forked from iitmcvg/Object-Localization-and-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
meanshift.py
111 lines (96 loc) · 2.64 KB
/
meanshift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import cv2
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
cap=cv2.VideoCapture('DETECT INTERN/Find the terrorist.mp4')
ret,frame=cap.read()
refPt = []
cropping = False
image = frame
def click_and_crop(event, x, y, flags, param):
global refPt, cropping
if event == cv2.EVENT_LBUTTONDOWN:
refPt = [(x, y)]
cropping = True
elif event == cv2.EVENT_LBUTTONUP:
refPt.append((x, y))
cropping = False
cv2.rectangle(image, refPt[0], refPt[1], (0, 255, 0), 2)
cv2.imshow("image", image)
clone = image.copy()
cv2.namedWindow("image")
cv2.setMouseCallback("image", click_and_crop)
while True:
# display the image and wait for a keypress
cv2.imshow("image", image)
key = cv2.waitKey(1) & 0xFF
# if the 'c' key is pressed, break from the loop
if key == ord("c"):
break
if len(refPt) == 2:
roi = clone[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
cv2.imshow("ROI", roi)
cv2.waitKey(0)
x1,y1=refPt[0]
x2,y2=refPt[1]
c=x1
r=y1
w=x2-x1
h=y2-y1
roi1=cv2.cvtColor(roi,cv2.COLOR_BGR2HSV)
blue = cv2.calcHist([roi1],[0],None,[180],[0,180])
green = cv2.calcHist([roi1],[1],None,[256],[0,256])
red = cv2.calcHist([roi1],[2],None,[256],[0,256])
plt.plot(blue)
plt.plot(green)
plt.plot(red)
plt.show()
bluey, bluex, _ = plt.hist(blue)
max_blue=bluey.max()
min_blue=bluey.min()
mean_blue=bluey.mean()
std_blue=bluey.std()
greeny, greenx, _ = plt.hist(green)
max_green=greeny.max()
min_green=greeny.min()
mean_green=greeny.mean()
std_green=greeny.std()
redy, redx, _ = plt.hist(red)
max_red=redy.max()
min_red=redy.min()
mean_red=redy.mean()
std_red=redy.std()
a=1
higher=np.array((mean_blue+a*std_blue,mean_green+a*std_green,mean_red+a*std_red))
lower=np.array((mean_blue-a*std_blue,mean_green-a*std_green, mean_red-a*std_red))
print(lower)
print(higher)
track_window=(c,r,w,h)
roi=frame[r:r+h, c:c+w]
hsv_roi=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
mask=cv2.inRange(hsv_roi,lower,higher)
cv2.imshow('mask',mask)
roi_hist=cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while(1):
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# apply meanshift to get the new location
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
# Draw it on image
x,y,w,h = track_window
img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
cv2.imshow('img2',img2)
k = cv2.waitKey(60) & 0xff
if k == 27:
break
else:
cv2.imwrite(chr(k)+".jpg",img2)
else:
break
cv2.waitKey(0)
cv2.destroyAllWindows()
cap.release()