(Image from https://github.com/NVlabs/GroupViT/blob/main/demo/examples/voc.jpg)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 group_vit.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 group_vit.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 group_vit.py --video VIDEO_PATH
You can specify the "model type" by specifying after the --model_type
option.
The model type is selected from "yfcc", "redcap".
$ python3 group_vit.py --model_type yfcc
To add an additional class label, specify it after the --additional-class
option.
This can be specified with list of multiple items.
$ python3 group_vit.py --additional-class bookshelf
Pytorch
ONNX opset=11
group_vit_gcc_yfcc_30e-74d335e6.onnx.prototxt
group_vit_gcc_yfcc_mlc.onnx.prototxt
group_vit_gcc_redcap_30e-3dd09a76.onnx.prototxt
group_vit_gcc_redcap_mlc.onnx.prototxt