Documentation: Search API
curl --request POST \
--header 'Content-Type: application/json' \
--data '{"size": 100, "sort": [{"@timestamp": "asc"}], "search_after": [1589500805994]}' \
--url 'http://domain/index_name/_search'
{
"took":87,
"timed_out":false,
"_shards":{
"total":4,
"successful":4,
"skipped":0,
"failed":0
},
"hits":{
"total":10836885,
"max_score":null,
"hits":[
...,
{
"_index":"index_name",
"_type":"type_name",
"_id":"Y2Q3MGM3OWQtNWVkZC00YzFjLTliMDAtZTMyMDAxZDg2MTI0",
"_score":null,
"_source":{
...,
"@timestamp":"2020-05-15T00:00:06.008000000+00:00"
},
"sort":[
1589500806008
]
}
]
}
}
Elasticsearch recommends using search_after for deep pagination, which fits perfectly with our CDC purposes.
All we have to do is select some properties to sort by, and those will be then used as a scrolling mechanism in between queries.
{
"name": "my_index.elasticsearch.http.source",
"config": {
"connector.class": "com.github.castorm.kafka.connect.http.HttpSourceConnector",
"tasks.max": "1",
"http.offset.initial": "timestamp=2020-01-01T00:00:00Z",
"http.request.url": "http://domain/index_name/_search",
"http.request.method": "POST",
"http.request.headers": "Content-Type: application/json",
"http.request.body": "{\"size\": 100, \"sort\": [{\"@timestamp\": \"asc\"}], \"search_after\": [${offset.timestamp?datetime.iso?long}]}",
"http.response.list.pointer": "/hits/hits",
"http.response.record.pointer": "/_source",
"http.response.record.offset.pointer": "key=/_id, timestamp=/sort/0",
"http.timer.interval.millis": "30000",
"http.timer.catchup.interval.millis": "1000",
"kafka.topic": "topic"
}
}