(Image from http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d)
- red: use detected bbox
- yellow: use ground truth bbox
You need to download KITTI dataset here. Download left images, calibration files and labels. Also download the D4LCN.zip (predicted).
Data folder should look like this:
egonet
├── calib
├── xxx.txt (Camera parameters for image xxx: provided from data_object_calib.zip)
├── label
├── xxx.txt (predicted object labels for image xxx: provided from D4LCN.zip)
├── gt_label
├── xxx.txt (ground-truth object labels for image xxx: provided from data_object_calib.zip)
These files are written in kitti format.
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 egonet.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 egonet.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
You can specify directory or directly file path with the --label_path
, --gt_label_path
and --calib_path
options for find label, gt_label, calib file.
$ python3 egonet.py --label_path LABEL_PATH --gt_label_path GT_LABEL_PATH --calib_path CALIB_PATH
You can get the 3D plot by specifying the --plot_3d
option.
$ python3 egonet.py --plot_3d
For images without a label file, you can use the --detector
option to get the BBOX.
$ python3 egonet.py --detector
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 egonet.py --video VIDEO_PATH
Pytorch
ONNX opset=11