-
Notifications
You must be signed in to change notification settings - Fork 325
/
nafnet.py
executable file
·197 lines (150 loc) · 5.6 KB
/
nafnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import cv2
import os
import sys
import ailia
import numpy as np
import argparse
import time
# import original modules
sys.path.append('../../util')
from image_utils import load_image, get_image_shape # noqa: E402
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
import webcamera_utils # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from image_utils import imread
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'noisy.png'
SAVE_IMAGE_PATH = 'output.png'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/nafnet/'
BLUR_LISTS = ['Baseline-GoPro-width32' ,'NAFNet-GoPro-width32', 'NAFNet-REDS-width64', 'Baseline-GoPro-width64','NAFNet-GoPro-width64']
NOISE_LISTS = ['Baseline-SIDD-width32', 'NAFNet-SIDD-width64', 'Baseline-SIDD-width64' ,'NAFNet-SIDD-width32']
MODEL_LISTS= BLUR_LISTS + NOISE_LISTS
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('NAFNet model', IMAGE_PATH, SAVE_IMAGE_PATH, fp16_support=False)
parser.add_argument(
'-a', '--arch', metavar='ARCH',
default='NAFNet-SIDD-width32', choices=MODEL_LISTS,
help='deblur model lists: ' + ' | '.join(BLUR_LISTS) + ' , ' +
'denoise model list: ' + ' | '.join(NOISE_LISTS)
)
args = update_parser(parser)
# ======================
# Parameters 2
# ======================
WEIGHT_PATH = args.arch + '.onnx'
MODEL_PATH = args.arch + '.onnx.prototxt'
BLUR_IMAGE_MIN_WIDTH = 384
# ======================
# Main functions
# ======================
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
_tensor = tensor.clip(min_max[0],min_max[1])
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.ndim
if n_dim == 3:
img_np = _tensor
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
#gray
img_np = _tensor
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
return img_np
def preprocess(img):
if args.arch in BLUR_LISTS:
if img.shape[0] < BLUR_IMAGE_MIN_WIDTH or img.shape[1] < BLUR_IMAGE_MIN_WIDTH:
if img.shape[0] < img.shape[1]:
img = cv2.resize(img, ((int)(img.shape[1] / img.shape[0] * BLUR_IMAGE_MIN_WIDTH), BLUR_IMAGE_MIN_WIDTH))
else:
img = cv2.resize(img, (BLUR_IMAGE_MIN_WIDTH, (int)(img.shape[0] / img.shape[1] * BLUR_IMAGE_MIN_WIDTH)))
imgs = img.astype(np.float32) /255.0
imgs = cv2.cvtColor(imgs, cv2.COLOR_BGR2RGB)
imgs = imgs.transpose(2, 0, 1)
imgs = np.expand_dims(imgs, 0)
return imgs
def recognize_from_image(net):
for image_path in args.input:
input_data = imread(image_path)
input_data = preprocess(input_data)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
sr = net.run(input_data)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
sr = net.run(input_data)
# tensor to image
sr = tensor2img(sr[0][0])
## postprocessing
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, sr)
logger.info('Script finished successfully.')
def recognize_from_video(net):
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT) * int(args.scale))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH) * int(args.scale))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
time.sleep(1)
while(True):
ret, frame = capture.read()
frame = frame.astype(np.float32)
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
## Preprocessing
frame = preprocess(frame)
# Inference
sr = net.run(frame)
output_img = tensor2img(sr[0][0])
# Postprocessing
cv2.imshow('frame', output_img)
# save results
if writer is not None:
writer.write(output_img)
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
env_id = args.env_id
memory_mode=ailia.get_memory_mode(True,True,False,True)
net = ailia.Net(None, WEIGHT_PATH,memory_mode=memory_mode,env_id=env_id)
if args.video is not None:
# video mode
recognize_from_video(net)
else:
# image mode
recognize_from_image(net)
if __name__ == '__main__':
main()