-
Notifications
You must be signed in to change notification settings - Fork 0
/
dedcomp-i.tex
1145 lines (1112 loc) · 33.4 KB
/
dedcomp-i.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[main.tex]{subfiles}
\begin{document}
% 6
\section{Dedekind Completeness, I}
\begin{psec}{6.1}%
Let $X$ be a compact Hausdorff space
such that $\Cont{X}$ is Dedekind complete,
and let~$U$ be an open subset of~$X$.
\begin{enumerate}
\item\label{6.1-1}
The set
\begin{equation*}
F\ :=\ \bigl\{ f\in \Cont{X}\colon f\leq\mathbb{1}_U \bigr\}
\end{equation*}
is bounded from above by~$\mathbb{1}$,
hence has a supremum~$f_0$ in~$\Cont{X}$.
For every $a\in U$,
by Urysohn's Lemma
there is a continuous $f\colon X\ra [0,1]$
with $f(a)=1$, $f=0$ on~$X\backslash U$.
Then $f\in F$, so that $f\leq f_0$.
As, of course, $f_0\leq \mathbb{1}$
we find that $f_0=1$ on~$U$,
and, by continuity
\begin{equation*}
f_0=1\ \htam{ on }\ \overline{U}\htam{.}
\end{equation*}
%
\item\label{6.1-2}
Similarly, the set
\begin{equation*}
G\ :=\ \bigl\{g\in\Cont{X}\colon
g\leq \mathbb{1}_{X\backslash\overline{U}} \bigr\}
\end{equation*}
has a supremum, $g_0$, in~$\Cont{X}$, with
\begin{equation*}
g_0=1\ \htam{ on }\ X\backslash\overline{U}\htam{.}
\end{equation*}
(Of course, $g_0=1$ on the closure of~$X\backslash \overline U$,
but we have no use for that.)
%
\item\label{6.1-3}
But:
If $f\in F$ and $g\in G$,
then $f+g\leq \mathbb{1}$.
Hence,
if $f\in F$,
then $\mathbb 1-f$ is an upper bound for~$G$,
whence $g_0\leq\mathbb 1-f$.
This, in turn,
implies that $\mathbb 1-g_0$ is an upper bound for~$F$, and
\begin{equation*}
f_0\ \leq\ \mathbb 1-g_0\htam{.}
\end{equation*}
%
\item\label{6.1-4}
Combining these results
(and noting that $f_0\geq 0$)
we see that~$f_0$ must be~${\mathbb 1}_{\overline U}$.
In particular,
$\mathbb{1}_{\overline U}$ must be continuous:
$\overline U$ is clopen.
\end{enumerate}
\end{psec}
%
% 6.2
%
\begin{psec}{6.2}{Definition}
A compact Hausdorff space is
\keyword{extremally disconnected}
if the closure of every open set is clopen.
Extremally disconnected (compact Hausdorff) spaces are
zerodimensional;
the converse is very false.
(See exercise~\ref{6.3}.)
The Stone--\v{C}ech compactification of~$\N$
is extremally disconnected
since $\Cont{\beta\N}$ is Riesz isomorphic to~$\ell^\infty$.
(Closed subspaces of extremally disconnected spaces
may fail to be extremally disconnected.)
\end{psec}
%
% 6.3
%
\begin{psec}{6.3}{Exercise}
\begin{enumerate}
\item\label{6.3-1}
Show that every extremally disconnected
compact Hausdorff space is zerodimensional. (See~\ref{3.17}.)
%
\item\label{6.3-2}
Let $X$ be the compact space
$\{0\}\cup\{1,\,\sfrac{1}{2},\,\sfrac{1}{3},\,\dotsc\}$.
Show that~$X$ is zerodimensional
but not extremally disconnected.
(Any relation with~\ref{4.20}\ref{4.20-1}?)
\end{enumerate}
\end{psec}
%
% 6.4
%
\begin{psec}{6.4}{Exercise}
Let $X$ be a compact Hausdorff space.
\begin{enumerate}
\item\label{6.4-1}
Show: the following property of~$X$
is equivalent to extremal disconnectedness:
\begin{center}
\begin{minipage}{.45\textwidth}
If two open subsets of~$X$
are disjoint,
then so are their closures.
\end{minipage}
\end{center}
\vspace{.5em}
%
\item\label{6.4-2}
Assume that $X$ is, in fact, extremally disconnected.
Let $a\in X$ be so that the singleton set $\{a\}$ is not open;
then $X\backslash\{a\}$ is completely regular, not compact.
Show that, nevertheless,
all the continuous functions on $X\backslash\{a\}$ are bounded.
(A guideline:
Suppose $f\in\Cont{X\backslash\{a\}}^+$ is unbounded.
There exist $a_1,\,a_2,\,\dotsc$ in~$X\backslash\{a\}$
such that $f(a_{n+1})>1+f(a_n)$ for every~$n$.
There are disjoint open subsets $U,V$ of~$X\backslash\{a\}$
with $a_1,a_3,a_5,\dotsc\in U$
and $a_2,a_4,a_6,\dotsc\in V$.)
%
\item\label{6.4-3}
Again, assume that~$X$ is extremally disconnected
and that~$a$ is a non-isolated point of~$X$.
Let $f\in\Cont{X}$, $f(a)=0$.
Prove that~$f$ must take the value~$0$ at some point of~$X$,
different from~$a$.
%
\item\label{6.4-4}
Prove:
If~$X$ is extremally disconnected
and metrizable,
then~$X$ is finite.
