forked from jte0419/Panel_Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
STREAMLINE_VPM.py
78 lines (69 loc) · 4.26 KB
/
STREAMLINE_VPM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# FUNCTION - COMPUTE Nx AND Ny GEOMETRIC INTEGRALS FOR VORTEX PANEL METHOD
# Written by: JoshTheEngineer
# YouTube : www.youtube.com/joshtheengineer
# Website : www.joshtheengineer.com
# Started : 01/23/19
# Updated : 01/23/19 - Started code in MATLAB
# - Works as expected
# : 02/03/19 - Transferred to Python
# - Works as expected
# : 04/28/20 - Fixed E value error handling
#
# PURPOSE
# - Compute the integral expression for constant strength vortex panels
# - Vortex panel strengths are constant, but can change from panel to panel
# - Geometric integral for X-direction: Nx(pj)
# - Geometric integral for Y-direction: Ny(pj)
#
# REFERENCES
# - [1]: Streamline Geometric Integral VPM, Nx(pj) and Ny(pj)
# Link: https://www.youtube.com/watch?v=TBwBnW87hso
#
# INPUTS
# - XP : X-coordinate of computation point, P
# - YP : Y-coordinate of computation point, P
# - XB : X-coordinate of boundary points
# - YB : Y-coordinate of boundary points
# - phi : Angle between positive X-axis and interior of panel
# - S : Length of panel
#
# OUTPUTS
# - Nx : Value of X-direction geometric integral
# - Ny : Value of Y-direction geometric integral
import numpy as np
import math as math
np.seterr('raise')
def STREAMLINE_VPM(XP,YP,XB,YB,phi,S):
# Number of panels
numPan = len(XB)-1 # Number of panels (control points)
# Initialize arrays
Nx = np.zeros(numPan) # Initialize Nx integral array
Ny = np.zeros(numPan) # Initialize Ny integral array
# Compute Nx and Ny
for j in range(numPan): # Loop over all panels
# Compute intermediate values
A = -(XP-XB[j])*np.cos(phi[j]) - (YP-YB[j])*np.sin(phi[j]) # A term
B = (XP-XB[j])**2 + (YP-YB[j])**2 # B term
Cx = np.sin(phi[j]) # Cx term (X-direction)
Dx = -(YP-YB[j]) # Dx term (X-direction)
Cy = -np.cos(phi[j]) # Cy term (Y-direction)
Dy = XP-XB[j] # Dy term (Y-direction)
E = math.sqrt(B-A**2) # E term
if (E == 0 or np.iscomplex(E) or np.isnan(E) or np.isinf(E)): # If E term is 0 or complex or a NAN or an INF
Nx[j] = 0 # Set Nx value equal to zero
Ny[j] = 0 # Set Ny value equal to zero
else:
# Compute Nx, Ref [1]
term1 = 0.5*Cx*np.log((S[j]**2 + 2*A*S[j]+B)/B); # First term in Nx equation
term2 = ((Dx-A*Cx)/E)*(math.atan2((S[j]+A),E) - math.atan2(A,E)); # Second term in Nx equation
Nx[j] = term1 + term2; # Compute Nx integral
# Compute Ny, Ref [1]
term1 = 0.5*Cy*np.log((S[j]**2 + 2*A*S[j]+B)/B); # First term in Ny equation
term2 = ((Dy-A*Cy)/E)*(math.atan2((S[j]+A),E) - math.atan2(A,E)); # Second term in Ny equation
Ny[j] = term1 + term2; # Compute Ny integral
# Zero out any problem values
if (np.iscomplex(Nx[j]) or np.isnan(Nx[j]) or np.isinf(Nx[j])): # If Nx term is complex or a NAN or an INF
Nx[j] = 0 # Set Nx value equal to zero
if (np.iscomplex(Ny[j]) or np.isnan(Ny[j]) or np.isinf(Ny[j])): # If Ny term is complex or a NAN or an INF
Ny[j] = 0 # Set Ny value equal to zero
return Nx, Ny # Return both Nx and Ny matrices