-
Notifications
You must be signed in to change notification settings - Fork 0
/
hermop-1.tex
915 lines (878 loc) · 25.4 KB
/
hermop-1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
\documentclass[main.tex]{subfiles}
\begin{document}
% 5, part 1
\section{Hermitian Operators}\label{5}
First, some basic facts dealing
with normed vector spaces and Hilbert spaces.
%
% 5.1
%
\begin{psec}{5.1}%
Let $E$ and $F$ be vector spaces,
endowed with norms $\|\cdot\|_E$ and $\|\cdot\|_F$, respectively.
\begin{enumerate}
\item \label{5.1-1}
Let $T$ be a linear map $E\ra F$.
If there exists a number $c\in [0,\infty)$ such that
\begin{equation*}
\|Tx\|_F \ \leq \ c\,\|x\|_E \qquad (x\in E)
\end{equation*}
then $\|Tx-Ty\|_F \leq c\|x-y\|_E\quad (x,y\in E)$,
so that~$T$ is continuous
(relative to the metrics induced by the norms).
On the other hand,
if no such~$c$ exists,
$T$ is \emph{not} continuous.
Indeed,
for every $n\in\N$
there then exists an~$x_n$ in~$E$
with $\|T x_n\|_F > n \|x_n\|_E$.
Then~$x_n\neq 0$, so $\|x_n\|_E\neq 0$.
Putting $y_n:=(n\|x_n\|_E)^{-1}x_n$
we get $y_n\ra 0$
but not $Ty_n\ra 0=T0$.
%
\item \label{5.1-2}
The continuous linear maps $E\ra F$ form a vector space
\begin{equation*}
\Lin(E,F)\htam{.}
\end{equation*}
With every $T\in\Lin(E,F)$
we associate a nonnegative number $\| T \|$ by
\begin{equation*}
\|T\| = \inf \bigl\{ c\colon
\|Tx\|_F \leq c\,\|x\|_E\htam{ for all }x\in E\bigr\}\htam{.}
\end{equation*}
Then
\begin{equation*}
\|Tx\|_F\ \leq\ \|T\|\,\|x\|_E \qquad (T\in\Lin(E,F),\ x\in E)\htam{.}
\end{equation*}
It is not difficult to verify
that~$\|\cdot\|$ is a norm on $\Lin(E,F)$.
It is called the \keyword{operator norm}.
An important fact:
\statement{$\Lin(E,F)$ is complete relative to the operator norm
in case~$F$ is complete relative to~$\|\cdot\|_F$.}
\end{enumerate}
\end{psec}
%
% 5.2
%
\begin{psec}{5.2}%
An inner product $\left<\cdot,\cdot\right>$
on a vector space~$H$
induces a norm~$\|\cdot\|$:
\begin{equation*}
\|x\|:=\sqrt{\left<x,x\right>}\qquad(x\in H)
\end{equation*}
satisfying the \keyword{Cauchy--Schwarz Inequality}
\begin{equation*}
\left|\left<x,y\right>\right| \ \leq\ \|x\|\,\|y\|\qquad(x,y\in H)\htam{.}
\end{equation*}
Relative to this norm,
for each $x\in H$
the function $y\mapsto \left<x,y\right>$ is continuous
(since $\left|\left<x,y_1\right>-\left<x,y_2\right>\right|
\leq\|x\|\,\|y_1 - y_2\|$ for all $y_1,y_2$).
The inner product space $(H,\left<\cdot,\cdot\right>)$
is called a \keyword{Hilbert space}
if~$H$ is complete relative to the inner product norm.
\end{psec}
%
% 5.3
%
\begin{psec}{5.3}%
Let~$E$ be a vector space.
\begin{enumerate}%
\item\label{5.3-1}%
A \keyword{semi-inner product} on~$E$ is a function $[\cdot,\cdot]$
on $E\times E$ satisfying
\begin{enumerate}[label={},itemindent=2em,labelindent=2em]
\item $y\mapsto [x,y]$ is linear for each $x$;
\item $[x,y]=[y,x]\qquad(x,y\in E)$;
\item $[x,x]\geq 0\qquad(x\in E)$.
\end{enumerate}
These properties suffice to
imply a \keyword{Cauchy--Schwarz Inequality}:
\begin{equation*}
|[x,y]|\ \leq\ \sqrt{[x,x]}\,\sqrt{[y,y]}
\end{equation*}
For example,
let $E$ be the space of all Riemann integrable functions
on the interval~$[0,1]$, with
\begin{equation*}
[f,g]\ :=\ \int_0^1 f(x)g(x)\,\mathrm{d}x\htam{.}
\end{equation*}
%
\item \label{5.3-2}
Let $[\cdot,\cdot]$ be such a semi-inner product on~$E$.