\end{enumerate}
\end{psec}
%
% 6.5
%
\begin{psec}{6.5}{Theorem}\statement{
Let~$X$ be a compact Hausdorff space.
Then $\Cont{X}$ is Dedekind complete
if and only if~$X$ is extremally disconnected.
}\end{psec}
\begin{proof}
The ``only if'' we have seen in~\ref{6.1}.
Now let~$X$ be extremally disconnected.
Let~$F$ be a nonempty subset of~$\Cont{X}^+$
that is bounded from above;
we show that it has a supremum.
Choose an upper bound~$f_0$ for~$F$.
(The following construction depends on the existence
of the upper bound, not on its values.)
Define $g\colon X\ra [0,\infty)$ by
\begin{equation*}
g(x)\ :=\ \sup_{f\in F} f(x)\qquad(x\in X)\htam{.}
\end{equation*}
For each~$s$ in~$[0,\infty)$
the set $\{x\colon g(x)> s\}$ is open, since
\begin{equation*}
\{x\colon g(x)>s\}\ =\ \bigcup_{f\in F} \{x\colon f(x)>s\}\htam{;}
\end{equation*}
let~$U_s$ be its closure.
This gives us a family $(U_s)_{s>0}$ of clopen sets, with
\begin{equation*}
s<t\quad\implies\quad U_s \supseteq U_t\htam{.}
\end{equation*}
For each~$s$ we have $f_0 > s$ on $\{x\colon g(x)>s\}$,
so that $f_0\geq s\,\mathbb{1}_{U_s}$
as~$f_0$ is continuous.
Thus, we can define $f_\infty\colon X\ra \R$ by
\begin{equation*}
f_\infty(x)\
:=\ \smash{\sup_{s\geq 0}}\, s\mathbb{1}_{U_s}(x)\
=\ \sup\{s\colon x\in U_s\}
\qquad(x\in X)\htam{.}
\end{equation*}
Then $g\leq f_\infty\leq f_0$ for any upper bound~$f_0$ of~$F$.
Therefore, $f_\infty$ will be the supremum of~$F$ in~$\Cont{X}$
if and only if it is continuous.
But the continuity of~$f_\infty$ follows from the formulas
\begin{align*}
\{ x\colon f_\infty(x)>t\}\ &=\ \bigcup_{s>t} U_s\htam{,}\\
\{ x\colon f_\infty(x)<t\}\ &=\ \bigcup_{s<t} X\backslash U_s\htam{.}
\end{align*}
The proof of the first formula is straightforward,
the proof of the second hinges on the implications
$f_\infty(x)<s\implies x\notin U_s \implies f_\infty(x)\leq s$. \xqed
\end{proof}
%
% 6.6
%
\begin{psec}{6.6}{Exercise}
Let $X$ be a compact Hausdorff space.
Prove the equivalence of:
\begin{enumerate}[label=(\greek{*})]
\item\label{6.6-alpha}
$\Cont{X}$ is $\sigma$-Dedekind complete.
%
\item\label{6.6-beta}
For every~$f$ in~$\Cont{X}^+$ the open set $\{x\colon f(x)>0\}$
has open closure.
%
\item\label{6.6-gamma}
If $f_1,f_2,\dotsc\in\Cont{X}^+$,
then $\bigcup\smash{\bigl\{x\colon f_n(x)>0\bigr\}}$ has open closure.
\end{enumerate}
(\ref{6.6-gamma} follows from~\ref{6.6-beta},
e.g., via $f:=\sum f_n\wedge 2^{-n} \, \mathbb{1}$.\ )
\end{psec}
\begin{psec*}{Comment}
Property \ref{6.6-beta}
is known as ``basic disconnectedness''.
It implies zerodimensionality.
\end{psec*}
%
% 6.7
%
\begin{psec}{6.7}%
Let $X$ be a set, $\mathcal A$ an algebra of subsets of~$X$.
(See~\ref{1.1}\ref{1.1-4} for a definition.)
\begin{enumerate}
\item\label{6.7-1}
An $\mathcal A$-\keyword{step function}
is a function on~$X$,
representable as
\begin{equation*}
\sum_{n=1}^N \,\alpha_n \mathbb{1}_{A_n}
\end{equation*}
where $N\in\N$, $\alpha_1,\dotsc,\alpha_N\in\R$,
and $A_1,\dotsc,A_N$
are pairwise disjoint elements of~$\mathcal A$.
The $\mathcal A$-step functions form a Riesz space~$\lbb \mathcal A \rbb$
(\ref{1.5}\ref{1.5-7}).
%
\item\label{6.7-2}
We define
\begin{equation*}
\BLeb(\mathcal{A})
\end{equation*}
to be the closure of~$\lbb\mathcal A\rbb$ in~$\ell^\infty(X)$
(see~\ref{1.5}\ref{1.5-2}) relative to~$\|\cdot\|_\infty$.
A function $f\colon X\ra\R$ lies in~$\BLeb(\mathcal A)$
if and only if for every $\varepsilon>0$
there is an $\mathcal A$-step function~$h$
with $\|f-h\|_\infty\leq\varepsilon$.
This~$\BLeb(\mathcal A)$ is a Riesz subspace of~$\ell^\infty(X)$.
It has a unit, e.g., the function~$\mathbb{1}$.
(If~$\mathcal A$ is a $\sigma$-algebra,
$\BLeb(\mathcal A)$ is the space of
all bounded $\mathcal A$-measurable functions.)
\end{enumerate}
\end{psec}
%
% 6.8
%
\begin{psec}{6.8}{Exercise}
\begin{enumerate}
\item\label{6.8-1}
Show that $\ell^\infty(X)$ is an $\BLeb(\mathcal A)$.
