-
Notifications
You must be signed in to change notification settings - Fork 0
/
homidls.tex
633 lines (615 loc) · 16.2 KB
/
homidls.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
\documentclass[main.tex]{subfiles}
\begin{document}
% 2
\section{Homomorphisms, ideals}
%
% 2.1
%
\begin{psec}{2.1}%
(See \ref{1.5}\ref{1.5-8}.)
Let $(X,\mathcal A, \mu)$ be a measure space.
For an $\mathcal A$-measurable
function $f\colon X\ra \R$
denote by~$(f)_\mu$
the set of all $\mathcal A$-measurable functions
that are equal to~$f$ $\mu$-a.e.,
and put
$F_{\mathcal A}(\mu):=\{(f)_\mu\colon f\in\mathcal{F}_{\mathcal A}\}$.
Then~$F_{\mathcal A}(\mu)$
is a Riesz space
under the ordering
\begin{align*}
& (f)_\mu \leq (g)_\mu \quad \iff \quad f\leq g\ \mu\htam{-a.e.,} \\
\intertext{%
the lattice operations being given by}%
& (f)_\mu \vee (g)_\mu = (f\vee g)_\mu \htam{, }
\qquad (f)_\mu \wedge (g)_\mu = (f\wedge g)_\mu
\htam{.}
\end{align*}
For a general approach to similar constructions
it pays to investigate ``Riesz homomorphisms''
and ``Riesz ideals''.
\end{psec}
%
% 2.2
%
\begin{psec}{2.2}{Definitions}
Let $E$ and $F$ be Riesz spaces
and $T$ a linear map $E\ra F$.
We call~$T$ \keyword{positive}
if it is order preserving ($=\htam{increasing}$),
which is the case if and only if
\begin{equation*}
T(E^+) \subseteq F^+\htam{, }
\end{equation*}
and $T$ is a \keyword{Riesz homomorphism} if
it is (linear and) a
lattice homomorphism, i.e.,
\begin{equation*}
T(x\vee y) = Tx \vee Ty\htam{,}
\quad T(x\wedge y)=Tx\wedge Ty
\qquad (x,y\in E)\htam{.}
\end{equation*}
Every Riesz homomorphism is positive.
($x\in E^+\iff x=x\vee 0$)
We leave it to the reader to define ``Riesz isomorphism''
and ``Riesz isomorphic''.
A linear (bijective) order isomorphism is,
of course,
a Riesz isomorphism,
but some positive linear bijections are not
(e.g., $(x_1,x_2)\mapsto(x_1,x_1+x_2)$ as a map
$\R^2\ra\R^2$).
\end{psec}
%
% 2.3
%
\begin{psec}{2.3}{Exercise}
Let $E$ and $F$ be Riesz spaces,
$T$ a linear map $E\ra F$.
Prove the equivalence of:
\begin{enumerate}
\item[$(\alpha)$] \label{2.3-alpha}
$T$ is a Riesz homomorphism.
%
\item[$(\beta)$] \label{2.3-beta}
$T(|x|)=|Tx| \quad (x\in E)$.
%
\item[$(\gamma)$] \label{2.3-gamma}
$T(x^+) = \lsub{(Tx)^+}{(Tx)} \quad (x\in E)$.
\end{enumerate}
\end{psec}
%
% 2.4
%
\begin{psec}{2.4}%
Let $E$ be a Riesz space and $T$ a Riesz homomorphism of $E$
into a Riesz space~$F$.
Consider
$D:=\{x\in E\colon Tx=0\}$.
This~$D$ is a linear subspace of~$E$
with the additional property
\begin{equation}
\tag{$*$}
\label{eq2.4}
a\in D\htam{, }\; x\in E\htam{, }\; |x|\leq |a|
\quad \implies \quad x\in D\htam{. }
\end{equation}
($|Tx|=T(|x|)\leq T(|a|)=|Ta|=0$.)
Conversely:
\end{psec}
%
% 2.5
%
\begin{psec}{2.5}{Exercise}
Let $E$ be a Riesz space and $D$ a linear subspace of~$E$
with the property~\eqref{eq2.4} of~\ref{2.4},
and let~$Q$ be the quotient map of~$E$ onto~$E/D$.