The elements~$x$ of~$E$ for which $[x,x]=0$
form a linear subspace~$D$ of~$E$.
Make the quotient vector space~$E/D$
and the quotient map $Q\colon E\ra E/D$.
Then the formula
\begin{equation*}
\left< Qx,Qy \right> = [x,y]\qquad (x,y\in E)
\end{equation*}
determines a bona fide inner product on~$E/D$.
\end{enumerate}
\end{psec}
\noindent {\sc From here on in this chapter
$H$ is a Hilbert space.}
%
% 5.4
%
\begin{psec}{5.4}{Definition}
A map $T\colon H\ra H$ is called a \keyword{Hermitian operator} if
\begin{equation*}
\left\{\
\begin{alignedat}{2}
&T\htam{ is linear and continuous;} \\
&\htam{if }x,y\in H\htam{, then }
\left<Tx,y\right>=\left<x,Ty\right>\htam{.}
\end{alignedat}
\right.
\end{equation*}
(It can be proved that a linear $T\colon H\ra H$
with $\left<Tx,y\right>=\left<x,Ty\right>$
for all~$x$ and~$y$ must be continuous.)
The Hermitian operators form a vector space
\begin{equation*}
\mathscr H\htam{.}
\end{equation*}
$\mathscr H$ is a linear subspace of $\Lin(H,H)$,
closed under the operator norm. (See~\ref{5.1}\ref{5.1-2}.)
Indeed,
if $(T_n)_n$ is a sequence in~$\mathscr H$,
converging to an element~$T$ of $\Lin(H,H)$
in the sense of the operator norm,
then $T_n x\rightarrow Tx$ for every $x\in H$,
so $\left< Tx, y \right>
= \lim\left< T_n x, y \right>
= \lim\left< x, T_n y \right>
= \left< x, Ty \right>\quad (x,y\in H)$.
\end{psec}
In \ref{5.5}\ref{5.5-1} we will see
that the product of two Hermitian operators
need not be Hermitian.
%
% 5.5
%
\begin{psec}{5.5}{Examples}
\begin{enumerate}
\item \label{5.5-1}
$\R^2$ is a Hilbert space under the standard inner product.
All linear maps $\R^2\ra\R^2$ are continuous.
If we identify a linear map $\R^2\ra\R^2$ with its matrix,
the Hermitian operators in~$\R^2$ are precisely the matrices
\begin{equation*}
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix}\htam{.}
\end{equation*}
The identity
\begin{equation*}
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
=
\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}
\end{equation*}
shows that a product of two Hermitian operators
may not be Hermitian.
%
\item \label{5.5-2}
By $\ell^2$ we denote the space of all real number sequences
$x=(x_n)_n$ for which $\sum x_n^2<\infty$.
This~$\ell^2$ is a Riesz ideal in~$\ell^\infty$.
It is not quite trivial to prove that~$\ell^2$
is a Hilbert space under
\begin{equation*}
\left<x,y\right>\ :=\ \sum_{n=1}^\infty x_n y_n \qquad (x,y\in\ell^2)\htam{.}
\end{equation*}
Continuous linear maps $\ell^2\ra\ell^2$
can be presented by infinitely large matrices;
Hermitian operators correspond to symmetric matrices.
(Not every infinitely large matrix denotes a map $\ell^2\ra\ell^2$.)
%
\item \label{5.5-3}
On $\Cont{[0,1]}$ we have the inner product
\begin{equation*}
\left< f,g\right>\ = \ \int_0^1 f(x)g(x)\,\mathrm{d}x
\qquad(f,g\in\Cont{[0,1]}\,)\htam{.}
\end{equation*}
Under this inner product,
$\Cont{[0,1]}$ is not complete.
However,
as a metric space
(with the inner product metric),
it has a completetion.
For esoteric reasons of our own
we call this completion~$\Leb^2[0,1]$.
It turns out to be possible (and not too difficult)
to extend the addition, scalar multiplication and inner product
of $\Cont{[0,1]}$ to $\Leb^2[0,1]$,
rendering $\Leb^2[0,1]$ a Hilbert space.
(In a later chapter we will see how $\Leb^2[0,1]$
can be realized as a space of functions on~$[0,1]$.)
A linear map $\Cont{[0,1]}\ra\Cont{[0,1]}$
that is continuous relative to the inner product norm
has a unique continuous linear extension
$\Leb^2[0,1]\ra\Leb^2[0,1]$.
