forked from seeditsolution/cprogram
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Floyd warshall algorthim
86 lines (75 loc) · 2.75 KB
/
Floyd warshall algorthim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// C Program for Floyd Warshall Algorithm
#include<stdio.h>
// Number of vertices in the graph
#define V 4
/* Define Infinite as a large enough value. This value will be used
for vertices not connected to each other */
#define INF 99999
// A function to print the solution matrix
void printSolution(int dist[][V]);
// Solves the all-pairs shortest path problem using Floyd Warshall algorithm
void floydWarshall (int graph[][V])
{
/* dist[][] will be the output matrix that will finally have the shortest
distances between every pair of vertices */
int dist[V][V], i, j, k;
/* Initialize the solution matrix same as input graph matrix. Or
we can say the initial values of shortest distances are based
on shortest paths considering no intermediate vertex. */
for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
dist[i][j] = graph[i][j];
/* Add all vertices one by one to the set of intermediate vertices.
---> Before start of an iteration, we have shortest distances between all
pairs of vertices such that the shortest distances consider only the
vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
----> After the end of an iteration, vertex no. k is added to the set of
intermediate vertices and the set becomes {0, 1, 2, .. k} */
for (k = 0; k < V; k++)
{
// Pick all vertices as source one by one
for (i = 0; i < V; i++)
{
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of dist[i][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
// Print the shortest distance matrix
printSolution(dist);
}
/* A utility function to print solution */
void printSolution(int dist[][V])
{
printf ("The following matrix shows the shortest distances"
" between every pair of vertices \n");
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (dist[i][j] == INF)
printf("%7s", "INF");
else
printf ("%7d", dist[i][j]);
}
printf("\n");
}
}
// driver program to test above function
int main()
{
int graph[V][V] = { {0, 5, INF, 10},
{INF, 0, 3, INF},
{INF, INF, 0, 1},
{INF, INF, INF, 0}
};
// Print the solution
floydWarshall(graph);
return 0;
}