Show that there is one (and only one) way to turn~$E/D$
into an ordered vector space such that
\begin{equation*}
(E/D)^+ \ =\ Q(E^+)\htam{.}
\end{equation*}
Show that under this ordering~$E/D$
is a Riesz space and~$Q$ is a Riesz homomorphism.
Prove that, for $x,y\in E$
\begin{equation*}
Qx\,\leq\,Qy\quad\iff \quad x'\,\leq\,y\
\htam{ for some }x'\htam{ in }x+D\htam{.}
\end{equation*}
\end{psec}
%
% 2.6
%
\begin{psec}{2.6}{Definition}
A \keyword{Riesz ideal} of a Riesz space $E$
is a linear subspace~$D$ of~$E$ for which
\begin{equation*}
a\in D\htam{, }\; x\in E\htam{, }\; |x|\leq |a|
\quad \implies \quad x\in D\htam{. }
\end{equation*}
\end{psec}
Observe that a Riesz ideal is a Riesz subspace.
(Take $x=|a|$.)
A Riesz subspace (not just a linear subspace) $D$ of $E$
is a Riesz ideal if and only if
\begin{equation*}
a\in D^+\htam{, }\; x\in E^+\htam{, }\; x\leq a
\quad \implies \quad x\in D\htam{. }
\end{equation*}
%
% 2.7
%
\begin{psec}{2.7}{Theorem} (Consequence of~\ref{2.4} and~\ref{2.5})\
\statement{
A subset of a Riesz space
is a Riesz ideal
if and only if
it is the kernel of a Riesz homomorphism.
}
It will be clear
how one defines
``quotient Riesz space''.
\end{psec}
%
% 2.8
%
\begin{psec}{2.8}{Examples}
\begin{enumerate}
\item \label{2.8-1}%
(Back to~\ref{2.1}.)
Let $(X,\mathcal A, \mu)$ be a measure space.
$D:=\{f\in {\mathcal F}_{\mathcal A}\colon f=0\ \mu\htam{-a.e.} \}$
is a Riesz ideal of~${\mathcal F}_{\mathcal A}$;
the quotient Riesz space is~$\mathrm{F}_{\mathcal A} (\mu)$.
The same~$D$ is a Riesz ideal of~$\mathcal{L}_{\mathcal A}[\mu]$;
the quotient~${\mathcal L}_{\mathcal A}[\mu]/D$ is denoted
\begin{equation*}
\mathrm{L}^1(\mu)\htam{.}
\end{equation*}
Further,
$\mathcal{L}_{\mathcal A}[\mu]$
is a Riesz ideal of~${\mathcal F}_{\mathcal A}$
(Maat en Integraal),
and~$\mathrm{L}^1(\mu)$ is a Riesz ideal of~$\mathrm{F}_{\mathcal A}(\mu)$.
%
\item \label{2.8-2}
$\ell^\infty(X)$ is a Riesz ideal of $\R^X$ (see~\ref{1.5}\ref{1.5-1}).
For a topological space~$X$,
$\BCont{X}$ is a Riesz ideal
of~$\Cont{X}$ (\ref{1.5}\ref{1.5-3}).
$\cseq_0$ and $\ell^1$ are Riesz ideals
in~$\ell^\infty$ ($:=\ell^\infty(\N)$).
%
\item \label{2.8-3}
Let $\mathcal A$ be a $\sigma$-algebra in a set $X$.
Then $\sigma(\mathcal A)$ is a Riesz ideal of~$\BA(\mathcal A)$.