Examples of continuous linear maps
$\Cont{[0,1]}\ra\Cont{[0,1]}$ that
lead to Hermitian operators in $\Leb^2[0,1]$ are
\begin{align*}
(T_1 f)(x) &= x\,f(x)\htam{,} \\
(T_2 f)(x) &= \textstyle{\int_0^1} (x\wedge t)\,f(t)\,\mathrm{d}t \htam{,} \\
(T_3 f)(x) &= f(1-x)\htam{.} \\%
\intertext{%
Every $u\in\Cont{[0,1]}$ induces a Hermitian
``multiplication operator''~$M_u$
in $\Leb^2[0,1]$;
for $f\in \Cont{[0,1]}$,
$M_uf$ is given by
}%
(M_uf)(x) &= u(x)\,f(x)\htam{.}
\end{align*}
\end{enumerate}
\end{psec}
%
% 5.6
%
\begin{psec}{5.6}%
\begin{enumerate}
\item \label{5.6-1}
For $x,y\in H$ we define
\begin{equation*}
x\perp y \quad \iff \quad \left<x,y\right>=0\htam{.}
\end{equation*}
If $x\perp y$ we have the Pythagoras Formula
\begin{equation*}
\|x+y\|^2\ =\ \|x\|^2 + \|y\|^2\htam{.}
\end{equation*}
%
\item \label{5.6-2}
For a subset $X$ of $H$ the set
\begin{equation*}
X^\perp\ =\ \bigl\{ y\in H\colon \left<x,y\right>=0\quad(x\in H)\bigr\}
\end{equation*}
is a linear subspace of~$H$.
The fact that for every~$x$
the function $y\mapsto\left<x,y\right>$
is continuous (\ref{5.2})
implies that~$X^\perp$ is closed.
Thus $X^{\perp\perp}$ ($:=(X^\perp)^\perp$)
is a closed linear subspace of~$H$, containing~$X$.
%
\item \label{5.6-3}
\textbf{Projection Theorem}\ (very non-trivial)
\statement{Let $D$ be a closed linear subspace of~$H$.
Then
\begin{equation*}
\frmd{D\cap D^\perp = \{0\}\htam{, } \quad D+D^\perp = H}
\end{equation*}
and
\begin{equation*}
\frmd{D^{\perp\perp}=D}\htam{.}
\end{equation*}}
%
\item \label{5.6-4}
Continuing~\ref{5.6-3}:
There is a map $P_D\colon H\ra H$ determined by
\begin{equation*}
P_D x\in D\htam{, }\quad x-P_Dx\in D^\perp\qquad (x\in H)\htam{.}
\end{equation*}
This $P_D$,
called the \keyword{projection onto}~$D$,
is linear.
Evidently,
$I-P_D$ is the projection onto~$D^\perp$.
By the Pythagoras Formula,
$\|x\|^2 = \|P_D x\|^2 + \|x-P_Dx\|^2 \geq\|P_D x\|^2$
for all~$x$,
so that~$P_D$ is continuous and
\begin{equation*}
\| P_D \| \leq 1\htam{.}
\end{equation*}
Furthermore,
for all $x,y\in H$
we have $P_D x\perp y-P_D y$,
which implies $\left<P_D x,y\right>=\left<P_Dx,P_Dy\right>$.
Similarly, $\left<x,P_Dy\right>=\left<P_Dx,P_Dy\right>$,
so that $\left<P_Dx,y\right>=\left<x,P_Dy\right>$:
\begin{equation*}
\frmd{P_D \htam{ is Hermitian}}\htam{.}
\end{equation*}
\end{enumerate}
\end{psec}
%
% 5.7
%
\begin{psec}{5.7}{Exercise}
Let $T$ be a linear map $H\ra H$.
Prove: $T$ is a projection
if and only if~$T\in\mathscr H$ and $T=T^2$.
(Hint: Consider $D:=\{x\colon (I-T)x=0\}$.)
\end{psec}
%
% 5.8
%
\begin{psec}{5.8}%
With each $T$ in~$\mathscr H$
we associate the function
$x\mapsto\left<Tx,x\right>$ on~$H$.
This function determines~$T$.
Indeed:
Let $T_1,T_2\in\mathscr H$,
$\left< T_1 x,x\right> = \left<T_2 x,x\right>\quad (x\in H)$;
we prove $T_1 = T_2$.
With $T:=T_1 - T_2$
we have $T\in\mathscr H$,
$\left< Tx,x\right>=0\quad (x\in H)$
and we wish to prove~$T=0$.
For all $x,y\in H$ we have
$\left<Tx,y\right>=\left<x,Ty\right>=\left<Ty,x\right>$.
It follows that~$T$ determines a semi-inner product $[\cdot,\cdot]$
by: $[x,y]:=\left<Tx,y\right>$,
and $[x,x]=0$ for all~$x$.
The Cauchy--Schwarz Inequality then entails $[x,y]=0$,
i.e. $\left<Tx,y\right>=0$, for all~$x$ and~$y$.
Choosing $y=Tx$ we find $Tx=0$ for every~$x$.
