-
Notifications
You must be signed in to change notification settings - Fork 6
/
bezier.tex
40 lines (30 loc) · 1.21 KB
/
bezier.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\section*{Quadratic Bézier Curve}
A quadratic Bézier curve is defined by three points: \( P_0 \), \( P_1 \), and \( P_2 \). The curve is defined by the parameter \( t \) which ranges from 0 to 1.
\textbf{Mathematical Formulation:}
\[
B(t) = (1-t)^2 \cdot P_0 + 2(1-t) \cdot t \cdot P_1 + t^2 \cdot P_2
\]
\subsection*{Derivation:}
\begin{enumerate}
\item We start with linear interpolations between each pair of control points:
\begin{align*}
\text{Between } P_0 \text{ and } P_1 &: \quad Q_0(t) = (1-t) \cdot P_0 + t \cdot P_1 \\
\text{Between } P_1 \text{ and } P_2 &: \quad Q_1(t) = (1-t) \cdot P_1 + t \cdot P_2
\end{align*}
\item Now, interpolate between \( Q_0(t) \) and \( Q_1(t) \):
\[
B(t) = (1-t) \cdot Q_0(t) + t \cdot Q_1(t)
\]
\item Substituting in our expressions for \( Q_0(t) \) and \( Q_1(t) \) from step 1:
\[
B(t) = (1-t) \left[ (1-t) \cdot P_0 + t \cdot P_1 \right] + t \left[ (1-t) \cdot P_1 + t \cdot P_2 \right]
\]
\item Expanding and grouping terms:
\[
B(t) = (1-t)^2 \cdot P_0 + 2(1-t) \cdot t \cdot P_1 + t^2 \cdot P_2
\]
\end{enumerate}
\end{document}