Indeed, as we already know~$\sigma(\mathcal A)$
to be a Riesz subspace of~$\BA(\mathcal A)$,
it will be an ideal if
\begin{equation*}
\mu\in \sigma(\mathcal A)\htam{, }\
\tau\in\BA(\mathcal A)\htam{, }\
0\leq \tau\leq \mu
\quad \implies \quad
\tau \in \sigma(\mathcal A)
\htam{.}
\end{equation*}
But this follows from the observation
that an additive $\alpha\colon\mathcal A\ra [0,\infty)$
is a finite measure if and only if
\begin{equation*}
A_n \downarrow \eset\ \htam{ in }\mathcal A
\quad \implies \quad
\alpha(A_n)\ra 0
\htam{.}
\end{equation*}
%
\item \label{2.8-4}
If $X$ is a topological space and $Y\subseteq X$, then
\begin{equation*}
\{f\in\Cont{X}\colon f | Y=0 \}
\end{equation*}
is a Riesz ideal of $\Cont{X}$.
Not all Riesz ideals of $\Cont{X}$ are of this type.
For instance,
in~$\Cont{\R}$ the functions~$f$
with $\lim_{x\ra \infty} x^3 f(x)=0$
form a Riesz ideal.
\end{enumerate}
\end{psec}
%
% 2.9
%
\begin{psec}{2.9}{Exercise}
Let $X$ be a topological space
and $A$ a closed subset of~$X$
such that every continuous function on~$A$
can be extended to a continuous function on~$X$
(e.g., $X$ is compact Hausdorff or $X$ is metrizable,
and $A$ is any closed set).
Let~$J_A$ be the Riesz ideal
$\{f\in\Cont{X}\colon f|A=0\}$.
Show that the quotient Riesz space
$\Cont{X}/J_A$ is Riesz isomorphic to~$\Cont{A}$.
\end{psec}
%
% 2.10
%
\begin{psec}{2.10}{Exercise}
\begin{enumerate}
\item \label{2.10-1}
Show that the sum of two Riesz subspaces
of a Riesz space~$E$ need not be a Riesz subspace of~$E$.
(The space of all affine functions on~$[0,1]$ (see~\ref{1.7})
is a sum of two $1$-dimensional Riesz subspaces of~$\Cont{[0,1]}$.)
%
\item \label{2.10-2}
Prove that the sum of two Riesz ideals
of a Riesz space~$E$
is a Riesz ideal of~$E$.
(This is not so easy.
It may be useful to prove
the ``Riesz Decomposition Lemma'':
if~$x,a,b\in E^+$ and $x\leq a+b$,
then there exist $y,z\in E^+$
with $x=y+z$, $y\leq a$, $z\leq b$;
e.g., $y=x\wedge a$ and $z=x-y=x\vee a-a$.)
\end{enumerate}
\end{psec}
%
% 2.11
%
\begin{psec}{2.11}{Definitions}
The intersection of any collection of Riesz subspaces
(or ideals) of a Riesz space~$E$
is again a Riesz subspace
(or ideal, respectively)
of~$E$.
For $u\in E^+$,
the \keyword{principal (Riesz) ideal generated} by~$u$
is the intersection of all Riesz ideals
that contain~$u$;
it is the set
\begin{equation*}
\bigcup_{n\in\N} [-nu,nu]
\htam{.}
\end{equation*}
An element $u$ of $E^+$
is called
a \keyword{(strong) unit} of~$E$
if the principal ideal it generates is~$E$ itself,
i.e.,
if for every~$x$ in~$E$
there exists an~$n$ in~$\N$ with $|x|\leq nu$.
$E$ is said to be \keyword{unitary} if it has a unit.
\end{psec}
%
% 2.12
%
\begin{psec}{2.12}{Exercise}
\begin{enumerate}
\item \label{2.12-1}
Trivially,
the constant function $\mathbb{1}$
is a unit in~$\BCont{\R}$.
Show that~$\Cont{\R}$ has no unit.
%
\item \label{2.12-2}
Show that $\cseq_0$ and $\cseq$ are not Riesz isomorphic.
\end{enumerate}
\end{psec}
%
% 2.13
%
\begin{psec}{2.13}%
If $u$ is a unit in a Riesz space~$E$,
then
\begin{equation}
\label{eq2.13_1}
\tag{$*$}
x\in E\htam{, }\ x\perp u
\quad \implies \quad
x=0
\htam{.}
\end{equation}
(Indeed, there is an $n$ in $\N$ with $|x|\leq nu$;
then $|x|=|x|\wedge nu\leq n|x|\wedge nu=n(|x|\wedge u)=0$.)
