-
Notifications
You must be signed in to change notification settings - Fork 0
/
paper.bbl
177 lines (149 loc) · 7.21 KB
/
paper.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
\begin{thebibliography}{27}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi: #1}\else
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
\bibitem[Casser et~al.(2019)Casser, Pirk, Mahjourian, and
Angelova]{casser2019depth}
Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia Angelova.
\newblock Depth prediction without the sensors: Leveraging structure for
unsupervised learning from monocular videos.
\newblock In \emph{Proceedings of the AAAI Conference on Artificial
Intelligence}, volume~33, pages 8001--8008, 2019.
\bibitem[Cass(2019)]{cass2019taking}
Stephen Cass.
\newblock Taking ai to the edge: Google's tpu now comes in a maker-friendly
package.
\newblock \emph{IEEE Spectrum}, 56\penalty0 (5):\penalty0 16--17, 2019.
\bibitem[Caruana and Niculescu-Mizil(2006)]{caruana2006empirical}
Rich Caruana and Alexandru Niculescu-Mizil.
\newblock An empirical comparison of supervised learning algorithms.
\newblock In \emph{Proceedings of the 23rd international conference on Machine
learning}, pages 161--168, 2006.
\bibitem[Zhu and Goldberg(2009)]{zhu2009introduction}
Xiaojin Zhu and Andrew~B Goldberg.
\newblock Introduction to semi-supervised learning.
\newblock \emph{Synthesis lectures on artificial intelligence and machine
learning}, 3\penalty0 (1):\penalty0 1--130, 2009.
\bibitem[Alpaydin(2020)]{alpaydin2020introduction}
Ethem Alpaydin.
\newblock \emph{Introduction to machine learning}.
\newblock MIT press, 2020.
\bibitem[Schalkoff(2007)]{schalkoff2007pattern}
Robert~J Schalkoff.
\newblock Pattern recognition.
\newblock \emph{Wiley Encyclopedia of Computer Science and Engineering}, 2007.
\bibitem[Albawi et~al.(2017)Albawi, Mohammed, and
Al-Zawi]{albawi2017understanding}
Saad Albawi, Tareq~Abed Mohammed, and Saad Al-Zawi.
\newblock Understanding of a convolutional neural network.
\newblock In \emph{2017 International Conference on Engineering and Technology
(ICET)}, pages 1--6. Ieee, 2017.
\bibitem[O’Donovan(2005)]{o2005optical}
Peter O’Donovan.
\newblock Optical flow: Techniques and applications.
\newblock \emph{International Journal of Computer Vision}, pages 1--26, 2005.
\bibitem[Beauchemin and Barron(1995)]{beauchemin1995computation}
Steven~S. Beauchemin and John~L. Barron.
\newblock The computation of optical flow.
\newblock \emph{ACM computing surveys (CSUR)}, 27\penalty0 (3):\penalty0
433--466, 1995.
\bibitem[Barron and Thacker(2005)]{barron2005tutorial}
John~L Barron and Neil~A Thacker.
\newblock Tutorial: Computing 2d and 3d optical flow.
\newblock \emph{Imaging science and biomedical engineering division, medical
school, university of manchester}, 1, 2005.
\bibitem[Saravanan(2010)]{saravanan2010color}
C~Saravanan.
\newblock Color image to grayscale image conversion.
\newblock In \emph{2010 Second International Conference on Computer Engineering
and Applications}, volume~2, pages 196--199. IEEE, 2010.
\bibitem[Xu et~al.(2017)Xu, Baojie, and Guoxin]{xu2017canny}
Zhao Xu, Xu~Baojie, and Wu~Guoxin.
\newblock Canny edge detection based on open cv.
\newblock In \emph{2017 13th IEEE international conference on electronic
measurement \& instruments (ICEMI)}, pages 53--56. IEEE, 2017.
\bibitem[Edwards(1984)]{edwards1984introduction}
Allen~L Edwards.
\newblock An introduction to linear regression and correlation.
\newblock Technical report, 1984.
\bibitem[Montgomery et~al.(2021)Montgomery, Peck, and
Vining]{montgomery2021introduction}
Douglas~C Montgomery, Elizabeth~A Peck, and G~Geoffrey Vining.
\newblock \emph{Introduction to linear regression analysis}.
