-
Notifications
You must be signed in to change notification settings - Fork 35
/
AMAE.m
82 lines (75 loc) · 3.55 KB
/
AMAE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
classdef AMAE < Metric
%AMAE static class to calculate average mean absolute error (MAE). The average
% MAE is the mean of the MAE classification errors across classes and was proposed
% by Baccianella et al. [1] to mitigate the effect of imbalanced
% class distributions. Values range from 0 to J-1, where J is the
% number of classes.
%
% AMAE methods:
% CALCULATEMETRIC - Computes the evaluation metric
% CALCULATECROSSVALMETRIC - Computes the evaluation metric as an error
%
% References:
% [1] S. Baccianella, A. Esuli, F. Sebastiani,
% Evaluation measures for ordinal regression
% Proceedings of the Ninth International Conference on Intelligent
% Systems Design and Applications, ISDA′09, 2009, pp. 283–287.
% https://doi.org/10.1109/ISDA.2009.230
% [2] M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero and
% P. A. Gutiérrez Metrics to guide a multi-objective evolutionary
% algorithm for ordinal classification, Neurocomputing, Vol. 135, July, 2014, pp. 21-31.
% https://doi.org/10.1016/j.neucom.2013.05.058
%
% This file is part of ORCA: https://github.com/ayrna/orca
% Original authors: Pedro Antonio Gutiérrez, María Pérez Ortiz, Javier Sánchez Monedero
% Citation: If you use this code, please cite the associated paper http://www.uco.es/grupos/ayrna/orreview
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
methods
function obj = AMAE()
obj.name = 'Average Mean Absolute Error';
end
end
methods(Static = true)
function amae = calculateMetric(argum1,argum2)
%CALCULATEMETRIC Computes the evaluation metric
% METRIC = CALCULATEMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATEMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin == 2
argum1 = confusionmat(argum1,argum2);
end
n=size(argum1,1);
argum1 = double(argum1);
cost = abs(repmat(1:n,n,1) - repmat((1:n)',1,n));
mae = zeros(n:1);
cmt = argum1';
for i=0:n-1
mae(i+1) = sum(cost(1+(i*n):(i*n)+n).*cmt(1+(i*n):(i*n)+n)) / sum(cmt(1+(i*n):(i*n)+n));
end
if (exist ('OCTAVE_VERSION', 'builtin') > 0)
n = sum (~isnan(mae));
n(n == 0) = NaN;
mae(isnan(mae)) = 0;
amae = sum (mae) ./ n;
else
amae = nanmean(mae);
end
end
function value = calculateCrossvalMetric(argum1,argum2)
%CALCULATECROSSVALMETRIC Computes the evaluation metric as return it
% expressed as an error metric
% METRIC = CALCULATECROSSVALMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATECROSSVALMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin == 2
value = AMAE.calculateMetric(argum1,argum2);
else
value = AMAE.calculateMetric(argum1);
end
end
end
end