\textbf{Definition}\ An element $u$ of $E$
is called
a $\keyword{weak unit}$,
or a $\keyword{Freudenthal unit}$,
if~\eqref{eq2.13_1} holds.
The constant function~$\mathbb{1}$
is a weak unit in~$\Cont{\R}$.
\end{psec}
%
% 2.14
%
\begin{psec}{2.14}{Exercise}
Prove the following \textbf{Theorem}: \ %
\statement{%
If $E$ is a Riesz space, $a\in E$, and
\begin{equation*}
a^\perp := \{ x\in E\colon x\perp a \} \htam{, }
\end{equation*}
then $a^\perp$ is a Riesz ideal of~$E$}.
\end{psec}
%
% 2.15
%
\begin{psec}{2.15}{Definition}
Let $X$ be a set.
Every point $a$ of $X$ determines
a Riesz homomorphism
$\delta_a\colon \R^X\ra\R$,
the \keyword{evaluation} at~$a$, by
\begin{equation*}
\delta_a(f) = f(a)\qquad (f\in \R^X)
\htam{.}
\end{equation*}
We use the same symbol ``$\delta_a$''
to denote the restriction of~$\delta_a$
to any Riesz subspace of~$\R^X$.
\end{psec}
%
% 2.16
%
\begin{psec}{2.16}{Theorem}
\statement{%
Let $X$ be a compact Hausdorff space.
Then $a \leftrightarrow \delta_a$
is a bijective correspondence
between the points of~$X$
and the Riesz homomorphisms
$\varphi\colon \Cont{X}\ra \R$
with~$\varphi(\mathbb{1})=1$.
}
\end{psec}
\begin{proof}
Let $\varphi$ be a Riesz homomorphism $\Cont{X}\ra \R$
with~$\varphi(\mathbb{1})=1$.
We prove $\varphi=\delta_a$ for some~$a$ in~$X$.
(The rest of the theorem
we leave to the reader.)
Suppose there is no such~$a$.
Then for every~$a\in X$,
we can choose an~$f_a$ in~$\Cont{X}$
with $\varphi(f_a)\neq f_a(a)$.
Setting $g_a := | f_a - \varphi(f_a) \mathbb{1}|$
we have~$g_a \in \Cont{X}^+$,
$\varphi(g_a)=0$,
$g_a(a)>0$.
By compactness,
there exist $a_1,\dotsc,a_N$ in~$X$ such that
\begin{equation*}
X = \bigcup_n \{ x\colon g_{a_n} (x) > 0 \}\htam{.}
\end{equation*}
Put $g:=g_{a_1}\vee \dotsb \vee g_{a_N}$.
We have $\varphi(g) =0$
but $g(x)>0$ for all~$x\in X$.
There is a positive number~$\varepsilon$
with $g\geq \varepsilon \mathbb{1}$.
Then $\varphi(g)\geq \varepsilon \varphi(\mathbb{1})=\varepsilon$.
Contradiction. \xqed
\end{proof}
%
% 2.17
%
\begin{psec}{2.17}%
Let $X$ be as above
and let~$\varphi$ be any nonzero Riesz homomorphism.
There is an~$h$ in~$\Cont{X}$
with $\varphi(h)\neq 0$.
There is a positive number~$c$
with $|h|\leq c\mathbb{1}$.
Then $0<|\varphi(h)|=\varphi(|h|)\leq c\varphi(\mathbb{1})$,
so that $\varphi(\mathbb{1})>0$.
By applying the preceding proof to
the homomorphism $f\mapsto \varphi(\mathbb{1})^{-1} \varphi(f)$
we find that there is an~$a$ in~$X$
with $\varphi = \varphi(\mathbb{1})\delta_a$.
\end{psec}
%
% 2.18
%
For an application of Theorem~\ref{2.16}
we need a result from topology:
\begin{psec}{2.18}{Lemma}
\statement{%
Let $X$ be a completely regular
(e.g., compact Hausdorff) space,
$(x_i)_{i\in I}$ a net in~$X$,
and let~$x\in X$.
