-
Notifications
You must be signed in to change notification settings - Fork 325
/
suim.py
194 lines (152 loc) · 5.2 KB
/
suim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import time
import ailia
import cv2
import numpy as np
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402 noqa: E402
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/suim/'
WEIGHT_PATH = "suim.opt.onnx"
MODEL_PATH = "suim.opt.onnx.prototxt"
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
HEIGHT = 256
WIDTH = 320
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('suim model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
# ======================
# Visualize
# ======================
def get_color_map(num_classes):
num_classes += 1
cm = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
cm[i * 3] |= (((lab >> 0) & 1) << (7 - j))
cm[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
cm[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
cm = cm[3:]
return cm
color_map = get_color_map(256)
def visualize(img, result, weight=0.6):
cm = [
color_map[i:i + 3] for i in range(0, len(color_map), 3)
]
cm = np.array(cm).astype("uint8")
# Use OpenCV LUT for color mapping
c1 = cv2.LUT(result, cm[:, 0])
c2 = cv2.LUT(result, cm[:, 1])
c3 = cv2.LUT(result, cm[:, 2])
pseudo_img = np.dstack((c1, c2, c3))
vis_result = cv2.addWeighted(img, weight, pseudo_img, 1 - weight, 0)
return vis_result
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
env_id = args.env_id
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.debug(f'input image: {image_path}')
img = imread(image_path)
img = cv2.resize(img, (WIDTH, HEIGHT))
img_data = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_data = img_data / 255.
logger.debug(f'input image shape: {img_data.shape}')
img_data = np.expand_dims(img_data, 0)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
pred = net.predict(img_data)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
pred = net.predict(img_data)
# postprocessing
pred[pred > 0.5] = 1.
pred[pred <= 0.5] = 0.
# save individual output masks
pred = np.argmax(pred, axis=3).astype(np.uint8)[0]
output = visualize(img, pred, weight=0.6)
# save
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath,output)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
writer = webcamera_utils.get_writer(args.savepath, HEIGHT, WIDTH, rgb=False)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
frame = cv2.resize(frame, (WIDTH, HEIGHT))
input = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
input = input / 255.
input = np.expand_dims(input, 0)
# inference
pred = net.predict(input)
# postprocessing
pred[pred > 0.5] = 1.
pred[pred <= 0.5] = 0.
# save individual output masks
pred = np.argmax(pred, axis=3).astype(np.uint8)[0]
output = visualize(frame, pred, weight=0.6)
cv2.imshow('frame', output)
frame_shown = True
# save results
if writer is not None:
writer.write(output)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()