\end{psec}
%
% 5.9
%
\begin{psec}{5.9}{Definition}
The above allows us to define an ordering in~$\mathscr H$:
\begin{equation*}
S\leq T\quad \iff \quad
\left<Sx,x\right>\leq \left<Tx,x\right>\qquad (x\in H)\htam{.}
\end{equation*}
We set
\begin{equation*}
{\mathscr H}^+ \ :=\ \bigl\{T\in\mathscr H\colon T\geq 0\bigr\}\htam{.}
\end{equation*}
The elements of ${\mathscr H}^+$ are called
\keyword{positive Hermitian operators}.
For instance,
\begin{equation*}
T^2\htam{\ is positive }\qquad (T\in\mathscr H)
\end{equation*}
because $\left< T^2 x, x\right> = \left<Tx,Tx\right>\geq 0$
for all~$x$.
Thus,
if~$P$ is a projection,
then
\begin{equation*}
P\in{\mathscr H}^+
\end{equation*}
since $P\in \mathscr H$ and $P=P^2$.
\end{psec}
%
% 5.10
%
\begin{psec}{5.10}{Lemma}\statement{
Let $T\in{\mathscr H}^+$.
Then
\begin{equation*}
T\leq I\quad \iff\quad \|T\|\leq 1\htam{.}
\end{equation*}
}\end{psec}
\begin{proof}
If $\|T\|\leq 1$,
then by Cauchy--Schwarz
$\left<Tx,x\right>
\leq \|Tx\|\,\|x\|
\leq\|x\|^2
=\left<Ix,x\right>\quad(x\in H)$,
so $T\leq I$.
The reverse implication is harder to prove.
The formula
\begin{equation*}
(x,y) \mapsto \left< Tx, y \right>\qquad (x,y\in H)
\end{equation*}
determines a semi-inner product,
to which we can apply the Cauchy--Schwarz Inequality:
\begin{equation*}
\left< Tx, y\right>^2\ \leq\ \left<Tx,x\right>\left<Ty,y\right>
\qquad(x,y\in H)\htam{.}
\end{equation*}
Choosing $y:=Tx$ we get for all~$x$:
\begin{align*}
\|Tx\|^4\ &\leq\ \left<Tx, x\right>\,\left< T y,y\right> \\
&\leq\ \left<Ix, x\right>\,\left< I y,y\right>\\
& =\ \|x\|^2 \, \|y\|^2 \\
&\leq\ \|x\|^2\,\|Tx\|^2
\end{align*}
and thereby
\begin{equation*}
\|Tx\|\ \leq\ \|T\|^{\sfrac{1}{2}} \|x\|\htam{.}
\end{equation*}
It follows that $\|T\|\leq \|T\|^{\sfrac{1}{2}}$,
and $\|T\|\leq 1$. \xqed
\end{proof}
%
% 5.11
%
\noindent$\mathscr H$ is an ordered vector space
but not a Riesz space:
\begin{psec}{5.11}{Exercise}
For $H=\R^2$
the elements of~$\mathscr H$ can be viewed as matrices
$\smash{\bigl(\begin{smallmatrix}a&b\\b&c\end{smallmatrix}\bigr)}$
(\ref{5.5}\ref{5.5-1}).
\begin{enumerate}[label=(\alph*)]
\item\label{5.11a}
Show: If
$\smash{\bigl(\begin{smallmatrix}a&b\\b&c\end{smallmatrix}\bigr)}\geq 0$,
then
$\smash{\bigl(\begin{smallmatrix}a&-b\\-b&c\end{smallmatrix}\bigr)}\geq 0$.
\item\label{5.11b}
Let
\begin{equation*}
E_1 := \begin{pmatrix}1&0\\0&0\end{pmatrix}\htam{, }\quad
E_2 := \begin{pmatrix}0&0\\0&1\end{pmatrix}\htam{, }\quad
I := \begin{pmatrix}1&0\\0&1\end{pmatrix}\htam{, }\quad
A := \begin{pmatrix}2&\sqrt{2}\\\sqrt{2}&2\end{pmatrix}\htam{.}
\end{equation*}
\end{enumerate}
\emph{Assume} that~$\{E_1,E_2\}$ has a supremum
$\smash{\bigl(\begin{smallmatrix}x&y\\y&z\end{smallmatrix}\bigr)}$
in~$\mathscr H$.
Show (using~\ref{5.11a}) that~$y=0$ and that
$\smash{\bigl(\begin{smallmatrix}x&y\\y&z\end{smallmatrix}\bigr)}$
can only be~$I$.
Show that~$A$ is an upper bound for~$\{E_1,E_2\}$
but $I\nleq A$.
Thus,
$\{E_1,E_2\}$ has no supremum.
(Indeed,
it can be proved that,
if $\dim H>1$,
then a two-element subset $\{S,T\}$ of~$\mathscr H$
has a supremum only if $S\leq T$
or $S\geq T$.)
