-
Notifications
You must be signed in to change notification settings - Fork 1
/
ultimate_drums_transformer_velocity_ver_2.py
566 lines (377 loc) · 15 KB
/
ultimate_drums_transformer_velocity_ver_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# -*- coding: utf-8 -*-
"""Ultimate_Drums_Transformer_Velocity.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer_Velocity.ipynb
# Ultimate Drums Transformer (ver. 2.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2024
***
# (GPU CHECK)
"""
#@title NVIDIA GPU check
!nvidia-smi
"""# (SETUP ENVIRONMENT)"""
#@title Install dependencies
!git clone --depth 1 https://github.com/asigalov61/Ultimate-Drums-Transformer
!pip install huggingface_hub
!pip install einops
!pip install torch-summary
!apt install fluidsynth #Pip does not work for some reason. Only apt works
# Commented out IPython magic to ensure Python compatibility.
#@title Import modules
print('=' * 70)
print('Loading core Ultimate Drums Transformer modules...')
import os
import copy
import pickle
import secrets
import statistics
from time import time
import tqdm
print('=' * 70)
print('Loading main Ultimate Drums Transformer modules...')
import torch
# %cd /content/Ultimate-Drums-Transformer
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
# %cd /content/
print('=' * 70)
print('Loading aux Ultimate Drums Transformer modules...')
import matplotlib.pyplot as plt
from torchsummary import summary
from sklearn import metrics
from IPython.display import Audio, display
from huggingface_hub import hf_hub_download
from google.colab import files
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
"""# (LOAD MODEL)"""
#@title Load Ultimate Drums Transformer Pre-Trained Model
#@markdown Model precision option
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)
#@markdown float16 == Full precision/fast speed
plot_tokens_embeddings = False # @param {type:"boolean"}
print('=' * 70)
print('Loading Ultimate Drums Transformer Pre-Trained Model...')
print('Please wait...')
print('=' * 70)
full_path_to_models_dir = "/content/Ultimate-Drums-Transformer/Models"
model_checkpoint_file_name = 'Ultimate_Drums_Transformer_Small_Trained_Model_V2_VEL_6487_steps_0.5399_loss_0.8225_acc.pth'
model_path = full_path_to_models_dir+'/Small_VEL/'+model_checkpoint_file_name
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Ultimate-Drums-Transformer',
filename=model_checkpoint_file_name,
local_dir='/content/Ultimate-Drums-Transformer/Models/Small_VEL',
local_dir_use_symlinks=False)
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
dtype = 'bfloat16'
else:
dtype = 'float16'
if model_precision == 'float16':
dtype = 'float16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 393 # Models pad index
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(model_path))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
# Model stats
print('Model summary...')
summary(model)
# Plot Token Embeddings
if plot_tokens_embeddings:
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
cos_sim = metrics.pairwise_distances(
tok_emb, metric='cosine'
)
plt.figure(figsize=(7, 7))
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
plt.savefig("/content/Ultimate-Drums-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
"""# (GENERATE)
# (IMPROV)
"""
#@title Standard Improv Generator
#@markdown Generation settings
melody_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:127, step:1}
number_of_tokens_tp_generate = 258 # @param {type:"slider", min:30, max:8190, step:3}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 1 # @param {type:"slider", min:0.1, max:1, step:0.05}
#@markdown Other settings
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Ultimate Drums Transformer Standard Improv Model Generator')
print('=' * 70)
outy = [0]
print('Selected Improv sequence:')
print(outy)
print('=' * 70)
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.generate(inp,
number_of_tokens_tp_generate,
temperature=temperature,
return_prime=True,
verbose=True)
out0 = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
torch.cuda.empty_cache()
#======================================================================
print('Rendering results...')