\newblock John Wiley \& Sons, 2021.
\bibitem[Bergstra et~al.(2011)Bergstra, Bardenet, Bengio, and
K{\'e}gl]{bergstra2011algorithms}
James Bergstra, R{\'e}mi Bardenet, Yoshua Bengio, and Bal{\'a}zs K{\'e}gl.
\newblock Algorithms for hyper-parameter optimization.
\newblock In \emph{25th annual conference on neural information processing
systems (NIPS 2011)}, volume~24. Neural Information Processing Systems
Foundation, 2011.
\bibitem[Feurer and Hutter(2019)]{feurer2019hyperparameter}
Matthias Feurer and Frank Hutter.
\newblock Hyperparameter optimization.
\newblock In \emph{Automated Machine Learning}, pages 3--33. Springer, Cham,
2019.
\bibitem[Miko{\l}ajczyk and Grochowski(2018)]{mikolajczyk2018data}
Agnieszka Miko{\l}ajczyk and Micha{\l} Grochowski.
\newblock Data augmentation for improving deep learning in image classification
problem.
\newblock In \emph{2018 international interdisciplinary PhD workshop (IIPhDW)},
pages 117--122. IEEE, 2018.
\bibitem[Srivastava et~al.(2014)Srivastava, Hinton, Krizhevsky, Sutskever, and
Salakhutdinov]{srivastava2014dropout}
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov.
\newblock Dropout: a simple way to prevent neural networks from overfitting.
\newblock \emph{The journal of machine learning research}, 15\penalty0
(1):\penalty0 1929--1958, 2014.
\bibitem[Ciliberto et~al.(2016)Ciliberto, Rosasco, and
Rudi]{ciliberto2016consistent}
Carlo Ciliberto, Lorenzo Rosasco, and Alessandro Rudi.
\newblock A consistent regularization approach for structured prediction.
\newblock \emph{Advances in neural information processing systems},
29:\penalty0 4412--4420, 2016.
\bibitem[Hawkins(2004)]{hawkins2004problem}
Douglas~M Hawkins.
\newblock The problem of overfitting.
\newblock \emph{Journal of chemical information and computer sciences},
44\penalty0 (1):\penalty0 1--12, 2004.
\bibitem[Takahashi et~al.(2019)Takahashi, Matsubara, and
Uehara]{takahashi2019data}
Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara.
\newblock Data augmentation using random image cropping and patching for deep
cnns.
\newblock \emph{IEEE Transactions on Circuits and Systems for Video
Technology}, 30\penalty0 (9):\penalty0 2917--2931, 2019.
\bibitem[Souhila and Karim(2007)]{souhila2007optical}
Kahlouche Souhila and Achour Karim.
\newblock Optical flow based robot obstacle avoidance.
\newblock \emph{International Journal of Advanced Robotic Systems}, 4\penalty0
(1):\penalty0 2, 2007.
\bibitem[Fleet and Weiss(2006)]{fleet2006optical}
David Fleet and Yair Weiss.
\newblock Optical flow estimation.
\newblock In \emph{Handbook of mathematical models in computer vision}, pages
237--257. Springer, 2006.
\bibitem[Viswanathan(2009)]{viswanathan2009features}
Deepak~Geetha Viswanathan.
\newblock Features from accelerated segment test (fast).
\newblock In \emph{Proceedings of the 10th workshop on Image Analysis for
Multimedia Interactive Services, London, UK}, pages 6--8, 2009.
\bibitem[Lucas et~al.(1981)Lucas, Kanade, et~al.]{lucas1981iterative}
Bruce~D Lucas, Takeo Kanade, et~al.
\newblock An iterative image registration technique with an application to
stereo vision.
\newblock Vancouver, British Columbia, 1981.
\bibitem[Levenberg(1944)]{levenberg1944method}
Kenneth Levenberg.
\newblock A method for the solution of certain non-linear problems in least
squares.
\newblock \emph{Quarterly of applied mathematics}, 2\penalty0 (2):\penalty0
164--168, 1944.
\bibitem[Gander(1980)]{gander1980algorithms}
Walter Gander.
\newblock Algorithms for the qr decomposition.
\newblock \emph{Res. Rep}, 80\penalty0 (02):\penalty0 1251--1268, 1980.
\end{thebibliography}