%
\item\label{6.8-2}
Prove:
If~$X$ is a zerodimensional compact Hausdorff space,
then
\begin{equation*}
\Cont{X}=\BLeb(\clopen(X))\htam{.}
\end{equation*}
\end{enumerate}
\end{psec}
%
% 6.9
%
\begin{psec}{6.9}{Exercise}
Let $\mathcal A$ be an algebra of subsets of~$X$.
As a closed Riesz subspace of~$\ell^\infty(X)$
that contains~$\mathbb 1$, \
$\BLeb(\mathcal A)$ is Archimedean, unitary and uniformly complete,
hence Riesz isomorphic to some~$\Cont{\Phi}$,
according to Yosida.
Prove that~$\Phi$ is a Stone space for~$\mathcal A$~(\ref{3.21}).
\end{psec}
%
% 6.10
%
\begin{psec}{6.10}{Theorem}\statement{
Let $\mathcal A$ be an algebra of subsets of a set~$X$
and let~$\mu$ be an additive function $\mathcal A\ra [0,\infty)$.
Then there is a unique linear function
\begin{equation*}
f\ \mapsto\ \int f\,\mathrm d\mu
\end{equation*}
on $\BLeb(\mathcal A)$ with the properties
\begin{equation*}
\left\{\quad
\begin{aligned}
\int \mathbb{1}_{A}\,\mathrm d\mu\ &=\ \mu(A)\qquad
&(A\in\mathcal A)\htam{,} \\
\int f\,\mathrm{d}\mu\ &\geq\ 0\qquad
&(f\geq 0)\htam{.}
\end{aligned}
\right.
\end{equation*}
}\end{psec}
\begin{proof}
(inspired by the proof of~\ref{3.18}.)
\begin{enumerate}[label=(\Roman*)]
\item\label{6.10-I}
A ``partition'' here is a finite set of pairwise disjoint
nonempty elements of~$\mathcal A$
whose union is~$X$.
A ``refinement'' of a partition is what you think it is.
For a partition~$S$ we denote by~$\lbb S\rbb$
the vector space of all functions $X\ra \R$
that are constant on each element of~$S$.
If~$T$ is a refinement of~$S$,
then $\lbb S \rbb \subseteq \lbb T \rbb$.
The union of all spaces~$\lbb S \rbb$ is precisely~$\lbb \mathcal A \rbb$,
the set of all $\mathcal{A}$-step~functions.
For $f\in\lbb S \rbb$ we define
\begin{equation*}
\int_S f\,\mathrm{d}\mu\ =\ \sum_{s\in S} \alpha_s\,\mu(s)
\quad\htam{ where }\quad f=\sum_{s\in S} \alpha_s \mathbb{1}_s\htam{.}
\end{equation*}
Then $\int_S \cdot\,\mathrm{d}\mu$ is a linear function $\lbb S \rbb \ra \R$.
Is $S$ a partition and~$T$ is a refinement of~$S$, then
\begin{alignat*}{2}
\int_T f\,\mathrm{d}\mu\ &=\ \int_S
f\,\mathrm{d}\mu\qquad&(f\in \lbb S \rbb)\htam{.} \\
\intertext{(Here we use the additivity of~$\mu$.)
It follows that we can define a linear function $\int\cdot\,\mathrm d\mu$
on~$\lbb \mathcal A \rbb$ by}
\int f\,\mathrm{d}\mu\ &:=\ \int_S f\mathrm{d}\mu
\qquad &(f\in\lbb S \rbb)\htam{.}
\end{alignat*}
Observe that $\int \mathbb{1}_A\,\mathrm{d}\mu=\mu(A)
\quad(A\in \mathcal A )$,
and also that $\int f\,\mathrm{d}\mu\geq 0$
if $f\in\lbb\mathcal{A}\rbb^+$.
%
\item\label{6.10-II}
It follows that $\int\cdot\,\mathrm{d}\mu$ is increasing, so that
\begin{equation*}
\Bigl|\int f\,\mathrm{d}\mu\ -\int g\,\mathrm{d}\mu\ \Bigr|
\ \leq\ \int \bigl|f-g\bigr|\,\mathrm{d}\mu
\ \leq\ \|f-g\|_\infty \,\mu(X)\qquad(f,g\in\lbb \mathcal A \rbb)
\htam{,}
\end{equation*}
because $\pm(f-g)\leq|f-g|\leq\|f-g\|_\infty\,\mathbb{1}$.
Viewing $\BLeb(\mathcal A)$ as a metric space
under the metric derived from $\|\cdot\|_\infty$,
we see that~$\lbb\mathcal{A}\rbb$ is a dense subset
on which $\int\cdot\,\mathrm d\mu$ is a uniformly continuous function.
By the completeness of~$\R$,
this function extends uniquely to a continuous function
$\BLeb(\mathcal A)\ra \R$,
which we again denote by $\int\cdot\,\mathrm{d}\mu$.
Every element of $\BLeb(\mathcal A)$ being the $\|\cdot\|_\infty$-limit
of a sequence in~$\lbb\mathcal A\rbb$
one easily proves that $\int\cdot\,\mathrm d\mu$ is linear
and increasing on $\BLeb(\mathcal A)$.
%
\item\label{6.10-III}
The uniqueness is now clear. \xqed
\end{enumerate}
\end{proof}
%
% 6.11
%
\begin{psec}{6.11}{Comments}
Farther on,
we will use some elementary properties of this intergral
without explicitly mentioning them.