for i in range(number_of_batches_to_generate):
print('=' * 70)
print('Batch #', i)
print('=' * 70)
out1 = out0[i]
print('Sample INTs', out1[:12])
print('=' * 70)
if len(out1) != 0:
song = out1
song_f = []
time = 0
dtime = 0
dur = 128
vel = 90
pitch = 0
channel = 0
patches = [0] * 16
patches[0] = melody_MIDI_patch_number
for ss in song:
if 0 <= ss < 128:
time += ss * 32
dtime = time
song_f.append(['note', time, dur, 0, random.choice([60, 62, 64]), 80, 0 ])
if 128 <= ss < 256:
dtime += (ss-128) * 32
if 256 <= ss < 384:
pitch = (ss-256)
if 384 <= ss < 393:
vel = ((ss-384)+1) * 15
if dtime == time:
song_f.append(['note', time, dur, 9, pitch, vel, 128])
else:
song_f.append(['note', dtime, dur, 9, pitch, vel, 128])
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Drums Transformer',
output_file_name = '/content/Ultimate-Drums-Transformer-Composition_'+str(i),
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Ultimate-Drums-Transformer-Composition_'+str(i)
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
"""# (CUSTOM MIDI)"""
#@title Load Seed MIDI
#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below
select_seed_MIDI = "Upload your own custom MIDI" # @param ["Upload your own custom MIDI", "Ultimate-Drums-Transformer-Melody-Seed-1", "Ultimate-Drums-Transformer-Melody-Seed-2", "Ultimate-Drums-Transformer-Melody-Seed-3", "Ultimate-Drums-Transformer-Melody-Seed-4", "Ultimate-Drums-Transformer-Melody-Seed-5", "Ultimate-Drums-Transformer-Melody-Seed-6", "Ultimate-Drums-Transformer-MI-Seed-1", "Ultimate-Drums-Transformer-MI-Seed-2", "Ultimate-Drums-Transformer-MI-Seed-3", "Ultimate-Drums-Transformer-MI-Seed-4"]
render_MIDI_to_audio = False # @param {type:"boolean"}
print('=' * 70)
print('Ultimate Drums Transformer Seed MIDI Loader')
print('=' * 70)
f = ''
if select_seed_MIDI != "Upload your own custom MIDI":
print('Loading seed MIDI...')
f = '/content/Ultimate-Drums-Transformer/Seeds/'+select_seed_MIDI+'.mid'
else:
print('Upload your own custom MIDI...')
print('=' * 70)
uploaded_MIDI = files.upload()
if list(uploaded_MIDI.keys()):
f = list(uploaded_MIDI.keys())[0]
if f != '':
print('=' * 70)
print('File:', f)
print('=' * 70)
#=======================================================
# START PROCESSING
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(f)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = [e for e in escore_notes if e[3] != 9]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes)
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes)
dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True)
cscore = TMIDIX.chordify_score([d[1:] for d in dscore])
cscore_melody = [c[0] for c in cscore]
comp_times = [0] + [t[1] for t in dscore if t[1] != 0]
#=======================================================
song_f = escore_notes
for s in song_f:
s[1] *= 16
s[2] *= 16
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Drums Transformer',
output_file_name = '/content/Ultimate-Drums-Transformer-Seed-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
#=======================================================
print('=' * 70)
print('Composition stats:')
print('Composition has', len(cscore), 'chords')
print('Composition has', len(comp_times), 'time tokens')
print('Composition MIDI patches:', sorted(set(patches)))
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Ultimate-Drums-Transformer-Seed-Composition'
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
else:
print('=' * 70)
"""# (DRUMS TRACK GENERATION)"""
#@title Drums track generation
#@markdown Generation settings
number_of_prime_chords = 128 # @param {type:"slider", min:4, max:8192, step:1}
max_number_of_drums_pitches_per_step = 5 # @param {type:"slider", min:1, max:10, step:1}
number_of_memory_tokens = 4096 # @param {type:"slider", min:32, max:8188, step:16}
temperature = 1 # @param {type:"slider", min:0.1, max:1, step:0.05}
#@markdown Other settings
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Ultimate Drums Transformer Drums Track Generator')
print('=' * 70)
#===============================================================================
def generate_drums(notes_times,
max_drums_limit = 8,
num_memory_tokens = 4096,
temperature=0.9):
x = torch.tensor([notes_times] * 1, dtype=torch.long, device='cuda')
o = 128
ncount = 0
while o > 127 and ncount < max_drums_limit:
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 384 <= o < 393:
ncount += 1
if o > 127:
x = torch.cat((x, out), 1)
return x.tolist()[0][len(notes_times):]
#===============================================================================
torch.cuda.empty_cache()
output = []
for c in tqdm.tqdm(comp_times[:number_of_prime_chords]):
output.append(c)
out = generate_drums(output,
temperature=temperature,
max_drums_limit=max_number_of_drums_pitches_per_step,
num_memory_tokens=number_of_memory_tokens
)
output.extend(out)
torch.cuda.empty_cache()
#===============================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output[:12])
print('=' * 70)
if len(output) != 0:
song = output
song_f = []
time = 0
dtime = 0
dur = 32
vel = 90
pitch = 0
channel = 0
idx = 0
for ss in song:
if 0 <= ss < 128:
time += cscore[idx][0][0] * 32
dtime = time
for c in cscore[idx]:
song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]])
idx += 1
if 128 <= ss < 256:
dtime += (ss-128) * 32
if 256 <= ss < 384:
pitch = (ss-256)
if 384 <= ss < 393:
vel = ((ss-384)+1) * 15
if dtime == time:
song_f.append(['note', time, dur, 9, pitch, vel, 128])
else:
song_f.append(['note', dtime, dur, 9, pitch, vel, 128])
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Drums Transformer',
output_file_name = '/content/Ultimate-Drums-Transformer-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
#=========================================================================
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Ultimate-Drums-Transformer-Composition'
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
"""# Congrats! You did it! :)"""