(Image from https://github.com/NathanUA/U-2-Net/blob/master/test_data/test_images/girl.png)
- Ailia input shape: (1, 3, 320, 320)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 u2net.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 u2net.py --video VIDEO_PATH
You can select a pretrained model by specifying -a large
(default) or -a small
.
$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH -a small
When using ailia SDK 1.2.3 or earlier, you must use a lower accurate model by specifying --opset 10
.
$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --opset 10
Add the --composite
option if you want to combine the input image with the calculated alpha value.
$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --opset 11 --composite
U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection
PyTorch 1.1
ONNX opset = 10