\end{psec}
\noindent Our aim now is to find
linear subspaces of~$\mathscr H$
that \emph{are} Riesz spaces,
that is,
in which every element has an absolute value.
(See~\ref{1.3}.)
For that,
we base ourselves upon
the multiplicative structure of~$\mathscr H$,
trying to obtain the absolute value of a Hermitian operator
as the square root of its square.
Unfortunately,
as we have already seen,
$\mathscr H$ may not be closed under multiplication.
The following lemma clarifies the situation somewhat.
%
% 5.12
%
\begin{psec}{5.12}{Lemma}\statement{
Let $S,T\in\mathscr H$.
Then
\begin{equation*}
ST\in\mathscr H\quad \iff \quad ST=TS\htam{.}
\end{equation*}
In particular:
If $T\in\mathscr H$,
then $T^2,T^3,\dotsc\in\mathscr H$.
}\end{psec}
\begin{proof}
For $x,y\in H$ we have
\begin{equation*}
\left< STx,y\right>\ =\ \left<Tx,Sy\right>\ =\ \left<x,TSy\right>\htam{.}
\end{equation*}
On the one hand,
it follows that,
if $ST=TS$,
then $ST\in\mathscr H$.
On the other,
if $ST\in\mathscr H$
we obtain $\left< x,STy\right>=\left<x,TSy\right>$,
so that $\left<x,STy-TSy\right>=0$
for all $x,y\in H$;
and upon taking $x:=STy-TSy$
we find $STy=TSy \qquad (y\in H)$. \xqed
\end{proof}
%
% 5.13
%
\begin{psec}{5.13}{Exercise}
Let $T\in\mathscr H$ and let~$D$ be a closed linear subspace of~$H$.
Prove:
\begin{equation*}
TP_D = P_D T
\quad \iff \quad T(D)\subseteq D
\quad \iff \quad T(D^\perp)\subseteq D^\perp\htam{.}
\end{equation*}
\end{psec}
%
% 5.14
%
\begin{psec}{5.14}{Exercise}
Let $C$ and $D$ be closed linear subspaces of~$H$.
Prove
\begin{alignat*}{2}
P_C\leq P_D\quad \iff& \quad &&C\subseteq D\\
\intertext{and}
P_C P_D=P_D P_C \quad \implies& \quad &&P_C P_D = P_{C\cap D}\htam{.}
\end{alignat*}
\end{psec}
%
% 5.15
%
\begin{psec}{5.15}{Definition}
A \keyword{subalgebra} of~$\mathscr H$
is a linear subspace~$\mathscr{A}$ with
\begin{equation*}
S,T\in\mathscr A \quad \implies \quad ST\in\mathscr A\htam{.}
\end{equation*}
(This is a misnomer,
as~$\mathscr H$ itself is not an algebra.)
Such a subalgebra of~$\mathscr H$
is a commutative algebra.
\end{psec}
%
% 5.16
%
\begin{psec}{5.16}{Examples}
\begin{enumerate}
\item \label{5.16-1}
For every $T\in\mathscr H$
the linear hull of $\{T,T^2,T^3,\dotsc\}$
is a subalgebra of~$\mathscr H$,
as is the linear hull of $\{I,T,T^2,\dotsc\}$.
%
\item \label{5.16-2}
If $H=\R^2$
(and we identify a linear map $\R^2\ra\R^2$ with its matrix),
the matrices
\begin{equation*}
\begin{pmatrix}a&0\\0&c\end{pmatrix}
\end{equation*}
form a subalgebra of~$\mathscr H$,
the matrices
\begin{equation*}
\begin{pmatrix}0&b\\0&c\end{pmatrix}
\end{equation*}
do not.
%
\item \label{5.16-3}
For $H=\Leb^2[0,1]$ (see~\ref{5.5}\ref{5.5-3}),
the multiplication operators~$M_u\quad (u\in\Cont{[0,1]}\,)$
form a subalgebra of~$\mathscr{H}$.
%
\item \label{5.16-4}
Let $\mathscr{A}$ be a subalgebra of~$\mathscr{H}$.
Let $\bar{\mathscr{A}}$ be its closure,
in the sense of the operator norm,
in~$\mathscr{H}$ or in $\Lin(H,H)$
(which is the same thing,
as $\mathscr H$ is closed in $\Lin(H,H)$.)
Then~$\bar{\mathscr{A}}$ is a subalgebra of~$\mathscr H$.
\emph{Proof}\ We have $\bar{\mathscr A}\subseteq \mathscr H$,
so we need only prove that $ST\in\bar{\mathscr A}$
as soon as~$S,T\in\bar{\mathscr A}$.
