EXPECTED_BYTES = 16000L;
private static final BigInteger EXPECTED_ROWS = new BigInteger("1000");
private static final String WEATHER_SAMPLES_TABLE =
- "clouddataflow-readonly:samples.weather_stations";
+ "apache-beam-testing.samples.weather_stations";
private static final String DATASET_NAME = "BigQueryClusteringIT";
private static final Clustering CLUSTERING =
new Clustering().setFields(Arrays.asList("station_number"));
diff --git a/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryTimePartitioningClusteringIT.java b/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryTimePartitioningClusteringIT.java
index 7e945517cfaf..3ceb6f0966b7 100644
--- a/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryTimePartitioningClusteringIT.java
+++ b/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryTimePartitioningClusteringIT.java
@@ -48,7 +48,7 @@
@RunWith(JUnit4.class)
public class BigQueryTimePartitioningClusteringIT {
private static final String WEATHER_SAMPLES_TABLE =
- "clouddataflow-readonly:samples.weather_stations";
+ "apache-beam-testing.samples.weather_stations";
private static final String DATASET_NAME = "BigQueryTimePartitioningIT";
private static final TimePartitioning TIME_PARTITIONING =
new TimePartitioning().setField("date").setType("DAY");
diff --git a/sdks/python/apache_beam/examples/cookbook/bigquery_tornadoes.py b/sdks/python/apache_beam/examples/cookbook/bigquery_tornadoes.py
index 224a2ad586c1..ede667fd9eff 100644
--- a/sdks/python/apache_beam/examples/cookbook/bigquery_tornadoes.py
+++ b/sdks/python/apache_beam/examples/cookbook/bigquery_tornadoes.py
@@ -68,7 +68,7 @@ def run(argv=None):
parser = argparse.ArgumentParser()
parser.add_argument(
'--input',
- default='clouddataflow-readonly:samples.weather_stations',
+ default='apache-beam-testing.samples.weather_stations',
help=(
'Input BigQuery table to process specified as: '
'PROJECT:DATASET.TABLE or DATASET.TABLE.'))
diff --git a/sdks/python/apache_beam/examples/cookbook/filters.py b/sdks/python/apache_beam/examples/cookbook/filters.py
index fda07064fa0c..daa01b0658bc 100644
--- a/sdks/python/apache_beam/examples/cookbook/filters.py
+++ b/sdks/python/apache_beam/examples/cookbook/filters.py
@@ -79,7 +79,7 @@ def run(argv=None):
parser.add_argument(
'--input',
help='BigQuery table to read from.',
- default='clouddataflow-readonly:samples.weather_stations')
+ default='apache-beam-testing.samples.weather_stations')
parser.add_argument(
'--output', required=True, help='BigQuery table to write to.')
parser.add_argument(
diff --git a/sdks/python/apache_beam/examples/snippets/snippets.py b/sdks/python/apache_beam/examples/snippets/snippets.py
index e4184f37889e..715011d302d2 100644
--- a/sdks/python/apache_beam/examples/snippets/snippets.py
+++ b/sdks/python/apache_beam/examples/snippets/snippets.py
@@ -890,7 +890,7 @@ def model_bigqueryio(
# [START model_bigqueryio_table_spec]
# project-id:dataset_id.table_id
- table_spec = 'clouddataflow-readonly:samples.weather_stations'
+ table_spec = 'apache-beam-testing.samples.weather_stations'
# [END model_bigqueryio_table_spec]
# [START model_bigqueryio_table_spec_without_project]
@@ -936,7 +936,7 @@ def model_bigqueryio(
pipeline
| 'QueryTable' >> beam.io.ReadFromBigQuery(
query='SELECT max_temperature FROM '\
- '[clouddataflow-readonly:samples.weather_stations]')
+ '[apache-beam-testing.samples.weather_stations]')
# Each row is a dictionary where the keys are the BigQuery columns
| beam.Map(lambda elem: elem['max_temperature']))
# [END model_bigqueryio_read_query]
@@ -1036,7 +1036,7 @@ def model_bigqueryio_xlang(
# use a table that does not exist
import uuid
never_exists_table = str(uuid.uuid4())
- table_spec = 'clouddataflow-readonly:samples.{}'.format(never_exists_table)
+ table_spec = 'apache-beam-testing.samples.{}'.format(never_exists_table)
if write_project and write_dataset and write_table:
table_spec = '{}:{}.{}'.format(write_project, write_dataset, write_table)