Then
\begin{equation*}
x_i \ra x
\quad \iff \quad
f(x_i)\ra f(x)
\ \htam{ for every }f\htam{ in }\Cont{X}\htam{.}
\end{equation*}
}
\end{psec}
\begin{proof}
The implication ``$\Rightarrow$'' is trivial.
Now assume $f(x_i)\ra f(x)\quad (f\in \Cont{X})$.
Let~$U$ be an open subset of~$X$ containing~$x$.
As~$X$ is completely regular,
there is an~$f$ in~$\Cont{X}$ with
\begin{equation*}
f(x)=1\htam{, }
\qquad f=0\ \htam{ on }X\backslash U
\htam{.}
\end{equation*}
Then $f(x_i)\ra 1$,
so there is an~$i_0$ in~$I$ with the property
that for all~$i$ in~$I$ with $i\ge i_0$
we have $f(x_i)\neq 0$, whence $x_i \in U$. \xqed
\end{proof}
%
% 2.19
%
\begin{psec}{2.19}{Theorem (Kaplansky)}
\statement{%
Let $X$ and $Y$ be compact Hausdorff spaces
such that $\Cont{X}$ and $\Cont{Y}$ are Riesz isomorphic.
Then~$X$ and~$Y$ are homeomorphic.
}
\end{psec}
\begin{proof}
Let $T\colon \Cont{X}\ra \Cont{Y}$ be a Riesz isomorphism.
\begin{enumerate}[label=(\Roman*)]
\item \label{2.19-I}
For the moment, assume
$T\mathbb{1}_X = \mathbb{1}_Y$.
For every~$y\in Y$
we can apply~\ref{2.16} to the Riesz homomorphism
$f\mapsto (Tf)(y)\quad (f\in\Cont{X})$.
Thus we obtain a map $\tau\colon Y\ra X$ such that
\begin{alignat*}{2}
(Tf)(y) &= f(\tau(y))
\qquad &(f\in\Cont{X}\htam{, }\ y\in Y)
\htam{.}\\
\intertext{%
In the same way (using $T^{-1} \mathbb{1}_Y = \mathbb{1}_X$)
we obtain a $\sigma\colon X\ra Y$ with}
(T^{-1}g)(x) &= g(\sigma(x))
&(g\in \Cont{Y}\htam{, }\ x\in X)
\htam{.}
\end{alignat*}
If $x\in X$, then for every~$f$ in $\Cont{X}$ we have
\begin{equation*}
f(x) = (T^{-1} T f)(x) = (Tf)(\sigma(x)) = f(\tau(\sigma (x)))\htam{,}
\end{equation*}
so that $x=\tau(\sigma(x))$.
Similarly, $y=\sigma(\tau(y))$ for all $y\in Y$.
Thus, $\sigma$ and~$\tau$ are bijective and each other's inverses.
If $(x_i)_{i \in I}$ is a net in~$X$,
converging to a point~$x$,
then for all~$g$ in $\Cont{Y}$
we have $g(\sigma(x_i))=(T^{-1} g)(x_i)\ra (T^{-1}g)(x)=g(\sigma(x))$,
so $\sigma(x_i)\ra \sigma(x)$ according to Lemma~\ref{2.18}.
We see that~$\sigma$ is continuous;
and so is~$\tau$.
Then $\sigma$ and $\tau$ are homeomorphisms.
%
\item \label{2.19-II}
For the general case,
observe that~$T^{-1}\mathbb{1}_Y$ is bounded:
there is a positive number~$c$
with ~$T^{-1}\mathbb{1}_Y \leq c \mathbb{1}_X$.
This implies $T\mathbb{1}_X \ge c^{-1} \mathbb{1}_Y$.
In particular,
all values of~$T\mathbb{1}_X$ are strictly positive.
Then
\begin{equation*}
f \mapsto \frac{Tf}{T\mathbb{1}_X}
\end{equation*}
is a Riesz isomorphism $\Cont{X}\ra\Cont{Y}$
sending~$\mathbb{1}_X$ to~$\mathbb{1}_Y$.