This concerns in particular the following observations:
\begin{alignat}{2}
\label{eq6.11-1}f\leq g\quad\implies\quad
&\int f\,\mathrm d\mu \ \leq\ \int g\,\mathrm d\mu\htam{,} \\
\label{eq6.11-2}\Bigl| \int f\,\mathrm d\mu\ \Bigr|\ \quad\leq\ \quad
&\int\bigl|f\bigr|\,\mathrm d\mu\htam{;}\\
\label{eq6.11-3}\Bigl| \int f\,\mathrm d\mu\ \Bigr|\ \quad\leq\ \quad
&\|f\|_\infty\, \mu(X)\htam{.}
\end{alignat}
Here~\eqref{eq6.11-2} is a consequence of~\eqref{eq6.11-1}
and the inequalities $-|f|\leq f\leq |f|$.
\end{psec}
%
% 6.12
%
\begin{psec}{6.12}{Exercise}
Let $\mathcal A$ be an algebra of subsets of~$X$.
We are going to investigate the linear functions $\BLeb(\mathcal A)\ra \R$
that are continuous relative to
the norm~$\|\cdot\|_\infty$ on $\BLeb(\mathcal A)$.
In the language of~\ref{5.1}\ref{5.1-2},
these linear functions form a vector space
$\Lin(\BLeb(\mathcal{A}),\R)$,
endowed with a norm~$\|\cdot\|$,
described by
\begin{equation*}
\|\varphi\|\ =\ \inf\bigl\{
c\in[0,\infty)\colon |\varphi(f)|\leq c\,\|f\|_\infty
\htam{ for all }f\htam{ in }\BLeb(\mathcal A)\bigr\}\htam{.}
\end{equation*}
In \ref{1.12} we have met the Riesz space $\BA(\mathcal A)$
of bounded additive functions on~$\mathcal A$.
\begin{enumerate}
\item\label{6.12-1}
Prove that for every~$\mu$ in $\BA(\mathcal A)$
there is one linear function
$\varphi_\mu\colon \BLeb(\mathcal A)\ra \R$
for which
\begin{equation*}
\left\{
\
\begin{aligned}
&\varphi_\mu(\mathbb{1}_A)\ =\ \mu(A)\qquad (A\in\mathcal A)\htam{,} \\
&\varphi_\mu\htam{ is continuous.}
\end{aligned}
\right.
\end{equation*}
(The existence is easy: $\mu=\mu^+-\mu^-$.)
Prove also:
\begin{equation*}
\|\varphi_\mu\|\ \leq\ \Var{[\varnothing,X]}{\mu}\htam{.}
\end{equation*}
(See~\ref{1.8} for ``$\Var{}{}$''.)
%
\item\label{6.12-2}
Conversely,
let $\varphi\colon\BLeb(\mathcal A)\ra\R$ be linear and continuous.
Show that there exists one~$\mu$ in~$\BA(\mathcal A)$
with $\varphi=\varphi_\mu$,
and that $\Var{}{\mu}\leq\|\varphi\|$.
\end{enumerate}
\end{psec}
%
% 6.13
%
\begin{psec}{6.13}%
Now assume that~$\mathcal A$ actually is a $\sigma$-algebra.
(For the moment,
no~$\mu$ is given:
we investigate~$\BLeb(\mathcal A)$.)
\begin{enumerate}
\item\label{6.13-1}
Let $f\in \BLeb(\mathcal A)$ and $s\in\R$.
Then the set $\{x\colon f(x)>s\}$ lies in~$\mathcal A$.
Proof:\
For each~$n$ there is an $\mathcal A$-step function~$f_n$
with $f-n^{-1}\mathbb{1}\leq f_n\leq f$.
Then
\begin{equation*}
\bigl\{ x\colon f(x)>s\bigr\}\ =\
\,{\bigcup}_n \bigl\{x\colon f_n(x)>s\bigr\}\htam{.}
\end{equation*}
Thus, $\{ x\colon f(x)>s\}$ is
a union of countably many elements of~$\mathcal A$.
%
\item\label{6.13-2}
Conversely,
let~$f$ be a bounded function on~$X$
such that $\{x\colon f(x)>s\}\in\mathcal A$
for every $s\in\R$.
Let $\varepsilon>0$;
we make an $\mathcal A$-step function~$h$ with
$\|f-h\|_\infty \leq\varepsilon$.
Choose $s_0<s_1<\dotsb<s_N$ in~$\R$
so that all values of~$f$ lie in the interval $(s_0,s_N)$,
whereas $s_n<s_{n-1}+\varepsilon\quad(n=1,\dotsc,N)$.
Set
\begin{equation*}
A_n\ :=\ \bigl\{x\colon f(x)>s_n\bigr\}\,\backslash\,
\bigl\{x\colon f(x)>s_{n-1}\bigr\}
\qquad (n=1,\dotsc,N)
\end{equation*}
and take
\begin{equation*}
h\ =\ \sum_{n=1}^N\,s_n\,\mathbb{1}_{A_n}\htam{.}
\end{equation*}
\end{enumerate}
\end{psec}
%
% 6.14
%
\begin{psec}{6.14}{Theorem}\statement{
Let $\mathcal A$ be a $\sigma$-algebra in a set~$X$.
Then $\BLeb(\mathcal A)$ is $\sigma$-Dedekind complete.
More than that:
If $\{f_1,f_2,\dotsc\}$ is a countable subset of~$\BLeb(\mathcal A)$,
bounded from above,
then the function
\begin{equation*}
f\colon x\mapsto \sup_n f_n(x)\qquad(x\in X)
\end{equation*}
is the supremum of $\{f_1,f_2,\dotsc\}$ in the
Riesz space~$\BLeb(\mathcal A)$.
