From f6ff8992941234397a59b0cbdd7fabbc0ef8c174 Mon Sep 17 00:00:00 2001 From: jovoni <65920542+jovoni@users.noreply.github.com> Date: Tue, 6 Feb 2024 11:11:09 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20caravagn?= =?UTF-8?q?alab/rdevil@d42e7002ecfdeff655c9fe59f5b5befdb957df08=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- pkgdown.yml | 2 +- reference/fit_linear_model.html | 19 ++++++++++++------- 2 files changed, 13 insertions(+), 8 deletions(-) diff --git a/pkgdown.yml b/pkgdown.yml index 6d67a66..63e71ad 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -2,7 +2,7 @@ pandoc: 2.19.2 pkgdown: 2.0.7 pkgdown_sha: ~ articles: {} -last_built: 2024-02-06T10:26Z +last_built: 2024-02-06T11:11Z urls: reference: caravagnalab.github.io/rdevil/reference article: caravagnalab.github.io/rdevil/articles diff --git a/reference/fit_linear_model.html b/reference/fit_linear_model.html index 5fcd4a9..ee99046 100644 --- a/reference/fit_linear_model.html +++ b/reference/fit_linear_model.html @@ -59,12 +59,13 @@
fit_linear_model(
input_matrix,
model_matrix,
- ncounts,
+ size_factors = TRUE,
group_matrix = NULL,
gene_specific_model_tensor = NULL,
kernel_input = NULL,
gene_names = NULL,
cell_names = NULL,
+ variance = "VI_Estimate",
inference_method = "SVI",
method_specific_args = list()
)
Vector with length equal to the number of cells. It -contains some kind of factor relate to the library size. For example, -it might contain the total UMI of each cell (i.e. colSums(input_matrix)) -or the UMI of each cell divided by the average across all of them.
Boolean. Decides if a scaling factor for the +expression of each cell should be computed
Vector containing the names of the cells
String. Either "VI_Estimate" or "Hessian".
String. Either "SVI" or "HMC"
gamma_lr
parameters to tune the decay of the learning rate using "ClippedAdam";
batch_size
number of data points or observations sampled from the input matrix in
each iteration of the optimization algorithm;
threshold
parameters to stop the inference earlier when convergence is reached.
+Default value is set to 0, i.e. all steps will be done;
HMC only:
num_samples
number of iterations after the warmup-phase, it also indicates the
posterior samples each chain will produce;
num_chains
number of chains for the optimization algorithm;
warmup_steps
number of iterations of the warmup-phase;
Shared:
cuda
;
Shared:
cuda
Boolean, indicates if CUDA should be used if available;
jit_compile
;
full_cov
;
theta_bounds
;