If $S\in\mathscr A$ and $T\in \bar{\mathscr A}$,
there is a sequence $(T_n)_n$ in~$\mathscr A$
with $\lim T_n = T$ (in the sense of the norm);
then $ST = \lim ST_n\in \bar{\mathscr A}$.
For arbitrary $S,T\in\bar{\mathscr A}$,
choose a sequence $(S_n)_n$ in~$\mathscr A$
with $\lim S_n = S$;
then $S_n T\in \bar{\mathscr A}$,
as we have just seen,
and $ST=\lim S_n T\in \bar{\mathscr A}$.
%
\item \label{5.16-5}
For $\mathscr S \subseteq \mathscr H$, set
\begin{equation*}
{\mathscr S}^{\square} \ :=\
\bigl\{ T\in \mathscr H\colon
ST=TS\htam{ for all }S\in\mathscr S\bigr\}\htam{.}
\end{equation*}
${\mathscr S}^\square$ is a closed linear subspace of~$\mathscr H$
but in general not a subalgebra.
(E.g., $\{0\}^\square$ is~$\mathscr H$.)
However:
\statement{If~$\mathscr A$ is a commutative subset of~$\mathscr H$,
then~${\mathscr A}^{\square \square}$
($:=({\mathscr A}^\square)^\square$)
is a subalgebra of~$\mathscr H$,
and ${\mathscr A}^{\square\square}\supseteq\mathscr A$.
Also, $I\in{\mathscr A}^{\square\square}$.}
\emph{Proof}\ The inclusion
$\mathscr{A}\subseteq{\mathscr{A}}^{\square\square}$ is trivial.
For $\mathscr{S},\mathscr{T}\subseteq\mathscr H$
with $\mathscr{S}\subseteq\mathscr{T}$
we have ${\mathscr S}^\square\supseteq{\mathscr T}^\square$.
As~$\mathscr{A}$ is commutative,
$\mathscr A\subseteq {\mathscr A}^\square$,
so that ${\mathscr A}^\square \supseteq {\mathscr A}^{\square\square}$.
Hence, if $S,T\in{\mathscr A}^{\square\square}$
then $ST=TS$
(since $S\in{\mathscr A}^\square$ and $T\in{\mathscr A}^{\square\square}$),
and $ST\in\mathscr H$.
It follows that $ST\in{\mathscr A}^{\square\square}$
because every element of ${\mathscr A}^\square$
commutes with~$S$ and with~$T$.
\end{enumerate}
\end{psec}
%
% 5.17
%
\begin{psec}{5.17}{Comment}
The point of bringing up~${\mathscr A}^{\square\square}$
is that it (contains~$\mathscr A$ and) is
``strongly closed'' in~$\mathscr H$.
A subset~$\mathscr X$ of~$\mathscr H$ is called
\keyword{strongly closed} in~$\mathscr H$
if it has the following property:
\vspace{.5em}
\begin{center}
\begin{minipage}{.30\textwidth}
If $T\in\mathscr H$ and if there is a net
$(T_i)_{i\in I}$ in~$\mathscr X$ with
\begin{equation*}
T_i x \ra T x\qquad (x\in H)\htam{,}
\end{equation*}
then $T\in\mathscr X$.
\end{minipage}
\end{center}
\vspace{.5em}
Such a set is closed in the sense of the operator norm;
the converse is generally false.
One easily sees that for every subset~$\mathscr S$
of~$\mathscr H$ the set~${\mathscr S}^\square$ is strongly closed.
Strongly closed subalgebras of~$\mathscr H$
will return in Chapter~\ref{sec:dedcomp-ii}
\end{psec}
\noindent We intend to show that
every norm closed subalgebra of~$\mathscr H$
is a Riesz space.
This we will do by constructing
for every Hermitian operator~$T$
an absolute value (see~\ref{1.3}),
in the form of a positive square root of~$T^2$.
%
% 5.18
%
\begin{psec}{5.18}%
For the time being,
$T$ is a Hermitian operator in~$H$ with $0\leq T\leq I$,
so that $\| T\|\leq 1$.
(See lemma~\ref{5.10}.)
\begin{enumerate}
\item \label{5.18-1}
It will be convenient to view a ``polynomial''
as a function on~$[0,1]$.
If $p\colon t\mapsto \pi_0 + \pi_1 t + \dotsb + \pi_N t^N$
is a polynomial, we set
\begin{equation*}
p(T)\ :=\ \pi_0 I + \pi_1 T + \dotsb + \pi_N T^N\htam{.}
\end{equation*}
%
\item \label{5.18-2}
For a polynomial $p\colon t\mapsto \pi_0 + \pi_1 t +\dotsb + \pi_N t^N$
we write
\begin{equation*}
p \gg 0
\end{equation*}
to indicate that all coefficients $\pi_0,\pi_1,\dotsc,\pi_N$
are nonnegative.