}\end{psec}
\begin{proof}
For every $s$ in~$\R$ we have
\begin{equation*}
\bigl\{x\colon f(x)>s\bigr\}\ =\
{\bigcup}_n\bigl\{x\colon f_n(x)>s\bigr\}\in\mathcal{A}\htam{.}
\end{equation*}
It follows from~\ref{6.13} that
$f\in\BLeb(\mathcal A)$.
The rest is obvious. \xqed
\end{proof}
%
% 6.15
%
\noindent As a by-product we get:
\begin{psec}{6.15}{Corollary}\statement{
Let $\mathcal A$ be a $\sigma$-algebra in a set~$X$.
Let~$f$ be a bounded function on~$X$
that is pointwise limit of a sequence in~$\BLeb(\mathcal A)$.
Then~$f\in\BLeb(\mathcal A)$.}
(For uniform limits this conclusion is basically trivial,
for pointwise limits not at all.)
\end{psec}
\begin{proof}
Choose a number~$c$ such that $|f|\leq c\,\mathbb{1}$.
Choose a sequence~$(f_n)_n$ in~$\BLeb(\mathcal A)$
that tends to~$f$ pointwise.
For $x\in X$ and $n\in \N$,
set
\begin{equation*}
g_n(x)\ :=\ \cramped{\sup_{m\geq n}} \ f_m(x)\wedge c\qquad(x\in X)\htam{.}
\end{equation*}
By the theorem,
every~$g_n$ lies in~$\BLeb(\mathcal A)$.
We have $g_n(x)\downarrow f(x)\geq -c$
for each~$x$,
so $f\in\BLeb(\mathcal A)$,
again by the theorem. \xqed
\end{proof}
%
% 6.16
%
\begin{psec}{6.16}%
Again,
let $\mathcal A$ be a $\sigma$-algebra in a set~$X$.
Let~$\mu$ be a \keyword{finite measure} on~$\mathcal A$,
i.e., a signed measure
with values in~$[0,\infty)$ (see~\ref{1.13}).
$\mu$ is finitely additive,
so~\ref{6.10} and~\ref{6.11} are applicable.
\begin{enumerate}
\item\label{6.16-1}
Call a subset~$A$ of~$X$ \keyword{null} (or: $\mu$-\emph{null})
if~$A\in\mathcal A$ and $\mu(A)=0$.
A function~$f$ in~$\BLeb(\mathcal A)$ is \keyword{null}
if $\int|f|\,\mathrm{d}\mu =0$.
Observe that
\begin{equation*}
A\htam{ is null}\quad\iff\quad\mathbb{1}_A\htam{ is null.}
\end{equation*}
%
\item\label{6.16-2}\statement{
If $A$ is a null set
and~$B$ is a subset of~$A$
that lies in the $\sigma$-algebra~$\mathcal A$,
then~$B$ is null.}
Slightly less obvious:
\statement{Every union of countably many null sets is null.}
For a proof,
let $A_1,A_2,\dotsc$ be null sets;
define $B_1:=A_1$,
$B_n:=A_n\backslash \bigcup_{i<n} A_i \quad (n\in\N)$; then we have
\begin{equation*}
\textstyle \mu(\bigcup A_n)\
=\ \mu(\bigcup B_n)\
=\ \sum \mu(B_n)\
\leq\ \sum \mu(A_n)\ =\ 0\htam{.}
\end{equation*}
%
\item\label{6.16-3}
Let $f\in\BLeb(\mathcal A)$.
Claim:
\begin{equation*}
\textstyle f\htam{ is null} \quad\iff\quad
\bigl\{x\colon f(x)\neq 0\bigr\}\htam{ is null.}
\end{equation*}
Proof:
Put $A:=\{x\colon f(x)\neq 0\}$.
Note that $A\in\mathcal{A}$ because $A=\{x\colon |f(x)|>0\}$
and because of~\ref{6.13}.
Let~$A$ be null.
We have $|f|\leq\|f\|_\infty\,\mathbb{1}_A$,
whence $\int |f|\,\mathrm{d}\mu \leq \|f\|_\infty\,\mu(A)$,
and~$f$ is~null.
Conversely,
suppose~$f$ is null.
For $n\in\N$, put
$A_n:=\smash{\bigl\{x\colon |f(x)|>n^{-1}\bigr\}}$.
Then $A_n\in\mathcal A$ and $\mathbb{1}_{A_n}\leq n|f|$ for all~$n$,
implying
$\mu(A_n)
= \int \mathbb{1}_{A_n}\,\mathrm{d}\mu
\leq n\int|f|\mathrm{d}\mu =0$.
Thus every~$A_n$ is null.
Then so is their union,
which is~$A$.
%
\item\label{6.16-4}
The set of all null functions
is a Riesz ideal in~$\BLeb(\mathcal A)$.
It is uniformly closed,
because,
if $f_n\ra f$ uniformly (or even pointwise),
then
\begin{equation*}
\textstyle \{x\colon f(x)\neq 0\}
\ \subseteq\ \bigcup_n \{ x\colon f_n(x)\neq 0\}\htam{.}
\end{equation*}
We denote the quotient space by
\begin{equation*}
\BNL(\mu)\htam{,}
\end{equation*}
and the quotient map $\BLeb(\mathcal A)\ra\BNL(\mu)$ by
\begin{equation*}
f\mapsto [f]_\mu\htam{.}
\end{equation*}
\end{enumerate}
\end{psec}
%
% 6.17
%
\begin{psec}{6.17}{Exercise}
(Situation of~\ref{6.16})
Let $f,g\in\BLeb(\mathcal A)$.