By~\ref{2.19-I},
$X$ and~$Y$ are homeomorphic. \xqed
\end{enumerate}
\end{proof}
In~\ref{2.20} and~\ref{2.21}
we consider two variations
of Kaplansky's Theorem.
%
% 2.20
%
\begin{psec}{2.20}{Theorem (Gelfand--Kolmogorov)}
\statement{%
Let $X$ and $Y$ be compact Hausdorff spaces
and suppose there is a linear bijection $T\colon \Cont{X}\ra\Cont{Y}$
that is multiplicative:
\begin{equation*}
T(fg) = Tf \cdot Tg
\qquad (f,g\in \Cont{X}\,)
\htam{.}
\end{equation*}
Then $X$ and $Y$ are homeomorphic.
}
\end{psec}
\begin{proof}
If $f\in\Cont{X}^+$,
then $f = \sqrt{f}^2$,
so that $Tf = \smash{(T\sqrt{f})^2}\in \Cont{Y}^+$.
It follows that~$T$
is increasing.
So is $T^{-1}$.
Thus, $T$ is an order isomorphism
and thereby a Riesz isomorphism.
Now apply~\ref{2.19}. \xqed
\end{proof}
%
% 2.21
%
\begin{psec}{2.21}{Theorem (Banach--Stone)}
\statement{%
Let $X$ and $Y$ be compact Hausdorff spaces
and suppose there is a linear
bijection $T\colon \Cont{X} \ra \Cont{Y}$
that is an isometry relative to the sup-norm, i.e.,
\begin{equation*}
\| Tf -Tg \|_\infty = \| f-g \|_\infty
\qquad (f,g\in\Cont{X}\,)
\htam{.}
\end{equation*}
Then $X$ and $Y$ are homeomorphic.
}
\end{psec}
\begin{proof}
\begin{enumerate}[label=(\Roman*)]
\item \label{2.21-I}
First,
assume $T\mathbb{1}_X = \mathbb{1}_Y$.
Let $a\in\R$, $c\in[0,\infty)$,
For $f\in \Cont{X}$ we have:
\begin{align*}
f(X)\subseteq
&\ [a-c,a+c] \iff \| f-a\mathbb{1}_X \|_\infty \leq c \\
& \iff \|Tf - a\mathbb{1}_Y\|_\infty \leq c \\
& \iff (Tf)(Y) \subseteq [a-c,a+c]
\htam{.}
\end{align*}
It follows easily that $T$ maps $\Cont{X}^+$ onto $\Cont{Y}^+$,
and we can proceed as in~\ref{2.20}.
\item \label{2.21-II}
For the general case,
set~$u:=T\mathbb{1}_X$,
we prove $|u|=\mathbb{1}_Y$.
(Then $f\mapsto u^{-1} Tf$
is a linear bijection $\Cont{X}\ra\Cont{Y}$
that is isometric and sends~$\mathbb{1}_X$ to~$\mathbb{1}_Y$,
so that we can apply~\ref{2.21-I}.)
Observe that for~$f$ in~$\Cont{X}$
\begin{equation}
\label{eq2.21} \tag{$*$}
|f|\leq \mathbb{1}_X
\iff
\|f\|_\infty \leq 1
\iff
\|Tf \|_\infty \leq 1
\iff
|Tf| \leq \mathbb{1}_Y
\htam{.}
\end{equation}
Put $w:=\mathbb{1}_Y - |u|$;
we prove $w=0$.
By~\eqref{eq2.21},
$|u|\leq\mathbb{1}_Y$,
so $w\ge 0$.
Then $|u+w|\leq |u|+w=\mathbb{1}_Y$,
so that (with~\eqref{eq2.21})
$|\mathbb{1}_X + T^{-1} w|\leq \mathbb{1}_X$,
and $T^{-1} w\leq 0$.
But also $|u-w|\leq |u|+w=\mathbb{1}_Y$,
$|\mathbb{1}_X - T^{-1} w|\leq \mathbb{1}_X$,
and $T^{-1} w\ge 0$.
Hence, $T^{-1} w=0$.
Thus, $w=0$. \xqed
\end{enumerate}
\end{proof}
\clearpage
\emptypage
\end{document}