In that case
\begin{equation}
\tag{$*$}\label{eq5.18-2}
\|p(T)\| \ \leq \ p(1)\htam{.}
\end{equation}
(Indeed,
as $\|T\|\leq 1$, for all~$x$ in~$H$
we have $\|Tx\|\leq 1$,
$\|T^2 x\|\leq \|T x\|\leq \| x\|$,
etc., and $\|p(T)x\|\leq \pi_0 \|x\|+\pi_1 \|Tx\| + \dotsb +\pi_N\|T^n x\|
\leq (\pi_0+\pi_1+\dotsb + \pi_N) \|x \|= p(1)\|x\|$.)
Moreover,
for such a polynomial~$p$
\begin{equation*}
p(T)\in\mathscr{H}^+\htam{,}
\end{equation*}
because for $n\in\{0,1,2,\dotsc\}$
and $x\in T$,
$\left< T^{2n}x,x\right>=\left<y,y\right>\geq 0$
and $\left< T^{2n+1} x,x\right>=\left< Ty,y\right>\geq 0$,
where $y=T^n x$.
%
\item \label{1.18-3}
Define polynomials $p_1,p_2,\dotsc$ and $q_1,q_2,\dotsc$:
\begin{alignat*}{2}
p_1(t)&:={\textstyle\frac{1}{2} t\htam{, }\qquad
p_2(t):=\frac{1}{8}} t^2\qquad &&(t\in[0,1])\htam{;}\\
p_{n+1}&:=(p_1+p_2+\dotsb+p_{n-1}+{\textstyle\frac{1}{2}}p_n)\, p_n
\qquad&&(n=2,3,\dotsc)\htam{;}\\
q_n&:=\phantom{(}p_1+p_2+\dotsb+p_n\qquad&&(n\in \N)\htam{.}
\end{alignat*}
Then $p_n\gg 0$ and $q_n\gg 0$ for all~$n$.
For all~$n$ and~$t$,
\begin{equation*}
\tag{$**$} \label{eq5.18-3}
2 q_{n+1}(t)\ =\ t+q_n(t)^2\htam{.}
\end{equation*}
From this one sees that
\begin{equation*}
1-{\textstyle\frac{2}{n+1}}\ \leq\ q_n(1)\ \leq\ 1
\qquad(n\in \N)\htam{,}
\end{equation*}
whence
\begin{equation*}
\sum_{n=1}^{\infty}\, p_n(1)=1\htam{.}
\end{equation*}
(As $0\leq q_1\leq q_2\leq \dotsb$
and $q_n(t)\leq q_n(1)$ for $n\in\N$, $t\in[0,1]$,
it follows that $\lim_{n\rightarrow\infty} q_n(t)$
exists for $t\in[0,1]$,
and one easily checks that the limit equals $1-\sqrt{1-t}$.
Our program is:
Show that $\lim_{n\ra\infty} q_n(T)$ exists,
and make a square root of $I-T$.)
Defining
\begin{equation*}
Q_n\ :=\ q_n(T)\qquad(n\in\N)
\end{equation*}
and observing that $q_n\gg 0$,
from~\eqref{eq5.18-2} we obtain
\begin{equation*}
\|Q_n\|\ \leq\ 1\qquad (n\in \N)\htam{.}
\end{equation*}
For $x\in H$ we have
\begin{alignat*}{2}
\sum_{n=1}^\infty \|p_n(T)x\|\
&\leq\ \sum_{n=1}^\infty \|p_n(T)\|\,\|x\|\\
&\leq\ \sum_{n=1}^\infty \phantom{\|}
p_n(\lsub{1)}{T)}\phantom{\|}\,\|x\|\ =\ \|x\|\ <\ \infty\htam{.}
\end{alignat*}
Thanks to the completeness of~$H$
this means that $\sum_{n=1}^{\infty} p_n(T) x$
exists in~$H$, i.e.
\begin{equation*}
Qx=\lim_{n\ra\infty} q_n(T)x=\lim_{n\ra\infty}Q_n x
\end{equation*}
exists.
Thus,
we obtain a map $Q\colon H\ra H$.
From the properties of the~$Q_n$
it follows that~$Q$ is linear
and that $\|Qx\|\leq\|x\|$,
$\left<Qx,y\right>=\left<x,Qy\right>$
and $0\leq\left<Qx,x\right>\leq\left<x,x\right>$
for all~$x$ and~$y$;
in short:
\begin{equation*}
Q\in\mathscr H\htam{, }\qquad 0\leq Q\leq I\htam{.}
\end{equation*}
$Q$ is the limit of the~$Q_n$
not only pointwise but also in the sense of the operator norm.