Prove:
\begin{equation*}
[f]_\mu\ \leq\ [g]_\mu\quad\iff\quad
\bigl\{x\colon f(x)>g(x)\bigr\}\ \htam{ is null.}
\end{equation*}
\end{psec}
%
% 6.18
%
\begin{psec}{6.18}{Exercise}
\begin{enumerate}
\item\label{6.18-1}
The space
$D:=\smash{\bigl\{f\in\Cont{[0,1]}\colon f(0)=0\bigr\}}$
is a uniformly closed Riesz ideal in $E:=\Cont{[0,1]}$.
Form the quotient space $E/D$
and the quotient Riesz homomorphism $Q\colon E\ra E/D$.
Let $F \subseteq E$ be the set $\{f_1, f_2, \dotsc\}$
where
\begin{equation*}
f_n(t)\ =\ \sqrt[n]{t}\qquad(n\in\N,\ t\in[0,1])\htam{.}
\end{equation*}
Show that~$F$ has a supremum in~$E$
and that $Q(F)$ has a supremum in~$E/D$,
but that $Q(\sup F)$ is not $\sup Q(F)$.
%
\item\label{6.18-2}
(However:)
In the situation of~\ref{6.16},
let $g,\,f_1,f_2,\dotsc\in\BLeb(\mathcal A)$,
so that~$g$
is the supremum of $\{f_n\colon n\in\N\}$ in~$\BLeb(\mathcal A)$.
Show that~$[g]_\mu$
is the supremum of
$\smash{\bigl\{[f_n]_\mu\colon n\in\N\bigr\}}$ in~$\BNL(\mu)$.
\end{enumerate}
\end{psec}
%
% 6.19
%
\begin{psec}{6.19}{Theorem}\statement{
Let $\mu$ be a finite measure on a $\sigma$-algebra~$\mathcal A$
in a set~$X$.
Then~$\BNL(\mu)$ is Dedekind complete.
Furthermore,
if~$F$ is a set in~$\BNL(\mu)$
that has a supremum,
then~$F$ has a countable subset with the same supremum.
}\end{psec}
\begin{proof}
Let $F$ be a nonempty subset of $\BNL(\mu)$,
upwards directed (\ref{4.17}\ref{4.17-2}), and
with an upper bound $[g]_\mu$.
Define
\begin{equation*}
\mathcal{F}\ :=\ \bigl\{ f\in\BLeb(\mathcal{A})\colon
[f]_\mu\in F\htam{, }\ f\leq g\bigr\}\htam{.}
\end{equation*}
Then $F=\smash{\bigl\{[f]_\mu\colon f\in\mathcal F\bigr\}}$.
(If $f\in\BLeb(\mathcal A)$ and $[f]_\mu\in F$,
then $[f]_\mu = [f\wedge g]_\mu$,
and $f\wedge g\in\mathcal F$.)
As~$F$ is upwards directed, so is~$\mathcal F$.
Let $s:=\sup\smash{\bigl\{\int f\,\mathrm{d}\mu\colon
f\in\mathcal F\bigr\}}$ and choose $f_1,f_2,\dotsc$ in~$\mathcal F$
with $\int f_n\,\mathrm{d}\mu\ra s$.
We can define a function~$f_\infty$ on~$X$ by
\begin{equation*}
f_\infty(x)\ :=\ \textstyle \sup_n f_n(x)\qquad(x\in X)\htam{.}
\end{equation*}
By~\ref{6.14} we have~$f_\infty\in\BLeb(\mathcal A)$,
so that (with Exercise~\ref{6.18}\ref{6.18-2})
\begin{equation*}
[f_\infty]_\mu\ =\ \sup\,\bigl\{[f_n]_\mu\colon n\in\N\bigr\}
\qquad\htam{ in }\BNL(\mu)\htam{.}
\end{equation*}
Therefore,
we are done if $[f_\infty]_\mu$
is an upper bound for~$F$,
which will be true if $[f_\infty]_\mu\geq [f]_\mu$
for all~$f$ in~$\mathcal F$.
Let $f\in\mathcal F$.
For every~$n$,
\begin{alignat*}{2}
\int |f-f\wedge f_\infty |\,\mathrm{d}\mu
\ &=\ \int (f-f\wedge f_\infty)\,\mathrm{d}\mu \\
\ &\leq\ \int(f-f\wedge f_n)\,\mathrm{d}\mu \\
\ &=\ \int(f\vee f_n -f_n)\,\mathrm{d}\mu \\
\ &=\ \int(f\vee f_n)\,\mathrm{d}\mu
-\int f_n\,\mathrm{d}\mu
\ \leq\ s-\int f_n\,\mathrm{d}\mu\htam{,}
\end{alignat*}
where $\int (f\vee f_n)\,\mathrm{d}\mu\leq s$
thanks to the directedness of~$\mathcal F$.
Consequently,
$f-f\wedge f_\infty$ is null,
and $[f]_\mu= [f\wedge f_\infty]_\mu\leq [f_\infty]_\mu$. \xqed
\end{proof}
%
% 6.20
%
\begin{psec}{6.20}%
(Situation as above)
\begin{enumerate}
\item\label{6.20-1}
Yosida's Theorem (see Theorem~\ref{6.5})
produces an extremally disconnected compact Hausdorff space~$Y$
and a Riesz \emph{iso}morphism
of $\BNL(\mu)$ onto~$\Cont{Y}$.
