- Pytorch implementation and pretrained models for DINO v2 in remote sensing.
- See Official Paper and Github for information in detail.
[
arXiv #1
] [arXiv #2
] [Github
]
This project use the deepspeed interface for multi gpu training
deepspeed --include localhost:0,1,2,3... vit_train.py
deepspeed --include localhost:0,1,2,3... convvit_train.py
Dataset name | # of corpus | Dataset Paper |
---|---|---|
Million-AID | 990,666 | Link |
SkyScript | 5,181,068 | Link |
Total | 6,171,734 |
Model | Epoch | Total Params | Student Backbone Params | Student DINO Head Params | Student iBOT Head Params | Weight & Config | Logs |
---|---|---|---|---|---|---|---|
ViT-S/16-e25 | 25 | 132M | 21M | 22M | 22M | Link | logs |
ViT-S/16-e100 | 25 | 132M | 21M | 22M | 22M | ||
ViT-B/16-e25 | 25 | ||||||
ConvViT-S-e25 | 25 |
The evaluation methods for DINOv2 are k-nn clustering and linear probing. 90% of the data is randomly selected as the training set while the 10% is selected as test set. The k=20
is selected for evaluation with K-NN. The evaluation datasets are including below table. The splited data is stored in linprob_data_lists.
# train_textfile = linprob_data_lists/RESISC/train.txt
# test_textfile = linprob_data_lists/RESISC/test.txt
python3 evaluation/linprob.py --model-path {model_registry} \
--data-root {data_root} \
--train-text {train_textfile} \
--test-text {test_textfile}
Model | RESISC | Optimal 31 | MLRSNet | WHU-RS19 | EuroSAT | UC Merced | Cv-BrCT | AiRound | RSI-CB128 |
---|---|---|---|---|---|---|---|---|---|
ViT-S/16-e25 | 94.381 | 96.237 | 96.642 | 99.811 | 98.037 | 99.048 | 77.613 | 78.644 | 99.593 |
# train_textfile = linprob_data_lists/RESISC/train.txt
# test_textfile = linprob_data_lists/RESISC/test.txt
python3 evaluation/knn.py --model-path {model_registry} \
--data-root {data_root} \
--train-text {train_textfile} \
--test-text {test_textfile}
Model | RESISC | Optimal 31 | MLRSNet | WHU-RS19 | EuroSAT | UC Merced | Cv-BrCT | AiRound | RSI-CB128 |
---|---|---|---|---|---|---|---|---|---|
ViT-S/16-e25 | 93.365 | 89.785 | 96.981 | 97.196 | 95.741 | 87.143 | 76.208 | 77.881 | 98.943 |
- Feature Mapping - feature_mapping.ipynb
- Sparse Feature Matching - vit-feature-matching.ipynb
- Image Retrieval - index_search.ipynb