Indeed,
for $N\in\N$ and $x\in H$,
\begin{alignat*}{2}
\|Qx-Q_N x\|\
&=\ \textstyle\bigl\| \sum_1^\infty p_n(T)x - \sum_1^Np_N(T)x\bigr\| \\
&=\ \textstyle\bigl\| \sum_{N+1}^\infty p_n(T) x\bigr\| \\
&\leq\ \textstyle\sum_{N+1}^\infty \|p_n(T)x\| \\
&\leq\ \textstyle\sum_{N+1}^\infty \|p_n(T)\| \, \|x\| \\
&\leq\ \textstyle\sum_{N+1}^\infty p_n(1)\|x\| \\
&=\ \textstyle(1-q_N(1))\, \|x\|\ \leq\ \frac{2}{N+1} \|x\|\htam{,} \\
\intertext{so}%
\|Q-Q_N\|\ &\leq\ {\textstyle \frac{2}{N+1}}\qquad (N\in\N)\htam{.}
\end{alignat*}
Furthermore,
\eqref{eq5.18-3} implies
\begin{equation*}
2Q_{n+1} - Q_n^2 = T \qquad(n\in\N)\htam{.}
\end{equation*}
Now for every $x\in H$
\begin{alignat*}{2}
\left<Q_{n+1}x,x\right> &\ \longrightarrow\ \left< Qx,x\right>\htam{,}\\
\left<Q_n^2 x, x\right>
= \left<Q_n x,Q_n x\right>
= \|Q_n x\|^2
&\ \longrightarrow\ \|Qx\|^2 = \left<Q^2 x,x\right>\htam{.}
\end{alignat*}
Hence,
\begin{equation*}
\left<(2Q-Q^2)x,x\right>\ =\ \left<Tx,x\right>\qquad(x\in H)\htam{.}
\end{equation*}
In~\ref{5.8}
we have seen that this entails
\begin{alignat*}{2}
2Q-Q^2 &= T\htam{,}\intertext{i.e.,}%
(I-Q)^2 &= I-T\htam{.}
\end{alignat*}
%
\item \label{5.18-4}
At this stage
we change our point of view
and apply the above to~$I-T$
instead of~$T$
(which is feasible because $0\leq I-T\leq I$).
We see that $S:=\lim q_n(I-T)$ exists
in the sense of the operator norm,
that $0\leq S\leq I$,
and $(I-S)^2=T$.
We could now reasonably
for every~$T$ with $0\leq T\leq I$
define~$\sqrt{T}$
to be $I-S$,
i.e., $I-\lim q_n(I-T)$.
However,
this definition does not immediately
make clear that,
say, $\smash{\sqrt{\smash{\sfrac{1}{4}}\,T}=\sfrac{1}{2}\,\sqrt{T}}$;
also, we need~$\sqrt{T}$ for \emph{all}~$T$ in~${\mathscr H}^+$.
Therefore:
\end{enumerate}
\end{psec}
%
% 5.19
%
\begin{psec}{5.19}{Definition}
For $T\in{\mathscr H}^+$
we define $\sqrt{T}\in\mathscr H$ by:
\begin{alignat*}{2}
\sqrt{T}\ &:=\ 0 \qquad &&\htam{if }T=0\htam{,}\\
\sqrt{T}\ &:=\ I-\lim_{n\ra\infty} q_n(I-T) \qquad&&\htam{if }\|T\|=1\htam{,}\\
\sqrt{T}\ &:=\ \sqrt{t}\,\sqrt{t^{-1}T}\qquad
&&\htam{if }T\neq 0\htam{, }\ t=\|T\|\htam{.}
\end{alignat*}
Then
\begin{equation*}
\sqrt{T} \in{\mathscr H}^+ \qquad \htam{and} \qquad \sqrt{T}^2=T\htam{.}
\end{equation*}
For every~$n$ we have $q_n(0)=0$;
consequently,
\begin{equation*}
\sqrt{I}=I\htam{.}
\end{equation*}
It is worth observing that~$\sqrt{T}$ lies in the norm closure
of the linear hull of $\{T,T^2,T^3,\dotsc\}$.
For a proof we may assume~$\|T \|=1$
and $\sqrt{T}=I - \lim q_n(I-T)$.
Let~$r_n$ be the polynomial
$t\mapsto q_n(t)-q_n(1-t)$;
then~$r_n$ has the value~$0$ at~$0$,
so~$r_n(T)$ lies in the linear hull of $\{T,T^2,T^3,\dotsc\}$.
But $\sqrt{T}=\lim r_n(T)$,
since
\begin{equation*}
(I-q_n(I-T)) - r_n(T) \ =\ (1-q_n(1))\,I
\end{equation*}
for each~$n$, and $q_n(1)\ra 1$.
The moral of this remark is that~$\sqrt{T}$
\emph{lies in every closed subalgebra of~$\mathscr H$
that contains~$T$.}
\end{psec}
\end{document}