It will be convenient for us
to compose this map with the quotient map
$\BLeb(\mathcal A)\ra \BNL(\mu)$,
obtaining a surjective Riesz homomorphism
$\BLeb(\mathcal A)\ra\Cont{Y}$,
denoted
\begin{equation*}
f\mapsto \hat{f}\qquad(f\in\BLeb(\mathcal A))
\end{equation*}
such that
\begin{alignat*}{2}
\hat{\mathbb{1}}_X\ &=\ \mathbb{1}_Y\htam{,} \\
\hat f \ &=\ \hat g\quad&
&\iff\quad \bigl\{x\colon f(x)\neq g(x)\bigr\}\htam{ is }\mu\htam{-null} \\
&&&\iff\quad \int |f-g|\,\mathrm{d}\mu = 0\htam{.}
\end{alignat*}
It follows from~\ref{5.27}
that this map is multiplicative.
The identity $\hat{\mathbb{1}}_X=\mathbb{1}_Y$ implies
\begin{equation*}
\|\hat{f}\|_\infty\ \leq\ \|f\|_\infty\qquad (f\in\BLeb(\mathcal A))\htam{.}
\end{equation*}
%
\item\label{6.20-2}
If $A\in\mathcal A$
(this we have done before),
then $\mathbb{1}_A \perp \mathbb{1}_X -\mathbb{1}_A$,
whence $\hat{\mathbb{1}}_A \perp \mathbb{1}_Y - \hat{\mathbb{1}}_A$,
and $\hat{\mathbb{1}}_A$ is an indicator function.
Thus,
with every $A\in\mathcal A$
we can associate an $\hat{A}\in\clopen(Y)$ by
\begin{equation*}
\hat{\mathbb 1}_A\ =\ \mathbb{1}_{\hat A}\htam{.}
\end{equation*}
The resulting map $A\mapsto \hat{A}$ is a lattice homomorphism.
It maps~$\mathcal A$ \emph{onto} $\clopen(Y)$.
Proof:
Take~$U$ in $\clopen(Y)$.
There is an~$f$ in~$\BLeb(\mathcal A)$
with $\hat f=\mathbb{1}_U$.
Then $\smash{\widehat{f^2}}=\mathbb{1}_U^2=\mathbb{1}_U=\hat f$,
so $\{x\in X\colon f(x)\neq f^2(x)\}$ is $\mu$-null.
Setting $A:=\{x\colon f(x)>0\}$
we have $A\in\mathcal A$ by~\ref{6.13}\ref{6.13-1},
and $\mathbb{1}_U = \hat f = \hat{\mathbb{1}}_A$
because $\{x\colon f(x)\neq \mathbb{1}_A(x)\}$
is precisely $\{x\colon f(x)\neq f^2(x)\}$.
%
\item\label{6.20-3}
The map $A\mapsto \hat A$ is generally not injective:
$\hat A=\varnothing$ if and only if~$A$ is $\mu$-null.
If $A,B\in \mathcal A$ and $\hat A=\hat B$,
then $\{x\colon \mathbb{1}_A(x)\neq\mathbb{1}_B(x)\}$
is a $\mu$-null set.
But this set is $(A\backslash B)\cup(B\backslash A)$,
so
\begin{equation*}
\mu(A\backslash B)\ =\ \mu(B\backslash A)\ =\ 0\htam{,}
\end{equation*}
whence
\begin{equation*}
\mu(A)\ =\ \mu(A\backslash B) + \mu(A\cap B)
\ =\ \mu(B\backslash A) + \mu(A\cap B)
\ =\ \mu(B)\htam{.}
\end{equation*}
It follows that we can define
$\overline \mu\colon \clopen(Y)\ra \R$ by
\begin{equation*}
\overline{\mu} (\hat A)\ :=\ \mu(A)\qquad (A\in\mathcal A)\htam{.}
\end{equation*}
$\overline \mu$ is additive.
%
\item\label{6.20-4}
If $f\in\BLeb(\mathcal A)$
(and $\hat f\in\Cont{Y}= \BLeb(\clopen(Y))$\,), then
\begin{equation*}
\int \hat{f}\,\mathrm{d}\overline{\mu}\ =\ \int f\,\mathrm{d}\mu\htam{.}
\end{equation*}
For a proof,
first observe that this is just the definition of~$\overline \mu$
if $f=\mathbb{1}_A$, $A\in\mathcal A$;
the validity of the formula for~$f$ in~$\lbb\mathcal A\rbb$
is a direct consequence;
finally, we use uniform limits for arbitrary~$f$.
\begin{equation*}
\xymatrix@!C{
&
\R &
\\
\BLeb(\mathcal{A})
\ar[ru]^{\int\cdot\,\mathrm{d}\mu}
\ar@/_1em/@{->>}[rr]_{f\mapsto \hat f}
\ar@{->>}[r]^{f\mapsto [f]_\mu}&
\BNL(\mu)
\ar@3{-}[r]&
\lsub{\BLeb(\clopen(Y))=\Cont{Y}}{\BLeb(\clopen(Y))}
\ar[lu]_{\int\cdot\,\mathrm{d}\overline\mu}\\
\mathcal{A}
\ar@{->>}[rr]_{A\mapsto\hat A}
\ar[rd]_\mu
\ar[u]^{A\mapsto\mathbb{1}_A}&
&
\clopen(Y)
\ar[ld]^{\overline\mu}
\ar[u]_{U\mapsto\mathbb{1}_U}\\
&
\R&
}
\end{equation*}
%
\item\label{6.20-5}
Out of $\mu\colon\mathcal A\ra \R$
we have made $\overline\mu\colon\clopen(Y)\ra\R$.
This seems a clear loss,
as~$\mathcal A$ is a $\sigma$-algebra
and $\clopen(Y)$
in all probability is not.
But now we have a topology at our disposal
and we have eliminated the null sets:
\statement{%
\begin{equation*}
\htam{If }\ U\in\clopen(Y)\ \htam{ and }\
\overline\mu(U)=0\htam{,\quad then }\ U=\varnothing\htam{.}
\end{equation*}}%
(This is obvious.)
%
\item\label{6.20-6}
As a consequence,
\emph{every disjoint collection of clopen subsets of~$Y$
is countable.}
(It contains at most $37\,\overline{\mu}(Y)$ elements~$U$
with $\overline \mu(U)>37^{-1}$.)
%
\item\label{6.20-7}
$\overline\mu$ has this additivity property:
\emph{If $U_1,U_2,\dotsc$ are pairwise disjoint
clopen sets and~$U$ is the closure of their union,
then
\begin{equation*}
\overline\mu(U)\ =\ \sum\,\overline\mu(U_n)\htam{.}
\end{equation*}}
Proof:
Choose $A_1,A_2,\dotsc$ in~$\mathcal A$
with $\hat{A}_n=U_n\quad(n\in\N)$.
Define $B_1,B_2,\dotsc\in\mathcal A$ by
\begin{alignat*}{4}
B_1\ :=&\ A_1\htam{, }&\qquad
B_n\ :=&\ A_n\backslash (A_1\cup\dotsb\cup A_{n-1})& \quad &(n\geq 2)\htam{;} \\
\shortintertext{
then $B_1,B_2,\dotsc$ are mutually disjoint and}
\hat{B}_1\ =&\ \hat{A}_1\htam{, }&\qquad
\hat{B}_n\ =&\ \hat{A}_n\backslash (\hat{A}_1 \cup\dotsb\cup\hat{A}_{n-1})&
\quad&(n\geq 2)\htam{,}
\end{alignat*}
from which it follows that $\hat{B}_n=U_n$
for each~$n$.
With $B:=\bigcup B_n$
we have $\mathbb{1}_B=\sup_n \mathbb{1}_{B_n}$
in~$\BLeb(\mathcal A)$,
so $\hat{\mathbb{1}}_B=\sup_n \hat{\mathbb{1}}_{B_n}=\sup_n \mathbb{1}_{U_n}$
in~$\Cont{Y}$,
so that $\hat{B}=U$.
Now $\overline\mu(U)=\mu(B)
=\sum\mu(B_n)=\sum\overline\mu(U_n)$.
%
\item\label{6.20-8}
We will also deal with a finite measure~$\nu$ on~$\mathcal A$ satisfying
\begin{equation*}
\nu(A)\leq\mu(A)\qquad(A\in\mathcal A)\htam{.}
\end{equation*}
If $A,B\in\mathcal A$
and $\hat A=\hat B$,
then (see~\ref{6.20-3})
we have $\mu(A\backslash B)=\mu(B\backslash A)=0$,
and therefore $\nu(A\backslash B)= \nu(B\backslash A)=0$;
by the argument of~\ref{6.20-3}
this implies $\nu(A)=\nu(B)$.
Hence, the formula
\begin{equation*}
\overline\nu(\hat A)\ :=\ \nu(A)\qquad(A\in\mathcal A)
\end{equation*}
defines an (additive) function~$\overline\nu$ on $\clopen(Y)$ with
\begin{equation*}
\overline\nu(U)\ \leq\ \overline\mu(U)\qquad(U\in\clopen(U)\,)\htam{.}
\end{equation*}
%
\item\label{6.20-9}
$\overline\nu$ has the additivity property ascribed to~$\overline\mu$
in~\ref{6.20-7}.
(Observe that
\begin{alignat*}{2}
\textstyle\overline\nu(U)-\sum_{n\leq N} \overline\nu(U_n)
\ &=\ \overline\nu\bigl(\,U\,\backslash
\textstyle\bigcup_{n\leq N}U_n\,\bigr) \\
\ &\leq\ \overline\mu\bigl(\,U\,\backslash
\textstyle \bigcup_{n\leq N}U_n\,\bigr)
\ =\ \overline\mu(U)-\sum_{n\leq N}\overline\mu(U_n)
\end{alignat*}
for every~$N$.)
\end{enumerate}
\end{psec}
%
% 6.21
%
\begin{psec}{6.21}%
\noindent Now we prove a classical result from integration theory:
\vspace{.5em}
\noindent\textbf{Radon--Nikodym Theorem}\
\statement{Let $\mu$ and~$\nu$ be finite measures
on a $\sigma$-algebra~$\mathcal A$ of subsets of a set~$X$,
such that
\begin{alignat*}{2}
\nu(A)\ &\leq\ \mu(A)\qquad(A\in\mathcal A)\htam{.} \\
\shortintertext{Then there is an~$f$ in $\BLeb(\mathcal A)^+$ with}
\nu(A)\ &=\int\mathbb{1}_A\, f\,\mathrm{d}\mu\qquad(A\in\mathcal A)\htam{.}
\end{alignat*}
}\end{psec}
\begin{proof}
With the aid of~\ref{6.20}
we see that it suffices to prove the following:
\vspace{.5em}
\begin{center}
\begin{minipage}{.8\textwidth}
Let $Y$ be an extremally disconnected compact Hausdorff space.